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ABSTRACT

The main problem which is presented in this thesis is that of finding
collections of cycles of length four such that each 2-path of K, occurs on
exactly A of these cycles. In Chapter 2 it is shown that the necessary
conditions for the existence of suéh a collection of cycles is also
sufficient. Block designs are used in solving many of the cases and, in

addition, some new methods of creating block designs are given.

In Chapters 3 and 4, respectively, we present the covering and packing
variants of the above problem. That is, we 1look for maximal (minimal)
collections of 4-cycles containing each 2-path of K, at least (at most) A
times. In Chapter 5 we loock at finding resolvable collections of such

4-cycles.

The cases where the 2-paths are covered by cycles of length n and

cycles of length five are discussed in Chapters 1 and 6, respectively.
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CHAPTER 1
INTRODUCTION

In most graph decomposition problems one is concerned with
partitioning the edges of a graph into subgraphs, each of which is
isomorphic to a graph in a fixed faﬁily of graphs, or has a particular
property. In this thesis we consider the problem in which the graph is the
complete graph, the items we are interested in partitioning are the paths
of length two and the subgraphs formed by the edges in each partition are
cycles of a fixed length. The history of one of these particular problems

is presented below and also appears in [N].

1.1 Dickson's Problem

Originally the problem presented below was most probably thought of as
some sort of intriguing puzzle, as were many other graph theoretical
problems. Perhaps for this reason, the work which was done on this problem
was, apparently, 'lost' for quite some time. I would like to thank A. Rosa
for providing me with the reference [D1] to work done by L.E. Dickson.
This provided the necessary clue to finding the earlier papers and

Dickson's 1905 paper.
7.1.7 Introduction
In 1899, C. H. Judson [J1] posed the following problem.

"Seven persons met at a summer resort, and agreed to remain as many
days as there are ways of sitting at a round table, so that no one shall
sit twice between the same two companions. They remained fifteen days. It

is required to show in what way they may have been seated.”

Exactly one year later, Judson [J2] gave Sseating arrangements for the
same problem with six people and with eight people. The problem of seating

seven people now began to look quite difficult, and the editor of the



journal offéred one year's free subscription to the first Person to provide
-a solution. This prize no doubt went to F. H. Safford [Sl] who gave a
seating arrangement for seven people (which he believed was unigue) and
also provided another solution to the "six-problem"” which he claimed was
non-isomorphic to the solution given by Judson. In [S2], Safford showed
that there are at most two non-isémdrphic solutions to the "six-problem"
and L. E. Dickson [D2] proved that Judson's solution and Safford's solution

were, in fact, distinct.

In 1905, L. E. Dickson [D3] generalized the original problem to
seating n people at a round table on (n-1)(n-2)/2 consecutive days. In this
paper he gave necessary and sufficient conditions for a group solution and
used these conditions to obtain solutions for n = 4, 5, 6, 8, 10 and 12.
Also in 1905, H. E. Dudeney (see [D4]), apparently unaware of the earlier
work, asked the readers of the Daily Mail to solve the problem of seating

six people on ten occasions.

In The Canterbury Puzzles ([D4], originally published in 1907), H. E.

Dudeney asked the same question that Judson had asked in 1899 [J1]. In the
solution section of the same book, Dudeney provided a solution to this
question. He also wrote that Ernest Bergholt had found an easy method for
solving all cases where n=p+l, p Pprime, and E. D. Bewley had found a
method for solving all cases where n is even. Since these statements were
not accompanied by any proofs it is doubtful that either Bergholt or Bewley
had solved what was claimed. In [D5] Dudeney provided solutions to the
above problem for 4<n<12 and claimed that he also had solutions for 13%n<25
and n=33. The reasons for the omission of the proofs to these results was
quite possibly due to the the recreational (and not mathematical) nature of

the questions.

Graph theoretically, the problem becomes that of finding (n-1)(n-2)/2
Hamilton cycles in K,r the complete graph on n vertices, so that every

path of length two occurs on exactly one of the cycles. We call such a set



of Hamilton cycles a complete set of pairwise orthogonal Hamilton cycles in

K, (abbreviatéd to: complete set of POHC(n)). C. Huang and A. Rosa [HR]
were also unaware of Dickson's work when they wrote their paper which
contained a construction for a complete set of POHC(n) where n=p+l and p
is a prime. In the same paper they mention that they have found several

distinct cyclic solutions for n=13 and 15.

More recently, David Wagner (personal communication) observed that if
there exists a perfect l-factorization of the complete graph on n points,
Ky, then the set of Hamilton cycles formed by the union of every two
l1-factors in the l-factorization forms a complete set of POHC(n). It is
known that perfect l-factorizations of K, exist for n=p+l, n=2p (where p is
an odd prime), all even n where n<38, n=50, n=244 and n=344 ([MR], [SS1]
and [SS2]). Notwithstanding the claims made by Ernest Bergholt and E. D.

Bewley, this provides us with many new solutions to our problem.
1.1.2 Dickson’s Method

Let x={0, 1, a3, &4 ..., a3 }. We want to find a set of
(n-1)(n-2)/2 Hamilton cycles in K., where XU{e} is the vertex set of K,
so that every path of length two occurs on exactly one cycle. Let the
'first' Hamilton cycle be denoted by

@ 0 1 as ay an-; (L)
(2 will always appear first). We will .also call Hamilton cycles
arrangements since they are an arrangement of the vertices of K. The

arrangement (1) is called the initial arrangement. We wish to obtain the

remaining Hamilton cycles from (1) by suitable group operations on 0, 1,

»r 8p_3. Let G be a group of permutations acting on the set X. Then if
we consider, for now, the arrangement (1) to be different from

o ap-1 - 4 aj 1 0 (2)

then we see that the permutation group G=(G,X) by which the initial

arrangement is permuted into the remaining arrangements must be sharply

2-transitive, since = must be between each pair of group elements exactly



once. Thus G, which has degree n-1, is of order (n-1)(n-2). The following
theorem concerning sharply 2-transitive groups appears in Permutation

Groups and Combinatorial Structures by N. L. Biggs and A. T. White ([BW],

p. 127). We present it here in a shorter form.

1.1 THEOREM: If (G,X) is a sharply 2-transitive group, then |X| is a

prime power, pS.

That is, n=p®+1 and we can consider X to be the elements of GF(p®),
where p 1is any prime number. Since the group of affine transformations of
a finite field is a group that acts sharply 2-transitively on the elements
of the field, Dickson claimed that we may take this group as G. That is, G
is the group of affine transformations of the finite field GF(p®) and the

a; are elements of GF(p®), a;=0 and a,=l.

In 1905, all the 2-transitive groups of degree p® and order p®(p®-1)
for all p when e = 1, 2, or 3, and for pe=24 were known. It is interesting
to note that after stating this, Dickson wrote "if further exceptions
occur, they arise for peZBl, so that their use in the presént problem

would be impracticable".

Now, given an arrangement (1) the remaining arrangements will be
obtained by applying the affine transformations Sr’SGG to the elements of

GF(p®), where r and s belong to GF(p®) and r#0. S replaces (1) by

r,s
+
o s r+s asr+s aur+s ap.r+s (3).

Since a complete set of POHC(n) consists of (n-1)(n-2)/2 Hamilton
cycles, only half of the arrangements (2) can be taken. In order to be
able to choose exactly half of the cycles and still cover every 2-path
exactly once, the a; must be chosen in such a way that there exists a TeG

that replaces (1) by (2).

That 1is, T(ai)=a and it is not difficult to see that T is defined

n-i

by T(x) = -x+a,_ 1. If now we define q = |_(pe—l)/2 _], then since we require



ap.y = -a;+ap_q we have the following conditions on the a;:

an.j ~ Ap-1-i T @341 T 34 1<izqg 4.

The transformations sr,s and Tsr,s thus give the same arrangements,
but in reverse order, and therefore we keep only one of these two
transformations. This results in ‘|Gl/2=(n—l)(n—2)/2 arrangements as

required.

We must now make sure that these (n-1)(n~2)/2 Hamilton cycles give a
complete set of POHC(n). The eguations which arise from the conditions that
no two Hamilton cycles have a 2-path in common can be written as:

(ai+2-ai)/(ai+l—ai) # (aj+2—aj)/(aj+l'aj) 1<i<jsn-3 (5).

Thus Dickson arrived at the following theorem.

1.2 THEOREM: 1If n=p®+1 and there exists an arrangement
0, l, a3, cvey an__l
.0of the elements of GF(pe) satisfying conditions (4) and (5) then there

exists a complete set of pairwise orthogonal Hamilton cycles in K.

PROOF: Since the a; satisfy conditions (4), the Hamilton cycles obtained

by applying the transformations in G to (1) occur twice each. By choosing

only one of the two transformations S and TS, in G we get
r

r,s S

(n-1)(n-2)/2 Hamilton cycles as required.

The a; also satisfy conditions (5) and so no 2-path occurs on more
than one Hamilton cycle. Thus, since there are (n-1)(n-2)/2 Hamilton

cycles, every Z2-path occurs on exactly one Hamilton cycle. ®

Using the (n-3)(n-4)/2 + g conditions (4) and (5), Dickson gave
solutions for p® = 3, 4, 5, 7, 9 and 1ll. We give below the (corrected)
example in Dickson's paper [D3] for pe=5. We list the transformations S. s
-7

and IS, ¢ before the Hamilton cycle obtained from them.
r

51,0=54,3; o 01 4 2 3 52,0=53,l: = 023 41



Sl’l=S4’4: © 120 3 ¢4 52’1=S3’2: ® 1 3 402

sl,2=S4,o: <o 0 4 1 3 2 52’2=S3'3: @ 2 4 01 3
51'3=S4’1: w1 0 2 ¢ 3 52,3=S3’4: ® 4 2103

If we define fi=(ai+2-—ai)/(ai+l—ai) then condition (5) tells us that
the f; must be distinct (1£i<n-3) and, since the ai‘s are also distinct,
different from O and 1. Now let g;=f;-1. Then clearly the g; form a
permutation of the elements of GF(p®)-{0,-1}. If we also let 7;=g1g5...g;
then, since az=ap + 7y, it can be shown by induction that

ai=ai_l+1ri_2 3<isn-1 - (6).
We now see that conditions (4) and equation (6) give m _3=1 and

ﬂn__z_i=7fi_l ’ ZSlsq .

The following theorem, also due to Dickson, offers an alternate way of

finding an initial arrangement.

13 THEOREM: Let n=p®+l and let g;, gy, ..., 9.3 be a permutation of
the elements of GF(p®)-{0,-1}. If the a; defined by (6) are all distinct
and satisfy conditions (4) then there exists a complete set of pairwise

orthogonal Hamilton cycles of K,.

PROOF: Since the a; are all distinct and satisfy conditions (4) it
remains to be shown that the a; satisfy conditions (5). This, however,
follows from the definition of the f; and g;. The rest of the proof

follows from Theorem 1.2. &

14 THEOREM: There exists a complete set of pairwise orthogonal Hamilton
cycles in Ki5.

PROOF: Consider the polynomial a=a+l in the field GF(2%). The
arrangement

e 01 at a8 a9 a7 al2 22 gl4 4 a5 510 43 g1l 46 .13



satisfies conditions (4) and ‘(5) and hence by Theorem 1.2 there is a

complete set of pairwise orthogonal Hamilton cycles in K,,. ®

The above arrangement was found in the following way. Using the method
pfesented in [D3] (and also presented above), a computer was used to find
Hamilton cycles in K;5 which could be extended to complete sets of
POHC(17). First, the addition and multiplication tables of elements in

GF(24) were defined using the polynomial at

=a+l, which is irreducible in
2,. There are 2771 orderings of the elements in GF(2%)-{0,1} satisfying
(7). For each of these orderings 91+ 9or -e+r 914, the products m; were
calculated. Next, the a; were defined recursively by
aji=ay. 1759 3<is<le.
If the a; satisfied the conditions of Theorem 1.3 then
© 0 1 aj ay oo aig
was known to be an initial arrangement which could be extended to a

complete set of POHC(17).

In fact, using the above algorithm, 3316 initial Hamilton cycles were
found. By Theorem 1.2 these can all be extended to complete sets of

POHC(17). One of these complete sets of POHC(17) is given in Appendix 1.

Dickson claimed that the number of arrangements (1) which satisfy the
conditions in Theorem 1.2 increases rapidly with n. Unfortunately, he did
not supply a proof of this claim. The large number of initial arrangements

found for n=17 does, however, lend support to his claim.

The first unsolved case of Dickson's problem for which the above
method can be used 1is n=25+l=33. However, due to the size of this problem
(there are 450 conditions on the a;), a solution was not attempted. Due to
the number of solutions found for p®+1=17 the author feels safe in

presenting the conjecture that many solutions also exist for pe+l=33.

The first wvalue of n for which it is not known whether or not a

complete set of POHC(n) exists is now n=19.



1.2 A More General Problem

 More generally, one can ask for a family of k-cycles (cycles of length

k) in K, so that every 2-path lies on exactly A cycles. Such a family of

cycles will be called an exact coverving of the 2-paths of K, by k-cycles.

1.5 DEFINITION: A C(n,k,A) design is a family of k-cycles in K, in which

each 2-path of K, occurs exactly A times.

The case k=3 is, of course, trivial since one would simply take as the
3-cycles A copies of all of the subsets of size 3 of the n-set

representing the vertices of Kn

The case k=n was presented in Section 1l.1. That is, we have already
discussed all that is known about C(n,n,l) designs. When k=5 the problem is
also interesting although not much work has been done in this area. In

Chapter 6 this problem is discussed briefly and some results are presented.

The case k=4 1is particularly interesting because of its close
connection with Steiner gquadruple systems. A Steiner guadruple system
SQS(n) is an ordered pair (X,8) where 8 is a family of 4-subsets (blocks)
chosen from an n-set, X,.so that every 3-subset occurs in exactly one of
the blocks. In terms of the graph K., this is a covering of the triangles
of K, by K, subgraphs so that every triangle is in exactly one of the
duadruples. Steiner gquadruple systems of order n are also known as
3-(n,4,1) designs and it is well known (Hanani, [H1]) that a 3-(n,4,1)
design exists if and only if n=2,4 (mod 6). Since a C(4,4,1) design is
easily constructed one sees immediately that Hanani's result implies the

existence of a C(n,4,1) design whenever n=2,4 (mod 6).

In generzl, a 3-(n,4,A) design is a family of subsets of size four
taken from an n-set so that each 3-subset occurs exactly A times. For such

designs with A21 we have the following result of Hanani [H2].



1.6 THEOREM: Necessary and sufficient conditions for the existence of a
3-(n,4,0) desién are

1. An=0 (mod 2)

2. A(n-1)(n-2)=0 (mod 3) and

3. An(n-1)(n-2)=0 (mod 8).

Again, this gives rise to C(n,4,A) designs. A more general statement
is possible, however, by making use of 3-(n,K,A) designs. A& 3-(n,K,d)
design is a family of blocks with elements chosen from an n-set with the
property that every 3-subset occurs in exactly A of them and the size of

each is a member of the set K.

The following shows how oOne can recursively construct C(n,4,l) designs
given that certain 3-designs exist. Although Lemma 1.7 can obviously be
extended to cycles of length r, r23, it is presented here for r=4 as this

case is the one studied for the most part.

1.7 LEMMA: If there exists a 3-(n,K,\) design, and if for every k€K
there exists a covering S of the edges of Ky by 4-cycles so that every
2-path occurs on exgactly u 4-cycles, then the edges of K, can be covered

by 4-cycles so that each 2-path occurs on exactly u+A 4-cycles.

PROOF: Replace each block B;={viy; ..., v;;} of the 3-(n,K,\) design by
the covering S of Ky based on the set B; . ‘'Call this covering Si. Thus
every 2-path having vertices from the elements of the block By will occur
on exactly u 4-cycles. Since every 3-element subset of the n-element set
occurs in exactly A blocks we see that every 2-path will occur wu«+A times

in the union of the Si' L

The following theorem due to Hanani [H3] can be useful in finding
C(n,k,\) designs. In light of Theorem 1.9 which follows, this result does

not contribute anything further to the problem of finding C(n,4,A) designs.

1.8 THEOREM: If g is a power of a prime and d is a positive integer




then there exists a 3-(qd+l,q+l,'l) design.

" If one point is deleted from this design we get a 3-(qd,{q+l.q},1)
design and if two points are deleted we get a 3-(qd—l,{q+l,q,q—l},l)
design. If r points are deleted from the same block (35r<g-2) we get a

3-(®+1-r, {q+1,q,9-1,q+1-r},1) design.

For example, given a 3-(qd+l-r,{q+l,q,q—l,q+l—r},l) design and a
C(n,k,\) design for each ne€{g+l,q,q-1,9+l-r}, then by Lemma 1.7 there
exists a C(qd+l—r,k,?\) design.

Before continuing, we need to establish some notation and define some
terms. We denote by (u,v) the edge incident with vertices u and v and by
(u,v,w,x) the cycle of length four containing the four edges (u,v), (v,w),
(w,x) and (x,u). By [x,y,z] we mean the path of length two containing the
two edges (x,y) and (y,z). For all other graph theory notation the reader

is referred to Bondy and Murty [BM].

Consider a graph with n wvertices labelled 1, ..., nh. The distance
between two vertices i and j in this graph is min{i-j, j-i}, where
arithmetic operations are carried out modulo n on the residue class 1, ..

L

n.

Theorem 1.6 and Lemma 1.7, along with several direct constructions,

will enable us to prove the main result of this thesis.

1.9 THEOREM: There exists a C(n,4,\) design if and only if one of the
following hold.

1. n is even

2. n=1l (mod 4) and A=0 (mod 2)

3. n=3 (mod 4) and A=0 (mod 4).

To see that these conditions are necessary cone simply observes that
there are n(n-1){(n-2)/2 paths of 1length two in K,, each 2-path occurs A

times and each 4-cycle contains four 2-paths. Thus An(n-1){(n-2)=0 (mod 8)

10



is regquired. Let the wvertices of K, be 1, 2, ..., n and consider the
4-cycles (l,x,2,y). Since each 2-path [1,z,2] must occur A times we require
=0 (mod 2). Together these two ccnditions give the three situations as

stated in the theorem.

Chapter 2 deals with the proof of Theorem 1.9 and is divided into
three sections, each dealing with one of the conditions of the theorem.
When there does not exist a C(n,4,A) design we consider the problems of
finding minimal covers and maximal packings of the 2-paths in K, by
4-cycles. These problems are discussed in Chapters 3 and 4, respectively.
When n is a multiple of four a C(n,4,l1) design always exists and a natural
guestion is to ask if the 4-cycles of the design can be partitioned into
parallel classes; Chapter 5 deals with this guestion. Finally, in Chapter
6, we look quickly at the problem of finding C{(n,5,1) designs.

11



CHAPTER 2
EXACT COVERINGS

Let L(Kn) denote the line graph of K, and let RL(Kn) be the multigraph
in which there are A edges between each pair of vertices of L(K,). One can
ask the following graph decompositién problem, which is equivalent to
asking when a C(n,4,A) design exists. When can the edges of AL(K,) be
decomposed into cycles o©f 1length four, each of which satisfies the
additional property that the cycle in the line graph corresponds to a cycle

in the original complete graph?

The vertices of L(K,) are labelled by the edges that they represent,
and so the vertex (a,b) is the same as the vertex (b,a). In this graph the
edge ((a,b),(b,c)) corresponds to the 2-path [a,b,c] in K,. Thus if a set
of 4~cycles of K, can be found so that each 2-path of K, occurs on exactly
A 4-cycles then a set of 4~-cycles of L(Kn) can be found so that each edge

of L(Kn) occurs on exactly A 4-cycles.

There are basically three types of 4-cycles in the line graph of K.
Let a, b, ¢, 4 and e be five distinct vertices of K,. In L(Kn), cycles of
the form ((a,b), (a,c), (a,d), (a,e)) and ((a,b), (a,c), (a,d), (b,d)) do
not correspond to 4-cycles in K,. However, cycles of the form ((a,b),
(b,c), (c,d), (d,a)) do, in fact, define 4-cycles in K,. It is this type
of 4-cycle in L(Kn), which corresponds to the 4—cyc1e (a,b,c,d) in Kyr that

we are interested in.

In this chapter we will prove Theorem 1.9, which is restated below.
The proof of the theorem, which is divided into three parts, also appears
in [HN]. When n is even the theorem will be proved by considering the

graph decomposition problem described above.

18 THEOREM: There exists a C(n,4,\) design if and only if one of the
following hold.
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1. n is even
2. n=l (mod 4) and A=0 (mod 2)
3. n=3 (mod 4) and A=0 (mod 4).

2.1 Case: n is even

We now show that when n is even, n=2m, the complete graph on n
vertices can be covered by 4-cycles so that every 2-path occurs exactly
once on some 4-cycle. In Theorem 2.1 such a covering set is produced.

These coverings can also be constructed recursively from 3-designs.

2.1 THEOREM: The edges of Kopm can be covered by 4-cycles so that each

2-path occurs exactly once on some 4-cycle.

PROOF: In this proof addition is modulo 2m-1 on the residue class 1, 2,

ev ey 2m_lo

Label the vertices of Kom with the symbols =, 1, 2, ..., 2m-1 and
consider the 1line graph of Komr L(KZm). We wish to cover the edges of
L(RKyn) by 4-cycles so that we satisfy the conditions
1. each edge of L(KZm) is in exactly one 4-cycle and
2. these 4-cycles correspond to 4-cycles in Kom+

Arrange the vertices of L(KZm) into a (2m-1) xm array A=(ai ), where

]
the vertex in cell aj 1 is (=,i) and in cell a; 5 is (i,i+j-1), 1<i<2m-1
1 I

and 2<j<m. Now one easily sees that the following 4-cycles of L(Kop)

satisfy condition 2 as given above:

C1,1<0> = ((e=, 1), (1,1), (i,2i-1), (=,2i-1)) 2<i<m

and
Ci,j(o) = ((1,1), (1,3, (F,i+j-1), (i,i+j-1)) 22i<jsm.
Notice that the cycle Ci,j contains only vertices from columns i and

j. For 0sks=2m-2, develop these m(m-1l)/2 cycles as follows (see Figures 1

13



Cp, (k) = ((»,14k), (l+k,i+k), (i+k,2i+k-1), (=,2i+k-1,))
and

Ci (k) = ((1+k,i+k), (1+k,j+k), (J+k,i+j+k-1), (i+k,i+j+k-1)).

A total of (2m-1)(m)(m-1)/2 cycles of length four have just been
defined and these contain a total of 2m(2m—l)(m—l) edges. This is precisely
the number of 2-paths in Kom- Thus if each edge of L(K2m) appears in some
4-cycle then it appears in exactly one 4-cycle. We now show that this is

indeed the case.

The edges of the line graph can be divided into four categories:
1. Edges of the form ((=,i), (=,j)).
2. Edges of the form
a. ((eyi), (1,1-3+1))
b. ((e=,1), (i,i+j-1))
which are each incident with one vertex from column 1 and one vertex
from column j (2<5j<m).
3. Edges of the form ((i-j+1l,i), (i,i+j-1)) which are incident with
vertices from column j only (2sjsm).

4. Edges of the form

a.  ((i+3-1,1), (i,i+k-1))
b, ((i+j-1,1i), (i,i-k+1))
c.  ((i-3+1,i), (i,i+k-1))
d.  ((i-9+1,i), (i,i-k+1))

which are each incident with one vertex from column j and one vertex
from column k (2<j<k=<m). These edges are found by considering a fixed
vertex (i, i+j-1) in column Jj. This wvertex is adjacent to the
vertices (i, i+k-1), (i, i-k+l), (i+j-1, i+j-k) and (i+j~1, i+j+k-2)
in column k. If we then add 1-j to the vertices in the latter two

edges just defined we obtain the four edges given above.

14



(m,1+k) : (1+k,i+k) (1+k,i+k) (1+k’1+k)

(,i+k)e® (i+k, 2i+k-1) (itk, 2itk-1)® (i+k, i+j+k-1)

(w,2i+k-1) o (2i+k-1, 3i+k~2) ( j+k, i+j+k=1 e (j+k, 2j+k-1)

column 1 column i column i column j
.Figure 1 , Figure 2

We now check to see that each edge from each of these categories
appears in one of the previously defined cycles of L(K,).
1. Suppose without loss of generality that j>i. We now consider
separately the cases j-1 even and j-i odd.
a. If j-i is even let r=(j-i+2)/2. The edge ((=,i), (=,3)) belongs
to Cl'r(i—l).
b. If j-i is odd let r=(2m-1+i-j+2)/2. The edge ((=;1i), (=,3))
belongs to cl,r(j'l)'
2. a. The edge ((=,i), (i,i+j-1)) belongs to Cl'j(i-l)-
b. The edge ((=,i), (i,i-j+1)) belongs to Cl'j(i—2j+l).

w

The edge ((i-j+1,i), (i,i+j-1)) belongs to Cl’j(i—j).

4. a. The edge ((i+j-1,i), (i,i+k-1) belongs to Cj y(i-1).
b. The edge ((i+j-1,i), (i,i-k+l) belongs to Cj'k(i—k).
c. The edge ((i-j+1,i), (i,i+k-1) belongs to Cj'k(i-j).

c. The edge ((i-j+1,i), (i,i-k+1) belongs to Cj'k(i—j—k+l).

So each edge of L(K,p) belongs to some 4-cycle and therefore each

2-path of K2m belongs to a 4-cvcle. =

Hanani [H2] has shown that £for every even n, n24, thers exists a
3-(n,{4,8},1) design. Applying Lemma 1.7 and using the trivial C(4,4,1)

design and the easily constructed C(6,4,1) design will also vield the
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desired coverings.
2.2 Case: n=1 (mod 4)

When n=1 (mod 4) it is not possible to cover the edges of K, with
4-cycles 50 that each 2-path occurs ekactly once. However, it i1s possible
to cover the edges of X,;,; with 4-cycles so that each 2-path occurs
exactly A times, where A=0 (mod 2). Since a covering of the edges of K, .,
by 4-cycles so that each 2-path occurs exactly A times can be obtained by
taking A/2 copies of a covering of Kgm+1 DY 4-cycles so that each 2-path

occurs exactly twice, we only consider the case A=2.

2.2 THEOREM: When n=1,5 (mod 12) the edges of K, can be covered by

4-cycles so that every 2-path occurs exactly twice.

PROOF: This follows from Theorem 1.6 and Lemma 1.7. ®

2.3 LEMMA: The edges of Kg can be covered by 4-cycles so that each

2-path occurs on exactly two 4-cycles.

PROOF: Take two copies of the C(8,4,1) design that is obtained by
replacing each K, in Figure 3 by the C(4,4,1) design on those points.
Remove the following fourteen 4-cycles (in bold in the figure) once oily:
(,2,3,4¢, (1,2,5,8y, (1,6,2,7), (1,3,7,5), (1,3,6,8), (1,4,8,7),
(2,3,5,6), (2,7,3,8), (2,4,7,5), (2,4,6,8), (3,5,4,8), (3,4,7,6),
(5,6,7,8), (1,5,4,6).
Now define the diagonals of a 4-cycle (a,b,c,d) to be the two unordered
pairs of vertices {a,c} and {b,d}. Each unordered pair of vertices of Kg
occurs once as a diagonal and twice as an edge in the above fourteen
4-cycles. If (a,b,c,d) is one of these fourteen 4-cycles, then replace it

with the four 4-cycles (9,b,c,d), (a,%,c,d), (a,b,9,4) and (a,b,c,9).
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57 68 57 87

Thus all 2-paths [x,9,y] and [9,x,y] occur twice and all 2-paths not

containing vertex 9 still occur twice. N

We now present three theorems which <can be wused to construct
C(4m+1,4,2) designs recursively for all remzining values of n, where
n=4m+1. First, we present a definition and construction which will be used

in the proofs of these theorems.

2.4 DEFINITION: An orthogonal array OA(n,k) of strength t (l1=<t=<k<n) and
t

index 1 is a k by n- array of elements from an n-set such that for any
fixed set of t rows in the array, each ordered t-tuple from the n-set

occurs exactly once as a column.

2.5 CONSTRUCTION: t is known ([T], [Wl] and [W2]) that whenever n24 and

n#6,10 there exist three mutually orthogonal Latin squares of order n. If
A,‘ B and C are three mutually orthogonal Latin squares of order n based on
the set {1, 2, ..., n}, then the set of n3 colum vectors
(i,j,A(x,y),B(x,y))T (wher-e 1<i,j<n and (x,y) runs through all ordered
‘pairs such that C(x,y)=C(i,j)) is an OA(n,4) of strength 3. This orthogonal
array contains an OA(n,4) of strength 2 as can be seen by taking only

those n? column vectors (i,j,A(i,j),B(i,j))T. Call these n? columns Type I
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and call the remaining n3-n? columns Type II.

2.6 THEOREM: If m24, m#6 or 10, A is even and there exists a C(m+l,4,))

design then there exists a C(4m+l,4,A) design.

PROOF: Let S;={S;(1), ..., S;(m)}, 1<iS4, be four disjoint sets of size m

and let = be an element which does not belong to any of these sets. Now
let S;US,US;Us,U{=} be the vertex set of K, . ,. We want to partition the
edges of this graph into 4-cycles so that every 2-path occurs exactly A

times. We do this in three steps (see Figure 4).

Step 1. Take four copies of a C(m+l,4,A) design in which the vertex set
is, in turn, S U{=}, S,U{=}, S3U{=} and S,U{=}. Every 2-path containing
only vertices from 5; occurs on exactly A 4-cycles as does every 2-path

that contains « and two vertices from Sis 1<ix4.

Step 2. We now form 4-cycles so that every 2-path containing two vertices

from S; and one vertex from Sj appears A times for all pairs i,j with i#j.

If m is even we take a l-factorization Fqi, F2, ceer P of Ky with
vertex set Si and a l-factorization Gl' G2, . Gm—l of Km with vertex

set Sj. For each edge (u,v) of Fy and each edge (x,y) of Gy construct a K,
based on the vertex set f{u,v,X,y}. This gives a total of (m-1) (m2/4) K,'s.
Note that every pair of vertices from 5; appears with every vertex from Sj
exactly once so that all possible triples with two vertices from S; and
one vertex from Sj appears exactly once in some K,. For each of these we
take a C(4,4,\) design.

If m is odd we take a Hamilton decomposition Fir For vouy F(m_1>/2 of
K, with vertex set S; and a Hamilton decomposition Gl,’ G2, .eer G(m-l)/z

of K'm with vertex set S For each edge (u,v) of Fk and each edge (x,y) of

jn
Gk construct a K, based on the vertex set {u,v,x,y}. This will give a

total of (m—l)(m2/2) K,'s. Note that every pair of vertices from S; appears
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with every vertex from Sj exactly twice since in F,, and G, each vertex has
degree two. Thus all possible triples with two vertices from Si and one
vertex from sj appear in exactly two different K4's, and for each of these

we take a C(4,4,\/2).

Step 3. Let A, B and C be three mutually orthogonal Latin squares of order

m. These exist since m24 and m#6,10. Define an OA(m,4) of strength 3 as in

Construction 2.5.

We now define the 4-cycles which cover all the 2-paths remaining; that
is, all the 2-paths which contain at most one point from each of the sets

S1r Syr Sy, S, and {=}.

For each Type I column (i,j,a,b)T in the OA(m,4), we view the set
{5;(1), S5(3), S3(a), S4(b), =} as the vertex set of a K. Since the Type
I columns give an OA(m,4) of strength 2 this means that « appears with
each pair of vertices x and y, where xesu and yesv, 1<u<v<4. Now take a
C(5,4,N) design on each of these vertex sets. Such a design exists since A

is even.

For each Type II column (i,j,a,b)T in the OA(m,4) we take a C(4,4,)\)
design with vertex set {S;(i), S,(Jj), S3(a), S,(b)}. Since the Type I and
Type I; columns together give an OA(m,4) of strength 3 we see that among
these coverings and the coverings of size five defined in the previous
paragraph we get all 2-paths [si,sj,sk], where s;€S., s,€S. and s, €S, and

173
i,j and k are distinct.

Combining the 4-cycles from each of the three steps gives a set of

4~cycles which cover all the 2-paths of Kym+1 €Xactly A times each. =

2.7 THEOREM: 1If

[

t=2,4 (mod 6) and t=28,

A 1s even,

w N

there exist t-2 mutually orthogonal Latin squares of order m, and
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4. there exists both a C(m+l,4,)\) design and a C(t+l,4,\) design,

then. there exists a C(tm+1,4,%) design.

PROOF: Let S;:={S;(1), ..., S;(m}, 1<ist, be t mutually disjoint sets of
size m and let « be a new element not in the union of the 5;'s. We want
to construct a C(tm+l,4,)) design on the vertex set S;US,U...US U{=}. The
first two steps are to be carried out as in Theorem 2.6, but with 1sist.
Note that since t is even, a C(t+l,4,A) design cannot exist when A is odd

(see the remarks at the beginning of the section).

Step 3. Let L3, Lgr eeus Ly be t-2 mutually orthogonal Latin squares of
order m and define an OA(m,t) of strength 2 with columns (i, j, L3(i,j),

ceer Ly, iNT, 151, <.

For each column (i, j, a3r  eees at)T in the orthogonal array let
{5(1)r Sy(3), S3(az)y ...r S¢(ap)s =} be the vertex set of a K.,; and
take a C(t+l,4,A) design based on this set.

Hanani proved that whenever t = 2,4 (mod 6) then there exists a
3-(t,4,1) design. Now suppose we have such a 3-design based on the set
{1,2,...,t}. For each block {w,x,y,z} in the design consider only rows

w,x,y and z of the orthogonal array. These give an OA(m,4) of strength 2.

This orthogonal array can easily be extended to an OA(m,5) of strength
2 by adding one more row of the OA(m,t). Consider the elements of the
first two rows of this array to define rows and columns, respectively, and
the elements of the third and fourth rows of this array to be the entries
of Latin sguares A and B. Then it is easy to see that A and B are
orthogonal. Moreover, if we consider any fixed element in the fifth row
then the columns in which it appears define a common transversal in A and
in B. That is, the entries in the fifth row can be taken as entries of a
Latin square C which 1is also orthogonal to A and B. Returning to
Construction 2.5 we see that the OA(m,4) of strength 2 can be imbedded in

an OA(m,4) of strength 3. The m3-m? columns added to the OA(m,4) of
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strength 2 to obtain the OA(m,4) of strength 3 are called (as before) Type

II columns.

For each Type II column (a,b,c,d)T take a C(4,4,)) design based on fhe
set {5,(a), Sg(b), Sy(c), Sy(D}.

The union of these 4-cycles gives the required set of 4-cycles which

cover each 2-path exactly A times. =

2.8 THEOREM: 1If

1. m#6 and m=10,

2. mA is even, and

3. there exists a C(m,4,)\) design and a C(t,4,\) design,

then thefe exists a C(mt,4,A) design.

PROOF: Let S;:={5;(1), ..., Si(m)}, 1<i<t, be t mutually disjoint sets of
size m and let Sy U S, U... U Sy be the vertex set of K, ,. We want to
construct a C(mt,4,A) design on this vertex set. As before, we do this in

three steps.
Step 1. For 1lsist take a C(m,4,A) design in which the vertex set is 5;.

Step 2. This is the same as Step 2 of Theorem 2.6. If m is even we use a

C(4,4,)) design and if m is odd we use a C(4,4,7/2) design.

Step 3. Let A, B and C be three mutually orthogonal Latin squares of order
m based on {1, ..., m} and define an OA(m,4) of strength 3 using the

method in Construction 2.5.

Replace each 4-cycle (w,x,y,z) in the C(t,4,)\) design by the m>

4-cycles (Sw(a), Sx(b), Sy(c), S,(d)), where (a,b,c,d)T is a column in the
OA(m,4).

Combining these three steps gives the required result. =



2.9 COROLLARY: The edges of K,, n=1l (mod 4), can always be covered by

4-cycles so thai: each 2-path occurs exactly twice.

" PROOF: When n=1,5 (mod 12) we use Theorem 2.2. This leaves the case n=9

(mod 12).

For n=9 use Lemma 2.3. Theorem 2.6 with m=5 and A=2 yields n=21 and
with m=8 and A=2 yields n=33. If n=48k+9 and n#44l1 use Theorem 2.7 with
t=8, m=6k+l and A=2. Using [B] and [W3] we see that there exist six
mutually orthogonal Latin squares of order 6k+l, where 6k+1#55. The
conditions of Theorem 2.7 are thus satisfied for all values of n other
than n=441. In this case we use Theorem 2.8 with m=9, t=49 and A=2. For
n=48k+21, 48k+33 or 48k+45 use Theorem 2.6 with m=12k+5, 12k+8 or 12k+ll,
respectively, and A=2. We know that there exists a C(l2k+6,4,2) design and
a C(1l2k+12,4,2) design from Theorem 2.1, and there exists a C(12k+9,4,2)

design since there exists a C(le*+9,4,2) design for all k*<4k. u

2.3 Case: n=3 (mod 4)

When n=3 (mod 4) a simple counting argument shows that it is not possible
to cover the edges of K, with 4-cycles so that each 2-path occurs exactly
A times where A=1,2,3 (mod 4). In this section we show that it Iis,
however, possible to cover the edges of K4m+3 with 4-cycles so that each
2-path occurs exactly A times, where A=0 (mod 4). Since a C(4m+3,4,)\)
design can be obtained by taking A/4 copies of a C(4m+3,4,4) design we

only consider the case A=4.

2.10 THEOREM: When n=7,11 (mod 12) there exists a C(n,4,4) design.

PROOF: This follows from Lemma 1.7 and Theorem 1.6. ®&

2.11 THEOREM: There exists a C(15,4,4) design.

PROOF: Take four copies of the (C(l4,4,1) design as given by Theorem 2.1l.
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For 0Sisl2, remove the following 4-cycles once only:
(1+i,0,9+1,5+i), (1+i,»,13+i,7+i), (1+i,2+i,4+i,3+i),
(1+1,2+1,7+1i,6+i), (1+i,3+i,7+1i,5+1i), (1+i,4+i,9+i,6+1i),

(1+41,4+1,10+1i,7+1).

Each unordered pair of vertices from the 14 vertices occurs twice as a
diagonal and four times as an edge in these ninety-one 4-cycles. Replace
each 4-cycle (w,x,y,z) in the above set by the four 4-cycles (15,x,y,z),
(w,15,¥,2z), (w,X,15,z) and (w,X,y,15). The 2-path [a,15,b] occurs four
times since it occurs twice for each time the diagonal a-b occurs. The
2-path [a,b,15] occurs once for every time the edge (a,b) occurs and so
this 2-path occurs four times. All 2-paths not containing 15 occur four

times each as before. So when A=4 we can find a C(15,4,A) design. =

2.12 LEMMA: There exists a C(27,4,4) design.

PROOF: There exists a 3-(27,6,4) design [HHK] and we use this, together

with Lemma 1.7 and Theorem 2.1, to prove the lemma. ®

2.13 THEOREM: If n=3 (mod 4) then the edges of K, can be covered by

4-cycles so that every 2-path occurs on exactly four 4-cycles.

PROOF: Let Kk={4,5,6,7,9,11,13,15,19,23,27,29,31}. Then for every k€K we
have a C(k,4,4) design. Hanani [H3] has shown that for all n24 there

exists a 3-(n,K,l) design. The result now follows using Lemma 1.7. ®

By combining Theorems 2.1 and 2.13 and Corollary 2.9 we see that there

exists a C(n,4,4) design for every nz24.
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2.4 New Construction Techniques for 3-designs

The construction techniques of section 2.2 can also be used to obtain new
3-(n,K,A) designs. For instance, using Theorem 2.6 we see that for every
m>2 (2m#6,10) there exists a 3-(8m+l, {2m+1,5,4},1) design and for every m22

there exists a 3-(8m+5, {2m+2,5,4},2) design.

To get the first design, we take one copy of each of the four blocks
of size 2m+l based on the sets SiU{w}, 1<i<4, as in Step 1 of the proof.
Next, we take one copy of each block of size four given in the first half
of Step 2. Finally, we take one copy each of all blocks of size five and
four as defined in Step 3. It is easy to see that we get all triples from

the set of size 8m+l.

To get the second design, we take two copies of each of the four
blocks of size 2m+2 based on the sets S;U{=}, as in Step 1. We next take
one copy of each block of size four as given in the second half of Step 2.
Finally we take two copies of each block of size five and four defined in

Step 3.
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CHAPTER 3
MINIMAL COVERS

By a covering of the 2-paths of K, by 4-cycles we mean a collection
of cycles of 1length four which contain all of the n(n-1)(n-2)/2 paths on
three vertices (2-paths) at least once‘ each. Coverings are also defined for
larger values of A. That is, we can also ask for the minimum number of

4-cycles so that each 2-path of K, is on at least A 4-cycles.

A. Hartman et al. [HMM] have looked at the related problem of covering
all of the triples of an n-set by quadruples. When there exists an SQS(n)
the triples can, of course, each be covered exactly once by gquadruples.
J. Schoenheim (see [HMM]) showed that at least l-n/4 l-(n-l)/3 l-(n-Z)/Z-l-H
quadruples are needed to cover the triples of a set of size n. In [HMM],
it was shown, using an existing construction and some recursive techniques,
that for all n252423 one could cover all the triples of an n-set by
exactly l-n/4 l-(n-l)/3 l-(n—2)/2-l-|-l quadruples. They also showed that if a
certain group divisible design on 54 points exists then this bound can be

lowered considerably.

Since the number of 2-paths in Kom+1 is not a multiple of four we see
that it is not possible to cover the 2-paths of Kom+l by 4-cycles so that
each 2-path occurs exactly once. The following theorem gives a lower bound

for the minimum number of 4-cycles needed.

3.1 LEMMA: The minimum number of 4-cycles needed to cecver all the

2-paths in Koms1 @t least once is m3 + l-mz/z-l.

PROOF: For any two vertices a and b of Ky, Wwe have 2m-1 different
2-paths of the form [a,x,b]. Any 4-cycle containing such a 2-path must .
contain another 2-path of the form [a,y,b]. Thus the number of 4-cycles
containing a 2-path of the form [a,x,b] must be at least [(Zm—l)/z-l=m.

There are m(2m+l) ways in which a and b can be chosen, but the 4-cycle
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containing the 2-paths [a,x,b] and [a,y,b] also contains the 2-paths
[x,a,y] and [x,b,y]. Thus we need at least I-(m/Z)m(2m+l)-] = m + I-m2/2-l

¢-cycles to cover all the 2-paths in Ky .. ®

3.2 DEFINITION: L;(n) is the least integer such that there exist L;(n)

4-cycles which cover all the 2-paths of K, at least i times each.

In Chapter 2 we saw by Theorem 2.1 that Ll(4m) = 8m3 - 6m2 + m and
that Ll(4m+2) = 8m3 + 6m2 + m. Using the above theorem we thus see that

Ll(4m+l) Pt 8m3 + 2m2. In fact, we will now demonstrate in Theorem 3.3 that
3

Ll(4m+l) 8m~” + 2m2 and so the lower bound calculated in Lemma 3.1 1s

attained.

3.3 THEOREM: The edges of Kgm+1 C€aN be covered by 8m3 + 2m? d-cycles sO

that each 2-path occurs at least once on some 4-cycle.

PROOF: In this proof addition is modulo 4m on the residue class 1, ...,

4m.

Label the vertices of K, ., with the elements of {1, ..., 4m, »} and
label the vertices of K4m with the elements of {1, ..., 4m}. Thus we can

write Ky = Kypoy - {0},

We now sketch the proof of this theorem; complete details follow

later. We wiil find a set of 8m3 2

+ 2m“ cycles of length four which contain
each 2-path of K, ., at least once by first taking the set of 8m3-6m2+rn
cycles of length four which cover all the 2-paths of Ky exactly once

each. This 1s done according to the proof of Theorem 2.1.

2 cycles of 1length

Next, we add to these L1(4m) 4-cycles a further 8m
four (see Figure 5). Note that each 4-cycle in Figure 5 contains a 2-path
that has already been covered. These new 4-cycles will be chosen so that
they contain all 2-paths of the form [r,*,*] and [*,»,*] at least once

each.
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Kam

Figure 5

That 1is, if we consider the 4-cycle (»,i,j,k) then for a fixed j we
want vertices i and k to take on all values r, 1l<r#j<4m. In this way we
get all 2-paths [»,r,j]. Bs j varies, 1<j<4m, we see that we must also
require the vertices i and k to take on all values of r and s, 1lsr<s=4m.

In this way we get all 2-paths of the form [r,»,s].

2 _

However, Ll(4m) + 8m“ = 8m3

+ 2m2

+ m and so it will be necessary to
delete m 4-cycles so that in the set of 4-cvcles which remzin each 2-path
still occurs on at least one 4-cvcle. These m 4-cycies, which will be
chosen so that they are vertex disjoint in order <o facilitate wvertex

relabeling, will be removed from the covering of Kam®

Based con these m disjoint 4-cycles we will define 4m subgraphs G,
1<r<ém, of Kym @S follows.
1. For each of the m 4-cycles (h,i,j,k) that will be removed from the

covering of Kyp Wwe define the four subgraphs Gh, G G and Gy so

ir 9§
that (i,k)GE(Gh),‘ (h,j)GE(Gi), (i,k)fE(Gj) and (h,j)fE(Gk).

2. In G, every vertex other than r has positive degree and vertex r has
degree 0.
3. The union of these 4m subgraphs is a multigraph K, UF, where F is a

l-factor in K4m.

For each r, 1<r<4m, and for each (x,y) f:‘Gr we define the 4{-cycle

(x,r,y,v). By (1) above, we see that we will have defined the following

28



four 4-cycles

(ishk,»), (hoi de2), (1,9,%0), (hk,§,)
for each 4-cycle (h,i,j,k) that will be removed. Thus even after the
removal of such a 4-cycle every 2-path on {1, ..., 4m} still occurs at

least once.

By (2) above, it is clear that we get all 2-paths [r,x,r] for

1<r,x<4m, r=x.

Since (by (3)) the union of these 4m subgraphs contains K,, we see

that we get all 2-paths [x,r,y] for every edge (x,y)€E(K,.).

Thus by defining these 8m2 4-cycles based on the subgraphs G, we see

that
1. all 2-paths en {1, ..., 4m, v} have been covered and
2. all 2-paths in the m disjoint 4-cycles have been covered at least

twice and so these m cycles can be removed.

Thus we have covered all the 2-paths of Kom+1 by
(8m3 - 6m2 + m) + 8m2 -m= 8m + 2m?

cycles of length four so that each 2-path occurs at least once.

The ideas for the proof that we have just discussed are now presented

in more detail.

By the proof of Theorem 2.1, a set of 4-cycles covering all the
2-paths of K, contains the following m 4-cycles:
(= 1, 2, 3) (from Cl,z(o))
(4a, 4a+l, 4a+3, 4a+2) (from C2 3(4a—l)) 1<a<m-1.
r

Since these 4-cycles are disjoint, then by a suitable relabelling of
the vertices, which changes {=, 1, ..., 4m-1} to {1, 2, ..., 4m}, they can
be written:

(i, m+i, 2m+i, 3m+i) , 1<i<m.
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The desired covering of all the 2-paths of K4m+l by 4-cycles will
contain all thé 4-cycles of the C(4m,4,1) design as described in Theorem
2.1, with vertices relabelled as above, except for the aforementioned m
vertex disjoint 4-cycles. This gives 8m3 - 6m2 4-cycles. The remaining

4-cycles to be added will now be defined.

Consider the graph Gl (see Figure 6) containing the following edges:
(2, 4m), (3, 4m-1), ..., (m+l, 3m+l), (m+l, 3m),
| (m+2, 3m-1), ..., (2m, 2m+1).
Note that wvertex 1 has degree 0. All other graphs Gr' 1<r<4m, are obtained
from tﬁis by rotating Gy so that vertex r has degree 0 (and vertex m+r has

degree 2),

In each subgraph G, all distances appear exactly once: the distances

2, 4, ..., 2m occur in the first m edges defined and the distances 1, 3,
.., 2m-1 occur in the last m edges defined. Thus in the union of these 4m
graphs each edge of K,, appears once except for edges of distance 2m which

appear twice.

As was mentioned before, if the edge (x,y) belongs to Gr then we
include the 4-cycle (x,r,y,v) in our covering of the 2-paths of K4m+1' The
number of 4-cycles which were added was 4m-2m=8m2, where 4m is the number
of graphs Gr and 2m is the number of edges in Gr. We must now check that

3 2

these 8m” + 2m“ cycles of length 4 do, in fact, cover all the 2-paths of

Kym+1 €¥actly once each.

It suffices to show that
1>, all 2-paths on the m vertex disjoint 4-cycles that were removed occur
in some 4-cycle of the covering and

2%, all 2-paths containing pr occur on some 4-cycle.

The edge (m+r,3m+r) belongs to G,, l=rs4m, so that we get the 2-path
[m+r,r,3m+r]. Since all 2-paths on the 4-cycles that were removed were of

this form we see that (1*) is satisfied. Each edge (x,y) of K, belongs to
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some graph G, so that we get the 2-path [x,»,y]. For each r and for each
¥#r there 1is an edge incident with wvertex x in Gr so that we get the

2-path [r,x,r]. Thus (2*) is satisfied.

Thus we have a solution to the covering problem for Kgm+1 using
Ll(4m) + 8m2 -m = (8m3 - 6m2 + m) + 8m2 -m= 8m3 + 2m2

4-cycles. Thus L;(4m+l) = 8m> + _2m2. n
Using Lemma 3.1 we find that Ll(4m+3) 2 8m3+14m2+8m4 2. We show here

that equality is also obtained in this case.

34 THEOREM: The edges of K, can be covered by 8m’ + ldm? + 8m + 2

4-cycles so that each 2-path occurs at least once on some 4-cycle.

PROOF: This proof is similar to the proof of Theorem 3.3. The main

difference lies in the way the subgraphs G; are defined.
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Addition is modulo 4m+2 on the residue class 1, ..., 4m+2. Label the
vertices of Kym+3 with the elements {1, ..., 4m+2, »} and label the

vertices of K, ., With the elements {1, ..., 4m+2}. Thus we can write

Kame2 = Kgme3 — U}

By the proof of Theorem 2.1, the set of 4-cycles covering all the
2-paths of K,.., contains the following m disjoint 4-cycles:
(=, 1, 2, 3) (from C1,2<°>>
(4a, 4a+l, 4a+3, 4a+2) (from C, 3(4a-1)) 1<a<m-1.
1

Since these 4-cycles are disjoint, then by a suitable relabelling of
the vertices, which changes {=, 1, ..., 4m+1} to {1, 2, .., 4m+2}, they
can be written:

(i, m+l+i, 2m+l+i, 3m+2+i) 1<igm.
Note that vertices m+l1 and 3m+2 do not occur on any of the m disjoint

cycles.

As in Theorem 3.3, the covering of all the 2-paths of K4m+3 by
4-cycles will contain all the 4-cycles of the C(4m+2,4,1) design as

described in Theorem 2.1 (with wvertices relabelled as above), with the

exception of the above m vertex disjoint 4-cycles. This gives gm3 + 6m2
4-cycles. The remaining 4-cycles to be added will now be defined.
Let the multigraph G be given by G = Kapeo U {1, 3) ¢ |i-jl=2m+1}. we

will now define a family of graphs whose union is G.

For 1<k<m and 2m+2<k<3m+l, let Hy be the graph containing the
following edges (see Figure 7):
(1+k, 4m+l+k), (2+k, 4m+k), ..., (m+k, 3m+2+k),
(m+1+k, 3m+2+4K), ..., (2m+k, 2m+3+k), (2m+l+k, 2m+2+k).

For m+2<k<2m+l1 and 3m+3<k<4m+2, let Hy be the graph containing the
following edges (see Figure 8):
(1+k, 4m+1l+k), (2+k, 4m+k), ..., (m+k, 3m+2+k),
{(m+k, 3m+l+k), ..., (2m=-1+k, 2m+2+k), (2m+k, 2m+l+k).
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The subgraphs P'_“—Hl and Hy, ., have not yet been given, and are
described below. Define Hp,1 to be the graph containing the following
edges: (1, 4m+2), (2, b4m+l), cosy (m+l, 3m+2), ..., (2m+l, 2m+2) and define
Hypsp O be the graph containing: (m, m+2), (m-1, m+3), ..., (3m+l, 3m+3),
(m+l, 3m+2). It is not difficult to check that the union of these 4m+2

subgraphs H; is G.

We now define Cpyp = HpyUm+2, 3m+2) - (m+l, 3m+2)
| Gamez = HypepU(m+l, 3m+3) - (m+l, 3m+2)
G, = HyU(m+l, 3m+2) - (m+l, 3m+35
Gopyp = HypepU(m+l, 3m+2) - (m+2, 3m+2).
For all other values of i we define G; = H;. Since the union of the 4m+2

subgraphs H; is G it is trivial to check that the union of the 4m+2

subgraphs G; is also G. Note that in Gy only vertex k has degree 0.
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Figure 8

As in Thecrem 3.3, if the edge (x,v) belongs to Gyr 1<k<4m+2, then we
will include the 4-cycle (x,k,¥,v») in the covering of the 2-paths of Kam+3

by 4-cycles. By doing so we add a further 8m2 + 8m + 2 4-cycles.

.o 0y

The procedure to check for the occurence of all 2-paths on {1,

4m+2, »} is similar to that for Theorem 3.3 and is thus omitted.

The 2-paths of Kym+3 Can be covered by

Ll(4m+2)—m+8m2+8m+2=(8m3+6m2+m)—m+8m2+8m+’2—

8m3 + 14m2 + 8m + 2
4-cycles. Thus Li(4m+3) = 8m> + 14m® + 8m + 2. ™

3.5 LEMMA: When n=4m+l1 and A=2k+l at least
16m3k ~ mk + 8m3 + 2m?

4-cycles are needed to cover the 2-paths of K, 'so that each 2-path occurs

34



at least A times.

PROOF: This number is calculated in a similar way as the bound in Lemma
3.1. For any two vertices a and b we need l-(2k+l)(4m-l)/2-| = 4mk + 2m - k
4—cycles of the form (a,x,b,y) so that each 2-path with end vertices a and
b occurs A times. There are 2m(4m+l) ways that a and b can be chosen, but
the 4-cycle (a,x,b,y) also contains the 2-paths [x,a,y] and [x,b,y]. Thus
we need at least (dmk+2m-k)(2m)(4m+1)/2 4-cycles. =

With the following Theorem 3.6 we complete the covering problem for
every n=1 (mod 4). In general then, for every X we now know the minimum
number of 4-cycles needed to cover all the 2-paths of Kam+1 @t least A

times each.

3.6 THEOREM: When n=4m+1l and A=2k+l we can find a set of
16mk - mk + 8m> + 2m?
4-cycles in K, so that each 2-path occurs on at least A 4-cycles. That is,

Logsp (4m+l) = lém’k - mk + 8m> + 2m2.

PROOF: A simple way to achieve the lower bound given in Lemma 3.5 is to
take k copies of the covering with A=2 as given in Section 2.2 and also
take the covering as given in Theorem 3.3. We thus have a total of
k(4m+1l) (m) (4m-1) + 8m> + 2m2 cycles of length four in which each 2-path of

K4m+l occurs at least 2k+1l times. =

3.7 LEMMA; When n=4m+3 and A=4k+1l at least
32m3%k + 48m?k + 22mk + 3k + 8m> + 14m? + 8m + 2
4-cycles are needed to cover the 2-paths of K, so that each 2-path occurs

at least A times.

PROOF: Following the proof of Lemma 3.5 we see that for any two vertices
a and b we need l’(4k+l)(4m+l)/2-| = 8mk + 2m + 2k + 1 4-cycles of the form

(a;%,b,y) so that each 2-path with end vertices a and b occurs 4k+l times.
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There are (4m+3)(2m+l) ways that a and b can be chosen, but the 4-cycle
(a,x,b,y) also contains the 2-paths [x,a,y] and [x,b,y]. Therefore the
total number of 4-cycles that are regquired is [(8mk+2m+2k+l)(4m+3)(2m+l)/2-l.

We now show that the lower bound calculated in Lemma 3.7 can be

achieved. This proof follows that of Theorem 3.6 very closely.

3.8 THEOREM: The 2-paths of Kym+3 can be covered by
32m3k + 48m%k + 22mk + 3k + 8m> + 14m2 + 8m + 2
4-cycles so that each 2-path occurs on at least 4k+l 4-cycles. That is,

Ly (4m+3) = 32m3k + 48m%k + 22mk + 3k + 8m° + 14m2 + &m + 2.

PROOF: Take k copies of the covering with A = 4 as giveh in Section 2.3
and also take the covering as given in Theorem 3.4. Thus we have a total
of k(4m+3)(2m+1) (4m+1) +8m3+14m2+8m+2 cycles of length four which contain

each 2-path of Ky,,3 at least 4k+l times each. =

When n=4m+l and A=2k+l the minimum number of 4-cycles required to
cover all 2-paths so that each 2-path occurs at least X\ times has been
determined exactly. Similarly, when n=4m+3 and A=4k+1l the minimum number of
4-cycles required to cover all 2-paths so that each 2-path occurs at least

A times has also been determined exactly.

Using calculations similar to those in Lemma 3.1 for n=4m+3 and A=2
one finds that one needs at least
16m> + 24m? + 1lm + 2
4-cycles to cover each 2-path in K,.. s at least twice. In the next theorem
we show that this lower bound on L2(4m+3) can never be attained; that is,

L,(4m+3) > 16m> +24m? + Llm + 2.

3.9 LEMMA: When n=4m+3 and A=2 the least number of 4-cycles that are
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required to cover each 2-path of K, .3 at least twice is

16m3 + 24m2 + 1llm + 3.

- PROOF: We will count the number of times each vertex occurs in a 4-cycle
supposing that each 2-path occurs at least twice. Each vertex x occurs on
at least 2(4m+2)(4m+l) 2-paths of the form [x,*,*] and on at least
(4m+2)(4m+1) 2-paths of the form [*,x,*]. If a 4-cycle contains the vertex
X it contains three 2-paths that contain x and thus the vertex x occurs on
at least (2(4m+2)(4m+l) + (4m+2)(4m+1))/3 = 16m% + 12m + 2 cycles of length

four.

Clearly, if the 2-paths of Kym+3 are covered by 4-cycles soO that each
2-path occurs at least twice then there is some 2-path that occurs at
least three times. Suppose this is the 2-path [1,2,3]. The vertices 1, 2

2

and 3 thus occur on at least 16m“ +12m+ 3 cycles of length four.

The sum over all vertices of the number of 4-cycles on which each
vertex occurs is
am(16m? + 12m + 2) + 3(16m% + 12m + 3).
Each 4-cycle contains four vertices and so the minimum number of 4-cycles
needed to cover all of the 2-paths of Kym+3 SO that each 2-path occurs at
least twice is thus

16m3 + 24m2 + 1lm + 3. =

Theorem 3.4 shows that one can find a set of 8m3+l4m2

+ 8m+ 2 4-cycles
in Kyp43 in which each 2-path occurs at least once. By taking two copies
of each 4-cycle in this set we see that

L, (4m+3) < 16m> +28m + 16m + 4.

Using this observation and Lemma 3.9 we have thus proven Theorem 3.10.

3.10 THEOREM: As a bound on the minimum number of 4-cycles needed to

cover each of the 2-paths of Kym+3 @t least twice we have

16m> +24m? + 11m+ 3 S L,(4m+3) < lém> +28m? + 16m+ 4.
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A similar result can be obtained for L,, ,(4m+3) using the ideas from
Theorem 3.8, 'i‘hat is, to the upper and lower bounds on L,(4m+3) we add

L4k(4m+3) = k(4m+3)(2m+1) (4m+1).

Although we have not been able to find a construction which produces
16m3 + 24m? + 1lm + 3 cycles of length four which cover all of the 2-paths
of K4m+3 at least twice each, we have a construction which yields
Ly(4m+3) = 16m3+24m2+l3m_+2 for some values of m. In such cases the upper

bound of Theorem 3.10 would therefore be reduced.

Label the vertices of K, ,, With the elements {1, ..., 4m+l, =} and
label the vertices of K, ., with the elements {1, ..., 4m+l, =, »}. Now,
take a C(4m+2,4,2) design and suppose that in this design one could £find
m(4m+l) cycles satisfying the following two conditions:

1. each pair of vertices of K,,,», occurs at most once as non-adjacent
vertices of a cycle and

2. each pair of vertices of K,,,, occurs at most twice as the edge of a
cycle.

Then we have the following lemmz.

3.11 LEMMA: If there exist m(4m+l) 4-cycles in a C(4m+2,4,2) design

satisfying conditions 1 and 2 above, and one can find a certain set of
3 2

subgraphs of 2K4mt+os then one can find lém~ + 24m° + 13m + 2 4¥cycles

which contain each 2-path of Kim+3 at least twice each.

PROOF: For each xe{l, ..., 4m+l, «} we define a subgraph Gy of 2K4m+2
(every edge of Kym+p oOccurs twice) so that every vertex in Gy has degree
2, except for vertex x which has degree 0. For each 4-cycle (a,x,b,c) in
the distinguished set of m(4m+l) 4-cycles we put the edge (a,b) in Gy -
This subgraph will also contain other edges which are chosen arbitrarily,
however we require the union of these 4m+2 subgraphs to be 2K4m+2' Now
remove the set of m(4m+l) 4-cycles from the C(4m+2,4,2) design and for each

x¢{l, ..., 4m+l, =} and for each edge (a,b) in G, add the 4-cycles
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(a,x,b,r).

. It is easy to see that all 2-paths on {1, ..., 4m+l, =} have been
recovered. Also, since every edge (a,b) occurs twice, we see that we get
all 2-paths [a,v,b] twice and since every vertex in Gy has degree 2 we see
that we get all 2-paths [x,a,v] twice each. We have used a total of

(16m3 + 12m% + 2m) - m(4m+1) + (4m+2) (4m+1) = 16m> + 24m2 + 13m + 2
4-cycles to cover all of the 2-paths of K4m+3 by 4-cycles at least twice

each.,

3.12 EXAMPLE: Using the above lemma we can find a collection of 55
4-cycles in K4 so that each 2-path occurs at least twice. This number is
one more than the minimum of 54 given in Theorem 3.10. First we get a
C(6,4,2) design by taking two copies of the C(6,4,1) design obtained using
Theorem 2.1. Remove the following five 4-cycles:
(=,1,2,3), (*,2,3,4), (=,3,4,5), (=,4,5,1) and (=,5,1,2).

The subgraphs G, are shown in Figure 9; add the thirty 4-cycles defined by
them to obtain 2(15) - 5+ 30 = 55 4-cycles which cover all the 2-paths of

K7 at least twice each. =

3.13 EXAMPLE: When m=3 the conditions of Lemma 3.l11 can be satisfied and

thus there exists a set of 689 4-cycles in K,5 containing each 2-path of
K4m+3 at least twice each. This number is in contrast to the minimum of

684 calculated in Theorem 3.10.

The following thirty-nine 4-cycles (which belong to the C(14,4,2)

design obtained using Theorem 2.1) satisfy the two conditions which precede

Lemma 3.11l:
(2+i,1+1i,4+1i,5+1i), (3+i,1+i,6+1i,8+i), (=,l+i,5+i,9+i) 1<i<13.
Addition is modulo 13 on the residue class 1, ..., 13.

Each pair of non-adjacent vertices in the above 4-cycles defines an

edge in some subgraph G,. In fact, the distinguished 4-cycles above define
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two vertex disjcint 4-cycles and z single edge in each subgraph G, (1=x<13)
of 2K,4- Now 'double' this single edge so that the vertices incident with
it have degres two. Thus every vertex in G, other than x, x+6, x+7 and =
have degree twe. If we take a triangle on these latter three vertices then
every vertex in Gy (other than x) has degree two. Finally, we take as G,

the graph which consists of the edges (x, x+1) for 1=x<13.

It is not difficult t; check that the union of these 14 subgraphs is
2K14. This checking is made easier by drawing 13 wvertices on a circle
(labelled 1 to 13) and putting the vertex « in the centre. Now draw Gy,
say, and note that the edges in this graph have distances:
| 1, 2,2, 3, 3, 4 4 5 5, 6 6 = =

Thus in the union of the subgraphs G;, 1=i=13, every edge of 2K;, appears
exactly twice, except for the edges of distance 1 which appear exactly
once. The subgraph G, contains each edge of distance conce exactly once each

~and therefore the union of these fourteen subgraphs is 2K 4. ®
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3.14 EXAMPLE: When n=4 we can again satisfy the conditions of Lemma
3.11. Thus in Kig we can find a collection of 1462 cycles of length four
which cover all the 2-paths at least twice each, whereas the lower bound
in Theorem 3.10 is 1455. The solution to this problem is similar to that
of Example 3.13, and sixty-eight 4-cycles which satisfy the two conditions
preceding Lemma 3‘.‘ll are:

(17+i,1+i,7+i,6+1), (4+i,1+1i,6+1i,9+1),

(5+i,1+41,8+1i,12+i), (e,1+i,16+i,14+i) 1<i<17.

Addition is modulo 17 on the residue class 1, ..., 17.

These four cycles come from the C(18,4,2) design obtained by taking
two copies of each of the 4-cycles as given by Theorem 2.1. If we define
the subgraphs Gx' 1<x<17, as in Example 3.13, then ‘every vertex in Gx
other than x, x+8, x+9 and « has degree two (these vertices have degree
0). Take a triangle on the latter three vertices so that now every vertex
in Gy other than x has degree two. The subgraph G, consists of the edges

(%, x+1) for 1<x<17.

It 1is not difficult to check that the union of these subgraphs is

3.15 LEMMA: When n=4m+3 and A=3 at least
24m3 + 36m2 + | 16.5m| +3
4-cycles are required in order for each 2-path of K, to appear on at least

A 4-cycles.

PROOQF: Assume that each 2-path occurs at least three times' and count the
number of 4-cycles on which each wvertex appears. Each vertex x appears on
at least 3(4m+2)(4m+l) 2-paths of the form [x,*,*] and on at least
3(2m+1)(4m+1l) 2-paths of the form [*,x,*]. If a 4-cycle contains the vertex
X then it contains three 2-paths that contain x. Thus the vertex x occurs

on at least (3(4m+2)(4m+l) + 3(2m+1)(4m+1))/3 = 24m? + 18m + 3 cycles of
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length four.

. However, not all 2-paths occur exactly three times and so there is at
least one 2-path, say [1,2,3], that occurs at 1least four times. The

2

vertices 1, 2 and 3 thus occur on at least 24m“ + 18m + 4 cycles of length

four.

The minimum number of 4-cycles in K, . needed to cover each 2-path at
least three times each is thus

(4m(24m2 + 18m + 3) + 3(24m? + 18m+ 4))/4 = 24m> + 36m2 + 33m/2+3. =

3.16 THEOREM: The minimum number of 4-cycles needed to cover each of the
2-paths of K4m+3 at least three times is bounded by:
24m3 +36m2 + [16.5m] +3 < Ly(4m3) < 24m + 4202 + 24m + 6.

PROOF: The lower bound in the above inequality comes from Lemma 3.15 and
the upper bound is obtained by taking three copies of the design on 4m+3
vertices in which each 2-path occurs on at least one 4-cycle (see Theorem

3.4). =

If the conditions of Lemma 3.11 are satisfied, then we can reduce the

3-+38m2-+21m-+4. The bounds on the

upper bound in the above theorem to 24m
number of 4-cycles of Kym+3 needed in order for each 2-path to occur on at
least 4k+3 cycles of length four can easily be obtained by adding L4k(4m+3)
= k(4m+3)(2m+1){4m+l) to both the upper and lower bounds on L3(4m+3) as
given in Theorem 3.16. Clearly, we can reduce the upper ' bound on

L4k+3(4m+3) if the conditions of Lemma 3.l11 are satisfied.

To summarize this chapter we have the following table. Here we
describe, for Are{4k, 4k+1l, 4k+2, 4k+3} and ne{4m, 4m+l, 4m+2, 4m+3}, the
general results known about L,(n) and give the theorem or corollary used to

justify the statements.
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(n,N) Results on Lk(n) Refer to:
(4m, 4k) Lk(n) = 4mk(4m-1) (2m-1) Theorem 2.1
(4m; 4k+1) Lk(n) = (4mk+m) (4m-1) (2m-1) Theorem 2.1
(4m, 4k+2) Lk(n) = (4mk+2m)(4m—l)(2m—l) Theorem 2.1
(4m, 4k+3) Ly(n) = (4mk+3m)(4m-1)(2m-1) Theorem 2.1
(4m+1,4k) Ly(n) = 2mk(4m-1)(4m+1) Corollary 2.
(4m+1,4k+l)  Ly(n) = (16m -m)(2k)+8m>+2m? Theorem 3.6
(4m+1, 4k+2) Lk(n) = (2mk+m) (4m-1) (4m+1) Corollary 2.
(4m+1, 4k+3) Ly(n) = (16m3-m) (2k+1)+8m>+2m? Theorem 3.6
(4m+2,4k) Lk(n) = 4mk(2m+1) (4m+1l) Theorem 2.1
(4m+2, 4k+1) Lk(n) = (4mk+m) (2m+1) (4m+1) Theorem 2.1
(4m+2, 4k+2) Lk(n) = (4mk+2m) (2m+1) (4m+1) Theorem 2.1
(4m+2, 4k+3) Ly(n) = (4mk+3m)(2m+1)(4m+1) Theorem 2.1
(4m+3, 4k) Ly(n) = (2mk+k) (4m+3) (4m+1) Theorem 2.13
(4m+3,4k+1)  Ly(n) = k(32m3+48m%+22m+3)+8m3+14m>+8m+2 Theorem 3.8
(4m+3, 4k+2) k(4m+3)(2m+1)(4m+1)+16m3+24m2+llm+3 Theorem 3.10
S Ly(n) S k(4m+3)(2m+1) (4m+1)+16m>+28m2+16m+4
(4m+3, 4k+3) k(4m+3) (2m+1) (4m+1)+24m3+36m2+ | 33m/2 143 Theorem 3.16

< Lx(n)

< K(4m+3) (2m+1) (4m+1)+24mS+42m2+24m+6
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CHAPTER 4
MAXIMAL PACKINGS

Whenever one asks guestions about the covering problem, it is a
natural assumption that analagous questions will then be asked for the
packing problem. In this case the packing problem is to find the largest
collection of 4-cycles in K; so that each 2-path occurs on at most A

4-cycles.

4.1 DEFINITION: Let U;(n) be the largest integer such that the 2-paths of
K, can be packed into Ui(n) cycles of length four, so that no 2-path

occurs on more than i 4-cycles.

We have the trivial results (see Theorem 2.1) that
U1(4m) = L1(4m) = 8m3 - 6m2 + m and
Uy (4m+2) = Ly (4m+2) = 8m> + 6m? + m.

42 LEMMA: The maximum number of 4-cycles of Kom+1 that contain each of

the 2-paths of Kom+1 @t most once is no more than m3 - m(m+1)/2.

PROOF: For any two vertices a and b of K, ., we have 2m-1 different
2-paths of the form [a,x,b]. Any 4-cycle containing such a 2-path must
contain another 2-path of the form [a,y,b]..Thus the number of 4-cycles
containing a 2-path of the form [a,x,b] must be at most [(2m—l)/2,J = m-1.
There are m(2m+l) ways in which a and b can be chosen, but the 4-cycle
containing the 2-paths [a,x,b] and [a,y,b] also contains [x,a,y] and
[%,b,y]. Thus we can have at most (m-1){(m)(2m+1)/2 = m3 - m(m+1)/2 4-cycles

if each 2-path of K, ., is to occur at most once. ®

Thus we see that
U1(4m+l) < 8m3 - 2m2 - m and

U;(4m+3) < 8m> + 10m® + 3m.
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In fact it is easy to see that in both cases we have equality. This

is shown in the following theorems.

.3 THEOREM: In Kyp4+1 one can find

8m3 - ‘2m2 -~ m
4-cycles so that each 2-path occurs on at most one 4-cycle. In other
words, v

Ul(4m+l) = 8m3 - 2m2 - m.

PROOF: Consider the set of 4-cycles of Kgm+2 (as given by Theorem 2.1) in

3 4 en?

which each 2-path occurs exactly once. There are 8m + m cycles of
length four in this set and each vertex appears on sm?® + 2m cycles of
length four. If the vertex =, say, is removed (as are all cycles
containing it) then one is left with 8m3 - 2m2 - m cycles of length four

and each 2-path on the remaining 4m+l vertices appears at most once. ®

44 THEOREM: In K, ., there exists a set of

sm + 10m? + 3m
4-cycles so that each 2-path occurs on at most one 4-cycle. In other
words,

Uy (4m+3) = 8m> + 10m® + 3m.

PROOF: Theorem 2.1 tells us that one can find 8m° + 18m% + 13m + 3
cycles of length four which contain each 2-path of Kym+4 exactly once each,
Each vertex of K,.., appears on 8m2 + 10m + 3 cycles of length four and
thus if one of these vertices, along with all 4-cycles containing it, is

3

removed then we are left with 8m” =+ 1Om2 + 3m cycles of length four. These

4-cycles contain each 2-path on the remaining 4m+3 vertices at most once.

45 LEMMA: When n=4m+1 and X=2k+l at most
16m% - mk + 8m° - 2m% - m
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4-cycles can pack the 2-paths of Kgm+e1 SO that each 2-path occurs on at

most A 4-cycles.

PROOF: Simply count 2-paths as in Lemmas 3.5 and 4.2. ®

46 THEOREM: In Kym+p We can find
16m°k - mk + 8m> - 2m% - m

4~cycles which contain each 2-path at most 2k+1 times.

PROOF: Take k copies ©of the collection of 4-cycles which contain each
2-path of K,,., exactly twice (as given in Section 2.2). Add to these

3 2

4-cycles the 8m~ - 2m“ - m cycles of length four which contain each 2-path

at most once (see Theorem 4.3). This gives the required number of 4-cycles.

With the above result we have finished the packing problem for all n=

1l (mod 4) and for all A.

4.7 LEMMA: When n=4m+3 and A=4k+1 at most
32m%k + 48m®k + 22mk + 3k + 8m> + 10m? + 3m
4-cycles can be taken if each 2-path of K,,., is to occur on at most A

4-cycles.

PROOF: Again, count as in Lemmas 3.7 and 4.2, =

8. THEOREM: U, ,(4m+3) = 32m%k + 48m%k + 22mk + 3k + 8m> + 10m% + 3m.

PROOF: From Section 2.3 we know that one can cover the 2-paths of Kym+3
by 4-cycles so that each 2-path occurs on exactly four 4-cycles. Take k
copies of each of these 4-cycles as well as the sm3 + lom? + 3m 4-cycles

(see Theorem 4.4) which contain each 2-path of K, .5 at most once. =

Using the argument in the proof to Lemma 4.2, one obtains U2(4m+3) <

2

lf5m3 + 24m° + 1llm + 1. However, this bound can be improved.
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49 LEMMA: The number Of é-cycles of K, .. which contain each 2-path at
most twice is at most

16m> + 24m? + 1im.

PROOF: The vertex X occurs on at most 16m2 + 12m + 2 cycles of length
four and, because we know that there is some 2-path that does not occur

twice, we can assume that the vertex x occurs on at most 16m2 + 12m + 1

2

cycles of length four. These lém® + 12m + 1 cycles contain 16m2 + 12m + 1

2-paths which do not contain x.

There are at most (4m+2)(4m+1)(4m) 2-paths not containing x and we

2-#12m4-1 of them. This leaves 64m3+32m2 - 4m - 1

3

have used at most 1l6m
2-paths to be packed into 4-cycles. Thus at most 1ém” + gm? - m - 1 cycles
of length four can be added. The total number of 4-cycles is thus at most

lsm3 + 24m2 + llm, =

Theorem 4.4 shows that U;(4m+3) = 8m3 + 10m2 + 3m and thus
Up(4m+3) 2 16m> + 20m? + 6m.
This result and Lemma 4.9 allow us to put both upper and lower bounds on

U2(4m+3) and we have thus proven Theorem 4.10.

4.10 THEOREM: The maximum number of 4-cycles of Kym+3 Which cover each
2-path at most twice is bounded by

2

16m +20m + 6m < Up(4m+3) S lém> + 24m® + 1llm.

By adding U, (4m+3) = k(4m+3)(2m+l)(4m+l) to both sides in the above

inequality we obtain upper and lower bounds on U4k+2(4m+3).

Although we have not been able to attain the bound given in Lemma 4.9,
we have a construction which, for some wvalues of m, shows that U2(4m+3) 2

16m3 + 24m?

+ 5m. Consider the following. Let the vertices of Kam+2 be
labelled by the elements {1, ..., 4m+l, =} and let the vertices of Kam+3

be labelled by the elements of {1, ..., 4m+l, =, p}. First, take a
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C(4m+2,4,2) design. Next, suppose that one could find am?

+ m cycles of

length four in this C(4m+2,4,1) design satisfying

1.  each pair of elements from {1, ..., 4m+l, «} occurs as a pair of
non-adjacent vertices of at most one 4-cycle and

2. each pair of elements from {1, seey 4m+l, =} occurs as the edge of
at most two 4-cycles.

Then it would be possible to replace each of these 4m?

+ m 4-cycles
(a,b,c,d) by the four 4-cycles (a,b,c,»), (b,c,d,»), (c,d,a,») and
(d,a,b,») to get lém3 + 12n% + 2m - (4m? +m) + 4(4m? +m) = lém> + 24m® + 5m
4-cycles of Kym+3 that contain each 2-path at most twice. Thus we have

proven the following lemma.

4.11 LEMMA: If there exist 4m2 + m cycles in a C(4m+2,4,2) design
satisfying conditions 1 and 2 above, then one can find 16m° + 24m? + 5m

4-cycles which contain each 2-path of K, .,; at most twice.

Consider the line graph of Kam+27 L(K4m+2), and arrange its vertices
in a (4m+l) x (2m+l) array as in Theorem 2.1. The 4-cycles in K, .-
containing only vertices from column 1 and column i can be written as
(o, 1+k,i+k,2i+k~-1) for some k and the 4-cycles in Kym+2 containing vertices
from column i and column j can be written as (i+k,1l+k,j+k,i+j+k-1) for some
k. The two distances in Kgm+2 between the pairs of non-adjacent vertices in
any of these 4-cycles can thus be given as

«, min{2i-2, 2-2i} between columns 1 and i
and

min{i-j, j-i}, min{2-i-j, i+j-2} between columns i and j.
In the 3above calculations addition is modulo 4m+l on the residue class 1,

oy 4m+l.

If one could find m disjoint pairs of columns in this array so that

the distances given above are all distinct, then the 4m2

+ m cycles of
length four lying between these m pairs of columns satisfy conditions 1 and

2.
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Condition 2 is easily seen to be satisfied since each vertex of the
line. graph (en edge in K4m+2) appears on at most two 4-cycles. The
differences between non-adjacent vertices in the 4-cycles between the
chosen pairs of columns are all distinct and thus when these 4-cycles are
all developed modulo 4m+l the distances between non-adjacent vertices on

any of the chosen 4-cycles is also distinct.

4.12 EXAMPLE: Using Lemma 4.9 with m=1] we see that the maximum number of
4~cycles which contain each 2-path of K, at most twice is 51. Lemma 4.11
tells us that if we can find a particular set of  five 4-cycles in a
C(6,4,2) design then we will be able to find a collection of 45 4-cycles
which between them contain the 2-paths of K, at most twice each. The
following set of five 4-cycles
(=,1,2,3), (=,2,3,4), (»,3,4,5), (=,4,5,1) and (=,5,1,2).

satisfies conditions 1 and 2 and thus the required set of 45 4-cycles

exists. =

.13 LEMMA: When n=4m+3 and A=3 at most
24m3 + 36m% + | 16.5m+1.5 ]
4-cycles can be found so that each 2-path of Kym+3 Occurs at most three

times.

PROOF: Consider a vertex x; it can occur on at most 3(2m+1l)(4m+l) 2-paths
of the form [*,x,*] and at most 3(4m+2)(4m+l) 2-paths of the form [x,*,*].

Since each 4-cycle that contains x alsc contains three 2-paths that contain

2

X we Ssee that each vertex can occur on at most 24m® + 18m + 3 cycles of

length four.

We know that there is at least one 2-path, say [x,v,z] that does not

occur three times and so the vertex occurs on at most 24m2

2

+ 18m + 2
4-cycles. These 4-cycles which contain x contain 24m“ +18m + 2 2-paths which

do not contain x.
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There are 6m(4m+2)(4m+l) 2-paths not containing x and we have

2 4 18m + 2 of them. This leaves 96m3 + 48m2 - 6m -2 2-paths

accounted for 24m
to be packed into 4-cycles. Thus at most 24m3 + 12m? - [(3m+l)/2-| cycles of
length four can be added. The number of 4-cycles of Kym+3 containing each
2-path at most three times each is thus at most

24m3 +36m2 + | 16.5m+1.5 ). m

4.14 THEOREM: The maximum number of 4-cycles of K, .5 in which each
2-path occurs at most three times is bounded by:

24m> + 30m? + 9m < U3(4m+3) < 24m3 + 36m2 + | 16.5m+ 1.5 |.

PROOF: This result follows from Theorem 4.4 and Lemma 4.13. ®

The bounds on the number of 4-cycles of Kgm+3 containing each 2-path
at most 4k+3 times each can be obtained by adding U4k=k(4m+3)(2m+l)(4m+l)

to each side of the above inequality.

The following table summarizes the results obtained in this chapter.
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(n,2)

Results on Ux(n)

Refer to:

(4m, 4k)
(4m, 4k+1)
(4m, 4k+2)
(4m, 4k+3)
(4m+1, 4k)
(4m+1, 4k+1)
(4m+1, 4k+2)
(4m+1,4k+3)
(4m+2, 4k)
(4m+2, 4k+1)
(4m+2, 4k+2)
(4m+2, 4k+3)
(4m+3, 4k)
(4m+3, 4k+1)
(4m+3, 4k+2)

(4m+3, 4k+3)

Up(n) = 4mk(4m-1)(2m-1)

Uy(n) = (4mk+m)(4m-1)(2m-1)

Uy (n) = (4mk+2m) (4m-1)(2m-1)

Uy(n) = (4mk+3m)(4m-1)(2m-1)

Uy (n) = 2mk(4m-1) (4m+1)

Up(n) = (16m>-m)(2k)+8m3-2m2-m

Uy (n) = (2mk+m) (4m-1) (4m+1)

Up(n) = (16m>-m)(2k+1)+8m3~2mZ-m

Uy(n) = 4mk(2m+1) (4m+1)

Uy (n) = (4mk+m)(2m+1) (4m+1)

Uy (n) = (4mk+2m)(2m+1) (4m+1)

Uy(n) = (4mk+3m)(2m+1) (4m+1)

Uy (n) = (2mk+k) (4m+3) (4m+1)

Up(n) = k(32m>+48m2+22m+3)+8m3+10m2+3m
k(4m+3) (2m+1) (4m+1)+16m>+20m%+6m < Uy (n)

IA

K(4m+3) (2m+1) (4m+1)+16m3+24m2+11m
k(4m+3) (2m+1) (4m+1)+24m3+30m+9m < Uy (n) <
K(4m+3) (2m+1) (4m+1)+24m3+36m2+ | (33m+1)/2 |
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Theorem 2.1
Theorem 2,1
Corollary 2.9
Theorem 4.6
Corollary 2.9
Theorem 3.6
Theorem 2.1
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Theorem 4.8

Theorem 4.10
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CHAPTER 5
RESOLVABLE DESIGNS

In this Chapter we look at the problem of finding resolvable C(n,4,1l)
designs. A t-(n,k,A) design (X,f) is resolvable if the blocks in § can be
partitioned into classes so that in each class every element of X appears
exactly once. D. Jungnickel and S. Vanstone [JV] and A. Hartman [H8] have
recently published results concerning the resolvability of certain types of

3-designs.

In [JV] Jungnickel and Vanstone show that the necéssary conditions for
a 3-(n,4,3) design to be resolvable are also sufficient. The construction
of a family of 3-(n,4,3) designs and the proof that they are resolvable

(see [JV]) are presented below.

It is easy to see that the only necessary condition for such a design
to be resolvable is that n be a multiple of 4. Now let F be any
l-factorization of Kn. For each l-factor F of F and for each pair of edges

(a,b) and (c,d) in F forms the block {a,b,c,d}.

Consider any subset {a,b,c} of the n-set. Since any pair of these
three vertices is an edge of exactly one l-factor it is clear that this
subset occurs in three blocks of size four. Thus the collection of these

(n-1)(n/2)(n/2-1)/2 blocks form the blocks of a 3-(n,4,3) design.

Since the blocks of this design were obtained by taking the
(n/2)((n/2)-1)/2 pairs of edges from each l-factor, then for every l-factor
F we can construct the complete graph on n/2 vertices whose vertices are
the edges of F. This complete graph has an even number of vertices and
hence it also has a l-factorization, say G(F). Every edge ((a,b), (c,d))
in a l-factor GeéG(F) defines a block {a,b,c,d} in the 3-design and thus
the collection of these n/4 edges gives a parallel class in the design. If
we repeat this for all F€F then we will have partitioned the blocks of the

3-design into resolution classes.
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Since an SQS(n) exists if and only if n=2 or 4 (mod 6) and may be
resolvable only if n is a multiple of four, the necessary condition for

the‘existence of a resolvable SQS(n) is that n=4 or 8 (mod 12).

One infinite class of resolvable Steiner quadruple systems was known
to T. P. Kirkman [K] as early as 1847. These were the quadruple systems of
order 2P, with points being the elements of GF(2™), obtained by taking the
planes of the affine space of dimension m over GF(2) to be the blocks of
the quadruple system. Each parallel class is then defined to be a subspace

of dimension two and all of its translates.

For example, if m=3 then we would take as the eight points of the
quadruple system the following:
000 001 010 100 011 101 110 111.

The subspaces of dimension two are:

§,=(000,001,010,011) §,=(000,001,100,101)
§5=(000,001,110,111) $,=(000,010,100,110)
S¢=(000,010,101,111) S¢=(000,100,011,111)

$,=(000,011,101,110).
For veGF(2™) we define by Sj+v the set of points s+v such that sesj. The

parallel classes of this quadruple system are Sj+w, 1<j£7, where w is any

element of GF(23) that does not belong to Sj.
More recently, Alan Hartman [H8] has shown that the necessary
conditions for the existence of a resolvable Steiner quadruple system are

sufficient, except 1in at most twenty-three cases. We thus have the

following theorem.

5.1 THEOREM: Whenever n=4 or 8 (mod 12) there exists a resolvable
Steiner quadruple system of order n, except possibly for n€S, where
s ={220, 236, 292, 364, 460, 596, 676, 724,
1076, 1100, 1252, 1316, 1820, 2236, 2308,
2324, 2380, 2540, 2740, 2812, 3620, 3820, 6356}.
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5.2 DEFINITION: Let (X,8) be 3-(n,4,1) design. By a partition of § into
nonémpty subsets P;, ..., Py we mean a disjoint union g =UP,;, where lsist.
We also use the notation § = Py[P,| ... |P, to identify the partition. If
each xe€X is contained in exactly one 4-subset of each Py then this

partition is called a resolvable partition. In this case we also call each

P; a parallel class.

The following theorem shows that the doubling construction presented

in [Hl] preserves resolvability.

5.3 THEOREM: If there exists a resolvable Steiner gquadruple system of
order n then there exists a resolvable Steiner quadruple system of order

2n.

PROOF: Addition is modulo n/2 on the residue class 1, ..., n/2.

Let (X, B;) and (X5, f,) be two resolvable Steiner quadruple systems
of order n, where X, and X, are disjoint sets of size n. Now define two
l-factorizations of Kp, £ = {Fy, ..., F _,} and G = {G;, ..., Gy}, with
vertex set X; and X,, respectively, and arbitrarily order the edges of each

l-factor.

We now define a resolvable 5Q5(2n), (XlU.Xz, ﬁlUﬁZUﬁ), where f§ is a
set of blocks which will be defined in Step 2. This Steiner dguadruple

system will have (2n-1)(2n-2)/6 parallel classes.

step 1. If Py|Py|...|P, and 0Q;|Q,|...|Q, (where t=(n-1)(n-2)/6) are

resolvable partitions of f; and §,, respectively, then P;UQ;, P,UQ,, ...
PtUQt are t parallel classes in the SQS(2n).

Step 2. For each i, 1<isn-1, and for each k, 1<ksn/2, a parallel class is
defined as follows. For 15£jsn/2, take the jth edge (a,b) of F; together

with the (j+1<:)th edge (c,d) of Gi to form the block {a,b,c,d}. These n/2
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blocks form a parallel class and the collection of blocks in all such

parallel classes forms 8.

It is a simple matter to check that these n(n-1)/2 parallel classes,
together with the (n-1)(n-2)/6 parallel classes defined in Step 1, form the
(2n-1)(2n-2)/6 parallel classes in a resolvable SQS(2n). =

We now turn our attention to the problem of finding resolvable

C(n,4,1) designs. The following definition is analogous to Definition 5.2.

5.4 DEFINITION: A C(n,4,1) design is resolvable if its 4-cycles can be
partitioned into classes so that every vertex appears exactly once in each

class. Each such class is called a parallel class (of the design).

It is easy to see that a necessary condition for the existence of a

resolvable C(n,4,1) design is that n be a multiple of four.

In the same way that Steiner quadruple systems of order n can be used
to obtain C(n,4,l) designs, resolvable Steiner quadruple systems of order n

give rise to resolvable C(n,4,l) designs. We have the following theorem.

55 THEOREM: If there exists a resolvable SQS(n) then there exists a

resolvable C(n,4,1) design.

PROOE: Let (X, f) be a resolvable Steiner guadruple system ©0f order n

with resolvable partition P;|P,|...|P, (where t=(n-1)(n-2)/6). For each
parallel class P, in the SQS(n) we define three parallel classes P%, PE
and Pf in the C(n,4,l1) design. This is done as follows. For each block

{u,v,w,x}ePi (with u<v<w<x and 1<i<t) we place the three 4{-cycles it

1 2

defines in the parallel classes according to: (u,v,w,x)fPi, i

3
i

(u,w,v,X)€P

and (u,v,x,w)€P

These 3t sets form the parallel classes of a resolvable C(n,4,1)

design. W
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The following theorem for C(n,4,1) designs is analogous to Theorem
5.3, which gives a corresponding result for Steiner quadruple systems.
5.6 THEOREM: If there is a resolvable C(n,4,1) design then there is a
resolvable C(2n,4,1) design.

PROOF: This proof closely follows that of Theorem 5.3. In this proof

addition is modulo n/2 on the residue class 1, ..., n/2.

Take two resolvable C(n,4,1) designs, one based on the vertex set X;
and the other based on the vertex set X5, where Xl'and Xy are disjoint
sets of size n. The resolvable C(2n,4,1) design we define is based on the
vertex set X;UX,. Let F = {F;, ..., F  ;} and G = {G, ..., G,_1} be two
l1-factorizations of K, with vertex set X, and X5y respectively, and
arbitrarily order the edges in each 1l-factor. The resolvable C(2n,4,1)

design will now be defined.

Step 1. Let Py|Py|...|P, and 0Q;|Q,|...]Q, (where t=(n-1)(n-2)/2) be
resolvable partitions of the two C(n,4,l1) designs. Then PiUQi" 1<i<t, are

parallel classes in the C(2n,4,1) design.

Step 2. This is the same as Step 2 of Theorem 5.3, except that each
parallel class of blocks is replaced by three parallel classes of 4-cycles

using Theorem 5.5. =

5.7 DEFINITION: Given a C(4m+2,4,1) design, a near-parallel class Pi,j'

1<i<js4m+2, 1is a set of m vertex disjoint 4-cycles based on the set

{1,2,...,4m+2}-{i,3}.

.8 DEFINITION: For m20, a C(4m+2,4,1) design is near-resolvable if the

4-cycles in the design can be partitioned into (4m+2)(4m+l)/2 near-parallel

classes Py -
r

5 (1Si<jSam+2).
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Ideas similar to those contained in the above two definitions have
been used before (see [H4]) to double Steiner quadruple systems to obtain
resolvable Steiner quadruple systems. Definitions 5.7 and 5.8 are less
general than the corresponding definitions in [H4], simply because the
minimum number of classes into which the 4-cycles can be partitioned 1is
equal to the number of edges in K,,,,. Clearly the maximum number of
distinct vertices in each class of the partition is 4m, and we can
consider (for now) this class as containing m 4-cycles and an edge. Thus

in each class there must be exactly one edge of Ky .-

The following four lemmas are useful in constructing resolvable
C(n,4,1) designs for those values of n for which there does not exist a
resolvable SQS(n); that is, when n=0 (mod 12). The C(2,4,1) design is
trivially near-resolvable. Lemma 5.12 was obtainéd by computer using a
simple algorithm and there is no reason to believe that near-resolvable
designs do not always exist. The main reason the computer search was
stopped after a near-resolvable C(18,4,1) design was found was the length

of time it took for the program to run.

59 LEMMA:; There is a near-resolvable C(6,4,1) design.

PROOF: Consider the fifteen 4-cycles in a C(6,4,1) design. Each cycle in
this design is disjoint from exactly two vertices, say i and j, and this
cycle gives a near-parallel class Pi,j‘ u

.10 LEMMA: There is a near-resolvable C(10,4,1) design.

PROOF: Consider the cycles in the C(10,4,1) design obtained by using the
'line-graph' solution as described in the proof of Theorem 2.l1. We want to

partition the 4-cycles into 45 near-parallel classes P where either

i,
1<i<js9 or i=e= and 1<j<9. This is done by choosing one cycle Ci,j(k) from
each of the ten pairs of columns in the array (see Theorem 2.1). These ten

cycles are then taken in pairs so that
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- 1. in each qf the five pairs the cycles are vertex disjoint, and

2. the edges formed by the vertices missed in each of the pairs of
| cycles have distance =, 1, 2, 3 and 4, respectively.

By applying the permutation (1,2,3,4,5,6,7,8,9) to the vertices of the

cycles (= is a fixed point) we obtain the required 45 near-parallel

classes. That is, we can think of the five pairs of cycles as 'starter'

cycles.

We give below five pairs of 4-cycles which satisfy conditions 1 and 2.

The near-parallel class Pi, that is defined by them is also listed.

3
The two 4-cycles used Near-parallel class
(1,4,8,5) (2,3,7,6) Ps,g
(»,1,4,7) (2,3,6,5) Pg, 9
(«,1,3,5) (7,6,8,9) Py.4
(«,1,2,3) (6,4,7,9) P5 g
(«,1,5,9) (4,2,6,8) P3,7

_If the vertices in these pairs of 4-cycles are permuted using the
permutation given above we see that all edges of the line graph L(Klo) are
used (i.e. all 2-paths of Klo) and each pair of distinct vertices i and jJ
of Ky defines exactly one near-parallel class Pi,j’ Thus we have a
near-resolvable C(10,4,1) design. ®

5.11 LEMMA: There exists a near-resolvable C(1l4,4,1) design.

PROOF: As in the proof of Lemma 5.10, we use the C(14,4,1) design
obtained from the line graph solution described in Theorem 2.1. We want to
where either
;3%

from each of the twenty one pairs of columns in the 13 x 7 array (see

partition the 4-cycles into 91 near-parallel classes P; i1
r

1£i<j<13 or i== and 1<j<13. This is done by choosing one cycle C;

Theorem 2.l1). These twenty one cycles are then partitioned into seven
groups of three so that

1. in each of the seven groups of three 4-cycles the cycles are vertex
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disjoint and
2. _ the edges formed by the missing ‘vertices in each of the pairs of
cycles have distance «, 1, 2, 3 ,4, 5 and 6 respectively.
These seven 3-tuples of cycles are then developed modulo 13 on the residue
class 1, ..., 13 (= is a fixed point) to produce the required ninety-one

near-parallel classes.

Seven groups of 4-cycles which satisfy the above two conditions are

given below. The near parallel class P; .
7

j that each set of cycles belongs

to is also given.

Near

The three 4-cycles used Parallel class
(3,1,5,7) (8,6,11,13) (9,4,10,12) Pa,2

(2,1,3,4) (7,6,11,12) (=,8,13,5) Py, 10
(2,1,7,8) (3,13,6,9) (=,5,11,4) P1o,12
(2,1,4,5) (11,8,13,3) (=,6,9,12) P7,10
(4,1,5,8) (3,2,6,7) (=,10,11,12) Pg,13
(3,1,7,9) (10,6,11,2) (=,4,8,12) P5 13
(3,1,4,6) (9,5,11,2) («,8,10,12) P7,13

If the three four-cycles in each group are developed modulo 13 then

this gives us the required ninety-one near-parallel classes. §

.12 LEMMA: There is a near-resolvable C(18,4,1) design.

PROOF: As the proof is similar to that of Lemma 5.10, we present here

only the nine groups of four 4-cycles which satisfy the following two

conditicns:

1. in each of the nine groups the four 4-cycles are vertex disjoint and

2. the edges formed by the points missed in each of the groups have
distance =, 1, 2, ..., 8 respectively.
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Near

Parallel
The four 4-cycles used glass
' (1,5,10,6) (7,11,17,13)  (8,12,2,15) (9,14,4,16) Pe, 3
(4,5,7,6) (8,9,12,11) (10,13,17,14) (=,1,2,3) P15;15
(6,7,11,10) (8,9,17,16) (13,15,4,2) (2,1,3,5) P12,14
(2,4,9,7) (8,10,17,15)  (12,14,5,3) (e,1,6,11) P13,16
(2,5,11,8) (13,16,6,3) (4,7,15,12) (=,1,9,17) P10,14
(5,6,11,10) (13,14,3,2) (8,9,16,15) (=,1,4,7) P13,17
(6,12,2,13) (14,3,11,5) (9,16,7,17) (=,1,8,15) Py,10
(3,6,11,8) (10,15,4,16)  (9,14,5,17) (=,1,7,13) Py, 12
(8,10,13,11)  (15,17,4,2) (12,16,7,3) (=,1,5,9) Pg,14

If these groups of four 4-cycles are each developed modulo 17 (the
residue class is 1, ..., 17 and = is a fixed point) then all the edges of
L(K,g) will have been used. That is, all 2-paths of K;g have been used and

we have a near-resolvable C(18,4,1) design. ®

The following theorem is a special case of Theorem 5.15, with s=2., It
is presented here, however, because its proof is simple and it allows us
to simplify the proof of Theorem 5.15.

5.13 THEOREM: If there exists a near-resolvable C(t,4,1) design then

there exists a resolvable C(2t,4,1) design.

PROOF: Suppose we have a near-resolvable C(t,4,1) design with vertex set

T. Llabel the vertices of K, with the elements of T:={1,...,t} and label

the vertices of K2t with the elements of Tx {1,2}, which will also be the

vertex set of the resolvable C(2t,4,l1) design. We will write ij instead of
i

(i,3). Let X_ be the restriction of Ky, to the vertex set Tx {i}, i=1,2.

Let F={Fy, . Ft—l} be a l-factorization of K, and arbitrarily order

the edges in each F;. If (a,b) is the j*! edge of F; in K, then we define
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(a;,b)) to be the P edge of F; in kI and (a,,b,) to be the 3P edge of

Fy in K%. The proof is presented in three steps, which are illustrated in

Figure 10.

Step 1. Each near-parallel class Px,y in the C(t,4,1) design determines a
parallel class Rx,y in the C(2t,4,1) design as follows. For each 4-cycle
(a,b,c,d)er,y we have (al'bl'cl'dl)eRx,y and (a2,b2,c2,d2)€Rx’y. These
(t-2)/2 4-cycles, together with the 4-cycle (%1,Y1/%5,¥p), form the

parallel class R, in the C(2t,4,1) design. In this way we get t(t-1)/2

'Y
parallel classes, one for each near-parallel class in the near-resolution

of the C(t,4,1) design.

The remaining parallel classes that are to be defined will contain

those 4-cycles with two vertices from Tx {1} and two vertices from Tx {2}.

Step 2. For 1lsjst-1, consider the l-factor F.. This l-factor will be used

J
to define two parallel classes, S% and s%, as follows. For each (x,y)€F.

J
we have (xl,xz,yl,yz)fs% and (xl,xz,yz,yl)esg. This gives 2(t-1l) parallel
classes. (Note that the 4-cycle (xl,yl,xz,yz) already belongs to the

parallel class Rx, defined in Step 1.)

Y

Step 3. So far, each pair of vertices of Tx {1} has appeared on exactly
three 4-cycles with only one pair of vertices from Tx{2}. In this step of
the proof we define the 3(t-1)(t-2)/2 parallel classes which remain.

Addition is modulo t/2 on the residue class 1, 2, ..., t/2.

For each i, 1=ist-1, and for each k, 1<ks(t-2)/2, take the jth edge,

1<yt /2, (a;rby) of F; in K% together with the (j+k)th edge (c,,d,) of Fy
in KE. Take a C(4,4,1) design on the vertex set {al,bl,cz,dz}. For each 1

and k we get 3(t/2) 4-cycles which can easily be partitioned into three

parallel classes. This gives 3(t-1)(t-2)/2 parallel classes.

Now take the 3(t-1)(t-2)/2 parallel classes just defined, together

with the parallel classes sjl. and s% (1<jt-1) and R, , (lSx<ySt). These
r

3(t=1)(t=2)/2 + 2(t-1) + t(t-1)/2 = (2t-1)(t-1l) parallel classes contain all
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the 2-paths in K,, exactly once each. ®

- The following construction allows us to take an orthogonal array of

strength three and partition it into n

orthogonal arrays of strength one.
In a later construction of resolvable C(n,4,1) designs we will find that
this property will be essential in maintaining the resolvability of the

designs.

5.14 CONSTRUCTION: In this construction we will define an OA(n,4) of
strength three from a Latin square of order n. The columns of this

2

orthogonal array can be partitioned into n“ sets, éach of which is an

OA(n,4) of strength one.

Let A=A(i,]j) be a Latin square of order n with rows, columns and
entries taken from the set {1, ..., n}. Define n permutations pir 1%isn,

of the elements of A by piA(l,c)=A(i,c), 1=c=n.

It is not difficult to verify that for 1<i,j<n and 0=<d<n-1 the n3
columns
(1,3,14d,p5,q(B(1, )07
form an OA(n,4) of strength three. Here addition is modulo n on the

residue class 1, 2, ..., n.

Fix k, 1<k=n, and consider all ordered pairs (i,3;) such that
A(i,ji)=k. Then for a fixed d, 0=d<n-1l, the n columns
(1,344, 05,9k T
form an OA(n,4) of strength one. These orthogonal arrays will be denoted

OA(n,4;d,k).

5.15 THEOREM: If there exists a near-resolvable C(s,4,1) design and a

near-resolvable C(t,4,1) design then there exists a resolvable C(st,4,1)

design.

PROOF: Taking s=2 we see that we have proved this result in Theorem 5.13.
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Thus in what follows we assume without loss of generality that both s26

and t26.

Suppose we have a near-resolvable C(s,4,1) design and a
near-resolvable C(t,4,1) design with wvertex sets S:={1, ..., s} and
T:={1, ..., t}, respectively. Label the vertices of Kg and K¢ with the
elements of § and T, respectively, and label the vertices of Kot with the
elements of T xS, which will also be the vertex set of the resolvable
C(st,4,1) design. We write i. instead of (i,3). Let K% be Ko restricted

3
to the vertex set Tx{i}, ies.

Let F={Fy, ..., Fg_;} and G={G, ..., Gt—l} be l-factorizations of K

and Kt' respectively. Now, arbitrarily order the edges in each l-factor and

if (a,b) is the jth edge of F; (G;) in K (Kt) then we define (ak,bk) to

g (Kt). The proof is presented in three

steps, which are 1illustrated in Figures 1lla, 1llb and 1llc. For this

be the j* edge of F, (G;) in K

illuystration we use s=6.

Step 1. In Figure 1lla we show this step pictorially and have used
Fl={(112)r(314)1(516)}'

Each near-parallel class in the C(t,4,1) design determines a

P,y
parallel class in the C(st,4,1) design as follows. For each 4-cycle

(a,b,c,d)ep we create the 4-cycles (ai,bi,gi,di), 1<i<s. These s(t-2)/4

X,y
cycles of length four, together with the s/2 4-cycles (xi,yi,xj,yj), where
(i,j)eFl, form a parallel class in the C(st,4,1) design. In this way we
get t(t-1)/2 parallel classes, one for each near-parallel class in the

near-resolution of the C(t,4,1) design.

Step 2. In this step we do not define any parallel classes of the
C(st,4,1) design. Instead, for each edge (u,v) €Ky we define partial
parallel classes of 4-cycles on Tx{u,v}. These partial parallel classes of
4-cycles contain all 2-paths on the vertices of Tx{u,v} which have not yet

been used in some parallel class of Step 1.
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a) If (u,v)eFl there will be 2(t-1) + 3(t-1)(t-2)/2 partial parallel

b)

classes of &4-cycles defined as follows.

For each 1l-factor Gj in Ky, 1<j<t~-1, we define two partial parallel

classes ©of 4-cycles, S% and S?. For each (a,b)eGj we have
(aysaysby by €83 and  (aysayibyby)€sS. Thus we get 2(t-1) partial

parallel classes of 4-cycles on T x {u,vi. (Note that the 4-cycle
(au,bu,av,bv) was already used in Step 1.)

For each h and Xk, 1<h<t-1 and 1<k<(t-2)/2, we define three partial
parallel classes of 4-cycles on Tx {u,v}. For 1<jst/2 take the jth edge
(agsby) of G in K} together with the (j+k)*P edge (ci,e,) of G in Ky
to form the block {au,bu,cv,ev}. Take the C(4,4,1) design on these
vertices and distribute the three 4-cycles in this design among three
different sets. Thus for each h and k we have 3(t/2) cycles of'length
four which can easily be partitioned into three partial parallel classes,

each containing t/2 vertex disjoint 4-cycles on Tx{u,v}.

If (u,v)e€F;, 2<i<s-1, there will be 3(t-1)(t/2) partial parallel classes
on Tx {u,v} defined. For each h and k, 1s<h<t-1 and 1<kst/2, a partial
parallel class of blocks of size four is formed by taking, for 1<j<t/2,
the jth edge (au,bu) of Gy, in KE together with the (j+k)th edge (cv,ev)
of Gy in KZ to form the blockv{au,bu,cv,ev}. This partial parallel class
of blocks is now replaced, using Theorem 5.5, by three partial parallel

classes of 4-cycles.

Step 3. In Figure 1llb we illustrate this step under the assumption that

(1,2,4,3) is a cycle in the near-parallel class P5,6 of the near-resolvable

C(6,4,1) design.

For each near-parallel class in the C(s,4,1) design we will

Pe,y

define t2 parallel classes in the C(st,4,1) design.
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For 0sdst-1 and 1s<ks<t consider the OA(t,4;d,k) as defined in
Construction 5.14. We define a parallel class P(x,Y;d,k) of 4-cycles based

on this orthogonal array of strength one by:

For each cycle (a,b,c,e)ePX' and for each column (u,v,w,z)T of the

Y
Oa(t,4;d,k) we have

(UarVprWerZg) €P(X,y;d,Kk) .

In addition, we add to P(x,y;d,k) 4-cycles on the vertex set Tx{x,y}
as follows:

1. If (x,y)GFl then any partial parallel class of 4-cycles defined in
Step 2a is added to P(x,y;d,k). This partial parallel class is then
deleted from the sets of 4-cycles constructed in Step 2a.

2. If (x,y)€F;, 2=iss-1, then any partial parallel class of 4-cycles
defined in Step 2b is added to P(x,y;d,k). This partial parallel
class is then deleted from the sets of 4-cycles constructed in Step

2b.

It is easy to see by a counting argument that the number of partial
parallel classes of 4-cycles which were defined in Steps 2a and 2b is at
least as great as the number of partial parallel classes of 4-cycles which

are to be deleted from these steps.

Step 4. This final step is shown in Figure 1llc. We assume in the
illustration that F,={(1,6),(2,4),(3,5)}. The cycles shown are thus taken
from Step 2b.

For each edge (x,y)eFl the number of partial parallel classes of
4-cycles on Tx{x,y} remaining from Step 2a is 3(t/2-1)(t-1) + 2(t-1) - t2
= (t2—5t+2)/2. For each edge (x,y)€F;, 2<is<s-1, the number of partial
parallel classes of 4-cycles on T x {x,y} remaining from Step 2b is

30£/2)(t-1) -t% = (t2-3t)/2.

For each edge in F; take a partial parallel class of 4-cycles from

Step 2a. The collection of these s/2 partial parallel classes forms a
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parallel class in the C(st,4,1) design. Delete these partial parallel
classes from Step' 2a. Repeat this step (t2-5t+2)/2 times until all such

partial parallel classes are accounted for.

For 2<i<s-1 take, for each edge in F;, a partial parallel class of
4-cycles from Step 2b. These s/2 partial parallel classes form a parallel
class in the C(st,4,1) design. Delete these partial parallel classes from
Step 2b. Repeat this step (t2-3t)/2 times so that no partial parallel

classes remain in Step 2b.

We now check to see that we have the correct number of parallel

classes. The total number of parallel classes created at each step of the

proof is:
Step 1 t(t-1)/2
Step 3 t2s(s-1)/2
Step 4 (t2-5t+2)/2 + (£2-3t)(s-2)/2.

The sum of these numbers is (st-1)(st-2)/2 as required and thus we
have constructed a resolvable C(st,4¢,l) design (of course one alSo needs to

check that every 2-path is accounted for). =

5.16 THEOREM: If there exists a resolvable C(s,4,1) design and a

near-resolvable C(t,4,1) design, then there exists a resolvable C(st,4,1)

design.

PROOF: The proof of this theorem is very similar to the proof of Theorem

5.15.

Suppose we have a resolvable C(s,4,1) design with vertex set

1, ..., s} and a near-resolvable C(t,4,1) design with vertex set

1]
A A

S
T:={1, ..., t}. Label the vertices of K, and K, with the elements of S and
T, respectively, and label the vertices of K¢, with the elements of TXS.

This set will also be the vertex set of the C(st,4,1) design and we write
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ij instead of (i,j). Finally, we define K% to be Ky restricted to the

vertex set Tx{i}, ies.

 Let F={Fis oy Fg_} and G={G, ..., G,_1} be l-factorizations of K
and K., respectively. Now arbitrarily order the edges in each l-factor, and
if (a,b) is the i™ edge of F; (G;) in K  (K,) then we define (ay,by) to

:th : k k
be the j edge of F; (G;) in K¢ (Ke) .

Step 1. This is the same as Step 1 of Theorem 5.15. We get t(t-1)/2
parallel classes, one for each partial parallel class in the

near—resolution of the C(t,4,1) design.

Step 2. This is the same as Step 2 of Theorem 5.15.

Step 3. This step differs from the corresponding step of Theorem 5.15
because the C(s,4,1) design is actually resolvable, not near-resolvable.
For each parallel class P in the C(s,4,l1) design we define 2 parallel

classes in the C(st,4,1) design.

For 0=dst-1 and 1<k<t consider the OA(t,4;d,k) as defined in
Construction 5.14. We define a parallel class P(d,k) of 4-cycles based on

this orthogonal array of strength one by:

For each «cycle (a,b,c,e)€P and for each column (u,v,w,z)T of the

OA(t,4;d,k) we have

(Uarvbrwcrze) €p(d,k).

Step 4. This is similar to Step 4 of Theorem 5.15, except for the fact
that no partial parallel classes of 4-cycles have yet been used from Step
2. For each edge (x,y)EFl the number of partial parallel classes of
4-cycles on Tx {x,y} to be used from Step 2a is (3t-2)(t~1)/2. For each
edge (x,y)eFi, 25i<s5-1, the number of partial parallel classes of 4-cycles

on Tx{x,y} to be used from Step 2b is 3t(t-1)/2.
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The rest of the proof closely follows Step 4 of Theorem 5.15,

. We now count the total number of parallel classes created at each step

of the proof.

Step 1 t(t-1)/2
Step 3 t2(s-1)(s-2)/2
Step 4 (3t-2)(t-1)/2 + 3t(t-1)(s-2)/2

The sum of these numbers 1is (st-1)(st-2)/2 as required and thus we

have constructed a resolvable C(st,4,1) design. =

5.17 THEOREM: If there exists a resolvable C(s,4,1) design and a

resolvable C(t,4,1) design then there exists a resolvable C(st,4,1) design.

PROOF: The proof of this theorem is very similar to the proof of Theorem

Suppose we have resolvable C(s,4,1) and C(t,4,1) designs with vertex
sets S:={1, ..., s} and T:={1, ..., t}, respectively. Label the vertices of
K. and K; with the elements of § and T, respectively, and label the
vertices of Kgy with the elements of TxS. This set will also be the vertex
set of the C(st,4,1) design and we write ij instead of (i,j). Finally, we
define K% to be Ky, restricted to the vertex set Tx{i}, ies.

Let F={F), ..., Fgq_y} and G={Gy, ..., G,_;} be l-factorizations of K
and Kt, respectively. Now, arbitrarily order the edges in each l-factor and
if (a,b) is the jth edge of F; (G;) in Ky (K;) then we define (ay,by) to
be the 3P edge of F; (6;) in KE (kF).

Step l. For each parallel class P in the C(t,4,1) design we get a parallel
class in the C(st,4,1l) design as follows. For each 4-cycle (a,b,c,d)€P we
create the 4-cycles (ai,bi,ci,di); 1<i<s. These st/4 cycles of length four
form a parallel class in the C(st,4,1) design. We thus get (t-1)(t-2)/2
parallel classes, one for each parallel class in the resolution ocf the

C(t,4,1) design.
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Step 2. In this step we do not define any parallel classes of the
C(st,4,1 design. Instead, for each edge (x,y)€Kg we define partial
parallel classes of 4-cycles on Tx{x,y}. These partial parallel classes of
4-cycles contain all 2-paths on the vertices of Tx{x,y} which have not yet

been used in some parallel class of Step 1.

For each (X,y)€F;, where 1<i<s-1, 3(t-1)(t/2) partial parallel classes
on T x {x,y} will be defined. For each 1<h<t-1 and 1<ksSt/2 a partial
parallel class of blocks of size four is formed by taking, for 1<jst/2,
the j*P edge (ayby) of Gy in Kf together with the (3+k)™% edge (cy,e)) of
G, in K¥ to form the block {ax,bx,cy,ey}. This partial parallel class of
blocks is now replaced, using Theorem 5.5, by three partial parallel

classes of 4-cycles.

. Step 3. This step is the same as Step 3 of Theorem 5.16.

Step 4. Again, this is similar to Step 4 of Theorem 5.15, except for the
fact that no classes of 4-cycles have yet been used from Step 2. For each
edge (x,y)eFi, 1<i<s~1, the number of classes of 4-cycles on Tx{x,y} to be

used from Step 2 is 3t(t-1l)/2.
The rest of the proof closely follows Step 4 of Theorem 5.15.

We now count the total number of parallel classes created at each step

of the proof.

Step 1 (t-1) (t-2)/2
Step 3 £2(s-1)(s-2)/2
Step 4 3t(t-1)(s-1)/2

The sum of these numbers is (st-1)(st-2)/2 as required and the

C(st,4,1) design is thus resolvable. K&

Using the theorems and lemmas of this chapter we are able to find
resolvable C(n,4,1) designs for 87 of the 100 admissable values of n up to

400.
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5.18 THEOREM: Let X = {132, 156, 204, 220, 228, 236, 276, 292, 300, 348,
364, 372, 396}. If 4<n<400 and n=0 (mod 4) then there exists a resolvable

C(n,4,1) design, except possibly for ne€Xx.

PROOF: The proof is presented in Appendix 2. ®
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CHAPTER 6
EXACT COVERINGS USING 5-CYCLES

In this chapter we look at the problem of finding C(n,5,A) designs.
There are (n)(n-1)(n-2)/2 2-paths in K, and every 5-cycle contains five
2-paths., Thus if there exists a C(n,5,A) design then An(n-1){n-2)=0 {(mod
10). If XA is not a multiple of five then the necessary conditions for the
existence of a C(n,5,A) design are that n=0, 1 or 2 (mod 5). If A is a
multiple of five then there are no conditions on n for the existence of a

C(n,5,7\) design.

The following work was done with Dr. R. Mathon of the University of
Toronto. We construct C(n,5,1) designs for n=5,6,7 and 10. These are

presented below.

6.1 THEOREM: There exists a C(5,5,1) design.

PROOF: The six 5-cycles in the design are listed below (addition 1is
modulo 5 on the residue class 1, ..., 5). It is a simple matter to verify
the existence of all paths of length two.

(1,2,3,4,5) (1+i,5+1i,2+1i,4+1i,3+1) 0<i<4, =

6.2 THEOREM: There exists a C(6,5,1) design.

PROOF: Using the point set {=, 1, ..., 5}, the twelve cycles of length
five in a C(6,5,1) design are listed below. The point « is a fixed point,
addition is modulo 5 on the residue class 1, ..., 5, and 0<i<4.

(1,2,3,4,5) (o, 1+1,3+1,2+1,4+1)

(1,3,5,2,4) (o0, 1+1,2+1,4+1i,5+i)., =

6.3 THEOREM: There exists a C(7,5,1) design.

PROOF: The following twenty one cycles of length five (with addition
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modulo 7 on the residue class 1, ..., 7) cover every 2-path exactly once
each. Here we take 0<i<6.
(1+i,4+i,6+1i,3+1i,2+1) (3+1i,4+4i,6+1i,7+1,5+1)

(1+1i,3+4i,6+i,7+i,4+1). =

6.4 LEMMA: There exists a C(10,5,1) design.

PROOF: The point set that we use is {=, 1, ..., 9}, where = is a fixed
point. Addition is modulo 9 on the residue class 1, ..., 9, and 0<i<8. The

following seventy-two cycles of length five contain each 2-path once.

(=,14i,3+1i,2+1,4+1) (®,241,3+1i,5+1,6+1)
(e=,7+1,4+41,2+1i,8+1) (=, 7+1,3+i,4+1,9+1)
(2+1,3+1i,4+i,8+1i,5+1i) (3+i,4+i,1+i,6+1,8+1)
(5+i,7+1,9+i,6+1i,1+1) (1+4i,3+i,8+i,5+i,4+1i). *

The C(11,5,1) design and the C(12,5,1) design given below were found
very recently by R. Mathon. I would like to thank him for allowing me to

reproduce them here.

6.5 LEMMA: There exists a C(11,5,1) design.

PROOF: The following design is based on the set {0, ..., 10}. Addition is
modulo 11 and 0<i<10. The ninety-nine 5-cycles listed contain each 2-path

of Kll once.

(0+1i,1+1i,241,10+1i,3+1) (O+i,141,5+1,10+i,8+1i)
(0+i,3+1,6+i,8+1i,9+i) | (0+i,10+i,6+1i,1+1i,3+1)
(0+1i,9+i,7+i,2+i,5+1) (0+1i,1+i,10+i,3+i,6+1i)
(0+1i,5+1,10+1i,6+1i,4+1) (0+1,10+i,1+1i,8+1,5+1)

(O+1,4+1,8+1i,7+1i,1+1i).

When i=0 we note that each of the 5-cycles in the first column can be
obtained by multiplying each entry in the preceding 5-cycle by 3. Also note

that in the second column the first and second 5-cycles and the third and
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fourth 5-cycles are ‘additive inverses' of each other. =

6.6 LEMMA: There exists a C(12,5,1) design.

PROOF: The following design is based on the set {=, 0, ..., 10}. Addition

is modulo 1l and 0<i<10. The 132 cycies of length 5 that are listed below

contain each 2-path of K,, once.

(o+i,0+1i,10+1,7+1,2+1)
(=+i,0+i,8+i,10+i,6+1)
(o+i,0+1,2+i,8+i,7+1)
(+i,0+1i,6+i,2+1i,10+i)
(o+i,0+1i,7+i,6+i,8+1)

(O+i,1+i,10+i,3+i,6+1)

(0+i,1+1,2+1i,10+1,3+1)
(0+1i,3+1i,6+i,8+1,9+i)
(O+i,9+4i,7+1i,2+1,5+1)
(O+i,5+i,10+i,6+i,4;i)
(O+1i,4+1i,8+1i,7+1i,1+1)

(0+1i,10+i,6+1,1+1,3+i).

Note that when i=0 the second through fifth 5-cycles in each column
can be obtained from the one preceding it by multiplying each number (other

that «) by 3. =

As in the case of C(n,4,\) designs we are able to use 3-designs and
existing C(n,5,\) designs to construct more C(n,5,%) designs. The following
lemma is an obvious extension to Lemma 1.7, as is its proof.

6.7 LEMMA: Let R={n;, ..., n.}. If for each n;, 1<i<r, there exists a
C(ni,S,X) design and if there exists a 3-(n,K,u) design then there exists a

C(n,5,A*u) design.

For example, using this lemma and various 3-designs (see [HHK]) we see

that there are also C(n,5,1) designs for ne{l17,21,22,25,26}.

Whether or not C(n,5,1) designs exist for all permissible values of n
is an interesting problem to pursue. However, even for the small cases, the
problem is large and could take a very long time to solve on the computer.
It therefore appears that using the computer to solve this problem 1is

inappropriate, but an attempt to use design theory or group theory could

77



possibly result in further C(n,5,1) designs.
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APPENDIX 1

In the Introduction, we discussed the problem of finding a set of
(n-1)(n-2)/2 Hamilton cycles in K, so that every 2-path lies on exactly one
Hamilton cycle. Using a method described by L. E. Dickson [D2], we found
3316 distinct solutions to the problem when n=17. The irreducible

pelynomial in GF(24) that was used was a®

=a+l. We now present the 120
cycles for one of these solutions, except that we write i instead of ai—l

when 2£i£15.

® 0 1 5 9 10 8 13 3 15 2 6 1l 4 12 7 14
® 1 0 2 3 8 10 12 9 4 5 11 6 15 13 14 7
® 2 5 1 11 4 15 14 6 8 0 3 9 10 7 12 13
® 3 9 11 1 12 13 8 0 14 6 2 5 7 10 4 15
® 4 15 8 14 2 5 11 7 1 10 12 13 0 6 3 9
® 5 2 0 6 15 4 7 11 10 1 9 3 8 14 13 12
& 6 11 9 5 7 14 15 2 13 3 0 1 12 4 10 8
= 10 8 15 13 0 1 9 12 5 4 7 14 2 3 6 1l
® 0 2 6 10 1l 9 14 4 1 3 7 12 5 13 8 15
® 1 5 11 g 6 3 7 15 0 9 14 13 2 12 10 4
& 2 0 3 4 9 11 13 10 5 6 12 7 1 14 15 8
® 3 6 2 12 5 1l 15 7 9 0 4 10 1l 8 13 14
® 5 1 9 15 3 6 12 8 2 11 13 14 0 7 4 10
& 6 3 0 7 1 5 8§ 12 11 2 10 4 9 '15 14 13
& 7 12 10 6 8 15 1 3 14 4 0 2 13 5 11 9
= 11 9 1 14 0 2 10 13 6 5 8 15 3 4 7 12
o 0 3 7 11 12 10 15 5 1 4 8 13 6 14 9 1
® 2 6 12 9 7 4 8 1 5 10 15 14 3 13 11 5
® 3 0 4 5 10 12 14 11 9 7 13 8 2 15 1 9
® 4 7 3 13 6 2 1 8 15 0 5 11 12 9 14 15
® 6 2 10 1 4 7 13 9 11 12 14 15 0 5 11
® 7 4 0 8 2 6 9 13 14 3 11 5 10 1 15 14
® 8 13 11 7 9 1 2 4 10 5 0 3 14 6 12 10
« 12 10 2 15 0 3 11 14 13 6 9 1 4 5 8 13
o 0 4 8 12 13 11 1 6 2 5 9 14 7 15 10 1
o 2 10 15 7 14 9 5 3 0 1 11 13 12 8 4 5
o 3 7 13 10 8 5 9 2 6 1l 1 15 4 14 12 9
o 4 0 5 6 11 13 15 12 10 8 14 9 3 1 2 15
& 6 12 14 4 15 1 11 0 3 9 5 8§ 10 13 7 11
o 7 3 11 2 5 8§ 14 10 12 13 15 1 0 9 6 14
&= 8 5 0 9 3 7 10 14 15 4 12 6 11 2 1 10
= 12 6 © 0 1 15 13 4 7 14 8 5 2 11 3 13
® 0 5 9 13 14 12 1 7 3 6 10 15 8 1 11 2
® 1 2 3 12 7 13 0 14 9 11 8 4 10 0 6 5
® 3 11 1 8§ 15 10 9 4 0 2 12 14 13 9 5 6
= 4 8§ 14 11 9 6 15 3 7 12 2 1 5 15 13 10
= 7 13 15 5 1 2 14 0 4 10 6 9 11 14 8§ 12
e 8 4 12 3 6 9 10 11 13 14 1 2 6 10 7 15
e 9 6 0 10 4 8 3 15 1 5 13 7 12 3 2 11
© 13 7 10 0 2 1 12 5 8 15 9 6 3 12 4 14
® 0 6 10 14 15 13 2 8 4 7 11 1 9 1 12 3
® 1 1 8 7 4 12 5 10 15 14 6 0 3 0 13 9
@ 2 3 4 13 8 14 0 15 10 12 9 5 11 5 7 6
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APPENDIX 2

We present here the proof of Theorem 5.18. The values of n (45<n<400)
for which a resolvable C(n,4,l1) design is known to exist are listed in
tabular form, along with the results used to justify their resolvability.
For those values of n for which there exists a resolvable 5QS(n), we write
* to mean Theorems 5.1 and 5.5 are used in the proof. All unsolved values
are listed with a dash (-) beside them; their resolvability could be proved

by finding near-resolvable designs of an appropriate order.

n Theorems & Lemmas used n Theorems & Lemmas used
4 * 84 5.9, 5.11 and 5.15
8 * 88 *

12 5.9 and 5.13 92 *

16 * 96 5.17

20 * 100 *

24 5.6 104 *

28 * 108 5.9, 5.12 and 5.15
32 * 112 *

36 5.12 and 5.13 116 *

40 * 120 5.10 and 5.16

44 * 124 *

48 5.17 128 *

52 * 132 -

56 * 136 *

60 5.9, 5.10 and 5.15 140 *

64 * 144 5.17

68 * 148 *

72 5.12 and 5.16 152 *

76 * . 156 -

80 * : 160 *
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n Theorems and Lemmas used n Theorems and Lemmas used
164 * 284 *
168 5.11 and 5.16 288 5.17
172 * 292 -
176 * 296 *
180 5.1C, 5.12 and 5.15 300 -
184 * 304 *
188 * 308 *
192 5.17 312 5.9 and 5.16
196 * 316 *
200 * 320 *
204 - 32¢ 5.12 and 5.15
208 * 328 *
212 * 332 *
216 5.12 and 5.16 336 5.17
220 - 340 *
224 * 344 *
228 - 348 -
232 * 352 *
236 - 356 *
240 5.17 360 5.9 and 5.16
244 * 364 | -
248 * 368 *
252 5.11, 5.12 and 5.15 372 -
256 * 376 *
2690 * 380 *
264 5.9 and 5.16 384 5.17
268 * 388 *
272 * 392 *
276 - 396 -
280 * 400 *
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