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ABSTRACT 

Communication protocol conformance testing aims at demonstrating the adherence of a 

protocol implementation to the protocol specification which is assumed to be correct. One of 

the most important issues in protocol testing is the generation of a small set of test sequences 

with large fault coverage. Since even the simplest protocol may require a very large number of 

test sequences to assure almost complete fault coverage, it is challenging to solve this 

problem. To derive efficient test sequences, a very fundamental and crucial problem is the 

executable path (EP) problem which consists of EP identification and EP selection. Because 

of its complexity, this problem has remained open so far. 

This thesis is concerned with protocol test sequence generation. Particularly, the EP 

problem is studied in detail. Although this problem is NP-complete in general, we attempt to 

develop some efficient algorithms to solve it under certain reasonable restrictions. We first 

establish a formal graph model based on the extended finite state machine (EFSM) and the 
L 

normal form specification (NFS) in Estelle to describe both control and data portions of the 

communication protocol. We then precisely define the EP problem and discuss its complexity. 

Two basic algorithms for the EP identification are developed and their complexity is 

analyzed. We also investigate the EP selection problem and propose several test path 

selection criteria. Finally, we apply our methods to a real communication protocol. 
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CHAPTER 1 

INTRODUCTION 

A communication protocol is a set of precise rules governing the possible interactions 

among the components in a communication system. The specification of a protocol is, in gen- 

eral, given as a detailed document describing the interfaces and mechanisms of the protocol. 

An implementation of a protocol is a running version which realizes the various functions 

defined in the specification. Obviously, a protocol specification may lead to different imple- 

mentations. Incorrect or incompatible implementations of a logically correct and completely 

specified protocol specification may not be able to communicate with each other. In order to 

make sure that the implementations conform to the specification and work reliably, some kind 

of certification is essential. Since the state of the art of the program verification is far from 

providing practical tools to verify large concurrent software such as a protocol implementa- 

tion, protocol conformance testing has been widely advocated for ensuring that protocol 

implementations are consistent with the specifications [BoS83, IS087al. 

Protocol conformance testing, or protocol testing for short, aims at demonstrating the 

adherence of a protocol implementation, called implementation under test (IUT), to the pro- 

tocol specification that it implements. Typically, the source listing of an implementation can- 

not be assumed to be available and it is tested as a black box locally or remotely, based on dif- 

ferent test architectures [Ray87]. The testing is carried out by applying a group of inputs to 

the implementation and verifying that the corresponding outputs are what is expected. These 

input sequences are called test sequences and the process of automatically deriving efficient 



test sequences from the protocol specification is called test sequence generation. Since even 

the simplest protocols may require an astronomical number of different test sequences, the 

test sequence generation problem is combinatorially challenging [ADUW]. 

To generate protocol test sequences efficiently, a very fundamental and crucial issue 

which has to be solved is the executable path problem. Intuitively, an executable path is a 

sequence of states and transitions which the implementation can go through. Basically, the 

executable path problem consists of two parts: executable path identification and executable 

path selection; the former is concerned w i t h f i n d l n g o r  feasible paths from 

the specification and the latter is concerned with selecting a subset of the executable paths to 

generate test sequences so that we can make the implementation take these paths during the 

testing. Because of its mathematical complexity, the executable path problem has remained 

as an open problem so far [Ura87]. 

The major topic of this thesis is the protocol test sequence generation in general. Partic- 

ularly, the executable path problem is investigated in detail. 

This thesis is organized as follows. In chapter 2, we give a brief survey of the previous 

research work on protocol testing and present some related background information. In 

chapter 3, an acyclic graph based on an extended finite state machine model is introduced and 

the executable path problem is formally defined in the context of this graph. Chapter 4 is 

devoted to the executable path identification problem and two basic algorithms and their vari- 

ations are proposed. In chapter 5, the executable path selection problem is discussed and some 

new criteria for test path selection and test sequence generation are suggested. In chapter 6, 

we apply our algorithms and criteria to a real communication protocol. Finally, in chapter 7, 

we summarize our major contributions and conclude this thesis. 



CHAPTER 2 

PROTOCOL CONFORMANCE TESTING: AN OVERVIEW 

A substantial amount of research has been devoted to protocol testing. Most previous 

work has centered around the topics of protocol test sequence generation, protocol test archi- 

tecture and formal description techniques (FDTs). In this chapter, I give a brief survey of 

such work and provide the related background information. 

2.1. The Fundamentals of Communications Protocols 

The basic goal of computer networks is to provide interconnection and communication 

among the entities (e.g., processes) in different systems (e.g., computers). As computer net- 

works have been growing more and more complex, an ad hoc or special-purpose approach to 

network software development is too costly to be acceptable; this is particularly true when 

communication is desired among heterogeneous systems. To reduce the cost, the only alter- 

native is to develop a common set of conventions or protocols. International Organization for 

Standardization @SO) took up this challenge and established the Open System Interconnec- 

tion (OSI) reference model which is a framework for defining protocol standards to make the 

interconnection of heterogeneous computer systems possible [IS084,Zim80]. Since OSI 

reference model has achieved nearly universal acceptance, the discussions in this thesis are 

based on this model. 

The most important concept in OSI reference model is layering. The whole network is 

organized as a series of layers and layer (N) provides a set of capabilities or services to layer 



(N+l) by enhancing those performed by layers 1-(N-1). Within a system, layer (N) is consti- 

tuted by one or more protocol entities called N-entities which are capable of sending and 

receiving information. Externally, an N-entity interacts with other entities of the adjacent 

layers within the same system via the invocation of abstract service primitives (ASP) which, 

in an abstract manner, describe the operations and parameter exchanges at the layer interface. 

Meanwhile, an N-entity interacts with another N-entity, called a peer entity, in a remote sys- 

tem by exchanging messages called protocol data units (PDU). The ASPS and PDUs are 

known as external interactions which define the external behavior of a protocol entity and 

are essential to protocol testing. 

2.2. Formal Description Techniques 

To avoid imprecision and ambiguity, formal description techniques (FDTs) are con- 

sidered to be important tools for the design, verification, implementation and testing of com- 

munication protocols. A variety of general formalisms such as the state transition model, pro- 

gramming languages, temporal logic and some reasonable combinations thereof, can be used 

to describe a protocol. Presently, a number of FDTs have been or are being developed 

[BoS83, BoB87, BuD871. 

A protocol specification should describe the external interactions and internally initiated 

operations (e.g., timeouts) of a protocol entity. Roughly, a protocol specification can be bro- 

ken up into two portions: control and data. The control portion is concerned with the various 

states in which the protocol entity can be and the state transitions; the data portion deals with 

the values and their variations of parameter fields of external interactions. 



The control portion of a protocol entity can be easily modeled as a finite state machine 

(FSM) [SaDSS]. However, it is usually impractical to model the data portion of a protocol by 

a FSM; for example, to model a protocol using sequence numbers, there must be different 

states to represent every possible sequence number, which results in the state space explosion 

problem [Hai83]. 

The extended finite state machine (EFSM) model [Boc83] attempts to combine the 

advantages of state transition technique and programming language technique. It is called 

extended since variables (called context variables) are introduced to the basic FSM model for 

describing the data portion of a protocol. The EFSM is considered to be the most promising to 

model most practical protocols. 

2.2.1. Estelle 

Based on the EFSM model, a FDT called Estelle has been developed by IS0 [IS087b]. 

In Estelle, a protocol entity may be specified in terms of possibly more than one module. The 

behavior of each module is described by state transitions and the context variables of the 

module. A state transition from one state to another state may depend on some predicates on 

the context variables and input interactions. Associated with each transition is a sequence of 

operations to be executed as part of the transition. To specify these operations, Pascal execut- 

able statements can be used. Some procedure calls and the right-hand sides of some assign- 

ment statements may be undefined to leave the interpretation to the implementor. A concrete 

example is given in Figure 2-1. 

FROM idle 
TO wait-for-Tconnect-resp 
WHEN cr (source-ref, dest-ref, variable-part) /* 'cr' stands for Connection Request*/ 
PROVIDED (cr.variable-part.qts.req = ok) 



BEGIN 
remote-ref := cr.source-ref; 
if (cr.variable-part,TPDU-size) o undefined 
then 

TPDU-size := cr.variablegart.TPDU-size; 
else 

TPDU-size := 128; 
remote-add := cr.variable-part.calling-T-add; 
called-add := ... ; /* implementation dependent */ 
calling-add := ... ; 
output T-connect-ind (calledadd, calling-add, TPDU-size, ...) ; 

END; 

Figure 2-1: A transition in Estelle 

In general, a protocol specification in Estelle may still contain certain constructs which 

make test sequence generation complicated. 

2.3. Normal Form Specification (NFS) of Estelle 

A protocol specification should be precise, well-defined, detailed anD easy-to-analyze so 

that any implementation based on it will work with any other implementation. For testing pur- 

poses, the analysis of the dynamic behavior of a protocol entity based on the specification is 

very important. 

A protocol specification in Estelle may contain many modules and there may exist some 

complex interactions among these modules. The major complications of any protocol 

specification in Estelle result from inter-module interactions, multiple control paths and local 

procedure/function. The inter-module interactions make the analysis and description of the 

behavior of a protocol entity complicated. Since these interactions are internal and cannot be 

observed by the tester, they are irrelevant to protocol testing. 



In a protocol specification in Estelle, any Pascal statement can be used within the opera- 

tion part of a transition. The conditional IF and CASE statements and iteration statements can 

constitute multiple control paths within a transition and the implementation may take dif- 

ferent control paths when traversing one transition. Therefore, the execution of the subsequent 

transitions may depend not only on which transitions have been fired previously but also on 

which control paths have been taken within these transitions. Obviously, the multiple control 

paths within a module make the analysis of protocol behavior difficult. 

The procedure/function calls can be used in a protocol specification in Estelle to achieve 

abstraction. But for protocol testing, it is desired to unfold these abstractions if they are 

defined and to make every specification detail directly available to the test sequence genera- 

tion algorithm. 

Based on the above discussions, a group of transformations to an Estelle specification 

are proposed in [Sar84, SaB86, SBG871. The basic ideas behind these transformations are: 

(1) combining modules and eliminating internal interactions by textual substitutions; 

(2) creating a new transition for every distinct path in the operation part of an original tran- 

sition and modifying the corresponding condition predicates to reflect the conditions 

imposed for taking these paths; 

(3) unfolding the local procedure/function calls by symbolically executing the local 

procedure/function bodies if they are defined. 

After these transformations, a single-module and single-path specification, called Nor- 

mal Form Specification (NFS), can be derived. Informally, a NFS describes the behavior of 

a protocol entity in terms of a group of Normal Form Transitions (NFT) [SaB86]. Each 

NFT consists of the following five components : 

- 7 -  



(1) an optional WHEN clause specifying the external input interactions of this transition. If 

this clause is absent, the transition is said to be spontaneous; 

(2) a FROM clause indicating the source state of this transition; 

(3 )  a TO clause indicating the target state of this transition; 

(4) an optional PROVIDED clause specifying an enabling predicate which must be true for 

the transition to take place; 

(5)  a BEGIN-END clause block specifying a single path composed of assignment state- 

ments, undefined procedure/function calls, and possibly some output statements 

defining external output interactions. 

The NFS of the example given in Figure 2-1 is shown in Figure 2-2. 

FROM idle /* first NIT */ 
TO wait-for-T-connect-resp 
WHEN cr (source-ref, dest-ref. variable-part) 
PROVIDED (cr.va.riab1egart.qts.re.q = ok) /\ (cr.variable-part.TPDU-size o 
undefined) 
BEGIN 

remote-ref := cr.source-ref; 
TPDU-size := cr.variablegart.max-TPDU-size; 
remote-add := cr.variable-part.calling_T_add; 
called-add := ... ; I* implementation dependent *I 
callingadd := ... ; 
output T-connect-ind (called-add, calling-add, max-TPDU-size, ...) ; 

END; 

FROM idle /* second NFT */ 
TO wait-for-T-connect-resp 
WHEN cr (source-ref, dest-ref, variable-part) 
PROVIDED (cr.variable-part.qts.req = ok) /\ (cr.variable-part-max-TPDU-size = 
undefined) 
BEGIN 

remote-ref := crsource-ref; 
TPDU-size := 128; 
remote-add := cr.variable-part.calling-T-add; 
called-add := ... ; I* implementation dependent */ 
callingadd := ... ; 



output T-connect-ind (called-add, calling-add, max-TPDU-size, ...); 
END, 

Figure 2-2: Two NFTs equivalent to the transition of Fig. 2-1. 

2.4. PICS and PXXIT 

In a typical protocol specification, many special features or options related to the 

specific implementation are left to be determined by the implementors so that certain abstrac- 

tion can be achieved. Nevertheless, such implementation-related parameters might be impor- 

tant to protocol testing. For this purpose, IS0 has defined two special documents to facilitate 

protocol testing [IS087a]. 

The Protocol Implementation Conformance Statement (PICS) is a statement made 

by the implementor to state the capabilities and options which have been implemented, and 

any features which have been omitted. It is needed so that the implementation can be tested 

for conformance against relevant requirements, and against those requirements only. 

In addition to the information provided by PICS, the tester might require further infor- 

mation to conduct testing. The Protocol Implementation extra  Information for 

Testing(P1XIT) is for this purpose. PIXIT is a statement which may contain the following 

information: 

(1) information needed by the tester in order to be able to run the appropriate test sequence 

on the specific system (e.g., addressing information); 

(2) information already mentioned in the PICS and which needs to be made precise (e.g., a 

timer value which is declared as a parameter in the PICS should be specified in the 

PIXIT); 



(3) information to help determine which capabilities stated in the PICS as being supported 

are testable and untestable; 

(4) other administrative matters (e.g., the IUT identifier). 

2.5. Test Architecture 

The test architecture deals with the testing environment and configuration. Unlike ordi- 

nary program testing, protocol testing may be performed from a remote testing site or in dis- 

tributed manner. Furthermore, since most networks are organized as a series of layers, the 

placement of testing modules in particular layers at the test and implementation sites accord- 

ing to some configuration criteria also gives rise to the problem of test arcptecture. 

IS0 has done pioneering work on protocol test architecture. [Ray871 proposes various 

test configurations for different environments and applications. The advantages and disadvan- 

tages of different architectures are also discussed in this paper. The major criteria by which to 

classify different test architectures depend on where, what, and how external interactions of 

the implementation under test (IUT) can be observed and controlled. 

From the where point of view, the test architectures can be categorized as local or exter- 

nal, which indicates that testing is carried out within the implementation site (in-house test- 

ing) or in a real communications environment, respectively. The external approach can be 

. further divided into: distributed, coordinated and remote. 

From the what point of view, we have single-layer, multi-layer and embedded-layer 

testing. Single-layer methods are designed for testing a single layer without reference to the 

layers above it. Multi-layer methods are designed for testing a multi-layer IUT as a whole. 

Embedded methods are designed for testing a single layer within a multi-layer IUT, using the 



knowledge of what protocols are implemented in the layers above the layer being tested. 

From the how point of view, we may use a lower tester (LT) and an upper tester (UT) 

to control and observe the lower and upper boundary of an IUT, and test coordination pro- 

cedure (TCP) to coordinate the UT and the LT. 

A concrete test architecture is given in Figure 2-3. Currently, protocol testing architec- 

tures and methodology are still being refined and standardized by IS0 [IS087a]. 

Service Provider L 
Figure 2-3: The distributed single-layer test architecture 

The algorithms described in the following chapters are independent of any particular test 

architecture. We only assume that the tester can directly or indirectly observe and control the 

external interactions of an IUT. This assumption is valid for most test architectures. 



2.6. Test Sequence Generation 

Test sequence generation is a key step in protocol testing. A test sequence consists of 

input data used to exercise the implementation and the corresponding correct output 

responses. Since the complexity of most real protocols makes exhaustive testing both techni- 

cally and economically impossible, the goal of test sequence generation is to derive a small 

set of tests from the protocol specification such that they have large fault coverage. 

2.6.1. Test Sequence Generation Based on FSM Model 

Much research work has been done on the test sequence generation based on the FSM 

model. The basic idea behind most existing testing techniques is transition testing, that is, 

putting the implementation at the source state of the tested transition, forcing it to undergo the 

transition and observing whether the outputs and the target state are correct. It is worth point- 

ing out that the transition testing is complicated by the limited controllability by the external 

tester, which in most cases cannot directly place the implementation into a predetermined 

state, and by the limited observability by the external tester, which cannot directly observe the 

state of the implementation. 

Four test sequence generation techniques (T-, D-, W-, U-methods) have been designed 

[Cho78, Gon70, NaT81, SaD881. In a recent study, Sidiu and Leung investigate the efficiency 

and fault coverage of these techniques [SiL89]. In [ADU88] and [ShS89], an optimization 

. technique for the test sequence generation based on U-method and the rural Chinese postman 

tour in graph theory is proposed to find a minimum-cost test sequence. However, because of 

the limitations of the FSM model, all these techniques can only be applied to the protocols 

with simple data portion or to the control portion of a protocol. 



2.6.2. Test Sequence Generation Based on EFSM model 

Test sequence generation becomes much more complicated and challenging when we 

attempt to test both control and data portions. The major complication results from the com- 

plex interactions between the data portion and the control portion. Since a state transition 

depends on the external interactions and the execution history of the previous state transitions 

and related operations, the idea of pure transition testing discussed in the last section may not 

work, simply because some transitions cannot be executed together. This is, in fact, the exe- 

cutable path problem mentioned earlier. Another complication lies in the parameter variation 

of the data portion. Choosing the effective testing data and variation is not straightforward 

when the executable path problem is considered. Based on the EFSM model, several test 

sequence generation schemes which take into account both control and data portion of a pro- 

tocol have been proposed. 

[SBG87] applies the idea of functional program testing [How801 to the generation of 

protocol test sequence. In this scheme, the formal specification of the protocol in Estelle is 

transformed into normal form specification which can be further decomposed and represented 

by the control graph (CG) and dataflow graph (DFG). The CG and DFG aim at describing 

the control and data portions of a protocol, respectively. From the CG, subtours, which are 

paths starting and ending at the idle state, can be derived. From the DFG, dataflow functions 

which represent various real protocol functions can be obtained. For each dataflow function, a 

test sequence is designed by parameter variations and by simulating all of the executable sub- 

tours related to this dataflow function. However, the main disadvantage of this method is that 

it is quite complicated; especially, it is not clear how to mechanize the dataflow function 

decomposition. In this scheme, the executable path problem is not studied and it is assumed 



that the executable subtours can, somehow, be found manually. 

To improve the method described above, [Dat87] proposes a method in which the DFG 

is completely eliminated and only the condition part of each transition is considered. The 

basic idea behind this method is to execute all the transitions of the control part of a protocol 

at least once and to vary the corresponding parameter values of the data portion. The chief 

advantage of this method is that it is easier to understand and implement. In this scheme, the 

executable path problem is discussed only in the context of IS0 class 2 transport protocol and 

no general algorithm is given. 

The method in [Ura87] is based on the data flow analysis technique [Fo076] to generate 

a set of test sequences to cover all definition and usage pairs satisfying certain constraints 

given in [RaW81]. This method can be used to determine whether an implementation estab- 

lishes the desired flow of data expressed in the given specification. The major drawback of 

this method is that its fault coverage is relatively limited and the executable path problem is 

totally ignored. 

Another structural testing method which aims at testing the data portion of a protocol 

and improving the fault coverage is suggested in [UYP88]. This method is based on the 

identification of all inputs that influence each output from the point of view of syntactic struc- 

ture of the specification. It is claimed that this method has a better fault coverage than the 

method in [Ura87]. However, like other purely structural test sequence generation methods, 

. the test sequences derived by this scheme often contain non-executable paths since syntactic 

information is not sufficient to determine whether a particular path is executable or not. 

Some research work has been devoted to the executable path problem. In [WaK88], a 

heuristic method of identifying the executable paths in the context of transport layer protocol 



is proposed. 



CHAPTER 3 

MODELS, DEFINITIONS AND COMPLEXITY 

In the previous chapters, we have given a brief description of a formal model EFSM and 

a formal protocol description technique called normal form specification (NFS) in Estelle, 

which is based on the EFSM model. We have also informally explained the concepts of pro- 

tocol test sequence generation and the executable path problem. Such descriptions in natural 

language are adequate for presenting a general idea of these concepts, but when it comes to 

actually design algorithms, more precise definitions become essential. 

In this chapter, we first precisely define the EFSM model and the NFS in Estelle. Based 

on these definitions, an acyclic graph which can be used to describe both the control and data 

portions of a protocol is proposed. The executable path problem and its complexity are also 

formally defined and studied in this chapter. Finally, the general assumptions that are used 

throughout this thesis are stated. 

3.1. Formal Definitions of Models 

Definition 3.1. An Extended Finite State Machine, or EFSM for short, is a 7-tuple: 

EFSM=(S,I ,O,V,A,C,T),  

where 

S is a finite set of states and one of them is called the initial or idle state; 

I is a finite set of inputs; 

0 is a finite set of outputs; 



V is a finite set of variables called context variables; 

A is a finite set of actions or operations on inputs and context variables; 

C is a finite set of predicates on inputs and context variables; 

T is a finite set of state transitions and each state transition t E T is a 5-tuple defined below : 

1 
t = <qS, qt, I , ,  C,, At>, 

where 

q; E S is the source state of t  ; 

q; E S is the target state of t  ; 

I, E I is the external input of t  ; 

C, E C is the enabling condition or predicate of t  which must be true for t to take place; 

A, E A is the actions of t  which are executed when t is fired. 0 

Wnen an EFSM is used to model a communication protocol, the states are chosen to be 

those instants where the protocol entity is waiting for the next event to happen. One particular 

state is designated as the initial or idle state which is the state of the protocol entity when it 

begins running, or some convenient starting place thereafter. Typically, a state is used to 

represent the status of connection of a protocol entity, e.g., CLOSED, OPENING, IDLE, etc., 

while the context variables are used to store sequence numbers, quality of service, exchanged 

data, and the like. The above definition also illustrates how the control and data portions of a 

protocol interact with each other when a protocol is modeled by an EFSM. In fact, context 

variables play a very important role in such interactions. As the enabling predicate of each 

transition is a predicate on the context variables as well as the external inputs, the data portion 

(e.g., context variables) affects the control portion (e.g., state transitions) of a protocol. On the 

other hand, a state transition may alter the values of the context variables in addition to 



producing outputs. 

Obviously, the state in S of an EFSM does not represent the "global state" or "complete 

context" of a protocol entity modeled by this EFSM. Unlike a FSM, the global state of an 

EFSM is capable of describing both the control and data aspects of a protocol entity. The fol- 

lowing definition further reflects the importance of the context variables in an EFSM model. 

Definition 3.2. The global state of an extended finite state machine (EFSM) is an 

(k + 1)-tuple: 

(q,$l, . . . ,+k)'  

where q E S is the current state of the EFSM, ii ( l l i  S k )  is the current value of the context 

variable vi E V and k is the total number of the context variables in the EFSM, i.e., k = IVI. 

Essentially , the global state of an EFSM reflects the execution history of the protocol 

entity in the sense that firing different state transitions usually results in different context t,& 

able values or different global states even if the protocol entity terminates in the same state 

after the execution. 

Based on the EFSM model, the normal form specification in Estelle (NFS) is developed 

as a formal protocol description technique. The precise definition of NFS in Estelle is as fol- 

lows. 

Definition 3.3. A Normal Form Specification (NFS) in Estelle consists of a set of nor- 

mal form transitions (NFI'). A NFT t consists of the following five components: 

WHEN (t) = nil or I, (it1 ,..., i 3 ,  where I, stands for the external input of the transition t and 

it1 ,. .. , i:, (m >O), are the external input parameters. 

FROM (t) is the source state of the transition t , qs. 



TO (t) is the target state of the transition t , q:. 

1 .m 1 PROVIDED (t ) = C, (it , ,  , , v ,..., v3, where C, is the enabling condition of the transition 

1 .m 1 k t ; it ,. ., 1, , (m 20), are input parameters and v, ,. .. , v, (k 20) are context variables. 

P I 1 u 1 
BEGIN-END (t ) = A, (aa, ,.., aa, , cc, ,..., cc, , oo, ,..., ooy), where 

A, stands for a set of actions of the transition t ; 

i 1 aa,, i=l,.., j , 020), is an assignment statement of the form y :=nil or y :=aa (it ,..., itm, 

1 
v, ,...PA, where rn 20, k20 and y is a context variable; 

1 h  cc,', i =1, ... ,u , (u >O), is a procedure call of the form cc (xi ,... X, ), where h 20, cc is an 

1 h  undefined procedure name and x, ,...x, (h 20) are procedure parameters of cc ; 

i 1 
oo,, i =1, ..., w , (w >O), is an output statement of the form oo 01, ,... ,ytr), where oo stands 

1 for the output interaction and y, ,...,ytr, (r 20) are output interaction parameters. 

Obviously, the EFSM is the formal mathematical model behind the NFS in Estelle. The 

NFS gives more detail and at a low-level. 

3.2. An Acyclic Graph Model 

In order to develop an algorithm to generate efficient protocol testing sequences, it is 

useful to establish a graph model to describe the protocol. The main advantage of using a 

graph model is that many protocol testing problems, especially the executable path problem, 

can be conveniently stated and analyzed. 

In this section, an acyclic graph model derived from the NFS in Estelle is proposed. This 

graph model can be used to describe both the control and data portions of a protocol, and it 

possesses some nice features which are useful for protocol test sequence generation, espe- 

cially for executable path identification and selection. We present our graph model in two 



stages. First, a graph named GNm, which can be directly derived from a NFS in Estelle, is 

introduced; then the cycles in this graph are removed according to certain criteria to derive an 

acyclic graph called acyclic protocol description graph, denoted by Gm . 

3.2.1. Graph GNFs 

Definition 3.4. Given a protocol specification in terms of the NFS in Estelle, a graph 

GNFs = (VNFS, ENFS) is a directed graph with a vertex set VNFs and an arc set ENFs, where 

VNFs = { S  1 s is a state in the given NFS); 

so E VNFS is called the initial vertex; 

ENm = { t  I t is a state transition in the given NFS}; 

For each t E ENFS, which stands for the transition t in the NFS, the following 

3 components are attached to it : 

I, -part = the WHEN clause of the transition t in the NFS; 

C, -part = the PROVIDED clause of the transition t in the NFS; 

A, -part = the BEGIN-END operation block of the transition t in the NFS. 

GNFs is easy to understand because it is quite similar to the ordinary state transition 

graph of a FSM except for the three new components, in place of an 110 label, attached to each 

arc. 

An example of GNFS is shown in Figure 6-1 and Appendix I. 

For protocol testing, however, working directly with GNFs has the following drawbacks: 

(1) In the A-part of an arc, some procedure calls and the right-hand-sides of some assign- 

ment statements may be undefined, which are left to be decided or interpreted by the 



protocol implementor. However, some of these undefined context variables or pro- 

cedures may affect the C-part which cause uncertainties when we want to identify the 

executable path or analyze the behavior of a protocol entity from the specification. 

(2) There may exist some cycles in GNFs. A cycle is a sequence of arcs which start from 

and terminate at the same vertex. For protocol testing, these cycles may result in compli- 

cations when the executable path problem is tackled. 

To get around the first difficulty, we assume that the protocol implementor can provide 

the tester with the implementation-related definitions or choices for those undefined com- 

ponents or options in the protocol specification if they are important to executable path 

identification or protocol testing. In fact, the major purpose of the Protocol Implementation 

Conformance Statement (PICS) and the Protocol Implementation extra Information for Test- 

ing (PIXIT) described in Chapter 2 is to supply the additional information by the implementor 

when it is necessary. 

As it is not straightforward to get rid of the second drawback, the next section is devoted 

to this problem. 

3.2.2. Eliminating Cycles from Gm 

Definition 3.5. Given graph GNFs, a path in GWs is a finite, non-null sequence of dis- 

tinct arcs: P = (vi ,vi2), (vi2, vi 3),.. . , (vir -, ,vir), r22. 

Definition 3.6. Given GWs, a cycle in GNFs is a path that starts from and terminates at 

the same vertex: C = (vi I,vi2), (vi2, vi3), ..., ( v ~ ~ - ~ , v ~  r is called the length of C . 



Cycles in GNFs can be categorized as follows : 

(1) homing-cycle : a cycle including the initial vertex v ,; 

(2) self-loop : a cycle of length 1 whose vertices do not include v ,; 

(3) intermediate-cycle : a cycle of length greater than one whose vertices do not include v,. 

To understand the significance of these cycles in a protocol specification, it is necessary 

to introduce the concept of protocol entity connection session. As mentioned in Chapter 2, 

one of the basic purposes of a protocol specification is to define the behavior of a protocol 

entity when it interacts with another protocol entity, called a peer entity, in a remote system. 

The whole process of such interaction activities are called a protocol entity connection ses- 

sion. Basically, a protocol entity connection session may consist of the following 3 or more 

phases: (1) connection establishment phase; (2) data exchange phase; (3) connection 

release/tem-inatim phase. Each phase may consist of a nlimber of states and transitions. Each 

state in a protocol specification should possess the RESET function or a transition directly 

going back to the initial state so that the protocol entity can never get stuck anywhere when 

the connection session is interrupted due to some errors. 

Typically, most cycles in GNFs are homing-cycles which are important to protocol test- 

ing. A homing-cycle can be intuitively interpreted as a sequence of operations which consti- 

tute either a protocol entity connection session or part of it interrupted by RESET. Obviously, 

every vertex in GNFs must be within some homing-cycle. 

Self-loops represent those operations which may change the values of the context vari- 

ables or the global state of a protocol entity but do not alter the connection status of a protocol 

entity. For instance, after a connection between two protocol entities has been established suc- 



cessfully, the connection status of the protocol entities is 'CONNECTED' and data 

exchanges start. During the process of data exchanges, the connection status of the protocol 

entities remains the same even through some context variables may be updated. Therefore, the 

data exchange operations can be modeled by some self-loops in GNFs. 

Besides homing-cycles and self-loops, there may exist some intermediate-cycles in a 

G,,, . Usually, this kind of cycle represents a sequence of repeated intermediate state transfers 

and operations within a protocol entity connection session. 

For protocol testing, the goal of cycle-elimination is to transform the given GNFs into an 

acyclic graph such that the new graph is semantically the same as the original one as far as the 

test sequence generation is concerned. Put in another way, the test sequences generated from 

the new acyclic graph should be as valid, effective and powerful as those generated from the 

the original graph. In the following subsections, three cycle-elimination methods are pro- 

posed. 

3.2.2.1. Homing-Cycle Elimination 

Since a homing-cycle starts from and terminates at the initial vertex v,, homing-cycle 

elimination is based on the special property of v,. As we have pointed out previously, v, is 

both the starting and ending point of a group of protocol operations since v, represents both 

the initial and the idle state of a protocol entity. This implies that the global state of a protocol 

entity should be initialized once v, is reached. 

Based on the above observation, the image vertex method is proposed to eliminate 

homing-cycles from a GNFS [Dat87] [WaK88]. A new vertex To called the image vertex of v, 

is introduced into GNFS. This image vertex functions as a sink and all of the arcs originally 



entering v are now redirected to To. From another point of view, v , in a GNFs is split into 

two vertices denoted as v , and To, which represent the starting and ending point of a protocol 

entity connection session, respectively. We can imagine that there exists an invisible link from 

To to v ,  and it is always automatically traversed when To is reached so that a new protocol 

entity connection session can start. This link does not represent an ordinary state transition of 

the EFSM and it does not need to be tested. As far as protocol testing is concerned, the new 

graph derived by this method is clearly equivalent to the original one. 

The algorithm for homing-cycle elimination is quite straightforward. 

Algorithm 3.1 HOMING-CYCLE ELIMINATION 

Input : A graph GNFS. 

Output : A graph GINFS without homing-cycles. 

Step 1. Introduce a new vertex To into graph GNFS. 

Step 2. For any arc t whose target vertex is v ,  Do 

Begin 

Create a copy arc oft  from the source vertex of t  to To; 

Delete the original arc t ; 

End 

0 

Obviously, the complexity of the above algorithm is linear in the number of vertices in a 

- GNFs. B y  applying this algorithm to the GNFs in Figure 6-1, the resulting graph is given in 

Figure 6-2. 



3.2.2.2. Self-Loop Elimination 

To eliminate self-loops or intermediate-cycles, the following observation is essential. 

For protocol testing, any transition in an EFSM model can be tested only a bounded number 

of times or any arc a GNFS can be traversed only a bounded number of times. Thus, any cycle 

in a GNFS can also be traversed only a bounded number of times. 

Based on this observation, we propose a cycle expansion method to remove self-loops 

from a GNm. Suppose that there are m self-loops on a vertex and the expansion constants k l, 

k,, ..., k, , which imposes the limits on how many times the corresponding self-loops cycles 

I ,, I,, ..., 1, can be traversed, are given by the tester. According to these expansion constants, 

a bounded number of new vertices and arcs are introduced to expand or unfold these self- 

loops such that all and only possible paths containing at most kj cycle-traversals on self-loop 

lj 0' = 1,2, ... , m ) exist in the expanded graph. 

When a vertex possesses more than one self-loop in a GNFS, there might, in fact, exist a 

precedence order among them or certain valid loop combinations. If this kind of order or com- 

binations can be derived directly from the GNm and used in the expansion, the number of the 

unfolded vertices and arcs can be greatly reduced. However, it is possible that no such con- 

straint can be derived directly from GNFS or they do not exist. Without loss of generality, we 

assume that no constraint on precedence order or valid self-loop traversal combinations exists. 

Before describing the algorithm, let us study a concrete example. Suppose that there are 

2 self-loops labeled as 1 ,, 1 , on vertex v and let k = k, = 2 be the given expansion constants. 

To expand these self-loops, we have to consider the following possible self-loop traversal 

sequences : 

4111212, 1,1,41,, 111,1,4, 
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12111112,  l 2 l l l 2 l 1 ,  12121 

This sequence includes all possible self-loop traversal sequences on I , and 1 with the restric- 

tion that each loop can only be traversed at most twice. 

In general, cycle expansion is essentially a permutation problem. The results of the 

expansion are premutations of the self-loop traversals with kj (j =1,2, ...m ) traversal repeti- 

tions for self-loop l j  (j=1,2, ...m). In [MKB83] and [Tuc84], algorithms and a formula for 

enumerating permutations with repetitions are given. The total number of possible self-loop 

traversal sequences = (k  , + k 2  + ... + k,)! 1 k k2!  ... km !. In fact, we can combine some 

unfolded arcs if they have the same subsequent arcs. 

Based on these intuitive discussions, we adopt the following self-loop elimination algo- 

rithm. 

Algorithm 3.2 SELF-LOOP ELIMINATION 

Input : A graph GNFs with n self-loops and the expansion constant kj 

(j =1,2, ...a) for each self-loop. 

Output : A graph GIm without self-loops. 

Step 1. For each vertex v with self-loops 11, l 2  ,..., 1, (m>O), repeat Step 2 to 

Step 4. 

Step 2. For the self-loops l j  (j=1,2,..m), enumerate the permutations of all pos- 

sible traversal sequences with kj repetitions for l j  according to the algorithm 

given in [Tuc84]. 

Step 3. For each self-loop permutation sequence derived in step 2, create a 

sequence of new vertices and copy the corresponding self-loop as the new arcs to 

connect these new vertices. The permutation sequence starts from v and 



terminates at new vertex v ', which has the same outgoing arcs as v except for the 

unfolded self-loops. 

Step 4. Delete the original self-loops on vertex v . 

0 

The resulting graph of applying this algorithm to the graph in Figure 6-2 is given in Fig- 

ure 6-3. 

3.2.2.3. Intermediate-Cycle Elimination 

Compared with homing-cycle or self-loop elimination, it is much more difficult to 

remove intermediate-cycles although the idea of cycle expansion can still be used here. The 

major difficulties are as follows : 

(1) In order to remove or expand intermediate-cycles in a Gm, it is necessary to detect or 

identify these cycles in the first place. It is quite straightforward to detect self-loops. On 

the other hand, finding all the intermediate-cycles in a GNFs is not easy because there 

may theoretically exist an exponential number of intermediate-cycles in a GNFs, which 

implies that the complexity of an intermediate-cycle fmding algorithm will also be 

exponential in the worst case. 

(2) Supposing that there are n intermediate-cycles c, (j =1,2,..,n) in a GNFS and the 

corresponding expansion constants k, (j=1,2, ..., n) are given by the tester, similar to 

self-loop expansion, all of the up to kj (j = 1,2,.., n)  cycle-traversals for cycle c, (j = 1 ,  

2, ..., n )  and their combinations have to be taken into account when these cycles are 

unfolded. The number of expanded vertices in the new acyclic graph may become 

exponential in the number of vertices even if there are only polynomial number of 



cycles in the original graph. 

Fortunately, the number of intermediate-cycles is usually quite small in a protocol 

specification. For instance, there is no intermediate-cycle in OSI Class 0 Transport Protocol 

(TP) Specification in Estelle and there are only 7 intermediate-cycles as opposed to 125 

homing-cycles in the relatively complex OSI Class 2 TP Specification in Estelle. Therefore, 

the idea of cycle expansion is still effective in many practical cases. 

In order to make cycle detection easier, we propose another method based on regular 

expressions. For cycle-elimination, an EFSM can be treated as a FSM or a finite automaton 

because the C-part and A-part of a transition are irrelevant in this situation. Thus, a Gm can 

also be treated as the state transition graph of a FSM in this case. It is well-known that the 

languages accepted by finite automata or finite state machines are precisely the languages 

denoted by regular expressions [HoU79]. In other words, every finite state machine represents 

a regular expression and conversely. The proof of this equivalence is given in 

[Arb69, HoU791. 

For cycle elimination, the major benefit of using regular expressions rather than state 

transition graphs is that all cycles in a state transition graph can be represented as Kleene clo- 

sures or stars in the corresponding regular expression. This fact can greatly simplify the cycle 

detection algorithm because finding all the stars in a regular expression is obviously easier 

than finding all the cycles in a graph. Furthermore, there are algorithms to transform a state 

. transition graph to a regular expression and vice versa [Brz62,HoU79]. Regular expressions 

also facilitate the cycle expansion process because each star in the regular expression can be 

substituted by one of the given expansion constants and then the cycle expansion problem 

becomes a regular expression expansion problem. 



Based on the above discussions, an intermediate-cycle elimination algorithm is given 

below : 

Algorithm 3 3  INTERMEDIATE-CYCLE ELIMINATION 

Input : A graph GNFs without homing-cycles or self-loops, and the cycle expan- 

sion constant kj =1,2, ...,n ) for each intermediate-cycle in the GNFS. 

Output : A graph GINFS without cycles. 

Step 1. Derive a regular expression corresponding to the input state transition 

graph according to the algorithm given in [Brz62] 

Step 2. Substitute the star * in the derived regular expression by the given expan- 

sion constant k, denoted as k, *. 
k* Step 3. Expand each sub-expression in the form X derived in step 2 as follows 

Step 4. Transform the derived regular expression into its corresponding state 

transition graph according to the algorithm given in [Brt62]. 

0 

It should be noted that the worst-case time complexity of the above algorithm is still 

exponential because the stars in a regular expression are at least as many as the cycles in the 

corresponding state transition graph. In the worst case, we still have to deal with an exponen- 

tial number of stars. 

After running these algorithms, an acyclic graph can be derived. For protocol testing, the 

new acyclic graph is equivalent to the original graph GNFs if cycle-traversals are bounded by 

the given expansion constants. 



Definition 3.7. Given a graph GNFs and a set of expansion constants, an acyclic graph is 

called acyclic protocol description graph or GpD if it is derived by : (1) applying the cycle 

elimination algorithms described above to the GNFs; and (2) redefining the incomplete assign- 

ment statements and the undefined procedure calls in the given GNFS according to the infor- 

mation provided in PICS and PIXIT if these incomplete components affect at least one C-part 

in the GNm. 

Discussions in the following sections make use of GpD extensively. 

3.3. the Executable Path Problem: Definitions and Complexity 

In this section, the executable path problem will be formally defined and discussed in 

the context of GpD and the EFSM model. The complexity of this problem will also be stu- 

died. 

3.3.1. Definitions 

In a FSM model, a transition ti can always be executed orfired if the source state of ti 

can be reached and the external input stimuli of ti are exerted. The execution of a transition ti 

has nothing to do with how the source state of ti becomes the current state. 

In an EFSM model, however, the enabling predicate (i.e., the c-part) of a transition ti 

must be true before ti can be executed. Since the enabling predicate of a transition ti is a 

predicate on context variables as well as inputs, whether or not ti can be fired might depend 

not only on whether the source state of ti can be reached, but also on the history, namely, how 

it is reached or which transitions have previously been executed, because different transition 

execution histories may result in different context variable values. From the point of view of 
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GpD , it is obvious that not every path to the source vertex of an arc ei can make ei be actually 

traversed, simply because the C-part of ei may be false. Therefore, the traversal of a specific 

arc is closely related to the arc traversal or transition execution history of the EFSM. This is 

the significant difference between a FSM and an EFSM. 

Like a FSM model, testing a specific transition ti in an EFSM model requires the actual 

execution of ti. Informally, an executable path to a transition ti in an EFSM model is a 

sequence of transitions from the initial state to the source state of ti such that these transitions 

can be executed sequentially and then ti can also be executed. From the point of view of GpD , 

an executable path to an arc ei is a path from the initial vertex v o  to the source vertex of this 

arc such that the C-parts of all arcs along this path are true when this path is actually 

traversed, and then the C-part of ei is also true so that ei can also be traversed. 

To formalize these ideas, the executable path problem some r~,lated co~cepts w e  

now defined more formally. 

Definition 3.8. In a GpD , an arc ei is executable if 

(1) the current vertex is the source vertex of ei , 

(2) the I-part of ei can be satisfied, 

(3) the C-part of ei is true. 

Definition 3.9. In GpD, two arcs ei and e, are compatible with respect to an execution 

- history if 

(1) the target vertex of ei is the source vertex of e, , 

(2) after ei is traversed, e, is executable. 



Definition 3.10. Given an arc ei in GpD , an arc sequence eo, e ei is an executable 

path if 

(1) the source vertex of e, is the initial vertex vo in GpD , 

(2) For O I k l i  -1, ek and ek+, are compatible with respect to an execution history. 

Definition 3.11. Given an arc ei in GpD , the executable path identification problem is 

to determine whether there exists an executable path to ei and, if so, to identify at least one of 

them. 

Definition 3.12. Given GpD and a set of executable paths in GpD , the executable path 

selection problem is to select a subset of them as the test paths according to certain criteria. 

0 

Definition 3.13. Given an arc ei in GpD, the executable path problem consists of both 

the executable path identification problem and the executable path selection problem. 

It is worth noting that the concept of the executable path is closely related to the actual 

execution of the EFSM or the actual traversal of the arcs in GpD . In other words, one cannot, 

in general, determine that a path is executable or not by analyzing whether there exists a set of 

context variable values satisfying the enabling predicates along this path. Since the operations 

or the A-part are the integral part of each transition in an EFSM, whether the enabling predi- 

cate of a transition is true or not depends on the resulting values of the context variables after 

the actual execution of the previous transitions. Our definitions have reflected this point. 



3.3.2. Complexity of the Executable Path Problem 

The executable path problem has long been recognized as a very important issue in pro- 

gram testing [Che87,How76]. The complexity of a related problem described below is dis- 

cussed in [GMU76]. 

In program testing, the conventional approach is to represent a program as a program 

$ow graph - a directed graph in which each vertex represents a basic computation block, con- 

taining no conditional branches, of the program and each arc represents a possible control 

transfer among such blocks. Associated with each arc are the conditions under which this con- 

trol transfer can take place. Without loss of generality, we can assume that the program flow 

graph has a single entry vertex v o  which has no incoming arc and a single exit vertex v, 

which has no outgoing arcs. The path condition is defined as the conjunction of the individual 

arc conditions along a specific path. 

In [GMU76], a problem called impossible pairs constrained program path (IPP) 

problem is defined in the context of program flow graph. An impossible pair in a program 

flow graph is defined as two arcs which have mutually exclusive or contradictory conditions. 

An impossible pairs constrained path is a path in the program flow graph which does not con- 

tain any impossible pair. In other words, the path condition of an impossible pairs constrained 

path is always true. The IPP problem is to determine whether or not an impossible pairs con- 

strained path exists. The formal description of this problem is as follows: Given a program 

flow graph Gf =(Vf sf) and n pairs of arcs in Gf : (a i ,  b i ) , l l i  Sn , determine if there exists a 

path from the entry vertex v o  to the exit vertex v, , containing at most one arc from each of the 

n given pairs. 



[GMU76] has proved, by polynomially transforming a well-known NP-complete prob- 

lem 3SAT to IPP, that IPP is NP-complete [GaJ79] even when the underlying flow graph is 

acyclic, and all in- and out-degrees are at most two. This implies that there may exist no poly- 

nomial algorithm to solve the IPP problem even for a highly restricted class of digraphs. 

When the underlying flow graph is acyclic, the IPP problem is, in fact, a special case of 

the executable path identification problem defined before. In GpD , if the I-part and A-part of 

each arc are ignored and only the C-part of each transition is taken into account, then a path in 

GpD is executable if and only if there exists no arcs with contradictory C-part pairs along that 

path. In this case, the problem of determining whether or not an executable path exists in GpD 

is the same as the IPP problem. Since the IPP problem, which is a special case of the execut- 

able path identification problem, is NP-complete, we can conclude that determining whether 

an executable path exists or not is also NP-hard. 

3.4. General Assumption 

Protocol testing is usually based on certain assumptions. There are two kinds of assump 

tions: (1) general assumptions which are independent of the specific method, and (2) 

algorithm-specijic assumptions. 

In this section, we describe the general assumptions which are used throughout this 

thesis. It is obvious that the more restrictive the assumptions are, the easier may the algo- 

. rithms become. But the assumptions should be as general as possible so that our methods will 

be applicable to most practical protocols. The general assumptions are summarized below : 

(1) The protocol specification is logically correct and the protocol is specified in an Estelle- 

like language. 



(2) The source listing of the implementation under test (IUT) is not available, but the imple- 

mentor can, if necessary, provide the tester with the implementation-dependent 

definitions and parameter options, which are undefined in the specification. 

(3) From the protocol specification, the domain of each context variable defined in the 

specification can be derived. 

(4) The tester can directly or indirectly control and observe the external interactions 

(inputs/outputs) of the IUT. 



CHAPTER 4 

EXECUTABLE PATH IDENTIFICATION 

In this chapter, we study the Executable Path (EP, for short) identification problem in 

detail. Since the EP identification problem is NP-hard, there may exist no general polynomial 

algorithm to solve it in the worst case [GaJ79]. However, this theoretical result does not rule 

out the possibility that we might be able to find some efficient algorithms when considering 

the average behavior of the algorithm or taking advantage of the properties of the protocol in 

question. This is the motivation for our further exploring this problem. 

In Section 4.1, we describe two properties of graph GpD which are important to EP 

identification. Some important strategies and general operations used in our algorithms are 

discussed in Section 4.2. In Section 4.3 and 4.4, two basic EP identification algorithms are 

developed and their complexities are analyzed. Finally, some variations of our basic algo- 

rithms are proposed in Section 4.5. 

4.1. Two Properties of GpD 

Before trying to solve the EP identification problem, it is worthwhile to study some 

important properties of graph GpD. These properties can be used either to design an EP 

, 
identification algorithm or to explain the nature of the EP problem. 

It is well known that one of the most effective strategies of solving a large problem is 

splitting its input set into some distinct subsets to yield a number of smaller subproblems such 

that the original problem can be solved once its subproblems are solved. The divide-and- 



conquer paradigm is a good example of such a strategy. Since GpD can be quite large and 

complex, it is desirable to divide its arc set into some disjoint subsets with different properties 

so that these subsets can be processed at different stages. In other words, we want to derive a 

partition of the arc set of GpD . 

Definition 4.1. Given GPD=(VPD, EPD) and vi E VpD, a path P is called the longest 

pathm vi if (1) P is from v o  to vi , and (2) the length of P is not less than that of any other 

path from v o  to vi . The longest distance of vi is the length of the longest path to vi . 

Definition 4.2. Given GPD=(VPD, EPD), level 1 (110) is subset of EpD such that the 

longest distance to the source vertex of every arc in level I equals I .  

Property 4.1. Given GpD =(VpD, EPD), the nonempty levels form a partition of EpD . 

Proof. Since GpD is an acyclic graph, the longest distance to any vertex in GpD is 

uniqiely determined. Tkus, each arc in GpD can only beiong to one level. 0 

Obviously, the number of levels in a given GpD is at most (n -I), where n is the number 

of vertices in GpD . 

Given a vertex v, E VpD , there might exist more than one path from the initial vertex v 

to vi. A question important to the EP identification is: how many paths can exist from v o  to 

vi? In order to answer this question, it is beneficial to study a concrete example in Figure 4-1. 

For GpD in the figure, there are (n+l) vertices. From vertex vi to vertex v,,~, (OliSn-l), 

. there exist k arcs, where k (> 1) is a constant. Obviously, the number of paths from v o  to ver- 

i 
tex vi = k ( l l i  Sn ) in this specific example. 



Figure 4-1: A GpD with an exponential number of paths 

Property 4.2. Given a vertex vi in GpD = (VpD, EPD), the number of paths from v, to vi 

may be exponential in (VpD 1. 

As pointed out in Chapter 3, not every path in Gm is executable since it is possible that 

two consecutive arcs in a path are not compatible. Thus, the EP identification problem is 

essentially to identify the executable paths from possibly very many paths in GpD. In the 

worst case, there might exist only one executable path among the exponential number of 

paths. This intuitively explains why finding a general efficient solution to this problem is very 

hard. 

Before concluding this section, we give the following definitions. 



Definition 4.3. Given two arcs ei and e, in GpD , if the target vertex of ei is the source 

vertex of e, , ei is called a parent arc of e, , and ej is called a child arc of ei . 

Definition 4.4. Given two arcs ei and ej in GpD, ej is called an ancestor arc of ei or ei 

is called a descendent arc of e, if ej is on at least one path from v o  to ei . 

4.2. Strategies and Operations 

Since GpD is derived from an EFSM, search and arc traversal on GpD must satisfy cer- 

tain constraints. In this section, we describe our basic strategies and operations in the context 

of GpD and EP identification. 

4.2.1. Context Information in Gm 

Since Gpn A - represents an EFSM which models a protocol specificzth, semh or 2rc 

traversal on GpD depends on the execution history of the EFSM as well as the external inputs. 

As stated previously, the global state of an EFSM is the most important information which 

reflects the execution history of an EFSM. The global state consists of two parts : (1) the 

current state of the EFSM, and (2) the current values of the context variables of the EFSM. 

For EP identification, only the second part needs to be recorded since the state is already 

represented as a vertex in GpD . 

Definition 4.5. Given GpD=(VPD , EPD) and ei E EpD, pre-context ( e i )  is the values of 

the context variables before the execution of ei . Post-context (e i )  is the values of the context 

variables after the execution of ei .  Pre-context (e i )  and post-context ( e i )  are called 

context(ei). 



The context of an arc depends on the previously traversed arcs and the external input 

interactions encountered on them. Basically, pre-context(ei) can be derived by inheriting 

post-context(s) of the parent arc(s) of ei according to certain criteria. Post-context(ei) can be 

derived from the results of the A-part evaluation of ei or by inheriting values from pre- 

context(ei) if they are not modified by the A-part. 

The context of each arc can be organized as a set of context vectors such that each com- 

ponent of a vector corresponds to a context variable and is a single value, a value set or a 

value interval represented by the corresponding context variable. Theoretically, it is sufficient 

to allow only single values. Then the context vectors can be considered as representing a rela- 

tion. However, in order to reduce the number of vectors to be recorded, it is useful to allow a 

set of values and value intervals as a component. Formally, each vector is of the form: 

G2, ..., Yn) 

where n is the total number of context variables in GpD and qi (i=1,2,..,n) is of one of the 

following three forms : 

(1) b , 

(2) {cl, c2, ..., cm 1 (m >I), 

(3) [dl d, I, 

where b , cj ( l l j  5m ), dl and du are single values and [dl, du ] represents a data interval from 

dl to d,, inclusive. The context vectors representing pre-context(ei) or post-context(ei) are 

called pre-vector s(ei ) or post-vectors(ei), respectively. 

It is natural to use a value set or a value interval as a component of a context vector 

when external input parameters are involved on the right-hand-side of an assignment state- 

1 1 ment of the form y :=aa(i, , ,  itm, v ,..., vh, where y is a context variable. In our algorithms, 



all the valid values of input parameter i: (1SjSnz) are taken into account when such assign- 

ment statement is evaluated. Thus, the resulting "value" of y might be a value set or a value 

interval instead of a single value. 

More than one vector might be used to represent the pre-context or the post-context of 

an arc ei because more than one of the parent arcs of ei might be considered at the same time 

in our algorithms. Even in the situation where just a single path is considered, only certain 

combinations of values, value subsets or value sub-intervals from different components of a 

post-vector of the parent arc can make the C-part of the current arc true, and it is convenient to 

record these different combinations separately by using more than one vector. We will discuss 

this problem in more detail later on. 

4.2.2. Arc Traversal and the Related Operations 

Arc traversal is fundamental in our algorithms. Since each arc in GpD has C-, I-, and A- 

parts associated with it and arc traversal represents a state transition in the corresponding 

EFSM, arc traversal on Gm involves several operations. From the standpoint of EP- 

identification, the following operations are important: ( 1 )  compatibility check and context 

inheritance, (2) the analysis of the I-part , and (3) the evaluation of the A-part and context 

recording. 

4.2.2.1. Compatibility Check and Context Inheritance 

A compatibility check operation, which determines whether the C-part of the current arc 

can be true or not under the post-context of its parent arc, has to be conducted before the 

current arc is actually traversed. Another closely related operation is context inheritance 



which determines what kind of context should be inherited by the current arc from the parent 

arc if the current arc and the parent arc are compatible. 

For the current arc, the compatibility check is performed by checking all of the post- 

vectors of its parent arc one by one. It is easier to perform a compatibility check if we 

transform the predicate in the C-part into the disjunctive norval fom: 

M I  v .... \/Mk, 

where Mi (1Sj Ik), called a conjunctive term, is of the form : 

Rl  AR 2.../\R,,, 

where Ri (1% I n )  is a relational function on context variables. 

If every component in a post-vector is a single value, the compatibility check becomes 

quite straightforward since we only need to determine whether these values can make one of 

Mi (1Ij  l k )  true. If a component of a post-vector is a value set or value interval, we have to 

find those combinations of value subsets or value sub-intervals from every componenet of this 

post-vector which can make one of M, (1Sj S k )  true. 

In order to identify an executable path, a context inheritance policy called restrictive 

inheritance is used in our algorithms. The basic idea behind this policy is that the current arc 

ej inherits only those combinations of values, value-sets or value-intervals which can make 

the C-part of e, true from the post-vectors of its parent arc ei by establishing a pre-vector on 

ej for each such combination. Intuitively, the value sets or intervals of a context variable in 

the context vectors along a path becomes smaller and smaller if this context variable does not 

appear on the left-hand-side of the intervening assignment statements. If it is assigned new 

values, clearly, the value set or interval may become larger. 



Example 4.1. Suppose that ei is a parent arc of e, and there are 3 context variables x , y 

andz inGm; 

post-vector(ei): a = l ,  y = (F,T], z =[5,15]>; 

C-part(e,): {(x=l) I\ (y =F) /\ (10Sz 513)) V {(x=l) /\ (y =T) /\(z S8)}, 

where T(F) stands for TRUE(FALSE). The compatibility check for ei and ej will return 

TRUE and the results of context inheritance operation will be: 

pre-vector-1 (e,): a = l ,  y =F, z =[10,13]> 

pre-vector-2 (ej): a = l ,  y =T, z=[5,8]> 

Obviously, these two vectors inherit those context combinations from ei which can make the 

C-part of ej true. 

4.2.2.2. External InputIOutput Analysis and Determination 

External input/output interaction analysis and determination is another important aspect 

when an arc is traversed. Since we assume that the tester can observe or control the external 

interactions directly or indirectly, the appropriate input/output parameter values should be 

determined by the EP identification algorithm. As the external input parameters can be used in 

both the A-part and C-part, the major functions of this operation are: (1) determining the valid 

domains of the input parameters when they are used on the right-hand-side of an assignment 

statement or a predicate in the C-part; and (2) determining the appropriate domains of 

inputloutput parameters which can make a potentially executable path in Gm executable. We 

will describe this operation in more detail in later sections. 



4.2.2.3. A-part Evaluation 

This operation evaluates the assignment statements in the A-part by using the pre- 

context and the external input parameters of this arc. After the evaluation, the resulting values 

of the context variables that are on the left-hand-sides of the assignment statements are stored 

into the post-vectors. 

Like compatibility check, complications arise when the components in a pre-vector are 

value sets or value intervals. For a value set, we have to evaluate the A-part by considering 

every value in this set. For value intervals, we can evaluate the starting and ending values of 

this interval to derive a new interval if the assignment function is monotone. 

Example 4.2 Suppose that pre-vector(ei) is <x={1,30], y={T, F], z=[5,10]> and the 

A-part(ei) is x :=x+z . After A-part evaluation, we have: 

post-vector-l(ei): <x=[6,ll], y =IT, F), z=[5,10]> 

post-vector-2(ei): <x =[35,40], y ={T, F) , z =[5,10]> 

4.2.3. Search on GpD 

When it is desired to determine or identify a subset of arcs or vertices which possess a 

certain property in a graph, the determination process can be carried out by traversing or exa- 

mining the arcs or vertices. A systematic search serves as a skeleton around which many 

efficient algorithms can be built. Many search schemes are described in [AHU74]. Our main 

concern in this section is to modify and improve these standard methods to adapt them to GpD 

and EP identification. 



4.2.3.1. Top-Down vs. Bottom-UP 

Depending on which vertex is chosen as the starting vertex and in which direction arcs 

are traversed, a search on GpD can be conducted in two ways: top-down or bottom-up. Top- 

down search starts with the initial vertex vo, traverses forward in the directions of the arcs, 

and stops when certain termination conditions are satisfied, e.g., every arc in GpD has been 

traversed or some specific arc has been reached. 

As far as EP identification is concerned, the main benefit of top-down search is that it 

can be used to simulate actual state transitions or protocol operations because search starts 

with the initial state and paths in GpD are traversed in the normal way. Furthermore, the con- 

texts of the traversed arcs can be derived and the compatibility of two consecutive arcs can be 

checked. However, when top-down search is used to find some paths to a specific arc e,, 

called the goal arc in GpD, many arcs and paths which do not lead to e, might be involved in 

the search process, because whether an arc or a path can lead to eg is unknown until eg or a 

vertex without any untraversed outgoing arc is reached. Therefore, certain pre-processing is 

necessary to make this scheme efficient. 

The other approach is bottom-up search. In this method, search begins with a given arc 

e, (or vertex v, ), traverses backwards and stops at the initial vertex v o. 

As the arc traversals in the above two methods are in the opposite directions, one's 

advantages often become the other's disadvantages. For example, bottom-up search cannot be 

used to simulate actual transition execution or protocol operations, but the arcs or paths 

involved in search all lead to the given arc e, or vertex v, . This method can also be used to 

collect certain information or to determine the appropriate external interactions for a poten- 

tially executable path, which will be discussed later. 
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4.2.3.2. Path-First vs. Level-First 

Both top-down and bottom-up searches on Gm can be conducted in two ways: depth- 

first or breadth-Jirst. 

For EP identification, we propose a search method based on depth-first search as fol- 

lows. Given a Gm , a starting-vertex v, , and the search-termination-condition c, ,  path-first 

search (PFS) starts with v, and a path is followed as far as possible, traversing or processing 

all the arcs along the way as long as the consecutive arcs are compatible, until c, becomes true 

or a so-called dead end is reached. A dead end is a vertex such that all of its outgoing travers- 

able arcs, if any, have been traversed. At a dead end we backtrack along this path to the 

parent node of the dead end and select another path to traverse, if possible. After backtrack- 

ing, if the current node is also a dead end, we backtrack one more arc, and so forth until 

another path is found or the search-termination-condition becomes true. The formal descrip- 

tion of this method is given in Figure 4-2. 



Procedure PFS (Input-Graph; Starting-Vertex; Initial-Op; 
Compatibility-Check; Traversal-Op; Termination-Condition) 

Output : A group of consecutive arcs marked selected. 

Notation : S is a stack, initially empty. The vertex on the top of the stack at any time is 
referred to as top. Each arc in Input-Graph has a mark attached to it and the 
values of a mark can be: untraversed, traversed or selected. 

Begin 
Mark every arc in Input-Graph as untraversed; 
Set the parent arc of Starting-Vertex as nil ; /* nil is a fictitious arc marked selected */ 
Push Starting-Vertex into S ; 
Perform Initial-Op; /* other initialization operations */ 
While (S is nonempty) Do 

Begin 
While (there exists an arc marked untraversed from top ) Do 

Begin 
Current-Arc := an arc marked untraversed from top ; 
If (Compatibility-Checkparent-Arc, Current-Arc) = true )Then 

Begin 
Mark Current-Arc as selected; 
Traversawp (Parent-Arc, Current-Arc); 
If (Termination-Condition = true) Then Quit (PFS); 
Push the target node of Current-Arc into S ; 
Fareni-Arc := Current-Arc; 
End 

Else Mark Current-Arc as traversed; 
End 

Mark all the arcs from top as untraversed and initialize these arcs; 
I* initialize the context vectors of these arcs */ 
Pop S ; 
Change the mark of the arc from top marked selected to traversed; 
Parent-Arc := the arc to top marked selected; 
End 

End 
0 

Figure 4-2: Path-first search on Gm 

Path-first search is straightforward and effective in many cases. Since only one path is 

handled at any moment, there is not much context necessary to be recorded or processed at 

intermediate stages. However, since this method is based on the path-by-path investigation 

and the principle of backtracking, an arc might be traversed many times because search might 



go back and forth before it terminates. From Property 4.2, it is clear that the complexity of this 

search might become exponential if there are an exponential number of paths in GpD . 

An alternative to path-first search is level-first search which is a variation of the conven- 

tional breadth-first search. Breadth-first search is vertex-oriented and the vertices in a graph 

are visited in order of the increasing distance from the starting vertex, where the distance here 

is simply the number of arcs in a shortest path. For the EP identification problem, we propose 

an arc-oriented search based on the concept of level defined earlier as follows: Given GpD , 

level-first search (LFS) traverses the arcs level by level. In other words, an arc of level k is 

not traversed until all of its parent arcs and all of the arcs of level (k-1) have been traversed. 

A formal description of this method is given in Figure 4-3. 

Since level-first search is carried out on increasing level, there is no backtracking 

involved. In other words, each arc in GpD is traversed only once by this method. Level-first 

search thus handles many paths at the same time and the intermediate contexts of more than 

one relavant path have to be recorded for subsequent use. Since there might exist an exponen- 

tial number of paths to an arc in GpD , the major cost of this search method results from the 

amount of context which needs to be recorded. 

4.2.3.3. Some Observations on Search 

From the above two procedures, four search methods on GpD can be derived: top-down 

path-first, bottom-up path-first, top-down level-first and bottom-up level-first. We have the 

following observations on these methods in the context of EP identification. 

(1) As different search methods have different advanntages and disadvantages, all combina- 

tions of path-first and level-first with top-down and bottom-up may be useful depending 



Procedure LFS (Input-Graph; Starting-Vertex; Initial-Op; 
Compatibility-Check; Traversal-Op; Termination-Condition). 

Output : A group of arcs marked selected. 

Notation : Q is a queue, initially empty. We use f ront to represent the first element in Q . 
Each arc in Input-Graph has a mark attached to it and the values of a mark 
can be : untraversed, traversed or selected. 

Begin 
Mark every arc in Input-Graph as untraversed; 
Set the arc to Starting-Vertex as nil and mark it as traversed; 
/* nil is a fictitious arc marked selected */ 
Insert Starting-Vertex into Q ; 
Perform Initiawp; I* other initialization *I 
While (Q is nonempty) Do 

Begin 
If (all the arcs to front have been marked selected or traversed) 
Then 

Begin 
For (each arc a marked untraversed from front ) Do 

Begin 
For (each arc a ' to f ront marked se1ected)Do 

Begin 
If (Compatibility-Check(a ', a )=true ) 
Then 

Begin 
Traversal-OP (a ', a); 
Mark a as selected; 
Insert the target vertex of a into Q if it is not in Q ; 
End 

End 
End 
If (a is marked as untraversed) Then (mark a as traversed); 
If(Termination-Condition=true )Then Quit (LFS); 

End 
Remove f ront from Q ; 
End 

End 

Figure 4-3: Level-Fisrt search on Gm 

on the situations. 



(2) The major complexity of search on GpD stems from either the number of paths to be 

traversed or the amount of intermediate contexts to be recorded. For level-first search, 

the main task is to control the size of the intermediate contexts. For path-first search, 

reducing the number of paths to be traversed is challenging. 

(3) To design an efficient EP identification algorithm, one-phase search may not be enough. 

Multiple-phase search should perhaps be considered, using different search methods in 

different phases. 

4.3. An EP Identification Algorithm Based on Path-First Search 

Based on the previous discussions and observations, we propose our first EP 

identification algorithm in this section. The algorithm is described in two steps. First, the 

basic idea are presented, and then a formal description and complexity analysis are given. 

4.3.1. Algorithm Overview 

Given Gm and the goal arc e, , the objective of this algorithm is to identify an execut- 

able path, if any, from the initial vertex v o  to eg and to determine the appropriate external 

input/output interactions along this path. The algorithm consists of three phases and different 

search methods are used in different phases. Top-down path-first search is used in Phase 2 

which is the major phase of this algorithm. 

Phase 1 performs the initialization or pre-processing on the given GpD SO that more 

sophisticated search and manipulations can be conducted efficiently in the subsequent phases. 

The major tasks of phase 1 are as follows: 



(1) Identifying, labeling and initializing all of the ancestor arcs of the goal arc e, , because 

only these arcs need to be considered in the subsequent phases. These arcs constitute a 

1 subgraph GpD of GpD . 

(2) Determining which context variables should be recorded in the context vectors of each 

1 arc in GpD. A protocol is usually organized as several protocol-phases and each 

protocol-phase is represented by a group of arcs in GpD. Since different context vari- 

ables tend to be used in different protocol-phases, it is unnecessary for an arc ei to 

record the values of those context variables which are never used in either the C-parts or 

the right-hand sides of the assignment statements of the descendant arcs of ei . 

1 
(3) Transforming the predicate in the C-part of each arc in GpD into the disjunctive normal 

form. 

Clearly, every ancestor arc of eg must be visited once ic Phase 1. According to our ?re- 

vious discussions, bottom-up level-first search starting at eg is ideal for this purpose. 

The objective of Phase 2 is identifying and labeling one potentially executable path 

from v o  to the given goal arc e , .  A path is called potentially executable if this path can 

become an executable path when the appropriate inputs are applied. Obviously, the direction 

of search in this phase should be top-down because our major task is to simulate actual transi- 

tion along a path. We shall use path-first search in this phase. Before traversing an arc, the 

compatibility check and context inheritance are performed so that only compatible arcs are 

traversed. When an arc is traversed, the I-part is analyzed and the A-part is evaluated. This 

process is continued until one executable path from v, to e, is found or the search fails. 



Phase 3 is the last phase of our algorithm. The purpose of this phase is determining the 

appropriate external input interactions along the path identified by Phase 2 such that this path 

can be fired when hese external interactions are applied. Since the restrictive inheritance pol- 

icy is used in Phase 2, bottom-up path-first search is a natural choice for Phase 3, because we 

can start from the most restrictive context vectors and modify those less restrictive ones of the 

ancestor arcs. When an arc is visited, the following operations are performed: (1) modifying 

the value sets or intervals of the context variables in a context vector according to the more 

restrictive values in the corresponding vector of the child arc; and (2) determining the 

appropriate external input interactions of this arc. 

4.3.2. Formal Description of the Algorithm 

Our EP identification algorithm is formally described in Figure 4-4. 



Algorithm 4.1 EPJDENTIFICATION-1 

Input : GpD =(V,,, EpD); a goal arc e, E EpD . 
Output : an EP from v to e, and the inputs along the EP. 

Phase 1. Reverse the directions of all arcs in GpD . /* for bottom-up search */ 
1 

Label the ancestor arcs of e, to construct GpD , determine the names of the context 
variables that need to be recorded in the context-vectors and transform the 
C-part of every arc into the disjunctive normal form by calling the procedure: 

LEVEL-FIRST-SEARCH (Graph&,, ; Starting-Vertex=the target vertex of e, ; 
Initial-Op = create or initialize a C-Variable-Name-Vector for each arc 
I* this vector records which context variables need to be recorded as the 
context of this arc */; 
Compatibility-Check = nil; 
Traversal-Op = PHASE-1-TRAVERSAL-OP /* defined in Fig. 4-5 *A 
Termination-Condition = nil ). 

Phase 2. Reverse the directions of all arcs in the subgraph derived from Phase 1. 
Identify and label a potentially executable path by calling the procedure: 

1 PFS ( Graph = GpD 
P subgraph derived from Phase 1 with the arc directions reversed *I; 
Starting-Vertex = yo; 

Compatibility-Check = PHASE-2-COMPATIBILITY-CHECK 
I* defined in Fig. 4-6 */; 
Arc-Traversawp = PHASE-2-TAVERSAL-OP 
/*defined in Fig. 4-7 */; 
Termination-Condition = e, is traversed). 

Phase 3. If e, is not maked selected, then Quit. /* no EP found */ 
Reverse the directions of all arcs in the subgraph derived from Phase 2. 
Determine the input parameters of the path derived in Phase 2 by 
calling the procedure: 

2 PFS ( Graph = GpD 
I* Subgraph derived from Phase 2 with the arc directions reversed */; 
Startinavertex = the target vertex of e, ; 
Compatibility-Check = null; 
TraversaLOp = PHASE-3JRAVERSAL-OP /* defined in Fig.4-8 */; 
Termination-Condition = v o  is reached). 

0 

Figure 4-4: EP-Identification-1 



Procedure PHASE-1-TRAVERSAL-OP (Arc-fromfront , Arc-to f ront ) 

Step 1. Label Arc-from f ront as ancestor. 

Step 2. Record the names of those context variables into 
C-Variable-Name-Vector of Arc-fromfront if they are either 
already recorded in C-Variable-Name-Vector of Arc-to f ront 
or used in the C-part or the left-hand-sides of the assignment 
statements of the A-part on Arc-from f ront . 
Step 3. Transform the predicate in the C-part of 
Arc-from f ront into the disjunctive normal form: 

M I  v .... \/hik 
where M j  (1Sj") is of the form : 

R l  /\R 2...AR,, 
where Ri (lli I n )  is a relational function. 
0 

Figure 4-5: Procedure PHASE-1-TRAVERSAL-OP 

Procedure PHASE-2-COMPATIBILITY-CHECK parent-Arc, Current-Arc) 

Step 1. For each post-vector of Parent-Arc, perform Step 2 to Step 3. 

Step 2. Find dl combinations of values, value sets or v d ~ e  inZr;als 
of the components in the post-vector such that each combination can make 
at least one Mi (llj I k )  in the C-part of Current-Arc true. 

Step 3. Inherit each combination derived from step 2 by constructing 
a corresponding pre-vector on Current-Arc according to C-Variable-Name-Vector 
of this arc if this combination is not a pre-vector of Current-Arc. 

Step 4. Return true if at least one combination is found in Step 2. 
Otherwise, return False. 
0 

Figure 4-6: Procedure PHASE-2-COMPATIBILITY-CHECK 



Procedure PHASE-2-TRAVERSALOP (Parent-Arc, Current-Arc) 

Step 1. For each pre-vector of Current-Arc, perform Step 2 and Step 3. 

Step 2. Evaluate each assignment statement and construct the post-vector. 

Step 3. For context variable vi , if it is on the left-hand-side 
of an assignment statement in the A-part, store the evaluation result of vi 
into the corresponding post-vector. Otherwise, copy the value of vi from 
the pre-vector to the corresponding post-vector. 
0 

Figure 4-7: Procedure PHASE-2-TRAVERSAL-OP 

Procedure PHASE-3-TRAVERSAL-OP (Current-Arc, Parent-Arc) 

Step 1. For each pre-vector of Current-Arc, if there is no 
corresponding post-vector on Parent-Arc, delete this pre-vector. 
Otherwise, modify the pre-vector of Current-Arc by copying the 
contents of the corresponding post-vector of Parent-Arc. 

Step 2. For each post-vector of Current-Arc, if there is 
no corresponding pre-vector of Current-Arc, delete this 
post-vector. Otherwise, modify the post-vector by copying the 
more restrictive values, valm sets or value intervals from the 
corresponding pre-vector if the context variable does not appear 
on the left-hand-side of any assignment statements in the A-part 
of the Current-Arc. 

Step 3. Set the external inputs of the I-part of Current-Arc 
to those values which can be used to derive the values of the 
post-vectors of Current-Arc. 
0 

Figure 4-8: Procedure PHASE-3-TRAVERSAL-OP 

4.3.3. Complexity Analysis 

In this section, we analyze the time complexity of Algorithm 4.1. Both the worst-case 

and the average-case complexity are discussed. Since there is no backtracking involved in 

Phase 1 and Phase 3, the complexity of these two phases are bounded if the number of context 

variables and relational operators are bounded, which is usually true in a protocol 



specification. Thus, we will focus our attention on Phase 2 in the following discussions. 

4.3.3.1. Worst-case Analysis 

In Phase 2, the major cost is incurred by a possibly large number of paths traversed 

before an executable path is found. In our algorithm, the worst case will occur when there is 

only one executable path from vo to e, in GpD and this path is the last one selected to be 

traversed. This situation can happen because we randomly choose the next arc to traverse 

from those compatible arcs marked untraversed in Phase 2. As there might exist an exponen- 

tial number of paths leading to the given goal arc e, in Gm according to Property 4.2, the 

number of paths traversed in Phase 2 or the complexity of this algorithm is exponential in the 

worst case. 

4.3.3.2. Average-Case Analysis 

Although the worst-case complexity is exponential, this algorithm may not necessarily 

be very costly on average. There are three situations in which the time complexity of Phase 2 

is low. 

The goal arc e, is not far away from the initial vertex vo, in other words, e, is on a very 

low level (the initial vertex v o  is on the lowest level) in GpD. In this situation, the total 

number of paths from v to e, is likely to be small. 

For some protocols, most paths in Gm are executable so that only a small number of 

paths need to be traversed before an executable one can be found. 

Backtracking occurs only at a very low level before an executable path can be found. In 

this case, many paths need not be considered. 
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In order to take the above cases into account, it is necessary to do average-case complex- 

ity analysis. Practically, the average-case complexity analysis is more meaningful than worst- 

case analysis in many situations. However, this kind of analysis is usually much harder to per- 

form because a model for describing the behavior of the algorithm has to be constructed and a 

reasonable probability distribution of input data or certain algorithm behavior has to be deter- 

mined, which is often mathematically intractable' [AHU74]. 

In the following discussions, we first use a tree to model path-first search; then we define 

the probability of certain behavior of path-first search and propose a group of formulas to cal- 

culate them; finally, we discuss the average-case complexity of our algorithm. 

4.3.3.2.1. Path-First-Search-Tree (PFS-Tree) Model 

As stated previously, an arc in GpD might be traversed many times by path-first search 

in Phase 2. To analyze its complexity, it is desirable to model these arc traversals explicitly in 

some way. For this purpose, we propose a tree to model path-first search. 

Definition 4.6. Given GpD , an ordered tree is called Path-First-Search-Tree (PFS-tree, 

for short) of GpD if (1) each arc in this tree represents a possible arc traversal by path-first- 

search on GpD, and (2) the arc sequence traversed in the PRE-ORDER on PFS-tree is the 

same as the arc sequence traversed by path-first search on Gm. In PFS-tree, if a and b are 

sibling (children of the same vertex) and a is the left sibling of b , then all of the descendants 

- of a are drawn to the left of all the descendants of b . 

To facilitate our discussion to follow, we give the following definitions. 

Definition 4.7. In a PFS-tree, an arc is called a leafarc if the target vertex of this arc is a 

leaf vertex. 



The ^ -' !wing observations can be made on a PFS-tree according to the above 

definitions. Given two arcs ei and ej in a PFS-tree, if ei is an ancestor of ej , ei represents the 

arc traversal on the corresponding GpD which is performed earlier than that represented by ej; 

the same is true if ej is left to ej. Each leaf arc in a PFS-tree represents a possible goal arc 

traversal in GpD . An example of GpD and a PFS-tree for G,, is given in Figure 4-9. 

Figure 4-9: GPD and a PFS-tree for G,,,, 

The main purpose of introducing the PFS-tree model is to transform the average-case 

complexity analysis of path-first search on GpD to the computation of the expected "size" of 

- the corresponding PFS-tree, which is much easier to handle. Moreover, it is more convenient 

" to define, assign and compute certain probabilities on the PFS-tree to model the behavior of 

path-first search on Gm . 



4.3.3.2.2. Probability Definition and Computation 

Given a PFS-tree Tpfs = (Vpfs,  Epfs), for an arc ei E Epfs and a subtree Ts of Tpfs , we 

define the following probabilities : 

P(ei) : Probability that ei is traversed . 

Pl (e i )  : Probability that ei becomes the current arc. 

P2(ei) : Probability that C-part of ei is true. 

P3(ei) : Conditional probability that a leaf arc is not reached via ei given that the parent arc of 

ei is traversed. 

P3(Ts) : Conditional probability that Ts is not traversed given that the arc to the root Ts is 

traversed. P3(Ts)=0 if T, is a degenerate tree consisting only of the root. 

For a PFS-tree, we have the following formulas according to probability theory. 

P 1 (ei )=P barent-arc of ei ) * n P 3(ej ) 
ej ir lef t-sibling of ei 

These formulas can be explained as follows. The root of a PFS-tree corresponds to v o  in 

GpD and the leftmost arc of the root represents the first arc traversal in GpD. Since path-first 

search on GpD always begins with vo, (4.1) obviously holds. (4.2) is true because an arc in 

G,, can be traversed by path-first search only if it becomes the current arc and its C-part can 

be satisfied. (4.3) means that an arc in GpD can become the current arc only if the source ver- 

tex of this arc is reached and all the paths starting from this vertex that are selected earlier can- 

not be traversed to reach the goal arc e, in GpD . 



To simplify the probability computation, we assume that P2(ei)=q, where q is a con- 

stant and independent of ei, and let q=(l-q). This assumption is valid for those protocol 

specifications in which the C-parts of most transitions have similiar structure. Now, we dis- 

cuss how to calculate P3. First, let us consider a simple subtree To given in Figure 4-10, 

which consists of one root, k leaf arcs and k leaf vertices. 

Figure 4-10: A subtree To 

According to the definition of P3, the following formulas can easily be derived: 

In general, we consider a subtree T, given in Figure 4.1 1. 



Figure 4-11: A general subtree Ts 

This tree consists of one root, n arcs and subtrees t t 2  , ... , tn . The following formulas 

can be used to compute P3 for arc e to en and Ts . 

Formulas (4.4) and (4.5) are derived from the following facts. An arc ei and the subtree 

. below it cannot be traversed to reach the goal arc e, if either ei cannot be traversed or ei can 

be traversed but the subtree below it cannot be traversed to reach the goal arc. Now, we can 

easily compute P(ti) for every arc ei in a PFS-tree by formulas (4.1) to (4.5). 



4.3.3.2.3. Average Case Complexity 

Given a graph Gm and its corresponding PFS-tree, the average-case complexity of 

algorithm 4.1 can be computed as follows. Let arcs 1 I, l2 ,..., 1, be the leaf arcs of the PFS- 

tree and Ca stand for the average-case complexity of path-first-search of our algorithm, we 

have 

k 

Ca = I: P (lj)*H (lj), where H (lj) is the height of lj (4.6) 
j =l 

For a give GpD, the average complexity Ca can be easily computed according to formulas 

(4.1) to (4.6) and Ca is a function of P2. 

From the above discussions and formulas, we have the following observations on the 

average-case complexity of path-first search. 

(1) The average-case complexity Ca given by (4.6) is a function of the probability P2 = q.  

When q is very small, P will also be very small by (4.2). Intuitively, this corresponds to 

the situation that backtracking occurs only at a very low level because search can hardly 

move along a path when the C-parts of most arcs are very difficult to be satisfied. 

(2) Another situation is that P2 = q is almost equal to one. In this case, is very small. 

According to (4.4) and (4.3, P3 will also be very small, and therefore PI, P and Ca are 

also small. Intuitively, this means that almost every path in GpD is executable so that 

very few backtrackings are necessary before an executable path can be found. 

(3) C, also depends on the size of the PFS-tree by (4.6). The smaller the size of the PFS-tree 

is, the smaller will H(1,) be. Intuitively, this corresponds to the situation that the goal 

arc in GpD is at a very low level and the subgraph generated by Phase 1 is small. So, the 

total number of paths in this subgraph and the cost of search process are also small. 



4.4. An EP Identification Algorithm Based on Level-First Search 

The major cost of Algorithm 4.1 stems from the large number of traversed paths because 

an arc in Gm might be traversed many times before an executable path can be found. To 

reduce the complexity, it may be useful to abandon the idea of path-by-path processing. 

In this section, we propose another algorithm to solve the EP identification problem 

based on Zevel-Jirst search. The major advantage of this scheme is that backtracking can be 

avoided or each arc is traversed at most once before an EP can be found. However, the com- 

plexity of this scheme comes from the amount of recorded intermediate contexts for each 

traversed path because many paths are handled at the same time. 

4.4.1. Algorithm Overview 

Similar to Algorithm 4.1, our new algorithm is organized as three phases and each phase 

has different purposes. 

Phase 1 in this algorithm is the same as Phase 1 in Algorithm 4.1. 

Phase 2 is the major phase of this algorithm. The purpose'of this phase is to identify at 

least one potentially executable path from vo  to the given goal arc e, . Top-down level-first 

search is used. This phase starts with the initial vertex v o  or level 0, traverses and examines 

the arcs level by level using level-first search. Before traversing an arc, compatibility check is 

conducted. For adjacent compatible arcs, the context is inherited according to the restrictive 

inheritance criterion. When an arc is traversed, the arc traversal operations are performed. The 

above process is continued until the goal arc e, is traversed or search fails. 



Phase 3 finds and labels one executable path and determines the appropriate external 

input interactions along this path. Bottom-up path-first search is used in this phase. However, 

unlike Algorithm 4.1, we have to choose one arc to traverse from possibly more than one 

compatible parent arcs at each level. 

4.4.2. Formal Description of the Algorithm 

Algorithm 4.2 EPJDENTIFICATION-2 

Input : GpD =(VpD, EPD); a goal arc e, E EpD . 
Output : an EP from v , to e, and the input interactions along the EP. 

Phase 1. Same as Phase 1 of Algorithm 4.1. 

Phase 2. Reverse the directions of aLl the arcs in the subgraph derived in Phase 1. 
Identify and label all executable paths from v to e, by calling the procedure : 
LEVEL-FIRST-SEARCH (Graph = G;, 
I* subgraph derived in Phase 1 with the arc directions reversed *I; 
startinuertex = v,; Compatibility-Check = PHASE-2-COMPATiBiLiTY-CmCli; 
TraversaLOp = PHASETraveaal_Op=PHASE_2_TRAVERSAL_OP;22TRAVERSALALOP; 
Termination-Condition = e, is traversed). 

Phase 3. If e, is not maked selected, then Quit. I* no EP found */ 
Reverse the directions of all the arcs in the subgraph derived from Phase 2. 
Determine the inputs of one path by calling the procedure: 
PATH-FIRST-SEARCH (Graph = ~p~ 
I* subgraph derived in Phase 2 with the arc directions reversed *A 
Starting-Vertex = the target vertex of e, ; 
Initial-Op = select a post-vector of e, & the chosen vector; 
Compatibility-Check = two arcs mu;t have the corresponding vectors; 
T r a v e r s u p  = PHASE-3-TRAVERSAL-OP-2 /* defined in Fig. 4-13 */; 
Termination-Condition = v, is reached). 

Figure 4-12: EPIDENTIFICATION-2 



Procedure PHASE-3-TRAVERSAL-OP-2 (Parents-Arc, Current-Arc) 

Step 1. Repeat Step 2 to Step 4. 

Step 2. For the chosen post-vector of Parent-Arc, select the 
corresponding pre-vector of Current-Arc and modify this pre-vector 
by copying the contents of the post-vector and mark this pre-vector as 
chosen. 

Step 3. For the chosen pre-vector of Current-Arc, modify the 
corresponding post-vector of Current-Arc by copying the more 
restrictive values if the context variable does not appear on the 
left-hand-side of any assignment statement of the Current-Arc. 
Mark this post-vector as chosen. 

Step 4. Set the external inputs of I-part of Current-Arc to 
those values which can be used to derive the values of the 
chosen post-vector of Current-Arc. 
0 

Figure 4-13: Procedure PHASE-3-TRAVERSAL-OP-2 

4.4.3. The Complexity Analysis 

In this section, we analyze the worst-case complexity of Algorithm 4.2. Similar to Algo- 

rithm 4.1, we will focus our attention on Phase 2 because the major cost of this algorithm 

results from this phase. 

Since there might exist an exponential number of paths to the goal arc eg in Gm , the 

worst case occurs when all the paths from v o  to eg are executable and the contexts of different 

paths are different so that very many context vectors have to be constructed. This is a possi- 

ble situation because no restriction is imposed on the context variables or A-part in Gm . 

If we make a close observation about real protocol specifications and their GpD , the fol- 

lowing facts can be found. 

(1) A context variable only represents a constant number of values. Practically, the 

domains of many context variables (e.g., a boolean variable) in a protocol specification 



are quite small. The exceptions are those context variables involved in cycles, like a 

sequence number. However, the cycles have been eliminated or unfolded in GpD and 

only a small portions of them need to be considered in our algorithm. Thus, the domains 

of these context variables cannot be very large in GpD either. 

(2) The number of context variables used to describe a protocol depends on how this proto- 

col is formally specified. In general, the fewer the context variables used, the larger will 

GpD become. If no context variable is used, GpD essentially becomes a transition 

diagram of a FSM. In this case, GpD will be huge because of the state space explosion 

problem discussed in Chapter 2. 

From the above discussions, we have the following theorem. 

Theorem 4.1: Given GpD, if the size of the domain of each context variable is a con- 

stant which is independent of the size of GpD, the comp!exity nf AIg~r;lth= 4.2 is Enew in the 

number of arcs in GpD . 

Proof. Let v v 2  , ..., vk be the context variables in GpD and these context variables 

represent n n 2, ..., nk possible values, respectively. We define a constant: J=n nz* ... * nk . 

It is easy to see that the total number of all possible different context vectors in GpD is no 

more than J .  Therefore, the size of the intermediate context necessary to be recorded in Phase 

2 can not exceed J *k . Assuming J and k are independent of the size of GpD , since each arc is 

traversed only at most once in our algorithm, the worst-case complexity is linear in the 

number of arcs in GpD .0 

Intuitively, there are two situations in which the amount of the recorded context in 

Algorithm 4.2 can be reduced : (1) if two consecutive arcs are not compatible, it is unneces- 



sary for a child arc to inherit the context from its parent arc; and (2) the duplicated context 

vectors will not be recorded on the same arc. 

Although the worst-case complexity of Algorithm 4.2 is linear in the size of GpD , it still 

depends on the the sizes of the context variable domains. In some cases, the algorithm might 

be costly or the constant J is large when the protocol is specified in such a way that the sizes 

of many context variable domains are much larger than the size of graph GpD . 

4.4.4. Comparisons 

Given GpD and a goal arc e,, we now have two basic algorithms to identify an executable 

path from the initial vertex v o  to e, . A very natural question is: which one is better ? In this 

section, we discuss the pros and cons of these two algorithms. 

(1) For some protocol, most paths in its GpD are executable. Path-first search algorithm will 

be efficient in such a situation according to our previous average-case analysis because 

backtracking will seldom occur and very few paths need to be traversed before an EP 

can be found. Level-first search is not quite suitable in this situation because the inter- 

mediate context has to be recorded for very many traversed paths, especially when many 

paths in GpD are very long. 

(2) Some protocol might be modeled in such a way that the size of GpD is quite large but 

either the number of the context variables or the sizes of the domains of the context vari- 

ables are very small. In this case, level-first search is a natural choice according to 

Theorem 4.2. 



(3) If we want to find more than one executable path to e, ,  level-first search algorithm is 

better because all the potential executable paths to eg have already been found after the 

execution of Phase 2 of Algorithm 4.2 and only Phase 3 needs to be repeated to deter- 

mine the external input interactions for different executable paths. 

4.4.5. Variations of the Two Basic Algorithms 

For protocol testing, we may need the following variations of our two basic algorithms : 

(1) An algorithm which can identify an executable path to every arc in GpD . 

(2) An algorithm which can identify all the executable paths to a goal arc in GpD . 

(3) An algorithm which can identify all the executable paths to every arc in GpD . 

Obviously, these variations can be constructed based on our basic algorithms. In order 

to design an algorithm which can be used to identify an executable path to every arc in GpD, 

we can simply repeat one of the basic algorithms until an executable path to every arc in GpD 

has been found. In the worst case, the basic algorithm is used for m times where m is the 

number of arcs in GpD . 

In order to find all the executable paths to the goal arc, level-first search algorithm is 

preferred. As we discussed previously, all potential executable paths have already been impli- 

citly derived after Phase 2. We can modify our algorithm by repeating Phase 3 such that each 

. traversal of Phase 3 yields a different executable path and its 110 interactions. 

When we want to find all the executable paths to every arc in a GpD , generating a com- 

plete compatible search-tree is the most straightforward method. A complete compatible 

search-tree is a tree in which every consecutive arcs are compatible and every executable path 



is in this tree. A complete compatible tree can be generated based on path-first search or 

level-first search principle. In this section, we only briefly describe the generation of complete 

compatible level-first-search tree (CCLFS-tree). 

Algorithm 4 3  CCLFS-TREE GENERATION 

Input : a GpD with L levels. 

Output : a tree Tlfs such that every path in Tlfs is an EP in GpD and all the EPs of GpD are in Tlfs .  

Step 1. From level 1 to level L , repeat Step 2 to Step 4. 

Step 2. For each vertex on one level, repeat step 3 to step 4 on each 
vertex and the newly generated vertices. 

Step 3. If there are i (i > 1) incoming arcs to a vertex and j 
outgoing arcs from the same vertex, split this vertex into i new vertices 
(i ,Si) such that (1) each new vertex has only one incoming arc and 
rn compatible outgoing arcs ( O h  S j ) ,  and (2) each new vertex 
has a different incoming arc. 

Step 4. For a vertex which has one compatible parent arc, inherit the context 
from the parent arc by creating pre-vectors according to 
restrictive inherence policy, perform the arc traversal operations 
described in the basic algorithms and create new post-vectors. 

Figure 4-14: CCLFS-tree generation 

From our previous discussions, it is not difficult to observe that each incoming arc is 

compatible with all the outgoing arcs for a vertex in the resulting CCLFS-tree. Thus, every 

path from the root to a vertex in CCLFS-tree is an executable path of GpD . On the other hand, 

since we have considered and expanded every possible path in GpD when we generate 

CCLFS-tree, all the executable paths in GpD constitute the corresponding CCLFS-tree. 

An example is given in Figure 6.6. 



CHAPTER 5 

EXECUTABLE PATH SELECTION 

Besides executable path identification, another important aspect of the executable path 

problem is executable path (EP) selection. Given a set of identified executable paths in a 

G, , EP selection is concerned with choosing a subset of them as the test paths such that the 

generated test sequences have a large fault coverage and a low cost. 

This chapter is devoted to the EP selection problem. First, we briefly review the conven- 

tional test path selection in program testing. Then we propose some EP selection criteria for 

protocol testing. 

5.1. Conventional Test Path Selection Criteria 

One of the major concerns of both program and protocol testing is to generate a group of 

test sequences that adequately exercise the implementation such that most faults can be 

exposed by these test sequences. Since the research work on program testing or protocol test- 

ing is usually based on certain graph models, test sequences consist of two parts : test paths 

and the test data along the test paths. Research has indicated that, when left to their own dev- 

ices, implementors do a poor job of selecting test sequences of good fault coverage [Stu73]. 

This has led to the development of a number of test path selection criteria [ABC82]. The pur- 

pose of these criteria is to provide a guideline for choosing certain test paths which have a 

large fault coverage and a low cost. 



Given a program flowgraph Gf , the well-known control-flow-based test path selection 

criteria in program testing are as follows. 

Node coverage criterion : Choose a set of test paths in Gf such that every node in Gf 

is covered at least once by these test paths. 

Branch coverage criterion : Choose a set of test paths in Gf such that every branch out 

of each node in Gf is covered at least once by these test paths. 

Path coverage criterion : Choose a set of test paths in Gf as the test paths such that 

every path in Gf is covered at least once by these test paths. 

The node coverage criterion is rather weak, representing a necessary but by no means 

sufficient condition for obtaining a reasonable test sequence [CPR89]. Path coverage criterion 

is the strongest one but it is difficult to achieve for a program flowgraph of more than 

moderate complexity. Iirmcin coverage impiies node coverage and is generally regarded as a 

basic and important requirement in program testing [Whi87]. 

In many situations, even the branch coverage criterion is not effective enough to detect 

certain faults in a program [CPR89]. Thus, there have been a number of more thorough path 

selection criteria based on data flow (DF) analysis, some of which bridge the gap between 

the branch coverage criterion and the path coverage criterion, have been proposed and studied 

[LaK83,Nta81, RaW81,RaW85]. 

DF analysis aims at detecting questionable coding practices (or data flow anomalies) in 

a given implementation. The most common data flow anomalies are: referencing undefined 

variables, defining variables without subsequent usage, etc. DF-based test path selection cri- 

teria are based on the intuition that one should not feel confident that a variable has been 



assigned the correct value at some point in the implementation if no test data cause the execu- 

tion of a path from the assignment to a point where the variable's value is subsequently used. 

In DF analysis, each variable occurrence is generally classified as being a definition, in 

which a value is assigned to the variable, or a use, in which the value of this variable is 

accessed. Two different types of we are also distinguished. The first type of use directly 

affects the computation being performed or outputs the result of some earlier definition; such 

a use is called a computation use, or a c-use. The second type of use is called predicate use 

or p-use if the variable is used in a predicate. 

The test path selection criteria based on DF analysis focus on tracing the flow of data 

through the association between the definitions and the subsequent uses. [Raw811 proposes 

the following DF test path selection criteria: all-defs, all-p-uses, all-c-usedsome-p-uses, all- 

p-useslsome-c-uses, all-uses, and all-du-paths. The test paths satisfy, for example, the all- 

p-uses criterion if they cover all p-uses in the given program flowgraph. The comparisons of 

various control-flow-based and dataflow-based test path selection criteria in program testing 

can be found in [CPR89]. 

Since there exist many similarities between program testing and protocol testing, some 

research work has been done on adapting the existing test path selection criteria in program 

testing to protocol testing [Ura87, UYP881. 

It should be pointed out that all of the existing test path selection criteria in both pro- 

gram testing and protocol testing belong to the so-called structural or syntactic selection 

approachs which rely only on the syntactic structure of the given graph model and make no 

attempt to deal with the executable path problem. Thus, all of these criteria suffer from the 

weakness that the selected paths might not be usable as the test paths. 



5.2. Executable Path Selection Criteria in Protocol Testing 

In Chapter 4, we developed a group of algorithms which are capable of identifying some 

or all of the executable paths in a GpD . Since the number of identified executable paths can be 

very large, we attempt to establish certain criteria or guidelines for executable path selection 

in this section. 

The most straightforward method to come up with executable path selection criteria is to 

adopt the existing test path selection criteria from program testing. However, because of the 

differences between protocol testing and program testing and the differences between the con- 

ventional test path selection and the executable path selection, the existing syntax-based cri- 

teria in program testing are not necessarily effective and efficient for the executable path 

selection in protocol testing. In order to establish new criteria, it is beneficial to first study the 

special properties of protocol testing and the executable path selection. 

Protocol testing is usually conducted by considering the IUT as a black-box and it is 

widely believed that the inputloutput (110) behavior are most important 

[ADU88, ShS89, Wu891. As far as the formal protocol specification or GpD is concerned, I/O 

behavior consists of the following two parts: (1) external I/O interactions, that is, 

inputloutput statements and the parameters of these statements; and (2) internal I/O associa- 

tions, that is, the associations between the input and output parameters of 110 statements 

through the assignment statements in the A-parts or the predicates in the C-parts. 

The input and output statements in a GpD can interact via one or more assignment state- 

ments on one or more transitions. In a protocol specification, the values of many context vari- 

ables are defined directly or indirectly by the external input interactions because the right- 

hand sides of many assignment statements are computations on either the input parameters or 



some context variables which are affected by some input parameters through a sequence of 

assignment statements. The left-hand sides of some assignment statements either directly 

become the output parameters or appear on the right-hand sides of some other assignment 

statements which might affect certain output parameters. 

Since a predicate in the C-part of a transition can be a boolean function on input parame- 

ters as well as the context variables which might be affected by some input parameters, the 

input and output statements can also interact through the C-part. 

As the only way to determine the correctness of the IUT is to make the observations on 

the external UO interactions when the IUT is exercised by the test sequences, the fault cover- 

age of the selected test sequences depends on how well they test the external UO interactions 

and the internal 110 associations in a Gm . Moreover, the ultimate goal of a communication 

protocol is to correctly govern the possible communication activities among the different 

components or protocol entities in a complex communication system and such activities are 

modeled by the 110 behavior in the protocol specification. Therefore, it is natural and 

beneficial to establish the executable path selection criteria around the I/O behavior of a proto- 

col. 

There are also some differences between the traditional test path selection in program 

testing and the executable path selection in protocol testing. Since no intensive research work 

. on the executable path identification has been done in program testing, the traditional test path 

selection is usually based only on the syntactic or structural information of the program 

flowgraph and the major concern is how many syntactic components, i.e., statements (nodes), 

conditions (branches), can be covered by the selected paths. However, since we can identify 

the executable paths from a protocol specification and we can take advantage of the fact that 



that every selected test path is executable, our main concern here is choosing a group of exe- 

cutable paths which are more semantically meaningful, that is, more semantic components in 

GpD , e.g., the external UO interactions and the internal I/O associations, can be properly exer- 

cised. 

To facilitate our subsequent discussions, we give the following definitions. 

Definition 5.1. Given a GpD , a data item is a context variable or an input/output param- 

eter. We say that data item d I affects data item d 2  if different values of d can result in dif- 

ferent values of d,. 

Definition 5.2. Given a GpD , an input statement I, in the I-part influences a predicate Pi 

in the C-part if either (1) at least one input parameter of I ,  occurs in P j  or (2) a context vari- 

able v occurs in Pi and v is affected by at least one input parameter of 1,. (7 

Definition 5.3. Given a GpD, an input statement I ,  in I-part influences an assignment 

statement Sj in the A-part if either (1) at least one input parameter of I, is on the right-hand- 

side of S, or (2)  a context variable v is on the right-hand-side of Sj and and v is affected by at 

least one input parameter of Ik . 

Definition 5.4. Given a GpD , an assignment statement Sj influences an output statement 

0, if either (1) the left-hand-side of S, becomes the output parameter of 0, or (2) a context 

variable v becomes the output parameter of 0, and v is affected by the left-hand side of S, . 

Definition 5.5. Given a GpD , a predicate Pi influences an output statement 0, if dif- 

ferent truth values of Pi can result in different output parameter values of 0, . 

Definition 5.6. Given a GpD, an input statement I, of I-part influences an output state- 

ment 0, in A-part if either (1) I, influences an assignment statement Sj and Sj influences O , ,  



or (2) 1, influences a predicate Pi in the C-part and Pi influences Ok . In the above two situa- 

tions, I, and 0, are called computation-related I/O pair and predicate-related I/0 pair, 

respectively. These two pairs are called I/O pairs.U 

We can generalize the above definitions by generalizing the concept of input interaction. 

Definition 5.7. Given a GpD , the extended input interaction of an arc includes both the 

input statements and the assignment statements in which the right-hand sides contain only the 

constants. O 

Analogically, we can easily define the following concepts: extended computation- 

related 110 pair, extended predicate-related I/O pair, and extended I/O pair. 

Example 5.1. Supposing that e,, e, are two child-arcs of e as shown in Figure 5-1. The 

I-, C-, and A-parts of these arcs are defined as follows. 

Figure 5-1: Three compatible arcs in a GpD 



I-part: IN (i  i,) 
C-part: ....... /*irrelavant to our discussions*/ 
A-part: 

BEGIN 
x : = i l + i 2 ;  
y :=i2; 
z := 100 

0 2 : = y  + z ;  
OUT, (0 1, 0,); 

END; 

I-part: ...... 
C-part: ...... 
A-part: 

BEGIN 
w:=x+y ; 
O 3  :=W + 1; 

om, (0,); 

EKE; 

e,: FROMvl,TO v ,  

I-part: ...... 
C-part: (x+y+z) > 100 
A-part: 

BEGIN 
o := true; 

OUT, (0 ,); 
END; 

In this example, input statement IN of e l  influences the C-part of e3  because different 

values of i , and i, can result in different values of x and y which can affect the truth value of 

the predicate of e, .  Input statement IN of e l  influences the assignment statements of e ,  

because i and i2 affect x and y which are used on the right-hand-side of an assignment state- 

ment of e ,. Similarly, IN and OUT, are computation-related I10 pair and IN and OUT, are 



predicate-related N O  pair. 

Based on above concepts, we propose the following executable path selection criteria 

for protocol testing: 

(Extended) Input-Computation-Output (I-C-0) Coverage: Given a Gm and a group 

of executable paths, we choose a minimum set of executable paths as the test paths such 

that every (extended) computation-related I10 pairs on the given executable paths can 

be tested at least once by these test paths. 

(Extended) Input-Predicate-Output (I-P-0) Coverage: Given a Gm and a group of 

executable paths, we choose a minimal set of the executable paths as the test paths such 

that every (extended) predicate-related I10 pairs on the given executable paths can be 

tested at least once by these test paths. 

(Extended) Inp~t-Output 0-9) Caverage: Givcxi a GpD aiid a groiip of executable 

paths, we choose a minimal set of the executable paths as the test paths such that every 

(extended) I10  pairs on the given executable paths can be tested at least once by these 

test paths. 

The above six EP selection criteria are based on the intuition that most errors in an IUT 

can be detected by certain tests on I/O behavior and that one should not feel confident that an 

output interaction is correct if no test causes the execution of the path from each input interac- 

tion that influences this output interaction. These criteria also take into account the fact that 

the goal of a communication protocol is to provide correct UO interactions and therefore most 

assignment statements in the A-parts and predicates in the C-parts are for the purpose of 

correctly bridging the relevant input and output statements. In summary, these criteria focus 

on tracing the control and data flow among the relevant input and output statements. 
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In order to compare the thoroughness of these criteria, we establish the following rela- 

tions. Given a G,, and two EP selection criteria C ,  and C,, we say that C, is more thorough 

or has a larger fault coverge than C2 if all of the executable paths selected by C2 can also be 

selected by C1, and the reverse is false. Two executable path selection criteria are called 

incompatible if neither is more thorough than the other. 

It is not difficult to observe that three extended criteria are more thorough than their 

non-extended counterparts because the extended (predicate-related, computation-related) 110 

pairs is the superset of the corresponding (predicate-related, computation-related) VO pairs. 

Similarly, the (extended) 1-0 coverage criterion is more thorough than both the (extended) I- 

C-0 coverage and the (extended) I-P-0 coverage critera. However, the (extended) I-C-0 cov- 

erage criterion and the (extended) I-P-0 criterion are incompatible. In Example 5.1, e and e 

will be tested together according to the I-C-0 coverage criterion but e l  and e 3  can only be 

tested together based on the I-P-0 coverage criterion. 

5.3. Input Test Data Selection 

Since an executable path can be activated or traversed by applying different external 

input parameters which may reveal different errors in the IUT, we have to choose the proper 

input test data along the selected executable paths such that they have a large fault coverage. 

As discussed in Chapter 4, an EP-identification algorithm can be used to determine the 

- valid domains of the input parameters along an executable path such that the values of these 

domains can be used to activate this EP. Therefore, the major task of the input test data selec- 

tion here is to choose certain values from these domains. 



Basically, there are two types of input parameter domains: enumeration data domain 

and continuous data domain. Examples of the input parameters of the first type are: 

T-Connect-req, class, max - TPDU-size, etc. Examples of the input parameters of the second 

type are: user data, destination reference values, etc. Similar to program testing [MiH81], cer- 

tain guidelines for test data selection in protocol testing have been proposed [Dat87, SBG871. 

The basic idea of these guidelines is as follows. An input parameter of enumeration type can 

be tested exhaustively, that is, every possible value in the data domain is tested. For an input 

parameter of continuous domain type, three specific values can be selected: the two end point 

and some interior point of the valid data domain. The detailed discussions on the input test 

parameter selection in protocol testing can be found in [Dat87]. 



CHAPTER 6 

APPLICATIONS 

The formal protocol description model, the executable path identification algorithms 

and the executable path selection criteria introduced in the previous chapters will be illus- 

trated with a concrete communication protocol in this chapter. We demonstrate our metho- 

dologies by studying OSI Class 0 Transport Protocol (Class-0 TP) since this protocol has 

become a standard example in the protocol testing field. The example is centered around the 

following aspects: (1) establishing the acyclic protocol graph GpD from the Estelle normal 

form specification (NFS) of the protocol, (2) identifying the executable paths and determining 

the external UO interactions along these paths, and (3) selecting a group of test paths from the 

identified executable paths. 

6.1. Application to Class - 0 TP 

The transport protocol layer has received considerable attention since it is the one and 

only layer in the OSI architecture with overall responsibility for controlling the transportation 

of data between the source end-system and the destination end-system. Form the point of view 

of protocol testing, transport protocols have been intensively studied because of the complex- 

ity and the importance of such protocols. 

In order to handle a variety of user service requirements and available network services, 

IS0 has defined five classes of transport protocols [ISO82, Kni821. Class-0 TP is based on the 

network services which can provide network connection with acceptable residual error rate 
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and acceptable rate of signaled failures. Class-0 TP is designed to provide a transport connec- 

tion with data flow control based on network-level flow control and connection release based 

on the release of the network connection. 

6.1.1. Constructing G, for Class-0 TP 

The complete specification of Class-0 TP is in [IS082], and the normal form 

specification (NFS) in Estelle of this protocol is given in [SBG87]. From the NFS of this pro- 

tocol, the graph Gm can be derived and is shown in Figure 6-1. The definitions of each tran- 

sitions can be found in Appendix 2. 



- Single Arc 

L Multiple Arcs 

ei = <li, Ci, Ab i=1,2, ..., 19 



Figure 6-1: G,,, of Class-0 Transport Protocol 

In the GNFS of Class-0 TP, there is no intermediate-cycle and there are 4 self-loops: e13, 

e14, el5 and e l  6. There are the following 20 homing-cycles: 

e2; 
e5; 
el,  (e8 + e9); 
el ,  (e6 + e7), (el7 + el8 + e19); 
(e3 + e4), (ell  + e12); 
(e3 + e4), e10, (el7 + el8 + e19). 

By introducing a new image vertex VO' for the initial vertex VO and applying Algorithm 

3.1, the graph GNFs without homing-cycles is derived and shown in Figure 6-2. 



Pigure 6-2: Gms without homing-cycles 

To unfold the self-loops in the above GWs, we assume that each self-loop is tested only 

once and there is no heuristics about the valid arc traversal combinations or precedence order 

on these self-loops available. By applying Algorithm 3.2, we unfold the self-loops e13, e14, 

e15, and e l6  into the following 4!=24 possible arc traversal or permutation sequenceses: 



To simplify our discussion, only 3 of them are given in Figure 6-3. There is a RESET 

arc from each new vertex to VO' which is not shown in Figure 6-3. 



el l ,  el2 

E17=e17,e18,e19 

Figure 6-3: Gm of Class-0 transport protocol 

In the NFS of Class-0 TP, there exist undefined right-hand-sides in some assignment 

statements and undefined procedure calls. However, these undefined components do not affect 
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the C-parts of the transitions in this protocol and it is unnecessary to unfold or redefine them. 

Thus, the I-part, C-part and A-part of each arc in GpD are the same as those in GNFs which are 

in Appendix 1. 

6.1.2. EP identification for Class - 0 TP 

Now, we apply our EP identification algorithms described in Chapter 4 to the GpD of 

Class-0 TP. First, we use Algorithm 4.1 to find an executable path from the initial vertex VO 

to a specific arc and to determine the external valid input interactions along this path. Then, 

we apply Algorithm 4.2 to GpD to do the same thing. Finally, we use Algorithm 4.3 to find all 

the executable paths in this GpD . 

Example 6.1. In this example, we assume that the target arc is e l7  which appears in the 

path: V3, e13, e14, e15, e16, e17, VO' in Figure 6-2. After the execution of Phase One of 

1 Algorithm 4.1, the ancestor arcs of this el7 are identified and the graph GpD is shown in Fig- 

ure 6-4. 



1 
Figure 6-4: Gm wrt el7 

The context variables which need to be recorded in the contex-vectors are in the follow- 

ing Context-Variable-Name-Vectors. 



Name-Vector 17 = <nil>; 
Name-Vector 16 (15) = <in.buffer.marb; 
Name-Vector 14 (13) = <in.buffer.mark, out.buffer.mark>; 
Name-Vector 10 (3,4) = <in.buffer.mark, out.buffer.mark, qts.estimate, remote.refer, 

calling.t.addr, called.t.addr, tpdu.size>; 
Name-Vector 6 (7, 1) = <in.buffer.mark, out.buffer.marb; 

After the execution of phase 2, we can identify an executable path, for example, (VO, e l ,  

e6, e13, e14, e15, d16, e l7  and VO') from G;, . The important external input interactions 

along this path can be derived by phase 3 and are listed below: 

e l  : tcreq with qts.req = ok (Primitive from user); 
e6 : cc with.max.tpdu.size o nil1 (PDU from peer); 
e l3  : tdatr (Primitive from user); 
e l4 : nil; 
e l5  : dt (PDU from peer entity); 
e 16 : nil; 
e l7  : tdreq (Primitive from user) 

Example 6.2. Now, we assume that the target arc is el8 which appears in the path: V3, 

e14, e15, e16, e18, VO' and we attempt to find an executale path from VO' to e l8  by applying 

Algorithm 4.2. After the execution of the Phase One of Algorithm 4.2, the ancestor arcs of 

e l8 are identified and the graph G;,, is shown in Figure 6-5. 



1 
Figure 6-5: Gm wrt el8 



The Context-Variable-Name-Vectors are as follows: 

Name-Vector 18 = <nil>; 
Name-Vector 16 (15) = <in.buffer.mark>; 
Name-Vector 14 (13) = <in.buffer.mark, out.buffer.mark>; 
Name-Vector 10 (3,4) = <in.buffer.mark, out.buffer.mark, qts.estimate, remote.refer, 

calling.t.addr, called.t.addr, tpdu.size>; 
Name-Vector 6 (7,l) = <in.buffer.mark, out.buffer.mark>; 

After traversing (el ,  e3, e4) and (elO, e6, e7) by the level-first seach in Phase 2 of 

Algorithm 4.2, the post vectors of e6, e7 and e l0  are listed as follows. 

Post-Vector (elO) = <in.buffer.mark = empty, out.buffer.mark = empty; ... >; 
Post-Vector (e6) = <in.buffer.mark = empty, out.buffer.mark = empty>; 
Post-Vector (e7) = 4n.buffer.mark = empty, out.buffer.mark = empty>. 

It is obvious that the C-part of arc e l4  cannot be true under any of these context vectors 

because out.buffer.marker = empty. Intuitively, there should be some data received from the 

local transport service user via a transport data transfer request primitive (tdatr) before it can 

be sent to the peer protocol entity via a data transfer protocol data unit. In other words, e l4  

can be traversed only when at least one occurence e l3  precedes the first occurence of e14. 

Therefore, there exists no executable path from VO to el8 in this situation. 

~ x a r n ~ l e  6.3. Now, we apply our Algorithm 4.3 to the GpD of Class-0 TP. The pur- 

pose of this algorithm is to generate the complete compatible level-first-search tree 

(CCLFS-tree). After the execution of Algorithm 4.3, a part of the generated CCLFS-tree is 

shown in Figure 6-6. In this tree, every path is an executable path from VO to VO' and all the 

' executable paths from VO to VO' are in this tree. It is clear that this tree has a much smaller 

size than the complete path tree for GpD because only 6 of 24 newly expanded paths includ- 

ing e13, e14, el5 and el6 are executable. 



Figure 6-6: CCLFS-tree of Class-0 Transport Protocol 



6.1.3. EP selection for Class-0 TP 

In Class-0 TP, each input and output statement pair within one transition is obviously 

an 110 pair. Some I/O statements on different transitions are also VO pairs. For example, the 

I-part of e l  and the output of e6 are predicate-selected VO pair because the truth value of the 

C-part of e l  affects the output of e6. There are also some computation-selected I/O pairs. For 

example, the input statement in e3 and the outtput statements in form computational-selected 

I10 pair because the input parameter source.ref from a peer protocol entity eventually 

becomes output parameter dest.refer to the protocol service user. It is not difficult to find 

other VO pairs. 

In this protocol, there is no difference among the test paths derived by different criteria 

discussed in Chapter 5. By applying one of them to the derived EPs, a possible test path set 

and the meaning of these test paths are as follows: 

e2; /* user-initiated-call refused by protocol entity */ 
e5; /* peer-initiated-call refused by protocol entity */ 
el ,  e8; /* user-initiated-call refused by peer */ 
el ,  e9; I* user-initiated-call refused by peer */ 
el,  e6, e17; /* user-initiated-connection, freeing */ 
el,  e7, e13, e14, e15, e16, e l  8; /* user-ini-connection, data-trans, freeing *I 
e3, e l  1; /* peer-initiated-call refused by protocol entity */ 
e4, e12; /* peer-initiated-call refused by user */ 
e3, e10, e17; I* peer-initiated-connction, freeing *I 
e4, e10, e15, e16, e13, e14, e19; /* peer-ini-connction, data-trans, freeing *I 

Compared with the test paths derived by the schemes in [SBG87] and [UYP88], the 

major advantages of the above test paths are: (1) all of them are executable while the subtours 

or the test path proposed in those papers contain many non-executable paths, and (2) the 

above test paths take the inputloutput interactions and the extended input/output associations 



into account which reflect the nature of protocol testing. 



CHAPTER 7 

CONCLUSIONS 

Communication protocol conformance testing aims at demonstrating the adherence of 

an implementation under test (IUT) to the protocol specification. It is both attractive and chal- 

lenging to automatically generate test sequences from a formal protocol specification. To gen- 

erate efficient and powerful test sequences, a very fundamental and crucial problem is the exe- 

cutable path (EP) problem which consists of executable path identification and selection. In 

this thesis, we have investigated the protocol test sequence generation in general. Particularly, 

the executable path problem was studied in detail. 

We have established a formal acyclic graph GpD based on the extended finite state 

machine and the normal form specification in Estelle which was developed by ISO. This 

graph model can be used to describe both the control and the data portions of a communica- 

tion protocol. Particularly, this model makes executable path identification and protocol test 

sequence generation easier. Based on this model, the executable path problem is precisely 

defined and its complexity is analyzed. 

We have developed two basic algorithms for the executable path identification. These 

multi-phase algorithms use different search schemes. The first algorithm is based on path-first 

search while the second one is based on level-first search. The complexity analyses have 

shown that these two algorithms possess different advantages and disadvantages in different 

situations. Under certain reasonable restrictions, these algorithms can be used to identify exe- 

cutable paths in a GpD efficiently. Some variations of two basic algorithms are also sug- 



gested. 

In order to generate efficient test sequences, the executable path selection problem has 

also been explored in this thesis. We have proposed several EP selection criteria based on the 

external 110 interactions and internal 110 associations. Our criteria reflect the difference 

between the ordinary program testing and protocol testing. The selected test paths can be used 

to cover more meaningful semantic components in a protocol specification and to reveal more 

faults in an IUT. 

We have applied our methodologies to a concrete communication protocol. For this pro- 

tocol, our algorithms work well. 

Since the executable path problem is NP-hard in general, further research work is 

needed to improve our algorithms and make them as practical as possible. We identify the fol- 

lowing limitations of our solutions. 

(1) The complexity of cycle elimination, especially intermediate-cycle elimination, is still 

very high when we deal with complex protocols. As mentioned in Chapter 3, the cost of 

intermediate-cycle detection is exponential in the number of nodes in general since there 

may be exponential number of such cycles. It is also worth noting that the number of 

stars generated by our algorithm based on regular expression might be larger than the 

absolute number of the cycles in the corresponding GNFs. 

(2) Although the major cost of our two basic EP identification algorithms in Chapter 4 is 

incurred by Phase 2, the time complexity of the other two phases might also be 

exponential in the worst case. For example, the complexity of Phase 1 is not linear 

unless the size of the C-part can be bounded by a constant. Some research work on sys- 

tematically classifying the C-parts for protocol testing has been done in [Dat87]. 



(3) As pointed out in Chapter 4, the complexity of Algorithm 4.2 can be very high when the 

sizes of the context variable domains are very large, because the number of context vec- 

tors can be very large in this case. Therefore, further research on selecting a smart set of 

test data becomes essential to reduce the cost in this case. 



APPENDIX I: Estelle NFS of Class-0 Transport Protocol 

Service Primitives: 

tcreq = T-CONNECT request 
tdind = T-DISCONNECT indication 
tccon = T-CONNECT confirm 
tdatr = T-DATA request 
tdati = T-DATA indication 
tdreq = T-DISCONNECT request 
ndreq = N-DISCONNECT request 
ndind = N-DISCONNECT indication 
nrind = N-RESET indication 

Protocol Data Units (PDUs): 

cr = connection request 
cc = connection confirm 
dr = disconnect request 
dt = data 

el: FROM VO, TO V l ;  

I-part: tcreq( to.t.addr, from.t.addr, qts.req) I* PRIMITIVE from user */ 
C-part: tcreq.in.qts.req=ok I* transport entity able to provide the quality asked for *I 
A-part : 

BEGIN 
1ocal.refer := ...; /* implementation dependent */ 
tpdu.size :=. ..; 
calling.t.addr := tcreq.in.from.t.addr; 
called.t.addr := tcreq.in.to.t.addr; 
cr.out.source.ref :=local.refer; 
cr.out.option :='normal'; 
cr.0ut.calling.t. addr := calling.t.addr; 
cr.out.called.t.addr := called.t.addr; 
cr.out.max.tpdu.size := tpdu.size; 
out cr(source.ref, option, calling.t.addr, called.t.addr, max.tpdu.size); /* PDU to peer 
entity */ 
END; 

e2: FROM VO, TO VO; 



C-part: tcreq.in.qts.refook 
A-part: 

BEGIN 
tdind.out.ts.disc.reason :=.. .; 
tdiid.out.ts.user.reason :=. . .; 
out tdind(ts.disc.reason, ts.user.reason); I* to user */ 
END; 

e3: FROM VO, TO V2; 

I-part: cr(source.ref, option, calling.t.addr, called.t.addr, max.tpdu.size) I* from peer */ 
C-part: (cr.in.max.tpdu.size<>nil) /\ (cr.in.option=ok) 
A-part: 

BEGIN 
remote.refer := cr.in.source.ref; 
tpdusize :=cr.in.max.tpdu.size; 
calling.t.addr := cr.in. calling.t.addr; 
called.t.addr := cr.in.called.t.addr; 
qts.estimate := ...; 
tcind.out.to.t.addr := called.t.addr; 
tcind.out.from.t.addr :=calling.t.addr, 
tcind.out.qts.pro := qts.estimate; 
out tcind(to.t.addr,from.t.addr,qts.pro); I* to user */ 
END; 

e4: FROM VO, TO V2; 

I-part: cr(source.ref, option, calling.t.addr, called.t.addr, max.tpdu.size) 
C-part: cr.in.max.tpdu.size = nil and cr.in.option = ok 
A-part: 

BEGIN 
remote.refer := cr.in.source.ref; 
tpdusize := ...; 
calling.t.addr := cr.in.cal1ing.t.addr; 
called.t.addr := cr.in.cal1ed.t.addr; 
qts.estimate := ...; 
tcind.out.to.t.addr := called.t.addr; 
tcind.out.from.t.addr := calling.t.addr; 
tcind.out.qts.pro :=qts.estimate; 
out tcind(to.t.addr, from.t.addr, qts.pro); 
END; 

e5: FROM VO, TO VO 

I-part: cr(source.ref, option) 
C-part: cr.in.option o ok 



A-part: 
BEGIN 
dr.out.dest.refer :=cr.in. source.ref; 
dr.out.disconnect.reason := ... ; 
out dr(dest.refer, disconnect.reason); 
END, 

e6: FROM Vl, TO V3; 

I-part: cc(max.tpdu.size) /* from peer entity */ 
C-part: cc.in.max.tpdu.size o nil 
A-part: 

BEGIN 
qts.estimate := ...; 
tccon.out.qts.res := qts.estimate; 
in.buffer.mark := empty; 
out.buffer.mark := empty; 
out tccon(qts.res); /* to user */ 
END; 

e7: FROM V l ,  TO V3; 

I-part: cc(max.tpdu.size) 
C-part: cc.in.max.tpdu.size = nil 
A-part: 

BEGIN 
qts.estimate := ...; 
tccon.out.qts.res :=qts.estimate; 
in.buffer.mark := empty; 
out.buffer.ma-k := empty; 
out tccon(qts.res); 
END; 

e8: FROM Vl,  TO VO; 

I-part: dr(disconnect.reason, add.clear.reason) /* from peer entity */ 
C-part: dr.in.disconnect.reason ="user.initW 
A-part: 

BEGIN 
ndreq.out.disc.reason := dr.in.disconnect.reason; 
tdind.out.ts.disc.reason := dr.in.disconnect.reason; 
tdind.out.ts.user.reason := dr.in.add. clear.reason; 
out ndreq(disc.reason); /* to network level */ 
out tdind(ts.user.reason,ts.disc.reason); P to user */ 
END; 



e9: FROM VI, TO VO; 

I-part: dr(disconnect.reason) 
C-part: dr.in.disconnect.reason o "user.initU; 
A-part: 

BEGIN 
ndreq.out.disc.reason := dr.in.disconnect.reason; 
tdind.out.ts.disc.reason := dr.in.disconnect.reason; 
out ndreq(disc.reason); 
out tdiid(ts.disc.reason); 
END; 

e10: FROM V2, TO V3; 

I-part: tcres(qts.req) I* from user */ 
C-part: tcres.in.qts.req c=qts.estimate 
A-part: 

BEGIN 
in.buffer.mark := empty; 
out.buffer.mark := empty; 
1ocal.refer :=...; 
cc.out.dest.refer := remote.refer, 
cc.out.source.ref := 1ocal.refer; 
cc.out.calling.t.addr := calling.t.addr, 
cc.out.caUed.t.addr := called.t.addr; 
cc.out.max.tqdu.size := tqdu. size; 
out cc(dest.refer, source.ref, calling.t,addr, caUed.t.addr, maxtqdusize); I* to peer */ 
END; 

el l :  FROM V2, TO VO; 

I-part: tcres(qts.req) /* from user */ 
C-part: tcres.in.qts.req > qts.estimate 
A-part: 

BEGIN 
dr.out.dest.refer := remote.refer; 
dr.out.disconnect.reason := ...; 
dr.out. add.clear.reason := . . .; 
tdiid.out.ts.disc.reason := ...; 
out dr(dest.refer, disconnect.reason, add.clear.reason); 
out tdind(ts.disc.reason); I* to user */ 
END; 

I* to peer */ 

e12: FROM V2, TO VO; 



I-part: tdreq(qts.req) /*from user */ 
A-part: 

BEGIN 
dr.out.discnnect.reason := ...; 
dr.out.add.clear.reason := tdreq.in.ts.user.reason; 
dr.out.dest.refer := remotexefer; 
out dr(dest.refer, disconnect.reason, add.clear.reason); /* to peer *I 
END; 

e13: FROM V3, TO V3; 
I-part : tdatr(tsdu.fragment) /* from user */ 

A-part: 
BEGIN 
insert(out.buffer, tdatr.in.tsdu.fragment); I* put into out.buffer */ 
out.buffer.mark := empty 
END; 

e14: FROM V3, TO V3; 
C-part: out.buffer.mark o empty 
A-part : 

BEGIN 
remove (out.buffer, dt.out.user.data); 
out dt(user.data); P to peer entity */ 
out.buffer.mark := empty; 
END; 

e15: FROM V3, TO V3; /* from peer entity *I 
I-part: dt(user.data); 
A-part : 

BEGIN 
insert(in.buffer, dt.in.user.data); I* put into in.buffer */ 
in.buffer.mark := full; 
END; 

e16: FROM V3, TO V3; 
C-part: in.buffer.mark o empty 
A-part: 

BEGIN 
remove (in.buffer, tdati.out.tsdu.fragment); 
out tdati( tsdu.fragment); /*to user *I 
in.buffer.mark := empty 
END; 

e17: FROM V3, TO VO; 



I-part: tdreq(ts.user.reason); P from user */ 
A-part: 

BEGIN 
ndreq.out.disc.reason := tdreq.in.ts.user.reason; 
out ndreq (discxeason); /* to network *I 
END; 

e18: FROM V3, TO VO; 

I-part: ndind( ) /* from network */ 
A-part: 

BEGIN 
tdind.out.ts.disc.reason := ...; 
out tdiid (ts.disc..reason); I* to user *I 
END; 

e19: FROM V3, TO VO; /* network RESET */ 

I-part: mind( ) 
A-part: 

BEGIN 
tdind.out.ts.disc.reason := .. .; 
out tdind (ts.disc..reason); /* to user */ 
END, 
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