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Abstract 

Our research is mainly concerned with the path planning problem with general end-eflector 

constraints (PPGEC) for robot manipulators with many degrees of freedom. For example, 

a robot manipulator holding a glass of water should keep the glass vertically up all the time, 

a constraint on end-effector orientation; or, in some other cases, the end-effector may be 

constrained to  move in a plane, a constraint on end-effector position. 

In this thesis, we show that there are two approaches to deal with the PPGEC problem. 

The first approach is adapted from the existing randomized gradient descent method [33] 

for closed-chain robots. The second approach is a new planning algorithm called ATACE, 

Alternate Task-space And C-space Exploration. Unlike the first approach which works only 

in the configuration space, ATACE works in both the task space and the configuration space. 

Instead of finding a path in the configuration space directly, ATACE finds an end-effector 

path in the task space, and then computes the corresponding configuration space path by 

tracking this end-effector path. 

In our simulation environment, we have implemented and compared these two a p  

proaches. With intuitive explanations, we outline scenarios where one planner is better 

than the other. 
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Chapter 1 

Introduction 

1.1 Introduction 

Robot motion planning is the discipline to study the ability of a robot to plan its motions 

for performing a required task. It is one of the most important area in robotics research [22], 

and is a major issue for autonomous robots [30] (and more generally, autonomous agents), 

with various applications ranging from industrial automation to  computer games. 

For a rigid body, or an articulated robot which is composed of a sequence of rigid links, 

the basic mot ion planning problem is defined as [30]: 

Given a start configuration and a goal configuration of the robot, generate a collision 

free path between these two configurations i n  a known static environment. 

where a configuration is a set of parameters that completely determines the position of every 

point on the robot. 

Generally, the motion planning problem is computationally hard (PSPACEhard) [44]. 

One popular way to solve this problem is to transform it into the parameter space, the so- 

called configuration space (C-space), where every configuration of the robot is represented 

as a point. The basic motion planning problem is solved by looking for a path in the 

configuration space connecting the start configuration and the goal configuration as shown 

in Figure 1 .l. 

In some applications, as shown in Figure 1.2, when a robot manipulator tries to perform 

tasks, what really matters is the end-effector pose, i.e., the position and orientation of the 

end-effector frame. Generally, a robot manipulator can achieve the same pose with more 
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Start 2ir 

Goal 

91 

Figure 1.1: The basic motion planning problem. (a) The start is shown as the light con- 
figuration, the goal is shown as the gray configuration, and the black objects are obstacles. 
The dotted configurations are intermediate configurations along a feasible path. (b) Find a 
free path connecting the start and the goal configuration in the configuration space. ql and 
92 are joint variables of two robot joints. White area represents collision-free configurations 
and shaded area represent configurations colliding with obstacles. The robot motion in (a) 
corresponds to the path shown in (b). 

than one configuration. This leads to an extension of the basic motion planning problem also 

called the configuration-to-pose inverse kinematics problem1(C-2-P IK in short hereafter), 

which is defined as [I]: 

Given a start robot configuration, and a desired end-effector pose, determine a reach- 

able configuration for the desired end-effector pose, and a collision free path connecting 

this configuration and the start configuration. 

Unlike the basic motion planning problem, the C-2-P IK problem looks for a path in the 

C-space connecting a given robot configuration to  one of many possible final configurations 

which are implicitly defined by the given goal end-effector pose. Especially, when the robot 

is a kinematically redundant robot, there can be infinite configurations that reach the same 

end-effector pose. A redundant robot is a robot that has more degrees of freedom than the 

minimum required to perform a task. For example, for a planar robot we need at least 3 

DOFs to  make the end-effector reach an arbitrary position and orientation. The planar robot 

'1n [I], it is also called the point-to-point inverse kinematics problem, corresponding to the ezistence 
problem, which determines a robot configuration for a given end-effector pose. 
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Figure 1.2: The configuration-to-pose inverse kinematics (C-2-P IK) problem. The robot 
is a 2D redundant robot and there are an infinite number of configurations to achieve the 
shown desired end-effector pose. 

shown in Figure 1.2 has more than 3 DOFs, so it is a redundant robot. The redundancy 

created by additional degrees of freedom gives the robot dexterity and flexibility to satisfy 

secondary constraints, such as obstacle avoidance, joint limits and singularities. 

In some applications, a robot might be required to move while satisfying constraints on 

the end-effector path (or trajectory2) throughout the motion. For example, a painting robot 

or a welding robot might be required to move its end-effector along a straight line, i.e., the 

entire end-effector trajectory is given. This type of problem is generally called the trajectory 

tracking problem, and it is defined as: 

Given a start robot configuration, and an end-effector trajectory in the task space, 

determine a collision free path, such that the end-effector of the robot can move along 

the given trajectory. 

Rat her than satisfying the entire trajectory, some other applications involve other types 

of end-effector constraints along the path. For example, when a space manipulator is moving 

a satellite, the satellite may need to be maintained in a certain orientation; when a robot 

holding a glass of water moves from one place to another, it should keep the glass vertical all 

the time; or, in some other cases, the end-effector may be constrained to move in a plane or 

inside a certain portion of the workspace. We name this problem as p a t h  planning with 

general  end-effector constraints, ( P P G E C  in short hereafter). This is the problem we 

address in this thesis, and more detailed problem formulation is given in Section 1.3.1. A 

list of different robot motion planning problems is given in Table 1.1. 

'A trajectory includes a timing requirement along the path. 



CHAPTER 1. INTRODUCTION 4 

- 

C-2-P IK I Config. I End-Eff.t Pose I None 

Problem 

Basic MPh 

I Traiectorv Trackinn I Confin. I End-Eff. Pose I Given End-Eff. traiectorv (or ~ a t h ' l  1 
V ,  U ,  I , 1 I 

PPGEC 1 Config. I End-Eff. Pose I General End-Eff. Constraints 

Start 

Config.' 

b ~ ~ = ~ o t i o n  Planning; 'Config.=Coniiguration; End-~ff.=End-Effector. 

Table 1 .l: Different Path Planning Problems. 

Goal 

Config. 

Although the trajectory tracking problem is an extensively studied topic [9, 17, 20, 38, 

41, 43, 481, the PPGEC problem has not received much attention. This thesis presents two 

approaches to  deal with this problem. First, we show that existing methods for clased-chain 

robots can be modified and adapted to solve the PPGEC problem. Second, we propose a 

new global path planner, called Alternate Task-space And C-space Exploration (ATACE). 

We compare these two approaches and present simulation results for various robots and 

environments. 

Constraints 

None 

1.2 Related Work 

1.2.1 Basic Motion Planning Problem 

Latombe [30] gives three main approaches to solve the basic motion planning problem: 

Roadmap Methods, Cell Decomposition and Potential Field. However, all these methods 

mainly target low-dimension problems, dealing with robots with a small number of degrees 

of freedom. For high dimension problems, several planners have been implemented in the 

last decade or so [18], and the probabilistic sampling-based methods are one of the most 

effective approaches. The idea behind these methods is to  construct a C-space connectivity 

roadmap by randomly placing landmarks (configurations) into the C-space, and trying to 

set up the connections with neighboring landmarks. Probabilistic Road Map (PRM) [27], 

Rapidly-exploring Random Tree (RRT) [34, 291 and Ariadne's Clew Algorithm (ACA) [39] 

are the specific algorithms that broadly fall into this category. 

PRM [27] interleaves a learning phase and a query phase. In the learning phase, a 

graph is constructed in the C-space. Nodes in the graph are randomly-selected collision-free 

configurations, and edges represent the connectivity between nodes and their neighbors. In 
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the query phase, the start and goal configurations are connected to the graph, and then the 

graph is searched for a path connecting the start and the goal. 

ACA [39] interleaves two sub-algorithms: EXPLORE and SEARCH. At every iteration, 

EXPLORE incrementally constructs a tree by selecting a new node from a set of randomly 

generated landmarks, which is the farthest landmark to current tree. In this way, the tree 

represents the accessible space from the start configuration with increasingly fine resolution. 

SEARCH checks whether the goal configuration is reachable from the new-selected node at 

every iteration. 

RRT [34] uses an efficient search tree data structure, Rapid-exploring Random Tree, to 

represent the accessible free C-space from the start configuration. The tree is constructed 

iteratively, with the start configuration as its root. At every iteration a new node is added 

to the tree such that it grows toward a randomly-selected point. RRT-Connect in [29] adds 

a greedy heuristic to the basic RRT algorithm. It grows two search trees, one from the start 

and the other from the goal configuration, and checks the connectivity between these two 

trees at  each iteration after placing a new node into one of the trees. 

PRM is a multi-query planner in sense that the generated roadmap is independent to 

start and goal configurations and can be reused for different tasks. RRT and ACA are 

singlequery planners, and they need to rebuild the tree every time different start and goal 

configuration is given. A multi-query planner can save a considerable amount of time by 

constructing the roadmap in preprocessing time. In some applications, however, a single- 

query planner is preferred. For example, if an environment keeps changing and we use the 

roadmap just once, a multi-query planner may waste time in exploring unreachable areas, 

while a single-query planner can avoid unnecessary exploration by limiting the search in the 

reachable space from the start configuration. 

1.2.2 Configuration-to-pose Inverse Kinematics Problem 

Ahuactzin and Gupta [I] extend ACA for the basic motion planning problem to solve 

the configuration-to-pose inverse kinematics problem. Just like ACA, it includes two sub- 

algorithms: Explore() and Search(). Explore() constructs the tree, also called the kinematic 

roadmap, by placing landmarks in the free configuration space. Search() checks whether 

the desired end-effector pose is reachable from a new-selected landmark. Defining the cost 

function c(q,p) as the distance between the end-effector pwe under configuration q and the 

desired pose p, Search() formulates the problem into a single variable optimization problem 
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for every joint. For instance, for the ith joint, while the other joint variables are fixed, 

c(q,p) can be regarded as a single variable function with respect to ith joint variable qi. It is 

simple to compute the optimal qi, and after doing an optimization for each joint iteratively, 

c(q,p) converges to a local optimal value. If c(q,p) = 0, then the goal is achieved; otherwise, 

Explore() is called again followed by Search(). Note that any other local approach (e.g. 

Jacobian-based planner) can be used in Search() instead of the specific algorithm proposed 

in that paper. 

1.2.3 Trajectory Tracking Problem 

The approaches to  solve the trajectory tracking problem are classified into two classes ac- 

cording to  applications. One class of approaches is for local online control problems which 

require real-time control. The other class is for global offline planning approaches which 

compute a feasible joint path beforehand. Jacobian-based pseudeinverse control techniques 

[17, 38, 411 are local approaches for online applications; Seereeram and Wen [48] extended 

Jacobian-based techniques to a global approach for offline applications, and Oriolo et a1 (431 

proposed a different global approach using the probabilistic method. 

Jacobian-based techniques work on instantaneous velocity. The basic idea of these tech- 

niques is that, as the end-effector trajectory is given, the joint velocity along the trajectory 

is computed by the end-effector velocity. The end-effector velocity, 2 ,  is represented in terms 

of joint velocities, q, thus 

x = J q  

where J is the Jacobian matrix. The joint velocity is computed as 

where I is the identity matrix and Jt is the generalized inverse3 of J, and z is an arbitrary 

vector in the C-space. The first term is the minimum norm solution for x = Jq,  and the 

second term is the homogeneous solution to satisfy additional constraints. ( I  - J t J ) z  is 

actually a vector in the null-space of J ,  also known as self motion, which means that any 

movement caused by ( I  - J I J ) ~  does not affect the end-effector pose. Several strategies to 

choose z for additional constraints are proposed: z can be chosen to avoid obstacles [38], 

to avoid joint limits [37], or to  achieve good manipulability [52]. However, the drawback of 

3Also called Moore-Penrose inverse, for more about generalized inverse, refer to Appendix A.2 
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this approach is that it is a local method and the robot may get stuck into the local minima, 

even in relatively simple environments. 

To avoid the local minima problem in the previous techniques, Seereeram and Wen [48] 

proposed a global approach. In this approach, the problem is transformed into a finite time 

non-linear control problem, x = F(u),  where x is system state, u is control variable and F is 

a non-linear function. For instance, there are m sample points along the trajectory, and the 

system state of the transformed control problem, x,  is the stack vector of the end-effector 

pose at every sample point, 

where x(ti) is the end-effector pose at ti. The stable system state xd is the desired end- 

effector trajectory. The underlying problem is how to  find a control variable u, the stack 

vector of the joint velocity at every sample point, 

to achieve the stable system state, i.e., Ilx - xdll = 0. Although an explicit form of F 

is hard to find, the gradient of F, VuF,  is relatively easy to compute. V u F  = El is a 

Jacobian-related matrix. Having VuF,  u is computed by a Newton-Raphson type iterative 

algorithm. The advantage of this method is its globality and it can incorporate both C- 

space constraints and task-space constraints. However, the computation of this approach 

is expensive, because the transformed control problem is an m x n dimensional problem, 

where n is the DOF of the robot, and m is the number of samples along the trajectory. 

A different global approach is proposed in [43], which uses the probabilistic sampling 

method to  solve this problem. Like probabilistic planners for the basic motion planning 

problem, it explores the connectivity of the C-space. However, since the end-effector path is 

given, it does not have to explore the entire C-space; instead, it explores C-space areas such 

that the end-effector moves along the given end-effector path. Generally, for a redundant 

robot, an end-effector pose, p, corresponds to a set of configurations in the C-space, the 

secalled self-motion manifold, denoted as SM(p). The given end-effector path defines the 

sequence of poses, and for the path to be followed by the robot, self-motion manifolds for 

these poses must be connectable, i.e., to be a configuration in the path, qi+l E S M ( P ~ + ~ )  

should be connectable to SM(pi). SM(pitl) is explored biased on those configurations 

that have been explored for pose pi. To generate configurations for an end-effector pose, it 
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uses active-passive link decomposition techniques [19, 101 for closed-chain robots described 

in the next section. Different connecting strategies are proposed in [43]. For example, 

Greedy planner is a depth-first connecting strategy which consecutively generates only one 

configuration for each pose based on the configuration for the previous pose. RRT-Like 

planner tries to explore more than one configuration for each pose, and it applies regular 

RRT 1341 to active joints, and the passive joint is determined by the pose sequence. More 

details about this approach are discussed in Section 4.1. 

1.2.4 Motion Planning for Closed Chain Robots 

As shown in Figure 1.3(a), a closed-chain robot is a robot with a closed-loop kinematic chain 

mechanism whose end-effector is linked to the base by several independent kinematics chains 

[40]. This is a related problem to our problem, in the sense that the closure constraint for 

closed-chain robots can be thought of as end-effector constraints for open chain robots. In 

the next chapter, we adapt some planning techniques for closed-chain robots to deal with 

our PPGEC problem. 

Figure 1.3: A closed-chain robot. 

Different probabilistic methods have been proposed for robots with closed-loop kinematic 

chains. Lavalle et a1 [33] use a randomized gradient descent (RGD) technique. If a configu- 

ration qo is generated r a n d ~ m l y , ~  normally q = qo does not satisfy the closure constraint. As 

shown in Figure 1.4, the closed chain is broken under qo. Defining e(q) as the broken gap, 

this method searches for a configuration such that e(q) = 0. Instead of descending exactly 

4A feasible configuration for closed-chain robots is in a closure space [31], C,~,,,, which is a sub-space of 
C = Rn. Starting with qo E C, RGD finds a configuration in C,t,,,. 
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along the gradient, it randomly picks up some configurations in the neighboring area of q 

and finds a configuration q', such that e(ql) < e(q) and repeats the search until the error is 

small enough. 

Figure 1.4: Randomized gradient descent method. 

Han et a1 [19] proposed an active-passive link decomposition technique. As shown in 

Figure 1.5(a), the chain of a robot manipulator is partitioned into two sub chains: an active 

chain and a passive chain. Joint variables for the active chain are generated randomly, and 

passive chain joint variables are computed as a non-redundant robot to satisfy the closure 

constraint. However, to generate a valid configuration is not always easy. For some choices 

of active variables, it may be impossible for passive variables to close the loop, as shown in 

Figure 1.5(b). A valid configuration is generated if and only if the end-frame of the active 

chain is in the workspace of the passive chain. Intuitively, the possibility of getting a feasible 

closure configuration depends on the reachable workspace of two chains. The larger is the 

volume of the intersection between these two workspace, the higher is the possibility. In 

some cases, the active chain has a high number of joints and links, resulting in small volumes 

of intersection, thus the chance of obtaining a closure configuration is fairly small. 

Cortes el a1 [lo] use a random loop generator method to improve the chance of reaching 

closure configurations by iteratively restricting the range of the active variables. The method 

takes reachable workspace of the active chain and the passive chain into consideration, and 

the joint variables are generated one after another. For instance, once joint variables of the 

first to (i - l ) th  joints are known, a range of the ith joint variable is computed such that, 

within this range, the tip of the active chain intersects the reachable area of the passive 

chain. Thus, the ith joint variable can be selected randomly in this range. Cortes' method 

uses spheres to  approximate the reachable workspace, because a precise volume is difficult to 

compute. Therefore, this method improves the probability of obtaining a closure constraint 
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Figure 1.5: Active-passive link decomposition technique. (a) A 7-DOF closed-chain robot 
is decomposed into an active chain with 5 joints and a passive chain with 2 joints. (b) 
Generating a feasible configuration maybe impossible with some randomly-chosen active 
variables. 

but does not completely resolve the problem. 

On the other hand, both methods in [lo] and [I91 require closed-form inverse kinematics 

to solve passive variables. Computing closed form inverse kinematics for general robots 

is complex and tedious, and a good decomposition into active and passive joints is fairly 

robot-specific in general. 

1.3 Thesis Problem 

1.3.1 Problem Definition 

We now formally state the path planning problem with general end-effector constraints 

(PPGEC). The end-effector we are interested in is a rigid body with a frame, and it can 

be a gripper along with gripped objects. The constraints are denoted in terms of the end- 

effector pose, p. p can be represented as a pair ( P ,  0), where P is the position of the origin 

of the end-effector frame, and O is the orientation of the end-effector frame with respect to  

the universe frame. 

P E R~ 

where N = 2 for planar applications and N = 3 for spatial applications. O is an N x N 

rotation matrix in the Special Orthogonal Group, denoted by SO(N) [30]. In general, an 
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end-effector pose 

p E RN x S O ( N )  

where N=2 or 3. If the problem is limited to the position of the end-effector, then 

p E R ~ .  

p can be parameterized into two triples: (x, y, z )  for position 'P, and ( a ,  P, y) for orientation 

O with fixed-angle representation (see Appendix A. 1 . I) .  

Denote the equality constraints for the end-effector as 

where G is a continuous function in task space, which corresponds to  a submanifold in 

C-space. For example, if the end-effector is required to  be vertical, the constraint is 

If the end-effector is required to move in a plane, the constraint is 

(ax + ba: + cz + d)' = 0 

where (a, b, c) is the norm of the plane. 

Given this notation, two categories of problems are formulated: 

1. Configuration-to-pose (C-2-P) PPGEC problem which corresponds to  the C-2-P IK 
problem, but with additional constraints. It is defined as: 

Given a start robot configuration q,, and a desired end-effector pose p,, determine a 

reachable configuration qg and a collision free path q(r )  to it, 7 E [ O , l ] ,  such that 

q(0) = q,, q(1) = q,, F(q,) = p,, and end-effector pose p(r )  satisfies constraints (1.1) 

for all T E [O,l]. 

2. Configuration-to-configuration (C-2-C) PPGEC problem which corresponds to  the 

basic MP problem, but with additional constraints. It is defined as: 

Given an start configuration q, and a goal configuration q,, find a collision free path 

q ( ~ ) ,  T E [O,l], between the two configurations, such that q(0) = q,, q(1) = q,, and 

end-effector pose p ( ~ )  satisfies constraints (1.1) for all 7 E [0, I].  

The C-2-P problem is the main focus of this thesis, but extensions to  the C-2-C problem 

are also discussed. 
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1.3.2 Solution Outline 

Adaptation of Existing Closed-chain Methods 

Techniques for closed-chain robots are applied and modified to solve our problem. The 

method in [33] takes the closure constraint as a special type of end-effector constraint, and 

we adapt the method for more general end-effector constraints. Three key modifications 

made to the RGD method in [33] are summarized below, and more details are presented in 

Chapter 2. 

1. Instead of the distance function e(q)  used in [33] for closed-chain robots, we need to 

use a more general cost function that represents the "distance" to the end-effector con- 

straint. Note that the previous form of the cost function will depend on the constraint. 

Section 2.1 outlines this in detail. 

2. In our case, the goal is defined as an end-effector pose (for C-2-P problem). For 

a redundant robot, it generally corresponds to  an infinite number of possible goal 

configurations. This necessitates different treatment in roadmap query procedure. For 

example, different configurations for the goal end-effector pose need to be generated 

(see below) and then evaluated. 

3. [33] uses a multi-query PRM-based scheme. In our applications, as the environment 

changes frequently, a single-query method is preferred. Therefore, we propose a RRT- 

based single-query scheme. 

Note that any configuration generation technique for closed-chain robots can be used 

to generate configurations for open-chain robots for a given end-effector pose. As shown 

in Figure 1.6, once the end-effector pose is given, the base and the end-effector are both 

fixed, and an open chain robot can be regarded as a closed-chain robot with an imaginary 

joint connecting the base and the end-effector. To generate a configuration satisfying the 

closure constraint for a closed-chain is equivalent to generating a configuration for the desired 

pose for the corresponding open chain. Getting configurations for a given end-effector pose 

is an essential problem when we adapt [33] for our problem, where we need to generate 

configurations for the goal pose. 
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Figure 1.6: Generating a configuration for a given pose of an open-chain robot is equivalent 
to generating a configuration for a closed-chain robot. 

Proposed New Algorithm: ATACE 

Unlike the trajectory tracking problem where all feasible poses are given, in our problem a 

pose is not given explicitly. Instead, it is implicitly described by constraints like G ( p )  = 0, 

which may correspond to  an infinite number of feasible poses. For some simple applications, 

it may indeed be possible to  derive the closed form of these feasible poses and randomly 

choose one, but for general cases, efficiently selecting a feasible pose is difficult. This is 

illustrated with a simple example shown in Figure 1.7. 

Figure 1.7: Example of generating configurations for constraints. A spatial robot with n 
joints is required to move its end-effector in the constraint plane. Assuming we use the 
method in [19], we choose the last two singlelined joints, {Jn-l, J,), as the passive chain, 
and other doublelined joints, {J1, . . . , JnPz), as the active chain. After we generate the 
active joint variables randomly, we get the base of the passive chain. In this case, the 
reachable workspace of the passive chain at the generated active joint variables is a disc, 
since axes of the passive joints, JnP1 and J,, are parallel. To satisfy the constraint, the 
feasible end-effector poses must lie on the intersection between this disc and the constraint 
plane, which is a line segment in this example. It is possible to derive a closed form expression 
of this intersection and randomly choose a pose. But, if the constraint is not a simple plane, 
the intersection for feasible poses is harder to  compute. If the axes of JnP1 and J, are not 
parallel, their reachable workspace is more complicated than a line, and choosing a feasible 
pose is even more difficult. 



CHAPTER 1. INTRODUCTION 14 

In addition, for general end-effector constraints, connecting two configurations is ineffi- 

cient, because the end-effector also needs to satisfy these constraints at  every intermediate 

point along the path connecting these two configurations. Note that this issue can be avoided 

in the trajectory tracking problem where two configurations are connected in a straight line. 

This is because we can always assume the sample points are dense enough along the end- 

effector trajectory, and configurations are generated in a neighborhood of their predecessors 

such that a linear movement in the C-space results in an approximately linear movement 

in the task space, consequently, the end-effector will not deviate from the given trajectory. 

For our problem, no explicit end-effector trajectory is given. Instead only the end-effector 

constraints are specified, and there is no simple way to  connect two feasible configurations 

and guarantee the end-effector motion in between satisfies the constraints as well. 

Oriolo [43] used a probabilistic method for the trajectory tracking problem, taking ad- 

vantage of that all the feasible end-effector poses are given and connectivity among these 

poses is known. Inspired by that, is it possible to  obtain the information of poses and their 

connectivity for the PPGEC problem? If poses are given, it is relatively easy to generate 

configurations using existing techniques. As the constraints are given in terms of end-effector 

poses, connecting two poses in the task space is easier than connecting corresponding con- 

figurations in the C-space. For example, consider the constraint G(p) = 0 in the task space. 

If two feasible configurations are to be connected in the C-space, then we need to compute 

and satisfy the constraint in configuration space, i.e., G(F(q)) = 0 must be explicitly com- 

puted. On the other hand, if two poses are first connected in the task space, we do not 

need to transform the constraint. This end-effector path can now be used as an input to 

a trajectory tracking algorithm. This leads to our new planning algorithm, ATACE, Al- 

ternate Task-space and C-space Exploration. Instead of exploring the configuration space 

directly, it explores the task space first for feasible end-effector poses and paths connecting 

the poses. Then, feasible end-effector paths are used to  guide the C-space exploration of 

the underlying trajectory tracking problem. The following two observations also show that 

task-space knowledge, in some cases, will help C-space exploration. 

I .  The Trajectory tracking problem is generally easier than the basic motion 

planning problem. 

Consider the scenario depicted in Figure 1.8, we applied a PRMIRRT planner on 

(a) as the basic motion planning problem, and the probabilistic trajectory tracking 
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planner [43] on (b). The results show that the latter planner runs much faster than 

the former one. The reason is as follows: since the trajectory tracking planner (b) is 

given an explicit end-effector trajectory, it only needs to  explore some sub-spaces of 

the C-space instead of exploring the entire C-space like the planners in (a). Also the 

trajectory tracking planner knows the connectivity of these subspaces. It might be 

an unfair comparison since the motion planning problems in (a) and (b) are different. 

Nevertheless, to  solve the basic motion planning problems or the inverse kinemat- 

ics problems like (c), we can first find a feasible end-effector path, and then apply 

trajectory tracking planners to  solve it. That is the basic idea behind ATACE. 

Figure 1.8: Different motion planning problems. The black objects are obstacles. (a) The 
basic motion planning problem: the darker configuration is the goal configuration and the 
lighter one is the start configuration. (b) The trajectory tracking problem: the dotted line 
is a specified path for the end-effector to  follow. (c) The C-2-P inverse kinematic problem: 
the frame between two obstacles is the desired pose. 

2. Uniform sampling in C-space results in biased sampling in task space 

For higher dimensional problems, uniform sampling in the configuration space nor- 

mally results in unevenly distribution of end-effector poses in the task space. For 

example, 1000 samples were uniformly distributed in the C-space for the redundant 

robot shown in Figure 1.8. As shown in Figure 1.9, the corresponding distribution 

of end-effector positions is uneven in the task space. So it may not be efficient using 

uniform Gspace sampling, if the robot wants to go to somewhere in the task space 

with sparse samples. 

One way of rectifying the uneven distribution of samples in the task space is to bias 
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the sampling in the C-space [35, 51, 161. In [51, 161, biased sampling strategies are 

based on task-space knowledge, but their methods are intended for rigid bodies. For 

robot manipulators, a similar method is employed in ATACE where biased sampling 

strategies based on task-space knowledge guide C-space exploration. 

Figure 1.9: Comparison of uniform samples in the C-space with corresponding samples in 
the task space. (a) 1000 samples evenly in the C-Space. (b)Corresponding end-effector 
positions in the task space computed from forward kinematics equations. 

1.4 Contributions 

1. A d a p t  existing p a t h  planning methods  for closed-chain robo t s  

The randomize gradient descent method [33] for closed-chain robots is adapted for the 

PPGEC problem. Different cmt functions are defined to  deal with more general con- 

st raints on the end-effector. We propose both multi-query and single-query versions, 

since different applications may require one or the other. 

2. P ropose  a new planning a lgor i thm 

A new algorithm, ATACE, is proposed for the PPGEC problem. Unlike those pure 

C-space search methods, it is a task-space directed C-space exploration. It first uses a 

probabilistic method to explore the task-space for feasible end-effector paths and then 

track the paths in C-space by trajectory tracking techniques. The knowledge about 

feasible end-effector paths in task-space refines the search in C-space. This paradigm 

also can be applied to  the path planning problems such as the basic motion planning 

problem and the C-2-P IK problem. 
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3. Improve probabilistic methods for the trajectory tracking problem 

ATACE uses a trajectory tracking planner as a local planner. A probabilistic trajec- 

tory tracking approach is proposed in [43], but it does not allow self-motion along the 

path and has reduced globality. A novel self-motion graph is introduced into current 

probabilistic approach for better connectivity, and the improved planner can more 

efficiently find a joint path. 

4. Implement planners within MPK 

Within MPK (Motion Planning Kernel), a software library for motion planning de- 

veloped at SFU [15], we show that the PPGEC problem can be solved by both the 

adapted randomized gradient descent method and the newly-proposed algorithm, AT- 

ACE, and we compare the performance of these planners with different scenes. 

1.5 Thesis Outline 

The remainder of the thesis is organized as follows: In Chapter 2, we adapt existing random- 

ized gradient descent method for closed-chain robots [33] to solve our problems. In Chapter 

3, a new planning algorithm, ATACE, is proposed, and a detailed description including the 

algorithms is given. Since different local planners can be used in ATACE, some local plan- 

ners are introduced in Chapter 4, including some improvements or adaptations we made 

for these planners; Chapter 4 also includes experiments that were done to evaluate these 

local planners. In Chapter 5, we present our implementation of the two global planners 

implemented within MPK. In Chapter 6, experimental results for the different algorithms 

are presented and compared. Finally, conclusions and future research issues are presented 

in Chapter 7. 



Chapter 2 

Adapting Existing Approaches for 

Closed-chain Robots 

As discussed in the introductory section, the randomized gradient descent method [33] is 

adapted for solving the PPGEC problem. In this chapter, we give a detailed description of 

this adapted planner. To make the constructed roadmap satisfy more general end-effector 

constraints, in Section 2.1 we adapt the roadmap constructing function, by defining different 

cost functions. To adapt it for configuration-to-pose problems, in Section 2.2 we generate 

configurations for the given goal end-effector pose, before we integrate it into both multi- 

query and single-query schemes in Section 2.3. 

2.1 Construct Roadmap Satisfying End-Effector Constraints: 

Basic Routines 

The basic routines to construct a roadmap are Generate-Feasible-Configuration() and Con- 

nect-Feasible-Configurations(). The former generates feasible configurations that are colli- 

sion free and satisfies end-effector constraints, and the latter connects two feasible configu- 

rations assuring every intermediate configuration along the connection is collision free and 

satisfies the constraint as well. Both routines are similar to  those for closed-chain robots in 

[33], except for different cost functions are defined the following section. 
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2.1.1 Generate Feasible Configurations 

The routine Generate-Feasible-Configuration() uses the randomized gradient descent method 

to reduce a cost function e(q) which represents the "distance" to the constraint. It randomly 

generates a configuration q, and then searches in the neighborhood of q for another con- 

figuration qt which reduces the cost function e(q). The search is repeated, until the cost 

function e(q) is less than a threshold value E .  

1. q +RANDOM-CONFIG(); 

2. i t 0; j t 0; 

3. WHILE (i < I) AND ( j  < J) AND (e(q) > t )  

4. i t i + l ;  j t j + l ;  

5. q' +- RANDOMr\JHBR(q); 

6. IF (e(qt) < e(q)) THEN 

7. j t O ;  q t q t ;  

8. IF  (e(q) < t )  THEN 

9. RETURN q; 

10. ELSE 

11. RETURN failure; 

RANDOM-NHBR(q) generates a random collision-free configuration in neighborhood of 

q (within a small pre-defined distance). The cost function e(q) is defined as the "distance" 

to the constraint. To deal with different end-effector constraints, different cost functions 

need to be defined. For example, for the planar constraint, where the end-effector moves in 

a plane, the cost function is defined as the Euclidean distance from the end-effector to the 

plane, as shown in Figure 2.l(a). For orientation constraints, the cost function involves the 

rotation matrix. For example, if we have an orientation constraint requiring the end-effector 

to be pointing vertically down. Assume this requires the z axis of the end-effector frame 

match the z axis of the universe frame, thus 
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Then, as shown in Figure 2.l(b) the cost function is defined as distance between two vectors, 

Figure 2.1: Cost functions for different constraints. (a) Cost function for a planar constraint. 
(b) Cost function for an orientation constraint. 

2.1.2 Connect Two Feasible Configurations 

As shown in the following pseud~code, Connect~Feasible~Configurations() uses a similar 

method as Generate-Feasible-Configuration() to connect two feasible configurations. The 

difference is, in this neighborhood search, the target configuration is the one that not only 

reduces the cost function but also reduces the distance to the other end, q'. 

Connect_Feasible~Configurations(q, q') 

1. i t 0 ;  j t 0 ;  k t O ;  L t i q )  

2. WHILE (i < I) AND ( j  < J) AND (k < K) AND (p(Last(L), q') > po) 

3. i t i + l ;  j t j + l ;  

4. q" t RANDOM-NHBR(Last(L)); 

5. IF (e(q") < E )  THEN 

6. j t O ;  k t k + 1  

7. IF (p(qU, q') < p(Last(L), q')) THEN 

8. k t 0; L t L+ iq"); 
9. IF (p(Last(L),qf) 2 po) THEN 
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10. RETURN L; 

11. ELSE 

12. RETURN failure; 

RANDOM-NHBR(), t o  some degree, controls how densely the connection will be dis- 

cretized. If the radius of the neighborhood is set t o  a smaller value, then there will likely 

be more configurations along the connection. Last(L) is the last element of L and p(q, q') 

is the distance of two configurations. 

Connect-Feasible-Configurations() uses the randomized gradient descent method t o  con- 

nect q and q'. As an alternative, a closed form connecting procedure is also proposed in [33]. 

The procedure can be done by stepping in the tangent plane of the constraints, G(q) = 0. As 

q and q' are in the tangent plane, we can s tep from q t o  q' by iteratively choosing increment, 

dq, which satisfies Equation (2.1) below. 

In Equation (2.1) m < n, and it can be solved by linear algebra techniques such as  singular 

value decomposition, SVD [50]. Given a position and orientation constraint 

where P is position and 0 is a set of orientation angles. We have 

aG where, 3F and are easy to  derive, and and are the Jacobian matrix for the robot 

kinematics with respect t o  end-effector position and orientation1 respectively. 

In Equation (2.1) the rows do  not have t o  be independent. For example, consider an 

orientation constraint like "keep the end-effector vertical", i.e., the orientation of the z axis 

remains constant. The  corresponding constraint is stated as 

'The analytical Jacobian (471 needs to be used for orientation, which involves the derivative of orientation 
angle directly instead of the angular velocity. 
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where '2 is z-axis unit vector of the end-effector frame with respect t o  the universe frame. 

The three rows of the constraint in (2.2) are not independent; intuitively the given orienta- 

tion constraint takes away two degrees of freedom. But the dependence does not affect the 

result, and we can use the  same approach to  solve (2.2) as we do  for (2.1). 

2.2 Generate Configurations for an End-effector Pose 

In C-2-P PPGEC problems, the goal is given as an end-effector pose instead of a single 

goal configuration, while [33] considered the C-2-C problem. To adapt the C-2-C algorithm, 

we can randomly generate a configuration for the given goal end-effector pme, and try t o  

connect this configuration into the constructed roadmap. If it fails, then the next time, we 

try a different configuration for the goal pose. So we need a method t o  generate possible 

configurations for a given end-effector pme. As we mentioned in the introduction, the 

planners for closed-chain robots [33, 19, 101 are suitable for this purpose. 

2.2.1 Active-passive Link Decomposition Method 

The Generate-Feasible-Configuration-Fodose) procedure randomly generates a configu- 

ration for a given pose. It uses the active-passive link decomposition method [19] breaking 

the kinematics chain into the active sub-chain and the passive sub-chain. The active con- 

figuration is generated randomly, and the passive configuration is computed via closed-form 

inverse kinematics. 

1. FOR (i=l t o  MAX-RAND-RETRY) 

2. qa t RandomActive(); 

3. qP t ClosedformlnvKin(p, qa); 

4. I F  (success) THEN 

5 .  q (qQ,qP); 

6. I F  (Is-Collision_Free(q)) THEN 

7. RETURN q; 

8. RETURN failure: 
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2.2.2 Randomized Gradient Descent (RGD) Met hod 

The procedure Generate-Feasible-Configuration() is also suitable for generating configura- 

tions for a given end-effector pose, with a change in the cost function e(q). With reference to 

Figure 2.2(a), define e(q) as the Euclidean distance between the current end-effector position 

to the goal position: 

If orientation is considered as well, then define e(q) as the coordinate frame distance between 

current end-effector frame and the goal end-effector frame [I] as shown in Figure 2.2(b). Let 

where d(2e,2g), d(ye, yg) and d(ie,Sg) are the distances between the vertices of x, y and z 

axis unit vectors respectively. 

Figure 2.2: Cost function to generate configurations for a given end-effector pose. (a) e(q) 
for position. (b) e(q) incorporating both position and orientation. 

2.3 Multi-query and Single-query Schemes 

Both multi-query and single-query planners can now be implemented. 

1. PRM-based multi-query scheme: PRM-RGD. 

A graph roadmap is constructed incrementally with the method we introduce in Sec- 

tion 2.1. It repeatedly adds feasible configurations to the graph and connects them 
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with neighboring configurations. After the roadmap is constructed or updated, a 

randomly-chosen goal configuration for the given goal pose is connected to the roadmap 

for query. 

2. RRT-based single-query scheme: RRT-RGD. 

A search tree is constructed incrementally with the start configuration as its root. 

During each iteration, the tree is extended in a random direction, and the algorithm 

attempts to connect a randomly-chosen configuration for the given goal pose. 

2.3.1 PRM-based Mul t i - que ry  S c h e m e  (PRM-RGD) 

PRM-RGD is similar to PRM for the basic motion planning problem [27]. It interleaves 

roadmap constructing and path querying. Note that PRM is a multi-query planner, and the 

roadmap is independent of the start and goal; however, for simplicity and fair comparison 

with RRT type planners, we simply put the start configuration into the roadmap at the 

very beginning. 

1. N + {q,); E + 0; //Initialize road-map 

2. LOOP UNTIL (time out) 

3. Construct-Roadmap(); //Iteratively construct road-map 

4. p a t h  tQuery( ) ;  //Search for the path 

5. IF (success) THEN 

6. RETUR.N pa th ;  

7. RETURN failure; 

Roadmap Construction 

The following procedure iteratively constructs the roadmap by adding a feasible configura- 

tion to the roadmap and connecting the configuration to  neighboring configurations. 

C o n s t r u c t R o a d m a p  () 

1. FOR ( i= l  to NUM-NODE-PERITERATION) 

2. c + Generate-Feasible-Configuration(); / / c  satisfies the constraint 
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3. N, t Get-Neighbors(c); / / G e t  neighbors i n  the road-map around c 

4. N t  N u { c )  

5. FOR (all n in Nc) 

6. I F  (Connect-Feasible~Configurations(c, n)) THEN 

7. E t E u {(c,n)); 

R o a d m a p  Query 

The following procedure adds a randomly-generated goal configuration corresponding to the 

goal pose to the roadmap, and searches for the path joining this configuration and the start 

configuration, q, . 

1. FOR (i = 1 T O  MAX-RETRY-FOR-GOAL) 

2. q t Generate-Random-Configuration(p,); / / F ( q )  = p, 

3. N  t N U {q); / /Add  q into road-map 

4. N, t Getr\Jeighbors(q) ; 

5 .  FOR (all n in N,) 

6. I F  (Connect~Feasible~Configurations(q, n )  THEN 

7. E + E u ( (914) ;  

8. qg + 4; 

9. BREAK; 

10. IF (qg # NULL) THEN / / I F  some q has been connected into road-map 

11. path tFind-Path(q, ,  9,); 

12. I F  (success) THEN 

13. RETURN success 

14. RETURN failure; 

2.3.2 RRT-based Single-query Scheme (RRT-RGD) 

RRT-RGD is similar to RRT-Connect for the basic motion planning problem (291. However, 

it grows the tree from the start configuration only, rather than growing the tree simultane- 

ously from the start configuration and the goal. The tree is extended in a random direction 
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to generate a new configuration, and connects the configuration to the goal in a greedy way. 

The procedure is described below. 

'T t Initialize-Tree(q,) ; //Initialize random tree 

REPEAT 

q, +- Random-Config(); / / q ,  generated completely randomly 

q, +- NearestlVode(q,); //Closest configuration i n  T 

(s, qnew ) +- New-Config(qc, 9,); 

/ /qnew satisfies the constraint, and is roughly i n  direction of q, 

IF ( s  # Trapped)  AND (Connect~Feasible~Configurations(q,, qnew)) 

/ / i f  qnew is connectable to q, 

7.add_verte~(~,,,) ; 7.add-edge(q,, qnew); 

IF (Connect~To~Goal()=success) 

RETURN success; 

UNTIL (time out) 

RETURN failure; 

E x t e n d  t h e  t r e e  i n  a r a n d o m  direction 

The following procedure generates a feasible configuration in a random direction. In PRM- 

RGD scheme a feasible configuration is generated around a randomly generated configura- 

tion, while in RRT-RGD scheme, the generated configuration is biased toward the search 

tree. As shown in Figure 2.3(a), in the regular RRT, it generates a configuration q, which 

lies in the straight line between q, and qT with a fixed distance [ to  q,. However, for our 

problem, q may not satisfy the constraint, and a feasible configuration, q', is chosen around 

q with the randomized gradient descent (RGD) method, as shown in Figure 2.3(b). 

1. q +- a config along straight between q, and q,, and Ilq, - qll = [; 

2. q' +-Get-Config-Satisfy-Constraint (q) ; 

3. IF (Is-Collision_Free(q')) 
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Figure 2.3: Comparison of tree extension with regular RRT for the basic motion planning 
problem and RRT-RGD for the PPGEC problem. (a) Random tree extension with the 
regular RRT. (b) Random tree extension with RRT-RGD 

4. RETURN (Advanced, ql); 

5. ELSE 

6. RETURN (Trapped, NULL); 

Get-Config-Satisfy-Constraint (q) 

l . i + O ;  j + O ;  q l + q  

2. WHILE (i < I) AND ( j  < J) AND (e(ql) > E )  

3. i t i + l ;  j t j + l ;  

4. q" + RANDOM-NHBR(ql); 

5 .  IF (e(cf) < e(ql)) THEN 

6. j + 0; q1 + qll; 

7. IF  (e(q) < E )  THEN 

8. RETURNql; 

9. ELSE 

10. RETURN failure; 

Greedy Algorithm t o  Goal 

Since the goal is given as an end-effector pose, a configuration is generated for the end- 

effector goal pose and Connect-Feasible-Configurations() connects this configuration to the 
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search tree. 

1. qg t Generate-Random-Config~ration(~,); //F(q) = p, 

2. q, t Nearestr\Jode( qg ); 

3. IF (Connect-Feasible-Configurations(q,, qg)) THEN 

4. 7.add-vertex(qg); 7.add-edge(q,, qg); 

5. RETURN success; 

6. RETURN failure; 



Chapter 3 

New Approach: ATACE Planner 

In this chapter, we introduce the ATACE planner to solve the configuration-to-pose PPGEC 

problem. The primary concepts of the ATACE planner are introduced in Section 3.1, and 

details of the algorithms and sub-algorithms are given in Section 3.2. Enhancement and 

variations of ATACE are discussed in Section 3.3. 

3.1 ATACE Concepts 

ATACE constructs a search tree in the task space, and tracks the search tree in the con- 

figuration space. Every node in the search tree corresponds to a pair (qk, pk). qk is a 

configuration, and pk is the end-effector pose under this configuration, i.e., pk = F(qk). 

Every edge in the tree is represented by an end-effector sub-path (in the task space) and a 

joint sub-path (in the configuration space) to track the end-effector sub-path. If there is a 

sequence of edges (sub-paths) in the tree joining the start pose and the goal pose, a feasible 

joint path is extracted to solve the problem. 

ATACE tackles general end-effector constraints by reducing these constraints into end- 

effector velocity constraints. ATACE explores the task space for a number of end-effector 

sub-paths. To make sure every (sub-)path satisfies the constraints, the path is extended 

from a feasible pose, and the next pose in the path is computed by choosing a velocity 

that does not violate the constraints. Intuitively, a velocity tangent to the constraints can 

be a choice. For instance, if an end-effector is required to move in a plane, and the first 

pose is given in this plane, then obviously, as long as the end-effector moves with a linear 

velocity in this plane, it does not violate this plane constraint. So, ATACE first determines 
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a connecting path by choosing proper velocities, and then comes to a new node. In this way, 

both the connecting path and the new node can be guaranteed to satisfy the constraints. 

After getting a feasible end-effector path (or subpath  between two intermediate poses) 

in the task space, ATACE utilizes a local planner to track the path and avoid obstacles, 

joint limits and singularities. It uses a trajectory tracking planner like the Jacobian-based 

pseud~inverse control approaches [17, 20, 381 that can easily take obstacles into account 

and avoid them without violating the constraints. 

3.2 Algorithm 

The ATACE planner simultaneously constructs a search tree, 7, in the configuration space 

and the task space. The root of 7, (q,, p,), is the start configuration and the corresponding 

pose. Planning terminates when a node with the goal end-effector pose, pg, becomes a leaf 

of 7 .  ATACE is a single-query planner which means it recreates 7 every time the start 

configuration q, changes. Every node in the tree has additional information associated with 

it, contained in the following parameters: 

1. (q, p): configuration q, and pose p = F(q); 

2. parent: parent node in the tree; 

3. pPath: an end-effector sub-path connecting p to its parent pose; 

4. cPath: a joint sub-path connecting q to its parent configuration. 

A schematic of the tree that the planner constructs is shown in Figure 3.1. Although 

subpath  of the tree are represented as straight lines in the figure, the actual path in the 

task space, pPath,  or the corresponding path in the C-space, cPath, is not necessarily a 

straight line due to  constraints. 

ATACE-Plan() iteratively picks a random direction and grows the tree in this direction 

before trying to  connect the tree to the goal. The ATACE algorithm is summarized below. 

1. p s t F ( q . 5 ) ;  

2. 7 + Initialize-Tree(q,, p,); 
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Figure 3.1: The search tree constructed by the ATACE planner. An oval with w and l in it 
is a node in the tree; the leftmost and rightmost rectangles stand for the start and goal. (0, 
w) represents a configuration-pose pair (q, p). A solid line represents a pPath, and a dotted 
line represents the corresponding cPath that tracks the pPath 

REPEAT 

qd t Random-Config(); pd + F(qd); 

N, t Nearest-Node( pd ); 

(s, Nk) t Extend-With-Constraint(N,, pd, FALSE); 

IF (s # Trapped) 

IF (Connect-To-Goal(Nk)=Reached) 

RETURN success; 

UNTIL (time out) 

RETURN failure; 

Initialize-Tree() initializes the search tree 7 with node (q,, p,) as its root. Ran- 

dom-Config() randomly generates a configuration. Nearest-Node() looks up 7, and finds 

the node N, which is the closest topd; the metric for finding N, is described in Section 3.2.4. 

Extend- With-Constraint() places a new node Nk with (qk, pk) in 7 by stepping from N, in 

the direction of pd, more precisely, in the direction of the projection of pd in the tangent 

space of the constraints. Connect-To-Goal() tries to  connect the tree to the goal from the 

new node Nk. These procedures are described in more detail in the following sections. 

3.2.1 Extend-With-Constraint 

As shown in Figure 3.2, given a node, N,=(q,, p,) ,  in 7, and a stepping direction in the task 

space, pd, Extend-With-Constraint() tries to advance toward pd (more precisely, toward its 
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projection on the current tangent plane, denoted by Yd) along a path that also lies on the 

constraint surface (or satisfies the constraints). Extend-With-Constraint() returns (s, N),  

which can be: (a) (s = Advanced, N = Nk), a feasible path is extended; (b) (s = Reached, 

N = Nk), the extended feasible path reaches the projection of pd, pd; (c) (s = Trapped, 

N =NULL), no feasible path. 

Figure 3.2: Extendwith-Constraint() grows the tree to a new node Nk in direction of pd. 
pd is randomly generated. Nc is the closest node to pd, before Nk is added. 

More specifically, Extend-With-Constraint() first extracts an end-effector sub-path Ep 

in the task space that satisfies the constraints, as in Figure 3.3(a), and then computes a 

sub-path in the configuration space, Ec, by using the local planner to track Ep, as shown in 

Figure 3.3(b). To assure an end-effector sub-path in the task space connecting two poses 

satisfies constraints, the sub-path is extracted by choosing feasible velocities toward a direc- 

tion pd at every step along the path. When parameter greedy = FALSE,  the sub-path is 

extracted in no more than M steps, Ep = p1,p2,. . .  ,pM; when greedy = TRUE (called by 

Connect-To-Goal()), the sub-path can consist of more than M poses and reach pd (actually 

its projection in the tangent plane). 

Extend-With-Constraint(Nc, pd, greedy) 

1. E p t &  i t O ;  p i t p C ;  

2. REPEAT 

3. (vi, wi, &)+ Compute~Valid~Velocity(pi, pd) ; 
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Task Space Configuration Space 

I 7 

---.--._...___ ..-- 
Tra j. 

Tracking 

Figure 3.3: Task space and C-space extension in Extend- With-Constraint(). 

(s, pi+') t Compute~NextPose(pi, vi, wi,  Zjd); 
tp +- tp U{pipi+l); 

i + i + l ;  

UNTIL(((!greedy)AND(i 2 M)) OR (s = Reached)) 

I F  (s  # Trapped) 

(ss, E,) + TrackEndEffector-Path(q,, Ep); 

I F  (ss = success) THEN 

Nk.p t the last element of tP; 

Nk.q t the last element of E,; 

Nk.pPath t t P ;  

Nk.cPath t &,; 

Nk.parent + N,; 

+ ' T u N k ;  

ELSE 

Nk + NULL; 

RETURN (s, Nk);  

In the REPEAT-UNTIL loop, an M-step subpath  is extracted satisfying the constraints. 

Compute-Valid-Velocity() computes and returns a valid end-effector velocity (consisting of 

linear and angular velocity components) at the current (ith) point, and the projection of pd 

in current tangent plane, &. Note that at  every iteration, Ijd may change and the subpath  

is extended toward fi. If Compute- Valid- Velocity() returns Reached, it means the s u b  path 

arrived at  Ij6 With current pose pi and current velocity vi, Compute-Neb-Pose() computes 

the next feasible end-effector pose over a fixed time interval (sampling time), a user specified 
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parameter. If greedy = TRUE, the subpath  is extended to &, even if it takes more than 

M steps. TrackEndEffector-Path() uses the local planner to solve the trajectory tracking 

problem for subpath  Ep. If it succeeds, a joint space sub-path is returned in E,, and a new 

node Nk is connected to N,. 

Compute- ValidVelocity () transforms end-effector constraints into end-effector velocity con- 

straints. Assume poses pO,pl, , . .  ,pi are already generated, and we want to generate a 

feasible velocity, vi (at pose pi), by which we can compute the next pose satisfying the 

position constraint G(p) = 0. 

From p" with the assumption that the time interval is small enough, we can go to 

another feasible pose provided the velocity vector is tangent to the constraint plane, 

As shown in Figure 3.4, to  extract the next pose, piS1, in the direction of pd, we compute 

vi as follows. Project pd into the tangent plane at pi. Let denote this projection. Choose 

v k s  a unit velocity in the same direction as Td - p' . 

Tangent Plane 

/---- 

Figure 3.4: Extracting an end-effector subpath  in the task space. 

For orientation constraints, the constraint expression may be complex. Here, we restrict 

orientation constraints to relatively simple cases. For instance, a robot holding a full glass 

of water needs to keep the glass strictly vertical. Let's say this requires the z axis of the end- 

effector frame to remain vertical with respect to the universe frame. The feasible angular 
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velocity is 

w = k .  [0 0 llT 

where k is an arbitrary scalar value. A more general cases in which a unit vector 6 in 

end-effector frame is required to be kept constant with respect to the universe frame has an 

feasible angular velocity of 

w = k . 6 .  

Compute-Next  P o s e  () 

Given the current pose pi, the instantaneous velocity (vi, wi) and the target pose &, Corn- 

pute-Next-Pose() computes the next pose pi+1. An end-effector pose p is partitioned into 

position P and orientation 0. 

For position constraints 
pi+l - 

- Pi + vi . At 

where vi is a unit linear velocity (Ivil = I ) ,  and At is a small time interval. If Pi 
satisfies the constraints, we can assume over a small time interval, Pi+l also satisfies 

the constraints with an error O(At). 

For orientation constraints 

wi is the angular velocity, R(R,  8) is the rotation matrix representing a rotation around 

axis 2 by angle 8. 

Track-EndEffector-Path() calls a local planner to track the extracted end-effector (sub- 

)path. In ATACE different local planners can be selected. Any planner for the trajectory 

tracking problem is suitable to be our local planner. For example, a deterministic local 

Jacobian-based planner, or probabilistic planner as in 1431 can be used. The local planner 

returns success or fail flag to indicate whether a joint (sub-)path to track the given end- 

effector path has been found. We detail these trajectory tracking planners in Chapter 4. 
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In ATACE-Plan(), Connect-To-Goal() tries to the connect current tree 7 to the goal by 

extending the tree from the newly-added node Nk to the goal pose p,. This is essentially 

same routine as Extend- With-Constraint(), except that now it is extended until either the 

goal pose p, is achieved, or a failure is encountered. In the pseudo-code, this is governed by 

the greedy flag being set to TRUE. 

1. (s, N )  t Extend-With-Constraint(Nk, p,, TRUE); 

2. RETURN s;  

To find the closest node in the tree 7, we need a metric to measure the distance between 

two nodes. Different metrics can be used. 

1. We can use a Euclidean metric in the configuration space defined as 

where Ok,i is the ith joint variable for configuration q k ;  N is the DOF of the robot; wi 

is the weight of each joint. 

2. We can use a metric in the task space defined as 

where 

x(pi),  pi), z(pi) are the x,  y, z coordinate of pose pi. The orientation component 

of the pose is simply ignored in this metric. To take both position and orientation 

into consideration, as introduced in the previous chapter, the metric defined as the 

distances between two end-effector frame can be used [I]. 
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(a) C-space tree using C-space met- (b) Task-space tree using C-space 
ric metric 

(c) C-space tree using task-space (d) Task-space tree using task-space 
metric metric 

Figure 3.5: Comparison of trees generated with C-space and task space metrics. 

3. Randomly choose metric (1) or (2) above, since each metric may or may not yield 

good performance. 

In Chapter 6, the performance with different metrics is compared. In Figure 3.5, the 

C-space metric and task-space metric are compared for a motion planning problem shown 

later in Figure 6.9. When the C-space metric is used, the nodes are relatively even in the 

C-space (Figure 3.5(a)), while they were pretty much concentrated in a small area in the 

task space (Figure 3.5(b)); On the other hand, when the task-space metric is used, the nodes 

are concentrated in a region of the C-space (Figure 3.5(c)), but evenly distributed in the 

task space (Figure 3.5(d)). This is mainly because we use an RRT like framework, and it is 

known that RRT exploration is biased toward the unexplored space, and the probability of 

extending from a vertex is proportional to the area of its Voronoi region (w.r.t the metric 

used) [32]. 
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3.3 Algorithm Enhancement and Variations 

3.3.1 Anticipatory Collision Check for End-effector Paths 

In Extendwith-Constraint(), every time an end-effector sub-path is extracted, the local 

planner is called to  track the extracted sub-path. But normally tracking an end-effector 

path is relatively expensive. It is a good idea to eliminate those paths which are not collision 

free. For example, if an end-effector path goes through obstacles, it is impossible for the 

local planner to track such a path, and it should be eliminated. Therefore, to reduce the 

computation, when an end-effector sub-path is extracted, simple collision detection (only 

with the end-effector) is performed to check whether there is any obstacle in the extracted 

end-effector sub-path. We call this anticipatory collision check. As shown in Figure 3.6, in 

the planning for the scene shown in Figure 3.6(a), the corresponding anticipatory collision 

checking is shown in Figure 3.6(b). The dashed end-effector path will be discarded and will 

not be passed on to the local trajectory tracking planner. 

Figure 3.6: Anticipatory collision checking for end-effector paths. (a) Scene for planning. (b) 
The anticipatory collision check for the corresponding end-effector path. The end-effector 
path shown is not collision-free. 

The path extraction procedure in function Extend- With-Constraint() is modified to  in- 

corporate the anticipatory collision check to eliminate infeasible (colliding) paths. Is-Path-Clear() 

is a function to detect possible collision and models the end-effector as a point or as an ob- 

ject with a simplified geometry (such as a cube or sphere). Note that if an end-effector path 

is found to be free after anticipatory collision check, the entire C-space path will be checked 

again by the local planner at  tracking stage. So, it increases the work in some cases and 
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results in additional overhead, but on the whole it is observed to be a faster planner, since 

it eliminates costly computations by rejecting a large number of colliding paths early and 

inexpensively. 

Extend- With-Constraint() is modified to include Is-Path-Clear(). 

Extend-With-Constraint2(Nc, pd, greedy) 

2. REPEAT 

3. (vi, wi, &)t Compute-Valid-Velocity(pi, pd) ; 

4. (s, pi+l) t Compute.Next-pose(pi, vi, wi, &); 

*. IF ( ~ s - ~ a t h - ~ l e a r ( ~ ~ ,  pi+') ) 

5 .  •’ + E U{pipi+l) 
* . ELSE 

* s t Trapped; •’ +-NULL; 

6. i t i + l ;  

7. UNTIL(((N0T greedy)AND(i > M)) OR (s = Reached) OR (s = Trapped)); 

The lines marked with "*" are newly added statements. Is-Path-Clear(pipi+l) checks 

whether there is any obstacle in pipi+l. If there is, the sub-path is not tracked, and (Trapped, 

NULL) is returned. 

3.3.2 Lazy End-effector Path Tracking 

The planners in 17, 461 use lazy collision checking for the basic motion planning problem in 

PRM and RRT. It first assumes all edges are feasible, and does not do collision detection 

until the edges of the road-map are finally picked. For our problem, anticipatory collision 

checking is quick and tracking sub-paths takes most of the planning time. Lazy end-effector 

path tracking may be a good way to improve performance. Only when the planner finds a 

candidate end-effector path joining the start and goal, it tracks the entire path. The lazy 

version of ATACE planner is described in function LazyATACE-Plan(). 

Lazy-ATACE-Plan(q, , p,) 
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1. Ps F(qs); 

2. 7 t Initialize-Tree(q,, p,); 

3. REPEAT 

4. qd + Random-Config(); pd + F(qd) ; 

5 .  Nc t NearestAode( [qd, pd] ) ; 

6. (s, Nk) t Lazy-Extend-With-Constraint(N,, pd); 

7. IF (s # Trapped) 

*. IF  (Lazy-Connect-To-Goal(Nk)= Reached) 

*. {path} t Get-Candidate-Pat h() ; 
* IF (Lazy-TrackEndEffector-Path({path} )=success) 

*. RETURN success; 

10. UNTIL (time out); 

11. RETURN failure; 

The lines marked with "*" denote the modifications to ATACE-Plan(). In function 

Lazy-Extend- With-Constraint(), only anticipatory collision checks are done for the extracted 

end-effector subpaths. Every time a new node is added to the tree, Lazy-Connect-To-Goal() 

tries to extend the tree from the new node to the goal. If the extension succeeds, the path 

joining the root and the goal is a candidate of feasible path as shown in Figure 3.7(a). The 

subpaths within the candidate path are tracked in Lazy-Track-EndEffector-Path(). If a 

subpath  is not feasible (cannot be tracked), it is deleted with the entire branch as shown 

in Figure 3.7(b) (c) . 
Lazy-Extend With-Constraint0 is modified from Extend- With-Constraint,?(). The latter 

track the extracted subpath  right away, while the former does not, and consequently, the 

corresponding information of joint subpath and configuration in the node is empty. The 

following piece of pseud~code  reflects the difference with Extend- With-Constraint,?(), where 

"*" highlights the modifications. 

Lazy-Extend-With-Constraint(Nc, pd, greedy) 

. . . . . .  //Same as Extend-With-Constraint 2 0  

8. I F  (s f Trapped) 

*. //Do not track the extracted sub-path any more; 
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(a) When the goal is achieved, a candidate end-effector path is found. A circle in 
a node means the corresponding configuration has not been generated yet. 

(b) Track this candidate end-effector path by local planner. If an end-effector 
sub-path is not feasible, delete the corresponding branch. 

(c)After the branch is deleted, descendant branches are also discarded. 

Figure 3.7: Lazy version of ATACE. 
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11. Nk.p + the last element of edge; 

*12. Nk.q + NULL; //It  used to be: Nk .q +- the last element of E,; 

13. Nk.pPath c EP; 

*14. Nk.cPath c NULL; //It used to be: Nk.cPath +- E,; 

15. Nk.parent + N, ; 

16. ;r Nk; 

17. ELSE 

18. Nk c NULL; 

19. RETURN (s, Nk); 

Lazy~Connect~To~Goal() is similar to Connect-To-Goal(). The difference is the former 

calls Lazy-Extend- With_Constraint(), while the latter calls the original Extend- With-Constraint(). 

1. (s, N,,,) c Lazy-Extend-With-Constraint(Nk , p,, TRUE); 

2. RETURN s; 

Lazy-Track-EndEffector-Path() is also similar to Track-EndEffector-Path(). The differ- 

ence is the latter tracks a single (end-effector) sub-path in the tree, while the former tracks 

a set of sub-paths and may delete a branch of the tree. Assume path stores a sequence of 

nodes in the candidate path. If a subpath has not been tracked, it is then tracked by the 

local planner; otherwise, go to next sub-path. If it is not able to track a sub-path in the 

C-space, then this sub-path is deleted, and the entire branch afterward is also deleted as 

shown in Figure 3.7(c). 

1. qo + Qs 

2. FOR (every node in path) 

3. N c ~ a t h [ i ] ;  

4. IF (N.cPath=NULL) //This sub-path has not been tracked 

5. (s,  •’A)+ TrackEndEffector-Path(q0, N.pPath); 

6. IF (s=success) 
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7.  N.cPath t &:; 

8. ELSE 

9. Re-organize the trees, cut this branch; / / a s  Figure 3.7(c). 

10. RETURN failure; 

11. qo t last element of N.cPath; 

By using the lazy-tracking strategy, ATACE can be described as a two-layer architecture. 

The upper layer is a path planner for rigid bodies to find an end-effector path in the task 

space joining the start and the goal pose, and the lower layer is a trajectory tracking planner 

for the robot manipulator to  track this path. 

3.3.3 Other Classes of Problems 

So far we have focused on C-2-P PPGEC problems. ATACE can be easily adapted to C- 

2-C PPGEC problems. For C-2-C planning problems, everything remains the same, except 

the greedy stepping procedure to reach the goal. Consider the C-2-C problem as a C-2-P 

problem, using the end-effector pose, p,, corresponding to  the goal configuration, q,, as the 

goal pose. After reaching p,, we get a configuration q,, and normally qg # q,. To achieve 

q, and avoid violating the end-effector constraint, we try to  move from qg to  q, without 

moving the end-effector. In other words, we need to  solve a closed-chain planning problem 

whose start configuration is qg and the goal configuration is q,. 

In the C-2-P problem, we assume a start configuration is given for the start pose. How- 

ever, in some cases, we need to determine a feasible start configuration before we can proceed 

with planning. Thus, we need to  find a way to  generate a single configuration satisfying 

constraints. One possible way is to  use the method proposed in Section 2.2 to generate 

configurations for a given pose. If planning with a selected start configuration turn out to  

be unsuccessful, then we try another start configuration, and repeat the planning. 

3.3.4 ATACE Paradigm Applied to Problems without End-effector Con- 
straints 

To test if this task-space directed C-space exploration paradigm helps in more basic prob- 

lems without end-effector constraints, we also apply ATACE to the C-2-P inverse kinemat- 

ics problem and the basic motion planning problem. Now that there are no end-effector 

constraints along the path, any pose is feasible (taking no account of obstacles and joint 
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limits). So, we can c h o s e  the end-effector velocities randomly when we extract an end- 

effector subpath.  Nevertheless, for the basic motion planning problem, the goal is a desired 

configuration, and the current ATACE takes a pose as the goal. This can be easily adapted. 

Again, let the desired configuration be q,, and the corresponding end-effector pose be p,. 

After applying ATACE, we get to 9,. One way is to use a similar strategy as we discussed 

above: after p, is achieved, do a closed-chain planning from q, to q,. A simpler way is to do 

a linear connection from q, to t,, since there are no constraints along the path. As long as 

the linear connection is collision free, the problem is solved; otherwise repeat and generate 

new paths. The greedy search function is changed as follows: 

Connec t -To-Goa l3MP(Nk)  / / B M P ,  Basic motion planning 

1. (s, N )  t Extend-With-Constraint(Nk, p,); / /There  actually is no constraint. 

*. I F  (s  = Reached) 

* . IF(Is~Collission_Free(q, , Nk .q) = TRUE) 

*. 7 TU {[%F(qg)lh 

*. RETURN Reached; 

* . ELSE 

* s = Trapped; 

2. RETURN s;  



Chapter 4 

Local Planners in ATACE 

ATACE searches end-effector paths in the task space, and local planners track these paths. 

In this chapter, we introduce probabilistic local planners in Section 4.1, Jacobian-based local 

planners in Section 4.2. 

To solve the trajectory tracking problem, first we need to discretize the given end-effector 

path(or trajectory) into a sequence of end-effector poses: {PO,. . . ,pm). Then, the goal of 

the local planner is to find a joint path, a sequence of configurations: {qo,. . . , qm), such 

that pi = F(qi), for all 0 5 i 5 m. 

4.1 Probabilistic Local Planner 

4.1.1 Current Probabilistic Approach 

Similar to probabilistic methods like RRT and PRM, probabilistic planners for the trajectory 

tracking problem try to build a roadmap in the C-space by randomly placing nodes in 

the C-space and determining the connectivity between nodes. However, for the trajectory 

tracking problem, there are two differences compared to the basic motion planning problem. 

Firstly, in the trajectory tracking problem, configurations are not generated completely 

randomly; instead, we need to generate configurations for those pmes along the given end- 

effector trajectory. Secondly, the configurations satisfy a certain sequencing requirement. 

For example, a feasible configuration for pose pi should be connectable to at  least one of 

the configurations for pose pi-1. As mentioned in the introductory section, to generate 

configurations for a given end-effector pose, we can use configuration generation techniques 
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for the closed-chain robot. As for connecting strategies, [43] proposed different probabilistic 

planners, including Greedy planner, RRT-Like planner and combinations of the two. We 

briefly review them here. First we outline a basic procedure that generates a configuration 

for a pose in the given end-effector path in the neighborhood of a configuration for the 

preceding pose. 

Genera te  Configurations for Poses 

The following procedure generates a configuration for a given pose, p, in the neighbor of 

qhas, which means a configuration q, such that p = F ( q ) ,  and for each joint variable, 

J l q i  - 1 1  < d, i = 1,2 , .  . . N where N is the number of DOF of the robot. It is similar to 

the active-passive link decomposition method described earlier, except that it is biased on 

configuration qbias. 

1. retry + 0; 

2. DO 

3. qa t RandomActive(qbi,,); 

4. qP t Closedf~rmlnvKin(~,  qa, qbias); 

5. IF (success) THEN 

6. q + ha, qp); 

7. RETURN q; 

8. retry + retry $ 1; 

9. WHILE ((failure) and (retry 5 MAX-RANDRETRY)); 

10. RETURN failure; 

Random-Active() generates active joint variables randomly in the neighbor of qhas, and 

Closedform-InvKin() computes the passive joint variables by closed-form inverse kinematics. 

The closed-form inverse kinematics might fail because (a) there is no solution for passive 

joint variables, or (b) there are solutions for passive joint variables, however, they are too 

far away from qhas. 
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Greedy Planner 

Greedy planner uses a depth-first search strategy. Given the start configuration go, it con- 

secutively generates a configuration for each pose in the neighbor of its predecessor. For 

instance, qi+l for pi+l will be generated in the neighbor area of qi that corresponds to pose 

pi. If it succeeds, then qi+2 for pi+2 will be generated in the same way. 

Greedy-Planner (go) 

1. FOR i = 0 to m-1 DO 

2. s t failure; retry t 0; 

3. DO 

4. qi+l t Generate-Config-ForPo~e(p;+~, qi); 

5. IF  (success) THEN //If manage to get a configuration for pi+l 

6. IF (Is~Collission~Free(qi, qi+l)) THEN 

7. s t success; 

8. retry t retry + 1; 

9. UNTIL (s = success) or (retry > MAX-GREEDY-RETRY) 

10. RETURN s; 

Intuitively, only one configuration is generated for every pose, and the data structure 

storing the explored path is a singly-linked list, as shown in Figure 4.1. 

Greedy planner performs well when the environment is simple and the path is short, 

i.e., rn is small. When the number of pmes goes up and the environment becomes more 

complicated, it is easy for the planner to get stuck due to the depth-first search characteristic. 

Because the exploration for qi+l corresponding to pi+l is actually based on qi for pi, and if 

qi is a "bad" configuration, it may be difficult to generate a feasible configuration for the 

next pose pi+l, in the neighbor of qi. 

RRTLike Planner 

To avoid depth-first search limitation in Greedy planner, RRT-Like planner generates more 

than one configuration for every pose. RRTLike planner uses the concept of RRT [34]. It 

applies RRT strategy upon the active joints, and the passive joint variables are determined 

according to active joint variables and the tree hierarchy. As shown in Figure 4.2, each 
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(4 
Figure 4.1: Greedy planner. (a) Specified end-effector path. (b) Data structure generated by 
Greedy planner. There is only one configuration for each pose along the given end-effector 
path. F(qi) = pi. 

level of the tree corresponds to a particular pose in trajectory, for instance, the root of the 

tree is a configuration qo for the first pose po, the configurations in the second level of the 

tree, {q:, q:, . . .), are configurations for pose pl , and {q,!, q?, . . .) are configurations for pose 

pi. With a randomly chosen configuration grand, the tree is extended from the closest node 

qneaT to a new configuration qnew. Its active joint variables qgew and passive joint variables 

geW are computed separately. First, qgew is computed by a linear displacement from qgeaT 

to qLnd l. Then, &,, is computed with qgew and its pose which is determined from the 

tree hierarchy, for instance, if F(qnear) = pk, then F(qnew) = pk+l. If the height of the tree 

reaches the number of sample poses, m, planning succeeds. 

1. r + Create-Tree(qo); 

2. FOR i = 0 to MAX-EXTEND-STEP DO 

3. qrand + Random-Config(); 

4. (qneaT, k)+ NearestJode(q,); / / p k  = F ( q n e a r )  

5 .  q&w Extend-Config(~near grand) ; 

6. &ew + ClosedformJnvKin(pk+l, qgew, qneaT ) 

7. IF  (success) THEN 

1 a qnear to qZand are active joint variables of q,,,, and qrand. 
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Figure 4.2: RRT-Like planner. (a) Specified end-effector path. (b) Random tree generated 
by RRT-Like planner. Configurations on the same level correspond to  the same pose, i.e., 
F ( d )  = pi. The configurations in the inner shaded area are the first-level configurations 
and correspond to  pl ,  and those in the outer shaded area are the second-level configurations 
and correspond to  p ~ .  To extend the tree from qneaT toward qTand, we compute a new 
configuration qnew, by determining its active joint variables qEew and passive joint variables 
&,,. qtew is computed by a linear displacement from qEeaT to  qLnd; &, is computed with 
q&w and pose ~ k +  I 

8. Qnew + (q&w 7 &ew ) ; 
9. I F  ( I ~ - C o l l i ~ s i ~ n _ F r e e ( q ~ ~ ~ ~ ,  qnew)) THEN 

10. ~.Add-Edge(qneaT qnew ); 

11. IF (m = k+1) THEN 

12. RETURN success; 

13. RETURN failure; 

In the algorithm, Random-Config() generates a configuration randomly; Nearest-Node() 

finds the nearest neighbor to  the randomly-generated configuration; Extend-Config() com- 

putes the active joint variables of qnew by displacing qgew with a fixed step size along the 

line connecting qteaT and qknd where qEea, and qgew are the active joint variables of qneaT 

and grand, respectively. Closedform-InvKzn() computes the passive joint variables in the 

same way as Generate-Config-For-Pose(). 

The random tree grows in many directions, and this prevents the robot from getting stuck 

into a bad configuration. On the other hand, this planner has a drawback. It computes the 

configurations too randomly, and it takes a relatively long time to get to the goal especially 

when the number of samples is large. 
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Combined  P l a n n e r s  

The limitations of RRTLike planner and Greedy planner are overcome by combining differ- 

ent planners. Proposed combination includes RRT-Connect-Like, RRT-Greedy, and RRT- 

Greedy+Connect planner [43]. These planners interleave Greedy and RRT-Like planners 

with specified parameters. For example, RRT-Connect-Like planner combines these two 

planners in the following way: 

a .  First call RRT-Like planner t o  make an extension in a random direction. 

b. Second, assume a feasible configuration is generated for pose, pk, and call Greedy 

planner t o  explore the sub-path from pk t o  the goal, p,. 

c. Terminate if the goal is achieved, success; otherwise, go back t o  step (a).  

4.1.2 Incorporating Self-motion 

All of the algorithms proposed in [43] assume self-motion is not allowed. When there are m 

sample poses for given end-effector trajectory, there are exactly m configurations in the final 

joint path. At the same time, t o  let the movement between successive configurations satisfy 

the trajectory constraint, we have to  ensure the difference between successive configurations 

is small enough, such that moving linearly in the configuration space approximately results 

in a linear movement in the task space. 

This motion limitation may make it difficult for a robot t o  get out of a bad configuration 

because the movement is increased in small steps. With these requirements, it might be 

difficult sometimes for a robot t o  move out of a bad configuration by a small movement. 

An experiment demonstrates this problem. Under the same parameters, including sampling 

discretization, and number of iterations/retries, we try t o  find a path for problems shown in 

Figure 4.3(a) and (b). The only difference between (a) and (b) is they start with different 

configurations for the first pose. After 20 runs, the experimental results demonstrate that 

start configuration has a significant impact on planning. In problem (b), the planner fails 

t o  find a solution. 

The experimental results suggest that the existing algorithms may be enhanced by in- 

cluding self-motion along the end-effector trajectory. For every sample pose, there might 

be several configurations, such that without changing the end-effector poses, the robot can 
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(a )  Start with a "good" conf. (b)  Star t  with a "had" conf. 

(Sucess/Fail) (Sucess/Fail) 

RRT-C 
RUT-G-C 

Figure 4.3: Failure to find a path given a bad start configuration. 

use self motion to avoid obstacles and move out of a bad gesture. A Self-Motion Graph is 

incorporated int,o the existing probabilistic planner to improve planning. 

4.1.3 Improvement with Self-motion 

Data Structure  

As shown in Figure 4.2, the existing RRT-like algorithm uses a tree-type dat,a structure 

to store the path. Each level of the tree corresponds to a pose along the trajectory. Self- 

inotion is incorporated into the algorithm by further expanding a node in the tree with an 

equivalent group of nodes corresponding to ecluivalent configurations for the posc. 

As shown in Figure 4.4, this group of configurations for a pose is represented by a graph, 

called the Selj-~Vollon Graph, (SMG in short hereafter). All configurations in SMG(pk) are 

connectable to the last pose pk-1, and as long as one confi guration in SMG(pk) is connected 

to a configuration for pose pk+l, the path is successfully extended to the next pose pk+l. 

Self-motion Graph  Exploration 

As shown i n  Chapter 1 (Figure l . G ) ,  when the end-effector of open-chain robot is fixed to 

a certain pose, generating a configuration for thc robot is equivalent to generating a con- 

figuration for a closed-chain robot. The following subalgorithm uses act,ive-passive link 
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Figure 4.4: Expansion of tree nodes for the Greedy algorithm to include self-motion graph. 

decomposition technique [19] for closed-chain robot to build SMG(pk). It returns a con- 

nectable collision-free configuration q,,, for p k .  It  might return failure if (1) it is not able 

to get a connectable collision-free configuration after a fixed number of retries; or (2) the 

number of configurations in the SMG reaches a set limit. 

Explore-SMG (k) 

1. IF  (SMG(pk).confnum > MAX-SMG-NODE) THEN 

2. RETURN failure; 

3. retry +- 0; 

4. DO 

5. q, +- Random-Config(); 

6. q, t SMG(pk) .Nearest-Node(p,); 

7. qimg t Extend-Config(q,, p,); 

8. grng t ClmedformhwKin(pk, qirng, q,) 

9. IF Is-Collision-Free(q,,,, q,) THEN 

10. SMG(pk).Add-Edge(qc, psrn,); 

11. RETURN qsrng; 

12. ELSE 

13. retry +- retry + 1; 

14. WHILE(retry 2 MAX-SMGRETRY); 

15. RETURN failure; 

An RRT like strategy is used to explore SMGs, and the data structure in a SMG is a 

tree structure. The root node of SMG(pk) is the configuration connecting a configuration 
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Do we have to explore SMG for every pose? To reduce the computation to build and 

search the expanded tree, we only create the SMG when required. For example, Greedy 

planner terminates the exploration from qk(for pk) to qktl(for pktl) after a certain number 

of retries. To enable self motion, we do not give up at this point; instead, an SMG is 

propagated for pose pk. For those pmes where the planner can extend to the next pose 

within a fixed number of retries, simple nodes are retained. 

SMG in Greedy Planner 

Knowing how to explore the SMG, we can now integrate self-motion enhancements into 

current planners. It is straightforward to  integrate SMG into Greedy planner. An SMG is 

created for pme pk if the planner fails to extend the path from qi(for pi) to  qi+1 (for pi+l) 

after MAX-RETRY retries. With SMG, every time a new configuration qsmg is explored 

in SMG(pi), the planner steps from qsmg for pi to pose pi+l. Once a valid configuration 

qi+l is obtained, the planner stops exploring SMG and tries to extend the path to the next 

pose. Otherwise, it repeatedly explores the SMG for pi, until the number of retries or the 

number of configurations in SMG(pi) exceeds a limit. The following pseudecode shows 

Greedy planner with S M G  feature, and the lines marked with "*" are added for SMG. 

1. FOR i = 0 to m-1 DO 

s t failure; retry t 0; 

DO 

qi+ 1 + Generate-Config-ForPose(pi+ 1, qi) ; 

IF  (success) THEN 

IF (Is-Collission-Free(qi, qi+,)) THEN 

s t success; 

retry t retry + 1; 

UNTIL (s = success) or (retry > MAXRETRY) 

WHILE (s # success) 

qsm, t Explore-SMG(i); 

IF (success) THEN 

qi+1 t Generate-Config-For-P~se(p~+~, qsmg); 
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* IF (success) THEN 

*. IF ( I s -Col l i~s ionEree(q~ ,  qi+l)) THEN 

*. s c success; 

*. ELSE 
* BREAK; //Quit WHILE loop, if fail to get q,,, . 

10. RETURN s; 

Similar to RRT-Connect-Like planner, SMG-Greedy overcomes the depth-first search 

limitation by generating more than one configuration for each pose. However, unlike RRT- 

Connect-Like planner which generates configurations for randomly selected poses, SMG- 

Greedy only generates multiple configurations for a pose when it is not able to  extend to 

the next pose. 

SMG in RRT-Connect-Like Planner 

For the basic motion planning problem, RRT-Connect planner [29] performs better than 

RRT planner [34]. RRT-Connect has several differences compared to RRT: (a) it is greedy 

to goal and (b) it has two random trees, one grows from the start configuration, and the 

other grows from the goal configuration. 

For the trajectory tracking problem, RRT-Connect-Like [43] planner adopts the greedy2 

strategy. With SMG, we implement a more heuristic planner. The idea is: 

1. Two random trees are grown from the start configuration and the goal configuration, 

respectively. In each tree, configurations and SMGs on the same level correspond 

to the same pose. The goal configuration for the goal pose is chosen randomly, or 

specified by the users. 

2. After every RRT extension, it gets a new configuration which corresponds to  a certain 

pose. It greedily extends the path from the newly-extended pose to the goal or start 

pose, depending on which tree is being extended. For a pose where the planner fails 

to go further after a maximum number of retries, an SMG is created for the pose, and 

the planner tries to  explore this SMG, and make connection to  next pose. As shown 

in Figure 4.5, nodes in new random-tree can be a SMG, and basically the leaves are 

SMGs, because that is where the planner fails to  extend further. 

2 ~ e r e  "greedy" is used a s  a generic term. We use Greedy to refer to the specific planner defined by 
Greedy-Planner(). 
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3. As shown in Figure 4.5, assume from the start  tree, a new configuration for pk is 

explored in the previous greedy extension, it checks whether there is a connectable 

S M G ( P ~ + ~ )  in the random tree growing up from the other direction; if there is, then 

make the connection, and succeed if connected. 

4. If it is not able t o  reach the last pose after exploring the SMGs ,  then manipulate the 

other tree and repeat from step 2. 

S w  Tree: growing hm lhc sun 

Figure 4.5: Random trees with SMG. Two trees grow from the start  and goal respectively. 
After a configuration is extended from one tree, it is greedily connected t o  the other tree. 
An SMG is explored where the greedy connection fails. Along the  greedy connection, con- 
nectivity is checked with requirement of the pose sequence. For example in the figure, qk for 
pk is extended from the start  tree, then the nodes (including SMG) for pose pk+l is checked 
for connectivity. 

4.1.4 Experiments 

To show performance of the enhancement, we created several scenes to  compare the original 

planners and enhanced ones. The results demonstrate that  incorporating self-motion in 

planning improves the run-time performance of solving the trajectory tracking problem. 

Planners and Objectives 

In these experiments, six planners are compared: three planners are proposed in [43], the 

other tree are enhanced with SMG. 
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Greedy Greedy planner in [43] 

RRT-C RRT-Connect-Like Planner in [43] 

RRT- G- C RRT-Greedy-tConnect Planner in [43] 

SMG-Greedy Greedy planner with SMG 

SMG-RRT-C RRT-Connect-Like Planner with SMG, but only has one tree growing 

from the start configuration. 
SMG-RRT-C2 RRT-Connect-Like Planner with SMG, and with two random tree 

from the start and the goal respectively 

Three cases are created to run the planners. In each case, the result is based on the 

average performance over 20 runs for each planner. The following performance was measured 

for each planner. 

Time(s) Planning time, second as unit. 

C-D-P Collision Detection for Point. Number of collision checks for a single 

configuration. 

C-D-L Collision Detection for Linear Connection. Number of collision checks for 

a connection between two configurations. 
Note that, to do the collision check between two configurations, the linear connection be- 

tween two configurations is sampled and every intermediate configuration is checked for 

collision. In other words, one collision check for connection (C-D-L) results in multiple col- 

lision checks for point (C-D-P). However, other than collision checks introduced by C-D-L, 

C-D-P also includes those collision checks for randomly generated configurations. 

Cases a n d  Resul ts  

Three cases are created to show the performance of different planners. The scenes and 

results are shown in Figure 4.6, 4.7, and 4.8. In case 1, the robot moves the end-effector 

along a circle in an environment with obstacles. In case 2, the robot moves the end-effector 

along the surface of one of the obstacles. In case 3, the robot moves the end-effector into a 

narrow passage. 

Discussion 

With SMG, the enhanced algorithms have good performance and they normally take less 

planning time and involve less collision checking. In these three cases, SMG-Greedy always 
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Figure 4.6: Experiment for SMG: Case 1 

Planner 
Greedy 
RRT-C 

RRT-C-c 
SMG-Greedy 
SMG-RRT-C 

SMG-RRT-C2 

C-D-P 
99366 
80573 
21380 
16007 
15330 
11210 

GD-L 
4080 
4 129 
1086 
1288 
1509 
990 

Figure 4.7: Experinlent for SMG: Case 2. 

achieva the best planning tirne. In the second and third cases, although SIVIG-RRT-C2 

involves less collision detection, the planning time is longer than SMG-RHY-C.'. The reasons 

are two main additional overheads: (1) from time to time, SMG-RRT-C2 needs to check 

t,he connect.ivity between two trees; (2) to grow a tree frorn the last. pose, SMG-RRT-C2 

needs to generate a configuration for the last pose, which is difficult in these two cases as 

there are obstacles around the goal pose. 

In some cases, the two trees grown from the start a,nd the goal might not be connectable 

at all. For instance, as shown in Figure 4.9, qbnck  is a.chieveci by growing up a, tree from the 

goal, and qf , , ,  is achieved by growing up the other tree from the start. Even though pose 

pbock  and pf,., are consecutive poses, t,he node qfoTw is never connectable to S!blG(pbnck), 

Actually, in this case, two configurations in two different trees are never connectable to each 

other. This may affect the performance of SMG-RRT-C2 in some cases, but SA4G-RRT-C2 

can be useful in some other cases: (1) in the case where the sta.rt configuratiun is not given, 

it can be a heuristic method to get a start configurat,ion by extending frorn t,he goal pose; 
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Planner 
Greedy 
RRT-C 

RRT-G-C 
SMG-Greedy 
SMG-RRT-C: 

SMG-RRT-C2 

Figure 4.8: Experiment. for SMG: Case 3 

(2) in the case where the goal configuration is given as well as the s tar t  configuration, SMG- 

RRT-C2 can be a good choice, and we can usc that in our configuration-teconfig~~ration 

PPGEC problem. 

Trcc Ru~n slan Po Trcc Ihm y r d  P,,, 

Figure 4.9: A special case: qf,,, and SMG(phack) are not connectable. 

4.1.5 Summary 

In this section, we introduced the probabilistic trajectory tracking planner suitable t,o be the 

local planner in the proposed ATACE planner for general end-effector constraints. By intro- 

ducing the Self-Motion Graph, an enhancement is proposed based on current probabilistic 

planners, and experimental results show that this enhancement improves the performance. 
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in terms of finding a collision-free path. It helps in applications where the time requirement 

along the trajectory is loose, like inspection robots. Some applications may not benefit from 

this enhancement. For example, in spray painting applications, a constant end-effector ve- 

locity is required along the trajectory, and self-motion will generate a different end-effector 

velocity (thereby uneven paint deposition may result). 

4.2 Jacobian-based Local Planners 

Jacobian-based local planners work on the instantaneous velocity level. As the end-effector 

trajectory is given, the end-effector velocity, x,, is known along the trajectory, and the joint 

velocity along the trajectory, q, can be computed from it. 

At every sample point along the trajectory, 

where J, is the Jacobian matrix for end-effector. The general solution for q is: 

where J: is the generalized inverse of Jacobian matrix J,. For redundant robots, J, is not 

a square matrix. When J, is row full rank, J: can be computed by the right pseudoinverse, 

J: = e(J , JT) - ' .  If Je is singular, J; can be computed by methods like singular value 

decomposition, S V D . ~  

4.2.1 Homogeneous Solutions for Different Constraints 

In Equation (4.2), z is an arbitrary vector in 4 space, and (I - JLJ,) is a transformation 

projecting this vector into the null space of J,. The following subsections introduce strategies 

to choose z to satisfy different secondary constraints. 

Obstacle Avoidance 

Maciejewski and Klein [38] proposed an effective way to avoid obstacles for the trajectory 

tracking problem. As shown in Figure 4.10, x, is the required end-effector velocity, and the 

robot tries to avoid the triangle obstacle. Assume point 0 is the closest point on the robot 

3 ~ o r  some properties and computation aspects of generalized inverse, please refer to Appendix A.2. 
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to the obstacle. 0 is called the obstacle avoidance point. To avoid this obstacle, point 0 

should move away from obstacle with a velocity of 2,. 

where Jo is the Jacobian matrix of point 0. Substitute (4.2) in Equation (4.3), then 

and 

z = [Jo ( I  - J; J e ) ] t ( i o  - Jo J ; i e ) .  

Substitute (4.4) into Equation (4.2). After simplification, the solution is 

To adjust the velocity of the robot depending on how close a robot is to an obstacle, a 

gain a is added into Equation (4.5) before the homogeneous term. The proximity of many 

nearby objects may need to be considered to avoid oscillations. Thus, the general solution 

for M closest objects is 

where Jo, and i,, are obstacle avoidance point Jacobian matrix and escape velocity with 

respect to the ith obstacle, and ai is a scalar proportional to  the distance of the ith obstacle. 

Figure 4.10: Obstacle avoidance. 



CHAPTER 4. LOCAL PLANNERS IN ATACE 6 1 

J o i n t  Limi t  Avoidance  

Likgeois [37] gave a scalar value function t o  deal with joint limits. For example, the ith joint 

variable has a minimum joint value 0: and a maximum joint value 0:; i.e., Oi E [Of, OH]. 
Define 

where 

and N is the DOF of the robot. The smallest value happens a t  Oi = 0; meaning the joint is 

the farthest away from its limit. To make H(q) as  small as  possible, choose 

Singular i ty  Avoidance  

If Jacobian-based methods are used to  solve the trajectory tracking problem, singularities 

might arise. When a singularity occurs, the robot Imes some degrees of freedom, and a small 

movement in the task space requires a fairly large movement in the configuration space and 

excessive torque. Robot singularities are avoided by maximizing dexteri ty .  

There are several measurement for deder i t y .  Salisbury and Craig [45] uses the condition 

number of the Jacobian matrix, M ( J )  = 2, where a1 and a, are the maximum and mini- 

mum singular values4 of J .  Klein and Blaho [28] uses the smallest singular value, a,, as  a 

measure of singularity. A classical method is t o  use manipulabil i ty  introduced by Yoshikawa 

[52], defined as 

~ ( q )  = JFII 
To avoid singularity, we try to  maximize M(q), and choose 

Mul t ip l e  Cons t r a in t s  

To satisfy multiple secondary constraints, we can either use task-priority based method [41] 

which satisfies lower priority constraints by using redundancy of higher priority task, or 

4For more detail about singular value, refer to Appendix A.2.4. 
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define more complicated potential functions that take multiple constraints into account [8]. 

We can also simply combine the previous homogeneous solutions. In general, 

where z, and zl is from Equation (4.10) and (4.8), and w,, wl and wo are weights over 

different constraints, which are deliberately chosen based on priorities of constraints. 



Chapter 5 

Implementation in MPK 

To verify the performance of the proposed algorithms for the PPGEC problem, we imple- 

mented these planners with our in-house developed software library, the Motion Planning 

Kernel (MPK) [15]. The new algorithm are benchmarked and compared with other exist- 

ing planners. In this chapter, we discuss implementation considerations including collision 

detection (Section 5.2), incorporation with different constraints(Section 5.3), local planners 

(Sect ion 5.4) and discuss how user-defined parameters may affect performance (Sect ion 5.5). 

5.1 Introduction to MPK 

MPK, Motion Planning Kernel, is a software toolkit designed to facilitate the development, 

testing, and comparison of robotic algorithms, such as automatic path planning, grasping, 

etc [15]. As shown in Figure 5.1, along with motion planning algorithms, MPK includes ba- 

sic components for implementing robotic algorithms, like collision detection and geometric 

modelling. MPK has good extensibility. Users can easily implement a new motion plan- 

ning algorithm, create a new experiment scene with a rigid body or articulated arm, and 

benchmark with other existing algorithms. 

5.2 Collision Detector 

In our proposed algorithm, ATACE first extracts end-effector paths in the task space, and 

uses the local planner to track these paths. Both steps involve collision detection. There are 

many collision detection algorithms available for different applications [23]. In the current 
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Closed.cham p l m a  
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Figure 5.1: MPK components. 

- 

Collision Detectors 

version of MPK, V-Collide 1211 and SWIFT++ [13] have been integrated and used by most 

path planning algorithms implemented in MPK. V-Collide is a collision detection library 

which detects whether or not a large number of polygonal objects collide with one another. 

In addition to detecting collision, SWIFT++ computes approximate and exact distances 

between objects. 

v-con& 

SWIFT* 

5.2.1 Anticipatory Collision Detector 

.. . 

Implementation of the anticipatory collision detector affects the performance of ATACE. If 

infeasible end-effector paths are not ruled out early, they result in unnecessary computation 

at the tracking stage, i.e., when the local planner tracks the paths. To assure accuracy and 

efficiency, it is important to choose an appropriate size of the rigid body. It is reasonable to  

choose a size equivalent to the actual end-effector. Choosing a size larger than the actual 

end-effector may be advantageous, because this guarantees that the end-effector is not too 

close to obstacles and it is easier for the local planner to track the paths. Another way to 

improve efficiency is to use a simpler geometric shape to represent the end-effector, such as 

a cube. Since MPK uses meshes (triangular patches on object surface) to  present obstacles 

and robot links, it takes less triangles to represent a cube than a sphere, and speeds up 

collision checking for every call. 
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5.2.2 Collision Detection in Local Planners 

ATACE can use different local planners to track an end-effector path in the task space. 

Different local planners may have different requirements for collision detection. For instance, 

the Jacobian-based local planner takes the distance between robot links and obstacles into 

consideration, and needs a collision detector with distance computation, like SWIFT++. 

The probabilistic local planner needs to know whether or not a given configuration makes 

the robot collide with obstacles or itself. V-Collide is sufficient in this case, since the 

computation of distance between objects is more time-consuming than the computation for 

simply detecting intersection between objects. 

5.3 Incorporation of General Constraints 

Different applications have different constraints, and it is impossible to consider all possible 

constraints inside the planner. However, the planner's function is to  deal with constraints: 

it needs to verify whether a given configuration or pose is feasible, and it needs to compute 

the velocity in the tangent plane of constraints at every point. Therefore ATACE is de- 

signed with a modular interface to incorporate constraints. ATACE has callback functions 

to provide users programable constraint functions. For a given problem, i.e., the set of 

constraints, users need to implement these callback functions and link with MPK library. 

These callback functions include: 

IsSatisfied(p) 

IsSatisfied() checks whether a given pose, p, satisfies the required constraints. 

GetVelocity(p) 

Given a pose p which satisfies constraints, GetVelocity() generates a random velocity 

vector in the tangent plane of constraints at pose p. 

GetDirectedVelocity(p, pd) 

Given a pose p which satisfies the constraints, GetDirectedVelocity() generates a ve- 

locity vector in a given direction, pd, in the tangent plane of constraints at pose p. 

Adj ustToSatisfy(p) 

AdjustToSatisfy() adjusts a drifted pose back to constraints. The planner chooses a 
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velocity vector in the tangent plane, and this might accumulate t o  a large drift after 

several approximation. Therefore, a method is needed t o  correct errors. 

As shown in Figure 5.2, after users call ATACE-Plan() t o  initiate the planning, ATACE 

uses these support functions t o  compute the  feasible velocity a t  each point. 

I 
User I 

I 
A TACE Planner 

ATACE-Plan0 Connect-To-Go* 
I I 

Figure 5.2: Interface for constraint manipulation in ATACE planner. 

5.4 Implementation of Local Planners 

Local planners for ATACE are designed as  independent planners, and they can be used to  

solve the  trajectory tracking problem independently. 

5.4.1 Probabilistic Local Planner 

When we use the probabilistic planner for ATACE, there are parameters which affect per- 

formance, including the heuristic strategy and the number of retries in a loop. As men- 

tioned in Section 4.1, there are several strategies for the probabilistic local planner, such as  

SMG-Greedy, RRT-Connect Like, etc. SMG-Greedy is the default strategy. Although the 

anticipatory collision checking is done for the end-effector paths before they are passed t o  

the local planner, the local planner may fail t o  track the path due to  imprecise anticipatory 

checking, and randomness in the  method. However, before it terminates planning, the local 

planner will keep retrying up t o  the specified retry limit. 
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5.4.2 Jacobian-based Local Planner 

In the current implementation of the Jacobian-based local planner [49], only obstacle avoid- 

ance is considered. With this consideration, the joint velocity at every sample point is 

where M is the number of obstacle avoidance points to consider and cq is a gain related to 

the distance to obstacles. Let di be the distance from the ith obstacle avoidance point to 

the obstacles. Assuming d l  5 d z  I . . . I d M  

where dtOtal = zK1 d k ,  a H  is the homogeneous gain specified by users, dug is the unit gain 

distance, and dsd is the sphere of influence distance. Both dug and dsh are pre-defined 

values. 

Since only obstacle avoidance is taken into consideration when choosing z in Equation 

(4.2), the planner deals with joint limit and singularity in a simple way with parameters 

joint velocity limit and path tolerance. To satisfy joint limits, the planner sets those joint 

variables exceeding the limit to the limit value. To avoid singularities, it checks the joint 

velocity at every sample point; if the joint velocity exceeds the limit, it set the velocity to  the 

limit value. These strategies may cause the end-effector to deviate from the given trajectory. 

When the deviation is larger than the specified allowed path tolerance, the local planner 

terminate and returns a failure. For problems with more restricted constraints, these two 

parameters should be set to  a smaller value to  guarantee the satisfaction of intermediate 

points. More detailed information about the implementation of the Jacobian-based local 

planner is given in [49]. 

5.5 User-defined Parameters 

Besides user defined callback functions, a few other parameters for ATACE also need to 

be specified by user (all these parameter can have different values). These parameters may 

affect performance, and they include: 
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1. S t e p  size and sampling ra te .  In the function Extend-WithConstraint(), an end- 

effector sub-path is extracted. Step size rl determines the length of the sub-path, 

and the sampling rate 6 t  determine how densely this sub-path is sampled. As an end- 

effector sub-path is extracted by repeatedly extending from one point to the next point 

with unit velocity, the length between two sample points along the extracted sub-path 

is 6 t ;  the sub-path is extracted in K steps, which means its length is 7 = K .6 t .  When 

constraints are more restrictive, the sampling rate 6 t  should be set to a smaller value 

to guarantee satisfaction of intermediate points and reduce drift (cumulative error due 

to discretization). On the other hand, for more complicated environments where there 

is less room for the robot to move around, the step size 7 should be set to smaller 

values to get better resolution in the task space. 

2. Orientation.  A pose has both position and orientation aspects, however, in many 

applications position is more important and both the desired goal pose and the con- 

straints involve only the position of the end-effector. In these cases, we do not use 

end-effector orientation, and without considering the orientation, the problem is easier 

to solve with simpler constraints. 

3. Metrics. We can choose different metrics in ATACE, including a C-space metric, a 

physical-space metric and a combined metric. In Section 3.2.4, the characteristics of 

these metrics were discussed. Experiments in Chapter 6 show that different metrics 

result in different ATACE performance. 

4. Local planners. We can choose different local planners for ATACE. So far two kinds 

of local planners have been implemented in MPK: the deterministic Jacobian-based 

local planner and the probabilistic local planner. Experiments in Chapter 6 show 

that different local planners result in different ATACE performance. Note that some 

parameters for local planners also affect the performance of ATACE. For example, 

path tolerance and joint velocity limits in the Jacobian-based local planner; or the 

number of retries and the choice of the heuristic strategy in the probabilistic local 

planner. 



Chapter 6 

Experiment a1 Results 

In this chapter we present experimental results to show the performance of ATACE in 

different applications. In Section 6.1 and 6.2, we apply PRM-RGD, RRT-RGD and ATACE 

to the PPGEC problem - problems with end-effector constraints including position and 

orientation constraints. In Section 6.3 we apply ATACE to  the basic motion planning 

problem and the C-2-P IK problem to  check its applicability to problems without end- 

effector constraints. In Section 6.5 we demonstrate that different local planners and different 

metrics result in different performance. Discussion in Section 6.6 outlines scenarios where 

different planners should be preferred. Please note that the performance analysis in this 

chapter is empirical and is based on intuitive explanations and not on theoretical proof. 

6.1 3D Position Constraints Problems 

The following two scenes involve a planar constraint. A 3D PUMA-like robot manipulator 

is required to move its end-effector in a plane. Case (a) is a fairly simple case, where there 

is only one small obstacle in the plane, as shown in Figure 6.1. Case (b) shown in Figure 6.2 

is a much harder case, where there is a fence around the robot and several other obstacles 

in the environment. The start configuration and the goal are in different cells of the fence, 

and the robot has to move out of a gap in the fence and go through another gap to  reach 

the goal. The result for both cases is shown below each scene. In case (a), ATACE is faster 

than PRM-RGD, and RRT-RGD is much faster than other methods. In case (b), ATACE 

is faster than other methods, and RRT-RGD shows poor performance. In 11 out of 12 runs, 

it fails to find a path within 1000 seconds. In the experimental results, we denote failure to 
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find a path within a given time limit as  "-". a is the standard deviation. Beside the result, 

we also show a box plot. of t.he experiment data, which graphically shows how different,ly the 

planners perform. In  a box plot, the line in t.he ~niclclle of thc box is the sample median; the 

lower and upper lines of the box are the 25th and 75th percentiles of the sample; the lines 

above and below the box show the extent of the rest of the sample (not including outliers); 

the plus sign a t  the top of the plot is an inclica.tion of an outlier in t,he data ,  which may be 

caused by a data error or exception. 
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9 
10 
11 
12 

Avg. 

Planning Time (Seconds) 
PRM-RGD I RRT-RGD 

MACE PRY-RGO RRT RGO 
PImnsr 

Figure 6.1 : Experimental scene for planar constraints: Case (a) 

RRT-RGD shows good performance in case (a,) and bad performance in case (b). In 
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* "-" indicates path not. found w  in the time limit of 1000 seconds. 

Figure 6.2: Experimental scene for planar constraints: Case (b). 
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case (a), there is only one small obstacle, and in the C-space there is significant room for 

the robot to move around. It is easy for RRT-RGD to find a new configuration that is 

connectable to  the goal. In case (b), there are more obstacles and the free C-space is much 

smaller, so it is much harder to  make a connection between two configurations. In the 

RRT-RGD connecting strategy, a configuration is tested to connect to the clmest node in 

the tree; if a connection is not possible, then this configuration is discarded. So when the 

environment is complex, significant effort to  explore configurations and make connections is 

wasted. 

PRM-RGD is a multi-query scheme and tries to  explore the entire C-space. In case (a) 

it is not as greedy as other methods. But in case (b), PRM-RGD is faster than RRT-RGD. 

That is because, with PRM-RGD, even if a configuration is not connectable to the current 

graph, it is still saved. After more configurations are explored, the roadmap continues to 

grow with the addition of new configurations. 

ATACE has the best performance in case (b). It makes sense, since ATACE first plans 

in the task space, which normally has lower dimensionality than the C-space, especially for 

redundant robots. Furthermore, using task-space knowledge, it can avoid searching useless 

C-space areas by checking in the task space. In addition, since it works in the task space 

as well as in the C-space, it is quite convenient for it to consider the goal end-effector 

pose defined in the task space. For PRM-RGD and RRT-RGD, we need to try different 

configurations for the goal pose, and this can be time-consuming in some cases. Last, it 

uses a more powerful local planner. With the Jacobian-based trajectory tracking planner, 

it actively considers obstacle avoidance when making the connection. For PRM-RGD and 

RRT-RGD, connection can easily fail due to  obstacles and more samples are desired. 

At the same time, we also notice that in case (a), RRT-RGD has better performance 

than ATACE. The local planner of RRT-RGD is simpler than that of ATACE, in a fairly 

simple problem like case (a), a simpler local planner is more efficient because of less overhead 

expenses. 

6.2 3D Orientation Constraint Problems 

The following two cases involve end-effector orientation constraints. As shown in Figure 

6.3, case (a) uses a 9-DOF robot manipulator - a PUMA manipulator mounted on a 3- 

DOF platform. The task is to move the end-effector to the goal while maintaining the 
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end-effector pointing horizontally right (the z-axis of end-effector frame matches with t.he 

x-axis of the universe frame). Case (b) is a more realistic application. It uses a robot 

manipulator with kinematic structure similar to that of the Canadann2, the Space Station 

Remote Manipulator System (SSRMS). It has 7 DOFs and the task in this case is to move a 

satellite while maintaining the satellite orientation upwards. In the figure, the large cylinder 

at the tip of SSRMS represents a satellite. 

Run 
I 
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6 
7 
8 
9 
1 0 
11 
12 

Avg. 
0 

Planning Time (Seconds) 
ATACE I PRIM-HGD I 

Figure 6.3: Experimental scene for orientation constraints: Case (a). 

In both cases, ATACE runs faster than the other planners. In  case (a ) ,  between the 

verlical wall and the robot, there is not much room for the robot to pass through, and Ifhe 
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Figure 6.4: Experimental scene for orientation constraints: Case (b) ,  Scene (b-l),  without 
obstacles. 
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Figure 6.5: Experimental scene for orientation constraints: Case (b) ,  Scene (b2), with 
ohst acles. 
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robot can not move tthe other wa.y around due to the joint limits. The experiment results 

show that  with PRM-RGD or RRT-RG'D the robot normally has to  make a large movement 

arid go over the top of the wall, and  most of the time with ATACE using Jacobian-based 

local phnner, the robot does manage to squeeze in between t,he wall a.nd the base of the 

robot by a,djusting its ow11 gesture (move it,s \mist away from the wall). It shows that t,he 

Jacobian-based trajectory tracking planner, although locd, is still a, powerful planner. 

In case (b): t.wo scenes have been created for further comparison, as shown in Figure 6.4 

and 6.5. In scene (bl) (Figure 6.4) t,here are no obstacles in the enviro~~ment ,  while in scene 

(b-2) (Figure 6.5) obstacles are placed in the environment. The grey objects are two long 

boards perpendicular to the plane of the paper. In both scenes, ATAG.E runs significantly 

faster than others. Although there is no obstacle in (bl), it t.akes PR.M-RG'D a relatively 

long time to  construct a road11la.p that. satisfies the given end-effect,or orientation constraint. 

To ma.Ie connection between configurations in the roadmap, PRM-RGD tha.t requires two 

config1.1rations are close so that t,he rohot will not get stalled in local minima [33], and t,his 

rcyuires densc sampling since orient,at,ion constraints norn~ally arc hyper-nonlinear aud loca,l 

minima can easily arise. In ( b 2 )  it becomes worse due to the obstacles. The  rohot used in 

these scenes has a big payload a.t its end-effect,or which make it quite clumsy, and easy t o  

collide with obstacles as  well as  with itself. Intuitively, ATACE speeds up  the planning by 

searching in task space, and by doing the anticipatory collision check for t,he end-effector 

(with the satellite). It r~ules out rnany infeasible paths in the t,ask space, and consequently 

la.rge infeasible areas of C-space. 

6.3 ATACE for Problems without End-effector Constraints 

To check if the ATACE paradigm of using t,asli space knowledge to guide search In C-space 

is useful for rnore basic problems without end-effector constraints, we apply ATACE t,o tthe 

basic motion problem and C:-2-P inverse kinematics problem, and compare the results wit,h 

existing approaches. 

6.3.1 Basic Motion Planning Problems 

For the basic motion planning problem, we compare ATACE wit,h exist,ing approaches such 

as PRM, A C A  a.nd RRT-G (RRT-Connect). The first, scene for compa.rison, case (a.), is 

shown in Figure 6.6, where a 4-DOF planar robot moves in an environment with small 
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obstacles. The  second case, case (b), is shown in Figure 6.7. The planning time by ATAGE 

and different other planners is shown below each scene. In case (a), RUT-Connect is the 

faslest planner, and ATACE is slightly faster than PRIM and ACA. In case ( b )  ATAGE is 

much faster tt1a.n others. 

Planning Time (Seco~~cls) 
I PRM I ACA RRT-C 

41.49 0.55 
27.40 1 .70 
14.12 1 .90 
13.63 0.63 
23.80 0.46 
24.44 1.68 
14.57 2 .00 
26.50 0.88 
8.30 2.02 

18.78 0.81 
23.87 1.52 
7.77 0.98 

Run 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

Figure 6.6: Experimental scene to  test ATACE on a basic motion planning problem: Case 
(a) . 

ATACE 
7.64 

12.95 
17.75 
12.26 
8.30 

14.61 
10.00 
16.71 
24.30 
14.13 
14.46 
13.08 
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Planning Time (Seconds) 
ACA 

172.03 
RRT-C 
253.66 
327.24 
546.04 
337.72 
321.47 
169.06 
156.32 
672.91 
64.74 

138.97 
318.04 
288.50 
299.55 
171.60 

Figure 6.7: Experimental scene to test ATACE on a basic motion planning problem: Case 

(b) .  
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6.4 C-2-P Inverse Kinematics Problems 

For the (2-2-P inverse kinematics prohlern, we compare ATACE with the existing approach 

for this problem based on A C A  strat,egy, IK-AC'A [I] .  In case (a) ,  as shown in Figure 6.8, a 

planar snake like 8-DOF robot tries t.o move it,s end-effect,or into a na.rronl passage betaween 

two obstacles. In case (b)? as  shown in Figure 6.9, a P'IJMA-like 6-DOF robot mounted 

on a 3-DOF platform tries t,o reach the shown goal pose. In bot,h cases, the goal has both 

position and orient,at,ion requirement. The results are shown below each scene. The results 

show that ATACE has more consistent perrorrnance a.nd better average planning time. 

I Planning Time (Seconds) 1 

la '"I 

Run 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

Avg. 
u 

K ACA 

Figure 6.8: Experimental scene to test ATACE on a C:-2-P IK Prohlcm (2D): Case (a) 

ATACE- 
25.09 
12.51 
14.85 
19.61 
10.64 
20.89 
16.12 
12.36 
9.78 

13.15 
14.72 
12.95 
15.22 
4.53 

' 1K-ACA 
1.11 

11.24 
99.30 
3.27 

44.16 
1.83 

15.40 
1.51 
1.59 
9.49 

164.40 
120.52 
39.49 
56.51 
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- 

Avg. 
u 

Planning 
m 

272.71 
132.45 
200.40 
240.18 
182.98 
170.23 
138.45 
219.32 
274.66 
546.77 
149.25 
454.86 

rime (Seconds) 
l I < - A C r  

160.99 
1138.17 
197.67 
61.78 
19.67 
40.99 

124.41 
82.14 

1404.34 
1910.56 

10.59 
763.44 

Figure 6.9: Experimental scene to t,est ATACE on a C-2-P IK P r o b l ~ m  (3D): Case (b) .  

6.5 Comparison of Different Parameters in ATACE 

6.5.1 Comparison of Different Metrics in ATACE 

ATACE uses a metric to choose the nearest neighbor in the tree In Section 3.2.4, we have 

shown the characteristics of the task-space metric and the C-space metric Different inetrics 

significantly affect performance. With the scene shown in Figure 6.10. we ran ATACE 

with different metrics: a physical-space metric, a C-space metric and a combined metric 
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(ra.ndornly choose between two). The res~ult shows tha.t ATACE tends to achieve the best 

planning time when using the physical-space metrics, and worst planning time when using 

Gspace met rics. Therefore, physical-space metrics are used in our experiments. l 

- 
Run 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

Avg. 
u 

Planninz Time (Seconds) - 
C+P Metric 

22.33 
15.62 

484.70 
12.30 
22.37 
16.19 
13.42 
23.49 
29.80 
29.50 
25.13 
25.10 - 0 - 

PMellc CIP-Mulric CMolue 
Planner 

Figure 6.10: Comparison of different metrics. 

Expect for the experiment in this subsection where we explicitly choose different metrics, we use physical- 
space metrics by default in all other experiments we have done in this chapter. 
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6.5.2 Comparison of Different Local Planners in ATACE 

Another important parameter that affects perlormance is the choice of the local planner. 

With the scene shown in Figure 6.11, we ran ATACE with different local planners. The  

results show that ATACE with a Jacobian-based local planner has more consist,ent perfor- 

mance. The performance with probabilistic local planners varies from time to time due to 

randomness in the local planner. Note that the chosen proba.bilistic local planner is Greedy 

planner (for more refer to Chapt,er 4.1). 

R u n  
Planning Time (Seconds) 
Jacob. LP I Prob. LP 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

Avg. 
0 

Figure 6.11: Comparison of different local planners. 
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passage, it is difficult to extend the random tree toward the narrow passage and connect to 

the goal. Intuitively, the reason the overall planner with the Jacobian-based local planner 

runs much faster than that with the probabilistic local planner is that the former actively 

considers obstacle avoidance when constructing the random tree, while the latter simply 

checks whether the connection between two configurations is collision free and the only way 

to avoid obstacles is to fail the connection. Although the general wisdom for probabilistic 

planning methods is to use simple fast local planners with lot of samples, for difficult plan- 

ning problem (like where there are narrow passages), a more complicated local planner may 

yield better performance. For example, PRT, Probabilistic Roadmaps of Trees 151, which 

uses a RRT-Connect planner as the local planner under PRM framework, achieves better 

performance than the regular PRM in high dimensional problems with narrow passages. 

6.5.3 Comparison of Lazy and Non-lazy Strategies in ATACE 

In Section 3.3.2, a lazy collision checking strategy is proposed. With the lazy strategy, 

ATACE first grows the random tree by exploring end-effector paths in the task space, and 

a path is not tracked until it becomes a path candidate joining the start and the goal. As 

the random tree grows in all directions, only a small portion of the tree may become path 

candidates. The lazy strategy may speed up the planning due to less end-effector path 

tracking. However, that is not always effective. In ATACE, a tree structure is used to store 

end-effector paths that have been explored, and an edge in the tree needs to be connectable 

in both task space and C-space. Once an edge can not be tracked in the C-space, then all 

the descendant branches connecting the edges must be discarded, as shown in Figure 3.7. 

In some complex environments, it may happen that a significant amount of time is wasted 

in exploring useless end-effector paths in the task space. We compare lazy and non-lazy 

strategies in the experiments shown in Figure 6.2 (PUMA with planar constraint), Figure 

6.5 (SSRMS with orientation constraint), and Figure 6.8 (8-DOF planar robot with narrow 

passage). The results are shown in Table 6.1. In the case of Figure 6.8, lazy-tracking does 

improve the performance; in the case of Figure 6.5 it does not affect much; in the case of 

Figure 6.2, it significantly worsens the performance. Again, it makes intuitive sense. A 

feasible path should go along the fence in the lower corner. When lazy-strategy is used, a 

lot of time is wasted in exploring end-effector paths along the upper fence, and these paths 

are not trackable due to the joint limit of the first joint. 
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PUMA with Planar Constr. 
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Planning Time (Seconds) 
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Lazy 
248.22 
224.46 
95.60 

188.43 
212.59 
315.30 
221.49 
304.33 
199.89 
184.61 
515.09 
218.69 
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49.59 
56.67 

113.78 
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113.46 
84.48 
72.45 
82.54 
71.04 
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94.46 

114.92 

Fig 
Lazy 
62.15 
46.71 
56.02 
12.62 
16.17 
26.41 

133.53 
35.92 
11.88 
12.45 
27.84 
17.03 

6.5 
Non-Lazy 

31.25 
29.03 
22.87 
63.30 
22.58 
32.45 
12.36 
11.91 
85.00 
96.21 
15.68 
16.98 

8-DOF Planar Robot 
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Lazy 
3.78 

10.86 
4.93 
4.79 
7.48 
7.24 
8.87 

10.65 
9.40 
7.45 
6.89 
8.93 

Avg. 
(T 

6.8 
Non-Lazy 

47.32 
13.96 
21.28 

9.56 
88.49 
25.99 
12.35 
11.62 
13.40 

122.15 
40.49 
17.42 

PUMA with Planar Constr. SSRMS with Orient. Constr. 8DOF Planar Robot 

Table 6.1: Comparison of lazy and non-lazy strategies. 
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6.6 Discussion 

We have compared ATACE with pure Cspace-based search methods, in the PPGEC problem 

as well as in the C-2-P IK problem and the basic motion planning problem. Taking the 

trajectory tracking planner as a local planner, ATACE considers the planning in the task 

space which normally has lower dimensionality than the C-space. Moreover, bringing in the 

task-space knowledge, ATACE avoids searching some useless C-space area by checking in 

the task space. Another advantage we have noticed in the experiments is that the paths 

found by ATACE normally are smoother than those found by other planners in sense that 

the robot has less jerky and tortuous movement along the path. 

Compared to pure C-space search method, ATACE may yield better performance (with 

intuitive explanations and experiment results) in the following circumstances: 

1. The robot has a large number of degrees of freedom. In this case, ATACE can re- 

duce the planning space from the high dimensional C-space to the task space whose 

dimensionality is not larger than 6. 

2. The robot has a large payload. In this case, ATACE can benefit from searching feasible 

end-effector paths in the task space, and avoid a great deal of unnecessary exploration 

in the C-space. 

3. The end-effector needs to go through narrow passages. To find an end-effector path 

that goes through the narrow passages is relatively easier because of dimensionality 

reduction, and the local planner, like Jacobian-based trajectory tracking planner, is 

flexible and dexterous to avoid the obstacles around the passages. 

Correspondingly, compared to pure C-space search method, ATACE may not have good 

performance in the following circumstances: 

1. The environment is fairly simple. In this case, ATACE may not be efficient because 

of more expensive computation in the local planner. 

2. The environment has many small obstacles, i.e., cluttered environments. In this case, 

only considering the end-effector is far from sufficient. Many explored end-effector 

paths are not trackable because other parts of the robot may collide with the cluttered 

obstacles. Time is wasted in exploring and tracking useless end-effector paths, and 

ATACE may not be efficient. 
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3. The robot has a relatively small end-effector and a much larger body. When ATACE 

explores end-effector paths, only the end-effector and the obstacles in the environment 

are considered for anticipatory collision check and other parts of the robot are ignored. 

If the robot has a large body, many explored end-effector paths may collide with the 

robot itself, and time is wasted in trying to track infeasible end-effector paths that 

have not been ruled out. 



Chapter 7 

Conclusion and Future Work 

7.1 Conclusion 

We proposed two approaches to the PPGEC problem - the path planning problem with 

general end-effector constraints: Adapted Randomized Gradient Descent (RGD) method 

and ATACE, Alternate Task-space And C-space Exploration. 

The adapted RGD approach is a pure C-space search method, and adapted from the ran- 

domized gradient descent method for closed-chain robots. It uses the randomized gradient 

descent method to transform unconstraint sampling configurations into feasible configura- 

tions that satisfy given constraints. It  again uses randomized gradient descent method to 

connect configurations by walking in the constraint surface. In this way, it builds a roadmap 

(PRM-RGD) or random tree (RRT-RGD) in the constrained C-space. 

The ATACE approach combines task space and C-space search, and it uses task space 

knowledge to  guide C-space exploration. It incrementally builds a search tree in both task 

space and C-space by searching for feasible end-effector paths in the task space with a prob- 

abilistic strategy and tracking the paths in Gspace with trajectory tracking techniques. 

With task-space knowledge about feasible end-effector paths, C-space is explored more ef- 

ficiently. With slight modifications, ATACE can also solve problems without constraints, 

i.e., C-2-P inverse kinematics problems and basic motion planning problems. 

A series of experiments show that both adapted RGD and ATACE approaches are 

effective for the PPGEC problems. Which planner we should choose depends on different 

applications. For those applications where the environment seldom changes, the multi-query 

planner, PRM-RGD, can speed up the planning time by preprocessing the roadmap. In some 
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applications where there are narrow passage in workspace or with a large end-effector (or 

with a big payload at its end-effector), ATACE may have better performance. In some 

relatively simple environments or some cluttered environments, RRT-RGD may achieve 

better performance. 

7.2 Future Work 

Future work should be targeted at enhancing performance and broadening the range of 

applications for ATACE. 

1. Other  strategies t o  explore end-effector p a t h s  i n  t a sk  space. 

ATACE explores end-effector paths in the task space and then tracks these paths 

in the C-space. In the exploration for end-effector paths, a rigid body is used to 

represent the end-effector and RRT is used to explore the end-effector paths in the 

task space. For problems with end-effector constraints, it is convenient for RRT to 

take constraints into consideration along the path from a node to its parent. However, 

for the inverse kinematics problem and the basic motion planning problem, there is 

no end-effector constraint and other techniques for rigid body path planning can be 

used to explore end-effector paths in the task space. Techniques that use generalized 

Voronoi diagram [4, 141 or medial-axis-based sampling strategies like MAPRM [51] 

should be considered. Moving an end-effector along the mid-axis of the free space may 

offer more space for the robot to move around when tracking the end-effector path 

and is likely to improve performance. 

2. Inequality end-effector constraints. 

Although we have focused on equality constraint, ATACE can also incorporate in- 

equality constraints. For example, in case of position constraints, similar to Figure 

3.4, for an inequality constraint, G(p) 5 0, we can choose velocity 

For some inequality orientation constraints, we can also choose the angular velocity 

in a relatively simple way. For instance, if a robot is holding a glass of water that 

is not full, then the glass can be held within a certain angular range with respect 

to the vertical direction. In this case, assume the robot is at a feasible orientation, 



CHAPTER 7. CONCLUSION AND FUTURE WORK 89 

to generate a feasible angular velocity, we can first randomly choose another feasible 

orientation, and then compute the rotation between these two orientations. 

3. Incorporat ing Dynamics.  

In some applications, we might have timing constraints or torque limits for joints 

and the end-effector. In these cases, we may need special techniques to handle these 

dynamic constraints. One possibility is to take these constraints into account when 

extending the RRT random tree. RRT is an efficient data structure to quickly search 

high-dimensional spaces that have both algebraic constraints, like obstacles, and dif- 

ferential constraints, like nonholonomy and dynamics [29]. 



Appendix A 

Linear Algebra 

A. 1 Spatial Description and Transformations 

Most of the content in this section is from reference [Ill 

A. 1.1 X-Y-Z Fixed-angle Representation of Orientation 

As shown in Figure A. l ,  a frame {B) is initially coincident with frame {A). First rotate {B) 

about by an angle of y ,  then rotate about A~ by an angle of ,B, and then rotate about 

A~ by an angle a .  The rotational transformation of the rotated frame {B) with respect t o  

frame {A) is: 

where ccu = coscu, scu = s i n a  and similarly for ,6 and y .  a, P and y are also called yaw, 

pitch, and roll angle respectively. 

For the  inverse problem, if given the matrix: 
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Figure A. 1 : Equivalent angle-axis. 

then the equivalent fixed angles can be computed as follows, for c,G' # 0 ,  

P = Atanq - r s l ,  d m )  
a = A t a n 2 ( $ , 3 )  

y = Atan2(- ,%) 
cP cP 

or, for /3 = +90•‹, 
p = *90•‹ 

a = 0 

y = *Atan2(r12,  r z2 )  

A. 1.2 Equivalent Angle and Axis 

Equivalent Angle-axis + Rotation Matrix 

As shown in Figure A. l ,  a frame {B) is initially coincident with frame {A). Rotate {B) 

about the vector A~ by an angle of 8 ,  then the orientation of {B) with respect t o  {A) is: 

where 

! kXkxve  + co kxkyve  - kZse Icxlczve + lcyse 

R ( ~ K ,  8 )  = kxkyv8  + kzsO kykyv8  + c8 kykZv8  - kxs8 

kxkzve  - kYso kyk zve  + kXse  Iczlczve + ~e 
where c8 = cos 8 ,  s8 = sin 8 and v8 = 1 - cO. 

I 
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Rotation Matrix -t Equivalent Angle-axis 

For the inverse problem, given a rotation matrix, we compute the equivalent angle axis: i.e., 

given 

then if sin0 # 0, 

or when sin0 = 0, 0 = 0" or 180•‹, RK(0) is an identity or a negative identity matrix. 

A.2 Pseudoinverse Approach 

Given an m x n matrix A, the pseudoinverse approach solve the linear equation 

where x is an n-dimension vector, and b is an m-dimension vector. 

If m = n and rank(A) = n,  A is invertible, and 

When rank(A) # n or m # n,  the above solution does not hold anymore and we need to 

find a more general way to  solve this problem. 

A. 2.1 Moore-Penrose Inverse 

It is proved that [6] if there is any matrix X satisfying AXA = A, then the solution of 

Ax = b has a solution if and only if 

AXb= b 

X is pseudoinverse of A, and the most general solution is 
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where z is arbitrary. I t  is also proved that for every matrix A, there exist one or more 

matrices X satisfying AXA = A. The Moore-Penrose generalized inverse is a unique pseu- 

doinverse of A. 

Theorem 1 For every finite matrix A, there is unique X, such that: 

AXA = A 

X A X  = X 

(AX)' = A X  

(XA)' = X A  

X is called the Moore-Penrose inverse and most literature denote it by At. Then (A.9) is 

rephrased as: 

= A I ~  + (I - A ~ A ) ~  (A.14) 

A.2.2 Least Square Problem 

The Moore-Penrose inverse is used t o  solve least square problems and when A is full row or 

column rank, At has simple forms. 

Least-error Problem 

When m > n ,  rank(A) = n ,  and the system is over-determined having more equations than 

unknowns. There is actually no solution for this linear equation. However, we can use the 

least-error solution as the best solution, i.e., to  find a x, to  minimize Ilb - Axall, then: 

A+ = ( A ~ A ) - ' A ~  ( A . I ~ )  

I t  is also called the left pseudoinverse since AtA = (ATA)-'ATA = I. The least-error 

solution is: 

xa = ~ t b  = ( A ~ A ) - ~ A ~ ~  

Least-norm Problem 

When m < n ,  rank(A) = m ,  system is under-determined, having more unknowns than 

equations, there are infinite solutions for this linear equation.' Our target is to  choose the 

'When two row equations are contradictive, there might be no solution at all. In this case the smallest 
least-error solution is expected. For more please refer to (121. 
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minimal norm solution, i.e., t o  find a x, to minimize IIxall, then: 

it is also called right pseudoinverse since A A ~  = AAT(AAT)-I = I. The least-norm solution 

is: 

xa = ~~b = A ~ ( A A ~ ) - ~ ~  (A.18) 

A.2.3 Pseudoinverse in Our Problems 

For Jacobian-based local planners, we use the pseudoinverse approach to find our path. 

Our problem is i = J8, where J is the Jacobian matrix of a robot, 5 is the physical- 

space velocity, and 8 is the joint-space velocity. For 3D robot manipulator problems, the 

dimension of x, m,  is 3 for position, or 6 for position and orientation; the dimension of 

8, n ,  is the DOF of robot. For redundant robots, n > m, and we are solving an under- 

determined problem. Nevertheless, in our problem, we are interested in general forms of 

solutions instead of just least-norm solutions, because we have other additional constraints 

and the least-norm solution normally is not feasible. Similar to equation (A.14), a general 

solution for our problem is 

J + ~ + ( I -  J ~ J ) ~  ( A . I ~ )  

where z is arbitrary. We mostly deal with this form of solution for our problem in this 

thesis. 

A.2.4 Singular Value Decomposition 

For Equation (A.15) and (A.17) we assume (AAT) is invertible. However, this is not always 

true. Some robot configurations are singular and (AAT) becomes not invertible. Thus, we 

might need another method to  compute At, and SVD, Singular Value Decomposition, is a 

well-known method to compute At. 

Theorem 2 For any matrix A,,, E Rmxn, there exists a singular value decomposition of 

A, such that: 

A = U C V ~  

where 

U is  a n  m x n matrix whose columns are orthonormal. 
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V is  a n  n x n matrix whose columns are orthonormal. 

C is a n  n x n diagonal matrix with positive or zero elements. 

proof i2  A,,, is a transformation: V c Rn -+ W C_ Rm. In Rn,  there exists an orthonormal 

basis {vi), i = 1, ..., n ,  i.e., 

Let hi = Avi, i = 1, ..., n ,  then W =span{hi). Let ai = Ilhill, ui = &hi, then A is represented 

To make {ui) orthonormal, we need t o  pick a particular set of {vi) as the  basis of V, 

which makes {Avi) orthogonal with each other, i.e., 

< Avi, Avj >=< vj, A T ~ v i  >= 0, for i # j 

which means as long as we chome eigenvectors of ATA as {vi), then {ui) is orthonormal as  

well. And a; =< Avi, Avi >= V T A ~ A V ~  = Xi, SO a: is the eigenvalue of (ATA). 

The C can be unique if we require diagonal element of C, singular values of A, t o  be in 

decreasing order, 

a l > a 2 L . . . L a n L 0  

In the case where (ATA) has eigenvalues of 0, Dim(span{Avi)) = r < m,  

and we can only get r vectors as  {ui) from {vi). The Gram-Schmidt procedure can be 

applied t o  get additional basis vectors for space Rm. In this case, t o  save computation, U 

 his proof is modified from 1501 
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can be simply reduced to an m x r matrix, C can be reduced to a r x r matrix, and VT can 

be reduced to a r x n matrix, which is called Reduced SVD. 

Theorem 3 Given a SVD of A, A = UzVT, the Moore-Penrose inverse of A is 

where 

Proof: For C . x = b, it is straightforward that x = Ctb. ~t satisfies all the Moore-Penrose 

inverse conditions in equations (A. 10)-(A. 13). 
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