PART I : CHEMICAL AND SPECTROSCOPIC INVESTIGATIONS OF TRIALKYLSILYL AND TRIALKYLSTANNYL METALLOIDS. PART II : THE SYNTHESIS OF POTENTIAL INHIBITORS OF SQUALENE SYNTHETASE

by

Sunaina Sharma

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF REQUIREMENTS FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY

in the Department of

Chemistry

at Simon Fraser University

Burnaby, BC.

© Sunaina Sharma, July 1989

Simon Fraser University

All rights reserved. This thesis may not be reproduced in whole or part, by photocopy or other means, without permission of the author.

APPROVAL

Name: Sunaina Sharma

Degree: Doctor of Philosophy

Title of Thesis: PART I: CHEMICAL AND SPECTROSCOPIC INVESTIGATIONS OF TRIALKYLSILYL AND TRIALKYLSTANNYL METALLOIDS. Part II: THE SYNTHESIS OF POTENTIAL INHIBITORS OF SQUALENE SYNTHETASE.

Examining Commmittee:

Chairman: Prof. P.W. Percival

Prof. A.C. Oehlschlager, Senior Supervisor

Prof. K.N. Slessor, Supervisory Committee

Prof. E. Kiehlmann, Supervisory Committee

Prof. R.K. Pomeroy, Internal Braminer

Prof. V.A. Snieckus, External Examiner Department of Chemistry, Guelph-Waterloo Centre for Graduate Work in Chemistry, University of Waterloo, Waterloo.

Date Approved:

December 14, 1989

PARTIAL COPYRIGHT LICENSE

I hereby grant to Simon Fraser University the right to lend my thesis, project or extended essay (the title of which is shown below) to users of the Simon Fraser University Library, and to make partial or single copies only for such users or in response to a request from the library of any other university, or other educational institution, on its own behalf or for one of its users. I further agree that permission for multiple copying of this work for scholarly purposes may be granted by me or the Dean of Graduate Studies. It is understood that copying or publication of this work for financial gain shall not be allowed without my written permission.

Title of Thesis/Project/Extended Essay

Part I: Chemical and Spectroscopic Investigations of Trialkylsilyl

and Trialkylstannyl Metalloids.

Part II: The synthesis of Potential Inhibitors and Squalene Synthetase.

Author: _____

(signature)

Sunaina Sharma

(name)

December 14, 1989

(date)

ABSTRACT

Low-temperature, heteronuclear (¹H, ⁷Li, ¹³C, ²⁹Si and ¹¹⁹Sn) NMR spectroscopy was used to study the constitution of trialkylsilyl [(R₃Si)_nCuLi_{n-1}•LiX] and trialkylstannyl [(R₃Sn)_nCuLi_{n-1}•LiX; R = alkyl, n=1, 2 or 3 and X = CN or Br] cuprates derived from CuCN and CuBr•Me₂S. These studies revealed that in composition, the metallocuprates are similar to alkylcyanocuprates (R_nCuLi_{n-1}•LiCN) in that the sequential addition of R₃SiLi, R₃SnLi or RLi to CuCN yields RCu(CN)Li and R₂Cu(CN)Li₂. Further addition of R₃MLi (M = Si or Sn, R = alkyl) leads to the formation of *hitherto* unknown (R₃M)₃CuLi₂. In the case of alkylcyanocuprates addition of RLi beyond a RLi:CuCN ratio of 2:1 yields no new species but gives solutions with hydrogen abstracting ability attributable to RLi. The formation of mixed cuprates R₃M(Me)_nCuLi_n•LiCN (M = Si or Sn, n = 1 or 2) was also studied by low-temperature NMR spectroscopy. These studies revealed that like mixed alkylcyanocuprates, ligands on copper readily exchanged in these metallocuprates.

The ability of methyl as a ligand to tenaciously bind to copper resulted in the exclusive transfer of R3Si and R3Sn ligands in additions to α , β -unsaturated enones and 1-alkynes.

Low-temperature heteronuclear (²H, ¹¹B, ²⁹Si and ¹¹⁹Sn) NMR spectroscopy was also employed to study the cuprous salt catalyzed addition of bimetallic [(Me₃SnAlEt₂, Me₃SiAlEt₂, (Me₃Sn-9-BBN•OMe)⁻Li⁺ and (Me₃Si-9-BBN•OMe)⁻ Li⁺; BBN = 9-borabicyclo[2.2.1]nonane)] reagents to 1-alkynes. This study suggested that metallometallations involve initial silyl- or stannylcupration followed by transmetallation of a vinyl-copper bond by the electrophilic metal partner generated *in situ*. Hence, metallometallations could be conducted either by addition of "R₃SiCu" or "R3SnCu" to 1-alkynes followed by addition of Et2AlCl or Br-9-BBN, or by preformation of (R3Sn-9-BBN•OMe)⁻Li⁺ or (R3Si-9-BBN•OMe)⁻Li⁺ and R3SnAlEt2 or R3SiAlEt2 followed by addition of 1-alkynes and catalytic amounts of cuprous salts.

The 1,2-dimetallic adducts produced by metallometallation of 1-alkynes contain well differentiated 1,2-dianion equivalents capable of forming new carbon-carbon bonds. This chemistry yielded mild and efficient methods for the synthesis of stereo- and regio-defined trisubstituted olefins.

Also described in this thesis are the total syntheses of some sulfonium ion analogues of carbocationic intermediates presumed to be involved in the dimerization of farnesyl pyrophosphate to squalene by squalene synthetase. These sulfonium ions are presumptive inhibitors of this enzyme. TO AMIT

-

.

•

ACKNOWLEDGEMENT

The list of those to whom I am indebted is long. Among them, the one of premier importance is not an individual but a venerable and in many respects a unique institution. At Simon Fraser University I found encouragement to study and to do research under the guidance of and in association with chemists of outstanding ability such as Dr. Allan Cam Oehlschlager, whose invaluable advice was always available to me in or out of the department.

I am under great obligation to Dr. R.K. Pomeroy whose whole-hearted cooperation and guidance eased my task immensely.

I am also deeply grateful to Dr. Bruce H. Lipshutz of the University of California, Santa Barbara, who had always been a source of inspiration and more often than one wants to admit, of information.

I will be failing in my duty if I conclude this acknowledgement without referring to the courteous behaviour and cooperation of the NMR committee at the University of British Columbia, especially Dr. S.O. Chan and Mrs. M. Austria for recording the ¹H, ⁷Li, ¹³C and ⁻¹¹⁹Sn NMR spectra.

> Sunaina Sharma July 21st 1989.

TABLE OF CONTENTS

TITLE PAGE	i
APPROVAL	ü
ABSTRACT	iii
DEDICATION	v
ACKNOWLEDGEMENTS	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	xiii
LIST OF FIGURES	xiv
LIST OF ABBREVIATIONS	xix

PART I: CHEMICAL AND SPECTROSCOPIC INVESTIGATIONS OF TRIALKYLSILYL AND TRIALKYLSTANNYL METALLOIDS.

I. CHEMICAL AND SPECTROSCOPIC INVESTIGATIONS OF ORGANOCUPRATES.

I.1	Introduction	2
I.2	Alkylcuprates derived from cuprous halides	3
I.3	Alkylcuprates derived from cuprous cyanide	15
I.4	Solid state/X-ray analyses	21

II. CHEMICAL AND SPECTROSCOPIC INVESTIGATIONS OF TRIALKYLSILYL AND TRIALKYLSTANNYLCUPRATES.

Introduction

Research	h proposal	28
II.1 Triall	cylsilylcuprates derived from cuprous cyanide	28
II.1.1	Silicon-29 NMR studies	29
II.1.2	Carbon-13 NMR studies	33
II.1.3	Hydrogen-1 NMR studies	41
II.1.4	Lithium-7 NMR studies	41
II.1.5	Chemical tests	45
II.1.6	Gilman tests	48
II.1.7	Conclusion	49
II.2 Triall	cylsilylcuprates derived from cuprous halides	50
II.2.1	Silicon-29, Carbon-13 and Lithium-7 NMR studies	50
II.2.2	Chemical tests	62
II.2.3	Conclusion	64
II.3 Mixed	l trialkylsilyl and homo- and mixed trialkylstannyl-	65
cupra	tes derived from cuprous cyanide	
II.3.1	Silicon-29 and Carbon-13 NMR studies on	66
	mixed Trialkylsilylcuprates	
II.3.1.a	Results and discussion	66
II.3.2	Tin-119, Carbon-13 and Hydrogen-1 NMR studies	75
	on Homotrialkylstannylcuprates	
II.3.3	Tin-119, Carbon-13 and Hydrogen-1 NMR studies	86
	on mixed Trialkylstannylcuprates	
II.3.4	Reactions of Silyl- and Stannylcuprates with	93

 α , β -unsaturated Ketones. II.3.5

Conclusion

.

٠

II.3.6	Final Comments	103
III. <i>IN SITU</i> CUPRATES	GENERATION OF ACTIVATED METALLO-	105
III.1 Copp	er(I) mediated metallometallation of 1-alkynes	110
III.1.1	Proposed work	115
III.1.2	Effect of method of preparation of trialkylstannyllithium	116
III.1.3	On the efficiency of stannylalumination and stannylboronation	
III.1.4	Effect of catalyst on stannylalumination	118
III.1.5	Effect of mode of addition of reagents on stannylalumination	120
	and stannylboronation	
III.1.6	Effect of solvent on stannylalumination and stannylboronation	121
III.1.7	Compatibility of polar functional groups with stannylalumination	122
	and stannylboration	
III.1.8	Reactions of 1,2-cis-dimetallo-1-alkenes with electrophiles	123
III.1.9	Synthesis of trisubstituted alkenes	124
III.1.10	Synthesis of pheromone of the square-necked grain beetle	126
III.2 Mech	anistic studies	127
III.2.1	Results and discussion	128
III.2.2	Spectroscopic studies	138
III.2.3	Conclusion	146

ix

IV. EXPERIMENTAL

IV.1 Preparation	1 of trialkylsilylcuprates,	150
²⁹ Si NMR s	ample preparation	
IV.1.1 Gener	ation of silylcuprates deived from CuCN	151
IV.1.2 Gener	ation of silylcuprates derived from CuBr•Me ₂ S	152
IV.1.3 Gener	ation of mixed silylcuprates	153
IV.2 ¹³ C and ¹ H	NMR sample preparation	155
IV.2.1 Gener	ation of silylcuprates derived from CuCN	156
IV.2.2 Gener	ation of LiCl-free silylcuprates derived from CuCN	158
IV.2.3 Gener	ation of silylcuprates derived from CuBr•Me2S	158
IV.2.4 Gener	ation of silylcuprates derived from CuBr in DMS	159
IV.2.5 Gener	ation of mixed silylcuprates	160
IV.3 Preparation	of 3-trialkylsilyl cyclohexanone	163
IV.4 Typical pro "PhMe2SiC	cedure for silylcupration with u"	165
IV.5 Preparation	of trialkylstannylcuprates,	167
¹¹⁹ Sn NMR	sample preparation	
IV.5.1 Gener	ation of stannylcuprates derived from CuCN	167
IV.5.2 Gener	ation of stannylcuprates derived from CuBr•Me ₂ S	168
IV.5.3 Generation	ation of mixed stannylcuprates	170

TV C 1U as	d 13C NMD comple properties	171
1V.0 - n ai	id ¹⁰ C NMK sample preparation	1/1
IV.6.1	Generation of stannylcuprates derived from CuCN	171
IV.6.2	Generation of stannylcuprates derived from CuBr•Me2S	172
IV.6.3	Generation of mixed stannylcuprates	173
IV.7 Prep	aration of 3-trialkylstannyl cyclohexanone	175
IV.8 MET	ALLOMETALLATION OF 1-ALKYNES	
IV.8.1	Preparation of trialkylstannyllithium and quenching with MeI	177
IV.8.2	Reaction of 1-decyne with Bu3SnAlEt2	178
IV.8.3	Reaction of 1-nonyne with (Bu3Sn-9-BBN•OMe)-Li+	182
IV.8.4	General procedure for the preparation of disubstituted vinyl	184
	stannanes	
IV.8.5	Metallometallation of functionalized alkynes	188
IV.8.6	Preparation of trisubstituted alkenes	195
IV.8.7	Synthesis of pheromone of the square-necked grain beetle	200

V. REFERENCES AND NOTES

PART II: THE SYNTHESIS OF POTENTIAL INHIBITORS OF SQUALENE SYNTHETASE

204

VI. INTRODUCTION222VI.1.0Proposed work229VI.1.1Synthesis of Sulfonium ion mimic 32231VI.1.1aFuture directions236

1	EXPERIMENTAL		251
	VI.1.3a	Future directions	250
	VI.1.3	Synthesis of Sulfonium ion mimic 34	243
	VI.1.2a	Future directions	241
	VI.1.2	Synthesis of Sulfonium ion mimic 33	237

276

VIII. REFERENCES

VII.

LIST OF TABLES

Table		Page
I.	¹³ C chemical shifts of silylmetals and related species in THF	34
П.	Gilman test on CuCN derived silylcuprates	48
III.	Addition of silyl or stannylmetalloids to 1-alkynes	114
IV.	Efficiency of production of R3SnLi observed upon quenching with MeI	116
V.	Addition of Bu3SnAlEt2 to 1-decyne	119

LIST OF FIGURES

Figure	·	Page
1.	Nomenclature of Organocopper reagents.	3
2.	⁷ Li NMR spectra of solutions containing different ratios of MeLi and MeCu (prepared from CuI) in THF/Et ₂ O at -70°C.	5
3.	⁷ Li NMR spectra of (a) "Me2CuLi" in Et2O at -70°C (b) "Me2CuL initially prepared in Et2O to which THF was added.	i" 6
4.	¹³ C NMR spectra of solutions containing different ratios of PhLi and PhCu (prepared from CuI) in DMS at -100°C.	10
5.	⁶ Li NMR spectra of solutions containing different ratios of PhLi and PhCu (prepared from CuI) in DMS at -100°C.	11
б.	¹ H NMR spectra of solutions containing different ratios of MeLi and CuCN in THF/Et ₂ O at -20°C.	16
7.	¹³ C NMR spectra of solutions containing different ratios of MeLi and CuCN in THF/Et ₂ O at -70°C.	17
8.	¹ H NMR spectra of (a) Me ₂ Cu(CN)Li ₂ (b) <i>n</i> -Bu ₂ Cu(CN)Li ₂ (c) CuCN + MeLi + <i>n</i> -BuLi (d) Me ₂ Cu(CN)Li ₂ +	19

n-Bu₂Cu(CN)Li₂.

9.	¹³ C NMR spectrum of Me(<i>n</i> -Bu)Cu(CN)Li ₂ recorded in THF/Et ₂ O at -27°C.	20
10.	Complexes of π -Acceptor ligands.	21
11.	Structures of $[Cu_2Li_2][(C_6H_4CH_2NMe_2)_4]$ and $[(Et_2O)_2][Li_2Cu_2(p-Tol)_4].$	22
12.	Structure of CuMe(PMe3)2.	23
13.	Structure of [MeCuP(t-Bu)2Li{(3THF)}].	24
14.	Structure of Ph3CuLi2.	25
15. ⁻	²⁹ Si NMR spectra of PhMe ₂ SiLi:CuCN in various ratios in THF at -50°C.	30
16.	¹³ C NMR spectra of PhMe2SiLi:CuCN in various ratios in THF at -70°C. The solutions contain LiCl.	36
17.	¹³ C NMR spectra of PhMe2SiLi:CuCN in various ratios in THF at -70°C. The solutions are free of LiCl.	37
18.	¹³ C NMR spectra of PhMe ₂ SiLi:CuCN, 1:1 at -70°C in (a) THF (b) THF/HMPA, 1:1.	38

.

- 19.
 ¹H NMR spectra of PhMe₂SiLi:CuCN in various ratios in THF at 42

 -85°C.
- 20. ⁷Li NMR spectra of PhMe₂SiLi:CuCN in various ratios in THF 43 at -70°C. The solutions are free of LiCl.
- 21. ²⁹Si NMR spectra of PhMe₂SiLi and CuBr in various ratios in 52
 THF at -50°C.
- 1³C NMR spectra in THF at -20°C (a) PhMe₂SiLi (b) PhMe₂SiLi: 53
 CuBr, 1:1 (c) PhMe₂SiLi:CuBr, 2:1 (d) PhMe₂SiLi:CuCN, 2:1.
- 23. ²⁹Si NMR spectra in THF at -50°C (a) (PhMe₂Si)₃CuLi₂ + CuBr, 55
 1:0.5 (b) (PhMe₂Si)₂CuLi + CuBr, 1:1.
- 24. ¹³C NMR spectra in DMS at -85°C (a) PhMe₂SiLi:CuBr, 2:1 58
 (b) PhMe₂SiLi:CuI, 2:1 (c) PhMe₂SiLi:CuBr, 3:1
 (d) PhMe₂SiLi:CuI, 3:1.
- 25.13C NMR spectra of (a) PhMe2SiLi:CuBr, 2:1 in THF (b)60PhMe2SiLi:CuI, 2:1 in DMS; the spectra were run at -85°C.
- 26. ²⁹Si NMR spectra of (a) PhMe₂SiLi (b) PhMe₂SiCu(CN)Li
 (c) (PhMe₂Si)₂Cu(CN)Li₂ (d) PhMe₂SiCu(CN)Li + MeLi (e)
 (PhMe₂Si)₂Cu(CN)Li₂ + Me₂Cu(CN)Li₂.

27.	¹³ C NMR spectra of (a) Me ₂ Cu(CN)Li ₂ (b) PhMe ₂ SiLi (c)	69
	(PhMe2Si)2Cu(CN)Li2 (d) PhMe2SiLi + MeCu(CN)Li (e)	
	$(PhMe_2Si)_2Cu(CN)Li_2 + Me_2Cu(CN)Li_2.$	
28.	¹³ C NMR spectra of (a) 2 PhMe2SiLi + MeLi + CuCN at -70°C	72
	(b) 2 PhMe2SiLi + MeLi + CuCN at -85°C	
	(c) PhMe2Si(Me)Cu(CN)Li2 at -70°C.	
29.	¹ H NMR spectra of (a) Me3SnLi (b) 1.0 Me3SnLi + CuCN	77
	(c) 1.5 Me3SnLi + CuCN (d) 2.0 Me3SnLi + CuCN (e) 2.5	
	Me3SnLi + CuCN (f) 3.0 Me3SnLi + CuCN (g) 4.0 Me3SnLi +	
	CuCN; the spectra were run at -70°C.	
30.	119Sn NMR spectra of (a) Me3SnSnMe3 (b) Me3SnLi	79
	(c) 1.0 Me3SnLi + CuCN (d) 1.0 Me3SnLi + CuBr; the spectra	
	were run at -70°C.	
31.	¹³ C NMR spectra of (a) Me3SnLi (b) 1.0 Me3SnLi + CuCN	80
	(c) 2.0 Me3SnLi + CuCN (d) 3.0 Me3SnLi + CuCN	
	(e) 3.0 Me3SnLi + CuBr; the spectra were run at -70°C.	
32.	13C NMR spectra of (a) Me2Cu(CN)Li2 (b) 1.0 Me3SnLi +	85
	CuCN (c) 2.0 Me3SnLi + CuCN (d) Me3SnCu(CN)Li + MeLi	
	(e) (Me3Sn)2Cu(CN)Li2 + Me2Cu(CN)Li2; the spectra were run	
	at -70°C.	
33.	119Sn and ¹ H NMR spectra of (a) Me3SnLi (b) 1.0 Me3SnLi +	86

•

	MeCu(CN)Li; the spectra were run at -70°C.	
34.	 ¹³C NMR spectra of (a) Me₃Sn(Me)Cu(CN)Li₂ (b) Me₃Sn(Me)Cu(CN)Li₂ + MeLi (c) (Me₃Sn)₃CuLi₂ + Me₃Sn(Me)Cu(CN)Li₂ (d) (Me₃Sn)₂Cu(CN)Li₂ + MeLi; the spectra were run at -70°C. 	87
35.	 ¹³C NMR spectra of (a) Bu₃SnH + Me₂Cu(CN)Li₂ (b) 2.0 Bu₃SnH + Me₂Cu(CN)Li₂; the spectra were run at -70°C. 	90
36.	¹³ C NMR spectra of (a) (PhMe ₂ Si) ₃ CuLi ₂ + cyclohexenone (b) PhMe ₂ Si(Me)Cu(CN)Li ₂ + cyclohexenone; the spectra were run at -85°C.	101
37.	¹³ C NMR spectra of (a) Me3SnAlEt ₂ (b) Me3SnAlEt ₂ + CuCN (c) Me3SnCu(CN)Li + Et ₂ AlCl; the spectra were run at -70°C.	139
38.	² H NMR spectrum of Me ₃ SnCu(CN)Li + 1^{-2} H octyne + Et ₂ AlCl; the spectra were run at -70°C.	141
39.	¹¹⁹ Sn NMR spectra of (a) Me3SnCu (b) Me3SnCu + 1- ² H octyne; the spectra were run at -50°C.	143
40.	² H NMR spectra of (a) Me ₃ SnCu + 1 - ² H octyne (b) Me ₃ SnCu + 1 - ² H octyne + Br-9-BBN; the spectra were run at -70°C.	144

xviii

LIST OF ABBREVIATIONS

9-BBN	9-Borabicyclo[3.3.1]nonane
CH ₂ Cl ₂	Dichloromethane
CTAB	Cetyltetramethylammonium bromide
DIBALH	Diisobutylaluminum hydride
(Siam)2BH	Disiamylborane
DMF	N,N-Dimethylformamide
DMS	Dimethylsulfide
DMSO	Dimethylsulfoxide
HMPA	Hexamethylphosphoramide
LAH	Lithium aluminum hydride
LDA	Lithium diisopropylamide
MEMCI	2-Methoxyethoxymethyl chloride
Michler's ketone	4,4'-Bis(dimethylamino)benzophenone
NaH	Sodium hydride
TMEDA	N,N,N',N'-Tetramethylethylenediamine
TMS	Tetramethylsilane
p-TsCl	<i>p</i> -Toluenesulfonyl chloride

PART I: CHEMICAL AND SPECTROSCOPIC INVESTIGATIONS OF TRIALKYLSILYL AND TRIALKYLSTANNYL METALLOIDS

CHEMICAL AND SPECTROSCOPIC INVESTIGATIONS OF ORGANOCUPRATES

Introduction

Advances in the development of organometallic reagents have often been accelerated by an improved understanding of the species and mechanisms involved in reactions of these reagents.¹ Nowhere is this more apparent than in the organic chemistry of copper which has emerged as the most heralded among the transition metals in organic synthesis. The pivotal role played by copper-complexes containing transferable ligands is attested to by the frequent reviews² which strive to keep organic chemists abreast of the rapidly expanding methodological advances and applications of copper-based reagents.

The *ate* complexes of copper developed in the years since Gilman's initial report³ of the formation of Me₂CuLi (1, Gilman's reagent) are as varied as their chemistry. Reactivity of these reagents can be changed by altering several parameters: the ratio of CuX (X = Br or I) to R-M (being either stoichiometric or catalytic in CuX);^{2,4} the gegenion involved (usually M = MgX or Li and more recently Na and Zn);⁵ the presence of additives such as sulfides, phosphines or Lewis acids that solubilize, stabilize or activate;^{2,6} and lastly, the choice of solvent (almost always ethereal).²

In addition to these "lower order" (LO) cuprates of the general formula "R₂CuLi" (2), "higher order" (HO) reagents, "R₃CuLi₂" (3), i.e., R₂CuLi + RLi, and "R₂Cu(CN)Li₂" (4), i.e., 2RLi + CuCN, have begun to vie for share of the attention afforded to cuprates. Higher order species are differentiated from lower order reagents on the basis of formal charge associated with the copper containing center: hence, the latter are monoanionic, while the former are Cu(I) dianions (Figure 1).⁷

Figure 1

ALKYLCUPRATES DERIVED FROM CUPROUS HALIDES

Although organocuprates are by far the most popular organotransition metalcontaining reagents for structural elaborations, very little is actually known about the species involved. Until the recent spectroscopic studies by Lipshutz, *et al.*⁷ on Cu(I) halide derived alkylcuprates, utilization of "R₂CuLi" (2) in reality implied nothing more than a stoichiometric representation of the precursors from which it had been prepared. A detailed examination of the ¹H and ⁷Li NMR of solutions containing a 1:1 ratio of MeLi

and MeCu (halide free) led this group to conclude that in THF these reagents existed as an equilibrium mixture of free MeLi, Me3Cu2Li (5) and Me2CuLi (1).⁷

Thus, the combination of MeLi (0.5 equivalent) with LiI-free MeCu (1.0 equivalent, as a slurry in THF), afforded a single ⁷Li signal (Figure 2a) attributed to Me₃Cu₂Li (5) implying that any equilibrium of the type shown in Scheme 1 must heavily favour 5 (i.e., $k_1 >> k_{-1}$).^{7,8} As a result, and in the absence of other processes, combination of equimolar quantities of MeLi and MeCu would be expected to lead to either the formation of 0.5 equivalents of Me₃Cu₂Li and 0.5 equivalents of MeLi or 1.0 equivalent of Me₂Cu_{Li} (1). The ⁷Li NMR spectrum for the 1:1 combination of MeLi:MeCu at -70°C (Figure 2c) showed two resonances of unequal intensity.⁷ This required both MeLi and Me₃Cu₂Li (5) as well as a third species, Me₂Cu_{Li} (1) to be present. A single chemical shift (-0.38 ppm) for both 5 and 1 was rationalized by postulating rapid equilibration between these species leading to an averaging of signals, a phenomenon well precedented for other organometallics (e.g., MeLi/Me₂Zn, MeLi/Me₂Mg).^{7,9}

Introduction of a further equivalent of MeLi to a final MeLi to MeCu ratio of 2:1 did not result in the formation of Me₃CuLi₂ (6).^{7,8} Rather the proportion of free MeLi increased. Since no new species was observed it was postulated that the relative concentrations of 5 and 1 shifted toward the latter (Figure 2d).⁷

These studies suggested the equilibria shown in Scheme 1.

2 MeCu + MeLi
$$\xrightarrow{k_1}$$
 Me₃Cu₂Li
 $k_{.1}$ 5
MeLi $k_{.2}$ $K_2 = k_2 / k_{.2} = 11 \pm 3$
Me₃CuLi₂ \xrightarrow{MeLi} 2 Me₂CuLi
 6 1

Scheme 1

Figure 2. ⁷Li NMR spectra for solutions containing different ratios of MeLi and MeCu (prepared from CuI) in THF/Et₂O at -70°C (a) MeLi:MeCu, 0.5:1 (b) MeLi:MeCu, 0.75:1 (c) MeLi:MeCu, 1:1 (d) MeLi:MeCu, 2:1, (e) MeLi.

Solutions containing MeLi and MeCu (with LiI) in THF/Et₂O in a molar ratio of 1:1 exhibited only one ⁷Li signal which was attributed to a halide-containing Me₂CuLi, 1.⁷ However, a *very* fast equilibration of two or more cuprate species cannot be entirely ruled out.

In Et₂O, Me₅Cu₃Li₂ (7, derived from the combination of 1.66 equivalents of MeLi and 1.0 equiv. CuI), was the major species in solution.¹⁰ Addition of 0.34 equivalent of MeLi (which increases the ratio of MeLi to MeCu to 2:1) converted the aggregate Me₅Cu₃Li₂ (7) to a different form of "Me₂Cu_Li" (1) since no equilibrium as postulated in THF/Et₂O was observed.⁷ More remarkable was the observation that "Me₂Cu_Li" prepared initially in Et₂O (without LiI) to which THF was added, was spectroscopically different (Figure 3) than that formed initially in the same final Et₂O/THF ratio (compare Figure 2c with Figure 3b).⁷

Figure 3. 7_{Li NMR} (a) "Me₂CuLi" in Et₂O at -70°C (b) "Me₂CuLi" initially prepared in Et₂O to which THF was added; the spectra were recorded at -70°C.

Existence of free MeLi in the solutions of cuprates in THF/Et₂O was supported by chemical reactivity studies. Side-by-side reactions were conducted on cyclohexanone (8, Scheme 2) and methyl benzoate (9, Scheme 3), each being treated with MeLi, "Me₂CuLi" with LiI and "Me₂CuLi" without LiI. As expected, "Me₂CuLi" with LiI

Scheme 2. Addition reaction of "Me₂CuLi" reagents to cyclohexanone, 8.

did not react with either electrophile under these reaction conditions. The absence of LiI, however, led to substantial amounts of products attributable to 1,2-addition of MeLi.⁷

Scheme 3. Addition reactions of "Me₂CuLi" reagents to methyl benzoate, 9.

In support of the ⁷Li NMR results, treatment of methyl benzoate with "Me₂CuLi" (LiI-free) in Et₂O gave negligible 1,2-addition product while "Me₂CuLi" (no LiI) in THF/Et₂O yielded 8% of the 1,2-adduct (Scheme 3).⁷

In conclusion, it is clear that several forms of "Me₂CuLi" exist (*vide supra*), the relationships among these are summarized in Scheme 4. The presence of added lithium salts and solvent may effect the nature of lower order cuprates and can be the determining factors in the outcome of the reactions. It is also apparent that in ethereal solvents (e.g., Et₂O or THF), R₃CuLi₂ (**3**) produced using copper halides, is in reality a mixture of lower order cuprate "R₂CuLi" (**2**) and free organolithium. Such preparations exhibit reactions characteristic of free RLi.

The reagent having the stoichiometry Ph₂CuLi-PhLi appeared to be more reactive than Ph₂CuLi (10) in metal-halogen exchange reactions and coupling with aryl bromides. This led House *et al.* to propose the existence of Ph₃CuLi₂ (11).¹¹

However, this reagent has not been confirmed spectroscopically in THF. In THF, ratios of PhLi to PhCu in excess of 1:1 contain free PhLi rather than forming 11 (Scheme 5), whereas in dimethyl sulfide (DMS), 11 is an identifiable species which exists as a halide-free higher order copper species.¹²

PhCu + PhLi
$$\rightarrow$$
 Ph₂CuLi \rightarrow Ph₃CuLi₂
10 11

In DMS, Ph₂CuLi (in the presence of LiI) exists as *two* different complexes that can be studied by NMR below -80°C.¹² The two sets of signals are attributed to Ph₂CuLi (10) in equilibium with LiI containing species, Ph₂CuLi·LiI (12).¹²

At -100°C in DMS, the ¹³C NMR spectrum (Figure 4a) of Ph₂Cu⁶Li, prepared from CuI and two equivalents of Ph⁶Li consisted of eight lines: four major (δ161.9, *ipso*; 143.0, *ortho*; 128.5, *meta*; 127.4, *para*) and four minor (163.1, 143.6, 128.1, 127.0 ppm) due to two different Ph groups.¹² These were assigned to Ph₂CuLi·LiI (12) and Ph₂CuLi (10) respectively. Substitution of CuBr for CuI gave halide-free Ph₂CuLi (10) owing to the precipitation of LiBr from DMS. The four peaks in the ¹³C spectrum of this reagent were at precisely the same positions as the peaks of the minor Ph₂CuLi species derived from CuI (Figure 4a, inset, only shown for the *ipso* carbon).¹²

The ⁶Li NMR spectra of Ph₂CuLi prepared from CuI and CuBr (Figure 5a) were in harmony with the ¹³C NMR results. The ⁶Li spectrum of the reagent prepared

128.5 143.0 163.1 а PhLi:Cul 127.4 2:1 161.9 b PhLi:Cul 3:1 169.3 164.1 ĨĎĥĹİ PhLi С PhLi:Cul 4:1 PhLi PhLi 180 150 140 130 160 120 170 PPM

Figure 4. ¹³C NMR spectra for solutions containing different ratios of PhLi and PhCu (prepared from CuI) in DMS at -100°C (a) PhLi:PhCu, 1:1 (b) PhLi:PhCu, 2:1 (c) PhLi:PhCu, 3:1; insets are for reagents prepared from CuBr.

Figure 5. ⁶Li NMR spectra for solutions containing different ratios of PhLi and PhCu (prepared from CuI) in DMS at -100°C (a) PhLi:PhCu, 1:1 (b) PhLi:PhCu, 2:1 (c) PhLi:PhCu, 3:1; insets are for reagents prepared from CuBr.

from PhLi (2.0 equivalents) and CuI consisted of two peaks; the major one at δ 1.09 was assigned to the LiI-complexed copper species (12) while the minor one (δ -0.57) was attributed to the halide-free complex (10). The ⁶Li NMR spectrum of CuBr derived Ph₂CuLi (minus LiBr) showed a singlet at -0.57 ppm (Figure 5a, inset).¹²

The ¹³C NMR spectrum of Ph₃CuLi₂, prepared from 3.0 equivalents of PhLi and either CuI or CuBr, contained seven major peaks (δ 169.3, 164.1, 143.2, 142.2, 128.0, 126.4, 124.9, Figure 4b), neither of which corresponded to free PhLi, Ph₂CuLi (10) or Ph2CuLi·LiI (12). The two sets of signals coalesced to one set of four lines at ~ -80°C and were concentration dependent. The possibility of a slow exchange between Ph3CuLi2·LiI and Ph3CuLi2 was ruled out because the same set of signals was obtained in halide-free preparations (compare Figure 4b with 4b inset).¹² These two sets of signals were attributed to different aggregation states of Ph₃CuLi₂ (11). The ⁶Li NMR spectrum of 11 consisted of a broad multi-humped peak spanning the region assigned to LiI (2.3 ppm) and halide-free Ph3CuLi2 (~0.08 ppm, Figure 5b). Ph3CuLi2 derived from CuBr exhibited a major singlet at 0.03 ppm (Figure 5b, inset).¹² The presence of a signal for LiI at 2.3 ppm in the latter spectrum indicates that exchange between lithium containing cuprates and free LiI is slow on the NMR time scale.^{7,9} Alternatively, the signals at δ 2.3 and 0.9 ppm may correspond to different aggregation states of 11 which is also suggested by the ¹³C NMR (vide supra). Fast interaggregate exchange would explain the broad signals at -100°C.

While no free PhLi is detectable by NMR spectroscopic techniques in the solutions of Ph₃CuLi₂ prepared from CuI (Figure 4b) substantial amounts of PhLi are detected both in the ¹³C (Figure 4c) and ⁶Li (Figure 5c) spectra of Ph₃CuLi₂ (11) + PhLi.

It appears that "Ph₂CuLi", like "Me₂CuLi", is a more complex species than its straightforward preparation indicates. In DMS, "Ph₂CuLi" prepared with CuI consists

primarily (>70%) of the LiI-associated copper species, Ph₂CuLi·LiI (12), while CuBr derived phenylcuprates in DMS are free of LiBr due to precipitation of this salt in this solvent (Scheme 6).¹² Futhermore in DMS, Ph₃CuLi₂ (11) is an identifiable higher order reagent and not a mixture of PhLi and Ph₂CuLi as is the case in THF.

Scheme 6

Structural determinations by spectroscopic techniques and a heightened demand for ligand efficiency have led to the development of mixed cuprates wherein the alkyl residues exhibit significantly different transferabilities. Thus, use of non-transferable or *residual*, (R_TLi) ligands permits full utilization of potentially valuable *transferable*, (R_tLi) ligands. Such mixed cuprates R_tR_rCuLi (13) are generally prepared *via* prior formation of R_rCu (14) to which the organolithium R_tLi possessing the ligand of interest is added (Scheme 7).

$$R_{r}Li + CuX \longrightarrow R_{r}Cu + LiX \xrightarrow{R_{t}Li} R_{r}R_{t}CuLi$$
14
13

Scheme 7

The most popular types of non-transferable ligands are the 1-alkynyl residues. Cuprates possesing these ligands include pentynylcopper, C3H7C=C-Cu (15a),^{13a} t-butyl-ethynylcopper, t-C4H9C=C-Cu (15b),^{13a} (3-methyl-3methoxybutynyl)-copper, CH3OC(CH3)2C=C-Cu (15c),^{13b} trimethylsilylethynylcopper, (CH3)3SiC=C-Cu (15d),^{13c} and 3-(dimethylamino)propynylcopper, (CH3)2NCH2C=C-Cu (15e).^{13d} Each has its advantages and disadvantages with regard to selectivity of transfer, solubility, and cost effectiveness. Other mixed cuprates which provide alternatives to homocuprates include heteroatom containing ligands e.g., t-C4H9O,^{14a,b} and thienyl^{14c,d} groups. Heterocuprates formed from lithium diphenylphosphide, (C6H5)2PLi, and lithium dicyclohexylamide, (C6H11)2NLi, are also being used due to their increased thermal stability.¹⁵ The most recent and widely accepted non-transferable ligand is nitrile.¹⁶ This ligand, isoelectronic with acetylides, is the only member of this class of ligands which does not require manipulation of an air sensitive copper-containing precursor prior to addition of R_tLi (Equation 1).

 $R_{t}Li + R_{r}Cu \longrightarrow R_{r}R_{t}CuLi$ 13 $R_{r} = CN$ Equation 1

These alkylcyanocuprates not only deliver exclusively the R_t moiety in substitution and addition reactions attributed to cuprates, but also exhibit higher selectivity compared with dialkylcuprates derived from cuprous halides (i.e., Me2CuLi, selectivity compared with dialkylcuprates derived from cuprous halides (i.e., Me₂CuLi, 1) in these reactions.² This higher selectivity has been recently attributed to the stabilizing π -accepting nitrile ligand.¹⁶¹

ALKYLCUPRATES DERIVED FROM CUPROUS CYANIDE

When organocuprates were derived from MeLi and CuCN in THF, no equilibrium among MeCu(CN)Li (16), Me₂Cu(CN)Li₂ (17) and free MeLi (Scheme 8) was evident.¹⁷ Thus, when equimolar amounts of MeLi and CuCN were mixed in THF at -20°C a ¹H signal attributed to 16 was observed (Figure 6a). Introduction of a further equivalent of MeLi to solutions containing MeCu(CN)Li (16) produced a signal assigned to 17 (Figure 6d). Addition of MeLi to solutions of Me₂Cu(CN)Li₂ (17) resulted in formation of no new species but gave solutions exhibiting signals attributable to both free MeLi and Me₂Cu(CN)Li₂ (Figure 6e).¹⁷

The ¹³C NMR spectra of the various ratios of MeLi to CuCN are in agreement with the ¹H spectral data.^{17b} Thus, these spectra were consistent with the sequential formation of MeCu(CN)Li (16, 1:1, Figure 7b) and Me₂Cu(CN)Li₂ (17, 2:1, Figure 7c). Addition of a further equivalent of MeLi to 17 resulted in the formation of no new species (Figure 7d). Addition of CuCN to 17 regenerated 16 (Figure 7e) suggesting that the species derived from MeLi and CuCN (analogous to lower order cuprates, *vide supra*) are also in a dynamic equilibrium.^{17b}

Figure 6. ¹H NMR spectra for solutions containing different ratios of MeLi and CuCN in THF/Et₂O at -20°C (a) MeLi:CuCN, 1:1 (b) MeLi:CuCN, <1.5:1 (c) MeLi:CuCN, >1.5:1 (d) MeLi:CuCN, 2:1, (e) MeLi:CuCN, 3:1.

Figure 7. ¹³C NMR spectra for solutions containing different ratios of MeLi and CuCN in THF/Et₂O at -70°C (a) MeLi (b) MeLi:CuCN, 1:1 (c) MeLi:CuCN, 2:1 (d) MeLi:CuCN, 3:1 (e) Me₂Cu(CN)Li₂ + CuCN.

The ability of ligands on copper to exchange as well as the formation of mixed higher order cuprates of the general formula RR'Cu(CN)Li₂ (18) were also studied by ¹H NMR spectroscopy.^{17a} These studies indicated that stoichiometry represented by $Me(n-Bu)Cu(CN)Li_2$ (19) could be obtained by sequential addition of MeLi and *n*-BuLi to CuCN (Figure 8c) or by mixture (Figure 8d) of Me₂Cu(CN)Li₂ (17, Figure 8a) with *n*-Bu₂Cu(CN)Li₂ (20, Figure 8b). Most significant was the occurrence of two methyl signals in the ¹H spectrum of 19 neither of which corresponded to 17.^{17a}

Thus, the ¹H NMR spectrum of the preformed reagent (CuCN + MeLi + *n*-BuLi) recorded at -27°C had two peaks (δ -1.53 and -1.56) of similar chemical shift in addition to a doublet of triplets centered at δ -0.38 suggesting two different kinds of methyl and methylene groups (Figure 8c). That the singlets at -1.53 and -1.56 ppm were due to two different methyl groups was further substantiated by ¹³C{¹H} NMR spectroscopy which revealed two distinct singlets at -10.99 and -11.10 ppm (Figure 9).^{17a} This spectroscopic observation, taken together with the assumption that Cu(I) species are tetrahedral,¹⁸ implied that **19** (and hence most likely **18** and **4**) cannot be monomeric unless they are square planar.^{17a}

Figure 8. ¹H NMR spectra of (a) $Me_2Cu(CN)Li_2$ (b) *n*-Bu₂Cu(CN)Li₂ (c) CuCN + MeLi + *n*-BuLi (d) $Me_2Cu(CN)Li_2 + n$ -Bu₂Cu(CN)Li₂; the spectra were recorded in THF/Et₂O at -27°C.

It seems clear that copper halides do not react in THF with more than two equivalents of an organolithium reagent to form stoichiometric cuprates beyond a traditional copper(I) monoanionic species (i.e., $[(R_2Cu^I)^-]Li^+$, rather than $(R_3Cu^I)^{2-}2Li^+$) while the existence of CuCN derived higher order cuprates is far more common.¹⁷ It is likely that the cyanide ligand permits the accumulation of negative charge on copper in these complexes to formally produce copper(I) dianions (i.e., $[{R_2Cu^I(CN)}^{2-}]2M^+$). The unusual stability¹⁹ of these reagents is attributed to the d π back-bonding between the nitrile ligand and copper as illustrated in Figure 10.

COMPLEXES OF π -ACCEPTOR LIGANDS

SOLID STATE/X-RAY ANALYSES

The sensitivity of most lithio organocuprates to moisture and oxidation as well as their thermal instability has seriously hampered efforts to form crystalline materials suitable for X-ray analysis. Although successful preparations of mononuclear species $[(R_2Cu^I)^-]M^+$ are rare, several neutral clusters have been reported.²⁰ Most of these contain bridging aryl groups including [Cu₂Li₂][(C₆H₄CH₂NMe₂)₄]²¹ (21) and [(Et₂O)₂][Li₂Cu₂(*p*-Tol)₄]²² (22, Figure 11).

Perhaps the species most relevant to synthetic use of lower order cuprates is 21, an example of a lithium cuprate containing Li and Cu in a 1:1 ratio as a part of the central core.²¹ As shown in Figure 11, this molecule has a planar tetranuclear structure in which each aryl group asymmetrically bridges a copper lithium pair. The *ortho*-N,N-dimethyl-

aminomethyl residues in 21 serve as well-positioned intramolecular solvent that satisfy the preference of lithium for tetracoordination and do not effect the basic structural

Figure 11

features of the cuprate. This interpretation was supported by the similar tetranuclear structure observed for 22 in which one Et₂O molecule coordinates to each Li atom (Figure 11).²² Solution NMR spectroscopic studies (observation of $^{1}J^{7}Li^{-13}C$) of both 21 and 22 also point to a dimeric array involving bridging ligands to Cu and Li.^{23a,b} This feature is apparently intrinsic to other group 11 metal-lithium clusters (e.g., Ar4M₂Li₂, M = Ag, Au).^{23c-d}

These dimeric solid structures support the data on solution species of Me₂CuLi (1) and Me₃Cu₂Li (5) which are in turn based on solution X-ray scattering and molecular weight measurements.⁸ The observation of scalar coupling between $^{7}Li^{-13}C$ in 21 and 22 imply σ type interactions between ligands on copper and lithium.

Furthermore, a comparison of the solution ¹H NMR spectrum of 23 (δ 0.15, Me on Cu)²⁴ with that of Me₂CuLi (1, δ -1.2), leads to the conclusion that a large upfield

shift for protons on carbon attached to copper in 1 may be due to direct interactions between Me⁻ and Li⁺, since no such interactions are possible in the lithium-free dialkylcuprate (23, Figure 12, Structure as determined by X-ray analysis of [Cu(PMe₃)4)]⁺[CuMe₂]⁻.

Recently, this has been challenged by Whangbo on the basis of extended Hückel calculations for dimeric Me₂CuLi, which predict preferential ligand bonding to copper rather than lithium.²⁵

Placement of bulky groups on copper or sequestering of lithium by 12-crown-4 ether has led to the characterization of the monomeric complexes $[Li(THF)4][Cu(C(SiMe_3)_3)_2]^{26a}$ and $[Li(12-crown-4)_2][CuMe_2]^{26b}$ respectively. A novel heteroligand containing species MeCuP(t-Bu)_2Li (24, Figure 13) is also monomeric.^{26c} As observed for alkyl- and aryl-substituted homocuprates R₂CuLi, the copper atom of 24 exhibits a linear geometry and the Cu-C distance in 24 [1.940(6) Å] compares favorably with that found in (CuMe_2)⁻[1.935(8) Å].^{20a} However, an unusual feature of this complex is a strong association of the lithium cation with the phosphorus atom^{26d} [Li-P = 2.54(1) Å]. As a result, four-coordinate lithium relies on three molecules of THF as ligands, and hence 24 is more accurately described as [RCuP(t-Bu)_2{Li(THF)_3}].^{26c}

Figure 13

The first structural characterization of a higher order organocuprate has recently been realized by Power *et al.*^{26e} This compound was crystallized from a mixture of 3.0 equivalents of PhLi and CuBr·Me₂S.¹² The structure can be represented as a combination of (CuPh₂)⁻ and (CuPh₃)²⁻ linked by three bridging Li⁺ ions (Figure 14) i.e., [Li₃Cu₂Ph₅(SMe₂)4]. The copper centers are trigonal (119.1°) and the i.e., [Li₃Cu₂Ph₅(SMe₂)4]. The copper centers are trigonal (119.1°) and the average Cu-C bond length is 1.925 for the (Ph₂Cu)⁻ ion and 2.02 Å for (Ph₃Cu)²⁻ moiety, which is a little longer owing to the higher coordination number of the copper center. Two different types of distorted tetrahedral coordination of the lithium centers are also apparent. Li(1) is coordinated by two DMS and two bridging phenyl groups, whereas both Li(2) and Li(3) are coordinated to one thioether and three phenyl rings. This structure bears little resemblance to the previously reported clusters²⁰ Li_n+[Cu(5n)Ph₆]⁻ which are based solely on the association of three (Ph₂Cu)⁻ moieties with bridging Li⁺ or Cu⁺ ions. The ¹³C NMR spectrum of this molecule showed peaks similar to those attributed by Bertz¹² to Ph₃CuLi₂ and Ph₂CuLi.

Figure 14

In the final analysis, organocopper reagents tend to be oligomeric whereas lower order cuprates can be either dimeric or monomeric depending upon the nature and steric bulk of the ligands. The *only* higher order cuprate examined by X-ray analysis is monomeric and in agreement with earlier cryoscopic measurements made by Ashby⁸ on Me₃CuLi₂ (6).

CHEMICAL AND SPECTROSCOPIC INVESTIGATIONS OF TRIALKYLSILYL- AND TRIALKYLSTANNYLCUPRATES

Introduction

Recently, silylcopper, $[(R_3Si)_nCuLi_{n-1}LiX]^{27}$ and stannylcopper $[(R_3Sn)_nCuLi_{n-1}LiX; R = alkyl, n = 1 \text{ or } 2]^{28}$ reagents have begun to receive a significant share of the attention afforded to alkylcuprates by synthetic organic chemists. An appreciation of their considerable synthetic utility can quickly be gained from inspection of the numerous reactions (shown below) that these reagents effect. The range of substitution reactions encompasses primary alkyl and acyl centers.^{28,29} Displacements following SN2' pathways occur in propargylic and allylic systems.

Additions to unconjugated acetylenes,³⁰ allenes³¹ and Michael acceptors³² such as enones, enoates or ynoates comprise a second major reaction type. As initially with alkylcuprates, the structures of these silyl- and stannylcopper reagents proposed to date have been based solely on the stoichiometry of the solutions generated to achieve the desired chemistry.

Research proposal

It is proposed to spectroscopically study the solution phenomenon associated with the formation of silyl $[(R_3Si)_nCuLi_{n-1}·LiX]$ and stannyl $[(R_3Sn)_nCuLi_{n-1}·LiX]$ cuprates and their reactions with metal salts. It is anticipated that information gained from such studies will not only shed light on the nature of these useful synthetic reagents but also provide insights into the differences between silyl- and stannylcuprates derived from CuCN and CuX (where X = Br or I). The effect of added halide salts (i.e., LiBr vs. LiI) on the composition of the metallocuprates will also be examined.

It is also proposed to spectroscopically study the formation of mixed metallocuprates $(R_3Si)_n(R)CuLi_n LiCN$ and $(R_3Sn)_n(R)CuLi_n LiCN$ derived from CuCN. These reagents were of interest because of the possibility that they would selectively transfer their metallo anions in preference to their alkyl anions in reactions with organic substrates.

TRIALKYLSILYLCUPRATES DERIVED FROM CUPROUS CYANIDE

Low-temperature ²⁹Si, ¹³C, ¹H and ⁷Li NMR spectroscopy was employed to probe the composition of solutions generated by mixing dimethylphenylsilyllithium

(PhMe₂SiLi, 25) with CuCN. Species likely to be formed in these experiments are lower order (26 and 27) and higher order (28 and 29) silylcuprates, respectively.⁷

Lower Order Silylcuprates

26 (PhMe₂Si)Cu(CN)Li27 (PhMe₂Si)₂CuLi

Higher Order Silylcuprates

28 (PhMe₂Si)₂Cu(CN)Li₂29 (PhMe₂Si)₃CuLi₂

Silicon-29 NMR studies

Dimethylphenylsilyllithium (25) in THF was prepared by reaction of PhMe₂SiCl^{33a} (30) or (PhMe₂Si)2^{33b} (31) and lithium metal. Preparations were conducted at -5°C in THF and both sources of PhMe₂SiLi (25) gave ²⁹Si signals at -28.5 ppm (Figure 15a). Solutions of silylcuprates^{27b} were generated by addition of 25 (prepared from 30 and Li metal) to THF solutions of copper cyanide at -50°C. When the ratio of PhMe₂SiLi (25) to CuCN was 1:1 a major singlet at -25.5 ppm was observed in the ²⁹Si spectrum (Figure 15b) which is attributed to PhMe₂SiCu(CN)Li (26). Supporting evidence for this formulation comes from infrared analysis of these solutions which shows a bound nitrile (v_{CN} = 2111 cm⁻¹)^{17,34} but no free LiCN or CuCN.³⁵

As the ratio of PhMe₂SiLi (**25**) to CuCN was raised from 1:1 to 2:1 (>0.5 but <1.0 equivalent), a new peak at -24.7 ppm in the ²⁹Si spectrum increased in intensity at the expense of the signal at -25.5 ppm (Figure 15c). When the ratio of PhMe₂SiLi to CuCN reached 2:1, the major signal was that at -24.4 ppm and a minor signal at -18.8 ppm was visible (Figure 15d). The signal at -24.4 ppm is assigned to (PhMe₂Si)₂Cu(CN)Li₂ (**28**) and not (PhMe₂Si)₂CuLi (**27**) again based on the absence

Figure 15. ²⁹Si NMR spectra for PhMe₂SiLi:CuCN in various ratios in THF at -50°C (a) PhMe₂SiLi (b) PhMe₂SiLi:CuCN, 1:1 (c) PhMe₂SiLi:CuCN, 1.5:1 (d) PhMe₂SiLi:CuCN, 2:1 (e) PhMe₂SiLi:CuCN, 3:1 (inset 15e) PhMe₂SiLi:CuBr, 3:1.

of free cyanide in the solution as judged by infrared (v_{CN}= 2123 cm⁻¹) and ¹³C chemical shifts (163 ppm, *vide infra*). Alternative species possessing stoichiometries of PhMe₂SiLi to Cu(I) other than 2:1 or disproportionation of (PhMe₂Si)₂Cu(CN)Li₂ (28) would generate either free 25 or free CuCN neither of which is observed by ²⁹Si NMR (δ -28.5) or IR (v_{CN}= 2148 cm⁻¹).^{34b}

Addition of another equivalent of PhMe₂SiLi (25) to the above sample (Figure 15d) would be expected to generate free PhMe₂SiLi (δ -28.5) by analogy with CuCN based alkylcuprates. Contrary to these expectations, only a minor signal attributable to 25 was observed in this experiment (Figure 15e). Instead, in solutions containing PhMe₂SiLi (25) and CuCN in a 3:1 ratio, a major signal at -18.9 ppm as well as a small signal assigned to (PhMe₂Si)₂Cu(CN)Li₂ (28, -24.4 ppm) were observed. The appearance of signals for both 28 and 25 in the ²⁹Si spectrum of this solution indicates that chemical exchange between these three species is slow on the NMR time scale.

An attractive formulation for the species exhibiting a ²⁹Si signal at -18.9 ppm is (PhMe₂Si)₃CuLi₂ (**29**). This composition is supported by the infrared spectrum of this solution which exhibited a major absorption for free LiCN ($v_{CN} = 2085 \text{ cm}^{-1}$).³⁵ The formation of a species in which three PhMe₂Si groups are directly associated with the copper center requires a cyanide to be displaced.

That the formation of PhMe₂SiCu(CN)Li (26), and (PhMe₂Si)₃CuLi₂ (29) are reversible was shown by addition of 0.5 equivalent of CuCN to the solution whose ²⁹Si NMR spectrum is shown in Figure 15e. This results in the regeneration of (PhMe₂Si)₂Cu(CN)Li₂ (28, Figure 15d). Further introduction of CuCN to this solution results in the regeneration of the spectrum shown in Figure 15b.

Solutions prepared using 3:1 molar ratios of PhMe₂SiLi:CuBr•Me₂S exhibited a ²⁹Si spectra with signals at -19.0 ppm and -24.6 ppm (Figure 15e inset), but again no free PhMe₂SiLi (25). These signals are very close to those assigned to 29 and 28

respectively. The dynamic equilibria in which the species exhibiting signals at -25.5, -24.4 and -18.9 ppm are participating is represented in Scheme 9.

 $K_3 = k_3 / k_{-3} = 34$

Scheme 9

The relative intensities of the ²⁹Si signals attributed to contributing species in solutions whose spectra are shown in Figure 15 allow estimation of the positions of the equilibria shown in Scheme 9. The equilibrium (k_1/k_1) between 25, CuCN and PhMe₂SiCu(CN)Li (26) lies significantly on the side of 26 (i.e., $k_1 >>k_1$). Likewise, in solutions containing PhMe₂SiLi (25) and CuCN in a 2:1 ratio (PhMe₂Si)₂Cu(CN)Li₂ (28) is favored ($k_2 >>k_2$) to the spectroscopic exclusion of PhMe₂SiCu(CN)Li (26). In solutions comprised ot PhMe₂SiLi:CuCN in the molar ratio 3:1, (PhMe₂Si)₃CuLi₂ (29) predominates over (PhMe₂Si)₂Cu(CN)Li₂ by ~4:1. This leads to the calculation of an equilibrium constant K₃. The value of K₃ and the error reported were calculated by averaging three determinations.³⁶

It is interesting that the ²⁹Si chemical shift change observed when lower order silylcyanocuprates are converted to higher order silylcyanocuprates is opposite to what would be expected from simple arguments based on electronegativity. Addition of electron-rich PhMe₂SiLi (25) to PhMe₂SiCu(CN)Li (26) should increase the electron density at a coordinating copper and hence at both silicons in the higher order species. The ²⁹Si resonance in the latter would therefore be expected to be upfield of that in the lower order reagents, not downfield as found. This anomolous pattern of shielding for nuclei like carbon³⁷ and silicon³⁸ compared to ¹H has been explained by semiempirical calculations of p-orbital "imbalance" and its contribution to the paramagnetic term of nuclear shielding.^{37b} The observation that the ²⁹Si signals of higher order silvlcvanocuprates are downfield to those of lower order silvlcyanocuprates has a parallel in ¹³C NMR spectroscopy. Deshielding of the carbonyl carbon of transition metal carbonyls increases with increased metal-to-carbonyl π back-donation. This is evidenced by an inverse linear relationship between metal-carbonyl IR stretching constants and ^{13}C chemical shifts of such carbonyls.³⁹ Increased metal-to-carbonyl π back-donation has been attributed to a decrease in the magnitude of the separation between the ground state and the lowest lying excited states of these molecules.³⁹ The observation that the ²⁹Si chemical shifts change in the same manner as the ¹³C chemical shifts of metal-bonded carbonyls, suggests that there is a significant π bonding in both the M-CO and the Cu-Si bonds.

Carbon-13 NMR Studies

The chemical shifts of the ¹³C resonances for the silylcuprates and their precursors are shown in Table I. Specific peak assignments were made with the aid of proton decoupled as well as proton coupled spectra. The major trends apparent in Table I

are that the formation of silylanions from neutral silyl derivatives caused both the *ipso* and methyl carbons to be strongly deshielded and the *para* carbons to be shielded with the maximum effect observed in the case of PhMe₂SiLi. This effect is expected by extension of the Cu-Si π bonding arguments advanced above to Si-C bonds. Such π bonding would be predicted to be more significant for Si-C_{sp2} than for Si-C_{sp3}. As expected the *ipso* carbons of PhMe₂SiLi experience larger deshielding than the methyl carbons compared to PhMe₂SiCl.⁴⁰

Similar reasoning can be used to explain the chemical shift changes observed for the ¹³C resonance of the *ipso* carbon upon the addition of electron releasing ligand (PhMe₂SiLi) to PhMe₂SiCu(CN)Li. Thus, as one progresses in the series PhMe₂SiCu(CN)Li \rightarrow (PhMe₂Si)₂Cu(CN)Li₂ \rightarrow (PhMe₂Si)₃CuLi₂ \rightarrow PhMe₂SiLi the *ipso* carbon is progressively deshielded (152.0 \rightarrow 158.6 \rightarrow 164.3 \rightarrow 166.3 ppm, Figure 16).

	Ipso	Ortho	Meta	Para	Me
25 PhMe ₂ SiLi	166.3	133.5	126.6	122.7	7.6
29 $(PhMe_2Si)_3CuLi_2$	164.3	134.5	126.0	122.8	8.1
28 $(PhMe_2Si)_2Cu(CN)Li_2$	158.7	134.7	126.8	124.9	5.4
26 PhMe ₂ SiCu(CN)Li	152.0	136.5	128.5	126.0	6.6
30 PhMe ₂ SiCl	136.3	133.1	130.3	128.1	2.0

Table I. ¹³C Chemical shifts of silyl metals and related species in THF. All the spectra except for PhMe₂SiCl were recorded at -70°C and are referenced to THF.

The aforementioned solutions of silylcuprates^{27b} were generated by addition of PhMe₂SiLi (prepared from PhMe₂SiCl and Li metal,³³ Figure 16a) to THF solutions of CuCN-2LiCl at -50°C. The ¹³C NMR spectrum of PhMe₂SiCu(CN)Li (26) at -70°C, exhibits a complex pattern consisting of a combination of sharp and broad signals in the methyl as well as the phenyl region (Figure 16b). The sharp peaks are assigned to (PhMe₂Si)₂ which is formed as a result of decomposition of 26. The broad peaks in the ¹³C NMR spectrum of 26 can be attributed to either slow equilibration between species of different silicon to copper stoichiometry or different aggregation states of 26.

The possibility that signal broadening observed in the 13 C NMR of 26 was due to slow equilibration of species possessing different silicon to copper ratios was ruled out by parallel on solutions in which the silicon to copper ratios was systematically varied from 1:1 to 4:1. These solutions exhibited clearly observable and differentiable 1 H, 13 C and 29 Si chemical shifts (*vide supra*).

Alternatively, the ¹³C line broadening observed in the spectrum of **26** could be attributed to slow exchange between LiCl associated and LiCl-free forms of this cuprate was also considered. The ¹³C NMR spectrum of **26** which were generated free of LiCl was identical to the one which contained this salt (compare Figure 16b with Figure 17b). Thus, this origin of line broadening is also ruled out.

It is also possible that the line broadening in the ^{13}C NMR spectrum of 26 is due to slow exchange between PhMe₂SiCu(CN)Li and "PhMe₂SiCu". Solutions of

Scheme 10

Figure 16. ¹³C NMR spectra for PhMe₂SiLi:CuCN in various ratios in THF at -70°C (a) PhMe₂SiLi (b) PhMe₂SiLi:CuCN, 1:1 (c) PhMe₂SiLi:CuCN, 2:1 (d) PhMe₂SiLi:CuCN, 3:1 (e) PhMe₂SiLi:CuCN, 4:1; all solutions contain LiCl.

Figure 17. ¹³C NMR spectra for PhMe₂SiLi:CuCN in various ratios in THF at -70°C (a) PhMe₂SiLi (b) PhMe₂SiLi:CuCN, 1:1 (c) PhMe₂SiLi:CuCN, 2:1 (d) PhMe₂SiLi:CuCN, 3:1; the solutions are free of LiCl. PhMe₂SiLi (25) and CuBr•Me₂S which are expected to form "PhMe₂SiCu" exhibited different ²⁹Si chemical shifts than solutions of 26 (*vide infra*). This observation coupled with the absence of free LiCN as indicated by IR analysis further rules out the possibility of "PhMe₂SiCu" in these solutions (Scheme 10).

The last possibility considered was that the ¹³C signal broadening was due to slow exchange between different aggregation states of **26** in THF. This phenomena has precedent in the alkylcuprates. The latter were found to exhibit broad ¹³C and ¹H NMR signals in ethereal solvents but sharp signals in strongly coordinating solvents such as N,N,N',N'-tetramethylethylenediamine (TMEDA).²³ The observation that addition of a coordinating solvent like hexamethylphosphoramide (HMPA) results in

Figure 18. ¹³C NMR spectra of PhMe₂SiCu(CN)Li in (a) THF (b) THF/HMPA, 1:1.

considerable sharpening of the ¹³C NMR signals (Figure 18) of **26** is consistent with the existence of this reagent in a less aggregated state in HMPA compared to ethereal solvents.

Warming solutions of 26 to -20° C resulted in the rapid formation of (PhMe₂Si)₂ due to decomposition of this reagent at and above this temperature. When ¹³C NMR spectra of 26 were recorded at this temperature no alteration in the ¹³C line shapes of this cuprate were observed suggesting the rate processes giving rise to the broadening were too slow. Spectra below -70° C could not be obtained due to appreciable precipitation of the reagent at this temperature. This precluded determination of exchange rates for species involved in ¹³C signal broadening.

The ¹³C NMR spectrum of (PhMe₂Si)₂Cu(CN)Li₂ (28) consists of six sharp lines: four in the phenyl region (δ 158.6, *ipso*; 134.7, *ortho*; 126.8, *meta*; 124.9, *para*), one due to the nitrile carbon (156.6 ppm) and a methyl signal at 5.4 ppm (Figure 16c). As observed earlier, substituting PhMe₂SiLi, free of LiCl, for LiCl-containing PhMe₂SiLi, did not change the ¹³C NMR chemical shifts (compare Figures 16c and 17c) implying that the presence or absence of halide has no noticeable effect on the solution composition of higher order silylcyanocuprates. The presence of a single species in the ¹³C NMR spectrum is in agreement with the ²⁹Si spectrum (*vide supra*) which showed a single peak for this reagent (Figure 15d). A single species is similarly indicated by the ⁷Li NMR spectrum (*vide infra*) of **28** which exhibits a sharp singlet at -0.96 ppm.

In agreement with the ²⁹Si NMR analysis, the ¹³C NMR spectrum of (PhMe₂Si)₃CuLi₂ showed signals corresponding to both **28** and **29** in a ~4:1 ratio (Figure 16d). Halide free (PhMe₂Si)₃CuLi₂ prepared from **25** gives rise to the same principal lines, but they are sharper (Figure 17d). The ⁷Li spectrum of **29** shows a broad hump centering at δ -0.74. This is attributed to slow intermolecular exchange of lithium

among various lithium containing species.^{7,9,12} Similar signal broadening is observed in both ¹³C and ⁷Li NMR spectra of Ph₃CuLi₂ in DMS even at -100°C (vide supra).¹²

Introduction of a further equivalent of 25 did not result in the formation of any new species but rather showed signals corresponding to free PhMe₂SiLi (Figure 16e).

As pointed out earlier, sequential addition of PhMe₂SiLi to highly aggregated 26 in THF results in formation of (PhMe₂Si)₂Cu(CN)Li₂ (28) and (PhMe₂Si)₃CuLi₂ (29) which are apparently less aggregated as judged from their sharp NMR signals. Whether 28 is monomeric or dimeric is not clear. If it is monomeric there is the possibility that the complexes could be solvated according to the equilibrium in Equation 2. With

> CuL_2L' (solvent) $L = PhMe_2Si$ L' = CN

> > **Equation 2**

coordinated solvent the likely geometries about Cu⁺ are tetrahedral or square planar. In the uncoordinated form a trigonal array around Cu⁺ is likely. Of further interest is the location of the two lithium ions in the copper cluster. The placement of two lithium ions in a tetrahedral array could convey an element of asymmetry to the complex and yet no such asymmetry was noted in the present studies.

A dimeric species could either be cyclic or acyclic. The cyclic arrangement must contend with planarity requirements of two nitrile ligands. An acyclic dimer containing nitrile should permit further associations *via* this ligand. The difficulty in formulating structures of dimeric cyanocuprates is reflected in the fact that no structures have been proposed to date for the alkylcyanocuprates.

Hydrogen-1 NMR Studies

The ease with which we were able to study the higher order silvlcuprates derived from CuCN, by ²⁹Si and ¹³C NMR spectroscopic techniques, encouraged us to study the formation of these species using ¹H and ⁷Li NMR spectroscopy. The ¹H nuclear magnetic resonance spectra were recorded at -85°C at 300 MHz in the region between 1.0° ppm and -2.0 ppm with the specific goal of observing the resonances due to the methyl hydrogens (since the chemical shifts of the aromatic protons were too close to be of any significance). Solutions of PhMe₂SiLi (25) exhibited a singlet at 0.10 ppm (Figure 19a) whereas solutions containing 25:CuCN in a 1:1 ratio showed a broad signal at 0.22 ppm which we attribute to aggregated PhMe2SiCu(CN)Li (26, Figure 19b). As the ratio of PhMe2SiLi (25) to CuCN was increased from 1:1 to 2:1, a new signal at 0.02 ppm became visible (Figure 19c). When the ratio was precisely 2:1, the major signal observed was at 0.02 ppm; this signal was assigned to (PhMe₂Si)₂Cu(CN)Li₂ (28, Figure 19d). Solutions containing 25:CuCN in 2:1 molar ratio to which one or more equivalent of PhMe2SiLi had been added revealed only one major ¹H signal with a chemical shift close to that assigned to 28 (Figure 19e). We assume from the ²⁹Si and ¹³C NMR studies (vide supra) that the chemical shifts of the methyl hydrogens attached to silicon for the presumed species 28 and (PhMe₂Si)₃CuLi₂ (29) are very similar.

Lithium-7 NMR Studies

Dimethylphenylsilyllithium (25, free of LiCi), was prepared from (FnMe2Si)2 (31) and lithium metal.³³ Initial ⁷Li NMR studies were conducted at -70°C on THF suspensions composed of equimolar amounts of PhMe2SiLi (25, δ 0.29, Figure 20a) and CuCN. These solutions exhibited a major ⁷Li signal^{41b} at -0.25 ppm which was

Figure 19. ¹H NMR spectra for PhMe₂SiLi:CuCN in various ratios in THF at -85°C (a) PhMe₂SiLi (b) PhMe₂SiLi:CuCN, 1:1 (c) PhMe₂SiLi:CuCN, 1.5:1 (d) PhMe₂SiLi:CuCN, 2:1 (e) PhMe₂SiLi:CuCN, 3:1; all solutions contain LiCl.

Figure 20. ⁷Li NMR spectra for PhMe₂SiLi:CuCN in various ratios in THF at -70°C (a) PhMe₂SiLi (halide free) (b) PhMe₂SiLi:CuCN, 1:1 (c) PhMe₂SiLi:CuCN, 2:1 (d) PhMe₂SiLi:CuCN, 3:1; insets are for reagents with LiCl.

assigned to PhMe₂SiCu(CN)Li (**26**) along with a peak in the region for **25** (δ 0.38, Figure 20b) and a weak broad peak at -0.84 ppm. As expected, in the absence of LiCl the reaction mixture was heterogeneous due to the decreased solublity of CuCN. Addition of LiCl resulted in the disappearance of the signal due to PhMe₂SiLi (**25**) and in the appearance of a single peak at -0.38 ppm (Figure 20b, inset). These observations indicate that in the absence of LiCl, exchange between **25** and **26** is slow on the NMR time scale whereas, in the presence of LiCl exchange of ⁷Li between various species is rapid.^{7,9} In agreement with these interpretations, a positive Gilman test⁴² was obtained for the LiCl-free preparations of **26** and a negative test after LiCl was added. Sequential addition of one equivalent of LiCl-free PhMe₂SiLi (**25**) to PhMe₂SiCu(CN)Li (**26**) resulted in the appearance of a singlet at -0.96 ppm which we attribute to (PhMe₂Si)₂Cu(CN)Li₂ (**28**, Figure 20c). The presence of a single peak in the ⁷Li spectrum of **28** is in harmony with the ²⁹Si, ¹³C and ¹H NMR studies (*vide supra*) indicating a symmetrical environment around Li⁺ in the copper species.⁴³ The presence of rapidly exchanging species cannot be entirely ruled out.

Further introduction of halide-free 25 led to a broad signal centered at δ -0.74 (Figure 20d). This was assigned to (PhMe₂Si)₃CuLi₂ (29). The broad nature of this signal suggests averaging due to rapid chemical exchange between 28, 29 and free LiCN.7,9,12

The observation of averaged signals in the cases of ¹H and ⁷Li spectra but not in the case of ²⁹Si is a function of the frequency of the measurements and the chemical shift differences in Hz of the exchanging species.⁴⁴ Thus for ²⁹Si, the chemical shift differences for **26**, **28** and **29** are at least 1.0 ppm and the measurement is carried out at 79.5 MHz. If the equilibration between the species is faster than 79 Hz, an averaging of signals will be observed in the ²⁹Si spectrum. For ¹H assuming a separation of the methyl ¹H signals of **26**, **28** and **29** of ~0.1 ppm and a measurement frequency of 300

MHz the averaged signals observed require exchange to be faster than 30 Hz. Thus, at -50°C the species equilibrate at a rate of 30 to 79 Hz.

Some uncertainty in the measurement of equilibria from ²⁹Si signal intensities comes from the negative gyromagnetic ratio^{36b} of ²⁹Si. Under the conditions of broadband ¹H decoupling the ²⁹Si resonance will suffer a negative nuclear Overhauser effect if the ²⁹Si nucleus is in close proximity (<3 Å) to a ¹H nucleus. To surpress the negative nOe of ²⁹Si the decoupler was turned on during the acquisition and off during the relaxation delay. Another source of uncertainty in calculations of equilibrium constants could arise from the differential T₁'s of the equilibrating species. Since the proposed species are equilibrating with a rate constant between 30 and 79 Hz which is ~10x faster than the acquisition time (0.2 s, *vide infra*) for ²⁹Si NMR experiments, the effective T₁'s of the equilibrating species would be equivalent under these conditions.

Chemical tests

Perhaps the single most intriguing question which arises from ²⁹Si NMR studies relates to the composition of solutions attributed to **29**. If **29** does not have the postulated structure but rather is composed of free **25** in rapid equilibrium with silylcyanocuprates containing a Si:Cu ratio of <3:1, then the *free* PhMe₂SiLi would be expected to compete in reactions with the silylcyanocuprates. To test this, side-by-side reactions were conducted on two substrates, cyclohex-2-en-1-one (**32**) and 1-octyne (**35a**), each was treated with **25**, **26**, **28**, **29** and **29** + **25**. It was found that solutions of both **28** and **29** deliver a PhMe₂Si group exclusively *via* 1,4-addition to cyclohex-2en-1-one (**32**).³² Solutions composed of **29**, **25** and CuCN (molar ratio 1:1:0.1) also added to **32** in a 1,4-manner. These results show that "PhMe₂SiCu" reagents behave in

Scheme 11. Addition reaction of "PhMe₂SiCu" reagents to cyclohex-2-en-1-one, 32.

a fashion analogous to alkyl cuprates⁴⁵ in delivery of their anionic ligands in a 1,4fashion even when copper is present only in catalytic concentrations. Thus 1,4-addition of silylanions bound to copper must be faster than 1,2-addition of the unbound species to give 34. The observation that solutions of 29 + 25 gave 33 in high regioisomeric purity suggest that under catalytic conditions the *extra* PhMe₂SiLi serves to rapidly convert any lower order cuprate formed as a result of silyl transfer back to a higher order cuprate.

Next we studied the addition of silylcuprates 25, 26, 28 and 29 to 1-octyne (35a). In agreement with existing reports, ³⁰ we found that 26 added to 35a to yield a mixture of 36 and 37 in a 3:2 ratio, whereas addition reactions of (PhMe₂Si)₂Cu(CN)Li₂ (28) and (PhMe₂Si)₃CuLi₂ (29) gave 36 in ~90% isolated yields. Under similar conditions PhMe₂SiLi (25) abstracted the acetylenic hydrogen of

С 💶 СН ——	$H_{13}C_6C = CD$	+ (D)	H S	SiMe ₂ l	+ Ph PhMe	≥ ^{Si}
35a 35b			36			37
	······	% (Composit	ion	s	
		35b	36	37	%yield	
PhMe ₂ SiL	i	100	-	-	72	
PhMe ₂ SiC	u(CN)Li	-	60	40	62	
PhMe ₂ SiC	u(CN)Li/HMPA	-	>98	<2	86	
(PhMe ₂ Si)	2Cu(CN)Li2	-	>98	<2	92	
(PhMe ₂ Si)	oCuLio	-	>98	<2	90	

Scheme 12. Silylcupration of 1-alkynes.

35a after ²H₂O quench to give **35b** as judged by GC-MS (70% incorporation of ²H in 1-octyne). No addition products were observed (capillary g.c. analysis). In support of ¹³C NMR results, treatment of 1-octyne (**35a**) with PhMe₂SiCu(CN)Li (**26**) in THF/HMPA (1:1) gave exclusively **36** in >85% yield. That *free* PhMe₂SiLi is not present in the solutions of silylcuprates was confirmed by the absence of incorporation of ²H in the vinyl products when quenched with ²H₂O.

Gilman Tests

Support for our interpretation of the ²⁹Si, ¹³C, ⁷Li and ¹H NMR data and the propensity of solutions of 25 and CuCN studied (1:1 \rightarrow 4:1) to undergo 1,4-addition to 32 and regiospecific additions to 35a was obtained from Gilman tests on THF solutions

containing PhMe₂SiLi (25) and CuCN.⁴² As originally reported by Gilman, addition of a solution containing 4,4'-Bis(dimethylamino)benzophenone (Michler's ketone) to an organocuprate at room temperature followed by quenching with H₂O and then introduction of I₂/HOAc gives an intense greenish-blue coloration if RLi is present. A

	Reagents	Results
25	PhMe ₂ SiLi	Positive
26	PhMe ₂ SiCu(CN)Li	negative
28	(PhMe ₂ Si) ₂ Cu(CN)Li ₂	negative
29	(PhMe ₂ Si) ₃ CuLi ₂	negative
	$(PhMe_2Si)_3CuLi_2 + 25$	positive

Table II. Gilman test on CuCN-derived silvlcuprates

positive Gilman test was obtained for 25 in THF while a negative test was obtained for all solutions of PhMe₂SiLi containing CuCN including those where these reagents are present in a 3:1 ratio. A slight green coloration was observed for solutions containing a 4:1 ratio of PhMe₂SiLi:CuCN indicating the presence of small amounts of PhMe₂SiLi (25, Table II).

Conclusion

Comparison of the present silylcyanocuprate system with that of the methylcyanocuprate system studied by Lipshutz et al.¹⁷ reveals several interesting

features. In both of these systems, when the ratio of RLi (R = PhMe₂Si or Me) to CuCN is unity, a nitrile containing monoanionic cuprate is formed. In neither system does this species appear to be in equilibrium with other species or free RLi. As the proportion of anion is increased from an RLi:Cu ratio of 1:1 to 2:1 a new species, containing a bound nitrile, is formed in both cases. In the case of Me₂Cu(CN)Li₂ (**17**) association of alkyl residues with copper beyond this stoichiometry does not occur and further addition of MeLi gives solutions containing free MeLi. In the case of (PhMe₂Si)₂Cu(CN)Li₂ (**28**) addition of further silyllithium gives solutions which contain negligible amounts of PhMe₂SiLi and whose ²⁹Si, ¹³C and ¹H spectra support the association of three silyl residues with the copper accompanied by displacement of the cyanide ligand. Chemical studies on two different substrate types, as well as Gilman tests for the presence of free RLi, are fully consistent with the spectroscopic data.

TRIALKYLSILYLCUPRATES DERIVED FROM CUPROUS HALIDES

In the previous section it has been demonstrated that higher order silylcuprates, $(R_3Si)_2Cu(CN)Li_2$ (28) retain the CN moiety. This lack of metal-metal exchange between copper and lithium (i.e., R_3SiLi + CuCN \Rightarrow "R_3SiCu" + LiCN) was attributed to the likelihood of $d\pi$ backbonding between the copper and nitrile ligand.¹⁹ More remarkable was the observation that the addition of three equivalents of PhMe₂SiLi (25) to CuCN resulted in the unprecedented formation of (PhMe₂Si)₃CuLi₂ (29) rather than (PhMe₂Si)₂Cu(CN)Li₂ (28) and free PhMe₂SiLi (Scheme 9) as was the case for alkylcuprates derived from CuCN (Scheme 8).¹⁷ This unusual stability of 29 was attributed to significant π bonding between Cu and Si (*vide supra*). Whether such an equilibrium exists in the case of copper halide derived silylcuprates, however, remained to be elucidated and this was next undertaken.

Silicon-29, Carbon-13 and Lithium-7 NMR studies

Low-temperature ²⁹Si, ¹³C and ⁷Li nuclear magnetic resonance spectroscopy was employed to probe the composition of solutions generated by mixing PhMe₂SiLi (25) with CuX (X = Br or I). Species likely to be formed in these experiments are silylcopper reagent (38), halide-free (27) and halide associated (39) lower and higher order silylcuprates (29), respectively.⁷

Silylcopper reagent	38 PhMe2SiCu
Lower Order Silylcuprates	27 (PhMe ₂ Si) ₂ CuLi
	39 (PhMe2Si)2CuLi·LiX
Higher Order Silylcuprates	29 (PhMe2Si)3CuLi2

Reaction of PhMe₂SiCl (30) with lithium metal in THF gave LiCl-containing solutions of 25.³³ Preparations were conducted at -5°C in THF and 25 gave a ²⁹Si signal at -28.5 ppm (Figure 21a). Solutions of silylcuprates (27) were generated by addition of THF solutions of 25 to CuBr-Me₂S at -50°C. The combination of equimolar amounts of 25 and CuBr-Me₂S yielded a suspension in which most of the ²⁹Si signal was lost (Figure 21b) presumably because the solid contained most of the silicon containing species. The resulting ²⁹Si spectrum contained several signals between -10 and -25 ppm which were attributed to polymeric "PhMe₂SiCu" (38). In agreement with the observations made with ²⁹Si NMR, most ¹³C signal in the corresponding ¹³C NMR spectrum was also lost in solutions containing equimolar amounts of 25 (Figure 22a) and CuBr-Me₂S. The signals that were visible were due to (PhMe₂Si)₂ (31, Figure 22b, identity of 31 was confirmed by recording the ¹³C NMR of the solution containing both 31 and 38) formed as a result of thermal decomposition of 38.

The combination of 25 and CuBr·Me₂S in a 1.5:1 molar ratio gave a nearly homogeneous solution exhibiting a ²⁹Si signal at -24.4 ppm attributed to (PhMe₂Si)₂CuLi (27, Figure 21c). The assignment of this signal to 27 was facilitated by the observation that at a 2:1 ratio of 25 to CuBr·Me₂S the signal at -24.4 ppm remained intense while a minor signal at -18.9 ppm appeared (Figure 21d). A signal at -24.4 ppm has previously been observed for (PhMe₂Si)₂Cu(CN)Li₂ (28) produced by the reaction of two equivalents of 25 and CuCN. That (PhMe₂Si)₂Cu(CN)Li₂ (28) and (PhMe₂Si)₂CuLi (27) are, however, different species was confirmed by ¹³C NMR spectral analysis which revealed different chemical shifts for the silyl methyl and phenyl signals in these two species (compare Figure 22c with Figure 22d). The ¹³C NMR spectrum of (PhMe₂Si)₂CuLi (27) consists of four resonances in the phenyl region (δ 162.0, *ipso*; 134.7, *ortho*; 126.3, *meta*; 124.9, *para*) one due to DMS (17.8 ppm) and a methyl signal at 6.04 ppm (Figure 22c) whereas (PhMe₂Si)₂Cu(CN)Li₂ (28) exhibited

Figure 21. ²⁹Si NMR spectra for PhMe₂SiLi and CuBr in various ratios in THF :: -50°C (a) PhMe₂SiLi (b) PhMe₂SiLi:CuBr, 1:1 (c) PhMe₂SiLi:CuBr, 1.5:1 (d) PhMe₂SiLi:CuBr, 2:1 (e) PhMe₂SiLi:CuBr, 3:1 (inset 21e) PhMe₂SiLi:CuCN, 3:1 (f) PhMe₂SiLi:CuBr, 4:1.

Figure 22. ¹³C NMR spectra in THF at -20°C (a) PhMe₂SiLi (b) PhMe₂SiLi:CuBr, 1:1 (c) PhMe₂SiLi:CuBr, 2:1 (d) PhMe₂SiLi:CuCN, 2:1.

resonances at 157.4, *ipso*; 134.9, *ortho*; 126.5, *meta*; 124.6, *para*; a nitrile carbon at 156.7 and a methyl signal at 5.1 ppm (Figure 22d). As previously reported, evidence for the formulation of (PhMe₂Si)₂Cu(CN)Li₂ (**28**) came from the infrared analysis of this solution which shows a bound nitrile ($v_{CN} = 2123 \text{ cm}^{-1}$) but no free LiCN.³⁴ The coincidence of the ²⁹Si chemical shifts of **28** and **27** is attributed to the accidental chemical degeneracy of the resonances and suggests a similar electronic environment around silicon in **28** and **27**.

Solutions containing PhMe₂SiLi (25) and CuBr·Me₂S in a 3:1 ratio exhibited a significant ²⁹Si NMR signal at -18.9 ppm as well as a small signal assigned to (PhMe₂Si)₂CuLi (27, -24.4 ppm, Figure 21e). An attractive formulation for the species exhibiting a ²⁹Si signal at -18.9 ppm is (PhMe₂Si)₃CuLi₂ (29). The chemical shift of this species is identical to that previously observed for (PhMe₂Si)₃CuLi₂ (prepared from three equivalents of PhMe₂SiLi and CuCN, Figure 21e inset). Secondly, the ¹³C NMR spectra at -70°C of the two solutions exhibited identical chemical shifts for silyl bound methyl and phenyl signals (δ 164.3, *ipso*; 134.5, *ortho*; 126.0, *meta*; 122.8, *para* and a methyl signal at 8.1 ppm).

That the conversions of "PhMe₂SiCu" (**38**) to (PhMe₂Si)₂CuLi (**27**) and **27** to (PhMe₂Si)₃CuLi₂ (**29**) are reversible was shown by addition of 0.5 equivalent of CuBrMe₂S to **29** whose ²⁹Si NMR spectrum is shown in Figure 21e. This resulted in the regeneration of (PhMe₂Si)₂CuLi (**27**, Figure 23a). Further introduction of one equivalent CuBrMe₂S to **27** resulted in the regeneration of "PhMe₂SiCu" (**38**, Figure 23b).

While no free PhMe₂SiLi was detectable in solutions containing 25 and CuBr·Me₂S in a 3:1 ratio, a substantial amount of PhMe₂SiLi appeared in the spectrum of solutions where this ratio was 4:1 (Figure 21f). This interpretation was reinforced by a positive Gilman test⁴² for PhMe₂SiLi (25) in THF and a negative test for all solutions

of 25 containing CuBr-Me₂S including those where these reagents were present in a 3:1 ratio. A slight green coloration was observed for PhMe₂SiLi:CuBr-Me₂S in 4:1 molar ratio indicating small quantities of free PhMe₂SiLi (25).

Figure 23. ²⁹Si NMR spectra in THF at -50°C (a) (PhMe₂Si)₃CuLi₂ + CuBr, 1:0.5 (b) (PhMe₂Si)₂CuLi + CuBr, 1:1.

The relative intensities of the 29 Si signals attributed to contributing species in solutions whose spectra are shown in Figure 21 allow estimation of the positions of the equilibria shown in Scheme 13.

PhMe₂SiLi + PhMe₂SiCu
$$\xrightarrow{k_1}$$
 (PhMe₂Si)₂CuLi
25 38 27
 $K_2 = k_2 / k_{-2} = 32$ PhMe₂SiLi k_2 k_{-2}
(PhMe₂Si)₃CuLi₂
29

Scheme 13

The equilibrium between PhMe₂SiLi (25), "PhMe₂SiCu" (38) and (PhMe₂Si)₂CuLi (27) lies significantly on the side of 27 (i.e., $k_I \gg k_{-1}$). In solutions comprised of PhMe₂SiLi:CuBr·Me₂S, (3:1) (PhMe₂Si)₃CuLi₂ (29) predominates over (PhMe₂Si)₂CuLi by ~4:1. This allows calculation of the equilibrium constant (K₂) for the process. The value of K₂ and the error reported were calculated as outlined earlier by averaging three determinations.³⁶

The ease with which we were able to differentiate between the higher order silylcuprates derived from CuCN and the lower order reagents prepared from CuBr•Me₂S by ¹³C NMR spectroscopy encouraged us to undertake a study of the complexation of LiX with these reagents. Specifically, solutions containing (PhMe₂Si)₂CuLi (27) were prepared from CuBr•Me₂S or CuI in DMS or THF. The ¹³C NMR spectra were recorded in the region between 0 and 10.0 ppm with the goal of observing the resonances due to the methyl carbons

At -85°C in DMS, the ¹³C NMR spectrum of (PhMe₂Si)₂CuLi (27), prepared from CuBr·Me₂S and two equivalents of PhMe₂SiLi (25, prepared from (PhMe₂Si)₂ and Li metal)³³ consisted of a singlet at 4.2 ppm (in the 0 to 10.0 ppm region, Figure 24a). This was attributed to halide-free (PhMe₂Si)₂CuLi (27) due to the precipitation of LiBr from DMS. Substitution of CuI for CuBr·Me₂S gave a solution that exhibited two signals in the ¹³C NMR spectrum: one major (δ 4.9) and a minor one at 4.2 ppm (Figure 24b). These were assigned to the methyl carbons of LiI-containing silylcuprate (PhMe₂Si)₂CuLi·LiI (**39**), and LiI-free silylcuprate (PhMe₂Si)₂CuLi (**27**), respectively. The assignment of the signal at 4.2 ppm to LiI-free silylcuprate **27** was facilitated by the observation that the resonance of the methyl in the ¹³C NMR spectrum of this reagent was precisely at the same position as the methyl resonance of LiBr-free silylcuprate (PhMe₂Si)₂CuLi.

The ⁷Li NMR spectra of (PhMe₂Si)₂CuLi prepared from CuI and CuBr were in harmony with the ¹³C NMR results. At -70°C in DMS, the ⁷Li spectrum of the reagent prepared from PhMe₂SiLi and CuBr·Me₂S (without LiBr) showed a single resonance at 0.43 ppm, which is assigned to the LiBr-free silylcuprate (PhMe₂Si)₂CuLi (27). Under the same conditions the ⁷Li NMR spectrum of (PhMe₂Si)₂CuLi derived from CuI consisted of two signals; the major one at δ 0.77 was assigned to (PhMe₂Si)₂CuLi·LiI (39) while the minor one (δ 0.48) was attributed to the halide-free complex, 27.

The ¹³C NMR spectrum of (PhMe₂Si)₃CuLi₂ (**29**) prepared by the addition of LiCl-free **25** to LiBr-free (PhMe₂Si)₂CuLi (**27**) exhibited signals corresponding to (PhMe₂Si)₂CuLi (**27**, δ 4.2) and higher order species **29** (δ 5.4, Figure 24c). Similarly, (PhMe₂Si)₃CuLi₂ (**29**) prepared from CuI exhibited two major methyl resonances at 4.9 ppm and 5.4 ppm which were attributed to (PhMe₂Si)₂CuLi·LiI (**39**) and (PhMe₂Si)₃CuLi₂ (**29**), respectively, along with a minor peak at δ 4.2 ppm which was assigned earlier to halide-free (PhMe₂Si)₂CuLi (**27**, Figure 24d).

In agreement with the above results, the ⁷Li NMR spectrum at -70°C of CuBr•Me₂S derived (PhMe₂Si)₃CuLi₂ in DMS exhibited signals at 0.45 and 0.21 ppm attributable to **27** and **29** respectively, while (PhMe₂Si)₃CuLi₂ prepared from CuI

Figure 24. ¹³C NMR spectra in DMS at -85°C (a) PhMe₂SiLi:CuBr, 2:1 (b) PhMe₂SiLi:CuI, 2:1 (c) PhMe₂SiLi:CuBr, 3:1 (d) PhMe₂SiLi:CuI, 3:1.

consisted of a broad multiplet spanning the region assigned to LiI-containing lower order species (0.76 ppm) and a halide-free (PhMe₂Si)₃CuLi₂ (29) species (~0.40 ppm). The presence of broad signals in these spectra indicates that the rate of exchange between the various lithium containing species is near the NMR time scale, an observation in agreement with literature precedents.^{7,9,12}

As in the case of preparations of (PhMe₂Si)₃CuLi₂ from CuBr•Me₂S in THF, no free PhMe₂SiLi was detectable in the solutions of this reagent prepared from CuI in DMS until the ratio of silyl anion to CuI exceeds 3:1.

In DMS, (PhMe₂Si)₂CuLi·LiX (**39**) and (PhMe₂Si)₂CuLi (**27**) are in dynamic equilibria with (PhMe₂Si)₃CuLi₂ (**29**) as represented in Scheme 14. The reversibility of interconversion between (PhMe₂Si)₂CuLi (**27**) and (PhMe₂Si)₂CuLi·LiI (**39**) was established by the observation that the silyl methyl signals in these species coalesced to a single peak as the temperature is increased from -85°C to 0°C, and upon cooling to -85°C, the same-two signal pattern reappears.

Scheme 14

That LiBr is also associated with trialkylsilylcuprates in THF was evident from ¹³C NMR of (PhMe₂Si)₂CuLi (27, prepared from two equivalents of LiCl-free PhMe₂SiLi³³ and CuBr·Me₂S at -85°C). The ¹³C NMR spectrum (Figure 25a) showed two methyl signals, the major one at 4.9 ppm and a minor one at 4.2 ppm which are identical to the methyl resonances assigned to (PhMe₂Si)₂CuLi·LiI (39) and (PhMe₂Si)₂CuLi (27) respectively in DMS (Figure 25b).

Figure 25. ¹³C NMR spectra of (a) PhMe₂SiLi:CuBr, 2:1 in THF (b) PhMe₂SiLi:CuI, 2:1 in DMS; the spectra were run at -85°C.

It appears that the lower order silylcuprate (PhMe₂Si)₂CuLi (27) is a more complex species than its straightforward preparation indicates. In DMS, when it is prepared with CuI, this reagent consists mostly of the LiI-associated copper species, (PhMe₂Si)₂CuLi·LiI (39), but when it is derived from CuBr·Me₂S, it is free of LiBr. In THF, when CuI or CuBr·Me₂S is used in the preparation, this reagent exists primarily as LiX-associated copper species and should be represented as (PhMe₂Si)₂CuLi·LiX (Scheme 15).

Scheme 15

One would expect the degree of association of LiX (X = Br or I) with lower order silvlcuprates to vary with the nature of the silvl substitution. We suspect the trends discovered in this investigation namely that LiX association is high in solvents such as THF in which LiX salts are soluble to be of general applicability.

It has recently been pointed out by Bertz¹² that THF and DMS are complimentary solvents with regard to copper halide based organocuprates. These reactions commence with copper halides and alkyllithiums and produce lithium halide which may be associated with the organocuprate formed. LiI (the solubility of LiI in DMS is ~10 mg/mL at 25°C) and LiBr (the solubility of LiBr in DMS is ~0.3 mg/mL at 25°C) are relatively insoluble in DMS but both LiI and LiBr are soluble in THF (solubility of LiI and LiBr in THF is >130 mg/mL at 25°C).¹² Therefore, in the latter solvent LiI and LiBr association with cuprates is at least feasible.

The proposed formation of (PhMe₂Si)₂CuLi·LiX in THF provides an explanation for the observation that 27 exhibits a ²⁹Si NMR resonance with a chemical shift (Figure 21d) similar to that assigned to (PhMe₂Si)₂Cu(CN)Li₂, 28 (Figure 15d). Thus, if the former existed primarily complexed with LiBr the only structural difference between 28 and 27 is the substitution of a CN by a Br.

Chemical tests

As observed earlier for silylcuprates derived from CuCN, it was found that solutions of both 27 and 29 deliver a PhMe₂Si group exclusively *via* 1,4-addition to cyclohex-2-en-1-one (32, Scheme 16). Solutions composed of 29, 25 and CuX in a

Scheme 16. Addition of "PhMe₂SiCu" reagents to cyclohex-2-en-1-one, 32.

1:1:0.1 molar ratio also added to 32 in a 1,4-manner.^{32,45} Similar observations have been made before in the catalytic cuprate chemistry.

Next the addition of silylcuprates 27, 29 and 39 to 1-octyne (35a) was studied. In agreement with ¹³C NMR results, it was found that (PhMe₂Si)₂CuLi (27, prepared from CuBr) in DMS added to 35a to yield a mixture of 36 and 37 in a 1:1 ratio, whereas addition reactions of (PhMe₂Si)₂CuLi·LiI (39) and (PhMe₂Si)₃CuLi₂ (29)

H ₁₃ C ₆ C =	=C	$H \longrightarrow H_{13}C_6C = CD$	H ₁₃ C ₆ + (D) H		Me ₂ P	H ₁₃ (+ h PhMe ₂	$C_{6} \xrightarrow{H} H_{Si} \xrightarrow{H} H_{(D)}$
35a	L	35b	36				37
		· · · · · · · · · · · · · · · · · · ·	% (35b	Composit 36	ion 37	%yield	
·	25	PhMe ₂ SiLi	100		-	72	
	27	(PhMe ₂ Si) ₂ CuLi	-	50	50	69	,
	39	(PhMe ₂ Si) ₂ CuLi.LiI	-	>98	<2	86	
	29	(PhMe ₂ Si) ₃ CuLi ₂	-	>98	<2	90	

Scheme 17. Silylcupration of 1-alkynes.

gave exclusively 36 in ~90% isolated yields (Scheme 17). As previously reported, under similar conditions PhMe₂SiLi (25) abstracts the acetylenic hydrogen of 35a to give 35b as judged by GC-MS (70% incorporation of ²H in 1-octyne using ²H₂O); no addition products were observed (capillary g.c. analysis).

Conclusion

Comparison of the present silylcuprate system with that of the methylcuprate^{7,8} system reveals several similarities. When the ratio of RLi (R = PhMe₂Si or Me) to CuX (X = I or Br) in THF is 2:1, a new species, R₂CuLi·LiX, is formed in both cases. In the case of LO Me₂CuLi, association of alkyl residues with copper beyond this stoichiometry does not occur and further addition of MeLi beyond this point gives solutions containing free MeLi (Scheme 1).⁷

In the case of (PhMe₂Si)₂CuLi·LiX, addition of further silyllithium gives solutions which contain negligible amounts of free silyl anions and whose ²⁹Si NMR spectra support the association of three silyl residues with the copper. In THF the novel species (PhMe₂Si)₃CuLi₂ is formed regardless of which copper(I) salt is employed.

In DMS, (PhMe2Si)2CuLi (derived from CuI) exists as an equilibrium mixture of halide-containing (PhMe2Si)2CuLi·LiI (**39**) and halide-free (PhMe2Si)2CuLi (**27**) species. In contrast, lower order silylcuprates derived from CuBr are primarily devoid of LiBr because of the insolubility of this salt in this solvent. This behaviour is analogous to that of phenylcuprates.¹²

MIXED TRIALKYLSILYL AND HOMO- AND MIXED TRIALKYL-STANNYLCUPRATES DERIVED FROM CUPROUS CYANIDE

Silyl- and stannylcopper reagents are invaluable reagents for the construction of carbon-silicon and carbon-tin bonds respectively. In general, reactions of these reagents occur under relatively mild conditions and tolerate polar functional groups. Indeed, one has many literature examples from which to decide upon reaction parameters.^{27,28} Most commonly sought are lithium-based cuprates, $(R_3M)_nCuLi_{n-1}$ ·LiX (M = Si or Sn, n = 1 or 2, X = Br or CN; 40) prepared stoichiometerically from cuprous salts and 1 to 2 equivalents of R₃MLi.^{27,28} While homotrialkylsilyl- and stannylcuprates serve admirably as donors of R₃M anions, problems attend the use of these reagents in that not all the metal anions bound to copper are transferred in these processes. Consequently, R₃MH, R₃M-MR₃ and R₃MOH are produced in workup which complicate product isolation.^{27,28}

The possibility arises that mixed systems R₃Si(R')CuLi·LiX (41) or R₃Sn(R')CuLi·LiX (42) would present opportunities for preferential R₃M anion transfer and thereby increase ligand efficiency of these reagents. The ability of methyl to serve as an efficient non-transferrable ligand in highly mixed organoalkylcuprates¹⁷ led us to determine the composition of mixed silyl- and stannylcuprates derived from CuCN with methyl serving as the second or third anionic ligand.

It was anticipated that information gained from such studies would not only shed light into the nature of these cuprates but also provide insights into the selectivity of ligand transfer. It was envisioned that these studies would help in understanding the mechanism of catalytic addition reactions of these cuprates and define alternate strategies for conducting such reactions.

Silicon-29 and Carbon-13 NMR Studies on Mixed TrialkylsilylCuprates

Low-temperature ²⁹Si and ¹³C NMR spectroscopy was employed to probe the composition of solutions generated by mixing dimethylphenylsilyllithium (**25**) with equimolar solutions of MeLi and CuCN. Species likely to be formed in these experiments are higher order mixed silylcuprates PhMe₂Si(Me)Cu(CN)Li₂ (**43**), (PhMe₂Si)₂(Me)CuLi₂ (**44**) and PhMe₂Si(Me)₂CuLi₂ (**45**).

Results and Discussion

Dimethylphenylsilyllithium (25) in THF was prepared by reaction of PhMe₂SiCl (30) and lithium metal and therefore contained LiCl.³³ Solutions of this reagent at -5°C gave a ²⁹Si NMR signal at –28.5 ppm (Figure 26a). Solutions of mixed silylcuprates (43) were generated by addition of THF solutions of 25 to equimolar THF solutions of MeLi and CuCN at -70°C. The combination of one equivalent of 25 and MeCu(CN)Li¹⁷ (16) yielded a solution that afforded a single ²⁹Si signal at -20.6 ppm (Figure 26d) attributable to (PhMe₂Si)(Me)Cu(CN)Li₂ (43) implying that any equilibrium of the type shown in Scheme 18 must lie heavily toward 43 (i.e., $k_1 >> k_1$). To probe the generality of ligand mobility, solutions containing copper to methyl anion to silyl anion ratio of 1:1:1 were generated by adding MeLi to preformed PhMe₂SiCu(CN)Li (26, Figure 26b). These solutions gave the same spectral results as obtained earlier from the combination of MeCu(CN)Li and PhMe₂SiLi.

To establish that 43 could be produced by mutual alkyl and silyl anion exchange. equivalent amounts of Me₂Cu(CN)Li₂ (17) and (PhMe₂Si)₂Cu(CN)Li₂, (28, Figure 26c) were prepared separately and then combined *via* a cannula at -70°C. The ²⁹Si NMR spectrum, taken at -70°C, of the reagent formed in this experiment (Figure 26e) was identical to the one obtained previously (Figure 26d) from the mixture of PhMe₂SiLi (25) and MeCu(CN)Li (16). As anticipated, the spectra from all three reagent combinations, i.e., MeCu(CN)Li-PhMe₂SiLi, PhMe₂SiCu(CN)Li-MeLi and Me₂Cu(CN)Li₂ - (PhMe₂Si)₂Cu(CN)Li₂ indicated the same species (43) had been formed (Scheme 18).

The ¹³C NMR spectrum (Figure 27d) of (PhMe₂Si)(Me)Cu(CN)Li₂ (43) at -70°C, prepared from a THF solution of MeCu(CN)Li (16) and PhMe₂SiLi (Figure 27b),³³ consisted of seven lines: four in the phenyl region (δ 158.5, *ipso*; 134.9, *ortho*; 126.7, *meta*; 124.8, *para*), one nitrile (δ 159.4) and two different methyl groups. The upfield signals were assigned to a methyl bound to silicon (6.0 ppm) and a methyl bound to copper (-5.0 ppm), respectively, in (PhMe₂Si)(Me)Cu(CN)Li₂ (43). These results indicated the presence of a single species, 43, and support the interpretation of the ²⁹Si NMR spectra (Figure 26d and 26e) given above.

The ¹³C NMR spectra of solutions resulting from the admixture of Me₂Cu(CN)Li₂ (17) and (PhMe₂Si)₂Cu(CN)Li₂ (28, Figure 27e) did not show signals characteristic of the individual reagents (Figure 27a and Figure 27c respectively). Rather

Figure 26. ²⁹Si NMR spectra of (a) PhMe₂SiLi (b) PhMe₂SiCu(CN)Li (c) (PhMe₂Si)₂Cu(CN)Li₂ (d) PhMe₂SiCu(CN)Li + MeLi (e) (PhMe₂Si)₂Cu(CN)Li₂ + Me₂Cu(CN)Li₂; spectra were run at -50°C.

Figure 27. ¹³C NMR spectra of (a) Me₂Cu(CN)Li₂ (b) PhMe₂SiLi (c) (PhMe₂Si)₂Cu(CN)Li₂ (d) PhMe₂SiLi + MeCu(CN)Li (e) (PhMe₂Si)₂Cu(CN)Li₂ + Me₂Cu(CN)Li₂; spectra were run at -70°C.

these solutions gave the same ¹³C NMR signals as obtained previously from the combination of PhMe₂SiLi (25) and MeCu(CN)Li (16, Figure 27d).

Thus, mixed-alkyl silylcuprates as well as silylcuprates and alkylcuprates, irrespective of the mode of preparation, revert to the same species, **43**, when the ratio of silyl anion to alkyl anion to cuprous ion is 1:1:1 (Scheme 18).

The ¹³C NMR spectra of solutions containing two equivalents of silyl anion to

one equivalent each of methyl anion and cuprous ion was next examined. Solutions generated by addition of two equivalents of PhMe₂SiLi (**25**) to solutions containing one equivalent each of MeLi and CuCN would be expected to lead to the formation of an equivalent each of (PhMe₂Si)(Me)Cu(CN)Li₂ (**43**) and PhMe₂SiLi (**25**), or an equivalent each of (PhMe₂Si)₂Cu(CN)Li₂ (**28**) and MeLi, or (PhMe₂Si)₂(Me)CuLi₂ (**44**) and LiCN, or an equivalent each of (PhMe₂Si)(Me)CuLi₂ (**45**), (PhMe₂Si)₃CuLi₂ (**29**) and LiCN, depending on whether this mixed system exhibits behaviour similar to alkyl¹⁷ or homosilylcuprates (Scheme 19).

The ¹³C NMR spectrum for the 2:1 combination of PhMe₂SiLi (25) and MeCu(CN)Li (16) at -85°C is shown in Figure 28b. Identical spectra were obtained when equivalent molar amounts of (PhMe₂Si)₂Cu(CN)Li₂ (28) and MeLi were mixed at -85°C. These spectra exhibited three resonances of unequal intensity in the methyl region (δ -5.3, -3.7 and 6.0) as well as several signals in the phenyl region (124.7, 126.6, 127.7, 128.6, 134.0, 134.5, 134.9) indicating the presence of more than one species. Signals at 6.0 ppm and -5.3 ppm are very close to those previously assigned to 43 (Figure 28a), but the absence of signals corresponding to PhMe₂SiLi (25) rules out the presence of 43. Futhermore, the absence of signals corresponding to MeLi (-14 ppm) eliminates (PhMe₂Si)₂Cu(CN)Li₂ (28) as a major species and supports our earlier observation that the silylcuprates exhibit significant tendencies to exist as higher order cuprates, i.e., (R₃Si)₃CuLi₂.

Warming these solutions to -70°C led to more complex spectra (Figure 28a) that exhibited five peaks in the methyl region (8.1 ppm, 5.9 ppm, 5.5 ppm, -3.8 ppm and -5.3 ppm).

The composition of the species in solutions comprised of PhMe₂SiLi (25), MeLi and CuCN (2:1:1) was deduced from the absence of (PhMe₂Si)(Me)Cu(CN)Li₂ (43), (PhMe₂Si)₂Cu(CN)Li₂ (28), Me₂Cu(CN)Li₂ (17) and MeLi. The expected species is

(PhMe₂Si)₂(Me)CuLi₂ (44). Thus, the signal at -3.7 ppm was assigned to methyl bound to copper in (PhMe₂Si)₂(Me)CuLi₂ (44) while the signal at 5.9 ppm was assigned to the silyl bound methyls in this species. The signals at 8.1 ppm and 164.3 ppm correspond to the methyl and *ipso* carbon, respectively, in (PhMe₂Si)₃CuLi₂ (29). Observation of (PhMe₂Si)₃CuLi₂ (29) requires species such as

 $(PhMe_2Si)(Me)_2CuLi_2$ (45) with two alkyl residues per copper atom to maintain methyl anion/copper cation balance. Thus, the peak at -5.3 ppm was assigned to the two copper bound methyls of PhMe_2Si(Me)_2CuLi_2 (45) and the signal at 5.5 ppm is attributed to the silvl bound methyls in this species. In agreement with this assignment the signal at -3.7 ppm assigned to 44 decreases in intensity with respect to that at -5.3 ppm assigned to 45, as the solution is warmed, and produces signals due to 29.

According to this analysis, the mixed silyl-alkyl-cyanocuprates wherein the silyl anion to alkyl anion to copper cation ratio is 2:1:1 exist in the dynamic equilibria shown in Scheme 20. The equilibria are similar to those observed earlier in the case of homosilylcyanocuprates.

Addition of three equivalents of PhMe₂SiLi (25) to a combination of one equivalent each of MeLi and CuCN could result in the formation of one or all of the possible combinations of silylcuprates shown below in Scheme 21.

Scheme 21

The ¹³C NMR spectrum of the solution generated from the addition of 3.0 equivalents of **25** to one equivalent of MeLi and one equivalent of CuCN at -85°C showed similar features to the ones generated from the combination of 2.0 equivalents of dimethylphenylsilyllithium to one equivalent of methyllithium and one equivalent of copper cyanide. The signal originally present for MeLi (-14 ppm) was replaced by signals characteristic of the mixed cuprates obtained previously for the 2:1:1 case, i.e., (PhMe₂Si)₂(Me)CuLi₂ (44), (PhMe₂Si)(Me)₂CuLi₂ (45) and (PhMe₂Si)₃CuLi₂ (29). Similar results were obtained by addition of MeLi to preformed (PhMe₂Si)₃CuLi₂ (29) at -85°C. This experiment shows that for this ratio of silyl anion to cuprous ion, PhMe₂SiLi (25) is liberated by methyllithium.

Thus, solutions generated by combination of PhMe₂SiLi, MeLi and CuCN in the ratios of 2:1:1 and 3:1:1 contain 44, 45 and 29 except that in the latter the proportion of PhMe₂SiLi is increased in accordance with the equilibria shown in Scheme 22. In

support of this analysis, the ²⁹Si NMR spectrum of solutions generated from admixture of 3.0 equivalents of PhMe₂SiLi (**25**) and one equivalent each of MeLi and CuCN showed appreciable amounts of free PhMe₂SiLi (**25**, -28.5 ppm).

Tin-119, Carbon-13 and Hydrogen-1 NMR Studies on Homotrialkylstannylcuprates

Prior to examination of the composition of mixed triakylstannylcuprates $R_3Sn(R')CuLi\cdotLiX$ (42), the composition of homotrialkylstannylcuprates was studied. Low-temperature ¹H NMR spectroscopic studies were initially conducted on $(Me_3Sn)_nCuLi_{n-1}\cdotLiCN$ (n = 1, 2 or 3) in the region between 1.0 ppm and -2.0 ppm with the specific goal of observing the resonances due to the various methyl groups.

Reaction of (Me₃Sn)₂ (**46**) and methyllithium at -45°C in THF gave a solution containing equimolar amounts of Me₄Sn (δ 0) and Me₃SnLi (**47**).^{46a,b} These preparations gave a broad ¹H signal at -0.35 ppm (Figure 30a)^{46c,d} and, as previously reported, no ¹J(¹¹⁹Sn-¹H) coupling was observed. The ¹¹⁹Sn NMR⁴⁷ spectrum of solutions resulting from the reaction of hexamethylditin (**46**, Figure 31a) with MeLi revealed a signal for Me₃SnLi (**47**, Figure 31b) at -187.9 ppm. The high field position of this signal (*the highest of any trimethyltin derivative yet reported*) has been attributed to the presence of the negative charge on the tin [i.e., (Me₃Sn)⁻].⁴⁸ The ¹³C{¹H} NMR spectrum of solutions of Me₃SnLi (47, Figure 32a) in THF exhibited a broad signal at -3.7 ppm. Contrary to what might be expected of this solution, no ¹³C-¹¹⁹Sn coupling was observed for this species in THF. At least two mechanisms can account for this lack of Sn-C coupling. First, rapid exchange of methyl groups between Me₃SnLi and (Me₃Sn)₂ would destroy the correlation between the ¹³C and ¹¹⁹Sn spin states and therefore no coupling would be seen. Second, association of THF molecules to give [Me₃Sn(THF)_X]⁻ solvated anions would lower the symmetry of the anion and quadrupolar relaxation effects would average out the coupling. At present we cannot distinguish these two possibilities, although the lack of coupling even at -85°C, where methyl exchange rates are apt to be slow, suggests that solvation of the anion is a more likely explanation. This explanation is consistent with the observation that the ¹H and ¹³C NMR chemical shifts of this reagent are concentration dependent.

Solutions of stannylcuprates²⁸ were generated by addition of copper(I) cyanide to THF solutions of Me₃SnLi (47) at -78°C. Combination of equimolar ratios of 47 and CuCN resulted in a nearly homogeneous solution, which showed several ¹H NMR signals in the range -0.1 to -0.3 ppm with major signals centered near -0.18 ppm (Figure 30b). The major signal at -0.18 ppm is assigned to polymeric Me₃SnCu(CN)Li (48). Supporting evidence for this formulation comes from infrared analysis of these solutions which show a major absorption due to bound nitrile at 2111 cm⁻¹ accompanied by a less intense absorption at 2082 cm⁻¹ due to free LiCN.³⁴ The presence of the latter requires Me₃SnLi (47) be present. However, the ¹³C NMR (*vide infra*) failed to reveal this component. We attribute the presence of free LiCN as detected by infrared spectroscopy as being due to thermal decomposition of Me₃SnCu(CN)Li (48) during the infrared analysis.^{34c}

Figure 29. ¹H NMR spectra of (a) Me₃SnLi (b) 1.0 Me₃SnLi + CuCN (c) 1.5 Me₃SnLi + CuCN (d) 2.0 Me₃SnLi + CuCN (e) 2.5 Me₃SnLi + CuCN (f) 3.0 Me₃SnLi + CuCN (g) 4.0 Me₃SnLi + CuCN; the spectra were run at -70°C.

The 1:1 combination of Me₃SnLi and CuCN yielded a slurry exhibiting a multitude of ¹¹⁹Sn signals in the region of -140 to -160 ppm accompanied by a minor signal at -109 ppm due to Me₆Sn₂ (**46**, Figure 31c). The former were assigned to polymeric Me₃SnCu(CN)Li (**48**) based on the observations made earlier on PhMe₂SiCu(CN)Li (*vide supra*). The ¹H NMR spectrum of this solution exhibited several broad signals centered around -0.18 ppm supporting the view that this reagent is polymeric.

The solution of "Me₃SnCu" (49) prepared from Me₃SnLi (47) and CuBr-Me₂S exhibited several ¹¹⁹Sn signals centered around -179 ppm (Figure 31d) suggesting it is also polymeric. In agreement with this interpretation most of the intensity of ¹³C and ¹H NMR signals was lost in solutions containing equimolar amounts of 47 and CuBr-Me₂S. The signals that were visible were due to (Me₃Sn)₂ (46). Lower order cuprates containing one equivalent of RLi to each cuprous ion equivalent such as PhMe₂SiCu(CN)Li, "PhMe₂SiCu" and CH₃Cu²,³ are also polymeric. Appearance of signals for Me₆Sn₂ (46) in the ¹¹⁹Sn NMR spectrum but not in the ¹H or ¹³C spectra (*vide infra*) is attributed to the decomposition of Me₃SnCu(CN)Li (48) during the longer time required to acquire the ¹¹⁹Sn spectrum.

The ¹³C NMR spectrum of **48** exhibited a broad triplet at -4.5 ppm (Figure 32b). The possibility that the multiplicity of this signal is due to ²*J* (⁶Li-¹³C) coupling (⁶Li and ¹³C coupling has been observed in Me₂CuLi,²⁴ 1) is ruled out because the observed satellites (total intensity of 16.5%) are more intense than calculated (7.42% of ⁶Li) and the coupling is significantly larger than expected.⁴¹ The satellites of this signal are attributed to ¹*J*(¹¹⁹Sn-¹³C) coupling (Figure 32b) in agreement with natural abundance of ¹¹⁹Sn (natural abundance of ¹¹⁹Sn is 8.5% and that of ¹¹⁷Sn is 7.6%; since the ratio of *J*¹¹⁷Sn-C/*J*¹¹⁹Sn-C = 1.046, individual satellite peaks due to each of these isotopes cannot usually be resolved for Me₃SnM species^{47a}). The very low

Figure 30. ¹¹⁹Sn NMR spectra of (a) Me₃SnSnMe₃ (b) Me₃SnLi (c) 1.0 Me₃SnLi + CuCN (d) 1.0 Me₃SnLi + CuBr, the spectra were run at -70°C.

Figure 31. ¹³C NMR spectra of (a) Me₃SnLi (b) 1.0 Me₃SnLi + CuCN (c) 2.0 Me₃SnLi + CuCN (d) 3.0 Me₃SnLi + CuCN (e) 3.0 Me₃SnLi + CuBr; the spectra were run at -70°C.

coupling constant of J = 63 Hz is indicative of a trimethyltin group bonded to a weakly electron-attracting moiety as in the case of Me₃SnLi [${}^{1}J({}^{119}Sn-{}^{13}C) = 120$ Hz)].46c,d,47a,49a

As the ratio of Me₃SnLi (47) to CuCN was increased from 1:1 to 2:1, a new peak at -0.24 ppm in the ¹H spectrum appeared and increased in intensity at the expense of the signal at -0.18 ppm (Figure 30c). When the ratio of Me₃SnLi (47) to CuCN reached 2:1, minor signals due to Me₃SnCu(CN)Li (48, δ -0.18) and (Me₃Sn)₃CuLi₂ (50, δ -0.27, *vide infra*) and a major signal at -0.24 ppm (Figure 30d) appeared. The latter signal is attributed to a species containing Me₃Sn/Cu ratios between 1:1 and 3:1.

It is significant that both the ¹H and ¹³C (*vide infra*) NMR spectra revealed the absence of 47 in these solutions. This limits consideration of the composition of the stannylcuprates possessing Me₃Sn/Cu ratios between 1:1 and 3:1 to (Me₃Sn)₃CuLi₂ (50), (Me₃Sn)₂Cu(CN)Li₂ (51), (Me₃Sn)₂CuLi (52) and (Me₃Sn)₃Cu₂Li (53, Scheme 23).

Scheme 23

The ¹³C NMR spectra of solutions prepared from 2.0 equivalents of Me₃SnLi (47) and one equivalent of CuCN contained three signals (δ 1.67, -0.04 and -1.13, Figure 32c). Each signal is accompanied by a set of satellites attributed to coupling of the two tin nuclides of spin 1/2 to carbon. The observation of spin coupling allows the establishment of Cu-Sn stoichiometry in solution^{47a} based on the relative intensities. Thus, the signal centered at 1.67 ppm exhibited ¹¹⁹Sn-¹³C coupling of 44.3 Hz and satellites of 45% intensity indicating ¹³C coupling to three tin atoms, while that at -0.04 ppm was accompanied by satellites revealing a ¹¹⁹Sn-¹³C coupling of 46.8 Hz to two tin atoms (26%) and the signal at -1.13 ppm exhibited ¹¹⁹Sn-¹³C couplings of 46.8 and 23.8 Hz due to two different tin atoms in the ratio of 3:2.

The signal at 1.67 ppm is assigned to (Me₃Sn)₃CuLi₂ (50) based on the observation that this signal grows at the expense of the signals at -0.04 ppm and -1.13 ppm as the Sn/Cu ratio is increased from 2:1 to 3:1 and beyond (Figure 32c, 32d and 32e). The presence of signals corresponding to 50 requires the presence of species containing a 1.5:1 ratio of Me₃Sn/Cu to maintain the copper-tin balance in these solutions. The ¹³C NMR spectrum of a solution generated by admixture of 1.5 equivalents of Me₃SnLi (47) with one equivalent of CuBr·Me₂S exhibits a broad peak at -1.13 ppm. Hence, (Me₃Sn)₃Cu₂Li (53) is assigned to the latter signal. The ¹³C NMR spectrum of a solution generated from the combination of two equivalents of Me₃SnLi (47) and one equivalent of CuBr·Me₂S exhibits a broad signal at -1.35 ppm assigned to (Me₃Sn)₂CuLi (52). This signal is absent in solutions generated from a 2:1 combination of Me₃SnLi and CuCN. Thus, the stannylcuprates eliminated from consideration as the species giving rise to the signals centered at -0.04 ppm are Me₃SnCu(CN)Li (48), (Me₃Sn)₂CuLi (52) and (Me₃Sn)₃Cu₂Li (53). This signal is therefore attributed to (Me₃Sn)₂Cu(CN)Li₂ (51).

This interpretation is in agreement with the ¹H NMR analysis of these solutions which revealed a major signal at -0.24 ppm at a Sn/Cu ratio of 2:1 and that the intensity of 119 Sn- 13 C satellites surrounding the 13 C NMR signal for this reagent (*vide supra*) corresponded to the presence of two tins.

Sequential addition of Me₃SnLi (47) to the above solution (< 0.5 equivalent) resulted in the appearance of a new signal at -0.27 ppm in the ¹H NMR spectrum (Figure 30e). When the ratio of 47 to CuCN was precisely 3:1, the major ¹H signal observable was at -0.27 ppm accompanied by a minor signal due to (Me₃Sn)₂Cu(CN)Li₂ (51, Figure 30f). The peak at -0.27 ppm was attributed to (Me₃Sn)₃CuLi₂ (50) by analogy with our earlier observations on the trialkylsilylcuprates.

In support of our interpretation of the ¹H NMR spectral data, the ¹³C NMR spectrum of this solution showed a major signal at 1.67 ppm along with a minor signal assigned to **51** and **53** (Figure 32d). Moreover, solutions of Me₃SnLi:CuBr·Me₂S (3:1) exhibited ¹³C NMR spectra with a signal at 1.67 ppm (Figure 32e).

While no appreciable amounts of Me₃SnLi (47) were detectable by ¹H NMR spectroscopy in solutions containing 3.0 equivalents of Me₃SnLi to one equivalent of CuCN, substantial amounts of Me₃SnLi were detected by ¹H NMR analysis (Figure 30g) in solutions containing more than 3.0 equivalents of 47 to each equivalent of CuCN.

That the formation of Me₃SnCu(CN)Li (48) and (Me₃Sn)₃CuLi₂ (50) are reversible was shown by addition of 0.5 equivalent of CuCN to the solution whose ¹H NMR spectrum is shown in Figure 30f. This results in the regeneration of the spectrum shown in Figure 30d. Further introduction of CuCN (1.0 equivalent) to this solution results in the regeneration of the spectrum shown in Figure 30b. Thus, the species exhibiting signals at -4.5 ppm, -1.13 ppm, -0.04 ppm and 1.67 ppm are in dynamic equilibria as represented by Scheme 24.

Scheme 24

The chemical shift change observed when lower order stannylcyanocuprates are converted to higher order stannylcyanocuprates is opposite to what would be expected from simple arguments based on electronegativity. Coordination of an electron-rich Me₃SnLi (47) to the copper centre in Me₃SnCu(CN)Li (48) should increase the electron density at copper and hence at both tins in the resultant HO species. The ¹¹⁹Sn resonance in the HO species would therefore be expected to be upfield of that in the LO reagents, not downfield as found. An anomolous pattern of shielding was also observed for ²⁹Si in trialkylsilylcyanocuprates (46) and presumably has its origin in the p-orbital "imbalance" and its contribution to the paramagnetic term of nuclear <u>shielding ^{37b}</u>

The observed ${}^{1}J({}^{119}\text{Sn}{}^{-13}\text{C}$ coupling decreases as one proceeds from LO to HO stannylcuprates i.e., ${}^{1}J({}^{119}\text{Sn}{}^{-13}\text{C}, 63 \text{ Hz})$ of Me₃SnCu(CN)Li (48, δ -4.5) > ${}^{1}J({}^{119}\text{Sn}{}^{-13}\text{C}, 46.8 \text{ Hz})$ of (Me₃Sn)₂Cu(CN)Li₂ (51, δ -0.04) > ${}^{1}J({}^{119}\text{Sn}{}^{-13}\text{C}, 44.3 \text{ Hz})$ of (Me₃Sn)₃CuLi₂ (50, δ 1.67). The small ${}^{119}\text{Sn}{}^{-13}\text{C}$ coupling observed in HO

stannylcuprates as compared to LO stannylcuprates is consistent with a greater electron density on the tin atom in the former.^{46d,48} According to this rationale a greater negative charge on the tin atom would lead to a greater *s*-character in the orbital containing the lone pair bound to copper.^{46d} An increase in the fractional *s*-character of the bond should lead to a decrease in *s*-character of the remaining tin-carbon bonds and result in a lower 119Sn-13C coupling as observed.^{46d,47a}

A final point of interest is the observation that the intensities of the 119 Sn- 13 C satellites surrounding the 13 C NMR signals at 1.67 ppm, -0.04 ppm and -1.13 ppm (attributed to (Me₃Sn)₃CuLi₂ (**50**); (Me₃Sn)₂Cu(CN)Li₂ (**51**); and (Me₃Sn)₃Cu₂Li, (**53**); respectively) with respect to the central signal are greater than the 15:85 ratio expected for 13 C coupling to a single 119 Sn nucleus. We have observed the same phenomenon for stannylmetalloids such as Me₃SnAlEt₂ (**54**) and [(Me₃Sn-9-BBN•OMe)⁻]Li⁺ (**55**). The small coupling constants of **54** [^{1}J (119 Sn- 13 C, 40 Hz] and **55** [^{1}J (119 Sn- 13 C, 56 Hz] are very close to those observed for the stannylcuprates mentioned above.

$$Me_{3}SnAlEt_{2}$$

$$\begin{bmatrix} Me_{3}Sn-B \\ OMe \end{bmatrix} Li$$

$$54$$

$$55$$

A priori one would ascribe the increased satellite intensities to a rapid exchange of alkyl residues between tins. At least in the case of stannylcuprates we have demonstrated that such exchange does not occur between Bu₃Sn and Me₃Sn groups associated with cuprous ion. Thus, one equivalent of CuCN was added to one equivalent each of Bu₃SnLi and Me₃SnLi at -70°C and the reaction quenched with NH₄Cl after two hours at -50°C. Analysis by GC-MS revealed no Bu₂MeSn or BuMe₂Sn moieties. Although this experiment rules out the exchange between methyl and a butyl group on tin in HO stannylcuprates, it does not unequivocally rule out methyl-methyl exchange in these cuprates. Crossover experiments using cuprates generated from (CH₃)₃SnLi and (CD₃)₃SnLi should be carried out to observe the formation of (CD₃)_n(CH₃)_{3-n}Sn species in the reaction mixtures.

An alternative possibility is that the enhanced satellite intensity is due to the equivalency of ${}^{1}J({}^{119}Sn-{}^{13}C)$ and ${}^{3}J({}^{119}Sn-{}^{13}C)$ in these complexes. For alkyl tin compounds where the ${}^{119}Sn-{}^{13}C$ coupling is through a carbon frame, ${}^{1}J > {}^{3}J > {}^{2}J > {}^{4}J$ and all these can be appreciable. 50a Thus, the equivalency of ${}^{1}J$ and ${}^{3}J$ in the present system is not entirely unreasonable.

Tin-119, Carbon-13 and Hydrogen-1 NMR studies on Mixed Trialkylstannylcuprates

We next focused on mixed reagent (Me₃Sn)(Me)Cu(CN)Li₂ (56). Earlier spectroscopic studies on the silylcuprates (*vide supra*) indicated that (PhMe₂Si)(Me)Cu(CN)Li₂ (43) can be produced either by the sequential addition of MeLi and PhMe₂SiLi (25) to CuCN or upon admixture of Me₂Cu(CN)Li₂ (17) with (PhMe₂Si)₂Cu(CN)Li₂ (28). If (Me₃Sn)(Me)Cu(CN)Li₂ (56) is produced in similar experiments with stannyl anions one should obtain two high field signals corresponding to two methyl groups, one bound to copper and the other to tin. On the other hand the various equilibria exhibited by the higher order homo-trimethylstannylcuprate (51, *vide supra*) could result in the formation of species having more than one tin. The ¹³C NMR spectrum of a solution containing one equivalent each of MeLi and Me₃SnCu(CN)Li, **48** (Figure 33b) at -70°C is shown in Figure 33d. The combination of these reagents resulted in a simple spectrum exhibiting three signals at -2.06 ppm, -9.32 ppm and -9.5 ppm (Me₄Sn). The peaks at -2.06 ppm and -9.32 ppm were assigned to carbons of the methyls bound to tin and copper respectively, in (Me₃Sn)(Me)Cu(CN)Li₂ (56). The same spectrum (Figure 33e) was obtained when equimolar amounts of **17** (Figure 33a) were combined with **51** (Figure 33c). The intensities of the satellites of the signal at 2.06 ppm are as expected for 1J(119Sn-13C,182.0 Hz) coupling to a single tin nucleus. No 2J(119Sn-13C) coupling was observed between the methyl and the Me₃Sn moiety. This is attributed to a rapid intermolecular exchange between methyls on copper. Since neither (Me₃Sn)₂Cu(CN)Li₂ (**51**), Me₂Cu(CN)Li₂ (**17**), Me₃SnCu(CN)Li (**48**), Me₃SnLi (**47**), MeCu(CN)Li (**16**) nor MeLi are seen when the Me₃SnLi:CuCN:MeLi ratio is exactly 1:1:1, an equilibrium favouring **56** (Scheme 25), analogous to Scheme 18, must lie far to the products.

Scheme 25

Figure 32. ¹³C NMR spectra of (a) Me₂Cu(CN)Li₂ (b) 1.0 Me₃SnLi + CuCN (c) 2.0 Me₃SnLi + CuCN (d) Me₃SnCu(CN)Li + MeLi (e) (Me₃Sn)₂Cu(CN)Li₂ + Me₂Cu(CN)Li₂; the spectra were run at -70°C.

Figure 33. ¹H NMR spectra of (a) Me₃SnLi (b) 1.0 (Me₃Sn)₂Cu(CN)Li₂ + Me₂Cu(CN)Li₂; ¹¹⁹Sn NMR spectra of (c) Me₃SnLi (d) Me₃SnLi + MeCu(CN)Li; the spectra were run at -70°C.

Figure 34. ¹³C NMR spectra of (a) (Me₃Sn)(Me)Cu(CN)Li₂ (b) (Me₃Sn)(Me)Cu(CN)Li₂ + MeLi (c) (Me₃Sn)₃CuLi₂ + (Me₃Sn)(Me)Cu(CN)Li₂ (d) 2.0 (Me₃Sn)₂Cu(CN)Li₂ + MeLi; the spectra were run at -70°C. In support of our interpretation of the 13 C NMR spectrum of 56, the 1 H spectrum of this reagent (Figure 34b) at -70°C (prepared from equimolar amounts of (Me₃Sn)₂Cu(CN)Li₂ (51) and Me₂Cu(CN)Li₂ (17) showed two resonances in a 3:1 ratio at -0.45 (Me on tin) and -1.56 ppm (Me on copper) along with a minor peak due to 51 at -0.24 ppm. Similar results were obtained from the combination of Me₃SnLi (Figure 34a), MeLi and CuCN. The 119 Sn NMR spectrum (Figure 34d) of 56 showed a single peak at -182 ppm also indicating a single species.

Addition of one equivalent of MeLi to preformed (Me₃Sn)(Me)Cu(CN)Li₂ (56, Figure 35a, containing Me₄Sn, -9.5 ppm), at -70°C, yielded a solution that exhibited two ¹³C NMR signals at -1.7 ppm ¹J(¹¹⁹Sn-¹³C, 189 Hz) and -9.3 ppm which were attributed to (Me₃Sn)(Me)₂CuLi₂ (57, Figure 35b). This assignment was based on the increase in the intensity of the signal at -9.3 ppm when the ratio of Sn/Cu/Me was 1:1:2. No signals corresponding to other stannylcuprates were apparent in these solutions (Figure 35b). Also, no ²J(¹¹⁹Sn-¹³C) was observed in this cuprate due to rapid intermolecular exchange between methyls on copper.

Addition of one equivalent of (Me₃Sn)₃CuLi₂ (**50**) to **56** (2:1:0.5, Sn:Cu:Me) resulted in the appearance of signals for free Me₃SnLi (**47**) as well as signals attributable to (Me₃Sn)₃CuLi₂ (**50**), (Me₃Sn)₃Cu₂Li (**53**) and (Me₃Sn)(Me)₂CuLi₂, **57** (Figure 35c). Similar results were obtained when 1.0 equivalent of MeLi was added to 2.0

$$4 (Me_{3}Sn)_{2}Cu(CN)Li_{2} + 2 MeLi$$

$$51$$

$$Me_{3}Sn(Me)_{2}CuLi_{2} + Me_{3}SnLi + (Me_{3}Sn)_{3}CuLi_{2} + (Me_{3}Sn)_{3}Cu_{2}Li + 4 LiCN$$

$$57$$

$$47$$

$$50$$

$$53$$

Scheme 26

equivalents of preformed (Me₃Sn)₂Cu(CN)Li₂ (**51**, Figure 35d). Appearance of Me₃SnLi (**47**) in the latter experiment indicates the most basic ligand, in this case methyl anion, is preferentially bound to copper in solutions deficient in methyl anion (Scheme 26).

Encouraged by the formation of (Me₃Sn)(Me)Cu(CN)Li₂ (**56**) we examined the low temperature ¹³C NMR spectra of solutions generated from the mixture of one equivalent of Bu₃SnH (**58**) and Me₂Cu(CN)Li₂ (**17**). This combination resulted in the appearance of a single peak at -13.1 ppm (Figure 36a) corresponding to the methyl in Bu₃Sn<u>Me</u> (**59**, Scheme 27). The stoichiometry of this reaction requires the formation of Me(H)Cu(CN)Li₂ (**60**) which has recently been detected by Lipshutz in 1,4-addition reaction of the hydride.^{50a}

Scheme 27

Addition of a further equivalent of Bu₃SnH (**58**) to the above solution resulted in immediate release of a gas and appearance of a new signal at -9.3 ppm (Figure 36b). This signal is very close to the one observed earlier (-9.2 ppm) for methyl bound to copper in (Me₃Sn)(<u>Me</u>)Cu(CN)Li₂ (**56**). Hence, we attribute this peak to methyl bound in (Bu₃Sn)(<u>Me</u>)Cu(CN)Li₂ (**61**). The stoichiometry of the conversion of an equivalent

-8.5

-22

On the basis of these NMR investigations, it is clear that ligand exchange in lower order and higher order cuprates occurs between silyl, stannyl and alkyl anions. Because of these equilibria silyl- or stannylcuprates and alkylcuprates readily form mixed metallo-alkylcuprates. For solutions containing equimolar ratios of R_3M (M = Si or Sn) anion, methyl anion and cuprous ion, the mixed cuprate $R_3M(Me)Cu(CN)Li_2$ is the predominant species in solution (Scheme 28).

As the amount of R₃M anion is increased, a species containing two R₃M anions to each methyl and cuprous ion [(R₃M)₂(Me)CuLi₂] is formed. [R₃M(Me)₂CuLi₂] and (R₃M)₃CuLi₂ are also formed in these solutions. This shows that equilibria among these three species is close to unity. The observation that R₃MLi is present in solutions of higher order metallocuprates provides a pathway by which ligand exchange on cuprous ion can occur [i.e., *via* free R₃MLi(R'Li)].

The ability of methyl ligands to bind tenaciously to cuprous ion can be explained by the differences in basicity of MeLi ($pK_a \approx 40$), R₃MLi ($pK_a \approx 23$, M = Si or Sn) and "R₃MCu" ($pK_a \approx 15$).^{28a,51} This implies that in the mixed "R₃Si(Me)Cu" or

"R3Sn(Me)Cu" reagents [i.e., (PhMe2Si)(Me)Cu(CN)Li2 (43);

(PhMe₂Si)₂(Me)Cu(CN)Li₂ (44); (PhMe₂Si)(Me)₂CuLi₂ (45);

(Me₃Sn)(Me)Cu(CN)Li₂ (56); (Me₃Sn)(Me)₂CuLi₂ (57) and (Bu₃Sn)(Me)Cu(CN)Li₂ (61)] there would be a tendency for the silyl- or the stannyl- ligands to transfer faster than methyl anions. This would result in the conservation of the more valuable silyl or stannyl residue which would, in turn, increase the efficiency of R₃M transfer reactions. Product yields would also be expected to improve because of simplification in isolation procedures since methane is the hydrolysis product whereas R₃MH and R₃MOH are the side products obtained on workup of homo-trialkylsilyl- or stannylcuprates.

Scheme 28

Reactions of Silyl- and Stannyl cuprates with α,β -unsaturated Ketones

Evidence has been obtained from our ¹³C NMR studies (*vide supra*) that in the mixed cuprates of the general formulae (R₃M)_n(Me)CuLi_{n-1}·LiCN (n = 1 or 2), both Me and R₃M moieties move rapidly between parent species to preferentially yield the mixed ligand metallocuprates. It was therefore of interest to evaluate ligand transferability from these reagents to organic substrates such as α,β -enones as a step toward more efficient synthetic methodology. Futhermore the simple spectroscopic behaviour of the mixed ligand metallocuprates afforded an opportunity to study the mechanism of the reaction of these reagents with α,β -unsaturated ketones.

The facility with which cuprates bearing alkyl,² silyl,³² and stannyl³² anions introduce these groups in a Michael sense to α , β -unsaturated carbonyls compounds (62) makes them the reagents of choice for these transformations. Most mechanistic studies of these processes have involved Gilman reagents (i.e., R₂CuLi, 2). While initial coordination of the substrate carbonyl with lithium (2 + 62 \rightarrow 63) and formation of a substituted enolate (64) are common features, (Scheme 29) there has been considerable divergence of opinion concerning the intervening steps.

Kinetic data⁵² on these Michael reactions as well as isolation of an insoluble species⁵³ that was convertible to a β substituted ketone (implying that the unknown species was the enolate, 64)⁵³ suggest a process involving intermediates that unimolecularly rearrange to the enolate (64, Scheme 29). The correlation of reduction potentials of α , β -unsaturated carbonyl systems with cuprate reactivity has given rise to a proposal involving a single electron transfer mechanism.⁵⁴ Initial Lewis acid-Lewis base interaction (63, Scheme 29, step a₁) encourages transfer of an electron from a dimeric cuprate to the enone to give 65 (Scheme 29, step a₂) followed by formation of a copper-carbon bond in the species 66 (Scheme 29, step a₃). Reductive elimination (Scheme 29,

97

Scheme 29

step a_4) from the Cu(III) species 66 affords the enolate 64, although the exact nature of M in the species 64 is still an open question. Intermediate 66 can also arise by way of an initial charge transfer complex (67, Scheme 29, step $b_1 \rightarrow b_2$ or *via* $b_3 \rightarrow a_3$).⁵⁵ Still more direct would be the nucleophilic addition of the reagent to the β carbon atom of the substrate⁵⁶ without the intervention of a single electron transfer step (Scheme 29, step $a_1 \rightarrow c_1 \rightarrow c_2$). Direct carbocupration to give an α -cuprioketone (69, Scheme 29, step d_1 or *via* steps $a_1 \rightarrow c_1 \rightarrow d_2$) followed by rearrangement to the thermodynamically more stable lithium enolate (Scheme 29, step d_3) is another alternative.⁵⁷

The notion of an early intermediate complex (beyond that of simple Li⁺ coordination) has gained considerable momentum since its original formulation. Infrared spectroscopic studies of reactions involving unsaturated esters⁵⁸ and, in particular, low-temperature ¹H and ¹³C NMR studies of the reaction of Gilman's reagent, Me₂CuLi⁵⁹ (1) and of the mixed lower order cuprate Me(2-thienyl)CuLi⁶⁰ with cinnamate esters (70) provide cogent evidence for binding between copper and the π^* MO of the enone. Thus, addition of 70 and 1 in THF-d8 at -70°C gave an intermediate species in which the ¹³C labelled C₂ carbon shifted upfield by 55 ppm to give a quartet of signals at 53.7, 52.6, 51.0 and 49.9 ppm which were ascribed to an intermediate π -complex.^{60,61}

70

98

These shifts are in the range of coordination shifts (~ 60 ppm) for trigonal alkenetransition metal complexes of Ni, Pd and Pt.^{62,63} Since diastereoisomerism would be expected to yield only two π -complexes (i.e., only two signals) the additional signals must be related either to *E*, *Z* isomerism, solvent association or aggregation state.^{59,60}

The study described here involved measurements of the ¹³C NMR spectra of solutions generated during the addition of metallocuprates to cyclohex-2-ene-1-one (32) at low temperature with the aim of observing resonances due to the copper containing species formed following the delivery of R₃M (M = Si or Sn) from $(R_3M)_n(Me)CuLi_{n-1}$ ·LiCN to 32. The logical byproduct of ligand transfer is the LO cyanocuprate MeCu(CN)Li (16) which should be observable over time.

When reactions of 32 with PhMe₂Si(Me)Cu(CN)Li₂ (43) or Me₃Sn(Me)Cu(CN)Li₂ (56) were monitored by ¹³C NMR spectroscopy at -85°C the appearance and gradual increase of a peak at -13.5 ppm corresponding to 16 was readily discerned.There was also evidence for the involvement of a π -complex between higher order silyl- (29 and 43) as well as HO stannylcuprate (56) and cyclohex-2-ene-1-one (32).

The ¹³C NMR spectra of the cuprates and cyclohex-2-ene-1-one are complex. Some features, however, are prominent and facilitate interpretation. These are particularly the methyl signals and the signals of the C₂ carbon of the enone as illustrated in Figure 36a. On addition of (PhMe₂Si)₃CuLi₂ (**29**) at -85°C to **32** the resonances for C_2 (120.9 ppm) and C_3 (150.7 ppm) of **32** disappear and several closely spaced signals are generated that are initially centered around 60 ppm (59.2 and 61.7 ppm) and around 35 ppm (32.7 and 33.8 ppm). Coincident with these new signals, four major (-2.37, -2.69, -4.4, -5.14 ppm) and two minor (3.9, 4.0 ppm) resonances attributable to silyl bound methyls appear. As the solution is allowed to stand at -70°C, the high field methyl resonances at -4.4 and -5.14 ppm disappear while those at 3.9 and 4.0 ppm grow. This is accompanied by a decrease in the signal intensities near 60 and 35 ppm and an increase at 38.6 and 23.7 ppm. The signals originally obtained for the nitrile carbons (159.4 ppm) are replaced by another at 152 ppm. Workup of this reaction yields **33** (Scheme 30). It is attractive to attribute the signals centered at 35 and 60 ppm to C₂ and C₃ of a copperalkene- π -complex (**68**, Scheme 29, R = PhMe₂Si) while the signals at 38.6 and 23.7 ppm are attributed to the C₂ and C₃ of the enolate **64** (Scheme 29, R = PhMe₂Si). The signal due to the C₃ carbon of the product appears at 26 ppm. The upfield methyl shifts at -2.37 and -2.67 and -4.4 and -5.14 are assigned to the silicon bound methyls in the α -cuprioketone, **69** (Scheme 29) and the copper-alkene- π -complex, **68** respectively (Scheme 29, R = PhMe₂Si). The signal due to the carbonyl (C₁) is difficult to distinguish from the baseline noise due to long relaxation decay of the quaternary carbon.

Similarly, the low-temperature ¹³C NMR spectrum of PhMe₂Si(Me)Cu(CN)Li₂ and 32 shows four major signals at -2.37, -2.67, -4.40 and -5.14 ppm and two minor signals at 3.9 and 4.0 ppm (Figure 36b). The important feature is the appearance of signal at -13.5 ppm corresponding to MeCu(CN)Li (16) as a result of exclusive silyl group transfer from the silylcuprate to cyclohexenone. The appearance of 16 suggests that under these conditions, some addition of 43 to 32 has occurred. It also allows one to deduce that lithium is coordinated to the enolate product, 64 (Scheme 29, M = Li). One set of doublets (3.9 and 4.0 ppm) may be attributed to the silyl bound methyls in the common enolate adduct (64, Scheme 29). The corresponding signals for C₂ of the adduct appear around 40 ppm while those for C₃ absorb at 24 ppm. These signals are close to that expected for the silyated enolate corresponding to 64 (R = PhMe₂Si). The bread signal for the nitrile (159.4 ppm) is replaced by another at 151.3 ppm as the reaction progresses. The other remaining set of signals around 60 and 35 ppm are hypothesized to be due to a copper-alkene π -complex (corresponding to the adduct 68, Scheme 29).59-61 The formation of a chiral center on mixing a silylcuprate (29) with 32 is a straight-forward basis for the presence of two signals for silyl bound methyls in the ¹³C NMR spectrum corresponding to the enolate 64 (3.9 and 4.0 ppm) and the copperalkene π -complex 68 (-4.4 and -5.14 ppm; Scheme 29). The presence of lithium salts

Figure 36. ¹³C NMR spectra of (a) (PhMe₂Si)₃CuLi₂ + 3.0 equiv 32 (b) PhMe₂Si(Me)Cu(CN)Li₂ + 32; the spectra were run at -85°C.

in the solutions of these cuprates may be responsible for the appearance of additional signals at -2.4 and -2.7 ppm. Coordination with these salts may result in the formation of a stable adduct **69** (Scheme 29) since no signals were obtained around -2.0 ppm in solutions free of LiCl. Alternatively, the aggregation state of the silylcuprates and the π -complexes could vary and hence give rise to species the enone carbons in different magnetic environments.

Similar results were obtained by using the HO homocuprate 28 and the HO stannylcuprate 56. In the latter case signals near 35 ppm along with a doublet centered at 12 ppm were produced on initial mixing at -85°C and these signals disappeared as signals for stannylated enolate (38 ppm) and MeCu(CN)Li (δ -13.5) appeared.

On the basis of this preliminary spectroscopic information, it is proposed that conjugate addition of mixed metallocuprates to α , β -unsaturated ketones involves initial formation of an intermediate copper(I)-olefin- π -complex 68 which is stable at very low temperatures. In the presence of lithium salts appreciable amounts of α --cuprioketone (69) is also produced. Warming the solutions leads to exclusive delivery of the metallo anion with simultaneous formation of the LO alkylcyanocuprate.

In accordance with our NMR results, it was found that solutions of PhMe₂Si(Me)Cu(CN)Li₂ (43), Me₃Sn(Me)Cu(CN)Li₂ (56) and Bu₃Sn(Me)Cu(CN)Li₂ (61) deliver a PhMe₂Si or R₃Sn (R = Me, Bu) group

Scheme 30. Reaction of metalocuprates with 32.

exclusively *via* 1,4-addition to cyclohex-2-en-1-one (**32**) to give 3-silyated (**33**) or 3stannylated (**70**) cyclohexanones respectively (Scheme 30).^{32,46} 3-Methylcyclohexanone which would be produced from 1,4-addition of a methyl group was not observed.

Thus, the transferability of R₃Si or R₃Sn anions bound to copper is higher than that of the methyl ligands. The preference for R₃M (M = Si or Sn) transfer presumably reflects the kinetic reactivities of higher order mixed metallocuprates, as well as the stability of the resulting lower order reagent formed [i.e., Me(Cu)CNLi].

Conclusion

These studies indicate that higher order cuprates containing silyl or stannyl and alkyl anionic ligands (e.g., R₃Si(R')CuLi·LiX (41) and R₃Sn(R')CuLi·Li (42) are similar to alkyl cuprates (17) with respect to their tendencies to readily exchange ligands between copper centers. These studies also present evidence that such mixed cuprates transfer silyl and stannyl ligands in preference to alkyl ligands in reactions with α , β -enones. The formation of a copper(I)-alkene complex as an initial step of the conjugate addition of homo-trialkylsilylcuprates, homo-trialkylstannylcuprates as well as mixed stannyl- or mixed silylcuprates to enones has been demonstrated but additional work using a ¹³C labelled enone is required to firmly establish the suggested parallel.

Final comments

One of the overriding questions regarding the nature of metallocuprates is the aggregation state of the solution species. If one uses a chiral ligand R* to prepare

R*(R₃M)Cu(CN)Li₂ then if the R* is optically pure and the species is monomeric one should obtain signals for the ¹³C and ¹H spectra of the species (i.e., same δ for R and S). If the R* is optically pure and the species is dimeric, a single signal should appear for each magnetically nonequivalent atom. If the R* is racemic and the species is monomeric then one signal should appear for each magnetically nonequivalent atom. If, on the other hand the species is dimeric then atoms magnetically equivalent in the monomer would appear nonequivalent in the dimer and give more than one signal due to the diastereoisomeric species that are possible (different signals for RR, SS and RS and SR).

IN SITU GENERATION OF ACTIVATED METALLOCUPRATES

During the evolution of stoichiometric lithium-based stannyl- and silylcuprates in synthetic chemistry, 2^{7-32} one aspect of their chemistry that has been invariant is their mode of preparation. $2^{7,28}$ Both lower order and higher order stannyl- and silylcuprates are routinely prepared from Cu(I) salts and 1 or 2 equivalents of R₃MLi (M = Sn or Si). When the Cu(I) salts are cuprous halides 2.0 equivalents of R₃MLi are required to induce *ate* formation. When CuCN is used direct *ate* formation occurs. This contrasts with organometallic chemistry outside the organocopper arena where preformed organometallic complexes are commonly produced *via* ligand exchange between metal centers.¹

As reported in the previous section ligand exchange [e.g., $R_2Cu(CN)Li_2$ and $(R_3M)_2Cu(CN)Li_2$, M = Si or Sn] readily occurs between silylcopper or stannylcopper derivatives and alkylcopper systems. The equilibria established by the many combinations examined led to the view that exchange between anionic organic ligands such as R_3Si, R_3Sn and alkyl associated with cuprous ion is indeed facile. On the basis of these observations, it was decided to examine the chemistry associated with ligand migration on copper where ligands with different electropositive metals are involved.

Specifically, it was envisioned to prepare derivatives of trialkylstannyl and trialkylsilyl anions in which the counter ion is a metal-containing species capable of exerting an effect as an electrophilic additive. An example of the type of reaction we hoped to achieve is shown in Scheme 31.

105

M = Al or B

These reactions were of interest because, if successful, they would allow the *in situ* generation of activated stannyl (73) and silylcuprates (75) directly from trialkylstannyl- (72) and trialkylsilyl metalloids (74) respectively, thereby bypassing the generation of thermally labile stannyl- or silylcuprates. Mixed ligand cuprates such as 73 and 75 would, by analogy to activated alkylcuprates, possess increased reactivity toward organic substrates. If the stannyl and silylcuprates are indeed activated by the presence of the electrophilic $M(R)_n$ group, the literature did not give an indication of this at the onset of our work.

Certainly, one of the recent and most encouraging aspects of organocuprate chemistry has been the improvement made in reactivity when other species are added to the reactions of lower or higher order alkylcuprates.⁶ Phosphorus-containing compounds (e.g., phosphines and phosphites, etc.) have been utilized for decades to solubilize the cuprous(I) salts and also to act as stabilizing ligands. Recently, however, the use of electrophilic species such as BF3·Et2O, Et2AlCl, ZnBr2, MgBr2, TiCl4 and Me3SiCl with Gilman cuprates (R2CuLi, 2) has significantly expanded the scope of this methodology.⁶ In general, these electron-deficient reagents tend to increase both the rates and yields of cuprate reactions. Since no changes in protocols for cuprate use are necessary, aside from the introduction of additive, it is not surprising that the frequency of their use continues to grow.²,6 Although commonly used, little is actually known about the role of these Lewis acids in the reactivity modification. It is presumed that these additives function by Lewis acid-base complexation with the substrate while the cuprate remains unperturbed. However, it has been recently shown by low-temperature NMR spectroscopy that the addition of Lewis acids such as BF3·Et2O and Me3SiC1 leads to formation of modified cuprates.^{64,65} Thus, addition of BF3·Et2O to a solution of Me2Cu(CN)Li2 (17) leads to immediate association of the nitrile ligand of the cuprate with the additive. It also sequesters MeLi from the cuprate cluster to form MeLi·BF3 and the lower order cuprate MeCu(CN)Li (16, Scheme 32).⁶⁴

$$Me_2Cu(CN)Li_2 + BF_3Et_2O \longrightarrow MeLi.BF_3Et_2O + MeCu(CN)Li$$
17 16

Similarly, Me₃SiCl reacts with the higher order cuprate 17 to give Me₃SiCN and the corresponding lower order cuprate 1 (Scheme 33).⁶⁵

$$Me_2Cu(CN)Li_2 + Me_3SiCl \longrightarrow Me_3SiCN + LiCl + Me_2CuLi$$
17 1

Scheme 33

Our reasons for expecting the desired ligand exchange (Scheme 31) to occur lay in the strong tendency of organodimetallics containing coordinatively unsaturated metals to form bridged complexes¹ (**76**) through three-center-two-electron bonds. Where participating metals are identical, such associations are of little synthetic consequence. When the metals are different, however, it can lead to transmetallation, *ate* formation or complexes in which the charge has been reversed on ^{2}M compared to that in *ate* formation (Scheme 34).¹

When the electronegativities of ${}^{1}M$ and ${}^{2}M$ are substantially different, the more

electronegative metal is reported to attract both bridging ligands, i.e., ${}^{1}L$ and ${}^{2}L$, inducing *ate* formation as shown in 77. *Ate* formation increases the nucleophilicity of the ${}^{2}M{}^{2}L$ moiety, as in the conversion of organocoppers² to lower order, (R₂CuLi),^{2,4} or higher order, (R₂Cu(CN)Li₂),^{2,7,8} cuprates. *Ate* formation is also responsible for increasing the nucleophilicity of carbon-metal adducts during the conversion of organoboron and organoaluminum compounds into organoborates⁶⁶ and organoaluminates.⁶⁷ It can also suppress undesirable electrophilicity of the ${}^{2}M$ center, such as the B and Al atoms of organoboranes and organoalanes, respectively.¹

Alternatively, transmetallation can result from dissociation of the bridged species **76** into two new coordinatively unsaturated species.^{1,68} This is a very general process in organometallic chemistry.

Finally, polarization⁶⁹ within 76 through three-center-two-electron bridging of the two metal centers can occur as shown in 78. The 2 M center in 78 is both coordinatively unsaturated and positively charged. Such metal centers are more electrophilic than in the unpolarized monomer.

Since the types of species (73 and 75) expected to be produced in Scheme 31 were logical intermediates in the cuprous ion catalyzed reaction of stannyl and silyl metalloids with 1-alkynes, we adopted the reaction in Scheme 35 as a test of the aforementioned strategy of *in situ* activation.

109

Cu(I) MEDIATED METALLOMETALLATION OF 1-ALKYNES

The first synthetically useful metallometallations of 1-alkynes were those involving the addition of the stannylcopper reagent 49 to 1-alkynes (Scheme 36).28c,30e-h

Scheme 36

These reactions give products possessing the regiochemistry shown in 83 almost entirely devoid of 84.³⁰g The presumptive initial adducts (81 and 82) were reported to require consumption of the vinyl-copper center by *in situ* protonolysis, presumably to overcome an unfavorable adduct \rightarrow alkyne equilibrium.^{28a,30}g Attempted capture of the intermediate vinyl-copper compounds with electrophiles other than proton was unsuccessful.³⁰e-h

Parallel with the development of stannylcupration, addition of silylcuprates (28) to 1-alkynes was investigated (Scheme 37).^{30a-d} In the resulting adducts (85 and 86) subsequent capture of the vinyl-copper bond with both proton and carbon electrophiles was achieved and yielded vinyl silanes (36 >> 37) possessing regiochemistry opposite to that observed in the case of stannylcuprations.^{30a-d}

Regiochemical control is a challenge because additions of Si-Cu and Sn-Cu reagents to 1-alkynes are reversible.^{28a,30g} Thus, the first step in Schemes 36 and 37 is reported to be thermodynamically unfavourable, and the stannylcupration (Scheme 36) is reported to proceed to completion only when an alcohol is present *in situ* to hydrolyze the vinyl carbon-copper bond in the intermediate **81**.^{30g} Assuming a reversible reaction, the regiochemistry in metallocupration reactions would probably be dictated by the greater ease of protodecupration of **81** and **85** than of its regioisomer **82** and **86** respectively. Thus, other factors must be at work to explain why stannylcupration yields 2-stannylated alkenes (**83**) form 1-alkynes whereas silylcupration yields 1-silylalkenes (**36**).

Metallometallation of 1-alkynes has been developed as an extention of stannyland silvlcuprations of 1-alkynes (Scheme 38, shown for stannylmetallation only). Such reactions have been sucessfully extended to bimetallic reagents derived from Sn-Al,48b,c,70 Sn-Mg,70 Sn-Zn,70 Sn-Mn,71 Sn-B,48a,72 Sn-Si,73 Sn-Sn,74 Si-Al,75 Si-Mg, 75 Si-Zn, 75, 76 Si-Si 77 and Si-Mn. 71, 78 Additions are very slow without added catalysts; Cu(I) and Pd(0) complexes have emerged as the most effective catalysts in terms of yields and regiochemical bias. In the case of Cu(I) catalysis one can postulate 79a and 87a as the initial adducts. For Cu⁺ to behave as a catalyst, subsequent reaction of the vinyl carbon-copper bonds in 79a and 87a must occur to give the products (79b and 87b, respectively) of transmetallation by $M(R)_n$. The reactivities of these final adducts (79b and 87b) require electrophilic consumption of the more reactive organometallic center prior to isolation and yield 88 and 89 respectively. Reaction of the second vinyl organometallic center with an electrophile commonly involves electrophilic addition in case of silicon⁷⁹ or transmetallation in case of tin.⁸⁰ Thus, the utility of metallometallation lies in the simultaneous generation of two stereo- and regiodefined vinyl organometallics of differential reactivity.

Several problems beset the stannyl and silylmetallations of 1-alkynes shown in Table III. Reactions utilizing reagents wherein $M(R)_n = A1,70,75 Mg70,75$ and $Zn^{74,75,76}$ are reported to require a three fold excess of reagent to achieve high alkyne consumption. The use of excess reagent leads to the formation of by-products which are

	Reagent	Catalyst	Conditions	%vield	88a	<u>89a</u>
1	Bu3SnAlEt2	CuCN	THF, 0°C	87	62	38
2	Bu3SnMgMe	CuCN	THF, 0°C	70	30	70
3	(Bu3Sn)2Zn	Pd(PPh3)4	THF, 0°C	70	95	5
4	(Bu3Sn)2Zn	Pd(PPh3)4	TMEDA,0°C	50	50	50
5	(Bu3Sn)2Zn	CuCN	TMEDA,0°C	83	83	17
6	Bu3SnBEt3Li	CuCN	THF, 0°C MeOH	40	35	65
7	Me3SnSiMe3	Pd(PPh3)4	60-70°C 48h	65	90	10
8	Me ₃ SnSnMe ₃	Pd(PPh3)4	85°C	29	NA	
9	Me3SnSnMe3	Pd(PPh3)4	THF, 25°C	82	NA	
10	PhMe ₂ SiAlEt ₂	RhCl(PPh3)3	THF, 0°C	70	9	91
11	PhMe ₂ SiMgMe	CuI	THF, 0°C	86	· 1	99
12	PhMe2SiBEt3Li	CuCN	THF, 0°C MeOH	89	39	61
13	(Me3Si)3MnMgMe		THF, 0°C	66	33	67
14	Ph3SiZnEt2Li	CuI	THF, 25°C	90	-	100
15	PhMe ₂ SiZn ^t Bu ₂ Li	CuCN	THF, 25°C	92	99	1
16	(PhMe2Si)2Zn	RuCl ₂ (PPh ₃) ₂	THF, 0°C	75	80	20

.

 Table III. Addition of Silyl- or Stannylmetalloids to 1-alkynes.

not easily separated from the vinylsilane^{30a,c,46} or stannane⁴⁸ products. Regiospecificity is high for some stannylmetallations (Scheme 38, Table III) **88a/89a**, Sn-Zn⁷⁰ (95/5), Sn-Si⁷³ (90/10) but low for others Sn-Al⁷⁰ (62/38), Sn-Mg⁷⁰ (30/70), and Sn-B⁷² (35/65). Only for the Sn-Zn and Sn-Si cases is the regiochemical bias synthetically useful. Control of regiochemistry in the addition of R₃Si-M(R)_n and R₃Sn-M(R)_n reagents to 1-alkynes is a goal that has been pursued only for silicon-zinc reagents. Nozaki and co-workers⁷⁵ reported that the Cu⁺ catalyzed addition of Ph₃SiZnEt₂Li to 1-alkynes gave only regioisomer **89a**. A related reagent⁷⁶ possessing larger zinc alkyl groups, PhMe₂SiZn^tBu₂Li, added to 1-alkynes to give almost exclusively (>99:1) the alternate regioisomer, **88a**.⁷⁶

Proposed work

It is proposed to study the scope and mechanism of copper catalyzed addition of stannyl and silylmetalloids to 1-alkynes with an aim to:

i) determine if metallocuprates containing electrophilic cationic metals are activated towards electrophilic consumption of the vinyl copper bond in the expected adducts.

ii) achieving regiochemical control.

iii) determining the synthetic potential and utility of the expected vinyl metal bonds in the adducts.

iv) determine the compatibility of metallometallations with polar functional groups.

Applications of the developed chemistry to the synthesis of pheromomes.

115

Effect of Method of Preparation of Trialkylstannylithium on the Efficiency of Stannylalumination and Stannylboronation

Capture of R₃SnLi by methyl iodide provided a facile assay of the efficiency of R₃SnLi preparation (Table IV). Reaction of Bu₃SnH⁸¹ with LDA (entry 5)^{49a} at low temperature and reaction of Me₃SnSnMe₃ with MeLi (entry 6) were clearly the most efficient.^{30d}

Entry	Peactants and Conditions	% vield of	By-Products(% vield)
Endy	Reactants and Conditions		By-Fronteis(% yield).
		R ₃ SnMe	
1	SnCl ₂ , 3BuLi,	33	Bu4Sn (45%),
	THF, 0°C, 15min.		Bu3SnCl (15%).
2	Bu3SnCl, Li (wire)	48	Bu ₆ Sn ₂ (30%),
	THF, 0°C, 24h.		Bu4Sn (30%), Bu3SnCl (4%).
3	Me3SnCl, Li (dis)	70	Me6Sn2 (30%).
	THF, 0°C, 8h.		
4	Bu3SnH, BuLi,	4	Bu4Sn.
	THF, 0°C, 15min.		
5	Bu3SnH, LDA,	90	Bu ₆ Sn ₂ (8%).
	THF, -30°C, 15min.		
6	Me3SnSnMe3, MeLi	80	
	-40°C, THF, 20min.	,	

Table IV. Efficiency of Production of R3SnLi Observed Upon Quenching with MeI

Reaction of Bu₃SnLi with Et₂AlCl in THF gave solutions of Bu₃SnAlEt₂ (90) which, in the presence of Cu⁺ salts, reacted with 1-decyne (91) to give, after protonolysis, the vinyl stannanes 92a and 93a (Scheme 39, Table V). *In situ* addition of a proton source was not necessary to achieve high conversion of alkyne to product in these reactions. Indeed, the more efficient the reaction yielding Bu₃SnLi, the more efficient the subsequent stannylalumination of 1-decyne (Table V, compare entries 1 and 2; 3 and 4; and 5 and 6). Vinyl stannanes (92a and 93a) were separated by preparative gas chromatography and their structures deduced by ¹H, ¹³C and ¹¹⁹Sn NMR

Scheme 39

spectroscopy as well as GC-MS. Evidence for the structure and stereochemistry of 92a and 93a was provided by the magnitude of the coupling constants (${}^{3}J_{\text{Sn-H}} \sim 140$ Hz for 92a and ~ 70 Hz for 93a) between the 117 Sn and 119 Sn isotopes and 1 H. These values are typical of vinyl stannanes having trialkylstannyl groups *trans* and *cis*, respectively to vinyl hydrogens. 50 *Cis* addition to the alkyne was confirmed by the disappearance of the high field 70 vinyl hydrogen signal in the 1 H NMR spectrum of 92b when the reaction of 90 (Bu₃SnAlEt₂) with 91 (1-decyne) was quenched with 2 HCl. Regioisomer 93a was prepared independently by hydroalumination 67 of 91 with DIBALH, transmetallation (*n*-BuLi) and reaction of the alkenylalanate with Bu₃SnCl (Scheme 39). Proton magnetic resonance and mass spectra as well as the gas chromatographic retention time of this sample were indistinguishable from those of 93a obtained by metallometallation (Scheme 39).

Effect of Catalyst on Stannylalumination

Use of Pd°, Pd²⁺ or Cu⁺ complexes as catalysts resulted in efficient addition of $Bu_3SnAlEt_2$ (90) to 1-decyne, 91 (Table V). Addition of 91 to THF solutions of 90 at -30°C in the presence of Cu⁺ salts resulted in high yields of vinyl stannanes 92a and 93a with a synthetically useful regiochemical bias favoring 92a. Use of CuCN gave higher yields and higher regiochemical bias than CuBr-Me₂S (Table V, compare entry 2 with 8). Regioisomer 93a was favored (90:10) when CuI was used as the catalyst (compare entry 2 with 4). Catalysts based on Pd° generally gave mixtures of 92a and 93a which were rich in 93a (Table V, entries 5-7). Yields and regiochemical bias were lower for palladium catalysts than for CuCN.

							Bu ₄ Sn Bu ₆ Sn ₂			
Entry	Bu3SnM(R) _n	Bu ₃ SnM(R) _r Alkyne	n Catalyst (solvent)	Temp	92a	93a	%yield 92a (alkyne unr	+93a eacted)	1	
1	Bu3SnAlEt2 ^b	3:1	CuCN(THF)	-30°C	81	19	85(15)	52	8	
2	Bu3SnAlEt2 ^C	3:1	CuCN(THF)	-30°C	91	9	quant.	6	41	
3	Bu3SnAlEt2 ^b	3:1	CuI(THF)	-30°C	19	81	21(58)	50	7	
4	Bu3SnAlEt2 ^C	3:1	Cul(THF)	-30°C	10	90	51(22)	12	23	
5	Bu3SnAlEt2 ^b	3:1	Pd(PPh3)4 (THF)	0°C	35	65	36(28)	38	14	
6	Bu3SnAlEt2 ^C	3:1	Pd(PPh3)4 (THF)	0°C	15	85	44(21)	17	33	
7	Bu3SnAlEt2 ^C	3:1	Pd(PPh3)2Cl2 2DIBALH (THF)	-30°C	35	65	59 (11)	15	17	
8	Bu3SnAlEt2 ^C	3:1	CuBr.Me ₂ S (THF)	-30°C	85	15	32(28)	12	31	
9	Bu3SnAlEt2 ^b	3:1	CuCN(HMPA)	0°C	6	9 4	45(51)	45	1	
10	Bu3SnAlEt2 ^C	3:1	CuCN(HMPA)	0°C	6	94	56(18)	22	37	
11	Bu3SnAlEt2 ^C	2:1	CuCN(THF)	-30°C	90	10	90(7)	11	28	
12	Bu3SnAlEt2 ^C	2:1 (inv)	CuCN(THF)	-30°C	76	24	57(24)	3	52	
13	Bu3SnAlEt2 ^C	1:1	CuCN(THF)	-30°C	92	8	31(53)	28	8	
14	Bu3SnAlEt2 ^C	1:1 (inv)	CuCN(THF)	-30°C	80	20	11(82)	0	48	
15	Bu3SnAlEt2 ^d	1:1.2	CuCN(THF)	-30°C	87	13	59(5)	15	15	
16	Bu3SnAlEt2 ^d	1:1.2 (inv)	CuCN(THF)	-30°C	90	10	21(43)	17	18	

Table V. Addition of Bu3SnAlEt2 to 1-Decyne.^a

^aSee Scheme 39 for numbering. ^bBu₃SnLi prepared from SnCl₂ and BuLi. ^cBu₃SnLi prepared from Bu₃SnH and LDA. ^dHalf of the theoretical amount of alkyne was added, followed by CuCN (5 mol %), then the remaining amount of alkyne.

Effect of the Mode of Addition of Reagents on Stannylalumination and Stannylboronation

A solution of 91 was added to a cold (-30°C) THF solution of 90 followed by the Cu⁺ catalyst; it was then quenched with 1M HCl. This solution yielded vinyl stannane products (92a >> 93a) of higher regiochemical purity than when the reaction was conducted by adding solutions of 90 to 91 (Table V, compare entry 11 with 12, 13 with 14, and 15 with 16). When the alkyne was added in one portion to the organometallic reagent it was necessary to use excess tin reagent to achieve high alkyne consumption (Table V, entries 2, 11 and 13). The excess reagent was eventually converted to hexaalkylditin and tetraalkyltin. Slow addition of alkyne to 1.2 equivalents of 90 at -30°C resulted in high alkyne consumption and minimal formation of hexabutylditin (Table V, entry 16). Excess 1-alkyne can presumably provide a proton, which can react with the intermediate generated. Normant has recently shown that slow addition of 1-alkynes to organometallics at low temperature improved yields of carbocupration reactions.⁸²

Similarly, copper (I) catalyzed addition of [(Bu3Sn-9-BBN•OMe)Li⁺] (94) to 1-nonyne (95), followed by quenching with 1M HCl yielded vinyl stannanes (96a and 97a) with high regiochemical bias (Scheme 40) in favour of 96a. Use of ²HCl as the quenching agent gave high yields of 96b, confirming the *syn* mode of addition of 94 to the alkyne (95). Use of CuBr•Me₂S gave higher yields and higher regiochemical bias than CuCN. Regioisomer 97a was favoured (60:40) when phenyl acetylene was used as the alkyne. As observed for stannylalumination (*vide supra*) yields and regiochemical bias were lower for palladium catalysts than for CuBr•Me₂S.

Scheme 40

Effect of Solvent on Stannylalumination and Stannylboronation

Addition of polar aprotic solvents such as dimethylformamide (DMF) or dimethylsulphoxide (DMSO) had no effect on the course of Cu(I) catalyzed stannylalumination. Addition of HMPA, surprisingly, reversed the regiochemistry of the reaction. The latter reactions were conducted by adding HMPA to cold THF solutions of Bu₃SnLi followed by addition of Et₂AlCl, 1-decyne (91) and CuCN. After consumption of 91 ceased the reaction was quenched with 1M HCl to yield vinyl stannane 93a (Scheme 39) as the major regioisomer (94:6) (Table V, compare entry 1 with 9 and 2 with 10).

Compatibility of Polar Functional Groups with Stannylalumination and Stannylboronation

That stannylalumination and stannylboronation are compatible with polar functional groups was shown by the efficient reaction of Bu₃SnAlEt₂ (**90**) and [(Bu₃Sn-9-BBN•OMe)⁻Li⁺] (**94**) with 5-hexyne-1-ol (**98a**), 5-hexyne-1-acetate (**98b**), 1-(tetrahydro-pyranyloxy)-5-hexyne (**98c**), 1-bromo-5-hexyne (**98d**) and 1-cyano-5hexyne (**98e**) in the presence of Cu(I) catalysis to yield vinyl stannanes **99a - e** (Scheme 41). In case of 1-bromo-5-hexyne, a product arising from intramolecular cyclization resulting from the formation of the other regioisomer was also obtained. The only other tin containing product in these reactions were hexabutylditin which was easily separated

X(CH₂)₄
$$\rightarrow$$
 = + Bu₃SnM(R)_n
98
a, X = OH
b, X = OAc
c, X = OTHP
d, X = Br
e, X = CN
X(CH₂)₄ \rightarrow H
Bu₃Sn E
99 E = H
100 E = CH₂CH=CH₂
99a, (84%) 100a, (57%)
99b, (87%) 100b, (73%)
99c, (75%) 100c, (62%)
99d, (56%) 100d, (53%)
99e, (81%) 100e, (78%)

by chromatography on silica. Furthermore, *in situ* protonolysis of the presumptive 1,2dimetallo adduct, **79a** or **87a** (Scheme 38) is not necessary to achieve high consumption of alkyne if a reactive coupling reagent is added to the reaction.⁸³ Thus, addition of **94** to the functionalized alkynes (**98a-e**) with CuBr•Me₂S as the catalyst, followed by the addition of one equivalent of CuBr•Me₂S as the coupling agent and allyl bromide as the electrophile,⁸³ gave decent yields of **100a-e** with only minor contamination of the other regioisomer thereby making the entire process extremely versatile (Scheme 41).

Reactions of 1,2-cis-Dimetallo-1-Alkenes with Electrophiles.

The dimetallic adducts generated in the reaction of Bu3SnAlEt2 (90) with 91 underwent either transmetallation with *n*-BuLi or Pd(0) catalyzed cross-coupling reactions exclusively at the vinyl-aluminum bond (Scheme 39). For instance, stannylalumination of 1-decyne catalyzed by CuCN, followed by transmetallation of the vinylalane moiety with *n*-BuLi resulted in the intermediate alanate. Reaction of the alanate with excess allyl bromide⁸⁴ in THF or methyl iodide in HMPA gave good yields of 92c and mixtures of 92d and 93d, respectively. Addition of 3 mole% of Pd(PPh3)₂Cl₂-2.0 DIBALH (diisobutyl aluminum hydride)⁸⁵ to the adduct derived from the addition of 90 to 91 under CuCN catalysis followed by addition of allyl bromide, benzyl bromide or iodobenzene⁸⁶ gave excellent yields of 92c, 92e or 92f in high stereo- and regiochemical purity (Scheme 39).

Likewise, addition of 1-nonyne (95) to cold THF solutions of [(Bu₃Sn-9-BBN•OMe)⁻Li⁺] (94) followed by CuBr•Me₂S and use of allyl bromide^{87a} and ethyl vinyl ketone in the presence of BF₃•Et₂O (1.0 equivalent) as the electrophile gave

123

modest yields of **96c** and **96d** respectively (Scheme 40). Addition of the mixture resulting from reaction of **94** and **95** to a solution of 5 mole% of Pd(PPh₃)₄ and allyl bromide,^{87b} benzyl bromide,^{87c} iodobenzene^{87d} as the electrophiles and NaOMe as the base gave **96c**, **e-f** respectively in high regio and stereochemical purity (Scheme 40). No products arising from cross-coupling reactions of vinylstannane were observed.

Synthesis of Trisubstituted Alkenes.

Vinylstannanes 92c, 92d and 93d were further reacted with electrophiles under transmetallation conditions to afford olefins 101a - i (Schemes 42 and 43). In each case the reactions resulted in cross-coupled products derived from retention of configuration with respect to the vinyl-tin bond. In the case of 92c (Scheme 42), reaction with I₂ in CH₂Cl₂ smoothly produced the vinyliodide, 101a, which underwent facile metal-halogen exchange with excess *n*-BuLi.⁸⁸ Addition of Me₃SiCl gave 101b in good yield

Scheme 42
whereas quenching the reaction with ${}^{2}\text{H}_{2}\text{O}$ gave an excellent yield of 101c. Olefin 101b was also synthesized in moderate yield by treatment of 92c with *n*-BuLi / TMEDA^{73b} followed by trapping of the vinyl anion with Me₃SiCl. The low yield of product in this reaction is attributed to poor transmetallation due to steric congestion of the tributylstannyl group.^{73,89}

Oxidative addition of either benzyl bromide or allyl bromide at Pd(Ph₃P)₄ followed by coupling with vinylstannane 92d (Scheme 43) in refluxing THF gave excellent yields of 101d and 101e, respectively.⁹⁰ The vinyl stannane 93d also underwent facile coupling with (E)-1-iodo-hexene (101f) under Pd(0) catalysis to yield stereochemically pure 1,3-diene, 101g.⁹¹ Palladium catalyzed cross-coupling of

Pd(Ph₃P)₂ prepared from reaction of Pd(Ph₃P)₂Cl₂ with two equiv. of DIBALH

Scheme 43

the iodide derived from 93d with 1-hexynl-*n*-tributylstannane (101h) cleanly gave stereo-defined 1,3-enyne, 101i.⁹² The rate of the coupling reaction was sensitive to catalyst. High ratios of phosphine ligand to palladium slowed the reaction.⁹² Hence, the coordinatively unsaturated Pd(0) catalyst derived from reduction of (Ph₃P)₂PdCl₂ with 2.0 equivalents of DIBALH⁸⁵ was used for cross-coupling reactions during the synthesis of 101g and 101i.

Synthesis of the pheromone of the Square-Necked grain beetle

The square-necked grain beetle, *Cathartus quadricollis*, is a cosmopoliton pest of stored grain products. In North America this shiny, reddish-brown beetle is abundant chiefly in the Southern United States and infests a variety of stored commodities such as corn and peanuts. The beetle is also found in the wild and attacks a large variety of plant seed pods. In morphology and habit, *C. quadricollis* is similar to other grain-infesting beetles of the genera *Cryptolestes* and *Oryzaephilis* but is larger and strong flyer.⁹³ The major differences between *C. quadricollis* and the other cucujids studied to date is that the aggregation pheromone of this species appears to be a single component, and is assigned the structure 7-methyl-(6E)-nonen-3-yl acetate (102, Scheme 44).⁹⁴ It was envisioned that addition of bimetallic reagents to 1-butyne followed by sequential quenching of the vinylbimetallic adduct with MeI and ethyl vinyl ketone should result in the formation of the keto- intermediate in a single step. Reduction followed by acetylation would give the desired product of correct stereo and regiochemistry.

Thus, addition of PhMe₂Si(Me)Cu(CN)Li₂ (43) to 1-butyne (103) followed by electrophilic capture of the vinylsilyl-copper intermediate with MeI in HMPA/THF resulted in the formation of 104.^{46a} Iodonation-transmetallation⁷⁹ followed by

conversion of the vinyllithium to the vinylcopper species and addition to ethyl vinyl ketone yielded the ketone which was reduced to the alcohol and then to the pheromone (102, Scheme 44) in two steps in overall yield of 53%. The same precursor was also synthesized from the addition of 94 to 1-butyne followed by addition of ethyl vinyl ketone in the presence of BF3•Et2O. Transmetallation of the vinylstannane and subsequent coupling with MeI completed this sequence.

Mechanistic Studies

In the previous section, it was demonstrated that under Cu(I) catalysis bimetallic reagents derived from Sn or Si add efficiently to 1-alkynes. These additions yield organometallics that contain two carbon-metal bonds of differential reactivity. The chemistry ensuing from this methodology has yielded powerful new methods for

stereospecific synthesis of trisubstituted olefins under mild conditions and in the presence of polar functional groups.⁴⁸ Although regiochemical control of metallometallations was possible, the mechanistic features of this reaction are not fully understood.

In this section we describe chemical and spectroscopic studies aimed at elucidation of the mechanism of the addition of trialkylstannyl- and silylmetalloids to 1-alkynes. Specifically, we examined the 2 H, 7 Li, 11 B, 13 C, 29 Si and 119 Sn NMR spectra of species generated in solution when trimethylstannyl or dimethylphenylsilyl lithium were reacted with salts of electrophilic aluminum or boron and finally with $^{1-2}$ H-octyne.

Results and discussion

The formation of hexabutylditin and tetrabutyltin as side products as well as the incomplete consumption of 1-alkyne even with three equivalents of Bu₃SnAlEt₂ (90) and [(Bu₃Sn-9-BBN•OMe)⁻Li⁺] (94) suggested that stannylalumination and stannylboronation were competing with other processes. The mechanistic possibilities shown in Scheme 45, **a-h**, (shown for Bu₃SnAlEt₂) illustrate the wide variety of processes that have literature precedant in related systems.

The reversibility of process a was investigated by conducting the addition of 90 and 91 using an equimolar ratio of reactants and allowing the reaction to proceed until no further consumption of alkyne was observed. At this point an equivalent amount of $1-^{2}H-91$ was added and the reaction allowed to proceed for a time equivalent to that for the initial reaction. Protolytic work-up of the reaction followed by analysis of the vinylstannane adducts by ^{1}H NMR and GC-MS revealed no ^{2}H incorporation in either vinyl stannane (92 and 93). These results suggest that the addition of 91 to 90 is not

reversible under these reaction conditions (i.e., 105a and 106a are not converted to 90 and 91).

Process **b** was shown to be inoperative by conducting the reaction of **90** with $1-^{2}H-91$ in the presence of CuCN followed by protolytic workup and examination of the ^{2}H content of unreacted **91**. No dimunition of ^{2}H in **91** was observed in this experiment. Thus, Bu₃SnAlEt₂ (**90**) did not remove the C_1 hydrogen from **91**. This experiment also suggests that the conversion of **105a** and **106a** to C₈H₁₇C=CAlEt₂ (**107**) as shown in process **c**_b is not occurring. To check the forward process **c**_a reaction of Bu₃SnH (**58**) with **107** in the presence of Cu⁺¹ was examined. Recovery of only 1-decyne from this reaction suggests that process **c**_a is not operative.

To investigate if process **d** occurs, Bu3SnAlEt2 (90) was reacted with Bu3SnH (58). Without added catalyst no hexabutylditin was observed over 24 h. Metallometallations are normally complete in 3 h. When either CuCN, CuI, Pd(PPh3)₂Cl₂ or Pd(Ph₃P)₄ were added to THF solutions of Bu₃SnAlEt₂ (90) containing Bu₃SnH (58, process **d**_a) the only product detected (GC) was Bu₃SnSnBu₃. No hexabutylditin was obtained when copper catalysts were reacted with Bu₃SnH alone (process **e**) but reaction of Bu₃SnAlEt₂ (90) with CuI and Pd(Ph₃P)₄ gave hexabutylditin in 69 and 77% yield respectively. Thus, hexabutylditin can be formed by reaction of Bu₃SnAlEt₂ with catalyst in the absence of 1-alkyne. These results are consistent with formation of hexabutylditin *via* reductive elimination from a stannyl-alumino-cuprate as shown in process **f**. The formation of tetrabutyltin from decomposition of alkali stannides in the presence of hexabutylditin (process **g**) is a known process.⁹⁴

The possiblity that process h is taking place was examined by conducting the reaction of 107 (prepared from C₈H₁₇C=CLi and ClAlEt₂)with Bu₃SnAlEt₂ (90) in the presence of CuCN. No vinyl stannanes were obtained from quenching this reaction

after 24 h. An independent check of reaction h involved reaction of 90 (method b, Table IV) with 91 in a 1:1 molar ratio followed by quenching with ²HCl. Incorporation of only one ²H into each of the vinyl stannane products 92 and 93 (¹H NMR) ruled out the operation of this process.

In the case of Sn-Al reagents the preparative synthetic procedure which was found to give good yields of products involved addition of the trialkylstannyllithium and diethylaluminum chloride to the reaction solution prior to cuprous ion. Monitoring these solutions by ¹¹⁹Sn and ¹³C NMR (*vide infra*) revealed that reaction between Me₃SnLi and Et₂AlCl occurred prior to addition of the Cu⁺salt. The initial reagent is formulated as Me₃SnAlEt₂ (**54**), although cuprous ion is undoubtedly an integral part of the reactive species. The mechanism (Scheme 46) considered to be operative involves oxidative addition (a) of R₃SnAlR'₂ to CuCN to generate a three coordinate Cu(I) species. This is followed by insertion (b) of the alkyne, a step which does not involve a change in the oxidation state of copper. This, in turn, is followed by rearrangement (c) to a vinyltincuprate adduct with oxidation of the copper(I) to Cu(III) through addition (d) of a second equivalent of R₃SnAlR'₂. The next logical step is reductive elimination (e) of the vinyl-stannyl-aluminum adduct to regenerate the initial Cu(I) complex, thereby making the process catalytic.

In the case of CuBr catalyzed stannyl- or silylmetallations, the initial step involves transmetallation to yield a stannyl- or silylcopper reagent and metallic electrophile as shown in Scheme 47 (step a). Silyl- (38) and stannylcopper (49) reagents are highly reactive toward 1-alkynes due to the presence of an empty coordination site and the partial positive charge on copper (step b). Species polarized as in 38 or 49 would be expected to react with 1-alkynes to produce vinyl-silyl or stannylcopper adducts in which the silyl-

 $R_3SnAlR'_2 = Bu_3SnAlEt_2$ $R_3SnAlR'_2 = Mc_3SnAlEt_2$ S = Solvent

Scheme 46

or stannyl- group is attached to the more substituted center of the alkyne (step c). Transmetallation of the vinyl-copper bond by metallic electrophile (step d) generated *in*

situ followed by reductive elimination (step e) would result in the eventual production of 2-metallated-1-alkenes (Scheme 47).

Stannylalumination also proceeds well when diethylaluminum chloride is added to the reaction mixture after the trialkylstannate anion, Cu⁺ salt and alkyne (Scheme 48). In this case we consider the reaction to proceed *via* initial formation of the LO trialkylstannylcyanocuprate (48, a). Complexation of this species with alkyne (b) followed by rearrangement (c) to a vinyltin-cuprate adduct yields a Cu(I) species.

 $R_3Sn = Bu_3Sn$ $R_3Sn = Me_3Sn$ S = Solvent

Scheme 48

Reaction of this complex with diethylaluminum chloride (d) would give a Cu(III) species with an expected propensity for reductive elimination (e) to the catalytic Cu⁺ species and the vinyl-stannyl-aluminum adduct in which the silicon or the tin moiety is at more substituted end of alkyne. Indeed, quenching the vinylstannyl-copper or the vinylsilyl-copper adduct generated in the reaction of "R₃MCu" (M = Sn or Si, i.e., 26, 38 or 48, 49) with 1-nonyne by either MeOH, Et₂AlCl, Br-9-BBN led to the exclusive formation of 2-stannyl- or 2-silyated alkenes. A rationale for the observed mode of addition is provided by the electronic effects governing the transition state as shown in Schemes 47 and 48 (step c). Quantum mechanical and molecular orbital calculations have shown that the electron density distribution in case of 1-propyne⁹⁵ to be in the direction that one expects an anion to attack at the central carbon atom resulting in the formation of 2-metallated alkenes.

It can be envisioned that steric environment around the copper moiety can also dictate the regiochemistry in silyl- and stannylcuprations of 1-alkynes. The latter consideration is important was suggested by the observation that addition of highly coordinating solvent like HMPA to R₃Si(Cu)(CN)Li (26) resulted in the formation of the reverse regioisomer (i.e., 1-silyated alkene). That LO cuprates possess a sterically demanding Cu center has been suggested from our NMR studies on (26), R₃SiCu (38), R₃Sn(Cu)(CN)Li (48) and R₃SnCu (49). The ¹³C, ²⁹Si and ¹¹⁹Sn NMR spectra of these reagents consists of several broad lines indicative of oligomeric species in solution. In highly coordinating solvents like HMPA these cuprates tend to be less aggregated as seen by appearance of sharp signals in the ¹³C NMR spectra of 26 (Figure 18). According to this proposal the change in regioselectivity on the addition of HMPA to 26 and 1-octyne (Scheme 12) was due to deaggregation of this reagent in this solvent. Further support of this hypothesis comes from the exclusive formation of 1-silyated alkenes on the addition of (PhMe₂Si)₂Cu(CN)Li₂ (28) to 1-alkynes which was shown

alkenes on the addition of (PhMe₂Si)₂Cu(CN)Li₂ (**28**) to 1-alkynes which was shown to be less aggregated in THF. Thus, it is envisioned that the additions of mixed stannyl-(R₃Sn)Cu(R')(CN)Li₂ (**56**) or mixed silylcuprates (R₃Si)Cu(R')(CN)Li₂ (**43**) can result in the formation of either regioisomer depending upon the steric bulk of R'..

Regioselectivity in metallometallations is influenced by the catalyst employed as well as by the metals and steric bulk of the alkyl groups in the bismetalloid. According to Scheme 46, a change in regiochemistry in the cuprous ion catalyzed silyl- or stannylmetallations of 1-alkynes is due to a change in the regioselectivity in step c. The differences in electronegativities of the metalloid partners would be expected to give the bond connecting them some polar character and the direction of this polarity would be expected to be dictated by the nature of appended ligands (denoted ²M). The metalloids known to participate in stannylmetallations are B, Si, Cu, Zn, Al, Zr, and Mg (written in order of decreasing electronegativity). In the case of copper catalyzed stannylmetallations, tin should be more electronegative than copper associated with the attached metal (²M) in those cases where the latter is strongly electronegative. In cases where ²M is weakly electronegative it is possible that the copper would be more electron rich and the polarity of the tin-copper bond could reverse (Scheme 49).

According to this proposal, it is envisioned that the metal partners of tin with low electronegativity (Mg, Zr, Al) will be better donors to the copper center in the proposed addition complex (Step c, Scheme 46) and that this will enhance addition in the reverse mode (Mg > Zr > Al). For those metals less electronegative than copper this trend certainly seems evident. Additions of stannylaluminum reagents give normal regiochemistry while addition of stannylmagnesium reagents proceed with reverse regiochemistry.⁷⁰ It is expected that at low temperature Sn-Zr will give good regioslectivity in favor of reverse addition. Also, bulky⁷⁴ ligands on ²M should result in the opposite regioisomer **93a**. On the other hand, metalloids with high electronegativity

(Zn, Si, B) will act to enhance addition in the normal mode (B > Si > Zn). The Sn-Zn, 70 Sn-Si 73 and Sn-B 72 additions are reported to give excellent regioselectivity in favor of the normal addition product **92a** (i.e., 2-stannyl-1-alkenes).

Reversal of regioselectivity of stannylaluminations in the presence of HMPA would, in this proposal, be attributable to its ability to efficiently complex ²M, thus, accentuating the negative charge on copper and favoring generation of the regioisomer **93a** (1-stannyl-1-alkenes). **93a** can also result from the addition of less aggregated trialkylstannylcopper species to 1-alkynes.

Thus, it is possible to envision a change in regiochemistry for stannylalumination in the presence of HMPA or bulky ligands without requiring either stannyl- or silylcupration or subsequent steps to be reversible.

$$\begin{bmatrix} \delta & \delta^{\dagger} \\ HC \equiv C \cdot R \\ \delta^{\dagger} & \delta \\ R_{3}Sn - Cu \xrightarrow{2}M \\ CN \end{bmatrix}^{-1} \xrightarrow{2}{} \begin{bmatrix} \delta^{\dagger} & \delta \\ R \cdot C \equiv CH \\ \delta^{\dagger} & \delta^{\dagger} \\ R_{3}Sn - Cu \xrightarrow{2}M \\ CN \end{bmatrix}^{-1} \xrightarrow{2}{} \begin{bmatrix} \delta^{\dagger} & \delta \\ R \cdot C \equiv CH \\ \delta^{\dagger} & \delta^{\dagger} \\ R_{3}Sn - Cu \xrightarrow{2}M \\ CN \end{bmatrix}^{-1} \xrightarrow{2}{} \begin{bmatrix} \delta^{\dagger} & \delta \\ R \cdot C \equiv CH \\ \delta^{\dagger} & \delta^{\dagger} \\ R_{3}Sn - Cu \xrightarrow{2}M \\ CN \end{bmatrix}^{-1}$$

Scheme 49

Spectroscopic studies

Metallometallations are usually conducted by addition of 1-alkyne to the preformed bimetallic reagent, followed by addition of cuprous salt. This sequence of

reagent addition prevents formation of dimer by-products which can arise if the cuprous salt is added to the bimetallic reagents prior to alkyne. Since stannyl- or silylmetalloids do not react with alkynes without the Cu(I) catalyst, it was envisioned that the Sn-Cumetalloid sequence of addition would generate the same species as those involving the Sn-metalloid-Cu sequence of addition. Thus, both sequences would result in the *in situ* generation of stannyl- or silylcuprates from stannyl- or silylmetalloids as shown in Scheme 31.

The ¹³C NMR spectra of solutions resulting from the reaction of Et₂AlCl with Me3SnLi (47) at -70°C in THF exhibited a singlet at -7.5 ppm due to the methyl carbons bound to tin in Me3SnAlEt2 (54) alongwith a singlet for Me4Sn at -9.3 ppm (Me3SnLi was prepared from the cleavage of Me₆Sn₂ with MeLi, Figure 37a). The ¹¹⁹Sn NMR spectra of this solution revealed a broad signal for Me₃SnAlEt₂ (54) at -126 ppm with respect to Me4Sn (0.0 ppm, an internal reference). This signal broadening may be attributed to the coupling of tin to quadrupolar aluminum. The ⁷Li NMR exhibited a sharp signal at 0.0 ppm implying the formation of LiCl in these solutions. Addition of a THF solution of CuCN•2LiCl (1.0 equivalent) to 54 resulted in the formation of a new species exhibiting a broad ¹³C signal at -4.5 ppm (Figure 37b). The chemical shift of this signal corresponded to that obtained earlier for the solutions generated by mixture of equimolar amounts of Me3SnLi (47) and CuCN•2LiCl (Figure 33b). More remarkable was the obsevation that admixture of equimolar ratios of Me3SnCu(CN)Li (48) and Et2AlCl (Figure 37c) resulted in the same chemical shifts as obtained earlier (Figure 37b). Similarly, the ¹¹⁹Sn NMR chemical shifts from both the reagent combinations [i.e., Me₃SnCu(CN)Li (48, δ -150 ppm)-Et₂AlCl and Me₃SnAlEt₂ (54, δ -126)-CuCN-2LiCl were identical indicating that same species (Me₃SnCu(CN)AlEt₂, δ -156, step a in Scheme 46] is obtained when the ratio of stannyl anion to copper cation and aluminum cation is 1:1:1.

Figure 37. ¹³C NMR spectra of (a) Me₃SnAlEt₂ (b) Me₃SnAlEt₂ + CuCN (c) Me₃SnCu(CN)Li + Et₂AlCl; the spectra were run at -70°C.

Addition of 1-²H-octyne to the clear solution of Me₃SnAlEt₂ (54) followed by CuCN (step **b**, Scheme 46) resulted in the formation of a wine red solution that exhibited a ¹¹⁹Sn NMR signal at -50.0 ppm. This signal is very close to the one obtained for the vinyl-tin (δ -53.0) in species **79a** (Scheme 38, where M(R)_n = Li, *vide infra*). The ²H NMR exhibited a broad signal at 4.1 ppm indicating the formation of a vinylic carbon. Addition of a further equivalent of Me₃SnAlEt₂ (54, step d, Scheme 46) resulted in the appearance of a new vinyl ²H peak at 7.2 ppm which we attribute to the vinytinaluminum adduct, **79b** (step **e**, Scheme 46).

We next focussed attention on addition of stannylcuprate (48) to 1-alkynes. The ¹¹⁹Sn NMR spectra of solutions generated from the addition of one equivalent of Me₃SnCu(CN)Li (48, δ -151, step a, Scheme 48) to 1-²H-octyne (step b, Scheme 48) at -50°C resulted in the appearance of signals for a vinyltin-copper adduct at -53.0 ppm. The ²H signal of the 1-²H-octyne (1.45 ppm) shifted to 4.1 ppm. Addition of one equivalent of Et₂AlCl (step d, Scheme 48) resulted in a downfield shift of the ²H signal to 7.1 ppm (Figure 38). It should be recalled that this signal has the same chemical shift as that obtained by the addition of 54 to 1-²H-octyne followed by CuCN (*vide supra*). These NMR results cogently attest to the involvement of a vinylstannyl-copper species such as 79a that are converted to a species formulated as 79b (Scheme 38 or step e, Schemes 46 and 48).

The unusual upfield shift of the vinyl-²H (vinyl protons generally absorb around 6-7 ppm) obtained for vinyltin-copper species (**79a**, Scheme 38 and also shown in step **c**, Schemes 46 and 48) can be understood in terms of changes in the π electron density at carbon due to metal-alkyne coordination. According to the Dewar-Chatt-Duncanson model,⁹⁶ metal coordination to an alkyne should result in net shielding of the vinyl carbon ¹³C and ¹H chemical shifts as a result of perturbation due to π -backbonding.⁹⁷ This may be attributed to an increase in electron density. On the other hand, perturbation

due to σ -bonding should result in net deshielding of the chemical shifts of the attendent carbon and proton due to a decrease in electron density. Appearance of the vinyl-²H signal at around 4 ppm during addition of stannylcopper (48 and 49) and silylcopper (26, 27 and 28) to 1-alkynes (similar upfield shifts at δ 3.3 were obtained) suggests that π -back bonding is more dominant in the alkyne complexes of Cu^I. This may be attributed to the full d¹⁰ electron configuration of Cu(I) complexes which favours the transfer of electron density from the filled d orbitals of copper to the empty π *-orbitals of the alkyne. Addition of metallic electrophiles (e.g., Et₂AlCl or Br-9-BBN) should result

Figure 38. ²H NMR spectra of Me₃SnCu(CN)Li + 1^{-2} H-octyne + Et₂AlCl; the spectra were run at -70°C.

in the downfield shift of the vinyl-carbon as well as vinyl- 2 H due to transfer of electron density to the electron deficient metal.

Copper(I) catalyzed stannylboronation of 1-alkynes by low-temperature NMR spectroscopy (Scheme 50) was next studied. Reaction of equimolar ratios of Me3SnLi (47, δ ¹¹⁹Sn, -187.7) and 9-BBN•OMe (δ ¹¹B, 55.4) resulted in the formation of (Me3Sn-9-BBN•OMe)⁻Li⁺ (55). This species exhibited a broad ¹¹⁹Sn NMR signal at -109.5 ppm at -50°C due to the quadrupolar coupling caused by boron (¹⁰B, natural abundance: 19.58%, spin: 3; ¹¹B, natural abundance: 80.42, spin: 3/2).⁹⁸ Cooling the solution to -85°C resulted in considerable sharpening of the signal. The ¹¹B spectrum exhibited a broad signal at 2.3 ppm. This value is reported for boron compounds bound to four ligands. Addition of 1-²H-octyne to the preformed reagent, [(Me3Sn-9-BBN•OMe)⁻Li⁺] (55) followed by CuBr•Me2S resulted in the formation of the vinyltin-boron adduct as indicated by the appearance of vinyltin (¹¹⁹Sn, δ -50.7) and vinyl-²H NMR (5.7 ppm) signals attributable to this species.

The ¹¹⁹Sn NMR spectra obtained from the addition of 1-²H-octyne to Me₃SnCu (49, Figure 40a, step b, Scheme 47) exhibited a singlet at -59.0 ppm (figure 40b). This signal is attributed to the vinyltin-copper adduct, **79a** (Scheme 38, where $M(R)_n = Li$, step c, Scheme 47). The ²H NMR exhibited a broad signal at 6.1 ppm indicating the formation of a vinylic species (Figure 41a, Scheme 50). Remarkably, addition of an equivalent of Br-9-BBN (δ , ¹¹B, 84.0, step d, Scheme 49) followed by an equivalent of NaOMe resulted in the formation of the same intermediate which was obtained earlier for Cu(I) catalyzed stannylboration of 1-²H-octyne (Scheme 50).

Figure 39. ¹¹⁹Sn NMR of (a) Me₃SnCu (b) Me₃SnCu + 1-²H-octyne; the spectra were run at -50°C.

Figure 40. ²H NMR of (a) Me₃SnCu + 1-²H-octyne (b) Me₃SnCu + 1-²H-octyne + Br-9-BBN + NaOMe; the spectra were run at -70°C.

¹¹⁹Sn ($\delta = 0$, Me₄Sn), ¹¹B ($\delta = 0$, BF₃.Et₂O), and ²H NMR Spectra of Stannylboronation of 1-Alkynes

Conclusion

Thus, in conclusion copper (I) catalyzed metallometallation of 1-alkynes can be visualized as initial metallocuprations of 1-alkynes followed by transmetallation of the vinylmetallo-copper adduct by metallic electrophile generated *in situ* in the reaction mixture. These reactions are compatible with polar functional groups. *In situ* addition of a proton source is not necessary to achieve high conversion of alkyne as the 1,2-dimetallo-adducts generated can be easily captured by electrophiles.

EXPERIMENTAL

All glassware and syringes were dried in an oven overnight at 120°C, and glassware was flame dried under vacuum and flushed with argon immediately prior to use. Syringes were flushed with argon and kept under positive argon pressure while cooling until use. Transfer of reagents was performed by with syringes equipped with stainless steel needles. Reactions were carried out in three-necked round bottom flasks equipped with filtration units and teflon-coated magnetic stirring bars. Usual workup involved quenching of the reaction with 1N HCl, extraction of the organic layer with Et_2O (2 x 5 mL), back-washing the combined organic extracts with satd. NH4Cl (2 x 5 mL) and drying of the organic layer over anhydrous MgSO4.

Transfer of CuCN and CuBr•Me₂S took place in a glove bag. CuBr•Me₂S was purified by the method of House.^{99a} All alkyllithiums were freshly titrated before use.^{99b}

Tetrahydrofuran was freshly distilled over potassium benzophenone-ketyl. Hexamethylphosphoramide and diisopropylamine were distilled over calcium hydride and stored over activated 3 A molecular sieves. Unless otherwise stated, other chemicals obtained from commercial sources were used without further purification.

Low-temperature ¹¹⁹Sn NMR experiments were conducted on a Bruker WM-400 spectrometer with an operating frequency of 149.197 MHz. A typical set of parameters utilized a spectral width of 50000 Hz, 8K of memory, 11 Hz/data point, an acquisition time of 0.09 s and a 55° pulse of 35 μ s. The decoupler was turned on during acquisition and off during the relaxation delay (4 s) in order to supress the negative nOe of ¹¹⁹Sn. A

line broadening of 20 Hz was applied to all spectra. Spectra were recorded in THF that contained Me4Sn as internal reference.

Low-temperature ²⁹Si NMR experiments were conducted on a Bruker WM-400 spectrometer with an operating frequency of 79.495 MHz. A typical set of parameters utilized a spectral width of 20000 Hz, 8K of memory, 2.44 Hz/data point, an acquisition time of 0.204 s and a 15° pulse of 10 μ s. The decoupler was turned on during acquisition and off during the relaxation delay (4 s) in order to supress the negative nOe of ²⁹Si. A line broadening of 20 Hz was applied to all spectra. Spectra were recorded in THF that contained Me4Si as internal reference.

¹³C NMR spectra (> -30°C) were obtained on Bruker WM-400 spectrometer at a frequency of 100.61 MHz. Parameters for the ¹³C spectral acquisition typically involved a spectral width of 22000 Hz, 32K of memory, 1.32 Hz/data point, an acquisition time of 0.75 s and a 13.5° pulse of 9 μ s. The spectra were recorded in THF solutions unless otherwise specified and were referenced to THF, $\alpha = 26.0$ ppm, $\beta = 68.2$ ppm. Inverse-gated decoupling was employed.

¹³C NMR spectra were also obtained on Varian XL-300 spectrometer (run at temperatures < -30°C) with an operating frequency of 75.46 MHz. Parameters for the ¹³C spectral acquisition typically involved a spectral width of 15000 Hz, 32K of memory, an acquisition time of 0.4 s and a 60° pulse of 12 μ s. The spectra were recorded in THF solutions unless otherwise specified and were referenced to THF, α = 25.3 ppm, β = 67.41 ppm.

Low-temperature ⁷Li NMR spectra were obtained on a Varian XL-300 spectrometer with an operating frequency of 116.6 MHz with a sweep width of 20000 Hz, 16K of memory, 1.25 Hz/data point, an acquisition time of 0.4 s and a 55° pulse of 12 μ s.

A line broadening of 10 Hz was applied to all spectra. ⁷Li chemical shifts were referenced with respect to 0.5M LiCl/CD3OD (δ 0 ppm) in a capillary insert.

Low-temperature ¹H NMR spectra were recorded on a Varian XL-300 spectrometer in THF-d8 and were referenced to Me4Sn (δ 0). Low-temperature ¹¹B NMR spectra were recorded on a Bruker WM-400 spectrometer with BF3•Et2O (δ 0) as internal standard.

A vacuum-jacketed glass dewar measuring $7.5 \times 16.0 \text{ cm}$ (id 5.5 cm) was designed with tapering bottom to fit in the cup of the vortex mixer. All NMR samples were stirred while cooling at the indicated temperatures in this dewar.

¹H NMR and ¹¹⁹Sn spectra of isolated products were recorded on a Bruker WM-400 spectrometer in CDCl₃ with CHCl₃ (δ 7.25) and Me₄Sn (δ 0) respectively, as internal standards. The tin-proton coupling constants (JSn-H) are given as an average of the ¹¹⁷Sn and ¹¹⁹Sn values.

Gas chromatographic analyses utilized a Hewlett-Packard 5880A instrument equipped with a with a flame ionization detector and employing a J/W fused silica DB-1 capillary column (15 m x 0.25 mm), with a linear temperature gradient. The purity of all the title compounds was >95% as judged by gas chromatographic analysis with dodecane as an internal standard. Chromatographic purifications were carried out with E.M. Merck silica gel (60, particle size 0.040-0.063 mm). Low resolution mass spectra were obtained with an HP 5985B GC-MS system with electron-impact ionization at 70 ev while the high resolution mass spectra were obtained on a Kratos MS50 RFA mass spectrometer (University of British Columbia, regional facility). For compounds containing a Bu₃Sn group, molecular mass measurements are based on 120Sn and use the (M⁺- Bu) peak. Infrared (IR) spectra were recorded in THF solutions with Perkin-Elmer Model 283 spectrophotometer.

PREPARATION OF TRIALKYLSILYLCUPRATES

29Si NMR Sample Preparations

Preparation of PhMe₂SiLi (25) in THF: Dimethylphenylsilyl chloride (3.6 g, 21.0 mmol) was stirred with small pieces of lithium (0.450 g, 64.0 mmol) in THF (20 mL) at -5°C in an ice/salt bath.^{33a} Reaction was initiated by immersion of the reaction flask in a sonicator for 30 min and then stirred overnight at -5°C. Dimethylphenylsilyllithium was titrated according to the procedure of Fleming *et al.*^{27b}

Preparation of LiCl-Free PhMe₂SiLi (25) in THF: According to the procedure of Gilman,^{33a} to a solution of 1,2-diphenyl-1,1,2,2-tetramethyldisilane (prepared according to the procedure of Gilman^{33b}) (4.6 g, 17.0 mmol) in THF (10 mL) were added small pieces of lithium (24 mg, 34.0 mmol). The reaction was initiated in a sonicator bath for 30 min and then stirred overnight at -5°C. The resultant green solution gave a negative halogen test.

Preparation of PhMe2SiLi (25) in DMS: 1,2-Diphenyl-1,1,2,2tetramethyldisilane^{33b} (3.6 g, 21.0 mmol) was stirred with small pieces of lithium (0.450 g, 64.0 mmol) in THF (20 mL) at - 5°C in an ice/salt bath. The reaction was initiated by immersion of the reaction flask in a sonicator for 30 min and then stirred overnight at -5°C. THF was removed under vacuum and replaced with an equal volume of DMS. This procedure was repeated three times. Dimethylphenylsilyllithium was titrated according to the procedure of Fleming *et al.*^{27b}

Generation of Silylcuprates from CuCN

Preparation of PhMe2SiCu(CN)Li (26): CuCN (0.18 g, 2.0 mmol) was placed in a 10 mm NMR tube, equipped with an argon inlet. The tube was repeatedly (3x) evacuated and purged with argon. Me4Si (0.5 mL) was injected, the reaction was cooled to -50°C and dimethylphenylsilyllithium in THF (1.8 mL, 2.0 mmol) added dropwise. The solution was stirred on a vortex mixer at -50°C in a custom built dewar for 20 min. The NMR spectrum was then immediately recorded.

Preparation of (PhMe₂Si)₂Cu(CN)Li₂ (28): A THF solution of PhMe₂SiLi (25, 1.8 mL, 2.0 mmol) was added to a 10 mm NMR tube containing a THF solution of PhMe₂SiCu(CN)Li (26, *vide supra*) at -50°C. The deep red solution was stirred for 20 min at -50°C prior to examination by NMR and IR spectroscopy.

Preparation of (PhMe₂Si)₂CuLi₂ (29): To a THF solution of (PhMe₂Si)₂Cu(CN)Li₂ (28, 2.0 mmol) prepared as outlined above was added a THF solution of PhMe₂SiLi (25, 1.8 mL, 2.0 mmol) at -50°C. The reaction was stirred for 20 min at -50°C before examination by NMR and IR spectroscopy.

Preparation of (PhMe₂Si)₃CuLi₂ (29) with excess PhMe₂SiLi (25): To a THF solution of (PhMe₂Si)₃CuLi₂ (29, 2.0 mmol) prepared as outlined above was added a THF solution of PhMe₂SiLi (25, 1.8 mL, 2.0 mmol) at -50°C. The reaction was surred for 20 min at -50°C before examination by NMR spectroscopy. Regeneration of (PhMe₂Si)₂Cu(CN)Li₂, 28 from 29: CuCN (0.09 g, 1.0 mmol) was added to the solution of 29 (2.0 mmol). The reaction was stirred for 20 min at -50°C before examination by NMR spectroscopy.

Regeneration of PhMe2SiCu(CN)Li (26) from 28: CuCN (0.18 g, 2.0 mmol) was added to the NMR tube containing silylcyanocuprate 28. The reaction was stirred for 20 min at -50°C and then examined by NMR spectroscopy.

Generation of Silylcuprates from CuBr•Me₂S

Preparation of (PhMe2Si)Cu (38): CuBr•Me2S (0.41 g, 2.0 mmol) was placed in a 10 mm NMR tube, equipped with an argon inlet. The tube was repeatedly (3x) evacuated and purged with argon. Me4Si (0.5 mL) was injected, the solution was cooled to -50°C and dimethylphenysilyllithium in THF (25, 1.8 mL, 2.0 mmol) added dropwise. The reaction mixture was stirred on a vortex mixer at -50°C in the custom built dewar for 20 min. The NMR spectrum was then immediately recorded.

Preparation of (PhMe₂Si)₂CuLi (27): A THF solution of PhMe₂SiLi (1.8 mL, 2.0 mmol) was added to a 10 mm NMR tube containing a THF solution of PhMe₂SiCu (38, 2.0 mmol, *vide supra*) at -50°C. The resultant deep red solution was stirred for 20 min at -50°C prior to examination by NMR spectroscopy.

Preparation of (PhMe₂Si)₃CuLi₂ (29): To a THF solution of (PhMe₂Si)₂CuLi (2.0 mmol) prepared as outlined above, was added a THF solution of

PhMe₂SiLi (1.8 mL, 2.0 mmol) at -50°C. The reaction mixture was stirred for 20 min at -50°C before examination by NMR spectroscopy.

Preparation of (PhMe2Si)3CuLi2 (29) with excess PhMe2SiLi (25): To a THF solution of (PhMe2Si)3CuLi2 (29, 2.0 mmol), prepared as above from CuBr•Me2S, was added a THF solution of PhMe2SiLi (1.8 mL, 2.0 mmol) at -50°C. The reaction mixture was stirred for 20 min at -50°C before examination by NMR spectroscopy.

Regeneration of (PhMe₂Si)₂CuLi (27) from 29 prepared from CuBr•Me₂S: CuBr•Me₂S (0.205 g, 1.0 mmol) was added to 2.0 mmol of the solution generated by mixing PhMe₂SiLi (25) and CuBr•Me₂S in a 3:1 ratio. The reaction mixture was stirred for 20 min at -50°C before examination by NMR spectroscopy.

Regeneration of PhMe₂SiCu (38) from 27: CuBr•Me₂S (0.41 g, 2.0 mmol) was added to the NMR tube containing silylcuprate (27, 2.0 mmol). The reaction was stirred for 20 min at -50°C and then examined by NMR spectroscopy.

Generation of Mixed Silylcuprates

Preparation of PhMe₂Si(Me)Cu(CN)Li₂ (43) by Reaction of PhMe₂SiLi (25) and MeCu(CN)Li (16): CuCN (0.18 g, 2.0 mmol) was added to a 10 mm NMR tube, equipped with an argon inlet. The solution was cooled to -50°C and MeLi (1.4 mL, 2.0 mmol) in Et₂O was added *via* a syringe. The reaction mixture was stirred on the vortex mixer in a custom built dewar for 10 min. Dimethylphenylsilyllithium (25) in THF (1.8 mL, 2.0 mmol) was added dropwise to this clear solution at -50°C. The reaction turned deep red in color. The NMR spectrum was recorded immediately.

Preparation of 43 by Reaction of PhMe2SiCu(CN)Li (26) and MeLi: MeLi (1.4 mL, 2.0 mmol) was added to a solution of 26 (2.0 mmol, *vide supra*) at -50°C. The reaction mixture was stirred on a vortex mixer at -50°C in a custom built dewar for 20 min. The NMR spectrum was immediately recorded.

Preparation of 43 by Reaction of (PhMe₂Si)₂Cu(CN)Li₂ (28) and Me₂Cu(CN)Li₂ (17): CuCN (0.09 g, 1.0 mmol) was added to a flask, equipped with an argon inlet. The solution was cooled to -50°C where MeLi (1.4 mL, 2.0 mmol) was introduced dropwise to generate a clear solution of 17. After 10 min this solution was transferred *via* a pre-cooled cannula into cuprate 28 (2.0 mmol, *vide supra*) which was also maintained at below -50°C. The resulting deep red solution was stirred for 20 min before recording the NMR spectrum.

Preparation of (PhMe2Si)2(Me)CuLi2 (44) by Reaction of PhMe2SiLi (25) and MeCu(CN)Li (16): CuCN (0.09 g, 1.0 mmol) was added to a 10 mm NMR tube, equipped with an argon inlet. The solution was cooled to -50°C and MeLi (0.7 mL, 1.0 mmol) in Et2O was added *via* a syringe. The reaction mixture was stirred on a vortex mixer in a custom built dewar for 10 min. Dimethylphenylsilyllithium (25) in THF (1.8 mL, 2.0 mmol) was added dropwise to this clear solution at -78°C. The reaction turned deep red in color. The NMR spectrum was recorded immediately.

Preparation of 44 from Reaction of (PhMe₂Si)₂Cu(CN)Li₂ (28) and MeLi: MeLi in Et₂O (1.4 mL, 2.0 mmol) was introduced dropwise via a syringe

Preparation of 44 from Reaction of (PhMe₂Si)₂Cu(CN)Li₂ (28) and MeLi: MeLi in Et₂O (1.4 mL, 2.0 mmol) was introduced dropwise *via* a syringe to a solution of 28 (2.0 mmol) at -78°C. The resulting deep red solution was stirred for 20 min before recording the NMR spectrum.

Preparation of PhMe₂Si(Me)₂CuLi₂ (45) by Reaction of

PhMe₂SiLi (25) MeLi and CuCN: CuCN (0.09 g, 1.0 mmol) was added to a 10 mm NMR tube, equipped with an argon inlet. The solution was cooled to -50°C and MeLi (0.7 mL, 1.0 mmol) in Et₂O was added *via* a syringe followed by dimethylphenylsilyllithium (25) in THF (2.7 mL, 3.0 mmol) at -78°C. The reaction mixture was stirred on a vortex mixer in a custom built dewar for 10 min. The reaction turned deep red in color. The NMR spectrum was recorded immediately.

Preparation of 45 by Reaction of (PhMe₂Si)₃CuLi₂ (29) and MeLi: MeLi in Et₂O (0.7 mL, 1.0 mmol) was introduced dropwise *via* a syringe to a solution of 29 (1.0 mmol, *vide supra*) at -78°C. The resulting deep red solution was stirred for 20 min before recording the NMR spectrum.

13C and 1H NMR Sample Preparation

Preparation of CuCN-2LiCl: THF (11.0 mL) was added to a mixture of CuCN (0.98 g, 11.0 mmol) and LiCl (0.95 g, 22.0 mmol) in a round bottomed flask under argon. A clear faint yellow solution was obtained after 0.5 h of stirring. This

solution was used as the Cu(I)CN source for all the ^{13}C and ^{1}H NMR sample preparations unless otherwise specified.

Preparation of CuBr•2LiCl: THF (11.0 mL) was added to a mixture of CuBr•Me₂S (2.25 g, 11.0 mmol) and LiCl (0.95 g, 22.0 mmol) in a round bottomed flask under argon. A clear dark yellow solution was obtained after 0.5 h of stirring. This solution was used as the Cu(I)Br source for all the ¹³C and ¹H NMR sample preparations.

Generation of Silylcuprates from CuCN

Preparation of 26: The above THF solution of CuCN (0.5 mL, 0.5 mmol) was added to a 5 mm NMR tube, equipped with an argon inlet. The solution was cooled to -78°C and dimethylphenylsilyllithium in THF (0.6 mL, 0.5 mmol) added dropwise. The reaction mixture was stirred on a vortex mixer in a custom built dewar for 20 min. The spectra were recorded immediately.

Preparation of 26 in THF/HMPA: A solution of CuCN in THF (0.5 mL, 0.5 mmol) was added to a 5 mm NMR tube, equipped with an argon inlet. The solution was cooled to -78°C and dimethylphenylsilyllithium in THF (0.6 mL, 0.5 mmol) added dropwise followed by addition of HMPA (0.5 mL) *via* a syringe. The reaction was stirred on a vortex mixer in a custom built dewar for 20 min. The spectra were recorded immediately.

Preparation of 28: The above THF solution of CuCN (0.25 mL, 0.25 mmol) was added to a 5 mm NMR tube, equipped with an argon inlet. The solution was cooled to -78°C and dimethylphenylsilyllithium in THF (0.6 mL, 0.5 mmol) added dropwise. The reaction mixture was stirred on a vortex mixer in a custom built dewar for 20 min. The spectra were recorded immediately.

Preparation of 29: The above THF solution of CuCN (0.25 mL, 0.25 mmol) was added to a 5 mm NMR tube, equipped with an argon inlet. The solution was cooled to -78°C and dimethylphenylsilyllithium in THF (0.9 mL, 0.75 mmol) added dropwise. The reaction was stirred on a vortex mixer in a custom built dewar for 20 min. The spectra were recorded immediately.

Preparation of 29 with excess 25: The above THF solution of CuCN (0.125 mL, 0.125 mmol) was added to a 5 mm NMR tube, equipped with an argon inlet. The solution was cooled to -78°C and dimethylphenylsilyllithium in THF (0.6 mL, 0.5 mmol) added dropwise. The reaction was stirred on a vortex mixer in a custom built dewar for 20 min. The spectra were recorded immediately.

Preparation of 26 for ¹H NMR analysis: The above THF solution of CuCN (0.5 mL, 0.5 mmol) was added to a 5 mm NMR tube, equipped with an argon inlet. The solution was cooled to -78°C and dimethylphenylsilyllithium in THF-d8 (0.6 mL, 0.5 mmol) added dropwise. The reaction mixture was stirred on a vortex mixer in a custom built dewar for 20 min. The spectra were recorded immediately.

Preparation of 28 and 29 for ¹H NMR analysis: These solutions were prepared in THF-dg as described above.

Generation of LiCl-free Silylcuprates from CuCN

Preparation of PhMe₂SiCu(CN)Li (26): CuCN (0.06 g, 0.66 mmol) was placed in a 5 mm NMR tube, equipped with an argon inlet and a capillary insert containing 1M solution of LiCl in MeO²H. The tube was repeatedly (3x) evacuated and purged with argon. LiCl-free dimethylphenysilyllithium in THF (0.6 mL, 0.66 mmol) added dropwise at -70°C. The solution was stirred on a vortex mixer at -70°C in a custom built dewar for 20 min. The NMR spectrum was then immediately recorded.

Preparation of 28 and 29: These were prepared precisely as described above. Both the solutions were green in color. Addition of LiCl resulted in the familiar red silylcuprates.

Generation of Silylcuprates from CuBr•Me2S

Preparation of PhMe2SiCu (38): CuBr•Me2S (0.5 mL, 0.5 mmol) was added to a 5 mm NMR tube, equipped with an argon inlet. The reaction was cooled to -78°C and dimethylphenylsilyllithium in THF (0.6 mL, 0.5 mmol) added dropwise. The solution was stirred on a vortex mixer in a custom built dewar for 20 min. The slurry was used as such.

Preparation of (PhMe₂Si)₂CuLi (27): This cuprate was generated as described above. Thus, CuBr•Me₂S (0.25 mL, 0.25 mmol) was added to a 5 mm NMR

tube, equipped with an argon inlet. The reaction was cooled to -78°C and dimethylphenylsilyllithium in THF (0.6 mL, 0.5 mmol) added dropwise. The solution was stirred on a vortex mixer in a custom built dewar for 20 min before examination of the NMR spectrum.

Preparation of (PhMe2Si)3CuLi2 (29): CuBr•Me2S (0.125 mL, 0.125 mmol) was added to a 5 mm NMR tube, equipped with an argon inlet. The reaction was cooled to -78°C and dimethylphenylsilyllithium in THF (0.9 mL, 0.75 mmol) added dropwise. The solution was stirred on a vortex mixer in a custom built dewar for 20 min before examination of the NMR spectrum.

Generation of Silylcuprates from CuBr in DMS

Preparation of (PhMe2Si)2CuLi (27) in DMS: CuBr•Me2S (0.05 g 0.25 mmol) was added to a 5 mm NMR tube, equipped with an argon inlet. The reaction was cooled to -78°C and dimethylphenylsilyllithium in DMS (0.45 mL, 0.5 mmol) added dropwise. The solution was stirred on a vortex mixer (*vide supra*). The spectra were recorded at -85°C immediately. In a separate set of experiments, solutions of silylcuprate 27 in DMS were prepared in a flask equipped with a filtration unit. The silylcuprate was filtered under argon *via* a cannula to the pre-cooled 5 mm NMR tube. Both the solutions exhibited same resonances in the ¹³C NMR spectra. For the ¹³C analysis the samples were prepared without filtration whereas the ⁷Li NMR samples were filtered prior to examination by NMR spectroscopy.

Preparation of LiCl-free (PhMe₂Si)₂CuLi (27) in THF: CuBr•Me₂S (0.05 g 0.25 mmol) was added to a 5 mm NMR tube, equipped with an argon inlet. The reaction was cooled to -78°C and LiCl-free dimethylphenylsilyllithium in THF (0.45 mL, 0.5 mmol) added dropwise. The solution was stirred on a vortex mixer. The spectra were recorded at -85°C immediately.

Preparation of (PhMe₂Si)₂CuLi·LiI (39) in DMS: (PhMe₂Si)₂CuLi·LiI was prepared as above except for the substitution of CuI (0.047 g 0.25 mmol) for CuBr•Me₂S.

Preparation of (PhMe₂Si)₃CuLi₂ (29) in DMS:

Dimethylphenylsilyllithium in DMS (0.45 mL, 0.5 mmol) was added to the silylcuprate 27 (0.5 mmol) at -78°C. The solution was stirred on a vortex mixer (*vide supra*). The spectra were recorded at -85°C immediately.

Generation of Mixed Silylcuprates

Preparation of 43 by Reaction of 25 and 16: CuCN (0.25 mL, 0.25 mmol) was added to a 5 mm NMR tube, equipped with an argon inlet. The solution was cooled to -50°C and MeLi (0.18 mL, 0.25 mmol) in Et₂O was added *via* a syringe. The reaction mixture was stirred on a vortex mixer in a custom built dewar for 10 min. Upon addition of dimethylphenylsilyllithium in THF (0.3 mL, 0.25 mmol) dropwise to this clear solution at -78°C the reaction turned deep red. The NMR spectrum was recorded immediately.
Preparation of 43 by Reaction of 26 and MeLi: CuCN (0.25 mL, 0.25 mmol) was added to a 5 mm NMR tube, equipped with an argon inlet. The solution was cooled to -70°C and dimethylphenylsilyllithium in THF (0.3 mL, 0.25 mmol) was added dropwise. The reaction mixture was stirred on a vortex mixer in a custom built dewar for 10 min. MeLi (0.18 mL, 0.25 mmol) in Et₂O was added *via* a syringe at -78°C. The spectra were recorded immediately.

Preparation of 43 by Reaction of 17 and 28: CuCN (0.25 mL, 0.25 mmol) was added to a 5 mm NMR tube, equipped with an argon inlet. The solution was cooled to -78°C and dimethylphenylsilyllithium in THF (0.6 mL, 0.5 mmol) added dropwise. The reaction mixture was stirred on a vortex mixer in a custom built dewar for 20 min. In a separate vial, MeLi (0.36 mL, 0.5 mmol) was added to a THF solution of CuCN (0.25 mL, 0.25 mmol) at -50°C. After 10 min of stirring, the solution of 17, precooled to -78°C, was transferred *via* a cannula into cuprate **28**, which was also maintained at -78°C. The resulting deep red solution was stirred for 20 min before recording the NMR spectrum

Preparation of (PhMe₂Si)₂(Me)CuLi₂ (44) by Reaction of PhMe₂SiLi (25) and MeCu(CN)Li (16): CuCN (0.25 mL, 0.25 mmol) was added to a 5 mm NMR tube, equipped with an argon inlet. The solution was cooled to -50°C and MeLi (0.18 mL, 0.25 mmol) in Et₂O was added *via* a syringe. The reaction mixture was stirred on a vortex mixer in a custom built dewar for 10 min. Dimethylphenylsilyllithium (25) in THF (0.6 mL, 0.5 mmol) was added dropwise to this clear solution at -78°C. The resulting deep red solution was examined by NMR immediately. Preparation of 44 by Reaction of $(PhMe_2Si)_2Cu(CN)Li_2$ (28) and MeLi: MeLi in Et₂O (0.36 mL, 0.5 mmol) was introduced dropwise via a syringe to a solution of 28 (0.05 mmol, vide supra) at -78°C. The resulting deep red solution was stirred for 20 min before recording the NMR spectrum.

Preparation of PhMe₂Si(Me)₂CuLi₂ (45) by Reaction of PhMe₂SiLi (25) MeLi and CuCN: CuCN (0.25 mL, 0.25 mmol) was added to a 5 mm NMR tube, equipped with an argon inlet. The solution was cooled to -50°C. and MeLi (0.36 mL, 0.5 mmol) in Et₂O was added *via* a syringe. The reaction mixture was stirred on a vortex mixer in a custom built dewar for 10 min. Upon addition of dimethylphenylsilyllithium (25) in THF (0.3 mL, 0.25 mmol) dropwise to this clear solution at -78°C the reaction turned deep red. The NMR spectrum was recorded immediately.

Preparation of 45 by Reaction of (PhMe₂Si)₃CuLi₂ (29) and MeLi: MeLi in Et₂O (0.7 mL, 1.0 mmol) was introduced dropwise *via* a syringe to a solution of 29 (1.0 mmol, *vide supra*) at -78°C. The resulting deep red solution was stirred for 20 min before recording the NMR spectrum.

Preparation of ¹³C NMR Samples for Reactions of 43 with 32: PhMe₂SiLi (0.3 mL, 0.25 mmol) was added dropwise at -85°C to a THF solution of MeCu(CN)Li (0.25 mmol, *vide supra*) under argon. The resulting deep red solution was stirred for 10 min after which 32 (0.024 mL, 0.25 mmol) was added *via* a syringe. The reaction was stirred for 10 min before recording the NMR spectrum.

Preparation of ¹³C NMR Samples for Reaction of 29 with 32: 32 (0.024 mL, 0.25 mmol) was added *via* a syringe at -85°C to a THF solution of

162

(PhMe₂Si)₃CuLi₂, **29** (0.25 mmol, *vide supra*). The reaction was stirred for 10 min before recording the NMR spectrum.

Preparation of 3-trialkylsilyl cyclohexanone

Typical Procedure for Reactions of PhMe₂SiLi/CuCN Solutions with 32, Synthesis of 33: PhMe₂SiLi (1.25 mL, 1.0 mmol) was added dropwise at -45°C to CuCN (0.089 g, 1.0 mmol) in THF (2 mL) under argon. The resulting deep red solution was stirred for 0.5 h after which 32 (0.08 mL, 0.82 mmol) was added *via* a syringe. All reactions were stirred for a further 0.5 h and then quenched with satd. NH₄Cl/10% NH₄OH. The usual workup involved extraction of the organic phase with Et₂O (2 x 2 mL) and washing with brine (2 x 2 mL). The combined extracts were dried over anhydrous MgSO₄ and concetrated *in vacuo*. Column chromatography (4:1 hexanes:EtOAc) yielded 3-(dimethylphenylsilyl)-cyclohexanone (33). The ratios of 1,2*vs* 1,4-addition products and the overall yields are reported in text. The ¹H NMR and IR data for 33 matched those reported by Fleming *et al.*^{32c} for this compound. ¹³C{¹H} (CDCl₃) δ 212.5 (*C*=O), 136.6 (*ipso*), 133.8, 129.2, 127.8, 42.3, 41.8, 29.7, 27.5, 26.0, -5.4 (SiCH₃), -5.5 (SiCH₃); MS m/e (rel. intensity) 232 (M⁺, 20), 217 (15), 189 (5), 156 (22), 135 (100); Anal. calc. C₁4H₂OOSi 232.1283 found 232.1282.

Typical Procedure for Reactions of PhMe2SiLi/ CuBr•Me2S with 32: PhMe2SiLi (1.25 mL, 1.0 mmol) was added dropwise at -45°C to CuBr•Me2S (0.10 g, 0.5 mmol) in THF (2 mL) under argon. The resulting deep red solution was stirred for 0.5 h after which 32 (0.04 mL, 0.41 mmol) was added *via* a syringe. All reactions were stirred for a further 0.5 h and then quenched. Standard workup and the spectral data for 33 are as reported above.

Typical Procedure for Reactions of PhMe2SiLi/MeLi/ CuCN Solutions with 32, Synthesis of 33: PhMe2SiLi (1.25 mL, 1.0 mmol) was added dropwise at -70°C to a solution of MeCu(CN)Li [(1.0 mmol, prepared from the addition of MeLi in Et2O (0.7 mL, 1.0 mmol) and CuCN (0.089 g, 1.0 mmol in THF (2 mL) at -50°C)] in THF (2 mL) under argon. The resulting deep red solution was stirred for 0.5 h after which 32 (0.08 mL, 0.82 mmol) was added *via* a syringe. All reactions were stirred for a further 0.5 h and then quenched. Standard workup and the spectral data for 33 are as reported above.

Preparation of 1-(Dimethylphenylsilyl)-cyclohex-2-en-1-ol (34): Cyclohex-2-en-1-one (0.08 mL, 0.82 mmol) was added dropwise to a solution of PhMe₂SiLi (1.25 mL, 1.0 mmol) at -45°C in THF (2 mL) under argon. The solution turned yellow upon completion of addition. The reaction was stirred for 0.5 h and then quenched with satd. NH₄Cl/10% NH₄OH. The usual workup followed by column chromatography (4:1 hexanes:EtOAc) gave 62% of 34 as a colorless oil. IR (NaCl) 3460 (OH), 1440 (PhMe₂Si) cm⁻¹; 400 MHz ¹H NMR (CDCl₃) δ 7.2-7.7 (m, 5H, Ph), 5.9 (ddd, *J* = 10, 5, 3 Hz, 1H, CH₂HC=C), 5.7 (dt, *J* = 10, 3 Hz, 1H, C=CH), 1.4-2.1 (m, 6H, ring CH₂), 1.18 (bs, 1H, OH), 0.38 (s, 3H, SiCH₃), 0.36 (s, 3H, SiCH₃); ¹³C{¹H} (CDCl₃) δ 136.4 (*ipso*), 134.6, 130.4, 130.2, 129.2, 127.7, 64.2 (COH), 32.7, 25.2, 17.5, -5.8 (SiCH₃), -6.0 (SiCH₃); MS m/e (rel. intensity) 232 (M⁺, 5), 214 (M⁺-18, 20), 199 (15), 135 (100); Anal. calc. C14H₂0OSi 232.1284 found 232.1286. Typical Procedure for Silylcupration with "PhMe2SiCu"

Reaction of PhMe2SiLi with 35a: 1-Octyne (0.24 g, 2.2 mmol) was added dropwise to a solution of PhMe2SiLi (2.6 mL, 2.2 mmol) at -45°C in THF (3 mL) under argon. The reaction was stirred for 0.5 h and then quenched with 2 H₂O (5 mL). It was gradually warmed to room temperature. The usual workup yielded octyne- 1^{2} H (70% incorporation as calculated from GC-MS analysis).

For 35a: MS m/e (rel. intensity) 95 (M⁺-15, 30), 81 (100), 67 (52).

For 35b: MS m/e (rel. intensity) 96 (M⁺-15, 25), 95 (17.5), 82 (100), 81 (28), 68 (40).

Synthesis of 36 and 37: CuCN (0.197 g, 2.2 mmol) was placed in a flask equipped with an argon inlet. The flask was repeatedly (3x) evacuated and purged with argon. THF (5 mL) was injected, the reaction was cooled to -50° C and dimethylphenylsilyllithium in THF (2.6 mL, 2.2 mmol) added dropwise. The resulting deep red solution was stirred for 0.5 h after which 1-Octyne (0.24 g, 2.2 mmol) was added dropwise. The reaction was stirred for additional 0.5 h and then quenched with H₂O (5 mL) for the preparation of 36a and 37a, whereas ²H₂O (5 mL) was used as the quenching agent for the generation of 36b. The reactions were warmed gradually to room temperature. The usual workup followed by column chromatography (hexanes) yielded the vinyl silanes which were analyzed by ¹H NMR and GC-MS analysis to determine the amount of ²H incorporated. The ratios of 36 to 37 and the overall yields are reported in the text. For **36a:** IR (NaCl) 1620, 1440, 1250, 1120, 995 cm⁻¹; 400 MHz ¹H NMR (CDCl₃) δ 7.1-7.5 (m, 5H, Ph), 6.17 (dt, *J* = 18, 6 Hz, 1H, *H*C=CSi), 5.85 (dt, *J* = 18, 1.5 Hz, 1H, C=CHSi), 2.7 (tdd, *J* = 7, 6, 1.5 Hz, 2H, allylic), 1.2-1.42 (m, 8H, CH₂), 0.95 (t, *J* = 7 Hz, 3H, CH₃), 0.3 (s, 6H, SiCH₃); ¹³C{¹H} (CDCl₃) δ 149.5 (*C*=CSi), 139.4 (C=CSi), 133.8 (*ipso*), 128.7, 127.6, 127.2, 36.8, 36.7, 31.7, 28.8, 28.6, 22.5, 13.9 (SiCH₃); MS m/e (rel. intensity) 246 (M⁺, 9), 231 (70), 161 (35), 135 (50), 121 (100); Anal. calc. C₁₆H₂₆Si 246.1803 found 246.1809.

For **36b**: 400 MHz ¹H NMR (CDCl₃) δ 7.1-7.5 (m, 5H, Ph), 5.85 (brt J = 1.5 Hz, 1H, C=CHSi), 2.7 (td, J = 7, 1.5 Hz, 2H, allylic), 1.2-1.42 (m, 8H, CH₂), 0.95 (t, J = 7 Hz, 3H, CH₃), 0.3 (s, 6H, SiCH₃); MS m/e (rel. intensity) 247 (M⁺, 12), 232 (100), 162 (80), 148 (40), 135 (60), 122 (80), 121 (80); Anal. calc. C₁₆H₂₅DSi 247.1866 found 247.1874.

For 37a: 400 MHz ¹H NMR (CDCl₃) δ 5.9 (dt, J = 7, 1.5 Hz, 2H, vinyl); MS m/e (rel. intensity) 246 (M⁺, 45), 231 (45), 161 (35), 135 (100), 121 (35).

Gilman Tests. All cuprates prepared in 10 mm NMR tubes were subjected to Gilman test. An equal volume of Michler's ketone (1% solution) in dry benzene was added to the cuprate at 0°C. H₂O (1 mL) was introduced after 10 min and the reaction was allowed to warm to room temperature. After vigorous stirring, a 2% solution of I₂ in glacial acetic acid was added dropwise. A persistent blue color in the organic layer is considered a positive test (confirmation of free RLi).⁴²

PREPARATION OF TRIALKYLSTANNYLCUPRATES 119Sn NMR sample preparation

Preparation of Me3SnLi (47): According to the procedure of Still *et al.*^{49a} MeLi (7.15 mL, 10.0 mmol) was added dropwise at -45°C to Me6Sn₂ (3.27 g, 10.0 mmol) in THF (10 mL) under argon. The resulting pale yellow solution was stirred for 0.5 h and titrated according to procedure of Gilman^{99b} before being used in the preparations of cuprates.

Generation of stannylcuprates from CuCN

Preparation of Me3SnCu(CN)Li (48): CuCN (0.09 g, 1.0 mmol) was placed in a 10 mm NMR tube, equipped with an argon inlet. The tube was repeatedly (3x) evacuated and purged with argon. The reaction was cooled to -70°C and trimethyltinlithium in THF (2.0 mL, 1.0 mmol) was added dropwise. The orange slurry was stirred on a vortex mixer at -78°C in a custom built dewar for 20 min. The NMR spectrum was then immediately recorded.

Preparation of (Me₃Sn)₂Cu(CN)Li₂ (51): A THF solution of Me₃SnLi (2.0 mL, 1.0 mmol) was added to a 10 mm NMR tube containing a THF solution of Me₃SnCu(CN)Li at -78°C. The orange colored solution was stirred for 20 min at -78°C prior to examination by NMR and IR spectroscopy. Preparation of (Me₃Sn)₃CuLi₂ (50): To a THF solution of (Me₃Sn)₂Cu(CN)Li₂ (1.0 mmol) prepared as outlined above was added a THF solution of Me₃SnLi (2.0 mL, 1.0 mmol) at -78°C. The reaction was stirred for 20 min at -78°C before examination by NMR and IR spectroscopy.

Preparation of (Me3Sn)3CuLi2 (50) with excess 47: To a THF solution of (Me3Sn)3CuLi2 (1.0 mmol, *vide supra*) was added a THF solution of Me3SnLi (2.0 mL, 1.0 mmol) at -78°C. The reaction was stirred for 20 min at -78°C before examination by NMR and IR spectroscopy.

Regeneration of (Me₃Sn)₂Cu(CN)Li₂ (51) from 50: CuCN (0.045 g, 0.05 mmol) was added to the stannylcuprate 50. The reaction was stirred for 20 min at -78°C before examination by NMR spectroscopy.

Regeneration of Me₃SnCu(CN)Li (48) from 51: CuCN (0.09 g, 1.0 mmol) was added to the NMR tube containing stannylcyanocuprate 51. The reaction was stirred for 20 min at -78°C and then examined by NMR spectroscopy.

Generation of Stannylcuprates from CuBr•Me₂S

Preparation of Me3SnCu (49): CuBr•Me2S (0.205 g, 1.0 mmol) was placed in a 10 mm NMR tube, equipped with an argon inlet. The tube was repeatedly (3x) evacuated and purged with argon. The solution was cooled to -78°C and trimethyltinlithium in THF (2.0 mL, 1.0 mmol) was added dropwise. A red slurry was obtained. The reaction mixture was stirred on a vortex mixer at -78°C in a custom built dewar for 20 min. The NMR spectrum was immediately recorded without filtration.

Preparation of (Me3Sn)₂CuLi (52): A THF solution of Me3SnLi (2.0 mL, 1.0 mmol) was added to a 10 mm NMR tube containing a THF solution of Me3SnCu 49 (1.0 mmol, *vide supra*) at -78°C. The resultant deep red colored solution was stirred for 20 min at -78°C prior to examination by NMR spectroscopy.

Preparation of (Me3Sn)3CuLi2 (50): To a THF solution of (Me3Sn)2CuLi (1.0 mmol) prepared as outlined above, was added a THF solution of Me3SnLi (2.0 mL, 1.0 mmol) at -78°C. The reaction mixture was stirred for 20 min at -78°C before examination by NMR spectroscopy.

Preparation of (Me₃Sn)₃CuLi₂ (50) with excess Me₃SnLi (47): To a THF solution of (Me₃Sn)₃CuLi₂ (50, 1.0 mmol) prepared as outlined above, was added a THF solution of Me₃SnLi (2.0 mL, 1.0 mmol) at -78°C. The reaction mixture was stirred for 20 min at -78°C before examination by NMR spectroscopy.

Regeneration of (Me₃Sn)₂CuLi (52) from 50: CuBr•Me₂S (0.10 g, 0.5 mmol) was added to 1.0 mmol of the solution generated by mixing Me₃SnLi (47) and CuBr•Me₂S in a 3:1 ratio. The reaction mixture was stirred for 20 min at -78°C before examination by NMR spectroscopy.

Regeneration of Me₃SnCu (49) from 52: CuBr•Me₂S (0.205 g, 1.0 mmol) was added to the NMR tube containing stannylcuprate 52 (1.0 mmol). The reaction was stirred for 20 min at -78°C and then examined by NMR spectroscopy.

Generation of Mixed Stannylcuprates

Preparation of Me₃Sn(Me)Cu(CN)Li₂ (56) by Reaction of Me₃SnLi (47) and MeCu(CN)Li (16): CuCN in THF (0.09 g, 1.0 mmol) was added to a 10 mm NMR tube, equipped with an argon inlet. The solution was cooled to -50°C and MeLi (0.71 mL, 1.0 mmol) in Et₂O was added *via* a syringe. The reaction mixture was stirred on a vortex mixer in a custom built dewar for 10 min. Trimethyltinlithium in THF (2.0 mL, 1.0 mmol) was added dropwise to this clear solution at -78°C. The reaction turned clear yellow in color. The spectra were recorded immediately.

Preparation of 56 by Reaction of Me3SnCu(CN)Li (48) and MeLi: MeLi in Et₂O (0.71 mL, 1.0 mmol) was added to the orange solution of 48 (1.0 mmol, prepared as above) at -78°C. The clear yellow solution was stirred on a vortex mixer at -78°C in a custom built dewar for 20 min. The NMR spectrum was then immediately recorded.

Preparation of 56 by Reaction of (Me3Sn)2Cu(CN)Li2 (51) and Me2Cu(CN)Li2 (17): CuCN (0.09 g, 1.0 mmol) was added to a flask, equipped with an argon inlet. The solution was cooled to -50°C where MeLi (1.4 mL, 2.0 mmol) was introduced dropwise generating a clear solution in 10 min. It was then transferred *via* a cannula into cuprate 51 (1.0 mmol, prepared as above) which was also maintained at below -78°C. The resulting yellow solution was stirred for 20 min before recording the NMR spectrum

¹H and ¹³C NMR Sample Preparation

Generation of Stannylcuprates from CuCN

Preparation of 48: A THF solution of Me₃SnLi (0.5 mL, 0.25 mmol) was added to a 5 mm NMR tube, equipped with an argon inlet. The solution was cooled to -78°C and a solution of CuCN in THF (0.25 mL, 0.25 mmol) added dropwise. The reaction mixture was stirred on a vortex mixer in a custom built dewar for 20 min. The spectra were recorded immediately. Inverse addition of the reagents gave similar spectral results.

Preparation of 51: A THF solution of Me₃SnLi (0.5 mL, 0.25 mmol) was added to a 5 mm NMR tube, equipped with an argon inlet. The solution was cooled to -78°C and a solution of CuCN in THF (0.125 mL, 0.125 mmol) added dropwise. The reaction mixture was stirred on a vortex mixer in a custom built dewar for 20 min. The spectra were recorded immediately. Similar spectral results were obtained when the order of mixing of reagents was reversed.

Preparation of 50: A THF solution of Me₃SnLi (0.5 mL, 0.25 mmol) was added to a 5 mm NMR tube, equipped with an argon inlet. The solution was cooled to -78°C and a solution of CuCN in THF (0.08 mL, 0.08 mmol) added dropwise. The reaction was stirred on a vortex mixer in a custom built dewar for 20 min. The spectra were recorded immediately. Inverse addition of the reagents gave similar spectral results.

Preparation of 50 with excess 47: A THF solution of Me₃SnLi (0.5 mL, 0.25 mmol) was added to a solution of stannylcuprate 50 at -78°C. The reaction was

stirred on a vortex mixer in a custom built dewar for 20 min. The spectra were recorded immediately. Inverse addition of the reagents gave similar spectral results.

Preparation of 48 for ¹H NMR analysis: The above THF solution of CuCN (0.25 mL, 0.25 mmol) was added to a 5 mm NMR tube, equipped with an argon inlet. The solution was cooled to -78°C and trimethyltinlithium in THF-d8 (0.5 mL, 0.25 mmol) added dropwise. The reaction mixture was stirred on a vortex mixer in a custom built dewar for 20 min. The spectra were recorded immediately.

Preparation of 50 and 51 for ¹H NMR analysis: These solutions were prepared in THF-d8 as described above for 48.

Generation of Stannylcuprates from CuBr•Me₂S

Preparation of Me₃SnCu (49): CuBr•Me₂S (0.25 mL 0.25 mmol) was added to a 5 mm NMR tube, equipped with an argon inlet. The reaction was cooled to - 78°C and trimethyltinlithium in THF (0.5 mL, 0.25 mmol) added dropwise. The solution was stirred on a vortex mixer in a custom built dewar for 20 min. A deep red slurry was obtained. The spectra were recorded without filteration.

Preparation of (Me3Sn)3Cu2Li (53): CuBr•Me2S (0.17 mL 0.166 mmol) was added to a 5 mm NMR tube, equipped with an argon inlet The reaction was cooled to -78°C and trimethyltinlithium in THF (0.5 mL, 0.25 mmol) was added dropwise. The solution was stirred on a vortex mixer in a custom built dewar for 20 min. The slurry was used as such.

Preparation of (Me₃Sn)₃CuLi₂ (50): Trimethyltinlithium in THF (0.5 mL, 0.25 mmol) was added dropwise to a solution of 53 (0.25 mmol) at -78°C. The solution was stirred on a vortex mixer in a custom built dewar for 20 min. The spectra were recorded immediately.

Generation of Mixed Stannylcuprates

Preparation of 56 by Reaction of 47 and 16: CuCN in THF (0.4 mL, 0.4 mmol) was added to a 5 mm NMR tube, equipped with an argon inlet. The solution was cooled to -50°C and MeLi (0.3 mL, 0.4 mmol) in Et₂O was added *via* a syringe. The reaction mixture was stirred on a vortex mixer in a custom built dewar for 10 min. Trimethyltinlithium in THF (1.0 mL, 0.4 mmol) was added dropwise to this clear solution at -78°C. The reaction turned yellow in color. The spectra were recorded immediately.

Preparation of 56 by Reaction of 17 and 51: CuCN in THF (0.4 mL, 0.4 mmol) was added to a 5 mm NMR tube, equipped with an argon inlet. The solution was cooled to -78°C and trimethyltinlithium in THF (1.0 mL, 0.4 mmol) added dropwise. The reaction mixture was stirred on a vortex mixer in a custom built dewar for 20 min. In a separate vial, 17 (prepared as above) precooled to -78°C, was transferred *via* a cannula into cuprate 51, which was also maintained at -78°C. The resulting yellow solution was stirred for 20 min before recording the NMR spectrum.

Preparation of Me₃Sn(Me)₂CuLi₂ (57) by Reaction of 48 and MeLi: CuCN in THF (0.4 mL, 0.4 mmol) was added to a 5 mm NMR tube, equipped with an argon inlet. The solution was cooled to -78°C and Me₃SnLi (1.0 mL, 0.4 mmol) in THF was added *via* a syringe. The reaction mixture was stirred on a vortex mixer in a custom built dewar for 10 min. MeLi (0.6 mL, 0.8 mmol) in Et₂O was added dropwise to this orange suspension at -78°C. The reaction turned clear yellow in color. The spectra were recorded immediately.

Preparation of 57 by Reaction of 56 and MeLi: CuCN in THF (0.4 mL, 0.4 mmol) was added to a 5 mm NMR tube, equipped with an argon inlet. The solution was cooled to -50°C and MeLi (0.3 mL, 0.4 mmol) in Et₂O was added *via* a syringe. The reaction mixture was stirred on a vortex mixer in a custom built dewar for 10 min. Trimethyltinlithium in THF (1.0 mL, 0.4 mmol) was added dropwise to this clear solution at -78°C. The reaction turned yellow in color. MeLi (0.3 mL, 0.4 mmol) in Et₂O was then added *via* a syringe to yield a clear yellow solution. The spectra were recorded immediately.

Reaction of 51with MeLi: MeLi in Et₂O (0.15 mL, 0.2 mmol) was added dropwise to a THF solution of **51** (0.4 mmol) at -78°C. The solution was stirred on a vortex mixer in a custom built dewar for 20 min. The spectra were recorded immediately.

Reaction of 50 with 56: A THF solution of (Me₃Sn)₃CuLi₂ (0.25 mmol) was prepared in a 5 mm NMR tube as described above. The solution was cooled to -78°C and a solution of Me₃Sn(Me)Cu(CN)Li₂ in THF (0.25 mmol) added dropwise. The reaction mixture was stirred on a vortex mixer in a custom built dewar for 20 min.

Reaction of 58 with 17, generation of 60: Bu3SnH (0.13 mL 0.5 mmol) was added dropwise at -85°C to Me2Cu(CN)Li2 (0.5 mmol, *vide supra*). NMR was recorded on the resulting yellow solution after stirring for 10 min.

Reaction of 58 with 17, generation of 61: Bu3SnH (0.13 mL 0.5 mmol) was added dropwise at -85°C to the above solution. After the evolution of H2 subsided (5 min) NMR was recorded on the resulting yellow solution.

Preparation of 3-trialkylstannyl cyclohexanone

Typical Procedure for Reactions of Me3SnLi/MeLi/CuCN Solutions with 32, Synthesis of 70: Me3SnLi (2.0 mL, 1.0 mmol) was added dropwise at -78°C to a solution of MeCu(CN)Li (16, 1.0 mmol, generated from the reaction of MeLi in Et₂O (0.75 mL, 1.0 mmol) and CuCN (0.09 g, 1 mmol) in THF (2 mL) under argon. The resulting solution was stirred for 0.5 h after which 32 (0.08 mL, 0.82 mmol) was added *via* a syringe. The reaction was stirred for a further 0.5 h and then quenched with satd. NH4Cl/10% NH4OH. Workup involved extraction of the organic phase with Et₂O (2 x 2 mL) and washing with brine (2 x 2 mL). The combined extracts were dried over anhydrous MgSO4 and concetrated *in vacuo*. Column chromatography (4:1 hexanes:EtOAc) yielded 3-(trimethylstannyl)-cyclohexanone (70) in > 90% isolated yield. The ¹H NMR and IR data for 70 matched those reported by Still^{48a} for this compound. ¹³C{¹H} (CDCl₃) δ 212.2 (*C*=O), 45.8, 42.1, 30.8, 29.4, 25.2, -11.7 (SnCH₃); MS m/e (rel. intensity) 246 (M⁺-15, 20); Anal. calc. C9H₁₈OSn 246.1283 found 246.1282. Reaction of Bu3SnH/ Me2Cu(CN)Li2 with 32, Synthesis of 71: Bu3SnH (0.27 mL, 1.0 mmol) was added dropwise at -78°C to a solution of Me2Cu(CN)Li2 (17, 1.0 mmol, generated from the reaction of MeLi in Et2O (0.75 mL, 1.0 mmol) and CuCN (0.045 g, 0.5 mmol) in THF (2 mL) under argon. The resulting yellow solution was stirred for 0.5 h after which 32 (0.082 mL, 0.82 mmol) was added *via* a syringe. The reaction was stirred for a further 0.5 h and then quenched with satd. NH4Cl/10% NH4OH. The usual workup involved extraction of the organic phase with Et2O (2 x 2 mL) and washing with brine (2 x 2 mL). The combined extracts were dried over anhydrous MgSO4 and concetrated *in vacuo*. Column chromatography (4:1 hexanes:EtOAc) yielded 3-(tributylstannyl)-cyclohexanone (71) in > 96% isolated yield. The ¹H NMR and IR data for 71 matched those reported by Still^{48a} for this compound. $1^{3}C{^{1}H}$ (CDCl₃) δ 211.8 (*C*=O), 46.3, 42.1, 31.0, 30.0, 29.1, 27.3 (*C*₃), 13.4, 8.0; MS m/e (rel. intensity) 331 (M⁺-56, 70).

Preparation of Bu3SnH (58): Reduction of Bu3SnCl with LiAlH4²⁵ gave Bu3SnH in 82% chemical yield and 97% purity as measured by gas chromatographic analysis after distillation (bp 49°C @ 0.05 mm Hg). A modified work-up procedure was employed that involved the transfer of the supernatant from the aqueous layer *via* a canula. Removal of Et₂O followed by addition of *n*-hexanes *in vacuo* concentration and distillation under reduced pressure gave oxide-free Bu3SnH that could be stored in the freezer without noticable decomposition for several months.

176

Preparation of Trialkylstannyllithium and Quenching with Methyl Iodide, Table IV:

Entry 1: Bu3SnLi was prepared according to the procedure of Nozaki.⁷⁰ Stannous chloride (0.6 g, 3.16 mmol) was stirred in 5 mL of dry THF at 0°C and then *n*-BuLi (3.65 mL, 9.48 mmol) was added dropwise over 30 min. To an aliquot of the deep red solution was added excess MeI in THF at 0°C. The reaction was stirred for 15 min then quenched by addition of NH4Cl solution and the separated organic layer analyzed by gas chromatography with dodecane as an internal standard. Bu3SnMe was formed in 33% yield.

Entry 2: A solution of Bu₃SnCl (4.0 g, 12.5 mmol) in 25 mL of THF was added to a suspension of Li clippings (0.35 g, 50 mmol) in 20 mL of THF at 0°C according to the procedure of Soloski.^{49b} The reaction was stirred overnight at this temperature and the green solution treated with excess MeI. The yield of Bu₃SnMe was 48% as determined by GC against an internal standard (dodecane).

Entry 3: A Li dispersion (1.4 g, 200 mmol) in *n*-hexane was prepared in a preweighed Schlenk tube under argon. THF (75 mL) was added, followed by Me3SnCl (10 g, 50 mmol) in 50 mL of THF. The reaction was stirred at 0°C for 8 h. An aliquot was quenched with excess MeI. The yield of Me3SnLi was calculated from the amount of Me4Sn detected by gas chromatographic analysis *vs* decane as an internal standard.

Entry 4: *n*-BuLi (0.38 mL, 1.0 mmol), was added to a stirred solution of Bu3SnH (0.291 g, 1.0 mmol) in 5 mL of THF at 0°C. The reaction was quenched with MeI after 15 min. Gas chromatographic analysis revealed Bu4Sn as the major product accompanied by only 4% of Bu3SnMe (dodecane as internal standard).

Entry 5: Preparation of Bu₃SnLi by the modified procedure of Still^{49a} involved addition of BuLi (1.0 mL, 2.5 mmol) to an efficiently stirred solution of diisopropyl amine (0.35 mL, 2.5 mmol) in 5 mL of THF at -10°C. The reaction was stirred for 30 min then 3SnH (0.72 g, 2.5 mmol) was added at -30°C. The reaction turned pale green at this point. The yield of Bu₃SnMe was 90% as determined by gas chromatographic analysis with dodecane as an internal standard.

Entry 6: To an efficiently stirred solution of Me₃SnSnMe₃ (1.63 g, 5.0 mmol) in 20 mL of THF was added MeLi (3.6 mL, 5 mmol) while maintaining the temperature below -40°C. After 20 min the reaction was quenched with excess Mel and the yield (80%) of Me₄Sn was calculated as before.

Reaction of 1-Decyne (91) with Bu3SnAlEt2 (90); Representative Procedures for the Preparation of 2-Tributylstannyl-1-alkenes (92a, 92b, 93a and 93b): The following three procedures are representative of the addition of 91 to 90 (Table V).

(a) Using SnCl2 and n-BuLi (Method A): n-BuLi (11.4 mL, 28.44 mmol) was added dropwise to a solution of stannous chloride (1.8 g, 9.48 mmol) in 15 mL of dry THF at 0°C. After stirring for 30 min, diethylaluminum chloride (9.48 mL, 9.48 mmol) was added and the reaction stirred for a further 0.5 h. 1-Decyne (0.437 g, 3.16 mmol) and catalyst (0.3 mmol) were then added at -30°C. The reaction was stirred

for 3 h after which it was allowed to warm to 0°C. Normal workup gave vinyl stannanes **92a** and **93a** in the ratios shown in the Table 2.

(b) Using Bu3SnH and LDA (Method B): Bu3SnH (1.45 g, 5 mmol) was added to 5 mL of THF containing lithium diisopropyl amide (prepared by dropwise addition of *n*-BuLi (2 mL, 5 mmol) to an efficiently stirred solution of diisopropyl amine (0.70 mL, 5 mmol) in 5 mL of THF at -10^{-} C) while maintaining the temperature below -30° C. After stirring for 0.5 h, Et2AlCl (5 mL, 5 mmol) was added dropwise at -30° C. The clear solution was further stirred for 0.5 h then 1-decyne (0.22 g, 1.6 mmol) in 5 mL of THF was added dropwise followed by the addition of a catalyst (0.16 mmol). The reaction turned orange at this time. After 3 h the reaction was warmed to 0°C and subjected to normal workup.

(c) General Procedure for Slow Addition Reactions (Method C): To 3.2 mmol of lithium diisopropyl amide in 5 mL of THF was added Bu₃SnH (0.87 g, 3 mmol) in 12 mL THF at -30°C. After stirring for 0.5 h, Et₂AlCl (2.8 mL, 2.8 mmol) in hexane was added dropwise. After stirring for 0.5 h, one half of the 1-decyne to be reacted (0.32 g, 2.3 mmol) was added in 15 mL of THF. This was followed by addition of CuCN (0.022 g, 0.23 mmol) in 5 mL of THF. The remainder of the alkyne was added over 0.75 - 1.0 h. The reaction was stirred at -30°C for 3 h then warmed to 0°C and subjected to normal workup.

The experimental results of the addition of 91 to 90 are summarized in Table V, and the products gave the following spectral data.

179

2-Tributylstannyl-1-decene (92a, Scheme 39): ¹H NMR (CDCl₃) δ 0.82 (t, 3H, CH₃, *J* = 7.5 Hz), δ 0.88 (t, 9H, CH₃, *J* = 7.0 Hz), 1.2-1.4 (m, 22H, CH₂), 1.45-1.6 (m, 8H, CH₂), 2.23 (ddt, 2H, C=CCH₂, *J* = 7.56 Hz, 1.45 Hz, 1.04 Hz), 5.09 (dt, 1H, C=CH, *J* = 2.9 Hz, 1.04 Hz, ³*J*_{Sn-H} = 64 Hz), 5.66 (dt, 1H, C=CH, *J* = 2.9 Hz, 1.45 Hz, ³*J*_{Sn-H} = 140 Hz). Allylic region decoupled: δ 2.21 (s), 5.09 (d, 1H, C=CH, *J* = 2.9 Hz), 5.66 (d, 1H, C=CH, *J* = 2.9 Hz); ¹³C NMR 156.0 (C=CSnBu₃), 124.5 (C=CH₂), 41.4, 32.0, 29.7, 29.5, 29.3, 29.1, 27.4, 22.6, 13.6, 9.7; ¹¹⁹Sn NMR = - 45.6; GC/MS, m/e (relative intensity), 373 (M⁺ - 56, 37.5), 291 (100.0). Anal Calcd for C₁₈H₃₇Sn: 373.1917. Found: 373.1920; for C₁₄H₂₉Sn: 317.1291. Found: 317.1288.

E-Tributylstannyl-1-decene (93a): ¹H NMR (CDCl₃) δ 0.8 (t, 3H, CH₃, J = 5.7 Hz), 0.88 (t, 9H, CH₃, J = 7.0 Hz), 1.2-1.4 (m, 22H, CH₂), 1.45-1.6 (m, 8H, CH₂), 2.2 (dq, 2H, C=CCH₂, J = 5.5 Hz, 2.0 Hz), 5.85 (dt, 1H, C=CH, J = 18.0 Hz, 2.0 Hz, ²J_{Sn-H} = 60 Hz), 5.96 (dt, 1H, C=CH, J = 18.0 Hz, 5.5 Hz, ³J_{Sn-H} = 47 Hz). Allylic region decoupled, 2.2 (s, 2H), 5.85 (d, 1H, C=CH, J = 18.0 Hz), 5.96 (d, 1H, C=CH, J = 18.0 Hz); ¹³C NMR 155.3 (C=CSnBu₃), 121.4 (C=CH), 42.2, 31.9, 29.5, 29.3, 28.2, 27.3, 24.4, 22.7, 13.6, 10.0; ¹¹⁹Sn NMR = - 50.1; GC/MS, m/e (relative intensity), 373 (M⁺ - 56, 31.25), 291 (100.0). Anal Calcd for C18H37Sn: 373.1917. Found: 373.1916; for C14H29Sn: 317.1291. Found: 317.1290.

Independent preparation of 93a (Scheme 39): To 1-Decyne (0.138 g, 1.0 mmol) in 5 mL of *n*-hexanes DIBALH (1 mL, 1.0 mmol) was added dropwise with stirring. The reaction was refluxed for 2 h after which time the solvent was removed under vacuum. THF (5 mL) was then added and the solution was cooled to -78° C whereupon *n*-BuLi (0.8 mL, 2.0 mmol) and HMPA (2 mL) were added. The reaction

was stirred for 0.5 h then Bu₃SnCl (0.65 g, 2.0 mmol) was added and the reaction further stirred for an hour at -78°C and 2 h at 0⁻C. Normal workup gave 0.32 g (76%) of (93a). Bu₄Sn was the other product detected.

Preparation of 92b and 93b (Scheme 39): The reaction was conducted as described above (Method B), but was quenched by stirring with ²HCl for 0.5 h and then processed in the usual fashion.

Z-1-Deuterio-2-tributylstannyl-1-decene (92b): ¹H NMR (CDCl₃) δ 0.88 (t, 9H, CH₃, J = 7.0 Hz), 0.9 (t, 3H, CH₃, J = 7.7 Hz), 1.2-1.4 (m, 22H, CH₂), 1.45-1.6 (m, 8H, CH₂), 2.24 (dt, 2H, C=CCH₂, J = 7.66 Hz, 1.5 Hz), 5.66 (t, 1H, C=CH, J = 1.5 Hz, ³J_{Sn-H} = 140 Hz); GC/MS, m/e (relative intensity), 374 (M⁺ - 56, 97). Anal Calcd for C14H₂₈Sn²H: 318.1354. Found: 318.1350.

Z-2-Deuterio-1-tributylstannyl-1-decene (93b): ¹H NMR (CDCl3) δ 0.88 (t, 9H, CH3, J = 7.0 Hz), 0.9 (t, 3H, CH3, J = 5.7 Hz), 1.2-1.4 (m, 22H, CH2), 1.45-1.6 (m, 8H, CH2), 2.2 (dt, 2H, C=CCH2, J = 5.5 Hz, 3.0 Hz), 5.85 (t, 1H, C=CH, J = 3.0 Hz, ²J_{Sn-H} = 60 Hz); GC/MS, m/e (relative intensity), 374 (M⁺ - 56, 100): Anal Calcd for C14H28Sn²H: 318.1354. Found: 318.1361. Reaction of 1-Nonyne (95) with [(Bu3Sn-9-BBNOMe)⁻]Li⁺ (94); Representative Procedures for the Preparation of 2-Tributylstannyl-1alkenes (96a, 97a, 96b and 97b): The following procedure is representative of the addition of 95 to 94, (Scheme 40).

Bu₃SnH (1.5 g, 5.8 mmol) in THF (10 mL) was added to 5 mL of THF containing lithium diisopropyl amide (prepared by dropwise addition of *n*-BuLi (2.5 mL, 6.0 mmol) to an efficiently stirred solution of diisopropyl amine (0.84 mL, 6.0 mmol) in 5 mL of THF at -10° C) while maintaining the temperature below -30° C. After stirring for 0.5 h, B-methoxy-9-borabicyclo[3.3.1]nonane (11.6 mL, 5.8 mmol) was added dropwise at -78° C. The clear solution was warmed to 0° C and further stirred for 0.5 h. The reaction was cooled to -78° C and then 1-nonyne (0.38 g, 3.0 mmol) in 5 mL of THF was added dropwise followed by the addition of a catalyst (0.3 mmol). The reaction turned orange at this point. After 3 h at -65° C, a coupling agent was added. Stirring was continued for 1 h and then the reaction was filtered through celite and then subjected to column purification. Spectral data for the various products are listed below:

2-Tributylstannyl-1-nonene (96a, Scheme 40): ¹H NMR (CDCl3) δ 0.82 (t, 3H, CH3, J = 7.5 Hz), δ 0.88 (t, 9H, CH3, J = 7.0 Hz), 1.2-1.4 (m, 20H, CH2), 1.45-1.6 (m, 8H, CH2), 2.23 (ddt, 2H, C=CCH2, J = 7.56 Hz, 1.45 Hz, 1.04 Hz), 5.09 (dt, 1H, C=CH, J = 2.9 Hz, 1.04 Hz, ${}^{3}J$ Sn-H = 64 Hz), 5.66 (dt, 1H, C=CH, J = 2.9 Hz, 1.45 Hz, ${}^{3}J_{Sn-H} = 140$ Hz); ${}^{13}C$ NMR 156.0 (C=CSnBu₃), 124.5 (C=CH₂), 41.4, 32.0, 29.5, 29.3, 29.1, 27.4, 22.6, 13.6, 9.7; ${}^{119}Sn$ NMR = -45.6; GC/MS, m/e (relative intensity), 361 (M⁺ - 56, 37.5), 291 (100.0).

E-Tributylstannyl-1-nonene (97a): ¹H NMR (CDCl₃) δ 0.8 (t, 3H, CH₃, J = 5.7 Hz), 0.88 (t, 9H, CH₃, J = 7.0 Hz), 1.2-1.4 (m, 20H, CH₂), 1.45-1.6 (m, 8H, CH₂), 2.2 (dq, 2H, C=CCH₂, J = 5.5 Hz, 2.0 Hz), 5.85 (dt, 1H, C=CH, J = 18.0 Hz, 2.0 Hz, ²J_{Sn-H} = 60 Hz), 5.96 (dt, 1H, C=CH, J = 18.0 Hz, 5.5 Hz, ³J_{Sn-H} = 47 Hz); ¹³C NMR 155.3 (C=CSnBu₃), 121.4 (C=CH), 42.2, 31.9, 29.3, 28.2, 27.3, 24.4, 22.7, 13.6, 10.0; ¹¹⁹Sn NMR = - 50.1; GC/MS, m/e (relative intensity), 361 (M⁺ - 56, 31.25), 291 (100.0).

Z-1-Deuterio-2-tributyIstannyI-1-nonene (96b): ¹H NMR (CDCl₃) δ 0.88 (t, 9H, CH₃, J = 7.0 Hz), 0.9 (t, 3H, CH₃, J = 7.7 Hz), 1.2-1.4 (m, 20H, CH₂), 1.45-1.6 (m, 8H, CH₂), 2.24 (dt, 2H, C=CCH₂, J = 7.66 Hz, 1.5 Hz), 5.66 (t, 1H, C=CH, J = 1.5 Hz, ³J_{Sn-H} = 140 Hz); GC/MS, m/e (relative intensity), 362 (M⁺ - 56, 97).

Z-2-Deuterio-1-tributylstannyl-1-nonene (97b): ¹H NMR (CDCl₃) δ 0.88 (t, 9H, CH₃, J = 7.0 Hz), 0.9 (t, 3H, CH₃, J = 5.7 Hz), 1.2-1.4 (m, 20H, CH₂), 1.45-1.6 (m, 8H, CH₂), 2.2 (dt, 2H, C=CCH₂, J = 5.5 Hz, 3.0 Hz), 5.85 (t, 1H, C=CH, J = 3.0 Hz, ²J_{Sn-H} = 60 Hz); GC/MS, m/e (relative intensity), 362 (M⁺ - 56, 100).

Bu4Sn and Bu3SnSnBu3 were identified by NMR and gas chromatographic comparison with authentic samples.

In the absence of a catalyst but otherwise under the same conditions the reaction did not produce vinylstannanes.

General Procedure for the Preparation of Disubstituted

Vinylstannanes (Scheme 39): 1-Decyne (0.69 g, 5.0 mmol) in 5 mL of THF was added to a solution of 90 at -30°C (10 mmol, *vide supra*) in 20 mL of THF. This was followed by addition of CuCN (0.045 g, 0.5 mmol) at which point the reaction turned orange. After stirring for 3 h at -30°C it was warmed to 0°C (wine red in color) and subjected to two separate sets of conditions as described below:

(a) Transmetallation with *n*-BuLi: Preparation of 92c, 92d and 93d: *n*-BuLi (2.4 mL, 6.0 mmol) was added at -78° C to 1,2-dimetallo-1-alkene (prepared as described above). After stirring for 30 min an excess of allyl bromide (92c, 2x) or MeI (2x) in HMPA (5 mL, 92d and 93d) was added. The reaction was left to stir overnight. Usual workup followed by silica gel chromatography (*n*-hexanes as eluant) gave the desired products in >98% stereoisomeric purity.

5-TributyIstannyI-4(Z)-1-tridecadiene (92c): 1.6 g (68%); ¹H NMR (CDCl3) δ 0.88 (t, 12H, CH3, J = 7.0 Hz), 1.2-1.4 (m, 22H, CH2), <u>1.45-1.6</u> (m, 8H, CH2), 2.23 (dt, 2H, C=CCH2, J = 7.0 Hz, 1.5 Hz), 2.73 (ddt, 2H, C=CCH2C=C, J = 7.0 Hz, 2.0 Hz, 1.5 Hz), 4.99 (ddt, 1H, HC=CH*cis*, J = 10.0 Hz, 2.0 Hz, 1.5 Hz), 5.02 (dq, 1H, HC=CH*trans*, J = 17.0 Hz, 2.0 Hz), 5.8 (ddt, 1H, HC=CH2, J = 17.0 Hz, 10.0 Hz, 6.0 Hz), 5.96 (ddt, 1H, C=CHCH₂, J = 7.0 Hz, 2.0 Hz, 1.5 Hz, ${}^{3}J_{Sn-H} = 138$ Hz); ${}^{13}C$ NMR δ 156.0 (C=CSnBu₃), 148.0 (C=CH), 139.5 (HC=CH₂), 138.0 (C=CH₂), 115.0 (C=CCH₂C=C), 41.4, 32.0, 29.6, 29.3, 29.2, 29.1, 27.4, 22.6, 13.6, 9.7; ${}^{119}Sn$ NMR = - 52.1; GC/MS, m/e (relative intensity), 413 (M⁺ - 56, 100); Anal Calcd for C₂₁H₄₃Sn: 413.1354. Found: 413.1361.

2-Tributylstannyl-1(Z)-undecene (92d): 0.85 g (38%); ¹H NMR (CDCl₃) δ 0.88 (t, 12H, CH₃, J = 7.0 Hz), 1.2-1.4 (m, 22H, CH₂), 1.45-1.6 (m, 8H, CH₂), 1.96 (d, 3H, CH₃, J = 7.0 Hz), 2.23 (dt, 2H, C=CCH₂, J = 7.0 Hz, 1.9 Hz), 6.1 (qt, 1H, C=CH, J = 7.0, 1.9 Hz, ³J_{Sn-H} = 138 Hz); ¹³C NMR δ 145.2 (C=CSnBu₃), 134.0 (C=CH), 40.8, 30.7, 29.3, 29.2, 27.8, 26.8, 24.2, 15.5, 14.0, 10.2; ¹¹⁹Sn NMR = - 45.0; GC/MS, m/e (relative intensity), 387 (M⁺ - 56, 100); Anal Calcd for C19H39Sn: 387.2199. Found: 387.2139.

Tributylstannyl-2-methyl-1(Z)-decene (93d): 0.85 g (38%); ¹H NMR (CDCl₃) δ 0.88 (t, 12H, CH₃, J = 6.6 Hz), 1.2-1.4 (m, 22H, CH₂), 1.45-1.6 (m, 8H, CH₂), 1.78 (s, 3H, CH₃), 2.23 (dt, 2H, C=CCH₂, J = 6.7 Hz, 2.0 Hz), 5.45 (s, 1H, ³J_{Sn-H} = 75 Hz); ¹³C NMR δ 155.3 (C=CSnBu₃), 121.3 (C=CH), 42.2, 32.0, 29.5, 29.3, 29.2, 28.2, 27.3, 24.4, 22.7, 19.7, 13.6, 10.0; ¹¹⁹Sn NMR = - 49.0; GC/MS, m/e (relative intensity), 387 (M⁺ - 56, 100); Anal Calcd for C₁₉H₃₉Sn: 387.2199. Found: 387.2169.

b) Palladium-Catalyzed Cross-Coupling Reactions of 1,2-Dimetallo-1-alkenes, Preparation of 92c, 92e and 92f: To 0.74 g (1 mmol) of Pd(PPh3)₂Cl₂ in 20 mL of THF were sequentially added DIBALH (2 mL, 2 mmol; 25°C, 30 min), *cis* 1,2-dimetallo-vinyl adduct (10 mmol, prepared in a separate flask as described above) and the electrophilic coupling reagent (15.0 mmol). The reactions were stirred at overnight at room temperature. Usual workup followed by silica gel chromatography (*n*-hexanes as eluant) gave the bifunctionalized vinylstannanes. Cross-coupled products derived from reaction of the vinylstannyl bonds were not detected.

For 92c: 2.1 g (89%).

1-Phenyl-3-tributylstannyl-2(*Z*)-undecene (92e): 2.17 g (84%); ¹H NMR (CDCl₃) δ 0.88 (t, 12H, CH₃, *J* = 7.0 Hz), 1.2-1.4 (m, 22H, CH₂), 1.45-1.6 (m, 8H, CH₂), 2.25 (dt, 2H, C=CCH₂, *J* = 7.0 Hz, 2.0 Hz), 3.4 (d, 2H, C=CCH₂Ph, *J* = 7.0 Hz), 6.2 (tt, 1H, C=CCHCH₂, *J* = 7.0 Hz, 2.0, ³J_{Sn-H} = 140 Hz), 7.15-7.4 (m, 5H, Ph); ¹¹⁹Sn NMR = - 50.1; GC/MS, m/e (relative intensity), 463 (M⁺ - 56, 100).

1-Phenyl-2-tributylstannyl-1(*Z*)-decene (92f): 2.0 g (79%); ¹H NMR (CDCl₃) δ 0.88 (t, 9 H, CH₃, *J* = 7.0 Hz), 0.9 (t, 3H, CH₃, *J* = 7.0 Hz), 1.2-1.4 (m, 12H, CH₂), 1.45-1.6 (m, 18H, CH₂), 2.25 (dt, 2H, C=CCH₂, *J* = 7.0 Hz, 1.5 Hz), 6.15 (t, 1H, C=CH, *J* = 1.5 Hz, ³J_{Sn-H} = 135 Hz), 7.1-7.4 (m, 5H, Ph); ¹¹⁹Sn NMR = - 47.0; GC/MS, m/e (relative intensity), 449 (M⁺ - 56, 100).

General Procedure for the Preparation of Disubstituted

Vinylstannanes (Scheme 40) 1-Nonyne (0.38 g, 3.0 mmol) in 5 mL of THF was added to a solution of 94 at -65°C (5.8 mmol, *vide supra*) in 20 mL of THF. This was followed by addition of CuBr (0.06 g, 0.3 mmol) at which point the reaction turned orange. After stirring for 3 h at -65°C CuBr (0.6 g, 3.0 mmol) was added and the reaction allowed to stir further for an hr. Allyl bromide (0.8 mL, 9.0 mmol) was then

added and the reaction was warmed to 0° C (wine red in color). Oxidation with NaOH(15 mL) and H₂O₂ (5 mL), followed by column purification (hexanes as the eluant) resulted in the desired products in the yields reported in Scheme 40.

In cases where Pd^o was the coupling agent, the initial reaction solution containing the 1,2-dimetallo adduct was added *via* a canula to a solution of the electrophile (6.0 mmol) in 5 mL of THF and Pd^o (0.15 mmol) at room temperature. The palladium catalyzed reactions were stirred further for overnight. All reactions were subjected to normal workup followed by flash chromatography to give the indicated products whose spectral data are reported below:

5-Tributylstannyl-4(Z)-1-dodecadiene (96c): 1.16 g (89%); ¹H NMR (CDCl3) δ 0.88 (t, 12H, CH3, J = 7.0 Hz), 1.2-1.4 (m, 20H, CH2), 1.45-1.6 (m, 8H, CH2), 2.23 (dt, 2H, C=CCH2, J = 7.0 Hz, 1.5 Hz), 2.73 (ddt, 2H, C=CCH2C=C, J = 7.0 Hz, 2.0 Hz, 1.5 Hz), 4.99 (ddt, 1H, HC=CH*cis*, J = 10.0 Hz, 2.0 Hz, 1.5 Hz), 5.02 (dq, 1H, HC=CH*trans*, J = 17.0 Hz, 2.0 Hz), 5.8 (ddt, 1H, HC=CH2, J = 17.0 Hz, 10.0 Hz, 6.0 Hz), 5.96 (ddt, 1H, C=CHCH2, J = 7.0 Hz, 2.0 Hz, 1.5 Hz), 13C NMR δ 156.0 (C=CSnBu3), 148.0 (C=CH), 139.5 (HC=CH2), 138.0 (C=CH2), 115.0 (C=CCH2C=C), 41.4, 32.0, 29.3, 29.2, 29.1, 27.4, 22.6, 13.6, 9.7; ¹¹⁹Sn NMR = - 52.1; GC/MS, m/e (relative intensity), 399 (M⁺ - 56, 100).

3-Keto-7-tributylstannyl-6(*Z*)-tetradecene (96d): 0.8 g (53%); ¹H NMR (CDCl₃) δ 0.88 (t, 12H, CH₃, *J* = 7.0 Hz), 1.02 (t, 3H, CH₃), 1.2-1.4 (m, 20H, CH₂), 1.45-1.6 (m, 8H, CH₂), 2.08 (q, 2H, CH₂), 2.15 (t, 2H, CH₂), 2.25 (dt, 2H, C=CCH₂, *J* = 7.0 Hz, 2.0 Hz), 5.92 (tt, 1H, C=CCHCH₂, *J* = 7.0 Hz, 2.0, ${}^{3}J_{Sn-H} = 140 \text{ Hz}$; IR (cm⁻¹) 2966, 1726, 1455; ${}^{119}Sn \text{ NMR} = -57.3$; GC/MS, m/e (relative intensity), 443 (M⁺ - 56, 100).

1-Phenyl-3-tributylstannyl-2(*Z*)-decene (96e): 1.18 g (78%); ¹H NMR (CDCl₃) δ 0.88 (t, 12H, CH₃, *J* = 7.0 Hz), 1.2-1.4 (m, 20H, CH₂), 1.45-1.6 (m, 8H, CH₂), 2.25 (dt, 2H, C=CCH₂, *J* = 7.0 Hz, 2.0 Hz), 3.4 (d, 2H, C=CCH₂Ph, *J* = 7.0 Hz), 6.2 (tt, 1H, C=CCHCH₂, *J* = 7.0 Hz, 2.0, ³J_{Sn-H} = 140 Hz), 7.15-7.4 (m, 5H, Ph); ¹¹⁹Sn NMR = - 50.1; GC/MS, m/e (relative intensity), 449 (M⁺ - 56, 100).

1-Phenyl-2-tributylstannyl-1(*Z*)-nonene (96f): 0.92g (63%); ¹H NMR (CDCl₃) δ 0.88 (t, 9 H, CH₃, *J* = 7.0 Hz), 0.9 (t, 3H, CH₃, *J* = 7.0 Hz), 1.2-1.4 (m, 12H, CH₂), 1.45-1.6 (m, 18H, CH₂), 2.25 (dt, 2H, C=CCH₂, *J* = 7.0 Hz, 1.5 Hz), 6.15 (t, 1H, C=CH, *J* = 1.5 Hz, ³J_{Sn-H} = 135 Hz), 7.1-7.4 (m, 5H, Ph); ¹¹⁹Sn NMR = - 47.0; GC/MS, m/e (relative intensity), 435 (M⁺ - 56, 100).

Stannylalumination of Functionalized 1-Alkynes (Scheme 41)

Preparation of 6-Acetoxy-1-hexyne (98b): Pyridine (5.45 g, 0.069 mol), Ac₂O (6.9 g, 0.068 mol) and 5-hexyn-1-ol (98a, 6.7 g, 0.069 mol) were stirred together for 3 h at room temperature after which time the reaction was worked up in the normal manner. Vacuum distillation yielded 9.25 g (97%) of the acetate. (bp 61°C @ 10 mm Hg). GC analysis revealed a purity of 97%. ¹H NMR (CDCl₃) δ 1.62 (pentet, 2H, CH₂, J = 6.6 Hz), 1.77 (pentet, 2H, CH₂, J = 6.6 Hz), 1.96 (t, 1H, CCH, J = 1.9 Hz), 2.1 (s, 3H, COCH₃), 2.22 (dt, 2H, CCCH₂, J = 6.6 Hz, 1.9 Hz), 4.1 (t, 2H, OCH₂, J = 6.6 Hz); GC /MS, m/e (relative intensity), CI (isobutane) 141 (M⁺ +1, 100).

Preparation of 6-Tetrahydopyranyloxy-1-hexyne (98c): To 5-hexyne-1-ol (98a, 5.0 g, 0.50 mol) and freshly distilled dihydropyran (10.5 g, 0.125 mol) were added 4 drops o conc. HCl and the mixture stirred overnight at room temperature. Ether (30 mL) was then added and the mixture shaken with 10% NaOH solution until neutral. Usual workup followed by vacuum distillation yielded 8.4 g (91%) of the protected alcohol (bp 108°C @ 17 mm Hg). GC analysis revealed a purity of 98%. ¹H NMR (CDCl₃), δ 1.2-1.8 (m, 10H, CH₂), 1.96 (t, 1H, CCH, J = 1.9 Hz), 2.22 (dt, 2H, CCCH₂, J = 6.6 Hz, 1.9 Hz), 3.38 (ddd, 1H, OCH₂CH₂), 3.5 (dt, 1H, CH₂ on OTHP), 3.75 (ddd, 1H, OCH₂CH₂), 3.85 (dt, 1H, CH₂ on OTHP), 4.1 (tt, 1H, OCHO); GC /MS, m/e (relative intensity), 182 (M⁺, 100).

Preparation of 1-Bromo-5-hexyne (98d): PBr3 (4.86 mL, 0.05 mmol) was added dropwise to 5-hexyne-1-ol (98a, 13.72 g, 0.14 mol) in 50 mL of anhydrous Et₂O at -5°C. The reaction was stirred for 2 h and then warmed to room temperature. It was then quenched by pouring onto ice-cold NaHCO3 solution. Usual workup followed by distillation gave 19.8 g (88%) of the bromide (bp 68°C @ 21 mm Hg). GC analysis revealed a purity of 92%. ¹H NMR (CDCl₃) δ 1.73 (pentet, 2H, CH₂, J = 6.6 Hz), 1.96 (t, 1H, CCH, J = 1.9 Hz), 2.02 (pentet, 2H, CH₂, J = 6.6 Hz), 2.30 (dt, 2H, CCCH₂, J = 6.6 Hz, 1.9 Hz), 3.5 (t, 2H, BrCH₂, J = 6.6 Hz); GC/MS, m/e (relative intensity), CI (isobutane) 163 (M⁺ + 2, 12.5), 161 (M⁺, 14.6).

Preparation of 6-Hydroxy-2-tributylstannyl-1-hexene (99a): To an efficiently stirred solution of lithium diisopropyl amide (5.8 mmol) in 5 mL of THF was added Bu3SnH (1.69 g, 5.8 mmol) in 5 mL THF at -30°C. After stirring for 30 min Et2AlCl (5.8 mL, 5.8 mmol) was added and the reaction was further stirred for 30 min. 5-Hexyne-1-ol, 98a (0.29 g, 3.0 mmol), in 5 mL THF was added dropwise followed

by CuCN (0.026 g, 0.3 mmol). The reaction turned light orange at this point and was stirred at -30°C for 3 h, and then overnight at room temperature. The usual workup, followed by chromatography on silica gel (hexane:ethyl acetate, 96:4, as eluant) gave 0.97 g (84%) of a mixture of **99a** and **100a** (2:1). ¹H NMR (CDCl3) δ 0.88 (t, 14H, CH3, J = 6.7 Hz), 1.32 (q, 18H, CH2, J = 6.7 Hz), 1.47 (m, 12H, CH2), 1.55 (m, 3H, OCH2CH2), 2.7-3.2 (m, 3H, C=CH2), 3.6 (m, 3H, OCH2), 5.1 (dt, 1H, C=CH, J = 4.2, 1.1, ³J_{Sn-H} = 64 Hz), 5.7 (dt, 1H, C=CH, J = 4.2, 2.9, ³J_{Sn-H} = 140 Hz), 5.9 (m, 0.5H, C=CH); ¹³C NMR δ 155.2 (C=CSnBu3), 149.2 (C=CSnBu3), 127.7 (C=CH2), 125.0 (C=CH2), 62.9 (C-OH), 62.8 (C-OH), 40.9, 37.5, 32.4, 32.3, 32.2, 29.3, 29.2, 29.1, 27.5, 27.2, 25.6, 25.1, 13.6, 9.6; GC/MS, m/e (relative intensity), For **99a**: 333 (M⁺-56, 100). For **100a**: 333 (M⁺-56, 40); Anal calcd for C14H29OSn: 333.1241 Found: 333.1239.

Preparation of 6-Acetoxy-2-tributylstannyl-1-hexene (99b): 1-Acetoxy-5-hexyne (**98b**, 0.39 g, 2.8 mmol), in 10 mL THF was added dropwise to an efficiently stirred solution of Bu₃SnAlEt₂ (3.0 mmol, *vide supra*) followed by CuCN (0.012 g, 0.14 mmol). The reaction was stirred at and further stirred for 2 h. Usual workup, followed by silica gel chromatography (hexane:ethyl acetate, 95:5, as eluant) gave 1.05 g (87.5%) of **99b** in 99% purity as measured by GC analysis. ¹H NMR (CDCl₋₃) δ 0.88 (t, 9H, CH₃, *J* = 6.6 Hz), 1.32 (q, 12H, CH₂, *J* = 6.6 Hz), 1.5 (m, 8H, CH₂), 1.6 (t, 2H, CH₂O, *J* = 6.7 Hz), 2.1 (s, 3H, COCH₃), 2.3 (tt, 2H, C=CCH₂, *J* = 6.6 Hz, 1.9 Hz), 4.1 (t, 2H, CH₂O, *J* = 6.6 Hz), 5.1 (dt, 1H, C=CH, *J* = 5.0, 1.2, ³J_{Sn-H} = 63 Hz), 5.7 (dt, 1H, C=CH, *J* = 5.0, 2.9, ³J_{Sn-H} = 138 Hz); ¹³C NMR δ 154.9 (C=CSnBu₃), 125.2 (C=CH₂), 64.4 (OCH₂), 40.8, 29.1, 28.3, 27.3, 25.9, 20.9, 13.6, 9.6; ¹¹⁹Sn NMR = - 44.7; GC/MS, m/e (relative intensity), 375 (M⁺-56, 61); Anal calcd for C₁6H₃1O₂Sn: 375.1346. Found: 375.1353.

Preparation of 6-Tetrahydropyranyloxy-2-tributylstannyl-1-hexene (99c): A solution of Bu₃SnAlEt₂ (5.8 mmol) in 10 mL of THF was prepared as described above. 6-Tetrahydropyranyloxy-1-hexyne (98c, 0.546 g, 3.0 mmol), in 5 mL THF was added dropwise with stirring, followed by CuCN (0.02 g, 0.3 mmol). The reaction was stirred at -30°C for 3 h after which time it turned clear yellow. The reaction was then warmed to room temperature and subjected to the usual workup. This was followed by chromatography on silica gel (hexane:ethyl acetate, 99:1, as eluant) to give 1.05 g (75%) of **95c** in >99% purity. ¹H NMR (CDCl₃) δ 0.88 (t, 9H, CH₃, J = 6.6 Hz), 1.32 (q, 12H, CH₂, J = 6.6 Hz), 1.5 (m, 8H, CH₂), 1.6 (t, 2H, CH₂O, J = 6.7Hz), 2.3 (tt, 2H, C=CCH₂, J = 6.6 Hz, 1.9 Hz), 3.38 (ddd, 1H, OCH₂CH₂), 3.5 (tt, 1H, CH₂ on OTHP), 3.75 (ddd, 1H, OCH₂CH₂), 3.85 (tt, 1H, CH₂ on OTHP), 4.6 (tt, 1H, OCHO), 5.1 (dt, 1H, C=CH, $J = 3.0, 1.2, {}^{3}J_{Sn-H} = 64$ Hz), 5.7 (dt, 1H, C=CH, $J = 3.0, 1.2, {}^{3}J_{Sn-H} = 140 \text{ Hz}$; ${}^{13}C \text{ NMR} 155.4 \text{ (C=CSnBu3)}, 124.8$ (C=CH2), 98.7 (OCHO), 67.4 (OCH2), 62.1 (OCH2), 41.1, 30.8, 29.5, 29.1, 27.3, 26.3, 25.5, 19.6, 13.6, 9.6; GC/MS, m/e (relative intensity) 417 (M⁺-56, 2,3); Anal calcd for C19H37O2Sn: 417.1816. Found: 417.1808.

Preparation of 6-Bromo-2-tributylstannyl-1-hexene (99d). 1-Bromo-5-hexyne (98d, 0.48g, 3 mmol) was added to a solution of Bu₃SnAlEt₂ (5.8 mmol) in 10 mL of THF followed by CuCN (0.02 g, 0.3 mmol). The reaction was stirred at -30°C for 3 h, then warmed to room temperature. The usual workup, followed by chromatography on silica gel (hexane, as eluant) gave 0.75 g (56%) of 99d and 30% of the cyclized product (100u') presumably arising from the intramolecular cyclization of the trans regioisomer (100d). ¹H NMR (CDCl₃) δ 0.88 (t, 9H, CH₃, J = 6.6 Hz), 1.32 (q, 12H, CH₂, J = 6.7 Hz), 1.40 (m, 8H, CH₂), 1.85 (t, 4H, CH₂, J = 6.7 Hz), 2.3 (tt, 4H, C=CCH₂, J = 6.6 Hz, 1.9 Hz), 3.41 (t, 4H, CH₂Br, J = 6.6 Hz), 5.1 (dt, 1.5H, C=CH, $J = 3.0, 1.2, {}^{3}J_{Sn-H} = 64$ Hz), 5.7 (dt, 1.5H, C=CH, $J = 3.0, 1.9, {}^{3}J_{Sn-H} = 140$ Hz); For cyclized product: ¹H NMR (CDCl₃) δ 5.9 (brs, 0.5H, C=CH, ${}^{2}J_{Sn-H} = 66$ Hz); ¹³C NMR δ 155.4 (C=CSnBu₃), 125.3 (C=CH₂), 40.3 (CH₂Br), 32.4, 30.6, 29.1, 27.4, 27.3, 13.6, 9.6; GC/MS, m/e (relative intensity) For **99d**: 395 (M⁺-56, 2); For **100d'**: 315 (M⁺-80, 75); Anal calcd for C14H₂₈BrSn: 395.0397. Found: 395.0398.

Preparation of 6-Cyano-2-tributyIstannyI-1-hexene (99e): 1-Cyano-5-hexyne (98e, 0.24 g, 2.2 mmol), in 10 mL THF was added dropwise to an efficiently stirred solution of Bu₃SnBBN-OMe (3.0 mmol, *vide supra*) followed by CuBr (0.04 g, 0.22 mmol). The reaction was stirred at -70°C for 3 h.CuBr 90.4 g, 2.2 mmol) was then added followed by the addition of MeOH after 2 h of stirring. Usual workup, followed by silica gel chromatography (hexane:ethyl acetate, 95:5, as eluant) gave 0.48 g (81.5%) of 99e in 99% purity as measured by GC analysis. ¹H NMR (CDCl₃) δ 0.88 (t, 9H, CH₃, *J* = 6.6 Hz), 1.32 (q, 12H, CH₂, *J* = 6.6 Hz), 1.5 (m, 8H, CH₂), 1.6 (t, 2H, CH₂CN *J* = 6.7 Hz), 2.3 (tt, 2H, C=CCH₂, *J* = 6.6 Hz, 1.9 Hz), 5.1 (dt, 1H, C=CH, *J* = 5.0, 1.2, ³J_{Sn-H} = 63 Hz), 5.7 (dt, 1H, C=CH, *J* = 5.0, 2.9, ³J_{Sn-H} = 138 Hz); ¹³C NMR δ 154.9 (C=CSnBu₃), 125.2 (C=CH₂), 64.4 (OCH₂), 40.8, 29.1, 28.3, 27.3, 25.9, 20.9, 13.6, 9.6; ¹¹⁹Sn NMR = - 44.7; GC/MS, m/e (relative intensity), 342 (M⁺-56, 100).

General procedure for the preparation of disubstituted functionalzed vinyl stannanes - Preparation of 9-Hydroxy-5tributylstannyl-4(E)-2-nonadiene (99f): To an efficiently stirred solution of lithium diisopropyl amide (4.0 mmol) in 5 mL of THF was added Bu3SnH (1.0 mL, 3.8

mmol) in 5 mL THF at -30°C. After stirring for 30 min 9-BBNOMe (0.6 mL, 3.5 mmol) was added and the reaction was further stirred for 30 min. 5-Hexyne-1-ol (98a) (0.22 g, 2.2 mmol), in 5 mL THF was added dropwise followed by CuBr (0.04 g, 0.22 mmol). The reaction turned light orange at this point and was stirred at -70°C for 3 h, and then added CuBr (0.4 g, 2.2 mmol). After i hr of stirring allyl bromide (0.23 g, 6.0 mmol) was added. The reaction was stirred overnight at room temperature. The usual workup, followed by chromatography on silica gel (hexane:ethyl acetate, 6:1, as eluant) gave 0.53 g (57%) of **99f**.¹H NMR (CDCl₃) δ 0.88 (t, 9H, CH₃, J = 6.7 Hz), 1.32 (q, 12H, CH₂, J = 6.7 Hz), 1.47 (m, 8H, CH₂), 1.55 (m, 2H, OCH₂CH₂), 2.32 (dt, 2H, CH₂, J = 6.7 Hz, 1.5 Hz), 2.73 (ddt, 2H, C=CCH₂C=C, J = 7.0 Hz, 2.0 Hz, 1.5 Hz), 3.6 (m, 2H, OCH₂), 4.99 (ddt, 1H, HC=CH*cis*, J = 10.0 Hz, 2.0 Hz, 1.5 Hz). 5.02 (dq, 1H, HC=CHtrans, J = 17.0 Hz, 2.0 Hz), 5.8 (ddt, 1H, HC=CH₂, J = 17.0Hz, 10.0 Hz, 6.0 Hz), 5.96 (ddt, 1H, C=CHCH₂, J = 7.0 Hz, 2.0 Hz, 1.5 Hz, ${}^{3}J_{Sn-H}$ = 138 Hz); ¹³C NMR δ 155.2 (C=CSnBu₃), 139.5 (HC=CH₂), 127.7 (C=CH₂), 115.0 (C=CCH₂C=C), 62.9 (C-OH), 40.9, 37.5, 32.4, 32.3, 32.2, 29.3, 29.2, 29.1, 27.5, 27.2, 25.6, 25.1, 13.6, 9.6; GC/MS, m/e (relative intensity), For 99f: 373 (M+-56, 100).

Preparation of 9-Acetoxy-5-tributylstannyl-4(*E*)-2-nonadiene (99g): 1.26 g (73%) of 99g in 99% purity as measured by GC analysis. ¹H NMR (CDCl₃) δ 0.88 (t, 9H, CH₃, J = 6.6 Hz), 1.32 (q, 12H, CH₂, J = 6.6 Hz), 1.5 (m, 8H, CH₂), 1.6 (t, 2H, CH₂O, J = 6.7 Hz), 2.1 (s, 3H, COCH₃), 2.3 (tt, 2H, C=CCH₂, J = 6.6 Hz, 1.9 Hz), 2.73 (ddt, 2H, C=CCH₂C=C, J = 7.0 Hz, 2.0 Hz, 1.5 Hz), 4.1 (t, 2H, CH₂O, J = 6.6 Hz), 4.99 (ddt, 1H, HC=CH*cis*, J = 10.0 Hz, 2.0 Hz, 1.5 Hz), 5.02 (dq, 1H, HC=CH*trans*, J = 17.0 Hz, 2.0 Hz), 5.7 (dt, 1H, C=CH, $J = 5.0, 2.9, {}^{3}J_{Sn-H} = 138$ Hz); {}^{13}C NMR δ 154.9 (C=CSnBu₃), 125.2 (C=CH₂), 115.0 (C=CCH₂C=C), 64.4 (OCH₂), 40.8, 29.1, 28.3, 27.3, 25.9, 20.9, 13.6, 9.6; 119 Sn NMR = - 44.7; GC/MS, m/e (relative intensity), 415 (M⁺-56, 100).

Preparation of 9-Tetrahydropyranyloxy-5-tributylstannyl-4(*E*)-2nonadiene (99h): 0.81 g (53%) of 99h in >99% purity. ¹H NMR (CDCl₃) δ 0.88 (t, 9H, CH₃, *J* = 6.6 Hz), 1.32 (q, 12H, CH₂, *J* = 6.6 Hz), 1.5 (m, 8H, CH₂), 1.6 (t, 2H, CH₂O, *J* = 6.7 Hz), 2.3 (tt, 2H, C=CCH₂, *J* = 6.6 Hz, 1.9 Hz), 2.73 (ddt, 2H, C=CCH₂C=C, *J* = 7.0 Hz, 2.0 Hz, 1.5 Hz), 3.38 (ddd, 1H, OCH₂CH₂), 3.5 (tt, 1H, CH₂ on OTHP), 3.75 (ddd, 1H, OCH₂CH₂), 3.85 (tt, 1H, CH₂ on OTHP), 4.1 (t, 2H, CH₂O, *J* = 6.6 Hz), 4.6 (tt, 1H, OCHO), 4.99 (ddt, 1H, HC=CH*cis*, *J* = 10.0 Hz, 2.0 Hz, 1.5 Hz), 5.02 (dq, 1H, HC=CH*trans*, *J* = 17.0 Hz, 2.0 Hz), 5.7 (dt, 1H, C=CH, *J* = 3.0, 1.2, ³J_{Sn-H} = 140 Hz); ¹³C NMR 155.4 (C=CSnBu₃), 124.8 (C=CH₂), 115.0 (C=CCH₂C=C), 98.7 (OCHO), 67.4 (OCH₂), 62.1 (OCH₂), 41.1, 30.8, 29.5, 29.1, 27.3, 26.3, 25.5, 19.6, 13.6, 9.6; GC/MS, m/e (relative intensity) 457 (M⁺-56, 52.3).

Preparation of 9-Bromo-5-tributylstannyl-4(*E*)-2-nonadiene (99i). 0.78 g (53%); ¹H NMR (CDCl₃) δ 0.88 (t, 9H, CH₃, J = 6.6 Hz), 1.32 (q, 12H, CH₂, J = 6.7 Hz), 1.40 (m, 8H, CH₂), 1.85 (t, 4H, CH₂, J = 6.7 Hz), 2.3 (tt, 4H, C=CCH₂, J = 6.6 Hz, 1.9 Hz), 2.73 (ddt, 2H, C=CCH₂C=C, J = 7.0 Hz, 2.0 Hz, 1.5 Hz), 3.41 (t, 4H, CH₂Br, J = 6.6 Hz), 4.99 (ddt, 1H, HC=CH*cis*, J = 10.0 Hz, 2.0 Hz, 1.5 Hz), 5.02 (dq, 1H, HC=CH*trans*, J = 17.0 Hz, 2.0 Hz), 5.7 (dt, 1.5H, C=CH, $J = 3.0, 1.9, {}^{3}J_{Sn-H} = 140$ Hz); ${}^{13}C$ NMR δ 155.4 (C=CSnBu₃), 125.3 (C=CH₂), 115.0 (C=CCH₂C=C), 40.3 (CH₂Br), 32.4, 30.6, 29.1, 27.4, 27.3, 13.6, 9.6; GC/MS, m/e (relative intensity) 435 (M⁺-56, 48). Preparation of 9-Cyano-5-tributylstannyl-4(*E*)-2-nonadiene (99j). 1.02 g (78%); ¹H NMR (CDCl₃) δ 0.88 (t, 9H, CH₃, J = 6.6 Hz), 1.32 (q, 12H, CH₂, J = 6.7 Hz), 1.40 (m, 8H, CH₂), 1.85 (t, 4H, CH₂, J = 6.7 Hz), 2.3 (tt, 4H, C=CCH₂, J = 6.6 Hz, 1.9 Hz), 2.73 (ddt, 2H, C=CCH₂C=C, J = 7.0 Hz, 2.0 Hz, 1.5 Hz), 3.41 (t, 4H, CH₂Br, J = 6.6 Hz), 4.99 (ddt, 1H, HC=CH*cis*, J = 10.0 Hz, 2.0 Hz, 1.5 Hz), 5.02 (dq, 1H, HC=CH*trans*, J = 17.0 Hz, 2.0 Hz), 5.7 (dt, 1.5H, C=CH, $J = 3.0, 1.9, {}^{3}J_{Sn-H} = 140$ Hz); ${}^{13}C$ NMR δ 155.4 (C=CSnBu₃), 125.3 (C=CH₂), 115.0 (C=CCH₂C=C), 40.3 (CH₂CN), 32.4, 30.6, 29.1, 27.4, 27.3, 13.6, 9.6; GC/MS, m/e (relative intensity) 382 (M⁺-56, 100).

Preparation of Trisubstituted Alkenes (Schemes 42 and 43)

Preparation of 5-Iodo-4(Z)-1-tridecadiene (101a): To a solution of 92c (1.4 g, 3 mmol) in CH₂Cl₂ (10 mL) was added a solution of I₂ in CH₂Cl₂ dropwise at -50°C until a faint coloration persisted. The reaction was warmed to -20°C and quenched with satd. NH₄Cl. The vinyl iodide was extracted into pentane and combined extracts were washed with water and sodium thiosulphate and then dried over potassium carbonate. silica gel chromatography with hexane as the eluant gave 101a in 72% (0.65 g) yield; ¹H NMR (CDCl₃) δ 0.87 (t, 3H, CH₃, *J* = 7.1 Hz), 1.26-1.4 (m, 12H, CH₂), 2.23 (dt, 2H, C=CCH₂, *J* = 7.0 Hz, 2.0 Hz), 2.73 (dt, 2H, C=CCH₂C=C, *J* = 6.0 Hz, 2.0 Hz), 4.99 (dq, 1H, C=CH*cis*, *J* = 10.0, 2.0 Hz), 5.02 (dq, 1H, C=CH*trans*, *J* = 17.0, 2.0 Hz), 5.8 (ddt, 1H, CH₂HC=CCH₂, *J* = 17.0,

10.0, 6.0 Hz), 6.96 (tt, 1H, C=CH, J = 6.0 Hz, 2.0 Hz); GC/MS, m/e (relative intensity), 306 (M⁺, 40).

Preparation of 101b and 101c from 101a: *n*-BuLi (1.5 mL, 3.6 mmol) was added to 101a (0.49 g, 1.6 mmol) at -78°C. After 0.5 h the reaction was quenched with excess Me3SiCl (101b) or ${}^{2}\text{H}_{2}O$ (101c) and slowly warmed to room temperature. Usual workup followed by column chromatography with *n*-hexanes as eluant gave the desired products in the yields listed below.

5-Trimethylsilyl-4(Z)-1-tridecadiene (101b): 0.3 g (78%); ¹H NMR (CDCl3) δ 0.15 (s, 9H, CH3Si), 0.87 (t, 3H, CH_3, J = 7.1 Hz), 1.26-1.4 (m, 12H, CH2), 2.23 (dt, 2H, C=CCH2, J = 7.0 Hz, 2.0 Hz), 2.73 (dt, 2H, C=CCH2HC=C, J = 6.0 Hz, 2.0 Hz), 4.99 (dq, 1H, C=CH*cis*, J = 10.0, 2.0 Hz), 5.02 (dq, 1H, C=CH*trans*, J = 17.0, 2.0 Hz), 5.8 (ddt, 1H, CH2HC=CH2, J = 17.0, 10.0, 6.0 Hz), 5.96 (tt, 1H, C=CH, J = 6.0 Hz, 2.0 Hz); ¹³C NMR δ 148.5 (C=CSiMe3), 139.3 (C=CH2), 137.5 (C=CH), 137.4 (C=CHCH2), 114.8 (C=CHCH2CH=C), 38.4, 36.2, 32.0, 29.5, 29.4, 29.3, 22.7, 13.6, 0.3; GC/MS, m/e (relative intensity), 252 (M⁺, 100). Anal Calcd for C1₆H3₂Si: 252.2273. Found: 252.2281.

5-Deuterio-4(*E*)-**1-tridecadiene** (**101c**) 0.25 g (87%); ¹H NMR (CDCl₃) δ 0.87 (t, 3H, CH₃, *J* = 7.1 Hz), 1.26-1.4 (m, 12H, CH₂), 2.20 (dt, 2H, C=CCH₂, *J* = 7.0 Hz, 2.0 Hz), 2.73 (dt, 2H, C=CCH₂HC=C, *J* = 6.0 Hz, 2.0 Hz), 5.0 (dq, 1H, C=CH*cis*, *J* = 10.0, 2.0 Hz), 5.02 (dq, 1H, C=CH*trans*, *J* = 17.0, 2.0 Hz), 5.40 (tt, 1H, C=CH, *J* = 6.0 Hz, 2.0 Hz), 5.8 (ddt, 1H, CH₂HC=CH₂, *J* = 17.0, 10.0, 6.0 Hz); ¹³C NMR δ 137.6 (HC=CH₂), 131.9 (C=CD), 127.5 (C=CH), 114.8 (C=CHCH₂CH=C), 36.7, 32.5, 31.9, 29.5, 29.3, 29.2, 22.6, 14.1; GC/MS, m/e

196
(relative intensity), 181 (M⁺, 52). Anal Calcd for C₁₃H₂₃²H: 181.1941. Found: 181.1933.

101b was also prepared from 92c via transmetallation with *n*-BuLi. Thus, to a solution of 92c (1.17 g, 2.5 mmol) in 5 mL of THF, was added *n*-BuLi (1.2 mL, 3 mmol) in 5 mL of TMEDA at -60°C. The reaction was stirred at this temperature for 2 h and then warmed to room temperature. After stirring further for 1 h, Me₃SiCl (0.6 mL, 5 mmol) was added slowly at -78°C. The reaction was warmed to room temperature and worked up as usual. silica gel chromatography with hexane as the eluant gave 101b in 63% (0.39 g) yield.

General Procedure for Palladium Catalyzed Cross-Coupling Reactions:

Preparation of 101d and 101e: To a Schlenk tube at room temperature was sequentially added Pd(Ph₃P)₄ (5 mole%) in 5 mL of benzene, benzylbromide (6 mmol) or allyl bromide (6 mmol) and vinylstannane **92d** (2.36 g, 5.0 mmol). The reaction was refluxed until palladium metal precipitated (24 h). The reaction was cooled to room temperature and partitioned between Et₂O (20 mL) and satd. KF (20 mL). After 0.5 h of vigorous stirring, Bu₃SnF was removed by filtration, the organic layer was separated, washed with brine and dried. The solvent was evaporated and the crude mixture passed through a silica gel column (hexanes:ethyl acetate, 99:1, as eluant) to give **101d** or **101e**.

1-Phenyl-2(Z)-(1-propenyl)-1-nonene (101d): ¹H NMR (CDCl₃) δ 0.9 (t, 3H, CH₃, J = 7.0 Hz), 1.2-1.5 (m, 12H, CH₂), 1.4 (d, 3H, CH₃, J = 6.6 Hz), 2.1 (dt, 2H, C=CCH₂, J = 7.0 Hz, 1.9 Hz), 3.3 (s, 2H, C=CCH₂Ph), 5.5 (qt, 1H, C=CH, J = 6.6, 1.9 Hz), 7.0-7.5 (m, 5H, Ph); ¹³C NMR δ 149.6, 136.1, 129.0, 128,2, 126.0, 110.9, 65.8, 43.0, 35.5, 31.9, 29.4, 29.3, 29.2, 22.7, 22.6, 14.0; GC/MS, m/e (relative intensity), 244 (M⁺, 12.3). Anal Calcd for C₁₈H₂₈: 244.2191. Found: 244.2187.

4(Z)-(1-Propenyl)-1-dodecene (101e): ¹H NMR (CDCl₃) δ 0.9 (t, 3H, CH₃, J = 7.0 Hz), 1.2-1.5 (m, 12H, CH₂), 1.6 (d, 3H, CH₃, J = 7.0 Hz), 1.95 (dt, 2H, C=CCH₂, J = 7.0 Hz, 1.5 Hz), 2.8 (ddd, 2H, C=CCH₂C=C, J = 7.0 Hz, 2.0 Hz, 1.5 Hz), 4.99 (ddd, 1H, C=CH*cis*, J = 10.0 Hz, 2.0 Hz, 1.5 Hz), 5.02 (dq, 1H, C=CH*trans*, J = 17.0, 2.0 Hz), 5.3 (qt, 1H, C=CH, J = 7.0 Hz, 1.5 Hz), 5.75 (ddt, 1H, HC=CCH₂, J = 17.0 Hz, 10.0 Hz, 7.0 Hz); GC/MS, m/e (relative intensity), 194 (M⁺, 100).

Preparation of (*E*)-1-Iodo-1-hexene (101f): This compound was prepared by the known procedure.^{91b} ¹H NMR (CDCl₃) δ 0.89 (t, 3H, CH₃, *J* = 7.0 Hz), 1.26-1.4 (m, 4H, CH₂), 1.98-2.0 (dt, 2H, *J* = 7.0 Hz, 1.9 Hz), 5.95 (dt, 1H, C=CHI, *J* = 15.0, 1.8 Hz), 6.5 (dt, 1H, CH=CHI, *J* = 14.8, 7 Hz). ¹³C NMR 146.6, 73.9, 35.6, 30.5, 21.9, 13.7.

Preparation of 8-Methyl-5(E), 7(E)-hexadecadiene (101g): To a solution of "Pd(Ph₃P)₂" (0.05 mmel) in 5 mL of THF, (generated *in situ* by the reaction of DIBALH (0.1 mL, 0.1 mmol) and Pd(Ph₃P)₂Cl₂ (0.037g, 0.05 mmol in THF), were sequentially added 93d, (0.50 g, 1.2 mmol) and 101f (0.211g, 1.0 mmol) at room temperature. The homogeneous reaction mixture turned black in 24 h. The reaction

mixture was diluted with ether and stirred with satd. KF. After filtration of Bu3SnF, the reaction was worked up as usual and the crude product purified by column chromatography (hexane as eluant) to give 0.14 g (88%) of **101g**. ¹H NMR (CDCl3) δ 0.86 (t, 6H, CH3, J = 7.0 Hz), 1.02-1.4 (m, 16H, CH2), 1.9 (s, 3H), 2.3 (dt, 2H, C=CCH2, J = 7.0 Hz, 1.6 Hz), 2.9 (dq, 2H, C=CCH2, J = 7.0, 1.6 Hz), 5.5 (ddt, 1H, HC=CH-C, J = 18.0 Hz, 10.0 Hz, 1.6 Hz), 5.8 (dt, 1H, C=CH-HC=C, J = 10.0 Hz, 1.6 Hz), 6.0 (ddt, 1H, CH=CH-C, J = 18.0 Hz, 10.0
Preparation of 1-Hexynyltributylstannane (101h): To a solution of 1hexyne (0.82 g, 10.0 mmol) in Et₂O (15 mL) was added dropwise *n*-BuLi (3.8 mL, 10.0 mmol) at -30°C. After 30 min Bu₃SnCl (3.25 g, 10.0 mmol) was added. The reaction was warmed to room temperature and then subjected to normal work-up. Bulbto-bulb distillation (bath temperature, 65°C @ 0.03 mm Hg) gave 3.5 g (95%); ¹H NMR (CDCl₃) δ 0.86 (t, 9H, CH₃, *J* = 7.0 Hz), 0.89 (t, 3H, CH₃, *J* = 7.0 Hz), 1.2-1.4 (m, 12H, CH₂), 1.4-1.5 (m, 10H, CH₂), 2.20 (t, 2H, CH₂, *J* = 7.0 Hz); ¹¹⁹Sn = - 68.2; GC/MS, m/e (relative intensity), 315 (M⁺ - 56, 100).

Preparation of 8-Methyl-7(*E*)-hexadecen-5-yne (101i): To a solution of 93d (0.211 g, 1.0 mmol, prepared as described earlier) and 101h (0.44 g, 1.2 mmol) at room temperature was added "Pd(Ph₃P)₂" (0.05 mmol) in 5 mL of THF, (generated *in situ* by the reaction of 2 equivalents of DIBALH and one equivalent of Pd(Ph₃P)₂Cl₂ in THF). The homogeneous reaction mixture turned black within an hour. The black reaction mixture was added to 25 mL of water and this aqueous mixture was extracted with ether (3 x 25 mL) which was back extracted with brine (1 x 25 mL) and dried over potassium carbonate. The dried extracts were filtered through alumina and concentrated under reduced pressure. The crude product was purified by column chromatography (hexane as eluant) to give 0.155g (88%) of **101i**. ¹H NMR (CDCl₃) δ 0.87 (t, 6H, CH₃, *J* = 6.7 Hz), 1.26-1.4 (m, 12H, CH₂), 1.54-1.64 (m, 4H, CH₂), 1.9 (s, 3H, CH₂), 2.1 (dt, 2H, CCCH₂, *J* = 6.7 Hz, 1.8 Hz), 2.23 (dt, 2H, C=CCH₂, *J* = 6.7 Hz, 1.9 Hz), 5.7 (t, 1H, C=CH-CC, *J* = 1.9 Hz); ¹³C NMR δ 142.9 (C=CHCC), 120.1 (C=CH), 110.1. 88.6, 79.3, 39.1, 32.7, 32.5, 31.0, 22.1, 22.0, 19.0, 13.7, 13.5; GC/MS, m/e (relative intensity) 278 (M⁺, 23.0).

Synthesis of Square-Necked Grain beetle pheromone:

Synthesis of 104: CuCN (0.36 g, 4.0 mmol) was placed in a flask equipped with an argon inlet. The flask was repeatedly (3x) evacuated (vacuum pump) and purged with argon. THF (10 mL) was injected, the reaction was cooled to -50°C when MeLi (2.84 mL, 4.0 mmol) was added slowly keeping the temperature below -50°C. The reaction was stirred for 0.5 h and dimethylphenylsilyllithium in THF (4.2 mL, 4.0 mmol) added dropwise. The resulting deep red solution was stirred for 0.5 h after which 1-butyne (0.20 g, 4.0 mmol) was added dropwise. The reaction mixture was stirred for additional 2.0 h and then quenched with MeI (2.0 mL) in HMPA (3.0 mL). The reaction mixture was warmed gradually to room temperature. The usual workup followed by column chromatography (hexanes) yielded 0.728 g of 104 (90%) in > 95% purity as judged by capillary g.c analysis. IR (NaCl) 1620, 1440, 1250, 1120, 995 cm⁻¹; 400 MHz ¹H NMR (CDCl3) δ 7.1-7.5 (m, 5H, Ph), 5.35 (dt, *J* = 18, 1.5 Hz, 1H, C=CHSi), 2.7 (tdd, *J* = 7, 6, 1.5 Hz, 2H, allylic), 1.85 (s, 3H, C=CCH3), 0.95 (t, *J* = 7 Hz, 3H,

CH₃), 0.3 (s, 6H, SiCH₃); ${}^{13}C{}^{1}H{}$ (CDCl₃) δ 159.5 (*C*=CSi), 140.4 (C=CSi), 133.8 (*ipso*), 128.6 127.7, 118.8, 35.1, 22.0, 12.5, -0.9 (SiCH₃); MS m/e (rel. intensity) 204.3 (M⁺, 30), 189.2 (100), 135 (80), 121 (60); Anal. calc. C₁₃H₂₀Si 204.1337 found 204.1334.

Synthesis of 102: Synthesis of 102 was achieved by converting the vinyl silane adduct to vinyl iodide and then cuprate followed by 1,4-addition of ethyl vinyl ketone by known procedures. Reduction of the crude material followed by acetylation completed the sequence. The following spectral data was obtained:

(*E*)-7-Methyl-6-nonen-3-ol: Conversion of vinylsilane to iodide (I2 in CH₂Cl₂) followed by purification by flash chromatography resulted in the vinyl iodide. Addition of 1.2 equiv. *n*-BuLi followed by 1 equiv. of CuBr and 1.2 equiv. of ethyl vinyl ketone gave the vinyl ketone on workup. LAH reduction gave the alcohol. IR (cm⁻¹) 3360, 2975, 1460, 1120, 970, 850; 400 MHz ¹H NMR (CDCl₃) δ 5.15 (dt, *J* = 18, 1.5 Hz, 1H, C=CH), 3.5 (1H, CHOH), 2.10 (m, 2H, allylic), 2.7 (tdd, *J* = 7, 6, 1.5 Hz, 2H, allylic), 1.65 (s, 3H, C=CCH₃), 1.4-1.5 (m, 2H, CH₂), 0.95 (t, *J* = 7 Hz, 3H, CH₃); MS CI (isobutane), m/e (rel. intensity) 157 (M⁺+ 1, 100); Anal. calc. C10H₂₀O C, 76.86; H, 12.86, found C, 76.74; H, 12.92.

(*E*)-3-Methyl-7-acetoxy-3-nonene (102): Conversion of the alcohol to the acetate 102 with acetic anhydride in pyridine yielded >95% of 102 in > 95% purity (gc analysis). IR (cm⁻¹) 2975, 1735, 1460, 1020, 955; 400 MHz ¹H NMR (CDCl₃) δ 5.10 (dt, *J* = 18, 1.5 Hz, 1H, C=C*H*), 4.9 (1H, CHO*H*, pentet, *J* = 6.8 Hz), 2.0 (s, 3H, COCH₃), 2.13 (tdd, *J* = 7, 6, 1.5 Hz, 4H, allylic), 1.4-1.5 (m, 4H, CH₂), 1.01 (t, 3H, C=CCH₃, *J* = 7 Hz), 0.85 (t, *J* = 7 Hz, 3H, CH₃); MS CI (isobutane), m/e (rel.

intensity) 199 (M⁺+ 1, 5); Anal. calc. C₁₂H₂₂O₂ C, 72.68; H, 11.18, found C, 72.85; H, 11.62.

Reaction of 1-Decynyldiethyl Aluminum with Tributyltin Hydride: To a solution of 1-decynyldiethyl aluminum (107) in THF (prepared from 1-decyne (0.138 g, 1.0 mmol) in 5 mL of THF, *n*-BuLi (0.40 mL, 1.04 mmol) and Et₂AlCl (1.0 mL, 1.0 mmol); 0°C, 0.5 h), Bu₃SnH (0.291 g, 1.0 mmol) was added dropwise and the reaction mixture stirred overnight at 0°C. Only 1-decyne and Bu₃SnH were recovered. Vinyl stannane products were not detected by gas chromatographic analysis after the normal workup.

Reaction of Bu3SnAlEt2 and Tributylstannyl Hydride: To a THF solution of Bu3SnAlEt2 (1.0 mmol) prepared by Method b was added Bu3SnH (0.291 g, 1.0 mmol) at 0°C and the reaction mixture was stirred at this temperature. Only Bu3SnH was obtained upon the usual workup. Formation of hexabutylditin was not observed even after 24 h.

Reaction of Bu3SnAlEt2 with Tributylstannyl Hydride in the Presence of Catalyst: Bu3SnAlEt2 (1.0 mmol) was prepared according to Method b. Bu3SnH (0.291 g, 1.0 mmol) and CuCN (0.004 g, 0.05 mmol) in 5 mL of THF were added to this solution at 0°C. After stirring for 0.5 h, the reaction mixture was quenched with 1N HCl and subjected to normal work-up. Hexabutylditin (0.04 g, 69%) was obtained as the only product after bulb to bulb distillation.

Reaction of Tributyltin Hydride with CuCN: No reaction was observed when Bu3SnH was reacted with CuCN in THF under argon at 0°C for 12 h.

Reaction of Bu3SnAlEt2 with CuCN: CuCN (0.004 g, 0.05 mmol) was added to a solution of Bu3SnAlEt2 (1.0 mmol, Method b) in in 5 mL of THF. The solution immediately turned red. Workup after 30 min, yielded 69% of hexabutylditin.

Reaction of 1-Decynyldiethyl Aluminum with Bu3SnAlEt2:

Decynyldiethyl aluminum (107) was transferred via a canula to a THF solution of Bu3SnAlEt₂ (1.0 mmol) while maintaining the temperature at 0°C. The reaction mixture was stirred overnight at 0°C after which it was subjected to normal workup to give 1decyne.

REFERENCES AND NOTES

(1) (a) Collman, J.; Hegedus, L.S.; Norton, J.R.; Finke, R.G.Principles and Applications of Organotransition Metal Chemistry Univ. Science Books, Mill Valley, CA 1987. (b) Kochi, J.K. Organometallic Mechanism and Catalysis Academic Press, New York 1987. (c) Negishi, Ei-ichi. Current Trends in Organic Synthesis
Pergamon Press, Oxford 1983. (d) Davies, S.G. Organotransition Metal Chemistry. Applications to Organic Synthesis Pergamon Press, Oxford 1982.

(2) (a) Lipshutz, B.H. Synthesis 1987, 325. (b) Foulon, J.P.; Bourgain-Commercon,
M.; Normant, J.F. Tetrahedron 1986, 42, 1389. (c) Taylor, R.J.K. Synthesis 1985,
364. (d) Lipshutz, B.H.; Wilhelm, R.S.; Kozlowski, J.A. Tetrahedron 1984, 40,
5005. (e) Normant, J.F.; Alexakis, A. Synthesis 1981, 841. (f) Posner, G.H. An
Introduction to Synthesis Using Organocopper Reagents Wiley Interscience, New
York 1980. (g) Normant, J.F. Pure Appl. Chem. 1978, 50, 709.

(3) Gilman, H.; Jones, R.G.; Woods, L.A. J. Org. Chem. 1952, 17, 1630.

(4) (a) Bertz, S.H.; Gibson, C.P.; Dabbagh, G. Tetrahedron Lett. 1987, 4251.(b)
Lipshutz, B.H.; Whitney, S.; Kozlowski, J.A.; Breneman, C.M. Tetrahedron Lett.
1986, 4273. (c) Bertz, S.H. Tetrahedron Lett. 1980, 3151. (d) Bertz, S.H. J. Org.
Chem. 1979, 44, 4967. (e) Ashby, E.C.; Noding, S.A. J. Org. Chem. 1979, 44,
4371. (f) Ashby, E.C.; Lin, J.J. J. Org. Chem. 1977, 44, 1099.

(5) (a) Lipshutz, B.H.; Ellsworth, E.L.; Behling, J.A.; Campbell, A.L. Tetrahedron Lett.
1988, 893. (b) Bertz, S.H.; Gibson, C.P.; Dabbagh, G. Organometallics 1988, 7,

227. (c) Knochel, P.; Yeh, M.C.P.; Berk, S.C.; Talbert, J. J. Org. Chem. 1988, 53,
2392. (d) Lipshutz, B.H.; Parker, D.A.; Nguyen, S.L.; McCarthy, K.E.; Barton, J.;
Whitney, S.; Kotsuki, H. Tetrahedron 1986, 42, 2873. (e) Ender, E. Tetrahedron
1984, 40, 641. (f) Macdonald, T.L.; Narayanan, B.A.; O'Dell, D.E. J. Org. Chem.
1981, 46, 1504. (g) Posner, G.H. Organic React. 1975, 22, 253.

(6) (a) Lipshutz, B.H.; Ellsworth, E.L.; Siahaan, T.J. J. Am. Chem. Soc. 1988, 110, 4834. (b) Lindstedt, E-L.; Nilsson, M.; Olsson, T. J. Organomet. Chem. 1987, 334, 255. (c) Yamamoto, Y. Angew. Chem. Int. Ed., Engl. 1986, 25, 947. (d) Boeckman, R.K.; Batra, T.E. J. Org. Chem. 1985, 50, 3421. (e) Salomon, R.G. Acc. Chem. Res. 1985, 18, 294. (f) Corey, E.J.; Boaz, N.W. Tetrahedron Lett. 1985, 6019. (g) Corey, E.J.; Kyler, K.; Raju, N. Tetrahedron Lett. 1984, 5115. (h) Lipshutz, B.H.; Parker, D.A.; Kozlowski, J.A.; Nguyen, S.L. Tetrahedron Lett. 1984, 5959. (i) Ghribi, A.; Alexakis, A.; Normant, J.F. Tetrahedron Lett. 1984, 3083. (j) Nakamura, E.; Kuwajima, U. J. Am. Chem. Soc. 1984, 106, 3368. (k) Lindell, S.D.; Elliot, J.D.; Johnson, W.S. Tetrahedron Lett. 1983, 48, 546. (m) Oppolzer, W.; Moretti, R.; Godel, T.; Meumier, A.; Loher, H. Tetrahedron Lett. 1983, 4971. (n) Yamamoto, Y.; Yamamoto, S.; Yatagai, H.; Ishihara, Y.; Maruyama, K. J. Org. Chem. 1982, 47, 119. (o) Drian, C. Le.; Greene, A.E. J. Am. Chem. Soc. 1981, 37, 4059.

(7) Lipshutz, B.H.; Kozlowski, J.A.; Breneman, C.M.J. Am. Chem. Soc. 1985, 107, 3197.

(8) (a) Ashby, E.J.; Watkins, J.J. J. Chem. Soc., Chem. Commun. 1976, 784. (b) Ashby, E.C.; Watkins, J.J. J. Am. Chem. Soc. 1977, 99, 5312.

(9) (a) Hogan, R.J.; Scherr, P.A.; Weibel, A.T.; Oliver, J.P. J. Organomet. Chem.
1975, 85, 265. (b) Scherr, P.A.; Hogan, R.J.; Weibel, A.T.; Oliver, J.P. J. Am.
Chem. Soc. 1974, 96, 6055. (c) Dessy, R.E.; Kaplan, F.; Coe, G.R.; Salinger, R.M.
J. Am. Chem. Soc. 1963, 85, 1191. (d) Heinzer, J.; Oth, J.F.M.; Seebach, D. Helvic.
Chim. Acta. 1985, 68, 1848.

(10) Clive, D.L.; Farina, V.; Beaulieu, P.L. J. Org. Chem. 1982, 47, 2572.

(11) House, H.O.; Koepsell, D.G.; Campbell, W.J. J. Org. Chem., 1972, 37, 1003.

(12) (a) Bertz, S.H.; Dabbagh, G. J. Am. Chem. Soc. 1988, 110, 3668. (b) Bertz,
S.H.; Dabbagh, G. Tetrahedron, Symposia-in-Print on Organocopper Chemistry 1989,
45, 425. (c) Hallnemo, G.; Ullenius, C. Tetrahedron, 1983, 39, 1621.

(13) (a) Corey, E.J.; Beames, D. J. Am. Chem. Soc. 1972, 94, 7210. (b) Corey, E.J.;
Floyd, D.M.; Lipshutz, B.H. J. Org. Chem. 1978, 43, 3418. (c) Enda, J.; Matsutani,
T.; Kuwajima, I.Tetrahedron Lett. 1984, 5307. (d) Ledlie, D.B.; Miller, G. J. Org.
Chem. 1979, 44, 1006.

(14) (a) Posner, G.H.; Whitten, C.E.; Sterling, J.J. J. Am. Chem. Soc. 1973, 95,
7788. (b) Luong-Thi, N.T.; Riviere, H. Tetrahedron Lett. 1970, 1583. (c) Lipshutz,
B.H.; Kozlowski, J.A.; Parker, D.A.; Nguyen, S.L.; McCarthy, K.E. J. Organomet.

Chem. 1985, 285, 437. (d) Malmberg, H.; Nilsson, M.; Ullenius, C. Tetrahedron lett. 1982, 3823.

(15) (a) Bertz, S.H.; Dabbagh, G.; Villacorta, G.M. J. Am. Chem. Soc. 1982, 104,
5824. (b) Bertz, S.H.; Dabbagh, G. J. Chem. Soc., Chem. Commun. 1982, 1030. (c)
Schwartz, R.H.; Filippo, S.J. J. Org. Chem. 1979, 44, 2705.

(16) (a) Lipshutz, B.H.; Kozlowski, J.A. J. Org. Chem. 1984, 49, 1147. (b) Marino,
J.P.; Fernadez de la Pradilla, R.; Laborde, E. J. Org. Chem. 1984, 49, 5279. (c)
Hamon, L.; Levisalles, J. J. Organomet. Chem. 1983, 251, 133. (d) Gorlier, J.P.;
Hamon, L.; Levisalles, J.; Wagnon, J. J. Chem. Soc., Chem. Commun. 1973, 88. (e)
Lipshutz, B.H.; Kozlowski, J.A.; Wilhelm, R.S. J. Am. Chem. Soc. 1982, 104, 2305.
(f) Corey, E.J.; Pan, B.C.; Hua, D.H.; Deardorff, D.R. J. Am. Chem. Soc. 1982, 104, 6816. (g) Corey, E.J.; Hua, D.H.; Pan, B.C.; Seitz, S.P. J. Am. Chem. Soc.
1982, 104, 6818. (h) Lipshutz, B.H.; Wilhelm, R.S.; Floyd, D.M. J. Am. Chem. Soc.
1981, 103, 7672. (i) Corriu, R.J.P.; Guerin, C.; M'Boula, J. Tetrahedron Lett. 1981, 2985. (j) Acker, R.D. Tetrahedron Lett. 1978, 2399. (k) Acker, R.D. Tetrahedron Lett.
1977, 3402. (l) Hamon, L.; Levisalles, J. Tetrahedron, Symposia-in-Print on Organocopper Chemistry 1989, 45, 489.

(17) (a) Lipshutz, B.H.; Kozlowski, J.A.; Wilhelm, R.S. J. Org. Chem. 1984, 49,
3943. (b) Lipshutz, B.H.; Kozlowski, J.A.; Breneman, C.M. Tetrahedron Lett. 1985,
5911.

(18) Massey, A.G. Comprehensive Inorganic Chemistry, Pergamon Press, Oxford 3,1976.

(19) Cotton, F.A.; Wilkinson, G. Advanced Inorganic Chemistry, Wiley Interscience, New York 1972.

(20) (a) Hope, H.; Oram, D.; Power, P.P. J. Am. Chem. Soc. 1984, 106, 1149. (b)
Edwards, P.G.; Gellert, R.W.; Marks, M.W.; Bau, R. J. Am. Chem. Soc. 1982, 104,
2072. (c) Khan, S.I.; Edwards, P.G.; Xuan, H.S.; Bau, R. J. Am. Chem. Soc. 1985,
107, 1682.

(21) (a) van Koten G.; Jastrzebski, J.T.B.H.; Muller, F.; Stam, C.H. J. Am. Chem.
Soc. 1985, 107, 697. (b) van Koten G.; Jastrzebski, J.T.B.H.; Stam, C.H.; Brevard,
C. Biological and Inorganic Copper Chemistry, K.D. Karlin and Zubieta, J, Eds.,
Adenine Press, 1985, 267-285.

(22) van Koten G.; Jastrzebski, J.T.B.H.; Noltes, J.G. J. Organomet. Chem. 1977, 140, C23.

(23) (a) van Koten G.; Jastrzebski, J.T.B.H.; Stam, C.H.; Niemann, N.C. J. Am.
Chem. Soc. 1984, 106, 1880. (b) van Koten G.; Jastrzebski, J.T.B.H.; Noltes, J.G. J.
Am. Chem. Soc. 1979, 101, 6593. (c) Hoedt, R.W.M.T.; van Koten, G.; Noltes, J.G.
J. Organomet. Chem. 1979, 179, 227. (d) van Koten, G.; Noltes, J.G. J. Organomet.
Chem. 1979, 174, 367.

(24) Dempsey, D.F.; Girolami, G.S. Organometallics. 1988, 7, 1208.

(25) Stewart, K.R.; Lever, J.R.; Whangbo, M.-H. J. Org. Chem. 1982, 47, 1472.

(26) (a) Eaborn, C.; Hitcock, P.B.; Smith, J.D.; Sullivan, A.C. J. Organomet. Chem.
1984, 263, C23. (b) Hope, H.; Olmstead, M.M.; Power, P.P.; Sandell, J.; Xu, X. J.
Am. Chem. Soc. 1985, 107, 4337. (c) Martin, S.F.; Fishpaugh, J.R.; Power, J.M.;
Giolando, D.M.; Jones, R.A.; Nunn, C.M.; Cowley, A.H. J. Am. Chem. Soc. 1988,
110, 7226. (d) Cowley, A.H.; Giolando, D.M.; Jones, R.A.; Nunn, C.M.; (e) Power,
J.M. J. Chem. Soc., Chem. Commun. 1988, 208. (f) van Koten G.; Jastrzebski,
J.T.B.H.; Noltes, J.G. Tetrahedron, Symposia-in-Print on Organocopper Chemistry
1989, 45, 569.

(27) (a) Fleming, I.; Newton, T.W. J. Chem. Soc., Perkin Trans. I 1984, 1805. (b) Fleming, I.; Newton, T.W.; Roessler, F. J. Chem. Soc., Perkin Trans. I 1981, 2527.

(28) (a) Cox, S.D.; Wüdl, F. Organometallics 1983, 2, 184. (b) Piers, E.; Chong, J.M.
J. Org. Chem. 1982, 47, 1602. (c) Westmijze, H.; Ruitenberg, K.; Meijer, J.; Vermeer,
P. Tetrahedron Lett. 1983, 2797. (d) Piers, E.; Chong, M.J.; Morton, H.E.
Tetrahedron Lett. 1981, 4905. (e) Piers, E.; Morton, H.E. J. Org. Chem. 1980, 45,
4263. (f) Piers, E.; Morton, H.E. J. Org. Chem. 1979, 46, 3437. (g) Piers, E.;
Morton, H.E. J. Chem. Soc., Chem. Commun. 1978, 1033. (h) Hudec, J. J. Chem.
Soc., Perkin Trans I 1975, 1020.

(29) (a) Taddei, M.; Mann, A. Tetrahedron Lett. 1986, 2913. (b) Fleming, I.; Rowley, M.Tetrahedron Lett. 1986, 5417. (c) Fleming, I.; Sarkar, A.K. J. Chem. Soc., Chem. Commun. 1986, 1199. (d) Fleming, I.; Tarrett, N.K. J. Organomet. Chem. 1985, 264, 99. (e) Fleming, I.; Henning, R.; Plaut, H. J. Chem. Soc., Chem. Commun. 1984, 29. (f) Fleming, I.; Newton, T.W. J. Chem. Soc., Perkin Trans. I 1984, 119.

(g) Fleming, I.; Tarret, N.K. Tetrahedron Lett. 1983, 4151. (h) Fleming, I.; Marchi, D. Synthesis 1981, 560. (i) Piers, E.; Tse, H.L. Tetrahedron Lett. 1984, 3155. (j) Piers, E.; Karunaratne, V. J. Chem. Soc., Chem. Commun. 1983, 935.

(30) (a) Chen, H-M.; Oliver, J.P. J. Organomet. Chem. 1986, 316, 255. (b) Fleming,
I.; Taddei, M. Synthesis 1985, 898. (c) Fleming, I.; Taddei, M. Synthesis 1985, 899.
(d) Chow, H-F.; Fleming, I. J. Chem. Soc., Perkin Trans. I 1984, 1815. (e) Piers, E.;
Chong, J.M. Can. J. Chem. 1988, 66, 1425. (f) Piers, E.; Morton, H.E.; Chong, M.J.
Can. J. Chem. 1987, 65, 78. (g) Piers, E.; Chong, M.J. J. Chem. Soc., Chem.
Commun. 1983, 934. (h) Piers, E.; Chong, M.J. Tetrahedron, Symposia-in-Print on
Organocopper Chemistry, 1989, 45, 363.

(31) (a) Fleming, I.; Roessler, F. J. Chem. Soc., Chem. Commun. 1980, 276. (b)
Fleming, I.; Rowley, M.; Cuadrado, P.; Gonzalez-Nogal, A-M.; Pulido, F-J.
Tetrahedron, Symposia-in-Print on Organocopper Chemistry, 1989, 45, 413. (c)
Cuadrado, P.; Gonzalez-Nogal, A-M.; Pulido, F-J.; Fleming, I. Tetrahedron Lett.
1988, 1825. (d) Morizawa, Y.; Oda, H.; Oshima, K.; Nozaki, H. Tetrahedron Lett.
1984, 1163.

(32) (a) Fleming, I.; Pulido, F-J. J. Chem. Soc., Chem. Commun. 1986, 1010. (b)
Fleming, I.; Waterson, D. J. Chem. Soc., Perkin Trans. I 1984, 1809. (c) Bernhard,
W.; Fleming, I.; Waterson, D. J. Chem. Soc., Chem. Commun. 1984, 28. (d) Ager,
D.J.; Fleming, I.; Patel, S.K. J. Chem. Soc., Perkin Trans. I 1981, 2520. (e) Fleming,
I.; Percival, A. J. Chem. Soc., Chem. Commun. 1978, 278. (f) Piers, E.; Lu, Y.F. J.
Org. Chem. 1988, 53, 926. (g) Piers, E.; Chong, M.J.; Keay, B.A. Tetrahedron Lett.
1985, 6265. (h) Piers, E.; Karunaratne, V. J. Org. Chem. 1983, 48, 1774. (i) Seitz,

D.E.; Lee, S-H. Tetrahedron Lett. 1981, 4909. (j) Seebach, D. Angew. Chem. Int.
Ed., Engl. 1979, 8, 239. (k) Seebach, D. Amberg, W. Angew. Chem. Int. Ed., Engl.
1988, 27, 1718. (l) Still, C.W. J. Org. Chem. 1976, 41, 3063.

(33) (a) George, M.V.; Paterson, D.J.; Gilman, H. J. Am. Chem. Soc. 1960, 82, 403.
(b) Gilman, H.; Shiina, K.; Aoki, D.; Gaj, B.J.; Wittenberg, D.; Brennan, T. J.
Organomet. Chem. 1968, 13, 323.

(34) (a) The infrared spectra were recorded on solutions warming to room temperature. No visible decomposition was observed within 0.5 h for silylcuprates. (b) All solutions studied contained LiCl which solubilizes CuCN. The CuCN•2LiCl complex in THF exhibits an absorbtion at $v_{CN} = 2148 \text{ cm}^{-1}$. (c) The stannylcuprates turned black while the IR were being run.

(35) Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination compounds Wiley Interscience, New York 1986.

(36)

Equilibrium constant was estimated using the expressions:

$$K_{3} = \frac{k_{3}}{k_{.3}} = \frac{[(PhMe_{2}Si)_{3}CuLi_{2}] [LiCN]}{[(PhMe_{2}Si)_{2}Cu(CN)Li_{2}] [PhMe_{2}SiLi]} = 34 \pm 10$$

$$K_{2} = \frac{k_{2}}{k_{2}} = \frac{[(PhMe_{2}Si)_{3}CuLi_{2}]}{[(PhMe_{2}Si)_{2}CuLi][PhMe_{2}SiLi]} - 32 \pm 16$$

(37) (a) Mann, B.E.; Taylor, B.F. ¹³C NMR Data for Organometallic Compounds
Academic Press, New York, 1981, p.6. (b) Harris, R.K. Nuclear Magnetic Resonance
Spectroscopy Pitman, London, 1983, p.192.

(38) (a) Brevard, C.; Granger, P. Handbook of High Resolution Multinuclear NMR
Wiley Interscience, New York 1981. (b) ²⁹Si has natural abundance of 4.7%, NMR
receptivity of 2.09 with respect to ¹³C and a gyromagnetic ratio of -5.3146. (c)
Coleman, B. NMR of Newly Accessible Nuclei Academic Press, New York, 1983, 2,
p.197. (d) Marsmann, H. NMR: Basic Principles and Progress. 1981, 17, 65. (e)
Schraml, J.; Bellama, J.H. Determination of Organic Structures by Physical Methods
Academic Press, New York, 1976, 6.

(39) (a) Bodner, G.M.; May, M.P.; McKinney, L.E. Inorg. Chem. 1980, 19, 1951.
(b) For similar observations see Krentz, R.; Pomeroy, R. Inorg. Chem. 1985, 24, 2976.

(40) (a) Buncel, E.; Venkatachalan, T.K.; Eliasson, B.; Edlund, U. J. Am. Chem. Soc.
1985, 107, 303. (b) Olah, G.A.; Huandi, R.J. J. Am. Chem. Soc. 1980, 102, 6989.

(41) (a) ⁷Li has natural abundance of 92.58%, NMR receptivity compared to ¹³C of 1540 and a gyromagnetic ratio of 10.396. (b) A minor signal at -2.05 ppm is also present which we attribute to cleavage of THF by PhMe₂SiLi. (c) Hartwell, G.E.; Allerhand, A. J. Am. Chem. Soc. 1971, 93, 4415. (d) Cox, R.H.; Terry, W.H. J. Magnetic Resonance 1974, 14, 317. (e) Günther, H.; Moskau, D.; Bast, P.; Schmalz, D. Angew. Chem. Int. Ed., Engl. 1987, 26, 1212. (42) Gilman, H.; Schulze, F.J. J. Am. Chem. Soc. 1925, 47, 2002.

(43) (a) Seitz, L.M.; Little, B.F. J. Organomet. Chem. 1969, 18, 227. (b) Seitz, L.M.;
Brown, T.L. J. Am. Chem. Soc. 1966, 88, 4140.

(44) Gay, I.D. Personal communication ..

(45) (a) Still, C.W.; Macdonald, T.L. Tetrahedron Lett. 1976, 2659. (b) Posner, G.; Lentz, C.M. J. Am. Chem. Soc. 1979, 101, 934.

(46) (a) Still, C.W. J. Am. Chem. Soc. 1977, 99, 4836. (b) Tamborski, C.; Ford,
F.E.; Soloski, E.J. J. Org. Chem. 1963, 28, 181. (c) Oliver, J.P.; Weibel, A.T. J
Organomet. Chem. 1974, 82, 281. (d) Wells, W.L.; Brown, T.L. J. Organomet.
Chem. 1968, 4, 271.

(47) (a) McFarlane, W.; White, R.F.M. *Techniques of High Resolution Multinuclear NMR Spectroscopy* Butterworth, London, **1972.** ¹¹⁹Sn has natural abundance of 8.58%, NMR receptivity of 25.2 with respect to ¹³C and a gyromagnetic ratio of -9.9756.

(48) (a) Brown, T.L.; Morgan, G.L. Inorg. Chem. 1963, 2, 736. (b) Harrison, P.G.;
Ulrich, S.E.; Zuckerman, J.J. J. Am. Chem. Soc. 1971, 93, 5398. (c) Kaesz, H.D.;
Holmes, J.R. J. Am. Chem. Soc. 1961, 83, 3903.

(49) (a) Kennedy, J.D.; McFarlane, W. J. Chem. Soc. Chem. Commun. 1974, 983.
(b) Biffar, W.; Noth, N.; Pommerening, H.; Schwerthoffer, R.; Storch, W.;
Wrackmeyer, B. Chem. Ber. 1981, 114, 49.

(50) (a) Lipshutz, B.H.; Ellsworth, E.L.; Dimock, S.H.; Reuter, D.C. in 72nd Canadian Chemical Conference and Exhibition, Victoria, BC., June 1989. (b) Lipshutz, B.H.; Ellsworth, E.L.; Dimock, S.H.; Reuter, D.C. *Tetrahedron Lett.*, 1989, 2065.

(51) This is based on the observation that reactions of "R3SnCu" as well as "R3SiCu" can be conducted in MeOH.

(52) Krauss, S.R.; Smith, S.G. J. Am. Chem. Soc. 1981, 103, 141.

(53) (a) Corey, E.J.; Boaz, N. Tetrahedron Lett. 1985, 26, 6015. (b) Corey, E.J.;
Boaz, N.Tetrahedron Lett. 1984, 25, 3063.

(54) (a) House, H.O. Accounts Chem. Res. 1976, 9, 59. (b) House, H.O.; Umen,
M.J. J. Org. Chem. 1973, 38, 3893.

(55) Smith, R.A.J.; Hannah, D.J. Tetrahedron 1979, 53, 1183.

(56) (a) Johnson, C.R.; Dutra, G.A. J. Am. Chem. Soc. 1973, 95, 7777. (b) Johnson,
C.R.; Dutra, G.A. J. Am. Chem. Soc. 1973, 95, 7783. (c) Casey, C.P.; Cesa, M.C. J.
Am. Chem. Soc. 1979, 101, 4236.

(57) Berlan, J.; Koosha, K.; Battioni, J.P. Bull. Soc. Chim. France II 1978, 575.

(58) Berlan, J.; Battioni, J.P.; Koosha, K. Bull. Soc. Chim. France II 1979, 183 and references cited therein.

(59) Christenson, B.; Olsson, T.; Ullenius, C. Tetrahedron, Symposia-in-Print on Organocopper Chemistry 1989, 45, 523.

(60) Christenson, B.; Ullenius, C. Pure and Appl. Chem. 1988, 60, 57.

(61) Lindstedt, E-L.; Nilsson, M.; Olsson, T. J. Organomet. Chem. 1987, 334, 255.

(62) (a) Jolly, P.W.; Mynott, R. Adv. Organometal. Chem. 1981, 19, 257.

(63) Salomon, R.G.; Kochi, J.K. J. Organomet. Chem. 1974, 64, 135.

(64) Lipshutz, B.H.; Ellsworth, E.L.; Siahaan, T.J. J. Am. Chem. Soc. 1989, 111, 1351.

(65) Lipshutz, B.H.; Ellsworth, E.L.; Siahaan, T.J.; Shirazi, A. Tetrahedron Lett. 1988, 6677.

(66) (a) Miyaura, N.; Yamada, K.; Suzuki, A. Tetrahedron Lett. 1979, 3437. (b)
Miyaura, N.; Suzuki, A. J. Chem. Soc., Chem. Commun. 1979, 866. (c) Zweifel, G.;
Buckland, S.J. J. Am. Chem. Soc. 1977, 99, 3184. (d) Brown, H.C. Organic
Synthesis via Organoboranes, Wiley-Interscience: New York 1975.

(67) (a) Okukado, N.; VanHorn, D.E.; Klinia, W.L.; Negishi, E. Tetrahedron Lett.
1978, 1027. (b) Zweifel, G.; Whitney, C.C. J. Am. Chem. Soc. 1967, 89, 2753. (c)
Miller, J.A.; Zweifel, G. J. Am. Chem. Soc. 1983, 105, 1383. (d) Negishi, E.
Aspects and Mechanism of Organometallic Chemistry, J.H. Brewster, Ed.; Plenum:
New York, 1978.

(68) (a) Negishi, E.; Valente, L.F.; Kobayashi, M. J. Am. Chem. Soc. 1980, 102,
3298. (b) Negishi, E.; Takahashi, T. Aldrichimica Acta 1985, 18, 31.

(69) Negishi, E. Pure and Applied Chemistry 1981, 53, 2333.

(70) (a) Hibino, J-I.; Matsubara, S.; Morizawa, Y.; Oshima, K.; Nozaki, H. *Tetrahedron Lett.* 1984, 2151. (b) Matsubara, S.; Hibino, J-I.; Morizawa, Y.; Oshima,
K.; Nozaki, H. J. Organometallic Chem. 1985, 285, 163. (c) Nonaka, T.; Okuda, Y.;
Matsubara, S.; Oshima, K.; Utimoto, K.; Nozaki, H. J. Org. Chem. 1986, 51, 4716.

(71) (a) Hibino, J-I.; Nakatsukasa, S.; Fugami, K.; Matsubara, S.; Oshima, K.; Nozaki,
H. J. Am. Chem. Soc. 1985, 107, 6416.

(72) (a) Nozaki, K.; Wakamatsu, K.; Nonaka, T.; Tückmantel, W.; Oshima, K.
Utimoto, K. Tetrahedron Lett. 1986, 2007. (b) Bihlmayer, C.; Kerschl, S.;
Wrackmeyer, B. Z. Naturforsch. 1987, 42b, 715. (c) Chu, K-H.; Wang, K.K. J. Org.
Chem. 1986, 51, 767.

(73) (a) Mitchell, T.N.; Killing, H.; Dicke, R.; Wickenkamp, R. J. Chem. Soc., Chem.
Commun. 1985, 354. (b) Chenard, B.L.; Van Zyl, C.M. J. Org. Chem. 1986, 51,

3561. (c) Chenard, B.L.; Van Zyl, C.M.; Sanderson, D.R. Tetrahedron Lett. 1986,
2801. (d) Chenard, B.L.; Laganis, E.D.; Davidson, F.; RajanBabu, T.V. J. Org. Chem.
1985, 50, 3666.

(74) (a) Mitchell, T.N.; Amamria, A.; Killing, H.; Rutschow, D. J. Organometallic
Chem., 1983, 241, C45. (b) Mitchell, T.N.; Amamria, A.; Killing, H.; Rutschow, D.
J. Organometallic Chem. 1986, 304, 257. (c) Mitchell, T.N.; Reimann, W. J.
Organometallic Chem., 1985, 281, 163. (d) Mitchell, T.N.; Amamria, A. J.
Organometallic Chem., 1983, 252, 47. (e) Killing, H.; Mitchell, T.N. Organometallics
1984, 3, 1318.

(75) (a) Hayami, H.; Sato, M.; Kanemoto, S.; Morizawa, Y.; Oshima, K.; Nozaki, H.
J. Am. Chem. Soc. 1983, 105, 4491. (b) Wakamatsu, K.; Nonaka, T.; Okuda, Y.;
Tückmantel, W.; Oshima, K.; Utimoto, K.; Nozaki, H. Tetrahedron 1986, 42, 4427.
(c) Okuda, Y.; Morizawa, Y.; Oshima, K.; Nozaki, H. Tetrahedron Lett. 1984, 2483.

(76) Okuda, Y.; Wakamatsu, K.; TÅckmantel, W.; Oshima, K.; Nozaki, H. Tetrahedron Lett. 1985, 4629.

(77) (a) Watanabe, H.; Kobayashi, M.; Saito, M.; Nagai, Y. J. Organometallic Chem.
1980, 186. (b) Watanabe, H.; Kobayashi, M.; Saito, M.; Nagai, Y. J. Organometallic Chem. 1981, 149.

(78) (a) Fugami, K.; Oshima, K.; Utimoto, K.; Nozaki, H. Tetrahedron Lett. 1986,
2161. (b) Fugami, K.; Nakatsukasa, S.; Oshima, K.; Utimoto, K.; Nozaki, H. Chem.
Lett. 1986, 869.

(79) (a) Koening, K.E.; Weber, W.P. Tetrahedron Lett. 1973, 2533. (b) Miller, R.B.;
Reichenbach, T. Tetrahedron Lett. 1974, 543. (c) Brook, A.G.; Duff, J.M.; Reynolds,
W.F J. Organometallic Chem. 1976, 121, 293. (d) Jarvie, A.W.P.; Holt, A.;
Thompson, J. J. Chem. Soc. 1976, B, 852. (e) Fleming, I.; Pearce, J. J. Chem. Soc.,
Chem. Commun. 1975, 633. (f) Calas, R.; Pillot, J.P. Bull. Soc. Chim. Fr. 1975,
2143. (g) Koening, K.E.; Weber, W.P. J. Am. Chem. Soc. 1973, 95, 3416. (h) Chan,
T.H.; Lau, P.W.K.; Mychajlowskij, W. Tetrahedron Lett. 1977, 3317. (i) Fleming, I.;
Henning, R.; Plaut, H. J. Chem. Soc., Chem. Commun. 1984, 29.

(80) (a) Stille, J.K. Angew. Chem. Int. Ed. Engl. 1986, 25, 508 and references cited therein. (b) Mitchell, T.N.; Amamria, A. J. Organometallic Chem. 1981, 210, C17. (c) Mitchell, T.N.; Amamria, A. J. Organometallic Chem. 1983, 47, 252. (d) Seyferth, D.; Weiner, M.A. J. Am. Chem. Soc. 1962, 84, 361. (e) Seyferth, D.; Vaughan, L.G. J. Am. Chem. Soc. 1964, 86, 883. (f) Wulff, W.D.; Peterson, G.A.; Bauta, W.E.; Chan, K.S.; Faron, K.L.; Gilbertson, S.R.; Kaesler, R.W.; Yang, D.C.; Murray, C.J. J. Org. Chem. 1986, 51, 277. Behling, J.R.; Babiak, K.A.; Ng, J.S.; Campbell, A.L.; Moretti, R.; Koerner, M.; Lipshutz, B.H. J. Am. Chem. Soc. 1988, 110, 2641.

(81) Kuivila, H.G. Synthesis 1970, 499.

(82) Gardette, M.; Alexakis, A.; Normant, J.F. Tetrahedron 1985, 41, 5887.

(83) (a) Campbell, J.B.; Brown, H.C. J. Org. Chem. 1980, 45, 550. (b) Molander,
G.A.; Brown, H.C. J. Org. Chem. 1981, 46, 647. (c) Miyaura, N.; Itoh, M.; Suzuki,
A. Bull. Chem. Soc. Japan 1977, 50, 2199. (d) Campbell, J.B.; Brown, H.C. J. Org.

Chem. 1980, 45, 549. (e) Yamamoto, Y.; Yatagai, H.; Maruyama, K.; Sonada, A.; Murahashi, S-I. J. Am. Chem. Soc. 1977, 99, 5652.

(84) (a) Zweifel, G.; Steele. R.B. J. Am. Chem. Soc. 1967, 89, 2754. (b) Baba, S.;
Van Horn, D.E.; Negishi, E. Tetrahedron Lett. 1976, 1927. (c) Eisch, J.J.;
Damasevitz, J.E. J. Org. Chem. 1976, 41, 2214. (d) Uchida, K.; Utimoto, K.; Nozaki,
H. J. Org. Chem. 1976, 41, 2215.

(85) Negishi, E.; Takahashi, T.; Akiyoshi, K. J. Chem. Soc., Chem. Commun. 1986, 1338.

(86) (a) Matsushita, H.; Negishi, E. J. Am. Chem. Soc. 1981, 103, 2882. (b) Negishi,
E.; Takahashi, T.; Baba, S.; VanHorn, D.E.; Okukado, N. J. Am. Chem. Soc. 1987,
109, 2393. (c) Negishi, E.; Baba, S. J. Chem. Soc., Chem. Commun. 1976, 596. (d)
Baba, S.; Negishi, E. J. Am. Chem. Soc. 1976, 98, 6729. (e) Negishi, E.; Valente,
L.F.; Kobayshi, M. J. Am. Chem. Soc. 1980, 102, 3298. (f) Kobayashi, M.; Negishi,
E. J. Org. Chem. 1980, 45, 5223.

(87) (a) Miyaura, N.; Ishiyama, T.; Ishikawa, M.; Suzuki, A. Tetrahedron Lett. 1986,
6369. (b) Miyaura, N.; Satoh, M.; Suzuki, A. Tetrahedron Lett. 1986, 3745. (c)
Miyaura, N.; Satoh, M.; Suzuki, A. Tetrahedron Lett. 1980, 2865.

(88) (a) Corey, E.J.; Beames, D.J. J. Am. Chem. Soc. 1972, 94, 7210. (b) Jung,
M.E.; Light, L.A. Tetrahedron lett. 1982, 3851.

(89) Piers, E.; Skerlj, R.T. J. Org. Chem. 1987, 52, 4423.

(90) (a) Sheffy, F.K.; Godschalx, J.P.; Stille, J.K. J. Am. Chem. Soc. 1984, 106,
4838. (b) Sheffy, F.K.; Stille, J.K. J. Am. Chem. Soc. 1983, 105, 7173.

(91) Scott, W.J.; Crisp, G.T.; Stille, J.K. J. Am. Chem. Soc. 1984, 106, 4630.

(92) Stille, J.K.; Simpson, J.H. J. Am. Chem. Soc. 1987, 109, 2138.

(93) Pierce, H.D.Jr.; Pierce, A.M.; Johnston, B.D.; Oehlschlager, A.C.; Borden, J.H.
J. Chem. Ecology 1988, 14, 2169. (b) Johnston, B.D.; Oehlschlager, A.C. J. Org.
Chem. 1986, 51, 760.

(94) (a) Kobayashi, K.; Kawanisi, M.; Hitomi, T.; Kozima, S. J. Organometallic Chem.
1982, 233, 299. (b) Kitching, W.; Olszowy, H.A.; Drew, G.M. Organometallics
1982, 1, 1244.

(95) (a) Hoffmann, D.M.; Hoffmann, R.; Fisel, C.R. J. Am. Chem. Soc. 1982, 104,
3858. (b) Henerici-olive, G.; Olive, S. Coordination and Catalysis, Verlag Chimie:
New York, 1977. (c) Bratsch, S.G. J. Chem. Ed. 1988, 65, 34.

(96) Dewar, M.J.S. Bull. Soc. Chim. Fr. 1951, 18, C79.

(97) Salomon, R.G.; Kochi, J.K. J. Organomet. Chem. 1974, 64, 135.

(98) (a) Wrackmeyer, B. Annual Reports on NMR spectroscopy, Academic Press: New York, Vol. 16, 1985 and references cited therein. (b) Wrackmeyer, B. Polyhedron 1986, 5, 1709.

(99) (a) House, H.O.; Watson, S.C.; Eastman, J.F. J. Organomet. Chem. 1967, 9,
165. (b) Gilman, H.; Cartledge, F.K.; See-Yuen, S. J. Organomet. Chem. 1963, 1, 8.

THE SYNTHESIS OF SULFONIUM MIMICS OF THE PRESUMPTIVE CARBOCATION INTERMEDIATES IN THE DIMERIZATION OF FARNESYL PYROPHOSPHATE TO SQUALENE BY SQUALENE SYNTHETASE

Introduction

Excellent inhibition of enzymes may be achieved by administration of mimics of presumptive intermediates that bind to catalytic sites but are not transformed. The efficiency of intermediate mimics as inhibitors is due to the superior ability of enzymes to stabilize intermediates formed during a catalyzed process.¹ Regulation of sterol biosynthesis in man is a therapeutically valuable goal.² A promising approach is the inhibition of enzymes involved in sterol biosynthesis. Indeed the hypocholesteremic agents most recently approved for human use are inhibitors of β -hydroxy- β -methylglutaryl CoA reductase, a regulatory enzyme early in the sterol biosynthetic process.³ As most other inhibitors of sterol biosynthesis they were discovered as natural products and not by design.

The focus of the current work is the rational design of inhibitors of enzymes involved in the biosynthesis of cholesterol that function after the formation of farnesyl pyrophosphate but are not involved in the biosynthesis of the ubiquinones (electron transfer agents that are important in cell respiration). Unlike enzymatic carbon-carbon bond formation leading to nucleic acids, proteins, carbohydrates and lipids that utilize reactions proceeding through enolate equivalents, the enzymes involved in the advanced stages of sterol biosynthesis utilize cationic processes for carbon-carbon bond formation.⁴

Work in our and other laboratories during the last decade has made it apparent that efficient inhibition of the latter enzymes can be achieved by administering sulfonium and ammonium analogs of the presumptive cationic intermediates.^{5,6} Initial investigations were aimed at design of ammonium and sulfonium intermediate analogues of carbocations presumed to be involved in the alkylation of the side chain of zymosterol (1) during biosynthesis of ergosterol (2) by the yeast *Saccharomyces cerevisae*.⁵

The enzyme responsible for this alkylation converts 1 to fucosterol 3 (Scheme 1). The mechanism suggested for yeast 24-sterol methyltransferase (24-SMT) involves generation of cationic intermediates 4 and 5. Heteroatom analogues of these species containing sulfur^{5d} (6, 7 and 8) or nitrogen^{5a-c} (9 and 10) were excellent inhibitors both *in vitro* and *in vivo* (Scheme 2). The most efficient mimics were those containing a sulfonium moiety at position 25 (compounds 6, 7, and 8). Inhibitor 7 bound yeast 24-SMT 25,000 times more tightly than the natural substrate for this enzyme and effectively inhibited the enzyme at nanomolar concentrations (K₁ ~2 nM).^{5d} The superior ability of

7 compared to 8 as an inhibitor of 24-SMT suggested the stereochemistry of alkylation was as illustrated in 4.5d

Scheme 1

It has also been shown by Benveniste⁷ that 24-methyl 25azacycloartenol (11), 25- azacycloartenol (12) and 25-methyl-25-azacycloartenol (13) as well as arsonium and sulfonium analogs of 4 were potent inhibitors of cycloartenol 24sterol methyltransferase in microsomes of maize seedlings (Scheme 3).

Scheme 2

Kinetic evidence suggests that the ionic heteroatom analogues of 4 exhibit their inhibitory power as reversible competitive inhibitors simply through Coulombic attraction between the positively charged heteroatom and nucleophile(s) responsible for stabilization of the presumptive carbocation intermediate.^{5d,7}

225

Scheme 3

This approach has led to the design of an ammonium inhibitor (14) for the dimethyl allyl pyrophosphate (15) to isopentenyl pyrophosphate (16) transformation⁸ (Scheme 4).

Similarly, sulfonium mimics (17 and 18) of presumptive cationic intermediates (19 and 20) were efficient inhibitors of bornyl pyrophosphate cyclase and α -pinene cyclase.⁹ These enzymes accept geranyl pyrophosphate, 21, or linalyl pyrophosphate, 22, as substrates and produce bornyl pyrophosphate, 23, and α -pinene, 24, respectively (Scheme 5). Inhibition by each sulfonium mimic is synergized (3-10 x)

Scheme 5

by the addition of inorganic pyrophosphate confirming tight active site binding to the postulated ion pair.

228

Squalene synthetase is a relatively small microsomal protein¹⁰ that catalyses the 1'-1 condensation of two molecules of famesyl pyrophosphate (25) to yield squalene (26). The transformations considered to be involved are the insertion of C_1 of one famesyl pyrophosphate into the C_2 - C_3 double bond of a second to generate intermediate

Scheme 6

27 which rearranges to presqualene alcohol pyrophosphate, 28 (Scheme 6). Further rearrangement of 28 via a cyclopropyl carbinyl rearrangement yields intermediate 29. Ring opening of 29 yields allylic cation 30. Hydride reduction of the latter completes the enzymatic transformation. Since the rearrangement of primary cyclopropylcarbinyl cation 28 to its tertiary isomer 29 was neither kinetically nor thermodynamically favoured in solution it was assumed that squalene synthetase exerts strict control upon cationic intermediates to achieve the regiocontrol required for biosynthesis of squalene. It was suggested that regiocontrol was, in fact, achieved as a natural consequence of the orientation between the positively and negatively charged partners in the tight ion pair generated upon cleavage of the carbon-oxygen bond in 28. An ammonium analog, 31, of intermediate, 29, has been shown to be an efficient inhibitor of squalene.¹¹

The preceeding examples reveal that ammonium and sulfonium analogues of presumptive carbocationic intermediates are efficient inhibitors of enzymes presumed to mediate processes *via* such intermediates. In all cases it is presumed that the positively charged intermediates generated during the enzymatic reactions are stabilized by nucleophilic sites located near the cationic carbons generated and that these nucleophilic sites bind to the sulfonium and ammonium intermediate mimics through Coulombic interactions.

Proposed work

The present study was undertaken to prepare the sulfonium ions 32, 33 and 34 which are analogues of the cationic intermediates 27, 29 and 30 respectively, presumed to be stabilized by squalene synthetase (Scheme 7). It was anticipated that 32-34 would be efficient inhibitors of this enzyme. Although there are several preparations of squalene

229

synthetase which could be studied, attention would be centered on the enzyme available from yeast. The inhibition would be followed by incorporation of radiolabelled farmesyl pyrophosphate into squalene.12

Η

Scheme 7

Results and discussion

Retrosynthetic analysis of 32 reveals that it can be prepared from fragments 35, 36 and 37. Fragment 35 is a homologated geraniol (38) derivative, whereas fragment 37 is a farnesol (39) derivative. The connecting fragment (36) can be visualized to be derived from an α -haloester (Scheme 8).

The thiol corresponding to **35** was prepared from geraniol (**38**) *via* homogeraniol (**40**). The latter was prepared from **38** by the method developed by Leopold.¹³Thus, Swern oxidation^{14a} of geraniol to geranial (**41**) produced less than 2% Z isomer. The aldehyde was converted to triene, **42**, by Wittig reaction using methyl triphenyl phosphonium iodide and phenyl lithium as the base.¹⁵ Hydroboration^{16a} of **42** with freshly prepared disamyl borane^{16b} gave **40** in 85% yield (Scheme 9).

Alternate strategies to prepare homogeraniol (40) *via* geranyl cyanide (43) were less satisfactory. The direct conversion of geraniol to geranyl cyanide failed in our hands (Scheme 10).¹⁷ Although preparation of 43 from geranyl bromide (44)¹⁸ was

successful,¹⁹ it was abandoned because hydrolysis of the former gave appreciable amounts of the Z isomer of 45 (Scheme 10).²⁰

Homogeraniol (40) was converted to thiolacetate, 46, by the Mitsunobu reaction.²¹ Preformation of the adduct between triphenyl phosphine and diisopropyl azodicarboxylate is essential for the success of this reaction.²² Reduction of 46 by lithium tetrahydridoaluminate gave the required thiol (47) in 53% overall yield (Scheme 11).²³

Scheme 11

Farnesyl bromide (48) was prepared from *E,E*-farnesol, 39, in an overall yield of 54% (Scheme 12).¹⁸ The latter was prepared by the method of Weiler.²⁴ At the time this work was undertaken, *E,E*-farnesol was not commercially available. It is now available from Aldrich in 98% isomeric purity. Ethyl acetoacetate was successively treated with sodium hydride, *n*-butyl lithium and geranyl bromide, 44, to give 49 in 85% yield.^{24a} Treatment of 49 with sodium hydride and diethyl phosphochloridate gave enolphosphonate 50^{24b} which was treated with mixed methyl cuprate, (formed by treatment of cuprous iodide with methyl lithium and methyl magnesium bromide) to give ethyl farnesoate, 51.^{24c} Reduction of 51 with diisobutylaluminium hydride gave E,E - farnesol, 39, in 93% yield.²⁵This was then converted to 48 in 90% yield by the procedure of Osbond.¹⁸

Scheme 12

Synthesis of sulfonium analogue 32 proceeded in 55% overall yield by coupling 47 and 48 (Scheme 13). Thiol 47 was treated with thallium ethoxide^{26a} and ethyl- α -bromo acetate according to the procedure of Detty^{26b} to produce 52 in nearly quantitative yield.

Treatment of 52 with lithium diisopropylamide²⁷ followed by addition of 48 gave 53 in excellent yield. Use of the thallium salt of thiol 47 (a soft base) avoided the 1,2-addition reactions characteristic of the harder sodium and lithium thiolates. Reduction²³ of 53 with lithium tetrahydridoaluminate gave alcohol 54 in 98% yield. Methylation⁹ of 54 with dimethyl sulfate gave 32 in 32% yield as a viscous oil (Scheme 13).

Future directions

Direct synthesis of 53 can also be envisioned as shown in Scheme 14. Thus, the dianion of thiomethyl ethyl acetate (55) can be generated by reaction with one equivalent of NaH and one equivalent of *n*-butyl lithium.^{24a} To this solution can be added one equivalent of geranyl bromide, 44, followed by one equivalent of farnesyl bromide, 48. It is visualized that reaction of geranyl bromide (44) and farnesyl bromide (48) with dianion of 55 would be a facile process and should lead to the formation of 53 directly from 44 and 48 in relatively fewer steps than the sequence in Scheme 13.

Scheme 14

SYNTHESIS OF CYCLOPROPYL SULFONIUM ION MIMIC, 33

Retrosynthetic analysis of sulfonium ion 33 revealed it could be fabricated from the umpulong (57) of 35, a cyclopropyl carbinyl fragment (58) and a ylide (59) derived from farnesol (Scheme 15).

Umpulong of thiolate, **35**, was envisioned as being derived from the thiosulfonate ester, **60**. All attempts to synthesize **60** from thiol **47** and *p*-toluene sulfonyl chloride failed (Scheme 16)²⁸ and resulted in mostly disulfide, **61**. Presumably if **60** was formed from the anion of **47** and *p*-toluene sulfonyl chloride, it reacted with remaining thiolate to produce **61**. Inverse addition of the reagents did not significantly alter the outcome of this process. Formation of the thiosulfonate ester *via* the tributyltin intermediate **62**^{28b} was also unsuccessful in our hands. Thus, reaction of **62** with with *p*-toluene sulfonyl chloride yielded a complex mixture containing **61** along with a variety of tin containing products (Scheme 16).

Scheme 16

Synthesis of 60 was achieved via reaction of homogeraniol bromide, 29 (63) with sodium *p*-toluenesulfonyl thiolate, 64 as shown in Scheme 17.³⁰

238

Scheme 17

The ylide corresponding to synthon **59** (Scheme 15) was prepared from geranyl bromide¹⁸ (**44**) by conversion to **65** (Scheme 18).³¹Ester **65** was converted to **66** by reduction with lithium tetrahydridoaluminate. Tosylation^{32a} of **66** gave **67** which was converted to the corresponding iodide (**68**) in good yield.^{32b} Iodide **68** was treated with triphenyl phosphine³³ in benzene to form the Wittig salt, **69** in 38% yield. The low yield was due to poor crystal formation. In a one pot sequence, **69** was methylated and converted to the corresponding ylide, **70**, according to the procedure of Corey.³⁴

Scheme 18

Synthesis of the cyclopropylcarbinyl fragment, 58 (Scheme 15), commenced

from the β methoxy-ethoxy-methoxy ether (71) of allyl alcohol (Scheme 19).³⁵ This was converted to the dichlorocyclo propyl carbinyl intermediate, 72, by the procedure of Joshi.³⁶ Reaction of 72 and 60 proceeded smoothly to give 73 using the procedure of deBoer.³⁷ Dehalogenation of 73 to 74 was achieved by reaction with lithium tetra hydroaluminate. Removal of the β -methoxy-ethoxy-methoxy ether of 74 to give 75 was followed by Swern oxidation to give aldehyde 76 in 56% overall yield.¹⁴ Reaction of 76 and the ylide (70, *vide supra*) gave 77 as a 1:1 mixture of *cis,trans* isomers with respect to the two chains attached to the cyclopropane. Chromatographic separation of isomers of 77 was not successful. Often unacceptably low yields (~5%) of the product were obtained along with products whose NMR spectra indicated that the cyclopropane ring had been destroyed, presumably because of the sensitivity of vinylcyclopropyl moiety towards acidic Silica Gel.

Future directions

The formation of the cyclopropyl sulfonium ion (33) can be improved by the addition of Ph₃SnCu to acetylene followed by protonolysis to produce high yields of triphenylstannyl-1-ethene, 78, as shown in Scheme 20.³⁸ Addition of the reagents (CHCl₃, NaOH, CTAB, *vide supra*)³⁶ to the alkene, 78, would result in the corresponding dichloro cyclopropyl intermediate 79. Introduction of fragment 57 followed by dehalogenation as described above should result in the formation of 80. Transmetallation of triphenylstannyl moiety followed by conversion of the resultant cyclopropyl-lithium reagent into the corresponding organozinc chloride (81) would be achieved using the procedure of Piers.³⁹ *In situ* Fu(Fih₃F)₄ caralyzed coupling of 81 with the vinyl iodide 82 should give 77 of the desired stereochemistry.³⁹

The vinyl iodide, **82**, can be prepared by the dianion of acetylene with coupling of **63** in the presence of CuCN to yield the alkynyl precursor, **83**.⁴⁰ Carboaluminationiodination of **83** should result in the stereospecific formation of **82** (Scheme 21).⁴¹ This sequence not only utilizes novel reactions but would also avoid the use of chromatographic separation in the preparation of **77** since the desired stereochemistry is fixed in **80**.

Scheme 21

STEREOSPECIFIC SYNTHESIS OF VINYL SULFONIUM MIMIC, 34

The several methods to stereospecifically prepare vinyl sulfides may be divided into two principle strategies. One involves the creation of an alkynyl sulfide followed by stereospecific reduction. Procedures available to prepare alkynyl sulfides involve the reaction of alkynyl anions with sources of electrophilic sulfur (Scheme 22a),⁴² direct displacement of alkynyl halogen by nucleophilic sulfur (Scheme 22b).⁴² Reduction of alkynyl sulfides with aluminum hydride reagents is reported to yield *E* or *Z* vinyl sulfides depending upon the reagent used (Scheme 22c).⁴³

Scheme 22

The second strategy involves reaction of a vinyl organometallic with electrophilic sulfur. Several metals have been successfully applied in this strategy. Thus, diisobutyl-aluminum hydride undergoes stereospecific *cis* hydroalumination with alkynes to give *E*-vinyl alanes (Scheme 23).^{43a} These may be converted to vinyl sulfides by a number of routes:

- a) Reaction of *E*-vinyl alanes with alkyl lithium reagents yield intermediate alanates which react with electrophilic sulfur.^{44b}
- b) Reaction of *E*-vinyl alanes with bromine produce vinyl bromides which may be reacted with nucleophilic sulfur directly in the presence of HMPA (Scheme 23b)^{44c} or via Pd^o catalysis (Scheme 23c).^{44d}

Scheme 23

Alternatively, vinyl bromides may be converted to vinyl Grignards (Scheme 23d) and thence to vinyl sulfoxides *via* sulfinic acid esters. Vinyl sulfoxides are easily reduced to vinyl sulfides *via* reaction with ethyl Grignard and cuprous iodide.^{44e}

Carbocupration of alkynes also provides a stereospecific route to E disubstituted and trisubstituted vinyl cuprates (Scheme 24). These react with both disulfides and thiosulfonate esters to yield vinyl sulfides with retention of stereochemistry.^{44f}

Scheme 24

Recently, Corey has devised a stereospecific route to divinyl sulfides involving stereospecific generation of a vinyl thiolate anion *via* reaction of vinyl lithium intermediates with styrene sulfide. The vinyl thiolates generated coupled stereospecifically with vinyl iodides when reacted as the cuprous thiolates (Scheme 25).⁴⁵

Scheme 25

Retrosynthetic analysis of 34 reveals that this sulfonium mimic of 30 can be prepared by combination of synthon 57 and the vinyl anion equivalent 84 (Scheme 26).

Reaction of farnesyl bromide (48) and dilithioacetylide in the presence of CuCN gave 85, the required alkynyl precursor of synthon 84 (Scheme 27).⁴⁰ Coupling the anion of 85 with thiosulfonate ester 60 yielded the alkynyl sulfide 86 which upon reduction with lithium tetrahydridoaluminate gave the required *E*-vinyl sulfide, 87 (Scheme 27). Methylation of 87 with CH₃I gave the sulfonium ion mimic 34 in 27% yield.

We attempted to react the thiosulfonate ester with vinyl organometallic in order to generate vinyl sulfide 87 directly from the alkynyl precursor 85 (Scheme 28). Reaction of diisobutyl aluminum hydride with 85 gave mixtures of partial and fully reduced products and was abandoned.^{44a} Reaction of diisoamyl borane with 85 cleanly gave the vinyl borane product as judged by hydrolytic workup of the initial reaction mixture.¹⁶ Conversion of the presumed *E*-1-vinyl borane (88) to vinyl sulfide 87 was attempted under conditions reported by Suzuki⁴⁶ for cross coupling reactions of vinyl boranes. One reaction used NaOH to generate a boronate anion which, on reaction with

thiosulfonate ester, 60, was expected to yield 87. This reaction consistently gave disulfide (61) and

Scheme 27

thioether (89) as the main products, presumably from competing reaction of base with thioester. Addition of (Ph3P)4Pd under similar reaction conditions gave the desired vinyl sulfide, albeit in low yield (~15%).

Scheme 28

Future directions

The results to date suggest that vinyl sulfides are formed *via* transition metal catalyzed reaction of thiosulfonates with vinyl boranes. This is consistent with literature on Pd^o catalyzed coupling of vinyl boranes with alkenyl halides in the presence of base. Experiments suggested are:

- a) Reaction of vinyl boranes with Pd° catalyst in the presence of nonhydroxylic base such as NaOMe or tertiary amines. Since catechol-boranes or 9-BBN function better in Pd° catalyzed cross-coupling reactions than diisoamyl boranes, reactions should be attempted with vinyl boranes derived from the above reagents.
- b) To ensure Pd^o remains in the proper oxidation state, a reducing species such as CuBr₂ should be added to the reaction.
- c) In order to achieve oxidative addition of Pd to electrophilic sulfur to obtain RS-Pd-X, perhaps, RSX or RSSR should be used as a sulfur source. Use of a weaker base in Pd° catalyzed cross coupling reaction of vinyl borons with thiosulfonate esters would provide a definite synthetic advantage over the existing routes.

EXPERIMENTAL

¹H NMR spectra were recorded on a Bruker WM-400 spectrometer in CDCl3. Mass spectra were obtained on a Hewlett-Packard 5985B GC/MS system at 70eV. Infrared spectra were recorded neat on a Perkin Elmer Model 599B spectrophotometer. Elemental analyses were performed by Mr. M. Yang of Simon Fraser University, Department of Biological Sciences on a Perkin Elmer Model 240 elemental analyzer. Gas chromatographic analysis were performed on a Hewlett-Packard 5880A instrument using a J and W fused silica DB-1 column (15 m x 0.25 mm i.d.), equipped with a flame ionization detector. Thin layer chromatography was conducted on aluminium sheets precoated with 60 F254 Silica Gel (E Merck, Darmstadt). All column chromatography was performed on Silica Gel 60 (230-400 mesh, E Merck, Darmstadt) as described by Still.⁴⁷

Tetrahydrofuran was freshly distilled from potassium benzophenone-ketyl, dimethyl sulfoxide, hexamethyl phosphorous triamide, diisopropyl amine, triethyl amine and dimethyl formamide were distilled from CaH₂ and stored over molecular sieves (3 A). Dichloromethane was distilled from P₂O₅ and stored over molecular sieves (4 A).

Unless otherwise stated all reactions were conducted under argon in flame dried glassware. The general work up procedure was as follows: the reaction mixture was quenched with an ice cold 10% solution of NH4Cl, the aqueous layer was extracted with ether (3 x 50 mL), the combined organic phase was washed with saturated NaCl solution, dried over anhyd. MgSO4, filtered and concentrated *in vacuo*.

Preparation of (E)-3,7-Dimethyl-2,6-octadienal (41). To a stirred solution of oxalyl chloride (29.2 g, 0.23 mol) in CH₂Cl₂ (500 mL) was rapidly added dimethyl sulfoxide (34.3 g, 0.44 mol) in CH₂Cl₂ (100 mL) at -78°C. After stirring for 5 min at the same temperature, geraniol (38, 30.8 g, 0.2 mol) was added dropwise over 10 min. After stirring for 15 min, triethylamine (140 mL, 1.0 mol) was added dropwise while maintaining the temperature below -60°C. The mixture was stirred for 5 min, then warmed to rt before addition of 100 mL of water. The aqueous layer was extracted with (2 x 300 mL) portions of CH₂Cl₂. The organic layer was washed with 1% HCl until no longer basic, then washed successively with 50 mL portions of water, 5% Na₂CO₃, water and brine. The combined organic extract was dried over anhyd. MgSO4 and concentrated in vacuo to give 34.7 g of the crude product. Flash chromatographic (hexanes/ethyl acetate, 4/1) purification gave 27.6 g (91%) of geranial 41. Gas chromatographic analysis revealed a purity of 98% with less than 2% Z isomer. ¹H NMR (CDCl3) δ 1.56 (s, 3H, vinyl methyl), 1.72 (s, 3H, vinyl methyl), 2.10 (s, 3H, C3-vinyl methyl), 2.18 (m, 4H, CH₂), 5.15 (t, 1H, C6-H), 5.82 (d, 1H, C₂-H, J = 10Hz), 9.2 (d, 1H, C₁-H, J = 10 Hz). MS, m/e (%), 153.2 (0.3), 152.3 (3.2), 94.2 (14.1), 84.2 (25.5), 41.1 (41.6) and 69.1 (100), IR, 2920, 2720, 1680, 1390, 990 and 820.

Preparation of (E)-4,8-Dimethyl-1,3,7-nonatriene (42). To methyl triphenylphosphonium iodide (38.9 g, .096 mol) in 250 mL of THF was added of 2.4 M phenyl lithium dropwise at 0°C until a permanent yellow color appeared (1 mL). Then phenyl lithium (37.3 mL, 0.089 mol) was added while keeping the temperature below 0°C. This procedure ensures that the reaction mixture is anhydrous. The deep red solution of ylide containing excess phosphonium salt was stirred for 0.5 h at rt. Geranial (41, 13.4 g, 0.088 mol) in THF (40 mL) was added dropwise at 0°C. The reaction was

252

warmed to rt and stirred overnight after which a light orange suspension was formed. The reaction was quenched by adding 2 mL of methanol. Most of the solvent was evaporated *in vacuo*. and the resulting slurry was diluted with pentane (200 mL) and decanted onto 50 g of Celite. The solids were washed with hot pentane (3 x 50 mL) and filtered through Celite. The resulting yellow solution was filtered through Florosil (50 g) to remove colored impurities. The organic solution was dried over anhyd. MgSO4 and concentrated *in vacuo* to yield 19.96 g of crude product. Distillation yielded 12.1 g (91%) of 42, b.p. 23-24°C 0.05 mm Hg (Lit. b.p. 22-24°C 0.05 mm Hg). Gas chromatographic analysis revealed a purity of 98% with presence of 1.6% Z isomer. ¹H NMR (CDCl3) δ 1.60 (s, 3H, vinyl methyl), 1.68 (s, 3H, vinyl methyl), 1.76 (s, 3H, C4-vinyl methyl), 2.03-2.14 (m, 4H, CH2), 4.96-5.11 (m, 3H, C1, C7-vinyl H), 5.85 (d, 1H, C3-vinyl H, J = 10.5 Hz), 6.65 (td, 1H, C2-vinyl H, J = 10.5 Hz), 41.1 (26.1) and 69.1 (100.0). IR , 3035, 1650, 1600, 1450, 1380, 990, 900 and 810.

Preparation of (*E***)-4,8-Dimethyl-3,7-nonadien-1-ol (40).** To diborane (50 mL, 50 mmol) in THF at -30°C was added rapidly 2-methyl-2-butene (15.4 g, 0.22 mol). The reaction was stirred at 0°C for 2 h. Concurrently, a solution of 42 (6.75 g, 45 mmol) in THF (20 mL) was added to another flask under argon. The disamyl borane was transferred *via* a canula to the addition funnel of the second flask. The temperature of both reactions was held at 0°C during the 1 hr addition. The reaction was stirred at 0°C for an additional hr, then overnight at rt. Excess disamyl borane was destroyed by addition of methanol (1 mL). After cooling to 0°C, 3 M NaOH (17 mL) was added rapidly. Then 17 mL of 30% H₂O₂ was added while the temperature was maintained below -10°C. The reaction was stirred at rt for 3 h. Usual workup gave 11.11 g of crude product. Distillation yielded 6.37 g (85%) of homogeraniol, **40**, b.p. 65-67°C 0.1mm

Hg. Gas chromatographic analysis revealed a single component. ¹H NMR (CDCl₃) δ 1.57 (s, 3H, vinyl methyl), 1.61 (s, 3H, vinyl methyl), 1.65 (s, 3H, C4-vinyl methyl), 1.96-2.07 (m, 4H, CH₂), 2.22-2.27 (q, 2H, C₂-CH₂ J = 6.6 Hz), 3.56 (t, 2H, C₁-CH₂ J = 6.6 Hz), 5.03-5.11 (m, 2H, C₃, C7-vinyl H). MS, m/e (%), 168.3 (0.1), 125 (33.5), 81.1 (22.7), 69.0 (100), 41.1 (21.5). IR , 3320, 2920, 1665, 1440, 1375, 1110, 1050, 875, 830 and 740.

Synthesis of 1-Bromo-(*E*)-3,7-dimethyl-2,6-octadiene (44). Phosphorus tribromide (3.42 g, 11.9 mmol) was added dropwise to an ice cooled solution of geraniol (38, 4.45 g, 28.8 mmol) in 25 mL of anhyd, ether. After 3 hr the reaction was quenched with ice-cold saturated NaHCO3. Usual workup gave 5.8 g (93%) of 44. Thin layer chromatography using hexane/EtOAc (4/1) as the eluant revealed a single spot. ¹H NMR (CDCl3) δ 1.57 (s, 3H, vinyl methyl), 1.67 (s, 3H, vinyl methyl), 2.0-2.13 (m, 4H, CH₂), 4.2 (d, 2H, C₁-CH₂ J = 7 Hz), 5.04-5.1 (m, 1H, C₆-vinyl H), 5.2 (t, 1H, C₂-vinyl H J = 7 Hz).

Preparation of (E)-4,8-Dimethyl-3,7-nonadienonitrile (43). Method A. To an efficiently stirred solution of KCN (0.651 g, 10 mmol) and 18-crown-6 ether (0.132 g, 0.5 mmol) in HMPA (15 mL) was added a solution of geraniol (0.77 g, 5.0 mmol) and tri-*n*- butyl phosphine (1.11 g, 5.5 mmol) in 5 mL of CH₃CN over 10 min. The flask was cooled in an ice/methanol bath and CCl4 (0.85 g, 5.5 mmol) was added. The reaction was stirred for 3 days after which time it was diluted with Et₂O (200 mL) and washed with 10% aq. citric acid (50 mL). The usual workup and purification by flash chromatography on silica using (4/1), hexane/EtOAc (R_f = 0.23), gave 0.815 g (67%) of nitrile 43. Gas chromatographic analysis revealed a purity of 97%. ¹NMR (CDCl₃) δ 1.56 (s, 3H, vinyl methyl), 1.67 (s, 3H, vinyl methyl), 1.72 (s, 3H, vinyl methyl), 2.02-2.19 (m, 4H, CH₂), 3.5 (d, 2H, C₈-CH₂ J = 7.4 Hz), 5.04-5.2 (m, 2H, vinyl H). MS, m/e (%), 164.3 (0.1), 163.3 (0.9), 162.2 (0.8), 149.2 (0.5), 123.2 (6.5), 67.2 (9.0), 41.1 (25.0) and 69.2 (100). IR, 2926, 2731, 2248, 1701, 1655, 1574, 1515, 1231, 1082, 984 and 827.

Method B. To an efficiently stirred solution of geraniol (1.0 g, 6.5 mmol), NaCN (0.645 g, 13.0 mmol) and NaI (2-5 mg) in CH₃CN (10 mL) was added a solution of Me₃SiCl (1.40 g, 15.0 mmol) in DMF (10 mL). The reaction mixture was refluxed for 8 hr after which time it was poured onto water (100 mL). The usual workup and purification by flash chromatography on silica using (4/1), hexane/EtOAc ($R_f =$ 0.23), gave 0.255 g (21%) of nitrile 43. The spectral analysis was as reported above.

Method C. To a stirred solution of geranyl bromide, 44, (5.35 g, 24.6 mmol, prepared as described below) in CH₃CN (20 mL) was successively added 18-crown-6ether (0.25 g, 0.95 mmol) and KCN (4 g, 61.4 mmol). The reaction was stirred in the dark for 6 days after which time it was filtered. The solvent was removed and the residue was titurated with hexane:EtOAc (3:1), to separate the 18-crown-6 ether. The solids were removed by filtration and the filtrate concentrated *in vacuo*. Distillation of the crude product gave 2.4 g (59.7%) of 43, b.p. 90-91°C 0.2mm Hg. Gas chromatographic analysis revealed a single component. The spectral analysis was identical to that given above.

Synthesis of (E)-4,8-Dimethyl-3,7-nonadienoic acid (45). Nitrile, 43 (3.5 g, 21.5 mmol) was dissolved in MeOH (30 mL), and an aqueous KOH solution [4.0 g (71 mmol) in 8 mL of H₂O] was added. The reaction mixture was refluxed for 48 h, cooled, diluted with NaHCO3, extracted with Et₂O, acidified with 2N HCl, filtered and concentrated to give crude homogeranic acid (45).as a light brown oil (3.2 g, 82%). ¹H NMR (CDCl₃) δ 1.57 (s, 3H, vinyl methyl), 1.67 (s, 3H, vinyl methyl), 2.0-2.13

255

(m, 4H, CH₂), 3.06 (d, 2H, C₁-CH₂ J = 7 Hz), 5.04-5.1 (m, 1H, C₆-vinyl H), 5.2 (t, 1H, C₂-vinyl H J = 7 Hz). IR, 2400-3600, 1725.

Preparation of (E)**-4,8-Dimethyl-3,7-nonadien-1-thioacetate** (46). To an efficiently stirred solution of triphenylphosphine (21 g, 80 mmol) in THF (200 mL) was added diisopropylazodicarboxylate (16.7 g, 80 mmol) at 0°C. The reaction was stirred for 0.5 hr, after which time a thick white precipitate was obtained. A mixture of thiolacetic acid (6.1 g, 80 mmol) and 40 (6.72 g, 40 mmol) in 100 mL THF was added dropwise while the temperature was maintained below 0°C. The reaction was stirred for 1.5 hr at 0°C and then overnight at rt. Solvent was removed in vacuo from the clear orange solution and the resulting product purified by flash chromatography using hexane:CH₂Cl₂ (3:1), or hexane:EtOAc (49:1), as eluant. Distillation gave 7.54 g (83%) of 46, b.p. 65-67°C 0.01mm Hg. Gas chromatographic analysis showed a single component. ¹H NMR (CDCl₃) δ 1.59 (s, 3H, vinyl methyl), 1.60 (s, 3H, vinyl methyl), 1.67 (s, 3H, C4-vinyl methyl), 1.95-2.06 (m, 4H, CH₂), 2.22-2.27 (q, 2H, C_2 -CH₂ J = 7.3 Hz), 2.31 (s, 3H, COCH₃), 2.84-2.87 (t, 2H, C₁-CH₂ J = 7.3 Hz), 5.05-5.12 (m, 2H, C3, C7-vinyl H). MS, m/e (%), 226.2 (0.1), 186.2 (0.1), 185.1 (0.6), 184.2 (1.5), 81.1 (59.5), 69.0 (100), 43.1 (42.5), 41.1 (45.3). IR, 3350, 2910, 1690, 1435, 1350, 1130, 1100, 950, 830 and 735. Anal. calcd for C13H22SO, C 69.02 H 9.73. Found C 69.22 H9.75.

Preparation of (E)-4,8-Dimethyl-3,7-nonadien-1-thiol (47). To a stirred solution of lithium tetrahydridoaluminate (1.22 g, 8.0 equiv) in anhyd. ether (30 mL) was added dropwise a solution of 46 (7.26 g, 32.1 mmol) in 15 mL of anhyd. ether. The reaction was stirred for 0.5 hr, then cooled to 0°C. Excess hydride was destroyed by careful addition of ice-cold 1N HCl. Precipitated salts were removed by filtration through 2 cm of Celite. Usual workup gave 7.5 g of crude product. Distillation

gave 5.42 g (92%) of 47, b.p. 46°C 0.01mm Hg. Gas chromatographic analysis revealed a purity of 96%. ¹H NMR (CDCl₃) δ 1.40-1.44 (t, 1H, SH J = 7.6 Hz), 1.59 (s, 3H, vinyl methyl), 1.61 (s, 3H, vinyl methyl), 1.67 (s, 3H, C4-vinyl methyl), 1.98-2.02 (m, 2H, C6-CH₂), 2.04-2.08 (m, 2H, C5-CH₂), 2.28-2.33 (q, 2H, C₂-CH₂ J = 7.1 Hz), 2.49-2,54 (dt, 2H, C1-CH₂ J = 7.1, 7.5 Hz), 5.07-5.11 (m, 2H, C3, C7vinyl H). Irradiation of the triplet at δ 1.40-1.44 resulted in the simplification of the signal at 2.49-2.54 (C1-CH₂), thus confirming the signal at 1.40-1.44 to be that of the SH. MS, m/e (%), 186.2 (0.1), 185.2 (0.2), 141.1 (96.9), 81.1 (36.5), 69.2 (100) and 41.1 (41.0). Isobutylene, CI, m/e (%), 186.0 (12.48), 185.0 (100), 151.0 (20.8), 95.0 (16.64). IR, 2920, 2560 (w), 1735, 1660, 1440, 1285, 1110, 980 and 830.

Synthesis of Ethyl [(E)-7,11-dimethyl-3-keto-6,10-dodecadien]-1oate (49). Ethyl acetoacetate (2.7 g, 21 mmol) was added dropwise to a stirred solution of NaH (1.31 g, 23.5 mmol, 57% mineral oil) in 50 mL of THF at -10°C. The reaction was stirred for 20 min when *n*-BuLi (10 mL, 21 mmol,) was added slowly while the temperature was maintained below -5°C. The resulting yellow solution was stirred for 20 min before the addition of 44 (5 g, 23.1 mmol) in 5 mL of THF. The reaction was stirred for 1 hr before it was quenched with ice-cold saturated NH4Cl. The usual work up gave 5.8 g of crude product which was distilled, b.p. 112-114°C 0.1mm Hg, to yield 4.6 g (84%) of 49. Gas chromatographic analysis revealed a purity of 93%. ¹H NMR (CDC13) δ 1.30 (t, 3H, OCH₂CH₃ J = 10 Hz), 1.62 (s, 6H, vinyl methyl), 1.70 (s, 3H, C4-vinyl methyl), 1.95-2.10 (m, C5, C6-CH₂), 2.30 (q, 2H, C₂-CH₂ J = 6.6 Hz), 2.58 (t, 2H, C1-CH₂ J = 6.7 Hz), 3.45 (s, 2H, CO-CH₂-CO), 4.20 (q, 2H, OCH₂CH₃ J = 10 Hz), 5.06-5.12 (m, 2H, C3, C7-vinyl H). MS, m/e (%), 266 (18.8), 248 (25), 223 (56.2), 205 (18.8), 136 (25), 109 (87.5), 81 (31.2), 69 (100), 41 (62.5). IR , 2920, 1735, 1630, 1450, 1310, 1235, 1035, 910 and 840. Synthesis of Ethyl [(*E*)-7,11-dimethyl-3-(diethoxy phosphonate)-2,6,10-dodecatrien]-1-oate (50). To NaH (0.313 g, 57% mineral oil) in 10 mL of anhyd. ether was added β -keto ester 49 (1.33 g, 5 mmol) in 5 mL ether at 0°C. The reaction was stirred for 20 min before diethylphosphochloridate (0.97 g, 5.6 mmol) was added dropwise. The resulting mixture was stirred for 2 hr and quenched with saturated NH4Cl. The usual work up proceedure resulted in crude phosphonate ester which was purified by flash chromatography using hexane/EtOAc (3/1). The yield of 50 was 1.76 g (88%). Gas chromatographic analysis revealed a single component. ¹H NMR (CDCl3) δ 1.25 (t, 3H, COOCH₂CH₃ *J* = 7.0 Hz), 1.35 (t, 6H, P(OCH₂CH₃)₂ *J* = 7.0 Hz), 1.60 (s, 6H, vinyl methyl), 1.67 (s, 3H, vinyl methyl), 1.92-2.10 (m, 4H, C7, C8-CH₂), 2.24 (q, 2H, C4-CH₂ *J* = 7.1 Hz), 2.46 (t, 2H, C3-CH₂ *J* = 7.12 Hz), 4.15 (q, 2H, COOCH₂CH₃ *J* = 7.0 Hz), 4.25 (quint, 4H, P(OCH₂CH₃)₂ *J* = 7.0 Hz), 5.05-5.15 (m, 2H, vinyl H), 5.36 (s, 1H, C1-vinyl H). MS, m/e (%), 402 (12.5), 357 (31.25), 287 (25), 220 (31.25), 155 (100), 99 (50), 69 (43.75) and 41 (37.5). IR, 2940, 2870, 1732, 1670, 1450, 1290, 1210, 1040 and 825.

Preparation of Ethyl [(*E*)-3,7,11-trimethyl-2,6,10-dodecatrien]-1oate (51). To CuI (1.42 g, 7.46 mmol) in 15 mL THF at -10°C was added dropwise with stirring MeLi (4.7 mL, 7.46 mmol), while the temperature was maintained below -10°C. After 30 min MeMgBr (4.0 mL, 12.43 mmol) was added dropwise at -40°C. The reaction was further stirred for 0.5 h before addition of 50 (1 g, 2.48 mmol) in 5 mL of THF. The reaction was stirred for 1.5 hr before it was warmed to rt. The reaction was quenched by addition of NH4Ci:NH4OH (9:1). The usual workup and evaporation of solvent *in vacuo* gave 0.78 g of crude product, which was purified by flash chromatography using hexane/EtOAc, 50/1) as eluant (R_f = 0.29). Gas chromatographic analysis revealed a purity of 94%. The yield of 51 was 0.57 g (87%). ¹H NMR (CDCl3) δ 1.25-1.28 (t, 3H, OCH₂CH₃ J = 7.1 Hz), 1.59 (s, 6H, vinyl methyl), 1.67 (s, 3H, vinyl methyl), 1.95-2.06 (m, 8H, C4, C5, C8, C9-CH₂), 2.15 (s, 3H, C3-vinyl methyl), 4.11-4.16 (q, 2H, OCH₂CH₃ J = 7.1 Hz), 5.07-5.09 (m, 2H, vinyl H), 5.66 (s, 1H, C₂-vinyl H). MS, m/e (%), 264 (12.5), 221 (37.5),128 (56.25), 81 (62.5) and 69 (100). IR , 2924, 1725, 1651, 1450, 1230 and 1151.

Synthesis of (E,E)-3,7,11-Trimethyl-2,6,10-dodecatrien-1-ol (39). DIBALH (40 mL, 40 mmol) was added dropwise to an efficiently stirred solution of 51 (3.55 g, 13.44 mmol) in 25 mL of anhyd. ether at -50°C. The reaction was stirred at the same temperature for 2 hr after which time it was quenched by addition of 300 mL of 10% aqueous tartaric acid. The usual workup, followed by evaporation of the solvent *in vacuo* gave 2.76 g (93%) of *E,E*-farnesol (39) in 96% purity. ¹H NMR δ 1.59 (s, 6H, vinyl methyl), 1.67 (s, 6H, vinyl methyl), 1.95-2.12 (m, 8H, C4, C5, C8, C9-CH2), 4.13-4.16 (t, 2H, C1-CH2 J = 6.15 Hz), 5.06-5.12 (m, 2H, C6, C10-vinyl H), 5.40-5.43 (t, 1H, C2-vinyl H J = 6.2 Hz). MS, Isobutylene CI, m/e (%), 221 (12.5), 205 (100), 149 (41.6) and 137 (83.3). IR, 3340 (b), 2940, 1450, 1010 and 850.

Preparation of 1-Bromo-(E,E)-3,7,11-trimethyl-2,6,10-

dodecatriene (48). To a stirred solution of *E*,*E*-farnesol (39, 6.21 g, 0.028 mol) in 25 mL of ether was added dropwise phosphorus tribromide (3.24 g, 0.012 mol) at - 10°C. The reaction was stirred for 3 h after which time it was quenched by pouring into an ice-cold saturated solution of NaHCO3. The usual workup, followed by removal of solvent *in vacuo*, yielded 7.16 g (90%) of 48. TLC using hexane/EtOAc (4/1) revealed a single component ($K_f = 0.85$). ¹H NMR (CDCl₃) δ 1.59 (s, 6H, vinyl methyl), 1.67 (s, 3H, vinyl methyl), 1.75 (s, 3H, C3-vinyl methyl), 1.95-2.19 (m, 8H, C4, C5, C8, C9-CH₂), 4.0-4.15 (d, 2H, C1-CH₂ J = 7.1 Hz), 5.05-5.12 (m, 2H, C6, C10-vinyl H), 5.5-5.57 (t, 1H, C2-vinyl H J = 7.1 Hz).

Synthesis of Ethyl [(E)-4,8-dimethyl-3,7-nonadien]-1-thioacetate (52). To a Schlenk tube, connected via a two-way stopcock to an argon inlet and a vacuum line was added 47 (4.05 g, 22 mmol) in 20 mL of ether/hexane (1/1). To this stirred solution was added thallium ethoxide (5 g, 20 mmol) via a syringe. Immediate yellow coloration was observed. The reaction was stirred for 5 min before the solvent was removed under vacuum. The resulting yellow oily residue was washed with ether (2) x 10 mL), the solvent removed under vacuum and the residue redissolved in 50 mL of anhyd. ether. Ethyl- α -bromo acetate (3.32 g, 20 mmol) was added dropwise whereupon a white precipitate of thallous bromide was formed. After stirring for 1 hr at rt the reaction was filtered through 2 cm of Celite. After the removal of solvent, the product was purified by flash chromatography using hexane/dichloromethane (2/1) to give 52 as a single component (Rf=0.325) as the eluant, 5.3 g (97%) of 96% purity as revealed by gas chromatographic analysis. ¹H NMR (CDCl₃) δ 1.28 (t, 3H, OCH₂CH₃ J = 6.7 Hz), 1.59 (s, 3H, vinyl methyl), 1.66 (s, 3H, vinyl methyl), 1.66 (s, 3H, C4-vinyl methyl), 1.96-2.1 (m, 4H, CH₂), 2.3 (q, 2H, C₂-CH₂ J = 7.1 Hz), 2.61 (t, 2H, C₁- $CH_2 J = 7.1 Hz$, 3.25 (s, 2H, -SCH₂CO), 4.2 (q, 2H, OCH₂CH₃ J = 6.6 Hz), 5.06-5.16 (m, 2H, C₃, C₇-vinyl H). MS, m/e (%), 272 (2.0), 270.6 (10.0), 201 (30), 183 (9.0), 150 (22), 107 (29), 81 (58.5), 69 (100) and 41 (41.5). IR 2980, 2960, 1735, 1450, 1380, 1275, 1130, 1030 and 835. Anal. Calcd for C15H26O2S: C, 66.66, H, 9.63. Found: C, 66.46, H, 9.90.

Synthesis of Ethyl-[2-(4',8'-dimethyl-3'(E),7'-nonadienyl-thio)-5,9,13-trimethyl-4(E),3,12-tetradecatrien]oate (53). To diisopropylamine (0.5 mL, 3.5 mmol) in 5 mL THF was added dropwise at 0°C, *n*-BuLi (1.7 mL, 3.5 mmol) in hexane. The reaction was stirred for 15 min before addition of 52 (0.94 g, 3.5 mmol) in 5 mL of THF. The resulting mixture was stirred for 2.5 hr at 0°C then cooled to -50°C and stirred for an additional 0.5 hr. Farnesyl bromide (48, 1.4 g, 5 mmol) was then added. The reaction was stirred for 1 hr at -50°C and warmed to rt whereupon it was quenched by pouring onto ice-cold saturated NH4Cl solution. The usual work up and purification by flash chromatography using hexane/CH2Cl2 (2/1) gave 1.52 g (92%) of 53 (Rf = 0.34) as eluant. ¹H NMR (CDCl3) δ 1.27 (t, 3H, -COOCH2CH3 *J* = 7.1 Hz), 1.59 (s, 15H, vinyl methyl), 1.67 (s, 6H, vinyl methyl), 1.92-2.08 (m, 12H, C5', C6', C6, C7, C10, C11-CH2), 2.25-2.62 (m, 6H, C1', C2, C3-CH2), 3.23-3.27 (m, 1H, SCHCOO), 4.16-4.19 (m, 2H, COOCH2CH3), 5.06-5.13 (m, 5H, C3', C7', C4, C8, C12 vinyl H). Irradiation of signal at δ 4.16-4.19 resulted in a singlet at δ 1.27 (triplet originally) and simplified the signal at δ 3.23-3.27. This showed the vicinal coupling between CH2 and CH3 and long range coupling of CH1 with SCHCOO. MS, m/e (%), 475 (0.2), 474 (0.6), 405 (4.8), 183 (3.0), 95 (14.8), 81 (25.9), 69 (100.0) and 41 (57.0). IR , 2930, 1735, 1450, 1380, 1150, 1110 and 1040. Anal. Calcd for C30H50O2S: C, 75.90, H, 10.55. Found: C, 75.64, H, 10.74.

Synthesis of 2-[(4',8'-dimethyl-3'(*E*),7'-nonadienyl-thio)-(5,9,13trimethyl-4(*E*),8(*E*),12-tetradecatrien)]-1-ol (54). To an efficiently stirred solution of LiAlH4 (0.039 g, 1.04 mmol) in 7 mL of ether was added thioacetate 53 (0.49 g, 1.04 mmol). The reaction was stirred for 1 hr before it was quenched by careful addition of ice-cold 1N HCl. The precipitated salts were removed by filtration through 2 cm of Celite and the filtrate subjected to normal work up procedure to give 4.33 g (98%) of 54. Thin layer chromatography using hexane/EtOAc (4/1) as eluant revealed a single component. ¹H NMR (CDCl₃) δ 1.59 (s, 12H, vinyl methyl), 1.61 (s, 3H, vinyl methyl), 1.67 (s, 6H, vinyl methyl), 1.95-2.1 (m, 12H, C5', C6', C6, C7, C10, C11-CH₂), 2.22-2.31 (m, 4H, C₂', C3-CH₂), 2.48-2.55 (m, 2H, C1-CH₂), 2.75-2.79 (m, 1H, SCHCH₂OH J = 12.5, 6.80, 4.62 Hz), 3.44-3.50 (ddd, 1H, HCH_aOH J = 11.8, 6.2, 5.8 Hz), 3.63-3.69 (ddd, 1H, HCHbOH J = 11.4, 7.1, 4.54 Hz), 5.06-5.14 (m, 5H, vinyl H). MS, m/e (%), 432 (6.5), 363 (80.54), 213 (6.5), 183 (4.4), 81 (15.2), 69 (100.0), and 41 (17.4). IR, 3440, 2920, 2860, 1450, 1380, 1030 and 835. Anal. Calcd for C28H48OS C, 77.78, H, 11.11. Found C, 77.53, H, 11.36.

Synthesis of 32. The thiol (54, 0.21g, 0.5 mmol) was dissolved in acid-free dimethyl sulfate (5 mL, distilled under vacuum) in a sealed test tube for 2 h at 90°C. Following complete consumption of the thiol, as judged by TLC on Silica Gel (hexane/EtOAc, 4/1), the resulting dark solution was washed several times with anhyd. Et₂O and the insoluble residue dissolved in H₂O (10 mL). The material was precipitated by addition of perchloric acid and recrystallized from water containing a few percent of perchloric acid to give (0.07 g, 32%) of the sulfonium salt, 32. ¹H NMR (CD₃OD) δ 1.64 (brs, 15H, vinyl methyl), 1.67 (brs, 6H, vinyl methyl), 2.3-2.5 (m, 16H, C₂', C₃, C₅', C₆', C₆, C₇, C₁₀, C₁₁-CH₂), 2.7 (m, 2H, C₁-CH₂), 2.8 (m, 1H, SCHCH₂OH), 2.95 (s, CH₃), 3.57 (ddd, 1H, HCH_aOH *J* = 11.8, 6.2, 5.8 Hz), 3.74 (ddd, 1H, HCH_bOH *J* = 11.4, 7.1, 4.54 Hz), 5.06-5.14 (m, 5H, vinyl H). MS, FAB, (Xenon/sulfolane) m/e 447 (M⁺, 100).

Attempted syntheses of 60. Synthesis of thiosulfonate ester 60 using p-toluene sulfonyl chloride in combination with NaH, Py or Et₃N and thiol 47 was attempted. The major product was disulfide 61. A general procedure follows:

Normal addition: Thiol 47 (0.368 g, 2 mmol) was added dropwise to a suspension of NaH (0.14 g, 2.5 mmol, 57% oil) in 5 mL of THF. After 30 min of stirring, *p*-toluene sulfonyl chloride (0.38 g, 2 mmol) in 10 mL of THF, was added dropwise. The reaction was stirred for 3 hr and then subjected to normal work up.

262

Purification of the product by flash chromatography using hexane/CH₂Cl₂ (3/1) as eluant yielded 0.51 g (76%) of disulfide **61** and 0.05 g (7.4%) of **60**.

Inverse addition: The reaction was conducted in the same manner as above except that the sodium salt of 47 was added to the *p*-toluene sulfonyl chloride. No appreciable change in yield was observed (10%).

Spectral data for **61**: ¹H NMR (CDCl₃) δ 1.59 (s, 6H, vinyl methyl), 1.61 (s, 6H, vinyl methyl), 1.67 (s, 6H, vinyl methyl), 1.95-2.10 (m, 8H, C₆, C₆', C₅, C₅'-CH₂), 2.35 (q, 4H, C₂, C₂'-CH₂ J = 7.0 Hz), 2.55-2.6 (t, 2H, C₁, C₁'-CH₂ J = 7.1 Hz), 5.04-5.1 (m, 4H, Vinyl H). MS, Isobutylene CI, m/e (%), 367 (30.0), 339 (30.0), 241 (25.0), 225 (32.5), 207 (52.5), 185 (22.5), 183 (100.0), 151 (25.0).

Preparation of Tri-*n*-butyl-(*E*,*E*)-4,8-dimethyl-3,7-nonadien-1thio)stannane (62). To an efficiently stirred solution of thiol 47 (6.07 g, 33 mmol) and triethylamine (4 g, 39.0 mmol) in 200 mL of CCl4, was added dropwise *n*-Bu3SnCl (10.73 g, 33.0 mmol). The reaction was stirred overnight at rt, filtered and the filtrate washed with 5% aqueous acetic acid, then water (50 mL). The organic layer was separated and dried over anhyd. Na2SO4. Flash evaporation of the solvent gave needle shaped white crystals, which were recrystallized from hexane. ¹H NMR (CDCl3) δ 0.86 (t, 9H, CH3, *J* = 7.1 Hz), 1.2-1.4 (m, 12H, CH2), 1.4-1.5 (m, 6H, CH2), 1.59 (s, 6H, vinyl methyl), 1.67 (s, 3H, vinyl methyl), 1.95-2.10 (m, 4H, C6, C5, -CH2), 2.35 (q, 2H, C2, -CH2 *J* = 7.0 Hz), 2.55-2.6 (t, 2H, C1, -CH2 *J* = 7.1 Hz), 5.04-5.1 (m, 2H, Vinyl H). MS, m/e (%), 416 (M⁺ - 57, 22).

Preparation of Sodium thio-*p*-toluenesulfonate (64). To Na₂S•9H₂O (24 g, 0.1 mol) in 20 mL of water cooled to 0°C was added to *p*-toluene sulfonyl chloride (19.05 g, 0.1 mol) while the temperature was maintained below 5°C. After

completion of addition, the reaction was warmed to 85°C until all deposited sulfur dissolved. Solvent was removed under reduced pressure and the resulting powder washed with 50 mL of ether then extracted with hot absolute EtOH. The product was recrystallized using absolute EtOH and the crystals dried over P2O5 at 120°C for 12 hr. This procedure yielded 24 g (98%) of 64. ¹H NMR (D2O) δ 2.39 (s, 3H, phenyl-CH3), 7.35-7.78 (AA'BB', 4H, phenyl H). IR , 1330, 1200, 1090, 980, and 800(b).

A similar procedure was used to prepare NaSSO₂CH₃. ¹H NMR (D₂O) δ 2.77 (s).

Synthesis of 1-Bromo-4,8-dimethyl-3(E),7-nonadiene (63). Bromine was added dropwise to an efficiently stirred ice-cooled solution of triphenylphosphine (3.2 g, 12.2 mmol) in 20 mL of CH₂Cl₂ until a permanent yellow color appeared. A few milligrams of triphenylphophine were added to consume excess Br2 (i.e., until no yellow coloration remained). At this point 2.0 mL of pyridine was added and the reaction stirred for 10 min. Homogeraniol (40, 2.0 g, 12 mmol) in 20 mL of CH₂Cl₂ was added dropwise over 30 min. The reaction was warmed to rt and stirred for 1 hr then filtered. The precipitate was washed with pentane, filtered, and further washed with water (2 x 50 mL). The solvent was dried over anhyd. MgSO4, concentrated in vacuo and the residue subjected to column chromatography using hexane as eluant. The yield of 63 ($R_f =$ 0.47) was 2.1 g (78%). Gas chromatographic analysis revealed a purity of 99%. ¹H NMR (CDCl₃) δ 1.57 (s, 3H, vinyl methyl), 1.61 (s, 3H, vinyl methyl), 1.65 (s, 3H, vinyl methyl), 1.96-2.13 (m, 4H, C5, C6-CH2), 2.53-2.62 (q, 2H, C2-CH2 J = 6.67 Hz), 3.32-3.38 (t, 2H, C1-CH₂ J = 6.66 Hz), 5.03-5.11 (m, 2H, vinyl H). MS, m/e (%), 230 (7.0), 217 (25.0), 215 (25.0), 189 (14.0), 187 (14.0), 123 (11.6), 69 (100.0).

264

Synthesis of (4,7-Dimethyl-3(*E*),7-nonadien-1-thio)-*p*toluenesulfonate (60). To an efficiently stirred solution of NaSSO₂C₆H₅CH₃ (64, 2.45 g, 10 mmol) in 30 mL of DMF was added homogeranyl bromide (63, 2.31 g, 10 mmol) in 10 mL of DMF. The reaction was stirred at rt for 3 days after which time it was quenched by pouring into 100 mL of water. The usual workup and purification by column chromatography using hexane/CH₂Cl₂ (1/1) as eluant gave 2.83 g (84%) of thiotosylate 60. Gas chromatographic analysis revealed a purity of 91% and the presence of 3% of disulfide 61. ¹H NMR (CDCl₃) δ 1.55 (s, 3H, vinyl methyl), 1.61 (s, 3H, vinyl methyl), 1.67 (s, 3H, vinyl methyl), 1.92-2.06 (m, 4H, C₅, C₆-CH₂), 2.28-2.35 (q, 2H, C₂-CH₂ J = 6.7 Hz), 2.46 (s, 3H, phenyl-CH₃), 2.97-3.02 (t, 2H, C₁-CH₂ J = 6.7 Hz), 4.9-5.08 (m, 2H, vinyl H), 7.32-7.84 (AA'BB', 4H, phenyl H). MS, m/e (%), 339 (6.3), 255 (25.2), 183 (100.0), 117 (43.7), 115 (38), 69 (87.5). IR , 2920, 1670, 1600, 1500, 1450(b), 1330(b), 1150, 1080, and 830.

Preparation of Ethyl 5,9-dimethyl-4(*E*),8-decadienoate (65). To diisopropylamine (4.65 g, 46 mmol) in 30 mL THF at -65°C was added dropwise *n*-BuLi (17.7 mL, 46 mmol). The reaction was stirred for 1.5 hr after which time it was transferred *via* syringe to another flask containing a mixture of ethyl acetate (4.1 g, 46 mmol) and CuI (17.5 g, 92 mmol) in 175 mL of THF at -110°C. The reaction was warmed to -30°C, whereupon geranyl bromide 44 (5 g, 23 mmol) in 60 mL of THF was added slowly to maintain the temperature at -30°C. The reaction was stirred for 1 hr at the same temperature after which time it was subjected to the normal workup procedure. Distillation yielded 4.52 g (88%) of 65. Gas chromatographic analysis showed a purity of 91%. ¹H NMR (CDCl₃) δ 1.22- 1.25 (t, 3H, COOCH₂CH₃ *J* = 7.1 Hz), 1.58 (s, 3H, vinyl methyl), 1.60 (s, 3H, vinyl methyl), 1.67 (s, 3H, vinyl methyl), 1.94-2.05 (m, 4H, CH₂), 2.3 (s, 4H, C₁, C₂-CH₂), 4.08-4.13 (q, 2H, COOCH₂CH₃ *J* = 7.1 Hz), 5.04-5.10 (m, 2H, vinyl H). MS, m/e (%), 224.2 (1.9), 219 (0.5), 210.3 (1.8), 209.3 (10.2), 94.1 (84.6), 100.1 (92.7), 81.1 (97.4) and 95.2 (100.0). IR, 2980, 2920, 1740, 1450, 1370, 1150, 1050 and 835.

Preparation of 5,9-Dimethyl-4(*E*),8-decatrien-1-ol (66). To an efficiently stirred solution of LiAlH4 (0.68 g, 17.84 mmol) in 20 mL of ether was added dropwise 65 (4.04 g, 18 mmol) in 30 mL of ether. After 30 min excess hydride was destroyed by careful addition of 1N HCl. The solution was filtered through 2 cm of Celite. Usual workup procedure gave 3.12 g (95%) of 65 in 98% purity as measured by gas chromatographic analysis. ¹H NMR (CDCl3) δ 1.58 (s, 3H, vinyl methyl), 1.59 (s, 3H, vinyl methyl), 1.67 (s, 3H, vinyl methyl), 1.95-2.09 (m, 8H, C₂, C₃, C₆, C₇-CH₂), 3.61-3.64 (t, 2H, C₁-CH₂ *J* = 6.6 Hz), 5.05-5.13 (m, 2H, vinyl H). MS, m/e (%), 183.2 (0.1), 182.2 (0.7), 139.2 (100.0), 95.1 (84.1), 69.1 (76.2) and 67.2 (71.5).

Preparation of 5,9-Dimethyl-4(*E*),8-decadien-1-*p*-toluene sulfonate (67). Powdered KOH (13 g, 232 mmol) was added in 5 g portions to a solution of 66 (3.07 g, 16.86 mmol) and *p*-toluene sulfonyl chloride (3.69 g, 19.25 mmol) in 40 mL of ether at -30°C. The resulting suspension was stirred for 2 hr at 0°C after which time it was quenched by pouring onto ice water (50 mL). The usual workup yielded 4.45 g (79%) of 67 as found by gas chromatographic analysis. This material was used in the next reaction without further purification. ¹H NMR (CDCl3) δ 1.57 (s, 3H, vinyl methyl), 1.67 (s, 3H, vinyl methyl), 1.87-2.08 (m, 8H, C2, C3, C6, C7-CH2), 2.43 (s, 3H, phenyl-CH3), 3.99 (t, 2H, C1-CH2 *J* = 7.1 Hz), 4.92-5.07 (m, 2H, vinyl H), 7.3-7.8 (AA'BB', 4H, phenyl H). MS, m/e (%), 337.3 (0.2), 336.3 (0.8), 322.6 (0.2), 321.3 (0.7), 121.1 (92.7), 95.1 (100.0) and 69.1 (84.1). IR, 2920, 1450, 1350(b), 1180, 960(w) and 835. Synthesis of 1-Iodo-5,9-dimethyl-4(*E*),8-decadiene (68). A solution of NaI (4.32 g, 28.8 mmol) in 40 mL of acetone was brought to reflux under argon with stirring. To this solution was added 67 (4.38 g, 13 mmol). After 1 hr at reflux the reaction was worked up in the usual fashion using pentane for extraction. The product was purified by column chromatography using hexane as eluant. The yield of 68 (R_f = 0.45) was 3.72 g (98%). Gas chromatographic analysis revealed a purity of 90%. ¹H NMR (CDCl₃) δ 1.57 (s, 3H, vinyl methyl), 1.59 (s, 3H, vinyl methyl), 1.67 (s, 3H, vinyl methyl), 1.82-1.86 (q, 2H, C₂-CH₂ *J* = 7 Hz),1.95-2.12 (m, 6H, C₃, C₆, C₇ -CH₂), 3.15-3.20 (t, 2H, C₁-CH₂ *J* = 7.0 Hz), 5.03-5.10 (m, 2H, vinyl H). MS, m/e (%), 293.1 (0.2), 292.2 (1.4), 279.2 (0.1), 249.0 (69.2), 95.0 (88.8), 69.0 (100.0) and 41.1 (65.1).

Synthesis of (E)-5,9-Dimethyl-4,8-decadienyl)-1-

triphenylphosphonium iodide (69). A solution of 68 (1.55 g, 5.3 mmol) and triphenylphosphine (1.7 g, 6.5 mmol) in 2 mL of benzene was placed in the dark for 5 days. The resulting solution was added to 100 mL of ether with rapid stirring. Fine white crystals were obtained which were filtered and washed with ether (3 x 10 mL). Recrystallization using benzene/ether (1/1) gave 1.12 g (38%) of 69. ¹H NMR (C6D6) δ 1.59 (s, 3H, vinyl methyl), 1.67 (s, 3H, vinyl methyl), 1.76 (s, 3H, vinyl methyl), 2.09-2.21 (m, 6H, C3, C6, C7-CH2), 2.70-2.78 (q, 2H, C2-CH2 *J* = 7.0 Hz), 4.55-4.65 (m, 2H, C1-CH2), 5.17-5.25 (m, 2H, C4, C8-vinyl H), 7.19 (m, 15H, phenyl H). MS, FAB, (xenon/sulfolane) (%), 427 (M⁺,100.0), 289 (37.5), 275 (25.0), 262 (72.9).

Preparation of 71. To a freshly distilled solution of β -ethoxy-methoxy methyl chloride (4.98 g, 0.039 mmol) in 150 mL of CH₂Cl₂ was added diisopropyl amine (5.1

g, 0.039 mmol) at 0°C. The reaction was stirred for 10 min after which allyl alcohol (2.09 g, 0.036 mmol) was added over 0.5 hr. The reaction was stirred for 18 hr and worked up in usual fashion. Distillation gave 3.78 g (72%) of **71**, b.p. 60-61°C 17 mm Hg. Gas chromatographic analysis revealed a single component. ¹H NMR (CDCl₃) δ 3.4 (s, 3H, OCH₃), 3.55-3.75 (AA'BB', 4H, OCH₂CH₂O), 4.10 (td, 2H, C₃-CH₂ J = 6.5 Hz, 3.0 Hz), 4.76 (s, 2H, OCH₂O), 5.17-5.32 (m, 2H, vinyl H), 5.88-5.98 (ddt, 1H, C₂-vinyl H J = 18 Hz, 10 Hz, 6.5 Hz). MS, Isobutylene CI, m/e (%), 147 (14.6), 89 (100.0). IR , 2910, 2890, 2150, 1450, 910 and 745.

Preparation of 72. To a solution of 71 (9.34 g, 0.064 mol) in 25 mL of CHCl3 was added acetyl trimethylammonium bromide (0.2 g, 0.55 mmol) and a chilled 50% NaOH solution (125 g of NaOH and 125 mL of water). The two phase suspension was stirred vigorously and analyzed periodically by gas chromatography (linear temperature program from 40°-200°C at 10°/min) over 3 days. After this time the reaction ceased and mixture was diluted with 100 mL of water and the CHCl3 layer separated. The aqueous layer was extracted with CH_2Cl_2 (3 x 20 mL) and the combined organic extracts washed with water to which MgSO4 was added to break an emulsion during washing. The organic layer was dried over anhyd.MgSO4, the solvent removed in vacuo and the residue distilled to yield 12.3 g (89%) of 72, b.p. 58°-59°C 0.025 mm Hg. Gas chromatographic analysis revealed a single component. ¹H NMR (CDCl₃) δ 1.20-1.25 (t, 1H, cyclopropyl H J = 8.89 Hz), 1.63-1.67 (dt, 1H, cyclopropyl H J = 8.9 Hz, 2.9 Hz), 1.92-2.0 (dddd, 1H, cyclopropyl H J = 5.6 Hz, 4.5 Hz, 2.7 Hz and 2.2 Hz); 3.37 (s, 3H, OCH3), 3.55-3.60 (AA'BB, 2H, OCH2CH2-CH2), 3.6-3.65 (dd, 1H, carbinyl $H_a J = 9.8 Hz$, 8.4 Hz), 3.73-3.77 (AA'BB, 3H, OCH₂CH₂O and carbinyl H_b), 4.74-4.76 (s, 2H, OCH₂O). MS, Isobutylene CI, m/e (%), 231 (10.41), 229 (18.75), 125

268
(37.5), 123 (56.25), 105 (100). IR, 2890, 1455, 1400, 1155, 1055 and 755. Anal. calcd for C₈H₁₄O₃Cl₂ C, 41.92, H, 6.61. Found C, 41.89, H, 6.16.

Preparation of 73. Dichlorocyclopropyl derivative 72 (0.5 g, 2.31 mmol) was added to 15 mL of ether and the reaction cooled to -100° C (liquid N₂/EtOH slurry). *n*-BuLi (1.25 mL, 3 mmol) was added dropwise to maintain the temperature below - 100°C. After stirring for 2 h at -100° C thiotosylate **60** (1.23 g, 3.65 mmol) was added dropwise and the temperature was kept below -100° C. The reaction was stirred for 30 min and then warmed to rt whereupon it was diluted with 5 mL of water and extracted with pentane (3 x 10 mL). The extract was dried over anhyd.Na2SO4 and concentrated *in vacuo*. The residue was purified by column chromatography using hexane/EtOAc (6/1) (Rf = 0.32) as eluant. Two fractions were collected.

Fraction 1 (0.08g, 0.34 mmol), suggested as BuSC11H19, was confirmed by ¹H NMR (CDCl3) δ 0.94 (t, 3H, Bu-CH3 J = 7.2 Hz), 1.4 (sixtet, 2H, Bu-CH2 J = 7.2 Hz), 1.57 (m, 4H, Bu-CH2), 1.57 (s, 3H, vinyl methyl), 1.59 (s, 3H, vinyl methyl), 1.67 (s, 3H, vinyl methyl), 1.97-2.1 (m, 4H, C5, C6-CH2), 2.28 (q, 2H, C2-CH2 J = 7.1 Hz), 2.54 (q, 2H, C1 -CH2 J = 7.1 Hz), 5.07-5.2 (m, 2H, C3, C7-CH2).

Fraction 2 (0.7g, 1.87 mmol) and the major one was 73. ¹H NMR (CDCl₃) δ 1.35 (t, 1H, cyclopropyl H J = 9.0 Hz), 1.60 (m, 1H, cyclopropyl H), 1.62 (s, 3H, vinyl methyl), 1.98-2.2 (m, 5H, C5, C6-CH₂ and cyclopropyl H), 2.38 (q, 2H, C₂-CH₂ J = 7 Hz), 2.86 (t, 2H, C1-CH₂ J = 7.1 Hz), 3.4 (s, 3H, OCH₃), 3.55-3.6 (AA'BB', 2H, OCH₂CH₂O), 3.62-3.65 (dd,1H, carbinyl H_a, J 9.8 Hz, 8.5 Hz), 3.73-3.8 (m, 3H, OCH₂CH₂O and carbinyl H_b), 4.78 (s, 2H, OCH₂O), 5.07-5.10 (m, 2H, vinyl H). Since cyclopropyl proton signals were obscured by other signals, the ¹H NMR spectrum was obtained in C6D6. ¹H NMR (C6D6) δ 0.74 (t,1H, cyclopropyl H J = 6 Hz), 1.35 (dd, 1H, cyclopropyl H J = 6 Hz, 8 Hz), 1.59 (s, 3H, vinyl methyl), 1.61 (s, 3H, vinyl methyl), 1.74 (s, 3H, vinyl methyl), 1.99-2.24 (m, 5H, C5, C6-CH2 and cyclopropyl H), 2.4 (q, 2H, C2-CH2 J = 7 Hz), 2.98 (dt, 2H, C1-CH2 J = 7 Hz, 2 Hz), 3.15 (s, 3H, OCH3), 3.40 (t, 2H, OCH2CH2O J = 5 Hz), 3.56 (dd, 1H, carbinyl H_a, J = 9.4 Hz, 8 Hz), 3.62-3.74 (m, 3H, OCH1CH2O and carbinyl H_b), 4.65 (s, 2H, OCH2O), 5.3 (m, 2H, vinyl H).

Confirmation of the assignment of the signal at δ 1.98 to be to H_a and those at δ 0.74 and δ 1.35 to be due to H_b was achieved by spin decoupling experiments. Irradiation at δ 0.74 reduced the dd at δ 1.35 to a doublet (J = 8 Hz). This also simplified the multiplet at δ 1.98-2.20. Irradiation at δ 1.98 reduced the triplet at δ 0.74 to a doublet (J = 6 Hz) and the dd to a doublet (J = 6 Hz). The dd at δ 3.56 was also reduced to a doublet (J = 9.4 Hz) and the signal δ 3.62-3.74 was simplified.

MS, m/e (%) 377 (20.8), 341 (25), 301 (97.9), 265 (45.8), 151 (100). Anal. calcd for for C19H33O3SCl C, 60.55, H, 8.76. Found C, 60.61, H, 8.69.

Synthesis of 74. To of LiAlH4 (0.15g, 4 mmol)in 5 mL of dry Et₂O, 73 (1.13g, 3.0 mmol) was added and the mixture refluxed for 3 h. It was then quenched carefully with water and extracted with pentane. Usual workup followed by column chromatographic purification (hexane/EtOAc, 6/1) gave 75% (0.77g) of the desired product. ¹H NMR (C₆D₆) δ 0.54 (dt,1H, cyclopropyi H J = 6 Hz, 8Hz), 0.74 (td,1H, cyclopropyl H J = 6 Hz, 8Hz), 1.35 (dt, 1H, cyclopropyl H J = 6 Hz, 8 Hz), 1.59 (s, 3H, vinyl methyl), 1.61 (s, 3H, vinyl methyl), 1.74 (s, 3H, vinyl methyl), 1.99-2.24 (m, 5H, C5, C6-CH₂ and cyclopropyl H), 2.4 (q, 2H, C₂-CH₂ J = 7 Hz), 2.98 (dt,

2H, C1-CH₂ J = 7 Hz, 2 Hz), 3.15 (s, 3H, OCH₃), 3.40 (t, 2H, OCH₂CH₂O J = 5 Hz), 3.56 (dd, 1H, carbinyl H_a, J = 9.4 Hz, 8 Hz), 3.62-3.74 (m, 3H, OCH₁CH₂O and carbinyl H_b), 4.65 (s, 2H, OCH₂O), 5.3 (m, 2H, vinyl H). MS, m/e (%) 342 (43.8), 303 (100), 287 (40.3),253 (76.3), 69 (100).

Synthesis of 77. The synthesis of this cyclopropyl analog (77) commenced with the preparation of the cyclopropyl alcohol derivative (75) and subsequent oxidation using the procedure developed by Swern *et al.*¹⁴ Wittig olefination of the aldehyde with the phosphonium ylide (70, generated in situ) from the phosphonium iodide (70)completed the sequence. Thus, 74, (0.34g, 1.0 mmol) was added to 6 mL of a mixture of THF:H2O:AcOH (1:1:3) at rt. After stirring for 4 h, the reaction was extracted with pentane. Usual workup followed by removal of solvent yielded 75 which was immediately oxidized to the aldehyde 76. To a stirred solution of oxalyl chloride (0.292 g, 2.3 mmol) in CH₂Cl₂ (5 mL) was rapidly added dimethyl sulfoxide (0.343 g, 4.4 mmol) in CH₂Cl₂ (1 mL) at -78°C. After stirring for 5 min at the same temperature, 75, 0.508 g, 2.0 mmol) was added dropwise over 10 min. After stirring for 15 min, triethylamine (1.4 mL, 0.1 mmol) was added dropwise while maintaining the temperature below -60°C. The mixture was stirred for 5 min, then warmed to rt before addition of 1 mL of water. The aqueous layer was extracted with (2 x 3 mL) portions of CH2Cl2. The organic layer was washed with 1% HCl until no longer basic, then washed successively with 5 mL portions of water, 5% Na₂CO₃, water and brine. The combined organic extract was dried over anhyd. MgSO4 and concentrated in vacuo to give 0.44 g (87%) of the crude product. ¹H NMR (CDCl₃) δ 1.48-1.52 (m, 1H, cyclopropyl H), 1.57 (s, 6H, vinyl methyl), 1.57-1.62 (m, 1H, cyclopropyl H), 1.67 (s, 3H, vinyl methyl), 1.98-2.1 (m, 4H, C5, C6-CH2), 2.21-2.26(m, 1H, cyclopropyl H), 2.38 (q, 2H, C₂-CH₂ J = 7 Hz), 2.41 (m, 1H, cyclopropyl H), 2.86 (t, 2H, C₁-CH₂ J = 7.1

Hz), 5.07-5.10 (m, 2H, vinyl H) 9.25 (d, 1H, CHO, J 3 Hz). MS, m/e (%) 254 (20.2), 151.0 (20.8), 95.0 (16.64). IR, 2920, 1725, 1440, 1320, 1285, 1110, 980 and 830. Anal. Calcd for C15H26OS C, 70.86, H, 10.20. Found C, 70.53, H, 10.16.

A solution of 0.54g (0.97 mmol) of 69 in 3 mL of anhydrous THF was cooled to O°C. n-BuLi (0.97 mmol, 0.4 mL) was added, and the resulting solution was allowed to warm to rt. Stirring was continued for 10 min, methyl iodide (0.14g, 0.97 mmol) was added dropwise, and the resulting solution was stirred for 30 min at rt. The reaction mixture was cooled to O°C, and a second portion of n-BuLi (0.97 mmol, 0.42 mL) was added. The solution was allowed to warm to rt and then stirred for 10 min. The reaction mixture was cooled to -45°C, and 0.248 g (0.98 mmol) of 76 was added via a syrnge. Stirring was continued for 15 min at this temperature. Et₂O (1 mL) was added and the solution allowed to warm to O°C. After 0.5 h of stirring, absolute EtOH (1 mL) was added. The resulting clear vellow solution was allowed to warm to rt and was stirred overnight. The solution was then poured onto 10 mL of Et2O and extracted with water until the aqueous layer was pH 7. Usual workup followed by flash chromatography on Silica Gel (benzene/hexane, 1/1) resulted in four fractions. Those fractions containing the pure trans isomer (77) were pooled to yield 0.08g (0.196 mmol, 20% from 76) $R_f =$ 0.56; ¹H NMR (CDCl₃) δ 0.7-1.1 (m, 1H, cyclopropyl H), 1.59 (s, 12H, vinyl methyl), 1.57-1.60 (m, 1H, cyclopropyl H), 1.61 (s, 3H, vinyl methyl), 1.67 (s, 6H, vinyl methyl), 1.95-2.1 (m, 10H,-CH2), 2.22-2.31 (m, 4H, C2, C3-CH2), 2.48-2.55 (m, 2H, C1-CH2), 2.21-2.26 (m, 1H, cyclopropyl H), 2.38 (q, 2H, C3-CH2 J = 7Hz), 2.41 (m, 1H, cyclopropyl H), 4.64 (d, 1H, vinyl H, J 9 Hz, 1Hz), 5.07-5.10 (m, 4H, vinyl H). MS, m/e (%) 435 (20.2).

Those fractions containing the pure *cis* isomer (77) were pooled to yield 0.08g (0.196 mmol, 20% from 76) $R_f = 0.61$; ¹H NMR (CDCl₃) δ 0.7-1.1 (m, 1H,

cyclopropyl H), 1.59 (s, 12H, vinyl methyl), 1.57-1.60 (m, 1H, cyclopropyl H), 1.64 (s, 9H, vinyl methyl), 1.95-2.1 (m, 10H,-CH₂), 2.22-2.31 (m, 4H, C₂, C₃-CH₂), 2.48-2.55 (m, 2H, C₁-CH₂), 2.21-2.26 (m, 1H, cyclopropyl H), 2.38 (q, 2H, C₃-CH₂J = 7 Hz), 2.41 (m, 1H, cyclopropyl H), 4.54 (d, 1H, vinyl H, J 9 Hz, 1Hz), 5.07-5.10 (m, 4H, vinyl H). MS, m/e (%) 435 (34.2).

Synthesis of 5.9.13-trimethyl-4(E).8.12-tetradecatrien-1-yne (85). A stream of dry acetylene (passed successively over CaCl₂, and two dry ice acetone traps) was used to saturate 50 mL of anhyd. THF at -50°C. The temperature was lowered to -78°C and *n*-BuLi (3.05 mL, 6.4 mmol) was added dropwise while the temperature was maintained below -70°C. The reaction was stirred for 30 min then CuCN (0.286 g, 3.2 mmol) in 10 mL of THF was added in one portion. The tan suspension was further stirred for 30 min at -78°C and then at 0°C for 1 hr when it was cooled again to -70°C. Farnesyl bromide 48 (0.71 g, 2.5 mmol) in 5 mL of anhyd. THF, was then added dropwise. The reaction was stirred at this temperature for 1 hr after which time it was warmed to 0°C and further stirred for 1 hr. The usual work up and column chromatography using hexane as eluant ($R_f = 0.37$) gave 0.55 g (96.49%) of 85. Gas chromatographic analysis showed a single component. ¹H NMR (CDCl₃) δ 1.59 (s, 6H, vinyl methyl), 1.62 (s. 3H, vinyl methyl), 1.67 (s. 3H, vinyl methyl), 1.95-1.97 (t. 1H, acetylene H J = 2.7 Hz), 1.98-2.10 (m, 8H, C₆, C₇, C₁₀, C₁₁- CH₂), 2.88-2.91 $(ddt, 2H, C_3-CH_2 J = 6.8 Hz, 2.7 Hz, 0.808 Hz), 5.08-5.15 (m, 2H, C_8, C_{12}-viny)$ H), 5.17-5.2 (dt, 1H, C4-vinyl H J = 0.8 Hz, 2.7 Hz), MS, m/e (%), 230 (3.3), 215 (20), 187 (26.6), 136 (26.6), 105 (20), 91 (33.3), 81 (46.6), 69 (100). Anal. Calcd for C17H26 C, 88.69, H, 11.30. Found C, 88.65, H, 11.31.

Preparation of 86. To alkyne 85 (0.143 g, 0.625 mmol) in 5 mL of THF under argon and cooled to -5° C was added with stirring *n*-BuLi 0.26 mL, 0.625 mmol)

dropwise while the temperature was maintained at -5°C. The reddish orange solution obtained was stirred for 30 min then thiotosylate **60** (0.17 g, 0.5 mmol) was added dropwise. The reaction was stirred for 1 hr after which time it was subjected to normal work up and column chromatogrphy using hexane/CH₂Cl₂ (15/1) as eluant. The yield of **86** (R_f =0.29) was 0.17 g (82%). ¹H NMR (CDCl₃) δ 1.60 (s, 6H, vinyl methyl), 1.62 (s, 9H, vinyl methyl), 1.70 (s, 6H, vinyl methyl), 1.97-2.15 (m, 12H, C5', C6', C6, C7, C10, C11-CH₂), 2.45 (dt, 2H, C₂'-CH₂ J = 7.1 Hz, 7.0 Hz), 2.67 (t, 2H, C1-CH₂ J = 7.1 Hz), 5.08-5.2 (m, 5H, vinyl H). MS, Isobutylene, CI, m/e (%) 413 (42.8), 335 (14.3), 317 (9.5), 275 (23.8), 221 (19.0), 207 (14.3), 185 (23.8), 151 (100). MS, m/e (%) 412 (5.0), 373 (7.5), 344 (12.5), 333 (15), 303 (27.5), 275 (25), 259 (20), 207 (30), 183 (70), 165 (45), 135 (15), 109 (20), 81 (52.5), 69 (100). IR 2980, 2940, 2150, 1670, 1450, 1380, 1600, 1150 and 820. Anal. Calcd for C₂₈H44S C, 81.55, H, 10.67. Found C, 81.57, H, 10.61.

Preparation of 87. To a suspension of LiAlH4 (0.6 g, 4.0 equiv.) in 10 mL of anhyd.ether was added dropwise **86** (6.62 g, 16.0 mmol) in 10 mL of ether over a period of 30 min. The reaction was refluxed for 18 hr then cooled to 0°C. Excess hydride was destroyed by careful addition of 1 N HCl. The precipitated salts were removed by filtration through 2 cm of Celite. The filtrate was washed with saturated NaCl solution and dried over anhyd.MgSO4. Removal of the solvent *in vacuo* followed by flash column chromatography using hexane/CH₂Cl₂ (15/1) as eluant gave 6.0 g (90%) of **87**. ¹H NMR (CDCl₃) δ 1.6 (s, 6H, vinyl methyl), 1.62 (s, 9H, vinyl methyl), 1.67 (s, 6H, vinyl methyl), 1.98-2.10 (m, 12H, C5', C6', C6, C7, C10, C11-CH₂), 2.4 (dt, 2H, C₂'-CH₂ J = 7 Hz), 2.72 (t, 2H, C1'-CH₂ J = 7 Hz), 3.10 (ddd, 2H, C3-CH₂ J = 11 Hz, 6 Hz, 1.8 Hz), 5.1-5.2 (m, 5H, vinyl H), 5.8 (q, 1H, C₂-vinyl H J = 18 Hz, 7 Hz), 6.1 (d, 1H, C1-vinyl H J = 18 Hz, 1.9 Hz). MS, m/e (%) 414 (57.5), 396 (27.5),

329 (45), 314 (52.5), 239 (30), 211 (50), 109 (27.5), 81 (25), 69 (100). Anal. Calcd for C₂₈H₄₆S C, 81.15, H, 11.11. Found C, 81.17, H, 11.21.

Synthesis of 34. The sulfide 87 (0.6 g, 1.6 mmol) was added to 2 mL of dry methyl iodide in a schlenk tube, and the reaction mixture was allowed to stand at rt for overnight. It was then heated with ether, methanol and ethyl acetate to remove excess methyl iodide and dissolve the oily residue. Crystallization occured upon cooling to yield 0.16 g (27%) of the desired product. ¹H NMR (CDCl₃) δ 1.6 (s, 6H, vinyl methyl), 1.62 (s, 9H, vinyl methyl), 1.67 (s, 6H, vinyl methyl), 1.9 (s, 3H, S-methyl), 2.20 (m, 12H, C5', C6', C6, C7, C10, C11-CH₂), 2.4 (dt, 2H, C2'-CH₂ J = 7 Hz), 2.72 (t, 2H, C1'-CH₂ J = 7 Hz), 3.15 (ddd, 2H, C3-CH₂ J = 11 Hz, 6 Hz, 1.8 Hz), 5.1-5.2 (m, 5H, vinyl H), 5.8 (q, 1H, C2-vinyl H J = 18 Hz, 7 Hz), 6.1 (d, 1H, C1-vinyl H J = 18 Hz, 1.9 Hz). MS, FAB (Xenon/sulfolane) 429 (M⁺, 100).

REFERENCES

(1) (a) Wolfenden, R.Transition States of Biochemical Processes Plenum Publishing
Co., New York, 1978. (b) Engel, P.A. Enzyme Kinetics: The Steady-State Approach
Chapman Hall & Methuen Inc., New York, 1981.

(2) The Biochemistry of Artherosclerosis, Vol. 7 The Biochemistry of Disease Marcel Dekker Inc., New York, 1979.

(3) Brown, M.S.; Goldstein, J.L.Scientific American 1984, 52.

(4) Poulter, C.D.; Rilling, H.C. Biosynthesis of Isoprenoid Compounds John Wiley and Sons., New York, 1981, 1.

(5) (a) Avruch, L.; Fischer, S.; Pierce, H.D.Jr.; Oehlschlager, A.C.Can. J. Biochem.
1976, 54, 657. (b) Oehlschlager, A.C.; Pierce, H.D.Jr.; Pierce, A.M.; Angus, R.H.; Quantin-Martenot, E.; Unrau, E.M.; Srinivasan, R. Biogenesis and Function of Plant Lipids Elsevier/North-Holland Biomedical Press, Amsterdam, 1980, 395. (c) Oehlschlager, A.C.; Angus, R.H.; Pierce, A.M.; Pierce, H.D.Jr.; Srinivasan, R. Biochem. 1984, 23, 3582. (d) Acuna-Johnson, P.; Czyzewska, E.; Oehlschlager, A.C.; Pierce, A.M. unpublished results.

(6) (a) Rahier, A.; Taton, M.; Schmitt, P.; Benveniste, P.; Place, P.; Anding, C. *Phytochemistry*, 1985, 24, 1223. (b) Rahier, A.; Bouvier, P.; Cattel, L.; Narula, A.;
Benveniste, P. Biochem. Soc. Trans. 1983, 11, 537. (c) Delprino, L.; Balliano, G.;
Cattel, L.; Benveniste P.; Bouvier, P. J. Chem. Soc., Chem. Commun., 1981, 381.

(7) (a) Narula, A.S.; Rahier, A.; Benveniste, P.; Place, P.; Anding, C. J. Am. Chem. Soc. 1981, 103, 2408. (b) Rahier, A., Genot, J.C.; Schuber, F.; Benveniste P.; Narula, A.S. J. Biol. Chem. 1984, 259, 15215. (c) Cerutti, M.; Delprino, L.; Cattel, L.; Bouvier-Nave, P.; Duriatti, A.; Schuber, F.; Benveniste, P. J. Chem. Soc., Chem. Commun., 1985, 1054.

(8) Reardon, J.E.; Abeles, R.H. Biochem. 1985, 25, 5609.

(9) Croteau, R.; Wheeler, C.J.; Aksela, R.; Oehlschlager, A.C. J. Biol. Chem. 1986, 261, 7257.

(10) (a) Rilling, H.C.; Poulter, C.D.; Epstein, W.W.; Larsen, B. J. Am. Chem. Soc.
1971, 93, 1783. (b) Ortiz de Montellano, P.R.; Wei, J.S.; Castillo, R.; Hsu, C.K.; Boparai, A. J. Medicinal Chem. 1977, 20, 243. (c) van Tamelen, E.E.; Schwartz, M.A. J. Am. Chem. Soc. 1971, 93, 1780. (d) Popjak, G.; Agnew, W.S. Mol. & Cell Biochem. 1979, 27, 97. (e) Agnew, W.S.; Popjak, G. J. Biol. Chem. 1978, 253,
4566. (f) Kuswik-Rabiega, K.; Rilling, H.C.; J. Biol. Chem. 1987, 262, 1505. (g)
Cornforth, J.W. Chem. Rev. 1973, 2, 1. (h) Cornforth, J.W. Angew. Chem. Int. Ed. Engl. 1968, 7, 903. (i) Bertolino, L.; Altman, L.J.; Vasak, J.; Rilling, H.C.;
Biochim. Biophys. Acta 1978, 530, 17. (j) Altman, L.J.; Kowerski, R.C.; Rilling, H.C. J. Am. Chem. Soc. 1971, 93, 1782. (k) Agnew, W.S.; Popjak, G. J. Biol Chem. 1978, 253, 4566. (l) Altman, L.J.; Kowerski, R.C.; Laungani, D.R. J. Am. Chem. Soc. 1978, 100, 6174. (m) Agnew, W.S.; Popjak, G. J. Biol Chem. 1978, 253, 4574. (11) (a) Sandifer, R.M.; Thompson, M.D.; Gaughan, R.G.; Poulter, C.D. J. Am.
Chem. Soc. 1982, 104, 7376. (b) Capson, T.L.; Thompson, M.D.; Dixit, V.M.;
Gaughan, R.G.; Poulter, C.D. J. Org. Chem. 1988, 53, 5903.

(12) Poulter, C.D.; Capson, T.L.; Thompson, M.D.; Bard, R.S. J. Am. Chem. Soc. 1989, 111, 3734. The inhibition studies will be executed by Mrs. Armin Samiei at SFU.

(13) Leopold, E.J. Org Syn. Prep. available on request.

(14) (a) Mancuso, A.J.; Huang, S.L.; Swern, D. J. Org. Chem. 1978, 43, 2480. (b)
Other methods of preparing pure trans-geranial including Collins oxidation^C and use of activated MnO₂ require large excess of reagents.^d (c) Ratcliffe, R.W.Organic Syn.
1976, 55, 84. (d) Corey, E.J.; Gilman, N.W.; Ganem, B.E.; J. Am. Chem. Soc.
1968, 90, 5616.

(15) (a) Attempts to use the anion formed from DMSO and NaH^b or the use of KO^tBu in DMSO^c has been reported to result in 10-20% of Z isomer of triene. Use of butyl lithium as base gave only 45% yield. (b) Greenwald, R.; Chaykovsky, M.; Corey, E.J. J. Org. Chem. 1963, 28, 1128. (c) Denney, D.B.; Song, J. J. Org. Chem. 1964, 29, 495.

(16) (a) Brown, H.C.; Zweifel, G. J. Am. Chem. Soc. 1961, 83, 1241. (b) Brown,
H.C. Organic Synthesis via Boranes, Wiley Interscience, New York, 1975, p 29, 35,
85 and 241.

(17) (a) Davis, R.; Untch, K.G.J. Org. Chem. 1981, 46, 2985. (b) Mizuno, A.;
Hamada, A.Y.; Shioiri, T. Syn. Commun. 1980, 1007. (c) Nystrom, R.F.; Brown,
W.G. J. Am. Chem. Soc. 1969, 69, 2548.

(18) (a) Osbond, J.M. J. Chem. Soc. 1961, 5270. (b) Katzenellenbogen, J.A.;
Lenox, R.S. J. Org. Chem. 1973, 38, 326. (c) Coates, R.M.; Ley, D.A.; Cavender,
D.L. J. Org. Chem. 1978, 43, 4915.

(19) Hoye, T.R.; Kurth, M.J. J. Org. Chem. 1978, 43, 3693.

(20) Kojima, Y.; Wakita, S.; Kato, N.Tetrahedron Lett. 1979, 4577.

(21) Mitsunobu, O.; Eguchi, M. Bull. Chem. Soc. Japan 1971, 44, 3427.

(22) Volante, R.P.Tetrahedron Lett. 1981, 3119.

(23) Bobbio, P.A. J. Org. Chem. 1961, 26, 3023.

(24) (a) Weiler, L. J. Am. Chem. Soc. 1970, 92, 6702. (b) Sum, F.W.; Weiler, L.
Can. J. Chem. 1979, 57, 1431. (c) Weiler, L.; Spino, C.; Alderdice, M. Tetrahedron
Lett. 1984, 1643.

(25) Brown, H.C.; Krishnamurthy, S. Tetrahedron 1979, 35, 567.

(26) (a) Masamune, S.; Kamata, S.; Schilling, W. J. Am. Chem. Soc. 1975, 97,
3515. (b) Detty, M.R.; Wood, G.P. J. Org. Chem. 1980, 45, 80.

(27) Reich, H.J.; Cohen, M.L. J. Am. Chem. Soc. 1979, 101, 1307.

(28) Arnold, R.T.; Kulenovic, S.T. J. Org. Chem. 1978, 43, 3687. (b) Kotake, H.;
Inomato, K.; Aoyamo, S.I.; Kinoshita, H. Chem. Lett. 1977, 73. (c) Garst, M.E.;
Mcbride, B.J.; Johnson, A.T. J. Org. Chem. 1983, 48, 8.

(29) Hooz, J.; Gilani, S.S.H.Can. J. Chem. 1968, 46, 86.

(30) (a) Scholz, D. Liebigs Ann. Chem., 1984, 259. (b) Hayashi, S.; Furukawa, M.;
Yamamoto, Y.; Niigata, K. Chem. Pharm. Bull. 1967, 15, 1188. (c) Wiley, G.A.;
Hershkowitz, R.L.; Rein, B.M.; Chung, B.C. J. Am. Chem. Soc. 1964, 86, 964.

(31) Kuwajima, I.; Doi, Y. Tetrahedron Lett., 1972, 1163.

(32) (a) Millar, J.G.; Oehlschlager, A.C.; Wong, J.W. J. Org. Chem. 1983,48, 4404.
(b) Posner, G.H.; Ting, J-S.; Lentz, C.M.Tetrahedron 1976, 32, 2281.

(33) Coates, R.M.; Robinson, W.H. J. Am. Chem. Soc. 1971, 93, 1785.

(34) Corey, E.J.; Wollenberg, R.H. J. Org. Chem. 1975, 40, 2265.

(35) Greene, T.W. Protective Groups in Organic Synthesis Wiley Interscience, New York, 1980.

(36) Joshi, G.C.; Singh, N.C.; Pande, L.M.Tetrahedron Lett. 1971, 1461.

(37) Jorritsma, R.; Steinberg, H.; de Boer, T.J. Recl. Trav. Chim. Pays-Bas 1981, 100, 184.

(38) Westmijze, H.; Ruitenberg, K.; Meijer, J.; Vermeer, P. Tetrahedron Lett., 1983, 2797.

(39) Piers, E.; Jean, M.; Marrs, P.S. Tetrahedron Lett. 1987, 5075.

(40) Lipshutz, B.H.; Parker, D.; Kozlowski, J.A. J. Org. Chem. 1983, 48, 3334.

(41) van Horn, D.E.; Negishi, Ei-ichi J. Am. Chem. Soc. 1978, 100, 2252.

(42) (a) Brandsma, L. Preparative Acetylenic Chemistry. Elsevier Publishing Co., New York, 1971.(b) Brandsma, L.; Verkruijsse, H.D. Synthesis of Acetylenes, Allenes and Cummulenes Elsevier Publishing Co., New York 1981.

(43) Vermeer, P.; Meijer, J.; Eylander, C.; Brandsma, L. Recl. Trav. Chim. Pays-Bas. 1976, 95, 26.

(44) (a) Baba, S.; van Horn, D.E.; Negishi, E.I.*Tetrahedron*, 1976, 1927. (b)
Kozikowski, A.P.; Ames, A.; Wetter, H. J. Organomet. Chem. 1979, 169, C33. (c)
Tiecco, M.; Testaferri, L.; Tingolo, M.; Chianelli, D.; Monlanacci, M. J. Org. Chem.
1983, 48, 4795. (d) Murahashi, S.I.; Yamamura, M.; Yanagisawa, K.; Mita, N.;
Kondo, K. J. Org. Chem. 1979, 44, 2408. (e) Posner, G.H.; Tang, P.W. J. Org.
Chem. 1978, 43, 4131. (f) Alexakis, A.; Normant, J.F. Synthesis 1985, 72.

(45) (a) Corey, E.J.; Cashman, J.R.; Meikrich, T.; Corey, D.R. J. Am. Chem. Soc.
1985, 107, 713. (b) Guss, C.O.; Chamberlain, D.L. J. Am. Chem. Soc. 1952, 74, 1342.

(46) Miyaura, N.; Yamada, K.; Suginoine, H.; Suzukui, A. J. Am. Chem. Soc. 1985, 107, 972.

(47) Still, W.C; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923.