
GLOBAL PATH PLANNING WITH END-EFFECTOR
CONSTRAINTS

by

Zhenwang Yao

B. Sc., University of Science and Technology of China

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

In the School
of

Engineering Science

O Zhenwang Yao 2005

SIMON FRASER UNIVERSITY

Spring 2005

All rights reserved. This work may not be
reproduced in whole or in part, by photocopy

or other means, without permission of the author.

APPROVAL

N a m e : Zhenwang Yao

Degree : Masters of Applied Science

T i t l e of thes i s : Global Path Planning with End-effector Constraints

E x a m i n i n g C o m m i t t e e : Dr. John D. Jones

Associate Professor, Engineering Science

Chair

Dr. Kamal K. Gupta,

Professor, Engineering Science

Senior Supervisor

Dr. John C. Dill

Professor, Engineering Science

Supervisor

Dr. William A. Gruver

Professor, Engineering Science

SFU Examiner

D a t e Approved :

11

SIMON FRASER UNIVERSITY

PARTIAL COPYRIGHT LICENCE
The author, whose copyright is declared on the title page of this work, has
granted to Simon Fraser University the right to lend this thesis, project or
extended essay to users of the Simon Fraser University Library, and to make
partial or single copies only for such users or in response to a request from the
library of any other university, or other educational institution, on its own behalf
or for one of its users.

The author has further granted permission to Simon Fraser University to keep or
make a digital copy for use in its circulating collection.

The author has further agreed that permission for multiple copying of this work
for scholarly purposes may be granted by either the author or the Dean of
Graduate Studies.

It is understood that copying or publication of this work for financial gain shall
not be allowed without the author's written permission.\

Permission for public performance, or limited permission for private scholarly
use, of any multimedia materials forming part of this work, may have been
granted by the author. This information may be found on the separately
catalogued multimedia material and in the signed Partial Copyright Licence.

The original Partial Copyright Licence attesting to these terms, and signed by this
author, may be found in the original bound copy of this work, retained in the
Simon Fraser University Archive.

W. A. C. Bennett Library
Simon Fraser University

Burnaby, BC, Canada

Abstract

Our research is mainly concerned with the path planning problem with general end-eflector

constraints (PPGEC) for robot manipulators with many degrees of freedom. For example,

a robot manipulator holding a glass of water should keep the glass vertically up all the time,

a constraint on end-effector orientation; or, in some other cases, the end-effector may be

constrained to move in a plane, a constraint on end-effector position.

In this thesis, we show that there are two approaches to deal with the PPGEC problem.

The first approach is adapted from the existing randomized gradient descent method [33]

for closed-chain robots. The second approach is a new planning algorithm called ATACE,

Alternate Task-space And C-space Exploration. Unlike the first approach which works only

in the configuration space, ATACE works in both the task space and the configuration space.

Instead of finding a path in the configuration space directly, ATACE finds an end-effector

path in the task space, and then computes the corresponding configuration space path by

tracking this end-effector path.

In our simulation environment, we have implemented and compared these two a p

proaches. With intuitive explanations, we outline scenarios where one planner is better

than the other.

Acknowledgments

I would like to express my sincere gratitude to my supervisor Dr. Kamal Gupta for leading

me into this research and for his constant guidance, encouragement and financial support

during these years.

I would like to thank Professors John Dill, William Gruver and John Jones for being my

thesis committee members and providing valuable comments.

I would also like to thank Pengpeng Wang, Thomas Jackson, Yifeng Huang and Jinyun

Ren for reading and commenting on my thesis

Finally, I would like to thank my wife for love, respect and support. Without her

company, life would have never been so exciting.

To mom and dad!

Contents

Approval ii

Abstract iii

Acknowledgments iv

Dedication v

Contents vi

List of Figures x

Acronyms xiv

Notation xv

Glossary xvii

1 Introduction 1
. 1.1 Introduction. 1

. 1.2 Related Work 4

. 1.2.1 Basic Motion Planning Problem 4

. 1.2.2 Configuration-to-pose Inverse Kinematics Problem 5

. 1.2.3 Trajectory Tracking Problem 6

. 1.2.4 Motion Planning for Closed Chain Robots 8

. 1.3 Thesis Problem 10

. 1.3.1 Problem Definition 10

. 1.3.2 Solution Outline 12

. 1.4 Contributions 16

. 1.5 Thesis Outline 17

2 Adapting Existing Approaches 18

. . . 2.1 Construct Roadmap Satisfying End-Effector Constraints: Basic Routines 18

. 2.1.1 Generate Feasible Configurations 19

. 2.1.2 Connect Two Feasible Configurations 20

. 2.2 Generate Configurations for an End-effector Pose 22

. 2.2.1 Active-passive Link Decomposition Method 22

. 2.2.2 Randomized Gradient Descent (RGD) Method 23

. 2.3 Multi-query and Single-query Schemes 23

. 2.3.1 PRM-based Multi-query Scheme (PRM-RGD) 24

. 2.3.2 RRT-based Single-query Scheme (RRT-RGD) 25

3 New Approach: ATACE Planner 29

. 3.1 ATACE Concepts 29
. 3.2 Algorithm 30

. 3.2.1 Extend-With-Constraint 31

. 3.2.2 TrackEndEffector-Path() 35

. 3.2.3 Connect-To-Goal() 36

. 3.2.4 Nearest-Node 36

. 3.3 Algorithm Enhancement and Variations 38

. 3.3.1 Anticipatory Collision Check for End-effector Paths 38

. 3.3.2 Lazy End-effector Path Tracking 39

. 3.3.3 Other Classes of Problems 43

3.3.4 ATACE Paradigm Applied to Problems without End-effector Con-

. straints 43

4 Local Planners in ATACE 45

. 4.1 Probabilistic Local Planner 45

. 4.1.1 Current Probabilistic Approach 45

. 4.1.2 Incorporating Self-motion 50

. 4.1.3 Improvement with Self-motion 51

vii

. 4.1.4 Experiments 55

. 4.1.5 Summary 58

4.2 Jacobian-based Local Planners . 59

4.2.1 Homogeneous Solutions for Different Constraints 59

5 Implementation in MPK 63

. 5.1 Introduction to MPK 63

. 5.2 Collision Detector 63

5.2.1 Anticipatory Collision Detector . 64

. 5.2.2 Collision Detection in Local Planners 65

5.3 Incorporation of General Constraints . 65

5.4 Implementation of Local Planners . 66

. 5.4.1 Probabilistic Local Planner 66

. 5.4.2 Jacobian-based Local Planner 67

. 5.5 User-defined Parameters 67

6 Experimental Results 69

. 6.1 3D Position Constraints Problems 69

. 6.2 3D Orientation Constraint Problems 72

6.3 ATACE for Problems without End-effector Constraints 76

. 6.3.1 Basic Motion Planning Problems 76

. 6.4 C-2-P Inverse Kinematics Problems 79

. 6.5 Comparison of Different Parameters in ATACE 80

. 6.5.1 Comparison of Different Metrics in ATACE 80

. 6.5.2 Comparison of Different Local Planners in ATACE 82

6.5.3 Comparison of Lazy and Non-lazy Strategies in ATACE 83

. 6.6 Discussion 85

7 Conclusion and Future Work 8 7

. 7.1 Conclusion 87

. 7.2 Futurework 88

A Linear Algebra 90

. A . l Spatial Description and Transformations 90

...
Vll l

. A. l . l X-Y-Z Fixed-angle Representation of Orientation 90

. A.1.2 Equivalent Angle and Axis 91

. A.2 Pseudoinverse Approach 92

. A.2.1 Moore-Penrose Inverse 92

. A.2.2 Least Square Problem 93

. A.2.3 Pseudoinverse in Our Problems 94

. A.2.4 Singular Value Decomposition 94

Bibliography 9 7

List of Figures

1.1 The basic motion planning problem. (a) The start is shown as the light

configuration, the goal is shown as the gray configuration, and the black ob-

jects are obstacles. The dotted configurations are intermediate configurations

along a feasible path. (b) Find a free path connecting the start and the goal

configuration in the configuration space. ql and qz are joint variables of two

robot joints. White area represents collision-free configurations and shaded

area represent configurations colliding with obstacles. The robot motion in

(a) corresponds to the path shown in (b). 2

1.2 The configuration-to-pose inverse kinematics (C-2-P IK) problem. The robot

is a 2D redundant robot and there are an infinite number of configurations

to achieve the shown desired end-effector pose. 3

1.3 A closed-chain robot. 8

1.4 Randomized gradient descent met hod. 9

1.5 Active-passive link decomposition technique. (a) A 7-DOF closed-chain robot

is decomposed into an active chain with 5 joints and a passive chain with 2

joints. (b) Generating a feasible configuration maybe impossible with some

randomly-chosen active variables. 10

1.6 Generating a configuration for a given pose of an open-chain robot is equiv-

alent to generating a configuration for a closed-chain robot. 13

1.7 Example of generating configurations for constraints. A spatial robot with

n joints is required to move its end-effector in the constraint plane. As-

suming we use the method in 1191, we choose the last two singlelined joints,

{J,-1, J,), as the passive chain, and other doublelined joints, { J l , . .., Jn-21,

as the active chain. After we generate the active joint variables randomly,

we get the base of the passive chain. In this case, the reachable workspace of

the passive chain at the generated active joint variables is a disc, since axes

of the passive joints, J,-l and J,, are parallel. To satisfy the constraint, the

feasible end-effector poses must lie on the intersection between this disc and

the constraint plane, which is a line segment in this example. It is possible

to derive a closed form expression of this intersection and randomly choose a

pose. But, if the constraint is not a simple plane, the intersection for feasible

poses is harder to compute. If the axes of J,-l and J, are not parallel, their

reachable workspace is more complicated than a line, and choosing a feasible

pose is even more difficult. 13

1.8 Different motion planning problems. The black objects are obstacles. (a)

The basic motion planning problem: the darker configuration is the goal

configuration and the lighter one is the start configuration. (b) The trajectory

tracking problem: the dotted line is a specified path for the end-effector to

follow. (c) The C-2-P inverse kinematic problem: the frame between two

obstacles is the desired pose. 15

1.9 Comparison of uniform samples in the C-space with corresponding samples

in the task space. (a) 1000 samples evenly in the C-Space. (b)Corresponding

end-effector positions in the task space computed from forward kinematics

equations. 16

2.1 Cost functions for different constraints. (a) Cost function for a planar con-

straint. (b) Cost function for an orientation constraint. 20

2.2 Cost function to generate configurations for a given end-effector pose. (a)

. . . . e(q) for position. (b) e(q) incorporating both position and orientation. 23

2.3 Comparison of tree extension with regular RRT for the basic motion planning

problem and RRT-RGD for the PPGEC problem. (a) Random tree extension

with the regular RRT. (b) Random tree extension with RRT-RGD 27

The search tree constructed by the ATACE planner. An oval with and 0 in

it is a node in the tree; the leftmost and rightmost rectangles stand for the

start and goal. (0, m) represents a configuration-pose pair (q, p). A solid line

represents a pPath, and a dotted line represents the corresponding cPath

that tracks the pPath .

Extend- With-Constraint() grows the tree to a new node Nk in direction of

pd. pd is randomly generated. N, is the closest node to pd, before Nk is added.

Task space and C-space extension in Extend-With-Constraint().

Extracting an end-effector subpath in the task space.
Comparison of trees generated with C-space and task space metrics.
Anticipatory collision checking for end-effector paths. (a) Scene for planning.

(b) The anticipatory collision check for the corresponding end-effector path.

The end-effector path shown is not collision-free.
Lazy version of ATACE.

Greedy planner. (a) Specified end-effector path. (b) Data structure generated

by Greedy planner. There is only one configuration for each pose along the

given end-effector path. F(qi) = pi.
RRT-Like planner. (a) Specified end-effector path. (b) Random tree gen-

erated by RRT-Like planner. Configurations on the same level correspond

to the same pose, i.e., F(d) = pi. The configurations in the inner shaded

area are the first-level configurations and correspond to pl , and those in the

outer shaded area are the second-level configurations and correspond to pa.

To extend the tree from qneaT toward qTand, we compute a new configuration

qnew, by determining its active joint variables qiew and passive joint variables

&,,. qgew is computed by a linear displacement from qgeaT to qknd; &,, is

computed with qEew and pose pk+l .
Failure to find a path given a bad start configuration.

4.4 Expansion of tree nodes for the Greedy algorithm to include self-motion graph. 52

xii

4.5 Random trees with SMG . Two trees grow from the start and goal respectively .
After a configuration is extended from one tree. it is greedily connected to

the other tree . An SMG is explored where the greedy connection fails . Along

the greedy connection. connectivity is checked with requirement of the pose

sequence . For example in the figure. qk for pk is extended from the start tree.

then the nodes (including SMG) for pose pk+l is checked for connectivity . . . 55

4.6 Experiment for SMG: Case 1 . 57

4.7 Experiment for SMG: Case 2 . 57

4.8 Experiment for SMG: Case 3 . 58

4.9 A special case: qf,, and SMG(pbaCk) are not connectable 58

4.10 Obstacle avoidance . 60

5.1 MPK components . 64

5.2 Interface for constraint manipulation in ATACE planner 66

6.1 Experimental scene for planar constraints: Case (a) 70

6.2 Experimental scene for planar constraints: Case (b) 71

6.3 Experimental scene for orientation constraints: Case (a) 73

6.4 Experimental scene for orientation constraints: Case (b), Scene (b-I), without

. obstacles 74

6.5 Experimental scene for orientation constraints: Case (b), Scene (b-2). with

obstacles . 75

6.6 Experimental scene to test ATACE on a basic motion planning problem: Case

(a) . 77

6.7 Experimental scene to test ATACE on a basic motion planning problem: Case

(b) . 78

6.8 Experimental scene to test ATACE on a C-2-P IK Problem (2D): Case (a) . . 79

6.9 Experimental scene to test ATACE on a C-2-P IK Problem (3D): Case (b) . . 80

6.10 Comparison of different metrics . 81

6.1 1 Comparison of different local planners . 82

A.l Equivalent angle.axis . 91

xiii

Acronyms

ACA

ATACE

C-2-P

C-2- C

DOF

MP

MPK

PPGEC

PRM

PRM-RGD

RGD

RRT

RRT-RGD

RRT-C

SMG

IK

IK- AC A

Ariadne's Clew Algorithm [39]

Alternate Task-space And C-space Exploration

Configuration to (end-effector) Pose (planning problem)

Configuration to Configuration (planning problem)

Degree Of Freedom

Motion Planning

Motion Planning Kernel

Path Planning with General End-Effector Constraints

Probabilistic Road-Map [27]

PRM-based Randomized Gradient Descent Method, adapted from [33].

Randomized Gradient Descent method

Rapid-exploring Random Tree [34]

RRT-based Randomized Gradient Descent Method, adapted from 1331.

RRT Connect planner [29]

Self-Motion Graph

Inverse Kinematics

ACA for the configuration-to-pose Inverse Kinematics problem [I]

xiv

Not at ion

Start configuration

Goal configuration

Start end-effector pose

Goal end-effector pose

Node in random tree, pk = F (q k)

Distance between two configurations

Distance between two poses

Forward kinematic of configuration q

Self-Motion Manifold of pose p

Self-Motion Graph propagated for pose pk

Jacobian matrix

Jacobian matrix for end-effector

Jacobian matrix for obstacle avoidance point

Rotation around K with angle 0

Rotation of frame {A) with respect to frame {B)

End-effector frame

Inner product of two vectors a an b

Position of an end-effector

Orientation of an end-effector

General End-effector equality constraint

General End-effector equality constraint

Tree data structure

An end-effector path in the task space

An path in the configuration space to track an end-effector path in

the task space

A node in a random tree

The kth joint variable of configuration qi; for prismatic joint, we still

use Qi,k as a substitute of it joint variable di,k

End-effector angular velocity

End-effector linear velocity in the task space

Cmt function for the randomized gradient descent method

xvi

Glossary

Closed-chain Robot

Configuration

C-space

DOF

End-Effector

End-effector Pose

End-effector Path

Joint Path

Node

A robot with closed-loop kinematics chains.

A configuration q is a set of independent parameters that com-

pletely determines the position for every point on the robot body.

Configuration Space: the set of all possible configurations;.

Degree of Freedom: the number of degrees of freedom of a robot is

the minimal number of variables to determine the physical state of

a robot. Basically, it is the dimension of the configuration space.

End-effector is the actuator component of a robot manipulator,

typically at the end of the chain of links. For example, it can be

a gripper, welding torch, or devices like that.

A set of parameters which determines the end-effector position

and orientation.

An ordered sequence of poses in the task space connecting two

given poses.

An ordered sequence of configurations connecting two given con-

figurations.

A node is a vertex in a random tree, along with additional infor-

mation. It consists of a configuration, the pose under this config-

uration, an end-effector path in the task space connecting to its

parent, and a C-space path to track this end-effector path.

xvii

Redundant Robot A redundant robot is a robot with more degrees of freedom than

the minimum required to perform a task. In 3-dimensional en-

vironments, 6 DOFs are needed to perform a goal position and

orientation task. Hence robots with more than 6 DOFs are often

called redundant robots.

xviii

Chapter 1

Introduction

1.1 Introduction

Robot motion planning is the discipline to study the ability of a robot to plan its motions

for performing a required task. It is one of the most important area in robotics research [22],

and is a major issue for autonomous robots [30] (and more generally, autonomous agents),

with various applications ranging from industrial automation to computer games.

For a rigid body, or an articulated robot which is composed of a sequence of rigid links,

the basic mot ion planning problem is defined as [30]:

Given a start configuration and a goal configuration of the robot, generate a collision

free path between these two configurations i n a known static environment.

where a configuration is a set of parameters that completely determines the position of every

point on the robot.

Generally, the motion planning problem is computationally hard (PSPACEhard) [44].

One popular way to solve this problem is to transform it into the parameter space, the so-

called configuration space (C-space), where every configuration of the robot is represented

as a point. The basic motion planning problem is solved by looking for a path in the

configuration space connecting the start configuration and the goal configuration as shown

in Figure 1 .l.

In some applications, as shown in Figure 1.2, when a robot manipulator tries to perform

tasks, what really matters is the end-effector pose, i.e., the position and orientation of the

end-effector frame. Generally, a robot manipulator can achieve the same pose with more

CHAPTER 1. INTRODUCTION

Start 2ir

Goal

91

Figure 1.1: The basic motion planning problem. (a) The start is shown as the light con-
figuration, the goal is shown as the gray configuration, and the black objects are obstacles.
The dotted configurations are intermediate configurations along a feasible path. (b) Find a
free path connecting the start and the goal configuration in the configuration space. ql and
92 are joint variables of two robot joints. White area represents collision-free configurations
and shaded area represent configurations colliding with obstacles. The robot motion in (a)
corresponds to the path shown in (b).

than one configuration. This leads to an extension of the basic motion planning problem also

called the configuration-to-pose inverse kinematics problem1(C-2-P IK in short hereafter),

which is defined as [I]:

Given a start robot configuration, and a desired end-effector pose, determine a reach-

able configuration for the desired end-effector pose, and a collision free path connecting

this configuration and the start configuration.

Unlike the basic motion planning problem, the C-2-P IK problem looks for a path in the

C-space connecting a given robot configuration to one of many possible final configurations

which are implicitly defined by the given goal end-effector pose. Especially, when the robot

is a kinematically redundant robot, there can be infinite configurations that reach the same

end-effector pose. A redundant robot is a robot that has more degrees of freedom than the

minimum required to perform a task. For example, for a planar robot we need at least 3

DOFs to make the end-effector reach an arbitrary position and orientation. The planar robot

'1n [I], it is also called the point-to-point inverse kinematics problem, corresponding to the ezistence
problem, which determines a robot configuration for a given end-effector pose.

CHAPTER 1. INTRODUCTION

Figure 1.2: The configuration-to-pose inverse kinematics (C-2-P IK) problem. The robot
is a 2D redundant robot and there are an infinite number of configurations to achieve the
shown desired end-effector pose.

shown in Figure 1.2 has more than 3 DOFs, so it is a redundant robot. The redundancy

created by additional degrees of freedom gives the robot dexterity and flexibility to satisfy

secondary constraints, such as obstacle avoidance, joint limits and singularities.

In some applications, a robot might be required to move while satisfying constraints on

the end-effector path (or trajectory2) throughout the motion. For example, a painting robot

or a welding robot might be required to move its end-effector along a straight line, i.e., the

entire end-effector trajectory is given. This type of problem is generally called the trajectory

tracking problem, and it is defined as:

Given a start robot configuration, and an end-effector trajectory in the task space,

determine a collision free path, such that the end-effector of the robot can move along

the given trajectory.

Rat her than satisfying the entire trajectory, some other applications involve other types

of end-effector constraints along the path. For example, when a space manipulator is moving

a satellite, the satellite may need to be maintained in a certain orientation; when a robot

holding a glass of water moves from one place to another, it should keep the glass vertical all

the time; or, in some other cases, the end-effector may be constrained to move in a plane or

inside a certain portion of the workspace. We name this problem as p a t h planning with

general end-effector constraints, (P P G E C in short hereafter). This is the problem we

address in this thesis, and more detailed problem formulation is given in Section 1.3.1. A

list of different robot motion planning problems is given in Table 1.1.

'A trajectory includes a timing requirement along the path.

CHAPTER 1. INTRODUCTION 4

-

C-2-P IK I Config. I End-Eff.t Pose I None

Problem

Basic MPh

I Traiectorv Trackinn I Confin. I End-Eff. Pose I Given End-Eff. traiectorv (or ~ a t h ' l 1
V , U , I , 1 I

PPGEC 1 Config. I End-Eff. Pose I General End-Eff. Constraints

Start

Config.'

b ~ ~ = ~ o t i o n Planning; 'Config.=Coniiguration; End-~ff.=End-Effector.

Table 1 .l: Different Path Planning Problems.

Goal

Config.

Although the trajectory tracking problem is an extensively studied topic [9, 17, 20, 38,

41, 43, 481, the PPGEC problem has not received much attention. This thesis presents two

approaches to deal with this problem. First, we show that existing methods for clased-chain

robots can be modified and adapted to solve the PPGEC problem. Second, we propose a

new global path planner, called Alternate Task-space And C-space Exploration (ATACE).

We compare these two approaches and present simulation results for various robots and

environments.

Constraints

None

1.2 Related Work

1.2.1 Basic Motion Planning Problem

Latombe [30] gives three main approaches to solve the basic motion planning problem:

Roadmap Methods, Cell Decomposition and Potential Field. However, all these methods

mainly target low-dimension problems, dealing with robots with a small number of degrees

of freedom. For high dimension problems, several planners have been implemented in the

last decade or so [18], and the probabilistic sampling-based methods are one of the most

effective approaches. The idea behind these methods is to construct a C-space connectivity

roadmap by randomly placing landmarks (configurations) into the C-space, and trying to

set up the connections with neighboring landmarks. Probabilistic Road Map (PRM) [27],

Rapidly-exploring Random Tree (RRT) [34, 291 and Ariadne's Clew Algorithm (ACA) [39]

are the specific algorithms that broadly fall into this category.

PRM [27] interleaves a learning phase and a query phase. In the learning phase, a

graph is constructed in the C-space. Nodes in the graph are randomly-selected collision-free

configurations, and edges represent the connectivity between nodes and their neighbors. In

CHAPTER 1. INTRODUCTION 5

the query phase, the start and goal configurations are connected to the graph, and then the

graph is searched for a path connecting the start and the goal.

ACA [39] interleaves two sub-algorithms: EXPLORE and SEARCH. At every iteration,

EXPLORE incrementally constructs a tree by selecting a new node from a set of randomly

generated landmarks, which is the farthest landmark to current tree. In this way, the tree

represents the accessible space from the start configuration with increasingly fine resolution.

SEARCH checks whether the goal configuration is reachable from the new-selected node at

every iteration.

RRT [34] uses an efficient search tree data structure, Rapid-exploring Random Tree, to

represent the accessible free C-space from the start configuration. The tree is constructed

iteratively, with the start configuration as its root. At every iteration a new node is added

to the tree such that it grows toward a randomly-selected point. RRT-Connect in [29] adds

a greedy heuristic to the basic RRT algorithm. It grows two search trees, one from the start

and the other from the goal configuration, and checks the connectivity between these two

trees at each iteration after placing a new node into one of the trees.

PRM is a multi-query planner in sense that the generated roadmap is independent to

start and goal configurations and can be reused for different tasks. RRT and ACA are

singlequery planners, and they need to rebuild the tree every time different start and goal

configuration is given. A multi-query planner can save a considerable amount of time by

constructing the roadmap in preprocessing time. In some applications, however, a single-

query planner is preferred. For example, if an environment keeps changing and we use the

roadmap just once, a multi-query planner may waste time in exploring unreachable areas,

while a single-query planner can avoid unnecessary exploration by limiting the search in the

reachable space from the start configuration.

1.2.2 Configuration-to-pose Inverse Kinematics Problem

Ahuactzin and Gupta [I] extend ACA for the basic motion planning problem to solve

the configuration-to-pose inverse kinematics problem. Just like ACA, it includes two sub-

algorithms: Explore() and Search(). Explore() constructs the tree, also called the kinematic

roadmap, by placing landmarks in the free configuration space. Search() checks whether

the desired end-effector pose is reachable from a new-selected landmark. Defining the cost

function c(q,p) as the distance between the end-effector pwe under configuration q and the

desired pose p, Search() formulates the problem into a single variable optimization problem

CHAPTER 1. INTRODUCTION 6

for every joint. For instance, for the ith joint, while the other joint variables are fixed,

c(q,p) can be regarded as a single variable function with respect to ith joint variable qi. It is

simple to compute the optimal qi, and after doing an optimization for each joint iteratively,

c(q,p) converges to a local optimal value. If c(q,p) = 0, then the goal is achieved; otherwise,

Explore() is called again followed by Search(). Note that any other local approach (e.g.

Jacobian-based planner) can be used in Search() instead of the specific algorithm proposed

in that paper.

1.2.3 Trajectory Tracking Problem

The approaches to solve the trajectory tracking problem are classified into two classes ac-

cording to applications. One class of approaches is for local online control problems which

require real-time control. The other class is for global offline planning approaches which

compute a feasible joint path beforehand. Jacobian-based pseudeinverse control techniques

[17, 38, 411 are local approaches for online applications; Seereeram and Wen [48] extended

Jacobian-based techniques to a global approach for offline applications, and Oriolo et a1 (431

proposed a different global approach using the probabilistic method.

Jacobian-based techniques work on instantaneous velocity. The basic idea of these tech-

niques is that, as the end-effector trajectory is given, the joint velocity along the trajectory

is computed by the end-effector velocity. The end-effector velocity, 2 , is represented in terms

of joint velocities, q, thus

x = J q

where J is the Jacobian matrix. The joint velocity is computed as

where I is the identity matrix and Jt is the generalized inverse3 of J, and z is an arbitrary

vector in the C-space. The first term is the minimum norm solution for x = Jq, and the

second term is the homogeneous solution to satisfy additional constraints. (I - J t J) z is

actually a vector in the null-space of J , also known as self motion, which means that any

movement caused by (I - J I J) ~ does not affect the end-effector pose. Several strategies to

choose z for additional constraints are proposed: z can be chosen to avoid obstacles [38],

to avoid joint limits [37], or to achieve good manipulability [52]. However, the drawback of

3Also called Moore-Penrose inverse, for more about generalized inverse, refer to Appendix A.2

CHAPTER 1. INTRODUCTION 7

this approach is that it is a local method and the robot may get stuck into the local minima,

even in relatively simple environments.

To avoid the local minima problem in the previous techniques, Seereeram and Wen [48]

proposed a global approach. In this approach, the problem is transformed into a finite time

non-linear control problem, x = F(u), where x is system state, u is control variable and F is

a non-linear function. For instance, there are m sample points along the trajectory, and the

system state of the transformed control problem, x, is the stack vector of the end-effector

pose at every sample point,

where x(ti) is the end-effector pose at ti. The stable system state xd is the desired end-

effector trajectory. The underlying problem is how to find a control variable u, the stack

vector of the joint velocity at every sample point,

to achieve the stable system state, i.e., Ilx - xdll = 0. Although an explicit form of F

is hard to find, the gradient of F, VuF, is relatively easy to compute. V u F = El is a

Jacobian-related matrix. Having VuF, u is computed by a Newton-Raphson type iterative

algorithm. The advantage of this method is its globality and it can incorporate both C-

space constraints and task-space constraints. However, the computation of this approach

is expensive, because the transformed control problem is an m x n dimensional problem,

where n is the DOF of the robot, and m is the number of samples along the trajectory.

A different global approach is proposed in [43], which uses the probabilistic sampling

method to solve this problem. Like probabilistic planners for the basic motion planning

problem, it explores the connectivity of the C-space. However, since the end-effector path is

given, it does not have to explore the entire C-space; instead, it explores C-space areas such

that the end-effector moves along the given end-effector path. Generally, for a redundant

robot, an end-effector pose, p, corresponds to a set of configurations in the C-space, the

secalled self-motion manifold, denoted as SM(p). The given end-effector path defines the

sequence of poses, and for the path to be followed by the robot, self-motion manifolds for

these poses must be connectable, i.e., to be a configuration in the path, qi+l E S M (P ~ + ~)

should be connectable to SM(pi). SM(pitl) is explored biased on those configurations

that have been explored for pose pi. To generate configurations for an end-effector pose, it

CHAPTER 1. INTRODUCTION 8

uses active-passive link decomposition techniques [19, 101 for closed-chain robots described

in the next section. Different connecting strategies are proposed in [43]. For example,

Greedy planner is a depth-first connecting strategy which consecutively generates only one

configuration for each pose based on the configuration for the previous pose. RRT-Like

planner tries to explore more than one configuration for each pose, and it applies regular

RRT 1341 to active joints, and the passive joint is determined by the pose sequence. More

details about this approach are discussed in Section 4.1.

1.2.4 Motion Planning for Closed Chain Robots

As shown in Figure 1.3(a), a closed-chain robot is a robot with a closed-loop kinematic chain

mechanism whose end-effector is linked to the base by several independent kinematics chains

[40]. This is a related problem to our problem, in the sense that the closure constraint for

closed-chain robots can be thought of as end-effector constraints for open chain robots. In

the next chapter, we adapt some planning techniques for closed-chain robots to deal with

our PPGEC problem.

Figure 1.3: A closed-chain robot.

Different probabilistic methods have been proposed for robots with closed-loop kinematic

chains. Lavalle et a1 [33] use a randomized gradient descent (RGD) technique. If a configu-

ration qo is generated r a n d ~ m l y , ~ normally q = qo does not satisfy the closure constraint. As

shown in Figure 1.4, the closed chain is broken under qo. Defining e(q) as the broken gap,

this method searches for a configuration such that e(q) = 0. Instead of descending exactly

4A feasible configuration for closed-chain robots is in a closure space [31], C,~,,,, which is a sub-space of
C = Rn. Starting with qo E C, RGD finds a configuration in C,t,,,.

CHAPTER 1. INTRODUCTION 9

along the gradient, it randomly picks up some configurations in the neighboring area of q

and finds a configuration q', such that e(ql) < e(q) and repeats the search until the error is

small enough.

Figure 1.4: Randomized gradient descent method.

Han et a1 [19] proposed an active-passive link decomposition technique. As shown in

Figure 1.5(a), the chain of a robot manipulator is partitioned into two sub chains: an active

chain and a passive chain. Joint variables for the active chain are generated randomly, and

passive chain joint variables are computed as a non-redundant robot to satisfy the closure

constraint. However, to generate a valid configuration is not always easy. For some choices

of active variables, it may be impossible for passive variables to close the loop, as shown in

Figure 1.5(b). A valid configuration is generated if and only if the end-frame of the active

chain is in the workspace of the passive chain. Intuitively, the possibility of getting a feasible

closure configuration depends on the reachable workspace of two chains. The larger is the

volume of the intersection between these two workspace, the higher is the possibility. In

some cases, the active chain has a high number of joints and links, resulting in small volumes

of intersection, thus the chance of obtaining a closure configuration is fairly small.

Cortes el a1 [lo] use a random loop generator method to improve the chance of reaching

closure configurations by iteratively restricting the range of the active variables. The method

takes reachable workspace of the active chain and the passive chain into consideration, and

the joint variables are generated one after another. For instance, once joint variables of the

first to (i - l) th joints are known, a range of the ith joint variable is computed such that,

within this range, the tip of the active chain intersects the reachable area of the passive

chain. Thus, the ith joint variable can be selected randomly in this range. Cortes' method

uses spheres to approximate the reachable workspace, because a precise volume is difficult to

compute. Therefore, this method improves the probability of obtaining a closure constraint

CHAPTER 1. INTRODUCTION

Figure 1.5: Active-passive link decomposition technique. (a) A 7-DOF closed-chain robot
is decomposed into an active chain with 5 joints and a passive chain with 2 joints. (b)
Generating a feasible configuration maybe impossible with some randomly-chosen active
variables.

but does not completely resolve the problem.

On the other hand, both methods in [lo] and [I91 require closed-form inverse kinematics

to solve passive variables. Computing closed form inverse kinematics for general robots

is complex and tedious, and a good decomposition into active and passive joints is fairly

robot-specific in general.

1.3 Thesis Problem

1.3.1 Problem Definition

We now formally state the path planning problem with general end-effector constraints

(PPGEC). The end-effector we are interested in is a rigid body with a frame, and it can

be a gripper along with gripped objects. The constraints are denoted in terms of the end-

effector pose, p. p can be represented as a pair (P , 0), where P is the position of the origin

of the end-effector frame, and O is the orientation of the end-effector frame with respect to

the universe frame.

P E R~

where N = 2 for planar applications and N = 3 for spatial applications. O is an N x N

rotation matrix in the Special Orthogonal Group, denoted by SO(N) [30]. In general, an

CHAPTER 1. INTRODUCTION

end-effector pose

p E RN x S O (N)

where N=2 or 3. If the problem is limited to the position of the end-effector, then

p E R ~ .

p can be parameterized into two triples: (x, y, z) for position 'P, and (a , P, y) for orientation

O with fixed-angle representation (see Appendix A. 1 . I) .

Denote the equality constraints for the end-effector as

where G is a continuous function in task space, which corresponds to a submanifold in

C-space. For example, if the end-effector is required to be vertical, the constraint is

If the end-effector is required to move in a plane, the constraint is

(ax + ba: + cz + d)' = 0

where (a, b, c) is the norm of the plane.

Given this notation, two categories of problems are formulated:

1. Configuration-to-pose (C-2-P) PPGEC problem which corresponds to the C-2-P IK
problem, but with additional constraints. It is defined as:

Given a start robot configuration q,, and a desired end-effector pose p,, determine a

reachable configuration qg and a collision free path q(r) to it, 7 E [O , l] , such that

q(0) = q,, q(1) = q,, F(q,) = p,, and end-effector pose p(r) satisfies constraints (1.1)

for all T E [O,l].

2. Configuration-to-configuration (C-2-C) PPGEC problem which corresponds to the

basic MP problem, but with additional constraints. It is defined as:

Given an start configuration q, and a goal configuration q,, find a collision free path

q (~) , T E [O,l], between the two configurations, such that q(0) = q,, q(1) = q,, and

end-effector pose p (~) satisfies constraints (1.1) for all 7 E [0, I].

The C-2-P problem is the main focus of this thesis, but extensions to the C-2-C problem

are also discussed.

CHAPTER 1. INTRODUCTION

1.3.2 Solution Outline

Adaptation of Existing Closed-chain Methods

Techniques for closed-chain robots are applied and modified to solve our problem. The

method in [33] takes the closure constraint as a special type of end-effector constraint, and

we adapt the method for more general end-effector constraints. Three key modifications

made to the RGD method in [33] are summarized below, and more details are presented in

Chapter 2.

1. Instead of the distance function e(q) used in [33] for closed-chain robots, we need to

use a more general cost function that represents the "distance" to the end-effector con-

straint. Note that the previous form of the cost function will depend on the constraint.

Section 2.1 outlines this in detail.

2. In our case, the goal is defined as an end-effector pose (for C-2-P problem). For

a redundant robot, it generally corresponds to an infinite number of possible goal

configurations. This necessitates different treatment in roadmap query procedure. For

example, different configurations for the goal end-effector pose need to be generated

(see below) and then evaluated.

3. [33] uses a multi-query PRM-based scheme. In our applications, as the environment

changes frequently, a single-query method is preferred. Therefore, we propose a RRT-

based single-query scheme.

Note that any configuration generation technique for closed-chain robots can be used

to generate configurations for open-chain robots for a given end-effector pose. As shown

in Figure 1.6, once the end-effector pose is given, the base and the end-effector are both

fixed, and an open chain robot can be regarded as a closed-chain robot with an imaginary

joint connecting the base and the end-effector. To generate a configuration satisfying the

closure constraint for a closed-chain is equivalent to generating a configuration for the desired

pose for the corresponding open chain. Getting configurations for a given end-effector pose

is an essential problem when we adapt [33] for our problem, where we need to generate

configurations for the goal pose.

CHAPTER 1. INTRODUCTION

Figure 1.6: Generating a configuration for a given pose of an open-chain robot is equivalent
to generating a configuration for a closed-chain robot.

Proposed New Algorithm: ATACE

Unlike the trajectory tracking problem where all feasible poses are given, in our problem a

pose is not given explicitly. Instead, it is implicitly described by constraints like G (p) = 0,

which may correspond to an infinite number of feasible poses. For some simple applications,

it may indeed be possible to derive the closed form of these feasible poses and randomly

choose one, but for general cases, efficiently selecting a feasible pose is difficult. This is

illustrated with a simple example shown in Figure 1.7.

Figure 1.7: Example of generating configurations for constraints. A spatial robot with n
joints is required to move its end-effector in the constraint plane. Assuming we use the
method in [19], we choose the last two singlelined joints, {Jn-l, J,), as the passive chain,
and other doublelined joints, {J1, . . . , JnPz), as the active chain. After we generate the
active joint variables randomly, we get the base of the passive chain. In this case, the
reachable workspace of the passive chain at the generated active joint variables is a disc,
since axes of the passive joints, JnP1 and J,, are parallel. To satisfy the constraint, the
feasible end-effector poses must lie on the intersection between this disc and the constraint
plane, which is a line segment in this example. It is possible to derive a closed form expression
of this intersection and randomly choose a pose. But, if the constraint is not a simple plane,
the intersection for feasible poses is harder to compute. If the axes of JnP1 and J, are not
parallel, their reachable workspace is more complicated than a line, and choosing a feasible
pose is even more difficult.

CHAPTER 1. INTRODUCTION 14

In addition, for general end-effector constraints, connecting two configurations is ineffi-

cient, because the end-effector also needs to satisfy these constraints at every intermediate

point along the path connecting these two configurations. Note that this issue can be avoided

in the trajectory tracking problem where two configurations are connected in a straight line.

This is because we can always assume the sample points are dense enough along the end-

effector trajectory, and configurations are generated in a neighborhood of their predecessors

such that a linear movement in the C-space results in an approximately linear movement

in the task space, consequently, the end-effector will not deviate from the given trajectory.

For our problem, no explicit end-effector trajectory is given. Instead only the end-effector

constraints are specified, and there is no simple way to connect two feasible configurations

and guarantee the end-effector motion in between satisfies the constraints as well.

Oriolo [43] used a probabilistic method for the trajectory tracking problem, taking ad-

vantage of that all the feasible end-effector poses are given and connectivity among these

poses is known. Inspired by that, is it possible to obtain the information of poses and their

connectivity for the PPGEC problem? If poses are given, it is relatively easy to generate

configurations using existing techniques. As the constraints are given in terms of end-effector

poses, connecting two poses in the task space is easier than connecting corresponding con-

figurations in the C-space. For example, consider the constraint G(p) = 0 in the task space.

If two feasible configurations are to be connected in the C-space, then we need to compute

and satisfy the constraint in configuration space, i.e., G(F(q)) = 0 must be explicitly com-

puted. On the other hand, if two poses are first connected in the task space, we do not

need to transform the constraint. This end-effector path can now be used as an input to

a trajectory tracking algorithm. This leads to our new planning algorithm, ATACE, Al-

ternate Task-space and C-space Exploration. Instead of exploring the configuration space

directly, it explores the task space first for feasible end-effector poses and paths connecting

the poses. Then, feasible end-effector paths are used to guide the C-space exploration of

the underlying trajectory tracking problem. The following two observations also show that

task-space knowledge, in some cases, will help C-space exploration.

I . The Trajectory tracking problem is generally easier than the basic motion

planning problem.

Consider the scenario depicted in Figure 1.8, we applied a PRMIRRT planner on

(a) as the basic motion planning problem, and the probabilistic trajectory tracking

CHAPTER 1. INTRODUCTION 15

planner [43] on (b). The results show that the latter planner runs much faster than

the former one. The reason is as follows: since the trajectory tracking planner (b) is

given an explicit end-effector trajectory, it only needs to explore some sub-spaces of

the C-space instead of exploring the entire C-space like the planners in (a). Also the

trajectory tracking planner knows the connectivity of these subspaces. It might be

an unfair comparison since the motion planning problems in (a) and (b) are different.

Nevertheless, to solve the basic motion planning problems or the inverse kinemat-

ics problems like (c), we can first find a feasible end-effector path, and then apply

trajectory tracking planners to solve it. That is the basic idea behind ATACE.

Figure 1.8: Different motion planning problems. The black objects are obstacles. (a) The
basic motion planning problem: the darker configuration is the goal configuration and the
lighter one is the start configuration. (b) The trajectory tracking problem: the dotted line
is a specified path for the end-effector to follow. (c) The C-2-P inverse kinematic problem:
the frame between two obstacles is the desired pose.

2. Uniform sampling in C-space results in biased sampling in task space

For higher dimensional problems, uniform sampling in the configuration space nor-

mally results in unevenly distribution of end-effector poses in the task space. For

example, 1000 samples were uniformly distributed in the C-space for the redundant

robot shown in Figure 1.8. As shown in Figure 1.9, the corresponding distribution

of end-effector positions is uneven in the task space. So it may not be efficient using

uniform Gspace sampling, if the robot wants to go to somewhere in the task space

with sparse samples.

One way of rectifying the uneven distribution of samples in the task space is to bias

CHAPTER 1. INTRODUCTION 16

the sampling in the C-space [35, 51, 161. In [51, 161, biased sampling strategies are

based on task-space knowledge, but their methods are intended for rigid bodies. For

robot manipulators, a similar method is employed in ATACE where biased sampling

strategies based on task-space knowledge guide C-space exploration.

Figure 1.9: Comparison of uniform samples in the C-space with corresponding samples in
the task space. (a) 1000 samples evenly in the C-Space. (b)Corresponding end-effector
positions in the task space computed from forward kinematics equations.

1.4 Contributions

1. A d a p t existing p a t h planning methods for closed-chain robo t s

The randomize gradient descent method [33] for closed-chain robots is adapted for the

PPGEC problem. Different cmt functions are defined to deal with more general con-

st raints on the end-effector. We propose both multi-query and single-query versions,

since different applications may require one or the other.

2. P ropose a new planning a lgor i thm

A new algorithm, ATACE, is proposed for the PPGEC problem. Unlike those pure

C-space search methods, it is a task-space directed C-space exploration. It first uses a

probabilistic method to explore the task-space for feasible end-effector paths and then

track the paths in C-space by trajectory tracking techniques. The knowledge about

feasible end-effector paths in task-space refines the search in C-space. This paradigm

also can be applied to the path planning problems such as the basic motion planning

problem and the C-2-P IK problem.

CHAPTER 1. INTRODUCTION 17

3. Improve probabilistic methods for the trajectory tracking problem

ATACE uses a trajectory tracking planner as a local planner. A probabilistic trajec-

tory tracking approach is proposed in [43], but it does not allow self-motion along the

path and has reduced globality. A novel self-motion graph is introduced into current

probabilistic approach for better connectivity, and the improved planner can more

efficiently find a joint path.

4. Implement planners within MPK

Within MPK (Motion Planning Kernel), a software library for motion planning de-

veloped at SFU [15], we show that the PPGEC problem can be solved by both the

adapted randomized gradient descent method and the newly-proposed algorithm, AT-

ACE, and we compare the performance of these planners with different scenes.

1.5 Thesis Outline

The remainder of the thesis is organized as follows: In Chapter 2, we adapt existing random-

ized gradient descent method for closed-chain robots [33] to solve our problems. In Chapter

3, a new planning algorithm, ATACE, is proposed, and a detailed description including the

algorithms is given. Since different local planners can be used in ATACE, some local plan-

ners are introduced in Chapter 4, including some improvements or adaptations we made

for these planners; Chapter 4 also includes experiments that were done to evaluate these

local planners. In Chapter 5, we present our implementation of the two global planners

implemented within MPK. In Chapter 6, experimental results for the different algorithms

are presented and compared. Finally, conclusions and future research issues are presented

in Chapter 7.

Chapter 2

Adapting Existing Approaches for

Closed-chain Robots

As discussed in the introductory section, the randomized gradient descent method [33] is

adapted for solving the PPGEC problem. In this chapter, we give a detailed description of

this adapted planner. To make the constructed roadmap satisfy more general end-effector

constraints, in Section 2.1 we adapt the roadmap constructing function, by defining different

cost functions. To adapt it for configuration-to-pose problems, in Section 2.2 we generate

configurations for the given goal end-effector pose, before we integrate it into both multi-

query and single-query schemes in Section 2.3.

2.1 Construct Roadmap Satisfying End-Effector Constraints:

Basic Routines

The basic routines to construct a roadmap are Generate-Feasible-Configuration() and Con-

nect-Feasible-Configurations(). The former generates feasible configurations that are colli-

sion free and satisfies end-effector constraints, and the latter connects two feasible configu-

rations assuring every intermediate configuration along the connection is collision free and

satisfies the constraint as well. Both routines are similar to those for closed-chain robots in

[33], except for different cost functions are defined the following section.

CHAPTER 2. ADAPTING EXISTING APPROACHES 19

2.1.1 Generate Feasible Configurations

The routine Generate-Feasible-Configuration() uses the randomized gradient descent method

to reduce a cost function e(q) which represents the "distance" to the constraint. It randomly

generates a configuration q, and then searches in the neighborhood of q for another con-

figuration qt which reduces the cost function e(q). The search is repeated, until the cost

function e(q) is less than a threshold value E .

1. q +RANDOM-CONFIG();

2. i t 0; j t 0;

3. WHILE (i < I) AND (j < J) AND (e(q) > t)

4. i t i + l ; j t j + l ;

5. q' +- RANDOMr\JHBR(q);

6. IF (e(qt) < e(q)) THEN

7. j t O ; q t q t ;

8. IF (e(q) < t) THEN

9. RETURN q;

10. ELSE

11. RETURN failure;

RANDOM-NHBR(q) generates a random collision-free configuration in neighborhood of

q (within a small pre-defined distance). The cost function e(q) is defined as the "distance"

to the constraint. To deal with different end-effector constraints, different cost functions

need to be defined. For example, for the planar constraint, where the end-effector moves in

a plane, the cost function is defined as the Euclidean distance from the end-effector to the

plane, as shown in Figure 2.l(a). For orientation constraints, the cost function involves the

rotation matrix. For example, if we have an orientation constraint requiring the end-effector

to be pointing vertically down. Assume this requires the z axis of the end-effector frame

match the z axis of the universe frame, thus

CHAPTER 2. ADAPTING EXISTING APPROACHES 20

Then, as shown in Figure 2.l(b) the cost function is defined as distance between two vectors,

Figure 2.1: Cost functions for different constraints. (a) Cost function for a planar constraint.
(b) Cost function for an orientation constraint.

2.1.2 Connect Two Feasible Configurations

As shown in the following pseud~code, Connect~Feasible~Configurations() uses a similar

method as Generate-Feasible-Configuration() to connect two feasible configurations. The

difference is, in this neighborhood search, the target configuration is the one that not only

reduces the cost function but also reduces the distance to the other end, q'.

Connect_Feasible~Configurations(q, q')

1. i t 0 ; j t 0 ; k t O ; L t i q)

2. WHILE (i < I) AND (j < J) AND (k < K) AND (p(Last(L), q') > po)

3. i t i + l ; j t j + l ;

4. q" t RANDOM-NHBR(Last(L));

5. IF (e(q") < E) THEN

6. j t O ; k t k + 1

7. IF (p(qU, q') < p(Last(L), q')) THEN

8. k t 0; L t L+ iq");
9. IF (p(Last(L),qf) 2 po) THEN

CHAPTER 2. ADAPTING EXISTING APPROACHES

10. RETURN L;

11. ELSE

12. RETURN failure;

RANDOM-NHBR(), t o some degree, controls how densely the connection will be dis-

cretized. If the radius of the neighborhood is set t o a smaller value, then there will likely

be more configurations along the connection. Last(L) is the last element of L and p(q, q')

is the distance of two configurations.

Connect-Feasible-Configurations() uses the randomized gradient descent method t o con-

nect q and q'. As an alternative, a closed form connecting procedure is also proposed in [33].

The procedure can be done by stepping in the tangent plane of the constraints, G(q) = 0. As

q and q' are in the tangent plane, we can s tep from q t o q' by iteratively choosing increment,

dq, which satisfies Equation (2.1) below.

In Equation (2.1) m < n, and it can be solved by linear algebra techniques such as singular

value decomposition, SVD [50]. Given a position and orientation constraint

where P is position and 0 is a set of orientation angles. We have

aG where, 3F and are easy to derive, and and are the Jacobian matrix for the robot

kinematics with respect t o end-effector position and orientation1 respectively.

In Equation (2.1) the rows do not have t o be independent. For example, consider an

orientation constraint like "keep the end-effector vertical", i.e., the orientation of the z axis

remains constant. The corresponding constraint is stated as

'The analytical Jacobian (471 needs to be used for orientation, which involves the derivative of orientation
angle directly instead of the angular velocity.

CHAPTER 2. ADAPTING EXISTING APPROACHES 22

where '2 is z-axis unit vector of the end-effector frame with respect t o the universe frame.

The three rows of the constraint in (2.2) are not independent; intuitively the given orienta-

tion constraint takes away two degrees of freedom. But the dependence does not affect the

result, and we can use the same approach to solve (2.2) as we do for (2.1).

2.2 Generate Configurations for an End-effector Pose

In C-2-P PPGEC problems, the goal is given as an end-effector pose instead of a single

goal configuration, while [33] considered the C-2-C problem. To adapt the C-2-C algorithm,

we can randomly generate a configuration for the given goal end-effector pme, and try t o

connect this configuration into the constructed roadmap. If it fails, then the next time, we

try a different configuration for the goal pose. So we need a method t o generate possible

configurations for a given end-effector pme. As we mentioned in the introduction, the

planners for closed-chain robots [33, 19, 101 are suitable for this purpose.

2.2.1 Active-passive Link Decomposition Method

The Generate-Feasible-Configuration-Fodose) procedure randomly generates a configu-

ration for a given pose. It uses the active-passive link decomposition method [19] breaking

the kinematics chain into the active sub-chain and the passive sub-chain. The active con-

figuration is generated randomly, and the passive configuration is computed via closed-form

inverse kinematics.

1. FOR (i=l t o MAX-RAND-RETRY)

2. qa t RandomActive();

3. qP t ClosedformlnvKin(p, qa);

4. I F (success) THEN

5 . q (qQ,qP);

6. I F (Is-Collision_Free(q)) THEN

7. RETURN q;

8. RETURN failure:

CHAPTER 2. ADAPTING EXISTING APPROACHES 23

2.2.2 Randomized Gradient Descent (RGD) Met hod

The procedure Generate-Feasible-Configuration() is also suitable for generating configura-

tions for a given end-effector pose, with a change in the cost function e(q). With reference to

Figure 2.2(a), define e(q) as the Euclidean distance between the current end-effector position

to the goal position:

If orientation is considered as well, then define e(q) as the coordinate frame distance between

current end-effector frame and the goal end-effector frame [I] as shown in Figure 2.2(b). Let

where d(2e,2g), d(ye, yg) and d(ie,Sg) are the distances between the vertices of x, y and z

axis unit vectors respectively.

Figure 2.2: Cost function to generate configurations for a given end-effector pose. (a) e(q)
for position. (b) e(q) incorporating both position and orientation.

2.3 Multi-query and Single-query Schemes

Both multi-query and single-query planners can now be implemented.

1. PRM-based multi-query scheme: PRM-RGD.

A graph roadmap is constructed incrementally with the method we introduce in Sec-

tion 2.1. It repeatedly adds feasible configurations to the graph and connects them

CHAPTER 2. ADAPTING EXISTING APPROACHES 24

with neighboring configurations. After the roadmap is constructed or updated, a

randomly-chosen goal configuration for the given goal pose is connected to the roadmap

for query.

2. RRT-based single-query scheme: RRT-RGD.

A search tree is constructed incrementally with the start configuration as its root.

During each iteration, the tree is extended in a random direction, and the algorithm

attempts to connect a randomly-chosen configuration for the given goal pose.

2.3.1 PRM-based Mul t i - que ry S c h e m e (PRM-RGD)

PRM-RGD is similar to PRM for the basic motion planning problem [27]. It interleaves

roadmap constructing and path querying. Note that PRM is a multi-query planner, and the

roadmap is independent of the start and goal; however, for simplicity and fair comparison

with RRT type planners, we simply put the start configuration into the roadmap at the

very beginning.

1. N + {q,); E + 0; //Initialize road-map

2. LOOP UNTIL (time out)

3. Construct-Roadmap(); //Iteratively construct road-map

4. p a t h tQuery() ; //Search for the path

5. IF (success) THEN

6. RETUR.N pa th ;

7. RETURN failure;

Roadmap Construction

The following procedure iteratively constructs the roadmap by adding a feasible configura-

tion to the roadmap and connecting the configuration to neighboring configurations.

C o n s t r u c t R o a d m a p ()

1. FOR (i= l to NUM-NODE-PERITERATION)

2. c + Generate-Feasible-Configuration(); / / c satisfies the constraint

CHAPTER 2. ADAPTING EXISTING APPROACHES

3. N, t Get-Neighbors(c); / / G e t neighbors i n the road-map around c

4. N t N u { c)

5. FOR (all n in Nc)

6. I F (Connect-Feasible~Configurations(c, n)) THEN

7. E t E u {(c,n));

R o a d m a p Query

The following procedure adds a randomly-generated goal configuration corresponding to the

goal pose to the roadmap, and searches for the path joining this configuration and the start

configuration, q, .

1. FOR (i = 1 T O MAX-RETRY-FOR-GOAL)

2. q t Generate-Random-Configuration(p,); / / F (q) = p,

3. N t N U {q); / /Add q into road-map

4. N, t Getr\Jeighbors(q) ;

5 . FOR (all n in N,)

6. I F (Connect~Feasible~Configurations(q, n) THEN

7. E + E u ((914) ;

8. qg + 4;

9. BREAK;

10. IF (qg # NULL) THEN / / I F some q has been connected into road-map

11. path tFind-Path(q, , 9,);

12. I F (success) THEN

13. RETURN success

14. RETURN failure;

2.3.2 RRT-based Single-query Scheme (RRT-RGD)

RRT-RGD is similar to RRT-Connect for the basic motion planning problem (291. However,

it grows the tree from the start configuration only, rather than growing the tree simultane-

ously from the start configuration and the goal. The tree is extended in a random direction

CHAPTER 2. ADAPTING EXISTING APPROACHES 26

to generate a new configuration, and connects the configuration to the goal in a greedy way.

The procedure is described below.

'T t Initialize-Tree(q,) ; //Initialize random tree

REPEAT

q, +- Random-Config(); / / q , generated completely randomly

q, +- NearestlVode(q,); //Closest configuration i n T

(s, qnew) +- New-Config(qc, 9,);

/ /qnew satisfies the constraint, and is roughly i n direction of q,

IF (s # Trapped) AND (Connect~Feasible~Configurations(q,, qnew))

/ / i f qnew is connectable to q,

7.add_verte~(~,,,) ; 7.add-edge(q,, qnew);

IF (Connect~To~Goal()=success)

RETURN success;

UNTIL (time out)

RETURN failure;

E x t e n d t h e t r e e i n a r a n d o m direction

The following procedure generates a feasible configuration in a random direction. In PRM-

RGD scheme a feasible configuration is generated around a randomly generated configura-

tion, while in RRT-RGD scheme, the generated configuration is biased toward the search

tree. As shown in Figure 2.3(a), in the regular RRT, it generates a configuration q, which

lies in the straight line between q, and qT with a fixed distance [to q,. However, for our

problem, q may not satisfy the constraint, and a feasible configuration, q', is chosen around

q with the randomized gradient descent (RGD) method, as shown in Figure 2.3(b).

1. q +- a config along straight between q, and q,, and Ilq, - qll = [;

2. q' +-Get-Config-Satisfy-Constraint (q) ;

3. IF (Is-Collision_Free(q'))

CHAPTER 2. ADAPTING EXISTING APPROACHES

Figure 2.3: Comparison of tree extension with regular RRT for the basic motion planning
problem and RRT-RGD for the PPGEC problem. (a) Random tree extension with the
regular RRT. (b) Random tree extension with RRT-RGD

4. RETURN (Advanced, ql);

5. ELSE

6. RETURN (Trapped, NULL);

Get-Config-Satisfy-Constraint (q)

l . i + O ; j + O ; q l + q

2. WHILE (i < I) AND (j < J) AND (e(ql) > E)

3. i t i + l ; j t j + l ;

4. q" + RANDOM-NHBR(ql);

5 . IF (e(cf) < e(ql)) THEN

6. j + 0; q1 + qll;

7. IF (e(q) < E) THEN

8. RETURNql;

9. ELSE

10. RETURN failure;

Greedy Algorithm t o Goal

Since the goal is given as an end-effector pose, a configuration is generated for the end-

effector goal pose and Connect-Feasible-Configurations() connects this configuration to the

CHAPTER 2. ADAPTING EXISTING APPROACHES

search tree.

1. qg t Generate-Random-Config~ration(~,); //F(q) = p,

2. q, t Nearestr\Jode(qg);

3. IF (Connect-Feasible-Configurations(q,, qg)) THEN

4. 7.add-vertex(qg); 7.add-edge(q,, qg);

5. RETURN success;

6. RETURN failure;

Chapter 3

New Approach: ATACE Planner

In this chapter, we introduce the ATACE planner to solve the configuration-to-pose PPGEC

problem. The primary concepts of the ATACE planner are introduced in Section 3.1, and

details of the algorithms and sub-algorithms are given in Section 3.2. Enhancement and

variations of ATACE are discussed in Section 3.3.

3.1 ATACE Concepts

ATACE constructs a search tree in the task space, and tracks the search tree in the con-

figuration space. Every node in the search tree corresponds to a pair (qk, pk). qk is a

configuration, and pk is the end-effector pose under this configuration, i.e., pk = F(qk).

Every edge in the tree is represented by an end-effector sub-path (in the task space) and a

joint sub-path (in the configuration space) to track the end-effector sub-path. If there is a

sequence of edges (sub-paths) in the tree joining the start pose and the goal pose, a feasible

joint path is extracted to solve the problem.

ATACE tackles general end-effector constraints by reducing these constraints into end-

effector velocity constraints. ATACE explores the task space for a number of end-effector

sub-paths. To make sure every (sub-)path satisfies the constraints, the path is extended

from a feasible pose, and the next pose in the path is computed by choosing a velocity

that does not violate the constraints. Intuitively, a velocity tangent to the constraints can

be a choice. For instance, if an end-effector is required to move in a plane, and the first

pose is given in this plane, then obviously, as long as the end-effector moves with a linear

velocity in this plane, it does not violate this plane constraint. So, ATACE first determines

CHAPTER 3. NEW APPROACH: ATACE PLANNER 30

a connecting path by choosing proper velocities, and then comes to a new node. In this way,

both the connecting path and the new node can be guaranteed to satisfy the constraints.

After getting a feasible end-effector path (or subpath between two intermediate poses)

in the task space, ATACE utilizes a local planner to track the path and avoid obstacles,

joint limits and singularities. It uses a trajectory tracking planner like the Jacobian-based

pseud~inverse control approaches [17, 20, 381 that can easily take obstacles into account

and avoid them without violating the constraints.

3.2 Algorithm

The ATACE planner simultaneously constructs a search tree, 7, in the configuration space

and the task space. The root of 7, (q,, p,), is the start configuration and the corresponding

pose. Planning terminates when a node with the goal end-effector pose, pg, becomes a leaf

of 7 . ATACE is a single-query planner which means it recreates 7 every time the start

configuration q, changes. Every node in the tree has additional information associated with

it, contained in the following parameters:

1. (q, p): configuration q, and pose p = F(q);

2. parent: parent node in the tree;

3. pPath: an end-effector sub-path connecting p to its parent pose;

4. cPath: a joint sub-path connecting q to its parent configuration.

A schematic of the tree that the planner constructs is shown in Figure 3.1. Although

subpath of the tree are represented as straight lines in the figure, the actual path in the

task space, pPath, or the corresponding path in the C-space, cPath, is not necessarily a

straight line due to constraints.

ATACE-Plan() iteratively picks a random direction and grows the tree in this direction

before trying to connect the tree to the goal. The ATACE algorithm is summarized below.

1. p s t F (q . 5) ;

2. 7 + Initialize-Tree(q,, p,);

CHAPTER 3. NEW APPROACH: ATACE PLANNER

Figure 3.1: The search tree constructed by the ATACE planner. An oval with w and l in it
is a node in the tree; the leftmost and rightmost rectangles stand for the start and goal. (0,
w) represents a configuration-pose pair (q, p). A solid line represents a pPath, and a dotted
line represents the corresponding cPath that tracks the pPath

REPEAT

qd t Random-Config(); pd + F(qd);

N, t Nearest-Node(pd);

(s, Nk) t Extend-With-Constraint(N,, pd, FALSE);

IF (s # Trapped)

IF (Connect-To-Goal(Nk)=Reached)

RETURN success;

UNTIL (time out)

RETURN failure;

Initialize-Tree() initializes the search tree 7 with node (q,, p,) as its root. Ran-

dom-Config() randomly generates a configuration. Nearest-Node() looks up 7, and finds

the node N, which is the closest topd; the metric for finding N, is described in Section 3.2.4.

Extend- With-Constraint() places a new node Nk with (qk, pk) in 7 by stepping from N, in

the direction of pd, more precisely, in the direction of the projection of pd in the tangent

space of the constraints. Connect-To-Goal() tries to connect the tree to the goal from the

new node Nk. These procedures are described in more detail in the following sections.

3.2.1 Extend-With-Constraint

As shown in Figure 3.2, given a node, N,=(q,, p,) , in 7, and a stepping direction in the task

space, pd, Extend-With-Constraint() tries to advance toward pd (more precisely, toward its

CHAPTER 3. NEW APPROACH: ATACE PLANNER 32

projection on the current tangent plane, denoted by Yd) along a path that also lies on the

constraint surface (or satisfies the constraints). Extend-With-Constraint() returns (s, N),

which can be: (a) (s = Advanced, N = Nk), a feasible path is extended; (b) (s = Reached,

N = Nk), the extended feasible path reaches the projection of pd, pd; (c) (s = Trapped,

N =NULL), no feasible path.

Figure 3.2: Extendwith-Constraint() grows the tree to a new node Nk in direction of pd.
pd is randomly generated. Nc is the closest node to pd, before Nk is added.

More specifically, Extend-With-Constraint() first extracts an end-effector sub-path Ep

in the task space that satisfies the constraints, as in Figure 3.3(a), and then computes a

sub-path in the configuration space, Ec, by using the local planner to track Ep, as shown in

Figure 3.3(b). To assure an end-effector sub-path in the task space connecting two poses

satisfies constraints, the sub-path is extracted by choosing feasible velocities toward a direc-

tion pd at every step along the path. When parameter greedy = FALSE, the sub-path is

extracted in no more than M steps, Ep = p1,p2,. . . ,pM; when greedy = TRUE (called by

Connect-To-Goal()), the sub-path can consist of more than M poses and reach pd (actually

its projection in the tangent plane).

Extend-With-Constraint(Nc, pd, greedy)

1. E p t & i t O ; p i t p C ;

2. REPEAT

3. (vi, wi, &)+ Compute~Valid~Velocity(pi, pd) ;

CHAPTER 3. NEW APPROACH: ATACE PLANNER

Task Space Configuration Space

I 7

---.--._...___ ..--
Tra j.

Tracking

Figure 3.3: Task space and C-space extension in Extend- With-Constraint().

(s, pi+') t Compute~NextPose(pi, vi, wi, Zjd);
tp +- tp U{pipi+l);

i + i + l ;

UNTIL(((!greedy)AND(i 2 M)) OR (s = Reached))

I F (s # Trapped)

(ss, E,) + TrackEndEffector-Path(q,, Ep);

I F (ss = success) THEN

Nk.p t the last element of tP;

Nk.q t the last element of E,;

Nk.pPath t t P ;

Nk.cPath t &,;

Nk.parent + N,;

+ ' T u N k ;

ELSE

Nk + NULL;

RETURN (s, Nk);

In the REPEAT-UNTIL loop, an M-step subpath is extracted satisfying the constraints.

Compute-Valid-Velocity() computes and returns a valid end-effector velocity (consisting of

linear and angular velocity components) at the current (ith) point, and the projection of pd

in current tangent plane, &. Note that at every iteration, Ijd may change and the subpath

is extended toward fi. If Compute- Valid- Velocity() returns Reached, it means the s u b path

arrived at Ij6 With current pose pi and current velocity vi, Compute-Neb-Pose() computes

the next feasible end-effector pose over a fixed time interval (sampling time), a user specified

CHAPTER 3. NEW APPROACH: ATACE PLANNER 34

parameter. If greedy = TRUE, the subpath is extended to &, even if it takes more than

M steps. TrackEndEffector-Path() uses the local planner to solve the trajectory tracking

problem for subpath Ep. If it succeeds, a joint space sub-path is returned in E,, and a new

node Nk is connected to N,.

Compute- ValidVelocity () transforms end-effector constraints into end-effector velocity con-

straints. Assume poses pO,pl, , . . ,pi are already generated, and we want to generate a

feasible velocity, vi (at pose pi), by which we can compute the next pose satisfying the

position constraint G(p) = 0.

From p" with the assumption that the time interval is small enough, we can go to

another feasible pose provided the velocity vector is tangent to the constraint plane,

As shown in Figure 3.4, to extract the next pose, piS1, in the direction of pd, we compute

vi as follows. Project pd into the tangent plane at pi. Let denote this projection. Choose

v k s a unit velocity in the same direction as Td - p' .

Tangent Plane

/----

Figure 3.4: Extracting an end-effector subpath in the task space.

For orientation constraints, the constraint expression may be complex. Here, we restrict

orientation constraints to relatively simple cases. For instance, a robot holding a full glass

of water needs to keep the glass strictly vertical. Let's say this requires the z axis of the end-

effector frame to remain vertical with respect to the universe frame. The feasible angular

CHAPTER 3. NEW APPROACH: ATACE PLANNER

velocity is

w = k . [0 0 llT

where k is an arbitrary scalar value. A more general cases in which a unit vector 6 in

end-effector frame is required to be kept constant with respect to the universe frame has an

feasible angular velocity of

w = k . 6 .

Compute-Next P o s e ()

Given the current pose pi, the instantaneous velocity (vi, wi) and the target pose &, Corn-

pute-Next-Pose() computes the next pose pi+1. An end-effector pose p is partitioned into

position P and orientation 0.

For position constraints
pi+l -

- Pi + vi . At

where vi is a unit linear velocity (Ivil = I) , and At is a small time interval. If Pi
satisfies the constraints, we can assume over a small time interval, Pi+l also satisfies

the constraints with an error O(At).

For orientation constraints

wi is the angular velocity, R(R, 8) is the rotation matrix representing a rotation around

axis 2 by angle 8.

Track-EndEffector-Path() calls a local planner to track the extracted end-effector (sub-

)path. In ATACE different local planners can be selected. Any planner for the trajectory

tracking problem is suitable to be our local planner. For example, a deterministic local

Jacobian-based planner, or probabilistic planner as in 1431 can be used. The local planner

returns success or fail flag to indicate whether a joint (sub-)path to track the given end-

effector path has been found. We detail these trajectory tracking planners in Chapter 4.

CHAPTER 3. NEW APPROACH: ATACE PLANNER 36

In ATACE-Plan(), Connect-To-Goal() tries to the connect current tree 7 to the goal by

extending the tree from the newly-added node Nk to the goal pose p,. This is essentially

same routine as Extend- With-Constraint(), except that now it is extended until either the

goal pose p, is achieved, or a failure is encountered. In the pseudo-code, this is governed by

the greedy flag being set to TRUE.

1. (s, N) t Extend-With-Constraint(Nk, p,, TRUE);

2. RETURN s;

To find the closest node in the tree 7, we need a metric to measure the distance between

two nodes. Different metrics can be used.

1. We can use a Euclidean metric in the configuration space defined as

where Ok,i is the ith joint variable for configuration q k ; N is the DOF of the robot; wi

is the weight of each joint.

2. We can use a metric in the task space defined as

where

x(pi), pi), z(pi) are the x, y, z coordinate of pose pi. The orientation component

of the pose is simply ignored in this metric. To take both position and orientation

into consideration, as introduced in the previous chapter, the metric defined as the

distances between two end-effector frame can be used [I].

CHAPTER 3. NEW APPROACH: ATACE PLANNER

(a) C-space tree using C-space met- (b) Task-space tree using C-space
ric metric

(c) C-space tree using task-space (d) Task-space tree using task-space
metric metric

Figure 3.5: Comparison of trees generated with C-space and task space metrics.

3. Randomly choose metric (1) or (2) above, since each metric may or may not yield

good performance.

In Chapter 6, the performance with different metrics is compared. In Figure 3.5, the

C-space metric and task-space metric are compared for a motion planning problem shown

later in Figure 6.9. When the C-space metric is used, the nodes are relatively even in the

C-space (Figure 3.5(a)), while they were pretty much concentrated in a small area in the

task space (Figure 3.5(b)); On the other hand, when the task-space metric is used, the nodes

are concentrated in a region of the C-space (Figure 3.5(c)), but evenly distributed in the

task space (Figure 3.5(d)). This is mainly because we use an RRT like framework, and it is

known that RRT exploration is biased toward the unexplored space, and the probability of

extending from a vertex is proportional to the area of its Voronoi region (w.r.t the metric

used) [32].

CHAPTER 3. NEW APPROACH: ATACE PLANNER

3.3 Algorithm Enhancement and Variations

3.3.1 Anticipatory Collision Check for End-effector Paths

In Extendwith-Constraint(), every time an end-effector sub-path is extracted, the local

planner is called to track the extracted sub-path. But normally tracking an end-effector

path is relatively expensive. It is a good idea to eliminate those paths which are not collision

free. For example, if an end-effector path goes through obstacles, it is impossible for the

local planner to track such a path, and it should be eliminated. Therefore, to reduce the

computation, when an end-effector sub-path is extracted, simple collision detection (only

with the end-effector) is performed to check whether there is any obstacle in the extracted

end-effector sub-path. We call this anticipatory collision check. As shown in Figure 3.6, in

the planning for the scene shown in Figure 3.6(a), the corresponding anticipatory collision

checking is shown in Figure 3.6(b). The dashed end-effector path will be discarded and will

not be passed on to the local trajectory tracking planner.

Figure 3.6: Anticipatory collision checking for end-effector paths. (a) Scene for planning. (b)
The anticipatory collision check for the corresponding end-effector path. The end-effector
path shown is not collision-free.

The path extraction procedure in function Extend- With-Constraint() is modified to in-

corporate the anticipatory collision check to eliminate infeasible (colliding) paths. Is-Path-Clear()

is a function to detect possible collision and models the end-effector as a point or as an ob-

ject with a simplified geometry (such as a cube or sphere). Note that if an end-effector path

is found to be free after anticipatory collision check, the entire C-space path will be checked

again by the local planner at tracking stage. So, it increases the work in some cases and

CHAPTER 3. NEW APPROACH: ATACE PLANNER 39

results in additional overhead, but on the whole it is observed to be a faster planner, since

it eliminates costly computations by rejecting a large number of colliding paths early and

inexpensively.

Extend- With-Constraint() is modified to include Is-Path-Clear().

Extend-With-Constraint2(Nc, pd, greedy)

2. REPEAT

3. (vi, wi, &)t Compute-Valid-Velocity(pi, pd) ;

4. (s, pi+l) t Compute.Next-pose(pi, vi, wi, &);

*. IF (~ s - ~ a t h - ~ l e a r (~ ~ , pi+'))

5 . •’ + E U{pipi+l)
* . ELSE

* s t Trapped; •’ +-NULL;

6. i t i + l ;

7. UNTIL(((N0T greedy)AND(i > M)) OR (s = Reached) OR (s = Trapped));

The lines marked with "*" are newly added statements. Is-Path-Clear(pipi+l) checks

whether there is any obstacle in pipi+l. If there is, the sub-path is not tracked, and (Trapped,

NULL) is returned.

3.3.2 Lazy End-effector Path Tracking

The planners in 17, 461 use lazy collision checking for the basic motion planning problem in

PRM and RRT. It first assumes all edges are feasible, and does not do collision detection

until the edges of the road-map are finally picked. For our problem, anticipatory collision

checking is quick and tracking sub-paths takes most of the planning time. Lazy end-effector

path tracking may be a good way to improve performance. Only when the planner finds a

candidate end-effector path joining the start and goal, it tracks the entire path. The lazy

version of ATACE planner is described in function LazyATACE-Plan().

Lazy-ATACE-Plan(q, , p,)

CHAPTER 3. NEW APPROACH: ATACE PLANNER

1. Ps F(qs);

2. 7 t Initialize-Tree(q,, p,);

3. REPEAT

4. qd + Random-Config(); pd + F(qd) ;

5 . Nc t NearestAode([qd, pd]) ;

6. (s, Nk) t Lazy-Extend-With-Constraint(N,, pd);

7. IF (s # Trapped)

*. IF (Lazy-Connect-To-Goal(Nk)= Reached)

*. {path} t Get-Candidate-Pat h() ;
* IF (Lazy-TrackEndEffector-Path({path})=success)

*. RETURN success;

10. UNTIL (time out);

11. RETURN failure;

The lines marked with "*" denote the modifications to ATACE-Plan(). In function

Lazy-Extend- With-Constraint(), only anticipatory collision checks are done for the extracted

end-effector subpaths. Every time a new node is added to the tree, Lazy-Connect-To-Goal()

tries to extend the tree from the new node to the goal. If the extension succeeds, the path

joining the root and the goal is a candidate of feasible path as shown in Figure 3.7(a). The

subpaths within the candidate path are tracked in Lazy-Track-EndEffector-Path(). If a

subpath is not feasible (cannot be tracked), it is deleted with the entire branch as shown

in Figure 3.7(b) (c) .
Lazy-Extend With-Constraint0 is modified from Extend- With-Constraint,?(). The latter

track the extracted subpath right away, while the former does not, and consequently, the

corresponding information of joint subpath and configuration in the node is empty. The

following piece of pseud~code reflects the difference with Extend- With-Constraint,?(), where

"*" highlights the modifications.

Lazy-Extend-With-Constraint(Nc, pd, greedy)

. //Same as Extend-With-Constraint 2 0

8. I F (s f Trapped)

*. //Do not track the extracted sub-path any more;

CHAPTER 3. NEW APPROACH: ATACE PLANNER

(a) When the goal is achieved, a candidate end-effector path is found. A circle in
a node means the corresponding configuration has not been generated yet.

(b) Track this candidate end-effector path by local planner. If an end-effector
sub-path is not feasible, delete the corresponding branch.

(c)After the branch is deleted, descendant branches are also discarded.

Figure 3.7: Lazy version of ATACE.

CHAPTER 3. NEW APPROACH: ATACE PLANNER

11. Nk.p + the last element of edge;

*12. Nk.q + NULL; //It used to be: Nk .q +- the last element of E,;

13. Nk.pPath c EP;

*14. Nk.cPath c NULL; //It used to be: Nk.cPath +- E,;

15. Nk.parent + N, ;

16. ;r Nk;

17. ELSE

18. Nk c NULL;

19. RETURN (s, Nk);

Lazy~Connect~To~Goal() is similar to Connect-To-Goal(). The difference is the former

calls Lazy-Extend- With_Constraint(), while the latter calls the original Extend- With-Constraint().

1. (s, N,,,) c Lazy-Extend-With-Constraint(Nk , p,, TRUE);

2. RETURN s;

Lazy-Track-EndEffector-Path() is also similar to Track-EndEffector-Path(). The differ-

ence is the latter tracks a single (end-effector) sub-path in the tree, while the former tracks

a set of sub-paths and may delete a branch of the tree. Assume path stores a sequence of

nodes in the candidate path. If a subpath has not been tracked, it is then tracked by the

local planner; otherwise, go to next sub-path. If it is not able to track a sub-path in the

C-space, then this sub-path is deleted, and the entire branch afterward is also deleted as

shown in Figure 3.7(c).

1. qo + Qs

2. FOR (every node in path)

3. N c ~ a t h [i] ;

4. IF (N.cPath=NULL) //This sub-path has not been tracked

5. (s, •’A)+ TrackEndEffector-Path(q0, N.pPath);

6. IF (s=success)

CHAPTER 3. NEW APPROACH: ATACE PLANNER

7. N.cPath t &:;

8. ELSE

9. Re-organize the trees, cut this branch; / / a s Figure 3.7(c).

10. RETURN failure;

11. qo t last element of N.cPath;

By using the lazy-tracking strategy, ATACE can be described as a two-layer architecture.

The upper layer is a path planner for rigid bodies to find an end-effector path in the task

space joining the start and the goal pose, and the lower layer is a trajectory tracking planner

for the robot manipulator to track this path.

3.3.3 Other Classes of Problems

So far we have focused on C-2-P PPGEC problems. ATACE can be easily adapted to C-

2-C PPGEC problems. For C-2-C planning problems, everything remains the same, except

the greedy stepping procedure to reach the goal. Consider the C-2-C problem as a C-2-P

problem, using the end-effector pose, p,, corresponding to the goal configuration, q,, as the

goal pose. After reaching p,, we get a configuration q,, and normally qg # q,. To achieve

q, and avoid violating the end-effector constraint, we try to move from qg to q, without

moving the end-effector. In other words, we need to solve a closed-chain planning problem

whose start configuration is qg and the goal configuration is q,.

In the C-2-P problem, we assume a start configuration is given for the start pose. How-

ever, in some cases, we need to determine a feasible start configuration before we can proceed

with planning. Thus, we need to find a way to generate a single configuration satisfying

constraints. One possible way is to use the method proposed in Section 2.2 to generate

configurations for a given pose. If planning with a selected start configuration turn out to

be unsuccessful, then we try another start configuration, and repeat the planning.

3.3.4 ATACE Paradigm Applied to Problems without End-effector Con-
straints

To test if this task-space directed C-space exploration paradigm helps in more basic prob-

lems without end-effector constraints, we also apply ATACE to the C-2-P inverse kinemat-

ics problem and the basic motion planning problem. Now that there are no end-effector

constraints along the path, any pose is feasible (taking no account of obstacles and joint

CHAPTER 3. NEW APPROACH: ATACE PLANNER 44

limits). So, we can c h o s e the end-effector velocities randomly when we extract an end-

effector subpath. Nevertheless, for the basic motion planning problem, the goal is a desired

configuration, and the current ATACE takes a pose as the goal. This can be easily adapted.

Again, let the desired configuration be q,, and the corresponding end-effector pose be p,.

After applying ATACE, we get to 9,. One way is to use a similar strategy as we discussed

above: after p, is achieved, do a closed-chain planning from q, to q,. A simpler way is to do

a linear connection from q, to t,, since there are no constraints along the path. As long as

the linear connection is collision free, the problem is solved; otherwise repeat and generate

new paths. The greedy search function is changed as follows:

Connec t -To-Goa l3MP(Nk) / / B M P , Basic motion planning

1. (s, N) t Extend-With-Constraint(Nk, p,); / /There actually is no constraint.

*. I F (s = Reached)

* . IF(Is~Collission_Free(q, , Nk .q) = TRUE)

*. 7 TU {[%F(qg)lh

*. RETURN Reached;

* . ELSE

* s = Trapped;

2. RETURN s;

Chapter 4

Local Planners in ATACE

ATACE searches end-effector paths in the task space, and local planners track these paths.

In this chapter, we introduce probabilistic local planners in Section 4.1, Jacobian-based local

planners in Section 4.2.

To solve the trajectory tracking problem, first we need to discretize the given end-effector

path(or trajectory) into a sequence of end-effector poses: {PO,. . . ,pm). Then, the goal of

the local planner is to find a joint path, a sequence of configurations: {qo,. . . , qm), such

that pi = F(qi), for all 0 5 i 5 m.

4.1 Probabilistic Local Planner

4.1.1 Current Probabilistic Approach

Similar to probabilistic methods like RRT and PRM, probabilistic planners for the trajectory

tracking problem try to build a roadmap in the C-space by randomly placing nodes in

the C-space and determining the connectivity between nodes. However, for the trajectory

tracking problem, there are two differences compared to the basic motion planning problem.

Firstly, in the trajectory tracking problem, configurations are not generated completely

randomly; instead, we need to generate configurations for those pmes along the given end-

effector trajectory. Secondly, the configurations satisfy a certain sequencing requirement.

For example, a feasible configuration for pose pi should be connectable to at least one of

the configurations for pose pi-1. As mentioned in the introductory section, to generate

configurations for a given end-effector pose, we can use configuration generation techniques

CHAPTER 4. LOCAL PLANNERS IN ATACE 46

for the closed-chain robot. As for connecting strategies, [43] proposed different probabilistic

planners, including Greedy planner, RRT-Like planner and combinations of the two. We

briefly review them here. First we outline a basic procedure that generates a configuration

for a pose in the given end-effector path in the neighborhood of a configuration for the

preceding pose.

Genera te Configurations for Poses

The following procedure generates a configuration for a given pose, p, in the neighbor of

qhas, which means a configuration q, such that p = F (q) , and for each joint variable,

J l q i - 1 1 < d, i = 1,2 , . . . N where N is the number of DOF of the robot. It is similar to

the active-passive link decomposition method described earlier, except that it is biased on

configuration qbias.

1. retry + 0;

2. DO

3. qa t RandomActive(qbi,,);

4. qP t Closedf~rmlnvKin(~, qa, qbias);

5. IF (success) THEN

6. q + ha, qp);

7. RETURN q;

8. retry + retry $ 1;

9. WHILE ((failure) and (retry 5 MAX-RANDRETRY));

10. RETURN failure;

Random-Active() generates active joint variables randomly in the neighbor of qhas, and

Closedform-InvKin() computes the passive joint variables by closed-form inverse kinematics.

The closed-form inverse kinematics might fail because (a) there is no solution for passive

joint variables, or (b) there are solutions for passive joint variables, however, they are too

far away from qhas.

CHAPTER 4. LOCAL PLANNERS IN ATACE 4 7

Greedy Planner

Greedy planner uses a depth-first search strategy. Given the start configuration go, it con-

secutively generates a configuration for each pose in the neighbor of its predecessor. For

instance, qi+l for pi+l will be generated in the neighbor area of qi that corresponds to pose

pi. If it succeeds, then qi+2 for pi+2 will be generated in the same way.

Greedy-Planner (go)

1. FOR i = 0 to m-1 DO

2. s t failure; retry t 0;

3. DO

4. qi+l t Generate-Config-ForPo~e(p;+~, qi);

5. IF (success) THEN //If manage to get a configuration for pi+l

6. IF (Is~Collission~Free(qi, qi+l)) THEN

7. s t success;

8. retry t retry + 1;

9. UNTIL (s = success) or (retry > MAX-GREEDY-RETRY)

10. RETURN s;

Intuitively, only one configuration is generated for every pose, and the data structure

storing the explored path is a singly-linked list, as shown in Figure 4.1.

Greedy planner performs well when the environment is simple and the path is short,

i.e., rn is small. When the number of pmes goes up and the environment becomes more

complicated, it is easy for the planner to get stuck due to the depth-first search characteristic.

Because the exploration for qi+l corresponding to pi+l is actually based on qi for pi, and if

qi is a "bad" configuration, it may be difficult to generate a feasible configuration for the

next pose pi+l, in the neighbor of qi.

RRTLike Planner

To avoid depth-first search limitation in Greedy planner, RRT-Like planner generates more

than one configuration for every pose. RRTLike planner uses the concept of RRT [34]. It

applies RRT strategy upon the active joints, and the passive joint variables are determined

according to active joint variables and the tree hierarchy. As shown in Figure 4.2, each

CHAPTER 4. LOCAL PLANNERS IN ATACE

(4
Figure 4.1: Greedy planner. (a) Specified end-effector path. (b) Data structure generated by
Greedy planner. There is only one configuration for each pose along the given end-effector
path. F(qi) = pi.

level of the tree corresponds to a particular pose in trajectory, for instance, the root of the

tree is a configuration qo for the first pose po, the configurations in the second level of the

tree, {q:, q:, . . .), are configurations for pose pl , and {q,!, q?, . . .) are configurations for pose

pi. With a randomly chosen configuration grand, the tree is extended from the closest node

qneaT to a new configuration qnew. Its active joint variables qgew and passive joint variables

geW are computed separately. First, qgew is computed by a linear displacement from qgeaT

to qLnd l. Then, &,, is computed with qgew and its pose which is determined from the

tree hierarchy, for instance, if F(qnear) = pk, then F(qnew) = pk+l. If the height of the tree

reaches the number of sample poses, m, planning succeeds.

1. r + Create-Tree(qo);

2. FOR i = 0 to MAX-EXTEND-STEP DO

3. qrand + Random-Config();

4. (qneaT, k)+ NearestJode(q,); / / p k = F (q n e a r)

5 . q&w Extend-Config(~near grand) ;

6. &ew + ClosedformJnvKin(pk+l, qgew, qneaT)

7. IF (success) THEN

1 a qnear to qZand are active joint variables of q,,,, and qrand.

CHAPTER 4. LOCAL PLANNERS IN ATACE

Figure 4.2: RRT-Like planner. (a) Specified end-effector path. (b) Random tree generated
by RRT-Like planner. Configurations on the same level correspond to the same pose, i.e.,
F (d) = pi. The configurations in the inner shaded area are the first-level configurations
and correspond to pl , and those in the outer shaded area are the second-level configurations
and correspond to p ~ . To extend the tree from qneaT toward qTand, we compute a new
configuration qnew, by determining its active joint variables qEew and passive joint variables
&,,. qtew is computed by a linear displacement from qEeaT to qLnd; &, is computed with
q&w and pose ~ k + I

8. Qnew + (q&w 7 &ew) ;
9. I F (I ~ - C o l l i ~ s i ~ n _ F r e e (q ~ ~ ~ ~ , qnew)) THEN

10. ~.Add-Edge(qneaT qnew);

11. IF (m = k+1) THEN

12. RETURN success;

13. RETURN failure;

In the algorithm, Random-Config() generates a configuration randomly; Nearest-Node()

finds the nearest neighbor to the randomly-generated configuration; Extend-Config() com-

putes the active joint variables of qnew by displacing qgew with a fixed step size along the

line connecting qteaT and qknd where qEea, and qgew are the active joint variables of qneaT

and grand, respectively. Closedform-InvKzn() computes the passive joint variables in the

same way as Generate-Config-For-Pose().

The random tree grows in many directions, and this prevents the robot from getting stuck

into a bad configuration. On the other hand, this planner has a drawback. It computes the

configurations too randomly, and it takes a relatively long time to get to the goal especially

when the number of samples is large.

CHAPTER 4. LOCAL PLANNERS IN ATACE 50

Combined P l a n n e r s

The limitations of RRTLike planner and Greedy planner are overcome by combining differ-

ent planners. Proposed combination includes RRT-Connect-Like, RRT-Greedy, and RRT-

Greedy+Connect planner [43]. These planners interleave Greedy and RRT-Like planners

with specified parameters. For example, RRT-Connect-Like planner combines these two

planners in the following way:

a . First call RRT-Like planner t o make an extension in a random direction.

b. Second, assume a feasible configuration is generated for pose, pk, and call Greedy

planner t o explore the sub-path from pk t o the goal, p,.

c. Terminate if the goal is achieved, success; otherwise, go back t o step (a).

4.1.2 Incorporating Self-motion

All of the algorithms proposed in [43] assume self-motion is not allowed. When there are m

sample poses for given end-effector trajectory, there are exactly m configurations in the final

joint path. At the same time, t o let the movement between successive configurations satisfy

the trajectory constraint, we have to ensure the difference between successive configurations

is small enough, such that moving linearly in the configuration space approximately results

in a linear movement in the task space.

This motion limitation may make it difficult for a robot t o get out of a bad configuration

because the movement is increased in small steps. With these requirements, it might be

difficult sometimes for a robot t o move out of a bad configuration by a small movement.

An experiment demonstrates this problem. Under the same parameters, including sampling

discretization, and number of iterations/retries, we try t o find a path for problems shown in

Figure 4.3(a) and (b). The only difference between (a) and (b) is they start with different

configurations for the first pose. After 20 runs, the experimental results demonstrate that

start configuration has a significant impact on planning. In problem (b), the planner fails

t o find a solution.

The experimental results suggest that the existing algorithms may be enhanced by in-

cluding self-motion along the end-effector trajectory. For every sample pose, there might

be several configurations, such that without changing the end-effector poses, the robot can

CHAPTER 4. LOCAL PLANNERSIN ATACE

(a) Start with a "good" conf. (b) Star t with a "had" conf.

(Sucess/Fail) (Sucess/Fail)

RRT-C
RUT-G-C

Figure 4.3: Failure to find a path given a bad start configuration.

use self motion to avoid obstacles and move out of a bad gesture. A Self-Motion Graph is

incorporated int,o the existing probabilistic planner to improve planning.

4.1.3 Improvement with Self-motion

Data Structure

As shown in Figure 4.2, the existing RRT-like algorithm uses a tree-type dat,a structure

to store the path. Each level of the tree corresponds to a pose along the trajectory. Self-

inotion is incorporated into the algorithm by further expanding a node in the tree with an

equivalent group of nodes corresponding to ecluivalent configurations for the posc.

As shown in Figure 4.4, this group of configurations for a pose is represented by a graph,

called the Selj-~Vollon Graph, (SMG in short hereafter). All configurations in SMG(pk) are

connectable to the last pose pk-1, and as long as one confi guration in SMG(pk) is connected

to a configuration for pose pk+l, the path is successfully extended to the next pose pk+l.

Self-motion Graph Exploration

As shown i n Chapter 1 (Figure l . G) , when the end-effector of open-chain robot is fixed to

a certain pose, generating a configuration for thc robot is equivalent to generating a con-

figuration for a closed-chain robot. The following subalgorithm uses act,ive-passive link

CHAPTER 4. LOCAL PLANNERS IN ATACE

Figure 4.4: Expansion of tree nodes for the Greedy algorithm to include self-motion graph.

decomposition technique [19] for closed-chain robot to build SMG(pk). It returns a con-

nectable collision-free configuration q,,, for p k . It might return failure if (1) it is not able

to get a connectable collision-free configuration after a fixed number of retries; or (2) the

number of configurations in the SMG reaches a set limit.

Explore-SMG (k)

1. IF (SMG(pk).confnum > MAX-SMG-NODE) THEN

2. RETURN failure;

3. retry +- 0;

4. DO

5. q, +- Random-Config();

6. q, t SMG(pk) .Nearest-Node(p,);

7. qimg t Extend-Config(q,, p,);

8. grng t ClmedformhwKin(pk, qirng, q,)

9. IF Is-Collision-Free(q,,,, q,) THEN

10. SMG(pk).Add-Edge(qc, psrn,);

11. RETURN qsrng;

12. ELSE

13. retry +- retry + 1;

14. WHILE(retry 2 MAX-SMGRETRY);

15. RETURN failure;

An RRT like strategy is used to explore SMGs, and the data structure in a SMG is a

tree structure. The root node of SMG(pk) is the configuration connecting a configuration

CHAPTER 4. LOCAL PLANNERS IN ATACE 53

Do we have to explore SMG for every pose? To reduce the computation to build and

search the expanded tree, we only create the SMG when required. For example, Greedy

planner terminates the exploration from qk(for pk) to qktl(for pktl) after a certain number

of retries. To enable self motion, we do not give up at this point; instead, an SMG is

propagated for pose pk. For those pmes where the planner can extend to the next pose

within a fixed number of retries, simple nodes are retained.

SMG in Greedy Planner

Knowing how to explore the SMG, we can now integrate self-motion enhancements into

current planners. It is straightforward to integrate SMG into Greedy planner. An SMG is

created for pme pk if the planner fails to extend the path from qi(for pi) to qi+1 (for pi+l)

after MAX-RETRY retries. With SMG, every time a new configuration qsmg is explored

in SMG(pi), the planner steps from qsmg for pi to pose pi+l. Once a valid configuration

qi+l is obtained, the planner stops exploring SMG and tries to extend the path to the next

pose. Otherwise, it repeatedly explores the SMG for pi, until the number of retries or the

number of configurations in SMG(pi) exceeds a limit. The following pseudecode shows

Greedy planner with S M G feature, and the lines marked with "*" are added for SMG.

1. FOR i = 0 to m-1 DO

s t failure; retry t 0;

DO

qi+ 1 + Generate-Config-ForPose(pi+ 1, qi) ;

IF (success) THEN

IF (Is-Collission-Free(qi, qi+,)) THEN

s t success;

retry t retry + 1;

UNTIL (s = success) or (retry > MAXRETRY)

WHILE (s # success)

qsm, t Explore-SMG(i);

IF (success) THEN

qi+1 t Generate-Config-For-P~se(p~+~, qsmg);

CHAPTER 4. LOCAL PLANNERS IN ATACE

* IF (success) THEN

*. IF (I s -Col l i~s ionEree(q~ , qi+l)) THEN

*. s c success;

*. ELSE
* BREAK; //Quit WHILE loop, if fail to get q,,, .

10. RETURN s;

Similar to RRT-Connect-Like planner, SMG-Greedy overcomes the depth-first search

limitation by generating more than one configuration for each pose. However, unlike RRT-

Connect-Like planner which generates configurations for randomly selected poses, SMG-

Greedy only generates multiple configurations for a pose when it is not able to extend to

the next pose.

SMG in RRT-Connect-Like Planner

For the basic motion planning problem, RRT-Connect planner [29] performs better than

RRT planner [34]. RRT-Connect has several differences compared to RRT: (a) it is greedy

to goal and (b) it has two random trees, one grows from the start configuration, and the

other grows from the goal configuration.

For the trajectory tracking problem, RRT-Connect-Like [43] planner adopts the greedy2

strategy. With SMG, we implement a more heuristic planner. The idea is:

1. Two random trees are grown from the start configuration and the goal configuration,

respectively. In each tree, configurations and SMGs on the same level correspond

to the same pose. The goal configuration for the goal pose is chosen randomly, or

specified by the users.

2. After every RRT extension, it gets a new configuration which corresponds to a certain

pose. It greedily extends the path from the newly-extended pose to the goal or start

pose, depending on which tree is being extended. For a pose where the planner fails

to go further after a maximum number of retries, an SMG is created for the pose, and

the planner tries to explore this SMG, and make connection to next pose. As shown

in Figure 4.5, nodes in new random-tree can be a SMG, and basically the leaves are

SMGs, because that is where the planner fails to extend further.

2 ~ e r e "greedy" is used a s a generic term. We use Greedy to refer to the specific planner defined by
Greedy-Planner().

CHAPTER 4. LOCAL PLANNERS IN ATACE 55

3. As shown in Figure 4.5, assume from the start tree, a new configuration for pk is

explored in the previous greedy extension, it checks whether there is a connectable

S M G (P ~ + ~) in the random tree growing up from the other direction; if there is, then

make the connection, and succeed if connected.

4. If it is not able t o reach the last pose after exploring the SMGs , then manipulate the

other tree and repeat from step 2.

S w Tree: growing hm lhc sun

Figure 4.5: Random trees with SMG. Two trees grow from the start and goal respectively.
After a configuration is extended from one tree, it is greedily connected t o the other tree.
An SMG is explored where the greedy connection fails. Along the greedy connection, con-
nectivity is checked with requirement of the pose sequence. For example in the figure, qk for
pk is extended from the start tree, then the nodes (including SMG) for pose pk+l is checked
for connectivity.

4.1.4 Experiments

To show performance of the enhancement, we created several scenes to compare the original

planners and enhanced ones. The results demonstrate that incorporating self-motion in

planning improves the run-time performance of solving the trajectory tracking problem.

Planners and Objectives

In these experiments, six planners are compared: three planners are proposed in [43], the

other tree are enhanced with SMG.

CHAPTER 4. LOCAL PLANNERS IN ATACE

Greedy Greedy planner in [43]

RRT-C RRT-Connect-Like Planner in [43]

RRT- G- C RRT-Greedy-tConnect Planner in [43]

SMG-Greedy Greedy planner with SMG

SMG-RRT-C RRT-Connect-Like Planner with SMG, but only has one tree growing

from the start configuration.
SMG-RRT-C2 RRT-Connect-Like Planner with SMG, and with two random tree

from the start and the goal respectively

Three cases are created to run the planners. In each case, the result is based on the

average performance over 20 runs for each planner. The following performance was measured

for each planner.

Time(s) Planning time, second as unit.

C-D-P Collision Detection for Point. Number of collision checks for a single

configuration.

C-D-L Collision Detection for Linear Connection. Number of collision checks for

a connection between two configurations.
Note that, to do the collision check between two configurations, the linear connection be-

tween two configurations is sampled and every intermediate configuration is checked for

collision. In other words, one collision check for connection (C-D-L) results in multiple col-

lision checks for point (C-D-P). However, other than collision checks introduced by C-D-L,

C-D-P also includes those collision checks for randomly generated configurations.

Cases a n d Resul ts

Three cases are created to show the performance of different planners. The scenes and

results are shown in Figure 4.6, 4.7, and 4.8. In case 1, the robot moves the end-effector

along a circle in an environment with obstacles. In case 2, the robot moves the end-effector

along the surface of one of the obstacles. In case 3, the robot moves the end-effector into a

narrow passage.

Discussion

With SMG, the enhanced algorithms have good performance and they normally take less

planning time and involve less collision checking. In these three cases, SMG-Greedy always

CHAPTER 4. LOCAL PLANNERS IN ATACE 5 7

Figure 4.6: Experiment for SMG: Case 1

Planner
Greedy
RRT-C

RRT-C-c
SMG-Greedy
SMG-RRT-C

SMG-RRT-C2

C-D-P
99366
80573
21380
16007
15330
11210

GD-L
4080
4 129
1086
1288
1509
990

Figure 4.7: Experinlent for SMG: Case 2.

achieva the best planning tirne. In the second and third cases, although SIVIG-RRT-C2

involves less collision detection, the planning time is longer than SMG-RHY-C.'. The reasons

are two main additional overheads: (1) from time to time, SMG-RRT-C2 needs to check

t,he connect.ivity between two trees; (2) to grow a tree frorn the last. pose, SMG-RRT-C2

needs to generate a configuration for the last pose, which is difficult in these two cases as

there are obstacles around the goal pose.

In some cases, the two trees grown from the start a,nd the goal might not be connectable

at all. For instance, as shown in Figure 4.9, qbnck is a.chieveci by growing up a, tree from the

goal, and qf , , , is achieved by growing up the other tree from the start. Even though pose

pbock and pf,., are consecutive poses, t,he node qfoTw is never connectable to S!blG(pbnck),

Actually, in this case, two configurations in two different trees are never connectable to each

other. This may affect the performance of SMG-RRT-C2 in some cases, but SA4G-RRT-C2

can be useful in some other cases: (1) in the case where the sta.rt configuratiun is not given,

it can be a heuristic method to get a start configurat,ion by extending frorn t,he goal pose;

CHAPTER 4. LOCAL PLANNERS IN ATACE 58

Planner
Greedy
RRT-C

RRT-G-C
SMG-Greedy
SMG-RRT-C:

SMG-RRT-C2

Figure 4.8: Experiment. for SMG: Case 3

(2) in the case where the goal configuration is given as well as the s tar t configuration, SMG-

RRT-C2 can be a good choice, and we can usc that in our configuration-teconfig~~ration

PPGEC problem.

Trcc Ru~n slan Po Trcc Ihm y r d P,,,

Figure 4.9: A special case: qf,,, and SMG(phack) are not connectable.

4.1.5 Summary

In this section, we introduced the probabilistic trajectory tracking planner suitable t,o be the

local planner in the proposed ATACE planner for general end-effector constraints. By intro-

ducing the Self-Motion Graph, an enhancement is proposed based on current probabilistic

planners, and experimental results show that this enhancement improves the performance.

CHAPTER 4. LOCAL PLANNERS IN ATACE 59

in terms of finding a collision-free path. It helps in applications where the time requirement

along the trajectory is loose, like inspection robots. Some applications may not benefit from

this enhancement. For example, in spray painting applications, a constant end-effector ve-

locity is required along the trajectory, and self-motion will generate a different end-effector

velocity (thereby uneven paint deposition may result).

4.2 Jacobian-based Local Planners

Jacobian-based local planners work on the instantaneous velocity level. As the end-effector

trajectory is given, the end-effector velocity, x,, is known along the trajectory, and the joint

velocity along the trajectory, q, can be computed from it.

At every sample point along the trajectory,

where J, is the Jacobian matrix for end-effector. The general solution for q is:

where J: is the generalized inverse of Jacobian matrix J,. For redundant robots, J, is not

a square matrix. When J, is row full rank, J: can be computed by the right pseudoinverse,

J: = e(J , JT) - ' . If Je is singular, J; can be computed by methods like singular value

decomposition, S V D . ~

4.2.1 Homogeneous Solutions for Different Constraints

In Equation (4.2), z is an arbitrary vector in 4 space, and (I - JLJ,) is a transformation

projecting this vector into the null space of J,. The following subsections introduce strategies

to choose z to satisfy different secondary constraints.

Obstacle Avoidance

Maciejewski and Klein [38] proposed an effective way to avoid obstacles for the trajectory

tracking problem. As shown in Figure 4.10, x, is the required end-effector velocity, and the

robot tries to avoid the triangle obstacle. Assume point 0 is the closest point on the robot

3 ~ o r some properties and computation aspects of generalized inverse, please refer to Appendix A.2.

CHAPTER 4. LOCAL PLANNERS IN ATACE 60

to the obstacle. 0 is called the obstacle avoidance point. To avoid this obstacle, point 0

should move away from obstacle with a velocity of 2,.

where Jo is the Jacobian matrix of point 0. Substitute (4.2) in Equation (4.3), then

and

z = [Jo (I - J; J e)] t (i o - Jo J ; i e) .

Substitute (4.4) into Equation (4.2). After simplification, the solution is

To adjust the velocity of the robot depending on how close a robot is to an obstacle, a

gain a is added into Equation (4.5) before the homogeneous term. The proximity of many

nearby objects may need to be considered to avoid oscillations. Thus, the general solution

for M closest objects is

where Jo, and i,, are obstacle avoidance point Jacobian matrix and escape velocity with

respect to the ith obstacle, and ai is a scalar proportional to the distance of the ith obstacle.

Figure 4.10: Obstacle avoidance.

CHAPTER 4. LOCAL PLANNERS IN ATACE 6 1

J o i n t Limi t Avoidance

Likgeois [37] gave a scalar value function t o deal with joint limits. For example, the ith joint

variable has a minimum joint value 0: and a maximum joint value 0:; i.e., Oi E [Of, OH].
Define

where

and N is the DOF of the robot. The smallest value happens a t Oi = 0; meaning the joint is

the farthest away from its limit. To make H(q) as small as possible, choose

Singular i ty Avoidance

If Jacobian-based methods are used to solve the trajectory tracking problem, singularities

might arise. When a singularity occurs, the robot Imes some degrees of freedom, and a small

movement in the task space requires a fairly large movement in the configuration space and

excessive torque. Robot singularities are avoided by maximizing dexteri ty .

There are several measurement for deder i t y . Salisbury and Craig [45] uses the condition

number of the Jacobian matrix, M (J) = 2, where a1 and a, are the maximum and mini-

mum singular values4 of J . Klein and Blaho [28] uses the smallest singular value, a,, as a

measure of singularity. A classical method is t o use manipulabil i ty introduced by Yoshikawa

[52], defined as

~ (q) = JFII
To avoid singularity, we try to maximize M(q), and choose

Mul t ip l e Cons t r a in t s

To satisfy multiple secondary constraints, we can either use task-priority based method [41]

which satisfies lower priority constraints by using redundancy of higher priority task, or

4For more detail about singular value, refer to Appendix A.2.4.

CHAPTER 4. LOCAL PLANNERS IN ATACE 62

define more complicated potential functions that take multiple constraints into account [8].

We can also simply combine the previous homogeneous solutions. In general,

where z, and zl is from Equation (4.10) and (4.8), and w,, wl and wo are weights over

different constraints, which are deliberately chosen based on priorities of constraints.

Chapter 5

Implementation in MPK

To verify the performance of the proposed algorithms for the PPGEC problem, we imple-

mented these planners with our in-house developed software library, the Motion Planning

Kernel (MPK) [15]. The new algorithm are benchmarked and compared with other exist-

ing planners. In this chapter, we discuss implementation considerations including collision

detection (Section 5.2), incorporation with different constraints(Section 5.3), local planners

(Sect ion 5.4) and discuss how user-defined parameters may affect performance (Sect ion 5.5).

5.1 Introduction to MPK

MPK, Motion Planning Kernel, is a software toolkit designed to facilitate the development,

testing, and comparison of robotic algorithms, such as automatic path planning, grasping,

etc [15]. As shown in Figure 5.1, along with motion planning algorithms, MPK includes ba-

sic components for implementing robotic algorithms, like collision detection and geometric

modelling. MPK has good extensibility. Users can easily implement a new motion plan-

ning algorithm, create a new experiment scene with a rigid body or articulated arm, and

benchmark with other existing algorithms.

5.2 Collision Detector

In our proposed algorithm, ATACE first extracts end-effector paths in the task space, and

uses the local planner to track these paths. Both steps involve collision detection. There are

many collision detection algorithms available for different applications [23]. In the current

CHAPTER 5. IMPLEMENTATION IN MPK

MPK Libmy PRMRRTIACA

Closed.cham p l m a

Jwobim-based tqactoq' Inclang

Planom
ATACE

......

Figure 5.1: MPK components.

-

Collision Detectors

version of MPK, V-Collide 1211 and SWIFT++ [13] have been integrated and used by most

path planning algorithms implemented in MPK. V-Collide is a collision detection library

which detects whether or not a large number of polygonal objects collide with one another.

In addition to detecting collision, SWIFT++ computes approximate and exact distances

between objects.

v-con&

SWIFT*

5.2.1 Anticipatory Collision Detector

.. .

Implementation of the anticipatory collision detector affects the performance of ATACE. If

infeasible end-effector paths are not ruled out early, they result in unnecessary computation

at the tracking stage, i.e., when the local planner tracks the paths. To assure accuracy and

efficiency, it is important to choose an appropriate size of the rigid body. It is reasonable to

choose a size equivalent to the actual end-effector. Choosing a size larger than the actual

end-effector may be advantageous, because this guarantees that the end-effector is not too

close to obstacles and it is easier for the local planner to track the paths. Another way to

improve efficiency is to use a simpler geometric shape to represent the end-effector, such as

a cube. Since MPK uses meshes (triangular patches on object surface) to present obstacles

and robot links, it takes less triangles to represent a cube than a sphere, and speeds up

collision checking for every call.

CHAPTER 5. IMPLEMENTATION IN MPK 65

5.2.2 Collision Detection in Local Planners

ATACE can use different local planners to track an end-effector path in the task space.

Different local planners may have different requirements for collision detection. For instance,

the Jacobian-based local planner takes the distance between robot links and obstacles into

consideration, and needs a collision detector with distance computation, like SWIFT++.

The probabilistic local planner needs to know whether or not a given configuration makes

the robot collide with obstacles or itself. V-Collide is sufficient in this case, since the

computation of distance between objects is more time-consuming than the computation for

simply detecting intersection between objects.

5.3 Incorporation of General Constraints

Different applications have different constraints, and it is impossible to consider all possible

constraints inside the planner. However, the planner's function is to deal with constraints:

it needs to verify whether a given configuration or pose is feasible, and it needs to compute

the velocity in the tangent plane of constraints at every point. Therefore ATACE is de-

signed with a modular interface to incorporate constraints. ATACE has callback functions

to provide users programable constraint functions. For a given problem, i.e., the set of

constraints, users need to implement these callback functions and link with MPK library.

These callback functions include:

IsSatisfied(p)

IsSatisfied() checks whether a given pose, p, satisfies the required constraints.

GetVelocity(p)

Given a pose p which satisfies constraints, GetVelocity() generates a random velocity

vector in the tangent plane of constraints at pose p.

GetDirectedVelocity(p, pd)

Given a pose p which satisfies the constraints, GetDirectedVelocity() generates a ve-

locity vector in a given direction, pd, in the tangent plane of constraints at pose p.

Adj ustToSatisfy(p)

AdjustToSatisfy() adjusts a drifted pose back to constraints. The planner chooses a

CHAPTER 5. IMPLEMENTATION IN MPK 66

velocity vector in the tangent plane, and this might accumulate t o a large drift after

several approximation. Therefore, a method is needed t o correct errors.

As shown in Figure 5.2, after users call ATACE-Plan() t o initiate the planning, ATACE

uses these support functions t o compute the feasible velocity a t each point.

I
User I

I
A TACE Planner

ATACE-Plan0 Connect-To-Go*
I I

Figure 5.2: Interface for constraint manipulation in ATACE planner.

5.4 Implementation of Local Planners

Local planners for ATACE are designed as independent planners, and they can be used to

solve the trajectory tracking problem independently.

5.4.1 Probabilistic Local Planner

When we use the probabilistic planner for ATACE, there are parameters which affect per-

formance, including the heuristic strategy and the number of retries in a loop. As men-

tioned in Section 4.1, there are several strategies for the probabilistic local planner, such as

SMG-Greedy, RRT-Connect Like, etc. SMG-Greedy is the default strategy. Although the

anticipatory collision checking is done for the end-effector paths before they are passed t o

the local planner, the local planner may fail t o track the path due to imprecise anticipatory

checking, and randomness in the method. However, before it terminates planning, the local

planner will keep retrying up t o the specified retry limit.

CHAPTER 5. IMPLEMENTATION IN MPK 67

5.4.2 Jacobian-based Local Planner

In the current implementation of the Jacobian-based local planner [49], only obstacle avoid-

ance is considered. With this consideration, the joint velocity at every sample point is

where M is the number of obstacle avoidance points to consider and cq is a gain related to

the distance to obstacles. Let di be the distance from the ith obstacle avoidance point to

the obstacles. Assuming d l 5 d z I . . . I d M

where dtOtal = zK1 d k , a H is the homogeneous gain specified by users, dug is the unit gain

distance, and dsd is the sphere of influence distance. Both dug and dsh are pre-defined

values.

Since only obstacle avoidance is taken into consideration when choosing z in Equation

(4.2), the planner deals with joint limit and singularity in a simple way with parameters

joint velocity limit and path tolerance. To satisfy joint limits, the planner sets those joint

variables exceeding the limit to the limit value. To avoid singularities, it checks the joint

velocity at every sample point; if the joint velocity exceeds the limit, it set the velocity to the

limit value. These strategies may cause the end-effector to deviate from the given trajectory.

When the deviation is larger than the specified allowed path tolerance, the local planner

terminate and returns a failure. For problems with more restricted constraints, these two

parameters should be set to a smaller value to guarantee the satisfaction of intermediate

points. More detailed information about the implementation of the Jacobian-based local

planner is given in [49].

5.5 User-defined Parameters

Besides user defined callback functions, a few other parameters for ATACE also need to

be specified by user (all these parameter can have different values). These parameters may

affect performance, and they include:

CHAPTER 5. IMPLEMENTATION IN MPK 68

1. S t e p size and sampling ra te . In the function Extend-WithConstraint(), an end-

effector sub-path is extracted. Step size rl determines the length of the sub-path,

and the sampling rate 6 t determine how densely this sub-path is sampled. As an end-

effector sub-path is extracted by repeatedly extending from one point to the next point

with unit velocity, the length between two sample points along the extracted sub-path

is 6 t ; the sub-path is extracted in K steps, which means its length is 7 = K .6 t . When

constraints are more restrictive, the sampling rate 6 t should be set to a smaller value

to guarantee satisfaction of intermediate points and reduce drift (cumulative error due

to discretization). On the other hand, for more complicated environments where there

is less room for the robot to move around, the step size 7 should be set to smaller

values to get better resolution in the task space.

2. Orientation. A pose has both position and orientation aspects, however, in many

applications position is more important and both the desired goal pose and the con-

straints involve only the position of the end-effector. In these cases, we do not use

end-effector orientation, and without considering the orientation, the problem is easier

to solve with simpler constraints.

3. Metrics. We can choose different metrics in ATACE, including a C-space metric, a

physical-space metric and a combined metric. In Section 3.2.4, the characteristics of

these metrics were discussed. Experiments in Chapter 6 show that different metrics

result in different ATACE performance.

4. Local planners. We can choose different local planners for ATACE. So far two kinds

of local planners have been implemented in MPK: the deterministic Jacobian-based

local planner and the probabilistic local planner. Experiments in Chapter 6 show

that different local planners result in different ATACE performance. Note that some

parameters for local planners also affect the performance of ATACE. For example,

path tolerance and joint velocity limits in the Jacobian-based local planner; or the

number of retries and the choice of the heuristic strategy in the probabilistic local

planner.

Chapter 6

Experiment a1 Results

In this chapter we present experimental results to show the performance of ATACE in

different applications. In Section 6.1 and 6.2, we apply PRM-RGD, RRT-RGD and ATACE

to the PPGEC problem - problems with end-effector constraints including position and

orientation constraints. In Section 6.3 we apply ATACE to the basic motion planning

problem and the C-2-P IK problem to check its applicability to problems without end-

effector constraints. In Section 6.5 we demonstrate that different local planners and different

metrics result in different performance. Discussion in Section 6.6 outlines scenarios where

different planners should be preferred. Please note that the performance analysis in this

chapter is empirical and is based on intuitive explanations and not on theoretical proof.

6.1 3D Position Constraints Problems

The following two scenes involve a planar constraint. A 3D PUMA-like robot manipulator

is required to move its end-effector in a plane. Case (a) is a fairly simple case, where there

is only one small obstacle in the plane, as shown in Figure 6.1. Case (b) shown in Figure 6.2

is a much harder case, where there is a fence around the robot and several other obstacles

in the environment. The start configuration and the goal are in different cells of the fence,

and the robot has to move out of a gap in the fence and go through another gap to reach

the goal. The result for both cases is shown below each scene. In case (a), ATACE is faster

than PRM-RGD, and RRT-RGD is much faster than other methods. In case (b), ATACE

is faster than other methods, and RRT-RGD shows poor performance. In 11 out of 12 runs,

it fails to find a path within 1000 seconds. In the experimental results, we denote failure to

CHAPTER 6. EXPERIMENTAL RESULTS 70

find a path within a given time limit as "-". a is the standard deviation. Beside the result,

we also show a box plot. of t.he experiment data, which graphically shows how different,ly the

planners perform. In a box plot, the line in t.he ~niclclle of thc box is the sample median; the

lower and upper lines of the box are the 25th and 75th percentiles of the sample; the lines

above and below the box show the extent of the rest of the sample (not including outliers);

the plus sign a t the top of the plot is an inclica.tion of an outlier in t,he data , which may be

caused by a data error or exception.

Run
1
2
3
4
5
6
7
8
9
10
11
12

Avg.

Planning Time (Seconds)
PRM-RGD I RRT-RGD

MACE PRY-RGO RRT RGO
PImnsr

Figure 6.1 : Experimental scene for planar constraints: Case (a)

RRT-RGD shows good performance in case (a,) and bad performance in case (b). In

CHAPTER 6. EXPERIAIIENTAL RESULTS

R u n
1
2
3
4
5
6
7
8
9
10
11
12

Avg.
0

Plannine: T ime (Seconds)

* "-" indicates path not. found w in the time limit of 1000 seconds.

Figure 6.2: Experimental scene for planar constraints: Case (b).

CHAPTER 6. EXPERlMENTAL RESULTS 72

case (a), there is only one small obstacle, and in the C-space there is significant room for

the robot to move around. It is easy for RRT-RGD to find a new configuration that is

connectable to the goal. In case (b), there are more obstacles and the free C-space is much

smaller, so it is much harder to make a connection between two configurations. In the

RRT-RGD connecting strategy, a configuration is tested to connect to the clmest node in

the tree; if a connection is not possible, then this configuration is discarded. So when the

environment is complex, significant effort to explore configurations and make connections is

wasted.

PRM-RGD is a multi-query scheme and tries to explore the entire C-space. In case (a)

it is not as greedy as other methods. But in case (b), PRM-RGD is faster than RRT-RGD.

That is because, with PRM-RGD, even if a configuration is not connectable to the current

graph, it is still saved. After more configurations are explored, the roadmap continues to

grow with the addition of new configurations.

ATACE has the best performance in case (b). It makes sense, since ATACE first plans

in the task space, which normally has lower dimensionality than the C-space, especially for

redundant robots. Furthermore, using task-space knowledge, it can avoid searching useless

C-space areas by checking in the task space. In addition, since it works in the task space

as well as in the C-space, it is quite convenient for it to consider the goal end-effector

pose defined in the task space. For PRM-RGD and RRT-RGD, we need to try different

configurations for the goal pose, and this can be time-consuming in some cases. Last, it

uses a more powerful local planner. With the Jacobian-based trajectory tracking planner,

it actively considers obstacle avoidance when making the connection. For PRM-RGD and

RRT-RGD, connection can easily fail due to obstacles and more samples are desired.

At the same time, we also notice that in case (a), RRT-RGD has better performance

than ATACE. The local planner of RRT-RGD is simpler than that of ATACE, in a fairly

simple problem like case (a), a simpler local planner is more efficient because of less overhead

expenses.

6.2 3D Orientation Constraint Problems

The following two cases involve end-effector orientation constraints. As shown in Figure

6.3, case (a) uses a 9-DOF robot manipulator - a PUMA manipulator mounted on a 3-

DOF platform. The task is to move the end-effector to the goal while maintaining the

CHAPTER 6. EXPERIMENTAL RESULTS 73

end-effector pointing horizontally right (the z-axis of end-effector frame matches with t.he

x-axis of the universe frame). Case (b) is a more realistic application. It uses a robot

manipulator with kinematic structure similar to that of the Canadann2, the Space Station

Remote Manipulator System (SSRMS). It has 7 DOFs and the task in this case is to move a

satellite while maintaining the satellite orientation upwards. In the figure, the large cylinder

at the tip of SSRMS represents a satellite.

Run
I
2
3
4
5
6
7
8
9
1 0
11
12

Avg.
0

Planning Time (Seconds)
ATACE I PRIM-HGD I

Figure 6.3: Experimental scene for orientation constraints: Case (a).

In both cases, ATACE runs faster than the other planners. In case (a) , between the

verlical wall and the robot, there is not much room for the robot to pass through, and Ifhe

CHAPTER 6. EXPERIA4EhrTA L RESULTS

Run
1
2
3
4
5
6
7
8
9
10
11
12

Avg.
0

Planr
ATACE

6.31

-

-

ling Time (Secorids)

Figure 6.4: Experimental scene for orientation constraints: Case (b) , Scene (b-l), without
obstacles.

CHAPTER 6. EXPERIhdENTAL RESLJLTS 75

R.u n
1
2
3
4
5
6
7
8
9
10
11
12

Avg.
u

Planning Time (Swonds)

I PRM-RGD I

Figure 6.5: Experimental scene for orientation constraints: Case (b) , Scene (b2), with
ohst acles.

CHAPTER 6. EXPERIMENTAL RES TILTS 76

robot can not move tthe other wa.y around due to the joint limits. The experiment results

show that with PRM-RGD or RRT-RG'D the robot normally has to make a large movement

arid go over the top of the wall, and most of the time with ATACE using Jacobian-based

local phnner, the robot does manage to squeeze in between t,he wall a.nd the base of the

robot by a,djusting its ow11 gesture (move it,s \mist away from the wall). It shows that t,he

Jacobian-based trajectory tracking planner, although locd, is still a, powerful planner.

In case (b): t.wo scenes have been created for further comparison, as shown in Figure 6.4

and 6.5. In scene (bl) (Figure 6.4) t,here are no obstacles in the enviro~~ment , while in scene

(b-2) (Figure 6.5) obstacles are placed in the environment. The grey objects are two long

boards perpendicular to the plane of the paper. In both scenes, ATAG.E runs significantly

faster than others. Although there is no obstacle in (bl), it t.akes PR.M-RG'D a relatively

long time to construct a road11la.p that. satisfies the given end-effect,or orientation constraint.

To ma.Ie connection between configurations in the roadmap, PRM-RGD tha.t requires two

config1.1rations are close so that t,he rohot will not get stalled in local minima [33], and t,his

rcyuires densc sampling since orient,at,ion constraints norn~ally arc hyper-nonlinear aud loca,l

minima can easily arise. In (b 2) it becomes worse due to the obstacles. The rohot used in

these scenes has a big payload a.t its end-effect,or which make it quite clumsy, and easy t o

collide with obstacles as well as with itself. Intuitively, ATACE speeds up the planning by

searching in task space, and by doing the anticipatory collision check for t,he end-effector

(with the satellite). It r~ules out rnany infeasible paths in the t,ask space, and consequently

la.rge infeasible areas of C-space.

6.3 ATACE for Problems without End-effector Constraints

To check if the ATACE paradigm of using t,asli space knowledge to guide search In C-space

is useful for rnore basic problems without end-effector constraints, we apply ATACE t,o tthe

basic motion problem and C:-2-P inverse kinematics problem, and compare the results wit,h

existing approaches.

6.3.1 Basic Motion Planning Problems

For the basic motion planning problem, we compare ATACE wit,h exist,ing approaches such

as PRM, A C A a.nd RRT-G (RRT-Connect). The first, scene for compa.rison, case (a.), is

shown in Figure 6.6, where a 4-DOF planar robot moves in an environment with small

CHAPTER 6. EXPERlMENTAL RESULTS 77

obstacles. The second case, case (b), is shown in Figure 6.7. The planning time by ATAGE

and different other planners is shown below each scene. In case (a), RUT-Connect is the

faslest planner, and ATACE is slightly faster than PRIM and ACA. In case (b) ATAGE is

much faster tt1a.n others.

Planning Time (Seco~~cls)
I PRM I ACA RRT-C

41.49 0.55
27.40 1 .70
14.12 1 .90
13.63 0.63
23.80 0.46
24.44 1.68
14.57 2 .00
26.50 0.88
8.30 2.02

18.78 0.81
23.87 1.52
7.77 0.98

Run
1
2
3
4
5
6
7
8
9
10
11
12

Figure 6.6: Experimental scene to test ATACE on a basic motion planning problem: Case
(a) .

ATACE
7.64

12.95
17.75
12.26
8.30

14.61
10.00
16.71
24.30
14.13
14.46
13.08

CHAPTER 6. EXPERIMENTAL RES LILTS

Planning Time (Seconds)
ACA

172.03
RRT-C
253.66
327.24
546.04
337.72
321.47
169.06
156.32
672.91
64.74

138.97
318.04
288.50
299.55
171.60

Figure 6.7: Experimental scene to test ATACE on a basic motion planning problem: Case

(b) .

CHAPTER 6. EXPERIMENTAL RESULTS

6.4 C-2-P Inverse Kinematics Problems

For the (2-2-P inverse kinematics prohlern, we compare ATACE with the existing approach

for this problem based on A C A strat,egy, IK-AC'A [I] . In case (a) , as shown in Figure 6.8, a

planar snake like 8-DOF robot tries t.o move it,s end-effect,or into a na.rronl passage betaween

two obstacles. In case (b)? as shown in Figure 6.9, a P'IJMA-like 6-DOF robot mounted

on a 3-DOF platform tries t,o reach the shown goal pose. In bot,h cases, the goal has both

position and orient,at,ion requirement. The results are shown below each scene. The results

show that ATACE has more consistent perrorrnance a.nd better average planning time.

I Planning Time (Seconds) 1

la '"I

Run
1
2
3
4
5
6
7
8
9
10
11
12

Avg.
u

K ACA

Figure 6.8: Experimental scene to test ATACE on a C:-2-P IK Prohlcm (2D): Case (a)

ATACE-
25.09
12.51
14.85
19.61
10.64
20.89
16.12
12.36
9.78

13.15
14.72
12.95
15.22
4.53

' 1K-ACA
1.11

11.24
99.30
3.27

44.16
1.83

15.40
1.51
1.59
9.49

164.40
120.52
39.49
56.51

CHAPTER 6. EXPERIMEATTA L RESULTS

-

Avg.
u

Planning
m

272.71
132.45
200.40
240.18
182.98
170.23
138.45
219.32
274.66
546.77
149.25
454.86

rime (Seconds)
l I < - A C r

160.99
1138.17
197.67
61.78
19.67
40.99

124.41
82.14

1404.34
1910.56

10.59
763.44

Figure 6.9: Experimental scene to t,est ATACE on a C-2-P IK P r o b l ~ m (3D): Case (b) .

6.5 Comparison of Different Parameters in ATACE

6.5.1 Comparison of Different Metrics in ATACE

ATACE uses a metric to choose the nearest neighbor in the tree In Section 3.2.4, we have

shown the characteristics of the task-space metric and the C-space metric Different inetrics

significantly affect performance. With the scene shown in Figure 6.10. we ran ATACE

with different metrics: a physical-space metric, a C-space metric and a combined metric

CHAPTER 6'. EXPERIMENTAL RESULTS 8 1

(ra.ndornly choose between two). The res~ult shows tha.t ATACE tends to achieve the best

planning time when using the physical-space metrics, and worst planning time when using

Gspace met rics. Therefore, physical-space metrics are used in our experiments. l

-
Run

1
2
3
4
5
6
7
8
9
10
11
12

Avg.
u

Planninz Time (Seconds) -
C+P Metric

22.33
15.62

484.70
12.30
22.37
16.19
13.42
23.49
29.80
29.50
25.13
25.10 - 0 -

PMellc CIP-Mulric CMolue
Planner

Figure 6.10: Comparison of different metrics.

Expect for the experiment in this subsection where we explicitly choose different metrics, we use physical-
space metrics by default in all other experiments we have done in this chapter.

CHAPTER 6. EXPERIA/IEArTAL RESULTS 82

6.5.2 Comparison of Different Local Planners in ATACE

Another important parameter that affects perlormance is the choice of the local planner.

With the scene shown in Figure 6.11, we ran ATACE with different local planners. The

results show that ATACE with a Jacobian-based local planner has more consist,ent perfor-

mance. The performance with probabilistic local planners varies from time to time due to

randomness in the local planner. Note that the chosen proba.bilistic local planner is Greedy

planner (for more refer to Chapt,er 4.1).

R u n
Planning Time (Seconds)
Jacob. LP I Prob. LP

1
2
3
4
5
6
7
8
9
10
11
12

Avg.
0

Figure 6.11: Comparison of different local planners.

la1

ET3

XI

7c3.

SC3

- 5C3 c
+ a3-

x3

x3 .

1C3

0

Since t,here is a narrow passage (in task space) in this scene and t,he goal is inside the

11.71
15.49
50.08
12.80
12.79
14.72
20.46
18.69
13.50
19.40
14.52
46.29
20.87
15.08

-
-

T
I

- I
I

-
I

-

-

-
+

- -
Jacob LP Prob W

46.20
(39.64
63.58
52.53

163.36
988.03
31.66

481.10
158.13
101.99
618.39
499.28
272.82
307.53 Planner

CHAPTER 6. EXPERIMENTAL RESULTS 83

passage, it is difficult to extend the random tree toward the narrow passage and connect to

the goal. Intuitively, the reason the overall planner with the Jacobian-based local planner

runs much faster than that with the probabilistic local planner is that the former actively

considers obstacle avoidance when constructing the random tree, while the latter simply

checks whether the connection between two configurations is collision free and the only way

to avoid obstacles is to fail the connection. Although the general wisdom for probabilistic

planning methods is to use simple fast local planners with lot of samples, for difficult plan-

ning problem (like where there are narrow passages), a more complicated local planner may

yield better performance. For example, PRT, Probabilistic Roadmaps of Trees 151, which

uses a RRT-Connect planner as the local planner under PRM framework, achieves better

performance than the regular PRM in high dimensional problems with narrow passages.

6.5.3 Comparison of Lazy and Non-lazy Strategies in ATACE

In Section 3.3.2, a lazy collision checking strategy is proposed. With the lazy strategy,

ATACE first grows the random tree by exploring end-effector paths in the task space, and

a path is not tracked until it becomes a path candidate joining the start and the goal. As

the random tree grows in all directions, only a small portion of the tree may become path

candidates. The lazy strategy may speed up the planning due to less end-effector path

tracking. However, that is not always effective. In ATACE, a tree structure is used to store

end-effector paths that have been explored, and an edge in the tree needs to be connectable

in both task space and C-space. Once an edge can not be tracked in the C-space, then all

the descendant branches connecting the edges must be discarded, as shown in Figure 3.7.

In some complex environments, it may happen that a significant amount of time is wasted

in exploring useless end-effector paths in the task space. We compare lazy and non-lazy

strategies in the experiments shown in Figure 6.2 (PUMA with planar constraint), Figure

6.5 (SSRMS with orientation constraint), and Figure 6.8 (8-DOF planar robot with narrow

passage). The results are shown in Table 6.1. In the case of Figure 6.8, lazy-tracking does

improve the performance; in the case of Figure 6.5 it does not affect much; in the case of

Figure 6.2, it significantly worsens the performance. Again, it makes intuitive sense. A

feasible path should go along the fence in the lower corner. When lazy-strategy is used, a

lot of time is wasted in exploring end-effector paths along the upper fence, and these paths

are not trackable due to the joint limit of the first joint.

CHAPTER 6. EXPERIMENTAL RESULTS

-

Run

-
1
2
3
4
5
6
7
8
9
10
11
12

PUMA with Planar Constr.
Fig. 6.2

Planning Time (Seconds)
SSRMS with Orient. Constr.

-

Lazy
248.22
224.46
95.60

188.43
212.59
315.30
221.49
304.33
199.89
184.61
515.09
218.69

Non-Lazy
49.59
56.67

113.78
76.65

113.46
84.48
72.45
82.54
71.04

101.71
94.46

114.92

Fig
Lazy
62.15
46.71
56.02
12.62
16.17
26.41

133.53
35.92
11.88
12.45
27.84
17.03

6.5
Non-Lazy

31.25
29.03
22.87
63.30
22.58
32.45
12.36
11.91
85.00
96.21
15.68
16.98

8-DOF Planar Robot
Fig

Lazy
3.78

10.86
4.93
4.79
7.48
7.24
8.87

10.65
9.40
7.45
6.89
8.93

Avg.
(T

6.8
Non-Lazy

47.32
13.96
21.28

9.56
88.49
25.99
12.35
11.62
13.40

122.15
40.49
17.42

PUMA with Planar Constr. SSRMS with Orient. Constr. 8DOF Planar Robot

Table 6.1: Comparison of lazy and non-lazy strategies.

244.06
102.39

85.98
22.11

38.23
34.70

7.61
2.27

36.63
28.79

35.34
35.46

CHAPTER 6. EXPERIMENTAL RESULTS

6.6 Discussion

We have compared ATACE with pure Cspace-based search methods, in the PPGEC problem

as well as in the C-2-P IK problem and the basic motion planning problem. Taking the

trajectory tracking planner as a local planner, ATACE considers the planning in the task

space which normally has lower dimensionality than the C-space. Moreover, bringing in the

task-space knowledge, ATACE avoids searching some useless C-space area by checking in

the task space. Another advantage we have noticed in the experiments is that the paths

found by ATACE normally are smoother than those found by other planners in sense that

the robot has less jerky and tortuous movement along the path.

Compared to pure C-space search method, ATACE may yield better performance (with

intuitive explanations and experiment results) in the following circumstances:

1. The robot has a large number of degrees of freedom. In this case, ATACE can re-

duce the planning space from the high dimensional C-space to the task space whose

dimensionality is not larger than 6.

2. The robot has a large payload. In this case, ATACE can benefit from searching feasible

end-effector paths in the task space, and avoid a great deal of unnecessary exploration

in the C-space.

3. The end-effector needs to go through narrow passages. To find an end-effector path

that goes through the narrow passages is relatively easier because of dimensionality

reduction, and the local planner, like Jacobian-based trajectory tracking planner, is

flexible and dexterous to avoid the obstacles around the passages.

Correspondingly, compared to pure C-space search method, ATACE may not have good

performance in the following circumstances:

1. The environment is fairly simple. In this case, ATACE may not be efficient because

of more expensive computation in the local planner.

2. The environment has many small obstacles, i.e., cluttered environments. In this case,

only considering the end-effector is far from sufficient. Many explored end-effector

paths are not trackable because other parts of the robot may collide with the cluttered

obstacles. Time is wasted in exploring and tracking useless end-effector paths, and

ATACE may not be efficient.

CHAPTER 6. EXPERIMENTAL RESULTS 86

3. The robot has a relatively small end-effector and a much larger body. When ATACE

explores end-effector paths, only the end-effector and the obstacles in the environment

are considered for anticipatory collision check and other parts of the robot are ignored.

If the robot has a large body, many explored end-effector paths may collide with the

robot itself, and time is wasted in trying to track infeasible end-effector paths that

have not been ruled out.

Chapter 7

Conclusion and Future Work

7.1 Conclusion

We proposed two approaches to the PPGEC problem - the path planning problem with

general end-effector constraints: Adapted Randomized Gradient Descent (RGD) method

and ATACE, Alternate Task-space And C-space Exploration.

The adapted RGD approach is a pure C-space search method, and adapted from the ran-

domized gradient descent method for closed-chain robots. It uses the randomized gradient

descent method to transform unconstraint sampling configurations into feasible configura-

tions that satisfy given constraints. It again uses randomized gradient descent method to

connect configurations by walking in the constraint surface. In this way, it builds a roadmap

(PRM-RGD) or random tree (RRT-RGD) in the constrained C-space.

The ATACE approach combines task space and C-space search, and it uses task space

knowledge to guide C-space exploration. It incrementally builds a search tree in both task

space and C-space by searching for feasible end-effector paths in the task space with a prob-

abilistic strategy and tracking the paths in Gspace with trajectory tracking techniques.

With task-space knowledge about feasible end-effector paths, C-space is explored more ef-

ficiently. With slight modifications, ATACE can also solve problems without constraints,

i.e., C-2-P inverse kinematics problems and basic motion planning problems.

A series of experiments show that both adapted RGD and ATACE approaches are

effective for the PPGEC problems. Which planner we should choose depends on different

applications. For those applications where the environment seldom changes, the multi-query

planner, PRM-RGD, can speed up the planning time by preprocessing the roadmap. In some

CHAPTER 7. CONCLUSION AND FUTURE WORK 88

applications where there are narrow passage in workspace or with a large end-effector (or

with a big payload at its end-effector), ATACE may have better performance. In some

relatively simple environments or some cluttered environments, RRT-RGD may achieve

better performance.

7.2 Future Work

Future work should be targeted at enhancing performance and broadening the range of

applications for ATACE.

1. Other strategies t o explore end-effector p a t h s i n t a sk space.

ATACE explores end-effector paths in the task space and then tracks these paths

in the C-space. In the exploration for end-effector paths, a rigid body is used to

represent the end-effector and RRT is used to explore the end-effector paths in the

task space. For problems with end-effector constraints, it is convenient for RRT to

take constraints into consideration along the path from a node to its parent. However,

for the inverse kinematics problem and the basic motion planning problem, there is

no end-effector constraint and other techniques for rigid body path planning can be

used to explore end-effector paths in the task space. Techniques that use generalized

Voronoi diagram [4, 141 or medial-axis-based sampling strategies like MAPRM [51]

should be considered. Moving an end-effector along the mid-axis of the free space may

offer more space for the robot to move around when tracking the end-effector path

and is likely to improve performance.

2. Inequality end-effector constraints.

Although we have focused on equality constraint, ATACE can also incorporate in-

equality constraints. For example, in case of position constraints, similar to Figure

3.4, for an inequality constraint, G(p) 5 0, we can choose velocity

For some inequality orientation constraints, we can also choose the angular velocity

in a relatively simple way. For instance, if a robot is holding a glass of water that

is not full, then the glass can be held within a certain angular range with respect

to the vertical direction. In this case, assume the robot is at a feasible orientation,

CHAPTER 7. CONCLUSION AND FUTURE WORK 89

to generate a feasible angular velocity, we can first randomly choose another feasible

orientation, and then compute the rotation between these two orientations.

3. Incorporat ing Dynamics.

In some applications, we might have timing constraints or torque limits for joints

and the end-effector. In these cases, we may need special techniques to handle these

dynamic constraints. One possibility is to take these constraints into account when

extending the RRT random tree. RRT is an efficient data structure to quickly search

high-dimensional spaces that have both algebraic constraints, like obstacles, and dif-

ferential constraints, like nonholonomy and dynamics [29].

Appendix A

Linear Algebra

A. 1 Spatial Description and Transformations

Most of the content in this section is from reference [Ill

A. 1.1 X-Y-Z Fixed-angle Representation of Orientation

As shown in Figure A. l , a frame {B) is initially coincident with frame {A). First rotate {B)

about by an angle of y , then rotate about A~ by an angle of ,B, and then rotate about

A~ by an angle a . The rotational transformation of the rotated frame {B) with respect t o

frame {A) is:

where ccu = coscu, scu = s i n a and similarly for ,6 and y . a, P and y are also called yaw,

pitch, and roll angle respectively.

For the inverse problem, if given the matrix:

APPENDIX A. LINEAR ALGEBRA

Figure A. 1 : Equivalent angle-axis.

then the equivalent fixed angles can be computed as follows, for c,G' # 0 ,

P = Atanq - r s l , d m)
a = A t a n 2 ($, 3)

y = Atan2(- ,%)
cP cP

or, for /3 = +90•‹,
p = *90•‹

a = 0

y = *Atan2(r12, r z2)

A. 1.2 Equivalent Angle and Axis

Equivalent Angle-axis + Rotation Matrix

As shown in Figure A. l , a frame {B) is initially coincident with frame {A). Rotate {B)

about the vector A~ by an angle of 8 , then the orientation of {B) with respect t o {A) is:

where

! kXkxve + co kxkyve - kZse Icxlczve + lcyse

R (~ K , 8) = kxkyv8 + kzsO kykyv8 + c8 kykZv8 - kxs8

kxkzve - kYso kyk zve + kXse Iczlczve + ~e
where c8 = cos 8 , s8 = sin 8 and v8 = 1 - cO.

I

APPENDIX A. LINEAR ALGEBRA 92

Rotation Matrix -t Equivalent Angle-axis

For the inverse problem, given a rotation matrix, we compute the equivalent angle axis: i.e.,

given

then if sin0 # 0,

or when sin0 = 0, 0 = 0" or 180•‹, RK(0) is an identity or a negative identity matrix.

A.2 Pseudoinverse Approach

Given an m x n matrix A, the pseudoinverse approach solve the linear equation

where x is an n-dimension vector, and b is an m-dimension vector.

If m = n and rank(A) = n, A is invertible, and

When rank(A) # n or m # n, the above solution does not hold anymore and we need to

find a more general way to solve this problem.

A. 2.1 Moore-Penrose Inverse

It is proved that [6] if there is any matrix X satisfying AXA = A, then the solution of

Ax = b has a solution if and only if

AXb= b

X is pseudoinverse of A, and the most general solution is

APPENDIX A. LINEAR ALGEBRA 93

where z is arbitrary. I t is also proved that for every matrix A, there exist one or more

matrices X satisfying AXA = A. The Moore-Penrose generalized inverse is a unique pseu-

doinverse of A.

Theorem 1 For every finite matrix A, there is unique X, such that:

AXA = A

X A X = X

(AX)' = A X

(XA)' = X A

X is called the Moore-Penrose inverse and most literature denote it by At. Then (A.9) is

rephrased as:

= A I ~ + (I - A ~ A) ~ (A.14)

A.2.2 Least Square Problem

The Moore-Penrose inverse is used t o solve least square problems and when A is full row or

column rank, At has simple forms.

Least-error Problem

When m > n , rank(A) = n , and the system is over-determined having more equations than

unknowns. There is actually no solution for this linear equation. However, we can use the

least-error solution as the best solution, i.e., to find a x, to minimize Ilb - Axall, then:

A+ = (A ~ A) - ' A ~ (A . I ~)

I t is also called the left pseudoinverse since AtA = (ATA)-'ATA = I. The least-error

solution is:

xa = ~ t b = (A ~ A) - ~ A ~ ~

Least-norm Problem

When m < n , rank(A) = m , system is under-determined, having more unknowns than

equations, there are infinite solutions for this linear equation.' Our target is to choose the

'When two row equations are contradictive, there might be no solution at all. In this case the smallest
least-error solution is expected. For more please refer to (121.

APPENDIX A. LINEAR ALGEBRA 94

minimal norm solution, i.e., t o find a x, to minimize IIxall, then:

it is also called right pseudoinverse since A A ~ = AAT(AAT)-I = I. The least-norm solution

is:

xa = ~~b = A ~ (A A ~) - ~ ~ (A.18)

A.2.3 Pseudoinverse in Our Problems

For Jacobian-based local planners, we use the pseudoinverse approach to find our path.

Our problem is i = J8, where J is the Jacobian matrix of a robot, 5 is the physical-

space velocity, and 8 is the joint-space velocity. For 3D robot manipulator problems, the

dimension of x, m, is 3 for position, or 6 for position and orientation; the dimension of

8, n , is the DOF of robot. For redundant robots, n > m, and we are solving an under-

determined problem. Nevertheless, in our problem, we are interested in general forms of

solutions instead of just least-norm solutions, because we have other additional constraints

and the least-norm solution normally is not feasible. Similar to equation (A.14), a general

solution for our problem is

J + ~ + (I - J ~ J) ~ (A . I ~)

where z is arbitrary. We mostly deal with this form of solution for our problem in this

thesis.

A.2.4 Singular Value Decomposition

For Equation (A.15) and (A.17) we assume (AAT) is invertible. However, this is not always

true. Some robot configurations are singular and (AAT) becomes not invertible. Thus, we

might need another method to compute At, and SVD, Singular Value Decomposition, is a

well-known method to compute At.

Theorem 2 For any matrix A,,, E Rmxn, there exists a singular value decomposition of

A, such that:

A = U C V ~

where

U is a n m x n matrix whose columns are orthonormal.

APPENDIX A. LINEAR ALGEBRA

V is a n n x n matrix whose columns are orthonormal.

C is a n n x n diagonal matrix with positive or zero elements.

proof i2 A,,, is a transformation: V c Rn -+ W C_ Rm. In Rn, there exists an orthonormal

basis {vi), i = 1, ..., n , i.e.,

Let hi = Avi, i = 1, ..., n , then W =span{hi). Let ai = Ilhill, ui = &hi, then A is represented

To make {ui) orthonormal, we need t o pick a particular set of {vi) as the basis of V,

which makes {Avi) orthogonal with each other, i.e.,

< Avi, Avj >=< vj, A T ~ v i >= 0, for i # j

which means as long as we chome eigenvectors of ATA as {vi), then {ui) is orthonormal as

well. And a; =< Avi, Avi >= V T A ~ A V ~ = Xi, SO a: is the eigenvalue of (ATA).

The C can be unique if we require diagonal element of C, singular values of A, t o be in

decreasing order,

a l > a 2 L . . . L a n L 0

In the case where (ATA) has eigenvalues of 0, Dim(span{Avi)) = r < m,

and we can only get r vectors as {ui) from {vi). The Gram-Schmidt procedure can be

applied t o get additional basis vectors for space Rm. In this case, t o save computation, U

 his proof is modified from 1501

APPENDIX A. LINEAR ALGEBRA 96

can be simply reduced to an m x r matrix, C can be reduced to a r x r matrix, and VT can

be reduced to a r x n matrix, which is called Reduced SVD.

Theorem 3 Given a SVD of A, A = UzVT, the Moore-Penrose inverse of A is

where

Proof: For C . x = b, it is straightforward that x = Ctb. ~t satisfies all the Moore-Penrose

inverse conditions in equations (A. 10)-(A. 13).

Bibliography

[I] J . Ahuactzin and K. Gupta. The kinematic roadmap: A motion planning based global
approach for inverse kinematics of redundant robots. IEEE Transactions on Robotics
and Automation, 15:653469, 1999.

[2] Mert Akinc, Kostas E. Bekris, Brian Y. Chen, Andrew M. Ladd, Erion Plaku, and
Lydia E. Kavraki. Probabilistic roadmaps of trees for parallel computation of multiple
query roadmaps. In D. Paolo and R. Chatila, editors, Eleventh International Symposium
of Robotics Research (ISRR), Springer Tracts in Advanced Robotics (STAR), Siena,
Italy, 2003. Springer Verlag.

[3] A. Atramentov and S. M. LaValle. Efficient nearest neighbor searching for motion
planning. In IEEE International Conference on Robotics and Automation, pages 632-
637, 2002.

[4] F'ranz Aurenhammer. Voronoi diagrams - a survey of a fundamental geometric data
structure. ACM Computing Surveys, 23(3):345-405, Sept. 1991.

[5] Kostas E. Bekris, Brian Y. Chan, Andrew M. Ladd, Erion Plaku, and Lydia E. Kavraki.
Multiple query motion planning using single query primitives. In IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), pages 65C661, Las Vegas,
Nevada, USA, 2003.

[6] A. Ben-Israel and T. N. E. Greville. Generalized inverses: theory and applications.
John Wiley & Sons, 1974.

[7] R. Bohlin and L.E. Kavraki. Path planning using lazy PRM. In IEEE International
Conference on Robotics and Automation, pages 521-528, 2000.

[8] Jin-Liang Chen and Jing-Sin Liu. Avoidance of obstacles and joint limits for end-effector
tracking in redundant manipulators. In 7th International Conference on Control, Au-
tomation, Robotics and Vision, pages 839-844, Taipei, Taiwan, Dec 2002.

[9] P. Chiacchio, S. Chiaverini, L. Sciavicco, and B. Siciliano. Closed-loop inverse kinemat-
ics schemes for constrained redundant manipulators with task space augmentation and
task priority strategy. International Journal of Robotics Research, 10:410-425, 1991.

BIBLIOGRAPHY 98

[lo] J . Cortes, T . Simeon, and J.P. Laumond. A random loop generator for planning the mo-
tions of closed kinematic chains with PRM methods. In IEEE International Conference
on Robotics and Automation, pages 2141-2146, 2002.

[ll] J . Craig. Introduction to Robotics: Mechanics and Control, Second Edition. Addison-
Wesley Longman Publishing Co., Inc., 1989.

[12] C. N. Dorny. A Vector Space Approach to Models and Optimization. John Wiley &
Sons, 1975.

[13] S. Ehmann and M. Lin. Accurate and fast proximity queries between polyhedra using
surface decompmition. In Computer Graphics Forum (Proc. of EUROGRAPHICS),
2001.

[14] M. Foskey, M. Garber, M. C. Lin, and D. Manocha. A Voronoi-based hybrid motion
planner. In IEEE/RSJ International Conference on Intelligent Robots and Systems,
volume 1, pages 55-60, Maui, USA, 2001.

[15] I. Gipson, K. Gupta, and M. Greenspan. MPK: An open extensible motion planning
kernel. Journal of Robotic Systems, 18(8):433-443, Aug. 2001.

[I61 L. Guibas, C. Holleman, and L. Kavraki. A probabilistic roadmap planner for flex-
ible objects with a workspace medial-axis-based sampling approach. In IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 254-259, 1999.

1171 Z. Guo and T. Hsia. Joint trajectory generation for redundant robots in an environment
with obstacles. In IEEE International Conference on Robotics and Automation, pages
157-162, 1990.

[18] K. Gupta. An overview and state of the ar t . In Practical Motion Planning: Current
Approaches and Future Directions, pages 3-8. John Wiley and Sons, 1998.

[I91 L. Han and N. Amato. A kinematics-based probabilistic roadmap method for clmed
kinematic chains. In B. Donald, K. Lynch, and D. Rus, editors, Workshop on Algorith-
mic Foundations of Robotics, pages 233-246, March 2000.

[20] T . Hsia and Z. Guo. Joint trajectory generation for redundant robot. In IEEE Inter-
national Conference on Robotics and Automation, pages 14-19, 1989.

[21] Thomas C. Hudson, Ming C. Lin, Jonathan Cohen, Stefan Gottschalk, and Dinesh
Manocha. V-COLLIDE: accelerated collision detection for VRML. In VRML '97:
Proceedings of the Second Symposium on Virtual Reality Modeling Language, pages
117-123, 1997.

[22] Yong K. Hwang and Narendra Ahuja. Gross motion planning - a survey. ACM Comput.
Surv., 24(3):21%291, 1992.

BIBLIOGRAPHY 99

[23] Internet. http://www.cs.unc.edu/-geom/collide/index.shtml. (Accessed in Jan 2005).

1241 Internet. http://www.win.tue.nl/~gino/solid/index.html. (Accessed in Jan 2005)

[25] Internet. http://www.space.gc.ca/asc/eng/iss/mssssrms.asp. (Accessed in Jan 2005).

[26] L. Kavraki, M. Kolountzakis, and J.-C. Latombe. Analysis of probabilistic roadmaps
for path planning. In IEEE International Conference on Robotics and Automation,
pages 22-28, 1996.

1271 L. Kavraki, J.-C. Latombe, R. Motwani, and P. Raghavan. Randomized query process
ing in robot path planning. In 27th Annual ACM Symposium on Theory of Computing,
pages 353-362, Las Vegas, Nevada, United States, 1995.

1281 C. Klein and B. Blaho. Dexterity measures for the design and control of kinematically
redundant manipulators. International Journal of Robotics Research, 6:72-83, 1987.

[29] J . Kuffner and S. LaValle. RRT-connect: An efficient approach to single-query path
planning. In IEEE International Conference on Robotics and Automation, pages 995-
1001, 2000.

1301 J.-C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, 1991.

1311 S. LaValle. Planning Algorithms. [Online], 1999-2004. Available at
http://msl.cs.uiuc.edu/planning/.

1321 S. LaValle and J . Kuffner. Rapidly-exploring random trees: Progress and prospects.
Proc. Int. Workshop on the Algorithmic Foundations of Robotics, March 2000.

[33] S. Lavalle, J . Yakey, and L. Kavraki. A probabilistic roadmap approach for systems
with closed kinematic chains. In IEEE International Conference on Robotics and Au-
tomation, pages 1671-1676, 1999.

1341 S. M. LaValle. Rapidly-exploring random trees: A new tool for path planning. Technical
Report T R 98-11, Computer Science Dept. Iowa State University, Oct. 1998.

[35] P. Leven and S. Hutchinson. Using manipulability to bias sampling during the con-
struction of probabilistic roadmaps. IEEE Transactions on Robotics and Automation,
19:1020-1026, 2003.

[36] T . Liang and J . Liu. An improved trajectory planner for redundant manipulators in
constrained workspace. Journal of Robotic Systems, l6:339-351, 1999.

[37] A. LiBgeois. Automatic supervisory control of the configuration and behavior of multi-
body mechanisms. IEEE Transactions on Systems, Man, and Cybernetics, 7:868-871,
1977.

BIBLIOGRAPHY 100

[38] A. Maciejewski and C. Klein. Obstacle avoidance for kinematically redundant manipu-
lators in dynamically varying environments. International Journal of Robotics Research,
4:10%117, 1985.

[39] E. Mazer, J.M. Ahuctzin, and P. Bessiere. The ariadne's clew algorithm. Journal of
Artificial Intelligence Research, 9:295-316, 1998.

[40] Jean-Pierre Merlet. Parallel Robots. Kluwer Academic Publishers, 2000.

[41] Y. Nakamura and H. Hanafusa. Task-priority based redundancy control of robot ma-
nipulators. International Journal of Robotics Research, 6:3-15, 1987.

[42] S.Y. Nof, editor. Handbook of Industrial Robotics, Second Edition. John Wiley & Sons,
Inc, 1999.

[43] G. Oriolo, M. Ottavi, and M. Vendittelli. Probabilistic motion planning for redun-
dant robots along given end-effector paths. In IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 1657-1662, 2002.

[44] J . H. REIF. Complexity of the mover's roblem and generalizations. In Proceedings of
the IEEE Sympoium on Foundations of Computer Science, pages 421-427, San uan,
Puerto Rico, Oct. 1979.

[45] J . K. Salisbury and J . J . Craig. Articulated hands:force control and kinematic issues.
International Journal of Robotics Research, 1 :4-17, 1982.

(461 G. Sanchez and J.-C. Latombe. A single-query bi-directional probabilistic roadmap
planner with lazy collision checking. In International Symposium on Robotics Research
(ISRR'Ol), Lorne, Victoria, Australia, November 2001.

[47] Lorenzo Sciavicco and Bruno Siciliano. Modeling and Control of Robot Manip,ulators.
Mcgraw-Hill College, 1996.

[48] S. Seereeram and J .T. Wen. A global approach to path planning for redundant m a n i p
ulators. IEEE Transactions on Robotics and Automation, 11:152-160, 1995.

[49] G. Sheung. Obstacle avoidance for kinematically redundant robots. Undergraduate
thesis, School of Engineering Science, Simon Fraser University, 2004.

[50] T . Will. Singular value decomposition. http://www.uwlax.edu/faculty/will/svd/. (Ac-
cessed in Jan 2005).

[51] S. Wilmarth, N. Amato, and P. Stiller. MAPRM: A probabilistic roadmap planner
with sampling on the medial axis of the free space. In IEEE International Conference
on Robotics and Automation, pages 1024-1031, 1999.

1521 T . Yoshikawa. Manipulability of robotic mechanisms. International Journal of Robotics
Research, 4:3-9, 1985.

