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ABSTRACT 

The main problem which is presented in this thesis is that of finding 

collections of cycles of length four such that each 2-path of K, occurs on 

exactly X of these cycles. In Chapter 2 it is shown that the necessary 

conditions for the existence of such a collection of cycles is also 

sufficient. Block designs are used in solving many of the cases and, in 

addition, some new methods of creating block designs are given. 

In Chapters 3 and 4, respectively, we present the covering and packing 

variants of the above problem. That is, we look for maximal (minimal) 

collections of 4-cycles containing each 2-path of K, at least (at most) A 

times. In Chapter 5 we look at finding resolvable collections of such 

4-cycles. 

The cases where the 2-paths are covered by cycles of length n and 

cycles of length five are discussed in Chapters 1 and 6, respectively. 
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CHAPTER 1 

INTRODUCTION 

In most graph decomposition problems one is concerned with 

partitioning the edges of a graph into subgraphs, each of which is 

isomorphic to a graph in a fixed family of graphs, or has a particular 

property. In this thesis we consider the problem in which the graph is the 

complete graph, the items we are interested in partitioning are the paths 

of length two and the subgraphs formed by the edges in each partition are 

cycles of a fixed length. The history of one of these particular problems 

is presented below and also appears in [N]. 

1.1 Dickson ' s Problem 

Originally the problem presented below was most probably thought of as 

some sort of intriguing puzzle, as were many other graph theoretical 

problems. Perhaps for this reason, the work which was done on this problem 

was, apparently, 'lost' for quite some time. I would like to thank A. Rosa 

for providing me with the reference [~l] to work done by L.E. Dickson. 

This provided the necessary clue to finding the earlier papers and 

Dickson ' s 1905 paper. 

In 1899, C. H. Judson [~l] posed the following problem. 

"Seven persons met at a summer resort, and agreed to remain as many 

days as there are ways of sitting at a round table, so that no one shall 

sit twice between the same two companions. They remained fifteen days. It 

is required to show in what way they may have been seated." 

Exactly one year later, Judson [ 5 2 ]  gave seating arrangements for the 

same problem with six people and with eight people. The problem of seating 

seven people now began to look quite difficult, and the editor of the 



journal offered one year's free subscription to the first person to provide 

a solution. This prize no doubt went to F. H. Safford [Sl] who gave a 

seating arrangement for seven people (which he believed was unique) and 

also provided another solution to the "six-problem" which he claimed was 

non-isomorphic to the solution given by Judson. In [S2], Safford showed 

that there are at most two non-isomorphic solutions to the "six-problem" 

and L. E. Dickson [~2] proved that Judson's solution and Safford's solution 

were, in fact, distinct. 

In 1905, L. E. Dickson [~3] generalized the original problem to 

seating n people at a round table on (n-l)(n-2)/2 consecutive days. In this 

paper he gave necessary and sufficient conditions for a group solution and 

used these conditions to obtain solutions for n = 4, 5, 6, 8, 10 and 12. 

Also in 1905, H. E. Dudeney (see [D4]), apparently unaware of the earlier 

work, asked the readers of the Daily Mail to solve the problem of seating 

six people on ten occasions. 

In The Canterbury Puzzles ( [D4], originally published in 1907), H. E. 

Dudeney asked the same question that Judson had asked in 1899 [~l], In the 

solution section of the same book, Dudeney provided a solution to this 

question. He also wrote that Ernest Bergholt had found an easy method for 

solving all cases where n=p+l, p prime, and E. D. Bewley had found a 

method for solving all cases where n is even. Since these statements were 

not accompanied by any proofs it is doubtful that either Bergholt or Bewley 

had solved what was claimed. In [DS] Dudeney provided solutions to the 

above problem for 451612 and claimed that he also had solutions for 131n525 

and n=33. The reasons for the omission of the proofs to these results was 

quite possibly due to the the recreational (and not mathematical) nature of 

the questions. 

Graph theoretically, the problem becomes that of finding (n-l)(n-2)/2 

Hamilton cycles in Kn, the complete graph on n vertices, so that every 

path of length two occurs on exactly one of the cycles. We call such a set 



of Hamilton cycles a complete set of pairwise orthogonal Hamilton cycles - in 

Q (abbreviated to: complete set of POHC(n)). C. Huang and A. Rosa [HR] 

were also unaware of Dickson's work when they wrote their paper which 

contained a constructi~n for a complete set of pOHC(n) where n=p+l and p 

is a prime. In the same Paper they mention that they have found several 

distinct cyclic solutions for n=13 and 15. 

More recently, David Wagner (personal communication) observed that if 

there exists a perfect 1-factorhation of the complete graph on n points, 

, then the set of Hamilton cycles formed by the union of every two 

1-factors in the l-factorization forms a complete set of pOHC(n). It is 

known that perfect 1-factorizations of K, exist for n=p+l, n=2p (where p is 

an odd prime), all even n where ns38, n=50, n=244 and n=344 ([MR], [SSl] 

and [ss~]). Notwithstanding the claims made by Ernest Bergholt and E. D. 

Bewley, this provides us with many new solutions to our problem. 

1.1.2 Dickson's Method 

Let x=(o, 1, a3, a4, . . . , an-l). We want to find a set of 

(n-1) (n-2)/2 Hamilton cycles in s, where XU (=I is the vertex set of Kn, 

so that every path of length two occurs on exactly one cycle. Let the 

'first' Hamilton cycle be denoted by 

= 0 1 a3 a4 ... an- 1 (1) 
(= will always appear first). We will also call Hamilton cycles 

arrangements since they are an arrangement of the vertices of K,, The 

arrangement (1) is called the initial arrangement. We wish to obtain the 

remaining Hamilton cycles from (1) by suitable group operations on 0, 1, 

...I an-l. Let G be a group of permutations acting on the set X. Then if 

we consider, for now, the arrangement (1) to be different from 

0) an-l . . . a4 a3 1 0  (2) 

then we see that the permutation group G=(G,X) by which the initial 

arrangement is permuted into the remaining arrangements must be sharply 

2-transitive, since = must be between each pair of group elements exactly 



once. Thus G, which has degree n-1, is of order (n-l)(n-2). The following 

theorem ~Oncerning sharply 2-transitive groups appears in Permutation 

Groups @ Combinatorial Structures by N. L. Biggs and A. T. White ([Bw], 

p. 127). We Present it here in a shorter form. 

1.1 THEOREM: If (GrX) is a sharply 2-transitive group, then 1x1 is a - 
prime power, pe. 

That is, n=pe+l and we can consider X to be the elements of GF(~~), 

where p is any prime number. Since the group of affine transformations of 

a finite field is a group that acts sharply 2-transitively on the elements 

of the field, Dickson claimed that we may take this group as G. That is, G 

is the group of affine transformations of the finite field GF(pe) and the 

ai are elements of GF(pe), al=O and a2=1. 

In 1905, all the 2-transitive groups of degree pe and order ~ ~ ( ~ ~ - 1 )  

for all p when e = 1, 2, or 3, and for pe=24 were known. It is interesting 

to note that after stating this, Dickson wrote "if further exceptions 

occur, they arise for pe181, so that their use in the present problem 

would be impracticable". 

Now, given an arrangement (1) the remaining arrangements will be 

obtained by applying the affine transformations S,,,fG to the elements of 

GF(pe), where r and s belong to G F ( ~ ~ )  and r10. S ,  replaces (1) by 

s r + s  a3r+s a4r+s ... an-lr + s ( 3 ) .  

Since a complete set of POHC(n) consists of (n-l)(n-2)/2 Hamilton 

cycles, only half of the arrangements (2) can be taken. In order to be 

able to choose exactly half of the cycles and still cover every 2-path 

exactly once, the ai must be chosen in such a way that there exists a TfG 

that replaces (1) by (2). 

That is, T(ai)=an-i and it is not difficult to see that T is defined 

by T(x) = -x + an-l. If now we define q = 1 (pe-1)/2 1, then since we require 



an-i = -ai +an-l we have the following conditions on the ai: 

The transformations Srls and TSr, thus give the same arrangements, 

but in reverse order, and therefore we keep only one of these two 

transf ormations . This results in I G 1 /2=(n-1) (n-2)/2 arrangements as 

required . 

We must now make sure that these (n-l)(n-2)/2 Hamilton cycles give a 

complete set of POHC(n). The equations which arise from the conditions that 

no two Hamilton cycles have a 2-path in common can be written as: 

(ai+2-ai)/(ai+l-ai) * (aj+2-aj)/(aj+l-aj) l<i< jln-3 

Thus Dickson arrived at the following theorem. 

1.2 THEOREM: If n=pe+l and there exists an arrangement - 
0 1  11 a31 an-l 

of the elements of GF(~~) satisfying conditions (4) and (5) then there 

exists a complete set of pairwise orthogonal Hamilton cycles in s. 

PROOF: Since the ai satisfy conditions (4) ,  the Hamilton cycles obtained 

by applying the transformations in G to (1) occur twice each. By choosing 

only one of the two transformations S,, and TS,,, in G we get 

(n-l)(n-2)/2 Hamilton cycles as required. 

The ai also satisfy conditions ( 5 )  and so no 2-path occurs on more 

than one Hamilton cycle. Thus, since there are (n-l)(n-2)/2 Hamilton 

cycles, every 2-path occurs on exactly one Hamilton cycle. . 
Using the (n-3)(n-4)/2 + q conditions (4) and ( 5 ) ,  Dickson gave 

solutions for pe = 3, 4, 5, 7, 9 and 11. We give below the (corrected) 

. example in Dickson's paper [ 0 3 ]  for pe=5. We list the transformations Srls 

and TSrl before the Hamilton cycle obtained from them. 



If we define fi=(ai+2-ai)/(ai+l-ai) then condition (5) tells us that 

the fi must be distinct (l<i<n-3) and, since the ails are also distinct, 

different from 0 and 1. Now let gi=fi-1. Then clearly the gi form a 

permutation of the elements of GF(~~)-(o,-~]. If we also let ri=glg2.. .gi 

then, since a3=a2 + all it can be shown by induction that 

ai=ai-l+ ri-2 31iIn-1 (6). 

We now see that conditions (4) and equation (6) give rn-3=l and 

~ ~ - ~ - ~ = r ~ - ~ ~  2SiSq. 

The following theorem, also due to Dickson, offers an alternate way of 

finding an initial arrangement. 

1.3 THEOREM: Let n=pe+l and let gl, g2' . . . , - gn-3 be a permutation of 

the elements of GF(~~)-(o,-~). If the ai defined by (6) are all distinct 

and satisfy conditions (4) then there exists a complete set of pairwise 

orthogonal Hamil ton cycles of $. 

PROOF: Since the ai are all distinct and satisfy conditions (4) it 

remains to be shown that the ai satisfy conditions ( 5 ) .  This, however, 

follows from the definition of the fi and gi. The rest of the proof 

follows from Theorem 1.2. . 
1.4 THEOREM: There exists a complete set of pairwise orthogonal Hamilton - 
cycles in K17. 

PROOF: Consider the polynomial a4=a+l in the field GW~). The 

arrangeinent 

4 8 9 7 ,12 .2 .14 a a5 ,lo .3 ,13 = O l a  a a a 



satisfies conditions (4) and ( 5 )  and hence by Theorem 1.2 there is a 

complete set of pairwise orthogonal Hamilton cycles in K17 . 
The above arrangement was found in the following way. Using the method 

presented in [~3] (and also presented above), a computer was used to find 

Hamilton cycles in K17 which could be extended to complete sets of 

POHC(17). First, the addition and multiplication tables of elements in 

4 GF(2 ) were defined using the polynomial a4=a+l, which is irreducible in 

Z2. There are 277! orderings of the elements in GF(~~)-{o,~) satisfying 

(7). For each of these ordering5 gl, g2, . + . ,  g14, the products ni were 

calculated. Next, the ai were defined recursively by 

ai : =ai-l+ri-2 39.116. 

If the ai satisfied the conditions of Theorem 1.3 then 

= 0 1 a3 a4 ... a16 

was known to be an initial arrangement which could be extended to a 

complete set of POHC(17). 

In fact, using the above algorithm, 3316 initial Hamilton cycles were 

found. By Theorem 1.2 these can all be extended to complete sets of 

POHC(17). One of these complete sets of POHC(17) is given in Appendix 1. 

Dickson claimed that the number of arrangements (1) which satisfy the 

conditions in Theorem 1.2 increases rapidly with n. Unfortunately, he did 

not supply a proof of this claim. The large number of initial arrangements 

found for n=17 does, however, lend support to his claim. 

The first unsolved case of Dickson's problem for which the above 

method can be used is r1=2~+1=33. However, due to the size of this problem 

(there are 450 conditions on the ai), a solution was not attempted. Due to 

the number of solutions found for pe+l=17 the author feels safe in 

pkesenting the conjecture that many solutions also exist for pe+l=33. 

The first value of n for which it is not known whether or not a 

complete set of POHC(n) exists is now n=19. 



1.2 & More General Problem 

More generally, one can ask for a family of k-cycles (cycles of length 

k) in Y, SO that every 2-path lies on exactly A cycles. Such a family of 

cycles will be calied an exact covering of the 2-paths of Y, by k-cycles. 

1.5 DEFINITION: A C(n,k,h) design is a family of k-cycles in in which - 
each 2-path of Y, occurs exactly A times. 

The case k=3 is, of course, trivial since one would simply take as the 

3-cycles A copies of all of the subsets of size 3 of the n-set 

representing the vertices of Q. 

The case k=n was presented in Section 1.1. That is, we have already 

discussed all that is known about C(n,n,l) designs. When k=5 the problem is 

also interesting although not much work has been done in this area. In 

Chapter 6 this problem is discussed briefly and some results are presented. 

The case k=4 is particularly interesting because of its close 

connection with Steiner quadruple systems. A Steiner quadruple system 

SQS(n) is an ordered pair ( X , P )  where 0 is a family of 4-subsets (blocks) 

chosen from an n-set, X I  so that every 3-subset occurs in exactly one of 

the blocks. In terms of the graph Kn, this is a covering of the triangles 

of by K4 subgraphs so that every triangle is in exactly one of the 

quadruples. Steiner quadruple systems of order n are also known as 

3-(nr4,1) designs and it is well known (Hanani, [Hl]) that a 3-(n,4,1) 

design exists if and only if n=2,4 (mod 6). Since a C(4,4,1) design is 

easily constructed one sees immediately that Hanani's result implies the 

existence of a C(n,4,1) design whenever n=2,4 (mod 6). 

In general, a 3-(n,B,A) design is a family of subsets of size four 

taken from an n-set so that each 3-subset occurs exactly A times. For such 

designs with A21 we have the following result of Hanani [H2]. 



1.6 THEOREM: Necessary and sufficient conditions for the existence of a - 
3-(n, 4, h )  design are 

1. h e 0  (mod 2) 

2. X(n-l)(n-2)=O (mod 3) and 

3. Xn(n-l)(n-2)=0 (mod 8). 

Again, this gives rise to C(n ,A) designs. A more general statement 

is possible, however, by making use of 3-(n,K,X) designs. A 3-(n,K,A) 

design is a family of blocks with elements chosen from an n-set with the 

property that every 3-subset occurs in exactly X of them and the size of 

each is a member of the set K. 

The following shows how one can recursively construct C(n,4,1) designs 

given that certain 3-designs exist. Although Lemma 1.7 can obviously be 

extended to cycles of length r, rL3, it is presented here for r=4 as this 

case is the one studied for the most part. 

1.7 LEMMA: If there exists a 3-(n,K,A) design, and if for every keK - 
there exists a covering S of the edges of Kk by 4-cycles so that every 

2-path occurs on exactly cc 4-cycles, then the edges of K, can be covered 

by 4-cycles so that each 2-path occurs on exactly cc*X 4-cycles. 

PROOF: Replace each block B ~ = E V ~ ~ ,  . . ., vik3 of the 3-(n,~,h) design by 

the covering S of Kk based on the set Bi. Call this covering Si. Thus 

every 2-path having vertices from the elements of the block Bi will occur 

on exactly cc 4-cycles. Since every 3-element subset of the n-element set 

occurs in exactly X blocks we see that every 2-path will occur cc-A times 

in the union of the Si. 

The following theorem due to Hanani [ ~ 3 ]  can be useful in finding 

C(n,k,h) designs. In light of Thsorem 1.9 which follows, this result does 

not contribute anything further to the problem of finding C(n14,X) designs. 

1.8 THEOREM: If q is a power of a prime and d is a positive integer 

9 



d then there exists a 3-(q +l,q+l,l) design. 

If one point is deleted from this design we get a 3-(qdl iq+l,q) ,l) 

design and if two points are deleted we get a 3-(qd-1, {q+l,q,q-l),l) 

design. If r points are deleted from the same block (31rIq-2) we get a 

3-(qd+l-r , (q+l,q,q-l,q+l-r) , 1) design. 

For example, given a 3- (qd+l-r . iq+l, q, q-1, q+l-r) , 1) design and a 

C(n,k,X) design for each n~~q+lIqrq-l,q+l-r), then by Lemma 1.7 there 

d exists a C(q +1-r,k,X) design. 

Before continuing, we need to establish some notation and define some 

terms. We denote by (u,v) the edge incident with vertices u and v and by 

(u,v,w,x) the cycle of length four containing the four edges (u,v), (v,w), 

(w,x) and (x,u). By [x,y,z] we mean the path of length two containing the 

two edges (x,y) and (y,z). For all other graph theory notation the reader 

is ref erred to Bondy and Murty [BM] . 
Consider a graph with n vertices labelled 1, ..., n. The distance 

between two vertices i and j in this graph is m i n i -  j-i , where 
arithmetic operations are carried out modulo n on the residue class 1, . . ., 
n. 

Theorem 1.6 and Lemma 1.7, along with several direct constructions, 

will enable us to prove the main result of this thesis. 

1.9 THEOREM: There exists a C(n,4,Xj design if and only if one of the - 
f 01 lowing hold. 

1. n is even 

2. nrl (mod 4) and hzO (mod 2) 

3. nr3 (mod 4) and XI0 (mod 4). 

To see that these conditions are necessary one simply observes that 

there are n(n-i)(n-2)/2 paths of length two in Kn, each 2-path occurs X 

times and each 4-cycle contains four 2-paths. Thus hn(n-l)(n-2)rO (mod 8) 



is required. Let the vertices of Yh be 1, 2, ..., n and consider the 

4-cycles (1,x12,y). Since each 2-path [1,z,2] must occur X times we require 

~ E O  (mod 2). Together these two c~nditions give the three situations as 

stated in the theorem. 

Chapter 2 deals with the proof of Theorem 1.9 and is divided into 

three sections, each dealing with one of the conditions of the theorem. 

When there does not exist a C(n,4,X) design we consider the problems of 

finding minimal covers and maximal packings of the 2-paths in Y, by 

4-cycles. These problems are discussed in Chapters 3 and 4, respectively. 

When n is a multiple of four a C(n,4,1) design always exists and a natural 

question is to ask if the 4-cycles of the design can be partitioned into 

parallel classes; Chapter 5 deals with this question. Finally, in Chapter 

6, we look quickly at the problem of finding C(n,5,1) designs. 



CHAPTER 2 

EXACT COVERINGS 

Let L(s) denote the line graph of Y, and let X L ( ~ )  be the multigraph 

in which there are h edges between each pair of vertices of I,(%). One can 

ask the following graph decomposition problem, which is equivalent to 

asking when a C(nr4,h) design exists. When can the edges of XL(s) be 

decomposed into cycles of length four, each of which satisfies the 

additional property that the cycle in the line graph corresponds to a cycle 

in the original complete graph? 

The vertices of L(fh) are labelled by the edges that they represent, 

and so the vertex (arb) is the same as the vertex (bra). In this graph the 

edge ((a,b),(b,c)) corresponds to the 2-path [a,b,c] in fh. Thus if a set 
of 4-cycles of K,, can be found so that each 2-path of K,, occurs on exactly 

h 4-cycles then a set of 4-cycles of L(Y,) can be found so that each edge 

of L(G) occurs on exactly h 4-cycles. 

There are basically three types of 4-cycles in the line graph of K,,. 

Let a, b, c, d and e be five distinct vertices of Kn. In L(K,,), cycles of 

the form ((arb), (arc), (a,d), (are)) and ((arb), (arc), (a,d), (b,d)) do 

not correspond to 4-cycles in K,,. However, cycles of the form ((arb), 

(b,c), (c,d), (d,a)) do, in fact, define 4-cycles in Kn. It is this type 

of 4-cycle in L(Kn), which corresponds to the 4-cycle (a,b,c,d) in K,,, that 

we are interested in. 

In this chapter we will prove Theorem 1.9, which is restated below. 

The proof of the theorem, which is divided into three parts, also appears 

in [HN]. When n is even the theorem will be proved by considering the 

graph decomposition problem described above. 

1.9 THEOREM: There exists a C(nr4,X) design if and only if one of the - 
following hold. 



1. n is even 

2. nEl (mod.4) and h=O (mod 2) 

3. n=3 (mod 4) and h=O (mod 4). 

2.1 Case: n is even 

We now show that when n is even, n=2mr the complete graph on n 

vertices can be covered by 4-cycles so that every 2-path occurs exactly 

once on some 4-cycle. In Theorem 2.1 such a covering set is produced. 

These coverings can also be constructed recursively from 3-designs. 

2.1 THEOREM: The edges of K2, can be covered by 4-cycles so that each - 
2-path occurs exactly once on some 4-cycle. 

PROOF: In this proof addition is modulo 2m-1 on the residue class 1, 2, 

. . . , 2m-1. 
Label the vertices of K2, with the symbols a, 1, 2, . . . , 2m-1 and 

consider the line graph of K2m, L(KZm). We wish to cover the edges of 

L(K2m) by 4-cycles so that we satisfy the conditions 

1. each edge of L(K2,) is in exactly one 4-cycle and 

2. these 4-cycles correspond to 4-cycles in Kzm. 

Arrange the vertices of L(KZmj into a (2m-1)xm array A=(ailj), where 

the vertex in cell sill is (=,i) and in cell ai . is (i,i+j-l), lSiS2m-1 
1 3  

and 2SjIm. Now one easily sees that the following 4-cycles of L(K2,) 

satisfy condition 2 as given above: 

and 

Notice that the cycle Ci . contains only vertices from columns i and 
r 3 

j. For OIkS2m-2, develop these m(m-1)/2 cycles as follows (see Figures 1 



and 2): 

ClIi(k) := ((=,l+k), (l+k,i+k), (i+k,2i+k-l), (=,2i+k-1,)) 

and 

'il j (k) := ((l+k,i+k), (l+k,j+k), (j+k,i+j+k-l), (i+k,i+j+k-1)). 

A total of 2-l)(m)(m-2 cycles of length four have just been 

defined and these contain a total of 2m(2m-l)(m-l) edges. This is precisely 

the number of 2-paths in K2m. Thus if each edge of L(K2,) appears in some 

4-cycle then it appears in exactly one 4-cycle. We now show that this is 

indeed the case. 

The edges of the line graph can be divided into four categories: 

1. Edges of the form ( (=,i), (a, j) ) . 
2. Edges of the form 

a. ((=,i), (i,i-j+l)) 

b. (i,i+j-l)) 

which are each incident with one vertex from column 1 and one vertex 

from column j (25 jlm) . 
3. Edges of the form i - j + l i ,  i i + -  which are incident with 

vertices from column j only (25 jSm) . 
4. Edges of the form 

a. ((i+j-l1i), (i,i+k-1)) 

b. ((i+j-l,i), (ill-k+l)) 

c. ((1-j+l,i), (i,i+k-1)) 

d. ((i-~+l,i)~ (ill-k+l)) 

which are each incident with one vertex from column j and one vertex 

from column k (25 j<kSmj. These edges are found by considering a fixed 

vertex (i, - 1  in column j. This vertex is adjacent to the 

vertices (i, i+k-l), i - k +  (i+j-1, i+j-k) and (i+j-1, i+j+k-2) 

in column k. If we then add I-j to the vertices in the latter two 

edges just defined we obtain the four edges given above. 



column 1 column i column i column j 

Figure 1 Figure 2 

We now check to see that each edge from each of these categories 

appears in one of the previously defined cycles of L(K2,). 

1. Suppose without loss of generality that j>i. We now consider 

separately the cases j-i even and j-i odd. 

a. If j-i is even let r=( j-i+2)/2. The edge ((=,i), (=, j)) belongs 

to Clrr(i-l). 

b. If j-F is odd let r=(2m-l+i-j+2)/2. The edge ((=,i), (c, j)) 

belongs to Cllr(j-1). 

2. a. The edge ((=,i), (i,i+j-1)) belongs to Cl .(i-1). 
1 3  

b. The edge ((=,ij, (i,i-j+l)) belongs to Clr j(i-2j+l). 

3. The edge ((i-j+l,i), (i.i+j-1)) belongs to CLIj(i-j). 

4. a. The edge ((i+j-l,i), (i,i+k-1) belongs to Cjrk(i-1). 

b. The edge ((i+ j-l,i), (i,i-k+l) belongs to Cjrk(i-k) . 
c. The edge ((i-j+l,i!, (i,i+k-1) belongs to Cjlk(i-j). 

d. The edge ((i-j+l,i), (i,i-k+l) belongs to C (i-j-k+l). j , k  

So each edge of L(K2,) belongs to some 4-cycle and therefore each 

2-path of R2, belongs to a 4-cycle. 

Hanani [HZ] has shown that for every even n, nL4, there exists a 

3-(nt {4,6), 1) design. Applying L m a  1.7 and using the trivial C(4,4,1) 

design and the easily constructed C(6,4,1) design will also yield the 



desired coverings. 

2.2 Case: nsl (mod 4) 

klen n = 1  (mod 4) it is not possible to cover the edges of Y, with 

4-cycles so that each 2-path occurs exactly once. However, it is possible 

to cover the edges of K4m+l with 4-cycles so that each 2-path occurs 

exactly A times, where As0 (mod 2). Since a covering of the edges of 

by 4-cycles so that each 2-path occurs exactly A times can be obtained by 

taking A/2 copies of a covering of K4m+l by 4-cycles so that each 2-path 

occurs exactly twice, we only consider the case X=2. 

2.2 THEOREM: When n 5 1,5 (mod 12) the edges of K, can be covered by - 
4-cycles so that every 2-path occurs exactly twice. 

PROOF: This foilows from Theorem 1.6 and Lemma 1.7. . 
2.3 LEMMA: The edges of Kg can be covered by 4-cycles so that each - 
2-path occurs on exactly two 4-cycles. 

PROOF: Take two copies of the C(8,4,1) design that is obtained by 

replacing each K4 in Figure 3 by the C(4,4,1) design on those points. 

Remove the following fourteen 4-cycles (in bold in the figure) once only: 

(1,2,3,4)r (1,2,5,8), (1,6,2,7), (1r3Jr5)r (1,3,6,8), (1,4,8,7)r 

(2,3,5,6), (2,7,3r8), (2,4,7r5), (2r4,6,8), (3,5,4,8), (3,4,7,6), 

(5,6,7,8)r (1r5,4,6). 

Now define the diagonals of a 4-cycle (a,b,c,d) to be the two unordered 

pairs of vertices (arc) and {b,d). Each unordered pair of vertices of K8 

occurs once as a diagonal and twice as an edge in the above fourteen 

4-cycles. If (a,b,c,d) is one of these fourteen 4-cycles, then replace it 

with the four 4-cycles (9,b,c,d), (a,9,c,d), (a,b,9,d) and (a,b,c,9). 



Figure 3 

Thus a l l  2-paths [x,9,y] and [9,x,y] occur twice and a l l  2-paths not 

containing vertex 9 s t i l l  occur twice. rn 

We now present th ree  theorems which can be used t o  construct  

C(4m+lI4,2) designs r ecurs ive ly  f o r  a l l  rerraining values of n, where 

n=4m+l. F i r s t ,  we present  a d e f i n i t i o n  and construct ion which w i l l  be used 

i n  the  proofs of these  theorems. 

2.4 DEFINITION: An orthoqonal a r r a y  OA(n,k) of s t rength  t ( l l t l k c n )  and - 
index 1 i s  a k by nt a r r a y  of elements from an n-set such t h a t  f o r  any 

f ixed s e t  of t rows i n  t h e  ar ray ,  each ordered t - tup le  from the  n-set 

occurs exact ly  once a s  a column. 

2.5 CONSTRUCTION: I t  i s  known ([T], [ ~ l ]  and [W2]) t h a t  whenever n24 and - 
n*6,10 t h e r e  e x i s t  t h r e e  mutually orthogonal Latin squares of order n.  If 

A, B and C a r e  th ree  mutually orthogonal Lat in  squares of order  n based on 

the  set E l ,  2,  ..., n), then the  s e t  of n3 column vectors 

- (i, j , ~ ( x , ~ )  ,B(xIy) ) T  (where lii, jSn and ( ( r , y )  runs through a l l  ordered 

p a i r s  such t h a t  C(x,yj=C(i ,  j ) )  i s  an Oh(c,4) of s t rength  3 .  This orthogonal 

a r ray  conta ins  an OA(n,4) of s t rength  2 a s  can be seen by taking only 



and call the remaining n3-n2 columns a. 

2.6 THEOREM: If m24, m#6 or 10, X is even anr - 
design then there exists a C(4m+l14,A) design. 

there exists a C(m+l14,h) 

PROOF: Let si=(si(l), . . . , si(m)], 11i54, be four disjoint sets of size m 

and let = be an element which does not belong to any of these sets. Now 

let S1US2US3US4U (=I be the vertex set of Kqm+i. We want to partition the 
edges of this graph into 4-cycles so that every 2-path occurs exactly h 

times. We do this in three steps (see Figure 4). 

Step I. Take four copies of a C(m+l,4,X) design in which the vertex set 

is, in turn, Sl U {=I.  S2 U I=). S3 U and S4 U {=I. Every 2-path containing 

only vertices from Si occurs on exactly X 4-cycles as does every 2-path 

that contains = and two vertices from Sir lSi14. 

Step 2. We now form 4-cycles so that every 2-path containing two vertices 
from Si and one vertex from S appears A times for all pairs i, j with igj. 

j 

If m is even we take a 1-factorization F1, F2, ..., Fm-l of 'h with 
vertex set Si and a 1-factorization G1, G2, ..., Gm- 1 of I$.,, with vertex 

set Sj. For each edge (u,v) of Fk and each edge (xly) of Gk construct a K4 

2 based on the vertex set (u,~,x,~). This gives a total of (m-1) (m /4) Kqts. 

Note that every pair of vertices from Si appears with every vertex from Sj 

exactly once so that all possible triples with two vertices from Si and 

one vertex from S appears exactly once in some K4. For each of these we 
j 

take a C(4,4,A) design. 

If m is odd we take a Hamilton decomposition F1, F2, ..., F(m-1)/2 of 

K, with vertex set Si and a Hamilton decomposition G1! G2, ..., G(m-1)/2 
of K, with vertex set S For each edge (u ,v )  of Fk and each edge ( x , y )  of 

j ' 
Gk construct a K4 based on the vertex set (u,v,x,y). This will give a 

total of (m-l)(mz/2) K4's. Note that every pair of vertices from Si appears 



Step 1 

Step 2 

Step 3 

Figure  4 
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with every vertex from S exactly twice since in Fk and Gk each vertex has 
j 

degree two. Thus all possible triples with two vertices from Si and one 

vertex from S appear in exactly two different K4's, and for each of these 
j 

we take a C(4,4,h/2). 

Step 3. Let A, B and C be three mutually orthogonal Latin squares of order 
m. These exist since m14 and m#6,10. Define an OA(m,4) of strength 3 as in 

Construction 2.5. 

We now define the 4-cycles which cover all the 2-paths remaining; that 

is, all the 2-paths which contain at most one point from each of the sets 

Sir S2, S3, S4 and ( ~ 3 .  

For each Type I column (if j,a,b)T in the OA(m,4), we view the set 

{Sl(i), S2( j), S3(a), S4(b), 1 as the vertex set of a Kg. Since the Type 

I columns give an OA(m,4) of strength 2 this means that = appears with 

each pair of vertices x and y, where xfSu and yfSv, 11u<v14. Now take a 

C(5,4,X) design on each of these vertex sets. Such a design exists since h 

is even. 

For each Type I1 column (i,j,a,b)T in the OA(m,4) we take a C(4,4,X) 

design with vertex set (Sl(i), S2( j) , S3(a), s4(b)). Since the Type I and 

Type I1 columns together give an OA(m,4) of strength 3 we see that among 

these coverings and the coverings of size five defined in the previous 

paragraph we get all 2-paths [sit sj,sk]. where sicsif s. €5 and skfSk and 1 j 
i, j and k are distinct. 

Combining the 4-cycles from each of the three steps gives a set of 

4-cycles which cover all the 2-paths of K4m+l exactly X times each. . 
. 2.a THEOREM:. If 

1. t=2,4 (mod 6 )  and t28, 

2. X is even, 

3. there exist t-2 mutually orthogonal Latin squares of order m, and 



4. there exists both a C(m+l,4,h) design and a C(t+lr4,h) design, 

then there exists a C(tm+l,4,h) design. 

PROOF: Let s~:={s~(~), . . ., Si(m)], lSiSt, be t mutually disjoint sets of 

size m and let be a new element not in the union of the Sits. We want 

to construct a C(tm+l,4,X) design on the vertex set S1US2U.. .UStU(w). The 

first two steps are to be carried out as in Theorem 2.6, but with 11iSt. 

Note that since t is even, a C(t+l,4,X) design cannot exist when h is odd 

(see the remarks at the beginning of the section). 

3. Let L3, L4, ..., Lt be t-2 mutually orthogonal Latin squares of 
order m and define an OA(m,t) of strength 2 with columns (i, j, ~~(i,j), 

. . . , Lt(i, j)lT1 lSi1 j3n. 
For each column (i, j, a3, . . ., at)T in the orthogonal array let 

{sl(i), S2(j), S3(a3), ..., St(at), "1 be the vertex set of a Kt+l and 

take a C(t+l14,h) design based on this set. 

Hanani proved that whenever t 2,4 (mod 6) then there exists a 

3-(t, 4,l) design. Now suppose we have such a 3-design based on the set 

1 2  t .  For each block {w,x,y,z] in the design consider only rows 

w,x,y and z of the orthogonal array. These give an OA(m,4) of strength 2. 

This orthogonal array can easily be extended to an OA(m,5) of strength 

2 by adding one more row of the OA(m,t). Consider the elements of the 

first two rows of this array to define rows and columns, respectively, and 

the elements of the third and fourth rows of this array to be the entries 

of Latin squares A and B. Then it is easy to see that A and B are 

or~hogonal. Moreover, if we consider any fixed element in the fifth row 

then the columns in which it appears define a common transversal in A and 

in B. That is, the entries in the fifth row can be taken as entries of a 

Latin square C which is also orthogonal to A and B. Returning to 

Construction 2.5 we see that the OA(m,4) of strength 2 can be imbedded in 

an OA(m,4) of strength 3. The m3-rn2 columns added to the OA(m,4) of 



strength 2 t o  obtain the OA(m,4)  of strength 3 a re  called (as  before) Type 

I1 columns. 

For each Type I1 column (a,b,c,d)T take a C ( 4 , 4 , A )  design based on the 

The union of these 4-cycles gives the required set  of 4-cycles which 

cover each 2-path exactly X times. 8 

2.8 THEOREM: If - 
1. m#6 and m*10, 

2. mh i s  even, and 

3 .  there ex is t s  a C(m,4,X)  design and a C ( t , 4 , X )  design, 

then there ex is t s  a C ( m t , 4 , A )  design. 

PROOF: Let si :=Isi (1) , . . . , si ( m )  3 , Silt,  be t mutually d is jo in t  se t s  of 

s ize m and l e t  S1 U S2 U . . . U St be the vertex set  of Kmt. We want t o  

construct a C(mt14,h) design on th i s  vertex set .  As before, we do th i s  i n  

three steps. 

Step L, For llilt take a C(m,4 ,  h)  design i n  which the vertex set  i s  Si. 

Step - 2. This i s  the same as Step 2 of Theorem 2.6 .  I f  m i s  even we use a 

C ( 4 , 4 , X )  design and i f  m i s  odd we use a ~ ( 4 , 4 , X / 2 )  design. 

Step 3. Let A, B and C be three mutually orthogonal Latin squares of order 

m based on (1, . . . , m) and define an O A ( m , 4 )  of strength 3 using the 

method in  Construction 2.5. 

Replace each 4-cycle (w,x ,y ,z)  in  the C ( t , 4 , X )  design by the m3 

4-cycles (Sw(a),  S,(b), S ( c ) ,  S,(d)), where ( a , b , ~ . d ) ~  i s  a column i n  the Y 

Combining these three steps gives the required resu l t .  . 



2.9 COROLLARY: The edges of GI n E 1 (mod 4), can always be covered by - 
4-cycles so that each 2-path occurs exactly twice. 

PROOF: When n=1,5 (mod 12) we use Theorem 2.2. This leaves the case nE9 

(mod 12). 

For n=9 use Lemma 2.3. Theorem 2.6 with m=5 and X=2 yields n=21 and 

with m=8 and X=2 yields n=33. If n=48k+9 and n#441 use Theorem 2.7 with 

t=8, m=6k+l and h=2. Using [B] and [~3] we see that there exist six 

mutually orthogonal Latin squares of order 6k+l, where 6k+1*55. The 

conditions of Theorem 2.7 are thus satisfied for all values of n other 

than n=441. In this case we use Theorem 2.8 with m=9, t=49 and X=2. For 

n=48k+21, 48k+33 or 48k+45 use Theorem 2.6 with m=12k+5, 12k+8 or 12k+ll, 

respectively, and h=2. We know that there exists a C(12k+6,4,2) design and 

a C(12k+12,4,2) design from Theorem 2.1, and there exists a C(12k+9,4,2) 

design since there exists a ~(12k*+9,4,2) design for all k*<4k. m 

2.3 Case: n ~ 3  (mod 4 )  

When nZ3 (mod 4) a simple counting argument shows that it is not possible 

to cover the edges of K, with 4-cycles so that each 2-path occurs exactly 

X times where h E  1,2,3 (mod 4). In this section we show that it is, 

however, possible to cover the edges of K4m+3 with 4-cycles so that each 

2-path occurs exactly X times, where A = O  (mod 4). Since a C(4m+3,4,X) 

design can be obtained by taking h/4 copies of a C(4m+3,4,4) design we 

only consider the case A=4. 

2.10 THEOREM: when nZ7,11 (mod 12) there exists a C(n,4,4) design. - 

PROOF: This follows from Lemma 1.7 and Theorem 1.6. 

2.11 THEOREM: There exists a C(15,4,4) design. - 

PROOF: Take four copies of the C(14,4,1) design as given by Theorem 2.1. 



For Osi<12, remove the following 4-cycles once only: 

Each unordered pair of ver t ices  from the 1 4  vertices occurs twice as  a 

diagonal and four times as  an edge i n  these ninety-one 4-cycles. Replace 

each 4-cycle (w,x,y,z) i n  the above set  by the four 4-cycles (15,x,y,z), 

( W , ~ ~ ~ Y ~ Z )  (wlx,15,z) and (w,x,y,l5). The 2-path [a, 15,b] occurs four 

times since i t  occurs twice for each time the diagonal a-b occurs. The 

2-path [a,b,15] occurs once for every time the edge ( a rb )  occurs and so 

t h i s  2-path occurs four times. A l l  2-paths not containing 15 occur four 

times each as  before. So when X=4 we can find a C(15,4,X) design. . 
2.12 LEMMA: There ex is t s  a C(27,4,4) design. - 

PROOF: There exis ts  a 3-(27,6,4) design [HHK] and we u se  t h i  s ,  together 

wi th  Lemma 1.7  and Theorem 2.1, t o  prove the lemma. . 
2.13 THEOREM: I f  n 5 3  (mod 4 )  then the edges of K, can be covered by - 
4-cycles so that  every 2-path occurs on exactly four 4-cycles. 

PROOF: Let ~=~4,5,6,7,9,11,13,15,19,23,27~29~31]. Then for every keK we 

have a C ( k , 4 , 4 )  design. Hanani [ ~ 3 ]  has shown that for a l l  nL4 there 

exis ts  a 3-(n,K,l) design. The resul t  now follows using Lemma 1 . 7 .  

Ey combining Theorems 2 . 1  and 2.13 and Corollary 2 .9  we see that there 

exis ts  a C(n,4,4) design for every n24. 



2.4 New Construction Techniques for 3-designs 

The construction techniques of section 2.2 can also be used to obtain new 

3-(n,K,X) designs. For instance, using Theorem 2.6 we see that for every 

m12 (2m;t6,10) there exists a 3-(8m+l,~2m+1,5,4),1) design and for every &2 

there exists a 3-(8m+5, (2m+2,5,4), 2 )  design. 

To get the first design, we take one copy of each of the four blocks 

of size 2m+l based on the sets Si U (-1 , 1S14, as in Step 1 of the proof. 
Next, we take one copy of each block Of size four given in the first half 

of Step 2. Finally, we take one copy each of all blocks of size five and 

four as defined in Step 3. It is easy to see that we get all triples from 

the set of size 8m+l. 

To get the second design, we take two copies of each of the four 

blocks of size 2m+2 based on the sets SiU (w), as in Step 1. We next take 

one copy of each block of size four as given in the second half of Step 2. 

Finally we take two copies of each block of size five and four defined in 

Step 3. 



CHAPTER 3 

MINIMAL COVERS 

By a covering of the 2-paths of Y, by 4-cycles we mean a collection 

of cycles of length four which contain all of the n(n-l)(n-2)/2 paths on 

three vertices (2-paths) at least once each. Coverings are also defined for 

larger values of A. That is, we can also ask for the minimum number of 

4-cycles so that each 2-path of Y, is on at least A 4-cycles. 

A. Hartman et al. [HMM] have looked at the related problem of covering 

all of the triples of an n-set by quadruples. When there exists an SQS(n) 

the triples can, of course, each be covered exactly once by quadruples. 

J. Schoenheim (see [HMM]) showed that at least rn/4 [ (n-1)/3 r (n-2)/2111 
quadruples are needed to cover the triples of a set of size n. In [HMM], 

it was shown, using an existing construction and some recursive techniques, 

that for all 11252423 one could cover all the triples of an n-set by 

exactly r n/4 (n-1)/3 1 (n-2)/2 1 1 1 quadruples. They also showed that if a 
certain group divisible design on 54 points exists then this bound can be 

lowered considerably. 

Since the number of 2-paths in K2,+1 is not a multiple of four we see 

that it is not possible to cover the 2-paths of K2m+1 by 4-cycles so that 

each 2-path occurs exactly once. The following theorem gives a lower bound 

for the minimum number of 4-cycles needed. 

3.1 LEMMA: The minimum number of 4-cycles needed to ccver all the - 
2-paths in K2m+l at least once is m3 + Fm2/21. 

PROOF: For any two vertices a and b of K2m+L we have 2m-1 different 

2-paths of the form [a,x,b]. Any 4-cycle containing such a 2-path must . 
contain another 2-path of the form [a,y,b]. Thus the number of 4-cycles 

containing a 2-path of the form [a,x,b] must be at least 1 (2m-1)/21=m. 
There are m(2m+l) ways in which a and b can be chosen, but the 4-cycle 



containing the 2-paths [a,x,b] and Ca,y,b] also contains the 2-paths 

[x,a,y] and [x,b,y]. Thus we need at least 1 (m/2)m(Zm+l) 1 = m3 + [m2/2 1 
4-cycles to cover all the 2-paths in K2m+1. rn 

3.2 DEFINITION: Li(n) is the least integer such that there exist Li(n) - 
4-cycles which cover all the 2-paths of K, at least i times each. 

In Chapter 2 we saw by Theorem 2.1 that Ll(4m) = 8m3 - 6m2 + m and 

that L1(4m+2) = 8m3 + 6m2 + m. Using the above theorem we thus see that 

2 L1(4m+l) 2 8m3 + 2m . In fact, we will now demonstrate in Theorem 3.3 that 
Ll(4m+l) = 8m3 + 2m2 and so the lower bound calculated in Lemma 3.1 is 

attained. 

3.3 THEOREM: The edges of K4,+1 can be covered by 8m3 + 2m2 4-cycles so - 
that each 2-path occurs at least once on some 4-cycle. 

PROOF: In this proof addition is modulo 4m on the residue class 1, . . . , 
4m. 

Label the vertices of K4m+l with the elements of {l, ..., 4m, v j  and 

label the vertices of K4, with the elements of (1, ..., 4m). Thus we can 

write K4, = K4m+l - ( v ) .  

We now sketch the proof of this theorem; complete details follow 

later. We wiii find a set of 8m3 + 2m2 cycles of length four which contain 

2 each 2-path of K4m+l at least once by first taking the set of 8m3 - 6m + m 

cycles of length four which cover all the 2-paths of K4, exactly once 

each. This is done according to the proof of Theorem 2.1. 

Next, we add to these L1(4m) 4-cycles a further 8m2 cycles of length 

four (see Figure 5). Note that each 4-cycle in Figure 5 contains a 2-path 

that has already been covered. These new 4-cycles will be chosen so that 

they contain all 2-paths of the form [ v , * , * ]  and [ * , v , * ]  at least once 

each. 



Figure 5 

That i s ,  if we consider the 4-cycle ( v , i , j , k )  the? for  a fixed j we 

want vertices i and k to  take on a l l  values r ,  llr*jl4m. In th i s  way we 

get a l l  2-paths [v , r , j ] .  AS j varies, 1 1 j 1 4 m ,  we see that  we must also 

require the vertices i and k t o  take on a l l  vzlues of r and s ,  llr<sl4m. 

In t h i s  way we get a l l  2-paths of the form '[r, v ,  s ]  . 

However, L L ( 4 m )  + 8m2 = 8m3 + 2m2 + m an3 so it w i l l  be necessary to 

delete m 4-cycles so that i n  the set  of 4-cycles whicn remain e=ch 2-path 

s t i l l  occurs on a t  least  one 4-cycle. These m 4-cycles, which w i l l  be 

chosen so that they are  vertex dis joint  i n  order t o  f a c i l i t a t e  vertex 

relabeling, w i l l  be removed from the covering of Kg,. 

Based cn these m dis joint  4-cycles we w i l l  define 4m subgraphs G r I  

11r14m, of Kqm as  follows. 

1. For each of the m 4-cycles (h , i , j , k )  that  w i l l  be removed from the 

covering of Kg, we define the four subgraphs Gh, Gi, G .  and Gk so 3 
that  (i,k)EE(Gh), (h, j) C E ( G i ) ,  (i.k)EE(Gj) and (h. j)cE(Gk). 

2 .  In Gr every vertex other than r has posit ive degree and vertex r has 

degree 0. 

3.  The union of these 4m subgraphs i s  a multigraph KqmUF,  where F i s  a 

1-factor i n  Kqm. 

For each r, 11r14rnt and for  each (x,y)€Gr we define the 4-cycle 

(x,r ,y,v).  ,By (1) above, we see that we w i l l  have defined the following 



four 4-cycles 

~iIh,k,v~, (h,iIjIv), (i,j,k,v), (h,k,j,v) 

for each 4-cycle ( h k )  that will be removed. Thus even after the 

removal of such a 4-cycle every 2-path on (1, ..., 4m) still occurs at 

least once. 

By (2) above, it is clear that we get all 2-paths [r,x,v] for 

11r, x54m, r*x . 
Since (by (3)) the union of these 4m subgraphs contains K4, we see 

that we get all 2-paths [x, v,y] for e17ery edge (x,y) EE(K4,). 

Thus by defining these 8m2 4-cycles based on the subgraphs Gr we see 

that 

1. all 2-paths on (1, ..., 4m, v )  have been covered and 

2. all 2-paths in the m disjoint 4-cycles have been covered at least 

twice and so these m cycles can be removed. 

Thus we have covered all the 2-paths of K4m+l by 

3 (8m3 - 6m2 + m) + 8m2 - m = 8m + 2m2 

cycles of length four so that each 2-path occurs at least once. 

The ideas for the proof that we have just discussed are now presented 

in more detail. 

By the proof of Theorem 2.1, a set of 4-cycles covering all the 

2-paths of KIm contains the following m 4-cycles: 

( ~ 1  I t  2, 3) (from Clt2(0)) 

(4a, 4a+l, 4a+3, 4a+2) (from C213(4a-l)) lSa5m-1. 

Since these I-cycles are disjoint, then by a suitable relabelling of 

the vertices, which changes (m, 1, . . . , 4 to 1 2 . . . , 4m), they can 

be written: 

(i, m+i, 2m+i, 3m+i) 1liSm. 



The desired covering of a l l  the 2-paths of K4m+l by 4-cycles w i l l  

contain a l l  the 4-cycles of the C(4m14 ,1 )  design a s  described i n  Theorem 

2.1, w i t h  vertices relabelled as  above, except for the aforementioned m 

vertex d is jo in t  4-cycles. This gives 8m3 - 6m2 4-cycles. The remaining 

4-cycles to  be added w i l l  now be defined. 

Consider the graph G1 (see Figure 6) containing the following edges: 

( 2 ,  4 m ) ,  (3, 4m-11, ..., ( m + l ,  3m+l), ( m + l ,  3m), 

(m+2, 3m-l), . . . , (2m,  2m+l). 

Note that  vertex 1 has degree 0. A l l  other graphs Gr, 11r54m1 are  obtained 

from th i s  by rotating G1 so that  vertex r has degree 0 (and vertex m+r has 

degree 2 ) .  

In each subgraph Gr a l l  distances appear exactly once: the distances 

2, 4 ,  . . . , 2m occur i n  the f i r s t  m edges defined and the distances 1, 3 ,  

. . . , 2m-1 occur i n  the l a s t  m edges defined . Thus i n  the union of these 4m 

graphs each edge of Kqm appears once except for edges of distance 2m which 

appear twice. 

As was mentioned before, i f  the edge (x,y! belongs t o  Gr then we 

include the 4-cycle (x,r ,y ,  v )  i n  our covering of the 2-paths of K4m+l. The 
2 number of 4-cycles which were added was 4m.2m=8m , where 4m i s  the number 

of graphs Gr and 2m i s  the number of edges i n  G r .  We must now check that 

these 8m3 + 2m2 cycles of length 4 do, in  f ac t ,  cover a l l  the 2-paths of 

K4m+l exactly once each. 

I t  suffices to  show that 

l*. a l l  2-paths on the m vertex d is jo in t  4-cycles that  were removed occur 

in  some 4-cycle of the covering and 

2*. a l l  2-paths containing v occur on some 4-cycle. 

The edge (m+r,3m+r) belongs to  G r ,  11r14m1 so that  we get the 2-path 

[m+r,r,3m+r]. Since a l l  2-paths on the 4-cycles that  were removed were of 

th i s  form we see that  (1") i s  sa t i s f ied .  Each edge (x,y) of K4, belongs t o  



Figure 6 

some graph Gr so tha t  we get  the 2-path [x,v,y].  For each r and for  each 

xtr there' is an edge incident w i t h  vertex x in G, so that we get the 

2-path [ r , ~ ,  v]. Thus (2*) i s  sa t i s f ied .  

Thus we have a solution t o  the covering problem for  K4m+l using 

2 L1(4m) + 8m2 - m = (8m3 - 6m + m) + 8m2 - m = 8m3 + 2m2 

3 2 4-cycles. Thus L1(4m+l) = 8m + 2rn . 
3 2 Using L e m m  3.1 we f ind  tha t  L1(4m+3) 2 8m + 1 4 m  +8m+2. We show here 

tha t  equali ty i s  a l so  obtained i n  t h i s  case. 

3.4 THEOREM: The edges of KImi3 can be covered by 8m3 + 14m2 + 8m + 2 - 
4-cycles so that  each 2-path occurs a t  l e a s t  once on some 4-cycle. 

PROOF: This proof i s  similar t o  the  proof of Theorem 3.3.  The main 

difference l i e s  i n  the  way the  subgraphs Gi a r e  defined. 



Addition is modulo 4m+2 on the residue class 1, ..., 4m+2. Label the 
vertices of K4m+3 with the elements (1, . . ., 4m+2, v) and label the 

vertices of K4,+2 with the elements (1, . . ., 4m+2). Thus we can write 

- 
K4m+2 - K4m+3 - ( ~ 1 .  

By the proof of Theorem 2.1, the set of 4-cycles covering all the 

2-paths of K4m+2 contains the following m disjoint 4-cycles: 

(a ,  1, 2, 3) (from ClI2(0)) 

(4a, 4a+l, 4a+3, 4a+2) (from C213(4a-1)) 

Since these 4-cycles are disjoint, then by a suitable relabelling of 

the vertices, which changes ( 1, ..., 4m+l) to (1, 2, . 4m+2), they 

can be written: 

(i, m+l+i, 2m+l+i, 3m+2+i) 1Silm. 

Note that vertices m+l and 3m+2 do not occur on any of the m disjoint 

cycles. 

As in Theorem 3.3, the covering of all the 2-paths of K4m+3 by 

4-cycles will contain all the 4-cycles of the C(4m+2,4,1) design as 

described in Theorem 2.1 (with vertices relabelled as above), with the 

exception of the above m vertex disjoint 4-cycles. This gives 8m3 + 6m2 

4-cycles. The remaining 4-cycles to be added will now be defined. 

Let the multigraph G be given by G = K4m+2 U ((i, j) : li-j /=2m+13. We 

will now define a family of graphs whose union is G. 

For l<k<m and 2m+25k53m+l1 let Hk be the graph containing the 

following edges (see Figure 7) : 

(l+k, 4m+l+k), (2+k, 4ni+k), ..., (m+k, 3m+2+k), 
(m+l+k, 3m+2+k), ..., (2m+k, 2m+3+k), (2m+l+k, 2m+2+k). 

For m+2<k12m+l and 3m+35k14m+2, let Hk be the graph containing the 

following edges (see Figure 8)  : 

(l+k, 4m+l+k), (2+k, 4m+k), ..., (m+k, 3m+2+k), 
(m+k, 3m+l+k), ..., (2m-l+k, 2m+2+k), (2m+k, 2m+l+k). 



The subgaphs tik, 1 S k l m  and 2m+2<kS3m-l 

f igure 7 

The subgraphs F an6 K;,+2 hzve not yet been given, and zre 

described below. Define to  be the graph containing the following 

edges: (1, 4 m + 2 ) ,  (2 ,  4 m - l ) ,  . . . , ( m + l ,  3 m + 2 ) ,  . . . , ( 2 m + l ,  2 m + 2 )  and define 

H3m+2 t o  be tne graph containinq: (m,  m + 2 ) ,  (m-1,  m + 3 ) ,  ..., ( 3 m + l ,  3 m + 3 ) ,  

( m + l ,  3 m + 2 ) .  I t  i s  not d i f f i c u l t  t o  check tha t  the  union of these 4m+2 

subgraphs Mi i s  G. 

We now define %+1 = %+lU ( m + 2 ,  3 m + 2 )  - ( m + l ,  3 m + 2 )  

G 3 m + 2  = H3m+2U ( m + l ,  3 m + 3 )  - ( m + l ,  3 m t 2 )  

GI = HIU ( m + l ,  3 m + 2 )  - ( m + l ,  3 m + 3 )  

G2m+2 = HZmi2 U ( m + l ,  3 m + 2 )  - ( m + 2 ,  3 m + 2 )  . 
For a l l  other values of i we define Gi = Hi. Since the union of the 4 m + 2  

subgraphs Hi i s  G it i s  t r i v i a l  t o  check tha t  the  union of the 4m+2 

subgraphs Gi i s  a l so  G. Note that  i n  Gk only vertex k has degree 0. 



Tne subgraohs Hk, m-21i<S2m+ 1 and 3m+3<k14m+2 

Figure 8 

A s  i n  Theorvl 3 . 3 ,  i f  the edge (x,y) belongs to  Gkr l%4m+2, then we 

w i l l  include the 4'cycle (x,k,y,v) i n  the covering of the 2-paths of K4,,3 

by 4-cycles. By doing so we add a further 8m2 + 8m + 2 4-cycles. 

The procedure t o  check for the occurence of a l l  2-paths on (1, ..., 
4n+2, v) i s  similar t o  thst for  Theoren 3 .3  and i s  thus omitted. 

The z - ~ a t h s  of K4m,3 can be covered by 

L1(4m+2) - m + 8m2 + am + 2 = (8m 3 + 6m2 + m) - m + am2 + 8m + 2 = 

8m3 + 14m2 + 8m + 2 

3 2 4-cycles. Thus L1(4m+3) = 8m + 14x11 + 8m + 2. . 
3.5 LEMMA: When n=4m+l and X=2k+l a t  leas t  - 

16m3k - mk + 8m3 + 2m2 

4-cycles ar,e needed t o  cover the 2-paths of so that  each 2-path occurs 



at least h times. 

PROOF: This number is calculated in a similar way as the bound: in Lemma 

3.1. For any two vertices a and b we need r (2k+l)(tm-l)/21 = 4 + 2m - k 
4-cycles of the form (a,x,b,y) so that each 2-path with end vertices a and 

b occurs h times. There are 2m(4m+l) ways that a and b can be chosen, but 

the 4-cycle (a,x,b,y) also contains the 2-paths [x,a,y] and [x,b,y]. Thus 

we need at least (4mk+2m-k)(2m)(4m+1)/2 4-cycles. 8 

With the following Theorem 3.6 we complete the covering problem for 

every nel (mod 4). In general then, for every h we now know the minimum 

number of 4-cycles needed to cover all the 2-paths of K4m+l at least h 

times each. 

3.6 THEOREM: When n=4m+l and A=2k+l we can find a set of - 
1.6m3k - mk + 8m3 + 2m2 

4-cycles in K, so that each 2-path occurs on at least h 4-cycles. That is, 
2 = 16m3k - mk + 8m3 + 2m . 

PROOF: A simple way to achieve the lower bound given in Lemma 3.5 is to 

take k copies of the covering with h=2 as given in Section 2.2 and also 

take the covering as given in Theorem 3.3. We thus have a total of 

k(4m+l) (m? (4m-1) + 8m3 + 2mZ cycles of length four in which each 2-path of 

K4m+l occurs at least 2k+l times. 

3.7 LEMMA: When n=4m+3 and X=4k+l at least - 
32m3k + 48m2k + 22rnk + 3k + 8m3 + 14m2 + 8m + 2 

4-cycles are needed to cover the 2-paths of K, so that each 2-path occurs 

at least h times. 

PROOF: Following tne proof of Lemma 3.5 we see that for any two vertices 

a and h we need r (4k+l)(4m+l)/Z 1 = 8mk + 2m + 2k + 1 4-cycles of the form 

(a,x,b,y) so that each 2-path with end vertices a and b occurs 4k+l times. 



(a,x,b,y) a l so  contains the 2-paths [x,a,y] and [x,b,y]. Therefore the 

t o t a l  number of 4-cycles that  a re  required i s  [ (8mk+2m+2k+l) (4m+3) (2m+1)/21. 

We now show that  the lower bound calculated i n  Lemma 3 . 7  can be 

achieved. This proof follows that of Theorem 3.6 very closely. 

3.8 THEOREM: The 2-paths of K4m+3 can be covered by - 
3 2 32x11 k +  48m k +  22mk+ 3k + 8m3 + 14m2 + e m +  2 

4-cycles so that each 2-path occurs on a t  least  4k+l  4-cycles. That i s ,  
3 2 L4k+l(4m+3) = 32m k + 48m k + 22mk + 3k + 8m3 + 14m2 + 8m + 2. 

PROOF: Take k copies of the covering wi th  h = 4 as  given i n  Section 2.3 

and a lso  take the covering as given in  Theorem 3.4. Thus we have a to t a l  

of k (  4m+3) (2m+1) ( 4 m + l )  + 8m3 + 14m2 + 8m + 2 cycles of length four which contain 

each 2-path of K4m+3 a t  l eas t  4k+l  times each. m 

When n=4m+l and X=2k+l the minimum number of 4-cycles required to  

cover a l l  2-paths so that  each 2-path occurs a t  leas t  X times has been 

determined exactly. Similarly, when n=4m+3 and X=4k+l the minimum number of 

4-cycles required to  cover a l l  2-paths so that each 2-path occurs a t  least  

A times has also been determined exactly. 

Using calculations similar to  those in  Lemma 3.1 for n=4m+3 and X=2 

one finds that  one needs a t  least  

16m3 + 24m2 + l l m  + 2 

4-cycles to  cover each 2-path in  R4,+3 a t  least  twice. In the next theorem 

we show that t h i s  lower bound on L2(4m+3) can never be attained; that i s ,  

3.9 LEMMA: When n=4m+3 and A=2 the least  number of 4-cycles that are  - 



required to cover each 2-path of K4m+3 at least twice is 

16m3 + 24m2 + llm + 3. 

PROOF: We will count the number of times each vertex occurs in a 4-cycle 

supposing that each 2-path occurs at least twice. Each vertex x occurs on 

at least 2(4m+2)(4m+l) 2-paths of the form [x,*,*] and on at least 

(4m+2)(4m+l) 2-paths of the form [*,x,*]. 1f a 4-cycle contains the vertex 

x it contains three 2-paths that contain x and thus the vertex x occurs on 

at least (2(4m+2) (4m+l) + (4m+2) (4m+l) )/3 = 16m2 + 12m + 2 cycles of length 

four. 

Clearly, if the 2-paths of K4m+3 are covered by 4-cycles so that each 

2-path occurs at least twice then there is some 2-path that occurs at 

least three times. Suppose this is the 2-path [1,2,3]. The vertices 1, 2 

2 and 3 thus occur on at least 16m + 12m + 3 cycles of length four. 

The sum over all vertices of the number of 4-cycles on which each 

vertex occurs is 

4m(16m2 + 12m + 2) + 3(16m2 + 12m + 3). 

Each 4-cycle contains four vertices and so the minimum number of 4-cycles 

needed to cover all of the 2-paths of K4m+3 SO that each 2-path occurs at 

least twice is thus 

16m3 + 24m2 + llm+ 3. w 

Theorem 3.4 shows that one can find a set of 8m3 + 14m2 + 8m + 2 4-cycles 

in K4m+3 in which each 2-path occurs at least once. By taking two copies 

of each 4-cycle in this set we see that 

3 L~ (4m+3) i 16m + 2am2 + 16m + 4. 

Using this observation and Lemma 3.9 we have thus proven Theorem 3.10. 

3.10 THEOREM: As a bound - 
cover each of the 2-paths of 

16m3 + 24m2 + llm + 

on the minimum number of 4-cycles needed to 

K4m+3 at least twice we have 

3 5 L2(4rn+3) 5 16m3+28m2+ l6m+4. 



A similar result can be obtained for L4k+2(4m+3) using the ideas from 

Theorem 3.8. That is, to the upper and lower bounds on L2(4m+3) we add 

L4k(4m+3) = k(4m+3)(2m+1)(4m+l). 

Although we have not been able to find a construction which produces 

16m3 + 24m2 + llm + 3 cycles of length four which cover all of the 2-paths 

of K4m+3 at least twice each, we have a construction which yields 

L2 ( 4m+3) S 16m3 + 24m2 + 13m + 2 for some values of m. In such cases the upper 

bound of Theorem 3.10 would therefore be reduced. 

Label the vertices of K4,+2 with the elements ill . . . , 4m+l, -1 and 

label the vertices of K4m+3 with the elements (1, ..., 4m+l, =, v ) .  NOW, 

take a C(4m+2,4,2) design and suppose that in this design one could find 

m(4m+l) cycles satisfying the following two conditions: 

1. each pair of vertices of K4m+2 occurs at most once as non-adjacent 

vertices of a cycle and 

2. each pair of vertices of K4,+2 occurs at most twice as the edge of a 

cycle. 

Then we have the following lemma. 

3.11 LEMMA: If there exist m(4m+l) 4-cycles in a C(4m+2,4,2) design - 
satisfying conditions 1 and 2 above, and one can find a certain set of 

subgraphs of 2K4m+21 then one can find 16m3 + 24m2 + 13m + 2 4-cycles 

which contain each 2-path of K4m+3 at least twice each. 

PROOF: For each xe (1, . . . , 4m+l, =) we define a subgraph Gx of 2K4m+2 

(every edge of K4,+* occurs twice) so that every vertex in Gx has degree 

2, except for vertex x which has degree 0. For each 4-cycle (a,x,b,c) in 

the distinguished set of m(4m+l) 4-cycles we put the edge (a,b) in Gx. 

This subgraph will also contain other edges which are chosen arbitrarily, 

however we require the union of these 4m+2 subgraphs to be 2K4m+2. Now 

remove the set of m(4m+l) 4-cycles from the C(4m+2,4,2) design and for each 

~ € 1 1 ,  . 4m+l, =) and for each edge (arb) in G, add the 4-cycles 



I t  i s  easy to  see that  a l l  2-paths on (1, ..., 4m+l ,  =) have been 

recovered. Also, since every edge ( a rb )  occurs twice, we see that  we get 

a l l  2-paths [a,v,b] twice and since every vertex i n  Gx has degree 2 we see 

that  we get a l l  2-paths [x,a,v] twice each. We have used a t o t a l  of 

(16m3 + 12m2 + 2m) - m ( 4 m + l )  + (4m+2) ( 4 m + l )  = 16m3 + 24m2 + 13m + 2 

4-cycles t o  cover a l l  of the 2-paths of K4m+3 by 4-cycles a t  leas t  twice 

each. . 
3.12 EXAMPLE: Using the above lemma we can find a collection of 55 - 
4-cycles i n  K7 so that each 2-path occurs a t  leas t  twice. This number i s  

one more than the minimum of 54 given i n  Theorem 3.10. F i rs t  we get a 

C(6,4,2) design by taking two copies of the C(6,4,1) design obtained using 

Theorem 2.1 .  Remove the following f ive  4-cycles: 

(-,1,2,3), (=,2,3,4), (=,3,4,5),  (=,4,5,1) and (=,5,1,2). 

The subgraphs Gx a r e  shown i n  Figure 9; add the th i r ty  4-cycles defined by 

them t o  obtain 2(15) - 5 + 30 = 55 4-cycles which cover a l l  the 2-paths of 

K7 a t  least  twice each. 

3.13 EXAMPLE: When m=3 the conditions of Lemma 3.11 can be sat isf ied and - 
thus there exis ts  a set  of 689 4-cycles in  K15 containing each 2-path of 

K4m+3 a t  least  twice each. This number i s  in  contrast t o  the minimum of 

684 calculated in  Theorem 3.10. 

The following thirty-nine 4-cycles (which belong to  the C ( 1 4 , 4 , 2 )  

design obtained using Theorem 2 .1 )  sa t i s fy  the two conditions which precede 

Lemma 3.11: 

(2+ i1 l+ i ,4+ i ,5+ i ) ,  (3+ i , l+ i ,6+ i18+i ) ,  (= , l+ i15+i ,9+ i )  15i213. 

Addition i s  modulo 13 on the residue class 1, . . . , 13. 

Each pair of non-adjacent vertices i n  the above 4-cycles defines an 

edge i n  some subgraph G,. In f ac t ,  the distinguished 4-cycles above define 
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two v e r t ~ x  d i s jo in t  4-cycles and a single e6ge i n  esch subgrapn Gx (11x513j 

of X14. Now 'double' t h i s  single edge so t h a t  the ver t ices  i nc idmt  with 

i r  have decree two. Thus every v e r z s  i n  Gx other t h a  x, ~ + 6 ,  x+7 and = 

have degree two. If w e  take a t r iangle  on these l a t t e r  three ver t ices  then 

every vertex i n  Gx (other than x) has degree two. Finally,  we take a s  G, 

the  graph whit? consists  of the  edges (x, x+l)  for  1 S 1 3 .  

It i s  not d i f f i c u l t  t o  check that  the union of these 1 4  subgraphs i s  

2KI4. T h i s  checking i s  made easier  by drawing 13 ver t ices  on a c i r c l e  

( label led 1 t o  13) and putt ing the vertex = i n  the centre. Now draw G1, 

say, and note that  the  edges i n  t h i s  graph have distances: 

1, 2, 21 3, 3, 4,  4, 5 ,  5,  6 ,  6, m, 0. 

Thus i n  the  union of the  subgraphs Gi, 11iS13, every edge of 2K14 appears 

exactly twice, except fo r  the  edges of dis tance 1 which appear exactly 

once. The subgraph G, contains each edge of distance once exactly once each 

and therefore  the union of these fourteen subgraphs i s  2K14. . 



3.14 EXAMPLE: When n=4 we can again satisfy the conditions of Lemma - 
3.11. Thus in K19 we can find a collection of 1462 cycles of length four 

which cover all the 2-paths at least twice each, whereas the lower bound 

in Theorem 3.10 is 1455. The solution to this problem is similar to that 

of Example 3.13, and sixty-eight 4-cycles which satisfy the two conditions 

preceding Lemma 3.11 are: 

(17+i,l+i17+i,6+i), (4+i,l+i,6+i19+i), 

(5+i,l+i,8+i,12+i), (=,l+i,16+i,14+i) l<i<17. 

Addition is modulo 17 on the residue class 1, . . ., 17. 
These four cycles come from the C(18,4,2) design obtained by taking 

two copies of each of the 4-cycles as given by Theorem 2.1. If we define 

the subgraphs G,, 11x117, as in Example 3.13, then every vertex in Gx 

other than x, x+8, x+9 and = has degree two (these vertices have degree 

0). Take a triangle on the latter three vertices so that now every vertex 

in Gx other than x has degree two. The subgraph G, consists of the edges 

(x, x+l) for 11x117. 

It is not difficult to check that the union of these subgraphs is 

2K18. . 
3.15 LEMMA: When n=4m+3 and A=3 at least - 

24m3 + 36m2 + r16.5m1 + 3 

4-cycles are required in order for each 2-path of Kn to appear on at least 

X 4-cycles. 

PROOF: Assume that each 2-path occurs at least three times* and count the 

number of 4-cycles on which each vertex appears. Each vertex x appears on 

at least 3(4m+2)(4m+l) 2-paths of the form [x,*,*] and on at least 

3(2m+1)(4m+l) 2-paths of the form [*,x,*]. If a 4-cycle contains the vertex 

x then it contains three 2-paths that contain x. Thus the vertex x occurs 

on at least (3(4m+2)(4m+l) + 3(2m+1)(4m+1))/3 = 24m2 + 18m + 3 cycles of 



length four. 

However, not a l l  2-paths occur exactly three times and so there i s  at 

leas t  one 2-path, say [1,2,3], that occurs at  leas t  four times. The 

vertices 1, 2 and 3 thus occur on a t  least  24m2 + 18m + 4 cycles of length 

four. 

The minimum number of 4-cycles i n  K4m+3 needed t o  cover each 2-path a t  

leas t  three times each i s  thus 

( 4 m ( 2 4 m 2 + 1 8 m + 3 ) + 3 ( 2 4 m 2 + 1 8 m + 4 ) ) / 4  = 24m3+36m2+33m/2+3. rn 

3.16 THEOREM: The minimum number of 4-cycles needed to  cover each of the - 
2-paths of K4m+3 a t  l eas t  three times i s  bounded by: 

3 2 24m +36m + r16.5m 1 + 3  I L3(4m+3) 5 24m3+42m2+24m+6. 

PROOF: The lower bound i n  the above inequality comes from Lemma 3.15 and 

the upper bound i s  obtained by taking three copies of the design on 4m+3 

vertices i n  which each 2-path occurs on a t  least one 4-cycle (see Theorem 

3.4). . 
If the conditions of Lemma 3.11 are  sa t i s f ied ,  then we can reduce the 

3 upper bound i n  the above theorem t o  24m + 38m2 + 21m + 4 .  The bounds on the 

number of 4-cycles of needed i n  order for each 2-path to  occur on a t  

leas t  4k+3 cycles of length four can easily be obtained by adding L4k(4m+3) 

= k(4m+3)(2m+1)(4m+l) to  both the upper and lower bounds on L3(4m+3) as 

given i n  Theorem 3.16. Clearly, we can reduce the upper bound on 

L4k+3(4m+3) i f  the conditions of Lemma 3.11 are  sa t i s f ied .  

To summarize t h i s  chapter w e  have the following table.  Here we 

describe, for ~ e ( 4 k ,  4k+l, 4k+2,  4k+3) and nr(4m, 4m+l ,  4m+2, 4m+3), the 

general resu l t s  known about LX(n)  and give the theorem or corollary used to  

justify the statements. 



( n ,  1 )  R e s u l t s  on L1(n) R e f e r  to: 

Theorem 2 . 1  

Theorem 2 .1  

Theorem 2 . 1  

Theorem 2 .1  

C o r o l l a r y  2.9 

Theorem 3.6 

C o r o l l a r y  2.9 

Theorem 3.6 

Theorem 2 . 1  

Theorem 2 . 1  

Theorem 2 . 1  

Theorem 2 .1  

Theorem 2.13 

Theorem 3 . 8  

Theorem 3.10 

Theorem 3.16 



CHAPTER 4 

MAXIMAL PACKINGS 

Whenever one asks questions about the covering problem, it is a 

natural assumption that analagous questions will then be asked for the 

packing problem. In this case the packing problem is to find the largest 

collection of 4-cycles in K, so that each 2-path occurs on at most X 

4-cycles. 

4.1 DEFINITION: Let Ui(n) be the largest integer such that the 2-paths of - 
can be packed into Ui(n) cycles of length four, so that no 2-path 

occurs on more than i 4-cycles. 

We have the trivial results (see Theorem 2.1) that 

iJ1(4m) = Ll(4m) = 8m3 - 6m2 + m and 

4.2 LEMMA: The maximum number of 4-cycles of K2m+1 that contain each of - 
? the 2-paths of K2m+1 at most once is no more than m- - m(m+i)j2. 

PROOF: For any two vertices a and b of we have 2m-1 different 

2-paths of the form [a,x,b] . Any 4-cycle containing such a 2-path must 

contain another 2-path of the form [a,y,b]. Thus the number of 4-cycles 

containing a 2-path of the form [a,x,b] must be at most 1 (2m-1)/2 1 = m-1. 

There are m(2m+i) ways in which a and b can be chosen, but the 4-cycle 

containing the 2-paths [a,x,b] and [a,y,b] also contains [x,a,y] and 

[x,b,y]. Thus we can have at most (m-l)(m)(2m+1)/2 = m3 - m(m+1)/2 4-cycles 

if each 2-path of K2m+1 is to occur at most once. . 
Thus we see that 

Ui(4m+l) 5 8m3 - 2m2 - rn and 



In fac t  i t  i s  easy t o  see that  i n  both cases we have equality. This 

i s  shown i n  the following theorems. 

4.3 THEOREM: In K4m+l one can find - 
em3 - 2m2 - m 

4-cycles so that  each 2-path occurs on a t  most one 4-cycle. In other 

PROOF: Consider the set  of 4-cycles of K4,+2 (as  given by Theorem 2.1) i n  

which each 2-path occurs exactly once. There a re  8m3 + 6m2 + m cycles of 

length four i n  t h i s  set  and each vertex appears on 8m2 + 2m cycles of 

length four. If the vertex w, say, i s  removed (as a re  a l l  cycles 

containing i t )  then one i s  l e f t  with 8m3 - 2m2 - m cycles of length four 

and each 2-path on the remaining 4 m + l  vertices appears a t  most once. . 
4.4 THEOREM: In K4m+3 there exis ts  a set  of - 

am3 + 10m2 + 3m 

4-cycles so that each 2-path occurs on a t  most one 4-cycle. In other 

words, 

PROOF: Theorem 2 . 1  t e l l s  us that one can find 8m3 + 1 8 m 2  + 13m + 3 

cycles of length four which contain each 2-path of K4m+4 exactly once each. 

Each vertex of K4m+4 appears on 8m2 + 1 0 m  + 3 cycles of length four and 

thus if one of these vertices,  along w i t h  a l l  4-cycles containing i t ,  i s  

removed then we a re  l e f t  wi th  8m3 + lorn2 + 3m cycles of length four. These 

4-cycles contain each 2-path on the remaining 4m+3 vertices a t  most once. 

m 

4.5 LEMMA: When n=4m+l and A=2k+l a t  most - 
16m3k - mk + 8m3 - 2m2 - m 



4-cycles can pack the 2-paths of K4,+1 SO that each 2-path occurs on at 

most X 4-cycles. 

PROOF: Simply count 2-paths as in Lemmas 3.5 and 4.2. 

4.6 THEOREM: In Kqm+l we can find - 
16m3k - mk + 8m3 - 2m2 - m 

4-cycles which contain each 2-path at most 2k+l times. 

PROOF: Take k copies of the collection of 4-cycles which contain each 

2-path of K4,+1 exactly twice (as given in Section 2.2). Add to these 

(-cycles the 8m3 - 2m2 - m cycles of length four which contain each 2-path 
at most once ( see Theorem 4.3 ) . This gives the required number of 4-cycles. 

m 

With the above result we have finished the packing problem for all n= 

1 (mod 4) and for all A. 

4.7 LEMMA: When n=4m+3 and A=4k+l at most - 
32m3k + 48m2k + 22mk + 3k + 8m3 + 10m2 + 3m 

4-cycles can be taken if each 2-path of K4m+3 is to occur on at most A 

PROOF: Again, count as in Lemmas 3.7 and 4.2. . 

PROOF: From Section 2.3 we know that one can cover the 2-paths of K4m+3 

by 4-cycles so that each 2-path occurs on exactly four 4-cycles. Take k 

copies of each of these 4-cycles as well as the 8m3 + 10m2 + 3m 4-cycles 

(see Theorem 4.4) which contain each 2-path of K4,+3 at most once. m 

Using the argument in the proof to Lemma 4.2, one obtains U2(4m+3) 5 

16m3 + 24m2 + llm + 1. However, this bound can be improved. 



4.9 LEMMA: The number of 4-cycles of K ~ ~ + ~  - which contain each 2-path at 

most twice is at most 

16m3 + 24m2 + llm. 

PROOF: The vertex x occurs on at most 16m2 + 12m + 2 cycles of length 

four and, because we know that there is some 2-path that does not occur 

twice, we can assume that the vertex x occurs on at most 16m2 + 12m + 1 

cycles of length four. These 16m2 + 12m + 1 cycles contain 16m2 + 12m + 1 

2-paths which do not contain x. 

There are at most (4m+2) (4m+l) (4m) 2-paths not containing x and we 

have used at most 16m2 + 12m + 1 of them. This leaves 64m3 + 32m2 - 4m - 1 
2-paths to be packed into 4-cycles. Thus at most 16m3 + 8m2 - m - 1 cycles 
of length four can be added. The total number of 4-cycles is thus at most 

16m3 + 24m2 + llm. 8 

3 Theorem 4.4 shows that U, (4m+3) = 8m + 10m2 + 3m and thus - 
U2(4m+3) 2 16m3 + 20m2 + 6m. 

This result and Lemma 4.9 allow us to put both upper and lower bounds on 

U2(4m+3) and we have thus proven Theorem 4.10. 

4.10 THEOREM: The maximum number of 4-cycles of K4m+3 which cover each - 
2-path at most twice is bounded by 

3 2 16m + 20m + 6m 5 U2(4m+3) 5 16m3 + 24m2 + llm. 

By adding U4k(4m+3) = k(4m+3)(2m+1)(4m+l) to both sides in the above 

inequality we obtain upper and lower bounds on U4k+2(4m+3). 

Although we have not been able to attain the bound given in Lemma 4.9, 

we have a construction which, for some values of m, shows that U2(4m+3) 2 

16m3 + 24m2 + 5rn. Consider the following. Let the vertices of K4m+2 be 

labelled by the elements {I, . . ., 4m+l, =3 and let the vertices of K4m+3 

be labelled by the elements of (1, ..., 4m+l, =, v ) .  First, take a 



C(4m+2,4,2) design. Next, suppose that one could find 4m2 + m cycles of 

iength four in this c(4m+2,4,1) design satisfying 

1. each pair of elements from (1, . . . , 4m+l, a) occurs as a pair of 

non-adjacent vertices of at most one 4-cycle and 

2. each pair of elements from (1, .. ., 4m+l, a) occurs as the edge of 
at most two 4-cycles. 

Then it would be possible to replace each of these 4m2 + m 4-cycles 

(a,b,c,d) by the four 4-cycles (a,b,c, v), (btcrdt v ) ,  (c,d,a, Y )  and 

(d.a.b,v) to get 16m3 + 12m2 + 2m - (4m2 + m) + 4(4m2 + m) = 16m3 + 24m2 + 5m 

4-cycles of K4m+3 that contain each 2-path at most twice. Thus we have 

proven the following lemma. 

4.11 LEMMA: If there exist 4m2 + m cycles in a C(4m+2,4,2) design - 
satisfying conditions 1 and 2 above, then one can find 16m3 + 24m2 + 5m 

4-cycles which contain each 2-path of K4m+3 at most twice. 

Consider the line graph of K4,+2, L(K4m+2), and arrange its vertices 

in a (4m+l) x (2m+l) array as in Theorem 2.1. The 4-cycles in K4m+2 

containing only vertices from column 1 and column i can be written as 

(wIl+k,i+k,2i+k-1) for some k and the 4-cycles in K4m+2 containing vertices 

from column i and column j can be written as (i+k,l+k, j+k,i+j+k-1) for some 

k. The two distances in K4m+2 between the pairs of non-adjacent vertices in 

any of these 4-cycles can thus be given as 

=, min(2i-2, 2-2i) between columns 1 and i 

and 

minii- j , 1-11 , min(2-i- j , i+ 1-21 between columns i and j. 

In the above calculations addition is modulo 4m+l on the residue class 1, 

. .., 4m+l. 

If one could find m disjoint pairs of columns in this array so that 

the distances given above are all distinct, then the 4m2 + rn cycles of 

length four lying between these m pairs of columns satisfy conditions 1 and 

2. 



Condition 2 is easily seen to be satisfied since each vertex of the 

line graph (an edge in K4m+2) appears on at most two 4-cycles. The 

differences between non-adjacent vertices in the 4-cycles between the 

chosen pairs of columns are all distinct and thus when these 4-cycles are 

all developed modulo 4m+l the distances between non-adjacent vertices on 

any of the chosen 4-cycles is also distinct. 

4.12 EXAMPLE: Using Lemma 4.9 with m=l we see that the maximum number of - 
4-cycles which contain each 2-path of K7 at most twice is 51. Lemma 4.11 

tells us that if we can find a particular set of five 4-cycles in a 

C(6,4,2) design then we will be able to find a collection of 45 4-cycles 

which between them contain the 2-paths of K7 at most twice each. The 

following set of five 4-cycles 

(m,11213)1 (~,2,3,4)~ (mr3r415)1 (m14,5,1) and (w,5,1,2). 

satisfies conditions 1 and 2 and thus the required set of 45 4-cycles 

exists. . 
4.13 LEMMA: When n=4m+3 and A=3 at most - 

24m3 + 36m2 + 116.5111 + 1.5 1 
4-cycles can be found so that each 2-path of K4m+3 occurs at most three 

times. 

PROOF: Consider a vertex x; it can occur on at most 3(2m+l) (4m+l) 2-paths 

of tho form [*,x,*] and at most 3(4m+2)(4m+l) 2-paths of the form [x,*,*]. 

Since each $-cycle that contains x also contains three 2-paths that contain 
2 x we see that each vertex can occur on at most 24m + 18m + 3 cycles of 

length four. 

We know that there is at least one 2-path, say [x,y,z] that does not 

occur three times and so the vertex occurs on at most 24m2 + 18m + 2 

4-cycles. These 4-cycles which contain x contain 24m2 + 18m + 2 2-paths which 

do not contain x. 



There are 6m(4m+2) (4m+l) 2-paths not containing x and we have 
2 accounted for 24m + 18m + 2 of them. This leaves 96m3 + 48m2 - 6m - 2 2-paths 

to be packed into 4-cycles. Thus at most 24m3 + 12m2 - [(3m+1)/21 cycles of 

length four can be added. The number of 4-cycles of K4m+3 containing each 

2-path at most three times each is thus at most 

24m3 + 36m2 + 1 l6.5m + 1.5 j .  8 

4.14 THEOREM: The maximum number of 4-cycles of K4m+3 - in which each 

2-path occurs at most three times is bounded by: 

3 2 24m + 30m + 9m 5 U3(Cm+3) 5 24m3 + 36m2 + L l6.5m+ 1.5 1. 

PROOF: This result follows from Theorem 4.4 and Lemma 4.13. 8 

The bounds on the number of 4-cycles of K4m+3 containing each 2-path 

at most 4k+3 times each can be obtained by adding U4k=k(4m+3)(2m+1)(4m+1) 

to each side of the above inequality. 

The following table summarizes the results obtained in this chapter. 



(n,U Results on Uh(n) Refer to: 

UX(n) = (4mk+3m)(2m+l)(4m+l) 

Uh(n) = (2mk+k)(4m+3)(4m+l) 

Uh(n) = k(32m3+48m2+22m+3)+8m3+10m2+3m 

k( 4m+3) (2m+l) (4m+l)+16m3+20m2+6m i Uh(n) 6 

k( 4m+3) (2m+1) (4m+l)+16m3+24m2+11m 

k(4m+3) (2m+1) (4m+l)+24m3+30m2+9m 5 U X (n) < - 
k(4m+3) (2m+1) (4m+l)+24m3+36m2+ 1 (33mt1)/2 1 
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CHAPTER 5 

RESOLVABLE DESIGNS 

In this Chapter we look at the problem of finding resolvable C(n,4,1) 

designs. A t-(n,k,h) design (XIPI is resolvable if the blocks in P can be 

partitioned into classes So that in each class every element of X appears 

exactly once. D. Jungnickel and S. Vanstone [JV] and A. Hartman [H8] have 

recently published results concerning the resolvability of certain types of 

3-designs. 

In [JV] Jungnickel and Vanstone show that the necessary conditions for 

a 3-(n,4,3) design to be resolvable are also sufficient. The construction 

of a family of 3-(n,4,3) designs and the proof that they are resolvable 

(see [JV]) are presented below. 

It is easy to see that the only necessary condition for such a design 

to be resolvable is that n be a multiple of 4. Now let F be any 

1-factorization of s. For each 1-factor F of F and for each pair of edges 
(a,b) and (c,d) in F forms the block (a,b,c,d). 

Consider any subset (a,b,c] of the n-set. Since any pair of these 

three vertices is an edge of exactly one 1-factor it is clear that this 

subset occurs in three blocks of size four. Thus the collection of these 

(n-l)(n/2)(n/2-1)/2 blocks form the blocks of a 3-(n,4,3) design. 

Since the blocks of this design were obtained by taking the 

(n/2)((n/2)-1)/2 pairs of edges from each 1-factor, then for every 1-factor 

F we can construct the complete graph on n/2 vertices whose vertices are 

the edges of F. This complete graph has an even number of vertices and 

hence it also has a 1-factorization, say G(F). Every edge ((arb), (c,d)) 

in a 1-factor G f G ( F )  defines a block (a,b,c,d) in the 3-design and thus 

the collection of these n/4 edges gives a parallel class in the design. If 

we repeat this for all FEF then we will have partitioned the blocks of the 

3-design into resolution classes. 



Since an SQS(n) exists if and only if ne2 Or 4 (mod 6) and may be 

resolvable only if n is a multiple of four, the necessary condition for 

the existence of a resolvable SQS(n) is that nE4 or 8 (mod 12). 

One infinite class of resolvable Steiner quadruple systems was known 

to T. P. Kirkman [K] as early as 1847. These were the quadruple systems of 

order 2m, with points being the elements of GF(~~), obtained by taking the 

planes of the affine space of dimension m over GF(2) to be the blocks of 

the quadruple system. Each parallel class is then defined to be a subspace 

of dimension two and all of its translates. 

For example, if m=3 then we would take as the eight points of the 

quadruple system the following: 

000 001 010 100 011 101 110 111. 

The subspaces of dimension two are: 

For v ~ G F ( ~ ~ )  we define by S .+v the set of points s+v such that ssSj. The 
3 

parallel classes of this quadruple system are Sj+w, 11j57, where w is any 

element of GF(Z3) that does not belong to S j. 

More recently, Alan Hartman [~8] has shown that the necessary 

conditions for the existence of a resolvable Steiner quadruple system are 

sufficient, except in at most twenty-three cases. We thus have the 

following theorem. 

5.1 THEOREM: Whenever n = 4 or 8 (mod 12) there exists a resolvable - 
Steiner quadruple system of order n, except possibly for neS, where 

S = (220, 236, 292, 364, 460, 596, 676, 724, 

1076, 1100, 1252, 1316, 1820, 2236, 2308, 

2324, 2380, 2540, 2740, 2812, 3620, 3820, 6356). 



5.2 DEFINITION: Let (X,P) be 3-(n,4,1) design. BY a partition of 0 into - 
nonempty subsets P1, . . . , Pt we mean a disjoint union 0 =UPi, where l5iit. 
We also use the notation P = PllP2 1 . . . IPt to identify the partition. If 
each xfX is contained in exactly one 4-subset of each Pi then this 

partition is called a resolvable partition. In this case we also call each 

Pi a parallel class. 

The following theorem shows that the doubling construction presented 

in [~l] preserves resolvability. 

5.3 THEOREM: If there exists a resolvable Steiner quadruple system of - 
order n then there exists a resolvable Steiner quadruple system of order 

2n. 

PROOF: Addition is modulo n/2 on the residue class 1, . . . , n/2. 
Let (X1, P1> and (X2, P2) be two resolvable Steiner quadruple systems 

of order n, where X1 and X2 are disjoint sets of size n. Now define two 

1-factorizations of Kn, F = { F ~ ,  . . ., Fn-l 1 and G = (G~, ..., Gn-13 , with 
vertex set X1 and X2, respectively, and arbitrarily order the edges of each 

1-f actor. 

We now define a resolvable SQS(2n), (X1 UX2, P1 U P2 U 0) , where 0 is a 
set of blocks which will be defined in Step 2. This Steiner quadruple 

system will have (2n-1)(2n-2)/6 parallel classes. 

I, If ~ ~ 1 ~ ~ 1 . .  . IPt and Q11~2/. . . IQt (where t=(n-l)(n-2)/6) are 

resolvable partitions of P1 and P2, respectively, then PIUQ1, P2UQ2, '... 
PtUQt are t parallel classes in the SQS(2n). 

Step 2. For each i, llisn-1, and for each k, 11kIn/2, a parallel class is 

define6 as follows. For 15j1n/2, take the jth edge (arb) of Fi together 

with the ( j+k)th edge (c,d) of Gi to form the block ia,b,c,d1. These n/2 



blocks form a parallel class and the collection of blocks in all such 

parallel classes forms 0. 

It is a simple matter to check that these n(n-1)/2 parallel classes, 

together with the (n-l)(n-2)/6 parallel classes defined in Step 1, form the 

(2n-1)(2n-2)/6 parallel classes in a resolvable SQS(2n). 

We now turn our attention to the problem of finding resolvable 

C(n,4,1) designs. The following definition is analogous to Definition 5.2. 

5.4 DEFINITION: A C(n,4,1) design is resolvable if its 4-cycles can be - 
partitioned into classes so that every vertex appears exactly once in each 

class. Each such class is called a parallel class (of the design). 

It is easy to see that a necessary condition for the existence of a 

resolvable C(n,4,1) design is that n be a multiple of four. 

In the same way that Steiner quadruple systems of order n can be used 

to obtain C(n,4,1) designs, resolvable Steiner quadruple systems of order n 

give rise to resolvable C(n,4,1) designs. We have the following theorem. 

5.5 THEOREM: If there exists a resolvable SQS(n) then there exists a - 
resolvable C(n,4,1) design. 

PROOF: Let (XI P )  be a resolvable Steiner quadruple system of order n 

with resolvable partition P11P21...[~t (where t=(n-l)(n-2)/6). For each 
1 2  parallel class Pi in the SQS(n) we define three parallel classes Pi, Pi 

3 and Pi in the C(n,4,1) design. This is done as follows. For each block 

(u,v,w,x] €Pi (with u<v<w<x and Silt) we place the three 4-cycles it 
1 2 defines in the parallel classes according to: (u,v,w,x) €Pi, (u, w,v,x) €pi 

3 and (u,v,x,w? €pi. 

These 3t sets form the parallel classes of a resolvable C(n,4,1) 

design. 



The following theorem for C(n,4,1) designs is analogous to Theorem 

5.3, which gives a corresponding result for Steiner quadruple systems. 

5.6 THEOREM: If there is a resolvable C(n,4,1) design then there is a - 
resolvable C(2nr4,1) design. 

PROOF: This proof closely follows that of Theorem 5.3. In this proof 

addition is modulo n/2 on the residue class 1, . . ., n/2. 
Take two resolvable C(n,4,1) designs, one based on the vertex set X1 

and the other based on the vertex set X2, where X1 and X2 are disjoint 

sets of size n. The resolvable C(2n14,1) design we define is based on the 

vertex set XlUX2. Let F = F ,  ..., Fn-l] and G = G ..., Gn-l] be two 

1-factorizations of with vertex set X1 and X2, respectively, and 

arbitrarily order the edges in each 1-factor. The resolvable C(2nr4,1) 

design will now be defined. 

1- Let P ~ ~ P ~ ~ . . . I P ~  and P ~ ~ Q ~ / . . . I Q ~  (where t=(n-l)(n-2)/2) be 

resolvable partitions of the two C(n,4,1) designs. Then PiUQi, llilt, are 

parallel classes in the C(2n14,1) design. 

Step 2. This is the same as Step 2 of Theorem 5.3, except that each 

parallel class of blocks is replaced by three parallel classes of 4-cycles 

using Theorem 5.5. . 
5.7 DEFINITION: Given a C(4m+2,4,1) design, a near-parallel class Pi - , j r  
11i<j14m+2, is a set of m vertex disjoint 4-cycles based on the set 

{1,2,.. . ,4m+2)-{it j]. 

5.8 DEFINITION: For m20, a C(4m+2,4,1) design is near-resolvable if the - 
4-cycles in the design can be partitioned into (4m+2)(4m+1)/2 near-parallel 

classes Pi . (Xi< jS4m+2) . 
1 3  



Ideas similar to those contained in the above two definitions have 

been used before (see [H4]) to double Steiner quadruple systems to obtain 

resolvable Steiner quadruple systems. Definitions 5.7 and 5.8 are less 

general than the corresponding definitions in [~4] , simply because the 

minimum number of classes into which the 4-cycles can be partitioned is 

equal to the number of edges in K4m+2. Clearly the maximum number of 

distinct vertices in each class of the partition is 4m, and we can 

consider (for now) this class as containing m 4-cycles and an edge. Thus 

in each class there must be exactly one edge of K4m+2- 

The following four lemmas are useful in constructing resolvable 

C(n,4,1) designs for those values of n for which there does not exist a 

resolvable SQS(n); that is, when n = 0 (mod 12). The C(2,4,1) design is 

trivially near-resolvable. Lemma 5.12 was obtained by computer using a 

simple algorithm and there is no reason to believe that near-resolvable 

designs do not always exist. The main reason the computer search was 

stopped after a near-resolvable C(18,4,1) design was found was the length 

of time it took for the program to run. 

5.9 LEMMA: There is a near-resolvable C(6,4,1) design. - 

PROOF: Consider the fifteen 4-cycles in a C(6,4,1) design. Each cycle in 

this design is disjoint from exactly two vertices, say i and j, and this 

cycle gives a near-parallel class Pi, j. 8 

5.10 LEMMA: There is a near-resolvable C(10,4,1) design. - 

PROOF: Consider the cycles in the C(10,4,1) design obtained by using the 

'line-graph' solution as described in the proof of Theorem 2.1. We want to 

partition the 4-cycles into 45 near-parallel classes Pi I jr where either 

11i<j59 or i=w and llj<Y. This is done by choosing one cycle Cil j ( k )  from 

each of the ten pairs of columns in the array (see Theorem 2.1). These ten 

cycles are then taken in pairs so that 



1. in each of the five pairs the cycles are vertex disjoint, and 

2. the edges formed by the vertices missed in each of the pairs of 

cycles have distance =I  11 2, 3 and 4, respectively. 

By applying the permutation (1,2,3,4,5,6,7,8,9) to the vertices of the 

cycles ( is a fixed point) we obtain the required 45 near-parallel 

classes. That is, we can think of the five pairs of cycles as 'starter' 

cycles. 

We give below five pairs of 4-cycles which satisfy conditions 1 and 2. 

The near-parallel class Pi, that is defined by them is also listed. 

If the vertices in these pairs of 4-cycles are permuted using the 

permutation given above we see that all edges of the line graph L(KlO) are 

used (i.e. all 2-paths of KlO) and each pair of distinct vertices i and j 

of K10 defines exactly one near-parallel class Pirj. Thus we have a 

near-resolvable C(10,4,1) design. . 
5.1 1 LEMMA: There exists a near-resolvable C(l4,4,l) design. - 

PROOF: As in the proof of Lemma 5.10, we use the C(14,4,1) design 

obtained from the line graph solution described in Theorem 2.1. We want to 

partition the 4-cycles into 91 near-parallel classes Pilj, where either 

lSi<j513 or i=w and 15 j5l3. This is done by choosing one cycle Cil (k )  

from each of the twenty one pairs of columns in the 13 x 7 array (see 

Theorem 2.1). These twenty one cycles are then partitioned into seven 

groups of three so that 

1. in each of the seven groups of three 4-cycles the cycles are vertex 



disjoint and 

2. the edges formed by the missing vertices in each of the pairs of 

cycles have distance =, 1, 2, 3 ,4, 5 and 6 respectively. 

These seven 3-tuples of cycles are then developed modulo 13 on the residue 

class 1, ..., 13 (= is a fixed point) to produce the required ninety-one 

near-parallel classes. 

Seven groups of 4-cycles which satisfy the above two conditions are 

given below. The near parallel class PiIj that each set of cycles belongs 

to is also given. 

If the three four-cycles in each group are developed modulo 13 then 

this gives us the required ninety-one near-parallel classes. . 
5.12 LEMMA: There is a near-resolvable C(18,4,1) design. - 

PROOF: As the proof is similar to that of Lemma 5.10, we present here 

only the nine groups of four 4-cycles which satisfy the following two 

conditicns: 

1. in each of the nine groups the four 4-cycles are vertex disjoint and 

2. the edges formed by the points missed in each of the groups have 

distance a, 1, 2, . . . , 8 respectively. 



Parallel 

class - 

If these groups of four 4-cycles are each developed modulo 17 (the 

residue class is 1, . . . , 17 and = is a fixed point) then all the edges of 

L(K18) will have been used. That is, all 2-paths of K18 have been used and 

we have a near-resolvable C(18,4,1) design. 9 

The following theorem is a special case of Theorem 5.15, with s=2. It 

is presented here, however, because its proof is simple and it allows us 

to simplify the proof of Theorem 5.15. 

5.13 THEOREM: If there exists a near-resolvable C(t,4,1) design then - 
there exists a resolvable C(2tI4,1) design. 

PROOF: Suppose we have a near-resolvable C(t,4,1) design with vertex set 

T. Label the vertices of Kt with the elements of 1 . . t and label 

the vertices of K2t with the elements of Tx {1,2), which will also be the 

vertex set of the resolvable C(2tI4,1) design. We will write i instead of j 

i j .  Let X; be the restriction of K2: to the vertex set Tx{i], i=1,2. 

Let F={F~, . . ., Ft-l] be a 1-factorization of Kt and arbitrarily order 
the edges in each Fi. If (arb) is the jth edge of Fi in Kt then we define 



1 (al,bl) to be the jth edge of Pi in Kt and (a2,b2) to be the jth edge of 

Fi in K:. The proof is presented in three steps, which are illustrated in 

Figure 10. 

Step 1. Each near-parallel class P,, in the C(t,4,1) design determines a 
I Y 

parallel class Rx in the C(2t14,1) design as follows. For each 4-cycle 
rY 

(a,b,c,d) ePxry we have (allbllclldl)~Rx and (a2,b2,c2,d2)~Rxry. rY These 

(t-2)/2 4-cycles, together with the 4-cycle ( ~ ~ , y ~ , ~ ~ , y ~ ) ,  form the 

parallel class Rxly in the C(2t14,1) design. In this way we get t(t-1)/2 

parallel classes, one for each near-parallel class in the near-resolution 

of the C(t,4,1) design. 

The remaining parallel classes that are to be defined will contain 

those 4-cycles with two vertices from Tx (1) and two vertices from Tx (2). 

Step 2. For 1ljSt-1, consider the 1-factor F This 1-factor will be used 
j - 

I to define two parallel classes, Si and s:, as follows. For each (x,y) eF, 
-1 J J 

2 we have (xlrx2,y1.y2)~~~ and (x1,x2,y2.yl)~Sj. This gives 2(t-1) parallel 

classes. (Note that the 4-cycle (xl,yl,x2,y2) already belongs to the 

parallel class Rx defined in Step 1.) 
1 Y 

Step 3. So far, each pair of vertices of T x (1) has appeared on exactly 

three 4-cycles with only one pair of vertices from Tx (2). In this step of 

the proof we define the 3(t-l)(t-2)/2 parallel classes which remain. 

Addition is modulo t/2 on the residue class 1, 2, ..., t/2, 
For each i, lsist-1, and for each k, 15kS(t-2)/2, take the jth edge, 

1 l<jLt/2, (al,bl) of Fi in Kt together with the ( j+k)th edge (c2,d2) of Fi 

in K:. Take a C(4,4,1) design on the vertex set ~al,bl,c2,d2). For each i 

and k we get 3(t/2) 4-cycles which can easily be partitioned into three 

parallel classes. This gives 3(t-l)(t-2)/2 parallel classes. 

Now take the 3(t-lj(t-2)/2 parallel classes just defined, together 

with the parallel classes 51 and S2 (lSj5t-1) and Rx 
I j IY 

(lSxcy5t). These 

3(t-1) (t-2)/2 + 2(t-1) + t(t-1)/2 = (2t-1) (t-1) parallel classes contain all 



S t e p  2 

Figure 10 

62 



the 2-paths in K2t exactly once each. . 
The following construction allows us to take an orthogonal array of 

strength three and partition it into n2 orthogonal arrays of strength one. 

In a later construction of resolvable C(n,4,1) designs we will find that 

this property will be essential in maintaining the resolvability of the 

designs. 

5.34 CONSTRUCTION: In this construction we will define an OA(n,4) of - 
strength three from a Latin square of order n. The columns of this 

orthogonal array can be partitioned into n2 sets, each of which is an 

OA(n,4) of strength one. 

Let A=A(i, j) be a Latin square of order n with rows, columns and 

entries taken from the set (1, .. ., n). Define n permutations pi, IliSn, 

of the elements of A by piA(l,c)=A(i,c), llcln. 

It is not difficult to verify that for lli,jln and OldSn-1 the n 3 

columns 

ii,j,i+d,~~+~(A(i,j))j T 

form an OA(n,4) of strength three. Here addition is modulo n on the 

residue class 1, 2, . . . , n. 
Fix k, llkln, and consider all ordered pairs (it ji) such that 

A(i, ji)=k. Then for a fixed d, Oldln-1, the n columns 

form an OA(n,4) of strength one. These orthogonal arrays will be denoted 

OA(n,4;d,k). 

5.15 THEOREM: If there exists a near-resolvable C(s,4,1) design and a - 
near-resolvable C(t,4,1) design then there exists a resolvable C(stf4,1) 

design. 

PROOF: Taking s=2 we see that we have proved this result in Theorem 5.13. 



Thus in what follows we assume without loss of generality that both s16 

and t16. 

Suppose we have a near-resolvable C(s,4,1) design and a 

near-resolvable C(t,4,1) design with vertex sets ~:=(l, ..., s) and 

~:=(l, . . . , t), respectively. Label the vertices of KS and Kt with the 

elements of S and TI respectively, and label the vertices of Kst with the 

elements of T x S, which will also be the vertex set of the resolvable 
i C(st,4,1) design. We write i instead of (i,j). Let Kt be Kst restricted 

j 
to the vertex set Tx(i), icS. 

Let F=(F~. . . ., Fs-l) and G=(G~, . . ., Gtml] be 1-factorizations of Ks 
and Kt, respectively. Now, arbitrarily order the edges in each 1-factor and 

if (arb) is the jth edge of Fi (Gi) in KS (Kt) then we define (ak,%) to 

be the jth edge of Fi (Gi) in K: K . The proof is presented in three 

steps, which are illustrated in Figures lla, llb and llc. For this 

illustration we use s=6. 

Step 1. In Figure lla we show this step pictorially and have used 

~~=((~,2>, (3,4>, (5,6)). 

Each near-parallel class PXly in the C(t,4,1) design determines a 

parallel class in the C(st,4,1) design as follows. For each 4-cycle 

(a,b,~,d)~P,,~ we create the 4-cycles (ai,bi,ci,di), l5iSs. These s(t-2)/4 

cycles of length four, together with the s/2 4-cycles xilyilxjlyjr where 

i ) F ,  form a parallel class in the C(st,4,1) design. In this way we 

get t(t-1)/2 parallel classes, one for each near-parallel class in the 

near-resolution of the C(t,4,1) design. 

Step 2. In this step we do - not define any parallel classes of the 

C(st,4,1) design. Instead, for each edge (urv)EKS we define partial 

parallel classes of 4-cycles on Tx (u,v]. These partial parallel classes of 

4-cycles contain all 2-paths on the vertices of T x  (u,v] which have not yet 

been used in some parallel class of Step 1. 



Step 

Figure lla 



a) If (u,v)EF, there will be 2(t-1) + 3(t-l)(t-2)/2 partial parallel 
.L 

classes of 4-cycles defined as f0110ws. 

For each 1-factor Gi in Kt, S t - 1  we define two partial parallel - 
classes of 4-cycles, s and 5:. For each (arb) €Gj we have 

2 
( a u l ~ v l b U l b v ~ ~ ~ f  and (aul+.bvlbu) €5 j. Thus we get 2(t-1) partial 

parallel classes of 4-cycles on T x (u,v). (Note that the 4-cycle 

(au,bu,+,bv) was already used in Step 1.) 

For each h and k, 1ShSt-1 and lSkS(t-2)/2, we define three partial 

parallel classes of 4-cycles on Tx (u,v). For 1SjIt/2 take the jth edge 

(au,bu) of G, in K: together with the ( j+k)th edge (cv,g,) of Gh in K: 

to form the block (a,,bu,cv,~~. Take the C(4,4,1) design on these 

vertices and distribute the three 4-cycles in this design among three 

different sets. Thus for each h and k we have 3(t/2) cycles of length 

four which can easily be partitioned into three partial parallel classes, 

each containing t/2 vertex disjoint 4-cycles on Tx(u,v). 

b) If (u,v)eFi, 25iIs-1, there will be 3(t-l)!t/2) partial parallel classes 

on T x (u,v) defined. For each h and k, 1ShSt-1 and l<kSt/2, a partial 

parallel class of blocks of size four is formed by taking, for lSjIt/2, 

the jth edge (au,bu) of Gh in K: together with the ( j+k)th edge (cv,ev) 

of Gh in K: to form the block a u b u c v e v  This partial parallel class 

of blocks is now replaced, using Theorem 5.5, by three partial parallel 

classes of 4-cycles. 

Step 3. In Figure llb we illustrate this step under the assumption that 

(1,2,4,3) is a cycle in the near-parallel class PgI6 of the near-resolvable 

C(6,4,1) design. 

For each near-parallel class PXty in the C(s,4,1) design we will 

define t2 parallel classes in the C(st, 4, I) design. 
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For Oldst-1 and lSk<t consider the O~(t,4;d,k) as defined in 

Construction 5.14. We define a parallel class p(x,y;d,k) of 4-cycles based 

on this orthogonal array of strength one by: 

For each cycle (a.b.c.e)~PXry and for each column (u.v.w.~)~ of the 

OA(t,4;d1k) we have 

(~al~bl~Cfze) 'P(~~y;d~k). 

In addition, we add to P(x,y;d,k) 4-cycles on the vertex set ~x(x,y) 

as follows: 

1. If (xry)EF1 then any partial parallel class of 4-cycles defined in 

Step 2a is added to P(x,y;d,k). This partial parallel class is then 

deleted from the sets of 4-cycles constructed in Step 2a. 

2. If (x,y)eFi, 2si<s-1, then any partial parallel class of 4-cycles 

defined in Step 2b is added to ~(x,y;d,k). This partial parallel 

class is then deleted from the sets of 4-cycles constructed in Step 

2b. 

It is easy to see by a counting argument that the number of partial 

parallel classes of 4-cycles whrieh were defined in Steps 2a and 2b is at 

least as great as the number of partial parallel classes of 4-cycles which 

are to be deleted from these steps. 

Step - 4. This final step is shown in Figure llc. We assume in the 

illustration that ~~=((l,6), (2,4), (3,5)) . The cycles shown are thus taken 
from Step 2b. 

For each edge (xry)EF1 the number of partial parallel classes of 

4-cycles on Tx (x,y) remaining from Step 2a is 3(t/2-l)(t-1) + 2(t-1) - t2 

= (t2-5t+2)/2. For each edge (x,y)eFi, 2iiis-1, the number of partial 

parallel classes of 4-cycles on T x (x,g) remaining from Step 2b is 

3!t/2) (t-1) - t2 = (t2-3t)/2. 

For each edge in F1 take a partial parallel class of 4-cycles from 

Step 2a. The collection of these s/2 partial parallel classes forms a 
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parallel class in the C(st,l,l) design. Delete these partial parallel 

classes from Step 2a. Repeat this step (t2-5t+2)/2 times until all such 

partial parallel classes are accounted for. 

For 2lils-1 take, for each edge in Fir a partial parallel class of 

4-cycles from Step 2b. These s/2 partial parallel classes form a parallel 

class in the C(st,4,1) design. Delete these partial parallel classes from 

Step 2b. Repeat this step (t2-X)/Z times so that no partial parallel 

classes remain in Stsp 2b. 

We now check to see that we have the correct number of parallel 

classes. The total number of parallel classes created at each step of the 

proof is: 

Step 1 t (t-1)/2 

Step 3 t2s(s-1)/2 

Step 4 (t2-5t+2>/2 + (t2-3t) (s-2)/2. 

The sum of these numbers is (st-l)(st-2)/2 as required and thus we 

have constructed a resolvable C(st, 4,l) design (of course one also needs to 

check that every 2-path is accounted for). . 
5.1 6 THEOREM: - If there exists a resolvable C(s,4,1) design and a 

near-resolvable C(t,4,1) design, then there exists a resolvable C(st,4,1) 

design. 

PROOF: The proof of this theorem is very similar to the proof of Theorem 

5.15. 

Suppose we have a resolvable C(s,4,1) design with vertex set 

~:={1, . . ., s) and a near-resolvable C(t,4,1) design with vertex set 

~:={l, . . . , t3. Label the vertices of Ks and Kt with the elements of S and 
T, respectively, and label the vertices of Kst with the elements of TxS. 

This set will also be the vertex set of the C(st,4,1) design and we write 



i instead of i .  Finally, we define K; to be Kst restricted to the 
j 

vertex set TX (ill ieS. 

Let F'(F1r . . ., Fs-l] and G={G~, . . ., Gt-l] be 1-factorizations of K, 
and Kt, respectively. Now arbitrarily order the edges in each 1-factor, and 

if (a.b) is the jth edge of Pi (Gi) in K~ (K~) then we define (4.4) to 

be the jth edge of Pi (Gi) in K: (K!). 

Step 1. This is the same as Step 1 of Theorem 5.15. We get t(t-1)/2 

parallel classes, one for each partial parallel class in the 

near-resolution of the C(t,4,1) design. 

~ t e p  2. This is the same as Step 2 of Theorem 5.15. 

Step 3. This step differs from the corresponding step of Theorem 5.15 

because the C(s,4,1) design is actually resolvable, not near-resolvable. 

For each parallel class P in the C(s,4,1) design we define t2 parallel 

classes in the C(~t~4.1) design. 

For OId5t-1 and XkSt consider the OA(t,4;d,k) as defined in 

Construction 5.14. We define a parallel class P(d,k) of 4-cycles based on 

this orthogonal array of strength one by: 

For each cycle (a,b,c,e)EP and for each column (u,v,w,~)~ of the 

OA(t,4;d,k) we have 

(uarvbrwcr~e) EP(drk) 

Steo 4. This is similar to Step 4 of Theorem 5.15, except for the fact - 
that ao partial parallel classes of 4-cycles have yet been used from Step 

2. For each edge (xry)EF1 the number of partial parallel classes of 

4-cycles on Tx (x,y) to be used from Step 2a is (3t-2)(t-1)/2. For each 

edge (xry)EFir 2SiIs-1, the number of partial parallel classes of 4-cycles 

on T x  (x,y) to be used from Step 2b is 3t(t-1)/2. 



The rest of the proof closely f0110w~ Step 4 of Theorem 5.15. 

We now count the total number of parallel classes created at each step 

Of the proof. 

Step 1 t (t-1)/2 

Step 3 t2(s-1) (s-2>/2 

Step 4 (3t-2)(t-1)/2 + 3t(t-l)(s-2)/2 

The sum of these numbers is (~t-l)(st-2)/2 as required and thus we 

have constructed a resolvable C(st,4,1) design. . 
5.17 THEOREM: - If there exists a resolvable C(s,4,1) design and a 

resolvable C(t,4,1) design then there exists a resolvable C(st,4,1) design. 

PROOF: The proof of this theorem is very similar to the proof of Theorem 

5.15. 

Suppose we have resolvable C(s,4,1) and C(t,4,1) designs with vertex 

sets S:=(l, . . . , s) and ~:={1, . . . , t1, respectively. Label the vertices of 
K, and Kt with the elements of S and Tr respectively, and label the 

vertices of Kst with the elements of TxS. This set will also be the vertex 

set of the C(st,4,1) design and we write i instead of (i,j). Finally, we j 
define K: to be Kst restricted to the vertex set ~x{i), irS. 

Let F=(F~, . . . FS-l] ahd G=(G~, . . . Gtq1] be 1-factorizations of Ks 

and Kt, respectively. Now, arbitrarily order the edges in each 1-factor and 

if (arb) is the jth edge of Fi (ti) iri KS (Kt) then we define (aklbk) to 

be the jth edge of Fi (Gi) in K: (Kt). 

Step L, For each parallel class P in the C(t,4,1) design we get a parallel 

class in the C(st,4,l) design as follows. For each 4-cycle (a,b,c,d)EP we 

create the 4-cycles (ai,bi,ci,di), llils. These st/4 cycles of length four 

form a parallel class in the C(st,4,1) design. We thus get (t-l)(t-2)/2 

parallel classes, one for each parallel class in the resolution of the 

C(t,4,1) design. 



2. In th i s  step we do not define any para l le l  classes of the 

C(st,4,1) design. Instead, for each edge (x,y)fKS we define pa r t i a l  

para l le l  classes of 4-cycles on T X  (x,y). These pa r t i a l  para l le l  classes of 

4-cycles contain a l l  2-paths on the vertices of ~ x ( x , y )  which have not yet 

been used i n  some para l le l  c lass  of Step 1. 

For each (xry)fFi, where l l iss-1,  3 ( t - l ) ( t / 2 )  pa r t i a l  paral le l  classes 

on T x (x, y )  w i l l  be defined. For each l l h l t - 1  and 1lkSt/2 a pa r t i a l  

para l le l  c lass  Of blocks of s ize four i s  formed by taking, for  1-<jlt /2,  

the jth edge (ax.bx) of Gh i n  K: together with the (j+k)th edge (cy.ey) of 

Gh i n  K: t o  form the block ~ax .bx lc  ,e  ) .  This pa r t i a l  para l le l  c lass  of 
Y Y 

blocks i s  now replaced, using Theorem 5.5, by three pa r t i a l  para l le l  

classes of 4-cycles. 

Step 3. This step i s  the same as Step 3 of Theorem 5.16. 

Step 4. Again, t h i s  i s  similar t o  Step 4 of Theorem 5.15, except for  the 

f ac t  that  no classes of 4-cycles have yet been used from Step 2.  For each 

edge ( x , ~ )  €Fi r  1Sil.s-1, the number of classes of 4-cycles on T x  (x,y) t o  be 

used from Step 2 i s  3 t ( t - 1 ) / 2 .  

The r e s t  of the proof closely follows Step 4 of Theorem 5.15. 

We now count the t o t a l  number of paral le l  classes created a t  each step 

of the proof. 

Step 1 ( t - l ) ( t - 2 ) / 2  

Step 3 t2(s-1)  (s-2>/2 

Step 4 3 t ( t - l ) ( s -1) /2  

The sum of these numbers i s  ( s t - l ) ( s t -2) /2  as required and the 

- C(st,4,1) design i s  thus resolvable. 

Lrsing the theorems and lemmas of th i s  chapter we are  able to  find 

resolvable C(n,4,1) designs for 87 of the 100 admissable values of n up to  

400. 



5.18 THEOREM: Let X = (132, 156, 204, 220, 228, 236, 276, 292, 300, 348, - 
364, 372, 396). If 41n1400 and n=O (mod 4) then there exists a resolvable 

C(n, 4,l) design, except possibly for nfX. 

PROOF: The proof is presented in Appendix 2. . 



CHAPTER 6 

EXACT COVERINGS USING 5-CYCLES 

In this chapter we look at the problem of finding C(n,5,A) designs. 

There are (n)(n-l)(n-2)/2 2-paths in Y, and every 5-cycle contains five 

2-paths. Thus if there exists a C(n, 5,A) design then h(n-1) (n-2) i 0 (mod 

10). If A is not a multiple of five then the necessary conditions for the 

existence of a C(n,S,X) design are that n=O, 1 or 2 (mod 5). ~f A is a 

multiple of five then there are no conditions on n for the existence of a 

C(n,5,X) design. 

The following work was done with Dr. R. Mathon of the University of 

Toronto. We construct C(n,5,1) designs for n=5,6,7 and 10. These are 

presented below. 

6.1 THEOREM: There exists a C(5,5,1) design. - 

PROOF: The six 5-cycles in the design are listed below (addition is 

modulo 5 on the residue class 1, . . ., 5). It is a simple matter to verify 

the existence of all paths of length two. 

(1,2,3,4,5) (l+i,5+i,2+iI4+i,3+i) OIi54. H 

6.2 THEOREM: There exists a C(6,5,1) design. - 

PROOF: Using the point set (a, 1, . . ., 51, the twelve cycles of length 
five in a C(6,5,1) design are listed below. The point = is a fixed point, 

addition is modulo 5 on the residue class 1, . . . , 5, and OIi14. 
(1,2,31415) (w,l+i,3+i,2+i14+i) 

~1,3,5,2,4) (=,l+iI2+i,4+i,5+i). 

6.3 THEOREM: There exists a C(7,5,1) design. - 

PROOF: The following twenty one cycles of length five (with addition 



modulo 7 on the residue class 1, ..., 7) cover every 2-path exactly once 

each. Here we take OIiS6. 

(l+i,b+i,6+i,3+i12+i) (3+i,4+i,6+i,7+i15+i) 

(l+i,3+iI6+i,7+i,4+i). 8 

6.4 LEMMA: There exists a C(10,5,1) design. - 

PROOF: The point set that we use is (w, 1, . . . , 91, where w is a fixed 
point. Addition is modulo 9 on the residue class 1, ..., 9, and OSii8. The 
following seventy-two cycles of length five contain each 2-path once. 

(w,l+iI3+i,2+i,4+i) (w12+i,3+i,5+i,6+i) 

(=,7+i,4+iI2+i,8+i) (w17+i13+i14+i19+i) 

(2+i,3+i,4+ir8+i,5+i) (3+i,4+iIl+i,6+i,8+i) 

(5+i,7+i,9+iI6+i,l+i) (l+i,3+i18+i,5+i,4+i). 

The C(11,5,1) design and the C(12,5,1) design given below were found 

very recently by R. Mathon. I would like to thank him for allowing me to 

reproduce  the^ here. 

6.5 LEMMA: There exists a C(11,5,1) design. - 

PROOF: The following design is based on the set (0, ..., 10). Addition is 

modulo 11 and OIi<10. The ninety-nine 5-cycles listed contain each 2-path 

of Kll once. 

(O+irl+i,2+i,10+i,3+i) (0+i,l+i,5+iI1O+i,8+i) 

(O+i,3+i,6+i,8+ir9+i) (O+i,lO+i,6+i,l+i,3+i) 

(O+i,9+iI7+i,2+i,5+i) (O+i,l+i,10+i,3+iI6+i) 

(O+ir5+i,10+i,6+i,4+i) (O+i,lO+i,l+i,8+i,5+i) 

(O+iI4+i,8+i,7+i,l+i). 

When i=O we note that each of the 5-cycles in the first column can be 

obtained by mnltiplying each entry in the preceding 5-cycle by 3. Also note 

that in the second column the first and second 5-cycles and the third and 



fourth 5-cycles are 'additive inverses' of each other. 

6.6 LEMMA: There exists a C(12,5,1) design. - 

PROOF: The following design is based on the set I=, 0, . . . , 10) . Addition 
is modulo 11 and OSi110. The 132 cycles of length 5 that are listed below 

contain each 2-path of K12 once. 

(=+i,O+i,lO+i,7+i,2+i) (O+i,l+i,2+i,lO+i,3+i) 

(=+i,O+i,8+i,lO+i,6+i) (O+i,3+i,6+i,8+i,9+i) 

(=+i10+i,2+i,8+i,7+i) (O+i19+i,7+i,2+i,5+i) 

Note that when i=O the second through fifth 5-cycles in each column 

can be obtained from the one preceding it by multiplying each number (other 

that by 3. 

As in the case of C(n,4,X) designs we are able to use 3-designs and 

existing C(nr5,h) designs to construct more C(n,5,A) designs. The following 

lemma is an obvious extension to Lemma 1.7, as is its proof. 

6.7 LEMMA: Let K=(nl, . . nr) . If for each nil llilr, there exists a - 
C(ni,5,X) design and if there exists a 3-(n,K,u) design then there exists a 

C(n,5,X*u) design. 

For example, using this lemma and various 3-designs (see [HHK]) we see 

that there are also C(n, 5,l) designs for n€ (17,21,22,25,26). 

Whether or not C(n,5,1) designs exist for all permissible values of n 

is an interesting problem to pursue. However, even for the small cases, the 

problem is large and could take a very long time to solve on the computer. 

It therefore appears that using the computer to solve this problem is 

inappropriate, but an attempt to use design theory or group theory could 



possibly result in further C(n,5,1) designs. 



APPENDIX 1 

In the Introduction, we discussed the problem of finding a set of 

(n-l)(n-2)/2 Hamilton cycles in K, so that every 2-path lies on exactly one 

Hamilton cycle. Using a method described by L. E. Dickson [II~], we found 

3316 distinct solutions to the problem when n=17. The irreducible 

polynomial in GF(~~) that was used was a4=a+l. We now present the 120 

cycles for one of these solutions, except that we write i instead of ai-l 

when 25i115. 







APPENDIX 2 

We present here the proof of Theorem 5.18. The values of n (4Sn1400) 

for which a resolvable C(n,4,1) design is known to exist are listed in 

tabular form, along with the results used to justify their resolvability. 

For those values of n for which there exists a resolvable SQS(n), we write 

* to mean Theorems 5.1 and 5.5 are used in the proof. All unsolved values 

are listed with a dash (-) beside them; their resolvability could be proved 

by finding near-resolvable designs of an appropriate order. 

n Theorems & Lemmas used n Theorems & Lemmas used 

5.9 and 5.13 

* 

5.12 and 5.13 

X 

5.9, 5.10 and 5.15 

* 

5.12 and 5.16 

* 

5.9, 5.11 and 5.15 

* 

5.9, 5.12 and 5.i5 

* 

5.10 and 5.16 

X 

* 



n Theorems and Lemmas used n Theorems and Lemmas used 

* 

5.11 and 5.16 

* 

* 

5.1C, 5.12 and 5.15 

* 

* 

5.17 

* 

* 

- 
* 

* 

5.12 and 5.16 

- 
* 

- 
* 

- 

5.17 

* 

* 

5.11, 5.12 and 5.15 

* 

* 

5.9 and 5.16 

* 

* 

- 
* 

* 

5.17 

- 
* 

- 
* 

* 

5.9 and 5.16 

* 

* 

5.12 and 5.15 

* 

* 

5.17 

* 

* 

- 
* 

* 

5.9 and 5.16 

- 
* 

- 
* 

* 

5.17 

* 

* 

- 
* 
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