" RATE COMPATIBLE TRELLIS CODES
FOR | |
ADAPTIVE ERROR CONTROL COMMUNICATION SYSTEMS

Yan Wu

A THESIS SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF APPLIED SCIENCE (ENGINEERING SCIENCE)
' in the ) §chool of

Engineering Science

© Yan Wu 1990

Simon Fraser University

March 1990

All rights reserved. This thesis may not be reproduced in whole or in part,

by photocopy or other means, without the permission of the author.



APPROVAL

NAME : Yan Wu
DEGREE : Master of Applied Science (Engineering Science )
TITLE OF THESIS : Rate Compatible Trellis Codes for

Adaptive Error Control Communication Systems

EXAMINING COMMITTEE :

Chairman: Dr. R.H.S. Hardy

Dr. P. K.-M. Ho
Senior Supervisor

Dr. Vladimir Cupérman
Supervisor

Dr. James K. Cavers
Examiner

DATE APPROVED : Mw‘cl’\ 'T*"", 7 7o

N



PARTIAL_COPYRIGHT L ICENSE

| hereby granflfo Simon Fraser University the right to lend
my thesis, brojecf or extended essay (the title of which is shown below)
to users of the Simon Fraser University Library, and to make partial or
single copies only for such users or In response to a request from the
»library ot any other university, or other educational institution, on
ifsrown behalt or for one of Its users. | further agree that permission
for multiple coﬁylng of this work for scholérly purposes may be granted
by me or the Dean of Graduate Studies. It is understood that copying
ér publlcation of this work for financial gain shall not be allowed

without my written permission.

Titie of Thesis/Project/Extended Essay

"Rate Compatible Trellis Codes for Adaptive Error Control Communication

Systems" ’ .

Author: o

(signature)

Yan WU

{(name)

April 10, 1990

(date)



ABSTRACT

To deal w1th the increasing demand of mobile data communications, existing error
control schemes of mobile communication systems should be modified to make more
efficient use of the available resources, such as power and bandwidth. This thesis
provides an appealing way to achieve the above objective by integrating coded
modulation design and a generalized hybrid ARQ/FEC error control protocol design
_into one single process. For a given bandwidth, our proposed systems provide effective
unequal error protection over a wide range of signal to noise ratio, and a maximum
throughput efficiency of several bits per channel symbol, while similar existing
techniques can only accommodate a maximum information rate of 1 bit per channel
symbol. For mobile radio applications, the analytical and computer simulation results
show that the systems using our new approach yield up to 80 % overall system
throughput gain over the best known similar system proposed by Hagenauer with
comparable decoding complexities. A -detailed performance analysis, and computer

simulation results of the systems using the new technique are included in the thesis.
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CHAPTER ONE

INTRODUCTION

A major concern in data communications is how to control transmission errors
caused by channel noise so that data can be reliably delivered to the usefs. One
solution to this problem is the application of Forward Error Correction (FEC) coding.
Another possible vsolution is to use Automatic Repeat Request (ARQ), an error control
technique that uses error detecting code only. However, for channels with nonstationary
noise and interference, such as a mobile radio channel, one has to look into some
more robust error combating techniques such as the type II hybrid ARQ/FEC technique
where an appropriate combination of FEC and ARQ is used. So far, a multitude of
variations based on this teéhnique, including several rate - adaptive systems, have
been examined. Conventional FEC code design method (binary block code or
convolutional code, optimally designed in the sense of maximizing the free Hamming
distance of the code, in conjunction with binary modulation) are employed in these
studies. Therefore, the throughput of these communication systems are restricted to
a maximum of 1 information bit per channel symbol. In this thesis, we report an
adaptive hybrid ARQ/FEC technique that uses joint power and bandwidth efficient
coded modulation techniques. As will be shown later on, using coded modulation
allows us to achieve much improved throughput performance, and its adaptivity makes

this technique rather suitable for mobile radio applications.



11 BACKGROUND AND LITERATURE REVIEW

As mentioﬁed earlier, to meet the requirement of reliability and throughput efficiency
for various digital communication systems, two basic categories of error control
strategies have been developed : Forward Error Correction (FEC) schemes and
Automatic Repeat Request (ARQ) scherhes. In a FEC system, an error correcting
~ code is used for combating transmission errors. Since there are no retransmissions
~ in a FEC system, the information throughput is a constant and equal to the code
rate of the FEC, and is independent of the channel quality. However, if an error
pattern beyond the error correcting capability of the code occurs, the received codeword
will be decoded incorrectly and the erroneous data will be delivered to the user.
Incorrect decoding occurs more often when the channel is very noisy as there is a
higher chance of getting uncorrectable error patterns. In principle, one can use a low
rate codes with long codeword length to reduce the chance of incorrect decoding
when the channel is noisy. However, it is hard and expensive to implement decoders
for long powerful error correcting codes, therefore system designefs conclude that it
is very difficult to achieve high data reliability with FEC alone. Therefore ARQ
schemes are often preferred over FEC for error control in data communication systems,
except for some systems where feedback channels are not available or retransmission

is not possible for some reasons.

Compared with FEC schemes, ARQ schemes, in general, can provide a much
higher reliability, and it .is easy to implement. In a pure ARQ system, only an error
detecting code is used. At the receiving end, an error detection algorithm ( parity
check or syndrome corhputation) is performed. Depending on whether errors have

been detected or not, a negative (NAK ) or a positive ( ACK) acknowledgement



signal is sent to the transmitter, via a return channel. Upon receiving the acknowledgment
signal, the tré.nsmitter will retransmit the block in error (in the case of an NAK)
or transmit the next block (in the case of an ACK)in the queue. In this system,
codewords with errors are delivered to the users only if the receiver fails to detect
the presence of errors. It is well known that if an (n,k) linear block code is used
for error detec;ion only, then, the undetected error probability is always less than
the decoding error probability when the same code is used for forward error correction.
[34], [35]. This can be observed clearly from the standard array of a (n, k) linear
block code shown in Table 1.1.

Cl = 0 Cz Cg LA ng
ez ez + Cz ez + Cg ° ' ° ez + ng
ezu—k ezn—k + Cg ezn—k + C3 L ez._g + ng

Table 1.1 Standard array.

In the above table, the first row contains all the codewords, denoted by the C’s,

j=12,...,2% The remaining rows are the cosets of the code. The first element of

each coset e;, i =2,3,...,2"* is called the coset leader. From coding theory, if a



code is used for error detection, the undetected error probability is the probability
that the nois'e\ pattern is one of the vector in the first row. On the other hand, if
‘the same code is used for error correction, the probability of an uncorrectable error
is the probability that the error is not a coset leader, which includes the set of
codewords in the first row. So, the undetectable error probability must be lower than
the uncorrectable error probability. Thus, as far as the reliability is concerned, a pure
| ARQ scheme which uses only an error detection code is far superior to a pure FEC
scheme which uses only an error correction code. The idea of using ARQ strategies
can be traced back to the 1940’s [3]. Since then various ARQ schemes have been
proposed and implemented, the best known are the Stop-And-Wait (SNW) scheme,
the Go-Back-N (GBN) scheme and the Selccdve-Repeat schemes (SRT). As the
simplest retransmission strategy, the SNW scheme has been widely used. In such a
system, the transmitter sends a codeword to the receiver and waits for an

acknowledgment from the receiver, as can be seen from the diagram in Fig. 1.1.

Idle time Relransmission - Retransmission
| ~— - {
Transmitter i 9 2 3 4 5 )
Transmission \ S \ 5 §, S S ES
Receiver i 2 2 3 4 5 5
 Error . Brror

Fig. 1.1 Stop-and - wait ARQ.



As shown in Fig. 1.1, if an ACK is received, the transmitter sends the next
codeword, otherwise it retransmits the codeword detected in error and again waits
for an acknowledgment. This procedure will continue until the transmitter receives
an ACK. The SNW scheme has a nature of inefficiency beéause of the idle time
spent on waiting for an acknowledgment about each transmission. For some systems
with small propagation delay, such as the mobile radio communication system
- considered in this study, the idle time has a negligible effect on the efficiency. A
detailed description of the principle and the features of a SNW ARQ scheme and

the other two types of ARQ systems can be found, for instance, in [4].

As mentioned earlier, the high reliability achieved by ARQ schemes is a result
of retransmitting those data blocks found in error by the receiver. Consequently, as
the channel error rate increases, pure ARQ schemes yield lower and lower throughput.
This is a severe drawback of any pure ARQ system.

A class of hybrid schemes involving a proper combination of FEC and ARQ
techniques, namely hybrid ARQ/FEC schemes, in principle, can overcome the dra;)vbacks
of both pure ARQ and pure FEC systéms° The fact is that a FEC subsystem contained
in a hybrid system can effectively reduce the frequency of retransmission by correcting
the error patterns which occur more fréquently so that a better system throughput
than in a pure ARQ system is obtained. On the other hand, when a less frequent
error pattern occurs and is detected, the receiver requests a retransmission rather than
passing the unreliable decoded message to the user so that a better reliability than
in a pure FEC system is obtained. Therefore, many efforts have been devoted to
studying hybrid ARQ/FEC systems [6], [7]. Hybrid ARQ/FEC techniques are further
classified into type I and type II schemes [1],[4]. In a type I hybrid ARQ/FEC



system, a code is designed for simultaneously correcting and detecting errors. This
results in a':equirement of significantly more redundant bits than a code used only
.for error detection. These parity check bits for error correction are sent no matter ‘
what the channel -condition is. Because of this characteristic, see Fig. 1.2, a type I
hybrid system has a lowex: throughput than a pure ARQ system in a low error rate
channel but a higher throughput in a high error rate channel. For this reason, type
I hybrid scheme is more suited for channels with an predictable fairly constant,
medium to high bit error rate. Here the throughput is defined as the ratio of the
number of information bits to be delivered to the average number of transmitted bits
for delivering these information bits. If the bit error rate of the channel varies over
a wide range, a type I system could be inefficient, due to its low throughput at low
bit error rate conditions. The performance of some type I hybrid schemes, using

either block codes, or convolutional codes, are reported in [6]-[9].

|
1

_ ARQ

_Zg’; ] Type I

§ Pure-~ » HYbI‘id ARQ / FEC
=

=

Bit Error Rate

Fig. 1.2  The throughput cbrnpaﬁson of pure ARQ and type I hybrid ARQ/FEC
schemes.



To avoid the disadvantage of the type I schemes, i.e. the extra FEC parity bits
are wasted under good chkannel conditions, type II hybrid systems were suggested,
“see for exami)le, (10], (1], and [7]. This class of hybrid ARQ/FEC schemes is based
on the concept of parity retransmission for FEC first introduced by Mandelbaum [5].
The basic concept of type II hybrid ARQ/FEC schemes is that the parity check bits
for error correction are sent to the receiver only when they are needed. Th1s makes
a type II system quite adaptive, as oppose to a type I system; For some type II
hybrid ARQ/FEC system in the literature, a codeword is divided into two parts. The
first part contains k information bits and n.=n,—k error detection check bits or
cyclic redundancy check (CRC) bits. These n, bits are obtained by passing the k
information bits to a (n;, k) error detecting code. The second part consists of n -
n, parity bits for error correction. These check bits are obtained by passing the n,

bits in the first part into a (n,n;) error correcting code, see Fig. 1.3.

myme o0, a0
RNCODER TR |

o B

M N0 ERRORS
- ﬂ@
(o N | X me o ) FC
D;JC.ODER DECODER

Fig. 1.3 A type II hybrid ARQ/FEC system.



Only the first part of each codeword, i.e. k information bits along with n, CRC

bits, will be sent in the first transmission. If the receiver detects the presehce of
errors in the received data block, it saves the erroneous data block (the first part of
the codeword) in a buffer and, at the same time, it notifies the transmitter to send
the second part of the codeword which cbntains the FEC parity bits. Upon receiving
the FEC parity block, the receiver then performs error correction based on the (n,
'n,) forward error correcting code, followed by error detection based on the (n,, k)
error detecting code, C,. If errors are still detected, the receiver will discard the
erroneous information block and save the FEC parity block in the buffer, and ask
for a retransmission of the information block. Upon receiving the retransmitted
information block, the receiver will again perform error detection based on C,. If
errors are detected, the receiver will combine the retraﬁsmittcd information block and
the FEC parity block stored in the buffer, and perform error correction based on (
n,n; ) code. If errors are again detected, the receiver will discard the FEC block
and save the information block in the buffer, and ask for a retransmission of the
FEC parity bloék, and then perform error correction based on (n,n,) code. If errors
are still detected, the next retransmission will be the information block. This procedure
of alternating between message bits (along with error detecting parity bits) in one
retransmission and FEC parity bits on the next will be continued until the received
word is error-free, or until a certain limit set by designers is met. Because of this
message - parity alternating retransmission strategy, a type II system can overcome

partially the drawbacks of a type I system.

To make a type II hybrid ARQ/FEC system even more efficient, invertible codes,
which have the property that any error-free copy of the FEC parity block of the



codes can also deliver the message, have been suggested for use in type II hybrid
ARQ/FEC sys;ems [1], [4]. A system that uses an invertible code still follows the
inessage - parity alternating retransmission strategy. For example, consider the system

proposed by Lin et. al. [1]. -

In Lin’s system, the first step of transmission is the same as that of the system
given in Fig. 1.3. The k information bits and the n, -k error detecting parity check
bits are sent. At the receiver, the error detection is performed based on the code
C,. If errors are detected, the erroneous information block is saved in the receiver
buffer and a NAK is sent to the transmitter. Similar to the system in Fig. 1.3, in
this system, a FEC parity block of n-n,=n, bits will be sent upon receiving the
first NAK. The difference is that this FEC parity block is itself a code vector of
the code C,, and the k information bits can be recovered from this FEC parity block
by a simple inversion operation. Upon receiving the FEC parity block, the syndrome
is calculated based on the code C,. If the syndrome is zero, the FEC parity block
is assumed to be error free, and the k information bits can be recovered from the
FEC parity block by an inversion process. If the syndrome is not zero, the erroneous
parity check block and the erroneous information block (stored in the receiver buffer)
are combined to perform error correction based on the (2m,,n,) invertible code. If
errors in the code vector of this invertible code form a correctable error pattern,
they will be corrected. The decoded information block is then successfully delivered
to the data sink. If the error pattern is not correctable but detectable based on C,,
the erroneous. information block is discarded and the FEC parity block is stored in
the receiver buffer, also, a NAK is sent to the transmitter. The transmitter then sends

the information block again. If no error is detected from this retransmitted information



block (with the assumption that the undetectable error probability is zero), the
erroneous pai‘ity block is discarded from the receiver buffer and the error - free
information is delivered to the data sink. If errors are detected, the retransmitted
information block together with the parity block are used for error correction based
on the (2ny,n;) inverﬁble code. After ‘error correction, if errors still exist, the

erroneous FEC parity block will be discarded and the information block will be

-saved in the receiver buffe_r. The next retransmission will be the FEC parity blbck.

This procedure of alternating between message packet in one retransmission and
parity block on the next will be continued until the received word is error-free; or

until a certain limit set by the designers is met.

From the above description, one can see that by using the invertible codes, the
procedure of message recovery can be simplified and also, the number of retransmission
required can be reduced. During a retransmission, if the FEC parity check block is
successfully received, the message can then be reconstructed from the parity block 4
by a simple inversion process rather than a more complicated decoding process. This
implies no matter how many errors contained in the previous transmitted message

block, no further retansmission will be needed.

A graph which combines the throughput characteristics of type I, type II hybrid
ARQ/FEC schemes and a pure ARQ scheme is given in Fig. 1.4. Note that the type
I and the type II schemes in Fig. 1.4 use the same forward error correcting code.
Fig. 1.4 reveals that when the channel error rate is low, the FEC parity check blocks
of a type II system need not be transmitted so that the effective code rate remains
close to unity. In other words, a typé II system behaves just like a pure ARQ system

and thus it has a higher throughput than the type I system using the same forward
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error correcting code. When the channel condition deteriorates, most of the time, the
FEC parity block will be requested and sent to form a forward error correcting code
‘at the receiver. Hence at high channel error rate, the throughput performance of a
type II system is similar to that of a type I system. As stated earlier, a type I

system removes the disadvantage of a type I system by transmitting the parity bits

only when they are needed.

\ Type 11

=] \f\Hybrid ARQ /FEC
= b N

S Pure-= |

= L ARQ Type |

Hybrid ARQ /FEC

Bit FError Rate

Fig.14  Throughput comparison of pure ARQ, type I and type II hybrid ARQ/FEC

systems.

From Fig. 1.4 we can see that there is an abrupt transition on the throughput curve
of a type II system, due mainly to its limited adaptive capability. One of the main

objectives of this thesis is to look for more adaptive hybrid ARQ/FEC systems with

11



throughput curves degrading gracefully from good channel condition to the very bad
condition. We call this class of error control strategy generalized type I hybrid

ARQ/FEC schemes.

Recently, several generalized type' IT hybrid ARQ/FEC schemes have been proposed
[211,[14],[15] to allow the code rate and hence the error correction capability of the
FEC to be varied over a wide range. The basic principle behind all these schemes
is that the parity block of the FEC is divided into several sub - blocks and a different
sub - block will be sent in each retransmission. At the receiver side, the decoder
makes use of all previous received sub - blocks for carrying out error correction.
This type of schemes are defined as generalized type I schemes, since in a conventional
type II system, only the data block received from the very last transmission is saved.
In [21], Chase introduced the code combining technique for channels with unpredictable
conditions. In the context of our present discussion, Chase’s code combining technique
~ is equivalent to a generalized type II hybrid ARQ/FEC scheme that uses repetitive
codes. In [15],H-Krishna proposed a new class of codes, the KM codes, for use in
generalize& type II hybrid systems. A KM code includes two linear block codes: an
(ny, k) error detecting code, C;, and a (mn,,n, ) invertible code which is actually
a generalization of the (2n,,n, ) invertible code in [4]. Tht;, generator matrix of this
(mny, n;) code is selected in a way that it can be partitioned into m subblocks each
of dimension (hl xn, ). In other words, here we have m-1 FEC parity blocks of n,
bits each. The information block can be obtained by an inversion process on any
one of these m-1 parity blocks. One parity block is sent at each retransmission, and
all the parity blocks received at the receiver are combined to create an effective

error correcting code. This implies that the effective rate of the FEC can be 1/2,
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1/3, ..., 1/m. As the code rate decreases, the error correcting capability of the code
~ increases, théreby leading to an improved performance under poor channel conditions.
, Applying soft decision decoding to this coding scheme is suggested by Morgera et.
al. [16].

Another generalized type I hybrid ARQ/FEC scheme proposed by Hagenauer
[13],[14], uses Rate Compatible Punctured Convoluﬁonal (RCPC) codes instead of
| using block codes. RCPC codes are more flexible than the code combining technique
of Chase and the KM codes of Krishna, from the point of view that the code rate
can be changed in smaller steps and that a maximum likelihood soft decision decoder
can be implemented easily using the Viterbi algorithm. The concept of punctured
convolutional codes is first introduced by Cain et. al. [12]. They found that a high
rate convolutional code can be obtained by deleting periodically encoded bits of a
mother code. As such, the trellis of the mother code can be used for the decoding
of the punctured code. In this way, the decoding complexity is reduced significantly
as cbmpared to that required in a régular high rate convolutional code>. To apply
punctured convolutional codes in an adaptive error cbntrol system, Hagenauer introduces
a rate-compatibility restriction on the puncturing rules so that all code bits of a high
rate punctured code are used by the lower rate codes. When RCPC codes are used
with the adaptive hybrid ARQ/FEC protocol, it is quite flexible to choose the number
of incremental redundanéy bits transmitted in each step. Therefore, Hagenauer’s
proposal can attain a smoother throughput curve, which is desirable in many cases.
A detailed description of RCPC codes and their application in an adaptive error

control system will be given in the next chapter.
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So far, all the error cbntrol schemes reviewed above use binary coding schemes
followed by Binary modulation schemes. This limits the system throughput to, at
rhost 1 bit per channel symbol. These traditional channel coding techniques achieve
coding gain at the cost of bandwidth expansion. In the past decade, the search for
bandwidtﬁ and power efficient digital modulation techniques is a very active research
area. As a result, two types of bandwidth efficient modulation schemes are proposed:
Continuous Phasé Modulation (CPM ) [37] and Trellis - Coded Modulation (TCM)
[23], [24]. In [37], Aulin et. al. consideréd M-ary digital FM (frequency modulation)
with smoothing of the instantaneous frequency, which is referred to as CPM (continuous
phase modulation). An ARQ scheme that includes the modulaﬁon design based on
CPM can be found in [36]. On the other hand, Ungerboeck [23], [24] has developed
a coding technique known as Trellis Coded Modulation (TCM). He combines coding
and modulation in such a way that the noise immunity is increased without increasing
the signal power and without bandwidth expansion. This is acﬁeved by using redundant
nonbinary modulation in conjunction with a finite state encoder. The assignment of
modulation signals to the encoder transitions is based upon a concept that Ungerboeck
called mapping by set partitioning, a mapping technique that will result in a large
Euclidean distance between signal sequences. Using this mapping, significant coding
gain of 3-4 dB in bandlimited additive white Gaussian noise (AWGN) channels with
respect to the uncoded modulation system of the same data rate, can be obtained

by simple, hand designed TCM.

Following Ungerboeck’s pioneer work, extensive studies on TCM schemes were
carried out. Recently, there are a lot of interest in applying TCM schemes in fading

channels, see for example [25 - 31]. In [25], Divsalar and Simon proposed a new
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class of TCM schemes which they called Multiple Trellis Coded Modulation (MTCM).
These TCM sbhemes have multiple symbols per encoder transition, which as shown
by Divsalar and Simon, provides an additionally degree of freedom to design codes
that satisfy the optimum code design criteria for fading channels. As presented in
[25], in order to minimize the error probability in a fading channel, not only the
code’s free Euclidean distance is important, but also the free Hamming distance is
crucial as it directly relates to the diversity of the code. The larger the free Hamming
distance, the faster the error probability decreases with an increase in the channel’s
signal to noise ratio.’ In this thesis, we will modify some MTCM schemes of [26]
and apply them to an adaptive hybrid ARQ/FEC system. As in convolutional coding,
a MTCM scheme has multi - symbol per trellis branch. If we puncture it in a similar
way as Hagenuaer did in puncturing convolutional codes, then a promising improvement
in the throughput performance can be obtained without increasing the bandwidth.

This new idea will be discussed in detail in the later chapters.

1.2 THESIS OUTLINE

The outline of the thesis is as follows. In Chapter 2, the concept of the RCPC
codes are described. The performance of a hybrid ARQ/FEC system that uses RCPC
codes are given, inciuding the throughput efficiency and the frame error rate. In
Chapter 3, a new method, which integrates the generalized type II hybrid ARQ/FEC
error control protocol design and the bandwidth efficient trellis coded modulation
design into a single process, is discussed. The performance of systems using this
new error control technique, which we called RC-TCM (Rate Compatible Trellis

Coded Modulation ), are given in Chapter 4. We also compare in Chapter 4 the
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pérformance of our proposed systems with those that use RCPC codes. In both cases,
we consider bnly the Rayleigh fading channel, which is an appropriate model for
mobile radio channels. Finally, in Chapter 5, a summary of the results obtained in

the present investigation are made and the suggestions for future study are discussed.

1.3 CONTRIBUTIONS OF THE THESIS

As the readers will see later, our proposed error control technique based on
RC-TCM, when used in a Rayleigh fading channel, allows us to achieve a throughput
that is much higher than any existing techniques in the literatures. This improvement
is due to the fact that we integrate the error control protocol and the coding/

modulation design into a single process. This is the main contribution of the thesis.
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CHAPTER TWO

ADAPTIVE HYBRID ARQ/FEC PROTOCOLS
USING RCPC CODES

We discuss in detail in this chapter a channel coding technique that is suitable

for use in adaptive hybrid error control systems. It is the rate compatible punctured

convolutional (RCPC) codes in [14]. The concept discussed in this chapter provides

all the information required to understand the new adaptive hybrid ARQ/FEC schemes

introduced in Chapter 3. Examples will be given in this chapter to help the explanation.

The system performance, including the throughput and the frame error rate, of a
hybrid ARQ/FEC system that uses RCPC codes in Rayleigh fading channel will also

be given.

2.1 CONCEPT AND AN EXAMPLE

The block diagram of a hybrid ARQ/FEC error control system using RCPC code

is shown in Fig. 2.1.

To data sink

ein [ Fpe TG % FEC EDC
ENCODER ENCODER DECODER DECODER
]
?EEDMCK CHANNEL
Fig. 2.1 Block diagram of an adaptive hybrid ARQ/FEC system. v; is the code

vector sent in the ith retransmission and #; is the corresponding received

copy of ;.



It consists of an error‘ detecting code, an error correcting code, a forward channel
and a feedbé.c;k channel for sending acknowledgments from the receiver to the message
sender. As mentioned earlier, an attractive property of a generalized type II hybrid
ARQ/FEC system is its adaptive error correction capability in response to the change
in channel conditions. This is achieved by making use of all the accumulated data

received for the same packet during forward error correction as described below.

Let C, be the mother code with code rate r,=k/n. Here a mother code refers to

a code from which a set of codes with different rates can be generated by puncturing
its code symbols, k is the number of information bits in each codeword, and n is
the length of the codeword. Here for convenience, the parity check bits for error
detection are treated as part of the information bits of the error correctihg code.
Now assume that the n-k redundant bits of each codeword are partitioned into m

subblocks v, v,,...,v, with length [,,,...,1, bits respectively, see Fig. 2.2.

- n bits
k bits | 1 1, 1y ’; la

P2

vO vl VZ v:; . vm

Fig. 22 A codeword of a mother code used in FEC. The first k bits includes

information bits as well as error detection check bits,

In general, /,,l,...,l, are not necessarily equal. Now if we delete the last block v,

i=1

: ' m-1i
from each codeword of C, we can obtain a code C; of rate rl=k/(k-_i- )Y I,-). Note
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that r, > r,. Similarly, If we delete the block y,_, from each codeword of the code
: m-2 .

C,, code, we have a code C, of a rate r2=k/(k+ 2 l,-). Note that r,>r,. If we

. i=1

continue this puncturing procedure, we can obtain a sequence of rate compatible

codes, -

CuCy...Cp

of rates ry, ry,...r, in increasing order. Note that the code C, corresponds to the
case where there is only error detection but no FEC.

This procedure of puncturing code symbols from a lower rate code to obtain a higher
rate code suggests that one can vary the effective code rate of the FEC by adopting
the following transmission and decoding strategy. During the first attempt, only the
k information bits, denoted by the vector v, in Fig.2.2, will be transmitted, Since
in the first attempt, v, contains (;11y error detection check bits, so the system is
functioning in a pure ARQ mode, i.e. the receiver will detect whether errors are
contained in the received word f,, where in the following discussion, #; is used to
represent the received copy of the transmitted word v, see Fig.2.1. If errors are
detected, the receiver will store f, in a buffer and a negative acknowledgment (NAK)
signal is sent to the transmitter. The transmitter will send the first subblock of
redundant bits, v, (with ], bits), in the second attempt. Upon receiving #,, the
receiver will perform error correction based on the concatenation of ¢, and ¢, The
receiver is allowed to do so because the concatenation of f, and #, is actually a

noise corrupted codeword of the code C,,_, (C,., is obtained by deleting the last
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m-1 subblocks of redundant bits from each codeword of the rate k/n mother code
in Fig. 2.2 ).' So although only /; bits are transmitted in the second attempt, the
éffective FEC code rate is k/(k + ;). If errors are still detected after the error correction,
the receiver will store ¥, together with §; in the buffer and another NAK is sent to
the sender. This will result in the next subBlock of redundant bits, v,, being transmitted
- in the third attempt. Again, after receiving V;, the receiver will perform forward error
correction based on the concatenation of ¥, ¥, and ¥,, and the effective code rate
of the FEC becomes k/(k +[; +1,). This process will continue until there is no detectable
error in the received packet or until the last block of redundant symbols has been
sent. In the later case, if the decoding is still not successful, several possibilities
exist : a repetition of the whole procedure described above; or code combining :
repeating the whole codeword of the ry=k/n code in subsequent attempts and
combining all the received copies to form a repeﬁﬁon code. This is a technique
suggested.by Chase [21]. The procedure described above for obtaining rate compatible
codes applies to both block and convolutional code. We -are interes;ted in this study
in convolutional codes, or in general, codes with a trellis structure, due to the fact
that maximum likelihood soft decision decoding using the Viterbi algorithm can be
easily done. When a properly chosen convolutional code is employed as the mother
code and when the mother code is punctured periodically according to the procedure
described above, we obtain a sequence of rate compatible punctured convolutional
codes [13, 14] that can be readily used in a generalized type II hybrid ARQ/FEC

system. The following example illustrates how to obtain a sequence of RCPC codes.
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| Fig.2.3 (a) Trellis diagram of a rate 1/2 convolutional code.

- (b) A rate 1/2 convolutional encoder.
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Fig. 2.3 (a) and (b) shbw the trellis diagram of a 4 state, rate 1/2 convolutional
code and its encoder. Here nodes of the trellis represent the encoder states and the
branches betweén the nodes represent the transitions. The label on each branch is
the encoder output bits at each transition. We will usé this code as the mother code.
To obtain a sequence of RCPC codes, we need to specify a puncturing period P.
For instance, in this example we use P=4. Subsequently, the time axis are divided
into periods of 4 intervals. As shown in Figa.2.3 (a), the encoder output within each
period is denoted by the 8-tuple: b= (b,,b,,bs,b,,bs, bs,bs,bs), where (b;,b;,,), 1 0odd,
are the output of the rate 1/2 mother code encoder in each interval. We can delete
3, 2, 1 bits from b to form rate 4/5, 4/6, 4/7 codes respectively. Since a rate 1/2
mother code carries 1 bit of information per interval, thus intuitively, at least one
coded bit should be kept in each interval during the puncturing process so as to
avoid the loss of information. In other words, b; and b;,, can not be both deleted.
Even with this constraint, there are still a large number of ways the mother code

can be punctured. For purpose of demonstration, we choose to puncture the second
| bit in each interval in this example. Using this puncturing rule, the set of punctured

codes are :

rate 1/2 code by, by, b, by, bs, be, by, by
rate 4/7 code by, by, bg; by, bs, be, by, %
rate 4/6 code by, by, by, X, bs, bg, by, X
rate 4/5 code by, by, bsy %, bs, X, by, X

Table 2.1 A sequence of puncturéd convolutional codes.
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where X denotes a punctured bit. Of course, there is no guarantee that this arbitrarily

chosen punctﬁ_ring rule will yield good rate 4/7, 4/6, and 4/5 codes. The best

puncturing rule, in general, has to be obtained through an exhaustive computer search.

We have finished discussing the method used to generate the RCPC codes. Next
we will demonstrate how to apply these codes in a type II hybrid ARQ/FEC error

control system.

In the first attempt, the rate 4/5 punctured convolutional code specified in Table

2.1 is used, ie. the first, second, third, fifth and seventh bit in each period (of 4
intervals ) of the mother code will be sent. Upon receiving the noise corrupted copy,
the receiver will first perform the Viterbi decoding of the rate 4/5 code. The decoded
word contains information bits as well as check bits for error detection, ( see Fig.
2.1). If errors are detected at the receiver, one additional bit per puncturing period
(4 intervals in this case ), i.e. by in the above table, will be sent to form the rate
4/6 code at the receiver. If this code is still not powerful enough to correct the
channel errors, one more redundant bit (per puncturing period ), b,, will be transmitted
~ to reduce the effective code rate of the FEC to 4/7. If the receiver once again detects
that an uncorrectable number of errors have occurred, then, another additional bit bg
will be used. Now, the received bits accumulated at the receiver is a noise corrupted
codeword of the rate 1/2 code, and the rate 1/2 code offers the highest error correction
capability in this example. This transmitting and decoding process is conceptually
shown in Fig.2.4.
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Fig. 2.4 Transmitting and decoding process of an RCPCC scheme.

It should be pointed out that in general, the number of additional bits ( per
puncturing period ) transmitted in each decoding attempt is not necessarily 1 as in
the above example. For instance, one can use an exponential increase in the number
of additional bits sent in the successive retransmissions. In this way, the effective
éodc rate of the FEC can be decreased rapidly so that the error protection power
of the code increases substantially in consecutive decoding attempts. As mentioned
earlier, only one Viterbi decoder is needed to decode all the codes obtained by
puncturing the mother code. This is because all the coded bits used by a higher rate

punctured code are contained in the mother code.

In order to have an efficient generalized type II hybrid ARQ/FEC scheme, we
need to have a sequence of good codes. Initially one can assume a good mother

code will generate good punctured codes. With this assumption, the problem of
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finding a sequence of good codes is equivalent to finding a good mother code. It
should be noted, though, even with a good mother code, good punctured codes can
only be obtainéd if the puncturing rule is chosen appropriately. At present, the best
puncturing rule can only be obtained through exhaustive computer search. As far as
RCPC codes with Viterbi decoding is concerned, the usual optimal criterion is a

large free Hamming distance dj. In other words, a convolutional code is good when

" its dy is almost the largest possible for a given constraint length and a given code

rate. Here the constraint length is defined as the minimum number of shift register
stages required in the encoder. In [14], Hagenauer reported the results of a computer
search for families of RCPC codes with rates between 1/4 and 8/9. His resu1°ts show
that some RCPC codes obtained are as good as the best known codes with the same

rates and with the same constraint lengths.

2.2 SYSTEM PERFORMANCE

One of the most important performance measures for an error control system is
its throughput efficiency, R,,. For the system using RCPCC, it is defined as the
number of information bits per packet, n; divided by n,,, the average number of bits

transmitted to deliver these n; bits to the end user:

w = NN, (2.1)

In general, the value of R, depends on various factors such as the ARQ protocol

used; the length of the header which contains the source and destination addresses,
as well as other useful routing information; the rate of the error detecting code; the
header failure probability; the round trip propagation delay; and the acknowledgement

packet failure probability. For convenience, several assumptions are made in this
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thesis and are applied to the analysis and comparisons in later chapters: (1) a stop
- and - wait generalized hybrid ARQ/FEC with »; information bits per packet is used;
(2) the undeteéted error probability is small and hence negligible; (3) the header is
separately encoded from the packet; (4) the headers and the acknowledgements are
always received correctly ( The information about the header’s sensitivity, and the
effect of noisy feedback channels can be found in [11]); (5) the round trip propagation
delay has no effect on the throughput performance. When the round trip delay is
very small, like that in a mobile radio system, assumption (5) is definitely true for
a stop - and - wait hybrid ARQ/FEC system. In addition, due to the configuration of
typical mobile radio systems, the waiting time need not be wasted. It can be used

to send packets to other stations.

Besides the throughput, the frame error rate (FER) is another important performance
measure for the hybrid ARQ/FEC system. Let K be the maximum number of decoding
attempts for each data frame. When there are still errors detected after the Kth
decoding attempt, we assume this frame of data that contains errors will be delivered
to the users. The frame error rate, FER, is defined as the probability that a packet
which is ultimately not correctly decoded. If the effect of channel noise to each
decoding attempt is statistically independent, FER is determined by the failure
probability of each of the K decoding attempis.

Let us consider an example taken from [14]. It is a hybrid ARQ/FEC system that
uses a sequence of RCPC codes proposed by Hagenauer. This system has a packet
length of 422 bits, including n. =32 cyclic redundancy check (CRC) bits and v=4
bits for terminating the encoder trellis. A 16 state, rate 1/3 convolutional code is
chosen as the mother code. BPSK modulation is employed. The puncturing period

is P=8 intervals. We will use the number of information bits that can be delivered
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per BPSK pulse ( bits/pulse ), or pulse efficiency, to describe the code rate of the
RCPC codes. .The reason is‘ to facilitate the throughput comparison of the hybrid
ARQ/FEC error control system that uses RCPC codes with our proposed hybrid
ARQ/FEC error control systems that use TCM (reported in later chapters ) basedl
on the same bandwidth. Let (¢, ¢y, €y )' denotes the 24 BPSK pulses in each
puncturing period of 8 encoding intervals of the mother code. The RCPC codes are
~given in Table 2.2.

BPSK symbols transmitted | Symbols used in the | . The effective code rate
per puncturing period ith decoding attempt | at the ith decoding attempt
in the ith transmission (bit/pulse)

ISt €,C3C4C1C10C14C16C19Cm | €1 €2 €4 Cr CloCraCrsCroCan | 8 bits / 9 pulses = 8/9

2nd ¢; - C1C2C4C1Cyp 8 bits / 10 pulses = 4/5
€13C14C16C19Cn2

3rd  cgey €1C3C4C7Cq Cro 8 bits / 12 pulses = 2/3
€13€C14C16C19C20C22

4th  €5Cy1C17Co €1C2CaCs C7C5C10Cn1 8 bits / 16 pulses = 1/2

]
€13C14C16C17C19C20C 22 Ca3

Cy C3 C3 C4 Cs Cg C7 Cg

& ] L -
Sth  €3C6CyC12C15C15Cn Con C9 C10C11C12€13C14C15Cy6 | 8 bits / 24 pulses = 1/3

] L ]
€17C18C19Ca0C21 €22 Ca3Cy

Table 2.2 A sequence of RCPC codes with puncturing period of 8 intervals. *
indicates the symbol sent at the ith transmission.
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Fig.2.5 shows the thfoughput curve (taken from [14]) of Hagenauer’s system that
uses the RCPC codes listed above, working on a fully interleaved Rayleigh fading
channel with soft decision decoding. Fig.2.6 shows the corresponding estimated FER.
Here, perfect knowledge about the various fading amplitudes during the transmission

of the packet is assumed available at the decoder.
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Fig.2.5  The throughput of a hybrid ARQ/FEC system with RCPC codes (Curve
2) and the cut off rate for BPSK modulation (Curve 1). Both are for a
fully interleaved Rayleigh channel with perfect channel state information.
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Fig. 2.6 The frame error rate of a hybrid ARQ/FEC system with RCPC codes
on an interleaved Rayleigh channel. |

Recall in section 1.1, we described the characteristics of the throughput performance
of a pure ARQ system, a type I hybrid ARQ/FEC system and a type II hybrid
ARQ/FEC system (with the same rate of FEC). Compared with these systems,
Hagenauer’s system gives a more efficient and smoother throughput performance, see

Fig.27.
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Fig. 2.7 Throughput comparisons of several error control systems.

‘To further point out the efficiency of Hagenauer’s system, we plot in Fig. 2.5 the

cut off rate curve for BPSK modulation in an interleaved Rayleigh channel.

The cut off rate, R,, is a parameter similar to the channel capacity. It indicates

a limit in the data rate of a channel coding system that uses a particular modulation

format. In particular, R, is defined as

KRy~ R)

P, <2 (2.12)

where P, is the average error probability over all possible coding systems, and

is the number of modulation symbols in each codeword. The above equation says
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that as long as the data rate R is less than R, P, can be made arbitrarily small by
increasing k. Mathematically, for a fully interleaved Rayleigh fading channel with
M - ary phase - shift - keying (MPSK) modulation’, R, is given by :

R,=—log,—~ 5. L 2.13)
0 =108~ & .
M m=0 Es o m .

1+i;°ism27 -

lwher)e ideal interleaving and perfect channel state information is assumed available
in (2.13). As mentioned before, by perfect channel state information we mean that
at each time interval, the effect of channel fading process to the signal is known
at the receiver. In (2.13), E, is the average received energy per pulse, and Ny/2 is
the two - sided power spectral density (PSD) of the channel additive white Gaussian
noise (AWGN).

Fig. 2.5 demonstrates that the performance of Hagenauer’s error cbntrol system iS
close to the cut off rate curve for almost any channel condition and hence his RCPC
-codes are very efficient coding schemes. However, as observed from- Fig. 2.5, the
throughput of Hagenauer’s system is limited to 1 bit/pulse due to the fact that binary
modulation and binary coding are used. We 'plot in Fig. 2.8 the cut off rate curves
for M= 4, and M =8 PSK signals. They indicate that to achieve higher throughput,
one has to use multi - level coded modulation schemes like those proposed by
Ungerboeck [23]. In the next chapter, we show how to integrate TCM technique

into hybrid error control systems.

1 The general representation for a set of MPSK signaling waveform is

S@)= %cos(21l;fct+2—2u(m—l)) m=12,...M 0<:<T

where T is the duration of the signaling interval, f, is the carrier frequency, the energy of each
MPSK pulse is 1.
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CHAPTER THREE

ADAPTIVE HYBRID ARQ/FEC PROTOCOLS USING TCM

In this chapter, a new adaptive hybrid ARQ/FEC scheme that uses Trellis Coded
Modulation (TCM) is proposed and discussed. First, we will review the concept of
TCM. This will be followed by a description of how to integrate TCM into a rate
adaptive hybrid error control system. As mentioned earlier, the throughput of an error
control system that uses traditional channel coding with binary modulation is limited
to 1 bit per channel symbol. As will be shown later, the throughput efficiency can

be greatly increased if we use TCM schemes in an adaptive ARQ/FEC system.
3.1 UNGERBOECK’S TCM CODES

311 TCM In An AWGN Channel

As mentioned before, in a digital communication system, immunity to noise can
be provided by using forward - error - correction codes (FEC). The redundant symbols
in a FEC increase the Hamming distances between information sequences and hence
lower the probability of decoding error. Since redundant symbols are added, bandwidth
expansion is required. In [23], Ungerboeck proposed a novel technique that can
improve noise immunity without any bandwidth expansion. His idea is actually quite
simple and is based on the fact that redundancy can be introduced by increasing the
size of the signal set, instead of introducing redundant symbols as in the conventional

approach. To see this, let us consider the following example. Suppose we want to
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send two bits of infomiation per modulation pulse. One of the modulaton formats
that we can’ use is QPSK (or 4PSK). The sighal constellation of QPSK is shown
in Fig. 3.1, ’

T 3
Fig.3.1 Signal constellation of QPSK.

where signal point i, i=0, 1,2, 3, corresponds to the QPSK waveform of

S(8)= -Tz:cos(znfcwig) - 0s:<T (3.1)

In the above equation, f, is the carrier frequency, T is the pulse duration and the

energy per QPSK pulse is 1. Note that each point in the constellation can be

represented by a complex number of the form

K.
13!

e i=0,1,2,3.
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Assuming we have a white Gaussian noise (AWGN) channel with a power spectral
density of NJZ, then it is well known from communication theory that at large signal
fo noise ratio (SNR), the probability of demodulation error will be dominated by

the minimum Euclidean distance error event, i.e. those events of confusing a signal
with its nearest neighbors in the signal constellation. From the signal constellation

of QPSK, we can show easily that the minimum squared Euclidean distance is
d2n=2 (3.2)

Since each QPSK symbol contains 2 bits of information, we have E,=1/2. E, is

the bit energy. Hence, d2,=4E,. It follows that at larger SNR, the error probability

q/dfnnl_ Jﬁ)_ 1
Q( m-—Q( . —Q( N (33)

where Q(a) is the Q - function defined as:

is

o)== ey 3.4

Now, we want to show how we can increase the minimum Euclidean distance by
trellis coding with a redundant signal set. By a redundant signal set we mean that
we use 8PSK (or higher level modulation) instead of using 4PSK to send 2 bits
of information. As its name may suggest, a trellis encoder is a finite state sequential

machine, like the one shown in Fig. 3.2(a).
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Fig. 3.2 (a) Trellis structure of an Ungerboeck’s 8 state code.

(b) 8PSK signal constellation.

Here we use the same notation as in representing convolutional code, i.e. the '
circles represent the states, and the branches represents transitions betweexi states.
There are four branches originating from each of the 8 states, due to the fact that
2 bits are encoded per interval. The transiﬁon that the encoder will take depends
on the present encoder state as well as the input, During a transition, the encoder
will emit a modulation waveform chosen from the 8PSK signal set in Fig.3.2(b).

Here signal point i, i=0,1,...,7, in Fig. 3.2 (b) corresponds to a modulation waveform

of

S,(t) =" %cos(anct +i %) 0<t<T (3.5)
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Since there are 8 modulation waveforms available while there are only 4 possible
transitions frém each state, coding here then refers to the proper assignment of
Waveforms to the encoder transitions so as to maximize the free squared Euclidean
distance, which is defined as: -

dﬁ,; = min X dé(cik: Cie) (3.6)

C,#C; k

In the above equation, C;=(C;,Cp, ", Cy, ) and C;=(Cj1,Cjay "5 City* +*) aTE 2

sequences of 8PSK symbols associated with 2 different paths in the trellis, dZ(cg,c;)
means the Euclidean distance between the complex 8PSK symbols c; and c;, and
the minimum is taken over the set of all possible C; and C; that originate from the

same state and that terminate at the same state.

Ungerboeck proposed a heuristic mle of assigning 8PSK symbols to the various
transitions to obtain a large dz. He called this method "mapping by set partitioning”.
It is based on the fact that although the minimum square distance between signé,i
points in Fig. .3.2(b) is A2 = 0.586, the signal subsets A and B obtained by taking
the odd signal points and the even signal points each have a larger minimum squared

distance of A? = 2; see Fig.3.3.
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Euclidean distance in subsets.

If we assign signals from the same subset to those transitions originating from the
same state and those terminating at the same state, we will have at least a squared

free distance of
dz2 A} +A}=4=8E, k)

where again E, =1/2, due to the fact that each pulse carries 2 bits of information.

The reason why 8E, is a lower bound on the squared free distance is that it only
represents the squared distances accrued.during the initial split and the final remerge

of 2 paths in the trellis and there may be additional distances accrued during other
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intervals. In any case, comparing the coded distance of 8, with the uncoded QPSK
distance of '4E,,, we will have a coding gain of 3 dB, i.. trellis coding requires 3
"dB less energy to achieve the same bit error probability. This coding gain comes
without any increase in bandwidth. This is because we are sending one pulse for
every 2 bits of information, just as in the case of QPSK. This example clearly
indicates the attractiveness of trellis coded modulation. One can see from Fig. 3.2
that the transitions originating from and terminating at each state indeed receive
signals from the same subsets. For example, the numbers 0, 4,2, 6 associated with
the first state indicates thét the 8PSK symbols sent in the first, second, third, and

fourth transitions are the signal points labelled 0, 4, 2, 6 respectively in Fig. 3.3.

In some cases, the subsets A and B in Fig. 3.3 are required to be further partitioned
into subsets. Consider once again a TCM that sends 2 bits of information per 8PSK
pulse. If the number of encoder states is 4, then we have two possible encoder

trellis structures, see Fig. 3.4(a), (b).

€0,4,2,6> OF

(3,7,1,9 5

(a) (®)

Fig.34  Possible trellis structures for TCM with 4 states, 2 input bits per interval,
and 8PSK modulation.
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The trellis structure}in Fig. 3.4(a) represents an encoder with parallel transitions,
since there'arc always 2 possible transitions between pairs of states.,- Since parallel
transitions represents error events of length 1 interval, they must be assigned signal
points that have the largest distance separated in the signal constellation. Fig. 3.5
shows how the subsets A and B in Fig. 3.3 are further partitioned into subsets, AQ,
Al, B0, and Bl.

Subset‘ B 3 1
V ) ° -

Subset A Al 1 Al

[ X3

Ule
[}
~J]

1b2
g :
4 0
® [
1}5 o !
Subset AQD | Subset AL Subset BO Subset B1

Fig. 3.5 Further partitioning of the subsets in Fig. 3.3

From Fig. 3.5 we see that each of the two signal points 1n AQ or Al or BO or Bl ~
give the largest distance separation in the 8PSK signal constellation. We can observe
from Fig. 3.4(a) that parallel transitions indeed always receive signals from subset
AQ or Al or BO or Bl. |
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Below is a summary of Ungerboeck’s heuristic code design rules for AWGN
channels [23]:

« All channel (8PSK) symbols should occur with equal frequency and with a fair

amount of regularity and symmetry.

+ Transitions originating from or merging in the same state receive signals either

from subset A or B.

« Parallel transitions receive signals either from subset AQ or Al or BO or Bl.

These rules guarantee reasonably good codes for the white Gaussian noise channel.
However, to find out the best code for a given encoder structure, one has to rely

on computer search.

The trellis encoders in Fig.3.2(a) and Fig. 3.4(a) can be realized in terms of rate

2/3 convolutional encoders followed by an 8 level mapper; see Fig. 3.6.
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Here in Fig.3.6, x},i=1,2, arc the binary information bits encoded during the nth

encoding interval, and y;, j=0, 1,2, are the corresponding encoded binary bits which
will be mapped into a 8PSK symbol. The mapper is a natural mapper with y? being

the most significant bit and y? the least significant bit. The result of the mapping

is the number ¢, which is taken from the set {0,1,2,...,7}. If ¢, = j, it means

the jth waveform in the signal constellation in Fig. 3.2 (b) will be sent during the

nth interval.

312 TCM In A Rayleigh Fading Channel

In the last section, we mentioned that the error performance of a trellis coded
modulation system operating in an AWGN channel is dominated by dfz, the free
squared Euclidean distance of the code. We will consider next the transmission of

TCM over a Rayleigh fading channel. The channel model is depicted in Fig. 3.7.

dput  rew .
Y
CHANNEL
ESTIHATOR

<R oy < EINTERLEAVER

bits |  pEcoDER

Fig. 3.7 Channel model of TCM transmitted over a Rayleigh fading channel.
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In this figure, g, =a,,e_"""t is a distortion experienced by the kth modulation symbol

sent. g, is a complex Gaussian random variable. Its amplitude, a,, is Rayleigh

distributed with the probability density function :
P@)=2ge™ a20 (3.8)

Its phase, ¢, is uniform distributed in the interval [0, 2x], and E[]g, ] =1, where

E[-] means the statistical average. Note that the g,’s are correlated and the correlation
depends on the fading spectrum. The purpose of the interleaver and de-interleaver
in the system is to de-correlate the distortion experienced by the modulation symbols
sent in different intervals. The following assumptions are used in this study: (1)
perfect channel state information is available, i.e. the g,’s are known at the receiver;
(2) fading is slow relative to the symbol rate so that g, accurately represents the
fading in the kth symbol interval; (3) the interleaving depth is so large that each
demterleaved symbol is affected independently by the channel fadmg process. With
assumption (1), we are 1mp1\1c1tly saying that we are able to achieve perfect coherent
mcepﬁon at the receiver. This is not an unrealistic assumption, since techniques like
pilot tone [43] and pilot symbols aided detection provide reasonably good results in
phase recovery. Assumption (2) is easily justified for mobile radio applications,
because the fading rate is usually less thén 1% of the symbol rate. Assumption (3)
is also quite reasonable since we have found [31] that as far as error probability is

concerned, a finite, large interleaving depth is almost as good as an infinite interleaving

depth.



It has been found [25] that when trellis codes are used in a Rayleigh fading
channel, the ‘design of the codes for optimum error performance is only weakly
| dependent on the minimum squared Euclidean distance, d,’E, at large SNR, as opposed
to the case of an AWGN channel. Specifically, the error performance at large SNR
is dominated by dg, the length of the shortest error event path, as well as I1d? the
product of squared branch Euclidean distances along the shortest error event path.
What 'we mean by the "length" of an error event path is actually the Hamming
distance between two coded sequences, counted by the channel symbols. dg is
therefore the free Hamming distance of the code. For example, Fig. 3.8 illustrates
the shortest error event path of the 8 state Ungerboeck’s code shown in Fig. 3.2(a).
In this case, dy =2. Obviously, it is different from the Hamming distance of 3

associated with the minimum Euclidean distance path.

free Hamming distance free Euclidean
N error event

\{\ disia(nﬁ error event

0426
i537
4062
5173
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7351

Fig.3.8 The shortest Hamming distance error event and the free Euclidean diatance
error event of the 8 state Ungerboeck’s code.
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As mentioned above, The other factor that influence the error probability in the
fading channéli is T1d% the product of squared branch Euclidean distances along the
short error event paths. This can be explained with the expression for the pairwise
error event probability P(i —j) for trellis coded modulation séhemes operating in
Rayleigh fading channels. A way to derive the exact expression of P(i —j) has been
found by Cavers and Ho [22] and it will be used in the analysis of the throughput
performance in the next chapter. Here, for simplicity in the explanation, let’s look
at the Divsalar and Simon’s upperbound of the pairwise error event probability

“obtained by using the Chemnoff bound [25]:

E -1
Pi—j)< {H(Zﬁo) | ;s |2} (3.9)

ken

where C;=(¢;1,Ci2°*»Care - +) 18 the transmitted codeword, Ci=(Cj1,Cj2s" " Cigp~++) 18

another codeword, M means all those values of k such that ¢, #cy, the ¢;’s and
the ¢;’s are complex coded MPSK symbols with a normalized magnitude equal to
1, E, is the average energy of each received symbol, and Ny2 is. the power spectral
density (PSD) of the channel white Gaussian noise. At high SNR, an upper bound
on the bit error probability can be obtained by simplifying (3.9) to:

4

(E/No)™

P,<C (3.10)

where C is a constant related to the distance structure and the bit assignments of

the codewords. This upper bound says that the error performance of the code decays
at a rate of ll(E,/No)d’" at high SNR. We call dy the code diversity order. From
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(3.9) and (3.10), it should be clear that for a given complexity, a code (at a given
rate and a givén number of encoder states) which is optimized for the fading channels

satisfies the following two criteria.

° The code has the largest diversity order dp.

. The code also has the largest product of branch Euclidean distances

along the shortest error event path.

In [25], [26], Divsalar and Simon suggest a class of TCM, called multiple trellis
coded modulations (MTCM), which for any given number of states, have larger dy

than that of Ungerboeck’s TCM. This class of TCM is described in the next section.

3.2 MULTIPLE TRELLIS CODED MODULATION - MTCM

The essential difference between a multiple trellis code and a conventional trellis
code is that a MTCM has more than one modulation symbol assigned to each trellis
branch. In fact, if the multiplicity of a MTCM code, u, is defined as the number
of symbols per trellis branch, a conventional trellis code can be ﬁewed as a special
case of MTCM with‘ R =1. According to (3.10), the higher the code diversity order,
the better the code performance. Consider the treilis structure of a TCM code: if
2> N,, where b is the number of input bits to the encoder at each encoding interval
and N, is the number of trellis states, there must be parallel paths between pairs of
states. Whenever parallel paths exist, the free Hamming distance dj or the code
diversity order is restricted to 1 for conventional trellis code where only one channel
symbol is assigned to each trellis bré.nch. This implies that the error event probability
of the code will asymptotically vary inversely with E,/N, (for sufficiently large SNR).
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In the case of multiple trellis code, since there are multiple symbols per transition,
then even with the presence of parallel transitions, the diversity order ds; can be
lérger than 1, so that the error performance of the system can decrease at a faster
rate. This is the main reason that Divsalar and Simon recommended the use of
MTCM schemes.

As an example, let us consider the MTCM in Fig. 3.9. This code has 2 states,
-16 transitions per state, a multiplicity of 2, and it uses 8PSK modulation. In each
encoding interval, there are 4 input bits and 2 output 8PSK symbols. Since 2 pulses
are sent every 4 input bits, the pulse efficiency is 2 bits/pulse. Given this encoder
structure, the next step is to map 8PSK symbol pairs of the form (i, j), where i, j
€{0,1,2,...,,7} are signal points from the signal constellation in Fig. 3.2(b), to
the various transitions. Since the code has parallel transitions, the signal pairs-assigned
to parallel transitions should have a Hamming distance of 2. Also, the inter-set
Hamming distance must at least equal 1, ie. if a; is the jth signal pair in set i,

“and ay is the /th signal pair in set k, then

dyla;,ay) 21 (3.11)

ij»

for any i #k, and any j and I. This criterion guarantees that error events which span

more than one interval have at least a Hamming distance of 2. Finally, we would
like to maximize the minimum product of squared branch distances within éach set
of signal pairs, as indicated by equation (3.9). With the help of heuristic mapping
rules and computer search, Divsalar and Simon came up with the assignment in Fig.

3.9.
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Fig. 3.9 A 2 state, rate 2 (bits/pulse) MTCM.

This signal assignment indeed provides a free Hamming distance of 2. Howevef, the ‘
product of squared distance of each set A;, A, A; and A, (for example, between
the signal pairs (0,0) and (2,2) of the set A,) is not guaranteed to be the largest
possible value for this trellis structure. A more detailed deséription about signal
mapping of MTCM can be found in [25], [26]. In this study, we will only make

use of existing good MTCM.
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33 A NEW CODING APPROACH FOR HYBRID ARQ/FEC SYSTEMS

3.3.1 The Motivation

As described in Chapter Two, a sequence of good rate compatible punctured
convolutional (RCPC) codes can provide unequal error protection over a wide range
of SNR. However, these codes only allow us to achieve a throughput of at most 1
~bit per channel symbol, no matter how good the channel condition is. Now, we are
aiming at a more desirable error control system which is as adaptive as systems
using RCPC codes, yet allowing us to achieve a throughput of more than 1 bit per
channel symbol without bandwidth expansion. We saw in Chapter 2 that to achieve
this, multilevel PSK modulation should be employed. Can multilevel PSK modulation
like TCM be used in such a system ? An easy way to answer this question is to
look at some examples. First, consider one of Ungerboeck’s codes. It is the rate
2/3, 16 state trellis coded 8PSK modulation scheme with the trellis diagram shown
in Fig. 3.10.
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Fig.3.10 Trellis structure of a 16 state Ungerboeck’s code.

Although this code is optimally designed for an AWGN channel with d =5.172, it

is also desirable for fading channels since it has a code diversity order of 3, and
the minimum product of the branch distances along the shortest error event path is
4.686. So this is a. good coded modulation scheme for pure FEC. However, we
found that this code, as well as other of Ungerboeék’s codes, (or conventional trellis
codes ) can not be used as mother codes to obtain a sequence of rate compatible
codes with higher rates. The reason is that Ungerboeck’s codes, such as the one we
see in Fig. 3.10, have only a single modulation symbol per trellis branch. Recall that
in an adaptive hybrid ARQ/FEC system, like the one proposed by Hagenauer, in
order to vary the FEC code rate adaptively according to the change in channel

conditions, a mother code which can be punctured to obtain a sequence of rate
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compatible codes is uséd. Convolutional codes can be used in such systems as mother
codes becauée_ they all have multiple encoded bits (or symbols ) per transition. When
’one bit is punctured, the remaining bit(s) can still be used to recover the information.
In the case of Ungerboeck’s codes, there is only one symbol pér transition. If the
symbol is pﬁnctured, the information in that interval is lost and there is no way that
we can recover that piece of information. So the conclusion is that Ungerboeck’s
TCM can not be used as a mother code to obtain higher rate codes. But it can be
used as a mother code to obtaih a sequence of rate compatible codes with lower
rates by way of periodically selective repeating its coded symbols. This will be

considered later in Chapter 4.

Now let us look carefully into the structure of MTCM, like that shown in Fig.
3.9. First we see a MTCM has a similar property as that of a mother convolutional
code used in a Hagenaur’s system, i.e. it has multiple symbols per trellis branch.
This makes the puncturing procedure possible. In fact, as long as a MTCM with
multiplicity H, modulation level M, and b informa;ion bits encoded per interval,

satisfies the condition

b

—__——(p.—l)logzMSI o, (3.12)

it can be punctured at least one M - ary channel symbol from each interval without
losing any information. Secondly, as a special class of trellis coded modulation,
MTCM has the advantage of bandwidth efficiency. We will now examine the concept
of using MTCM in an adaptive hybrid ARQ/FEC system in detail. For convenience,

we call our new technique rate compatible trellis coded modulations (RC - TCM).
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3.3.2 An Example

To illustrate the new technique, let’s consider the following example. A 4 state,
rate 1 bit/pulse trellis coded 8PSK scheme is chosen as the mother code of a RC

- TCM system. The state diagram of this code is given in Fig. 3.11. -

+2
3 1
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4 0
e sl
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¢ ®
7
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Fig.3.11  (a) Trellis diagram of a 4 state MTCM.
(b) 8PSK signal constellation.

There are 4 bits of information entering the encoder at each time interval, so there
are 16 branches diverging from each of the fourl states. There are 8 parallel paths
existing between the present states and the successor states in the trellis. Similar to
the expression in the example of Section 3.2, E, F, G, and H in Fig. 3.11 represent
the sets of channel symbols assigned to each of the 8 parallel transitions, and they
are shown in equation (3.13), where once again the integers 0, 1,...,7 are 8PSK
symbols in Fig.3.2 (b). Note that éach row in E,F, G, H has 4 8PSK symbols and
~ hence the throughput of this code is 1 bit/pulse. As before, the E,F, G, H are chosen
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so as to give the largest possible free Hamming distance and a large product of
squared Euclidean distances for the encoder structure in Fig. 3.11. The intraset

Hamming distance for each of the 4 sets is 4, the minimum interset Hamming |
distance is 2, and the product of squared Euclidean distances along the minimum

intraset Hamming distance path in each set is 4.0.

0 0 0 0 0 2 0 2

1 5 1 5 1 7 17

2 2 2 2 2 4 2 4

3 7 3 7 3 1 3 1
E=ly 4 4 4 a2 6 4 6
5 1 5 1 5 3 5 3

6 6 6 6 6 0 6 0

7 3 7 3 7 5 7 5

(3.13)

0 4 0 4 0 6 0 6

1 1 1 1 1 3 1 3

2 6 2 6 2 0 2 0

3 3 3 3 3 5 3 5
Fly 0 4 o "4 2 4 2
5 5 5 5 5 7 5 1
16 2 6 2 6 4 6 4
7 17 71 1l 7 1 7

For convenience, we denote the four symbols in each interval by ¢, ¢, ¢3¢0 A

sequence of trellis codes with different rates can be obtained by periodically puncturing
and repeating of the mother code. Assuming with a maximum of 6 attempts, the
sequence of codes we used are obtained as follows. First, in obtaining higher rate
codes, we puncture the mother code in Fig, 3.11 with a puncturing period of 1
interval. If we delete ¢, from each puncturing period (of 1 interval ), we have a

rate 4/3 bits/pulse code. If we delete one more, namely c;, we have a rate 4/2
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bits/pulse code. We can not puncture any further, due to the fact we have 16
transitions pe'r‘state and only 8 different signal points available. In other words, by
puncturing, we can vary the code rate from 1 to 2 bits/pulse, in two steps. To obtain
lower rate codes from the mother code in Fig.3.11, we have to repeat symbols of
the mothef code. If we repeat ¢, c, once in each interval, we can form a rate 4/6
=2/3 bit/pulse code. If we repeat all 4 symbols once, we have a rate 4/8 =1/2
- bit/pulse code. If we repeat all 4 symbols twice, we can obtain a rate 4/12=1/3
bit/pulse code. Therefore, with both puncfuring and repeating, we can vary the code

rate from 2 to 1/3 bit/pulse in 6 steps. The following table summarizes our coding

strategy.

Symbols transmitted Symbols used in the The effective FEC code rate
per puncturing period ith decoding attempt in the ith decoding attempt
in the ith transmission _ ~ (bit/pulse)

Ist ¢ ¢ ¢, ¢ 4 bits / 2 pulses = 2
2nd Cs G, C ¢ 4 bits / 3 pulses = 4/3
3rd Cs €, C, C3 C4 4 bits / 4 pulses = 1
4h ¢ ¢ €, Ci C3CC3Cs | 4 bits / 6 pulses = 2/3
5th €3Cq C, ¢ C C 4 bits / 8 pulses = 1/2

C; € Ci C4
6th ¢ cycaC, €,€,C; C2C2Cr 4 bits /12 pulses = 1/3
C3CyCy CqCaCa

Table 3.1 A sequence of rate compatible trellis codes. * indicates the symbol

sent at the ith transmission.
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It should be pointed out‘ that an exhaustive search is not used to arrive at the above
sequence of éodes. We rely on the assumption that good codes generate good codes.
The parameters that dominate the performances of these codes, such as free Hamming
distance and product of Euclidean distances will be given in the next chapter. As

one will see there, the above code sequence indeed yields rather good performance.

The use of the code sequence in Table 3.,1 in a rate adaptive hybrid ARQ/FEC

error control system is illustrated with the diagram below.

Punctured Transmission Selective Repeated Transmissions

{ { { 1 {
Trasmitter  [{C1C) "&L(Ci)l ‘[i"(CJ 0 0109) &L(CSQ) '%L(Cl 0203C4)

= = = =
Transmission

" Receiver ey -ﬂ%d-(cjl -‘}“-(Q) 2eie) ’%‘(0304) Jk"(CICZCSQ)

Fig. 3.12 The use of a sequence of rate compatible trellis codes in a hybrid

ARQ/FEC error control system.
In the above figure,

n=n+n+V } (3.11)

where n, is the total packet length, n; is the number of information bits per packet,

n, is the number of CRC bits in each packet, and v is the number of trellis
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temiinating bits added to each packet. Since the puncturing period is P=1 interval
and there are 4 bits encoded per interval, there are altogether %’= periods for ea;:h; ‘

packet. In most situations, n, can vary from a few hundred to a few thousand bits.

As shown in Fig. 5.12, initially, the third and fourth trellis encoder output symbols,
C3;C4, Of each puncturing period, are punctured from the mother code in Fig. 3.11
and stored in the transmitter’s buffer. Only c,,c, are sent to the receiver. Since two
’symbols are transmitted for every 4 bits of information, the code with the highest
effective rate, 2 bits/pulse, is used in the first attempt. When the channel is quiet,
this high rate code will be powerful enough to deliver the packet free from errors.
In this case, a positive acknowledgement (ACK) is sent to the transmitter, and the
next packet is transmitted. However, if after decoding, errors are detected, a negative
acknowledgement (NAK) is sent to the transmitter, and the transmitter will then send
the third symbol, ¢, of each period. At the receiving end, the erroneous data of the
first attempt are combined with the data received for the second attempt to form a
rate 4/3 bits/puise trellis ‘code. If‘ errors are detected at the receiver after decbding
based on this rate 4/3 code, the fourth symbol of each period, c,, will be sent. At
this point, 4 symbols are sent for each 4 bits of informafion, and the receiver
performs decoding based on the rate 1 bit/pulse code, i.e. the mother code. If the
decoding is still not successful, then in the 4th attempt, c;,c, in each period will
be repeated and the rate 2/3 bit/pulse code is now in effect. If this code is still not
powerful enough, then in the 5th attempt, c;,c, are repeated to get a rate 1/2 bit/pulse
code. Finally, if required, all the four symbols are repeated in the last attempt,
bringing into effect the most powerful code in the sequence, the rate 1/3 bit/pulse

code. One may note that until the 3rd attempt, the code rate is higher than the rate
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of the mother code. It is the result of puncturing the mother code. After that, from

4th to 6th attémpt, a set of lower rate codes, obtained by selectively repeating the

mother code, are in effect. The last three attempts are actually based on the concept

of code combining of Chase [21].

3.3.3 ARQ/FEC Protocol with RC-TCM

In general, the procedures for implementing an adaptive hybrid ARQ/FEC system

that uses RC - TCM are summarized as follow.

1)

2)

3)

4)

For delivering a packet of information with n; bits, add n, CRC bits to the

information sequence for purpose of error detection.

Add v known bits to terminate the encoder trellis for each data block with

(n;+n,) bits.

Choose a mother trellis code, a puncturing ( same as the selective repeating )
period, 2 maximum number of retransmissions for each data packet, and a set

of code rates.

Choose ( heuristically or by computer search) a puncturing rule that results in
a sequence of good high rate codes by puncturing the mother code, and (or)
choose a selective repeating rule that yields a sequence of good low rate codes
from the mother code. "Good" here means each rate compatible trellis code
should have an error performance close to that of the best possible TCM with

the same code rate, and similar complexity.
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5) Use the encoder of the mother code to encode the data sequence of length

n,=n;+n.+v bits and store the encoded sequence at the transmitter.

6) Transmit the codewords of the highest rate code in the first attempt. Transmit
the previously punctured symbols or repeat the symbols of the mother code when
retransmissions are required. Accumulate all received symbols at the receiver for

the purpose of forming a more powerfui code in the next decoding attempt.

7) Decode the received sequence with a soft decision Viterbi decoder based on the

current effective error correction code.

8) After FEC, check the syndrome of the error detecting code. If the syndrome is
zero, output the decoded message to the user. An ACK signal is sent to the
transmitter and the transmitter releases the next packet of information. If the
syndrome is not zero, repeat steps (6) - (8) until the maximum number of

retransmission is reached.

From the analysis and simulation results given in the next chapter, one can see
that the adaptive error control systems using RC - TCM schemes provide desirable

throughput performances.
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CHAPTER FOUR

PERFORMANCE OF HYBRID ARQ/FEC SYSTEMS
USING RC - TCM

In this chapter, we present analytic and simulation results for a rate adaptive,
hybrid ARQ/FEC system that uses RC - TCM schemes. First, we present the system
model for our analysis. Since our intended area of application of this new technique
is mobile radio systems, we will analyze the bit error probability of RC - TCM in
the Rayleigh fading channel, using a calculation technique recently developed by
Cavers and Ho [22]. Next, we make use of the bit error probability to determine
the throughput of our error control system. The calculated throughput is then compared
with simulation results. The throughput performance of’ several error control systems
that use different RC - TCM are given, including some cases that use selective
repeating of Ungerboeck’s codes. Finally, we compare the performance of our system

with that of Hagenauer’s.
41 THROUGHPUT EVALUATION

4.1.1 System Model

For mobile radio application, our system model is the one shown in Fig. 4.1.
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Fig.4.1 System model for RC - TCM in mobile radio channels.

- where in Fig.4.1, n, CRC bits are first added to »; information bits through a

(n.+n;, n;) error detecting code encoder, and then v bits for tcmiinaﬁng the encoder
trellis at a known state are added to form the data sequence x= (xl,xz,w-,.x,.‘ ).
Therefore, x includes n; information bits, n, CRC bits and v terminating bits, and
n,=n;+n, +v. For convenience, we call x the information sequence to be transmitted
for each message packet. Then, x is encoded through the encoder of a mother RC
-TCM, and the encoded sequence is stored at the transmitter buffer. A puncturing
and (or) selective repeating rule controls the transmission and the decoding of data
in each attempt. Although the FEC used in different attempts are different, the same
RC-TCM encoder and decoder pair (of the mother code) is used in different attempts.
This is because of the rate compatibility of these FEC. Since only incremental
redundancy are sent in each retransmission, encoding of the message x needs only
to be done once. In other words, no matter which attempt we are referring to, x is

the information sequence corresponding to the codeword C;=(c;;,+-+,Cys, - ). Here in
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this study, the ¢,’s are 8PSK symbols shown in the signal constellation in Fig. 3.2
(b). As such,‘ each ¢, is a complex number of the form (cos(%‘i),sih(z—:i) ), i=0,
‘I ;.. 7. We assume the interleaver in Fig. 4.1 has an infinité interleaving depth, so
that after de - interleaving, the c;’s are affected independently by the channel fading
process g(t). It has been found that in many cases [31], a reasonably large interleaving
depth is almost as good as an infinite interleaving depth. The impulse response of
| a pulse shaping filter in Fig. 4.1 satisfies Nyquist’s criterion for zero intersymbol
interference. Since we are dealing with a Rayleigh channel, the fading process g(t)
is a zero mean, complex Gaussian random process with a variance of 02 =§'|_g—(t)—_|2
The overbar here represents the expected value. We assume the process g(t) is slow
enough compared to the signalling rate so that g(t) can be represented by a constant
value in each signalling interval. Let g, be the value of g(t) in the kth signalling
interval, i.e. [k¢, (k+1)T]. Then, after match filtering, sampling and deinterleaving, the

received sample for the kth symbol in the codeword sent is

. Fe = 8iCu+ 1y 4.1)

where n, is a filtered noise term. Since the unfiltered (complex baseband) channel

additive white Gaussian noise h(t) has a power spectral density (PSD) of N,, it
follows that each n, has a variance of N, as well. All the n,’s are independent and
identically distributed (i.i.d.) random variables. Due to the interleaving / de-interleaving
process, the g,’s are also ii.d. random variables. The g,’s are independent of the

]

n,’s.

We assume in this study that the receiver has perfect knowledge of the g,’s, ie.

ideal channel state information (CSI). Usually, CSI can be obtained via pilot tone
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or pilot symbol assisted detection. With a small expense of bandwidth, the pilot
symbols assiétgd detection technique ‘in [43], can provide almost the performance of
an ideal channel estimator. Note that by assuming perfect CSI, we are implicitly
assuming also perfect coherent reception at the receiver. Under the assumptions of
ideal interleaving and perfect CSI, the decoding rule used by the decoder in Fig.

4.1 is to compute the metrics

8j=§lrlg—gkcj& 5 j=12,--- 4.2)

and select the codeword C’,=(é‘;1, Cizse* €y - ), Whose metric is the largest. The

probability of a decoding error will be given later.

4.1.2 Throughput‘ Analysis

As mentioned earlier, we use the stop - and - wait (SNW) protocol in our present
study. In half duplex channels, thé waiting time for an acknowledgement in SNW
ARQ systems are wasted. However, the distinguishing features of a land mobile radic
system is that a pair of frequencies is shared by many users in different time periods.
This makes the SNW protocol suitable for this application, because a transmitter can
make use of the idle time for waiting the feedback acknowledgement from one
receiver to transmit to another receiver. For example, after the base station transmits
a message to a mobile, it may immediately send a message to any other mobile
without interfering with the previous mobile’s acknowledgement on the feedback
channel. The same is true for the messages transmitted from a mobile to other

mobiles through a base station.
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We analyze below the throughput performance of a rate adaptive hybrid ARQ/FEC
scheme that hses a stop - and - wait transmission strategy and our proposed RC - TCM
technique° The throughput analysis will be based on the error probability analysis of
TCM of Cavers and Ho [22]. The assumptions here are the same as that we used
in analyzing the throughput performance of systems that use RCPCC. These assumptions

can be found in Section 2.2

As shown in Fig. 4.1, n, is the total number of bits to be transmitted in each

message packet. It includes »; information bits, n, CRC bits and v bits for terminating
the encoder trellis. Let S,, denote the average number of transmitted M-ary coded
modulation symbols for delivering each packet with n, bits. Then, the average

throughput efficiency of the system that uses RC - TCM can be written as:

R =00 _N (bit/pul 4.3)
w55 it/pulse) @

av

where n/S,, is the average effective code rate of the FEC. To obtain S,,, let’s define

S; as the number of symbols accumulated at the receiver for the ith decoding attempt,
and let Pr be the probability that after the ith attempt, errors are still present in
the decoded word. Also let P, =1-P; be the probability that the ith attempt is
successful, i.e. after FEC, no errors are detected. Note that the index i in Pp and
P, can vary from 1 to K, where K is the designed maximum number of transmissions
for each message packet. K should be chosen so that the maximum decoding delay
introduced is tolerable and the frame error rate (FER) is sufficiently small. Here, by
frame error rate, we mean the probability that errors still exist after the last decoding

attempt. Since in our proposed systems, all the data received for previous decoding



attempts are used for the current decoding attempt, the errors associated with the K
decoding attémpts are not independent of each other. However, it is very hard to
find the correlation function between the results of these K decoding attempts. To
carry on our throughput analysis, we use the approximation that the results of the
success (or failure) of the K decoding attempts are independent. From the analytical
results we obtained (shown in the later sections), we found that the inaccuracy caused

- by this optimistic approximation is small. Let Ppo——'; 1, then we have:
K i-1 K
SavE.?lSiPc.-(j OPF})+SK ‘HIP,,I_ , 4.4)
The remaining work is to find the Pg’s, the failure probabilities.

Recall P; is defined as the probability that after the ith attempt in FEC, the

Viterbi decoder’s output still contains errors, or the failure probability of the ith
decoding attempt. Generally speaking, the bit errors at the output of a Viterbi decoder
are not independent and the distributions of error patterns are very difficult to explore.
For convenience, we usé the approximation that the bit errors are independent. This

means
Pp=1-(1-P,)" 4.5)

where P, is the bit error probability after the ith decoding attempt, n,=n;+n, +V

is the number of bits per packet.
The above approximation is quite appropriate, since at large signal to noise ratio

e condition, the error probability will be dominated by the shortest error events and
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usually only a single bit error is associated with the shortest error events.

The probability that the ith decoding attempt is successful is :
Po=1-P,=(1-P)" . (4.6)

and the frame error probability is:

K K .
FER=11P,=Tl[1-a-P,)"] @1

el
for a maximum of K decoding attempts per packet.

Equations (4.4) to (4.6) indicate that to find the throughput of our rate - adaptive
error control system, we must first find the bit error probability, P,, of each rate
compatible trellis code used by the system. As mentioned in Section 3.1.2, for any
two codewords C;=(C;1,Cip" " Cys»-++) and C;=(Cj1,Cjos - Cipo*-+) Of a trellis code,
(the i,j here no longer denote different codes or different attempts ), we have the

upperbound on the pairwise error event probability

E, -
Pi—-j)< {kl;[n(zl—v—o) | Ci—cCj |2}

From P(i —j), we can obtain an upperbound on the bit error probability of a trellis

codes by taking the sum of the product of the probability of each error event and
the number of bit errors associated with that error event. Due to the nature of the
Chernoff bound [17], the resulting upperboupd on the bit error probability is usually
quite loose. If we use this loose upperbound on the bit error probability in our

throughput analysis, we will get a loose lowerbound on R,,. In this study, we make
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use of the exact pairwisé error event probability expression derived by Cavers and
Ho [22] to ob;ain a tight lower bound on the bit error probability. This tight lower

bound in turns give us tight upper bound on the throughput R,,.

For the coding / decoding system shown in Fig. 4.1, if C;=(c;;,Ci00° 5 Cy»- ) and

Ci=(Cj1sCjzs***sCigs ) are two codewords of the twrellis coded PSK system, then
according to [22], the probability of confusing these two codewords is

Pi—-jp)=- % Resldues{ 2s) } 4.8)

RHP poles

where s represents any number in the complex plane, RHP means the right hand

complex plane,

M i)
* _{kl;[n(won" kl;In 4 = p1) (s = pa) ’ (4'9)

dl:2 = ¢y —Cy £ ; ‘ 4.10)

1 [1 1

=c—Af ——— 4.11
Pu=73 4 (E,/Nyd? (@-11)

1 /1 1

==t —— 4.12
Pa=3 4 (E,/Nyd? (412)

and m is the set of k for which d; #0. If C; and C; are different only in dy places,

ie. if the Hamming distance between C; and C; is dy, then, equation (4.8) can be

written as
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P = -d"{ S Resid [1 I ]}
0= No RHP poles esiames kendy(s - plk) (s = pau) *.13)

As can be seen from (4.11) and (4.12), p,, is always less than 0 while p,, is always

greater than 0. As such, the p,,’s are all the right hand plane poles. To find P({ — j),
the residues at the p,,’s must be calculated. It is well known that if O(s)/s has a

v pole p of order m, i.e. ®(s)/s is a multiple of 1/(s —p)”, then the residue at p is

{(s )y -@} 4.14)

Reszdue

:—)pds'm -1

For those ®(s)/s’s having only 1st order poles, equation (4.14) can be determined

by hand. If ®(s)/s has a large number of higher order poles, a computer routine
can be written to calculate the residue. Because of the form of ®(s)/s, the routine

is recursive and hence the residues can be calculated rather easily.
Recall that our main interest here are the bit error probabilities, P,, of different

decoding attempts, or in other words, the bit error probability of each of the different
RC- TCM schemes used by the system. As suggested in [22], a good estimate of
the bit error probability of a TCM scheme can be obtained by taking only a small

set of short error events into account:
1 .
P, = 5 X mPi—)) 4.15)
J

where b is the number of input bit per encoding interval, and my; is the error

coefficient, or the number of bit errors associated with each error event.
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Unlike an ordinary trellis code, which has a " stationary " distance structure, ( same
distance structure can be observed by looking into the trellis starting from any point),
a rate compatible trellis code with puncturing ( and/or repeating ) period of P intervals
may have P different distance spectra and hence P different sets of error coefficients.
Therefore, one should consider each of the P starting points for diverging paths in
the decoding trellis,lcalc'ulate the corresponding bit error probability, and then take
~ the average over the P bit error probabilities to get P,», the bit error probability of
a RC-TCM scheme, as shown below |

121 \ .
Pyp=~= T —Emyip)P, (i —J) (4.16)
Plp=lb J ?

Here P, (i —) is the pairwise error event probability and {m;(i;)} is the set of error

coefficients associated with the error events when the ipth starting point for diverging

paths within each puncturing and repeating period is considered.

By applying the above method to several examples, we found that in most cases
that at relaﬁvely low SNR, the free Euclidean distance error event has the strongest
effect on P, (or P,p). On the other hand, at large SNR, as mentioned before, the
free Hamming distance error event dominates the bit error probability. Thus we
concluded that by considering one free Hainming distance error event and one free
Euclidean distance error event, a fairly indicative estimate of the system throughput
efficiency curve can be obtained. This will be discussed in more detail in the next
section. In summary, the analytical result of the throughput performance of a hybrid
ARQ/FEC system using RC-TCM can be obtained by utilizing equations (4.3) to
(4.16).
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42 EXAMPLES AND SIMULATION RESULTS

- We will now analyze the throughpi.lt performance of rate adaptive hybrid ARQ/FEC
systems that use different RC - TCM schemes.

42.1 System I --
RC - TCM Schemes Obtained From A 4 State MTCM

We showed in Table 3.1 a sequence of RC - TCM schemes obtained ﬁ'on; a4
state multiple trellis code. To analyze the throughput performance of the hybrid
ARQ/FEC system that uses the rate compatible‘ codes in Table 3.1 (for convenience,
we will call this system systemI in later discussion ), we must first calculate the bit

error probability of each of these codes.

When we calculate the bit error probability of a coded PSK system, for convenience,
we may choose the all zero-phase codeword as the transmitted codeword C,. However,
we would like to point out that in general, TCM is a nonlinear modulation scheme

and the bit error probability is codeword dependent.

According to Fig. 3.11 and Table 3.1, the puncturing period P is one encoding
interval. In this case, the free Hamming distance error event path for each of the 6
rate compatible codes has a length measured by the number of non-zero 8PSK
symbols within one branch. This is because of the existence of parallel paths. The
free Euclidean distance error event paths for all but the second code (rate 4/3) in

this example are the same, and it is highlighted in Fig. 4.2.
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Fig. 4.2 The free Euclidean distance error event paths of a set of rate compatible

trellis codes.

For the second code (rate 4/3) in Table 3.1, the minimum Euclidean distance error

event path is the same as the shortest error event path.

*2
3 1
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Fig.4.3 8PSK signal constellation.
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Recall the first code in Table 3.1 is obtained by deleting the last 2 coded symbols
" in each intérya.l of the rate 1 bit/pulse mother code in Fig. 3.11. In this case, we
have found, with the aid of a computer program, the shortest error event ( with the
smallest product of squared Euclidean distance ) with respect to the all zero - phase
word (0,0,...) in Fig.3.11 is the word (1,5) or (7,3), or (5,1), or (3,7). In

complex notation, we have the transmitted. codeword

C[=(19 19° ° °)
and the erroneous codeword
Cf = (ej"My ejSirM’ 1’ °° ')

where e/*™ corresponds to the nth signal point in the 8PSK signal constellation in

Fig. 4.3. According to (4.13), the pairwise error event probability is

-2 (

. (E, o T12 -1 17
PE—j)= —LN; tmz Reszduesl_s ;

=1di(s = pu) (s ""ka)J }

4.17) .

P poles

where the right hand side poles are p,’s with k=1,2, and they are all first order

poles. From (4.10), we have

di=[1-¢™['=0586 | (4.18a)
d2=|1-e”™F=3414 (4.18b)

and hence
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Pa] 1_ [1 1 |
=2 e — = 4.19a)
™ 2+V4+0.586(EJN0) (

Pl 1_ 1 1
I S - 4.19b
ol "2 ’\/ 4 3414ENy) (4.196)

For all the rate compatible codes used in this system, 4 information bits are encoded
at each time interval. For the first code (rate 2 bits/pulse ) which we are now
concerned about, the mapping of information bits to channel symbols at each state

are shown in Table 4.1.

Information bits Channel symbols Information bits Channel symbols

151, 32 23, 44
0000 00 0000 02
0001 15 0001 17
0010 _ 22 0010 24
0011 37 0011 31
0100 44 0100 46
0101 51 ' 0101 53
0110 66 0110 60
0111 73 0111 75

152, 3-1 24, 43
1000 04 1000 06
1001 11 1001 13
10i0 - 26 1010 20
1011 33 1011 35
1100 40 1100 42
1101 55 1101 57
1110 62 1110 64
1111 77 1111 71

Table4.1 The mapping of information bits to channel symbols for a rate 2 bits/pulse
RC - TCM code, where i =, (i=1,2,3,4, and j=1,2,3,4) denotes
the signal set assignment from statei to state j, see Fig.3.11.
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From Table 4.1 we see there are 4 free Hamming distance error events, (1,5), (3,
7, (5,1), and (7, 3),'that have the minimum product of squared distances Ild?. Each
of these 4 errof events corresponds to different number of bit errors. By taking the
average, we have 2 bits of information error in the shortest error event of this code.
Since P=1 in this example, equation (4.16) is equivalent to equation (4.15). If we
only consider the shortest error event (free Hamming distance error event) in our

bit error probability analysis in equation (4.15), then we have the lower bound

P, >2. %P(i =J) (4.20)

where P(i — ) is given in equation (4.17). Next, we will consider the free Euclidean

distance error event. Once again, with the help of a computer search program, we

found
Cj = (ej1|.'/4’ ejﬂ4, ej1r/4, ej71r/4, ej1r/4, ej1r/4’ 1’ . ﬂ’_) ,
Cj = (ej71r/4, ej71r/4, ej1r/4, ej71r/4’_ej1r/4’ ejﬂ4, 19 Y .) ) ,
Cj - (ej1r!4, ej1r/4, ej1r/4’ ej71r/4’ ej71r/4’ ej71r/4’ 19 . ) ,
and

T4 jT/4 jr/4 T4 i T4 jT/4
Cj=(ej ’el ’el sel ’el pel ,19“')
are closest to the transmitted codeword C;=(1,1,---). These four error events have

the same product of squared distance, 0.04, and the same squared Euclidean distance
of 3.515. The pairwise error event probability P({ — j) corresponding to each of these

free Euclidean error events is

74



P('—)')—‘ & -G{R id [1 = 6] } 4.21)
SETIE No eoflpzxue ; di(s = pu) (5 — p) .

where d?, p;;,and p,, are the same as those given in (4.18a) and (4.19a). As can

be seen from (4.21), we have to find the residue at a 6th order pole. From Table
4.1, there are on average 7 bits of information errors associated with the free Euclidean
distance error event (i.e. the term m; in equé,tion (4.15) becomes 7). So if only the
vfree Euclidean distance error event is used in calculating the bit error probability of

the 1st decoding attempt, P,, we have the following lower bound
1.
P, >7 -ZP(t =) (4.22)

where P(i—j) is given in (4.21). A tight lower bound on P, can be obtained as

follows

Pb1> maX[ Pl’ P2 ]

where P; and Pz are the lower bounds in (4.20) and (4.22) respectively. Note that

the error curves of P; and P, will intersect due to the difference in diversity order
and distance parameters. In summary, we use the following approach in estimating
the bit error .probability. For each TCM scheme, we identify the shortest error event
(free Hamming distance error event with smallest product of squared distance) and
the free Euclidean distance error event. We then calculate the exact bit error probability
of these two events. A tight lower bound is then obtained by taking at each SNR,
E/N,, the maximum of these two bit error probabilities. Finally, the tight lower
bound on bit error probability will be converted to a tight upper bound on the

throughput according to equations (4.3) to (4.5). For a RC-TCM scheme with P >1,
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we_first calculate the lower bound of bit error probability associated with each of
the P starting points in the decoding trellis. And then we use the average of these
P lower bounds on P, to calculate the throughput efficiency of the system. We list
in Table 4.,2 the distance parameters of the RC - TCM schemes in Table 3.1.

Along the free Hd péth Along the free Ed path
dy ‘ dy
dp I1 a2 - d? dy I1 &} dz
k=1 k=1
1st 2 2.0 4.0 6 0.04 3,515
2nd 3 1.1715 4,586 3 1.1715 4586
3rd 4 4.0 8.0 12 1.633x 107 7.03
4th 6 8.0 12.0 18 6.596x 107 10.545
5th 8 16.0 16.0 24 | 2.665x10° | 14.06
6th | 12 | 640 240 36 | 4.351x10” 21.09

Table 4.2 Distance parameters of the RC - TCM schemes in system I

In the above table, dy is the Hamming distance (in channel symbols) between the

two codewords in the free Euclidean distance error event, dz is the squared Euclidean
distance between the two codewords in the free Hamming distance error event. From
(4.13), one cah predict that at relatively low SNR, the free Euclidean distance error
event has a stronger effect on the system error performance, but at high SNR, the
error performance is dominated by the shortest error event due to the fact that these

two error events have different Hamming distances, and hence they will intersect at
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some SNR. We plot in Fig. 4.4 (a) and (b) the bit error probability associated with
the free Hammmg distance and free Euclidean distance error events for the 1s¢ and
the 3rd code in Table 3.1. From Fig. 4.4, we see a lower bound on bit error probability

can be obtained by taking the larger of the 2 error curves at each SNR.
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Once we have calculated the lower bounds P, for each codé in Table 3.1, we can

‘then lower bound Pg, in equation (4.5). These lower.bounds on Pp can in turn be
used in (4.4) to obtain the lower bound on §,,, the average numbqr of symbols
transmitted in this hybrid ARQ/FEC system for successfully delivering each message
packet with n, bits. For the RC - TCM schemes in Table 3.1, the associated S,, is

n

Sm,=2

Pc. 4.23)

+
VYl Y
SE
ISE
SE
)

n

~»

v
D

+
I
|
I

’
n n n n
\2+4+4+E)PFlPF2PF:PC4

n n n n hr
{5-*-2+Z+E+E)FFIPF2PF:PF4PQ

n, n n n n
*’(5‘4‘2:4-2;4-—254-5{4- n‘)PFlPFZPFSPF4PF5
S,, can then be substituted in (4.3) to obtain an upperbound on R,,. This upperbound

is shown in Fig. 4.5 for the case where n; =380, n,=32, and v=8 (i.e. n,=420).
Note that in [14], Hagenauer uses the same set of parameters in his study of RCPCC.
Also shown in Fig. 4.5 are the simulation results of systemI (using the rate compatible
trellis codes in Table 3.1) as well as the simulation result taken from [14]. Clearly,
our upperbound on throughput is quite close to our simulation results, indicating our

analytical technique for estimating the bit error probability of trellis coded PSK is
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quite appropriate.
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Note that in our simulation, we always generate 1000 packets at each SNR. By
comparing th'e\ throughput curves of systemI (using the rate compaﬁble trellis codes
in Table 3.1 ) with that of Hagenauer’s system, we see a significant improvement on
- throughput at SNR above 7dB. As a matter of fact, for 15dB and up, the throughput
of syste:mI is about twice that of Hagenauer’s system. For 7 dB or less, though,

system I has a slightly poorer throughput.

Suppose that both systems are used in a mobile radio environment, where the
energy of the signal deteriorates with the increase in distance (r) between the transmitter
and the receiver at a rate of r~. Assume N users are uniformly distributed around
a base station in a circular cellulaf coverage area with radius rn,,, (see Fig. 4.6),

and the marginal signal to noise ratio, E,,/N,, is 5 dB. Then, —,4‘-'=»N is the number

2nr
of users that lie in the annular region bounded by the circles of radii » and r+dr,

and the signal to noise ratio, E/N,, at

3, T
’_4 max? _2 maxs .

turns out to be 10dB, 17dB 20dB and 29dB respectively. In such a system, different
subsystems (each of them is made up of one of the users and the base station) may
have different throughput which depends on the location of the users. Therefore it
is appropriate to calculate the system wide throughput by using equation (4.24).

"wa 2mtr

o mri,

-N-R_(r)dr (4.24)

The results show that system has an average system throughput gain of 51 % over

Hagenauer’s system.
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Compared to the cut off rate, or R, curve of 8PSK, which is also shown in Fig.

4.5, the throughput curve of system1I is relatively far away from R,. Recall that the
throughput curve of Hagenauer’s system is very close to the R, curve for 2PSK,
see Fig. 2.6. This relatively large separation from R, prompted us to search for better

RC - TCM schemes for our rate adaptive hybrid ARQ/FEC system.

As mentioned before, besides throughput, an important performance measure of a
hybrid ARQ/FEC system is its frame error rate. For this purpose, we show in Fig.
4.6 the analytical result of the frame error rate of systemI by using equation (4.7).
Also shown in Fig. 4.7 is the frame error rate of Hagenauer’s system. We see that
the expense we paid for having a large throughput at larger SNR is a larger frame

error rate. This point further motivates us to search for better RC - TCM schemes.
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Fig.4.7 Comparison of the frame error rate of systemI (curve 1) and Hagenauer’s
system (curve 2).

422 System IT --
RC - TCM Schemes obtained From An Ungerboeck’s 8 State Code

In Section 3.3.1, we pointed out that Ungerboeck’s codes, due to their "non-

puncturable” property, are not eligible to be used as mother codes to generate
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sequences of rate compatible codes with hfgher rates. However, we found a class
of RC-TCM schemes, formed by simply selective repeating Ungerboeck’s codes,

provide rather good performance.

Let us look at the trellis diagram of the 8 state Ungerboeck’s code in Fig. 3.2(a).
We choose this code as the mother code to generate a sequence of rate compatible
trellis codes with lower rates by selectively repeating this mother code. The resulting
RC - TCM schemes can then be applied to our adaptive hybrid ARQ/FEC system.
- Here suppose we want the code rates of the rate compatible trellis codes to range
from 2 bits/pulse to 1/3 bit/pulse. The code rate can be adaptively changed from
the highest rate to the lowest rate in a maximum of 6 attempts by adopting the
selective repeating strategy given in Table 4.3. Here the "repeating period " P is set
to 2, i.e. the encoding intervals are divided into periods of 2 intervals and the pulses

in each period are selectively repeated during different attempts.

Symbols transmitted Symbols used in the The effective code rate
per puncturing period - ith decoding attempt at the ith decoding attempt
in the ith transmission (bit/pulse)

Ist ¢c, ¢ C ~| 4 bits / 2 pulses = 2
2nd ¢ 6 ¢ G 4 bits / 3 pulses = 4/3
3rd o, G 6 ¢ ¢ 4 bits / 4 pulses = 1
dth ¢, c, €1C,C1 C2C,Cs 4 bits / 6 pulses = 2/3
5th  ¢c, cC ¢ ¢ € 4 bits / 8 pulses = 1/2

2 ¢ 6

6th ¢ ¢, c,0, €,6,6,C,C; C; 4 bits /12 pulses = 1/3

€C3C,C,C; Cp

Table 4.3 RC - TCM schemes obtained from the 8 state Ungerboeck’s code. *
‘vindicates the symbol sent in the ith transmission.
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Let ¢, c, be the two symbols in each repeating period of the mother code shown in

Fig. 3.10. To obtain a sequence of Iower rate codes, the approach is the same as

the repeating procedure‘used in the example of section 3.3 2.

Applying the same method as we used in Section 4.2.1, we calculated the exact
bit error probabilities for both the free Hamming distance error event and the free
Euclidean distance error event for each of the 6 rate compatible trellis codes in this
hybrid ARQ/FEC system (we will call it systemII'). Based on these two bit error
probabilities, a lower bound on the overall bit error probability, P,, was obtained.
Since P=2, we should consider 2 starting points for divérging paths in the decoding
trellis when we calculate the bit error probabilities. In this example, all but the
second code have the same set of error events for the 2 starting points of the
decoding trellis. For the 2nd code, the average of the bit error probabi]ities'of the
2 free Hamming distance error events and the average of the bit error probabilities
of the 2 free Euclidean distance error events were used to calculate P,. Then, by
applying (4.5) and (4.4), we obtained the upperbound on the throughput as shown
in Fig. 4.8. The corresponding simulation result plotted in Fig. 4.8 agrees well with

the analytical resuit.
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Fig.4.8  Throughput performance of system II, simulation result (curve 3); analytical
result (curve 4); the throughput of Hagenauer’s system (curve 1); throughput
of systemI (curve 2); cut off rate for 8PSK (curve 5).

From this figure, we see that system II, which uses the RC-TCM schemes in Table
4.3, achieves some improvement in throughput over systemI given in section 4.2.1.
To see the reason of this improvement, we list in Table 4.4 the distance properties

of the RC - TCM schemes in Table 4.3.
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Along the free Hd path Along the free Ed path
day ‘ dy
dy 1 a dz dy 11 a? %
= =1
Ist 2 8.0 6.0 3 2.343 4.586
3 16.0 8.0 5 2.745 7.172
ond |- e .
3 320 10.0 4 1.373 5.172
3rd 4 64.0 12.0 6 5.490 9.172
4th 6 512.0 18.0 9 12.865 13.757
5th 8 4096.0 24.0 12 30.144 18.343
6th 12 262114.0 36.0 18 165.499 27.515

Table 4.4 Distance parameters of the RC - TCM schemes obtained from the 8
state Ungerboeck’s code.

According to the design criteria for TCM schemes for Rayleigh fading channels

. d
given in section 3.1.2, the larger the distance parameters, dy and kI'[ di, the better
. . . =1

the system performance. When we compare Table 4.4 with Table 4.2, we find that
the RC - TCM schemes used in system I and system II have the same set of free

Hamming distances. In this case, the second important parameter,

dy )
11 4,
k=1
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makes a difference in the performances of the two systems. As shown in Table 4.2

. i
and Table 4.4, system II has a set of much larger II d?’s than that of system L
k=1

As shown in Fig. 4.8, system II outperforms Hagenauer’s system in throughput
efficiency at SNR above 4 dB. At SNR less than 4 dB, system II has about the
same throughput efficiency as that of system I. At SNR above 16 dB, the throughput
of system II is twice that of Hagenauer’s system. The throughput curve of system
Il tracks the R, curve better than that of system I. Based on Fig.4.8 and equation
(4.24), we calculated the system - wide throughput gain of systemII over Hagenauef’s

system, when they are both used in the mobile radio environment of Fig. 4.6.

The result shows that an 68 % throughput gain can be achieved by choosing system

I over Hagenauer’s system.

Also, the analysis indicated that the frame error rate obtained by systemII is about

the same as that of Hagenauer’s system, see Fig. 49.
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Fig. 4.9 Frame error rate of system II (curve 1); Hagenauer’s system (curve 2).

From the above description, we see that a sequence of fairly good RC-TCM can
be obtained by periodically selective repeating the 8 state Ungerboeck’s code (in
Fig. 3.2(a) ).
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4.2.3 System III --
RC - TCM Schemes obtained From An Ungerboeck’s 16 State Code

Recall in Section 3.3.1, we mentioned that the 16 state, rate 2 bits/pulse, Ungerboeck’s
code shown in Fig. 3.10 is -a very attractive coded modulation scheme for both
Gaussian and Rayleigh fading channels. Suppose we use the same selective repeating
rule as ﬁsed in system II to generate a sequence of RC- TCM based on this 16
state Ungerboeck’s code. The resulting ’RC»- TCM schemes have code rates ranging
from 2 bits/pulse to 1/3 bit/pulse. The effective code rate can be adaptively changed
from the highest rate to the lowest rate in a maximum of 6 attempts by adopting
the selective repeating strategy given in Table 4.5. Here again, the " repeating period
" P is set to 2, ie. the encoding intervals are divided into periods of 2 intervals’

and the pulses in each period are selectively repeated during different attempts.

Symbols transmitted Symbols used in the The effective code rate
per puncturing period ith decoding attempt in the ith decoding attempt
in the ith transmission (bit/pulse)

Ist c¢c .6 4 bits / 2 pulses = 2
2nd ¢ c ¢ ¢ 4 bits / 3 pulses = 4/3
3rd ¢, . €, ¢ C € 4 bits / 4 pulses = 1
4th ¢ c, €1€1C C,CCs 4 bits / 6 pulses = 2/3
5th  ¢c, ¢ ¢ ¢ ¢ 4 bits / 8 pulses = 12

QG &

6th c¢;c 60, €1€161€,C Cy 4 bits /12 pulses = 1/3

€3C,C,C,Cy Cy

Table 4.5 RC - TCM schemes obtained from the 16 state Ungerboeck’s code. *
indicates the symbol sent at the ith transmission.
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Same as what we did to system II, we calculated the exact bit error probabilities
for both the free Hamming distance error event and the free Euclidean distance error
event for each of the 6 rate compatible trellis codes in this hybrid ARQ/FEC system
(we will call it systemIIl'). Based on these two bit error probabilities, a lower bound
on the overall bit error probability, P,, was obtained. Since P=2, we should consider
2 starting points for diverging paths in the decoding trellis when we calculate the
- bit error probabilities. In this' example, all but the second code have the same set
of error events for the 2 starting points of the decoding trellis. For the second code,
the average of the bit error probabilities of the 2 free Hamming distance error events
and the average of the bii error probabilities of the 2 free Euclidean distance error
events were used to calculate P,. Then, by applying (4.5) and (4.4), we obtained
the upperbound on the throughput of system III as shown in Fig. 4,1‘0. Again, the
corresponding‘ simulation result plotted in Fig. 4.10 agrees well with the analytical

result,
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Fig.4.10  Throughput performance of system III, simulation result (curve 3); analytical
result (curve 4); the throughput of Hagenauer’s system (curve 1); throughput
of system II (curve 2); cut off rate for 8PSK (curve 5).

From Fig. 4.10, we see that system III has a better throughput performance than that

of system IL. This is because, with the increase in the number of encoder states,
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the RC - TCM schemes used in system III have a set of larger dg's than that in

system II. Obviously, the trade - off in this case is the increase in decoding complexity. -

We will discuss and compare the decoding complexities of several adaptive hybrid

‘ARQ/FEC systems later in section 4.3. Table 4.6 lists the distance parameters of

system III.
Along the free Hd path Along the free Ed path
dn .
df" kl—-Il df dg % kI-Iz, dkz de
Ist . 3 4.686 6.586 4 1.373 5.172
5 37.488 12.586 6 1.61 7.758
2nd
4 2.745 7.172 6 1.61 7.758
3rd 6 21.96 13.17 8 1.885 10.344
4th 9 1029 19.76 12 2.588 - 15.516
5th 12 482.18 26.34 16 3.554 20.686
6th 18 10588.0 39.51 24 6.70. 31.032
Table 4.6 Distance parameters of the RC - TCM schemes obtained from the 16

state Ungerboeck’s code..

Fig. 4.10 shows that system III outperforms Hagenauer’s system in throughput

efficiency over the entire range of SNR. At SNR above 12 dB, the throughput of

system III is about twice that of Hagenauer’s system. At SNR less than 15 dB, the

throughput curve of system III tracks the R, curve quite well. Based on Fig. 4.10

and equation (4.24), we calculated the system - wide throughput gain of system I
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over Hagenauer’s system, when they are both used in the mobile radio environment
of Fig. 4.6, The result shows that an 81 % throughput gain can be achieved by

choosing system III over Hagenauer’s system.

Also, the analysis indicated that a lower frame error rate can be obtained by

system III when compared with Hagenauer’s system, see Fig. 4.11.
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Fig.4.11 Frame error rate of system III (curve 1); Hagenauer’s system (curve 2).
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So far we have shown 3 ARQ/FEC systems that use RC - TCM schemes outperform
Hagenauer’s 'system., However, we noted from Fig. 4.5, Fig. 4.8 and Fig. 4.10, the
throughput efficiency of systemI, system II and system III flatten out to 2 bits/pulse
at high SNR, whereas the R, curve tells us that if 'we use 8PSK, a higher maximum
throughput can be achieved. This is because the maximum effective rate of FEC,
Ruaxs is 2 bits per channel symbol for these three systems. The actual maximum
- system throughput is slightly less than R_,, due to some inevitable overhead, such

as the CRC bits.

4.2.4 System IV -.
RC - TCM Schemes Obtained From A 8 State MTCM

Following the results of the previous section, a sequence of RC - TCM with a
larger R,,, should be designed in order to have a rate adaptive hybrid ARQ/FEC
system with a throughput curve closer to the R, curve at high SNR than the three

systems given in section 4.2.1, 4.2.2 and 4.2.3. Let’s consider the following example.

It is a sequence of RC - TCM schemes obtained from an 8 statt MTCM scheme
proposed by Divaslar and Simon [26]. We will call the hybrid ARQ/FEC system
that uses these RC - TCM schemes system IV. Fig. 4.12 gives the trellis diagram of
Divsalar and Simon’s MTCM.
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Fig.4.12 Trellis structure of an 8§ state MTCM scheme.

In this MTCM system, 3 infbrmatiori bits are encoded at each encoding interval and
they are mapped into two 8PSK symbols. Thus the code rate is 1.5 (bits/pulse). We
designed a sequence of RC-TCM schemes by using this code as the mother code
and by using a puncturing (as well as repeating) period, P, of 4 intervals. With a
maximum of 6 attempts for delivering each packet, we obtained the sequence of RC

- TCM listed in Table 4.7.
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Symbols transmitted
per puncturing period
in the ith transmission

Symbols used in the
ith decoding attempt

The effective code rate
in the ith decoding attempt
(bit/pulse)

Ist ¢ ¢4 ¢ ¢y

Cy C; C4 C Cg

12 bits /5 pulses = 2.4

CsCqCq C1Cy Cy

2nd Cs €1 G c; C4C4Cs 12 bits /6 pulses = 2
3rd Cs C5 €1 C;C3C4Cs C4Cq Cg 12 bits/8 pulses = 1.5
4th C; C4 Cs Cg €y CyCy C3CqCa 12 bits /12 pulses = 1

Sth ¢ ¢ ¢ ¢

€1 €y C3C3C3C3 C4Cy

CsCs CgCe C7Cq Cg Cy

12 bits / 16 pulses = 0.75

6th ¢ c630,C5¢4C:05

€1C1C; C3C3C C3CyC3 C4CaCa

CsCs C; CsCq Ce‘ Cq C7C; CgCs C;

12 bits/24 pulses = 05

Table 4.7

RC - TCM schemes obtained’ from an 8 state MTCM with P =4,

* indicates the symbol sent at the ith transmission.

In the ébove table, ¢,y -~ ¢y are the 8 symbols in each period of 4 intervals of

the mother code shown in Fig. 4.12.

Applying the same method as we used in Section 4.2.1, we calculated the exact

bit error probabilities of both the free Hamming distance error event and the free

Euclidean distance error event for each of the 6 rate compatible trellis codes in this

hybrid ARQ/FEC system. Based on these two bit error probabilities, - lowerbounds

on the overall bit error probabilities, P,’s i=1 to 6, can be obtained. Since P=4

in systemIV, we should consider 4 starting points for diverging paths in the decoding

trellis when we calculate the bit error probabilities. In this example, only the first

two codes have different sets of error events for the 4 starting points in the decoding
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trellis. For the first two codes, the average of the bit error probabilities of the 4
free Hamming distance error events and the average of the bit error probabilities of
‘the 4 free Euclidean distance error events were used to calculate P, and P,. In
Table 4.8, we list the distance parameters of the 6 RC - TCM schemes in Table 4.7,

and 4 sets of distance parameters. for each of the first two codes are included.

Along the free Hd path Along the free Ed path
dyy 9y
7 P kl:[l at az dy kl'[l a? dz
3 8.0 8.0 3 1.172 4.586
2 13.657 7414 2 0.343 1.172
Ist
2 13.657 7.414 2 0.343 1.172
2 13.657 7.414 0.2 1.757
3 8.0 8.0 4 0.686 5.172
. 3 8.0 8.0 3 1.172 4.586
2nd :
2 13.657 7.414 2 0.343 1.172
2 13.657 7.414 3 0.2 1.757
3rd 3 8.0 8.0 4 0.686 5.172
4th 5 109.255 15.414 6 0.235 6.343
5th 8 64.0 16.0 8 0471 10.343
6th 9 512.0 24.0 12 0.323 15.515
Table 4.8 Distance parameters of the RC - TCM schemes in system IV.
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After computing the P,’s, for i=1 to 6, the upperbound on the throughput efficiency

~of this system, as shown in Fig.4.13, was obtained by substituting these probabilities
into equations (4.5) and (4.4). Once again, the corresponding simulation result plotted
in Fig. 4.13 agrees well with the analytical resuit. |
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Fig. 4.13 Throughput of system IV, simulation result (curve 2); analytical result

(curve 3); throughput of Hagenauer’s system (curve 1); R, for 8PSK
(curve 4).
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As illustrated in Fig. 4.13, the maximum throughput of system IV reaches 2.1
bits/pulse, which is 2.3 times that of Hagenauer’s system. Based on Fig. 4.13 and
equation (4.24), we calculated the system - wide throughput gain of system IV over
Hagenauer’s system, when they are both used in the mobile radio environment of
Fig.4.6. A 74 % throughput gain is achieved by system IV over Hagenauer’s system.
The analytical result of the frame error‘ rate of system IV, which is given in Fig.
4.14, shows the FER of this system is about 4 dB worse than that of Hagenauer's
system at 107,
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Recall that frame error rate means the probability that after the last decoding
attempt, errors still exist in the data packet. It is determined by the error performance
- of each of the RC - TCM schemes in the system. As mentioned earlier, in Rayleigh
fading channels, the error performance of a TCM system is primarily dominated by
the free Hamming distance of the TCM scheme. One can observe from Table 4.2,
44, 46 and 4.8 that the free Hamming distances of the RC - TCM schemes in
system IV are smaller than that of the RC-TCM schemes in any of the other three

systems. Hence, system IV has the highest frame error rate.

The performances of systems L II, III, and IV are summarized in the table:

Normalized E,/N, Required to E,/N, Required to
System System - wide |achieve a FER of 107 |achieve a FER of 107
Throughput (dB) (dB)
system I 1.51 5.1 6.1
system II 1.68 37 | 5.1
system I 1.81 2 3.8
systemIV | 174 7.3 | 8.4
Hagenauer’s 1 3.6 5.1

Table 4.9 Performance comparison of system I, system II, system III, system IV

and Hagenauer’s system.

43 DECODING COMPLEXITY

In Table 4.9, we compared the throughput performances and the frame error rates

of hybrid ARQ/FEC systems that use RC - TCM schemes and a Hagenauer’s system
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that uses RCPCC. But a fair comparison should also include the system decoding
complexity. In this section, we analyze, calculate and compare the décoding complexities

for all the hybrid ARQ/FEC systems we have discussed.

Following the system model described in section 4.1.1, a Viterbi decoder will be
used to do the decoding, under the control of a punéturing and (or) repeating rule,
for each of the decoding attempts. In our proposed hybrid ARQ/FEC systems (as
well as in Hagenauer’s system ), at each decoding attempt, the decoder computes
the metrics given in equation (4.2), and selects a codeword whose metric is the
largest. Since the effective FEC at each decoding attempt has a different code rate,
it in turn corresponds to a different decoding complexity, X;. Here X; is defined as
the number of metrics needed to be calculated for decoding 1 bit of information
based on the ith FEC in the system, and |
N2 %

X =

j=1,2,-- 2
= i=1,2,K, (4.26)

where X is the desigﬁed maximum number of transmissions for each message packet,
N, is the number of encoder states, b is the number of information bits to be encoded
in each encoding interval, P is the puncturing and (or) repeau'ng period, and & is
the number of coded modulation symbols per P intervals accumulated at the receiver
for the ith decoding attempt. Then from Table 2.2, 4.1, 4.3, 4.5 and 4.7 we have

for the different systems the following :
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System X X, X, X, X X
Hagenauer’.s 36 40 48 64 96

System 1 32 48 64 96 128 192
System II 16 24 032 48 64 96
System III 32 48 64 96 128 192
System IV 27 32 43 64 85 128

Table 410  Decoding complexities of each rate compatible FEC in Hagenauer’s
system, system I, system II, system III, and system IV.

A reasonable measure for the decoding complexity of a hybrid ARQ/FEC system,

like those discussed in this thesis, is the average number of metrics ( see equation

(4.2)) the decoder has to compute per information bit, X,,.
K i-1 X
Xap = .EIX"PC‘C.-OPFJ)"'XK -EPFI (4°25)

where Pj, is the probability that after the ith decoding attempt, errors are still present

in the decoded word, i.e. a retransmission is ﬁeeded. Pc=1-Pg is the probability
that the ith decoding attempt is succcssful; or no retransmissions are needed. Applying
the results of Py (equation (4.5)) and P, (eciuation (4.6) ) obtained in section 4.1.2,
we calculated X,, for 1) Hagenauer’s system; 2) system I (the 4 state MTCM based
system ); 3) system II (the 8 state Ungerboeck’s code based system); 4) system III
(the 16 state Ungerboeck’s code based system ); 5) system IV (the § state Divsalar
and Simon’s MTCM based system ). Because of the adaptability, the number of

metrics needed to be calculated for successfully decoding 1 bit of information varies
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according to the channel conditions as shown in Fig. 4.15.

IN
O
O

7/
I
i
|/

O 5 10 15 20 25

Es/No(dB)

Fig.4.15  Decoding complexities of Hagenauer’s system (curve 2), systemI (curve

5), system II (curve 1), system IIl (curve 3), system IV (curve 4).

Note that the analysis and the calculations in this section are under the conditions

and the assumptions given in section4.1 and 4.2.
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Fig. 4.15 reveals that at SNR above 15 dB, all of our ﬁroposed systems have lower
decoding corhplexities than that of Hagenauer’s system. At relatively low SNR, system
‘I, system III and system IV have higher decoding complexities compared with
Hagenauer’s system. Among all the systems, System II turns out to be the system

with the lowest decoding complexity over the entire range of SNR.

Combining Fig. 4.15 and Table 4.9, we find that although system I and system IV
have better throughput performances than Hagenauer’s system, the expense for theseﬁ
gains are the increase in the frame error rates and the decoding complexities. System
IIT has an 81 % throughput gain over Hagenauer’s system, and a lower frame error
rate, but a higher decoding complexity (at SNR less than 10 dB) than that of
Hagenauer’s system. System II can achieve 68 % throughput gain over Hagenauer’s
system without increésing the frame error rate, and its decoding complexity is much
lower than that .of Hagenauer’s system. Therefore, without increasing the decoding
complexity and the frame error rate, and without any bandwidth expansion, one can
still achieve a much higher throughput efficiency by using our proposed system than

employing Hagenauer’s system.
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CHAPTER FIVE

CONCLUSIONS

5.1 CONCLUSIONS

In this thesis, we have presented a novel technique that integrates error control
protocol design and trellis coded modulation design into one single process. The
concept of generating a sequence of rate compatible trellis coded modulation (RC -
TCM) by puncturing and /or selectively repeating the coded symbols of a mother
code périodically is introduced. Because of the code rate ‘compatib'ility, only one
" trellis encoder and O;IC decoder, employing the Viterbi algorithm, are needed in each
of our proposed systerhs. Only the control rule, i.e. the puncturing or repeating‘

pattern is changed for different codes in the sequence.

We found that a class of fairly good RC - TCM schemes can be obtained by
periodically selective repeating an Ungerboeck’s code, such as the 8 state and the

16 state, rate 2 bits/pulse 8PSK trellis codes.

By using RC - TCM schemes, a generalized type II hybrid ARQ/FEC system can
provide unequal error protection over a wide range of SNR, and a maximum throughput
efficiency of several bits per channel symbol. This is in contrast to the maximum
throughput of 1 bit per channel symbol found in most conventional error control
systems. For mobile radio applications, the analytical and computer simulation results

show that our proposed systems achieve up to 81 % overall system throughput gain
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over Hagenauer’s system. At least a 68 % throughput gain can be achieved by one
of our proposed systems over Hagenauer’s system without any increase in the decoding
cofnplexity and the frame error rate. It should be pointed out that Hagenauer’s system
achieves the best throughput performance amongst all existing systems reported in

the literature.

5.2 SUGGESTIONS FOR FURTHER RESEARCH

As mentioned earlier, we generated RC - TCM schemes based on the assumption
that good code generates good codeS, and by picking heuristically a puncturing/repeating
rule. However, the true optimum puncturing and repeating rule of a system using
RC-TCM schemes can only be obtained by exhaustive computer search. This should

be carried out in future in order to obtain better RC - TCM schemes.

Within the scope of this study, only coded 8PSK modulation is used in all the
RCV- TCM schemes. It would be interesting to explore more bandwidth / power efficient
ﬁxodulaﬁon schemes such as trellis coded Quadrature Amplitude Modulations (QAM),

‘trellis coded- Continuous Phase Modulations (CPM), and higher level coded PSK

modulations.

Perfect coherent detection and ideal interleaving are assumed in this thesis. To

examine the cases without these assumptions makes another topic for future studies.

It would be beneficial to apply the RC - TCM technique proposed in this thesis
in the design of combined source and channel coding systems for voice transmission

[41] and image transmission [42].
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