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Abstract 
This thesis will focus on the consequences of a distance-regular graph possessing an 
eigenvalue of low multiplicity. We obtain information about such graphs by studying 
their image configurations under a natural representation in Euclidean space. In 
particular, the diameter and valency of a distance-regular graph is bounded by a 
function of the multiplicity of an eigenvalue. 

We first discuss spherical Zdistance sets and equiangular lines, and give a new 
proof for the fact that the size of a spherical Zdistance set can be at most 6 in R3, 10 
in R4 and 16 in R" respectively. Then we classify the distance-regular graphs with 
an eigenvalue of multiplicity four or five. 
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Introduction 

A graph G is said to be distance-regular if, given any two vertices u and v, the 

number of vertices in G at distance i from u and distance j from v only depends on 

the distance between u and v .  Since u and v may coincide, a distance-regular graph 

must be regular. The concept of distance-regular graphs occurred in late 1950's (Bose 

and Mesner [lo], Bose [9]). An important subclass of distance-regular graphs are the 

distance-transitive graphs. A graph G is said to be distance-transitive if, for any 

vertices u, v, 2, y of G satisfying 8(u, v) = 8(z, y), there is an automorphism a of G 

which takes u to z and v to y. (As a common usage in graph theory, 6(u, v) represents 

the distance between the two vertices u and v.) Distance-transitivity implies distance- 

regularity, but the converse is not true. 

Starting from very elementary regularity properties, the concept of a distance- 

regular graph arises naturally as a common setting for regular graphs which are 

extremal in some sense. The theory of distance-regular graphs has connections to 

many parts of graph theory, design theory, coding theory, geometry and group theory. 

An interesting problem in studying dist ance-regular graphs and dist ance-transitive 

graphs is to classify them. By the great effort of many mathematicians in past years, 

the distance-transitive graphs have been classified for valency up to thirteen, and the 

distance-regular graphs have been classified for valency three. 

In his recent paper, Godsil [20] studied representations of distance-regular graphs 
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in Euclidean spaces, and derived an upper bound on both diameter and valency 

of distance-regular graphs in terms of an eigenvalue multiplicity. Representations 

of graphs provide us with a powerful method for studying distance-regular graphs 

and their eigenvalue multiplicities. As a byproduct, Godsil's bound on diameter 

and valency suggests that distance-regular graphs can be classified according to the 

multiplicity of their eigenvalues, rather than by their valency. This thesis is the 

beginning of this classification. 

In Chapter 1, we introduce the concept and basic results about distance-regular 

graphs, adjacency matrices and distance-regular line graphs. 

In Chapter 2, we study the theory of representations of distance-regular graphs, 

which is the main machinery throughout this thesis. Roughly speaking, a representa- 

tion of a graph is a mapping from the vertex set of the graph into a Euclidean space. 

(In our case, it is usually an eigenspace of the graph.) If the graph is distance-regular, 

the representation would be "locally injective" and carry considerable information 

about the original graph. The representation method enables us to study such a 

graph by investigating the geometric properties of its image configurations under a 

representation. The idea of representations was first introduced by Godsil [19], and 

independently by Terwilliger [32]. 

A set of points in a Euclidean space is said to be a 2-distance set if there exist 

two numbers a and b such that any two points in the set are at distance either a or 

b. Under a representation, the image of the neighbourhood of a vertex in a distance- 

regular graph forms a 2-distance set in an eigenspace. Therefore a bound on the size 

of a 2-distance set wodd imply a bound on the valency of a graph. In Chapter 3, we 

will introduce some known results on 2-distance sets and the so-called "equiangular 

lines". Based on this, we derive an upper bound on 2-distance sets, which will be 

useful in the classification work later. 
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Chapter 4 is basically a reproduction of Godsil's result on bounding diameter and 

valency of a distance-regular graph by a function of an eigenvalue multiplicity. The 

bounds as well as various numerical constraints derived in this chapter will be very 

helpful in the later effort of classifying distance-regular graphs by their eigenvalue 

multiplicities. 

Chapter 5 and Chapter 6 are two working chapters for classifying distance-regular 

graphs of low multiplicities. It can be easily seen that there is no distance-regular 

graph with a single eigenvalue other than f k. Further, the only connected distance- 

regular graphs with an eigenvalue of multiplicity two are cycles or complete 3-partite 
- 

regular graphs 3K,, r 2 1. The first non-trivial case is when eigenvalue multiplicity is 

three. Without too much difficulty it can be verified that the distance-regular graphs 

with an eigenvalue of multiplicity three are the five Platonic solids plus all complete 
- 

4-partite regular graphs 4K,. (Surprising!) So our classification work starts with the 

case when eigenvalue multiplicity is four. 

In Chapter 5, we apply our theory and classify the distance-regular graphs with an 

eigenvalue of multiplicity four. We use representation method as well as elementary 

arguments to do most of the work by hand. Of course, this would involve us in some 

lengthy case-by-case discussion. One subcase is worked out using a computer. In the 

last chapter, we first sharpen an upper bound on the diameter of a distance-regular 

graph which is derived in Chapter 4. This helps to reduce the possible candidate 

graphs. Then we use a computer to complete the classification of distance-regular 

graphs with an eigenvdue of multiplicity five. 

Detailed information of distance-regular graphs with an eigenvalue of multiplicity 

three, four or five is given in the Appendix. There readers can also find the information 

about distance-regular graphs with valency three, which are classified by Biggs et d. in 

1986. 



Chapter 1 

Dist ance-Regular Graphs 

1.1 Distance-Regular Graphs 

We first introduce some standard notation. Let G be a regular graph with valency k 

and diameter d. Denote by V(G) the vertex set of G and E(G) the edge set of G. For 

any pair of vertices u, v in G, denote by 6(u,v) the distance between u and v in G. 

We write u - v if u and v are adjacent (i.e., if 8(u, v)=l). For any vertex u E V(G) 

define 

G ~ ( u )  := {V E V(G) I ~ ( v , u )  = i), o i 5 d .  

When i = 1 we abbreviate G1(u) to G(u). 

A graph G is called distance-regular if, given any two vertices u and v, the number 

of vertices in G at distance i from u and distance j from v only depends on the distance 

between u and v. Since u and v may coincide, a distance-regular graph is necessarily 

regular. 

Let G be a distance-regular graph with valency k and diameter d. Then for any 

vertex u in G, the cardinality of Gi(u) depends only on i. (This can be seen by 

letting v coincide with u and choosing j = i in the definition above.) We denote this 
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cardinality by k .  Further, there exist integers q, bi and a; such that for any pair of 

vertices u and v in G at distance i apart, 

The numbers Q, a; and b; are called the intersection numbers of G and usually 

recorded in an array of the form 

This is called the intersection array of graph G. For example, the intersection array 

of the cube is 

- 
The intersection array of the complete multipartite regular graph sK, is 

In the following we collect some basic properties of distance-regular graphs. The 

proofs of (i)-(iv) can be found in Biggs [4] and the proof of (v) in Taylor and Lev- 

ingston [3l]. 

Lemma 1.1.1 Let G be a connected distance-regular graph on n vertices with va- 

lency k and diameter d. Then we have the following. 

(i) ai + bi + G  = k ,  1 < i 5 d - 1, and a d + c d  = k. 
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(i) kb; = k+lc;+l, i 2 1, and A$ = (kbl . . b;-1)/(~2~3 + c;),  i 2 2 .  In particular, 

(kbl. b;-l)/(c2c3.. c;) is an integer. 

1.2 The Adjacency Matrix and Spectrum of a 
Graph 

The adjacency matrix of a graph G is the n x n matrix A = A(G), over the complex 

field, whose entries a;, are given by 

1 if v; and vj are adjacent; 
a;, = 

0 otherwise. 

If follows directly from the definition that A is a real symmetric matrix, and that the 

trace of A is zero. 

Suppose that A is an eigenvalue of A. Then, since A is real and symmetric, X is 

real, and the multiplicity of A as a root of the characteristic equation det(AI - A) = 0 

is equal to the dimension of the space of eigenvectors corresponding to A. 

The spectrum of a graph G is the set of distinct eigenvalues of A(G), together 

with their multiplicities. If the distinct eigenvalues of A(G) are A. > X1 > . . . > A,-1, 

and their multiplicities are m(Xo), m(X1), . . . , m ( L 1 ) ,  then we shall write 

X1 . . . 
Spec G = ( m +I) . . . m(A,-l) ) .  

For example, the spectrum of a complete graph K, on n vertices is 

n - 1  -1 
Spec K, = ( 1 n - 1  1. 
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- 
The spectrum of a complete multipartite regular graph aK, is 

Spec (s K,)  = T ( J - 1 )  0 

The spectrum of the cycle Cn on n vertices is given in two forms according as n is 

even or odd. If n is odd, 

Spec Cn = ... ... 2 c 0 s y ) .  2 9 

If n is even, 

Spec Cn = 2 ices? . 2cor- - 2 )  
2 1 . . .  

If a graph G is a regular graph with valency k, then its adjacency matrix has the 

following properties. 

(1) The valency k is an eigenvalue of A = A(G). 

( 2 )  If G is connected, then the multiplicity of k is one. 

(3) For any eigenvalue A of G ,  we have [A1 < k. 

(4) Let J be the matrix with all entries equal to 1 .  If G is connected, then J = p(A) 

for some polynomial p ( x ) .  In particular, AJ = JA. 

Furthermore, if G is distance-regular with diameter dl then A = A(G) has exactly d+ 1 

distinct eigenvalues. For brevity, the eigenvalues of the adjacency matrix A = A(G) 

will also be referred to as the eigenvalues of the graph G.  

For more information about adjacency matrices, spectra and characteristic poly- 

nomials of graphs, readers are referred to Cvetkovi6, Doob and Sachs [13] and Biggs 

[4l. 

1.3 Classification of Distance-Regular Graphs 

Distance-transitive graphs and distance-regular graphs are two important classes of 

highly symmetric graphs. It is no surprise that people would consider classifying these 
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graphs. A natural and traditional idea is to classify these graphs by their valency. 

Indeed, considerable effort has been made on this since 1971, when Biggs and Smith 

classified the dist ance-transitive graphs of valency three. Many mathematicians have 

contributed to classifying distance-transitive graphs and distance-regular graphs by 

their valency. The classification has been done for the distance-transitive graphs of 

valency up to thirteen and for distance-regular graphs of valency three. Details of 

these classifications can be found in Biggs and Smith [8], Smith [30], Gardiner [18], 

Ivanov et al. [23], Ivanov et al. [24], Biggs et al. [S], etc. A recent book [ll] by 

Brouwer, Cohen and Neumaier provides a comprehensive account of the information. 

It is understandable that the classification work on distance-transitive graphs is 

more fruitful than on distance-regular graphs, since the former is a proper subclass of 

the latter. For the distance-regular graphs with valency four or higher, Bannai and 

Ito have recently shown [2] that there are only finitely many distance-regular graphs 

of valency four. It is conjectured that for any fixed k, there are only finitely many 

distance-regular graphs with valency k. 

Equivalently, this conjecture can be stated as - There exists a real-valued function 

f(k), depending only on k, such that any distance-regular graph with valency k is 

bounded by f (k). Actually, bounding diameter is a common feature for almost all 

classification of distance-regular graphs and distance-transitive graphs. 

In a recent paper, Godsil has shown [20] that the diameter and valency of a 

distance-regular graph are both bounded by certain functions of its eigenvalue mul- 

tiplicity. (This is inexact, the precise statement is given in Chapter 4.) This im- 

plies that, besides the complete multipartite graphs, there can be only finitely many 

distance-regular graphs with an eigenvalue of a given multiplicity. This result sug- 

gests a different approach for classifying distance-regular graphs, and that is to classify 

graphs by an eigenvalue multiplicity instead of by the valency. 
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This thesis is the beginning of this classification. We will study the consequences of 

distance-regular graphs possessing an eigenvalue of low multiplicity, and then classify 

the distance-regular graphs with an eigenvalue of multiplicity four or five. 

Dist ance-Regular Line Graphs 

The line graph of a regular graph is again a regular graph. But the line graph of a 

distance-regular graph is not necessarily distance-regular. It is natural to ask which 

distance-regular graphs have distance-regular line graphs. This question has been 

settled in Mohar and Shawe-Taylor [28] and the answer gives a nice relationship 

between distance-regular line graphs and (k, 9)-graphs. 

For k 2 1 and g 2 3 we define 

1 + k + k(k - 1) + + k(k - I) '-~ + k(k - I)'-', if g is odd; 
1 + k + k(k - 1) + . . + k(k - I)'-~ + (k - I)'-', if g is even, 

where i = lg/21. A (k,g)-graph is a k-regular graph with girth g and no(k,g) 

vertices. It is well known (see, for example, Proposition 23.1 of Biggs [4]) that, for a 

given pair of k and g, the number of vertices in a k-regular graph with girth g is at 

least no(k,g). A (k,g)-graph is in some sense a smallest k-regular graph with girth 

g. But the converse is not true. For (infinitely) many pairs of k and g, a (k,g)-graph 

does not exist and in these cases every k-regular graph with girth g contains more 

than no(k, g) vertices. The class of (k, 9)-graphs is very limited. The classification is 

almost completed, except that for a few parameter sets the existence question remains 

open. (For more information, see Chapter 23 of Biggs [4]). 

Lemma 1.4.1 (Mohar and Shawe-Taylor) For a graph G the following condi- 

tions are equivalent: 

(i) L(G) is distance-regular and G K l ,  for n 2 2, 
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(ii) G and L(G) are both distance-regular, 

(iii) G is a ( k , g ) -graph. 

The characteristic polynomial of a graph G is defined to be the characteristic 

polynomial of the adjacency matrix A(G) of G. For a regular graph G, there is 

an easy way to calculate the characteristic polynomial (p(L(G); A )  of the line graph, 

from the characteristic polynomial of G, cp(G; A ) .  This result is stated in the following 

lemma. A proof of this lemma can be found, for example, in Section 2.4 of Cvetkovib, 

Doob and Sachs [13]. 

Lemma 1.4.2 (Sachs) Let G be a regular graph of valency k with n vertices and 

r n  = fnk  edges. Then 

cp(L(G); A )  = ( A  + 2)"-"(p(G; A + 2 - k ) .  0 

We rephrase this lemma as follows. If the spectrum of G is 

then the spectrum of L(G) is 

2 k - 2  k - 2 + A 1  ... k - 2 + A ,  
Spec G = 

ml . . . m ,  
-2  ) .  

m - n  

(It is worth noting that if G is bipartite, then k - 2 + A, = - 2 ,  and the last two 

columns get merged into one.) For 

graph on n vertices is calculated as 

example, the line graph L(K, )  of the complete 
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Represent at ions of 
Distance-Regular Graphs 

A representation of a graph is a mapping from the vertex set of the graph to Euclidean 

space R". If this representation mapping has some "good" properties, then we will 

be able to obtain information about the graph itself by studying its image in R". 

This chapter will discuss representation theory for distance-regular graphs. We will 

describe how each eigenspace of the adjacency matrix of a graph provides us yith a 

"good" represent ation and study the basic properties of these representations. 

2.1 Represent at ions from Eigenspaces 

We describe a very useful way of looking at the eigenvectors of a graph. This is due 

to Godsil [21] and Terwilliger [32]. 

Suppose that A = A(G) and that z is an eigenvector of A with eigenvalue 8. As A 

is a symmetric matrix and all eigenvalues of A are real, we will from now on assume 

that all our discussions are over the real field. Since the entries of A are either 0 or 
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1, the equation Az = 8z is equivalent to the equations 

If we view z as a function from V(G) to the real numbers, these equations imply 

that 8 times the value of this function at vertex i is equal to the sum of the values 

of z at the neighbours of i. Conversely, any function on V(G) which satisfies this 

condition can be seen to be an eigenvector. We often find it useful to view the values 

of the function z as "weights" on the vertices of G. If 8 is an eigenvalue of A with 

multiplicity m, we can go further. Let U be an n x rn matrix with its columns forming 

a basis for the eigenspace corresponding to 8. Then AU = 8U and so the rows of U 

give rise to a vector-valued function, u say, on V(G) with the property that 84i) is 

equal to the sum of the values of u at the neighbours of i. We again find, conversely, 

that any vector-valued function satisfying this condition determines an eigenspace of 

A. Any such vector-valued function will be called a representation of the graph G. 

By way of example, consider the cube in R3. Identify its vertex set with the eight 

vectors of the form (f 1, f 1, i l ) .  Two of these vectors, if not equal, agree in zero, 

one or two positions. Let Q represent the usual graph of the cube. Then the adjacent 

vertices in Q correspond to vectors which differ in only one position. We illustrate 

the situation in Figure 2.1 

We now find that if we sum the vectors adjacent to a given vector x ,  the result is 

z. Thus, if we consider the vectors adjacent to (1,1, I), we have 

This shows that the labeled cube in Figure 2.1 is a representation of the usual graph 

Q in R3, corresponding to the eigenvalue 8 = 1. 
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Figure 2.1: A graph and its representation 

2.2 Spectral Decompositions 

In this section we discuss some matrix theory and prove a useful matrix identity 

relating to representations of graphs. Suppose A is a real symmetric matrix. Then 

all of its eigenvalues are real, the eigenvectors of A span R" and the eigenvectors in 

different eigenspaces are orthogonal. For each eigenvalue of A, let Ue be a matrix 

with its columns forming an orthonormal basis for the eigenspace belonging to 6. Set 

Ze = u ~ u ~ ~ .  We will refer to the matrices Zo as the principal idempotents of A. We 

denote by ev ( A )  the set of distinct eigenvalues of A. 

Theorem 2.2.1 (Spectral decomposition of a symmetric matrix) Let A be a 

real symmetricmatrix, with principalidempotents Ze, 6 E e v ( A ) .  Then the following 

hold: 

(a) 2; = ZO and ZeZ, = 0 i f  6 # T ,  
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( d )  For any polynomial p, we have p(A) = CeE ev(A) p(e)Ze. 

Proof. (a) Since the columns of Ue are pairwise orthogonal, UeTU8 = I,(@), where 

m(8) is the multiplicity of 8. Hence 

(This means that the matrices Ze are idempotents). If 8 and T are distinct eigenvalues 

of A, then, since eigenvectors in different eigenspaces are orthogonal, u ~ ~ u ,  = 0 and 

therefore ZeZ, = 0. 

(b) Since AUe = BUe, we find that AZe = 8Ze. 

(c) Let D be the sum of all the matrices Ze, as 8 ranges over the eigenvalues of 

A. Then D2 = D and so all eigenvalues of the symmetric matrix D are 0 or 1. Now 

tr (D) = tr (21) = m(8) = IV(G)I 
8 8 

and so the trace of D is equal to its order. This implies that all eigenvalues of D 

must be equal to 1, and hence that D can be decomposed as D = L T I ~  where L is 

an orthogonal matrix. But this means that D itself is the identity matrix. 

(d) If we multiply both sides of (c) by A' and then note that ATZe = BTZe, we see 

that our claim holds for the polynomials 2'. Hence for any polynomial p, 

We are done. 

As a special case of the above theorem, we have 

Tbis equation explains the name spectral decomposition. 
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2.3 Basic Properties of Representations 

Let G be a graph with vertex set 1,2,. . . , n. In this section we assume A is the 

adjacency matrix of the graph G. Of course, the assertions in Theorem 2.2.1 hold for 

A. With the Ue and Ze as defined in last section, it is clear that the matrices Ue give 

representations of G associated with 0. 

If 0 is an eigenvalue of A, with multiplicity m. Then Ue is an n x m matrix with 

columns forming an orthonormal basis for the eigenspace associated with 0. Let ue(i) 

be the i-th row of Ue. Then this is a representation of G in Rm. The following result 

appears in Godsil [19], and Bannai and Ito [I] (Lemma 11.8.2). 

Lemma 2.3.1 Let A be the adjacency matrix of the graph G. Then, if i and j are 

any two vertices in G and r is a non-negative integer, 

where (,) denotes the usual inner product of two real vectors. 

Proof. By Theorem 2.2.l(d), we have 

It is easily seen that the i j-entry of Ze equals the inner product (ui, uj) . The lemma 

follows immediately. 

Note that (A')ij is equal to the number of walks in G from vertex i to vertex j with 

length r. To apply our theory to distance-regular graphs we need some preliminary 

information. 

Suppose G is a distance-regular graph. We define the r-th distance mat* A, = 

A,(G) of G to be the n x n (0 - 1)-matrix with ij-entry equal to 1 if and only 
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if the distance in G between vertex i and vertex j is T .  Thus A. = I and Al is 

the adjacency matrix of G. Also ~ f = ~ A i  = J. The ij-entry of A,A, is equal to 

the number of vertices in G at distance T from i and distance s from j .  From the 

definition of a distance-regular graph it follows that this number only depends on r, s 

and the distance between i and j .  Hence A'A, can be written as a linear combination 

of distance matrices of G. Since the distance matrices are symmetric, i t  follows that 

A,A, is symmetric too. This implies that A,A, = (A,A,)~ = ATAT = A,A,. The 

next lemma is due to Godsil [20] and Bannai and Ito [I]. 

L e m m a  2.3.2 Let G be a distance-regular graph of  diameter d and let 8 be an 

eigenvalue o f  G .  If i and j are two vertices o f  G then the inner product (ue(i), ue(j)) 

is determined by  the distance between i and j in G, independent of  the choice of i 

and j. 

Proof. By the preceding discussion, for any i and j the product AiAj is a linear 

combination of Ao, Al, . . . ,Ad, and so is A2 = AIA1. It follows by induction that 

each A', r 2 1, can be expressed as linear combination of Ao, Al, . . . , Ad. In other 

words, there exist numbers ~ ( t )  such that 

If i and j are at distance s in G, then this implies that the ij-entry of (Al)t is equal 

to c,(t). Using Lemma 2.3.1 we then deduce that 

If we fix i and j and take n = 0,1,. . . , d  this gives us a (d + 1) x (d + 1) system of 

linear equations satisfied by the d + 1 inner products (ue(i),ue(j)). This system is 

non-singular because the matrix of coefficients is a Vandermonde matrix. Therefore 
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these inner products are determined by the eigenvalues of A and the numbers c,(t). 

Since the latter only depend on the distance s between i and j ,  (independent of the 

choice of i and j) ,  our lemma is proved. 0 

One immediate consequence of this lemma is the following. 

Corollary 2.3.3 (Inheritance of distance structure) Suppose that G is a 

distance-regular graph and 6 an eigendue of G with multiplicity m. Let ue be a 

representation associated with 6. Then 

(i) The image vectors ue(v), v E V(G), aJ1 have the same length. In other words, ue 

maps V(G) onto a sphere in P; 

(ii) For any two vertices u and v in G, the distance between ue(u) and ue(v) in R"' 

is determined by the distance 6(u, v) in G. 

We now turn to another important property of representations of distance-regular 

graphs. The following lemma, and its proof, is due to Godsil [20]. 

Proposition 2.3.4 (Local Injectivity) Let G be a distance-regular graph with va- 

lency k. Let 6 be an eigendue of G of multiplicitym and 8 not equal to f k. Suppose 

that 'tie is a representation associated with 6. Assume G is not a complete multipartite 

graph. Then for any two vertices i and j in G with 8(i, j) 5 2, ue(i) # ue(j). 

Proof. We break the proof into a few steps. 

(a) If ue takes equal d u e s  on two adjacent vertices of G then 6 = k. 

If i and j are two adjacent vertices of G, then by Lemma 2.3.2 we find that 

(uo (x ) ,u~Y))  = ( 4 ) ,  4 ) )  

for any pair of adjacent vertices x and y in G. Since G is connected it follows that if 

uo(i) and ue(j) are equal, then ue is constant on V(G). As we have 
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it follows that 6ve(i) = kue(j) = kue(i). Hence 6 = k. 

(b) If i and j are adjacent vertices in G and ue(i) = -ue(j), then 6 = -k. 

If i and j are adjacent vertices in G and ue(i) = -ur(j), then ue(x) = -ue(y) for 

any pair of adjacent vertices x and y in G. So Equation 2.3 yields 6ue(i) = kue(j) = 

- kue(i). Therefore 6 = -k. 

( c )  If i and j are vertices in G such that ue(i) = ue(j), then d(i, j) > 2 in G .  

Suppose ue(i) = ue(j). It was seen in (a) that i and j cannot be adjacent. Now 

assume a(i, j) = 2. Then if x and y are any two vertices in G with d(x, y) = 2, we 

must have up(x) = ue(y). 

If G does not have any odd cycle then it is bipartite and ue is constant on each of 

the two color classes. For a pair of adjacent vertices 0 and 1, Equation 2.3 implies that 

Oue(0) = kue(l) and, interchanging the roles of 0 and 1, also that h e ( l )  = kue(0). 

Consequently O2 = k2 and so 6 = f k. 

Now suppose that G contains odd cycles. If there is an induced odd cycle on at 

least five vertices, then it follows that ue is constant on this cycle and there are pairs 

of adjacent vertices x and y such that u ~ ( x )  = ue(y). Consequently we are back in 

case (a) above. 

The only remaining possibility is that the smallest odd cycle has three vertices. 

In other words, G contains a triangle, say, vwx. Choose a vertex y E G2(x) n G(v). 

If y is not adjacent to w, then B(y, x) = 8(y, w) = 2 and thus ue(x) = U@(Y) = u~(w) .  

We are again back in case (a) (since z and w are adjacent). This shows that y is 

adjacent to both of v and w. Assume that the diameter of G is at least three and 

z E G3(x) n G(y). Since yvw forms a triangle, vertex z must be adjacent to at least 

one of v and w. But that means z E Gz(x), which contradicts the assumption that 

z f G3(x). SO the diameter of G is two. 
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Now choose three vertices zl,  2 2  and 23 in G such that zl is not adjacent to z2 and 

z2 is not adjacent to 2 3 .  As the diameter of G is two, we get 8(z1,  z2 )  = 8(z2,  z3) = 2 ,  

and thus ue(zl) = ue(z2) = ue(z3). It follows from claim (a) that zl and 23 are not 

adjacent. In other words, the non-adjacency is a transitive relation on the vertex set 

of G. Therefore G is a complete multipartite graph. 0 

2.4 The Sequence of Cosines 

Suppose G is a distance-regular graph with diameter d 2 2 .  Let 8 be an eigenvalue 

and ue a normalized representation associated with 8. Then the images under ue are 

all unit vectors. Since the inner product of the image vectors of two vertices x and y 

only depends on the distance 8 ( x ,  y )  in G ,  there are real numbers w;, 0 < i 5 d ,  such 

that for any pair of vertices x and y at distance i, 

The sequence wo, wl ,  w2, . . . , wd will be called the sequence of cosines of G corre- 

sponding to the eigenvalue 8. Obviously we have wo = 1 and Iw;l < 1,  1 5 i 5 d. By 

the local injectivity of ue, it is also clear that wl < 1 and w2 < 1. 

Now fix a pair of vertices u and v in G with 8(u, v )  = i .  Then the neighbourhood 

of v contains q vertices x j  with 8(u, x j )  = i - 1 and a; vertices yj with d(u, yj) = i ,  

and b; vertices zj with 8(u, z j )  = i + 1 .  From Equation 2.1 in Section 1, we have 

Taking the inner product with ue(u) on both sides of this equation, we get 
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with the understanding that w-1 = wd+l = 0. Recall that (in Section 2) representa- 

tions are obtained from the matrix Ze = u B u ~ ~ ,  where Ue is not uniquely determined 

by 8. However, from (2.5) we see that the sequence of cosines is uniquely determined 

by the eigenvalue 8. 

We summarize some facts about the sequence of cosines. 

Lemma 2.4.1 Let G be a connected distance-regular graph with diameter d. Let 8 

be an eigenvalue of G, and w;, 1 5 i 5 d, be the sequence of cosines of G corresponding 

to 8. Then we have the following. 

(a) Ifwl = 1, then 8 = k. 

(b) If wl = -1, then 8 = -k. 

( c )  If w2 = wl, then either 8 = k or 8 = -1. 

(d) If w2 = 1, then G is a complete multipartitegraph. 

- 
( e )  If wz = -1, then either G is nK2 for some n 2 2, or G is a cycle of length 4n 

with n 2 1. 

Proof. From Equation 2.5 we have 

8 e2 -a le  - k 
W1 = - 

k ' and w2 = 
kbl 

Hence claims (a) and (b) are obvious. Claim (c) follows from equation 

Claim (d) is a rephrasing of Lemma 2.3.4. 

For claim (e), we first show that if w2 = -1, then w; = cos $ for 1 5 i 5 d. 

Let x and y be two vertices of G and ue be the representation associated with 8. 

The equation w2 = - 1 implies that if 8(x, y) = 2, then ue(y) = -ue(x), and that if 
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B(x, y) = 4, then ue(y) = ue(x). So the equation wi = cos $ will follow by induction 

if we can prove that wl = 0. Now let xyz be a path with 8(x, z) = 2 (i.e., a geodetic 

path). Then ~ ( x )  = -ue(z). Since 8(y, x) = B(y, z), we have the inner products 

Therefore wl = (u~(Y) ,  ue(z)) = 0. This in turn implies that 8 = 0. 

Applying w; = cos $ to Equation 2.5 (the recursive relation), we can calculate 

that b2,-l = cz,-l and a2, = 0 for s > 1. In particular, bl = cl = 1 and a2 = 0. By 

Lemma 1.1.1, the equation bl = 1 implies that all bi are equal to 1 and all c;, except 

cd, are equal to 1. If the diameter of G is two, then c2 = k and G has k +  2 vertices 
- 

with valency k being an even integer. So G is a complete multipartite graph nKz .  If 

the diameter of G is greater than two, then b2 = c2 = 1 and k = c2 + a2 + b2 = 2. 

Therefore the intersection array of G has the pattern 

By the equation b2,-l = c2,-l, for any odd integer i, the existence of ci would imply 

the existence of bi (and both should be equal to 1). Therefore the diameter d of G 

must be an even integer, and thus a d  = 0 and cd = k. It follows that G is a cycle of 

length 4n with n > 2. o 

Let G be a distance-regular graph with an eigenvalue 8 of multiplicity m. In 

general, the mapping ue need not be injective (though it should be locally injective). 

The following two lemmas will show that in some situations, the representation will 

be (globally) injective. For a proof, see Godsil [20]. 

Lemma 2.4.2 Let 8 be an eigenvalue of G. Then 8 is the i-th largest eigenvalue of 

G if and only if the corresponding sequence of cosines (wo, wl , . . . , wd) has exactly 

i - 1 sign-changes. 
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Lemma 2.4.3 Let G be a connected distance-regular graph of diameter d, d e n c y  

k at least three and with an eigendue 8 # f k. If the number of eigenvalues of A(G) 

which are greater than 8 is odd, then tie is an injective mapping. 

In other words, if the number of sign-changes of the sequence of cosines is odd, 

then ue is an injective mapping. 

Although the representation carries considerable information about the original 

graph to its image configuration, we cannot expect that the image keeps all the 

structure information. Even when ue is injective on V(G), it does not necessarily 

follow that the sequence wo, . . . , wd is nonincreasing. In particular, the images of the 

vertices adjacent to a given vertex x need not be the points in ue(V(G) \ x) closest 

to U@(X). There is, however, one important case when this does hold true. 

Lemma 2.4.4 (Godsil [20]) Let G be a distance-regular graph with valency k and 

diameter d at least two. If 8 is the second largest eigendue of G and x E G then 

the points in ue(V(G)) closest to ~ ~ ( 2 )  are the images of the vertices adjacent to 2. 

2.5 Gram Matrices 

We are going to introduce the basic properties of Gram matrices in this section, which 

will be useful in the following discussions. 

Let A be a real m x n matrix. Consider the real quadratic form q(2) = z T ( A T ~ ) x .  

This form is seen at once to be positive semidefinite because q ( x )  = ( A Z ) ~ A Z ,  which 

is a non-negative scalar since AX is a real vector. So the matrix G = ATA is a positive 

semidefinite matrix. On the other hand, letting Al, A2, . . . , A, be the columns of A, 
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G can be written as 
A ~ ~ A ~  .. . A ~ ~ A ~  

A ~ ~ A ~  . . . A ~ ~ A ~  

Any real matrix of this form is called a Gram matrix. A Gram matrix must be 

symmetric. Note that the matrices ATA and AAT are both Gram matrices. They 

have the same rank and the same set of non-zero eigenvalues. 

We summarize the basic properties of Gram matrices in the following. 

Proposition 2.5.1 Let G = A*A be a Gram matrix. Then 

(i) G is positive semidefinite; 

(ii) The rank of G equals the rank of A; and 

(iii) All eigendues of G are non-negative. 0 

2.6 A Constraint on Eigenvalue Multiplicity 

We are going to present a useful theorem of Terwilliger [33], and give a modified proof. 

We can write the eigenvalues of G explicitly as 

Since G is regular, O0 equals the valency k. 

Theorem 2.6.1 (Terwilliger) Let G be a connected distance-regular graph with 

valency k (k 2) and diameter at least 2. Let 8 be an eigendue of G and 8 # k.  If 

the multiplicitym = m(8) < k, then 8 = O1(G) or 8 = emin(G). Furthermore, either 

(i) 8 is an integer such that 1 + 6 divides bl, or 
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(ii) 8 and bl ( l  + 9)-' are both quadratic algebraic integers over Q, and and 8,;, 

are algebraic conjugates over Q with equal multiplicities as eigenvalues of A(G). 

Proof. We first note that if the graph G is a complete multipartite graph, then the 

diameter of G is 2. Hence G would have only two eigenvalues other than the valency, 

and both of them are integers. (The spectrum of any complete multipartite regular 

graph has been presented in Section 1.2.) Therefore nothing needs to be proven. In 

the rest of the proof we assume that G is not complete multipartite. 

Fix a vertex x in G. We use GI to represent the subgraph induced by the neigh- 

bourhood of z. (The subgraph GI itself is a regular graph of valency al.) Denote by 

Al = A(G1) the adjacency matrix for the subgraph GI. 

Now let 8 be an eigenvalue of the (original) graph G, and ue the representation 

associated with 8. 

Consider the image vectors of the vertices in the neighbourhood G1 and denote 

by N the Gram matrix of these vectors. Let J = Jkx be the all 1's matrix. Then we 

have 

where wl and w2 are the cosines of a pair of vertices at distance one and two, respec- 

t ively. 

Now let Al ,  . . . , Ak be the eigenvalues of the subgraph GI, in non-increasing order. 

(Note: we use A; for the subgraph GI, and 8; for the graph G.) Since we assumed 

that G would not be a complete multipartite graph, it follows from Lemma 2.4.1 that 
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1 - w2 # 0. As all eigenvectors of A1 = A(G1) are also eigenvectors of J, it is easy to 

see that the eigenvalues of ( &-) N are 

Wl  - w2 
p1 : = I + (  

1 - w2 
w2 )k and )A1 + (- 

1 -w2 

As N is positive semidefinite, all pi (1 5 i <_ k) should be non-negative. Further, 

since rank (N) 5 rn < k and N is a k x k-matrix, some of these p; must equal zero. 

We claim that there must exist an i, 2 5 i 5 k, such that p; = 0. (This does not 

exclude the possibility that pl may equal zero as well.) 

Suppose this claim is not true. Then pl would be the only eigenvalue of (&)N 

which equals zero and rank (N) = k - 1. We would have 

As G1 is al-regular, A1 = al. We then derive that 

So wl = 0. Recall that wl is the inner product of the image vector u ~ ( x )  with the 

image vector of any vertex in GI. Therefore wl = 0 implies that ue(x) does not lie 

in the span of ue(G1). Since the latter should span a subspace of dimension k - 1 

as we just assumed, the union ue(z) U ue(G1) would span a subspace of dimension 

1 + (k - 1) = k. But on the other hand, all image vectors under the representation 

ue should lie in a subspace of dimension at most m. This contradiction shows that if 
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pl is equal to zero, then there must be another pi, 2 < i < k ,  which equals zero too. 

The claim is proved. 

Recall that from Equation 2.5 we have 

W1 = - 
k  ' and w2 = 

kbl 

From these we derive that 

1 - w 2  = 
( k  - 8 ) ( 8  + bi - 1 )  , and 

kbl 
w1- w2 - - 8 + 1  
1 - w2 e + 1 + b l e  

Now let X be an eigenvalue of G 1  such that the corresponding pi = 0, 2 5 i _< k. 

Then 

It follows from this equation that X # 0. Notice that N is positive semidefinite for 

any eigenvalue 8  of G with 8  # k. The sequence 

would remain nonnegative for these 8 .  We further observe that ( 8  + 1 ) / ( 8  + 1  + b l )  

is a monotone increasing function of the real variable 8 .  Therefore the sequence 2.7 

is monotone as 8  runs from second largest eigenvalue to least eigenvalue of G .  We 

conclude that this sequence could reach zero only at the two end points, i.e., 8  being 

either second largest eigenvalue or least eigenvalue of the graph G .  This proves the 

first part of the theorem. 

Now since eigenvalues of graphs are algebraic integers, so are 8  and A.  It follows 

from Equation 2.6 that b l ( l  + 8)-' is an algebraic integer, too. Since any irreducible 
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polynomial over Q has no multiple roots over the complex field, all algebraic conju- 

gates of 8 over Q are eigenvalues of G with the same multiplicity as 8. 

In the first part of the proof we have shown that any eigenvalue of G with multi- 

plicity m(8) < k could be either 81 or Omin. It follows that 8 could have at most one 

conjugate besides itself. If 6 is not in Q, then 8 and its unique conjugate comprise 

the set {el, emin). Otherwise, we will have that bl(l + 8)-' is in Q, and hence 8 and 

bl(l + 8)-' are both integers. 
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Spherical Two-Distance Sets 

A set S of points in Euclidean space is said to be a 2-distance set if there are two real 

numbers a and b such that the distance between any pair of points in S is either a or b. 

We say S is spherical if it is a subset of a sphere. For distance-regular graphs there is 

a natural way to represent the vertices of the graph by a set of points on a unit sphere 

in a Euclidean space. (Refer to Chapter 2.) Under this representation, the image of 

the neighbourhood of any vertex forms a 2-distance set. In this chapter we will discuss 

spherical 2-distance sets and related bounds. In Section 2 we discuss equiangular lines, 

which are closely related to 2-distance sets. Croft proved in 1962 [12] that the exact 

bound for the cardinality of 2-distance sets in R3 is 6. In 1979, 0. Kristensen proved 

in an unpublished research report, that the corresponding bound for 2-distance sets in 

R4 and R5 are 10 and 16, respectively. (The author thanks Professor H. Tverberg for 

kindly providing this information and explaining the outline of the proof, which was 

originally written in Norwegian.) Both of the above-mentioned proofs are lengthy. 

For the case of spherical 2-distance sets, we will give a short proof in Section 3.3. 
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3.1 The Absolute Bound 

Similar to the concept of 2-distance set, an r-distance set can be defined for any 

integer r 2 1. A 1-distance set in Rd is the vertex set of a regular simplex. An 

interesting problem is to determine the largest possible cardinality of an r-distance 

set in Rd. 

Except for Proposition 3.1.2, most discussion of this section is based on Seidel's 

work [29]. 

We are mainly interested in the spherical 2-distance sets. Without loss of gener- 

ality, we usually consider only those spherical 2-distance sets which lie on the unit 

sphere a d ,  where 

n d  := {X E R ~ ~ ( x , x )  = 1). 

In this case the distance between two vectors is determined by their inner product. 

Hence a spherical set S is a 2-distance set if the vectors in S admit only two distinct 

inner products, say a and ,f3, and neither a nor ,f3 is equal to one. 

In R2, the maximum cardinality of a spherical 2-distance set is five, attained by 

the vertices of the regular pentagon (Kelly [25]). In R3, the maximum cardinality of 

a spherical 2-distance set is six (Croft [12]). In this case, there are many different 

configurations realizing the bound. For example, the bound is attained by the vertices 

of the octahedron, and also by any six of the twelve vertices of the icosahedron which 

do not contain an antipodal pair (Croft [12], Seidel [29]). For general d, the largest 

(spherical) 2-distance set which has been constructed is the set of f d ( d  + 1) mid- 

points of the edges of a regular simplex. The following theorem yields a universal 

upper bound for the cardinality of a 2-distance set in terms of d, called the absolute 

bound for spherical 2-distance sets. 
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Theorem 3.1.1 (Delsarte e t  al. [14]) Let S be a spherical 2-distance set in Rd. 

Then IS1 5 fd(d + 3). 

Proof. For each vector t in a 2-distance set S of cardinality n with admissible inner 

products a and p, we define the function 

These are n polynomials of degree at most two in the variables XI,. . . , zd restricted to 

fld. The linear space of all such polynomials is spanned by the f d(d + 3) polynomials 

{z i , l  < i < d) U {zi2,1 < i 5 d) U { t i z j , l  < i < j 5 d). The polynomials 

Ft(x), x E S, are linearly independent since 

(1 - a)(l -p) if x = t ,  
otherwise. 

Therefore, their number n cannot exceed f d(d + 3), the number of the polynomials 

which spans the linear space. 

So far there are only three known cases in which this bound is reached, namely, 

when d = 2, 6 or 22 (see Larman et al. [26]). On the other hand, we do know that 

in a few cases the exact bound is smaller than the absolute bound. For example, we 

are going to show in Section 3.3 that the exact bounds for the cases d = 3, 4 and 5 

are 6, 10 and 16, respectively, smaller than the corresponding absolute bounds 9, 14 

and 20. 

General (non-spherical) 2-distance sets have also been studied in depth and some 

bounds have been obtained (see Delsarte et al. [14] and Blokhuis [7]). For T = 1 

the problem is trivial and the largest possible number of points of an 1-distance set 

in R~ is obviously d+l.  The absolute bound for a (general) 2-distance set in Rd is 

'(d 2 + l)(d + 2) (Blokhuis [7]). 
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In studying regular graphs, it is interesting to consider the (spherical) 2-distance 

sets satisfying a "regularity" constraint. That is, a spherical 2-distance set S with a 

fixed integer m such that for any point x in S there are exactly m points in S having 

inner product a with x. 

Proposition 3.1.2 Let S be a spheric& 2-distance set on ad satisfying the regularity 

condition. If the sum of dl vectors in S is not a zero vector, then IS1 5 f d(d + 3) - 1. 

Proof. Let n = IS[. Define a function G(x) on the set S. 

Since S satisfies the regularity condition, we have 

On the other hand, 

where C i ,  . . . , cd are constants determined by the set S. Denote by C the constant 

1 + ma + (n - m - 1)P. The following equation holds over the set S: 

If the sum of the elements of S is not zero, then cl, . . . , cd cannot all be zero. It 

follows that the i d ( d  + 3) polynomials {xi, 1 5 i 5 d )  u {xi2, 1 5 i < d )  U { X ~ X  j ,  1 5 

i < j < d ) .  are linearly dependent. As we have seen in the proof of Theorem 3.1.1, 

the maximum number of the linearly independent polynomials of degree at most 2 

gives a bound for the size of S. It follows that 
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Equiangular Lines 

A set of lines in Euclidean space is called equiangular, if the angle between each pair 

of lines is the same. The possibilities for equiangular sets of lines surpass by far those 

for equiangular sets of vectors. For instance, in Euclidean space R3 the four diagonals 

of the cube, and the six diagonals of the icosahedron constitute equiangular sets of 

lines. Equiangular lines have a close relation to the spherical 2-distance sets. (This 

section is based on Lemmens and Seidel [27] and Seidel [29].) 

Again, we would like to know the maximum size of a set of equiangular lines in 

Rd. Define v,(d) to be the maximum number of lines in Rd such that the angle 

of each pair of lines equals either arccos a or .rr - arccos a ,  a > 0. Define v(d) to 

be the maximum number of equiangular lines in Rd, i.e., v(d) = m-(v,(d)). So, 

representing each line by a spanning unit vector, we are interested in the maximum 

number of unit vectors in Rd whose mutual inner products equal fa. 

There are a few general results on the lower and upper bounds for v(r). First of 

all, it is shown in Lemmens and Seidel [27] that v(r) 5 i r ( r  + 1). As to the lower 

bounds we have the following lemma. 

Lemma 3.2.1 (Lemmens and  Seidel [27]) The following are true. 

(a) v(q2 + q + 1) 2 q(q2 + q + I), if q = 2n for some n; 

(b) v(q2 - q +  1) 2 q3+ 1, i fq  = pn for someprimep # 2; and 

(c) v(r) > 2r, for r # 5 or 14. 0 

The first two assertions in the above lemma roughly mean that v(r) is at least 

r&. The next theorem will have an important implication. 

Theorem 3.2.2 Suppose F contains n equiangular lines with the angle arccosa. If 

n > 2r, then l/a is an odd integer. 
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Proof. Let G be the Gram matrix of a set of n unit vectors in P with mutual inner 

product f a .  The matrix G is positive semidefinite and has null space of dimension 

at least n - T .  Define A =: ( l /a)(G - I). Then A has least eigenvalue -(l/a) with 

multiplicity m, where m 2 n - r. Since A is an integer matrix, -(l/a) is an algebraic 

integer and every algebraic conjugate of - ( l /a)  is also an eigenvalue of A with the 

same multiplicity m. If n > 2r, then m > i n  and A, being an n x n matrix, cannot 

have more than one eigenvalue of multiplicity m. Therefore - ( l /a )  is rational, and 

hence a rational integer. 

The eigenspace of A corresponding to the eigenvalue -( l /a)  has dimension m 

and the eigenspace of the all-one matrix J corresponding to the eigenvalue 0 has 

dimension v - 1. Since m > 1 these subspaces have a nontrivial intersection whose 

vectors are eigenvectors of the matrix 

1 
B := - (J  - I - A), 

2 

corresponding to the eigenvalue X = f(-1 - ( l ja ) ) .  Since B is an integer matrix, 

A is an algebraic integer. But X is rational, and therefore X is a rational integer. 

Consequently - ( l /a )  is an odd integer. 0 

By this theorem and Lemma 3.2.1, in almost all cases a set of equiangular lines 

with maximum size has a mutual inner product a such that l/a is an odd integer. 

In other words, almost every set of equiangular lines with maximum size has mutual 

inner product a E {1/3,1/5,1/7,1/9, . . .). 

Table 3.1 collects the results on the best known lower bounds for v(r) with the 

corresponding values of l / a .  For a few values of r ,  the exact value of v(r) is known. 
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I 
- - 

Lower Bound of V(T) 1 3 6 6 10 16 28 . . 28 28 36 40 1 
\ I ,  n Exact Value of v(+) 1 3 6 6 10 16 28 28 36 n 

Table 3.1: Lower Bounds on Equiangular Lines 

.- 

3.3 Constructions of Equiangular Lines and Two- 
distance Sets 

Except for Proposition 3.3.1 and Proposition 3.3.3, the discussion in this section is 

based on Seidel's work [29]. 

T 

Lower Bound of v(r) 
Exact Value of V(T) 

l/a 

Any set of n equiangular lines in Rd+' gives rise to a spherical 2-distance set of 

n - 1 points in Rd. Indeed, for any unit vector u along any of the lines consider 

the unit vectors at acute angle with u along the n - 1 remaining lines and project 

them into a hyperplane perpendicular to u. For instance, the six diagonals of an 

icosahedron form an equiangular set in R3. The five neighbours of any vertex of the 

icosahedron form a regular pentagon, which is a spherical 2-distance set in a plane. 

Provided with the information in Table 3.1, we can be assured of the existence of 

spherical 2-distance sets of 9 points in p, of 15 points in R6, of 27 points in R6, . . ., 
and of 343 points in R42. 

Conversely, given any 2-distance set S of n points on the unit sphere in Rd, if the 

two inner products a and p satisfy a + p 5 0, we can construct a set of equiangular 

lines in Rd+' with the same size n. 

17 18 19 20 21 22 23 42 43 
48 48 64 80 126 176 276 276 344 

126 176 276 
5 5 5 5  5 5 5 . s .  5 7 

L 
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We imbed R~ into Rd+' and view this Rd as a hyperplane in Rd+l. Thus there 

is a unique "axisn through the centre of the unit sphere and perpendicular to the 

hyperplane. We intend to "liftn the centre of the unit sphere along the axis to a 

proper position such that the (new) lines from this new centre to the points on the 

original unit sphere form equiangular lines in Rd+l. This can be done as long as there 

exist a real number T 2 1 and an angle 4 such that 

In this case T would be the distance from any point in S to the new centre, while 4 
would be the common angle for the resulting set of equiangular lines in Rd+l. 

We verify this for the case of R2 imbedding into R3. For the general case, it can 

be verified in a similar way. Suppose that the required T and 4 exist. Denote by 0 

the centre of the circle in R2 on which the points of S lie. After imbedding into R3 

there is an unique axis through 0 and perpendicular to the original R2. Since T 2 1, 

we can always find a point 0' on the axis such that the distance from 0' to any point 

in the original circle is T. Now draw lines from 0' to the points in S (on the circle). 

We claim that these (new) lines form a set of equiangular lines in R3 with mutual 

angle 4. 

Assume that a 2 p. (Then a pair of points with inner product a would be a 

shorter distance apart than a pair corresponding to P . )  Let P and Q be a pair of 

points in S associated with inner product a. From Figure 3.l(a), it is easy to see 

(using elementary trigonometry) that 

lpQ12 = 1 + 1 - 2 c o s 6  (based on the triangle OPQ) and 
lpQ12 = T ~ + T ' - ~ C O S ~  (basedonthetriangleOIPQ). 

With a! = cos 8, these two equations lead to 
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(4 (b) 

Figure 3.1: Construction of equiangular lines from Zdistance set 

Now, let P and Q be a pair of points in S associated with p. From Figure 3.l(b), 

it follows that 

I P Q ~ ~  = l+ l -ZCOST (based on the triangle OPQ) and 
IPQI '  = f 2  + r2  - 2 c o s ( ~  - 4) (based on the triangle O'PQ). 

With a = cos 8, these two equations lead to 

In turn, Equation 3.1 is equivalent to 

Since -1 5 a,@ 5 1, the required angle 4 always exists. To ensure the real number 

T is at least one, we need a + p 5 0. 

Now we have a way to construct a 2-distance set from a set of equiangular lines, and 

also a way to construct a set of equiangular lines from a 2-distance set if the associated 

inner products a and /3 satisfy a + p 5 0. Note that these two constructions are not 

inverses of each other. With the second construction and the information in Table 

3.1, we get the following. 
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Proposition 3.3.1 Let S be a 2-distance set on the unit sphere in Rd, with the two 

corresponding inner products a and P satisfying that a + P  < 0. Then IS1 < v(d + I), 

where v(d + 1) is the maximum cardinality of a set of equiangular lines in Rd+' . In 

particular, 

(i) IS1 < 6, in R3, 

(ii) IS/ < lo,  in P, and 

Let S be a spherical 2-distance set in Rd with associated inner products a and 

satisfying a + /? > 0. Then Equation 3.1 has a unique non-negative solution r < 1 
and we cannot construct a set of equiangular lines in the same way. In this situation, 

we can consider imbedding the Euclidean Space R~ into the Lorentz space RdJ. 

Lorentz space is defined to be an (n + 1)-dimensional linear space with the in- 

definite inner product ( , )L. For any two vectors x = (xO, XI,  . . . , xd) and x' = 

(xtO, xtl , .  . . , xtd) in RdJ, 

For the 2-distance set S in Rd, we can construct a set Y of vectors in RdJ. 

where r is the non-negative solution of Equation 3.1. Since the set S is on the unit 

sphere of R ~ ,  it is easy to verify that for any vector y in Y, 

Given Equation 3.1, it follows that for any two distinct vectors y and y' in Y, 



CHAPTER -7. SPHERICAL TWO-DISTANCE SETS 3 8 

So, with respect to the indefinite inner product ( , )L, the unit vectors in set Y span 

a set of equiangular lines in RdJ. The following lemma is due to Blokhuis and Seidel 

PI - 

Lemma 3.3.2 Any set of equiangular lines in Lorentz space RdJ has cardinality 

By this lemma and the construction we just described, we get 

Proposition 3.3.3 Let S be a Zdistance set on the unit sphere in R~ with the two 

associated inner products a and p satisfying a + p > 0. Then the cardinality of S is 

at most d(d + 1) /2 .  In particular, 

(i) IS1 < 6, in R3; 

(ii) IS1 < lo,  in R4; and 

(iii) IS I<15,  i nRS.  0 

Combining Propositions 3.3.1 and 3.3.3, we conclude that the exact upper bound 

for the size of a spherical 2-distance set S is 6, 10 and 16 for S in R3, R4 and RS, 

respectively. 

3.4 An Integrality Condition 

Lemma 3.4.1 Let S be a Zdistance set of n points on the unit sphere in R~ with the 

associated inner products a and p. If n 2 2d + 3, then the quotient (1 - a ) / ( P  - a)  

is an integer. 

Proof. Let G be the Gram matrix of the 2-distance set S. Then 
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for a certain symmetric (0,l)-matrix A and A := J - I - A. Thus, 

Suppose rank (G) = m. Since rank (J) = 1, rank (G - a J) 5 m + 1. So the null 

space of 
P - a  (1 - a)I + (P - a ) A  = (1 - a ) ( I +  -A) 
1 - a  

has dimension at least n - (m + 1). Let r = (1 - a ) / ( a  - P ) .  Then the equation 

above implies that r is an eigenvdue of the matrix A with multiplicity n - (m + 1). 

Since A is an integer matrix, T is an algebraic integer and every algebraic conjugate 

of T is also an eigenvalue of A with the same multiplicity n - (m + 1). It follows that 

if n - (m + 1) > n/2, then T is a rational integer. 

Note that m = rank (G) cannot be greater than the dimension of the space Rd, 

and that 
n 

n - ( m + 1 )  > - if andonlyif n 2  2m+3 .  
2 

Our claim then follows. 0 



Chapter 4 

Bounding the Diameter and 
Valency of a Distance-Regular 
Graph 

As we discussed in Section 1.3, bounding the diameter is essential for classifying 

distance-regular graphs. The traditional idea is to find an upper bounds for the 

diameter of such graphs with a fixed valency. Biggs et al. [5] found upper bound for 

the diameter of distance-regular graphs with valency three and classified these graphs. 

Recently Bannai and Ito [2] showed that there are only finitely many distance-regular 

graphs with valency four because the diameters of such graphs are bounded. It is also 

conjectured that there exists a function f (k) such that the diameter of any distance- 

regular g a p h  with valency k is bounded above by f (k). If this were proved, it would 

guarantee that there are only finitely many such graphs with any fixed valemy. 

In the course of developing the theory of representations of graphs, it was recently 

proved (Godsil [20]) that both the diameter and valency of a distance-regular graph 

are bounded by certain functions f (m) of an eigenvalue multiplicity m. It follows that 

there are only finitely many non-trivial distance-regular graphs with an eigenvalue of 

a given multiplicity. This suggests a new approach in classifying distance-regular 
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graphs. 

The theory developed in this chapter applies to any eigenvalue 8 not equal to f k. 

However, since a smaller eigenvalue multiplicity would yield better bounds on diam- 

eter and valency, we usually tend to focus on the eigenvalues with a low multiplicity. 

A large part of the material in this chapter is based on Godsil's work [20]. 

4.1 Bounding the Diameter 

Theorem 4.1.1 (Godsil [20]) Let G be a connected distance-regular graph with 

d e n c y  k 2 3. Let 8 be an eigendue of G with multiplicitym and 8 # f k. Assume 

G is not a complete multipartite graph. Then the diameter of G is at most 3m - 4. 

We need to prove a few useful lemmas before proving this theorem. Let ue denote 

the representation associated with 8. We call a set S of vertices of G independent 

if its image ue(S) is a linearly independent set of vectors. Since maps V(G) into 

Rm, any linearly independent set of vertices of G contains at most m elements. The 

distance between two vertices x and y will be denoted by 8(x, y), as usual. A path 

in G with end-vertices x and y is geodetic if its length is equal to a(x, y). 

Lemma 4.1.2 If PI and P2 are two geodetic paths in G with the same length, then 

their images in R"' under ue are congruent and there is an orthogonal transformation 

of R"' mapping ue(Pl) onto uo(P2). 

Proof. There is an obvious bijection from V(Pl) to V(P2) which preserves the 

distances between vertices. Since the distance between any two vertices x and y in G 

determines the distance between their images us(x) and uo(y), our assertion follows 

immediately. 
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Let P be a geodetic path in G with length equal to the diameter d. Let x be the 

initial vertex of P and let Q be the longest path with independent vertex set starting 

at x and contained in P. Denote the length of Q by q. (Hence q + 1 5 m.) It follows 

from the above lemma that any geodetic path of length smaller than or equal to q is 

independent and any with length greater than q is dependent. 

Lemma 4.1.3 If P' is a geodetic path containing Q, and with the same initial vertex 

as Q, then ue(P1) is contained in the span of ue(Q). 

Proof. Let x and x, be the two endpoints of Q. Suppose z is the unique vertex in 

P' \ Q adjacent to x,. Then Q u {z) is dependent by our choice of Q and is spanned 

by the first q + 1 vertices. By Lemma 4.1.2, the image of any geodetic path with 

q + 2 vertices is dependent, being spanned by the first q + 1 vertices. Now since each 

subset of q + 2 consecutive vertices of P' forms a geodetic path, our claim follows by 

a simple induction argument. 

Lemma 4.1.4 Let G be a connected distance-regular graph of diameter d, valency 

k and with an eigenvdue 9 of multiplicity m. Assume that any geodetic path in G 

which is independent with respect to 9 has length at most q. Then, if 8 # f k and 

d > q we have: 

(i) b; = 1 for i 2 q, 

(ii) Q = 1 for i 5 d - q, and 

(iii) ai + 1 5 cq+; for i 5 d - g. 

Proof. Assume, as in the previous lemma, that x and x, are the two endpoints of a 

maximal independent path Q. Suppose z and z' are two vertices at distance q+ 1 from 

x and adjacent to 2,. By Lemma 4.1.3, we have that the images of the two geodetic 

paths Qu{z) and Qu{~') are both contained in the space spanned by ue(Q). Further, 
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for each vertex y in Q, we have B(y, z) = 8(y, 2'). This implies that ue(z) = ~ ~ ( 2 )  

because ue(Q) is a basis of this subspace. Since B(z, z') 5 2, this contradicts the local 

injectivity of ue. Consequently b, = 1 and so, by the monotonicity of the sequence 

{ b ; )  (see Lemma 1.1.1), claim (i) is proven. 

Recall that the inequality c; 5 bd-; holds for any distance-regular graph (see 

Lemma 1.1.1). The claim (ii) then follows immediately. 

To prove claim (iii), let P be a geodetic path in G with length equal to d and 

initial vertex x. Let s; be the vertex in P at distance q + i  from x. Given that bq+i = 1 

for all i  1 0, a simple induction argument on i  shows that s ;  is the unique vertex in 

G at distance i  from x, and at distance q + i  from x .  It follows that each of the ai 

vertices adjacent to s; and at distance i  from x ,  are at distance q + i  - 1 from x .  This 

implies that a; + 1 5 c,+;. 

Proof of Theorem 4.1.1 We are going to show that if d 2 39, then k = 2. 

Assume that d 2 3q. Then by the first two assertions of Lemma 4.1.4 we know that 

c, = b, = 1 and c2, = 1. The latter in turn implies that a, = 0 by the third assertion 

of Lemma 4.1.4. Therefore, we get k = c,  + a, + b, = 1 + 0 + 1 = 2. In other words, 

if k 2 3, then d 5 3 q -  1. 

4.2 Bounding the Valency 

In this section we derive some bounds on the valency of a distance-regular graph with 

an eigenvalue of multiplicity m. 

Lemma 4.2.1 (Godsil [20]) Let G be a connected distance-regular graph with va- 

lency k.  Let 8 be an eigenvalue of G with multiplicitym and suppose 8 # f k.  Assume 

that G is not a complete multipartite graph. Then 
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(iii) if d 3 2m - 1, then al = 0 (and thus k < m). 

Proof. Let ue be a representation associated with 8. It is clear that for a vertex 

u E V(G) any pair of the vertices in G(u) are either at distance 1 or at distance 2 

in G. Since the distance between two image vectors under ue only depends on the 

distance of the two vertices in G, it follows that ue(G(u)) is a 2-distance set in Rm. 

According to Lemma 2.3.3, all image vectors have the same length and the vectors 

in ue(G(u)) lie in a sphere centred at the origin in R". In addition, since the vertices 

in G(u) all have the equal distance (namely 1) to the vertex u, the image vectors in 

ue(G(u)) lie in a second sphere centred at u ~ ( u ) .  Therefore ue(G(u)) actually lies in 

the intersection of two spheres in R", which is contained in an (m - 1)-dimensional 

affine space. Thus ue(G(u)) is a spherical 2-distance set in an (m - 1)-dimensional 

affine space. Now apply Lemma 3.1.1 and get 

By the local injectivity of ue, this inequality implies 

To prove (ii) assume that a1 = 0. This implies that the vertices in G(u) are 

all distance two apart, so ue(G(u)) is a 1-distance set (i.e., a regular simplex) in an 

(m - 1)-dimensional affine space. Thus we must have 

Finally, assume that d 2 2m - 1. Since the inequality q + 1 < m holds in general, 

we have d 2 2q + 1. It follows from Lemma 4.1.4 that c,+l = 1 and this, in turn, 

implies that a1 = 0. 
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Remark.  Since the exact upper bounds for spherical 2-distance sets in R3, R4 and 

RS have been obtained in Section 3.3, we can substitute these bounds in the above 

proof and improve Lemma 4.2.l(i) as follows. 

(a) If m = 4, then k 5 6. 

(b) If m = 5, then k 5 10. 

(c) If m = 6, then k 5 16. 

A similar geometric argument can be applied to prove the next proposition. 

Proposition 4.2.2 Let G be a connected distance-regular graph with valency k .  Let 

6 be an eigenvdue of G with multiplicitym and suppose 6 # f k. Assume that G is 

not a complete multipartite graph. Then 

(ii) if al # 0 and c2 = 1, then k 5 m(al + l ) /a l .  

Proof. Recall that a1 = IG(u) n G(v)l for any u E V(G) and any v E G(u). Write 

a1 = r and G(u) n G(v) = {wl, . . . , w,). Then we see that 

These two equations lead to the corresponding equations for the inner products. 

These show that the subspace spanned by the vectors 

is orthogonal to the subspace spanned by u ~ ( u )  and ue(v). The former can have 

dimension at most m - 2 because u ~ ( u )  and ue(v) are linearly independent. Therefore 
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{ue(w;) I 1 5 i  5 r) can be viewed as r points in an (m - 2)-dimensional affine space. 

By Lemma 3.1.1, this gives the bound 

The bound for bl can be proved similarly. 

Now we are going to show that if c2 = 1 and a1 # 0, then the subgraph induced 

by G(u) is a union of cliques; after that we shall prove claim (ii). We first show 

that any vertex x in G(u) \ {v, ~ 1 , .  . . , w,) cannot be adjacent to any of the vertices 

in {v, wl, . . . , w,). Assume x is adjacent to one of w;, say wl. Since x does not 

belong to {wl , . . . , w,), it is not adjacent to v and thus 6(x, v) = 2. But G(v) n G(x) 

contains two distinct vertices u and wl. Hence cz 2 2, contradicting the assumption 

that c2 = 1. It then follows that the a1 + 1 (= r + 1) vertices v, wl, . . . , w, induce a 

complete subgraph. Therefore G(u) is partitioned into k/(al + 1) cliques. 

The image of each clique is a regular simplex with al + 1 vertices and spans a 

subspace of dimension al + 1 or dimension al. Let 

be one of these subspaces. Then W itself contains another subspace 

Wo := span{ue(w;)-ue(wj) I 1 j r 1, i f  j ) .  

Note that any two vertices in the same clique are at distance 1, whereas any two 

vertices in different cliques are at distance 2 in G. It follows, as in part (i), that 

Wo is orthogonal to each of the subspaces spanned by the cliques other than W. By 

symmetry we can actually get k/(al + 1) such subspaces, each of them with dimension 

exactly al (= r). These subspaces are mutually orthogonal and they are in Rm. So 

we must have 
k 

a1 - I m, 
a1 + 1 
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or 
m(a1+ 1) 

k 5 
a1 

We are done. 

Our method can provide considerable information about a distance-regular graph 

if the diameter is relatively large, compared with the eigenvalue multiplicity m. 

A distance-regular graph of diameter d is said to be antipodal if its vertex set can 

be partitioned into classes with the property that any two vertices in the same class 

are at distance d and any two vertices in different classes are at distance less than d. 

Proposition 4.2.3 (Godsil [ Z O ] )  Let G be a connected distance-regular graph of 

diameter d and d e n c y  k at least three. Assume that G is not a complete multipartite 

graph and G has an eigendue 8 # f k of multiplicity m. Let q be the maximal 

length of a geodetic path in G, independent with respect to 8. If d = 3q - 1, then G 

is antipodal, and if d > 2q, then k < m + 2q - d + 1. 

Proof. Assume that d = 3q - 1. We first verify the following claims: 

(a) b; = 1 for q 5 i 5 3q - 1; 

(b) c; = 1 for 1 < i < 2q - 1; 

( c )  a; = 0 for 1 < i < q - 1; 

( d )  b ; = k - l f o r l < i < q - 1 ;  

(e) b; = c; = 1 for q < i < 2q - 1; 

(f) a; = k - 2 for q < i 5 24 - 1; and 

(g) c; = k -  1 for 2q 5 i 5 3q- 1. 

All these claims are consequences of Lemma 4.1.4 and the identity q + a; + bi = k, 

1 < i 5 k. Claims (a) and (b) are obvious, and (c) follows from (b). Together (b) 

and (c) imply (d). Claim (e) yields (f) and thus (g). 
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With the values of b; and c; in hand, one can easily calculate that k3q-l = 1 using 

the relation k;b; = Ic;+lc;+l (see Lemma 1.1.1). So G is antipodal as claimed, and 

each (antipodal) class consists of exactly two vertices. 

Now assume that d = 3q - T for some T, 1 5 T 5 q - 1. Since d 2 2q + 1, 

we have a1 = 0. As easy consequences of Lemma 4.1.4 we deduce that c2,-+ = 1, 

cq-, = 1 and a,-, = 0. Hence k = cq-, + a,-, + bq-, = 1 + b,-,. We next show that 

bq-, 5 m - (q - T). 

Let P be a geodetic path of length q - T with two end vertices x and x,-,. Let 

y and z be two vertices at distance q - T + 1 from x and adjacent to 2,-,. Since 

8(u,y) and 8(u, 2) are equal for each vertex u in P, it follows that uq(y) - ug(z) 

is orthogonal to each of the q - T + 1 vectors u@(u). Since these q - T + 1 vectors 

are linearly independent, their orthogonal complement in R" is an (m - q + T - 1)- 

dimensional space. This means that the images of the bq-, vertices which are adjacent 

to 2,-, and at distance q - T + 1 from x all lie in an (m - q+ T - 1)-dimensional &ne 

space. 

Finally, a1 = 0 implies that any two of these bq-, vertices are at distance two in 

G. Therefore their images form a regular simplex in the &ne space. Accordingly we 

must have b,-, 5 (m-q+r-1)+1= m-q+r,  and k 5 m - q + r + l  = m+2q-d+1. 

0 

The second half of the above proof actually validates the following useful result. 

Corollary 4.2.4 Let G be a distance-regular graph of diameter d and valency k 

at least three. Assume that G is not a complete multipartite graph and G has an 

eigenvalue 8 # f k of multiplicity m. Let q be the maximal length of a geodetic path 

in G, independent with respect to 8. Then if a1 = 0, b; I: m - i for 1 5 i 5 q. 



Chapter 5 

Classifying Dist ance-Regular 
Graphs with an Eigenvalue of 
Multiplicity Four 

We are now going to classify the distance-regular graphs with an eigenvalue of mul- 

tiplicity four. The main result is stated as follows. 

Theorem 5.0.1 The connected distance-regular graphs with an eigenvalue of mul- 

tiplicity 4 are: 

(1) Ks, L(K5), K3,3, L(K3,3), Petersen graph, the line graph of Petersen graph, 
- 

Pappus' graph, Desargues' graph, 4-cube, dodecahedron, 4K2, and K5,5 minus 

a 1-factor; and 

- 
(2) Complete 5-partite regular graphs 5 K, with r 3 2. (An infinite family). 

The intersection arrays and spectra of these graphs are given in the Appendix. 
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5.1 The Scheme for Classifying Distance-Regular 
Graphs with an Eigenvalue Multiplicity Four 

The intersection arrays and the spectra for complete multipartite regular graphs have 

been presented in Section 1.2, from which one can easily see that such a graph can 
- 

have an eigenvalue with multiplicity four if and only if it is 5K, for some n. The rest 

of this paper will classify the remaining distance-regular graphs. 

It is clear from Theorem 4.1.1 and the remark following Lemma 4.2.1 that the 

diameter of the graphs under investigation is at most eight and the valency is at most 

six. To complete the classification, we need only to consider the following five cases: 

(I) k = 3; 

(11) k = 4 and a1 = 0; 

(111) k = 4 and a1 # 0; 

(IV) k = 5 and a1 # 0; and 

(V) k = 6 and a1 # 0. 

As we mentioned in Section 1.3 the distance-regular graphs of valency three have been 

completely classified. There are exactly thirteen such graphs (Biggs et al. [5]). We 

list the intersection arrays and spectra of these thirteen graphs in the Appendix. By 

checking this list, we see that five of them have an eigenvalue of multiplicity four. They 

are K3,3, Petersen graph, Pappus' graph, Desargues graph and the dodecahedron. 

To deal with the cases (11)-(V), we apply the representation method as well as 

some elementary arguments. For one subcase in case (11) we use a computer. We 

postpone case (11) to the end of this chapter. 
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5.2 Distance-Regular Graphs with Valency Four 
and a1 # 0 

Theorem 5.2.1 Let G  be a connected distance-regular graph with valency k = 4. If 

a1 # 0 then either 

(i) al = 3 and G  is Ks, 

(ii) al = 2 and G  is the octahedron, or 

(iii) a1 = 1 and G  is the line graph of a (k,  9)-graph with k = 3 and g = 4,5,6,8 or 

Proof. The first assertion is obvious. For (ii), suppose al = 2. Then for any vertex 

u  E V ( G ) ,  the induced subgraph G(u) is a 4-cycle. Thus aJl induced subgraphs { u )  u 

G(u) are isomorphic. Now let u be any vertex in V ( G )  and G(u) = { v l ,  v2, v3, v4 ) .  

Since bl = 1, we may define w  to be the unique vertex in G(v l )  such that O(u, w )  = 2 .  

Then G(vl ) = {u ,  v2, w ,  vq) .  This is a 4-cycle and w  is adjacent to v2 and v4. Applying 

the same argument to v2 will show that the same vertex w  is adjacent to vl and v3. 

Therefore w  is actually adjacent to all four vertices in G(u).  This shows that G is 

isomorphic to the octahedron. 

To prove (iii), let a1 = 1 .  Then for any vertex u E V ( G )  the induced subgraph 

{u) u G(u) is isomorphic to the graph in Figure 5.1. Note that a graph G  is a line 

Figure 5.1: Subgraph induced by { u )  U G(u) 



CHAPTER 5. EIGENVALUE MULTIPLICITY FOUR 52 

graph if and only if the edges of G can be partitioned into cliques in such a way that 

no vertex lies in more than two cliques (see, e.g., Theorem 8.4 of Harary [22]). So 

G = L ( H )  is the line graph of another graph H. By Lemma 1.4.1, H is a (3, g)-graph 

for some g. It is known (see, for example, Chapter 23 of Biggs [4]) that (3, g)-graph 

can exist if and only if g = 3, 4, 5, 6, 8 or 12. We note that when g = 4, 5, 6, 8, or 

12 the line graph of the (3, g)-graph has a1 = 1. This finishes the proof. 

The (3,4)-graph is the bipartite graph K3,3 and the (3,s)-graph is commonly 

known as Petersen graph. By checking the eigenvalue multiplicities for the graphs 

listed in Theorem 5.2.1 we get the following 

Corollary 5.2.2 Let G be a connected distance-regular graph with vdency k = 4 

and a1 # 0. If G has an eigendue of multiplicity 4, then G is either Kg or the line 

graph of K3,3 or the line graph of Petersen graph. 0 

5.3 Distance-Regular Graphs with Valency Five 
and a1 # 0 

Theorem 5.3.1 Let G be a connected distance-regular graph with d e n c y  k = 5. If 

a1 # 0, then G is either the complete graph K6 or the icosahedron. 

Proof. Since kal must be even, a1 can only be 2 or 4. If a1 = 4 we get the complete 

graph Kg.  

Assume a1 = 2. Then for any u E V(G), the neighbourhood G(u) is a 5-cycle. 

Let u be a fixed vertex in G and G(u) = {vl, v2, us, v4, v6). As b2 = 2, we can write 

G(vl) = {u, v2,vb, 21, 2 2 )  and these vertices form a 5-cycle. This implies that a2 2 1 

and c2 2 2. By the relation k2c2 = klbl = 5 x 2 = 10 we see that c2 = 2 and k2 = 5. 

Since a2 5 k - c2 = 3 and k2a2 is even, it follows that a2 = 2. In summary we now 



CHAPTER 5. EIGENVALUE MULTIPLICITY FOUR 53 

have a1 = 2, bl = 2, c2 = 2, a2 = 2 and b2 = 1. It is then easy to verify that the 

subgraph induced by {u) u'G(u) U G2(u) is isomorphic to the graph in Figure 5.2. 

In particular the induced subgraph G2(u) is a 5-cycle. Since bz = 1, for any vertex 

Figure 5.2: Subgraph induced by {u) U G(u) U G2(u) 

a in G2(u), there is a unique vertex x in G3(u) adjacent to z. Since G(z) is also a 

5-cycle, z should be adjacent to the two neighbours of z in G2(u). Applying this 

argument to every vertex in G2(u) we see that the vertex x is the unique vertex in 

Ga(u), which is adjacent to all the five vertices in G2(u). SO the graph is isomorphic 

to the icosahedron. 

It is easy to verify that neither Ks nor the icosahedron has an eigenvalue with 

multiplicity four. 

Remark. The following results are stated (without proof) by Doyen, Hubaut and 

Reynaert [15]: Suppose G is a connected graph and the subgraph induced by the 

neighbourhood of any vertex is isomorphic to a fixed graph H. 

(a) If H is a 4-cycle, then G is the octahedron; 

(b) If H is a 5-cycle, then G is the icosahedron; 
- 

( c )  If H is a complete multipartite graph sK,, then G is (s + l)K,. 

These results would help to simplify the proofs of Theorem 5.2.1 (when a1 = 2), 

Theorem 5.3.1 (when a1 = 2) and Lemma 5.4.5. However, since a proof of these 
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results could not be traced after a search in mathematical literature, we choose to 

produce our proofs independently. 

5.4 Distance-Regular Graphs with Valency Six 
and a 1  # 0 

Theorem 5.4.1 Suppose G is a connected distance-regular graph of valency k = 6,  

and G is not a complete multipartite graph. If G has an eigenvalue 8 with multiplicity 

m = 4,  then G is L(K5) .  

We will split Theorem 5.4.1 into four lemmas, in accordance with the four possible 

values for a1 ( 1  < al < 4) .  

Recall that in Theorem 2.6.1, we have that if a distance-regular graph has an 

eigenvalue of multiplicity less than the valency, then this eigenvalue is either the 

second largest one or the least one. Hence the eigenvalue 9 in Theorem 5.4.1 is either 

the second largest or the smallest. In particular, if 8 is negative, it must be the 

smallest eigenvalue of G. 

We begin by considering the graphs with a1 = 1 .  

Lemma 5.4.2 Suppose G is a connected distance-regular graph of valency k = 6, 

and G is not a completemultipartitegraph. If G has an eigenvalue 8 with multiplicity 

m = 4, then a1 # 1 .  

Proof. Suppose that a1 = 1 .  Then for each vertex u E V(G), the induced subgraph 

{u) U G(u) is isomorphic to the graph in Figure 5.3. Let uo be the representation 

associated with 8. Note that maps each triangle ( K 3 )  in G to  an equilateral triangle 

in R4 which is inscribed in a sphere. All these triangles are congruent and span a 
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Figure 5.3: Subgraph induced by {u) U G(u) 

subspace of the same dimension; either three (non-degenerate) or two (degenerate). 

We will discuss the two cases separately. 

Case 1. Suppose each of these triangles spans a 3-dimensional subspace. In 

particular the subspace spanned by {u~(u) ,  ue(vl), ug(v2)) will have dimension three. 

Write p = ue(v3) - ue(v4) and q = ue(v5) - ue(v6). Knowing that the inner product 

of two image vectors is determined by the distance between the two vertices in G 

(Lemma 2.3.3), one can easily verify the following equations. 

These show that the subspace spanned by {p,q) has dimension two and is orthogonal 

to the subspace spanned by {u~(u) ,  ue(vl), ug(v2)). It then follows that ug({u)~G(u))  

will span a subspace of dimension at least five, contradicting that ue(G) E R4. 

Case 2. Suppose each triangle formed by the images of K3's spans only a subspace 

of dimension two. Since the vertices u, vl, v2 form a triangle (refer to Fig. 3), the 

Gram matrix of the vectors ue(u), ue(vl) and ue(v2) is 
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where J is the all 1 matrix. As wl < 1, then F can be singular if and only if 

3w1 + (1 - wl) = 0, i.e., wl = - j. 

Recall from Equation 2.5 that the sequence of cosines {w; : 0 5 i < d) satisfies 

the recurrence 

C;W;-I + aiw; + b;w;+I = 6w;, O < i < d ,  

with the understanding that w-1 = wd+l = 0 . In particular, 

1 We therefore have 6 = -3 and w, = a.  Knowing that wl = -a and wz = i, one can 

derive that 

It is easily seen (by Corollary 2.3.3) that the image of a neighbourhood G(u) forms 

a 2-distance set in an affine space of dimension m - 1 = 4 - 1 = 3. Furthermore, 

ue(G(u)) contains six points, and for each point x in uo(G(u)) there is exactly one 

point in ug(G(u)) at distance a from x. (The remaining four points are thus at 

distance p from z.) This uniquely determines the configuration: it is the regular 

octahedron. 

Summarizing the above calculations, we have that the distance from u.(u) to any 

of the six points ue(v;) is 4. The six points ue(vl), ue(vz), . . . , uo(vs) form a regular 

octahedron with axis length 4 and edge length fi. These properties uniquely 

determine the configuration {u~(u) )  u ue(G(u)) in R4. 

The preceding discussion works for any vertex of G. In particular, the six vertices 

in G(u) each form a regular octahedron in R4 in the same manner. This will enable us 
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to determine the image configuration of the second neighbourhood G2(u) of u. Each 

vi, 1 5 i 5 6, has four neighbours in G2(u).  We start with vl and its neighbours. 

Let zl ,  z2, z3, and z4 be the four neighbours of vl in G ~ ( u ) .  Denote by Tl the 

regular octahedron formed by the images of u, v2,z1,. . . ,z4. We are going to determine 

the whereabouts of the four points v e ( z l ) ,  . . . , ue(z4) in R4. Without loss of generality, 

we assume the following: 

We write 0 = (0 ,0 ,0 ,0)  as the origin of R4. Figure 5.4 gives a rough demonstra- 

tion of the configuration. (It is not possible to visualize that A1, A?, . . . , A6 form a 

regular octahedron in R4.)  Let X = ( x l ,  x2 ,  x3 ,  x 4 )  represent any of the four points 

Figure 5.4: Configuration of ue({u)  U G(u) )  in R' 

1 ue(zl) ,  . . . , ue(z4).  Since the inner product ( X ,  D) = w2 = i, we deduce that x4 = ,. 
In the same manner ( X ,  A I )  = wl = - f implies that xl  = - d. 4 It  then follows from 

1x1 = 1 that x: + x i  = ($)z. Thus X satisfies three equations which represent a 
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circle in a plane. In other words, the four vertices ue(zl), . . . , ue(z4) can be nowhere 

but on that circle. 

Applying this argument to the remaining five vertices v2,. . . , v6 in G(u) ,  we can 

easily determine the equations for the corresponding five circles, in which the four 

"outer" neighbours of each vertex will reside. The equations for all six circles are 

presented as follows. 

x3 = - fi 
1 

4 
2 4  = , For v6, 2 4  = , For vs, 

x: + x: = ($)2 2: + x: = ($)' 

Looking at these equations, one can easily see that 

(i) the six planes bearing the six circles lie in the 3-dimensional affine space 2 4  = i, 
(so they can be treated as lying in R3), 

(ii) these six planes enclose a cube with centre at the origin of R3, edges parallel to 

the axes and the length of each edge d / 2 ,  and 

(iii) the diameter of each circle is twice as long as the edge length of the cube. 

Figure 5.5(a) depicts the cube and four of the six planes. From (i), (ii) and (iii), 

it  is clear that each circle has exactly two intersection points with any of the four 

lateral circles, and has no intersection with the circle on the opposite face of the cube. 

Hence each circle has eight intersection points. Figure 5.5(c) shows the position of 

these eight intersection points on the front circle. 
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Figure 5.5: Six circles on the 

(D) 

six faces of a cube in R3 
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So the image vectors of G2(u) reside in the six circles. We now show that 1 5 

c2 5 2, and then rule out both possibilities. Since each circle contains four image 

points (vectors) and there are six circles, the total number of distinct image points 

is at most 24. However, this number can be smaller than 24 because some circles 

may share a common image point. From (iii) above we see that no three circles 

can intersect at a common point. It follows that the possible number of image points 

would reach its minimum if every image point resided at an intersection of two circles. 

Then the total number of image points reduces to 2412 = 12. We therefore have 

12 5 Iug(G2(u))I 5 2 4 .  Noting that IG2(u)/ = klbl/c2 = 24/c2, we get 1 5 c2 5 2 .  

Suppose c2 = 2. Then IG2(u)l = 12 and every image point is at an intersection 

of two circles. Since the four image points in each circle are actually four vertices 

in a regular octahedron, they should partition the circle into four equal parts. It 

follows that for each circle there can be only two choices for the position of the four 

image points on it. The four points of one choice interlace the remaining four (see 

Figure 5.5(D)). In particular, any two adjacent points among the eight cannot belong 

to the same choice. Hence for any adjacent pair of points in a circle only one of them 

could be an image point. Now we observe that around each corner of the cube there 

are three intersection points (refer to Figure 5.5(B)). Any two of these three are in 

a circle and they are adjacent points in that circle. It follows that among the three 

intersection points around each corner of the cube only one can be an image point. A 

cube has eight corners, so there can be at most eight image points. This contradicts 

the fact that lue(G2(u))l = 12. 

We are now only left with the subcase al = 1 and c2 = 1 in Case 2. Notice that 

in this case the vertices of G(vl) have distance either 2 or 3 in G from the vertices 

of G(v2). This implies that the four points on one circle can take only two values 

as distances to any of the four points on the opposite circle. (These two values are 
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determined by wz and w3.) I t  then follows that the relative position of the eight 

points on a pair of opposite circles is uniquely determined. The four points on one 

circle "interlace" the four points on the other. By some elementary calculation (based 

on the configurations in Figure 5.5) one can easily verify that the shorter one of the 

two candidate distances should be 

But on the other hand, we know from Equation 5.1 that 

for any z ,  y with d(z,  y) = 2 in G. So the distance in (5.2) could only be realized by 

a pair of vertices z ,  y with 8(z,  y) = 3 in G. 

Since 8 = -3, by Lemma 2.6.1, 8 must be the smallest eigenvalue of G. We 

have learned from Lemma 2.4.2 that if 8 is the i-th largest eigenvalue of G, then 

the corresponding sequence of cosines has exactly (i - 1) sign changes. Hence the 

sequence of cosines corresponding to 8 = -3 is alternating and w3 is non-positive. It 

follows that d(ue(z), ue(y)) 2 f i  for any z ,  y E V(G) with 8(z ,  y) = 3 in G. This 

again contradicts (5.2) above. We are finished. 

Next, we consider distance-regular graphs with valency k = 6 and a1 = 2. 

Lemma 5.4.3 Let G be a connected distance-regular graph of valency 6 and a1 = 2. 

Then G is the line graph of a (4,g)-graph with g = 4,6,8,12. 

Proof. There are only two non-isomorphic 2-regular graphs on six vertices. Hence, 

for any vertex u in G, the induced subgraph {u) U G(u) is isomorphic to one of the 

two graphs in Figure 5.6. We will prove the lemma in two cases. 
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v7 

Figure 5.6: Subgraph induced by {u) U G(u) 

Case 1. Suppose there exists a vertex u in V(G) such that the induced subgraph 

{u) U G(u) is isomorphic to the graph Nl in Figure 5.6. Then it is easy to see that 

for any vertex v in G(u) the induced subgraph {v) u G(v) is also isomorphic to Nl. 

It follows from the connectedness of G that all the induced subgraphs {u) u G(u), 

u E V(G), are isomorphic to Nl in Figure 5.6. Therefore the edges of G can be 

partitioned into cliques such that each vertex lies in exactly two cliques. By Theorem 

8.4 in Harary [22], for example, G is the line graph of another graph H, where H must 

be a (4,g)-graph. It is known (see, for example, Chapter 23 in Biggs [4]) that there 

exist only five (4, g)-graphs, namely, the (4,3)-graph (Ks), the (4,4)-graph (K4,4), 

the (4,6)-graph, the (4,8)-graph and the (4,12)-graph. The line graphs of the last 

four have a1 = 2, while L(Ks) has a1 = 3. 

Case 2. Now suppose that all the induced subgraphs {u) u G(u), u E V(G), 

are isomorphic to the graph N2 in Figure 5.6. For a fixed u E V(G), let G(u)  = 

{vl, v2,. . . , v6). The subgraph G(u) is a 6-cycle. Since bl = 3, write G2(u) n G(vl) = 

{zl, z2, z3). Then G(vl) = {u, v6, zl, 22,  z3, v2) must also be a 6-cycle (see Figure 5.7). 

This clearly implies that a2 2 2 and c2 2 2. By the relation k2c2 = kbl = 6 x 3 = 18, 

c2 may be 2, 3 or 6. We deal with these cases in turn. 

Suppose c2 = 2. Then k2 = IG2(u)1 = 9. Hence a2 may be 2 or 4. First assume 

a2 = 2. Notice that in the subgraph induced by {u) U G(u) U {vl) U G(vl) (see 
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Figure 5.7: Subgraph induced by { u )  U G ( u )  U (G2(u) n G(v1)) 

Figure 5.7), the vertex z2 is adjacent to a unique vertex (namely v l )  in G(u)  while zl 

and zg each have two neighbours in G(u).  We call z2 the centre-neighbour of vl and 

call zl and 23 side-neighbours of vl. Thus each vertex v;, 1 5 i 5 6 ,  in G ( u )  has a 

unique centre-neighbour and two side-neighbours. 

Now since c2 = 2, 2 2  must be adjacent to a second vertex vj in G(u) and 2 2  is the 

centre-neighbour of that vj,  (2 5 j 5 6).  It  then follows from al = 2 that zl and z3 

must be the two side-neighbours of that same vj. This is an impossible situation. So 

a2 cannot be 2. 

We are left with only a2 = 4 and this gives an array 

This array does not have an eigenvalue with multiplicity four. 

We next suppose c2 = 3. Then a2 may be 2 or 3. I f  a2 = 3 we get the array 

which is not feasible. 

Now let a2 = 2. Then bl = 1 and the graph G has diameter at least three. We 

know that kl = k2 = 6 and k3c3 = k2b2 = 6.  Since c3 2 c2 = 3, c3 can only be 3 or 6. 
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If cg = 3 then ks = 2 and a3 2 2, which is impossible. So we can have only one array 

This array fails the multiplicity check. 

Finally, if cz = 6, it could give only one candidate array 

If this graph existed, it would be an antipodal graph on 10 vertices and its antipodal 

quotient would have either five vertices or two vertices. But on the other hand, 

since a graph and its antipodal cover should have the same valency, the antipodal 

quotient of G should be a 6-regular graph. This contradiction shows that the graph 

corresponding to this array does not exist. 

It is easy to check that none of the four line graphs given in Lemma 5.4.3 has an 

eigenvalue of multiplicity 4. So a distance-regular graph satisfying the assumption of 

Theorem 5.4.1 cannot have a1 = 2. 

We next consider the distance-regular graphs with valency 6 and a1 = 3. 

Lemma 5.4.4 Suppose G is a connected distance-regular graph of d e n c y  k = 6, 

and G is not a complete multipartite graph. If G has an eigendue 0 with multiplicity 

m = 4 and a1 = 3, then G is L(Ks), the line graph of the complete graph Ks. 

Proof. There are only two non-isomorphic 3-regular graphs on six vertices and these 

are shown as Dl and D2 in Figure 5.8. Note that Dl (Z K3,3) is bipartite and D2 

(E L(K2,3)) is non-bipartite. We divide the proof into two cases. 

Case 1. Assume that there exists a vertex u in V(G) such that the induced 

subgraph G(u) is isomorphic to the graph Dl in Figure 5.8. Assume further that 
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Figure 5.8: Two 3-regular graphs on six vertices 

this graph G(u) is actually Dl (with the same labeling of vertices) and G(u) = 

{vl, v2, . . . , us). Let be the representation associated with the eigenvalue 8, ve : 

V(G) --+ R4. Observe that the vertices vl, us and v5 are pairwise at distance two 

in G. Hence the image vectors ue(vl), ue(v3) and ue(vs) form a regular simplex in 

R4. Similarly the image vectors u6(v2) ,ug(v4) and U @ ( V ~ )  also form a regular simplex. 

Furthermore, these two simplexes are congruent and lie on the same sphere (centred 

at the origin) in R4. SO they span two subspaces of the same dimension in R4. The 

remainder of the argument is broken into several steps. 

(a )  The two su bspaces each have dimension three. 

Since ue(vl), ug(v3) and ue(v5) form a spherical regular simplex, they either span 

a 2-dimensional subspace (degenerate case) or span a 3-dimensional subspace (non- 

degenerate case). If span ( u ~ ( v ~ ) ,  ue(v3), ue(vs)) has dimension two then ue(vl) + 
ue(v3) + ue(v5) is the zero vector in R4. Similarly ug (v2) +ug(v4) +ug(v6)=0. Therefore 

But on the other hand, we know by Equation 2.1 that 

So 8 = 0. This implies by Lemma 2.6.1 that G has either its second largest eigenvalue 

equal to 0, or its smallest eigenvalue equal to 0. The former implies that G is a 
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complete multipartite graph while the latter implies that G is a single vertex. They 

both contradict our assumption. 

(b) span {ue(vi), ue(~3), ~ ( v s ) )  # span {ue(vz), ~e (v r ) ,  ue(vs))- 

Assume the opposite. If the two subspaces are identical, then by Equation 2.1 all the 

seven points {ue(u), ue(vl), . . . , ue(v6)) lie in a 3-dimensional space. Recall that the 

image of a graph under a representation is on the unit sphere, and the intersection 

of a unit sphere with a subspace is again a sphere (though not necessarily a unit 

sphere). So these seven image vectors would lie on a sphere in the 3-dimensional 

subspace. This gives a spherical 2-distance set in R3. But that is impossible since by 

the discussion in Section 3.3 we know that a 2-distance set in R3 can have at most 

six vertices. 

( c )  There exists a vertex vj with j = 2,  4 or 6 such that the image vectors in the 

set {ue(vl), ue(v3), ue(v6), ue(vj)) span the whole space R4. 

This is an immediate consequence of (b). Without loss of generality we assume j = 2. 

The proof of Case 1 can now be completed. From the graph Dl = G(u) we can 

see that the following are true in G: 

It follows from Lemma 2.3.3 that the corresponding inner products satisfy 

Therefore the vector (ue(v4) - ue(v6)) is perpendicular to each element of a basis of 

R4. This forces ue(v4) = ue(v6), contradicting the local injectivity of the mapping ue. 
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Case 2. Suppose for any vertex u in G the induced subgraph G(u) is isomorphic to 

D2 in Figure 5.8.  Fix a vertex u E V(G) .  Write G(u) = { v l ,  2 1 2 , .  . . , v g )  and assume D2 

is the subgraph induced by G(u). Let zl and 2 2  be the two vertices in G2(u) adjacent 

to v2. Notice that the induced subgraph G(v2) is also isomorphic to D2 and that the 

two triangles in D2 are disjoint. Since {u,v1,v3) already forms a triangle in G(v2),  

the remaining three vertices {v5 ,  z l ,  e2)  form the other triangle. The edges between 

these two triangles should be a matching. So the induced subgraph G(u) U { e l ,  z2)  

contains the graph in Figure 5.9 as a subgraph. Applying the same argument to vl 

Figure 5.9: A subgraph of the subgraph induced by G(u) U (21, z2)  

and noting that el is adjacent to v l ,  we see that zl should also be adjacent to v6. It 

follows that c2 2 4 and a2 2 1. By  the equation k2c2 = kbl = 6 x 2 = 12 we obtain 

c2 = 4 and k2 = 3. To ensure that k2a2 is even we must have a2 = 2. We are thus led 

to the array 

which shows that G is a 6-regular graph on ten vertices and has thirty edges. It is 

easy to verify that L(K5) is one realization of this array. We are now going to show 

that L(Ks)  is actually the only distance-regular graph with this array. 

Since G(u) Z D2, any maximum clique of the subgraph G(u) is isomorphic to 

K3. It follows that any maximum clique of graph G is isomorphic to Kq. As each 

vertex vi in G(u) is contained in a maximum clique (S K3)  of G(u),  each edge uv; is 
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contained in a maximum clique (S K4) of G. Etrthermore, if an edge uvi lied in two 

distinct maximum cliques of G, then the vertex v; would be contained in two distinct 

maximum cliques of G(u). But this is impossible because the two triangles in D2 do 

not have any vertex in common. 

Hence, the edges of graph G can be partitioned into five maximum cliques of G, 

each of them is isomorphic to K4. Each vertex of G is contained in exactly two such 

cliques. It follows (see, for example, Theorem 8.4 of Harary [22]) that G must be the 

line graph of another graph H and H is on five vertices. As each maximum clique of 

G consists of four vertices, H should be a 4-regular graph. So we uniquely determine 

that H Ks and G S L(Ks ) .  D 

We now consider the distance-regular graphs with valency 6 and a1 = 4, which is 

the last of the four cases for Theorem 5.4.1. 

Lemma 5.4.5 Suppose G is a connected distance-regular graph of d e n c y  k = 6. If 

G has an eigendue 8 with multipLicity m = 4 and al = 4, then G is the complete 
- 

multipartite graph 4K2. 

Proof. From the equation k2c2 = kbl = 6, we see that c2 can be 1, 2, 3 or 6. If 
- 

c2 = 6, then G is the complete multipartite graph 4K2. If c2 = 3, then k2 = 2 

and a2 2 k - c2 - 1 = 2, a contradiction. If c2 = 2, then k2 = 3 and a2 2 3, 

a contradiction. If cz = 1, then the neighbourhood G(u), u E V(G), is a disjoint 

union of cliques and by Lemma 4.2.2 we should have k 5 m(al + l) /al ,  or k < 5, 

contradicting the assumption that k = 6. 0 

Remark. In this lemma the assumption on eigenvalue multiplicity is not essential. 
- 

It can be removed with a little effort. In fact, 4K2 is the only connected graph with 
- 

the subgraph induced by the neighbourhood of any vertex isomorphic to 3K2. (See 

the remark after Theorem 5.3.1.) 
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Throughout the lengthy discussion in this section, we have examined all possible 

cases for the distance-regular graphs satisfying the assumption of Theorem 5.4.1. So 

Theorem 5.4.1 is finally proved. 

5.5 Distance-Regular Graphs with Valency k = 4 
and a1 = O 

Our last lemma will again largely involve geometry. 

Lemma 5.5.1 Let G be a distance-regular graph with valency k = 4 and diameter 

d 1 2. Let 8 be an eigendue of G with multiplicity m = 4 and not equd to f k. If 

a1 = 0 and c2 # 1, then G is Ks,a minus a 1-factor. 

Proof. If c2 = 4, then G is complete bipartite graph K4,4 which does not have an 

eigenvalue of multiplicity four. So we need only consider the cases cz = 2 and c2 = 3. 

In what follows we are going to show that c2 # 2, and that if c2 = 3,  then G is K5,5 

minus a 1-factor. 

We first assume that c2 = 2. In this case we have kl = 4 and k2 = 6. Let u be 

a vertex in G and G(u) = ( v l ,  v2, v3, v4) .  Since al = 0, the four vertices in G(u) 

are pairwise at distance two in G.  It follows from c2 = 2 that (G(vi)  n G ( v j ) )  \ { u )  

consists of a single vertex for any 1 < i  < j < 4. We denote this vertex by the 

unordered pair ( i  j )  . Therefore 

We see that the vertex ( i j )  is a neighbour to both vi and v j  in G(u),  and the neigh- 

bourhood of vi consists of u and the vertices corresponding to the three unordered 

pairs containing i .  



C H A P T E R  5. EIGENVAL UE MULTIPLICITY FOUR 70 

Let ue be the representation associated with 8 and denote by w;, 1 < i  < d ,  

the sequence of cosines corresponding to 8. We are going to consider the image 

configuration of { u )  U Gz(u) in P under the mapping ue. 

- 
We know from Lemma 2.4.1 that if w2 = - 1 ,  then G is nK2 for some n or a cycle 

- - 
of length 4n. In our case G would be 3K2 if w2 = - 1 .  But 3K2 does not have an 

eigenvalue with multiplicity four. Hence we have w2 # - 1 .  

We will next prove that the representation ue is injective on { u )  U G2(u).  By the 

local injectivity of ue, the image of u cannot coincide with any vertex in G2(u).  Let 

( i j )  and (k l )  be two vertices in G2(u).  If the two pairs have one number in common, 

say j  = 1 ,  then they are neighbours of vj and are at distance two in G. So their 

images cannot coincide. Now suppose that ( i j )  and (k l ) ,  as unordered pairs, are 

disjoint and ue(( i j ) )  and ue((k1)) coincide in P. Denote by P the common image 

point ue( ( i j ) )  = ue((kl)) .  Then P will have the same distance to each of ue(vl) ,  

ue(v2),  ue(v3) and ue(v4). Note that these four points form a regular simplex and the 

point P itself should be on the unit sphere in P. There is only one choice left for 

point P ,  and that is at the opposite pole on the unit sphere from ue(u).  This would 

imply that w2 = - 1 ,  a contradiction. 

We next show that the images of the five vertices {u ,  ( 1 2 ) ,  (34), (13), (24)) lie on a 

circle in R4. It is easily proved by linear algebra that, given three points in R4 which 

are not collinear, any three spheres respectively centred at these three points intersect 

in a circle. (This circle may be degenerate and become a single point or the empty 

set.) Now observe that {u ,  ( 1 2 ) ,  (34), (13), (24)) is a subset of G2((14)) n G2((23)). 

By Lemma 2.3.3 the images of the five vertices {u ,  ( 1 2 ) ,  (34), (13), (24)) should lie on 

two spheres centred at ~ ~ ( ( 1 4 ) )  and ue((23)), respectively. Since every image vector 

falls on a sphere centred at the origin 0, so do these five image points. It follows 

from w2 # - 1  that the centres of these three spheres are distinct and not collinear. 
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This yields the claim. 

since {(12), (34), (13), (24)) 2 Gz(u), it follows that ue(u) h .as equal dista 

the images of {(12), (34), (13), (24)) in R4. But this is not possible when all these 

five points lie on a circle. Hence c2 + 2. 

Now we consider the case c2 = 3 and determine the unique distance-regular graph. 

Since a1 = 0, the graph G contains no triangle. It follows from c2 = 3 that a2 can be 

either 1 or 0. First assume that a1 = 1. Fix a vertex u in G, and let vl and v2 be a 

pair of adjacent vertices in G2(u). Since c2 = 3 and kl = 4, we see that 

Hence G would contain a triangle, a contradiction. 

Now assume that a2 = 0. Then b2 = 1. Since c3 2 cz = 3, it follows that c3 could 

be either 3 or 4. However, as 

should be an integer, c2 must be 4. So G has diameter three and its intersection array 

This graph does not have any odd cycles because all the ai are zero. Hence G is a 

bipartite regular graph on ten vertices with valency four. Therefore, G is K5,S minus 

a 1-factor. 0 

If c2 = 1, we use a computer to search for feasible intersection arrays. Our 

program consists of three subroutines. First, we generate candidate arrays which 

fall in the range d 5 8, k = 4, al = 0 and c2 = 1, and satisfy the conditions in 
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Lemma 1.1.1. Secondly, for each candidate array we check the numerical constraints 

derived in Lemma 4.1.4 and Lemma 4.2.1. Finally, we compute the eigenvalues and 

their multiplicities for each array which passed the first two examinations. This 

process ~roduced one qualified array, which represents the 4-cube. 

Combining all the discussions in Chapter 5, we have completed the classification 

for distance-regular graphs with an eigenvalue of multiplicity four, which is summa- 

rized in Theorem 5.0.1. 



Chapter 6 

Classifying Dist ance-Regular 
Graphs with an Eigenvalue of 
Multiplicity Five 

In this chapter we classify distance-regular graphs with an eigenvalue of multiplicity 

five. We will first improve the bounds derived earlier, then use a computer to carry 

out detailed calculations. The main result of this chapter is 

Theorem 6.0.1 Let G be a connected distance-regular graph with an eigenvalue of 

multiplicity five. Then G is one of the following graphs. 

(a) K6, L(Ke), complement of L(K6), icosahedron, complement of L(K2,6), halved 

Foster graph, 5-cube, folded graph of 5-cube, complement of folded graph of 

5-cube, the unique graph with array {5,4,1,1; 1,1,4,5), of the folded 5-cube), 

Pet ersen graph, line graph of Pet ersen graph, L(K5), dodecahedron, Desargues 
- 

graph, Johnson graph J(6,3), 5K2. 

- 
(b) AII complete multipartite graphs 6K, with r 2 2. 

All of these graphs are uniquely determined by their intersection arrays. 

The intersection arrays and spectra of these graphs are listed in the Appendix. 
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In this chapter, Proposition 6.1.4 and 6.1.5 are joint work with W.J. Martin. 

6.1 On the Graphs with Large Diameter 

Recall that a distance-regular graph G of diameter d  is said to be antipodal if the 

vertex set of G can be partitioned in such a way that any two vertices in the same 

cells are at distance d ,  and any two vertices in different cell are at  distance less than 

d .  We list some properties of antipodd graphs which will be used in later discussion. 

Lemma 6.1.1 (Taylor and Levingston [31]) Let G be a distance-regular graph 

with diameter d. Then G is antipodd if and only if bi = cd-i for 0 < i 5 d and 

i # LfJ.  0 

Lemma 6.1.2 (Yoshizawa [34]) Let G be a distance-regular graph satisfying ei- 

ther kd 5 2, or kd < k  and girth g 2 5. Then G is antipodal. 0 

The following lemma is due to  Terwilliger [32]. 

Lemma 6.1.3 Let G be a distance-regular graph with valency k  and girth g (g 2 4). 

Let 8 be an eigenvalue of G with multiplicity m, and 8 # f k .  Then 

m 2 ( k - 1  i f g = 4 r ,  o r 4 r +  1; 
m 2 2(k  - I ) ' ,  i fg  = 4r + 2, or 4r + 3. 

We write the above formula explicitly for a few initial cases: 

If g > 4, then k  5 m; 

If g 2 6, then 2(k  - 1 )  < m; 

If g 2 8, then k ( k  - 1 )  5 m; 

If g 2 10, then 2 ( k  - 1)' 5 m; and 

If g > 12, then k ( k  - 1)' < m. 
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By Theorem 4.1.1 and the remark following Lemma 4.2.1, we see that for a 

distance-regular graph with an eigenvalue of multiplicity five, the diameter could 

be at most 11 and valency at most 10. In what follows, we will further reduce these 

bounds. 

It has been shown (Godsil [20]) that if d = 3m - 4, then G is the dodecahedron. 

We are now going to show that in general there is no distance-regular graph with 

d = 3m - 5, and for the case m = 5 there is no such graph with d = 3m - 6. 

Proposition 6.1.4 Let G be a distance-regular graph with valency k and diameter 

d 2 2. If G has an eigenvdue 9 # f k with multiplicitym, then d # 3m - 5. 

Proof. Distance-regular graphs with m = 3 or m = 4, or with valency three have 

already been classified. By checking the list of these graphs (in the Appendix) we 

find that the claim is true for all of these graphs. Therefore we assume that m 2 5 

and k 2 4. 

As in the proof of Theorem 4.1.1 we denote by q the maximum length of a geodetic 

path in G which is independent with respect to 8. (Then q + 1 5 m.) There it is 

proved that d 5 3q - 1. Suppose that G has diameter d = 3m - 5. Then we must 

have q = m - 1, and thus d = 3q - 2. Applying Lemma 4.1.4 we find that c; = 1 for 

1 5 i 5 2m - 4, and al, a2, . . . , am-3 are all zero. It follows that the girth g is at least 

2(m - 3) + 2 = 2(m - 2). 

If m = 5, then g 2 6. It follows from Lemma 6.1.3 that 2(k - 1) 5 m, and so 

k 5 3. Hence, in the rest of the proof we can further assume that rn 2 6. 

In general, Lemma 6.1.3 implies that 

rn 2 (k - 1) W4J 
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It is easy to verify that this inequality cannot hold for any integers k > 4 and 

m 2 6. This contradiction shows that there does not exist distance-regular graphs 

with d = 3 m  - 5. 

Proposition 6.1.5 Let G be a distance-regular graph with valency k and diameter 

d .  Let 8 # f k be an eigenvalue of G with multiplicity m = 5. Then d # 3m - 6. 

Proof. Suppose that G has diameter d = 3 m  - 5 = 10. By the inequality d < 3q - 1, 

it is easy to see that q = m - 1 = 4 and d = 39 - 3. Applying Lemma 4.1.4 we get: 

( a )  bi = 1 for 4 5 i I 8; 

(b) 4 = 1 for 1 5 i 5 6 ;  

( c )  a4 = a5 = k - 2; 

( d )  c8 = k - 1; (since ai + 1 5 c,+;) 

( e )  a1 = 0;  (since ai + 1 < c,+;) and 

( f )  b, = k - 1. 

Therefore the intersection array of the graph should have the pattern 

* 1 1 1  1 1 q c7 k - 1  ~ i )  

0 0 a2 a3 k - 2  k - 2  as a7 0 
k k - 1  b2 b3 1 1 1 1  1 * 

Since a1 = 0 ,  it follows from Lemma 4.2.1 that k I m = 5. Recall that by Corol- 

lary 4.2.4 we have bi 5 m - i for 1 < i 5 q. So b2 5 m - 2 = 3 and b3 5 2. Therefore 

q 5 b3 5 2 and c7 I b2 5 3. 

If a2 = 0 ,  then g 2 7 and that would force k I 3. So we assume that a2 > 1. It 

follows that q 2 a2 + 1 2 2. Therefore q = 2 and b3 = 2. It is easy to calculate that 

kd = kb2/c7%. As b2 5 3 and ~ i )  2 c~ = k -  1, weget 
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By Lemma 6.1.2 we conclude that G is antipodal. It follows from Lemma 6.1.1 that 

c9 = bO = k and b2 = c7. 

If k = 4 ,  then a2 2 1 and b2 2 b3 = 2 which imply that a2 = 1 and b2 = 2 .  We get 

one candidate array. This array is not feasible because the calculation for eigenvalue 

multiplicity does not give integers. Now assume k = 5. As 2 5 c7 5 b2 5 3 ,  we have 

two candidate arrays corresponding to b2 = c7 = 2 and b2 = c, = 3 ,  respectively. 

Both of them failed the integrality check for eigenvalue multiplicities. 

An immediate consequence of the above discussion is 

Corollary 6.1.6 Let G be a distance-regular graph with d e n c y  k and diameter d .  

Let 6 # f k be an eigenvalue of  G with multiplicity m = 5. Then d < 3 m  - 7. 

0 

The following lemma is basically a rephrasing of some known results which will 

be helpful in classifying graphs. 

Lemma 6.1.7 Let G be a distance-regular graph with valency k and diameter d .  Let 

6 # f k be an e igendue  of  G with multiplicity m = 5. Then the following is true. 

(a) I f  al = 0, then k 5 m = 5. 

(b) I f  c2 > 1, then d 5 m = 5. 

(c) I f  al = a2 = 0 and c2 = 1, then k 5 3.  

( d )  I f a l  # 0, then a; # 0 for 2 5 i 5 d - 1. 

Proof. Claim (a) is from Lemma 4.1.1. By Lemma 4 .  .1.4 we have cd-, = 1. If c2 > 1, 

then c2 > cd-* and d - q  < 2. Sinceq 5 m-1 weget d < 2 + q  5 2 + 4  = 6 .  B y  

the condition of claim (c), i t  follows that girth g 2 6 .  Applying Lemma 6.1.3 we get 

2 ( k  - 1) 5 m, or k 5 3.  



6.2 Computer-Aided Search 

All complete multipartite graphs m, F 3 2 are distance-regular and have an eigen- 

value of multiplicity five, sr we have s e n  in Section 1.2. By the discussion in Section 1, 

it is also clear that, berides the complete 6-partite graphs, the intersection arrays of 

the distance-regular paphr  with an eigenval~e of multiplicity five fall in one of the 

following five cases. 

1 Case 5: 4 1  > 0 c2 = 1 a2 > 0 d 5 8  k g 0  1 
For these five cases, we are a computer to search for feasible intersection arrays 

and then identify the resulting arrays. 

] 
- 

Our program consists of two phases. In the first phase, the program does the 

following. 

Index al c2 a2 Diameter Vdency 

Case 1: a1 = O  c2 > 1 a2 free d  5 5 k 5 5  
Case2: a l = O  cs=l a2=O d 5 8  k 5 3  

(a) Generate arrays with &meter and valency in the range specified in the above 

table. 

(b) Check the usud feasibility condition stated in Lemma 1.1.1. 

(c) Check various I W I X ~ ~ ~  m m h i n t s  derived in Chapter 4. (In the actual running, 

these constraints are q d t e  restrictive and effectively eliminate infeasible arrays.) 
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The second phase of the computing mainly consists of a program calculating the 

eigenvalue multiplicities for dist ance-regular graphs. We use this program to check 

the integrality of the eigenvalue multiplicities for those arrays which passed all the 

examinations in first phase. (This program uses the so-called QR-method.) 

The final output of the computing gives out 18 arrays. One of them with an 

eigenvalue of multiplicity three is easily eliminated because there is no such graph in 

the known list (see the Appendix) for distance-regular graphs with an eigenvalue of 

multiplicity three. The rest of the arrays are identified easily and it turns out that 

all of these distance-regular graphs are known ones. The complete classification is 

summarized in Theorem 6.0.1. The intersection arrays and spectra of these graphs 

are listed in the Appendix. 



Appendix 

DISTANCE-REGULAR GRAPHS WITH 

AN EIGENVALUE OF MULTIPLICITY THREE 

tersection Array Spectrum n -1 (tetrahedron) 

octahedron 
(L(K4) = 3K2) 

cube 
(K4,4 minus l-factor) 

icosahedron 

dodecahedron 
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DISTANCE-REGULAR GRAPHS WITH 

AN EIGENVALUE OF MULTIPLICITY FOUR 

Intersection Array Spectrum 

(; ;I) 

( y3) 

(; : i2) 

( i2) 

(: : i2) 

(; : i2) 

( 
4  1 - 1  -4 

) 1 4  4  1 

( 
4  2  -1 -2 1 1 5  4  5  

( 
3  4 0  -4 -3 
1 6 4  6  1 

( 
4  2  0  -2 -4 
1 4 6  4  1 1 

* I 1 2 2 3  
0 0 0 0 0 0  ( 

3  2  1 - 1  -2 -3 
1 4 5  5  4 1 ) 

3 2 2 1 1 *  
* I 1 1 2 3  
0 0 1 1 0 0  ( \/5 -2 -\/5 
3 2 1 1 1 *  

1 3 5 4 4  3  

0  3r 0  + 

n 

5  

6  

10 

9 

8 

10 

lo 

l5 

18 

16 

20 

20 

5r  

Name 

K5 

K3,3 

Petersen graph 

(Lo) 

L(K3,3) 

- 
4Kz 

L(K5 

K5,5 minus 
a 1-factor 

line graph of 
Petersen graph 

Pappus graph 

4-cube 

Desargues graph 

dodecahedron 

= , r 2 2  
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DISTANCE-REGULAR GRAPHS WITH 

AN EIGENVALUE OF MULTIPLICITY FIVE 

Name 

Petersen graph 

(Lo) 
antipodal quotient 
of 5-cube 

complement of 
quotient of 5-cube 

line graph of 
Petersen graph 

icosahedron 

K6,, minus 1-factor 
(L(K2,e)) 

(cant 'd) 
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DISTANCE-REGULAR GRAPHS WITH 

AN EIGENVALUE OF MULTIPLICITY FIVE (cont'd) 

Name 

Johnson graph J(6,3) 

double cover of 
quotient of 5-cube 

halved Foster graph 

dodecahedron 

Desargues graph 

5-cube 

- 
6K,, r > 2 

Intersection Array Spectrum 

{ 0 0 3 0 0  5 ,h 1 -& -3 
1 8 1 0  8 5 

( 0 1 3 1 0  
6 3 1 -2 -3 
1 12 9 18 5 

( * 1 1 1 2 3 \  

n 

20 

32 

45 

0 0 1 1 0 0  
3 ,h 1 0  -2 -,h 
1 3 5 4 4  3 3 2 1 1 1 *  

* 1 1 2 2 3 \  
0 0 0 0 0 0 ~  ( 

3 2 1 -1 -2 -3 
1 4 5  5 4 1 

3 2 2 1 1 * ,  
20 

* 1 2 3 4 5 \  
0 0 0 0 0 0 1  ( 5 3 1 -1 -3 -5 

1 5 1 0  10 5 1 
5 4 3 2 1 * ,  
* 1 5r 
0 4r 0 (7  6r!6 ir ) 
5r r - 1  * 

6r 
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DISTANCE-REGULAR GRAPHS WITH VALENCY THREE 

Intersection A r r a y  Spectrum 
* 1'  

0 2  t (; il) 
3 * ,  
* 1 3  

0 0 0  (; : -13) 
3 2 *  
* 11 '  

0 0 2 ,  (; : ;2) 
3 2 * ,  
* I 2 3  

0 0 0 0  (; i i1 :3) 
3 2 1 *  
* I 1 3  

0 0 0 0  (; f -? ;3) 
3 2 2 *  
* 1 1 2 3 '  
0 0 0 0 0  + ( 3 4 0 - 4 - 3  

3 2 2 1 * ,  1 6 4  6 1 

( 3 2 JZ-1 -1 - 4 - 1  
1 8  6 7 6 

( 
3 2 0 -2 -3 
1 9 1 0  9 1 1 

0 0 1 1 0 0  + ( 3 6 1 0 - 2 - 6  
1 3 5 4 4  3 ) 

( 
3 2 1 -1 -2 -3 1 1 4 5  5 4 1 

* 1 1 1 1 1 3  
0 0 0 0 0 0 0 ( 

3 4 J Z  0 - J Z - 4 - 3  
1 21 27 28 27 21 1 1 

3 2 2 2 2 2 *  
* 1 1 1 1 1 1 3 '  

n 

4 

6 

10 

8 

14 

18 

28 

30 

20 

20 

126 

102 

90 

0 0 0 0 1 1 1 0  

N a m e  

K4 

K3,3 

Petersen 
graph 

cube 

Heawood 
graph 

Pappus 
graph 

Coxeter 
graph 

8-cage 

dodecahedron 

Desargues 
graph 

12-cage 

Foster graph 
(triple cover 
of 8-cage) 

+ ( 
3 2.56 2 0.88 0 -1.35 -1.56 -2.53 
1 9 18 16 17 16 9 16 ) 3 2 2 2 1 1 1 * ,  

* I 1 1 1 2 2 2 3  
0 0 0 0 0 0 0 0 0  

3 4 2  1 0 - 1 - 2 - 4 - 3  
1 12 9 18 10 18 9 12 1 

3 2 2 2 2 1 1 1 *  
> 
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