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The f i r s t  ne rvous  sys tem t o  have  i t s  comple te  s t r u c t u r e  

mapped i s  t h a t  of  t h e  s o i l  nematode Caenorhabditis elegans. 

T h i s  t h e s i s  p r e s e n t s  a  s t o c h a s t i c  t h e o r y  o f  computa t ion  b a s e d  

on s t a t i s t i c a l  mechanics and i n f o r m a t i o n  t h e o r y  and v iews t h e  

ne rvous  sys tem of  C. elegans i n  i t s  l i g h t .  The u n d e r l y i n g  

paradigm i s  t h a t  i n f o r m a t i o n  e x e r t s  a  f o r c e  and t h a t  t h e  

d i s s i p a t i v e  dynamics of a  n o n l i n e a r  sys tem a r e  e q u i v a l e n t  t o  

i n f o r m a t i o n  p r o c e s s i n g .  The paradigm i s  deve loped  i n  t h e  

c o n t e x t  of  t h e  s e n s o r y  p r e p r o c e s s i n g  sys tem and t h e  c e n t r a l  

ne rvous  sys tem of  t h e  organism.  F i n a l l y ,  a  d e t a i l e d  model o f  

t h e  motor ne rvous  sys tem i s  p r e s e n t e d  u s i n g  t h e s e  t e c h n i q u e s .  

The t h e o r e t i c a l  r e s u l t s  a r e  found t o  a g r e e  q u i t e  w e l l  w i t h  

s i m u l a t i o n  r e s u l t s ,  which p r o v e s  t h a t  t h e  paradigm p r o v i d e s  a  

f r u i t f u l  t h e o r e t i c a l  framework. 
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What is intelligence? This simple question has come to 

preoccupy many of our best thinkers. Enormous resources are 

devoted to the achievement of artificial intelligence. Yet, 

progress has been considerably slower than expected. The 

results obtained by the automation of formal logic and other 

axiomatic systems, while significant in their own right, have 

been disappointing in so far as they have demonstrated that 

the design of intelligent machines is a much more difficult 

task than originally anticipated. 

An intelligent entity should have at least the following 

abilities: the ability to recognize a problem when it 

encounters one whether or not it belongs to a known class of 

problems, the ability to decompose it into its component parts 

in such a way as to facilitate solution, the ability to 

recognize applicable methods of solution and to develop new 

methods when necessary, and finally, the ability to recognize 

an acceptable solution when one is found. Ideally, all this 

should be possible regardless of the domain of discourse. 

This is not to say that these abilities are equivalent to 

intelligence, but that a system which does not possess them is 

certainly not intelligent. It remains an open question 

whether these abilities, when carried to a sufficient degree 

of complexity, are sufficient to account for the subjective 

experiences which, for example, human beings tend to equate 

with being intelligent. In this respect, it is quite 



difficult resist the temptation read more into words 

like intelligence and cognition than is strictly permitted by 

their usage within any well defined paradigm of information 

processing. 

As a result, it is important to distinguish between the 

internal processes which take place when a human being engages 

consciously in deliberately structuredthought processes which 

correspond to the abilities described above, and the internal 

processes which occur when a human being relinquishes 

conscious control of his thoughts and simply allows these 

abilities to operate autonomously. The first case is an 

example of the application of learned behaviour, while the 

second case is an example of exercising the naturally 

occurring cognitive faculties. At no point should any remark 

in this thesis be construed as referring to the first case. 

Whether these two cases are actually different in any 

fundamental way is still very much an open question, but the 

postulate that they are fundamentally different is one of the 

conjectures which motivate the formulation of the paradigm 

presented below. While this conjecture is not fundamental to 

the theoretical machinery developed below and is not proven 

thereby, it is hoped that this machinery will facilitate 

further work which sheds light on the matter. 

In any event, the above abilities are certainly beyond 

the scope of any artificial system currently existing. Many, 

if not most, of these systems are grounded in the paradigm of 

abstract symbol manipulation. The approach begins by asking 
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what types of symbols and symbol manipulation primitives are 

needed, how these may be combined to form more complex 

structures and what kinds of algorithms are required in order 

to build effective systems layered on these elements. It 

proceeds by implementing such a system and measuring its 

performance. Then these measurements are analyzed in the hope 

of refining the symbols and algorithms in order to improve the 

performance of the system. The underlying assumption is that, 

if the right set of symbols and algorithms could be 

discovered, then their implementation would result in an 

intelligent system. 

This approach has fallen short of the desired goal often 

enough that it seems necessary to question the paradigm. The 

precise nature of basic difficulties with the paradigm is a 

matter which is surrounded by deep controversy, but a number 

of issues repeatedly come to the surface. Of significance in 

the context of the work presented here are the limited 

expressive power of abstract symbols, the fundamentally 

deductive nature of the primitives, and the inherent obstacles 

to the consistent representation of uncertainty. To implement 

a system within this paradigm, one must predefine an arbitrary 

mapping between the form of the symbols and their meaning, one 

must simulate induction in a deductive framework, and one must 

simulate uncertain reasoning with reasoning about uncertainty. 

A fruitful line of inquiry might thus be to investigate 

systems which are not subject to these limitations. This 

would require that the symbols have the property that form is 
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function. It would require the processing to be fundamentally 

inductive and to arise as a direct result of the coexistence 

of the symbols. And it would require the representation and 

processing of uncertainty to be inherent in the representation 

and processing of information. 

Such a line of inquiry would demand a fundamental re- 

examination of the notions of what constitutes a problem and 

a solution and how to construct a system that arrives at the 

latter when presented with the former. Taking into account 

the requirements of the previous paragraph, one is led to 

think less in terms of finding solutions to problems, and more 

in terms of transforming problems into solutions. This, in 

turn, leads to a re-examination of the very nature of 

information and information processing. One is faced, in 

short, with the task for formulating an alternative paradigm, 

beginning with first principles. 

In so doing, one finds oneself on theoretical ground 

which is many levels removed from considerations such as the 

nature of consciousness or the subjective experience of being 

an intelligent entity. An alternative paradigm, along the 

lines which are beginning to emerge, would necessarily have 

nothing to say about such matters. The primary motive for 

constructing such a paradigm is simply the hope that it will, 

when- sufficiently developed, provide a viewpoint and a 

theoretical framework which allow such high level issues to be 

approached more effectively than otherwise. For the present, 

however, we must be content to observe nature and lay the 
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foundations of the paradigm. 

In nature, we find that solutions to some problems are 

found in a very different manner from that which is embodied 

in the paradigm of abstract symbol manipulation. Solutions 

come into being simply as a result of the existence of a 

problem. The working hypothesis underlying the present work 

is that this process is called evolution or cognition, 

according to the time scale and level of abstraction at which 

it occurs. One is led to ask, then, in what kind of system 

can any required symbols and primitives arise spontaneously, 

merely because they are required? The answer comes from the 

basic common ground that underlies the closely related fields 

of epistemology [Cox, 781, thermodynamics [Wannier, 661 and 

information theory [Jaynes, 571, [ Jaynes, 781 . 
On this view, information is fundamental. In fact, there 

seem to be good reasons to believe that the mere existence of 

information is a sufficient condition for there to arise 

structures to process it. This is because information is 

energy. That is to say, energy is required to represent 

information and therefore a nonuniform distribution of 

information in a system is equivalent to a nonuniform 

distribution of energy. This gives rise to forces, which, in 

turn, cause a change in the configuration of the system, 

resulting a redistribution of the energy. If this change is 

irreversible, then the information content of the system has 

changed. In other words, information has been processed. 

The structure of the system determines the forces which 



6 

result from a nonuniform energy distribution as well as the 

manner in which the system can change its configuration in 

response to forces. It also determines the conditions under 

which such changes will be irreversible. Thus, the structure 

of the system determines its capacity to process information. 

In some systems, the structure itself changes as a result of 

the response of the system to the forces. Thus, the capacity 

of the system to process information is altered by the act of 

processing information. This extremely important effect is 

called self organisation [Nicolis & Prigogine, 771. It is 

observed in a wide variety of systems, from planetary systems 

to ecosystems to nervous systems [Harth, 821. Its great 

significance for the proposed paradigm is that it has given 

rise to a body of theory which can be brought to bear on the 

principled interaction between procedural and declarative 

aspects of systems. 

In this paradigm, an initial nonuniform distribution of 

energy, or information, is viewed as a problem presented for 

solution, the behaviour of the system in response is viewed as 

the process of solving the problem, and the final, usually 

more uniform, distribution of energy is viewed as the solution 

of the problem. As a simple example, consider a volume of 

water bounded by planes above and below, and let a temperature 

gradient be applied perpendicular to these planes. The 

system, composed of a large number of simple identical 

elements, namely water molecules, will organize itself into a 

pattern of convection currents. Hence, the problem of the 
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most e f f i c i e n t  way t o  t r a n s p o r t  h e a t  a c r o s s  t h e  w a t e r  volume 

h a s  been s o l v e d .  The s o l u t i o n  was d r i v e n  by t h e  problem 

i t s e l f ,  w i t h  t h e  h e l p  of  a  s m a l l  amount of  t h e r m a l  n o i s e .  

T h i s  view of  i n f o r m a t i o n  p r o c e s s i n g  r e p r e s e n t s  a  r a d i c a l  

d e p a r t u r e  from t h e  main s t r e a m  i n  computing s c i e n c e .  I t  forms 

t h e  p h i l o s o p h i c a l  f o u n d a t i o n  of  t h i s  t h e s i s ,  which i s  

m o t i v a t e d  by a  desire t o  u n d e r s t a n d  t h e  n a t u r e  o f  i n f o r m a t i o n  

p r o c e s s i n g  i n  a self o r g a n i s i n g  dynamical  sys tem.  T h i s  t h e s i s  

a r g u e s  t h a t  t h e  f u n c t i o n i n g  of t h e  ne rvous  sys tem can b e s t  be 

u n d e r s t o o d  i n  such  terms, w i t h  t h e  i n t r o d u c t i o n  o f  a  l e v e l  o f  

i n d i r e c t i o n .  That  is ,  t h e  ne rvous  sys tem p r o v i d e s  a  s u b s t r a t e  

i n  which a  s t r u c t u r e  r e p r e s e n t i n g  a  problem can  form and i n  

which t h a t  s t r u c t u r e  can o r g a n i z e  i t s e l f  i n t o  a  r e p r e s e n t a t i o n  

of a  s o l u t i o n .  The r e c o g n i t i o n  of  a  problem and i t s  s o l u t i o n  

a r i s e  o u t  of  t h e  i n f o r m a t i o n  b e i n g  p r o c e s s e d ,  under  t h e  

i n f l u e n c e  of  n o i s e .  When t h e  u n c e r t a i n t y  i n  t h e s e  s t r u c t u r e s  

i s  s i g n i f i c a n t l y  g r e a t e r  t h a n  t h e  n o i s e  i n  t h e  i n f o r m a t i o n ,  

h i t h e r t o  h idden  d e g r e e s  of  freedom emerge t o  d r i v e  t h e  

p r o c e s s i n g .  On t h e  o t h e r  hand, a  s i g n a l  s o  weak a s  t o  b e  

b u r i e d  i n  n o i s e  i s  i g n o r e d .  

T h i s  i s  c a l l e d  maximum e n t r o p y  i n f e r e n c e ,  and i s  n o t  o n l y  

a p p l i c a b l e  t o  b o t h  d e d u c t i v e  and i n d u c t i v e  problem s o l v i n g ,  

b u t  a u t o m a t i c a l l y  a p p l i e s  t h e  o p t i m a l  b l e n d  of  t h e  two. S i n c e  

it i s  d r i v e n  by t h e  problem i t s e l f ,  it i s  n o t  l i m i t e d  by any 

g i v e n  set o f  axioms and i t s  r e f e r e n t s  a r e  u l t i m a t e l y  t h o s e  

f e a t u r e s  of  t h e  problem and s o l u t i o n  domain which a r e  s e l f  

e v i d e n t .  F u r t h e r ,  o n l y  t h o s e  e l e m e n t s  o f  t h a t  domain which 



8 

are relevant come into play. In contrast to the formal 

axiomatic system, all of this follows directly from the nature 

of the self organising system. Intelligent behaviour is an 

emergent property, arising from cooperation and competition 

between a large number of relatively simple, roughly identical 

elements. In this respect, the emergence of increasingly 

powerful neural structures by the cooperative/competitive 

interactions of individual organisms and the emergence of 

solutions by the cooperative/competitive interactions of 

representational states within particular neural structures 

are formally equivalent. 

This paradigm follows from the working hypothesis, which 

remains unproven. In fact, both the hypothesis and the 

paradigm which follows from it have been called into question 

by prominent cognitive scientists [Fodor & Pylyshyn, 8 8 1 .  

Now;while the results obtained in this thesis do not address 

the ongoing controversy regarding this issue, they do 

elucidate certain mechanisms which can be called upon to 

support self organizing dynamics. The dynamics resulting from 

these mechanisms will likely be approximately equivalent, at 

least in some cases and under certain conditions, to those 

obtainable by clever programming, heuristics or knowledge 

engineering. Again, it is one of the unproven conjectures 

which form the philosophical foundation of this thesis that 

there will also result dynamical regimes which process 

information in ways that are quite different from, and more 

powerful than, a formal axiomatic system. 
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On this view, the deterministic behaviour of an axiomatic 

system is seen to be a limiting case of the stochastic 

dynamics described above. Specifically, it is the low 

temperature limit. When random fluctuations are superimposed 

on an information carrying signal, the resultant signal can be 

described in terms of an equivalent noise temperature. This 

allows one to bring the elegant and powerful formalisms of 

thermodynamics and statistical mechanics to bear at certain 

crucial points in the analysis of a system acted on by such a 

signal. On the other hand, as the energy content of these 

fluctuations approaches zero, the dynamics of the system will 

approximate more and more closely the rigidly algorithmic 

manipulation of a fixed set of abstract symbols. 

As different as this paradigm appears, then, from that 

which underlies axiomatic systems, a clear place is reserved 

for the latter within the more general framework provided by 

the former. Thus, not only may one carry over all of the 

significant results so far obtained, but the paradigm allows 

one to reason about the circumstances under which these 

results apply. In addition, this approach clearly points the 

way for extending these results when the assumptions leading 

to strict determinism do not hold - that is, when the 

equivalent noise temperature of the signals is nonzero. 

Even among the most cogent, carefully argued criticisms 

of the paradigm presented above, this issue is addressed 

either inadequately or not at all. For example, while the 

arguments presented by Fodor and Pylyshyn make an irrefutable 



case for structure dependence in cognitive systems, it is 

difficult to understand why they claim that such mechanisms as 

energy minimization / entropy maximization and associative 

mechanisms in general are not structure dependent. More 

significantly, such arguments generally assume that, in the 

approach which underlies this thesis, the introduction of 

stochastic dynamics is intended to provide noise tolerance and 

permit algorithmic processes to be robust in the presence of 

noise. This could not be farther from the truth. In 

actuality, the intent is to provide a more general dynamics of 

information processing, which includes algorithmic behaviour 

as a limiting case. 

This approach has yet another advantage: there already 

exist systems in nature which exhibit all of the properties 

mentioned. As a result, it is not necessary to work in a 

vacuum - one can begin by examining the nervous systems of 

living organisms. The paradigm described above provides a 

powerful framework in which to do this, in that it focuses 

attention on the relevant issues. Applying the paradigm to 

the analysis of a simple nervous system will indicate very 

quickly whether the paradigm is worth pursuing or not. The 

results obtained in this thesis show that the paradigm does, 

at least, provide an effective theoretical framework for this 

type of analysis. As well, they indicate promising directions 

for further inquiry. 

Nervous systems can be classified into three levels of 

complexity, depending on how many stages of processing are 
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performed. The simplest are single stage systems. In such 

systems, there is no distinction between sensory and motor 

neurons, each one being driven by sensory input and driving a 

muscle or gland. In a two stage nervous system, sensory 

neurons synapse directly onto motor neurons. Finally, the 

three stage systems are characterized by the appearance of a 

plexus of interneurons. Even a very simple three stage 

nervous system has all of the functional elements that are 

required for the type of behaviour one would classify as 

intelligent when it reaches a sufficient degree of complexity. 

Nonetheless, even simple nervous systems are formidably 

complex structures with numerous idiosyncrasies that can be 

classed as implementation details. It is therefore fortunate 

that the complete structure of a very simple nervous system, 

that of the soil nematode Caenorhabditis elegans, has recently 

become known. Using it as a prototype, this thesis argues 

that the functionality of the nervous system is best 

approached by adopting a three tiered paradigm: an adaptive, 

feature extracting preprocessing step, an associative step 

performing maximum entropy inference, and a relatively 

deterministic postprocessing step. 

First, a stochastic model of computation is introduced in 

abstract terms. This is the non-equilibrium Boltzmann 

machine, which has formal properties amenable to analysis and 

which will serve as a theoretical point of departure. This 

computational model differs from that of Ackley, Hinton and 

Sejnowski [Ackley, Hinton and Sejnowski, 851 in two 
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significant respects. Firstly, it permits asymmetric link 

weights and thereby introduces non-trivial time dependent 

behaviour. The equilibrium states of the system are still 

determined by the symmetric part of the coupling matrix, but 

the path through state space followed by the system as it 

approaches these states is determined by the antisymmetric 

part. Secondly, it relaxes the assumption that the system has 

a single global temperature. Instead, it allows each node to 

be at a different temperature - namely the equivalent noise 

temperature its input signal. This results in a principled 

interaction between information and uncertainty, in that the 

midpoint gain of each node is determined by the noise on its 

input signal. The resulting dynamical regime is sufficiently 

general to incorporate, as special cases, all of the 

functional blocks of the nervous system of the organism. 

The main body of the thesis, following a short section on 

the anatomy and physiology of the organism, examines the motor 

postprocessing system from a functional point of view, using 

techniques developed in the appendices in the context of the 

sensory preprocessing system and the central nervous system or 

nerve ring. The thesis focuses on the motor postprocessing 

system because of the availability of neurophysiological 

results against which the analytical results can be checked. 

Within the limited context of motor postprocessing, the 

results are in agreement with neurophysiological observations. 

Experimental data are, unfortunately, much sparser for 

the other two functional blocks. A sufficiently detailed 
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cross check of the results must therefore await the 

availability of such data. To this extent, the analytical 

results obtained in the appendices must be regarded as 

speculative. It is to be hoped, however, that the 

availability of these results will stimulate biologists to 

conduct experiments which will furnish the data which will 

allow the predictions of the theory to be checked. 

Nonetheless, these analyses of the three functional 

blocks form a theoretically coherent whole. The analytical 

viewpoints and methods developed in the discussion of the 

nerve ring, in particular, lay important groundwork for the 

analysis of the motor postprocessing system. The reader who 

is unfamiliar with the theory of skeleton filters, or who is 

interested in how such filters appear in the framework of a 

neural model based on the non-equilibrium Boltzmann machine, 

may thus wish to peruse the appendices before proceeding to 

the analysis of the motor postprocessing system. 

The formulation of a well defined mathematical model of 

the motor postprocessing system required the development of a 

mechanical model of the balance of somatic forces associated 

with the movement of the organism. This model, being more 

comprehensive than those previously presented [Lee, 841, 

permitted the motor postprocessing system to be expressed in 

terms of a single system of differential equations. This is 

a striking example of the flexibility of the theoretical tools 

provided by the paradigm, which allowed both mechanical and 

neural coupling to be treated uniformly within a single 
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analytical framework. 

Finally, the approach adopted in this thesis permitted 

Chalfie and White's model of the motor postprocessing system 

[Chalfie and White, 881, to be resolved into a system of 

gated, cross coupled oscillators and allowed forced 

oscillations to be ruled out quite definitely as a mode of 

operation for the system. Further, the approach allowed a 

detailed explanation of the gating mechanism, in terms of 

noise determined variable coupling, to be given. 

In the last analysis, this thesis does not prove that the 

paradigm based on the idea that information exerts a force is 

superior to other paradigms. It does, however prove that the 

paradigm provides both a viewpoint and a set of analytical 

techniques that allow hard results to be obtained, at least in 

the case of simple neural structures. It also indicates 

specific directions for future research, perhaps the most 

intriguing of which would be a detailed investigation of the 

dynamics of noise determined variable coupling, which may have 

deep implications regarding the continuous transformation of 

one algorithm into another and may provide for the formulation 

of theoretically tractable definitions of such notions as 

approximately algorithmic behaviour. 



Many approaches have been taken to devising a theory of 

structures similar in their formal properties to nervous 

systems [Palm, 821, [Hopfield, 821, [an der Heiden, 801, 

[Caianiello, de Luca & Ricciardi, 671 . Most try to account 

for the behaviour of the networks by explicitly solving an 

enormous system of differential equations. While possible, at 

least in theory, this approach is reminiscent of an attempt to 

find the temperature and pressure in a room by explicitly 

solving the equations of motion of the molecules of air. Only 

recently has the theory of stochastic systems [Adomian, 831 

received a wide following, so it comes as no surprise that 

most approaches are deterministic. An early exception 

[Sejnowski, 7 6 1  began investigating the expected behaviour of 

single neurons as opposed to the more usual analysis of the 

expected behaviour of the network as a whole. This work led 

directly to the Boltzmann machine. 

A Boltzmann machine [Ackley, Hinton & Sejnowski, 851 is 

an abstract construct consisting of a set of nodes connected 

by links. At any point in time,' the output of each node is 

either zero, in which case the node is said to be in the 

passive state, or one, in which case the node is said to be in 

the active state. In response to their input signals, the 

nodes fluctuate back and forth between these two states in a 

manner described below. 

Nodes interact via connecting links. Each link has a 



16 

weight ,  which can  t a k e  on any r e a l  v a l u e .  The i n p u t  of  a  node 

i s  t h e  sum o f  t h e  o u t p u t s  of  t h e  nodes  t h a t  d r i v e  it, e a c h  

m u l t i p l i e d  by t h e  weight  of  t h e  c o n n e c t i n g  l i n k .  No node 

d r i v e s  i t s e l f ,  and t h e  l i n k  w e i g h t s  a r e  symmetric .  These l a s t  

two assumpt ions  s i m p l i f y  a n a l y s i s ,  b u t  may be r e l a x e d  w i t h o u t  

damaging t h e  f o r m a l  p r o p e r t i e s .  

The s t a t e  of  t h e  sys tem a s  a  whole i s  g i v e n  by t h e  v e c t o r  

of  node s t a t e s ,  c,, t o g e t h e r  w i t h  t h e  m a t r i x  o f  l i n k  we igh t s ,  

W,,. The e n e r g y  of  i n t e r a c t i o n  between two nodes i s  t a k e n  t o  

be Wij i f  b o t h  a r e  a c t i v e ,  and v a n i s h e s  i f  e i t h e r  node i s  

p a s s i v e .  The t o t a l  ene rgy  of  t h e  sys tem i s  t h e r e f o r e  g i v e n  by 

and t h e  change i n  g l o b a l  ene rgy  due t o  a  change of  s t a t e  of  

t h e  ith node i s  j u s t  

A s i n g l e  p a r a m e t e r ,  T I  c o n t r o l s  t h e  d e g r e e  of  de te rmin i sm o f  

t h e  sys tem,  by v i r t u e  of i t s  appearance  i n  t h e  d e c i s i o n  r u l e  

g i v i n g  t h e  s t a t e  o f  a  node a s  a  f u n c t i o n  o f  i t s  i n p u t .  T h i s  

p a r a m e t e r  p l a y s  t h e  r o l e  of t e m p e r a t u r e  and  hence  a p p e a r s  i n  

t h e  c o n t e x t  o f  kTI where k = 1-38. J / K  i s  Boltzmann's  

c o n s t a n t .  The p r o d u c t  kT g i v e s ,  e s s e n t i a l l y ,  t h e  amount o f  

ene rgy  r e q u i r e d  t o  r e p r e s e n t  one b i t  o f  i n f o r m a t i o n  a t  a n  

a b s o l u t e  t e m p e r a t u r e  of  T .  I t  i s  s i g n i f i c a n t  t h a t  t h r o u g h o u t  



all of theoretical physics, temperature appears only in this 

context. 

Now, each node samples its input at a mean rate of once 

in every interval of length 7 .  Immediately after sampling, 

the node makes a decision as to which state it will enter. 

Independent of its current state, the node becomes active with 

probability 

This is called a Boltzmann decision and the distribution of 

node states which results is none other than the Boltzmann 

distribution for a lattice gas. The mean firing rate of a 

node performing a sequence of such decisions is just 

and encodes the information output of the node. 

The sigmoid form of equation (3) and the nonlinear 

transfer function of a neuron are related, as are the rate 

code typically observed in nervous information transmission 

and that given by equation ( 4 ) .  Still, the expressions given 

above should be thought of as describing the expected 

operation of an ensemble of neurons. Hence a single node in 

a Boltzmann machine is an analog not of an isolated neuron, 

but of a neuron acted upon by a stochastic background of other 

neurons. 
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The Boltzmann machine performs its computations by the 

non-equilibrium process of settling to thermal equilibrium, 

which minimizes the Helmholtz free energy of the system, of 

which the energy in (1) is only one component. The other 

vital term is the entropy of the system, which measures the 

information content of the system, taking into account the 

energy of the mean node states and the energy contained in the 

fluctuations about the means. The significance of this fact 

can be seen by substituting the equivalent entropy, 

into equation ( 3 ) .  The action of each node can thus be 

interpreted as a decision regarding the significance of the 

information, A appearing at its input, given the overall 

noise level of the information. 

In settling to equilibrium, the system evolves towards 

one of its stable states; at equilibrium, the system will 

wander randomly about in state space near such a stable state. 

The size of the region in which the wandering takes place is 

determined by the temperature, TI. shrinking to a single point 

at a temperature of zero. The number and location of the 

stable states is determined by the W ,  and these points 

coincide with the local minima of the Helmholtz free energy, 

the gradient of which provides the force driving the system 
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towards equilibrium. It is to be expected, therefore that the 

techniques of statistical mechanics provide a powerful 

formalism for analysis of the Boltzmann machine. In fact, the 

approach has been adapted from recent work on the properties 

of spin glasses, of which the Ising model of ferromagnetic 

domains is perhaps the best known example. 

The entropy appearing in equation (6) is that of the 

system as a whole, and is therefore the expectation of the 

individual node entropies, 

Now, the Boltzmann distribution is precisely that assignment 

of probabilities which remains maximally noncommittal about 

all other aspects of the system. It is found by minimizing 

equation ( 6 )  subject only to consistency conditions, such as 

requiring the probabilities to sum to unity. That is to say, 

the Boltzmann distribution is that deviation from 

equipartition of states that just encodes the information in 

the energy function of the system. 

For this reason, it comes as no surprise that the nodes 

are performing statistical inference upon the information 

presented to them [Hinton 6 Se jnowski, 831 . It is fairly 

immediate that a Boltzmann decision is simply an application 

of Bayesl theorem. To see this, let a node be associated with 

a hypothesis, h, and let it be driven by a node that is 

associated with an item of evidence, el that bears on the 

hypothesis. When the node is active, it is deemed to have 



made the decision, h is true. 

inactive, it is deemed to have 

As the node fluctuates back 
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Conversely, when the node is 

made the decision, h is false. 

and forth between these two 

states, it is continually revising its decision, based on the 

instantaneous value of its input signal. The probability that 

the node is active is thus an estimate of the probability that 

the hypothesis is true, based only on the information content 

of the evidence provided by the input signal of the node. 

Now, Bayesl theorem can be expressed in the form 

That is, 

but elementary probability theory provides a result that 

allows this expression to be rewritten in a most suggestive 

form. Namely, p (b)p (a1 b) = p(ah), so that 

A comparison with equation ( 3 )  leads one to identify p(hl e) 

with pi, and thus to write 

which equates a change in log probabilities with a change in 



entropy by virtue of equation ( 5 ) .  Therefore, the increment 

of energy passed along from node e to node h, AE,, causes it 

to adjust its firing probability by exactly right amount, if 

the probability of hypothesis h given evidence e is equated to 

the firing probability of node h. This same argument can be 

applied when e is a set of nodes so long as proper account is 

taken of any nonorthogonality in the output signals of these 

nodes. 

Here, then, is the basis of inductive reasoning as well 

as deductive reasoning, due to the upper limit on the firing 

rates. A node is capable of representing absolute certainty 

at the extrema of its range, absolute uncertainty at the mid 

point, and any other degree of conviction elsewhere. Groups 

of nodes can reach a consensus by the process of settling to 

thermodynamic equilibrium, a process which requires only the 

most rudimentary and uniform behaviour on the part of each 

node, yet is capable of generating global behaviour of any 

required degree of complexity. 

MODELLING THE NERVOUS SYSTEM 

Before a Boltzmann machine becomes a reasonable model of 

a nervous system, it must be able to interact with its 

environment. For this purpose, the nodes are grouped into 

three subsets. The first division is between that set of 

nodes, V, which are visible to the environment and able to 

interact directly with it, and the remainder, H, the set of 

nodes which are hidden from the environment and can only 
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i n t e r a c t  w i t h  it v i a  t h e  nodes i n  V.  The set V i s  f u r t h e r  

s u b d i v i d e d  i n t o  sets I and 0, t h e  i n p u t  and  o u t p u t  nodes .  The 

sets  V and H a r e  n e c e s s a r i l y  d i s j o i n t  w h i l e  I and  0 need n o t  

be. 

I n  t h e s e  terms, a  s i n g l e  s t a g e  ne rvous  sys tem i s  one i n  

which t h e  set H i s  empty and i n  which I and 0 a r e  i d e n t i c a l .  

I n  a  two s t a g e  ne rvous  sys tem , I and 0 e a c h  c o n t a i n  nodes  n o t  

c o n t a i n e d  i n  t h e  o t h e r ,  w h i l e  H i s  s t i l l  empty. A t h r e e  s t a g e  

ne rvous  sys tem h a s  nodes i n  H a s  w e l l  a s  i n  I and 0, which 

l a t t e r  p a i r  a r e  n o t  i d e n t i c a l ,  t hough  t h e y  may c o n t a i n  a  

common s u b s e t .  T h i s  d i v i s i o n  of t h e  nodes  i n t o  s u b s e t s  d o e s  

n o t  p r e c l u d e  c o n n e c t i o n s  between any p a i r  o f  nodes ,  n o r  d o e s  

it imply them. The t h r e e  sets, I ,  H and 0, a r e  t h u s  

a b s t r a c t i o n s  of  t h e  more u s u a l  d i v i s i o n  o f  neurons  i n t o  

s e n s o r y  neurons ,  i n t e r n e u r o n s  and motor  n e u r o n s .  

The envi ronment  d i r e c t l y  d r i v e s  t h e  i n p u t  nodes,  

d e l i v e r i n g  i n c r e m e n t s  of ene rgy  t o  them v i a  a  wide v a r i e t y  of  

s e n s o r y  m o d a l i t i e s ,  and t h e s e  energy  i n c r e m e n t s  a r e  summed 

w i t h  any i n p u t  from o t h e r  nodes i n  accordance  w i t h  e q u a t i o n  

( 2 ) .  The nodes  t h u s  respond t o  t h e  i n f o r m a t i o n  c o n t e n t  i n  t h e  

i n p u t  from t h e  environment  i n  e x a c t l y  t h e  same way a s  t o  t h e  

i n f o r m a t i o n  p a s s e d  t o  them from o t h e r  nodes .  An i m p o r t a n t  

consequence of  t h i s  f a c t  i s  t h a t  t h e  s i g n a l s  e n t e r i n g  t h e  

sys tem c o n t i n u a l l y  d r i v e  it away from e q u i l i b r i u m ,  w h i l e  t h e  

sys tem i t s e l f  c o n t i n u a l l y  s t r i v e s  t o w a r d s  e q u i l i b r i u m .  

The o u t p u t  nodes i n f l u e n c e  t h e  envi ronment  by  d r i v i n g  

a c t u a t o r s  s u c h  a s  muscles ,  g l a n d s  and t h e  l i k e .  I n  o r d e r  t o  



simplify the present analysis, these actuators will be 

considered to be components of the environment. Thus the term 

environment does not refer to that of the organism, but to 

that of the nervous system. The organism is then a part of 

this environment. 

Given any state of the environment discernible by the 

input nodes, there is an optimal configuration of the output 

nodes. That is, for any given stimulus, there is an optimal 

response, in the sense that this response leads to a maximal 

satisfaction of the organism's needs. In practice, the 

environment is itself a stochastic system, so that the optimal 

mapping between stimulus and response will be subject to 

random fluctuations about some fixed or relatively slowly 

varying operator. 

Since the hidden nodes occupy a position between the 

input nodes and the output nodes, they determine the salient 

features of the mapping from input to output. It remains to 

be shown by what mechanism the system organizes itself such 

that the mapping converges to the optimal one, without 

requiring any guidance other than that which is implicit in 

the relationship between the output of the system and its 

subsequent input. 

This question is taken up in appendix A, where the 

results are applied to the operation of the sensory 

preprocessing system of the organism. It can be seen from the 

discussion which appears there that learning of arbitrary high 

order constraints in the environment can be achieved in a 
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principled way by modifying local behaviour in response to 

global parameter, called effectiveness. The modifications are 

performed in a uniform way, completely independent of the 

problem domain, driven solely by the information which needs 

to be processed, without any a priori knowledge of what that 

information may be. The only limitations are imposed by the 

suite of sensory modalities and actuator capabilities. Thus 

a Boltzmann machine is an ideal model for a nervous system and 

provides precisely the sort of substrate for self organization 

that was sought in the introduction. Given a sufficiently 

large number of degrees of freedom, a Boltzmann machine can 

exhibit arbitrarily intelligent behaviour. It is premature to 

describe the behaviour of a small system, of the size of the 

nervous system of C. elegans, as intelligent. In this 

context, adjectives like adaptive and discerning are more 

appropriate even though the underlying principles appear to be 

the same. 

Of greater interest in the context of the discussion of 

the motor postprocessing system is the way the dynamics of the 

Boltzmann machine is modified when the summing operator at the 

input of each node is replaced by'a lossy integrator. The net 

results are that the signal to which the node responds is 

effectively a short time average of recent past inputs and 

that the response of the node is delayed by the time constant 

of the integrator. Nontrivial time dependent behaviour is 

introduced by this mechanism and by the relaxation of the 

constraint that the link weights be symmetric. It also 
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p e r m i t s  t h e  a n a l y s i s  of  non-equ i l ib r ium b e h a v i o u r ,  i n  t h a t  t h e  

t e m p e r a t u r e  may v a r y  from node t o  node i n  a  manner d e t e r m i n e d  

s o l e l y  by t h e  s t a t i s t i c a l  p r o p e r t i e s  o f  t h e  s i g n a l s .  

The argument which f o l l o w s  i s  a  b r i e f  s k e t c h  o f  t h e  l i n e  

of  r e a s o n i n g  deve loped  i n  d e t a i l  i n  append ix  B .  With t h i s  

s k e t c h  i n  hand, it i s  p o s s i b l e  t o  p r o c e e d  d i r e c t l y  t o  t h e  

d i s c u s s i o n  o f  t h e  motor p o s t p r o c e s s i n g  sys tem.  However, t h e  

r e a d e r  who is  u n f a m i l i a r  w i t h  t h e  t y p e  o f  arguments  o u t l i n e d  

i n  t h e  remainder  of  t h i s  s e c t i o n  may wish  t o  r ev iew appendix  

B b e f o r e  p r o c e e d i n g  t o  c o n s i d e r  t h e i r  a p p l i c a t i o n  t o  t h e  

a n a l y s i s  o f  t h e  motor p o s t p r o c e s s i n g  sys tem.  

Equa t ion  ( 2 )  e x p r e s s e s  t h e  change i n  t h e  e n e r g y  o f  t h e  

sys tem a s s o c i a t e d  w i t h  a  change of s t a t e  of  t h e  ith node.  The 

sum on t h e  r i g h t  hand s i d e  of  t h a t  e q u a t i o n  i s  t h e r e f o r e  a 

f o r c e .  I n  o r d e r  t o  a d d r e s s  t h e  motion o f  t h e  sys tem t h r o u g h  

s t a t e  s p a c e  i n  r e s p o n s e  t o  t h i s  f o r c e ,  t h e  t i m e  c o n s t a n t  z, 

i n t r o d u c e d  by t h e  membrane r e s i s t a n c e  and t h e  membrane 

c a p a c i t a n c e  of  t h e  neurons  which t h e  nodes  model must b e  t a k e n  

i n t o  a c c o u n t .  The t i m e  dependent  form of  e q u a t i o n  ( 2 )  i s  t h u s  

where q, i s  t h e  e f f e c t i v e  membrane p o t e n t i a l  o f  t h e  ith node 

and f ,  i s  t h e  f o r c e  e x e r t e d  by i t s  i n p u t  s i g n a l .  Another  way 

t o  i n t e r p r e t  t h i s  e x p r e s s i o n  i s  t h a t  f, i s  t h e  i n s t a n t a n e o u s  

membrane p o t e n t i a l  w h i l e  qi i s  a  moving a v e r a g e  o f  f ,  which i s  

e x p o n e n t i a l l y  smoothed u s i n g  a  t i m e  c o n s t a n t  o f  z .  The 



s o l u t i o n  of  t h i s  e q u a t i o n  i s  found t o  be 

by t h e  method d e s c r i b e d  i n  appendix  B.  

Up t o  t h i s  p o i n t ,  5, h a s  r e p r e s e n t e d  t h e  i n s t a n t a n e o u s  

o u t p u t  v a l u e  o f  a  node, which can  t a k e  on t h e  v a l u e s  0 and 1, 

and which t a k e s  on t h e  l a t t e r  v a l u e  w i t h  p r o b a b i l i t y  g i v e n  by 

e q u a t i o n  ( 3 )  . I n  o r d e r  t o  e f f e c t  t h e  t r a n s i t i o n  t o  a  

c o n t i n u o u s ,  t i m e  dependent  v e r s i o n  o f  t h e  model, it i s  u s e f u l  

t o  l e t  t h i s  symbol h e n c e f o r t h  d e n o t e  t h e  e f f e c t i v e  v a l u e  o f  

t h e  s t o c h a s t i c  b i n a r y  v a r i a b l e .  That  i s ,  o v e r  a n  i n t e r v a l  on 

t h e  o r d e r  o f  2,  t h e  n e t  e f f e c t  of  c, on t h e  mot ion  o f  t h e  

s y s t e m  can be found b y  t r e a t i n g  it a s  though  it were a  

c o n t i n u o u s  random v a r i a b l e  whose mean i s  g i v e n  by t h e  r i g h t  

hand side of  e q u a t i o n  ( 3 )  and whose v a r i a n c e  may e a s i l y  be 

v e r i f i e d  t o  be p i ( l  - p i  S i n c e  i t s  s t a t i s t i c s  a r e  non- 

s t a t i o n a r y  i n  t h e  t i m e  dependent  model, t h e  mean and v a r i a n c e  

of  t h e  o u t p u t  o f  e a c h  node a r e  f u n c t i o n s  of time. 

Now, l e t t i n g  5, d e n o t e  t h e  e f f e c t i v e  v a l u e  of t h e  i n p u t  

s i g n a l  t o  t h e  ith node, d e f i n e d  a n a l o g o u s l y  t o  t h e  new 

i n t e r p r e t a t i o n  of  6, b u t  o r i g i n a t i n g  o u t s i d e  of t h e  system, 

t h e  f o r c e  a c t i n g  on e a c h  node i s  j u s t  

f i  - C i  + CWijCj 
j 

which, b e i n g  a  weighted  sum of  random v a r i a b l e s ,  i s  i t s e l f  a 
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random v a r i a b l e .  

The random f l u c t u a t i o n s  super imposed on f ,  a r e ,  i n  

g e n e r a l ,  d i f f e r e n t  f o r  e a c h  node.  T h e r e f o r e  t h e  s i n g l e  g l o b a l  

t e m p e r a t u r e  used  i n  t h e  model p r e s e n t e d  above must be r e p l a c e d  

w i t h  a  v e c t o r  o f  e q u i v a l e n t  n o i s e  t e m p e r a t u r e s ,  which a r e  

shown i n  append ix  B t o  be p r o p o r t i o n a l  t o  t h e  r o o t  mean s q u a r e  

v a l u e  of  t h e  f l u c t u a t i o n s ,  d e n o t e d  by o,. By d e f i n i n g  t h e  

t e m p e r a t u r e  o f  e a c h  node i n  terms o f  t h e  s t a t i s t i c s  of i ts 

i n p u t  s i g n a l ,  t h e  approach t o  e q u i l i b r i u m  o f  t h e  sys tem a s  a  

whole becomes de te rmined  by i t s  e q u a t i o n  o f  mot ion  and t h e r e  

i s  no need t o  i n t r o d u c e  such  a r t i f i c i a l  d e v i c e s  a s  a  c o o l i n g  

s c h e d u l e .  

I t  i s  a rgued  i n  appendix  B t h a t  t h e  t i m e  b e h a v i o u r  o f  t h e  

s y s t e m  i s  most e a s i l y  approached by c o n s i d e r i n g  t h e  v a r i a t i o n s  

of  t h e  s i g n a l s  abou t  t h e i r  e q u i l i b r i u m  v a l u e s .  I n  s o  do ing ,  

one f i n d s  t h a t  t h e  e f f e c t i v e  c o u p l i n g  between t h e  nodes  

d i f f e r s  from t h a t  g i v e n  by  t h e  l i n k  w e i g h t s ,  due t o  t h e  f a c t  

t h a t  t h e  s l o p e  of t h e  s igmoid  t r a n s f e r  f u n c t i o n  of  e a c h  node 

i s  a  f u n c t i o n  o f  t h e  e q u i v a l e n t  n o i s e  t e m p e r a t u r e  o f  i t s  i n p u t  

s i g n a l .  The e f f e c t i v e  t r a n s f e r  o p e r a t o r  o f  t h e  system, A, i s  

t h u s  g i v e n  by 

where t h e  second term on t h e  r i g h t  hand side i s  t h e  

i n t e r a c t i o n  m a t r i x ,  a s  d e r i v e d  i n  append ix  B.  T h i s  is  a n  

i m p o r t a n t  s t e p ,  b e c a u s e  it a l l o w s  s t o c h a s t i c  s i g n a l s  i n  a 
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fixed structure nonlinear system to be treated like 

deterministic signals in a variable structure linear system. 

With these ideas in hand, the linearized equation of 

motion of the system is just 

which has the solution 

where the matrix T (t) satisfies a matrix differential equation 

given in appendix B. 

In analyzing the time dependent behaviour of a Boltzmann 

machine subject to these generalizations, the usual definition 

of statistical expectation applies only to the equilibrium 

values of the signals. Thus, for example, <q> is the 

equilibrium value and q is the effective value of the membrane 

potential. 

In appendix B, all these ideas are developed in detail 

and the results applied to the central nervous system of the 

organism. The main idea that emerges is that the behaviour of 

the system can be treated as linear in certain parts of its 

state space, while transitions between one effectively linear 

regime and another occur in other parts of state space. In 

essence, a number of linear systems are embedded in the 

nonlinear one. Changes in the input can thus drive the system 
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from one dynamical regime into another, where each regime 

obeys qualitatively different dynamics from all the others. 

This-is based on the mechanism of noise determined variable 

coupling which is related, in appendix B, to the idea of 

context sensitive association. 

The same idea is used in the analysis of the motor 

postprocessing system to explain how the central nervous 

system brings about a transition between two different 

dynamical regimes of the motor postprocessing system. In that 

case, one effective structure damps out fluctuations in its 

input, while the other amplifies them until it achieves 

sustained oscillations which drive the somatic musculature and 

produce the serpentine motion typical of C. elegans. 



THE STRUCTURE AND PHYSIOLOGY OF C.  ELEGANS 

- C. elegans is a free living soil nematode, approximately 

60 microns in diameter and almost a millimetre in length. 

Figure 2.1 shows the organism in cross section. The exterior 

of the organism is coated with a cuticle that is excreted by 

the hypodermal cells. It forms the base for the attachment of 

muscle, which is distributed rather than localized at specific 

points o f  attachment. The cuticle is punctured anteriorly by 

the trilaterally symmetric mouth and ventro-posteriorly by the 

anus. In the hermaphrodite, the vulva is located ventrally 

about 60 percent of the way from the mouth to the tip of the 

tail. Approximately one in a thousand larvae become males, 

with a copulatory spicule replacing the vulva, although it is 

located much closer to the anus. The only other major opening 

in the cuticle is the excretory pore, located ventrally just 

posterior to the head. In addition, of course, there are 

several sensilla that have microscopic openings providing 

access to the external chemical milieu. 

The mouth opens into the buccal cavity, which forms the 

anterior part of a double bulbed pharynx. The second bulb 

houses a three toothed grinding and filtering organ, through 

which food must pass before entering the intestine via the 

pharyngeal-intestinal valve. The pharynx is contained in a 

basement membrane which separates it from the rest of the 

organism. Only two neurons pass through this membrane and 

connect to the animalf s main nervous system, although there 
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a r e  a  t o t a l  of  2 0  neurons  i n n e r v a t i n g  

an  autonomous subsys tem [ A l b e r t s o n  & 
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t h e  pharynx,  which forms 

Thomson, 761 . 
The musc les  a r e  l o c a t e d  i n  two p a i r s  o f  b u n d l e s  c l o s e l y  

a p p o s e d t o  t h e  hypodermis.  The d o r s o l a t e r a l  and  v e n t r o l a t e r a l  

p a i r s  a r e  i n n e r v a t e d  i d e n t i c a l l y ,  s o  t h a t  t h e  organism i s  

mobi le  i n  t h e  d o r s o v e n t r a l  p l a n e  o n l y .  The head,  however, h a s  

a n  a d d i t i o n a l  d e g r e e  of freedom w i t h  t h e  a b i l i t y  t o  move from 

side t o  side. The pseudocoelom, a  l a r g e  a n n u l a r  c a v i t y  

between t h e  i n t e s t i n a l  t r a c t  and t h e  muscles ,  i s  m a i n t a i n e d  a t  

a  t u r g o r  p r e s s u r e  of  a  f e w  p s i  above ambien t .  T h i s  forms a 

h y d r o s t a t i c  s k e l e t o n  [ L e e ,  651 a g a i n s t  which t h e  musc les  ac t .  

Movement i s  caused  by d o r s o v e n t r a l  u n d u l a t i o n s  t h a t  

p r o p a g a t e  a l o n g  t h e  l e n g t h  t h e  organism, from head  t o  t a i l  o r  

v i c e  v e r s a ,  depending on t h e  d i r e c t i o n  o f  mot ion .  Such 

t r a v e l l i n g  waves a r e  on ly  p o s s i b l e  i f  t h e  c o n t r a c t i o n  o f  one 

p a i r  o f  muscle b u n d l e s  i s  accompanied by l e n g t h e n i n g  of  t h e  

opposing p a i r .  The f o r c e  c a u s i n g  t h i s  s t r e t c h i n g  i s  due  t o  

t h e  t u r g o r  p r e s s u r e .  The c u t i c l e  i s  composed o f  s e v e r a l  

l a y e r s ,  t h e  most i m p o r t a n t  of  which i s  a  m a t r i x  o f  c o l l a g e n  

f i b r e s  c r o s s i n g  a t  abou t  135 d e g r e e s  [ C r o f t o n ,  661. An 

i n c r e a s e  i n  t h e  t u r g o r  p r e s s u r e  c a u s e s  t h e  e n c l o s e d  

p a r a l l e l o g r a m s  become f l a t t e n e d .  A s  a  consequence,  t h e  

d i a m e t e r  o f  t h e  worm i s  r a t h e r  independen t  o f  t h e  p r e s s u r e ,  

w h i l e  t h e  l e n g t h  i s  s t r o n g l y  dependent  on it. It  i s  by v i r t u e  

of  t h i s  s t r u c t u r e  t h a t  t h e  muscu la r  c o n t r a c t i o n s  l e a d  t o  

f l e x i o n  i n s t e a d  of  d i s t e n s i o n  o f  t h e  c u t i c l e .  

T h i s  method of  locomotion i s  u n i q u e l y  s u i t e d  t o  t h e  
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physical environment in which C. elegans exists. Living in 

thin films of water in the interstitial spaces between soil 

particles, the organism is held against one of them by surface 

tension. The film forms a meniscus which meets the body of 

the animal at an angle determined by the depth of the film. 

When the body is displaced laterally by muscular contractions, 

the film is distorted and acts to oppose further displacement. 

This, together with friction between the cuticle and the 

substratum provides the reaction to the force exerted by the 

worm [Croll, 7 0 1 .  Consequently, when the film is much thinner 

than the diameter of the animal, movement is accomplished with 

great difficulty due to the large normal force, and when the 

film is much thicker than the diameter, movement is difficult 

due to the lack of a restoring force. In the intermediate 

range, the rate of locomotion is determined by the difference 

between the rate at which the somatic waves move along the 

body of the worm and the slip between the cuticle and the 

substratum. 

Various sensory modalities are available to C. elegans. 

Proprioreceptive input allows the nervous system to monitor 

such internal variables as hunger, fatigue, age, pressure, and 

posture. The latter two are due to stretch receptors 

distributed throughout the animal, while the others may be 

mediated by neurohumoural factors which are at present not 

well- understood. It is possible, however, that feeding is 

controlled by stretch receptors, because expansion of the 

intestine due to intake of food results in lengthening of the 
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organism and defecation causes shortening. Also, since the 

nervous system continues to develop as the organism matures, 

moulting and the onset of reproductive behaviour could be 

controlled by the appearance of new structures and connections 

in the nervous system rather than receptors sensing changes in 

endocrine balance. Hence neurohumoural proprioreception may 

play a relatively minor part in the determination of 

behaviour. Nonetheless, it may perform a regulatory function 

such as controlling the overall level of arousal and rate of 

adaptation of the nervous system. 

With respect to external variables, C. elegans exhibits 

chemoreceptors, thermoreceptors and mechanoreceptors. Also, 

an orthokinetic response to light has been reported, though C. 

elegans does not possess obvious photoreceptors. Most of the 

sensilla are located in the head. Six inner and six outer 

labial sensilla provide chemo- and mechano-sensory input from 

the region surrounding the mouth. Four cephalic sensilla are 

most likely mechanoreceptors analogous to the cephalic 

papillae of other nematodes. A pair of amphids are located 

just anterior to the nerve ring and are probably responsible 

for the chemo- and thermo-taxes. Because of the small spacing 

between them and the sensitivity of the organism to 

concentration and temperature gradients, it is thought that 

these sensilla operate klinotactically rather than 

tropotactically [Ward, 761 .  Two deirids are located in the 

cervical region, and two more are found in the tail. A number 

of neurons in the head are not associated with any sensilla 
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and must therefore be proprioreceptors. The animal is 

sensitive to touch along its entire length, although no 

specifically sensory neurons are located near the cuticle. 

Somatosensory input is thus most likely mediated by the 

motoneurons in this region, which also act as stretch 

receptors. Finally, two phasmids are located just posterior 

to the anus, and are similar to the amphids, although less 

prominent. The outer labial and cephalic sensilla closely 

resemble insectine campaniform sensilla [Mill, 821.  

The nervous system consists of 302 neurons in the adult 

hermaphrodite, which is the dominant free living form. The 

male has additional neural tissue, most of it located in the 

tail. In the first stage larva, L1, 212 of these neurons are 

present. Those which develop later are associated primarily 

with reproduction and mating. In this paper, only that part 

of the nervous system present at the L1 stage are taken into 

consideration. 

The majority of the central nervous system is located in 

the circumpharyngeal nerve ring, which nestles between the two 

bulbs of the pharynx. Most of the anterior sensilla send 

process tracts rearward into the neuropil of the ring, 

although the amphidial tracts continue past it, and enter the 

ventral ganglion via the amphidial cornrnissures. This ganglion 

is located immediately posterior to the nerve ring and, 

together with the retrovesicular ganglion, forms the anterior 

terminus of the ventral nerve cord. The ventral cord projects 

along the length of the animal towards the tail, periodically 
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s e n d i n g  commissures around t h e  pseudocoelom i n t o  t h e  d o r s a l  

co rd ,  which t e r m i n a t e s  a n t e r i o r l y  i n  t h e  n e r v e  r i n g .  The 

v e n t r a l  c o r d  t e r m i n a t e s  p o s t e r i o r l y  i n  t h e  p r e - a n a l  g a n g l i o n ,  

w h i l e  t h e  d o r s a l  c o r d  p r o j e c t s  i n t o  t h e  t a i l  s p i k e  and sends  

p r o c e s s e s  i n t o  t h e  p re -ana l  g a n g l i o n  v i a  t h e  lumbar 

comrnissures. These connect  t h e  p r e - a n a l  and  lumbar  g a n g l i a ,  

which r e c e i v e  i n p u t  from t h e  p o s t e r i o r  d e i r i d s  and t h e  

phasmids.  The p re -ana l  g a n g l i o n  a l s o  c o n t r o l s  d e f e c a t i o n .  

Motor o u t p u t  from t h e  ne rve  r i n g  c o n t r o l s  p h a r y n g e a l  pumping 

and t h e  musc les  of  t h e  head.  The s o m a t i c  m u s c u l a t u r e  i s  

c o n t r o l l e d  e x c l u s i v e l y  by t h e  d o r s a l  and v e n t r a l  c o r d s ,  and  i s  

i n s t r u m e n t a l  i n  p r o p a g a t i n g  waves down t h e  body o f  t h e  a n i m a l .  

The muscle c e l l s  a r e  p e c u l i a r  i n  t h a t  t h e y  s e n d  p r o c e s s e s  i n t o  

t h e  n e r v e  c o r d s  i n s t e a d  of r e c e i v i n g  p r o c e s s e s  f rom them, a s  

i s  u s u a l  i n  most organisms.  



The motor postprocessing system is organized into two 

nerve cords: one located dorsally, innervating the dorso- 

lateral muscle bundles, and one located ventrally, innervating 

the ventrolateral muscle bundles. Each cord also contains the 

processes of sensory neurons and neuronal processes coupling 

the nerve ring with the pre-anal and lumbar ganglia. With the 

exception of the distal stretch receptive endings of such 

motor neurons that possess them, these processes are 

irrelevant to the present analysis. 

There are 58 motor neurons distributed between the two 

cords. These fall into six classes: DA, DB, DD, VA, VB and VD. 

While all of the cell bodies are located in the ventral cord, 

the classes DA, DB and DD send processes into the dorsal cord 

via a number of commissures distributed along the length of 

the organism. The dorsal muscles are exclusively innervated 

by DA, DB and DD while the ventral muscles are exclusively 

innervated by VA, VB and VD. The three pairs of classes, (DA, 

VA) , (DB, VD) , and (DD, VD) are functionally homologous. 

The class DA has 9 members, labelled DA1 to DA9 from 

anterior to posterior, while VA has 12 members, VA1 to VA12. 

These neurons have distal processes projecting anteriorly 

beyond the region in which synapses, neuromuscular junctions 

and gap junctions occur, and it is assumed that these serve as 

stretch receptors. Without this assumption, the model 

discussed in this section does not work. The DA and VA motor 
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neurons are necessary for normal reverse locomotion, that is, 

for forward propagation of a wave of flexion along the body of 

the worm. These neurons form excitatory synapses and 

neuromuscular junctions mediated by acetylcholine. They 

receive excitation from the nerve ring primarily via the 

interneurons of classes AVA, AVD and AVE. 

The classes DB1 to DB7 and VB1 to VBll have distal 

processes projecting anteriorly beyond the regions in which 

connections occur, and it is again necessary to assume that 

these act as stretch receptors. These neurons are also 

cholinergic and are necessary for normal forward locomotion, 

or reverse wave propagation. Their excitation comes fromthe 

ring interneurons of classes AVB and PVC. 

In the classes DD1 to DD6 and VD1 to VD13, the regions in 

which neuromuscular junctions occur are dorsoventrally opposed 

from the regions having synapses and gap junctions. DD are 

postsynaptic to VA and VB in the ventral cord and innervate 

the dorsal muscles while VD are postsynaptic to DA and DB in 

the dorsal cord and innervate the ventral muscles. The 

neuromuscular junctions are mediated by the inhibitory 

neurotransmitter, gama-aminobutyric acid, and these classes 

act as dorsoventral cross inhibitors. They are required for 

normal motion in either direction. 

Of the four muscle bundles, three contain 24 muscle cells 

and the fourth contains 23. Within each bundle, the muscle 

cells are grouped into 12 pairs, with the cells in each pair 

largely overlapping. The first two pairs in each bundle are 



located in the cervical 

innervated by the ring motor 

can thus be divided into ten 
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region of the animal and are 

neurons. The somatic musculature 

more or less distinct sections of 

four dorsal and four ventral muscles each. 

The spatial organization of the motor postprocessing 

system and somatic musculature is shown in figure 5.1. Due to 

the unavailability of complete and accurate biological data, 

this figure is already somewhat idealized in that it assumes 

that the members of each motor neuron class are distributed 

evenly along the length of the organism. Although this is 

not, in fact, the case, the model developed below seems to 

work quite well nonetheless. As well, the slight asymmetry 

introduced by the "missingw muscle cell is neglected, again 

without doing serious violence to the model. 

The interconnections among the motor neurons and the 

muscles are shown in figure 5.2. Figure 5.2 a shows all the 

connections. Since the nerve cords were not completely 

reconstructed by the researchers who provided the source data 

for this analysis [White, et al, 19861, the structure had to 

be extrapolated into the unreconstructed regions for purposes 

of analysis. The connections actually reported in White, et 

al, are shown in figure 5.2 b and those which were 

extrapolated are shown in figure 5.2 c. Figures 5.3 a, b and 

c respectively show the connections within the cords, between 

the cords and to the muscles. Figures 5.4 a through f show 

the connections specific to each of the six classes of motor 

neurons. 
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The mechanical and topological structures depicted in 

these figures are quite complex and rendered a detailed 

analysis intractable without making recourse to some 

simplifying assumptions. The most important of these is that 

the dynamics of the motor postprocessing system can be 

approximated by those of an idealized system of ten sections, 

each having the structure shown in figure 5.5. 

Figure 5 . 5  - Ideal ized structure of one s e c t i o n  
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This  system can be thought  of  a s  two p a i r s  of  coupled 

o s c i l l a t o r s ,  w i t h  only  one p a i r  a c t i v e  a t  any t ime,  a s  

determined by e x c i t a t i o n  from t h e  ne rve  r i n g .  A t  any given 

t i m e ,  t h e  same p a i r  i s  a c t i v e  i n  a l l  s e c t i o n s .  One p a i r  i s  

composed of an o s c i l l a t o r  made up o f  DA and DM and another  

o s c i l l a t o r  made up o f  VA and VM, w i t h  coupl ing  prov ided  by DD, 

VD and t h e  mechanical  i n t e r a c t i o n s  between DM and VM. The 

o t h e r  p a i r  has  a homologous s t r u c t u r e  i n c o r p o r a t i n g  DB and VB 

i n  p l a c e  of DA and VA. The p a i r  i n c o r p o r a t i n g  DA and VA i s  

coupled t o  t h e  p rev ious  s e c t i o n  v i a  t h e  d i s t a l  s t r e t c h  

r e c e p t i v e  endings  of  t h e s e  neurons,  wh i l e  t h e  p a i r  

i n c o r p o r a t i n g  DB and VB i s  coupled t o  t h e  nex t  s e c t i o n .  This  

coupl ing  imposes a phase s h i f t  between a d j a c e n t  s e c t i o n s  

r e s u l t i n g  i n  t h e  propaga t ion  of  waves o f  d o r s o v e n t r a l  f l e x i o n  

e i t h e r  forward o r  backward a long  t h e  l e n g t h  o f  t h e  body, 

depending on which p a i r  i s  a c t i v a t e d .  

I n  t h i s  s t r u c t u r e  t h e  only  source  of  coupl ing  between t h e  

s e c t i o n s  i s  v i a  t h e  d i s t a l  p roces ses  o f  DA, DB, VA and VB. 

The assumption t h a t  t h e  dynamics o f  t h i s  system a r e  

approximately  e q u i v a l e n t  t o  t h o s e  o f  t h e  r e a l  system rests on 

t h e  i d e a  t h a t  t h e  i n t e r p e n e t r a t i o n  o f  s e c t i o n s  i n  t h e  r e a l  

system compl ica tes  t h e  coupl ing  i n  such a way t h a t  t h e  mean 

phase  s h i f t  between s e c t i o n s  i s  r e l a t i v e l y  s i m i l a r  i n  t h e  r e a l  

and i d e a l i z e d  systems.  

To see how t h i s  system func t ions ,  c o n s i d e r  what happens 

when DB i s  e x c i t e d  by t h e  nerve r i n g .  I ts  ou tpu t  i n c r e a s e s  

and p rov ides  d r i v e  t o  t h e  d o r s a l  muscle cells o f  t h e  s e c t i o n .  
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A f t e r  some t ime  de lay ,  t h e  muscle beg ins  t o  c o n t r a c t  i n  

response t o  t h e  d r i v e .  The c o n t r a c t i o n  causes  a dec rease  i n  

t h e  s i g n a l  p rov ided  by t h e  s t r e t c h  r e c e p t i v e  membrane o f  DB 

and a f t e r  ano the r  t i m e  d e l a y  t h e  membrane p o t e n t i a l  of  DB 

beg ins  t o  dec rease .  This  dec reases  t h e  drive t o  t h e  muscle 

cells,  which beg in  t o  r e l a x .  A f t e r  a n o t h e r  t i m e  d e l a y  t h e  

r e l a x a t i o n  causes  an i n c r e a s e d  s i g n a l  from t h e  s t r e t c h  

r e c e p t o r ,  which i n c r e a s e s  t h e  membrane p o t e n t i a l  o f  DB, and 

t h e  c y c l e  r e p e a t s .  

The same i n t e r a c t i o n  t a k e s  p l a c e  between VB and t h e  

v e n t r a l  muscle cells o f  t h e  s e c t i o n .  But t h e s e  two 

o s c i l l a t o r s  a r e  coupled by DD, VD and t h e  f o r c e s  e x e r t e d  by 

one set of muscles on t h e  o t h e r .  This  e n s u r e s  t h a t  t h e  two 

o s c i l l a t o r s  a r e  1 8 0  degrees  ou t  of  phase  w i t h  one another .  

Thus, when one set o f  muscle cells i s  maximally c o n t r a c t e d ,  

t h e  o t h e r  i s  maximally r e l axed ,  which r e s u l t s  i n  maximum 

f l e x i o n  of  t h e  s e c t i o n .  

There i s  a l s o  a t ime  de l ay  a s s o c i a t e d  w i t h  t h e  coupl ing  

between s e c t i o n s .  Thus t h e  i n s t a n t s  o f  maximum f l e x i o n  are 

d i s p l a c e d  from one s e c t i o n  t o  t h e  nex t ,  r e s u l t i n g  i n  t h e  

propaga t ion  o f  a wave of  f l e x i o n  down t h e  l e n g t h  o f  t h e  body 

of  t h e  worm. 

The c u r v a t u r e  of t h e  body i s  j u s t  t h e  rate o f  change of 

t h e  o r i e n t a t i o n  w i t h  d i s t a n c e .  Appendix C describes how a 

t r a v e l l i n g  wave arises from coupled o s c i l l a t i o n s  a long  t h e  



l e n g t h  of t h e  organism. The o r i e n t a t i o n  o f  t h e  body a s  a  

func t ion  of d i s t a n c e  from t h e  t i p  of  t h e  head can be ob ta ined  

by i n t e g r a t i n g  equa t ion  (C.15) . The e x a c t  s o l u t i o n  of  t h i s  

problem i n v o l v e s  an  e l l i p t i c  i n t e g a l  and i s  n o t  of g r e a t  

importance t o  t h e  p r e s e n t  argument. However, an  approximation 

of t h i s  f u n c t i o n  can be ob ta ined  by assuming t h a t  t h e  

c u r v a t u r e  i s  c o n s t a n t  throughout  each  o f  t h e  t e n  s e c t i o n s .  

Then t h e  p o s t u r e  of  t h e  animal can be approximated by summing 

t h e  changes i n  o r i e n t a t i o n  over  a l l  of  t h e  s e c t i o n s ,  a s  shown 

i n  f i g u r e  5 .6 .  The r e s t i n g  l e n g t h  of  each  o f  t h e  s e c t i o n s  i s  

L, and t h e  width ,  w, i s  t h e  d iameter  o f  t h e  body. These 

dimensions a r e  c o n s t a n t  by v i r t u e  of  t h e  s t r u c t u r e  of  t h e  

c u t i c l e ,  p rov ided  t h a t  t h e  volume o f  t h e  animal remains 

c o n s t a n t .  Typ ica l ly ,  L, = 80 microns and w = 60 microns.  

Figure 5.6 - Approximate posture of the body 

I f  cp i s  t h e  a n g l e  between t h e  c e n t r e  l i n e  o f  t h e  body and 

t h e  x a x i s  and r i s  t h e  r a d i u s  o f  c u r v a t u r e  of  t h e  v e n t r a l  

edge of  t h e  body, t h e n  t h e  l e n g t h  o f  t h e  v e n t r a l  muscles i s  



given by 

and t h e  l e n g t h  o f  t h e  d o r s a l  muscles i s  

whi le  t h e  c o n s t a n t  l e n g t h  o f  t h e  c e n t r e  l i n e  i s  

When t h e  s e c t i o n  i s  s t r a i g h t ,  each of t h e  muscles n e c e s s a r i l y  

has  t h e  same l eng th ,  namely L,, s o  t ha t  L, i s  t h e  r e s t i n g  

l e n g t h  of  t h e  muscles.  The change i n  l e n g t h  r e s u l t i n g  i n  t h e  

c u r v a t u r e  A 9  i s  j u s t  

and 

s o  t h a t  t h e  s h o r t e n i n g  of  one set o f  muscles i s  accompanied by 

an e x a c t l y  equa l  l eng thening  of  t h e  opposing set .  Denoting 

t h i s  change i n  l e n g t h  by AL, 

The change i n  l e n g t h  of t h e  muscles r e s u l t s  from t h e  

d i f f e r e n t i a l  e x c i t a t i o n  r ece ived  by t h e  two sets of muscles 

from t h e  motor nervous system. 



A muscle may be modelled approximately by a s p r i n g  wi th  

a v a r i a b l e  f o r c e  c o e f f i c i e n t .  The s p r i n g  has a maximum and a 

minimum l eng th ,  and t h e  f o r c e  c o n s t a n t  i s  determined by t h e  

e x c i t a t i o n  t o  t h e  muscle. I n  a d d i t i o n ,  any motion caused by 

changes i n  t h i s  exci tement  i s  damped by f r i c t i o n .  Th i s  l e a d s  

t o  t h e  s i t u a t i o n  d e p i c t e d  i n  f i g u r e  5.7. 

Figure 5.7 - Section geometry and force balance 

I n  a d d i t i o n  t o  t h e  s p r i n g s  model l ing t h e  muscles, t h e  

f r i c t i o n a l  damping i s  r ep re sen ted  by moving vanes  whose motion 

i s  impeded by t h e  v i s c o s i t y  of  a f l u i d  i n  which t h e y  move, and 

t h e  c o n s t r a i n t  t h a t  t h e  c o n t r a c t i o n  o f  one set of  muscles i s  

equa l  t o  t h e  s t r e t c h  o f  t h e  opposing set i s  in t roduced  by t h e  

l e v e r  hinged a t  p o i n t s  A, B and C. 

The n e t  f o r c e  e x e r t e d  on t h e  l e v e r  by t h e  d o r s a l  muscles 

i s  g iven  by 



and, s u b s t i t u t i n g  L = L - AL as d e p i c t e d  i n  t h e  f i g u r e ,  

which remains t r u e  even though t h e  s e c t i o n  may be curved,  one 

o b t a i n s  

S i m i l a r l y ,  t h e  v e n t r a l  muscles e x e r t  a n e t  f o r c e  of  

Now, t h e  l e v e r  has  a 1:l r a t i o ,  hence t h e  f o r c e s  are r e f l e c t e d  

a c r o s s  t h e  fulcrum unchanged i n  magnitude. Assuming t h a t  t h e  

motion of  t h e  system i s  dominated by t h e  f r i c t i o n ,  s o  t h a t  t h e  

r e a c t i o n  t o  a c c e l e r a t i o n  of  t h e  mass o f  t h e  s e c t i o n  i s  

n e g l i g i b l e  due t o  t h e  smal l  mass and slow movements of  t h e  

organism, t h e  f o r c e s  given by equa t ions  (25) and (26) must 

ba lance .  Hence 

That i s ,  

and, d e f i n i n g  x by 



we have 

This equation provides the key ingredients necessaryto change 

the idealized section of figure 5.5 into a model which can be 

analyzed mathematically in order to determine how the motor 

postprocessing system transforms a gating signal from the 

nerve ring into the precisely synchronized set of oscillating 

signals required to produce a wave of flexion travelling along 

the length of the body. 

MODELLING THE NERVE CORDS 

The Boltzmann machine model presented becomes a useful 

substrate for modelling the nerve cords when it is modified to 

permit nontrivial time dependent behaviour. As it is 

typically described, the Boltzmann machine is gradually 

brought to thermodynamic equilibrium by a process of 

annealing. That is, the temperature is initially set to an 

effectively infinite value, and then reduced according to some 

fixed cooling schedule. As the temperature approaches zero, 

the machine freezes into some state representing the sought 

after mapping between input and output. The time dependent 

behaviour is thus fixed by the cooling schedule, which is 
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imposed from outside. This is clearly an insufficiently rich 

dynamics to account for the behaviour of the nerve cords. 

However, letting the input signals themselves carry 

superimposed noise and giving each of the nodes a time 

constant over which the input signal is integrated permits a 

more general dependence on time. In this case, the 

temperature may be different for each node. The single global 

temperature is replaced by the equivalent noise temperature of 

the input signal at each node, as defined in equation (B.4). 

This results in a dynamics characterized by changes in the 

effective system structure via the mechanism of noise 

determined variable coupling between the nodes, as outlined in 

equations (B.8) and (B.12) and the related discussion. As 

well, this introduces the idea of a node as a lossy integrator 

driving a decision unit, which results in the nontrivial time 

behaviour described by the solutions of equation (B.28). 

The first step in constructing a detailed mathematical 

model of the nerve cords is the identification of the state 

variables of the system, and the coupling between them. Not 

all of these state variables are associated with neural 

signals and not all of the coupling is synaptic. According to 

the paradigm which underlies this thesis, any force transmits 

information and any degree of freedom which is capable of 

exerting a force stores information. In particular, this 

applies to the differential length of the dorsal and ventral 

muscle bundles and to the forces due to the mechanical 

coupling between them. Any attempt to understand the 



in format ion  p roces s ing  which t a k e s  p l a c e  i n  t h e  nerve  co rds  

must t h e r e f o r e  t a k e  t h i s  degree  of freedom and t h e s e  

i n t e r a c t i o n s  i n t o  account .  

A s  d i s c u s s e d  above, each  s e c t i o n  can be decomposed i n t o  

two subsystems, only  one o f  which i s  active a t  any g iven  t i m e .  

These two subsystems are shown i n  f i g u r e  5.8, wh i l e  t h r e e  

complete s e c t i o n s ,  i n c l u d i n g  t h e  coup l ing  between them and t h e  

coupl ing  common t o  a l l  s e c t i o n s  from t h e  nerve r i n g ,  are shown 

i n  f i g u r e  5.9. 

Figure 5 . 8  - The subsystems of a s i n g l e  section 

I n  t h i s  f i g u r e  t h e  circles marked DE and VE i n d i c a t e  t h e  

e x c i t a t i o n ,  x and x, , t o  t h e  d o r s a l  and v e n t r a l  muscles. 

The circles marked L i n d i c a t e  t h e  s t a t e  v a r i a b l e ,  x ,  

a s s o c i a t e d  w i t h  t h e  d i f f e r e n c e  i n  l e n g t h  between t h e  two sets 

of muscles.  S ince  t h i s  v a r i a b l e  r e p r e s e n t s  a  s t r e t c h  f o r  t h e  

v e n t r a l  muscles and a c o n t r a c t i o n  f o r  the d o r s a l  muscles, t h e  

s i g n  of  t h e  coupl ing  c o e f f i c i e n t  i s  r e v e r s e d  f o r  t h e  d o r s a l  

s t r e t c h  r e c e p t o r s .  The coupl ing  c o e f f i c i e n t s  between t h e  
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excitations and the length state variable can be determined by 

rewriting equation ( 3 0 )  in the form 

The two circles marked AVA represent the same signal; 

likewise for the two circles marked AVB. These are the gating 

signals from the nerve ring and are applied to every section 

simultaneously. Travelling waves are produced only when one 

of these signals is on an the other one is off. When both are 

on, two waves travelling in opposite directions are generated 

and superpose to produce a resultant standing wave. This 

results in the organism assuming some fixed posture consisting 

of a stationary wave of flexion along the length of its body. 

As will be shown below, these subsystems exhibit stable 

oscillations only when biased appropriately by their gating 

signals. 

One additional assumption must be made. Namely, that the 

response of a muscle cell to excitation can be expressed by 

the same sigmoid transfer function that governs the behaviour 

of neurons. That is, 

where s is the sigrnoid, given by equation ( 3 )  and x and x, 

are the effective membrane potentials of the muscle cells. 

Recall that the effective membrane potentials are short term 

time averages of stochastic signals, characterized by a slowly 
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va ry ing  mean v a l u e  about which t h e  v a r i a t i o n s  o s c i l l a t e ,  a s  

de f ined  b y  equa t ion  (12)  and a s  d i s c u s s e d  i n  g r e a t e r  d e t a i l  i n  

appendix B. 

I t  must a l s o  be noted  t h a t  under s t e a d y  s t a t e  cond i t i ons ,  

t h e  c o e f f i c i e n t  o f  x i n  equa t ion  (30 )  i s  c o n s t a n t .  This  i s  

because t h e  e x c i t a t i o n  t o  d o r s o v e n t r a l l y  opposed muscles 

v a r i e s  i n  an t iphase ,  s o  t h a t  

f o r  some p o s i t i v e  cons t an t ,  f ,  and p e r i o d i c  func t ion ,  g .  

Hence 

where t h e  c o n s t a n t ,  k ,  ha s  been absorbed i n t o  f .  

From f i g u r e  5 .8  one can t h e n  immediately w r i t e  t h e  

d i f f e r e n t i a l  e q u a t i o n s  o f  motion o f  t h e  subsystem which 

mediates  forward motion. L e t t i n g  Z be t h e  membrane t i m e  

c o n s t a n t  of  t h e  neurons,  Z be t h e  membrane t i m e  c o n s t a n t  o f  

t h e  muscle cel ls  and z be t h e  somat ic  t i m e  c o n s t a n t  due t o  

f r i c t i o n  i n  t h e  body s e c t i o n ,  one o b t a i n s  
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In order to simplify the analysis, the membrane time constants 

of the neurons and muscle cells may be taken as approximately 

equal. The somatic time constant will undoubtedly by somewhat 

longer. It is not unreasonable, then, to assume 

This assumption will facilitate the calculation of the 

solution without affecting the nature of the solution. We may 

now write equations (35) explicitly as a vector differential 

equation : 

where the matrix on the right hand side is just M, the 

coupling matrix, augmented to take into account coupling 

introduced by sensory and mechanical interactions, with the 

condition expressed by equation (31) imposed. As well, s (x ) 

has been absorbed into the coefficient, a, in order to 

simplify the representation of excitation fromthe nerve ring. 

This is an example of the noise determined variable coupling 

described in appendix B. Forming the interaction matrix, N, 

and absorbing the slopes of the sigmoids into the coefficients 

gives 



where the matrix on the left hand side is 

This system can be expressed in terms 

just A = (I - N) . 
of the sums and 

differences of the homologous dorsoventrally opposed signals 

as outlined in appendix D. One obtains 

where the x. , being the sums, represent the mean values and 

the x.,, being the differences, represent the variations about 

the means. Now, equation (39) is highly revealing of the 

structure of the subsystem, because it clearly shows it to be 

composed of two smaller subsystems which are entirely 

uncoupled. The time development of the means is completely 

decoupled from the time development of the variations. We may 

therefore proceed to solve equation (39) in two stages. Each 

of the two reduced subsystems will be treated separately and 

the solutions will then be combined. The details of these 

solutions are provided in appendix D, wherein the structure of 
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the eigenfunctions and the generalized eigenvectors of the two 

subsystems are explicitly derived. 

The solution of the differential equation of motion of 

the means, expresssed explicitly in terms of the parameters of 

the system, is given by 

Thus, 7) is composed of a constant part and a transient part. 

It is clear by inspection of this equation that 7) starts from 

zero and asymptotically approaches 

as t increases without bound. Thus the assumption expressed 

in equation (33) is validated, with 

This argument is not circular because the operations leading 

to equation (39) are independent of f. It is also clear from 

equation (40) that 7) = 0 for any value of t in the absence of 

excitation from the nerve ring. 

The time evolution of the means is shown in figure 5.10. 



x, - linear model 

x, - nonlinear model 

s (x,) - nonlinear model 

I I 1 
Figure 5.10 a - Mean time response of the DD and VD neurons 

x, - both models 

s (xw) - nonlinear model 

I I I 1 

Figure 5.10 b - Mean time response of the DB and VB neurons 

x, - linear model 

x, - nonlinear model 

I I I I 

Figure 5.10 c - Mean time response of the muscular excitations 
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Simulations were carried out with a = 1, b = 5, c = 2, d = 2, 

e = 1 and f = 1. Both linearized and nonlinear models were 

run. In the figure, the vertical scale is one unit per 

division, with one unit representing the maximum output from 

a neuron. The horizontal scale is five time constants per 

division. As can be seen in the figure, the form of the 

solutions is identical, or virtually so, between the linear 

and nonlinear models. The only significant difference between 

the solutions to the two models is the value of the 

asymptotes. 

TIME EVOLUTION OF THE VARIATIONS 

Turning now to the variation, q,,, about the mean, q , 
equation (4 0) 

or just 

reduces to 

where, it will be recalled, the slopes of the sigmoids are 

absorbed into the coefficients. These slopes, of course, are 

to be evaluated at the mean, q . Hence, by equation (411, 

excitation from the nerve ring is required in order for 

equation (44) to have a nontrivial solution. In the absence 
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of such excitation, q decays to zero, the system is biased 

into the region where slopes of the sigrnoids are nearly zero, 

and the system becomes effectively decoupled. When the nerve 

ring drives the system into the central regions of the 

sigmoids, small random fluctuations are able to initiate the 

oscillatory dynamics which lead to motion of the organism. 

The detailed solution of equation (43) is given in 

appendix D. Assuming that the initial conditions are such 

that only the initial posture of the organism contributes to 

the solution, the time behaviour of q, satisfies 

Now, the first term on the right hand side of this equation is 

exponentially damped, so it will decay to zero over time. The 

condition for the second term to grow exponentially with time 

is examined more closely in appendix D. 

Of course, the oscillation will not grow in magnitude 

without bound as indicated by equation ( 4 5 ) .  Eventually, the 

linearizing assumptions will break down as the amplitude 

drives the peaks of the signal into the regions where the 

slopes of the sigmoids decrease enough to have a significant 

effect on the interaction matrix. The result will be to 

decrease all of the coupling coefficients except f. The 

oscillations will stabilize when the effective value of the 
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left hand side of inequality (D.53), integrated over the whole 

signal swing, reaches unity. In particular, the effective 

frequency of oscillation will be lowered. The peaks of the 

waveforms will also be flattened as the signal excursion takes 

it into regions in which the slopes of the sigmoids are 

significantly reduced. 

These effects can be seen in figures 5.11, 5.12 and 5.13. 

In figure 5.11, the oscillatory components of the signals are 

shown for the first 15 time constants after the arrival of a 

gating signal from the nerve ring. Both the membrane 

potentials and the outputs are shown for the neural signals. 

For comparison, the response of the linearized system is shown 

in figure 5.12. The horizontal scale is the same in both 

figures, namely, five time constants per division. The 

vertical scale in figure 5.11 is normalized to the maximum 

output of a neuron. The vertical scale in figure 5.12 is 30 

times this amount. 

In figure 5.13, the time evolution of the system is 

traced for 15 time constants following the arrival of the 

gating signal. This interval is of sufficient length for the 

system to reach a steady oscillatory state. Note how, even 

though the peaks of the outputs of the DB and VB neurons are 

flattened, the resulting differential muscle length remains 

nearly sinusoidal. This was an unexpected feature of the 

system dynamics and bears further investigation. One possible 

explanation is that the coupling coefficient, f, between the 

cord motor neurons and the muscles decreases as the signals 



Figure 5 . 1 1  a - D i f f e r e n t i a l  time response o f  t h e  DD and VD neurons 

Figure 5 .11  b - D i f f e r e n t i a l  t i m e  response o f  t h e  DB and VB neurons 

-J 

Figure 5 . 1 1  c - D i f f e r e n t i a l  time response o f  t h e  muscular e x c i t a t i o n s  

J 

Figure 5 .11  d - Time evo lut ion  o f  t h e  d i f f e r e n t i a l  muscle lengths  



Figure 5.12 a - Time evolution of x, in the linear model 

Figure 5.12 b - Time ev oluti of x,, in the lin ear model 

- 

Figure 5.12 c - Time evolution of x, in the linear model 

- 

- 
Figure 5.12 d - Time evolution of x, in the linear model 



Figure 5 .13  a - D i f f e r e n t i a l  time response o f  t h e  DD and VD neurons 

Figure 5 . 1 3  b - D i f f e r e n t i a l  time response o f  t h e  DB and VB neurons 

Figure 5 .13  c - D i f f e r e n t i a l  t i m e  response o f  t h e  muscular e x c i t a t i o n s  

2 

Figure 5 .13  d - Time evo lut ion  o f  t h e  d i f f e r e n t i a l  muscle lengths  
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approach t h e  l i m i t s  of  t h e i r  excurs ions .  I t  i s  a l s o  worthy of  

n o t e  t h a t  t h e  waveforms of t h e  o t h e r  n e u r a l  s i g n a l  t a k e s  on a  

s l i g h t  sawtooth c h a r a c t e r  a s  t h e  system e n t e r s  t h e  s t eady  

s t a t e .  

With t h e  s o l u t i o n s  now i n  hand b o t h  f o r  t h e  t i m e  

development o f  t h e  mean v a l u e s  of t h e  s t a t e  variables and f o r  

t h e  v a r i a t i o n s  about t h e  means, it becomes p o s s i b l e  t o  

c o n s t r u c t  t h e  o v e r a l l  s o l u t i o n  t o  equa t ion  ( 3 8 )  and t o  compare 

it t o  t h e  r e s u l t s  ob t a ined  by s imu la t ing  t h e  f u l l y  n o n l i n e a r  

s y s t e m  expressed  by equa t ion  (35) .  Under s t e a d y  s ta te  

c o n d i t i o n s ,  t h e  first t e r m  on t h e  r i g h t  hand side o f  equa t ion  

( 45 )  w i l l  have decayed t o  n e g l i g i b l e  ampli tude,  as w i l l  t h e  

second t e r m  on t h e  r i g h t  hand side of e q u a t i o n  ( 4 0 ) .  Thus 

a e  
a  

a ( c - d e )  
2 x L o r ~ r 4 c o s ( 0 2 t + 0 ,  +48,)  

- x L o f r ~ r 4 c o s  (a ,  t + 8, + 58,) 

2 xL,br~r4cos (a2 t + 8, + 3 8,) 

2xLober~r4cos (a ,  t + 84 + 28,) 

where a l l  c o n s t a n t s  t h a t  depend on t h e  coup l ing  c o e f f i c i e n t s  

a r e  e v a l u a t e d  u s i n g  t h e  e f f e c t i v e  v a l u e s  o f  t h e s e  c o e f f i c i e n t s  

when i n t e g r a t e d  over  t h e  s i g n a l  swing. Thus, equa t ion  ( 4 6 )  

is ,  s t r i c t l y  speaking,  only  t h e  first t e r m  o f  t h e  Four i e r  

expansion of  t h e  a c t u a l  s i g n a l .  



Figure 5.14 a - Overall time response of the DD and M neurons 

Figure 5.14 b - Overall time response of  the DB and VB neurons 

I I I I 

Figure 5.14 c - Overall time response of  the muscular exc i tat ions  

Figure 5 . 1 4  d - Time evolution of  the d i f f erent ia l  muscle lengths 



Figure 5.15 a - Overall time response of the DD and vD neurons 

Figure 5.15 b - Overall time response of the DB and VB neurons 

I I 1 I I I I I I I 

Figure 5.15 c - Overall time response of the muscular excitations 

Figure 5.15 d - Time evolution of the differential muscle lengths 
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F i n a l l y ,  t r ans fo rming  back t o  t h e  a c t u a l  membrane 

p o t e n t i a l s  from t h e  sums and d i f f e r e n c e s  of  equa t ion  (46) 

g i v e s  

a e + 2 x,ber:r,cos (a ,  t + 8, + 2 0,) 

a + 2xLobr~r4cos (a ,  t + 8, + 3 0,) 

a ( c - d e )  -x,fr,5r,cos(u2+0, + S O , )  

2x,r:r4cos (oat + 8, + 48,) 

a ( c - d e )  + x , f r ~ r 4 c o s ( 0 2 t + 0 , + 5 8 , )  

a - 2 xLobr:r4cos (a,  t + 0, + 3 0,) 

a e  - 2xLober&cos (o , t  + 8, + 28,) 

Hence t h e  d o r s o v e n t r a l l y  opposed s i g n a l s  o s c i l l a t e  i n  a n t i -  

phase about i d e n t i c a l  mean v a l u e s  when t h e  system i s  ga t ed  by 

t h e  nerve r i n g .  Otherwise t h e  a c t i v i t y  decays  t o  ze ro .  These 

s i g n a l s  a r e  shown i n  f i g u r e s  5.14 and 5.15. For  e a s e  of 

comparison w i t h  f i g u r e s  5.10, 5.11 and 5.13, f i g u r e  5.14 

t r a c e s  t h e  e v o l u t i o n  f o r  f i v e  t i m e  c o n s t a n t s  whi le  f i g u r e  5.15 

covers  15 t ime  c o n s t a n t s .  An i n t e r e s t i n g  effect t h a t  appears  

i n  f i g u r e  5.15 which was no t  apparen t  i n  f i g u r e  5.13 i s  t h e  

d i s t i n c t  asymmetry i n  t h e  s i g n a l  excu r s ions  of  DD, VD and t h e  

muscular e x c i t a t i o n .  Again, t h e  l i k e l y  e x p l a n a t i o n  i s  t h e  

s y s t e m a t i c  v a r i a t i o n  o f  f w i th  s i g n a l  ampli tude.  

I t  now remains t o  t a k e  i n t o  account  t h e  effect of  t h e  

i n t e r - s e c t i o n  coupl ing  due t o  t h e  d i s t a l  s t r e t c h  r e c e p t i v e  

endings  o f  t h e  DB and VB neurons.  The e f f e c t  o f  t h i s  coupl ing  

i s  t o  e n f o r c e  a  phase  c o n s t r a i n t  between t h e  s e c t i o n s  which 
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g i v e s  rise t o  a wave of  f l e x i o n  which t r a v e l s  a long  t h e  body 

of  t h e  organism a t  a  cons t an t  r a t e .  

If t h e  coupled s i g n a l ,  x,,, h a s  t h e  same phase  a s  t h e  

unper turbed  s i g n a l ,  x,,, due on ly  t o  t h e  i n t e r n a l  i n t e r a c t i o n s  

w i t h i n  t h e  s e c t i o n ,  it w i l l  t e n d  t o  i n c r e a s e  t h e  ampli tude of 

t h e  r e s u l t a n t ,  x,,, beyond t h a t  impl ied  by i n e q u a l i t y  (D.53) . 
A s  a r e s u l t ,  t h e  exponent i n  t h e  second t e r m  on t h e  r i g h t  hand 

s i d e  of  equa t ion  (45) w i l l  become n e g a t i v e  and t h e  ampli tude 

w i l l  t e n d  t o  decay. A new e q u i l i b r i u m  w i l l  be e s t a b l i s h e d  

when t h e s e  two effects balance,  i n  which case t h e  r e s u l t a n t  is  

aga in  a s i n u s o i d  o f  cons t an t  ampli tude.  Denoting t h i s  

ampli tude by A and, f o r  t h e  sake  o f  s i m p l i c i t y ,  choosing t h e  

t i m e  o r i g i n  such t h a t  0 + 30 = 0, t h i s  e q u i l i b r i u m  is  

expressed  by 

bu t ,  from equa t ion  (45) one has  

and t h e  first t e r m  on t h e  r i g h t  hand side o f  t h i s  equa t ion  i s  

j u s t  

The requirement  f o r  x,, t o  have t h e  same phase  a s  x,,, imp l i e s  
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t h a t  

x,,, - B cos a, t (51) 

f o r  some ampli tude,  B. Combining t h e s e  f o u r  exp res s ions  

y i e l d s  

a s  t h e  new c o n d i t i o n  f o r  equ i l i b r ium.  By d r i v i n g  t h e  s e c t i o n  

i n t o  r e g i o n s  i n  which i n e q u a l i t y  (D.53) i s  no longe r  

s a t i s f i e d ,  t h e  coupl ing  causes  t h e  s e c t i o n  t o  a d j u s t  i t s  

ampli tude and phase  u n t i l  equa t ion  (52) i s  s a t i s f i e d .  

Now, t h e  d i s t a l  s t r e t c h  r e c e p t i v e  endings  are l o c a t e d  i n  

t h e  nex t  s e c t i o n  and t h e i r  s i g n a l  must t h e r e f o r e  t r a v e l  tw ice  

a s  f a r ,  on t h e  average,  as t h e  s i g n a l  from t h e  proximal 

s t r e t c h  r e c e p t i v e  segments p rov id ing  feedback w i t h i n  t h e  

s e c t i o n .  This  corresponds t o  a phase  s h i f t  o f  8 . Hence, 

moving t h e  t ime  o r i g i n  aga in  t o  a l l ow t h e  s t r e t c h  sens ing  

s i g n a l  from t h e  nex t  s e c t i o n  t o  be w r i t t e n  

one o b t a i n s  

and, r e c a l l i n g  t h a t  

equa t ion  (52 )  becomes 



and, a d j u s t e d  f o r  t h e  new t i m e  o r i g i n ,  equa t ion  ( 4 8 )  imp l i e s  

t h a t  

Hence t h e  s e c t i o n s  o s c i l l a t e  a t  t h e  same frequency,  6 1 ,  and a t  

a  c o n s t a n t  phase  angle ,  8 ,  from each  o t h e r .  This  phase  s h i f t  

occu r s  over  t h e  l eng th ,  L,, of  one s e c t i o n .  Hence, by 

equa t ion  (C.12), t h e  v e l o c i t y  a t  which t h e  wave o f  f l e x i o n  

t r a v e l s  down t h e  body of  t h e  organism i s  

under s t e a d y  s t a t e  cond i t i ons .  

F igu re  5.16 shows t h e  d i f f e r e n t i a l  muscle l e n g t h s  o f  t h e  

t e n  s e c t i o n s  of  somat ic  musculature  when t h e  subsystem 

composed of  DB, DD, VB and VD i s  g a t e d  i n  each  s e c t i o n .  A l l  

s e c t i o n s  a r e  g a t e d  s imul taneous ly  by t h e  nerve  r i n g .  I n  t h i s  

s imu la t ion ,  on ly  t h e  l a s t  s e c t i o n  was g iven  a nonzero i n i t i a l  

cu rva tu re .  A s  can be seen  i n  t h e  f i g u r e ,  t h e  o s c i l l a t i o n s  

beg in  i n  t h a t  s e c t i o n  and propaga te  forward a long  t h e  l e n g t h  

of  t h e  organism u n t i l  a l l  s e c t i o n s  a r e  o s c i l l a t i n g .  By t h e  

end of  1 5  t i m e  c o n s t a n t s ,  most of  t h e  s e c t i o n s  have reached a  

s t e a d y  s t a t e  c o n d i t i o n .  

The model p r e s e n t e d  i n  t h i s  s e c t i o n  t h u s  e x h i b i t s  a l l  of 



Figure 5 . 1 6  - D i f f e r e n t i a l  muscle l engths  for coupled s e c t i o n s  



8 4  

t h e  q u a l i t i e s  observed i n  t h e  motor nervous system of  t h e  

organism. This  was achieved by u s i n g  t h e  t h e o r e t i c a l  

framework developed i n  p rev ious  s e c t i o n s  and apply ing  t h e  

b i o l o g i c a l  c o n s t r a i n t s  imposed by t h e  p h y s i c a l  s t r u c t u r e  of  

t h e  organism. Some o f  t h e  f e a t u r e s  of  t h e  c u r r e n t  model were 

d i c t a t e d  by t h e  incompleteness  o f  a v a i l a b l e  b i o l o g i c a l  d a t a ,  

and t h e  succes s  o f  t h e  model i s  l a r g e l y  due t o  t h e  gu ide  

prov ided  by t h e  p r o p e r t i e s  of  t h e  s t o c h a s t i c  model i n  f i l l i n g  

i n  t h e  gaps .  I n  p a r t i c u l a r ,  t h e  s t a t i s t i c a l  underpinnings  of  

t h e  sigmoid t r a n s f e r  func t ion  p e r m i t t e d  t h e  a n a l y s i s  t o  

c o n c e n t r a t e  on t h e  s i g n i f i c a n t  f e a t u r e s  o f  t h e  n e u r a l  s i g n a l s  

whi le  suppres s ing  d e t a i l s  t h a t  a r e  i r r e l e v a n t  t o  t h e  o v e r a l l  

o p e r a t i o n  o f  t h e  system. 

The f a c t  t h a t  t h i s  approach was s u c c e s s f u l  i n  s p i t e  of 

t h e  incompleteness  o f t h e  neurophys io log ica l  d a t a  r e q u i r e d  f o r  

a  d e t a i l e d  s t o c h a s t i c  model i s  l a r g e l y  due t o  t h e  f a c t  t h a t  

t h e  c o n s t r a i n t s  imposed by t h e  p h y s i c a l  p r o p e r t i e s  of  t h e  

environment, such a s  t h e  s t r u c t u r e  o f  t h e  somat ic  musculature  

and t h e  phys i c s  of  s e r p e n t i n e  locomotion, a r e  p a r t i c u l a r l y  

s t r o n g .  The s t r u c t u r e  and f u n c t i o n  o f  t h e  motor nervous 

system a r e  more o r  less inev i t ab l e .  g iven  t h e s e  c o n s t r a i n t s  and 

t h e  n a t u r e  of  t h e  i n p u t  from t h e  nerve  r i n g .  

I t  i s  o f  i n t e r e s t  t o  n o t e  t h a t  t h e  p a t t e r n  of 

c o n n e c t i v i t y  i n  t h e  nerve  cords  is minimal. If any of  t h e  

l i n k s  shown i n  f i g u r e  5.8 are deleted, t h e  system f a i l s  t o  

work. I n  t h e  a c t u a l  s t r u c t u r e  of  t h e  nerve  cords ,  shown i n  

f i g u r e  5.2,  s e c t i o n s  of  t h e  form shown i n  f i g u r e  5.8 



i n t e r p e n e t r a t e  s i g n i f i c a n t l y .  The n e t  effect  i s  t o  i n t r o d u c e  

redundancy a n d  f a u l t  t o l e r a n c e  i n t o  a sys tem which i s  

s t r u c t u r a l l y  minimal .  T h i s  seems t o  be a  g e n e r a l  p r o p e r t y  o f  

b i o l o g i c a l  ne rvous  sys tems,  and t h e  a p p l i c a t i o n  of t h i s  

p r i n c i p l e  i n  t h e  above a n a l y s i s  was i n s t r u m e n t a l  i n  

t r a n s f o r m i n g  a v e r y  d i f f i c u l t  problem i n t o  a t r a c t a b l e  one. 



This thesis presents an application of stochastic 

techniques to the nervous system of a real organism, with the 

aim of understanding a simple system in its entirety. This 

goal has only partially been realized. While the motor 

postprocessing system was modelled with sufficient specificity 

to permit its qualitative validation in the light of available 

electrophysiological data, the sensory preprocessing system 

and central nervous system models must still be considered 

speculative. For this reason, this section summarizes the 

present work as it relates to the motor postprocessing system 

and the treatment of the other two systems is deferred to the 

next section. 

The Boltzmann machine, with appropriate generalizations, 

was presented as an ideal theoretical framework for the task. 

While the construction of a formal model based on the 

stochastic dynamics of the Boltzmann machine is relatively 

straight forward, certain practical difficulties presented 

themselves. Firstly, the biological details are still 

imperfectly known. As a' result, choosing parameter values 

that result in a quantitatively accurate model proved to be 

impossible. Some parts of the nervous system of C. elegans 

have been incompletely mapped, necessitating extrapolation of 

the available biological data. Secondly, while the pattern of 

synaptic connectivity is known, there is little information 

upon which to base an assignment of relative synaptic 
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s t r e n g t h .  T h i r d l y ,  t h e  implementa t ion  of  a  f u l l y  s t o c h a s t i c  

model i s  e x t r e m e l y  demanding i n  terms o f  c o m p u t a t i o n a l  

r e s o u r c e s  and t h i s  i n  i t s e l f  n e c e s s i t a t e d  t h e  i n t r o d u c t i o n  of  

a n a l y t i c a l  t e c h n i q u e s  which n e g l e c t  some o f  t h e  d e t a i l e d  

s t o c h a s t i c  dynamics o f  t h e  model. 

These f a c t o r s ,  t a k e n  t o g e t h e r ,  p r e v e n t e d  t h e  c o n s t r u c t i o n  

of a  d e t a i l e d  and q u a n t i t a t i v e l y  a c c u r a t e  s t o c h a s t i c  model, 

p a r t i c u l a r l y  f o r  t h e  most i n t e r e s t i n g  subsys tem,  t h e  n e r v e  

r i n g .  By u t i l i z i n g  a  number of  s i m p l i f y i n g  assumpt ions ,  

however, f a i r l y  s a t i s f y i n g  r e s u l t s  were o b t a i n e d  w i t h  a  c o a r s e  

g r a i n e d  model of  t h e  motor nervous  sys tem.  The a c t i o n  o f  t h e  

s y s t e m  i s  u n d e r s t o o d  i n  terms of  f o r c e s  r e s u l t i n g  from t h e  

e n e r g y  c o n t e n t  o f  t h e  s i g n a l s  and t h e  c o r r e l a t i o n s  between 

them. While t h e s e  f o r c e s  and t h e  r e s p o n s e  o f  t h e  sys tem are 

d e s c r i b e d  i n  terms of  t h e  a b s t r a c t  s t a t e  s p a c e  o f  t h e  system, 

t h i s  v i e w p o i n t  l a y s  t h e  groundwork f o r  i n t r o d u c i n g  f o r c e s  t h a t  

have s p e c i f i c  c o r r e l a t e s  i n  t h e  p h y s i c a l  s p a c e  i n h a b i t e d  by 

t h e  organism.  

The d e t a i l e d  a n a l y s i s  of t h e  motor  p o s t p r o c e s s i n g  sys tem 

u s e s  t h i s  t e c h n i q u e  t o  c r e a t e  a  t r a c t a b l e  model o f  t h e  manner 

i n  which t h e  organism produces  locomot ion.  I n  e s s e n c e ,  a  

g a t i n g  s i g n a l  from t h e  n e r v e  r i n g  is  t r a n s f o r m e d  i n t o  a  set of  

s y n c h r o n i z e d  o s c i l l a t o r y  s i g n a l s  which d r i v e  t h e  s o m a t i c  

m u s c u l a t u r e  s o  a s  t o  produce  waves o f  f l e x i o n  which t r a v e l  

a l o n g  t h e  l e n g t h  of  t h e  body. When t h e  sys tem i s  g a t e d  by 

s i g n a l s  from t h e  n e r v e  r i n g ,  it undergoes  a n  e f f e c t i v e  

s t r u c t u r a l  change t h a t  p roduces  t h e s e  o s c i l l a t i o n s .  T h i s  i s  
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exactly the sort of context sensitive operation that was 

described in the analysis of the nerve ring. The system 

either propagates waves anteriorly or propagates waves 

posteriorly or relaxes to a quiescent state, depending on the 

context provided by the central nervous system. 

The motor postprocessing system was decomposed into ten 

idealized sections, each composed of seven interacting state 

variables. Some of these were neural, while some were 

mechanical. Inter-section coupling, provided by the distal 

stretch receptive endings of the DA and VA neurons in the case 

of reverse locomotion and by those of the DB and VB neurons in 

the case of forward locomotion, was shown to enforce phase 

constraints between adjacent sections which lead totravelling 

waves. 

Each section was shown to consist of two pairs of coupled 

oscillators, each made up of three state variables, as 

follows. For reverse locomotion, the state variables DA, DE 

and L form one oscillator, while VA, VE and L form the other. 

In the case of forward locomotion, DA is replaced by DB and VA 

is replaced by VB. In both cases, these oscillators are cross 

coupled by DD and VD so as to maintain a 180 degree phase 

shift between them. At any time, only one pair is active and 

the same pair is active in all sections. 

Intra-section coupling between the state variables was 

shown to be modulated by the gating signals from the nerve 

ring. The closed loop gain of each of these oscillators is 

insufficient to support sustained oscillations in the absence 
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of e x c i t a t i o n  from t h e  n e r v e  r i n g .  The n e r v e  r i n g  selects t h e  

d i r e c t i o n  of  motion by d r i v i n g  e i t h e r  DA and  VA t o  produce  

r e v e r s e  locomot ion o r  DB and VB t o  p roduce  fo rward  locomot ion.  

That  i s  t o  s a y ,  by  d r i v i n g  one o r  t h e  o t h e r  p a i r  o f  neurons ,  

t h e  c e n t r a l  ne rvous  sys tem c l o s e s  t h e  l o o p s  w i t h i n  e a c h  

s e c t i o n  which p roduce  t h e  o s c i l l a t i o n s  and  s i m u l t a n e o u s l y  

s e l e c t s  t h e  d i r e c t i o n  o f  c o u p l i n g  between t h e  s e c t i o n s .  

Both t h e  means and t h e  v a r i a n c e s  o f  t h e  g a t i n g  s i g n a l s  

have a  c r u c i a l  p a r t  t o  p l a y  i n  t h i s  p r o c e s s .  The n o i s e  from 

t h e  n e r v e  r i n g  d i f f u s e s  t h r o u g h  t h e  n e r v e  c o r d s  and d e t e r m i n e s  

t h e  s l o p e s  of t h e  s igmoid  t r a n s f e r  f u n c t i o n s  o f  t h e  c o r d  

n e u r o n s .  T h i s  e f f e c t i v e l y  sets t h e  g a i n  of  t h e s e  neurons .  A t  

t h e  same t i m e ,  t h e  mean v a l u e s  of  t h e s e  s i g n a l s  d i f f u s e  

t h r o u g h  t h e  n e r v e  c o r d s  and set t h e  o p e r a t i n g  p o i n t s  of  t h e  

c o r d  n e u r o n s .  

I n  t h e  absence  of  d r i v e  from t h e  n e r v e  r i n g ,  t h e  c o r d  

neurons  have  r e l a t i v e l y  narrow s igmoids  and t h e  o p e r a t i n g  

p o i n t  of  e a c h  one i s  r e l a t i v e l y  f a r  t o  t h e  l e f t  o f  t h e  r e g i o n  

i n  which t h e  s igmoid  d i f f e r s  s i g n i f i c a n t l y  from z e r o .  Thus, 

t h e  o u t p u t s  o f  t h e  neurons  remain e s s e n t i a l l y  z e r o  o v e r  a  wide 

r a n g e  v a l u e s  o f  t h e  i n p u t  s i g n a l s  from t h e  s t r e t c h  r e c e p t o r s .  

I n  o t h e r  words, t h e  s t r e t c h  s i g n a l s  a r e  s t r o n g l y  a t t e n u a t e d  

and t h e  r e s p o n s e  of  t h e  n e r v e  c o r d s  t o  any v a r i a t i o n  i n  t h e s e  

s i g n a l s  i s  s imply  t o  r e l a x  back t o w a r d s  a  q u i e s c e n t  s t a t e .  

When a n o i s y  s i g n a l  from t h e  n e r v e  r i n g  i s  p r e s e n t ,  on 

t h e  o t h e r  hand, t h e  c o r d  neurons  have  wider s igmoids  and t h e  

o p e r a t i n g  p o i n t s  a r e  i n  t h e  s t e e p  r e g i o n  o f  t h e  s igmoids .  If 
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the .sigmoids are steep enough, the system amplifies the 

signals coming from the stretch receptors. The feedback loops 

within each section then give rise to oscillations which grow 

in magnitude until the signal excursion is such that the peaks 

drive the neurons into the flatter regions of the sigmoids. 

This decreases the effective gain of the neurons until 

sustained oscillations of constant frequency and amplitude 

result. 

If the noise on the gating signals is insufficient, then 

the sigmoids will be too sharp, and the oscillations of the 

nerve cord will take on a square waveform. This would require 

sudden, convulsive contractions of the muscles and result in 

decreased locomotive efficiency. If there is too much noise 

on the gating signals, then the sigmoids will be too flat to 

allow sustained oscillations. Thus, the operation of the 

motor postprocessing system is seen to depend critically on 

the mechanism of noise determined variable coupling. Of all 

neural network architectures, the non-equilibrium Boltzmann 

machine is the only one which provides this mechanism in a 

manner which depends only on the stochastic dynamics of the 

signals being processed. 



This section discusses some of the more speculative 

aspects of the techniques presented in this thesis. In 

particular, the appendices which discuss the sensory 

preprocessing system and the central nervous system will be 

summarized below. As far as these two systems are concerned, 

this thesis has accomplished little more than formulating 

tractable paradigms and indicating promising directions for 

further study. The success of these techniques in the case of 

the motor postprocessing system is heartening, even though it 

proves little or nothing regarding higher levels of 

processing. Nonetheless, some of the possible implications of 

the underlying paradigm with respect to higher levels of 

processing will be considered. 

The sensory preprocessing system was discussed in terms 

of Kohonen's novelty filter, whereby the system responds most 

strongly to inputs which are qualitatively new. The behaviour 

of the organism, the structure of its sensory preprocessing 

system, and the neurophysiology of its operation were shown to 

be highly suggestive of this paradigm. As well, some of the 

theoretical difficulties with this model were shown to be 

ameliorated by the stochastic characteristics of the Boltzmann 

machine substrate. The operation of the novelty filter 

presupposes that the system can be described in terms of 

projection operators. In a deterministic system, this 

assumption can not be validated, and the dynamics of the 



matrix Riccati equation governing the evolution of the 

coupling matrix are extremely difficult to characterize. BY 

viewing the system in terms of perturbations from a stochastic 

background, the conditions under which this assumption holds 

were clarified. 

This viewpoint was carried forward into the analysis of 

the nerve ring. In addition, the Boltzmann machine model was 

generalized to allow a different temperature to exist at each 

of the neurons, and the temperature is characterized in terms 

of the stochastic properties of the signal. This removes the 

restrictions imposed by the assumptions underlying equilibrium 

thermodynamics. Self organisation occurs only when a system 

is far from equilibrium. 

The nerve ring was presented in terms of Sejnowskits 

skeleton filter, whereby a number of linear systems are 

embedded in a single nonlinear system. In this paradigm, self 

organisat ion takes the form of autonomous transit ions between 

effectively linear systems, giving rise to context sensitive 

feature association. In the regions between the transitions, 

the detailed stochastic dynamics of the system can be 

neglected and the analysis proceeds based on the statistical 

properties ofthe signals. The significant parameters are the 

means and the variations about the means, with the variances 

determining the degree of significance of the variations. 

By symbolically solving the equations of motion of the 

system, the analysis indicates some of the factors which bear 

upon this issue and prepares the way for the detailed analysis 
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of the motor postprocessing system. Although the operation of 

the motor postprocessing system is a relatively straight 

forward example of context sensitive processing, it 

nonetheless illustrates all the salient features, and there 

seems to be nothing theoretically preventing this approach 

from being used for the analysis of arbitrarily complex 

structures whose operation is arbitrarily far removed from the 

sensory-motor level. 

The most interesting regions of state space are those in 

which the structural transitions take place. That is, those 

regions in which the border matrix becomes significant and the 

interaction matrix exhibits a relatively sudden switch from 

one dynamical regime to another. Unfortunately, these regions 

are precisely the ones which depend strongly on the higher 

order statistics of the signals. The present analysis made no 

attempt to investigate the behaviour of the system in these 

regions of state space. It merely drew attention to them and 

showed how they could be recognized. A detailed study of 

these regions awaits the availability of more computing power 

and requires the application of more advanced mathematical 

techniques. These regions of state space provide the most 

fertile ground for future research. 

The behaviour of the system in the transition regions was 

not characterized theoretically, but it was investigated by 

simulation. The differences between the fully nonlinear 

system and its linearized approximation were also investigated 

by simulation. The results of these simulations bear out the 
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theoretical analysis. Of particular interest to the biologist 

are the detailed differences between the two simulations. For 

example, the differences in asymptotic mean values of the 

neuron signals and the distortions of the waveforms introduced 

by the nonlinearities of the system. For the computing 

scientist, however, the paradigms of the novelty filter and 

the skeleton filter are of greater interest. 

The non-equilibrium Boltzmann machine is derived fromthe 

usual model by relaxing the requirement that the link weights 

be symmetric and introducing the equivalent noise temperatures 

of the signals in place of a global temperature. This permits 

the system to remain arbitrarily far from thermodynamic 

equilibrium and gives rise, therefore, to a dynamical regime 

in which self organisation can occur. These ideas form a rich 

theoretical framework which provides useful techniques for the 

analysis of stochastic information processing. 

In this framework, information processing is seen as a 

process of energy storage and dissipation. Correlated signals 

give rise to energy storage while uncorrelated signals give 

rise to energy dissipation. Thus, both the signals and the 

noise on the signals are important factors in determining the 

dynamics of the system. Both, therefore, are integral to the 

processing of information in such a system. The noise level 

at the input of each neuron chooses a particular sigmoid from 

the infinite set of transfer functions that the neuron can 

exhibit, and the mean signal level sets the operating point of 

the neuron on this curve. Some degree of uncertainty is thus 



an inherent property of every item of information. 

This approach allows one to characterize the time 

response of the system to variations in its inputs. Thus, one 

is able to determine not only what decisions and associations 

will be made, but how fast and in what order. This is of 

extreme importance in encoding procedural information in a 

neural network, in addition to declarative information. It 

also provides a principled way for procedural and declarative 

information to interact, in that the modulation of effective 

link-weights by the noise on the signals allows for a smooth 

blending between control and data. This is based on the idea 

that the structure of the network is equivalent to control 

while the signals play the role of data. 

It may well be possible, within this framework, to 

formulate a theory of information processing which includes 

axiomatic symbol manipulation as a low temperature limiting 

case. While the behaviour of a system in the regions where 

the border matrix is negligible closely approximates that of 

a state machine executing an algorithm, it is highly unlikely 

that the behaviour of the system can be described in this 

manner when it is in a transition region. It seems that a 

close examination of the stochastic dynamics of these regions 

of state space may permit a rigorous formulation of such 

presently vague ideas as a smooth transition between 

algorithms, or superposition of algorithms. 

Perhaps the most significant ideas presented in this 

thesis are the interpretation of information processing in 



9 6  

terms of forces exerted by correlated stochastic signals, 

decisions implemented by energy dissipation and the manner in 

which sigmoidal nonlinearities lead to context sensitive 

processing. This thesis has shown that an information 

processing paradigm layered on these ideas leads to reasonable 

explanations of the operation of a real nervous system and has 

indicated how the study of biological nervous systems can do 

for computing science what the study of birdsf wings has done 

for aeronautical engineering. The central theme has been the 

idea that general information processing paradigms can be 

abstracted from the biological implementation details and 

provide a guide in the design and construction of stochastic 

processors that will eventually surpass those which have 

evolved naturally. 



I t  i s  remarkab le  t h a t  a  f u l l  t h i r d  o f  t h e  neurons  i n  t h e  

L1 l a r v a  a r e  d e v o t e d  t o  t h e  a n t e r i o r  s e n s o r y  a p p a r a t u s  [Ward, 

Thomson, White & Brenner ,  751 . A t o t a l  o f  66 neurons  s e n d  

s p e c i a l i z e d  p r o c e s s e s  i n t o  t h e  s e n s i l l a  o f  t h e  head .  A few o f  

t h e s e  a l s o  have  neuromuscular  j u n c t i o n s  i n  t h e  n e r v e  r i n g  and 

s o  a r e  members o f  b o t h  sets I and 0; t h e  d e c i s i o n  t o  i n c l u d e  

some.such neurons  i n  t h i s  s e c t i o n  and o t h e r s  i n  t h e  d i s c u s s i o n  

of  motor p o s t p r o c e s s i n g  i s  b a s e d  on t h e  r e l a t i v e  prominence of  

t h e i r  s e n s o r y  e n d i n g s .  By c o n t r a s t ,  t h e  e n t i r e  r emainder  of  

t h e  s o m a t i c  ne rvous  sys tem c o n t a i n s  o n l y  22 neurons  o f  a  

p r i m a r i l y  s e n s o r y  n a t u r e ,  a l t h o u g h  many o f  t h e  motoneurons 

have what a p p e a r  t o  be s t r e t c h  r e c e p t i v e  e n d i n g s  [White, 

S o u t h g a t e ,  Thomson & Brenner,  851. 

C. e l e g a n s  i s  a t t r a c t e d  t o  c y c l i c  n u c l e o t i d e s ,  a n i o n s ,  

c a t i o n s  and hydroxy l  i o n s .  I t  a v o i d s  a c i d s ,  a r o m a t i c s  and 

c a r b o n a t e  i o n s  [Ward, 761. The organism r e s p o n d s  r e a d i l y  t o  

c o n c e n t r a t i o n  g r a d i e n t s  which t h e  are s m a l l  enough t h a t  t h e  

d i f f e r e n t i a l  c o n c e n t r a t i o n s  measured l a t e r a l l y  between t h e  

amphids a n d / o r  l o n g i t u d i n a l l y  between t h e  amphids and t h e  

phasmids would be o f  i n s u f f i c i e n t  magni tude  t o  d r i v e  t h e  

p r o c e s s i n g .  The same i s  t r u e  of  t h e  t e m p e r a t u r e  g r a d i e n t s  

d e t e c t a b l e  by t h e  animal  [Ward, Thomson & White, 751. Having 

r u l e d  o u t  t r o p o t a x i s ,  Ward s u g g e s t s  a k l i n o t a c t i c  mechanism 

w i t h  measurements t a k e n  between t h e  e x t r e m a l  d i s p l a c e m e n t s  of  

t h e  amphids d u r i n g  t h e  worm's s e r p e n t i n e  motion,  and  assumes 
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t h e  animal  must c o r r e l a t e  t h e  p o s i t i o n  of i t s  head w i t h  t h e  

s i g n a l  from i t s  amphids. Indeed,  b a s e d  on t h e  d e t a i l e d  

p a t t e r n  of  i n t e r c o n n e c t i o n s  between t h e  a m p h i d i a l  neurons ,  it 

seems h i g h l y  u n l i k e l y  t h a t  i n f o r m a t i o n  r e g a r d i n g  t h e  r e l a t i v e  

s t r e n g t h s  o f  s i g n a l s  a t  t h e  two amphids i s  r e t a i n e d  by t h e  

ne rvous  sys tem.  

U n f o r t u n a t e l y ,  t h e  l a t e r a l  d i s p l a c e m e n t s  o f  t h e  amphids 

d u r i n g  locomot ion a r e  i n s u f f i c i e n t  t o  a c c o u n t  f o r  t h e  t a x e s .  

Ward p r o p o s e s  t h i s  mechanism based  on t h e  assumpt ion  t h a t  a  

k l i n o k i n e t i c  one, where in  t h e  animal  compares c o n c e n t r a t i o n s  

a t  i n t e r v a l s  a l o n g  i t s  p a t h ,  s h o u l d  be more a c c u r a t e  i n  f a s t e r  

moving specimens  and on t h e  f a c t  t h a t  h e  was a b l e  t o  show t h a t  

t h i s  i s  n o t  t h e  c a s e .  However, it i s  c e r t a i n l y  t h e  r a t i o  

between t h e  f r e q u e n c y  of  t u r n i n g  and t h e  r a t e  of  fo rward  

mot i o n  t h a t  i s  t h e  o p e r a t i v e  q u a n t i t y  i n  d e t e r m i n i n g  accuracy ,  

and t h i s  r a t i o  seems t o  be more o r  less c o n s t a n t  from one 

animal  t o  t h e  n e x t  under  s i m i l a r  c o n d i t i o n s ,  independen t  of  

i t s  s p e e d .  

An examina t ion  of  t r a c k s  l e f t  by C. elegans i n  a g a r  

r e v e a l s  s e v e r a l  s t r i k i n g  f e a t u r e s .  F i r s t l y ,  t h e  p a t h s  a r e  

s t r a i g h t e r  i n  r e g i o n s  of  low.  a t t r a c t a n t  c o n c e n t r a t i o n .  

Secondly ,  t h e y  a r e  n o t  smoothly curved,  b u t  made up o f  s h o r t  

s t r a i g h t  s e c t i o n s  s e p a r a t e d  by c o m p a r a t i v e l y  s h a r p  changes  i n  

d i r e c t i o n .  T h i r d l y ,  t h e  i n d i v i d u a l  changes  i n  d i r e c t i o n  

d i s p l a y  a  random c h a r a c t e r .  F o u r t h l y ,  i n  t h e  a b s e n c e  o f  a  

g r a d i e n t ,  e a c h  worm seems t o  have a  p r e f e r r e d  d i r e c t i o n  of  

t u r n i n g ,  r e s u l t i n g  i n  looped p a t h s .  F i n a l l y ,  t h e  e f f e c t  o f  a  
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concentration gradient seems to be to create an additional 

bias in the distribution of direction changes. 

Together, these observations suggest a klinokinetic 

orientation mechanism, which operates as follows. In the 

absence of concentration gradients, the worm proceeds in a 

relatively straight line, with occasional random direction 

changes, which may be biased in favour of one direction or the 

other. This bias need not be constant; it is sufficient for 

it to be slowly varying. In the presence of a gradient, an 

additional bias is introduced. While each direction change is 

still random, the correlation between successive direction 

changes is determined by the gradient. An increasingly 

favourable concentration results in a bias towards turning in 

the same direction as before, while a less favourable one 

results in the opposite bias. In addition, a more favourable 

concentration results in an increase in the ratio of turning 

frequency to rate of locomotion and vice versa. 

This scheme places much less stringent requirements on 

the sensitivity of the amphidial neurons, because the signal 

signifying a change in concentration builds up as the worm 

moves forward. When it becomes significant, a direction 

change is precipitated. This accounts for the increase in 

ratio of turning rate to locomotion rate in regions of high 

concentration, and automatically adjusts the sampling rate to 

suite the available signal strength. Habituation of the 

sensory system is all that is required to cause this type of 

behaviour, but the precise mechanism of habituation must be 
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examined in the light of the complexity of the input signal 

driving it. 

The difficulty concerns the mechanism by which the signal 

corresponding to the concentration of interest is isolated 

from the background. No sensory neuron is entirely unimodal. 

A neuron may be primarily sensitive to a particular substance 

in the environment, but it will nonetheless respond somewhat 

to other substances, and such other factors as temperature and 

mechanical deformation of its ending will cause some response 

as well. The output signal of the neuron will thus be a 

complex, and in general nonlinear, superposition of a number 

of input signals. As a result, the mechanism of habituation 

must be quite a bit more sophisticated than those which 

immediately come to mind. 

The environmental input signals must be decoupled, and 

the habituation must be to the decoupled signals. A model 

exists [Kohonen, 841 which can be adapted to the situation 

under consideration, consistent with both the structures found 

in the pattern of interconnections observed in the sensory 

neurons of C. elegans and the stochastic processing paradigm 

presented above. Before proceeding to discuss the mathematics 

of the model, it is helpful to consider these structures. 

The structure of the anterior sensory apparatus is quite 

suggestive in terms of functionality. Examination of this 

structure shows that the pattern of interconnections is 

fundamentally symmetrical, with random asymmetries. It is 

interesting to note that the asymmetric connections are denser 
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on the right than on the left. This could well be a result of 

the fact that the specimens were cultured on agar, an 

environment in which they typically lie on their sides. The 

stimuli from the side in contact with the agar should thus be 

richer and more complex, resulting in a lateral bias in the 

complexity of the neural apparatus. One is tempted to 

conclude that the specimens examined by White et a1 spent most 

of their lives lying on their right sides. 

Another salient feature of the sensory processing system 

is the relative sparsity of interconnections between the 

amphidial neurons and the remainder of the anterior sensory 

neurons. This argues strongly against an ability to correlate 

signals from the amphids with signals from the anterior 

proprioreceptors. The fact that most of amphidial neurons are 

coupled via gap junctions to their contralateral equivalents 

forces the conclusion that differential signals between the 

two amphids are not available to the neuropil in the nerve 

ring. These observations have strong implications in terms of 

the possible modes of operation of the system. 

On the other hand, there is a very strong coupling 

between the labial sensilla and the stretch receptors, arguing 

in favour of a correlation between taste input and head 

position. Indeed, such a correlation would seem to be 

necessary to facilitate the ingestion of a bacterium. The IL1 

and IL2 neurons send processes to the inner labia which are 

quite similar, with the exception that the processes of IL2 

have access to the chemical milieu immediately inside the 
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buccal cavity, while those of I L 1  do not. It is also 

significant that the I L 2  neurons are primarily presynaptic 

among the labial neurons, while the others are cross coupled. 

The interpretation ofthis structure that immediately suggests 

itself is that the correlations between inner and outer labial 

sensilla allow the system to determine whether a touch 

originates inside or outside the animalls mouth, and because 

the I L 1  neurons form neuromuscular junctions with the muscles 

of the head, that these neurons form a reflex arc mediating a 

withdrawal response to touch stimuli at the anterior tip of 

the worm. The I L 2  neurons must then serve to inhibit this 

reflex when the touch is due to contact with an object that 

"tastes good". 

An examination of the interconnections brings three major 

features to light. Firstly, the interconnections among the 

labial neurons and those among the remaining anterior sensory 

neurons are relatively sparse as compared to the 

interconnections between these groups. Secondly, the cephalic 

sensory neurons (CEP) are primarily presynaptic among both 

groups of neurons, projecting strongly to the inner labial 

neurons. Thirdly, there is a marked dorso-ventral asymmetry, 

with denser connections among the dorsal neurons. The 

distribution of interconnections indicates the importance of 

correlating information from the anterior stretch receptors 

with both the inner labial chemoreceptors and the anterior 

touch receptors. The neurons innervating the cephalic 

sensilla provide early warning of impending contact with an 
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obstacle in those nematodes possessing cephalic setae. In C. 

elegans, these sensilla are papillae, but the CEP neurons are 

nonetheless connected to the other anterior sensory neurons in 

a manner that seems consistent with an early warning function, 

perhaps precharging those neurons at which a contact is 

anticipated. The dorsoventral asymmetry of the anterior 

sensory apparatus, together with the fact that the organism 

lies- on its side under laboratory conditions, could account 

for the bias observed in turning behaviour. 

MODELLING THE SENSORY PREPROCESSING SYSTEM 

The lack of information regarding the polarity of the 

synapses is a serious drawback for a mathematical analysis of 

the system. A qualitative model can be constructed, however, 

which can become quantitative when such data become available. 

Each synapse corresponds to one of the links in the Boltzmann 

machine model. The exact value of the links is noncritical, 

because the behaviour of the system remains substantially 

unchanged when these values are replaced by their signs. The 

only effect of such a replacement is an increase in overall 

noise by a factor of [Hopfield, 821 . Thus, a model based 

on a knowledge of only the positions of synapses and whether 

each one is excitatory or inhibitory should exhibit the same 

behaviour as the actual system, with the exception that the 

model's behaviour would be slightly less certain. The present 

analysis prepares the way for such knowledge to be 

incorporated as it becomes available in the form of results of 
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e l e c t r o p h y s i o l o g i c a l  exper iments  and irnmunoassay work. 

Not a l l  neurons  produce  s p i k e  t r a i n s ,  and t h e  Boltzmann 

machine model i s  e x p r e s s e d  i n  terms of  such  t r a i n s .  Hence, it 

i s  i m p o r t a n t  t o  r e a l i z e  t h a t  t h e  i n s t a n t a n e o u s  f i r i n g  r a t e  o f  

a  neuron p r o d u c i n g  a  s p i k e  t r a i n  i s  a n a l o g o u s  t o  t h e  

i n s t a n t a n e o u s  membrane p o t e n t i a l  o f  one which i s  n o t .  The 

e x p e c t e d  v a l u e s  o f  t h e s e  two v a r i a b l e s  obey e x a c t l y  t h e  same 

dynamics [Sejnowski ,  761 .  T h i s  i s  p a r t i c u l a r l y  i m p o r t a n t  i n  

t h e  ne rvous  s y s t e m  of  C. elegans, w i t h  i t s  predominance of  gap 

j u n c t i o n s  w i t h  t h e i r  c a p a b i l i t y  o f  d i r e c t l y  t r a n s m i t t i n g  

g raded  p o t e n t i a l s .  The p r e s e n t  a n a l y s i s  t h e r e f o r e  makes no  

d i s t i n c t i o n  between t h e s e  two v a r i a b l e s ,  r e f e r r i n g  t o  e i t h e r  

s imply  a s  t h e  a c t i v i t y  o r  o u t p u t  s i g n a l  o f  a  neuron .  

The g o a l  i s  t o  d e t e r m i n e  t h e  v e c t o r  o f  s i g n a l s ,  z = ti, 
r e c e i v e d  by t h e  n e r v e  r i n g  a s  a  r e s u l t  of  p r e p r o c e s s i n g  of  t h e  

i n p u t  v e c t o r ,  x  = ti, by t h e  neurons  o f  t h e  a n t e r i o r  s e n s o r y  

a p p a r a t u s  o f  t h e  organism, t a k i n g  e x p l i c i t  accoun t  o f  t h e  

d i f f e r e n t i a l  e q u a t i o n  of s t a t e  obeyed by t h e  c o u p l i n g  m a t r i x ,  

M = pi,, formed by t h e  i n t e r c o n n e c t i o n s  between t h e  s e n s o r y  

neurons .  When t h e  Boltzmann machine i s  n o t  a t  e q u i l i b r i u m ,  

t h e  e x p e c t e d  v a l u e s  of t h e  ti w i l l  v a r y  w i t h  t i m e  and,  from 

t h i s  p o i n t  fo rward ,  t h e  symbols 4, w i l l  refer t o  t h e s e  

v a r i a b l e  e x p e c t a t i o n s ,  o r  moving a v e r a g e s .  

For  t h e  s a k e  of s i m p l i c i t y ,  t h e  effect on t h e  

e n v i r o n m e n t a l  i n p u t  v e c t o r s  of  t h e  t r a n s d u c e r  g a i n s  o f  t h e  

s e n s o r y  n e r v e  e n d i n g s  i s  assumed t o  be i n c o r p o r a t e d  i n t o  t h e  

i n p u t  v e c t o r ,  s o  t h a t  x  i s  t h e  r e s p o n s e  o f  t h e  s e n s o r y  neurons  
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to the environmental inputs in the absence of any feedback 

introduced by the interconnections. Both x and z are 66 

dimensional vectors, and M is a 66 x 66 matrix. 

-The analysis is adapted from Kohonen [Kohonen, 8 4 1 ,  and 

will be carried out in two steps. At first, the effect of 

simple synaptic habituation is considered and shown to lead to 

orthogonalization of the input signals, whereby the input to 

the nerve ring becomes the projection of the sensory input 

onto the orthogonal complement of the space spanned by 

previous inputs. That is to say, the nerve ring only sees 

those components of the environmental input which are new. 

The second step takes into account a forgetting mechanism, 

which limits the effect of long past inputs. 

Before proceeding with this analysis, however, it is 

necessary to take some steps to bridge the gap between the 

approach to modification of link weights which is usually 

taken in the literature and the approach which is adopted 

here. With this in mind, let the environment be modelled by 

a set of conditional probabilities. That is, let PC (0.1 I,) be 

the probability that the correct optimal response to input 

vector I, is the output vector On. On the other hand, let 

P,(O,I I,) be the probability that the actual response of the 

system to input I, will be On. It is clear that the desired 

state of affairs is for these two probabilities to be equal 

for all n and p, so the distance between the actual behaviour 

of the system and the optimal one is the distance between the 

conditional distributions Pa and PC. Information theory 
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[Kullback, 6 8 1  provides a distance measure on the space of 

probability distributions, called the asymmetric divergence. 

Applied to the current problem, this measure is expressed by 

and is easily seen to be nothing other than the difference in 

information content between the two distributions. It is not 

a metric because its value depends on which distribution is 

taken to be prior and which is taken to be posterior. In the 

present context, the structure of the environment implicitly 

supplies the a p r i o r i  distribution and G measures the accuracy 

of the a p o s t e r i o r i  estimate of it embodied in the behaviour 

of the system. It should be noted that the a priori 

distribution represents not the environment itself, but a 

model of how to deal effectively with the environment, and the 

a p o s t e r i o r i  distribution represents what the system has 

learned about this model. 

Now, the only way for the nodes in I to affect those in 

0 is through the W,,. Hence, in order to minimize G, it is 

sufficient to find the partials of G with respect to the W,, 

and set them to zero. Since the PC are independent of the 

internals of the system, 
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which is the sum of the fractional rates of change of the 

actual conditional probabilities, weighted by the correct 

conditional probabilities. From this expression, it can be 

shown that 

but these sums represent the probabilities that nodes i and j 

are simultaneously active in the actual operation of the 

system and during optimal operation, respectively. That is to 

say, these sums represent correlations between node 

activities. Denoting these probabilities by R?, and R:, 

equation ( A . 3 )  reduces to 

This is an extremely significant relation, because it shows 

that the global behaviour of the system can be adjusted in a 

meaningful and principled way by changing the W,, according to 

purely local information. Aside from proving that a Boltzmann 

machine realizes a Markov random field [Isham, 811 [Geman & 

Geman, 8 4 1 ,  equation (A.4) also suggests a method by which the 

system can learn the higher order constraints in its 

environment. 

By periodically adjusting the W,, based on the distance 

between the actual and desired probabilities, moving in a 

direction opposite to the gradient of G since its minimum is 



sought, 

and thus it is clear that the partials will eventually vanish. 

There is only one problem with this scheme. It requires a 

prior knowledge of the desired global behaviour, even if only 

on the part of a "teacher" to periodically demonstrate it. In 

this sense, the claim that all information is purely local is 

misleading, because the teacher provides global information. 

In order to implement the scheme expressed by equation (A. 5), 

each node must be able to determine, at every instant, whether 

it is sampling from pc or pa. 

An alternate approach, which avoids the need for a 

teacher, is obtained by observing that an unbiased estimate of 

the above probabilities can be found simply by observing the 

states of nodes i and j for relatively short intervals 

separated by comparatively longer periods. All that is 

required is one additional piece of information: the mean 

effectiveness of the current behaviour of the system over each 

interval, which can be modelled as a number between -E and E.  

This information is the only essential thing provided by the 

teacher. Then, denoting the effectiveness by a, if 

is added to W,, at each firing of node it then the long term 

average effect will be equivalent to that of equation (A.5). 

In this expression, t is the midpoint of the interval, and the 



averaging indicated on the right hand side is carried out over 

the length of the interval. This amounts to substituting a 

stochastic gradient approach for a strict gradient descent 

[Honig & Messerschmitt, 841 ,  and can be applied even when the 

environmental probabilities do not have stationary statistics. 

In terms of a nervous system, the effectiveness can be 

easily defined. It is the degree to which a response of the 

system succeeds in bringing about a result which is beneficial 

to the organism. If the organism finds itself in a 

concentration gradient of some noxious chemical, behaviour 

that results in movement up the gradient has negative 

effectiveness and vice versa. Of course, several problems may 

need solving at once. The organism may be hungry, tired and 

cold, for example. The effectiveness of behaviour with 

respect to each of these problems is encoded by a different 

subset of the endocrine system which, by modulating the 

activity level of the nervous system, controls at least the 

rate of synaptic plasticity. 

It can be seen from the above discussion that learning of 

arbitrary high order constraints in the environment can be 

achieved in a principled way by modifying local behaviour in 

response to global effectiveness. The modifications are 

performed in a uniform way, completely independent of the 

problem domain, driven solely by the information which needs 

to be processed, without any a p r i o r i  knowledge of what that 

information may be. The only limitations are imposed by the 

suite of sensory modalities and actuator capabilities. Thus 
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a Boltzmann machine is an ideal model for a nervous system and 

provides precisely the sort of substrate for self organization 

that was sought in the introduction. 

. In the case of the sensory preprocessing system, the high 

order structure in the input signals which the system needs to 

adapt to are the nonlinear superpositions of sensory signals 

discussed above. The optimal response of the sensory 

preprocessing system is defined by the input requirements of 

the central processing system. This in turn, may be 

characterized by the requirement not to be swamped by a stream 

of irrelevant input signals while being notified immediately 

of significant sensory events. These constraints define the 

optimal dynamics of the sensory preprocessing system. 

Clearly, the variation of the output of the sensory 

preprocessing system is most strongly dependent on the neurons 

operating near their thresholds, and for these neurons, the 

output can be written as 

and, if synapses decay simply by. depletion of the supply of 

neurotransmitters, the coupling matrix satisfies 

where a is a rate constant which can be determined by simple 

measurements on individual synapses. It is revealing to 



111 

compare the form of this expression to that of equation ( A . 6 )  

in order to see just how broad a range of interpretations can 

be placed on the effectiveness parameter. In a system whose 

purpose is to give no output for familiar input signals, any 

output can be thought of as indicating negative effectiveness. 

The expected response of the system is then to learn a 

function of the new input signal so that the output may return 

to zero. Expressed in matrix notation, the above equations 

assume the form 

and 

( A .  9) 

(A. 10) 

Due to the sigmoid transfer function given by equation ( 3 ) ,  

the components of z are all nonnegative. Hence each of the 

elements of the right hand side of equation (A. 10) is negative 

until z = 0 and then adaptation ceases. As a result, those 

neurons to which equation (A.9) does not initially apply are 

gradually brought into the region of the sigmoid in which it 

does. Eventually, all of the sensory neurons are brought to 

a state in which their output is essentially zero. At this 

point, we have 

z = ( I - ~ 1 - l ~  - 0 (A. 11) 

where I is the identity matrix and P = (I-M)-' is called the 
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transfer operator of the sensory preprocessing system. ~t is 

related to the interaction matrix, which is discussed in the 

next section, in the context of the nerve ring. 

Essentially, equation (A.ll) expresses that the input, x, 

is projected onto the orthogonal complement of the subspace 

spanned by x. Thus, P is a projection matrix. Now, suppose 

that x changes from x, to x,, such that 

X1 ' ax0 + Yo (A. 12) 

where a is some constant and yo lies in the orthogonal 

complement of the subspace spanned by x,. Then 

( A .  13) 

but the first term on the right hand side of this equation is 

zero by equation (A. 11) , hence 

and the output of the sensory preprocessing system is now 

determined by that component of the input which is new, in the 

sense that it is not simply a multiple of the old input. That 

is to say, the sensory preprocessing system responds to that 

component of the input signal which is qualitatively new with 

respect to past inputs. 

This analysis assumes that the input to the sensory 

preprocessing system is piecewise constant. In fact, the 

input will be slowly varying with occasional rapid changes. 

As a result, the transfer operator, P, will never exactly be 
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a projection matrix, although it continuously relaxes towards 

one. 

Nonetheless, the approximation will be valid as long as 

the input varies slowly enough to ensure that the output of 

the sensory preprocessing system is small compared to the 

noise in the system. This noise is composed of random fluc- 

tuations in the input signals as well as random interactions 

between the neurons themselves. It is important to note that 

it is precisely when the input varies in such a manner as to 

cause the approximation to fail for a short period that the 

sensory preprocessing system reports to the nerve ring that a 

significant sensory event has taken place. In other words, as 

long as the input varies slowly enough that the adaptation of 

the sensory preprocessing system can keep up with it, the 

transfer operator will approximate a projection operator and 

the nerve ring will receive no significant input. 

In order for the system to continue operating for any 

appreciable length of time, the supply of neurotransmitters at 

the synapses must be replenished. Otherwise there will come 

a time when no input signal can drive the output away from 

zero. This amounts to an infinitely long memory, which will 

eventually cause the sensory preprocessing system to reach a 

state in which it has seen all possible inputs; a state, 

therefore, in which nothing is new. The replenishment of the 

supply of neurotransmitters thus acts as a forgetting 

mechanism. 

If this occurs at a constant rate, independent of the 



activity of the system, then 

(A. 15) 

and the system will reach a steady state when 

(A. 16) 

In order for the preceding analysis to remain valid under 

these conditions, the correlations of the residual output 

signals must be effectively buried in the noise. In other 

words, the correlations of the residual signals must be 

significantly less than the correlations of the random 

fluctuations in the outputs of the neurons about their 

expected values. That is, 

(A. 17) 

This condition can only be verified by further biological 

experiment. Nonetheless, it represents an intuitively 

appealing paradigm for the operation of the sensory 

preprocessing system, based on biologically reasonable 

assumptions. 

The view which emerges from this analysis is of a set of 

small, essentially uncorrelated signals presentedto the nerve 

ring by the sensory preprocessing system under steady state 

conditions. A significant sensory event results in a flurry 
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of  c o r r e l a t e d  a c t i v i t y ,  g iven  by e q u a t i o n  (A.14), which i s  

damped a s  d e s c r i b e d  by e q u a t i o n  (A.15), c a u s i n g  it t o  decay 

back t o  t h e  e s s e n t i a l l y  u n c o r r e l a t e d  c o n d i t i o n  d e s c r i b e d  by 

e q u a t i o n  (A.17) .  I n  t h i s  view, t h e  n e r v e  r i n g  is  informed of  

a  series of  more o r  less d i s t i n c t  s enso ry  e v e n t s  by p e r t u r -  

b a t i o n s  i n  a r e l a t i v e l y  s t a t i o n a r y  s t o c h a s t i c  background.  



The neuropil of the nerve ring is located in the cervical 

region of the organism, between the two bulbs of the pharynx. 

It is more or less contiguous with the retrovesicular 

ganglion, which in turn gives rise to the ventral and dorsal 

nerve cords. It performs the major integrative processing of 

the nervous system. Many of the neurons which are classified 

as ring interneurons send processes through the retrovesicular 

ganglion and into the nerve cords, exhibiting significant 

synaptic connectivity to one another throughout. For purposes 

of analysis, all of these neurons are considered to be part of 

the nerve ring. 

The processes of the ring interneurons are situated 

circumferentially around the pharynx, and form synapses and 

gap junctions to one another in passing. There is typically 

no presynaptic thickening of the neuronal processes. The 

processes typically have an angular extent of about 90 

degrees, but this extent varies between about 60 degrees and 

about 270 degrees. 

Most of the neurons in the nervous system of C. elegans 

are located in or send processes into the nerve ring. 

Discounting those which make up the sensory preprocessing 

system and those which innervate the cervical muscles, there 

are 69 neurons which can be classified unambiguously as 

interneurons. These neurons seem to be exclusively cholin- 

ergic, so that all synapses between ring interneurons are 
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excitatory. As seems often to be the case, the connectivity 

among the neurons in C. elegans is on the order of the square 

root of the number of neurons in the system. That is, each of 

the 239 neurons in the system receives input from about 15 

others. 

The analysis carried out in this section will establish 

the qualitative dynamics of the nerve ring, making use of the 

characteristics of the input from the sensory preprocessing 

system as derived in the previous section. It will be shown 

that the nonlinear interactions between the neurons lead to an 

embedding of a number of approximately linear systems in the 

single nonlinear one. The state space of the system can thus 

be partitioned into two types of regions: those in which the 

system can be treated as a linear filter and those in which 

the system makes a transition from one filter to another. 

Since the modus operandi of a linear filter can be 

described in terms of feature association, and a particular 

linear filter always associates the same output with a given 

input, such a filter performs context independent feature 

association. However, since the input can drive the system 

through a transition from one linear filter to another, with 

a corresponding change in the association between input and 

output, the system is capable of varying its associations in 

a way that depends on certain parameters of the input signal. 

That is, the system performs context sensitive feature 
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association. The remainder of this section presents a 

characterisation of the transition regions and a detailed 

analysis is presented of the time response of the system 

outside of the transition regions. 

As in the previous section, let the transfer function of 

each neuron be the sigmoid given by equation (3) . Then we may 
write 

where 

Equation (A.1) is an approximation to these two equations for 

neurons operating near threshold and q is equivalent to AE 

of equation ( 3 )  and represents the effective membrane 

potential of the neuron. The temperature from equation (3) 

can also be given a meaning in terms of the membrane poten- 

tial. Since equation (3) is just the cumulative Boltzmann 

distribution, the variance of q can be found by integrating 

q conditioned by the Boltzmann density function: 

This represents an extremely significant generalization ofthe 

Boltzmann machine model in that, by allowing the temperature 

to differ from node to node, it opens the way to analysis of 
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its nonequilibrium behaviour. Equation (B.3) rests on the 

idea of the equivalent noise temperature of a signal, which 

reduces in this case to 

where 0 is the variance of the membrane potential. 

As can easily be verified numerically, the asymmetric 

divergence between the Boltzmann and Gaussian distributions is 

minimized when the variance of the Gaussian satisfies equation 

(B.4). In this case, the difference in information content 

between the two distributions is less than half of a bit, and 

the cumulative distributions never differ by more than 1% over 

their entire range. This will be of importance in the 

analysis which follows, wherein certain steps depend on the 

distribution being approximately Gaussian. 

In equation ( 1  , the 6 represent the inputs to the 

nerve ring from the sensory preprocessing system. Following 

Sejnowski [Se jnowski, 761, we assume that these inputs have 

approximately stationary expectations, in other words that the 

<c > are constant, and consider what occurs when the 6 are 

perturbed from their equilibrium values. This is consistent 

with the paradigm presented in the previous section for the 

operation of the sensory preprocessing system. 

Let the inputs depart from equilibrium along a curve in 

state space parameterized by st such that the 6 vary smoothly 
with s and s = 0 at equilibrium. In terms of this parameter, 
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t h e  s t a t e  o f  t h e  sys tem can be expanded i n  a  Tay lo r  series a s  

f o l l ows  : 

mi ( 0 )  i s  Here T l  ( 0 )  i s  t h e  e q u i l i b r i u m  membrane p o t e n t i a l ,  - 
ds 

t h e  f irst  o r d e r  v a r i a t i o n  o f  t h e  membrane p o t e n t i a l ,  and s o  

on.  S i n c e  t h e  p ,  do n o t  v a r y  w i t h  s, w e  have  

b u t  it i s  e a s i l y  v e r i f i e d  t h a t  

where t h e  f a c t o r  o f  h a s  been absorbed  i n t o  6 . 
a 

The form o f  e q u a t i o n  (B.6) s u g g e s t s  t h a t  from t h e  

coup l i ng  m a t r i x ,  M = p , ,  w e  d e r i v e  a  new m a t r i x ,  N = V , ,  

d e f i n e d  by 

Th i s  new m a t r i x  i s  c a l l e d  t h e  i n t e r a c t i o n  m a t r i x  and, i n  terms 

o f  it, e q u a t i o n  (B.6) r e a d s  



The second o r d e r  v a r i a t i o n  i s  s i m i l a r l y  de r ived :  

I +  (B. 10)  
ds2 ds2 

But by d i f f e r e n t i a t i n g  equa t i on  (B.  7 ) ,  

and w e  d e f i n e  B = P ,  by 

(B. 11) 

(B.  12)  

Th is  m a t r i x  i s  c a l l e d  t h e  bo rde r  ma t r i x .  I n  terms of  t h i s  

ma t r i x ,  e q u a t i o n  (B. 10)  r e a d s  

I n  m a t r i x  n o t a t i o n ,  equa t i on  (B. 9 )  r e a d s  

o r  j u s t  

where 

(B.  13)  

(B. 1 4 )  

A-1 - ( I - N ) - ~  (B. 16)  

i s  t h e  f irst  o r d e r  t r a n s f e r  o p e r a t o r  o f  t h e  ne rve  r i n g ,  g i v i n g  



its response to the first order variation in the input from 

the sensory preprocessing system. Similarly, equation (B.13) 

reads 

in matrix notation. That is, 

(B. 17) 

(B. 18) 

Now, this process can be carried on indefinitely to 

successively higher orders of variation, and the results 

substituted back into equation (B.5). The result, as long as 

B is negligible, is a Taylor series for 5 ,  multiplied from 
the left by A- . But this is just equation (A.5) again, except 

/ 
that the slopes of the sigmoids are taken explicitly into 

account. Thus, when the border matrix is negligible, the 

response of the system is completely determined by the 

interaction matrix. The matrices, N and B, contain a great 

deal of information about the response of the nerve ring to 

inputs from the sensory preprocessing system. 

The elements of the interaction matrix are significant 

only for those neurons with. membrane potentials near 

threshold. This can be seen by examining figure B.l b. Each 

column of N is conditioned by a value chosen from a curve of 

the form indicated in this figure. The value is completely 

determined by the fact that the membrane potential selects the 

horizontal coordinate while its variance selects the width and 

height of the curve. Only synapses from neurons for which 



Figure B . l  a - The sigmoid t r a n s f e r  funct ion o f  a neuron 

Figure B . l  b - The der ivat ive  of t h e  sigmoid 

Figure B . l  c - The second d e r i v a t i v e  o f  t h e  sigmoid 
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t h i s  v a l u e  i s  s i g n i f i c a n t l y  d i f f e r e n t  from z e r o  c o n t r i b u t e  

s i g n i f i c a n t l y  t o  t h e  change i n  i n p u t  t o  a  g i v e n  neuron.  

E s s e n t i a l l y ,  t h e  i n t e r a c t i o n  m a t r i x  p i c k s  o u t  a  s u b s e t  o f  

t h e  neurons  i n  t h e  n e r v e  r i n g ,  c a l l e d  c r i t i c a l  neurons ,  which 

e x h i b i t  a  s i g n i f i c a n t  change i n  s t a t e  i n  r e s p o n s e  t o  a  change 

i n  t h e  i n p u t  from t h e  s e n s o r y  p r e p r o c e s s i n g  sys tem.  A l l  o t h e r  

neurons  e x h i b i t  a n e g l i g i b l e  change i n  s t a t e .  Thus t h e  

t r a n s f e r  f u n c t i o n  o f  t h e  n e r v e  r i n g  i s  c o n t e x t  s e n s i t i v e ,  

b e i n g  d e t e r m i n e d  by t h e  c o n s t a n t  o r  s l o w l y  v a r y i n g  background 

a c t i v i t y  i n  t h e  r i n g  i n t e r n e u r o n s  v i a  e q u a t i o n  ( B . 8 ) .  

S i m i l a r l y ,  t h e  t r a n s i t i o n  from one t r a n s f e r  f u n c t i o n  t o  

a n o t h e r  i s  d e t e r m i n e d  by t h e  b o r d e r  m a t r i x ,  B. R e f e r r i n g  t o  

f i g u r e  B . l  c, t h e  s i g n i f i c a n t  e l e m e n t s  o f  t h e  b o r d e r  m a t r i x  

a r e  t h o s e  a s s o c i a t e d  w i t h  neurons  f o r  which t h e  c u r v e  i n  t h i s  

f i g u r e  d i f fers  a p p r e c i a b l y  from z e r o .  These neurons  a r e  

c a l l e d  b o r d e r  neurons .  Border  neurons  a r e  b i a s e d  by t h e  

background s o  a s  t o  be e a s i l y  f o r c e d  i n t o  o r  o u t  o f  t h e  set  o f  

c r i t i c a l  neurons  by a n  i n p u t  p e r t u r b a t i o n .  Those n e a r e s t  t o  

t h e  p e a k s  o f  t h e  c u r v e  i n  f i g u r e  B . l  c a r e  t h e  ones  which 

c o n t r i b u t e  most s t r o n g l y  t o  a  t r a n s i t i o n  from one t r a n s f e r  

f u n c t i o n  t o  a n o t h e r .  

A s  l o n g  as the i n p u t  from t h e  s e n s o r y  p r e p r o c e s s i n g  

sys tem v a r i e s  i n  such  a  way a s  t o  c a u s e  no  m i g r a t i o n  between 

t h e  c r i t i c a l  and b o r d e r  neurons ,  t h e  t r a n s f e r  f u n c t i o n  o f  t h e  

n e r v e  r i n g  remains  e s s e n t i a l l y  unchanged. I n  t h i s  c a s e ,  t h e  

dynamics o f  t h e  sys tem remain q u a l i t a t i v e l y  t h e  same o v e r  a  

r a n g e  o f  i n p u t s .  Whatever behav iour  r e s u l t s  from t h e  o u t p u t  
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o f  t h e  n e r v e  r i n g  t o  t h e  motor p o s t p r o c e s s i n g  sys tem,  t h e  

a s s o c i a t i o n  between s t i m u l i  and r e s p o n s e s  w i l l  be modula ted  i n  

d e g r e e ,  b u t  w i l l  n o t  change i n  k ind .  On t h e  o t h e r  hand, when 

a m i g r a t i o n  d o e s  o c c u r  between t h e  c r i t i c a l  and  b o r d e r  

neurons ,  t h e  dynamics o f  t h e  sys tem p a s s e s  t h r o u g h  a b i f u r c a -  

t i o n  and t h e  a s s o c i a t i o n  between s t i m u l u s  a n d  r e s p o n s e  w i l l  

e x h i b i t  a  sudden change i n  k i n d .  

Wi th in  t h i s  q u a l i t a t i v e  dynamical  framework, t h e n ,  w e  may 

p roceed  t o  a n a l y z e  t h e  t i m e  dependence o f  the  o u t p u t s  from t h e  

n e r v e  r i n g  i n  r e s p o n s e  t o  i t s  i n p u t s .  I n  t h e  f o r e g o i n g  

a n a l y s i s ,  t h e  t a c i t  assumpt ion  was made t h a t  a l l  s i g n a l s  v a r y  

s l o w l y  enough t h a t  t h e  t i m e  c o n s t a n t s  o f  t h e  neurons  may be 

n e g l e c t e d .  T h i s  amounts, i n  t h e  thermodynamic framework, t o  

assuming t h a t  t h e  changes  a r e  r e v e r s i b l e .  But reversible 

changes  a r e  assumed t o  a lways  occur  s l o w l y  enough t h a t  t h e  

e q u i l i b r i u m  i s  n o t  s i g n i f i c a n t l y  d i s t u r b e d .  I n  o t h e r  words, 

t h e  d i s t r i b u t i o n  a lways  h a s  time t o  r e l a x  back t o  i t s  

e q u i l i b r i u m  form. T h i s  assumpt ion  must be r e l a x e d  i n  o r d e r  t o  

apprehend t h e  t i m e  development o f  t h e  sys tem s t a t e  b e c a u s e  a l l  

t i m e  dependence o f  t h e  sys tem s t a t e  v a r i a b l e s  v a n i s h e s  a t  

e q u i l i b r i u m .  

Due t o  t h e  s t o r a g e  o f  c h a r g e  i n  i t s  membrane c a p a c i t a n c e ,  

a  neuron i n t e g r a t e s  i t s  i n p u t  s i g n a l  o v e r  t i m e .  Due t o  i t s  

membrane r e s i s t a n c e ,  t h i s  c h a r g e  l e a k s  away o v e r  t i m e .  The 

r e s u l t  i s  t h a t  t h e  neuron  a c t s  as a l o s s y  i n t e g r a t o r  w i t h  a  
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t i m e  c o n s t a n t ,  2, on t h e  o r d e r  of  1 5  msec. The membrane 

p o t e n t i a l  o f  a  s i n g l e ,  undr iven  neuron t h u s  s a t i s f i e s  

which h a s  t h e  s o l u t i o n  

(B. 20) 

where q i s  t h e  i n i t i a l  membrane p o t e n t i a l .  Tha t  is, i n  t h e  

absence  o f  i n p u t ,  t h e  membrane p o t e n t i a l  decays  e x p o n e n t i a l l y  

t o  z e r o  w i t h  t i m e  c o n s t a n t  2.  When t h e  neuron i s  d r i v e n  by a n  

i n p u t ,  o r  f o r c i n g  f u n c t i o n ,  f ( t)  , e q u a t i o n  (B. 19)  r e a d s  

(B. 21) 

M u l t i p l y i n g  t h r o u g h  by t h e  i n v e r s e  of  t h e  s o l u t i o n  t o  t h e  

homogeneous e q u a t i o n ,  g i v e s  

(B.  22) 

b u t  t h e  l e f t  hand side o f  t h i s  e q u a t i o n  can  be r e w r i t t e n  a s  a  

direct t i m e  d e r i v a t i v e ,  t h u s :  

(B. 23) 

which can  be i n t e g r a t e d  immedia te ly  t o  y i e l d  



and t h e r e f o r e  

(B. 24) 

(B. 25) 

where t h e  first t e r m  on t h e  r i g h t  hand side expres se s  t h e  

decay of  t h e  i n i t i a l  membrane p o t e n t i a l  and t h e  second term 

g i v e s  t h e  response  t o  t h e  f o r c i n g  f u n c t i o n  a lone .  

Now, when t h e  neurons a r e  coupled v i a  t h e  coupl ing  

mat r ix ,  M, t h e  expected va lue  of t h e  membrane p o t e n t i a l s  

s a t i s f i e s  

which has  t h e  same form a s  equa t ion  (B.21),  w i t h  t h e  sum of 

t h e  i n p u t  from t h e  sensory  p rep roces s ing  system and t h e  

feedback from t h e  o t h e r  neurons a c t i n g  a s  t h e  f o r c i n g  func t ion  

f o r  each neuron.  When t h e  system i s  a t  e q u i l i b r i u m  t h e  

background i s  s t a t i o n a r y ,  s o  t h a t  

and w e  r ecove r  equa t ion  B .  1 However, by an argument 

s i m i l a r  t o  t h a t  which l e a d  t o  equa t ion  ( B . 1 4 ) ,  t h e  response t o  

a  p e r t u r b a t i o n  i n  t h e  i n p u t  f r o m t h e  sensory  p rep roces s ing  



system w i l l  s a t i s f y  

(B. 28) 

where t h e  matr ix ,  A, i s  def ined  a s  i n  equat ion  (B.16). This  

equat ion  i s  analogous t o  equat ion  (B.21), except  t h a t  s c a l a r s  

have been r ep laced  by vec to r s .  The s o l u t i o n  is conceptua l ly  

s i m i l a r ,  except  t h a t  some complexity i s  in t roduced  by t h e  f a c t  

t h a t  A i s  a  ma t r ix  and i s  not  g e n e r a l l y  d i agona l i zab le .  

Proceeding a s  before ,  w e  form t h e  homogeneous equat ion  

(B. 29) 

Now, s i n c e  t h e  nerve r i n g  i s  a  69 dimensional system, t h e r e  

a r e  69 l i n e a r l y  independent s o l u t i o n s  t o  t h i s  equat ion ,  from 

t h e  supe rpos i t ion  of which w e  w i l l  c o n s t r u c t  t h e  s o l u t i o n  t o  

equat ion  (B.28). Thus, w e  in t roduce  an i n t e g r a t i n g  f a c t o r  of 

t h e  form 

t -A - 
T-1 - e t 

where t h e  ma t r ix  exponent ia l  is  de f ined  by 

(B. 30) 

(B. 31) 

I t  i s  e a s i l y  v e r i f i e d  t h a t  



and t h e r e f o r e  T s a t i s f i e s  a  homogeneous m a t r i x  d i f f e r e n t i a l  

equa t ion  analogous t o  equa t ion  (B.29) . That is, 

Therefore ,  T- does  a l s o  and, upon m u l t i p l y i n g  equa t ion  (B.28) 

th rough  by T- ( t ) ,  w e  o b t a i n  an ana log  o f  equa t ion  (B.23). 

Namely, 

which w e  can now i n t e g r a t e  t o  o b t a i n  

b u t  s i n c e  T ( t )  does  no t  depend on s t  it may be brought  i n t o  

t h e  i n t eg rand ,  and s i n c e  it i s  e a s i l y  v e r i f i e d  t h a t  

(B. 36) 

equa t ion  (B.35) reduces  t o  

This  exp res s ion  g i v e s  t h e  complete response of  t h e  system t o  

a  v e c t o r  o f  i n p u t  s i g n a l s ,  a s  a  f u n c t i o n  o f  t i m e .  The mat r ix ,  

T ( t ) ,  i s  called t h e  impulse response of  t h e  system. I t  g i v e s  

t h e  response of t h e  system a t  t i m e ,  t ,  t o  an i n p u t  t h a t  was 
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p r e s e n t  a t  t = 0. S i m i l a r l y ,  T ( t - s )  g i v e s  t h e  response  of  t h e  

system a t  t i m e ,  t , t o  an i n p u t  t h a t  w a s  p r e s e n t  a t  t ime,  s. 

Hence t h e  first term on t h e  r i g h t  hand side o f  e q u a t i o n  (B.37) 

g i v e s  t h e  decaying response o f  t h e  system t o  t h e  i n i t i a l  

c o n d i t i o n s  and t h e  second term g i v e s  t h e  n e t  effect a t  t i m e ,  

t, o f  a l l  t h e  i n p u t s  s i n c e  t = 0 .  

The t e r m  impulse response means t h a t  t h e  ma t r ix ,  T ( t ) ,  

exp re s se s  t h e  response of  t h e  system t o  t h e  i n p u t  v e c t o r  whose 

components a r e  a l l  u n i t  impulses l o c a t e d  a t  t = 0. This  

ma t r ix  complete ly  c h a r a c t e r i z e s  t h e  system i n  t h o s e  r eg ions  of 

s t a t e  space i n  which no migra t ion  occurs  between c r i t i ca l  and 

bo rde r  neurons.  The columns of  T must t h e r e f o r e  be l i n e a r  

combinat i o n s  of  t h e  s o l u t i o n s  of  t h e  homogeneous equa t ion ,  

equa t ion  (B.29), w i th  t h e  p rope r ty  t h a t  

I n  o r d e r  t o  c h a r a c t e r i z e  t h e s e  s o l u t i o n s ,  it i s  convenient  t o  

work i n  a  b a s i s  i n  which A, and t h e r e f o r e  T, have t h e  s i m p l e s t  

p o s s i b l e  form. To t h i s  end, w e  recall t h a t  eve ry  l i n e a r  

o p e r a t o r  can be expressed  a s  t h e  sum o f  a d i a g o n a l i z a b l e  

o p e r a t o r  and an o p e r a t o r  which i s  n i l p o t e n t  on a set of  

mutua l ly  e x c l u s i v e  and j o i n t l y  exhaus t ive  i n v a r i a n t  subspaces.  

W e  t h e r e f o r e  proceed t o  f i n d  t h e  mat r ix ,  S, which t ransforms  

A i n t o  a  form which e x h i b i t s  t h i s  s t r u c t u r e  e x p l i c i t l y :  

(B. 39) 
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where D i s  d i agona l  and C i s  n i l p o t e n t  on each  o f  t h e  

i n v a r i a n t  subspaces  of  A. S ince  t h e  dynamics o f  t h e  system do 

no t  depend on t h e  coo rd ina t e  system used t o  describe them, t h e  

change of  c o o r d i n a t e s  expressed  by t h e  mat r ix ,  Sf merely has  

t h e  effect o f  s i m p l i f y i n g  t h e  p roces s  o f  f i n d i n g  a s o l u t i o n  t o  

equa t ion  of motion o f  t h e  system, equa t ion  (B.28). Since  

equa t ion  (B. 39)  i s  a s i m i l a r i t y  t rans form,  t h e  i n v a r i a n t  

subspaces  of J a r e  t h e  same a s  t h o s e  o f  A. 

The m a t r i x  J i s  c a l l e d  t h e  Jordan canon ica l  form of  A and 

has  t h e  form 

where each  o f  t h e  blocks ,  J i s  t h e  r e s t r i c t i o n  of  J onto  t h e  

s e t  o f  i n v a r i a n t  subspaces  a s s o c i a t e d  w i t h  t h e  p o s s i b l y  

complex e igenva lue  k of  A, where 

I n  t u r n ,  each  of  t h e  J has  t h e  form 

[J,. 0 -- 0 1 
(B. 42) 

where each o f  t h e  b locks  J i s  t h e  r e s t r i c t i o n  o f  J onto  t h e  

s i n g l e  i n v a r i a n t  subspace gene ra t ed  by t h e  e igenvec to r ,  0 , 
of  A. Th is  b lock  has  t h e  form 



Recall that the eigenvalues and eigenvectors of a linear 

operator are those scalars and vectors which satisfy 

In other words, each eigenvalue has associated with it one or 

more eigenvectors which have the property that, when operated 

on by A, they are simply scaled by the eigenvalue. The mlum 

position, u , of @ in the matrix, St is the same as the 

first column of J in J, and @ generates the invariant 

subspace of J as follows. Let d be the dimensionality of 

the subspace. If d = 1 then @ is the single basis vector 

of the subspace. Otherwise the remaining d - 1 basis 

vectors, @ , occupy successive columns of S and it can be 
seen that, since AS = SJ, 

Equations (B.44) and (B.45) together imply that 

(B. 45) 

These vectors are called the generalized eigenvectors of A. 

A dual set of generalized eigenvectors, , can be 

constructed to form the rows of S' . Since S- A = JS' , these 



v e c t o r s  s a t i s f y  

~ P , T , , ( A - A , I )  Ic = o 

The v e c t o r  o c c u p i e s  row p o s i t i o n  u i n  

r emain ing  d  - 1 v e c t o r s  occupy s u c c e s s i v e  rows. 

Now, it i s  e a s i l y  v e r i f i e d  t h a t  

t h a t  i s ,  

W e  t h e r e f o r e  p r o c e e d  t o  d e t e r m i n e  t h e  s t r u c t u r e  

m a t r i x .  For  a  s i n g l e  J o r d a n  b l o c k ,  

and it i s  immediate  from e q u a t i o n  (B.31) t h a t  

(B. 47) 

and t h e  

(B. 4 8 )  

(B.49) 

o f  t h i s  

(B. 51) 

and t h u s  eDrnt i s  a  d i a g o n a l  m a t r i x  whose nonzero  e l e m e n t s  a r e  

e' .t . The s i t u a t i o n  f o r  C i s  somewhat more i n v o l v e d .  S i n c e  

CrB = 4 3-1 

it f o l l o w s  t h a t  

C s  - 4 j - k  

and t h e r e f o r e  t h a t  



hence the series expansion of eCmt terminates after d terms. 

That is, 

or just 

(B. 55) 

and thus ecnt is an upper triangular matrix with elements of 

t k  the form on the k superdiagonal. When this matrix is 
k. 

multiplied by eDnt all of its elements are simply multiplied 

by ebt.  

tke 'r t  are called the eigenfunctions of A The functions - 
k! 

and the columns of the solution of equation (B.33) are 

composed of linear combinations of these functions. These 

combinations are simply the ones resulting from the 

transformation from the eigenbasis back to the standard basis. 

Denoting the elements of S by $ ,  and those of S- by W ,, we 
may now rewrite equation (B.49), restricted to a single Jordan 

block, in the form 

but the sum over 6 simply selects terms for which q 2 p, so 
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that, by inverting the order of the summations and reindexing, 

we obtain 

Finally, placing the blocks in their proper positions in J and 

summing over r and s yields 

Now, the term under the rightmost summation sign expresses the 

outer product of one of the generalized eigenvectors with one 

of the dual generalized eigenvectors. That is, 

(B. 60) 

This product is just the matrix of coefficients arising from 

the transformation of a single element of eJ t .  It expresses 

the contribution of that element to one column of T. The 

rightmost sum in equation (B.59) is thus a matrix 

(B. 61) 

which is the matrix of coefficients of all terms involving t 

which arise from the block J . The matrix E is thus a 

projection of the eigenfunction containing t onto the vector 

. We may thus rewrite equation (B.59) in terms of these 

projections, obtaining the form 



Now, when the eigenvalues are complex, the elements of the 

eigenvectors will, in general, be complex as well. Thus, 

letting 

and recalling that 

(B. 63) 

(B. 64) 

we may cast equation (B.59) in its final form: 

A review of the foregoing argument will show that the inverse 

of T is obtained from this expression simply by replacing t by 

-t. The response of the nerve ring to a perturbation in the 

inputs from the sensory preprocessing system are thus given by 

making the substitution from equation (B.65) into equation 

(B.37). It is clear that this response must always be real 

valued, even when the eigenvalues and eigenvectors are 

complex. 

With respect to the form of the eigenfunctions, there are 

six cases to consider. Each eigenvalue may be real or 

complex, and in either case, its real part may be positive, 

negative, or zero. When the eigenvalue is complex, the 
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eigenfunction is a sinusoid modulated by the eigenfunction 

corresponding to the real part of the eigenvalue. The first 

few eigenfunctions are shown in figures B.2 a, B.3 a, B.4 and 

B.6. The remainder of this section focuses on the general 

case in which the eigenvalues are complex. 

Within each of its invariant subspaces, the response of 

the nerve ring will depend only on the component of the input 

which lies in that subspace. This response consists of a 

superposition of sinusoids, each oscillating at angular 
0 

frequency I. When a > 0, one would expect the amplitude 
T 

of the oscillations to increase without bound, but in this 

case the linearized analysis breaks down and the sigmoid 

transfer function of the neurons intervenes to stabilize the 

amplitude at some finite value. This leads to sustained 

oscillations of the type discussed in the next section. The 

effect of the sigmoidal nonlinearity on the eigenfunctions can 

be seen by comparing figures B.2 b, B.3 b, B.5 and B.7. to 

those cited above. 

When a < 0, on the other hand, the amplitude envelopes 

exhibit a series of peaks, evenly spaced at 

and by applying Stirling's formula, 

q! e - 4 q g J w  

(B. 66) 

(B. 67) 

each peak in the sequence has an amplitude 



Figure B.2 a - The first six decreasing nonoscilLatory eigenfunctioas 

Figure B.2 b - The effect of the sigmoid nonlinearity on these functions 



Figure B.3 a - The first six increasing nonoscillatory eigenfunctions 

Figure B.3 b - The effect of the sigmoid nonlinearity on these functions 



Figure 8 . 4  a - Decreasing linear osc i l l a to ry  eigenfunctions of index 0 

Figure  8 . 4  b - Decreasing linear oscillatory eigenfunctions of index 1 

Figure 8 . 4  c - Decreasing linear osc i l l a to ry  eigenfunctions of index 2 



Figure 8.5 a - Decreasing nonlinear oscil latory eigenfunctions, index 0 

Figure B.5 b - Decreasing nonlinear oscillatory eigenfunctions, index 1 

Figure B . 5  c - Decreasing nonl inear  osc i l la tory  eigenfunctions, index 2 



Figure B.6 a - Increasing linear osci l la tory  eigenfunctions of index 0 

Figure  B . 6  b - Increasing linear oscillatory efgenfunctions of index 1 

Figure B . 6  c - Increasing linear oscillatory eigenfunctions of index 2 



Figure B.7 a - Increasing nonlinear oscillatory eigenfunctions, index 0 

1 

Figure B.7 b - Increasing nonlinear oscillatory eigenfunctions, index 1 

I I I I I I 

Figure B.7 c - Increasing nonlinear oscillatory eigenfunctions, index 2 



(B. 68)  

The number of peaks in the sequence is just d , the dimensio- 

nality of the subspace. The first peak occurs at t = 0 and 

lies parallel to @ . Successive peaks lie parallel to @ . 
The nerve ring thus responds to a perturbation in the 

input from the sensory preprocessing system by issuing a 

series of motor commands. It does this in a manner which is 

both associative and context dependent. The context is 

determined by the interaction matrix, N, which picks out a set 

of critical neurons from the total complement of 69 neurons in 

the nerve ring. By choosing such a skeleton network out of 

the nerve ring, it determines the invariant subspaces of the 

ring at any given time, and thus controls the association of 

a particular sequence of motor commands with particular input 

from the sensory preprocessing system. 

The conditions under which a context switch occurs are 

determined by the border matrix, B. The neurons picked out by 

this matrix are those for which a relatively small change in 

the input will cause an addition or deletion from the skeleton 

network picked out by the interaction matrix. An input lying 

parallel to a generalized eigenvector of B which is associated 

with a large eigenvalue will cause a variation in the 

structure of A. The matrix A can thus be thought of as a 

function of B. In this way, the nerve ring can associate 

different sequences of motor commands with the same input 



1 4 5  

s i g n a l ,  depending on t h e  c u r r e n t  background a c t i v i t y  i n  t h e  

r i n g  i n t e r n e u r o n s  and t h e  p a t h  t h r o u g h  s t a t e  s p a c e  by which 

t h e  sys tem r e a c h e d  i t s  c u r r e n t  s t a t e .  

The l i n e  o f  r e a s o n i n g  which l e a d  t h r o u g h  e q u a t i o n  (B. 1 4 )  

t o  e q u a t i o n  (B.28), t h e  s o l u t i o n  o f  which is  o b t a i n e d  by sub- 

s t i t u t i n g  from e q u a t i o n  (B. 6 5 )  i n t o  e q u a t i o n  (B. 3 7 ) ,  

d e t e r m i n e s  t h e  dynamics o f  t h e  membrane p o t e n t i a l s  under  t h e  

assumpt ion  t h a t  t h e  background a c t i v i t y  is  s u f f i c i e n t l y  

s t a t i o n a r y  t h a t  t h e  i n t e r a c t i o n  m a t r i x  c a n  be t r e a t e d  a s  

c o n s t a n t .  A s i m i l a r  l i n e  o f  r e a s o n i n g  would b e g i n  w i t h  

e q u a t i o n  (B.18) and d e t e r m i n e  t h e  dynamics o f  t h e  i n t e r a c t i o n  

m a t r i x  under  t h e  assumpt ion  t h a t  t h e  b o r d e r  m a t r i x  can  be 

t r e a t e d  a s  c o n s t a n t .  While such  a n  a n a l y s i s  i s  beyond t h e  

scope  o f  t h i s  t h e s i s ,  it would l e a d  t o  a  m a t r i x  d i f f e r e n t i a l  

e q u a t i o n ,  t h e  s o l u t i o n  o f  which would describe t h e  i n t e r a c t i o n  

m a t r i x  a s  a  f u n c t i o n  o f  t i m e .  T h i s  would l e a d  t o  a  

c h a r a c t e r i z a t i o n  o f  t h e  dynamics o f  t h e  sys tem i n  t h e  r e g i o n s  

o f  s t a t e  s p a c e  which have been e x c l u d e d  from t h e  p r e s e n t  

a n a l y s i s .  These r e g i o n s  a r e  t h e  ones  i n  which t h e  dynamics of 

t h e  membrane p o t e n t i a l s  undergo a  b i f u r c a t i o n ,  g i v i n g  r ise  t o  

a  change i n  t h e  e f f e c t i v e  s t r u c t u r e  o f  t h e  n e r v e  r i n g  

e f f e c t i n g  a  c o n t e x t  s h i f t .  



A travelling sinusoidal wave is depicted in figure C.1, 

in which time increases to the left and distance along the 

body of the organism increases into the page. At each 

successive instant of time, the wave is displaced in space by 

a certain amount while retaining a constant waveform. 

Figure C.l - Wave propagation due to coupled oscillations 

A relationship between the velocity of wave propagation, 

the frequency of the oscillations and the variation of phase 

shift with distance can be derived from figure C.2. In a time 



Figure C.2 - A travelling wave at successive instants 

i n t e r v a l ,  d t ,  t h e  wave h a s  moved by  d i s t a n c e ,  d s ,  s o  t h a t  

f ( s + d s ,  t + d t )  - f ( s ,  t )  ( C  . 1) 

whereby 

hence  t h e  two t a n g e n t  l i n e s  i n  f i g u r e  C.2 a r e  p a r a l l e l  and 

d f ,  - -df, (C.3) 

But df ,  i s  j u s t  t h e  change i n  f ( s , t )  o v e r  t h e  i n t e r v a l  d t ,  

hence 

a d f ,  - -f ( s ,  t) dt ( C  - 4 )  
a t  

and df, i s  t h e  change i n  f ( s , t )  o v e r  d i s p l a c e m e n t ,  ds,  s o  t h a t  

a d f ,  - - f  ( s ,  t) d s  
as 

Combining t h e s e  l a s t  t h r e e  e x p r e s s i o n s  g i v e s  



ds i s  n o t h i n g  o t h e r  t h a n  v,  t h e  v e l o c i t y  o f  p r o p a g a t i o n  b u t  - 
d t  

o f  t h e  wave. If t h e  wave i s  s i n u s o i d a l ,  h a v i n g  t h e  form 

f ( s ,  t) - a s ine  ( s ,  t) (C .7 )  

t h e n  e q u a t i o n  (C.6) h a s  t h e  form 

and  i f  t h e  a n g u l a r  f r e q u e n c y ,  

i s  c o n s t a n t ,  t h e n  e q u a t i o n  (C. 8 )  y i e l d s  

which i s  c o n s t a n t  a s  w e l l .  L e t t i n g  

(C.  11) 

be t h e  r a t e  a t  which t h e  p h a s e  a n g l e  c h a n g e s  w i t h  d i s t a n c e  

a l o n g  t h e  body,  t h e  v e l o c i t y  o f  p r o p a g a t i o n  i s  g i v e n  by 

e q u a t i o n  ( C . l O )  a s  
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and, because of equations (C.10) and (C.11), the phase angle 

must have the form 

( C .  1 3 )  

hence 

f ( s , t )  - a s i n ( o t + a s + € I , )  (C. 14) 

NOW, the arguments leading up to equation (C.6) were 

independent of the waveform. All that was required was that 

the waveform remains invariant as the wave travels, as 

expressed by equation (C. 1) . Because any periodic function 

can be written as a sum of sinusoidally oscillating terms, and 

each term of the expansion must then satisfy equation (C.6), 

we must have 

(C. 15) 

in order for equation (C.6) to be satisfied. 

It is important to note that the variable, s, represents 

distance along the body of the worm, and the function f(s,t) 

represents the curvature of the body at time t and distance s 

from the tip of the head. Determination of the posture of the 

animal, in coordinates fixed to the ground, requires the 

evaluation of a non-elementary elliptic integral and, not 

being central to the issue, will not be pursued here. 

The organism moves most efficiently in films of water 

having a depth on the order of half the diameter of the body. 
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A meniscus forms at the interface between the surface of the 

water film and the body of the worm. Distortion of the 

meniscus, due to flexion of the body, gives rise to a 

restoring force which, with increasing flexion, eventually 

becomes sufficient to prevent further side slip. Under these 

circumstances, the trajectory of the travelling wave will be 

fixed with respect to the ground and the worm will move along 

it at the velocity, v, derived above. 



APPENDIX D - SOLVING FOR TFIE -S AND VARIATIONS 

The equation of motion of the subsystem that mediates 

forward motion, equation (38), will be solved below in several 

steps. First, the the subsystem will be expressed in terms of 

the sums and differences of the homologous dorsoventrally 

opposed signals. This will show that the subsystem is itself 

composed of two decoupled subsystems. Next, each of these 

reduced subsystems is solved explicitly in its own generalized 

eigenbasis. Finally, the solutions of the reduced subsystems 

are recombined in the main text and transformed back into the 

basis formed by the linearized state variables of the 

subsystem. 

To begin with, recall that equation (38) is a linear 

vector differential equation which reads 

and let ?l = Vx. Then 

In this equation, the matrix A appears postmultiplied by V, 

and premultiplying the equation by V- yields 



Explicitly, one has 

and equation ( 3 8 )  is thereby transformed into 

where the x. are the sums and the x., are the differences. 

This is just equation ( 3 9 )  again and, as stated in the main 

body of the thesis, it clearly shows that the time development 

of the means is completely decoupled from the time development 

of the variations. 

Now, V- and V transform to and from a basis composed of 

sums and differences of moving averages of stochastic signals. 

Thus the sums follow the means, because the expected value of 

the random fluctuations vanishes and the systematic variations 

about the means are decoupled from the means by virtue of 

equation (D.5). A similar argument leads to the conclusion 
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t h a t  t h e  d i f f e r e n c e s  f o l l o w  t h e  v a r i a t i o n s .  The d e t a i l e d  

s o l u t i o n s  o f  t h e  two reduced subsys tems a r e  g i v e n  below. 

P r o c e e d i n g  first  t o  s o l v e  f o r  t h e  means, w e  have  

t h a t  is ,  

To r e d u c e  A t o  i t s  J o r d a n  c a n o n i c a l  form, w e  compute t h e  

d e t e r m i n a n t ,  IA - h1 I . S e t t i n g  a = 1 - h, 

and s e t t i n g  t h i s  d e t e r m i n a n t  t o  z e r o  r e s u l t s  i n  (1 - h )  = 0 

s o  t h a t  h = 0 i s  t h e  t r i p l e  e i g e n v a l u e  o f  A .  There  i s  o n l y  

one e i g e n v e c t o r  a s s o c i a t e d  w i t h  t h i s  e i g e n v a l u e ,  a s  can  be 

s e e n  by s o l v i n g  (A - XI)$ = 0: 

d -c dx, - cx, 

where u  i s  a r b i t r a r y .  W e  t h u s  compute t h e  g e n e r a l i z e d  e i g e n -  



vectors by solving (A - I = 4 - as follows: 

v- cu 

dx, - cx, dx, - cx, 

where v and w are arbitrary. Now, the matrix which transforms 

from the standard basis to the eigenbasis is just that matrix 

whose columns are the eigenvectors and the inverse of this 

matrix, which transforms back to the standard basis, is the 

matrix whose rows are the dual eigenvectors. Thus, choosing 

u = de and v = c to simplify the form of the eigenvectors, we 

note that the determinant of this matrix is independent of w. 

We are thus free to chose w = 0. This gives the transform 

matrix to within a constant. Diagonalizing this matrix gives 

its inverse to within a constant, and normalizing the result 

to have all unit elements along the main diagonal provides a 

condition on these two constants. One obtains, finally, 

The Jordan form of A is thus given by 

(D. 11) 

(D. 12) 

It is easily verified that 
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(D. 13) 

and by equations (B.49), (B.51) and (B.56) of appendix B, 

(D. 14) 

NOW, introducing y = S- q and x = S- 5 , equation (D. 7) has 

the form 

when expressed in the eigenbasis. Introducing the integrating 
t 

factor eJN7 gives 

which can be immediately integrated to yield 

(D. 16) 

(D. 17) 

And assuming the subsystem starts from rest, that is 'Tl = 0, 

this becomes 

(D. 18) 
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when e x p r e s s e d  i n  t h e  s t a n d a r d  b a s i s  a g a i n .  A f t e r  c a r r y i n g  

o u t  t h e  m a t r i x  o p e r a t i o n s  i n d i c a t e d  i n  t h i s  e x p r e s s i o n ,  one 

o b t a i n s  t h e  r e s u l t  g i v e n  i n  e q u a t i o n  ( 4 0 ) .  

Turn ing  now t o  t h e  v a r i a t i o n ,  q V  a b o u t  t h e  mean, q , 

e q u a t i o n  (40)  r e d u c e s  t o  

o r  j u s t  

(D .  19)  

( D .  20) 

where, it w i l l  be r e c a l l e d ,  t h e  s l o p e s  o f  t h e  s igmoids  are 

absorbed  i n t o  t h e  c o e f f i c i e n t s .  These s l o p e s ,  o f  c o u r s e ,  are 

t o  b e  e v a l u a t e d  a t  t h e  mean, q . Hence, by  e q u a t i o n  ( 4 1 ) ,  

e x c i t a t i o n  from t h e  n e r v e  r i n g  i s  r e q u i r e d  i n  o r d e r  f o r  

e q u a t i o n  ( 4 4 )  t o  have  a  n o n t r i v i a l  s o l u t i o n .  I n  t h e  absence  

o f  such  e x c i t a t i o n ,  q decays  t o  z e r o ,  t h e  s l o p e s  of t h e  

s igmoids  become n e a r l y  z e r o ,  and t h e  sys tem becomes 

e f f e c t i v e l y  decoup led .  

P r o c e e d i n g  a s  b e f o r e ,  w e  compute t h e  e i g e n v a l u e s  by 

s e t t i n g  IAv - h 1  I t o  z e r o .  S e t t i n g  a = 1 - h, 

IA,- 111 - a4 + 2 ( a = +  de )  - 0 
f 
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b u t  a  q u a r t i c  polynomial  can always be f a c t o r e d  i n t o  two 

q u a d r a t i c  polynomials ,  s a y  

( a 2 + r a + t ( r 2 - s 2 ) )  ( a 2 - r a + + ( r 2 - s 2 ) )  2 - 0 (D. 22) 

where r and s a r e  r e a l .  These two, i n  t u r n ,  can  b e  f a c t o r e d  

i n t o  l i n e a r  f a c t o r s  

( a  - a l )  ( a  - a2)  ( a  - a,)  ( a  - a,) - 0 (D .2 3 )  

where a and a a r e  complex con juga t e s ,  a s  a r e  a and a . I n  

f a c t ,  

(D. 24) 

Equa t ing  c o e f f i c i e n t s  between e q u a t i o n s  (D.21) and (D.22) 

l e a d s  t o  t h e  p a i r  o f  e q u a t i o n s  

(D. 25) 

whereby 

Th i s  is  a  c u b i c  e q u a t i o n  i n  r . Since  a  c u b i c  e q u a t i o n  always 



has at least one real root, we have 

( D .  27 )  

where 

1 - 
( q + l )  3 + (q- I )+) ,  q - 4- 27 2bc ( 0 . 2 8 )  

and it can be seen that p, r and s are real and positive. 

Substituting equation ( D .  27)  into (D.24) gives 

hence a and a are always complex while a and a may be real. 

The latter will be complex if p > 2 ,  which is approximately 

equivalent to 

When this condition does not hold, the eigenvalues h and h. 

are real and positive, in which case any small deviation from 

equilibrium will increase exponentially until each neuron in 

the system are either saturated or cut off. Fortunately, most 
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reasonable assumptions about relative synaptic strengths and 

other biological factors lead to the satisfaction of 

inequality (D.30) . We may therefore define 

(D. 31) 
S 

and 

and 

whereby 

al - -rl cis (-el) 
a, - -rl cis (+el) 
a3 - +r2 cis(+B2) 
a4 - +r2 cis (-e2) 

and the eigenvalues are 

(D. 33) 

(D. 34) 

(D. 35) 

Since there are four distinct eigenvalues, there are four 

linearly independent eigenvectors, and each of the invariant 

subspaces is one dimensional. The eigenvectors may be found 



by so lv ing  (Av - 1 4 = 0. That is ,  

2 
a 1x1 + 7x2 

a ,x2 - ex3 - dx, 

a ,x3 - bx, 
a ,x4 - ex, 

The dual  e igenvectors  a r e  found 

That is ,  

(D.  36) 

by so lv ing  yfT (AV - .x I )  = 0.  

A s  before,  t h e  t ransform from t h e  standard b a s i s  

(D. 37) 

t o  t h e  

e igenbas is ,  S,, i s  t h e  matrix whose columns a r e  t h e  4 and i t s  

inver se  i s  t h e  matr ix  whose rows a r e  t h e  yfT. The elements of 

t h e  product of t h e s e  two matr ices  a r e  j u s t  t h e  inner  products 

of t h e s e  vec to r s .  I t  i s  s t r a i g h t  forward, though mechanically 

i n t r i c a t e ,  t o  show t h a t  

Hence we ob ta in  a condi t ion  on u and v :  

but from equat ion (D.21), 



and t h u s ,  a f t e r  some manipu la t ion ,  e q u a t i o n  (D.39) c a n  be made 

t o  r e a d  

i n  which t h e  denominator  i s  r e a l .  

W e  may t h e r e f o r e  d e f i n e  u  = a and v  = a P , where P i s  

what r emains  o f  t h e  r i g h t  hand s i d e  o f  e q u a t i o n  (D. 4 1 )  when a 

h a s  been f a c t o r e d  o u t .  I n  t h e  f o l l o w i n g  argument ,  it w i l l  b e  

u s e f u l  t o  have  t h e  p i n  p o l a r  form. Now, it i s  e a s y  t o  

v e r i f y  t h a t  P and P a r e  complex c o n j u g a t e s ,  a s  a r e  P and P . 
W e  may t h e r e f o r e  l e t  

pl  - r, cis(+0,) 
p2  = r, cis (-8,) 

p, - r4 cis(+0,) 
p ,  - r4 cis(-0,) 

and w r i t e  

(D. 42)  

(D. 4 3 )  
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These e x p r e s s i o n s  can be  used t o  v e r i f y  t h a t  t h e  Jo rdan  form 

o f  A, i s  s imply  

and 

( D .  44) 

(D.  45) 

W e  may now proceed  t o  g i v e  t h e  s o l u t i o n  t o  e q u a t i o n  

( D . 2 0 ) .  I t  i s  o b t a i n e d  a s  b e f o r e ,  by t r a n s f o r m i n g  t h e  
t 

J~~ 

e q u a t i o n  t o  t h e  e i g e n b a s i s ,  i n t e g r a t i n g  u s i n g  e a s  t h e  

i n t e g r a t i n g  f a c t o r  and t r a n s f o r m i n g  back t o  t h e  s t a n d a r d  

b a s i s .  S i n c e  t h e  e q u a t i o n  i s  homogeneous, t h e  r e s u l t  i s  

From e q u a t i o n s  (D.43) and (D.45),  

t t t 1 bee-"; bee-A4 F bee-a4 7 ' 1  
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and t h e  p r o d u c t  S;q can be  w r i t t e n  a s  t h e  sum o f  f o u r  

v e c t o r s ,  a s  f o l l o w s .  

I t  now remains  t o  t a k e  t h e  p r o d u c t  of  t h e  l a s t  two e q u a t i o n s  

b u t ,  r e a s o n i n g  t h a t  t h e  e x p e c t e d  i n i t i a l  v a l u e s  of t h e  

v a r i a t i o n s  o f  t h e  neuron s i g n a l s  and muscu la r  e x c i t a t i o n  a r e  

z e r o ,  w e  w i l l  c o n s i d e r  o n l y  t h e  effect o f  t h e  i n i t i a l  p o s t u r e  

of t h e  organism.  Thus 

and s o  w e  p r o c e e d  t o  i n v e s t i g a t e  t h e  sum o f  terms o f  t h e  form 
t 

a e . W e  know t h a t  

s o  t h a t ,  from e q u a t i o n  (D.  3 5 ) ,  w e  have  

( D .  50)  

(D. 51) 
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and using these expressions together with equation (D.34) and 

(D.41) gives 

and 

Now, the right hand sides of equations (D.52) have identical 

magnitudes and opposite phase angles, hence their sum is real. 

Likewise for equations (D.53). In fact, 

whereby 

and substituting these expressions into equation (D.48) allows 

one, finally, to write the solution to equation (D.20) 

assuming that only x has a nonzero initial value. The result 

is given by equation (45) in the main text. Now the first 

term on the right hand side of this equation is exponentially 

damped, so it will decay to zero over time. The second term 

will grow exponentially if a > 1. From equation (D.31), this 



amounts to 

which is easily satisfied, given reasonable biological 

assumptions. 
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Acetylcholine 

The most commonly encountered excitatory neurotransmitter. 

Actuator 

A system element which transforms a control signal into some 
definite action. 

A sensory organ, primarily sensitive to concentration of 
various chemical compounds, consisting of a multicellular 
pouch which is penetrated by the sensory endings of a number 
of neurons and has a pore opening to the outside. 

Anion 

A negative ion. Anions are so named because they are 
attracted to the anode in electrochemical experiments. 

omatic compound 

An organic compound containing one or more benzine rings. 

Basis 

A set of linearly independent vectors having the property 
that any vector in a given vector space can be expressed as 
a linear combination of the vectors in the set. 

Basis vector 

One of the vectors in a given basis. 

Bifurcation 

A two pronged fork in the trajectory of a system through its 
state space. As the state of a system advances along the 
single path leading to a bifurcation, it will choose one or 
the other of the paths leading away, as determined by very 
small random fluctuations in its state. 

Boltzmann decision 

The process by which a node in a Boltzmann machine 
determines its next state after sampling its input signal. 
The details of this process are internal to the node, and 
the only parameter of interest is the probability with which 



the node chooses the active over the passive state. 

Boltzmann distribution 

The statistical distribution of states resulting when a 
group of one or more nodes repeatedly determine their states 
by making Boltzmann decisions. 

Boltzmann' s constant 

One of the fundamental constants of nature. Boltzmann's 
constant expresses the amount of energy required to 
represent a single bit of information in a system having a 
temperature of one degree Kelvin. 

Border matrix 

A matrix L O L I ~ I ~ ~  by multiplying each element of the coupling 
matrix of a system by the second derivative of the transfer 
function of the node which receives input via that element. 
This matrix determines the conditions under which particular 
nodes are driven into or out of the flat parts of their 
transfer functions. 

Border neurons 

Those nodes in a system which are operating near the 
juncture between the flat and steep parts of their transfer 
functions. Such neurons contribute strongly to the 
bifurcations of the system dynamics. 

Buccal 

Of, or pertaining to, the mouth. 

Campaniform 

Literally, bell shaped. A hollow papilla. 

Cation 

A positive ion. Cations are so named because they are 
attracted to the cathode in electrochemical experiments. 

Cephalic 

Of, or pertaining to, the head. 

Cervical 

Of, or pertaining to, the neck. 



Chemoreceptor 

A neuron having structural specializations rendering it 
sensitive to the concentration of particular chemical 
compounds. 

Cholinergic 

A synapse which operates by the release of acetylcholine. 

Collagen 

A protein which forms the basis of connective tissue. 

Commissure 

A neural structure by which two other neural structures are 
joined together, or coupled. 

Constraint 

A coupling between two or more of the state variables of a 
system in such a manner that they are not completely free to 
vary independently. 

Coupling 

The degree to which the value of one state variable of a 
system is able to influence the value of another. 

Coupling matrix 

A matrix whose elements express the degree of coupling 
between the state variables of a system. 

Critical neurons 

Those nodes in a system which are operating near the centres 
of the steep parts of their transfer functions. Such 
neurons contribute strongly to the transfer operator of the 
system. 

Cuticle 

The outermost structural layer of the skin. 

Degrees of freedom 

The effective dimensionality of the state space of a system, 
taking all constraints into account. For example, a point 
constrained to move in a circular path has only one degree 
of freedom, even though its path is two dimensional. 



Deirid 

A sensory organ, primarily sensitive to vibration. 

Diagonal operator 

An operator which can be expressed as a diagonal matrix with 
respect to some basis. 

Diagonalization 

A procedure whereby a basis is found, with respect to which 
a given operator is diagonal. 

Drive 

A signal is said to drive a system when the signal is an 
argument of the transfer function of the system. 

Eigenbasis 

A basis of a vector space composed of the eigenvectors and 
generalized eigenvectors of a given operator defined on that 
space. 

Eigenfunction 

The set of all possible solutions of a differential equation 
form a vector space whose elements are functions. The 
eigenfunctions of the differential equation form a basis of 
this vector space in a manner analogous to the way in which 
the eigenvectors of a linear operator form a basis of the 
vector space on which the operator is defined. 

Eigenvalue 

The amount by which an eigenvector is scaled when operated 
on by a given operator. A linear operator is completely 
specified by giving an ordered list of its eigenvectors and 
associated eigenvalues. 

Eigenvector 

Any vector which is merely scaled, and not rotated, when 
operated upon by a given operator is called an eigenvector 
of that operator. The eigenvectors of a diagonalizable 
operator form a basis of the vector space on which the 
operator is defined. In effect, they define a set of 
preferred directions in this space. 

Energy 

The capacity to do work. That is, to exert a force and 



thereby cause a change of state. Work is defined as the 
product of the force exerted and the amount by which the 
state changes. 

Energy of interaction 

The energy stored in a system as a result of an interaction 
between the elements of the system. 

Entropy 

The information neglected in a global description of a 
system. When the state of a system is characterized, for 
example, by its total internal energy, the information 
neglected expresses the number of different configurations 
of the system which result in each value of this energy. 

Force 

An interaction whereby one state variable of a system tends 
to cause another to change its value. Force is defined as 
the rate at which the energy of the system changes with this 
value. 

Force constant 

The constant of proportionality relating a change in the 
value of a state variable to the force required cause it. 

Free energy 

The sum of the mean value of the total internal energy of a 
system and the energy required to represent the neglected 
information, or entropy, of the system. 

Gama-aminobutyric acid 

The most commonly encountered inhibitory neurotransmitter. 

Ganglion 

A well defined substructure of the nervous system. 

Gap junction 

A very close apposition of specialized structures of the 
membranes of two adjacent neurons which permits electrical 
coupling between them, although this coupling is sometimes 
more effective in passing currents in one direction than the 
other. 



Generalized eigenvector 

A vector that, when operated on by a given operator, is 
transformed into one of the eigenvectors of the operator 
after a finite number of iterations. 

High order constraint 

A coupling between more than two of the state variables of 
a system in such a manner that they are not completely free 
to vary independently. 

Homogeneous equation 

A differential equation which lacks a forcing term. 

Hydrostatic skeleton 

The result of the incompressibility of water and the 
structure of the cuticle in certain invertebrates, which 
together impose constraints on the shape of the organism, 
which allows the muscles to act as though they had the 
benefit of skeletal attachment. 

Hypodermis 

A layer of cells located directly inside the cuticle. 

Impulse response 

The response of a system to a force consisting of a single 
impulse. 

Information 

A measure of the number of binary decisions required to 
distinguish between one state of a system and another. Thus 
the information content of a system in a given state is the 
binary logarithm of the probability of occurrence of that 
particular state. 

Interaction matrix 

A matrix formed by multiplying each element of the coupling 
matrix of a system by the first derivative of the transfer 
function of the node which receives input via that element. 
This matrix determines the effective strength of the 
interactions between the nodes. 

Invariant subspace 

A subspace of the vector space, on which an operator is 
defined, which has the property that any vector in this 



subspace is transformed by the operator into another vector 
in the same subspace. 

Jordan canonical form 

An operator is said to be expressed in Jordan canonical form 
when its matrix is expressed relative to its eigenbasis. In 
this case, the eigenvalues of the operator appear in order 
along the main diagonal, the elements of the first 
superdiagonal are either one or zero, depending on the 
dimensionality of the invariant subspaces, and all other 
elements of the matrix are zero. 

Klinokinesis 

A method of orientation in which the organism measures a 
gradient by measuring the intensity of a stimulus at various 
p0int.s along its path. 

Klinotaxis 

A method of orientation in which the organism measures a 
gradient by measuring the intensity of a stimulus at the 
extrema of some regular motion. 

Labial 

Of, or pertaining to, the lips. 

Lattice gas 

A system consisting of a lattice of sites, each of which 
may, at any point in time, be in one of two states. 

Lumbar 

Of, or pertaining to, the back. 

Markov random field 

A set of random variables. coupled only by binary 
constraints. 

Mean firing rate 

In the case of a fluctuating binary random variable, the 
reciprocal of the mean time interval between transitions 
from a given value to the other. 

Mechanoreceptor 

A neuron having structural specializations rendering it 
sensitive to mechanical deformation. 



Membrane capacitance 

The capacity of a cell membrane to store electrical charge 
when a potential difference exists between the inside and 
outside of the cell. 

Membrane potential 

The electrical potential difference existing, at any point 
in time, between the inside and the outside of a cell. 

Membrane resistance 

The resistance offered by a cell membrane to the flow of 
electrical current through the membrane. 

Meniscus 

The curvature of the surface of a fluid at the interface 
where a solid body pierces this surface. 

Nematode 

A class of roundworm comprised of aquatic, terrestrial and 
parasitic forms. Characterized by a cylindrical body, most 
nematodes are less than one millimetre in length, although 
some species reach lengths over one foot. 

Neurohumour 

A chemical compound, other than a neurotransmitter, such as 
a hormone, to which neurons respond in some way. 

Neuromuscular junction 

A structure, similar to a synapse, which couples a neuron to 
a muscle cell. 

Neuropil 

A structure, consisting of a large number of densely 
interconnected neurons, which performs a primary processing 
function. 

Neurotransmitter 

A chemical compound which is transported across a synapse in 
order to transmit neural signals from one neuron to another. 

Nilpotent operator 

An operator which transforms any vector into the zero vector 
after at most some fixed number of iterations. This number 



is called the degree of the operator. 

Noise 

Random fluctuations in the value of some parameter. 

Nucleotide 

An organic compound consisting of a chain of groups, each 
consisting of a sugar, a phosphate and a base of the type 
found in nucleic acids. 

Orthogonal 

Literally, at right angles. Two vectors are orthogonal when 
their scalar product vanishes. In particular, two random 
signals are orthogonal when their correlation vanishes. 

Orthogonal complement 

The orthogonal complement of a subspace is that subspace 
consisting of all vectors whose inner product with any 
vector in the given subspace vanishes. 

Orthokinesis 

The tendency of an organism to become more active with the 
increase of intensity of some stimulus. 

Papilla 

A small, rounded structure projecting outward from the 
surrounding surface. 

Pharynx 

A muscular sac located between the mouth and the remainder 
of the digestive tract. 

Phasmid 

A sensory organ, primarily sensitive to concentration of 
various chemical compounds, similar to an amphid, but 
distinguished from it by the fact that its supporting 
structure is unicellular. 

Projection matrix 

A matrix representing a projection operator. 

Projection operator 

An operator which annihilates the component of a vector 



lying in a particular subspace and leaves unchanged the 
component lying in the orthogonal complement of t h i s  
subspace. 

Proprioreceptor 

A neuron having structural specializations rendering it 
sensitive to variations in the internal state of an 
organism. 

Pseudocoelom 

An annular, fluid filled cavity separating the inner body 
wall and its associated structures from the intestinal 
tract. 

Rate code 

A method of encoding information by causing the rate at 
which events, such as transitions, occur to vary' as a 
function of the value of a parameter to be encoded. 

Sensilla 

A primitive sense organ located in the skin. 

Seta 

A bristle or stiff hair. 

Sigmoid 

Literally, S-shaped. A curve having a single inflection 
point separating regions in which the curvature is concave 
in opposite directions. 

Somatic 

Of, or pertaining to, the body. 

Somatosensation 

Sensation pertaining to bodily state of an organism. 

Span 

A set of vectors is said to span a vector space or a 
subspace thereof if any vector in the space or subspace can 
be expressed as a linear combination of the vectors in the 
set. 



S p i c u l e  

A sma l l ,  r i g i d  s p i k e .  

Spin g l a s s  

A system composed of dense ly  coupled magnet ic  d i p o l e s ,  each  
of which can be  o r i e n t e d  e i t h e r  p a r a l l e l  o r  a n t i p a r a l l e l  t o  
an e x t e r n a l l y  imposed magnetic  f i e l d .  

S t a b l e  s t a t e  

A s t a t e  of  a  sys tem i s  s a i d  t o  be s t a b l e  i f  t h e  dynamics of  
t h e  sys tem a r e  such t h a t ,  i f  t h e  sys tem i s  i n  t h i s  s t a t e ,  
any p e r t u r b a t i o n  from it w i l l  be opposed.  

S tandard  b a s i s  

The s t a n d a r d  b a s i s  of a  v e c t o r  space  i s  composed of a  s e t  of 
or thonormal  v e c t o r s .  That i s ,  each  v e c t o r  h a s  u n i t  l e n g t h  
and i s  o r t hogona l  t o  a l l  of t h e  o t h e r s .  

S t a t e  

The s t a t e  of a  system i s  g iven  by a  un ique  ass ignment  of  
v a l u e s  t o  a l l  of  i t s  s t a t e  v a r i a b l e s .  

S t a t e  space  

A v e c t o r  space  whose s t a n d a r d  b a s i s  i s  made up o f  t h e  
p o s s i b l y  s c a l e d  s t a t e  v a r i a b l e s  of a  g iven  sys tem.  

S t a t e  v a r i a b l e  

A s t a t e  v a r i a b l e  i s  a  pa ramete r  of  a  sys tem which i s  
r e l e v a n t  t o  t h e  behav iour  of t h e  sys tem.  

Subspace 

A subspace  of a  v e c t o r  space  i s  a  v e c t o r  space  which i s  
e n t i r e l y  c o n t a i n e d  w i t h i n  t h e  o r i g i n a l  v e c t o r  s p a c e .  

Synapse 

A s t r u c t u r e  whereby a  n e u r a l  s i g n a l  can  b e  t r a n s m i t t e d  
u n i d i r e c t i o n a l l y  from one neuron t o  a n o t h e r  by t h e  t r a n s p o r t  
of a  s p e c i f i c  chemical  compound a c r o s s  a  narrow gap between 
t h e  two neurons .  

Tax i s  

Any method by which an organism o r i e n t s  i t s e l f  i n  response  
t o  an e x t e r n a l  s t i m u l u s .  



Temperature 

The amount of energy required to represent the each bit of 
information neglected in describing a system in terms of the 
mean value of its internal energy. 

Thermoreceptor 

A neuron having structural specializations rendering it 
sensitive to temperature. 

Transducer 

A system element which transforms one type of energy into 
another. For example, an element which responds to light 
and produces electrical impulses. 

Transfer function 

The function describing the response of a system to any 
given stimulus. 

Transfer operator 

The operator which expresses the transfer function of a 
system. 

Tropotaxis 

A method of orientation in which the organism measures a 
gradient directly. 

Turgor pressure 

The pressure of the internal fluids of an organism. 

Unit impulse 

A force which imparts a unit impetus over a negligible 
interval of time, as in a hammer blow. The unit impulse is 
represented mathematically as a Dirac delta function of unit 
area. 
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