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ABSTRACT 

This thesis is an investigation of robust vector quantization, with the purpose of 

providing a system for the application of data compression and speech enhancement. 

Vector quantization is widely used in data compression systems. However, the 

performance of these systems will degrade in a noisy environment. The proposed 

robust vector quantization system solves the problem of optimal quantization of 

a signal affected by additive noise in a conventional framework of vector quanti- 

zation. A noise estimate is used to adapt the vector quantization codebook to the 

specific noisy environment, and a spectral mapping technique is used to obtain noise- 

cancelled parameters. The system is supposed to be suitable for dealing with any 

type of additive noise sources. The experimental results show a significant improve- 

ment for a considerable range of signal-to-noise ratios. 
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Chapter 1 

Introduction 

1 .  Motivation for Research 

Vector quantization is used extensively in data compression applications such as 

speech coding, image coding and speech recognition. Generally, a vector quantizer 

(VQ) is designed assuming that a noise-free source is available to the quantizer. This 

assumption is not acceptable for many applications such as speech coding for mobile 

telephony, where only a noisy version of the source is available for compression. In 

this situation, the objective is to design a robust VQ, a VQ which operates' on a 

noisy, source but produces a good quantization of the corresponding noise-cancelled 

or noise-reduced source.. This thesis is an investigation of an approach to achieve 

robust vector quantization, with the purpose of providing a system for the application 

of data compression and speech enhancement. 

1.2 Background and Research Methodology 

Since 1987, several approaches, which can be used for robust vector quantization, 

have appeared. If the probability distributions (PDs) are known, an optimal quan- 

tizer for a noisy source can be designed by using the approach proposed by Yariv 

Ephrairn and Robert M. Gray [38]. However, if the statistics of the source or the noise 

are not known, a suboptimal solution has to be considered for the system. Moreover, 

the system in [38] is based on a concatenation of an optimal clean source estimator 

and an optimal vector quantizer. This leads to a high complexity system. 
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Another solution to the noisy source problem is to use a clean codebook, which is 

designed for the clean source, and a distortion measure with low noise sensitivity. For 

example, a formant distortion measure has shown promising results in noisy speech 

coding [lo]. However, the performance of this system is dependent on the accuracy 

of formant tracking, which is a difficult task in a high noise environment. 

The spectral mapping approach proposed by B-H. Juang and L. Rabiner [5] is 

based on a prior establishment of a correspondence between a noisy spectra and a 

clean spectra. The noisy source is mapped into the clean source through spectral 

mapping. 

Since the above approaches are limited in applications (refer to Chapter 41, a 

new approach is proposed in this thesis. The proposed system incorporates a speech 

enhancement technique into a conventional vector quantizer. With a noise estimate 

and a spectral mapping technique, the system operates on a noisy source but pro- 

duces a corresponding clean source. Therefore, the system can solve the problem 

of optimal quantization of a signal degraded by additive noise in the conventional 

vector quantization framework. The advantages of this system are as follows: it 

is suitable for different types of noisy sources with a large range of signal-to-noise 

ratio (SNR); it is also easy to implement and its performance significantly improves 

signal-to-noise ratio. 

Outline of Thesis 

Several speech enhancement approaches are introduced in Chapter 2. A discussion 

of speech enhancement for a bandwidth compression system is also given in Chapter 

Chapter 3 describes the vector quantization technique including codebook gener- 

ation and distortion measures for vector quantization. 

Chapter 4 describes three known approaches, optimal robust vector quantization, 

vector quantization with a formant distortion measure and signal restoration by 

spectral mapping, which can be used as robust vector quantization systems. 

In Chapter 5, a new approach, called robust vector based on spectral 
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mapping with a noise estimate, is presented. This approach incorporates spectral 

mapping with a noise estimate and vector quantization to achieve robust vector 

quantization. The complexity reduction leads to two systems, called the multi- 

codebook system and the adaptive-codebook system respectively. Simulation results 

are also shown in this chapter. 

Chapter 6 discusses the conclusions of the research and the direction for future 

research. 



Chapter 2 

Speech Enhancement 

Introduction 

Most of the research on speech signal processing uses the speech data under near 

ideal conditions. However, in the real world most speech signals originate in a noisy 

environment. The noise can degrade the performance of the speech processing sys- 

tem used for applications such as speech compression and recognition. For exampie, 

if noisy speech is processed by using a linear prediction technique which can be 

interpreted as a spectrum matching process, then the predictor will match the dis- 

torted spectrum rather than that of the underlying speech. At the receiving end of 

a vocoder system, when the same predictor is used, the synthesized speech will be 

seriously degraded. 

Speech processing systems are practically used in a variety of environments, and 

their performance must maintain at a level near that measured using the noise-free 

input speech. Over the past ten years, there has been a great interest focused on 

speech enhancement techniques for coping with such a practical problem. Various 

speech enhancement approaches were derived for different additive noise environ- 

ments. Additive background noise may be wide band noise which is usually assumed 

to be White Gaussian or may be automotive noise in a mobile vehicular environ- 

ment. In this chapter, some of speech enhancement techniques designed to cope 

with additive noise will be discussed. 
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2.2 Spectrum Subtraction 

Most current techniques for handling additive wideband noise are based on spectrum 

subtraction. The so-called spectrum subtraction is a technique that estimates the 

magnitude frequency spectrum of the underlying clean speech by subtracting ah es- 

timate of the spectrum of the noise from that of the noisy speech [31]. Speech is 

a non-stationary process. However, this complicated process can be modeled as a 

sequence of waveform segments where each segment is assumed to be a part of an 

ergodic process. This assumption is based on the fact that speech statistics do not 

change very much during a segment of short time. A segment of noise can also be 

assumed to be a part of an ergodic process. For developing the theory of spectrum 

subtraction, we therefore assume each segment of speech and each segment of noise 

to be parts of ergodic processes. Also, we assume that noise is additive and uncor- 

related to speech signals. Then, we represent the noisy speech signal as 

~ ( 4  = 44 + +), (2.1) 

where s(n) and d(n) represent the speech signal and the neise respectively. The 

corresponding Fourier transform is given by % 

where 

and L is the number of samples in a segment. 

The power spectral density of y(n) can be obtained by the Fourier transform of 

ry(r) as shown below 
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where r9(r )  is the autocorrelation function of y(n). ~ J T )  is defined as follows: 

For ergodic signals, the estimate of r , ( r )  can be written as a convolution of y (n )  and 

its time reversal: 

P Y ( 4  = ~ ( 7 )  * Y(-7) .  (2.8) 

The Fourier transform of (2.8) gives the following equation: 

&w) = Y(w)Y(-w) ,  (2.9) 

where P9(w) represents the estimate of the power spectral density of y (n) .  Equation 

(2.9) then results in 

Pv(w) =I Y ( w )  I2 . 
Applying (2.2) to (2.10), we obtain 

I Y ( w )  12=1 S(w) l2 + ) D(w) l2 +S(w)D*(w) + D(w)S*(w) (2.15) 

where the asterisks represent complex conjugates, and S(w)D*(w) and D(w)Sf(w)  

are the estimates of F[rsd(r)] and F[rd8 ( T ) ]  respectively, 
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Since s ( n )  is uncorrelated with noise and the mean of the noise is assumed to be 

zero, we have 

Similarly, 

Hence, we can assume S(w)D*(w) = 0 and D(w)S*(w) = 0. Therefore, equation 

(2.15) reduces to 

which can also be written as 

where P8(w) is the estimate of the power spectral density of s ( n )  and &(w) is the 

estimate of the power spectral density of d(n).  

From (2.20) we find that if we can obtain an estimate of 1 Y ( w )  12, then I S ( w )  l 2  
can be obtained simply by subtracting I D(w) l 2  from I Y ( w )  12. Following that, the 

original speech signal s ( n )  can be recovered. I D(w) l2  can not be obtained precisely, 

but it can be approximated by averaging a number of segments of noise. By defining 

we can express (2.20) as follows: 

where S ( w )  is an estimate of S ( w )  and AVG[I D(w) 12] is obtained either from the 

assumed known statistics of the background noise d(n)  or by an actual measurement 

from the silence intervals in which only the background noise is present. 
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The power spectral density is supposed to be positive. However, the estimate 

I S(w) I 2  based on (2.23) is not guaranteed to be non-negative since I Y (w) I 2  -AVG[I D(w) 12] 
may become negative. To solve this problem, several methods can be used. One 

of them is to simply change the sign of negative values to make the negative val- 

ues positive. Another method is to set I S(w) I 2  to zero if I Y (w) I 2  is less than 

A w l  D(w) l21* 
From a given estimate of I S(w) I, there are many ways to estimate s(n). One 

of them is based on the fact that the short-time spectral amplitude is important for 

speech quality rather than the phase [37] ([17]). Since the short-time phase is not 

important perceptually, in this method we can approximate Ph[S(w)], the phase of 

S(w), by Ph[Y (w)], the phase of Y (w), so that s(n) can be recovered by the inverse 

Fourier transformation of the estimate of S(w) as shown below 

B (n) = F-' [$(@)I, 

where 

In the spectrum subtraction as described above, an estimate of the original clean 

speech is obtained and therefore, the speech enhancement is achieved. This process 

of speech enhancement is shown in Figure 2.1, where F and F-l represent taking 

the direct and inverse Fourier transforms respectively, and I l 2  and I . Ill2 represent 

taking the square and square root of the norm. 

Since the power spectrum of a signal is the Fourier transform of its autocorre- 

lation function, any process applied to the power spectrum should be applicable to 

. the autocorrelation as well. As in the case of the power spectrum subtraction, under 

the assumption that the noise and the speech signal are uncorrelated and that the 

mean value of the noise is zero, there are no cross-products. Therefore, the power 

spectrum subtraction can also be interpreted in terms of estimating the short-time 

autocorrelation r, (n) as 
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Figure 2.1: Speech Enhancement by Spectrum Subtraction 

where 

Similarly, 

and 

L-1-n 

td(n) = d(k)d(k + n). 
k=O 

Accordingly, this spectrum subtraction technique can also be called an autocor- 

relation subtraction technique. Since this technique does not require any Fourier 

transform computations, it is more at tractive than spectrum subtraction itself. The 

main problem of autocorrelation subtraction is that the result of the subtraction may 

no longer be an autocorrelation function because AVG[i'd(n)] is an approximation. 

This problem is not simple to solve [7]. 

For simplicity, the notation of an estimate of autocorrelation, f.(n), will be re- 

placed by r(n) in the following sections of the thesis. 
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2.3 Wiener Filtering 

Wiener filtering is another common technique in speech enhancement. For y(n) = ~ ( n )  + d(n) 

in which s(n) and d(n) are assumed to be uncorrelated stationary random processes 

with power spectral density Pa(@) and Pd(w) respectively, the linear estimator of s(n) 

which minimizes the mean-square error is obtained by filtering y(n) with a Wiener 

filter. 

The Wiener filter can be formulated in the frequency domain. Its transfer func- 

tion is 

Since speech is not stationary and the power spectral density of the clean speech, 

P8(w), is usually not known, the Wiener filter given by (2.30) can not be applied 

directly to estimate s(n).  An approximation of the Wiener filter may be based on 

the frequency response 

where AVG represents .an average operation. 

where Pf)(w) and Pf)(w)  are the estimates of power spectral densities for the ith 

frame. 

As in the Spectrum Subtraction section, A V G [ ~ ~ ( W ) ]  can be obtained either from 

the known statistics of d(n) or by averaging a number of frames of Pd(w) during 

silence intervals in which the statistics of the background noise can be assumed to 

be stationary. 

For estimation' of AVG[~. ,(W)] ,  many methods can be used. One of the methods 

is to first estimate A V G [ ~ ~ ~ ( U ) J  by averaging P'(w) over a number of frames of noisy 

speech, then to subtract A V G [ ~ ~ ( W ) ]  from the estimated AVG[&W)] to obtain an 
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estimate of A V G [ ~ ( U ) ] .  The estimated short-time speech signal in the frequency 

domain is obtained by 

2.4 Adaptive Noise Cancelling 

Many adaptive noise cancelling techniques based on the availability of both the 

degraded signal y(n) and a reference signal r(n) have been developed. In these 

techniques, the reference signal r(n)  is uncorrelated with the original signal s(n) but 

correlated with the noise d(n). Figure 2.2 shows an adaptive noise cancelling system 

proposed by Widrow et al. [34]. The system attempts to remove d(n) by filtering 

r (n)  to make it match d(n). The purpose of this system is to enable the system to 

control the filter until J(n) is as close to d(n) as possible. 

input signal + 

Figure 2.2: An Adaptive Noise Cancelling System 

This speech enhancement method depends on having a reference signal, but in 

many speech-enhancement applications such a reference signal may not be available. 

As a result, this method can not be applied. However, Sambur [25] developed a 

system which makes use of the principles of adaptive noise cancelling by generating 

a reference input. In his method, he took advantage of the fact that the wave- 

forms of successive pitch periods of voiced speech are highly correlated, while the - 
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noise in the two periods can be assumed to be uncorrelated. Hence noisy speech 

y(n) = s (n)  + d(n)  can be taken as the primary signal and the same signal delayed 

by one pitch period can be taken as the reference signal 

where T represents the pitch period. Considering the periodicity of the voiced speech, 

equation (2.35) can be written as 

r ( n )  = s (n  - T )  + d(n - T )  = s (n)  + d(n - T ) .  (2.36) 

Therefore, by interchanging the roles of speech and noise signals in Figure 2.2, the 

adaptive noise cancelling proposed by Sambur can be shown in Figure 2.3. 

Figure 2.3: An Adaptive Noise Cancelling System for Speech Enhancement by Sam- 
bur 

In this system, the adaptive filter is used to find the best estimate of the noise- 

free speech by minimizing the noise output d(n) .  The desired output of this system, 

B(n), can be obtained from the output of the adaptive filter shown in Figure 2.3. 

Figure 2.4 is another approach to Sambur's technique in which the reference in- 

put r ( n )  is specified as 

r (n)  = y(n) - y(n - 2"). (2.37) \ 
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Considering the periodicity of the voiced speech, equation (2.37) can be written as: 

r ( n )  = s(n) + d(n)  - s ( n  - T )  - d(n  - 2") = d(n)  - d(n  - T ) .  (2.38) 

Then r(n)  is uncorrelated with s ( n )  but is highly correlated with d(n) .  Therefore, 

r ( n )  satisfies the condition for adaptive noise cancelling. 

Figure 2.4: Another Adaptive Noise Cancelling System by Sambur 

It should be mentioned that a difficulty with adaptive noise cancelling is that 

the reverberative environment present in some applications reduces significantly the 

coherence between r ( n )  and d ( n )  making the adaptive noise cancelling approach 

inefficient [23]. 

2.5 Speech Enhancement Techniques for Band- 
width Compression System 

A bandwidth compression system is a system to convert a stream of analog or very 

high bit-rate discrete data into a stream of relatively low bit rate data for commu- 

nication over a digital communication link or storage in a digital memory. Most 

bandwidth compression systems are designed for noise-free conditions. The per- 

formance of such systems degrades quickly [6] [26] [9] as the signal-to-noise ratio 

decreases. Thus, it is important 

bandwidth compression systems. 

to develop techniques for the robustness of the 
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noisy 

v 
bandwidth 
compression 

Figure 2.5: Approach 1 for Robustness of Speech Bandwidth Compression 

Generally, the robustness of a bandwidth compression systems can be achieved 

in two ways. The first approach, called the preprocessor-compression approach, is 

shown in Figure 2.5. In this approach, a preprocessor is designed to enhance the 

degraded speech in preparation for further processing by the bandwidth compression 

system. The bandwidth compression system then processes the enhanced speech as 

undistorted speech. The second approach to bandwidth compression of degraded 

speech, called the compression with speech enhancement approach, is based on in- 

corporating the signal information about the degradation into the bandwidth com- 

pression system model. Unlike the first approach which enhances the speech first, 

the second approach (refer to Figure 2.6) applies speech enhancement techniques 

directly to the bandwidth compression system. The bandwidth compression system 

operates on the noisy speech but produces a good reproduction of clean speech. 

Figure 2.6: Approach 2 for Robustness of Speech Bandwidth Compression 

The robust vector quantization system proposed in this thesis will be based on 

the second approach. 

compressed 

D 

noisy 
speech 

h 

bandwidth compression 
and 



Chapter 3 

Vector Quantization 

3.1 The Basic Concept 

Vector quantization is an important technique for data compression. It reduces 

the bit rate (i.e. the number of bits per second or the number of bits per waveform 

sample) so as to minimize communication channel capacity or digital storage memory 

requirements while maintaining the necessary fidelity of the data. 

A vector quantizer (VQ) is a system for mapping a sequence of continuous or 

discrete vectors into a digital sequence suitable for cornmuicatioo over, or storage 

in, a digital channel. VQ is the most economical possible coding scheme according 

to Shannon's coding theory. 

The model that Shannon used in the development of the information theory [30] 

is based on codebook coding. The codebook is, in the simplest case, a collection of 

S possible messages, with each entry indexed by a R-bit number such that 

The S possible messages are called codewords. A codeword can be represented 

as a sampled waveform, or, alternatively, a parametric representation of the given 

waveform segment may be used. S is called the size of the codebook. In the cod- 

ing procedure, the transmitter selects the closest codeword from the codebook by 

a distortion measure criterion, then transmits its R-bit address. In the decoding 

procedure, a receiver looks up the same codebook according to the R-bit address 

and recovers that message. 

15 



CHAPTER 3. VECTOR QUANTIZATION 16 

In the case of vector quantization, the codewords in the codebook are vectors. 

This choice of codewords is based on considering a sequence of k samples as a k- 

dimensional vector. The larger the vector dimension is, the better the vector quan- 

tization performs. 

A vector quantization scheme usually involves a codebook, an encoder and a 

decoder as shown in Figure 3.1. The codebook is a lookup table with R-bit addresses 

and 2R entries. Each entry C(i )  in the table is a vector consisting of consecutive 

waveform samples or of parameters representing the waveform. The encoder takes 

each subset of input signals, {x , ) ,  as an input vector X. For each input vector 

X, the codebook is searched and the closest codeword C(imin) is found. Then, the 

chosen index is passed to the decoder. According to this best index, the decoder 

selects the corresponding codeword from the codebook as the output of the vector 

quantization system. 

4 

Ix? 
t best index ih  I- 8) * E n d e r  Decoder fi 

b 

Figure 3.1: Vector Quantization 
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3.2 ' Distort ion Measures for Vector Quantization 

The performance of a VQ can be evaluated by a distortion measure. The distortion 

measure d(X,A) expresses the distortion when any vector X is reproduced as a 

reproduction vector 2. Given such a distortion measure, the performance of a vector 

quantization system can be quantified by an average distortion E { d ( ~ ,  2)) between 

the input vector and its reproduction. The smaller the average distortion is, the 

better the system will be. For an ergodic stationary process the expectation can be 

computed by 
1 .- 

E{~(x, a ) }  = limn+m- 2 d(x;, 2;), 
n ;=I) 

where Xi is an infinite sequence of input vectors and 2; the mrresponding reproduc- 

tion vectors. 

A distortion measure should be mathematically and computationally tractable so 

that it can be evaluated in real time and used in minimum distortion systems. There 

are several distortion measures such as the Weighted Mean Square Error (WMSE), 

the Itakura-Saito (IS) distortion measure, the likelihood ratio (LR) and the spectral 

error (SE) distortion measure. These distortion measures will be discussed in the 

following sections. 

3.2.1 Weighted Mean Square Error Distortion Measure 

Assuming that the input space X and the output or reproduction space A? are k- 

dimensional linear spaces, that X is a k-dimensional input vector in X and that 2 is 

a k-dimensional reproduction vector in 2, then the WMSE between the input vector 

and the reproduction vector is defined by 

where W is a positive definite weighting matrix. In the particular case where the 

weighting matrix is an identity matrix 

d(X, a) becomes the well-known Euclidean distortion measure. This is the sim- 

plest and most frequently used distortion measure. In speech coding, the Euclidean 



CHAPTER 3. VECTOR QUANTIZATION 18 

distortion measure is most common for waveform coding. 

The distortion measure plays an essential role in a vector quantization scheme. 

One important factor in choosing a distortion measure is that it is subjectively mean- 

ingful. For example, the mean square error (MSE) distortion measure is the most 

common distortion measure and it is meaningful in waveform coding of speech. 

However, MSE is not subjectively meaningful in many cases. In those cases, the 

input-dependent weightings may be useful. Therefore WMSE can be used. Another 

alternative can be the It akura-Saito (IS) distortion measure. 

3.2.2 Itakura-Saito Distortion Measure 

The Itakura-Saito (IS) distortion measure is very useful in speech coding applications 

with linear predictive coding (LPC) vector quantization. 

In LPC coding, which relies fundamentally on spectral estimation, the distortion 

measure is usually described and interpreted in the spectral domain, although its 

evaluation is implemented in the time domain. A number of spectral distortion 

measures discussed by Gray, Markel [2], Gray et al. [28] and H-J H2oo~cp [q can he 

used in LPC coding. The IS measure is one of them. h 

Let X(z) represent the Z transform of the windowed input signal and G(z) rep- 

resent an all-pole filter of the form 

where 

The coefficients of the polynomial A(%), called LPC coefficients, are denoted by {ak) 

in (3.6). Denote by I X l2 and 1 A l2 the energy density spectra, I X I2 = I X(eje) l2 
and I A 1' = I A(#) 12. Then the residual energy (refer to the derivation of (3.18) 

in section 3.2.3), which results from passing X(z) through the inverse filter A(%) is 

By minimizing residual energy in linear prediction, the optimal values of LPC 

coefficients {ak) are determined. Let denote the minimum value of the residual 
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and let A M ( z )  denote the polynomial which produces the minimal residual energy 

OM. It is clear that the following relation is true: 

IS error The IS measure is based on an "error matching functionn[8] [4] [3]. Th' 

matching function evaluates the error in the approximation of the input spectrum X 

by the all-pole spectrum G. This measure is defined by 

For calculation convenience, the IS distortion measure can be expressed in the form 

where a and CY are defined by (3.5) and (3.7) respectively; a, is defined by 

Assuming that the polynomial which minimizes the residual energy is defined as 

A M ( Z )  and that a~ represents the minimum value of the residual energy, the model 

of the spectrum X is then given by: 

3.2.3 Likelihood Ratio Distortion Measure 

The Likelihood Ratio (LR) distortion measure is another alternative distortion mea- 

sure for LPC vector quantization. Both IS and LR distortion measures are based 

on an error function to describe the spectral matching effects in the frequency do- 

main. The LR distortion measure is more appropriate than IS distortion measure for 

LPC vector quantization considering such factors as computation complexity, storage 

memory and variations in the input gain [4]. 

The LR distortion measure is a gain-normalized model spectral measure. The 

LR distortion measure denoted by dLR is equivalent to the IR distortion measure for 
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two unity gain models: 

In the LR measure, two gain-normalized model spectra are compared. To explain 

this measure clearly, let us start with the introduction to the residual or prediction 

error. 

L 
M samples ........................................................... " ................................-.........*.... 

< 

Figure 3.2: Estimate Sample x(n) by A Linear Combination of the Preceding M 
Samples 

Assuming that x(n) is a zero-mean signal, an estimate of x(n) can be obtained 

by using an all-pole predictor (see Fig.3.2). This estimate is a linear combination of 

the preceding M values as shown in 

M 
f(n) = - C aix(n - i), 

i=l 

where the sign U-n is used to simplify notation later. 

The residual error is the error between the estimated 'value f (n) and the input 

signal x(n), and it is given by 

M M 

e(n) = x(n) - f (n)  = x(n) + x aix(n - i) = C a i x ( n  - i), (3.15) 
i=l i=O 

where a0 = 1. The total squared error or the residual energy is then given by 
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In (3.16), a is a finite number since x(n) is a finite segment and x(n) is non-zero 

only within the segment. 

The evaluation of residual energy can be carried out by using autocorrelation 

sequences [13] [ll] [2]: 

where ~ ( i )  and ra(d) denote the autocorrelation sequences of the input speech {x(n)) 

and the LPC coefficients of A(z) respectively. The minimization of the residual 

energy is obtained by choosing the LPC coefficients. 

It is known that the Fourier transform of the autocorrelation is the power spec- 

tral density of the signal. Applying this theory and Parseval's theorem to (3.17), the 

residual energy can be represented in frequency domain: 

Figure 3.3 shows the relations among the filter, its input data and its output. The 

residual energy can be the output of the inverse filter A(Z) given by (3.6). Assume 

that the filter AM has been optimized for the sequence {x(n)) and the filter A h  for 

a different sequence {xl(n)): 

and 

As can be seen from (a) of Figure 3.3, if { ~ ( n ) ) ,  defined as a test sequence, is 

passed through a filter AM, the residual energy denoted by CYM is minimum; if the 

test sequence {x(n)) is passed through a reference filter Ah,  a residual energy a 

is obtained. The residual energy a has the relation with aM as shown in (3.8). In 
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other words, Ah is not optimal for the sequence of {x (n) ) .  Similarly, if the sequence 

{ ~ ' ( n ) )  is used as a test sequence and passed through a reference filter AM, a residual 

energy d is obtained; if this sequence is passed through the filter A h ,  the obtained 

residual energy denoted by dM is minimum. 

test 

reference 

' test - AM(.) + a* , 
reference 

Figure 3.3: Comparison of Two Filters or Two Sequences by Residual Energy. 

From Figure 3.3, we find that with residual energy we can compare two filters as 

well as two sequences of data. The ratio Q / Q ~  defines the difference between the 

test and reference data or their spectra. This ratio is called the likelihood ratio. The 

likelihood ratio distortion measure is defined for two spectra models with unit gain 

PI: 
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It is shown in [2] that equation (3.21) can be expressed as follows: 

Relation (3.22), shows that the LR distortion measure actually depends on the mag- 

nitude of the difference between the spectra. 

Based on Parseval's theorem and the relationship between the correlation func- 

tion and power spectral density, equation (3.21) can be transformed into 

where r,(i) and ra(i) denote the autocorrelation sequences of the input speech data 

and the LPC coefficients of A(Z) respectively. In practice, this equation is used to 

calculate the LR distortion. 
h 

3.2.4 spectral Error Distortion Measure 

The SE distorti@on measure is a way of representing the LR spectral distortion mea- 

sure in dB form [4] [3]. It is approximately expressed as 

where d2 is rms spectral distance measure [28] given by 

where GR is the average LR distortion. Therefore, SE distortion can be calculated by 
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3.3 Clustering Technique 

A clustering technique [12] separates a set of data into groups or clusters of similar 

data items. This technique has been widely used in vector quantization schemes and 

in codebook generation schemes. 

For example, a clustering technique used in vector quantization is described be- 
' 

low: for a sequence of speech data, we take a block of consecutive samples { x , )  as 

one vector X,  then search the codebook to choose the minimum distortion or the 

nearest codeword for this input vector. We assign the input vector to the codeword 

which gives the minimum distortion. Therefore, the input vector is clustered to the 

nearest codeword. 

When 2j represents the j th  codeword in the codebook, X will be clustered to 

2j if 

This shows that for the input vector X, 2, is the nearest codeword. The input space 
< 

can be partitioned into cells where all input vectors yielding a common reproduction 

vector are clustered together. Such a partition according to a minimum distortion 

rule is called a Voronoi partition. The resulting cells are called Voronoi cells. Each 

Voronoi cell has its centroid Aj, which is the gravity center of the Voronoi cell. The 

codebook consists of the set of centroids 2j defined as codewords. 

Figure 3.4 shows an example of clustering in speech waveform vector quantization. 

In this example, the vector dimension is two and the codebook size is also two. Each 

two adjacent samples are assumed to form a two-dimensional vector. The codebook 

searching procedure is as follows: For each input vector, the distortion between the 

input vector and each of the two codewords in the codebook is computed. The 

codeword for which the minimum distortion is obtained is chosen to represent the 

input vector. In other words, the input vector is clustered to the codeword which is 

its best match. A; can be seen from Figure 3.4, input vectors XI, X3, X7 are clustered 

to the cell which corresponds to the codeword 21, while input vectors X2, 4, Xs, Xe 

are clustered to the cell which -corresponds to the codeword 22. 
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Figure 3.4: An Example of Clustering in Speech Waveform Vector Quantization. 
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3.4 Codebook Generation 

3.4.1 Average Distortion 

The average distortion mentioned at the beginning of section 3.2 may be used to 

quantify the performance of a system. The average distortion given by (3.28) is ac- 

tually the long term sample average. 

A time average distortion as st approaches infinity is the same as the mathematical 

expectation in (3.2) only if the process is ergodic. Unfortunately, in practice the real 

source may be neither stationary nor ergodic. However, if we design a code based on 

a sufficiently long training sequence and use the code on the future data produced 

by the same source, we can expect the performance of the code on the new data to 

be roughly the same as that on the training data [29]. 

In practice, the following approach can be used: design a code which minimizes 

the average distortion for a very long training sequence. Then, use the code on a 

test sequence produced by the same source. Note that this test sequence is not in 

the training sequence. If the performance is close to that of the in-training sequence, 

then we expect the code to continue to obtain roughly the same performance in the 

future. If the performances from the training sequence and the test sequence are 

quite different, then a longer training sequence should be used. 

The optimal vector quantization is defined by Linde, Buzo and Gray [22] as 

follows: an S-level quantizer will be said to be optimal (or globally optimal) if it 

minimizes the expected distortion, that is, Q* is optimal if for all other quantizers 

Q having S reproduction vectors d(Q*) < d(Q). A quantizer is said to be locally 

optimal if d(Q) is only a local minimum, that is, slight changes in Q cause an increase 

in distortion. 

3.4.2 The LBG Algorithm 

The LBG algorithm by Linde, Buzo and Gray in 1980 [22] is an algorithm designed 

to generate a codebook. The basic LBG algorithm starts with an initial codebook, 
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then clusters the test data to the codewords in the codebook; after that, refines the 

existing codebook iteratively. The process continues until the performance of the 

system meets the user's requirements or until no further significant improvement is 

possible. The basic algorithm runs as follows: 

Step 0: Prepare a training sequence of speech data and an initial codebook. 

Step 1: Encode the training sequence of speech data with the current codebook 

by using the distortion measure and measure the average distortion. If the average 

distortion is small enough, the algorithm terminates. 

Step 2: For each address j in the codebook, find the centroid of all the input 

vectors which were mapped into the j th  Voronoi cell and make this centroid the new 

centroid. Return to Step 1. 

In Step 0, a sequence of speech data is prepared as the training sequence. This 

training sequence should be long enough to obtain good performance. An initial 

codebook is also prepared in this step. Step 1 compares each input vector to all 

the entries or codewords in the current codebook and clusters each input vector to 

the codeword which gives the minimum distortion. As well, the average distortion is 

computed at the end by accumulating those minimum distortions. In Step 2, each 

new centroid is computed by averaging all the vectors in the corresponding Voronoi 

cell. In other words, each centroid is moved to a new position, which gives a'more 

appropriate representation of the input vectors which were assigned to it. Actually, 

in this step the codebook is changed to a new version. Therefore, some of the input 

vectors now might belong to a better centroid. It is necessary to go back to Step 

1 accordingly. We repeat Step 1 and Step 2 until the average distortion meets the 

requirement or the centroids do not move any more. 

The LBG algorithm leads to a locally optimal codebook. In most cases the 

optimum works out to be a global one. 

3.4.3 The Initial Codebook 

In Step 0 of the basic LBG algorithm, an initial codebook is required. There are 

two basic approaches to design an initial codebook. The first approach is to start 

with a simple codebook with the required codebook size. We can choose a codebook 
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which is already a fairly good representative of the data to be encoded as an initial 

codebook. This can be done in speech waveform coding. For example, the actual 

input vectors can be taken as the codewords to form the initial codebook. The second 

approach starts with a small codebook and expands this codebook gradually until 

it reaches the required size. In this case, a splitting technique is usually used. For 

an S-level VQ, where S = 2R, R = 0,1,2 ..., the initial codebook can start with a 

one-level codebook (S = 1) consisting of the centroid of the training sequence. This 

vector is then split into two vectors and the basic LBG algorithm is run for this 

two-level (S = 2) codebook to obtain the optimal codebook. Then, each of these 

two vectors is split and the basic LBG algorithm is run again to produce an optimal 

four-level codebook. As a result of repeating this procedure, a codebook for the 

required S-level VQ is obtained. 

A splitting procedure for a 2-dimensional codebook having four codewords is 

shown in Figure 3.5. 

In this example, the codebook of size four is obtained in the following steps: 

1. Compute the centroid of the entire training sequence, then take this centroid 

as a codeword so that a size-one initial codebook is obtained. 
h 

2. The single centroid is split to form an initial size-two codebook. The two new 

vectors resulting from the splitting are very close to each other. 

3. The basic LBG algorithm produces a good codebook with two codewords. The 

dotted line denotes the boundary of a Voronoi cell. 

4. The h a 1  two codewords trained from Step 3 are split to form an initial sizefour 

codebook. 
I 

5. The basic LBG algorithm is run again to obtain the four final codewords giving 

an optimal codebook of the required size. 
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Figure 3.5: An Example of Splitting Technique 
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Robust Vector Quantization 

4.1 Introduction 

A vector quantizer (VQ) may be considered as a bandwidth compression system. 

Over the past several years, there has been considerable attention focused on the 

problem of compression of speech degraded by additive background noise in such 
h 

a system. It is generally agreed that the performance of current speech compres- 

sion systems degrades rapidly in the presence of additive noise and other distortions. 

This fact brings out the considerable interest and attention being directed at the 

development of more robust speech compression systems. The robustness of speech 

compression systems has been studied and several potentially promising and prac- 

tical solutions have been found. This robustness is achieved by applying speech 

enhancement techniques to speech bandwidth compression systems. 

As discussed in chapter 2, the preprocessor-compression approach and the com- 

pression with speech enhancement approach can be used to achieve the robustness 

of a bandwidth compression system. Based on these two approaches, a few systems 

which can be used to achieve robust vector quantization have been developed in 

recent years. We will describe below three of these systems. One of them, called 

optimal robust vector quantization system, is based on the preprocessor-compression 

approach; while the other two, VQ-formant measure system and spectral mapping 

system, are based on the compression with speech enhancement approach. 
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4.2 The Optimal Robust Vector Quantization Sys- 
tem 

An optimal robust vector quantization system is a robust vector quantization sys- 

tem which gives the minimum distortion between the clean speech and the processed 

speech. The relation between a robust vector quantizer Q(.) and an optimal robust 

vector quantizer Q,,(.) is shown below 

where x and y represent clean speech and noisy speech respectively, and d{.) 

denotes the distortion. 

Figure 4.1: The optimal Robust Vector Quantization System 

The optimal robust vector quantization system proposed by Yariv Ephraim and 

Robert M. Gray in 1988 can be obtained by an optimal estimator for the source to be 

compressed followed by an optimal quantizer [38]. As Figure 4.1 shows, this system 

is a two-step encoder. First, the optimal estimator for the sample spectrum of the 

original source (clean source) based on the minimum mean square error (mmse), is 

obtained; then the optimal vector quantization under the Itakura-Saito measure or 

under the weighted quadratic distortion measure is applied to the estimated or en- 

hanced speech. The second step is achieved by a conventional VQ which is optimized 

for the clean source. 

In [38], the optimal estimator for the source to be compressed is obtained assum- 

ing that the probability distributions (PDs) of the source and the noise are known. 

Alternatively, if the power spectral densitiespf the source and of the noise are known, 
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the optimal estimator can be obtained by using a Wiener filter as described by equa- 

tion 2.30 in Chapter 2. 

Generally, the PD of either the source or the noise is not explicitly known, and 

the power spectrum density of the signal is unknown. Hence, the optimal robust 

vector quantization system can not be obtained and suboptimal implementations of 

the robust vector quantization system must be considered. 

The suboptimal robust vector quantization system (Figure 4.2) consists of an 

suboptimal estimator followed by an optimal conventional VQ. In this system, the 

optimal estimator is approximated by a suboptimal estimator. Many techniques 

such as the approximation of Wiener filtering and power spectrum subtraction (See 

Chapter 2) can be used to obtain such a suboptimal estimator. 

noisy 

estimator 

compressed 
speech 

- clean 

h 

Figure 4.2: A Block Diagram of a Suboptimal Robust Vector Quantization System 

- 

The optimal robust vector quantization system is important from theoretical 

point of view. However, if the statistics of the source are not explicitly known, this 

speech 
b 

system can not be obtained and the optimal robust vector quantization system has 

to be replaced by a suboptimal one. A typical result for a suboptimal system is an 

SNR improvement of about 3dB over a direct vector quantization of the noisy source 

with OdB SNR [38]. The statistics of the clean signal are assumed unknown in this 

experiment. 

4.3 A Vector Quantization System With A For- 
mant Distortion Measure 

A vector quantization system with a formant distortion measure, which improves the 

intelligibility of noisy speech, was proposed by Douglas O'Shaughnessy [lo] in 1988. 



CHAPTER 4. ROBUST VECTOR QUANTIZATION 

This system is based on the use of vector quantization of LPC spectra and a distance 

measure involving formants. 

In the conventional LPC model, noise leads to poor modelling of resonance band- 

widths since this model does not ignore the spectral changes in the valleys between 

formants, where the effects of noise corruption are the largest. This problem can 

be solved by using the formant distance measure system. The reason for using a 

distance measure based on formants is that the high-amplitude formant frequencies 

are least affected by noise. The formant distance measure used in this system in- 

corporates the center frequencies and bandwidths of the first three formants of the 

spectrum. By using this distance measure, a good clean representative for the noisy 

input can be obtained. Figure 4.3 shows the basic configuration of this system. The 

clean codebook in the system is designed by using the log likelihood ratio distortion 

measure. The noisy speech, which is generated by adding the white noise to the 

clean speech, is processed by a LPC model to obtain the LPC spectrum. Then, 

the frequencies and bandwidths of the three highest spectral peaks are found. By 

using these formant information, a formant distance is computed to search the clean 

codebook so that the processed or enhanced LPC parameters are found. Finally, the 

speech is resynthesised with the processed LPC parameters. It should be noted that 

unlike in the clean codebook generation procedure, the distortion measure used in 

the codebook search procedure is the formant distance measure. The experimental 

results show that "the output was quite intelligible in most cases, down to OdB SNRn 

Pol 

clean 

codebook Ffl 

Figure 4.3: A Block Diagram of a Speech Enhancement System with Vector Quan- 
tization and a Formant Distance Measure 
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4.4 Signal Restoration by Spectral Mapping 

In this system, the signal restoration is treated as a problem of signal detection 

[5]. Instead of estimating the characteristics of the signal and the noise, the system 

processes the noisy speech through the correspondence between the clean spectrum 

and the noisy spectrum which is established by spectral mapping in advance. The 

spectral mapping technique is based on using two codebooks: a noisy codebook and 

a clean codebook. The noisy speech signal is first quantized by the noisy codebook. 

The corresponding codebook entry is mapped to an entry in the clean codebook, 

which represents an estimate of the quantized clean source. 

This system was used for speech enhancement of a noisy signal with 14dB SNR, 

which was obtained by adding white noise to clean speech. An SNR improvement of 

approximately lOdB is obtained. 

A more detailed description of the spectral mapping will be given in the next 

chapter. 

4.5 Summary 
t 

Three methods to achieve a robust vector quantization have been reviewed in this 

chapter. These systems have some limitations. The first system, the optimal robust 

vector quantization, is hard to implement in practice, since the statistics of the 

signal are usually unknown. Under this circumstance, the optimal robust vector 

quantization system has to be reduced to a suboptimal robust vector quantization 

system. The second system, the vector quantization with a formant distance measure, 

needs formant tracking, which is difficult in a high noisy environment. The third 

approach uses a fixed noisy codebook which is derived for white noise at a given 

SNR (14dB). It is expected that the performance will degrade significantly if the 

noisy codebook is not matched " to the noise which interferes with the input speech. 
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A New System For Robust Vector 
Quantization 

5.1 Introduction 

As mentioned before, the problem of vector quantization of a signal degraded by 

additive noise can be dealt with by the approaches discussed in Chapter 4. However, 

the applications of these approaches are limited. 

The approach proposed by Yariv Ephraim and Robert M. Gray requires the 
h 

known probability distributions of the noise and of the clean source, but this require- 

ment is generally not satisfied. The approach proposed by Douglas O'Shaughnessy 

has difficulties in practical use, because the performance is greatly dependent on the 

accuracy of formant tracking. The approach pioposed by Biing-Hwang Juang and 

L.R. Rabiner uses a fixed noisy codebook, which is derived for white noise at a given 

SNR (14dB). It is expected that the performance of this approach will degrade sig- 

nificantly if the noisy codebook is not "matchedn to the actual noise which interferes 

with the input speech. 

To avoid the disadvantages in previous approaches, we designed a new approach 

[36] which makes use of the available information about noise characteristics, and 

incorporates the signal information about the degradation to the vector quantization 

model. Based on this approach, we developed several methods for complexity reduc- 

tion. The advantages of this approach are that we need not know any probability 

distributions and that it is suitable for any kind of additive noise within a consid- 

erable range of signal-to-noise ratios. Therefore, it is more practical than the other 
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approaches. 

5.2 Spectral Mapping 

Linear prediction may be used to model the speech signal spectrum by an &-pole 

spectrum with a transfer function given by 

is the so-called inverse filter, G is the gain factor of the filter, ak are linear predictor 

coefficients, and p denotes the number of poles or predictor coefficients in the model. 

In relation (5.2) the LPC parameters ak represent short-time speech spectrum. 

The mapping technique that maps parameters in a clean spectral space K onto a 

ncisy spectra! space y (See Figure 5.1.) is caled spectrd mapping. These spedral 

parameters can be LPC parameters or any set of parameters equivalent toiLPC 

parameters such as autocorrelation functions of the LPC parameters. 

Figure 5.1: Spectral Mapping between Space X and Space y 

Spectral mapping is based on a priori establishment of a one-to-one correspon- 

dence between a clean spectral space and a noisy spectral space. Suppose we have 
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a way to build this one-to-one correspondence, then each set of noisy spectral pa- 

rameters in the noisy space has a corresponding representation in the clean spectral 

parameter space. In the mapping procedure, for *each input noisy spectrum Y, we 

search the whole space Y to find the nearest neighbor 6 to Y; then map this nearest 

neighbor 6 back to the corresponding clean spectrum $ in the space X. Since $ 
is the noisy version of * j ,  the mapping can reduce or cancel the noise. 

5.3 Basic Configuration 

A block diagram of the basic configuration for the proposed system is shown in Figure 

5.2. 

NOISY PARAMETER QUANTIZED 
SPEECH ESTIMATE v Q MPIPPING SPEECH 

PARAMETERS 
t t 

I b 
NOISE NOISY 

ESTIMATE COaEBOOK 

t 

Figure 5.2: Noise Cancellation by Spectral Mapping in Robust Vector Quantization 

The input to the parameter estimator is a noisy speech signal. The parameter 

estimator calculates the estimate of the autocorrelation functions for each speech 

frame. Each such estimate is defined as an input to the VQ. In order to cope with the 

noise of different types and of different characteristics effectively, a number of noisy 

codebooks are built into the system. A noise estimate can be obtained by measuring 

noise parameters in pauses between words. Based on this estimate, the noise classifier 

determines the type and chara$eristics to which the noise belongs. This enables the 
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system to select the most suitable noisy codebook for vector quantization. The block 

"VQ" will vector quantize the parameters of noisy speech with the selected noisy 

codebook. Since there is a one-to-one correspondence between the noisy codebook 

and the clean codebook, the block "mapping" maps the quantized noisy parameters 

to the corresponding clean parameters. From these parameters, quantized speech 

can be constructed. If we ignore the details in Figure 5.2, considering only the 

noisy speech as the input of the system and quantized speech as the output of the 

system, we can say that the proposed approach incorporates the signal information 

about the degradation into the vector quantization model. The noise is reduced 

or cancelled when the noisy speech passes through this kind of vector quantization 

system. Therefore, we can also call this system a robust vector quantization system. 

5.4 Optimal Conditions for the System 

In this section, we will start by introducing the definition of the optimality for a 

robust VQ. Then, we will show a constructive technique for building a robust VQ 

based on spectral mapping. We will also show that this technique is optimal if the 

mapping from the clean space to the noisy space preserves the distortion between 

vectors. 

Let y(n) = x(n) + d(n) where x(n), d(n), y(n) denote the clean source, the 

additive noise and the noisy source respectively; X and Y denote parameter vectors 

or spectral representations of the clean source and of the noisy source respectively. 

For example, if an estimate of the autocorrelation function is used to define the set 

of parameters, then X = (r,(O), rx(l), .., rX(M))= and Y = (r,(O), r,(l), .., r,(M))=. 

The VQ performs an exhaustive search of the noisy codebook to find the codeword 

G.  $ is the closest codevector to the input vector Y and it is found by 

Here, S is the number of codewords in the noisy codebook, and QD is the quan- 

tization function of the VQ for the noisy source. The mapping associates to each 

vector in the noisy codebook a vector A!j in the clean codebook. The size of the 

noisy codebook is S, which is the same as the size of the clean codebook. 
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The objective is to design the noisy codebook and the mapping to minimize the 

average distortion E{d(X, A?j)). 

Let M be the mapping between the noisy codebook and the clean codebook. 

Then, the quantization function of the configuration shown in Figure 5.2, Q, is given 

by 

We will call the quantization procedure optimal if E{d(Q(Y), X)) is minimal for a 

given codebook size S. Of course, 

where Qx is the optimal codebook designed for the clean signal. 

The key to obtaining an optimal system is the technique of building the function 

Q. We assume that the signal statistics are represented by a training set of vectors 

X. We will denote a subset of training vectors by {X) (the procedure of obtaining 

the training subset is described in section 5.10). For given noise statistics, a noise 

generator will produce additive noise d(n), which will be used to obtain the noisy sig- 

nal y(n) = x(n) + d(n). Then, the noisy parameters Y are calculated from y (n) (See 

section 5.6). For building Q, we need to build a codebook in space Y and a codebook 
S S 

in space X. Assume that codebooks {c)j=l and {Xj}j=l are obtained by applying 

the LBG algorithm to the training set of vectors X and to the training set of vectors 

Y respectively (see sections 5.7 and 5.10). Let v(%) be the Voronoi cell correspond- 

ing to the codeword %, and let W({X)) be the centroid corresponding to the signal 

subset {X). Assume that the mapping M is defined by M(%) = .A?j, j = 1,2, .., S, 

where $ and % represent the centroids in the clean codebook and in the noisy 

codebook, respectively. Then, the following two conditions ensure the optimality of 

the described procedure: 

If Y E ~ ( 8 )  then X E ~ ( 2 , )  (5.6) 
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To show that the system is optimal if (5.6) and (5.7) are satisfied, we should first 

notice that the optimal system is defined by E{d(Q(Y), X)) = E{d(Qx(X), X)) 

as mentioned above. 

It is clear that 

(5.7) 4 If {Y) = ~ ( f i )  then 8j = Qx(X) 

and 

(5.6) If QD(Y) = $ then &j = Qx(X). 

Since 

we have now 

If QD(Y) = c, then Q(Y) = *j = Qx(X) 

++ If Q D ( ~ )  = G ,  then Q(Y) = Qx(X) 

++ If Q D ( ~ )  = $, then E{d(Q(Y), X)) = E{d(Qx(X), X)), 

where "en denotes equivalent to. 

Tne main problem is to find the quaniizaiion function QD and the mapping M ,  

given a training set, so that the optimality conditions can be satisfied. There are 

two intuitively appealing methods for solving this problem. In the first method, the 

optimal codebook designed for the clean signal, *,, j = 1,2, .., S is built. For each 

*,, the corresponding Voronoi cell ~ ( 2 , )  is found. Then, all the training vectors in 

the set ~ ( 2 , )  are mapped into the Y space by adding noise vectors generated by the 

noise source. The resulting set in the Y space has a centroid denoted by $. This 

defines a codebook in the Y space and a mapping $ = ~ ( 2 , ) .  However, it is easy 

to see that the codebook and the mapping constructed in this method do not satisfy 

the optimality conditions because the noisy codebook is not optimal for the given 

noisy source. 

The second method starts with vectors Y obtained by adding generated noise to 

the training set of vectors X. An optimal codebook is generated by the training set 

in y space, and by letting the corresponding centroids be $, j = 1,2, ..., S. For each 

j, let v(%) be the Voronoi cell corresponding to the centroid fi, the vectors in this 



CHAPTER 5. A NEW SYSTEM FOR ROBUST VECTOR QUANTIZATION 41 

cell map into a subset {X) of the X space. By letting Aj = W({X)) be the centroid 

of the set {X), we define the mapping M, while ihe quantizer QD is defined by the 

centroids l?j and the given distortion measure. 

From the way the clean codebook and noisy codebooks are generated, we can see 

that this method satisfies the optimality condition 5.7. It satisfies also the optimality 

condition 5.6, if for any vector X and any j 

To prove the last statement, we should note that since for any j and vector X 

and Y, 

Y E v(%) IFF d(Y, c) = mini{d(Y, g) ) ,  
X E ~ ( 2 ~ )  IFF d(X, 2j) = min;{d(X, a)) 
and given d(Y, c )  = d(X, 2,), 

we have 

which implies X E ~ ( 2 , ) .  
+, 

In practice, condition 5.8 can be approximately satisfied. It can be shown that 

in the case of MSE distortion measure, equation 5.8 can be approximated closely. 

As mentioned above, the second method of building the quantization function QD 

and the mapping M satisfies the optimal condition 5.6. It should be noted that this 

condition is satisfied precisely in the procedure of building QD and M. In the coding 

procedure, due to the fact that d(n) is random, equation 5.6 can not be satisfied 

precisely, but it is satisfied approximately in practice. 
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5.5 Noise Generation 

To implement this system, a noisy source is generated by adding the noise signal 

to clean speech. The noise can be of different types such as White Gaussian or 

automotive noise with different signal- to-noise ratios. In our implementation, the 

automotive noise is generated by recording the noise from a car. For White Gaussian 

noise, we use the noise generator described in [XI. 

Let N(p, a2) be the normal distribution with mean p and variance a2. N(0, 1) 

denotes standard normal distribution (Gaussian distribution) with p = 0, a2 = 1. 

To generate random variables having the standard normal distribution, we can 

use the central limit theorem [24] on random variables with uniform distribution 

U (0, 1) [18]. Consequently, if Ul, U2, ..., Un are independently uniform distributed as 

U(0, I), then a random variable with an approximate N(0,l)  distribution is given as 

follows: 

This application of the central limit theorem provides a simple method for closely 

approximating normal random variables. The approximation is fairly good even for 

small n; therefore, we can simplify 5.9 to the following form by letting n = 12: 

Random variables with Gaussian distribution N(p, a)2 can be easily obtained from 

random variables with the standard Gaussian distribution N(0, 1). The following 

equation shows the transformation of random variables from distribution N(0, 1) to 

distribution N(p, a2): 

where Y denotes random variables with Gaussian distribution N(p, a2), X denotes 

random variables 'with standard Gaussian distribution N(0, I), and a represents 

the standard deviation. For simplicity, in our implementation we generate White 

Gaussian noise with zero mean and variance a2. 



CHAPTER 5. A NEW SYSTEM FOR ROBUST VECTOR QUANTIZATION 

The noisy speech is generated by adding to the clean speech White Gaussian 

noise with the variance corresponding to the required signal-to-noise ratio. 

5.6 Parameter Estimation 

The parameters used in the system of Figure 5.2 are autocorrelation functions of 

input speech, r,(i), or autocorrelation functions of linear predictive coding (LPC) 

coefficients, ra(i). These parameters appear in a vector form. Therefore, codevec- 

tors in each codebook are vectors of the form (r,(O), r,(l), ..., T,(M))~ or of the form 

(ra(0), ra(l), ..., ra(M))T. The dimension of each codevector is M + 1 and the order of 

the LPC predictor is M. r,(i) and ra(i) are obtained by (5.12) and (5.13) respectively: 

rY(i) = k-.z -y(k)y(k + i) for i = 0, 1, ..., M 
k=O 

M-i 

ra(i) = C a(k)a(k + i) for  i = 0, I ,  ..., M (5.13) 
k=O 

where y(k) are samples of a noisy speech frame. The LPC coefficients ak are found 

by solving the vector form of the Wiener-Hopf equations 
r', 

R - g = r ,  - (5.14) 

where & denotes the autocorrelation matrix of the noisy speech estimated from the 

given frame. &, g and are given as follows: 
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T = - [ ] (5.1 7 )  
TV(M - 1)  

TV ( M I  

There are several methods for solving (5.14). The most efficient method is Durbin's 

method which is summarized below [21]: 

start with 

then, for i = 1,2, ..., M compute recursively 

In (5.19)-(5.22), E(') represents the residual MSE of a LPC predictor of order d ;  

a!) represents the j th  LPC coefficient of a LPC predictor of order i; and ki represents 

the reflection coefficient. 

By computing (5.19)-(5.22) for i = 1,2,3, ..., M ,  the LPC coefficients can finally 

be found by 
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5.7 Codebook Generation 

In the 'codebook training procedure, the likelihood ratio distortion measure is used. 

The definition of the likelihood ratio distortion is given by (See Chapter 3) 

where k denotes the kth frame of the input sequence, Y ( ~ )  = (rf)(0), rf)(l), ..., r f ) ( ~ ) ) ~  

denotes the kth input vector, which is obtained from the kth frame of the input se- 

quence, and 5 = ( rp ( l ) ,  ( 2 ,  ..., r g ) ( ~ ) ) ~  represents the j th  codevector in 

the codebook. dk) is the residual error given by 

and ac) is the minimal value of the residual error, which is obtained if LPC co- 

efficients a(j)(i) are optimal for the autocorrelation sequence rf)(i). ra(i) is the 

autocorrelation function of the sequence a(i). 

From (5.24) and (5.25) the following equation is derived: , 

xz- rf)  (i) @(i) 
dLR(y(*), Y; )  = - I =  

r$(i) (j) 

(k) C 7 . a  (i) - 1 (5.26) 
a~ i=-M QM 

(k) Equation 5.26 shows that normalizing r r ) ( i )  by aM and storing rg)(i) as code- 

words can simplify the computation of the LR distortion measure. Therefore, we can 

store the codewords in two different forms {rf)(i)}r-, and {rp)(i)}r, respectively. 

Here, rf)(i) is the autocorrelation vector in (5.15) and (5.17). Note that rp)(i) is 

the representative of c, while rf)(i) is a current vector to be processed. 

The centroid of the set {Y(*)}, k = '1,2, ..., Lj, is obtained by computing the op- 

timal LPC coefficients of the weighted average autocorrelation pyj (i) given by 

The procedure for noisy codebook generation is shown in Figure 5.3. The initial 

codebook starts with one code~ector. This codevector is obtained by averaging the 
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Traning Final 

Figure 5.3: Codebook Generation for Spectral Mapping 

I 

whole autocorrelation training sequence, which is the autocorrelation sequence of 

noisy speech. The initiai codevector is then split into two codevectors which are very 

close to each other. LPC coefficients are calculated and the autocorrelation function 

of LPC coefficients is taken. Therefore, an initial codebook of size two (S = 2) is 

obtained. With the new codebook, the training sequence of noisy speech is processed 

frame by frame to train the codebook. This training provides an optimal codebook 

of size two. The splitting procedure is repeated until the desired size S = 2R is 

obtained. The main steps of this procedure are summarized below 

Initial LF'C 
Calculation codebook 

- 

Step 1: The autocorrelation of noisy speech is computed. 

4 I 

Codebook 
optimization 

sequence 

Step 2: The current codebook is searched to obtain the best codeword match for 

codebook 
+ 

Codebook 
search Auto 

Auto 

the autocorrelation of input training sequence of noisy speech. The codebook search 

is done by comparing the distortion between the input vector and each codeword then 

clustering the input vector to the Voronoi cell which gives the minimum distortion 

between the corresponding codeword and the input vector. The average distortion 

is calculated in the same time. 

Step 3: The codebook is optimized by calculating the new centroid of each Voronoi 

v 

- .  
Splitting 
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cell according to (5.27) and moving the current codewords to the new centroids. 

Step 4: Step 2 - step 3 are repeated a number of times until the average distor- 

tion is small enough ( 20 iterations in our case). ' Then each codeword is split into 

two codewords; and corresponding LPC coefficients a(i) and their autocorrelation 

functions r,(i) are calculated. The splitting procedure results in a codebook having 

twice the size of the initial codebook. 

Step 5: Steps 2-4 are repeated until the required codebook size is reached or the 

average distortion is acceptable. 

Figure 5.4 is a flow-chart for designing a vector quantizer with a noisy source. 

The procedure of the clean codebook generation used in adaptive codebook sys- 

tem is similar to the procedure of noisy codebook generation described above. The 

only difference is that the distortion used is WMSE rather than LR or SE. 

The codebook size S should be chosen according to the performance requirement 

and the complexity. Generally, a spectral error less than or equal to 1dB is accept- 

able. It is difficult to achieve such a requirement due to computational and memory 

complexity of the system for a large codebook size. As can be seen from Figure 5.5, 

after the codebook size reaches to 128, the spectral error decreases very slowly as 

the codebook size continues to increase. That means the spectral error of 1dB needs 

a very large codebook size. Considering the trade-off between the performance and 

the complexity, a size of 256, which results in spectral error of 2.497dB, is chosen in 

all our simulations. 
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Figure 5.4: A Flow-chart for a Vector Quantizer Design 
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CODEBOOK S I Z E  

Figure 5.5: Spectral Error versus the Codebook Size 
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Evaluation of the System 

The performance of the proposed system will be evaluated by training the system 

on an extensive noisy speech data base and then testing the system with speech 

which is not included in the training sequence. In our system, the training sequence 

consists of 1,600,000 speech samples representing 200 see. of speech. This training 

sequence includes four male speakers and four female speakers. The out-of-training 

sequences used are based on a speech sequence which consists of 144,000 samples 

which is equivalent to 18 sec. of speech. A system should be tested by using an 

out-of-training sequence as input speech rather than the in-training sequence used 

in the vector quantizer design. 

The distortion measure we used in both vector quantizer design and spectral 

mapping procedures is the spectral error distortion measure described in Chapter 

3. The spectral error evaluates the difference between two sequences in the spectral 

domain. For example, this difference can be the difference between the spectrum of 

clean speech and the spectrum of the noisy speech, or the spectrum of clean speech 

and that of processed noise-cancelled speech. Besides, we use output sipd-to-noise 

ratio to evaluate the performance of the system. h 

We also use the Uloss of performancen to evaluate a system when complexity 

reduction is introduced. The loss of performance shows the increase of spectral error 

between the system with reduced complexity and the original system. 

Complexity Reduct ion 

According to the discussion in the previous sections, for each input signal to noise 

ratio we use a noisy codebook, which is trained for the same signal to noise ratio, 

to process the input noisy speech. Let us call this method, in which the noisy 

codebook is trained for each SNR value, an input-SNR mapping. Obviously, with 

this method, we need to train many noisy codebooks and we need a lot of memory 

to cover a certain range of input SNR. 

Experimentally, we found that each noisy codebook can cover a certain range 

of the input S N R  centered around the SNR for which the noisy codebook was 
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designed. An example of this coverage is shown in Figure 5.6. In this example, one 

noisy codebook, which is designed for an input signal with S N R  equal to 6dB, is used 

to process signals with SNRs ranging from 3dB to 9dB. The loss of performance 

compared to the input-SNR method is less than 0.5dB for input signals ranging 

from 3dB to 9dB. The Y axis in Figure 5.6 shows the increase in spectral error. 

Therefore, we can use a small number of noisy codebooks to process input signals 

within a relatively large S N R  range. We call this method multi-codebook mapping. 

The multi-codebook approach achieves a significant complexity-reduction when com- 

pared to the input-SNR mapping, at the expense of a negligible loss in performance. 

INPUT SNR (dB)  
, 

Figure 5.6: A Study on a SNR Coverage Range of One Noisy Codebook 

5.10 Simulations and Results of the System 

For a multi-codebook mapping method, the flow-chart of Figure 5.4 is used for de- 

signing noisy codebooks for SNRs of OdB, 9dB and 18dB. The input is a training 

sequence of noisy speech with OdB, 9dB and 18dB of S N R  respectively. After the 

noisy codebooks are built, the clean codebooks and the corresponding mappings are 

designed by using the procedure shown in Figure 5.7. 

In Figure 5.7, x(n) is the training sequence of clean speech. The noisy codebook 

is generated by adding noise to the sequence x(n) and applying the algorithm of 
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b s ~ t  inda j Cluster rx(i) 

in a form of 

the cell 

Figure 5.7: A Block Diagram for a Clean Codebook Generation 

Figure 5.4. Hence, the parameters r,(i) correspond to clean speech, while r,+d(i) 

correspond to the noisy speech used in the noisy codebook design procedure. For 

each block of input clean speech signal, the corresponding noisy parameters r,+d(i) 

are compared with the codewords in the noisy codebook. The best index is found by 

searching the noisy codebook and the clean parameters r,(i), which correspond to 

the current block of input clean speech signal, are clustered into the jth cell. After 

the whole input sequence is processed in this way, each set of clean parameters r,(i) 

was clustered to a cell. The best index of each parameter of clean speech $ the 

same as the best index of the corresponding parameter of noisy speech. Then the 

corresponding clean codebook is obtained by computing i.x,(i), the centroid of each 

cell. The clean codebook can be stored in the form of either the autocorrelation of 

LPC coefficients or the autocorrelation of speech signals. As we can see from the 

above clean codebook design procedure, a one-to-one correspondence is built between 

the noisy codebook and the clean codebook. This one-to-one correspondence allows 

us to reduce or cancel the noise by spectral mapping. 

Figure 5.8 is a block diagram of the spectral mapping procedure with three noisy 

codebooks. The parameters of the noisy speech are first computed; then the corre- 

sponding noisy codebook is searched to obtain the corresponding best noisy codevec- 

tor. With the best index, the corresponding clean codebook is looked up to obtain 

the quantized and noise cancelled clean speech parameters. 
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Table 5.1: Results of the Proposed Multi-codebook Robust VQ in Spectral Error 

sp error (dB) 
no mapping 

20.84 
17.31 
14.23 
11.60 
9.41 
7.58 
6.05 
4.76 
3.67 

sp error (dB) 
Input-SNR I Multi-cdbk 

Active 
cdbk 

0 
0 
0 
9 
9 
9 
18 
18 
18 

Figure 5.8: A Block Diagram for Spectral Mapping with Multi-codebook Mapping 
Met hod 
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The results of the proposed multi-codebook robust vector quantizer are shown in 

Table 5.1. We use three noisy codebooks, which are trained for S N R  of OdB, 9 d B  

and 18dB respectively, to cover the input signal-to-noise ratios of -3dB to 21dB. 

Each noisy codebook is active when the S N R  froin which the noisy codebook was 

built is the closest one to the input SNR.  For an input S N R  of -3dB, the spectral 

error is about 13dB less than that without spectral mapping. 

From Figure 5.9, we can see the performance of the proposed multi-codebook 

system can cover input signals with S N R  of -3dB to 21dB. Besides, we find that 

the performance of the multi-codebook system is quite close to that of the input-SNR 

mapping system. The difference between these two systems is clearly shown in Figure 

5.10. The increased spectral error, which results from the multi-codebook system, is 

less than 0.4dB which can be considered as a negligible drop in performance. 
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- Input-% Robust VQ 

- - . Multi-codabook Robust VQ 

,,,, Noisy Speech 
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INPUT SNR (dB) 

Figure 5.9: Performance of the Proposed Multi-codebook Robust VQ 

- 

5 0 5 10 15 20 25 
INPUT SNR (dB)  

Figure 5.10: Performance Degradation of the Three-codebook System over a System 
Trained for Each SNR Value 
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Table 5.2: Performance of the Proposed Multi-codebook Robust VQ in SNR 

Active 
cdbk 

0 
0 
0 
9 
9 
9 
18 
18 
18 

SNKn 
(dB) 
-3.0 

From the known input SNRs and the corresponding spectral errors in the case 

of no mapping, we can calculate the output SNRs by linear interpolation. The 

performance of the three-codebook system evaluated by S N R  is shown in Table 5.2 

and Figure 5.11. We find that in comparison with the system without mapping, the 

three-codebook system can improve the S N R  by about 15dB for input signals, with 

S N R  of -3dB. 

SNRout (dB) 
Input-SNR 

12.80 
Multi-cdbk 
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Figure 5.11: Performance of the Proposed Multi-codebook Robust VQ 
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A further complexity reduction can be obtained by using an adaptive codebook 

system. In this system, we store only one codebook optimized for clean speech. This 

codebook is modified in real-time according to an estimate of the input noise. The 

adaptation is performed by adding to each codevector a modifier derived from the 

noise estimate. This adaptation results in a noisy codebook which naturally has 

a one-to-one correspondence with the clean codebook. Therefore, in the mapping 

procedure, each noisy vector is mapped into the clean vector from which the noisy 

vector was derived. 

Let $ be the centroid of the set {%) = {Y(~)} ,  le = 1,2, ..., Lj, where Lj  is the 

number of elements in the set (5). Then the WMSE between the centroid and the 

set elements is given by 
-. - - - 

where W is a weighting matrix. The centroid of the set {Y(~)}  is given by 
h. 

In equation 5.29, w({Y(~)) )  represents the centroid corresponding to the set {Y(~) ) .  

Since vectors Y ( ~ )  are given by 

equation (5.29) can be expressed by 

where D is actually an estimate of the noise average parameters, which will be 

assumed to be the same for all centroids. 
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The relation (5.31) gives a simple way of finding the noisy quantizer Qu and the 

mapping M from the optimal quantizer of the clean signal. This is the reason why 

the WMSE was used. By this method, the mapping of the noisy spectrum to the 

clean spectrum is equivalent to the spectral subtraction followed by a conventional 

VQ for the clean source. However, the disadvantage of checking the positiveness 

of the resulting spectral estimate in the spectral subtraction is eliminated by this 

proposed method. 

Figure 5.i2: An Adaptive Codebsok System 



In adaptive codebook method shown in Figure 5.12, the dean codebook is de- 

signed according to the training procedure described in Codebook generation section. 

The noisy codebook is adapted by simply adding the parameters of an estimate of 

the noise source to the cIeaa codebook according to (5.31). By searching this adap- 

tive noisy codebook, the best index corresponding to the best noisy codeword is 

found for each block of noisy speech. Using the best index, the corresponding clean 

codeword in the clean codebook is chosen. Figure 5.13 shows the performance of 

the system using the adaptive noisy codebook. The spectral error decreases lOdB 

when compared with the system without spectral mapping. The adaptive codebook 

system can greatly reduce the complexity. The system uses only one codebook and 

this reduces training and implementation complexity. However from Figure 5.1 3, we 

find that there is some degradation in performance when we compare this system to  

the multi-codebook system. This degradation is a consequence of using the WMSE 

when building the clean signal codebook. 

\ 
\ - Adaptive-codeSook Robust Vq 
\ 
\ 
\ , , . Noisy Speech t, 
\ 

INPUT SNR (dB) 

Figure 5.13: Performance of the System Using the Adaptive Codebook 



In dl the experiments discussed above we used a White Gaussian noise source. In 

this section, we will present the results of an experiment on the multi-codebook 

system in a vehicular noisy environment. 

The automotive noise we used was obtained by recording vehicular noise in a 

moving car under the following conditions: 

a travelling speed of 50krnh, 

heating/cooling fan on medium (3/4) speed, 

a relatively smooth road surface. 

The noisy speech was determined by adding recorded automotive noise to the 

clean speech. The performance of the multi-codebook system on the automotive 

noisy speech is shown in Figure 5.14. Figure 5.14 shows a significant improvement 

in SNR for noisy vehicular speech although the performance of the system is slightly 

lower than in white noise condition. For example, the improvement at  an SNR 

of -3dB is equivalent to 8dB reduction in spectral error, and a very significant 

improvement in the apparent input SNR. 

INPUT SNR (dB) 

- Robust VQ 
\ 
\ - -. Noisy Speech 
\ 

Figure 5.1 4: Performance of the Multi-codebook System on Automotive Noise 



Summary and Conclusions 

The robust vector quantization systems discussed in this thesis allow the use of a 

vector quantization in noisy environments while maintaining good performance. A 

robust vector quantization system is optimal if the average distortion of the system 

is equal to that of the corresponding VQ system for the clean source. Based on 

this definition, the optimal conditions are derived for the robust vector quantization 

approach proposed in Chapter 5. 

As described in Chapter 5, this study has developed three systems So achieve 

robust vector quantization. All of these systems are based on spectral mapping and 

a noise estimate. For each type of noisy source, a noisy codebook is generated and 

a one-to-one correspondence between the clean codebook and the noisy codebook 

is established. As a result, spectral mapping can map noisy parameters to clean 

parameters. It should be mentioned that these three systems can deal with a signal 

with un-known statistics and can cover various types of noise sources with different 

SNRs. 

The first system, the input-SNR codebook system, is designed based on input 

SNRs. For each type of noisy source with an input SNR, a noisy codebook which is 

derived from the noisy source with that particular SNR is required. Therefore, the 

complexity of the system is high. The second system, the multi-codebook system, 

is derived from the first system but it requires a small number of codebooks. The 

multi-codebook system is based on the fact that each noisy codebook can coves a 

certain range of input SNRs. This system leads to considerable complexity reduction 

while maintaining good performance. For example, this system improves the SNR 



of the White Gaussian noisy source by 15dB when the input noisy source has -3dB 

SNR. For an automotive noisy source with the same input SNR, the reduction in 

spectral error is about 8 d B .  The third system, the adaptive-codebook system, brings 

a further complexity reduction. In this system, only one codebook, which is the clean 

codebook, is stored. The noisy codebook is adapted in real time by adding a modifier 

to the clean codebook. The performance of this system is not as good as the other two 

systems but the complexity is greatly reduced. An example of the simulation results 

for the White Gaussian noisy source shows that with an input SNR of -3dB, the 

adaptive codebook system reduces spectral error by lOdB over the system without 

mapping. 

The implementation of these proposed systems is straight forward and the com- 

plexity of the last two systems is reasonable. In the proposed robust vector quanti- 

zation approach, either the multi-codebook system or the adaptivecodebook system 

can be chosen depending on the trade-off between the performance and the complex- 

ity. 

In the adaptive-codebook system, the weighting matrix W is equal to an identity 

matrix, which is the main cause of the performance degradation for this system. Us- 

ing a different spectral weighting may improve system performance, but this redoains 

a subject for possible future research. 
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