
Nationat Library
of Canada

Bibliothwue nationale
du Canada

Acquisitions and Direction des acquisitions et
Bibliographic Services Branch des services bibliographiques

395 Wellington Street 395. rue Wellington
Ottawa, Ontario Ottawa (Ontario)
Kl A ON4 KIA ON4

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
r&pfoduction possible.

If pages A T T are missing, contact the
- university which granted the

degree:

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c. C-30, and
subsequent amendments.

Ovr ide Nme r # B ~ m e

AVlS

La qualit6 de cette microforme
depend grandement de la qualit6
de 'la thise soumise au
microfilmage. Nous avons tout
fait pour assurer une qualit6
supdrieure de reproduction.

S'il manque des pages, veuillez
communiquer avec I'universite
qui a confer6 le grade.

La qualite d'impression de
certaines pages peut laisser 3
desirer, surtout si les pages
originales ont 6t6
dacwlographiees a I'aide d'un
ruban us6 ou si I'universite nous
a fait parvenir une photocopie de
qualite infbrieure.

La reproduction, mBme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d'auteur, SRC 1970, c. C-30, et
ses amendements subsequents.

EFFXCIENT EVALUATION OF FUNCTIONAL RECURSIVE QUERY

PROGRAMS IN DEDUCTIVE DATABASES

Qiang Wang

B.Sc., Beijing Computer Institute, 1984

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF

in the School

Computing Science

0 Qiang Wang 1991

SIMON FRASER UNIVERSITY

January 1991

AU rights reserved. This work may not be
reproduced in whole or in part, by photocopy

or other means, without permission of the author.

National Library 1*I of Canada
Bibliothaue nationale
du Canada

Acquisitions and Direction des acquisitions et
Bibliographic Services Branch des services bibliographiques

395 Wellington Street 395. rue Wel6ngton
Ottawa Ontario Ottawa (Ontaro)
K1 A ON4 KIA ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

L'auteur a accorde une licence
irrevocable et non exclusive
permettant 1 la Bibliotheque
nationale du Canada de
reproduire, prbter, distribuer ou -
vendre des copies de sa these
de quelque maniere et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
these a la disposition des
personnes interessees.

L'auteur conserve la propriete du
droit d'auteur qui protege sa
these. Ni la these ni des extraits
substantiels de celle-ci ne
doivent &re imprimes ou
autrement reproduits sans son
autorisation.

ISBN 0-315-78309-5

Approval

Name:

Degree:

%tie of thesis:

Qiag wang

Master of Science

Efficient Evaluation of Functional Recursive Query Programs

in Deductive Databases

Examining Committee:

Dr. Ze-Nian Li
Chairman

Dr. Jiawei Han /
Senior Supp~so r ,,

-
Dr. Nick J. Cercone
Supervisor

Dr. Fred pop6wich
External Examiner

January 16, 1991
Date approved

PARTIAL COPYRIGHT LICENSE

I hereby grant to Simon Fraser Univers i ty the r i g h t t o lend

my thesis, p ro jec t o r extended essay (the t i t l e of which i s shown below)

t o users of the Simon Fraser Univers i ty Library, and t o make p a r t i a l or

single copies only f o r such users o r I n response t o a request from the

l i b r a r y o f any other university, o r other educational I n s t i t u t i o n , on

i t s own behalf o r f o r one of i t s users. I fur ther agree t h a t permission

f o r mu l t i p l e copying o f t h l s work f o r scholarly purposes may be granted

by me o r the Dean o f Graduate Studies. I t i s understood t h a t copying

o r publication o f t h l s work f o r f lnanc la l gain shal l not be allowed

without my wr i t ten permission.

T i t l e o f Thesis/Project/Extended Essay

E f f i c i e n t Evaluation of Functional Recursive Query Programs i n Deductive

Databases.

Author: H

(signature)

Qiang Wang

January 17, 1991.

Abstract

Functional recursive query programs are recursive query programs expressed in Horn clause logic

with function symbols. The functional recursions studied in this thesis are confined to one

commonly used class of recursions: linear recursions.

We compile a functional linear recursion into a highly regular compiled formula and

analyze the safety and the evaluation of the compiled formula with respect to a given query and a

set of constraints sgecified over a given database instance. We show that for the functional linear

recursions, safety can be viewed as a combination of two properties: frnie evaluability, which

guarantees the finiteness of intermediate answers, and termination, which guarantees the finiteness

of the evaluation. We present a necessary and sufficient condition guaranteeing the finite

evaluability of compiled formulas and a sufficient condition guaranteeing the termination of the

evaluation. The algorithms for testing these conditions are developed-

Based on the analysis of safety, we present a safe, constraint-based evaluation method for

compiled formulas. We classify constraints into three classes: (i) integrity constraints, (ii) rule

constraints and (iii) query constraints. We show that integrity constraints should be used to

generate safe evaluation plans. Rule constraints can 5e used in compilation to reduce the search

space. Query constraints are shown to be useful in the selection of efficient evaluation plans and

search space reduction.

Dedication

To my parents and my wifk.

Acknowledgments

I feel very grateful for the patience, assistance and supervision of my senior supervisor,

Dr, Jiawei Han, who has always been available when I need assistance and who provided careful

and conscientious reading and corrections of the early versions of this thesis. Nobody could have

provided more support, assistance and guidance for this research effort. He has also been a

constant source of inspiration, without which this thesis would not have been possible.

I would like to express my thanks to Dr. Nick J. Cercone for his support throughout my

thesis research and express my thanks to Dr. Wo-Shun Luk for leading me through database

fields at very beginning and for helping me to be re-united with my wife. I would like to express

my appreciation and gratitude to Dr. Fred Popowich for his patience and careful reading of my

thesis, His comments on my thesis were very helpful.

1 would also like to thank Sanjeev Mahanjan for some useful discussions.

I am thankful to Dr.

Jagger, who made my stay at

Ramesh Krishnamurti, Dr. Ze-Nian Li, Russ Tront and Kersti

S .F.U. memorable.

A special note of appreciation to my friend, Jean Rowe, who has been always helpful

from the time she met me at the Vancouver International Airport to the f'inal stage of my thesis.

Her help with the revision of this thesis and preparation for my thesis seminar was invaluable.

Lastly, to my wife Yan Tang who put up with this for more than two years and who made

this possible.

Table of Contents

.. ... Approvd 11

... ... Abstract IU

.. Dedication iv

.. Acknowledgments v

... List of Tables ... vlu

... List of Figures ix

.. 1 . Introduction 1

1.1 Thesis Research Area ... 1

3 .. 1.2 An Example from Real World Applications .-
.. 1.3 Thesis Contribution and Organization 8

... 2 . Preliminaries 1 1

.. 2.1 Deductive Databases 11

.. 2.2 Functions in Deductive Databases 21

3 . Transformation of Functional Recursions and CompiIed Formulas 26

... 3.1 Transformation of Functional Recursions 28

3.2 Rectification of Function-Free Recursions ... 31

... 3 -3 Compiled Formula Assumption 33

4 . Safety of the Evaluation of Compiled Formulas ... 43

.. 4.1 The Concept of Safety 44

. 4.2 Classification of Constraints -46

........................ 4.3 Safety as a Combination of Finite Evaluability and Termination 55

... 4.4 Safety I: Finire Evaluability -56

.. 4.4.1 Testing of Finite Evaluability 58

4.4.2 Analysis of the Fmite Evaluability Testing Algorithm 62

... 4.5 Safety II: Termioation -63

4.5.1 Termination Detection ... 4 8

4.5.2 Analysis of the Termination Detection Algorithm 70

Constraint-Based Evaluation of Compiled Formulas 7 3

5.1 Incorporation of Integrity Constraints .. 77

5.1.1 Incorporation of Type Constraints .. 77

....................................... 5.1.2 Incorporation of Finiteness Constraints -80

..................................... 5.1.3 Incorporation of Monotonicity Constraints 86

5.2 Incorporation of Rule Constraints .. 89

5.3 Incorporation of Query Constraints .. 91
5.4 Generation of Safe, Constraint-Based Evaluation Plans 94

Conclusion ... 102

.. References -104

List of Tables

.. Table 1-1 A daily flight information table 4

... Table 2- 1 Some commonly used functions -23

... Table 4- 1 Type constraints for the EDB predicate flight 53

.................................. Table 5-1 The evaluation order generated for the append program. 83

....................................... Table 5-2 The evaluation order generated for the gcd program 85

..................................... Table 5-3 The evaluation order generated for the navel program 99

List of Figures

... Figure 1- 1 Classification of Horn clauses 2

... Figure 1-2 Travel map 3
. . Figure 1-3 Thesis organization .. 10

Figure 2-1 Datalog and extended Datalog .. 14

... Figure 2-2 Deductive databases 18

.. Figure 2-3 Illustration of the navel pmgram 19

................................... Figure 2-4 Illustration of computing the area of a convex polygon 25

.. Figure 3- 1 Transformation of functional recursions 2 6

.. Figure 3-2 Rectification of EDPs -27

... Figure 3-3 Compiled formula assumpdon 27

Figure 3-4 Shared variables between chain elements ... 37

.. Figure 3-5 Chain invariant of consi(xi. Ui.Ui.l). 38

Figure 4-1 Different meanings of query safety .. 44

Figure 4-2 Application of Algorithm 4-1 in the plus program ... 63

................................. Figure 4-3 Two terminating evaluation plaos for the rinres program 65

........................ Figure 4-4 A finitely evaluable and terminating plan for the mod prog ram.. 69

................................. Figure 5-1 Constraints used in the evaluation of compiled formulas 73

............... Figure 5-2 Search space reduction by using rule constraints and query constraints 74

..................................... Figure 5-3 Illustration of evaluation plans and evaluation orders 75

...................................... Figure 5-4 Illustration of the evaluation of a compiled formula 76

....................................... Figure 5-5 The f ~ t e n e s s propagation in the append pro gram. 81

... Figure 5-6 The finiteness propagation in the gcd pro gram. 85

................................... Figure 5-7 Rule constraints added on a nondistinguished variable 91

................................ Figm 5-8 Selection of evaluation d . . ctions according to selectivity 95

... Figure 5-9 The finiteness propagation in the ~ a v e [program 98

Chapter 1

Introduction

1.1 Thesis Research Area

Functional recursive query programs are recursive query programs expressed in Horn clause logic

with function symbols. Their development can be viewed from two perspectives: one related to

the integration of the logic and the functional programming languages [BeLegB], and the other as

an effort to extend the expressive power of conventional database query languages [CGKNTZ90]

NSUV871.

The functional recursions studied in this thesis are confined to one commonly used class

of recursions: linear recursions, and we will discuss the evaluation of functional recursive query

programs within the database context.

The dominant database products in today's marketplace are relational database systems,

such as Ingres, Oracle, Sybase, DB2 etc. However, relational databases have two limitations.

One is the limitation of their query languages, e.g., recursive queries cannot be handled

effectively; +he other is that the fast access capability of the data manipulation language @ML) and

the general-purpose capability of the host language do not mesh well.

Deductive databases have emerged over the past few years to become one of the new

trends in database research. They are mainly based on the success of relational databases and are

aimed at extending the expressive power of relational databases and providing a single declarative

language to serve the roles played by both the DML and the host language. Their origin and

objectives suggest a promising future provided their efficiency can be reasonably guaranteed

[Uflrn89bJ Date901. A major step in achieving efficiency is tc reduce the overhead of recursive

query processing, viewed as one of the most costly supports of deductive databases.

One of the essential relationships between relational databases and deductive databases lies

in the relationship between relational algebra and Horn clause logic. It is known that when

recursions are not permitted, relational algebra is equivalent to Datalog logic (i.e., function-free

Horn clause logic) in terms of expressive power [GMN84] wllm89bj. One of the most notable

features of deductive databases is the ability to handle both function-free and functional

recursions.

Functional Recursive
Horn Clauses

Functional

(Horn Functional Nomecursive
Horn Clauses

Horn Clauses

DataIog(i,e. Recursive Datalog

Function-Free
Horn Clauses) Nonrecursive

Datalog
Relational
Algebra

Figure 1-1 Classification of Horn clauses.

Theoretically, it is h o r n that logic rules using function symbols have all the power of a

Turing machine, i.e., they can express any computation that can be written in conventional

programming languages Wllm89bI. The example in Section 1.3 below shows the need for

functional recursions in real world applications.

1.2 An Example from Real World Applications

Example 1-1: Puppose a travel agency maintains the flight information in a table calledflight

(see Figure 1-2 and Table 1-I), in which one tuple represents me flight every day. For

simplicity, we assume that the time considered in this example refers to Greenwich Mean Time1

and the travel time for a continuing trip is not greater than twenty-four hours.

Edmonton

Ottawa
Saskatoon I,

Vancouver Winnipeg

Detroit

UII city with an a i r ~ ~ r t - 1 1 1

Figure 1-2 Travel map.

In a real system Greenwich Mean Time can be converted to local time by adding the corresponding offset.

Table 1-1 A daily flight information table

Suppose a customer arrives at the front desk with the following questions.

Question 1:

"Could you help me find a seqzcence of connecting Bights from

Vancouver to Ottawa?"

Question 2:

"I'd like to leave Vancouver between 7am and 8am for Ottnwn.

Could you arrange that for me?"

Question 3:

"I have an appointment in Ottawa at 2pm and I want to have

lunch before the meeting. Can I get a flight, or connecting

flights from Vancouver and arrive in Ottawa around noon?"

Question 4:

"My boss can only reimburse me $500 for my travel from

Vancouver to Ottawa. Can I get a ticket for under $500?"

Question 5:

"I want to go from Vancouver to Ottawa. I want all intermediate

stops to be at international airports. Please arrange that for me."

We analyze these questions in terms of the following three aspects: the incorporation of

functions in recursive query processing, the safety of functional recursions, and the generation of

efficient evaluation plans.

1 . A natural and easv wav to deal with these estions is to incorporate functions into the

recursive query processing.

We notice that every question has at least one minimal requirement, that is, to find the

flight number(s) from Vancouver to Ottawa.

Since there is no direct flight fiom Vancouver to Ottawa, we need use some recursive

query processing techniques and introduce a function which can concatenate the connecting flight

numbers (i-e., the first attribute of the relation flight). For example, one solution is from

Vancouver to Seattle, then to Detroit, to Toronto, and finally to Ottawa. This solution can be

represented by a list of flight numbers, that is, [3,8,12,14]. If we use L = [Fno/L1] to denote the

list construction function which concatenates the head element Fno (flight number) with the list LI

(a list of flight numbers) to form a new list L, the process of finding this solution can be illustrated

as foIlows: L = [3/Ll], Ll = [8/L2], L2 = [12/14].

In addition, to give a satisfactory answer to question 4, we need another function which

can sum up the flight fares during recursive query processing. If we use function

Fare = S + Farel to sum up fare S for the first leg of a flight and fare Farel for the other legs of

the flight, the total fare of the connecting flights [3,8,12,14] can be calculated as follows. Fare =

60 + Farel, Farel = 450 + Fare2, Fare2 = 90 + 70. The total fare is 670 dollars (note that this

result does not meet the "under $500" requirement given in question 4).

2 . The evaluation must be sde. that is. it should penerate finite intermediate and final

answers in finite steDs.

From the relational algebra point of view, the basic idea of recursive query processing is to

perform the relational operations (particularly, the join and union operations) between relations.

However, since functions are normally defrned on infinite domains, the recursive query evaluation

may generate infinite answers or end up with infinite derivation of answers. We discuss the two

possibilities below.

Take the functions L = [3/L1] and Fare = 60 + Farel as an example. We notice that when

L1 and Farel are unknown, the answers derived from these two functions are essentially infinite.

Therefore, how to guarantee the finiteness of answers is crucial to the evaluation of functional

recursive query programs.

Not only must the answers be finite, but the derivation of the answers must terminate in

finite steps as well. For instance, suppose there is another direct flight from Deo'roit to Vancouver.

A loop, Vancouver -+ Seattle + Detroit -+ Vancouver, is formed. This may cause an infinite

derivation of answers (note that the natural join operation will be performed infinitely in this case).

3 . Efficient evaluation ulans should be generated based on the query and the constraints

(reauirements) orovided bv the customer.

Take the solution [3,8,12,14] with the total fare 670 dollars as an example. Clearly, this

is not a satisfactory answer to question 4. If we use the "under $500" requirement as a constraint

and push it into the evaluation, this solution will not be generated because the fare from

Vancouver to Detroit is 510 dollars which already violates the constraint. Similarly, to answer

question 5 which requires all the intermediate airports be international airports, an efficient

evaluation plan is to consider only those flights which stop at international airports.

Take questions 2 and 3 as another example. Our intuition tells us that to answer questian

2, an efficient evaluation plan is to search for answers from Vancouver instead of from Ottawa.

However, this evaluation plan is not efficient for question 3 because there are 9 possibilities all

together but only one of them (i.e., Vancouver + Seattle + Detroit -+ Ottawa) meets the

requirement, "arriving in Ottawa around noon". An efficient evaluation plan for question 3 is to

start searching from Ottawa.

This thesis studies the evaluation of functional recursions with respect to the above three

aspects, that is, the incorporation of functions in recursive query processing, the safety (is., finite

evaluabilizy and termination) of functional recursions, and the generation of efficient evaluation

plans.

1.3 Thesis Contribution and Organization

Due to the importance of recursions in deductive databases, there has been increased research into

techniques for implementing recursions in recent years. This research, however, has not

converged into one widely accepted approach, but instead has led to a variety of methods, each

superior to the others in certain applications [BMSU86] [HanWa] [Had32891 [SaZa86]

[SaZa87].

The choice of one method as the basis of our study was affected by the following three

considerations.

a) facilitation of the analysis of safety of functional recursive query programs.

b) efficiency in handling functional recursive query programs.

c) flexibility in dealing with functional recursive query programs encountered in real

world applications.

Based on the above considerations, we select the query-independent compilation as the

basis of our research and we assume that the compilation is accomplished by the V-graph method

[Han89a]. The purpose of the query-independent compilation is to reveal the ~egularity of the

further expansions of recursions. The result of the query-independent compilation (the V-graph

method) of a function-free linear recursion is a cornpiledformula. Therefore, as shown in Figure

1-3, we assume that the query-independent compilation considered in this thesis, unless otherwise

specified, is accomplished by the V-graph method.

To facilitate the query-independent compilation which is mainly applicable to function-free

recursions (e.g., function-free linear recursions), we transform functional recursive query

programs into function-free ones. In order to demonstrate the generation of compiled formulas

without going through the complex details of the query-independent compilation, we use the

recursive qamion technique to compile a transformed and rectified function-free linear recursion

to a compiled formula. Compiled formulas are examined in Chapter 3.

From Chapter 4, our study focuses on the safety and the evaluation of compiled formulas.

It is worth noting that one of the difficulties in dealing with functional recursions is that

functions are normally defined on infinite domains. Constraints have been recognized to be useful

in the analysis of safety. In Chapter 4, we categorize constraints into three classes: query

constraints, rule constraints and integrity constraints. Three types of integrity constraints are

considered: type constraints, finiteness constraints and monotonicity constraints. We show that

for functional linear recursions, safety can be viewed as a combination of two properties: finite

evaluability, which guarantees the finiteness of intermediate answers, and termination, which

guarantees the finiteness of the evaluation. We present a necessary and sufficient condition

guaranteeing the finite evaluability of compiled formulas and a sufficient condition guaranteeing

the termination of the evaluation. The algorithms for testing these conditions are developed.

In Chapter 5, we propose a safe, constraint-based evaluation method for processing

compiled formulas. Based on the classification of constraints, we show that type cons train ts

should be used to check type compatibility. Finiteness constraints can be used to generate finitely

evaluable plans. Monotonicity constraints can be used in termination detection. Rule constraints

should be used in compilation to reduce the search space. Query constraints are shown to be

useful in the selection of efficient evaluation plans and search space reduction.

We conclude our discussion and present future research issues in Chapter 6.

A guidemap of the thesis and the basic components of our evaluation method are outlined

in Figure 1-3.

Thesis
Guidemap

Chapter 6
Conclusion

Chapter 5

Chapter 4 & 2

Chapter 4 & 5

Chapter 5

Chapter 3

Chapter 3

--.----*-------
Chapter 2
(EDBrnB)
& Chapter 4
(Constraints)

Figure 1-3 Thesis organization.

Chapter 2

Preliminaries

In this chapter we introduce Horn clause logic as a way to define deductive databases and as a

language for expressing queries. As an extension of Datalog programs (i.e., function-free Mom

clause programs), extended Datalog programs are introduced to deal with function symbols.

Deductive databases and functions are discussed.

2.1 Deductive Databases

A deductive database is a database in which new facts may be derived from the facts that are

explicitly contained in the database. In our study a deductive database is defined by a finite set of

Horn clauses.

\

Horn clauses are ciauses with at most one positive literal [PS87]. Horn clauses consist of

facts, queries and rules. If a Horn clause consists of only one positive literal, it is a fact. If a

Horn clause consists of no positive literal and one or more negative literals, it is a query. If a

Horn clause consists of one positive literal and one or more negative literals, it is a Horn clause

rule.

Horn Clause Rules

A Horn clause rule is of the following form:

where r(T) and pi(Ti) (1 ,< i I n) are literals.

A literal is a predicate name with a list of arguments, each of which is a term. A term is

a constant, a variable, or an m-ary function symbol followed by m arguments (terms). A term is

ground if it contains no variables.

The literal r(T) is called the head (consequent) of the rule, and the rest of the rule is called

the body (antecedent) in which each literalpi(Ti) (I l i I n) is called a subgoai.

If there exists an i (1 5 i I n) such that pi = r, the above rule is called a recursive rule

and r is called a recursive predicate; otherwise, it is called a nomecursive (exit) rule. If there

is only one pi (I l i I n) such that pi = r , it is called a linear recursive rule. A recursion2 of

r is a finite set of Horn clause rules defining the recursive predicate r. A recursion is linear if

it consists of one linear recursive rule and one or more exit rules [Hangl].

A predicate logic is function-free if it does not contain function symbols. Otherwise, it

is functional [Maw881 [BeLe86]. Similarly, we distinguish a function-free Horn clause

from a functional Horn clause and a function-free recursion from a functional

recursion.

Therefore, a functional linear recursion is a linear recursion with function symbols.

The semantics associated with the above rule is that r(T) is true if all the pi(Ti)'s are true

(i.e., a tuple T is in the relation for r(T) if for all i { I ,< i I n) tuple q is in the relation for p,{Ti) and

we regard r(z) as a derived fact); or, in the case when n=O, r(T) is true and we regard an instance

of r(T) as a base fact.

Throughout this thesis, we use the following conventions (similar to Prolog [StSh86]) to

present our examples. Predicate names, function symboIs and constants start with a lower-case

* Notice that we ignore muWmdirect recursions here [HanHYa].

letter but constants are also permitted to be numbers. A variable milst start with a capital letter or

is "-" [PS87]. The relation for a predicate p is denoted by rel(p). In addition, the arithmetic

comparison predicates, =, S, and so on, are referred to as built-in predicates [Ullm89b].

Example 2-1: Consider the following Horn clauses:

nanzral - number(0).

natural - number(succ(X)) :- natural - number(X).

where succ(X) is a function which returns the successor of X.

The meaning of the above Horn clauses is that 0 is a natural number, and succ(X) is a

natural number if X is a natural number.

The first rule is an exit rule and the second one is a linear recursive rule. By definition,

this program is a linear recursion with one function, succ(X).

Datalog Programs and Extended Datalog Programs

By a Horn clause logic program, we mean a finite set of Horn clause rules. Due to the

importance of function symbols in recursive query programs, we categorize Horn clause logic

programs into two classes: Datalog programs, in which function symbols are not allowed, and

logic programs with function symbols. To facilitate the analysis of logic programs with function

symbols, we use extended Datalog programs (EDPs) as our study model. An extended

Datalog program is an abstracted Datalog program3 in which function symbols are represented by

possibly infinite relations with integriry constraints specified for the functions (particularly, type

The difference between a Datalog program and an extended Datalog program is that an extended Datalog program
not only uses possibly infinite relations to represent function symbols but also associates their integrity constraints
with the corresponding relations.

constraints, finiteness constraints and monotonicity constraints) [BroS89b] [KFtS88] [KiRS88].

Therefore, Datalog is a subset of extended Datalog (Figure 2-1). In Chapter 3, we will examine

bow to transform a logic program with function symbols into an EDP.

Extended Datalog:
Abstracted Datalog with
Possibly Infinite Relations
for Function Symbols.

Figure 2-1 Datalog and extended Datalog.

Example 2-2: C~nsider the following typical Datalog program [BaRa86] [BMSU86]

[Ullm89b].

same - generation(X,X) :- person(X).

same - generation(X,Y) :- 2arent(X,X1), sarne_generation(Xl ,YJ), parent(Y,YI).

where parent(X,Y) and person(X) are predicates indicating that Y is the parent of X and X is a

person respectively.

The meaning of fie above program is that X and Y are in the same generation if X = Y and

X is a person (the first rule), or X and Y have parents XI and YI respectively and XI and Y1 are

in the same generation (the second rule).

Shce the above program consists of two Horn clause rules without any function symbol,

it is a Datalog program.

E l

Example 2-1 is a functional linear recursion. The following example is an extended

Datalog program.

Example 2-3: Consider the following extended Datalog program.

where we use predicat6 CO~S(H,L~,L) to represent the list construction function L = [H/Ll] which

concatenates the head element H with the list L1 to form a new list L.

The meaning of the above program is that L is a list if L is empty, or L1 is a Iist and L is

the resulting list of concatenating the head element H with the list, Ll .

The above program is an EDP, in which the list construction function L = [H/L1] is

represented by the predicate con~(H&~,L) whose relation is infinite and is associated with the

integrity constraints specified for the function (e.g., H is a character, LI and L are strings of

characters, etc.).

I7

Queries

A query is a H m clause with only negative literals and is expressed as rl, 1-2, ..., r, with n > 0.

There are three possible assignments to an argument of a predicate in a query: an

ir~rantiated vahe given by the query, a variable name indicating the expected answers to the query

at thzt position and a don't care symbol, denoted by " - ", indicating that the query does not care

-

Ti& predicate is called f i m c i i d predicate and wilI be further examined in Chapter 3.

the results at that position. For explicit representation of a query, "?-" is normally placed in front

s f the query.

In the study of query processing, it has been realized that some queries just want to check

the existence of some given facts in the database. For these kind of queries (called existence

checking queries), the evaluation does need to continue if the existence conditions are satisfied.

The techniques for recognizing existence checking queries and processing them efficiently have

been studied intensively LHan89b]. Notice that if every argument in a query is either instantiated

or specified by "-", this query is an existence checking query.

We examine an example.

Example 2-4: Consider the following functional linear recursion.

descendant(parentv),Y).

descendant{parent(X),Y) :- descendant fX,Y).

where parent(X) is a function which returns the parent of X by, for instance, looking at a pre-

stored table which maintains the parent of X.

The meaning of the above program is that Y is the descendant of its parent (the first rule),

or Y is the descendant of the parent o f X if Y is the descendant of X (the second rule).

Consider the following queries:

query 1: ?-&scendani(john,alice).

query 2: ?-descendantljohn,Y).

query 3 : ?-descendant(joh,J.

Query 1 is an existence checking query which asks if alice is an descendant of john.

Query 2 asks who the descendant of j o h is. Query 3 is also an existence checking query which

asks if john has a descendant (but the query doesn't care who the descendant of john is. The

evaluation does not need to continue so long as one descendant of john is found5).

Deductive Data bases

Deductive databases are defined by first-order databases. A first-order database is a database

consisting of first-order clauses. When a first-order database consists only of Honi clauses which

are definite assertions and definite data, it is called a definite deductive database. When i t

contains indefinite assertions and indefinite data, it is called an indefinite deductive database,

An indefinite assertion is an assertion whose consequent part consists of a disjunction of literals,

and indefinite data contain facts represented by disjunctions of literals. Our research deals only

with definite deductive databases and the term deductive databases used in this thesis refers to

definite deductive databases.

A predicate whose relation is a set of tuples consisting only of constants stored in the

database is called an extensional database predicate (E D B predicate). A predicate which is

defined by Horn clause rules (i.e., it appears in the head of some rule) is called an intentional

database predicate (IDB predicate), For instance, in Example 2-2, person(X) and parent(X,Xl)

are EDB predicates, but same_generation(X,Y) is an IDB predicate.

A deductive database is assumed to consist of three portions [BaRa86] [BMSU86]: (i)

an exrensional database (EDB) which is a set of relations for EDB predicates, (ii) an intentional

database O B) which is a set of relations for IDB predicates, and (iii) a set of integrity constraints

(ICs) specified over the EDB predicates and infinite relations for function symbols. Thus a

deductive database can be represented by a triple (EDB,IDB,ICs).

The detailed study of existence checking queries can be found in P3ar189bl.

17

Figure 2-2 Deductive databases.

The following example describes a small deductive database.

Example 2-5: Consider the following travel program which describes a deductive database for

Example 1 - 1.

travel([Fno],DepDTime,Arr,ATime,Fare) :- fZight(Fno,Dep,DTime,Arr,ATime,Fare).

travel([Fno/Ll],DepDTimeJfrrJfTime,Fare) :-JZight(Fno,Llep,DTime,Depl JATime,S),

travel(Ll,Llepl ,IDTime,Arr,ATime, Farel),

Fare = S + Farel.

whereflight(Fno,DeppTime,Arr,ATime,Fare) is an EDB predicate whose relation is shown in

Table 1-1. The total fare Fare is calculated by an arithmetic function which sums up the fares of

the connecting flights, that is, Fare = S + Farel . The sequence (list) of connecting flight numbers

is generated by the list construction function [Fn ;/Ll], which takes an element Fno as t'he head

and a list L1 as the rest of the resulting list.

The meaning of the above program can be interpreted ai follows:

The first rule; travel with fare Fare between departure city Dep at DTime and arrival city Arr at

ATime can be arranged if there is a direct flight between the two cities, or

The second rule: such travel can be arranged if there is a flight Fno fmm city Dep at DTinte to city

Depl with cost Sand the travel with fare Farel between city Deal and city Arr can be arranged.

'The total fare is Fare = S+ Farel and the list of flight numbers is [Fm/Ll].

Arr

Travel between cities Dep and Arr can be arranged with a
list offlight numbers [FnolL rJ and fare Fare = S + Farel

Figure 2-3 Illustration of the travel program.

In this small deductive database, the extensional database contains the relation for the EDB

predicate flight(Fno,Dep,DTirne,Arr,ATime,Fare). The intentional database consists of the

derived relation for the IDB predicate travel([~no/L~],Dep,DTime,Arr,ATirne,Fare)~.

Fare = S + Farel and [Fno/LI] are two functions. The followirig integrity constraints could be

specified over the EDB predicateflight and the infinite relations for the functions Fare = S + Farel

and [Fno/Ll]: (i) The types of the variables Fare, S and Farel are positive real numbers, (ii)

[Fno/Ll] is known if Fno and Ll are known, and (iii) the value of Fare is greater "Ian the values

of S and Farel. Detailed discussion of integrity constraints will be presented in Chapter 4.

Now we use queries to represent the questions asked by the customer in Example 1 - 1.

Ouestion 1 : "Could you help me find a sequence of connecting fights from Vancouver to

Ottawa?"

query 1: ?-travel(L,vancouver, - ,ottawa,-,J.

where we use a variable L to indicate the expected list of flight numbers.

Ouestian 2: "I'd like to leave Vancouver between 7am and Barn for Ottawa. Could you arrange

thatfor me?"

query 2: ?-travel(L,vancouver,DTimeJottawa, -- ,), 7:00 SDTime, DTirne 18:OO.

Question 3; "I have an appointment in Ottawa at 2pm and I want to have lunch before the meeting.

Can I get ajlight, or connectingflights from Vancouver and arrive in Ottawa around noon?"

query 3: ?-travel(L,vancouver, - ,ottawa,ATime,J, 11:45 < ATime, ATime < 12:15.

where 11:45 < ATime and ATime < 12:15 mean that the arrival time ATime is around

noon.

Question 4: "My boss can only reimburse me $500 for my travel from Vancouver to Ottawa. Can

I get a ticket for under $500?"

query 4: ?-travel(L,vancouver, - ,ottawa,-,Fare), Fare 1500.

Ouestion 5: "I want to go from Vancouver to Ottawa. I want all intermediate stops to be at

international airports. Please arrange that for me."

Since this question requires that every intermediate city have an international airport, we

need to upclate the original program to express such a constraint. This situation will be discussed

in Chapter 4.

0

2.2 Functions in Deductive Databases

Data can be represented by relations and functions. The integration of relational and functional

programming languages has been intensively studied [BeLe86]. It is known that functions can be

represented by relations [Gru89]. We assume that the semantics of an EDP is restricted to the

ground interpretation of the EDP (i.e., all the relations and the derived answer sets consist only of

ground facts).

Functions

An m-ary function wllm89b] [STZ88] is a statement of the form:

where f is a function symbol and Ti (I 5 i Sm) is a constant, a variable, or a function.

In deductive databases, functions are extended to allow single value or multiple values to

be returned by a function [AH881 [STZ88]. For instance, in Example 2-5, the function Fare = F1

+ F2 returns one value when FI and F2 are given, and in Example 2-4, the function parent(X) can

return the name of a person's father, mother or both when X is given.

The representation and implementation of functions have been intensively studied SGru891

[AH881 [STZ88] DeLe861 [BNRST87] [TsZa86]. When multiple values are hllowed in a

function, a sorted list can be used to represent this function fSTZ881. If an argument or the

returned result of a function allows multiple values7, for example f11,X2,...J,,J, then it can be

represented by a list [X1,X2, ...,X,]. However, as we can see, such a representation is not

equivalent, e.g., {john,aliceJ = {alicejohn), but [john,alice] ;t [alicejohn]. To deal with this

However, the number of values is assumed to be fmite.

situation, a sorted list can be employed to represent these values. The unification between these

values and a sorted list can be performed after these values are sorted. Such a technique, called

the compile time rewriting technique, is used by the LDL prototype pNRST87] [STZ88].

Therefore, given a function f(Tl ,T2,...,T,), one can use a relation8, say

f(TI,T2,. . .,T,,V) where V holds/unifies the returned value(s) of the function, to represent it with

the following semantics: a tuple (z] ,q, ... , zm,vo) is in the relation f(Tl ,T2,. ..,T,,V) iff

vg = f{~~,z~, ..., z,). Such a representation leads to the transformation of functional Horn

clauses to their function-free counterparts and will be discussed further in Chapter 3.

Functions in Applications

Functions have been shown to be useful in many cases [Gru89] [AH883 [STZ88], such as

arithmetic calculations, list operations and even the manipulation of complex objects [AG88].

Table 2-1 lists some commonly used functions. Many of them are supported by Prolog III

[Co190]. More complicated functions can be constructed based on these functions. Special

functions used in specific applications, such as a geographic information system, may not appear

in this table.

Although the types of functions seem to be distinct, they still have some properties in

common. For instance, for some functions, when Tl ,T2,. . .,T, are given, f(T1 ,T2,. . . ,Tm) can

be computed, and some Ti can also be computed when other Tj's (j + i) or f(TI,T2T,) are

known (e.g., for function Fare = S + Farel discussed in Example 2-5, when Fare and Farel are

known, S can be computed). This property is abstracted as thefiniteness constraint. Another

To make the explicit linkage between a function and its relational representation, we use the name of the function
to represent its corresponding relation. However, a renaming technique should be used whenever an ambiguity
Occm.

property shared by some functions is monotonic behavior. For example, for function Fare = S +
Fare], given S, when the value of Farel increases (decreases), so does the value of Fare.

Function

round

sqr
sqrt

SUCC

Fixplanation

Plus

Minus

Tlmes

Divide

Concatenate the head element H and the list L

Length of a list

Round up to the closest integer

Square

Positive square root

Successor

Table 2-1 Some commonly used functions.

However, not .every function has these properties. For example, for function

Y = round(X) which rounds X up to its closest integer Y, when Y is given, there are still infinite

possibilities for X, and X and Y normally do not have certain monotonic behavior.

The following example shows the two properties shared by the list construction function

L = [%I. A more detailed discussion of these properties will be presented in Chapter 4.

Example 2-6: Consider the following function.

L = [HILlI

which concatenates the head element H and the list LI to form a new list L.

When L is given, H and L1 are known. Given H, when the length of list Ll increases (or

decreases), so does the length of list L.

0

At the end of this chapter, we present an application example to show the use of functions

in a geographic information system where a typical application is to find the area of a region.

Example 2-7: Consider the following functional linear recursion.

can compute the length between two points X and Y, and sqrtfl) is a function which returns the

square root of X. It is assumed that the polygons are convex polygons and the point set of a

polygon is represented by a sorted list.

The meaning of the above program can be interpreted as follows.

The fist rule: the area of a convex polygon is that of a triangle if the polygon consists of only

three points, or

The ~ ~ n d rule; if the polygon consists of more than three points, [P1,P2,P3,Rest], the area of

the polygon is the sum of two parts: (i) the m a of the triangle with the points PI , P2 and Pj, and

(ii) the area of a smaller convex polygon with the points PI, P3 and the points in the list Rest.

The area of a triangle is computed by the third rule.

The following query asks what is the area of the convex polygon with points 1 , 2 , 3 , 4 , 5 ,

6, and 7 (Figure 2-4).

query: ?-area([] ,23,43,6,7J,A).

The area of[] ,2,3,4,5,6,71 is the sum of
the areas of [1 ,2,3] and[1,3,4,5,6,7].

Figure 2-4 Illustration of computing the area of a convex polygon.

Chapter 3

Transformation of Functional Recursions

and

Compiled Formulas

In the preceding chapter, we classify Horn clause logic programs into two classes; Datalog

programs and logic programs with functkn symbols. To facilitate the analysis of function

symbols, we introduced extended Datalog in which functions are represented by possibly infinite

relations (see Figure 3- 1). In Section 3.1, we w;31 discuss the transformation of logic programs

with function symbols into EDPs.

Logic
Funct

Programs w
on Symbols

Figure 3-1 Transformation of functional recursions.

However, as suggested in I[Jh89b], logical rules in different forms should be rectified to

facilitate query analysis. More importantly, the query-independent compilation takes rectified

function-free recursions as input and generates compiled formulas man89a] [HanHY88].

Intuitively, the rules in a recursion are rectified if the heads of the rules have the same form. We

will discuss Ullman's rectification technique formally in Section 3.2.

Figure 3-2 Rectification of D P s .

Based on the rectified EDPs, we introduce the compiled formula assumption. A compiled

formula is the result of performing the query-independent compilation (the V-gmph method) on a

rectified function-free linear recursion (see Figure 3-3). The purpose of the query-independent

compilation is to reveal the regularity of the further expansions of recursions. However, to

demonstrate the results of the query-independent compilation without going through its complex

details which have been studied intensively elsewhere [Han89aj, we use the recursive rule

expansion technique to compile a rectified function-free linear recursion to a compiled

formula. The recursive rule expansion technique is a technique which expands a recursion to

reveal the regularity of its further expansions. Compiled formulas are examined in Section 3.3.

Function-Free

Figure 3-3 Compiled formula assumption.

3.1 Transformation of Functional Recursions

The use of relations to represent functions has been studied by several researchers pL86]

[KRS88]. In this section we discuss the transformation of functional recursions into EDPs.

The purpose of transforming functional recursions into function-free ones is to facilitate

their afidysis so that we can use the query-independent compilation to compile them to highly

regular chain forms. The basic idea of such a transformation is to use (possibly infinite) relations

to represent functions.

There are some other important reasons for transforming functional recursions into their

function-free coucterparts:

(a) Kifer mif88] and Shrnueli [Shrn87] have shown that for Horn clause queries with

function symbols, there does not exist a general-purpose algorithm which can enumerate a11

answers and then terminate. Many researchers @roS89a] [BroS89b] BS87- j [Kif88] have

shown that by transforming functional recursions to function-free ones, some query programs

(e.g., monadic programs [SaVa89]) become capturable9. Our study in Chapter 4 and Chapter 5

also shows that such a transformation enables us to analyze what kind of queries are capturable.

(b) The query-independent compilation has been shown to be very useful in generating

efficient evaluation plans, but is only applicable to function-he recursions man89aI [HanHY88]

[HanH87]. By transforming functional recursions to function-free ones, we can extend the

application domain of the query-independent compilation to functional recursions.

A query is said to be capturable if then exists an algorithm which can enumerate all answerr and then terminate
WirSS].

(c) Since the transformed programs are the internal representations of the original progmms,

the expressive power and the beauty of using functions in logic programs preserved.

The Function-Predicate Transformation

A function-predicate transformation, called the FP-transformation, is a mapping from a

functional recursion to a function-free one.

AIgorithm 3-1: FP-transformation Algorithm.

INPUT: A rule r with function symbols.

OUTPUT: A function-free rule r'.

METJ3OD:

foreach function in r, say f (XI J2,, . .&,J do

begin

replace the function by a new variable, say V;

add the subgoal f(Xl,X2, ...&, V) in the body of the rule (called functional

predicate1*) with the following semantics: a tuple (xl,x2,.-.,x,,vo) is in the

relation for the functional predicate f(XI &,.. .&,V) iff vg = f(xl ,X2,. . .,Xm);

associate the integrity constraints specified for the function with the relation for

f(X1 X29...,Xmy V)

end

From the above algorithm we can see the FP-transformation does not change the semantics

of the original programs. We examine an example below.

To make an explicit linkage between a function and its fnnctional predicate, we use the name of the function to
represent its functional predicate. If &ere is a predicate in the original program carrying the same m e but with
one more argument than the fimtion, we should rename the transformed functionat predicate to avoid ambiguity.

Example 3-1: Consider the following travel program discussed in Example 2-5.

travel(Frw,Dep,DTime~rr,ATime,Fare) :-flight(FnoPepDTimePvPTimeFare).

travel([Fno/Ll],Dep@Tirne,Arr,ATime,Fare :- flight(Fno,DepDTime,Depl JATime,S),

travel(LI,Llepl ,IDTime,Arr,ATime,FareI),

Fare = S + Farel.

After performing the FP-transformation on the above program, we have the following function-

free version of the travel program.

travel(Fm~epDTimeArr,ATime,Fare) :-flight(FnoDepDTimeAmATime,Fare).

travel(L,Dep,DTime,Arr,ATime,Fare) :-fZight(linoPepPTime&plJATime,S),

travel(Ll ,DepI JDTirne,Arr,ATime,Farel),

sum(S,F'arel ,Fare), cons(Fno,Ll ,L).

where szun(S,Farel ,Fare) is the functional predicate transformed from the function '+' with the

following semantics: sum(S,Farel,Fare) is true iff Fare = S + Farel for any instance of the

variables Fare, S, and Farel, The functional predicate cons(Fno,Ll,LJ is transformed from the

Iist construction function [Fm/L1] (Example 2-5) with the following semantics: cons(Fm,Ll,L) is

true iff L = [Fno/LI] for any instance of the variables L, Fm, and LI.

C3

If necessary, a functional predicate can also be transformed back to its functional

countergart by going through the reverse process. This is called the predicate-function

n-ansfomtion (PF-transformation), Such a transformation becomes necessary if we want to

restore the original programs for some reason, such as semantic query optimization [CGM90],

inference of integrity constraints fBroS89a], etc.

3.2 Rectification of Function-Free Recursions

Logical rules in different forms should be rectified to facilitate query analysis [Han89a]

-89bJ. When an IDB predicatep is &fined by a set of Horn clause rules, the relation for this

predicate is obtained by computing the relations for these rules, projecting onto the variables

appearing in the heads, and taking the union. However, we have trouble when some of the heads

with the predicate p have constants or repeated variables, e.g., p(a,X,X). Therefore, Ullman in

[Ullm89b] introduced a technique to rectify logic rules.

Another important reason for rectifying function-free recursions is that the query-

independent compilation takes rectified function-free recursions as input and generates compiled

formulas.

Definition: The rules for predicate p are rectified if all the heads of the rules are identical, and

of the same form p(Xl,X2, ...Jk) for distinct variables X1,X2, ...Jk.

We describe the rectification technique proposed in Wllm89bl below. It is assumed that

each variable in the head of a rule must also appear in some subgoal of the rule 11Jllm89bI.

Rectification of Function-Free Rule

Suppose the function-free rule to be rectified is r with headp(Yl,Y2, ..., Yk), where the Y's may

be variables or constants, with repetitions allowed.

1 . Replace the head of r by p(XI,X2, ...;Yk), where X's are each distinct, new variables;

2 . Add the subgoal Xi = Yi for all i.

If Yi is a variable, eliminate the subgoalxi = Yi and substitute Xi for Yi wherever it is

found in the rule.11

l1 Note hat when we make such a substitution for Yi, we cannot latcr make another substitution for the same
variable Pi.

It has been shown that the above rectification process does not change the semantics of the

original function-free programs m 8 9 b I .

Example 3-2: The following program is the result of applying the rectification process to the

transformed travel program shown in Example 3- 1.

travel(L,Dep PTime,Arr,ATime,Fare) :-flight(L,DepJTirne,Arr,ATime,Fare).

travel(L,Dep,DTime,An,ATime, Fare) :- flight(Fno,LlepDTirne,Depl ,IATime,S),

traoel(Ll Jepl ,IDTime,Arr,ATime,Farel),

sum(S,Farel ,Fare), cons(Fno.Ll ,L).

Note that the heads of the above rules are now identical.

We examine an example by using the FP-transformation and the rectification process.

Example 3-3: The following rule set defines a functional linear recursion in which f(x) and g(y)

are two unary functions.

The recursion can be considered as a functional version of the same_generation program (Example

2-2), where f and g can be viewed as the functionparent(X) discussed in Example 2-4.

After performing the FP-transformation, we have the following function-free recursion:

where XI = f(X) is mapped to the functional predicatef(X;Y1) and Yl = g(Y) is mapped to the

functional predicate g(Y,Yl).

Aftpr applying the rectification process, we have the foll~wing rectified function-free

recursion:

where we introduce a new vaiable Y for the repeated variable X in the first rule and add a subgoal

Y = X in the body of the first rule.

3.3 Compiled Formula Assumption

Several techniques, such as the a-graph method [Ioan85], the V-graph method [Han89aJ

[HanHY88] and the matrix method [SuHen90], have been developed to compile function-free

recursions. The purpose of the query-independent compilation is to reveal the regularity of the

further expansions of recursions by using mathematical tools, particularly graphs and matrices.

The basic idea of these methods is to analyze the connections among variables and generate highly

regular chain forms pan89al m 8 8] . We assume that the query-independent compilation

method considered in this thesis, unless otherwise specified, refers to the V-graph method

proposed by Han [Han89a] manHY 881.

It is known that some function-free recursions, such as linear recursions pan89a], can be

compiled into highly regular chain forms or bounded recursions. Based on the results in the

preceding section, a functional recursion, after being transformed and rectified to its function-free

counterpart, can be so compiled as well. Since the focus of the thesis is not on compilation,

interested readers are referred to W 8 9 a J for a complete treatment of the V-graph method.

However, we will use the recursive rule expansion technique to show the result of the query-

independent compilation.

Compiled Formulas Generated by the Recursive RuPe Expansion Technique

Definitions: In the compilation of a linear recursion with the recursive predicate r, the first

expansion of r is the recursive rule r itself. The ith expansion of r (i > 1) is the unification of

the recursive rule with the (i-11th expansion of r. The 0th expanded exit rule set is the set of

nonrecursive rules of r. The ith expanded exit rule set, denoted by r i, is generated by the

unification of the set of nonrecursive rules of r on the ith expansion of r. The compiled

formula of r is the union of the set of formulas generated by all the expanded exit rules of r.

Example 3-4: Consider the following rectified natural-number program which is obtained by

performing Algorithm 3-1 and the rectification process on the program shown in Example 2-1.

natural - number(X) :- X = 0.

natural - number(X) :- natural - number&), succ(X1 J).

where succ(Xl,X) is the functional predicate for the function succ(Xl) with the following

semantics: succ(Xl,X) is true iff X = succ(q) for any instance of the variables X and XI. The

fast rule is an exit rule and the second rule is a linear recursive rule.

The 1st emanded exit rule is: natural - nwnberlfl) :- XI = 0, succ(Xl,X).

The 2nd expanded exit rule is: natural - numbed(x) :- X2 = 0, succ&,X~), succ(XI ,X).

After the ith expansion, we have the following compiled formula:
w

n a t w a l - d e r f l) = (X= O) U (u ((Xi = 0), SUCC i (X i ~ i - l))) .
i=l

where

Example 3-5: Consider the following rectified program discussed in Example 3-3.

We compile the above program by using the recursive rule expansion technique as

follows.

The 1 st expanded exit rule is;

sl(X,Y) :- f (X X l f J (person(X1), XI = Y l) , g(Y,Yl).

After the ith emansion, we have the following compiled formula:
00

s(x,Y) = (p e r s o n o , X = Y f u (U (P(Xi.] ,Xi), (person(Xi), X i = Yi), gi(YieI ,Yi) f) .
i=I

Assumption: It is assumed that a compiled formulal* is of the following form:

where e is the union of exit rules andp! (1 Sj Sn) is:
J

where pi is called a chain and each pi in pi is called a chain element of pi
J I j.

The compiled formula generated by the query-independent compilation (V-graph method)

from a linear recursion possesses the following two properties [HanWa] [Han91]:

Property 3-1: All the chains of a compiled formula are synchronized. That is, all the chains

expand to the same length during the evaluation. To reflect the nature of such synchronization,

we use the following notation to denote the ith expanded exit rule of the compiled formula.

re when i = 0,

Thus, r can also be expressed as follows:

r = rO u r1 u r2 u ...

when i > 0.

l2 More specifidy. the compiled formula is one genusfed by applying the V-graph method to a function-free
linear recursion [Han89a].

Property 3-2: Suppose the kth and the (k+l)th chain elements of a chain pi have a s h m d
J

variable at positions s and t respectively, then the positions s and t are fixed for any k 2 I, i.e.,

(sJr) is an invariant, called a chain invariant of the chain pf (see Figure 3-4 below).
J

X at position s X at position t

(s,t) is an invariant

Figure 3-4 Shared variables between chain elements.

We examine an example.

Example 3-6: Consider the following rectified append program.

The 1 st ex~anded exit rule is:

append1 (u,v, W) :- cons(X1 UI ,U), (U1 = [],V = Wl) , cons(XI, W l , W) .

After the ith emansion, we have the following compiled formula:
w

append(U,V, W) = (U=[], V= W) u (u (consi(xiJJi, ui-]), (Ui=[] , V= Wi), C O ~ S ~ (X ~ , Wi, Wi.I))).
i=l

Icons(x1, wl, W) i f i = I ,
CO~S'(X~, Wi, Wi.1) = {

I c o ~ s (x ~ ~ w ~ , w ~ . ~) , C ~ d - ' (x ~ . ~ ,wi.l,w,.2) i f i > 1.

Exmination of Propertv 3-1: the ith expanded exit rule is:

The compiled formula can also be exp~ssed as follows:

append(U,V, W) = appendO(~,v, W) u a p p e n d l (~ , ~ , ~) u ... a p p e n d i (~ , ~ , W) u ...

Examination of Property 3-2: For both predicates consi(Xi, Ui, Ui-1) and consi(Xi, Wi, Wi-l), the

chain invariant is (2,3) because there is one shared variable at positions 2 and 3 of two

c~msponding consecutive chain elements. We illustrate the chain invariant for co&'Xi,Ui, Ui-1)

in Figure 3-5 below.

there is a shared "&able at positions 2
and 3 of any two consecutive elements

Figure 3-5 Chain invariant of consi(Xil Ui, Ui-l).

0

Discussion

Compiler? formulas and Properties 3-1 and 3-2 are important results of previous studies of the

query-independent compilation man89aI wan88bl. To capture the characteristic of a recursion,

we introduce the following terms.

Definitions: A linear recursion is an ri-chain recursion if for any positive integer k, there

exists a kth expansion of the recursion consisting of one chain (when n = 1) or n synchronous (of

the same length) chains (when n > 1) each with the length greater than k, and possibly some other

predicates which do not form a chain. It is a single-chain recursion when n = I, or multi-

chain recursion when n > I. The recursive rule of an n-chain recursion is called an n-chain

recursive rule. A recursion is bounded if it is equivalent to a set of nonrecursive rules.

The compiled formula assumption and their properties are mainly based on the previous

studies on the V-graph methods [Han89a] [YHH88] [HanHY88]. It is known that the V-gmph

method can compile the most commonly used recursions, linear recursions, to compiled formdlas

which match the representation of the compiled formulas we assumed and possess Property 3-1

and Property 3-2l3.

As shown previously, the result of performing the FP-transformation and the rectification

process on a functional recursion is a rectified EDP. Consequently, we can extend the application

domain of the V-graph method from function-free recursions to functional recursions.

Since the FP-transfornation and the rectification process convert a functional linear

recursion to a rectified function-free one and it has been proved that a rectified function-free linear

recursion can be compiled to a compiled formula using the V-graph method [Han89a], we

conclude that both function-free and functional linear recursions can be compiled to compiled

l3 However, it is possible for the V-graph method to expand some recursions or rename the variables of some
predicates before their regularity can be revealed The readers who are interested in the v-graph method are referred to
CHan89aI -881.

formulas by the V-graph method This conclusion is impmt since most recursions encountered

in applications are linear recursions pate901 DaRa8q W 8 9 a J m 8 8 1 .

As a summary of this chapter, we examine tbe travel program

Example 3-7: Consider the following rectified travel program discussed in Example 3-2.

The 1st expanded exit rule is:

travell(~,~ep,D~ime,Arr,A~irne,Fare) :-flight(FnoDepDTirneDeplJATime,S),

flighr(ll Pepl JDTime,Arr,ATime,Farel),

sum(S,Faael ,Fare), consjFno,L1 ,L).

After the ith expansion, we have the following compiled formula:

where

Examination of Property 3-1: the ith expanded exit rule is:

ti-aveli(~,Llep,L3Time,Arr,ATime,~are)

Therefore, the compiled formula can also be expressed as follows:

w e l l (~ , L l e p , ~ ~ i m e , ~ r r ~ ~ T i m e , Fare) u

t r a v e l i (L ~ e p , ~ ~ i m e ~ r r ~ T i m e , Fare) LJ

Examination of Property 3-2: For the chains ~urn~(~~.~,Fare~,F'are~~~) and C O ~ S ~ (F ~ O ~ - ~ J & ~ - ~) ,

the chain invaria~t is (2,3) because there is one shared variable at positions 2 and 3 of two

corresponding consecutive chain elements. For the chain flighti(~noi.l,~epi.l,~~imei.

,Depi,ATin:ei,l ,Si-]), the chain invariant is (2,4) because there is one shared variable at positions

2 and 4 of its two consecutive chain elements.

0

Chapter 4

Safety of the Evaluation of Compiled Formulas

From this chapter, our discussion focuses on compiled formulas in which the relations far

functional predicates could be infjmite.

It is assumed that EDB predicates and functional predicates sadsfy some constraints.

Three classes of constraints are considered: integrity constraints, rule constraints and query

constraints. This chapter discusses the conditions under which the evaluation of a compiled

formula is safe.

The evaluation of a compiled formula is safe with respect to a given query and a set of

constraints if, for a given database instance that satisfies the constraints, the evaluation is

guaranteed to yield a finite set of answers in finite steps.

Over finite databases, a bottom-up evaluation of Datalog queries is guaranteed to be safe,

yielding a finite set of answers in finite steps PaRa86j [APPRSU89] [SaVa89]. This is no

longer true if some of the relations for functional predicates are infinite, since the set of answers

may be infinite IBroS89bI [SaVa89].

According to F'roperty 3-1, a compiled formula can be expressed in the following form:

We show that for compiled formulas, safety can be viewed as a combination of two

properties: finite evaluability, which guarantees the finiteness of intermediate answers (i-e., for

any i 20, the relation for fi contains a finite number of tuples during the evaluation), and

termination, which guarantees the finiteness of the evaluation (i.e., there exists an m (m 2 0) such
m

that r =v f i) .
i=O

This chapter is organized as follows. In Section 4.1 we discuss the concept of safety as

used in the literature. To facilitate the analysis of safety, we discuss constraints in Section 4.2.

Starting from Section 4.3, we present the major results of this chapter. Section 4.3 proves

f o d y that safety is a combination of two properties: finite evaluability and termination. Section

4.4 presents a necessary and sufficient condition guaranteeing the finite evaluability of a compiled

formula, The algorithm for testing this condition is developed. Section 4.5 presents a sufficient

condition guaranteeing the termination of the evaluation of a compiled formula. The algorithm for

testing the condition is also developed.

4.1 The Concept of Safety

Safety is an important issue in the analysis of functional recursions since functions are normally

defined on infinite domains.

However, the tenn "safety" has been given different meanings in the deductive database

community (see Figure 4-1). Originally, it was introduced to refer to safe queries.

Universal Safety
Semantic Safety

Query Safety Relative Safety

Syntactic Safety

Figure 4-1 Different meanings of query safety.

The syntactic safety of queries was introduced in &Jllm89a] IIJllm89bl to denote a

subclass of first order queries which can be translated into relational algebra, while the semantic

sqfety of queries was used by some researchers to denote the class of queries with finite sets of

answers paRa86J [T(RS88] mS87J [Zani86]. The class of semantically safe queries properly

contains the class of syntactically safe ones [Kifs8]. Semantically safe queries seem to be more

interesting since the finiteness of answer sets is one of the major concerns when functions are

permitted.

Given a database, a query is said to be u~liversally safe if the query has a finite set of

answers for every instance of that database m8]. A query is said to be relatively safe if the

query has a finite set of answers for a given instance of that database [I(RS88] [RBS87]. Relative

safety seems to be more important since queries are always evaluated with respect to a given

database instance and the user usually wants to know whether this particular evaluation generates

a finite set of answers.

In order to find the answers to a query, we must use some evaluation algorithm(s).

Therefore another notion, called capturability, was introduced [KiL8 81 -89 b] . A query is

said to be capsurable if there exists an algorithm which can enumerate all answers and then

terminate.

From a practical standpoint, "a database" normally refers to a given instance of that

database. From the user's point of view, when a query is posed, one of the major considerations

is whether or not there exists an evaluation algorithm which can yield a finite set of answers in

finite steps. From the application point of view, constraints seem to be particularly important in

the analysis of safety since some constraints may change an infinite domain to a finite onel4.

Therefore, safety according to our definition is related to a given query and a set of constraints for

a given database instance that satisfies the constraints.

From here on, the term "safety" used in this thesis refers to the safety according to our

definition unless otherwise specified.

4.2 Classification of Constraints

Constraint programming and constraint-based reasoning have been studied extensively in logic

programming and artificial intelligence [Coh90] [KKR90] &as90]. It is known that constraints

are also very useful in the analysis of safety in deductive databases [BroS89a] [BroS89b]

[KRS8 81 [RB S 871 [S aVa891.

We consider constraints as assertions that a given database instance is compelled to obey.

We classify constraints (Cs) into three classes: query constraints (QCs), rule constraints (RCs)

and integrity constraints (ICs). In other words, a given set of constraints is considered as

C s = Q C s u RCs u I C s .

Query Constraints

A query constraint is a constraint which adds one or more conjuncts to the query predicates.

To facilitate the analysis of safety and query processing, we use query constraints to

express the instantiated information provided by a query. More specifically, given a query:

?-r(..., c1 ,..., c2 ,... ci ,...)

l4 For instance, the relation for the functional predicate sum(S,Furel,Fare) is infiiite but the relation becomes
finite if the following constraints are given: S, Fare] and Fare are integers, 0 I S 5 1000,O I F a r q 5 1000, and 0
5 Fare5 1000.

where c's are all the instantiaied information provided by the query and i is less than or equal to

the number of arguments of r, we can express this query as follows:

where each Vi is the corresponding variable name and Vi = ci is viewed as a query constraint. ? -

r(... ,Vb ..., V2 ,... Vi ,...) is called a query predicate. By using this method to express a query,

we can analyze queries more precisely and select the instantiated information we need in the

analysis of safety and query processing. From here on, we use this method to express queries.

We examine an example below.

Example 4-1: The queries discussed in Example 2-5 can be expressed as follows.

query 1: ?-travel(L,Dep, - ,Am, -- ,), Dep = vancouver, Arr = Ottawa.

query 2: ?-trtsvel(L,Dep,DTime,Arr,-,J,

Dep = vancouver, Arr = Ottawa, 7:00 IDTime, DTime ,<8:00.

query 3: ?-travel(LPep, - ,Arr,ATime, -),

Dep = vancouver, Arr = ottawa, I l:45 c ATirne, ATirne < 12:15.

query 4: ?-tmel(L,Dep, - Jrr, - ,Fare), Dep = vancouver, Arr = Ottawa, Fare 1500.

where Dep = vancower, Arr = ottawa, 7:00 SDTime, DTime ,<8:00,1 l:45 < ATime, ATime <

12:I5 and Fare 1500 are query constraints of their respective queries.

Rule Constraints

A rule constraint is a constraint which adds one or more conjuncts to the body of a deduction

rule.

Example 4-2: Consider the following program [Co190].

where [E/L] is the list construction function.

The meaning of the above program is that E is an element of [E/L] if E is the head element

of [E/L], or E is an element of [EYL] if E is an element of L and E # E'.

E # E' is viewed as a rule constraint since it specifies the condition that variables E and E'

must satisfy.

Since a rule constraint adds new conjuncts (conditions) to the body of a deduction rule, it

changes the original rule to a new, constrained one. Therefore, rule constraints should bc

compiled together with the new deduction rule. We will examine how to push rule constraints

into compilation in Chapter 5,

Integrity Constraints

In this thesis, three types of integrity constraints are considered: type constraints, finiteness

constraints, and mnotonicity constraints.

Type Constraints

A type constraint is a constraint which requires the arguments of predicates to belong to

specified domains. The type constraints for EDB predicates and the functions supported by a

database are defined when the database is defined. The type constraints fix IDB predicates can be

inferred when an IDB predicate is defined. We will discuss the inference of type constraints in

Chapter 5. Now we examine an example.

Example 4-3: Consider the following functional recursion which finds the length of a list.

The meaning of the above program is that: (i) the length of a list is 0 if the list is empty (the

frst rule), or (ii) the length of the list [H/RJ is succ(N) if the length of R is N (the second rule).

The type constraints for the above program are: H is a character, R is a string of

characters, and N is an integer.

Type constraints and the inference of type constraints

Finiteness Constraints

A finiteness constraint (fc) is a statement of the form

p.-n-+r

where A and r a r e sets of the argument positions of the predicate p [SaVa89]. Let rel(p) denote

the relation for the predicate p. Then rel(p) satisfies this constraint if for every tuple t of re@), the

set of tuples {s[r]/s[A] = t[A]] is finite's. In particular, rel(p) satisfies p: 0+T if {t[r]} is

finite16. The intuitive meaning of re@) satisfying p: A Tis that if {t[A]] is finite, then { t [f , l }

l5 Note that if {s[U/s[A] = t[n] is firrite, it implies that for any variabie V whose psition in p appears in T:
{s(v]} is also finite.

We use '0' to indicate that the finiteness of {t[O} does not depend on any argument of p. For example, given an
EDB predicateparent(X,Y), its relation satisfiespment: 0 4 and pment: 0+2 because {t[l]} and {t(2]} arc finite for
every tuple t of the relation.

is finite. Clearly, for any m-ary EDB predicate p, rel(p) satisfies fc = {p: O+l,p: 0+2, ...,p :

O+m} since the relation for any EDB predicate is finite and every attribute of rel(p) is finite. A

variable is said to be finite if it is bound to a finite number sf facts.

Example 4-4: Consider the following functional predicate fiom Example 3-6.

For any finite X I and U1, there is a finite U and for any finite U there are only finite

choices for XI and U I . Therefore, we have the following finiteness constraints:

fc = {cons: {1,2} +3, cons: 3 +{1,2]].

Consider another functional predicate from Example 3-1.

sum(S, Farel ,Fare).

where S, Farel and Fare are positive real numbers.

Since the finiteness of any two variables makes the third variable finite (e.g., for any finite

S and Fare], there is a finite Fare (actually only one value for Fare)), we have the following

finiteness constraint:

fc = {sum: j1 J] +3, sum: {1,3}} 42 , sum: { 2 , W + I] .

Monotonicity Constraints

A monotonicity constraint (mc) is a statement of the form

p: i c, j.

where p is a predicate name and i and j, defined on the same domain, are argument positions of p

[BroSBgb]. Intuitively, the above mc means that the relation rel(p) satisfies this constraint if for

every tuple t of rel(p), its value at position i is less than that of j, according to some partial order.

The 'less than' condition might be satisfied after performing some mapping on i or J.

Interestingly, after a proper mapping is performed, relations without cyclic data (e.g., the relation

for parent(X,Xl) discussed in Example 2-2) always satisfy some form of mc's provided the

arguments involved are defined on the same domain.

Example 4-5: Consider the following functional predicate.

cons(XI,Ul ,U).

According to the meaning of cons(X1,U1,U) discussed in Example 3-6, the relation for

cons(XI,U1,U) satisfies the following monotonicity constraints.

mc = {cons: I <,, 3,2 <,, 3).

where c,, is defined on the length of lists with respect to the usual order on nawal numbers.

Consider another functional predicate:

sum(S,Farel ,Fare)

where S, Farel and Fare are positive real numbers. The relation for sum(S,Farel ,Fare) satisfies

the following monotonicity constraints:

mc = {sum: 1 <,, 3,2 <,, 31

where <,,refers to the usual order on positive real numbers.

0

We use the travel database as an example to analyze different constraints specified over the

database.

Example 4-6: Consider the following modified version of the travel program (Example 3- 1).

query: ?-travel(L,Dep, - ,Am,-,J, Dep = Vancouver, Arr = Ottawa, Fare 1500.

where we assume that all the international airports are registered in the relation for

international(Depl).

Now we analyze the constraints specified over the small database.

Dep = vancouver, Arr = ottawa and Fare 5500 are the query constraints which require that the

total fare from Vancouver to Ottawa be less than or equal to 500 dollars.

M e c~nstmints;

international(Depl) is a rule constraintl7 which requires that all the intermediate airports must be

intarnational airports. Recall that question 5 in Example 1-1 needs this constraint and we

mentioned that this question could not be expmsed by a query (Example 2-5). This question can

be described by the following query after the rule constraint is added to the travel program.

l7 Notice that this constraint cannot bc expressed by a query mnstraint becausz the variable Depl does not appear
in the head of any rule in the truvel program.

query: ?-travel(L,Dep, - ,Am, - ,J, Dep = vancouver, Arr = Ottawa.

Inte~rity Constraints: we discuss the three types of ICs below.

Variable ype Constraints
I

F m natural number

Dep string of char

Arr

ATime

Table 4-1 Type constraints for the EDB predicateflight.

string of char

0000. .2400

Fare

The type constraints for other predicates of the program can be inferred from the type

constraints shown in Table 4-1.

positive real number

Finiteness constraints:

Sinceflight is an EDB predicate, its relation is finite. We have:

According to Example 4-4, the fc's for cord and sum are:

fc2 = {cons: {1,23-+3, cons: 3-+{lJ2}J.

fc3 = {sum: {1,2 f 4 3 , sum: {1,3}}-+2, sum: {2,3}J +1}

Thus the finiteness constmints can be expressed as follows:

According to Example 4-5, we have the followkg monotonicity constraints.

mcl ={cons: I <,, 3,2 <, 33

where <,, is defined on the length of lists.

mc2 = {sum: I <, 3,2 <,, 3 1

where <,, refers to the usual order on positive real numbers.

Thus the monotonicity constraints can be expressed as follows:

mc = mcl u mc2.

0

The inference of monotonicity constraints in programs is an important issue in deductive

databases [BroS 89a] proS89bI. For example, if rel(p) satisfies p: i c, j and p: j <,, k, then we

can infer that rei(p) also satisfies p: i <, k. A sound and complete algorithm for the inference of

mc's is given in proS89al. Interested readers are referred to jj3roS89aI and [BroS89b] for a

detailed description of the algorithm.

Another issue is the use af equality constraints in the analysis of safety of logic programs

[B roS 89a] [BroS 89b] [SaVa89]. Intuitively, the relation rel(p) for the predicate p satisfies the

eqlurlity constraint p: i =,, j iff the value at position i and the vdue at position j are equal in every

tuple of rel(p). We do not discuss equality constraints in detail due to the following observation.

If two variables have the same name in a Horn clause rule, then they must be defined on the same

domain and have the same values in corresponding tuples. Therefore, by using the same variable

name for those variables that satisfy equality constraints, equality constraints can be implicitly

expressed in a program. Moreover, the equality constraints satisfied by the variables in different

predicates can also be expressed by the same variable name.

The third issue concerns the representation of rule constraints and query constraints . We

assume that a rule constraint or a query constraint is given in one of following forms: V > c, V 2

c, V = c, V # c, V S c , V < c (where V is a variable and c is a constant) with the following

exceptions: (i) since an attribute V in an EDB relation contains a finite number of constants and

can be expressed as V = c where c is an instance of V in the relation, we also allow a rule

constraint or a query constraint to be specified by an EDB relation. For example, the rule

constraint international(Depl) discussed in Example 4-6 is specified by an EDB relation which

registers the names of all the international airports. (ii) Since a rule constraint will be compiled

together with the original rule, we also allow it to be a functionlg.

4.3 Safety as a Combination s f Finite Evaluability and Termination

We view safety as a combination of two properties: finite evaluability and termination. The

evaluation of a compiled formula is safe with respect to a given query and a set of constraints if,

for a given database instance that satisfies the constraints, the evaluation is guaranteed to yield a

finite set of answers in finite steps.

A predicate p is finitely evaluable with respect to a given query and a set of constraints

iff the relation for p is finite during the evaluation, where the relation for p is from a given

database instance that satisfies the constraints.

l8 Note that this function will be transformed into a functional predicate after the FP-~msformation is performed
on the modified, more constrained rde.

According to Property 3- 1, a compiled formula r can be expressed as r = @ u rl LJ r2 u
00

. . . = u ri. Thereforz, r is finitely evaluable with respect to a given query and a set of constraints
i=O

iff the relation for 9 is finite for every i (i 2 0) during the evaluation.

The evaluation of a Horn clause program terminates with respect to a given query and a

set of constraints if the evaluation can generate the final set of answers in finite steps, where the

relations for the predicates in the program are from a given database instance that satisfies the

constraints.

For a compiled formula

m

r = fl ur l u r 2 u... = y ri,
i=O

the evaluation of r terminates with respect to a given query and a set of constraints iff there exists
m

an m (m 2 0) such that r = u ri.
i=O

As we can see from the above definitions, for compiled formulas, safety can be viewed as

a combination of finite evaluability and termination. We will examine them separately in the

following two sections (i.e., Sections 4.4 and 4.5).

4.4 Safety 3: Finite Evaluability

In this section, we present a necessary and sufficient condition which guarantees the finite

evaluability of a compiled formula with respect to a given query and a set of constraints. The

algorithm for testing the condition is developed Before we discuss the details formally, we give

the finiteness propagation rules below where the adornment b indicates that the corresponding

variable is bound.

Finiteness Propagation Rules: Suppose r is a rule. Given a query and a set of constraints,

we adorn r as follows.

1 . If a variable V appears in an EDB predicate or V = c where c is a constant or c E C where

C is a f ~ t e domain, V is adorned with b, that is, ~ b .

2 . Two variables specified by "=" or with the same variable name axe adorned with 6 if one

of them is adorned with b.

3 . If there is a finiteness constraint p: A -+ rand all the variables specified19 in A are

adorned with b, then every variable V specified in f is adorned with b, that is, lib.

We examine an example below.

ExampIe 4-7: Consider the following program which defines the arithmetic function

Z = X + Y, where 2, X and Y are integers.

where the finiteness constraints satisfied by succ are: fc = {succ: 1 -+ 2, succ: 2 -+ I]

Suppose the following query is posed:

query 1: ?-plus(X,Y,Z), Y=3.

After applying the finiteness propagation rules to the exit rule and the first expanded exit

rule, we have the following adorned rules.

l9 By "a variable is specified in A (or T)", we mean that the position of that variable appears in A (or 0.

57

Notice that after the finiteness propagation, the relation for every predicate in the above

rules is finite since every variable in the above rules are bound to a finite number of facts

(indicated by the adornment b).

Consider another query:

query 2: ?-plus(X,Y,Z), X=3.

After applying the f ~ t e n e s s propagation rules to the exit rule and the first expanded exit

rule, we have the following adorned rules.

Notice that the variables without the adornment b mean that they cannot be bound to a

finite number of facts. In other words, the relation for the predicate that has a variable without the

adornment b is finite. For example, the relations for p l u s (~ b , ~ J ~) and succ(ZI,Z) are infinite

with respect to query 2.

u

4.4.1 Testing of Finite Evaluability

In this Section, we present a necessary and sufficient condition which guarantees the finite

evaluabiIity of a compiled formula. The algorithm for testing the condition is also presented.

Lemma 4-1: A rule r is finitely evaluable with respect to a given query and a set of constraints iff

for a given database instance that satisfies the constraints, every variable in the predicates of r is

adorned with b after the finiteness propagation rules are applied to r.

Proof: The proof is straightforward in the sense that the relation for a predicate is finite iff every

attribute of the relation is finite. According to the finiteness propagation rules, an attribute is

bound to a Finite number of facts with respect to the query and the constraints iff the attribute is

adorned with b. Hence, the lemma holds.

a
Lemma 4-2: Suppose r is a compiled formula.

If a) the exit rule set is finitely evduable, and

b) the first expanded exit rule set is finitely evaluable,

then its further expanded exit rule set is also finitely evaluable.

Proof: Suppose the compiled formula is r. According to Properties 3-1, r can be expressed as

follows.

where

when i = 0

when i > 0

Therefore, according to the defidition of finite evaluability, we only need to prove that for

any i (i 2 O), the relation for f i is finite.

The proof is by induction on the expansion length of the expanded exit rules of r.

For the basis, according to the condition of this lemma, the relations for @ and r1 are

finite.

For the induction, if the relatim for ri-1 is finite, we prove that the relation for ri is also

finite .

According to the above equations, we cm infer d= pi. p2, .. ., Par +-I. Let S:-pi,p2, . . .,Pn

and the relation for s be rel(s). Thea the relation for rel(d) can be expressed as follows:

where $ih and $jh (1 I h Sm, m is less than or equal to the smallest number of the attributes of

rcl(s) and rel(ri-1)) are t!!e attribute positions of rel(s) and rel(@) respectively. $ih = $jh means

that the attributes at the corresponding positions in rel(s) and rel(ri-l) have the same attribute

name. ndenotes the projection on the attributes that appear in re&+).

By the inductive hypothesis, re&+-1) is finite. Hence, according to the definitions of the

natural join and projection operations IIJllrn89b1, rel(+) is finite.

Theorem 4-2: A compiled formula is f ~ t e l y evaluable with respect to a given query and a set of

constraints iff all the variables in the exit rule set and the frst expanded exit rule set are adorned

with b's after the finiteness propagation rules are applied to them.

Proof: Suppose the compiled formula is r.

Only If: According to the definition of finite evaluability, a compiled formula r is finitely

evaluable with respect to a given query and a set of constraints iff rel(+) is fmite for any i (i 2 0)

during the evaluation. Therefore, at least r e l o and rel(r1) must be finite. According to Lemma

4- X , every variable in the exit rule fl and the first expanded exit rule r1 is adorned with b's after

the finiteness propagation rules are applied.

If: Suppose all the variables in the exit rule set and the first expanded exit rule set are adorned

with b's after the finiteness propagation rules are applied to them. According to Lemma 4- 1, fl

and rl ate finitely evaluable, then according to Lemma 4-2, ri f i 2 0) is also finitely evaluable.

By definition, r is finitely evaluable.

0

Based on Theorem 4-2, we can develop an algorithm to test the finite evaluability of a

compiled formula with respect to a given query and a set of constraints.

Algorithm 4-1: Finite Evaluability Testing Algorithm.

INPUT: A compiled formula, a query and a set of constraints.

OUTPUT: An assertion of whether the compiled formula is finitely evduable ('yes') or not ('no').

METHOD:

apply the finiteness propagation rules to the exit rule set;

if every variable in the exit rule set is adorned with b

I* in other worb, every variable is bound to a finite number offacts (indicated by the

adornment b) *I

then

begin

apply the finiteness propagation rules to the first expanded exit rule set;

if every variable in h e first expanded exit rule set is adorned with b

then return('yes')

else return('not)

end

else return('no')

4.4.2 Analysis of the Finite Evsluability Testing Algorithm

The correctness of Algorithm 4-1 is clear since it does nothing but test the condition of Theorem

4-2 which has been proved to be necessary and sufficient for guaranteeing the finite evaluability of

a compiled formula with respect to a given query and a set of constraints. Therefore, we have the

following proposition.

Proposition 4-1: The finite evaluability testing algorithm is correct in the sense that, given a

compiled formula, a query and a set of constraints, Algorithm 4-1 returns 'yes' if and only if the

compiled formula is finitely evaluable with respect to the query and the constraints.

We examine an example below.

Example 4-8: Consider the plus program discussed in Example 4-7.

fc = {succ: 1 + 2, succ: 2 + I] .

Suppose the following query is posed:

query 1: ?-plur(X,Y,Z), Y=3.

After applying the finiteness propagation rules to the exit rule and the fmt expanded rule,

Algorithm 4- 1 returns 'yes', indicating that the above program is finitely evaluable (see Figure 4-

2) -

instantiated by the
query ?-plus(X,S,Z)

(a) Finiteness propagation in the exit rule.

instantiated by the query
?-plus(X,Y,Z), Y=3.

(b) Finiteness propagation in the first expanded rule.

Figure 4-2 Application of Algorithm 4-1 in the plus program.

For query 2: ?-plus(X,Y,Z), X=3, as shown in Example 4-7, there are variables which are

not adorned with b. Therefore, Algorithm 4-1 returns 'no', indicating that the compiled formula

is not finitely evaluable with respect to query 2.

4.5 Safety 11: Termination

Many researchers' studies show that the termination problem is difficult to solve in some

circumstances [BroS89b] [Kif88] W S 8 7] [SaVa89]. Kifer [Kif88] showed that Horn clause

queries with function symbols are not capturable. In other words, there does not exist an

evaluation algorithm which can enumerate all answers in finite steps for these queries. The

following example shows that the evaluation of a functional recursion cannot even predictably

terminale.

Example 4-9: Consider the following program and query.

query: ?-r(X), X = I .

where a(X) is an EDB predicate containing only one fact a(0) and randorn(XJI) is a functional

predicate which generates a random number when X is given.

Since we do not know what will be generated by the function ranhm, the evaluation of

the above query program cannot temhate.

Our study shows that based on the compiled formulas generated from functional

recursions by using the V-graph method, we can analyze what kinds of queries are capturable.

More specifically, we show that whether or not there exists a safe execution of a compiled formula

with respect to a given query and a set of corrstraints depends on the evaluation plan generated,

Definition: Given a compiled formula r, a query and a set of constraints, an evaluation plan

for r is an arrangement indicating how to evaluate the chains and the exit rule set of r. To

represent the evaluation order among the chains and the exit rule set of a compiled formula, we

use to indicate that the predicate to the left of =;, should be evaluated first.

We examine an example below.

Example 4-10: Consider the following program which defines the arithmetic function

Z = X x Y .

where X, Y and Z are positive integers, succ is the successor function and plus is defined in

Example 4-7.

AftPr performing the FP-transfornation and the rectification process, we have:

After the, ith expansion, we have the following compiled formula:

where s ~ c c i (X ~ & ~) is defined in Example 3-4 and

Suppose the following query is posed:

query: ?-times(X,T,Z), X=4 , Z = 4 8 .

Based on the compiled formula, we have the following terminating evaluation platis (see

Figure 4-3). Notice that the finiteness constraints satisfied by succ and plus are: fc = {succ: I 4

2, succ: 2 + I , plus: {1,2}-+3, plus: { I ,3}}42, plus: {2,3}}-+2).

(X i = 0, Z i = 0) (X i = O , Z i = 0)

f L m s T s 1 2

/ %qeris 12

SUCC' (Xi i-1) plusi (zi ,YZ i-1) SUCC' (X i ,X) phisi (Zi ,Y,2+i-1}

t
instantiated value is 4 instantiated value is 48

Figure 4-3 Two terminating evaluation p b for the times program

m a t i o n 01x1 1 ;

Start the evaluation from the chain ~ u c c ~ (~ i ~ - ~) to the exit rule (Xi = 0, Zi = 0) and then

go to the chain ~ ~ ~ S ~ (Z ~ , Y , Z ~ . ~) , that is, S U ~ C ' (X ~ , X ~ . ~) (X i = 0, Zi = 0) 3

PZUS~(Z~, Y , z ~ - ~) .

Evaluation ~ l a n 2:

Start the evaluation from the chain P Z U S ~ (Z ~ , Y , Z ~ . ~) to the exit rule (Xi = 0, Zi = 0) and

then go to the chain S U C C ~ (X ~ , X ~ - ~) , that is, ~ Z U S ~ (Z ~ , Y , Z ~ - ~) * (X i = 0, Zi = 0) =,

S U C C ~ (X ~ J ~ -

Careful readers will see that the first evaluation plan is more efficient than the second. In

the next chapter we will discuss how to select an efficient evaluation plan.

Monotoniciry constraints (mc's) have been recognized as useful in the analysis of

termination [APPKSUIP] [BroSBga] [BroS89b]. It is likely that a given query or a set of

constraints provides some idormation which can be used to stop the evaluation along some

chains.

Definition: A variable V in a compiled formula is monotonic if the value of V at the (i+l)th

iteration is greater (or less) than the corresponding value at the ith iteration (for any i > O),

according to some partial order,

To capture the characteristic of monotonic variables and reflect the partial order explicitly,

Han F-lan911 proposed a mapping function tywhich maps an argument V to W(V) and indicates

the monotonicity of the argument The mapping ycan be an identity mapping, such as Fare, or

from a nonnumerical value to a numerical one, such as Length(LJ, where L is a list. After a

proper mapping y i s performed on a monotonic variable V, the following comparisons are valid:

y(V) > c, W(V) 2 c, v(V) < c, W(V) -< c, or y/lV) = c, where c is a constant in the domain of

y(V1. The following lemma indicates how to identify monotonic variables.

Lemma 4-3: Suppose r is a compiled formula
00

i i i
r = e u u 4, P2, *.-, P,, 4

i=I

and (s ~) is a chain invariant of pf (1 Sj sn). If there is a monotonicity constraint p,: s <, t, then
J

the variables aE positions s and t are monotonic.

Proof: According to ,Property 3-2, the variables at positions s and t share the same variable name

betwxn the kth chain element and (k+l)th chain element of p!.
J

Without loss of generality, we only prove that the variable at position s is marnotunic

during the evaluation.

Lzt value(k,s) denote the value of the variable at position s in the kth chain element of pj.
We prove that value(k,s) <, value(k+l,s) for any k (k 20) during the evaluation.

According to the monotonicity constraint p,: s <, t , value(k,s) <, value(k,t) for any k

(k 2 0). Since (s,t) is a chain invariant of pz., value(k,t) = value(k+l,s) for any k (k 2 0).
J

Therefore, value(k,s) <, value(k+l ,s) for any k (k 2 0).

Thus the lemma holds.

To use monotonicity constraints, we present the following monotonicity blocking rules

where the adornment Pindicates that the monotonic variable is blocked20 by some constant.

20 A monotonic variable V is said to be blocked by some constant if there exists a mapping function y which
maps V to a numerical value, and there exists a constant c such that one of the following conditions is satisfied:
a) pfY) <c if the value of y(V) monotonically increases, where c < d if MV) is convergent to a limit d.
b) w) 2 c if the value of I@) monotonically decreases, where c > d if ylV) is convergent to a limit d.

Monotonicity Blocking Rules: Suppose r is a compiled formula. When a query and a set of

constraints are given, we adorn r as follows.

1 . If a variable V of r is monotonic and a query consmint can block the growth of the value

of V, then V is adorned with P, that is, VP.

2 . Two variables specified by "="' or with the same variable name are adorned with P if one

of them is adorned with p.

4.5.1 Termination Detection

In this section, we present a sufficient condition under which the evaluation of compiled formulas

is guaranteed to terminate. The algorithm for testing this condition is also presented.

Example 4-11: Consider the following program which defines the function 2; = X mod Y.

After the ith expansion, we have the following compiled formula:

where pluri,'~i,Y,Xi-l) is defmed in Example 4-10 with chain invariant (1,3) and satisfies the

following monotonicity constraints: mc = {plus: 1 <, 3, plus: 2 <,, 31, where c , refers to the

usual order on integers. Therefore, according to lemma 4-3, the variables X and XI in the

recursion are monotonic.

Suppose the following query is posed:

query: ?-mod(X,Y,Z), Y=2, Z=0, X ,< 8.

The above observation is due to Han's work in [Hang 11.

Since X is a monotonic variable and the= is a query constraint, X SS, which can block

the growth of X during the evaluation, we have the following finitely evaluable and tem~inating

evaluation plan:

Figure 4-4 A finitely evaluable and terminating plan for the mod program.

Evaluation plan; (Xi < Y, Z = Xi) a p l u s i (~ ~ , ~ , X ~ - ~) , that is, the evaluation starts from the exit

rule (Xi < Y, Z = Xi) and ends with the chain ~~w ' (X~ ,Y ,X~-~) .

By using the constraintx 1 8 , the evaluation can terminate at the fourth iteration with the

solution X= {2,4,6,8].

0

Theorem 4-3: Suppose r is a compiled formula. Given a query and a set of constraints, the

evaluation of P terminates with respect to the query and constraints if the evaluation of any one

chain terminates.

Proof: According to Property 3-1, all the chains of r are synchronized, that is, they all have the

same expansion length during the evaluation. Therefore, the termination of the evaluation of one

chain means the termination of the evaluation of all other chains.

Based on the above theorem and the monotonicity blocking rules, we give an algorithm to

detect whether or not the evaluation of a compiled farmula terminates with respect to a given query

and a set of the constraints.

Algorithm 4-2: Termination Detection Algorithm.

INPUT: A finitely evaluable compiled formula, a query and a set of constraints.

OUTPUT: An assertion of whether the execution of the evaluation plan terminates ('yes') or not

('no3 with respect to the query and the constraints.

METHOD:

If one of the following conditions is satisfied, then return 'yes'; otherwise, return 'no'.

(a) The query is an existence checking query and the existence checking condition is satisfied.

(b) The relation for every predicate of the compiled formula is fmite with respect to the query

and the constraints.

(c) The chain king evaluated is defined on a finite relation without cyclic data

(d) There is a monotonic variable V adorned with /3 after the monotonicity blocking rules are

applied to the fust expanded exit rule set

4.5.2 Analysis of the Termination Detection Algorithm

Now we prove the correctness of the termination detection algorithm.

Proposition 4-2: The termination detection algorithm is correct in the sense that given a finitely

evaluable compiled formula r, a query and a set of constraints, the evaluation of r can terminate if

Algorithm 4-2 returns 'yes'.

Proof: Clearly, according to Theorem 4-3, we only need to show that if one of the conditions in

Algorithm 4-2 is true, then there must exist one chain such that the evaluation along this chain

terminates.

Condition (a): An existence checking query checks if the given fact exists in the database.

When the existence of the fact is known (i-e., the existence checking condition is satisfied), there

is no need to continue the evaluation along any chain and the entire evaluation should be stopped

[Han89b].

Condition (b): If the relation for every predicate of the compiled formula is finite with respect to

the query and the constraints, the evaluation must terminate when no new facts can be generated

DaRa861 [APPRSU89] [HanH89].

Condition (c): If the chain being evaluated is defined on a finite relation without cyclic data, the

evaluation along this chain must terminate when no new facts can be generated.

Condition (d): If there is a monotonic variable V adorned with 0 after applying the

monotonicity blocking rules to the fzst expanded exit rule set, it follows that V is a monotonic

vxiable and the growth of the value of V will be blocked by some constant during the evaluation

according to the monotonicity blocking rules. Therefore, the evaluation of the chain to which V

belongs must terminate. According to Theorem 4-3, the evaluation of r terminates.

Thus Algorithm 4-2 is correct.

Example 4-12: Consider the following program which reverses a list Y to X.

where [Z jXl] is the list construction function and appendpl,Z)Y) is defined in Example 3-6.

After perfcnming the FP-transformation and the recMiation process, we have:

where

and

i f i = 1,

i f i > 1.

if i = I,

i f i > 1.

Suppose the following queries are posed:

query 1: ?-reverse(X,Y), X=[a,b,cJ.

query 2: ?-reverse(X,Y), Y=[a,b,cf .

query 3: ?-reverse(X,Y).

For query 1 one possible evaluation plan is: c o n ~ i (Z ~ - ~ , X ~ , X ~ - ~) a (Xi = fl, Yi = [I) 3

appendi(vi, Zi-lJ'i-l) For query 2 one possible evaluation plan is: apped(Yi, Zi.IyYi-l) (Xi

= [I, Yi = [I) c O ~ S ~ (Z ~ . ~ X ~ J ~ - ~) . However, for query 3 there is no finitely evaluable and

terminating evaluation plan. This example also indicates that the evaluation of a compiled formula

should start at the finitely evaluabk and terminating chains.

Whether or not an evaluation plan for a compiled formula is safe is influenced by whether

or not sufficient constraints are providd In the next chapter, we will &cuss how to generate a

safe, consmint-based evatuarion plan for a compiled formula.

Chapter 5

Constraint-Based Evaluation of Compiled Formulas

The preceding chapter discusses the conditions which guarantee the safety of compiled formulas.

This chapter discusses the evaluation of compiled formulas by incorporating constraints.

Three classes of constraints are discussed: integrity constraints, rule constraints and query

constraints. Three types of integrity constraints are considered: type constraints, finiteness

constraints and monotonicity constraints.
Type Constraints

Integrity Constraints Finiteness Ccmtraints

Rule Constraints Monotonicity Constraints

Query Constraints

Figure 5-1 Constraints used in the evaluation of compiled formulas.

Integrity constraints essentially reflect the relationship among data in databases and/or the

arguments of functions and predicates in deduction rules. Type constraints are used to check the

type compatibility between the arguments of predicates and the instantiated information provided

by queries. Finiteness constraints are used to generate finitely evaluable plans. Generating a

finitely evaluable plan for a compiled formula means ordering the chains and the exit rule set of the

compiled formula in such a way that the finite evaluability can be guaranteed. An algorithm is

presented to generate the finitely evdmble plan for a compiled formula. Monotonicity constraints

m used in termination detection.

Rule constraints have been recognized to be useful in search space reduction during the

evaluation of compiled formulas [HEH89] [Han91]. We will show that rule constraints should be

compiled together with the transformed and rectified functional recursions to reduce the search

space in iterative processing.

Query constraints are also shown to be,useful in search space reduction. They can be used

to select evaluation directions and to restrict the search space during the evaluation. By selection

of evaluation directions, we mean to choose some chain(s) or the exit rule set to start the

evaluation. The main selection criterion is selectivity. It has been recognized that an efficient

evaluation of recursions should start from a small set which utilizes all the binding information

PaRa861 [IianH87] man89bJ [Han88a] IIJilm851 [BeRagn. One example is the magic set

method whose basic idea is based on this criterion pMSU86J [SaZa871 m 9 0] [BeRa87]. It

uscs the binding information provided by queries to derive a small set, called magic set, to start

the evaluation. Our study shows that query constraints are also very important in deriving a small

set to start the evaluation. Moreover, query constraints can also be used during the evaluation of

recursions to restrict the search space.

Answer Set

Reduced Search Reduced Search Space
Restricted by a Query ,

ule Constraints, and

A Small Set Derived

Figure 5-2 Search space reduction by nsing rule constraints and query constraints.

In our study, a general model for cost is assumed. Many general cost models (also called

measuring models or measuring functions in the literature [CGMN] [ZWH89] [KrZa88]) have

been developed for database systems. Since our evaluation method is independent of the cost

model used, we merely summarize some properties of cost models. The cost is usually dependent

on parameters, such as the join methods used, access methods available, disk YO, cardinality of

the operands, selectivities, etc. The cost influences the selection of efficient evaluation plans.

Suppose r is a compiled formula:
w

Let 112: no a f i * ... + 4 denote an evaluation plan for r, where f2 is the plan name and

lli = (q I q is a chain or the exit rule set of r) (1 5 i S k 5 n)21. nj 3 n, means that every

predicate in lIi will be evaluated before any predicate in n, is evaluated (0 S i 5 k, O j Sk).

Each predicate q in ni is associated with an integer i, called the evaluation order of the

predicate and denoted by order(q). In other words, order(q) = i iff q E Ui. For instance, if n = 2

and pi e p i is a safe evaluation plan, then such a plan and the evaluation order can be

illustrated as follows.

Figure 5-3 Illustration of evaluation plans and evaluation orders.

k is a positive integex and is less than m equal ro the total number of the chains of r.

1n essence, the evaluation of a compiled formula with respect to a given query and a set of

constraints is based on the relational operations, particularly join and union operations [BaRa86]

vllm89bJ. Therefore, when a query and a set of constraints are given, the evaluation of the
m

i i compiled formula r = e u u (pl,p2,e) according to J2: qe* pi can be illustrated as follows.
i=l

i th iteration

2 nd iteration

1 st iteration

e ro=e 0 th iteration

Figure 5-4 Illustration of the evaluation of a compiled formula.

As we can see from Figure 5-4, query constraints can be used in the following ways: (i)

before the evaluation, they can be used to select a small, relevant set (i-e., the cost is relatively

small) to start the evaluation; (ii) during the evaluufion, they can be used to reduce the search

space to a more relevant one by discarding those facts which do not satisfy the constraints; (iii) at

the end of the evafu&on, they shodd be used to select the satisfactory answers.

The generation of an efficient evaluation plan for a compiled formula is affected bj two

factors: the evaluation plan must be safe, and the evaluation should start from the predicate(s) with

felatiwly smalI cost.

This chapter is organized as follows. Section 5.1 discusses the use of integrity

constraints, with each subsection concentrating on one type of integrity constraint. The generation

of safe evaluation plans is considered. Section 5.2 discusses the incorporation of rule constraints

to reduce the search space. Section 5.3 discusses how to use query constraints to reduce the

search space. In Section 5.4, we present a method to generate a safe, constraint-based evaluation

plan for a compiled formula

5.1 Incorporation of Integrity Constraints

In this section, we consider three types of integrity constraints and discuss how to incorporate

them into the evaluation of a compiled formula.

5.1.1 Incorporation of Type Constraints

As discussed in Section 4.2, the types of predicate arguments are registered as type constraints

which should be used to check the type compatibility between the arguments of predicates and the

instantiated information provided by queries. The following example shows the importance of

type checking.

Example 5-1: Consider the following nanc~al - number program discussed in Example 3-4.

According to the results, we have the following compiled formula:

The following query asks if 4.5 is a natural number.

query: ?-natural - nmber(X), X = 4 5 .

Because all the arguments of succ are defined on integers but 4.5 is not an integer, this

query should be rejected,

0

When a database is defined, the types of attributes of EDB relations are defined. The

types of arguments of the functions supported by the database are also defmed. When an IDB

predicate is defined, the types of its arguments can be inferred.

Let Vp denote a variable of predicatep. We say the type of Vp can be inferred from that of

Vq , denoted by Vp t Vq, if there is a rule with p as the head and q in the body, or there exists a

q' where V p c Vq: Vq# t Vg (transitivity).

Type Inference Rules:

Suppose Vp is a variable of predicate p.

1 . I f p is an EDB predicate or a functional predicate2*, the type of Vp is already defmed

when the database is defined

2 . If p is an IDB predicate and Vp c Vq, the typc of Vp is that of V4.

When an IDB predicate is defined, the type inference rules should be applied to the IDB

predicate and the types of its variables should be registered as type constraints. Using type

constraints, we can design an algorithm to check type compatibility.

Note that a functional predicate is bansformed from a function symbol mri the FP-rransformation asm5ates all
the integrity cansaaints (inchikg rype constraints) specifled for ttte h a . I S . -11 with the relation for the functional
prediaue.

78

Algorithm 5-1: Type Compatibility Checking Algorithm.

LNPUT: A query predicate and the type constraints for the predicate.

OUTPUT: An assertion of whether every instantiated value in the query satisfies the type

constraints.

METHOD:

if any value provided by the query violates the type constraints registered for the predicate

then return('no')

else return('yes').

Example 5-2: Consider the following program which computes the greatest common divisor of

two integers.

query: ?-gcd(X,X1 ,Z), X = a, XI = b.

where mod(X,X1,X2) is defined in Example 4-1 1 and the query asks what is the greatest common

divisor of a and b.

The type compatibility checking algorithm returns 'no' since a and b are characters which

do not match the types of the arguments of the D B predicate gcd.

0

5.1.2 Incorporation of Finiteness Constraints

Section 4.4 gives a necessary and sufflcient condition which guarantees the finite evaluability of a

compiled formula. In this section, we discuss how to use finiteness constraints to generate

finitely evaluable plans.

Suppose r is a compiled formula and L?: 3 nl ... 3 nk is an evaluation plan

for r. $2 is said to be ajlnitely evaluable plan if every relation for the predicate being evaluated

according to i2 is finite.

The existence of a finitely evduable plan depends on whether the finite evaluability testing

algorithm (Algorithm 4-1) returns 'yes'. Therefore, when a query and a set of constraints are

given, the finite evaluability testing algorithm should be performed first.

The discussion in Chapter 4 indicates that the finitely evaluable plans for a compiled

formula r should be generated according to the finiteness propagation in r. To generate a finitely

evahable order for a compiled formula, we use a finiteness dependency graph to analyze the

finiteness propagation.

Definition: Suppose r is a compiled formula The finiteness dependency graph of r wiih

respect to a given query and a set of constraints is a directed graph G=(U, E), where U = {V I v is

a chain or the exit rule set of r) and (v,p) E E iffthe finiteness of one variable of p is propagated

from v via a shared variable.

We exarnine an example below.

Example 5-3: Consider the following append program discussed in Example 3-6.

query: ?-append(U,V, W), W = [a,b,c].

where the functional predicate cons satisfies the finiteness constraintsfc = {cons: { I ,2} -4, cons:

3 +{1,2}} (Example 4-4).

According to the results (Example 3-6), we have the following compiled formula:

The finiteness propagation in the above rule is shown below.

Figure 5-5 The f ~ t e n e s s propagation in the append program.

Generation of Finitely EvaIuable Plans

Based on the Einiteness propagation in a compiled formula, we can develop an algorithm to

generate a finitely evatuable plara.

Algorithm 5-2: Finitely Evaluable Plan Generating Algorithm.

lNPUT: A compiled formula, a query and a set of constraints.

OUTPUT: A finitely evaluable plan in which the chains and the exit rule set are assigned an

evaluation order, or 'no' if there is no finitely evaluable plan.

riazHOD:

Test the finite evaluability of the compiled fomula (Algorithm 4-1). If the compiled

formula is not finitely evaluable, stop and inform the user with 'no'.

For each node23 v in the finiteness dependency graph of the compiled formula,

or&r(v):=U.

Find all the strongly connected components (SCCs) and replace each SCC with a

supernode (S-node). Let DAG denote the new, acyclic graph.

Perform a topological sort on DAG by increasing the evaluation order by I whenever an

arc is encountered.

Every node in each SCC is assigned the same evaluation order as that of the corresponding

S-node.

Notice that if all the predicates of a compiled formula are EDB predicates, Algorithm 5-2

wilI assign the same evaluation order, 0, to each of them. In other words, a finite set of answers

can always be generated if the relations for these predicates are fmite. Several researchers have

drawn the same conclusion paRa86f rAPPRSU891 [SaVa89] (Ullrn89aI.

Before analyzing Algorithm 5-2, we examine an example.

23 Notice tIm a notie corresponds to a chain or the exit rule set of a compiled formula

82

Example 5-4: The following finitely evaluable order is generated by applying Algorithm 5-1 to

the append program discussed in Example 5-3 with respect to the following query:

query: ?-append(UyVy W), W = [a,b,c].

and finiteness constraints: fc = {cons: {1,2]-93, cons: 3+jly2]] .

order

Table 5-1 The evaluation order generated for the append program.

Therefore, a finitely evaluable plan is: consi(Xi, Wi, Wi-r) (U i = [] , V = Wi)

Analysis of the Finitely Evaluable Plan Generating Algorithm

Now we analyze Algorithm 5-2 and show that it can order the chains and the exit rule set of a

compiled formula.

Theorem 5-1: Algorithm 5-2 is correct in the sense that given a compiled formula, a query and a

set of constraints, the evaluation plan generated by Algorithm 5-2 is finitely evaluable.

Proof:

Step 1 of Algorithm 5-2 ensures that there exists a finitely evaluable plan and its

cormmess is guaranteed by Theorem 4-1. Step 2 is an initialization step which ensures that every

node has an evaluation order. Step 3 generates a directed, acyclic graph (DAG) in which each

S-node represents a set of strongly connected nodes. The topological sort performed by step 4

increases the evaluation order by I whenever an arc is encountered This is correct because the

node whose finiteness is propagated from another predicate must be delayed until it becomes

finitely evaluable. Step 5 is correct because the nodes whose finiteness depends on each other

(i.e., they are strongly connected) should be evaluated together (have the same evaluation order as

that of the corresponding S-node).

Thus the theorem holds.

Algorithm 5-2 is linear because finding all SCCs of a directed graph G=(V,E) can be done

in O(max(/V/, /El)) time [AHU74] and a topological sort on a DAG=(Vr,E') can be done in

O(JV'/+/E'/) time [AHU74]. The intuitive meaning of Algorithm 5-2 is that the evaluation of the

predicates whose finiteness is dependent on other predicates should be delayed until their relations

become finite.

Example 5-5: We use another query to examine the gcd program discussed in Example 5-2.

where mod(X,XIX2) is defined in Example 4-1 1.

After performing the FP-transformation and the rectification process (see Sections 3.1 and

32), we have:

After the ith expansion, we have the following compiled formula:
QQ

Suppose the following query is posed:

query: ?-gcd(X,Xl,Z), X = 8, Z = 2.

The finiteness propagation is illustrated as follows, where a finiteness constraint mod:

{1,2} + 3 is used.

mod 6: , x i b , xi$)

Figure 5-6 The finiteness propagation in the gcd program

After performing Algorithm 5-2, the following evaluation order is generated:

I I
order I

Table 5-2 The evaluation order generated for the gcd program.

Therefore, a finitely evaluation plan is: (Xi = 0, Z = Xi.]) 2 mo&Xi-IXiXi+l)-

€3

5.1.3 Incorporation of Monotonicity Constraints

Section 4.5 gives a sufficient condition which guarantees the termination of the evaluation of a

compiled formula. In this section, we enhance the results developed in Section 4.5 and

demonstrate the application of monotonicity constraints in termination detection.

As shown in Algorithm 4-2, the evaluation of a compiled formula in which functional

predicates are defined on finite domains always terminates because the functional predicates

obtained from the F'P-transfornation can be viewed as finite EDB relations [HanW90] fHan91J.

In addition, the evaluation also terminates if some constraints restrict every infinite domain to a

finite one. However, if the relation for a predicate being evaluated is defined on an infinite

domain or can not be restricted to a finite domain by any constraint, it is often essential to apply

monotonicity constraints to terminate the evaluation.

Example 5-6: We examine the application of monotonicity constraints.
>

1. Arithmetic Functions

An arithmetic operation often implies the monotonicity of a function. For instance,

Sl > 0, Farel > 0, and Sl + Farel = Fare imply that Fare > Sl and Fare > Farel. X1 =

succ(X) implies XI > X.

2. List Functions

The monotonicity of a list manipulation function usually lies at the growing or shrinking of

the length of the list. For example, cons results in a longer list than the original ones.

3. Term Construction Functions

The monotonicity of a term constructor/de-constructor is similar to that of a list operation.

The repetitive application of a term constructor results in an increasingly deeply-nested

sequence of functors, such asfCf(-JX) ...) while the repetitive application of a term de-

constructor, such as fl, results in an increasingly less-nested sequence of functors. In

other words, the nested level has monotonic behavior.

4. EDB Relations

Some attributes in an EDB relation may have certain monotonic behavior. For example,

rhe arrival time of a fiight is always later than its departure time. An acyclic EDB relation

can also be viewed as a partially ordered finite relation.

5. Termination of Iterations

One may like to terminate the evaluation of a compiled formula after a certain number of

iterations when there is no appropriate termination condition. It essentially treats the

number of iterations as a monotonically increasing function.

17

Lemma 4-3 indicates how to identify monotonic variables. Han [HanSl] introduced a

mapping function ywhich maps the value of a variable V to a numerical value HV) and he gave

the following result: if the value of y(V) at the (i+l)th iteration is greater (or less) than the

corresponding value at the ith iteration (for any i > 0), then y(V) is monotonic [Hangl]. The

constant which blocks the growth of HV) is called a ternination restraint [HanW90] [Han91]. A

termination restraint can be provided by a query, a constraint, a rule, or an EDB relation. If lyrV)

is convergent to a limit, say d, the termination constraint should be less (greater) than d if w) is

monotonically increasing (decreasing) during the evaluation. The monotonicity blocking rules

(Section 4.5) are based on the above observations.

According to the monotonicity constraints shown in Section 4.5, a variable V is adorned

with p (i-e., VS) if it is a monotonic variable and the growth of its values is blocked by some

constant during the evaluation. If we use the mapping function yintroduced in WanBl], the

above rule can be elaborated as follows. Suppose the values of NV) monotonically increase. If

there is a constant c provided by a query or a constraint which validates the following

comparisons: y(V) < c, w) = c, or W(V) S c (c < d if NV) is convergent to a limit 4, V should

be adorned with P, indicating that the growth of the value of V is blocked during the evaluation.

A similar interpretation can be given if the values of w) monotonically decreases.

Example 5-7: In Example 3-7, the value of Fare in the IDB predicate travel is monotonically

increasing but not convergent to a limit. Thus a restraint on the maximum value of Fare, such as

Fare 5500, ensures the termination of the evaluation. Therefore, Fare should be adorned with P

(i-e., ~ a r e S) and we should register 500 as a termination restraint of Fare so that we can use this

information to terminate the evaluation.

Similarly, the length of L in the predicate travel is monotonically increasing since

length(L) > length(Ll). Thus a restraint on the maximum length of L, such as, length&) < 7,

ensures the termination of the evaluation and L should be adorned with P. In addition, we should

register the constant 7 as a termination restraint on L.

The following algorithm is used to register the possible termination restraints for those

variables which have monotonic behavior according to some partial order, say y.

Algorithm 5-3: Incorporation of Monotonicity Constraints.

INPUT.. A fdte ly evaluable plan, a query and a set of constraints.

Ob'TPbT. A szfe evaluable plan in which termination restraints are registered.

MEI'HOD:

1 . Apply the termination detection algorithm (Algorithm 4-2). If it returns 'no', stop and

inform the user with 'no'.

2 . If there exists a variable V such that V is adorned with f l register the constant c which

blocks the growth of V as a termination restraint.

The above algorithm enhances Algorithm 4-2 by registering the termination restraint(s) so

that we can use this information to terminate the evaluation. Notice that if there exists a variable V

adorned with P, there must exist. a constant which can block the growth of V (see the

monotonicity blocking rules in Section 4.5).

5.2 Incorporation of Rule Constraints

In this section, we discuss how to use rule constraints to reduce the search space.

As discussed in Section 4.2, a rule constraint adds one or more conjuncts to the body of a

deduction rule and changes it to a new, more constrained one. Therefore, compilation should be

performed on the modified set of deduction rules. Such a modification confines the search to a

smaller EDB relations or enforces stronger constraints on the join of EDB relations, and thus

reduces the search space. We examine an example below.

Example 5-8: Consider the following rule constraints added to the travel program.

(a) international airport comnaint: The intermediate airports must be international airports.

(b) lay-over time constraint: The lay-over time should be between one and three hours.

(c) sameflight direction comtraint: The flight direction of zach connecting flight should be the

same as that of the entire travel.

Tie above constraints can be added to the body of the recursive rule of the travel program.

For example,

constraint (a) can be added to the rule as irrternatiOnal(Depl), where Depl represents xn

intermediate airport (Example 4-6).

constraint (b) can be added to the rule as 1 SIDTime - IATime, IDTime - IATime 5 3 , and

constraint (c) can be added to the rule as smne - direcn'on(Dep,Depl ,Am).

By adding these constraints to the body of the deduction rule, the original rule becomes a

new, more constrained one. For example, international(Depl) confines the search for transfer

airports to international airports only and reduces the size of the EDB relation to be participated in

iterative processing. The other two constraints play similar roles.

Notice that a powerful system should allow rule constraints to be added and/or deleted

flexibly. A method for dynamic association of deduction rules with rule constraints is studied in

[HEH89 3.

Now we show that incorporating rule constraints into the query independent compilation

can reduce the search space [Han91]. Consider the following single-chain recursion:

where X, Y and Z are variable vectors and p is a chain element. Suppose cl(VI) , ..., and ci(Vi)

are rule constraints. By adding them to the body of the rule, the r n W ~ e d r ~ l e becomes,

The newly added constraints form conjunctions with the predicates p and r. Since they

enforce restrictions on the deduction rule, if they are compiled together with the rule, stronger

constraints are enforced on the rule, which reduces the size of the relation for r generated during

the iterative prdcessing and the cost of the evaluation.

The case of a multi-chain rule can be reasoned similarly.

Therefore, we have the following results [Han91]:

I f a rule constraint enforces restrictions on a set of deduction rules in a fiznctional linear

recursion, the compilation of rule constraints together with the corresponding rules reduces the

cost of query evaluation.

Rule constraints can be used to constrain the nondistinguished variables (the variables

appearing only in the body of the rule) of a deduction rule. However, these variables cannot be

constrained at query level because they do not appear in any query predicate. Some user

requirements, though seemingly like query constraints, are essentially rule constraints. For

example, a traveler may require that (i) the lay-over time between each pair of connecting flights

be less than two hours, or (ii) every intermediate airport must be an international airport. Such

constraints must include some nondistinguished variable(s) in the body of the recursive rule and

cannot be specified at the query level. Therefore they should be rule constraints, which add

constraints to the body of the recursive mle rather than to the query m e a t e .

r(...) :- ... p(... V...)

Suppose V does not appear in r(. . .
and we want to add a constraint onV,
then it must be a rule constraint.

Figure 5-7 Rule constraints added on a nondistinguished variable.

5.3 Incorporation of Query Constraints

A popular heuristic of query processing in both traditional and deductive database systems is

pushing selection as deeply as possible into a relational expression pan91] [Ullm89b]. Since a

selection is often represented by a query constraint, the heuristic can be rephrased as pushing

query constraints as deeply as possible into the compiled formulas in the query

evaluation.

However, it is inappropriate to blindly push all the query constraints into a compiled chain

in the evaluation. Techniques should be developed far appropriate use of query constraints in the

processing.

Assume that r(Xo) is a query predicate and Cl (X I) , C2(X2), ..., Ci(Xi) are query

constraints, where Xo, . .. , Xi are variable vectors. That is, a query is of the form,

The above query constraints are used in the following ways to reduce the search space: (i)

Before the evaluation, they can be treated as query instantiation information used at the stzrt of a

chain processing. To reduce the size of the initial relation at the start of the iterative processing, a

more selective end should be taken as the start point. (ii) During the evaluation, they should be

used to reduce the search space to a more relevant one by discarding those facts which do not

satisfy the constraints. (iii) At the end of the evaluation, they should be used to select satisfactory

answers.

We examine an example.

Example 5-9: Suppose a user poses a query on the travel database as follows:

find a set of (connecting) flights from Vancouver to Ottawa, departing after 8am,

arriving between 6pm and 7pm, with the total fare no more than $500.

The above request can be expressed by the following query:

with the query constraints:

(a) Dep = Vancouver,

(b) Arr = Ottawa,

(c) DTime 2 8,

(d) ATime 2 18,

(e f ATime ,< 19,

If) Fare 5500.

Before the evaluation, a more relevant, selective predicate should be chosen to start the

evaluation. Therefore, the evaluation should start at the arrival end because the query constraints

(d) and (e) provide better selective information for the arrival end than the departure end (i-e.,

query constraint (c)).

The constraint If), Fare 1500, should be used during the evaluation and applied at each

iteration. Since the value of Fare, defined by the function sum, is monotonically increasing, the

query constraint (n can be used to reduce the search space based on the following observation: if

the value of Fare generated at an iteration is greater than 500, the final answer generated from this

intermediate result will not be a satisfactory answer.

To derive satisfactory answers, the query constraint (c) should be used at the end of the

evaluation to ensure that the departure time is afkr 8am.

5.4 Generation of Safe, Constraint-Based Evaluation Bans

As we can see from the previous sections, a co~straint can be used in the analysis of safety and/or

in search space reduction. For example, Fare 5500 can be used to terminate the evaluation of the

travel program and to reduce the search space during the evaluation. In this section, we discuss

how to use different constraints to generate a safe, constraint-based evaluation plan for a compiled

formula. The efficiency is achieved by pushing constraints into the evaluation to reduce the search

space.

Even though a general model for cost is assumed in our study, the cost is normally

affected by different implementation methods and is usually dependent on many panmeters, (e.g.,

the join methods used, access methods available, disk I/O, cardinality of the operands,

selectivities, etc.). Since the cost is in most cases system-dependent, the actual cost is normally

considered as a black box [CGMW] except for those properties which can be utilized in the query

processing [KrZa88]. One property used by several methods (e.g., the magic set methad

[BMSU8@, the counting method [SaZa86], the multi-way counting method [Han89b], the magic

counting methods [SaZa87J) is selectivity, In this thesis, we mainly consider this property.

In practice (e.g., LDL prototype [TsZa86] [CGKNTZ90]), the cost of an unsafe

evaluation is considered as an infinite cost fKrZa881. Therefore, safe evaluation must be

guaranteed first. When evaluation is guaranteed to be safe, the selectivity should be considered by

using the given query and set of constraints.

In the evaluation of a chain (e.g., SUC&X~,X~-~)), processing can proceed in two different

directiolls: foward evaluation which proceeds from the ith chain element to the (i+l)th element

(e-g., from su~clX;,X~-~) to suc~(X~+~,Xt)), and backward evaluation which prxeeds in the

reverse direction (e.g., fiom SUCC@~+~,X~) to sZCc(XiJi-l)).

The first criterion in the selection of an evaluation direction is safety. Far example, for the

chain s u c c i (~ ~ , X ~ - ~) , if the finiteness of Xi can only be propagated from Xi_l9 the evaluation

direction must be forward. When both directions can guarantee safety, the selection criterion

becomes the selectivity of each end. For instance, in Example 5-9, the evaluation of theflight

chain can start from either end: start the search from the departure end (vancouver) or the arrival

end (crnawa). However, as analyzed in Example 5-9, the evaluation from the anival end is more

efficient because the query constraints (d) ATime 2 18 and (e) ATime S 19 provide more selective

information for the arrival end than the information provided by the query constraint (c) DTime 2

8 for the departure end.
firward Evuluurion

Vancouver Ottawa Constraints: Cons train t:
rel@ghrf

jtighr
DTime 2 8:00 rellflight) ATime 2 18:OO

ATime 5 19:00
Backward Evaluation

Push the Instatiated
Information Provided by the
Query and the Constraints.
Select an Evaluation
Direction according to the
Selectivity at Both Ends.

Figure 5-8 Selection of evaluation directions according to selectivity.

We also notice that there may be more than one way to propagate finiteness in a compiled

formula. In this case, we should propagate the finiteness from predicate(s) with relatively small

cost. We examine an example below.

Example 5-10: Recall that in Example 4-10 we have two evaluation plans when query ?-

rimes(# ,YJ4S) is posed:

As discussed in Example 4-10, both evaluation plans QI and f& are safe. However,

finiteness should be propagated according to 4 because the relation generated by s~cc'(X,,X~.~)

is much smaller than the relation generated by pld(ai,~&). In order words, finiteness should

be propagated from the predicate with relatively small cost (i-e., S U C C ~ (X ~ X ~ _ ~)) .

13

Algorithm 5-4: Generation of an Efficient Evaluation Plan for a Compiled Formula.

INPUT: A compiled formula, a query and a set of constraints.

OUTPUT: A safe, constraint-based evaluation plan or 'no' if there is no safe plan.

MErHOD

1 . Apply Algorithm 5-1 to check the type compatibility. If Algorithm 5-1 returns 'no', stop

and inform the user with 'no'.

2 . Use the instantiated information provided by the query and the constraints to estimate the

relative cost of evaluating each chain and the exit rule set.

3 . Based on the cost analysis, propagate the finiteness from the predicate(s) with relative1 y

small cost. If the evaluation of a chain can start from forward and backward directions,

determine one evaluation direction based on the relative selectivity of the query constraints

at both ends of the chain. Apply the query constraints belonging to this end as query

instantiations to reduce the size of the initial set.

4 . Apply Algorithm 5-2 to generate a finitely evaluable plan. If Algorithm 5-2 returns 'no',

stop and inform the user with 'no'.

5 , Apply Algorithm 5-3 to detect if the plan is a terminating evaluation plan and register the

termination restraint(s). If it is not a terminating plan, stop and inform the user with 'no'.

6 . Use the information provided by the query, the rule constraints and query constraints to

discard those facts which do not satisfy the requirement of the query or the constraints.

7 . Use terminadon restraint(s) PO terminate the evaluation when necessary. When the

evaluation terminates with a set of answers, select those answers which satisfy the query

constraints.

D

T hearem 5-2: AIgorithm 5-4 is correct in the sense that, given a compiled formula, a query and

a set of constraints, the evaluation plan generated by Algorithm 5-4 is a safe evaluation plan and

correctly incorporates the given constraints.

Proof:

Step 1 uses type constraints and is necessary since invalid information provided by a

query is inconsistent with a database system. Steps 2 and 3 ensure that finiteness is propagated

from the predicate(s) with relatively srnd cost so that the finite evaluation plan generated by step 4

can st,m from a more relevant and more selective set. To estimate the cost, it is necessary to use

the instantiated information provided by the query and different types of constraints. Step 4

ensures the finite evaluability of the evaluation plan. Its correctness is guaranteed by Theorem 5-

1. Step 5 ensures that the evaluation must terminate. Its correctness is guaranteed by Theorem 4-

2. Step 6 utilizes the information provided by the query, the rule constraints and the query

constraints in the evaluation to reduce the search space. Any fact which does not satisfy this

information should be discarded since the final answer derived from this fact will not be a

satisfactory answer. Step 7 is necessary since Step 2 already ensures the termination of the

evaluation. If there is a variable which has monotonic behavior during the evaluation, the

termination restraint(s) should be used to terminate the evaluation when possible. In addition,

only those answers which satisfy the query constraints should be selected.

To outline the results developed in this chapter, we examine the travel program discussed

in Chapter 1.

Example 5-11: According to the results in Example 3-7, we have the following compiled

travel(L,.Dep,DTime,Arr,ATime,Fare) = jlight(L,Dep,DTime,Arr,ATime Fare) u

where flig h t i (~ n o ~ - ~ ,Depi-1 ,DTirnei-l ,Depi,IATimei-1 ,Si.1), S U ~ ~ (S ~ . ~ , F a r e i , ~ a r e ~ - ~), and

c o r n i (F ~ ~ - ~ ,L,i,Li-l) are defined in Example 3-7.

We analyze the questions asked by the customer in Example 1-1 and discuss safe,

constraint-based evaluation plans to answer these questions. The queries corresponding to these

questions are from Examples 2-5 and 4-6.

query 1: ?-travel(L,Dep,-Arr,,3, Dep = Vancouver, A rr = ottawa.

The finiteness propagation with respect to the above query can be illustrated as follows.

Figure 5-9 The finiteness propagation in the travel program.

After performing Algorithm 5-2, we have the following evaluation order:

Table 5-3 The evaluation order generated for the travel program.

fright(LiPepiJDTimeiiI ,ArrATime,Farei)

Therefore, the finitely evaluable plan is:

order

0

After performing Algorithm 5-3, a 'yes' is returned, indicating that the above evaluation plan can

terminate.

The above evaluation plan indicates that the evaluation can start at either end: the

Vancotrver end or the Ottawa end

query 2: ?-kavel(L,Dep,DTime,Arr,-,A,

Dep = vancouver, Arr = oftawa, 7:00 5 DTirne, DTime 5 8~00.

Interested readers can see that the safe evaluation plan for the above query is the same as

that f a query 1 :

However, the query constraints 7:00 SDTime and DTirne ,<8:00 provide better selective

information, that is, the cost for evaluating from the Vancouver end will be lower than that from

the Ottawa end. Therefore, the evaluation should start from the Vancouver end and the evaluation

plan should be:

flighti(Fnoi-l ~ep~-~PTime~-flep~,TATime~-~ Jsi-l)*flight(~~~e~i,~DTimi ,ArrJATimeJFarei)

~ { C O ~ Z S ' (F ~ O ~ - ~ ,L~,L~-I) , S U ~ ' (S ~ - ~ ,FareiJfarei-])].

query 3: ? -travel(L,Dep,-,Arr,A Time,-),

Dep = Vancouver, Arr = ottawa, 11:45 < ATirne, ATime < 12:15.

Interested readers can examine that the safe evaluation plan for the above query is the same

as that for query 1:

However, the query constraints 11:45 < ATime and ATime < 12:15 provide better

selective information, the cost for evaluating from the Ottawa end will be lower than that from the

Vancouver end. Therefore, the evaluation should start from the Ottawa end and the evaluation

plan should be:

fligh?(Li&epi,lDTimei-IJrrJTimefarei) *fligh+(~noi.i J ~ e p i - l D~ime~-@ep, lATirne~-~ >Si-

1) S { c o ~ s ~ (F ~ o ~ - ~ . ~ ~ . ~ ~ - ~) , ~~n~(s~-~,~are~~Fare~-~)}.

query 4: ?-iravel(L,Dep,-&r,-,Fare), Dep = Vancouver, AI'P = ottawa,

Fare 5 500.

Interested readers can examine that the safe evaluation plan for the above query is also the

same as that for query 1:

However, the information provided by the query constraint Fare 5500 can be used

during the evaluation to reduce the search space. We notice that Fare is a monotonic variable

(monotonically increasing) during the evaluation. Therefore, whenever an intermediate answer

with Fare greater than 500 is generated, this answer should be discarded since any result derived

from this fact will not be a satisfactory answer to the query. Consequently, the search space can

be restricted to a smaller, more relevant paion.

query 5: ?-travel(L,Dep,,Arr,,3, Dep = Vancouver, Am = sttawa, Fare 5 500

and every intermediate airport must Be an international airport..

Recall that to express the above constraint, we need a rule constraint, international(Depl),

which registers all the international airport names in its relation. As analyzed in Section 5.2, this

rule constraint should be incorporated into the compilation.

Let intf2ig ht(Fno,Dep,DTime,Depl ,lATime,S) :- flight(Fno P e p DTime,Depl JATime,S),

international(DepI)

where the relation for the rule constraint international(Depl) registers all the international airports.

Then we have the following compiled formula:

Notice that the relation for intJight now becomes a more constrained one which contains

only the information about those flights which stop at international airports. Therefore, any

intermediate answer which does not satisfy this rule constraint should be discarded during the

evaluation. Consequently, the search space can be restricted to a smaller, more relevant portion.

0

Chapter 6

Conclusion

We have examined the evaluation of functional recursions. Since functions are normally defined

on infinite domains, safety is treated as an important issue in this study. Different meanings of

safety used in the literature were discussed and our definition of safety was presented. To

facilitate the analysis of safety, constraints were categorized into three classes: query constraints,

rule constraints and integrity constraints. We showed that for compiled fomulns, safety can be

viewed as a combination of two properties: finite evaluability and termination. A necessary and

sufficient condition guaranteeing the frnite evaluability of a compiled formula was presented. The

algorithm for testing the condition was developed. A sufficient condition guaranteeing the

termination of the evaluation of a compiled formula was presented. The algorithm for testing that

condition was also developed.

The generation of efficient evaluation plans is another important aspect of this study. We

proposed a safe, constraint-based evaluation method for compiled formulas. Based on the

classification of constraints, we showed that type constraints should be used to check type

compatibility. Finiteness constraints can be used to generate finitely evaluablc plans based on

finiteness dependency graphs and a finiteness ordering algorithm de~.c+loped in this thesis.

Monotonicity constraints can be used in termination detection. Rule constraints should be used in

compilation to reduce the search space. Query constraints are shown to be useful in the selection

of efficient evaluation plans and search space reduction.

Safety and the efficient evaluation of functional recursions have been investigated in

previous studies PMSU861 DroS89bl m S 8 8] FBS871 [SaVa89] which pave the way for our

research. Regarding the safety of functional recursions, the difference between our study and

previous research is that we consider safety with respect to a given query and a set of constraints

specified over a given database instance. In addition, our study of safety is based on compiled

formulas. This approach allows us to a give detailed analysis of safety. Regarding the efficient

evaluation of functional recursions, our study is based on the query-independent compilation

method. This allows us to incorporate constraints into the recursive query processing and

generate efficient evaluation plans.

However, the functional recursions studied in this thesis are limited to linear recursions. It

is important to extend our results to other recursions, such as non-linear recursions and mutual

recursions. If a non-linear recursion or a mutual recursion can be transformed into a linear

recursion, the techniques developed in this thesis can be applied; otherwise, new techniques might

be required.

References

[AG88] S. Abiteboul and S. Grumbach, "COL: a Logic-Based Language for Complex

Objects", Proceedings of International Conference on Extending Database
Technology (EDBTW), Venice, Italy, March 1988, pp. 271-293.

[AH881 S. Abiteboul and R. Hull, "Data Functions, Datalog and Negation", Proceedings

of the 1988 ACM-SIGMOD Conference on Management of Data, Chicago, IL,

1988, pp. 143-153.

[AHU74] A. V. Aho, J. E. Hopcroft and J. D. Ullman, The Design and Analysis of
Computer Algorithms, Addison-Wesley, Reading, MA, 1984.

[APPRSU89] F. Afrati, C. H. Papadimitriou, G. Papageorgiou, A. Roussou, Y. Sagiv

and J. D. Ullman, "On the Convergence of Query Evaluation", Journal of

Computer and System Sciences, Vol. 38 No. 2, 1989, pp. 341-359.

[BaRa86] F. Bancilhon and R. Ramakrishnan, "An Amateur's Introduction to Recursive

Query Processing Strategies", Proceedings of the 1986 ACM-SIGMOD Conference

on Management of Data, Washington, D.C., May 1986, pp. 16-52.

[BeLe86] M. Bellia and G. Levi, "Relation Between Logic and Functional Languages: A

Survey", Journal of Logic Programming, Vol. 3, No. 2, 1986, pp. 217-236.

[BeRa87] C. Beeri and R. Ramakrishnan, "On the Power of Magic", Proceedings of the

6th ACM Symposium on Principles of Database Systems, San Diego, CA, March

1987, pp. 269-283.

@3MSU86] F. Bancilhon, D. Maier, Y. Sagiv and J. D. Ullman, "Magic Sets and Other

Strange Ways to Implement Logic Programs", Proceedings of the 5th ACM

Symposium on Principles of Database Systems, Cambridge, MA, March 1986,

pp. 1-15

[BNRST87] C. Beeri, S. Naqvi, R. Ramakrishnan, 0. Shmueli and S. Tsur, "Sets and
Negation in a Logic Database Language (LDLI)", Proceedings of the 6th ACM

Symposium on Principles of Database Systems, San Diego, CAY March 1987, pp.

21-37.

104

[BroS89a] A. Brodsky and Y. Sagiv, "Inference of Monotonicity Constraints in Datalog
Programs", Proceedings of the 8th ACM Symposium on Principles of Database

Systems, Philadelphia, PA, March 1989, pp. 190-999.

[BroS89b] A. Brodsky and Y. Sagiv, "On Termination of Datalog Programs", Proceedings
of the 1st International Conference on Deductive and Object-Oriented Databases

@00Dt89), Kyoto, Japan, December 1989, pp. 95-1 12.

[CGKNTZgO] D. Chimenti, R. Gamboa, R. Krishnarnurthy, S. Naqvi, S. Tsur and C.

Zaniolo, "The LDL System Prototype", IEEE Transactions on Knowledge and Data

Engineering, Vol. 2, No. 1, 1990, pp. 76-90.

[CGM90] U. S. Chakravarthy, J. Grant and J. Minker, "Logic-Based Approach to

Semantic Query Optimization", ACM Transactions on Database Systems, Vol. 15,

No. 2, 1990, pp. 162-207.

[Coh90] J. Cohen, "Constraint Logic Programming Languages", Communications of the

ACM, Vol. 33, NO. 7, 1990, pp. 52-68.

[Co190'J A. Colmerauer, "An Intrsduction to PROLOG III", Communications of the ACM,
Vol. 33, No. 7, 1990, pp. 69-90.

[Date901 C. J. Date, An lnnoduction to Database Systems, Vol. 1, 5th Edition, Addison-

Wesley, Reading, MA, 1990.

DL861 D. DeGroot and G. Lindstrom, LDgic Programrning-Functions, Relations, and

Equations, Prentice-Hall, Englewood, NJ, 1986.

[GMN84] H. Gallaire, J. Minker and J. Nicolas, "Logic and Databases: A Deductive

Approach", ACM Computing Sunteys, Vol. 16, No. 2, 1984, pp. 153-185.

[Gru89] S. Grumbach, "Integration of Functions Defined with Rewriting Rules in

Datalog", Proceedings of the 1st International Conference on Deductive and Object-

Oriented Databases @00D'89), Kyoto, Japan, December 1989, pp. 317-335.

[Hang 8a] J. Han, "Selection of Processing Strategies for Different Recursive Queries",

Proceedings of the 3rd International Conference on Data and Knowledge Bases,

Jerusalem, Israel, June 1988, pp. 59-68.

wan88bl J. Han, "Single and Multi-Chain Recursion: The Core of General Linear
Recursion", SFU CSS/LCCR Technical Report TR88-3, Simon Fraser University,

Burnaby, B.C., Cacada, February 1988.

[Han89a] J. Han, "Compiling General Linear Recursions by Variable Connection Graph

Analysis", Computational Intelligence, Vol. 5, No. 1, 1989, pp. 12-3 1.

wan89bl J. Han, "Multi-Way Counting Method", Information Systems, Vol. 14, No. 3,

1989, pp. 219-229.

man911 J. Han, "Constraint-Based Reasoning in Deductive Databases", Proceedings of

the 7th International Conference on Data Enginee~g, Kobe, Japan, April, 199 1.

[NanH87] J. Han and L. J. Henschen, "Handling Redundancy in the Processing of
Recursive Database Queries", Proceedings of the 1987 ACM-SIGMOD Conference

on Management of Data, San Fransisco, CA, May 1987, pp. 73-8 1.

ManH891 J. Han and L. J. Henschen, "The Level-Cycle Merging Method", Proceedings

of the 1st International Conference on Deductive and Object-Oriented Databases

@00D189), Kyoto, Japan, December 1989, pp. 113-129.

[HanHY88] J. Man, L. J. Henschen and C. Youn, "Compiling Complex Linear Recursive

Clusters", Proceedings of the 1988 CIPS Conference, Edmonton, Alberta,
November 1988, pp, 101-110.

[HanHZ89] J. Han, L. J. Henschen and N. Zhuang, "Derivation of Magic Sets by

Compilation", Proceedings of the 1989 International Conference on Software

Engineering and Knowledge Engineering, Chicago, I . , June 1989, pp. 164- 17 1.

CHanW901 J. Han and Q. Wang, "Efficient Evaluation of Functional Single Linear
Recursions in Deductive Databases", SFU CSS/LCCR Technical Report TR90-2,

Simon Fraser University, Burnaby , B .C., Canada, February 1990.

[HI33891 Jianing Han, D. Epley and Jiawei Han, "Compiling Search Constraints for

Deductive and Recursive Databases", Proceedings of the 2nd International

Symposium on Artificial Intelligence, Montemy, Mexico, October 1989.

[loan85] Y. E. Ioannidis, "A Time Bound on the Materialization of Some Recursively
Defined Views", Proceedings of the 1 lth International Conference OD Very Large

Data Bases, Stockholm, Sweden, August 1985, pp. 219-226.

[#if881 M. Kifer, "On Safety, Domain Independence and Capturability of Database

Queries", Proceedings of the 3rd International Conference on Data and Knowledge

Bases, Jerusalem, Israel, June 1988, pp. 405-415.

[KiL88] M. Kifer and E. L. Lozinskii, "SYGRAF: Implementing Logic Programs in a

Database Style", IEEE Transactions on Sofnyare Engineering, Vol. 14, No. 7,

1988.

[KiRS88] M. Kifer, R. Ramakrishnan and A. Siberschatz, "An Axiomatic Approach to

Deciding Query Safety in Deductive Databases", Proceedings of the 7the ACM

Symposium on Principles of Database Systems, Austin, TX, 1988, pp. 52-60.

[KKR90] P. C. Kanellakis, G. M. Kuper and B. Z. Revesz, "Constraint Query

Languages", Proceedings of the 9th ACM Symposium on Principles of Database

Systems, Nashville, TN, April 1990, pp. 299-313.

[KRSSS] R. Krishnamwhy, R. Ramakrishnan and 0. Shmueli, "A Framework for
Testing Safety and Effective Computability of Extended Datalog", Proceedings of

the 7th ACM Symposium on Principles of Database Systems, Austin, TX, March

1988, pp. 154-163.

[KrZaS8] R. Krishnamurthy and C. Zaniolo? "Opdmization in a Logic Based Language for

Knowledge and Data Intensive Applications", Proceedings of International

Conference of Extending Database Technology (EDET88), Venice, Italy, March
1988, pp. 16-33.

[Las90] Jean-Louis Lassez, "Querying Constraints", Proceedings of the 9th ACM

Symposium on Principles of Database Systems, Nashville, TN, April 1990, pp.

288-298.

lMaW881 D. Maier and D.S. Warren, Computing with Logic: Logic Programming with

Prolog, Benjamin Cummings, Menla Park, CA, 1988.

wP90] I. S. Mumick, S. J. Finkelstein and H. Pirahesh, "Magic Conditions",
Prceeedings of the 9th ACM Symposium on Principles of Database Systems,
Nashville, TN, April 1990, pp. 314-329.

m S W 8 7 1 K. Moms, J. F. Naughton, Y. Saraiya, J. D. Ullman and A. V. Gelder, "An

Overview of the NAIL! System", Data Engineering, Vol. 10, No. 4, 1987, pp. 28-

43.

[PS87] F. C. N. Pereira and S. M. Shieber, Prolog and Natural-Language Analysis,
Center for the Study of Language and Information (CSLI), Menlo Park, CA, 1987.

[RBS87] R. Ramakrishnan, IF. Bancilhon and A. Silberschatz, "Safety of Recursive Horn

Clauses with Infinite Relations", Proceedings of the 6th ACM Symposium on

Principles of Database Systems, San Diego, CA, March 1987, pp. 328-339.

[SaVa89] Y. Sagiv and M. Vardi, "Safety of Datalog Queries over Infinite Databases",

Proceedings of the 8th ACM Symposium on Principles of Database Systems,

Philadelphia, PA, March 1989, pp. 160-171.

[SaZa86] D. Sacca and C. Zaniolo, "The Generalized Counting Method for Recursive

Queries", Proceedings of the 1st International Conference on Database Theory,

Rome, Italy, 1986, pp. 31-53.

[SaZa87] D. Sacca and C. Zaniolo, "Magic Counting Methods", Proceedings of the 1987

ACM-SIGMOD Conference on Management of Data, San Fransisco, CA, May

1987, pp. 49-59.

LShm871 0. Shmueli, "Decidability and Expressiveness Aspects of Logic Queries",

Proceedings of the 6th ACM Symposium on Principles of Database Systems, San

Diego, CA, March 1987, pp. 237-249.

[StSh86] L. Sterling and E. Shapiro, The Art of Prolog, The MIT Press, Cambridge, MA,
1986.

[S1Z88] 0. Shmueli, S. Tsur and C. Zaniolo, "Rewriting of Rules Containing Set Terms

in a Logic Data Language (LDL)", Proceedings of the 7th ACM Symposium on

Principles of Database Systems, Austin, TX, March 1988, pp. 15-28.

fSuHen901 A. Al-Sukairi and L. J. Henschen, "Query Indepedent Compilation of Linear
Recursions", Proceedings of 1990 International Conference on Software

Engineering and Knowledge Engineering, Chicago, IL, June 1990.

[TsZa86] S. Tsur and C. Zaniolo, "LDL: A Logic-Based Data-Language", Proceedings of

the 12th International Conference on Very Large Data Bases, Kyoto, Japan, August

1986, pp. 33-41.

WllmSS] J. D. Ullrnan, "Implementation of Logical Query Languages for Databases",

ACM Transactions on Database Systems, Vol. 10, No. 3, 1985, pp. 289-321.

[Ullm89a] J. D. Ullman, "Bottom-up Beats Top-down for Datalog", Proceedings of the

8th ACM Symposium on Principles of Database Systems, Philadelphia, PA, March

1989, pp. 140-149.

IIJllm89bl 3. D. Ullman, Principles of Database and Knowledge-Base Systems, Vols. 1

and 2, Computer Science Press, Rockville, MD, 1989.

[-WEE381 C. Youn, L. J. Henschen and J. Han, "Classification of Recursive Formulas in

Deductive Databases", Proceedings of the 1988 ACM-SIGMOD Conference on

Management of Data, Chicago, IL, June 1988, pp. 320-328.

[Zani86] C. Zaniolo, "Safety and Compilation of Non-Recursive Horn Clauses",

Proceedings of the 1st International Conference on Expert Database Systems,

Charleston, SC, 1986, pp. 167-178.

[ZWH89] N. Zhuang, L. J. Henschen and J. Han, "Complexity Analysis and Performance

Evaluation of Methods for Processing Linear Recursive Database Queries",

Proceedings of the 1st Conference of International Association of Knowledge

Engineers, College Park, MD, June 1989, pp. 334-342.

