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Abstract 
P .  * I 

The fundamentals of the theory of equilibrium crystal shapes (ECS's) are 

reviewed. The concepts developed are then applied to two model calculations: 

Using a conceptually novel approach which maps a two-dimensional (2D) interface 

exactly onto a Feynman-Vdovichenko lattice walker, we derive an exact and general 

solution for the ECS of free-fermion models. The ECS for these models is given by the 

locus of purely imaginary poles of the determinant of the "momentum-space" lattice-path 

propagator. The ECS may, therefore, be read off simply from the analytical expression 

for the bulk free energy. From these shapes one can then obtain numerically (but to 

arbitrary accuracy) the anisotropic interfacial free energy per unit length and, therefore, the 

high-temperature direction-dependent correlation length of the dual system. We give 

several examples of previously unknowr, Ising ECS's, and we examine in detail the free- 

fermion case of the eight-vertex model. The free-fermion eight-vertex model includes the 

modified potassium dihydrogen phosphate (KDP) model, which is not in the Ising 

universality class. The ECS of the modified KDP model is shown to be the limiting case 

of the ECS of an antiferrornagfietic 2x1 phase on a triangular lattice in the limit of infinite 

interactions. The ECS of the modified KDP model is lenticular at finite temperature and 

has sharp comers. We explain the physics of this lens shape from an elementary 

calculation. 

To obtain the facet shapes and anisotropic step free energies for the 3D simple- 

cubic nearest-neighbour Ising model, we develop systematic low-temperature perturbation 

expansions about the exact solution for the ECS's and interfacial free energies of the 2D 

square Ising model. An expansion scheme is developed which makes explicit use of the 



conjugacy between the step free energy and the facet shape. We find that the facet shape is 

approximated to better than 1% by the equilibrium crystal shape of the corresponding 2D 
g ,  ' 

Ising model for temperatures less than about 72% of the roughening temperature. In that 

temperature range overhangs and bubbles contribute less than 0.1% to the step free 

energy. At higher temperatures the facet shape is nearly circular with anisotropies of less 

than 0.4% and a ratio of facet diameter to crystal diameter of less than 0.4. Extrapolations 

into the isotropic region give critical roughening amplitudes consistent with recent Monte 

Carlo data. 
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1. Introduction 

Crystals haye undoubtedly fascinated mankind since ancient times. Perhaps the 

most intriguing and most easily appreciated property of crystals is that they have 

interesting, symmetrical shapes. This thesis will be concerned with equilibrium crystal 

shapes (ECS's), the shapes of crystals which are in equilibrium with their environment. 

ECS's may be quite different from the familiar polyhedral ones commonly observed in 

nature. A typical example of an ECS, as observed in the laboratory, is shown in Fig. 1.1. 

To observe such shapes, conditions must be carefully controlled to ensure true equilibrium. 

Under natural conditions (e.g., geodes in cooling magma, ice on windshields), crystals are 

usually formed far from equilibrium. If equilibrium conditions are established after non- 

equilibrium growth is completed, only the shape of very small crystals (on the order of 
I 

microns for ionic insulators such as sodium chloride, and for metals like gold and lead), at 

relatively high temperatures (close to the triple point) can change sufficiently to reach 

equilibrium in practical times. The reason for this is that changes in shape require the 

transport of macroscopic amounts of material via surface diffusion and ad- and desorption 

of atoms. Generally, naturally occuring crystals have complex non-equilibrium forms 

which depend on their precise thermal history. For non-equilibrium situations it is, 

therefore, not the shape as such that is of physical interest but rather the dynamics of crystal 

growth and surface morphology. Here, we will concentrate on equilibrium only. 

Equilibrium shapes are history independent, free from the complications of 

dynamics, and therefore reveal the nature of the crystal/environment equilibrium interface. 

It now makes sense to speak of the shape of a macroscopic crystal as something which 

may, at least in principle, be defined by a mathematical function which depends on the type 

of materials involved and on the thermodynamic coordinates such as pressure or 

temperature but not on the particular thermal history of a given sample. While the 



FIG. 1.1. Electron micrographs of a small crystalite of lead approximately 6pm in diameter 

at -300eC as prepared by Heyraud and Mttois (see Heyraud and Mttois, 1983). The vapour 

pressure at this temperature is so low Torr) that pressure control is not important in this 

case and the sample can simply be maintained in a high vacuum. 

Top: Viewing the crystal along the [loo] direction: The large, slightly hexagonal (1 11) 

facets are easily seen. The { 100) facets are also present but smaller and difficult to see. 

Bottom: Viewing the crystal along the [I101 direction: The facets are flat and join the 

curved parts of the shape smoothly. 

These photographs are reproduced here with the permission of M. Wortis, to whom J. C. 

Heyraud and J. J. MCtois kindly made these photographs available. 



thermodynamics of ECS's has been understood nearly a century ago by Wulff, the 

determination of &se shapes from the statistical mechanics of a microscopic Hamiltonian 

has been of considerable interest only in recent years. This interest has been fueled on the 

theoretical side mainly by the discovery of surface phase transitions (most notably the 

roughening transition) and, on the experimental side, by technological advances which 

make it possible to attain true equilibrium conditions under which to observe the shapes of 

small crystals. The field has been very active over the last decade and several excellent 

reviews cover these developments: Zia, 1984; Rottrnan and Wortis, 1984a; Abraham, 

1486; van Beijeren and Nolden, 1987; Wortis, 1988; Zia, 1988. We shall, therefore, only 

give such background as is needed for this thesis to be reasonably self-contained. During 

the remainder of the Introduction, we will develop the fundamentals of ECS theory. 

Further background will be provided at the beginning of each main Section. 

1.1 The ECS as a classical variational problem and 
Wulff' s Theorem 

A crystal can only be in equilibrium with another phase when the state of the system 

crystal-plus-other-phase lies on a first-order coexistence c w e  of the system's phase 

diagram. We take our system to be contained in a box of volume VB. The box is in contact 

with a heat bath whose temperature T is under our control. For simplicity and definiteness, 

consider a pure substance X at gaslsolid coexistence, as shown in Fig. 1.2. The box 

contains a fixed amount of X, enough so that after equilibrium has been reached the 

pressure inside the box lies on the gaslsolid coexistence c w e ,  i.e., P=Po(T). The solid 

and gas densities and, therefore, the volume of the crystal, V, are then determined and 



fixed (see Fig 1.2). To keep the physics as simple as possible, we assume the box to be in 

free fall so that we need not worry about the rather subtle effects of gravity (see, for 
$ f  

example, Avron et al., 1983; Zia and Gittis, 1987; Avron and Zia, 1988). Further, we 

assume the crystal to be freely floating in the interior of the box, far away from the walls of 

the container, so that we need not worry about substrate geometries and other 

complications due to the presence of the walls of the box. The important point now is that 

the bulk free energies of the solid and gas and the free energy coming from the walVgas 

interactions are fmed. The only way in which the system can lower its free energy to attain 

true equilibrium is to change the shape of the crystal, so as to minimize the total free energy 
A 

of the crystaVgas interface, F[S], where S is the surface of the crystaLt Denote by T(m) 
A 

the interfacial free energy per unit area for a planar interface of (crystal-to-gas) normal m 
A 

and for now take T(m) as a given, well defined thermodynamic quantity. The starting 

point of the theory is the free energy functional F[S] given by 

That this is, indeed, the correct expression for F[S] is actually not obvious, since it is 

assumed in Eq. (1.1) that the ECS may locally be constructed from macroscopically planar 

pieces which do not influence-each other's thermodynamics. However, for short ranged 

forces (1.1) is certainly a reasonable Ansatz. It has been rigourously proved to be correct 

for simple cases (Dobrushin et al., 1988; ~oteck;, 1988). 

A 
What makes the ECS interesting is that T(k) depends on the orientation, m, of the 

A 
interface with respect to the crystal axes. If T(m) were just a constant, as in the case of a 

' To be precise, the surface S dividing the two phases is to be chosen with the Gibbs convention (e.g., 

Griffith, 1980), so that we need not consider excess volumes, densities, etc. associated with an interfacial 

region of finite thickness. 



FIG. 1.2. Phase diagram of a generic substance. Top: Pressure, P, versus temperature, T. 

Bottom: density, n, versus T. The dark shading indicates a crystalline solid phase; the light 

shading, a fluid phase. An ECS is possible only if the state of the system lies on a phase 

coexistence curve, P=PO(T). If there are N particles in the box of volume VB, the average density, 

nO=N/VB, has to lie between points A and C to be at coexistence, i.e., n g ~  [nA,nC]. If no=nA or 

no=nc, the box is filled with a pure phase. If no€ (nA,nC), (e.g., point B) the system phase 

separates into a fluid of density n~ and a crystal of density nc. The volume of the crystal, V, is 

then determined by V=VB(no-nA)/(nC-nA). 



fluid/fluid interface, it follows from symmetry that the equilibrium shape would be a 
A 

sphere. The anis9popy of T(m) for a crystalbything interface results in a non-spherical 

equilibrium shape which assigns as little area as possible to high-energy orientations and as 

much area as possible to low-energy orientations. This weighted assignment of areas takes 

place in such a way as to minimize F[S] subject to the constraint that the volume, V[S], 

enclosed by the surface S remain fixed. This statement, with F[S] of the form (1.1), was 

already asserted in 1885 by P. Curie. Incorporating the constant volume constraint via a 

Lagrange multiplier (D-1)h (defined for later convenience in terms of D, the spatial 

dimension of the bulk crystal), the ECS describes a surface S for which the functional 

is stationary. In case of multiple solutions, the ECS corresponds to the one for which F[S] 

is smallest. [The Euler-Lagrange equations of (1.2) are generally nonlinear.] 

The solution to this variational problem was first stated by G. Wulff in 1901. His 

solution, after it was proven to be correct by several authors: has become known as 

Wulff's theorem. For physicists, the content of the theorem is best expressed in terms of a 

geometrical construction (the. f'wulff construction") which tells us how to obtain the ECS 
A 

given T(m) [see Fig. 1.3 for an illustration]: 

1 .) Make a polar plot of r(A) (the "Wulff plot"). 
A A 

2.) For every point mlJm) on the Wulff plot construct a plane which goes through that 
A 

point and is perpendicular to m. 

Incomplete proofs were given by Hilton in 1903, by Liebmann in 1914, and by von Laue in 1943; the 

first m e  proof was given by Dinghas in 1944. 



3.) Take the interior envelope of the resulting family of planes. This envelope is, to 

within an overall (constant) scale factor, the surface, S, of the ECS. The scale factor 
t f  

is chosen such that V[S] = V. 

The fact that the shape depends on the volume only through an overall scale factor (except, 
A 

of course, for finite-size effects) shows that the ECS, like T(m), is an intensive 

thermodynamic quantity. 

4 
Wulff 
Planes 

\\ 
Wulff Plot 

FIG. 1.3. The Wulff construction. Notice that cusps in the Wulff plot (fat solid line) 

generate flat ~ g i o n s  or facets of the ECS (dotted line). 



Since the Wulff theorem is the cornerstone of this thesis, we will now motivate it 

and then present i$sf proof (a physicist's version) as given by Herring in 1% 1. Consider 
A 

first the case of a fluid/fluid interface, i.e, T(m)=To=constant. By symmetry we may 

restrict ourselves to spherest of some yet-to-be-determined radius R. A trivial calculation 

shows that 
hR = To 

locally stationarizes the functional iP[S] and that the corresponding sphere is the unique 

spherically symmetric minimum of F[S]. Since To is just the surface tension of the 

interface, it follows from mechanical equilibrium that (P2-Pl)/2=T&, where P2 and P1 

are the hydrostatic pressures inside and outside the sphere, respectively. Thus, we may 

make the identification h=(P2-P1)/2. 

For the crystallanything interface, T(C) has explicit & dependence. Let the surface 
A 

S be described as a function R(r). Break up S into small pieces dS, small enough so 
A 

that m does not vary appreciably over dS. The piece dS subtends a small solid angle dQ at 
A 

the origin. Energetically, dS at energy density T(m) is equivalent to a small spherical cap 
A A h  A A 

of area dA and energy density T(m)/m*r (for merd)), where dA is at the same distance R 

from the origin as dS and subtends the same solid angle dR (Fig. 1.4). To first order in 

the differentials the volume contained in dQ between the origin and dS is the same as the 

volume contained in dQ between the origin and dA. Thus, if dS is locally in equilibrium, 

so is dA and, therefore, by Eq. (1.3), we have 

Rigourous mathematical proofs that the the equilibrium shape exists and is, indeed, spherically symmetric 

were given by Schwan in 1884 and by Minkowski in 1901 (see Minkowski, 1903, 1911). Dinghas' 

proof is a generalization of those works. 



FIG. 1.4. Geometry used in deriving the 

Wulff construction. 

A 
For each m, Eq. (1.4) describes a plane 

perpendicular to and through the point 

PI'(&, which is the Wulff plane 
A 

associated with m. For a given volume, the 

ECS is to be constructed with the planes 

(1.4), and we now have to find that 

construction which minimizes F[S]. For any 

shape constructed with the planes (1.4) we 

can evaluate F[S] explicitly as 

which is minimized at fixed h when V[S] is a minimum. Since the smallest possible 

volume enclosed by the Wulff planes (1.4) is their interior envelope, we arrive at the Wulff 

theorem, which we may simply state as 

A A 
This relation has a simple inverse, which provides T(m) given R(r). Since the 

A h  
ECS is the interior envelope of the perpendicular planes through m T(m) and since these 

planes are tangent to the ECS, we must have (see Fig. 1.5) 



FIG. 1.5. The planes constructed 
A A 

from Eq. (1.4) for fixed m given R(r). 

These planes are tangent to the ECS 
A 

(shaded) when Rm, the perpendicular 

distance from the centre, is maximized. 

A 
r(m) = 7 (XRA) I A , 

r m 
(1.7) 

A 
where R=  rR(r ). Since m a x ,  [f(x)] = 

min,[l/f(x)], this may be written in the form of 

(1.6) as 

which states that the inverse interfacial free 
A 

energy, l/T(m), is given by the Wulff 
A 

construction of the inverse crystal shape, l/R(r ) . 

We shall refer to the shape obtained with 

h=l as the "normalized ECS". It will be useful 

below to express the total interfacial free energy, 

Fo, of the ECS in terms of the volume, V,, of the normalized ECS. The scale invariance 

of the ECS [manifest in (1.6)] implies that the volume, V, enclosed by the surface defined 
-lP 

by (1.6) is given by V=h V,. Hence it follows fn>m (1.5) that 

If the ECS is smooth at the point R($), where the normal is &, then Wulff planes 
A h  A A A 

close by, with mY=m+6m, must all intersect at R(r)  in the limit as 6m + 0. The 

condition for these planes to intersect is just 



A A 
provided T(m) is differentiable.? Since (1.10) must hold for any Sm, we have 

P '  A A A A  A 
VA [%)= $&A-[r-m (me r)]) r(m) = 0 , 

m-r 

A A 
which defines r as a function of m, and is just the analytical form of the mink(.) function 

A A A A 
of Eq. (1.6) in the case of differentiable l?(m). Decomposing R[r (m)]=R(m) into vectors 

A 
parallel and perpendicular to m and using (1.1 I), we may write the ECS as a parametric 

A 
function of m , i.e, 

for those parts of the ECS constructed from differentiable parts of the Wulff plot. 

In our derivation above, we found a particular solution for which F[S] is stationary. 

However, it is far from obvious that there are no other solutions for which F[S] is smaller 
A 

yet. If we represent the ECS as a function R(r) as in the preceeding discussion, Eq. (1.2) 

may be written as  

Variations R+R+GR induce variations in O which must be zero for a stationary solution. 
A 

When T(m) is differentiable, our argument for the derivation of the Wulff construction 

amounts to nothing more than to writing these variations as (Zia, 1984) 

A 
The transverse gradient, V&, is defined by [Vp f(m)lc = (6cV-(c(v/(2) ( 

a = ~c~ ( a 6) with (=-\/z. In two-dimensional polar coordinates, Vfh = 6- . 
acv ae 



Evidently, 6@[S] = 0 when Eqs. (1.6) and (1.11) are satisfied. Clearly, however, there 

may be other solutions in which the sum of the two terms in the integrand of (1.14) is zero 
P ,  ' 

but the individual terms are not. A priori, it is not even clear that the ECS can be 
A 

represented by a single valued function R(r). Furthermore, our tacit assumption that the 

interface may be represented by equivalent infinitesimal spherical caps of a common centre 

of curvature does, in principle (while being physically very plausible and, as it turns out, 

correct), also require proof. 

Dinghas' ingenious proof and its successive refinements and extensions (Herring, 

1953; ~ a ~ l o r ~ ,  1974, 1978) put all these worries to rest by proving that the Wulff solution 

gives the absolute minimum of F[S] at fixed volume. In their most general and powerful 

form, the proof and, indeed, the statement of the theorem itself, requires the technology of 

geometric measure theory (Taylor, 1974). We will content ourselves here with a more 

simple version. 

At the-heart of the proof of the Wulff theorem lies the Brunn-Minkowski inequality 

(e.g., Minkowski, 191 1; Federer, 1969), which states the following (see Fig. 1.6): Let the 

"bodies" Bl and B2 be nonempty subsets of RD having volumes V1 and V2, respectively. 

Let Xce B2 and call it the centre of By Define a third body B as the subset of RD which is 

swept out with B2 as the centre of B2 is placed at all points of B1 keeping fixed the 

orientation of both B1 and B2. If we denote the volume of by ?, then the theorem states 

with the equality holding if and only if B1 and B2 are geometrically similar. 

Taylor (1978) will tell you how to catch fish with the Wulff construction! 



FIG. 1.6: The geometrical construct of the Brunn-Minkowski theorem for two compact 

"bodies" B1 and B2. The (arbitrary) centre of B2 is indicated by a dot. The volume swept out by 

placing the centre of B2 at every point of B1 generates the body as indicated. The volumes of 

the three W e s  obey the Brum-Minkowski inequality, Eq. (1.15), which is an equality if and only 

if B1 and B2 are geometrically similar. 

The proof of Wulff's theorem now goes as follows: Let B1 be the body whose 

surface, S1, is being investigated as a candidate for being an absolute minimum of the 

functional (1.1) subject to the constraint that V1 be fixed. We define a third body B, (of 

volume V,) as the union of B1 and the set of points swept out by moving each point of S1 
A h  A 

out.by a vector &mT(m), for every point of S1 for which a surface normal m is defined 

(see Fig. 1.7). We then have 

Let B2 be the body of the ECS obtained by the Wulff construction with scale factor E so 

that V2 = E-,. Let XCc B2 be the origin of the polar coordinate system used in the Wulff 



construction, and form the body B as described above. Since the Wulff construction 
A A 

guarantees that B2 has no points outside the plane perpendicular to and through &mT(m) 
+ ,  ' 

[see Fig. 1.71, we have the inequality 

FIG. 1.7; The geometrical construct for Dinghas' proof. B, is constructed from B1 by 
A A 

moving every point of the surface of B1 out along the surface normal m by a distance C(m)  The 
A A 

heavy straight line indicates the plane normal to and through ~mT(m). 

Applying the Brunn-Minkowski inequality (1.15) to the right hand side, evaluating the 

resulting limit, and substituting for the left hand side from (1.16) one obtains 

Thus, D V ~ ( * ' ) ~ V , ' ~  is a lower bound for FISI]. When B1 and B2 are geometrically 

similar, all inequalities in Eq. (1.18) become equalities [cf. Eq. (1.9)], which proves that 

the surface obtained from the Wulff construction is the absolute minimum of F[S]. 



The fact that the Wulff construction gives the ECS as the interior envelope of planes 

strongly suggests that a Legendre transform may be involved (e.g., Callen, 1960). That 
* ,  ' 

this is, indeed, the case was first recognized by Andreev in 1982 (81 years after Wulff!). 
A 

The fact that R(r) is the Legendre transform of ~ ( 4 )  is most clearly visible when the ECS 

is described in Cartesian coordinates as z(x), x=(x,y). It is then natural to describe the 
az orientation of the interface in terms of its slope p = - and in terms of the interfacial free ax 

energy per unit projected area in the x-y plane, given by f(p) = I'(&)ql+p2, with &(p) = 

(-p,, -py, 1 ) / d G 2 .  Transcribing Eq. (1.6) to Cartesian coordinates, one obtains 

with 

q and p are conjugate variables related byt 

and 

provided f(p) is differentiable at p. Eqs. (1.20-22) clearly express f (q )  and f(p) as 

Legendre-transform-conjugate pairs. 

Since the Legendre transform is nothing more than a change of variables, the 

normalized ECS, as obtained from the Wulff construction, is itself a free energy surface! 

This is, perhaps, the most astonishing result of ECS theory. The Wulff plot describes the 
A 

anisotropic interfacial free energy in terms of the independent variable m (or p), whereas 

the ECS does the same in terms of the conjugate variable : (or q). That the ECS and the 

Eq. (1.21) may be recognized as a &anscription of (1.12) by using the fact that [(V&, = -m 
a - 

ap ' 



interfacial free energy are different representations of the same physical quantity is already 

apparent from the Wulff construction, itself, since the Wulff plot may be reconstructed 
f f  

from the ECS via the inverse relation (l.8).? Legendre transform conjugacies are 
A A 

ubiquitous in thermodynamics, and the conjugacy between T(m) and R(r) is precisely 

analogous to any other such conjugacy commonly encountered. For example, the 

Helmholtz free energy density of a magnetic system, f(m), gives the free energy in terms of 

the system's magnetization density, m. Via the Legendre transform, one obtains the 

corresponding Gibbs free energy density g(h) as g(h)=f(m)-mh, with -m=ag/ah and 

h=af/am, which describes the system in terms of the conjugate field variable h (which in 

this case is literally the applied field). To remind ourselves of the analogy with such more 
A A 

familiar cases, we call m (or p) the density variable, and r (or q), thefield variable. 

The loci of singularities of a free energy (hyper)surface are (by definition) phase 

boundaries. Thus, the ECS may be considered to be a constant-T cut through the three- 
A 

dimensional ( r  ,T) phase diagram of the crystaVanything interface (Rottman and Wortis, 

1984; Wortis, 1988). Flat regions (or facets) and rounded regions of the ECS (see Fig. 

1.1) may be identified as different phases. If the facet is connected smoothly to the 

adjacent rounded region, the facet edge corresponds to a second-order phase boundary. 

Correspondingly, the facet edge is associated with universal exponents and critical 

behaviour (e.g, Pokrovsky and Talapov, 1979; Jayaprakash et al., 1984b). Slope 

discontinuities and sharp features of the ECS correspond to first order phase boundaries. 

A 
If there are parts of the Wulff plot that do not contribute to the ECS, the corresponding directions lo are 

not thermodynamically stable and hence not defined in equilibrium (Herring's theorem, Herring, 1951). 

They can only show up in the Wulff plot as a result of a mean-field calculation or via some other 

approximation procedure (see also Roman and Wortis, 1984a). 
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1.2 Formulations of Statistical Mechanics: Canonical 
and Grand Canonical Descriptions of the ECS 

4 '  ' 
A 

In the previous section we took the interfacial free energy per unit area, T(m), as a 

given thermodynamic quantity. In this Sub-section, we discuss the thermodynamic 
A 

definition of T(m) and, from that, give a microscopic definition in terms of a Boltzmann 

sum (trace) over a "canonical" ensemble of microscopic configurations. We will then make 
A A 

use of the Legendre transform duality between the ECS, R(r), and T(m) to formulate the 

ECS directly in terms of a "grand canonical" trace. 

Let the two phases under consideration be labelled by (+) and (-) and let our box 

have wall area A,. When we put just the right amount of material in our box so that we sit 

at phase coexistence with only the pure (+)-phase filling the box (e.g., point A in Fig. 

1.2), the sample free energy, I ? + ,  contains contributions from the bulk and from the 

bundaies of the sample. We may write 

where 

and 

The thermodynamic limits (1.24) and (1.25) are to be taken so that the system size goes 

uniformly to infinity, i.e., every linear coordinate is multiplied by a constant C which goes 

to infinity and the number of particles is taken to be proportional to the volume. By 

(rest)* we simply mean contributions to F* which either do not scale at all with C or 

scale like CV with vc2. These limits [and, therefore, the expansion (1.23)] exist for 



sufficiently short ranged microscopic forces (e.g., Fisher and Caginalp, 1977; Caginalp 

and Fisher, 1979). Eqs. (1.24) and (1.25) define the bulk free energy, fHb ,  and the wall 
f f  ,' 

free energy per unit area, fH, , respectively. Similarly, we define ib and f-, for the 

(-1 phase. . 

We now add more material to the box so that the net density is made to sit in the 

forbidden region (point B in Fig 1.2), and both phases are present inside the box. When 

the volumes of the two phases are comparable, we can have a (macroscopically) planar 

interface between the two phases. (If one of the volumes is much less than the other, we 

will get a small crystalline inclusion with curved interfaces and many macroscopic surface 

normals will be present.) Let the volume of the (+) phase be denoted by V++ and the 

volume of the (-) phase by T= (VB-v*). We can, for example, imagine controlling 

the orientation of the interface by an appropriate choice of boundary condition as follows: 
A 

Cut the box into two with a plane of the desired orientation, m, such that one half of the 

box has volume v*. Now, somehow, treat the the walls of the half with volume V++ 

(and wall area A,? so that, energetically, they prefer to be in contact with the (+) phase, 
- 

and treat the walls of the other half (with wall area A, = A,-A,?, so that they prefer 

to be in contact with the (-) phase. In equilibrium this will then force an interface into the 

system of the desired orientation, provided, of course, such an interface is 

thermodynamically stable.+ If the interface has area A, the sample free energy, a, will 

have an expansion 

We have in mind, of course, an Ising model. For an Ising model, the described procedure can be 

implemented by simply fixing the signs of the boundary spins (see Section 2). 



where 
A 

r(m) n 
P ,  ' 

- - lim [F%-- ( v + + P b  + v--T-~) - (A,* pw + A W - r w ) ] .  (1.27) -A+- A 

Eq. (1.27) is the thermodynamic definition of the interfacial free energy per unit area for an 
A 

interface of orientation m. In this thesis, we will be dealing exclusively with systems 

which have the simplifying property that the bulk and wall free energies (fb and f,) of the 

two phases are the same. Restricting ourselves from now on to systems with such 

symmetric phases, we obtain the more manageable expression 

or equivalently, 

It is now stralghtforwzrd to write dowr? Eq. (1.29) as a trace over microscopic 

configurations. If only the pure bulk phase fills the box, denote the Hamiltonian of the 

system by c. If both phases fill the box and an interface of orientation has been 

enforced, denote the Hamiltonian of the system by by &. The free energies F* and 

F$& are then given by 

and 

where and a are the partition functions 

zH=Tr exp (-p#+) 
and 

Z==T~ exp (-P&) , 



where P=(kB~)-', with kB Boltzmann's constant. In terms of these partition functions, 

Eq. (1.29) becomes 
C ,  ' 

We shall regard (1.34) as the "canonical" description of the interfacial free energy, because 
A 

the trace is carried out at fured macroscopic orientation m in analogy with the fixed density 

or magnetization constraint of more familiar canonical ensembles. Correspondingly, we 
A 

regard the description of the ECS which instructs us first to calculate T(m) via (1.34) and 

then to obtain the ECS via the Wulff construction, to be the "canonical" description of the 

equilibrium crystal shape problem. So far we have put "canonical" and "grand canonical" 

in quotation marks to emphasize that we do not mean the standard canonical and grand 

canonical ensemble of particles. Since from now on we will only speak of ensembles of 

interfaces in this thesis, we will drop the quotes. 

Eqs. (1.20) and (1.22) tell us how to arrive at a grand canonical description of the 

ECS. Substituting the definition of r(A), Eq. (1.34), into the definition of pT(q), Eq. 

(1.20), we obtain 

where Axy Ad= Since we can expect the term Tr exp [ - ~ ( e - q * p ( h ) ~ ~ ~ ]  to be 

a sharply peaked function of h in the limit A,+.. (an explicit example will be given in 

Section 2), we can extend the trace of (1.35) to a trace over a grand canonical ensemble of 

systems. Each member of this ensemble is contained in a box of base area Axy on which 

boundary conditions have been imposed to enforce a macroscopically planar interface of 
A 

orientation m as described above. Each member has Hamiltonian *and may be labelled 



by its orientation A.t Summing over this ensemble, we obtain the grand canonical 

expression for the ECS, 
. f .  ' 

where p(fh) is the slope of the plane used in enforcing the boundary conditions for each 

member of the ensemble. The field term, exp[Pq*p(fh)~,,], is a fugacity for the slope, 

p(fh), and, therefore, controls the orientation of the interface. 

It is sometimes useful to enlarge the ensemble further to include systems which 

have arbitrary macroscopic interfaces (of macroscopically planar topology but not 

necessarily planar) running across the box (we can, for example, imagine defining the 

boundary conditions by dividing the walls of the box into two arbitrary, simply connected 

parts). Denoting microscopic quantities from now on by script letters, we replace the field 

term, q*pAxy, with q*jA p(x)dx dy = -(qxP + qyf )*jsfhd(. (When the interface is 
XY 

forced to have edges which all lie in a plane of slope p, the replacement becomes an 

identity, since the integral of& over a closed surface vanishes.) In this larger ensemble 

we may, thus, write 

If we want this ensemble to contain interfaces of large slopes lpl, the ratio (box height)/Ky is to be 

chosen sufficiently large so that the projected area of the interface remains Axy, i.e., so that steep 

interfaces do not "cut off' comers of the box. 



where the notation {fh) indicates that arbitrary interfaces are included in the ensemble. Eq. 

(1.38) is particularly useful when pure interface models (such as the SOS model) are being 

considered, since (1.38) then allows an unrestricted sum over interface configurations 

(e.g., Jayparakash et al., 1983). Since in our box geometry f *lSthdS = Axy for any 

configuration, we may bring pT(q)=ln{exp[PAxy?'(q)] }/Axy to the right hand side of Eq. 

(1.38) and write 

which provides a coordinate independent grand canonical description of the ECS in which 

R(+) appears as an implicitly determined quantity. 

Eq. (1.38) gives the correct expression, Eq. (1.22), for the expectation value of the 

slope: 

The fluctuations in the slope are calculated as 

where Kij is the curvature tensor of the normalized ECS (for a more complete discussion 

on this tensor, see Zia, 1984; Akutsu and Akutsu, 1987a). The eigenvalues of Kij are l/R1 



and 1/R2, where R1 and R2 are the principal radii of curvature. Therefore, where the ECS 

has well defined curvature with R1 and R2 finite, the fluctuations in the slope go to zero 
# t  

like l/Axy in the thermodynamic limit AXy+- and the grand canonical trace does, indeed, 

select a sharp slope p according to the Wulff prescription (1.40). At sharp edges and 

corners corresponding to first order surface phase coexistence, Kij is defined arbitrarily 

close to the discontinuity and the fluctuations in the slope vanish in the thermodynamic 

limit. Fluctuations would presumably be divergent at a second order (surface) critical 

feature which has divergent radii of curvature. For lattice gas models, bulk coexistence 

ends in a critical point at T=T,. Thus, as T, is approached in these models, the interfacial 

free energy goes to O+ since the critical point may be characterized by unbounded 

proliferation of interfacial area. Correspondingly, the normalized ECS, and, hence, the 

principal radii of curvature, shrink to zero, so the fluctuations become divergent when the 

critical point is approached, as we would expect. 



1.3 Organization and Motivation 

In the remhinder of this thesis we shall apply the concepts developed above to two 

model calc~lations.~ In Section 2, we derive new exact solutions for the ECS's of two- 

dimensional (2D) free-fermion models. These models include planar Ising models, and 

also the modified KDP model which is not in the Ising universality class. In Section 3, we 

focus on the thermal evolution of the equilibrium facet shape associated with the ECS of the 

three-dimensional (3D) Ising model. We will derive low-temperature expansions for the 

facet shape and its conjugate quantity, the anisotropic step free energy per unit length, i.e., 

the free energy associated with the creation of a single step on an otherwise flat crystal 

surface. These expansions are naturally structured as perturbation expansions about the 

exact result for the 2D square Ising model derived in Section 2. To date our low 

temperature expansion is the only analytical calculation of the facet shape and step free 

energy for a full interface model, i.e., a model which includes overhanging and bulk 

excitations. 

A unifying motivation for much of the work presented in this dissertation was the 

following remarkable fact, which was first pointed out by van Beijeren and Nolden, and 

also by Akutsu and Akutsu (1987b), in 1987, and will be derived in Section 3: Whenever 

the facet edge is a second order phase boundary, it follows from the geometry of the Wulff 

construction that the conjugacy between the ECS and the interfacial free energy per unit 

area contains a precisely analogous conjugacy between the equilibrium facet shape and the 

step free energy per unit length. This means that we may think of facets as 2 0  ECS's 

which are embedded in the surface of a 30 ECS! 

Sections 2 and 3 are adaptations to thesis format of research articles either already published (Holzer and 

Wortis, 1989; Holzer, 1990a) or submitted for publication (Holzer, 1990b). 
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2. A General, Exact Solution for Equilib- 
rium Crystal Shapes in Two Dimensions for 
Free-Fertn'ion Models 

2.1 Introductory Remarks 

As a first application of the concepts discussed in Section 1, we will now derive an 

exact solution for the ECS's of 2D planar Ising models. This solution immediately 

generalizes to the somewhat larger class of so-called free-fermion models, which includes 

non-Ising models and is the class of all models for which the bulk free energy may be 

found exactly by the ~e~nman*-~dov ichenko  (FV) method (Feynman, 1972; 

Vdovichenko, 1965; see also Landau and Lifshitz, 1968; Morita, 1986) [or equivalently by 

the Pfaffian method (Temperley and Fisher, 1961; Kasteleyn, 1961, 1963; see also McCoy 

and Wu, 1973)l. 

There are a number of reasons to study 2D Ising models: The Ising model in zero 

magnetic field and below the bulk transition temperature (Tc) is the simplest model 

describing a full two-phase system [as opposed to a pure "interface" model such as the 

SOS model (e.g., Leamy et al., 1975; the SOS model is'also discussed in Section 3)]. The 

two-dimensional (2D) Ising model is particularly interesting for at least two reasons: 1.) 

Exact solutions are possible (Onsager, 1944) and 2.) as we shall see in section 3, these 

exact solutions are valuable in approximating the shapes of facets of 3D Ising ECS's. 

Since some real crystals, such as noble gas crystals, may possibly be approximated by an 

appropriate 3D Ising model, 2D Ising ECS's may also have some relevance to the analysis 

Feynman's solution for the bulk free energy of the Ising model predates Vdovichenko's (see Sherman, 

1960) but was apparently not published until 1972. His solution is only slightly different from 

Vdovichenko's. 



of experimental facet-shape data. Finally, we mention, that prior to this work, exact ECS's 

were known (from calculations conceptually completely different from ours) for the 
4 ,  ' 

rectangular (Rottman and Wortis, 1981; Avron et al., 1982; Zia and Avron, 1982), 

triangular and honeycomb lattices (Zia, 1986) only.? 

Our calculation is formulated in the grand canonical description and makes use of an 

exact mapping of the interface onto a FV "random" walker. This mapping makes possible 

the exact evaluation of the grand canonical trace in the thermodynamic limit. Before 

presenting the derivation, let us first state the simple solution, so it will clear what our aim 

is: If the "momentum-space" FV lattice-walk matrix for a lattice L* (the dual of the direct 

lattice L) is denoted by A(kx, ky), then the ECS for the dual model on L, represented in 

Cartesian coordinates as Y(X), is given by 

where {o) denotes the set of Boltzmann weights associated with the steps of the lattice 

walk. The matrix A is a finite dimensional qxq matrix, where q is even and, in the 

simplest cases, just equal to the coordination number of the lattice. Since the bulk partition 

function of free-fermion models can be expressed in terms of an integral of the form 

jdkxdky lnDa(1-A) [e.g., Landau and Lifshitz, 1968 and also below], the ECS for 

these models may, in fact, be read off from the analytic form of the bulk free energy! 

The FV method and its refinements have a venerable history. The root of the FV 

method may be considered to be an unpublished conjecture by Feynman which was proved 

by Sherman in 1960 (the Sherman theorem, see also Sherman, 1963; Burgoyne, 1963). 

In the symmetry directions, the interfacial free energies for these lattices were fist published by Fisher 

and Ferdinand in 1%7. 



Feynman re-interpreted the seminal work of Kac and Ward (1952) on a combinatorial 

solution of the Ising model in terms of an identity between lattice-path sums and the 
4 '  - 

graphical expansion of the Ising model. Making implicit use of the Sherman theorem, 

Vdovichenko gave an elegant, intuitive solution to the Onsager problem in 1965. The first 

application of these methods to Ising interfaces was recently reported by Calheiros, 

Johannesen, and Merlini in 1987. The FV has now been textbook material (notably 

Landau and Lifshitz, 1968) for some twenty years but appears not to be as well and widely 

appreciated as perhaps it should be. We shall explain the method in detail below. 

The remainder of this Section is organized as follows: In Sub-section 2.2, we 

derive equation (2. I), discuss its range of validity and give some examples of previously 

unknown Ising ECS's. In Sub-section 2.3, we explore, in some detail, a pedagogical 

example of a non-Ising case for which Eq. (2.1) is also valid. We apply the FV method to 

the free-fermion cases of the eight-vertex model (Fan and Wu, 1969,1970; Sutherland, 

1970). The coexisting phases of the model are identified, and Eq. (2.1) is shown to give 

the correct ECS of the corresponding dual models even for the non-Ising case of the 

modified KDP model (Wu, 1967,1968). 

2.2 Derivation 

For definiteness consider an Ising model with ferromagnetic interactions. The 

generalization to other free-fexmion models will be made at the end of this Sub-section. Let 

the 2D Ising system be defined on a rectangular strip R (our "box") of a planar lattice L, 

i.e., a lattice with non-crossing bonds. The strip l2 has a geometric dual, the strip R* of 
A 

the dual lattice L*. Without loss of generality, we take the lattice to have basis vectors x 
A 

and y, and we align the strip with the y-axis. (It is always possible to choose a coordinate 



system in which the basis vectors of the lattice are orthogonal unit vectors.) We take the 

width of R* to be N and think of the length of R* as finite but tending toward infinity 
Z 7 

(Fig. 1). At zero mhgnetic field and T*, a phase of predominantly "up" (+) spins can 

coexist with a phase of predominantly "down" (-) spins. The microscopic configurations 

of the system can of course be described in terms of the spins on LR; but, in the present 

context it is much more useful to think in terms of the bonds of R* dual to the "broken" 

bonds of R, which connect spins of opposite sign (see Fig. 2.1). We consider these bonds 
A 

to be elementary microscopic interfaces of microscopic normal m which we take to point 

from - to +. If the coupling between spins at sites i and j of R is qj, the creation of an 

elementary interface between them costs energy 2&@ and is, therefore, associated with a 

Boltzmann factor of wij=exp(-2qj). 

A macroscopic interface between the (+)-phase and the (-)-phase can be forced into 

the system as follows: Divide the boundary of Q into two connected (ID) regions and fix 

the boundary spins in one region to be + and in the other region to be -. As shown in Fig. 

2.2, this forces an interface to run across the stript from the dual spin dco,o) at (0,O) to the 

dual spin at (N,M) on the boundary of R*. With this (+-) choice of boundary 

condition, denote the Hamiltonian of the system by %& and its partition function by 

q i = ~ r  exp[-p$~]. If all boundary spins are fixed to be + , denote the Hamiltonian of 

the system by f l  and its partition function by p = ~ r  exp[-P@'] . In this latter case, 

there can be no macroscopic interface across the strip, which now contains only the pure 

(+) phase. The sample free energy @I?-= -In G,; contains contributions from the bulk, 

from the boundaries, and &om the interface running &om (0,O) to (N,M). The sample free 

energy PF*= -1n Z* contains contributions from the bulk and from the boundaries, 

Because Ising models at T<T, in zero field are at two-phase coexistence, boundary conditions 

automatically adjust the net magnetization (total particle density) in addition to orienting the interface. 



only. Since the Ising model is invariant under overall change of sign of the spins, the 

extensive (order N+M) boundary contributions are the same whether (+-)- or (++)- 
* '  

boundary conditions are imposed. The interfacial free energy per unit length for an 
A 

interface of macroscopic orientation m is therefore given by the 2D version of Eq. (1.34) as 

where L = d S i ,  &=(-M, N)/L. We will use the convention that N>O (N<O) 

corresponds to the upper (lower) half of the strip being in the (+)-phase and the lower 

(upper) half in the (-)-phase. 

FIG. 2.1. A configuration of a ferromagnetic Ising model defined on the square lattice of thin 

black lines. A spin of sign +1 is denoted by a white circle; a spin of sign -1, by a black circle. 

The dual lattice is drawn in in grey. We call the bonds between spins of opposite sign "broken 

bonds". Broken bonds are drawn as wavy lines. We consider the bonds dual to broken bonds to be 

elementary interfaces. Elementary interfaces are indicated by heavy black lines. 



A 
r (A)  is related to the high-T correlation length of the dual system in the u 

A 
direction, (*(u), via the well-known duality relation (e.g., Watson, 1968; Fisher, 1969; 

P ,  ' 
Zia, 1978; Fradkin et al., 1978) 

lirn 1. 
~ ' ( k )  = - ~ + e a  L ln (G*(~,~) d(N,M)) = l/(*(G), 

A A 
where $(N,M)/L, with m u  =O. Eq. (2.3) forms the basis of all solutions to the 2D ECS 

problem which were known prior to our result Eq. (2.1): A calculation of the dual-lattice 
A 

correlations (G*~,, in the thermodynamic limit, N,M+-, with m (u ) fixed, 

A 
gives y(m), from which the ECS is determined via the Wulff construction. 

FIG. 2.2. The boundary conditions considered in the derivation of the exact 2D solution, 

illustrated on a rectangular lattice: The strip R of the sqm lattice L is defined by the heavy dots, 

and the spins on its boundary are forced to be either "up" (+) or "down" (-) as shown. Its dual, 

the strip R* of the dual lattice L*, is indicated by the grid of dotted lines. The (t) boundary 
conditions force an interface into the system, which runs from dual spin to dud spin 

* 
Q (NM)' The lattice walk shown illustrates a term in the sum, Eq. (2.9). 



Here we shall calculate the ECS directly in the grand canonical ensemble, without 
A 

going first through the auxiliary function T(m). If the ECS is represented in 2D Cartesian 
P ,  ' 

coordinates as Y(X), Eq. (1.38) becomes, in the variables of the present problem, 

where the sum in the exponential extends over all microscopic interfaces whose segment 
A 

lengths and normals are denoted by di and mi . In Eq. (2.4) the sum over M sums over an 

ensemble of systems of all possible macroscopic interface orientations. We take each 

system of this ensemble to be defined on i2 with t boundary conditions labeled by M. 
A 

Because X is constant, Ci midi vanishes for microscopic interfaces forming closed loops. 

Thus, the only contributions to the field term in the exponent arise from the line from (0,O) 

to (N,M), and that contribution is -AX%c i Aidi = hXM, independent of the particular 

path traced out by the line. [This simplification is a manifestation sf the fact that in two 

dimensions there is no distinction between the ensembles Eq. (1.36) and Eq. (1.38).] 

Thus, Eq. (2.5) becomes 

We now evaluate Z&/zHusing the Vdovichenko-Feynrnan "random walker" method. 

To see what the interface has to do with "walkers", consider the standard low-T 

expansions of <i and (Kramers and Wannier, 1941): 



In Eqs. (2.6) and (2.7), Eo is the ground state energy of the system with the (tt) boundary 

condition, (GZ,  is the set of graphs which can be drawn on Q* such that each graph is 
$ '  

equivalent to a configuration of elementary interfaces when the (+t) boundary condition is 

imposed, ( G L  is the corresponding set of graphs for the (t) boundary condition, and 

each graph is summed with weight W(G). Since each link of a graph G corresponds to an 

elementary interface, the weight of G is given by W(G) =HI& uij, where the product is 

taken over all the links of G. The set {GZ,  contains closed polygons (loops) only. The 

set { G L  contains loops and, in addition, open graphs connecting (0,O) and (N,M). If 

(0) denotes the sum of W(G) over all single closed loops, ( 0  -0) the sum over all pairs of 

closed loops, (-) the sum over the open graphs, (--0) the sum over open graphs in 

the presence of single closed loops, etc., we can write symbolically 

Instead of evaluating the sums over closed loops, it turns out to be easier, following 

Feynman and Vdovichenko, to sum over closed directed lattice paths (lattice walks). Give 

weight to each single directed closed path 9, where S is the 

number of self-intersections of the path and the product is over the steps (directed links) of 

the path. The upshot of the Sherman theorem, which holds for any planar embedded lattice 

with non-crossing bonds, is that z,+ = exp(G), when ( 0 )  denotes the sum of W(5) over 

all possible 9. The crucial point here is that the n-loop term of the directed paths has 

uncoupled into ( ~ ) ~ / n !  . Hence, if (t) denotes the sum over open graphs which are 

counted using directed paths weighted in the same manner as the closed paths of (G), one 

is led to expect that (+) uncouples from the (O)'s, so that, q,~= (+)zH. Calheiros, 

Johannesen and Merlini showed that, indeed, this follows rigourously from the Sherman 



theorem by considering the closed-loop expansion with an auxiliary bond J*, external to 

L* connecting the dual sites (0,O) and (N,M). In the limit J*,+ 0, one finds thatt 
r r  ' 

where the sum extends over all directed paths from (0,O) to (N,M), the product is over all 

directed links or steps of the path, and S is the number of self intersections of the path. 

[He] jlung himself upon his horse 
and rode madly 08 in all directions. 

By following Feynman and Vdovichenko, the sum Eq. (2.8) can now easily be 

evaluated, at least in the thermodynamic limit, as INl+-. Let {dp}, with p . ~  {1,2, ...,q}, 

be the set of vectors which correspond to all possible distinct directed bonds of L*. If L* 

is a Bravais lattice, q is the coordination number; otherwise, q is the sum of the 

coordination numbers for each site of the unit cell. (Since for each dp there is a dv=-dp, q 

is even.) Imagine the paths from (0,O) to (N,M) to be generated by a lattice walker and 

denote by dp(n) the nth step of the walk. With each change of the walker's direction we 

associate a phase factor e~p(i$~,/2), where $pv is the angle ("of turn") from dv(n) to 

d,(n+l), defined such that I$pvl<a. (I$pvl=x will be excluded explicitly.) This keeps 

track of the parity of self-intersections because the product of these phase factors over a 

This expression is exact if the interface problem is formulated as done here for a system with fixed 

boundary conditions such as the strip Q. If, alternatively, one formulates the interface problem for a 

system with a pair of "frustrated" plaquettes joined by a "seam" of reversed bonds, additional terms appear; 

however, these additional terms do not contribute to interfacial (order L) properties in the thermodynamic 

limit, as the separation between the frustrated plaquettes becomes macroscopic. 



single closed loop gives -(-I)', a topological property of planar embedded loops 

(Whitney, 1937). Let YpK(x,y ; n) be the sum over all weighted walks (including the 

phase factors) whkh 'hep onto the origin with dK(0) and n steps later, onto site (x,y) with 

dp(n). These YkK(x,y ; n), then, obey a recursion equation which, in the limit as the strip 

width 1NI-w and full translational symmetry is restored, can be diagonalized via a Fourier 

transform to obtain (e.g., Landau and Lifshitz, 1968) 

The %v are the elements of the qxq matrix A and have the form 

where k=(kx,ky). The Kronecker 6 in (2.10) ensures that walks cannot immediately 

backtrack (I$pvl=x). The sum over all paths from (0,O) to (N,M), Eq. (2.8), can now be 

In principle, the strip i2 should be chosen such that pOut=vin, .so self-intersections are 

properly accounted for; however, in the thermodynamic limit this is not important, since we 

can then replace [ A ~ ]  pout vin with Tr ( 1 ~ ~ ) .  

To walk from (0,O) to (N,M) a minimum number of NO(N,M) steps is necessary. In the original 

presentation of this work Wolzer (1990a)], the first No(N,M) terms of the sum C,o~m were, 

therefore, explicitly omitted. However, since jdkXjd4, exp[i(LxN+kyM)] A' is identically zero if 

PcNO(N,M) [YpK(x,y ; n)=O if ncNO(N,M)I, we may sum over all non-negative powers of A, thus 

obtaining a slightly more aesthetic expression for the ECS. 



The FV method gives us an intuitive picture of a walker, described by the step-to- 

step transition ma* A, generating all possible interface configurations. While A cannot 

keep track of the microscopic interface orientations, the field term of Eq. (2.5) can be 

incorporated into A because it depends only on the y-coordinate M of the final step of the 

walk. Since with every transition to a step d, the walker's y-coordinate changes by Podc, 

we can associate with this transition a field term e x p ( - ~ h ~ ~ - d p )  in addition to the 

topological phase factor and the Boltzmann weight. The product of these field-term factors 

over the path from (0,O) to (N,M) gives a total field term of exp(-PhXM). Diagonalizing 

the corresponding recursion equations, one arrives (trivially) at the same form of A as in 

the case X-0 except that, where we used to have just k,,, we now have V i P h X .  Thus, 

(<,;/zU) exp(-PhXM) is simply given by the right hand side of (2.1 1) except that 

A(kx,ky) is replaced with A(kx,ky-iphX). Substituting this form of (~&/z+f)x 

exp(-PhXM) into Eq. (2.5), we obtaint 

It may be noticed that the same int&rand as in Eq. (2.12) is obtained by substituting Eq. (2.1 1) into Eq. 

(2.5) and making a change of variable to k'y=%+iphX. We then get the same integrand as a function of 

k'y as that which is obtained as a function of % by incorporating the field term into A from the 

beginning, except that the integration over k'y is from -x+i$hX to x+iPhX. That this is consistent 

with Eq. (2.12) follows simply from the translational invariance of the lattice, which implies that the 

integrand is invariant under Re(k,,ky)+Re(kx,ky)t(2m,2xm), with n,m integers. Thus, if we integrate 

in the k'y-plane along the contour C=C1uC2uC3, where C1 is the straight line from iPhX to -x, C2 

the straight line from -x to A, and C3 the straight line from x to iphX, the contributions from C1 and 

C3 cancel, leaving only the integration along the real axis, Eq. (2.12). 



where A=A(kx, V i p h X )  and X must be bounded such that A'+O as P+-. Summing 

over M, using the identity ~~-e~~(ik~~)=27t~~_"~6(k~-2n:n), - and then integra- 

ting over ky, we obtain 

where A=A(kx,-iphX) and hi, with i~ (1, ...,q), denote the eigenvalues of A. In the 

thermodynamic limit INIj-, only the saddle point contributes to the integral of Eq. (2.13). 

With A of the form (2. lo), the condition for the integrand of (2.13) to have a saddlePointi 

is given by Det (1-A)=O, which is approached asymptotically like 1/N, i.e., Det (l- 

A)+O like 1/N as INIj-. Thus, (2.13) is simply evaluated as 
- 

phY(X) = -ikx , 

where is the solution to Det [I-A&,-~P;uL)]=o which may be expressed succinctly in 

the form of Eq. (2.1). The propagator for lattice paths is defined as the amplitude for the 

walker to arrive after any number of steps, i.e., as &,r&n=(l-~)-l. Eq. (2.1), 

therefore, expresses the ECS as the locus of purely imaginary poles of the determinant of 

the propagator for lattice paths. 

9 t~ is s matrix of exponentials and, therefore. Det (1-A) and c ( A ) = ~ ~ . ~  n;i (14,) are analytic 

functions of kx and ky. The saddlepoint condition for (14) is, thus, found as usual by differentiating 

ikxN+lnC(A jlnDet ( 1 -  and setting the result equal to zero. That the saddle point is given by 

Det (1-A)=O is also clear Erom the fact that the form of A, combined with the translational invariance of 

the lattice, implies that C(A) and Det (1-A) must be polynomials of order -q in z and llz, where 

z=exp(ikx). The only contributions to the integral can come from the zeros of Det (1-A). 



An alternative way of evaluating (2.12) is to make use the fact that replacing 

Tr (1-A)-' with lDet(1-A) in the integrand of (2.12) does not change the saddle point in 

the thermodynamic limit 1NI-w. This allows us to obtain further insight into the analytical 

structure of solution (2.1). Replacing ~r (1-A)-' with l/Det(l-A), summing over M, 

integrating over k,,, and making the change of variable eikx = z leaves us with the contour 

integral, 

1 PhY(X) = - lim - ln 
INl+- N 

where A=A(kx,O-iphX) and the contour of integration is counter clockwise around the 

unit circle 1z1=1. Since for matrices A of the form (2.10) translational invariance of the 

lattice implies that Det (1-A) is just a polynomial in z and llz, the result, Eq. (2.14), 

follows immediately. For all the Ising models for which the exact (bulk) solution is known 

(e.g., I. Syozi, 1972 and references therein), the poles of the integral of Eq. (2.15) have a 

very simple structure: For all these models zDet (1-A) is of the form [z-zl(X)][z-z2(X)] 

for appropriate orientation of the axes. The roots zl(X) and %(X) are real and positive for 

XE [Xmin,Xmax] and TcT,. For a range of the field variable XE [XA,XB]~[Xmin,Xmax], 

z l (X)a  and z2(X)21. Thus, for XE [XA,XB], Eq. (2.15) is evaluated as PhY(X)=- 

ln[zl(X)], if NM, and as -ln[q(X)], if NcO. Since the outward normal of the interface is 
A 
m=(-cM>(X),N)/L, N>O (N<O) corresponds to the "upper (lower) half' of the ECS. If 

XA+Xmi, and XB#Xm,, and XE [Xmin,XA]u [XB ,Xmax], then (by definition) either both 

P or neither of the poles zl,z2 lie inside 1z1=1. In this case we find that A (kx,k,,-i$hX) no 

longer converges for all (kx,ky) as P+-. Hence, for XE [Xmh,XA]~[XB,Xmax], the 

substitution A(kx.k,,)+A(kx,ky-iPW(), which incorporates the field term of Eq. (2.5) into 

the matrix A, is no longer well founded mathematically for a purely real integration path in 

the kx-plane. However, since the ECS of any 2D system with finite, short-range forces is 



smootht for O(r(rC, it follows hom analytical continuity that the upper half of the ECS 

must be given by -ln[zl(X)] and the lower half, by -ln[%(X)] for the entire range of field 
# r  ,' 

XE [Xmi,,XmaX]. This analytical continuation amounts to deforming the integration 

contour of Eq. (2; 15) to include the relevant pole, thereby avoiding regions in the z-plane 

(kx-plane) where the modulus of one or more eigenvalues of A(kx,-iphX) is greater or 

equal to unity [two explicit examples are given in Appendix A]. (In writing down the 

integral as its saddle point as in Eq. (2.14), this analytical continuation is implicit.) In 

general, the ECS problem is defined for those fields X that allow a path in the kx-plane 

from -a to a along which the modulus of every eigenvalue of A(k,,-iphX) remains less 

than unity. To summarize, we have for T<Tc and X,,.,$XIX,, 
I 

A A 
-In zl  , if m *y 20 (upper half) 

A A 9 - In z2 , if m *y 1 0  (lower half) 

which can, again, Se expressed succinctly in the form of Eq. (2.1). 

The problem of calculating the ECS has been reduced to the problem of finding the 

purely imaginary zeros of Det (1-A). While it is straightforward to construct the matrix A 

for a given lattice, this is not necessary if the analytic form of the bulk free energy of the 

Ising system defined on either L or L* is known. Using the W method to evaluate &+ 

[cf. Eq. (2.6)], which is what the method was originally designed for, one finds that the 

bulk free energy per unit cell of the model defined on L is given by 

'j JQX in Det (1-Al[kx, ky ; exp(-Xi,)] ) . (2.17) pfb= ~ E O  - 3 (2,+ 
-II; 

We argued in the Intmduction that singular features of the ECS correspond a phase boundaries. He=, the 

interface is a one-dimensional object and, as such, it can have phase transitions only at T=O. 



In Eq. (2.17) q, is the ground state energy per unit cell, the factor of 112 comes from the 

fact that directed paths may be traversed in two directions, and the subscript L* emphasizes 
2 ,  ' 

that A describes a walk representing the interface on the dual lattice L*. Thus, the ECS for 

the Ising system can simply be read off from the analytic form of the bulk free energy!? 

This is a remarkable result because, naively, at least, one would not expect the analytic 

form of the bulk free energy to contain complete information on the surface 

thermodynamics. The bulk free energy is normally given in terms of ALbecause the FV 

walker problem is traditionally formulated in terms of high-T (tanh K) graphs on the direct 

lattice L The corresponding form of the free energy is 

where Cis the number of sites per unit cell and the product is over all the bonds of the unit 

cell. As a direct consequence of the duality between the systems on L and L*, Eq. (2.18) 

can be obtained simply from (2.17) by expressing exp(-2Kij) as (1-tanh Kij)/(l+tanh Kij) . 
Thus, equivalent expressions for the ECS of an Ising model on lattice L are 

Da { 1-AL*[kx, ky ; exp(-2Kij)] } and Det [1-AL(kx, k,, ; tanh &,)I = 0 . (2.19) 

On the other hand, if the bulk free energy of the dual system on L* is known in terms of an 

integral over l n D a  (1-AJk,, ky ; e~p(-2K*~,)]} (low-T graphs) or in Det [1-AL*(kx, ky 

' ~ e a d i n ~  off the equilibrium crystal shape from the bulk free energy will, of course, lead to an ECS for a 

lattice which has the same basis vectors a and b as the lattice on which the bulk problem was solved. 

Let the resulting ECS be given by Det[l-Ab(X)]=O, with X=(X,Y). If we are interested in a lattice L' 

which has basis vectors a'=M a and b'=M b, where M is the matrix of the appropriate linear 

transformation, then the ECS for the system on L' is given by ~et[l-A~(X')]=O, with x'=M-1 X. 



; tanh K*ij)] (high-T graphs), the expressions (2.19) [and, of course, also (2.17) and 

(2.18)] may be obtained via the duality transformation e~p(-2K*~~) -t tanh qj. 
f f  ' 

Once one has obtained the ECS from Eq. (2.1), one can use the inverse of the 

Wulff construction to determine the corresponding interfacial free energy per unit length 

r(e), or equivalently, the inverse of the (anisotropic) high-T correlation length 5*(8+.n/2) 

of the dual system [cf. Eq. (2.3)]. Once the ECS is known in the form Y(X), the (2D) 

analytical form of the inverse Wulff construction is given by 

a Y r(8)=1/5*(0+1~/2) = hX sine +hY cose ; tan 0 - - ax . 
Eq. (2.20) is easily derived by expressing (1.12) in 2D polar coordinates and solving for 

A A 
r(8) and aY/aX. With appropriate choice of basis vectors [a=x and b=y for the ECS's of 

Table 2.1 (see also Fig. 2.5)], Eqs. (2.20) give two polynomials in cosh(phX) and 

cosh(phY). Since these two polynomial generally combine to give a polynomial in a single 

variable of order higher than 4th, it is generically not possible to obtain an analytic, closed 

form expression for r(B). An exception is the rectangular lattice (see Appendix B). Of 

course, Eq. (2.20) can always be implemented numerically to obtain r(8)  to arbitrary 

accuracy. 

Figures 2.3 and 2.4 show two examples of ECS's and corresponding interfacial 

free energies typical of ferromagnetic Ising models. These shapes display the following 

universal features of 2D Ising ECS's (Zia, 1986): 1) The ECS becomes a circle as T+Tc-. 

For less symmetric lattices the ECS becomes an ellipse as T+Tc- (see Fig. 2.10). This is 

a result of the fact that the lattice anisotropy is a marginal variable (in the renormalization- 

group sense). 2) The ECS, as obtained from Eq. (2.1) for fixed h, vanishes in all 
2 2 directions linearly with t a (Tc-T) as t+O+, i.e., the R(B,T)=~= - tp with the surface 

critical exponent p=l (and with a &dependent amplitude in the generic case of an 



asymptotically elliptical ECS). That p=l follows immediately from the duality relation 

(2.3) since the bulk correlation length 5 diverges like t-v and we know that v=l from the 
+ f  

exact bulk solution. p=l is consistent with the hyperscaling relation p=@-l)v (Widom, 

1965). In Table 2.1 we give, for convenience of the reader, the analytical form for the ECS 

of the Ising model defined on a number of commonly encountered lattices (Fig. 2.5). The 

results for the ECS of the square, triangular, and honeycomb lattices have been obtained 

previously via the canonical formulation [see Eq. (2.3)] from the known direction 

dependent correlation lengths of these lattices (rectangular lattice: Cheng and Wu, 1967; 

see also McCoy and Wu, 1973; triangular/honey comb lattice: Vaidya, 1976). We 

obtained the equations for the Kagomk and "Union Jack" lattices and their duals by explicit 

construction of the matrix A. For the special cases, K1=K4, K2=K3, and K5=K6 for the 

Kagomk lattice and K1=K2=K3=K4 and K5=Ks for the "Union Jack" lattice, our result for 

Det (1-A) reduces to that which can be read off from the bulk free energy as obtained by 

Kano and Naya in 1953 and by Vaks et d. in 1866, respectively. 

In the derivation above, we had ferromagnetic Ising models in mind. However, the 

properties of the model crucial for our derivation are satisfied for a wider class of models. 

Hurst and Green showed in 1960 (see also Hurst, 1966) that the FV method is equivalent 

to the Pfaffian method, which can be used to solve any model which can be written as a 

free fermion field theory, i.e., a field theory which is quadratic in fermionic operators. The 

factors of (-1) which appear in the FV method are directly related to the (- 1)'s of fermion 

anticommutators, and the uncoupling of directed graphs, necessary for the FV method to 

work, is precisely due to the field theory being free. The upshot of this equivalence is that 

we know the ECS for any model solvable by the Pfaffian or IT method in the form of the 

poles of the determinant of the free-fermion propagator, Eq. (2.1), provided that the N 

walk can be identified with an interface between coexisting phases. 



FIG. 2.3. The ECS (left) and corresponding Wulff plot (right) of the diced lattice (Fig. 2.5~) 

for equal, ferromagnetic couplings. The Wulff plot [polar plot of the interfacial free energy per 

unit length, r(0)] was obtained numerically from Eq. (2.20). Different curves correspond to 

different temperatures, spaced equally from 0 (polygon) to Tc (dot at centre) at intervals of Td6. 

FIG. 2.4. Same as Fig. 2.3 for the 4-8 lattice with ferromagnetic couplings Kl=K2=K3=K4 

and K5=K6 as indicated in Fig. 2.5d with K1/Kg=3/2. The horizontal and vertical faces at T=O are 

associated with Kj; the diagonal ones, with K1. 



FIG. 2.5. The lattices of Table 2.1 in duality pairs: (a) rectangular lattice (self-dual); (b) 

triangular and honeycomb lattices; (c) Kagom6 lattice (solid) and diced lattice (dashed); (d) "Union 

Jackw lattice (solid) and 4-8 lattice (dashed). The labeling of bonds and the definition of basis 

vectors correspond to those used in Table 2.1. The position of sites within the unit cell, defined by 

the basis vectors a and b, is arbitrary. In the figure these sites where placed at symmetric 

positions for aesthetic reasons. 



Table 2.1 
Exam~les of Exact Eauilibrium Crystal Sha~es  

Rectangular 
D=E=O 

S2 

"Union Jack" I 

I Honeycomb I 

Diced E=O 

Table. 2.1. The analytic expressions for the ECS's of the lattices indicated. The labeling of the 

interactions and the basis vectors a and b are defined in Fig. 2.5. 



2.3 An example of non-Ising free-fermion crystal 
shapes: The modified KDP model. 

4 '  ,- 

We will now demonstrate the validity of Eq. (2.1) for the modified KDP model, a 

non-Ising free-fermion model. To be precise, we shall show that the purely imaginary 

poles of the determinant of the free-fermion propagator of the modified KDP model will 

correctly give the ECS of the dual model. The dual model turns out to be the limit of an 

antiferromagnetic Ising model on a triangular lattice as the interactions become infinite. The 

resulting ECS's have sharp corners for any T<Tc. The interface configurations of this 

model are extremely simple, so the solutions obtained from (2.1) can be confirmed via an 

independent elementary calculation. Historically, the 3D KDP model was originally 

proposed by Slater in 1941 as a model having the characteristics of the ferroelectric 

potassium dihydrogen phosphate (KDP) KH2P04. The 2D version of the Slater KDP 

model was solved by Lieb, and independently by Sutherland, in 1967. The modified KDP 

model is a s p ~ i a l  (more simple) version of the KDP model in which a certain configuration 

has been suppressed but which still has many of the essential features of the full KDP 

model (Lieb and Wu, 1972). 

The modified KDP model is a special case of the eight-vertex model. The square- 

lattice eight-vertex model is defined by eight types of vertices, as shown in Fig. 2.6, which 

must be placed on the vertices of a square lattice, such that arrows from different vertices 

sharing the same bond point in the same direction. Each vertex carries a Boltzmann weight 

oi=exp(-pei), i=1,2,..,8. When these weights satisfy the so-called free-fermion 

condition (Hurst and Green, 1960; Hurst, 1966; Lieb and Wu, 1972), 



the square lattice eight-vertex model is solvable by the Pfaffian method and, therefore, by 

the FV method.# Eg. (2.21) is satisfied by any eight-vertex model at one particular 
I 

temperature. When the weights o i  are chosen such that (2.21) is satisfied at all 

temperatures, the model is known as the free-fermion model (Lieb and Wu, 1972). 

Depending on the particular choices for the COi, the free-fermion model can be shown to be 

either trivial (decoupled 1D chains), equivalent to the Ising model on a triangular lattice, or, 

in a certain limiting case (see below), equivalent to the modified KDP model, which in turn 

turns out to be equivalent to the close-packed dimer model on a hexagonal lattice (Wu, 

FIG. 2.6. The eight vertex configurations of the eight-vertex model. As an alternative to 

representing vertex configurations by arrows, one can represent them by "bond arrangements". 

These bond arrangements are constructed from the arrow representation by first choosing 

(arbitrarily) a vertex which corresponds to no bonds (no bold lines), the basis. Other bond 

configurations are then constructed from the basis by drawing a bond for every arrow pointing in a 

direction opposite to that of the corresponding arrow of the basis vertex. (a), (b), and (c) show 

three of the eight possible bond arrangements based on the vertices 2,3, and 4, respectively. 



We shall first show how the free-fermion model is solved by the FV method. 

Specializing to the podifid KDP model, we will then identify the corresponding walk with 

microscopic interface configurations separating coexsisting phases of the dual model. The 

FV method was used by Ryazanov in 197 1 to calculate the bulk free energy of the modified 

KDP model in zero (electric) field. It is straightforward to generalize this particular 

solution to the general free-fermion model. To identify the "random" walker counting 

problem, it is convenient to represent the vertices as "bond arrangements" (e.g., Lieb and 

Wu, 1972). There are eight possible bond arrangements, three of which are shown in Fig. 

2.6. In the absence of macroscopic interfaces, allowed vertex configurations correspond to 

closed loops of bonds, and calculating the partition function reduces to the problem of 

counting all possible loop configurations. Since the loop counting is done on a square 

lattice, the appropriate walking matrix A is 4x4 and schematically given by 

This matrix involves only six vertices. The remaining two, corresponding to no bonds and 

intersecting bonds, are automatically taken into account correctly by virtue of the free- 

fermion condition (2.21). With the choice of bond arrangement (a) of Fig. 2.6, A becomes 

[cf. Eq. (2. lo)] . 



where vertex energy is measured with respect to vertex 2 (Fig. 2.6), which corresponds to 
-in14 

no bonds, and a = e , e*, = - eikx, and eky = ei&y. Eq. (2.23) yields the same bulk 

free energy as obtained by Hurst and Green in 1960 and by Fan and Wu in 1969 and 1970 

via other methods. We find [making use of (2.21)] 

Det (I-A) = a + 2b cos kx + 2c cos k, + 2f cos (k,-ky) + 2g cos (kx+ky) , (2.24) 

where a = o ~ + a ~ + a ~ + w ~ ,  b=wl a3-a2a4 , c=ola4-a2a3 , a6 , and 

The bulk free energy of the free-fermion model is independent of the 

choice of "bond arrangement", because the integral of Det (1-A) is invariant under change 

of arrangement. However, crystal shapes are obtained from Det (1-A), itself, which does 

depend on the choice of "bond arrangement". As we shall see, it is necessary to identify 

the coexisting phases for which we wish to calculate' the ECS, before the correct bond 

arrangement can be chosen. 

We define the modified KDP model as the limit of the free-fermion eight-vertex 

model 



as el+-. The variables h and v correspond to horizontal and vertical electric fields in the 

the original KDPqodel. In the limit el=-, analysis of the bulk free energy (Fan and Wu, 

1970) shows that this model has a second-order phase transition which is not of the Ising 

type. As T + T ~ ,  the specific heat has a (T-T,)-lR divergence instead of the 1nlT-TcI 

divergence of the Ising model. The critical temperature is given by the condition 

CII~+CO~+CO~= 2max(a2,a3,a4), which divides the h-v plane into three distinct regions: 

he12 and vc~12 defines the region 912, where a2 is largest ; h x l 2  and vch defines the 

region 913, where 03 is largest; hcv and v>d2 defines the region 914, where is largest. 

The identification of the walk described by the matrix A of Eq. (2.22) with a 

microscopic interface configuration separating coexisting phases is most easily 

accomplished in the familiar language of the Ising model by making use of the following 

duality (Fan and Wu, 1969; see also Lieb and Wu, 1972): Any eight-vertex .model on a 

square lattice is dual to an Ising model on the dual lattice with four-spin interactions and 

(crossing-bond) next-nearest-neighbour interactions. In terms of this equivalent Ising 

model, the free-fermion condition is the condition that the four-spin interaction and one of 

the next-nearest-neighbour interactions be zero. The free-fermion eight-vertex model 

(2.25) is, therefore, dual to an "Ising" model on a triangular lattice (at least for finite el) 

which is calculated to have interaction energies (e.g., Lieb and Wu, 1972), 

where Ji>O corresponds to ferromagnetic coupling. In terms of these Ising energies, the 

vertex weights become 



1 where the overall constant Jo = 4 (-el-2~-h-v). 

P f  ' 
Since we are interested in the limit el+-, we focus on the completely 

antiferromagnetic sector of the model (2.26), where el is finite but large enough to make all 

Ising couplings negative. This sector is defined for el>&* and consists of a triangular 

region in the h-v plane (see Fig. 2.7). Within this triangular region, we identify the same 

three regions of the h-v plane as those for the modified KDP model. The interior of each 

region is characterized by one bond being weaker than the others. The weakest bond in 

s 2 ,  313, and s4 is J3, J1, and J2, respectively. On the boundaries where regions meet, 

two bond energies are equal and weaker than the third, except at the point h=v=E/2 where 

all couplings are equal. We can now identify the nature of the phases in the interior of each 

region and on the boundaries. In the interior of each region is a 2x1 phase which consists 

of rows of predominantly aligned spins. The rows are along the direction of the weakest 

bnd ,  and the sign of the alignment of the spins alternates from row to row. Within each 

region, the 2x1 phase has two degenerate realizations, related by an overall change of sign, 

which constitute the two phases which can coexist in zero magnetic field below T, (see Fig. 

2.8). The ECS is thus well defined in the interior of each region, 9?2, s 3 ,  and s 4 ,  and 

corresponds to the shape of a macroscopic inclusion of an appropriately oriented 2x1 phase 

coexisting with a 2x1 phase of the same orientation but opposite overall sign! On the 

'This is slightly different from the traditional picture of an Ising crystal. In the traditional picture, a 

ferromagnetic Ising model is interpreted as a lattice-gas model of the solid/fluid system for which the 

ECS problem was originally formulated. (The volume constraint of the ECS problem becomes a 

constraint on the magnetization.) However, there is nothing sacred about solid/fluid coexistence. The 

problem of finding the shape of a macroscopic inclusion of one phase in another is well defined whenever 

the inclusion and the surrounding medium coexist in equilibrium. The problem is particularly interesting 



FIG. 2.7. The antifemmagnetic sector of the free-fermion model, defined by the vertex 

weights of Eq. (2.26). in the h-v plane of horizontal and vertical (electric) fields. In the regions, 2, 

3, and 4, the gmund state of the model is given by vertices 2,3, and 4. In terms of the equivalent 

Ising couplings, the regions, 2,3, and 4, are characterized by 2x1 phases aligned along bonds J3, 

J1, and J2, respectively. As el+, the modified KDP model is approached, and the boundaries of 

the antiferromagnetic sector are pushed off to infmity. 

when there is crystalline anisotropy, as is the case for coexisting 2x1 phases on the triangular lattice. 

[For the 2x1 phases, the volume constraint of the ECS problem becomes a constraint on the sublattice 

(staggered) magnetization.] 



boundaries where regions meet, the ground state is macroscopically degenerate and there is 

no ordered phase &tf af~y temperature. 

The walk of the FV method can now easily be identified as a microscopic interface 

configuration: The bold lines of bond arrangements correspond to composite elementary 

interfaces on the hexagonal lattice dual to the triangular Ising system (2.26), as shown in 

Fig. 2.9. Depending on which bond arrangement is chosen, these interface configurations 

carry different vertex weights ei [Fig. 2.61. To interpret these energies as the energies 

needed to create the composite interfaces of Fig. 2.9 from the ground state configuration, 

we must first identify the ground-state energy per vertex. It follows from Eqs. (2.27) that 

the energy for the the 2x1 ground state of s 2 ,  s 3 ,  and s4 corresponds to the energy of 

vertex 2,3, and 4, respectively. Subtracting the ground state energies, one can now easily 

identify the vertex energies of bond arrangements (a), (b), and (c) as precisely the energies 

needed to create the correspondixg broker, bonds per vertex from the 2x1-phase ground 

states of regions s 2 ,  s 3 ,  and s 4 ,  respectively (see Fig's 2.6 and 2.9). Different bond 

arrangements result in different weights for the entries of the matrix A [cf. Eq. (2.22)], 

which leads to different functions Det (1-A). It is now clear that the matrix A based on 

bond arrangement (a), with vertex 2 describing the ground state;can describe elementary 

interfaces of the antiferromagnetic triangular Ising model only in s2. To obtain the ECS in 

s3 and s 4 ,  A must be based on bond arrangements (b) and (c), respectively. Det (1-A) 

for s3 is obtained from Eq. (2.24) by making the substitutions (b,f,g)+(-b,-f,-g), and 

for s 4 ,  by making the substitutions (c,f,g)+(-c,-f,-g). 



FIG. 2.8. An interface between two degenerate 2x1 phases of the antiferromagnetic triangular 

Ising model. The dashed bond is weaker than the others so that the ground state corresponds to 

spins aligned in mws along the dashed lines. 

FIG. 2.9. The one-to-one correspondence between vertex configurations of the eight-vertex 

model and composite elementary interfaces on the hexagonal lattice. The wavy lines correspond to 

broken bonds of the triangular dual lattice, which has interactions J1, J2, and J3, as shown. 



Before we take the limit el+-, let US look at the kind of shapes one obtains with 

bond arrangement (a) for finite el. In Fig. 2.10 we show the shapes obtained Erom Eq. 
P f  ' 

(2.24) with the vertex weights (2.25) at h=v=O for increasing values of el. For el/&c2, 

J3>0, and we are outside the antiferromagnetic sector. The signs of J1 and J2 may be 

reversed by symmetry, so that, for these couplings, the model is equivalent to the triangular 

ferromagnetic Ising model. The value el/&=2 corresponds to sitting on the boundary of the 

antiferromagnetic sector with J3=0. This is equivalent to an antiferromagnetic rectangular 

Ising model, which (again, by symmetry) is identical to a ferromagnetic rectangular Ising 

model. Far el/&>2, we are in region 912 of the antiferromagnetic sector of the triangular 

Ising model and the coexsisting phases are 2x1 phases aligned along the direction of bond 

J3. Note that, with increasing el, the comers "pointing" in the direction perpendicular to 

the weakest bond J3 become increasingly sharp. 

Setting el=- in Eqs. (2.26) shows that the modified KDP model is dual to an 

antiferromagnetic "Ising" model on a triangular lattice with infinite interactions differing 

from each other by a finite amount. The infiniteness of these interactions severely restricts 

the possible interface configurations, because any interface must make maximal use of the 

weakest bonds. Thus, the walker generating the interface performs a very simple walk: 

After a step along the easiest elementary interface (along the bond dual to the weakest bond 

of the triangular lattice) he can either step to the right or to the left. Next, he is forced to 

again take a step along the easiest elementary interface, and so on. The simplicity of this 

walk is reflected in the structure of the matrix A, which becomes the direct sum of two 2x2 

matrices, when 01=~=08=0. The determinant of the propagator factors, therefore, into 

two simple expressions. One describes the upper half of the crystal shape; the other, the 

lower. For 912, one finds for the ECS the simple expression 



FIG. 2.10. Equilibrium crystal shapes of the free-fermion model defined by the vertex weights 

of Eq. (2.25) at h=v=O and for various values of elle: (a) el/&=l ; (b) el/&=2 ; (c) el/&=4 ; (d) 

el/&=8 . In each case, the ECS has been plotted at temperatures equally spaced from 0 to Tc at 

intervals of Tc/6. The lattice of the model was chosen to have the same basis and orientation as 

shown in Fig. 2.8, with the weakest bond in the horizontal direction. The shapes (a) and (b) are 

the ECS's of a m~cmscopic inclusion of "up" phase in a sea of "downn phase for the ferromagnetic 

triangular and square Ising models, respectively. The shapes (c) and (d) are the ECS's of a 

macroscopic inclusion of 2x1 phase in another of opposite (staggered) magnetization (see Fig. 

2.87). With increasing value of el/&, the modified KDP model (el/e=-) is approached, and the 

corners "pointing" in the direction perpendicular to the weakest bond become increasingly sharp. 



o3 e-Pxx + o4 e -PXY - o2 = 0 and (X,Y)+(-X,-Y) , (~ ,v )E  312 . (2.28) 

The corresponding equations for S3 and s4 are obtained from Eq. (2.28) by making the 

substitutions a4+ -614 and a3+ -03, respectively. Notice that the pair of functions 

(2.28), (and the corresponding ones in 913 and S4 )  describe curves of infinite extent and 

that the ECS is to be interpreted as the convex region enclosed by the two functions for 

TOc. Where the pair of curves intersect, the ECS has a sharp comer which moves toward 

the origin like (T-T)'~, as T+TJ. In all other directions the ECS vanishes linearly with 

T, as T+Tc-. The sharp corners and the fact that the crystal shape appears to be 

analytically continued beyond the convex regiont are unusual features of the ECS and are a 

direct result of the infiniteness of the interactions. To gain further insight into the physical 

origin of these features, we make use of the simplicity of the interface configurations to 

calculate - in a very direct and elementary manner - the interfacial free energy and the crystal 

shape. 

Consider the infinite-interaction "Ising" model dual to the KDP model on an 

arbitrary triangular lattice, so that the corresponding FV walk takes place on an arbitrary 

hexagonal lattice. Let the easiest steps on the hexagonal lattice be denoted by d, and 4, 

and denote the steps to the right and left of d, by 4 and dpespectively. Because of the 

In the antiferromagnetic sector, there are real, unbounded solutions Y(X) to Det[l-A(X,Y)]=O for 

XE [-m,X&[XR,~] even for finite el. We believe that these solutions have no physical significance, 

at least not in the context of ECS's. The expression for Y(X) in terms of a sum over A's [cf. Eq. (2.12)l 

becomes formally divergent for XE [--,XL]u[xR,-]. When el=-, XL and X, coincide with the 

"boundaries" Xmi, and X,,, of the ECS. (For purely ferromagnetic king models, no such real, 

unbounded solutions exist.) 



infiniteness of the interactions, the walker actually perfoms a walk on a rectangular lattice 

with the composite steps f dl and +d2, where dl=dw+d, and d2=d,+dc. Since a step +dl 
2 ,  * 

or f d 2  of given sign must be followed by a step of the same sign, the only interfaces 

available to the (say) upper half of the ECS must have tangent vectors which lie between dl 

and d2 (see Fig. 2.1 1). It is precisely the absence of other interface orientations which 

causes the sharp corners of the ECS. The zero-temperature character of the infinite 

interactions manifests itself in the fact that the entropy of a walk from the origin to the point 

R = ndl+ m d2, (m,n > 0) is simply given by the zero-temperature entropy, 

In [(n+m)! / (n! m!)], at all temperatures. If El and E2 denote the costs in energy of 

taking steps f dl and +d2, we can immediately write down the corresponding free energy 

per unit length, QB), as 

A 
where fi a n/R, 6 =- m/R, 8 is measured clockwise from the zxd2 direction, and 

cos em,,= dl*d2/(dld2). For other directions, r (8 )  is infinite. Explicitly, we find 
- 
m = (cose - s ine  cot emax)/d2 and fi = sin W(dl sine,,,). Performing the Wulff 

construction for each of the two branches of r (8 )  separately (i.e., separately for 

0~ [O,e,,] and for 0~ [X,X+~,,,] ), one finds that the envelope of the Wulff lines for 

each branch produces an infinitely extended curve. The pair of curves thus obtained is 

given by 

B[E1+~2+(d1+d2):y1 = 2 cosh ( $ E ~ - E ~ + ( ~ ~ - ~ ~ ) * Y ]  ) and (dl ,d2)+(-dl ,-d2), (2.30) ' e2 



FIG. 2.1 1. The Feynman-Vdovichenko walker for the modified KDP model performs a very 

simple walk on the honeycomb lattice: The infiniteness of the interactions forces the walker to 

make maximal use of the lowest-energy step, which we take to be kd,. Every step d, is followed 

by a step d, or db which must be followed again by a step d,, and so on. Thus, the walk takes 

place effectively on a square lattice with the composite steps *dl and id2. Since every composite 

step must be followed by a composite step of the same sign, only the shaded regions are accessible 

to a walker starting out at a given lattice site. The fact that directions outside the shaded regions 

are forbidden is what causes the sharp comers of the ECS of the modified KDP model and gaps in 

the corresponding Wuiff plot. 



where Ys(-Y,X). Eqs. (2.28) and the corresponding equations in S3 and S4 are special 
A h  A A  A A A h  

cases of (2.30) corresponding to (dl,dz) equal to (-y,x), (x ,x+y), and (x+y,y), 
I ,  ' 

respectively, and are just rotations and linear distortions of one another. The interior 

envelope of all Wulff planes is just the convex region enclosed by both curves and results 

in a ECS with sharp corners (see Fig. 2.12): 

FIG. 2.12. The ECS of the modified KDP model (solid lines, left) and the corresponding 

Wulff plot (right) for h=v=O. The curves have been plotted at temperatures equally spaced from 0 
to Tc at intervals of Tc/5. The dual lattice for the model has been chosen to have the basis and 

orientation shown in Fig. 2.8. At finite T, those orientations conesponding to the dashed lines do 

not contribute to the ECS and are, therefore, thermodynamically unstable. 

For those orientations 8 for which the function T(8) defined in Eq. (2.29) does not contribute to the ECS, 

r(8) is not an interfacial free energy. If R=(n,m) is not tangent to the ECS, an interface from (0,O) to 

(n.m) will consist of two macroscopically linear segments in accordance with the lever rule [e.g., M. 

Wortis (1988)l. The single sharp corner thus generated (costing infinite energy but having zero 

thermodynamic weight) is strictly disallowed in the calculation leading to (2.29). Thus, only for 

orientations tangent to the ECS does (2.29) have meaning as the interfacial free energy of the modified 

KDP model. 



For completeness we mention that the ECS (2.30) can be calculated very simply by 

mapping the interface configurations of the modified KDP model onto a one-dimensional 
P ,  ' 

Ising model. This is very similar in spirit to the work of Shi and Wortis (1988). Each step 

of the walk can be in two "states", along either dl or d2 [(J) or (T)]. Because successive 

steps do not interact in the case of the modified KDP model, the 1D Ising model reduces to 

a zero-dimensional model consisting of a single "spin". By rearranging Eq. (2.5), one can 

express the ECS ast 

with 

EL=El+d l*Y and Er=E2+d2*Y , 

which immediately yields Eq. (2.30) for the general ECS. 

2.4 Conclusion 

We have found a general, exact solution for the ECS's of free-fermion models. 

This solution was derived in a "grand canonical" ensemble of interface orientations and 

made use of an exact mapping of the interface onto a Feynman-Vdovichenko walker. This 

mapping is possible, because free-fermion models allow bulk fluctuations to be effectively 

uncoupled from interface fluctuations via the inclusion of appropriate minus signs into the 

Boltzmann weights. The ECS of free-fermion models turns out to be remarkably simple: 

The ECS is given by the locus of purely imaginary poles of the determinant of the lattice- 

+ This is essentially just the implicit grand canonical form of the ECS, Eq. (1.39), in two dimensions with 

F*=o. Because of the noninteracting nature of the Hamilmian here, the thermodynamic limit S+= of 

(1.39) is trivial and simply divides out the number of spins, yielding (2.31). 



path propagator. Because the bulk free energy of these models is usually expressed as an 

integral over this dftepinant, the ECS can simply be read off from the analytic form of the 
f 

bulk free energy. 

2D Ising models without crossing bonds are free-fermion models. Prior to the 

work presented in this Section, the only known exact 2D Ising ECS's were those of the 

rectangular, triangular and honeycomb lattices. New Ising results are easily obtained either 

by explicitly constructing the N matrix or by reading off Det (1-A) from the analytic form 

of the bulk free energy (if already known). As examples of new solutions, we give in 

Table 2.1 the ECS's of the Kagomk and "Union Jack" lattices and their duals, the diced and 

4-8 lattices, respectively (see also Fig's. 2.3 and 2.4). 

From a study of the free-fermion case of the eight-vertex model (the free-fermion 

model), we demonstrated that one must generally be careful in reading off the ECS from 

the bulk free energy. While many different forms of the FV matrix give the same bulk free 

energy, these different matrices represent interfaces between different coexisting phases 

and, therefore, result in different ECS's. The modified KDP model is a special case of the 

free-fermion model which is not in the Ising universality class. The ECS of the modified 

KDP model is the limit of the ECS defined for coexisting 2x1 phases of a triangular 

antiferroxnagnet in the limit of infinite interactions differing by a finite amount. The ECS of 

the modified KDP model is lenticular and has, as a consequence of the infinite interactions, 

sharp corners. The infinite interactions greatly simplify the interface configurations 

possible and allow elementary calculation of the ECS, which confirms the result obtained 

from the general solution. 



3. Low-Temperature Expansions 
Step Free Energy and Facet Shape 

For The 
of the 

Simple-Cubic Ising Model 

3.1 Background and Introductory Remarks 
We now return to 3D ECS's. At the outset, it is useful to have in mind a picture of 

the thermal evolution of a 3D ECS for the full temperature range OIT<T,iple. We will be 

interested here in the simplest case, for which all microscopic forces are short-ranged and 

attractive [so-called "type-A" crystals (Rottman and Wortis, 1984)l. A typical scenario for 

the temperature evolution of such a crystal is shown in Fig. 3.1. This picture is based on 

current theoretical understanding (e.g., Rottman and Wortis, 1984a) and on experiments, 

particularly those on 4 ~ e  (e.g., Balibar and Castaing, 1980; Landau et al., 1980; 

Keshishev et al. 1981; Wolf et al., 1983)? At T=O, the ECS is strictly faceted even in the 

presence of quantum fluctuations (Fisher and Weeks, 1983; Fradkin, 1983). The T=O 

Wulff plot consists of sections of spheres (Herring, 1951), so that an infinite number of 

Wulff planes pass through the edges and corners of the T=O ECS. As a result of this 

degeneracy, all edges and corners become rounded as soon as T is nonzero. Above T=O 

the facets join the rounded regions without any slope discontinuity. With increasing T, 

each facet shrinks and eventually disappears at its faceting (or roughening) temperature TR. 

Generally TR is different for facets of different crystal symmetry. For temperatures above 

the highest TR, the ECS is completely rounded (but still anisotropic!). Depending on the 

particular substance involved, the disappearance of facets may be preempted by bulk 

melting at the triple point. -- In this Section we will focus on a quantitative calculation of 

the temperature dependent shape of equilibrium facets for a simple model. 

' 4 ~ e  crystal shapes equilibrate within seconds because of the efficient mass transport due to the 

surrounding superfluid. 



FIG. 3.1. Sketch of the thermal evolution of a ("type An) ECS of cubic symmetry. At T=O 

the ECS is strictly facetted. At finite T all edges and corners become rounded. The facets connect 

to the rounded regions without slope discontinuity. They shrink with increasing T and vanish at 

the facetting or roughening temperature TR. 

One of the most basic quantities characterizing a 2D crystalline interface is the 

anisotropic step free energy, y(B), the excess free energy per unit length associated with 

the creation of a single step on an otherwise macroscopically flat facet (Burton et al., 

1951). It turns out, as we shall show below, that the step free energy per unit length (SFE) 

is Legendre-transform conjugate to the equilibrium facet shape (EFS), y(x). At TR, the 

disappearance of the facet corresponds to the vanishing of the SFE. The corresponding 

phase transition is the roughening transition. The roughening transition has been studied 

extensively (e.g, Weeks, 1980). Here, we will give only a brief account of those aspects 

immediately relevant to this Section. 



FIG. 3.2. An island excitation on an otherwise flat crystalline interface (atoms have been 

coarse grained into bricks). The island is bounded by a step. When the step free energy per unit 
length vanishes at T=TR, there is no longer a free energy barrier for the creation of islands. The 

character of the crystalline interface becomes fluid-like as large islands of all sizes, as well as 

islands on islands, can fom freely. 

The basic physics of the roughening transition is that, when the SFE vanishes, 

islands [i.e., raised (or lowered) patches surrounded by a step (see Fig. 3.2)] of all sizes 

can proliferate without bound, so that the interface loses memory of the reference plane, 

which for T(TR was the facet plane. For T>TR, the interface thus becomes fluid-like or 

rough at long length scales, with the interfacial width diverging with the system size (L) 

like log(L). The phase below TR is known as smooth; the phase above TR, as rough. 

Correspondingly, the curved and faceted regions of the ECS are identified with the rough 

and smooth phases, respectively. The fact that some parts of the ECS are rounded for all 

TM, simply means that TR=O for planar interfaces with orientations of the corresponding 

tangent planes. For short ranged forces, TR is non-zero only for a finite (and usually 

small) number of interface orientations which correspond to low-Miller-index, high-density 

facets. Close to TR, the SFEIEFS is expected to have universal temperature dependence. 



The model which has been very useful to study the universal character of the 

roughening transitbn-is the so-called solid-on-solid (SOS) model. The SOS model is a 

pure interface model (i.e., no bulk fluctuations are allowed), in which the interface is 

represented by an array of stacks of "solids", the solids being cubes in the simplest case 

(see Fig. 3.3). The ith stack consists of cubes up to some height hi, with no cubes above 

hi and no vacancies below hi (hence the term SOS). A given configuration is then specified 

by the set of heights {hi). The energy of a given configuration is taken to be a function of 

the area of the "exposed" cube surfaces so that ~ s = ~ < i j > ~ ( l h i - h j l ) ,  where the sum is 

over nearest neighbour pairs and V(x) is an increasing function of x (common choices are x 

and x2). It is often a useful simplification to restrict the difference of the heights of 

neighbouring stacks to be within a small range [e.g., for the body centred cubic restricted 

SOS model, the difference is restricted to be k one solid (van Beijeren, 1977)l. The 

resulting model is called the "restricted" SOS (RSOS) model. The SOS and RSOS models 

are believed to capture the universal features of the roughening transition. While the SOS 

model neglects bulk fluctuations (also called "bubbles" in this context), overhangs, and 

handles (see Fig. 3.3), these excitations can in principle be integrated out with 

renormalization flow to long length scales, because the bulk correlation length remains 

finite at TR if TR(rc (Huse et al., 1985). The SOS model is dual to the XY model (Chui 

and Weeks, 1976; van der Erdern and Knops, 1978; Swendsen, 1978). In precise analogy 

to the duality statement of Eq. (2.3), the SFE, y(8,T), is just given by the inverse of the 

XY correlation length, i.e., 



Thus, as T+T~,  the SFE vanishes with a Kosterlitz-Thouless singularity (Kosterlitz and 

Thouless, 1973). The functional form of (3.1) is universal; the parameters ("roughening 
t f  ' 

amplitudes") B, C, and TR depend on the details of the model.' 

\ bubbles 

FIG. 3.3. Top: The.SOS model. The interface is represented by an array of stacks of cubes. 

Bouom: A lattice-gas version of the interface. Overhangs, bubbles, and handles are present. 

For high-symrnetq facets, the facet shape becomes circular as T+T;( and B is independent of 0. For 

lower-symmetry facers, we expect the facet shape to become elliptical as T + T ~  because of the 

marginality of the 2D lattice anisotropy. The argument is the same as that for the asymptotically 

elliptical ECS of 2D Ising models (Zia, 1986). If the facet shape is asymptotically elliptical with 

eccentricity E, then it follows from Legendre conjugacy that the step free energy must be of the form 

~e,~fgdsin~0+(l-e2)cos2e. The only Kosterlitz-Thouless form compatible with this angular 

dependarc corresponds m ~ = ~ ~ ~ s i n ~ ~ t ( l - ~ ~ ~ s ~ 0  and C a constant (independent of 0). 



Exact solutions for the SFEEFS exist for RSOS models isomorphic to the 6-vertex 

model (van Beijefen? 1977; Jayaprakash, et al., 1983; Jayaprakash and Saam, 1984a; 
I 

~otecki ,  1988). While these models show the expected universal XY-dual behaviour at 

the roughening 'transition, they do not realistically model a true interface at lower 

temperatures because of the neglect of overhangs and bubbles. These excitations, although 

irrelevant in a renormalization-group sense, will alter the detailed, non-universal 

temperature evolution of the SFE/EFS. An analytical calculation of y(0,T) for a more 

realistic model which includes these excitations had not been performed prior to the work 

presented here. 

In this Section we develop a systematic low-temperature expansions of the SFE and 

EFS for the simple-cubic (sc) nearest-neighbour Ising model. These expansions will allow 

us to study in detail the effects of the excitations neglected in the SOS model. Our 

expansion will make explicit use of the conjugacy between the SFE and the EFS. We 

develop two expansions, one directly for the SFE (in the canonical ensemble) and one for 

the EFS (in the grand canonical ensemble). The expansion for the SFE, y(B), about its 

T=O cusps is divergent where the expansion of EFS is perfectly well behaved, and in that 

sense the two expansions complement each other. 

We focus on the sc Ising model not only because of its simplicity and its 

fundamental importance to statistical mechanics but also because it allows us to make 

contact with the work of others. In addition to recent Monte Carlo data (Mon et al., 1988, 

1989) for y(B=O), low-temperature expansions by Weeks et al. in 1973 (see also Learny et 

al., 1975) for the (100) facet of the sc Ising and the associated SOS model allow the 

determination of the corresponding surface tensions T([100]) (Shaw and Fisher, 1989) and 

roughening temperatures TR (Adler, 1987). The expansions of Weeks et al. involve the 

combinatorics of finite clusters of adsorbed and/or desorbed atoms on an otherwise flat 



interface. Here, we are faced with the more difficult problem of counting the 

configurations available to these excitations in the presence of a step running across the 
4 ,  

interface. Because of the interactions of these excitations with the step and the many 

degrees of freedom of the step itself, the complete combinatorics becomes exceedingly 

involved. Fortunately, however, a large subset of configurations is in one-to-one 

correspondence with those of the two-dimensional (2D) Ising ECS problem, for which we 

have calculated the exact solution in the previous Section. We exploit this fact by 

structuring the expansions for the SFEIEFS accordingly. While this simplifies our problem 

considerably, the remaining combinatorics is still non-trivial. 

We generate 5th and 1 lth order series for the SFE and the EFS, respectively. We 

estimate convergence of these series for the symmetry directions to be better than 1% for 

T<0.78TR. Normalizing the step free energy to the surface free energy of the facet, we 

calculate the ratio of the facet diameter to the (100) diameter of the crystal. Below 0.72TR, 

we find that the facet shape is given to better than 1% by the 2D Ising ECS. Corrections 

due to overhangs and bubbles contribute less than 0.1% in this temperature region. Above 

0.72TR the facet shape is essentially circular. From numerical extrapolations into the 

critical region we obtain estimates for the roughening temperature and for the critical 

amplitudes. 

The remainder of this Section is organized as follows: In Sub-section 3.2 we give 

the conceptual framework on which our expansions are founded. We derive the Legendre- 

transform conjugacy between the SFE and the EFS, and show that the facet may be thought 

of as a 2D ECS. We obtain expressions for the SFE and EFS in terms of a canonical and 

grand canonical partition function, respectively. In Sub-section 3.3 we use the formalism 

of the previous Subsection to calculate the step free energy and the shape of the (100) facet 

of the sc Ising model. In Sub-section 3.4 convergence estimates for the low-temperature 



series are developed. The feasibility of extracting critical parameters from the series is 

discussed. The resu1,ts of such extrapolations are shown to be consistent with the Monte 
2 5 

Carlo estimates of Mon et al. (1988, 1989). We conclude in Sub-section 3.5. 

3.2 Step free energies and facet shapes from interfacial 
free energies and equilibrium crystal shapes 

As we have already seen in Fig 1.3, facets in the ECS arise from cusps of the Wulff 
A A 

plot. Not just any cusp will do, however. Let the cusp be in the z direction and let m be 

given in polar coordinates as shown in Fig. 3.4. Suppose that, at f led  6, the cusp has an 

expansion for small $ given by 

(1) 
r(0,$) = r(0.O) + r (0) $q + (higher order in $) , 

where q>O. Consider now the Wuiff construction at fixed 8. if the Wulff plane of the 

cusp (the facet plane) intersects with the Wulff plane of r(8,$) in the limit as $+O at a 

finite distance, x, from the cusp, then a facet with as smooth edge will be produced. From 

the similar triangles of Fig. 3.4 it follows that the distance x is given by 

Thus, a facet of finite extent exists only if the cusp is linear, i.e., if q=l. This means that, 

if a cusp is to be conjugate to a facet with smooth edges, r(0,$) must have the Taylor 

expansion, 

ar 
r(0,q) = r(0.0) + [++, e) $ + (higher order in $) . 



FIG. 3.4. The Wulff construction in the vicinity of a cusp (point A). The triangles OAD and 
- - 

(1) CBD are similar. For small @ we make the identifications: OA = r(B,O), BD = r (8) @ , - -- 
and AD =r(8,0)@. We define x= AC = DC in the Iimit as $ 4 .  

We will now make the identification, 

where a is the height of a crystalline step. The physical content of the left hand side of 

(3.3, which allows its identification with the (SFE)/a and forms the basis of our canonical 

expansion for the SFE, may be seen as follows: Consider a vicinal surface, that is, an 
A A A A interface whose surface normal m = z+6m, with 6 m  = 6+(sin8,cos0,0).  

Microscopically, this interface consists of steps of height a which, on average, are inclined 
A 

at angle 8 with respect to the x axis, are parallel, and are separated by a distance C >>a, so 

that 641 = aK Consider a patch of this interface of area A =CL including a net length of step 

L. The lhs of (3.5) then reads by definition [Eq. (1.28)] 



where 0 denotes the Hamiltonian for a system with a single step of orientation 0 
A 

running across the facet of normal z. Eq. (3.6) will be the starting point for our canonical 

expansion scheme for y(8). It emphasizes that the step free energy is defined in precise 

analogy to the interfacial free energy [cf. Eq. (1.28)]. 

A simple but important consequence of the linear cusp (3.4) is that the 3D Wulff 

construction for the ECS contains a 2D Wulff construction for the facet shape. Consider 

again a cut trough the 3D Wulff construction at fixed 8 (see Fig. 3.5). We saw that, in 

limit as $4, the line of intersection of the Wulff plane belonging to &(0,$) with the facet 

plane occurs at perpendicular distance @)/a from the cusp. Since this is true for every 

angle Q, these Bnes of intersection form a family of lines in the facet plane, each member of 

which is at perpendicular distance y(8)la from the cusp. The facet shape is the interior 

envelope of these lines because the ECS is the interior envelope of the corresponding 

planes. This shows explicitly that the EFS is obtained as the 2D Wulff construction of a 

polar plot of @)/a. This remrirkable fact, which allows us to think of facets as 2D ECS's 

embedded in the surface of 3D ECS's was first pointed out by van Beijeren a d  Nolden, 

and also by Akutsu and Akutsu (1987b), in 1987. The physical explanation is simple: 

Adjacent to the facet edge, the slope of the rounded region approaches zero, so steps 

become widely separated in the thermodynamic limit. Thus, the edge of the facet may be 

regarded microscopically as a single step encircling the (macroscopically) planar facet 

region. The minimum-free-energy configuration of this step is given by the 2D Wulff 

construction. 



FIG. 3.5: Perspective view of a fixed8 cut through the ECS and its Wulff plot as described 

in the text. The Wulff plane shown is tangent to the ECS at point B in the rounded or rough 
A A 

region of the ECS. In the limit as $+O (m+z) this plane intersects the facet plane, which is the 

Wulff plane of the cusp, along a line (dashed) which is at perpendicular distance *@la from the 

cusp and tangent to the facet at point A. The facet shape is obtained as the 2D Wulff consauction 

of y(8)la. 



The fact that the SFE and EFS are Legendre-transform-conjugate allows us to 

express the EFS in terms of a grand canonical trace. An argument paralleling the steps that 

led to Eq. (1.38) leads us to write the EFS, described in Cartesian coordinates as yf(xf), as 

In Eq. (3.7) Lx = L I ~  , with d y / a x f ,  and L is the line representing the microscopic 

step (see Fig. 3.6 and below), is the (2D) normal of & and xe sums over systems with 

all possible macroscopic step orientations 8. Eq. (3.7) will form the basis of our grand 

canonical series expansion for yf(xf). 

To elucidate the content of Eq. (3.7), it is useful to derive it directly from the grand 

canonical formulation of the ECS. If we define qf = -hxp then Eq. (1.38) implies that 

where q& (q is a 2D vector, tt% is a 3D vector) is shorthand for (qxf?+11,f)&b. 

Through Eq. (3.8), the facet coordinates xf are implicitly defined. If pf(hd denotes the 

expectation value for the slope of the facet (actually zero here, since we took the facet plane 

to be horizontal), we may write 

Substituting this into (3.8) we get 
f -I 



While the sum in (3.10) extends over systems with all 

possible interface krorifigurations, only those with vicinal surfaces contribute in the limit 

q+qr We can, therefore, restrict the ensemble to the subspace of systems which have a 

single step running across the facet of interest, i.e., we take z&)+zO and q&)+%,e. 
A strip of the interface of such a system of width L, is shown in Fig. 3.6, projected onto 

A 
the xy-plane. Am=O everywhere on the interface except on the "cliffs" of height a 

(represented by lines in the figure). We may, therefore, write for the field term of Eq. 

(3.10) 

where we have taken advantage of the fact that the integral lslhd.S over a close surface 

vanishes. Substituting this into (3.10) and noting that the q term is independent of step 
Y 

configuration establishes (3.7) without any direct reference to $0). 

Eqs. (3.6) and (3.7) give the size of the facet at given h. Experimentally, however, 

we would like to know the coordinates of the facet relative to the physical size of the 

crystal. As a theoretically convenient and experimentally well defined measure of the 

crystal size, we take the centre-of-crystal ("Wulff's point", Liebmann, 1914) to centre-of- 
A 

facet distance, which is simply T(mf)/h [cf. Eq. (1. N)]. The relative facet coordinates 

Finally, we remark that, for some intervals of 0,  the facet plane may be 

discontinuously truncated by Wulff planes from a part of the Wulff plot distant from the 



facet's cusp. For such 8, vicinal planes are thermodynamically unstable and y(8) does not 

exist [i.e., the l iq t s  of Eq. (3.6) do not exist] . Where y(8) does exist, the corresponding 
! 

facet shape is (for short ranged forces) smooth for all OcTcT,, because the step is 

essentially a 1D'object and can have phase transitions [i.e., cusps in y(8)] at T=O only. 

We now turn to the problem of calculating explicitly low-temperature expansions 

for the SFE and the EFS of the sc Ising model. 

FIG. 3.6: A strip of vicinal surface projected onto the xy plane. The shading represents 

lattice planes of spacing a at different levels. The strip contains a "bare" step L (bold line) and 
A 

excitations on the terraces to either side of the step (closed curves). n is the 2D microscopic 

normal to the step in the xy plane. The field contribution to the grand canonical Harniltonian, 

-q  A = a Id[& vanishes around closed curves andy therefore, couples only to 
all curves 

the "bare" step. 



3.3 Low-Temperature Series for the SFEJEFS of the 
simple-cubic Ising model 

# f  ' 

The Hamiltonian of the nearest-neighbour sc Ising model is 

where the "spins", o. = f 1, are located at the vertices of a simple-cubic lattice of lattice 
J 

constant a and the sum is over nearest-neighbur pairs. To keep our equations uncluttered 

in the remainder of this Section, we shall set the overall scale factor ha3/~=l and measure 

lengths in units of a, temperature in units of J h ,  and energy in units of J. (We shall also 

drop the subscripts on xf and yf from here on.) In the lattice-gas interpretation of (3.13), 

a. = +1 means that site j is occupied (by an "atom"); o. = -1 means site that j is vacant. 
J J 

This model has a bulk phase transition at PC = 0.221655 (Pawley et al., 1984). For TcTc 

there may be a first-order interface between a predominantly 4 = +I phase and a 

predominantly- a = -1 phase. The ECS is a cube at T=O. For O<T<TR all interface 
j 

orientations are expected to be stable (Rottman and Wortis, 1984b). At T=O the (100) facet 

consists of a plane of bonds between spins of opposite sign. As T increases, fluctuations 

are excited as spins flip in the bulk (gas atoms and vacancies) and on the interface (ad- and 

desmbed atoms). Just as in Section 2, this is most easily visualized not in terms of broken 

bonds but in terms of their dual-lattice plaquettes. Each plaquette corresponds to a unit of 

interfacial area and costs energy 2 (i.e., 2J). 

In order to study a step on a (100) interface, we need to make appropriate changes 

in the Harniltonian (3.13). Consider the Ising system as filling a box of volume V and 

height L, in which (100) lattice planes of area A are stacked at z = f 1/2, f 3/2, f 512,-. 

To eliminate wall energies and to enforce a (100) interface, connect the box periodically in 



the x and y directions and antiperiodically in the z direction. The (100) interface can be 

stabilized at z=0 by applying an infinitesimal external symmetry breaking field, as 
I ,  ' 

described, for example, by Weeks et al. in 1973. The ground state of this interface is a 

plane of plaquettes at z=0. Let the coordinates of the dual lattice sites in this plane be given 

by two integers (nx,n ). We now modify the lattice by piercing it with two screw 
Y 

A A 
dislocations of Burgers vector +z at (0,O) and -z  at (N,M). This forces a step into the 

interface running from (0,O) to (N,M) at average angle 8=arccos(N/L) with length 

Between the dislocations, this step divides the interface into an upper and a 

lower terrace. We choose to enforce the step in this manner (rather than by boundary 

conditions) for combinatorical reasons. We envision the ground state of the interface with 

this step to be planar everywhere except for the "tear" consisting of the INI+IMlrK extra 

plaquettes constituting the shortest possible step from (0,O) to (N,M). This state has 

degeneracy ~&N,M)=(&), because the step may stride IN1 times in the x direction and 

IMI times in the y direction in any order (Fig. 3.7a). As T increases, atoms ad- and desorb 

on the facet and the step will begin to lengthen and to develop overhangs (Fig. 3.7b). The 

total free energy of this system will have contributions scaling like V from the bulk, like A 

from the (100) interface, like L from the step, and like L, from the screw dislocations, plus 

end effects of order unity from-the regions where the step terminates. Since we wish to 

extract the step free energy, we must also subtract the screw-dislocation contribution in 

addition to the bulk and surface terms already subtracted in Eqs. (3.6b) and (3.7). It turns 

out that the screw dislocations do not contribute to the orders considered in our calculation. 

Thus, we absorb them, for notational convenience, in the bulk free energy term, i.e., 
L 

f + f + 2 2 fmew, where they can henceforth be ignored. 
b b V 



FIG. 3.7: Typical step configurations of the simple cubic Ising (100) interface: a.) T=O b.) 

T>O. The "bare" step is, by our convention, a non-self-intersecting line lying in the plane as 

indicated by the bold line. 



In the canonical ensemble, the macroscopic orientation of the step is fixed by fixing 

N and M. As a cpnsequence, plaquettes can only be excited in pairs, so that Hhas 

eigenvalues En = 4n, where n is one half the number of plaquettes. The lowest excited 

state corresponds to adding two plaquettes to the step. The canonical low-T expansion 

variable is, therefore, v r e-4P, and the expansion of the canonical partition functions 

becomes 

where Qg, is the degeneracy of the nth excited state. 

In the grand canonical ensemble, step orientations are summed over by summing 

over M at fixed N. The ground state is then nondegenerate and corresponds to a straight 

step of N plaquettes from (0,O) to (N,M=O). Because M is free, plaquettes can be excited 

one at a time with the lowest excited state corresponding to the two steps of N+l plaquettes 

from (0,O) to ( N M d  1). The expansion variable is now w I e-2P6v. At order wn the 

step can terminate at the n+l positions [N,M(n,m)], where M(n,m) = n-2m with 

m E (0,1,2, ..., n). For a step terminating at M, the field contribution to the Hamiltonian is 

A 
x:-I d L n  = -xM and the grand partition function becomes L 

with 



The prime indicates that the sum is over even (odd) M if n is even (odd), and we have taken 
A 

advantage of the sympetry, gn(N,M) = gn(N,-M). Low-T expansions for r ( z )  and fb 
I 

take the form: 

and 

Low T expansions of y(8) and y(x) are obtained by substituting (3.14) and (3.15) [and 

also (3.17) and (3.1 8)] into (3.6b) and (3.7), respectively, to obtain 

y(e) = 2(c+s) - T [(c+s)ln(c+s)-c in c-s in s] 

where c = I cose I and s I I sine I. z y  y.vJ and z ~ l Y j ~ j  are the series expansions of 
~1 J 

In (1 + z:l gnvn)) and in (1 + zzl &,wn), respectively. Note that, if the limit of Eq. 

' The expansion for the (100) surface tension of the simple cubic Ising model was calculated by J. Weeks, 

G. H. Gilmer and H. J. Leamy in 1973. The series was not published in the original literature and was 

only recently quoted by Shaw and Fisher in 1989 as: 
A 5 242 6 7 r(z)(Ising) = 2 -T 2 v2+2 v3+10 v4+16 v +-v +I50 v +734 v 3 

For completeness we also quote their SOS result, which was published by Leamy in 1975: 
A r ( ~  )(SOS) = 2 -T 2 v2+4 v3+ 10 v4+24 



(3.20) is to exist, then yodd cannot contain any A- or V-dependent terms. Eq. (3.19) shows 

that, at T=O, y(8) has cusps at 8=0 and symmetry equivalent angles. Since we are 
+ '  

expanding about T=O, we anticipate convergence problems in the vicinity of these 

singularities. (In fact we will see below that the canonical expansion is divergent at the 

cusps.) Also, note that it follows from the symmetry of the lattice that, at finite 

temperature, a'~(8)/a8=0 at 8$ and 8=0. Since all step orientations are stable, Eq. (1.12) 

then implies that, conveniently, y(O)=y(O) and x:) d2y(x=y). 

To calculate the degeneracies g,, it is most useful to develop a diagrammatic 

notation. To this end, we distinguish three classes of excitations (see Fig. 3.7b). These 

are 1.) single- layer ad- and desorptions on the upper and lower terraces but not 

overhanging the step, 2.) multilayer excitations and overhangs, and 3.) bulk excitations 

(bubbles), i.e., excitations not topologically connected to the main sheet of plaquettes. 

Class 2 may be further subdivided into SOS and non-SOS configurations. If we include 

only class 1 and class 2 SOS configurations, we obtain the expansion for the 

corresponding SOS model. For combinatorical convenience, it is our convention here to 

take the step itself (the "bare" step) to be a single, non-self-intersecting line lying in the 

plane. Since this line cannot generally be chosen without ambiguity in the presence of 

additional excitations (see Fig. 3.8), summing over all possible distinct lines (of some 

given length) in accordance with this convention leads to an overcounting which must be 

compensated. The method described below turns out to handle this problem automatically, 

at least to the orders calculated. We shall comment further on this point at the end of this 

Sub-section. For class 1 configurations, we adopt the diagrammatic notation shown in 

Table 3.1. Class 2 and 3 excitations will be denoted by self-explanatory pictures (Table 

3.11). 



FIG. 3.8: This figure illustrates that the step cannot be chosen as a single non-self- 

intersecting line without ambiguity. For the configuration shown, that ambiguity arises in the 

same way for the 2D and 3D Ising models. If we let white be "up" and shaded be "down", this 

configuration could be considered to be either a step with a downward indentation and a white 

disconnected excitation or a step with an upward indentation and a shaded disconnected excitation. 

At each order considered in this work, the number of ambiguous 2D configurations equaled the 

number of ambiguous 3D configurations. 

Each diagram contains the "bare" step plus a number (possibly zero) of 

disconnected parts denoting additional excitations. These disconnected parts contain 

contributions to facet and bulk free energies in addition to the step free energy. The 

contribution to the step free energy results from the fact that the presence of the step 

reduces the number of configurations available to the disconnected excitations. Since a 

given state of Hcorresponds to a fixed number of plaquettes, we can describe this 

interaction as being due to two mechanisms: First, disconnected diagrams abutting the step 

are not allowed because this would annihilate plaquettes and, secondly, disconnected 

diagrams straddling the step are not allowed as this would create plaquettes. We may, 

therefore, write for the class 1 diagram S-D 



where (S-CD)~ deht& the number of I) configurations disallowed in the presence of the 

step S. For sing!y disconnected diagrams we have 

(s-I)')~ = ( s - d ) ~  + ( ~ - 9 ~ ) ~  , (3.22) 

when (S-I))A denotes the number of abutting and (s-I))), the number of straddling 

configurations. Multiply disconnected diagrams are more complicated but the same general 

principles apply. 

Table 3.1 
Definitions for Class 1 Diagrams 

diagram definition 

- x [number of configurations of a step of 

IMI+INl+n plaquettes whose ends are 

fixed at(0,O) and (N,M)]; 

number of configurations available to 

ad/desorptions of the shape indicated 

1 
-  number of disconnected configurations do 
possible in the presence of the step indicated) 



If we were to allow only desorptions on the upper terrace level and adsorptions on 

the lower, interface configurations would be isomorphic to those of the 2D square Ising 
f ,  ' 

model with an interface between "up" and "down9' phases in lieu of the step. Although the 

symmetry of Hbetween ad- and desorptions destroys this isomorphism, we can still take 

advantage of the exact 2D solution for the interfacial free energy, r2D(0), and for the ECS, 

~ ~ ~ ( x ) , t o  simplify the full 3D combinatorics. Note that class 1 diagrams can equally well 

be used in the expansion of r2D(0) and y2,(x), if we ignore the fact that they are to 

represent both ad- and desorptions. In 2D, the nature of the "interaction" between 

disconnected parts and the step remains unchanged from 3D (dual-lattice bonds replacing 

dual-lattice plaquettes), so Eqs. (3.21) and (3.22) hold also for the 2D interpretation of the 

diagrams. For singly disconnected diagrams ( ~ - b ) , ~ ~  = 2 ( S - D ' ) ~ ~ ~ .  as both ad- and 

desorptions can straddle the step. However, Sand (S-b)* have the same value, whether 

interpreted as 2D or 3D configurations, because adsorptions (desorptions) are allowed to 

abut the step on the upper (lower) terrace. This allows us to shift the necessity for doing 

the explicit coinbinatorics of many 2D configurations up by several orders from where they 

fmt occur by writing 

and 
00 

lim I Y(X) = - 
L +- L 

- [A(ri-f2Dbii * vfb.] w2j (3.25) 
1 

i=2 



In these equations Y2Di and Y2Di are the 2D versions of yi and yi, respectively, i.e., they 

are the terms in Eqs. (3.19) and (3.20) arising from the 2D interpretation of class 1 
2 ,  ' 

diagrams. fiDb is the 2D bulk free energy for the 2D Ising model. The effect of this 

rearrangement is that many terms cancel in the curly brackets of (3.23) and (3.25), so that 

the number of diagrammatic terms corresponding to Ayi and Ayi, which remain to be 

evaluated is significantly reduced (at least at low orders). This is a tremendous 

simplification, as the order-by-order calculation of S and (S"D)* diagrams is exceedingly 

tedious. Also, all terms involving A and V vanish, as is necessary if the thermodynamic 

limit L+- is to exist. Because these terms cancel, the Ayi and Ayi can be expressed 

entirely in terms of the A- and V-independent parts of gi and gzDi . If ai, Agi, gi, and A& 

denote the A- and V-independent parts of gzD , (gi - g .), HzDi and (gi -E2Di), 
i 2% 

respectively, we can, therefore, simply write 

and 

It is crucial here that ai, Agi, a", and Agi  contain not only the terms of order L', but also 

those of order Lo, since the latter get multiplied by order L' terms at higher order in the 

expansion of the logarithms. The nonvanishing a's and Ag's needed in (3.27) for the 

calculation of the Ayi to order 5, inclusively, have the diagrammatic expansions, 



a, = (1) 
t , '  

a, = (111)-(11) 

where the numbers in brackets label diagrams listed (with their numerical equivalents) in 

Table 3.II (some combinatorical details are given in Appendix E). The corrections Ayi can 

now be evaluated to 1 l th order without calculating additional diagrams. The expansions of 

the necessary nonvanishing and A& are simply obtained by appropriate substitution into 

Eq. (3.16) (put g=a to evaluate Z and g=Ag to evaluate ~ g ) .  

To the orders calculated here, the method of expansion described above solves the 

problems associated with the ambiguity of defining the step as a single, non-self- 

intersecting line (Fig. 3.8). We find that, with consistent use of that definition, diagrams 

conspire such that the number of overcounted configurations is the same for the 2D model 

as it is for the 3D model, so that they cancel in the calculation of the Agi . This cancellation 

is transparent for simple diagrams such as shown in Fig. 3.8. It can be checked to occur at 

the orders considered in this work; whether it persists to all orders is unclear. 

The calculation of the diagrams appearing in the grand canonical expansion is easier (at least at low 

orders) than the calculation of the canonical diagrams, in the sense that the former, unlike the latter, need 

not be calculated for general M. This fact may be useful to push our calculation to higher order to get 

more information in the critical region. Since the facet is essentially isotropic there, the fact that the 

grand canonical series converges best in only one symmetry direction (&0) is not a serious limitation. 



t , '  

And thick and fast 
They came at last, 

And more and more and more. 

Table 3.11 
Diagrams and their Numerical Equivalents 

DIAGRAM I WEIGHT 

~'N'(N~+~N'+')  +K+INMI ( NwM [n- n lg i lMl+l I + )  

Ag3: 
CLASS 1 

WEIGHT 

- K  

# DIAGRAM 

-[LmulDs 



A&: 
CLASS 1 

f ,  - DIAGRAM I WEIGHT 

-2K- (11) 

CLASS 2 
DIAGRAM WEIGHT 



Ag5: CLASS 1 

DIAGRAM WEIGHT 

-2(K+2)~(1) - (IV) 



I # I  DIAGRAM 

CLASS 2 

WEIGHT 

2(K+2)x (I) 



CLASS 3 

Table 3.m A list of the diagrams which had to be evaluated explicitly to obtain the correction 

terms to the 2D Ising model at the orders indicated (some combinatorical details are given in 

Appendix E). Each of the class 2 and 3 diagrams shown has another version in which gas and 

solid sites are symmetrically interchanged. All these configurations are of course included in the 

weights given. Only V- and A-independent terms are given; as in the text, K=IMI+INI. The 

subscript A indicates that the number of forbidden abutting configurations is to be counted. The 

subscript 2DS means that the number of forbidden straddling configurations of the diagram, 

# 

28 

29 

DIAGRAM 

w- tJ===J 
w- 

WEIGHT 

-2K 

-K 



interpreted as a 2 0  diagram, is to be calculated. A(diagram) denotes the difference between the 3D 

and 2D interpretations of the diagram. The notation + (Nt+M) means that the previous term with 

N and M interchqged is to be added. 

3.4 Results and Discussion 

The results of our expansions are summarized in Tables 3.111 and 3.IV. The series 

for r2D(8) and Y(x)~D are given in Appendix C. Let y(8,N) and y(x,N) denote the series 

for y(8) and y(x) summed to order N, inclusively. Fig. 3.9 shows the behaviour of the 

canonical expansion as a function of 8. y(8,N) diverges about its T=O cusps at 8=0 and 

converges best at 8< (and their symmetry equivalent angles). Interestingly, the angular 

radius of convergence decreases with increasing T and presumably vanishes at TR, 

reflecting the Kosterlitz-Thouless singularity of y(8) at TR [cf. Eq. (3.1)]. On the other 

hand, y(x,N) converges best at x=O (8=0), with a radius of convergence in x which also 

appears to vanish as T+TR. Fig. 3.10 shows y(x,ll) as a function of x and the Legendre 

transform of y(8,5), both normalized to the crystal diameter [cf., Eq. (3.12)]. At low 

temperatures the grand canonical series nicely fills in the part of the facet shape not 

obtainable from the canonical series. Fig. 3.1 1 shows a plot of y(8,N) versus T in the 

symmetry directions 8< and 8=0. These series appear to converge to the asymptotic form 

(3.1) (see also Fig. 3.13) by developing minima which move with increasing order toward 

the T axis from below. This behaviour of the series is consistent with that of the BCRSOS 

model (van Beijeren, 1977; Jayaprakash et al., 1983) which, for 0: .is given to order 

v40 in Appendix D.. 



Table 3.111 
Summary of the Low-T Expansion of the 

9 ,  
Step Free Energy y(8) 

3D Ising SOS 

Table 3.IV 
Summary of the Low-T Expansion of the 

Equilibrium Facet Shape y(x) 

x= cosh(px) 

n 

6 
7 

8 

9 

10 

11 I -32r5-72r3+68r I - 36 I - 32r5 - 88r3 + 74r 1-46 

3D Ising 

sn(x) 
- 1 

- 2x 
- 4x2 

- gx3 + 2~ 

-16x4-16x2+3 

SOS 
x=O 

- 1 
- 2  

- 4  

- 6  

-29 

En(x) 
- 1 

- 2x 
- 4x2- 2 

- gX3 - 2x 

-16x4-24x2+8 

x=O 

- 1 
- 2  

- 6 

- 10 

- 32 



FIG. 3.9: Polar plots of the low-temperature series of 1(8) at the temperatures indicated. The 

different line styles indicate the order to which the series was summed: . . - . - - l s t *  - . . -  
. . - = 2nd, - . - - - = 3rd, - - - - = 4th, and - - - 5th order. At T-0.4 the 

divergent region about 030 and: is still very narrow and bmly  resolved in the figure. 



FIG. 3.10: m e  facet shape at different temperatures, normalized to the centre-of-crystal to 

cenm-of-facet distance as obtained from the 1 l th order series for y(x) (dotted curve) and the 

Legendre transform of the 5th order series for $8) (solid curve). The non-physical parts of the 

Legendre transform are the result of the divergences of the series for y(8) (see Fig. 3.9). Note that 

the dotted curve is not symmetric under reflection about x=y. This effect is a consequence of 

distinguishing the x and y axes in the grand canonical expansion and disappears at infinite order. 

Because of the convergence properties of the series, the best numerical estimates of the facet shape 

at fmite order are obtained for & [ f , f 1. 





To investigate the asymptotic properties of our series, standard Pad6 and ratio 

methods (e.g., Gaunt and Guttmann, 1974) cannot be used directly because the singularity 
4 ,  f 

of Eq. (3.1) is an essential singularity. Since there is no obvious way of circumventing 

this problem, we use alternate methods, motivated mainly from a study of the exact 

solution of the BCRSOS model. The low-T series for $) of the BCRSOS model (see 

Appendix D) is an alternating series: Order v is negative, orders v2 to v10 are positive, 

orders vl' to v3' are negative, and so on. The number of consecutive terms of like sign 

presumably increases with increasing order. For TS 0.85TR, the convergence of this series 

is dominated by the first sequence of positive terms, i.e., the terms of order vn with 

ntz {k,.. .,l) , where k=2 and b10 here. Let a, denote the coefficient of vn. It turns out that 

the ratio rn q a,/a,-l, decreases with n for ne {k+l, ...,Oil! Hence, if T is sufficiently 

low such that v rmcl ,  it follows that vrncl  for n2m ( n , m ~  P) and, therefore, 

j=O 
- the series x :=m+l anvn is bounded by the geomemc series ximvmxkm-l xj = 

x h v m  S(On), where x=v r,. Thus, if mccL a reasonable estimate for x n=m+l anvn is 

We shall assume that the generic form of the complete series for the SFE of the sc 

Ising model is similar to that of the corresponding series of the BCRSOS model. In order 

to estimate the error made in truncating the series after order N, let us assume further that 

the grand canonical series cannot converge significantly better than the canonical series, so 
R 

that we can restrict our analysis to 0 7 .  For the Ising and SOS models, the forgoing 

paragraph then implies that it is reasonable to expect the series for the error 
R R 

ANi~(z)-~(zN), for N24, to be bounded by a geometric series, so that 

4 2  4 2  AN 5 Z N i  -T p(bN+ $x/(1-x), provided Ocxcl, where x=v (bN+ e ) ~ ( b ~ - ~ +  G) is 

the ratio of the Nth to the (N-1)st term of ~ $ , N ) .  While it is only clear that this must be 



so at sufficiently low T, we shall assume that 3, gives a reasonable error estimate for 

fractional errors3 l[Y(:,5)+35] as high as -10%. For N=5 we find that the fractional 
J ,  * 

error is less than (0.1%,1%,5%,10%) for T I (1.72,1.92,2.04,2.09); for N=4 these 

temperatures ari (1.61,1.78,1.87,1.90). For the SOS model the corresponding estimates 

are for N=5, TI(l.73,1.93,2.07,2.12) and for N=4, TI(l.5 l,l.62,1.66,1.67). 

If we take the fractional error in approximating y(0) by r,,(0) to be 

1 - ~ ~ ~ ( 0 ) / [ ( ~ ( ~ , 5 ) + Z J ,  we find it to be less than 1% for Tc1.79 (less than 0.1% for 

T4.51). Below T=1.79 the order v4 and v5 non-SOS contributions are less than 0.08% 

and 0.03% respectively so that bubbles and overhangs are unimportant in this temperature 

range. Above T=1.79, the facet-shape anisotropy, as approximated by 

[y(~,5)-y(0,11)]/y(0,11), is less than 4 x 1 0 ~ ~  for both the Ising and SOS models. At 

T=1.79, the normalized facet radius pf = 0.4. It follows that, in the region of temperature 

where the facet has experimentally significant anisotropy (i.e., for T s  1.8), the facet shape 

is essentially given by the 2 0  Ising ECS with the convergent corrections calculated in Sub- 

section 3.3. 

In the temperature range 1.8sT5 2.1, T is high enough for the the series to differ 

significantly from the 2D lsing series but low enough for us still'to have some confidence 

that the series have converged. Assuming that in this region y(:,5) and y(0,ll) are already 

well approximated by their asymptotic form (3.1), one may hope to extract the critical 

parameters B, C, and TR. Indeed, plots of C(T) I -~(T,-T) '~ alny(0,N)laT and 
It B ( T ) ~ ~ , N ) ~ x ~ [ c ( T ) / ~ ~ ~  versus T for various values of TR, at 0 ~ a n d  0, show a 

plateau for TR=TPOateau)=2.46 over the temperature range 1.8-(r 2.0 (see Fig. 3.12). The 

failure of the plateau to extend beyond T=2.0 is consistent with the convergence estimates 

above. The functions B(T) and C(T) [which would be constants if the series were exactly 

equal to (33)] have qualitatively the same shape (Fig. 3.12): For TR>TP, they increase 



99 

monotonically over the temperature range of interest; for TR+, the plateau deepens into a 

minimum which becomes deeper and more narrow with decreasing TR. Guided again by 
+,  ' 

the BCRSOS model and the fact that we observe no significant change in the plateau 

parameters from order N=4 to N=5, we take the plateau parameters to be the critical 

parameters (this works well for the BCRSOS model). To extract these parameters 

numerically, we performed a least squares fit of the functional form (3.1) to 

[y(~75)+y(0711)m over a temperature interval of width 0.2 centred at T* with fitting 

parameters B,C,TR, and T*. For both the SOS and Ising models we obtain ~*=1.9. As 

shown in Table 3.V, the fits for the roughening temperatures TR(SOS) and TR(3D Ising) 

are consistent with those obtained by Adler. For the 3D Ising model, the fits for all the 

critical parameters are consistent with those obtained from Monte Carlo data by Mon et al.. 

Table 3.V 
Summary of Critical Parameters 

SOS 3D Ising 
I B 10 .3  f 1.5 9.7  1: 1.0 this work 

C 2:13 k- 0.15 2.05 f 0.15 this work 

- 2.12 1 0 . 1 3  Monetal. 

2.48 + 0.03 2.46 f 0.02 this work 

TR p. 
- 2.44 f 0.09 Monetal. 

2.54 f 0.07 2.475 + 0.075 Adler 

Table 3.V. Comparison of the critical parameters B, C, and TR as obtained by different 

methods. The uncertainties quoted for the rows "this work" are associated with the fit and do not 

necessarily represent an estimate of how close these numbers might be to the true critical values. 



FIG. 3.12. Plots for the 3D Ising model of B O = ~ ( ~ , N ) ~ ~ ~ [ C ( T ) / ~ ~ ,  with C m  

-z(T~-T)" alnHe,N)/aT, and of C(T) versus temperature T for various values of TR. The 

dashed l k s  correspond to $3, i.e., to the canonical series summed to 5th order. The solid 

lines correspond to y@,N)=y(O,ll), i.e.. to the grand canonical series summed to 1 lth order. In 

each "bundle" of lines the lowest curve corresponds to TR=2.40. With successively higher lines, 

TR is incremented in steps of 0.01 to TR=2.61. If He) satisfied the Kosterlitz-Thouless form 

(3.1) everywhere, B O  and C O  would be constants. For a value of TR-2.46 the curves show a 

plateau centred about ~*=1.9. The corresponding values of B and C at the plateau were taken to be 

the critical parameters and guided more accurate least-square fits of our series to the Kosterlitz- 

Thouless form (3.1) as described in the text. 



Fig. 3.13 shows the T dependence of the normalized facet diameter of the Ising 

model, extrapolatqd aJ1 the way to TR using our fit to Eq. (3.1). The lower (upper) limit of 
I 

the error bars shown there correspond to fits obtained over the interval 1.9051TS1.955 

with TR constrained to be the lower (upper) limit of Adler's estimates for TR. It is to be 

emphasized, that the methods of Sub-section 3.3 are not recommended if one is interested 

in TR only (and not, for example, in the amplitudes B and C also). In such cases, the 

series methods of Weeks et al., with their well understood asymptotic analysis by Adler, 

are probably more efficient. The calculation presented here, on the other hand, is the only 

one so far to address the anisotropic step free energy and the shape and size of facets. 

It is interesting to examine the assumption that the series are already in the 

asymptotic regime over the temperature range 1.8,Crs 2.1 in the context of the Monte Carlo 

simulations of Mon. et al.. While their data, extrapolated to infinite system size, shows 

(3.1) to hold over the entire temperature range 1.8(rcTR, they fall below the 2D Ising 

value by about 10% at T=1.8, where our expansion implies that the 2D Ising result is a 

lower bound. In principle, this discrepancy could be due to large negative coefficients at 

higher orders of our expansion; however, in light of the discussion above, this is unlikely. 

A more likely source of error, as pointed by Mon et al., is the finite-size-scaling analysis of 

the Monte Carlo data, performed with only three data points at each value of T. The fact 

that our critical parameters agree with those of Mon et al. in spite of these problems is 

probably attributable to the sensitive dependence of $8) on the precise numerical values of 

the critical parameters. 





3.5 Conclusions 

We have bh6wn how to calculate step free energies and the corresponding 

equilibrium facet shapes in low-temperature expansion. The combinatorics involved is 

significantly reduced by structuring these expansions as perturbation series about the 

interfacial properties of the 2D Ising model. The two expansions are related by a Legendre 

transform and can be thought of as canonical and grand canonical representations of the 

same physics. The grand canonical form of the expansion gives the facet shape where it is 

not accessible from the canonical expansion of the step free energy. 

At temperatures where the facet has experimentally significant anisotropy, the facet 

shape is essentially given by the 2D Ising ECS normalized to the facet's surface free 

energy, with convergent corrections displayed in Tables 3.111 and 3.W. Corrections to the 

2D Ising result due to additional (non-2D) SOS, overhanging, and bubble configurations 

enter at orders e-12PJ, e-l6PJ, and e-20pJ, respectively. These corrections are less than I% 

for 0<T<1.79=0.72TR and less than 0.1% for 0(r<1.51=0.61TR. In this temperature 

range, overhangs and bubbles are unimportant. At higher temperatures the facet shape is 

nearly circular, with a normalized facet radius of less than 0.4 and anisotropies of less then 

0.1%. Numerical extrapolations into the asymptotic critical temperature region of the step 

free energy yield roughening amplitudes consistent with the Monte Carlo data of Mon et 

al.. The effect of non-2D-Ising configurations is to raise the roughening temperature from 

TJ2D Ising) to the true TR (an increase of -9%) and to build in the proper Kosterlitz- 

Thouless roughening singularity. 

The facet-shape information provided by Figs. 3.10 and 3.13 is potentially useful 

in analyzing experimental data from any real crystals which may be modeled by the nearest- 

neighbour sc Ising model, but for which the effective nearest neighbour coupling is 



unknown. For example, TR is often difficult to measure by direct observation of the 

vanishing of the facet, either because the facet edge cannot be located precisely (e.g., F. 
f 

Gallet et al., 1986) [and/or is very sensitive to dynamical effects (e.g, Keshishev, 1981)l 

or because the roughening transition is preempted by bulk melting. In such situations, it 

may be feasible to measure the facet diameter in one of the symmetry directions at a lower 

temperature Texp. The corresponding reduced temperature T can be read off Fig. 3.13, 

from which the effective nearest neighbour coupling is determined as J = kBTexJI'. The 

roughening temperature is then given by (from Adler, 1987) TRexp=(Texp/T)~ 

(2.475k0.075). 

In nature most crystals are unfortunately not simple cubic and next-nearest- 

neighbour interactions cannot always be neglected. As long as interactions remain nearest 

neighbour, generalization is straightforward. If next-nearest-neighbour forces must be 

accounted for, the nature of the problem changes drastically. The energy of a configuration 

will now depend not only on the number of plaquettes but also on the number of corners. 

This makes the combinatorics very difficult and completely different in character from what 

we have had to deal with here. It is clear that, in any case, it will be useful to expand about 

a 2D model describing the central layer containing the step. An interesting open question is 

whether the step free energy is rigourously bounded from below by the interfacial free 

energy of that 2D model and, if so, under what conditions. 



Appendix A: Analytic structure of the 
Feynman-Vdovichenko matrix - two 
examples 

In this Appendix we explore the analytic structure of the FV matrix for two explicit 

examples: The ferromagnetic Ising model defined on the square and honeycomb lattices. 

Specifically, we will look at the X-dependence of 1.) the location of the zeros of 

Det [1-A(kx,-iphX)] and 2.) the location of the regions in the kx-plane where at least one 

eigenvalue of A(kx,-iphX) is greater or equal to unity in modulus (regions of 

nonconvergence). To illustrate the generic behaviour of these matrices it will suffice to 

consider the case of all interactions being equal. We choose units such that J=kB=h=l. To 

obtain a [-IC,IC]X[-x,x] Brillouin zone (BZ), we choose the basis vectors of the lattices to 
A A 

be a=x and b=y (for a definition of the basis vectors see Fig. 2.5). 

Consider first the square lattice. The FV walk takes place on the dual square lattice 

with the following set of available steps 

The corresponding FV matrix is then given by 

A = ~ - ~ ~ A  M , 
with 

and 

1 O a a *  

a a *  0 1 



where mix'4. Fe,.condition that Det (1-A) be zero is obtained as 
I 

where c=cosh(2P) and s=sinh(2g). Thus, with the notation f(x)=c2/s-cosh(~~), the 

zeros of Det [1-A(kx,-iPX)] are given by 

where the inverse functions are to be evaluated as the principle value. Since for TcT,, 

c2/s>2, there is always a non-empty region XE [XmI,Xml.] (corresponding to the ECS) 

for which f(X)21. The condition f(X)I-1 defines the region [--,X Jv[XR,+-] (here, 

X,=-X,). 

The trajectories of the zeros (A6), as X ranges from - to +-, are sketched in the 

kx-plane in Fig. A.l and in the z-plane in Fig. A.2, where z=exp(ikx). Figure A.3 shows 

the two zeros of Det [1-A(kx,-iPX)] in the z-plane, zl and z2, as a function of X for those 

X for which zl and q are purely real. In the z-plane, one and only one real zero is inside 

the unit circle 1z1=1, and the integration of Eq. (2.15) picks up the correct pole [depending 

on the sign of N, see the discussion following Eq. (2.15)]. Since A is a 4x4 matrix, the 

eigenvalues can be found analytically. However, since we will soon be interested in a case 

where this is generally not possible, anyway, we contend ourselves with a numerical 

investigation. One finds that for XE [Xmi,,XmaX] the modulus of all eigenvalues of 

A(kx,-iphX) remain less than unity along the unit circle 1z1=1 so that the contour need not 

be deformed. As X is increased beyond G, (decreased beyond L), the path in the kx- 

plane from -x to x is pinched off, as the two regions of nonconvergence join at kx=O. 



With further increasing (decreasing) X, the "barrier" blocking convergent passage from -n: 
$ ,' 

to n: continues to giow. Beyond XR (XL) the matrix A(kx,-iphX) is divergent for all real 

kx. In Fig. A.4 the regions of nonconvergence of A(kx,-iphX) are mapped out in the kx- 

plane and in Fig. A S ,  in the (real) BZ.? 

Fig. A.l: Trajectories of the two zeros of Det [1-A(kx,-iphX)] in the kx-plane for the 

square lattice [cf. Eq. (Ah)] as X ranges from -.. to 00. 

' The matrix A(kx,-ibX) was diagonalized numerically at each paint of a 31x31 grid over the region of 

interest. 



Fig. A.2: Trajectories of the two zeros of Det [1-h(k,,-iphX)] in the z-plane for the 

square lattice [cf. Eq. (A.6)] as X ranges from -.. to -. 

Fig. A.3: The real zeros of Det [1-A@,,-iphX)] for the square lattice in the z-plane as 

a function of X. For XE l & , i n , ~ , ] ,  Oczlll and z221. 



-lC Re& x)  
X 

Fig. A.4: Regions of nonconvergence (black squares) of A@,,-iPXX) in the kx-plane 

for the square lattice at T=T$ for the values of X indicated. A path from -x to x is possible 

along the real kx-axis for XE [Xmin,Xm,]. At X=Xm, the two regions of nonconvergence 

join at kx=O. The zeros of Det [1-A&,-iPXX)] are indicated by the symbol $. 



Fig. AS: Regions of nonconvergence (black squares) of A@,,-iphX) in the Brillouin 

zone for the square lattice at TJ2 for the values of X indicated. 

Let us now look at the hexagonal lattice. Note that with the chosen unit vectors this 

lattice is less symmetric than the square lattice. The dual lattice is triangular and the FV 

walker has available the following steps 

The corresponding FV matrix is given by Eq. (A2) witht 

For the phase factors, we have not used the actual angles of turn for the steps (A.7) (which would be 

multiples of ~14). To obtain a more aesthetic form of M, we have used, instead, the angles of turn for 

walker on a lattice of equilateral triangles. Since the phase only keeps track of the topology (self- 

intersections) of the lattice paths, this is equivalent to using phase factors derived from the actual angles 

of turn. 



M =  

and 

ik i(ky+kx) ik,) A=diag(e-iky, e-i(ky+kx), e-ikx, e y, 7 7 

where The condition for Det (1-A)=0 is obtained as 

Because of the cos(kx+ky) term in Eq. (A.10), the analogue of the function f(X) of 

Eq. (A6) is the solution of a quadratic equation and can itself be complex. The resulting 

flow of the zeros of Det [1-A(kx,-iphX)] with X is, therefore, slightly more complicated 

(Fig. A.6 and A.7). Figure A.8 shows the two zeros in the z-plane, zl and z2, as a 

function of X for those X for which zl and z2 are purely real. Since for T<T,, 

(c3+l)/s2>3, there will again always be a non-empty region XE [Xmin,Xm,,] 

corresponding to the ECS, for which zl and z2 are purely real and positive. The 

asymmetry of the lattice (in the general case additional asymmetry is introduced by unequal 

coupling constants) manifests itself in the fact that now there is a region [Xmin,XA] for 

which both real, positive zeros are outside the unit circle lzl= 1 and a region [XB,Xmax] for 

which both real, positive zeros are inside the unit circle M=1. Figures A.9 and A.10 show 

the regions of nonconvergence in the k,-plane and in the BZ, respectively for various 

values of X. As X is increased beyond XB (decreased beyond XA), the region of 
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nonconvergence begins to cross the real kx-axis at kx=O. However, for XE [ X B A B x ]  (for 
+ ,  ' 

XE [Xmin,XA]) the path from -x to x may be deformed from the real k,-axis so as to pass 

through a bottleneck of the convergent region between two regions of nonconvergence. 

Note that this automatically causes the relevant pole of the integral (2.15) to be included in 

the integration contour. When X is increased beyond XB (decreased beyond XA) the 

bottleneck pinches off at Re(kx)=O. Aside from the fact that the pinch occurs off the real 

kx-axis, the regions of nonconvergence behave very much as they do in the case of the 

square Ising model. 

Fig. A.6: Trajectories of the two zeros of Det [1-A@,,-$AX)] in the kx-plane for the 

hexagonal lattice [cf. Eq. (A.6)] as X ranges from -O to -. 



Fig. A.7: Trajectories of the two zeros of Det [1-A@,,-iP5X)I in the z-plane for the 

hexagonal lattice [cf. Eq. (A.6)1 as X ranges from -oo to -. The circle shown (thin solid line) 

is the unit circle M=1. The trajectories off the real axis become increasingly heart-shaped as 

Fig. A.8: The real zeros of Det [1-A&,-i$XX)] in the z-plane for the hexagonal 

lattice as a function of X. For XE [ X A , X B ] ,  O<zlSl and 2221. For 

XE [Xmin,XA]~[XB,Xmax], either both or neither positive zeros are inside the unit circle 

1z1= 1. 
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Fig. A.9: (continued on next page) 



Fig. A.9: Regions of nonconvergence (black squares) of A(k,,-@AX) in the kx-plane 

for the hexagonal lattice at T=T$ for the values of X indicated. The corresponding pictures 

for positive X are simply obtained by changing Im(k,) to -Im(kx). A path from -A to 7c is 

possible along the real kx-axis for XE [Xmin,Xmax]. For XE [Xmin,XB]~[XA,Xmax], a path 

from -x to x must be deformed from the real kx-axis to avoid regions of nonconvergence. 

The zeros of Det [1-A(k,,-iPXX)] are indicated by the symbol $. 

Investigations into the analytic structure of the FV matrix describing an interface 

between antiferromagnetic 2x1 phases on a triangular lattice (see Section 2.3) show the 

same generic behaviour. Over the range of X for which the solutions to Det [1-A(iphY, 

-iPkX)]=O describe a convex shape, it is always possible to find a path from -n: to n: in the 

kx-plane which avoids regions of nonconvergence and includes the correct pole. For other 

X, no such path exists. 

For finite short-ranged interactions, at least, the behaviour exhibited by the two 

examples shown here presumably must be generic for any system for which the ECS is 

well defined. If this were not the case and the analytical continuation could not be 

performed such that regions of nonconvergence are avoided, then the entire formulation of 

the problem would be ill founded contrary to all evidence. 



Fig. A.lO: .Regions of nonconvergence (black squares) of A(k,,-iphX) in the Brillouin 

zone for the hexagonal lattice at T=T$ for the values of X indicated. 
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Appendix B: Inversion of the ECS of the 
2D rectangular Ising model 

A A 
From Table 2.1, with a=x and b=y (see also Fig. 2.5), the ECS, y(x), of the 

rectangular Ising model is given by 

Differentiating with respect to x and substituting ay/ax=-tan0 [cf. Eq. (2.20)], we obtain 

We now need to solve for x and y as a function of 0, so that we can get r(0)  from the 

equation [cf. Eq (2.20)], 

r2&3) = hx sine +hy c o d  . 033) 

Eqs. (I3 1) and (B2) then become simple algebraic equations for x and q 

C1C2- s l q  - s2x = o  
and 

q2Z2sI2 - X2sZ2 + s22 - 3 s l 2  = 0 . 

Eqs. (B5) and (B6) can now easily be solved to find 



In Eqs. (B7) arid (B8) the plus sign on the radical was chosen to ensure that 221 and 

q 2 l  for 8~ [0,27t). Thus, we get r2D(0) explicitly as 

where we have put the cos0 and sin0 factors in absolute values so that arccosh(.) may 

simply be evaluated as its principle value for all 0~ [0,2n). We note that the expression 

(B9) with (B7-8) is much simpler than (although, equivalent to) that originally given in the 

literature by Avron et al. in 1982. 

For equal couplings (cl=c2=cosh 2PJ; sl =s2=sin h 2PJ), some further straight- 

forward manipulations give the result for r2&) as stated by Rottman and Wortis in 1981: 

Pr2D(0) = lcos0l arcsinh (a Icosel) + Isinel arcsinh ( a  Isinel) (B 10) 

with 

and 
- sinh 2PJ h = 

c o s h 2 2 ~ ~  

For equal couplings, the equation for the ECS, Eq. (B I), may be written (h=l) 



Appendix C: Series expansions for the 2D 
square Ising model 

In the dimensionless units of Section 3, expanding (C10) in powers of v I e -4P 
- 

and (Bl3) in powers of w = e 2P, we obtain, with the aid of the algebraic manipulator 

REDUCE, the series displayed in Tables CI and CII. In the symmetry directions these 

expressions simplify to 

and 

Table CI 
Coefficients of the low-T expansion of the 
2D-Ising interfacial free energy r 2 ~ ( 8 ) .  

b2~,(9) c I ~cose~ ; s= Isinel 

0 1 (c+s) In (c+s)-c In c-s In s 



Table CII 
4 ,  Coefficients of the low-T expansion of the 

2D-Ising equilibrium crystal shape y 2 ~ ( 8 ) .  



Appendix f , D: Series for y(f) of the BCRSOS 
model 

Jayaprakash et al. gave in 1983 the following expression for the Cartesian 

coordinates of the BCRSOS facet shape: 

where A is a constant, 

(PE WWW, 2 cosh o = e2pJ - 2 , 
and 

@2) 

00 

cosh $w+Q 
Z({) In 

cosh %a-c) n=1 n coshno 
@3) 

These coordinates are rotated by ~ 1 4  from those used for the facet shape in Section 3. 

8-14 (in the coordinates of Section 3) corresponds to the parameter $4, when y=O, and 

To make contact with the enQgy scale of Section 3, we take J+2J. To normalize the 

BCRSOS facet shape so that y(9=7c/4,T=O) =2*, we take Ah=l. Thus, to get a low-T 

expansion of y(~/4), we must expand 

with 
1 

cosho = -- 2v 1 ,  



in powers of v=exp(4PJ). After some elementary manipulations, we obtain, aided by the 
4 ,  ' 

algebraic manipulation program REDUCE, the following series (in the dimensionless units 

of Section 3): . 



Appendix E: Combinatorical Details 
C ,  

How do I love thee? Let me count the ways. 

E. BROWNING 

In this Appendix we will go through the combinatorical methods which were 

employed to evaluate the diagrams of Table 3.n. Rather than evaluating all diagrams here, 

we will do the combinatorics for a few typical diagrams, each requiring a different 

technique. It is not claimed that the methods presented here necessarily maximize elegance 

or efficiency. 

The Basics: 

The simple, basic ingredients needed in the sequel are:? 

Theorem (proof is trivial): 

The number of ways of choosing a subset of m 06jectsfrom a set of 

n distinguishable objects, without regard to order, is given by the binomial 

co@cient, 

n ! 
m! (n-m)! 

The symbol (:) is read "n choose m". It is very useful to extend the definition of 

the binomial coefficient such that 

An excellent introduction to combinatorics is given in the book by Feller (Feller. 1957). 
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(i) = 0 if either mm or if m<0 . @2) 
+ r  

These binomial coefficients obey many identities. For our purposes the most useful are: 

n 

C (i)(nk) = (r;;s) , r , s, n any positive integers. 
m 4  

034) 

We shall often make use of the following elementary theorem (proof is trivial): 
. . .  The number of ways in which r m d l s t r n ~ u a b l e  objects can be 

n+r-1 distributed into n bins is given by ( ). The number of ways of doing 

this so that no bin is empty is given by (:I:). 

Finally some definitions: 

In the following we shall take N>O and M>O to save the writing of absolute value signs. 

a.) Thediagram n: 
This is the simplest diagram of Table 3.n. It corresponds to the number of ways in 

which a lattice walker can go form (0,O) to (N,M) in K+2 steps. Consider first two extra 

vertical steps. From Fig. E. 1 there are M+l up arrows and 1 down arrow to be distributed 

over N+l bins so that the down arrow is in a bin by itself. There are N+l ways to choose 

a bin for the down arrow. The number of ways in which the M+l up arrows can be 
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distributed over the remaining N bins is given by (GI). The number of ways of going 
+ ,  ' 

form (0,O) to (N,M) with two extra horizontal steps is given from symmetry by exchanging 

N and M. Thus, we have 

FIG. E.1. The vertical bonds of a step from (0,O) to (N,M) may be considered to be 

dism'buted over N+l bins. 

b.) General SOS configurations: 

A general SOS configuration corresponds to going from (0,O) to (N,M) with 

N+M+2Me steps, i.e., Me extra up arrows and Me down arrows. The number of ways in 

which this can be done may be counted as follows: 



Choose 1 put of the N+l available bins. There are (N;l)=~+ 1 ways of doing 

this. Put all down arrows into that bin. There are (?=')=I ways of doing that. 

Distribute the M+Me up arrows over the (N+l)-1 remaining bins. There are 
(N+l)- l+M+Me- 1 ) ways of doing that. 

Choose 2 of the N+l  bins. There are ways of doing this. Put all down 

arrows into the 2 bins so that there is at least one down arrow in each of the 2 bins (the 

case where one of the 2 bins is empty has been counted already). There are ( y 2 )  Ways 

of doing that. Distribute the M+Me up arrows over the (N+l)-2 remaining bins. There are 
(N+ 1 )-2+M+Me- 1 ) ways of doing that. 

Keep doing this until all possibilities of distributing down arrows into bins are 

exhausted: If w2N,  the process of the previous steps must stop after N bins have been 

chosen for down arrows. (One bin must be left for up arrows.) If Me<N, the process 

stops after M, bins have been chosen for the down arrows. 

Summing over the possibilities of distributing down arrows we get that the number 

of distinct SOS configurations is given by 

min Me,N) 8 (Y )  (z') (:>;) . 

At first sight one might worry about the min(.) function in the upper limit of the 

summation. However, the property (E2) of the binomial coefficients ensures that the 

summation is cut off correctly, whether we take the upper limit to be N or Me. 



c.) The diagram 
C ,  * 

The number of SOS configurations corresponding to 4 extra vertical bonds can 

simply be read off from (E7)with M,=2 as 

4 vertical: 

the number for 4 extra horizontal bonds is obtained simply by exchanging N and M in 

(W. 

The remaining configurations correspond to 2 extra horizontal and 2 extra vertical 

bonds. We use the symbols A, B, C, and D to denote right, left ,up, and down arrows, 

respectively: 

A path from (0,O) to (N,M) with 2 extra horizontal and 2 extra vertical steps thus forms a 

sequence of (N+l) A's, (M+l) C's, one B, and one D. To denote the beginning or end of 

the sequence we use the syrnbl 0. The "backtracking" local configurations AB, BA, CD, 

and DC are clearly illegal. The possible legal configurations can be counted by 

enumerating the allowed local environments of the bonds B and D as follows: 



Table E.1 
The pessible configurations of a path from (0,O) to (N,M) 

with two extra vertical bonds and two extra horizontal bonds 
without immediate backtracking 

[1I 

[2] 

[3] 

[4] 

[5] 

[6] 

In this Table, "2~"  indicates that for every sequence (configuration) containing the 

[7] 

given local configuration(s), 'another configuration can be obtained by ordering the 

1m-d configuration(s) 

CBC ADA 

2x ADBC 

2x ODA CBC 

2x OBC ADA 

2x OBDA 

2x ODBC 

sequence in reverse. 

2x OBC ADO 

Not all configurations counted in Table E.1 belong to the diagram , however. 

Some configurations belong to the diagram ; others correspond to self- 

# of A's 
left over 

N-1 

N 

N 

N-1 

N 

N+l 

intersections. For each of the rows of Table E.1, these additional illegal configurations are: 

N 

# of B's 
lefr over 

M-l 

M 

M-1 

M 

M+l 

M 

# of compatible configurations 

(N+M) ! 
(N-l)!(M-I)! 

= 4 N M  

(N+M+ 1) ! 
N! M! = 2&(K+1) 

(N+M) ! 
N! (M-l)! = 2 4 M  

(N+M) ! 
(N-I)! M! = 2 4 N  

(N+M+ I)! K+ 1 
N! (M+l)! = 2 d 0 ~ + 1  

(N+M+ I)! K+ 1 
(N+l)! M! = 2 4 ~  

M 
(N+M) ! 
N! M! = 2 4  



1 1  -AcBc, [+land cBCmA, [L+] occur in (N-I)! (N+M-l)! (M-I)! 

paths of length (K+4) form (0,O) to (N,M). 

[2] 2x ADBC, [d) and [ p) occur in 2&(K+l) paths of length (K+4) form 

M [3] 2x ClDACBc, [b land [q.], occur in 2& paths of length &+4) 

form (0,O) to (N,M). 

[4] 2x OBCADA, N (a) and (m) . r,cw in 2dn pihs  ri length 

&+4) form (0,O) to (N,M). 

[I] 2x El BDAC, [E ) and (a) , occur in ido paths of length ( K A )  form 

[61 2, UDBCA , [u ) and [a), occur in 2 4  paths of length (K+4) form 

[7] No illegal terms. 



Adding the horizontal and vertical SOS configurations [cf. Eq. (B)] to the number 
I 

of configurations listed in Table E.1 and subtracting the illegal configurations of the cases 

[I]-[6], one obtriins the result quoted in Table 3.II for diagram # III. 

d.) The diagram 

The L-shaped disconnected part can have 8 possible orientations (see Fig. E.2a). 

The number of straddling configurations is easy to count for orientations 1, 2, 5, and 6. 

From Fig. E.2b it is obvious that orientations 1 and 2 can each straddle a given realization 

of the step, - , at 2N+M places. From symmetry, the corresponding number for 

orientations 5 and 6 is given by interchanging N and M. Thus, orientations 1,2,5, and 6 

have a total of 6d& straddling configurations. 

The situation is more complicated for the remaining 4 orientations. Consider 

orientation 3 (see Fig. E.2c). Each horizontal bond of ( - ) can be straddled in 2 ways, 

each vertical bond, in one way. However, straddling the horizontal bond between bin i and 

bin (i-1) (see Fig. E.2d) automatically straddles the two lowest vertical bonds in bin i. 

Denote by LQ, the sum over all the possible configurations of ( O-O ) of the number of 

vertical bonds of ( - ) which, when stacked as in Fig. E.2d, are not the lowest or 

second lowest bond in their bin (i.e., the number of bonds that "stick out over the line 

marked by 2" in the figure). In terms of b , ,  the L-shape of orientation 3 has 2doN+L2, 

straddling configurations. We now count La as follows: 



FIG. E.2 (a) The eight orientations of the L shape of diagram #16 (10 extra plaquettets). 

(b) The possible straddling configurations of the L shape of orientation 1 for a fixed realization 

of the step. (c) The possible straddling configurations of the L shape of orientation 3 for a 

fixed realization of the step. (d) The vertical bonds of the realization of the step shown stacked 

in their bins. To calculate the straddling configurations of orientation 3, the bonds Uat "stick 

outn above the line labeled by 2 must be counted for all possible realizations of the step. 



Choose i of the N+l bins. There are (N:l) ways of doing that. 
C ,  ' 

Put one vertical bond into each of the i bins. 

choose j of the i bins just selected. There are 0 ways of doing that. 

Fill these j bins with the M-i remaining vertical bonds so that none of the j 

M-i- 1 bins has less than (a total of) 2 vertical bonds. There are ( j-l ) ways of 

doing that. 

There are now M-i-j vertical bonds sticking out above the line at height 2. 

Sum over j until all i bins are exhausted.? 

Sum over i until all (N+l) bins are used.? 

Thus, we get 

L2" = 

N+ 1 

= (":I)$ (I) (";I) (M-i-j) + (end effect) = Q(N,M) + (end effect), (EIO) 

where (end effect) refers to the number of ways in which vertical bonds on the first bin can 

be straddled that are not included in b,. Since the first bin is not preceded by a vertical 

bond, the two lowest vertical bonds in the first bin (if there are any) can never be 

automatically straddled by an L straddling the nonexistent preceding horizontal bond. The 

end effect is, therefore, given by 

' Again, we need not worry about running out of bonds before running out of bins because of property 

(W. 



(end effect) = (number of configurations with exactly one bond in the first bin) 
+ 2x , (npmber of configurations with at least 2 vertical bonds in the first bin) . 

I 

If there is exactly 1 bond in bin 1, then the following horizontal bond always ends at 

position (1,l). Thus, the number of configurations with exactly one bond in the first bin is 

simply given by the number of ways in which one can get from (1,l) to (N,M) with 

N+M-2 steps. Likewise, if we are guarantied that there are at least 2 bonds in bin 1, the 

remaining part of ( O-O ) is tethered at (0,2) and (N,M). The number of configurations 

with at least 2 vertical bonds in the first bin is, therefore, given by the number of ways in 

which one can go from (0,2) to (N,M) in N+M-2 steps. We obtain 

NM+2[M(M-I)] 
(end effect) = (:I:) + 2(Ki2) = & K(K-l) (El 1) 

The double sum R(N,M) is evaluated straightforwardly via repeated application of 

identity (E4). The only new kind of sum that occurs is of the form 

This sum is easily evaluated by writing 

j (!) = j i! - i (i-I)! = i  c-;) 
j! (i-j)! - 0-I)! (i-j)! - 

Substituting (E13) into (E12) we get 

where the last equality follows immediately from identity (E4). After a little algebra of this 

sort one gets 



From symmetry it follows that the number of straddling configurations for 

orientation 4 is the same as that for orientation 3. The number of straddling configurations 

for orientations 7 and 8 is obtained from the number for 3 and 4 by interchanging N and M. 

Adding up the contributions from all orientations, one obtains the result quoted in Table 

3.11 for diagram #16. 

We will evaluate the diagram as a 3D diagram and as a 2D diagram and take the 

difference (3D)-(2D). First the 2D version. 

We take the 2D system to be rectangular with periodically connected boundaries (a 

torus) and fi12 dual sites (squares). In the absence of the interface, ( ), the two 

disconnected diagrams, , can be placed on the torus in fi12( FJ2 - 5 ) / 2  



ways. The presence of the interface makes some of these configurations impossible. We 
+ ,  . 

count these illegal configurations as follows: 

FIG. E.3. Fixed realizations of the diagram ( - ) in the 2D and 3D interpretations. 

The 0's and x's label potential abutting positions. (The elastic energy associated with the 

lattice distortion due the screw dislocations is not taken into account in the calculations of 

Section 3. The screw dislocations serve only as a device for enforcing a step.) 

Consider a given, fixed realization of ( - ), such as the one shown in Fig. E.3. 

We perform the counting for a fixed realization and in the end sum over realizations. 

Denote the number of "abutting-from-below" sites (the x's in Fig. E.3) by N, and the 

number of "abutting-from-above" sites (the 0's in Fig. E.3) by No. Note that 

where the box around indicates that a f i ed  realization of c-. is meant ("the 

box is a snap shot"). We can then enumerate the following possibilities: 



[I] One f7 abuts the step, the other n does not. There are 

such illegal configurations, where (d imer~)~ denotes the number of dimer 

configurations formed under these conditions. (By dimer we mean 1-1 .) 

These dimer configurations must be subtracted since they have already been 

counted in the disconnected term, m2( F12 - 5)/2. 

[2] Both U 's abut the step. 

[a] Both abut from below. There are 

i - N,(Nx-1) - (dimer~)~, 2 @W 

such illegal configurations not already counted in the disconnected term. 

[b] Both abut from above. There are 

such illegal configurations not already counted in the disconnected term. 

[c] One abuts from below, the other from above. There are 

NoNx - (dimer~)~, (Em 

such illegal configurations not already counted in the disconnected term. 

In [2][a]-[c] we again needed to subtract dimer configurations which were already 

included in the disconnected term. We can make the identifications, 



and 

Subtracting from the disconnected part the illegal contributions from [I] and [2], we 

finally obtain 

The {:]I : 

3D 

We assume the 2D interface to be toroidally connected and to have N2 plaquettes 

(see also the discussion in Section 3.3). In the absence of a step there are N2( N~ - 5112 

ways of having two desorptions , as many ways to have two adsorptions 

, and m2( N2 - 1) ways of having both an adsorption and a desorption 

giving a net disconnected contribution of 2N2(m2-3). We must now count which of these 

configurations are not possible in the presence of a step, *--a . Again, we consider a 

fixed realization of the step. Recall that desorptions are allowed to abut the step on the 



lower level and adsorptions are allowed to abut the step on the upper level (see Fig. E.3). 
+ ,  - 

["Abutting on the lower (upper) level" in the 3D interpretation corresponds to "abutting 

form above" ("abutting form below") in the 2D interpretation.] We can enumerate the 

following cases: 

3 /"gm f [I] Two desorptions: ..,, ,,, . 

[a] One desorption abuts on the upper level; the other does not. There are 

(E24) 

such illegal configurations not already counted in the disconnected term. 

[b] Both desorptions abut on the upper level. There are 

* 

such illegal configurations not already counted in the disconnected term. 

[2] Two adsorptions: .. 

[a] One abuts on the lower level; the other does not. There are 

such illegal configurations not already counted in the disconnected term. 

[b] Both abut on the lower level. There are 

1 - No(No-1) - ( d i m e r ~ ) ~ ~  2 ($27) 

such illegal configurations not already counted in the disconnected term. 



[3] An adsorption and a desorption . (Dimer formations are not possible.) 

[a] abuts on the lower level; does not abut on the upper level. 

There are 

such illegal configurations not already counted in the disconnected term. 

[b] a abuts on the upper level; does nor abut on the lower level. 

There are 

NJN~-N,-I 0329) 

such illegal configurations not already counted in the disconnected term. 

icj Both abut in illegal positions. There are 

NXNO @30) 

such illegal configurations not already counted in the disconnected term. 

The overcounted dirner configurations may be identified as 

Subtracting from the disconnected part the illegal contributions from [I], [2], and 

[3], we finally obtain 



Neglecting the N2 dependent parts [they can be checked to cancel in the expansion of the 

logarithms (see Section 3.3)], the difference between the 3D and 2D interpretations of the 

diagram is given by 

The sum over the realizations of is trivial in this case and simply amounts to 

dropping the box on 1-1. 

Comments: 

1 .) All diagrams were checked by explicitly enumerating all possible configurations (at 

a given order) for various small values of N and M [ (N,M) on the order of -(4,4)]. 

2.) The results of the combinatorics for diagrams interpreted as 2D diagrams were 

checked to give the correct low-T expansion of the exactly known facet shape and 

interfacial free energy of the rectangular Ising model. 

3.) Had we chosen to enforce an interface containing a single step by appropriately 

fixing the signs of the spins on the boundary (instead of introducing screw dislocations), 



the combinatorics would have been considerably more difficult. For example, the bins 
+ ,  ' 

used in the combinatorics of (2D) SOS configurations could not have been filled with an 

arbitrary number of bonds since these bonds would eventually run into the boundary. 

Because the cutoff for filling a given bin so that bonds do not run into the boundary, 

depends on the actual spatial position of the bonds, the concept of bins is no longer very 

useful and the combinatorics of SOS configurations cannot be reduced to an occupancy 

problem. 

4.) The diagrams containing multiply disconnected parts are the most difficult diagrams 

to evaluate. The difficulties stem from a.) the interference between diagrams at the same 

order (i.e., from having to make sure that the same configuration is not counted in the 

evaluation of different diagrams) and from b.) the fact that summing over realizations of the 

"bare" step does, generally, also lead to overcounting. Consider, for example, the diagram 

{dl] This diagram interferes with the diagram 

," 

. . . . . . . 
allowed configuration at this order is fi + + 0 = 

However, at the same order, this is clearly also an allowed configuration of the diagram 
...... . . . ... ......... 

. -- The overcounting from the sum over 

configurations arises from the equivalence of local configurations such as 



and also 
C '  ' 

The latter type of overcounting occurs both in the 2D and 3D interpretations, but the 

number of overcounted configurations is not always the same in the two cases. Careful 

analysis, to the order of the expansion in Section 3, shows that the various overcountings 

cancel when one takes the difference (3D)-(2D). Whether or not this is a general principle 

has yet to be established. 
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