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ABSTRACT 

It is known that the (2+1)-dimensional non-linear sigma model has topological solitonic solutions 
8 

and that these solitons acquire fractional spin - through a dynamical term called Hopf Invariant. 
2~ 

In this thesis the soliton of the non-linear sigma model coupled to a topologically massive(m) 

abelian gauge field through a topological current is quantized semi classically. The spin of the 
8 e2 

solitons with unit topological charge is evaluated and found to be - ( 8 = z;;;, where e is 
2n: 

gauge coupling constant) independent of mass(m) of the gauge field to all orders in m (m # 0) 

and it is zero for the mass zero. Thus gauging the sigma model does not affect the fractional spin of 

the soliton and hints that there is a phase transition at the mass zero(Taejin Lee, Chekuri N. Rao, 

K. S. Viswanathan. Phys. Rev. D. 39(1989)2350). 

.. . 
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Gliw!mu 

INTRODUCTION. 

It is by now well known that topological properties give rise to "unusual spins" for systems which 

admit topological solitons and where the fundamental fields are bosonic. We call the spin 

"unusual" because it arises from a specific dynamical term rather than from kinematics. Finkelstein 

and Rubinstein showed in their remarkable papers (Ref. 3, 4) that in (3+1) dimensions the 

existence of the kinks in the field configuration is necessary for a bosonic theory to exhibit 

Fermionic character. As we shall see below the "unusual spin "arises because the field 

configuration space is non simply connected. This fact in turn determines the non single 

valuedness of the wave functional defined on the field configuration space. 

There are two procedures to find the "unusual spin" : 

(1) Canonical method (Ref. 12, 35). (We provide a detailed exposition of this method in 

subsequent chapters). 

(2) Path Integral method (Ref. 9, 33, 35, 36, 37, 38) 

The path integral method makes the connection between the "unusual spin" and connectedness of 

the field configuration space explicit. We therefore briefly explain this method in this chapter . 
Let us consider two Vacuum -to-Vacuum process. In one process (i) we create a soliton - anti - 

soliton pair at t = - - (ii) we separate the pair by a large distance (iii)we rotate the soliton 

adiabatically through an angle 2.n and finally (iv) we annihilate the pair at t = + - In the other 

process we perform the same steps as before except step (iii) i. e. we do not rotate the soliton. 

Comparing the amplitudes of these two processes, we find that they differ by a phase factor eiS 

where s is the action corresponding to the adiabatic rotation. Feynman proved that this phase factor 
1 

2nJ 
S is equal to e where J is spin part of the angular momentum of the soliton. J = - A  . 

2.n 



In the case of simply connected configuration spaces each path can continuously be deformed into 

one another and various paths contribute to the total amplitude (each path contributes a factor 
i - s  h 

e ,where s is the action of the corresponding path). If the configuration space (Q) is not simply 

connected there exists some paths which cannot continuously be deformed into one another. Thus 

the paths in the non simply connected space(Q) fall into different equivalence classes determined by 

the first homotopy group lll(Q) (which characterizes the connectivity of the field space). Paths 

belonging to different equivalence classes need not give the same contribution to the total 

amplitude. Each path contributes an extra multiplicative factor x(ai) which will be called its weight 
i 
iiS 

hereafter to the total amplitude in addition to e ,where ai is the topological index (or connectivity 

h J  
index) that characterizes the path. Thus the contribution from each path is x(ai) e . 
In simply connected spaces the amplitude of a path from a time interval ti to t' followed by its 

development over the time interval t' to tf is taken equal to the amplitude of the path developed over 

the time interval ti to tf In non simply connected spaces for a path decomposed into two paths 

belonging to two different equivalence classes characterized by ai and a, is assigned a weight 

factor ~ ( a ~ + ~ )  (= x(ai) ~ ( a , )  because of the additive property of lll(Q)). 

The propagator is the sum over all paths connecting the intial state $ (x) at ti to the final Qf (x) at 

where +(x,ti) = +i(x),+(x,tf) = Qf(x) and So is the action . Probability conservation requires 

IX(ai)l = 1. The complex weight is given by x(ai) = e ' Stopological Wh ere Stopologica~ is the 

35,36 
topological action that arises because of the connectivity of the configuration space . 



To find the spin of the soliton we compare the Vacuum-to- Vacuum amplitudes of the two 

processes. In one we create a soliton , anti-soliton pair and separate them by a large distance and 

then annihilate them. 
37 

The amplitude is given by 

where M is the soliton mass and T is time . In the other process the soliton is infinitely slowly 

rotated through 2x. The rotation corresponds to a path in the field configuration space with a 
9 

weight factor x(ai) that is different from the weight factor of the unrotated soliton path . The 

amplitude is given by 
I -,TM 

< S ( T ) I S ( O ) > ~ ~  = ~(a i )  

h 
We see that the amplitude differ by a weight factor x(ai) = e which is equal to e 

Thus we see that the non trivial topology of the field configuration space contributesto the unusual 

spin. 

An example of a theory which exhibits unusual spin in (3+1) dimensions is the 

Skyrme 37*38mode1. The fields are mappings from d3) + SU(2) and the third homotopy group 

(3) l13(SU(2)) -- l13(S ) = Z. (Z is an additive group of integers ) implies that the field 

configuration space has infinitely many homotopy classes. The topological solitons are field 

configurations with the topological charge Q # 0. These solitons have been identified as baryons 
38,39 

and the topological charge has been associated with the baryon number . The connectivity of 

the field configuration space is determined by the first homotopy group 



n1(SU(2)) - n,(SU(2)) = 2,. where Z2 is a group of integers modulo. 2. This shows that 

the field configuration space is doubly connected and hints that the Skyrme solitons may be 
3 7 

quantized as ferrnions on addition of an extra topological term to the original action. Witten 

showed that these solitons acquire half odd integral spin by adding a term called Wess-Zurnino 

(n'w - z = Stopologica~ ) (He proved TW - , = n and n takes odd values : 

The (2+1) dimensional O(3) non linear sigma model also exhibits solitons which possess unusual 
3 

(2) spins. The field manifold t)na(x, t) = 1 is S (field) where na are three real scalar 
a = l  

fields. The field configuration space is described by space of continuous maps from 
(2) (2) s ( ~ )  (space )+ S (field) and n2(S (field) ) = 2, where Z is an additive group of integers. 

6 
Belavin and Polyakov first proved that the model admits solitons. The solitons are the field 

configurations characterized by the topological charge Q # 0. The connectivity of the field 
(2) configuration space is determined by n1(Q) - n3(S (field) ) = Z. i. e. infinitely connected. This 

8 
leads to the interesting possibility of fractional spin . Wilczek and Zee showed that when one 

adds an additional term known as the Hopf term(8H = Stoplogicd ) to the action , the solitons 

acquire fractional spin. They showed that H = 1 and the coefficient 8 can take any arbitrary value . 

12 
These result were reestablished by Bowick,Karabali and Wijewardhana . They provide a general 

23 
quantization scheme which we adapt to our problem. Karabali and Murthy considered the 

possibility of coupling the O(3) non linear sigma model to an abelian gauge field to achieve 

fractional spin. They found that the solitons of the model acquire fractional spin by coupling the 



model to a massive abelian gauge field without explicitly adding the Hopf term. But they were able 

8 e2 5 to show that the induced fractional spin is - ( 8 = - ),~to terms of order (l/ml) ; where m is 
2n 2m 

the topological mass of the gauge field, 1 is the length scale determining the size of the soliton and 

e is interaction coupling constant. They considered the following action 

where jP is the topological current of the sigma model coupling the gauge field FI, and A, is the 

gauge potential. They integrated out Ap in the path integral and there by obtained a non local 

effective action. They expanded the non local part in local operators in powers of (llm) and used 

the collective coordinate formalism to quantize the theory . The resulting theory contained infinitely 

higher time derivatives in the collective coordinate. This leads to a system with the second class 

constraints. The net outcome is that they can only take finite number of terms to calculate the spin. 

They therefore conjectured that 
8 

(a). The induced fractional spin is independent of m(i. e. - ) for large m and it is known that the 
2n 

fractional spin is zero for m = 0. 

(b). There might be a phase transition typically for (ml) = O(1). i. e. for ml < 1 the spin is zero and 
8 

it is - for ml > I  

In this thesis we basically consider the same model that Karabali and Murthy considered. We 

expand the field variables na , A,(x, t) around the classical soliton solutions and thus quantize 

the fields semiclassically by canonical method. We show that the gauged O(3) sigma model 

exhibits solitons with 



8 
(a). The fractional spin is strictly - to all orders in m for m # 0 and it is zero for m = 0 at least 

2~ 

for Q = 1 sector . 
8 

(b). The phase transition occurs at m = 0 i. e. the fractional spin is zero for m = 0 and it is - for 
2n 

m # 0. 
35 

One can also prove the same result in general for any sector . 

Motivation 

(i) If one ignores the kinetic term for the gauge fields in the above lagrangian and then integration 

over A yields the Hopf term in the action. So the origin of the Hopf term lies in the gauge fields. 
P 

(ii). It is not unreasonable to expect the sigma model coupled to an abelian gauge field as a 

possible model for physical applications. Belavin and Polyakov established that the continuum 
6 

limit of the Heisenberg anti-ferromagnet may be approximated by O(3) sigma model . More 

recently, Polyakov, Wiegman and Dzyaloshinskii proposed a possible mechanism for high Tc 

superconductors based on the above equivalence. The solitons of O(3) sigma model become 

neutral ferrnions when 8 = a which binds the electrons (or holes ) and become charged bosons. 

In Chapter .2. we discuss a (2+1) dimensional non linear sigma model, canonical procedure to 

find angular momentum and thereby spin in (2+1) dimensions . An attempt is made to explain in 

simple terms topological concepts such as the winding number , the connectivity of field 

configuration space, etc. which are important for this work. We will also discuss in the same 

chapter the Hopf term and show how the dynamical ( Hopf ) term gives rise to fractional spin by 

using canonical method. 

In Chapter. 3. we discuss a (2+1) dimensional massive abelian gauge field and briefly mention the 

origin of the mass term for the gauge field. We couple the massive gauge field with nonlinear 

sigma model and establish the possibility of solitons acquiring fractional spin though we do not 

explicitly add the Hopf term. 



In Chapter. 4. and Appendices A, B, we show the procedure we followed to obtain the fractional 
0 

spin - for m # 0 to all orders of m and it is zero for m = 0, which made us to predict the phase 
23r 

transition at m = 0. 



lzlurmu 

NON-LINEAR SIGMA MODEL AND FRACTIONAL SPIN OF THE SOLITONS 

In this chapter we discuss the O(3) non-linear sigma model, its soliton solutions, the spin and 

other properties of these solitons. We illustrate through canonical method how a dynarnical term i. 

e. Hopf term gives rise to fractional spin. This model was used in the past to describe nucleons as 

solitons in a theory of mesons(in 3+1 dimensions)' and to describe the metastable states of 

Heisenberg ferromagnets (in 2+1 dimensions) 6.  

2. 1 O(3) non-linear sigma model 

The (2+1) dimensional O(3) non-linear sigma model we consider is one in which the fields 

(na(x,t) a = 1,2,3,) are real and scalars with respect to the Lorentz transformations. These fields 

are constrained to have unit magnitude at each space time point 

3 

C na(x,t)na(x,t) = n.  n = 1 (2.1.1) 
a = l  

1 2 3  where x and t represent two space x1,x2, and time coordinates respectively. n ,n .n are 

components of a vector n in "internal space" i. e. three dimensional field space. The above 
(2) equation defines the field space as Zsphere (denoted as SM) 

The action of the model has only kinetic term 

S[n] = Idt L , 

where the lagrangian L is 

L = Jd2xL 

and the lagrangian densityL is 



p is space time index taking values 0,1, 2. The above action however does not describe a free field 

theory because of the constraint Eq. (2. 1. 1) and the fields are clearly dimension less[^^]. The 

coupling constant f has dimensions [ ~ l ] .  Both the lagrangian density eq. (2. 1. 4. ), and the 

constraints Eq. (2. 1. 1) are invariant under global orthogonal (O(3)) rotations in three 

dimensional internal space. i. e. n + n' = eiR%.where R are the generators of the O(3) group 

and 8 are rotational parameters, independent of space time. 

The equations of motion subjected to the constraint n.n = 1 read 

In this chapter we are interested in the static configurations of the fields. Their time evolution can 

be obtained by Lorentz boosting. The equations of motion for such fields reduce to 

Where i, j take values 1, 2. Among various solutions of the above equation, there exist a class 

of solutions called topological solutions, which we describe below. These topological solutions 

are finite energy (0 I E < 0o)field configurations. 

pv a~ 
The energy momentum tensor defined by T = 

aca,n, 
avn - g p V ~  , yields for the above 

lagrangian density 

pv 1 , li. 
T = ? a  n..avn-l&%li.n,n,a 2f II 

The energy is 
00 

E = IT d2X = ..sin d2x 

Finiteness of the energy yields the following boundary condition from the above equation 



or 
lim n = no 
r+= 

where r is the radial coordinate, no is a constant unit vector in the internal space and n should 

take same no value in all directions . Otherwise n will depend on the angular coordinate 8, even at 
1 an 

r = 00 and -- component of din will not satisfy Eq. (2. 1.9). ae 
Eq. (2. 1. 10) implies that all points at r = oo should be identified i. e. mapped onto same point 

(2) 
in the field space. Thus the physical coordinate plane R is compactified into a unit 2-sphere 

(denoted as. d2) ). The circle with r = oo is mapped into north pole of the sphere S z y  . We have 
P ~ Y  

seen before that the fields na fake values on SE(due to Eq. (2. 1. 1)) . Obviously the fields na map 

the physical space,SgY into the field space, Sf:. Each point in sZ. correspond to a value of the 

(2) field n. Let us consider three examples. (1). mapping of entire surface of s (~ )  to a point in S fld. 
P ~ Y  

(2) mapping of entire surface of s ( ~ )  to an open surface on ~(2.  This open surface can 
P ~ Y  

(2) continuously be deformed to a point. (3). the surface of s $ ~  can be wrapped over Sad, ones, 

twice, thrice, . . .Each of these mappings can neither be deformed to a point nor can one into 
(2) another.The number of times ~ $ ~ w r a ~ s  Sad is called the winding number Q. Examples (1),(2) 

have winding number Q = 0. These are trivial mappings. Example (3) has winding number 

Q = 1, 2, 3, . . . depending on the number of wrappings. These are non-trivial mappings. 

Clearly these winding numbers form a p u p  under addition. The corresponding mappings, being 
23 (2) isomorphic to winding numbers, form a group called the second homotopy group of Stld 

represented by lI2(Sg) = 2. where Z is the additive group of integers. 



Ids 8 
The winding number Q is clearly equal to and idsphy (2) = 47t. 

Therefore 
1 a 

Q = - J ~ ~ ( ~ )  = IJ dS(2) na 
4n 4n fld 

where d s g a  is surface area element vector on S: in na direction, given as 

b where " A "represents wedge product between two one forms dn and dnc 

Thus Q becomes 
b c 

ij abc .a an an Q = q d 2 x ( &  & --) 
8~ axi ax$ 

We can identify the integrand as charge density jO, of some conserved current jIL, given as 

We can easily see that the current jP is conserved. i. e a jb = 0,by using the anti-symmetry 
IL 

property of &ILvh and remembering that the vector triple product of three vectors, all lying in the 

plane perpendicular to n is zero (since there are only two independent directions in this plane). 

Notice that we did not use the equations of motion of the fields to prove the conservation of the 

current j I L . ~  current which is conserved without invoking the dynamics of the field is called 

"topological current". The existence of the conserved current jILdefines a gauge potential B (x,t) 
IL 

through the curl equation 



jp = EpV' a v ~ I  . 

Let us start with an inequality to see the physics that Q gives. 

The above inequality follows from the fact that the integrand is positive definite. The dot represents 

the scalar product. We can simplify the inequality as below by using the facts n.n = 1 and the 

derivative of a vector is always perpendicular to it ( n . a. n ) = 0 
J 

We can easily identify the above equation with(because of (2. 1. 8) and (2. 1. 13)) 

Thus we see that the energy E is bounded by the topological charge (Q) through equation 2.1. 17 
4n: 

The condition of minimum energy ( E= - I Q I ) implies f 

. . 
sin = + EIJ(n x aj n). 

. . 
Differentiating Eq. (2. 1. 18) with ai ,and using the anti symmetry property of ElJ, 

( n .  a j n )  = O  andEq. (2.1.18).weobtain 

let us take ( n . a, n ) = 0  and differentiate it with 8 



using Eq. (2. 1.20) in Eq. (2. 1. 19) we get back the static equations of motion 

Therefore the fields satisfying minimum energy condition are solutions of static equations of 

motion Eq. (2. 1. 6) but converse may not be true. Since our interest is to find the topological 

solutions, we solve Eq. (2. 1. 18) by stereographically projecting ~g onto a plane parametrised 

1 2  by (w ,w ). The stemgraphic projection takes the surface of three dimensional sphere (sZ ) onto 

1 2  a two dimensional plane(w ,w ). 

The stereographic projection is given by 

1 where w = w + i w2= 
2n 

(1 - n3) ' 

1 and n = n  + i n  2  (2.1.21~) 

and now the field space is a two dimensional complex plane. We can write Eq. (2. 1. 18) in terms 

of n as 



3 3 where ( n n3) = n(ajn ) - (ajn) n . 
We will find a,w anda2w by using e. qs(2. 1. 21,a, b, ) and (2. 1. 22) as Cauchy-Riemann 

condition 

1 2  Any analytic function of z is a solution of this equation , where z = x + ix . 
Consider a function of the form 

where q is a positive number p is the radius vector at z0 and 0 is polar angle of w-plane. Since w 

is analytic in z it is clearly a solution of Eq. (2. 1. 23). We can easily see that q is equal to the 

winding number Q 
i+ Let us write Eq. (2. 1. 13) in complex plane by using (2. 1. 21), (z - zd = p e and 

d2x = p dp d$ 

Upon integration we get Q = q . Thus q is the winding number . The solutions of Eq. (2. 1. 22) 

represent the static topological solitons , characterized by the winding number q, with static 

energy 
4n 

E = 7 Iql. and zo is the location of the soliton. Having obtained topological solitons, we now turn 

our attention to their spins in the next section. 



2. 2 The Soliton spin 

In this section we define angular momentum generator in (2+1) dimensions and calculate the spin 

of the solitons of the non-linear sigma model. 

In (2+1) dimensions there is only one angular momentum generator corresponding to the rotation 

in the two space dimensions. The angular momentum generator is ambiguous upto the addition of 

an arbitrary constant. Since there is only one angular momentum generator, we have no non trivial 

Lie algebra to resolve this ambiguity. We use the Poincare algebra to uniquely define the angular 
12.25 momentum generator (M) . 

The angular momentum generator (M) is defined as 

where i, j take values 1, 2 and the boosts M" s are defiied by the Poincare generators 

~ l ' ~  = Id2x [xl' PV - xv TOP ] (2.2.2a) 

9' is the energy momentum tensor and the Poincare algebra satisfied by these generators is 12,Z 



i[MPv,MXA] = gv' MPK - g@ MVK + gPK Mv' - gvK (2.2.3~) 

where p, v, h, K take values 0, 1, 2 and gCLV is the metric tensor. We use (2.2. 3c) in (2.2. 1) 

to get expression for the angular momentum as 

Thus the angular momentum generator(M) is uniquely definec 

pseudo scalar. 

(2.2.4) 

in (2+1) dimensions and is clearly a 

We now proceed to calculate the spin of the soliton of the non-linear sigma model. The canonical 

momentum (lla)conjugate to the field, na from Eq. (2. 1. 3)is 

The expression for angular momentum (Q) of the soliton can be written by using equations (2. 1. 

7),(2. 2. 4) and (2. 2. 5) as 

Mo is a combination of both orbital angular momentum and spin. The spin can be extracted from 

M, by going over to the rest frame of the soliton . From Eq. (2.2.6), we see that the spin of the 

soliton is zero. 



Fractional spin 

Solitons of the model acquire fractional spin if we add a term, called Hopf invariant to the action 

Eq. (2. 1. 2). Before discussing fractional spin, let us understand a topological concept, 

connectivity of the configuration space (Q). This is most easily done by considering a simple 

example of a two component real scalar fields(f) in (1+1) dimensions with f2 = 1. 

Confieuration mace and its connectivity : Configuration space is a function space whose points are 

functions f representing all possible fields . 

Let Q be set of all mappings f that map s!iy to S$ . Q is divided into a set of homotopy classes 

Qo,Q1 ,QZ . . . ..... Qi ........ .Qi is the set of all mappings with winding number "iU.This set of 

(1) homotopy classes denoted by Hl(Sfld) is isomorphic to 2, and therefore has infinite number of 

homotopy classes.The collection of mappings fi with winding number i belong to Qi. To 

determine the connectivity of Q, take any two arbitrary points in Qi and see if there is any one 

parameter function which interpolates between these two points this is clearly given by H1(Qi). 

This implies that Qi is further divided into different equivalence classes Qio, Qil, Qi2, . 
.........Qia. n1(Qi) is isomorphic to Hl(Qj) for all i, j . The mapping fia with winding number i 

and with a number of kinks (see fig. 1)belong to Qia. Any two mappings fia, fib cannot be 

deformed into each other if a + P.lf H1(Qi) = zl, then only one class of mappings exist in each Qi 

and the configuration space is said to be simply connected. If ITl(Qi) = z,, then two different 

equivalent classes of mappings exist in Qi and the configuration space Q is said to be doubly 

connected . If H1(Qi) = 2, then the number of distinct classes of mappings in each Qi is infinite 

and the configuration space Q is multiply connected. 



Fig 1. A simple example of a kink is a 2n twist in a rubber band. (a) A rubber band without twist. 

(b) A rubber band with a 2n twist, which cannot be undone of by any continuous process. 

We determine lll(Qi) in the following way. We define a functional on Qi and evaluate it along a 

closed path in Qi and observe the change in the functional at the end of the operation. A closed 

path in Qi is defmed by a function $( t ):[0,2n] = + Qi where o i t i 2n such that 

$( 0 ) = fi, = $( 2n ), clearly the set of all these mappings is isomorphic to ll,(Qi) The 
(1) (1) function f = f(x,t) where XE s(') and t s  [o,2n] = ~ ( l ) .  Therefore f(x): S phy + S 

P h Y 

(2) (1) becomes f(x,t): Sphy + . The homotopy group for these mappings is l12(S ). It has been 

5 (1) proved that lll(Qi) is isomorphic to lll+l(S ) and l12(s(") = 1. Hence in our example the 

configuration space is simply connected. If, in general lln (dm)) is the homotopy of the functions 

that map s(") onto s%) . then the connectivity of the field configuration space (=Q)is 

determined by ll (sZ)). The material we discussed here is found in references 3, 4, and 5. 
(n+ 1) 



(2) We now turn our attention to the connectivity of the . We know from the previous section that 

(2) (2) n(x) map the physical space Sphy onto SI 

which gives the static field configuration of ~2 at any instant of time and due to the above 

argument, we have 

where x E and t E [0,2x] = ~ ( l ) .  These mappings n(x,t) yield both static configuration and 

its evolution with time. These mappings are called Hopf invariant mappings in mathematics, and 
(2) (2) (2) form infinitely different homotopy classes q ( S  ) = 2. Therefore l11(Qi)=I13(SI) = Z,the S fld 

is multiply connected . The connectivity of the ~g hints that we can add a term that describes 

Hopf invariant mapping to our model. 

The action (Eq. 2. 1.2)with Hopf invariant term is 

where 8 is an arbitrary real parameter and H is Hopf invariant of the mappings n(x,t). This is 

given by 

(3) Here "A" is a 1-form and "dA" is a closed exact Zform, both belong to Sphy. "dA" is a particular 
24 (2) 2-form equal to the induced mapping (n*(x,t)) of any 2-form belong to Stld . 

aA1 &JAdXl A = A ~ P  and dA =- 
3% 



Substituting in Eq. (2.2. 10) we get 

A is gauge potential defined through the equation (2. 1. 14b) and depends on n fields. A is 
P P 

determined in terms of n fields by equations (2. 1. 14a) and (2. 1. 14b). The Hopf invariant (H) is 

related to a topological quantity, called the linking number. For any mapping n(x,t): 
(3) (3) + sf: consider the induced mapping n*(x,t) of any two points of SZ into Sph . 

SPhY 

These two points will be two curves in . The Hopf invariant is the number of times these 

2 
two curves link . The value of H is equal to one for any n(x,t)and therefore these two curves link 

ones. We can determine the spin of the soliton using the linking number. Let us consider two 

vacuum - to - vacuum processes. In one we create a soliton and anti soliton pair at some time and 

pull them apart. We allow to annihilate after suitable period of time. In other we do the same except 

that we rotate the soliton by 2n. Both amplitudes differ by a phase factor eie . This gives the 
8 

soliton spin as - . Were the soliton not rotated the mapping would be homotopically tivial, we 
2~ 

do not find any phase factor. If we observe the trajectories of the soliton and anti-soliton, in the 

first process, we find that both the trajectories do not link. In the second process the trajectories of 

the soliton link the trajectory of the anti-soliton by ones due to 2n rotation of the soliton. 
11 

The Hopf term plays the role of an effective long range interaction among the n fields . This 
9 

term is a total divergence term and therefore does not contribute to both the equations of motion 



(Eq. 2. 1. 5) and the energy momentum tensor T ~ "  (EQ. 2. 1.7). 

We explicitly find out the angular momentum operator and identify the fractional spin operator 

from the obtained expression. We follow the discussion given in reference 12. The action given by 

Eq. (2. 2. 9) is invariant under the gauge transformations Ap + Ap + apA, where A(x,t) is a 

scalar potential. We are thus free to choose the radiation gauge aiAi = 0. 

Therefore A, can be written as 

where is a scalar potential.We substitute (2.2. 13) in (2. 1. 14b) to get 

and solving for Greens function 

we get 
1 G(x) = - - 2 

ln(x ) + constant 
47t 

Therefore 

V(X) = /d2x' G(X - x' )jO (XI) 

and 

(x) = Eij ajJd2xl G(X - xl )jO (x') 

We find the canonical momentum (lla)conjugate to the fields na from Eq. (2.2.9). 

na 5 6L 1 8 abc b 
= 3, na + - EijE n ajnC 

6@0 na 1 27t 



We evaluate the angular momentum generator (M) by using equations (2. 1.7),(2.2.4) and 

We simplify the 8 term by using equations (2. 1. 1. ), (2. 1. 14a) and (2. 2. 18) as 

xi(x - xl)l 
I =cl  d2x d2x 2 j" (x) j" (X') . 

n Ix - x ' l  

Symmetrizing and using equation(2. 1. 13) 

and 

We go to the soliton rest frame to observe its spin. In this frame the first term in (2. 2.22) 
8 

vanishes because XIa = 0 and hence the spin of the soliton is - for Q = 1. Thus the soliton 
2n 

acquires fractional spin due to the Hopf term. 



FRACTIONAL SPIN OF THE SOLITONS COUPLED TO AN ABELIAN GAUGE 

FIELD 

In the preceding chapter, we discussed how the solitons acquire fractional spin when we add the 

Hopf term to the non linear sigma model. In nature real systems are the interacting ones. We in this 

chapter, consider a physical model in which the solitons of the sigma model interact with a gauge 

field. The gauge field we consider is a (2+1) dimensional massive one and it attains mass at 
14,15,26. 

classical level through the term ~ ~ ~ A , a ~ A ~ , w h i c h  is quadratic in gauge potential A, 

This term is called the Chern-Simons density. The C. S. term is local U(l) gauge invariant upto a 

total divergence term as opposed to the quadratic term A AP which is not gauge invariant. The 
c1 

addition of this term is not unusual. It has been shown that the above quadratic term can be derived 

27 from a local U(l) gauge invariant action . 

where are fermion fields, FPvis the usual field strength tensor given by FPv = a, A, - a, A, 

and A, is gauge potential and f are Dirac matrices. The gauge field effective action Seff for the 

above action S is obtained in path integral formulation by integrating out the fields. Seff = i In . 

det. ( f' (a, + A,)). The ultraviolet divergences are regulated in a gauge invariant way by 
R 

introducing a massive, Pauli-Villars regulator. The regulated effective action Seff contains Chern- 

Simons term. 

The second term is a topological quantity, since it is invariant under local variations of the 

potentials A, . The integrand of the second term is the so called Chern-Simons term. In the fist  



section of this chapter, we discuss a (2+1) dimensional massive abelian gauge field and in the 

second section we couple the non linear sigma model to the gauge field and then recover the Hopf 

term that is responsible for the fractional spin. 

3. 1. (2+1) dimensional massive abelian gauge field. 

We generate mass to an abelian gauge field FP by adding the topological term (Eq. 3. 1. I), 

which is local U(l) gauge invariant upto a total divergence, to the kinetic action of the gauge 
14,15 

field . The energy momentum tensor is obtained by varying action with respect to the metric 

tensor gsv(~). The Chern-Simons term, being independent of the metric tensor g"V , does not 

contribute to the energy momentum tensor but it does contribute to the equation of motion. This is 

another way of seeing that the C. S. term is topological. It is independent of the metric which 

describes the local properties of the manifold M. 

The action of an abelian gauge field with a mass term is given by 

where the first term is the kinetic term and FCLV is the usual field strength tensor given by 
- inl FsV = #A' - aVAp . The gauge potential A' has dimensions [L as can be seen from the 

kinetic term in (3. 1.2). The coefficient m in the second term has dimensions [L-'1. The second 

term is a topological term we discussed in equation(3. 1. 1. ). 

Let us now study the transformation properties of the action Sg under the U(l) local gauge 
1 transformations As + Alp = As + e asA,where A(x) is a scalar potential. We know that the field 

strength FW is invariant under these transformations i. e. Ftsv = pv and hence the kinetic term is 
1 

invariant. We can write the integrand of the second term E ~ ~ ~ A ~ ~ ~ A ~  as 2 EpVhAs FVl by using 

1 
the identity 3 E ~ "  Fvl = E~'%,,A~ . 



Using the relation . 

We multiply the Bianchi identity a,FvA + avFAp + aAFpv = 0 by E'" to get 

&pv'(dp~vA) = 0. We write equation (3. 1.4)by using this result as 

m pvA P We write equation (3. 1. 3) by using equation(3. 1. 5) and denoting & AFvA = j as 

Thus the action changes by a total divergence term under local U(l) gauge transformations. The 

contribution of the total divergence term depends on the behaviour of j at 1x1 = m. Since it 

vanishes as 1x1 +m, the total divergence term is not topological and hence it does not contribute to 

the action. Thus the action (Eq. 3. 1.2. ) is invariant under local U(l) gauge transformations and 
14 

m can take arbitrary values. We show below that m is indeed mass of the gauge field F" . 

Variation of equation (3. 1.2) with respect to A' yields the equation of motion as 



We can easily see that the equation of motion is also local gauge invariant. The identity 

pV% F ) = 0 defines the conserved current jywhere E ( , v k  

We rewrite the equation of motion (3. 1.7)by using equation (3. 1. 8) as 

Multiplying equation (3. 1.9)by ( - m g, + Eopv aP ) and then making use of equations (3. 1.8) 

and the fact a, j" 0, we find 

This is the equation of motion for a gauge field with mass m. We find the energy momentum 
,v 

tensor T by varying the action given by Eq. (3. 1.2)with respect to gpv (x) as 
g 

We note that the mass term , being independent of $LV (x) , does not contribute to the energy - 
momentum tensor. Hence the name topological mass. 

We find the angular momentum (Mg) by using equations (2.2.4. ) and (3. 1. 11. ) (for future 

use) as 



. . 
Where Ei = FiO and B = &lJaiAj . 
In this section we proved the following . The topological term produces mass to the gauge field 

Fpv . It could be used as an alternative to the Higgs mechanism to produce mass. Thus mass for 

the gauge field is produced without symmetry breaking, where as in the Higgs mechanism there is 

spontaneous breakdown of symmetry. The action S is still local U(l) gauge invariant and the g 

parameter m takes arbitrary values. The topological term contributes to the equations of motion but 

does not contribute to the energy momentum tensor. These conclusions remain the same even upon 

the quantization15 . In the case of non abelian gauge theories the parameter m is quantized. The 

Chern-Simons term under the gauge transformations (U) changes by the winding number 

w = m Jd3xEaPy trace [u-'(~,u) u ' ~ @ ~ u )  u - ~ ( ~ , u ) ]  of the gauge transformations (This 

term is zero in the abelian case. ) in addition to the A(x) dependent surface term 15. Thus in 

non abelian case the action is not gauge invariant and the parameter m is restricted to take integral 

values in order to have the state functional single valued under the gauge transformations . Thus m 

in non abelian case is quantized. In the next section we discuss the fractional spin of the solitons 

of the non linear sigma model in the presence of the abelian gauge field. 

3. 2 Recovery of the Hopf term. 

The action of the non linear sigma model coupled to the massive abelian gauge field is given by 

Where Sg is the action of the massive abelian gauge field (we discussed in the section .3.1). 

3 3 1 m pvh S ~ = J ~ X L . ~ = J ~ X [ - ~ F ~ " F ~ ~ - ~ E  A ~ F ~ ~ ]  



S, is the action of the non linear sigma model (we discussed in section.2. 1. ). 

and SI is the interaction action for the fields n and AC 

3 3 S, = efd x L I  = efd x AC jp, 

-112 .p e is a parameter that measures the strength of the interaction. The dimensions of e is [L 1.j is 

the topological current given (we discussed in section. 2. 1) . 

The interaction action SI is invariant under the local U(l) gauge transformations as we can see 

from below . 

We know that the topological current is conserved. i. e. ap jC= 0. 

Therefore 

st ,  = S , .  



The SI is different from the interaction action which couples Ap to the Noether's current. It does 

not require the equations of motion to prove its invariance under the gauge transformations as we 

saw in Eq. (3. 2. 3. ). Thus the parameter e is not to be thought of as electric charge. It has been 
35 

proved that the coupling of A, to the n fields is analogous to that of charged particle to an 

40 
external gauge field. Recent work on anyonic super conductors makes use of such abelian gauge 

field. 

We now turn our attention to recover the Hopf term. To recover the Hopf term we integrate out the 

gauge fields A, , which are quadratic, in the path integral formalism and get the effective action 

e 
2 

where 9 = 2;;; , P v 1 D 'IV= (p'aaaa- a a ) which arise from - F ~ ~ F ~  
1 

m pvh 1 and D C V  = epV' a' which arise from 7 € A, Fvx . If the kinetic term - 3 FpVFI, is 
2 

absent in the action S (Eq. 3.2. I), the parameters e and m can be taken to be dimensionless. The 

0 term of the effective action Eq. (3. 2.4), will not contain D IIV . We can write the 0 term as 
1 

We find after simple algebra and by using (2. 1. 14b) 



If the kinetic term is present both e and m pickup dimensions [L-'I2] and [L-'1. 0 is still 

dimensionless. We can recover the Hopf term when m = 00 . Thus our action (Eq. 3. 2. 1) has 

Hopf term in disguise. We can expect the fractional spin to the soliton of the model described by 

Eq. (3. 2. 1. ). 

If the mass term is absent 

The second term cannot be written as Hopf term. Hence the fractional spin of the soliton is zero if 

23 
We now briefly discuss the procedure followed by Karabali and Murthy . They expanded the 

1 5 
second term in Eq. (3. 2. 4) in local operators in powers of , u p t o  an order llm and used 

Q = 1 collective coordinate ansatz with the collective coordinate a(t) to obtain the effective action 

in higher order time derivatives of a(t) with complicated coefficients. The coefficients being 

integrals of functions of m, 8, f, g, g', g". With the result the Lagrangian of the system contain 

higher time derivatives in a(t) and is constrained to four second class constraints. Thus forcing 

them to use the Dirac's method of canonical quantization . They found by using these tools that the 

fractional spin of the soliton is independent of the mass parameter m for large m (ml > 1 where 1 is 

the soliton size) and since the l/m expansion breaks down for small m (ml < 1) they failed to find 

if the fractional spin depends on m for small m. They ran into this problem because they integrated 

out the gauge field. 

In the next chapter we will show by using the back ground field method and classical equations 
e 

of motion that the fractional spin is independent of the gauge mass m to all orders in m i. e. -for 
2n: 

m +  0 and it is zero for m = 0. 



MASS INDEPENDENCE OF THE FRACTIONAL SPIN 

We discussed in the last chapter that the action (Eq. 3.2. 1) of the gauged O(3) non-linear sigma 

model has Hopf term in disguise and therefore we can expect the solitons of the model to have 

fractional spin. We also expect the spin of the solitons is zero if m=O(since no Hopf term arises 

from the action). In this chapter we discuss the details of the model in sect. 4. 1, quantization in 4. 

2. In sect. 4. 3. we show that the spin of the soliton of the model is zero if m=O and it is fractional 
e 2 

and independent of m if m # 0. The Hopf coefficient 9 that is induced is given by 9 = . 

4. 1 The Model 

The action of the gauged O(3) non- linear sigma model is given by (We discussed in Sect. 3.2) 

S = S, + S, + SI 

Where 



where Fpv is the abelian gauge field with mass m,and Ap is the gauge potential. e is the parameter 

that measures the strength of interaction and has dimension [ L-"1, f is the coupling constant with 

dimensions [ L"]. 

In order to quantize the model we first find the equations for the soliton. 

Variation of the action (Eq. 3. 2. 1) with respect to n and AP give the equations of motion as 

We look for radially symmetric static soliton solution. Since the soliton is characterized by the 

same topological charge 

1 2 Oij abc ~ = I d ~ x j O  =- J d x ~  E n a a i 4 a j n c  
8x 

as in the usual O(3) sigma model, we take the following ansatz for na depending on a single 

function g(r) of radial coordinate only 

where (r, $) are the polar coordinates and the boundary conditions on the g(r) are 

g(-) = x and g(0) = 0 . 



The solution given by Eq. (4. 1. 2) with the boundary conditions (Eq. 4. 1. 3) describe a soliton 
36 

known as Baby Skyrmion in the literature . We represent the vector n by an arrow (j) at each 

space point. As we move from r = 0 to r = oo the vector n takes values from (0 0 +1) to (0 0 -1). 

A typical map of baby skyrmion is shown below. 

Fig 2. Baby skyrmion. + (( 0 0 1)) indicates n out of the page, - (( 0 0 -1)) indicates n 

into the page. 

We substitute (4. 1.2) in (2. 1. 14a) to get 

where prime denotes differentiation with respect to r.Substituting (4. 1.4a) in (2. 1. 13)we find 

(2) Thus equation (4. 1. 2) with the boundary condition (4. 1. 3) describe mapping s$! onto S f ld.  

with winding number one and hence describes a soliton of Q = 1. It is convenient to choose the 

coulomb gauge for the static solution ai A' = 0. Then we can write A' as 

= E i ~  ajv. (4.1.5) 



To respect spherical symmetry for n, we take A' and y to be function of r only. 

A0 = A0 (r) (4.1.6a) 

The equations of motion reduce to 

and 

The above equations can be rewritten by using equations (4. 1.4), (4. 1. 5) and (4. 1. 6) as 

3, $(Ao - my) = e jo 

and 

1 1 1 e 
T W ' + $ )  - -  

2 2  Sin2gJ - - 
sing Afo = 0. (4.1.8~) 

4nr 

Choosing the integration constant to be zero in equation (4. 1.8a) and substituting it for @,8y ) in 

(4. 1. 8b), we get the equation for A. as 

2 (a. 8 - m  )Ao=ejo (x) 
J 



The solution of this can be written as 

Ao(x) = e j  d2x' GA (x - x') jo (x') 
0 

where the Greens function GA (x - x') satisfies 
0 

where tj2(x - XI) is a two dimensional Dirac delta function. Fourier transforming (4. 1. 11) we 

find 

e -ik.(x - x') 

In polar coordinates 

We use the integral representation of the Bessel function of the first kind 

in the above equation to get 



G Ix - x'l) = 4 
0 

1 
= - K (m Ix - x'l) 

27t 0 

where K is the modified Bessel function (m > O).Therefore A. can be written as 
0 

We can write by using (B. 2),(B. 6) (Appendix. B) and (4. 1.5) as 

e A1(x) = - - ln(mlx - x'l ) + % (m lx - x ' ~ ) ] ~ ~ ( x ' )  (4.1.14b) 
27tm 0 

(By using 4.1.14a) 

A1(x) = - - 1 eiJaj d2x' ln(m1x - x'l ) j0(x1) - , E ~ ~ ~ ~ A ~  (x). I (4.1.14~) 
27tm 

The above equations (4. 1. 14a,b) describe a soliton characterized by the topological charge Q = 1 

sitting at x' producing a gauge potential A (x) at x . Eq. (4. 1. 14c) shows the connection 
P 

between the vector potential A(x), scalar potential A. and the topological source j0(x1) . Equation 

(4. 1. 8c) with (4. 1. 14) describe static soliton of the model. We note that the soliton with Q = 1 

of the usual non-linear sigma model described by the ansatz (4. 1.2) with 



satisfies 

h in Eq. (4. 1. 15) is an arbitrary scale parameter of the soliton. We now turn to the quantization 

of the soliton sector with Q = 1. 

4. 2 Quantization 

We follow the semi classical method of quantization of the solitons by using the collective 
7,28 

coordinates . Basically the method involves expanding the fields around the classical solutions 

by using one parameter functions called collective coordinates. 

We expand the field variables n and Ar around the soliton solution and apply the canonical 

Hamiltonian method7* 28. Since our primary concern is the induced spin of the soliton, we 

consider a U(l) family of configurations characterized by a single collective coordinate a(t) 

corresponding to the zero mode of rotation12 

n1 = cos(@-a(t)) sin g(r) 

n2 = sin($+a(t)) sin g(r) 

n3 = cos g(r). 
(3) Evidently the n given by Eq. (4.2. 1) describe the mappings from Sphy onto S# with Q = 1. 

We know from Chapter 2. that the field configuration space is multiply connected 
(2) (l11(Qi)=I13(S = 2). This means that there exist infinitely many field functions( n 's) in each 

sector. We can easily see from Eq. (4.2. 1) that there can be many one parameter functions 



(a,.a,,a,.a,.. .... etc.) satisfying Q = 1. We will, however, take into account the full degrees 

of freedom for the gauge fields. We write 

A,(x,t) = A?(X) + A;(x,t) (4.2.2) 

where AC1 is the gauge part of the classical soliton solution. We write the topological current jp in 
P 

terms of the collective coordinate a(t) and g(r) by using the equations (4.2. 1) and (2. 1. 14a) as 

.2 1 
J = + - cos$ (cosg)' a 

4xr 

Where dot represents differentiation with respect to t. Substituting equations (4. 2. I), 

(4. 2. 2), (4. 2. 3) in the action (3. 2. 1) and writing A;(X) in terms of y~ by using (4. 1. 5), 

(4. 1. 8a) integrating by parts where ever necessary and noting y~ is a function of r only, we get. 

1 e S = Jd3x [-A Fq FPv - & p v h ~ & A q )  + - sinZg b - - (COS g)' xj b + 
4 pv h 2f 4xr 

e 2 cl q - - ( c o s ~ ) ' ~ I ~ &  - (aiai A:) A: + rn + ej&: 47c I 
where M, is the soliton mass 

e 
M, = f jd'x [f ((g'12 + 7 sin 2g + - (cos g)' A. . 

47cr "J 



Let us take the following terms from equation (4.2.4) and use (4. 1.9). 

- (aidi A:) A: + m2 4' A: + e j d ;  = - ((ai$ A:) - m2 4' - ej0)A: = 0 

and denote 

We write Eq. (4. 2. 4)by using (4, 2. 6) and (4. 2. 7) and dropping the indices q to express the 

action in terms of the quantum fields a(t) and A$ 

S = j d t L  - M, (4.2.8) 

where 

L = Lg +La +Lint (4.2.9) 

Lg = Id2x Lg = f i 2 x [ - 4 ~ p v ~ p v  1 - m - E  4 P V ~  A ' F ~ ~ ]  (4.2.10a) 

'int = I d 2 x i i n t  = [ d Z X [ I  471~ (COS g)'  E;J xi A, &]  (4.2.10b) 



We have dropped the superscript q on Ap and Fpv. Now we construct the Hamiltonian for the 

system described by (4.2.8). Let us start the procedure by defining momenta conjugate to Ap and 

(4.2.1 la) 

(4.2.11) 
aL p=-.  (4.2.11 b) 
aix 

We find from (4.2.8) by using (4.2. 11) that the momentum (Q ) conjugate to A. is zero 

and momenta conjugate to A' and a are given by 

where 

e 
$t) = jd2x - (COS g)' eiJ xi A, 

4xr 

Equation (4. 2. 12a) implies that the system has constraints. We follow Dirac's procedure to find 

out the full set of constraints. We show the details in Appendix A. We see from the appendix A. 

that the system has two first class constraints. 

. X O = I I , = O  (4.2.12a) 



These two constraints are those of the abelian gauge field with Chern-Simon's term.A Legendre 

transform yields the Harniltonian 

H = H a  + H, 

where 

We thus have reduced the system of soliton field coupled to Ap into a system with one degree of 

freedom (particle) described by a(t) interacting with a gauge field. The constraints are those of 
7 

abelian gauge field. There are no constraints on the soliton. It has been shown the commutator 

given by Eq. (4. 2. 14b) is consistent with the equal time canonical commutator. 

[lla(x,t),nb(x',t)] = -i SabS(x-x') 

where lIa(x,t) is the canonical momentum to nb(x',t). 



4. 3 Mass independence of the fractional spin. 

We know the expression for the angular momentum as 
2 i oj M = Eij Id x x T 

where T~ is the energy momentum tensor. Variation of the attion (3. 2. 1) with respect to the 

metric Cv yields the energy momentum tensor pv ) 

1 0  '  TO^ + n.$n 

(By using Eq. (3.1.1 1)) 

Substituting Eq. (4. 3.2b) in Eq. (2.2.4) we get the expression for the angular momentum(M) 

(4.3.3) 
2 i o j  1 

= Eij x x T~ + T Eij jd2x xi a O n d n  

We know from Eq. (4. 2. 12b) that the momenta (nP)  conjugate to A~ do not couple 

to n fields and hence the first term of Eq. (4. 3. 3b) is purely electromagnetic angular 

momentum (Mg) (Eq. 3. 1. 12). We now express the angular momentum operator M in terms of 

canonical momentum operator (na) similar to the expression L = r x P. 



We find canonical momentum (Ha) conjugate to na fields Eq. (3. 2. 1) as 

Substituting (4. 3.4) in (4. 3.3b) and writing Mg for the fxst term we get 

where Ak is given by Eq. (4. 1. 14b). We can easily notice that the last two terms are same as Eq. 

(2. 2. 20) 

except that 'e' takes the place of '9' and the Greens functions for Ak (Eq. 4. 1. 14b) and Ar 

(Eq. 2. 2. 18) are different. Thus we expect that the angular momentum (M) split into purely 
2 

electromagnetic part (Mg), orbital part of the soliton and fractional part (with & = 9 ) . 
We replace the    in Eq. (4. 3. 3b) by A;'@) + A;(x,t) , write AC1(x) in terms of ry by using 

I' 

(4. 1. 5), (4. 1. 8) and n , A;(x,t) in terms of canonical variables by using equations (4. 2. I), 

(4.2. 12). We obtain the following expression for M 

where p is canonical momentum conjugate to a and 



We notice from Eq. (4. 3. 6), or(4. 3. 5) that explicit mass dependence appears with terms linear 

in operator Ak(x,t). To eliminate the explicit mass dependence in Eq. (4. 3. 6), we consider the 

linear terms in Ak(x,t) and show that they vanish by using Gauss' law constraints , classical 

equations of motion and the fact that y is radially symmetric i. e. y = y(r). 

The linear terms are 

The Gauss' law constraints in terms of E and B and the classical equations of motion we need are 

2 c1 (v2- m )Ao - ej, = 0 

since y = y(r) 

and 



Let take the first term of Eq. (4. 3.7) and use equations (A. 7) and (4. 3. 8) 

Integrating by parts the R. H. S. and using (A. 7) 

d 
= - m jd2x (r s y ) ~  = - m jd2x (r $y)&'JaiAj. 

Integrating by parts the R. H. S. and using (4. 3. 8), (4. 1. 8a) 

2 2 -Id2x xk[(v 2 W ) ~ k ]  = mjd2x & ' J x i A j ( 8 ~ )  = m I d  x eijxiAj A: . (4.3.9a) 

Let us take the second term of Eq. (4. 3. 7) 

Integrating by parts (R. H. S. ) and using (4. 3. 8),(4. 1. 8a) 

Substituting (4.3.9a,b) in (4. 3.7) we find the coefficient of E~JX,A, is zero by using 

Eq. (4. 1. 9). 

- jd2x x~(v$)E - ;(akv2yf)~ + ej&) ekl A ~ ( x , ~ ) ]  = 

2 c1 = - jd2x [(v2- m )Ao - ej0]&'jx.A 
J 



Thus the terms linear in the quantum operator A vanish by using Gauss' law constraint and 
P 

classical equations of motion. 

We use (4. 3. 10) in (4. 3. 6) to get 

Clearly we can identify the first term of the above equation as the angular momentum operator 
(Mg ) of the gauge field (Eq. 3. 1. 12) 

Thus as expected in Eq. (4. 3.5) the angular momentum operator (M) separates into three terms, 
e 

the electromagnetic contribution, the soliton canonical angular momentum P and the - term. 
2x 

The last two terms in the equation (4.3. 12) can be simplified by using the equations of motion E. 
qs (4. 1. 8) written in the form (The detailed calculations are shown in Appendix. B). 

y = em ld2x' G,,,(x-x')jO(x') , 

t 

where j" = - - {cos g(r)} . The Green's 
4 ~ r  

function G,,,(x-x') is given by 

- - ln(mlx-x'l) + I]C (m lx - x'l) . - 7[ 2xm 0 I 
In Eq. (4. 3. 14), I]C is the modified Bessel function. Using Eqs. (4. 3. 13) and (4. 314), we 

v 

can rewrite Eq. (4. 3 12) as 



8 8 
M = Mg + P + -Id2x d2x'j0(x)j0(x') - -Id2x d2x'j0(x) (mlx-x'l) q(mlx-x'l) jO(x') 

2x 2x [ I 

where 

(4.3.15) 
e2 0 = =  , we now show by using equation of motion (Eq. 4. 1. 8c) that the last term in 

Eq. (4. 3. 15) is zero. We show the detailed calculations in Appendix. B. We perform the angular 

integration of the last term by utilizing the fact that the topological current jo is a function of only 

radial coordinate 

ld2x d2x'j0(x) (mlx-x'l) 5 (mlx-x'l) jO(x') = [ I 
= - 87c2[crdr jo(r) mr q(rnr)[ r'dr' jo(r') Io(mrt) + 

We generate the same terms from Equation(4. 1. 8c) and show that it is a total derivative . The 

equation of motion is . 

1 1 e 
(((g'' + 7 g )  - ~ i n 2 ~ ) - -  (sin g) Avo = 0 

47cr 

We know that 

Performing the angular integration (Appendix. B) we get 

00 

A, = e [[ r'dr' jO(r') %(mr) lo(&) + rfdr' jo(r') lo(mr) %(mr')]. 
r 

Differentiating with respect to r 



1 00 

A (r) = e[- r'dr' jO(r') I0(mrt) m 5 (mr) + j r'dr' jO(r) m r1(mr) %(mr')] 
0 r 

(4.3.18) 

We substitute Eq. (4. 3. 18) in (4. 1. 8c), multiply through out by " g' 9 " and use (4. 12. 4a) 

integrate with respect to r. 

00 

= - e2[jo rdr jO(r) mr r (mr)[  r'dr' jo(r') Io(mrt) + 

00 

-[rdr jo(r) mr i1(mr)j r'dr' jO(r') $(rnrt)] . (4.3.19) 
r 

Let us consider 

1 a 
- 3 a; (COS 28) = g'sin 2g . (4.3.20b) 

By using (4.3. 20),the left hand side of (4. 3. 19) can be written as 

1 2  1 a 1 r d r  ?[(r g'g" +r (g'I2) -$ sin 2g] = Ida; { ( r g ~ ) ~  - 2 cos 2g] 
0 

m 

1 
= [ ( r g ~ ) ~  I - 01 (by using Eq. (4. 1. 3) 

0 

We see from Eq. (4. 1. 15) g'(-) = 0 and g'(0) = finite,(r g') is zero for r = 0 and r= -. 

There fore 

[dr :[(?g'g" +r (g')2) - $ sin 2g] = 0. (4.3.21) 
0 



By using Eq. (4. 3.21) in Eq. (4. 3. 19) we get 

[rdr jO(r) mr 5(mr)l  r'dr' jO(r') I0(rnrt) + 

OD 

- [rdr jo(r) mr Il(mr)l r'dr' jO(r') ~ ( m r ' ) ]  = 0 (4.3.22) 
r 

Therefore by using (4. 3. 22) the last term of Eq. (4.3. 15) is zero 

Substituting Q = d2x jo and using Eq. (4. 3. 23) in Eq. (4. 3. 15) we get I 

Where we write Msoli, as the soliton total angular momentum operator 

This is the expression for the angular momentum operator for the soliton . It contains a quantum 
8 

operator p and a C- number term - Q2. p is canonical momentum conjugate to the angular 
2n 

coordinate a and hence describes the angular momentum operator. The C- number term is 

proportional to Q2. In the case studied here Q = 1. The fractional part of the spin is induced by the 



e 2 
topological mass term of the gauge field. The mass enters only through €I = z. It is clear that 

this is a non-perturbative phenomenon as m appears in the denominator. Thus coupling the a- 

model to a dynamical gauge field through topological current does not change the physics 

contained in the Hopf term and demonstrates that the Hopf invariant is induced by the gauge field 

which has dynamical degree of freedom. Such 'fictitious' U(l) gauge field has been considered 
40 

recently in the theory of Anyonic super conductors. We expect our result will thus have 

important application in this area. We can now see why Karabali and Murthy were able to show 

that the fractional spin is independent of m upto an order l/m5. They considered the soliton 

solutions corresponding to Q = 1 given by our ansatz (Eq. 4. 2. 1. ) but they ignored the 

equations of motion modified by coupling to gauge field. As we saw in our calculations both the 

Gauss' law constraint and the classical equations of motion for the coupled fields play a crucial role 

in demonstrating that the fractional spin is W2.n to all orders in m. We discuss the eigen values of 

the angular momentum of the soliton sector Q = 1. 

1 a 
The eigen values of P are integers, since P is -in the coordinate representation, whose eigen 

aa 

functions are eina n E Z. 

1 a 0 e i n a =  (1-+ -) e i n a =  (n+ 5) e i n a  
aa 2.n 

Thus the soliton of the non-linear sigma model coupled to U(l) gauge field with the topological 
8 

mass term in (2+1) dimensions has a fractional, whose value is strictly - . 
2.n 

We now show that the fractional spin is zero if m = 0 .  We rewrite equation (4.3. 12) by using 

Eq. (B. 7) as 



+ e2 m b 2 x  xi Jd2x" { ~ ~ V : G ~ ( X  - x") ) jO(x") p x '  { v:G,,,(x - x') ) jO(x') (4.3.29) 

d x xi where a: = - V t = a ,  a .Clearly for m = 0 Eq. (4. 3. 29) becomes axi' 

Thus the spin of the soliton is zero for m = 0 and the spin of the soliton is fractional and 

independent of m for m # 0. 

4. 4 Conclusions 

In this thesis we have discussed the (2+1) dimensional O(3) non-linear sigma model coupled to an 

abelian gauge field with a topological mass (m) and have evaluated the fractional spin of the soliton 

with the unit topological charge. We have carried out a semi classical quantization of the model 

treating the non-vanishing classical gauge fields in the soliton sector as back ground gauge fields. 

We have shown that though the model is not identical to sigma model with the Hopf invariant term, 
8 

the fractional spin of the solitons is strictly - for m # 0. and that the spin has arisen from the 
2x: 

dynarnical term jd2x~ i j~k l&abC xi (Ak nb alnC )ajna . We have found that the fractional spin 
2.n 

vanishes for m = 0. This fact has lead us to predict a phase transition at m = 0. We hope that that 

this route for realizing fractional spins may be helpful in looking for other (2+1) dimensional 

models. Finally the mechanism for super conductivity proposed by Polyakov using 8 = x: is still 

applicable in the presence of the electro magnetic field. 



Appendix. A 

We calculate the constraints of the system described by the Lagrangian (4. 2. 9) by Dirac's 

method. (Ref. 15, 29, 30, 31, 32. ). We have obtained in Sect. 4. 2. the constraint equation 

XQ = no = 0 (Eq. 4. 2. 12a)(called the primary constraint). Primary constraints are those that are 

direct consequence of the definition of the momenta (nP) (independent of equations of motion). 

The fact no = 0 tells us that among the variables Ao, A,, A2, no, n,, n2 only A,, A2 and 

lJl, n2are truly independent. If Xo s no is zero at some time , it has to be zero through out all 

the time for consistency and therefore Xo = n o  = 0. This condition generates further 

constraints xl,  X2, X3. ........Xk. 

where the Poisson bracket [,IPB is defined by 

Further demanding XF 0 produces x2 and so on.Thus we find the constraints x , , x ~ ,  

x ,.........  until we get the value of the Poisson bracket [X,,, HI is zero . (While evaluating 

the Poisson bracket, we should not use the fact xi = 0.). 



xl, x2, x 3......... x k-l. are called secondary constraints.These arise only after the Equations of 

motion are used at least once. We evaluate [no, HIpB to.find out xl. H is the Hamiltonian 

obtained by using (4.2. 13a) and (4. 2. 9) and is given by 

a Where ait = - and 6(x-x") is a two dimensional delta function. By using the property of axti 
the delta functions we find . 



We evaluate 

Let us evaluate the first term by using Eq. (A. 7) and Eq. (A. 5b) 

We further simplify the right hand side (R. H. S) of Eq. (A. 9) by using the property of eiJ and 

integration by parts as 

m2 + 7 (ai6(x-x")) A~(x' ,~)~(x'-x")]  

By using the properties of the delta functions 

(A. 10) 



Let us evaluate the second term of Eq. (A. 8) 

9 & i k ~ o ( x " , t ) ( a ~ 8 ( x ~ ) )  1 } (a;8(xt-x"))] (A. 11) 

We simplify (A. 11) further by using the property of eiJ,integration by parts,and the properties of 

the delta functions . We get the R. H. S as 

m i k  mL R.H.S = + T E ainL(xt,t) - a i ~ i ( ~ , t )  (A. 12) 

By observing (A. 10) and (A. 12), we notice that the first term and the second term of the R. H. S 

of Eq. (A. 8) are same except they differ by a minus sign . 

(A. 13) 

and hence 

(A. 14) 



Thus we see that the system has two constraints 

x o = n , = o  

i m x l = ( a p  + TB)  = o 

and since [ x ~ , x ~ ]  is clearly zero these are first class constraints. 



Appendix. B 

In this appendix we show that the last two terms of Eq. (4. 3. 12)(8 term) is equal to the last two 

terms of Eq. (4. 3. 15). i. e. 

Id2x d2x'j0(x) (rn~x-X'I) ~ ( r n ~ x - x ~ )  jO(x') I 

= - 8n2[prdr o j"(r) rnr 5 (m)[ r'dr' j"(r') rO(m') + 

- r jO() mr ( m r ) r  j 0 ( )  ( m r ' ) ] .  (4.3.16) 
0 r 

r 00 

A. = e [ j  r'dr' j"(r') q ( m r ) ~ ~ ( m r ' )  + 1 r r'dr' j"(r') lo(mr)%(mr')] (4.3.17) 
0 

For this purpose we need the Green's function Gv of yr. The equation for yr by using (4. 1. 9) and 

(4. 1. 8a) can be written as 

(B. 1 b) 



We can write y~ in terms of jo(x) as 

where GJx-x') is the Green's function for y~ and can be evaluated as below 

62(x-x') is a two dimensional delta function. Fourier transforming (B. 3) we find . 

By using Eq. (4. 1. 12c) 

k d k  G,(x-x') = - ~o(lkllx - x'l) 
27c k2(k2 +m2) 

0 

=--I[ ln(m1x-x ' l )+K ( m i x - x ' l )  . (Uponintegration) 
2xm 0 I 

Let us take the left hand side(L. H. S. ) of Eq. (B. la) and use Eq. (B. 2) ,Eq. (4.3. 8b) and 



To get the L. H. S of Eq. (B. la) as 

I - p + Jd2x xk(ak~:)~2W = - e2 m d2x jO(x) xi J'c12~' { a:~,,,(~ - x*) jO(x') + 

a x xi where a: = - and V: = a a . We simplify the second term on the R. H. S. of (B. 7). Since axi' 
x,x',xW are dummy va.riables,we change x+x",x"+x and then integration by parts yields 

= -2 d2x d2x' d2x" { v:.G,,,(x" - x) ) jO(x) { V:,.G,,,(X'' - x') ) jO(x') - I 
- I d 2 x  d2x' d2x" x'li { v~..G,,,(x" - x))  jO(x) (~~"v:..G,(x" - x') ) jO(x'). (8.8) 

The last term of R. H. S of Eq. (B. 8) is same as its L. H. S. with opposite sign if 

x+ x', 

x'+x. Hence (B. 8) can be written as 



Integrating by parts twice the R. H. S. we get 

Jd2x d2xt d2xtt  x t t i  { ~:"V:..G~(X" - XI} jO(x) {v:..G,,,(~~~ - xt) } jO(x') = 

We use Eq. (B. 3) and the property p" 6(x" - x)f(xn) = f(x) in Eq. (B. 9) to get 

- Jd2x d2xt jO(x) GJX - xt) jO(xt) (B.IO) 

We substitute (B. 10) in (B. 7) and rearrange the terms to yield 

- p + Jd2x xk(ak~:)~2v = - e2m d2x d2x'j0(x) { xi (~;G,,,(X - XI)) + J 
+ G ~ ( X  -XI ) )  jO(xt) + 

- e 2 m 3 b 2 x  d2x' d2x" { V;..G,,,(X" - x)} jO(x) Gy(xt' - x') jO(x') (B.ll) 

We simplify the right hand side of (B. 11) term by term by using (B. 4) 



Let us take 

i a a We symmetrize the expression by changing x+xt,using x 7 = x" - and ki+-ki. We 
ax ax t i  

get 

-ilkllx-x'l cos 8 
e 

= i P 2 x  d2x'j0(x) (-ilkllx-x'l cos 8 ) , 
k (k +m2) 

job')  

Using Eq. (4. 1. 12c) 

~ k ~ : ~ p ~  ( - i )~x -XI  cos J ~ ( I ~ I I X  - x'l) jO(x') (B.13) 

k2(k2+m2) 

We write 

aJo(lkllx - x'l) 
(-i)~x-x'l cos 8 Jo(lkllx - x'l) = ak = - (IX-x'l) Jl(lkllx - xll) 

Substituting (B. 14) in (B. 13) and performing k- integration to get 



1 Jd2x d2xtj0(x) xi (a;G,(x - x')) = - 7 j d 2 ~  d2xtj0(x)[1 - mlx-xtl~(mlx-xtl)]jo(xt). 
4nm 

(B. 15) 

Let us take the following term from (B. 11) and use (B. 4) 

By using 

We can write (B. 16) as 

We write 



and use Eq. (4. 1. 12c) to get R. H. S of (B. 17) as 

a Integrating with respect to k and performing 7 on the result ,we get (B. 17) as 
am 

1 1  +z - 2 (mlx-x'l)%(mlx-x'l) ) jO(x').] (B. 18) 

e2 
Substituting (B.l5),(B. 6),(B. 18) in (B. 11) and writing 0 = z;;; ,we get 

e2 e2 + -( ln(mlx-x'l) + ly (m I - I )  - -  ln(mlx-x'l) + X (m lx - x'l) + 
2nm 0 23rm 0 



We prove (4.3. 16). Let us take the left hand side (L. H. S. ) and w the angular b p t h  
by using the fact that j" is function of radial coordinate r and write Z%(X) t;" = - %(x)* 

a L.H. S. = - jd2x d2x' jO(r) ( m z;;;%(mlx-x'~)) jo(r') 

(B .20) 

Where 8 = ($ - $').We treat $' as constant,de = d$ and $ = $'if 8 = 0; $ = (2n + $') if 8 = 2n 

and shift the integration region $' - (2n + $') to 0 - 2n . 

where Jo is Bessel function and %is Neuman function . 

L.H.S. = r r  dr r' dr' d$' jO(r) (in) x 
0 

n 
a x m J 10 [ j  (.\I (-(mr12 - (rnr*12 + 2 m2r r' cos 8) ) + 

0 0 



We use the integrals 

n 

dB j (4 (-(mr12 - (mr'12 + 2 m2r r' cos 8 )  ) = 
0 0 

JL 

2 d8 %(d (-(mr12 - (mr') + 2 m2r r' cos 8)  ) = 
0 

= 7~ jO (imr) % (irnr') 

= 7~ jo (imr') % (imr) 

(For r' > r) 

(For r > r') 

(B .2S) 

We write Eq.(B.23) by using (B.24),(B. 25),(B. 22) and jo (ix) = lo (x), 

O0 r' 
L.H.S. = ( 2 7 ~ ) ~  [- Jdr' ddr r' jO(r') r jO(r) mr' (mr')lo(mr) + 

1 

m 

+ dr' 'dr  r' jO(r') r jO(r) mr' %(mr) I,(mr') ] (B.26) 
0 r ' 



Inverting the order of integration and writing r + r' and r' + r ,we get 

O0 r 
L.H.S. = - ( 8 x 1 ~  [ /dr Jdr' r jO(r) r' jo(r') mr r ( m r )  I0(mrt) + 

w 

+ r dr I dr' r' jo(r') r jO(r) mr %(mrt) Il (mr) ] (B.27) 
0 

Therefore we can write 

Id2x d2x'j0(x) (mlx-x'l) 5 (mlx-x'l) jO(x') I 
= - 8n2[[rdr jo(r) mr r(mr)[ r'dr' jO(r') Io(mr') + 

We now prove Eq. (4. 3. 17). Let us take Eq. (4. 1. 14a) 

We can write (B. 28) by using (B. 22),(B. 24),(B. 25) and Jo (ix) = lo (x), as Eq. (4. 3. 17) 

r - 
A, = e [ j r'dr' jo(r') %(mr) I0(mrt) + j r'dr' jO(r') lo(mr) %(mrt)] 

r 
(4.3.17) 

0 
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