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ABSTRACT 

Predicting colours across multiple display devices requires implementation of 

device characterization, gamut mapping, and perceptual models. This thesis studies 

characteristics of CRT, LCD monitors and projectors. It compares existing models and 

introduces a new model that improves existing calibration algorithms. 

Gamut mapping assigns a mapping between two different colour spaces. 

Previously, the focus of gamut mapping has been between monitor and printer, which 

have relatively different gamut shape. Implementation and result of existing models are 

compared and a new model is introduced that its output images are as good as the best 

available models but runs in less time. 

DLP projectors with a different technology require a more complex calibration 

algorithm. A new approach for calibrating DLP projectors is introduced with a 

significantly better performance on predicting RGB data given tristimulus values. 

At the end, a new calibration method, using Support Vector Regression is 

introduced. 
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CHAPTER 1: 
INTRODUCTION 

Accurate colour management across multiple displays is an important problem. 

Users are increasingly relying on digital displays for creating, viewing and presenting 

colour media. Users with multi-panel displays would like to see colour consistency 

across the displays, while conference speakers would like an accurate prediction of what 

their slides will look like before they enter the auditorium. 

To be able to predict colours across multiple electronic displays, implementation 

of several concepts, including device characterization, gamut mapping, and perceptual 

models is required. 

This thesis starts with studying characteristics of CRT and LCD monitors and 

projectors. Collecting data accurately is another important factor and some devices such 

as CRT monitors tend to take a longer time to stabilize their tristimulus output. Later on, 

several characterization models for LCD and CRT displays are studied. Device 

characterization is establishing a mapping from digital input values di (i=R,G,B) to 

tristimulus values such as XYZ. It is desired for a characterization model to be fast, use a 

small amount of data and allow for backward conversion from tristimulus values to di. 

Models need to be fast for real time application, i.e. previewing. Requiring small data 

size, makes it easy to combine multiple devices' characterization data into one and have 

it portable. Backward mapping is needed when the user wants to know what digital input 

values (di) are needed to have desired tristimulus values. 



Three well-known characterization models are implemented in this thesis that 

support forward and backward mapping. The three models are 3D Look Up Table (LUT), 

Masking Model and Linear Model. The 3D LUT model [ l ]  holds two 3 dimensional 

tables, one from forward mapping and one for backward mapping. 

The Masking Model was introduced by Tamura et. al. [2]. This model applies the 

concept of Under Colour Removal (UCR) to mask inputs from 3-dimensional RGB space 

to 7-dimensional RGBCMYK space, then linearizes the inputs and combines them with a 

technique similar to that used by the Linear Model. 

The term Linear Model refers to the group of models (GOG [3], S-Curve [2], and 

Polynomial [4] model) that estimate tristimulus response as a linear combination of pure 

phosphor outputs. These models each start by linearizing the digital input response curves 

with a specific nonlinear fbnction from which they draw their names. The Linear Model 

has been widely used for CRT monitors but has been criticized for its assumption of 

channel independence [2]. Channel independency is certainly an issue for LCD monitors 

from an industry point of view. In this thesis, we will study whether this characteristic 

exists when the end-user receives the displays. We will show a simple extension to the 

Linear Model (Linear+) that guarantees correct mapping of an important colour (e.g. 

white) without adding significant errors to other colours. This is simple substitution for 

gamut mapping which is discussed next. 

The gamut is the range of colours that a given device can produce. For a display, 

the colour gamut is the set of colours that the display can produce. For an image, the 

colour gamut is simply the set of all the colours found in it. In this thesis the gamut of 

several displays are studied, including gamut boundary and gamut shape. A method for 



explaining the gamut boundary is also explained which takes advantage of the displays 

gamut shape. 

Gamut mapping is an important problem in colour management, and has been one 

of the most active areas of research in the Colour Imaging Conference series. The optimal 

gamut mapping approach for a given case depends on input and output device gamuts, 

image content, user intent and preference. Two major types of gamut mapping 

algorithms, display based and content based, are studied in this thesis. Display based 

gamut mapping algorithms are image independent and do not try to preserve the image 

content. This type of gamut mapping algorithm is normally fast since most of the work 

can be done before hand (such as defining the mapping) and the algorithm does not 

change based on image content. Several display based gamut mapping methods are 

implemented in this thesis including Cusp Clipping [5], Node clipping [6], Straight 

Clipping [5] and Rotation -based clipping. 

Content-based Gamut mapping algorithms try to preserve perceptual features of 

an image by redefining the mapping based on a pixel's neighbouring colours. In general, 

algorithms in this category include a refinement step after a device-based mapping is 

applied. Two methods in this category are studied in this thesis. The work by 

Balasubramanian [7] intends to reduce and adjust the trade-off between luminance and 

chrominance preservation by incorporating the pixel neighbourhood into the mapping. 

Kimmel [8] introduces a different approach for content-based gamut mapping. Kimmel's 

method refines the mapped pixels using information related to Retinex. This method is 

also linked to recent measures that attempt to combine spectral and spatial perceptual 

measures. Kimmel shows that if the target device gamut is convex, the gamut mapping 



problem leads to a quadratic programming formulation, which is guaranteed to have a 

unique solution. 

The last part of this thesis studies the DLP (Digital Light Processing) projector 

technology. DLP projectors beside Red, Green and Blue components, include a fourth 

component, White, for enhancing subjective display quality. The Linear Model, using a 

3x3 matrix, cannot predict the tristimulus values of DLP projectors accurately because of 

the fourth component [9]. In this thesis, a number of calibration methods are studied for 

DLP projectors and a model similar to the Masking Model [2] is shown to perform the 

best. The Gamut of DLP projector is also studied briefly and is shown that the gamut is 

not necessarily convex. 



CHAPTER 2: 
DISPLAY CALIBRATION 

2.1 Calibration Introduction 

Accurate colour management across multiple displays is an important problem. 

Users are increasingly relying on digital displays for creating, viewing and presenting 

colour imagery. Users with multi-panel displays would like to see colour consistency 

across the displays, while conference speakers would like an accurate prediction of what 

their slides will look like before they enter the auditorium. Of course, displays will have 

been characterized and calibrated by the manufacturer; nonetheless the end user may well 

wish to verify and improve upon the calibration. We present a study of techniques for 

end-user calibration of CRT and LCD displays. 

Predicting colours across multiple display devices requires implementation of 

several concepts such as device characterization, gamut mapping, and perceptual models. 

The focus of this thesis is device characterization by an end user, with the goal of 

selecting an appropriate model for mapping digital input values di (i=R,G,B) to 

tristimulus values such as XYZ. A good characterization model should be fast, use a 

small amount of data, and allow for backward mapping from tristimulus to d,. 

Backward mapping is useful when user is interested in finding RGB values that 

result in a given XYZ values. For example in previewing, a user is interested in 

previewing on a one display an image as it will appear on a second display. A backward 

mapping is required for the preview display. 



There are a several well-known characterization models that support both forward 

and backward mapping, three of which were implemented in this experiment: a 3D 

Lookup Table (LUT), a Linear Model and a Masking Model. The LUT method [I]  uses a 

3-dimensional table to associate a tristimulus triplet with every RGB combination and 

vice versa. This method is simple to understand but difficult and cumbersome to 

implement. 

The term Linear Model refers to the group of models (GOG [3], S-Curve[2], and 

Polynomial[4] model) that estimate tristimulus response as a linear combination of 

primary colour outputs. These models each start by linearizing the digital input response 

curves with a specific nonlinear function from which they draw their names. The Linear 

Model has been widely used for CRT monitors but has been criticized for its assumption 

of channel independence [2]. We will show a simple extension to the Linear Model 

(Linear+) that guarantees correct mapping of an important colour (e.g., white) without 

adding significant errors to other colours. 

The third model implemented in this study is the Masking Model introduced by 

Tamura, Tsumura and Miyake in 2002 [2]. This model applies the concept of Under 

Colour Removal (UCR) to mask inputs fiom 3-dimensional RGB space to 7-dimensional 

RGBCMYK space. It then linearizes the inputs and combines them with a technique 

similar to that used by the Linear Model. 

This thesis will discuss the implementation, benefits and pitfalls of each method 

with respect to use on CRT and LCD display devices. In general, prediction errors will be 

quantified terms of AE, as measured in 1994 CIE La*b* colour space. The first section of 

the thesis deals with data collection. The next section reviews the characteristics of the 



devices used in the study. Section Three discusses implementation details and 

considerations for each of the characterization models. Section Four reviews the results 

of the study. 

2.2 Data Collection 

All data used in this study was collected using a Photo Research Spectrascan 650 

Spectroradiometer in a dark room with the spectroradiometer at a fixed distance, 

perpendicular to the center of the display surface. Spectroradiometer is an instrument for 

determining the radiant energy distribution in a spectrum combining the functions of a 

spectrometer with those of a radiometer. Before beginning each test, the monitor settings 

were re-set to the factory default, and the brightness was adjusted using a grey-scale 

calibration pattern until all shades of grey were visible. 

The data collection was performed automatically in large, randomized test suites. 

We found that it is important to test the repeatability of the spectroradiometer with 

respect to each monitor, and ensure that the test plan is sufficient to smooth out the 

measurement errors. As a result, each RGB sample used in this study was derived from 

of a total of 25 measurements taken in 5 randomly scheduled bursts of 5 measurements 

each. This technique served to average out both long- and short-term variation. The size 

and quantity of bursts were determined through empirical study. 

An issue that arises when using an automated data collection system is phosphor 

stabilization time. Figure 2- 1 shows the percentage of steady-state luminance for white 

versus the number of seconds since a colour change from black. "Luminance," as used 

here, is the L value in CIELABw space. Note that the LCD-based devices reach steady 



state within less than 5 seconds, while the CRT devices take longer. However, the 

amount of time required for the CRT devices (up to 10 seconds) was somewhat 

surprising. The spike on CRT2 that occurs right after the colour change is unexpected as 

well. In practice, we found that using a delay of 2500 ms between the display of a colour 

and the start of measurement gave acceptable results. 



Figure 2-1: Percentage of the steady state luminance for white on the vertical axis versus the 
number of seconds since black was displayed on the horizontal axis. 
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An additional important setting related to data consistency is spectroradiometer 

integration time. Integration time is the number of milliseconds the spectroradiometer's 

shutter remains open during a measurement. The integration time needs to be adjusted as 

a h c t i o n  of the incoming signal. In general, CRT monitors require a longer integration 

time because the display flashes with each beam scan. Figure 2-2 shows the result of an 

integration time test on CRT1. Observe that shorter integration times result in more 

unstable measurements. The monitor refresh rate used in this experiment is 75 Hz, which 

equates to 13.3 ms per scan. Therefore, any integration time t will experience either 

Lt113.31 or rtl13.31 scans depending on when the measurement window starts. For 

example, if the integration time is 1 OOms, then measurements will either experience 

seven or eight scans, leading to high variation. Conversely, a time of 400 ms will almost 

always lead to 30 scans ( 400 I 13.33 = 30.00 ). 



Figure 2-2: Measurement Error (Log scale) versus integration time in milliseconds measured for 
four greys on CRTl 

Integration Time 

The measurements in this study were taken with a default integration time of 

400ms, which was doubled whenever a "low light" error was reported by the 

spectroradiometer and halved when a "too much light" error was reported. Although this 

technique resulted in acceptable error levels, an improvement would be to ensure that all 

integration times are exact multiples of 13.3, so each measurement gets the same number 

of scans. 

Three suites of data were collected for each monitor: a 10x10x10 grid of evenly 

spaced RGB values covering the entire 3D space, a similar 8 x 8 ~ 8  grid used for testing 

and verification, and a "1 01x7" data set made up of 101 evenly spaced measurements for 

each RGB and CMYK channel with the other inputs set to zero. 



2.3 Device Characteristics 

Seven devices were tested: two CRT monitors, three LCD monitors, and two LCD 

projectors. A summary of these devices is given in Table 2- 1. One important issue in 

characterizing a display is whether each channel's response is independent of the other 

channels. In this study, channel interaction is calculated as follows. 

In this equation, v represents the input value for the channel in question, a and b 

are constant values for the other two channels, and L(r,g,b) represents the measured 

luminance for a given digital input. The equations for CIGREEN and CIBLUE are similar. 

This equation measures how much the luminance of a primary changes when the other 

two channels are on. The overall interaction error for each device (Table 2-1) was 

calculated as 

Table 2-1: Device Summary 

Name 

CRTI 

CRT2 

LCD1 

LCD2 

LCD3 

PRI 

PR2 

Description 

Samsung Syncmaster 900NF 

NEC Accusync 95F 

IBM 9495 

NEC 1700V 

Samsung 171 N 

Proxima LCD Desktop Projector 9250 

Proxima LCD Ultralight LX 

Interaction Mean 

2.1% 

1.5% 

0.2% 

2.2% 

1.2% 

0.2% 

0.4% 

Interaction Max 

9.4% 

4.9% 

0.4% 

4.1% 

2.7% 

0.5% 

0.7% 



where N is the averaging factor = (XS+ 1 )*3. 

From end-user point of view, three of the five LCD devices showed almost no 

channel interaction; however, both CRT monitors exhibited significant channel 

interaction (Figure 2-3). The interaction on the CRT monitors was generally subtractive 

(leading to lower luminance) while on the LCD monitors it was either additive or 

negligible. 



Figure 2-3: Channel Interaction. The horizontal axis represents the input value v ranging from 0 to 
255 and the vertical axis represents the value of the channel interaction metric, 
CICOLOR(v,a,b). The black Line shows a=b=255 and dashed lines show a=O,b=255 and 

Red Green Blue 



Another potential issue with LCD monitors is a possible chromaticity shift of the 

primary colours. Figure 2-4 shows the chromaticity coordinates for each of the primary 

colours (RGB), as well as the combined colours (CMYK), after dark correction, plotted at 

10 luminance settings per colour. It was observed that all devices have stable RGB 

chromaticity; however, all the LCD devices exhibited significant chromaticity shifts in 

the combined (secondary) colours. The cause of chromaticity shift is explained in 

detailed by Marcu [55] .  

The presence of a chromaticity shift in the secondary colours (CMYK) will cause 

problems with the Masking Model since it uses the combined colours (CMYK) as 

primaries. The problem arises in the response-curve linearization step, where it will not 

be possible to find a linearization function that makes all three curves into lines. As a 

result, the linearization will be poor which will then lead to erroneous output estimates. 



Figure 2-4 Chromaticity shift shown as intensity is increased plotted in xy space with 
x=X/(X+Y+Z) on the horizontal axis and y=Y/(X+Y+Z) on the vertical axis. When there 
is no chromaticity shift, all the dots of one colour lie on top of one another and 
therefore appear as a single dot. 
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2.4 Implementation Details 

All characterization methods start with black-level correction in which the measured 

XYZ value of black (minimum output) for the device is subtracted fiom the measured 

tristimulus value of each colour. This ensures that all devices have a common black point 

of (0,0,0) in XYZ space. Fairchild et. al. discuss the importance of this step [50]. The 

remaining steps for each characterization differ based on the method and are described 

below. 

2.4.1 3D LUT Model 

The 3D LUT method was implemented with the intention of provic ding a standarc 

against which to evaluate the other two models [I]. It is expensive both in time and space 

(-10 MB for the lookup table) and is not well suited for reverse mapping. To create the 

forward lookup table, the 1 Ox 1 Ox 10 training data is interpolated using 3D linear 

interpolation to fill a 52x52~52 lookup table indexed by RGB values spaced 5 units apart. 

At look-up time, 3D spline interpolation is used to look up intermediate values. 

Inverting the lookup to index by XYZ requires interpolation of a sparse 3D data 

set, which is non-trivial and an independent area of research [49]. The reverse lookup 

was performed via tetrahedral interpolation into the original 10x1 0x1 0 data set. 

Tetrahedral interpolation was chosen over a number of other methods primarily for its 

speed and its ability to handle sparse, irregularly spaced data. 

2.4.2 Linear Model 

The Linear Model is a two-stage characterization process. In the first step, the raw 

inputs di (i=l, 2, 3 for R, G, B) are linearized using a function Ci(di) fitted for each 



channel. Linear regression is then used to determine the slope Mij between each 

linearized input Ci(di) and the respective XYZ outputs where j=(l, 2, 3) for (X, Y, Z). 

The second stage applies matrix M to calculate estimated XYZ values. 

The LUT is calculated as follows. The 10 measured response values for the ith input 

channel are interpolated to obtain three output vectors X(di), Y(di) and Z(di) in 256- 

dimensional space. Principal component analysis is then used to find the single vector 

Ci(di) that best approximates all three vectors. The following equation calculates Ci(di) 

where PCAi represents the weighting vector obtained from principal component analysis 

for channel i 

In order to allow for backward mapping, two conditions are required: the 

linearization function must be monotonic and the matrix M must be invertible. Inversion 

is always possible because the input channels are linearly independent. However, the 

monotonicity requirement is a real problem with LCD displays where the response curves 

sometimes level out or even decline for high input values (Figure 2-5). It is therefore 

necessary to modify the linearization function to ensure monotonicity as shown in Figure 



2-6. Note that this modification, although necessary for backward mapping, reduces the 

accuracy of the linearization and increases the error of the forward characterization. 

Figure 2-5 Luminance curves for red, green, and blue phosphor input (Horizontal axis: R, G or B 
value. Vertical axis: L from CIELAB) 
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Figure 2-6 Smoothing correction for non-monotonicity in the Zresponse curve of the B channel 
for PR1. The vertical axis is the Z value reading and horizontal axis represents the 
digital counts for blue from 0 to 255 

When creating the lookup table, a decision must be made regarding the size of the 

training data set. Figure 2-7 shows the effect of training size on the forward mapping 

error measured in AE. In general, a larger training set is better, but the benefit tapers off 

after about 10 data points. For the results section of this thesis, a training data set with 

101 points was used to ensure minimal error introduced by training data size. 
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Figure 2-7 Mapping Error versus Training Data Size 
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The primary criticism of the Linear Model is that it assumes channel 

independence. As we have seen above, this is not always a valid assumption - even for 

CRT monitors. When there is channel interaction, the predicted output XYZ value for 

colours that use more than one primary colour may not be accurate. 

Predicting white and grey values correctly is crucial in colour calibration [51]. For 

example, white is significant on computer-generated images such as presentation slides or 

charts where there are large regions of pure white with no ambient lighting expected. We 

observed that the Linear Model in general overestimates the luminance of white. There 

are several approaches to addressing this issue. One technique , WPPPLS, imposes a 

constraint so that the Linear Model emphasizes correct prediction of white [51]. 

A simple approach is to apply a diagonal transform to the slope matrix M based 

on the measured and predicted values of pure white. The following formula shows the 

conversion, where XMEASURED is the measured X value for white and XPRE~~CTED is the 

predicted X value for white using the original slope matrix,. 



This modification to the slope matrix ensures that white is correct, but slightly 

shifts all of the other colours in a non-uniform manner, which could potentially increase 

the overall error. This model will be referred to as "Linear+" in this thesis, and is useful 

when displaying computer-generated images such as charts where white is a major 

colour. Note that a similar correction can be performed using predicted values in an 

alternate space, such as LMS cone sensitivity space. In our study, we found that using 

either XYZ or LMS intermediate space returns the nearly same average increase in 

forward error (*0.05 AE for all devices) . 

Further improvement may be possible using a technique similar to that presented 

by Finlayson and Drew in [5 11, where a modified least-squares procedure is used to 

determine the matrix M. By constraining the prediction error for white to zero, a matrix 

can be selected that reduces overall error while ensuring an accurate white value. It is 

interesting to note that their approach achieved good results even without first linearizing 

the inputs. 

2.4.3 Masking Model 

The Masking Model [2] attempts to avoid problems related to channel interaction 

with a technique similar to under colour removal in printing. The original digital input di 



(i=1,2,3 for RGB) is converted to masked values mi (i=1,2,3,4,5,6,7 for RGBCMYK), 

and the masked values are combined in a manner similar to that for the Linear Model. 

The masking operation assigns values to three elements of m - the primary colour (index 

p), the secondary colour (index s), and the grey colour (index 7), and sets all of the 

remaining elements of m to zero, as follows. 

Primary color index p such that d, = max(d, , d, , d, ) 

Under color index k such that d, = min(d, , d, , d,) & k # p 

Secondary color index s = k + 3 

Primary color m, = d, 

Secondary color m, = d,-,-, 

Gray (Under) color m, = d, 

Unused Color m,,~p,s,7, = 0 

The result of these formulas is to set p to the index of the maximum primary 

colour (R, G, or B), and m, to the input value for that colour. It assigns s to the index of 

the mixed colour (C, M, or Y) that does not contain the minimum colour, and assigns m, 

to the median of the original values. Finally, it sets the grey (under colour) value m7 to 

the minimum of the three original inputs. For example, if the original inputs are 

RGB=(200,180,30), the primary colour will be red, with a value of 200. The secondary 

colour will be yellow (which does not contain blue) with a value of 180, and the grey 

(under) colour will have a value of 30. The masked input array becomes 

m=[200,0,0,180,0,0,30]. 



Once the inputs have been converted into masked values mi, a linearization 

function Ci(mi) for each input channel i is determined using the method described above 

for the Linear Model. The slope matrix Mij for each input channel i and output channel j 

is calculated as using PCA and linear regression, also as described for the Linear Model. 

Finally, let the vector Pi represent the column of matrix M that contains the X, Y, and Z 

slopes for input channel i. The transformation from masked input to XYZ output can 

then be written as follows: 

Here C,, C, and C7 represent the linearization functions for primary, secondary 

and black component. The mi values are the values corresponding to each basis (primary, 

secondary or black). The inverse mapping from XYZ to RGB is less obvious, and 

requires knowledge of the primary and secondary colour indices p and s. There is no way 

to know these values, so all six possible (p, s) combinations are tested (RM, RY, GC, 

GY, BC, BM) and any combination that satisfies the following conditions will yield the 

correct result. 



2.5 Calibration Results 

We calculated values of forward error AEFwD, round trip error AETRIP, and 

backward error AEswD for 512 colours in an 8 x 8 ~ 8  evenly spaced grid of RGB inputs. 

For each colour, we find three vertices in CIE L*a*b* space: the measured value for the 

colour VM, the predicted value vp, and a round-trip value VRT. The round-trip value is 

found by mapping backward and forward again fiom vp. These points form a triangle 

with edges representing the forward, round-trip and backward error vectors. AEFWD is the 

distance from VM to vp, AETR~P is the distance fiom vp to VRT, and AEswD is the distance 

fiom VRT back to VM. 

With respect to forward or backward error, we see that the 3D LUT is the most 

accurate, followed by the Linear, Linear+ and Masking Models (Table 2-2, Table 2-3). 

Note, however, that the Linear and Masking Models all have a round-trip error of zero, 

while the 3D LUT has a non-zero round-trip error indicating an imperfect inversion. This 

is not surprising considering the rounding error inherent in the sparse 3D interpolation 

required to build the backward lookup table. The other interesting observation is that 

Lin+ improved average forward error for CRTl which has higher CI than CRT2. This 

data confirms that most of the error was due CI and a simple modification to the Linear 

Model improves the overall performance. 



Table 2-2 Forward mapping error: AE Mean (p ), standard deviation (a), and maximum. 

I I LUT I Lin I Lin+ I Mask I 

Average 1 0.8 1 5 6  ( 3.13 1 2.2 1 1.1 1 5.9 ( 2.5 1 1.3 1 6.8 1 4.0 1 2.1 1 10.3 

CRTI 

CRT2 

LCD1 

Table 2-3 Backward Error AE Mean (p), standard deviation (a), and maximum. 

p 

0.8 

0.5 

0.8 

A comparison of backward error distributions (Figure 2-8) shows that the Linear 

Model had the most compact distribution for each device, while the distribution for 3D 

LUT tended to have a number of high-error outliers. The cause of these outliers becomes 

PRI 

PR2 

Average 

0 

0.3 

0.3 

0.8 

2.8 

1.9 

2.1 

max 

2.4 

2.3 

3.5 

1.8 

1.5 

p 

2.4 

1.7 

0.9 

10.7 

8.9 

0 

1.2 

0.9 

0.5 

1.7 

2.1 

2.2 

max 

5.4 

4.5 

3.0 

1.2 

1.1 

1.1 

p 

2.2 

2.7 

0.9 

6.5 

6.5 

5.9 

0 

1.3 

1.1 

0.6 

1.9 

2.6 

2.5 

max 

5.2 

6.1 

2.9 

1.3 

1.3 

1.3 

p 

2.6 

1.5 

3.5 

7.2 

7.2 

6.8 

0 

1.3 

0.9 

2.8 

max 

7.1 

4.7 

11.2 

5.6 

7.3 

4.0 

I 

2.2 

3.3 

2.1 

12.3 

15.0 

10.3 



apparent when the error values are plotted by chromaticity (Figure 2-9). Observe that the 

largest errors for the 3D LUT are often on or near the gamut boundary. 

For the Linear Model, the highest errors are fairly well distributed across the 

chromaticity space for all devices except the projectors, which have a distinct problem in 

the blue region. This is most likely due to the non-monoticity exhibited by the projectors 

in the blue output curves (Figure 2-5). As mentioned in the implementation section, the 

monotonicity correction stage is a potential source of error for all devices. However, it 

appears to be adding very little error for devices that do not have a monotonicity problem 

(Table 2-4). The most notable increase in error was seen with the Projector 1, which also 

had the most trouble with non-monotonicity. 

Table 2-4 Percent Increase in Forward AE Error Due to Monotonicity Correction using Linear 
Model 

I Uncorrected I Corrected [ % increase 
CRTl I 2.4 I 2.4 I 0.0% 

Average I 2.2 I 2.2 I 2.3% 

The average error for the Linear+ model was nearly the same as that for the 

standard Linear Model. Recall that the goal of Linear+ is to guarantee that the predicted 

white is correct, at the possible expense of other colours predictions. The results in Table 

2-2 and Table 2-3 show little increase in overall error, which means a "perfect" white can 



be achieved without much degradation in other colours. Informal visual comparisons 

indicate that this model is often the best one to use for computer-generated graphics. 

The Masking Model was expected to out-perform the Linear Model whenever 

there was an issue with channel interaction. However, the model's best performance (on 

CRT2) is only slightly better than that of the Linear Model. The primary pitfall of this 

model is that it depends on constant-chromaticity "combined primaries" (CMYK). It is 

clear from Figure 2-4 that this assumption fails for the LCD monitors and projectors. The 

chromaticity shift causes the input the linearization step to fail. Figure 2- 10 shows an 

example of an unsuccessful linearization for the black channel for PRl in the Masking 

Model. 

This explains why the performance of the Masking Model was better for the CRT 

monitors than any of the other devices- the CRTs do not have the shifting chromaticity 

problem. It is also interesting to note that on CRT2, the Linear+ algorithm introduced the 

largest amount of error, indicating that the interaction present on this monitor is not well 

suited for correction with non-uniform scaling. 

With respect to efficiency, the Linear Model is the best. The Linear Model is 

slightly faster than the Masking Model and nearly 20 times faster than the 3D LUT. The 

Linear Model also requires less than half the storage space of the Masking Model, and 

less than 11300th the storage space required for 3D LUT (Table 2-5). 



2.6 Summary of the Calibration Study 

Several display characterization models were implemented in this thesis: a 3D 

LUT, a Linear Model, an extension to the Linear Model, and a Masking Model. These 

characterization models were each tested on seven devices: two CRT Monitors, three 

LCD monitors and two LCD projectors. The devices are characterized from and end user 

perspective in which the devices are treated as black boxes with no knowledge or control 

over their internal workings. 

Table 2-5 Experimental cpu time and storage space relative to the time and space used by the 
Linear Model 

In characterizing the devices, two issues that were of particular importance were 

phosphor stabilization time and spectroradiometer integration time (Figure 2-1, Figure 

2-2). We found that the phosphor stabilization time on the CRT monitors can take up to 

10 seconds. In practice, a delay time of 2500 ms between colour display and 

measurement resulted in acceptable error levels. With respect to integration time, we 

propose that measurements on CRT monitors be taken with integration times that are 

multiples of the display scan rate. In addition, we observed that a training set of 10 data 

points per axis was sufficient for an accurate Linear Model for each of our 7 displays. 

(Figure 2-7). 

Linear 

Masking 

3D LUT 

Although recent thesiss have indicated that the Linear Model is not applicable to 

LCD panels [2], it worked well for the LCD display tested in this experiment. 

Furthermore, the channel interaction problem was more pronounced on the CRT monitors 

Time 

1 .O 
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17.0 

Space 
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333.4 



than on several of the LCD displays. The fact that we did not find channel interaction 

with the LCD's we tested does not mean that it is not present in LCD panels themselves. 

We tested completed LCD displays which include electronics specifically designed to 

mitigate the effects of channel interaction. Nonetheless, from an end-user point of view, 

channel interaction did not pose a problem. The primary issue with the LCD displays was 

the fact that the response curves for the three input channels were dissimilar, leading to 

chromaticity shift of combined colours (CMYK). This problem affected the Masking 

Model but not the Linear Model. 

Despite these issues of linearization and channel interaction, all three models 

yielded a level of error that on average has a mean of less than 4 AE and a worst case less 

than 15 AE. The 3D LUT model was slightly more accurate than the other models, but it 

is too cumbersome for actual use. The Linear Model was the most efficient, with 

accuracy nearly as good as to the 3D LUT. The primary drawback of the Linear Model is 

that it can be adversely affected by channel interaction. A slight modification to the 

Linear Model is presented in the Linear+ model that uses a simple white-point correction 

technique to ensure correct prediction of white. Our results indicate the Linear+ model is 

able to guarantee white-point accuracy with minimal degradation for other colours. 



Figure 2-8 Backward Error distribution for each characterization model on each device. AE error 
value is shown on the horizontal axis and histogram counts are shown on the vertical 
axis. 
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Figure 2-9 Comparison of Outliers for the Backward model. Vertical axis and horizontd axes 
represent YJ(X+Y+Z) and M/(X+Y+Z) respectively. The AE error is plotted according 
to the legend of grey scales. The circular points represent outliers with AE greater than 
1.5 times the average error. The majority of the high outlier errors for LUT model 
occur near the gamut boundaries.. The outliers for Linear Model are quite negligible 
compared to the other two models. 
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Figure 2-10 Linearization failure for the black channel on PR1 
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CHAPTER 3: OPTIMAL DEVICE CALIBRATION 

3.1 Introduction 

In this section, we try to study whether the traditional Device Calibration used for 

electronic display can be improved. As was explained earlier, a forward Linear Model is 

based on a 3-by-3 linear transformation matrix M mapping data from (linearized) RGB to 

XYZ. A typical approach for generating the matrix M is by applying least squares 

between linearized RGB and measured XYZ [5 11 or using principal component analysis 

(Section 2.4.2). Although these two methods for calculating M work well, they both 

suffer from the fact that they try to minimize error in XYZ space, which is perceptually 

non-uniform. 

In this chapter we propose two methods for calculating M which is based on more 

directly optimizing the error measure in CIELAB. The first approach (LabLS) extends 

the least-square model (ULS) by applying weights to the model. Weights represent 

importance of a colour in CIELAB space (the space that is important to us). 

The second method is based on optimizing the AE error directly using the Nelder- 

Mead simplex algorithm [56]. Unfortunately, the Nelder-Mead algorithm (not to be 

confused with the linear programming simplex algorithm) finds a local minimum and 

does not guarantee a globally optimal solution. However, by using the results of the 

LabLS method as the starting condition, we have found experimentally that it converges 

reliably to excellent solutions. This method will be referred to as DEM since it is based 

on a AEg4 minimization. 



3.2 CIELAB Weighted Least Squares (LabLS) 

This method extends the standard least squares solution to a weighted least squares 

solution in which the weights are defined to be inversely proportional to the approximate 

size of the MacAdam colour discrimination ellipse that would surround each XYZ. The 

weights for the LabLS method are based on human sensitivity to colour differences as 

encapsulated in CIELAB AE. The idea is to evaluate the rate of change in L*a*b* as a 

h c t i o n  of change in XYZ. The 3-dimensional change (AX, AY, AZ) represents a change 

in a volume, which can be formalized in Equation (9) as the cube root of the absolute 

value of the Jacobian determinant. 

For each measured XYZ, the corresponding weight is calculated and arranged 

along the diagonal of a matrix W. M is then calculated using equation (lo), where D is an 

11x3 matrix containing normalized XYZ tristimulus values and N is an 11x3 matrix 

containing the linearized RGBs. This use of the Jacobian of L*a*b* is similar to that 

proposed by Balasubrarnanian [57] in the context of colour printer calibration and by 

Sharma and Trussell [58] in the context of colour scanners. 



3.3 AE Minimization (DEM) 

Nedler-Mead simplex [56] search is a directed search method for multi- 

dimensional non-linear regression. This search can be used to optimize the 9 parameters 

in matrix M so that the calibration error is minimized. In this thesis we used the Matlab 

function fininserach to find the 9 values in matrix M, however any local-search algorithm 

can be used. 

The solution depends on the starting conditions. It is shown below that the 

Nedler-Mead simplex search outperforms other models when it starts with an initial 

solution found by LabLS. 

3.4 Measurement Characteristics 

We used the measurements for the 7 displays mentioned in Table 2-1 that was 

originally used to compare Linear Model and Masking Model performance. 

Similarly, all three RGB channels are linearized respect to XYZ values. 

3.5 Results 

The ULS, LabLS and DEM methods of computing the RGB-to-XYZ 

transformation matrix, M, were applied to the same 1000 measured colours as in Chapter 

2. All these values are used after they are linearized and normalized with respect to the 



white of the display. In each case, the resulting M is evaluated by using it to map the 

1000 RGB inputs to XYZ and measuring the difference between the predicted and 

measured values. The difference is calculated in terms of the average AE94 error 

measures. 

Table 3-1 shows the performance of the three Linear Models in AE94. In the 

tables, 'mean,' 'std' and 'max' are the average error, standard deviation and maximum 

error over the 1000 test samples. The percentage improvement in error relative to 

unweighted least squares is labeled 'change'. 

None of the methods requires more that a few seconds of computer time to solve 

for M. 

Table 3-1 Calibration Error in CIELAB AEg4 



Mean 1 3.65 1 3.28 1 3.10 I 
Std 

Change I 1 10% 1 15% I 

ULS 

1.44 

Std 1 1.26 1 1.27 1 1.55 I 

Max 

Std 

Mean 

Change 

Mean 1 1.98 1 1.91 1 1.88 I 

LabLS 

1.41 

Change I 1 4% 1 5% I 

DEM 

1.39 

7.25 

1.43 

1.73 

Max 1 6.29 1 7.91 1 9.11 I 

8.42 

1.44 

1.54 

11% 

Comparing Table 3-1 with Table 2-2 shows that there is no advantage between 

9.45 

1.67 

1.46 

16% 

Std 

calculating the matrix M using Least Squares (ULS) or using coefficient of PCA (Section 

2.4.2), and both LabLS and DEM have improvements over the old two methods. 

1.13 1 1.16 

3.6 Summary of Optimal Device Calibration 

The performance of a 3x3 linear colour calibration model can be improved by optimizing 

for the transformation matrix in spaces other than XYZ. One alternative (DEM) is to 

minimize directly in CIELAB space, but this involves nonlinear optimization. Another 

alternative (LabLS) is to optimize using weighted least squares regression in a CIELAB- 

weighted version of XYZ. Experiments in calibrating with 7 different displays show that 

both methods significantly reduce calibration errors as measured in terms of average and 

maximum AE94 error. 

1.27 



CHAPTER 4: 
GAMUT MAPPING FOR ELECTRONIC DISPLAYS 

4.1 Gamut Mapping Introduction 

A gamut is the range of colours that can be formed by all combinations of a given 

set of light sources or colourants of a colour reproduction system. The human eye can 

perceive a wide gamut of colours within the full range of the visible spectrum, including 

detail in very bright light and deep shadows. Reflected light, ink impurities, and paper 

absorption, all limit a conventionally printed image colour gamut [I 11. Similar effect 

happen on monitors and projectors as each display can produce a limited range of 

colours. Similarly, we can define a gamut for an image, which is the set of all the colours 

found in it. In this thesis, we focus on the gamut of electronic display and more 

specifically on the CRT and LCD displays. 

In order to be able to preview one display's output on another display, we need to 

find a way to overcome the difference between gamuts of displays. The source gamut is 

the gamut of a display or an image that is desired to be mapped. The target gamut, on the 

other hand, is the gamut of the display that the image is intended to be viewed on. The 

Gamut Mapping Algorithm (GMA) try to find a mapping between the two gamuts. A 

GMA should allow for different rendering intents (e.g. accuracy, pleasant, retinex 

reproduction). 

Most GMAs are based on the assumption that the design of the optimal technique 

involves combination of image attributes such as contrast, luminance detail, vividness, 



and smoothness. The followings are the general measurement factors and goals for a 

GMA identified by Jan Morovic [ 131 and MacDonald [ 151. 

Preserve the Grey Axis of the image for maximum luminance contrast. 

Minimize the hue shift. Most of the display-based GMAs are designed to 

preserve the hue angle by allowing changes in saturation or luminance. 

Increase in saturation is preferred. Even though the saturation might be 

limited after the gamuts are mapped, at least the available potential 

saturations should be used. 

There are two general gamut mapping algorithms [7 ] .  The first category is solely 

device dependent, where gamut mapping is a fimction of input and output device gamut 

and the algorithm is independent of image content. The majority of gamut mapping 

algorithms fall in this category [13]. In this approach, the gamut mapping is a point-wise 

operation from an input point to an output point in an appropriate (usually perceptual) 3D 

colour space. One of the fundamental problems with such point-wise operation is that it 

does not take important spatial neighbourhood effects in an image into account. We refer 

to this type of GMA as device-based GMA. 

The second category of gamut mapping algorithms, content-based GMA, 

considers spatial characteristics in addition to colour characteristics of the image. Using 

these algorithms, two pixels of the same colour in an image can map to different colours 

in the output image, depending on the spatial characteristics in the neighbourhood of the 

pixels. 



The majority of the study on GMAs is between monitors and printers that have a 

very different gamut shape. In this thesis, we specifically focus on gamut mapping 

between electronic displays. We show improvements that we can make to existing GMAs 

by considering common characteristics between gamut of electronic displays. 

This section starts by studying the properties of LCD and CRT gamuts. Methods 

for determining gamut boundary and finding OOG are explained. The next part starts 

with a detailed introduction to different types of device-based GMA. We introduce an 

algorithm for fitting most of the source gamut inside the target gamut before any device- 

based mapping is applied to bring the remaining OOG colours inside gamut. This 

algorithms is based on the similar shape of the gamut of displays and tries to preserve the 

hue angle for each colour. At the end, performance of this new algorithm is compared to 

other existing algorithms, including some content-based GMAs that take longer CPU 

time. 

4.2 Characteristics of LCD and CRT Display Gamut 

4.2.1 Gamut Shape 

Electronic displays such as LCD and CRT displays have an additive gamut 

compared to a printer's gamut which has a subtractive gamut. Additive means that their 

gamuts are created by adding lights; whereas for printers, the gamut is created by 

reducing reflectance light from the paper. In Color.org [14] website there is a visual 

comparison between CRT monitor gamut shape and a 4-ink inkjet printer. It is obvious 

that these two devices, monitor and printer, have different shape, one is quite convex and 

the other one has concavities in multiple places. 



Out of 7 displays shown in Table 2-1 that we studied in this thesis, we observed 

that all of them have a convex shape gamut with very similar shape. In general, it is 

expected that these devices will have a convex gamut since their colour space is 

generated in an additive form by combining three different lights (R, G, B). Figure 4-1 

and Figure 4-2 show 1500 colours measured inside each of these gamuts in XYZ and 

CIELAB colour space. 



Figure 4-1 Gamut shape of Displays in XYZ space 
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Figure 4-2 Gamut shape of displays in L*a*b* space 
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From these two figures we can see that all the devices that we tested have a 

convex gamut shape. In this thesis we try to take advantage of this property of display 

gamut for mapping colours and predicting the gamut boundary. 

4.2.2 Predicting Out of Gamut 

Predicting the gamut boundary, and as a result finding OOGs, is quite challenging 

when a gamut is concave. However, as it was shown earlier, we can assume that LCD 

and CRT gamuts are convex. Knowing this property simplifies the prediction of the 

gamut boundary and finding OOGs. The simplest approach to calculate a convex surface 

is by finding the convex hull of the set of given points, in this case measured XYZ or 

L*a*b* values. The convex hull of a data set in n-dimensional space is defined as the 

smallest convex region that contains the data set [2 11. In our case, since we are working 

with a three-dimensional data-set (XYZ or L*a*b*), the facets that make up the convex 

hull are triangles. 

References [22] and [23] have detailed information on the convex-hull algorithm. 

In this thesis we use a convex-hull implementation provided by Matlab. 

4.2.3 Using Convex-Hull Algorithm to Predict Gamut Boundary 

We can tessellate the surface of convex hull into triangles. Each triangle 

represents a plane in 3D colour space. A plane in a 3-dimensional space is represented by 

aX + bY + cZ - K = 0'. Now if we substitute a point (Xo, YO, Zo) into the formula, three 

things can happen. The equation aXo + bYo + cZo - K can equal to zero meaning the 

' Similar situation applies to L*a*b* values in CIELAB colour space. 



point is on the plane. If the point is outside the plane, then the equation will be less or 

greater than zero, depending on which side of the plane the point is. 

This simple idea can be used to find whether a point, PA is outside the hull. If the 

sign of one of the plane equations for convex hull boundary evaluated at a point, PA, is 

different than the sign of the same plane evaluated on a point inside gamut, Pf, then the 

PA is out of gamut. 

If we have N triangles, and thus N plane equations, the time complexity of this 

algorithm to find out if a colour is inlout of gamut is O(N). In general for the displays in 

this thesis, we only needed under 250 triangles to represent the gamut surface. This 

means that the algorithm can be quite fast. 

4.3 Known Device-dependant GMAs 

Device-dependant GMAs clip out OOG on or inside the target gamut boundary. 

Their difference lies in how and where these points are clipped and whether inside-gamut 

colours are changed. Sometimes, there is more than one name refemng to the same GMA 

and for clarity, we use the terms introduced by CIE [14]. 

In this section, we start by looking at different methods of mapping. We introduce 

an extension to the clipping algorithms and in the next section, we compare the 

performance of all the device-based mapping. Evaluating GMA performance requires 

visual comparison and for this thesis we did not run a human study. The models were 

evaluated by the graduate student, Behnam Bastani. In most cases the difference is quite 

noticeable. Some of the images are provided later in this section for the reader. 



4.3.1 Methods of Mapping 

There are two general types of mapping in device-dependant GMA. The first 

method, Gamut Clipping, changes only the colours outside of the gamut either after or 

before lightness compression [5]. There are several methods for compressing lightness. A 

lightness compression method introduced by Montag and Fairchild, [24], compresses the 

source gamut in the lower lightness part with a higher compression rate. It is done in two 

stages as shown below: 

Where L,,,,, is the Lightness of a colour before it is mapped to the target gamut 

and LMAX is the maximum lightness in source gamut. 

Where L,,,, is calculated as: 



Lo,, is the original colour mapped to the target gamut. In this thesis we use a 

gamma shape compression for lightness which results in an output image that has a 

smoother lightness than the above piece-wise linear compression method. 

After lightness adjustment, clipping methods clip the Chroma of colours that are 

outside of the target gamuts in three general directions until the colour is on the target 

gamut surface. One major drawback of clipping methods is that while they maintain most 

of the image saturation, clipping can cuase loss of gradation in an image because some of 

the colours are mapped to the same point [ 2 5 ] .  

Gamut Compression is the second approach for device-dependant GMAs which 

changes all the colours in source gamut. It compresses the source gamut until most of its 

colours fit inside target gamut space. This method is mainly used when there is a big 

difference between the two gamuts (e.g. monitor and printer gamuts). There are 3 general 

compression methods: 

Linear compression: All the colours, including inside gamut colours are 

scaled so that all the data are within the target gamut. This method 

maintains the gradations in the image, but it can sometimes cause an 

objectionable decrease in saturation. 

Non-linear compression: This algorithm applies a polynomial function for 

scaling the colours. This method tries to compress the colours closer to the 



source gamut boundary with a larger factor [26] .  By compressing some of 

the inside gamut colours, this method reduces the loss in saturation while it 

retains the advantage of reproducing accurately most of the common gamut 

colours [B]. 

Piece-wise linear compression: Non-linear compression is slow to 

implement since every colour compresses differently. Piece-wise linear 

compression tries to mimic non-linear behaviour by breaking the target 

gamut into different layers. Colours in the gamut have a different linear 

compression depending on which layer of target gamut they fall into. 

In general, if source and target gamuts are similar the preferred technique is the 

clipping method. If the number of OOGs is large, a linear or non-linear compression is 

preferred. Figure 4-3 compares behaviour of the above methods. 

Figure 4-3 Gamut clipping and compression along a given direction. Target represent Target 
Gamut boundary and Source is the source (original) gamut boundary [13] 



Some techniques design a different non-linear compression method depending on 

image contents. For instance, if the saturated OOGs contain high frequency components, 

a different degree of compression is used compared to when those colours only have 

gradual change with low frequency components [25]. This is the motivation for having 

image-based (content-based) gamut mapping. Nakauchi et a1 [27] proposed a technique 

that improves the display-based mappings by applying a spatial convolution filter to an 

image. This technique is later improved by Kimmel et a1 [8] which will be discussed in 

Content Based Gamut Mapping section. 

4.3.2 Direction of Mapping 

When the type of clipping is set, the next step is to decide in what direction the 

mapping should be applied. There are three general directions that are mainly used in the 

literature [5], [13]: 

Straight Direction: The chroma of a colour is reduced by keeping its hue 

and lightness constant until the colours lies on the target gamut surface. 

Node Direction: The chroma is clipped towards a single centre-of-gravity. 

The most common centre-of-gravity is lightness = 50. Colours are clipped 

in the direction towards lightness = 50 while keeping hue constant. 

Cusp Direction: The lightness and chroma of a colour are changed towards 

lightness of maximum chroma (cusp) in a given hue angle. 

Figure 4-4 shows Straight, Node and Cusp directions for mapping. 



Figure 4-4 Directions for gamut-mapping 

Figure 4-5, Figure 4-6 and Figure 4-7 show the behaviour of colour gamut with 

hue angle =lo-20 degrees for the Straight, Node and Cusp clipping from CRTl as the 

source gamut onto LCD1 as the target gamut. The blue arrows show the direction of 

mapping and green dots represents the colour gamut data after mapping to target gamut 

space. Colours that are already inside target gamut do not move. 



Figure 4-5 Straight Clipping between source gamut (CRTl) and target gamut (LCD1) at hue ~ 1 0 -  
20 degrees 

Figure 4-6 Node Clipping between source gamut (CRTl) and target gamut (LCD1) at hue 40-20 
degrees 



Figure 4-7 Cusp Clipping between source gamut (CRT1) and target gamut (LCD1) at hue =lo-20 
degrees 

4.4 Results of Devicebased GMAs 

In this section, implementation and output of 3 types of clipping (Straight, Node, 

Cusp) and non-linear compression are discussed. A new approach to mapping is 

introduced that uses similar gamut shape properties to find a transformation that maps 

most of the OOGs to inside the target gamut, before any clipping is applied. 

The result is compared numerically in AEg4 and also by observing the output 

image. 

4.4.1 Clipping Implementation 

To apply clippings, we need to find out of gamut points and after that project the 

OOGs in the desired direction. The gamut boundary is predicted using a Look-up Table 

(LUT) that holds a maximum chroma for a specific hue and lightness pair. 



To clip a colour, its hue angle and lightness is used to grab the proper LUT. This 

LUT is calculated ahead of time using Convex hull idea explained earlier. Depending on 

the direction of mapping, we grab the desired maximum chroma from LUT. Table 4-1 

compares the results of the three different mapping directions in AEg4 on 1000 colours 

between CRT 1 as source gamut and LCD 1 as target gamut. 

Table 4-1: Clipping comparison in AECIECAMOZ. 1000 colours were used CRTl (source gamut) and 
LCD1 (target gamut) 

This table shows that all three directions have similar numerical results. However, 

visibly comparing Straight clipping versus the other two clipping algorithms shows that 

Straight clipping preserves contrast of the image better than the other two mappings, and 

it has more desirable outputs than the other two GMA. 

Max AEg4 

Mean AEg4 

4.4.2 Non-linear Compression Mapping, Implementation 

Compression mapping is more time complex than general clipping methods. In 

this mapping algorithm, generally one or more polynomial functions are introduced to 

map colours from source gamut to the target. More precisely, in Clipping methods, only 

the outside gamut colours would get mapped and the remaining colours stay unchanged. 

Non-linear compression not only forces the OOG colours to map on or inside the target 

gamut, but also forces the colours inside gamut to move as well. The idea is to preserve 

some of the contrast that might have been lost because of clipping only OOG colours. 

Straight Clipping 

15.8 

5.7 

Node Clipping 

21.9 

5.4 

Cusp Clipping 

18.8 

5.9 



In this mapping algorithm, we need to define a mapping between some reference 

colours between source and target gamut. Other colours are mapped using an 

interpolation. We use 3D spline interpolation to calculate mapped colours. Spline is used 

mainly because it can result in a smoother output image. 

There are several options for selecting the pivots (reference colours). One 

approach is to map the colours between displays using their naming in digital values 

(RGB). For instance, a maximum yellow in DeviceA and Devicee can be defined as 

tristimulus values corresponding to R=255,G=255,B=O. The benefit of using this 

approach is that we have many more variables to work with and optimally we have a 

better precision in mapping two devices' gamuts. The major drawback is that due to non- 

similarity of relation between digital inputs and tristimulus value it is quite possible that 

full yellow has tristimulus values smaller than a yellow colour with lower R and G 

values. This issue was discussed in more detail in Section 2.3. 

The other choice is to use corners of a device gamut in CIELAB space to 

represent a colour. Looking at the Figure 4-8 we can see that some specific colours are 

obvious. The two colours that have similar representations in all 7 displays are maximum 

blue and green inside each gamut. Maximum blue can be defined as a colour with the 

lowest b* and a* that has largest L* values in CIELAB. Similarly the maximum green 

colour is the colour inside each gamut with the highest L* and b* values and lowest a*. 

Other colours such as maximum red are much harder to be defined accurately. The main 

drawback of this approach is not having enough reference points to use for mapping. 



Figure 4-8 Choosing pivots in CIELAB space (A common colour name) 



The next approach is to look at each hue slice and use the cusp of each hue slice 

as a reference colour (pivot). All devices including printers, monitors and projectors are 

known to have a cusp when looking at hue slice that has around 10 degrees range. Figure 

4-9 shows the gamut of CRTl for hue slice between 10-20 degrees. To find cusps 

accurately, the gamut space needs to be sampled in detail. We used the Linear Model to 

populate the gamut and looked at each hue slice to find the cusps. To preserve grey axis, 

grey colour (X=Y=Z in XYZ space) is added to the list of reference colours. 

Figure 4-9 Scatter of colours in a hue slice. The cusp (colour with maximum chroma) is the. point 
with largest chroma value. Horizontal and vertical axis represent chroma and lightness. 
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Once pivots are chosen, a 3D spline interpolation is applied to interpolate any 

other colours respect to the pivot points. After interpolation, it is possible to have some 

colours left outside the target gamut. Straight clipping is done to bring the remaining 



OOGs inside the target gamut. Table 4-2 shows the numerical result of this non-linear 

method. 

Table 4-2 Effect of non-linear compression on gamut mapping between source gamut (CRT1) and 
target gamut (LCD1). This data is based on 1000 measured colour for each gamut. The 
change in gamut mapped colours is measured in AE 

/ Mean AE 

A drawback of non-linear compression is that the quality of the model depends on 

so many variables, including type of compression and choice of reference colours used. 

These settings may need to be different depending on the image gamut [13]. 

The major problem with non-linear compression is that it requires more CPU time 

to operate. This GMA generally take longer CPU time than clipping methods, which 

makes it a non-feasible approach for applications that require real-time mapping. 

4.4.3 Combination of Linear Transformation and Clipping 

Looking at Figure 4-2 shows that CRT and LCD displays both have similar gamut 

shape. In this section, we show that transforming the source gamut linearly to fit on the 

target gamut can improve the quality of the image significantly. This mapping algorithm 

takes advantage of the non-linear compression algorithm but uses less CPU time overall. 

Reference colours are chosen as discussed in 4.4.2 and least-squares is used to find the 

best mapping between the source and target gamut. Straight clipping is used on the 

remaining OOGs similar to the last step of the non-linear compression. We refer to this 

GMA as TS-Clipping (Transformed+Straight Clipping). 



Table 4-3 Difference between colours after TS-clipping is applied and before that. This data is 
based on 1000 measured colour for each gamut. The change in gamut mapped colours 
is measured in AE 

Figure 4-10 and Figure 4-1 1 are the result of straight clipping and transformation 

applied before straight clipping. These figures are provided for a general judgment. For 

formal evaluation, we used the exact environment setting with two monitors beside each 

other. Figure 4- 10 shows that the child face has lost reasonable contrast whereas TS- 

Clipping in Figure 4-1 1 was able to preserve the overall contrast in the image. 

TS-Clipping 

Visual comparison of the above GMAs showed us that TS-clipping has a better 

visual output than the other device-based GMA. Another advantage of this algorithm is 

that after transformation, there are fewer OOGs lefi and as a result the Straight Clipping 

part of the model is faster. 

Mean AE 

7.1 

Max AE 

2 1 



Figure 4-10 Straight Clipping Result between source gamut (CRT1) and target gamut (LCD1) 



Figure 4-11 Transformation applied before clipping. Result is between source gamut (CRT1) and 
target gamut (LCD1) 
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4.5 Content Based Gamut Mapping , , . 
Most of the classical gaput mapping methods involve a pixel by pixel mapping, 

devicedependent r I mapping. These methods ignore the spatial characteristics of images. In 
, , f  ,- . ., 8 ' , , , --7 

this section, we analyze two major algorithms to address this issue. These models are 

computationally more complex and their performance greatly depends on input image 

content. 

Since it is hard to compare the performance of content-based models numerically, 

we include output images. Test images are evaluated in two different methods. One set of 



test cases is designed by constraining a display gamut in sRGB space. sRGB is used as 

RGB so that results are independent of device characteristics and we can evaluate the 

output on any display. The sRGB channels are restricted to [5O, 1501 range in this thesis 

unless specified otherwise. Figure 4-12 shows effect of constraining gamut on an image. 

Figure 4-12 Image gamut in CIELAB when its RGB channels are 
is the original gamut and red is the projected gamut. 

restricted 

- 

range. Blue 

The drawback of this model is that the gamut is built artificially and some of the 

characteristics of the gamut of the displays might be lost. 

For accuracy, these models are evaluated again using two monitors gamuts. The 

main advantage of using the artificial gamuts is that these gamuts allow us to compared 

the performance of the models in cases where the gamuts are significantly different from 

each other. 



4.5.1 Gamut Mapping to Preserve Spatial Luminance Variations: Bala [7] 

The intuition behind this model is to recover the loss in luminance contrast after a 

GMA is applied. The main use of this model is in computer-generated images. Computer 

generated images are characterstized as being mainly a combination of very smooth 

patterns and some sharp edges. An example that Bala's model can be used is for an image 

on a CRT monitor that has black text on a blue background. The text is easily 

distinguished against the background. However, if out-of-gamut colours were clipped on 

the target display (on the gamut of the display used for previewing), the gamut at darker 

colour becomes narrower than it should be. Applying Straight clipping results in CRT 

blue being mapped to a much darker blue in the output device. As a result, much of the 

luminance distinction is lost between text and background. 

The general algorithm has three main parts. The first step applies a straight 

compression mapping (typically straight clipping) that preserves Lightness and Hue. Next 

the luminance of a pixel is adjusted if the luminance loss in one pixel is much greater 

than the neighbouring pixels. In this algorithm, luminance refers to the Y component of 

XYZ space. 

The last section looks at the adjusted colours and if they are not in gamut, they are 

clipped. However, this time the emphasize is not to preserve lightness. Figure 4-1 3 shows 

the general structure of this mapping. 



Figure 4-13 General structure of Luminance-Preserving Gamut Mapping, Adapted from [7] 

4.5.1.1 Bala Algorithm, in Detail 

The overall performance of this algorithm depends on the filter type and the final 

GMA. The extent and spatial footprint of the enhancement depends directly on the 

characteristics of the high-pass filter F. Bala uses the following simple linear filter: 

Where S is the NxN neighbourhood around pixeli. The filter size, N, plays an 

important role in the final output and its optimal size depends on the type of image. For 

images with soft or noisy edges, e.g. scene image or scanned images, a large filter size is 

required. Images that have sharp edges and relatively low noise, e.g. computer generated 

images, need a smaller filter size. We should note that applying a large filter size to 

images with sharp edges can cause halo effects. 

Bala uses a simple approach for choosing the filter size. Filters have two types: 

large area and small area filters with N=15 and N=3 respectively. For each region the 

difference in Y between a pixel and its close neighbours is calculated (N=3), if the 

difference is high, a small area filter is used. Otherwise, it is either a smooth plain pattern 



or scanned pictorial image. A second difference is calculated, this time considering more 

neighbouring pixels (N=15). If the difference is high, compared to smaller area 

difference, a large area filter is used; otherwise, the image is like a smooth plain pattern 

and small (N=3) area filter is required. 

However, we should mention that the two filter sizes are generalized for the 

printer gamut on plain thesis. For monitors we found that images such as scenes with 

smooth but many edges required a filter size of Nz20. Computer generated images are 

categorized into two parts. Text images, where multiple sharp edges are present and 

graphs with few sharp edges on a plain and a very smooth background. 

Text is a special case where we need to have good resolution in the horizontal 

direction to differentiate between letters while there are normally larger gaps between 

text lines. Therefore, text requires very small filter size on horizontal direction (N=3) and 

large size for vertical direction (N=9). With text, we are specifically talking about text in 

a document. Text for a document title that has a relatively larger font is categorized as 

second type of computer generated images (graphs). Graphs are treated differently and 

use a square shape filter of size (N=3). 

4.5.1.2 Bala's Algorithm Results 

Scene images such as the one in Figure 4- 14 require a much more flexible filter to 

hl ly  recover edges and not add noise. We observed that Bala's model does not improve 

the final result of a Straight Clipping and in some cases it even reduces the quality of 

images that have detailed edges but most of them are smooth transitions. 



Figure 4-14 A sample scene image that Bala's model does not improve the quality of output image 
over the Stright-cliaaine. 

Figure 4-1 5 shows the effect of Bala's algorithm on a constrained image gamut to 

RGB range of [5O,l5O] as was discussed in Section 4.5.2. The image in Figure 4-1 5 

includes graphs and text. An interesting result can be found in the upper two squares, 

which have lost their original hue, but have recovered their luminance contrast wing 

Bala's model. The other interesting observation is that in computer generated images, 

luminance plays a more important role in representing the content than hue. When 

reading a text document or looking at a graph, it is more important for us to be able to 

distinguish lines or characters from each other than knowing the colour of a line or text. 

With text, we mean normal size text (font 12 for monitors). For current implementation, 

user needs to specify that the given image should be manipulated as text for gamut 

mapping. 



Figure 4-15 Comparison between Straight Clipping and Bala's model. Mapping is between source 
gamut (CRT1) and target gamut (LCD1). 

4.5.2 Space Sensitive Colour Gamut Mapping: Kimmel 

Kimrnel et al. [8] proposed a new measurement for spatial variation. Bala[7] 

measured variation in luminance as a measure for changes in spatial information. 

Kimmel's method on the other hand is related to a recent measurement proposed for 

Retinex. 



Kimmel found that gamut mapping is similar to a quadratic programming 

formulation and the GMA is guaranteed to have a solution if the target gamut is convex. 

In Section 4.5.2.2 we briefly explain quadratic programming and its features. 

Kimmel's approach is quite similar to the work done by McCann [45]. McCann's 

method tries to preserve the spatial gradient at all scales when the mapping is performed. 

McCann tries to preserve the magnitude of the gradient from the original image while 

projecting onto the target gamut. The idea for this algorithm is quite similar to Bala's 

work presented in section 4.5.1. The main advantage of McCann's algorithm compared to 

existing models that work with magnitude of gradient to preserve spatial information is 

that it uses less CPU time and memory to run. However, the algorithm may suffer from 

halo artifacts near sharp edges. Bala avoided halo effects in his work by customizing the 

filter size. 

Kimmel wants to benefit from McCann's result while avoiding the halo effect. 

Similar to Bala's idea, he introduces a flexible threshold on adjusting edge values. The 

other interesting property of Kimmel's approach is being dependent on an objective 

function rather than experimentally-defined variables. More specifically, as mentioned by 

Kimmel, the previous GMAs are indeed successful in preserving image gradients; 

however, they are based mainly on heuristics and know-how [8]. Because of that, it is 

hard to discuss their general properties such as convergence, choice of parameters, and 

possible improvements. 

In this section we look at Kimmel's model in detail and after that the performance 

of this algorithm is analyzed. 



4.5.2.1 Kimmel Algorithm, in Detail 

Nakauchi et a1 in [27] defined a measure for image difference using human 

contrast sensitivity functions, which was later improved by Kimmel. In Nakauchi's 

model, contrast sensitivity is a linear combination of three spatial band pass filters HI ,  H2 

and H3 in spatial frequency domain. 

Nakauchi introduces the following penalty function based on the human contrast 

sensitivity filters. 

L a With the constraint that image data {u , u , ub} are within the target gamut (a). 

R and * represent the image domain and convolution operator respectively. In short, the 

above formula measures the difference of each channel between the original and mapped 

image in CIELAB space. Convolving these differences and the filters, HI represents 

differences observed by the human eye between an image and its mapped version (u and 

w). 

We can view h2 and h3 as smoothing operators that are shifted. These two 

operators approximate smoothed derivative operation. Equation (14) can be re-written as: 



An interesting observation is that the first part of the above equation corresponds 

to the S-CIELAB perceptual measure, while the other two parts capture the image 

variations at two selected scales that were determined by human perception models. The 

only drawback of this model is that the spatial filters require a large support and are 

generally slow when implementated [8]. 

Kimmel gives an alternative view of the problem with an efficient numerical 

solution. D= g*(u-IQ) is used as a measure of image variation, where g is a normalized 

Gaussian kernel with zero mean and a small variance. When the deviation gets larger, this 

moddel accounts for possible perceptual feature differences, such as texture, by applying 

difference of gradient. Combining these two factors together and getting its first variation 

respect to the following formula is derived: 

Please refer to [8] for a detailed derivation. To understand the formula, let us to 

look at the effect of individual parts of the formula. Div stands for divergence and 

represents the rate at which "density" exits a given region of space, in this case CIELAB 

[46]. By measuring the net flux of content passing through a surface surrounding the 

region of space, it is therefore immediately possible to say how the density of the interior 

has changed. In physics, this fundamental is referred to as "principle of continuity." 

V on the other hand represents the increase or decrease in the rate of change. 

Therefore, g * ( a .  div(Vg * (u - u, )) represents whether at a location in the image, the 

rate of change in the contrast sensitivity is different from the neighbouring pixels. If at 



location (ij) we are gaining contrast sensitivity that is different from the neighbouring 

values and this difference does not correspond to an existing edge in the original image 

LQ, then we need to update the clipped value, u. 

4.5.2.2 Quadratic Programming and Gamut Mapping, 

Quadratic programming problems involve minimizing a multivariate quadratic 

fbnction subject to linear equality and inequality constraints [47]. In Kimmel's method, 

since the penalty function presented in equation (14) is quadratic and the constraint 

(checking to exist in target gamut) is linear (binary), the overall problem can be 

represented as quadratic programming. If the target gamut is convex, the derivative 

(equation (16) ) is guaranteed to have unique local minimum, which is the optimum 

solution. 

4.5.2.3 Implementation Details 

If we substitute D as 

In (1 6), we get the following minimization formula with the constraint that 

the clipped image has to stay within the target gamut: 



If a is zero, (1 8) approximates S-CIELAB model, as it represent the 

changes in the spatial information (2nd derivative simulation of the difference). By 

adjusting values of a we get a model that is closer to perceptual measures. Some of these 

measurements are defined by Nakauchi in [27]. 

(1 8) can be iteratively applied to the difference (u-Q), to update the 

mapping. At each iteration, we need to validate whether the updated values are within the 

target gamut. Kimmel model converges if the target gamut is convex, meaning the above 

difference approaches zero. 

Equation (1 8) has two variables that play an important role in the quality of 

mapped image. z is a symbol of convergence speed. Higher z value (z -.I) makes the 

model converge sooner but a lower quality. In this thesis, we found z = .0011 was a good 

choice for balancing image quality and CPU time. 

The second variable, a, the weighs importance of preserving spatial features. The 

solution with small a value has smaller contrast at areas with small details, but adds no 

halo effect. On the other hand, a large a value, preserves the small details, but at the 

expense of strong halo effects. Section 4.5.2.4 has some results from small and large a 

values. Figure 4-16 and Figure 4-17 show the results of model for a=20 and a=l.  It 

shows that a large a value can cause halo effects and small a values may result in an 

output with low contrast. 



Kimmel suggests applying the model two times with two different a values and 

then combining results using a weighted model. Weight for the small a should be larger 

(close to 1) near strong edges and smaller in smooth parts of the image, in order to avoid 

any halo effects. In this thesis we use the equation below to calculate the weight for small 

a. 

We realized for gamut mapping between monitors and projectors a small a=l  and 

large a=20 is a good choice. 

To speed up the convergence, we can apply the model in multi-resolution and use 

values found from the lower resolution steps. The process starts by reducing the image 

resolution exponentially in multiple step. At each step, Kirnrnel's model is applied to the 

reduced mapped and original image. The difference between final mapped image and 

starting mapped image is applied to update the starting mapped image at the next higher 

resolution. This process continues until we get to the starting (original) resolution. The 

update done at each step, speeds up the convergence process. 

4.5.2.4 Kimmel Algorithm, Result 

The test images are generated as mentioned earlier by constraining the device 

gamut sRGB to [40,150] range. CPU time is the main issue with Kimrnel model. Table 



4-4 compares the CPU time for an image with 800x600 pixels. The result confirms that 

applying Kimmel model in multiple resolutions reduces CPU time significantly. 

Table 4-4 Comparing CPU time for KimmeI model under different resolution level Data is the 
average CPU time for the model to converge on 600x800 image. 

r I 3 L ~ V ~ I S  I 2 levels I I level I 
I CPU Time 1 70 seconds 1 100 seconds 1 160 seconds I 



Figure 4-17 Result from Kimmel model with small alpha value only. 

Figure 4- 1 8, Figure 4- 19, Figure 4-20 and Figure 4-2 1 show result of Kimmel 

model with two levels of a value. The result is compared to combined cusp clipping and 

transformation. The original image is provided as well. 



Figure 4-18 Kimmel Result I: Kimmel model can recover clouds in the sky. 

Original Clipped only 

- 
Kimmel Model 



Figure 4-19 Kimmel Result II: Flower 

Original 

3mmel Model 



Figure 4 3 0  Kimmel Result ILL 

Original 

Kimmel Model 

Clipped only 



Figure 4-21 Kimmel Result IV: From Louvre Museum 

Original 

Kimmel Model 

4.6 Summary of Gamut Mapping 

In this section, we studied gamut mapping between electronic displays. 

Previously, the focus of gamut mapping was between monitors and printers, which have a 

very different gamut characteristics. We used similar shape gamut property to reduce the 

CPU time required for the model and improve quality of existing GMAs. 



Two general gamut mapping algorithms, device based and content based, were 

discussed in this section. Device based algorithms generally require less time. We 

showed that transforming gamuts in XYZ space to fit most of the OOGs inside gamut, 

improved the quality of the output image. This linear transformation addresses goals of 

non-linear compression and run much faster than non-Linear Models. Applying this 

transformation, reduces CPU time required for clipping algorithms as well. This is 

because the number of OOGs reduced after the transformation and thus less mapping is 

required. 

The last part of this section studied two approaches for content-based gamut 

mapping. A model to preserve spatial luminance was discussed. This model has the 

advantage of requiring less CPU time compared to the other content-based GMAs. 

However, the algorithm is useful for computer generated images in which preserving 

luminance is quite important. Text is a special case of computer generate images, and 

having a rectangular filter compared to square filters for other image type, can improve 

the model result. 

Kimmel introduced a variation to content-based gamut mapping that is closely 

related to a recent variational framework for Retinex. The advantage of his model to 

existing models that tried the same idea is speed. He uses an approximation to the 

perceptual difference between the original image and mapped one by calculating 

smoothed image deviation. In the thesis, it was shown that gamut mapping is a quadratic 

programming and if the target gamut is convex, Kimmel approach guarantees 

convergence. This is a good approach, since we found that LCD and CRT displays have a 

convex gamut. To avoid halo effects in the mapped image, output of two levels of a 



values (small and large) were combined. In the locations with higher image variation and 

strong edge, large a has a higher weight compared to small a and vice versa. To speed up 

the model, the algorithm was repeated in a multi-resolution fashion and updates from the 

lower resolution were used as the initial solution for the next higher resolution. 

We observed that outputs from this model are better than the other ones 

mentioned in this thesis, at the cost of longer CPU time. The other drawback of this 

model is having too many variables whose optimal values depend on image type. These 

factors are Gaussian mask size, Gaussian variance and z. 

Combining a linear transformation with straight clipping has a performance that is 

comparable to the Kimrnel model. This is quite important, since our model is a real-time 

algorithm and can be used for applications such as remote surgeries, where people need 

to preview the result in real time. 



CHAPTER 5: 
DLP PROJECTOR 

5.1 DLP Technology, Introduction 

Digital Light processingTM (DLP) was designed in 1996 by Texas Instrument. 

Today, DLP-based projectors are found in such diverse applications as mobile (ultra- 

portable), conference room, video wall, home theatre, and large-venue. 

DLP projectors are based on Digital Micromirror ~ e v i c e ~ ~  (DMD) that was 

introduced in 1996 by Texas Instruments [35]. The DMD consists of an array of movable 

micro-mirrors fbnctionally mounted over a tray, CMOS SRAM [34]. Each mirror is 

independently controllable and is used to control reflection of light on a specific pixel. 

These mirrors are controlled by loading data into the memory cell located below the 

mirror. Many DLP projectors have a colour wheel with 4 different filters (Red, Green, 

Blue and White). Recently, there are new modifications to DLP technology that includes 

more than 4 colour filter. Some DLP technologies for Digital Cinema only include three 

colours (Red, Green and Blue). This is mainly done to avoid flickering effect in fast 

moving frames [39]. However, in this thesis we only consider characteristics of DLP 

projectors with 4 primary colours. These DLP projectors have a white channel in addition 

to RGB channels to enhance mid-to high image frequencies. The algorithm for applying 

the white filter was published by Texas Instruments in 1998. The white filter is added in 

3 fixed amounts. At each transition point, the RGB values are modified to maintain a 



smooth luminance ramp without hue shifts [30]. Some of the interesting characteristics of 

DLP projectors are as follows [34] and [38]: 

Except for the AID conversion at the front end, all the data processing and 

display in DLP displays are digital. 

DMD display resolution is fixed by the number of mirrors on the DMD. 

This effect combined with the 1 : 1 aspect ratio of pixels necessitates re- 

sampling of input video formats to fit on the DMD array with constant 

number of mirrors. 

To generate different shades of grey, mirrors can tilt 10 degrees towards lights, 

ON state, or 10 degrees away from light, OFF state [36]. For instance, when the mirror 

switches OFF more than ON, it reflects a darker grey pixel. Colour is added by placing a 

light filter (colour wheel) between light source and DMD panel. When it spins, it causes 

red, green and blue light to fall sequentially on a DMD micro mirror. For example, a 

purple pixel is created by tilting a mirror towards light source when blue and red light 

falls on it and letting green light to go through (not reflected). Because DMD mirrors can 

work binary by allowing light to get reflected or pass through, they have a better dark 

value and less light leaking when R=G=B=O. 

Another advantage of DLP projectors over LCD displays is their small or non- 

existent image lag. Image lag has been a major limitation of LCD-based video projectors. 

Because of the response time of the liquid crystal molecules to the applied fields and the 

relaxation times when the fields are removed, some of the image from one frame carries 

over into the next, which gives rise to image lag [34]. 



5.2 DLP Projector Characteristic 

In this section, we briefly check over some of the DLP projector characteristics. 

The two DLP projectors used in this thesis are as follows: 

Table 5-1 DLP projectors used in this thesis 

These DLP projectors, similar to the CRT displays, exhibited significant channel 

dlp-Toshiba 

dlp-lnfocus 

interaction (Figure 5-1). This interaction is calculated using equation (2) introduced in 

Toshiba TDP-5 DLP Projector 

lnfocus DLP LP1 Projector 

Section 2.3. The interesting observation is that when each primary is ramped from 0-255 

while the other two channels are set to 255, the primary has a higher intensity than when 

either of the other two channels is set to zero. This is because of the additive effect of the 

white filter. The other interesting observation is that in both devices in all their 3 

channels, the white filter is added around 1 15 digital count of a primary when the other 

two primaries are set to 255. (e.g. R=115, G=B=255). 



Figure 5-1 Channel Interaction for DLP projector. The horizontal axis represents the input value 
v ranging from 0 to 255 and the vertical axis represents the value of the channel 
interaction metric, ClcoLoR(v,a,b). The black line shows a=b=255 and dark and light 
dashed lines show a=O,b=255 and a=255,b=0 respectively. For instance, on Green 
Interaction, light grey represents CI when R=255,B=0 and G ramps from 0-255. 

Another potential issue that was considered for LCD and CRT displays is having 

a possible chromaticity shift. Figure 5-2 shows the chromaticity coordinates for each of 

the primary colours (RGB), as well as the combined colours (CMYK), after dark 

correction, plotted at 10 luminance settings per colour. Both DLP projectors have stable 

RGB chromaticity. Interestingly, Magenta and Yellow have stable chromaticity while 

Cyan shifts towards green as it ramps to 255. This behaviour can be explained by looking 

at Figure 5- 1, which shows that Green and Blue have different channel interaction (CI) 

depending on which channel is set to 255 (i.e. a=255,b=0 or a=O,b=255). Cyan shifts 

towards Green, since Green has high CI when R=O,B=255 while Blue has low CI in this 

setting. 



Figure 5-2 Chromaticity shift for DLP projectors shown as intensity is increased plotted in xy 
space with x=X/(X+Y+Z) on the horizontal axis and y=Y/(X+Y+Z) on the vertical axis. 
When there is no chromaticity shift, all the dots of one colour lie on top of one another 
and therefore appear as a single dot. R,G,B,C,M,Y,W represent ramps of Red, Green, 
Blue, Cyan, ~ a i k n t a ,  Yellow and White (r=g=b) 

dlp-toshiba 

Channel Interaction (CI) in white is explained by additive effect of the white 

filter. The Next section discusses effect of the white filter on the existing calibration 

models. 

5.3 Calibrating DLP Projectors 

An end-user, as opposed to the manufacture, may well wish to characterize and 

calibrate a DLP projector in order to control accurately the colours displayed. The end- 

user's task is complicated by the fact that the precise internal workings of the projector 

are unknown. In this section we study methods for end-user colour calibration of 4-wheel 

DLP projectors. 

As was mentioned earlier, the white filter in 4 channel DLP projectors is added in 

3 fixed amounts to enhance mid and higher frequencies. Because the white filter simply 

adds another additive component to the already existing RGB channels, it is possible that 



a 3x4 matrix can characterize tristimulus values. The amount of white added depends on 

the summed luminance of RGB channels and the target expected luminance. The logic 

for the model is published, but since there are parameters that are calibrated for each 

projector separately, the end-user cannot use the logics published by Texas Instruments to 

predict the output of DLP projectors accurately. 

Stone in [lo] mentions the idea of using 4 channels for calibrating DLP displays, 

but the calculations for the white LUT is not specified. In this section, we first look at 

basic Linear Model and its results when applied to DLP projectors. Then results of a 

model introduced by Wyble [64] and a modification to his model are discussed and they 

are compared to the performance of the Masking Model [2]. 

5.3.1 Linear Model for DLP Projector 

The Linear Model was implemented as explained in section 2.4.2. This model was 

not expected to perform accurately because of the white filter. Interestingly, this 

model performed quite accurate, in predicting tristimulus values for low-to mid 

brightness colours(Figure 5-3). 



Figure 5-3 Linear Model Result on dlp-Toshiba projector. R and G are chromaticity channels 
represents r/(r+g+g) and g/(r+g+b respectively. The vertical axeu represents error in 
&. 

DLP calibration compare 

53.2 Number of Channels Required 

As was mentioned earlier, it was suggested that extending the Linear Model to 

have 4 channels rather than one should perform accurately for DLP projectors. However, 

the challenging part is to design the 4 channels so that the model can predict the white 

factor accurately. 

Principal Component Analysis (PCA) is used to find the number of base required 

to represent the space accurately. We define the space as the combination of linearized 

channels and tristimulus values. For instance the scores of the base for PCA applied to a 

model that gives R',G',B', W out of RGB, represents the importance of each basis to 

represent the space [R' ,G',B ' ,W,X,Y ,Z]. 



One way to derive 4 channels is to define W=min(R,G,B), B'=B-W, G'=G-W and 

B'=B-W. Note that W in this case is similar to K in masking model. For consistency with 

the Wyble model we use W instead of K in this chapter. Table 5-2 shows the scores for 

this space. Looking at this space (R'G'B'W), it is obvious that 4 basis is not enough to 

explain all the data in the space created by R'G'B'WXYZ. A similar effect is seen for 

RGB (Linear Model). 

The other method to represent 4 bases is to use RGB as the new basis and add 

W=min(R,G,B). The third row of Table 5-2 shows that in this new space, 4 bases should 

be sufficient to define the whole space and thus provide a model to accurately predict 

XYZ from RGBW. This model was first introduced by Wyble [64] and will be discussed 

further in the next section. 

The last space considered is created using the Masking Model. Implementation of 

this model was discussed earlier in Section 2.4.3. This model can be inverted to predict 

RGB given XYZ values. As shown in the last row of Table 5-2, the 7 bases should be 

sufficient for deriving an accurate calibration model for DLP projectors. 

Table 5-2 Scores for bases of PCA applied to each space. Scores are Residual Variance of each 
principal component. The scores can be used as an indication for the number bases 
required to sufficiently describe a space. 

Number of Basis 
Vectors 

RGB 

R'G'B'W 

RGBW 

R'G'B'C' M'Y'W 

B1 

51 

60 

1.5 

1.5 

82 

9.1 

9.6 

.3 

.3 

B3 

4.9 

7.1 

.3 

.3 

B4 

2.7 

3.5 

.2 

. I 7  

B6 

.04 

1.7 

.OO 

.OO 

B5 

.ll 

2.5 

.OO 

.OO 

B7 

- 
.7 

.OO 

.OO 

B8 

- 
- 
- 

.OO 



5.3.3 Wyble's Model for DLP Projector Calibration 

Wyble [64] uses RGBW basis vectors to calibrate DLP projectors. He also 

introduces a method for predicting RGB values given XYZ data. R,G,B and W are 

derived using rLUT, gLUT, bLUT and wLUT. R, G, and B LUTs are normalized values 

of the X, Y, and Z values respectively, of the red, green and blue ramps. The white LUT 

must account for that part of the colour that exceeds what the combined RGB channels 

would produce. Y values of ramps of grey minus the Y values of the red, green, and blue 

ramps for are used to create wLUT. Figure 5-4 shows that wLUT with respect to X,Y, 

and Z are very similar to each other. 

Figure 5-5 shows the jLUTi, where j€(R,G,B}, i€{X,Y,Z}. This figure shows that 

having a combination of the three LUTi for each channel is not important since all the 

LUTs for each channel are quite similar. rLUTz seems to behave differently and it is 

because values of this LUT is quite small and normalizing the LUT puts emphasize on 

variations due to possible noise in measurement. 



Figure 5-4 White LUT for dlp-Toshiba. All three LUTs have similar shape 



Figure 5-5 The LUTs for the four channel of Wyble's model. 
* 
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After the RGB values are linearized and the R'G'B'W are derived, a 3x4 matrix M3x4 is 

used to transform linearized values to XYZ space. Wyble defines M3x4 as follows: 

In (20) X,Y, and Z are measured tristimulus values and the subscript R,G,B,W are for 

maximum digital values for red, green, blue and white. The super-script C shows that all 

the values are used after black-correction ( XYZ values for R=G=B=O is removed). 

The backward model is quite complicated. Theoretical RGB values, RGBtho,, is 

calculated by applying the inverse matrix of the left most three columns of M3x4 to the 

input XYZ. Let us call this matrix M2. The calculated RGB values are theoretical since 

they can have values greater than 255. This is because the effect of the white filter is not 

taken to account yet. To remove the white filter effect, three look up tables, wLUTj, are 

created for each red, green and blue channels separately. The following steps are used to 

create wLUT,: 

Forr=Oto255 

Calculate XYZ values of digital count (r,255,255) using forward model 

Calculate RGBth, by apply M2 to the corresponding XYZ values 

The wLUTr uses Rth, as the index and r as the output 

The white-filter effect is calculated as follows: 



5.3.4 Modified Wyble Method 

Matrix M3x4 derived from Wyble model is not very intuitive. A simpler approach 

to calculate M3x4 is to use least-squares between linearized RGBW values and measured 

tristimulus values. We can even apply LabLS model or DEM to find an optimal solution. 

In this thesis, we use least-squares (ULS) for finding the matrix M, to have a fair 

comparison with the original Wyble model. 

5.3.5 Masking Model 

Tarnura in [2] introduced the Masking Model to address the channel interaction 

problem in LCD displays. This model is invertible and was shown to work reasonably 

well for LCD and CRT displays. In the following section, we compare results of this 

model to other implemented models for DLP projectors. 



5.3.6 DLP Calibration Results 

In this section, we compare the forward and backward error in AEg4 similar to 

what was done in Chapter 2. The results are based on 2277 measurements. Each points 

was measured 5 times and repeated 3 times throughout the whole measurement. 

Table 5-3 shows the forward error for 5 models discussed earlier. R'G'B'W was 

shown earlier that is not expected to perform accurately since the PCA of its space 

required more than 4 channels. Modified Wyble is the small change to derive 

transformation matrix. This table shows that Modified Wyble and Masking Model 

perform very accurate and since Modified Wyble uses a smaller matrix transformation, it 

may be desirable. 

Table 5-3 Forward Calibration Error in AE94 for DLP projectors based on 2277 points. 

Dlp-Toshiba 

Dlp-lnfocus 

It is also interesting to consider points that each model failed on predicting them. 

Figure 5-6 shows that Wyble model performed poorly, mainly for bright colours. The 

model was not successful in removing the white filter completely. 

Std 

Mean 

Max 

Std 

Mean 

Max 

4.69 

Linear 

7.4983 

16.67 

3.24 

9.08 

19.7 

4.54 

Wyble 

3.27 

11.57 

3.42 

4.18 

12.00 

.453 

Modified Wyble 

1.04 

3.44 

.63 

.814 

3.34 

4.0354 

R'G'B'W 

3.16 

1 1.82 

1.97 

5.42 

21.75 

.998 

Masking 

1.01 

3.53 

.774 
- 

.871 

3.376 





Figure 5-7 Wyble Modified Rediction Error in r/(r+g+b) and g/(rkg+b). The vertical asis 
represent AE94 error. Colours in the plot roughly represent their corresponding colours h RGB 
space. 

Figure 5-8 shows error of the Masking Model in chromaticity space. It is 

interesting to observe that this model is less biased towards bright colours and seems to 

have relatively similar performance for all the colours. 



Figure 5-8 Masking Model Error in r/(r+g+b) and gl(r+g+b). The vertical axis represent AE94 
error. Colours in the plot roughly represent their corresponding colours in RGB space. 

DeileE prediction using RGBCMYK method 

Comparing the backward error is more interesting. As shown in Table 5-4 The 

Masking Model outperforms Wyble in the backward direction. Backward error is 

calculated by predicting RGB values for a given XYZ input and the applying the forward 

model to predict the XYZ of the RGBbackward. The difference between the input and 

predicted XYZ is used to calculate AEg4 and the error is adjusted by subtracting data fiom 

forward model. Modified Wyble Modified is used to calculate XYZ output of RGBbhd 

for Wyble Model. 



Figure 5-9 and Figure 5-1 0 represent error distribution of the two model for 

forward and backward prediction. 

Table 5-4 Backward Error in AEY4 

Dlp-Toshiba 

Dlp-lnfocus 

Mean 

Max 

Std 

Mean 

Max 

Std 

Wyble 

2.12 

9.53 

6.05 

4.14 

26.12 

5.73 

Masking 

.354 

4.45 

.584 

.3264 

2.75 

.346 



Figure 5-9 Distribution of Forward and backward error for Wyble Model. Left and right columns 
represent the forward and backward error distributions respectively. Top and bottom 
rows represent the dlp-Toshiba and dlp-Infocus displays. 



Figure 5-10 Distribution of Forward and backward error for the Masking Model Left and right 
columns represent the forward and backward error distributions respectively. Top and 
bottom rows represent the dlp-Toshiba and dlp-Infocus displays. 

From the above results, we can conclude that both the Modified Wyble and 

Masking Models are accurate in predicting XYZ, while the Masking Model is the best 

choice for going backward. 

5.3.7 Summary of DLP Calibration 

We compared possible spaces in which DLP calibration could be applied and we 

found that the RGBW and RGBCMYK spaces derived from RGB space can predict 

tristimulus values well. Wyble introduced a model that uses a 3x4 matrix to predict XYZ 



values. A simple modification to his model can improve forward prediction accurracy. 

The Masking Model has similar error performance to the modified Wyble model in 

forward prediction (RGB to XYZ). However, we found that the Masking Model is not 

biased towards non-bright colours; whereas, the Wyble Model has really good 

performance for dark colours but its performance gets worse as the colours have a higher 

RGB value. Going backward, the Masking Model performs better than Wyble model in 

predicting RGB values. 

5.4 DLP Projector Gamut 

In this section, we study the gamut of DLP projectors and consider which GMAs 

discussed earlier are the best choices for DLP displays. Figure 5-1 1 and Figure 5-12 

represent the gamut shape of the two projector in XYZ space. These two figures show 

that DLP projectors clearly have a concave gamut. The white-filter effect can be assumed 

as the main reason for causing the concavity in DLP gamut. Interestingly, the projectors 

have a very similar looking gamut. 



Figure 5-11 Gamut shape of dlp-Infocus 
Infocus DLP Gamut in xyz space . I . 

1 

Figure 5-12 Gamut of dlp-Toshiba 

- 



Figure 5-13 Shows gamut of dlp-Toshiba in CIELAB space, which similarly 

represents a concave shape gamut. 

Figure 5-13 dlp-Toshiba gamut in CIELAB colour space. 

dlp-tosh~bs ~n L.seb'opece 

To understand why concavity occurs in DLP gamuts and we can consider the 

projectors Channel Interaction (CI). Figure 5-1 shows that blue and green channels have a 

different CI behaviour depending on whether the other two channels are set to maximum 

or not. This means that the tristimulus output of the ramps of blue and green are not 



completely additive effect of the 3 primaries (red, green and blue lights), and there are 

some additional factors (in this case the white filter) that makes them behave differently. 

Since the red channel has a consistent CI, mostly increasing, independent of the other two 

channel settings, we can expect that the gamut boundary created by the ramps of red 

channel to have a convex shape. On the other hand, we should expect concavity on parts 

of the gamut with ramps of blue and green, since some artificial factor made their channel 

interaction to behave differently. This effect is shown in Figure 5-14, where the red and 

blue dots represent ramps of Red and Blue, respectively, while the other two channels are 
- 

set to maximum. 

Figure 5-14 Ramps of Red and Blue on the gamut when the other two channels are set to maximum. 



This figure shows that on the part with ramps of red, the gamut is quite convex 

compared to the part with blue ramps. 

This is an interesting observation since it allows us to predict possible locations in 

the gamut that are likely to be concave. Extending this idea to the printer technology can 

be quite useful especially since studying printer gamuts with 7 or more inks is quite 

challenging. 

For printers, concavity can occur because of the ink-interaction and the ink- 

separation. Ink separation tells what ink combination to put down for a given RGB value. 

By studying the CI of RGB input values, we may be able to predict concavities that occur 

because of the ink-separation. Being able to remove these concavities can allow for 

expansion of the gamut and predicting the gamut boundary more accurately. 



CHAPTER 6: 
LCD PROJECTOR VERSUS DLP PROJECTOR 

In this section, we compare some of the characteristics of LCD and DLP 

projectors. In particular, two of the main projectors characteristics are Temporal Stability 

and Spatial Non-Uniformity. In this study, two LCD and two DLP projectors were used. 

Table 6-1 shows the projector names used in this study. 

Table 6-1 Projector names used 
I 1 I 

Name 

PR1 

PR2 

6.1 Temporal Stability 

Temporal Stability indicates the amount of time it takes for the projector bulb to 

stabilize after it is turned on [42]. Full Red, Green and Blue were measured every 5 

seconds for 45 minutes starting from the time that the projector was turned on. To 

improve the quality of the data, we made sure that before each test, projectors had been 

turned off for at least 5 hours for the bulbs to cool down. Figure 6-1 shows that Green 

and Blue channels have a big shift in their chromaticity as the LCD bulb warms up. On 

Description 

Proxima LCD Desktop Projector 9250 

Proxima LCD Ultralight LX 

dlp-Toshiba 

dlp-Infocus 

Toshiba TDP-5 DLP Projector 

Infocus DLP LP 1 Projector 



the other hand, DLP projectors seem to have stable chromaticity fiom the very beginning, 

when they are first turned on. 

Figure 6-1 Temporal Stability for 2 LCD and 2 DLP projectors. In the first 3 columns, changes in 
R, G and B channels are shown. Horizontal Access represents d(x+y+z) and y/(x+y+z). 
Vertical access represents the data measurements. 

pR2 PR? PR2 Intensity 

dipinfocus Intensity 

apt- '+t@=f- - dlptmhiba Intensity 



6.2 Spatial Non-Uniformity [42] 

The spatial non-uniformity was considered by displaying a full white image and 

measuring the tristimulus values at 9 corner positions on the screen. Figure 6-2 shows 

the 9 comers of the screen that were measured. 

Figure 6-2 6-3 The 9 points of screen measured to verify Spatial Non-Uniformity. 'C', 'R', 'L', 'T' 
and 'B' stand for Centre, Right, Left, Top and bottom corners. RB, LB are 
Right-Bottom and Left-Bottom locations. 



Figure 6-4 Spatial Non-Uniformity. The first column shows white measurements at 9 different 
locations on the screen for each display. Second column represents intensity (X+Y+Z) 
of white at each location. 'C', 'R', 'L', 'T' and 'B' stand for Centre, Right, Left, Top 
and bottom corners. RB, LB, RT and LT are Right-Bottom, Left-Bottom, Right-Top 
and Left-Top locations. 

PRt 

dlp-infocus 

N 

t oo  

dlptoshiba 

PR1 lntensity 
350 1 

PR2 lntensity 

RBk 

dlpinfocus lntensity 

3 0 0 ~  Bk 

dlptoshiba lntensity 

LBl 



Table 6-2 shows the error in AEg4 caused by Spatial Non-Uniformity in projectors. It 

shows that DLP and LCD projectors have a very similar Spatial Non-uniformity. 

Table 6-2 Error caused by spatial non-uniformity for projectors. 

Mean AEg4 

DLP Projector 

LCD Projector 

Max AEg4 Std AEg4 

10.09 

7.99 

20.67 

19.15 

7.62 

6.31 



CHAPTER 7:DEVICE CALIBRATION VIA SUPPORT 
VECTOR REGRESSION 

7.1 Introduction 

The problem with the previous models for calibrating the CRT, LCD or DLP 

displays is that the user needs to know some details about the internal structure of the 

device. For instance, the user needs to know about the effect of the white filter in DLP 

technology to approach the models such as Masking or Wyble models. 

In this section, we present a new approach based on training to calibrate displays. 

In this approach, users do not need to have any internal information about the internal 

technology of displays. 

Vapnk's Theory of Support Vector Machine ([60][61]) has been applied to a wide 

variety of problems [63] including the recent application on Estimating Illumination 

Chromaticity by Funt and Xiong [59]. 

There are several advantages for using SVR over existing statisticalltraining 

models. SVR is known to perform better than other models (e.g. Neural Network) on 

sparse data set and it can achieve global optimum rather than locally optimum solution. 

Given a set of input and corresponding output values, SVR tries to assign a 

relationship (function) between the data by applying regression. This function can be 

used for prediction, including data that was not included in training set. This model is 

quite similar to Neural Network with the difference that Neural Network stops at a local 

optimum solution; whereas, SVR achieves a global optimum. SVR, similar to the Neural 



Network feedback loop, requires a loss function to calculate estimation error. If the 

original problem is non-linear, the kernel trick can be applied to reformulated the 

problem in terms of a kernel function. 

SVR tries to ignore the points that are out of its prediction range. It uses E values as 

to represent the range of its prediction. Figure 7-1 illustrates the &-insensitive for points 

that fall out of the maximum error range. 

Figure 7-1 SVR Error Insensitive Case. Data points outside the error range are ignored 

E (maximum error allowed) 

\ 

Error off the road is counted. 
Since it is larger than E, then it is ignored 

A geometric representation of SVR is given by Bi and Bennet [65]. If training data 

set are linearly separable, SVR classifies the data by finding the separation plane with the 

maximum hard margin between classes. Figure 7-2 shows a geometric representation of 



the SVR. It shows that when SVR is applied to a set of points, it finds the closest point in 

convex hull of the data from each class. 

Figure 7-2 SVR Classification. SVR computes the closest point in convex hull of the data from 
each class 

I)' 

7.2 Applying SVR to Calibration Problem 

RGB values were used as input values and L*, a*, b* separately as output data. 

Euclidean distance between estimated points and original input values is used as an error 

measurement function. 

SVR performance is known to depend on the insensitivity parameter, E, and the 

choice of kernel function used to associate data points. The four most common kernel 

functions are shown in Table 7-1. 



Table 7-1 Four most common choices for Kernel function. d is the parameter to be set 

I Name I Equation I 
I Linear I K(xixj) = (xi)Txj I 
I Polynomial I K(xixj) = [(xi)Txj+l]d I 
I Radial Basis Function (RBF) I K(xixj) . ed 11 xi-xiI12 I 

For calibrating our display we experimented with Polynomial and RBF type 

functions. Sigrnoid was not used because it could not classify the data accurately and it is 

not defined for some specific d values. The kernel choice and parameter setting (cost 

value and d) were set by choosing 200 data points out of 1000 possible values randomly 

for 20 times. C value ranged from [.I-81 and d values ranged from [.01-.5] and [I-81 for 

RBF and Polynomial kernel respectively. Nedler-Mead Simplex search with multiple 

random initialization point was used to find an optimum setting. 

Sigmoid 

7.3 Results 

Below are the results for apply SVR model to predict tristimulus values. 300 

colours were chosen randomly out of 2277 measured data point for training purpose. The 

model was evaluated on the 2277 colours including training data. However, it was found 

that the SVR performs similarly for CRT and LCD display characterization, if only 

tristimulus values of ramps of red, green and blue are used. Interestingly, for some 

displays, the performance is better than DEM model. 

K(xixj) = tanh[(xi)Txj+d] 



Table 7-2 Performance of SVR for Calibrating 9 displays. Error is measured in AE94 

I I Mean I Max 1 Std I 

I I I 

Dlp-Toshiba 1 1.09 1 6.5 1 1.54 

CRT2 

LCD I 

The drawback of this model is the time it takes for training. However, once the 

training period is done, the model is quite fast in predicting output values. 

The interesting observation is that, for calibrating all 9 displays, including DLP 

Projectors, we only trained the model on RGB input values and X, Y, Z output values 

separately. There was no need to distinguish between different technologies or think 

about possible effect of Channel Interaction on model performance. 

1.37 

.906 

9.1 

5.9 

2.1 

1 . I  



CHAPTER 8:CONCLUSION 

An end-user may well wish to analyze and predict behaviour of electronic 

displays without knowing about having knowledge to internal structure of the devices. 

The focus of this thesis is to address this need and study possible improvements we can 

give to already existing models. 

Characteristics of CRT and LCD monitors and projectors were studied. It was 

shown that LCD displays do not have significant Channel Interaction once the displays 

are made for end-user. Some characteristics such as longer than normal time to stabilize 

colour output on CRT monitors were pointed out. A good measurement model for the 

displays was discussed. Implementation of 3 calibration models, 3D LUT, Masking 

Model and Linear Model were studied. Linear Model has better performance on both 

CRT and LCD technologies since the channel interaction and chromaticity shift is 

removed for end-users. A simple extension to Linear Model (Linear+) can improve white 

balancing. 

Two new algorithms were introduced that try to optimize existing calibration 

models by considering the importance of the colours in a space that matters to us. These 

two models (LabLS and DEM) were shown to improve calibration for CRT and LCD 

displays by around 10%. 

Gamut mapping is another important factor since more and more people are 

viewing documents and images on electronic displays. In applications such as remote 

surgery, users need to be able to view important features of an image even if they are 



viewing the objects on different types of display Some of these applications require a real 

time mapping. In this thesis, we specifically considered gamut mapping between 

electronic displays (CRT and LCD displays). Implementation of device-based and 

content-based gamut mapping were discussed. The performance of 4 different device- 

based Gamut Mapping algorithms was compared and it was shown that numerically 

these algorithms tend to have similar performance. However, visual comparison showed 

that Straight Clipping performs better than other device-based GMAs, by preserving 

contrast rather than colourfulness in an image. Implementation and performance of a 

model intended preserve Spatial Luminance in an image was discussed and we observed 

that this model does not improve quality of device-based GMAs on scene images. This 

model can be a good choice for computer generated images and a simple modification to 

the model was shown to improve the output of images with text. 

Kimmel introduced a mathematical approach to gamut mapping algorithms that 

guarantees finding an optimum solution if the target gamut is convex. We observed that 

this model can recover most of the lost spatial information in an image because of 

applying other GMAs at the cost of much longer CPU time. 

We introduce a model that takes advantage of similar gamut shapes of CRT and 

LCD displays to have output quality similar to content-based GMAs and at the same 

time require CPU time as low as device-based GMAs. This model uses a transformation 

based on reference colours in LCH space and applied Straight Clipping to remaining Out- 

of-gamut colours. It also can take less CPU time compared to fast device-based GMAs by 

trying to fit most of source gamut inside the target gamut in a linear transformation. 



New projector technology (DLP) has the fourth channel (white) added to the 

existing ones that increases image luminance. We showed that the best space to have 

calibration is derived spaces with 4 or 7 bases from RGB channels. A basic modification 

to the Wyble Model was shown to improve the forward prediction significantly. 

Applying the Masking Model with 7 bases has similar accuracy in predicting XYZ values 

given digital input data. However, in the backward direction (XYZ to RGB) we observed 

that applying Masking Model has a much better accuracy than the Wyble model. Thus, 

using this 7 bases model improves overall calibration result for DLP projectors. 

Other characteristics of DLP projectors such as Channel Interaction and 

Chromaticity shift were studied. We showed that using behaviour of Channel Interaction 

on each channel we can predict places that gamut can have concavity. It is an interesting 

observation and applying it to printer models can improve gamut of printers, especially 

ink-jet printers with large number of inks (7 or more). 

In the last part of the thesis, a new model using Support Vector Regression was 

introduced for colour calibration of electronic displays including DLP projectors. 

Interestingly, by using SVR user does not need to know weather 3 or more bases are 

needed to predict XYZ values accurately. SVR can prediction 3 functions that predict X, 

Y and Z output values given RGB input data. The other observation was that this model 

can in some cases outperform that LabLS and DEM model. 



CHAPTER 9: CONTRIBUTION SUMMARY 

The first part of this thesis on display characterization represents a joint effort 

involving both myself and Bill Cressman. This work is published in a conference paper at 

CGIV2004 and a journal paper CR&A. The characterization models were implemented 

in Matlab, and were largely a joint effort. Module ownership was roughly divided such 

that Mr. Cressman primarily developed the 3D LUT and backward Masking Model 

engines, while I developed the Linear Model and the forward part of Masking Model 

engines. With respect to data analysis and model testing, Mr. Cressman focused on 

analysing measurement error and the effects of channel interaction. I focused on possible 

reasons behind channel interaction and studying the effects of chromaticity shift. 

Optimal Colour Calibration was a joint work between my supervisor, Dr. Funt, 

Mr. Roozbeh Ghaffari and myself. Dr. Funt and I focused on LabLS model and Mr. 

Ghaffari studied the DEM model. 

In the gamut mapping section, I studied the most popular mapping algorithms in 

this field. I specifically did not try to introduce any new GMA for mainly two reasons. 

First, measuring the performance of a GMA is greatly influenced by: the test-image 

content, which type of GMA application is used and the viewing condition. Thus it is 

generally quite hard to decide whether one mapping is better than other available 

mappings. The other reason is based on TC8 Committee decision to standardize GMAs 

so that there are a few world-wide known algorithms [14]. 



DLP Calibration is completely my own work, which started by studying 

characteristics of DLP projectors and introducing a model that improves existing 

algorithms. 

In the DLP calibration section I extended the idea from paper by Dr. Funt and Mr. 

Xiong [59]. Mr. Xiong helped me with the initial understanding of the model. 
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