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Abstract

The problem of finding a decomposition of the complete graph, directed or
undirected, into cycles of a fixed length is one on which there has been much

research, and for which there are still many cases left unsolved. We investigate

in particular the decomposition of K, —I, the complete graph on 2n vertices with a
p 2n p p _

one-factor removed, into cycles of fixed even length.

We begin with a brief exposition of known results in the area. We then

construct a decomposition of the graph K, — I into cyéles of even length 2m, for

cases when n is even and 3m/2 < n < 2m.
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Chapter 1

§1.1 Definitions and Notation.

111 K, and K',"l will be used to denote the complete undirected graph and the
complete directed graph, respectively. K n,s and K; s will be used to denote the
complete undirected and directed bipartite graphs, respectively. The graph Ky, ~1

is the complete undirected graph with a one-factor removed.

1.1.2 A path is a sequence P =(xy, ..., X, ;) of vertices together with the edges
XXt 1 i=_ 1, .., n, where x; #Xj if i #j. The vertices x; and x,,,; are the
endvertices of P. The length of P, denoted /(P), is the number of edgesin P. A
path of length m is also called an m-path. A Hamilton path in a graph G is a path

which meets every vertex of G.

A cycle is a sequence C = (xq, ..., X,,,1) of vertices together with the edges
XXy =1, .., n, where x;=x,,,, and X; # X ifi=j and {x; xj} # {x1,x,,1}.
The length /(C) of C is the number of edges in C. An m-cycle is a cycle of length m,

and a Hamilton cycle in a graph G is one which meets every vertex of G.

A directed cycle or dicycle is a cycle in a directed graph, where XX, 1s the

arc directed from x; to x; ; for i=1, .., n.

113 If A=(xq,...,x,) and B= (Xps «oes X1 1), then A4B  is the concatenation of

A and B, thatis, A+B = (xy, ..., X, Xpi1s oo Xpy)-



1.1.4 A one-factor of a graph G (also called a perfect matching) is a spanning
subgraph of G in which every vertex has degree 1. A 2-factor of G is a spanning
subgraph of G in which every vertex has degree 2.

1.1.5 We write G=H; @ H, if G is the edge-disjoint union of the subgraphs H,
and H 2 ‘

1.1.6 If G is a graph and n is a natural number, then nG denotes the graph

consisting of n vertex-disjoint copies of G.

117 If G=H,®H,®..®H;, where H;=H,=..=H;=H, then we say

that G has an H-decomposition, or that G may be decomposed into subgraphs

isomorphic to H. S

1.1.8 Let G and H be graphs. The wreath ﬁroduct of G and H, denoted GwrH, 1is
formed by replacing each vertex of G with a copy of H, and joining vertices in
different copies of H by an edge if and only if the corresponding vertices of G are

adjacent.

We state here for convenience some basic results which are used repeatedly

throughout the thesis.

1.1.9 Lemma ([Lu]) The graph K, ; can be decomposed into Hamilton cycles

‘for every natural number n.

1.1,10 Corollary The graph K, can be decomposed into Hamilton paths for every

natural number 7.



1.1.11 Lemma ([Lu]) The graph K, — can be decomposed into Hamilton cycles

for every natural number n.
1.1.12 Lemma The graph' K,,—1 is isomorphic to the graph X, nwrl_(z.

Proof The graph K nwrl—(z is formed by replacing each vertex v of X, with a pair of

independent vertices v, and v,, and adding the edges u;v;, u;v,, Uyv; and u,v,
for every edge uv of K,. Thus each vertex v; of K. nwrl?z is adjacent to every other

vertex of K,wrK, except its ‘partner' v,. , u

§ 1.2 Introduction

In this thesis we consider the decomposition of complete graphs (the complete
directed graph, the complete undirected graph, and the graph K,,—1I) into cycles
of fixed length. The problem has interested many authors and has proven to be
quite challenging. Hamilton decompositions of the complete undirected graph and
the graph K, - I (stated here as Lemmas 1.1.9 and 1.1.11) appear in Lucas'
Récréations Mathématiques, where they are attributed to Walecki. More
recently, the question of finding a decomposition of the complete graph into 2-
factors whose components are all 3-cycles appeared in [R1] in 1963, as a
_reformulation of Kirkman's Schoolgirl problem. (Ray-Chaudhuri and Wilson's
solution to the Schoolgirl problem was later used by Bermond in finding a
decomposition of the complete directed graph into 3-dicycles.) Since then the

prdblem has been studied in general, and has been solved for various cases. In



Chapter 2 we give an outline of the known solutions, primarily for decompositions

into even-length cycles.

In Chapter 3 we construct a decomposition of the graph K,,— I into cycles of length
2m, where n is even and 3m/2< n < 2m. The construction uscé the following
method of composition, due to Higgkvist: If a graph G may be decomposed into
paths and cycles of length m, then Gwrl_(z may be decomposed into cycles of
length 2m. Now if G is the complete graph K, then Gwrl_(z =K,,—~1 (see Lemma

1.1.11). Higgkvist's result therefore allows us to use methods of decomposing the

graph K, in solving the problem for the graph K, —I.



Chapter 2

In this chapfer we give a brief survey of known results in the area of
decompositions of the complete graph (or the complete directed graph) into cyclesv
(or dicycles) of fixed even length. We consider three different classes of
decompositions: the decomposition of the complete directed graph into even-
length dicycles (§2.1); the decomposiﬁon of the complete undirected graph into

even-length cycles (§2.2); and the decomposition of thé graph K, — I into even-

length cycles (§2.3).
§ 2.1 Directed cycles

We first look at the directed case - that is, decompositions of the complete

directed graph K; into dicycles of fixed, even length m. The necessary conditions
(NC1) for such a decomposition are:
(1) n(n—1) =0 (mod m) (the number of arcs of K; is a multiple of m);

and 2) n2m.

It has been conjectured (see for example [B/F]) tﬁat these necessary
conditions are also sufficient, for m even or odd, except for the cases
(n,m) = (6,3), (4,4) and (6,6) when the decomposition is known not to exist. The
conjecture has been shown to be true if either n =0 (mod m) or

(n—1) =0 (mod m), but apart from this relatively few cases have been solved.

We begin with some lemmas which are useful in recursive constructions. The

ﬁrs; is from [S] and will be used repeatedly in later sections.



2.1.1 Lemma ([S]) ‘
(i) The complete directed bipartite graph K;,s can be decomposed into 2m-dicycles
if and only if n,s 2 m and ns =0 (mod m).

(ii) The complete (undirected) bipartite graph K, ¢ can be decomposed into 2m-

cycles if and only if n,s 2 m, ns =0 (mod 2m) and n and s are even.

We refer the reader to the proof given in [S], which is constructive and too

long to include here.

The next two lemmas are straightforward.

2.1.2 Lemma KK, K,

. . t
¢ and K; s canbe decomposed into m-dicycles, then K,

can be decomposed into m-dicycles.

Proof We write K:;+ =K:UK;

UK. The result is obvious. |

s 5§

2.1.3 Lemma. (B/F)) If K’; 417 K +1 and K; s can be decomposed into m-

s

dicycles, then K:; +s+1 €an be decomposed into m-dicycles.

Proof Let V(K;+s+1) =XvYu {xO], where IXI=n and 1Y1=s. Then we may
partition the arcs of K, ,; into those of K, on vertex-set X U {xg}, those of

K: +1 On vertex-set Y L {xO], and those of K; ¢ on vertex-set X U Y. Thus a

decomposition of K; +1r K; +1 and K’; s into m-dicycles gives us a decomposition of

K; +s+1 into m-dicycles. ' |

'The following three lemmas give solutions for the cases n=m and n=m+1.

These will be used in the solutions for the cases with n=0,1 (mod m).

6



2.1.4 Lemma ([B/F]) For every integer m, even or odd, K +] can be

decomposed into m-dicycles.

2.1.5 Lemma ([T1]) For2m =38, K;m can be decomposed into 2m-dicycles.

2.1.6 Lemma ([B/F]) There is no decomposition of K*zm into 2m-dicycles for
2m=4,6.

We now give solutions to the problem for the cases when n = 0,1 (mod m).

They are due to Bermond and Faber and appear in\ [B/F]. We first consider

n =0 (mod m).

2.1.7 Theorem ([B/F]) If m is even and K ;; can be decomposed into m-dicycles,

* 5 P .
then K gm 2N be decomposed into m-dicycles for all g > 1.

Proof The proof is by induction on g. When g =1, the theorem is true by
hypothesis. Let g =21 and assume that K;m can be decomposed into m-dicycles.

Now K, (g+Dm = K* vk, VK, Bylemma2.1.1K, . isdecomposable into

qm,m qmm

m-dicycles, and by hypothesis K;l is also; therefore K (g+)m is decomposable into

m-dicycles. The theorem follows by induction. |

Combining Theorem 2.1.7 with Lemma 2.1.5 we have the following corollary.

.2.1.8 Corollary Forallevenm =8 andforallg=1, K* can be decomposed into

m-dicycles.

Secondly, we consider n =1 (mod m).



2.1.9 Theorem ([B/F]) If miseven, then K ;m +1 can be decomposed into m-

dicycles forall g > 1.

L

Proof Again the proof is by induction on g. If g=1, the theorem follows from

Lemma 2.1.4. Let g 21 and assume K;m +1 can be decomposed into m-dicycles.

Then by the induction base and Lemma 2.1.3, K;m 1=K (q+1)m+1 €an be

decomposed into m-dicycles. By induction the theorem holds for all ¢ 2 1. »

Thus if n=1 (mod m), or n=0 (mod m) and m > 6, where m is even, there

is a decomposition of K; into m-dicycles if and only if n and m satisfy the necessary

conditions (NC1). -Complete solutions for m < 6 are given below. For the cases
when n#%0,1 (mod m), the problem is not yet completely solved. The known

results are the following.

2.1.10 Theorem (Harmell and Milgram, [H/M]) If n=p¢ for some prime p and

integer e2> 1, then K ; can be decomposed into m-dicycles if and only if n and m

satisfy the necessary conditions (NC1) (m may be even or odd).

2.1.11 Theorem (Hartnell, [Hl]) If x and y are odd integers and y = 5, then K;y

can be decomposed into 2x-dicycles.

Finally, the problem has been completely solved for several small values of m,

that is, for even m satisfying 4 < m < 16. These results can all be found in

*[B/H/S].

2.1.12 Theorem ([B/H/S])

() X ; can be decomposed into 4-dicycles if and only if n =0,1 (mod 4) and n > 4.



(i) K; can be decomposed into 6-dicycles if and only if n =0,1 (mod 3) and n > 6.
(iii) K; can be decomposed into 8-dicycles if and only if n = 0,1 (mod 8).

iv) X ; can be _deqomposed into 10-dicycles if and only if » =0,1 (mod 5).

V) K ; can be decomposed into 12-dicycles if and only if # = 0,1,4 or 9 (mod 12).
i) K ; can be decomposed into 14-dicycles if and only if » = 0,1 (mod 7).

(vii) K; can be decomposed into 16-dicycles if and only if n =0,1 (mod 16).

*

In [B/H/S] the authors show, using composition methods, that the problem of
finding decompositions of K; into m-dicycles (for even m) can be reduced to
checking a finite number of cases for each m. More specifically, they derive from
the necessary conditions (NC1) the following necessary conditions, which we will
call (NC1*):

1) nz2m,
and (2) there exist positive integers y and z such that yz=m and
n=ly (mod yz), where 0<!/<z and ly=1 (modz) if /> 0.
They then show that, for a given m, there is an integer ng () such that if the
conditions (NC1*) are sufficient for the existence of a decomposition of K; into m-
dicycles when ng(m) £ n < ng(m) + m, then these conditions are sufficient for the

existence of such a decomposition for all ».

§2.2 Undirected cycles

We now consider decompositions of the complete undirected graph K, into m-
cycles, for even m. Notice that if C is an m-cycle inK,, then every vertex of K

has degree either 2 or 0in C. Thus if there is a decomposition of K,, into m-cycles,



every vertex of K, must have even degree. Therefore, n must be odd. The
necessary conditions (NC2) are then:
(1) n(n-1) =0 (mod 2m) (the number of edges of K, is a multiple of m);
@) nis odd; |

and (3) n2m.
The first two results in this area are from 1965 and 1966, respectively.

2.2.1 Theorem (Kotzig, [K]) If nisodd, (n—1)/2 =0 (mod 2m), and

m =0 (mod 4), then K, can be decomposed into mi-cycles.

2.2.2 Theorem (Rosa, [R]) If nisodd, (n-1)/2=0 (mod 2m), and

m=2 (mod'4), then K, can be decomposed into m-cyclcs.'

Thus the problem has been solved for the case n =1 (mod m). Notice that,
since m is even and » must be odd, n =0 (mod m) is impossible. For the cases
when n £ 1 (mod m), there are few known results. The following two theorems
give solutions for the cases when 4 <m <16, and when m =2p¢ for some prime
p and integer e 2 1. In the first case the results appear‘ in various papers but can

all be found in [B/H/S].

2.2.3 Theorem ([B/H/S])
(i) K, can be decomposed into 4-cycles if and only if #=1 (mod 8).

.(i1) K, can be decomposed into 6-cycles if and only if » 1,9 (mod 12).
(iii) K, can be decomposed into 8-cycles if and only if #=1 (mod 16).
(iv) K, can be decomposed into 10-cycles if and only if »=1,5 (mod 20).
(v) K, can be decomposed into 12-cycles if and only if »= 1,9 (mod 24).

10



(vi) K, can be decomposed into 14-cycles if and only if n=1,21 (mod 28).
(vil) K, can be decomposed into 16-cycles if and only if # =1 (mod 32).

2.2.4 Theorem (Alspach/Varma, [A/V]) If m =2p¢ for some prime p and

integer e 2 1, then K, can be decomposed into m-cycles if and only if m and n

satisfy the necessary conditions (NC2).

§2.3 The graph K, ,~1

In this section we look at decompositions of the graph K,,— 1, the complete

graph on 2n vertices with a one-factor removed, into cycles of fixed, even length

2m. The necessary conditions (NC3) for such a decomposition are the following: =

(@) n(n—1) =0 (mod m) (the number of edges of Kzn— I is a multiple of 2m);

and (i) n2m.

Some results for this problem are given in [H/K/R], although this paper is

primarily concerned with finding those 2-factors which decompose K,,—I. Their

results are the following.

2.3.1 Proposition ([H/K/R]) Forallmz22, K¢~ I can be decomposed into 2m-

cycles.

2.3.2 Proposition ([H/K/R]) Forallm=2, K 4m— I can be decomposed into 2m-

. cycles.

2.3.3 Proposition ([H/K/R]) If nis even, the graph K, — I can be decomposed

into 4-cycles.

11



The remaining results in this section rely on the following lemma which
provides us with a particular method for recursively constructing cycle
decompositions. The construction in Chapter 3 will also use this method of

composition.

2.3.4 Lemma (Haggkvist, [H]) Let G be a path or a cycle with m edges, and
let H be a 2-regular graph on 2m vertices with all components even. Then Gwrl_(z

is the edge-disjoint union of G’ and G”, where G'=G"=H.

Proof Let H consist of k disjoint cycles with lengths 2m,, 2m,, ..., 2m,, where
k j '

Zm;=m. Let s;=Xm, and 5,=0.

1 g

Let G be the path or cycle (u, u,, ..., 4,,), where uy=u,, if Gisacycle. Let

G, be the segment (us.-f Us, +15 +ens us) of G, oflengthm, i=1,2, ..,k

Let GwrK2 be obtained from G by replacing each vertex u, 0<i<m, by the

independent vertices x(u,) and y(u,).

Let G; ' have vertex-set V(GwrK2)\{ y(us,_ ), x(us)}, and edges
(x(us‘._l), x(us.._1+1)), (x(us'._l); (.Y(us‘._1+1)), together with any pair of independent
edges between {x(uj), y(uj)} and [x(uj+1), y(uj+1)} forj=s; 4,8, ,+1, ...5-2,

.and finally the edges (x(us 1), y(us,))s O/(us-1), ¥(us)) [see Fig. 2.1]

Clearly G is a cycle of length 2m,, whose edge-induced complement in

G,wiK, is another 2m-cycle, G;' [see Fig. 2.1].

12



-1 x(us )
S~ O, G
Y ) - y(us.)
x(usi-l) x(usi)
s SEIDEIDINS . S g
(% ) v y (%)
Fig. 2.1

»

Also, the graphs G}, i=1,2, ..., k, are pairwise disjoint, and each of
k k _ -
G'= li G/ and G"= li G;” is isomorphic to H. Moreover GwiK, =G'® G”,

and the lemma follows. : | |

2.3.5 Corollary Let G be a path or a cycle with m edges. Then GwrK3 is the

edge—disjoiﬁt union of two 2m-cycles.

Proof Let k=1 in Lemma 2.34. | n

One consequence of this is the following. Suppose that a graph G can be

'decomposed into m-paths and m-cycles, say Py, ..., P, Cy, ... C;. Then GwrK3 is
the edge-disjoint union of the graphs P,wrK3>, ..., PwrK2, C;wiK3, ..., C;wiK>.

Applying Lemma 2.3.4 to each P; and C y gives us a decomposition of GwrK? into

13



2m-cycles. The following lemma allows us to use this method to decompose

K,,— 1 into 2m-cycles when n(n—1) =0 (mod 2m).

2.3.6 Lemma (Tarsi, [T]) Necessary and sufficient conditions for a

decomposition of K, into m-paths are:
@) n(n-1)= 0 (mod 2m);

and (i) n > m.

2.3.7 Corollary If m,n satisfy (NC3) and in addition n(n—1) =0 (mod 2m), then

K,,— I can be decomposed into 2m-cycles.

Remark This result is also proven in [H], for odd n and m # n—1, using the

same method.

Now if G has a Hamilton decomposition, then by applying Lemma 2.3.4 to each

cycle of the decomposition we get the following result.

2.3.8 Proposition ([H]) If G has a Hamilton decomposition, then GwrK> can be
decomposed into any collection of bipartite 2-factors in which each 2-factor appears

an even number of times.

In addition we have the following proposition, due to Laskar ([L]).

<2.3.9 Proposition ([L]) If G has a Hamilton decomposition, then the graph

GwrK,, also has a Hamilton decomposition.

14



2.3.10 Corollary ([A/H]) If G has a Hamilton decomposition, then GwrKap, can
be decomposed into any collection of bipartite 2-factors in which each 2-factor

appears an even number of times.

We now show how this method of composition may be used to find a

decomposition of K, — I into 2m-cycles for the cases when n=0 (mod m). The

following result was proven in [A/H] in 1985.

2.3.11 Theorem ([A/H]) For any m 22 and any natural number n, the graph

K, m— I can be decomposed into 2m-cycles.

Proof The proof is divided into two cases.

Case 1. Letn beodd. Notice that K,, -1 = K, wrK,, and that
K, wiK,=H; ® H,, where H, =nK,wiK, and H,=K,wiK, . Since n is odd,
K, has a Hamilton decomposition. Therefore by Corollary 2.3.10, K,wrK,, can be
decomposed into any collection of bipartite 2-factors in which each 2-factor appears
an even number of times. In particular, K nwrl?zm can be decomposed into m(n—1)
copies of nC,,,, since n—1 is even. Therefore H, can be decomposed into 2m-
cycles. Moreover, merl?z = K,,,— I can be decomposed into 2m-cycles by
Lemma 1.1.12, so H, can also be decomposed into 2m-cycles. Therefore, Kopm— 1
can be decomposed into 2m-cycles.

Case 2. Let nbe even. In this case K, wrK, = H; ® H,, where
‘Hy = (n/2)K,,, wiK, and Hé _—':Knlzwrl—(4m. If n/2 is odd, then Kn/zer-Qm can be
'decorﬁposed into m(n—2) copies of nC,,, asabove (n-2 is even in this case). If

n/2 is even, then K, has a one-factorisation. Let K,p=F; @ .. ® F,_5)n,

15



where each F; is a one-factor. For each i, Fierzm =(nf/4)K 4mAm: Now
Kz,,'ﬂm = C4er_(”; has a Hamilton decomposition, since C, has. Therefore
Kymam= sz,zmwrl_(z can be decomposed into 2m 2-factors each isomorphic to
4C,,,, and so K,,wiK,, canbe also. Thus H, can be decomposed into 2m-
cycles. Finally, applying Proposition 2.3.2 to each component of

(n/2)K,, wrK» = (n/2)(K,,, —I) yields a decomposition of H, into 2m-cycles.
2mWVIR2 4m p 1

Therefore, K,,,—1 can be decomposed into 2m-cycles.

16



Chapter 3.

As stated in the introduction, the new results we have found concern the

decomposition of the graph K, — I into edge-disjoint 2m-cycles. We discussed in

the previous chapter how this problem has been solved in some cases; in

summary, there is known to be a decomposition of X, — I into edge-disjoint 2m-
cycles if

(1) n=0 (mod m)

2) n(n-1)=0 (mod 2m)
or (3 m=2

In this chapter we give partial results for the case when m does not divide n,

and the quotient n(n—1)/m is odd. In Section 3.1 we give an outline of the
methods we use in the constructions; Section 3.2 contains the constructions

themselves.
§ 3.1 Outline of the construction

Our constructions are based on the method of Lemma 2.3.4. In the case where

n(n—1)/m is even, we are able to decompose K, into edge-disjoint m-paths, and

using Lemma 2.3.4, this decomposition of K, yields a decomposition of

K, —1=K nwrl?z into 2m-cycles. When n(n—1)/m is odd, however, there is no

-decomposition of K, into m-paths, since [E(K ! %0 (mod m). Thus we need to

modify the construction somewhat.

17



Suppose that n(n—1)/m is odd. Then in fact IE(K,)! = m/2 (mod m). Our
method will be to find a subgraph D of K, with the following properties:

(1) IE(D)l=m/2 (mod m);

(2) K,— D can be decomposed into m-paths and m-cycles; |

and (3) DwrK, can be decomposed into 2m-cycles.
Notice that since [E(K,)! = m/2 (mod m), prbperty (1) implies that
IE(K,,— D)l = 0 (mod m).

We will apply Lemma 2.3.4 to the decomposition of K ,— D into m-paths and m-
cycles, which will give us a decomposition of (K~ D)wrl?2 into 2m-cycles. Since
DwrK, may be decomposed into 2m-cycles, we will then have a decomposition of

" [(K,~ D)wiR,) ® [Dwik,] = K,wrK, =K, ~ I into 2m-cycles.

We begin with a lemma which reduces the problem to 'small’ values of n, that

is, to values of n satisfying m < n < 2m.

3.1.1 Lemma To find decompositions of K,,— I into 2m-cycles for all m,n

satisfying (NC3), it is sufficient to find decompositions of K,,— I into 2m-cycles

for all m,n satisfying both (NC3) and m < n < 2m.

Proof Suppose we have decompositions of K,,~ I into 2m-cycles for all m,n

satisfying both (NC3) and m < n <2m.

Let n and m satisfy (NC3) but not m < n <2m. By (NC3), n 2 m, so either

m=n or n22m. By Lemma 1.1.11, K, - can be decomposed into Hamilton

cyéles, so we assume #n 2 2m. Thus we may write n = km + (m+r), where k21
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and 0 <r <m. Therefore 2n=k(2m)+ (2m+ 2r), and K,,—1is the edge-disjoint
union of the following:
k copies of K, ,— I

one copy of K, 2.~ 1;

(IZC) copies of K, 2,5
and k copies of K5, 2p42r.

Again by Lemma 1.1.11, K, -1 can be decomposed into Hamilton cycles. vBy
Lemma 2.1.1, each of K, 5, and X, 5,,.., can be decomposed into 2m-cycles. If
r=0 this gives us the desired decomposition of K, ,—I into 2m-cycles. Suppose
r>0. By (NC3), IE(K,,—D!=0 (mod 2m), and so [E(K3,42,— DI = 0 (mod 2m).
Since in addition m <m + r <2m, by hypothesis we have a decomposition of

K32y — I into 2m-cycles. Thus K,,— I may be decomposed into 2m-cycles, and

the lemma follows. ) |

In the light of Lemma 3.1.1, for the remainder of the chapter we restrict

ourselves to cases where m <n <2m. Our aim is to find a subgraph D of K, with

the three properties described above. We first define a subgraph D with
properties (1) and (3); and for n > 3m/2, where n is even, we construct a
decomposition of K,~ D into m-paths and m-cycles (this is property (2) required of
D). Thus we have solved the problem for m and n satisfying (NC3) and for which

3m/2 < n<2m, with n even.

In the construction we first write Kﬁ =K, UK, , UK,, wherer=n-m.

Now as n(n—1)/m 1is odd, then necessarily m is even (since n is even). Thus we

can decompose K, into m/2—1 m-cycles and a one-factor F. Notice that [E(F)l =
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m/2 . We will show that there is a cycle C, in the decomposition of K, such that

C;UF has the properties (1) and (3) required for the subgraph D. From this point

we will proceed to find a decomposition of K,— (C{UF) into m-paths and m-cycles.

Now since n and m are even, r is also even. If in addition r 2 m/2 (or

equivalently » 2 3m/2), then by Lemma 2.1.1 K,'n', can be decomposed into m-
cycles. However n<2m implies r <m, so there is no decomposition of K, into
m-paths and m-cycles. Instead, we will decompose K, into r paths of length at
most r-1. Using the edges of two m-cycles from the decomposition of K, . as a
'bridge’ between K, and K,,, we will extend each of these paths to an m-path with
segments of one or more of the m-cycles from the decomposition of K,,. This will
yield r m-paths which together cover all the edges of K, the edges of two m-

cycles from K and the edges of some (or all) of the m-cycles comprising

m,r’
K,-(C 1UF). In addition the construction will be such that the remainder (if any)
of K, will be a collection of m-cycles, as will be the remainder of K, ,. Thus we

will have a decomposition of K,—(C1UF) into m-paths and m-cycles.

We now give the constructions.
§ 3.2 The construction

Throughout this section we assume that:

(*) n and m satisfy (NC3), nis even, m < n <2m and the quotient n(n—1)/m is

odd.

We begin with the construction of the subgraph D. We write K, =K, UK, ,UK,
where V(K,)=({0, 1, ..,m-1} and V(K,) = {z;, 2y, ..., z,}. We decompose K,
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(remember that m is even) into m/2-1 m-cycles Cy ...,Cm/2_1 and a one-factor F,
defined as follows. Let o= (0)(12 ... m—-1), and ¢,=0,1,2,m-1,3,m-2, ..,

m/f2-1, m/2+1, 0).
For i=2,..,m/2-1, let C;=0c*1(C,). Finally, let

F = {(m-1,1), (m=2,2), ..., (m/2+1,m[2-1), (0,m/2)}.
- Thus Cy is the m-cycle of Fig. 3.1, and for i22, C;is obtained from C; by a

clockwise rotation of i places, with the vertex 0 fixed.

1

m-1.\o\‘2 m-l.<o\/'2

m-2 \‘3 m-2 e \.3
.\ ) "\.. .. -

. 0 . . 0 :

Fig. 3.1

Letting D = C,UF (see Fig. 3.1) we have

'3.2.1 Lemma The graph DwrK, is the edge-disjoint union of three 2m-cycles.
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Proof We show that D is the edge-disjoint union of three perfect matchings with
the property that the union of any two perfect matchings is a Hamilton cycle. We
then use the three resulting Hamilton cycles to construct three edge-disjoint 2m-

cycles in DwrK,.

It is easy to see that the perfect matchings M, M, and M3, where M, and M,
consist of alternate edges of the m-cycle C; and M3 =F, partition the edges of D.

By construction, the union of M, and M, is the m-cycle C;.

Let M,={(0,1), (2m-1), 3.m=2), .., (m/2,m/2+1)},
and M, = {(1,2), (m-1,3), (m—2,4), ..., (m/2+2,m/2), (m/2+1,0)}.
We have M3 =F = {(m-1,1), (m-2,2), ..., (m/2+1,m/2-1), (m/2,0)}.

To show that M UM, is an m-cycle, define a permutation 7 of V(K,,) by

n(0) =0, (1) =1, and n(i) = m-i+1, 2 < z <m—1. The effect of & is to
interchange the endvertices of each edge of M;, except for (0,1) which is

unchanged. Thus (M) = M,.

Now M, ={(m/2,0), (m—-1,1)} U {(m~i,i): 2<i<m/2-1]}.
Thus n(M3) = {m/2+1,0), (2,1)} U {(i+1,m—i+1): 2 < i< m/2~1}

= {(m/2+1,0), (1,2)} U {(+2,m—)) : 1 £j < m[2-2}
= M2.

Similarly ®(M,) =M;. Son : V(D) = V(D) is an automorphism, and
(M UM3) = M{UM,. Thus, M,UM; is also an m-cycle.
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We now show that M, UM3 is an m-cycie. We have
MyUM; = {(1,2), (m/2+1,0)} U {(i+2,rh—-j) :1<j<m/2-2} v
{(m=1,1), m/2,0)} U ((m=iji) : 2 <i <m/2-1)
= {(1,2), L,m=1)} U {(n—~j,2+), (4, m—j-1) : 1 Sj S m/2-2} L
{(m/2,0), (m/2+1),0)}.

Now M,UM3; clearly contains the 2-path (m-1,1,2). To this we add the pair
of edges (m—1,3) and (2,m-2), which gives us a 4-path with endvertices m~2 and
3. We continue adding edges in pairs of the form (m—j,2+j), (1+j,m—j-1), for
i=12,..,m/2-2, untii a cycle is formed; after each addition we obtain a path or
cycle of length two more than the previous path, and with endvertices m—j-1 and
j42 (where 2 <j<m/2-2). A cycle will be formed only if m—i~1=i+2 for some
i; thatis, if m-3 =2i. Butm is even, so m-3 is odd, and this is impossible.
Therefore after the addition of the last pair of edges (m/2+2,m/2) and
(m/2-1,m/2+1) we have a path in MoUMj of length m—2 with endvertices m/2+1

and m/2. The addition of the two remaining edges (m/2+1,0) and (m/2,0)

completes this path to an m-cycle; thus M,UMj is an m-cycle.

My M3 = Cy3

We now use these three m-cycles to partition the edges of Dwr[?z into three

‘2m-cycles. We first observe that every edge of D lies on exactly one of the perfect

matchings M;, and so on exactly two of the m-cycles Cif
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Let V(DwrK,) = {x(i), y(i): ie V(D)}, so that
' E(DWTE2)¥ {@@.y()), &), (D), 0@y, GOX0): ije ED)).
For each ij € E(D), let
p(ij) = {(x(i),x(])), O0@.y()} (the corresponding 'parallel’ edges of
Dwik,), |

and c(@) = {x@),y(), @@).x())} (the corresponding 'crossing' edges of
DWTK'Q’).

We define Cp, from C,, as follows. Welet C, consist of the edges

(x(0),x(1)), (x(0),y(1)), together with either pair of independent edges p(ij) or
c(ij) for each subsequent edge ij, j#0, of C 12, and finally the edges

(x(m/2+1);y(0)), (¥(m/2+1),5(0)) (see Fig. 3.2).

x(0)
x(m/f2+1)

y(m/f2+1)

Fig. 3.2
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We let Cy3 consist of the edges (x(0),x(m/2+1)), (x(0),y(m/2+1)), together

with either pair of independent edges p(ij) or c(ij) for each subsequent edge ij,
J#0, of C53\C,, and whichever pair of independent edges p(if), c(ij) does not lie

on Cj, foreach subsequent edge of Cy3 N Cyy, and finally the two edges

(x(m/2),y(0)), (¥(m/2),y(0)).

Finally we let C3; consist of the edges (x(0),x(m/2)), (x(0),y(m/2)), together
with whichever pair of independent edges p(ij), c(ij) lies on neither C{, nor Cs3,

for each subsequent edge ij, j#0, of C3;, and finally the edges (x(1),y(0)) and
(r(1),y(0)).

It is clear that each of C{,, Cj3 and C3; is a 2m-cycle in DwrK,. In addition, if
C‘,;q and Cy; are not edge-disjoint, then théy share either a pair p(ij) or c(ij) for
some ij € E(D), ij#0, or an edge incident with either x(0) or y(0). The first case
cannot occur since in defining each Ci;q we choose a pair p(if) or c(ij) 'only if it
does not lie on a previously defined cycle Cy;. It is easy to check in the

construction that the second case cannot occur. Thus the three 2m-cycles C 120 Ca3

and C3, partition the edges of DwrK,. |

Therefore D has property (3) described earlier, and clearly IE(D)l =3m/2 so
D also has property (2). We now show that D has property (1).
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3.2.1 Lemma The graph K,~D can be decomposed into m-paths and m-cycles.

Proof We begin with an important observation about the cycles Cj, ..., Cp_q Of
the decomposition of K,— D. Let W be the Eulerian walk of K,,— D defined by

W=Cy+Cq+ ...+ Cm/2_1 (where the cycles C; are oriented. so that (0,i) is the

first directed edge of C;)

=(0, 2,3, ..., m2+1,m/242, 0, 3, 4, ..., m/2+2, m/243, 0,4, 5, ..., 0, m/2—-1,
m/f2, ..., m—2, m-1, 0).

3.2.2 Claim The shortest cycle in W has length m—2.

Proof First, as we have already pointed out, each cycle C;, i 2 3, is simply a

rotation of C,. Also, ~any segment of W which lies entirely within some C; must be

either a path or an m-cycle. Thus it is sufficient to show that any cycle in W which

begins in C, and ends in Cj has length at least m—2. To do this we find the length
of the cycle which begins at the occurrence of a vertex v in C, and ends at the

occurrence of the same vertex v in C3, for each v#0 of K, (clearly the cycle which

begins and ends with O has length m).

Let v be the kth vertex of C2' (where we orient C; as in W so that O is the first

vertex, I the second, and so on) (see Fig. 3.3).

Now Cj is obtained from C, by a clockwise rotation through one place, with 0

fixed.
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Thus (i) if 4 <v <m/2+1, then v is the (k — 2)"d vertex of Cs;

@) if m/243 <v<m-1 or v=1o0r2, then v is the (k+ 2)"d vertex of Cs;
(iii) if v=3, thenv is the third vertex of C, and the second of Cj;

and (iv) if v =m/2+2, then v is the mth vertex of Cyand the (m~1)st of Cs.

m
+1 2

Therefore the closed walk of C, + C5 which begins and ends at vertex v=0 of

K, hds length m—2 (if 4 <v <m/2+1), m+2 (if m/243<v<m~1 or v=1 or2)

or m—1(if v=3 or v=m/2+2). So the shortest cycle in W has length m—2. W

Thus W is a trail in K, — D with the property that any segment of length at

most m~-3 is a path, and such that E(K,,— D)= E(W). Notice also that if S is an

initial segment of W whose length is a multiple of 7, then WAS consists of a
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collection of entire m-cycles C,, ..., C mp-1 for some j. These properties of W are

crucial for the constructions.

The remainder of the proof of Lemma 3.2.‘1 is divided into three cases. Case 1
contains the basic construction which is valid for all » and m satisfying (*) with
r >m/2+1 and r> 8. Cases 2 and 3 contain modifications of this construction for
the cases r =m/2+1 and r <8, respectively. Observe that if r=m/2, then
n(n-1) = (3m/2)(n~1), which is not divisible by m when n—1 is odd. Thus we may

assume that 7 > m/2.

Case 1l Let r>m/2+1 and r> 8.

Recall that since » and m are even, then r is also even. In addition, ﬁnce both
n(n—1)/m and n—1 are odd, then for any integer e, 2¢ divides m if and only if 2¢
divides n. In particular, m =n (mod 4), and so r =0 (mod 4).

Now since r is even, we may decompose K, into r/2—1 r-cycles and a one-

factor. If we add one edge of the one-factor to each r-cycle, we obtain a

decomposition of K, into r/2-1 subgraphs G; and a single edge zz’, where each G; 5

is an r-cycle with a chord. These subgraphs have the following useful property.

3.2.3 Claim Given 2<y; <r-1, thereis a vertex x; of G; such that G; may be
divided into two paths P; and P;, of lengths y; and r+1-y; respectively, with a
common endvertex x;. Moreover, we may choose the vertices x; in such a way

.that distinct values of y; will determine distinct vertices x;.
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Proof Each G; is an r-cycle with a chord. Let p and g be the endvertices of the
chord. Thus p and g have degree 3 in G; while all other vertices of G; have degree

2.

Now p and q divide the r-cycle of G; into two segments §; and S,, where we

assume [(S,) < I(S,) (Fig. 3.4).

Fig. 3.4

If y; <IS,), we let P;be the path which consists of the edge gp and the first
(beginning with p) y,~1 edges of §;. We let x; be the terminal vertex of P;. Since
2<y;<I(S;), x;lieson S;, x;# p,q, and for distinct values of y; with
2<y;<I(S,), the corresponding vertices x; are distinct. Since x;#p, the

remainder P; of G;, which consists of a segment of §; and all of S,, is also a path

(see Fig. 3.5)

If y;>I(Sy), we let P; be the path of length y; which begins at p, follows S, to

g, and continues along S,; and we let x; be the terminal vertex of P;. In this case,
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since [(S)) <y; <r-1, x;lieson S, and X; #p,q. Thus the remainder P;of G,
which consists of a segment of S, and the edge pg, is a path. For distinct values

of y; with I(§;) <y; <r-1, the corresponding vertices x; are distinct (see Fig.

3.5).

Notice that each vertex of degree 2 in G; will be the vertex x; corresponding to
exactly one value of y;, 2<y;< r—1, and that no value of y; gives x;=p or q.

Notice also that we cannot divide G; into paths P; and P; for which I(P;) <2 or

Fig. 3.5

I(P) <2. Finally, 2<y;<r-1 implies 2< r+1-y; <r-1, so that for each i,
25 UPY, (PY <r-1. »

In the construction, we divide each subgraph G, into two paths, P;and P}, of
‘lengths y; and r+1-y;, respectively, as in the claim. We use the edges of one m-

cycle C from K together with an initial segment of W, to complete each of the

m,r?

paths P;, P; 1<i<r/2-1, toanm-pathin K, —D.
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To do this, we choose r—2 edge-disjoint paths @y, @y, @5, @3, s @rpp 1 Crpp-1>

’

each a segment of W, so that Q; and Q; will complete P; and P;, respectively, to a

path of length m, using one or more edges of ,C asa bridge between K, and K.

We will use all the edges of C to do this, so that the remainder of X, . will consist
of entire m-cycles. The union of the paths Q,, Qi, 05, 05, ..., Qr/Z—l’ Q;/Z—l will be

an initial segment of W.

We will then use a second m-cycle C* from K, .,

together with the single edge
zz' from K, and the first m—1 edges of W\U{Q; LU Q/:1<i<r/2-1}, to construct

two more m-paths in K~ D.

Thus we will use the edges of K,, some or possibly all of those of K, ~D,

and those of two m-cycles from K, ,, to construct r m-paths in K, —D. We must .

7

check that there are enough edges in E(K,) U E(K,, — D) to construct these

paths. We need
[E(K ) +|E(K,,— D)|+2m = rm.
Now |E(K,)=r(r—1)2, and |E(K,,~D)|=m(m/2 —2)=m¥2 - 2m.
So we need
r(r=1)R2+m*2-2m+2m=>rm,
or equivalently,

m?=2rm+r:—r20. (1)

We are assuming that m >r, and that both m and r are even. So we may let
r=m - 2k, for some positive integer k. Then (1) becomes
m? = 2(m = 2k)m + (m — 2k)(m — 2k - 1) 2 0,

or 4k*+2k>m.
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Now by (NC3), m|(n(n-1)). Thereforc m|(2m - 2k)(2m -2k —-1).
Equivalently, mi|(4k2+ 2k). But this implies that 4k2 + 2k > m. Therefore we
have

|[E(K )1+ |E(K,, — D)|+2m 2 rm,
as required. So there are enough edges in Krvu (K,,— D) for the construction of
our r m-paths.

To construct these m-paths we will need to use two particular m-cycles C and

C'from K,, . (for example, if v is the endvertex of Q; and x the endvertex of P,

then in order to use edges of C to cross from K, t0 K,,, and so join P;to Q;, we

require that x and v lie on C).

By Lemma 2.1.1 we know that there is a decomposition of K,, , into m-cycles.

For our construction we want the decomposition to contain two particular cycles C
and C’. So we choose two cycles from the given decomposition and relabel their
vertices with those of the required cycles C and C’. This of course induces a

relabelling of the entire decomposition of K,, » Thecycles C and C’ are related to

some extent, so we must choose the original cycles from the given decomposition

of K, , carefully.

In particular, we want to use zz’, C’, and the first m—1 edges of

WANU{Q; U Q;:1<i<r/2-1} to construct two m-paths. We do not know at this
point the length of the initial segment U{Q; U Q;:1<i<r/2-1} of W. However
the r m-paths which we are constructing in K,— D together cover rm edges of
K,—D. Since E(K,~ D) = E(K,~ D) U E(K,, ) Y E(K,), and we know that m
divides each of IE(K,—-D)l, |IE(K, ~ D)l and |E(K,, ), then m also divides
|E(K,)I. In addition, m divides IE(CUC’)I. Therefore, since we are using E(K,),

E(CUC’) and a segment of W to construct these r m-paths, the total numbqr of
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edges we use from W is also a multiple of m. Since W begins at 0 in the cycle C,,
the segment of W which we use (includiﬁg the first m—1 edges of

WANU{Q; U Q;:1<i<r/2-1}) consists of a collection Ch, C35 ey Cj of m-cycles
from K,,, where j <m/2-1. Therefore the m~1 edges of

WANU{Q; U Q/:1<i<r/2-1} which we use w111 be the last m—1 edges of the
cycle C;. Since Cj =(0,/, j+1, j~1, ..., j+m/2,0), these m—1 edges will be the
segment S = (j, j+1, j~1, ..., j+m/2, 0) of Cj.

We use S, C’and (z, z°) to construct two m-paths as follows. We label one
edge of C’ (j+1, z). The two paths are
Rp=[S\G,j+D] + (+1,2) + (2, 2), .
and R}, = (j, j+1) +[C'\(+1,2)] (Fig. 3.6).

2

— — —Ryp

Fig. 3.6

In order for R; 4 to be a path, we must ensure that j does not lie on C’. This is

the only restriction on the labelling of the m remaining vertices of C’. However,
requiring that (j+1, z) € E(C’) and je& V(C’) will put some restriction on how we

may label the other m-cycle, C. For this reason we choose C and C' as follows.
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3.2.4 Claim In any decomposition of X, . into m-cycles we can find two vertices a

and b of K, , and a vertex w of K, , such that the cycle containing the edge aw does

not contain b, and the cycle containing the edge bw does not contain a.

Proof There are (rzn) possible pairs {a,b} < V(Km). For each cycle C*ofK mr
V(C") contains (”21/2) pairs {a,b}. There are r cycles in the decomposition, and so
r(rg/Z) pairs in total. But r(rg/Z) = (r/2)(m/2)(m/2-1)

= (r/4)(m)(m/2-1)

< (r/4)(m)(m/2-1/2)
= (r/4)(m(m—1))/2

=r/ (’2")

Therefore at least one pair {a,b} ¢ V(K,,) occurs on fewer than r/4 cycles. Let

{a,b} be such a pair. Each cycle C* containing both a and b contains four edges of
the form awjor bw, for wye V(K,). Thus the set C of all cycles containing
both a ahd b covers at most 4(r/4—1)=r—4 edges of the form awg or bw, for
wo € V(K,). So there is a vertex wy of K, for which no cycle of C contains either
aw, or bwo (in fact there are at least four such vertices). The three vertices a, b,

and w,, satisfy the claim. |

Therefore we may choose a, b, and W as in the claim, relabel g with j+1, b

with j, and w with z, and let C’ be the cycle containing (j+1, z) but not j, and C

be the cycle containing (j,z) but not j+1.

We now proceed to label C.
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We arrange the paths @y, O;, 1<i S‘r/2—1, along W so that
W=01+0,+03+05+0,+03+... +0;+0; 31+ .. +Q,pn o
*On3+Qp 1+ Qo+ Oip 1+ Q1+ S+R,
where R is t.he remaining segment (if any) of W which will not lie on any of the r

m-paths,

Recall that W begins with the cycle C,, sothat Q;=(0,2,3,1,...), and that §
consists of the last m—1 edges of CJ-, so that S = (j, j+1, j-1, ..., j+m/2, 0). Thus
R consists of the (m/2 —1 —j) m-cycles Cj+1, Cj 420 -+ Cpo1-

'Let v, be the terminal vertex of Q; (and so also the initial vertex of Q,). For
2<isg r/2 -2, letv; be the terminal vertex of Q;.1 (and the initial vertex of Q,).

Letv,p_; be the terminal vertex of Q;'/2—1 (and the initial vertex of Q).

- We will label r—2 of the vertices of C with vy, ..., v,p_; and xy, .., X, SO
that the paths P;, Q; and P/, Q! match up as in Fig. 3.7. Thus we need the vertices
Vs s Vppp- to be distinct, and the corresponding vertices xy, ..., X5 to be
distinct. Now from Claim 3.2.3, we may choose I(Py), ‘l( ) e {2,3,.,r-1},
where we require of course that I(P;)+ I(P})) =r+1, and distinct values of I(P;) will
give us distinct vertices x; to label on C. Similarly the vertices vy, ..., V-1 Will be
determined by our choices of 1(Q), Q). ..., I(Qr/2-—l)’ {Qrp_q). For i#2, we will
use precisely one edge of C to join P; and P} to Q; and Q;, respectively. Thus for
d#2

(Q;)=m—-1-UP)),
and [Q;)=m—1-I(P}),
SO | m-r<iQ;), Q;)sm=3.
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Therefore by Claim 3.2.2, for any choice of /(P;) from {2, 3, ...,r-1}, Q, and
Q! will be segments in W and hence paths in K,,. Our procedure is to choose the
lengths I(P;), 1<i<r/2~1, so that the resulting vertices v, ..., Vo~ and
X1y wees Xppp_1 are distinct. In addition, recall thaf for the construction of the two m-
paths Rf/z and R;p we require (j,z) € E(C), and j+1 ¢ V(C), asin Claim 3.2.4.

~ First let us look at what happens when i = 2.

When i =2 we have a segment T of C, of length m —r + 3, joining x, to v,
(and consequently joining P5to Q5 ). Inorder for P;+T+ Q5 to be a path we
must ensure that the internal vertices of T lie on neither P, nor Q5. So having
labelled x, ..., x,_; and vy, .., v,/é_l, we will need to be able to label the
remaining m —r+2 vertices of C (which are exactly the internal verticgs of T)
with vertices which do not lie on Pjor Q5. To do this we will need at least
(m—r+2)/2 vertices of K,, which do not belongto {vy, ..., V.r,/2—1} v V(Q,), and
atleast (m-—r+2)/2 vertices of K, which do not belong to
{xq, ..., ,/2__1} U V(P;). Therefore we need

m=Hvy, e Vo) WV(Q)I 2 (m~r+2)/2, and

r—=1xy, ..., x,,z_l} U V(Py)I2(m—r+2)2. |

Since vy & V(Q;) and x, € V(P,) and r > 4, these conditions reduce to
l(Q;) <m/2 and I(P;) <r - m/2. We cannot satisfy these unless r —m/2 2 2,

since from Claim 3.2.3 we need /(P5) 2 2. It is for this reason that we made this

assumption at the outset.

Since r 2 m/2+2, we may set I(P5)=r—m/2 and consequently I 0s)=mf2-3

(clearly m/2 -3 <m -3, so O will indeed be a path). This will give us enough
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freedom in the labelling of the last m —r + 2 vertices of C to ensure that
P;+T+ Q; will be a path.

We now begin the labelling of C. We first choose v;. Notice that we have
arranged the paths Q;, O;, 1<i<r/2-1, along W in such a way that the length of
the segment between v, and v,pp_, is precisély
[(Qp) + Q)Y + [KQ3) + K Q3)] + et I Q1)+ UQrpp_1)]-

Since [(Q)+ Q)= [ 2m—r—3, i#2

{ m-=35, i=2,
the length of this segment depends only upon m and r. Therefore the choice of v,
will uniquely determine v,,_;. In addition, the length of the segment of C; ; U Cj
between v,»_; and j (travelling in the direction specified for W') is precisely /[(Q,).

Therefore v,p,_; will in turn determine [(Q, ).

Since we must ensure that (j,z) is an edge of C, we will show how to choose
I(Q;) sothat vy =j, and v,pp_; #j, j+1 (this is because j+1 may not lie on C,

and v; must be different from v,,_;). We will then choose G, so that x; =z.

Now since C y is the last cycle from W used in constructing these m-paths, we

use in total j-1 cycles C; from W (recall that C, is contained in D). We construct

r m-paths in total, and so
IE(K )+ E(CU C)+ (-1)m=rm.

Thus r(r-1)/2+2m + (j-=1)m =rm,
so j=r—-1-r(r-1)2m. (2)

We want to set v, =j, sothat je V(C). Since v, determines V-1, We must

make sure that setting v, =;j does not force Ve = jorj+l. Consider C,, the
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first cycle from W we use in constructing the m-paths. Clearly, QO will be a

segment of C,, beginning (0,2, 3, 1, ...) (see Fig. 3.8)

The (forward) path from 0 to j in C, has length 2(j —2), provided that

2<j<m/2+2. Now j is the index of one of the cycles in the decomposition of

K,, andso j<m/2—1<m/2+2. Secondly, by (2) j>2 if and only if

m’
‘r=1=r(r—1)/2m> 2, or equivalently, m>r(r— 1)/(2r — 6). Now since we are
assuming r > 8, we have r—=1<2r—-6 andso (r-1)/(2r—6)<1. Therefore
rl[(r—1)/2r-6)] <r<m, and so j>2 asrequired. So setting /(Q7)=2( ~ 2)

we will have v; =/.

m
2+1

Fig. 3.8

First, we must check that this will not force Vrjo-1 =J» J£1. Now the segment
‘(Cl + ..+ Cj )\S of W ends at the vertex J (more precisely, at the edge (0, j))
of Cj. Therefore, if [(Q;)<m—3 we will have Vpp—1 #J (by Claim 3.2.2). In

addition, j+1 is the second vertex of § (recall that S is the segment
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U, j+1,j-1,...,0) of Cj )- So again by Claim 3.2.2, if /[(Q;)<m—4 we will have

We alsoneed m-r<I[(Q{)<m-3. Combirﬁng this with the above
requirement that /(Q;)<m —4 and the fact that [(Q,)+ {Q1)=2m—r -3, we
need m—r <l(Q]) Sm~3. First, since j< m/2 —1, then
Q{)=2(-2)<m—-6<m-3. Second, weneed m—-r<2(j-2)=2j~4, or
equivalently, j> (m —r+4)/2. Soby (2) we need
r=1-=r(r=1/2m>(m-r+4)/2, orequivalently,

-m2+@Br—-6)m-r(r-1)>0.

Let F(m)=-m2+ (3r = 6)m —r(r — 1). The roots of F are

r = Br—6)2— 54 -8r+9

and 7,=(3r— 6)/2+\ 524 —8r+9,

and F(m)>0 whenever r, <m <r,. We are assuming that r>m/2+1 and
r<m-—2. Therefore r+2<m<2r-2. Itis straightforward to check that, if
r>8, then r;<r+2<2r-2< r,. Therefore, since r>8, we have F(m)>0
whenever r+2<m<2r-2. This gives 2(j-2) > m=r as required, and so

we may set /(Q;)=2(j-2). Wehave m—-r<l(Q;)<m-3, and V-1 #J, L

Finally we want to set x; =z. We have a decomposition of X, into r-cycles
and a one-factor, and we want to add one edge of the one-factor to each r-cycle to
- obtain a decomposition of K, into the 7/2-1 subgraphs G; and a single edge zz'.
First, choose any r-cycle-and any edge of the one-factor, and let G, be the union of
the chosen r-cycle with the chosen edge. Since we have set 1(Q1)=2(G~-2), we

know [(P,) and l(P{). Moreover, m—r<Il(Q;’)<m—-3 and
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Q) +UQ1)=2m—-r-3 imply 2<I(P),l(P{) <r—1. Asin Claim 3.2.3, the
value of [(P,) will uniquely determine the vertex x;. Also by Claim 3.2.3, the
vertex x; has degree 2 in G,, thatis, x is not an endvertex of the chord of G;. So
the edge e of the one-factor F which contains x, is not the chord of G;. Thus we
may set z=2x,, and let z’ be the other endvertex of e. In other words, we choose

e to be the single edge of K, not contained in any G;.

We may now construct the subgraphs Gy, ..., G,p_;, adding each remaining
edge of the one-factor to one of the r-cycles. All we require is that each G; be an r-
‘cycle with a chord, where the chord is not e (and of course that E(G 1)s oo

E(Gr/Z—l) and e partition E(K,) ).

We have now labelled the vertices V1s Vppp-1 @nd x; on C For the labelling of
v, and x,, recall that we have set /(P})=r—m/2 and l(Q5) =m/2 -3, which
gives l(Py)=m/2+1 and [(Q,)=m/2 —2. Now l(P,) will determine the vertex
x, of G,. Suppose x5 =x; =2z. Since I(Py)+1(Py)=r+1 isodd, I(P,)# I(P,).
So we may interchange P, and P so that I(P3)=m/2+1 and [(P5)=r—m/2.
This will give us a different vertex x, so that x, # x;. The two m-paths we
construct will now be P;+x5v; +Q, and Po+T + Qi. Thus we may assume

x2 #xl.

Notice that the vertex v, will depend on (i Qs3) (see Fig. 3.7). Since
m=r<Il(Qs;)<m-3, there are r—2 choices for [(Q3). Each of these r—2
+ values of /(Q3) determines a vertex v,, and these vertices are consecutive
vertices of W, Since r —2 <m -2, then by Claim 3.2.2 they are all different. Thus
we‘have r —2 different choices for v,. Now we must choose I( Q) so that

Vo #E V1 Voo J+1. In addition, each choice of /(Q3) will determine a

41



corresponding vertex x5 of G3. We must choose I(Q3) sothat x5 # x,, X;.
Therefore in total we might have to exclude five of the possible values of /(Q3). But
we are assuming r > 8, so r—2>6, and so we may certainly choose [(Q3) so

that both vy # vy, v g, #1 and x3# X, X;.

Notice that for 2 <i<r/2~2, once we have chosen vy, ..., V; 1, V,pp_1, the
vertices X, ..., X; are all fixed, and the choice of v; (equivalently the choice of

[(Q;,1)) will determine x;, ;.

Assume that we have chosen distinct vertices vy, ..., V;_1, V,/p—1 and that the
resulting vertices Xy, ..., X; are all different, where 3<i<r/2 —2. We now
choose v;. The value of [(Q; ;) is fixed. Thus the vertex v; depends on [(Q;,1).
Again m—-r<lQ; )<m-3, giving us r—2 choices of I(Qi+1),: and
consequently r - 2 distinct choices of v;. Of these, we will have to exclude at
most i+ 1 to ensure that v; & {v{, ..., Vi1, v,/z_l,j+1}, and at most i others
might result in x;,; € {x, ..., x;}. We therefore have at least
r-2-(+1)—i=r-2i-3 valid choices forv;. But i<r/2-2, so

r—2i—321. Thus there is at least one valid choice of v; and hence X1

Once V-2 has been chosen, we have labelled v, ..., Vrp-1 and

X1s -os Xpp—1- We must now label the remaining m —r+2 vertices of C' (recall

that these are the internal vertices of the segment T of C ).

We have (m —r+ 2)/2 vertices of C to label in K,. None of these may be
labelled with vertices from {xy, ..., x,/z_l} U V(P,). Since x, lies on P,, this

leayes us with atleast 7= (7/2—-1+r—m/2) =(m —r+2)/2 available labels,

which is just enough. Similarly we have (m —r+2)/2 vertices of C to label in K, .
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In this case we may not use vertices from {vis oeer Vp/a-1s J+1} U V(Q;). We have

vo € V(Q5), and so there are at least

m—=r2-1+1+m/2-3)=(m-r+6)2>(m-r+2)2 available labels.

We have now labelled the cycle C. Since we also labelled z and j+1 on C’, we

have in total labelled m/2+ 1 vertices of K, and m/2 vertices of K, (in the

decomposition of X,,, ;). We may label the remaining vertices of K m,r arbitrarily.

The construction is now complete. ‘We have constructed the following r m-
paths in K, — D:
Rl =P1 + (xl, vr/z_l) + Ql’

R2 =P2+ (x2, vl) + Q2,

R 1=Prp 1+ 10 Vepp—2) + Qo ps
Ri =P1' +(xq, v + Qi,
Ry=P,+T+0},

R3=P3+ (x3,v3) + 03,

r2-1=Prp 1+ (e 15V )+ Qrppy,
Rr/2 = (S \(]: J+1)) + (’+1, Z) + (Z’ Z'),
and R} = (i, j+1) + (C'\(+1, 2)).

These paths cover all the edges of K,, 2m edges of K m,» and an initial

. segment (or possibly all) of W. Now the remaining edges of K. m,r 4T partitioned

into m-cycles. In addition, the ‘unused' portion R of W consists of the

(m/2 - 1-j) m-cycles Cj TR PR Cm/2—1° Thus we have a decomposition of K, -D

into m-paths and m-cycles. »
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Case 2 Letn be even, and let r =m/2+1, where r>8. Asin Case 1, mand r

are even, and r =0 (mod 4).

The problem with the previous construction, when r =m/2+1, was that we

might not be able to label the internal vertices of T so that Ry =P, +T+ 0,
would be a path. In this case we set [(P;)=r—-m/2+ 1=2 and we choose G, so
that x; is one endvertex of its chord (so of course we can no longer set x; = z).
By Claim 3.2.3, the vertex x, will be neither endvertex of this chord (in particular,
we will have x, # x;). Moreover, each endvertex of the chord lies oh both P, and
P,, so this will force x; € V(P5). This will leave us, when we come to label the
internal vertices of T, with _ ‘

r=lxy Xy JUVPY) 2r=[G2-1)+(r—m2+1)-1]

=(m=-r+2)2

available vertices to use as labels.

In order to let x; be an endvertex of the chord in G5, we must first ensure that
x; # z, since the edge (z, zﬁ of the one-factor lies on no G;. In addition, x; must
not be an endvertex of the chord in G;. (But this is gﬁarantecd by Claim 3.2.3.)

Since we now require x; #z (whereas before we set x; =z), we cannot label
the edge v;x; of C as jz. However, since r=m/2+1, and since each vertex of K,
lies on m/2 cycles in the decomposition, then each vertex of K, in fact lies on
« (r—1) ofthe r m-cycles in the decomposition. Now if we choose the vertices a,
b and z of K, as in Claim 3.2.4, we have atmost (r/4—1) cycles containing both
a and b. Since each vertex of K, lies in total on r/2 of the cycles in the m-cycle

decomposition of K there are then at least (r/4 + 1) cycles containing b and

m,r’
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not containing a. Since at most one of these cycles does not contain z, we have,
in addition to the cycle containing the edge bz but not @, at least (r/4+1)-221
cycles containing both b and z (but not @) on which b and z are non-adjacent.

Consequently it does not matter whether or not we label j and z as adjacent on C.

The modified construction is as follows. As before we let I( 0,)=2(-2), so
that vy =j while v, ; #j,j+ 1. This is still valid since we are again assuming
that r > 8. For G; we choose any r-cycle and any edge of the one-factor from the

decomposition of K,, and we determine the resulting vertex x;.

For G, we choose any remaining r-cycle together with the edge of the one-
factor containing x;. We set [(P;) =r —m/2+ 1 =2, which determines the vertex
X5. For z, we then choose any vertex of K , different from x; and x, and the
endvértices of the chords in G, and G2 (recall that one of these is x7)- Notice that
this will guarantee z ¢ V(P;), since, letting (x""x1 ) be the chord in G,, we have
V(P5) = {xq, Xy, x*} [see Fig. 3.9]. Thus there are r -5 choices for z, and since

r>8 wehave r—35>3. Our choice of z determines the edge (z, z) of the one-

factor which will lie on no subgraph G;.

We now proceed to construct Gs, ..., G,pp_y arbitrarily (of course not using
(z, z) on any'Gl- ) and to label the vertices {v,, ..., v,/2_2} and {xj, ..., x,/2_1}

exactly as before.

It now remains to ‘label the internal vertices of 7. For those which lie in K e
since /(Q;)=m—T)~I(P;)=m/2 —4, we have at least
M= (V) e Vo 1} U G} U VO 2m = (2 + mf2 - 4)

=(m-r+8)/2
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available vertices to use as labels. For those which lie in X, as in the previous

argument we have at least (m —r +2)/2 available vertices to use as labels. If

Fig. 3.9

ze {xg, ..., xr/2_1} then we label one vertex of T with z, and the othefs arbitrarily
(notice that (m —r +2)/2>0, so there is a vertex of T which we may label z,

and recall that z e V(Py). If ze {xi, ..., ?‘r/2—1}’ then we may label all

(m —r+2)/2 of these vertices arbitrarily, as before.

Finally, we construct the paths R, and R, exactly as before, using the cycle

C’ containing the edge (+1, z) (and not containing j), the edge (z, z'), and the
last m —1 edges of Cj.

This gives us, as before, a decomposition of K »—D intothe r m-paths
R, R;, 1<i<r/2, the remaining (r—2) m-cycles of K,, rand, if j<m/2-1, the

12 ooo C /21 from Km . | |

(m/2-1~-j) cycles Cj -

+

Case 3 Letn be even and let » <8. We have either r=4 or r=8, since

r =0 (mod 4).
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(i) Let r=4. Then n=m+ 4; so (NC3) imply ml (m+4)(m+3), or
equivalently, ml (m2+7m+12). Since in addition we assume n(n—1)/m is odd,
we have ml 12, where 12/m is even and m is even. This implies m =6, so

n=10.

~ We give a decomposition of K 10— D into 6-paths and 6-cycles. We let
K g=KgUKg4 K, where V(Kg)= {uy, uy, ..., 45} and

V(Ky) = {wg, wy, wo, w3}. We have
D= C]_ \ F= (uo, u]_a u29 u5, u39 u4a uO) 1% {(us’ u]_), (u4, u2), (u3’ uO)}and

W =Cy = (ug, Uy, Uz, Uy, Uy, Us, Ug).

We decompose K 4 into the following 6-cycles:
A = (ug, wg, Up, Wo, U, Wi, Ug),
B = (uy, wo, Uy, w1, U, W3, Uy),
C = (u3, wg, Us, Wy, Uy, W3, U3),

and E = (ug, wo, Uz, Wy, Us, W3, Ug).

We decompose K, into the 3-paths (w3, wy, wp, wq) and (wy, wy, w3, wp).
We use these 3-paths together with the 6-cycles A, B, and C, to form the

following 6-paths [see Fig. 3.10]:
R, = (w3, wg, Ug, Wy, Uy, Wa, Up),
Ry = (Wy, Wy, W, Uy, Us, Uy, Uy),
Ry = (wy, W3, Uy, W, Uy, W1, Up),

and R, = (wg, wy, Wi, Uy, Ug, Us, Uy).

We have decomposed K;5— D into the 6-paths R;, R,, R, andR,, and the

6-cycles C and E.
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Fig. 3.10

(ii) Let »r=8. Then n=m+ 8, so (NC3) imply that m|(m + 8)(m + 7), or
equivalently, m|(m?+ 15m + 56). Since we assume n(n— 1)/m is odd, we have
m|56, where 56/m is even and m is even. Finally, r <m implies m > 8, and
r2m/2+1 implies m < 14. Thus the only case to consider is m = 14 (and so

. n=22),
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We give a decomposition of Ky, —D into 14-paths and 14-cycles. We let
Ky =K14 UKy g UKg, where V(K y)={uy, ..., U3} and V(Kg)= (w, ..., w;}.
Wehave Ky, =FUU(C;:1<i<6}, so
D =C,UF

= (Ugy Uys Ugy Uyas wees Ugs Ugs Ug) I {3y, Uyglds, -, Ugllg, Ugla}, and W

=C2+C3+...+C6.

We decompose Ky into the following four 7-paths:
Gy = (W, Wy, Wa, Wo, We, Wa, Ws, W),
Gy = (wy, Wy, Wy, W3, Wa, Wy, W, Ws),
G3 = (Wy, Wi, Wy, Wy, Wy, Ws, Wa, W),

and G4 = (ws, Wy, Wy, Ws, Wy, We, Wy, Wq).

By Lemma 2.1.1, there is a decomposition of K4 ¢ into 14-cycles. Let C be é.ny
cycle from this decomposition. As in the construction in Case 1, we will relabel
the vertices of C (and so the entire decomposition of K4 g) so that we can use
the edges of C as a bridge between K4 and Kg. We will divide each of the 7-paths
G;into two paths P;and P If i#2, we will set l(Pi) =3 and [(P;)=4, and we
will extend each of P; and P; to a 14-path in K, — D using one edge of C and a
segment of W. We will set I(P,) =6 and [(P;)=1. Toextend P, to a 14-path,
we use one edge of C and a segment of W (of length 7). To extend P, to a 14-
path, we use the remaining 7 edges of C (which we again call T ) and a segment
of W (of length 6). As before, we let Q; and Q; be the segments of W which we

+use to extend P; and P}, respectively, and we arrange these segments along W so
that W=01+0y+03+ 05+ 04 +03+04+Q;. Wedefine v;,...,v, and

Xqs s Xy 8S before.
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Here, we want to construct eight 14-paths from the edges of Kg, Ky, - D,
and one 14-cycle. We have |E(Ki4—D)|+ 14+ |[E(Kg)l =14(5)+ 14+ 28
= 14(8).

So our construction will use all the edges of W.

We relabel C so that
Vs V2, V3, V4 = Uy 1, Uy, U, Ug,
xl, x2, X3, x4 = w2’ w69 W4, ws,

and T = (wg, Uy, Wg, Uy, Wy, U, Wa, Ug).

The remaining vertices of K4 g may be relabelled arbitrarily.

N
Uy Wy, 4

0, P,
2 w B

QZ
9
2
U
Q’4 8 A

Fig. 3.11
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- The eight 14-paths we construct are the following (see Fig. 3.11):
= (Wo» Wy, W, W, Ug, Uy, Ug, Uz, Ugg, Up, Uy, Uy Uy, g3, Ug)s

R

[ Y

=P{+xv; + Q4
= (Wy Ws, W3, We, Wo, Uy, Ug, Uyg, Uss U3, Uy, Uy, Us, Uy, Ug),
R2 =P2 +X2V1 + Q2

= (Wq, Wo, Wg, W3, Wa, Wy, We, Uyq, Ug, Uy, Ug, Ug, Ug, Uss Uy),
Ry =P5+T+Q;

= (W5, We, Uy, Wo, Up, Wy Uy, W3, Ugs Uy Ug, Uy, Us, Us. Ug),

= (W, W3, Wy, Wy, Ug, Uy, Ug, Uy, Ug, U3, g, Uy, U, Un, Uy),

X
w

=P3+x3v3+03
= (w69 W7, ws’ WO’ W4, uO, us, u6’ u49 u7, usy u8’ u2’ u9, ul),
R4 =P4 +X4V3 + Q4
= (W3, Wy, W, Ws, Ug, Uy g, Uy Uygs Ugs Uz, Ugs Uy, Ug, Uy, Ug)
and R4'_ =P4'_+X4V4+Q4'_

= (Wq, W, Wg, W1, Ws, Ug, Us, Ug, Ug, Ugs Uygs Uygs Uyg, Uygs Uy).

These eight 14-paths together cover all the edges of K, — D, all the edges of
Kg, and the edges of one 14-cycle from the decomposition of K4 g. Since the
remainder of K 14.8 ‘consists of 14-cycles (now relabelled), we have a
decomposition of K, ~ D into 14-paths and 14-cycles. By Corollary 2.3.5 and

Lemma 3.2.1, this yields a decomposition of K,, —1 into 28-cycles.

'This completes the proof of Lemma 3.2.2. n
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Thus we have a decomposition of K, ~ I into 2m-cycles if n and m satisfy the

conditions (*) on'pagc 20. The remaining cases are those for which the quotient
n(n-1)/m is odd, m < n <2m, and either n is odd or n < 3m/2. We hope that a
construction similar to the above will give results in some or all of these cases,

particularly the case when n is odd and at least 3m/2.
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