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-8 .' ABSTRACT ' - 
- . c  ' . , 

Pilot tones have been used as means-of phase and amplitude reference for demodulation in a , - *  - ' 

fading environment, such as that of pobile cornmunicatiorr: The receiver in a p k t  tohe aided 
i - % 1- 

transmission system erh$ets the refmce wi"& a narrowband pilot filter. The filter bandwidth I - - 
- - 

- .  - 
J * , -  

I - . - has an optimum value, 4 which represents a cbmpromise between the amount of distortion and - 
- w - - 

1 .  J L \ ,  ' /- ' r - -  - 
- _  - 1 .+ 

- - - additive noise present in the received pilot. This optimum bandwidth is a funchon of &?:-: 2 - - -4' *< -. -L 

< - 
\ .- -- 

I .  ^ *  
doppler frequency, which in turn varies with vehicle speed. The thesis investigates the use of 

, - a 
adaptive filtering algorithms for extracting thc pilot, so that the pilot filter bandwidthwvaries 

- 

- automatically in response to changes in-@e vehicle speed. It is the first time 

of adjusting the pilot fdt& bandwidth with speed changes has been addressed. <F \- 

/ 

i- 

'* I 
1 \ 

< i ' "-< 

'Three algorithm have been investigated, of wliich two are commonly use& namely-& - 
- ,  

c 

- 
- 

Stochastic ~ ~ d i e n t  Transversal fdter and the Stochastic ~radient Lattice ~oint  h e s s o r  Esti- 
- - 

4 
C 

* L 

mator. The third algorithm is novel. With algpithm, the receiver selects the optimum - .  ;b" - " .  

. . 

I ' - .-, . . . .  . :  .. . . . , . -- 

- Y .; Y 
- i', 

. . .  

" 

,- , '. > .  

. . 

. . 

. . 

member from a pre'-calculated bank of sto filters. The technique is found to b& very robust, 9 
and its bit error rate performance is superior to that of the other two algorithms investigated. It , , - 

CG -. 
can provide up to ; 2.0 dB improvement over a non-adaptive filtering scheme. Derivations and , 

' 

3 3 

analysis f& the adaptation schemes investigated are presented, accompanied by simul&x~ . 
"+ 

results.' + 
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1 .'I. General 

1 .  INTRODUCTION 

\ 

The popularity of mobile data communication systems have been on the rise as the tec)mology 
'B 

slowly penetrates into the various markets such as taxi, courier, public utilities, safety and law 
' b 

enforcement. Mobile p,ublic access data networks are beginning to spring up. One such 
*' > 

example is the system developed by Mobile Data International (MDI) in Hong Kong for 

Hutchison Mobile Data Limited ( W L )  which has a capability of handling a maximum of 

5000 users. These networks make mobile data communicationavailable to the smaller private 

. user groups. Moreover, with the introduction of technologies such as MS AT, Mobile S ATel- 
. n 

Lite, in 1992, glo,bal coverage will be possible for private useris w ch will increase the popu- V 
larity of mobile data mmmunication even further. With increasing popularity comes the in- 

cfeasing need for higher data rates and this demands &ore stringent quirement on the received 

signal fidelity. 

Oneof the major problems which affects received signal fidelity in a mobile environment, 
j 7  

especially land mobile, is signal fading. There are other problems such as adjacent channel 
- 

- 

interference, cokhandel interference and amplifier non-linearity which play less important 

roles. The effects of fading need to be considered not only in the physical link level ut also in 
+"- 

the error control and higher system protocol levels. 
2 

To overcome the effect of fading, past focus of research on modulation and demodulation 

techniques for use in the,mobile environment has been on the development of constant enve- 

lope signalling schemes demodulated non-coherently. Some examples are the developments of 



Generalized Tamed FM (GTFM) [1], Gaussian MSK (GMSK) [2], and various other c~ntinp- - 
:A " 

ous phase modulation techniques. These techniques provide reasonably good perfmnugce & a - 
fading environment with data rates up to 19.2 kbps for a 25 kHz channel. Today, the most- 

- I 

active area of research in modulation technique for the mobile environment is in the use of 

multi-level modulations combined with trellis coding [3]. These modulation techniques invai- .' 

ably require good phase and amplitude reference for high performance. Multipath fading pre- 

vents the reliabli acquisition of these ~ferences from the modulated data. One soltition to this . 

problem is byFsr&ng a pilot along with the modulated signal to be used as reference. This 

pilot-based reference technique is commonly known as tone-calibrated transmission (TCT) [4]. 

Most recently, another technique which uses reference symbols embedded in the data stream 

has been introduced. Data rates of up to 64 kbps have been reported for ,a,Quadritqre--; .- 
a 

C 

Amplitude Modulated (QM system using either of these approaches [S]. 

1 .2 .  Fading Channel Characteristics [6,7] 

Y .  

A fading channel generally consists of both a fast and a slow component. The slow fading 

component affects the medi'an signal level result of shadowing by terrain features or man- 

made obstructions. This component can be modeled as having a log-normal amplitude proba- 

bility distribution. Fast fading (or commonly known as multipath fading) affects the instanta- 

neous signal amplitude and is caused by interference of electromagnetic wave resulting from 

reflections through different paths (and hence the name multipath fading). The sing]-e most 

important parameter in determining the statisti& of a fading channel is the doppler frequency 

which is a functioa of the carrier frequency and vehicle velocity. The carrier frequency is gen- 

erally fixed for a particular system. However, the vehicle velocity is subjected to change as the 

vehicle accelerates and decelerates. This means that the doppler frequency and therefore the 

fade statistics are also subjected to change. 



Two of the most popular statistical distributions for use ih Efiodeling~multipa fadiig are the 
r -  . 

Rice and Rayleigh distributions. The Rice disqibution applies to the case w k n  the& is a .- 
. < 

strong line of sight componen in the received signal such as- in s%yIlitc com@mication. , 
C 

Rayleigh distribution, a special case of the Rice distribution, is often used to model the Iwd 

mobile channel where line of sight component isvery weak or not present a t h .  The fading 
- .  

model used in rh$ thesis assumes Rayleigh fading. One of the most serious $ide'effe& of fast 
r 

- ,  I 

fading is random FM. The effect of random FM on bit error rate ( ~ ~ f i )  is sm& at low re- 

ceived signal energy to noise density ratio (EdN,) where id i t iv ihhi t i  Gaussian noise is the 

dominant cause of bit error. At high E&, bit errors due to randorri FM dominate. The result 

is an inducible error flax such that no matter how high EdN, is, the BER levels out at a par- 
ticular value which is a function of the doppler frequency. Use of a pilot or pilot sy~~bo l s  pro- 

< . r 

vides a solution to this problem. 

IS 
1 

1.3 .  Tone-Aided Error Floor Suppression Techniques . 

Systems which involve the use of a pilot tone have appeared in many forms. The original pilot 

based calibration system was first proposed by Davarian [4] and was named Tone-Calibrated 

Transmission (TCT) system. A number of variahons have emerged since thq introduction of 

TCT. These include Dual T me-Calibrated Transmission (DTCT) [a and Phase-Locked 

Transparent Tone-In-Band (PL-TW) [9]. AU these system invariably involve transmitting a 

tme (or tones) either along side or in the center of the transmission band. A pilot based system 

can reduce or even eliminate the irreducible error floor-and, at theesame time, allow coherent 

detection to be used One disadvantage is that it produc& a no?-constant envelope signal and 

d thus requires amplifier with highly linear. ansfer chi&acteristics for wsmission. However, 

this does not pose an addition problem for a QAM system because QAM is a non-constant 

3 



envqlope signalling scheme. Each variation of $it basd calibration system has its own ad- 

vantages and disadvantages. ~or'exarn~le, TCI' places the pilqt in the center of the transmis- 

sion band. Therefore, the referebce provided by a TCT system gives the best representation of 

the channel distortion and is least susceptible to adjacent channel interference. However, this 

sheme-requires a zero kc. signal level and thus places restrictions on the modulation and, 

coding schemes. A DTCT system uses two N o t  tones, one placed at either side of the m s -  

mission band. Obviously, this scheme does not &pire zero d.c. level in the data spectrum but' 
- 

it suffers from susceptibility to adjaznt channel interference a d  a 3 dB loss in BER perfor- 

nfance due to the need for differential encoding. splits the data spectrum in half and 

moves them apart to create a null in the center of band where the pilat is placed. This scheme 

also does not require the data spectrum to have zero d.c. Its main disadvantage is in the in- 
- 

creased processing complexity. 

. . 
1 . 4 .  Thesis, ~bjeetives* 

, -' 

'u 
One of the major design tradeoffs in any pilot-based system is in the pilot filter barl?vlr~dth. 

This issue has been investigated thoroughly by Cavers for TCT systems [lo]. If the band- 

width is toomarrow, then the filter cannot follow.channe1 fluctuations. If it is too wide, then 

the filter admits to6 much noise and the tesult is degradation in BER. The optimal bandwidth 
' 

is one which is just wide enough to cover the fade s; ectrum. In most literature of pilot tone 

techniquds, the pilot filter is usually assumed to be a unity gain rectangular filter with band- 

width equal to the maximum doppler f r e q u a  plus frequency offset expected during opera- 

tion. The x-tual doppler frequency and frequency offset during system operation is normally 

below the expected maxima. This suggests that there is more noise allowed into the pilot fdter 

than is necessary. The purpose of the research leading to this thesis is to investigate the use of 

., various adaptive filtering techniques for implementing the pilot filter so that the filter response 

4 



h 

a 

can adjust to changes in doppler faquency and themby m i n h k e  the system bit m r  rate. The 
i , 

idea of making the pilot filter adaptive is new. No pmri~us work of a &1ar nature h h  been - 
reported prior to the completion of this thesis. Three different algorithms w& investigated: (11 - * 

the S toch&tic Gradient Transversal Joint-Process Estimator or otherwise known - simply as the 

4 tochastic Gradient Transversal (SGT) fdter, (2) the Stochastic Gradient ~ a i h c e  Joint-Proces- 
Is 

sor Estimator (SGL-RE) and 73) the Filter Switching Algorithm (FSA). The first two algo- 

rithms are well known and has been used extensive19 in a~& suchas duction of intersymbol 

interference and echo cancellation [l 1, 121. The filter switching algorithm is a novel adaptive , 

filtering technique which has been developed explicitly for the present application. In this 
6 

h 

thesis, we will show that the filter switchihg algorithm is a more suitable choice for imple- 

menting an adaptive pilot filter when compared to the two stochastic m e n t  algorithms. 

1 .5 .  Thesis Outline 

The overall system model is presented in chapter 2 &ere the basic TCT stmctur is used. The 
b. 0 
signal flow along with all expressions describing the signals at the input aiid output of each 

system block are given in this chapter. * 

In order to enhance understanding of thC analysis to presented in subsequen?chapters, we 
. . 

reproduced some of h e  ana lyh l  results from the paper "Pelformhce of Tone Calibration 

with ~requency W s e t  and Imperfect Pilot Filter" by J .  K .  Cavers [lo] in chapter 3. These 

results form a starting point for the derivations of the three adaptive filtering algorithms. 

Chapter 4 examines the p&JOhbance of the traditional non-adaptive approach and discusses 

some of the considerads indievaluation of the performance of a system using an adaptive 
i ! 

\ 
( ,  

\ '\ 



pilot filter. This ghapter also explores some of the advantages and disadvantage of the pro- 

posed .adaptive schemes. . . 

\ 

Derivations and convergence analysis of the SGT pllgt filter are presented in chapter 5. It is 
s, 

shown here that the h u m  mean square error solution also gives a solution which mini- 
. ,'. 

mizes the system BER with respect to the pilot filter coefficients. Th.e SGT filter is found to 

perform adequately well under 1 to noise densityiatio. However, it suffes 
- .  

from slow convergence when the sighaknkrgy to noise density ratio is high dueio the large 

input eigenvalue spread. Simulations results are idso presented showing the average BER per- 

formance and the convergence behavior. 
d 5 

B . - - 

\ 

Chapter &povides brief derivations and RER sensitivity analysis of the SGL-JPE for use in . \' ,- 
, - 

the pilot filtering appbation. It is shown here that the BER is extremely sensitiee to fluctua- 

tions in the filter coefficients which leads to poor BER performance. Simulations results are 

given to support the analysis. 
r 

i 

Detailed derivations and analysis of the filter switching algorithm are.presented in chapter.7. A 

~ a r k o v  model is introduced which enables the computation of the average BER and cower- 
\ 

gence time. It is shown from the computed results that using the FSA can improve the BER 
/ 

performance of up to 2 dB at a BER of 10-2 when compared to a non-adaptive system. w i t h  
i 

the FSA, it is possible to trade off computational complexity for cbnvergence speed. More- 

over, even the simplest implementation of the FSA is shown to converge fast enough for 

tracking changes in fade statistics introduced by changes in vehicle speed. A simple scheme 

for estimating the frequency offset between the tmmitter and receiver oscillators is also pre- 

Z1.. h sented in chapter 7. -. 



Chapter 8 gives the conclusions and provides some recommendations.for future work in the 

resear@ area of this thesis. - 
* ... I 



. The system model of - .  a pilot based cali&on system is shorn ip figure 2.1. All signals &- 

kdxd (n this thesis are as&d to be in ~mplexzn~lope~np~sen~60ns. -' 
1.. . ., . 

..% a . -_> . - .- . . i : ... * . -  . . , . j = .- . 
. . . . , *  . " - .. . , . ,~ . . . -  - 

-2.1. Transmitted Signal 
1 

-- 
For simplicity, the transmitted signal is assumed to be BPSK and Manchester coded to create a . 

Y . 
spectral null for the The transmitted poweg is split between the+ta signal, sft) the ' 

pilot having amplitude, a. #The transmitted complex envelope is given by: 

where the data signal is defined by: 5 

p(t) i s  assumed to be an anunit energy pulse such that I lp(t)12 dt = 1. bi is the binarydaia 3L 

1 
J 

which can assume the yalues: +1 or - 1. We define the ratio of pilot tone power to data signal 

power;as'r, given by: - -. ,. - 
- \ - 

a2 
Q r =  X ~ R ~  . 

(2.3) 
* .  

7 .  - - + 

T -- - > 

Rb, in (2.3), denotes the bit rate of the system.- 

. 
\, 8 

I 





--. - .. 
" - 

- * ,  I ,  

-.., 9 . - .%?. 

. - I '  N . .  
X < -  

- .  , . 
9 - 

L' 
. .  - - 

8 .  r - 
" t . 1 . .. 3 

2.2. Fading ~ h a n n e l  
1 I * . t i  

. >>- B 
7Pgr  . .  * 2 

T r * - 
The pilot-added data signal z(t), is multiplied by a time-varying complex gain c(t). Complex 

* - 
- .  

white Gaussian ngise n(t), with power spectral density (PSD) N;, is @en addzd to the modi- 
- $ *  

f - . fied data signal to form the r&eive.ci signal r,(t) given by: 

- 
. .  . - i . r b  

r&) = c(t) ~ ( t )  + n(t). (2.4) 
I 

d 
L 

P 

, - ITE~CO&~IU gain can be d n e n  as: , _. _ 
. . 

ji 

', . . 1 - - 
. 

~ ( t )  = g(t) exp(j2zfot) . _. . 
* ' * (2.5) * -  * 1. 

' I " P 
- 

+ where g(t) is a time-varying $n rep~sentirig the effect of rnultipath fading. g(t) is modeled by 

a zero mean complex ~aussiah process wit4 doppler bandwidth f~ = y h ;  where v is h e  vehi- 

cle speed and h is the wavelength of thec&er. f,, denotes the freque& bfiseibetween the >. -.: 
- P 

. I  

transmitter ahd receiver oscillators. 
\ . . 

- - .  - .  
*\ . , , . 

- TXe spectrum of c(t), denoted by S ,  can be expressed h terms of the Spectrum of g(t) as: . , . -., 

r' 

s c m  = Sg(f-f,) - . .  (2.W 

. . 
? ,  

S&Q can be written as: , 

. I s n  4 

. SgO = < qf) . . (2.9) 1 

. . . . 
I * 

r 1 

10 
/ 
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2.3.. Rkceived Signal 

The received signal is split into two branches, one for the data signd and the other 

for processing the pilot. + 

. . 
8 -> - 

, - ,  

2.3.1.  Data Signal Processing   ranch 
- 

At the data proce~sing branch, the received signal r(t) passes through a unit energy filter which 

is matched to the modulatidg pulse shap* pet). The resulting signal is then sampled at rate 1/T . 

which is assumed here to equal the bit rate, Rb. Sampling time is assumed to be in perfect 

alignment with the bit boundary. Delay is added to the matched filter output in o d &  to equal- - - 
' 

ize the extra delay in the pilot branch. Assuming that the doppler frequency is much less than 

the bit rate, the delayed filter output is given by: . 
t 

where nn,(kT) is additive white Gaussian noise (AWGN) with variance No.- The dtlayed . 
L. - 

matched filter output is phase-corrected by the pilot filter output w(kT) to f o m  the data deci- 
- 7 5 %  ., 

sion variable: 
8 - 

= Re[uO<T) w*OcT)I (2.1 3) 
- I I 

Since the modulation is assumed to be BPSK, the decision device merely consists of a thresh- 

old comparator. 
/ 



- 
.' .. In order to rerrbve the data dependence in delayed matched film output u@T), rhe dumdulated 

data, f&, is multiplied with u&T). The data removed signal, c ( k ~ ) ,  is then used as a .>: 

perfoimance referen& for the adaptive pilot filter. The technique of removing data depcndincc 
" 

-- 
in u(kT) by .. using . demodulated data, is known as decision dipction. 

, - 

2 .3 .2 .  pikt Signal ,Processing Branch ,: - 
- 

The pilot processing branch is respoilsible f& producing a pilot reference with as little distdr- ,v 

. tion as pdssible. To accomplish this,task, the data modulation in the kceived srgnal is first 
. i 

removed by the use of an tegrate and dump klter. F e  integrate.-and dump filter output is then 
- P >+ 

sampled and filtered by the adaptive pilot filter.. The pilot fdter output is conjugated and multi- - 4- 

plied wi3h the delayed matched &ter output for phase-conection. In fig& 2.1, conjugation 

has been denoted by (a)* $ will be throughout the &st of the thesis where applicable. 

The sampled integrate and dump filter output is: 

where np(kT) is additive white Gaussian noise (AWGN) with variance No np(kT) is assumed 

to be uncomlated with the noise tkm, n,(kT), present in the received data signal. 
Y 

One qhould note that the integrate and dump filter cannot remove allof the data modulation due. 

to the distortions caused by the fading channel. The.result is the presence of data dependent or 

self noise in the received Mot. The effect of self-noise is investigated using simulations for the 

SGT filterand fdter implemented with the FSA in sections 5.5.2 and 7.4 respectively. , 



3 .  BER OF A TONE-CALIBRATED TRANSMISSION 

- 

1 

SYSTEM USING BPSK 

Analytical results related to the transmission of BFSK in a Rayleigh fading channel using pilot 

tone has been derived by Cavers [lo]. Some of these resulu are reproduced here, r p  with per- 

mission, because they foxm the basis of many of the analysis presented in this thesis. 
'€3 

c. 

One of the most important results from [lo] is the analytical expression relating BER and the . 

complex cornlation coefficient between matched filter output and pilot filter output, i.e. 

In this relation, p, and pi are the real and imaginary parts of the complex correlation coefficient p 
.-# 

where p itself is given by: 

In (3.2), Hp(& and B, denote the fi-equency response and the noise equivalent bandwidth of. 

the pilot filter. For a pilot filter with a real frequency response, pi equals zero; so, the expres- 

sion for BER reduces to: 
s 



For a rectangular pilot fdter, the correlation coefficient is given by: 

where 

1 min[B,, fg+fo] -, fo ] - arcsin [ max[-B,, -fg+fo] - fo ~,-j = - { arc sin [ 
71: - b f~ 

I }  (3.$ 

* 
and Bp is the baseband pilot filter bandwidth such that the frequency response of a unit energy 

rectangular pilot filter is defined by'the following: a ;  7 

I - -ZaBp I o.5 2 x B p  
JZBp Hp(da) = {  otherwise 

P 



-, 4 .  PILOT FILTER IMPLEMENTATION!? 

This chapter examines the non-APtive and adaptive approaches for pilot filtering. In section 

4.1, we present some results obtained using the traditional non-adaptive filtering technique. 
? .  

Section 4.2discusses some of the, considerations in using an adaptive implementation in gen- 

\ 
L eral and also some of the pros and cons of eacg of the' three adaptive schemes which are inves- 

tigated in the later chapters. 
. . 

4 . 1 .  . . Non-Adaptive Case 

Conventional filter im$ementations has assumed an ideal rectangular filter [4,8]. Because 

doppler freq~enc~~dsubjected to change and oscillator frequency offset is normally unknown, 
I 

the bandwidth of a non-adaptive pilot filter needs to be wide enough to accommodate the 
1 

largest doppler frequeqcy and oscillator frequency offset which are to be expected during oper- 

ation. The optimum bandwidth for a symmetric rectangular pilot filter, i.e. rectangular filter , 
f 

with a symrnetric.frequency response, is approximately equal to the sum of the doppler fie- 

quency and frequency offset. The BER performance of a rectangular pilot filte~with band- 

width wider than the optimal is degraded due to excess noise allowed into the pi@. Figure 4.1 

shows the difference in BER performance at various doppkr frequencies &tween a rectangular , 

pilot filter wi@ optimum bandwidth and one whose bandwidth is fixed at 150Hz. The per- -, 

Q 
forrnece penalty for using,a wider filter is 2.0, 1.4-and 0.8 dB for doppler of 10, 50 and 

lOOHz respectively. ' 



I 1 1  / j . .  
I i i  



4.2. Adaptive Case 

In the adaptive implementations, the central idea is to make the pilot filter adapt to the frequency 
r L 

offset and changes in doppler frequency. An adaptive filter, by def~ t ion ,  is a filter whose co- 

efficients vary with time according to some performance criterion: An khportant consideration 

in adaptive pilot filter implementations is the convergence time, especially for burst systems, 

because the BER is often poor while the filter is adapting. The situation is worst for the case 

when the doppler is increasing because when the filter bandwidth cannot widen fast enoug%, . = 

part of the pilot energy is Ntered out. The result is a serious distortion in the filtered pilot 

which can lead to large degradation in BER. Moreover, because of the particular shape of the 

fade spectrum, there is more energy in the two "horns" of the spectrum for a given frequency 
I 

range n& thk doppler kequency (approximately 15% energy in 5% of the bandwidth) than in 

the center section of the spectrum. For example, using a rectangular pilot filter with bandwidth 

of 50H.z at a doppler of 50Hz, the BER at E m ,  of 20dB is 3.59 x 10-3, assuming no fre- 

quency offset. When the doppler takes a sudden increase to 60Hz, the BER now becomes 

1.07 x 10-I. In reality, the change in doppler is gradual and slow so that an adaptive pilot filter 

does not n& to have a very fast convergence speed to track these changes and maintain a low 

BER ~ L U % I ~  convergence. 

There are three adaptive schemes investigated in this thesis. Each has different advantages and 

disadvantages; the following$ections discusses some of them. 



, " -. % '  , c. . 
4.2.1.  Stochastic Gradient Transversal Joint Process Estimator ; ,.- , ; ; . ,. ., ,' ..: . . 

, 
/ .  

ple to implement. It uses a minimum mean square e m  (MMSE) criterion 

in section 5.2 to be equivalent to minimizing the BER with respect to the 
- 

filter coefficients. As a characteristic of all stochastic gradient adaptive algorithms, the result- 

ing average mean square error, or in this case, average BER, is higher than optimal due to the 

use of the stochastic gradient approximation. The major disadvantage of this adaptive fdtering 

scheme is the dependence of convergence speed an the eigenvalue spread of the input correla- 

tion matrix [13, 14, 151. As will be shown later, this results in a very slow convergence at 

high Eflo due to the high eigenvalue spread under this condition. 

4 .2 .2 .  Stochastic Gradient Lattice Joint Process Estimator 

The SGL-PE is slightly more complex than the SGT filter because it has an additional lattice 

srmctun. It also uses MMSE criterion and the stochastic yd ien t  approximation so that there 

is some degradation'in BER compared to the optimal filter. b e  of the main advantages of the 

SGL-JPE over the SGT f r is that its convergence behavior is not sensitive to the eigenvalue ? 
spread. Its major problem in the present application lies in the high sensitivity of the BER to 

9 

changes filter coefficients. 

I 
4 .2 .3 .  Filter Switching Algorithm 

_* 

The filter switching algorithm is the most complex in terms of computation and memory re- 

quirements. However, the algorithm provides a mean of trading off complexity for conver- 

gence speed. Recall from section 4.1 that the maximum gain for using an adaptive filter over a 



< ,  

I .  

- 
I 

- - 
fixed rectangular filter is only about 0.8 dB for lOOHz doppler. This suggests that BER per- 

- 
- formane is extremely important in determining the usefulness of an adaptive pilot filter. It will . _ 

be shown later that the filter switching algorithm can provide a better BER performance 'than ' ' 

+-- 
the other &o schemes which makes it a good candidate for an adaptive pilot fdter implements- 

tion. 



The transversal or tapped-delay line is one of the most widely used structures for implementing 
.s 

an adaptive filter.* The main reason for its popularity is because of its non-recursive structure 

which makes analysis of its behavior simple. A popular algorithm for adapting the transversal 

filter coefficients is 'the Stochastic Gradient (SG), also called the Least Mean Square, algo- 

rithm. This algorithm is designed to minimize the mean square e m  (MSE) between a desired 

response and the filter output. We will show in this section that the stochastic gradient 

transversal filter can adapt itself to minimize the BER in a pilot tone aided transmission system 

for a given set of parameters. Although the adaptation process is slow under certain condi- 

tions, it has its merits in that the adaptation is unaffected by fkGuency offset in the fade spec- 
\ 

-8.' trum and changes in fade statistics due to shifts in doppler frequency. Section 5.1 gives a 

derivation of the SG algorithm. In section 5.2, we establish the equivalence between mini- 

&ng BER and the minimization of the MSE. Section 5.3 deals with the analysis of the mean 

convergence behavior and section 5.4 utilizes these results for computing mean convergence 

curves for BER. Section 5.5 provides some simulation results and lastly, section 5.6 gives a 

brief summary of the results obtained using the SGT pilot filter. 

5 . 1 .  Filter Derivation 
1 

\ 

Detailed derivation ofthe SGT filter can be found in many references [13, 14, 151. A brief 

derivation has been included here for completen&s. ~e fo re  we proceed, some notations need 

to be clarified. Letters in bold will be used to denote vectors or matrices. (*)*.denotes trans- 
4 

position and (*)* denotes hermitian (or conjugate) transpose. Sampling period T will be 

dropped from all expressions where applicable. A* 



~ig-&e 5.1 shows the basic structure of the .> adaptive ., t~@eTS81~ pilot filter. Input to the pilot 
, - -La 

a 
filter is the data-removed received signal, r&k). Express~on for rp&) is given by (2.14) and is 

\ reproduced he% for convenience: 
i 

np(k) is AWGN with variance No. 
t + - 

3 
't ,. 

Note that a Moving Window Averager (MWA)thas been included as part of 'the filter structure. 
4 - . - 

which is not found in a conventional SGT filter. The MWA helps reduce the required number 
b 

of coeffioients by enabling the overall impulse response to cover a longer time span. ~veraged 

samples are delayed and multiplied by filter coefficients h(k) where h(k) is the column vector ' 

defined by:. 

-7 
t 

h(k) are adapted to reduce the MSE between the pilot fdter output and reference symbol se- 
\ 

---, 
L , quence $(k) where $(k) is the decision corrected matched fdter output. Although- the ultimate 

goal for the present application is to minimize BER, it will be shown later that the minimum. 

MSE solution is also oile .which gives minimum BER. - -  
, . 

The pilot' filter output is given by: 





J =61,u(k) - hH r(k) (5.6) 

t 

u(k) is given by (2.12) and is reprinted bere for convenience: 
I 

r 

I 

u(k) = c(k) A bk + nu(k) (5.7) L 

4 

- B 

From (5.6) and (5.7), the expression for MSE can be shown ta be: . - 

6x 
, . 

J(h) = ~[le(k)p] 
- , - a 2  - hH E [$ u*(k) r(k)] 



l L  \ - .  
/ 

A 

d - 
where 0,2 denotes the piance of u&). ~ h h ,  equakcm xveals that if h, is the optimal coeffi- ' 

cient vector given that & = &, then anoth~solution which minimizes Jfht is b = -h, given 
. . 

- that $ = -h. In other words, there i s  a twc+M . . ambiflty associapd with the minimuin @E . 
-1 

solution vector caused by decision direction- One way to resolye this ambiguity is to employ 

v-& differential encding or to tialize the adaptation process with a training sequence.at the 
1 .  

start of the algorithm, It has been found using simulations that 20 training bits ire sufficient tb 

avoid miiadaptatiod ~ifferential encoding is not recorninended becausl: it imposes a 3- - 

Q k  

I 
penalty in a Kayleigh fa envir~riment. 

, . 

Terms involving $ can be expanded, and simplified in the following k e r :  9 

, . 

a6, u*(k) r(Nl = ( A 3  c*@) + nu%)) r 0 1  

= ~ [ k  4;1 E ~ A  cvo r M j  + E~JOL)  ~ 0 4 1  (5.9) 

B 

, 
9 

Here, Gk and bh are assumed to be independent of c(k), r(k) and nu(k). When the BER is 

, small, f& = bk. So E[& bk] = 1. EL!$ = 1 and (5.9) can bk approximated by: - 

9 

c .  

---.A ' 

~ [ 6 ,  u*(k) ~ ( W I  - E m  c*ud0+ nu*&)) re ) ]  + (5.10) 

\ 
. . 

Let us denote the cross-cornlation vector between $k) and r(k) by p and the rrelation matrix -A, 

of r(k) by R such that: 
C 

I 

P = ~[c*(k)  r(k)l .. E[(A c*(k) + nu*&)) r(k)l -(5.11) P 

and 4 d 
li 0 - 

n 
25 

. > 
0 

#+ , 
-/ . .  r . i  

\ 



J(h).can then be written as: 
8 ' .  

i 

To find the minimum MSE solution, we differentiate the MSE with respect to the coefficient 
, , 

vector h. Differendadon of the terms hH p, pH h, and hH R h with respect to h results in the 

following 1151: ' 

where 0 is a null vector with the same dimension as h. Using (5.15) and (5,16), the gradient 
U 

of J(h) is thus given by: 

Next, we equate the gradient to the null vector giving: 



with ho denoting the optim"m coefficient victor. The optimum fdter represented by ho is 

called Wiener filter. .Equation 5.18 is known as the normal equation . The reason for this - 
n m e  is Because when the optimum filter is used, the estimati~n error vector, eo(k), is normal 

to the filter output vector, w(k). 

Solving (5.18) byoestimating R and p, and inverting R can be computationally difficuit. An 
B 

alte3matiye is to find ho in successive steps by making correction to the coefficient vector in a 
'& 

direction opposite to the gradient vector (i.e. direction of the steepest descent). This procedure 

as the method of steepest descent [14]. The steepest descent algorithm is represen 

by the update equation: 
t - 

. . 

9 

the step size. The factor of two is introduced for convenience only. The 

merit vector given by (5.17) is a statistically averaged quantity. In practice, it is common to 

use an instantaneous estimate of the gradient (hence the name stochastic gradient) formed by 

removing the expectation in thz expressions defming R and p. The resulting update equation 

can be shown to be: * 

This updiWequation completely describes the stochastic w e n t  algorithm. B 



Although use of the stochastic gradient greatly simplifies the coeffiqient update algorithm, a 

pricehas to be p&d in the form ofiinmased average MSE and hence increased BER. The 

excess average MSE (defmed as J, - Jmin) is due to random fluctuations bf the gmdient esti- 

mate, An analytical expression exists for-computing the excess average MSE [14]. However, 

similar expression for excess BER is difficult to derive due to the complex dependence of BER 

on h. Nevertheless, effect of various parameters on the 9 8 4 s  BER will be investigated in " 

detail using simulation results. 

Since the pilot filter implementation is digital, the delay mismatch A be & een pilot filter output * 

and matched filter output is negligible if an appropriate delay compensation is used. If we fur- 

ther assume that the fading process is stationan, (so that Rg(k) is conjugate symmetric), then 

the resulting optimum coefficient vector will be conjugate symmetric. This means that, at any 

'given time instant, only positive time samples are necessary in determining signal statistics 
.d 

while negative time samples give the same stochastic information. One can take advantage of 

this redundant information to reduce the amount of noise present in the gradient estimate and - 
therefore decrease the excess BER by averaging the positive and negative tirnscsarnples We do 

this by changing the update equation to the following: 
%+ 

A 
hi(k+l) = hi@) + l- (e(k) f (k-i) ,-, + e*@) r(k+i)) i = 0, ..., L 

i, 
(r 

One can easily show that the resul&'gcoefficient vector h described by (5.21) is now conju- 

gate symmetric so that h.i(k+l) = hc(k+l). 



5.2.  Equivalence between Minimum BER- and Minimum Mean Square Error 

Solutions 

In this section, we will show that the use of coefficient vector which minimizes the mean 

' square enor between $(k) and w(k) also result in minimurn BEE To begin, we first make the 

assumption that the filter is forced to be conjugate symmetric. From Fourier transform theory 

[16], this implies that the resddng filter frequency response will be red. As discussed in sec- 

tion 3, the correlation coefficient between 6(k) and w(k), under this condition, will dso be real 

1 .  and the expression for the BER is given by (3.3). 

The correlation coefficient between $k) and w(k) is defined by: 

_ _--- 7 

where crgw2denotes the covariance between G(k) and w(k) and ow2 denotes the variance of 

w(k). Using (5.3) and (5.1 ), the terms c ~ f i ~ ~  and o, can be expanded in matrix notation as: 

and m 

Equation 5.22 may then be written as: 



From (3.3), we see that the solution which gives minimum BER is one which,maxirnizes p. 
6 - 7 

f We maximize p by differentiating (5.25) wihrespect to h and equating fie result JO the null 

vector (see ref. [I51 for a review in vector differentiation). The resulting equation can be . fl 

Since oQW2 is real (because p is real), it can be written as: 

Using (5.27), we can evaluate - dh to give: 

d e w 2  ' - 
d h .  -P 

duw The next step is to obtain x. Diffe-tiating (5.24) with respect to h gives: 

Substituting (5.28) and (5.29) into (5.26) gives the following result: 



To see if-the solilddn to the normal equation also solves (5.30), we substitute the normal ulua- 
' 

tion into (5.30) and we get: - 

, . . . , - 

From (5.23) and (5.24), equation 5.32 can be expanded to give: 

Since pH h, is real, pH h, can be replaced by hoH p so that (5.32) becomes: 

Finally, if we again substitute the normal equation into (5.33), we s>ee that the RHS of (5.33) 

now equals the LHS. This completes the proof. Closer examination af (5.33) reveals that the 

use of any multiple of h, will give rise to a minimum BER meaning that the optimum coeffi- 

cient vector (for minimum RER) is gain independent. This fact is evident from (5.25). 

i 

Expression for the minimum BER can be obtained by substituting the normal equation into 

(5.25) to find the maximum correlation coefficient and then make use of (3.3). The maximum 

correlation coefficient is given by: 



5 . 3 .  Convergence Analysis 

All recursive algorithms go through a msient  or convergence period before a steady state c& 

be reached. These $&ithms &ariiblly involve feedback and therefore are subjected to-:in&- 
>. . 

bility. Thus, we need to fmt examine the conditions which make the algorithm stable., For 
, . " .  

simplicity, w e . d  assume that theyfading process is stationary.: : ', 

Defining the coefficient-emr vector as: * .  

~ ( k )  = h(k) - ho, 

we now perform a. coordinate transformation by substiluting 
4 

equation 5.20. The result is: 

(5.6) and (5.35) intothe . . update . . 



where I is the identity matrix: If we now take expectation of c(k+l) and replace various terns 

with p and R, k e  have: 
*, 

Using the normal equation, (5.37) can be reduced to: 

E[c(k+ 1)] = (I - A R) E[c(k)] 

We now diagonalize R so that it can be written as [15,17]: 

Here, M is a matrix with its columns consisting of eigenvectors of R, and A is a diagonal 

matrix with eigenvalues of R as its diagonal elements. Using (5.39), E[c(k+l)] can be ex- 

pressed as: 

E[c(k+l)] = (I - A M A MH) E[C@)] 

Changing variables so that q(k) = MH ~[c(k)],  we rewrite (5.40) as: 

The separate dimensions of E[c(k+l)] are now decoupled into their natural "modes" so that we 

can write: 



. . 
- 

qi(k+l) = (1 -'A hi) qi(k) i = -L,:..,L .[5.42) 

8 .  

where hi is the ith eigenvalue of the correlation ma& R. Equation 5.42 can be rewritten in a 

more convenient fom: 

Recognizing that (5.43) represents a geometric series, we obtain the stability condition: 

Thus, for stability, the step size A must satisfy the followhg: 

for all i 
t 

Since the fading process is assumed stationary, the correlation matrix R is positive definite [15] 

and its eigenvalues are all real and positive. It is sufficient that the following is true for stabil- 

ity: 

Equation 5.46 describes the condition for "mean" convergence. Ln reality, in order to avoid 

divergence due to statistical variations, it is common [15] to use a more restrictive bound for 

selecting the step size A: 



Here, we havd made use of the following inequality: 

k 

6 = sum of rnean-square values of al l  tap inputs (5.49) 1 

i - '\ 
Having established the stability condition, we proceed to analyze the convergence propemes. 

In terms of convergence, we require that all modes of the algorithm to converge before steady 

state can be reached. From (5.43), it is clear that convergence speed increases with the step 

size. However, step size is limitedby (5.46). Step size which is small enough to ensure sta- 

bility can make convergence slow for modes with small eigenvalues. Assuming that we set A 

to its upper limit, 2/7cmm, then convergence speed is limited by Xmm / Amin, i.e. the eigenvdue 
\ 

spread. The effect of eigenvalue spread on convergence can be visualized by plotting contours 

of equi-MSE as function of c(k). Figure 5.2 shows equi-MSE contours for a second order 

system with small and large eigenvalue spreads. 
. 



I I 

(a) Small Eignevalue Spread (b) Large Eigenvalue Spread ' ' . . 

Figure 5.2 - Contours of MSE as a function of c(k) 
i 

*' 

When eigenvalue spread is small (= I), the resulting contour is circularL This:means thgthe 

direction of negative gradient vector is always in the direction of minimum MSE as illustrated 
A 

in figure 5.2a: For the case of a large eigenvalue spread, the contour is elliptical [13] as shown 
. , 

in figure 5.2b; each stepdoes not go.directly toward the minimum. So .k.number of steps: : 
' 

' . .  
required to reach the minimum increases. It should also be clear from figure 5.2 that conver- ,. - - 

gence speed is also highly dependent on the initial coefficient vector Gone cah choose an initial 
' 

F 

vector which is arbitrarily clase to the &urn. 

- I 

, . 
Aside From the eigenvalues, the corresponding eigenktors of R also play-an impomkt role in .. 

determining convergence behavior. From the definition of q*), we see that the coefficient 
. . 

error vector is simply a linear combination of the eigenvectors such that: 
i 



. , I U . I 

P b - 
~. 

i=L 
l (5.49) 

i=-L 

C 

where ti is the ilh eigenvector corresponding to hi.. Thus, each eigenvector sh&s the filter re-, 

sponse independently and the amount of shaping or weighting is determined by qi(k). In other 

kords, the ovcpll convergence behador is affected by the amount of con@bution of each 
" 

mode to the MSE or BER as well as how fast the individual mode converges. 

In order to furthe; understand the convergpce behavior of the SGT fdter, we need to under- 
L. 

Y A 

stand some of the physical sigmficaqce of eigenvalue spread. First consider the case when the 
U 

successive samples of r are -uncorrelated. With the assumption that the input process is 
-, 

stationary, this implies that R is.a multiple of I. In this case, the eigedvalue spread is at its 

minimum, i.e. equal to one. Conversely,'when r is completely komelated (correlation coeffi- 
f .  

- 5 '  

cient = 1). then all el ern en^ of R are identical. It can be shown that, in this case, at least Qne of 

the eigenvalues of R must be zero meaning that the eigenvalue spread is M i t e .  So, eigen- * 

& I* 

value spread can be considered as a measure of the correlatedness*between time samples of a 

stochastic process, iq this case, r. We can therefore expect that when samples of r are highly ., '., . 
, .  . --. 

correlated, convergence will be slow. This is intuitively satisfymg because if we cobsider cor- * 

relation as a measure of informatioh content, high correlatiw in the input smples implies low 

information content. This means that it will take many samples in order to chatacterize the -' 

process which generated these samples. 

5 : 4 .  Computed Results 

In this section, we attempt to predict the effect of various parameters on the convergence of the 

SGT by eva1usting the input eigenvalue spread. We will present some computed results 
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showing the convergence of BER as a function of rime in the form of learning curves 041. We 
- 1  

proceed by f ~ s t  deriving expressions for camputing-the correlation manix R and the cross- 
. \ - , -  correlation vector p. ' ,  

< 

The currelation matrix R can be defined as a matrix with'elements: . 
- 

Expanding r using (5.5) and remembering thafinput samples to the transversal filter is sepa- 

rated in time by KT, we get: 
/ 

(K- 1 It2 (K- 1 ) n  

Rnm(k) = E [(a c*((k-n)~-i) + n*((k-n)~)) (a c((k-m)K-j) + n((k-m)~)) ] 
i=-(K- 1)/2 j=-@-IKZ. 

\ (K-1)D - 0(-1)/2 
= a2 E[c*((k-n)~-i) c((k-m)K-j)) i- ~[n*((k-nr() n((k-rn)~)] ' 

i=-(K-l)n js-(K-1)/2 
(K- l) /2 (K- l)/2 t 

, ~ I = 2a2 I I$&("-m)~+(i-j)) t 2N&&, (5.52) 
i=-(K-1)/2 j=-(K-1)/2 

where 6nm is the Kronecker delta function. In.(5.52), we have made use of the assumption 
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' Bquation 5.33 cmlbe exprebwi% tcrrds of the received &era, per bit ~ b .  With P, and pt . . c  1 , .  
*- -- - .  

' denoting the tot$ transkit and receive power, 6 is giyen by: ., - * - . %  I 

" .  
I /  - ,  

-a 

* .  
. ,  

3 - 1 

a2 
pr Zeir2 $= +-~2(4+;) =,< z ( l + r )  

' E b = %  g % b  (5.54) . w ,  

- - 
9 

- .  , a  , 
. / .  

. . . " . . - J 

t ' \ .  . . I _ I  I "  , 
1 - 

3 s  3 , 1 I >  . .. 7 . - khere (23) has bcai used. 'using <5.53), expresiio.n for thccomlation becomes: l L .  

3 . - -  
,'- A ,  4 * 

8 '  * '  ? 
r i  i 

P - ' - 
, . + *  , C 

% z 2-' y;. K-1." 

' Rnm(k) = iN;IC (:$&-. q(l) Rg((n-&C+ i 1)'; b) . + . .  . . . ,  - * 1- l=-@-,l) - - 
w _ 

~ 4 '  , . ,  ' 

E b r . k b  
k ~ N ~ K  C sol f q ( = m j ~ +  n + &In, 1 - - (5.55) . ' -  h 

,* I=-(K-1) - 
I 

/ C '  

4 

'1 * A 

i Expression for' the cross-correlation vector elements can be de~ived in a similar fashion to 

ob& the following result: + 

K~ w-ljnb Y . 4  

QK-n i5.36) P&) = 2 Eb - 
l+r i=-O[-lyr. , -  

I * + d  

- 

For a given set of channel and filter parameters, 'we can compute R and p using 5.55 and 5.56. 

With R ihd p, we'mi'compute the optimum coefficient vector ho by solving the norm$ equa- 

tion and all eigenvalues and eigenveetors associated with R by using standard rourines [18]. 

The eigmvalues and eigenvectors are n e e d  to compute the b e  evolution of'the filtef ~~beffieffi- 

cient vector, From the coefficient vector, we can compute the BER at each time step using 

(5.25) and (3.3). . a 
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5.4.1, Input Eigenvalues . 
9 

, 
The input eigenvalue spread has been cornput& as a function of various parameters in order to 

predict the convergence performance of the algorithm under variousconditions. The results &e 
. . 

, ' 

E & ~  - Eigenvalue spread is directly proportional to E d N ,  In terms of the correlation 

matrix R, decreasing noise level decreases values of the diagonal elements of R which 
* >  

directly decreases the eigenvalues. Since EdN, can vary significantly (10-30dB typi- 

' cally), the eigenvalue spread may vary up to 100 f d d  

~ D T  - Eigenvalue spread is a decreasing function with increasing doppler frequency. - 
Increasing ~ D T  has the effect of narrowing the autocorrelation functionaf the fading 

process, Rg. Since Rg has a decreasing envelope with time, successive samples of the 
1 I 

fading process appear less conglated with increasing doppler. Change in eigenvalue 

spread as a function of ~ D T  is small compared to E m o .  For ~ D T  varied from 0.5% to 

4%, the eigenvalue spread is approximately halved - d 

.* MWA'- Increasing MWA length also increases eigenvalue spread. W f r o m  section 

5.1 that the length of the MWA determines the effective time separation between suc- .~~  

cessive samples of the input.of the transversal filter. Hence, as the length of the MWA 
I 

increases, the time separation also increases and succes&f?samples become less cor- 

related. However, the averaging has the opposite effect of increasing the correlation 

between samples. Even atmoderate doppler frequency, the correlation function of the 
* - 

k 
fad&g process has a relativ&~dk main lobe. As such, the decrease in correlatiob dpe 

. h 

to the & e a s e  in time sepktion is small c o r n p a .  to the increase in correlation 

averaging. The result is an overall increase in eigenvalue spread Like ~DT,  the change 
-. 



is small as compared to change due to E& For an increase of MWA length from 1 

to 5, the increase in eigenvalue spread is @proximatdy 2.5 times. 

pilot to signal power ratio r - change in eigenvdue spread due to r is small. Computa- 

tion shdbs a 1.5 fold increase in eigenvalue spread for r increased from 0.2 to 0.5. 
T 

filter length - longer filter tends to increase the eigenvalue spread. However, the 

change is'neglqjbly s@ compared to changes due to other parameters. 

The following conclusion can be drawn from these results. Convergence will be sl&w at low 

doppler frequency (and hence low vehicle speed). 1t will be VERY slow for a system operat- 

ing at high E f l 0  such as 30-40dB. Fortunately, most mobile-communication systems operate 

at the vicinity of 2WB where eigenvdue spread is not a problem. 
' 

5 .4 .2 .  Convergence of BER in the- Mean 

Traditiondly, a learning curve is defined as a plot of MSE versus the number of iterations. For 
/ 

r 

.the present application, we will use it to kpresent a plot of BER versus number of iterations. 

Procedures for evaluating mean cmvergence of the coefficient vector and BER at each iteration 

has been dis~ussed earlier. Here, we present some learning curves in an attempt to gain more 

insight in to the convergence behavior before proceeding with simulations. 
. 

2 

Figure 5.3 shows the BER leahing curve for varigus foT. The following parameters were 

used: 

Emo - 2OdB; fi&i length = 5; MWA len& = 3; and step size = 0.1. Note the two clearly 

defined sections wideat in the two learning curves with ~ D T  equal to 0.0208 and 0.0417. h e  

flat portion of the curves were due to slow convergence of modes with small eigenvalues. 

1 , 

I 



Figure 5.4 shows learning curves for different E m o  with ~ D T  of 0.0208 and same filter 

parametm as used for the previous figure. The sqt of curves illustrates heavy dependence of 

convergence speed on E n , .  Note that even though convergence is slow for EdN,  of 30d.B. 

the BER is already below 10-3 after about 300 iterations. 

One of the most important advantage of an adaptive pilot filer over a non-adaptive one is the . 

ability of the adaptive pilot filter to adjust in  bandwidth when the vehicle speed changes. Con- 
\ vergence speed during vehicle deceleration is not a problem because this only means that the 

filter bandwidth is too wide, resulting in more noise being admitted than is necessary. At a 

typical EdN,, the deterioration of BER in this case is small.   ow ever; during vehicle acceler- 

ation, the bandwidth of the adapting filter will be too narrow to cover the entire fade spectrum. 

The result is a large increase in BER while the filter tries to adapt its coefficients to increase its 

bandwidth. This phenomenon is illustrated by figure 5.5 which shows the learning curves for 

increasing doppler frequency at various E m o .  

10/2400 every 3000 bits (corresponding to a stepwise acceleration of 10 krnph/sec for a 2400 

bps system) from 0.00417 to 0.0417. For the initial 6000 bits, the E D o  has been set at 15dB 
A 

for all curves. This'is necessary'to enable fast convergence so that the SGT filter is very close 

to being converged' at each E m o ,  before the doppler iS stepped up. For E m o  of 10 and 

20dE3, the jumps in B.ER are not as evident because convergence at these signal to noise ratios 

is relatively fast. The large "bump" in BER for E& of 40dB shows high sensitivity of BER 

to vehicle acceleration at high E@,. For comparison, the BER at various E m o  for a ideal 

rectangular pilot filter with normalized bandwidth of 0.0625 are alSo shown in figure 5.5. At 

. E m o  2 20dB, rectangular filter is better than SGT filter except during initial part of the accel- 

eration period For Ef lo  < 20dB, SGT filter is better through most part of the acceleration. 

a . . 
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5 .5 .  Simulation Results 

- 
i 

I Monte Carlo simulations were performed as a final part in the investigation of the use of a SGT 

pilot filter. The main purposes of the simulations were (1) to verify convergence behavior as 

predicted by results found in section 5.4.2, (2) to obtain the steady state average BER under 

various conditions, and (3) to investigate the effect of self-noise and decision direction. 

GBin data of the fading process was generated by passing white Pseudo-Noise (PN) sequence 

through a FIR filter for which the. magnitude squared of the frequency respo se approximated , 

the fade spectrum, Sg. Another PN sequence, which was made independent of the sequence 

used to generate the gain data, was used to represent additive noise. Received samples were 

then formed and processed ~ccording to the model given in figure 5.6 with 8 samples used to 

represent each data bit. Note that this figure differs from figure 2.1 in that the removal of data 

dependeke in the reference signal, u*), has been made perfect. Also, the pilot tone and data 

signal were'ti-anslqitted and processed separately so that the results obtained in the s&ulations 

were not affected by self-noise. -All of the simulations folloyed the configuration illustrated in 

'figure 5.6 except where the effects of decision direction and self noise were being investigated. 

Unless specified otherwise, the following parameters were used for all simdation ~esults 
6- 

given: 

EdN, = 20dI3, ~ D T  = 0.0208, foT = 0, power split ratio r = 0.2, step size = 0.05, filter length 

= 5 and W A  length = 3. The SGT filter was forced to be conjugate symmetric using update 

equation 5.2 1. 
r . , 





5.5.1. Steady State Average Bit Error Rate 
- 

The steady state average BER was obtained by running simulation for a sufficient number of ' 

iterations to reach convergence (or close to convergence) and time averaging the post-conver- 

gence BER. The B -h iteration was computed using (3.3) and (5.25). 

Effect of step size 

\ 
Figure 5.7 shows the average BER versus Emo for various step sizes, A. The average BER 

increases with increasing A as expected because A determines the size of the fluctuations of the 

coefficient vector from the optimum. c l e d y ,  the larger the fluctuations, the higher is the 

average BER. The amount of excess power required to compensate for the increase in average 
- 

BER due to the use of noisy gradient, which we will refer to as excess loss, increases with 

Em,.  For A of 0.025 and 0.05, the excess loss was approximately O.1d.B at a BER of 10-2 

and 0.3d.B at 10-4. 

. . 
Effect of fDT 

The effect of the doppler frequency on the average BER is illustrated in figure 5.8. Here, we 

can observe that the excess loss increased with increasing ~DT.  This makes intuitive sense k-4 

because variations in the gain are more rapid at a higher ~ D T ,  which causes the MSE gradient 

estimate to also wander more rapidly. Excess loss at ~ D T  of 0.00417 was found to be negligi- 

ble; whereas for4fDT of 0.0208 and 0.0417, the excess losses were 0.2 and 0.5dB respec- 

tively. Compared to an ideal rectangular pilot filter with normalized bandwidth of 0.0625, the 
b 

SGT filte~ was inferior at all Et,/No for ~ D T  of 0.0417. For ~ D T  of 0.0208, SGT filter was 



better for Ef lo  less than 2OdB. SGT filter was better for all Efl0  at ~ D T  of 0.00617. The 

breakeven doppler frequency was at approximately 0.02. 

Effect of f,T * p 

Frequency offset was found to have negligible effect on the steady state average BER for foT 

of up to 10%. The ability of the 

and the matched filter. 

Effect of Filter Length and 

SGT fdter to compensate for foT is only limited by the W A  

--b 

Moving Window Averager 

Figure 5.9 gives the average BER versus E m o  using various filter and MWA lengths. We 
- 

can see from figure 5.9 that the use of filter length greater than 11 should be avoided. The best 
L 

combination of filter length and W A  overall was 5 and 5 respectively. Longer MWA pro- 
1 ~ 

duced better results. However, it should be remembered that a longer MWA reduces average 

BER at the expense of decreased correction range for frequency .offset. 

Effect of Decision Direction and Self-Noise 

Previous results had been obtained without the effecgs of decision direction and self-noise. We 

investigated the effects of decision dhection by using demodulator decisions to remove the data 

dependence in u&). The effects of self-noise had also been selectively included in the sirnula- - 

tion by combining the pilot tone anddata signal Ln the transmitter as illustrated by the system 

model given in figure 2.1. The results are illustrated in figure 5.10 *which shows the BER per- 

formance with and without the effect of decision direction and self-noise. A reference p h i n g  
a 

sequence of 20 bits was used for the simulations using decision direction. Effect of decision 4 



direction is not discernible in figure 5.10. However, examination of BER values revealed a ' 

slight increase in average BER at low Emo. This is to be expected as there are more decision 
I 

errors at low Eflo. Self-noise had little effect at low mo. But at high E m o ,  self-noise 

caused a large increase in average BER. The amount of self-noise is not dependent on E m o  
e 

- 
6 

so that bit errors at low E m o  are dominated by additive noise whereas at high En,, bit 

errors are dominated by self-noise. The excess loss due to self-noise at a BER of 104 was ap- 

proximately 3dB. It should be noted that this numerical results is for the use of Manchestor 

c w g  in creating the spectral null required for placing the pilot. Other techniques such as 
' 1 
i 5 

$me-locked lTIB [9] can provide a much smaller excess loss due to self-noise. 

I 
.% 

co;hparison with Complex Filter 

h 
The benefit of forcing conjugate symmetry on the coefficient vector is illustrated by figure 511 

which compares average BER for filters using update equations 5.20 and 5.21. A forced con- 
-,$ 

jugate symmetric filter was found to be better at all E m o .  Additional excess loss for a com- 
C 

plex filter i:negligible at BER higher than 10-3. For BER of 104 ,  the additional excess loss is e 

0.5dB. It was also found that the additional excess loss was greater for longer filter. 
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5.5 .2 .  - Convergence Time 

In comparing convergence performance, it is convenient to use convergence time, For the 
J?F . @ - 

'-7. 

present application, we define convergence time as the number of iterations required for the 

instantaneous BER to drop below the steady state average BER for the first time. It shoild be . 

noted that convergence time depends heavily on the choice of initial coefficient vector, esper 

- cially at high E@,. The Ssults obtained in this section utilized an asymmetric initial vector of - 
[l+j, 0, 0, -l+j, 01. 

Effect of step size 

Figure 5.12 shows the BER learning curve for-different step sizes., The convergence time as a 

function of various step sizes, A, are tabulated in table 5.1. Convergence time decreased %ith - 
A as expected. One should note from figure 5.12 that the magnitude of the random fluctuations 

Conv. time 

0.025 

0.05 

3600 

Table 5.1 - Convergence Time o w e  SGT Filter as a function of the Step Size 



Effect of Eb/N, 

1 '  

From results found@ section 5.4, convergence speed is expected to increase significantly with 

increased Em,. This was found to be true as illustrated by figure 5.13. Table 5.2 gives the 
i 

convergence time as a function of Emo. Note the slow convergence for En, of 30 and 

40dB. For comparison, the computed learning curves for mean convergence are also shown in 

figure 5.13- The computed and simulation results are indeed very close. 

U 

Cmv. time 

Table 5.2 - ~onvefience time of t h e v t e r  as a function of E f i  

,--'-.\ 
u 

Effect of ~ D T  
- -- 

\ w e  effect of ~ D T  is illustrated~in figures 514 and 5.15. Figure 5.14 shows the learning 

curves for various doppler freq s. The convergence time as a function of ~ D T  is tabulated 
\ 
' in table 5.3. Convergence time decrease4 with ~ D T  as expected. From figure 5.14, it is ,also 

LT-?\- 

ewdent that the amount of ra.do& fluctuations of BER increases as ~ D T  is increased. ~ i ~ u r e "  

5.1.5 shows the simulated and cokputed (mean) convergence curves for stepwise increase of 

~ D T  simulating a vehicle acceleration of 10 kmph/sec at 40dB. ~imdated results were indeed 

found to be very close to the computed results. One point to remember is Fat  40dB is an 

unrealistically high Emo value. This value is used here only to aeceituate theeffect of 

changing ~ D T .  a 



Table 5.3 - Convergence time of the SGT Filter as a function of . 
\ 

~ D T  

0.00417 

0.0208 

0.0417 

a N o d &  Doppler Fpquency 

Conv. time 

2600 
1850 

1500 

Effect of f,T s' ' 

Figure 5.16 shows learning curves for various frequency offsets. foT has no noticeable ~ffekt 

on convergence except for foT of 0.1667 where BER is deteriorAted by distortion of the re- 

ceived pilot by the MWA. 

Effect of Filter Length 

Increasing the filter length has the effect of increasing the amount'of fluctuations of BER as 

shown in figure 5.17. This is because long filter increases the susceptibility to gradient fluctu- 

ations. Convergence time was also found to increase with increasing filter length. So, in ' 

terms of convergence behavior, a shorter fdter is ktter. 

Effect of Moving Window Averager Length i 

There was an increase in random fluctuations i n  BER due to increase in MWA length. How- 

ever, change in convergence time was small as the length of .the MWA was increased. 
* 



Effect of Self-Noise 

The effects of self-noise on convergence behavior are shown in figures 5.18 and 5.19 for filter 

lengths of 5 and 11 respectively. Convergence time was found to change little with the pres- 

ence of self-noise. However, self-noise caused a greater fluctuations of BER at high E$No 

and hence deteriorated the steady state average BER as found earlier. Chmparison between 

figures 5.18 and 5.19 also showed that self-noise had a much greater impact on longer filter. 

Effect of Decision Direction 
f 

. 
Figure 5.20 shows learning c w e  with decision dire~don at various E@,. There was some 

degradation in the BER when Efl, was low. Overall, changes in the convergence time due to 

decision direction were negligible. 

Comparison with Complex Filter 
.-- - -- 

Convergence was found to be unaffected by enforcing conjugate symmetry in the coefficient 

vector. 
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5.6.  Summary and zsmments  

For EdN, less than U)dB, the SGT filter was found to be able to adapt itself quickly enough to I 
follow changes in vehicle speed assuming that data is  continuously transmitted. When the 

-- 

normalized doppler frequency is less than 2% (corresponding to a vehicle speed of 60 kmph " 

for a 2400bps system operating at 850Mhz), the use of a SGT pilot filter can provide a lower , 

BER than using an ideal rectangular filter with a normalized bandwidth of 0.0625. So, the 

SGT filter is suitable for use in an urban environment where vehicle speed is expected to be 

low. However, if the doppler is great& than 2 4 ,  then using a fued filter will give better BER 

performance. Frequency offset, decision direction and self-noise were found to have negligi- 

ble effect on convergence. I 



6 .  STOCHASTIC GRADIENT LATTICE PILOT TONE FILTERQG 

Recall that the main drawback of the SGT filter is the dependence of convergence speed on the 
- 

eigenvalue spread of the input correlation matrix. There are other algorithms which have been 
h 

demonstrated to have overcome th& problem [13]. One such algorithm is the stochastic gradi- 

ent lattice joint process estimator (SGL-JPE) which uses a lattice filter in addition to a transver- 

sal structure. This chapter explores the possible use of the SGL-JPE as pilot filter. 

The SGL-JPE was fust proposed by Makhoul [19] and Griffiths [12] in the context of noise 

cancellation. The main idea behind the SGL-JPE is to overcome the problem of eigenvalue 

spread of the SGT filter by preceding it with a decorrelator. The lattice filter is ideal for use as 

a decorrelator because the backward prediction error outputs of each of its stages are orthogo- 

t- nal. Thus, instead of forming the LMS estimate using delayed samples of the input signal &- 

rectly, we first pass the input signal through a lattice filter and then form the LMS estimate 

using a linear combination of the backward prediction errors. Because of the orthogonality of 

'the backward prediction errors, their eigenvalues are easy to estimate. (The eigenvalues are 

simply equal to t@3asponding prediction error powers.) An appropriate step size can then 

be used to update each coefficient used to form the LMS estimate, resulting in a vast improve- 

ment in convergence speed. Unfortunately, it will be shown later than this iniprovement in 

convergence speed is at the expense of large degradrtion i~ BER due to the sensitivity of the 
L 

, 
BER to the filter coefficients. 

The lattice filtcr is closely associated with linear prediction theory. Hence, i t  is natural to begin 

this section with a discussion of linear prediction theory. Following this, brief derivations of 

the important expressions related to the SGL-JPE will be given. ~roceduie for computing the 



BER given the lattice and JPE coefficients are d i s c k d .  Some numerical analysis of the 

sensitivity of the BER to the lattice and JPE coefficients will then be presented followed by 

simulation results. 

6 . 1 .  Linear Prediction Theory 

Linear predxtion deals with by the use of a linear fdter on past samples of a stochastic process 

to p rdc t  a future value. In one form, the prediction problem can be formulated as: 

This formulation is called forward prediction. x(k) is the sample of the stochastic process at 

time kT and y~~ is the n-th forward prediction coefficient for an order M predictor. Another 

form, called backward prediction, uses vqlues x(k) ... x(k-M-1) to make prediction of the 

sample x(k-M) such that: 
ri r ' 

M 
:(k-M) = cMVn* ~ (k -n+ l )  (6.2) 

n=l 

where CM,-l is the backward precuction coefficient. Defining f ~ ( k )  and b ~ ( k )  as the torward 

and backward prediction e n d  of order M, then f ~ ( k )  arid b ~ ( k )  are given by: 



.-. 
where - . . , 

P .  , - 

and 

ir 

gMn and aMfl are the n-th forward and backward prediction m r  coefficients of order M. The 

FIR filters in which they represent are called forward and backward prediction error filters. 

Equations 6.3 and 6.4 can be solved to minimize the mean square forward and backward 

prediction errors. The results are two normal equations identical in form to (5.18) from wiener 

B/ll filter theory and are given by: 
j \ 

i7 

and 



where R i s  the correlation matrix of the input process; y O m d  co are the optimal forward and 

backward prediction coefficient vectors; sf and sb are the forward and backward correlation 

vectors. Denoting x(k-1) as the input vector such that: 

-. 

x(n- 1) = [x(k- 1), x(k-2), ..., x(k-M)]T (6.9) 

then R, sf and sb are given by: 

sf = E[x(k- I) x*(k)] = [s(- 1), s(-2), ..., s(-M)JT 

where s(k) is the autocorrelation function of x with a lag of kT. 
I 

Recall that for the optimum filter, the estimation error vector is normal to the filter output a 

vector. Using this fact and along with (6.4) and (6.6), one can show'that'the s-equence of 

backward prediction errors br), bl, ..., b~ are all orthogonal to one another when thd optimal 
1 

prediction coefficients are used [15]; i.e.: 

where P, is the prediction error.power of order m. This orthogonality m-akes the convergence 

speed of-the SGL-JPE insensitive to eigenvalue spread 



d 

An efficient technique for solving the normal (6.7) and (6.8) exists and is known as the Levin- 
'r 

son-Durbin recursion €151. The Levinson-Durbin algorithm makesuse of the Toeplitz property 
*\ 

of the correlation matrix R to recursively compute the solution to the normal equation starting 

from order 1 through to the final order of the filter. The Levinson-Durbin algorithm can be 

summarized by the following equations: \ 
\ 

amp = am-1.n + r m  am-1.m-n* n = 0, 1, ..., m 

where r, is known as the reflection coefficient of order m. 

6 . 2 .  Filter Derivation 

The SGL-JPE is a well known algorithm and detailed derivations can be found in many litera- 

ture [ 1 3, 151. A summary ofi the derivations is #esented here. 

Figure 6.1 shows the structure of the SGL-JPE. 
0 





The lattice fdter section is described by the pair of equations: 

bm(k) = bm-I*-1) + rm.fm-l(k> m = 1, ..., M (6.17) 

where fm and bm are the m-th order forward and backward prediction errors as discussed in the 

previous section. M is the order of the SGL-JPE which is assumed to be odd. The lattice filter 
. . 

section is preceded by a MWA as in the SGT case. In the most common f o " ~ ,  the reflection 

coefficients, r,, are chosen to minimize the sum of mean squared forward and backward 

prediction errors defined by! 

We can perform the minimization adaptively by using the stochastic gradient algorithm as 

before. In this case, the gradient of e, is given by: 
T 

t I 

b - 
' To reduce the mean square error, we take steps in direction opposite to the, direction of the gra- 

dient vector so that: 



where pm is the step size for order m update. Replacing the gradient of em with an instanta- 

nwus estimate, we get: 

Next, we choose the step size to be the reciprocal of an Estimate of the prediction error power, 

Em- 1, yielding [20]: 

Expanding this and making use of (6.16) and (6.17), we can simplify (6.22) to give: 

The :prediction error power estimate is conputed as: 

where hiS an aging coefficient introduced to allow tracking of changing input statistics. . 
.. , < 

The joint-prdcess eqtimation section is identical in structure to the SGT filter with input to each 

stage replaced by the bac&ard prediction errors. The R E  coefficients are adaped using the 
8 .  

stochastic gradient algorithm aS are the SGT filter coefficients. The difference in this case is in 

the choice of step size. When the lattice is converged, the backward prediction errors are 
% 

P. 



orthogonal. This means that the backward prediction e m r  powers are equd to the eigenvalucs 

' of the respective stages. ~ ; r r h m o k ,  it can be shc$vn that E[lfm.l(k)12] = E[lbm. 

So we can make use of (6.24) to obtain an estimate for the eigenvalue.of stage m. 

we use a step size A(m) such that: 
A 

It follows that the JPE coefficient updqe equation is: . 

where e(k) is the estimation error given by: 

.. 
6 . 3 .  BER Computation 

(k- l)l*] [15]. 

For stage m, 

To,compute the BER, we need to transform the sets of reflection and joint-process estimator 
. * 

coefficients into an equivalent set of FIR coefficients. To accomplish this. we-make use of 

(6.4). which relates the backward prediction error of a p,n&ular order to the input vector. f i e  
. * 

set of equations describing the backward prediction.error for eadh qrder can be gmuped to- . - 
gether to form the following mat& equation: . e 



where 

and 
x 

Output of the join tiprocess estimator i;: 

Substituting (6.28) into (6.31) yields: 

w(k) = K~ L r (k) 

Comparing this e q u a t p  wiln .(5.3), the set of equivalent FIR coefficients can be readily , . 
. . recognized to be: 



Z 

, 

Given the set of equivalent FIR coefficients, the-bit errgr rate can now b;. cornpqted using the , * 

... 
. procedure outlined insection 5.4. The only ~mainin$fite.item'required for the. computatioh is the 

matrix of prediction coefficients, L, which can be easily obtained from the reflection coeffi- ' .  

citnts by using the Levinson-Durbiin recursion. a 

* 
. . 

' ,  

6.4 .  BER Sensitivity to Filter Coefficients 
. . 

, J 
I 

.+ 

. > 

The SOL-JPE is defin'kd by wo sets of coefficients which together determine the filter re- 
& < ,  

iponse. The filter response is a highly non-lineaifunctidn of lc-reflection coefficients making 

" + .I aqy type of analysis difficult. In order to determine the sensitivity of BER t6 changes.in the 

two sets of coefficients, we have pursued a cemputational approach. The BER was computed 
C 

'as a function of chanps in the filter coefficknts for the following barameters: Em, p 40dB. 
, \ 

d a ~ D T  = 0.0208, r = 0.2, M = 4 and a &A of length 3. Using the optimal sets of reflection and 
1 

joint-process estimator &efficients for the above parameter, the BER was found to be 5.573 x 

10-5. ~esults'of BER calculiited as a function of percentage changes in rhe refection and joint- , 

process estimator coefficients are given in table 6. I.  Irt. table 6.1, sensitivity is defined as: 
" 

3 .  

aBER z ABER z" 
q=-Tm= TEE? 



Table 6.1 - BER Sensitivity to Lattice and Joint Process Estimator coefficients 
- 

From this"table, &e can observe that the BER was extremely sensitive to the two lowest order - 

reilktion and JPE coefficients, particularl&he lowest order reflection coefficient. Sensitivity 
- 

also increased with increased percentage change in coefficients, It is clear from these observa- \ 
tions that any sizeable fluctuations in the lower order coefficients will be detrimental to the per- 



, 4  

fon&hce of the SGL-JPE. This hypothesis will be , +%. f p  demonstrated to be true in the 

following simulatisn results. 

6 . 5 .  Simulation Results ' 
4 

t 

Monte Carlo simulations were performed with the SGL-JPE algorithm using a similar proce- 

B Ji ;P dure as for the SGT case. Figure 6.2 shows the learning curves for different values of E@, 
# PP9~" ' with aging coefficient I = 0.995, ~ D T  = 0.0208 and r = 0.2. In terms cf convergence speed, 

.Pa 
the SGL-JPE is significantly faster than SGT especiAy at high Emo. The learning curve is 

smooth at low E@,. At high Em,, there are large fluctuations a in BER. The presence of ihe 

C__ 

fluctuations can be explained by examining figure 6.3 which shows the evolution of the imagi- 
\ 

\nary pa* of the lowest order reflrction coefficient The fluctuations in the reflection coefficient 

match almost perfectly with those in the BER c w e s .  The reason for the increase h B E R  

flqctuations with Efl, was because at low E d N ,  the received signal was dominated by addi- 

tive white Gaussian ioise thus masking out the effect of the fluctuations in the reflection 

coefficient. At higher Em,,  flpctuations in the reflection coefficient become dominant and are 
, \ 

manifested as fluctuations in BER. From these results, we can conclude.that -. although the . 

SGL-JPE provides more rapid convergence over SGT, it is not suitable for use in the pilot 

filter application because of the high sensitivity of  the.^^^ to the fdter coefficients. 
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- 7 .  FILTER SWITCHING ALGORITHM L 

r 

r We have seen in chapter 5 that the use the stochastic gradient transversal filter for extracting -+ 

pilot tone has the problem of converging very slowly when the received signal energy to noise 

density ratio is high. We have also dernonsgted in chapter 6 that*the gradient adaptive lattice - 

joint-process estimator is not suitable for use a pilot filter bekause of the high sensitivity of 
v -  

the resulting BER to changes in the fdter coefficients. In this chapter, we present a novel tech- 

nique for extracting the pilot by storing a pre-calculated bank of filters and simply selecting one 

as pilot filter. The technique has been given the name, filter switching algorithm (FSA). 

One of the fundamental drawbacks of the'SGT, SGL-JPE and other popular adaptive filtering 

algorithms is the need of these algorithins to update each and every filter coefficient. In a 

sense, they all perfofm a multi-dimensional adaptation in one form or another. In the pilot filter 

application, we have found that the optimum filter is the Wiener filter. An adaptive pilot filter 
9 .  

needs o h y  to adjust for changes in doppler frequency and frequency offset. This means that 

the adaptatioq process cap be rkuced to two dimensions. The FSA is formulated based on this 

idea. Ir will be shown that this approach can provide significant improvement in BER and 

convergence speed over the SGT and SGL-JPE algorithms. The FSA discussed in-this chapter 

provides adjustment only for the doppler frequency. The problem of frequency offset 

compensation is considered separately in section 7.8 where a method for estimating the fre- 

quency offset is presented. 

This chapter begm with a detailed description of the filter operation and derivations of the 
-- 

switching algorithm. In section 7.2, we present an analytical model which enabled us to com- 

pute the average BER and convergence speed of the new adaptation scheme. Sections 7.3 and ' 



- L. . a = 
'?a 

7.4 pro;ider some numeric@ results computedusing the gnalytical model just mentioned, 
',- - % u 

followed by 'simulated - results demonstrating the acemcy of the, m d e l  'given in sect@n 7.5. 

R -- Section 7.6 de Js with some of the-factors which-need d to be considered when implementingethe 
2 - 

FSA. Section 7.7 gives a summary of fmdings and 'wmpares the performaice of a pilot filter ' 
-3 - 

' L. - I 

implemented. using the FSA w i t h h t  dfda SGT+il&fdter.<.The final section discusses the 
- . , 

P 

problem of frequency offset compensatio-n. 
o ~ 

3 

7 . 1 . 1 .  Signal Flow 
c2 

* '  ' 
I 

The structufe of a pilot filter using the filter switching algorithm is shown in figure 7.1. The 
a 

input samples, rp(k). are fint averaged by a movipg window averager (MWA). The MWA 

reduces the storage and computational requirements of the algorithm. The averaged samples 
, g+ 

arethen split into two branches. The top , i br&h consists of a set of reduced coefficient filters, 

one of which is selected to perform the .actual filtering of the pilot. The reduced coefficient 
' " 

filter has non-zero coefficients spaced by the length of the MWA. We denote the overall time 

r s o n s e  of the combined MWA and reduced coefficient filter by hp(i, k), where i is the index 

/ o f  a particular filter in *e filter bank and k is the time index. The pilot A er output can be ? 
written in terms of hp(i, k) as: 

w(k) = a [c(k) * hp(i, k)] + n,(k) 

where * denotes convolution. 





fl 

The lower branch of $lot filter comprises an adaptation loop which provides 1 L  +., the k hanism 
- + 

-- 
for selecting the appropriate reduced coefficient + filter from the filter , - ensemble. The adaptation 

loop itself consists of a bank of gradient filters and a sample averager. Each gradient filter has 

an impulse response which equals the difference between impulse responses of two reduced 

coefficient filters and there is one corresponding gradient filter for each reduced coefficient 

filter in the upper branch. Let us denote the time response of the combined MWA aqd gradient 

filter by: 

The gradient filter output is then given by: 

v(k) is conjugated and multiplied by the decision corrected data signal G(k) to form an instanta- P 

neous esthate of the cross-correlation ye): y(k) is averaged by a sample averager with length 

N to give a sampled cross-correlation: 

The decision variable Re[q(k)], denoted by x(k), determines the next filter to be used 



- 

7.1 .2 .  Filter Operation l 

The bank of reduced coefficient filters consists of filters optimized for different doppler fre- 

quencies and is arranged in order of increasing-dopgler. During initial opejation, the filter 

optimized for the, /- ,. largest doppler is selected. A performance index is then evaluated at some - 

fixed time interval which detbmhes whether to switch to a filter optimized for a larger doppler 

or one which is optimized for a smaller doppler frequency. At a particular doppler frequency, 
'I.L - 

it can be shown that as one increases the length of the optimum (Wiener) filter, its frequency - 9 
2. 

response approaches that of a rectangular low pass filter and this approximation improves with 
5 

increased signal to noise ratio. Jf we approximate the set of optimum filters with rectangular 
I- -/ =- 

filters, then we can accommodate changes in doppler frequency by simply.varying the pilot 

filter bandwidth. This approximation eases the analysis and understanding of the effects that 
@ 

various parameters have on the FSA. The effect of using sets of rectangular fdters vs optimum 

FIR filters will be discussed later in section 7.3.2. 

Assuming that the frequency responses of the combinations of MWA and reduced coefficient 

filters are ideal rectangular, then after convergence, the pilot filter bandwidth jitters about the 

optimal value equal to ( f ~  + fo) [lo]. If at a particular time filter i is selected, it is possible to 

switch from filter i to filter i+n where i+n is less than or equal to the total number of filters in 

the set. To simplify analysis, we restrict n to only take on values +1 or -1. 
1 

Some of the parameters important to the performance of the algorithm are: filter shape, filter 

length and bandwidth spacing. The widest bandwidth filter is set to equal to ( f ~  m x +  fo ma). 

Overall shape of the filters qffects performance. As shown by the results in section 7.3.2, 

rectangular filters do not give the best performance. Selection of filter length involves the usual 

tradeoff between performance, computation complexity and the arnougt of delay. Smaller 



' "* . 
- 

h 

bandwidth spacing provides %me imprwement which will be discussed in section 7.3.1. 

However, the number of filters and hence the amount of storage space required is inversely- 

proportional to the bandwidth spacing. Again some tradeoff needs to be made. :; 

7 .1 .3 .  Performance Index Selection 

Integral to the design of all adaptive algorithms is the need for a performance index; for the 

'LMS algorithms, mean square error is used. e he performance index needs to be well behaved. 

This means that the performance index as a function of the filter bandwidth must not have any , 

local peaks. In the present application, we would like to minimize th% BER. For a pilot filter 

with a real frequency response, this corresponds to maximizing the correlation c~?!fficient.~ 
. . 

between the matched filter and pilot filter output as evident froni (3.3). However, p is not a 

suitable performance index because it is difXcult to compute and analyze. An alternative is to 

simply employ the covariance which, for Rayleigh fading, is equivalent to the cross-comelation 

since E[u(k)] = E[w(k)] = 0. There are two'advantages in using the cross-correlation as per- 

formance index. One advantage is that it is easier to compute than correlation coefficient be- 
i 

cause there is no need to obtain the variances of the filters' input and output as in the case of 

correlation coefficient. The second advantage is related to the fact that the cross-correlation is 
L 

linear with respect to the pilot filter response (see equation 3.2). This means that computing 

the difference in crosscorrelation for two filter output is equivalent to computing the cross- 

correlation for a filter whose impulse response is the difference in impulse response between 

the two filters. This ihird filter is the gradient fdter referred to earlier. For a pilot filter 

ensemble made up of rectangular filters, each gradient Nters will have a frequency response as 

shown in figure 7.2. 



Figure 7.2 - Gradient Filter Frequency Response (for rectangular pilot filters) 

At this time, we should point out that rectangular filters with identical gain cannot be utilized if 

cross-correlation is to be used as performance index.. This is because the cross-correlation for 

rectangular filters having the s q e  gain are identical if their bandwidths are greater than ( f ~  + 
3 9 

fo). , Using identical gain rectangular filters, the switching algorithm will select ANY of the 

filters with bandwidths greater than fg.+ fo at random. Obviously, only the filter with band- 

width closest to (and greater than) f~ + fo is optimal. 

Denoting the cross-correlation by C, two questions remain in determining whether C is suitable 
\ 

as a performance index. The first question is whether the pilot filter bandwidth corresponding 

to maximum C, denoted by Bpmar, also gives minimum BER; orequivalently, whether BpVrn, 
. ., , 

gives maximum p. The second question is whether AC is well-behaved. The first question can 

be answered by differihtiatihg C and p with respect to the pilot filter bandwidth Bp. setting the 

derivatives to zero and solving for Bp,-. It can be shown that in both of these cases, BpVmm 



- 

= f~+lf,l. (See Appendix I 'for the derivations). From the same analysis, it can also be shown 
'3 e3 

that C has no local peaks. 

7 .  I .  4 .  Derivation of the Filter Switching Algorithm 
S 

The filter switching algorithm can be summarized as taking a step in a direction opposite to the 

gradient of C. This'is the steepest descent algorithm. The update equation is given by: e 

where Bp is the filter bandwidth, p is a positive scalar constant and k is the time index. Ap- 
SC AC proximating - by - and letting p' = A, then: 
~ B P  BP 4 

Bp(k+l) = Bp(k) - p' AC 
/ 

AC is defined as,:._, 

I 
We now quantize Bp so that only a discrete'number of fdters is required. To simplify the algo- 

rithm, we further replace AC with sign(AC) and approximate AC by h e  real part of a sample 
f 

mean .so that the decision variable becomes x(k) = Re[q(k)] where q(k) is defined by (7.4). 

The resulthg algorithm is then to calculate x(k): " 

~ ~ ( k + l ) ' =  { Bp(k)- + A B ~  x(k)  > 0 
B p W  - ABp otherwise 



Assuming that the ith filter is used at time k, i.e. Bp&) = Bp(i,k), the &orithmhcan be rewrit- 

ten as: 

\ Bp.(k+l )= ( Bp(i+lk+l )  ~ ( k )  > 0 - 
~ ~ ( i - l , k + l  j otherwise - - 

& 

This section provides an analytical ,model'for the filter switching'algorithm from which the ' 

convergence speed and the average BERecan be computed.' We $$st begin with a discussion of 
+. 

7 \. 

some of the assumptions made,. 

+ *I-,, 

In order to simplify analysis, there are three major assumptions made. 

B 
1 

-4 6 

( 1) Time between each adaptation step, or adaptatiod +s equalto the time spanned by 
- 

I -  

the sample size of q(k), denoted  by@^, so that values of g(k) used for each adaptation 

step contain no overlapping samples. 
.>%. 

"?, 
(2) Values of q(k) taken N samples apart are uncorrel&d. ',a- 

,,- -* .\. 

(3) There are enough ind&end;*t' samples in q(k) sush that the sum is 4ussian. Some A 

% L  

justification for this and the previous assumphon is the fact that the cross-cohelation is a , 

function of J&?scf~k) which has m envelope that decreases with time. 



7.2.2.  Markov Chain Model 

x(k) is a random variable. Since the selection of filters depends on x(k), the index associated . 

with each fdter in the'filtkr banks is a discfete time random variable. From assumptions (2) and 

(3), successive values of x@) used in the sdtching decision are independent. This implies that 

the filter index i at the next adaptation step depends only on the present value of i. So the pro- 

cess describing i forms a Markov chain. Associated with every ~ a r k o v  chain is a transition 

probability,.rnatrix-tind an iniaal state probability vector, For the present application, the transi- 

tion probabilities are determined by rhc pdtiability density function ( p a  of x(k). The initial 

state probability vector has the,y,al"e one for the highest statsM corresponding to the index of 
1 

filter with the widest bandwidth and zero for all others. Givgn the-transition probabilities and 
. - 

the initial state probability vector, a set of steady state probabilities can be computed if the 

Markov chain is irreduciblel. For a particulardfD and pilot filter used, BER can be computed 

- z using (3.2) and (3.3). The'average BER is simply the sum of BER given each filter, weighted 
, r 

by the state probabilities such ,bat: , 

r 

where v; denotes the steady state probability for filter i. 
L. 

An illustration of the Markov chain model representing the filter switching algorithm is given in 

figure 7.3. 

l A markov chain is said to be irreducible if every state can be reached from every other state in a f i t e  number 

of  steps. 



d 2  d3  d4.  dN-1 1 
, 

Q 

Figure 7.3 - Markov Chain Model of the Filter Switching Process 

- l i  

L. 

In queueing theory,-this is the Markov chain of the birth-death process [21] with tran'sitions 

restricted to neighboring states only. The transition probabilities of the Markov chain are rep- 

resented y bi and di denoGng the birth and death probabilities at state i respectively. As men- \ tioned ear ier, in order to obtain the average BER, the steady state probabilities are needed. 

Unfortunately, the model as shown in figure 7.3 strictly does not Rave a steady state because 

. no state is allowed to j u ~ p  back to itself in a single transition, i.e. there $no self-loop. How- -- 
\ 

'a 
ever, the model can be modified by considering the following: Assuming that the number of 

c .  

time steps taken is,odd, then every odd state can be reached if the initial state is even. The 
7 a-  

chain will be in an even state only at the start. Similarly, if the number of steps taken is evep, - 

then the process will be able to reach every even state. If the initial state is odd, then every 

even state can be reached in an odd number of steps. If the number of steps taken is even, then 

the process will be able to reach every odd stare given that the initial state is odd. The above 
\ 

observations indicate that the original chain can be split into two, an even and an odd states 
2 "A 

chain. If we group every two transitions on the original chain into one ransition on one sf the 

even or odd state chains and consider even and odd step transitions separately, then this model 

is identical to that shown in figure 7.3. 

. 
, The new model is called dual Markov" chain (DMC) model and is shown in figure 7.4 for the 

case when M is even. k 



P l  , I  P3,3 P5,5 PM-3,M-3 PM- 1, M- 1 

a. Odd State Chain 

P2,2  P4,4 FM-2,M-2  P M, M 
a 

b. Even State Chain 

Figure 7.4 - Dual Markov Chain Model of the Filter Switching Process for M even 

The transition probability matrices of the DMC model, Q and P,,,, can be obtained from the 

transition probability matrix of the original chain P as given by: 

It can be shown that the even and odd states chains are irreducible so that steady state probabil- 

ities exist. Details of the derivation of the steady state probability vector V for an irreducible 

Markov chain can be found in [21]. In general, the procedure is to make use of the matrix 

equation: 



where c V i  = 1 
i 

1 
In terms of the state indices of the original chain, the steady state probability vector of the odd 

states chains can be shown to be: 

where 

and pij(n) denotes the n-step transition probability from state i to state j.- Similarly, for the 

even states c h h ,  the steady state probabilities are given by: 

where 

At any time, the probabilities of having taken an odd or an even number of steps are the same 
L 

and .are equal to ID. This means that the process on the average spends half its time in the odd 



state chain and half its time in the even state chain. Consequently, the average steady state 

probability is simply given by: 

,- 

The transition probabilities bi is derived from the pdf of the decision variable, x(k) which 

equals Re[q(k)], - as follows. The adap~t ion  algorithm dictates that if the process is at state i, it 

should switch to the next higher state if x(k) > 0; otherwise switch to the next lower state. 

Thus the probability of switching from state i to state i+l is simply given by: 

4 

With the Gaussian approximation of x(k), all that are required are the fust and second order 
'i 

statistics of x(k) which are derived nexi 

7 .2 .3 .  Statistics of the Sampled Cross-Correlation 

First Order Statistics # 

The mean of x(k) is given by: 



where Rfiry(k) and RhvQ(k) are the C ~ ~ S S - C & ? ~ W ~  h c t i o n s  between 6 and v as given in 
- 

Appendix 3. 

Second Order Statistics 

The variance of x(k) can be expressed as: 

where 

and ~ [ x ( k ) ]  is given by (7.18). Using the result on high order joint moments of Gaussian 

random variables [22] and after some simple algebraic manipulations, the second moment of 

Re[q(k)] can be shown to be: 



This quation can be further simplified by converting the double sum into a single one by using 

the substitution 1 = i-k. For any function f, it can be shown that: 

where e(1) = N- Ill . 

The resulting expression for Var[x(k)] is: 

where e(1) = N- Ill as defined previously. 

Expressions for the correlation functions R(31t1(1), RvIvI(l), R(31fiQ(1), Rv1vQ(n, RfiIvI(l) and 

RQpQ(l) are given in Appendix 3. 



7.2.4. Convergence time 

Convergence time of a Markov chain is d e f h d  here as the expected number of steps required 

to reach a particular (destination) state for the first time. The method of deriving this conver- 

gence time is by first changing the destination state to an absorbing state and renumbering its 

. state index to that of the last state. The transition probability of the modified chain, P', is 

given by: 

We then partition P' into the following form: 

Let YN be the number of steps required to reach state N, the probability that the process is at ' 

state N after n steps be denoted by p ' ~ ( n )  and pt(n) be the row vector with elements p'i(n), 
I.1 

then: 

and 



From (7.27), we get the following relations: 

p'(n) = pl(n-1) A 

and . 

The pdf of YN can be obtained from (7.28): 
, . 

The moment generating function of YN can be shown to be: = = 

The convergence time is then given by: 



. - 

7.2.5 .  Variations of Algorithm Implementations 
- 

t 
Step margin 

It has been found that using a PLPF which is too narrow, i.e. less than (fp + f,), can raise the 

error flobr [lo]. This indicates that some margin of safety should be added to the pilot filter ' 

bandwidth chosen because the index will fluctuate about the optimum vdue. This idea has 

been incorporated into the filter switching algorithm by selecting a reduced coefficient filter 

whose bandwidth is a number of steps wider than the bandwidth of the filter corresponding to 

the gradient filter in use. The margin of safety is called the step margin. Section 7.3.1 will 
P 

discuss the effect of step margin on BER performance. 

Exponential Bandwidth Increment 

Discussion thus far has assumed that the bandwidth spacing in the ensemble of filters is con- 

stant. However, tl@ spacing arrangement may not provide the best overall performance for 

reasons which will be explained lata. Ong alternative arrangement is to employ exponential 

bandwidth increment, i.e. to have the bandwidth increment arranged so that successive band- 

widths follow an exponential function. As will be shown in section 7.3.1, this scheme intro- 

duces some tradeoff. 3 

Dual Threshold 

Recall from the Markov model presented earlier, steady state probabilities do not exist because 

no self-loop is allowed. This leads to instability as there is a tendency for the algorithm to jitter 



P 
about the optimal state after convergence. One solution to this problem is, to add self-loop 

probability. To do this; we alter the switching algorithm as follow: 

, . 
Bp(k+l) = BP&) + ABp 

else if x(k) 5 T1 and x(k) 5 T2, 

Bp(k+ 1) = Bp(k) 

else, b 

Bp(k+l) = Bp(k) - ABp - 

TI, T2 are transition thresholds. We can see from this new switching algorithm that there is 

. now a fmite probability of not changing state which is equal to Pr(T1 I x(k) 5 T2). The 
-- 

Markov chain describing the new algorithm is one which represents a pure birth-death process 
R 

with finite number of states[21]. It can be shown'that the new Markov chain is irreducible and 

the steady state probability vector can be easily computed by solving (7.10) and (7.1 1). The 

steady state BER follows from (7.8). One should note that, for this algorithm, the transition 

thresholds need to be made a function of Eb (or E m o  since No is  not eipected to change) 

because, as are evident from (7.18) and (7.23) the mean and variance of the decision variable 

x(k) are functions of Eb. This means that either Eb or Ef lo  needs to be estimated by the algo- 

ri thm. a 



7.3. COMPUTED BER PERFORMANCE BASED ON MARKOV MODEL 

The effects of various parameters on the BER were investigated. BER>curves were computed 
9' 

based on the procedure discussed in section 7.3. All results obtained in this section assumed 
4 

the following unless stated otherwise: ideal rectangular pilot fdters, Rb = 2400bps, rl= 0.2, fo 

= 0, number of filters = 40, cross-codation sample size = 299 and bandwidth increment ABp 

+-%d ' 7 .3 .1 .  General Results Using Ideal Rectangular Pilot Filters 

\ 

Figure 7.5 shows the upward transition probabilities and average steady state probabilities as 

functions of the filter number (or state index) for f~ of lOOHzand E n o  of 20dB with no Step 

margin. 

Transition probabilities depend on the amount of area in the fade spectrum covered by AHp (see 

8 equations 7.18, A3.38 and A3.41). Because of the shape of the assumed U-shaped fade spec- 

trum, one expects an increase in upward transition probability with state index which indicates 

an increasing tendency to move upward (i.e. to a higher state) for filters with Bp < f ~ .  This is 

shown by figure 7.5 to be true. An interesting observation is the fact that upward transition 

probability is nearly zero for Bp > f ~ .  The large tendency to mo nward is caused by the 

negative gain of the gadieht filter response in the range (-Bp,B figure 7.2 for an illus- 

tration of the gradient filter frequency response.) The small values the upward transition 

probabilities are due to the more rapid decay of the correlation functions Rw and R", for Bp >> 

f ~ .  As expected, the steady state probability curve indicates an increase as Bp increases to f ~ .  

Another point worth noting is the fact that the steady state probabilities had significant values 



for 33, 2 80Hz (state 16J and Bp < lOOHz (state 20). O k  expecti a high e m ?  floor as a result 
(r 

because high steady state pro6abil&ies for Bp s f~ suggest high probabilities of using f i l tm 
. . 

which were too narrow. Fortunately:.*e k& error floor can be reduced-by using step margin 
0 .  

as will be shown later in this section. . 

T 
-a- upward trans, prob. 
+ steady state prob. . 

filter no. 

Figure 7.5 - Computed Probabilities for Filter Switching Algorithm using 
. - 

Ideal Rectangular Filters 

Convergence time was 21 steps from the last state (largeitBp) and 32 steps from the fust state 
- .  

(smallest Bp). Because the transition probabilities are nearly 0 for states with Bp > f ~ ,  the 

process spends almost no time in these states. 32 steps Is the worst case convergence time 

corresponding to the situation of a vehicle accelerating from sta@still to 127 kmph in zero time 
i \ 

(assuming 850 MHz carrier). In terms of f&, this is 25 Hz/sec. (One step = 125 msec.) 

Realistically, the f a s e 3  change in f~ which can be expected is only about 15.2 Hzlsec, 



a4  P 
-" - 

(corresponding to at an acceleration of 0- 100 kmph in 5 sec). So the convergence speed of the 

filter switching algorithm is more than adequate to.accoalwdate changes in fg from vehicle 
/ 

acceleration. As discussed in section 5.4.2, convergence during vehicle deceleration is not a 

problem. One should also note that because downward transition probability is nearly 1 for Bp 

> f ~ ,  tracking is faster for a,decrease in f~ than for an increase. , 

Figure 7.6 shows the average BER vs E m o .  Note the enormous error floor due to transitions - 
into states d t h  too narrow a bandwidth. Also shown in figure 7.6 is the BER curve for a non- 

i 

adaptive system using an ideal rectangkar filter with.Bp of 150Rz. Although-it seems like the 
i* 

FSA performed very poorly here against the non-adaptive scheme, it will be shown later @at 

this situation can be turned around by introducing step margin. 

The optimum power split ratio r was relatively insensitive to changes in Efl, and was found 
. . 

to be 0.33. 

Effect of Step Margin 

The effect of varying step margin was investigated and the results are shown in figure 7.7 for 

f~ of 5OHz. The irreducible eGor fl&r dropped as the step margin was increased. For a 

margin of 6, the BER curve is almost parallel to that of the ion-adapt&e case and we can ob- 

serve some significant improvement of the FSA over the non-adaptive case in which a rectan- 

gular pilot with 150Hz bandwidth was assumed. The improvement at a BER of 10-2 was 

a h u t  O.8dB. A point which is worth noting is that as the mhrgin was increased,-the low 

EEJN, portion BER curve moved upward as a result of increase in ~k average band- 

width. This shows; tradeoff between BER in-the-low and high E@d regions when the step s 

margin is varied. s 



Effect of Number of Filters 

The effect of varying the number of filters used was negligible for a f~ of 100Hz. ~ e c h l  that. 
' 

the steady state probabilities were nearly zero for Bp > 1OOHz. This suggests that filters with 
i 

ii 

Bp > lOOHz were rarely used and adding filters with Bp lOOHz would have very little,effect. . 
B 

Also, using a step margin of 5 had the effect of shifting the steady state probabilities up 5 

states. This means that steady state probabilities could then be non-zero for Bp up to 125Hz 

and.nearly zero for Bp geater than 125Hz. So, filters with Bp up to 125Hz were needed in 

this case. The important point to realize here is that, depending on the .bandwidth increment 
C 

chosen, we only need to use enbugh filters so that Bp ,, is greater than ( fg ,, + frequency 

Effect of fD 

smaller than for a higher f ~ .  This is because on the average at lower fD; narrower filters were 

used more frequently than at higher f~ causing less noise to appear at the pilot filter output. At 

a BER of 10-2, improvement was about 1.W for 50~z.doppler and 0.3dgfor 100Hz. The 
" error floor was also found to be higher for a lower f~ due to the increase in the low frequency - 

component (or flat portion) of Sg as f~ was decreased. It can be shown that this low frequency 

component increases as l / f ~  for small f ~ .  So, for small f ~ ,  larger part of Sg was covered by 
+ 

the negative gain portion of the gradient filter frequency response than for large f~ with the , 

same gradient filter. This indicates that more margin was needed for small f ~ .  



Effect of Bandwidth Increment 

Figure 7.9 shows the BER for two sets of filters with different ABP for f~ of 50Hr. Different 

step margins were used so that the margin in frequency remained the same. Performance at 

low E m o  was abdut the same for both AElp but the error floor nearly disappeared for the 

smaller ABp. This is intuitively satisfying because d.c. gain of the gradient filter decreases 

with decreasing A ABp. A smaller (and negative) d.c. gain means a higher cross-correlation 

which would result in larger upward transition probabilities iy~d smaller steady state probabili- 

ties for Bp c fD. Since the d.c. gain has inverse dependence on Bp, steady state probabilities at 

smaller Bp get affected more. Overall resht is that variations in Bp is less, which means that 

one can use a smaller step margin and get a corresponding improvement in BER. The cost of 

using a smaller ABp is the increased storage requirement for more filters and the increase in 

convergence time. 

Effect of f, 

The effect of fo on BER performance is illustrated by figure 7.10 which shows BER for vari- 

ous fo with a step margin of 6.  The degradation in BER performance was primarily in the in- 
, 

crease of the error floor as fo was increased. When fo was increased, one of the "horns" of the 

U-shaped fade spec&m moved closer to the low frequency Fortion of the gradient filter re- 

sponse which hadaa negative gain. From (7.18), (A3.38) and (A3.41), we see that E[x(k)] 

would decrea- f, which means that the upward transitio,n probability had to decrease as 

well. When the upward transition probability became smaller, the variations in Bp became 

larger thus spreading out the steady state probabilities The spreading of the steady state prob- 

abilities was the primary cause of the increase in the error floor. In order to compensate for the 

spreading, we could increase the step margin at the expense of>egrad@ the BER performance 



at low Em,. The spreading of steady state probability is illustrated by figure 7.1 1 which 

shows the steady state probabilities for system operating at E& of 20 dB with various f,. It 
4 

can be observed from figure 7.10 that the maximum tolerable frequency offset was lOHz for a 

step margin of 6. However, the step margin could be increased in order to accommodate a 

larger offset. 

. 
~ f f e c i  of Cross-Corre1,ation sample Size 

B 

The cross-correlation sample size affects BER performance and convergence time as it deter- 

mines the accuracy in the estimation -- of - the cross-correlation. Figure 7.12 shows the effect of 

sample size on the BER for f~ of 100Hz. The decrease in the sample size pioduced a corre- 

sponding increase in the error floor. Fewer samples means a shorter h e  span covering the 

fading process, leading to greater uncertainty in the cross-correlation estimate. This in turn 
6- 

causes a larger steady state probabgity spread and as a result, a larger error floor. The re- 

sponse time was also proportionally increased. Figure 7.12 indicates that a minimum of 150 

samples were needed in order to keep the enor floor low enough. One should note that it is the 

total length of the time spanned by the crosscorrelation samples which is important in deter- 

mining BER. One could reduce the sample size by increasing the time between samples, or by 

using a'longer MWA, and obtain a similar BER performance. This is true as long as the recip- 

rocal of the time between samples is greater than the Nyquist rate of the fading proceJs. 
t 

Exponential Bandwidth Increment 
- ,  

The results of using exponential bandwidth increment are shown in figures 7.13 and 7.14 for 

f~ of 50 and 100Hz. Successive filter bandwidths are fitted using an exponential function such 

that the bandwidths at states 1 (the lowest state) and 40 (the highest state) are 5 and 200Hz 



respectively. For 50Hz, exponential bandwidth inorement performed better than line& incre- 

, ment at small step margin. With step margin greater than 1, linear increment was better. For 

f~ of 100Hz, exponential increment had a slight advantage over linear increment at high E e o  

(> 20dB) while the reverse was true at lower E m o .  The above observations can be explained 

by considering step margin as frequency steps. At small f ~ ,  the algorithm operates with small 

Bp; ABp is small for exponential bandwidth increment which means that the frequency margin ' 

i 

above the optimal bandwidth is smaller for exponential increment than for linear increment 

scheme using the same step margin. As a fesult, th& exponential increment scheme gave better 

performance foi small step margin. At larger f ~ ,  the frequency margin is larger for exponential .. 
increment. So for the same step margin4 using exponential increment provides a lower irre- 

ducible error floor. However, this also meanshat the average so larger which 

L 0 

causes inferior BER performance at low E&. In general, we expect f~ to small for urban 

driving and we need a step margin of 5 in order to keep the error floor low enough. Under 

these circumstances, using a linear bandwidth increment will provide better performance. 

Dual Threshold 

. 
Figure 7.15 gives the results of using the dual threshold algorithm for f~ of lOOHz 4 t h  vari- 

ous thresholds and no step margin. For simplicity, we had set the two thresholds to be con- 
' 

1 
stant multiples of E@, and they were made symrnemch such that T2 = -T1 where T1 > 0. 

One striking feature as evident from fi& 7.15 is the improvement in error floor as the sym- 

metrical thresholds are increased. With thresholds of rtl.0 E m o ,  we could almost dd away 

with step margin, The drastic improvement was due to the increase in the ratios between up- 

ward and downward transition probabilities since these ratios determined the steady state prob- 

abilities. When Bp< f~ and frequency offset is absent, we would like the steady state pmba- 

bilities to be small for all stateswith Bp t= f~ in order to obtain a small error floor. This means 
a 



that we need the upward to downward transition probability ratio to be large. Clearly, 

transition probability ratio increases with creasing threshold values. Hence, increasing 4 
the 

the 

transition thresholds had the effect of decreasing the error floor. ,Unfortunately, this reduction 

in error floor also resulted in the drastic increase in convergence time, as is indicated by figure 

7.16 which shows the convergence time (in number of steps) as a function of transition 

threshold (in multiple of Em,). The increase in convergence time was caused by the in- 

creased self-loop probability. In practice, BER performance will also be degraded by noise 

present in the E@, estimate. Thus; with all considerations, using a single threshold of zero is 

superior to using a dual threshold scheme. 

7 . 3 . 2 .  Optimum FIR Filter 

Ideal rectangular pilot fdters were used to obtain all of the previous results. For the remainder 

of the discussion, we investigate the effect of using FIR filters optimized for various f~ at a 

fixed E g o  of 40dB. The optimum fdters have been designed for increasing f~ at 5Hz incre- 

ment starting at Hz and ending at 125Hz. The filters are numbered in=order of increasing f~ P 
1 

so that filter number 1' corresponds to' a filter optimized for 5Hz doppler and filter number 2 

corresponds to a filter optimized for lOHz doppler, etc. As shown in Appendix 2, the cross- 

correlation for a set of optimum FIR filters is not as "well behaved" as its rectangular counter- 

part. However, it will be shown later in this section that using a set of optimum FIR filters can 
L 

r 
offer BER performance comparable to that using a set of r&ngu la r  filters. First, we 

investigate the effect ofqarying the length of the MWA a filter in a non-adaptive , 
C 

. - 
, . environment. 

*i ' 



Effect of MWA and Shaping Filter Length 

Figures 7.17, 7.18 and 7.19 shows BER for f~ of 100 with various shaping filter length and 

MWA length of 1, 3 and 5 respectively. MWA length of 1 is equivalent to no MWA. The 

filter lengths are defined such'that overall fdter length'equals MWA length x shaping filter 

length. For the three MWA lengths used, shaping filter lengths greater than or equal to 51 

were close in performance. However, an increase in filter length means a corresponding 

increase in both the amount of ,tomputation and memory space. With a MWA length of 5, 

shaping filter length as low will gave reasonable performance. One should note, however, 

that in actual operation with the FSA, a filter length below 21 is undesirable. The reason is 

because Qe passband ripples in the frequency response for a short filter can cause the upward 
- 

transition probabilities to decrease, so that a larger step margin is required in order to maintain a 

low error floor. For the best compront$se between BER performance and complexity, a MWA 

length of 5 and filter length of 51 should be used. 

.. 
0 

Ideal Rectangular vs Optimum FIR Filter ' 

Figure 7.20 shows the BER using various step margins for f~ of 50Hz, shaping filter length s f  

51 and MWA length of 3. The error floor was negligibly small for step margin greater than 4.. 

This is in contrast with results found using ideal &ctangular filters as given in figure 7.7 which ' 

shows error floor still present with a margin of&6. The main reason for this is because of the - 

gadual roll-off'of the FIR filter low pass frequency response which allows for more of the 

fade spectrum tobe covered 
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a) Full view 

filter no. 

b) Expanded view of (a) 

Figure 7.11 - Effect of fo on Steady State Probabilities ofFSA at E&, of 20 dB ' 
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7 . 4 .  COMPUTED CONVERGENCE TIME BASED ON MARKOV MODEL 
/ 

The effect f various parameters on the mean convergence time of the FSA are investigated in .e, 
this section. The mean convergence time has been computed using (7.31) assuming that the 

first state (corresponding to Bp of 5Hz) is the starting state. The first state convergence time 

has been used here because, as found in section 7.3., convergence to a higher statiis slower 

than to a lower state. As in section 7.3., all resylts obtained in this section assumed the fol- 

lowing unless stated otherwise: ideal rectangular pilot filters, Rb = 2400bps, r = 0.2, fo = 0, 

number of filters = 40, cross-correlation sample size = 299 and bandwidth increment ABp = 

7 . 4 . 1 .  Effect of Eb/N, 

E n o  was found to have negligible effect on the convergence time. This is in contrast with the 

results found for pilot fdter implemented using the SGT filter algorithm where convergence 

speed was found to be highly sensitive to EIJN,. 

7 . 4 . 2 .  Effect of f~ 

- 
The effect of doppler frequency on the convergence time is shown in f i g k  7.21. The conver- 

gence time increases with increasing doppler. This is a's expected because a wider bandwidth 

pilot filter is required to cover the fade spectrum at higher doppler which means that FSA needs 
I(B 

to traverse more states before reaching the op-timal state (or bandwidth). Since each transition 

is restricted to one step only, it therefore takes more iteration to arrive at the optimal state at 



high f ~ .  The convergence "speed", defmed here as the average number of state traversed per 

iteration, remains-nearly the same for 50 and lOOHz doppler. 

7 .4 .3 .  Effect of Bandwidth Increment 

Figure 7.22 shows the convergence time as a function of bandwidth increment. Based on this 

figure, we observed that increasing the bandwidth increment had the effect of decreashg the 

convergence time. This is of no surprise because, for a larger bandwidth increment, less states 
I 

need to be traversed before reaching a given bandwidth. The convergence speed was faster for 
J 

larger bandwidth increment. 

7 .4 .4 .  Effect of Cross-Correlation Sample Size 

Increasing the cross-correlation sample size decreases the variance in the cross-correlation 

estimate. The decrease in variance increases the upward transition probabilities and thus results 

in a decrease in convergence time in number of iterations. Recall that the time between itera- 

oils in number of bit periods is equal to the sample size. Hence, when we consider the con: 

vergence time in number of bits, increasing the cross-correlation sample size has the opposite 

effect of increasing the convergence time. Overall, the convergence time in number of bits 

increases almost linearly with increasing sample size. Figure 7.23 shows the convergence 

time as a function of cross-correlation sample size which illustrates this. 

7 .4 .5 .  Effect of f, 

The effect of f, on the convergence time is shown in figure 7.24. The convergence time was 

found to increase witti increasing fo; the amount of increase was most significant for fo greater 



than 20Hz. The increase in convergence time was due to the decrease in upward transition 

probabilities, as explained in section 7.3.1., and to the increase in the optimal bandwidth as f, 

was increased. 



f D (Hz) 
E! 

Figure 7.2 1 - Convergence time of the FSA vs Doppler Frequency 

Figure 7.22 - Convergence time of the FSA vs. Bandwidth Increqent , 



sample size (bits) 

Figure 7.23 - Convergence time of the FSA vs. Cross Conelation Sample Size 

Figure 7.24 - Convergence t h e  of the FSA vs. Frequency Offset 



7 . 5 .  SIMULATION RESULTS 

' I  
e 

simulations were performed to determine the accuracy of the model and to assess.the effects of 

self-noise and decision direction. The simulation method used to obtain the results given in 

this section was the'sarne as that outlined at the beghing of section 5.5. 

7 .5 .1 .  Accuracy of the' Markov Model I 

1 

Figure 7.25 shows the steady state probabili'ties from the simulated and computed * valuekfor f~ 

of 50Hz and a bandwidth increment of 5H.z. 
I 

n e 
P 
a 
C 
0 
C 
(I) 

(I) 

filter no. 

Figure 7.25 - Calculated vs. Simulated Steady S rate Probabilities of the ES A . 

aim. steady p 
t calc. steady p 



Some discrepancies can be noted hr filters which are one step widemnd one step narrower 

than the optimum. These have been amibukd to the deviation of the sampled cross-correlation 
5 

fi0.m the Gaussian approximation. One should note that the filter bandyidth with tht highest = 

steady stak probability indicated bysgure 7.25 is 40Hz (state 8). not 50Hz (State 10) a's would 

be expkcted if rectangular filters are used. The p.articular dismbution of steady state probability ' 

was again a result of the gradual roll-off of the 'FIR filter frequency response. 
* 

7 .5 .2 .  Effect of Decision Direction and Self-Noise 
T 

Results ob&@ in section 7.4 assumed removal of data dependence in the refereice 

signal, y(k). I n ~ r d e r  to investigate the effect of decision direction, simulations were per- * 
0 

0 

formedfor f~ = 50Hz. E g o  = IOdB, r = 0.2 using demodujator decision to. remove the data 
\ 

dependence in h(k). i ~ e e  figure 2.1). Figure 7.26.shows the results which-indicates that * 

', * 3 

decision direction has very little effect on the average steady state probabilkies even at low " 
. O  

Efl* The simulated average steady state probabilities were very close to the calculated value, 

Previous results had also assunled that the pilot tone and data signal were transmitted se Loo tely 

so that theoresults obtained were not affectkd by self-noise. We investigated thc effects of self- 

noise by transmitting the pilot and data signal over the same (simulated) chgptdds shown in 

the system model given in figure 2.1. The following parameters were usedjn the simulations: 
0 

f~ = 100Hz, E O ,  = 2OdB, r = 0.2. Fast fading wychofen becauseit introduced larger 

spectral spread so that if the effect of self-noise is small for large f ~ ,  then the eff w t  will be - . 

even less at smaller f ~ .  Results of the simulation are summarized in figure 7.27. Here, it 

shows that the effect of self-wise on the average steady st& probabilities is again small but 



there is larger discrepancy between the values predicted by the Markov model and the simulated 

results. One should note from figure 7.27 that this discrepancy is not related to self-noise, but 

is due to the increased statistical variations as a result of a larger doppler frequency. 

* no dec. dir 
9 w/ dec. dir 
-rb calculated 

filter no. 

Figure 7.26 - Simulated Steady State Probabilities of the F S A - W ~ ~ ~  Decision Direction 



i!l- no self noise 
9. w/ self noise . --- * calculated 

--. 
fllter no. a 

Figure 7.27 - Simulated Steady S y e  Probabilities of the FSA with Self-Noise - 

7 . 6 .  SOME IMPLEMENTATION CONSIDERATIONS d 

Recall that the filter switc algorithm described thus far assumes that the adaptation period is % 
equal to the sample size of the sampled cross-correlation. This implementation is the simplest 

in terms of analysis and complekty. By changing the adaptation period, tradeoffs between 

complexity and convergence speed can be made. One vaflhtion is to take an adaptation step 

every bit period, which is equivalent to the use ,of an adaptation period of one. Intuitively, this 

scheme should offer great improvement in convergence speed because the algorithm can now 

make transitions more often. Successive values of the sampled cross-correlation in this case 

will be highly correlated thus making the Markov model invalid. One,will have to rely on 
&-l 

computer simulations to determine the BER and convergence behaviors. The digference in 



computational complexity between the two algorithms is sigdicant. For sample size N and 

filter length M, the original algorithm requires approximately M multiply-add operations per bit 

to compute the sampled cross-cornlation whereas the second algorithm requires M x N multi- 

ply-adds per bit Other values of the adaptation period will provide different tradeoffs between 

complexity and convergence sped  
* 

* 

When implementing the FSA in practice, it is necessary to assign different weights to each 

cross-correlation sample in forming the sample mean because the fading process is non- 

stationary in general. It is possible to use an exponential decay avera&ning scheme for cornput- 

ing the cross-correlation estimate. The mss-comlation estimate can be computed as: 

where A is the aging coefficient. This method is simpler to implement than a sample averager . 
- 

and may provide satisfactory results, but only simulations can determine its performance. 

Results obtained for the fdter sdtching algorithm can be summarized as follow. 

4 .  

Compared with a non-adaptive pilot tone calibration system using a rectangular filter 

with bandwidth of 150Hz, the FSA provided an improvement h'average BER which 

was a function of the doppler frequency. At a BER of 10-2, the improvement was , 

about 0.3d.B for lOOHz doppler, l.OdB for 50Hz doppler and almost 2 . W  for a lOHz 

doppler. 



$ 

Increasing the step margin had the effect of reducing the error floor but at the same 

time, increasing the average BER at low Emo. A step margin corresponding to a fre- 

quency margin of 60Hz gave a good compromise. , 

The bandwidth increment and the number of reduced coefficient filters required should 
- . . 

be chosen such that % max > ( f~ - + kquency margin ). 

The maximum frequency offset in the fade spectrum which could be toleratdd was 
7 * 

10Hz. Larger offset had the effect of raising the error floor. Increase in the error floor a 

could be compensated for by increasing the step margin, at the expense of degrading 

the BER at low E& 
* 
For a 2400bps system, a minimum cross-correlation sample size of 150 was necessary 

to give a reasonably low error floor. D e v i n g  the sample size had the effect of in- 

creasing the e m  floor. 
r 

Using a constant bandwidth spacing of 5Hz was found to be effective. For smaller 

spacing, BER imprdved slightly but more filters were required and convergence .time 
, 

also increased. The reverse was true for larger spacing. 

The set of rd&d coefficient filters could be designed effectively using mean squared J 

error optimization. Compared to rectangular filtek, the set of optimum filters required 

less step margin to give the same error floor. h 

The optimal combination of MWA and shaping filter length was 5 and 5 1 respectively. 

Worst case convergence time was 32 steps for a cqss-correlation sample size of 299, 

With a 2400bps system, this corresponds to 4 sec. 

Em, has very little effect on convergence time. However, it increases significantly 

with increasing f, B 

Effects of decision direction and self-noise were negligible. 



7.7.1. ~ o m ~ a r i s o n  with SGT Filter 

Figure 7.28 shows the BER vs EdN, curves for pilot fdter implemented 

SGT algorithm at various doppler frequencies. The filter length was 11 

was 3 for both cases. Except for ~ D T  of 0.00417 (10Hz at 2400bps), the FSA performed 

better than the SGT filter. The difference in performance at a BER of 10-2 was -0.5,0.7 and 

1.1 dB for ~ D T  of 0.00417,0.0208 and 0.0417 respectively. One should keep in mind that the 

BER performance of the SOT filter in the presence of self-noise is significantly deteriorated 

whereas for the FSA, self-noise has very little effect on BER. Also, recall that the BER per- 

formance of the SGT frlter deteriorates with increasing filter length beyond 11 whereas the 

performance of the FSA increases with filter length. Figure 7.29 shows the BER curve for 
b 

FS A with length 51 filters and SGT filter of length 1 1. The FS A out-performed the SGT filter 

for all ~DT.  The difference in BER performance in this case was 0.2,O.g and 1.2 dB a! 10-2 

BER for dopplen of 0.b0417,0.0208 and 0.04 17. 

In terms of convergence behavior, pilot filter using the FSA is also superior &an a SGT pilot 

filter. Figure 7.30 shows the learning curves from simulations of stepwise increase in ~ D T  

from 0.00417 to 0.0417 at E n o  of 40 dB for both implementations. Length51 filters were 
! 

used for the FSA and length 5 filter was used for the SGT algori;hrn. We can sekVthat once 

converged, the FSA had no difficulty in tracking increases in the doppler frequency. As for 

SGT filter, there were jumps in BER due to the inability of the SGT algorithm to follow the 

changes in doppler at high E n o .  The difference in convergence performance between the two 

algorithms would be smaller at low Efl ,  
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7 . 8 .  FREQUENCY OFFSET ADJUSTMENT 

f -. . - 
The frguency offset which exists in the spectrum of the fading process is a dirdct re'sult of the 

difference in frequency between the transmit and receive oscillators. This offset can be 

? considered constant for a particular transmitter-receiver pair. Therefore, in order to provide an . . 
appropriate correction for this offset, one needs only to estimate it once during system initial- 

% 

izaiion. Q e  offset estimate, denoted by fo:, can then be used to de-rotate the received samples 

during subsequent operation by multiplying the samples with e-J2*okT. This realization sug- 
* 

gests that there is no need for dynamic tracking of the frequency offset. It is one of the reasons 

why frequency offset adjustment has not been incorporated into the FSA as a two-dimensional - adaptation. In this section, we consider a method for estimating the frequency offset by the use 

of a FM discriminator. 

Figure 7.3 1 shows block diagram and the associated model of the subsystem for estimating the 

frequency offset using a FM discriminator. 

% 

The discriminator is preceded by a limiter which limits the amplitude fluctuation of the input 

signal. The input to the limiter, rp(t), is given in discrete time by (2.14). In continuous time, 

rp(t) can also be written as: 
c 



where the complex gain c(t) has been represented by its amplitude a~&fkequency components. 

The use of continuous time representation is for simplicity only. Results obtained are also 
..* h 

applicable for discrete time implementation. 

Figure 7.3 1 - Block Diagram and Model of Frequency Offset Estimation Subsystem, 

wirh FM Discriminator 

The frequency discriminator. assumed to be ideal with unity gain. is followed by a low pass 

filter (LPF) for noise reduction. dutput of the discriminator is: 



Estimate of the frequency offset in radian is given by: 

where h ~ ( t )  is the impulse response of the LPF and HL(O) is the d.c. value of the Fourier 

transform of h~( t ) .  From (7.33, we see that the,output of the subsystem haS a mean value 

which is proportional to the desired frequency offset but it is perturbed by two noise terms. To 

investigate the amount of variations expected from the frequency offset estimate, we need to 

calculate its variance. Assuming that ~ ( t )  and np(t) have zero means, the variance of coo' is 
I 

- 

given by: 

6 

where Npt(o) and @'(a) are the Fourier transforms of npp(t) and cp'(t) respectively. Statistics 

of the random FM component ~ ' ( t )  has been studied elsewhere [6, 7, 23). Its spectrum has + 

L. 

been numerically computed and has the shape which is shown in figure 7.32 [23]. 
, . 



J Figure 7.32 - Power Spectrum ~f Random FM= (tiken from [23]) 

npl(t) is AWGN passed through a discriminator. From FM communication theory [24], we 

know that npl(t) has a parabolic spectrum given by: 

where rcn is t h ~  canier to noise ratio. 

If we assume thai the LPF is ideal with unity gain qnd bandwidth W, then the two integrals in 

(7.36) can be evaluated using figure 7.32 and (7.37) to give: b 

A typical camer to noise ratio of lOdB is ass~uned'in obtaining (7.38). The average amount of 

-variations in the frequency offset can be expressed as: 
\ 



- where B is the single sided bandwidth of LPF in Hz. 

. From (7.39), we see that the deviation in f, is. approx 
t - 

imately 8:92 92 for lOOHz doppler. -In 

order to maintain a small deviation, we need to have a very narrow filter. For &+knple, to 

obtain a deviation of le%s than lOHz, which is about the maximum frequency offset tolerable by 

. . . the FSA, we will need a LPF with bandwidth smaller than 2.5IIz. Although a fdter with this 
* .  

narrow a bandwidth will have a long delay (- 60ms), this delay will not pose a problem be- 

-cause the LPF is not in the data brocessing path. 
, 
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AND RECOMMENDATIONS ' '.,- ~ . I . . . _  :. a 

7 ,  

- > .  " .  

This thesis has addressed the issue of in61ducir1g adaptivity into the pilot fdter for a tone aided 
- ' 

transmission system. kaapt@iG igidtr0ctuw.j tda.110~ the p2ot fiter to-operate at or near 
, ... 4 

~ptimum bandwidth under c&gin vehicle.s$ed. 'Ilie present study kvestigated .the perfor- ' 

,mince&f various adaptive filtering schexiies. The general approach taken in this sfudy is to 

fr& derive the various adaPt;atio'n algorithms in the context of pilot filteqing. The BER and 

convergence perforqance are then analyzed wherever possibre, &d ~ ; ~ ~ o r t e d  with simulation , 

Two conventional adaptive filtering algorithms have been investigated: the Stochastic Gradient . I 

Transversal filter and the Stochastic Gradient Lattice ~ojht-&ess though the 
R 

.twq stochastic,gradient.algohithms use minimmi mean square error as criterion, it ha; been ' 

shown here that minimizing the mean square e m r  between the pilot filter dutput and the data 
4 

de&ed reference is eqdvalent to the minimization of BER. 

Analysis has shown that thk convergence spe&f the SGT fiter is highly sensitive to the 
'I 

eigenvalue spread of the input correlatioh matrix. The smaller is t&e eigenvalue spread, the 
m 

slow& is the convergen& speed. The most important pa&eter affecting input eigenvalue 

spread is E m o  because of its large dynamic range. Input eigenvalue spread is found to be . 
& 

directly proportional to the G d N , .  At high Eflo, the eigenvalue spread is very large, which 

means that convergence is very slow. Fortunately, practical systems generally operate at the 

vicinity of 20dB where eigenvalue spread has been shown not to be a problem. 9' 



Because of the stochastic gradient approximation, there is an excess loss associated with the 

BER performance of the  filter so that its BER is always higher than that achievable with 

the optimal fdter. This is also true for the SGT-JPE. However, it is found that if one forces 

the SGT filter coefficients to be conjugate symmetric, then the excess loss can be reduced 

without affecting convergence. The ekcess loss is an increasing function with increasing 

doppler and it can be as much as 0.5 dB at 4% doppler. This makes the use of a SGT pilot 

fdter suitable only f& low vehicle spied because the maximum performance gain of an adaptive 

system over a non-adaptive system is already very small at high doppler. 

For most applications, the SGL-JPE is expecte better than the SGT filteq, espe- 

cially with respect to convergence speed, be decorrelating property of the lattice 

section used in the SGL-JPE. However, both numerical analysis and simulation ksults have 

, shown that the SGL-JPE is not suitable to be used in the pilot filtering application because of 

h e  high sensitivity of the BER to fluctuations in ihe SGLJPE coefficients. 
I 

- ,  

Due to the various problems associated with the two stochastic gradient algorithms, a novel 

approach has been taken, leading to the deyelopment of a new adaptive filtering algorithm. By 
L 

reducing the adaptivity to one dimeniidn, namely bandwidth, the filter switching algorithm is 

capable of achieving high convergence speed at the expense of processing complexity. 

In order to analyze the perforinance of the algorithm, a dbal Markov-~1odel has been intro- 

duced. This model enables the computation of both the average BERFand the Convergence 

speed. Simulations have been perfarmed which showed ,that the model has a high degree of 

accuracy: Although the mod& is valid only for the PSA implemented in its simplest form, it 
9 

provides insights into the effect of various parameters on the algorithm performance. Using the 

Markov model, the FSA, even in its simplest and slowest form, is Yound to converge fast 



* * 
enough to track the changes in doppler during vehicle acceleration. BER performance of the 

FSA has been compared with that of a non-adaptive system using a rectangular pilot fdter with 

bandwidth of 150Hz. For a 2400 bps system operatirig at a BER of 10-2, the improvement is 

0.3dB for lOOHz doppler, l.OdB for 50Hz doppler and 2.0d.B for lOHz doppler. In addition 

to these improvements, the FSA is very robust in the sense that self-noise and decision direc- 

tion have very little effect on its performance. Convergence time is also found to be insensitive 

to changes in Emo. 

Compared to the two stochastic gradient algorithms, the FSA provides better performance in 

v both BER and convergence speed. The FSA canbe used in other filtering applications where 

bandwidth adaptivity is important. However, one must evaluate the suitability of using cross- 
( 

correlation as performance index in the particular application. 

'\ 

A simple scheme of utilidng a FM discnrmn . . ator for estimating the transmitter-receiver oscilla- 

tor frequency offset has been presented. This scheme is found to require a very narrowband 

low pass filter in order to keep the variance of the frequency offset estimation small. The long 

filter delay of the low pass fdter is no; a problem becausede frequency offset is relatively 

stationary with -time. 

Future work in the area of this thesis may include the following: 

Investigation into the use of recursive least square algorithms such as the fast 
4 '  

transversal filter [15] can be undertaken. The convergence speeds of these algo- 
a .  

rithms have been demonstrated to be insensitive to input eigenvalue spread and they 
. . -. 

have been known to provide a lower average mean square error than stochastic @i-' 

dient algorithms. Mostqof these algorithms, however, are susceptible to numerical 
. a O /  



instability. Algorithms which utilize the lattice joint-process structure should also 

be avoided 

Investigation into the use of adaptive pilot/interpolation fdter for a pilot symbol 

aided transmission system is recommended. Similar performance improvements - 

are expected because of its hctional'similarity to tone aided systems. 
i 



, APPENDIX 1 : Derivations of Cmax and pmax for a Rectangular Pilot Filter 

- 
) 

h this appendix, we will demonstrate that for a rectangular pilot filter, the bandwidth which 

gives maximum cross-correlation (Cmax) also gives maximum correlation coefficient (p,). 
e 

At the same time, we will show that the cross-correlation function, C, has no local peaks other 

than C-. To accomplish this, a combination of analytical and graphical techniques will be 

used. 

Analysis of ~r&s-correlation 
. . 

1 

We begin by first differentiating C with respect to the bandwidth, Bp, and then compute Bp for 
dc which - equals 0. 

- .  d$ 

The pilot filter is assumed to be &t energy so that its fi-equency response is" given by: 

If1 5 Bp 

otherwise 

with Bp assumed to be positive. 

The cross-correlation, C, can be shown to be [lo]: , 

S F  

For a rectangular pilot filter, this reduces to: 



where y and Pd are given by: 

min [Bp, f ~ + f ~ ]  
Pd = I ,ax [-Bp, - f~+f , l  sg(f-fo) df 

Because of discontinuities in Sg(Q and Hp(f), we need to examine two cases: (i) when fo is 
* 

negative and (ii) when f ,  is non-negative. 

Case (i) : fo < 0 

We consider $ in three non-overlapping regions: 

(a) a Bp < f o + f ~  
h, 

(b) f o + f ~  2 Bp 5 f ~ - f o  

Region (a) : Bp < f o + f ~  - 
We differentiate C by first finding the derivative of Pd. 



@d From (A 1 A), we can see that - is positive in region (a). 
~ B P  -. 

In (A 1.7), the denominator of the first term is less than that of the second term and the aumer- 

ator of the frst tern is greater than the numerator of the second term. Therefore, the fmt term 

must be greater than the second term mean& that a, is also positiveb region (a). ' 

S ~ B ,  

The derivative of C kith respect to Bp is given by: 

3 . 1 [Bpg-P"] 
Y T p  2 " a -  

Let f ( ~ ~ )  = [I+,%-?] , then 
~ B P  

b 

which is positive because, as shown earlier, both the first and second derivatives of E?d are 
/I 

positive. conseq;ently, f(Bp) isamnotonically increasing in region (a): 'since f(0) = 0, f(Bp) 
+. 

is positive and that C(Bp) is mono- must necessarily be positive. This implies that- 
I 6% 

* - 
tonically increasing in the region Bp < f o + f ~ .  



Region (b) : f o + f ~  5 Bp 5 f ~ - f *  

In this region; ' 

a Its first and second derivatives with respect to Bp are: 

and 

Clearly, one cannot determine from (A1.8), (Al. 10) and (Al. 11) whether any local extremum 

exists. Instead, we have made use of graphically techniques in order to demonstrate that no 
n 

local extremum exists in &IS region. Figures A 1.1, A 1.2, A 1.3 and A 1.4 show the cross-cor- 

relation as a function of the filter bandwidth for various doppler frequencies at 20dB Em, 

with 0, -10, -50 and -100Hz offset respectively. Based on these figures, we can observe that 
* 

C(Bp) is monotonically increasing and that no local extremum exists for f o + f ~  I Bp 5 f~-f,. 

- Region (c) : Bp < fD-f0 

In this region, 

Pd = 1. 

The derivative of C with respect to Bp, with Pd equal unity, is: 



which is negative. C(Bp) is, thus, monotonically decreasing in the region Bp < f ~ - f ~ .  Since 

C(Bp) is monotonically increasing in regions (a) and (b) but is monotonically decreasing in 

region (c), this implies that there is a unique global maximum which must occur at the bound- 

ary between regions (b) 'and (c); i.e. 
\ 

for fo < 0 Bpmax = b - fo 
iB 

Figures Al. 1, A1.2, A1.3, and A1.4 confirm this conclusion. 

Case (ii) : fo 2 0 

We again divide the analysis into three non-overlapping regions: 

(a) Bp < fD-fo 

By symmetry, the results from the corresponding regions for case (i) also apply for case (ii), 

i.e. C(Bp) is monotonically increasing in regions (a) and (b) but it is monotonically decreasing 

in region (c). We can, therefore, draw a similar conclusion as for case (i), i.e. there is a unique 

global maximum for C as a function of Bp which occurs at: 

for fo 2 0 (A1.1.5) 
4 

We can conlude h m  the above analysis that, for a rectangular pibt filter, the crosf-carrelation 

function is "well behaved" and it attains maximum value for 
I 

Bp- = f~ + Ifol. 



Analysis of Correlation Coefficient 

3 
-- - -- - - 

Following a similar approach as used for the analysis of the cross-correIation, we differentiate 

the correlation coefficient p with respect to the filter bandwidth Bp by cust reducing the 
a 

expression for p into a simpler form. 

From (3.2), the expression for the correlation coefficient, p, is given by: - 

For a rectangular pilot filter, this reduces to: 

I min [Bp, f ~ + f ~ ]  
max [ - B ~ .  f ~ + f , l  Sg(f-fo) df 

P = , 

\ 
Again, we examine the cases wheie fo is negative and where fo is non-negative, separately. 

Case ( i )  : fo < 0 . 
* 



We consider Bp in three non-overlapping regions: 

(a) Bp < fo+fD 
t 

(b) f o + f ~  5 Bp !S f ~ - f ,  

(c) Bp>fD-fo 

Region (a) : Bp < f0+fD 

The derivative of p with respect to Bp is: 

3 

(P, + 
rRb 

Denoting the numerator in (Al. 19) by g(Bp), then the derivative of g(Bp) is given by: 

e 

Siqce both the first and second derivatives of Pd with respect to Bp are positive, it follows that 

is also positive in region (a). With g(0) = 0, g(Bp) must be postive as well meaning that 
6% 

p(Bp) is monotonic a& increasing in the region Bp < fo+fD. 

Region (b) : f,+f~ 5 Bp 5 f ~ - f ,  

As with cross-correlation, graphical techniques have been used to determine whether p is 

monotonically increasing in this region. Figures ~ 1 . 5 ,  A1.6, A 1.7 and A1.8 show the bit 



error rate as a function of the filter bandwidth for various doppler frequencies at 20d.B E n o  

with 0, -10, -50 and -1OoH.z offsti respectively. From (23), p is related to the bit error rate 

for a mtangular pilot filter simply as: 

BER has been ,used here. for conveniende only. All of the figures show that BER is monotoni- 

cally decreasing for fo+b 4 E+, S fg-fo which mans that p is monotonically increasing in this 

region. 

Region (c) : Bp c f ~ - f ~  

In this region, 

Pd= 1 
& 

and 

p is, therefore, monotonically decreasing for Bp < fD-fo. With the results found f6r regions (a) 

and (b), we conclude that p has a unique global maxixntud at: 
d 

w ~pmax' = afo for f~ < o (A 1.23) 

Figures A1.5, A 1.6, A1.7 and A1.8 confirm this result. 

Case (ii) : fo 2 0 * 

9- 

Again, by symmetry, we can conclude that there is a unique. gbbal rnciximum for p which 

I 

for fo 2 0 (A 1.24) 



Combining with (A1.23), we can'express the optimum bandwidth at which maximum comla- 

tion coefficient occurs as: . 
5 
B ~ , ~ ~ '  = f g  +~ lfol. . (A1.25) 

This equation is of course identical to (A 1.16) which gives the optimal bandwidth for peak 
-- 

cross-correlation. We have therefore shown that for a rectangular pilot fdter, both the cross- 

correlation and correlation coefficient attain their maxima for the same filter bandwidth as given 
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APPENDIX 2 : Behavior of the Cross-Correlation for a Set af 
I Optimum FIR Filters 

It has been shown in Appendix 1 that the crosstorrelation is "well behaved" for a set of rect- 

angular pilot filters. Here, we examine, graphically, the behavior of the cross-correlation *en 

a set of optimum FIR filters is used. The set of optimum F'IR filters refers to filters which have 

been optimized for different doppler at fixed E& and tone-tesignal power ratio. 

Figures A2.1 and A2.2 show the crosstorrelation and BER as functions of the filter number 

(or state index) at various doppler for Eflo of 2UdB. Filter length of 5 1 and MWA length of 

3 have been used. The optimum filters have been designed for increasing f~ at 5Hz increment 

starting at 5Hz and ending at 125Hz. The filters are numbered in order of increasing fD so that 

filter nurnbe~l corresponds to a filter optimized for 5Hz doppler and filter number 2 corre- 

sponds to a filter optimized for lOHz doppler, etc. 

We can observe from figure A2.1 that the cross-correlation function contains a number of 

"plateaus", especially at high doppler. These plateaus are d w  to the ripples and gadual roll-off 
' 

of the filter frequency responses. The peaks of the cross-correlation do not 'occur at the ex- 

pected filter number as for a set of rectangular filters. For exarpple, using a set rectangular 
s 

- filters at f~ of 50Hz with a similar bandwidth arrangement (5Hz increment), we expect the E 

F 

cross-correlation to peak at filter number 10. F& the set of optimum FIR fdters used, the I 

cross-comlation peaked at filter number 8. The difference is again due to the gradual roll-off . , 
V 

of a e  filter frequency response. 



Similar phenomena can be observed for the BER as a function of the filter number in figure 

A2.2. Careful examination of figures A2.1 and A2.2 will reveal that the fdter numbers which 

give minimum BER (and hence maximum correlation coefficient for the "set of filters used) do 

not correspond to those which give maximum cross-correlation. Figure A2,3 shows the loca- 

tions of the respective peaks of the cross-correlation and correlation coefficient at different 

doppler frequencies. The locations of the peaks differ by only one state except for states 1 and 

2. These differences can be easily compensated for, by using appropriate numbers of step 
4, 

margin. 

It should be noted from figure A2.1, as well as in A2.2, that there is a small local maximum for 

f~ of 70Hz. Fortunately, because of the stochastic nature of the fading process, there is no 

danger,of the algorithm being "trapped" at the particular state where the local maximum is situ- 

ated. In general, the crosssorrelation for a set of dptimum FIRmten is not as "well behaved" 

as for s set of rectangular filters. However, as shown by the results given in section 7.3.2, 

the BER performance of the FSA using an ensemble ofoptimum FIR filters is comparable to 
I 

that using a set of rectangular fdters. 



N 
N N  N N N N N  I I r I  IIlrs z w s s i o a o a z  



f 
1 
l t

e
r
 

n
o

. 

. 
- 

fi
gu

re
 k

.2
 - B
E
R
 a

s 
a 

Fu
nc

tio
n 

of
 F

ilt
er

 N
um

be
r i
h 

a 
Se

t o
f O

pt
im

um
 F

IR
 F

ilt
er

 



Figure A23  - Optimal Filter Number atDifferent Doppler Fkquencies 

*. for Cross-Cor r. 
+ for Con. Coeff. 



APPENDIX 3 : Derivations of the Correlation Functions of 6(k) and v(k) 

This appendix presents detail derivations of the correlation functiork beween the in-phase k d  

quadrature components of ;(k) and v(k). These correlation functions a%: 
i 

A A 
with ur , UQ ,VI , VQ denoting the in-phase and quadram components of8 and v. 

- 

The given derivations assume that the in-phase and quadrature components of the fading pro- . 

cess, g, and the noise processin the decision corrected reference, n ,  are,'uncomlatcd. Fur- 
$ *  B 

thermore, the auto-correlation functions of their in-phase and quadrature components are 
. 

assumed to be the sahle. These assumptions lead t i  the following: 



--I' 

The expressions for B(i) and v(i) can be expanded to give their in-phase 'and c@adram com- 
d- 

ponents as given below: 
, 

a 

0 



I 9 The &ances of the in-phase and quadnture components of the gradient filier output nolse 9 

, process, ny(i) and nvQ(i), have been derived separately in Appendix 4. 

I , , 1) The auto-correlation function, %($I-k), is given by . 
" < 

I 

B 

Ro~a*(i-k, - ~[$ ( i )  Bm1 .% 

3. - Q 

= E [ ( A  ( p(i) c o s ( 2 ~ f ~ )  - g ~ ( i )  sin(2rrfd) + nUI(i) } . - 

i 

' - In (A3.20) and all subsequent derivations, terms involvirig, E[&) gp(*)], e[hl(*) g1(*)1, . 

E[n& g~(')], E[nuQ(*).gl(*)b E[nq(*) gq(u)]'and ~ [ n & j  nq(*)] will not be shown as they * 

B 8 0 

a . > 

.s 



D +&=. 

equal 0. Also, equation 5.54 will be used extensively to relate the terms a2 og2, A2 og2, and 

A a q 2  to Eb, as it has k e n  used to obtain (A3.20). 

q v  P 

2) The auto-correlation function, R&(i-k), is given by 

3) The auto-mrrelation~function, RQ&(i-k), is given by 



"P,%-" 
=L I 

4) The auto-correlation function, Rqy(i-k), is g i~en~by:  



5 )  The auto-correlation function, RvQ(i-k), is gwen by:+. 
) 





6) The auto-correlation function, RvpvQ(i-k), is given by: 



n 

\ *  7) The auto-correlation function, Rfim(i-k), is given by 



OD- 

= a A (Rg(i-(k-n)) cos(2afo(i-(k-n))) dhp1(n) 
IF- 

8) The auto-correlation function, RQpQ(i-k), is given by 



9) The auto-correlation function, RQQq(i-k), is given by 





10) The auto-correlation function, RQVQ(i-k), is given by 



Each summation term in the correlation functions involving the in-phase and/or quadrature 

components of v is in the form:, 

where R(i-n-(k-m)) = %(i-n-(k-m)) sin(21rfo(i-n-(k-m))) 

For convenience, define ~ ~ ~ ~ ( 4 6 ) )  = F { Ahpl(n) ) , 

 AH^(&) = F (Ahp2(n)) and 

S(&) = F (R(n)). 

Let 1 = n-m, then 

-. 

= R(i-k-1) h(1) where h(l) = Ahpl(l+m) Ahp2(m) , and 
1=-0 m=-- 



Similarly, each summation term in the correlation functions involving-the in-phase and/or 

quadrature components of 6 and v is in the form: 
h 

-1 

00 

{ R(i-(k-n)) Ahp1 (n) } where R(&-n)) = Rg(i-(k-n)) sin(2do(i-(k-n))) 
n=m 

or &(i-(k-n)) cos(2nfo(i-(k-n))) 

fipl(n) = Ah,(n) or Ahp&) as before. 

(A3.30) and (A3.3 1) can be used to derive expressions for ~ ~ ~ ( i - k ) , ' J t ~ ~ ~ ( i - k ) ,  RVQVQ(iek), 
-* 

Rpl (i-k), R$IYQ(i-k), RAwq(i-k), and RbQ(i-k) in the frequency domain. 

The results are s u m z e d  as follows: A 



+, Bg(i-n-(k-m)) sin(2xf,(i-n-(k-m))) Ahp 

+ &(i-n- (k-m)) co~(&fo(i-n- ~ m ) ) )  hpQ(n) AhpQ(m) 

- &(i-n-(k-m))sin(2do(i-n-&-m))) AhW@) Ahpl(rn) ) 
+02 ti* r nv1 

1 x SE(d(*m)) + SEU(-) [rnPl(do)] * mPl(ejo) &(i-k) = 'E~R~I l+r lZj-% 2 

- Rg(i-n-(k-m)) sin(2x (i-n-(k-m))) AhW(n) AhpQ(m) 





" 

i 

Symmetries in the Correlation Functions of 6(k) and v(k) 

Since Ahp is conjugate symmetric, AhPI has even symmetry and Ahpq hap odd symmetry. 
6 

This, in addition to the fact that Rg is real and even, means that the following symmetries exist: 



APPENDIX 4 : Derivation of Noise Variance at the Gradient Filter 0&ut 
b 

The Gaussian noise at the gradient filter okput can be expressed in terms of the in-phase and 

quadrature components of the input noise and filter impulse response as follows: 

where n(i) is the input noise assumed to be white Gaussian. 

The in-phase and quadrature components of n, are thus given by: 

The variances of ny and nvQ can be derived as follows: 



b 

Terms involving~(.)nq(.)] are omitted as they equal 0. 

Since samples of n~ and n~ are uncomelated. Rnn(m-n) = R@nQ(m-n) = (2  m = n  
m # n  

where No is the variance of the input noise. Substituting for RnInI(m-n) and RnQnQ(m-n) and 

using Parseval's theorem gives: 
a 

The variance of the quadrature component of n,. 2 . can be den .- "4 

can be shown to be equal to . 

(A4.5) 

@3 

ar fashion and \ 
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