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Abstract 

Single crystals of Bi2Sr2CalCu208 high critical temperature superconductors were 

obtained by a flux-growth method. The actual chemical composition was determined 

by energy dispersive x-ray analysis. The x-ray diffraction patterns on the a-b basal 

plane could be indexed with the crystal lattice constant c - 30.81 f 0.04 A. 

By using a SQUID magnetometer, low field magnetization measurements have 

been performed, from which values of lower critical fields at 4.2 K for one of the 

I t  
good quality single crystals were determined: Hcl = 2.2 f 0.2 Oe and 

H:, - 149 f 21 Oe for a magnetic field applied parallel and perpendicular to the 

crystalline basal plane respectively. The anisotropy in Hcl due to the layered structure 

is then 68 f 11, much larger than that of Y1 Ba2C~307-6 single crystals. 

The temperature dependent magnetic penetration depth h,,(T) for supercurrents 

flowing in the ab-plane was obtained from a measurement of the AC susceptibility. 

X,,(T) follows the prediction of the clear! local limit weak-coupling BCS theory, 

suggesting an s-wave pairing mechanism. By using a two-parameter least-square 

fitting process, the zero temperature penetration depth h,,(O) was extrapolated to be 

2900 A, which, together with the London formula, implies a carrier density of the order 

of 3x1 carriers/cm3. 

Within the framework of the anisotropic Ginzburg-Landau theory, the effective mass 

ratio, = M/m - 1.2 x lo4, was derived from our measurement. This giant effective 

mass anisotropy indicates two-dimensional superconducting behavior. 

The zero temperature equilibrium supercurrent densities at Hcl were estimated by 

using Maxwell's equations, J C d  - 4 x 1 o6 A/cm2 and Jcd, - 6 x 1 o2 A/cm2. The 

supercurrents thus flow much more easily in the ab-plane than between the planes. 

Energy dissipation in flux motion in single crystals was obtained from 

measurements of the complex AC susceptibility x = X' + i ~ " .  The field versus 



temperature line defined from the peak positions of the imaginary component X" is 

interpreted to be closely correlated to the irreversibility line in the low field domain. 
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Chapter 1 Introduction 

High critical temperature (high-Tc) superconductivity was discovered by the Nobel 

Prize laureates, J. G. Bednorz and K. A. Muller, in 1986. Since then this research has 

been spreading worldwide and developing rapidly in the fields of practical 

applications as well as basic condensed matter physical sciences. This thesis was 

undertaken to investigate the low field magnetic properties of single crystals of 

Bi2Sr2CalCu2O8, a member of the high-Tc copper oxide families, by using a SQUID 

magnetometer. 

Chapter 1 starts with a brief review on the development of high-Tc 

superconductivity, and then the descriptions of basic thermodynamic phenomena and 

the anisotropic Ginzburg-Landau theory. Chapter 2 shows the methods of growing 

single crystals and sample analysis. Chapter 3 is devoted to the description of the 

SQUID magnetometer and the procedures for the low field magnetic measurement. 

Chapter 4 presents the results and discussions. Chapter 5 is a conclusion. 

1 .I Review of High-T, Superconductivity 

The new era of high-Tc superconductivity started in 1986 when J. G. Bednorz and 

K. A. ~ u l l e r l  of IBM Zurich Research Laboratory reported the evidence for 

superconducting behavior near 30 K in a La2,BaXCuO4 compound. Towards the end 

of the year, the transition temperature was elevated to 40 K by replacing barium with 

strontium in this formula. Early in 1987, P. Chu and his associates2 at the University of 

Houston and the University of Alabama found superconductivity near 92 K in a Y-Ba- 

Cu-0 compound. Its correct chemical composition was then identified as Y1Ba2Cu3 

07-6 (Y-123). A year later, in January 1988, Japanese researchers headed by 

H. ~ a e d a ~  at Tsukuba Laboratories of the National Research Institute for Materials 

announced a new family, Bi-Sr-Ca-Cu-0. Later it was found to have two phases: 



Bi2Sr2Ca2Cu3010 (2223) with a Tc of 11 0 K and Bi2Sr2Cal Cu208 (221 2), the 85 K 

phase. A month later, in February 1988, a group headed by A. kierman4 at the 

University of Arkansas unveiled the superconductivity of TI-Ba-Ca-Cu-0, a family 

closely related to that of Bi-Sr-Ca-Cu-0. Like the bismuth compound, it also has two 

phases: TI2Ba2Ca2Cu3Ol0 (2223) the 125 K phase and Tl2Ba2Ca,Cu2O8 (2212) the 

110 K phase. Up to now, the thallium compound (2223) has the highest transition 

temperature. 

The high-Tc copper oxide superconductors mentioned above are all p-type or hole 

carrier materials. However, a new family of n-type or electron carriers of 24 K Nd2-, 

CeXCuO4 was reported in January 1989 by Y. Tokura et aL5 This is believed to have 

significant implications for understanding high-temperature superconductors.6 

The explorations of high-Tc superconductors have been challenges to both 

theorists and experimentalists. According to the BCS pairing theory, the attractive 

electron-electron interaction is formed via phonon or thermal vibrations of the 

medium. This theory worked successfully for many conventional superconductors but 

appears to have difficulties to explain high-Tc supercond~ctivity.~ Therefore, new 

mechanisms may be required to elucidate those remarkable properties. The high 

temperature superconductors are promising candidates in both small-scale and 

large-scale applications. 

1.2 Basic Phenomena and Vortex Structure 

Superconductors can be classified into two types in terms of the surface energy 

. associated with the interface between a normal and a superconducting region. When 

the Ginzburg-Landau (G-L) parameter, K = @, is less or greater than 1/42, the 



Fig. 1.1 Schematic variation of the magnetization versus applied field in a type I 

(dashed line) and a type I1 (solid line) superconductor in the shape of a long cylinder. 

superconductor has a positive or negative surface energy corresponding respectively 

to type I or type I1 superconductivity. h is the magnetic penetration depth, the length 

scale over which the magnetic field is attenuated; and 6 is the coherence length, the 

length scale over which the order parameter can vary. Fig. 1.1 shows the different 

magnetic behavior for both types of superconductors, assuming the samples are in 

the shape of long cylinders to avoid complications of demagnetization effects. 

So far the high-Tc copper oxide superconductors have been found to be strongly 

type 11. In a small applied field Ha, a type I1 superconductor will induce a surface 

supercurrent so that all the flux is expelled from the specimen except for a limited 

length scale h near the surface, and the sample is in the "Meissner state". When Ha 

reaches the lower critical field, H,,, the flux starts to penetrate into the specimen 

because that is energetically more favorable, and the sample transfers into the "mixed 

state" or "vortex state". According to Abrikosov's theory,* a type II superconductor in 

the mixed state has a periodic two-dimensional array of flux lines (filaments) or the 
- flux lattice, each of which contains a flux quantum Qo (2 .07~10-~  G-cm2). The core of 

each filament has an approximate radius 6 and is surrounded by a vortex of 

superconducting electrons extending a distance h. Superconductivity remains until 

Ha = H,,, the upper critical field. The specimen is then undergoing another second 

order phase transition into the normal state. 



Fig. 1.2. Vortex structure in a layered superconductor illustrating anisotropy of h and 6:  
5. and 411 are the coherence length parallel and perpendicular to the ab-plane (Cu-0 

plane); hL and ~ I I  are the penetration depth with the supercurrent flowing parallel and 

perpendicular to the planes. 

-4nM / # 

/ 
Irreversible 

0 * Ha 
Hcl  Hc2 

Fig. 1.3. Schematic variations of the magnetization versus field for an ideal 

(reversible) type I1 superconductor and a hard (irreversible) superconductor. 



The high-T, superconductors are all found to be layered compounds. Fig. 1.2 

shows the vortex structure in a layered superconductor. For a field applied along 

crystallographic c direction, the supercurrent flows parallel to the ab-plane (Cu-0 

plane) and controls the penetration depth h,,. In a field along a or b direction, the 

penetration depth between the planes (c direction) is controlled by the supercurrent 

flowing parallel to the ab-plane and therefore equal to A,,. Whereas the penetration 

depth within the ab-plane (along b axis in Fig. 1.2), denoted as h,, is controlled by the 

supercurrent flowing perpendicular to the planes. Because the supercurrents and the 

normal currents as well flow much more easily in the Cu-0 planes than perpendicular 

to them, h, is larger than a,,. The coherence length is also anisotropic: el,, the 

coherence length parallel to the plane, is larger than c,, the one perpendicular to the 

plane. Therefore, the shape of the flux lattice, the normal cores, the values of K, and 

the critical fields all depend on the field direction. 

Type I1 superconductors can have pinning centers due to material 

inhomogeneities, such as twin boundaries and point defects. They are often called 

"hard" superconductors and exhibit hysteresis of the magnetization and flux trapping 

in the region between H,, and H,. Fig. 1.3 illustrates schematically the magnetization 

curve for an ideal (reversible) type I1 superconductor and a hard (irreversible) 

superconductor. Owing to the induced bulk supercurrents inside the hard 

superconductor, the flux penetrates into the hard superconductor more slowly than it 

does into the ideal type I1 superconductor when the applied field Ha is larger than H,, . 

1.3 Effective Mass Tensor Ginzburg-Landau Theory 

The concept of the phenomenological effective mass tensor G-L theory was first 

proposed by Ginzburgg and later justified on the basis of microscopic theory.1•‹ 

Specifically, to describe anisotropic superconductors, the effective mass in the 



G-L equations is replaced by an effective mass tensor. In the case of uniaxial 

superconductors, the effective mass tensor has the simple form: 

where m is the effective mass of the superconducting electrons in the layer an( j M that 

between the layers, neglecting the anisotropy in the layer. Because the "easy" axes 

for supercurrent flow lie in the plane, it is natural to assume that M is larger than m. 

In the large K limit, the anisotropic G-L equations have been solved.'l If we define 

an effective mass ratio, = ~ l m t ,  we can then write:'* 

and 

where K,, and K, are the G-L parameters with the applied field parallel and 

perpendicular to the layers, respectively. 

The upper critical fields can also be written in the following anisotropic form: 

t In some of the literature, the effective mass ratio is expressed as e2 = mIM. 



When the applied field is close to Hcl, the G-L approach leads to non-linear 

equations which have to be solved for Hcl. Klemm and Clemq3 showed that the G-L 

free energy of the anisotropic mass in the presence of a magnetic field may be 

transformed into the isotropic G-L form, so the expression of HC1 for the layered 

superconductors can have a similar form for isotropic superconductors, except that 

the G-L parameter K is now anisotropic. Their calculations give, in the large K limit, 

I I 
where Hcl and Hil are the lower critical fields parallel and perpendicular to the ab- 

plane, respectively. Kogan14 used the London equations and derived similar results. 

1.4 Motivations 

The lower critical fields are important superconducting quantities in the sense of 

fundamental research and practical applications. For highly layered Bi2Sr2CalC~208 

single crystals, sensitive low field magnetization measurements are useful to 

determine the anisotropic lower critical fields. 



The magnetic penetration depth h is one of the basic microscopic lengths. Because 

it is related to the superconducting energy gap, the measurement of the variation of 

the penetration depth with temperature will provide insight into the pairing 

mechanism. The absolute value of the penetration depth at zero temperature will give 

estimates of other fundamental parameters, such as the carrier density and the 

effective mass of the carriers by using London's equations. The temperature 

dependence of the low field DC or AC susceptibility reflects the flux penetration and 

hence directly measures the temperature dependence of the magnetic penetration 

depth. 

Since the energy losses can be detected by the imaginary part of AC susceptibility, 

measurements of the complex AC susceptibility in various applied DC fields are 

useful for a qualitative description of flux motion in the crystals. 

In the absence of a microscopic theory for the new high-T, superconductors, we 

intend to make use of Maxwell's equations as well as the formulas derived from the 

phenomenological Ginzburg-Landau theory in order to estimate, with our 

measurement, some superconducting parameters of fundamental interests, for 

example the G-L parameter, the effective mass ratio, the equilibrium supercurrent 

density, and so on for the 81-221 2 superconductors. 



Chapter 2 Sample Preparation and Analysis 

In this chapter, we will present the method of growing our Bi-2212 single crystals 

and the analysis of their chemical compositions by energy dispersive x-ray 

spectroscopy and x-ray diffraction patterns. 

2.1 Sample Preparation 

2.1.1 Single Crystal Growth 

The Bi-compound single crystals were obtained by a flux-growth method. A typical 

procedure, with which Sample Bi-A and Bi-C were grown, is as follows: with the 

nominal molar ratio Bi:Sr:Ca:Cu = 1 :1:3:3 the oxides and carbonates, Bi203, SrCO,, 

CaC03, and CuO, were thoroughly mixed and ground with a m'ortar and a pestle, 

where excess CuO and CaCO, were used as the flux; the powders were then pressed 

into pellets which in turn were placed in a container (made of gold foil) that lay on the 

flat surface of an alumina sample holder; using a programmable furnace, the mixture 

was heated in air to 970 OC at a rate of 200 OCIhr, held at 970 OC for about 1.5 hr, and 

cooled first to 790 OC at 6 OCIhr and then to the ambient temperature at 18 OCIhr. At 

the temperature 970 OC, the pellets were completely melted and some of the liquids 

overflowed the shallow container. After cooling, many pieces of single crystals were 

found among the solidified flux between the gold foil surface and the alumina. This 

method is similar to the one used for the growth of YBa,Cu,O, single c r y s t a ~ s . ~ ~ ~ ~ ~  ln 

a run for another batch of crystals, out of which Bi-H and Bi-l grew, the procedure was 

slightly different: the powders, with a nominal molar ratio Bi:Sr:Ca:Cu = 2:2:1:2, were 

contained in an alumina crucible and calcined at 780 OC in air for 20 hr; the pelletized 

mixture was sintered in air at 980 OC for 2 hr, cooled at 2 OC/hr to 800 OC, and then 

oven-cooled to room temperature. Crystals were picked up from the fragments of the 

solid melt which was broken up mechanically. 



Fig. 2.1. SEM pictures of Samples Bi-H (upper) and Bi-l (lower) 



Fig. 2.2. Edge-on SEM pictures of Samples Bi-H (upper) and Bi-l (lower) 



2.1.2 Characteristics 

The Bi-Sr-Ca-Cu-0 single crystals are flaky and brittle. The full size and edge-on 

pictures of two selected crystals, named as Bi-H and Bi-I, were taken by a Scanning 

Electron Microscope (SEM, ISI-DS-130), shown in Fi'gs. 2.1 and 2.2. Both crystals 

have the in-plane dimensions of about 1 x 1 mm2 and the thickness of less than 

10 p.m. Sample Bi-l was cut from a large crystal with a razer blade. The heavy dot 

seen in the picture on Bi-l is the grease with which the sample was held. Unlike 

YBa,Cu,O,, single crystals that have a rectangular shape and sharp  edge^,^^^^^ the 

Bi-compound crystals appear to have irregular shapes. The crystals grew favorably in 

the ab-plane (Cu-0 plane) and the crystallographic c direction is the thinnest 

dimension. The crystals can be easily cleaved with, for example, needles. This makes 

the material mica-like. It is believed that the weak bond between the bismuth and 

oxygen is responsible for the cleavage nature.I7 The crystallinity was verified by the 

x-ray diffraction patterns (see Fig. 2.4). 

The transition temperatures of the selected crystals, 85 K for Bi-H and 87 K for Bi-I, 

were obtained from AC susceptibility measurements. Table 1 shows the real cation 

ratio given by the energy dispersive x-ray analysis (EG&G, ORTEC). Since the 

absorption for Ca is only about 0.5 which is below the minimum absorption (- 0.7) 

with which the computer program (ZAP Microanalysis) can work optimally, the 

chemical content of Ca is therefore likely to be underestimated. The same reason may 

also explain the low atomic percentage of Sr in those formulas. We conclude that 

within the experimental error, our Bi-based single crystals belong to the 2212 or lower 

T, phase. 

2.2 Crystal Structure 

Electron, neutron, and x-ray diffraction patternsl8-** have all revealed the complex 

crystal structure of the Bi-2212 compound. As illustrated in Fig. 2.3, the sheared basic 
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Table 1. Energy dispersive x-ray analysis for the Bi-Sr-Ca-Cu-0 single crystals 

Sample Element Atomic Percentage Composition 



BiO 

SrO 

SrO 0 0 

BiO 

Fig. 2.3 The unit cell of Bi2Sr2Ca,Cu,& 



building blocks form a tetragonal unit cell with lattice constants: a - b - 5.4 8( and 

c - 30.8 A. Complications arise when the ideal lattice is modulated by, for example, 

size mismatches, point defects, and so forth,17 most strongly in the b direction. This 

modulation results in a periodic superlattice along the b-axis, and the crystal lattice 

constant b is approximately 5 times that of the ideal unit cell. This superlattice 

structure has also been observed from the electron diffraction patterns taken on some 

of our Bi-2212 whiskers.23 

Fig. 2.4 shows the x-ray diffraction patterns from (0 0 I )  planes on one of the 

Bi-2212 crystals. The diffraction peaks can be indexed with a lattice constant 

c - 30.81 k 0.04 A by the standard Hesse-Lipson procedure.24 



Angle (28) 

Fig. 2.4. X-ray diffraction patterns of a Bi2Sr2CarCu208 single crystal. Due to the 

very small thickness of the sample, o y the (0 0 9 peaks are visible. n 



Chapter 3 Experimental Apparatus and Procedure 

In this chapter we will describe the main part of the measuring system, the 

experimental methods of determining the demagnetization factors, and the 

procedures for low field magnetization measurements. 

3.1 Measuring System 

A schematic overall view of the main part of the measuring system is shown in 

Fig. 3.1. The essential component is the Superconducting Quantum Interference 

Device (SQUID) magnetometer featuring extremely high flux sensitivity and low noise. 

3.1.1 Sample Stick 

The outline of the sample stick is shown in Fig. 3.1. The thin walled stainless steel 

tube runs from room temperature to liquid helium temperature (4.2 K) to minimize heat 

conduction into the bath. The sample space can be evacuated to achieve thermal 

insulation of the sample from liquid helium. In order to cool the sample, helium 

exchange gas can be introduced into the sample space through a valve. The 

sample's position can be changed with an adjuster at the top to get the maximum 

signal. An enlarged drawing of the lower portion of the sample stick can be seen in 

Fig. 3.2.   he temperature of the sample is controlled by a heater (222 R), to which a 

current of up to 24 mA is applied to warm th e sample to about 100 K. A calibrated 

carbon glass resistor (Lake shore Qycdonics inc., Serial C7735) is used as a 

. thermometer. The sample holder is made of sapphire which has good thermal 

. conductivity yet is electrically insulating. The sample is attached to the sapphire rod 

with Apiezon grease. An Oxygen Free High Conductivity (OFHC) copper block 

accommodates the heater, the sapphire rod, and the thermometer. Good thermal 

contact between them is accomplished by tightly fitting with the grease. Under normal 

operation, the temperature ramp is ab'out 2.5 degrees per minute and the temperature 



To Pump 1 Helium Gas 

3- Sample Adjuster 

u - To Control Unit 

In-Line Valve 

To Recovery 
Line 

Fig. 3.1. Schematic overall view of the measuring system 



To Sample Stick To RF Head 

Sample Holder 
(Sapphire) 

Sample 

Lead Cylinder - 

I_- Niobium Tube 
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Flux Transformer 

- Pick-Up Coil 
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(Superconducting) 
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- Compensation Coil 

- H at Switches ! 

Fig. 3.2 Coil system, SQUID probe, and the lower end of the sample stick (not to scale). 



lag between sample and thermometer is less than 0.2 degree in the temperature 

range of 4.2 K to 100 K. One end of the sapphire rod was machined to such a shape 

that the sample can be oriented either horizontally or vertically. 

3.1.2 Dewar 

The commercial dewar (Superconducting Technology Inc.) is drawn schematically 

in Fig. 3.1. The p-metal outer shell effectively shields the earth's magnetic field so that 

the field near the bottom of the dewar is about of the order of mG. This small residual 

field is regarded as "zero field" in later discussion. A superconducting lead cylinder 

inside the dewar provides further shielding, for the flux inside the cylinder must 

remain constant. Liquid helium or nitrogen can be contained in a fiberglass tube. The 

vacuum space of the dewar is filled with superinsulation. An aluminum thermal shield 

cooled by the evaporating helium gas absorbs the room temperature radiation. A full 

dewar of about 13 L liquid helium will normally last for about 3 days. 

3.2 Coil System and SQUID Operation 

The SHE (Superconducting Helium Electronics) 330 series SQUID system used in 

this experiment consists of a Toroidal SQUID (TSQ) sensor (a rf-biased weak-link 

superconducting device), a rf-head, and the control units. 

3.2.1 Flux Transformer 

The magnetic signal is coupled into the SQUID through a flux transformer, which 

consists of an astatic pair of pick-up coils wound in series oppositi~n (also called a 

. first order gradiometer), the twisted leads, and a signal coil (see Figs. 3.2 and 3.3). 

Each of the pick up pair is a seven turn single layered coil made of 0.003" diameter 

niobium wire. The leads are connected to the terminal board of the SQUID sensor via 

niobium screws. A complete superconducting loop is thus formed and the flux 

transformer responds to DC fields as well as to AC signals. The total magnetic flux 
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threading the flux transformer remains constant at the value it had when the device 

was cooled through its superconducting transition temperature. If an external flux, $,,,, 

is applied through the transformer coil a current, ISq, will spontaneously begin to 

circulate along the superconducting wire to keep the total flux constant. This flux is 

then coupled into the SQUID sensor and in turn into a rf coil through Msig and Md, the 

mutual inductances between SQUID and the signal coil, SQUID and rf coil, 

respectively. The detection of the coupled flux signal is accomplished by the "flux 

locked" operation to be discussed in 3.2.4. 

3.2.2 DC mode 

DC current can be injected into the DC coil, wound with superconducting wire, by 

driving a parallel shunt into the normal state with a heater (see Fig. 3.3). After the 

heater is turned off, the main coil and the shunt form a closed superconducting loop 

(all joints are spot welded), therefore the supercurrents circulate in the loop in the 

"persistent mode". A stable magnetic field produced by the supercurrents can vary 

from a few mG to 100 G depending on the amount of current injected. A SHE 

Constant Current Supply is used to provide the DC current. The calibration of the DC 

field was carried out with a spherical lead sample by measuring the temperature 

dependence of the critical field Hc(T). The slope of the DC current versus Tc turned 

out to be - 209.4 mAIK, whereas ( ~ H J C ~ T ) ~ ~  of lead in the literature (e.g. Ref. 25) is 

- 222.1 3 OeIK. Consequently, the fieldlcurrent conversion constant is 1.06 OeImA. 

3.2.3 AC Mode 

. A schematic drawing of the AC operation is shown in Fig. 3.3. The SHE Model RBU 

Low Level AC Impedance Bridge is used as a driving source for the AC excitation and 

compensation coils. The purpose of using a compensation coil is to modify the out-of- 

balance signal owing to the fact that in practice the two astatic coils are not exactly 

identical. The highest AC frequency of the Bridge is 160 Hz, and the amplitude of the 



AC field is less than 0.1 Oe. The SQUID sensor in this mode is employed as a low 

noise null detector. The mutual inductance consisting of a primary and an astatic-pair 

secondary contains a sample whose magnetic properties are to be studied. There will 

in general be component voltages induced in the secondary both in phase and out of 

phase with the drive. Thus, the total mutual inductance can be written in the complex 

form: M = M' + iM", here M' is proportional to the real component (zero-frequency) of 

AC susceptibility x', and M" proportional to the imaginary component X" representing 

energy losses per cycle. The out-of-balance signals of both in-phase and quadrature 

are detected by a Biphase Lock-In Amplifier (PAR Model 5204) referenced to the 

operating frequency of the bridge. 

3.2.4 Flux Locked Operation 

The normal ~ p e r a t i o n ~ ~ - ~ ~  of the SQUID magnetometer is linearized, i.e. the 

change in output voltage is made proportional to the magnetic flux coupled into the 

SQUID. This is achieved by a feedback circuit in the control unit as shown in Figs. 3.4 

and 3.5. The 30 MHz rf current excites the tuned tank circuit lightly coupled to the 

SQUID. In response to the external flux, the output voltage Vd or the transfer function 

shows the typical "triangle pattern" with a period of exactly one flux quantum @o. The 

maxima A and C of the transfer function seen in Fig. 3.5 correspond to the points 

where the flux in the SQUID is an integer multiple of the flux quantum, whereas the 

minimum B occurs at the intermediate half integer of the flux quantum. The 50 KHz 

square wave whose peak-to-peak amplitude is exactly q0/2 modulates the external 

flux. 

Assume the system is initially set at point B. If the average external flux differs from 

the value at B by ti@, then the output V, is: 
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where V, is the amplitude of the transfer function, and 6@ <1/4@, to ensure the linear 

operation. After the amplification, a signal proportional to 6@ is recovered by a phase 

sensitive detector at the modulation frequency. The negative feedback current is 

applied via the feedback resistance Rf to the rf coil and balances the external flux. The 

average flux in the SQUID is therefore locked at a fixed value corresponding to B. 

As a result, the output signal proportional to the feedback current is a measure of the 

external magnetic flux threading the SQUID. It is this linearization that gives rise to the 

extreme flux sensitivity-with the use of a Digital Flux Counter (SHE, Model DFC), a 

flux resolution of 1 o - ~  qO and a field sensitivity of better than 1 0-lo G can easily be 

achieved. 

For a complete review on SQUID operation refer to, e.g., References 26-28. 

3.3 Experimental Procedure 

3.3.1 Flux in Pick U p  Coils 

The following is mainly a summary of the calculations in Ref. 29. 

Because of the special arrangement, the pick up coils, each of which has a radius 

R and N turns on a common axis with a static applied field Ha, induce a null flux signal 

when empty. A sample placed in one of the coils can then drive the sensor off null. If a 

spheroidal sample of radius r and length lare such that (R-r)ll= 0 (that is to say, no 

return flux through the pick-up loop), then the net flux per gradiometer turn in 

Gaussian units can be expressed analytically: 

r 
where $m=j(4a~)ds =6(4rrM)2rrpdp = 4&2xHa(1 + ~XD)- '  



b 

loop 

Fig 3.6. One arm of the gradiometer containing a spheroidal sample 
of central diameter 2r and heightL. The pick-up coil has radius R. 



28 

is the flux through the sample due to its magnetization, D the demagnetization factor 

of the sample, and x the susceptibility M/W,. In the case of the SQUID flux sensor, 

complication arises from the requirement that an insulating space be interposed 

between the sample and the superconducting pick up coils at some temperature 

higher than the critical temperature of the gradiometer and the SQUID. 

To account for the return flux between sample and pick-up loop, noting that the net 

flux through the loop of radius R is equal and opposite to the flux returning outside the 

loop (see Fig. 3.6), one can write 

ere H, i s the mag netization field. Thus the general expression of (3.2) has th e form 

where f is called "flux fill factor". From the integration of (3.4) for prolate or oblate 

spheroids, one obtains f in a closed but somewhat complicated form.29 When the 

sample size is small compared with that of the pickup, i.e., R/r >>I, the magnetic field 

outside the loop is mainly from the contribution of a dipole. Its radial and tangential 

components in spherical coordinates are:30 



where m is the dipole moment and 8 the azimuthal angle (see Fig. 3.6). Substituting 

the above H, into (3.4), one can readily obtain 

where M = m N  is the magnetization intensity, V the volume of the sample, and the rest 

defined as previously. The flux fill factor of a dipole then assumes a simple form: 

where E = m for a prolate spheroid and E = llm for an oblate spheroid; m is defined as 

the ratio of the long axis to the short axis. 

3.3.2 Demagnetization Factor 

There is no generai solution of the aemagnetization factor for samples of arbitrary 

shape. A general ellipsoid, being specified by the three major axes a, b, and c, can be 

shown to possess uniform magnetization in a uniform applied field. For such a body, 

the demagnetization coefficients are analytically calculable and in general, form a 

demagnetization tensor. Special cases arise where the crystals have rotational 

symmetries. Assume, for convenience, that the principal axes of the tensor coincide 

with those of the crystal and the rotational axis is in the c direction as shown in Fig.3.6. 

We will then write the following useful f o r r n ~ l a s : ~ ~ - ~ ~  for an oblate spheroid, 

a = b > cand m= alc, 

(3.1 Oa) 



where the subscripts (a, b, and c) indicate the corresp~nding crystallographic 

directions; for a prolate spheroid, a = b < c and m= cla, 

30 

(3.1 Ob) 

A useful relationship that can be shown to exist between the demagnetization 

coefficients is31 

where D, = Db for both special cases. 

In practice, samples of cylindrical and disc shapes are usually treated as the limit 

of prolate and oblate spheroids, respectively. 

Since the demagnetization factors are important in the analysis of low field 

magnetization measurements, we have made many efforts to determine them 

experimentally. Our first attempt is to find out a proportionality constant related to the 

flux-signal coupling factor T, and then obtain a simple relationship between the 

SQUID output V, and the demagnetization factor D. From (3.8), the output signal in a 

pick-up coil of N turns is 



This holds whenever the dipole approximation is appropriate. Define U = V,/H,V, 

6 = xIxo (where xo = -114% is the susceptibility for complete Meissner effect), and 

C = 2xNx0TIR, the instrumental constant. Then by rearranging (3.1 3), we have 

Consider at low temperature (T = 0 K), a calibration sample which has magnetic 

susceptibility x = x0 = -114% (6 = I ) ,  volume V,, and a known demagnetization factor 

Do, along a crystallographic axis. The SQUID output is V,, in an applied field Ha, 

parallel to the particular crystal direction. (3.14) in this special case reduces to 

This shows that the instrumental constant C can be determined by calibration. 

In order to find the value of C, short pieces of superconducting niobium wires of 

diameters 0.003" (Fine Wire Inc.) and 0.005 (Supercon Inc.), together with a 

cylindrical lead sample, were used as the standard samples whose demagnetization 

coefficients were presumably close to the ideal ones of prolate ellipsoids. Some 

characteristics of those calibration samples are given in Table 2. As can be seen, the 

flux fill factors of the cylinders differ from that of the dipole by at most I%,  which allows 

a dipole approximation. The radiuses of the cylinders are much larger than the 

penetration depth at zero temperature, suggesting x = x0 = -114n. The average output 

signal per unit field in the crystallographic c direction, (VJH,),, was taken from the 

slope of the V,-Ha curve.' The volumes of the samples were obtained from the mass 

and density. 

The average value of the proportionality constant C has an uncertainty of about 

The detailed discussions of DC magnetization measurement are given in the following subsection and 
in Chapter 5. 





Table 3. Determination of the instrumental constant C by calibration with the Nb 

and Pb cylinders. 

Sample ( ~ s / ~ a ) c *  Uc = Vs/HaV C = U,(1 -D,) C 
(Volt.0e-l) (vo l t .~e-~ .m ma) (volt.Oe-l .mma) (Ave.) 

* 
The Vs's are measured with a sensitivity setting of the SHE control unit of x 10. 



2 %, see Table 3, which may result from misalignment of the sample with respect to 

the applied magnetic field or inaccuracy of volume estimation. In any event, more 

dedicated measurements may be required. 

Assuming C is known, by measuring 6 = XIX, and U = VslHaV, we can derive the 

demagnetization factor D from (3.14), together with (3.1 2), 

In another experimental approach, we form the ratio a (defined to be always 2 1) of 

the SQUID flux signals in fields parallel and perpendicular to the rotational axis of the 

sample, and combine it with (3.1 2) and (3.14) to get a simple expression of D in terms 

of a and 6. We have, for a prolate spheroid (cylinder), a = VSa/VsC, 

In the special case of our calibrating cylinder samples, 6 - 1 and (3.1 7) reduces to 

For an oblate spheroid (layered crystal), a = VsCNsa, we find 





As shown in Table 4, the agreement between the measured and the calculated 

values is good for D, (c 1 %) but poor for D,, since D, is already vanishingly small. A 

comparison of the two experimental methods will be made for the Bi-2212 single 

crystals in Chapter 5. 

3.3.3 DC Magnetization 

Following is the typical experimental procedure for low field DC magnetization 

measurements: first, cool the sample down to the liquid helium temperature in zero 

field, referred to as "Zero Field Cooled" (ZFC), then apply a static magnetic field as 

described in 3.2.2 and start to warm the sample up by supplying a current to a heater 

either at a constant rate (typically -2.5" per minute) with a Ramp Generator or at a rate 

controlled manually with a Heater Drive; in the mean time, pump out the helium gas 

from the sample space with a diffusion pump to maintain a vacuum of about 1 o - ~  torr. 

A curve of a typical zero field cooled run for a Bi-2212 single crystal is shown in 

Fig. 3.7. If the sample is cooled through the transition in the presence of an applied 

magnetic field, the process is then referred to as "Field Cooled" (FC) and a field 

cooled curve is shown also in Fig. 3.7. The field cooled curve does not show the 

complete flux expulsion and indicates a "Meissner fraction" of about 30%. The 

incomplete shielding is mainly from the flux trapping by crystal defects. The output 

signals are recorded by a computer via interface electronics. 



3.3.4 AC Susceptibility 

The measurement of the complex AC susceptibility, x = X' + if', can be carried out 

simultaneously with the DC magnetization measurement. The variations of X' and X" 

with temperature are illustrated in Fig. 3.8. The profile of the real part of susceptibility 

X' is seen to be similar to that of the DC magnetization. In contrast, the imaginary 

component X" has a sharp peak near the transition temperature where X' changes 

most rapidly. The out-of-phase component of AC susceptibility is related to energy 

losses, due to the delaying response of the sample to the AC magnetic field. Because 

of this, the complex susceptibility is useful in analyzing the dynamic process involving 

energy dissipation, for example, of flux motion in single crystals. 



Field Cooled c 
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Fig. 3.7. Temperature dependent zero field cooled and field cooled 

magnetizations of Sample Bi-A in a DC field of 2 Oe and an AC field of 0.1 Oe 

(amplitude). The field is perpendicular to the ab-plane. 
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Fig. 3.8. The complex susceptibility of Sample Bi-C in a DC field Ha = 1 Oe and 

an AC field of 0.1 Oe (amplitude). The fields are perpendicular to the ab-plane. 



Chapter 4 Results and Discussions 

Thanks to the high sensitivity of the SQUID magnetometer, the DC magnetizations 

in low magnetic fields of small Bi2Sr2CalCu208 single crystals are measured. The 

deviations from the linear response to the applied field are regarded as the thresholds 

of the lower critical fields after the demagnetization factors have been taken into 

account. The best fit to the measured magnetic flux penetration is obtained with a 

prediction of the BCS theory and gives an estimate of the penetration depth at zero 

temperature. The interpretation of the complex magnetic susceptibility measurement 

requires an understanding of flux motion in the new high-T, superconductors. Those 

are the main tasks of this thesis as well as the outlines of this chapter. 

4.1 Determination of Lower Critical Fields 

4.1.1 Demagnetization Factors 

We simply follow the procedures and approaches described in Section 4.3 to 

determine the demagnetization coefficients for our single crystals. The geometrical 

characteristics of the two selected crystals, Bi-H and Bi-I, are listed in Table 5. The 

crystals were weighed with an electrobalance (CAHN G-2), their average thickness 

was estimated from the SEM images, and their density was obtained from the energy 

dispersive x-ray spectroscopy. The flux fill factor of the crystals, fcvsta,, deviates from 

that of a dipole, fdi,,,, by at most 0.6% as shown in Table 5, which again suggests 

that a dipole approximation is appropriate. The SQUID output signal per unit field and 

. volume was obtained from the initial slope of the V,-Ha curve. We will again use the 

notations, I l (a or b direction) and I (c direction), to describe the quantities parallel 

and perpendicular to the crystal basal plane respectively. We found, through the 

measurement of magnetic penetration depth to be discussed in Sec. 5.2, for our Bi- 

221 2 single crystals: 
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and 6,, is 0.89 for Bi-H and 0.93 for Bi-I. Thus (3.1 9) 'can be reduced to 

Because the actual values of Dl, are very small for those platelet-like crystals, within 

the experimental uncertainty, (4.2a) always gave unphysical negative values of Dl,. 

We used the relation (3.1 2) as well as (4.2b) to obtain the values of both D, and Dl,, 

and the results are summarized in Table 6. 

Similarly, taking 6, = x,IX0 = 1, (3.1 7) can be simplified: 

and the results of this method are shown in Table 7. 

As can be seen from both tables, the agreement between the two experimental 

methods is good for D, to within 0.3%. There is also good agreement between the 

. calculated and measured values to within 1 % in either method. The relative 

differences in Dl, are much larger as expected, due to the very small values of Dl,. 

It is easy to show that the uncertainty in both the susceptibility fraction XIX, and 

instrumental proportionality constant C has little influence on values of D, in the case 

of our Bi-2212 crystals. We should point out, however, that it is Ill-D, that will come 
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into the determination of the lower critical fields. In other words, Ill -Dl can have 

relatively large uncertainty although the uncertainty in D, is small. For example, the 

typical uncertainty in D, is about 0.1%, which leads to the uncertainty of about 8% in 

111 -DL. Therefore, the determination of demagnetization factors with the experimental 

methods still faces challenges. 

The advantage of the ratio method over the proportionality constant one is that 

there is no need to measure the sample's volume which, for our tiny specimens, is 

very difficult to measure. Its disadvantage for the very thin layered crystals however, 

lies in the requirement of the knowledge of the susceptibility fraction XI%,. We can 

obtain XIX, independently from the determination of h (see later). Therefore, the 

demagnetization factors obtained with the signal ratio method were adopted. 

4.1.2 DC Magnetizations 

Good crystals were selected with needles under an optical microscope 

(BAUSCH & LOMB) by cleaving them from large crystals, so that they would appear to 

have smooth surfaces and no stacking fault. Sample Bi-l was obtained by a 

subsequent cutting with a razor blade from one of the selected crystals. Fig. 4.1 

shows, as an example, three temperature dependent magnetizations, whose 

magnitudes of the total transition vary with the applied field. The temperature sweeps 

are from 4.2 K to about 100 K. The critical temperature is 85 K for Bi-H and 87 K for 

Bi-I. In the zero field cooled cycling, the applied magnetic field was started as low as 

0.1 Oe and increased to about 1 Oe with a field increment of 0.1 Oe; the field was then 

increased to about 5 Oe in steps of 0.5 Oe and then to about 10 Oe in steps of 

1 Oe; after that a few field points were scattered between 10 Oe and 100 Oe, the 

highest DC field available. Recording the DC SQUID signals (the transition heights) 

against the applied fields, we obtained the DC magnetization curves at 4.2K. 

To check the operational linearity of the SQUID magnetometer, similar DC 

magnetization measurements were carried out for several conventional (low T,) 



Sample Bi-H 

H I ab-plane 

Zero Field Cooled +, 

Temperature (K) 

- Fig. 4.1. Temperature dependent zero field cooled magnetizations of Sample Bi-H 

in perpendicular DC fields of 0.1, 0.5, and 1 Oe. 



superconductors. Three samples, a lead slab (- 1 x 1 mm2 in size and - 0.1 mm in 

thickness), a lead sphere (- 1.4 mm in radius), and a niobium cylinder (0.1 27 mm in 

diameter and - 1.3 mm in length) were chosen for the measurement. The values of 

the critical fields in the literature are: HC(4.2K) - 550 Oe for lead and 

H,, (4.2K) - 1300 Oe for niobium. Those values are much higher than the upper limit 

of the DC field the SQUID magnetometer can supply. As can be seen in Fig. 4.2, the 

M-H curve is linear for the lead slab when Ha c 30 0e:' for the lead sphere and the 

niobium cylinder however, this linearity remains up to Ha = 100 Oe. 

Fig. 4.3 shows the magnetization curves of Sample Bi-H in both field orientations. 

The data points were obtained from the transition heights of the M-T curves. The solid 

lines were extrapolated from the initial points by first order least-square fitting for very 

small applied fields (Ha I 1 Oe). Without considering the demagnetization effect, we 

can see the bending of the curves in both field configurations except that the curve in 

parallel fields breaks away more prominently than the one does in perpendicular 

fields. After the subtraction of the data points from the corresponding points along 

the straight line, the breakaways can be seen more clearly (see Fig. 4.4) and appear 

at 2.2 f 0.2 Oe in the parallel field and 1.8 f 0.2 Oe in the perpendicular field. With the 

application of the same procedure to Sample Bi-I, we have observed similar 

magnetization profiles as shown in Figs. 4.5 and 4.6, from which we located the 

breakaways to be at 3 f 0.2 Oe in the parallel field and 2 f 0.2 Oe in the 

perpendicular field. 

* 
The too early deviation may result from the deformation in the crystal when the lead sample was rolled 

into a thin slab. 



I Nb cylinder 
HI1 axis 

- 

- 
l 3 l , l , l , l , l  

Fig. 4.2. Magnetization curves of a lead slab, a lead sphere (upper), and a niobium 

cylinder (lower) with no demagnetization correction applied. 



r' H I abplane 

Fig. 4.3. Magnetization curves of Sample Bi-H determined from the transition 

heights of M-T curves in the applied fields parallel (upper) and perpendicular (lower) 

to the ab-plane without demagnetization corrections. The solid lines are linear fits to 

the low field points. 



Sample Bi-H 

H l l ab-plane 

Sample Bi-H 

H I ab-plane 

Fig. 4.4. Deviation of the magnetization from the linear increase in low fields 

for Sample Bi-H. No demagnetization correction is applied. The applied fields 

are parallel (upper) and perpendicular (lower) to the ab-plane. 



Sample Bi-l 

H I I ab-plane 

Fig. 4.5. Magnetization curves of Sample Bi-l determined from the transition 

heights of M-T curves in the applied fields parallel (upper) and perpendicular (lower) 

to the ab-plane without demagnetization corrections. The solid lines are linear fits to 

the low field points. 
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Sample Bi-l 
. . 

H I ab-plane 

Fig. 4.6. Deviation of the magnetization from the linear increase in low fields 

for Sample Bi-I. No demagnetization correction is applied. The applied fields 

are parallel (upper) and perpendicular (lower) to the ab-plane. 



4.1.3 Lower Critical Fields 

By convention, we interpret the breakaways seen in the magnetization curves to be 

the onsets of the flux penetration into the crystals. Thus, the lower critical fields can be 

determined from the relation 

where Ha, corresponds to the applied field or entrance field where the magnetization 

curve starts to deviate from the initial straight line. The in-plane demagnetization 

factors shown in Tables 6 and 7 basically approach zero, so the internal field of the 

sample is approximately equal to the external field. Whereas the out-of-plane 

demagnetization factors are large and hence crucial in the determination of the lower 

critical fields. We take X, = -1/4x, and (4.4) reduces to 

I #I 
"cl = 1 - "1 

Summarized in Table 8, the results for our Bi-2212 single crystals at T = 4.2 K 

I I 
show: Hcl = 2.2 f 0.2 Oe and Hi1 = 149 f 21 Oe for the uncut crystal (Bi-H); 

II 
Hcl = 3 f 0.2 Oe and Hi1 = 70 f 7 Oe for the cut crystal (Bi-I). Consequently, the lower 

critical field anisotropy is 68 f 11 for Bi-H and 23 f 3 for Bi-I. We think the large 

discrepancy in Hi1 for the two crystals lies in the fact that Sample Bi-l has rough 

edges because of cutting, which may result in some effects like the large local 

demagnetization factor and hence an earlier entry of the external field into the crystal. 

Therefore, the uncut crystal Bi-H is of better quality and its measured values of the 

lower critical fields should represent intrinsic properties more closely. 



Table 8. Experimental estimates of the lower critical fields of the Bi2Sr2CalCu208 

single crystals 

Sample 

Entrance Field 

(Oe> 
..................... 
I I I 

* H, was determined from the breakaway in the M-H curve. 



In comparison, the values of the lower critical fields at 4.2 K for YBa2C~307-6 single 

crystals are:35 H:, - 120 Oe and Hi1 - 690 Oe. Thus, the Bi,Sr2CalCu208 single 

crystals have much lower values but larger anisotropy in the lower critical fields. 

J. T. Lin et al, at University of Virginia and M. A. Subramanian et al. at du ~ o n t ~ ~  

estimated H:, 5 4 Oe and Hi1 S 100 Oe at T - 7 K with the DC magnetization 

measurement on Bi-2212 single crystals. Moreover, G. Shaw et aL3' at University of 

Maryland obtained H:~ (4.2 K) i 10 Oe for a magnetization measurement. Apparently, 

our measurement of H:, is fairly comparable to both of these results. 

L. Krusin-Elbaum et al.38 at IBM Thomas J. Watson Research Center analyzed the 

temperature dependent magnetization to determine the onset of the flux penetration, 

I I 
and the low temperature H,, values were determined: Hcl - 80 - 140 Oe. However, as 

they pointed out, this method may not probe the Hcl boundary but another one in the 

H-T plane, for example, vortex entanglement or crossover to vortex plasma above 

H,,.~~ Furthermore, 9. Batlogg et a1.39 at AT&T Bell Laboratories found low 

I I 
temperature H,, values as high as 170 Oe. The large discrepancies for different 

research groups and laboratories make the determination of H,, of Bi-2212 single 

crystals a controversial topic. 

This should perhaps not be too surprising when one takes a close look at the 

. morphologies of the Bi-2212 single crystals. The commonly observed phenomena, 

such as stacking faults, intergrowths between the planes, and exfoliations of the 

layers may result in an earlier penetration of the flux into the sample. On the other 

hand, the surface barrier owing to the existence of pinning centers, tends to delay the 

flux entry. The values of the lower critical fields of Bi-2212 single crystals reported so 



far, are most probably sample dependent. Obviously, it is desirable to have single 

crystals of better quality in order to reduce these effects to a minimum. 

Pointed out by A. K. Grover et. the determination of Hcl may also be affected 

by the accuracy to which the magnetization is measured. According to Bean's critical 

state model, for a large slab, 

where H* = rrJ,D/5, and Jc (in units of ~ lcm')  is the critical current density and D the 

thickness of the specimen. H* is the characteristic field that must be applied in order 

for the flux to completely penetrate into the specimen. A rough estimate indicates that 

the non-linear term in (4.6) is of the order of 0.1 Oe. Thus for this small deviation from 

the linear relation, the values of Hcl could be overestimated. 

4.2 Magnetic Penetration Depth 

4.2.1 Normalized Flux 

By measuring the low field magnetization or magnetic susceptibility, one observes 

the variations of those quantities with temperature due to flux penetration. For an 

infinite large plate of thickness 2a comparable with the dimension of the penetration 

depth h in a uniform field Ha parallel to the surface, the internal field can be obtained 

by solving London's equations. The real part of the magnetic susceptibility can thus 

be written as4' 

xCr) = 1 t a n h -  A m  a 

xo W )  



where x(T) = MIH, (or dM/dHa in the AC field) is the sample's susceptibility at 

temperature T and x0 = -114x is the bulk susceptibility (no field penetration). 

Recall that the flux in the pick-up coil is (3.1 3): 

We now define the normalized flux 

where @,, $,, and $ are the flux at initial (T - 0), normal (T 2 T,), and arbitrary state 

respectively, shown in Fig. 4.7. For superconducting samples, the paramagnetism of 

the normal state is negligible compared with the diamagnetism of the 

superconducting state. Therefore $,I$, - 0 and (4.9) becomes 

Combining (4.7) - (4.1 0) and noticing that D,, - 0, we can then write an expression for 

the normalized flux in the more concrete form: 
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Tc 

Fig. 4.7. The magnetic flux Q0, $,, and $ at T-0, P T C ,  and arbitrary temperature T. 
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h(T) a h(O) - tanh - a 
x(T) a 

- tanh - 
a(T) = 1 -- - A(T) - a h(O) 

~ ( 0 )  - w )  a 1 - - tanh  - a h(O) 

where ~ ( 0 )  and h(0) are the susceptibility and penetration depth at zero temperature, 

and a the half thickness of the plate. Obviously, the temperature dependence of a 

comes from h(T)/h(O) with alh(0) as a parameter. 

4.2.2 Comparison with Theory 

The mean-field BCS theory gives an expression for the temperature dependence 

of h: 

where A(T) is the superconducting gap. This expression was evaluated and tabulated 

by Muhlschlegel (see plots in Fig. 4.8),42 assuming a clean local limit and a weak- 

coupling ratio 2A(O)/kT, = 3.53, here A(0) is the superconducting energy gap at 

T = 0 K. The empirical two-fluid (Gorter-Casimir) model gives: 
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Fig. 4.9. Normalized flux vs temperature for Sample Bi-H. The dots are the 

- experimental data. The solid line is a two-parameter fit with the weak-coupling BCS 

model and the dashed line that with the two-fluid model (BCS strong-coupling limit). 



This relation is believed to closely follow the penetration depth for a strong-coupling 

BCS supercond~ctor.~~ Substituting the temperature dependence of h into (4.1 1) and 

using T,, the critical temperature as an additional parameter, we then obtain the 

expression for the normalized flux with either theoretical model. 

The comparison of the experimental data with the theoretical models is achieved 

by using a least-square two-parameter fitting computer program. As can be seen in 

Fig. 4.9, the weak-coupling BCS theory appears to give a somewhat better fit. The 

parameters for the best fit for Sample Bi-H turned out to be alh(0) = 9.15 and T, = 82.5 

K. Knowing the average thickness (a - 2.95 pm), we estimated the zero temperature 

penetration depth h(0) - 2900 A, note here h(0) = hll(0). Applying the same fitting 

procedure to Sample Bi-I, we obtained an equally good fit but a much larger value of 

h(0) (- 9000 A). This indicates that the field can penetrate into the cut crystal more 

easily. 

Unlike the case of Y1Ba2C~307-6 high-T, superconductors, so far there are few 

published papers devoted to the study of the magnetic field penetration for 

Bi2Sr2Ca1Cu2o8 cuprates. S. Mitra, J. H. Cho, W. C. Lee, D.C. Johnston, and V. G. 

~ o g a n ~ ~  at Ames Laboratory and Iowa State University have made a series of 

investigations of magnetic field penetration for several high-T, copper oxide 

superconductors including Bi-2212 single crystals. According to the  calculation^^^^^^, 

the magnetization in the intermediate range, H,, << Ha << Hc2, has a linear relation with 

the logarithm of the applied field. Their temperature dependent penetration depth is 

determined from the M(H) isotherm and follows the BCS weak-coupling prediction in 

the clean local limit. The zero temperature penetration depth h(0) is estimated to be 

about 3000 A. Our estimation of h(0) and the temperature dependence of h(T) are 

thus in good agreement with this measurement. 

Muon-Spin-Relaxation (pSR) technique has been extensively used to estimate the 

magnetic field penetration depth h of high-T, superconductors. At this time and for the 



Bi-2212 compound, few published pSR results are available. E. J. Ansaldo et. a1.~6 

performed pSR measurements for a powder sample of Bi-2212 (T, = 72 K) and found 

an averaged penetration depth at zero temperature h(0) = 3000 A. 
Because the temperature dependence of h is explicitly related to the 

superconducting energy gap (4.9), the measurement of h thus provides information 

regarding the symmetry of the superconducting state and the pairing mechanism. Our 

temperature dependence of h has been seen to be more consistent with the 

prediction of the clean local weak-coupling BCS theory (s-wave pairing). This 

appears to be a common feature, derived from many experimental measurements 

with different techniques for both Y-12344947-50 and Bi-2212 high temperature 

superconductors. 

At this point, we are still not certain whether the large value of h(0) is due to the 

stacking faults and/or the inhomogeneities in the crystal or an intrinsic property. As 

pointed out by many authors, the absolute magnitude of h(0) cannot be determined 

unambiguously by any fitting procedure without prior knowledge of the correct theory 

for the temperature dependence of h(T). 

The zero temperature penetration depth h(0) can be used to estimate the carrier 

density. If we assume the conventional London formula41 

where n is the normal-state carrier density and m* the effective mass of the carriers, e 

. is the electron charge and c the speed of light, in c.g.s. units, then taking 

. h(0) = 2900 A, we obtain the ratio nlm* to be of the order of 3 x 1 0 ~  carriers/cm3g. This 

is lower than that of Y-123 single crystals by one order of magnitude. If (as a crude 

estimate) we take further m* - me, the electron mass, we find a carrier density of the 

order of 3 x 1 o * ~  carriers/cm3. 



4.3 Energy Dissipation of Flux Motion 

The complex susceptibility x = X' + if' provides information about the flux entry and 

energy dissipation of flux motion, and its measurement has been performed on our Bi- 

221 2 crystals. In the zero field cooled runs, an AC field, superimposed with a DC field, 

was applied to the sample. The amplitude of the AC field was a few mG and the 

frequency was 160 Hz. The DC field was varied between 1 Oe and 100 Oe. The 

upper part of Fig. 4.1 0 shows the temperature dependence of the imaginary part of 

the AC susceptibility in different DC fields for one of our Bi-2212 crystals. The 

positions of the peaks in x"(T) shift to lower temperatures and their magnitudes 

increase as the field increases. 

The correct interpretation of the complex susceptibility measurements relies on 

the understanding of properties of the flux lattice (Abrikosov lattice) and the state of 

individual flux lines in single crystals of the high-Tc superconductors. Toward the end 

of 1986, K. A. Muller, M. Takashige, and J. G. Bednorz51 of the IBM Zurich Research 

Laboratory made an observation of the time dependence of nonequilibrium 

magnetizations in a polycrystalline La-Ba-Cu-0 sample and discussed flux motion in 

single crystals as well as within the grains. In the past year, many experiments have 

been carried o ~ t ~ ~ - ~ ~  in an attempt to understand the unusual behavior of the new 

oxide superconductors in the presence of a magnetic field. 

According to the critical state theory of Bean, Kim, and A n d e r ~ o n ? ~ - ~ ~  the 

Abrikosov lattice is formed in a type I1 superconductor at a field Ha 2 Hcl, and a 

current flowing in such a superconductor exerts a "Lorentz force" on the flux lines 

. (fluxons), tending to make them move. Flux motion driven by the Lorentz force is 

called "flux flow". In "hard" superconductors, the fluxons are pinned to prevent this 

motion. Pinning is caused by material inhomogeneities, such as point defects or grain 

boundaries, that make it energetically more favorable for a fluxon to occupy one 

position than another. To be effective, however, the pinning energy U, must greatly 



65 70 75 80 85 
Temperature (K) 

74 76 78 80 82 

Tempe rat ure (K) 

Fig. 4.10. Upper: the temperature dependence of the imaginary part of the AC 

susceptibility (x") in various DC fields. Lower: the field dependence of the peak 

temperature. 



exceed the thermal energy kT (where k is Boltzmann's constant), because the 

probability of thermally activated escape from a pinning center is proportional to 

exp(- Uo/kT). Flux motion caused by thermal activation is called "flux creep". For high 

temperature superconductors, the flux creep is unusually large at temperature and 

field values at which the Abrikosov lattice is well formed. This may be due to the 

following two reasons. One is the higher critical temperature of the copper oxide 

superconductors, which means that there is more thermal energy for flux lines to hop 

over the energy barriers. The other is the superconductors' large anisotropy and short 

coherence length, which means that the energy barriers are smaller, because the 

pinning energy U, is proportional to a correlation length LC (which can be reduced by 

the large anisotropy) and the G-L coherence length 6 (see, for example Ref. 61). 

As pointed out by many  researcher^,^^^^^ there is an "irreversibility line" in the H-T 

plane of oxide superconductors. Below this line the Abrikosov lattice is disordered 

and, although pinned to crystal defects, is susceptible to giant flux creep. Above this 

line, the flux lines can move freely with respect to the crystal lattice. In other words, the 

zero field cooled and field cooled magnetizations are the same in this region. 

In the presence of an AC field, the magnetic flux penetrates the crystal and the 

Abrikosov vortices sweep in and out of the sample, causing hysteresis losses. The 

onset of the energy losses seen in f(T) may present the onset of the flux creep and 

allow, in principle, the determination of the lower critical fields. Because the out-of- 

phase AC susceptibility measurement is not sensitive enough to detect the initial flux 

penetration, this onset in our f'(T) curve can not be clearly defined. However, the 

peaks in the x"(T) curves provide us a well defined field versus temperature line, as 

. illustrated in the lower part of Fig. 4.10. We speculate that this line is closely related to 

the irreversibility line in the low field domain. The slope of this line is approximately 

0.1 TIK. The magnetic field along the irreversibility line could vary as some power of 

Tir,ITc (for example, 3 1 2 ) ~ ~  for some range of field and temperature values, where Tirr is 



the irreversibility temperature. Further low DC field magnetization measurements are 

needed to directly measure the irreversible behavior and confirm this speculation. 

Theoretical calculations of the critical state model have been made by many 

authors, for example J. R. ~ l e m ~ ~  and K. H. Muller," for granular high temperature 

superconductors. In their arguments, the complex susceptibility measurement at a 

variety of different fields and temperatures could be used to determine the values and 

field and temperature dependence of the critical current density J,(H,T). One thus 

expects that similar calculations for single crystalline samples should be useful. 

4.4 Superconducting Parameters 

Having measured the lower critical fields H,,'s and the penetration depth h at zero 

temperature, we are now in the position to estimate other fundamental 

superconducting quantities by employing the formulas developed from the anisotropic 

Ginzburg-Landau theory. 

The anisotropic G-L parameter K first of all, can roughly be evaluated from (1 5 ) :  

K, = exp J 
Using the measured h,, (- 2900 A) and H;, (- 149 Oe) values, we estimate K, to be of 

the order of 2 x1 03. Since K, is determined from an exponential function, it obviously 

has a large uncertainty. 

Combining (1.2) - ( 1 3 ,  one can derive the following formula in a straightforward 

manner9 



where y = (~1m) l ' ~ .  By solving (4.1 6) numerically with the experimentally observed 

values of H,, and the above K,, we estimate the superconducting anisotropy constant 

y to be the order of 1 10. The effective mass ratio is then f = Mlm - 1 . 2 ~ 1  04. We notice 

here that y is insensitive to K, because of the logarithmic relation and therefore 

determined mainly by the anisotropy in H,,. 

The effective mass anisotropy has been measured independently by D. E. Farrel et 

a1.66 with the torque technique. The theoretical basis behind the experiment predicted 

that the magnetization of the crystal has a transverse component to the applied 

field.67-69 This measurement gives a temperature independent y value of 55. 

The upper critical fields can also be used to derive y through the relation 

Values of y measured by this method range from 8 to 143.70-75 Because of the large 

flux creeping in the high temperature superconductors, there are increasing concerns 

about whether the conventional resistivity measurement, from which Hc2 is usually 

determined, is probing the equilibrium values. High field magnetic measurements 

have been carried out76 to obtain H, values for Y-123 single crystals. So far there is 

as yet no such a measurement for Bi-2212 single crystals. Since the upper critical 

fields are important superconducting quantities, it may be worthwhile to perform the 

high field magnetic measurements in order to obtain the anisotropy constant y and 

evaluate the microscopic parameters like superconducting coherence length and 

their anisotropy. J. R. Cooper et. al.77 reported a y value as large as 550, by 

measuring the normal state resistivity and using a simple Drude model 



p = m*/ne2z, where z is the scattering time. From our measurement and others, the 

giant effective mass ratio suggests two-dimensional superconductivity. In fact Bi-2212 

has the largest superconducting anisotropy ever found for the layered 

superconducting compounds.17 

The penetration depth h, is controlled by the shielding current flowing between the 

Cu-0 planes. This is the situation as shown in Fig. 1.2 where the applied field is 

parallel to the ab-plane. Using the simple relation (1.2a), h, = Ally, we estimate 

h, - 32 pm. The in-plane dimension (in a or b direction) of the selected cryslals is 

- 1 mm which is considerably larger than that of h,. Consequently, the change in 

susceptibility x(T) due to this field penetration is negligible. To make the sample size 

comparable to h,, J. R. Cooper et. al.77 cut a single crystal into a smaller piece and 

measured the reduced magnetic susceptibility. They obtained a h, value of about 

100 pm. This large h, value seems to be another evidence showing the easier field 

penetration into the cut crystals due to the edge damage. 

In a magnetic field above H,,, a hard superconductor will induce a bulk critical 

current determined by the strength with which flux lines are pinned. The critical 

current density J, can be estimated from a magnetic hysteresis measurement and 

Bean's critical state model. The highest critical current density possible in a 

superconductor is the "depairing" critical current density, Jcd, above which the current 

delivers sufficient momentum to break up the "Cooper" pairs of electrons that are 

responsible for superconductivity. For a superconductor at the lower critical field H,, . 
J,, can be estimated from Maxwell's equations and the approximation: 

This limit applies to the surface of the sample to a depth of about h. Substituting our 

measured H,, and h values into (4.1 8) and expressing the values of Jcd in the 

convenient units (Ncm2 ), we have 



where Jcdll and Jcdl are the depairing critical current density parallel and 

perpendicular to the ab-planes respectively, and H,, and h are in c.g.s. units. The 

huge anisotropy in Jcd indicates that the shielding currents flow much more easily in 

the Cu-0 plane than between the planes. The bulk critical current density J, estimated 

with Bean's model in the 1 i te ra tu re~~9~ is of the order of 1 o4 A/cm2 in the "easy" 

direction (a or b direction). In comparison, J,,, for Y-123 single crystals35 is of the 

order of 1 o7 A/cm2 and J,,, of the order of 1 o6 A / c ~ ~ . ~ ~ ~ ~ ~  The low value of Jcd (and J,) 

along the "hard" direction (c direction) is expected owing to the giant superconducting 

anissiropy. Siipercondiictiviiy in this direction is probabiy sf the Josephson-csupied 

nature. 



Chapter 5 Conclusions 

5.1 Summary 

1) The Bi2Sr2CalC~208 single crystals were obtained by a flux-growth method. The 

energy dispersive x-ray spectroscopy gave a cation ratio very close to the ideal 

composition. The unit cell lattice constant c - 30.81 f 0.04 A was obtained by 

indexing the x-ray diffraction patterns. The transition temperatures of the selected 

crystals, 85 K for Bi-H and 87 K for Bi-I, were obtained from AC susceptibility 

measurements. 

2) We performed low field DC magnetization measurements on two selected 

single crystals. The lower critical fields at 4.2 K were determined: H:, = 2.2 f 0.2 Oe 

and Hi, = 149 f 21 Oe for the uncut crystal (Bi-H), HZ, = 3 f 0.2 Oe and 

Hi, = 70 f 7 Oe for the cut crystal (Bi-I). We believe that the values from the uncut 

crystal represent more closely the intrinsic properties of good quality samples. 

3) The temperature dependence of the magnetic penetration depth h(T) obtained 

from the measurement of the AC susceptibility, follows the prediction of the weak- 

coupling BCS theory in a clean local limit, indicating an s-wave pairing mechanism. 

The two-fluid model does not seem to fit the data quite as well. The penetration depth 

at zero temperature was determined from a two-parameter least-square fitting 

procedure and found to be about 2900 A. This is in good agreement with other recent 

measurements on Bi-2212 single crystals.44 The value of X(0), together with the 

London's formula, implies a carrier density of the order of 3 x 1 0 ~ ~  carriers/cm3. 

4) A well defined line in the H-T phase diagram was obtained from the peak 

position of the imaginary component of the AC susceptibility x". We interpret this line 

to be closely related to the irreversibility line in the low field domain. 



5) In the context of the anisotropic Ginzburg-Landau theory, we estimated the G-L 

parameter K, of the order of 2x1 o3 and the effective mass ratio 12 = Mlm of the order of 

1  XI 04. 

6) Using Maxwell's equations, we estimated the equilibrium supercurrent density 

(depairing critical current density) J,,, - 4x1 06~/crn2 and Jcd, - 6x1 02~/cm2. This 

results, together with the giant effective mass ratio, suggests two-dimentional 

superconducting behavior. 

5.2 Suggestions for Future Work 

The search for favorable conditions to grow single crystals of Bi-2212 of better 

quality with a useful size is still a challenging task. 

Since it is possible to carry out high field AC susceptibility measurements by using 

an existing flow-cryostat with a built-in superconducting 5 T magnet, one could obtain 

the upper critical fields Hc2 and their anisotropy. This, along with the low field 

measurement, can be used to obtain more accurate fundamental superconducting 

parameters, such as the superconducting anisotropy constant y, the Ginzburg-Landau 

parameter K, and the microscopic coherence length 5 as well as h. 

In order to directly determine the irreversibility line and compare it with the results 

obtained from the imaginary component of the AC susceptibility x", measurements of 

the zero field cooled and field cooled DC magnetization should be performed. 

Furthermore, to find the temperature dependence of the lower critical fields Hc,(T) as 

. well as the irreversible magnetization curve, it may be desirable to perform DC 

. magnetization measurements in the mode where the applied field varies while the 

temperature is fixed. But this may turn out to be difficult for the same reasons as 

encountered in the previous  measurement^:^^ a). the possibility of introducing 

additional noise into the SQUID sensor; and b). the non-linear response of the 

background to the applied magnetic filed possibly due to unbalanced pick-up coils. 
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