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Abstract

Functional recursive query programs are recursive query programs expressed in Horn clause logic
with function symbols. The functional recursions studied in this thesis are confined to one

commonly used class of recursions: linear recursions.

We compile a functional linear recursion into a highly regular compiled formula and
analyze the safety and the evaluation of the compiled formula with respect to a given query and a
set of constraints specified over a given database instance. We show that for the functional linear
recursions, safety can be viewed as a combination of two properties: finite evaluability, which
guarantees the finiteness of intermediate answers, and termination, which guarantees the finiteness
of the evaluation. We present a necessary and sufficient condition guaranteeing the finite
evaluability of compiled formulas and a sufficient condition guaranteeing the termination of the

evaluation. The algorithms for testing these conditions are developed.

Based on the analysis of safety, we present a safe, constraint-based evaluation method for
compiled formulas. We classify constraints into three classes: (ij integrity constraints, (ii) rule
constraints and (iii) query constraints. We show that integrity constraints should be used to
generate safe evaluation plans. Rule constraints can be used in compilation to reduce the search
space. Query constraints are shown to be useful in the selection of efficient evaluation plans and

search space reduction.
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Chapter 1

Introduction

1.1 Thesis Research Area

Functional recursive query programs are recursive query programs expressed in Horn clause logic
with function symbols. Their development can be viewed from two perspectives: one related to
the integration of the‘logic and the functional programming languages [Bel.e86], and the other as
an effort to extend the expressive power of conventional database query languages [CGKNTZ90]
[MNSUVE7].

The functional recursions studied in this thesis are confined to one commonly used class
of recursions: linear recursions, and we will discuss the evaluation of functional recursive query

programs within the database context.

The dominant database products in today's marketplace are relational database systems,
such as Ingres, Oracle, Sybase, DB2 etc. However, relational databases have two limitations.
One is the limitation of their query languages, e.g., recursive queries cannot be handled
effectively; the other is that the fast access capability of the data manipulation language (DML) and
the general-purpose capability of the host language do not mesh well.

Deductive databases have emerged over the past few years to become one of the new
trends in database research. They are mainly based on the success of relational databases and are
aimed at extending the expressive power of relational databases and providing a single declarative
language to serve the roles played by both the DML and the host language. Their origin and

objectives suggest a promising future provided their efficiency can be reasonably guaranteed



[Ullm89b] [Date90]. A major step in achieving efficiency is te reduce the overhead of recursive

query processing, viewed as one of the most costly supports of deductive databases.

One of the essential relationships between relational databases and deductive databases lies
in the relationship between relational algebra and Horn clause logic. It is known that when
recursions are not permitted, relational algebra is equivalent to Datalog logic (i.e., function-free
Homn clause logic) in terms of expressive power [GMN84] [Ullm89b]. One of the most notable
features of deductive databases is the ability to handle both function-free and functional

TeCursions.

Functional Recursive g
Horn Clauses % v

Functional

( Horn Clauses | gy tional Nonrecursive

Horn Clauses
Horn Clauses(

Datalog(i.e. Recursive Datalog
* Function-Free .
Hom Clauses) | Nonrecursive Relational
Datalog Algebra

Figure 1-1 Classification of Horn clauses.

Theoretically, it is known that logic rules using function symbols have all the power of a
Turing machine, i.e., they can express any computation that can be written in conventional
programming languages [Ullm89b]. The example in Section 1.3 below shows the need for
functional recursions in real world applications.

1.2 An Example from Real World Applications

Example 1-1: Suppose a travel agency maintains the flight information in a table called flight

(see Figure 1-2 and Table 1-1), in which one tuple represents one flight every day. For



simplicity, we assume that the time considered in this example refers to Greenwich Mean Time!

and the travel time for a continuing trip is not greater than twenty-four hours.

® City with an airport
@ City with an international airport
—3 Flight direction

Figure 1-2 Travel map.

1 In a real system Greenwich Mean Time can be converted to local time by adding the corresponding offset.



Flight Departure | Departure Arrival Arrival Fare
Number City Time City Time

1 Vancouver 7:00 Edmonton 9:00 $120

2 Vancouver 7:30 Calgary 9:15 $100

3 Vancouver 23:00 Seattle 24:00 $60

4 Edmonton 8:00 Winnipeg 11:30 $200

5 Edmonton 11:00 Calgary 11:45 $50

6 Calgary 16:00 Saskatoon 17:00 $60

7 Seattle 4:00 Toronto 11:00 $500

8 Seattle 2:00 Detroit 8:00 $450

9 Saskatoon 5:00 Winnipeg 7:30 $140

10 Winnipeg 19:00 Toronto 23:30 $250
11 Winnipeg 15:00 Ottawa 20:00 $300
12 Detroit 10:00 Toronto 11:30 $90
13 Detroit 9:00 Ottawa 12:00 $130
14 Toronto 7:00 Ottawa 8:00 $70

Table 1-1 A daily flight information table




Suppose a customer arrives at the front desk with the following questions.
Question 1:
"Could you help me find a sequence of connecting flights from
Vancouver to Ottawa?"
Question 2:
"I'd like to leave Vancouver between 7am and 8am for Ottawa.
Could you arrange that for me?"

Question 3:

"I have an appointment in Ottawa at 2pm and I want to have
lunch before the meeting. Can I get a flight, or connecting
flights from Vancouver and arrive in Ottawa around noon?'"

Question 4:

"My boss can only reimburse me $500 for my travel from

Vancouver to Ottawa. Can I get a ticket for under $500?"

Question 35:

"I want to go from Vancouver to Ottawa. I want all intermediate

stops to be at international airports. Please arrange that for me."

We analyze these questions in terms of the following three aspects: the incorporation of
functions in recursive query processing, the safety of functional recursions, and the generation of

efficient evaluation plans.

1. A natural and easy way to deal with these questions is to incorporate functions into the
Tecursive query processing.

We notice that every question has at least one minimal requirement, that is, to find the

~ flight number(s) from Vancouver to Ottawa.



Since there is no direct flight from Vancouver to Ottawa, we need use some recursive
query processing techniques and introduce a function which can concatenate the connecting flight
numbers (i.e., the first attribute of the relation flight). For example, one solution is from
Vancouver to Seattle, then to Detroit, to Toronto, and finally to Ottawa. This solution can be
represented by a list of flight numbers, that is, [3,8,12,14]. If we use L = [Fno/L;] to denote the
list construction function which concatenates the head element Fro (flight number) with the list L;
(a List of flight numbers) to form a new list L, the process of finding this solution can be illustrated

as follows: L = [3/L;], L = [8/Ly], Ly = [12/14].

In addition, to give a satisfactory answer to question 4, we need another function which

can sum up the flight fares during recursive query processing. If we use function
Fare = S + Fare;j to sum up fare S for the first leg of a flight and fare Fare; for the other legs of
the flight, the total fare of the connecting flights /3,8,12,14] can be calculated as follows. Fare =
60 + Fare;y, Fare; = 450 + Farey, Fare; = 90 + 70. The total fare is 670 dollars (note that this

result does not meet the "under $500" requirement given in question 4).

2. The evaluation must be safe, that is, it should generate finite intermediate and final
answers in finite steps.

From the relational algebra point of view, the basic idea of recursive query processing is to
perform the relational operations (particularly, the join and union operations) between relations.
However, since functions are normally defined on infinite domains, the recursive query evaluation
may generate infinite answers or end up with infinite derivation of answers. We discuss the two

possibilities below.

Take the functions L = [3/L;] and Fare = 60 + Fare; as an example. We notice that when

L; and Fare; are unknown, the answers derived from these two functions are essentially infinite.



Therefore, how to guarantee the finiteness of answers is crucial to the evaluation of functional

recursive query programs.

Not only must the answers be finite, but the derivation of the answers must terminate in
finite steps as well. For instance, suppose there is another direct flight from Detroir to Vancouver.

A loop, Vancouver — Seattle — Detroit — Vancouver, is formed. This may cause an infinite

derivation of answers (note that the natural join operation will be performed infinitely in this case).

3. Efficient evaluation plans should be generated based on the query and the constraints

(requirements) provided by the customer.

Take the solution [3,8,12,14] with the total fare 670 dollars as an example. Clearly, this
is not a satisfactory answer to question 4. If we use the "under $500" requirement as a constraint
and push it into the evaluation, this solution will not be generated because the fare from
Vancouver to Detroit is 510 dollars which already violates the constraint. Similarly, to answer
question 5 which requires all the intermediate airports be international airports, an efficient

evaluation plan is to consider only those flights which stop at international airports.

Take questions 2 and 3 as another example. Our intuition tells us that to answer question
2, an efficient evaluation plan is to search for answers from Vancouver instead of from Ottawa.
However, this evaluation plan is not efficient for question 3 because there are 9 possibilities all
together but only one of them (i.e., Vancouver — Seattle — Detroit — Ottawa) meets the
requirement, "arriving in Ortawa around noon". An efficient evaluation plan for question 3 is to

start searching from Ortawa.

This thesis studies the evaluation of functional recursions with respect to the above three
aspects, that is, the incorporation of functions in recursive query processing, the safety (i.e., finite
evaluability and termination) of functional recursions, and the generation of efficient evaluation

plans.



1.3 Thesis Contribution and Organization

Due to the importance of recursions in deductive databases, there has been increased research into
techniques for implementing recursions in recent years. This research, however, has not
converged into one widely accepted approach, but instead has led to a variety of methods, each
superior to the others in certain applications [BMSU86] (Han89a] (HanHZ89] [SaZa86]
[SaZaB87].

The choice of one method as the basis of our study was affected by the following three
considerations.

a) facilitation of the analysis of safety of functional recursive query programs.

b) efficiency in handling functional recursive query programs.

¢) flexibility in dealing with functional recursive query programs encountered in real

world applications.

Based on the above considerations, we select the query-independent compilation as the
basis of our research and we assume that the compilation is accomplished by the V-graph method
[Han89a]. The purpose of the query-independent compilation is to reveal the vegularity of the
further expansions of recursions. The result of the query-independent compilation (the V-graph
method) of a function-free linear recursion is a compiled formula. Therefore, as shown in Figure
1-3, we assume that the query-independent compilation considered in this thesis, unless otherwise

specified, is accomplished by the V-graph method.

To facilitate the query-independent compilation which is mainly applicable to function-free
recursions (e.g., function-free linear recursions), we transform functional recursive query
programs into function-free ones. In order to demonstrate the generation of compiled formulas

without going through the complex details of the query-independent compilation, we use the



recursive expansion technique to compile a transformed and rectified function-free linear recursion

to a compiled formula. Compiled formulas are examined in Chapter 3.
From Chapter 4, our study focuses on the safety and the evaluation of compiled formulas.

It is worth noting that one of the difficulties in dealing with functional recursions is that
functions are normally defined on infinite domains. Constraints have been recognized to be useful
in the analysis of safety. In Chapter 4, we categorize constraints into three classes: query
constraints, rule constraints and integrity constraints. Three types of integrity constraints are
considered: type constraints, finiteness constraints and monotonicity constraints. We show that
for functional linear recursions, safety can be viewed as a combination of two properties: finite
evaluability, which guarantees the finiteness of intermediate answers, and termination, which
guarantees the finiteness of the evaluation. We present a necessary and sufficient condition
guaranteeing the finite evaluability of compiled formulas and a sufficient condition guaranteeing

the termination of the evaluation. The algorithms for testing these conditions are developed.

In Chapter 5, we propose a safe, constraint-based evaluation method for processing
compiled formulas. Based on the classification of constraints, we show that type constraints
should be used to check type compatibility. Finiteness constraints can be used to generate finitely
evaluable plans. Monotonicity constraints can be used in termination detection. Rule constraints
should be used in compilation to reduce the search space. Query constraints are shown to be

useful in the selection of efficient evaluation plans and search space reduction.
We conclude our discussion and present future research issues in Chapter 6.

A guidemap of the thesis and the basic components of our evaluation method are outlined

in Figure 1-3.
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Chapter 2

Preliminaries

In this chapter we introduce Horn clause logic as a way to define deductive databases and as a
language for expressing queries. As an extension of Datalog programs (i.e., function-free Homn
clause programs), extended Datalog programs are introduced to deal with function symbols.

Deductive databases and functions are discussed.

2.1 Deductive Databases

A deductive database is a database in which new facts may be derived from the facts that are
explicitly contained in the databass. In our study a deductive database is defined by a finite set of

Horn clauses.

Horn clauses are cl'auses with at most one positive literal [PS87]. Horn clauses consist of
facts, queries and rules. If a Horn clause consists of only one positive literal, it is a fact. If a
Homn clause consists of no positive literal and one or more negative literals, it is a query. If a
Horn clause consists of one positive literal and one or more negative literals, it is a Horn clause

rule.
Horn Clause Rules
A Horn clause rule is of the following form:
r(T) :- pi(Ty), p2(T2), ..y Pu(Ty) (n 20)

where r(T) and py(T;) (1 <i <n) are literals.

11



A literal is a predicate name with a list of arguments, each of which is a term. A term is
a constant, a variable, or an m-ary function symbol followed by m arguments (terms). A term is

ground if it contains no variables.

The literal r(T) is called the head (consequent) of the rule, and the rest of the rule is called
the body (antecedent) in which each literal py(T;) (1 <i <n)is called a subgoal.

If there exists an i (I <i < n) such that p; = r, the above rule is called a recursive rule

and r is called a recursive predicate; otherwise, it is called a nonrecursive (exit) rule. If there

is only one p; (1 i <n) such that p; = r, it is called a linear recursive rule. A recursion? of
r is a finite set of Horn clause rules defining the recursive predicate r. A recursion is linear if

it consists of one linear recursive rule and one or more exit rules [Han91].

A predicate logic is function-free if it does not contain function symbols. Otherwise, it
is functional [MaW88] [BeLe86]. Similarly, we distinguish a function-free Horn clause
from a functional Horn clause and a function-free recursion from a functional

recursion.
Therefore, a functional linear recursion is a linear recursion with function symbols.

The semantics associated with the above rule is that 7(T) is true if all the py(T;)'s are true
(i.e., a tuple T is in the relation for #(T) if for all i (1 <i <n) tuple 1; is in the relation for p(T;) and
we regard r(t) as a derived fact); or, in the case when n=0, r(T) is true and we regard an instance

of r(T) as a base fact.

Throughout this thesis, we use the following conventions (similar to Prolog [StSh86]) to

present our examples. Predicate names, function symbols and constants start with a lower-case

2 Notice that we ignore mutual/indirect recursions here [HanHY88).

12



letter but constants are also permitted to be numbers. A variable mast start with a capital letter or
is "_" [PS87]. The relation for a predicate p is denoted by rel(p). In addition, the arithmetic

comparison predicates, =, <, and so on, are referred to as built-in predicates [Ullm89b].
Example 2-1: Consider the following Horn clauses:

natural_number(0).

natural_number(succ(X)) :- natural_number(X).
where succ(X) is a function which returns the successor of X.

The meaning of the above Horn clauses is that 0 is a natural number, and succ(X) is a

natural number if X is a natural number.

The first rule is an exit rule and the second cne is a linear recursive rule. By definition,

this program is a linear recursion with one function, succ(X).

O

Datalog Programs and Extended Datalog Programs

By a Horn clause logic program, we mean a finite set of Horn clause rules. Due to the
importance of function symbols in recursive query programs, we categorize Horn clause logic
programs into two classes: Datalog programs, in which function symbols are not allowed, and
logic programs with function symbols. To facilitate the analysis of logic programs with function
symbols, we use extended Datalog programs (EDPs) as our study model. An extended
Datalog program is an abstracted Datalog program? in which function symbols are represented by

possibly infinite relations with integrity constraints specified for the functions (particularly, type

3 The difference between a Datalog program and an extended Datalog program is that an extended Datalog program
not only uses possibly infinite relations to represent function symbols but also associates their integrity constraints
with the corresponding relations.
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constraints, finiteness constraints and monotonicity constraints) [BroS89b] [KRS88] [KiRS88§].
Therefore, Datalog is a subset of extended Datalog (Figure 2-1). In Chapter 3, we will examine

how to transform a logic program with function symbols into an EDP.

Datalog:

.' Function-Free
Horn Clauses

Extended Datalog:

Abstracted Datalog with
Possibly Infinite Relations
for Function Symbols.

Figure 2-1 Datalog and extended Datalog.

Example 2-2: Consider the following typical Datalog program [BaRa86] [BMSUS86]
[Ullm&9b].

same_generation(X,X) :- person(X).

same_generation(X,Y) :- parent(X X;), same_generation(X;,Y1), parent(Y,Y;).

where parent(X,Y) and person(X) are predicates indicating that Y is the parent of X and X is a

person respectively.

The meaning of the above program is that X and Y are in the same generation if X = ¥ and

X is a person (the first rule), or X and Y have parents X; and ¥; respectively and X; and Y; are

in the same generation (the second rule).

Since the above program consists of two Horn clause rules without any function symbol,
it is a Datalog program.
O
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Example 2-1 is a functional linear recursion. The following example is an extcnded

Datalog program.

Example 2-3: Consider the following extended Datalog program.

listL) - L = [].
lisf(L) - lisi(L; ), cons(H,L;,L).

where we use predicate* cons(H,L;,L) to represent the list construction function L = [H/L 1/ which

concatenates the head element H with the list L; to form a new list L.

The meaning of the above program is that L is a list if L is empty, or Lj is a list and L is

the resulting list of concatenating the head element A with the list Lj .

The above program is an EDP, in which the list construction function L = [H/L;] is
represented by the predicate cons(H,L;,L) whose relation is infinite and is associated with the
integrity constraints specified for the function (e.g., H is a character, L; and L are strings of

characters, etc.).

0

Queries
A query is a Horn clause with only negative literals and is expressed as 7, ry, ..., 7, with 2 > 0.

There are three possible assignments to an argument of a predicate in a query: an
instantiated value given by the query, a variable name indicating the expected answers to the query

at that position and a don’t care symbol, denoted by " ", indicating that the query does not care

4 This predicate is called functional predicate and will be further examined in Chapter 3.

15



the results at that position. For explicit representation of a query, "?-" is normally placed in front

of the query.

In the study of query processing, it has been realized that some queries just want to check
the existence of some given facts in the database. For these kind of queries (called existence
checking queries), the evaluation does need to continue if the existence conditions are satisfied.
The techniques for recognizing existence checking queries and processing them efficiently have
been studied intensively [Han89b]. Notice that if every argument in a query is either instantiated
or specified by ”_", this query is an existence checking query.

We examine an example.

Example 2-4: Consider the following functional linear recursion.

descendant(parent(Y),Y).
descendant(parent(X),Y) :- descendant(X,Y).

where parent(X) is a function which returns the parent of X by, for instance, looking at a pre-

stored table which maintains the parent of X.

The meaning of the above program is that Y is the descendant of its parent (the first rule),
or'Y is the descendant of the parent of X if Y is the descendant of X (the second rule).

Consider the following queries:

query 1: ?-descendani{john,alice).
query 2: ?-descendant(john,Y ).
query 3: ?-descendant(john, ).

Query 1 is an existence checking query which asks if alice is an descendant of john.

Query 2 asks who the descendant of john is. Query 3 is also an existence checking query which
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asks if john has a descendant (but the query doesn't care who the descendant of john is. The

evaluation does not need to continue so long as one descendant of john is found>).

O

Deductive Databases

Deductive databases are defined by first-order databases. A first-order database is a database
consisting of first-order clauses. When a first-order database consists only of Horn clauses which
are definite assertions and definite data, it is called a definite deductive database. When it
contains indefinite assertions and indefinite data, it is called an indefinite deductive database.
An indefinite assertion is an assertion whose consequent part consists of a disjunction of literals,
and indefinite data contain facts represented by disjunctions of literals. Our research deals only
with definite deductive databases and the term deductive databases used in this thesis refers to

definite deductive databases.

A predicate whose relation is a set of tuples consisting only of constants stored in the
database is called an extensional database predicate (EDB predicate). A predicate which is
defined by Horn clause rules (i.e., it appears in the head of some rule) is called an intentional
database predicate (IDB predicate). For instance, in Example 2-2, person(X) and parent(X,X;)

are EDB predicates, but same_generation(X,Y) is an IDB predicate.

A deductive database is assumec to consist of three portions [BaRa86] [BMSUS86]: (i)
an extensional database (EDB) which is a set of relations for EDB predicates, (ii) an intentional
database (IDB) which is a set of relations for IDB predicates, and (iii) a set of integrity constraints
(ICs) specified over the EDB predicates and infinite relations for function symbols. Thus a
deductive database can be represented by a triple (EDB,IDB,ICs).

5 The detailed study of existence checking queries can be found in [Han89b].
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Figure 2-2 Deductive databases.

Relations for

The following example describes a small deductive database.

Example 2-5: Consider the following travel program which describes a deductive database for
Example 1-1.
travel([Fno],Dep,DTime,Arr,ATime,Fare) :- flight(Fno,Dep,DTime, Arr ATime,Fare).
travel([Fno/L;],Dep,DTime,Arr, ATime,Fare) :- flight(Fno,Dep,DTime,Dep; IATime,S),
travel(L;,Dep;,IDTime, Arr.ATime,Farey),

Fare =S + Fare;.

where flight(Fno,Dep DTime,Arr,ATime,Fare) is an EDB predicate whose relation is shown in
Table 1-1. The total fare Fare is calculated by an arithmetic function which sums up the fares of
the connecting flights, that is, Fare = S + Fare; . The sequence (list) of connecting flight numbers
is generated by the list construction function [Fn ;/L;], which takes an element Fro as the head

and a list L; as the rest of the resulting list.

The meaning of the above program can be interpreted as follows:
The fi le; travel with fare Fare between departure city Dep at DTime and arrival city Arr at

ATime can be arranged if there is a direct flight between the two cities, or
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The second rule: such travel can be arranged if there is a flight Fno from city Dep at DTime to city
Dep with cost S and the travel with fare Fare; between city Dep; and city Arr can be arranged.

The total fare is Fare = S+ Farej and the list of flight numbers is [Fro/L;].

\\\ Amval Cltv

= \%ﬁmwﬁ

A rr
---------------------- 2
i . i . ....... N
g‘g ht with flight number rravel with a list of flight
no and fare S numbers L , and fare Fare,
\ 7/
N

Travel between cities Dep and Arr can be arranged with a
list of flight numbers [Fno[L || and fare Fare = S + Fare]

Figure 2-3 Illustration of the travel program.

In this small deductive database, the extensional database contains the relation for the EDR
predicate flight(Fno,Dep,DTime,Arr,ATime,Fare). The intentional database consists of the
derived relation for the IDB predicate travel([Fno/L;],Dep,DTime,Arr,ATime,Fare)S.
Fare = S + Farey and [Fno/L;] are two functions. The following integrity constraints could be
specified over the EDB predicate fTight and the infinite relations for the functions Fare = S + Fare,;
and [Fno/Lj]: (i) The types of the variables Fare, S and Fare; are positive real numbers, (ii)
[Fno/[L;] is known if Fro and L; are known, and (iii) the value of Fare is greater than the values

of § and Farej. Detailed discussion of integrity constraints will be presented in Chapter 4.

Now we use queries to represent the questions asked by the customer in Example 1-1.

6 Note that travel([Fno].Dep,DTime Arr ATime Fare) is just a special case of
travel({Fno/L].Dep.DTime Arr ATime Fare) with L; = [].
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Question 1: "Could you help me find a sequence of connecting flights from Vancouver to

Ottawa?"”
query 1: ?-travel(L,vancouver, ,ottawa, , ).

where we use a variable L to indicate the expected list of flight numbers.

Question 2: "I'd like to leave Vancouver between 7am and 8am for Ottawa. Could you arrange

that for me?”

query 2: ?-travel(L,vancouver DTime,ottawa, , ), 7:00 <DTime, DTime < 8:00.

Question 3; "I have an appointment in Ottawa at 2pm and I want to have lunch before the meeting.

Can get a flight, or connecting flights from Vancouver and arrive in Ottawa around noon?"
query 3: ?-travel(L,vancouver, _,ottawa,ATime, ), 11:45 < ATime, ATime < 12:15.
where 11:45 < ATime and ATime < 12:15 mean that the arrival time ATime is around

noon.

Question 4: "My boss can only reimburse me $500 for my travel from Vancouver to Ottawa. Can
I get a ticket for under $5007"

query 4: ?-travel(L,vancouﬁer,_,ottawa,_,F are), Fare <500.

Question S: "I want to go from Vancouver to Ottawa. I want all intermediate stops to be at
international airports. Please arrange that for me.”

Since this question requires that every intermediate city have an international airport, we
need to update the original program to express such a constraint. This situation will be discussed

in Chapter 4.
O
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2.2 Functions in Deductive Databases

Data can be represented by relations and functions. The integration of relational and functional
programming languages has been intensively studied [BeLe86). It is known that functions can be
represented by relations [Gru89]. We assume that the semantics of an EDP is restricted to the
ground interpretation of the EDP (i.e., all the relations and the derived answer sets consist only of

ground facts).
Functions

An m-ary function [UlIm89b] [STZ88] is a statement of the form:
f(TI,TZ,---,Tm)- (m>0)
where fis a function symbol and T; (I <i <m) is a constant, a variable, or a function.

In deductive databases, functions are extended to allow single value or multiple values to
be returned by a function [AH88] [STZ88]. For instance, in Example 2-5, the function Fare = F;
+ F; returns one value when F; and F are given, and in Example 2-4, the function parent(X) can

return the name of a person's father, mother or both when X is given.

The representation and implementation of functions have been intensively studied [Gru89]
[AH88] [STZ88] [BeLe86] [BNRST87] [TsZa86]. When multiple values are wllowed in a
function, a sorted list can be used to represent this function [STZ88]. If an argument or the
returned result of a function allows multiple values?, for example {X;,X3,...,.X .}, then it can be
represented by a list [X;,X,,....X,,]. However, as we can see, such a representation is not

equivalent, e.g., {john,alice} = {alice,john}, but [john,alice] # [alice,john]. To deal with this

7 However, the number of values is assumed to be finite.
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situation, a sorted list can be employed to represent these values. The unification between these
values and a sorted list can be performed after these values are sorted. Such a technique, called

the compile time rewriting technique, is used by the LDL prototype [BNRST87] [STZ88].

Therefore, given a function f(T;,T,,...,Tp), one can use a relation®, say
AT;.T,,...T,,V)where V holds/unifies the returned value(s) of the function, to represent it with
the following semantics: a tuple (7;,77,...,Ty,Vg) iS in the relation f(TI,Tg,.,.,Tm,V) iff
vg = f{71,73,....T,,). Such a representation leads to the transformation of functional Horn

clauses to their function-free counterparts and will be discussed further in Chapter 3.

Functions in Applications

Functions have been shown to be useful in many cases [Gru89] [AH88] [STZ88], such as
arithmetic calculations, list operations and even the manipulation of complex objects [AG88].
Table 2-1 lists some commonly used functions. Many of them are supported by Prolog III
[Col90]. More complicated functions can be constructed based on these functions. Special
functions used in specific applications, such as a geographic information system, may not appear

in this table.

Although the types of functions seem to be distinct, they still have some properties in
common. For instance, for some functions, when T;,73,...,T,, are given, f(T;,T3,...,T,) can
be computed, and some T; can also be computed when other Tis(j#i) or (T}, T3,....Ty,) are

known (e.g., for function Fare = S + Farej discussed in Example 2—5, when Fare and Fare; are

known, S can be computed). This property is abstracted as the finiteness constraint. Another

8 To make the explicit linkage between a function and its relational representation, we use the name of the function
to represent its corresponding relation. However, a renaming technique should be used whenever an ambiguity
occurs.
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property shared by some functions is monotonic behavior. For example, for function Fare = S +

Fare;, given S, when the value of Fare; increases (decreases), so does the value of Fare.

Function Explanation
+ Plus
Numerical —_ Minus
Operations X Times
+ Divide
List Operations [HIL] Concatenate the head element A and the list L
length Length of a list
round Round up to the closest integer
Mathematical sqr Square
Functions sqrt Positive square root
succ Successor

Table 2-1 Some commonly used functions.

However, not every function has these properties. For example, for function
Y = round(X) which rounds X up to its closest integer Y, when Y is given, there are still infinite

possibilities for X, and X and Y normally do not have certain monotonic behavior.

The following example shows the two properties shared by the list construction function

L = [H[L;]. A more detailed discussion of these properties will be presented in Chapter 4.

Example 2-6: Consider the following function.
L =[H[L;]

which concatenates the head element H and the list L; to form a new list L.
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When L is given, H and L; are known. Given H, when the length of list L; increases (or
decreases), so does the length of list L.

a

At the end of this chapter, we present an application example to show the use of functions

in a geographic information system where a typical application is to find the area of a region.
Example 2-7: Consider the following functional linear recursion.

area([PJ,Pz,Pj»],S) - triangle([PJ,Pz,P_;],S).
area([P;,P,,P3Rest] A) :- triangle([P},P,,P3].S), area([P],P3,Rest],A;), A= S + Aj.

triangle([P;,P5,P3],S) - S = sqri(V x (V - length(P;,P;))
X (V - length(P3,P3)) x (V - length(P},P3))).

where V

_ length(P},Py) + length(Py,P3) + length(Py.P3) length(X)Y) is a function which
- 2 ’ »

can compute the length between iwo points X and Y, and sqr#(X) is a function which returns the
square root of X. It is assumed that the polygons are convex polygons and the point set of a

polygon is represented by a sorted list.

The meaning of the above program can be interpreted as follows.
The first rule: the area of a convex polygon is that of a triangle if the polygon consists of only
three points, or
The second rule: if the polygon consists of more than three points, /P;,P,,P3,Rest], the area of
the polygon is the sum of two parts: (i) the area of the triangle with the points P;, P, and P3, and

(ii) the area of a smaller convex polygon with the points P;, P3 and the points in the list Rest .

The area of a triangle is computed by the third rule.
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The following query asks what is the area of the convex polygon with points 7, 2, 3, 4, 5,
6, and 7 (Figure 2-4).

query: ?-area((1,2,3,4,5,6,7],A).

6

The area of(1,2,3,4,5,6,7] is the sum of
the areas of [1,2,3) and/!1,3,4,5,6,7].

Figure 2-4 Hlustration of computing the area of a convex polygon.
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Chapter 3

Transformation of Functional Recursions
and

Compiled Formulas

In the preceding chapter, we classify Horn clause logic programs into two classes; Datalog
programs and logic programs with function symbols. To facilitate the analysis of function
symbols, we introduced extended Datalog in which functions are represented by possibly infinite
relations (see Figure 3-1). In Section 3.1, we will discuss the transformation of logic programs

with function symbols into EDPs.

Extended
Datalog
Programs

Logic Programs with
Functien Symbols

[ Transformation of |
(\Functional Recursiongj

Datalog
Programy,

Figure 3-1 Transformation of functional recursions.

However, as suggested in [UIim89b], logical rules in different forms should be rectified to
facilitate query analysis. More importantly, the query-independent compilation takes rectified
function-free recursions as input and generates compiled formulas [Han89a] [HanHY88].
Intuitively, the rules in a recursion are rectified if the heads of the rules have the same form. We

will discuss Ullman's rectification technique formally in Section 3.2.
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Figure 3-2 Rectification of EDPs.

Based on the rectified EDPs, we introduce the compiled formula assumption. A compiled
formula is the result of performing the query-independent compilation (the V-graph method) on a
rectified function-free linear recursion (see Figure 3-3). The purpose of the query-independent
compilation is to reveal the regularity of the further expansions of recursions. However, to
demonstrate the results of the query-independent compilation without going through its complex
details which have been studied intensively elsewhere [Han89a}, we use the recursive rule
expansion technique to compile a rectified function-free linear recursion to a compiled
formula. The recursive rule expansion technique is a technique which expands a recursion to

reveal the regularity of its further expansions. Compiled formulas are examined in Section 3.3.

tis

Rectified

Function-Free '- ue-l{ndependent Compiled
Linear ' \ Compilation  J Formulas

Recursions

Figure 3-3 Compiled formula assumption.
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3.1 Transformation of Functional Recursions

The use of relations to represent functions has been studied by several researchers [DL86]

[KRS88]. In this section we discuss the transformation of functional recursions into EDPs.

The purpose of transforming functional recursions into function-free ones is to facilitate
their analysis so that we can use the query-independent compilation to compile them to highly
regular chain forms. The basic idea of such a transformation is to use (possibly infinite) relations

to represent functions.

There are some other important reasons for transforming functional recursions into their

function-free counterparts:

(a)  Kifer [Kif88] and Shmueli [Shm87] have shown that for Horn clause queries with
function symbols, there does not exist a general-purpose algorithm which can enumerate all
answers and then terminate. Many researchers [BroS89a] [BroS89b] [RBS87] [Kif88] have
shown that by transforming functional recursions to function-free ones, some query programs
(e.g., monadic programs [SaVa89]) become capturable®. Our study in Chapter 4 and Chapter 5

also shows that such a transformation enables us to analyze what kind of queries are capturable.

(b)  The query-independent compilation has been shown to be very useful in generating
efficient evaluation plans, but is only applicable to function-free recursions [Han89a] [HanHY 88]
[HanH87]. By transforming functional recursions to function-free ones, we can extend the

application domain of the query-independent compilation to functional recursions.

9 ‘?8 query is said to be capturable if there exists an algorithm which can enumerate all answers and then terminate
[Kif88]).
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(c)  Since the transformed programs are the internal representations of the original programs,

the expressive power and the beauty of using functions in logic programs are preserved.
The Function-Predicate Transformation

A function-predicate transformation, called the FP-transformation, is a mapping from a

functional recursion to a function-free one.

Algorithm 3-1: FP-transformation Algorithm.
INPUT: A rule r with function symbols.
OUTPUT: A function-free rule r'.
METHOD:
foreach function in r, say f(X;,X,,....X,,) do
begin
replace the function by a new variable, say V;
add the subgoal f(X;,X»,....X,,,V) in the body of the rule (called functional
predicatel®) with the following semantics: a tuple (X7,X3,...,.Xy,,Vg) is in the
relation for the functional predicate f(X;,X5,... X, V) iff vg = flx;,x2,....Xp)5
associate the integrity constraints specified for the function with the relation for
f(X1,.X2,... X, V)
end
O
From the above algorithm we can see the FP-transformation does not change the semantics

of the original programs. We examine an example below.

10 To make an explicit linkage between a function and its functional predicate, we use the name of the function to
represent its functional predicate. If there is a predicate in the original program carrying the same name but with
one more argument than the function, we should rename the transformed functional predicate to avoid ambiguity.
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Example 3-1: Consider the following travel program discussed in Example 2-5.

travel(Fno,Dep DTime,Arr,ATime,Fare) :- flight(Fno,Dep,DTime Arr ATime,Fare).
travel([Fno/L;] Dep,DTime,Arr,ATime,Fare) :- flight(Fno,Dep,DTime,Dep; IATime,S),
travel(L;,Dep;,IDTime, Arr,ATime,Fare;),

Fare =S + Fare;.

After performing the FP-transformation on the above program, we have the following function-

free version of the fravel program.

travel(Fno,Dep,DTime,Arr,ATime,Fare) :- flight(Fno,Dep,DTime,Arr, ATime ,Fare).
travel(L,Dep,DTime,Arr,ATime,Fare) :- flight(Fno,Dep,DTime,Dep,IATime,S),
travel(L;,Dep; IDTime,Arr,ATime,Fare;),
sum(S,Fare;, Fare), cons(Fno,L},L).
where sum(S,Farey,Fare) is the functional predicate transformed from the function '+ with the
following semantics: sum(S,Fare ],Fafe) is true iff Fare = S + Fare; for any instance of the
variables Fare, S, and Fare;. The functional predicate cons(Fno,Lj,L) is transformed from the
list construction function {Fno/L;] (Example 2-5) with the following semantics: cons(Fno,L;,L) is

true iff L = [Fno/L;] for any instance of the variables L, Fno, and L;.

0

If necessary, a functional predicate can also be transformed back to its functional
counterpart by going through the reverse process. This is called the predicate-function
transformation (PF-transformation). Such a transformation becomes necessary if we want to
restore the original programs for some reason, such as semantic query optimization [CGM90],

inference of integrity constraints [BroS89a], etc.
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3.2 Rectification of Function-Free Recursions

Logical rules in different forms should be rectified to facilitate query analysis [Han89a]
[Ullm89b]. When an IDB predicate p is defined by a set of Horn clause rules, the relation for this
predicate is obtained by computing the relations for these rules, projecting onto the variables
appearing in the heads, and taking the union. However, we have trouble when some of the heads
with the predicate p have constants or repeated variables, e.g., p(a.X,X). Therefore, Ullman in

[UIlm89b] introduced a technique to rectify logic rules.

Another important reason for rectifying function-free recursions is that the query-
independent compilation takes rectified function-free recursions as input and generates compiled

formulas.

Definition: The rules for predicate p are rectified if all the heads of the rules are identical, and

of the same form p(X;,X5,....X;) for distinct variables X;,X>,... X;.

We describe the rectification technique proposed in [Ullm89b] below. It is assumed that

each variable in the head of a rule must also appear in some subgoal of the rule [Ullm89b].

Rectification of Function-Free Rule
Suppose the function-free rule to be rectified is r with head p(Y;,Y>,...,Y;), where the Y's may
be variables or constants, with repetitions allowed.
1. Replace the head of r by p(X;.X>,...,.X}), where X's are each distinct, new variables;
2. Add the subgoal X; = Y; for all i.
I Y; is a variable, eliminate the subgoal X; = Y; and substitute X; for ¥; wherever it is

found in the rule.l!

11 Note that when we make such a substitution for ¥;, we cannot later make another substitution for the same
variable Y.
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It has been shown that the above rectification process does not change the semantics of the

original function-free programs [ULlm89b].

Example 3-2: The following program is the result of applying the rectification process to the

transformed travel program shown in Example 3-1.

travel(L,Dep,DTime Arr,ATime Fare) :- flight(L,Dep,DTime Arr.ATime,Fare).
travel(L,Dep,DTime,Arr,ATime,Fare) :- flight(Fno,Dep,DTime,Dep; IATime,S),

travel(Ly,Dep; IDTime Arr ATime,Fare;),

sum(S,Farej,Fare), cons(Fno,L;,L).
Note that the heads of the above rules are now identical.

We examine an example by using the FP-transformation and the rectification process.

Example 3-3: The following rule set defines a functional linear recursion in which f(x) and g(y)

are two unary functions.

S(X,X) :- person(X).
S(X,Y) - S(f(X),g(Y))

The recursion can be considered as a functional version of the same_generation program (Example

2-2), where f and g can be viewed as the function parent(X) discussed in Example 2-4.

After performing the FP-transformation, we have the following function-free recursion:

s(X,X) :- person(X).
S(XrY) e f(XrXI)r S(X]:Y]): g(Y’YJ)'
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where X; = f{X) is mapped to the functional predicate f(X,X;) and Y; = g(Y) is mapped to the
functional predicate g(Y.Y}).

After applying the rectification process, we have the following rectified function-free

recursion:

s(X,Y) :- person(X;, Y = X.
S(X,Y) - fiX.X;), s(X7,Y;7), 8(Y.Yj).

where we introduce a new variabtle Y for the repeated variable X in the first rule and add a subgcal

Y = X in the body of the first rule.

O

3.3 Compiled Formula Assumption

Several techniques, such as the o-graph method [Ioan85], the V-graph method [Han89a]
[HanHY88] and the matrix method [SuHen90], have been developed to compile function-free
recursions. The purpose of the query-independent compilation is to reveal the regularity of the
further expansions of recursions by using mathematical tools, particularly graphs and matrices.
The basic idea of these methods is to analyze the connections among variables and generate highly
regular chain forms [Han89a] [YHH88]. We assume that the query-independent compilation
method considered in this thesis, unless otherwise specified, refers to the V-graph method

proposed by Han [Han89a] [HanHY88].

It is known that some function-free recursions, such as linear recursions [Han89a], can be
compiled into highly regular chain forms or bounded recursions. Based on the results in the
preceding section, a functional recursion, after being transformed and rectified to its function-free

counterpart, can be so compiled as well. Since the focus of the thesis is not on compilation,
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interested readers are referred to [Han89a] for a complete treatment of the V-graph method.

However, we will use the recursive rule expansion technique to show the result of the query-

independent compilation.
Compiled Formulas Generated by the Recursive Rule Expansion Technique

Definitions: In the compilation of a linear recursion with the recursive predicate 7, the first
expansion of r is the recursive rule r itself. The ith expansion of r (i > 1) is the unification of
the recursive rule with the (i-1)th expansion of r. The 0th expanded exit rule set is the set of
nonrecursive rules of r. The ith expanded exit rule set, denoted by r i, is generated by the
unification of the set of nonrecursive rules of r on the ith expansion of r. The compiled

formula of r is the union of the set of formulas generated by all the expanded exit rules of r.

Example 3-4: Consider the following rectified natural_number program which is obtained by

performing Algorithm 3-1 and the rectification process on the program shown in Example 2-1.

natural_number(X) :- X = 0.

natural_number(X) :- natural_number(X;), succ(X,X).

where succ(X;,X) is the functional predicate for the function succ(X;) with the following
semantics: succ(X;,X) is true iff X = succ(X;) for any instance of the variables X and X;. The

first rule is an exit rule and the second rule is a linear recursive rule.

The Ist expanded exit rule is: natural_number!(X) :- X; = 0, succ(X1,X).
The 2nd expanded exit rule is: natural_number?(X) :- X, = 0, succ(X2,X1), succ(X1.X).
After the jth expansion, we have the following compiled formula:
natural_number(X) = (X = 0) U (U ((X; = 0), succ ¥{(X;X;_1))).
i=l
where



[succ(X;,X) ifi=1,
succ i(X;X; 1) =1
(suce(X;,X;.1), succi-1(X; 1.X; ) ifi> 1.

O

Example 3-5: Consider the following rectified program discussed in Example 3-3.

s(X,Y) :- person(X), Y = X.
S(X:Y) - f(X:X])’ S(X]:Y]): g(Y:Y])

We compile the above program by using the recursive rule expansion technique as

follows.

The Ist expanded exit rule is:
sIX,Y) - AIX.X}), (person(X;) X; =Y)), g(Y,Y}).

The 2nd expanded exit rule is:
s2(X.Y) - fiX.X)), f(X1.X2), (person(Xy) X, =Y3), g(Y.Y)), 8(Y,Y>).

After the ith expansion, we have the following compiled formula:

S(X,Y) = (person(X), X = Y) U (U (F(X;.1.X;), (person(X;), X; = Y;), 84(Y;.1.Y})).
i=1
where
[FX.X7) ifi =1,
f(X;.1.%:) =14
X, p.X0, F1(X0.X,.1) ifi> 1.
(8(x.X1) ' ifi=1,
' 8i(X;.1.X;) =14
lg(Xi1.X0), 81(X;2.X;.1) ifi> 1.
O
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Assumption: It is assumed that a comipiled formulal? is of the following form:

R B j
r=e U (PI,PZ,---,P:,,G)
i=1

where e is the union of exit rules and pj': (1 £j<n)is:

i_
p; =1 |
lp;. pj."] ifi> 1.

where p} is called a chain and each pjin pj': is called a chain element of pj’

The compiled formula generated by the query-independent compilation (V-graph method)

from a linear recursion possesses the following two properties [Han89a] [Han91]:

Property 3-1: All the chains of a compiled formula are synchronized. That is, all the chains
expand to the same length during the evaluation. To reflect the nature of such synchronization,

we use the following notation to denote the ith expanded exit rule of the compiled formula.

e when i =0,
[ 0
roied

lpli, p;, e p,iz, e when i > 0.

Thus, r can also be expressed as follows:

r=r0uvurdunruvu..

12 More specifically, the compiled formula is one generated by applying the V-graph method to a function-free
linear recursion [Han89a).
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Property 3-2: Suppose the kth and the (k+1)th chain elements of a chain p; have a shared

variable at positions s and ¢ respectively, then the positions s and ¢ are fixed forany k 2 1, i.e.,
(s,t) is an invariant, called a chain invariant of the chain pj'. (see Figure 3-4 below).

(. )=u,p (w0, X, .. ), P Gy X, vt )y e

J J

X atposition s X atposition t
l 1

(s,t) is an invariant

Figure 3-4 Shared variables between chain elements.

We examine an example.

Example 3-6: Consider the following rectified append program.

append(U VW) :-U=[],V=W.
append(U,V,W) :- cons(X;,U;,U), append(U;,V,W;), cons(X;,W;,W).

The Ist expanded exit rule is:

append!(UV,W) :- cons(X;,U;,U), (Uj = [1,V = W}), cons(X;,W,W).

The 2nd expanded exit rule is:
append?(U,V,W) :- cons(X;,U;,U), cons(X,Up,U;),

(Uy =[],V =W,),
COHS(X],W],W), COﬂS(Xz,Wz,W]).

After the ith expansion, we have the following compiled formula:

append(U,V,W) = (U=[], V=W) U (U (consi(X;,U;,U;.;), (U;i=[], V=W;), cons’(X;,W;,W;.1))).
i=1
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where

(cons(X;,U;,U) ifi=1,
consi(X,U,U;p) =3

\cons(X;,U;,U;.1), consi-1(X;.1,U;1,U;2) ifi>1.

[cons(X;,W;,W) ifi=1,
consi(X;,W,W; ;) = {

lcons(X;,W;,W;.;), consi-1(X;.1,Wi.1,W;2) ifi>1.

Examination of Property 3-1: the ith expanded exit rule is:

(U=[],V=W ifi=0,
appendi(U,V,W) :- 4
lconsi(X;,U,U; 1), (U= [1, V = Wy), consi(X;,W;,W;_;)  ifi>0.

The compiled formula can also be expressed as follows:

append(U,V,W) = append)(U,V,W) U append!(U,V,W) U ... appendi(U,V,W) U ...

Examination of Property 3-2: For both predicates consi(X;U;,U;_;) and consi(X;,W;W;_;), the
chain invariant is (2,3) because there is one shared variable at positions 2 and 3 of two

corresponding consecutive chain elements. We illustrate the chain invariant for cons(X;,U;U; ;)

in Figure 3-5 below.

cons(X;,U;,U), cons(X3,Up,4 ), ...,cons(Xi1,U;1,Uiz ), cons(Xi,UiUyy ), ...
there is a shared variable at positions 2
and 3 of any two consecutive elements

Figure 3-5 Chain invariant of consi(X;,U,U;_ ;).

O

Discussion

38



Compile:? formulas and Properties 3-1 and 3-2 are important results of previous studies of the
query-independent compilation [Han89a] [Han88b]. To capture the characteristic of a recursion,

we introduce the following terms.

Definitions: A linear recursion is an n-chain recursion if for any positive integer &, there
exists a kth expansion of the recursion consisting of one chain (when n = I) or n synchronous (of
the same length) chains (when n# > I) each with the length greater than &, and possibly some other
predicates which do not form a chain. It is a single-chain recursion when n = 7, or muiti-
chain recursion when n > 1. The recursive rule of an n-chain recursion is called an n-chain

recursive rule. A recursion is bounded if it is equivalent to a set of nonrecursive rules.

The compiled formula assumption and their properties are mainly based on the previous
studies on the V-graph methods [Han89a] [YHHS88] [HanHY88]. It is known that the V-graph
method can compile the most commonly used recursions, linear recursions, to compiled formulas
which match the representation of the compiled formulas we assumed and possess Property 3-1

and Property 3-213.

As shown previously, the result of performing the FP-transformation and the rectification
process on a functional recursion is a rectified EDP. Consequently, we can extend the application

domain of the V-graph method from function-free recursions to functional recursions.

Since the FP-transformation and the rectification process convert a functional linear
recursion to a rectified function-free one and it has been proved that a rectified function-free linear
recursion can be compiled to a compiled formula using the V-graph method [Han89a], we

conclude that both function-free and functional linear recursions can be compiled to compiled

13 However, it is possible for the V-graph method to expand some recursions or rename the variables of some
predicates before their regularity can be revealed. The readers who are interested in the v-graph method are referred to
[Han89a] {HanHY 88].
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formulas by the V-graph method. This conclusion is important since most recursions enccuntered

in applications are linear recursions [Date90] [BaRa86] [Han89a] [YHHSS].
As a summary of this chapter, we examine the fra@vel program.
Example 3-7: Consider the following rectified zravel program discussed in Example 3-2.

travel(L,Dep,DTime,Arr, ATime,Fare) :- flight(L,Dep,DTime Arr ATime,Fare).

travel(L,Dep,DTime, Arr ATime,Fare) :- flight(Fno,.Dep,D>Time,Dep; IATime,S),
rravel(L;,Dep; IDTime, Arr,ATime, Fare;),
sum(S,Farej,Fare), cons(Fno,L;,L).

The Ist expanded exit rule is:

travell(L,Dep,DTime, Arr.ATime,Fare) :- flight(Fno,Dep,DTime,Dep 1.1ATime,S),
flight(L;,Dep;,IDTime Arr,ATime,Fare;),
sum(S,Fare; Fare), cons(Fno,L;,L).

The 2nd expanded exit rule is:
travel?(L,Dep,DTime, Arr,ATime,Fare) :- flight(Fno,Dep,DTime,Dep;,IATime,S),
flight(Fnoj,Dep;,DTime;,Depy,IATime;,Sy),
flight(Ly,Dep,,IDTime;,Arr,ATime Fare,),
sum(S,Fare;,Fare), sum(S;,Fare; Fare;)

cons(Fno,L;,L), cons(Fnoj,L,,L1).

After the ith expansion, we have the following compiled formula:

travel(L,Dep,DTime,Arr ATime,Fare) = flight(L,Dep,DTime Arr,ATime,Fare)

U (flight(Fno;_;,Dep;.;,DTime; 1 ,Dep;IATime;_1,S;.1),
i=]

flight(L;Dep;IDTime; ;,Arr.ATime,Fare;),

sumi(S; j,Fare;Fare; 1), cons'(Fno; ,L;,L; 1)).
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where
flight(Fno;_;,Dep;_;,DTime;_;,Dep; IATime; ;,S;.1)
(flight(Fno,Dep,DTime,Depy,IATime,S) ifi=1,

=4
\flight(Fno;_;,Dep;.;,DTime; ;,Dep;IATime; ;,5;.1),

ﬂighti'l(Fnoi_z,Depi_z,DTime,-_z,Dep,-_l,IATime,-_z,Si_z) ifi>1.

(sum(S,Fare; Fare) ifi=1,
sumi(S; ;,Fare,Fare; 1) =3

\sum(S;_; Fare,Fare; ;), sumi-1(S; ;,Fare; 1, Fare; ) ifi> 1.

(cons(Fno,L},L) ifi=1,
consi(Fno;_y,L;L;_1) = 3

\cons(Fno; ;,L;L; ;), consi-1(Fno; 5,L; 1,L;.3) ifi> 1.
Examination of Property 3-1: the ith expanded exit rule is:

traveli(L,Dep,DTime,Arr,ATime, Fare)

(flight(L Dep,DTime,Arr ATime,Fare) ifi=0,
\Alighti(Fno, ;.Dep;. ;D Time; ,Dep,,IATime; 1,5;.1),
flight(L;,Dep;IDTime;. 1, Arr,ATime,Fare;),
sumi(Sl-_l,Farei,Farei,l), COﬂSi(FHOi,I,Li,Li_I). ifi > 0.

Therefore, the compiled formula can also be expressed as follows:
travel(L,Dep,DTime,Arr ATime,Fare) = travelO{L,Dep,DTime,Arr ATime,Fare) <
travell (L,Dep,DTime,Arr, ATime,Fare) U

traveli(L,Dep,DTime,Arr ATime, Fare) U
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Examination of Property 3-2: For the chains sumi(S; ;,Fare;Fare; ;) and consi(Fno;_j,L;,L;. 1),
the chain invariant is (2,3) because there is one shared variable at positions 2 and 3 of two
corresponding consecutive chain elements. For the chain flighti(Fno; j,Dep; ;,DTime;.

1.Dep; ATime; 1,5;.1), the chain invariant is (2,4) because there is one shared variable at positions
2 and 4 of its two consecutive chain elements.

O
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Chapter 4

Safety of the Evaluation of Compiled Formulas

From this chapter, our discussion focuses on compiled formulas in which the relations for

functional predicates could be infinite.

It is assumed that EDB predicates and functional predicates sadsfy some constraints.
Three classes of constraints are considered: integrity constraints, rule constraints and query
constraints. This chapter discusses the conditions under which the evaluation of a compiled

formula is safe.

The evaluation of a compiled formula is safe with respect to a given query and a set of
constraints if, for a given database instance that satisfies the constraints, the evaluation is

guaranteed to yieid a finite set of answers in finite steps.

Over finite databases, a bottom-up evaluation of Datalog queries is guaranteed to be safe,
yielding a finite set of answers in finite steps [BaRa86] [APPRSU89] [SaVa89]. This is no
longer true if some of the relations for functional predicates are infinite, since the set of answers

may be infinite [BroS89b] [SaVa89].

According to Pfoperty 3-1, a compiled formula can be expressed in the following form:

ri
0

ﬂ
Il
TC s

We show that for compiled formulas, safety can be viewed as a combination of two

properties: finite evaluability, which guarantees the finiteness of intermediate answers (i.e., for
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any i 20, the relation for rf contains a finite number of tuples during the evaluation), and

termination, which guarantees the finiteness of the evaluation (i.e., there exists an m (m = 0) such

m .
that r = ).
i=0

This chapter is organized as follows. In Section 4.1 we discuss the concept of safety as
used in the literature. To facilitate the analysis of safety, we discuss constraints in Section 4.2.
Starting from Section 4.3, we present the major results of this chapter. Section 4.3 proves
formally that safety is a combination of two properties: finite evaluability and termination. Section
4.4 presents a necessary and sufficient condition guaranteeing the finite evaluability of a compiled
formula. The algorithm for testing this condition is developed. Section 4.5 presents a sufficient

condition guaranteeing the termination of the evaluation of a compiled formula. The algorithm for

testing the condition is also developed.

4.1 The Concept of Safety

Safety is an important issue in the analysis of functional recursions since functions are normally

defined on infinite domains.

However, the term "safety” has been given different meanings in the deductive database

community (see Figure 4-1). Originally, it was introduced to refer to safe queries.

Universal Safety
Semantic Safety {
Query Safety { Relative Safety

Syntactic Safety

Figure 4-1 Different meanings of query safety.



The syntactic safety of queries was introduced in [Ullm89a] [Ullm&9b] to denote a
subclass of first order queries which can be translated into relational algebra, while the semantic
safety of queries was used by some researchers to denote the class of queries with finite sets of
answers [BaRa86] [KRS88] [RBS87] [Zani86]. The class of semantically safe queries properly
contains the class of syntactically safe ones [Kif88]. Semantically safe queries seem to be more
interesting since the finiteness of answer sets is one of the major concerns when functions are

permitted.

Given a database, a query is said to be universally safe if the query has a finite set of
answers for every instance of that database [Kif88]. A query is said to be relatively safe if the
query has a finite set of answers for a given instance of that database [KRS88] [RBS87]. Relative
safety seems to be more important since queries are always evaluated with respect to a given
database instance and the user usually wants to know whether this particular evaluation generates

a finite set of answers.

In order to find the answers to a query, we must use some evaluation algorithm(s).
Therefore another notion, called capturability, was introduced [KiL88] [Ullm89b]. A query is
said to be caprurable if there exists an algorithm which can enumerate all answers and then

terminate.

From a practical standpoint, "a database" normally refers to a given instance of that
database. From the user's point of view, when a query is posed, one of the major considerations
is whether or not there exists an evaluation algorithm which can yield a finite set of answers in

finite steps. From the application point of view, constraints seem to be particularly important in
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the analysis of safety since some constraints may change an infinite domain to a finite onel4.
Therefore, safety according to our definition is related to a given query and a set of constraints for

a given database instance that satisfies the constraints.

From here on, the term "safety” used in this thesis refers to the safety according to our

definition unless otherwise specified.

4.2 Classification of Constraints

Constraint programming and constraint-based reasoning have been studied extensively in logic
programming and artificial intelligence [Coh90] [KKR90] [Las90]. It is known that constraints
are also very useful in the analysis of safety in deductive databases [BroS89%a] [BroS89b]

[KRS88] [RBS87] [SaVa89].

We consider constraints as assertions that a given database instance is compelled to obey.
We classify constraints (Cs) into three classes: query constraints (QCS), rule constraints (RCs)
and integrity constraints (ICs). In other words, a given set of constraints is considered as

Cs = QCs U RCs U ICs.
Query Constraints
A query constraint is a constraint which adds one or more conjuncts to the query predicates.

To facilitate the analysis of safety and query processing, we use query constraints to
express the instantiated information provided by a query. More specifically, given a query:

?-r(...,CI,..-,CZ,...Ci,...)

14 For instance, the relation for the functional predicate sum(S,Fare |, Fare) is infinite but the relation becomes
finite if the following constraints are given: S, Fare 1 and Fare are integers, 0 <§ < 1000, 0 < Farej < 1000, and 0
< Fare < 1000.
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where c's are all the instantiaied information provided by the query and i is less than or equal to

the number of arguments of r, we can express this query as follows:
?-r(...,VI,...,Vz,...V,-,...), VI = Cfseens Vz = C2yney Vi= Ciyenn

where each V; is the corresponding variable name and V; = ¢;is viewed as a query constraint. ?-
r(...,Vy,...Va,. V.. ) is called a query predicate. By using this method to express a query,
we can analyze queries more precisely and select the instantiated information we need in the
analysis of safety and query processing. From here on, we use this method to express queries.

We examine an example below.
Example 4-1: The queries discussed in Example 2-5 can be expressed as follows.
query 1: ?-travel(L,Dep, Arr, , ), Dep = vancouver, Arr = ottawa.

query 2: ?-travel(L,.Dep.DTime Arr, , ),

Dep = vancouver, Arr = otiawa, 7:00 <DTime, DTime <8:00.

query 3: ?-travel(L,Dep, ,Arr,ATime, ),

Dep = vancouver, Arr = ottawa, 11:45 < ATime, ATime < 12:15.
query 4: ?-travel(L.Dep, Arr, [Fare), Dep = vancouver, Arr = ottawa, Fare <500.

where Dep = vancouver, Arr = ottawa, 7:00 <DTime, DTime <8:00, 11:45 < ATime, ATime <

12:15 and Fare < 500 are query constraints of their respective queries.

a

Rule Constraints

A rule constraint is a constraint which adds one or more conjuncts to the body of a deduction

rule.
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Example 4-2: Consider the following program [Col90].

ElementOf(E,[E/L]).
ElementOf(E,[E'/L]) :- ElementOf(E,L), E #E".

where [E/L] is the list construction function.

The meaning of the above program is that E is an element of [E/L] if E is the head element
of [E/L], or E is an element of [E’/L] if Eis an elementof Land E #E".

E #E'is viewed as a rule constraint since it specifies the condition that variables £ and E’

must satisfy.

]

Since a rule constraint adds new conjuncts (conditions) to the body of a deduction rule, it
changes the original rule to a new, constrained one. Therefore, rule constraints should be
compiled together with the new deduction rule. We will examine how to push rule constraints

into compilation in Chapter 5.
Integrity Constraints

In this thesis, three types of integrity constraints are considered: type constraints, finiteness

constraints, and monotonicity constraints.
Type Constraints

A type constraint is a constraint which requires the arguments of predicates to belong to
specified domains. The type constraints for EDB predicates and the functions supported by a

database are defined when the database is defined. The type constraints for IDB predicates can be
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inferred when an IDB predicate is defined. We will discuss the inference of type constraints in

Chapter 5. Now we examine an example.

Example 4-3: Consider the following functional recursion which finds the length of a list.

length([],0).
length({H[R] succ(N)) :- length(R,N).

The meaning of the above program is that: (i) the length of a list is 0 if the list is empty (the
first rule), or (ii) the length of the list [H/R] is succ(N) if the length of R is N (the second rule).

The type constraints for the above program are: H is a character, R is a string of

characters, and NV is an integer.

O

Type constraints and the inference of type constraints
Finiteness Constraints

A finiteness constraint (fc) is a statement of the form

p: A>T
where A and I'are sets of the argument positions of the predicate p [SaVa89]. Let rel(p) dencte
the relation for the predicate p. Then rel(p) satisfies this constraint if for every tuple ¢ of rel(p), the
set of tuples {s[I']/s[A] = t[A]} is finite!5. In particular, rel(p) satisfies p: 0—Iif {t/T]} is
finite!6. The intuitive meaning of rel(p) satisfying p: A — I'is that if {tf A]} is finite, then {¢/T}}

15 Note that if {s[I]/s[A] = t[T]} is finite, it implies that for any variable V whose position in p appears in T,
{5{V]} is also finite.

16 We use ‘0’ to indicate that the finiteness of {¢/I7} does not depend on any argument of p. For example, given an
EDB predicate parent(X,Y), its relation satisfies parent: 0—1 and parent: 0—2 because {t/1]} and {t{2]} arc finite for
every tuple ¢ of the relation.
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is finite. Clearly, for any m-ary EDB predicate p, rel(p) satisfies fc = {p: 0—1,p: 0-2,...p:
0—m)} since the relation for any EDB predicate is finite and every attribute of rel(p) is finite. A

variable is said to be finite if it is bound to a finite number of facts.
Example 4-4: Consider the following functional predicate from Example 3-6.
cons(X;,U;,U).

For any finite X; and U, there is a finite U and for any finite U there are only finite

choices for X; and U;. Therefore, we have the following finiteness constraints:

fc = {cons: {1,2}53, cons: 3—{1,2}}.

Consider another functional predicate from Example 3-1.

sum(S,Fare;,Fare).

where S, Fare; and Fare are positive real numbers.

Since the finiteness of any two variables makes the third variable finite (e.g., for any finite

S and Farej, there is a finite Fare (actually only one value for Fare)), we have the following

finiteness constraint;

fc = {sum: {12}—3, sum: {1,3}}—2, sum: {2,3}}—>1}.

O

Monotonicity Constraints

A monotonicity constraint (mc) is a statement of the form

Pii<pel
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where p is a predicate name and i and j, defined on the same domain, are argument positions of p
[BroS89b]. Intuitively, the above mc means that the relation rel(p) satisfies this constraint if for
every tuple ¢ of rel(p), its value at position i is less than that of j, according to some partial order.
The 'less than' condition might be satisfied after performing some mapping on i or j.
Interestingly, after a proper mapping is performed, relations without cyclic data (e.g., the relation
for parent(X,X;) discussed in Example 2-2) always satisfy some form of mc's provided the

arguments involved are defined on the same domain.
Example 4-5: Consider the following functional predicate.
cons(X;,U;,U).

According to the meaning of cons(X;,U;,U) discussed in Example 3-6, the relation for

cons(X;,U;,U) satisfies the following monotonicity constraints.
mc = {cons: 1 <pe 3,2 <pe 3}.
where <, is defined on the length of lists with respect to the usual order on natural numbers.
Consider another functional predicate:
sum(S,Fare; Fare)

where S, Fare; and Fare are positive real numbers. The relation for sum(S,Fare),Fare) satisfies

the following monotonicity constraints:
mc = {sum: 1 <0 3,2 <p 3}

where <, refers to the usual order on positive real numbers.

O
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We use the travel database as an example to analyze different constraints specified over the

database.
Example 4-6: Consider the following modified version of the rave! program (Example 3-1).

travel(L,.Dep,DTime Arr ATime,Fare) :- flight(L,Dep,DTime Arr ATime,Fare).

travel(L,Dep,DTime,Arr.ATime,Fare) :- flight(Fno,Dep,DTime ,Dep; IATime,S),
travel(L;,Dep; IDTime Arr ATime,Fare;),
sum(S,Fare;,Fare), cons(Fno,L;,L),

international(Dep; ).
query: ?-travel(L,Dep, ,Arr, , ), Dep = vancouver, Arr = ottawa, Fare <500.

where we assume that all the international airports are registered in the relation for

international(Dep).

Now we analyze the constraints specified over the small database.

Query Constraints:
Dep = vancouver, Arr = ottawa and Fare < 500 are the query constraints which require that the

total fare from Vancouver to Ortawa be less than or equal to 500 dollars.

L4
Rule Constraints:
international(Dep)) is a rule constraint!” which requires that all the intermediate airports must be
international airports. Recall that question 5 in Example 1-1 needs this constraint and we

mentioned that this question could not be expressed by a query (Example 2-5). This question can

be described by the following query after the rule constraint is added to the travel program.

17 Notice that this constraint cannot be expressed by a query constraint becausz the variable Dep; does not appear
in the head of any rule in the travel program.
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query: ?-travel(L,Dep, ,Arr, , ), Dep = vancouver, Arr = ottawa.

Integrity Constraints. we discuss the three types of ICs below.
Tvpe constraints:
Variable Type Constraints
Fno natural number
Dep string of char
DTime 0000..2400
Arr string of char
ATime 0000..2400
Fare __|positive real number

Table 4-1 Type constraints for the EDB predicate flight.

The type constraints for other predicates of the program can be inferred from the type

constraints shown in Table 4-1.

Finiteness constraints:

Since flight is an EDB predicate, its relation is finite. We have:

fcp = {flight: 01, flight: 02, flight: 0—3, flight: 0—4, flight: 05, flight: 0—6).

According to Example 4-4, the fc's for cons and sum are:

fca = {cons: {1,2} >3, cons: 3—{1,2}}.
fez = {sum: {12} >3, sum: {i1,3}}>2, sum: {2,3}}—1}.

Thus the finiteness constraints can be expressed as follows:
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fe=fcpUfea U fes,
M .. .
According to Example 4-5, we have the following monotonicity constraints.

mcy ={cons: 1 <pe 3,2 <p. 3}

where <,,. is defined on the length of lists.

mcy = {sum: 1 <pc 3,2 <o 3}

where <, refers to the usual order on positive real numbers.

Thus the monotonicity constraints can be expressed as follows:

mc =mcy U mcy,

The inference of monotonicity constraints in programs is an important issue in deductive
databases [BroS89a] [BroS89b]. For example, if rel(p) satisfies p: i <p,. j and p: j <. &, then we
can infer that rel(p) also satisfies p: i <,,; k. A sound and complete algorithm for the inference of
mc's is given in [BroS89a). Interested readers are referred to [BroS89a] and [BroS89b] for a

detailed description of the algorithm.

Another issue is the use of equality constraints in the analysis of safety of logic programs
[BroS89a] [BroS89b] [SaVa89]. Intuitively, the relation rel(p) for the predicate p satisfies the
equality constraint p: i =, j iff the value at position i and the value at position j are equal in every
tuple of rel(p). We do not discuss equality constraints in detail due to the following observation.
If two variables have the same name in a Horn clause rule, then they must be defined on the same
domain and have the same values in corresponding tuples. Therefore, by using the same variable

name for those variables that satisfy equality constraints, equality constraints can be implicitly
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expressed in a program. Moreover, the equality constraints satisfied by the variables in different

predicates can also be expressed by the same variable name.

The third issue concerns the representation of rule constraints and query comnstraints . We
assume that a rule constraint or a query constraint is given in one of following forms: V > ¢, V >
¢, V=c¢ Vs#c, V<c V< c(where Vis a variable and ¢ is a constant) with the following
exceptions: (i) since an attribute V in an EDB relation contains a finite number of constants and
can bé expressed as V = ¢ where ¢ is an instance of V in the relation, we also allow a rule
constraint or a query constraint to be specified by an EDB relation. For example, the rule
constraint international(Dep)) discussed in Example 4-6 is specified by an EDB relation which
registers the names of all the international airports. (ii) Since a rule constraint will be compiled

together with the original rule, we also allow it to be a function!8,

4.3 Safety as a Combination of Finite Evaluability and Termination

We view safety as a combination of two properties: finite evaluability and termination. The
evaluation of a compiled formula is safe with respect to a given query and a set of constraints if,
for a given database instance that satisfies the constraints, the evaluation is guaranteed to yield a

finite set of answers in finite steps.

A predicate p is finitely evaluable with respect to a given query and a set of constraints
iff the relation for p is finite during the evaluation, where the relation for p is from a given

database instance that satisfies the constraints.

18 Note that this function will be transformed into a functional predicate after the FP-transformation is performed
on the modified, more constrained rule.
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According to Property 3-1, a compiled formula r can be expressedas r=r0 Url Ur2 U

(-4

... =  ri. Thereforz, r is finitely evaluable with respect to a given query and a set of constraints
i=0

iff the relation for ¥ is finite for every i (i 2 0) during the evaluation.

The evaluation of a Horn clause program ferminates with respect to a given query and a
set of constraints if the evaluation can generate the final set of answers in finite steps, where the
relations for the predicates in the program are from a given database instance that satisfies the

constraints.

For a compiled formula
r=rurlurru..= UH
i=0

the evaluation of r terminates with respect to a given query and a set of constraints iff there exists
m

anm (m 2 0) such that r = U r,
i=0
As we can see from the above definitions, for compiled formulas, safety can be viewed as
a combination of finite evaluability and termination. We will examine them separately in the

following two sections (i.e., Sections 4.4 and 4.5).

4.4 Safety I: Finite Evaluability

In this section, we present a necessary and sufficient condition which guarantees the finite
evaluability of a compiled formula with respect to a given query and a set of constraints. The
algorithm for testing the condition is developed. Before we discuss the details formally, we give
the finiteness propagation rules below where the adornment b indicates that the corresponding

variable is bound.
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Finiteness Propagation Rules: Suppose r is a rule. Given a query and a set of constraints,
we adorn r as follows.

1. If a variable V appears in an EDB predicate or V = ¢ where ¢ is a constant or ¢ € C where
C is a finite domain, V is adorned with b, that is, V2.

2. Two variables specified by "=" or with the same variable name are adorned with b if one
of them is adorned with b.

3. If there is a finiteness constraint p: A — I"and all the variables specified!? in A are

adorned with b, then every variable V specified in I"is adorned with b, that is, V?.
We examine an example below.

Example 4-7: Consider the following program which defines the arithmetic function

Z=X+Y, where Z, X and Y are integers.

plus(XYZ) -X=0,Z=1Y.
plus(X,Y,Z) :- plus(X;,Y,Z;), succ(X;.X), succ(Z;,Z).

where the finiteness constraints satisfied by succ are: fc = {succ: 1 — 2, succ: 2 — 1}

Suppose the following query is posed:
query 1: ?-plus(X,Y,Z), Y=3.

After applying the finiteness propagation rules to the exit rule and the first expanded exit

rule, we have the following adorned rules.

plus(Xb,Yb 7b) :- Xb = 0, Zb = Yb,
plus(Xb,Y6,2b) -2 = 0, Y0 = 25), suce(x?,Xb), succ(z),25).

19 By "a variable is specified in A (or I')", we mean that the position of that variable appears in A (or I).
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Notice that after the finiteness propagation, the relation for every predicate in the above

rules is finite since every variable in the above rules are bound to a finite number of facts

(indicated by the adornment b).

Consider another query:
query 2: ?-plus(X,Y,Z), X=3.

After applying the finiteness propagation rules to the exit rule and the first expanded exit

rule, we have the following adorned rules.

plus(XbY,Z) - X6 =0,Z =Y.
plus(Xb,Y,Z) (X5 = 0, Y = Z;), succ(X2,Xb), succ(Z;,Z).

Notice that the variables without the adornment » mean that they cannot be bound to a
finite number of facts. In other words, the relation for the predicate that has a variable without the

adornment b is finite. For example, the relations for plus(XP,Y,Z) and succ(Z 1,Z) are infinite
with respect to query 2.

O

4.4.1 Testing of Finite Evaluability

In this Section, we present a necessary and sufficient condition which guarantees the finite

evaluability of a compiled formula. The algorithm for testing the condition is also presented.

Lemma 4-1: A rule r is finitely evaluable with respect to a given query and a set of constraints iff
for a given database instance that satisfies the constraints, every variable in the predicates of r is

adomed with b after the finiteness propagation rules are applied to r.
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Proof: The proof is straightforward in the sense that the relation for a predicate is finite iff every
attribute of the relation is finite. According to the finiteness propagation rules, an attribute is
bound to a finite number of facts with respect to the query and the constraints iff the attribute is
adorned with . Hence, the lemma holds.
O
Lemma 4-2: Suppose r is a compiled formula.
If a) the exit rule set is finitely evaluable, and

b) the first expanded exit rule set is finitely evaluable,

then its further expanded exit rule set is also finitely evaluable.

Proof: Suppose the compiled formula is r. According to Properties 3-1, r can be expressed as

follows.

where
fe wheni =0

B}, P> . DL, e when i > 0
Therefore, according to the definition of finite evaluability, we only need to prove that for
any i (i 20), the relation for ¥ is finite.
The proof is by induction on the expansion length of the expanded exit rules of r.

For the basis, according to the condition of this lemma, the relations for r0 and rf are

finite.
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For the induction, if the relation for ri-/ is finite, we prove that the relation for ri s also

finite.

According to the above equations, we can infer ri= p;, p,, ..., P, L. Let s:-p1,ps, ...Pn

and the relation for s be rel(s). Then the relation for rel(rf) can be expressed as follows:

rel(ri) =TT (rel(s) [= —] rel(ri-1))

where $ij, and $j, (I <h <m, m is less than or equal to the smallest number of the attributes of
rel(s) and rel(ri-1)) are the attribute positions of rel(s) and rel(r’-! ) respectively. $i, = $j, means
that the attributes at the corresponding positions in rel(s) and rel(ri-! ) have the same attribute

name. T denotes the projection on the attributes that appear in rel(ré).

By the inductive hypothesis, rel(ri-1) is finite. Hence, according to the definitions of the

natural join and projection operations [UIlm89b], rel(r¥) is finite.

O

Theorem 4-2: A compiled formula is finitely evaluable with respect to a given query and a set of
constraints iff all the variables in the exit rule set and the first expanded exit rule set are adorned

with b's after the finiteness propagation rules are applied to them.
Proof: Suppose the compiled formula is r.

Only If: According to the definition of finite evaluability, a compiled formula r is finitely
evaluable with respect to a given query and a set of constraints iff rel(r) is finite for any i (i 20)
during the evaluation. Therefore, at least rel(r?) and rel(r! ) must be finite. According to Lemma
4-1, every variable in the exit rule 70 and the first expanded exit rule r/ is adorned with b'’s after

the finiteness propagation rules are applied.



If: Suppose all the variables in the exit rule set and the first expanded exit rule set are adorned
with b’s after the finiteness propagation rules are applied to them. According to Lemma 4-1, r0
and r! are finitely evaluable, then according to Lemma 4-2, r¥ (i = 0) is also finitely evaluable.

By definition, r is finitely evaluable.
O

Based on Theorem 4-2, we can develop an algorithm to test the finite evaluability of a

compiled formula with respect to a given query and a set of constraints.

Algorithm 4-1: Finite Evaluability Testing Algorithm.
INPUT: A compiled formula, a query and a set of constraints.
OUTPUT: An assertion of whether the compiled formula is finitely evaluable ('yes') or not ('no’).
METHOD:
apply the finiteness propagation rules to the exit rule set;
if every variable in the exit rule set is adorned with b
I* in other words, every variable is bound to a finite number of facts (indicated by the
adornment b) */
then
begin
apply the finiteness propagation rules to the first expanded exit rule set;
if every variable in the first expanded exit rule set is adorned with b
then return('yes’)
else return('no")
end

else return('no’)
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4.4.2 Analysis of the Finite Evaluability Testing Algorithm

The correctness of Algorithm 4-1 is clear since it does nothing but test the condition of Theorem
4-2 which has been proved to be necessary and sufficient for guaranteeing the finite evaluability of

a compiled formula with respect to a given query and a set of constraints. Therefore, we have the

following proposition.

Proposition 4-1: The finite evaluability testing algorithm is correct in the sense that, given a
compiled formula, a query and a set of constraints, Algorithm 4-1 returns 'yes' if and only if the

compiled formula is finitely evaluable with respect to the query and the constraints.

a

We examine an example below.
Example 4-8: Consider the plus program discussed in Example 4-7.

plus(X,Y,Z) -X=0,Z =Y.
plus(X,Y,Z) :- plus(X;,Y,Z;), succ(X;.X), succ(Z;,Z).

Jc={succ: 1 - 2, succ:2 — 1}.

Suppose the following query is posed:
query 1: ?-plus(X,Y,Z), Y=3.

After applying the finiteness propagation rules to the exit rule and the first expanded rule,
Algorithm 4-1 returns 'yes', indicating that the above program is finitely evaluable (see Figure 4-
2).
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&N
plus{xby bz b .- xb=-0,7%=yb.

?

instantiated by the
query ?-plus(xy3yz)

(a) Finiteness propagation in the exit rule.

ry
plus{X by bZ % - (X b= 0,ZP=Y?), succ(X?}b), succ(Z 2z ?).

instantiated by the query
?-plus(X,Y,Z), Y=3.

(b) Finiteness propagation in the first expanded rule.

Figure 4-2 Application of Algorithm 4-1 in the plus program.

For query 2: ?-plus(X,Y,Z), X=3, as shown in Example 4-7, there are variables which are
not adorned with b. Therefore, Algorithm 4-1 returns 'no’, indicating that the compiled formula

is not finitely evaluable with respect to query 2.
a

4.5 Safety II: Termination

Many researchers' studies show that the termination problem is difficult to solve in some
circumstances [BroS89b] [Kif88] [RBS87] [SaVa89]. Kifer [Kif88] showed that Horn clause
queries with function symbols are not capturable. In other words, there does not exist an
evaluation algorithm which can enumerate all answers in finite steps for these queries. The
following example shows that the evaluation of a functional recursion cannot even predictably

terminate.
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Example 4-9: Consider the following program and query.

r(X) :- a(X).
r(X) :- random(X X;), r(Xy).

query: ?-r(X), X=1.

where a(X) is an EDB predicate containing only one fact a(0) and random{X,X;) is a functional

predicate which generates a random number when X is given.

Since we do not know what will be generated by the function random, the evaluation of

the above query program cannot terminate.

O

Our study shows that based on the compiled formulas generated from functional
recursions by using the V-graph method, we can analyze what kinds of queries are capturable.
More specifically, we show that whether or not there exists a safe execution of a compiled formula

with respect to a given query and a set of constraints depends on the evaluation plan generated.

Definition: Given a compiled formula r, a query and a set of constraints, an evaluation plan
for r is an arrangement indicating how to evaluate the chains and the exit rule set of r. To
represent the evaluation order among the chains and the exit rule set of a compiled formula, we

use = to indicate that the predicate to the left of = should be evaluated first.
We examine an example below.

Example 4-10: Consider the following program which defines the arithmetic function

Z =X xY.

times(0,Y,0).
times(succ(X),Y,Z) :- times(X,Y,Z;), plus(Z;,Y,Z).
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where X, Y and Z are positive integers, succ is the successor function and plus is defined in

Example 4-7.
After performing the FP-transformation and the rectification process, we have:

times(X,Y,Z2) :-X=0,Z = 0.
times(X,Y,Z) :- succ(X;,X), times(X;,Y,Z;), plus(Z;,Y,Z).

After the ith expansion, we have the following compiled formula:

times(X,YZ) =X =0,Z=0) U U (succ(X;X;.;), (X;=0,Z;=0), plusi(Z,,Y,Z;_;))
i=1

where succi(X;X;.;) is defined in Example 3-4 and

(plus(Z;,Y.Z) ifi=1,
plusi(Z,Y,Z; 1) =4
\plus(z,Y,2; ), plusi-1(Z; 1Y, Z; 5) ifi> 1.

Suppose the following query is posed:
query: ?-times(X,7,Z), X=4, Z=48.

Based on the compiled formula, we have the following terminating evaluation plans (see
Figure 4-3). Notice that the finiteness constraints satisfied by succ and plus are: fc = {succ: 1 —

2, succ: 2 — 1, plus: {1,2}—3, plus: {1,3}}—2, plus: {2,3}}—1).

Xi=0,Zi=0) (Xi=0,Zi=0)
answeris 12 answeris 12
succt (X; X i1) plust (Zi YZ i1)  succi (X; X i1) plusi (Zi Y Z i1)
instantiated value is 4 instantiated value is 48

Figure 4-3 Two terminating evaluation plans for the rimes program
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A\ ion plan 1;
Start the evaluation from the chain succi(X;,X;_;) to the exit rule (X; = 0, Z; = 0) and then
go to the chain plusi(Z;Y,Z; ;), that is, succi(X;X;.;) = (X; = 0, Z; = 0) =
plusi(Z,Y,Z; ;).

Evaluation plan 2:

Start the evaluation from the chain plusi(Z;,Y,Z;. ;) to the exit rule (X; = 0, Z; = 0) and
then go to the chain succi(X;X;.;), that is, plusi(Z;,Y,Z; ;) = (X;= 0, Z; = 0) =
SuCCi(X,',Xi_]).

Careful readers will see that the first evaluation plan is more efficient than the second. In

the next chapter we will discuss how to select an efficient evaluation plan.

Monotonicity constraints (mc's) have been recognized as useful in the analysis of
termination [APPRSU89] [BroS89a] [BroS89b]. It is likely that a given query or a set of
constraints provides some information which can be used to stop the evaluation along some

chains.

Definition: A variable V in a compiled formula is monotonic if the value of V at the (i+)th
iteration is greater (or less) than the corresponding value at the ith iteration (for any i > 0),

according to some partial order.

To capture the characteristic of monotonic variables and reflect the partial order explicitly,
Han [Han91] proposed a mapping function y which maps an argument V to (V) and indicates
the monotonicity of the argument. The mapping y can be an identity mapping, such as Fare, or
from a nonnumerical value to a numerical one, such as Length(L), where L is a list. After a

proper mapping y is performed on a monotonic variable V, the following comparisons are valid:
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wiV) > c, y(V) 2c, y(V) < ¢, y{V) <c, or y(V) = ¢, where ¢ is a constant in the domain of

y(V). The following lemma indicates how to identify monotonic variables.

Lemma 4-3: Suppose r is a compiled formula

o0

i i i
r=eu yU (p], Pyr er Do e)
i=]

and (s,t) is a chain invariant of pj’. (I <j <n). If there is a monotonicity constraint p;: s <, ¢, then

the variables at positions s and ¢ are monotonic.

Proof: According to Property 3-2, the variables at positions s and ¢ share the same variable name
betw2en the kth chain element and (k+1)th chain element of pj’

Without loss of generality, we only prove that the variable at position s is monotonic

during the evaluation.

Let value(k,s) denote the value of the variable at position s in the kth chain element of p;

We prove that value(k,s) <, value(k+1,s) for any k (k 2 0) during the evaluation.

According to the monotonicity constraint p;: s <p, 1, value(k,s) <, value(k,t) for any k

(k 20). Since (s,t) is a chain invariant of pj, value(k,t) = value(k+1,s) for any k (k 2 0).

Therefore, value(k,s) <,,. value(k+1,s) for any k (k 20).

Thus the lemma holds.

To use monotonicity constraints, we present the following monotonicity blocking rules

where the adornment B indicates that the monotonic variable is blocked?? by some constant.

20 A monotonic variable V is said to be blocked by some constant if there exists a mapping function y which
maps V to a numerical value, and there exists a constant ¢ such that one of the following conditions is satisficd:

a) Yy(V) <c if the value of y{V) monotonically increases, where ¢ < d if y(V) is convergent to a limit 4.

b) y(V) 2c if the value of yIV) monotonically decreases, where ¢ > d if y(V) is convergent o a limit d.
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Monotonicity Blocking Rules: Suppose r is a compiled formula. When a query and a set of

constraints are given, we adom r as follows.

1. If a variable V of r is monotonic and a query constraint can block the growth of the value
of V, then V is adorned with B, that is, VA.

2. Two variables specified by "="" or with the same variable name are adorned with [ if one

of them is adorned with B.

4.5.1 Termination Detection
In this section, we present a sufficient condition under which the evaluation of compiled formulas

is guaranteed to terminate. The algorithm for testing this condition is also presented.
Example 4-11: Consider the following program which defines the function Z = X mod Y.

mod(X,YZ) -X <Y, Z=X.
mod(X,Y,Z) :- plus(X;,Y X), mod(X,;,Y,Z).

After the ith expansion, we have the following compiled formula:

mod(X,Y,Z) =(X<Y,Z=X) U u (plusi(X;Y.X; 1), (X;<Y,Z=X;))
i=]
where plus’/X;Y,X; ;) is defined in Example 4-10 with chain invariant (1,3) and satisfies the
following monotonicity constraints: mc = {plus: 1 <,,. 3, plus: 2 <, 3}, where <, refers to the

usual order on integers. Therefore, according to lemma 4-3, the variables X and X; in the

recursion are ronotonic.

Suppose the following query is posed:
query: ?-mod(X,Y,Z), Y=2, Z=0, X <8.

The above observation is due to Han's work in [Han91].
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Since X is a monotonic variable and there is a query constraint, X <§, which can block
the growth of X during the evaluation, we have the following finitely evaluable and terminating

evaluation plan:

XigY, Z =Xi)

v

plus i (X;,YXi1)

Figure 4-4 A finitely evaluable and terminating plan for the mod program.

Evaluation plan: {X; < Y, Z = X;) = plus'(X;,Y X;_;), that is, the evaluation starts from the exit
rule (X; < ¥, Z = X;) and ends with the chain plusi(X;,Y X; ;).

By using the constraint X <8, the evaluation can terminate at the fourth iteration with the

solution X={2,4,6,8].

O

Theorem 4-3: Suppose r is a compiled formula. Given a query and a set of constraints, the
evaluation of r terminates with respect to the query and constraints if the evaluation of any one

chain terminates.

Proof: According to Property 3-1, all the chains of r are synchronized, that is, they all have the
same expansion length during the evaluation. Therefore, the termination of the evaluation of one

chain means the termination of the evaluation of all other chains.

O

Based on the above theorem and the monotonicity blocking rules, we give an algorithm to
detect whether or not the evaluation of a compiled formula terminates with respect to a given query

and a set of the constraints.
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Algorithm 4-2: Termination Detection Algorithm.
INPUT: A finitely evaluable compiled formula, a query and a set of constraints.
OUTPUT: An assertion of whether the execution of the evaluation plan terminates ('yes') or not
('no") with respect to the query and the constraints.

METHOD:

If one of the following conditions is satisfied, then return 'yes'; otherwise, return 'no'.
(a)  The query is an existence checking query and the existence checking condition is satisfied.
(b)  The relation for every predicate of the compiled formula is finite with respect to the query

and the constraints.
(c)  The chain being evaluated is defined on a finite relation without cyclic data

(d)  There is a monotonic variable V adorned with B after the monotonicity blocking rules are

applied to the first expanded exit rule set.

4.5.2 Analysis of the Termination Detection Algorithm
Now we prove the correctness of the termination detection algorithm.

Proposition 4-2: The termination detection algorithm is correct in the sense that given a finitely
evaluable compiled formula r, a query and a set of constraints, the evaluation of r can terminate if

Algorithm 4-2 returns 'yes'.

Proof: Clearly, according to Theorem 4-3, we only need to show that if one of the conditions in
Algorithm 4-2 is true, then there must exist one chain such that the evaluation along this chain

terminates.
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Condition (a): An existence checking query checks if the given fact exists in the database.
When the existence of the fact is known (i.e., the existence checking condition is satisfied), there
is no need to continue the evaluation along any chain and the entire evaluation should be stopped
[Han89b].

Condition (b): If the relation for every predicate of the compiled formula is finite with respect to
the query and the constraints, the evaluation must terminate when no new facts can be generated
[BaRa86] [APPRSUS9] [HanHS89]. |

Condition (c): If the chain being evaluated is defined on a finite relation without cyclic data, the
evaluation along this chain must terminate when no new facts can be generated.

Condition (d): If there is a monotonic variable V adorned with f after applying the
monotonicity blocking rules to the first expanded exit rule set, it follows that V is a monotonic
variable and the growth of the value of V will be blocked by some constant during the evaluation
according to the monotonicity blocking rules. Therefore, the evaluation of the chain to which V
belongs must terminate. According to Theorem 4-3, the evaluation of r terminates.

Thus Algorithm 4-2 is correct.

O

Example 4-12: Consider the following program which reverses a list Y to X.

reverse([], []).
reverse([Z[X;],Y) :- reverse(X;,Y;), append(Y;Z)Y).

where [Z;X;] is the list construction function and append(Y;,Z,Y) is defined in Example 3-6.

After performing the FP-transformation and the rectification process, we have:

reverse(X,Y) - X =[], Y =[]
reverse(X,Y) :- cons(Z2,X;,X), reverse(X;,Y;), append(Y;,Z,Y).
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After the ith expansion, we have the following compiled formula:

reverse(X.Y)=(X=[].Y=[]} v

U (cons(Z; 1.XX;.1), (X;= [1.Y; = []), append{(Y;,Z; 1,Y;.1))

i=]
where
[cons(Z,X;,X) ifi=1,
cons{(Z; 1. X Xi.1) =1
\cons(Z;;1,X;X 1), consi-(Z; 5, X;.1.X;.2) ifi> 1.
and
(append(Y;,2,Y) ifi=1,

appendi(Yi,Z‘_l,Yl-I) = {
\append(Y,Z; ;,Y;.1), appendi-1(Y; 1,Z; 5.¥;5) ifi> 1.

Suppose the following queries are posed:
query 1: ?-reverse(X,Y), X=[a,b,c].
query 2: ?-reverse(X,Y), Y=[a,b,c].
query 3: ?-reverse(X,Y).

For query 1 one possible evaluation plan is: consi(Z; 1.X;X;.;) = (X; =[], Y; = []) =
appendi(Y;, Z; 1,Y; ;). For query 2 one possible evaluation plan is: appendi(Y;, Z;1,Y;.1) = (X;
=[], Y;=[]) = cons¥(Z; ;,X;X; ;). However, for query 3 there is no finitely evaluable and
terminating evaluation plan. This example also indicates that the evaluation of a compiled formula

should start at the finitely evaluable and terminating chains.

O

Whether or not an evaluation plan for a compiled formula is safe is influenced by whether
or not sufficient constraints are provided. In the next chapter, we will discuss how to generate a

safe, constraint-based evaluvation plan for a compiled formula.



Chapter 5

Constraint-Based Evaluation of Compiled Formulas

The preceding chapter discusses the conditions which guarantee the safety of compiled formulas.

This chapter discusses the evaluation of compiled formulas by incorporating constraints.

Three classes of constraints are discussed: integrity constraints, rule constraints and query
constraints. Three types of integrity constraints are considered: type constraints, finiteness

constraints and monotonicity constraints.
Type Constraints

Integrity Constraints ¢ Finiteness Ccastraints
Constraints { Rule Constraints Monotonicity Constraints
Query Constraints

Figure 5-1 Constraints used in the evaluation of compiled formulas.

Integrity constraints essentially reflect the relationship among data in databases and/or the
arguments of functions and predicates in deduction rules. Type constraints are used to check the
type compatibility between the arguments of predicates and the instantiated information provided
by queries. Finiteness constraints are used to generate finitely evaluable plans. Generating a
finitely evaluable plan for a compiled formula means ordering the chains and the exit rule set of the
compiled formula in such a way that the finite evaluability can be guaranteed. An algorithm is
presented to generate the finitely evaluable plan for a compiled formula. Monotonicity constraints

are used in termination detection.
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Rule constraints have been recognized to be useful in search space reduction during the
evaluation of compiled formulas [HEH89] [Han91]. We will show that rule constraints should be
compiled together with the transformed and rectified functional recursions to reduce the search

space in iterative processing.

Query constraints are also shown to be useful in search space reduction. They can be used
to select evaluation directions and to restrict the search space during the evaluation. By selection
of evaluation directions, we mean to choose some chain(s) or the exit rule set to start the
evaluation. The main selection criterion is selectivity. It has been recognized that an efficient
evaluation of recursions should start from a small set which utilizes all the binding information
[BaRa86] [HanH87] [Han89b] [Han88a] [Ullm85] [BeRa87]. One example is the magic set
method whose basic idea is based on this criterion [BMSU86] [SaZa87] [MFP90] [BeRa87]. It
uscs the binding information provided by queries to derive a small set, called magic set, to start
the evaluation. Our study shows that query constraints are also very important in deriving a small
set to start the evaluation. Moreover, query constraints can also be used during the evaluation of

recursions to restrict the search space.

Answer Set

Reduced Search Space

Reduced Search ¢
Space Restricted Restricted by a Query,
by a Query Rule Constraints,and

Query Constraints

A Small Set Derived
from the Binding
Information Provided

by a Query,

Rule Constraints,and
Query Constraints

Information Provided
by a Query

Initial Set to Start
the Evaluation

Figure 5-2 Search space reduction by nsing rule constraints and query constraints.
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In our study, a general model for cost is assumed. Many general cost models (also called
measuring models or measuring functions in the literature [CGM90] [ZHH89] [KrZa88]) have
been developed for database systems. Since our evaluation method is independent of the cost
model used, we merely summarize some properties of cost models. The cost is usually dependent
on parameters, such as the join methods used, access methods available, disk I/O, cardinality of

the operands, selectivities, etc. The cost influences the selection of efficient evaluation plans.

Suppose r is a compiled formula:

oo

i i
r=eU U (pp.py,. D€

1=

Let £2: [Ip = II) = ... = I, denote an evaluation plan for r, where Q is the plan name and
IT;= {q1q is a chain or the exit rule set of r} (I <i <k <n)?l. I, = IT; means that every
predicate in [I; will be evaluated before any predicate in IT;is evaluated (0 <i <k, 0<j < k).
Each predicate ¢ in JI; is associated with an integer i, called the evaluation order of the

predicate and denoted by order(q). In other words, order(q) = i iff q € II;. For instance, if n = 2

and £: pé =e= pg is a safe evaluation plan, then such a plan and the evaluation order can be

illustrated as follows.

¢ order
/1 \ 7 .
P, p},

(: Pf = e =D}

Figure 5-3 Hlustration of evaluation plans and evaluation orders.

21 fisa positive integer and is less than or equal to the total number of the chains of r.
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In essence, the evaluation of a compiled formula with respect to a given query and a set of
constraints is based on the relational operations, particularly join and union operations [BaRa86]

[Ullm89b]. Therefore, when a query and a set of constraints are given, the evaluation of the

oo

compiled formular=e v U (p§ ,p;,e) according to £2: p}. =e=> p; can be illustrated as follows.
i=1

v
.pl '\Dz

p, 48\ p, ri=p, p,---€,--P,, P, ithiteration

p/ \\:z r’=p,p,e, P, P, 2 nd iteration

P, p, ri= p, e, p, 1 st iteration

€ ri=¢ 0 th iteration

r=r0Purd uriu..ur= U r.
i=1

Figure 5-4 Hlustration of the evaluation of a compiled formula.

As we can see from Figure 5-4, query constraints can be used in the following ways: (i)
before the evaluation, they can be used to select a small, relevant set (i.e., the cost is relatively
small) to start the evaluation; (ii) during the evaluation, they can be used to reduce the search
space to a more relevant one by discarding those facts which do not satisfy the constraints; (iii) ar

the end of the evaluation, they should be used to select the satisfactory answers.

The generation of an efficient evaluation plan for a compiled formula is affected by two
factors: the evaluation plan must be safe, and the evaluation should start from the predicate(s} with

relatively small cost.
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This chapter is organized as follows. Section 5.1 discusses the use of integrity
constraints, with each subsection concentrating on one type of integrity constraint. The generation
of safe evaluation plans is considered. Section 5.2 discusses the incorporation of rule constraints
to reduce the search space. Section 5.3 discusses how to use query constraints to reduce the
search space. In Section 5.4, we present a method to generate a safe, constraint-based evaluation

plan for a compiled formula.
5.1 Incorporation of Integrity Constraints
In this section, we consider three types of integrity constraints and discuss how to incorporate

them into the evaluation of a compiled formula.

5.1.1 Iacorporation of Type Constraints

As discussed in Section 4.2, the types of predicate arguments are registered as type constraints
which should be used to check the type compatibility between the arguments of predicates and the
instantiated information provided by queries. The following example shows the importance of

type checking.
Example 5-1: Consider the following natural_number program discussed in Example 3-4.

natural number(X):-X = 0.
natural_number(X) :- natural_number(X;), succ(X;,X).

According to the results, we have the following compiled formula:

natural_ number(X) = (X=0) w ((Xj= 0), succ(X;X;i1))-
i=1
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The following query asks if 4.5 is a natural number.
query: ?-natural_number(X),X =45.

Because all the arguments of succ are defined on integers but 4.5 is not an integer, this

query should be rejected.
0O

When a database is defined, the types of attributes of EDB relations are defined. The
types of arguments of the functions supported by the database are also defined. When an IDB
predicate is defined, the types of its arguments can be inferred.

Let V,, denote a variable of predicate p. We say the type of V), can be inferred from that of
Vg denoted by V), <~ V,, if there is a rule with p as the head and ¢ in the body, or there exists a

g’ where V, & V., Ve & V,, (ransitvity).
Type Inference Rules:

Suppose V), is a variable of predicate p.

1. Ifpisan EDB predicate or a functional predicate??, the type of V,, is already defined
when the database is defined.

2. If p is an IDB predicate and Vp & Vg thetype of V, is that of Vy-

When an IDB predicate is defined, the type inference rules should be applied to the IDB
predicate and the types of its variables should be registered as type constraints. Using type
constraints, we can design an algorithm to check type compatibility.

22 Note that a functional predicate is transformed from a function symhn! and the FP-transformation associates all
the integrity constraints (including type constraints) specified for the [us. 1+..n with the relation for the functional
predicate.
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Algorithm 5-1: Type Compatibility Checking Algorithm.
INPUT: A query predicate and the type constraints for the predicate.
OUTPUT: An assertion of whether every instantiated value in the query satisfies the type
constraints.
METHOD:
if any value provided by the query violates the type constraints registered for the predicate
then return('no’)

else return('yes’).

O

Example 5-2: Consider the following program which computes the greatest common divisor of

two integers.

gcd(X,0,X).
ged(X.X}.Z) - mod(X.X;X3), ged(X1.X2,Z).

query: ?-gcd(X,X;,2), X = a,X; = b.
where mod(X,X,X;) is defined in Example 4-11 and the query asks what is the greatest common

divisor of g and b.

The type compatibility checking algorithm returns 'no’ since a and b are characters which

do not match the types of the arguments of the IDB predicate gcd.
O
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5.1.2 Incorporation of Finiteness Constraints

Section 4.4 gives a necessary and sufficient condition which guarantees the finite evaluability of a

compiled formula. In this section, we discuss how to use finiteness constraints to generate

finitely evaluable plans.

Suppose r is a compiled formula and Q: [Ty = II; = ... = Il is an evaluation plan
for r. 2is said to be a finitely evaluable plan if every relation for the predicate being evaluated

according to £21is finite.

The existence of a finitely evaluable plan depends on whether the finite evaluability testing
algorithm (Algorithm 4-1) returns 'yes'. Therefore, when a query and a set of constraints are

given, the finite evaluability testing algorithm should be performed first.

The discussion in Chapter 4 indicates that the finitely evaluable plans for a compiled
formula r should be generated according to the finiteness propagation in r. To generate a finitely
evaluable order for a compiled formula, we use a finiteness dependency graph to analyze the

finiteness propagation.

Definition: Suppose r is a compiled formula. The finiteness dependency graph of r wiih
respect to a given query and a set of constraints is a directed graph G=(U,E), where U = {v| vis
a chain or the exit rule set of r} and (v,u) € E iff the finiteness of one variable of p is propagated

from v via a shared variable.

We examine an example below.
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Example 5-3: Consider the following append program discussed in Example 3-6.

append(UVW):-U=[],V=W.
append(U,V,W) :- cons(X;,U;,U), append(U;,V,W;), cons(X;,W,W).

query: ?-append(U,V,W), W = [a,b,c].
where the functional predicate cons satisfies the finiteness constraints fc = {cons: {1,2}—3, cons:

3—{1,2}} (Example 4-4).

According to the results (Example 3-6), we have the following compiled formula:
append(U,V,W) = (U=[], V=W) U U (cons{(X;,U,U;1), (Ui=[], V=W;), cons{(X; W ,W_;)).

i=l

The finiteness propagation in the above rule is shown below.

consi(X2, whwty
. b .
cons i(X 5, Ub, Uj) U= [], V= W})

Figure 5-5 The finiteness propagation in the append program.

- O

Generation of Finitely Evaluable Plans

Based on the finiteness propagation in a compiled formula, we can develop an algorithm to

generate a finitely evaluable plan.

81



Algorithm 5-2: Finitely Evaluable Plan Generating Algorithm.

INPUT: A compiled formula, a query and a set of constraints.

OUTPUT: A finitely evaluable plan in which the chains and the exit rule set are assigned an

evaluation order, or 'no’ if there is no finitely evaluable plan.

METHOD:

1.

Test the finite evaluability of the compiled formula (Algorithm 4-1). If the compiled
formula is not finitely evaluable, stop and inform the user with 'no".

For each node? v in the finiteness dependency graph of the compiled formula,
order(v):=0.

Find all the strongly connected components (SCCs) and replace each SCC with a
supernode (S_node). Let DAG denote the new, acyclic graph.

Perform a topological sort on DAG by increasing the evaluation order by 1 whenever an
arc is encountered.

Every node in each SCC is assigned the same evaluation order as that of the corresponding

S_node.

Notice that if all the predicates of a compiled formula are EDB predicates, Algorithm 5-2

will assign the same evaluation order, 0, to each of them. In other words, a finite set of answers

can always be generated if the relations for these predicates are finite. Several researchers have

drawn the same conclusion [BaRa86] [APPRSU89] [SaVa89] [Ullm89a].

Before analyzing Algorithm 5-2, we examine an example.

B Notice that a node corresponds to a chain or the exit rule set of a compiled formula.
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Example 5-4: The following finitely evaluable order is generated by applying Algorithm 5-1 to
the append program discussed in Example 5-3 with respect to the following query:

query: ?-append(U,V.W), W = [a,b,c].

and finiteness constraints: fc = {cons: {1,2}—3, cons: 3—{1,2}}.

order
consi(X; W;,W; ;) 0
(U=[], Vb = W?) ;
consi(Xi,Ui,U,-_]) 2

Table 5-1 The evaluation order generated for the append program.

Therefore, a finitely evaluable plan is: cons{(X;,W;,W; ;) = (U;=[], V = W;) =

COﬂSi(Xi,Ul',Ui_]).

O

Analysis of the Finitely Evaluable Plan Generating Algorithm

Now we analyze Algorithm 5-2 and show that it can order the chains and the exit rule set of a

compiled formula.

Theorem 5-1: Algorithm 5-2 is correct in the sense that given a compiled formula, a query and a

set of constraints, the evaluation plan generated by Algorithm 5-2 is finitely evaluable.
Proof:

Step 1 of Algorithm 5-2 ensures that there exists a finitely evaluable plan and its

correctness is guaranteed by Theorem 4-1. Step 2 is an initialization step which ensures that every
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node has an evaluation order. Step 3 generates a directed, acyclic graph (DAG) in which each
$_node represents a set of strongly connected nodes. The topological sort performed by step 4
increases the evaluation order by I whenever an arc is encountered. This is correct because the
node whose finiteness is propagated from another predicate must be delayed until it becomes
finitely evaluable. Step 5 is correct because the nodes whose finiteness depends on each other

(i.e., they are strongly connected) should be evaluated together (have the same evaluation order as

that of the corresponding S-node).

Thus the theorem holds.

Algorithm 5-2 is linear because finding all SCCs of a directed graph G=(V,E) can be done
in O(max(/V/, (E/)) time [AHU74] and a topological sort on a DAG=(V’,E’) can be done in
O(/V'|+/E'[) time [AHU74]. The intuitive meaning of Algorithm 5-2 is that the evaluation of the
predicates whose finiteness is dependent on other predicates should be delayed until their relations

become finite.

Example 5-5: We use another query to examine the gcd program discussed in Example 5-2.

gcd(X,0,X).
ged(X,X1,2) - mod(X X 1,X3), gcd(X1,X5,2Z).

where mod(X,X;,X5) is defined in Example 4-11.

After performing the FP-transformation and the rectification process (see Sections 3.1 and

3.2), we have:

ged(X.X;7) -X;=0,Z=X.
gcd(X,X1.Z) - mod(X X3, X5), ged(X;,X5,Z).
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After the ith expansion, we have the following compiled formula:

ged(X,X;,Z) = (X1 =0,Z=X) UU (modi(X; 1. X;X;11), Xin1 =0, Z = X;)).

i=1
where
(mod(X.,X1,X5) ifi=1,
modi(X; 1. X X;41) =1
\mod(X; 1. X1 X;, 1), modi-1(X; 5.X; 1.X;) ifi>1.

Suppose the following query is posed:
query: ?-gcd(X,X;,Z), X =8,Z = 2.

The finiteness propagation is illustrated as follows, where a finiteness constraint mod:

{1,2}) — 3 is used.

(X=0,2z%=X})

l

Figure 5-6 The finiteness propagation in the gcd program.

After performing Algorithm 5-2, the following evaluation order is generated:

order
(Xi=0,Z=Xi_1) O
mod*(X;.1,X;i.Xi+1) 1

Table S-2 The evaluation order generated for the gcd program.

Therefore, a finitely evaluation plan is: (X; = 0, Z = X;.;) = modi(X;.1.X;.X;+1)-
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5.1.3 Incorporation of Monotonicity Constraints

Section 4.5 gives a sufficient condition which guarantees the termination of the evaluation of a
compiled formula. In this section, we enhance the results developed in Section 4.5 and

demonstrate the application of monotonicity constraints in termination detection.

As shown in Algorithm 4-2, the evaluation of a compiled formula in which functional
predicates are defined on finite domains always terminates because the functional predicates
obtained from the FP-transformation can be viewed as finite EDB relations [HanW90] [Han91].
In addition, the evaluation also terminates if some constraints restrict every infinite domain to a
finite one. However, if the relation for a predicate being evaluated is defined on an infinite
domain or can not be restricted to a finite domain by any constraint, it is often essential to apply

monotonicity constraints to terminate the evaluation.

Example 5-6: We examine the application of monotonicity constraints.

-

1. Arithmetic Functions
An arithmetic operation often implies the monotonicity of a function. For instance,
S; >0, Farej > 0, and S; + Fare; = Fare imply that Fare > S; and Fare > Fare;. X; =

succ(X) implies X; > X.

2. List Functions
The monotonicity of a list manipulation function usually lies at the growing or shrinking of

the length of the list. For example, cons results in a longer list than the original ones.

3. Term Construction Functions
The monotonicity of a term constructor/de-constructor is similar to that of a list operation.

The repetitive application of a term constructor results in an increasingly deeply-nested
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sequence of functors, such as f{f{.. f{X)...)), while the repetitive application of a term de-
constructor, such as 7, results in an increasingly less-nested sequence of functors. In

other words, the nested Ievel has monotonic behavior.

4. EDB Relations
Some attributes in an EDB relation may have certain monotonic behavior. For example,
the arrival time of a flight is always later than its departure time. An acyclic EDB relation

can also be viewed as a partially ordered finite relation.

5. Termination of Iterations
One may like to terminate the evaluation of a compiled formula after a certain number of
iterations when there is no appropriate termination condition. It essentially treats the

number of iterations as a monotonically increasing function.

Lemma 4-3 indicates how to identify monotonic variables. Han [Han91] introduced a
mapping function y which maps the value of a variable V to a numerical value (V) and he gave
the following result: if the value of (V) at the (i+)th iteration is greater (or less) than the
corresponding value at the ith iteration (for any i > 0), then (V) is monotonic [Han91]. The
constant which blocks the growth of y(V) is called a termination restraint [HanW90] [Han91]. A
termination restraint can be provided by a query, a constraint, a tule, or an EDB relation. If y{V)
is convergent to a limit, say d, the termination constraint should be less (greater) than d if (V) is
monotonically increasing (decreasing) during the evaluation. The monotonicity blocking rules

(Section 4.5) are based on the above observations.

According to the monotonicity constraints shown in Section 4.5, a variable V is adorned
with B (i.e., VB) if it is a monotonic variable and the growth of its values is blocked by some

constant during the evaluation. If we use the mapping function y introduced in [Han91], the
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above rule can be elaborated as follows. Suppose the values bf YV) monotonically increase. 1f
there is a constant ¢ provided by a query or a constraint which validates the following
comparisons: Y(V) < ¢, YV) =c, or y{V) <c (c < dif y(V) is convergent to a limit 4), V should
be adorned with B, indicating that the growth of the value of V is blocked during the evaluation.

A similar interpretation can be given if the values of y{V) monotonically decreases.

Example 5-7: In Example 3-7, the value of Fare in the IDB predicate travel is monotonically
increasing but not convergent to a limit. Thus a restraint on the maximum value of Fare, such as

Fare <500, ensures the termination of the evaluation. Therefore, Fare should be adorned with
(i.e., FareP) and we should register 500 as a termination restraint of Fare so that we can use this

information to terminate the evaluation.

Similarly, the length of L in the predicate travel is monotonically increasing since
length(L) > length(L;). Thus a restraint on the maximum length of L, such as, length(L) < 7,
ensures the termination of the evaluation and L should be adorned with . In addition, we should

register the constant 7 as a termination restraint on L.

The following algorithm is used to register the possible termination restraints for those

variables which have monotonic behavior according to some partial order, say ¥.

Algorithm 5-3: Incorporation of Monotonicity Constraints.

INPUT: A finitely evaluable plan, a query and a set of constraints.

OUTPUT: A safe evaluable plan in which termination restraints are registered.

METHOD:

1. Apply the termination detection algorithm (Algorithm 4-2). If it returns 'no’, stop and

inform the user with 'no'.
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2. If there exists a variable V such that V is adorned with f, register the constant ¢ which

blocks the growth of V as a termination restraint.

The above algorithm enhances Algorithm 4-2 by registering the termination restraint(s) so
that we can use this information to terminate the evaluation. Notice that if there exists a variable V

adorned with f, there must exist a constant which can block the growth of V (see the

monotonicity blocking rules in Section 4.5).

5.2 Incorporation of Rule Constraints
In this section, we discuss how to use rule constraints to reduce the search space.

As discussed in Section 4.2, a rule constraint adds one or more conjuncts to the body of a
deduction rule and changes it to a new, more constrained one. Therefore, compilation should be
performed on the modified set of deduction rules. Such a modification confines the search to a
smaller EDB relations or enforces stronger constraints on the join of EDB relations, and thus

reduces the search space. We examine an example below.
Example §-8: Consider the following rule constraints added to the fravel program.

(a) international airport constraint: The intermediate airports must be international airports.
(b) lay-over time constraint: The lay-over time should be between one and three hours.
©) same flight direction constraint: The flight direction of sach connecting flight should be the

same as that of the entire travel.

The above constraints can be added to the body of the recursive rule of the fravel program.

For example,
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constraint (a) can be added to the rule as international(Dep; ), where Dep; represents an
intermediate airport (Example 4-6).
constraint (b) can be added to the rule as I <IDTime - IATime, IDTime - IATime <3, and

constraint (c) can be added to the rule as same_direction(Dep,Dep;,Arr).

By adding these constraints to the body of the deduction rule, the original rule becomes a

new, more constrained one. For example, international(Dep)) confines the search for transfer
airports to international airports only and reduces the size of the EDB relation to be participated in

iterative processing. The other two constraints play similar roles.

O

Notice that a powerful system should allow rule constraints to be added and/or deleted
flexibly. A method for dynamic association of deduction rules with rule constraints is studied in

[(HEH89].

Now we show that incorporating rule constraints into the query independent compilation

can reduce the search space [Han91]. Consider the following single-chain recursion:

r(X) :- p(Y), r(Z).

where X, Y and Z are variable vectors and p is a chain element. Suppose c;(V}), ..., and ¢;(V;)

are rule constraints. By adding them to the body of the rule, the modified rule becomes,
r(X) :- p(Y), r(Z), c;(Vy), ..., ci(V;).

The newly added constraints form conjunctions with the predicates p and r. Since they
enforce restrictions on the deduction rule, if they are compiled together with the rule, stronger
constraints are enforced on the rule, which reduces the size of the relation for r generated during

the iterative processing and the cost of the evaluation.



The case of a multi-chain rule can be reasoned similarly.
Therefore, we have the following results [Han91}]:

If a rule constraint enforces restrictions on a set of deduction rules in a functional linear
recursion, the compilation of rule constraints together with the corresponding rules reduces the

cost of query evaluation.

Rule constraints can be used to constrain the nondistinguished variables (the variables
appearing only in the body of the rule) of a deduction rule. However, these variables cannot be
constrained at query level because they do not appear in any query predicate. Some user
requirements, though seemingly like query constraints, are essentially rule constraints. For
example, a traveler may require that (i) the lay-over time between each pair of connecting flights
be less than two hours, or (ii) every intermediate airport must be an international airport. Such
constraints must include some nondistinguished variable(s) in the body of the recursive rule and
cannot be specified at the query level. Therefore they should be rule constraints, which add

constraints to the body of the recursive rule rather than to the query predicate.

r(...) >- ... p(..V...)....

Suppose V does not appearin r(...)
and we want to add a constraint onV,
then 1t must be a rule constraint.

Figure 5-7 Rule constraints added on a nondistinguished variable.

5.3 Incorporation of Query Constraints

A popular heuristic of query processing in both traditional and deductive database systems is

pushing selection as deeply as possible into a relational expression [Han91] [Ullm89b]. Since a
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selection is often represented by a query constraint, the heuristic can be rephrased as pushing
query constraints as deeply as possible into the compiled formulas in the query

evaluation.

However, it is inappropriate to blindly push all the query constraints into a compiled chain
in the evaluation. Techniques should be developed for appropriate use of query constraints in the

processing.

Assume that r(Xp) is a query predicate and C;(X;), C2(X3), ..., Ci(X;) are query

constraints, where X, ..., X; are variable vectors. That is, a query is of the form,

?-r(Xo), C](X]), Cz(Xz), veny Ci(Xi).

The above query constraints are used in the following ways to reduce the search space: (i)
Before the evaluation, they can be reated as query instantiation information used at the start of a
chain processing. To reduce the size of the initial relation at the start of the iterative processing, a
more selective end should be taken as the start point. (ii) During the evaluation, they should be
used to reduce the search space to a more relevant one by discarding those facts which do not
satisfy the constraints. (iii) At the end of the evaluation, they should be used to select satisfactory

answers.

We examine an example.

Example 5-9: Suppose a user poses a query on the travel database as follows:

find a set of (connecting) flights from Vancouver to Ottawa, departing after 8am,

arriving between 6pm and 7pm, with the total fare no more than $500.

The above request can be expressed by the following query:
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query: ?-travel(L,Dep, DTime Arr ATime,Fare).

with the query constraints:
(a) Dep = vancouver,
(b) Arr = ottawa,
(c) DTime 2 8,
(d) ATime 2 18,
(e) ATime < 19,
(f) Fare <500.

Before the evaluation, a more relevant, selective predicate should be chosen to start the
evaluation. Therefore, the evaluation should start at the arrival end because the query constraints
(d) and (e) provide better selective information for the arrival end than the departure end (i.e.,

query constraint (¢)).

The constraint (f), Fare <500, should be used during the evaluation and applied at each
iteration. Since the value of Fare, defined by the function sum, is monotonically increasing, the
query constraint (f) can be used to reduce the search space based on the following observation: if
the value of Fare generated at an iteration is greater than 500, the final answer generated from this

intermediate result will not be a satisfactory answer.

To derive satisfactory answers, the query constraint (c) should be used ar the end of the

evaluation to ensure that the departure time is afier 8am.

O
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5.4 Generation of Safe, Constraint-Based Evaluation Plans

As we can see from the previous sections, a corstraint can be used in the analysis of safety and/or
in search space reduction. For example, Fare <500 can be used to terminate the evaluation of the
travel program and to reduce the search space during the evaluation. In this section, we discuss
how to use different constraints to generate a safe, constraint-based evaluation plan for a compiled
formula. The efficiency is achieved by pushing constraints into the evaluation to reduce the search

space.

Even though a general model for cost is assumed in our study, the cost is normally
affected by different implementation methods and is usually dependent on many parameters, (e.g.,
the join methods used, access methods available, disk 1/O, cardinality of the operands,
selectivities, etc.). Since the cost is in most cases system-dependent, the actual cost is normally
considered as a black box [CGM90] except for those properties which can be utilized in the query
processing [KrZa88]. One property used by several methods (e.g., the magic set method
[BMSU86], the counting method [SaZa86], the multd-way counting method [Han89b], the magic

counting methods [SaZa87]) is selectivity. In this thesis, we mainly consider this property.

In practice (e.g.. LDL prototype [TsZa86] [CGKNTZ90]), the cost of an unsafe
evaluation is considered as an infinite cost [KrZa88). Therefore, safe evaluation must be
guaranteed first. When evaluation is guaranteed to be safe, the selectivity should be considered by

using the given query and set of constraints.

In the evaluation of a chain (e.g., succi(X;X;.1)), processing can proceed in two different
directions: forward evaluation which proceeds from the ith chain element to the (i+/)th element
(e.g., from succ(X;,X; ;) to succ(X;,1.X;)), and backward evaluation which proceeds in the

reverse direction (e.g., from succ(X;, ;.X;) to succ(X;X;.1))-
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The first criterion in the selection of an evaluation direction is safety. For example, for the
chain succi(X;,X;.;), if the finiteness of X; can only be propagated from X;_;, the evaluation
direction must be forward. When both directions can guarantee safety, the selection criterion
becomes the selectivity of each end. For instance, in Example 5-9, the evaluation of the flight
chain can start from either end: start the search from the departure end (vancouver) or the arrival
end (ortawa). However, as analyzed in Example 5-9, the evaluation from the arrival end is more
efficient because the query constraints (d) ATime > 18 and (e) ATime < 19 provide more selective

information for the arrival end than the information provided by the query constraint (¢) DTime >

8 for the departure end.

Forward Evaluation

Constraint: Vancouver - > Ottawa
flight

DTime >8:00 rel(ﬂight) - arel(ﬂight) ATime 2 18:00
—— ATime < 19:00
Backward Evaluation

Constraints:

Push the Instatiated
Information Provided by the
Query and the Constraints.
Select an Evaluation
Direction according to the
Selectivity at Both Ends.

Figure 5-8 Selection of evaluation directions according to selectivity.

We also notice that there may be more than one way to propagate finiteness in a compiled
formula. In this case, we should propagate the finiteness from predicate(s) with relatively small

cost. We examine an example below.

Example 5-10: Recall that in Example 4-10 we have two evaluation plans when query ?-

times(4,Y 48) is posed:

Q}.' SUCCi(Xi,Xi_I) = (Xi = 0, Zj = 0) :plusi(zi’y'zi-j)'
.Qz.‘ plztsi(Zi,Y,Z,-_I) = (Xi =0, Zj =0)= Succi(Xi'Xi-I)-
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As discussed in Example 4-10, both evaluation plans £2; and (2, are safe. However,

finiteness should be propagated according to £2; because the relation generated by succi(X;.X;_;)

is much smaller than the relation generated by plusi(Z;,Y,Z; ;). In order words, finiteness should

be propagated from the predicate with relatively small cost (i.e., succi(X;X;_1)).

0O

Algorithm 5-4: Generation of an Efficient Evaluation Plan for a Compiled Formula.

INPUT: A compiled formula, a query and a set of constraints.

OUTPUT: A safe, constraint-based evaluation plan or 'no’ if there is no safe plan.

METHOD:

1.

Apply Algorithm 5-1 to check the type compatibility. If Algorithm 5-1 returns 'no’, stop
and inform the user with 'no'.

Use the instantiated information provided by the query and the constraints to estimate the
relative cost of evaluating each chain and the exit rule set.

Based on the cost analysis, propagate the finiteness from the predicate(s) with relatively
small cost. If the evaluation of a chain can start from forward and backward directions,
determine one evaluation direction based on the relative selectivity of the query constraints
at both ends of the chain. Apply the query constraints belonging to this end as query
instantiations to reduce the size of the initial set.

Apply Algorithm 5-2 to generate a finitely evaluable plan. If Algorithm 5-2 returns 'no,
stop and inform the user with 'no’.

Apply Algorithm 5-3 to detect if the plan is a terminating evaluation plan and register the
terrination restraint(s). If it is not a terminating plan, stop and inform the user with 'no'.
Use the information provided by the query, the rule constraints and query constraints to

discard those facts which do not satisfy the requirement of the query or the constraints.
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7. Use termination restraint(s) to terminate the evaluation when necessary. When the
evaluation terminates with a set of answers, select those answers which satisfy the query

constraints.

0

Theorem 5-2: Algorithm 5-4 is correct in the sense that, given a compiled formula, a query and
a set of constraints, the evaluation plan generated by Algorithm 5-4 is a safe evaluation plan and

correctly incorporates the given constraints.
Proof:

Step 1 uses type constraints and is necessary since invalid information provided by a
query is inconsistent with a database system. Steps 2 and 3 ensure that finiteness is propagated
from the predicate(s) with relatively small cost so that the finite evaluation pZan generated by step 4
can start from a more relevant and more selective set. To estimate the cost, it is necessary to use
the instantiated information provided by the query and different types of constraints. Step 4
ensures the finite evaluability of the evaluation plan. Its correctness is guaranteed by Theorem 5-
1. Step 5 ensures that the evaluation must terminate. Its correctness is guaranteed by Theorem 4-
2. Step 6 utilizes the information provided by the query, the rule constraints and the query
constraints in the evaluation to reduce the search space. Any fact which does not satisfy this
information should be discarded since the final answer derived from this fact will not be a
satisfactory answer. Step 7 is necessary since Step 2 already ensures the termination of the
evaluation. If there is a variable which has monotonic behavior during the evaluation, the
termination restraint(s) should be used to terminate the evaluation when possible. In addition,

only those answers which satisfy the query constraints should be selected.

O
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To outline the results developed in this chapter, we examine the fravel program discussed

in Chapter 1.

Example 5-11: According to the results in Example 3-7, we have the following compiled

formula.
travel(L,Dep,DTime,Arr, ATime Fare) = flight(L,Dep,DTime, Arr,ATime Fare) v

o

W/ (flighti(Fno,-_I,Dep,-__; ,DTime,-_I ,Dep,-,IATime,-_I ,Si-]),
i=1

flight(L;,Dep;IDTime;_; Arr,ATime Fare;),

sumi(S;_;,Fare;Fare; ;), consi(Fno; j,L;L; 1)).

where flight!(Fno; ;,Dep; ;,DTime; ;,Dep;IATime; 1,S; 1), sumi(S; ;,Fare;Fare; ;), and

consi(Fno;_j,L;L; ;) are defined in Example 3-7.

We analyze the questions asked by the customer in Example 1-1 and discuss safe,
constraint-based evaluation plans to answer these questions. The queries corresponding to these

questions are from Examples 2-5 and 4-6.
query 1: ?-travel(L,Dep, ,Arr, , ), Dep = vancouver, Arr = ottawa.

The finiteness propagation with respect to the above query can be illustrated as follows.

flight ‘(Fng’; .Dep’ ,DTime} ,Dep? IATime} .S; 7 )

cons {(Fnob ,L;bl-f.l;) sum (S;4Fare bFare})

/N

flighLp ,Depp IDTime. 5 Arr b ATime bFare?)

Figure 5-9 The finiteness propagation in the travel program.
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After performing Algorithm 5-2, we have the following evaluation order:

order
flight(L;,Dep;IDTime;_; Arr,ATime,Fare;) 0
flighti(Fno;_j,Dep;_;,DTime;_;.Dep;IATime; 1,5; 1) 0
consi(Fno;.1,Li,Li ;) I
sumi(S; ;. Fare;Fare; ) 1

Table 5-3 The evaluation order generated for the travel program.

Therefore, the finitely evaluable plan is:

{flight(L;,Dep;IDTime; ;,Arr,ATime Fare;), flight(Fno; ;,Dep; ;,DTime;_ ;,Dep; IATime; ;,S;.

1)} :}{consi(Fno,-_I,L,-,L,-_I), sumi(Si_J,Fare,-,Fare,--J)} .

After performing Algorithm 5-3, a 'yes' is returned, indicating that the above evaluation plan can

terminate.

The above evaluation plan indicates that the evaluation can start at either end: the

Vancouver end or the Ortawa end.

query 2: ?-travel(L,Dep,DTime,Arr,_,_),

Dep = vancouver, Arr = ottawa, 7:00 < DTime, DTime < 8:00.

Interested readers can see that the safe evaluation plan for the above query is the same as

that for query 1:

{Alight(L;,Dep; IDTime; ;. Arr ATime Fare;), flight(Fno; ;,Dep;.;,DTime;_;,Dep;IATime;.;,S;.

) :',»{consi(Fnoi_I,Li,Li_J), sumi(Si.J,Farei,Farei_I)}.



However, the query constraints 7:00 < DTime and DTime < 8:00 provide better selective
information, that is, the cost for evaluating from the Vancouver end will be lower than that from
the Ortawa end. Therefore, the evaluation should start from the Vancouver end and the evaluation
plan should be:
flight(Fno; ;,Dep;.1,DTime; ;,Dep; IATime; 1,S;.1)=flight(L; Dep;IDTime; ;,Arr,ATime,F are;)

={cons{(Fno;.;,LiL; 1), sumi(S;_;,Fare;Fare; ;)}.

query 3: ?-travel(L,Dep,_,Arr,ATime,_),

Dep = vancouver, Arr = ottawa, 11:45 < ATime, ATime < 12:15.

Interested readers can examine that the safe evaluation plan for the above query is the same

as that for query 1:

However, the query constraints /1:45 < ATime and ATime < 12:15 provide better
selective information, the cost for evaluating from the Orrawa end will be lower than that from the
Vancouver end. Therefore, the evaluation should start from the Orzawa end and the evaluation
plan should be:
flight(L;,Dep;IDTime;_;,Arr, ATime,Fare;) = flight(Fno,_;,Dep; ;,DTime;_;,Dep; IATime; ;,5;.

1) = {consi(Fno; ;,LiL; 1), sumi(S;.;,Fare;Fare; ;)}.
query 4: ?-iravel(L,Dep, ,Arr, ,Fare), Dep = vancouver, Arr = ollawa,
Fare < 500.

Interested readers can examine that the safe evaluation plan for the above query is also the

same as that for query 1:

However, the information provided by the query constraint Fare <500 can be used

during the evaluation to reduce the search space. We notice that Fare is a monotonic variable
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(monotonically increasing) during the evaluation. Therefore, whenever an intermediate answer
with Fare greater than 500 is generated, this answer should be discarded since any result derived
from this fact will not be a satisfactory answer to the query. Consequently, the search space can

be restricted to a smaller, more relevant portion.

query 5: ?-travel(L,Dep, ,Arr,_, ), Dep = vancouver, Arr = ottawa, Fare < 500

and every intermediate airport must be an international airport..

Recall that to express the above constraint, we need a rule constraint, international(Dep),
which registers all the international airport names in its relation. As analyzed in Section 5.2, this

rule constraint should be incorporated into the compilation.

Let  int_flight(Fno,Dep,DTime,Dep;,IATime,S) :- flight(Fno,Dep,DTime,Dep;,IATime,S),

international(Dep))
where the relation for the rule constraint international(Dep ) registers all the international airports.

Then we have the following compiled formula:

travel(L,Dep,DTime,Arr,ATime,Fare) = flight(L,Dep,DTime,Arr,ATime,Fare) U
) (int_ﬂighti(Fnoi_I ,Dep;._1 ,DTimei_I ,Dep,-,IATime,-_J,Si_I),
i=] .

flight(L;,Dep;,IDTime;_;,Arr,ATime,Fare;),

sumi(S;.;,Fare,Fare; ), cons(Fno;.1,L;,L; 1)).

Notice that the relation for int_flight now becomes a more constrained one which contains
only the information about those flights which stop at international airports. Therefore, any
intermediate answer which does not satisfy this rule constraint should be discarded during the

evaluation. Consequently, the search space can be restricted to a smaller, more relevant portion.

O
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Chapter 6

Conclusion

We have examined the evaluation of functional recursions. Since functions are normally defined
on infinite domains, safety is treated as an important issue in this study. Different meanings of
safety used in the literature were discussed and our definition of safety was presented. To
facilitate the analysis of safety, constraints were categorized into three classes: query constraints,
rule constraints and integrity constraints. We showed that for compiled formulas, safety can be
viewed as a combination of two properties: finite evaluability and termination. A necessary and
sufficient condition guaranteeing the finite evaluability of a compiled formula was presented. The
algorithm for testing the condition was developed. A sufficient condition guaranteeing the
termination of the evaluation of a compiled formula was presented. The algorithm for testing that

condition was also developed.

The generation of efficient evaluation plans is another important aspect of this study. We
proposed a safe, constraint-based evaluation method for compiled formulas. Based on the
classification of constraints, we showed that type constraints should be used to check type
compatibility. Finiteness constraints can be used to generate finitely evaluable plans based on
finiteness dependency graphs and a finiteness ordering algorithm devcloped in this thesis.
Monotonicity constraints can be used in termination detection. Rule constraints should be used in
compilation to reduce the search space. Query constraints are shown to be useful in the selection

of efficient evaluation plans and search space reduction.

Safety and the efficient evaluation of functional recursions have been investigated in

previous studies [BMSU86] [BroS89b] [KRS88] [RBS87] [SaVa89] which pave the way for our
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research. Regarding the safety of functional recursions, the difference between our study and
previous research is that we consider safety with respect to a given query and a set of constraints
specified over a given database instance. In addition, our study of safety is based on compiled
formulas. This approach allows us to a give detailed analysis of safety. Regarding the efficient
evaluation of functional recursions, our study is based on the query-independent compilation
method. This allows us to incorporate constraints into the recursive query processing and

generate efficient evaluation plans.

However, the functional recursions studied in this thesis are limited to linear recursions. It
is important to extend our results to other recursions, such as non-linear recursions and mutual
recursions. If a non-linear recursion or a mutual recursion can be transformed into a linear

recursion, the techniques developed in this thesis can be applied; otherwise, new techniques might

be required.
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