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‘ gcpmclric optimization problems in 2 and 3 dimcnsiqn‘s:

L Abstract

Onc of Lh(;-"c'r():nlﬁi'n‘uing challenges of Eomp:u‘fa.lional gcometry is to find éfﬁcicnl and

practical solutions for com,pumtionalwprobléms. Oflcn\,?&gl] -known problem- solvmg
g i
lcchmqucs like divide- and -conqucr, plane- swecp and prune-and-search arc uscd in ‘the -

chauon of ncw algonLhms In this thesis, a new problcm solvmgdechmque callcd ICT*

(ilcralivc-convcrgcnvl-lcchniquc) is introduced. ICT is an approxnmauon wchmqyc Lhal.': -

gecometrically converges apon the exact-solution. It bcgms by consm:,cung‘a_(‘:onvm_(‘ -

‘region that encloses the'solution. Each iteration, a fixed fraction {approximately onc:h'a}f)

of the remaintng region is chopped away, ungllflhc*approximalion is guaranteed 1o lic

L E L

" within € of the cxact-solution, where & is a parameter Spcciﬁcd by the user. . N

To demonstrate the “usefulness of this apprdéch, w’c have applicd ICT to a number of

- . N ° =

e | dclcrmmmg the scparablhly of twd, pianar sets; ' v
i L; dctccung the common <ntersection of: the convex hulls. of m scls of pcmts ; I
¢ . Llncar Programmmg L  ,« N ‘
i : lhc problem of fi fndmg the smallesl cnclosmg sphérc of n wcnghted points .
: .
i

— -1l -
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,. Chapterl o * &

= Introductlon

Comp T - e : A;&.‘
S S o

Onc of lhc Lonunumg Lha]lcngcs of computauonal gcomclry is lo flnd cf[nc:cnl and pracllcal

soluuons for Lompumlondl problems. Thls cmphams on both cfﬁacncy and pracllcahly has* rcmltcd 1n an

- ;w‘- .-

lnlucslmg, mix of rescarch. At onc end of the spcctrum rc$carchcr9 SU‘lVC lo croaLc morc cfﬁt:lcnl
. . . .D .. i

algorithms, where m()rc cfﬁucm may lmp]y that the worsl -casc’ umc or spacc rcqurrcmcnm of the

solution hde bccn rcduccd or lhdl {hc algonlhm behaves wcll in all g)fpcclod cascs. At lhc o:fhcr cnd of

. the spcc?rum, lhc problcmc fd(,Cd dusgng lhc lmplcmcnwlon of lhccc algomhms arc cxammed This

-

mcludcs rcconcﬂmg the. dlffcrcnccs bclwccn ‘the hardwarc that Lhc algomhms w111 be lmplcmcmcd on and’.

i "

* {h¢ abstract compiler modcls'lhal were used by the dcslgncrs ofthese algorllth'. For cxamiple, rcscarcihcrs
study di(‘fcrqnliways of representing real numbers-on discrete hardware, and also ways of automatically
‘detecting and Hapdling degencerate CZL%CS;; . o S T

.
n -~

In lhjé;’rilhcsis;;j‘a ncw"_f);pblcm—sfolvingui\cchniquc called ICT (ilcraliQ'e-coaj'vergcnl—lcqhn,iquc) s

8 hrcscdlcd, where a prohlénl-.%ol»\ér"nvgdechnique is.z,s.imply an approach 1o solving a problem that'is cffcc(ivc

0 B

‘ 1';"{01’ a numbcr of dnﬁcrcm pmhlcms Algomhm designers havc frcqucnlly madc use of such Lechmqucs whcn

4

i ) - - Q " i
BN ‘Acrcaunzj ncwﬁng()nmms For cxamplc in lthr qurvcy of compulauonal gcometry [Lee and Preparata 84] :

. 'huve r‘dcnuﬁcd ;md\dcscnbcd several that have pr0v<;n uscful;m this rcspccl, mcludlng planc-swccp, dlv_;dC- ‘

. zmd~conqucr und prur‘}c—and—scarch. Of[cn a great deal of-ingcnuily is,rcquircd to demonstrate that a giv‘cn

AL

pg rhdp\ a ;,comg Lrlcal proporly of lhc problcm can bc exploncd Thc payoff for this cffort is lhal usua{ly

lm new s()luuon htm the time and spucc Lomplcxny of the preblcm solvmg lochmquc

-

The technique. that is presented in this Lhcsvis is an approxjrhalion technique. This ,m‘ca;h‘s that the

> algorithm will generate solutions that are within™ € units of an exact solution, where € is a paramecter

~specified h) the user. Usually approximatton lcchhfqups are faster than exact techniques, making theny™

e

tprohlcm can be qolvcd umng a pmlculdr approach Somcumcs complex preprocessing steps arc rcquucd or' .



*approximale‘ solution. There are a number of reasons for cxaminipng ICT in detal.

R L ; .. . N
B . ‘ ~

attracuve when the exact solution 1o a problem s not required. To demonstrate the power of ICT, 1t wilf be

‘applied (o the follov;'ing ZCOMCLric optimization pmiw-lc'm‘s: o o T xe

;

® Lincar Programming (LP) in 2 and 3 dimensions ;

.

o N g L Few ‘
® the problem of finding the smallest enclosing .sphere, of noweighted porits in 2 and ¥ %

_* dimensions (SES) «
| o . oA
® dewcting the common intersection of the convex hulls of m sets of pomts

~Exact Tinear solutions already exist for mast of the problems listed above. The hincar-tme solption for

LP was independedtly proposed by [Megiddo®3al and [Dycr 8] [Mcpdd_‘o 84] cxtended this result (o

obtain a lincar-time solwtion for LPin any fixed dimeriston. The unweighted 2-dimensional SES probiém
oy \ i Sp

~ ) .
-+ x ~

Y . H

was solved in lincar time by [MCgiddo‘X}u] while the lincar-ume solution tok the weighted SES pmhlc;}f.'

was described by [Dyer 86] . Detecting whethef the convex hulls of twa sets of pomnts overlap is

.

cquivalent4o determining whether the two sets are hincarly sepirable. This can be deternnned by solving

a7 s
Lien

‘ o 1 , R v e
two LP problems of fixed dimension [Edelsbrupner 87]  (page 213) . Sodar, if m > 2, 1018 pot

possible 1o determine whether the convex hulls of m sets of points overlap-ia hncar uos.

’ 1.~

P . . - e

_Since a theoretically opumalssolution already exists for mest of these pmb"lcm\', 1Las apt to

.

«

‘question’ the wisdom of suggesting yet another solution, in particular one that guasrantees only ag

+ .
'

= 4 - : N . EY
’

® ICTis worth cxploring because 1t 1s an approximation lcthniqu@ Aswas suted carlide, often the
exact solution to a problem 1s not required. ICT allows the user 10 spectfy ih&;’mﬁ»u.nl ol error
that is acceptable in the solution. If litde prccision,us required, then [CT can terminate carly.

®  Each of the lincar-time results referenced above utihizes the well-known prune-and-search echnigue,
whi‘ch' was ‘ﬁrsl-introduccd(jndcpcn&nlly) in {Mcgiddo 3a] and [Dyer 84] . Onc of the steps of
this lcchﬁ}quc is to find the median of a set of numhc\rs n ly;ﬁcur_ ume ( [Blum, [-‘I()yd. Prau,
Rivest and Tarjan - 72], + [Schonhage. Paterson ,undiPrnppcngcr 767) . HOwdver, u‘x
[Ed‘clsbrunncf §7] (page 239) has noted, the worst-case optimal methods for finding the median *
of a set of numbers all suffer from poor average case behaviour. Instead he suggests that the

simpler algorithms presented in [Floyd and Rivest 75] be considered for implementation xmcé they

PR

.-

& -

-

P



R

Ia

%S

w7

dc:u;rmmc u:rc mcdmn in a fast cxpcclcd ume. If Edclsbrunr{cr's advicé 1S féllo_wcd, then the

soluuons W the above algorithms are no longcr lmcar in the worst-case.

The most common approach f()r rcprcscnung rcal numbers on a compulcr is Lo approxnmalc them

by fixed-preciston ﬂoaung poml numbers. If such a rcprcscnlauon 1S ueed then cach ICT

algorithm will have a lincar worst-case um&»compfcxny

n -
ICT has the following striking feature. Changing the dimension from 2 to 3 ¢r changing the .

" probl¢m from an unweighted 1o a \i/c'iéhtcdlonc arc simply variations of the sam¢ problem. Often

a xol‘ulr()n for onc of these \-anauom sheds llghl on how the Sther vanauons be solved. As we

L

 shall see ufhcn the hmory of sonre of the problems listed above arc dlscusccd such variations ‘have

_been treated as towally separate problems, making it dlfﬁcu]l if not impossible, o cxtend a 2-

dimensional algonthm to 3 dlmcnslons or to convert an algorithrh for an unwclghud Soluuon into

2

onc that can xolvc the wcrghtcd version of the problem.

ICT can be casily combined .with other 1terative approaches, including the prunc- and—scarch

luhmquc Examples of how lhlx can he done will be presented later in the thesis.

"

There arc some problems that can be solved using ICT for which there are no known lincar
solution. For example, this is true of detecting the common intersection of the convex hulls of
m scts of points. -

Since problem-solving-techniques have proven 1o be uscful algorithmic design tools, 1t is worth

considering a new onc on this merit alone.  Alse, the gcometry that ICT is based upon is

iiteresung for its own sake.  Thus ICT is interesting from a strictly theoretical point of view.

-

ICT will be described in the next few sections, first in abstract terms o emphasize the concepts behind our

> -

approach. any then more concretely by using it tosolve a problem. - The notational conventions listed in

b

Appendix A hdve beensused throughout this thesis. .

1.1

FI,L“T.l An lterative-Convergen‘t-Techniq‘ué . ‘ =

A probicm must have a gcbmcmcal interpretation before ICT can be applicd to it. Usually the:

-~exact solutton s erther a pont or it can be dircetly determined from a point, given the constraints of the

problem. The sk of an ICT algonithm s o determine the Iocation of this point.- It bcgin§ by 1solating

the pomnt’s location o a particular rezeon osee Appendix B) of space.
»

Let @, denote the inidal solution .

1
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region. In each iteratton, more of the soluuon region 1s chopped away, untif what remains is small enough

for all of its points to he within € of the exact solution, where € 1s a parameter that is specified by the
user. The method of chopping is based upon the following observation. If @ and " ar¢ two convex

regions that contain the exact solutton 8 . then s e @~ o In cach teration, a new convex scl

7

( I,y 1s determined, such that I, contuns S and such that the volume of @, = @, |~ T, isno

larger than a fixed fraction of the volume of the previous solution region, @, . Thus ICT cdnverges

towards § through a scquence of aested convex regions whose volumes decrease ina geomelric
Progression. C ; ’

In summary, cach ICT afgorithm has three distinct components:

-
o A . FARL .

® animtialization step during which the imual solution region @ 1s constructed

. »
-

® an.iteration sequenge during which T, is used to chop away a portion ol the solubon region,

- oo -

Thatis, @, = F, »~ &, .

® atermination predicate which determines whether the current solution region s small enough o
a
. N .
terminate or whether another iteration 1s required.
Note that one of the basic tenets of thisthesis is that cach of these components should reguire at most

hincar ume. In order to help iHlustrate the above ideas, ICT will he applicd to a sample problent in the next

LlwO sccuons, ) .

1.2 The‘Sma”l_Iaest Enclosing (,;ircle Of n Points In The Plane (SEC)

" Finding the Smallest Enclosing Cir;'lc (SECai' of n pomts in the pl'unc 1s a classic geometric
opuimization problcm whi‘ch over the years has been known by a number of dif!'crcnl names _including:
minimum spanning circle, Euclidean distance facilily.locali()n and the Euchdcan one -ccmcr (point)
problcm Figurc 1.1 illustrates the SEC problem. Suppose that'we have been given a sct of n 1p(>|'nlx n

the plane and we have been asked o find the smallest circle that encloses these points, where we define a

circle with center” € and radius r as follews: Circlel € ,r)={ X € E2| Dictancel © JX)<r ).

Distance( € , X ) 1s a funcuon that return$ the Euclidean distance between the points € and X .



F();nally, SEC cz;n be described as follows. Let S = ‘[ P:. P2, ....P.} dcnotc asctofn pdims

in the planc. We want (o find the point €* that minimizes r* , where:

- 2
n
. r* = maxamum Distance( C* , P, ).
. . : R
0 % ooxox ‘
x x
- x x 2
x ) -~ %
- x x . x : g £ F
x X x x N
X x x
x LA 2
X .
X
o - i ha e = N : B
T (a)y S, the setof pointsT T «(b) the smallest circle that encloses 5.
M ‘ ) ‘ ) . . 1 & s
Figurc 1.1 An example of a smallest enclosing circle.

3
The smallest enclosing circle has a number of well-known propertics, including:

Property 1: The smallest enclosing circle s unique;

P

Property 2: Either two points of S defihe-the endpoints of the diamcter of the smallest enclosing

circle, or three points of § form an acute triangle whose circumcircle 1s the smallest

enclosing circle. i

S¢e Chapter 16 of '[Rudcmachcr and Toeplitz 57] for a proof of these two propertics.

Property 2 states that €*  lies in the-convex hull of at least two of the points of S, Therefore

m~ o

any bounding box that encloses the points of § will also enclose €* . We will make use of thi

S

knowledge when constructing the initfl solution region. Now consider the problem of réducing the area of

P
4 3 »

the soluvon region by a fixed fraction

P
circle that'encloses the points of S has aradigs  such that, r* < r. Furthermore, it is well-know
that ’ ' . -
. m Y. . e
C* ¢ Circle(p ,r) . . e
- pes Lo
. N2 S

cach ueration. Since the smallesT enclosing circle is unique, any

n
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Let g denote a point that lics in the interior of the current solution region. Find the point f e S that is
furthest from @, and let r = Distance( g , f) . It is casy 1o sce that (ircle( g, r)  will enclose the”

pointsof §, as is shown in Figure 1.2.a . - Thercfore, it follows from the above that Circle( f.ry,

e - -

which is shown in Figure 1.2.b, encloses €* . Noticc that g lics on'the circumference of-his circle.

‘

@

current solution current solution

region region

(a) A circle that encloses § . P (b) A circle that encloses €*.

Figure 1.2 Part of the SEC iteration step
L4

Now consider the half-planc whose boundary both passes through ;g and is tangent '(‘m[e( f.r) (sce
Figurc 1.3 ). Since this half-planc contains Circle( £, r ), it must also contain €* . Thus we can |
cénerucl the next solution region by intersccting the current solution region with lhi:&; half-planc. Clearly
the choice of g will affect the area of the region that is discarded. The following thecorem will be used to

guide our choice.

\

Ve .
Winternitz's Theorem,

~

A 2-dimensional-convex figure is divided into two rcgions by a linc that Passcs through its centre
. L C o ‘ 4 S
of gravity. The ratio of the arca of these two regions always lics between the bounds P and A

(inclusively)



R
 See [Yaglom and Boltyanskii- 61], page. 160 for a proof of this thcorem. Centre of gravity is defined in

Appendix B | “Each solution region is convex since it is constructed by intérsecting half-planes, Therefore,

Do~ . .
by choosing @ so that it coincides the the center of gravity of the current solution region, Winternitz's

. : . . . : - 5 ; .
Theogem ‘guarantees that the area of each successive segion will be at most 5 of the area of its

predecessor, meeting the geometric reduction requirements of an ICT algorithm.

’

.next solution
region

Figure 1.3 Reducing the area of the current solution region
Finally‘, consider the termination predicate., Suppbsc that Circle( @ , r) 1s the approximate

~solution. There are two ways to interpret the termination criteria; either r should be within € of r* or

clse g should be within € of €*, where € is a parameter specified by the ﬁser.. The basic idca behind

the first-criferia s (0 ICrMINALC once
r-or* < g
- .
This can be achieved by finding a suitable r” < r* and terminating when  r-r"'< £. Thus

r' < r* < r. There are several ways 1o find a suitable ‘v For example, let X denote the point of

-

the soluton region that is closest o f. Clearly  Distance( x ,f) < r*  sigce the solution region

E
s



4, N ' . » ..

"contains €*. Rather than finding X however, it will be casier 10 find the veriex v of the solation .
region that is of maximum (perpendicular) distance & from the boundary of 7, . It is casy to see that )
r-r < 8
*

(sce Figurc 1.4.a). Therefore, the algorithm will terminate once & < €, since this ensures that

’

r-r- < 8 < €. o ) -

Ngw consider the second termination criteria. C{lcu_rlxi g s within ¢ of €* if the current

x

solution rcgion is a subsct of Cirefe( @ , €) . This is casy Lo [CSL - jusl make surc that each vertex of
the solution region is within € of g . yThe difficulty is in ensuring that the solution rcgion converges In

all directions. For cxample, Figurc 1.4.b illustrales four successive solution regions that are con\vcrging

in the x-direction only. If this trend continues, then the solution region will never bhe a subsct of —

Circle( @ , €) . This problem is discussed further in Scction 1.4 .

next solution
reglon

(ay r-r' <e (b) an example of degenerate convergence

Figure 1.4 Terminating SEC “F\

1.3 The ICT Algorithm For,fSVEC

In this scction, an ICT algorithm for finding lhc smallest bcrn.c]osing circle ()f' ‘n’ points in the
plénc is described. Tt is assumed that the algonthm should terminate once 7 is within ‘E of r* (Scc
Chapter 3 for an cxample of lcrmin~aling once @ 1s within ¢ of ¢*.) Bcefore presenting the .
algorithm, some functions and definstions should be introduced. Let COG ( @) denote a function that
returns the center of gravity of the region @ and let Furthest ( g .S ) denote a function ihal returns

1 °

the point of § that is furthest from g .
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e

lnitialhatlon Step T
= L 4

‘_ ]:] v sLet d'>0 denote a;:;undmg box for S N
1.2 ry’ ::+oo; ; ’ o= ?‘e \/
2. Iteration Step (i >1) ) e
2.1 gi= CoG(d, )i T
- 22 = 9urlﬁesz(g.5);% - "‘:;;: | i ®
23 r, ::'ﬁZnimum (Qr, 1w Distance ( | g.ft)r); r‘ . -
2.4_V el f, denote the ha]f—pla.nc con‘lainigg f whose ggund;y is tangent to  Circle(f,r;) and
perpendicular 1o the line segmen,. gf l ¢ )
25 b, '_tb,lﬂr,; . A L
3. Termination Predicate ‘ SR .« 4
31 Find the vertex .V of @, - that is of maximum pcrpen@u]ar distance from the Boundary of ﬂ .
L.ql 8 denolc this-distance. . '
3.2 If 6<e ‘ s e .
~ 3.3— then | terminate reporting that .Cin:[z( g.r;) s the approximate solution }
3.4 " clse | continue (o iterate. }' -
- end of algorithm - - . o %
. Discussion- and analysis of Algorithm 1.1 _ @ ” P o

Let n denote the number of input points.’

A rectilinear bounding box can be constructed. in O(n ) time. Therefore the initialization step

requires O(n) time.

In cach iteration the number of edges of the solution region will increase by at most one, due to the
intersection of line 2.5. Therefore, during the " iteration, the solution region will have O(i)

edges.

The centre of gravity of '@, ; can be found in time ll\'\ear to the number of edges of the region (see

Section C.3) . Therefore line 2.1 can be performed in O( i) time.

Line 2.2 requires O( n') time since cach point of § must be checked in order to find the one that is

furthest from @ .
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Line 2.3 may be a bit surprising From the discussion in the previous section, one would expect it

tobe: r; = @Lstance( g ). Of coujrsc this would be perfectly acccpmblc since the resulting
area of d> would be appropnalcly bommdcd However, thie goal of the above al;,onlhm 1q to reducce
the area of the solution region o the opumal poml as fast as possible. By choosing r, 1o be the

minimum radius so far, we-ctt away e¢ven morc of the solution region.

Clearly, I; inline 2.4 can be determined in constant time, given g .1 and r,.

Tt

-The intersection @; = @, { ~ I; . can be performed in time lincar Lo lhc numbc[ of cd;,cq of

@D; | (see Secllon C.4).- Therefore line 2.5 can bc pcrformcd m O(i ) time

e

Since the solution region is a convex polygan, it has the same num‘bcr"grfh vcrliccs as edges. Clearly
the distance’ between one vertex and the bed'nda’ry of I; can be determined in constant time (scc

[(Bowyer and Woodwark 83], page 107 ) . Therefore the entire test can be performed in O( ¢ ) time.

There is an optimization that can be made to Algorithm 1.1 that has not been included for the sake of

“clarity. Each time-a new minimum radius-is discovered (1iné 2.3), the cdges of the solution region

can be trimmed to reflect this new radius. For example,. supposé that the edge e/f-‘iwas added to the

solution region during iteration j, where j <i. This edge can be trimmed from the solution region

by inlerseciing the current solution region with a haif-planc I, that contains f,, such that its

boundary'ié parallel to that of TI’; but which is a distancc of r; from the point f, instead of r; .

(Note that I';; =T m F ) I“,-J- contains the exact solution since r* < r,. Therclore this step

“will not discard the exact soluuon.

The intersection routine (see Scction C.4) can be customized for the trimming opcration. The first step

~of this routine is 1o find a vertex of the solution rcgion that docs not lic in I”‘/ Notice that cither -

endpoint of e; lies \dulsidc of I}, so there is no nécd to scarch for such a vertex during the trimming
step. Starting from:pne Such vertex, the intersection routine systematically traverses and deletes the.
edges of the solution region that lie outside of ;. Finally a new cdge (e;;) is added 1o the region in -
order 10 close the boundary of the polygon. Now consider the overall cost of the trimming step. Each
edge can be added and deleted in O( 1) time. Since at most O(i ) edges can be deleted from the
solution region and at most O(i) edges can be added to it, it is casy o sce that Lh;: total running
time for the trimming step is O( i ) time. 'I"herefore the trimming step furlhqr reduces the arca of the
solution region without increasing the asymptotical time-complexity of the algofi?hm. In a'ddi-[ion, it
helps to keep the solution region more ‘cepired’ with respect to the furthest points.

A
Zy



" Thus in summary, . v
® " O(n) time is required for the initialization-step ; T
®  O( Maximum{ {,n) ) time is required for the i itcration ;

ith

® O(i) timeis required for the termination predicate durinig the ## iteration. .

v

Therefore, the total running time for Algorithm 1.1 is O(t* Maximum (n ,t)) , where ¢ is the

the initial solution region. In the following it will be argued that the running time of Algorithm 1.1+ is

- . of .
- lihcar‘:\;vﬁcncvcr fixed prc.x‘isio_n floating point numbers arc used to approximale real nunibers:

In maost computer implcménlalions,' rcal numbers are approximated by*a rational fraction limited to

a certain fixed precision. This means that after a bounded number of iterations, éay ¢; , the area of lhe‘

solution region wilbl be jcss Ihaﬁ the sm;llcst discernable difference between two ﬂoalingpoinl numbers. If

the algorithm has ot already terminated, then at this point in time,-the solution region will have been

reduced to cither a line segment or a single point ( see Section C.4 ). If the vertices of the region are

contained in the line that defines the boundary of T, then the algorithm will terminate, showing that ¢ is

bounded from above by ¢, . However it is possible that the solugoﬁ region has been reduced Lo‘ a Hne

segment that docs not lie in the boundary of 7. For example, thisssituation arises trivially when the
initial solution region'is a vertical line segment. The maximum length of this line segment is determined

by the diameter of the initial solution region. When such-a case arises, the algorithm will continug to

iterate;  cach iteration the lcnéth of the line segment will be reduced by ;—( see Section C.3). Thus

after a bounded number of iterations, say ¢; , the length of this line segment will be dess than the smallest =

discernable difference between two floating point numbers. At this point the solution region will be-

reduced to a point and the algorithm will terminate.  Thus, < ¢, + ¢, , where ¢; and c, are constants
. . :

determined by the fixed precision of the real number representation.

£

+*

Under the above assumptions, t=0(1) since it‘ié bounded from ébovg by”’é constant. :

Furthermore, since it is expected that t << n , it is claimed that the running time of Algorithm 1.1 is

O(n).

total number of iterations perfermed by the Algorithm 1.1. The size of 1 depends on € and the arf-;a,of; =
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1. 4‘ Terminatiﬁg ICT Algovrithms_

‘ Allho&gh the_ lermination of each ICT algobrilhr'rkf;vill be handled scparately in this thesis, there are
a few gencral comments that can be made. Suppose lhal X* is the optimal solution of thé problem and let
ghldenot.c Lhé c>cm.re Mo‘f. gravity of the cgrfcnl solution’ region. vIn this thesis, two mcthods of tcﬁninating
ICT will be considered, which c\én be degcribed loosely éS follows: |

M | Fxr) - 7F(g) | < ¢
2] 'IX* - g |</£'.

-

The meal;ing of these slalcmcn'ls dcpcnds upon‘the problem being solved; their desirability depends upon

the Vapplication, " For example, if we consider the smallest enclosing circle problem studicd in.

Section 1.2, (1) refers to cnsuring that the radius is within € of r* ile (2) requires that g be within

€ of €*. A type (1) termination involves finding an over- and underestimate of the optimal solution;
. ‘ * - .

~ , . :
when the two estimates are within € of cach other, then the algorithm can terminate.  This type of

termination was illustrated in - Algorithm 1.1 CA type (2) termination requires that the solution region he

a subset of Circle( g , €) (or Sphere( @, €) while solving a 3-dimensional problcm)T Thc problem:

-

of degenerate ConVergéncc arises only‘ when a type (2) tcﬁninalion is required. Since this is the more
difﬁcuh termination predicate to sai‘isfy, lhé algc;rilhms describgd in the rest of this thesis W'i”' consider this
case only. |

%‘ [Diaz and“O"Rourke 89] have suggestod an approach for handling degencrate convergence which
may be applicable to ICT. Their approach involves finding the diameter of the solution region and spli‘uing
the region into two par_ts»a}ovng this ‘diamele{: An i}cfaliqn is then pcrfornic‘d on both of the regions. A
fixed fraction of'b_oyh regipns is cut away dur‘iﬁg the iteration, rcsulu’n‘g'..in a fixed fraction of the total rcgion

being discarded. In addilion, they show that for the problem of finding the centre of area of a convex

polygon, this approach‘ensures that the diameter of the solution region 'convcrécs 10 a point. It is likely

.

that this property will also hold for ICT algorithms. However, since there exists no algoriihm o compute

p

the diameter of @ convex polyﬁedron in linear time, this approach has not been pursued in this thesis.  As '



was mcnﬁoncd carlier, one of the basi-"‘cblcncts of this thesis is Lhal:c‘ach/stcp of the alfgbrﬁi:thp'?}shoﬁld take al’ s

most lincar time. S ' : - . o

1.5 Other Related Work
ICT was mqpxrcd by an algomhm by [Caslclls and Melville 83] [Mclvnlle 85] whnch ﬁnds lhc—v
| srﬁallcsl cnclosmg cnrclc of a convex polygon. We can use Castells and Mclv1lle s algonlhm 1o s_olvc our

problem by first fmdmg the convex hull of S in O( n log h ) time, where A is 1he number of pomls on

Lhc convex hull [Kirkpatrick and Secidel 86]. Let H = [ Pi. P2, - Ps } be th_e o;_dcred set of
points comprising the convex hull of S. Melville's algorithm differs from ours in the following ways.

® The initial solution tegion is constructed by intersecting A circles centered about each of the

points of /7. Normally this step would require O( h2) time, but, becaufse"ﬂi,e' pointé-b_f;a convéx

polygon are already sorted, Melville is able to achieve this step in O ) time.

® The algorithm terminates once the arca of the current solution region is less than the precision of

the floating-point hardware being used. Since the amount of available precision is fixed under such  *

conditions, Meclville is able to bound the total number of ‘iterations by a constant, leading to a

linear running time. . T

ICT is an improvement over Castells and Melville's for a number of reasons. Firstly, the
requircment that the original source points be sorted has been removed. This climinates the need 1o .
determine the convex hull of lhe sct of n poims. Secondly, cach iteration Castells and Mclyillc's
algorithm’ finds the mtcrsccuon of n circles, whlle the ICT algorithm SJmply finds the m[ersccuon of a )

convex polygon and a half- space where the polygon has O( i) edges durmg the” x’h iteration. Therefore

- the cost of each of ICT iteration, at lcast initially, will be smaller than those of the other algorithm.

1.6 What Will Be Done In This Thesis?

In ChapléL 2, Winternitz's 2-dimensional r,esult will be exleﬁdcd o 3 dimensions, allowing ICT
10 be applied to 3-dimensional problems. In Chapter 3, ICT is applied to the problem of finding the

“smatlest enclosing spherc of n weighted points in 3 dimensions. This is a generalization of the sample

problem presented carlier in this chapter. In Chapter 4, thesproblem of detecting the common intersection

- 13 -
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" of the c‘onvex"hi;l.ls of ./ sets of points in 2 and 3 dimensions is’cxamiﬁcd In Chaplcr 5, PCT 1s '

[

‘applied to L,ineariProgram_mi‘n'g in fia‘nd 3 dimensiqns Flnally, m Chaplcr6 Lhc conchmom arc

C .y

presented, aldng with-some shggcstions for future rcsearchja T

« LN
- +

As has already been mentioned, Appcndnx A dcscrrbcs the nolauonal convcnuom uscd “In.

- . Poooat

= addmon Appendxx B lncludes dcﬁnnlnonspf some of (he maLhcmallcal lcrms that are used in 1hc lhpm

?

Appendix D summarizes some of the functions lhal have been dcﬁncd in this thesis.

8§

(N

Some of the . lssues reIaLcd to lmplcmcnlmg ICT algonlh,ms are dlscusscd in AppcndGC whalc



- Extending "Wintemitz's Theorem To 3 DimensioﬁS‘ x w B

- . I

In scction 1.2 we saw how ihc_Z-dimcnsibnal version of Winternitz's theorem was used by ICT to

-

solvethe SEC problem. ,Similarly',‘._:%-diménsional ICT problems re_qﬁre a 3-dimensional version of

Winterriitz's Theorem which is discussed in this chapter. Specifically, we show that, forra"pla_nc passing
through the centre of gravily of a convex region,

210, g 31
B 27

where 7 s the ratio of the volumcs of the two regions determined by the plane.. The crux of the argument )

is that for any 3-dimensional convex region, @ right-angled cone can be construcicd-tha'l has lhcf‘samc«:

volume,“such that, when partitioned by a planc passing through its cenfre of gravity, the ré‘lio of the

volumes of thesc two regions cstablishes the bounds for .7 . The construction of the cone involves several

steps.  First-we apply the Schwarz construction 1o the originaiv-rcgi’on, creating a ré‘giQn of the same volume

~ that 1s axially symmetric about the z-axis. The cone is consteucted from this symmétrical image.

s - - .

Schwarz's construction and the cone construction are described in-the next two sections. In Section 2.3:

we show that the right-angled cone cstablishes the range -mentioned above. ,.Fihally, in. Sc'clion‘2‘.4, we

A . . : o e

present the proof of the theorem. I . S .

P kg
- B

- >

2.1 The Schwarz Cohstruéti'on

Given a closed convex region - ¢ and a line A, the S¢hwarz construction ‘conétructS’arcl'Q_'s‘cd X

F

convex region of equal volume, such. that the new region is axially symmcirie abéul‘ A [Blaschke 49] ..

Brictly, for every plane pcr_pcndiéular to A that intersects @, constrict a closed circular. disc about A that

is equal in drea 1o the intersection of @ and this plane. The constructed region is the union "ohf](:sc circular
discs. (see Figure 2.1). We will refer to this new region as the symmetrical image of @ about X. .
. . o . [ ! Lo

- N R )
~ . ) - : R £
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4 .
(a) @, the original convex region

* : Figure 2.1 An example of the Schwarz Construction.

(b) the symmetrical image of @ about 4

- Theorem 2.1 Lct ¥ dcnote the symmetrical image of @ about the z-axis. The centres of

gravity of both @ and "‘P.lie in the-same horizontal planc. Furthermore, the regions of @ and

"W that lic dbove this planc are cqual in volume, as arc the regions that hic below it

- 0

vy

Proof: Let p denoié the horizontal planc that passes through the centre of gravity of @ , and let

@, denote the region of @ that lig’s- above p . The volume of @, s

. : -zmm .
‘l’(d)lv) =‘jdv : j ,q(_z)dz»
b 2y -

where A (z) is a function that returns the cross-scectional arca of cach differential shice, and the.

integration limits, zg and z,,, , refer to the z-coordinates of the lower and upper horizontl supporting

plancs, respectively, for @, Since p is perpendicular to the z-axis, the Schwarz construction

.

partitions @, in e¢xactly the same manner as the integration in equation [2.1] does. Thercfore,

(D, )"‘: V(W¥,), wherc ¥, is the region of ¥ that lics above p . Similarly,

V(D)= V(¥y) :whcrc CD; and ‘¥, denote the regions of @ and ¥ that he below the planc

p . Now consider g, the centre of gruvily‘of & . By defintuon,

Zm.ax

j z A(z)d:z
. Zmin
g = T WD)

where. z_ 1. 1s the z-coordinate of the lower h()ri'/.()nwlA supporting planc for @. The cxpression,

z A(z)dz , has the same value for corresponding differenual shces of @ and ¥ . Therefore 2q

- 16 -
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| 7

" the z-coordinate of lhé‘can‘rc‘()f gravity of ¥, leading us to conclude that _p passes through the '

centre of gravoily of ¥. e !

b

]

2.2 The Cone Construction ) .

-

- 4 : S _
Let ¥ denote a closed convex figure that is symmetric about the z-axis, and whose centre of

" gravity coincides with-the origin. In this section, we will construct a (right-angled) conc thdt has the same

. Y ‘ o
volume as ¥ First, we will construct a cone whose base is the intersection of ¥ and the planc z=0

and whose apex is the point on the. z-axis where ¥ is supported from above by a hotizontal planc

( Figure 2.2.b ). The volume of this conc 1s less than or cqual to the volume of ¥, , the upper part of

.

Y. Now, gradually extend the apex of this cone up the z-axis, continuously increasing s volume, until
it has the same volume as that of . ¥, . Let A, denote this final cone ( Figure2.2.c). Finally, definc

a further extended qo‘nck A by cxtending-the sides of 4; downwards, shifting its base down the z-axis

while keeping it-perpendicular to the z-axis, until its’volume is the same as that of ¥. Let 4, denote the

-

region of the cone that lics below the plane z =0 (Figure 2:2.d). A isthc unionof A, and 4,.

(a) ¥ ‘ (b) the initial cone |

AR ATING PR N A G I (dy vV(4;)=M Y¥;y)

Figure 2.2 The cone construcuion lechnique
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In the rest of this section, it will be argued that the centre of gravily‘ of A docs not lic below the
centre of gravity of ¥ . First we show that the centre of gravity of 4, does-not lic below that of ¥, .

Next, we will show that the centre of gravity-of A, docs not lic below that of ¥, . Finally we will

combine thesé results to show that the centre of gravity of A docs not lie-below that of ¥ -

Lemma 2.2: The centre of gravity of 4, does not lie below that of ¥ .

Proof: If ¥, is a conc, then the two regions are identical, and hence have the same centre of /.,.\

e

gravity. Thercfore, assumc that “i’l is not a conc. The union of ¥, and A, can be parutioned into

three regions:. Py, the sct Sf points common to both ¥, and A, ; P, the ‘doughnut’ or toroidal .

region that surrounds the cone and Py, the points that lic solely in - 4, ( Figyre 2.3.a ). Note that =,

the intersection of Py and Pais a horizontal circle.

Let @y, ., ‘g,h'.: g,. @- and @ . dendfe the centres of gravity of ¥, ., .\, P, P, and
. _ : 7 -
Py . rtespectively: By Theorem B2, the point gy, lics on the line scgment @y @, , dividing it

+

in the ratio

Length (g, gy, )  ¥Y(Py)
Length (gy, 9.) WP - =

-

Similarly, lics on the line segment connccting and ,dividing it in the same ratio singe
Y A ‘ : £ 12 2 3 B

M Py =1 P)). 'i‘hcrcfofc‘ _ .

5

Length (g, g¢;) _ Length (g, g, )
Length t gy, g>) ~ Length (g3, @5)

Since cach region is axially symmetric about the z-axis, the centres of gravity of these regions will lie

onthe z-axis. Let zy ., z, .z, z; and zy denote the z-coordinate of these points. We can’ N
rewriie equation {2.2] as follows:

A

f 5 T T
Nz, - 2y )° \/(21-2,«7&

;
N fzy -2y )2 : V(Znt‘hlz




P
Zwl - I3 ZA‘ Zq . -
< Zy - Ty _ Z1 - ZIp [23]
Zwl - 23 ’ Z,‘I - 23 .

The last linc follows because gy, must lic between @, gnd g, and similarly, g, must lie

bctween @, and gs5. Now uan;lalc the region W) w A4; vertically so that "z; coincides with the

‘_origin. This does not affect the relative positions of the above centres of gravity. Equation [2.3] now

7

simplifies 1o *%
AU & | 23]
Zwl - 2y ZA] - 23 ,. .
A
. z ZA —/) . h
or simply: e = [2.4]

.22 2y, ,

Recall that, by construction, the regions P, and” P; mccet at a horizofital circle, and hence arc

separated by a horizontal planc. From this it follows that g3 docs not lic below g,. Td sce this,

consider the intersection of P, and the sct of horizontal planes. This intersection partitigns P, into a

: - -
setof regions, cach of which is radially symmetric about the “z-axis and whose centre of gravity lics in
A ’ .

\th same h()rizonml.plunc. Since P, is the unionof these regions, from Theorem B.2 - we can
conclude that g> must lic on the linc scgmcnl connecting the centres of gravity of the two regions
that are extreme in the z-direction. Since all of P, lics below the horizontal plane that scparates, it
from Py, wé <an conclude that g, docs not lie above this plane. A similar argument can bc used to

show that g3 docs not lic below this plahc. Therefore we conclude that g5 does nol—lic below g, ,

and hence 73 2 z5 . . ’ ; . o,

Now what remains 15 to show is that g, , does not fic below g',,, . (Recall that. ¥, U A, have

been translated vertically so that z; cotncides with the origin.) There arc three cascs to consider:

7



v

0] Sutipbse that 22, and z4,.arc both positive. This means that Zy, ~Vand'-z.,l‘ arc both positive since

they both lic on line segments whose one-endpoint is the ()rigin and. whose ovlhrcr endpoint lies -

satisfy equation (2.4] , we conclude that 24 22y .

-

*above the origin. Therefore,in order to

k]
-

(2) Similarly, if z, and z; rc both ncgative, then 7y, and z, must both be negative, and again

zp 2 2y in-order to_'salis‘fy cquation {2.4] . -

P
+

‘(3 Fina}ly; suppose that z; < 0 < z3. .By Theorem B.2, zy  lics in the closed interval

[ 25 ,O’] . Similarly, z, lies in {0,z;]. Therefore, once agamn, z, 2 'Z"’, .

Since in cach case z, > -zy , we conclude that " does not lic below ..
Ay S, Ld4) ¥,

3

(a) partitioning ¥y w4y - (b) calculating gy (¢) calculating @,

Figure 2.3 The cénue of gravity of A, does not lic below that of ¥,

Lemma 2.3: The centre of gravity of 4, docs not lic below that of Y,

The proof of 'this lemma is analogous to that of Lemma 2.2 and will not be §6pca}¢d here. Note that a kcyi‘ '

point of this proof is that 4, docs not extend below ¥, . c ' . E

' ,Theorem 2.4: If g, and gy denote the respective centres of gravity of A and ¥, then

g, does not lic below gy )

Proof: Let s, =9 ¥,)=94,) and ;= Y(Y¥,)=9Y(4,). By Thcorch B2,

“fhe point @y lics on the line segment gy, and gy, , dividing itin the rauo:

Ll
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Length (@w, 8v) _ 53 oL [2.5)
Length (@v @w,) ~ 1. - | -

PN

Furthermore, the points @y , @y, and @y, each lic on the g-axis. Thercfore we can rewrite

cquation [2.5] as:

. i . . ,

- Iy - Zy 59 -
P = = .. : [2.6]
Zy - Z\,u2 5 .

(The absolute value signs are not needed since by construction, 7y, S 29y S 2y . ) Rewriting "_.;’V*"

* cquation [2.6] gives us: ’

s - «

S; Zy, t+ S) Zy,

B . » zA = ¥ B .
{ - ¥ St + Sa. .
By a similar argument, we can show that: - | .
S1. 24, Y 82 24,
Z4 =

S1+ 352

g

s, and s, arc both positive since they denote volumes. In addition, gy, S 74  (by
Lemma2.2) and zy <z, (by Lemma23). Thercfore,
SpZy v S22y, &S24+ S22Z4,

implying that zy < z, . Thercfore we conclude that g, docs not lic bclow‘_ OQy.

2.3 A Property of Right-Angled Cones

In this scction, we will show that a planc paralicl to the base of a right-angied cone and passing

through its center of gravity partitions it_into two regions such that the ratio of their volumes is 37

- -

Ll

Theorem 2.5: Let 4 denote a right-angled cone that is partitioned into two regions by a planc
that is paralict to the basc of the cone and which passes through its centre of gravity. Let A4,
denote the region of A that contins the apex and let 4, denote the other region. (Sce

5 -

Figure 2.4) Tﬁ[‘?ralio of the volumes of A, and A, 1sthen _ N
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R 1( Ag-) 27
s & ‘ WA, T 37
[z:';;i; & BT ’ ety - KL
Proof: Il 1s well known that the volumc of a nghl angled conc is =~ & r2 ‘h . where r ris the

£y

" tadius of the basc and 4 is the height of the cone, and that the centre of gmvuy of a eonc s —4/'

3 .
* from 1§base T‘hcrcforc Qg is a ngjhl -angled.-cone wah hcujht h, = 2 h , radius r, = % r- and
thus, volurr% YiA,) = 2 T r? h
+ 64 4
‘& N ) ks L
. -z 2
" Hence, o WA e T 27
cnee, L = —ﬁ -
e # . ".’;"(V{A ) . L'n: r2 h 64
, T, 3
L T
P i M4y 27 37
2 - viAy 64 T 64 w\“
' VS Y - b
T"hE:rcfore, .. VA, ) T
- - f:-
[ O . T
. ’ i e
‘

* Figure 2.4 Partitioning the conc into two regions.

- -

2.4 Proof‘iof the Theorem

Finally, in this section we prove that Wintemnitz's proof extends to 3 dimensions, A'Thc proof
. . R '

makes use of the results of the previous sections.

s

Theorem 2.6: Consider a 3-dimensional convex region @, which has been partitioned into
two regions, @, and @, , by a planc that passes throagh its centre of gravity. The ratio of the
volumes of @, to. &, obeys: o ‘ <

27 _ V(D) _ 37
37 T wW(d,). - 27

oy R o

o



E3

i

¥

" Proof: Assume ‘that V(@) <V (P,). ;'R(‘)Late‘ the plane and d> such that the plane

_ coincidés-with the z = 0 plane, and?iuch that @, lies above it and Pz lies below it.

(1) Construct ¥ by applying the Schwarz construction to @.
(2) Construct A by applying the cone construction o ¥

-

Recall that by'consmiction, A is partitioned into two regions, _Al‘ and A, , by the plane z=0,

such that Ay lics above ihis plane and 4, lics below it Furthcn_no‘re, V(A )=Y(P;) and

o

V(42)=V(Py).

By Thcorem 2.4, we know that the centre of grévity of A does not lie

bclow the plane z= 0. A horiZontal plané, 7, through the cone's centre of gravity partitions A

into two regions, A, and A, which respectively lic above and below 7. Itis casy to see that
»\_“_ '-‘n’l . ‘
V(A ) S V(A Tand | V(4,) 2 W(A)E

Thus, V(4,)<V(®;) and V(A4,)2 V(D) ..

SV (A,)

o 27 s .
By Lemmas, we know lf‘]alwa Y a,) 37 arid since by assumpuon,
V(D) < V(Dy), we conc;lu‘d'cf‘l'h'éil P
- 27 _ V(A V(@) )
37 © V(Ay) ~ v(d,) ~ '

Had we assumed (@) > 1V ( @, ), we would have feund by a similar argument that

37 .

Lo V(@)
TV (D,) 27
, - , 27 V(P1) 37
Thus, wnh‘oul assumptions, we have 37 V(Do) . 27 07
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S -~ Chapter3 I

The Smallest Egclosing Sphere of n Weig_hted Points (SES) ! -

Finding the smallest enclosing sphere (SES) of n weighted points in E3 is a generalization of
the smallest enclosing circle problem (SEC), which:was discussed in detail in - Sections 1.2 and 1.3 .
Since the inujitivé discussion prcscnlcd Lhc'réjeklcnds directly to this problem, it will not be rcpcuu‘d here.

Onc of the reasons for dlscussmg 1Lhis algonlhm is.10 illustratc the casc with which a s()luuon for an

‘3“%»— P

Sl kL
unwejghted Z?dlmcnsmnal pmblcm can bc modlﬁcd 10 sQlve a wcnghlcd 3. dimensional version "of the same
oo “et - ‘

problem. ThlS CX[CﬂSlblll[y ls-«)néf;of‘tfrc ercnglhs.of ¢ ICT approach. In addition, the first cxample of

handling dcgcneralc COI’IVCl'gCnCCViS %scmcd and d;lgcusscd We bcyn with a formal description of 1hc

e

Tk %,-

prob]cm fo]lowcdby a summary of som,g\of th¢ merc recent hxslory of both SEC and SES. Fmally the

1

ICT algomhm for the wcxghtcd SES probIcm lS pr(;,scnlcd and discussed.

~—

Formal]y, a}ct S-— [ p, ti= 1 % nl. dcnotc a -sct of p()lnls in E3 dnd let w, dcn()lcﬁ )
a wcnght assocxau;d wnh ea“ﬁ poml P such Lhal W, .O Fmdmg the SmﬂﬂC§l cncl()smg, sphere entails «

R I
)

finding the point €* lhzuhrni‘n‘imizcs

3

s - -7 on -

vt o t Maximum | w, ’Dtstance( C Py .o
;_1_‘\[ EREN =1 . . ‘— i .
’,‘:-:’ . %"— ~ ) N .
The phrase unwezghted w1]l be us‘cd 1o dmlmgunsh problems for which cach w, =11
i S . : L
- Hi’story Of SEC And I SES , o ?

L4

SEC is a well-studied problem, having been first irftroduced into .Lhc:ﬁl'cralurc ovcer one hundred

~ . g :
years ago. In location theory, it is the minimax counterpart of the ‘well-kniown Fermiat problem  [Francis

and White 74] . S L

The first published alg(;rimm for solving the unwcighl.ca ’ SEC‘?%gré)blcm was prescnted in

i

[Sylvésl(’,r 1857, 1860] and [Chrystal 1885]. This algorithi¥, which has come to be knoﬁm' as the -

. . 3
X Chrystal Picrce algorithm, .converges on the optimal solution byﬁonstrucung a"éequcn(,c of cnclosing -

“circles with decreasing radii. At lceisl one point of § is discarded cach iteration, lcading,io a worst casc

1 4

. 4 -
. - 24 - o )

s



running time of O (n2). The expecied running time for this algorithm is dependent upon the selection N
of the ‘initial enclosing circle.  Different initialization steps have been suggésped' by [Nair' and
Chandrasckaran 71] and by [Chakraborty and Chaudhuri 81] [Hearn an'd'Vijay 82] have repdrled' that

IS

the initialization proccdurc described by [Chakraborty and Chaudhuri 81] seems lo provnde the best .
Aw £ . R . . - ‘ :

empirical results.

su

{Elzinga and Hcarn 723] have taken a different approach to solvmg the unwexghlcd SEC problcm
Rather than starting with a large circle that encloses all of S, they start with a circle that has a radius that
is less than or cﬁqual";o that of the optimal solution, converging upon the optimal 'solulion ihrough a
sequence of circles \’,vil"h monotoriically increasing radii. [Hearn and Vijay 82] have reported that the worst
case running time for this algoriLhm is O h3 n), where h is the number of vertices of the convex hull
of §. Empirically they fohnd that the algbrilhm hasan O{n) running time fon; r;mdomimd data.

(Elzinga and Hcarn 72b] hav'c‘ presented 'l\‘No algorithms for solving unweighlch SES (of any
, dimchsion). They have shown that the optimal solution for the k-dimensional problem is-both unique and
can be expressed as the convex combination of at most k +1 points of S. Their firsir algorithm
Lransform}s the original convex 'proéramming problem into an equivalent quadrali; programming» dual‘
problem, solving it by using the Simplex method for quadratic programming in a finite number of siéQs.

W—’/

_Their second algorithm is a.géncralimlion of the approach used by [Elzinga and Hearn 7£a] . That is, the
-z;lgorithm converges on the ‘optimal solution by constructing a sequence of spheres with monotonically
ipcrca.éing radii. Since only a finite r;umbcr of such spheres‘can Qg consiructed, the algerithm terminates in

. t’ﬁnil‘c time. g | , : ‘ ‘ . ' .

[Shamos and Hoey. 75] have so]vled the unweighted SEC probft_irﬁ in O(n log n ) time by

" making use of the Furthest Point Voronoi Diagram (FPVD)..  In 2 dimensions, the FPVD is a planar

graph that partitions the plane into a set of conve.x regions, one region for ‘each point of the convex hull of

§ . Each vertex of the FPVD i; equally-distant from at least three points of S. Furthermore, a circle

ccnlélrcd at a vertex of the FPVD whose rédius is the same as the distance between the veriex and one of its

2

dclining points is an enclosing circle for §. Their algorithm begins by finding the diameter of § in



e

i

o

'32 .The ICT ‘Algorithin For SES

P E— N P
> < - -

- O(nlogn)time. If the circle dofined gy this diameter does not enclose Lhc‘"l:)o'iﬁml of S, then the FPVD

. \Y : o -
is constructed in O( n log n ) time. Each of the. O(n) vertices of the FPVD  are then checked to sce

which has the nearcst defining points and hence’is L'hc‘;adius"of the smalicst enclosing circle. The original

x

algorithm prop‘oséd'by [Shamos and\Hocy 75] was incorrect in that it did not find the diameter of sct

initially. The requirement for this step has been described by [Bhattacharya and Toussaint 85] .

‘-

[Hearn and Vijay 82] have solved the weighted SEC problem-by extending both the Elzinga-and- . «

Hearn and the Chryslal-Picréc algorithms mentioned above. They havé reported that cmpirical testing of

both of these algorithms, along with a third algorithin by [Jacobson 81] revealed.that the weighted Elzinga-

—~—

and-Hearn algorithm out-performed the other two algorithms substantially.

[Megiddo 83al, has presented a lincar time solution for the unwcighted SEC problem that utilizes

.

a lechnique that has come Lovbc known as the prune-and-search Lechni(jgc (sce Sétlj(?n 5.6) . Each ilcrmion'
a fixed fraction of the source points are discarded, leading 1o the lin_cér limé resull.
[Megiddo 83b] has used presented a parallel algorithm for sélving the weighted SEC pr()bl¢n1 in
O(n (logn)®(loglogn)?) Li-me, L;sing a total of O(n (fog n)*) processors.
Thekalg'oltilhm p.resl_énlch ‘by [Castells and Melville 83) and [Melville 85] for S()lving

unwcighted SEC has alrcady been discussed in Section 1.5 .

-

[Dyer 86] has prescnted an algorithm that solves the weighted SES problem in any fixed

~ .

dimension in linear time. Dyer begins by linearizing the problem, transforming it to a (k + 1)-

dimensional problem by adding»a‘ non-linear constraint. He then applies the prunc-and-scarch technique to
. . ¥ Pty ] -

solve the problem in O(3(k+ 1) p )., -

P4

[Oommen 87} has prcscn’lc/d a variation of the Chrystal-Pierce algorithm which solves the

uhu’/eighled SEC problem by optimizing the next circle o be used in the spéLucncc of enclosing circles. He

has reported that some very good empirical results have been achieved as a result of this optimization.

o LA

In this sectiom, ICT is apphied 1o the weighted SES problem.” It is shown that ICT can be used

1o optimize a convex.function without transforming it into a problem of onc higher dimension, as was done
i . _ -

- .- 26 -



by [Dyer86]. The algorithm presented below is almost identical to Algorithm 1.1, which solves the

unweighted SEC problem. It differs in that a weighted distance.irs accommodated; and a d&ffere'nl

termination predicate has been implemented: Recall that Algorithm 1.1 terminated once "r is within &

of r*. Since this type of termination easily extends to the 3-dimensional weighted problém, it wilt not be

repeated here: Instead the following algorithm terminates once @ is within £ of €*, where ¢ isa
uscr-specified parameter and €* is the centre of the optimal solution. (This accounts for the addition of

lines 2.5 to-2.7 .bclow). Recall frdm Scction 1.2 that in this case, degenerate convergence must be

-

both detected and handled.

Let coG (@) denote a function that returns the center of gravity of the region @ and let

f(g) denote the index of the poi;n in § that is farthest (has the greatest weighted distahce) from ¢ .

-4
n

Thatis, w, ., Distance ( €5 P,., ) = Maximum { w, Distance (C ,P;) }

i=1

Algorithm 3.1; Finding the smallest enclosing sphere of n weighted points in E3

1. [Initialization Stép
1.1 Let @y denote a bounding box for §; *
- 1.2 rooi= 4o ;

2. lIteration Step (i 21)

- N
.4
£

2.1 g:: Cog((b‘l),

22 = [(g); |

23 ro:= Minimum ( r, w; Distance( g .P;) );

24 Let I denote the half-space containing p, sﬁcr{ that the boundary of I is tangent to

5pﬁerc ( P, . ;:— ) and perpendfcular to'the line segment g.p; -
j o :

2.5 If ( the dimension of @; | <3 ) and ( @&;_; lies in the boundary plane of T)
2.6 then { set @; to the single point g ] v
27 dse ( Bsr= &, , AT )

By B
g 2 - )

3. Termination Predicate -

3.1 P\Fwi the vertex V of @&, %al is farthest froff g . ®

32 If Distance( @ . V) < € &

33 then { terminate reporting that SPZerc (é ) ;:s the: approximate solution ]‘

34 else k continue to iu:n;ale. } . @? ; ‘
- end of algorithm - . P

'
i
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Let n denote ufrenumbcr of pomls n §.

Smce c* lics in Lhe convcx huH of from lwo ™ fonr pom{s of’ S»"‘ilt folld\l\‘/;s;vﬂml‘il 18 conm‘incd ina’
reculmear boundmg box that cncloscs [hc points o[ S Such a box can. bc conelructcd in O(n)

time. Thcrefore the, mluallzrauon slcp quu1rcs O(n ) Umc

Now cqnsuier Lhc numbcr of faces of the soluuon rcgron d)o will havc almosl six faces. Each

iteration, the, mtersecuon on line 2. 7 will incrcase lhe number of l"accs by at mosl onc Thcrcforc the

soluuan rcglon wnll have- (1) faces durmg llcrauon Pooo . )

s o

‘The centre of gravity of tD i canbe found i time lmcar to the number of faces of the region (scc ;

- Section C.3) . Thcreforc lmc 2.1 canbc pcrformcd in O( 1) ume

LT

— ;y-v-.

Line 2.2 rcquires - O( n) time since cach pom[ of S muel be chcokcd in. ordcr to fmd the one lhal 18

’

the furthest weighted | distance fram 9. oo i

Notice that r on line 2.3 records the mini;hum:’vi/cigh'ted distafnlc;e‘ e;ncoumcrcd so far. This weighted-

di_smancé is converted to an unweighted one in order 10 consmipit I" onlinc25. T can be

det_chnin‘cd in constant time, given ¢, p;, w; and r.

Since* r = r* and since cach point on the surface of  Sphere ( P, . ;— ) IS a v&’cightcd disumcc
T J ,

of r frém p,. it follows that c* ‘is enclosed by this sphere, and also by I Thcrcforc the

-

~mtcrsecuon on line 2. 7 wnll not discard the optimal solution.

Line 2.5 tests for dcgencra(c convergence. Degcneratc convcrgcncc arises whcn lhc soluuon region
does not converge in all possible dircctions. Tha[ lS 1nslcad of converging to a poml thc c,oluuon
rcgioﬁ_ cohvcrgeér upon ‘cither a convex pol.ygon _orrlmc secgment that rtsﬁ..‘not contained in
Sphere (g, €) . 'Ih such a.q‘a‘sc,)' Algorithm '3.1-‘ i‘cg;minu_c‘s‘ to iterate with asolution region that
has a lower dimen}éion. Recvérstingr of the solution r;gi'o'ri to a lower dimension is aulqr‘natically hand'léq
. by the imerseclio;i :roﬁ‘line (Section C.4) . Furthermorc, the determination of the ceptre of gravity of
the region is based upon the dimension of the region, n(;l the dimension of the problem
~ (Section C.3). Therefore as long, as we can cnsure that a fixed fraction of the remaining solution
region is cut away each iteration regardless of the dimension of this region, then degencerate convergence

is not a problem. In the worst case, the solution region converges to a convex polygon', ncxt to aline

0 T N
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scgmcnl dnd ﬁndlly to a point. After somc Lirmc>'il is contained within  Sphere ( @, €) and the
V ;ﬂg(mlhm !crmmdlcs ‘ . L S e
N . T a._. : E 'Y

14 - . -

A fixed fraction of the rcmammg solution rcglon is dlscardcd as long as -@; _, 1§ not comamed m the t’
planc that dcfmcs lhc boundary of I ( for cxamplc sec Flgurc 3.1 ) Now supposc: that &;. is '
completely conlamcd in -the boundary plane of - T. "Tﬁls mcans lhal @, is langenl 0

: 5phm( b} , M’T ) at the point g ..'Thus @ is the optimal soluuon and the algorithm
- - I . -
terminates. This is signalled o the termination ‘prcdjcal'c by setting @, 10 the single p(')im g on
© ling 2.6. C ‘ . ' g .

8 The dimension of @, ; can be determined in -O( 1) time (Section C.2) . Also, it can be
~ deiermined whether @, is contained in the b;),unda}yof I" in constant time, since the data structurc “
uscd to rcprcsém a ;’Z-d'i’mcns"ionél solutiap _régi;)nl also. rc'cords' the x;lanc that the rcgion\lic_sfi.g )
(SccuonCZ) The intersection - d>‘,*:=;,d;,-\_1 s I“"op line 2] can be performed in time linear
© lhc numbt:r of faces of d> r(ySccl.ié)glC.éif) - Therefore lhc lblal‘cgsl of lines'2.5 10 2.7 1is -

s .
N -

R

-
.

7’fon lhc houndary of I or elqc 1s CXlCI’lOl’ to i, it followq lhat the current solution

~,

rcy()n wxll be rcduccdby a. frxcd fracu(m by the mlcrsecuon on lmc 2. 7 If d> 118 3. dlmcnsnonal

L n fr()llowg fmm Thcorcm 2. 6 Lhat al Jcasl 6247' of the velume of- &;:, is discarded. If. &, | is”

S

v T . < ’ ~ T

4 .
2 djmcnslonal lhcn Wmlcmru S‘Thcorcm guaranlces thal at least 9 of the arca of &, , is

S -

I

N o

dmartl’cd lf tD 1 ns i- dnmcnqmnal Lhcn half of the linc scgmcnt will be lhrown away

i "
h ¥

f*(*SAec @) QL I‘hc*drscumon dnd analysxs of Algorithm’ 1 1 'in Section 1.3.) This step has not bgen

.ncFudcd for ‘thé, sdke of clafuy In2 dlme_nsmns, all the the edges can be trimmed to reflect the new

T ,mlmmum r;i_dlus in Ilgg;ar time. ‘However, this same operation requires O( i2) time in the worst case -

. “'1_7- o 'n 3 dirf:éu“:i()ns { fo; c\xdmblc consider the Gase where the solution region is a pyramid ) . Thercfore,
mslgad of Lrlmmmg all Lhc cdgcs of the Soluuon region, it is suggested that Algorithm 3.1 keep track
“of lhc Iasl Lhrcc fur{hcs{ points lha{ have been.encounicred along with the cdgcs defined by these
e ponnls Each leL ncw mlmmum rddnu% is discovered (line 2.3) the lasl three edges added would be
T Lrnmmuj 0 rchu, the new mmnmum radius. Thus the solution region would be cut by a maximum of

four half spaces cach iteration, and hence the operation can be performed in linear time. (Four half-"~

spauhs havc bern su;gcsud since the €* isa weighted distance of r* from between two to four
- 29 _
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w . ® O( Maximum( i, n)) timc is required for the i

~ . s

points of 'S . ) The advantage of this stcp 1s that it would farther reduce the solution region without
increasing the asymptotical limc-complcxily of the alg'orith'm. It addition; it should also help to-keep
the solution-rcgion more ‘centred'. ' |

]

(a) @, | is 2-dimensional ) (b) @&, ; does nothen the boundary I~

Figure 3.1 A fixed fraction of the current solution region s discarded.

Thus, in surﬁmary, ‘
.. 6( n ). ume is rcqui‘rcd;forA the initialization step ;

| A jieration ;

® O(i) time is‘ required for the termination predicate during the i ieration.

Thcrbfore,. the total running time for Algorithm 3.1 is OCt* Maximum (n, 1)) , where 1w the

[
<

total number of itcrations p‘crrformcd by the Algorithm 3.1 .~
As was the casc for Al'goritrlm 1.1, the size of 1 “depends on £ and the arca of the initjal
solution region. Rccall that-the running time of Algorithm 1.1 is lincar p,r%)lvidcd that fixed precision

floating point numbers arc used Lo approximate rcal numbers ( Section 1.3 ) . The same argument can

‘bg cxtended to show that Algorithm 3.1 is lincar undér this same condition. It was mentione
‘ aBovc that, in the worst case, the solulion. region convcrgcs'to a convex polygon, next.lo a line s
and‘rt;l'r‘u;lly to a point. Thc maxi‘mum arca of the pofygon along with the-maximum length of this Lige
scgment can be dcgenﬁi{n'cdfro‘m the initial solution region. kUsing an argument analogous to the onc
presented in Svcclion 1.3, theec constants ciin _bé defined, ¢, ¢ and‘(;g , which respectively rcprcséril
the rﬁaximﬁm number of iterations required 1o rédﬁcc‘ the ‘s‘()l’uili‘()n rcgi()'vn to a convex polygon, a hne
.scgment and t;mally’ to a pbinL Since 1<)+ 0+ 0, ;ind since Qs cxpéclcd _,lhql 1(< n, we
claim_lhat the wOrst casc time-complexity of Algérnhm 11 18 f) ( n) when fixed precision ﬂ()ul(mg

point numbers are used to approximate real numbers,

- 30
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Chapter4 A B

Testing The Separability Of Sets Of Points
. . s g
Supposc that we have been given m scts of po@n;_s and have becn asked 10 detect whether dr‘no}‘ :
their m convex hulls share a common point. If m =2, then the answcer cah be obtained in lincar tume
by snlying two lincar programs [Edcl§brunncr 87] (pagc.213). { Recall that livncl:ar programnﬁng pf fixed

dimension ¢an be solved in lincar time using the approach introduced indcpcndénlly by [Mcgiddo 83;1] and

[Dyer 84].) If m>2, then pairs of poim‘ scets wo.ulbd have 1o be compared énd lincarity is lost if we
use the algorithm for the casc m=2. Allcmalcly, the prbblcm can be solved by finding Lhc‘convcx hull |
of cach of the sets andjlhcn detecting whether the convc* hulls overlap or not.. The convex hull of a sct can
be l‘nuﬁd in O(nlog h) time, where n 1s the number of points of the sct and A is fhc ﬁumbcr of
vertices of the-convex hull [Kirkpatrick and Scidel 86] . [Chazelle and Dobkin 87 have shown that it is
. possible 1o detect the overlap of two convex polygons in O{ log n) time, while O( log3 n) is/r(:{‘:[uircd
o dcl’cé‘l the overlap of two convex polyhcdr‘ons. [kcichling 88] ‘has cxlc‘ndcd their 2-dimcn§v}‘;)’r‘jal result,
showing lhal‘il is possible to detect whether m convex r-gonsvovcrlap in O(m logi .-'i) time. In this
chapter, an ICT algorithm is prcsgmcd that does not need to construct thc m convex hulls in orAdcr 10
determine 1if they share a point in common. This is of interest since improvements in speed are often
obtained by climinalingrunncccss:;ry informaton. We belicve the ICT solution will be very fast since
cach-itcration approximatcly one half of the remaining solution region is discarded. If the convex hulls of,
the scts do overlap, then a-péinl that is common to all of these convéx hulls is reported. (Note that this
pomt docs not have 1o be an element of any of the given sets.) If the éonvcx hulls of él least two of the

-

sets do not overlap, then the algorithm’ terminates, reporting that there is no such common point.

Before the main problem of this chapter can be solved however, a technique for detecting whether a
point lies in the convex hull of a sets of points S must be developed. This is sometimes referred 10 as the

cxtreme point problem and has been solved in lincar time using linear programming [Mcgiddo 83a], In

this thesis the extreme point problem will be solved by Lransfdrming 1l to a separability. problem of one



N \1’ ’ ’ . . ’ [+ . .
less dimensigh. Actually a shightly harder problem is solved — the algorithm distinguishes between points

v

that lic interior, on the bbundary or ¢xterior to the convex hull of the set. Furthermore, information that.
supports this decision is returned to the calling routine. For example, supposc that @ is the point being

'Lcslc.duand S isa 3-dimcnsi0nai set of points. “If g lics in the interior ot_f‘ the convex hull of § then a
maximum of 4 (k 1 ) _points of § arc') returricd such that g also Iics4in vthc convex hull of this
subsct. This information will be used in -Ch?plc/r 5 1o comstruct l\hc’iniual solution region for lincar
programming (LP) problem. If ¢ “fics o1 thé bou‘ndury of the convex hull, then a half-space that
comains S and whosc boundary suﬁporls S él g is rciu‘fncd. g les exterior o the convcx~ hull,
then two half-spaces are retumed - th boundary of cach half-space supports § and passes lhro;ngh the . -
point .g . Furlhcrmon;c, the imcrscciion of the two half-spaces defines a wedge that C(mmiﬁs the points of

§. The wedge and half-space information wiH be used o reduce the current solution region. Examples of

these cascs are illustrated in Figure 4.1 .

v R

fa) g isinterior to the convex hull . {b)} @ lies-on the boundary . (C) g is exterior to the-convex hull

Figure 4.1 Illustratng the information returned by PointinSet2D :

-

The approach used to solve the extreme point problem is similar o onc suggested in.

[Megiddo 83a] (Appendix C) for solving the planar version of this problem. Figure 4.2 1llustrates the
hicrarchy of routines that will be discussed in this chapter. “PointinSet k D', (k<3 ) is discussed
it Section 4.1 . This routine solves the extreme p(imt pmhfcm h')./ transforming it ir;m a (k-1)- , '

dimensional scparab‘llily problem. _Thcntrunsf()rmcd problem, which 1s S()I‘VCd by ‘SetSet kD’

(k<2 s discussed in Section 4.2 0 This as the routine that Wdentifies and returns most of the



cupporting information illustrated by Figure 4.1 . In fact a very tight coupliné;exists befveen }he
routines shown in Figure 4.2 - LhC'Supkporrling information gathcred by SetSet1D .is eventually qsed»
1o construct the supborﬁng information returned by PointinSet3D . ( SetSetiD 'gnd SetSet2D are
described in Scc‘lion 42.1 and 422 respectively. ) SetSet2D is an ICT algorilhm'wyhi'ch calls
bointlnSét?D twice cach jlcralion.’i_.-zThc roulinei rﬁaih in Figure 4.2 refers to Algorithm 4.4 and is

described in Section 4.3 . This is the routine that determines whether the-convex hull of m sets of points

overlap or not.

main | PointinSet3D F—® SetSai2D —# PointinSet2D —M SetSet1D

Figure 4.2 The hierarchy of the routines discussed in this chapter.

& - s

4.1 The Point-In-Set Problem &

. In this-scction, the scparability of a point from a set of points is determined ( the posnt-in-set

*

problem ). Let S denote a sct of points and let ¢H( S) denote the convex hull of . A point is said
10 be strictly separable from S 1l is exterior to CH( S ), weakly separable if it lics on its boundary

and inseparable if it lics in the interior of CH(S ). The point-in-sct problém will be solved by

@

transforming it into the proplem of determining the scparability of two sets of one less dimension (the set-

sel pr()‘hlcm) . Since this approach applics equally well to both 2 and 3-dimensional-[5roblcms, only the 3-

a

dunensional problem will be considered.
Two planar sets, S, and Sy, arc said be strictly separable if there exists a line such that both
of the open half-plancs defined by this line contains one of the sets but not the other. Similarly, §; and-

Sy . arc said 10 be weakly separable if they are not strictly separable, but there exists a line such that each

@

of the ¢closed half=plancs defined by this line contains one of the sets but pot the other. S, and S'z are said
- (_ . ) .
to be tpseparable if they are neither weakly nor strictly separable. The sel-sel problem arises in pattern

rccog.muon_ ‘For example, sce [Duda and Hart 73] ('pagc 138) and™ [Jozwik 83} [Dobkin and

4

Retss 8O have solved the set-set problem by first constructing a point-in-set problem; the constructed

¥

probiem as then solved using lincar programming.  Although the constructed set is of the same dimension

33



as the original two scts, its cardinality is ( 5, ny), where n; and n, denotes the cardinality of the

two original sets. Thus it is possible for their approach to significantly increase the size of the problem:.

‘We will begin by describing the mapping of a 3-dimensional sel § 10 two planar scts, -P, and

Py . Without loss of generality, assume. that the point to be tested coincides with the origin.  First,

partition the points of S into three scis, S4, Sz and S, depending upon Wh-Clthl' ihc point lics.

above , below or on the planc z =0, respectively. For now, assumc that S is cmpty.

&
-~ .

Lemma 4.1 Given a 'planc that passes Lhrou;ghilhc origin, points that lic in onc hull‘-sfmcc

»

-.dcﬁngd,by- this plane will be mapped t0-the other half-space under reflection about the origin,

Corréspondingly, points that lic oﬁ lﬁc planc will be mappced to points that lic on the [q)lu{nc.
'Sc;ond, radially project each point of\, Sa and Sg onlo,‘Lhc planc z=1. That is,-map cach point p o
the point where the line passing ‘lhrpggh the origin and p intersects the plane z = 1. Notice that thi
points of‘ S4 will not be reflected through the origin by this projection, bui the pnir{ls of Sy will h(
Let P, and Py denote the projected image of S4 and Sp respectively.

The following thcorem states ‘Lhal determining the Scparabilily of the origin fr(im S isic’quivulcm

_ to determining the scparability of P, and Pg. That is, the original point-in-set problem can be solved
. . ) e 2 °

by transforming il;,inl’o a sct-sct problem of onc less dimension.
Theorem 4.2 »
(1) the origin'is strictly separable from § ff P, 1s strictly separable from Pg ;
(2) the origin is weakly scparable from Siff P, is weakly scparable from Py |
(3) the origin is ifscparable from S iff P, is inscparable from Py ‘

A

‘Proof: First consider the casc. where all the points of § lic to onc side of the planc z = ().

i

Clearly § is strictly scparablc from the origin and since cither P, or Pg 1semply, P4 -is strictly

scparable from P in a trivial way. - From now on assume that both S4 and Sg arc non-cmpty.



-
By on

/-

(1) Assumec that the origin is slriclly,s'cpa}ablc from §. By definition, there cxjsts a plane
p (diffcrent from z =0 ), svhich passcs through the origin and has § lying to onc side of it. This
» implics that §4 and Sp both lic to the same side of p’, and hence, from L.emma 4.1, it-follows

*

that Pg will lic on the dpposi.lé side of p , and hence that P, and P will lic.on opposile sides of

- .
. LI

the line determined by the inlcrsccliqn of p and the planc.z=1. This proves that the lwo}ets are

“n

strictly separable. Noyv assume that P, 1s'striclly separable from Py . By definition, there exists a

line in the planc z = i such that P, lies to one ;idc of it and Pg lics to the other. There is a planc

through this line and the origin, such that, all the poinls of §4 lic on the same side as those of S,

while all the points of S lic on the opposite side asA'Lh(fsc‘ of Pg. Hence, S lics 1o onc,sidc 6[ the
plane defined by the o'rivgi;lkand this line. Thus § isstrictly separable from the origin whenever P, is
suictlyI scparable from Ppg .

(2) Now assume that the origin is weakly separable frorrn S and let p denote a supporting plane of §
that passes mrough the oriéin.' Let p; denote the line formed by the intersection of p and the plane
i=1. Here :\sorf]c of the points of § licon p whillc the rest lie“to onc side of it.  As in the
previous case, the boim‘s that do not lie on p will be mapped to two planar sets, sc;’)aralcd by the line
P, the rcsl_Q{‘vlhc.poims ‘v‘vill be mapped onto the line p; (by. Lemmva 4.1) . Thercfore, if the
convex hutlof Py, CH( P, ), ahd CH{ Pg ) are to intérsccl_ at all, Lheky.musl ’do S0 along the line

pi . (Scc Figure 4.3 ) Recall that, by assumption, the origin lics on Lh'clboundary of ¢H(S )
Si.ncc. it has been ElSSUva_d that Sp . 18 emply; the oﬁgip must li¢ on either an cdgé or a face of
C:H § ). Consider the vertices of this edgé or f;ce. If the originvlics on a line passing through two
of the v(crliccs,b then one of lhcis‘c»poims muSL belong o S, and ihe other to Sg . Since their radial
. pr-ojc.clif)n onto p; isto the same point, this proves that P, is weakly sL:parAblé from Pyg. .If the
origin does n(;l lic on such a line, then it must lie in the interior of a triangle defined by three vertices,
.\'a)'- s} ., S, and 8,, First assume that one vertex belongs to S, , say 8, , and that the other two

belong to S . Consider the hine that passes through s, and the origin. Clea-ly s, and $4 must
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lic to either side of this line ‘(in'lhc plane p ). From this it follows that the radial projection of 8,
and-8; onto the line p; will lie to cither side of .Lhc radial projccliovn of él . This mcans that a point
of‘PA iics on an edgc of CH( Pg) . Similarly, if onc of the points belongs 10 Sz and the other o
Sa, Lhén a point of Py lics on an edge of CH( P, ).. Therefore it can be conéludcd that P, is
weakly separable from Pjp whenever the origén 1s weakly scparﬁblc from S’. By reversing this

argument, it can be shown that § is wecakly scparable from the origin whenever Py is”weakly

_ scparable from PBP.

o

3) This last case follows directly from cascs (1) and (2) and will not be shown.  Thus § is

inscparable from the origin whenever P, is inseparable from Pg .
v .

.
» -

(a) strictly s'cparahle scls . ) L(b) u;cakly scparable sets
. Figure 4.3 The convex hulls of two planar} scts of points. |

Finally, éonsidcr the case where S, is not empty. Notice that points of S, cannot be radially
projected onto the planc z=1. Furthermore, any point that coincides with the origin is a special point;
i aulomalically guarantecs Lhal‘ § 1s at most weakly scparable from the origin. By rotating the points of
B Slighlly'aboul the origin, we can cnsure that the only points of S that lic in.the planc are the oncs thai ’
coincide with the origin. If itis determined that S is stricly scpara_blc from the origin without EU()wlcdgc
of these coincident points, then the algoriL‘hm will report that § is wcakly separable from the origin.

'fhc following algbrilhm sumrﬁarizcs_ the }csule of this section. The func‘li(m -SetSet2D rcturns
a record of type Separability (scc Figurc 4.4 ). Most of the information returned by this record is

gathered during the call to SetSet2D , but there are two exceptions: line 3 below catches the degencrate

- ’— ) i\ » : 'V é ~
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case where dll the points of S coincide with the origin while HA¢ 6 catches the case where at least one

point of § coincides with the origin. -

Function PointinSet3D ( p.5S): S'eparability ;

1. Translate both p and S so that p coincides with the origin. If necessary, rotate the points of §

appropriately about the origin so that only points that coincide with the origin lie in the plane z=0.

2. Partition § into S4, Sp and Sp..

3. Ifboth Sy 7and Sg arc empty then | return a record that has L
class := weaklySaparable ; info := coincident and list := NIL )

4. Radially project Sy ’and‘ Sg .;)mo the plane z = 1, constructing the'sets P4 and Pg.

5. .result:= SetSet2D( P, . Pg):

6. If (result.class =:= strictlySeparable ) and (:SO is not empty )

then { reslu};t.’c‘lass := weaklySeparable } ; o

7.  Restore the points of -S to their original position, plus apply the same transformationsto the points in
result.list (The contents of resultlist will be explained more' f’:my when SetSet?_D Ts discussed lgmr in -
the 'chapl;ér. ) h . ’.

8. Returnf result); )

- ¢end of algorithm -

Aside from the call to SetSet2D , the above routine has a lincar-time complexilyi, since each of
the steps requires cither linear or constant time. Thus the time-complexity for the above algorithm is then
O(n) + T(n) ., where T(n) is the time required to solve the SeiSet.?D problem when §; and
S, contain a total of n points. In Scction4.2.1 it"will be shown that SetSet1D requires O(n)
ume. Therefore, the worst casc time complexity of PointinSet2D is O( n). ‘ |

The scparabilily of two planar sets CD-l.lld be determined by using linear programming, as
mentioned in the introduction of this chaptet; and would lead us to conclhée that the point-in-set problem is
lin‘cur, Howéycr, ;)ur objective is to_show that ICT can élsp be applied to the' 2-dimensional set-set’
problem. Furthermore, i‘f“}hc two Sets arc inseparable, then the subset of points that pgvelhis to be the

case will be required in Chapter 5. In Scction 4.2.2.3 it will be shown that SetSet2D can be solved

i O(1* Maximum { n, ¢ }) , where ¢ is thc number of iterations performed by the ICT
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algorithm. Therefore the the lirﬂé-comp'lcxily of. PointInSet3D is O(«* Maximum (n, t ]) ,
i o
which is O(t n) er‘ ‘1 <t << . n.

TYPE . - ,
TypeOfSeparability = (‘ strictlySeparable , weakiyéeparable , inseparable ) ; :
TypeOfinfo = ( unknown , coincident , cone :halfPIane , halfSpace ,
" wedge , inseparablePoims)";
pListEntry = 2ListEntry ; v
ListEntry = RECORD
) next : pListEntry ;- i Y
‘ p:Point -~
: END ; A
.| . separability - RECORD Lt .
‘ . class : TypeQfSeparability ; . IR
“‘ info : TypseOfinfo ; j ‘_ -
-list : pListEntry ; LI ’
END ; :
. Figure 4.4 /{\,PéscaHikc data structure For describing fhc ‘supporting information .
? ’ R e . £ B
. 4.2 The Set-Set Problem ,
In tﬁi_s:p;écsiog;‘:thfé‘fo!l,_ov_ving prf)BICrhs'ér‘c considered in 1 and 2 dimensions:
) '-"Td'é-l»cfminc:yyﬁélh'cr' 1wo scls,f'S]_' and S, are strictly ‘separable, weakly sqpa;uhl'c or clse
"inscparable . - ‘ o l ’ -

- €y o =

2) _ idemify -scb‘&rzitd_r ir‘)fcy)rm\aiioni for S and §;, which ‘was discussed dn the introduction of

H -

. thischapter. - - S S | : D

-

Tofaciliuite‘ Ih't_:'l‘;sg o‘f,thc,rgsu‘lm of this problem in the point-in-sct problem, the following

notation will be introduced. Let- S dénote the points of the 6rigiﬁul point-in-set problem. Supr)sc that
S T ’ I - ‘ . g
p e § andthatq is the radial projection.of p--on the planc 2 =1(or the linc y=1if § is2-

- H s
-~ S . L.



“dimensional) . So far q has been referred to as the image of* p . From now.on, p- will be referred to

as the orz:ginator of q, and we define the fu_ncﬁon p =*T(”q) 10 give us access to these original
points: Thus if four points prove that S; and S2i‘arc inscparable, then from  Theorem 4.2, the

-

originators of these points prove that S is inscparable from the origin.,

£

4.2.1 The 1-Dimensional Set-Set Problem : t ' 

»

“Dclcrfhining the scparability of two 1-dimensional scts is trivial. Since both sets lic on a line, -

their convex hulls can be represented by intervals. If the two intervals do not intersect, then the sets are
strictly scparable; if thcy meet at an endpoint then the two sets are weakly separable; otherwise they are

inscpurublc: This test can be performed in constant time once the intervals have been determined in O( n1)

. B

time. What is of interest is the information that is captured concerning the location of S, which contains

the originators of S§; and S, . The rest of this sub-section describes this information and presents a

convention for rcturning it to the calling routine.

Let a, b, ¢ and d denote the extreme poinls of the two intervals, ordered in non-

decreasing order.  First suppose that Sllan»d S, are strictly scparable. Each of the points on the line
y=1 that lic between b and ¢ separates the two sets (see Figure4.5.a) . In fact, the points of §

’ o 2 ,
are contained in the cone whosc vertex is at the origin and whose extreme rays are defined by A(b) and

P( € ), respectively (sce Figure 4.5.b) . If cither S,:or S, is empty, then the two sets are strictly

- scparable-in a trivial sense. In this case S is contained in the cone whose vertex is at the origin and whose

" cxtreme rays are dcﬁn‘t}d by the originators of the extreme points of thc; non-erﬁply set . If the two intervals

g5

arc weakly separable, then the points of S lie in a closed half-plane whose boundary passes Lh’rough Ab)

and 7€) (sec Figurc4.6)" Thc correct half-plane cz;n bae‘:i‘g,iemiﬁed by recordiﬁg the originator of

“another:point that docs not lic on this line. If §; and § are inseparable then the originators of a, b,

¢ and d determince that the origin is inseparable from S (see Figure 4.7). Notice that any;three*

“

paunts that prove that the two scts afe inseparable will do. The only case where four points are required is -

~ when the two infervals coincide.
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Figurc 4.7 Example 3 of SetSet1D ~ inseparable s’t}:lsk.

3

The above information will Bé.returned to the calling routine via a record of typ¢’

- 2 -

Separabilify (which was described in Figurc'éi.4 ). C’o'nsidcr'cach of the ficlds of this record in turn:

'class’ indicajes the scparability of the two sets; 'info’ describes the contents of ‘list'. If .S, "and §, arc

strictly separable, then 'list' will contain three points, the origin plus ™ b) and (¢ ), ordercd in a

L

. ' .40 -
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cl(.)(;kwisc dircction such that the origin is'the second point in the list. As Figgré 4.8.a illustrates, the

cone that encloses § can bc;dclcnnincd from the‘u*ianglc' defined by these points: If S, and §, are
wcakly scparéblé then 'list wnll comam Lhrec points, T( b ) and P( € ) plus one other point of §
that l:cs in Lhc interior of the half-planc Thcsc points wnll be ordcred in a_clockwise direction such that

1 b ) and 1’( c ) arc the first two clcmcnls of the list. Nolncc in Flgure 4 8.b that the half—plane that

4

conwihs 'S canbe dctcrrnincg from the manglc defined by these points. Both mangles will be used in the

next section to determine the separability of two planar sets. If the two sets are inseparable, then ‘list’ will

v
3

point to the originators of three or four points that determine this fact.

2 (b)

the origin

2 (¢)

(a) §; and S, are strictly separgble. , (b) S; and S, are weakly separable.

Figure 4.8 The rriangles that encode the suppofling information.

. 4.2.2 The Planar Set-Set Problem

X . v

¢ ICT will be used to.solve the »plaha’r‘:set-scl problem. Bri>cflyzr the algorithm will test the
scp;rabililyof,a point g from both oflhé scts by calling PointlnSetZD iwice, once for each set. Based
‘ upon the results of,thiS'tc;t 'ihé aLgorilhrﬁ will cither terminate fmmédiately o; it “;i,ll make use of the
’ :s‘cparalor mfon"r%]alnon rclumcd by PomtlnSetZD to rcdu;:c th(‘; area of the solution region. First the
algorithm will bc prcscmcd followcd by a dcscnpnon of InseparabIeOrWeaklySeparableTest and
FormatStrlctlySeparabIe]‘nfO two roulincs called by. 'SetSet2D' .. Finally a figlalled analysis of Lhe

algonlhm 1s prcscnlcd in Sccuon 4223

-5 I



Algorithm 4.2 ;_Solvi lanar sei-sef problem, - . . -
Funéﬁon SetSetZDj-.( §1.52): Separability ; - ” B ’ o '/ ‘ T . .
. 1. [Initialization Step o ' T :
1.1 Find a rectilinear bounding box .lha.I encloses Sy and one that gnc]osc —‘fSZ . . o
1.2 Let &y denole Lhe intersection of lhese two boxes. ‘ =
13 If. &y is empty thcn 1 ‘ PR )
14 " Let g denote a point that lies belwccn the two bom (see_ Flgurc. 4 9); -
1.5 1nfo1 P0|ntInSet2D( g.5 ) ’ -
16 1 |nf02 PomtlnSet2D( g.5); S : ’ -
1.7 return (7 FormatStnctIySeparableInfo( ( mfo1 l}'lf02 L 51.5 ) )
2. [Iteration Step (i '21) -
2.1 g<:-—-' Cog( tbi_i ) ) o .
22 &, = b ;- ‘ " "\.‘ ’ .
23 infol = PointinSet2D( g.8y); ¢ ) .
24 info2 := PointInSet2D( 8.52) o ﬂ"g* o o KN
25 result := Ir{separableOrWeaklySe'l'pfa'rrableTest (infot, info2);
~- 26 if result.class == unknown then - .
2.7 { ReduceRegion ( infol , VAR &, ) ;- '
2.8 ‘ * ReduceRegion ( info2 | VAR &; ) ) ‘ :
3. Term(ﬁlati;m ‘Predicate ‘ .« /‘ ,
3.1 If (result.class =%mknown yoand ( @, conlai.ns only a single‘point, @ )
32 " then, [ resuit := FormatStrictIySepérablelnfo( (.'—i‘r]fo‘l.;' inf<52,S];,S2‘ y )}
33 If (result.class ==§mknown ) then continue 1o iterate else return ¢ result ) ; .
~ end of algonthm - L ' } . -
Procedure  ReduceRegion ( info , VAR &, ) ; - ©/* reducethe solution rcéioy:ﬂ

1. if info.class == weaklySeparable then

{ let & denote the intersection of @; and the half-planc described by info.list |

2. elseif info.class == strictlySeparable then ' A ; -

{ let @&; denote the intersection of @; and the cone described ‘by “info.list }*

- end of algorithm —
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e e -—Ei%J;r_e 4.9 Tlhe bounding boxes of §; and S, are strictly separablt;,.
R . 1 b' . - qf . 7 ;L » - )
4.2.2.1 .Testing If The Seéts Arg Weakly Separable Or Inseparable

\ SetSet2D i®unusual for an ICT algqrimm singg it continues lo iterate until an exact solution
reached. Th'u.\i{ is important to identify the separability of the two setls as soon ‘as'possiblé. -
1 2 " . B .
- ' : . A
- The routine InseparableOrWeaklySeparableTest on linc 2.5 of

, has been

the Algorithm 4.2 is responsible for

(lClcrmFin'ing ifsthe two sets-aré either- weakly,. scpérablc or inscparable from cach other and if sq, for

A

formatting the supporting information that is réturned. The Tesults of this sub-scection ate summarized in

F_iguré 410 . (The columns labelled” Sy and Sy in this diagram are interchangeablc.)

._\? °
— . . : T
Separability from g »
o — . » Separability of  § ! and- 5'2 L
1 2 ’ . . "
inseparable . ’ inseparable : ' ' ' inseparable
inéeparab]e - weakly separable  ° ' . inseparable
- weakly separable weakly separable either weakly separable or insepa‘ra.ble L
inseparable ' sfric’(ly separable = ’unkpo{fm ‘
weakly separable strictly separable . unknown B
strictly separable strictly separable . .. ) unknown
, " Y -
Figure 4.10 Determining the separability of §; and S; based upon their separability from g.
. " % LN N
9.

Obviously, if bmh Sy and S, are i'n“separablc' from g then S, and S, arc.inscparable. !

»

Similarly, if g is inscparable from onc of §, and §, and &yéakly scparabic from the other, then S, and '
S, arc inscparable. Both of these cases can be dclcfmincd in constant time by testing .'info1.class’ and

info2.class’ (sce Section4.2.1) . Now consider the case where g 3s weakly separable from both.-sc:Ls.

: ‘ “ Co .
tFor example, see Figuic 4.11 ) Is there cnough information available to determine the separability of - -

the two sets? Theorem 4.3 asserts that there is.



g
e

(b) convex hulls of two weakly xcpamiﬂg sets

-

(a) convex hulls of two inseparable sets

Figure 4.11 Disunguishing between weakly separabie aad inseparable sels.

Theorem 4.3 Supposc that g 1s wcaklygcparublc from both Sgand S,. Let T, Land 1,

-

2

denote the triangles described by ‘infof.list’ and lf&foZdlist' , respectively (see Section 4.2.1) .
] . - . -
S, and S, arc ingparablc iff ghe triangles denoted by 7 and 1% are inscparabie.
& . b
L] . N _? Q
Proof: First consider two degenerate cases. “If both sets comncide with @ thén S, and S, are
o =, p L

inscparabic. If the points of onc set coincide with g but not the other, then S, and §;-are weakly

= -~

scparable. From now on assumc that both scts contain some points that do not comncide with @ .

Assume that “T') and 'I"Z%rc inscparable.  Recadl that, by construction, 1, ¢ ¢H( 8y ) and

Ty Cﬂ(v?i%) .- Thercfore, 4il‘ Ty and T, arc ir‘fﬁx"cpdruhlcx, then 5 and S, I}HU\l also be

- inscparable. Now assume that S, and S, arc inseparable, but that 7 and 7, arc not. Recall that
the points of °T'; define cither a conc, or a half-plane that enclosés the points of §; . (A cone anses
. - . ;4 . . ‘ .eﬁ . ?: . ,,..

- when a vertex of the convex hull of the set coincides with the point @ . ) If the pdints of 7, define

a conc, then @ is thevertex of the cone; otherwise @ lies on the boundary of the ﬁ;)l;mc (see
: o . ~

&,

. | E ' . . ) <. ) 4 . . o
Figure 4.12)) . 3n cither casc, any line that supports 7' at @ must also support 5, . The same

can be said of T, =and §, . Therefore, any linc that scparates 1 binﬁ%»{ﬂ g must also separate
§, and §,. This contradigis our assumption that these two sets are inscparable.  Thercfore we

conclude that §; and $, are iknscparablc iff 7, and 7, arcinscparablc. ¢

JFigure 4.12 S. is contained in a cone while S, 1s contamed in a half planc.

- .,

- 44



- . -

Thc triangles 7, and T, arc inscparable if any onc of the followi.ng'occurs': they are coinéidcnl;
a vertex of one L:rianglc lics in the interior of the other, and ﬁnal]y, if there 1s a crossing edge (sce |

Figure 4.13.a ). I can be determined-if the two Anangles arc coincident in constant time, but the test -
must be surc to handle dcgchcralc triangles properly (sec Fi‘gurcs 4.13.b and '4.,’13.c). Decgencrale

triangles arise when the points of §, and §; arc collincar. . ( ‘

4) mscparable triangles . (b) ‘imcparablc degenerale triangles c) weakly scpa(ﬁ\blc‘dcgencratc tnangles
= Figure 4.13 Examples ol inseparable and y;'cakly scparable triangles.

In summary, if g is ndl sui‘clly_s‘(_:pafablc from either of the scts, then the scparability of the
two sets can be determined in constant time. Otherwise, the algoriil;lrm w>ill continue to iterate until the
solution egion has been reduced w a single point. |

, ‘an consider the sup[xining information that will he rélumcd via a récord of lypc‘ Separability

' (Figure 4.3y - If S, and § arc inscparable, then the ficlds bof l;]iS record will be set to:
class :::mseparablef info ;= inseparablePoin{s and list will point.o 1h‘c originators of
{nfo1 list mf(})2vlist J. IS, and S; arc weakly .sépAarablc, then 1t follows from Théorcm 4.3 that
info1 list and ‘info2 list’ dumhc two triangles that are wcakly scparablc at g (Recall 'that g lics
on the huundar) of both trangles.y Since any lmc that scparalcs the Lnanglcc also scparatcs S¢ from S, ,
it tollows from Theorem 4.2 that'a planc that passcs through this-line and the origin »;ill scparalc S
from lhclu';ngm. Such u‘linc can be found in constant time. Thus if the ~lwo scts-arc inscparable, then the
ficlds of this record will be set 0 class := weaklySeparable , irnlfo :=‘halfSpace and list will point

o a sel of four points that detine a half-space that contains S . If the separability of the two scts is not

known then the returned record will have  class = unknown .

45
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4.2.2.2 Formatting Supporting Information Of Strictly Separable Sets
The function 'FormatStrictlySeparablelinfo’, which is called on lines 1.7 and 3.2 of -
Algorithm 4.2 | is rcsponsihlc‘ for formatting the supporting information once it has been determined that

S, and S, are strictly separable from cach_other. In such a casc, SetSef2D should return two half-
spaces whose intersection defines a wedge that c_onmihs S.

‘Thc.rc aJ"c two cOndil.ions un.:dcrr wi]igh _'FormatStrictlySepérablelnfo" i:\“callcd: cither g 1:
_stricily scparétﬁc ‘fror;i"blolhr S, and S 6r clse it is strictly Separable from one of the sets and weakly
scparable from the other. (It is im.possihlc fof the solution rcg‘ion 10 bg rcdhclci‘:al 0 a si>n~gl(‘?puinl when ¢
is inscparable from one of the sets.) In both cases, ‘info1 list” and ‘info2.list’ describe two triangles, 7,
and T, which arc weakly scparahlclal qg. v - .

First assumé that @ 4is‘sui,clly separable from both 8, and S; . In this case 7T and 1 )
define two cones that C()nL’lir.l'- S and S» rcx'pccjm'cly. Furthermore, lh? boundary of 4 wedge ()»l( ﬁcpumli‘ng
lines for lhé two tnangles %‘m be determined l’r'()m the edges of T, and 1, (see Figure 4.14) . Since any .
linc that scparates the triangles also scparates  §, frdm. S; il»l;()llo‘w.\_‘ lr()nl Theorem 4.2 that a plane

that passes through this line and the ongin will scpuruhlc S from (he ofigi. Thus the half-spaces that

define the boundary of the wedge that contains § canbe determined from 7, and 75 i constant time.

wedge of scpa.rﬁung lines
fa) (b) 1, and 15 arc the white tnangles in (a)

Figure 4 14 [lustraung the wedge of separators for S: and S5
Now constder the case where @ 18 strictly separable from one of the sets and weakly scparable
from the other. A problem arises since only one separator cxists for the two triangles, even though the two

-

SEs are stnictly scparable. Algorithm 4.3 desenbes the manner in which this will be handled.

.46
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Algorithm 4.3 Formatting ihe supporting informau'on for stricily separable sets.

Function FormatStrictIySeparabIeInfo ( into1 . info2 , Sy . 820 Separability ;

1. result.class := stricﬂySeparabIe'; :

2. result.info := wedge ; _

3.0 Ifr(in_fo1.class == wea'klySeparab}e ) or (info2.class == weé_k]ySeparabIe ) then
4. { Without loss of ggncra.]uillyr.vassumc that T, defines a cone gnd T dcﬁncs.a half-plane,

as shown in Figure 4.12 .
5. ) Let U denote the poirit of §; that is closest o the boundary. line of the half-plane

defined by T, and let Vv denote a point that is ha]f-w"ay between U and this line.

6. info1 := PointinSet2D( v, §;);
7. info2 := PointinSet2D( v, S;): )
K. Since V is strictly séparablc from both sets, construct the wedge information as described above

and retumn it through result.list ;

- end of algorithm —

In analyzing the above algorithm, lines 1 -4 and 8 can be performed in constant time, while

Ctines 5 -7 require O(n) tme cach, where n is the total number of points of §; and §,. Thercfore

_the ume-complexity of this algorilhm is O(n) time.

4.2.2.3. Analysis'and Discussion of Algorithm 4.2 ( SetSet2D )
Finally, the analysis of Algorithm 4.2 is presented. Assume that S, has nll points and that

S> has ny andlet n=n, + ny. » . L

I Furst consider the initialization step. A point that lics in the convex huli of a set will lic in the
rectilinear bounding box that encloscs any one of the scts. Both boxes can be found in O(n) ume;

the intersection of the two boxes can be performed 1n constant time. )

2 Now consider the case where the intersection is empty. In this case, the two sets are strictly. sc-:parablc_
but the supporung information still needs o be determined. This will be handled by finding a point
- g that lics between the two bounding boxes. @ can be found in constant time by considering the
vertices of the two bounding boxes. PointinSet2D | the 2-diménsional algorithm for solving the
.pmm»in-scl problem, requires um; lincar in the number of points of the sél (Section 4.1‘) . Thercfore

the calls to PointinSet2D on hines 1.5 and 1.6 rcquirc‘ O(n,) and -O(ny) ume. The call 1o

.



Fal

<

FormatStrictlySeparableinfo will requirc constant time since @ s strictly separable from both
scts. ' *

> . ) -
3. Therefore the total cost of the imualization step is "O(n ) ume.

4. Now consider the number of-cdges of a solution région. @, wil] have at mo‘s_l‘four cdgc;. During
éa;h iteration, ih(; number of edges of the solution region will be increased by at most two hccuuéq the
boinl ‘g lics on the apex of cach cone, or on the boundary of cach half-planc used 10 cut the solution
(lines2.7 and 2.8). Therefore, in the worst case, the solution region will have “O(7) cdges at

- the beginning of iteration 1.

5. The centre of gravity of the solution region can be found in a time lincar to the nuniber of edges of the

solution region . ( Section C.3 ) .. Therefore, the centre of gravity can be found in O(:1) tume.

4

6. The two calls to PointinSet2D on lincs 2.3-and 2.4 require a total of OCn ) time.

7. As was described in Section 4222, the call to 1n&eparableorWeaklySeparabIeTest_Cun h¢

3

performed constant time.

8. Since a cone can be thought of as the intersection of two hulf-pl.uncs, the ncxl“so—luli()n region will be
constructed by inilcrscycling the current solution region with from once to four hull‘—plzmcs (lines 2.6 10
2.8). The intersection of a convex polygon and a half-planc can be computed in time lincar in the
number of cdges of the convex pofygon (‘Section C.4 ). Sincc the solution region will have .at

most O(1) at lhé beginning of iteration i , this step can be performed in O( i) time.

9. Since @ lics on the boundary of cach half-plane that intersects the solution region, it follows from
Winterniz's thcorem that the arca of the solution region is reduced by at least a fixed fractuon cach
ieration. '

10. I the solution rcgion has been ‘rcduccd.lo a single point g ,and @ 15 suicll}; scpuru‘blc from cither
Sy or §,, then S, and S, arc strictly j%cpamb]c. This follows from the fact that the ntersection
on line 2.7 docs not cut away any of the convc'x_,hul'l‘of S, . Similarly, the intersection on hne 2.8
docs not cut away any of the convex hull of Szl'.“ﬂme'rc'forc, if lhé solution region has been reduced o
a single point, and this point does not lic in the Egh\'cx hull of onc of the sets, then the two sets mdsl

be strictly separable.
e )

11. 1f the algorithm is continuing o iterate, then the termination predicate requires constant ime since the

call 1o FormatStrictlySeparablelnfo - ensures that the algorithm will wrminate. In the worst case,

.48
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the total cost of the termination

.

. this call will require O(n ) time (sce previous section) . 'VThcfef(‘)rc‘

prcdiéaw is Otn) ume.

12. There is a termination test that could-be added to the algorithm which results. in early lcrmfﬁatiog in

some cases. Recall that any line segment that connects two points of a sets lies in the convex hull of

the set. Since ‘infot.list and ‘info2.list’ (from line 2.3 and 2.4) both contain some poifts of S, .
, ! : ,

and S, rcsbcéu'vcly, the lines connecting these points can. be tesied to see if they prave-the sets arc
inscﬁarablc. This can be thought of as a’ gcncralizau'hon of. Thedrcm 43 For exafnplé, in
Figurc 4.15.a, the algorithm would Lcrminaic'im‘mcdialcly if this test were implcmcnlea since the
lin¢ segment ab crosses the line segment ¢d , proving the WO sets are inseparable. Without the

» ’ . . . - B . T e .
test, the algorithm would continue to iterate with the solution region shown in Figurc 4.15.b.

® ’ ®)

~Figure 4.15 “[Hlustrating the solution region after one iteration of - A]goriLhm 42

Thus, 1n summary, .

-~ ' 1 . . . . .
® O(n) timcts required for the initialization step.

K
e

th

® In the worst case, the #7 ileration requires

s

Aaximum (O(n), OCi), O(1)} = O( Maximum {n, i }) timc.
® O(n) isrequired for the termination predicate. : ’
Therefore, the total running Lime for Algorithm 42 isO( * Mﬁ{imum {n,t7)) time, where ¢ is
the number of iterations performed.  As was argued at the end of Section 1.3 and Section 3.2.1 , the

number of iterations of an ICT algorithin can be bounded from above by é constant provided that the

algonighm s implemented using fixed-precision, floating point arithmetic. Under this assumption, ¢ is

bounded from above by a constant. In this case, the running ume for Algonthm4.2 1s O(n ).

T
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Detecting If. The Convex Hulls Of m . Sets ‘Of Points Overlap -

- Finvally, we are ready 10 solvé the main problem of this chapier.. In this section, ICT is Vuscd%)

detect whether the convex huill§ of m- sets of points overlap or not.

problem is much the samc as that used in SetSet2D ( Algorithm 4.2} . Algorithm 4.4,

I3

presented befow, has twosways of terminaling:

4

Y »

The approach used to-solve thise

&

cither tfhic algorithm identifics a point that lics in the

convex hull of each of the m sets,-or elsc it reduces the solution region to a single point that does not lie

1

in the chvéx hull of at Icast onc of the sets.

a.

El

In the former case, the algorithm teports,

e

" Duging cach iteration of Algorithm 4.4,

-

N

b

R

hullé of the .m sets do Ochlép', and in the latler, it reports 'NO, they do not overlap' .

"YES, the convex

&

»

10 determine whether the centre of gravity of the ;:eﬁrrcn'lﬁiplulion region (@) lics in the convex hull of
. NP D

L

¥

x

cach%gf the m scts. If it turns out thal g is,cillhc,‘{ inscpurublc or kaly s¢parable t'mri? cach of the sets,

vl

,v

1hcn the algomhm tcrminates, rcporung @ is common o 1hc convex hull of cach of the m’ sels.

2

’ %i“ - ,Delcr'mining that the scis-do not overlap is a morc difﬁcquzgmbicm, sincc 1hc solution region

&

a

* must be rcduccd 10.a slnglc point. If g docs not llC m Lhc convcx hullsof cach of th sets, then it must’he

~

smclly scparablc from at 1%t onc of the sets. In this Cd\%}hc wedge m{umcd by P0|ntInSet3D can he

uch lo Pcduce Lhc vof&me of the solution rcglon for.the next ucmuon

3

-

,

kS

Howcver, theoretically, it 1s nol

‘possible for a sinﬁlc wedge to feduce the solution rcgi()n o a sing[c p()in[,v,iincc the cerire of gravity of a

<

hod

o . . . N
- convex region lics inits interigr and since @ lics on%he boundary of the wedge. The most naive solution
N Ny %Y : .

%

A

%

T i =, . : . ) . . . | 4
to ;hxs problcm is o intgrsect Lhc ciirrent solution rcglon wnhﬁach of L_hp half—spaccs rcturned by the m

M4

#

&

calls to P0|ntFnSet3D ’Howcvcr this would rcqunrc m[crsccung [hc solution’ regiorn wuhsfmm 2w
8,

b

2

L,

#

aEE

™

3

half-spaccs cagh iteration, an operation Lhal rcquircs morce Limé lhiu'c we arc w_illing Lo spcnd.

%
Also only the first’ tnlcrsccuon guaanccs that the solution region will be rcduccd by a fixed fraction, The

rest of the inlcrseclions may have Jimited benefit.

whether the result of the intersection would bg a single point, if the intersection did take place.
- © = .

ES

current solution rcgion s replaced with ome that comains'only the point @ .

2

EN

Ay

&

bt

.

3

,“ -

Instead, a test has been developed that determines

If so, the

which s

_Point]nSeBD is.-called a towl of m tmes; in order ~

=

Otherwise, the soluton .

a



& o

region 18 chuccd byia ﬁxcd‘fraclion ny inwr§ecling i‘l with the last wedgt? VLhal has been felumeq by
PointinSet3d . o |

The Lcslrcbnsisl-s‘of mapping each of the 4 half-spaces to points on the gnrfaCf‘: of a unit sphere,
and m,apbin.g g to iL; origin (the centre of the sphere) . Let Ny, Ny, o, m, réépeciivély" denote
the h ()urlwrard’ unit norm"als. Placé each norm;ﬁ so that its tail corincidcs wiL'hVLhc origrin. This yields a
| total of A 7 poin[s on the surface of the unit sphere. Iﬁ Section 4.3.1 , it will be )sh‘own that if the
mapped poian; arc inscparable from the origin, Lhcn‘Lhc intersection -of the corresponding half-spaceé will

conliin just onc point, @ .

.

Algorithm 4.4 will be presented first, followed by a discussion of ReduceSolutianRegion in

Scction 43,1 . ( RgﬂuceSolu?ion,Region is responsible for performing the lcrminalidn test described

G

above and for reducing the solution region appropriately. In addition, it ensures that the problem of

degenerale convergence does not arisc.i) Finally, in Secction 4.3.2 ,'a detailed discussion and analyéis of

s - '

Algorithm 4.4 s presented.
Let §¢. 8, ..., Sn.; denote m " sets of points in 3 dimensions. “In the following

algorithm, N denotes the list of points rcféuhiﬁg from the mapping of the half-spaces, while

= «
%

SaveNormals is the routine responsible for constructing this list.

.
v

Algorithm 44" Delecling whether the convexThulls of m_sets of points overlap.

i

Program’ main (S| ,S2 )

1. Tnitialization Step

,—/—7", Ny Find a reculinear bounding box that encloses each of the sets.' Let @ denote the intersection of the
A . c ! . . !
5 : . : © - L
s m boxes. : L ’ . -
1.2 « If @, is empty, then terminate, reporting that the corvex hulls do not overlap.

2. lteration 'é,}ep (¢ 21) -

21 9= COGD, ).
22 glnEacﬁE‘,onvexHull = wue: )
F,;:} =il
. 24 forsy = ‘O 10 omo do { 5
‘ _2"'_5_‘ result = PomtlnSetéD( g.S):
2 “&':_ . .+l resultclass == strictlySeparable then |

-
[
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27 . ginEachConvexHull := false ; o

2 _ 28 " ~ Let It and T, denote the two ha]f—spac'cs. described bv result.l{st ; ) }
29 o if result.class = inSeparable.Lhcn‘SaveNormﬁals( result, g ; VAR N ).

) /* endof forloop */

210 if gInEachCo’nvexH'ull: == false then

»o

~ 2

@, := ReduceSolutionRegion ( g N.o . I, R

3. Term{inationl Predicate . . S
3.1- If gInEaghConyeX’Hull == true,
32, then { terminate, réporting 'YES, the conv‘cx }11['1”5 overlap at the point-g '} = -
33 . 7 else "if ( @ .contains oniy: %“Singlq point, g d; : S
3\.4 » then’ [A lérminatc, reporting 'NQO, they do not overlap ') '
35 . else { continue to, iterate. } ; | :

- end of algorithm —

-Pfocedure  ‘SaveNormals (result, g; VAR N ) ;

/* . Recall that since g is either weakly or sirictly separable from S, that Jresult.list’ describes either one
ortwo half-spaces that contain all of the pb‘in“ls of §,. /*

1. for cach half-space ¥ ( described by result.list) do {
2. Let N denote the outward unit normal t;or the Half—s;;acc ¥ . Let g denote the point that is
yielded when Ath'c' il of N coincides with the origin .
3. Append q o N, J

~ end of algorithm ~

a
2

4.3.1 ‘Reducing The Solution Region For Algorithm 4.4
Three topics will be discussed in tth scction. First, it will be shown that given lhc set N ,asel
of points on. the surfacc of a unit sphere cenured at the origin, it 1s possible 1o dclc’rminc‘ whether the sct
{ g} is the result of intersecting the half-s;;acc{s that were used to-create N. (- The mapping between
- points and half—spaécs, and the construction of N was described 1n thc previous scciion. ) Sccond, the
strategy that will be L;scd by ReduéeSolUtionRegion to avoid degenerate conv.(;i'gcncc will be discussed.

Finally, the algorithm for ReduceSolutiOnRegion will be presented, along with an analysis of this

algorithm. o - s



Theorem 4.4 If the points of [N ar¢ inseparable from the origin, then { g ) is the rcsult of

intersecting the half-spaces used.to create the set N .

oL f

Prool: Assume that the pOin'I_Sf‘Of N are inscparable from the origin. From this it follows that the

B

‘origin lies in the interior of the convex hull of these points. Now map this convex hull onto the

o

_surface of the sphere as follows; ﬂmap, cach edge to the smallest arc of the great ci»rcjc dciérmincd by its

.

S . e ) - -
~ vertices. This mapping creates-a spherical subdivision on the surface-of the sphere, consisting of faces,

;ims and vcn;tjccs. Consider an ;irbiuary fage of the subdivision. The vertices of.this face correspond to
‘half-‘sp.z.ilf;cs in Lhc (;riginal space v?hosc intersection is an unbounded pyramid; A, which has g as its
apé‘x. Let a dcnotc’a point tﬁat lics in-the interior of this spherical face. Notice that @
corresponds tola hal‘f-spacc b4 ('in the orrigvif‘l?l space ) éuch that A = A~ ¥. Thus ¥ can.
be,added to the 6riginal set ofhalf-spa:ces wilgc;l‘_;tyaffecting the result of their intersection. Let ¥ -
denote a second half—sbacb that has thc same boundary as ¥ but exteﬁds in Lﬁe opposite direction.

Observe that [ g ) = & ~ ¥-. This is the critical observation of the proof: if both ¥

- -

andr %~ can be added to the sct of half-spaces, without affecting the result of the iptersection, then
result’of this intersection must be {@]). Let b denote the point .on the unit sphere that
corresponds 1o W~ (@ and b arc diametrically opposiie ) 'Thrce cases may "occur: (i). if_ b
* coincides with a vertex of the spherical subdivisioﬁ, then the half-space ¥~ \is‘ahv'cady onc of Lhev
original sct of half-spaces: (1) if b liés‘ in the interior qf a face of the subdivision, then it follows
from above that ¥.= can be added to the original sct of half-spaces_without affecting the result .of‘
original intersection; (ii’i) b licsonan aré 'o4fathc subdivision, but is not 'anc of the endpoints of Lhis
arc.’ T?uc vertices of this arc correspond to half-spaces in the original space whose intersection -
QClcrmincS a wedge that has @ lying on its bm;ndary. Let I' denote this wedge. Observe that

I''=Tnn ¥~ . Thus, ¥~ can be added to_the original set, of half-spaces without affecting

_ the result of their intersection. Since in all theee cases, W~ can be added without affecting the result



-

_ of the intersection of these half-spaccs, it follows that the result of inlcr'scéu'ng the original set of half-

‘sbaces‘musl be{g}. o o : -

e
7

PointinSet3D wilk be used to test whether the origin is ihscparzjblé from N . Ifitis; tRen the,

o .

current solution region will be replaced with a solution region that contains only: the point @ . The

corrcclncsiof this approach follows dircctly from Theorem 4.4 © However, a question ariscs as to the

efficiency of Lh%ppré)ach. That is, is it possible for th,jﬁi’érscclion of the set-of half-spaces to be

L
~

{ @} when the origin is scparable from N? The answer is no~ To show this, first assume that the

N

origin is weakly scparable from N . From this it follows that all the points of N lic in a hemisphere of

the ugit sphere. Furthermore, thé great circle that defines the boundary of this hemisphere p;Ls'scS,/lhmugh a
subsct of N, such that the origin lics in the interior of the eonvcx,h(x_ll of this subset.~ The intersection of
R .

“«?r

the half-spaces associated with this subsct will result in a’line. A point that docs not lic on this great circle

corresponds 1o a half-space that will reduce the line 10 a half:line. However, no further reduction is possible

» since there is no point in the opposite hemisphere. Thus if the origin is weakly scparable from the origin,

 then the result of intersecting the corresponding half-spaces will cither be a linc or a half-line. If the origin
- ° ) . v ) - “JL_,/\ .
is-strictly separable, then the resuly of the intersection will an unbounded region with volume.

Now consider the problem of degenerate convergence. As was stated in step 7 of Section 3.2.1,

degencrate convergence arises when the solution region does not converge in all possible directions. That

is, instcad of converging to a point, it converges to a line segment orea convex polygon. Under the

assumptions of Appendix C (that fixed-precision, floating-point numbers will be tsed 10 apj
numbers) , the solution region will be recast to a lower dimension by the intersection routine descri

Section C.4 | once it has been determined that the volgme is cffectively zero.  In such a case,

Algorithm 4.4 will continuc to itcrate with a solution region-that has a lower dimension.  As -was
mentioned in Section 3.2.1, no problems arisc as long as a fixed fraction of the remaining solution

region is cut away each iteration. In the worst case, the sofution region will converge o a convex polygon,

next to a line scgment, and finally 1o a point. Thus in practice, it is possible for the solution region o be

imatc rcal
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“reduced 1o a single point by intersecting it with a single wedge each itcration, even though this is not

possible theoretically.

So lhc following questic;n natuﬁ'ally anses Is it is possibfeq for solution regi(’)n‘ to be not l.'educed
by a fixed fraction"égch iteration? Recall that the solution region is intersected w‘ilhka wedge that is dc-ﬁried
by the intersection of 7 and I3, two half—spaces tha'l"ar‘e supplied to ReduceSolutf‘onRegiOn via

/

input parameters, caéh_of which have g lying on Lhéir boundary. It was argued in Section 3.2.1 that, as

e

long as the solulioh rcgion is notr‘complclcly contained in the boundary of both hé:lf,-s'paces,lhen the .

solution rcglon will be rcd-nccd by a fixed fraction. ( For example, see Flgt.u:c_(‘\ } If it is, then the

current solution rcglon must be a linc chmcm\hat lies m the line delermlned by tie in gtion of the

boundaries-Qf I, and F2 . Such a case cannot be ignored, since if it arises, Algorithm 4.4 will-go into -
. : e 2 © - e

an infinitc loop: successive centres of gravity will coincide leading to the same choice of r and T, 1\ L

the ritbrau'ons that follow. Clearly such a situation can be detected in O(1) time.  However, WhaL shiould

be donc once it is dclccfcd? In the following it will be shown that in suéh a case,"th‘é calling rouiine

( Algorithm 4.4 )A should terminate since no point of the current sojution region"lics in the convex hull of .~

o~ o ) R

at least on'c of the m. sets. This will be signalled to the Qalling routine by returning @, =.,[ gl. )

- Assume that the current solution region is contained by the line determined by the intersection of

the boundarics of Iy and ;. Let A denote Lhis‘line. Recall fram Algorithm 4.4 ,- that the routine

ReduceSolunonReglon is called only. 1f g is strictly separable from at least one of Lhc sets. Let S

¥

denole lhc last sct that was determined to be strictly separable from @-. In this case the half-spaces I
and I3 determine a wedge lhal condains all the points of S;. Without loss of generali{y, ass'ume that g
Lmnudcs with the origin., Thercfore A _passes through the origin since @ lies on the boundary of both
F] and I . In the following it will be shown that that there exists a plane that contains l but does not
imcrsc_cl the convex hull of §,. Thercfore no point of A4 can lie in t_he'con’vex hull of S; and h(;,nce, by
dssumption, ncither can the a pqinl of the cuﬁ'cnl solution region. Consider the point 91 . dc;tennined by

the intersection of A and the plane z =1 Recall that PointinSet3D constructs two sets, §;; .and

S, > and then calls SetSet2D- to determine their separability. The point. g, 1s last the centre of gravity'

PR A
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dctcnl;”ni;ne'd by the SetSet2D algorithm, and it is through this_point that the \;vcdgc of scparators showﬁ-

-

in Figure 4.14 pass. It is easy to see that any ]i,ric

S;1 from §;,. Therefore, by Thcorcm'4.2 , the plane determined by this linc and the origin for thé 3-.

=~

dintensional problem will have all the points ;. lying to one side of it. Thus, suqﬁ a plane cannot
intersect the convex hull of SJ Furthermore, since this planc contains both the origin and @, , it must
also contain the_line A . Therefore- we conclude that no point of the current solution region lics in the

convex hull of §;.

The following algorithm is a summary of the above comments. Let 0 denote the origin.

{

Algorithm 4.5 : Reducing the solution rcfzioh for Algorithmrd 4 |

» . R
. d -

Functidn ReduceSolutionRegion ( g. N , &,.,, I}, I): &
o 1. tmpResuIt = PointlnSetBD( 0, N)Y;
2. “y,if tmpResuh.cIasé == insepa:ab}e ‘
3. thent- return ( @; set to the single point g9 )

else { if @ is complefely contained in the plangs that define the b()uﬁda'rics of I} and r.

4.
"5, then { return ( @; sct lo the single’point g ) )
6. else { return ( P, := ltb,;l NI NI, ,)A by -
) /* else */ \ |
—end of algorithm - A s )

Recall that the set N has at most (2m) points. Let f denote lﬁé;‘numb'cr of faces of @, ,Jl .

In analyzing Algorithm 4.5, .
® Oty * Maximum (m, 1, ) ).A?.'limc is required for line 1 ., where { *‘is the n_ukﬁbcr of
iterations of this ICT algorithm for PointinSet3D .
® O(f).time is rcquired to delete @, , and replace it with @; = { g ). Thus lines 3 and 5
require O(f) time.

o

® It is easy to se¢ that the fest on li;lc 3 can be performed in’ OE 1) time. . »

» . s, Com ,

® The interscction of @, ; and one half-space requires O(f) time (‘séc SectionC4 ) .

Therefore the intersection described on line 6 can be performed in " O(f) time. ‘

3
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Thnfs, Algorithm 45 'réquircs a towal of

e ‘ O( Maximum [ (ty* M_a:girﬁum {m, i, }) , f ) ‘

5

dlgomhm can bc boundcd from above by a constant provxded that the algomhm is lmplemcnlcd umng fixed-

: L; S pmuv,,(m ﬁnalmg point arithmetic. Undcr this a@sumpuon t,, is bounded from abovc by a constant. In
’ ] 77_‘; this casc, the runging time: for. Algorllhm 42 is O Ma{imum{ m,f })
N Ty ‘ ' . -

T o

B _T4'3.2"%"3]}}5_}5'@9([”DiScussion of Algorithm 4.4

% .- . - Finally, the analysis of -Algorithm 4.4. will be presented. In the following discussion, assume
—4:‘. ‘ :‘;’ ) . . ‘, < . o N " »’,“ - . . . ' . ) . B
C T thadtthe sets” So LS L wSmo1 chave.ng om0 n, oy points respectively, and  that
SR | . o .
[]4: = Ng +‘ n + +° n\m - " /“'

, ‘Vr‘.cuxllncar b()undlng box that encloses cach onc of lhc scls Thercforc if @ is emply lhc algomhm

—u

can term matc rcporung that lhc comvex hulls dow nol ove.,rlap All of the boundmg box0§ can be Tound in

T OCn). umc dnd hhcn' lmcmccuon (bo, can be compulcd m O( m) time. Smccscach set must

-

havc at lcwa ‘.onc clcmcnl m < nn Thcrcforc lhc mltmhmubn slcp rcq.mros O( n) umc

- F—— 7 . . - \ Y ¥, . - "i
.

2. Now (,()nSIdCI' lhc numbcr of fdcm oflhc solulmn reglon @, hzm at mosl SiX faccs Each %iauan Lhc

o~

numhcr of faces of th soluuon rcglon s mcrcascd by at mosl twa.. ThcrcfoTc in the yvorktcasc the

)'unon region-hiss O( 1) deC§ al Lhc bcglnmng of ucrauon d.

3. The centre of g,mvnry of a 3: dnmcnsnonar solqun rcglon canbe found m Umc lincar Lo\hc numbcr of

ldus of lhc rcglnn ( Section C 3). ;Thcrcforc lhc ccntre of gravuy can be found in O( [ ) time,

. _‘4_ Tha for- l()()p defined on hnu 24710 29, is respontsnblc er lcsung whclhcr g llCS in ﬂ‘lc cbnvcx

< e

glnEachConvexHuIl is lnllldll/Cd 16°truc and N 1snn111311/ed Lo nil., Thc scLs SO 1o S are
cach iested in ordcr If g docs not lic in lhe convex huIl of a sci say Sy, th"cn
anEachCorQHuH 1$ sct lO false and the two half spaccs dcﬁnmg ma wcdgc [hal comalns §; arc
sded Ln T and Fz If g 1S not mscparablc from a sct L‘hcn the half space(y dcscnbcd by

resun Ilst are mdppt‘d to pOlan on lhc umﬁsphcrc by SaveNormals whxch are lhcn appcndcd 1o the

s 5

,;"5; LN i = . . B .,(. - ‘ ‘ p L '~—.,»a - g .

_*‘ R rlirn;'e As was argucd at the end of Scciion 1.3 and Seclion 3.2.1, the number of iléralions of ah ICT ;

b Fnrsl consndcr lhc lmualuauon slcp, A point Lhal lzcs m lhc convex hull of all of lhc scts lics in the -

—hull of cach of lhc scts. Fnrsl consxdcr ‘1hc corrccmcss of this loop. Bcfofc entcrmg Lhc Ioop .



list N. If the for-loop terminates with glnEachConvexHull sct o truc, then g lies iy the*

convex hull of all m scls.

B N .

Now Considcr the time fcquircmcnls for the for-loop during the i jteration. Al the steps cxeept the
Call 1o POIntlnSetSD can bc ‘pcrformcd‘ in constant time. Rudll from Scction 471 that

. POIanSetBD requires* “O(1 * Maximym-{ n,  }) , where ¢ s the numbu of ierations’

performed by the ICT algorithm on dn inpm of size . Thnrd()rn one iteration of the for-loop
’ ) A ' .

requires . O( 1 * Maximum { nY s } ) . where 1,18 lh( numb(‘r of iterations putonmd b)

“)

PointinSet for set S, . Thu% during cach 1[le|0n the for- Ioo wxll re unrg
o 7 P .

N “ o .
’ . R - S Lo LR
- : Y O (¢, *Maxamum {"n; "t }7), ume Lo (4.1} T
J= 0 _ T
- ‘B\¥:
¥ By assuming 1, << n,, cquation [4 1] siinplifics tos . . L ) -
: . Cer Ul
m 1 [
3 O, * n) . 2] PR
-,= 0 ' o o :
-
!
. Furthermore, cquz;lion (4.2} can be rewritten as i
, ) . . v - . .
Y om '
* ime
O no- . ' S 1y ) time, H_lﬂl
g o= 4 - !
- . e
since cach n, <n '
‘ 7
"~ 5. 'ReduceSolutionRegion’ (linc 2.10) requircs
~ - T O( Maximum { (1, , " Maximum {me, 4, V) fo ) )
ume to reduce the soluuon rcgmn where f, s the number of faces of the region during ateration
and t‘,,, lS lhc total mmbcr of ucrduons ‘of the call mddc 10 PomtlnSetSD Since the solution
_vcgion has’ O(z } faces durmg the " iieration and.since m < n , this step rcqmrcx
\-’ . L ’ ) ' B o .
A R O Maximum { i . {,,* Maxwnum { n, t, , )<} ) umc. T .
6. Finally, the termination predicate can be performed in O( 1) ume.
o : q - ~
. : . )
In summary, -
. . . gl
. LS . 4 <
- ® O(n) ume s required for the initialization siep ) '
S8 - . : S



LA

A

~
® The 1M teration requires:
', O ( i ) umec to determine the centre of gravity of the region ;- ,

I

.. m .1 ' . A
) ( “n L T ‘L, J tiine for the for-loop
) ‘ o "0 -

O ( Magimum | i .t % Maximam { n%i.) ) ) time  for )
o ReduceSolutionRegion .

ol ¢ ,
’ -~
s

Therefore, in total, the #7 itcration requires: :N

()( Maaxmumjl ro. "n -+ * E L
T - S =0 ‘

——

~——

‘ 3
o

® (=1 ) umc s required for the termination predicate during the i’h“iLcralion.

let T(n) denote the total running ume for Algorithm 4.4 and let ¢ denote the total aumber of

Herations performed. In this case,
N S N

Tery = O n )+ O(x) + 0ty [4.4]

‘ - ! ) L e, 4 .
where,” x = }_, O Maximum <~ L . . on o z oty
‘ oo ‘ BN e =0 -
- ’ . - ) L4

: L m
By lewing, <= ~ o= -2 > L. _—

- : , . ‘ 7 L 1 j _ 0 . .

. _ a

=

we tind that x = O Magimum o
o [4.4] gives - . , . . . )

‘o
-~

Tiny = 0C ")+ O( Magimum{ 2 . 1" n ) )+« 0 ().

“«
.

Assuming that ¢ << n . the runming ume of the . Algorithm 4.4 is O (1" n)since <1, As was

arvucd at the end of Secuon 1.3 and Sccuon 3201

LY

2. ¢ n ) ) = 0(+ ) Substituling this back

, the nuinber of iterations of an ICT algorithm can be .



bounded from above by a constant provided that the algorithm is implemented using fixed-precision,

floating point arithmetic. Under this assumption, cach ¢, is bounded from above by a constant, as s~

In this case, the running time for Algorthm 4.2 s O( n)

b
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e,

|Edclsbruriner 87 (pages 213, 236-239) and [DoBkin and Reiss 80].

~ 4
. . Chapter 5 . . : -
LinearProgramming In 2.and 3 Dimensions .

-

The Lincar programming (LP) modecl minimizes a linear function subject 10 a sct of lincar

cquations and incquahtics (conerujm;) . Inthis chéptcf we will present an ICT algorithm that solves LP
, v '

in 2 and -3 dimensions. [Edelsbrunncr 87] (page 239) has noted that efficient solutions for low-

- A -
.

{ : _ »

dimensional LP problems have a large, potential to Jead 16 cfficient solutions for other common gchﬁchic '

. ' , . .
. problems. For cxample, Kirkpatrick and Scidel's O( n log h ) convex hyll algorithm (& s th numbcer

-

ol points on the convex hull) éxpl()ils ihc fact that 2-dimenstonal LP can be solved jn 'Q( R) time.
[Kirkpulric"k und‘Scidcl %6) . In fact many gcomctric pr':)blcms“caﬁn be cxp'rcsscd:.dircclly ‘as ‘Iii,g'car

‘ R P
programming problems of low dimension. This is true of the Chcbyshcvﬂliné fwting psoblem and the
smullcsl'cnclosing girclc, which will ;c described later in the th%sis. $Olﬁc’|" éxamplcs can .bé fou;1d in

i

F

L 3
5

In Secuon 5.1, a description of the gecometric inlcrprclalion""’df LP in 2 and 3 dimensions ‘is
B » L =

presented, followed by a briel history of some of the rescarch that has taken place in lhi; arca
{ SC’Cll()n 5.3‘) . A detiiled digcussi(;n of the ICT solution for LP is presented in Section 5.3 . The most
challenging aspect of this solution has been the creation of the initial solution region, which is described in
Secuon 5.3.1 .- The approach d;:scrihcd flhcrc constructs a point-in-sct problem from the constraints, and

then uses the routinesdesceribed in Chapter 4 to idenufy a small number of constraints whose intersection |

15 bounded - alt directions. (Note that it 1s possible that no such subset exists. In this case, the ICT

®

* algonthm for LP terminates immediately. indicating the direction in which the problem is unboundcd. In

the other case; that 1s, when the solutior is finite but the set of feasible points is infinite (for example, sec

Figure S.La y .t s expected that the user will add a constraint that results in a bounded region before
restrting the process) The iteration component of the algorithm is discussed in Section 5.3.2 ;  two.
methods of reducing the solution region are discussed. The first approach is the casiest to cxplain and

implement. but may Iead to degencrate convergence. Thesecond approach is a much stronger result: given

- 61 -
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; “ 2

an arbitrary linc, it is possiblc to cnsin*c,[hal the ncext sokution region will extend 10 only onc side of a
R e , . Sl

planc that contains this linc. Thus, if}.hc algorithm detects that the solution region is not converging in a

partigular dirccton, then a line perpendicular to this direction will be suppl‘u d, ensuring convergence in that

. ’ . . [ B
direction. Termination of the afgonithm.is discussed in - Section 5.3.3, followed by the acwal ICT

algorithm in Scclion 5.4 . Finally in Scction 5.5, it is shown that ICT can be combincd with the

'-"prune-and:séarch-lcchniquc, which was independently inlrgx}u(‘cd h;' [‘Mcgiddo 83a] and {Dycr84], -

rciulting in linear-time algorithm that produccs an exact'solution. 2 ;
*g S - .

b

4 ) > ~ . -
5.1 -Ligear Programming (LP) In 2 and 3 Dimensions
" The dimension of an LP problem is determined by the maximum number of independent variables

in a constraint.- The 3-dimensional LP problem cdn be stated formally as follows:

NN

minimize . agXx +byy+cpz :
X Vv 2

s <y

[ﬁ.I]_

subject o . a, x +b y+c,z22<d, , i=1,..n

The lincar form  ay x + by y + coz is called the objective or cost function, while cach of the™n

inequalitics arc called constraints. Nolice that no cqualitics have been included in the above constraints

B
n o

sincc an equality is casily represented as two inequalities. For example, the plane described by theeguation
a, X+ b,y+c,z = d, s also described by the incqualitics: a,x + b,y + ¢,z <7d, and
e
e

S
a,x + b, y+c,z 2 d,.

Feasible solutions correspond 10 those points that satisfy all constraints.  The role of the

. &
objective function is to formalize the criteria for choosing the best feasible solution, for example, one that
minimizes the. cost of production. Geometrically, cach constraint represents a closed half-space, and the

intersection (£ ) of the n half-spaces corresponds io the set of I'ca.éihlc pbinls. If £ 15 cmpty, then lh‘C

problem is said to be infeasible. That is, no point satisfics all, of the constraints. Otfferwise, the optimal

solution is the point of F  which hes furthest in the direction determine y the seclor

A-dy . by, -cy ). Il F isunbounded in this dirccuon, then the opumal soluuon as at anfinity,

1



a1
)

Otherwise the optimdl solution is a point P € F'~ A, where A..is the supporting planc of F that is

a member of the linear functions of constant cost that arc defined by the objective function, such that A4

rx)gjéds F .in the direction (-aq, -bo,-co) (Seg Figure 5.1) . We will referto l as the objective

supporting plane . Notice that the slope of ths plane can'b,e'dcwrmincd di;ecfiy frOmﬁ,"t‘hc objcclivc -

- 7

function. 2 - ) , .- :

i

P, . . I . 2, . ) . C ' . y .
F is convex since it is the intersection of n half-spaccs. This restricts A 1o 'touching’ F in one

of the f()ll()wing ways: 1f it Louchcs F ata smglc point lhcn this vertexsis the optimal soluuon for the

problem; if it intersects cither a fdce.or an edge of F, Lhcn many opumal solutions cxist, all of them

cqually good.-

“family of lines of
conslant cost,
defined by the

. objecuve function

(a) a bounded.2D LP problem

s -

i -

(b) an unpounded 2D LP problc_m

Figure 5.1 Examples of Fe e’é problems with the same objective function.

I
v

In summary, there are three types of LP problems, cach having a geomelric interpretation:
infeasible problems; o -
® feasible problems that arc unbounded in the direction (-aqy, -by, -co ) ;

®  bounded fedsible problems, guaranteed 10 have at least one finite optimal solution.

5.2 History, of LP , o

Lancar pmgmmmm;, was first introduced in the late 1940's by George B. Dantzig, who was lrylng

to mechanize some of the planning processes for the U.S. Awr F()rcc. Besides prcscnljng the LP model,

- B »

Danwig designed the 'simplci method’ which is still the most widc]y,uscd method for solving general LP

problems There are many texts that descnbe techniques for solving the general LP problém, for example,

.



N

- R

£

[Chvatal 83] or [Papadimitrioij and Steiglitz 82]. Since we will consider onlvy' problems lhél are of low

dimension, and since the techniques used 10 sotve LP in low dimensions cﬂ"icicnl’ly' arc fundamentally’.

3

different from technigues used to solve the general LP problem ( [Edclsbrunner 87] , page 2387)'{’wfc5will .

. ¢
:

notc only a fcwyof the results obtained for the general tP problem:

5 . - -
4 : ) . -
hd [Kl(:\aM 72] have shown that the simplex mcthod's worst case time-complexity 1s

exponcntial in the size of input m, where m is the total number of variables and constrairits

(although it funs very fast on average) . L
- ‘FA j;l‘

-

® [Khachiyan 79} has prescnted the ellipsoid niethod for solving LP which has"a wordl case running” .

time that is polynomial. .This result is mainly of theoretical-inicrest since the typical number of

iterations seems to be very large cven on reasonably small pr()hlcms, and cach individual iteration
« may be prohii»ilivcly faborious (FChvétﬁl}W] . page 451 . : »

.

1

® [Karmarkar 84] has [ircscméd a variation of Khachiyan's algorithm which is expected 10 be

~»~efficient in the ‘expected’ case also.

Onc approach 1o solving the 2 or 3-dimensional LP problem is 1o find thé intersection of the _n
constraints in O( n log n ) time ( {Preparata and Muller.79] ) and then find the supporting line that

dclcrminci% the optimal solution in O( log n ). ume ( [Shamos 78], Scetitn 3.3.6 ). Thus the towl

S

lru&niné time for this approach is O( nlog n ). [Guibas, Stolfi and Clarkson 87} “have augmented this
upproach"td solve a shghtly different prroblcm‘rorﬂ'o :v‘hcrc lgh‘c C(;;lsuuian: of the LLP problem are relatiyely
smblc‘gul_ the objective func“l‘if)/r; 'chungqs frequently. ‘They preprocess the constraints .i:nlo a structure such
that, gi-;/en any lincar objective Afunclion, they can’rcpoq lh; poInt(s) in,space that minimize this function
in O( IO;g n) timc. Their prcprpécssingg step has two smg;s: first they fnd the po1'y:hcdron dgfincd by
the inlcrscclion.rof the véyonstruims m b( nlogn); scct'ond,‘__t:hcy mupi‘lhi.; :pf_)]'yhcd‘rm-]ﬂ()nl() a unit sphere

in O(n) tmc* Oncc this has be dénc. then an O log n ) point location algorithm

£ -

- {Kirkpatrick 83] , [Edclsbrunner, Guibas and Stolfi 861 ) can be used Lo determine the opumal solution.

* - Iuis interesting to note that their method of mapping the polyhedron onto the unit sphere has also been

E

“used by [O'Rourke 85] and fo)rbzm 86| 10 obtin supporting linc information for the p()lyhédr()n.

¢
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An clegant lincar time solution for LP in 2 and 3.dimensions has béén“pr'cscﬁ[c’d by [Dyecr 84] and.

im%pcndcmly by [Mcgiddo 83a). They managed 10 achicve this cfficicncy by not constructing the convex
“hull of F . Insicad, during cach iteration, a fixed fraction of the remaining constraints arc pruned away.

B - ‘ . . > T . ) ! . - . . 4 B . N .
~ Thus the cost of each Heration decreases n a geomcetrical progression leading 'to the linear time result. This

appfoach’ will be dis‘cuwcd in more detail in -Scdjon 54 .

[hﬁﬁgnddo 841 has shown that the O(n ) 3- djmcnslonal LP result can be gcncra]wcd to solve any'

l P pmblcm of fixed- dlmcnxlon in lincar time. The umc-complexity of hlS algonlhm is O( 22 ) .

whcrc k is the dimcnsion of_"lhe problem and n is the number of E:onstraints'. -[D)'fcr 86] “and

o ' . ) ’ . c ) 142 i
indcpendently, {Clarkson §6] improved this result so that the iime-complexity i3 O( BEk 17y ) .

> -

Notice that even for k = 2 or 3, the above constants are quite large.

'5.3  The ICT Approagh . o o o

As might be expecled, LP will be solved by"E:onerucling an initial solution region that encloses '

. - »". R - : : v N
the optimal solution; cach iteration the volume of the remaining solution, region will be reduced by at least
o ‘ kS

- a fixed fracuon untl the termination prc&ikatc has been Satisfied: Each of thesc slcf)s will bc discussed in

5
. L1

dcwi#pftf()re the algorithm’is presented in Scection 54, .
g . . ' i o L L G !

3.1 Constrhcting The Initia‘l'Soldtion Region
- The ask of crecaung an mlual soluuon Tegion: for LP lzl?s been uncxpcclcdly chplicngmg cven

# R

lhoubh only 2 and 3- dnmcnslonal L{*ﬂproﬁms have bccn consndcrcd Mosl algorithms lhal 901vc LP do

N : 3 - (."}’
,nm nced to b()und the solution rq:,lon ne cxccpuon is Lhe clhp%ond mCLhOd of [Khachlyan 79] . Thc
£ - . T
Iollowmﬂg description has been taken from [Chvadtal 83] pagcs 447—448 o '
W BRI N ¥ i . . -
) . X I i FEMEEY -
. k . * o ;g«‘}“ ’
Let S oa,x, < 0b, wheret = 1, ... »n
Ay ;= 1 . ‘ .
hd %
¥

represent the oo constraints of the problem, cach having & wvaridbles. If the problem has any solution at -

M
*

&2

all, then 1t has a soluvion such that:



3
&

g

Tt

)

: . 2D < x < 2D where y =1, ... & [5.2]

wuh D. standmg for the lotal number of binary dnyls inthe n (k+1 )mubcrs a, “and b,. Thus}

the polyhcdron dcﬁncd by {5.2} will cnclosc the” opumdl solution if there 1s one. NOULC that cven whcn

k< 3 lhc valuc ofD can bc very largc smcc s dcpcndcnl on the number of mnsmeLs

A diffcrcnl apProach will be used o cdnslnjcl the initial 1€T 'solulion rcgion_.‘ Bricﬂy, the region’

“will be construeted by inlc‘rscclvi’ng a sub.s‘cl,(jf at most 4. (4 - 1) constraints, vyh,crc; Tk < 3. (v‘blcarly

-

lhlS 1S an lmprovcmcnl since Lhc si1ze 0f1he sotuuon région 15 nm dcp(ndan{ upon lhc numhcr of S

cohstraints. Howcvcr lhere is‘a drawback Recall from Flg,urc 5.1. a that cven whcn an l P prohlcm [E

Considcrcd lo be boundcd, the sct of feasible poinls 'necd nOl,bC. If lhc inwrscclion o[‘all ol_: Lhc C(mslruinlS'

1S unboundcd then clearly initial rcyon will also be unboundcd which pldys havoc with any dmms of

T

convc‘rgcnceA This situaton can bqhandlcd in on¢ of two wuysi -cither the algorithm C:.II'J_jJ(]d,u constraint to

the problem which results: in a bounded solution region, without affecung the opumal xgiluli()n, ar clse thd

. . - S )
algorithm can lcrmmajc,'allow?ngr the user-to add the required constraint. Thelatter approach.has been

s

adoptcd in l.hiS thesis. B ' .

Thm the nmain resalt of: 1h|§ scction is that the- boundcdncss of the set of feasible’ pmnls can be

dcteﬁnined by mapping each consl.ruinl o a point on a unil sphqrc: Alhc chnlrc of this sphere w:ll be

mscparablc from the mappcd points if, zmd only if the set is bounded in d“ directions (sce Thcorcm 54).

First the mapping of the Lonslramu, o pomls on 1hc unit sphcrc wnll be dC\LthCd f()llowcd hy

Lemma 5.2 and‘5.3", which describe tests that cnii‘ble us to determine if Lhc mappcd constraints are

;boundcd ‘n a particular direction. Finally the main result of the section (Thcorem 54 ) 1s pm'\)'c_.n.

First consider the two half-planes shown in Figure 5.2.a. It is casy o sce that their intersection

1s bounded from aboyc by any‘liné that is pafallcl to a linc that supports the interscction at @ . Notice .

that it is not necessary o know the location of the half-planes in order to determine this informaton. .In

other words, each half-planc can be mbi&arily translated without affecting the sct of directions that their

4

intersection is bounded in. Each Z=dimensional constraint will be translated so that its.boundary is tangent

R

66 -

4

S
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to a unit circle ceniered at the origin and such that the origin lics in the interior of the half-plane
- . B : ) s .

( Figure 5.2.b ). This mapping has two side-cffécts: fvirsl, it transforms infeasible problems into

feasible ones ( for cxampTc,.sce Fi}gurc,5.3 }, and second, eachi- non-redundant constraint now contributes

" one cdéc 1o the feasible rcgion. We will ignore both of these side-cffects since in the end, the so‘lulionb

rscction of these .

B -

region will be constructed by intersecting 4Lhc'original,unii'ans,lated constraints. If Lhc intc

constraints Lt o'ui 10 rl_');c‘cmpl){‘,.thcn Vlhc- LP problem is infcasible. —

oo

Che
Pt

Lo

L h

{a) original infeasible problem ) (b) transformed feasible problem
- Eig‘;;c 5.3 An infeasible problemn is wransformed inio a feasible problem by L}ilta't_l'ans]alion.

It 15 not difficult to see that a similar mapping can be applied to two half-spaces without affecting

the set of directions that their intersection is bounded in. In this case, each constraint is translated so that
its boundary is tangent (o the unit sphcrc-ccnlcfcd at the origin.and such that the-origin lies in the interior
of the half-space.!

Lemma 5.1 The sct of feasible points for a 2 or 3-dimensional LP problem i$ bounded if, and

only if, the intersection of translated constraints is bounded, provided that the set of feasible point

is non-cmpty. ’

! This is similar to the first step of the mapping used by [Guibas, Stolfi and Clarkson 871 , which
was mentioned in Scection 4.2



This follows from what has been saiq‘;abovc. Before pg;scming Theorem 5.4 , which dcscn'l‘)gs the test

w

that will be used to determine whether the sef of translated constraints is bounded or not, two lemmas that

will be used to prove this theorem will be introduced. =~ . ' ; R D
.- o . B ’ - *. »

Lemma 5.2 Consider 3 unit circle that is centered at the origin and let A dcnote a line that is ¢

- -
tangent to this circle at the point @. Now consider a ray whose endpoint coincides with the ™ »
* origin, and which intersects the unit circle at the point b . This ray will intersect A if, and only
if, the length of the shorter arc connecting @and b is less than - . L
s ' L7 . R K3 - LR ¢
oo B o W s
Lo g ) Ce e . ) L ) Ve R -4
Figure 5.4 illustrates cach of the three possibilitics. Notice that the arc length is the same as the angle - I
' 4 ; 2 ‘ : «
. . . . .. R - - . ,,w’a"‘
that is shown since the circle has unit radius. - & - _
a P A _ .~ a . » a o
X oo - =\ b ’
' : o L. o . b : . -
. . e
(a) arc length < -z : -(b) arc length = % (¢) arc length > ’f i '

2

.

Figure 5.4 Illusirating the three cases of. Lemma 5.2 .
o . C 3 "‘ )
Now consider the 3-dimensional case of this lemma. Twe distinct poinis on a sphere which arc

not cxtremitics of a diameter lic on onc and only onc great circle (for example, aand b in

Figure 5.5.a) . "The shorter arc connecting these two points is the shortest curve on the surface of the

sphere that connects them. . ) I

Lemma 5.3 Supposc that the planc A s mhgé;u'al the point @ 1o the unit sphere centered at

the origin. Let b denote the point where a ray whosc- endpoint coincides with the onigin

b il

intersects the unit sphere. This ray will intersect A" if, and only if the length of the shortest arc .

~ .

on the surface of the sphere connecting @ and b is less than 2

P

o

v\ |
- Proof: Consider the plance defined by the points a and b and the origin. lts intersection with A

results in a line that is tangcni 1o the unit sphere at the point @, and, its intersection with the unit

. ‘68"
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urclc rcsuILs ina grcat crrcle that has a and b lymg on its crrcumference Funhermore notice that

Y
v .

the ray in* qucsnon also llcs i this plang. Thus by Lemma 5 2, the ray wrll mLersect A if, and

only if, Lhc lc:ng(h of lhc arc conneclmg a and b is less than —- (sce Flgure 5 5 b). Slncc_ this

arc lics on & grc_at circle, it mlfsl bc the shortest arc Qn the surface of ghe sphere that connects’ @-and

e - e . )
‘b. e N : ‘ A R <

(a) two pointson a ércal circle C (b)\ a 2-dimensional view of the intersection
E Figure'Si:S Iustrating Lemmas$3. . '

—

I . -
~ -

_grnarlslalcd conerainls 15 bOUndcd or not. Srncc Lhc approach applrcs cqually wcll to both 2 and 3

. dimensions, we will describe, only the 3-dimensional case. » , ’ .

i B

Theorem 54 Lt U dcnolc the set of porms -at which the n lranslatcd ’consuainls} are

lang,cnl o lhc unit qphcrc ID 18 boundcd 1[ and onlyif thc origin is 1nscparablc from,s U o

- - .1."

Proof: @ is unbounded if, and o_nly 1[ il contains a ray ~-(‘[Grijnbaﬁm;'67‘] ,.page 23 ) ; A‘ssu'mc""‘ a

~ v“:

that ‘@ .is bounded, but thm the ongrn 1s separablc frem U. As we saw in the prevrous chaptcl‘ lhrs o

P

means that there exists a plane Lhal passés Lﬁrough the -origin Lhal has all the points of U lymg either

on the plane or'in one of the two half—spaccs dcﬁncd by the plane. Without loss of gencrality,’ assumev :

= thatall the points of U licon Qr above the plane z=0. Considcr the ray whose cndpoint',coincidcs

’

with the origin and passc< Lhrough Lhc pornl =r(0,“;0 , -1). (See Frgurc 5 6.) Clearly Lhc .

a

shortest arc on the surface of the spherc lhal connects b o any of the pornls of U mu51 bc greater .
x
than or equal 10 7 . Therefore, by Lemma 5.3, Lhe ray does not intersect any of ‘the Langent planes s

that arc associated with the points of’ U . However, this contradicts our assumption lha! @ is

o

Wc will now use the above lemma to- show Lhal we can test whclhcr b, ,"the inlérsccildn ofthe =



. : . -
! X : . .

boundcd, sincc the boundary of @ is determined By thesc plancs. Therefore the orfgin is inseparablc

s

from U whepever @ is bounded.

Now assume that the origin is inscparable from U , which means that the origin lics in the interior of,
. g | ‘—p

the convex hull of no more than (2 *%)=6 points of U [Gustin 47] . Furthcrmore, assume

unit sphcfre. From “Lemma 5.3 , we kifow-that the length of the shortest er on the surface of the

sphere that connects this point with any of the points of U must be greater than or cqual 0 v;r‘

Howcvc~r,‘ this means that all the points of U must lic in onc hemisphere, which contradicts our

assumption that the points arc inscparable from the origin. Therefore @ is bounded whenever the -

origin is inscparablc from U . ¢

neet . - b T —
. ’ v .

Figure 5.6 Illus[ialing Theorem 5.4°

~ The routine 'PointinSet3D’ (sce Chapter 4) can be used to determine whether the origin is

-

inscparable from U . Recall that not only does this routine.return the separability of the origin from the

sét, but it also returns the following information: - if the origin is cither strictly or weakly separable, thcn/ﬂ

'PointinSet3D" returns cither a wedge or a half-space that contains the points of U * if the set is

;nseparablc from the ongin; then it'returns a maximum of 4 (k-1) pointsof U~ such that the ()r‘igiry)l

-is interior 1o the convex hall of this subset. The formier information can be used W provide the uscr with
. . . - LI Mo n

some indication of the dircction that problem is unbounded in; - the dater will be used to construct the -

7 v

.

initial solution rcgion..By Thcorem 54 and Lemma 5.1, the intersection of the constraints that defined

this subset of boinls is bounded. The diffcrent stages of Lhc'prof:'css rcqu]rgs tme as follows:

Lo . ) [

that @ isnot bounded. This means that therc exists spme ray whosc endpoint coincides with the -

origin that does not intersect any of the tangent plancs. Consider the point where this ray intersects the

-

Y T
S



. k Q(,n‘)’ tme is rcqu&ired llo r_j‘i‘ap Lhc,original ‘co'nsﬁlrairms oy N

- = ) -

u;c muLm(; PomllnSeifBD rcqmrcs O( on ) ume Lo Lcsi whclhcr Lhc ongm is mscparablc from

I N -~

U, whcrc 1 i’s the total number of 1lc.'auom of Lhe algomhm T .

e ~O(~1 ) limc is rc‘qu'ircd"lo imcrsccl a ‘maxirrihmi‘of 4% (k -,1 ) =8 censtraints . -
o I'hcrcfore lhc muml soluuon rcglon can bc conslruclcd in RIS

- 1'

z , Ma;(zmu,rn [ O( n ) O( lon ) O(1 )} ‘,i

A
T é.

.7 that ifsz,;jn O(1, n:) ‘ti_‘mc.

: S 3.,2 The lteratlon Step

\.ﬁ o

‘ 'll is the rcxponmhllxly of th llCl’dllOﬂ qlcp 10 cmuré lhdl Lhc volumc of the solution region is
réduccqby a fixed »t‘racuén ¢ach iteratidn without di§c‘arding lhc op;imvaJ .solulion in the procéss. Suppose
mauhc'smuﬁoﬁ region has Eccn‘lrcducédg'by intersecting it with onc of the constraints of the LP problem.”

, I - . N * ]

,‘"‘Cjcurly the ()ptimél soluli’()h/will no;l discarded in this casc since it lics in the intersection of all of the.

«nnslrd]nls Futhcrmorc as longj as g (lhe’ céntrc of gravity 6f current solulion rcgion) lics ‘in"Lhcrcg‘ion

lhdl 15 dmcardud thn from Thcorcm 2 6 il fol]ows that the volume ofihc soluuon reglon will be rcduccd

by at 1c;wL a‘.ﬁxcd fraction. ( For cxamplc see Flgurc S. 7 a ) Bul whal if Qs is a feasible poml and: ”

2

‘thl’L 18 no such constraint? In ;hls case, Lhc 5oluuon reglon Can bc cul by a planc that is parallel o the

1
i . ¥

: UbJLL,ll\L xupp()rung pldnc and which passcs through @ . Such a planc wxll d1v1de the currcht:%oluuon

LICRIoR INLO WO rcglions, onc with objcclivc values grcaLcr than that of_ g and onc (containing the optimal ‘

o
s, e

o _\"(r]ul'_ié)n) \wuh, .\objcclivc ‘v’ahué:s less lhah lllal of g . Thc former region can be discarded.

"

{ } xgurg 57! b ﬂ[uﬂralu suc{x a case, assummg that ochc{we funcuon 1S bcmg minimized.) Since ¢

: . e
lu s on th hound}ar) df Lhc hall \pdCC this cnsurcq that lhc volume of Ihe next soluuon region will at (nosl
-5 . .. LA o - L o
be q fixed l'r;;;;lion_“m‘ that of plhc c'urrcn'l'rcg‘ion. o ] ' ’
3 ) . a .y ":4' B ! . i
- o, ) ) .

L

.



; (a) g 1s infeasible . (h g x.\' feasible

N

. Figure 5.7 Reducing the solution region for LP

s

Although the above approach works reasonably well, it is possible 1o achieve greater control over

the convergence of the algorithm with some more ceffort. * THe main result of this section is that given an

arbitrary line, it 1s possible to ensure thatthe next solution region will extend o only one side of a planc -

that contains this hine. Thus, if the ‘algorithm detects that the solution region is nol converging 1in a

particular direction, then a line perpendicular o this dircction wili bé supplicd, ensuring convergence in that

*

dirccuon. Furthermore, if the line passes through the centre of gravity of the current solution region, then

it follows, from Theorem 2.6 that volume of the next solution will be a fixed fraction of that of its

“

predecessor. ’ - .
A 1-dimensional LLP‘ problem will be Consu.'ucl’cd and S(")l;/cd:in order to determine the hall-spaces

that will be used to reduce the so]&uon rcgion. The l-dimcnsi()ﬁul problem is formed by intersecting the |

given ling with the original constraints. The same objective function is used l'_()r‘b()lh problems; the -

dimensional problem is feasible if the given line interscets the sct of feasible points for the original
problem. Some cxamples arc shown in Figure 5.8 and 5.9 . Notc that in these diagrams, it 1s assumed

that the objective supprvorliwng planc is horiy_onml, bounding the sct of feasible points from helow.

+
.
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(a) an mnfcasible 1 dimensional problem -~ - R (b) cutting'the solution region
’ ‘ﬁ‘ = . ’ : .
Figure 5% Annfeasible l—qucnsmna] LP prohtem. o
-
(a) a feasible 1.dimensional problem : 7 (h) cutting the solution region )
Vs ~ .

©

. Figure 5.9 A feasible 1-dimensional LP problem.
The I-dimensional problem shown in Figure 5:8.a is infcasible and the constraints that ‘prove

Tthis to be'the case will be used o reduce the volume of the current solution region (sce Figure 5.8.b) . In

5
»

Figure 5.9.a, the fcasible point that minimizes the objective function ( @, ) is identified. Since g, is

a feasible point of the original LP problem, a half-space whose boundary is parallcl 10" the objective

supporting planc will be used to reduce the volume of the current solution region, along with the constraint,
that defined this point.

Some definitions and notation will be inroduced before the algorithm is presented. Without loss

of generality, assume”that the objective supporting planc is horizontal, bounding the set of fcasible points



.
.
-

B ~from below (sce Figure 5.10.a ). Consider an arhflrary line” A. A partitions the constraints of the LP

- problem into three grouf).\‘: lh(::"? wh();c houndurics\ ard burallcl to the line; those that \mnunn (mcbcnd of

the line a'nd lho:sc that conunn‘Lhc other end of lhg_linc. For clanty, some notation will bcI inLr(xiun‘(‘(l thair

Qdislinguisﬁcs: these three groups. If A isnot horizontal, ‘Lhcn onc cnd c.\}lcndﬁ o= + o 1 the z-direction
and Lhc— other extends 1o - oo The former will be referred 10 as the op of [ilc‘ line wanlL' the Istlk‘r as the
bottom. uIf A is horizontl, then it is assumed that lop und-h«?lmug ajrc uxx'ig.ncd w lhjc two cnds of [h;‘ hine
n somc syslcmuli'c fashion. If\'ow consider a hall’-spul‘c that rcprcscr‘lls a.‘mnj\'uuinl ol the L.P p\mhlcm It

ra . o

. -

“. - A-is parallel w0 the boundary of this half-space, then the constraint is parallel 10 A7 i wwcontains the

_top of A, then the constrain is bounded from below with respect 0 A and if 1t contains the bottom then
itis bounded from -above with respect 10 A “Thus the constraint shown 1n Pigare 5400 9% bounded
- . “ . : ) L4

N

from below with respect o 4, and bounded from above with respect o 4y .

the half space

- R B ‘ )
i(u()' o Co! . AA

(a) Objective supporting plane ; (h) the half space determined by the constrant

“w

Figure 510

The following algorithm constructs and solves the T-dimensional problem in time lincar 1o the

“number of constraints.  In addition it reduces the volume of the current solution region, @, |, by

intersecting it with the sclected constraints. After an analysis and discussion of the algorithm, a proof will™ .

.

“be given that argues that the reduced solution region extends-k«only one side of a plang that contuns 4 .-

Note that'in the following that 1, and 7, denote the half-lings that result from respectively intersceting

the constraints that are bounded from above and below with 4. For example, in Figures 5.8 and 5.9,

g, 18 thWﬂa and g, 1s the endpointof 7, .



o
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Algonthm 5.1 . Reducing the volume of the solution region for 3D LP,

ReduceRegiont i, &, , . VAR ‘o, . teasiblePointFound . “optimal )r;
| lu' Mg My - 4
2 féasoblePonhtfound = false
3 For each u»nsm;ml I R . . e .
11 If I s parallel with rcspgcl 1o 4,
3.2 ‘then | if* 2 is)_nnl c;()nlamcd by I, then [, &, : = @, LN T return }
;1 clse 1if T 1< bounded from abBove with respect to 4, then ng=mn, NI
34 clse np=mn, m I } ) ‘

o

~ 4. Let g, and gy denote the endponts of 1, and 1, respecuvely and let [, and [, denote the constraints

that defined @, and @y, . respectively.

S case | Ny M My 18 emply /* In this case the 1-dimensional problem is infeasible. */
A b, Oy Ty, ‘~ Ty o ' /*, see Figuﬁr.cS.B* /* 7
case 2 Na M My 18 Not empty /*  sec Figure5.9 /* s o ©

/* Inthis case, cach pointof 7, ™ 1 1s-a feasible point for the original LP. pmhlcni. */

feasiblePointFound : - “true :

optimal L o - o - o
L y W’
If the’boundary of [ s parullcl w'the objective supm)mn'g,glénc. b o
' g oo
then set @ to the single point g, - ) T,
. ] / g, . N
Otherwase, . s o

{ . aplane drawn through @, that is parallel the objective supporting plane will cut the set of [casible

? points into (wo regions; the pbjective values of oné region will be greater than the objective values

‘

of the other-region. Let [y denote the half-spate that cp,fnainé the region with smaller objective

values. ¢

S RO RUNARE N R
“& return

end of algorithm

Analysis and Discussion of Algorithm S.1- - . »-,
~ Assume that either the ()figinal LP prd.blcm is inféaéi_blc“or elsc that @, ., contains the optimal -

1 . . . - -

“solytion: . ?

PR R

BN
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@

-

Notice that feasiblePointFound ,i\': mitialized to false on hine 2. The only time ¥ 1s set4o truc s n
cased of step J after a feasibie point has-been found. Note that if a feasible pont has been found, then . -

g, 1s the optimal solution for the -:dimensional LP problem,

. _ . R .
Step 3 constructs and solves the -dimensional LP problemy. Tt begins by cx;ummng’c‘;u"h ol the
mnslruml.\tz;r]d determinmg i 1itas paraticl, bounded from above or bounded from below with respect’to
A Its casy to sce that there,must be at least one constramnt lh;u‘ 1s bounded trom above and one that
18 bounded from below since, as was shown i the previous section, the iniiahization process ensures

—

that the sct ot feasible pomnts 1s bounded v all dircctions, Line 3.2 catches the case where a parallel

constangdocs not contamn - A . Qnce such a case has been dennhied, there s no need 0 ook at amy

more constramts smce A cannot ntersect the set of feastbic pomts. Lanes 3.3 and 34 are
[

responstbie tor determining i, and n, .

o

Consider ¢ase 1 oof Step 5. The Tdimensional probicn s mteaable, so the constramts that prove .
this to be the case (7, and [ ) are used to reduce the solufion regon. Note that @, may be

) 3
cmpty as a résult of this mtersection,

v
. \ . -

¥

. - i . Q
Now consider gase.2 of Step 5. First consuder the case where Fyoas parallel to the ebjective -
. . T - "

- . ’ . L4 ) . 2
supporting plance. Clearly, 4 18 not honzontal smee otherwise” Step 201 would have determngd lh;(f
Q . -
: . ) o~ .

Iy s a parallel constraint, [tas casy to see that g, (which hiesin Ty as the p@int ol 1, oy, -

that has the minimum  z-value. Furthermore, there cannot be a feasible point with a lower  z-vatue

since [} s bounded from delow. Theretore the algosithm concludes that @ -1s an optimal solution

for the LP problem. This is indicated 1o the ‘Cdlljng roating by returming @ as the single point g,

N

‘Now consider the case where T, 18 not paraliel o the objective supporung plane. Nouce that thas is

-

the one place where &, | 1s intersected with a half-space that 15 not a constramnt of the problem
Clgarly, Ty contains the opumal soiution since tts-boundary passes through a feasible pomt and o

extends in the direction that minimizes objecuve values,

Since the volume of the solution region is reduced hy intersecting with hall-spaces that contain the
opumal solution, the optimal Solution will not be discarded by this algorithm,

k] .

Note that it 1s possible that either I, or [, has been used 1in a previous iteration o diminish the size

of the solutior region, and hence will not reduce 1t any further.  An example of this is shown in

Figure 5.11 . The diagram dlustrates two successive calls 1o Algorithm 5.1 . In both cases, = A 18
a vertical line that intersects the solution regiomand in both cdses, I, is the same constraint,



© Nothing is gained by intersecting. I, with the solution region'the second time around. This constraint

cannot be deleted after its first use since otherwise we could. not guarantee that g, 1S a feasible point

in ¢dsc 2 of Stcpd . Instead, the intersection routing (Scction C.4) should be modified so that it
tags cach constraint that is intersected with the solution region. That way, the routine can detcct
whether it has encountered a Constraint previously, and ignore it if ‘it has. Note that since I i8

constructed afresh cach ume, it will always be used to reduce the solutipn region. -

- - o
- -

Figure 5.11 Illustratimg two successive calls o Algorithm 5.1 .

Now consider the running time of Algorithm 5.1 . It is casy to scc that this algorithm will

-

~ be performed in O f,) ume, where £, is the number-of faces of @, .- Thus the total running time for

1

the algornhm is O ( Maximum { O( Ay, O0ff,)} ), where nois the number of constraints of the

probicm. . ] B L .

.

. Theorem 5.5 Algorithm 5.1 cnsurcs that there exists a planc that contains 4 such that @,
. . o C . .

extends to only one side of this planc. L

Proof: In order 1o prove the thcorem, it ‘will be shown that there exists at least- one plane that

.

scpuralc;‘ d)1 from A .. Consider cach:of the ways of constructing @, .

" (1) On linc32, &, is constructed by inlcrsccling‘ @, with a constraint whosc boundary is
parallel to /1 bul';ioc.s nol‘con‘win" A. Clearly, the boundary of this half—spacé w.il-l Scparalc
@, and 4.

(2) - If the boundarics of I, and I, arc parallel to cach other in case 1 of Step 5, then @ will

be cfnply ‘and hence the theorem is trivially truc._ Otherwise, I, m I, will define a wedge

: e . . ) ! o . Lo .
increase the number of fac®s of sotutien region by at most two. Therefore cach intersection operation can |



that does not intersect A . (Otherwise, 71, 17,  would not be empty. ) - Therefore,

o N
&, = &, ~ I, ~n T, willnotintersect A cither, which means there exists a plane
that scparates @, from A . o s

(3) Finally, consider “casc 20of SwepS. Clearly, if @, 1s sct to the single pé)iinl gs (when the

boundary of I is parallel 1o the objective supporting planc) then the theorem is trivially truc.
. . Therefore- assume that this is mot the case, but instcad @, = @, | » [ N r . Two
siluations arisc.

(a) 1f the line A is horizontal, then the boundary of I, contains A andisipge [y extends

only onc side of this line, the same will be true of @, ..

; (b) Assumc that A is not horizontal. In this case, [T s bounded from above with respect o

_ A. Itis clear from above that the boundary ofa [, 15 not parallel to the objective

< T rsupporlin'g. planc, and ‘hence is not '[i;millcl to the houndllr"y of T Iy Thus Iy » 1y s
a wedge and the poifit le is a'point on the edge of this wedge: Thus Lhc. point g, -divides,
) iﬂﬁ‘inl() two half-lines, onc of which is completely contned by I, and onc of Much i
completely contained }by Iy, Thus Iy » Iy » ATis the p()i‘m ds . which- means
that there cx.isls a planc that weakly scparates 4 from this chdgrc. Since &, 1\ constructed

by ‘intersecuing &, with this wcd’gc,‘clcarly lhis..\'amc planc will scparate @, from /1

THus the Lh_corcm holds fo; cach of the cases. 0- . _ j

. . . )
El - . .

5.3.3 The Termination Predicadte i

- e 7

Let x* denole the optimal solution for the LP problem.and let € denote a parameter specified by

the ser. In this section, the following termination conditions are discussed:

M | rlxr) Sr(g | < £
Lt - . &
- ' xX* - g 1 ~< €
Consider (1) first. Let F(p )=d a function that relurns the valuc of the objective functien at Lhc i

point p and lct h and i dcnote the pdints of the current solution region that respectively mimmize and v

-

‘.

-



Caaomise ths unction Recalt that ®* hes somewhere wuhin thie selution kegion as long as the LP

*

prohiom 1w frawble - Therclore, Lo iga NS Sl < ol (LY

‘('“-,j(;;u-‘l‘;,r foand | can be determined in (¥ v timie, where v s the number of veruees of the solution

Cbion Theretore the algonthm can wommate once F 3 chs -9 0by bos e Now consider case

(e Te s casy to scecthat this case s satshied of @& Sprere ( g .c). This can be chegked by

sanply testing whether cach vertex of @ s wathth, @ of ¢ Heace this st al requires Ogv)

Py

Lo

M

Note that o small solutba regos doos not indicate that a problem s eubrer feagible or infeasifle.

SThe ondy way 1o el tor sure s o have cither encountered a Ti;\\'af\lc pomtdurlng ane of the calls w

.
e ”

Algonthm S 1 oor ¢lse o have the solution regidh completely dsappear For some apphications this may

“

not be a problem wince tmay be known 1n advance that every problem s feasible. 1 this distunction is
Crucial o the apphicanon, then the wsts deserbed by (1) "and (2 above should 'not be mude unu} a
feastble pont has been Tound  Algorithm S U helps 1o reveal infeasible problems by opumizing the

. - @ AW . N ’ - p ' —
Chorce of constrinnts wsed o 'reduce the solution region. For example.in Fagure 512 the constramnt T

with be chosen o reduce the solution region, which will result i st ipmediately being set o empty. i

‘. L3

“1s not destrable 10 want uhtl a feasible point has been found, then the approach described by Algorithm §.2

cutdd be used mstead ' . o




AN
E . N

- | A

Consruct a 2-dimensional LP problem with arhluar'ﬂ" objecuve function as t"ul‘luws.‘ Let p denote a plane
that 1s paraliel to the objective supponir;g plane and which passes through & point that is half way between, h
and |. Construcl the mitial solution region for the new L P pchn‘! by intersecting m;- and p
Simularly, construct the consiraints Tor the new prnf\lcm by intersecting the original constraints with p If
g does notintersect each of the constraunts, then conclude that the orginal problem is infeasible. Apply €T
to this new problem, (ermunating as soon as a feavible pomnt has been found or wh‘un
Fely 9 (‘h ) 1< € . H a feasible pomnt has been found, then clearly, the onginal ;)mhlcm it
feasible. Otherwise, use—a similar techmique to recast the 2 dimensronal problem as a 1-dimensional one. U

<

no feasible point is found, then conclude that the problem s infeasible.

end of algonthm -

Analysis and Discussion of Algorithm 5.2

to

v

Assumc that 7 15 the number of constraints of the problem.

. 3

The inital (planar) solution region can be constructed by antersecting the current solution region by
two half-spaces that share the same boundary planc but extend to opposite sides of this plane. The

intersection of aconvex.polyhedron and a half-space can be determined in O f) tume, where f1s the

-numbef of faces of the polyhedron  (Scction C.4) . Theretore the initial solution region can be

constructed in O( £) time.  As will be shown in the next section, the solution region for LP can

have at most (n+ 1) faces. Therefore the initialization step requires at most O n ) wme.

N

ICT can solve the 2-dimensional LP problem in O( ¢, n), where ¢ is the number of aterations of

the algorithm.

As was scen in the previous section, a 1-dimensional LP problem can be solved in O( n) ume.
»

i .

Thus the. total running time for Algorithm 5.2 1s O(¢; n ). Note that it is still possible that the

algorithm will 1éad us to conclude that a problem s infeasible when in fact it is feasible. This situation

ariscs when A4 docs not interscet the set of feasible points. The likclihood of such an occurrence will

depend upon the application. Once again, if this is not a suitable approach, then the termination test should

not be made until ai Icast one feasible point has been found.

o R .



£ .4  The ICT Algorithm For 3-Dimensional LP

Finatly if 1~ time W summarnizc the above results by presenung the ICT algonthm for LP, Since
the approach apphes equally well i both 2 and 3 dimensions, only the 3-dimensional problem will be

vonsidercd s assumed that Algorithm 5.3 shoald (cnmnawoncc! x* - g ) < £ . As

will be seen. the routine '‘ReduceRegion’ (Algonthm 5 1) 1s called twice cach itesation, once with a

line that passes through the point @ éthe centre of gravity of the curreat solution region) and once with a

. hine that passes through h | the point of the current soluuon region that miimizes the objective function.

.
«

Fhe former call to 'ReduceRegion’ ensures that the volume of the soluuon region is reduced by a fixed
frac ion cach steration. The latter call s an opumization step. [f R turns out 10 be [@asible, then the

> . .
algorithm terminates immediately, since R oas the optimal soluton for the LP problem. "3t is not-

fcasible, then the region will be further reduced, which should help to reveal the optimal solution sooner.

Algonghm 5.3 0 Y-dimensipnal LP
1. Initialization Step (

1 Without loss of generality, assume that the objective supporting plane is horizontal, bounding the

set of feasible ponts from below.

12 Construct the initial solution region @ using the method described in Section $.3.1 . If the

solubon region is unbounded in some direction, then terminate? reporting this to the user,

13 It & is empty, then ierminate, reporting that the problem is infeasible. . Lo
14 foundFeasiblePoint := falsc; , -
1.5 slopeOfline : = vertical ; -

2. lteration Step (1 21

2.1 Let h denote a point of @ that minimizes the objecuve function. . N " oo
22 Let Ay denote a vertical line through the po{nt h.
23 ReduceRegion( in . &, ;i VAR &, , feasible, h, );
24 If P, n empty, then :cnninalc, reporting that .Lhc problem is infeasible. '
1S If foasible then
26 (if ‘hy :é z
2.7 » i . then { lcrrﬁinalc, reporting that h 1s the optimal solution } |
2.8 ' clse { foundFeasiblePoint := ue }

, .

<



29 g - Cogi@

DTN Let 1g denote a hne that passes through the pont @ that has slope ‘slopeQfline’
AR ReduceaRegiont ig . @& . VAR o, . teasible. g, ).

212 I @ s empty, then termnate, reporung that the problem s infeasihie

213 It feasible then foundFeasiblePoint truce |

3. Termination Predicate -

31 Find the vertex of & that s tarthest from @ [ the distance between these two ponts .
greater than ¢ then set slopeOftine so that 1t s normal o the hine passing through these two
3

pomnts. Conunue to derate

32  therwise |
33 . il foundFeasiblePoint then report that @ s the approxumate solutbon
‘
14 else | Execute Algonthm 5 2 to determune il a feasible pomt can be found
35 I{ so. then report that this points the approximate solution
. v ‘ .
16 Otherwase report that the problemas infeasible -
3.7 Terminate .ulgonthmA } |

end of algonthm

Discussion And Analysis Of Algorithm 5.3

s

Let n denote the number of constraints of the problem. Recall that the routine 'ReduceRegion’

s Algornthm 5.1 ..

1. Linc 1.1 has been included to case the discussion of the algorithm. If the objective supportiing plance is
“not horizontal bounding the sct of feasible points from below, then the constraints can bc rotated so

that this is the casc in O(n ) timc. If the rotation is not performed, then terms hkc ‘top’ and®

‘bottom' (sce Scction 5.3.2) will nced to be defined more carcfully, so as 10 reflect the orientation of

the objective Supporu'ng planc.

a

2. The conslrucuon of lhc initial solution rcg,lon (linc 1.2) has been discussed in Section 5.3. I
Recall that dJO will be coneruclcd by intersecting at most 8 half-spaces. Idcnuﬁcdllon of Lhcsc half-
spaces requnrcSJ(q:)( [on) time, where g is the numbcr of iterations 0( the PomtInSetSD routing.
The intersection of at most 8 half-spaces can be performed in constant time. Thus the entire step

requires O( {; n ) Lime.



¥

during the course of the algonthm.

it 15 possible w0 determine if the curfent &oiuuon TEEIOR x:. cmpg} m cormam umc An empty- Soluuon

proves that the problem s infeasible {see Section 5_3.2) . Thcrcforc Lhc pmgram can icrminate, as is
. o N >

- #
. -
s 4 5 . . L . .

ks P

The vanable 1oundFeas;b1‘eF’omt 1s Stmp v a fag that rccords v)h;th;r a fcaseble point ha’; been

shown in line 1.3 .

encountered during the execution of the a‘lgom_hm \oucc Lhaz it is set.to false on line 1,4 and is only
15 only set 1o wue if the routine ‘ReduceRegion reports that a feasiblc point has bqu‘x fotmd {lincs
2% and 2.13) . This flag 13 ested on ling 3.3 6 determine if a feasibke point has been cﬂtéumcrc&

L) ‘. 3 :

’ ’ B B : Yy i
The variable 's&ope@tﬁ{e' describes the siype of the line that. should be passed to ReduceRegion

1o ensure the solution region converges in all direcuons. Iniually it is vertical, but the direction is

reset on hine 3.1 based upon xaowiodge of the pomnt of the solution region that s farthest from g .

Note that had a different wwrminaion predicais t&.ﬁm&d for uampL.,
dAXT - Figo < £ instead of o X* - g < £

i~oe Section 5335 | then it wowld be reasonable 1o use a hine wuih the same slope cachs iteration. ” In

this case, the imtsalization siop could preprocess the constrainis inlo three QF{)i}pﬁ. those'bounded from

ahowc, those bounded from below and those paralict o the ling (scc Saction 2323 . This, mfdrmgtibn

could be supplied o the rouun: ReduceRegion | saving that routing | ¢ work of parutioning the
constrants. Since this roying 15 called raice 2ach neration, such an opurmization would enhance the
sverall performance of the alzoniig : e

Now consider the number of {ales of the soluuon region. The inual solutior region, @k, wall have

P)

1

at most ¥ faces. Eoach call 1o ‘ReduceRegon may increase this aumber by at most two. SinZe
A .

ReduceRegion s calisd taice per wierauon. the number of faces of the solution region will be

O ¢ ¥ dunng the % porauon. However, recall from Secuion 532 that Lhc sol tufion r’ﬂion is

U"A

reduced by ciher nierecting i1 with a constraini of the problem or ¢lse with a }13 [-»pa»c Wh{)‘;c

roundary 15 paraticl w the ohpectve supporung piane. Therefore the soletion rcgion will have most

1 JRN B

L [SCTARRA
The calt oo ReduyucesRegion shime 2.3 and 2.11; requires
V0 Migemes TR £ 1207 07 s ume o redege the solution region {Section 3323, where f,

15 the number of faces of the soigton region. Since the soluuon region can have at most O( n )

equites O~ 5 ume. Nouce tha: after each call, the algornithm

cooremon s emply. I i gs, then the alzerithm werminates

!
e

Lad
'

-

o

'



' . '

!mmedxaicly, since the prob%em has pfoven 16 be mfcaﬂbic (lmc 2.4 and

‘36)

performed in corblam tme. \otzve that the first’call 10 RedUCeReglon (lme

3) tests the nnc"-."

- passing Lhrough h. Ifitis dcb:rmmed that hisa fczmblc “point thm thc alg)rﬂhm IermdlL\ -

" faces (Section C3). Fherefore. it g:jan’oe dugrrmgicd ‘gg O(n) time.

10,

- Thus in summary,

Thus a ol of Of 1) ume 15 required 10 2xecue ihzs 4lgumhm wheee L= Mo

Se¢

immediately smcc h is theophmal soiauon (Ifncs 25 to-2 " 7) o

®
o

_ The cemre of gravity of Lh:‘: S0 uuon rcglon Lhnc 9) can be found i time hm.xr to its piimber of

~ - 3
- EN

"On linc 3.1, each vléncx of the soimiorr»regioh is checked 'm ordcr to find the onc that s farthest (rom

g. Smce the n‘ﬁmbcr of ventices of a comex polvmdron is lincarly refated W its number of m&w this.

siep can be pufonmd . Of ni tme. -

¥

This test can be

~ R P

If the 1est on hne 3.1 mdl ates that 1he >o¥uuon rcglon 1S ﬁuiﬁugnm \an the di“mlhm qu

terminate. Before doing so however, it ﬁrs{ decides whether m L P problem iy feasible or infeadible,

The flag 10undFea51b ePoint’ mdlcatc.x :f a feasrhlc point ha.s been encountered ar some point

N

during the cx\,cutmn of eha, afoamhm: f one has, then pmhkm 15 reported 1o be feasible

(line 3.3) . If none has bu?ﬂ found so far. then A goﬂlhm 52 u;n\uuu»

problem and searches for a fedsible point. This rcqugr&s Ol n yume, whore

£3

i

2ahuntnsional LR

3

o r}v‘
s the numbeer of

e

iterations required by this algori;hm, Thus in towl, this slcp'rcqu ‘C\”(}( fono o tune
; - . .

. O( 1, ny ume 13 reguired for the inlualwauon step.

“®  Ofn) ume is required fog the #* ieration siep - S

* O{' n ) ume is reguired 1o 1251 1f the solulion rcmon?ﬁ \de‘L.m)u“h This e \z < ;’xr‘lunmd ongee
. s .

per iteration. 5 ) 5

® Oftnjumeis requ:rcd w2l the <oluton regon Contns o feasibie ol

A
.

perdformed al most once.

»
3

5 -

N
»

F »

>

1:r}:um ?ix’;‘ )

This tosd will e

:d £ 15 the number of uersions performed by Alg"{;rimm S.3 . As was argued ot the end ef

uon 1.3 and Section 3.2.1 . the aumber of wteraions of an ICT al fgonthm can be baumled Trom above

a constant provided that the afgonthm s mplerented usmg fixed-predison, fogung pornt arthmetic

',



s

Under this assumption, fg=—t; and f, and hence ¢ arc bounded from alove by a constant. In this case,
the running time-for Algorithm 5.3 . is O(ﬁ ).

5.6 Exact Linear-Timeq SolutiOn ‘

In this section ICT will be combmcd wnLh thc prunc: and-scarch lcchmqﬂc for solvmg LP, whuh

was introduced mdcpcndcnlly by [Dycr 84] -and [Mcglddo 83a] The pruﬁt and- scarch alg,omhm 18 an "

,«n :

iterative’ proccduﬂ: “in each iteration, a ﬁxcd fraction of rcmdmlng conslramls arc mruncd dway First = - _

" conSider the 2-dimensional algorithm and the half-plancs shown_ in Figurc 5.13 . Itis not difficult 1o see

~that a can be discarded in Fifgurc 5.13.a since it will n;:vcf define the oplimallsolulion. Similffrlly TR

1

the optimal solution lies to the feft of A in Figurg 5.13.b, then B can be disé%rdbd; 0 it ies 10 the

righl'Lhcn.’ a_can be discarded and if it lies on A then neither can be discarded since these may be the

.

constraints that determine Lhc,igplima] solution. - C e, ’ ) P

1

&

. . R v - ; I I
v Figure 5‘. 1~3 Idc‘nti'fying Constrafms that can be disca.rdcd. ,
. v:-_,. . - X - . .F

WthOul loes of gcncrahly assume Lhal the objcc&lnc sﬁppomng pldnc 1s horizontal, boundmg the

S = > RN N

set of feasible pomls fr{)m bclow FurlhcrmOfc aswmc !ha{ the con@Lr.nan have bccn paruuoncd into three.

,

eg—-.

groups, Sa, Sb and. S :~ cach clcmcm of Sa is ‘bounded from dbOVC by iLs boundary planc; ‘cachy

» element of Sb 1s bsaaﬂﬂcd from bclow a,qd S contains those Consuaiﬁts that ar¢ bounded by vcrlical

b,

- ’%,\f
planes. Let Ha ,Hb and H dknc)lc the bound%ry plancs for Lhc constraints in S, , S5, and S, .,

‘. ‘

respecuvcly. .FI-UUI'C 5 14 dcscnbes (he llcranon }oop for the 2-dimensional prunc-and-search LP

algorithm. (see Chap;c; ‘.{;@*@f‘»fEdeisgbrqnﬂq 8Z}ﬁ)r more details.) .

. 3 . . i

*y

ayy



Repeat l (* prune—andscaréh iteration loop *)
1. Construd Paars : An;mgc. the elements of H, 'in pairs w‘ﬁnd the elements of H,, inpéj;s;
e ’x If any pair 1s parallel to eath other, then dxscard one of the constramts )
Y ()therwxse determine Lhe pomt of mu:rse-cuon of the two lines,
< i 2. Ay = Fmd TST Consider the sef of imcrsecnon pomls constructed in the previous slep
~ Let x denote the poml wah median x-coordinate and let Ay dcnote the veruoa.] hne that
"‘5 ‘" passes through X # *f . o -;!;A,’ ' o EU d '
3. ',éised ( Ay ): Determine 10 which side of Ay lhal the optjma] solution lies on. .
4. Prune (A ): stcard one constraint from each pau if possible. ‘ B
i umw m constrainls remain, wheJe m is some conslam Solve the problem du'ecl]y ¢ .

Figlre 5.14 licration L?op of the LP pmnc«and»scar?:ﬁ algorithm.

The point X can be determined ‘in linear time ((Blum, Flayd, Prau, Rivest and Tarjan 72},

[Sehonhage, Paterson and Pippenger 761 ) . However, as [Edelsbrunner 87] (pagc‘239) has noted, the

worst-case o‘pmﬁﬁ‘lvmcthods for finding the median of a set of points all suffer from poor average case

behaviour. Instead he suggests that the simpler algorithms presented in [Floyd and Rivest 75] be

considered fo'r,i'mplcmcnmtion since they determine the median:in a fast expected time. Bisect dél_en‘m"ncs

. : Y ) Tty
to which side of 4, the optimal solulion licéts'liv In 2-dimgnsions, this usually involves solving on.e_,‘t-._
UX v S

A
dlmgnﬁlonal L.P problem, but in »cry dcgencrate cascs, it may mvolve solving a lola] of three such

prohlcm-s‘ Prune pcrfortm the prumng Lhal was dcscnbcd above In cach ucrauon at lcast L of lhe;_‘, .

. i

rcmajnmg constraints are ‘pruncd a,wayi ]cading 10 the overall linca,r.r.esull. A

»

ThL benefit of combmmg ICT: wnh the prur.e and—search algomhm is Jha{ u ‘may ehmmaLe Lhc

u)ls to both Find TST and BISECT from. each iteration. (Thc extra ovcrhead of add;ng one itcration of the
ICT algonthm s rclal,‘ivc;ly small.) 3Since in this case Lhcre is no need tlo worfy about degenerate
comyergence, &lgoritt;n 5.3 will be méi,dificd o pass only vertical lines to 'ReduceRegion'
t.Al'g('V)'rilhm S h .~ Thus by Theorem 5 5 (%ec Section 5.3.2) , the current soluu;)n region and hence the

T

opumal solufion will always hie 1o one side of 4g . Hence ICT can be combined with the prune-and-search

ehnique as follows:

.-
¢

A



’Lhc current solution nglOﬂ”’W ill always hc o onc SldC of 4 orto lhc other. *Thusr—s’o will th¢ all further - .

=3

I

1. Perform one iteration of: the lterauon step for, mc 2:dimensional ICT algdnlﬁ‘v for LP.

i

‘e SE . o P

2. - P-rune( Ag Yy, o7 o L R ‘

© 3. .'If less than —4L’ of Lh@a‘cmmmng consn'amLs_y‘l’)‘,avc bc,.cn pruncd away, lhcn1

Perform one iiération of the repeat loop descnbud in Figure 5.14;

s ) ’Lel p dcnote the c]oced ha)f- p}zmc wuh boundary Ay <uch t.at A, contains th opumdlu;
= . ’3solu[10.n - t ‘; ’ T e
R AN . P "

Let @, =", 0 ps SR

J

until m constraints remain, where m s som%;oﬁsmm;
Solve the problem directly.”

-end of anbﬁLhm -
Notice that as the solution rcgioh gets very small, it is unlikely that step 3 will ever be executed.
It may scem odd that we can combine ICT with a technique that discards constraints. Recall from

Scction 5.3.2 that it was stated specifically that this could not be done. The difference in this case is that

the prur'}c-and;scarch techniq'uc discards redundant constraints. Recall that in order for the 1CT algorithm to

bchave corrcclly, g muql a fcasfblc pomt (Or the ongma*l problem in ¢ase 1 of Algomth I.
Y

stcardmg redundant coneram(s m]h‘i()l affect the chorcc of g, . For cxample, Lmﬁndcr the half-plancs

. . .d.
"a - =

Shown in Figure.5.13.a once agaxn It 1s casy to sce LhaL a will never define gb , SO It docs not mallcr

S
3 =

if gxis constraint is dis_cardcd., Now, consid'cr Fig‘ﬁr‘c 513.b. Itis caqy 10 see from Algonlhm”S,(A lhdl

»
P X T ! *

., s

g, . Henceil's choice will also not be affcclcd;_by_blhcdiscard(;d CQ'?.SLmj",l- ,
The above approach also,'exiénds to 3-3imcnsiqns. The 3-dimensional prunc-and-scarch al'gnrilhm

for LP foilo»vs‘[hc samc pallcm Lhal was described in” Figure 5.14 , cxccpl that steps - 2-3 are much

)
,.

more ln\{o}ved We will not dcscnbe these sieps. exccpl to notc that ths umc Prune roqunrcs as mpuL -

WO vcn"rca] planes, whose inlcrsccu'on dcﬁncs‘a wcdgc that contains thc,'(;)pi.imal solution. To dclcrmjﬁc" o

this ifﬁfonnalion. both 'rind_Tst and Bisect are called twice (cach iteration) . In the 3-dimensfonal

.

case, 4 is a verucal planc and Bisect-:

|




o ’ \9 -, . -
® dciermines if 4 intersects the range that contains the optimal solution. This amounts to solving
two 2-dimengignal LP problems, whose constraints are defined by the intersection of S, and the ™

® dctermines x*, whxch amounts 1o solvmg a 2- dlmensmnal -LP problem whose constraints are o

ae - . . - A

'dcﬁnca?by the intersection of 4 and: S and Sb - 5 )ig«'; :

7

®  decides on‘whig:vh-sidc of A- U)'é opuma}«éoiuﬁon‘zl"lés. This involves solving two 2-dimensional _
, . y @ ’ - R S . } ‘_"“
LP problems, whose consdraints are the tight constraints which defined x* . ' o

Hence, even iTICT is only combincd with the '2-dim¢nsionai'l"lLP probicm, the 3-di‘mensional algorithm is
cxpcclcli to run faster. Howcvcr W i casy to combmc ICT wnh Lhc 3-dimcnsional ajgomhm As long as
- Ag 15 verucal, Theorem 5 5 cnsures that there exms a half-spacc that contains @, such lhat the boundary
of this half-space is. vcrUcal and comams Ag Such a hzﬁf space can be determmed in.constant time by

considering the constraints that cnSure ﬁus prope,rly (see pn%of of Theorem 55} Let p, denmc such a

half- epacc for & . A vcruca] O.«edgc for Prune can, bccénstructcd by mtcrscctmg pi, wuh one of the
7 - .
half-spaces that dcﬁncd Lhe wedges{or lhc previgus u.crgnon If at least % of [he remaining cons}ral‘ms:m

are discarded by this cal] 1o Pr'uhe , then the pmne-andféearch iteration stcp cg.m,bc igno_re_d' this iteration. '

> §

~1f not, the current soluuon rcglon can be fun.her rcduccd by lmersecung it with the lwo ha]f spaces

dclcrmmcd by Lher F"nd Tst and Blsect rommes
~"" ,‘ . “'\*i v e C# - . R LA e

3

-




-a

A new appr()xlmauon tcchn?quc has bg;:Gn proposcd @wivmg gcomchc opumummn problems in - ]
¥ o
2and3 dlmensmns Thc Lcchmquc callcd Iu:rau ve Convcrgcm chhmquc (ICT) convcrgc< to the opumal

s
¥

soluuon gcomctncally, lcnmnaung oncc m;,:f:apprommalc solution is wuhm € of the optimal one, whcrc

£ 1s a parameter spcc1ﬁcd by the user. Two Lcrmmauon predicales have bccn LOﬂsldCl‘Cd E T

w

M ] Foxry g gy ] < e

oK

where, x* denotes the optimal sol‘u'{ic')'n, g denotes the approximate solution and % (p ) represerits

Toa

some fungtion:that is'meaningful to the problem, cvaluated at that point $-- In addition, the question of

-

& L
degenerate.convergence has been considered and handled separately for cach of the problems listed below.

Degenerate convergence, whichis only a problem if tefmination predicate (2) is applied, ariscs when the

\SOluliOU regs'iﬂlocs not converge in all directions. © ‘
' - To i s_UaLé the power of the technique, ICT has been applied to the following problems:

. cheéLing the common intersection of the convex hul\ls of m scts of points in 2 and 3 dimensions ;
b dctennmmg the sgparablluyeof two planar sets.; v ‘

3 . ) B

.- Itu}éar Programmmg (LP) in 2 and 3 dmcnsnoﬁé : o L

d _ \ﬁn‘dmg the smallest enclosing sphere of n weighted points in 2 and 3 dimensiors (SES) .

e _

Inthe process, algorithms'havé been developed lhat carr':b"cfuscd 10 solve the fo]‘low‘ing“problcms:

® ‘the extreme poml problcm in2 and 3 dlmcnsmns _

d ongm poml mLenor (dclcn‘mnmg whe[hcr the origin is: cxucmc with rcspccl to a set of points)
® hemisphere problcm (dclcnmmng 1f a set of points llC§ interior to some hcmlsphcrc}

. ‘dclerrmnmg if the intersection of a st of half-spaccs 1s bounded ;

® finding 2 hyperplane that separates a point from a sct of points ;

® finding a hyperplane separating two sets . R



This la‘sl sct of problems arc different applications of the separability problems discussed in
:Chaplcr 4. Allof Lhcsc\ problems have been described in {D&Skin and Reiss 807 ., .

The ume- complcxny for LP is O(¢ n) whcre I is the numbcs of lterauons performed. The
time- Complcxny for the rest of lhe problems is O('t * Ma{lmum (n,t)) .‘_Tbe- sxze of ¢ depends
upon Lhc volume of the mllu}l%luuon region, €, Lhc precnmon of the machme'(macheps) and the type
of lenmnauon predlcalc uch It has been shown Lhat 1 is bounded from above by a constant whenevcr _
flxcd-prqcmon, ﬂoaung poml aritbmetic is used 1»0 approximaic real arithmetic. Under this assumption,
which 15 chrrcnlly thec most common approach to rcprcseming real numbers, the running ume for each
algorithm is O(n) . |

It has been dcmonstra-tcd that ICT can be combined with the prunc -and-scarch tcchnique, dcvelopcd |
independently by [Mcglddo 83a] and [Dyer 84] © In addition, the application of ICT to SES
dcmonstrates that ‘il can be used to optimize a convex programming p;'oblem. Furthermore, a comparison
of Algonithm 1.1 and Algorithm 31:1 illusirates the ease with which‘an algorithm for an unweighted 2-

dimensional problem can be converted to a solution for a weighted 3-dimensional problem. This

cxtensibility is onc of the strcn’gl,_hs of the ICT approach. . ‘A ! ‘ L

B

Pn

6.1 Other Problems That ICT May Be Applled To

tis conJcclurcd lhal ICT can. bc apphed o Lhe fo’llowmg problcms .

® the wcighlcd€hcbyshcv orL, line ﬁuing_ Rrleem (afmr first applying Brown's Dual 1o the source

points [Brown 78] ) ;

® finding the smallest enclosing sphcré of a set of spheres of differing radii ; g A

4

® constrained versions of Lﬁqﬁ'ﬁproblcms studied in l,h,é;thesis,‘wherc the optimal solution is

REV S

constrained to lic irf a convex region ;

® versions of the smallest énclosing sphere that use an L, or L. metric instead of the L, metric,

which has been used in this thesis.

LT

- R
> £



6.2 Suggestlons For Future Res”arch L -

Since the results of this Lhesns hold in both 2 and 3 dimensions, u IS th:}y that ICT can bc T

extended to any arb1l_rary dlmcns:on - Fo prove this, would involve showmg thaL a hypcrplanc paqg"]bg

5 5
Ty

“ through lhe centre of gravny of a k dlmensnonal convex rcglon dmdcq it mto two rcgmm‘ such Lhm Lho.,,; ‘, -

o

ratio of lhe volumes of the two rchons would always lic bclwccn fixed llmns thus guaranicecing lhal the %

size of lhc soluuon reglon docrcaScs geometrically with the number of ucratlom It is conjectured lhal in
0 -

: #
the gencral case, th’ese Timits will be: . . ®
- ‘ i -
k * : (k+1)*%k - gk
d : - .
(k+1)% _ g* an P
S . :
Algorithms for finding the volume of a k-dimensional convex region already exist. For cxample, [Cohen

and Hickey 79] determine the volume of such a region by partitianing it into simpliccs‘. Cgﬁi;di_:i'ing such

an algorithm so that it also finds the centre of gravity of Lhc region should be rchatively slmlghlf()rward Vo

The intersection algorithm by [Seidel 81], Wthh is described in Section C 4, alrgady handlcs convex

o

regions of arbitrary di}ncnsion. - , \ : B i
chéncra[ﬂe ‘convergcncc Has been handlcd on a probl.cm.#by-pr()blém bﬂSiS.‘,-ifI“l"W(féld be

advantageous 1o have onc gengral approach for solving dcgcncmes» ' -

Currénlly [hf; rouunc Lhal crca{es Lhe mmé‘i solution region for LP rcq’mres lhal the sct of. _

¥ - s

constraints be bocmﬁ'ed n all d}rccuons "This is not- necessary however, since it I‘S pmsnblc o add a

,! 3 .

cons,lraml that does not affécl the opuma} soluuon Oncc this gencralﬂanon has bcc‘”ﬁfaddcd the ICT

soluuon for LP will bevv_agpllcablc o mar;y morc SJ‘lU'.AaUOHS.
| So far it éan .inby b_-c., :;}é‘im;éd that 'I(‘fT‘l‘;s expcclcd:; 10 ;un very féSé;i Il would be useful o
implement ICT z/iijla‘;::mpirical.lyu"cpmpaf&.its mn‘rling time with lh\aL of other 'a}éorithms. In particular, it
would be useful to implcmenléﬁ?éel of‘i:'BljUﬁééfacécfibcdjn<'-‘Appén'dii C asascl of library routines.

In this thesis, the sol.ug‘(’)h regiqniﬁas becn rcﬂ@ccﬁ‘,by a ﬁxcd fr&clion by exploiting a property of

the centre of gravity of a convex regio. It would be of interest to cxamine other ways of ensuring that the

i ‘1*; - “



\ S
solution region is reduced by a fixed fraction in éach iteréu'on. For example; [Diazand O'Rourke 89] have

¢examined properties of Lhc centre of arca éf a éopycx po'iygon,
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. | Appendix A - l}’i,{jtation Conventions
T All sets of pomls consndcred will be- subscts of k- dlmcnqnonal Euclidean epacc ( EX), where
k< 3 An orlhogonal coordmﬁ[e syqlcm will be uscd wnh the axc'ﬂ normally labclcddc y md z as shown

iR Flgurc A.l. L

Figure A.1 Labelling of the coordinate system
Points and vectors will be denoted by lower casc bold lctters in the Helvetica font —

(a,b,c,...). Scalars will be denoted by lower case italic Ictiers in the Times font (a, b'.‘c, )

For example, @ = (xa, Ya , za ) is a point in E3; Provided that the mca_r_u'n“_g 1s clear, we will denote
the coordinates of the point P, as simply (xr:,"_:_vy,- ,z;). However, if any ambiguily ariscs, we will

revert o (xp , Yp - 'lzp.f) instead. Wec will usc the terms above and below as follow‘s:‘;"a lics above b

implics that za > zy "whilc a lics below b ‘iinplics za»:‘<lz:b.
¥

o

A line segmcm will be denoted by us endpoxms For cxamplc a b is the linc segment with -

cndpomts a and b Lines and planes w111 b‘é denolcd by lower case- nahc (‘rcclcplcucrs (a,B,7, ...).

A lmc is considered to be horizontal if it is parallel tothe z=0 planc and. verural ifitis perpcndlculdr o

e

this plane. A plane is horizonial if it is perpendncular to the z- axxs and vertical if; pamllcl 10 the. zaxis. ¥

B

Functions will be denolcd by the Zapf Chanccry fonl (Fi a, B, 6 ). ,For cxamplc,

Distance( @, X ) isa funchon'(hal rclums the Euclld_can dlsmncc be.Lwccn the pomls ar;altl&l X.. Appendix

C summarizes the functions defined in this thesis. A : ’ T

o

Two paralléli,varﬁca] bars will be used denote the absolute- valué of an 'cxprcsglion: Fﬁr,ég’ramplc,

.
O
(N
N
i



)

R : . .

o
N

Braces (...} have been used for two purposes Wle _algonlthr Lhey havc been used to -

been uscd!odcnolcsel.s. V e o
We will use the symbols n,uU,—,c, €, ¢ to denote thé set operations of intersection,

union, set difference, subset of, element-of, not an element of, respectively. Finite sets of disjoint object

owill bc"dcnotcd' by upper case »i'lélic‘" Jetters in the Times font (A7B, C, ... ).  For example,

S = { P p2>, vy p,. } is a set of points. chnons which are dcﬁncd in Appendlx B lobe boundcd

continuous sels of pomts will be denoted by upper casc 1lahc Greek lettcrs (F A,,di ). For )

cxamplc, ‘- { x € E3 l Distance( A, X )< r} is a sphere centred aboﬂlt the pomt a with radius r.

IS {u

We will usc the following nolation lo represent an ilerative selection 'ptoccss:

n

i operation expression
i i=1
?j.ﬁ,;-g; S B -—\~"
For.example, if §={ Pp,,P2....P,} . then the expression:
- i N ’ . Y s
. L LY
v n ' S R A -
L maximum ﬂwtan‘ce( c.p:) ‘ S - »
. o C =1 Y . e '
I i ‘ B YL Wi
returns thé point P, € S which is furthest from the point €. e
o e } :
5 - . ﬂ‘;_A o F
_ g oo N
r‘\vi;‘"‘-l'
m,ﬁ,t\,"
- 94 . . . ot
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Appendix B — Some Definitions

This appendix includes definitions for some of the mathematical terms that have been used in this

_ thesis. The reader is referred to {Preparata’and Shamos 85] for definitions of more familiar géomcuical .

terms like half-space or on the same side of the line. . -
B.1 Cofivex Set e ’ SRR
: PO : A - R

A sé{ of points @ is dcfined to be convex if for every pair of points @, b € df .l'hc linc segment o *

r

‘fv

joining a and ‘b is also contained in @ .

¥
¢

i

4

~a . . . JEne

B.2 Region P

¥

Y

We dcfine a region to be a bounded continuous sct of points, where a sct is said-to be bounded if it

AT

-can be enclosed by a sphéerc with a fixed radius. * A solution region is simply a rcgi(;h that contains the

» exacksolution of the problem that we are considering.

4~

B.3 Affine Set B Y SN
' L is said to be an affine set if for every béir bﬁ,djélincl points a, b e‘u the infinite line joining .

a and b is also contained in . Thus lines; planes and 3-space arc affinc: scts and wesdefing their -

*dimension o b&1,2"and 3 respectively. Trivially, a points-is an affme“sﬁﬂcg with dimension 0. ©. "7 o
B.-4. Dimension of a R'égj"o,ﬁ : L

We define the dimension af-a }'}égion @ 10 be the minimum dimension of the afﬁnc"’souéi_"{\hz;l o

contain . . -
- n - R

e o . i L | _ «‘,.";(.. e : ;

B:5 Hyperplane T SR e
e define a hyperplané torbe an affine sct of dimggpsion k-1, where k is the diniension of the
[ { N
h'.‘)w ' - 95 - L. R :



B.6 Interior, Exteri’nr and Boundary- Pomts

4.‘ . - wa

-
R

,bou‘h‘dary poinL_s. We dcﬁnc alleighbourhood of the poim‘ pj tobe ' » ‘ , ‘éﬁ&;\_\

v ';\.765(9, r)y={x ¢ Ek ,L:Dis‘iiancz( pP.X)< r .

. i

<

')' .

p is an mterlor pomt of the rcgion tD lf AN(p,r)c @ for some sufficiently small r .
p is an, extenor pomt of @ if Al pl r ) N @ is cmpty for some sufficiently small r .

p is a bodndary point of @ -if it is ncilhcr an interior nor exterior point.

>

B.7 Closed Region | ey T

A region is said tobectoch if it contains all of its Boundary points.

*.

B.8 Supporting 'ny,perplane .

ik LT

A hypcrplanc u supports a regxon @ 1f lhc followmg two condmcms are satisficd:

s 1
(» n conlams at least one pomtﬁoﬁhe boundary of @ o
'::Q .
2 L) hcs in only onc of the [wo closed half—spaces defined by u - o
B.9 Separatmg @yyerplane s g
The rcglons D, and @, are separated by the hypcrpiane ,u-.;lf one of the open half—spaces
-gw
boundcd by u comams ] and‘t;hc other: qpen half-spaee comalns D,
B.10 Volume R S e
The volume of a region @ is defined’to be- .~ U @) = [av . Normally the volume of a
SER I e
. N e R o *3“»

Eo

.

1 duncnsnonal rcglon is referred to as us 1ength and Lhe w)lume of a2- drmensnona[ reglon as its area. We

’ S 5‘ r - N B *
will use, a subscnpl thn we want lo stress the Fhmensmn of the quce we are workmg in. For example,

9

15( d>) mdlcatcs thal we dcsnrc the arf;a of . The followmg properues of volume are important &Q us.

e

o

""\{‘ . . .:;;' . ".

b I e has dimension k and /> k| Lh'cﬁ_}\.;q/,(w)=0. B
D If @y ¢ @, -then 1’(‘951)51/(’-_@2‘){-

- 96 - "
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PomLs of spacc can bc &mdcd into three classes wnh respect to a region: interior, exlcnor andizr i




planar ﬁgureeul 6’6’{ of sheet metal is the place where ,‘iehe point of a pi-.r»'»i(’musi be pilaced in ord'crv"lo-balancc

the ﬁgure homontally In thS Lhcsns We will use a gegmemc mlerprclauon of. .(hc canre of gravnly That

is; we shall assume that all regnons cogmdered are: coneructed from a homogcncous ma{cnal wnh unit

I

- den?ﬂy1 We deﬁnc the centre of § gravny Qf a reglon P10 bc lhe point: .
’ ‘;‘: o . “}‘5"* ' 't"
3 . | x av -
. @ ‘
o [ av
\ @ :
_ i B
. Theorem B.1 ‘Consider a region @  which has® been partitioned into r regions,
D, D,, ..., D wilh respC‘C',li,",‘,h;"’c_lé'nLres' of gravilty g9,,9,,....d, . The centic of gravity of -
+ @'is the point: - R
‘g _ 91’V(‘DI)*;QQ'V(‘Dz)f--'-,+gli’V(d’r)
. o : RN YD)+ VD) + ...+ UND,)
Proof Since d> ,has been partitioned into r reglons the volumc of <D can**f)e rewnllcn as:
WD) = U d)+ 'V('d?_z) o WO, ) and also s
a ; . ' - et W of ) ’ B
j"xtdv“qjxdv +jde+ +}x~dv -~
e ' @, ®, ;Q c LT »:
N N S -0 \t- AR Nt{
~ Therefore, if g denotes the centre of gravity of @ then, -
-« Y o ' : : s Dﬁ_ . ! B .
Jx.av Jxdv + [ xdv + i+ [xdV E
g - -© I L R
Y @) V(D) + U By) + .o 1V D;)
1

s

E

“t



4

~ Consider any one of the r regionssof:@;s3y ®; . By definition, the centre of gravity of @; is the
AR [x dv ‘

. o . co L ge
- = : R V = [
point, .g, ‘ W ®r) which means d{.x d g 'V( (D; ) .
= e i ” | . .
,Subsmuung Lh;s into {1] leads us 10’ concludc that =~ N :
0LV @F) gy TPD) ¢ v BB

R V(:f{??‘i)f.‘ﬁ(@z_>+,3~+V<}‘1’r>---7*;' e

Theoregn B :2: Consider a reglon 115 which has becn paruuoned into lwo rcglom Cbrﬁand d>2

K f 3 -~ " "d&}\v
wnlﬁ rcspcclrvc centres of grav:ty g, and @, (FlgureB 1 }. The centre of gmvuye

Prys

Sa :
lics on lhc linc segment joining g1 aud g, . dividing it in two so that the.ratio of. Lhe {wo parts

«; , g . . . "‘_ : ",~ T i
Iy &L . e RN
. Length (a,g9) e

N . Ler_r.g’f@m g2)

Broof: Any point p = g, ¢t ( g;,_ - g1 ) lieson the hne segmem 9192 1fand only‘xft is

a real number in the rangc : 0< t < } R S ;:: ! Lo : ;
. ‘ i : o e -
- [ ”‘» ’“2‘5 < v - .-,‘};’f - .
el @) '
Let. ¢ =7 — : L 1 <
ct ST )+ (D, bCleary 0<t<g 1t so the- ponnl ‘ ' N : 7‘

R o VD)t Gy VD S .
I TR g;zli—gl') & q(,( (;I)H‘f;( ¢>(2)2) o

NP - . Length (gl p )i PPy ) :
lics-on’the line s t 2, and : = 5 »
e ,f:f Rment 9192306 Tength (pgs) -~ 1 -4 N DY | ‘ :
A LGNy g U Py) . i
From Theorem B.1 we know that = : N S £47,
"‘ PR 8T Werwayy 0 0T 3
. Fherefore ‘we conclude that g coincides with p _diryigjnédit{lerli‘né ség’mcnl 9192 in the ratio w
‘ . e A rd .
ne e
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+Appendix C ~ Some Implementation Details

T f . NN .
ae - . . i

P .

In this ap‘pcnd'i'i(‘,' 1ssucs that may‘ai'i'sc when ICT is impl?ﬁfcmcd arc ‘discussed, such’ as

rcpf.C-%:ﬁn,ling the s\él'uuﬂon rcgio'h aﬁd,ﬁnding iLs v()iijfne and centre of gravity. In addition, we will discuss

e Ty

somc J\sucs that arisc when rea[ numbcrs arc approxnmalcd using a finite prccnsnorf floating point’

rcprbscntalion. ll' is a common'pracu'cc in computational geometry to design algorithms for hypoLhclicaJ

computing cnvironments that support real numbers. ThiS clanﬁcs thc computational modd plus provxdcs a

-;’* -

rich set 0( tools for solving problcms However, there is @ drawback to this approach fﬁtmy Lheorcucally L

correct algorithms are not completely robust in practice, -Ir’] this appendix we will try to identify some of

the limitations and problems that mlghl anise for ICT algorithms, once. lhcy have been implemented. Somc

()\thcsc problcms arc gata dcpcndcm whnéﬁ means that ICT may bc appllcablg to snme applications but not

¢
3 Y

for others. Clcarly it 1 useful 1o try to identify suc& problems ca:ly.

) g i oy
. - W . 52 > R o R
C.l Numbers and Limitgtions T . -
e o - s o e

e TTic advantage of representing real numbers as finite precision, floating point humbers is the Spc:cd

[PIPS

with which comp'uwuons can be performed: floating point hardware has bccn highly optimized. Howcvcr,
& S
this approach docs have some well-Bdown drawbacks. In this section,*we will consider a few of these

limitations, and describe further limitations imposed by ICT. M'o'.rlc: information can be obtained from any
introauctory numcr‘ical analysis book. For cxample, see [Dennis and Schnabel 83] .

‘The foremost limitaton is that both the magnitude and the precision of the numbers that can nbc
represented 1s hmited. 1CT further reduces this magnitude since it frequently computes the distance between

two points. It 1s impossible to represent. the distance between a point that has the biggest possible x-

coordinate and onc that has the smallest possible one, since distance is represented by a positive number.

Ao 1t is ofien desirable “to, optimize the distgnce function by not evaluating the.square root. This

approach 1s applicable when'relative distagces are of interest, like finding a data p51h1 that j:sfurthcsl from
: . LN e )

the centre. of gravity of a region. In this case, the algorithm needs to be able.to represent a number that is

the square of; ¥he distance, which 1s double the normal ordeér of magnitude. (Note that when appiyi_'ng this
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approach to weighted problems, the weight must also be squared.) In somce cases, it may be possiblc to

‘?ﬂ-.

scale the input data so lha_LALhc spread between poian‘ ;\;ill be reduced 1o an acccplahlé‘l_rﬁngg. Ho“}}cvcr this . .

-
;

approach rcducc;s the procmon of the solution dnd hcncc may not be acceptable. . o ’ -

‘Recall from Chaplcr 1 that the soluuon gcncrdlcd by an ICT al&omhm should be within ¢
units of an exacl_ solution, where ¢ is a paramcter spccificd by the user. Clcarly 1 1s not possible o

gencrate this solution if % is smaller than the available precision. Numerical analysts often introduce the

concept of machinc epsilon so that the precision of a representation can be discussed without tying the

discussion to a spectfic machine.  Machine cpsilon ( macheps) is defined to be the smallest positive

number a such that (1 +a)>1. Thus cach ICT algorithm should ensure that ¢ is greater than

macheps before proceeding o scarch for a solution.

Since there is only a fixed num(ﬁtr of bits available to rcp’f’cscnl cach-rcal number, a difference may

cxist between a rcal numbcr and Lpfﬂoaung poml rcprcscnlalmn Numcnul dndlyslq use machcps w- -

- ' 'ﬂ

describe lhlS defc"ré‘ncc A float (x) dcnolc‘a the ﬂoaung poml rcprcscnmnon of a rcal numbcr x’; 1hcn A

’X.‘( 1 - macHeps ) j< - f[aa: ( ) < X:-'( ! + magheps )
Similarly, the valuc of zero hies in the range, . S - L

PR

- macheps < float (0} < magﬁcps . r e o

Some calculauons are scnsi‘_’u’vd to small changes in numbers. For cxample, the intersection of two ncarly
parallcl Tines can be drastically affected by small diffgrences in the numbers used Ao define the lines. Thus
o .

LP problems whose gptimal solution arc defined by constraints with nearly parallcl boung‘mcs will'be

‘e . TR

affected by this. However, this particular problem applics to any algorithm that solves’ LP and nol‘jusl'

ICT. [Bowyer and WQOﬂ.wark 83] suggest represcatations for lines and plancs an(i:'w;..i‘y‘S‘ of pc’rvf(')/rming
intersections that hElp‘"lS minimizc this type of §¢nsiiivily. a .

Some geometric algorithms suffer rrq'm accumulated errors, which arise when cofnpuunions are

i
- BN

based on the results of previous computations. The [irst gomputation may"d‘iffcr ;s'lighlly from the true

solution; this diffcrcncc can-casily be magnificd by next computauon. This should not be a problem for the

- f?f#

-
Ol



K 5 . IR - 1’4': . . . a V .‘-" ) . . - / ‘ s ”."
region is determined by 'r'cfcrr'ing*"to the original input data gach lieration. o

R

S . . 2 i )
- ‘ﬁ?«'«' e . N bl I 4»&

C. 2 A Data Structure For The Solut:on Reglon

. .,.g;v
et

Each soluuon reglon will be ccmstructcd in a similar fashlon for 2-dimensional problcms mnl

~be conerucled by »inlcrgc&;ing half—plancs, and for 3-dimensional problems, it will be constructed by

mlcrscgung half-spaces. Notice that Lhc boundmg box that was ysed to construct the initial solution region

~

in AIanlhm 1.1 can be thought of as the intersection of four half-planecs. thm this’ framcwork the

solution region can take on a variety of. shapcs it may bciemply, a poinl, a Ime segmcnl, a convex

polygon or clse a convex polyhedron. Flgum €. 1, demonstrates situations wherc these different shapes may

o -+ “
. ¥ - . .
o
-
. »
- e - r . ”
wo ‘u" " % L S
-t < -
1?".1 2 ? 1 ¥ y
- - ¢
(a) &, is empty (b) &, is a single point
\ r
’r r
e, vy @, 3
f . B d
a * v, - 0
1.‘ ".'qi - a
a;‘!‘ Al N “.V
~(c)- '@, 15 alinesegment . (d) & is a eonvex polygon (e) @&, is a convex polyhedron -
- e L - 4 ‘ o .
Lo : L : . L. 3 x
- Flgurc C1 Dclermmmg & = & [ for a 3-dimensional problem.
w4 N oy .
- il T ~

* -

Arl,mudcncc graph will be us;d to rcprcsenl the solution region. Thxs 1s a versatile data structure

R

that can be uscd to rcpfcscm a polylopc of any dlmcnsxon The descrlpu&m Lhal{;lSws has been laken I
-;‘ .«s 2 .
from |Edclsbrunncr 87] (pagc 141) Since we. necd only be concemed with polytopes of 3 or'lcss-'f:

L E .

dimensions, some of the gencrality has becn omitted. S -
: e L ) ) ]
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Let:. @ dcnote a convex polytope with non-empty ingerior in EX. &k <3. The terms O-face,
I-face ang:2-face will be used as syhonyms for vertéx, eéigz’ rénq,fafc"et . For convcnicncc: ‘khe_' intcrior of
@ will be defined to be the only;j}fgé{écc of @, unless the interidr is empty. Furlhcrmgrcff&lhc cmp(y set

will be defined to be the only (-1)- face of & . For 1<y <k-1, aj face f and a

3 - E?

e

(j+1)-face gare incident if f belongs to the bou,ndary'of g ; n this ca’sc.“j" is called a subface! "
of g.and g is called a ségperface of f. Two f,accs‘ of & arc adjacen:t if they are incident uppﬁ a common
" edge, and two vertices aréadjacenl if they are incident upon a common edges-The incidencqggkgﬁh:of D s
S

an undirected graph;\é.‘fhose nodcs arc in one-to-one corrcspohdcncé”@_ith the j - faces of @, suéh that an are
R T -

exists between two hodes if for a j - face and a (j + 1) - face, ‘their corresponding . faces are incidem”

‘ ! - Ut . &

Figure C.2 illusg’r,}ncs an incidence graph for a tetrahedron,” - - ‘ L
AP va S s . o
. » B I
< : ‘e
- " AT
R 2w ’
?x-}e

W

- Figure C.2 The incidence graph for the tetrahedron shown above.

EJE I TN
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In order o store @ -using its incidence graph, some additional information is added to fix the

{

Fcation of @”in space. For éxample, cach U-face records the coordinates of the vertex and eac‘h?;face node

dcscribcs 1hc planc Lhat it lies in. Nolc that the number of levels of the graph can be uéea‘t‘o’detennine the

dnmcnqnon of Lhc polylopc It is also wonh noting that the list bfedges incident upon a facel are in no
Lo ot sl

e
x f
RN N -

I

particular ordc?««' :

Lcl; v, e and f denote Lhe numbcr of vemces edges and faccs of Lhe" 5pluuon reglon

[McMullcn 71} has shown that for any polytope & of ﬁxeﬂ dlmcnsmn k, Lhe amoum of space required

to store the mcndcncc graph of . @rﬁ Oo(vylerzly, wherc v is the number of vemces of the polylope

Since in our case, k<3, O(v) is required to represem. ﬂ}e solution region. Ahemately, we can say 4 -

15

O(e) spacc is required if k=2 since v=e, and 1f 4 =3, we can say O(f) space is requm:d

since v < 2f— 4  {Grinbaum 67] ( page 173) ' ‘. EAN

C.3 Finding The Center Of Gravity Of The Solution Regioh
The centre of gravi'ly of a,point is the point itself; the centre of gravity of a line segment
Lomcndce with its midpoint. In ths section we will consnder the problem of finding the centre of gravity of

a convex polygon and convc.x polyhcdron In both cases, the approach suggested by Theorem B.1 will be

t

2

uscd which states that if <D~= is a region that has been parlanned ino r rcglons D, &, ..., P, with

respective centres of gravity gy, @2, ..., @, ; Lhen lhe centre of gravny of <D is the poml
G VO @ Ve L rg e,
VD) + VD) + ...+ U D,) : ‘

In 2 dimensions, 1{ @) dcnotes the area of @ while in 3 dimensions, it represents the volume. Thus,
the centre of gravity of @ can be determined by first partitioning it into simplices (triangles or

wirahedrons) and then by finding the volume and centre of gravity of each simplex. These results can Lhef\:;

-

C

be substituted into equation {C.1].

The-area and centre of gravity of a Lfié'nglg: can be determined directly from its vertices. Let &
v _ e FR” S _
denote a tnangle with veruices v, . v, and v4, where v;=(x,,y;). The following fermula
+ - - @ .

determines the arca of @,

e gy



b

. 1 - (xp-x1) (x3-x )]
- n 3 - X
! 2 etermmartl (ya-yi) (y; Y1)

v : -

Its centre of grévily cafr_be determined b.y: :

W, 4 vy 4
) ) 9. = . ' 32 * X S
lSimilai:l'y., let @, dcn{t}eéf,;a tetrahedron with vertices v,, v,, v5 and vy, ,where
\7 =r{xj ;yj , z}) " The volume of @, can be determined by 7
“ 1 - ) J x5 - x1) 7 (xy sxy ) (xe-xy ) F
V(o )=" g Determimant ¥y = y1 )=Cys-y1) (ya-yi )~ 1C.2
' T ' (z2-21) (z3-2y) ~(2zéi-21) - »
(N . V ' - \‘{“ ' -vh
and its centre of gravity by - .~ :
V4V, + Vit v A :
. g .= 1 2 2 3 4 ) . I(";I

[Bowyer and Woodwark 831} have presented optimized code for evaluating these cquagions. Each can be
LA . s . o

e . P ‘ g
evafuated in constant li'mc,,gﬁ'z;n the vertices. : £

Itis suanghl f@ﬂvard to partilion a convex polygon into triangles. For _cxamplc, find a point v

that is interior lo D %g,d conneCL the vcmccs of cach edge 1o VvV as shown in Figure C.3. The same

approach can be used w paruuon a convex poiyhcdron into tetrahedrons. That is, first connect cach vertex
to v (sce F'gu:cC-”i a). This parlitjons @ into f pyramids, where f is the number of facets of

& . (Each inle;:hal face borders exactly two pyramids, leaving no space unaccounted for. ) Then partition

each pyramid into tctrahedrons by triangulating its base which is a convex polygon, as shown in

.

Figure C24.b’.

&

(a) before mangulation (b)

Figure C.3 Tnangulating a convex polygon.
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(%) partitioning @ into pyran\i'f(}_’s';k v - gs
el B (b) partitioning a pyramid into tetrahedrons

o Jﬁi;;me ca, pm;ning‘a convex polyhedron.
First let's rgstricl our attention to finding the centre of gravity and area of a convex polygon.
Recall that the cdgcs of a polygon are connected 10 a 2'-face node in the {ncidcucg graph. If this 2-face uode i
has only three edges incident on it, then the polygon is a triangle Therefore assume that it has more than
three edges incident on it. Consider any two of these edges, plus the four subfaces (vertices) of these two
cdgciq‘. At lcast three of the vertices will be non-identical. Select any such three and‘lcl v denote U;cir
centre of gravity. For cach cdge incident upon the 2- face node, calculate the centre of gravity and area of

,ﬁm‘e

cach triangle determined by thesvertices of this edge and Vv, and accumulate the values required- by

cquation [C.1] above. Once each cdge has been processed, dClC@lﬂe lhe centre of gravity from the
accumulated informélion. Since ¥ can be dcwunined in constant time, and the centre of grav“uy and area of

; each triangle can be found in constant time, the entire process requires O(e ) time, where e is the
number of edges of Lhc ?cg;on.

Now consiucr a convex polyhedron. Recall that the faces of a polyhedron are connected to a 3-face
nodcw-m the incidence graph. ‘I"f"ihis 3-face node has only four faces incident on it, then ulg polyhedron isAa
lctrz;hcdron. Therefore suppose that it has more than four faces incident on it and consider the problem of
ﬁndmg akpoml intenor to the polyhcdron Selecl an arbitrary vcrtex of the polyhedron. There will be at
lcast ﬂu:cc edges incident upon this vencx and at most, only two of Lhcse edges will be incident upon the
same face. Find the other endpoint of §:ach of the three edges and lel v denote the centre of gravuy of these

. four points.  Since the tetrahedron formed by these four points is contained by @, v will lie in its

interior. Now access cach of the facets of the polyhedron'in turn, through the 3-face node. Since each facet
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is a convex polygon, it canbe paru'u'orrcd into triangles as was described above. Each edge will form = -+

a,~. a

another tetrahedron. Clearly Lhe mforrnauon reqmrcd by equatJon [C 1] above can bc accumulalcd as chh ,

edge of the face i is processed Since each edgc of the polyhedron is incident on cxacdy two fdccq each cd;,c S

will be used-exacﬂ‘y lwrcc dunrrg Lhc tnangulauon process. Thus the numbcr of lg:,uahcdrons cxammcd“ will

be linear m Lhe numbcr of edgcs of the polyhedron. Smcc cquauom {C.2] and [C 3]car4|wbmh be

eva]ualed in constam time, the tolajglme required to dctcnmnc the centre of gravity of a convex polyhedron

is lmearf its number of cdges of polyhedron Smce e < 3f 6, where e and f are lhc numbcr of
T
edges and faccs of lhe pol”yhedron [Griinbaum 67] (jpagc 173), the centre of grdvnly of a convex

polyhedron can be found in time O(f) time. A

C. 4 Reducmg The Solutron Region

s e
e

Consrder the problem of finding @, =@, AT, where @, | is a. convcx polytope and r

¥ o

is a half-space. {Scidecl 81] has solved this problem for arbllrary drmcnsron\, n’time proporuonal to thc
amount of change from the incidence (or facral) graph of &; ; to the incidence graph of @; .

Now conswler lhe amount of change Lhal can rcsull from the mlcrqcclnon that m tﬁr: ‘aximum

mk“‘ -

_ number of dcleuons and additions to the graph. Let v, e and f denotc the number of vcrlrccs cdgcs and

faces“of @;_; . At most, one (k-1)- face wrlI bc added to @, ;. Consrdcr lhc size of the

3

-

incidence grép‘h bf is additon. As was mcntjonegﬁin *Section C.2 , the amount of spacc required to store

-

its mcrdcnc 7graph ofak-djmensiohé‘l»j){)lylope is OCv L¥/21 Y[McMullen 71].  From this formula,
‘—tb'.’see that the additional (- 1) - face will requirc O(1) spacc if k<2. If k=3,
then the new facet will be a Céﬂvex polygoh having at most f cdges and f vertices. Therefore, O(f)

space will be required to store the graph and hence, O(f) time will be required to create it. At the other

3. B

extreme, &; will be empt—y,, whrch means that all but onc nodc of the incidence graph for tD ' wrll be

- ‘. ’

deleted. O( v L& 721 ) nme will be requrred o dclcle this graph [Sc.rdcl 81]. As was;mcnuoncd at

the end of Secuon C. 2 this can allemately bc slaled as O( e) time when k=2 and b(f) time

when & =3. Thus in summary, the intersection @, =@, |~ I can be pcrformcd in O( 1) time

-

if k<1, OCe) timeif k=2 and O(f) timcif k=3 . L

= ]07 - . \ 4

-




Nolc lhalf’ﬁ" is possible that 2 result of the intersection will be so thin that it showld be'

EN Lt

(.onsldcred w'bc'of a Iower dlmcnswm “This can be detected by ﬁndmg Lbe perpendicular d|stance belwcen

,w 3,

RGATNNEE

cach vertcx of d7 aud Lhc boundary of I'. If Lhc maximum (perpcndncular) distance is less Lhan some

funcuC)n of macheps Lhen this. rouune will ensure Lhal lhe soluuon reg;on 1s reduced 1o a lower chm‘ensnon

. o, i
by mlcrsccung it with a‘p}ane ThIS resull can be achleved by mlersecung @, wnh two half-spaces whose

e --r, "- .

-‘.boundancs are dcﬁnod by the Samc plane“bul which extend. {QOonsne S|des of Lh|s plane= ‘Since  &; is ) ,

“

alread_x Lh’c"result'.of‘ainl’crsccljng‘ Q,l with - I', the nalural ch0|ce of a second ha]f-Space is I“l , which L
hac; thc same boundary as. I" bul exlends to the opposne d|recuon Since before this lasl mlersecuog, 5
-
(D, hiis at most onc more fgce, Lhan D, , this lasl mlcrsecuon can be performed in umc O(f) Ume,
P * . ’@L«‘A Froee ) L "L - ¥, B
oy - Pl .1 L
whcrc f is the number of fac&&eaf PD;. : e
5
R :-;:' . ™
. A
s " 7 "‘; Jg»
- E " “
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Cifcfg( c,.r) -

v )

. -acircle with centre € and radius r . "

i
[

cH(sy o

[

cog( @),

returns the point that is the center-of

gravity -of the region @ .
/
Distantd A, b )
—. returns the” Euclidean distance

between two points, a and b.

Furthest(g,S )

returns the point'sf § that is furthest

. from the point g . S
Sphere (Cr ) Lo e

defiries the set of points em;lo’éed be

--a sphere with’centre ¢ and radius r ..

. - el ‘.. ‘ ey
defings the sct of-points enclosed be  Circle( €, r ) =

¢

e g * : W .
e . .
- :
- - S
N .

. -
R 4

{xe E2| Distance{ C, X ) < r} '

e

- the convex hull of §, a sct of points.
‘ j X dV i
’ .

d

: ‘ k . .
Distance(a,b ) =~ ( Y (a,-b,)? j
=~ '

3 Tan
. e ¥
. . Y
1 3 a. “

bfurtﬁ‘es‘t'ég,s':} {p GSI‘

e
Distante(.ga; pl'i) <

3pﬁzré;( c,r)={ xe E3| Distance( €, X )< r }

L
: Somx T
e
e . .
Ty
-

© N

e - -

-
I
.

T .

< Distance(g ,P).j=1,....n} -
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