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Abstract 

The problem of finding a decomposition of the complete graph, directed or 

undirected, into cycles of a fixed length is one on which there has been much 

research, and for which there are still many cases left unsolved. We investigate 

iq particular the decomposition of K2,- I, the complete graph on 2n vertices with a 

one-factor removed, into cycles of fixed even length. 

We begin with a brief exposition of known results in the area. We then 

construct a decomposition of the graph K2n- I into cycles of even length 2m, for 

cases when n is even and 3m/2 I n < 2m. 
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Chapter 1 

$1.1 Definitions and Notation. 

1.1.1 Kn and IT, will be used to denote the complete undirected graph and the 

complete directed graph, respectively. Kns and K*,, will be used to denote the 

complete undirected and directed bipartite graphs, respectively. The graph K Z n  I 

is the complete undirected graph with a one-factor removed. 

1.1.2 A path is a sequence P = (xl, ..., of vertices together with the edges 

i = 1, ..., n, where xi #xi if i # j. The vertices xl and x,+~ are the 

endvertices of P. The length of P, denoted l(P), is the number of edges in P. A 

path of length m is also called an m-path. A Hamilton path in a graph G is a path 

which meets every vertex of G. 

A cycle is a sequence C = (xl, ..., x ~ + ~ )  of vertices together with the edges 

i =  1, ..., n, where xl =xWl, and x i t x j  if i t j  and {x. x.) + {X~,X,+~) .  
2' J 

The length l(C) of C is the number of edges in C. An m-cycle is a cycle of length m, 

and a Hamilton cycle in a graph G is one which meets every vertex of G. 

A directed cycle or dicycle is a cycle in a directed graph, where is the 

arc directed fromxi toxi+l for i = 1, ..., n. 

1.1.3 If A = (xl, ..., xn) and B = (xn, ..., x,~), then A+B is the concatenation of 

A and B, that is, A+B = (xl, ..., x,, x,+~, ..., x,+~). 



1.1.4 A one-factor of a graph G (also called a perfect matching) is a spanning 

subgraph of G in which every vertex has degree 1. A 2-factor of G is a spanning 

subgraph of G in which every vertex has degree 2. 

1.1.5 We write G = H1 '33 H2 if G is the edge-disjoint union of the subgraphs H I  

and H2. 

1.1.6 If G is a graph and n is a natural number, then nG denotes the graph 

consisting of n vertex-disjoint copies of G. 

1.1.7 If G =  HI @ H2 @ ... @ Hk, where H1 = H2= ... z Hk= H, then we say 

that G has an H-decomposition, or that G may be decomposed into subgraphs 

isomorphic to H. 

1.1.8 Let G and H \be graphs, The wreath product of G and H, denoted GwH, is 

formed by replacing each vertex of G with a copy of H, and joining vertices in 

different copies of H by an edge if and only if the corresponding vertices of G are 

adjacent. 

We state here for convenience some basic results which are used repeatedly 

throughout the thesis. 

1.1.9 Lemma ([Lu]) The graph K2,1 can be decomposed into Hamilton cycles 

'for every natural number n. 

1.1.10 Corollary The graph K2, can be decomposed into Hamilton paths for every 

natural number n. 



1.1.11 Lemma ([Lu]) The graph K2,- I can be decomposed into Hamilton cycles 

for every natural number n. 

1.1.12 Lemma The graph K2,- I is isomorphic to the graph KnwrR2. 

Proof The graph KnwrE2 is formed by replacing each vertex v of Kn with a pair of 

independent vertices vl and v2, and adding the edges ulvl, ulv2, u2v1 and u2v2 

for every edge uv of K,. Thus each vertex vl of KnwrE2 is adjacent to every other 

vertex of KnwrE2 except its 'partner' v2. 

5 1.2 Introduction 

In this thesis we consider the decomposition of complete graphs (the complete 

dire.cted graph, the complete undirected graph, and the graph K2n- I ) into cycles 

of fixed length. The problem has interested many authors and has proven to be 

quite challenging. Hamilton decompositions of the complete undirected graph and 

the graph K2,- I (stated here as Lemmas 1.1.9 and 1.1.1 1) appear in Lucas' 

RkcrCations Mathkmatiques, where they are attributed to Walecki. More 

recently, the question of finding a decomposition of the complete graph into 2- 

factors whose components are all 3-cycles appeared in [Rl] in 1963, as a 

reformulation of Kirkman's Schoolgirl problem. (Ray-Chaudhuri and Wilson's 

solution to the Schoolgirl problem was later used by Bermond in finding a 

decomposition of the complete directed graph into 3-dicycles.) Since then the 

problem has been studied in general, and has been solved for various cases. In 



Chapter 2 we give an outline of the known solutions, primarily for decompositions 

into even-length cycles. 

In Chapter 3 we construct a decomposition of the graph K2,- I into cycles of length 

2m, where n is even and 3m/21 n c 2m. The construction uses the following 

method of composition, due to Haggkvist: If a graph G may be decomposed into 

paths and cycles of length m, then ~ w r E ~  may be decomposed into cycles of 

length 2m. Now if G is the complete graph K,, then GwrK2 E K2,- I (see Lemma 

1.1.1 1). Haggkvist's result therefore allows us to use methods of decomposing the 

graph K,, in solving the problem for the graph Kb- I. 



Chapter 2 

In this chapter we give a brief survey of known results in the area of 

decompositions of the complete graph (or the complete directed graph) into cycles 

(or dicycles) of fixed even length. We consider three different classes of 

decompositions: the decomposition of the complete directed graph into even- 

length dicycles ($2.1); the decomposition of the complete undirected graph into 

even-length cycles ($2.2); and the decomposition of the graph K2,- I into even- 

length cycles (52.3). 

•˜ 2.1 Directed cycles 

We frst look at the directed case - that is, decompositions of the complete 

directed graph K*, into dicycles of fixed, even length m. The necessary conditions 

(NC1) for such a decomposition are: 

(1) n(n-1) 0 (mod m) (the number of arcs of K', is a multiple of m); 

and (2) n 2 m. 

It has been conjectured (see for example [B/F]) that these necessary 

conditions are also sufficient, for m even or odd, except for the cases 

(n,m) = (6,3), (4,4) and (6,6) when the decomposition is known not to exist. The 

conjecture has been shown to be true if either n = 0 (mod m) or 

(n-1) = 0 (mod m), but apart from this relatively few cases have been solved. 

We begin with some lemmas which are useful in recursive constructions. The 

first is from [S] and will be used repeatedly in later sections. 



2.1.1 Lemma ([S]) 

(i) The complete directed bipartite graph K ; , ~  can be decomposed into 2m-dicycles 

if and only if n,s 2 m and m I 0 (mod m). 

(ii) The complete (undirected) bipartite graph K , ,  can be decomposed into 2m- 

cycles if and only if n,s 2 m, ns = 0 (mod 2m) and n and s are even. 

We refer the reader to the proof given in [S], which is constructive and too 

long to include here. 

The next two lemmas are straightforward. 

2.1.2 Lemma If<, <, and K*,, can be decomposed into m-dicycles, then K:, 

can be decomposed into m-dicycles. . 

- 

Roof We write K*,+$ = K', u GJ u g. The result is obvious. 

2.1.3 Lemma (B/Fl) If G I ,  <+1 and K*,, can be decomposed into m- 

dicycles, then c+s+l can be decomposed into m-dicycles. 

mf Let v(G+,~) = X U Y u {xo), where IXI = n and in = s. Then we may 

partition the arcs of K",+S+l into those of on vertex-set X u {xO), those of 

q+l on vertex-set Y u (xo), and those of K*,,s on vertex-set X u Y. Thus a 

decomposition of and K*,, into m-dicycles gives us a decomposition of 

into m-dicycles. H 

The following three lemmas give solutions for the cases n = m and n = m+l. 

These will be used in the solutions for the cases with n 0,l (mod m). 



2.1.4 Lemma ([BIF]) For every integer m, even or odd, can be 

decomposed into m-dicycles. 

2.1.5 Lemma ([Tl]) For 2m 2 8, KL can be decomposed into 2m-dicycles. 

2.1.6 Lemma ([BIF]) There is no decomposition of fh into 2m-dicycles for 

2m = 4,6. 

We now give solutions to the problem for the cases when n = 0,l (mod m). 

They are due to Bermond and Faber and appear in [Bm. We fnst consider 

n = 0 (mod m). 

2.1.7 Theorem ([Bm) If rn is even and K; can be decomposed into m-dicycles, 

then K ; ~  can be decomposld into m-dicycles for all q 2 1. 

Proof The proof is by induction on q. When q = 1, the theorem is true by - 
hypothesis. Let q 5 1 and assume that fqm can be decomposed into m-dicycles. 

Now K(;+~), = Grn u $,,, u KG. By Lemma 2.1.1 $,,, is decomposable into 

m-dicycles, and by hypothesis K; is also; therefore K(;+~), is decomposable into 

m-dicycles. The theorem follows by induction. 

Combining Theorem 2.1.7 with Lemma 2.1.5 we have the following corollary. 

.2.1.8 Corollary For all even m 2 8 and for all q 2 1, Grn can be decomposed into 

m-dicycles. 

Secondly, we consider n r 1 (mod m). 



2.1.9 Theorem ([BFJ) If m is even, then can be decomposed into m- 

dicycles for all q 2 1. 

v 

Proof Again the proof is by induction on q. If q = 1, the theorem follows from 

Lemma 2.1.4. Let q 2 1 and assume Gl can be decomposed into m-dicycles. 

Then by the induction base and Lemma 2.1.3, K',m+m+l = Iffq+l)m+l can be 

decomposed into m-dicycles. By induction the theorem holds for all q 2 1. 

Thus if n 5 1 (mod m), or n = 0 (mod m) and m > 6, where m is even, there 

is a decomposition of K', into m-dicycles if and only if n and m satisfy the necessary 

conditions (NCI). Complete solutions for m 5 6 are given below. For the cases 

when n f 0,l (mod m), the problem is not yet completely solved. 

results are the following. 

The known 

2.1.10 Theorem (Hartnell and Milgram, [H/M]) If n = pe for some prime p and 

integer e 2 1, then  an be decomposed into m-dicycles if and only if n and m 

satisfy the necessary conditions (NCI) (m may be even or odd). 

2.1.11 Theorem (Hartnell, [Hl]) If x and y are odd integers and y t 5, then K ; ~  

can be decomposed into 2x-dicycles. 

Finally, the problem has been completely solved for several small values of m, 

that is, for even m satisfying 4 I m 5 16. These results can all be found in 

[B/H/Sl. 

2.1.12 Theorem ([B/H/S]) 

(i) K', can be decomposed into 4-dicycles if and only if n = 0,l (mod 4) and n > 4. 



(ii) K', can be decomposed into ddicycles if and only if n = 0,l (mod 3) and n r 6. 

(iii) K', can be decomposed into 8-dicycles if and only if n = 0,l (mod 8). 

(iv) K', can be decomposed into 10-dicycles if and only if n = 0,l (mod 5). 

(v) K; can be decomposed into 12-dicycles if and only if n r 0,1,4 or 9 (mod 12). 

(vi) K; can be decomposed into 14-dicycles if and only if n E 0.1 (mod 7). 

(vii) K', can be decomposed into lddicycles if and only if n 1 0,l (mod 16). 

$ 

In [B/H/S] the authors show, using composition methods, that the problem of 

finding decompositions of into m-dicycles (for even m) can be reduced to 

checking a finite number of cases for each m. More specifically, they derive from 

the necessary conditions (NC1) the following necessary conditions, which we will 

call (NCl*): 

(1) n 2 m, 

and (2) there exist positive integers y and z such that yz = m and 

n r ly (modyz), where 0 51 < z and ly r 1 (mod z) if 1 > 0. 

They then show that, for a given m, there is an integer no (m) such that if the 

conditions (NCI*) are sufficient for the existence of a decomposition of 6 into m- 

dicycles when no(m) 5 n < no(m) + m, then these conditions are sufficient for the 

existence of such a decomposition for all n. 

52.2 Undirected cycles 

We now consider decompositions of the complete undirected graph Kn into m- 

cycles, for even m. Notice that if C is an m-cycle in K,, then every vertex of Kn 

has degree either 2 or 0 in C. Thus if there is a decomposition of Kn into m-cycles, 



every vertex of Kn must have even degree. Therefore, n must be odd. The 

necessary conditions (NC2) are then: 

(1) n(n-1) = 0 (mod 2m) (the number of edges of Kn is a multiple of m); 

(2) n is odd; 

and (3) n2m.  

The first two results in this area are from 1965 and 1966, respectively. 

2.2.1 Theorem (Kotzig, [K]) If n is odd, (n-1)/2 z 0 (mod 2m), and 

m = 0 (mod 4), then Kn can be decomposed into ni-cycles. 

2.2.2 Theorem (Rosa, [R]) If n is odd, (n-1)/2 = 0 (mod 2m), and 

m = 2 (mod 4), then Kn can be decomposed into m-cycles. 

Thus the problem has been solved for the case n e 1 (mod m). Notice that, 

since m is even and n must be odd, n = 0 (mod m) is impossible. For the cases 

when n & 1 (mod m), there are few known results. The following two theorems 

give solutions for the cases when 4 I m I 16, and when m = 2pe for some prime 

p and integer e 2 1. In the first case the results appear in various papers but can 

all be found in [B/H/S]. 

2.2.3 Theorem ([B/H/S]) 

(i) Kn can be decomposed into 4-cycles if and only if n = 1 (mod 8). 

, (ii) Kn can be decomposed into 6-cycles if and only if n 1,9 (mod 12). 

(iii) Kn can be decomposed into 8-cycles if and only if n 1 (mod 16). 

(iv) Kn can be decomposed into 10-cycles if and only if n = 1,s (mod 20). 

(v) K, can be decomposed into 12-cycles if and only if n = 1,9 (mod 24). 



(vi) Kn can be decomposed into 14-cycles if and only if n = 1,21 (mod 28). 

(vii) Kn can be decomposed into 16-cycles if and only if n = 1 (mod 32). 

2.2.4 Theorem (Alspach/Varma, [AM) If m = 2pe for some prime p and 

integer e 2 1, then Kn can be decomposed into m-cycles if and only if m and n 

satisfy the necessary conditions (NC2). 

52.3 The graph K2,- I 

In this section we look at decompositions of the graph K2,- I, the complete 

graph on 2n vertices with a one-factor removed, into cycles of f ied,  even length 

2m. The necessary conditions (NC3) for such a decomposition are the following: . 

(i) n(n-1) = 0 (mod m) (the number of edges of K2,- I is a multiple of 2m); 

' and (ii) n 2 m. 

Some results for this problem are given in [H/K/R], although this paper is 

primarily concerned with finding those 2-factors which decompose K2,- I. Their 

results are the following. 

2.3.1 Proposition ([H/K/R]) For all m 2 2, Kg,- I can be decomposed into 2m- 

cycles. 

2.3.2 Proposition ([H/K/R]) For all m 2 2, Kh- I can be decomposed into 2m- 

cycles. 

2.3.3 Proposition ([H/K/R]) If n is even, the graph K2,- I can be decomposed 

into 4-cycles. 



The remaining results in this section rely on the following lemma which 

provides us with a particular method for recursively constructing cycle 

decompositions. The construction in Chapter 3 will also use this method of 

composition. 

2.3.4 Lemma (Haggkvist, [HJ) Let G be a path or a cycle with m edges, and 

let H be a 2-regular graph on 2m vertices with all components even. Then GwrEZ 

is the edge-disjoint union of G' and G", where G' E G" n H. 

Proof Let H consist of k disjoint cycles with lengths 2ml, 2m2, ..., 2mk, where 
k j .  
Z mi = m. Let sj = Z mi and so = 0. 
1 I 

Let G be the path or cycle (uo, u,, ..., urn), where uo = urn if G is a cycle. Let 

Gi be the segment (us. , us. +I, ..., us) of G, of length mi, i = 1,2, ..., k. 
1 1-1 

Let GWTK~ be obtained from G by replacing each Vertex ui, 0 5 i 5 m, by the 

independent vertices x(ui) and y(ui). 

Let Gi ' have vertex-set V(Gwr&)\{y(us. ), *(us)), and edges 
r l  

Mus. 1-1 ), X(US el 1 ,  (x(uSi-,), Cv(us. ~-1 1 ,  together with any pair of independent 

edges between {x(uj), y(uj)) and {x(uj+,), y(uj+,),) for j = si-,, si-,+l, ..., si-2, 

Clearly Gi is a cycle of length 2mi, 

Giwrz2 is another 2mi-cycle, GL [see 

whose edge-induced complement in 

Fig. 2.11. 



Fig. 2.1 

. 
Also, the graphs Gi, i = 1,2, ..., k, are pairwise disjoint, and each of 

k k 
G' = U Gi and G" = U G,:' is isomorphic to H. Moreover GwrE2 = G' @ G", 

1 I 

and the lemma follows. 

2.3.5 Corollary Let G be a path or a cycle with m edges. Then GwrZ2 is the 

edge-disjoint union of two 2m-cycles. 

Proof Let k = 1 in Lemma 2.3.4. - 

One consequence of this is the following. Suppose that a graph G can be 

'decomposed into m-paths and m-cycles, say PI, ..., P, C,, ..., C,. Then GwrE2 is 

the edge-disjoint union of the graphs PlwrZ2, ..., P k ~ E 2 ,  ClwrK2, ..., ClwrK2. 

Applying Lemma 2.3.4 to each Pi and Cj gives us a decomposition of Gwr& into 



2m-cycles. The following lemma allows us to use this method to decompose 

K2n- I into 2m-cycles when n(n-1) = 0 (mod 2m). 

2.3.6 Lemma (Tarsi, [TI) Necessary and sufficient conditions for a 

decomposition of Kn into m-paths are: 

(i) n(n-1) = 0 (mod 2m); 

and (ii) n > m. 

2.3.7 Corollary If m,n satisfy (NC3) and in addition n(n-1) = 0 (mod 2m), then 

K2n- I can be decomposed into 2m-cycles. 

Remark This result is also proven in [HI, for odd n and m # n-1, using the 

same method. 

Now if G has a Hamilton decomposition, then by applying Lemma 2.3.4 to each 

cycle of the decomposition we get the following result. 

2.3.8 Proposition ([m) If G has a Hamilton decomposition, then GwrK2 can be 

decomposed into any collection of bipartite 2-factors in which each 2-factor appears 

an even number of times. 

1 

In addition we have the following proposition, due to Laskar ([L]). 

2.3.9 Proposition ([L]) If G has a Hamilton decomposition, then the graph 

GwrEm also has a Hamilton decomposition. 



2.3.10 Corollary ([Am) If G has a Hamilton decomposition, then GwrR2, can 

be decomposed into any collection of bipartite 2-factors in which each 2-factor 

appears an even number of times. 

We now show how this method of composition may be used to find a 

decomposition of K2,- I into 2m-cycles for the cases when n = 0 (mod m). The 

following result was proven in [Am in 1985. 

2.3.11 Theorem ([Am) For any m 1 2 and any natural number n, the graph 

K2,,- I can be decomposed into 2m-cycles. 

Proof The proof is divided into two cases. . 

Case 1. Let n be odd. Notice that K2nm- I n KnmwrE2, and that 

- 
K,,w% = Hl 8 H2, where Hl n n~ ,wrR~  and H2 n KnwrK2,. Since n is odd, 

Kn has a Hamilton decomposition. Therefore by Corollary 2.3.10, KnwrE2m can be 

decomposed into any collection of bipartite 2-factors in which each 2-factor appears 

an even number of times. In particular, KnwrR2, can be decomposed into m(n-1) 

copies of nC2,, since n-1 is even. Therefore H2 can be decomposed into 2m- 

cycles. Moreover, KmwrE2 = K2,- I can be decomposed into 2m-cycles by 

Lemma 1.1.12, so H1 can also be decomposed into 2m-cycles. Therefore, K2,,- I 

can be decomposed into 2m-cycles. 

Case 2. Let n be even. In this case ~ , , w r R ~  = H1 8 HZ, where 

'HI n ( n / 2 ) ~ ~ ~ w r R ~  and H2 n K,,,~wTR~,. If n/2 is odd, then K,,,~WTE~~ can be 

'decomposed into m(n-2) copies of nC2, as above (n-2 is even in this case). If 

n/2 is even, then Knn has a one-factorisation. Let KnI2 = F1 8 ... 8 F(,-,),,, 



where each Fi is a one-factor. For each i, F~w~K:~, ,E (n14)K4m,4m. Now 

K2m,2m = C4wram has a Hamilton decomposition, since C4 has. Therefore 

K4m,4m = K ~ , ~ w T K ~  can be decomposed into 2m 2-factors each isomorphic to 

4C2,, and so ~ ~ f i R ~ ~  can be also. Thus H2 can be decomposed into 2m- 

cycles. Finally, applying Proposition 2.3.2 to each component of 

( n l 2 ) ~ ~ w r K ~  = (n/2)(K4, -I) yields a decomposition of H I  into 2m-cycles. 

Therefore, K2,,- I can be decomposed into 2m-cycles. 



Chapter 3 

As stated in the introduction, the new results we have found concern the 

decomposition of the graph K2,- I into edge-disjoint 2m-cycles. We discussed in 

the previous chapter how this problem has been solved in some cases; in 

summary, there is known to be a decomposition of K2,- I into edge-disjoint 2m- 

cycles if 

(1) n = 0 (mod m) 

(2) n(n-1) = 0 (mod 2m) 

In this chapter we give partial results for the case when m does not divide n, 

and the quotient n(n-1)lm is odd. In Section 3.1 we give an outline of the 

methods we use in the constructions; Section 3.2 contains the constructions 

themselves. 

8 3.1 Outline of the construction 

Our constructions are based on the method of Lemma 2.3.4. In the case where 

n(n-1)lm is even, we are able to decompose Kn into edge-disjoint m-paths, and 

using Lemma 2.3.4, this decomposition of Kn yields a decomposition of 

K2,- I n ~ , w r f ? ~  into 2m-cycles. When n(n-1)lm is odd, however, there is no 

 decomposition of Kn into m-paths, since IE(Kn)I 9 0 (mod m). Thus we need to 

modify the construction somewhat. 



Suppose that n(n-l)/m is odd. Then in fact IE(K,)I m/2 (mod m). Our 

method will be to find a subgraph D of Kn with the following properties: 

(1) IE(D)I E m/2 (mod m); 

(2) Kn- D can be decomposed into m-paths and m-cycles; 

and (3) Dwrg2 can be decomposed into 2m-cycles. 

Notice that since IE(Kn)I = m/2 (mod m), property (1) implies that 

IE(K,- D)I E 0 (mod m). 

We will apply Lemma 2.3.4 to the decomposition of Kn- D into m-paths and m- 

cycles, which will give us a decomposition of (K,- D)wrK2 into 2m-cycles. Since 

~ w r K 2  may be decomposed into 2m-cycles, we will then have a decomposition of 

[(Kn- D).wrK2] G3 [DW%~] = ~ , w r K i  r K2,- I into 2m-cycles. 

We begin with a lemma which reduces the problem to 'small' values of n, that 

is, to values of n satisfying m c n c 2m. 

3.1.1 Lemma To find decompositions of K2n- I into 2m-cycles for all m,n 

satisfying (NC3), it is sufficient to find decompositions of K2,- I into 2m-cycles 

for all m,n satisfying both (NC3) and m c n c 2m. - 

Proof Suppose we have decompositions of K2,- I into 2m-cycles for all m,n 

satisfying both (NC3) and m < n c 2m. 

Let n and m satisfy (NC3) but not m c n < 2m. By (NC3), n 2 m, so either 

m = n or n 2 2m. By Lemma 1.1.11, K2,- I can be decomposed into Hamilton 

cycles, so we assume n 2 2m. Thus we may write n = km + (m+r), where k 2 1 



and 0 I r < m. Therefore 2n = k(2m) + (2m + 2r), and K2,- I is the edge-disjoint 

union of the following: 

k copies of K2, I; 

one copy of K2m+2r - I; 

6) copies of KZmJm; 

and k copies of KZm, 2m+2r. 

Again by Lemma 1 .l. 1 1, K2m- I can be decomposed into Hamilton cycles. By 

Lemma 2.1,1, each of K2m,2m and K2m,2,2r can be decomposed into 2m-cycles. If 

r = 0 this gives us the desired decomposition of K2n- I into 2m-cycles. Suppose 

r > 0. By (NC3), IE(K2,- I)I 0 (mod 2m), and so IE(K2m+2r- I)I = 0 (mod 2m). 

Since in addition m < m + r < 2m, by hypothesis we have a decomposition of 

K2m+2r -I into 2m-cycles. Thus K2,- I .may be decomposed into 2m-cycles, and 

the lemma follows. 

In the light of Lemma 3.1.1, for the remainder of the chapter we restrict 

ourselves to cases where m < n < 2m. Our aim is to find a subgraph D of Kn with 

the three properties described above. We first define a subgraph D with 

properties (1) and (3); and for n 2 3ml2, where n is even, we construct a 

decomposition of Kn- D into m-paths and m-cycles (this is property (2) required of 

D). Thus we have solved the problem for m and n satisfying (NC3) and for which 

3ml2 I n < 2m, with n even. 

' In the construction we first write Kn = Km u K m ,  u K, , where r = n - m. 

Now as n(n-1)lm is odd, then necessarily m is even (since n is even). Thus we 

can decompose Km into ml2-1 m-cycles and a one-factor F. Notice that IE(F)I = 



m/2 . We will show that there is a cycle C1 in the decomposition of Km such that 

C l u F  has the properties (1) and (3) required for the subgraph D. From this point 

we will proceed to find a decomposition of K,- (C1uF) into m-paths and m-cycles. 

Now since n and m are even, r is also even. If in addition r 2 m/2 (or 

equivalently n 2 3m/2), then by Lemma 2.1.1 K,, can be decomposed into m- 

cycles. However n c 2m implies r e m, so there is no decomposition of K, into 

m-paths and m-cycles. Instead, we will decompose K, into r paths of length at 

most r-1. Using the edges of two m-cycles from the decomposition of K, , as a 

'bridge' between K, and Km, we will extend each of these paths to an m-path with 

segments of one or more of the m-cycles from the decomposition of K,. This will 

yield r m-paths which together cover all the edges of K,, the edges of two m- 

cycles from K,,,, and the edges of some (or all) of the m-cycles comprising 

Km- (CIuF)' In addition the construction will be such that the remainder (if any) 

of K, will be a collection of m-cycles, as will be the remainder of K,$, Thus we 

will have a decomposition of Kn- (CluF) into m-paths and m-cycles. 

We now give the constructions. 

5 3.2 The construction 

Throughout this section we assume that: 

(*) n and m satisfy (NC3), n is even, m c n c 2m and the quotient n(n-1)lm is 

odd. 

We begin with the construction of the subgraph D. We write Kn = K, u Km,, u K ,  

where V(K,) = (0, 1, ..., m-1) and V(K,) = {zl, z2, ..., 2,). We decompose K, 



(remember that m is even) into ml2-1 m-cycles C l ,  ...,CmR-l and a one-factor F, 

defined as follows. Let o = (0)(1 2 ... m-1), and C1 = (0, 1,2, m-l,3, m-2, ..., 
ml2-1, m/2+1,0). 

For i = 2, ..., ml2-1, let Ci = oi-l(C1). Finally, let 

F = { (m-1 , 1 ) , (m-2,2), ..., (m/2+ 1 ,m/2- I), (O,m/2) ) . 
Thus C1 is the m-cycle of Fig. 3.1, and for i 2 2, Ci is obtained from C1 by a 

clockwise rotation of i places, with the vertex 0 fixed. 

Fig. 3.1 

Letting D = C l u F  (see Fig. 3.1) we have 

133.1 Lemma The graph D W R ~  is the edge-disjoint union of three 2m-cycles. 



Proof We show that D is the edge-disjoint union of three perfect matchings with - 
the property that the union of any two perfect matchings is a Hamilton cycle. We 

then use the three resulting Hamilton cycles to construct three edge-disjoint 2m- 

cycles in DwrK2 

It is easy to see that the perfect matchings M1, M2 and M3, where M1 and M2 

consist of alternate edges of the m-cycle C1 and Mg = F, partition the edges of D. 

By construction, the union of M1 and M2 is the m-cycle C1. 

Let M1={(0,1),(2,m-1),(3,m-2) ,..., (ml2,m/2+1)), 

and M2 = { (1,2), (m- 1,3), (m-2,4), ... , (m/2+2,m/2), (m/2+ 1,O) ) . 
We have M3 = F = { (m-1, 1), (m-2,2), ..., (m/2+l;m/2-I), (m/2,0)). 

To show that M1uM3 is an m-cycle, define a permutation .~c of V(K,) by 

x(0) = 0, ~ ( 1 )  = 1, md n(i) = m-i+l, 2 S i I m-I. The effect of ?E is to 

interchange the endvertices of each edge of M1, except for (0,l) which is 

unchanged. Thus n(M1) = M1. 

Now M3 = {(m/2,0), (m-1,l)) u {(m-i,i): 2 I i Iml2 -1 ) .  

Thus 7r(M3) = {m/2+1,0), (2,l)) u { (i+l,m-i+l) : 2 I i I ml2-1) 

= { (m/2+1,0), (1,2)) u { (j+2,m-J] : 1 < j l ml2-2 ) 

= M2. 

* Similarly n(M2) = M3. So n: : V(D) V(D) is an automorphism, and 

x(MluMg) = M1uM2. Thus, M1uM3 is also an m-cycle. 
. 



We now show that M2uM3 is an m-cycle. We have 

M2uM3 = ((1,2), (m/2+1,0)) u ((j+2,m-J] : 1 I j l ml2-2) u 

Now M2uM3 clearly contains the 2-path (m-1,1,2). To this we add the pair 

of edges (m-1,3) and (2,m-2), which gives us a dpath with endvertices m-2 and 

3. We continue adding edges in pairs of the form (m-j,2+j), (l+j,m-j-1), for 

j = 1,2, ..., ml2-2, until a cycle is formed; after each addition we obtain a path or 

cycle of length two more than the previous path, and with endvertices m-j-1 and 

j+2 (where 2 I j I ml2-2). A cycle will be formed only if m-i-1 = i+2 for some 

i; that is, if m-3 = 2i. But m is even, so m-3 is odd, and this is impossible. 

Therefore after the addition of the last pair of edges (ml2+2,m/2) and 

(ml2-l,m/2+1) we have a path in M2uM3 of length m-2 with endvertices m/2+1 

and ml2. The addition of the two remaining edges (m/2+1,0) and (ml2,O) 

completes this path to an m-cycle; thus M2uM3 is an m-cycle. 

Let M1uM2 = C12 ( C12 = C 1  ), 

M2uM3 = C23 

and M3uM1 = C 3 1 .  

We now use these three m-cycles to partition the edges of ~ w r E ~  into three 

'2m-cycles. We first observe that every edge of D lies on exactly one of the perfect 

matchings Mi, and so on exactly two of the m-cycles CV 



Let v (Dw~R~)  = {x(i), y(i) : i s  V(D)), so that 

E(DwrR2) = {(x(i),yti)), i ,  t i ,  @(i),yO), @(i)xO) : i j  s E(D)}. 

For each ij E E(D), let 

p i  = { ( ( i ) ) ) ,  ( i ) , ) ) }  (the corresponding 'parallel' edges of 

DwR2), 

and c(V) = {(x(i),yU)), @(i)~(j)))  (the corresponding 'crossing' edges of 

DwZ2). 

We define Ci2 from CI2 as follows. We let Ci2 consist of the edges 

(x(O)x( I)), (x(O),y(l)), together with either pair of independent edges p(iJ or 

c(iJ? for each subsequent edge i j ,  j#O, of CI2, and finally the edges 

Fig. 3.2 



We let Ci3 consist of the edges (x(O),x(ml;?+l)), (x(O),y(m/2+1)), together 

with either pair of independent edges p(ij) or c(ij] for each subsequent edge i j ,  

j#O, of C23\C12, and whichever pair of independent edges p(ij), c(ij) does not lie 

on Ci2 for each subsequent edge of C23 n C12, and finally the two edges 

(x(m/2),y (ON, O(m/2),y(O)). 

Finally we let C j consist of the edges (x(O),x(m/2)), (x(O),y(m/2)), together 

with whichever pair of independent edges p(ij), c(ij) lies on neither Ci2 nor Ci3, 

for each subsequent edge ij, j#O, of Cgl, and finally the edges (x(l),y(O)) and 

~ W , Y ( O ) ) .  

It is clear that each of Ci2, C b  and Cil is a 2m-cycle in ~ w r K ~ .  In addition, if 

Cjq and Cil are not edge-disjoint, then they share either a pair p(ij) or c(ij) for 

some ij E E(D), i,j#O, or an edge incident with either x(0) or y(0). The first case 

cannot occur since in defining each C& we choose a pair p(ij) or c(ij] only if it 

does not lie on a previously defined cycle Cil. It is easy to check in the 

construction that the second case cannot occur. Thus the three 2m-cycles CiZ, Ci3 

and Cjl partition the edges of DwrK2. rn 

Therefore D has property (3) described earlier, and clearly IE(D)I = 3m/2 so 

D also has property (2). We now show that D has property (1). 



3.2.1 Lemma The graph K,- D can be decomposed into m-paths and m-cycles. 

Proof We begin with an important observation about the cycles C1, ..., Cmn-l of 

the decomposition of K,- D. Let W be the Eulerian walk of Km- D defined by 

W = C2 + C3 + ... + CmRWl (where the cycles Ci are oriented so that (0,i) is'the 

first directed edge of Ci) 

3.2.2 Claim The shortest cycle in W has length m-2. 

Proof First, as we have already pointed out, each cycle Ci, i 2 3, is simply a 

rotation of C2. Also, any segment of W which lies entirely within some Ci must be 

either a path or an m-cycle. Thus it is sufficient to show that any cycle in W which ' 

begins in C2 and ends in C3 has length at least m-2. To do this we find the length 

of the cycle which begins at the occurrence of a vertex v in C2 and ends at the 

occurrence of the same vertex v in Cg, for each v#O of Km (clearly the cycle which 

begins and ends with 0 has length m). 

Let v be the kth vertex of C2 (where we orient Ci as in W so that 0 is the fist 

vertex, i the second, and so on) (see Fig. 3.3). 

Now C3 is obtained from C2 by a clockwise rotation through one place, with 0 

fixed 



Thus (i) if 4 I v 5 m/2+ 1, then v is the (k - 2)nd vertex of C3; 

(ii) if m/2+3 I v L m-1 or v = 1 or 2, then v is the (k + 2)"d vertex of C3; 

(iii) if v = 3, then v is the third vertex of C2 and the second of C3; 

and (iv) if v = m12+2, then v is the mm vertex of C2 and the (m-l)St of C3. 

Fig. 3.3 

Therefore the closed walk of C2 + C3 which begins and ends at vertex v + 0 of 

Km has length m-2 (if 4 5 v I m/2+1), m+2 (if m/2+3 I v I m-1 or v = 1 or 2) 

or m-1 (if v = 3 or v = m/2+2). So the shortest cycle in W has length m-2. 

, Thus W is a trail in K,- D with the property that any segment of length at 

most m-3 is a path, and such that E(Km- D) = E(W). Notice also that if S is an 

initial segment of W whose length is a multiple of m, then W '  consists of a 



collection of entire m-cycles Ci, ..., Cmml for some j. These properties of W are 

crucial for the constructions. 

The remainder of the proof of Lemma 3.2.1 is divided into three cases. Case 1 

contains the basic construction which is valid for all n and m satisfying (*) with 

r > m/2+1 and r > 8. Cases 2 and 3 contain modifications of this construction for 

.the cases r = m/2+1 and r I 8, respectively. Observe that if r = ml2, then 

n(n-1) = (3m/2)(n-I), which is not divisible by m when n-1 is odd. Thus we may 

assume that P > ml2. 

Case 1 Let r > ml2+l and r > 8. 

Recall that since n and.m are even, then r is also even. In addition, since both 

n(n-1)lm and n-1 are odd, then for any integer e, 2e divides m if and only if 2e 

divides n. In particular, m = n (mod 4), and so r = 0 (mod 4). 

Now since r is even, we may decompose K, into rI2-1 r-cycles and a one- 

factor. If we add one edge of .the one-factor to each r-cycle, we obtain a 

decomposition of K, into r12-1 subgraphs Gi and a single edge zz', where each Gi 

is an r-cycle with a chord. These subgraphs have the following useful property. 

3.2.3 Claim Given 2 5 yi 5 r-1, there is a vertex xi of Gi such that Gi may be 

divided into two paths Pi and Pi of lengths yi and r+l-yi respectively, with a 

common endvenex xi. Moreover, we may choose the vertices xi in such a way 

, that distinct values of yi will determine distinct vertices xi. 



Proof Each Gi is an r-cycle with a chord. Let g and q be the endvertices of the 

chord. Thus p and q have degree 3 in Gi while all other vertices of Gi have degree 

Now p and q divide the r-cycle of Gi into two segments S1 and S2, where we 

assume &S1) I 4S2)  (Fig. 3.4). 

Fig. 3.4 

I f  yi I I(S1), we let Pi be the path which consists of the edge q p  and the frst 

(beginning with p )  yi-1 edges of S1.  We let xi be the terminal vertex of Pi. Since 

2 I yi I l (S1) ,  xi lies on S1, xi t p,q, and for distinct values of yi with 

2 I yi I l(S1),  the corresponding vertices xi are distinct. Since xi # p ,  the 

remainder Pi of Gi, which consists of a segment of S1 and all of S2, is also a path 

(see Fig. 3.5)  

I f  yi > I(Sl), we let Pi be the path of length yi which begins at p ,  follows S1 to 

q, and continues along S2; and we let xi be the terminal vertex of Pi. In this case, 



since l(Sl) c yi 2 r-1, xi lies on S2 and xi t p,q. Thus the remainder Pjof Gi, 

which consists of a segment of S2 and the edge pq, is a path. For distinct values 

of yi with l(S1) < yi I r-1, the corresponding vertices xi are distinct (see Fig. 

3.5). 

Notice that each vertex of degree 2 in Gi will be the vertex xi corresponding to 

exactly one value of yi, 2 < yi I r-1, and that no value of yi gives xi = p or q. 

Notice also that we cannot divide Gi into paths Pi and P j  for which &Pi) < 2 or 

Fig. 3.5 

l(P? < 2. Finally, 2 < yi I r-1 implies 2 2 r+l-yi 6 r-1, so that for each i, 

2 I l(Pi), &Pi> 5 r-1. 

In the construction, we divide each subgraph Gi into two paths, Pi and Pi, of 

'lengths yi and r+l-yi, respectively, as in the claim. We use the edges of one m- 

cycle C from Km,r, together with an initial segment of W, to complete each of the 

paths Pi, Pi, 1 6 i I r/2-1, to an m-path in K,- D. 



To do this, we choose r-2 edge-disjoint paths Q l, Q i, Q2, Qi, ..., Qrn-l, Qr& 

each a segment of W, so that Qi and Qf will complete Pi and Pi, respectively, to a 

path of length m, using one or more edges of C as a bridge between K, and K,. 

We will use all the edges of C to do this, so that the remainder of K,,, will consist 

of entire m-cycles. The union of the paths Q l, Q i, Q2 Q;, ..., Qi,2-1 will be 

an initial segment of W. 

We will then use a second m-cycle C' from K,,, together with the single edge 

zz' from K, and the first m-1 edges of W \ U{Qi u Qi : 1 I i I r/2-I), to construct 

two more m-paths in K,- D. 

Thus we will use the edges of K,, some or possibly all of those of Km - D, 

and those of two m-cycles from K,,, to construct r m-paths in K, - D. We must 

check that there are enough edges in E(K,) u E(K, - D) to construct these 

.paths. We need 

IE(K,)( + (E(K, - D)( + 2m 2 m. 

Now IE(Kr)l = r(r - 1)/2, and IE(K, - D)I = m(ml2 - 2) = m2/2 - 2m. 

So we need 

r(r - 1)/2 + m2/2 - 2m + 2m 2 rm, 

or equivalently, 

m2-2rm+$-r20. 

We are assuming that m > r, and that both m and r are even. So we may let 

r = m - 2k, for some positive integer k. Then (1) becomes 

m2 - 2(m - 2k)m + (m - 2k)(m - 2k - 1) 2 0, 

or 4k2 + 2k 2 m. 



Now by (NC3), ml(n(n - 1)). Therefore mI(2m - 2k)(2m - 2k - 1). 

Equivalently, m1(4k2 + 2k). But this implies that 4k2 + 2k 2 m. Therefore we 

have 

IE(Kr)I + IE(Km - D)I + 2m 2 m, 

as required. So there are enough edges in Kr u (K, - D) for the construction of 

our r m-paths. 

To construct these m-paths we will need to use two particular m-cycles C and 

C' from K,, (for example, if v is the endvertex of Qi and x the endvertex of Pi, 

then in order to use edges of C to cross from Kr to K,, and so join Pi to Qi, we 

require that x and v lie on C). 

By Lemma 2.1.1 we know that there is a decomposition of K,, into m-cycles. 

For our construction we want the decomposition to contain two particular cycles C 

and C'. So we choose two cycles from the given decdmposition and relabel their 

vertices with those of the required cycles C and C'. This of course induces a 

relabelling of the entire decomposition of K,,, The cycles C and C' are related to 

some extent, so we must choose the original cycles from the given decomposition 

of K,, carefully. 

In particular, we want to use zz', C', and the first m-1 edges of 

W\ U{Qi u Qi : 1 I i 6 r/2-1) to construct two m-paths. We do not know at this 

point the length of the initial segment u{Qi v Qi : 1 6 i I r12-1) of W. However 

the r m-paths which we are constructing in Kn- D together cover rm edges of 

,Kn- D. Since E(Kn- D) = E(K,- D) u E(K,,,) u E(Kr), and we know that m 

divides each of IE(Kn- D)I, IE(Km- D)I and IE(K,,,)I, then m also divides 

IE(Kr)I. In addition, m divides IE(CuC')I. Therefore, since we are using E(Kr), 

E(CuC') and a segment of W to construct these r m-paths, the total number of 



edges we use from W is also a multiple of m. Since W begins at 0 in the cycle C2, 

the segment of W which we use (including the first m-1 edges of 

W\ u{Qi u : 1 S i S 112-1 1) consists of a collection C2, C3, ..., Cj of m-cycles 

from K,, where j S m/2-1. Therefore the m-1 edges of 

W\u{Qi u Qi : 1 S i S r/2-1) which we use will be the last m-1 edges of the 

cycle Ci. Since Cj = (0, j, j+l, j-1, ..., j+m/2,0), these m-1 edges will be the 

segment S = (i, j+l, j-1, ..., j+m/2,0) of Cj. 

We use S, C' and (z,z') to construct two m-paths as follows. We label one 

edge of C' (j+l, z). The two paths are 

Rd2 = [S\ ti,j+l)l + (i+L 2) + (z,z9, 

and Ri12.= (i, j+l) + [Ct\(j+l, z)] (Fig. 3.6). 

Fig. 3.6 

' In order for RiD to be a path, we must ensure that j does not lie on C'. This is 

the only restriction on the labelling of the m remaining vertices of C'. However, 

requiring that (j+l, z) E E(C') and j e V(C') will put some restriction on how we 

may label the other m-cycle, C. For this reason we choose C and C' as follows. 



3.2.4 Claim In any decomposition of Km,r into m-cycles we can find two vertices a 

and b of K,, and a vertex w of Kr , such that the cycle containing the edge aw does 

not contain b, and the cycle containing the edge bw does not contain a. 

Proof There are possible pairs {a,b) E V(K,). For each cycle C* of K , ,  ("1 
v(c*) contains ("3 
r 2 )  pairs in total. 

pairs {a,b). There are r  cycles in the decomposition, and so 

m/2 
~ u t  ' ( 2  ) = (r/2)(m/2)(m/2-1) 

Therefore at least one pair {a,b) G V(K,) occurs on fewer than rI4 cycles. Let 

{a,b) be such a pair. Each cycle C* containing both a and b contains four edges of 

the form awo or bwo, for wo E V(K,). Thus the set C of all cycles containing 

both a and b covers at most 4(r/4 - 1) = r - 4 edges of the form awo or bwo, for 

wo E V(Kr). So there is a vertex wo of Kr for which no cycle of C contains either 

awo or bwo (in fact there are at least four such vertices). The three vertices a, b, 

and wo satisfy the claim. H 

Therefore we may choose a, b, and wo as in the claim, relabel a with j+l, b 

with j, and wo with z, and let C' be the cycle containing (j+l, z) but not j, and C 

be the cycle containing (j,z) but not j+l. 

We now proceed to label C. 



We arrange the paths Qi, Qi, 1 I i I rl2-1, along W so that 

W = Q i  +Q2+Q3+Q;+Q4+Q; + ... +Qi+ Qi-1 + ... + Q ,  

+ + Qrn-1 + Q;n-2 + Qh-1 + Ql + S + R  

where R is the remaining segment (if any) of W which will not lie on any of the r 

m-paths. 

Recall that W begins with the cycle C2, so that Qi  = (0 ,2 ,3 ,  1, ... ), and that S 

consists of the last m-1 edges of CP so that S = ( j ,  j+l, j-1, ..., j+m/2, 0). Thus 

R consists of the (m12 - 1 - j) m-cycles Cfi l ,  Cj+2, ..., Cmn-l. . 

Let vl be the terminal vertex of Qi  (and so also the initial vertex of Q2). For 
' 

2 I i I f l  - 2, let vi be the terminal vertex of (and the initial vertex of Qi) .  

Let V,/L-~ be the terminal vertex of Q;R-l (and the initial vertex of Ql). 

We will label r-2 of the vertices of C with v l ,  ..., vrn-l and xl,  ..., xr12-~ SO 

that the paths Pi, Qi and Pi, Qi match up as in Fig. 3.7. Thus we need the vertices 

v l ,  ..., vr12-~ to be distinct, and the corresponding vertices x l ,  ..., X,/Z-~ to be 

distinct. Now from Claim 3.2.3, we may choose Z(Pi), Z(PJ E {2,3,  ..., r-1), 

where we require of course that [(Pi) + &Pi) = r+l, and distinct values of Z(Pi) will 

give us distinct vertices xi to label on C. Similarly the vertices vl,  ..., vr/L-l will be 

determined by our choices of Z(Ql), [(Pi), ..., l(QrD-l), l(Q;/L- . For i # 2, we will 

use precisely one edge of C to join Pi and Pi to Qi and Qi, respectively. Thus for 

<i 2 2  

Z(Qi) = m - 1 - Z(Pi), 

and Z(Q$ = m - 1 - Z(Pi), 

so m - r I l(Qi), Z(QiP) I m - 3. 



Fig. 3.7 



Therefore by Claim 3.2.2, for any choice of l(Pi) from {2,3, ..., r-1 ) , Qi and 

Q! will be segments in W and hence paths in K,. Our procedure is to choose the 

lengths l(Pi), 1 S i S rl2-1, so that the resulting vertices vl ,  ..., vrn-l and 

xl,  ..., xrn-l are distinct. In addition, recall that for the construction of the two m- 

paths RrI2 and RiI2 we require u , ~ )  E E(C), and j+l e V(C), as in Claim 3.2.4. 

First let us look at what happens when i = 2. 

When i = 2 we have a segment T of C, of length m - r + 3, joining x2 to v2 

(and consequently joining Pi to Qi ). In order for Pi + T + Qi to be a path we 

must ensure that the internal vertices of T lie on neither Pi  nor Qi. So having 

labelled xl ,  ..., xr12_1 and vl,  ..., vrlsl, we will need to be able to label the 

remaining m - r + 2 vertices of C (which a& exactly the internal vertices of T) 

with vertices which do not lie on Pi  or Qi. To do this we will need at least . 

(m - r + 2)/2 vertices of K, which do not belong to {v,,  - ..., v,,,-~) u V(Q;), and .,- 

at least (m - r + 2)/2 vertices of Kr which do not belong to 

{xl , ... , xr12-l ) u V(Pi). Therefore we need 

m - l {v l ,  ..., vrn-l ) u V(Qi)I 2 (m - r + 2)/2, and 

r - I {x l ,  ..., xrn- ) v V(Pi) 1 2 (m - r + 2)/2. 

Since v2 E V(Qi) and x2 E V(Pi) and r > 4, these conditions reduce to 

&Qi) S m12 and [(Pi) S r - ml2. We cannot satisfy these unless r - ml2 2 2, 

since from Claim 3.2.3 we need l(Pi) 2 2. It is for this reason that we made this 

assumption at the outset. 

Since r 2 m/2+2, we may set l(Pi) = r - ml2 and consequently &Qi) = m/2 - 3 

(clearly m/2 - 3 I m - 3, so Qi  will indeed be a path). This will give us enough 



freedom in the labelling of the last m - r + 2 vertices of C to ensure that 

Pi + T + Q; will be a path. 

We now begin the labelling of C. We fvst choose vl. Notice that we have 

arranged the paths Qi, Qi, 1 I i S r/2-1, along W in such a way that the length of 

the segment between vl and is precisely 

[4Q2) + KQ;)l+ [KQ3) + KQ;)l+ ... + l?(Qr12_1) + Ica~12-l)l 

Since l(Qi) + l(Qi) = 2m - r - 3, i * 2 

{m - 5, i = 2, 

the length of this segment depends only upon m and r. Therefore the choice of vl 

will uniquely determine vr12-l In addition, the length of the segment of Cj-l u Cj 

between vrbl and j (travelling in the direction specified for W ) is precisely l(Ql). 

Therefore vrD-l will in turn determine l(Ql). 

Since we must ensure that (j,z) is an edge of C, we will show how to choose 

l(Q1') so that vl = j, and v , ~ - ~  f j, j+l (this is because j+l may not lie on C, 

and vl must be different from v , / ~ ~ ) .  We will then choose Gl-so that xl = z. 

Now since Cj is the last cycle from W used in constructing these m-paths, we 

use in total j-1 cycles Ci from W (recall that C1 is contained in D). We construct 

r m-paths in total, and so 

IE(K,)I + IE(C u C')I + 0'-l)m = rm. 

Thus r(r-1)/2 + 2m + (j-l)m = rm, 

so j= r - 1 - r(r- 1)/2m. 

We want to set vl = j, so that j E V(C). Since vl determines v,,~-~, we must 

make sure that setting vl = j does not force vr12-l = j or j+l. Consider C2, the 



first cycle fi-om W we use in constructing the m-paths. Clearly, Qi will be a 

segment of C2, beginning (0,2,3, 1, ...) (see Fig. 3.8) 

The (forward) path from 0 to j in C2 has length 20  - 2), provided that 

2 c j c m/2 + 2. Now j is the index of one of the cycles in the decomposition of 

K,, and so j I m/2 - 1 c m/2 + 2. Secondly, by (2) j > 2 if and only if 

' r - 1 - r(r - 1)/2m > 2, or equivalently, m > r(r - 1)/(2r - 6). Now since we are 

assuming r > 8, we have r - 1 < 2r - 6 and so (r - 1)/(2r - 6) c 1. Therefore 

r[(r - 1)/(2r - 6)] < r < m, and so j > 2 as required. So setting l(Qi) = 2 0  - 2) 

we will have vl  = j. 

Fig. 3.8 

First, we must check that this will not force v , , ~ - ~  = j, j+l. Now the segment 

'(C1 + ... + Cj ) \S of W ends at the vertex j (more precisely, at the edge (0, j ] )  

of Cj. Therefore, if l(Ql) S m - 3 we will have v,,~-I # j (by Claim 3.2.2). In 

addition, j+l is the second vertex of S (recall that S is the segment 



(i, j+l, j-1, ..., 0) of Cj). So again by Claim 3.2.2, if l(Ql) I m - 4 we will have 

v,/2-l *./+I. 

We also need m - r I l(Qi) I m - 3. Combining this with the above 

requirement that l(Ql) I m - 4 and the fact that l(Ql) + l(Qi) = 2m - r - 3, we 

need m - r < l(Q;) I m - 3. First, since j I m12 - 1, then 

l(Q;)=2(j-2)Im-6<m-3.  Second, weneed m - r < 2 ( j - 2 ) = 2 j - 4 ,  or 

equivalently, j > (m - r +4)/2. So by (2) we need 

r - 1 - r(r - 1)/2m > (m - r + 4)12, or equivalently, 

-m2 + (3r - 6)m - r(r - 1) > 0. 

Let F(m) = -m2 + (3r - 6)m - r(r - 1). The roots of F are 

r, =(3r-6)12-l/5$14-8r+9 

and r2 = (3r - 6)/2 + 
and F(m) > 0 whenever r, < m < rT We are assuming that r 2 m/2 + 1 and 

r I m - 2. Therefore r + 2 I m I 2r - 2. It is straightforward to check that, if 

r > 8, then rl < r + 2 < 2r - 2 < rz. Therefore, since r > 8, we have F(m) > 0 

whenever r + 2 S m I 2r - 2. This gives 20 - 2) > m - r as required, and so 

we may set 1(Q;) = 2 0  - 2). We have m - r I l(Qi) S m - 3, and v , ~ - ~  t j, j+ 1. 

Finally we want to set xl = z. We have a decomposition of K, into r-cycles 

and a one-factor, and we want to add one edge of the one-factor to each r-cycle to 

obtain a decomposition of K, into the r/2-1 subgraphs Gi and a single edge zz'. 

First, choose any r-cycle and any edge of the one-factor, and let GI be the union of 

the chosen r-cycle with the chosen edge. Since we have set 1(Q18) = 20'- 2), we 

know /(PI) and l(Pi). Moreover, m - r < l(Ql ') < m - 3 and 



l(Ql) + l(Q;) = 2m - r - 3 imply 2 < &PI), l(P;) < r - 1. As in Claim 3.2.3, the 

value of l(P1) will uniquely determine the vertex xl. Also by Claim 3.2.3, the 

vertex xl has degree 2 in GI, that is, xl is not an endvertex of the chord of GI. So 

the edge e of the one-factor F which contains xl is not the chord of GI. Thus we 

may set z = xl, and let z' be the other endvertex of e. In other words, we choose 

e to be the single edge of Kr not contained in any Gi. 

We may now construct the subgraphs G2, ..., GrD-l, adding each remaining 

edge of the one-factor to one of the r-cycles. All we require is that each Gi be an r- 

'cycle with a chord, where the chord is not e (and of course that E(G1), ..., 
E(GrD-l) and e partition E(Kr) ). 

We have now labelled the vertices vl, vrD-~ and xl on C. For the labelling of 

v2 and x2, recall that we have set l(Pi) = r - m/2 and l(Qi) = m/2 - 3, which 

gives 1(P2) = m/2 + 1 and l(Q2) = m/2 - 2. Now l(P2) will determine the vertex 

x2 of G2. Suppose x2 = x1 = Z. Since l(P2) + l(Pi) = r + 1 is odd, l(P2) # &Pi). 

So we may interchange P2 and P i  so that l(Pi) = m/2 + 1 and 1(P2) = r - m/2. 

This will give us a different vertex x2 so that x2 # xl. The two m-paths we 

construct will now be P i  + x2v1 + Q2 and P2 + T + Qi. Thus we may assume 

X2 #XI.  

Notice that the vertex v2 will depend on l(Q3) (see Fig. 3.7). Since 

m - r I l(Q3) S m - 3, there are r - 2 choices for l(Q3). Each of these r - 2 

I values of l(Q3) determines a vertex v2, and these vertices are consecutive 

vertices of W. Since r - 2 < m - 2, then by Claim 3.2.2 they are all different. Thus 

we have r - 2 different choices for v2. Now we must choose l(Q3) so that 

v2 # vl, v ~ ~ ~ - ~ ,  j+l. In addition, each choice of l(Q3) will determine a 



corresponding vertex x3 of G3. We must choose l(Q3) so that x3 # x2, xl. 

Therefore in total we might have to exclude five of the possible values of l(Q3). But 

we are assuming r > 8, so r - 2 > 6,  and so we may certainly choose l(Q3) so 

that both v2 + vl, vrD-l, j+l and x3 +x2,x1. 

Notice that for 2 I i I r/2 - 2, once we have chosen vl, ..., vi-l, vrD-~, the 

vertices xl, ..., xi are dl fixed, and the choice of vi (equivalently the choice of 

l(Qi+,) ) will determine xi+l. 

Assume that we have chosen distinct vertices vl, ..., vi-l, vr,2-1 and that the 

resulting vertices xl, ..., xi are all different, where 3 I i I r/2 - 2. We now 

choose vi. The value of l(Qi-l) i s  fixed. Thus the vertex vi depends on l(QH1). 

Again m - r I l(Qi+l) I m - 3, giving us r - 2 choices of l(Qi+l), and 

consequently r - 2 distinct choices of vi. Of these, we will have to exclude at 

most i + 1 to ensure that vi e {vl, ..., vi-l, vrD-l, j+l),  and at most i others 

might result in xi+l E {xl, ..., xi). We therefore have at least 

r - 2 - ( i  + 1) - i = r - 2i - 3 valid choices for vi. But i I r/2 - 2, so 

r - 2i - 3 2 1. Thus there is at least one valid choice of vi and hence xi+l. 

Once v r p 2  has been chosen, we have labelled vl, . .., v ~ ~ - ~  and 

xl, ..., xr12-l. We must now label the remaining m - r + 2 vertices of C (recall 

that these are the internal vertices of the segment T of C ). 

We have (m - r + 2)/2 vertices of C to label in K,. None of these may be 

labelled with vertices from {xl, ..., xr12-1} v V(Pi). Since x2 lies on Pi ,  this 

leaves us with at least r - (r/2 - 1 + r - m/2) = (m - r + 2)/2 available labels, 

which is just enough. Similarly we have (m - r + 2)/2 vertices of C to label in K,. 



In this case we may not use vertices from {vl, ..., vr12-l, j+l ) u V(Q;). We have 

v2 E V(Q;), and so there are at least 

m - (r/2 - 1 + 1 + m/2 - 3) = (m - r + 6)/2 > (m - r + 2)/2 available labels. 

We have now labelled the cycle C. Since we also labelled z and j+l on C', we 

have in total labelled m/2 + 1 vertices of Km and m/2 vertices of Kr (in the 

decomposition of K,,,). We may label the remaining vertices of K m ,  arbitrarily. 

These paths cover all the edges of K, 2m edges of Kmr and an initial 

segment (or possibly all) of W. Now the remaining edges of Kmer are partitioned 

into m-cycles. In addition, the 'unused' portion R of W consists of the 

(m/2 - 1 - j) m-cycles Cj+l, ..., Cm12-1. Thus we have a decomposition of K, - D 

into m-paths and m-cycles. 



Case 2 Let n be even, and let r = m/2+1, where r > 8. As in Case 1, m and r 

are even, and r = 0 (mod 4). 

The problem with the previous construction, when r = m/2+1, was that we 

might not be able to label the internal vertices of T so that Ri  = P i  + T + Qi 

would be a path. In this case we set l(Pi) = r - m/2 + 1 = 2 and we choose G2 so 

that x l  is one endvertex of its chord (so of course we can no longer set xl = z). 

By Claim 3.2.3, the vertex x2 will be neither endvertex of this chord (in particular, 

we will have x2 + x l ) .  Moreover, each endvertex of the chord lies on both P2 and 

P i ,  so this will force xl E V(Pi). This will leave us, when we come to label the 

internal vertices of T, with 

~ - ~ { X ~ , . . . , X ~ ~ ~ - ~ } U V ( P ~ ) ~  Lr-[(r/2- , l )+(r-m/2+1)-11 

= (m - r +  2)/2 

available vertices to use as labels. 

In order to let xl  be an endvertex of the chord in G2, we must first ensure that 

xl # z, since the edge (z, z') of the one-factor lies on no Gi. In addition, xl must 

not be an endvertex of the chord in G1. (But this is guaranteed by Claim 3.2.3.) 

v 

Since we now require xl + z (whereas before we set xl = z), we cannot label 

the edge v lx l  of C as jz. However, since r = m/2+1, and since each vertex of Kr 

lies on m/2 cycles in the decomposition, then each vertex of Kr in fact lies on 

I (r - 1) of the r m-cycles in the decomposition. Now if we choose the vertices a, 

b and z of K, as in Claim 3.2.4, we have at most (r/4 - 1) cycles containing both 

a and b. Since each vertex of Km lies in total on r/2 of the cycles in the m-cycle 

decomposition of K,,, there are then at least (r/4 + 1) cycles containing b and 



not containing a. Since at most one of these cycles does not contain z, we have, 

in addition to the cycle containing the edge bz but not a, at least (r/4 + 1) - 2 2 1 

cycles containing both b and z (but not a) on which b and z are non-adjacent. 

Consequently it does not matter whether or not we label j and z as adjacent on C. 

The modified construction is as follows. As before we let l(Ql) = 20 - 2), so 

that vl = j while vrn-l 7t j,  j + 1. This is still valid since we are again assuming 

that r > 8. For G1 we choose any r-cycle and any edge of the one-factor from the 

decomposition of Kr, and we determine the resulting vertex xl. 

For G2 we choose any remaining r-cycle together with the edge of the one- 

factor containing xl. We set I(Pi) = r - m/2 + 1 = 2, which determines the vertex 

x2 For z, we then choose any vertex of Kr different from xl and x2 and the 

endvertices of the chords in G1 and G2 ' (recall that one of these is xl). Notice that 

this will guarantee z e V(P;), since, letting (x*sxl) be the chord in G2, we have 

V(Pi) = {x2, xl, x* } [see Fig. 3.91. Thus there are r - 5 choices for z, and since 

r > 8 we have r - 5 > 3. Our choice of z determines the edge (z ,  z') of the one- 

factor which will lie on no subgraph Gi. 

We now proceed to construct G3, ..., GrR-1 arbitrarily (of course not using 

(z, z') on any Gi ) and to label the vertices (v2, ..., vr,2-2} and {x3, ..., xr,2-1 } 

exactly as before. 

It now remains to label the internal vertices of T. For those which lie in K,, 

since l(Qi) = m - l(T) - l(Pi) = m/2 - 4, we have at least 

m - l{vl, ..., u (j+l) u v(Q;)~ 2 m - (r/2 + m/2 - 4) 

=(m-r+8)/2 



available vertices to use as labels. For those which lie in Kr, as in the previous 

argument we have at least (m - r + 2)/2 available vertices to use as labels. If 

Fig. 3.9 

z s {xl, ..., x ~ , ~ - ~ )  then we label one vertex of T with z, and. the others arbitrarily 

(notice that (m - r + 2)/2 > 0, so there is a vertex of T which we may label z, 

and recall that z s V(Pi)) .  If z e {xl, ..., x ~ ~ - ~ ) ,  then we may label all 

(m - r + 2)/2 of these vertices arbitrarily, as before. 

Finally, we construct the paths Rr12 and R;12 exactly as before, using the cycle 

C' containing the edge (j+l, z) (and not containing j), the edge (z, z'), and the 

last m - 1 edges of Ci. 

This gives us, as before, a decomposition of K, - D into the r m-paths 

Ri, Ri, 1 I i l r/2, the remaining (r - 2) m-cycles of Km,r and, if j c m/2 - 1, the 

(m/2 - 1 - j) cycles Cj+l, ..., Cmn-l from Km . H 

Case 3 Let n be even and let r I 8. We have either r = 4 or r = 8, since 

r i 0 (mod 4). 



(i) Let r = 4. Then n = m + 4; so (NC3) imply rnl (m + 4)(m + 3), or 

equivalently, ml (m2 + 7m + 12). Since in addition we assume n(n-l)/m is odd, 

we have mi 12, where 12/m is even and rn is even. This implies m = 6, so 

n = 10. 

We give a decomposition of' K10 - D into 6-paths and dcycles. We let 

We decompose K4 into the 3-paths (w3, wo, w2, wl) and (wo, wl, 9 ,  w2). 

We have decomposed K10 - D into the 6-paths R1, R2, R3, andR4, and the 

6-cycles C and E. 
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(ii) Let r = 8. Then n = m + 8, so (NC3) imply that ml(m + 8)(m + 7), or 

equivalently, ml(m2 + 15m + 56). Since we assume n(n - 1)lm is odd, we have 

m156, where 56lm is even and m is even. Finally, r < m implies m > 8, and 

r 2 m/2 + 1 implies m 5 14. Thus the only case to consider is m = 14 (and so 

n = 22). 



We give a decomposition of K22 - D into 14-paths and 14-cycles. We let 

KU = K14 V Kl48  U K8, where V(K14) = {UO, ..., U13} and V(K8) = { w O  ..., w ~ } .  

Wehave K 1 4 = F u U { C i :  1 I i I 6 ) ,  so 

D = C 1 u F  

We decompose Kg into the following four 7-paths: 

By k n m a  2.1.1, there is a decomposition of K14,8 into 14-cycles. Let C be any 

cycle from this decomposition. As in the ccnsmction in Case 1, we will relabel 

the vertices of C (and so the entire decomposition of K14,*) so that we can use 

the edges of C as a bridge between K14 and Kg.  We will divide each of the 7-paths 

Gi into two paths Pi and P i  If i * 2, we will set l(Pi) = 3 and l(PJ = 4, and we 

will extend each of Pi and Pi to a 14-path in K22 - D using one edge of C and a 

segment of W. We will set l(P2) = 6 and l (Pi)  = 1. To extend P2 to a 14-path, 

we use one edge of C and a segment of W (of length 7). To extend P i  to a 14- 

path, we use the remaining 7 edges of C (which we again call T ) and a segment 

of W (of length 6). As before, we let Qi and Qi be the segments of W which we 

use to extend Pi and Pi, respectively, and we arrange these segments along W so 

that W=Q;+Q2+Qs+Qi+Q4+Q;+Qi+Ql.  Wedefine vl, ..., v4 and 

x l ,  ..., x4 as before. 



Here, we want to construct eight 14-paths from the edges of K8, K14 - D, 
andone 14-cycle. We have IE(K14-D)I+ 14+IE(K8)I = 14(5)+ 14+ 28 

= 14(8). 

So our construction will use all the edges of W. 

The remaining vertices of KWS8 may be relabelled arbitrarily. 

Fig. 3.1 1 
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The eight 14-paths we construct are the following (see Fig. 3.1 1): 

R1 =Pl+x1v4+Ql 

These eight 14-paths together cover all the edges of KI4 - D, all the edges of 

Kg, and the edges of one 14-cycle from the decomposition of K14,8. Since the 

remainder of K14,8 consists of 14-cycles (now relabelled), we have a 

decomposition of K22 - D into 14-paths and 14-cycles. By Corollary 2.3.5 and 

Lemma 3.2.1, this yields a decomposition of Ka -I into 28-cycles. 

This completes the proof of Lemma 3.2.2. 



Thus we have a decomposition of K2,- I into 2m-cycles if n and m satisfy the 

conditions (*) on page 20. The remaining cases are those for which the quotient 

n(n-1)lm is odd, m c n c 2m, and either n is odd or n c 3ml2. We hope that a 

construction similar to the above will give results in some or all of these cases, 

particularly the case when n is odd and at least 3ml2. 
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