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One of t h e  contrnurng challenges of comp&tronal geometry IS  to find efflclent and 

' s, 

practrcal solutron\ for compu~atronal~roblems. Oftcq#~ll-known problem-solvpg- 
* - 

s. b 

technrque\, lrke drvrde-and-conquer, plane-sweep and prune-and-search are used In the , - A Lk,*p 

' .B+- 
c - crcatlon oT ncw algorithm. I n  thrs thesrs, a new problem-solv~ng-t~hr?!que c a l l e d ' ~ ~ ~  **-< 

(rteratrve-cmvcrgcnt-technrquc) 1s ~nuoduced ICT 15 an approxlmatron 4echqge h a t  - 
L s .  

gcomcurcally convergec upon the exact solutron. I t  bcgrns by consmtrng.a convd - 4 

- 4 
. , 

-% 

rcgron hat cnclofcs Lhe soluuon. Each tlcratron, a fixed fracbon (approxrmately onc-h'alCj 

of ~ h c  rcmarntng regron 19 chopped away, u n @  the approxrmatlon 1s guaranteed to,lie . 
"4 

* wrrhrn F of the exact folutlon, whcrc E s a parameters&rficd by the user. ' 

- - 
Tci dcrnon\uatc thc-uwfulncss of thrs approach, we have applrcd ICT to a numbcr of 

- 
. gymctrrc optirnr;l;ltma proMcms In 2 and 3 dlqensrons: 

i 

a @  = dctermmrng the scparabrlrty of twb planar sels ; , I- * 
F .. 

. dclccung  he common -rntersecu& of the convex hulls of rn sets of pants t -. . - ,  

* - . thc problcm of findrng the smallest enclosing sphere of n weighted pants 
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1- 

< .  - 
, -  0n'c bf-the continuing challcycs of computational gcom"etry is to find effrcicnt and practical " 

1 .T 

* ,  
\olwon\ for compuutional problcms This cmpham on both cffieicncy and pract~cabity h7asrcs&d In an 

.- 1 * 

rntcre\trng mix of rcwar~h .  At onc cnd of the spectrum; rcgcarchcrs strive to crSa,e Tore cff~cicnt 
b 

B 

algorithm\, whcx 'morc cfficicnt' may imply that the 'worst-case' time oc s p a c ~ ~ r c ~ u i r c m e n ~ s  01 the 

8 
wlut~on have hccn rcduccd, or tharlhc algorithm bchavcs wcll in all ' ~ / ~ e c t d '  cascs At the &cr cnd of 

thr s p e c h m ,  the problems faccd b r i n g  the implcmcn~uon of these algorithms arc cxammned: This 
- 

include\ rcconcilmg the diffcrcnccs bctwech'tbc hardware that tkc algorithmc will be ~mplcmemcd on an& 
i d 

. . thdib\wact cmpltlcr model\ that wcrc used ty thc dcsrgncrs of-thcse algorllhrn~ For cxaniplc, rcskarchcrs 
-i ' - - 

\ I i 

# 

\turly drlfcrcnt ways af rcprcscntlng real numbcrs on discrctc hardware, and also ways of auto_maticarly 
9 I + - 

dcrccting and kapdling dcgcncratc caws. 

. I n  lhrh thc\i\, 'a new problcm-solving-tcchniquc callcd ICT (~terat~vc-cmvcrgent-tcchnlquc) I <  

a - 
prctentcd, where a prohlenl-solwg=lecfin~que ~sslmply an approach lo solving a problcm that is cffccuve 

2 ' s 
s 

+. for'a nurnbcr of ddicrc~TKohlcms. Algorithqdestgners have frcq;ently madc uw of such technqucs~whcn 
* l. . L i -- . . 

"r crc:iting ncd-aI~orithms For cxamplc, ~n t h ~ u  survcy of eompurat;onal geometry, [Lee and Prepapta 841 

have fdcnlifrcd a n d d x r ~ b c d  ~cvcral ha t  hpvc pioven useful in lhis rcspcct, including plane-sweep, dividc- 
? -  - i 

' . i I 
. - md-conquer and prunc-and-\arch Ollcn a gna t  deal of lngcnulty 1s rcquircd to dcmonstratc that a gwcn 

PF . A 

prohlcrn can hc solved using a particular aPp~0ach.- Somctlrncs complex prcproccsslng stcps arc requvcd or 
- 

pcrhq\  d gcorncu~cal property of  h e  p~oblcm cau bc exploited. The payoff for this effort is that usually 
- .  

I *" - 
hC ncw \olujion has the time and q w c  complc~ity 61 the problcm-solving-t&hnlque. 

* 
The b-chniquc Lhat IS p r cwmd In ~ h l s  ~ c s l s  1s an approx~matim techn~quc. This pqm that the - d 

.P I.. . aliorilfirn will gencratesolutions rhar a;c within': E units of an exact solution, where E is a parameter . , 

- $@ - 
\pccil~cd h) thc u\cr U \ u ~ l l )  approxlrn~ltton techniques are fa\tcr than .exact bcchniques, rnakrng t h W  



attrac'hve when the cxacl wlutlon lo a prohlcm I \  no1 rcqujrcd To dcmon\tralc thc p w c r  01 ICT, t t  H r-ftbc 

applred to the follou ~ n g  gcomctrlc oplrrnl/dtmn problem\ .I.- .- 

Llnear Programmlnp (LP) rn 2 and 3 d~tncn\ron\ . 
.. . -  

P' - .<_" .. . 
. the p r o b l e m o f  frndlng .the \ ~ n a l l c \ ~  cnclo31ng ..xphcr< ( 3 s  n uciFh[;'d po1nIs In 2 ;ind 1 

. - 
was descrihcd hy [Dyer Xh] . Dctcctrng u hcthcr the r:onvcx hul.1, .oI ~ u o  <cki\ 01 p o ~ n t \  !) \ . c ; I ; I~ I  i \  

- .  

-.,. 
.Fa 

two LP problems of frxcd d l m c n \ ~ o n  /Edcl\hrupncr X71 ( p ~ g c  7 11) 0 r I ,TI > 2 . 11 1, no1 

po\51blc to dcterm~ne u hcthcr the conLcx hull\ of m q c 5  of polnr\ o \ c r l ~ p  1;1 1 1 r l c . s  ~ U K  
' 

, 1 .  . . , . . , .  . - . .  ' 

Since a theoretically already cxlsls I'or most,ol thew prohlcirr\. IJ I \  apI [ ( I  
'b . . 

qu55tron Lhc wlhdorn of \uggc\iing ycr another s o l u ~ ~ o n .  In pdr t l~ular  one rhdt guLrrsnllaC\ only LUI 

approximate m l u t ~ m .  There arc a n u m b  of r e a w l \  for cxdmrnlng IC'T In dcuil  

ICT 15 worth explorlng h c c ~ u \ c  11 I \  an approxlmatlon ~whnlquc  A \  u ~ \  \ L I [ L > ~ I  c,~rllc'r-. o l ~ c n  rhc 

exact . so lu~on  to a problem 1 5  nor rcqurrcd. ICT allow\ rhc uscr to \pcclly thcka'frlount of cnor  

that is acceptable in the .solution. I f  I~rdc  prcc1sron.l~ required, thcn ICT can Icrrnlnatc u r l y  

Each of the Ilncar-time rcsul~s refcrcncd aabove u ~ ~ l ~ / . c s  Lhc well-known prunc.-und-.\c*uh-h ~cchnrquc,' 
. . 

whkhvp;as first-~ntroduccb (independently) rn [%lcg~dtlo X3aj and [Dycr Mj . Onc of thc \tcp\ ol 

h i s  techn~quc is to flnd the rncdkan of a \ct 'of numhcrs In 11nc;lr t ~ n ~ e  ( 1 Rlurn. r:loyd. P r a ~ l ,  
, '2 rr-. i. 

Rivest and Tarjan . 711 , , [Schonhagc,  PatcssOn and P~ppcngcr  761 j . I l c ~ w c t c r ,  a \  
? 

[Ed'elsbrunner $71 (page 239) has n-&cd. ~ h c  worst,casc t$t~mal mcthtd\  I-or S ~ n d ~ n g  thk ~ c d r a r l  ; 
-- 

of a set of numbers all 5uffcr from poor average .caw hchavrour. I n w a d  hc s u g g c \ ~ s  that thc 



The mo\t common approach for rcprccnllng real number5 on a computer 1; m approxlmatc hem - .  

by f~xed-prec151on flclamg point numbers I f  wch a rcprcwntation.1s ured, then each ICT - .. *I 
algor~thm k~ll havc a linear-wor\t-caw tim6-compkx~ty. 

OP . 
4 

ICT has the following \ t r ~ k ~ n g  feature Changmg the dlmenc~on from 2 to 3 

problCm from an unwc~ghtcd to a &ighted one arc slrnply 

a di j t ron for one of thew ~ma t iohs  shed? l~ght on how thc 
% .  

shall .= urhcn tht history of some of the problems listed above arc discussed, such yariatiorishave 

hccn treated as totally scparatc problcns, making i t  difficult, if not impossible, to:extcnd a 2- 

drmcn\ional algor~lhm to 3 dimcnsroos or to convert an algor~thh for an unwe~ghtd  so lu~on  lnm - 9 1  

one h t  can \olvc thc wctghtcd verqron of h e  problem. 
0 v 

ICT can he. casr ly comhined with other iterative approaches, including the prune-and-search 

tcchnrquc. Examples of hou t h ~ c  can hc donc will be pr_cscnta latcr in  the thesis 
* . 

Thcrc are somi problcmF&at can hc solved using ICT for which there are no known linear 

wlution For cxamplc. [hi\ 15 uuc of dctcct~ng th? common intcrscctlon of the convex hull5 of 

rn kt\ of points 

S~ncc  prohlcm \ol~~ng-tcc'hniquc\ havc proven to bc u5cful algor~rhrn~c t i ~ \ ~ g n  tools, 11 15 worth 
r 

con\~dcr~ng a ncu one on ( h i \  merit alone. Also,  he geometry thal ICT IS based upon I S  

~ritcrc\trng Tor I [ \  oun d c  Thu\ ICT is ~ntcrcmnS from a 5tr1c~Iy thcorctlcal pan t  of vlew 

l("1 u i l l  hc d c c r ~ t w d , ~ n  the next fcu \cctions. flyst In abstract terms lo cm'phasix the concepts behirid our 
. . 

- - . afipnuch. a cn moyc cnncrctcly hy  using i t  10 aolvc a problem. .The notrlt'ional conventions listed in 
. , 

hi, - - -,  -4.; . . 
c~trc.n~uK.d'throughout thih h&s. 

I 
3 

. , . . 

- 1  . I ICT,. A n  Iterative-,Convergetit-Technique * 
0 

- .A prohicm r;~u.;t have 3 gc~mc ' t rk~3~  ~ntcrprcfatlon before ICT can be applied to it.  Usually 3 e .  

. ~ " c c t ~ [  u,lu~ion I \  c1~hc.r a point o r  i t  can hc d~rcctly dctcrm~ned from a polnt, glvcn the constraints of the 

problcrn ThC u\h 0 1  ctn ICT Lilgorithm I \  to dclcrminc the locat~on of this pan t  , I t  beg~nr by ~solating 

rhc p)in '"r  \ Iiutton [o p x r i ~ u l ~ r  rt : I o n  i \zc Appcnd~x B )  of space Lct 4+, denote the lnrtlal solut~on , 



rcgron. In each rteration, more of the solut~on rccion IS chopped away, untrl whal rcnuins is snlall enough 

for all of ILS polnts to lie y t h m  E of the exact solutmn. where r is a paranic.tcr that is spccifled hy thr 

user. The method of choppmg I S  bawd upon the followmg observation. I f  @ and 1- arc Lwn convex 

regions that contain the cxacl solutron S , then s c @ n F In cac.h rtcration, a rlcw rxmvcx sct 

( r, ) is detcrrnrned, such that f, conhlns  S and such that the volun~c 0 1  @, = '0, , n I ;  is no 
- 

larger than a fixed fraction of ~ h c  volume of the previous solut~on rcplon. @, , . Thus 1C.T cdnvcrgcs 
9 ' 

tcrminatc or whether another Itcrdion I S  required. 
. . 

Note that one of the hasic tenets of t h ~ <  ~ h e \ i s  is that each ol 

l~ncar  time. In order to help rllustratc the ;hove rdeac. ICT will 

two Ktcbons. 

l . 2  T h e  Smallest Enclosing Circle Of  g Points In The Plane (SEC) 

Findrng the Smallc\t Enclo\ing C ~ r c l c  ( S E C )  of n porn[\ In the plane 15 a cla\\rc gcomctrlc 

opt~mrzation problem w h ~ c h  over the y c u i  ha\ hccn known hy a nurnhcr of drflcrcnt namc\,rncluding: 

, m~nrmum spanning crrcle, Euclrdean d ~ s h n c c  facrlrty location and the Euclidean onc ccntcr (pornt) 

problem Frgurc 1 1 rllu\~ratc\ Ihc SEC problem. S u p p o c  that we have k e n  grvcn a w t  of n point\ In 

the plane and we have k e n  asked-'to C~nd the smallest circle that cncloics thcsc points, whcrc we dcfinc a 

crrcle wilh ccntei '  C and radrus r as fo lkws:  i ' l rcid C , r ) = ( x t E~ I Z ) ~ < . ~ a n c e (  C , x ) 5 r ' )  . . 

* D u t s n c r (  C , x ) I <  a functron b a t  return< the Eucl~dean d l s u n ~ c  k t w c c n  the pornt< C and X 



* 

1 orrnally, SEC can bc dcxrrbcd as follows Let S = ( p,  , p 2 ,  .. , p, ) denote a set of n polnts 

~n the plane. Wc want to find the pomt c* that minimizcs r* , where: 
B 

n 

, r *  = maximum D ~ s t a n c e (  C* , p ,  ) . 
i4 

. . 
-rCI1 % v <- .. .,* P. 

. (a )  .Y , thc sc: o f  p o ~ n ~ \ '  2. . i b )  the smallest circle that e n c l o s e  S- . . ', 

L 

r . v -: , 

F~gurc  1 . 1  An example o f  a smallest enclosing circle. . -' . - 
1 

. . .  
4 

. 
The crnallcst encloung cmlc ha? a numher of well-known properties, including: 

\ P r o p e r t y  1 :  The smallcst enclosing circlc is unique; 

Property  2: Elthcr two poinu of S dcfihc-the, endpoints of the diameter o f  the small&st enclosing 

circle, -or three points of S form an acute tr,ianglc whose circumcircle is the smallest 
. r .  

- ,  

cnclo'sing circle. 
++- ' -. . ,- . 

SccJ'haptcr 16 oC [Radcmacher and Tocpliv 571 for a proof of Lhcse two properties. 
.,- 

. Pmpcny 2 swtcs-that c *  lies in  the convex bull of at least two 61 the points of 5.  ~hercfore  
* d 

any houndrng hox that encloses the points of S will also ,enclose C* . We will make u& of this 
. . 

hhou Icdgc whcn construiting thc i n i l i j l  solution rcgion. Now considcr the problcm of rducing the area of 
C 

Y : 

thc xol.utlon rcplon by a fixcd Crauion each iteration. Since the smalles~enclosing circle is unique, any 
*; *- 

\ 
\ c.~r~.lc that'enclqxcs the po inLq  of S ha.; a radip r such that, r* 5 r . Furthermore, i t  is well-known 



Let g denote a point that lies in the intcrior'of the current sdution rcgion. Find the, p i n 1  f c 3 that IS  
- 

3 

furthest from g , and let r = D ~ c t a n c t (  g , f ) . I t  IS easy to we that l ' r r r h i  Q , r ) u~ll cnclow thc 

points of S , as i; shown in Figurc 1.2.a . ,ThCrcforc, it ftillows from the above tha! ( . ~ r r k (  f , r ) . 
which is shown in Figurc 1.2.b , cncloscs C* : Notice that g lics on'lhc circurnf~rcn~c $::this circle,. 

(a)  A circle h a t  cncloses S . (b) A c ~ r c l c  h a 1  cnclc~ses C*.  

- , 

F~gure  1 1 Part of the 5EC llerdtlon step 
I 

Now c&crtlcr the half-plane whow hunctay  both p a \ w  through 'g and I \  tlingonl t., 131rck( f , r ) (we 

Ftgure 1 3 ) S~ncc  t h ~ s  half-plane c o n ~ ~ ~ n \  r r r c k i  f , r ) , r t  mu\[ a lw contain C *  Thu\ wc can , 

conwuct the next solution rcgion by intcrwcting the current solutron rcgion with thic half-planc. C'lcarly 

the choice of g will.affcct the area of the rcgion that is d~scardcd. Thc following theorem will hc u d  to 
- 

guide our chorcc. . . 
\ 

' i < 

Winternitz's  Theorem, 
--. 

A 2-drmcn~ronal convcx figure I \  d ~ v ~ d c j  into two rcgiom by a line h i 1  p a s % \  through IL\ ccntrc 
, - 

9 4 5 
of gravlty The ratlo o f  thg arm of t h c ~ c  two ?egron\ alway\ I I C \  k twccn  the hound\ 5 and 



Scc LYaglorn and ~ o l t ~ a n s k 1 k 6 l j .  page 160 for a proof of this Lheorcm. Centre of gravity is defined in 
- 

Appcndrx B : Each solution region is convex since it is constrbcted by i&rsecting half-planes, Therefore, 
> - 

.r,a 

hy chtn~sing g so that i t  coincides the the cent& of gravity of the current solution region, ~ in t e rn i t z ' i  

rhcorcrn guarantec5 that the area of each successive reglon wdl be at mos i  of the area of its 
. . 

prctfccc\wr, rnccung thc gcomcmc rcducuon rcquZments of an ICT algorithm. . 

, next solution 

\ i o n . /  

F~gurc 13 Reducing the area of the current solution region 

Finally, consrdcr the termination predicate. Suppose that Circld g , r ) is the approximate 

\olulron Thcrc are two Nays to lnlcrprct the termlnatlon cntena: ellher r should be w~thrn E of r* Or 
-- 

r- 

cl\c g \hould hc wlthy E of c* , x hcre E 1s a parameter speclfied by the &r. The basic idea behind 

Ihl\  can bc a ~ h ~ c ~ c d  b) find~ng a su~lahle r' I r* and terminating when r  - r '  & . Thus 
" 

r < r*  < r Thcrc arc w ~ c r a l  h a ) \  to find a su~table r '  . For example, let X denote the pan t  of 

ihc \elution rcplon [hat I \  c lo \c \~  to f Clearly Dutance( X , f ) I r  * sip& the s d u t ~ o n  reglon 
, 



contains C* . Rather ~han  flndlng x however, i t  kill bc easm to find the vcrtcx  of thc solution 

xglon  that is of maxlmum (perpendicular) dislancc 6 from thc boundary of  I-, . I t  ~q casy m;cc ha t  
. . 

r - r ' S  6 

r - r '  5 6 < & .  

- 
Now conslder the second termlnauon criteria. ~ l c i r l ~  g IS  y t h ln  r ,o<  C* i f  thc current 

.J 

solution region is a subsct of Circle( g , E )  . This is easy to tcsl -just makc surc that cach vertex of 

the solution region is within E of g .$The difficulty is in  ensuring that ~ h c  solution region converges in  

all directions. For example, Figure I .3.b i l l u s u a ~ s  four succcssivc solution regions that arc converging 
- .  

in the x-direction only. If  this trcnd continues, thcn the solution region w5ll ncvcr bc a suh~c t  of -- 

a ctrcL$ g , E )  . This problem is dicusscd further i n  Scctlon 1 4 . 

. . ( a )  r - r' < E ( h )  an cxamplc o f  tkgcncra~c convcrgcncc 

- 
Figure 1.4 Terminating SEC 

1 . 3  The ICT Algorithm For SEC 

In this section, an ICT algorithm for findmg the smallest enclosing circle of 'k points in' the 

plane is described. I t  is assumed that the algorithm should terminate oncc r is within E of r*  ,. ( Scc 

Chapter 3 for an example of terminating oilcc g is within E of c* . ) Before prcscnting thc 

- algorithm, some functions and defin~trons should be introduced. Let COG ( ) dcnotc a function that 

returns the center of gravity of the region @ and Ict Y ~ r t F z e s t  ( g , S ) dcnotc a function that rcturnj 

the pan t  of S that 1s furthest from g . 



2 .  ~ter'atiorr Step ( I r 1 ) ." f ,  

perpendicular -to the line s c g m e q  gf . 

3 .  Termination Predicate - 

3.1 Ftnd thc vertex v of 0, . that of m a x ~ m u m  perpe ular distance from the boundary of TL 

Let 6 denote thts distance 

3 2 If 6 < &  

3.3 then ( terminak reporting h a 1  Cmk( g , r, ) is h e  approximate solution 1 

3.4 else ( continue 10 iterate. )' 
a end of algorithm - - 

, Discussion- and analysis of Algorithm 1.1 

Lct n dcnotc the number of Input points. ' 
1 '  + 

1 .  A rectilinear hounding box can bc c&mcted. in O( n ) time. Therefore the initialization slep ' 
rcquircs O( n ) 1im.c. 

2 .  In each iteration thc numbcr of edges of the solution region will increase by at most one, due to the 

intcrscction of line 2.5 . Thercfore, during the irh iteration, the solution region will have 0( i ) 

cdgcs. 

3. Thc cenlrc of gravity of 'a;. , can be fokd  in time li ear to the number of edges of the region (see . ~ r 
Section C.3) . ~hcrdefore line 2.1 can be performed in O( i ) time. 

4 .  L~nc 2.2 rcquircs O( n - )  time since cach point of S must be checked in order to find the one that is 
- 

furlhesl from g . 



6P 
4 .. . . "  

. . . . . . .--.- - - ,  

Line 2.3 may te a bit surprising. From the discus&on in the prelious section, one would cxpcct i r  

to be: ri = I)istante( g , 1,  ) . Of coujse this would be perfectly acceptable since thc resulting 
r-'. 

area of 6, would be appropriately bohded. However, llic goal of the above algorithplis . -  . - - to rcducc 

thk area - - of the solution region to the optimal p i n t  as fast as possible. By choosing r ,  to bc the 

minimum radius so far, we cut away even more of the solutio" reg~on. 

Clearly, Ti in lme 2.4 can be dctcrmlned In constant tlme, given g , f and r, . 

The intersection 0, := @, , 0 f ,  can be performed In tme  llnear to the n&bcF of edges o l  

@, ( see Sect~on C.4 ). Therefore llne 2.5 can be performed tn O( r ) tlmc .- 

Since the solutlon region is a convex polygon, i t  has tho same number ?f &tic& a5 edges. Clearly 

the distance'between one vertex and the beundary of TI can be determined In constant tlme (scc 
- 

[Bowyer and Woodwark 831 , page 107 ) . Therefore the entlre tcst can be performed in  O( i ) tlmc. 

There is an optim&ation that can be made to Algorithm 1..1. thai'has not been included-for Lhc sake of 

clarity. Each time a new minimum radlus is discovered (line 2.3) , the edges of thcsolutlon' rcgion 
* 

can be trimmed to reflect this new radius. For example, suppose that the edge el- was added to thc 

solution region during iteration J , where J < i . This edge can be trimmed from the solution region 

,by intersecting the current solution region with a half-plane T ,  that contains f ,  , such that its 

boundary'is parallel to that of T, but which is a distance of r,  from the po in t  f ,  instead of r, . 
( Note that I-,, = r,, n T, . ) r,, contains the exact solution since r* < r, . Thercfok this step 
c 

-will not discard the exact solution. 

The intersection routine (see Section C.4) can bq customized for the uimming operation. Thc first step 

of this routine is to find a vertex of the solution region that docs notlic in f,, . Notice that either 

endpoint of e, lies outside of f,, , so thpre is no need to search for such a vertcx during the trimming 

step. Starting from-one such vertex, the intersection routine systematically traverses and deletes the " 

edges, of the soluaion region that lie outs.ide of r,, . Finally a new edge ( el, ) is added-to the region in 

order to close the boundary of the polygon. Now consider the overall cost of the uimming step. Each 

edge can be added and deleted in  O( 1 ) time. Since at most O( i ) edges can bc deleted from the 

solution region and at most O( i ) edges can be added to it, i t  is easy to see that the total running 
f 

time for the trimming step is O( i ) time. Therefore the trimming step further reduces the area of the 
, - 

solution region without increasing the asymptotical time-complexity of the algorilhm. In addition, i t  

helps to keep the solution region more 'certred' with respect to the furthes: poinu. 



Thus in summary, 
,e 

O( n ) time is rcquirdd far initialization.stdp ; #. 

O( IMa~irnunr( i , n ) ) time is required for the ith iteration ; 
, - 

O( i ) ume is rcquired for the termination predicate during the ith iteration.. 

Therefore, the total running ttme for Algorithm 1.1 is 0( 1 * Ma~irnurn ( n , t J) , where 1 is the 

told nurnbcr of iterations pcrfcrmed by the Algorithm 1.1 . The size of t d e ~ n d s  on E q d  the areaof: - - - 
the initial solution region. In l e  following it wiil be argued that the runniig time of Algorithm 1.1- is 

6 

lincar.whcncver fixed precision floating point numbers are used to approximate real nunikrs. 

In mast computer implementations, real numbers are approximated byCa rational fraction limited to 

a certain fixed precis~on. This means that after a bounded number of iterations, say c1 , the area 6f the 
- 

solution region will bc lcss than h e  smallest discernable difference between two floatingpoint numbers. If 

the algorithm has hot already terminated, then at this point in time,-the solution region will have been 
. 2 

reduced to either a line segment or a single point ( see -Section C.4 ) . If the vertices of the region are . 
% 

containui in the line thar dcfin$s the boundary of f i ,  then the algorithm will terminate, showing that r is 

bounded from above by cl . However ii 1s possible that the solution region has been reduced to a line -- 

segment that does not lie in the boundary of Ti. For example, this-situation arises trivially when the 

initial solution rcgion is a venical line segment. The maximum length of this line segmcni is determined 

by the diameter of thc ln~tlal solutlon region. When such a case arises, the algorithm will continut: to 

? 
ltcmv; wch lleratlon the lenith of the h e  segment will be reduced by ( see Section C.3 ) . Thus 

after a bounded nurnbcr of rteratlons, say c2 , the length of this lme segment will be4ess than the smallest . 
d~scernable d~fferencc betwccrl two floatmg pomt numbers. At this point the solut,ion region will be 

rcduccd to a p in1 and the algorithm will terminate. Thus, I I c, + c 2 ,  where cl  and c2 . p e  constants 

. dctcrrnlncd by the fixed preclslon of the real number representation. 
- . . . + .  

Undcr the above assumptions, r = 0( 1 ) since it is bounded from above by'$ constant. 

,Funhermore, sincc i t  is expected that t << n , i t  is claimed that the running time of Algorithm 1.1 is 



.- - 

.- 
, -- - .  

1 . 4  Terminating ICT Algorithms " 

Although the termination of each ICT aigorithm'will bc handled separately in this th'csis, thcre arc 

a few generaf commenrs that can be made. Suppose tltat x* is the optimal solution of the problem and let 
% 

g denote the centre of gravity of the current solution region. In this thcsis, two methods of terminating 

ICT will be considered, which c,an be deicribed loosely as follows: 

The meaning of these statements depends upon'thc problem bcing solved; their dcsirahiliry dcpcnds upon 
- - 

. . 
the application. - For example, i f  w e  consider the smallest e closing circle prob1Fm studied in  ? 
Section 1.2 , (1) refers to ensuring that the radius is within E of r' ilc {2) rcquircs that g bc within i 
E ~f C *  . A type (1) terptination involves finding an over- and undcre<timatc ofi thc optimal solution; 

t 

T 

when the two estimates are within E ,of each other, then t h ~  algorithm can tcminatc. This typc of 
- 

termination was illustrated in Algorithm 1.1 .' A type (2) termination rcqui:cs that ;he solutlon region 

a subset bf Circh( g , E ) (or Sphere( g , E ) while solving a 3-dimensional problem). The problem 

- of degenerate con;ergence arises only when a type(2) termination is requircd. Sincc this is the more 

difficult termination predicate to satisfy, the algorithms described in the rest of this thesis will consider this 

case only. 

i- 

[Diaz and O'Rourke 891 have suggested an approach for handling degenerate convcrgcnce which 

may be applicable to ICT. Their approach involves finding the diameter of  he solution rcgion i d  splitting 

the region into two parts abng this diameter; ~n iteration is then performid on both of thc regions. A ' 5  

fixed fraction of both regions is cut away during the iteration, resulting.in a fixed fraction of the tom1 region 

being discarded. I n  addition, hey show that for the problem of fiflding thc centre of area of a convex 
. . 

- ' polygon, this approachknsures that the diamcter of the solution region converges to a p o i n ~  I t  i s  likely 
i ' 

that $is property will also hold for ICT algorithms. However, since there exists no algoriihm t compute . . 

the d ikkter  of a convex polyhedron in linear time, th i s  approach h a  "'01 been pursued in this thcsis. As ' 



s - 
> -  

wa\ mentroned earlrer, one of the basic tenets of this thesrs is that eachstep of the algohth+ , . .$OUT~ take at 

most linear time. 

1 . 5  Other Related >Work . 

ICT was rnspircd by an algorrthm by [Castells and Melville 831, [Melville 851 which finds the 

smalle5t enclosirrg circle of a corrvex polygon. We can use Castells and Melville's algorithm to solve our 
. I  J-- 

problem by first frndrng the convex hull of $ In O(n log h ) tune, where h is the number of poinls on 
- 

the convex hull [Kirkpatrick and Seidel 861. Let H = ( p, , p 2 ,  ... , ph j be the ordered set of * 
--. 

pointy cornprisrng the convex hull of S. Melville's algorithm differs from ours in the following ways, 

The initial solution region IS constructed by intersecting h circks centered a b u t  each of the 

. . points of 11. Normally this step would require O( h2 ) time, but, because the points of a convex 

polygon are already sorted, Melville is able to achieve this step in O( h ) time. 

- 

The algorilhm terminates once the area of the current solution region is less than the precision of 

the floating-point hardware bang used. Since the amount of,available precision is fixed under such " 

conditions, Melville is able to h u n d  the total number of iterations by a constant, leading to a 

linear running time. 

ICT is an rmprovement over CasteJls and Melville's for a number of reasons. Firstly, the 

requirement that the original source points be sorted has been removed. This eliminates the need ta 

dctcrrn~ne the cofivex hull of the set of n points. Secondly, each iteration Castells and Melville's 

algorrthm finds lhe Intersemon of n circles, while the ICT algorithh Simply finds the intersection of a 

., convex polygon and a half-space, where the polygon has 0( i ) edges during thepith iteration. Therefore 

* .  thc cost of each of ICT iteration, at least initially, will be smaller than those of the other algorithm. 

1 . 6  What Will Be Done In This Thesis? 
- 

In Chapter?, Wrntcrnitz's 2-drmensional result will be extended to 3 $mensions, allowing ICT 

to be applicd to 3-dimensional problems. In Chapter 3, ICT is applied to the problem of finding the 

smakst enclosing s p h e  of n weighted points in 3 dimensions. This is a generalization of the sample 

problem presented earlier in this chapter. In  Chapter 4, theproblem of detecting the common intersection 



1 ", , , 
3 - n 

. of the convex huUs ~f t j ~  sets of pants in 2 and 3 dimens~ons is cxamirkd: I n  Chapter 5: K1T 1s . 
*- i . .  

applied to ~inear,~ro~ram.rnin~ in 2 and 3 dimensions.  ina ail^; m Chapter 6 thc conch,gions are , 
I 

i r Y. 
4 

presented, along with-some suggqtions for future research:, 

As has already been ment~oned, Appendix A descrtbcs the nob~ional conycntions h d .  In r 
5 \ '  

'i 

, A addition, Appendix B includes definitionsgf wme of dre. mathematical terms that are used in ihe rtys~s. 

i, . '1% 

%me of the issues related to implementing ICT algorithms are d~scu.ssed In Appcndia C- while i. 

- -  + 
t 

Appendix D summarizes some of the functions that have been dcfjned In this thes~s. 



Chapter 2 
% 

Ex tending ~ i ' n t e rn i  tz's Theorem To: 3 ~irnensiohs . 
v 

-- 
" - - < 

In \cctlon 1 2 we saw how the 2-drmenuonal vcrslon of Wlnternm's theorem was used by ICT to . '. . % 

. . 
, solvc'the SEC problem. . ~imilarl~;-.3-dimensional ICT problems require a 3-dimensional version of 

. . - 
9 . .  

. - 
Wintcrriilz's Thcorcm which is disc,usscd in this chapter. ~ ~ c c i f i c a ' l l ~ ,  we show that, for a'pla,ne passing 

* 

t 
through the ccnue of gravity of a convcx reglon, 

whcrc r  I \  the ratlo of h e  volumcs of thc two reglons determined by the plane. The crux ~f the argument 

15 [hat for any 3-d~mcnclonal convcx rcglon, rr r~ght-angled cone can bc canstru&cd.that has the same - 

vr)lumc. 9uch that, whcn partltloncd by a plane passing through its ccnfre of gravlty, the ratio of tbe 
, . 

&umes of thcsc two rcglons cstabl~shcs the bounds for .r . The consuuctlon of the cone lnvolves several 

.. 
t t c p  F~r \ t  wc apply thc Schwarr consuuctlon to the or~glnal reglon, c r aong  a re 'gm of the same volume 

thdt  1 s  axially symmctrlc about the z-axls. The cone rs const~uctcd from this symmEtrical Image. 

Schwau's con\tructlon and the cone construction are ddscr~bcd in the next two wctlons. In Scction 2.3. 
D 

uc  \how that the r~ght-angled cone ectabhshcs the rangc-ment~oncd above. -Finally, in Section 2.4, we 
- 

prcwnt the prcwl of the thmrcm , . . rc- q 

4 

i 
> I 2 . 1  The  Schwarz Construction 
, , . - 

G~vcn a c l o d  convcx regron Q, and a Ilne A ,  the Schwarr construction constructs a closed 
# 

con\cx rcglon o! equal volumc. \u?h that the new rcglon 1s axially symrncuic aboyl-A [Blasctike 491 . 
* 

R r ~ ~ l l y ,  lor cccry plmc pcrpcnd~cutar to A that Isltcrsccts @ ,  cm\truct a closed circular d m  about 2. that 

I \  q u a i  In &ca to thc mrcr\cctlon of @ md Lh~s plane, The consuuctcd rcglon is th'c un!G oof-thew c~rcular - 

% b 

d ~ \ i  \ (\cc F~gurc 7 1 ) We u 111 refer to tht\ new -rcg~on as the sywme~ncal~mage  of Q, abouf ';1 . P 



F ~ g u r e  2.1 An example o f   he S c h u a r i  C o n z u u c ~ i o n  

. . 
Theorem 2.1 Let Y denote the symmetrical image of 0 ahout the z-axis. Thc ccntrcx 01. 

I -pp - - - - 

- .  
-. * 

gravity of both @ and ,Y. l ie  in the-same horizontal plane. Furlhcrrnorc, thc rcpon.; ol @ and 
4 

=o 

Y that lic Above this plane.aic equal i n  volumc, as arc. Lhc region, h a t  I I C  twlou 11. 

Proof. Lct p dcnote the. ho r~ lon t r l  elane that pa\ws through the ccntrc ol p a \  rty ol 0 , h d  Icr 
2 

0, dcnotc thc region of @ that 11:s above p . The volume of I \  

2- 

i = = J a ( z j d z  , 

@I 
20 

where A ( z ) is a function that returns the cross-sectional arca o l  cach ch!fcrcht1al sllcc, and [he 

lntcgratlon Iim~ts,  z~ and z,,, , refer to thc z-coordinates of the loucr  and uppcr htrn/onwl supporting . 
. - ,* 

planes, respect~vely,  for @! Slnce p 15 pcrpcnd~cular to the z - a x ~ \ .  thc S c h ~ a r ,  const.ructrc;n , 
.e 

partitions @, in exactly the same manner as the integration iil equation 12.1 1 doc\.  Thcrchrc ,  

' I 1 (  @ ,  ) = 2'( Y ,  ) , whcrc Y ,  is  he region of Y that lie\ a h o ~ c  p . S ~ m ~ l a r l y .  

?I( Q2 ) = V! Y2 ) , where 01 and Y2 &,note thc rcgions of 0 and Y that Ire hclow the planc 

p . Now consider g , the ccntrc of grabity of 0 By dcflntt~on, 
z,, 
J z a ( z ) d z  . i 

Z,," .+ . 
Z g  = 

IZ'( @ ) 

0 

where. zmin  is the z-coordinate of thc lower hori;.onlal supporting planc for 0. Thc cxprc\xron. 

z A( z ) dz , has thc same kalue for corresponding d~flcrcntlal \llcc\ of 0 and 'f' Thcrcltrrc zB 

- 16 - 



* ' .- 
I \  the z-ctx)rdrnatc of the centrc of gravity of Y ,  lead~ng us to concludc that p passes through 'the 

- 

2 . 2  The Cone Construction 
-n 

Let .Y dcnotc a cloxd convex flgure that IS symmetric about the 7-ax~s ,  and whose centre of 

. . 
grdLl[Y colncidc\ wrch thg orrgrn In t h ~ s  \cctron, we wlll conwuct a (right-angled) conc that has the samc 

b 

volurnc a\ Y Frr\t. wc will conqtruct a conc whow baw 1s h e  rnterwcuon of Y and the plane z = 0 

and  who^ a p x  I \  the pornt on the z-ax~c whcrc Y IS supported from above by a horimnlal plane 
. *  

( Flgurc 2.2.h ) . Thc volurnc of this c6nc 1s Icss than or cqual t thc volurnc o f  Yl , thc uppcr part of 

. 
Y .  Now, gradually cxtcnd the apex of thrs conc u p  the z-axis, continuously increasing its vo l~me ,  until 

I [  ha\ the samc volumc as that of - Y,  . Lct A ,  denote ihis .final cone ( Figure 2.2.i ) . Finally, define 

a further cxtcnded conc A by cxtcnd~ng;the sidcs of A i  downwards, shifting its base down the z-axis 

. .. whlle kecp~np 11 pcrpcndicular to the z-axis, until its'volurne is the same as that of Y .  Let A, denote the - 
rcglon o f  thc conc that lics hetow thc plane z = 0 ( Figure 2.2.d ) . A is the union of A ,  and A2 . 

(b) the initial cone 



In the rest of t h ~ s  wcuon, 11 w ~ l l  hc argued that thc ccnuc of gravlry of A d r x ~  not I I C  k l o w  rhc 

centre of gravity of Y .  First wc show t h a ~  the ccnuc of gravity of A, docs-no1 lie hclow'thaf of Y ,  . 

Next, u'c will show that the ccnuc of g r a v i t y d  A, docs not lie helow that of Y,. Finally w c  will 

combine Lhcsc rcsul~s  to show that the ccnuc of gravity of 3 docs not lie helow that of Y .  

Lemma 2.2: The ccnuc of gravity of docs not I I C  hclow that oi Y, . 

'. 
Proof. I'f Y ,  rs a conc, then the two rcglonj arc ~dcnttcal, and hence havc thc \ a m  ccnuc ol 

* - 
&% 

gravity. Qercfore ,  assume that .yI is no1 a conc. Thc union of Y, and A ,  can hc parlitioncd inti) 

thrcc regions:. P, , the set o"i points common to both' Y, and. A ,  ; P, , thc  doughn nu^' or torcridal , 

rcgiob that surrounds the cone and P3 , the polnts that lie solely rn 3 ,  ( Figyrc 7.3.3 ) . Notc t t u ~  a 

the intcrwction of P2 arid P3 is a h o r ~ m n u l  clrclc. 

. , 
- d 

Let g , g,,, , g ,  , gz  and g, . dcn&c the cenucs of gravity of Y ,  , . \ ,  , r', , P, and 
. . 

Ln 

P, , respectively: By  Theorem B.7  , the point gFl lics on the lrne .;cgrncnt g ,  g 2  , d ~ v r t l ~ n g  i t  

S ~ n c c  each rcglon I \  a x d l j  \)rnrncvtc ahoul thc z-axle, the ccn t ro  ol graLrty of t h c x  rcgron\ wrll Irc 
.. 

on the z-axt, kt z y  , z, . c . c, and c, dcno~c  the z-ctw)rd~naw ol thcw porn[$ We can \ 



The last line follows b e w s e  g  yl myst lie bctwecn g  $nd g 2  and similarly, g,, must lie 

hctwccn g ,  and g 3  . Now translate h e  region Yl u d l  venically so that z ,  coincides with the 
I 

orrgrn Thr\ d t m  not affect the rclatrve positrons of the above centres of gravlty. Eqbation [2.3] now 

s p  pli fies to 
9 

4 

*, 

or simply: 

Recall [hat, by construction. the regions P2.  and' P3 meet at a horizcmtal circle, and hence are 

\cparatcd by a horrmntal plane From t h ~ s  11 fallbws that g 3  docs not 11e bclow g 2  . TO see th~s ,  

c.tm.;idcr the intcrscction of P2 and the set of horizontal pldncs. This intersection parutigns P2 into a 
-d 

.wt of rcgrons, each of which IS radially symmetric about the 'z-axis and whose centre of gravity lies in 
< 

the same horimnral plane. Since P2 is the uniorof  these regions, from Theorem B.2 - we can 

concludc that g ,  must I K  on the line segment connecting the centres of gravity of the two regions 

 tia at arc ex~rcme in  the z-direction. Since all of P2 lies below the horizontal plane that separates, it / 

Irom P3 , we can conclude that g 2  does not lie above this plane. A similar argument can be used to 
. %  

show that g ,  docs not lie below this plane. Therefore we conclude that g3 does not lie below g 2  , 

, VOH. what r;'m;i~ns to show is that g,4 , docs not iie below g  yl . (Recall that Y, u d l  have 

tvcn trans1;itcd \rnrcally so tht z; coincides with the origin.) There are three cayis to consider: 



-, 
(1) Suppose that z2' and ~ , , ~ a c  both pos~t~ve: T h ~ s  means that zlrl and z,! arc b t h  pos~tlvc srncc 

they both lie on line segments whose one-cndpointis ihi6rigin and.whosc ither rndpoipl lirs + 

- 

&above the origin. Thercfore,in order to satisfy equation 12.41 . .~e'&ncludc [ha; zA1 ; zlrl . 
v -: , , 

9 

(2) ~ i m i l a r l ~ ,  if z2 and z, x e  both negative, theri z and zAI must holh hc. ncgativc, and again 

z 2 z ,,, inarder to- satisfy equation 12.41 . . 
. ' 

% ;I-, .. 
: (3) FinaJly, suppose that z, 5 0 5 z 3  . ,By Theorem B . 2 ,  z y I  lics in the closcd intcrval . . 

[ Z, , 0 j  . Siqilarly, z lics in [ 0 , z, ] . ~hcre iorc .  once again. z,, 1 . 
\ 

Smce ~n each case zAl <.zy1,', we conclude that * A g, ; docs not I I C  bclow g ,, . + 
'I - 

?: (a) Yl u dl  (b)  cdculating g y  (c )  calculating gA 

\ ..id 

Figure 2.3 Thc ccntrc of gravity of A ,  does not lic b l o w  ~ h a r  of Y, * 

Lemma 2.3: Thc cenuc of gravity of A 2  docs not lie bclow that of Y/2 
Q. 

The proof of'th~s lemma 1s analogous to that of Lcmma 2.2 and w~l l  not bc i tpca~cd hcrc. Notc that a kcy' . 
. . 

point of.this proof is that A, does not.cx'tcnd below Y2 

. , I. , .- 

Theorem 2.4: I f  g ,  rtnd g 9 dcnote the respcctivc ccnlres of gravity of A and Y ,  ihcn 
A 

g, does not lie below g ,. 

Proof:  Let s, = 'Lf(  .Y, ) = 2'( A ,  ) and .s, = 'V( Y2 ) = 'V( A 2  ) . By 
. . 

-?he point g , lies on the line segrncnt g b d  gy; , dividing i t  in  the ratio: 

Theorem 8 .2  , 



Furthermore, thc'rmints g , g and glY, each lie on the p-axis. Therefore we can rewrite 
. . 

equation 12.51 Bs: 

(The absolutc value signs are not needed since by construction, rY2 I z Y  I Z Y ,  . ) Rewriting .- ' . "' 

equation 12.61 gives us: 

. . 
?' 

By a similar argument, we can show &at: , / .  
i' 

. , 
. s l  and s 2  are both positive since they denote volumcs. In addition, z Y ,  i z A 1  ( by 

Lcrnrna 2.2 ) and z Y 2  5 zA2  ( by Lemma 2.3 ) . Therefore, 

d . 
implying that zy, < z,, . Thcrcforc we conclude that 9, does not lie below . g y .  + 

p 
%- 

9 

2 . 3  A Property of Right-Angled C o n e s  

In this scctjon, we will show thit a planc parallel to the base of a right-angled cone and passing 
2 7 through its ccntcr o f  gravity partitions it-into two regions such that the ratio of !heir Golurnes is -- -. 

* '  . 
3 7  . 

1. 

Theorem 2.5: Lct A dcnotc a right-angled cone that is partitioned inlo two regions by a plane 

thit is parallel to thc hasc of the cone and which passes through its centre of gravlty. Let A, 

dcnotc the rcglon of 3 that contains the apex and let Ab denote Lhc other region. (See 
< .  

Figurc 2.4 ) ~ G r a t l c )  of h c  volumcs of 3, and Ab is thcn - \ . . 



V . * i L  - -  ' . . 
- 

&> @ 

''2 J- 
r - .=.- 

Proof: . It. is well -known-&at the volumc of a right-anglcd 
.- - 

.+ 
conc is whcrc r  is thc 

* 
I h - iadius of  the base and h is the hcighr of h c  conc, and ha; the ccntrc o f  g r a v a  of a eonc is 

3 
7 3 

crefore 4p is a right-angled conc with height, h, = ' h , radius r ,  = ' r .  and 
3 4 

Therefore, , 

. Figure 2.4 Partitioning.thc cone into two rcgions. _- - 
2 . 4  ~ r o o f : o f  the Theorem 

. . 

Finally, in this section we provc that Wintcm'itz's pr&f cxtcnds to 1 dimcnsiony. Thc prcn)I . 
* \  

~. makes use of the results of the prcvi0.u~ .sections. 
. , . . ;I 

- . 
d 

The.orern 2.6: Considcr a 3-dimcnsional convcx rcgion 0 ,  which has k i n  partlt~oncd into 

two regions, @, .and 02 , by a plmc that p a w x  through IL< ccntrc of gravity. Thc ratio of thc 
.- r 

. - 
volumes of 0, to. 02. obeys: 



Proof: Assume that V ( @, ) I V ( a2 ) . ' .~btate the plane and @ ; such that the plane 

corncrdeS wrth the z = 0 plane, an&uch that lies above it arid :&,lies below it. 

*.  
(1)' Construct Y by pplying the Schwm. construction to Q! . 

( 2 )  Consqua A  by applying the cone cons*mction to Y .  

-> . _ -  ,. 

Rccall that by consmiction, A  is partitioned into two regions, A,  and A;, by the plane z = 0 , 

such rhal A,  lies above h i s  plane and A2 lies below it. Furthermore, V (  A, ) = V (  @, ) and 
/ 

?/( A2 ) = ?/( a2 ) . By Theorem 2.4 , we know that the cenue of gravity of A does not lie 
-*- - 

bclow the planc z = 0 . ' A horifontal planc, y, through the cone's centre of gravity partitions A  

into rbo regions, A, and . . Ab , which, respectively lie above and below y. It is easy to see that 

- I 

Y , ( A . )  5 ? / ( A , )  ' +and V ( A ~ )  ? ~ ( A ~ : ) C ?  

6 

Thus, % / ( A ,  ) I ?/( @, ) and ? / ( A b )  2 V (  0 2 ) .  

2  7 V t A , )  - - By Lemma 5 , w$ kaow that ,. . - 
, v ( A b 3  - 37  ' 

and since by assumption, 
. , 

- - 
?'( @, ) 5 V (  @ ,  ) , we conclude *hat I-+ 

Y* - 

Had wc assumcd ?'( @, ) 2 2'( ) , we would have fsund by a similar argument that 

27 
Thus, without assumptions, we have -- 'l,'( @ I )  3 7 

3 7 < ' v ( @ 2 )  21 . + 



c 

. 

Chapter 3 

The Smallest Enclosing Sphere of n Weighted Points (SES) 

Finding the smallest enclosing sphere (SES) of n weighted pants  in E~ is aicncral~/ation of 

the smallcst enclosing circle problem (SEC) , which was discussed in detail in Scctions 1.2 and 1.3 . 
, = - 

.- . . 
Since the intuitive discussion presented there, extcnds directly to this prohlcm, i t  will not k rcpcatcd hcrc. . . 

. . 
Onc of ' ~ e  reasons for'discussing.&his algorithm is.10 illusuate the easc with which a solution for an 

- .  -+,- C - %-- 

unweghted 27dirnensidna1 problem car! G-Gbdified to sqlv'e a weighted 3-dimensional vcrsion'of the samc 
-. . , 

"' - PcrC, . 
CL 

. .---_ . _ *., 
,-- ,~- :- z . -- - .* - 

problem. This extensibility w+_dff% sl(&gthr of  b i  ICT approach. In addition, thc first cxamplc of - 7 

- - 
~-, -7  . '  . 

handling degeneratc'convorgcnk $$?&cntGaod &iissed. We bcyn w~th  a fomul dccr~ptron bf the 
> -  - < -  - - - k  -r 

problem, followyl-by a summary of s o w H  the more rccent h~story of both SEC and SES F I ~ ~ .  thc 
4 k 

I C T  algorith* for the weighted SES-probt5fn i s p r ~ n t c d  and discussd. 
' 

I T  ' - - - - * 
Formally; k t  S = { p, I 1 = 1 , . . . , n ] denote a sct of polnts In E~ and lct w ,  dcnotc 

. - -: - - 
T * 

..-- 
.9 

a weight associiti&with eiG3 point k , . s i ~ c h  that w, 2.0 . Finding h e  sm&est cficlosing sphere entails c 
.. 1 . I  

*r - 
finding the point C* t ha~  m@nizes ' - .  

' i 
+ n 

9.- - . . Ma~tpum' ( w ,  ~ ~ i s t a n c e (  c * ,  P,,) } . '  ! . . 
L .  

3- 0 . I =A. . - .  ". >,. I 
.% 
r -- B;_c -- . 

W phr& unweighred will de us% td distinguish problems for which each w, = I ! 
+ .. -!h--- . . . - .  .. . C- . ,. . . . .  < '  < . , - 

5 
' I 

3 . 1  'c. ui;ory SEC ~ n d  SES - . .  
. . . d 

%- 

SEC is a well-studied problem, havrng bccn f i r ~ t  irflroduced ~n to lhe  lrreraturc o v q o n c  hundred 
** 

[ * .  . ,; 

years ago. In location theory, i t  is the minimax cguntcrpari of thc',wcll-kfiown Fcrmal 

and White 741 . . F .  , .  P . .. 
.+ .) . ,&, 

The first publ~shed alg&rthrn for solv~ng the unwerghted SEC*problcm 

pro6lcm [Francis . 

was prcsentcd in 

[Sylvester 1857, 18601 and (Chrystal 18851. This algorith which has co'rnc 19 
< -+ - d$ 

' Chrystal-Pierce algorithm,:convergcs on the optimal solution byponscructing af%equence of enclosing 

'circles with decreasing radii. At le&t onc point of S is dixardcd each iteration, Icadrngo a worst case - 9 . .  

r - 



runnrng trme of 0 ( n2 ) . The expeck3 running time for this algorithm is dependpt upon the selection 

of the initial enclosing-circle. Different initialization steps have bcen suggested by [Nair and 
- 

~hadrasekaran 711 and by [Chakraborty and Chaudhuri i l l  . [Hearn and Vijay 821 have repdned that 

the lnlt1al17ation procedure descrikd by [Chakraborty and Chaudhuri 811 seeseems to provide the best 

?,P 
empirical resulls. 

[Elzlnga and Hcam 72al have taken a different approach to solving the unweightcd SEC problem. 

Ralhcr than starting with a large circle that encloses all of S , they start with a circle that has a radius that 

is less than or $qua1 to bat  of the optimal solution, converging upon .the optimal solution through a 
3 4  

sequence of clrcles with monotonically increasing radii. [Hearn and Vijay 821 have reported that the worst 

case running time for this algorithm is O( h3 n ) , where h is the number oi vertices of the convex hull 

of S . Empirically they found that the algorithm has an O( n ) running time for randomi7cd data. 

[Elzinga and H e m  72bl - have presented two algorithms for solving unweighted SES (of any 

dimension). They have shown that the optimal solution for the k-diinensiqnal problem is-both unique and- 

can bc expressed as the convex combination of at most k + 1 points of S. Their first algorithm 
I v 

uansforms the origlnal convex programming problem into an equivalent quadratic programming dual 

\ 
problem, solving i t  by using the Simplex method for qxidratic: programming in a finite number of s 

1- 

Their second algorithm is ageneralimtion af the approach used by [Elzinga add Heam 72a] . That is, the 
... '. 

algorithm converges on the'optimal solution by constructing a sequence of spheres with monotonically 

~ncrcas~ng radll. Slnce only a finlte number of such spheres can be consacted, the algorithm terminates in 
erl 

Lnrte trme. 

[Sharnos and Hoey 751 have solved the unwelghted SEC pobiefi in O(n log n ) time by 

mak~ng use of the Furthest Polnt Vorono~ Dlagram (FPVD) . In 2 dimensions, the FPVD is a planar 

graph that partitions the plane into a set of convex regions, one region for each point of the convex hull of 

S . Each vertex of the FPVD is equally-distant from at least three points of S. Furthermore, a circle 

ccntered at a vertex of the FPVD whose radius is the same as the distance between the vertex and one of its 
.1 

dcfining points is an enclosing circle for S. Their algorithm begins by finding the diameter of S in 
* -. 



O( n log n ) time. If ihe circle defined by llus d i q n e r  does not enclose the poiits of S . lhcn Ihc FPVD 

C 
is constructed in O( n log n ) time. h c h  of the O( n ) vqnice_s ~f the FPVD arc then chcckcd to scc q 

which has the nearest defining points and hcnce'is the radius of the smalles: encloGng clrclc. The orig~nal 

algo6thm by [Shamos a n d L ~ o c y  751 was incorrect in that i t  did not fin3 thediameter of sct 

initially. 'The requirement for this step has bwn described by [Bhattacharya and ~oussaint 851 ; -. 
[ H e m  and Vijay 821 have solved the weighted SEC problem-by extending bqth I hc  Elzinga-and- . S -  

i. 

I .  . 

Heam and the Chrystal-Pierce algorithms mentioned above. They have reported that empirical testing of 
. .  . . ~ 

both of these algorithrns, along witha third algorithm by [Jacobson R J ]  ~&caled.that the weighted ~lringa: 
.- 

- 
and-Hearn algorlthm out-performed the other two algorithms substanhally. 

[Meglddo 83ab has prescntcd a h e a r  time solut~on for the unwc~ghtcd SEC problcm that utlll/c\ , 

*. 

a technique that has come to be known as the prune-and-search Lechniqee (see Scctjon 5.6) . F ~ c h  itcratlon 

a fixed fraction of the source points are discarded, leading to t& lin& time result. 

[Megiddo 83b] has used presented a parallel algorthm for solving the weighted SEC problem In 

O( n ( log n )3 ( log log n )2 ) time, using a total of O( n (tog. n )2 ) prwcssocs. 

The algorlthm presented by [Castells a ~ d  Melv~llc 831 and [Mclvlllc 851 for solv~ng 

unweighted SEC has already been discussed in Section 1.5 . 
e 3 

.' [Dyer 861 has presented an algorithm that solves thc weighted SES problem in any fixcd 
P .  

dlmensbn in linear time. Dyer begins by linearizmg the problcm, transform~ng 11 to a ( k  + I ) -  

dimensional problem by adding a non-l~near constnlnt. He then applles h e  prune-and-search tcchnquc to 
v 

s. solve -the problem in 0 (  3( ' + )2  n 1.. 
. . 

I - -  

, . [Oommen 871 has present&d a variation of the Chrystd-Pierce algorithm which solves thc 
: ?- 

unweighted SEC problem by optimizing the next circle to be used in the sequence of enclosing circlcs. He : 

- has reponed that some very g d  empirical resul~s have been achieved as a result of this optimization. 

? .  

' 3 . 2  .TheJ ICT ~ l g o r j t h i n  For SES 

- 
In thls sccuo'rr, ICT IS appked to the wc~ghtcd SES problcm. It 1s s h o y  that ICT can bc u\cd 

" to optimize a convex.function without transforming i t  into a problem of one higher dimension, as was done 
. . 

-.. -. 
. .  , 4r 



by [Dyer 861'. The algorithm presented bclow is almost identical to Algorithm 1.1 , which solves the 

unweightcd SEC problem. It differs in that a weighted distance is accommodated; and a different 

- termination predicate ha$ been impl~cmcntcd: Recall that Algorithm 1.1 terminated once r is within & 

of r* . Since this type of termination easily extends to the 3-dimensional weighted problem, it wilfnot be 
, 

repeated here: Instead the following algorithm terminates once g is within & of C* , where & is a 

uwr-specified parameter and C* is the centre of the optimal solution. (This accounts for the addition of 

lmes 2.5 to-2.7 bclow). Recall from Section 1.2 that in this case, degenerate convergence must be 

both dclaxd and handled. \ 

- 
Let COG ( 0 ) dcnote a function that returns the center of gravity of the region 0 and let 

f ( g ) dcnotc thc indcx of the point in S that is farthest (has the greatest weighted distance) from g . 
a 

B 
n 

That is, w ,,,, Drstance ( C ; P ,,,, ) = M a w m m  ( w ,  Distance ( C , PI ) ) . 
I =  l 

PIlroriihm 3.1 : Finding the smallest enclosing s~here  of n weighted points in F~ 

Initialization Step 

1 . 1  Let 6 ,  denote a bounding box for S ; * 

Iteration Step ( i 2 1 ) 

2.4 Let dcnote the half-space containing p;' such that the boundary. of r is tangent to 

phew ( p , , ) and perpendicular to the  line segniept g. p, . 
I 

2.5 I f  ( thc dimension of 0,. 1 < 3 ) and ( Di - 1 lies in the boundary plane of T )  

2 6  then ( set @, to the smgle p i n t  g ) 

2 7 else ( i&= @,. n *k  1 

Termination Predicate @ 
I 

I I >d the ;atex b of a, at 1s farthest fro@- g . 

3 2  I f  Z ) ~ ~ i a n c r  ( g , V  ) < & o 
-% P 

3 3 then ( terminate reporting that Jpherc ( g , r ) 'is t h e  approximak solution ) 

elsc \ contmue to iterate. ) 
t Q 

- cnd of algorithm - 
d C .  I 



4.. s.. 
--> 

b 

, " 

3 . 2 . 1  ~ i s c & i ~ o  A n d  AnalySh, of, dlgorithm 3.1 (SES) 
4. - 

* - -%. 

Let n "de'wte dknum@er of points in S . . , , b 

5 ,  ' 1 i" 

- 
Since C* lies in the convex hut4 of from two to fopr points pi': s , it io~~oww that i t  is contained in a '  

L - ' .  
rectklineaf bounding box that encloses the paints of -S . Such a box can be constructed in O(n ) 

time. Thepf~re  the initialization step requires O( n ) time. 

Now c w s r d e ~  the number of- faccs of the solution rcgtori. do will have at mQst six faccs. Each 
* "1 

1 4  * t 

iteration, the iatorsectio~ on line 2.7 will increase h e  number of faces by a& most one. Thercforc thc 

solutim region will ha* .Q( i ) facqs during iteration i . 
b w * -  * 

I ( I -  
f 

The centre of gravity of @, b,; can be found in time linear to the numhcr of faccs of the region- (sec 

Section C.3) . Therefore link 2.1 can be pcdormcd in O( i ) time. 
' - . :  L - 1 

Line 2 2  requires 6( h ) time since each poikt of S must bc &ck$ , q in ordcr to find thc one that is 

the furthest weightdpls&ce from g . , 
' : 

- 
Notice that r on line 2.3 records the minimumL&ighted distapce! encountered so far. This wcrghtcd 

distance is converted to an unweighted one in order to construct r on line 2.5. r can bc 

, . dercrmined in constant time, given g , p, , w, and r . 

) i s  a &ightcd distance SinceL r 2 r* and since each point on the surface of s p i r e  ( p; . 
I 

of r from p, , it follows that C*  is enclosed by this sphere, and also by f'. ' Therefore the 

intersection on h i e  2.7 will not discard the optimal solution. 
L 

, , . . 

Line 2.5 tests for degenerate convergence. ~e&&rate eohergencc arises when, thc solution region 
'. , 

does not converge in all possible directions. ~ b t  &, . i p a d  ~, of converging to a -3 point. the solution 

region. converges upon either a convcx polygon or line segment that ts.?:not conlined in  
. . 

Sphere( g , c ) : In such a&se, '  Algorithm 3.1. continues to it&atc with a ;solu'tion ;cgion thrk 

has a lower dimension. ~ec&ting of the solution region to a lower dimcnsion is aulomatically handle? 

by the intersection rautine (Section C.4) . Furthermore;the determina~ion - of the ccouc of gravity of 

the region is based upon the dimension of the region, not the dimension of the problem 

(Section C.3). Therefore as long,as we can ensure that a fixed fraction of the remaining solution 

region is cut away each ireration regardless of the dimension of this region. then dcgcncraic convcrgcnce 

is not a problem. In the worst case, the solution region converges to a convcx polygon; ncxt to a linc , r 
\ * L. 



\cghcnt, and finally to a p n t  Aftcr somc time 11 IS conmncd wlthin Sphere ( 8 , .  E )  and the ' 
-/ 

algorithm LcrmrnaLc5 + ' .  
0 * 

A fixed fraction of the remamng $olut~on rcglon a &s&rdcd as long as @, 15 not connlned in the 

plane that dcflnc\ the boundary of f ( for example, see Figure 3.1 .) . Now suppose that @, . IS 
-4 

complclcly contained In the boundary plane of r .  'TRIs means that @, IS  tangent to . \ 

.?pkre ( p ,  , 5 ) at the polnt g . Thus g 1s the optmal s o l k n  and &e algorithm 
1. 

1 

~crminatcs. This is sirnallcd- to the termination &dica& by setting @, to the single &in1 g on ' - 

X The dlmcns~on of 0, can be dctcrinincd In - O( 1 ) tlrile (Sect~on C.2) . Also, it can be - 
dcLcrmlnch whcthc? @,. IS contamed In the boundary of r in constant time, slnce the dafa structure 

, , 

: u.xd to rcprcscnt a 2-d.imcnsional solutiq region als6 records . thc . planc that. the rcgion-lics:i? * .  

(Scct~on C.2) . Thc ~ntcrsectron @, :=.@, , n r on h e  2.1 can be performed in tlme linear 

10 ihc nun&& of facer of ' p, ( S c c t b ~  C.4) . Thcreforc the totaldcost of hncs 2.5 to 2.7 1s 
- 5 

, .* 
' O$ 1 ) ttmc , , 

5. - .  $ * 1 * 

, I ? -  L + . , . b .  t[ . s & G ' ~  . clthcr lie;on - . *  thc boundary + . of f or else IS cxlcrlor to 11, 11 follows t h a ~  thc currcnt solut~on 

'rcglbn wjll be rcduccdby a fixed Tractwn b; the Intctrsectlon on l~nc  2.7 . If  @, is 3-dlmcfisional, 
, X I  ' I  

27 ,of the volume if- 0, 1s d~ccardcd. I f  @, i i  - 
11. k)llo$;i, f~om Thcorern 2 6 ihaf at'lcast - 

64 , 
. .  , - > 

" 2-&~cnironal, then Wmtem~~'~7'hcorcrn guarantees that at least - of the area of O, ,' IS 
- %  

. 'v 9 .. . . '. , r d .  

' di*;c?irf@. -If a, , is  1-d~mcrrwanal, lhEn half of the h e  segment wdl be thrown awiy. 
SY 

U - . . _  , 
. . . . I  

*> ,It). Slncc ~hq & m k r  of vcrhc6 of a convex polyhedron 1s I~ncarly rclatcd.to the numFr of faccs of thc 
'-. % . 

3 , ,& <. - rcgidn, thd icrmlnhtlon pccdlcale rcqulrc5 0( 1 ) tlme. , 

' x .  

I 1  A\ w~lh AIg~rrthm 1 i , a trlmmlng stcp can be added to thc ltcratlon stcp of thc abovc algorithm. 
' 1 

' 

(?he @jo\died&osnon and analyw of Algor~thm 1.1 In Sccuon 1.3 . ) T h ~ s  stcp has not b p  . 
. , ;hu+d  hrhthoa&e of c l a r~y  In 2 d~merwms, all the h c  edgcs can be trmmed to reflect the new 

. . . ' .., . r . - '- 
, . . . 

' > .  . . _minimum . . .  r&us i n  lij)ar' &me. '~awcver ,  this same operation requires O( i2 ) time in the w&st case 
. . . - 

' L  
- . - - .  - 

. ., .. . . d in.3 d&&ions ( for c x ~ r n ~ l c ,  considcr the GXC ;'here the solution region is a pyramid ) . Therefore, 
G .  , 

. . %  

. . . instcad - . .  - . of trimhirig all thc cdgcs of thc solution rcgion, i t  is suggested that Algorithm 3.1 *keep track 
. . . . . 7 . . . - 1  i- 

. n 
. . . . - of the Icrst thr& 'fuihcst' points tha t  have bccn~encounfcrcd along with the edges defined by thcsc 

' 

.% 
. ~ . . 

1 . pinis .  Each $me a ncd rniqimu$ radius is discovered (line 2.3) the last three edges addcd would be 
- .  - 

. . 
. r , . 

2 . .  iirirnnied' . .  tb ;cl~&t, h c  . new . minimum radi-us. Thus the solution region would be cut by a maximum of 
. . = 

l ' fwr 'hhlf-spaces cach'.iteral~on, and hcncc thc operation can be pcrformcd in linear time. (Four half- 

, smccs havc bmn supgcstcd sincc the c*  is a wcightcd distance of r* from between two to four 
. . 

- 29  - 



points of .S. ) The advantage of h i s  step is that i t  would flirther r'educc thc solution rcpion without 

mcreasing fhc asymp~otical tlrne-complcxrty of the algorithm. I t  adhlron. 11 should also hclp to-hrcp 
e 

the solutionmgion more 'centred'. 

(a)  0,. , is 2-dimensicma1 ( h )  0, . , d o ~ ~ s  n i , ~  I I C  ~n hc. hiuntlary r 

Figure 3.1 A f ixed f r a c ~ l o n  of  thc currenl s o l u ~ i o n  rcgion I \  d ~ \ c a u d ~ d  

Thus, in summary, 
'1 

. 6( n ).. tirnc is rcqui'redfor thc initializalion slcp ; 

-4. . " O( M q i . m u m (  i , n ) ) time is required for the ifh itcral~on < 
" O( i ) tirnc is rcquired for thc termination predicate during thc l f h  itcratlon. 

Therefore, the total runnrng time for Algonlhm 3 1 I \  O( 1 * W ~ ~ ~ r n u r n  ( n , I ) ) . u hcrc t I \  t hcs  

. . 
t o h  number of Iierauons performed by the Algor~thm ? 1 

As was the caw for  Algor~thm 1 1 , thc \r/c 01 r -dcpcnd< on > dnd thc arca ol thc ~ n r t l , ~ l  '. 
solullon reglon. Rccall that b e  running tlmc of Algorithm 1 1 I \  Irnur provrdcd t ha~  l ~ x r d  prccr\ron 

floatmg polnt numbers arc used to approx~matc rcal number\ ( Sutlon 1 3 ) Thc w n x  argurncnr can 

, .  extended to show that Algor~thm 3.1 I \  11rrar undcr thl{ wme cond~tron I r  wa\ mcntronc In ( 7 )  4 
' above that, in the worst case, thc solut~on rcglon convergw t~ a convcx polygon, ncxt .to a llnc \ ~rncnt, 6 

and f i h l y  to a point. Thc maxlmum arca of lhc along with 

scgmcnt can bc dctemiin'cd.frorn the initial K,lution'ri3gion. Using an argumcnt 

presented in Section 1.3 , thee  conslanls cin bc dcfincd, c ,  , r 2  and c 3 ,  wh~ch rc.;pcct~\.,cly rcprcxnr 

the maximum number df iterations rcquircd .to reduce, thk splu~ion rcgitin to a convcx polygon,-a Imc. 

segment and finally to a point. S ~ n c e  r 5 c ,  + r.: + c,  . and slncc 11 I \  cxpcctcd .that r << n , wc 

clarm thal the worst caw t~me-complcx~t) of Algor~lhm 3 1 I \  O i n ) H hen lrxcd prccr\lon Iloar~r~g 

p n t  numbers are uscd to approxlmatc rcal number\, 



/ 

Chapter 4 

Testi~g The Separability Of Sets Of P6ints 

Suppow that we have b a n  g~veo  m w s  of pan& and havc bacn asked to dclcct whcthCr or n OP 
their m convcx h u l l i  \hare a common po~nt.  If  m = 2 , hen  the answer can be obtained in lincarlimc 

by solving two linear programs [Edclsbrunncr 871 (page 213) . .( Recall that linear prograrnmingpf fixed 

drmcnsion can bc solved in linear time using h e  approach introduced indcpeildently by [Mcgiddo 83a] and 
-- ~ 

[I)ycr H4j . ) j f  m > 2 , ihen pairs of point sctr would have to be compared and l inwity is lost i f  we 
- 

UK' the algorithm for the ca\c m = 2 . Altcmately, the problem can be solvcd by find~ng the convex hull . 
o f  tach of thc .WL~ a,ld thcn dctcctrng whcthcr the convex hulls overlap or not. The convcx hull of a set can 

hc found in O( n log h ) time, where n is thc number of points of thc scr and h is thc number of 

vertices of theconvex hull [Kirkpatrick and Scidcl 861 . [Chazcllc and Dobkin 87) havc'shown that i t  is 
, 

. p'~sihlc  to detect the overlap of two convex polygons in O( log n ) time, while O( log3 n ) is required 
. . 

to dcl'cct thc overlap of two convcx polyhcd;ons. [Keichling 881 hascxtcndcd their 2-dimensional - .  result, 

showing that i t  1s possiblc to dctcct whether m convex r-gons overlap in O( m log2 _i. ) Lime. In this 

chaptcr, an ICT algor~thm 1s pres&ted that does not need to construct the m convex hulls in order to 

dctcrm~nc if' they share a p o i n t  rn common. This is of interest since improvcmcnts in speed arc often 

ohtlirncd hy climinatingrunncccssary infc!rmation. We believe the ICT solution wiil be very fast since 

c a ~ . h  itcratron approximately one half of thc remaining iolution region is dicarded. I f  the convcx hulls of 

thc \CL\ do o~c r l ap ,  thcn a-~x)rnt that I \  common to all of these convcx hulls lr reported. (Note that t h ~ s  

pmt doc\ not hakc to be an elcmcnt of any of the grvcn sets.) I f  the convex hulls of at least two of q c  

,c.[, do nor ovcrlap, thcn thc algor~thm'tcrminatcs, rcprting that there is no such common point. 
- 

Before thc rnarn problem of thrs chapter can be solved however, a ~cchnique for dclccting whether a 

p ' l n r  lie, in rhc.convcx hull of a scu of poin~s S must be developed. This is sometimes referred to the 

and ha?; k e n  solved ~n l~near time using linear programming [Megiddo 83al : In 

p n t  prohlcm u ~ l l  k solvcd hg.. transforming i t  to a separability. problem of one 



' .  . 

less dimegsiQh. Actually a slightly hardcr problcm is solved - the algori~hrn dislinguishcs hctwccn p i n u  - 

that lic intcnor, on thc boundary or exterior to the convcx hull of thc cct. Funhcrmorc, mforrnnlon that 
.-J 

- 

supports this decision IS  rcturncd to h e  calling routine. For cxan~plc, suppose that g is thc point k i n g  . . - .  
tcstcd and S is a 3-dimensional set of points. - I f  g lics in thc intcritx of the convc; hull of S d m  a ' - 

, . 
maximum crf 4 (  k - I ) , point5 of 5 arc'rcturncd such that g also lics in thc convrx hull ol' t h ~ s  

s .  

subset. This information will bc used in .chapter 5 to coastrucl the initral solution rcgion .for linear . 

programming (LP) problem. I f  g ?.its 0-1 the boundary 6f the convcx hull, thcn a half-spacc that 

conlains S and whosc boundary supporr! S at g IS rctuincd If g lrcs cxtcrror to the convcx hull. 

thcn two half-spaces arc rcturncd - thc boundary of each half-space .;upports S and passcs through ~ h c  

point g . Furthermore, ~ h c  intersection of thc two half-spaccs dcfincs a wedgc that c o n ~ i n s  thc po~nts o f  
I 

S Thc wedge and half-cpacc ~nformarion urU be u\cd lo rcducc Lhc currcnt \olut~on rcgron E.ltamplc\ ol . 

thcx caw; arc ~lluwatcd ~n Figure 3 1 

13) g is interior to h e  convcr hull 
, 

i h )  g licc-on h e  h ) u n d a r y  ( c )  g ~scx tc r lo r  10 ~ h c - c o n v c x  hull 
. . 

The approach uwd ro \ol\e the cxircrnc point problcm I \  \rrnrlar to onc \uggc\tcd in 

[\legiddo Xis] ( Appcndix C )  for \ol\ lng the planar \&\ion of thr\ prohlcrn Frgurc 4 2 ~ l lu \ t ra~c \  thc 

hrcrarchy of routrnc\ that u ~ l l  he d ~ u u \ w d  rn t h ~ \  chapter ' P o ~ n t l n S e t  k rl' , ( k 5 7 ) 1.5 dr\~uh\ed 

~ r r  Sectron 9 1 Thij routrnc \ol \c \  the cxtrcnle pornt prohlcrn by h-an\formmg r t  rnto a ( k  - 1 ) - 

dirncn<r.onal \cparabrlity prohlcrn ~ h c  ~~ran\forrncd prohlcrn, whrch 1 5  wlvcd by 'Setset k D' I 

- 
I X < 2 ) , I \  d~\cu\ \cd i n  Scclinn 4 2 This I \  ~ h c  routine that ~dcntrfic\ and returns mo\t of ~ h c  



k~lpporting information illusuatcd by Figure4.1 . In fact a very tight coupling, exists bet"ween the 
. .  

routines shown in Figure 4.2 - t h ~  supporting info,mation gathered by Setse t1  D is eventually used 

to construct the supporting inrormation returned by ,,,_PointtnSet3D . ( SetSet i  D and SetSet2D are 
' , .  

described in  Scction 4.2.1 and 4.2.2 rcspcctively.. ) SetSet2D is an ICT algorithm which calls 

Poin t lnSet2D tw~ce each iteration. ,.-.The routine m a i n  in Figure 4.2 refers to Alg~ri thm 4.4 and is 

F ~ g u r c  4.2 Thc  hierarchy of [he routines discussed in this chapter 

dcxritxd rn Scction 4 3 . This is the rouhnc that dctcrmihcs whcthcr theconvex hull of rn sets of points 

ovcrlap or not. 

I - '. - 
4 .  I The Point-In-Set Problem / 

r I n  this scction. thc separability of a point frorti a set of points is determined ( the pain:-in-set 

main ---b PorntlnSet3D ---b 
9 

prohlcm ). Let S denote a set of poin~s and let C3/( S ) denote the convex hull o f  S . A point is said . 

PorntlnSet2D 

to hc .rrr~rrily sepc~ruhle from 5 i f  i t  is exterior to C f l  S ) , weakly separable if it lics on its boundary 

t 

and ~ n s e p a r u h l e  i f  i t  lics in thc interior of C3/( S ) . The point-in-set problc"m will be Solved by 

SetSat2D 
- 

trun4ornl1ng i t  Into the problem of detctm~nrng the separabrlity of two sets of one less dimension (the ,set- 
' 

-4 ----b 

sci pro'hlcm). Sincc this approach applies equally well to both 2 and 3-dimensional~roblcrns. only the 3- 

SetSetl D 

" 

dm~cnwmal prohlcm will be conudcrd 

- - 

T w o  planar sets, S ,  and 's! , are said to bc strictly sepuruble if thekc exists a line such that both 

ol the opcn half-planes dcfrncd by this Irne contams one of the sets but not the other. Srmilarly, S1 and. 
s 

.5: . arc sard to be weu& seporahle ~f they are not suictly separatlle, but there exists'a.line such that each 
* .  

0 

01 thr cl&wd half=pl~nc\ dcrrned by this lrne contains one of the sets but w t  the other. S, and S; are s a d  

to ~ t p ~ p c ~ r c ~ h l r  11 they arc nerthcr *c+kly nor smctly separable. The set-set problem arises in pattern 

rc~ognrtlon For e a ~ m ~ l c .  scc [Duda and Hart 731 ( page 13A ) and [Jozwlk 833 [Dobkm m d  - 
, 

R c ~ \ s  XOI  h ~ l c  w l ~ c d  the w - K ' L  prohlem by f i r j t  constructing a polnt-ln-set problem; the constructed 

problan I \  then wlbcd u m g  I~ncar programming. Although thc constructed set 1s of the same dimension 
3, 



as the original two scts, ~ t s  

two original scts. Thus 11 is 

cardinality i b  ( ;;, nz ) , whcrc n l  and nz dcnotcs the cardinality or the 

possiblc for their approach to significantly incrcasc h e  size of thc prohlcn~. 

We will begin by describing thc mapping of a 3-dimcnsional sct S' m two planar scis, -P, rlild 
- . d 

PB . Without loss of generality, assumc that the point to bc tcstcd coincides with thc origin. First, 

partltron the polnts of S tnto thrcc setu, SA , SB and So , dcpcnd~ng upon whcthcr the porn1 I l C \  

0 * 
- 

. above , below or on the planc z = 0 , rcspcct~vcly. ,For now, a\\umc that S,, 15 empty 

. . . . 
Lemma 4.1. Given a planc that passcs through .the origin, points t hd  !ic in onc half-sluc.c 

.dcfincd by t h~c  planc w ~ l l  bc mappcd to,thc other half-space undcr rcllcct~on ahout 1hc orlgln 

Corrcspond~ngly, pointy that Ilc on thc plane w~ l l  bc mapped lo point\ tha~l lc  on thc plmc 
"* 

. , 

Sccond, radially project cach point of S ,  ahd SB onto, thc planc z = 1 . That is,map cach point p to 

the point w~hcrc the linc passing h o u g h  the origin and p intcrsc~ts the planc z = 1 . Noilcc that tlic 

points of SA w,i'll not bc rcflcctcd through the origin by this projcction, hui the poiits o l  S,, will b ~ '  

Let PA and P, dcnotc thc projcclcd imagc of S, and SB rcspccuvely. 

The following thcorcm states that dctcrmining the scparability of thc origin" fmrn S is cquivalcnt 

to dctcrmining thc separability of P A  and P ,  . That is, thc original point-in-set prtihlcm can hc'solvcd 
& .  8. " 

by uansforming i t  ,into a set-set problem of onc less dimension. 

Theorem 4.2 

(1) the origin is strictly separable from S i f f  P A  is slriclly scparahlc from P B  ; 

(2) the origin is weakly scparablc from S i f f  P,  is wcakly scparahlc from Ps ; . . 
. . 

(3) the origin is iriscparablc from S i f f  PA is inseparable from PB' .  
& 

. . 
Proof: First consider the casc. whtrc all thc points of S lic to one side of the planc z =. {) . . 

Clearly S is strictly scparablc from the origin and sincc cithcr P ,  or P ,  is cmpty, P A  -is str'iclly 

. . 

separable from P, in  a ~ i v i a l  way. -From now on a$sume that both SA and SH uc nonkmpty. 



- 
, . 

( 1 )  Assume that the origin is strictly separable from S  . By definition,  here exjpts a plane 

p (d~ffercnt from z = 0 ) , wh~ch passes through the origin and has S  lying to one side of it. This 

implies that SA and S, both lie to the same side of p . and hence, from Lemma 4.1,  it follows 
?. 

, ~ . ,  that P B  will lie on rhe opposite side of p . and hence &at P A  and Ps will ken opposite sides of 
4 * - .  

the line determined by%@ intersection of p and the plane - z  = 1 . This proves that the two - kts are 
. . 

strictly separable. Now assume that P A  isstriclly scpirable from PB . By definition, there exists a 
'3. 

linc in the plane z = 5. such that PA lies to one side of it and PB lies to the other. There is a plane 

through this linc and the origin, such that, all the poi@ of SA lie on the same side a those of SA 

w h ~ k  all the points of SE lie on the opposlte side as those of P B  . Hence, S  Ires to one side of the 

plane defined by the origin and this linc. Thus S is strictly sepkable from the origin whenever PA is 

s~ic t ly  scparable from PB . 

(2) Now asumc that the origin 1s weakly sepaable from S and let p denote a supporting plane of S  

that paws  through the origin. Let p,  denote the line formed by the intersection of p and the plane 

z = 1 . Hcrc some of the points of S  lie on p while the rest lie.10 one side of it. As in the 

prcvious case, the points that do not lie on p dill be mapped to two planar sets, separated by the line 

Q~ ; the rest &the points will be mapped onto the line p l  (by Lemma 4.1) . Therefore, if the 

convex hull  of PA , C3/( P A  ) , and C3t( P B  j are to intersect at all, they must do so along fie l~ne  

p ,  . (Sec Figurc 4.3 .) Recall that, by assumption, the origin lies on the boundary of CH( S  ) 
' . 

Since 11 'ha5 been assumed that So rs empty, the ongm must he on e~ther an edge or a face of 
-. 

[':Y(: S ) . Considcr thc vertices of this edge or face. If the origin lies on a line passing through two 

ol'thc vcrIice5, thcn one of these polntF must belong to S A  and the other to SB , Since thelr radial 

projection onto 9 ,  1s to the .same point, this proves that P A  is weakly separable from P ,  . If the . 

oripln docs not lie on such a line, then i t  must lie in the interior of a triangle dcfi'ned by three vertices, 

. ;;I? S ,  , s2 and S, . First xsurne that one vertex belongs to SA , say S, , and that the other two ' 

bclonp to S8 . Consider thc hnc  hat passes through S, and the origin. Clcxly S2 and S3 must 



lie to either side of this line (in the plane p ) . From this i t  follows that the radial projection of S2 
- 

a n d r l  onto the line p, will lie to either side of the radial projection of S, . Thii mcms thlu a p i n 1  

of P A  lies on an edge of ~ 3 1 (  PB ) . Similarly, if one of the points belongs to SB and the other 10 

SA , then a point of P B  lies on an edge of CH( P A  ) . Therefore 11 can bc concluded that P A  1s 

: weakly separable from P B  whenever the origin is weakly separable from S . By rcverslng th~s  

argument, 'it can be shown that S is weakly separable from, the origin whcncvcr P A  is-wcrrkly 

separable from PB . 

(3) This last case follows directly from cascs (1) and (2) and will not he shown. T h u ~  S I S  

inseparable from the origm whencvcr P A  is inseparable from PB . 

(a) strictly separable sets . (b) weakly scparahlc sets - . 

Figure 4.3 The convex hulls of two planar scls of points. 

Finally, consider the case where So is not empty. Notice that poinu of S(, ccanot he radially 

projectcd onto the plane z = 1 , Furthermore, any point that coincides with thc origin is a special point; 

it automatically guarantees that S is at most weakly separable from the origin. By routing thc poinu of . 

S slightly about the origin, we can ensure that the only poinLs of S that lie in the plane src the ones that 

coincid; with the origin. If it is determined that S is slrictly scparablc from the origin withoul knowlcdgc -l. 

of these coincident points, then the algorithm will report that S is wcakly separable from the origin. 

The following algorithm summarizes  he results of,this.&ction. The function - SetSet2D rcturns 

a rccord of  type Separ2biIjty (ice Figure 3.4 ) . Most of thc~informat~on returned by this rccord is 

gathered dur~ng h e  call to SetSet2D , but thcrc arc two exkeptlon\. l~nc  3 below cauhc\ the dcgcneratc 



, Y 4  

Lau: when: dl the points of S co~neide with the origin while Rnc 6 caiches the case where at least o.ne 

pi)inl of S coincides with the origin. 

Alrrorithm 4.1 ; Solvinr! thc 3-dimensional minl-in-sct ~roblem, 

Funct~on PolntlnSet3D ( p . S ) : Separability ; 

1 .  Translate both p and S so that p coincides with the origin. I f  necessary, rotate the points of S 

appropriately about the origin so that only points that coincide with e o r i g i n  lie in the plane z = 0 

2. Partition S into SA . So and Si.. 

3. lf both SA and SB are empty thcn I return a record that has 

class := weaklySeparable ; info := coincident and list := NIL j 

4 .  Radially project SA and SB .onlo the plane z = I . ,  constructing thesets P A  and PB . 

5 result .= SetSet2D( P A .  P B  ) ; 

h I f  ( result class == strctlyseparable ) and (So IS not empty ) 
'c. * 

h then ( resukt+Aass = weaklySeparable j ; 

7 .  Restore the points o f  S to their original position, plus apply the same transformatio&to the points in 
. A 

. . 

result.list ; (7%~ contents of result.list will be explained more fully whcn SetSet2D is biscussd later in 

the chapter. ) 

X Retur'nJ result ) ; 

end of algorilhm - 

Aside horn the call to SetSet2D , h e  above routine has a linear-time complexity, since each of 

thc steps requires cithcr lincar or constant time. Thus the time-complexity for the above algorithm is then 

O( n ) + T( n ) , where T( n ) is the time required to solve the SetSet2D problem whcn S, and 

S 2  conwin a total of poinlr. In Section4.2.1 i ~ G i l l  be sho& that SetSet lD requires O(n ) 
- 

- pnw. Thcrcforc, t h ~  worst case time complexity of PoinllnSet2D is O(n ) . 

The separability of two planar sets could be determined by using linear programming, as 
. . 

rncnt~oncd in the inuoduction of this chapte'l, and would lead us to conclude that the point-in-set problem is -. 
lincar. Howcvcr, our objective is toLshow that ICT-can also be applied to the' 2-dimensional set-sef. 

- i 
pn,hlcrn Funhcrm~ne. i f p e  two sets arc inseparable. thcn the subset of p i n t i  that p 

caw will  be rcquircd in Chapter 5 . In Section 4.2.2.3 itwill be shown that ~ e t S e t 2 ~  car! be solved 

In O( I * : W d ? ~ r n u r n  { n . t ) ) . where r I S  thc number of iterations performed by the ICT 



algorithm. ~hicrefore the the ~ ~ m e - c o r n ~ l c x ~ t ~  of- PointlnSetSD 1s O( r * M o ~ ~ r n u m  ( n , r ] ) , ,. 1 ' B  

wh~ch 1s O ( t  ri ) for . I  < f << n . 

TypeOflnfo = ( unknown , coincident , cone , halfplane , halfspace , 

wedge , inseparablepdints)'; 

ListEntry = RECORD 
v 

next : pListEntry ;: 

p : Point  -,- .- = - : i- - 
END ; ... - , 

3 " . . . . 
%-..' - 

. .  . . .. 
-+  . -, 
Separability = RECORD 

a class TypeOfSeparab~hty , - . .  

~ n f o  TypsOflnfo , 1 
a *  " .  1 - 

-11st pL i~ tEn t r y  , 
1 0  

* - 

E N D ,  

- Figure 4.4 4 ~ a s c a l - l i k e  data srructure For d c s ~ i b i n g  the   sup pot^ ing i n f o r n i a ~  ion 
r . ~ 

. r . . 

2, . d idcntify -sc&ator i&m&o_n for 5 ;  and S 2  , which :&s discussed Jn thc intrtwluction of 
- .  . . 

4 P- , 
, t h~s  chapter. . 

To fac~lmre the lhEe ck the r~sqlts of Lhl\ problem m h e  polnr-rn-\el problcrn, thc lollowmg - - 
d 

notation will be introduced Let S denote .he poi"& of thc &igi"al point-in-set probldm. Suppose that 

p E S and that q 
- .  

1 ., - 
is the rad1a1 projeclion,,of p-- un thE plane 

. . _ .  ' 

3 - z = 1 (or 
. * 

the line y = l 



+ 
k- 

.- 

- r 
P .  

drmcnwmal) . So Qr q has been referred to as the Image of; p . From now on, p wiH be referred to 
7 , . 

a5 the origmafor of q , and we define the funct~on p ="IP(h ) to give us access to these original * 
% 

3 - 
- 

- 

po1nt5. Thus lf  four polnls provc that S, and S 2  are ~nsepsablc, then from Theorem 4.2 ,  the 
*,A* 

J 
ongrnamrs of hew po~nts prove that S  IS ~nseparable from the ongln, 

4 . 2 . 1  The 1-Dimensional Set-Set Problem IS 

"s, -.: . 
'iktermining h e  separability of two I-dimensional scts is trivial. Since both sets lie on a linc, 

thcir convex hulls can be reprcsentcd by intervals. If the two intervals do no1 intersect, thcn the scts are 

a .  

wrctly scp&ablc; rf they meet at an cndpo~nt thcn the two sets are weakly separabk; otherwise they are 
r 

inseparable. This test can bc performed in constant time once h e  intervals have been determined in O( n ) 
' I 

time. What -is of interest is the information that is captured concerning the location of S  ; which contains 

the originators of S I  and S 2  . The rest of this sub-'section describes this information and presents a 
I 

', convention for rcturning i t  to the calling routine. 

Let a , b , c and d denote the exueme points of the two intervals, ordered jn nob- 

dccrcaung ordcr. F~rr;t suppose hat  S, and S 2  are strictly separable. Each of the points on the line 
3 .  
2 . 

y = 1 that Ire bctwccn b and c separates the two sets (see Figure 4.5.a ) . In fact, the points of S 
2 

arc conlaincd in the cone whosc vertex is at h e  origin and whose extreme rays are defincd by fl  b ) and 

P( c ) , rc_spcctivcly (see Figure 4.5.b) . If either S ,  or S 2  is empty, then the two sets are suiclly 

4 .  

: separable in a trivial sense. In this case s is contained in the cone whose vertex is at the origin and whose 

cxtrcmc rays are debntd by the originators of the extreme Mints of the non-empty set . If the two int6rvals 
. . a, 

arc weakly cep~able. thcn the points of 5 lie in a closed half-plan6 whose boundary passes through f l  b ) 
, - 

and !IT C ) (scc F~gurc-4.6 )'. The correct half-plane can td identified by recording the originator of . - . .i '3 

anotlsr:po~nt that docs not 11c on th~s Ime. If SL and S 2  are ~nsepiuable tl!*en the ofjginators of a , b , 
P 

7 . - d. 
d 

c and d dacrm~ne .that the orlgln is meparable from S (see F~gure 4.7 ) . Notice that any,three. 
I .  

pino that provc that the two scts afe inseparable will do, The only case where four points are required is 

~ h c n  thc two micrvals colnc~dc. 

- 



. ..- 
-(a) S ,  and S2 ale strictly separable. - (b) The cone that encloscs .$ is shtulod 

. - 

. . 
, ~ i g u r e  4.5 Examp, 1 of 2etset <D - strictly- s?parab!e s*. 

b ._ .. 

\yl 

(b) The half plane 1ha1 cncloscp S I \  shaded (a) 5,  a n d , S 2  are weakly separable. 
+ 

a .. ' -.. 
, F ~ g u r c  4.6 Example 2 of SetSetl D - weakly separable sets. ,, 

(b) The rectangle ha t  e n & c s  the orlgln 15 shadcd (a) S ,  and S2 are inscparabIe. 

F~gure  4 7 Example 3 of SetSet 1 D - mscparablc set$ . +. 

The above ~nforrnat~on w ~ l l  be,returncd to thc calling routine vla a record of ty.pc" . 
.> . + 

Separability (which was described in ~ i ~ u r 6 4 . 4  ) . Cb;lsjdcr'cach of ihe ficlds of this record in lurn: 
- .  - 

'class' indica~cs b e  separability of the two scu; 'info' describes the contents of 'list' . I f  S, and S2 are 
d 

strictly separable, thcn 'list' will contain three points, the origin plus !IT b ) and 2~ C ) , ordered in a 



L - - 

L 

. 
~ l w k w r w  dlrcctlon such that [he origin i s ' k  wand-palnt in the list. As Figure 4.8.a illustrates, the 

* P 

wnc that cnclows'S can be-detcrmincd from the Viangle defined by these points: If S1 and S2 are 

that I I C Y  rn Ltac mtcr~dr of the hdf-plane. These points b 1 1  be ordered in a clockwise direction such that 

Tf b$ !7+ .C ) arc the first tworelcmcn~ of the list. Notiw in Figure 4.8.b that the half-plane that 
f 

conkm\ 'S can be detcnhined from the triangle defined by these points. Both mangles will be used in the 

ncxt scctlon to dc~rmine the separability of two planar sets. IF the two sets are inseparable, then 'list' will - 7 - 

pom LO the originators of three or four points that determine this fact. 

. (a)  S1 and S2 are stnctly sepaqble. (b) S1 and S2 are weakly separable. 

F~gure 4 8 The u ~ a n g l ~ s  that encode the supporting information. 

+ .q 

, 4 . 2 . 2  The Planar Set-Set Ptoblem - 

ICT will be tlsed toLsolve the planar set-set problem. Briefly, the algorithm will test the 
+ f 

1 
scpxability-of a point g from both ofihe sets by calling PointlnSet2D twice, once for each set. 'Based 

u p n  thc r c s u l ~ ~  of. t h ~ s ~ c s t ,  ihe a l~or~ thm will either terminate itnm&Iiately or it will make use of the 
. PI' 

separator rnfomat~on rcturricd by PointlnSet2D to reduce the &ea of the solution region. First the 

algorrthm wrll bc prescntcd, followed by a description of 'InseparableOfWeaklySeparableTest' and - 

'ForrhatStrictlySeparablehfo' , two routines called by 'SetSet2D1 .. Finally a detailed analysis of the 
., .:.- 

r 'L . - 
algorithm is prcknted in ~ecti6n&12.2.3 . 



Algorithm 4.2 : Solvinrr the ~lanar set-set problem. . 

. . 
I - 

1. Ini t ia l izat ion Step . e 

, . ,  
1 . 1  Find a rectilinear bounding box that encloses S1 and one that enclose :SZ . \ 

1.2 Let @ denote the htersection of these two boxes. 

1.3 If, @+, 1s empty, then 1 r 1 

7 1 

1.4 Let g denole a point that lies'between the two boxes (see Figure 4 9) , 

1.5 info1 := Po1ntlnSet2D( g , S, ) ; 

/ 1  I I 1.6 1nfo2 := ~ 0 1 n t i n ~ e t 2 ~ (  g , S2 ) ; 
27 

- 1 7  return ( FormatStr~ctlySeparablelnfo ( ( l n fo l  ,_1nfo2 , S1 . -72 ) ) 

2. Iteration St 

2.5 result := ~ n s e ~ a r a b l e ~ r ~ e a k l ~ ~ ~ & r a b l e ~ e s t  ( ~ n f o l  . 1nfo2 ) , 

if result.class = unknown then . . - 2.6 

{ ReduceRegion ( info1 . VAR 0, ) ; ,  2.7 

2.8 ReduceReg~on ( 1nfo2 , VAR @, ,) ; 1 

3. ~er rn 'ha t ion  {Predicate 

3.1 If ( result.class = nknown ).and ( 0, contains only a ' s inglemint .  g ) . ., 

3.2 It := ForrnatStrictlySeparablelnfo( (!info1 ,' info2 , S1-. S2 ) ) )' 

.. 3.3 If ( result.class = nknown ) then continue to'itpate else retu,rn ( result ) ; 
. .. 
. , - end of algorithm - 

B 

' procedure ReduceRegion ( Info , VAR Ol ) ; P r e d u c e ~ e  sobution regron -9 i 

1 ~f Info class == weaklyseparable then 

( let denote the intasectlon of 0, and the half-plane described by Info k t  ) 

2 else if lnfo.class == str~ctlySeparable then 

( let @, denote the intersection of 0, and h e  cone dcscritpd by info 11st 1' 

- end of algorithm - 



8 I$g;e 4 9  The boundlng bnxcs of T I  and S2  are stnclly separable 

-- . ; O  ' - .  

4 . 2 . 2 . 1  .Tesltisg If The Sets A r i  Weakly Separable Or Inseparable - 
9 

LI- 

'I 3 SetSetZD rTunuwal for an ICT algosr~thm sing 11 continues to iterate until an exact solution 

ha\ hccn rcachcd. Thb it 1s Important to identify the separability of the two sets as soon as possible. - 
1 > -  \t k \ 

The routlnc lnseparable0rWeaklySeparableTest 011 llnc 2.5 of the Algorithm 4.2 is responsible for 
t 

dctcrm'lnlng 1f7,thC two scts -ark c~ther weakly, scparablc or inscparablc from each othcr and if SQ, for 

formatting thc wpportlng ~nformat~on that 15 returned. Thc results of t h ~ s  sub-sect~on afc summanzed in . \  
- F+gurc 4:10 . (The columns labellcd 5, afid S 2  In t h ~ s  dmgram are ~ntcrchangeablc.) 

-?? 

I inseparable . 1 ' inseparable . 11 inseparable I 

Scpa rah~ l~ ty  fr'0rn g 

% 

h 

Separability of S  an& 
1 . 2  

b S 
1 

meparable - 
weakly separable 

~nse~arab le  ' 

weakly separable 

F1gure4 10 I ) c ~ e r r n ~ n ~ n g  the ~ e p a r a b ~ i ~ t y  of S1 and S2  based upon their separabdit'y frv-m, g + 

k , t 

@' 

L 

2 

I I I 

Obviously, i f  both 5, and 5: ,are ;riieparabl& from g t h p  S, and S 2  are,  inscparablc.. ,' 

weakly separable . 
weakly separable 

str~ctly separable 

str~ctly separable 

a ,  

Sim~l:~rly, i f  g is imseparahle irorn oncof S ,  a n d  S 2  and w&ly separable. from the other, then S ,  and 
1 

.S: arc' inscparabk. Both of lhcsc cases can bc dctcrhined in constant time by testing .'info1 .class: and 
, .  ! 

b. ' 

'1nfo2 class '  (see Sect~on 4.2.1) . Now consider the' case wherc g 3s. weakly separable from both.6ct.s. 
'A < . ,  . 

I a unknown s t r d y  separable 

( F o r  cxarnpls. wc F I ~ L ~ C  4.1 1 . )  I S  thcrc enough information available to dctcmine ihe separability of . - . 
. . 

inseparable 

e~ther weakly separable or ~nse~&able  

- unk~own 

unknown 

1 - .  
B 

str~dly separable 

% 



Figure 4.1 1 Dist~nguishing bctwccn weakly scparahlc wd ~ r w p r a h l c  s c ~ s .  
I . .  

. . 
- 

. Theorem 4.3 Suppose that g is weakly separable from bo th  Spant i  S 2  . 1x1 .an& 1':  
*:* 

denote the triingles described by 'infof.list' and o2.list' , rcspcctivcly (sce Scctrcin 4 .1 .  I ) . , 
Q e 

- A .  . 
.y, and S2 are ineparable iff uianglcs denoted by 'I., and T2*arc inscparahlc, 

SP ,' 9 ,  

9 
Proof: First consider t dcgcn ,~a tc  cases. I C  ho scts coincide with g then S, and .S: arc 

go 

inscparabic. I f  Lhc poin~.; of one set cdincidc wi$ g but not ~ h c  other, thcn .TI and S?. arc w-ahly 
* .  . . : 

separable. From now on assume that both scts c o n ~ i n  some points that do not c o ~ n c ~ ~ c f ~ ~  with g . 

p- . ,  , ' ssumc that ".!.I and arc inscpardhlc. RccdI that, hy construction. T ,  c_ ( ' . I ( (  .S, ) and 

I ,  c C H  Therefore. 11 I ,  and I, arc irlcparahlc, thcn 5 and \ n , u \ t  J I \ O  lw  

~nseparablc. NO$ awumc that 3; and S2 iifc ~n\~parahIc,  hut ha1 I I and l2 arc not Kct,lll tt1,11 
L 

4% 

the pant \  of - 1 ,  dcfrne cather a contor  a half-planc [hat c n c h c \  thc p r n L \  ol 5 ,  ( A  c o w  ,rrl\c\ 

f % *  

uhcn a xm-tex of the convex hull of thc Let coinc~dcs with Lhc p o i n t  g ) I I  thc po rn t \  oI I ,  dclrnc 

a cone, h e n  g 1: thevertex of the conc; o~hcrwiw g lie\ on the boundary ol the 
@L. 

t ,  
either case, any line that suryons I', at g "must also .;upport .TI . Thc ..;anlc 

>- 

conclude ba t  S, and S2 &e inseparabk i f f  'I., +and 7', arc inscparablc 

,F igure  3.12 S :  conla~ncd In a conc uhilc .P2 I \  conta~ncd In a half plarlc . . 



Thc mdngle\ I ,  and 7 2  arc ~ n q m a b l e  I T  any one of h e  followmg occurs: hey  are comcldent; 

a ~cr tex  of one urangtc llcs In the rntcrlor of the other, and finally, ~f there IS a crossmg edge (see 
-, , 

Frgurc 4 I 3  a ) . It can he dctcrmlncd rf the two mangles are co~ncl&nt In constant time, but the test 

must tx wrc to handle dcgcncratc tr~anglcs properly (see F~gurcs 4 13.b and 4.13.c) . Degenerate 

trranglc\ arrw when thc pclrnt.5 of S, ahd S2 are collrncar. 
e.. 

a )  ~ r~scp i r ah l e  rr~anglcs (h)  inscparablc dcgcnera~c triangles C) weakly s e p ~ l e ' d e g e n n a t e  mangles 

* F ~ g u r c  3.1 I( Exarnplcs o r  ~nscparable and ,weakly separable triangles. . 

In \urnnut), ~f g I \  not 5trlctly xparahle from ather of thc u t \ ,  then the scparab~l~ry of the 
, 

tuo  \('I\ c d n  hc dctcrmrncd In con\lant time OLhcrw~w, the algonthm wrll contlnue to ltcratc until the 

NOW con\rdcr the wpportrng mformat~on that w~ll  @ rctumcd vla d rccord of type Separability 

I f u r  4 . 4  . I I  S ,  and S 2  arc rnseparable, then the fields of this rccord will be set to: 
4 

c l a s s  =. inseparable  ;a ~ n f o  := inseparablePoints  and list will point-to" the originators of 

1 rnfol hst c i  1nfo2 Itst ) . 11 5 ,  and S 2  arc weakly s&ablc, then 11 follows from Theorem 4.3 that 

mfol l~st an; ,1nfo2 lrst dc\crltx tuo  u~anglcs that are weakly separable at g . (Rccall that g llcs 

O I I  thc h)untiary o l  hoth tr1ang1cs.j S~ncc any line that scparatcs the triangles also separates si from S2 , 
P 
i 

I [  IOIIOW's  from Thcorcm A . 2  1hat.a plane  hat passes through this line and Lhc origin will separate S 
' ~ 

Irrm thC orrgln. Such a lrnc can hc found In  conslnnt time. Thus i f  Lhc two ~~~~ire inseparable, then the ,e 

I I L , ~ ~ ,  01  t h r x  rccord urll he wl to c lass  := weaklyseparable  , info := hal fspace  and list will point 

10 .I ~ . t  oi  tour p ) r n l \  that dcfrnc a hall--space that contans S . I f  the separability of Lhc two scls"is not 

Lnoun hen th; rcturncd rccorcj K I I I  haw class := unknown.  



e 

4 . 2 . 2 . 2  Formatting Supporting Information Of Strictly Separable Sets 

The functron 'FormatStr~ctlySeparablelnfo', ~ h r c h  I \  cL~llcd on I ~ n c \  1 7 and 3 3 ol ' 

Algorilhrn 4.2 , is responsible for formatling .the suppomnp inforrnation oncc ir has h c n  dctcrniincd thar 

. 5 ,  and S 2  ai'e strictly separable from cach_othcr. In such a case. S e t S e ( 2 D  should return two hall- . . - .  
d 

spaces whosc intcrscction defines a wedge that conlains S . 
- 

 here arc two conditions under which ~FormatStrictlySeparabIelnfo' is called: cithcr g I S  
> .  

slrictly separable from ' h l h  ,S., and S2" or else ii is strictly :scparahlc from onc o l  the wis  and wcaaLly 

wparablc from the olhcr (It I \  rmpos\rhlc for the wlutron rcglon to hc rctluccd to a unplc pol111 whcm g 

I \  ~ n q k i r a b l c  from one of the w t \  ) I n  both c ~ w \ ,  'lnfol I~st' and '1nfo2 hst' dc\cr~hc t u o  trunglC\, I I 

and 7 2 ,  whrch are werlkly wparahlc at g 

11nc.h for the two trranglcs can he dcterrn~ned Irorn the cdgcs o l  I , ,  and I (schc F~gurc 3.14) . SlncC any 
I . . 

l ~ n c  that separates the uianglcs also separates 5; from S2 . ~ t ~ l o l l o w s  from Thcorcni 4 . 2  t h a ~  a plarlc 
. . I '  

that passes through t h ~ s  line and the orlgrn wrll separate S from the ong~n ' .  Thu5 thc hall-spacch thar 
-. 

dcf~ne  the boundary of the wedge that conliln\ S cm he dctcrmrned from I ,  and l 2  In con\unr I I I I I ~  

NOH con \~dcr  the caw u hcrc g I \  m ~ c t l b  \cparahlc from one of rhc wt \  and weakly q a r a h l c  

trc)m ~ h c  othcr A prohlcrn arl\c\ \Inci. on11 one cpsrator ex]\[\ for ~ h c  tuo trrangles, c \ cn  th,~ugh thc t w o  



le sets. uc ) r i [hm 4.3 ; Formaltrnp the s ~ n m  ~nforrnal~on for striclly separab 

2 resub Info = wedge , 

3 . I f  ( info1 class == weaklySeparabte ) OT ( info2 class == weaklyseparable ) then 
' 1 

4 ( Without loss of gcneral~ty. assume that T I  defines a cone and T2 defines a half-plane, 

as 5hown In F1gure4 12 

\ 5 Lct u denote the p n t  of S1 h a t  is closest to the b a u n d q L n e  of the half-plane 

d d n c d  by T2 and let V denote a point that is half-way between U and this line. 

X Since V i s ' r ~ r i c t l ~  separabls from both sets, construct the. wcdge information as described above 

and rctum it through, resutt.list ; 

cnd of a l g o r l h n  - 

= 
In analy~ing, the above algorithm, lines 1 - 4 and 8 can be performed in constant time, while 

I~nc, 5 - 7 rcqurrc O( n ) tlmc each, whcre n 1s the total number of points of S t  and S2 . 

the trn~c-cornplc'xity of this algorithm is O( n ) time. 

- 4 . 2 . 2 . 3  Analysis and Discussion o f  Algorithm 4.2 ( SetSet2D ) 

Therefore 

Finally, the analysis of Algorithm 4.2 is presented. Assume that S ,  has n, points and that 

5: ha.; n 2  and Icl n = n ,  + n 7 .  

I .  F~rst  consdcr the initralization step. A point that lics in the convex hull of a set will lie in the 

rcctilincar hounding box that cncloscs any one of the sets. Both boxes can be follnd in O( n ) time;. 

thc intcrwction of thc two boxcs can be performed in constant time. 

2 Now coniidcr thc caw whcrc the intersation is empty. In this case, the two sets are strictly scp%rable 

hut thc supporung information still nccds to be determined. This will be handled by finding a point 

g that lics k t w c n  thc two hounding boxes. g can be found in constant time by considering the 

\LWIC.CS of the two bounding boxes. PointlnSet2D . the 2-dimensional algorithm for solving the 
- .  

p,rnt-ln-wt prohlcm. rcquirci tirnr 1;ncar In the number of poinu of the set (Section 4.1) . Thereforc 

t h C  ~.i111 10 PointlnSet2D o n  l ~ n c i  1.5 and 1.6 rcquirc O( n ,  ) , a n d  -0( n 2  ) rime. The call to 



FormatStrictlySeparablelnfo . - wrll requlrc constant trme s r ~ c c  g 1s surctly wparafilc from h x h  

sets. 
- 

- s 

+ 3. Therefore the total cost of the rmualr/at~on step IS O( n ) tlrnc. 

4 .  Now consider the'numbcr ofcdgcs of a solution rcgion. a,, yi4,l havc a[ mas! four cdgcs. During , 

cach iteration, the number of edges of the solution rcgion, will bc increascrl by a1 most two t w a u s ~  thc 

point g lies on the a F x  of each conc, or on thc boundary of cach half-planc useti tb cut Lhc solution 

( lines 2.7 and 2.8 ) . Thercforc, in the worst case, thc solution rcgion will have '0( i ) cdgcs at . - .  

- the beginning of iteration i . e 

5 The centre of grav~ty of thc ~olutron rcgron can bc found tn a trmc hncx  to the nunitxr of cdge4'ol thc 
# 

I solutlon reglon ( Scctron C 3 ) Thcrcforc, thc ccntrc of grakrly can bc found In O( I ) 11111~  . 
I 

6 The two calls to PointlnSet2D on Imcs 2.3.and 7.4 require a toul of O( n ) trmc 

7 .  As was described in 'Section 4.2:2.2, the call to InseparableOrWeaklySeparableTest can hc 

performed constant t~me. 
I 

8 .  Sincc a conc can bc thought of as the intersection of two half-planc, the ncxl solutron rcgion w~ll  hc. 

constructed by intersecting thc currcnl solution region with from one to I o ~ r  half-plancs (lings 2.6 to 

2.8) . The intersection of a convcx polygon and a half-plane can be computed in timc l~ncar i n  the 

number of cdgcs of thc convex polygon (Scction C.3 ) . Sincc the solution rcgron wrll havc at 

most 0( r ) ar the bcg~nnrng of rtcratlon 1 , thrs ~p can bc pcrformcd In O( 1 ) trmc 

9 .  Sincc g lies on thc boundary of cach half-planc that intersects the solution rcgion, jt follows frorr~ 
, 

Wrntcrnitz's thcorcm that the area of the solution rcgion is reduccd hy a1 Icaxt a lixcd lracl~on cach 

, ilcration. 

10. I f  the solution rcgion has bccn rcduccd to a single point g , and g IS  strictl; ;cparahlc frorn c~lhcr 

S ,  or S 2 ,  then S, and S 2  arc strictly separable. This follows from thc fact that thc inlcrsccrion 

on hnc 2 7 does not cut away any of the convex hull of 5 ,  Srrn~laly, the Intcrvxtron on Irnc 2 H 
* -. 

docs not cut away any of the convcx hull of S2 ,=rcforc, rf thc wlut~on region has bccn rcduccd u) 
, --, 

a single point, and thls p i n t  dtxc not I I ~  in the convcx h u l l  of onc of thc x t s ,  then the two scLs mu\[ 

11  I f  the algor~thm 15 contrnurng to ttcrdtc, thcn the urmtnahon prcdr~atc rcqurrcs Lon\lant lrmc u n w  thc 

CAI to FormatStrictlySeparablelnfo ensures t h ~ l  the algor~thm w~ll  urmlnalc In the wont Law, 



- 

thr< call wrll rkquwe 0( n ) .ume (see previous section) . Thcrefore.the total cost of the termhation 

12. There is a termination test that c6uldbe added to thc dgorilhm which results in early teminatiT in 

some ca<es. Recall that any line.scgment that connects two points of 'a sets lies in .the convex hull of . . 

the set. Since 'info1 .list' and 'info2.1ist1 (from line 2.3 and 2.4) bolh contain some p&ts of S1 '.,. 
9 

and .Y2 respectivcIy, the lines c'onnecting these p i n &  can be tested to see i f  they prave.&e s& are s .  

. - . ' ,  

inscparablc. Thrs can lx thought of as a generalization of Thdrem 4.3 . For example, in 

Frgure 4.15 a , the algorithm would termrnaic immediately if th~s  test were implemented since the 

l r n t  segment ab crosses the lrne scgment cd , proving the two sets are inseparable. Without the 

~ L s L ,  the algorithm would'contrnue to Iterate wr~h the solution reglon shown in Figure 4.15.b. 

F ~ g u r e  4 15 -1llustra11ng thc solurmn r e g ~ o n  after one lterauon of Algor~lhrn 4 2 

3 

0( n ) tlmc'is requued for the ~nrt~al~zat~on step. - b 

1: 
I n  thc worst case, the th lteratron requrres 

. : M a ~ ~ m u m  [ O( n ) , O ( i )  , O( 1 ) ) = O( Mac imur i r  ( n , i ) j time. 

O( n is required for the termination predicate. 

7 hcrcforc. the tom1 runnrng trme fo r  Algor~thm 4.2 IS U( r * M a ~ t r n u r n  ( n , r ] ) trme, where r is 

thc n u n i k r  of rterationc performed A5 wac argued at the end of Section 1.3 and Section 3.2.1 , the 

nu~~rbcr of Itcrat~on\ of an ICT algsrrthm can be bounded from above by a constant provided that the 

algorrahm ts ~mplcmentcd using fixed-prcc~sion, floati;lg point arithmetic. Under this assum'ption., t is 

k ~ ~ n d c d  from a h v c  by a consmnt. I n  thrs casc, the running time for Algonthrn4.2 is O( n ) . - 



0 w' B - 
I <  3 

4 . 3  Detecting If The Convex Hulls Of rn Sets b f  Points Overlap + 

, 
Fmally, we are ready to solve" the main problem of t h ~ s  chapter.. In this gccuon, ICT IS usc;cd*%o 

a 

detect whether the convcx hulls of m q ~ c  of points overlap or not. Thc approach used to-wlvc thr, - a 

a 
L 

.r 

problem is much the same as that used In S e t S e t 2 D  ( Algbrithm 3 2 ), Algorithm 4.3 . ~ h i c h  I S  

presented below, has twwways of  terminating: cith.cr,th~ algorithm identifies a point that, lies in the 
I 

<I 

6 convex hull of each of the rn se~c, or else 11 reduces the solution rcglon to a \rnglc polnt that doc\ not Iw 
a . > 

In the convex .hdl gf at least one of the sets. In the formcr'cax, the algorithm report,, 'YES, the convc; 
. D 

hull? of the .rn sets dX o;crlap', and rn the latlcr, 11 reports 'NO, thcy do not ovcrlap' 
- 5  

Dugng each Itcratlon of Algor~thm 4 4 , PolntJnSet3D I \  called a total of m tiriic\. 111 ordcr ' - .  'f 

h to $tcrmine whether b e  centre of gravity of thc'&rrcni\oluts)n region i g ) Ilr\ 10 thr con&x hdl oi 
i 

I . .";;, " 3 

eachgf the rn sets. I f  11 turns out thaf g I \  c l thq mwparahlc or weakly \qpnrahlr lrom each 01 ihc wt\,  
I ,  

, i 0 

thcn the algor~thm tcrm~nates, reporting g 15 common to the convex hull ol cdch ot the m \ct; * 

9 .. 
s 

$Z e Determ~nlng that the sets.do not overlap IS a more dlfflc~rTf ' ?& pr~blcm,  \ i n ~ c  the \olut~on repon , 
1 

.a 
" mu\[ be reduced to.a single polnt I f  g does not Ilc In the convcx h u l l d  each of the S L ~ ,  thcn 11 mu\l%c 

U 

strrctly wparable from at l&&t one of the sets. In th15 ca c rstumcd by Po1ntlnSet3D can hc 
- "  4 

' a  ' 

ukd to xduce the v c h n e  of the solution reglon for8th 
.# 

'i 
.. 'g -, 

pmcible for a slr$e wedge to Educe the soluuon reglon to a 51nglc p n t ,  i l n ~ e  thc ccmrc of gravity 01 ; 
=, d \ - convex reglon lies is its I n t c q j  and slnce g Iks on%c boundary of thcwcdgc The mo5i nllvc wlutron 

4- P 
1 d 

to 2 1 s  proble$ rs to intersect the cbmnt  solutmn reglon with&ac? of Re half-$pax\ r~turncd by <he rn 
L \ ' D 

. . 
call5 to PolntVnSet3D . .Howcvcr, t h ~ \  would require intcrscctlng the \olutlorr rcgrorr withfrom 2 to 

t+ 
'i, 9. 1 i 

~5 4 ~ -  half-spacen c a ~ h  iteratwn, an opera!lon that requmr morc t ~ m i  t hm we are wrlling to \pcnd 
0 & +g -s 

Also only the first ktcrwct~on gkuantccs that the solution rcglon w& bc reduced by a fixcd frdctwn, The * 
' 0  *, &' 

rest of the intcrstxtions may have Jirnited benefit. Instead, a tcst has bccn dcvclopcd t h a ~  dctcrm~ncs 
b .  

* 
whether the result of the intckectmn would k a  s~nglc point. ~f the interscct~on did Lakc placc. I f  u), thc 

kG 

current solution weion is replaced unh  o w  thal conhlns>n'ly the i x ) l m  g . Othcrw~sc. the solubon . 
- 

I )  

* 

3 

- 5 0  - - 
. I .  , e e .  

- 



, % 

2.- 

L. B 

i9 
rcgron I \  reduced by a fixed fractlon by intersecting it with the last wedge that has e n  returned by 

Thc tcst con\lsls of mappmg each of the h half-spaces to polnts on the snrface of a unit sphere, 

and mapprng g to ~ L S  orlgln (the cenm of the sphere). Let n, , n 2 ,  ... , n, respectively denote 
- 

lhc h oul*ard unlt normals. Placc each normal so that its tall coincides with the origin. This yields a 

toul of h points on h e  surface of h e  unit sphere. In Section 4.3.1 , it wil lbe shown that i f  the 

rnappcg pants  are rnseparable from the ortgln, then the intersecuon of the corresponding half-spaces will 

Algorithm h.4 will 'be presented first, followed by a discus@ion of ReduceSolutiarrRegion in 
-. . r  

-. I 
Scclion 4.3.1 . ( R ~ ~ u c e S o l u t i o n R e g i o n  is responsible for performing the termination test desctibed 

L, .. .' 
above and for rcducing the solulion region appropriately. In addition, it ensures that the problem of 

dcgcncrale convcrgcnce does not arlse. ) Frnally, In Sect~on 4.3.2 , a detailed discussron and analysrs of 
,- 

Algorrthrn 4 4 IS prcvxtcd 

Lcl S o ,  S,  , . . .  , 5, ., denote m ' ,sets of points In 3 dimensions. In the following 

algorrthm, N denote\ the lrst oL pornts re<ultlng from the mapplng df the half-spaces, while 
%.  

SaveNormals L\ ~ h c  routlnc responsible for constructing this list. . 
Alrorllhrn 4.3 Dcicciihg whethcr Ihe convex-hulls of rn sets of mtnts overlm. ' 

, . 
Program main ( S1 ,S2); ' 

v 

1 .  Inilialiration Step - 
- - *  1 !, rind a rcct~l~ncar h u n d m g  b o x  that encloses each of  the sets ' Let 6 denote the lntersect~on of the 

? 1 g = rc'<;( @, , ) . 
I\ 

1 7  , , , glnEacfiConvexHull = t r u e .  
P 

LC 

2 h  11 result class == strctlyseparable 
L 

- L 

a .  

co&ex hulls do not overlap 



2.7 glnEachConvexHull .= false . - . - 
/ >-* 

I 2.8 - Let r, and r2 denote the two half spaces dcwrlhcd by result list , } 

2 9 ~f result class # ~nseparable  then SaveNormals( result. g . VAR N ) . 
) P end of for loop */ 

e .  

2.10 ~f glnEachConvexHull ==. false then 
7 - 

, @, := Reduce~SolutronReg~on ( g . N . @, I . TI . r2 ) . 
. t 

3.  Termination Predicate . . , 

3.1 If glnEachConvexHull == t rue,  
C_ 

3.2 then ( terminate. rtporung 'YES. the convex hullc ovcrtdp dr lhc polnr g ' ) . 
. > 

2. 

3 3 eke ~f ( 0, contam o d y  %single poml , g ) 

3.4 then' ( termmate, rcportlng ' N O ,  they do not overlap ' 1 
\ 

3.5 else ( continue to. iteratc. ] ; 

- end of algorithm - 
I = 

-Pi"ocedure .SaveNormals ( result, g ; VAR N ) ; 
- * 

/* . Recall that since g is either weakly or strictly separable from S, . thar .'result.l~st' clcscrihcs c.~$cr cmc 

or two half-spaces that contan all of the po'lnk of S, /* 

1 for each half-space 'fp' ( descr~bcd by result l~st ) do ( 

2 Let n denote the outward unit normal for the half spdcc 'f' kt q tlcno~c thc polnr ~ A I  I \  
* 

y~elded when the tall of n c o ~ n c ~ d e s  w ~ t h  the orlglr, 

3 Append q to h' ,  1 @ ,  

.- end of algorithm - 

4 . 3 . 1  Reducing The Solution Region For Algorithm 4.4 

Three topics wilr be discussed in this section. First, i t  will bc shown that givcn the sct N , a'wt 
Q 

of poinu on the surface of a unit sphere centred at the origin, i t  is possible to determine whcrhcr thc set 

{ g ) '  is the resulr of intersecting the half-spaces that were used to create N . ( The mapping bc~wccn 

; points and half-spaces, and the construction of N was described in the previous section. ) Sccond, the 
3 

strategy that will tx uscd by ReduceSolulionRegion to avoid rlcgekratc convergence will bc 3lscusscd. 

Finally, the algorlthrn for R e d u c e S o l u t ~ o n R e g ~ o n  w~l l  be prexntcd. along w ~ ~ h  an analyv\ of t h ~ \  

algorithm. . - 



. . 

Theorem 4.4 If  the p i n t s  of N are inseparable from the origin, then ( g ) is the result of 

lnterscctlng the half-spaces u d  to create h e  set y .  
. . . " 

ProoT: Assume that the points-of N are inseparable from the origin. From this it follows that the 
- 

or~gln llcs In the l n t e r ~ ~ r  of k convex hull of hhese points. Now map this convex bull onto the .. A 

surface of the vhere as follpvs: map each edge to the smlllest arc of the great tide determined by its 
a-r -. 

. . 
'*P s. 

v@ccs.. This mapping createsa spherical subdivision on h e  surface of thk sphere, consisting -of faces, P 

5rcs . and . vcrticcs. Consider an arbi~ary face of the subdwision. The vertices of this face correspond to +, 

. , , . 

half-spses ~n thc original space whose intersection is an unbounded pyramid,, A , which Rasg as its . . 
..., 

apdx. Let a denote a point that lies in-the interior of this spherical face. Notice that a 

corresponds to a half-space Y ( in the original space) such that A = A n Y .  Thus Y  can , , ~. 
% % 

&,added to the original kt ofhalf-spaces withoutaffecting the result of their intcrseclion. Let Y -  - 

denote a, sccond half-space that has the same boundary as V/ but extends in the opposite direction. 

Observe that ( g ] = A n Y -  . T h ~ s  is the critical observation of the proof: if both Y  

and Y - can be ad'dcd to the set of half-spaces, without affecting the rcsult of the iptersectiori, then 

result of th~s  ~ntersection must be ( g ) . Let b denote the point on the u ~ i t  sphere that , 

N 
corresponds to Y/  - ( a and b are dlametFically opposite ) . Three cases may occur: (i) if b 

* 
coincides with a vertex of the spherical subdivision, then the half-space Y -  is already one of the 

or~ginal .set of half-spaces: ( ~ i )  i f  b lie? in the interior of a face of the subdivision, then i t  follows 

from above that ' ? - '  can be added to the original set of half- spaces^ without affecting the result of 

or~glnal intcrscction; (iii) b lies on an arc bf the subdivision, but is not one of the eridfiints of this 

i arc. T c vertices of this arc correspond to half-spaces in the original space who* intersection 
- 

dctcrmincs a wedge that has g lying on its boundary. Let r denote this wedge. Observe that 

r = f n Y /  - . Thus, Y  - can be added to.the original setof half-spaces without affecting 

thc rcsult of h c ~ r  ~ntcrscction. Since in all thfee cases, Y -  can be added without affecting the result 



of lhC intersection of these half-spaces, it follows that Ihe result df intes&ting the oripnal .is; o f  half- 
' ,  

. ... 

'spaces-must be { g ) . , .. 

PointlnSetSD will-be used to tcst whclher the wigin is insepariblc from N . ,If . i t  is; $@n the. ~ . .  
, . -. 

current solution region will be replaced with a solution region thal contains only- lde point g . Thc' .+ 1 .- . ,- 

correctness of th~s  approach follows dlrcctly from Ttcorqm 4.4 .- Howcvcr, a &esrlon arlws i s  lo the 'a 

J 
- ,-,.- 

, * - 
efficiency crf this approach. . . That is, is i t  posSihle for lh@~erscction of the'sci,of half-spaces to hc 

L 

( g ] when ihe origin i s  separable from N ? The answer i,s no.. To show this, first assume th.1 the 
- ~ 

- .  , 

origin is weakly separable from N . From this it follows that all thc points of N lie in a hemisphere of 

the upit sphere. Furthermore, the great circle that dcfines the boundary of this hemis&erk psssc\ thmuph 

subsct of N , such that the origin lics in the interior of the convexh~ll of this subset.- The intcrscction of 
* 

* I .  

the half-spaces associated with Lhis subset will result in a line. A point that docs not lic on this grcat circle 
.a " 

4 

corresponds to a half-space that will rcducc lhc line to a half,linc. Howcvcr, no furthcr ruiuction is possible 
-. - 

since thcre is no point in t b  opposite hemisphere. ~ h u s  if thc origin is w-wkly s6rimblc from thc origin. 
* " .  

thcn the result of Intervxtlng the corrcspondlng half-spaces w~ll elthcr bc a lrnc or a hal6l1nc I I  the orlgln 
1 

-+-LA 

1s sulctly separable, then the result of the lntersectlon will aqunbounded regron wrth volume .' 
Now consider the problem of degenerate convergence. As' was stalcd in step 7 of Scction 3.2.1. 

degenerate convergence arises when thc solution rcgion does not coyverge in all possible directions. That 

is, instead of converging to a point, i t  converges to a line segment o r ~ a  convex polygon. Under the 

assumptions of Appendix C (that fixed-mecision, floating-point numbers will be ~ised to ap- 
. 

numbers) , Lhe solution region will be recast to a lower dimension by the interscc~ion'ioutinc dcscr 

Sect~on C.4 , once rt has been determined that the vo&nc 1s effect~vely LVO. In ~ u c h  a caw, 
- 

Algorithm 4.4 will continue to iterate with a solution rcgionhat  has a lower dimension. AS-was 
4 

& 
mentioned in Section 3.2.1 , no problems arise as long as a f ixed frac~ion of thc remaining solution 

rcgion is cut away each iterauon. In the worst case, the dut ion  rcgion will convefge to a donvex polygon, 

next to a line segment, and finally to a point. Thus in  practice, it is possible for the solution region K) bc 
s 

. . 
- 5 4  - i .  * %  



reduced to a single point by intersecting it with a single wedge each iteration, even though this is not . * 

p&\r hlc thcorctically. 

So the following question nat&ally arises. Is it is possibfe for solution region to be not reduced 

by a fixed fraction'bch iteration? Recall that the solution region is intersected with a wedge that is defined 

by the intersection of T, and r2 , two half-spaces that are supplied to ReduceS6lutiortRegion via 
* 1 

input paramelm, each of which have g lying on their boundary. It was argued in Section 3.2.1 that, as 
C, 

C e long as ~ h c  solution region is not completely contained in the boundary of both half-spaces, then Qe 

solut~on reglon will bc redaced by a fixed fraction. (For example, see Fi q. ) If it is, then the 

# 
current soluuon y ~ o n  mu51 be a line se&menl&at lies in the line determined by IKe in ion of the 

u 

boundariw qf f, and T2 . Such a case cannot be ignored, since if it arises, Algorithm 4.4 wrll~go into, "P 

v ! 
an infinltc loop: successive centres of gravity will coincide leading lo the same choice of Tl kid  r2 ih, . 

t 

\ 

0 thc rlcrauons that follow. Clearly such a situation can be detected in O( I ) time. However, 6lut shoula 
I 

be done once it is detected? In the following it will be shown that in such a case,'thk calling rouiine 
* 

( ~ l ~ o r i t h m  4.4 ) should terminate since no point of the current solution region'lies in the convex hull of . ' 
& 

h 

at lcast one of the m sets. This will be signalled to fie calling routine by returning @, = ( g ] . 

Assume that the current sobtion region is contained by the line determined by the intersection of . . 
the boundarm of TI and r2 . Let A denote this line. Recall from Algorithm 4.4 ; that the routine 

- 

- '- ReduceSolutionRegion IS called only if g is suictly separable from at least one of the'sets. Let S, 
I > , - 

dcnotc the last set that WAS determined to be strictly separable from g,. In this case, the half-spaces TI 

P= 
i' 

F . and f2 detcrrn~ne a wedge that c o & m  all the points of S, . without loss of generality. assuae that g , 
rt 

,- er 

corncldes wiih the ongrn. Therefore A passes through the origin since g lies bn the boundary of both 

r, and r2 . In the follow~ng 11 will be shown that that there exists a plane that contains A but does not 

lntcrscct the convex hul l  of S, . Therefore no point of A can lie in the convex hull of S, and hence, by 

a'\\umpt~on, neithsr can the a pant of the current soluuon region. Consider the polnt g1 , determined by 
B 

thc tntcrwctlon of A and the plane z = 1 . Recall that PointlnSet3D cmsuucts two sets, S, and 

3, dnd then callx ~ e t S e t 2 ~  to dctcrmine theu separab~lrty. The pernt 6, is last the centre of gravlty 



dCtekined by the SetSet2D algorithm, and it is through this-point that the wcdgc of separators shown ' - 
in Figure 4.14 pass. It is easy t see that any l$e that lies in the interior of this wedge strictly separdtes , 

S, , from S, Z. Therefore, by Theorem 4.2, the plane determined by th~s  linc and the origin for the 3- 
* 

dirrlensional problem will have all the pornts S,. lying to one s ~ d e  of 11. Thus, such a plane cannot \ 

intersect the convex hull of S': Furthermore, since this plane conmns both the at~gin and g l  . ~t must 

F' 
also contain the-line A . Thcrcfore- we conclude that no point  of the current solution region lies in the 

convex hull of S; . 

The following algorithm is a summary of the above comments. L a  0 denote the ongtn. 

i 

Algorithm 4.5 : Rcducin~ the sol'utlon rcrlon for AIgonthnrQ.4. 
- . . * . .  

I - 3 

Funct~on ReduceSolutionRegion ( g . N . Qi,,,. I-,, r2 1 0,. 

+ 1. trnpReSult := PointlnSet3D( o . N ) ; ; ' .  
, 

- .  . . . .* - ' 2. ,if tmpResuk.class -= insepuabje . . 
\ -  . 

3.  t h e n v  ietur? ( Qi, set to the single point g ) 
. n 

4. elSe ( if 0,. I is completely contained in the that &fine thc lpu"darics of 6 and' r2 . 
' 5. then ( return ( @, set to the single-point g r ) 

6. else ( return ( Qi, := Qi, . n rl n r; 1 
\ 

) /* else */ . 

- end of algorithm - / 

Recall that fhe set N has at most ( 2 m ) points. Let 

In analyzing Algorithm 4.5 , 

f denote the numbcr of laces of @, , 
b 

\ 

* 1 

Y)( t m  * Xh+nurn ( m , I, ) i)"time is required for linc 1 ,ewhere i m  ' is the number of . , , 

, 
' I (  iterations of this ICT algorithm. for PointlnSet3D . 

O( f )  , time is required to Gelete @, . and replace it with @, = ( g } . Thbs lines 3 and . 5 , 
' . . 

requi~e O( f )  time. 

I t  is easy to see that the &st on line 3 can be performed in O[ 1 ) time. 

The intersection of @, . , and one half-space requires. O( f )  time ( scc Section C.4 ) . 

Therefore the intersation described on line 6 can be p@orrriui in '0( f j Lime. . . 
. -  

Lie. = 



Z * 
I . -  O( M a ~ l r n u m  ( ([, * M a x i m u m  { m , t ,  ) ) , f ) " 

* time. As y a s  argucd at the end bf Sectioi 1.3 and Sect~on 3.2.1 , the number of ll&at~ons of an ICT 9 
* 

I 

alg<mthm cin hc bounded from ahovc by a constant prov~dcd *at thc algor~thm a implbcntcd using fixed- 
h " . . . - . . 

. , 
,- - ' . p;ircisiori:'~nalin~ point arithmetic. Undcr this assumption, I, is bounded from-above by, a constant. In 

P .' 

e .  

$ .  
-, th r \  ca\e, t k  mnylng llmc for Algorrlhm 4.2 IS O( M a x i m u m  ( m , f ] $ . - 

i \& b 

,* t ' 

' 4 4 . 3 .  &-Analysis qqd " Discussion of  Algorithm 4.4 
+ 

F~nally, the malysll of .Algorithm 4 4 w~ll be prcscnlcd. In the follow~ng d~scucs~on, assumc 
2 - 4  - .  . . 

, * . ::. . . ' .c 
that  ~ h q  scts' S o  , -Sl , r.. -.. 5 ,  . , .have. no , n , ... , n, . points rcspccti~vcJy, and thaL ' ' 

. - "  ,, . >  . ,  . . . 
-I ,,- . - .  . , . . 

. . . m-.= n o  + , n l  + ... + n , , . ;  . dl 
,. . . , 

? 7 .  . ,  . * .' . 
% ;  , 

' .  - ,.. . . . . . 
1 ~ i i s t  consider*thc in!i.li>atich htcp., A poinl that lies in lhc convex hu1.l of all of the sca lies in the,,. , . 

' ,  . - \  , . 

' p&@l,ne,& . ~. bounding b o x  hit crkloscs'each one . . of the scts. Theicforc if  is empty. thc.algorithm 
. . ,  -. . - . ,  , . '  . . cab tcrrn-in& *portin$ thal'th~coavcx hulls dornot ovirlap; A11 thc bounding boxes can be-*found in 

, . .  I.,,' . , .  . - ,.. Op n ) tihe_'und h e i r  in!crseclion,. Ou , can be cor&med i.n. ,0( m ) dmc. S i n c y ~ h  must 
. - . * .  .- . . -.i.' ' . :, . .. . '. haw at lc&fhne .. . elimcn;, . k . < n .  Thqefore , the .,. i!~iiiAizatibri step rc&i?os O( n ) time. " 

I 

1 3 -  

I 1 - 
2 Now ion\rdcr the nirmbcr of fa& of lhc sol~U?n reglon au has a[ most six faces. E?ch @&atmn the 

.' 
numhcr of fxc \  of thc soluti~n rcglon I \  incrcascd by at most tho.. T,hcref?t&. In the yiorkcax.  the 

. *  - 
'1. : 

*, I . so!utitin rcgion~hh is( i ) -faces at the beginning of iieration .i . .-.  .. .. 
a - . . . - . . % >  

. . . . 

. '  C %.,. . . .-. 1 . > .  

, , . - .  . .. . . 

cach'lc\tcd in prdcr I f  g' docs no1 11c in  the convex-hull of a s d .  ?ag S, .' th'cn 

Hull 1, wt to falrc and the iwo ha~f-s~&hefinl& the wedge that conlams S; are - 
,avcd r, and I-. I f  g. IS npt mwparablc from a s'et. &&n thc half-space(%). described by 



* .  
I 

list N . If the for-loop terminates u ~ t h  g lnEachConvexHul l  wt tci uuc, thcn g Ilcs th, thcl 

convex hull of all m sets. 
I 

Now consider the tlrne reqummcnts for thc for-ltwp dunng the l rh  Itcratlon All thc \tcp\ cxccpt tllc 

'&dl to P o l n t l n S e t 3 D  can bc performed ~n con\unt t~nrc Rccall lrorn Scc~ron 4 7  rh,it 

Po ln t l nSe t3D rcqulrcv O(r * %41zT~mym ( n , r ) ) , whcrc r I \  ihc numbu of Itcrat1on\ 
. . 

performed by the ICT algorithm on an input of s i ~ c  . n  . , Thcrclorc, onc iteration of,thc lor.-ltr)p . - 

\ 

. Furthermore, equitlon 13 21 can he rcunllci a\ 

d 

slncc each n, < n  . 
9 

-. . 
In summary, . 

1 
% .  . 



Ihc l f h  I tcratron rcqurrc\ 
" ,  

. . . . 0 ( 1 ) tlmc to dcrcrmrnc h e  centre of gravity of Lhe rcgron . 
'I 

m I 

- O [  n * r  C a  I tirnc for the for-loop 
] = 0, 

Thcrcforc, rn total, ~ h c  r f h  rwration rcqurrc,.' 

I c1 7 (  n ) dCnotc the ~ o h l  runnrng trrnc for Algorrthm 4 3 and Ict t denote thc total numhcr of 

rwcrt;trn\ pdorrrrcd, In this caw, 
' .  

, 1 J a'* , a*. - 
. . <) . , 

. .. . . . , I-' . . T ( n ' 9  = O ( .  n ) + O ( x )  + - O ( t . 1  , 
, . . . .  [4.31 

. o  
. . ' . .  

. . .  . - -. j . . . 

. . 
% - .  

\ - 
A<\un~rng that I <<  n . thc  runnrng rrmc of the , Algorithm 4.4 is 0 ( r ' n  ) since r < r '  . As was . 

# 
- 

.~ri.~rctl a[ thc cnd 01 Sc.ir1011 1 3 .ind Scitron 3 7 1 , thenuinbcr of Itcralronp of an ICT algor~thm can bc 



floating p a n t  ar i thmchc.  L:ndcr Z ~ I <  assumption, cach r , ,  1s houndcd froni atwvc h i  a conxklnt. a s  IS  

In this ca.w, thc running time for A l g o r ~ l h n ~  4 . 2  1s O( n ) 



Chapter 5 > 

~ h c  ~ ~ r n c a r  programmrng (LP)  m+cl m ~ n i m l ~ c s  a llnear function . s ~ c c t  to a set of 1 l n e 2  
0 

. * 
q u d t l o n j  and ~ncqualrtrc\ (con\malnt\) In t h ~ \  chapter wc wdl prcwnt an ICT algorllhm that solves LP  

. & 
In 2 and 3 d~rncn\ lon\  IEdcl\brunncr 871 (page 239) has noted that t f f l c ~ e n t  ?olutlons for low- , 

C 5 
drmcn\lonal LP problem\ have a largc6potcnt~al to dead to efficient solut~ons for o h e r  co_mmon gcomctr~c 

# 

* 
I .  

problem\ For cxamplc, Klrkpatnck and Scldcl'\ O( n log h ) convcn hull algorithm ( h 15 th: number 
' 

- - 
of pornt5 on !he convex hull) cxp lo~ t \  ~ h c  fact that 2-d~mcnuonal  LP  can bc \ol\cd in O( A ) tlmc . 

q - 
[Klrkpatrlck and Scldcl 861 In lac1 many gcorncuic problem\ can be e x p k \ c d  dlrectly *as I1,~car 

4 
0 ' L 

programming prtiblcma of low dimension. This is uuc  of the Chebyshcv line fitting p o b l c m  and the . 
* 

\ m ~ l l c \ t  cnclo\~ng clrclc, whlch will be dc\crlbed latcr In ~ h c  t q s l s  Other cxamplcs can be found In . 
.r '3ie;. 

I Edclsbruflncr H7J (pages 21 3, 2 3 6 2 3 9 )  and [ ~ o b k i n  and' Rciss 801. 

In Sccl~on 5 1 ,  a d c x r ~ p t l o n  of thc gcometrc  rnterprelatlon .df LP  In 2 and 3 dlrnens~ons I S  . > * 

-A 
p r ~ \ ~ n t c d ,  lollouc,.d hy a h r ~ e l  hi\tory of \omc of the r exa rch  that has takcn place la t h ~ s  area 

- ( Scctlim 5 .2  ) . A tIctA~lcd dlscussron of tfic ICT solution for LP is presented in Section 1.3 . The most 

c.t~allcng~ng a s p c l  ol' t h ~ s  solullon has bccn thc crcation of the initial sblution region, which is dcsc-ribcd in 

Scct~on 5.1 1 . The approach dcscr~bcd thcrc consmucts a point-in-sct problem from the constraints, and 

~ h c n  u \ c ~  ~ h c  roullnc\; dcscr1hc3 in Chapter 4 to identify a small number of consuaints whose intersection 

I \  hounded In.all dlrcctlons. (Note that I[- I S  possiblc h a t  no such s , ~ L x !  exists. In this case., h e  ICT 
- 

a l g o r ~ t h n ~  il)r L; tcrnl1nuto ~mmcd~a le ly ,  indicating thc direction in which the problem is unbounded. In 

Ulc other ca*, that I S ,  when the .solutior~ 1s finite but the xt of feasible points is infinite (far example, see 
- -. 

f'ipurc 5.1 .a I , 1 1  I \  cxpcc[cd [hut thc uscr will add a consmaint that results in a bounded region bcforc 
' , a  

rc\txtrng thc proccs\ ) The lrcrarton c o m p n e n t  of thc algorithm is discussed in Section 5.3.2 ; two 
. a 

111~,th<n1\; of r~duc lng  the wlutlcm rcglon arc dlscusscd. Thc first appro,ach is the easiest to explain and 

~ n ~ p l ~ n r c n ~ .  hu1 n u )  lead LO dCgener~tc  convcrgcncc. T h c - m o n d  approach is a much suongcr result: givcn . i 



a an arb~trary Ime, 11 1s poss~ble to ensure that thc next solpt~on rcglon ~ 1 1 1  cxtcnd lo only onc \;I& of a - 0 -0 

i plane that contains this linc. Thus, if thc algorilhm dctuc& that the solution region is no1 converging in a 
8 

e , - 
% 1 

parup la r  d ~ e c u o n ,  then a hrtc pcrpcnd~dular ro th14 d ~ r c c t ~ o n  w ~ l l  hc wpplied, c n w r ~ n g  con\.crgcncc ~n that 
i 

, a d~rect lon.  Termmatmn of the algorlthm.~; d ~ \ c u \ \ c d  In Scctlon 5 3 7 , folloucd by thc actudl 1<7 

a l h r i t h m  in Scction 5.4 . Finally in Scction 5 .5  , i t  is shown that ICT can hc comhincd with the 
Q 

... : prune-and-search technquc,  w h x h  was mdcpcndcntly lntrtxtuced hy [ b l c p ~ d d o  X i a l  and ([lycr 84 I . 
rcBulting in linear-tjmc algorithm [ha! prnduccs an cxact.solutit~.,.  4 - *  . . 

' U  
I 

. . 
?. 1 -I;;llear Programming (LP) I n  2 and 3 Dimensions 

e - 
The dimcns~on o f  an LP prohlcm is dctcrmincd by tho m ~ w ~ n i ~ n i  n u m k r  01 ~rlif~~pwdcrit  v a r ~ a t ~ l c  

I 

in a constraint. Tbc 3-dimcnsiorwl LP prohlcrn chn k sr;ltcd lorn~ally as follouc: 
. . \ .  

minimize 
x ,  y ,  z c 

Thc l~nca r  form a. x  + b ( ; )  + r, ,  : 15 c'dlcd thc c i b j e c r ~ ~ r  or r o 7 1  lunc t ~ o n ,  w h ~ l c  ~ a c h  of the-n 

~ n c q u a l ~ t ~ e s  arc callcd concrrulnrr. Not~cc: that no cqualrt~c\ havc hccn ~ncludcd In thc ahovc con\trarnt\ 
, 

since an cqual~ty is easily rcprcscntui as two incqualitics. For cxamplc, Lhc p lmr  dcscrrhcd hy t h c q u i r t ~ o r ~  

a, x ' +  b, y + c ,  z = dl is also dcscrihcd hy  the incqua11trc.s: a ,  x + h, j + r . ,  z <-il, ar~cl 
0 -: 

Feasible solufions correspond to thocc polnls that cati\Sy ali con\trarntc. Thc ,role ol thc 
, *  

ohjectivc function i s t o  formal i~c  h c  crltcrh for c h k \ i n g  thc hcst I.ca\ihlc wlutron, for cxamplc, one that 

minimizcs'thc,cosr of production. ~ c o m c u i c a i l y ,  cach c t m s ~ a i n t  i~pr.cccnu a c l o x d  hall-space; and thc 

intcrseclion ( F ) of Lhe n half-spaccs corresponds io thc set of' I'cas~hlc polnts. I f  F 1s cnlpty, thcn the 

prohlcm I S  w d  to hc ~ n f e a \ ~ h l e  T h ~ t  ~ j .  no polnt wt15f1c\ all,of t h c  con\Lra~nt\ 

wlutron I \  thc polnt of F u h i i h  1 1 c ~ ' f u r t h c s t  In thc d ~ r t c t r o r ~  

u , b , c ,  I f  F I \  unbounded  ~n th15 dl rcc t~on,  then thc o p t l m ~ l  \olutron I \  a1 ~nlrnrty 



.+ , Otherwise the optima?, solution is a point p E F 'n A ; w h c ~  A - .  is the strpporting plane of F that is 

a member of the l~near funct~ons of constant cost that are defined by h e  objcctlve function, such that A 

bO.pds F In the d~rec t~on  ( -ao , -bo , -co ) ( s w  F~gure 5.1 ) . We w ~ l l  refer to 2 as the objective 
3 

r ,- 
rupportmg plane.  Not~ce that the ~ l o p e  of t h ~ s  plane can be dctcrmlned d~rectly from- the objective 

function. 

."-, F is convex since i t  is the interkction of n half-spaces. This restricts A to 'touching' F in one 

of the following ways: i f  i t  m k h c s  F at a single point then this vcnc r i s  the optimal 'blution for the 
'L 

problem: i f  i t  intcrsccls either a faceor  an edge of F, then many optimal solutions exist, all of them 
' d 

conslam cost. 
.' defined by the 

ohledve funawn 

( A )  A houndctf ?D LP problem (b) an u n b u n & d  2D LP problem 

P problems u llh the s a r y  objecuve funchon \A! F ~ g u r c  5 1 Examples of Fe 

I n  \ u n i m q .  Lhcrc arc h r w  tkpc\ of LP problems, cach hav~ng a gcometrlc ~nterpretauon: 

rnlca\~hlc prohiem\ , 
. 

I c ~ \ ~ h l c  prohkm\ that are unhoundcd In the d~recuon ( -ao , -bo , -ro ) , 

houndcd Icd\~hlc prohlcrn\. guaranteed to havc at l ca t  one f~nlte opt~mal soluhon. 

9 

flistor,p of  1,P .9. 

I.~nc.ar programrnlng uah Srrs~ mtrduccd in the late 1930's by George B. Danuig, who was trying 

to n u . h a n ~ / c  \ ;om of the plmn~ng processes for the U.S. A k  Force. Bcsidcs presenting the LP model, 
, . 

I h n u ~ g  dcs~gncd the '51mplcx r n A h d '  which is st111 the most widely,uscd method for solving general LP 

proh~cln.; Thm art. many W T L ~  that dcscr~hc tcchn~ques for solving the general LP problem, for example, 



s 

[Chvatal 831 or [ P a p a d ~ m ~ t n o u  and S t c ~ g l ~ t l  821. S ~ n c c  wc w ~ l l  con\rdcr only problcms that arc o f  low - ' - a .  = - . 1 .  

d ~ m c n s t ~ n ,  and slncc the tcchn~qucs uwd Po solve LP In Ipw d ~ m c n u o n s  eff~ctcntly arc fundamcnwll) 

d~ffercnl from technrqucs used to solve thc general LP prohlcm ( IEdcl\brunncr 871 , pagi. 238 ) . wc w111 

note only a few of thc rcsulu obmncd for thc general LP problem. . . 
2 3 %  

[Klec an- 721 have shown that the simplex mcthod 's  WOPI case time-con~plcxily i s  
- .  

exponential in the, size of input m ,  whcrc m is thc total nur~ihcr of var ih lc s  and constrq~rits 

(although 11 u s  very fa\[ on avcragc) . 
* + 

*"' '- 

[Khachryan 791 has prcwntcd Lhc e l l~prou f  r n s l b d  for wlvrng LP w h ~ c  h htts*a woril c d c  runnrng ,. 
' ,  

time that is polynomial. T h ~ s  rc'sult is mainlyof Iha,retical~lni>rcsl . ; m a  ihc typical nunlh4 01 

iterations seem's to be vcry large cvcn on reasonably small prohlcms, antlsgch ~ndrv~tlual rlcralron 

[Karmarkar 841 has p'rcscntll'd a variat~on of Khachryan's a lgor~thi i~  which is cxpcc.~cd to hc. 
.2 $ 

- - 
One approach lo wl \ rng [he 7 or 3-drrnen\lonal L,P prohlcrn I \  to I ~ n d  thc ~nlcrwclron ol thr -n - 

I 

con\ualnt\  In O( n log n ) t ~ m c  ( IPrcparata and Mullcr 74 1 ) and' thcn l ~ n d  thc' wpportrng Irnr  hat 

dctcrm~ncs  the o p t ~ m a l  \olutron In O(  log n ) , llmc ( IShamo\ 7x1, ~ c i b r h  7 3 h ) Thu, the lout 

rufinlng tlrnc for 1h1\ approach I \  O( n log n ) [Gurhaj. Stolfr and C'tarkjon X71~ have augmcnlcd thr\ " 

approach40 \o lw  a u l ~ g h ~ l y  d~ffercnt problem, ow hhcrc  1h.c con\ualnl\ of fie 1.P problem arc rclat~yclp 

ut the objective func -I/' o n  changes frcqucntly. They preprocess the con.;lrarnis l n ~ o  a slruclurc such 
. . 

$at, glvcn any lrncar ohjcclrtc funcllon, lhcy Ldn rcpon the porn[(\) m,spac;c that rnrnrrnr/c thr\ lunilron 

9 .-4 

In O( log n ) time. Their prcpro&sslng stcp has two stages: first they .l'i,nd the pdihcdron dcfincd by 

thf in tersuuon of the conwarnl\  O( n log n ) , \uond.-they mapathi\ ptrlyhrdrun'on~o a unrl \phcrc + 

In O( n ) t lmc'  Oncc t h i ~  ha\ be done. rhcn an O( log n 1 porn1 locallon algorrlhrn 
-+, 

( [ K ~ r k p a t r ~ k  831 , [Edcl\brunncr, G u ~ h a \  and S to l l~  K f r ]  ) can hc uwd lo d c k m n ~ n c  the opllmal \olutron 

-11 IS  lnlcrcslrng to note that lhcrr mcthtd of mapplng the-p)lyhcdron onto the unll \phcrc has a lu)  bccn 
P 

uwd by IO'Rourkc 851 and [Zorbas 861 lo o b u n  supporting lrne ~nlorrnahon lor the polyhedron 



An clcgant I~ncw trmc wluuon for LP In 2 and 3.drncns1ohS has b&n prcscntcd by [ B y a  841 and . 
+. 

~n&*endcn(ly by I ~ c g ~ d d o  83ai n e y  managed lo khlcve t h~s  cftic~ency by not constrqtlng the convcr 

~Aull of- F . Instead, dur~ng each wratlon, a fixed fractsoa of the remalnrng conslralnts arc pruned away. 
4 7 '  i 

+ Thu4 the co\t of c2ch h a t i o n  decrca.ws HI a gcomeu~cal progressrm lcad~ng To the h e a r  tune result. T h ~ s  . - 
- I  - 

approach w~ll  hc drscu\wd In mok dclarl In Section 5 4 . 

- [fd'@rddo 84 j ha5 \hewn that the O(n ) 3-d~mensronal LP rcwlt can be gcncral~xd to solve anya 

1.P problem of f ~ r c d  d~men \~on  i n  l~near lrme. Thc trmc-complcxrly of his algorrthm IS O( 2'' n ' )  . 
whcrc k re the d~mcnq~on of the problem and n IS  the number of constra~nts'. [Dycr 861 ahd - 

N o ~ ~ c c  that cvcn for k = 2 or 3, thc above c o n \ ~ n ~ \  arc qu~tc large 

t 

5 . 3  The ICT Approagh 
I 

- i 

A4 mrght bc expcctcd, LP w~l l  bc solved by conwuctmg an ~n!t~al solut~on rcgr6;n that cncloxs 

1 
i % 

. . h c  optimal solution; cach itcration h e  volumc'of thc rcmluning solut~on~region wit] bc rcduccd by at lcast 
. :  - 1. 

a Sixcd fract;on u n ~ i l  the grm~nalion p r e d & c h i i  bccn ht,sficd: b c h  of ihesc steps will be diiiusscd in - 
- 4 

x 
. . 

*ik .,< ' 3 
d c w ~ & w f o r ~  the algon~hrn I \  prcwnrd i n  Secuon 5 4 

# 4 
3 '* , . 

z 

5 . 3 . 1  ~ o n s t r b c t i n ~  The Initial ~ u l u k o n  Region 
- 4  

. Thc w\k ol crcaung an k t ~ a l  solutronXgron for LP 49s becn ukqxctcdl 'y ckpllcngrng, cvcn 
?? D r 

~hough only ? and ;-d~mens~onai L-~"r ,~ob&s have been consldcrcd: Most algorrthrns that d i e  L i d o  

1 .  

lolltrw~ng d c ~ r ~ p t l o n  ha5 hccn taken from [Chvatal 831 , pagcs 443-448 . a 

rcprcscnt lhc n constrarnLs of the problem, cach having k varidblcs. If the problem has any solution at 

H 

f dl. hen 11 has a solutron such that: 



. . 

. - 5  - Z D  J X: I 2 D  , whcrc J = I .  .... k IS.21 
i 

' 

with ,f3. standing for. the total number of binary digits in  the n ( k + 1 ) integers o,, a n d  h, . Ihus 
, - 

h e  po$hedron defined by 15.21 will &close thl'&timal solution rf therc is one. Notsc !hat cvcn when ' 
s. . . 

-i *. " k 3 h e  <due of'D can-bc very largc srncc 11 IS dcpcndcnl on thc numkr  ol >Y)nwarn~s. 
. = - x 

A d~fferent adroach wrll be utcd to construct Lhc rnrtldl ~ C T  tolutron rcgron ' Rr~clly, the rcgron 
, - 

- ;. I= 

wrlt be construetcd b y  rnLcr\cctrng a u~bcct  of at mo\t 4 ( 1G - 1 ) contuarntt, yiherc A < 7 . Clearly 2 ( 
d .  

thrs IS an rmprovem~nt srncc h e  w e  of l h e  totul~on rcgron 15 no1 dcpcndcni upon rhc numhcr o f  , . - 
", consaamts. However, there 1% a drawback Rccall from Flgurc 5 1 a that cvcn when an LAP prohlcm I \  

cons~dercd to bc bundcd,  [he \ct bf fc;rsrbIc pofnts need not 'k  If thc rnrrwuron of all of Lhc iontrrarnt\ - 

I <  unbounded, then clearly rn~tral rcgron wrll also bc unhundcd, L C ~ I L ~  play\ hwtn  wrh any C I ~ I I J ~ I ~  ol 
A = * 

convergcncc Thrs s!lwtion can bc fiandlcd In one of two way\ ether fit algorrlhm c ~ n p d t l  a con\tr,lrnl Lo 
= 

* 

- :-' 
the problem whlch rc\ults In a bounded tolutron region, without al l c ~  trng h e  optlmal holulron, or clw thb 

*L 

P 
algorithnr can terminale, allodmg the user-to add h c  rcquirdd constraint. The lartcr approach.has hccn 

? .  
** * 

adopted In this lhcsrs. 

m u s t h e  maln recult of thrs yxtron I \  that the boundcdnc\t of the tct ol Ica\ihlc point\ can k 

d c ~ h l r k d  by mapplng each constrarnt to a pornt on a unrt tphcrc. thc centre ol thrt tphcrc wrll bc 

~nseparable-from thc mappcd points rf, and only I T  the tct IS  hundcd  r-n all drrcct~on\ (wc  Thcorcn~ 5 4 )  

. F m t  the mapplng of the conctrarntk to porntj on the unrl jphcre wrll bc dctcrlhed, followed by 

-3 - 
. Lemma 5 2 and 5.3.. whrch dc~crrbe test\ thai enable us to dctcrmrnc rf the mappcd ctintuamtt arc 

1 .: 
-bounded ;n a pmcular  direction. Finally the main rcsult of the .section (Thcorcm 5.4 ) is prrficn. ,. 

. , 

, . Frrst consrdcr the two half-plancj shown rn Frgurc 5.2 a lr rt ea\y uo \ec that thcrr lnlcrxxlron -* 

s 15 boundcd from &oyc by any'llne that rt pardllel to a lrnc thdt tupports the rntcruxtlon at a Not~cc 
5 . . 

4. . 
ha t  i t  is not necessary to know the location of thc half-planes in order to detcrmrnc thrs rnformation. .In 

o k r  words, each half-plane can be a r h ~ ~ r a r ~ l y  trandatcd wrthout a f f cc~ng~ the  \el of drruuont  that thcrr 
* 

lntcrxctlon rc bounded In Each ?&mcnuonal conjuamt wrll bc tran\latcd \n that rls.txoundary I $  bngcnt 



- t 

. . 
a > e- 

m a u n i t  irrclo'&nKred at k e  origin and such that the ongin lies m the interior of the ~alf-plan; 
t 

( Figure 5.2.b ) . Thrs mapping has two sidc-cffets first, il transforms infeasible problems into . 
C 

feasrble one5 ( for example, sce Figure.5.3 ) , and second, each non-redundant constraint now contributes 

one edge t the fca\ible region Wc will ignore both of these side-effecls srnce in the end, the solution 
- 

rcgron wrll bc con\lrucled by interwung the ~ r ~ ~ i n a l , . u n & n s l a t  constraints. I f  the intersection of these 

con\tramls tdms o h  to empty, then the LP problem is infeasrblc. 
r * 

(a) n Cb) 
=, 

Figure 5 2 Translabng The Cons~ralnt.5 
a' 

( a )  o r ~ g ~ n d l  ~nfcas~hle problem (b) transformed feas~ble problem 

.r. 

F I ~ U F C  5 3 An ~nfcas~blc  problem IS transformed Into p feas~ble problem by the translar~on 

I c  I \  ntH drrfrcule to  wc  hat a similar mapping can be applied to two half-spaces without affecting 

i 

Lhc see ol dircctrons that their Intcr\ectron IS bounded in. In l h~s  case, each constraint is translaled so that 
A 

11s hountlary is ungcnt t o  h c  unr t  sphcre.ccntcrcd at the origin.and such that the origin lies in the interior 

of thc hall- ydcc  
-7 

Lemma 5.1 The \el of fca\~ble p6inls for a 2 or 3-d~mensional LP proble&rs bounded ~ f ,  and 

only ~ f .  the inlcrscctisn of translated constraints is bounded, provided that t$e vt of feasible point 

IS non-cmpcy. 
. . 
-p 

Th~s  1s srnirlar to the first step of the mapping used by [Cuibas, Stolfi and Clarkson 87) , which 
was mcntroncd i n  Section 4.1 . 



This follows from what has bcen said,,abovc. Before ppsenting Theorem 5.4 . which des&%s the test 
9% 

3 

that will be used to determine whether the sef of translated constraints is bounded or not. two leryrnas that - 

? 

. I r - - s wrll be used to prove t h ~ s  Lhcorcm wrll be ~nuoduced. . ' 

9 

. , 
Lemma 5.2 Conslder "arunlt crrclc that IS centered a1 the orlgrn and let A dcnolc a lrnc thd I \  , 

x 
r' 

, ?' , . 
tangent to this circle at the point a . No% . considcr . a I-& whose endpoint coincides with ;he, . .. - 

' origlm, and whrch intersects the unrt cucle at thc porn1 b . Thrs ray will Intersect A I[, and only 

~ f ,  the length of the shortcr arc connectrng a and b IS less than . 

I: 
Flgure 5.4 illustrates each of the three pos\~b~lrtres. Notrce that the arc length I \  the wmc j?: thc mglc 

1 ' 

that is shown since the circle has unit,radius. - 
v- 

.1 

( a )  arc length < ( b )  arc length = 2 
( c )  arc Icngth i .  : 

F ~ g u r e  5 4 I l l u ~ u a t ~ n g  the three caws of Lernrnd 5 2 ' \ 

4 i. 

Now conudcr Lhe 3-drmens~onal case of !hrs lcmna Two dl\trnct porn& on a \phcrt which arc 

not extrernrtres of a dramctcr Ire on pne and only one grcat clrcle (for cxamplc, a and b In ' 

Figurg 5.5.a ) . ' ~ h c  shorter akconnccting these t w o - m ~ ~ r ;  is .the shortest curve on the surface of thc 

sphere fiat c o n n a b  them: 

Lemma 5.3 Suppose that the blnne A 15 mg&t at the p n t  a to thc unlt \phrre ccn r r cdA 
. - 

the origin. Let b denote the point where a ray whose endpoint ?oincrdcs with Lhc origin 
@ ,  

mtersecu the unit sphere Thrs ray will ~n te rcc t  A- i f ,  and only rf the lcnith of the <h,/horte\~ a r ~  
0 -.  - . .  

R'* 
on the surface df the sphere connecting a and b is Icss lhan 7 

. %* - ,  

Proof: Consrdcr the plane dcfincd by rhe pornb a and b and Lhc orrgrn. 11\ rntcruxhon wrth 

results In a l ~ n e  that 1s tangcnt to the u n i t  sphere at h e  point a , and, 1L5 intcrvctlon wrth the unit 



. . 
' & ' circle rcsults.in a grcai circle that has 8 and b lying on its circumference. ,Furthermore, notice that - ~ -  ..: . 

. I  

>? 7. . - 
thc ray ~ i - i ~ ~ u e s t ~ ~ n  also l ~ e s  k thls p l a y  ihus  by Lemma 5.2. the ray will intersect I if, and 

P . I . '  I .  - only ~ f ,  Lhe Itnglh of the arc connecllng a an3 b is less than 5 (sce Flgure 5.5.b ) . Since this 

I .  

arc Iics on a great crrck, it  mist be the shortest arc p the d a c e  of the sphere that coqnecrs a and 

e 
' b .  P 

-. 

4 . , . . 
. - 

(a) two pornts on a great cucle (b) a 2-d~mens~onal vlew of the mtasection . 
0 

0 

2 Flgure 5 3  Illustratmg Lemma 5.3 . * 

b ,  "- 
We wrll now use the abo& lemma to show that we Fan test whcthcr 0, the intcrscctrpn of the ' , 

, C > 

~~~ln' \ latcd con\lrarnts I S  bounded or not. Smce the apprpach applies equall-y well to both 2 and 3. 
'": 

drmcnsrons, we w~ll dcscrlbqonly the 3d1mensional case. 
F 

I _ 
5 

Theorem 5.4 Let U denote the set of pomts-at which the n translated kons,uaint$ are 
r i 

tangent w t h e  unrt ~phcrc. 4, IS bounded if, and only 'if the orlgrn IS inseparable fmm, U . .( 

< * 

. - 
Proof Q, IS  unbounded l f ,  and only !f. l t  contains a ray ( [ ~ r u n b a t m  671 , page 23 ) . Assume'' 

? 
( I  ' 

that Q, IS bounded, - but that the ongin IS separable from . As we saw in the prevlous chap&, th~s  
* r  ' 

means that there FIISLS a plane that pass& &rough the ongm that has all the polntsd  U fylig e~ther 

... 2 
on the plane or in  one of the two half-spaces defined by the plane. Wilhout loss of generality, assume 

' 

that all rhc pornl! of U Ire on 0.r a b v e  the plane z = 0 . Consider the ray whose endpoint coincides 

- .. 
~ r t h  thc orrgln and pas\cs thmugh  he polnt b =, ( 0 , "0 , -1 ) . ( See F ~ g ~ r e  5.6.  )" Clearly the 

/ 
\hortest arc on the surface of the sphere that connects b to any of the points of U must be greater --I . 

/, . .  
than or equal to f . Therefore, by Lemma 5.3, the ray d a s  not interskt any oilhe tangent planes*: 

, .  
that are assoc~ated wrrh the pornis of U . However, thls conuadicls our assumfiron  hat @ IS - 

,. 

- 6 9  - 



L 

bounded, srncc the boundary of 0 is determined by thcsc planes. The~eforc the origin is inscparahle ' 

from U whc~evef 0 is bounded. * - 
i 

I - I  

Now assume that the origin is inseparable from U , which means thai the orrgin lrcs in thc intcrror oC 
B u 

the convex hul l  of no more than ( 2 * k ) = 6 pan& of U [Gustln 471 . Funhcrmore, assume ,. 
.& 2 : % '  . 

that @ i s  not bounded. 7111s means that thereexlsts spmc ray whose endpornt corncidcs wrth thc . " 

ongin that does not intersect any of the tangent planes. Conqdcr thc point where thrs ray Intersects thc 

unit sphere. From Lemma 5.3 , we kn'ow that the length of the shortest arc on thc surface of the 
IT 

sphere that connects this pomt with any of the polnr. of U must be grater than or qua1 to - -  
.. 
' 0  

2 '  

how eve^, thls means that all the points of U must I IC  In one hcmlsphcrc, whtch contrad~cts our 

assumption that the pointy are inseparable from the origln. Thcrcforc 0 I \  bounded whcncvcr h c  

- 
origin_ 1s lnscparable from U . + 

F l i ~ u r e  5.6 ll lustrat~ng Theorcrn 5 4 

The routine 'PointlnSet3D9 (see Chapter 4) can & i m d  to dctcrrhine whclhcr thc ongrn IS 

~nseparable from U . Recall that not only does ih~s  rouunc return the wparability of the orlgrn from thc 

set, but ~t also returns the followmg ~nformat~on:- if the or~gln I F  either strictly or weakly scparablc, t h c ~  % 

! 'PointlnSet3D1 ieturrg ei~her a wedge or a half-space that contains ihc pojnts of U i. 'if thc scr I S  
* r  , 

;nseparablc from the ongin, then it7returns a maximum of 4 ( k - 1 ) poinls of U - such hat  the origin i 

* 
i s  interior to the conyex'hhl,~ of this subset. The former informatip can bc uscd ~r )  p'rovidc the uscr wik :-:a A ,  ' + ,  .. 

iT C '. , ' . -  
& .  

' .  * 

some indication of thq direction that problem is unbounded in;  the PrlUer hill bc us& to construct thc 
T 2 ff - ," 

initial solution rcgion..;.By Theorem 5.4 .a"d Lemma 5.1 , h e  intersection of the cohslrainl<'tkat dcfind 
I - .  

this subset of points IS bounded. The different stages of the pr&cF\ rcqqrcs umc a\ follows. 
V 

' .  
9 - 

C 



' t ha~  r t ,  rn O( lo  n ) trrnc ' 
\' , 

'i ' 

5 . 3  .,2 The Iteration Step 
'$ 

I t  15 rhc rc\pon~ib~lrty of ltre rleralron step to cnwrC that the volume of the solutron rcgron IS 

rcduccd by a fixed tractihn each ~lcratrdn wrthout dr~ardrng  the optimal solul~on in the procdss. Suppose 
~ % 

4 
t h ~ t h c  \olurron Fcgron ha\ bccn reduced by rntcrsectrrrg i t  wrth one of h e  consuainrs of h e  LP problem.' 

I 

Clearly the optrrnal wlu~rbn w~l l  n i  drsxxdcd In thrs case srncc rt Ires In the rntcrsecrron of all of the . - 
" $ 3 . .  . 

!ot!\trdlnr\ kurrhcrmorc, a\ ldng as $ (thc: ccntre of graGity of  current solution rcgron) llcs rn h e  regiofi 
TC 

thcli'r,\ d~scxdcd,  [hen from Thcorcm 2.6 r~*follows that the volume of fie solutron regron d l  bc reduced -- - 
. . * 

, b) J I  k i s t  d-f~rcd l i r~tron ( FOF cxamplc. see Frgure 5.7.a .} But what ~f g, IS a feasrble porn1 and. 

thcrc 1.: n o  \uih conwarnt" In thr\ c i w ,  lhe solutron regron c m  be cut by a plane that IS parallel to the 
I I -  

e 

k 

objccrrrc \upportrqg planc and whrch p a w s  through g . Such a plane wrll drvide the currenesolutron 
! 

I D  

rcgltrn Into two RglOn\, onc w3R objcctrve valuis grealcr lhan that of g and one (conlaming the ~p t i rnd  

,- 
- \trlu~r;m) . u ~ t h  o h p c t ~ v c  ."a&~ less than ~ h a t  of g . The former regrsn can be drscardcd. 

ha 

( f-lgurc 5 7 h rlh\lraLc\ suc a m e ,  assumng that objtprve functlon IS berng mrnrrnrsed. ) Smce g 
1 

, .  
S 

ef'i - 
I IIL..; on . thC h w n t h q  df the half-space, thrsensurcs thatcthe volume of the next solution region will at post 

4 



that contains this linc. Thus. 1.f the algorithm dctccts that the .solullon rcglon I \  not converging I I I  a 

particuliir dircction, thcn a linc pcrpcndicular to t h s  direction will G supplied. cnstlring convcrgrncc 111  ha^ 

direction. Furthermore, i f  thc linc p a w s  through the ccnlrc of gravity of the current solut~on rcgron, thcn 

i t  follows, from Theorem 2.6 that volume of ~ h c  next solution will hc a fixed' fraction ol t t ~ r  01 11, 

A I-dimensional .LP problem will k constructed and s;)lvcd-in order to dctcrrnrnc thc hall'-spaces 

9 

that will'bc used to reduce the solution rcgion. The I-dimcns~onal problcin is l'ormcd by rntcrscctirrg h e  .> 

given linc with the original constraints. Thc same objcctive function is u.wd lor,both problcms; ,the I -  

dimcnsiofial problcm is feasible i f  thc given linc intcrsccts ~ h c  sct of fcasiblc points for thc origrnal 

problem. Some examples arc shown in Figure 5.8 and 5 .9 .  Not& that in  thcsc diagrams, i t  IS  assumed 

that the objcctive supporting plane is horizonul. bounding the wt of feasible poin~s from hclow. 



. . 

( a )  an l n f e h ~ h l c  I ~ d ~ r n c n ~ ~ o n a l  problem . * .  ( b )  curling'~hc solut~on rcglon .- 
3. , . . F~gurc  5 H A n - ~ ~ i f c a s ~ h l c  1 f@nc.ns~onal LP prohtcm. - .  

. .  

. . 

. . 

( , I )  a fc.i.;lhlc 1 d lmcn\~onal  prohlcm (h )  cu t~ ing  h c  solution region 
' 1 

, Flgure 5 .9  A fea ib l e  1 -dimensional LP problcm. - ,  

Thc  I -d~n~c.n\lonJl prohlem shown In Flgurc 5:8a 1s mfeaslhle and the consualntr. thatpprove . 
' h ~ s  LO hc'rhc cdxc w~ll  bc uscd LO rcducc the vo l~me  of rhe current solution region (sec Figure 5.8.b) . In 

. . . + 

F-~gurc 5.9.3 , ~ h c  f&sihlc point thar minimiz'cs the objccrive function ( g b  ) is idcnbiYi~d. Since g b  is 
'? 

J fca\~hlc prjlnr ol thc or~ginal LP problcm. a half-space whose boundary IS parallel to' th,e objective 

wppcmlng plane H 111 u\cd to reduce the volume of the current soluuon rcglon, along wllh Lhe constralnt\ . 

t h ~ t  dcflncd r h ~ \  point 
, 

Somc cic,f'in~t~ons and nourlm will he introduced before the algorithm is presented. Without loss ~ 

R 

of  ycnc ra l~ t~ ,  a.;surru?"'hal rhc ot-jccuve supporting plane is horizontal, bounding the set of fea~ible points 



._ - 
G 

prohlcm into threc ,groups: tho* whosc bountiar~cs uc parallel to the I ~ n c ,  those   ha^ conl;rln onc  cwd 01. 
.,. 

thc linc and thosc that contain the o t h c r c n d  of the I ~ n c .  For c l a r ~ ~ y .  S O I I I ~  n o u b o n  wrll k in@txfuccd [ h i t  

T h e  following a l g m t h m  c(in\truct\ '~lnd w l v c \  thc I -d rn lcn \~ona l  prohlcm In r ~ n r c  I ~ n c a r  to thc 

number  of  c o n s t r a ~ q l \ .  In a d d ~ t ~ o n  11 rcducc, thu ~ o l u r n c  of thc currcnt  \ o l u t ~ o n  rcg~c;n, 0, , . h i  

Note Lhatin thc following that q, and q, dcnole che half-linss that r c s u l ~  I'rcim rcspcctivcly.in~cr.~cti.rrg 

the constraints that arc h u n d c d  from above  and below with A .  For cxamplc,  in  Figurcs 5.8 and 5.0 , .. . 



Alcor~lhnl 5.1 . Kcduclnr thc volumc of L ~ C  s~lulion rcrrion for 3D LP. 

ReduceRegloni A . @, , . VAR '@,  , feas~blePo~ntFound . opt~mal  ) , 

0 .  - \ For each constranr r' ( 

3 I I f  f I S  parallel w ~ l h  respcct l o  i . 

_? q,  n q h  a \  not empty I* scc F~gure  5.9 I* 0 

feas~blePolntFound . - - t r u e  . . . 
. . . . 

opt~rnal - g~ : . . 
1 j T  . 

~. 

I t  t hc . 'h )und;wy 0 1  f b  I \  parallel k i thc  objcc t~ve ; u ~ - h n g , $ ~ e .  f _ . , 
. - . ' d j " .  

thcn FCI  a, 10. t h ~  s ~ n g l c  ptnnr g b  . , . 

. /  ,,I, .?.. . 
b ( )Ljicn+ 151.. 

< 
1 a plane drawn through gt, ha1  1s piallc_l the objective suppr t ing  plane will cur rhc set of feasible 

. . . . " p ) ~ n I s  1n10 iwo r cg~on \ .  thc ~ b j e ~ l ~ v e  values of one rcglon w11l bc greater lhan the objccrlve vdues  

'h ,  return . 

Analysis and  Discussion of A lgor i thm 5.1 . . 
I i +-" ;- 

A\wnc .  t h ~  cllhcr L c orlglnal LP problem I S  mI&s~hlc'or e l \ ~  that a, I contains thc opllmal - !&J t 



- * "* t .  

2 ,  Stcp 7 conxtructq and-solbe\ the I - t I ~ n ~ t ~ n ~ ~ o r ~ a l  1.P prol>lr,n~ I t  kc.p~n\ h ?  C*\;III~IIIIII~~:IL~~ 01 tkc - - 7 

conStra~ntyarjd dctcrrn~n~ng 1 1  11 1% p a r i ~ l l ~ l .  h ~ ~ l u l c d  I n m  ;ih)\c or ~NJI I~C-J  luw k l o u  u l t h  n-\;lwt.tOtt) 

\upP~;rt~ng plarrc. Clcarly, A I! not horl/;,rltal .cmi.c o t t ~ ~ r w r \ ~  Stl'p 2 *t uorrltl h~rvc ~ ~ ~ * I L ' ~ I I I I ~ I Y ~  111; 
b 

r', IS a parallcl constraint. 11 I.; easy to 3cc 111tkt g h  (whrch IIL.\ III I',, ) ,I, tlic pthl% (,I qU i . ,  1 1 ~  . 

N o w  consldcr the caw uhcrc fb IS not parallcl to Lhc ohjcc.tlvc supln)r[rrrg planc. NOIIL.~ tha~  thl\ I\ 

5 .  Since the v ~ l u m c  of thc scllution rcgltrn IS rcduccd hy intcrwcrlng ~ l t h  hall-rpacc.\ III~II conti1111 tht. 
. . 

opt~mal  w lu t~on .  thc opt~mdl wlutron will not tx dl\cardcd hy thl\ ~ l g o r ~ t h ~ ! ~  
d 

of the solutibr! region, and hcncc w ~ l l  not rcducc 11 any further. An  cxanrple of this 1s shown III 

' Figun: 5.1 1 . The diagram rllus~ratcs two successive calls to A lgor~thm 5.1 . In h ) t h  cases. ' A I\ 

. t a.vErtical line that intcrsccts thc solution rcgioran'il in holh crlscc. f', I\; thc sanlc con\tralnt. 



cannot be deleted after ILS first use, since otherwise we could not guarintee ., that gb is a feasible point 

in . . of Step 4 . Instead. the intcrs t ion routine (Scction c.4) should, bemodified so that it 

ug$  each conjua~nt  that IS rntcrxcted w~lh  the solut~on rcglon That way, the routlne can detcct 

whcthcr 11 has encountered a c'on\ua~nt previouclp, and Ignore 11 i f  I t  has. Note that slncc To I $  

con\uu~tcd afrah each umc, 11 will Away5 be uwd to reduce the w l u t ~ m  reglqn. - - 
\ - _ -  

5 

F ~ g u r c  5.1 1 l l lus~ra!ing two succcss~vc  calls LO A- lgor i~hm 5 . 1  . 
, 

Now rons$rr the runnlng time of Algorithm 5.1 . I t  is easy to secthat  this algorithm wiil 

rncrcaw the nurnkr of lac?\ of toht~ein reg011 by at most two. Thcrclorc each ~nterskcuon operauon can 
6 

hc pcrforrncd rn O( /, ) Llnrc, whcrc f ,  1s the number of faces of 0, , Thu\ the total running tlme for 

rhc slgorlthrn I \  0 ( M114 l rnu rn  ( O(  , f, ) ) ) , w h ~ r c  n I <  the number of conctrarnts of the 
- .  - - ' +  

1 ~ 0 h l ~ m  *.d 

e . P 

.l'hec;rem 5.5 Alpor~thm :.I ensures that thcrc exists a plane ih?t contains A such that 0, 
b. 

' . cxlcnd~ to only one srde of this plmc. . - 
, - . . 

Proof: I n  ordcr to prove the theorem. 11 will be ~ h o w n  that there exists at least one plane that 

w.pxalcs .b, from A,. Consider each of the ways.of consuucting 0, . 

( 1 )  On lrnc 3.1 , @, IS  constructed hy intcrsccting 0,'. , with a cons~a in t  whose Qoundpy is 

parallcl lo  A hut dm\ not.coniarn A Clearly, the boundary of thls half-space w11l separate 

0, and A .  - 
8 

(3 I f  the bundaricsof Ta and r, arc parallel to each other in case 1 of Step 5 , then will . 

hc. cmpry and hcncc the  heo or em is uivially true._ Otherwise, Ta n Tb will define a wedge 



that docs -not ln tcrscc~ A . (Othcrwisc, 7 ,  n r], wiwld not be p n p t y .  - .  ) Thcrcftuc. 
7 

that scparatcs 0, from 1 . . 

. . 
A . I t  I S  clear from ahovc t h a ~  the boundary ofr  I'h IS  not p;1r;~IIc! to the O ~ J ~ C ~ I V C  

. . 
supporting plane, and hcncc is not parallel to thc twundky o f -  I ; ,  Thus I;, n I \  

a ueiigi  and thc polkt gh  I \  a b l n t  on the cdgc :)I thl, wedge T ~ U \  LhZ\ ~ 0 1 1 1 1  g b  O I L I ~ C . \ .  , 

C 
1 Into two hall-line\, one of uhlch 14 complctcl) conu l t~cd  h)  f,, and onc ol wh~ch  I \  

complctcly cc?nuincd by jb . Thus To n I ;  n , ? - ' IS  4hc' polnl g b  , w h ~ c h . n ~ c a n  

that there exlsls a planc that weakly scparatcs A from this wcdgc. Slncc @, IS  construcccd 
, . 

by intcrswting 0, , with this wedge, clcarly thls same planc will scparatc @, from A . 
. - - > 

T h s  thc throrcm holds for each o f  thc cases. 4 9 

a 
ia 

5 . 3 . 3  The Termination Predicate " 9 
kt x*  deqotc the optrmal \ o l u ~ o n  for lhc kP prohlcrn and Ict E denote a parameter \pcc~flcd hy 

Consldcr ( I )  first. Lct 7 ( p ) a funct~on Lha~ rclurn5 thc value of thc ob je~ t~vc- func twn  ar  thc 
t 

p a n t  p and let h and i dcnot lntr of  the current solullon rcgron that rcspcctlvcly mlnlrnl/L and ' 





- no fcaiiMc pint IS found. thcn conclude that the prohlcm 1s ~ n f t * t ~ s ~ h l c  

- end o f  algorithm - 

Analysis and  Discussion o f  Algorithm 5 .2  

Thc ~ n ~ t i a l  (planar) solution region can he constructed hy irrtcrwcting the currcnt solution region b y  

two half-spaces that share thc same houndary plane but cxwnd to opposrtc srtli-s o l  thih p law.  'l'hi. 

~ntcrsec~ion of a,convcx.polyhcdron and a half-space can hc dctcrrnrncd in O( f )  t~n lc ,  where / I \  h e  

nurnbc; of faccs of [he polyhedron (Scction C.4) . Thcrclorc thc initial w l u t ~ o n  rcgion can bc 

constructed in  O ( / )  .time. As w ~ l l  hc shown in thc next sectrun. thc solutron region lo r  1. . f1  can 

have at most ( n + 1 ) laces. Thcrclorc Lhc ~nr t la l imion step rcqulrcs at most O( n ) wire. - 
ICT can solve the h l ~ m c n s l o n a l  LP prohlcm In O( r ,  n ), whcrt r l  I S  the numhcr of itcarutron.; ol 

the algorithm. 

A \  was wen In the prcviou\ wctlon, a I-dimcn\~onal LP prohlcm can he \olvctl In O( n ) trrnc 
r" 

Thus the. tml Punning time for Algorithm 5 .2  I S  O( r l  n ) . Norc that i t  is still possihlc t h a ~  the 

algorithm wilt lead us Lo conclude that a problem 1s infcasihlc whcn in lac1 11 is fcasihlc. This srtuation 
, % 

arises whcn A docs not intcrscct thc set of fcasiblc p)ints. The Iibclihot~I of such an occurrcncc will 

depend upon h e  application. Oncc again, i f  this is not a su~lahlc approach, then thc tcrminaticm k s t  should 

not be rnadc until ai  I& one fcasihlc point has becn found. 



- 1 1 1  hc ~ c n .  thc rrwtrne H e d u c e R e g ~ o n  ( A l p o r ~ l h m  5 1 )  15 cailcii twlcc c x h  ~tcf l t ion, once w ~ t h  a 

I r r i ~ .  [tiat p;l-\ws thrr)ugh the p n t  g frhc centre of gravity of the'currcnt solution rcgion) and once with a 

1 1 1 1 ~  hi p;~';'a'x t h r w g h  h . thr' polnr of rhc current soluuon rcglon that rn~nimizcs  thc ohjcclivc function. 

Ihc forrrrcr c.all to R e d u c e R e g r o n '  ensures bar the volume of the wlutron region is reduced by a fixcd 

;llgorrttinl tcrrn1riari.s ~rrirncdr;j~cly, urncc h 1s the o p t ~ r n a l  s o l u t ~ o n  for thc LP p r o b k m .  ' If i t  is not.  

I~.;r\~hlc, thcn ttlc rcglon w ~ l l  t~ further rcducecl, which should hclp lo reveal thc optimal solution sooner. 

I I ~ U ~  u4_ - d r m c n s ~ ~ t l & I  12P - 

I .  Inlt iul lrltt lon Step 

I I 
f 

W I ~ ~ ~ N J I  loss of gcncralrry, assume thut h e  ohjecl~ve supporting plane is horizontal. bounding the 

\c.( 0 1  Icasrhlc p l n l s  from hclow. 

I !  (.~in\~ruc.t  ~ h c  ~rirual solutron region cbo usrng the me~hod described in Section 9.3.1.. I f  the 

\olullcir~ rcgron I S  unhoundcd in some direction. then terminate: reporting this to the user, 

I ]  I I  Ir empty. then jcrminatc. reprting that the problem is infeasible. 

1 -1 foundFeas~blePomt .= false; 

2 .  I tcrut lon  S t e p  ( . i  > 1 ) 

2 I  LA.^ h dcnotc a porn[ of a, that minimizes the objective function. J 

7 7 
...& Ixt A t ,  denote a vertrcal line through the point h . 

2.3 R e d u c e R e g i o n (  A L .  @, . r ' ;  VAR 0, ,, feas ib le  , hb ),; 
0 

? 4 I f  0, IS empty. thcn tcnn~natc, reporting that the problem is infeasible. 
, 

2.7 . h e n  ( terminate, reporting that h cs the optimal solution ) 

else ( foundFeasiblePoint  := true ) 



1 ReducaReglonc ig . a, . V A R  0, . faas~b le  . g, 

2 I I t  feasible then foundFeas~biePo~nt r:uc 

Discussion And Analysis O f  Algorithm 5.3 

kt n dcnotc thc numbcr of constraints of t h r  prohlcn~. Kccall th;~l thc roulinc 'ReduceReg~on '  

L~nc  1. I has bccn ~ncludcd to caw the tiiscuss~on of the algorithm. I f  thc ohjcct~ve supp)rt~ii;;: planc I C  

not horizontal hounding the set of fcasjhlc points from hclow, thcn the constraints can hc r o ~ k d  so 

that this is thc casc in O( n ) timc. I f  thc rotation is not pcrl'ormcd, thcn term?; likc 'top' and ' 

'bottom' (sec Section 5 . 3 . 2 )  will nccd to be dcfincd more carcCully, so as t6 reflect the oricnla~ion ol' 

Lhc objcctivc supporting planc. 

Thc construction o f  thc initial solution region (line, 1.2) has bccn discussed in Scction 5.3.1 . 

Recall that will be constructed by inwrsccting at most 8 half-spaccs. Idcntific-ation of thcsc hall'- 
$ 4  

spaces requires O( r o  n ) timc, whcrc r o  is the number of itcrations o i  thc PointlnSetSD routine. 
* 

The intcrscc~im of  at most 8 half-spaces can be pcrformcd in constant timc. Thus thc cntirc step - 

requires O( lo  n ) time. +, 



. , 
i ii 1, p i t b k  m &&mi%- if L-te current s o l u ~ m  reg- cmprf m wns-ml umc, An empty WTuthn ., 

* provci LI-GU be problrm h infs&:s (see S C C ~  5-32]  . Thercforc ttbc pv can tminate. i s  
* .  a 1, 4- r 

2 ' O  
Z 

i h n w  in I I W  1 3 T a *  + 

' * ,  e .  - _ 
I 

. ' 

to cn-,wc thc utlut~osn rcglon ;un=:rgci In all d ~ r c c u ~ n s .  Inittally si is +,crtical, but the d i r ~ t i o n  is ; ' , 
, , 1 ' 

rcwt m t~nc 3 I bawd U ~ X I  iw*kdgc  of rhc p r n t  o i  Lhe w l u 4 ~ ~  r e g m  +ad ts fanhbfst from g . 
* 

k i i i  a .w .  thc in~tidili ,mim ;;y =;;;I2 pepr trc s  i k  xmt ra lnu  in@ hr;l.= g ~ o s p .  thox 'hundcd  from . 

a!wu?;c. r h w  h u n d x f  from k i o x  m3 LFIGSC p.mii.c-l ro thc Ilnc I x c  ~ & a o n  5.32: . .Thi~,infdmqti"n 

;oulil k jupplisd lo tic rcut;r.: ReduceRegt~n . s i r ing h a t  roulrns hs *+,rx-k of p m ~ i o n i n E  the - . 

I . , . . 
+, cgniidsr ifis n ~ n t t r  ,>i fi;<j t.: tr,s ai;li,t;ur: :?<ion. The mirid i f j ~ ~ i t : ~  'rciion, (0;1, s i l l  have 

, q 

I ' 
,+i pfftfi: Y ia~i"*.  EX^ & I  ti, 8dtjc2fiqt=f: may txreae thts m m t m  & t.i m.mv two.' Sske. 

' . . 
FieciucsRegion i ;  ;;ii;d t a . : ; ~  ?ST iicia;ixi. L~F: nurrrkr of i;i;<i of Ijl~ & ~ + J ~ I c ~ R  r o g i n  *dl be - -  

, . 
: 3cr inc  ~ ! c  i:'? i:zrZ:li?a. b2.i::~;. rsszii from Sccrion 5 . 3 . 2  bat thc :wlu&on' r-crgion is 

,.a ' 

~ r i i u ~ e d  h! i-1;hcr irtrcr-;.;r;nz i: .AIL? a :an.stra;nr of hi: problcm or cls. 'xidi a.!-@l-sp,ce who.% 

; 1 ; t : l i : rk- -  ; 11. r I f : .  f k.7- ta  rz.2ii;s th.: ~ I u r t o n  rcgton {Sccrlon 5 . ? . 2 > .  w k r c  f, 

1 L C  n :  f ? : -  : .  - : x  I 5 ; ~ ; '  thc i01~11rn rrcgrm can  ha7;c ar most 0( n ) 



mmebtatcly, stxc the ~~ has proven to k tdizsibie ( h e  2.4 itriti 2.12).  Tfrrs test c m  k,-*- 

- pxfomed In cornrant tlme Sotm tha-1 the firnJcalf to *~edu-&~eg~on (lrne 2 3 )  wsts thc htc" 



Under this assumption, r e ,  and 12 and hence t a& bounded from a l m e  by a constant. In his caw. 

the running time-for Algorithm 5.3 . is O( n ) . 
. , 

' B  LI 

5 . 6  Exact   in ear-~irne' Solution 
I 

.- a 
' , 

In this sectron ICT wrll be comb~ned wrth the pune;and-scarch technlq& for wiving LP , wh~c h 

was rntroduced rn&kndcntly by [Dyer 841 and [ ~ & r d d o  83al . Thc prus-and-watch algmtbm 1.5 , 
a - r\ r 

rtcratlvc pm&&k; ~n each Iteratron, a fixed fractron of rcmarnrng conwarnls arc.pruncd away Frr\t 
-'o 

' cons"rdcr the 2-drmensronal algonthm and the half-planes shown In F~gurc 5 1 3  . I t  I \  not drfficul~ to \cc 

-27 
that a can be dlscarded in Frgurc 5.1 3.a s~ncc  11 w~ l l  never define the optrmal \olutron. Slmrlarly . 1 1  

I 

the optrmal solutron Ires to the [eft of 1 rn F~gurq 5 13.b, then can k drs&rded; rf I(  I I C \  to thg 

nght'thcn a* can be dlscarded and i f  11 l ~ e s  on l. then nerthcr can bc drvarded qrnce thew may hc thc 

cmwarnrs that determ~ne the optma1 solutron / r  

L@ 

4 
.r 

d 
Flgure ;S 13 Identlfymg conct~aihts thar can bc dlccardd 4 

" -  - 4 8 - d 

Wrthout I& of generahty, assume that the objca~rve sappan~ng planc I \  hon!onwl, hounding ihc 
, , 

r O .  

set of feasible porn& fwm belo; Furthermore, a s u u k  ha1 l t e  conctrarnL\ have been pmtroned into thrcc . . 
4 - r i  

. groups, S ,  , Sb and S, - each element of S ,  IS .bounded from above by IL\ boundary planc, 'each; 
? 

. clement of S ,  IS h&ed from belo~,~~~_SS~~ contarn$ thou: conwant \  that arc bounded by vcrtlcal 

planes. Let I! ,  , HiTand j l ,  denote the planes for @e conutra~n~\ rn So , Sb and S ,  . 
R 

3 

rcspcmvely Frgurc 2-14 dmrrbes  the rteraubfi loop for the 2-drmcnuronal prune-and-search LP 
* .  
\ i 

algorilhm. (see Chaprr  $@ ti$ lEaeisbrunner 87jhr more demls.) . . . . 
%I. : - " e ,  



Let x denote h e  pomt wrth median x wordmate y d  let ;L, denote the vertical 11ne that 

i F passes through x ? % o 

7 B~sect( 5 ) Determu~e to which side of ;i, tha~ Lhe optlrnal soluuon hes on 
# 

4 Prune( 5 ) D~sczrd o w  constrant from each $au. if poss~ble 
<. 

untrb rn constraints reman, whaie rn is some conslant , Solve the problem dnectly. a 

B 

, 

i-' 

F l g h  5 14 Iteration h o p  of the LP prune-and-search algor~thm. 
& >+ . I 

Repeat (*  prune and search itcrauon loop * )  

1 Construd-Paus Arrange the elements of H, m p m ; W  the elements of / I b  inpars;  
*.+ 1 

r( 
ff any p a r  IS parallel lo eat(oher, h e n  b r a d  one af the consUamts. 

9 s  +. 
Oiherw~se, determme the polnt of mtersecbon of the two lines. 

BP L 

;L, = Flnd,fST Consrder the sef of htersect~on pomts. constructed m the previous step. 

The po in t  x can bc determined in li.fic& time ( [Blum, Floyd'; Pratt, R/vest and Tarjan 721 , 
' . . . 

[Sthonhage. Patcr\on and Plppcngcr 761 ) . However, as [Edelsbrunncr 871 (pge'239) has noted, the 
. .  & "  

worst-case optid 'mcthods for findiqig the median of a set of'points all suffer from poor average case - - 

twhav~our. Inacad he suggests that the simpler algorithms presented In [Floyd and Rivest 751 be 
, - 

con\~dcrcd for,~mplcmenu~ton slncc they determine the median in a fast cxpectcd tlme. Bisect cfetcrmines 
'd 

to w h ~ ~ h  stdc of A, +e opt~mal solution IIG, In 2-d~mqnaons, thts usually lnvolves solving om B- 
i 
\ 
1 

d~mcns~onal LP prohlcm, but In wry degenerate cases, 11 may tnvolve solving a total of three such \ .  , . 
i A& 

prohlcrns Prune p c r f o ~ v  h e  pruatng that was4descri@d'a~ve. In each Iteration, at lhs t  of the , 

C I + 

rcmanlng constranls arc pruned away, leading to the overall I~near result. r'. 

X * 
- I 

The bcnef~t of comb~nlng ICT w~th the prufie-and-search algor~thm 1s &at it  may el~mtnate t.hc 

, to both Find-TST and ELSECT from each iteraupn. (The extra ovcrherfd of addmg one itcratlon of the 

K'T algorithm l r  r c l ~ ~ ~ \ e l j  small ) S~nce In thts case there 1s no need to won'y about degenerate 

conicrpencc, +lgor~tbrn 5 3 u ~ l l  be modifled to pass only vertlcal llnes to 'ReduceReglon' 

( Aiporrrhm 5 1 )  Thu4 h) Thcorcm 5 5 (Pee Scct~on 5.3.2) , the current soluuon region and hence h e  

- 
optirncil soluuon u~ll alwa..; 11e ta one;idc of is . Hence ICT can be combined with the prune-and-search 



Al~bnthm 5.4 : Combining K T  and the ~runc-and-mch [ahniauc, 
- - 

- end of algorithm - 
- 

Notice that a5 the solutlon repton gets very small, 11 I \  unllhcly hat \tcp 3 will cvcr hc cxuutctl * 

I t  may seem odd t h a ~  we can combme ICT wlh a technique that dl\card\ con\tralnt\ Recall from 

Section 5.3.2 that i t  wasstated specifcally that his codd not bc done. Thc diffcrcncc in this case I S  that I :  

k' 

h $  prune-and-war@ technique dlccardr redundant con\minL\. Recall that in ordcr for the I $ T  algorllhm u) 
b L -. 

behave correctly. g b  must a feasible potnt for [he orlglna4 problem in of Alportlhq> I . 
P 

h 

D I & ~ I ~ ~  rehundant consuarn~s a i l h u t  affect h e  chorce o f  g b  For example, co&der h e  half-plane\ 
-7 

t - 
A 

d- 

shown in  Frgure S.13.a once again . I t  1s easy to r e  that, o will never define g;. so 11 does no1 mattr 
P 6' 

i f  +IS constraint 1s dlwarded. Now. conslder Figure 5 13 b I t  is caly to \cc from ~ l g o r i l h m 3 ~  that 
sf - *-, > - . - . - 

.3 s , ." &. " *  . - A  & \  
' h e  currcnt saluuon r c g 1 ~ 2 r i l l  always lie to one slde of I or to the other + ~ h u k b  will the all furhcr .> . - 
gb  Hence it's cho~cc will alw not be affecicd by-he divardcd conspmnl. .- 

' 1  

Tk aabovc approach a1;oextnds to 3-d~mcnslons. The 3-dlrnen\tonal prune-and-warch algorithm 

for LP hho%TLhc same pattern that was described in  Flgure 5.14 . except ha t  steps 2 - 3 arc much . 
I- -. 

:4- 
more tnuotved. We wdl not descnbe h e w  s(cps, ;xccpt to note hat this ume. Prune requires a\ input 

a 
tuo vcnrcal planes. whose intcrvxuon d:fincs a wedge hat contams the ophmal wlutlon To dctcrrmm % 

this ~nformat~on, bth F~nd-Tst and B~sect are wllcd twice /each rteratlon) In  the 3 - d l m c n ~ n a l  

cax, A is a vemcal plane and Bisect 



io 
dctermincs if  A inlasects the range that contains the optimal solution. This amounts to solving 

two 2-drrncnsr~nal LP problems, whosc constmnts are defined by the ~nters&tion of S, and the * ,  . 

C 
dctcrmtnes x *  , which amounts to solvrng a 2-dlmensronal LP problem whose constrams are +, * - . %  

* 

defincdfhjl the intersectton of i md S, and Sb . ,se 4 

-2 

-/  

dec& on whlrh udc of A the opurnal mlution~lies. Thls mvolves solving two 2-dimeniional 
r 

LP problems, whose cwsualnts are the tight constmnts wh~ch defined x* . 

Hcncc, cvcn i f  ICT 15 only cmbtned w~th the 2-d~mens~ond LP problem, h e  3dlrnenslonal dgorithrn is 

cxpcctcd to run factel ~ o & v e r . r  ir easy to cornblne ICT ew~th the 3-d~mens~onal algorithm. As long as 
7 

;Ip I \  vcrt~cal. Theorem 5 5 knsures that there exlrts a hall-space that contams @, such that the boundary &-. 

ill t h l ~  ha l f -va~e  IS vcrucaJ.and conmnr ,+, . Such a haif-'space can be determin@'~n constant ume by 

C 

~onudcrlng the conwanLC that ensure this pro&rty (see prdof of Theorem95>. Let pfi den& such a . I 
* * 

I *  

half-cpacc for 0; A verucal W g c  for Prune can. bc' c ~ ~ s v u c t r d  by tntcrrectlng p, wtth one of the . . 
4 '  * 

half-cpacec that defined the wedge4or h e  p r e v l u  ~rcqtxgn. If at least % of the rernainlng constraints.. 
C . .. 

;ire dlxarded by thts call to Prune. then the prune-and-search Itemuon stcp can be ~gncued 91s iteratrgn. 
3 - ,  

d -  - 
I f  not. the current solullon'reglon can be funher reduced by mtersecung ~t wth the two8df-spaces 

A * : ,.- . - . d 
--r- 

dctcrmrncd by the find- st and Bisect routmes: , . . 
'a- . , .  ' . L- 

. , 
'%# 

, , .  



Chapter 6 .. ?... - . 
d 

..b+ 

soluuon geometrically. termmating once roluuon IS wlthin E of the optma1 one. iherc  
C 4 

E is a parameter specified by the user. Two tcrminauon prcdrcap have bccn con\idcred. j I .  i - *+++ 

u here, x *  denotes the optimal roluuon, g dcnotcs the approxlmatc d u t ~ o n  and Y ( p ) rcprcw;cnt.\ 

some fun~uon that is'mcmngful to the problem, evaluated at that p b n r  # I n  adhtion, the question of 

Q 
degenerate convergence has been conside@ and handled scparatcly for each of the problem\ IIWA hclow 

Degenerate convcrgencc, whic$,is only a problem i f  tehnination prcdicatc (2)' i s  applicd, arises when thc 
. . 

not converge I" all d~mt ions .  

I the power of the technique, ICT ha5 been applcd u, the followmg problems: 

detecting the common mtcrsection of the convex hulls of m s c ~ s  of pinks In 2 and 3 dimensinns ; 

d e t e n n ~ n i n g ~ t h ~ s ~ p m b ~ l i t ~ o f  two planar se& ; 
* 

A s 5  Pro;rammlng (LP) m 2 aftd 3 dmens~ons ; % 

2 _. 

t l 

finding the smallest enclosing sphere of n wc~ghted polnt5 in 2 and 3 dimcnsiori'\ (SES) 
B 

I n  the process, algorithms have bcen developed that can be used t~ wlve thc following problems. 

I 

. . -the a g e m e  point problem in Z'md 3 dihensions ; 
*' -.. , '+a 

origin point interior (determining whether the origin is.~"xI&me with rcspcct to a scl of. point$) I 

hemisphere pioblem (dcterm~ning i f  a set of points lies interior to some hemisphere) ; 
- .  - - 

detenntnmg ~f the Intersection of a set of half-spaces is bounded ; 

findmg a f iypqlane that separates a point from a set of points ; 

findmgahypcrplane separating two sets . 
a .  



'I 
w 

This la5t wt of problems are drfferent applrcat~ons of the separabhty problems discussed in . 

C'haptcr 4 . All of thew problems have been described in {Dobkln and Re~ss 801 ., - 

The ume-cornp.lexlty for LP IS O( t K ) +. ,-$here r is h e  numbc~ of iteratiom performed. The 

trmc-complexity for the rest of the problems IS O( t * M ~ i m u r n  ( n , t ) ) . .Tbe size of t depends 

upon the volume of the initlal&luuon reglon, e , the &cision of the machine 4 mocheps ) and the ty$e 

of termmatron predicate us&. It  has been shown that t JS bounded from above by a constant whenever 

fixed-prcc~wm floamg pomt ar~lbmeuc IS used lo approximate real arilhmetre. Under this assumption. 

wh~ch is ~urrently the most common approach to representing real numbers, the running time for each 

I t  has bccn dcmonsuarcd that 1 0 '  can be combined wrth the prune-and-search technique, developed 
9 

rndcpcndcntly by [Meg~ddo 83al and [Dyer 841 : In addition, lhe appl~cation of ICT to SES 

dcmonsuates that i t  can be used to optimize a convex programming problem. Furthermore, a comparison ' 

of Algorithm 1.1 and Algorithm 3.1 illuskates the ease with which an algorithm for an unweighted 2- 
. I  

dimcns~)nal problem can be convened to a solution for a weighted 3-dimensional problem. This 
, 

cxtcnsrb~lity I S  one of thc suengig5hs of the ICT approach. 

Other Problems That I,CT .May Be ~ p ~ l i e d  To 
& 

11 i s  conjccturcd'that ICT can be ap&ed to the fdlowidg problems: 
' 

, , 

i 

v i  

the wcrghtedthcby\hcv or L, lrne fi&ng pr~blem (afolr first ap#lymg Brown's Dual to the source 

poinls [Brown 781 ) ; 

findrng thc ~mallcst enclos~ng sphcre of a set of spheres of differing mJii ; .& 
J . 

consua~ncd vcrslons of rFlg' problems studled rn the ,thesis, where the optimal 
.,r 

conwarncd to I I C  rn a convex rcgron ; 

vcrbions of thc smallest enclosing sphere that use-an L, or L mewic instead of the 

whrch has hccn used in this hcsis. 

solution is 

Lz metric, 



6 . 2  Suggestions For Future Research y 

f ,  ; * '. . + s 

Since the results of thrs thesrs hold rn both 2 and 3 d~mensrons, it IS t1k2fy that ICT can bc . " 

* *)- '. 
extended to any arbitrary dimension. .To prove this,would mvolve showmg tha a hyperplane psslng . 2 

3 - 
7 .  

through the centre of gravrty of a k-drrnensronal convcx regron d1vr6es 11 Into two regions, such Lhw +. 
ratio of the volumes of the two reglons would always Ile bctwecn filed lim~ts, thus guaranteeing that thr  , * 
- L: 

slze of h e  so~uuon region_kre.ases geomctncally wrth thc number of itcratrons. it 1s conjcciurcd that in 
8 

- 
f 

the general case, &ese lrmrts w~ll  be: cr 
\ 

k k  k +  l ) k  - k k  
and . ( 

( k +  l ) k  - k k  k k  
. C-, 

Algonthms for finding the volume of a k-drmenc~onal convcx rcgron already C X I \ L  For cxampfc, [Crhcn 
1 1 i 

and Hickey 79) determ~ne the volume of such a reglon by pauan ing  11 into \~mpl~ccs C$gvertlng such 

an algonthm so-that 11 also finds the centre of gravlty of rcglon should be rckatlvcly +ghtforward. I 

The rntersecuon algor~thm by [Scidel 811 , whrch IS dexrrbcd In Scctwn C 4 , already handle5 corwcx 
' 

-- 

/ 

regions of arbitrary dimemion. * \ - 
Y 

Degenerale convergence has been handled on a problcm-by-problEm ba\i\. It 'woald be 
r <  d 

advantageous to have one gemrai approach for solving dcgcqeme!% 

Currently the routrne that creatqs the i n i d  solution rcgron for LP $q'tiir~s that the sct o f .  
a 

constram3 be m ' tped  In all dtrectiom. ' Thrs IS not necessary however, srncc 11 IS p0wblc to add a 
' .. ,. * - ... _ J 

conuralct that d w s  not affect the opti+solutron. Once this gancralim~on har hec?ddded, the ICT 
- - .  

solutlon for L'P wdl be appllcablc to many more srtuattons. 

So far rt can only be clarmed that ICT is expected to run very fast. I t  would he uscful t 

mplement ICT and empiwallp comparclts wnnrng tlme wrth that of other dgorithms. In part~cular, rt 

uould be useful to rmplcment h e  set of ;ouunwdescribedin Appendix C .as a set of lrbrary roubnes. 
.L t- 

In this thesrs, the solubon region tias been rduced by a fix& frict~on by explolung a property of 

the centie of gravrty df a convex reg~ori 11 would be of Interest to examine other ways of ensuring that thc 



- 

wlu~~on reglon 1s reduced by a fixed frjtction in && iteration. For example, [Diaz and O'Rourke 891 h2ve 

cxmm&daoFrtlcs of.% ceik of area of a Convex polygon. kf 
5 '  



Appendix A - &&tion Conventions 

All sets of points con~idered will besubsets of k-dimen,~ional Euclrdcan space ( E~ ), whcrc 

&%: c 

k 5 3 .  An orthogonal coordintite iystem will be used, wiUl the axe3 normally lab elect^, y and z as show11 

. , i s  Figure A. 1 . 

- - 
Figure A. l  Labelling of the coordinate system 

\ 

Points and vectors will be denoted by lower case bold letters in the Helietica font -- 

( a, b, c, ... ) . Scalars will be denoted by lower ca.w italic letters in the Tlmes font ( a ,  b, c ,  ... ) . 

For example, a = ( x, , y, , z ,  ) IS a point in E3. Provided that the rnean~rig 15 clear, we wlll dcnotc 

the coordinates of the pomt p, as simply ( X I , ,  y, , z ,  ). However. i f  any ambrgulty a r r m ,  we will 

reven ( Xp, ' Y p ,  ( iP, 1 , rnstead. We wlll use the terms above and below as follows: . a  l ~ e s  above b 

lmplics h a t  z, > zb %hde a lles below b implies z, < q,. 
!- P 

A h e  segment will be denoted by-its endpoinis. For exampk, a b IS the lrnc cgmcnt wrth b 

endpants a and b. Lines and planes will k denoted by lower c a d - r b i c  GrwLletters ( a, 8, y, .. ). 
5 ,  

5 
A h e  IS considered to be horrzontal if it IS p@llel to the z = 0 plane and verfrcal i f  it is perpcndrculiir to 

thls plane. A plane IS horrzon~al if rt is perpendicular to the z-axls and verfrcal ~f parallel 6 the aaxls. . 

Funct~ons will be denoted by 'the Zapf Chancery font ( A, a, 'B, 6, . . . ) . For example. 
3 

\ 

Dutand a, x ) IS a functlon that returns the Euclidean distance becwecn h e  polnu rr'afld It.- Appcndrx , 
- - 

C summarizes the functions defined in this thesis. - 
Two parallel vemcd bars WIH be used denote the abwlvte value of an cxpress~oo. For example, 



, 

.Q 

Braces ( .. . ) have been used for-two purposes. With! .algorithms; they have &n used t o  . 
% '  

P 

dclrrnrt stalcrncnt Irsts, srmrlar to the C programrnrng language convention. Everywhere elk,  they have 

'*. / 
bccn used to dcnote as. - 

\ye wrll use h e  symbols n . u , - . G , E ~ .  e to denote t h ~  set operations of intersection. 

.: *. 

unlon, set difference, subsa of, dement of, not an element of, respectively. Finite sets of disjoint objec$ <;. 

will be- denoted by upper case italic letters in the Times font ( A T  B ,  C ,  ... ) . For example, . 

S = ( p,, p,, .., , pn ) is a set of pornts. Regions, which are defined in Appgdix B tobe bounded 
3' 

continuous sets of points will be denoted by upper case italic Greek fetters ( r:A..O, ... ) . For . 
.I - 

example< 0 = ( .x E ~3 / D u t o n c d  a, r ) 5 r ) is a sphere centred aboi( the a with radius r. 
- e  

W& will use the following notation to represent an iterative ~election'~tocess: 
\ 

&, n 
I 
f h  operalwn expression . . , 1 = 1  

.= * 
,.- ..- 

d * - - -. 
For example, i f  s = ( p,,  p2; .. . , pn ) , then the expression: 

" . maximum Dis-tadfe( C, p, ) 
i =  1 . I  

. , . 
i '  PI n , .  , , . - 

" . maximum Dis- tadce(  . .. C, p, ) . 
i =  1 . $  

" %. ' . I' , . , . .% ' . U " ,  'a , . . .  . . 
b 

returns rhcpoint p, E S which is furthest from the point C.  



. Appendix B - Some Definitions 

This appendix includes de,l7nitions for some of the rnathcmatical terms ;hat have bcen uwd in this 
. - - 

. thesis. The reader is referred to Ereparala and Shamos 851 for definitions of more familiar gkomc~ical , 

~erms l&c half-space or on the same side of the line. 

B .  1 ~ b & e x  Set 
, 2 - A- . , 

A s& of points @ is defined to be convcx if for e ~ r y  pair of pom& a. b t @?ihc line scgment 

joining a and b is also contained in 0. 
, ;T% . -* 

.* 

B . 2  Region p- _ 
%, 

We define a region to be a bout~dcd continuous set of polnL9, where a sct IS .sad to k bouncl& rf ~t 
'4 ., . . . 

can be enclosed by a sphere with a fixed radius. ' A sofurlon reglon is srmply a regron thal conlam5 the 

, exact=solution of the problcm that wc are considering. 

B . 3  Affine Set 

p 1s sad to be an affine set r f  for every par of dtst~nct pornts a,  b @ p ,  the mfinrte lrne jolnlng a 

a and b is also contained in p . Thus lines, 'planes and 3-space arc a l f m  scls and wcAciinc tkcrr', 
* T 

. " \ :- L 

. dimensron to tx+?:2'and 3 respccuvcly. ~ r r : id l~ ,  a pant7 a an affme s b c e  wrlh d~mcncron 0 .  . -. . ' *  

I^ 
", L 

0 ,  . &. ,. 
+ \ B A . 4 .  Dimension of a d e ~ o n  i . +.-. , %*A. 

, '  * 5 '. - .  . . , . 
* k We define the dmens~on &a  *ieglon @ to be the m~nrmkn d~mcns~on of 'the affinc &w [hat - 

8Srz define a hyperplane: t a  be an affine set of dimqsron k - 1 , where k IS the dirrjcnsron of the 
-* 

. ' 
space. I 



Interior, Exterior and Boundary. h i n t s  
-4 

P o ~ m  of space can &*81~1dcd into three classes with resp-t to a region: interior, exterior an&- ; 

, boundary points. We define amighbourhood of the point' p' to be &&%z . 
- .*.. 

p 1s an rnterror point of the reglon Q, IF N p, r ) c 0 for some sufficiently small r . 
4 

p IS dn extenor pomt of @ ~f 5+f p, r ) n @ is cmpty for some sufficiently small r . 

p is a bodndary p i n t  of,@ i f  il  is neither an interior nor exterior point. 

& 

B,7 Closed Region - ! 

- ,.,,\-: \... XI. . 
A region is sad to&>bsed I T  11 contams all of ita hundary pants. 

B . 8  Supporting. Hyperplane 
- 

-4 \4 
P+ 

A hyperplane p supports a region @ if the following two cond~tions &e satisfied: 
9 "  . 

..-z" - - 
(1) y contains at least one pom~fpthe boundary of Q, 

\P 
(2) @ l~es In only one of the ~woclosed half-spaces difined by p . 

The reglons and are separated by the hyperplane & +if.one of the open half-spa&% - 
, t.r %' 

bounded by p contams and'@e other gpen half-space c?&ins @ . 35- 
Y. 

26 

U * r 

B . I O  ~o#rne c '  s 

I. , 

' - 
, % .  

,, - w - 
The volume of a region 8 IS dchned to be ) = d . Normally the volume of a P I  +: 

1 .  
q .  '3 3 

I % - t $ 3 *  
_ I  

T a 
I? 

1 -d~rnehclonal region IS referred to as IS length and the blume of a 2-dimensional region as its area. We . , 
, ' * I  * 

w ~ l l  ux.a sobscnpt y k n  we yant to stress the dimension of the spqce we are &&ng in. For example, . A * <  

J.i* 
'I$( @ ) ~ndtcatcs that we des!re "he area of @ . The Gllowing proprties of volume are imporpnt bq us. 

w 

d ' . . - _  . - . / 
1) l i  Q h a s  d~mens~on k and 1 > k , then -. ?( 0 ) = 0 . - + !  

-. . . 

2) I f  @, c 0 2 ,  -then ~1C.p~ ) < ?/(cD,)~: t 



i 

-9.. 

B .  11  Centre of G&vity 
- - _ C*, 

i 
Usually of@ physical objects have a centte of gravity. F6r example, the&centre of gravity of a \ b  

\ 

- q.. &re- 

planar figurerut out of sheet metal is the place where the point of a &must h placed in order lo balancc 

the figure.horizonlly. 1n ihb,thcsis,we will  use a &ietnc interpretation of.the cen& of gravity. That 9 

. , . J* 

- , is..&e shall assume that all regionf:fogsidbed are constructed from a homogeneous material with unit , 

de&tyl. We define the cenb-e o@vity,of a region 8 d be the point: v. 

. - 
t ?+ \ 

4 t 
L J. , I x d V  .=a 

. " - 

a% ' -.t'. 
, - 

e .  , -& 
Theorem B . l  Consider a region 8 which has' been partitioned into r regions, , 

i 
> ..' 'I 

8, , G2, ..., ar with respecti$$ c,c"ntres of gravity g i  , g2 ,  .... 9, . Thc: ccntie of,gravity of 
P 4 

+ 8 is the h in t :  -- 
- 

r d 

Proof: Slnce @$as been partitioned into r kgions, the volumc of 8 can*'k rcwXtcn as: 
" 0 . 4. 

*. 'i I 
d - S r J 

F 

J X  d v  "5-1 X ~ V  + I  X ~ V  I X ~ V  . + r-. 

0 0 1 0 2 
?@ ., - % 

i I 

* * L  * a 
L - 

\ I ' $* 
Therefore, lf g denotes the centre of gravity of @ then, s. 

0 
t 



Qmudcr any one of the r rcg~on>+q;$ay 0, . By definitidn, the centre of gravity of is the 
,* I 

C 4 ,  IX d V  - e' *t x... ts : 
0, 

p o w ,  g , = v @' 
whichmeans j x  d V  = g ,  Y ( @ i ) :  . 

ip - 

Lengfh ( h ,  g )  
Le$g'fh ( g g2 

. 'kg 
E 

l~es  on the.line:segrnent g ,  g2 if and onlyif,! is 
r -. 1 

~ I : V ( , ~ I  )-+ 92 q . 2  ) 'p, = g l  + I ( g z 1 - g 1 )  = t 

2'( 4 ) 1 >  + 'v 0 2  1 
a' L a , rr: " $I 

Lengthd(  g ,  p- )  lies onJLhc lmc wgrn>nt 9 ,  g 2  , and - - - =  I. q @ 2 &  : 
7 % * J Length ( ~p g 2  ) 1 - I 

i* 

v @ I $  ; .  
- 4  

g1 'v @I # +  g2 ' R 0 2 )  From Thcorcm B.l  wc'know that g . , d 

'z'( @ I  ).;+ 'v 02 , - * ,  

- 

% 
+. 

. ~hcrcforc'wc concludc that g comclder with p.  dyldink q e  lmc wgmant g r  g2  in Be ratio 



. Figurc R .1  1llustr;f~ing Theorem R 2 



. Appendix C - Some Implementation Details 
. * 

-* 

. 
In t h ~ s  adpcndlx: ~ssucs  that may arlw whan ICT is implc&ented are dmussed,  s u b  as 

...,.. . , . - 
rep&nling .._ the 4 j ~ t i . a ~  rcgioi andJ~nding its &he  and centre of gravity. In addition, we yill discuss 

.. . . . . - .  
II . .  , ~ 

. .  , . w.., 
ci*.r 

: .*,' 
.* .. 

-- wrnc . i~sues  that arise when y.ea~:numbers &e:iipproximated ushg  a finite precisiob, floating p i n t  
. r. , 4 - 4  

. . 
" -,, ' 

4 I 

. - 
rcprescnbtion. I t  is a common practice in compulational geometry to design algorithms for hypothetical 

' - . , 
..,a -2. 
-+:* 

computing cnvironmcnis that support real numbers. This ,cl*ifies the computational m d  plus a -. 
- '  *. -rJ- 

. - .  
.̂ 

rich set $f tmls for solving Hoyever. there is zi&iwback to h i s  approach; ~ i h y  theoretically *; 

c.c!rrect Blgorithrns arc not comple~cly robust in practiccl .In this appendix we will try to identify some of 
b 

the limilations and problems that might arise for ICT algorithms, once'ihey have becn irnylcmcnted. Some . - 4 

-h of cw problem\ are @la dependent, whZ" means that I C 7  may be applicable to some appl~cat~ons bdt not 
. 4  .+ ,, = 

.,- 0 - . '  I . 
for others. Clearly i t  is u.wful m try to identify su& problems early. 

. . 
-+\ 

., &:; W I  . . ,. . . 'f;,* .c 
- i, 

C .  1 Numbers and Limita'tions . '. I 2,.x-, . - . .~ , 
. .-. 

. .  . 
0;  

?< . , 
dfp* O m  

. -'.y 

''F:: O ,  fie'advantagc'of representing real numbers as finilc precision, floating point numbcrs is the spccd 
% *  *a * .. - 

I 

wth Ghich com$u'tations can k prformed: ,floating p i n t  hardware bas been highly optimi7cd. However. 
6. ., 
Q - . ~ 

t h ~ s  approach docs have some well-&&wn drawbacks. In this sccuorl;'we will cons-ider a few d these 
,,, 

. . t  

I~m~tations, and dcscrik furlher limilations imposed by ICT. Mdre information can be obtained from any .. . 

inuiauctoq numerical analysis book. For examplc, see [Dennis and Schnabel 831 . 

0. The forcmost limitation is that both the magnitude and the precision of the numbers that can be 

rcprcscnlcd is Iimwd. ICT further reduces h is  magnitude since i t  frequently computes the distance between 

I H O  ~ 1 n t . s .  I t  is impcm~ble to represent the distance between a point that has the biggest possible x -  

coordinate and one \hat has the smallest possible one, since distance is represented by a positive number. - 
, ... . ,.. 

Xko;  I [  is oftcn dc~ i r ah l e " t a ,~ '~~ t imizc  the.dis&r~& function by noi evaluating .the,square root. This 
. I: - 2  

I 

approach IS  appi~cablc whkn'rclauve disw~ces are of interest. like finding a data &kt that i$urthest from 
. . 

. .  
t '  . t & 

thc ceotrc.~[ gravity of a region I n  this k e .  the algorithm needs'm be ablc,to represent anumber 
, % ,  

h c  q u a c  91 b c  di \~lncc,  u h~ch I L  double the normal order of magn~tude. (Note that when applyihg th~s  



' . approach to weighted problems, the weight must also be squared.) In some cascs. i t  may he possihlc LO 

$ 7  4, 
va l e  the input data so tha$@e ~pread bctwccn polnlr u 4 l  t; reduced to an acccpta&.V~$npe ~ o & v e r  b ~ r  . 

, 
approach&iuccs the pra;&n of ihc coluuon and heocc may not he acccptablc. , " '  

\ 

' ~ c c a l l  fmm Chapter I that the solut~on generated by an ICT d~g.orlthm should he w i ~ h ~ n  i 
f 

units of an exact solution, where E is parameter specified by thc user. Clcarly t is not possible to 

gencrate this solution i f  'E is smaller than h e  available precision. Numcrical analysts oftcn introduce the 

concept of machine epsilon so that the precision of a representation can be discussed without tying [he 

dmussion to a specific machine. Machme eps~lon ( macheps) is defined to bc the smallest p o s ~ t ~ v c  

number a such that ( 1 + a i > 1 . Thus each ICT algorithm should cnsurc that f is grcatcr than 

macheps before proceeding LO . w c h  f& a soluridon. 
- 

-- 

Since there is only a fixed numkr  of bits available to rcpkscnt crlch-rcal numhcr, a diffcrcnce may 
. . . ' C  - 

. . a. ' * 

exist betwccn a ~ c a l  nu-mbcr and &@floating*pint rcprc.scnut@n. Numcricil analysts-~usc.'m'dchcps. to - : -" - - 
. . I ., . _ 

.r' , .u 
.. A,- 'L . , 

' > r 4 "  
describe & s ' d ~ f f & r ~ i c ~ .  , I f  /bat ( r ) denotcs.thc floating p n i  rcprcscnpt!m 01 a real i-: then:;': . *' . 

,. . .. . . . . . .  . .. 
. . . ';. ( 1 - macHeps ) :.<- f l o a t  ( 1,)' < x , l  1 + p w h c p s  ) . : .. . .. 

-* < .. - .  . .. 
. .* 

S~m~lar ly ,   he valuc of ~ c r o  l~ec  in the range. - -' @ 

t ( 

- macheps < ffooi ( 0.)' < machcps 

Some calculations arc scnsi'ive to small changcs in n q b e r s .  For example, thc in~rscction of two nearly 
k, , , 

parallellines can bc drastichh affccted by small dif[$!fnces in  the numbers uscd*t dclinc thc lincs. Thus 
*. 5 . I 

.w- ' . . . I 
LP problems whow optimal solut~on arc defined'by conslrama <!ith nearly parallel wunJ;riics will.& 

.. . . Li. i 
~. . . 

, -? 4.- . 

affected by this. Howcvcr, this particular problem appl~cs to any algorithm that s o l " c s . ~ ~ ' a n d  not . 'iust . .. , .- , 
5 

*" :: 
, .  

ICT. [Bowyer a id  ~ d w a r k  831 suggest rcprescn~tions for lines and plancs a n j ' w a ) ~  of pcrf&ming : -' 
, .. . . 

,u ', 'W 
. .  - , . 

' - &  . .. , , . , * - .  -.. 
A * 

.. . '. Intersections tha; h'cl~,io riiinimize h i s  type of ynsitivity. 
:3' , 

. . . .  . . ,_.. 
. . 

Some gewnctricalgorithms suffcr fi6lm accumulatcdc~ors, which arise when &putations &c -,: 

A "  
-.' e' 

based on the resulk of previous compulations. The first Fampulation may differ ?lightly from the true ; 
., .. 

solution: this difference canea5ily bc magnificd by next cmputation. This shtuld not bc a problem for thc 



thc ICT algorithms prewnrcd In th~s thesis, since the half-space used to reduce ,the volume of the solution 

Ekch colut~on r&on will be cc+struclcd in a slmllar fashlon; for 2-d~mcnsional problems, *ill 

be conctructed by Interwing half-planes, and for 3-6imenslonal problems, it will be constructed by 
, 

intersecting half-spaces. Notlce that the bounding box that was @ to construct the initial solution region 

>, 
in Algarithm 1 . 1  can be thought of as the intersection of fo& half-planes. Within this.framework, the , , . 

< .  
L .  

solutl~n region can take on a variety o l  shapes: i t  may, be empty: a point, a h e  segment, a convex 

poligon or e lu  a convex polyhedron. ~ i h ~ e  F.$- demonwars sltuauons where these different shapes may 
* j. 

(b) 0, is a single point 

.:.:.:.:.:.: 

= -  1 .  

. - ... .. 
*-k . 3 

.4 -- , , 
. . 1 t 

' .  &ki 
( c j  @, IS A line. scgmcnt ..; (d )  @, is a a n v e x  polygon (e) @ is a convex polyhedron 

- - .- '. ,% . *  . r? - d. .'? 4=. 
~ i ~ i r e  C.1 Determining @, = n r f o r  a 3-dimensiohal problem. * .  

% k.E. . . - 1 
. . 
fikincidcncc graph will u@ to repre&nt the solution region. This is a versatile dau structure 

:*?, ,; i . 
that can he used to repiCwnt a polyt6pe of any dimension.:.The descripih that foll~ws has been taken 

, .+ -+. 1 < 6 
. - 

. trom [Edclsbrunner 871 (page 141) . Since we need only be concerned with polytopes of 3 or less ' 

drmcncions. wmc of thc gcnml~ty hay heen omitted I ,  
* 

-w P 
9 * -; sr 



Let.? 0 denote a conLex polytope with non-empty inlcrior in E ~ ,  k 5 3 . The terms 0-facc, 
* *a 

I ' . , 
* + 

I-face an& 2-f&e will be used as synonyms for vertex, edge andfatbrer. For convenrcncc: the interior ol 

O will be defined to be the only;k+ce of 0 . unless the mlct-ib; IS ernply. ~urthcnnorc;;he ernply .in 
.- . . 

will be defined to be the only ' ( - 1 ) -  face of @ .  - I < . , <  k -  1 . a ,  , - f acc  f and a . . ,. 
,c z 

( j  + 1 ) - face g are incident if f belongs to the boundary of g ; in this casc,'y is called a suhf(~r.j? -:-,.. 
,. * pp. . . :  . 

. . 
of g and g IS called a sgperface of f .  Two faces of 0 are adjacent ~f Lhcy arc rnc~dcnr u p  a cohhon 
s 

- ,  

edge, and two vemces weadjacent r f  Lhey are ~nc~dent upon a cmmop edgehThc ~ncldence~raph pf .* IS 
+, 

an undirected graph,whose nodes arc In one-to-one correspondd~~*with the j - faccs of a, suih fhal an iUc 
e:. 

exlsls betwmn two i idcs  i f  for a j  - face and a ( 1  + 1 ) - face;the~r conc\pondlng lace\ jrc incrdcm.': 
, P r' 

Flgure C 2 The ~ncidcnce graph for h e  tcrrahedron shown a h v c  

I"r -. 
' ,.r 



9 In order to store @ uslng 11s Incidence graph, some add~tional information is added to fix the 

Jbzatron of @;n space. Fbr example,'eachO-face records the coordmaEof the vertex and &$face node 
g 5 C A  

descrlbcs & plane that i t  lies in. Note that the number of levels of the graph can be used to determine the 
c .  

drmension of the polytopc.~ I t  IS also worth noting that Ihe llst d d g e s  inc~dent upoh a facet are in no 
' .+ 

G F& 

w c u l a r  ord&? : ': - 4 + 
.?*L ' i 

Lq v , e and f denote the nuhber of veflkes, edges and faces of thd"&lution region. 

[ ~ c ~ u l l e X 7 1 ]  has shown that for any polytope @ of fixed dimension k . the adoouht of space required 

to store thc qidence graph of 0 (  v L ' ' j ) . wheie'v is the number of vertices of the polytope. 

S incc in our caw, k 5 3 . 0( v ) IS requlred to represqnr I,@ solution reglon. Aitemately, we can wi' v ' .  
,<A- 'f," 

, - 
O( e ) space is required i f  k = 2 since v = e and if .k  = 3 , we can say 0 ( j )  space is reg&zed: 

slnce v < 2 f - 4 [Grunbaum 671 ( page 173) . 

C . 3  Finding The Center Of Gravity Of The Solution Regioh 

The centre of gravity of ;a,point is the point itself; the centre of gravity of a line segment 
- 

colncidc\ with la mldpnt .  In th(<'kcuon we will consider the problem of finding the centre of gravity of 
- 

a convex polygon and conves polyhedron. In both cases, the approach suggested by Theorem B.1 will be 

ukd,  wh~ch sbtm that i f  e l s  a regron that has been partitioned into r regions, aJI , @*, ..., @, with 
9: ' I  > .  , - 

rcxpcctive centres of gravity 9, , g 2 .  ..., g, ;*then the centre of gravity o r @  is,the point: .& 

In 2 dimensions. ?{ 0)  denotes the area of @ while in 3 dimensions, it represents the volume. Thus, 
, - - 

the cenm of gravity of 0 can 'be determined by f i t  partitioning it into simplices (triangles or . 
'TI: 

wtnhcrirons) and .then ~l~ finding the volume and centre of gravity of each simplex. These results can th& . , - d- - . f 
k suhslitutcd lnlo cquation [C. I ] .  

I 

i j,. 

Thc i r a  and ccnlre d gravity of a &hgle can k determ~ned dlrce!ly from its vertices. Let @, 
* ,  
wA g -+ 

dcnotc a trlanglc wlth Lcr tns  v .- v 2  and v2 , where V, = ( x, , y, ) . The following fmnula 



and rts centre of gravrty b y  , - 

[~i!&er and Woodwark 831 hai-e presented optimized codc for cvaluating thcsc cquajions. Each can hc 

I t  IS straight-fmard to partllron a convex polygon Into trranglcs. For cxarnplc, flnd a point v - - -. , 8 

that is interror 10. @ @d canner1 the vertices of each edge to v ac shown i n  Frgurc C.3 . Thc \amc 

approach can be use# r$partltron a convex pdyhedron Into tcuahedrons. That I \ ,  first c'onnect cach vcrtcx 

to v (see " ~ i ~ u x e  C 4 a ) . Thrs partluons 0 rnio f pyramrds, where f I S  the number of facet\ of 
C 

a. (Each rnte@ face borders exactly two pyramids, leavrng no space unacco~ntcd for ) Then parlrtron 

9 

each p y r h i d  into tcuahedrons by triangulating i t s  base whrch is a convex polygon, as chown in  

Frgure ~ 4 ' b ' .  
, . . . 

( a )  &fore mang"u1arion 

@ m* . .,: -. ;,;, . ? * 

+ -  . .:',. ;*gc .. 
B . I . 

-: . . ;, , $ 
< .* , . : -  

+- 
- .  

- 
- ,  ....,:AT,..* - . , 

C &. ' " - 6-  
/t? ' 

.<&>*>*- 
+ ' I '  

? . . .  
- 

4 - 
(b)  after 65angu@,pn - 

%- 

7 

Flgurc C 3 Tnangu lamg a wnvcx  poly4on 

i 



n 

(b) partitioning a pyramid into tetrahedrons 

F~gure C.4 Partitioning a wnvex polyhedron. 

Fmt let's restrict our attention to finding the centre of gravity and area of a convex polygon. 

Recall that the edges of a polygon are connected to a 2-face node in the incidence graph. If this Zface node 
- - 

has only three edges incidenr on i t ,  then the polygon is a triangle Therefore assume that it has more than 

three edges incident on it. Consider any two of these edges, plus the four subfaces (vertices) of these two 

. edges. At least three of h e  vertices will be non-identical. Select any such three and let V denote their 

centre of gravity. For each edge ~ncldent upon the 2-face node, calculate the centre of gravity and area of 

%-.: 
-? ' c  

each triangle dctcrmmed by thewcrtices of this edge and v , and accurnul!te the values requiredhby 

equation [C.l]  above. Once each edge ttas'been processed, determins the centre of gravity from the 

accumulated inforrnat~on. Since v can be determined in constant time, and the centre of gravhy and area of 

, each trrangle can be f o u d  In constant time, the entire process requires O ( e )  time, where e is the 
f 

n u m b  of edges of b e  region. 

Now consider a convex polyhedron. Recall that the faces of a polyhedron are connected to a 3-face 

nodew the mc~dence graph, 1f"this 3-face node has only four faces incident on it, then the polyhedron is a 

tctrahedron Therefore suppose that it has more than four faces incident on i t  and consider the problem of 

finding a-pant intenor to the polyhedron. Select an arbitrary vertex of the polyhedron. There will be at _ 
0. 

@> 
least itiree edges lnc~dent upon this verbe< and at most, only two ofpese  edges will be incident upon the 

" 
m c  face. Fmd the other endpoint gf each of the three edges and la' V denote the centre of gravity of these 

four points. Since the tetrahedron formed by these four points is contained by @., V will lie in its 

~ntcrior. Now acccss each of the facets of thipolyhedronoin turn, through the 3-face node. Since each facet 



3 4 
Y1 

is a convex polygon, ik can be partitioned into uianglcs as was described above. Each edge will form 
,i' 

Q i 

another tetrahedrdn. Charly the ihfonnation required by eqoation lC.11 above c q  be ac~vmulatcd as a c h  
? * r '  I 4- 

** ,*- 
edge of the face IS processed. Smce each edge ~ & d i e  polyhedron IS incidcnt on cxactlytwo faces, cach edgc 

'_ 
will be used exactly twice durifig the mangiilahon process. Thhs the number of'tcuahcdrons cxarnincd'w~ll 

I ,  

be linear in the number of edges of the polyhedron. S~ncc-equations lC.21 and IC.31 ran haih bc 
0 - - &&- " 

, , 
* I  d I n , . 

evaluated in constant time, the tou@qie required to dewmine he centre of gravity of a convcx @yhedron 

is l inea~ its number of edges of polyhedron. Smce e < 3 f - 6 ,  where e and f are thc number of 
3 2  

> ' 

edges and faces of the pot'yhedron, [Griinbaum 671 . #age 173), thc ccnuc of gravity of a convcx 
9 4' 

polyhedron can be found in time O( f )  time. * 8 

. - . , .  ,. . 

< ,  % 

C .  Lfi"".Reducing The Sobution Region 
- >. k-7 

Consider the problem of finding @, = 0,. , n T ,  whcrc @, , is a co&cx polytope and f 
1 

is a half-space. fSeidel 811 has solved this problem for arbitrary dimension, m'timc proportional to k c  . , 
amount of change from the lncidcnce (or facial) graph of @, - , to thc incidence graph of 0, . 

L 

- > 

I 

Now consder,the amount of change thai canresult from the Intcrscctian, that I $  tF$,*max~mum 
<I 

,<Z ' 

number of deletions and additions to the graph. Let v , e and f dcnotc the n u m b  of verticc$, cdgcs and 

2," - 
facesbf 0,. . Minost ,  one ( k - 1 ) - face will be added to @, . , . Considcr the ' s i ~ c  of the 

% incidence graph o R i s  addition. As was mentioned in 'Sectiofi C.2 , the amount - of space.requircd to storc 

its incidenc .graph of a k-dimensia&lpolytope is O( v L ' 1 [McMullcn 711 . From this formula, : J 
it is easd tbesee that the additional (h- 1 ) - face will require 0 (  1 ) space i f  k 5 2 .  If k'= 3 , 

then thcnew facet will be a cwvex polygon having at most f edges and f vcrticcs. Therefore, O( f )  

space will be required to store the graph and hence, O( f ) time will be required to crcatc it. At ~ h c  other 
t 

extreme, 0, will be emp&Y,.hhich means that all bN one node of the incidence graph for a, 1 .&dl bc 
d s  

, ' 8 

deleled. 0 (  v L ) time w~ll  be requued to delete this graph [Sadel 81 ] . As wag rncntloned at 

the end of Section C.2 , thls &n alternately be &ted as O( e ) time when k = 2 and b( f )  time 

when k = 3 . Thus In summary, the intersection @, = @, , n f can be performed in  O( 1 ) tlmc 

i f  kI1, O('e)  timeif k = 2  a n d S O ( f )  time if k =  3 .  
* 

- .  
4 



Note that. ,? 1s mssible that result of the intersection will be so thin that it should be 
: . c' 

I .* '  I 

:> 

ccmsidcd LO 6e of a lower d~mcnsiw: Thls can be detected by finding the perpendicular dis&ce between-Bv. 
e P* 

t7-. *. > - -%. , .. 
cach vcrtcx of and the boundG ~f T. I f  the maximum (perpendicular) distance is less than sQme 

,- 
Z i l  . .p . z" 

funcllhn of mactaeds', then this routlne..will ensure that the solkion regicrn is rdyced to a lower dmnnsion 
' , *  , i.. , . 

@ &.* * r k  .- 
by intkrsecung'~t with a<plane. This result can be achieved by intersecting 4 with two hdf;spads whose 

., 
J1.C. \ '. . .  

daondarles are dcfined by the same planebut which extend loopposite sides of this plane; Since @, is *q-:+fl 

* 
r* 

already Lh'c result ~Rnlersecting- d?_ with T ,  the natural choice of a second half-space is TI , which . 



< -  . , - the convex hull of S , a set of poinu. 

& t ~ t ' e (  a ,  b ) . . 

?. 

-.. .retu&s the- Euc l~de in  distance &ltmce( a ,  b ) = 

a and b. between two points, 

Furthes t (  g ,  S ) , 

returns the .point'Bf S 
,*P 

from the point g. 

Sphere ( C,  r ) 
6 

a sphere &centre c and radius r . . , 
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