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"ABSTRACT

cne Ptlot tones have been used as means_ of phase and amphtude reference for demodulanon m a

u_-. .

' fadmg env1ronment, such as that of moblle commumcatron The receiver in a pr}ot tone arded

\ .

- transnuss1on system extracts the reference wrth a narrowband pllot filter. The filter bandwrdth =

“has an opumum value, wh1ch represents a comprotmse between the amount of distortion and; =

addmve n01se present in, the recetved prlot Thrs optimum bandwidth is a funcnon of ~t»he

- 'doppler frequency, whrch 1n tum vanes wath vehicle speed The thesis mvesngates the use of

SR adapnve ﬁltenng algonthms for extracnng the pﬂot SO that the p1lot ﬁlter bandwrdth varies

i T automaneally in response to changes in: the veiucle speed It is the first trme m ‘ hrch the issue

of adjusung the pﬂot ﬁlter bandwrdth wrth speed changes has been addressed

“Three algorithms have been mvestrgated of whtch two are comrnonly used, namely:;te B

et

L

o S Stochastxc Gradlent Transversal ﬁlter and the. Stochastw Gradrent Latuce Jornt Proeessor Esu-

| mator ‘"The thrrd algonthm is novel W1th algonthm the recerver se}ects the opnmum; s '

‘, v member from a pre-calculated bank of stor ‘ ﬁlters The technlque is found’ to be very robust, )

d its bit error rate performance is superior to that of the other two algonthms mvestlgated. It

can provide up toa 2 0dB nnprovernent overa non-adapnve ﬁlterm g scheme Denvanons and L

3
' analy51s fgk the adaptatlon schemes 1nvest1gated are presented aCcompamed by 51mulanon‘ ”

PO -44,

results.”
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1. INTRODUCTION

1.1. General

~ The populanty of mobile data communication systems have been on the rise as the technology ,

slowly penetrates into the various markets such as taxi, couner pubhc utilities, safety and law )

' 'enforcement ‘Mobile pubhc access data networks are begmmng to spnng up. One such
example is the system developed by Mobile Data Intemauonal (MDI) in Hong Kong for
Hutchison Moblle Data Limited (HMDL) which has a capability of handlmg a mammum of

- 5000 users. These networks'make mobile data communication availableto thé smaller private |
user groups Moreover, 'with the introdnction of teehnologies such as MSAT, Mobile SATel-
lite, in 1992, global coverage will be possrble for private users w@eh will increase the popu-
larity of mobile data commumcauon even furthcr Wlth increasing popularity comes the in-

creasmg need for h1gher data rates and this demands more stringent requirement on the received

signal fidelity.

One of the major problems which affects received signal fidelity in a mobile environment,
especially la.n_d mobﬂe_, is signal fading. There are other p:dblems such as adjacent channel
interference, co-channel in;erference and amplifier non-linearity which play less important
" roles. The effects of fading need to be considerednot only in the physical link lgevl))ut also in
the error control and higher system protocol levels. -

, 4
To overcome the effect of fading, past focus of research on modulation and demodulation

techniques for use in the mobile environment has been on the development of constant enve-

lope signalling schemes demodulated non-coherently. Some examples are the developments of

L SN
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Generahzcd Tamed FM (GTFM) [1], Gaussmn MSK (GMSK) {2], and various other cqnﬁnu- i

“ous phasc modulation techniques. Thesc techmqucs provide reasonably good performancc ina
fadmg environment with data rates up to 193 kbps for a 25 kHz channel. Today, the mosthfg"
" active eﬁea of research in modulation technique for the mobile environment is in the use of
multi-lé?el modulations combined with trellis codmg [3]. These modulation tcchniqués invari- |
ably require good phasc and amplitude reference for high performance. Multipath fading prc-’»
vents the reliablé acquisition of these references from the modulated data. One sohmon to thls f
problem is by u'ansmmm g a pilot along with the modulated signal to be used as rcfcrcncc This
' pilot-based rcfcrcncc technique is commonly known as tone-calibrated transmission (TCI') [4] »

Most rccently, another technique which uses refcrencc symbols embedded in the data strcam :

has been Vlntroduced. Data rates of up to 64 kbps have been reported Vfor-anqadra;mrc-“’f
Amplitﬁdc Modulated (QAM) system using either of these approaches [5].

1.2. Fading Channel Characteristics [6,7]

A fadin;,' éh;mnel generally consists of both a fast and a slow component. Thé slow fading - |
component affects the median signal level %a result of shadowing by tcfrain features 61' man-
made obstructions. This component can be modeled as having a log-normal amplitude prdba-
bility distribution. Fast fading (or commonly known as multipath fading) affects the instanta- )
neous signal amplitude and is caused by interference of zlectromagnetic wave msulﬁqg_ from
reflections through different paths (and hence the name multipath fading). The single nzlost‘
important parameter in determining the statistiCs of a fading channel is the doppler frcquer‘;cy
which is a function of the carrier frequency and vehicle velocity. The carrier frequency is gen-
erally fixed for a particular system. However, the vehicle velocity is subjected to change as the
vehicle accelerates and decelerates. This means that the doppler frequency and therefore the

fade statistics are also subjected to change.



e L T o . .
] . . - A
" . P . el
5 <7 PN . T .
\ . . ~ B Yo L P

. . R g o .
. . s K L A

R . .

5

“ Two.of the most popular stansueal distributions for use m modehng mulupath fadmg are the

- "Rice and Raylergh drstnbuuons The Rice dlstnbuuon apphcs to the case When there. i is a -

strong line of sight component in the I'CCCIVCd srgnal such as in s‘h@lhte commumcatmn

Rayle1 gh dlsmbuuon a special case of Lhe Rlce dlsmbuuon is: often used to- model the land
| mobrlc channel where line of srght component is very weak or not present at.all. The fad1ng
model used in dus thesis assumes Raylelgh .fadmg “One of the’most senous srde effects of fast
fadlng is random FM The effect of random FM on brt erTor rate (BER) is small at low re-
}- ceived srgnal energy to noise densrty ratio (Eb/NO) where addrtlve wh1te Gaussran noise lS the

dominant cause of blt error At high Eb/NO, bit errors due to random FM dommate The result

is an ureducrble error floor such that no matter how high Eb/NO- is,  the BER Ievels out at a par-

ticular value which is a funcuon of the dopplcr frequency.’ Use of a prlot or prlot symbols pro- T E

vides a solut10n to this problem. . o (‘7» o

&

1.3. Toné-Aided Error Floor Suppression Techniques

Systems which involve the use of a pilot tone have appeared in many fOrms The originai pilot

based cahbratlon system was first proposed by Davarian [4] and was named Tone Calibrated

Transmission (TCT) system. A number of vanat\ions have emerged smce the mtroductlon of
TCT These include Dual T)ne Calibrated Transmlssmn (DTCT) [81 and Phase-Locked -

Transparent Tone-In-Band (PL-TTIB) [9]. All these systems 1nvanably fnvolve transrmtung a

tone (or tones) either along side or in the center of the tranSrmssron band A prlot based system

can reduce or even eliminate the irreducible error floor and at the same time, allow coherent

detection to be used. One disadvantage is that it produces a non-constant enve10pe srgnal and
thus requires amplifier with highly hnearﬁ'J sfer charactcnsms for transmlssron However,

this does not pose an addition problem for a QAM sys_tem because QAM isa non-constant

3
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v‘; envelope srgnalhng scheme. Each variation of prlot based calibration system has its own ad-
vantages and drsadvantages For example, TCT places the pllot in the center of the u'ansrms-
smn band Therefore the reference provided by a TCT system gives the best representanon of
the channel dlstomon and is least suscepuble to ad_]acent channel interference. I-Iowever thrs
sgheme -requires a zero d:c. srgnal level and thus places restrictions on the modulation and
coding schemes. A DTCT system uses two ’pilot"t'bnes, one plk'aced at either side of the trans-
mission band. Obviously, this scheme does not}re‘quire zero d.c. level in the data spectrum buto
it suffers from susceptibility to adja?Ent channel interference and a3dB lbss in BER perfor- E
nfance due to the need for d1fferent1a1 encoding: TTIB splits the data spectrum in half and
moves them apart to create a null in the center of band where the pilot is placed. ThlS scheme

also does not requlre the data spectrum to have zero d.c. Its main dlsadvantage is in the in-

creased processing complexity.
1.4, Thesis Objectives

One of the major design tradeoffs in any pilot-based system is in the pilot filter ban2 width.
- . This issue has ‘bcen investigated thoroughly by éavers for TCT systems [10]. If the band-
_"w1dth is t00: narrow then the ﬁlter cannot follow.channel ﬂuctuanons If it is too wide, then
the filter admits t0o much noise and the i'esult is degradation in BER. The optimal bandwidth
is one whlch is JUSt wrde enough to cover the fade syectrum. In most literature of pilot tone
teChniques, the pilot filter is usually assumed to be a unity gain rectangular filter with‘band‘-.
width equal to the'maximum ddppler freqm» plus frequency offset expected during opera-
, tion. The actual doppler frequency and frequency offset during system o;;eraticn is normally
below the expected maxima. This suggests that there is more‘noise allowed intc the pilot filter
than is necessary. The purpose of the research leading to this thesis is to investigate the use of

- various adaptive filtering techniques for implementing the pilot filter so that the filter response

4
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can adjust to chan ges in doppler frequency and theneby mlmmlze the system b1t error rate The
idea of making the pﬂot filter adaptive is new. No prevmus work of a similar nature has been |
reported prior to the completion of this thesis. Three dlfferent algorithms wefe investigated: (1)
the Stochastic Gradient Transversal J omt-Process Esumator or otherwise 1mown sxmply as the
gtochasuc Gradient Transversal (SGT)) filter, (2) the Stochastic Gradient Lattice Jomt-Proces-,
- .sor Estunator (SGL-JPE) and (3) the Filter Switching Algorithm (FSA) The ﬁrst two algo— :
| rithms are well known and has been used extenswely in areas such.as reductxon of mtersymbol

mterference and echo cancellatxon [11, 12]. The ﬁlter sw1tchmg al gonthm isa novel adapuve

- filtering technique which has been developed exphcrtly for the present apphcatxon In this - R

thesis, we will show that the filter sw1tch1ng algorithm is a more suitable choice for 1mple-‘

menting an adaptive pilot filter when compared to the two stochastic gradient algorithms-,

1.5. Thesis Qutline

The overall system model is presented in chapter 2 \xfﬁ\ere the basw TCT structurg is. used. The
srgnal flow along with all expressmns descnbmg the srgnals at the input and output of each

system block are given in this chapter.”

In order to enhance understanding of the analysis to be presented in subse"‘quen't%chapters, we -
reprodnced some of the analy.ical results from the pap_er "Performance of Tone Calibraﬁon
with Frequency Offset and Imperfect Pilot Filter” by J. K. Cavers [10] in chapter 3. These

results form a starting point for the derivations of the three adaptive filtering algorithms.

Chapter 4 exammes the p@ormance of the traditional non-adaptive approach and discusses

some of the conmderauoﬁs in the evaluation of the performance of a system usmg an adaptive

il

\
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pilet filter. This &hapter' also explores some of the advantages and dlsadvantagc of the pro-

| posed adaptive schemes.

\

‘Derivations and convergencc analysis of the SGT pilgt filter are presented in chapter 5. Itis

. shown here that the mmunum mean square error. soluuon also glvcs a solution which mini-

mizes the system BER with rcspcct to the pilot ﬁltcr coefﬁclents The SGT filter is found to

, pcrform adequately well under low signal energy to noise densrty ratio. However, it suffers

N
from slow convergence when the s1ghal4:nergy to noise dens1ty ratio is high due t0'the large

’ 1nput eigenvalue spread. Snnulauons results are also presented showmg the average BER per-

formance and the convergence behavxor

4
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_ Chapter 6 prov1des bnef derivations and. BER sens1t1v1ty analysis of the SGL JPE for usein

the pilot filtermg appIicatron It is shown here that the BER is extremely sensm% to ﬂuctua-

tions in the filter coefficrents wh1ch leads to poor BER performance. Srmulatlons results are

4

given to support the analysis:
Y

' Detailed derivations and ana1y81s of the filter swrtchmg algonthm are. prescnted inchapter7. A

Markov model is mtroduced which cnables the computauon of the average BER and conver-

“gence time. Itis shown from the computed results that using the FSA can 1mprove the BER

! ’/\

performance of up to 2 dB at a BER of 10'2 ‘when compared to a non—adaptlvc systern With
the FSA, it is possible to trade off computauonal complexlty for convergence speed More-
over, even the sxmplest implementation of the FSA is shown to converge fast enough for

tracking changes in fade statistics introduced by changes in vehicle speed A simple scheme

for estimating the frequency offset between the transmitter and receiver oscillators is also pre-

, 3
sented in chapter 7. - gen,
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Chapter 8 gives the conclusions and provides some recommendations.for future work in the

research area of this thesis. - , C R
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*2. SYSTEM MODEL

[

The system model of-a piioi based ealibrafilonsystem is shown in figure 21 All signals de-

scribed in this thesis are assumed to be in ecjmplexenyelope*(epresentaiions.

CEN e

2.1. Transmitted Signal : - e e _ Ceh |

1

For s1mp11c1ty, the transmmed signal is assumed to be BPSK and Manchester coded to create a
spectral null for thc pllot The transnntted powe; is spht between the data sxgnal 5t) and the. -

pilot having amphtude, a. ‘'The transmitted complex en_velope is g1ven by.
2)=s®+a S en
* where the data signal is defined by: - .

Cs=AXbipeiD ey

i
(t) is assumed to be an umt energy pulse such that ! Ip(t)l2 dt bi is, the bina‘ry‘dntn o
; 1 :

: AWthh can assume thc values +1 or - 1 We deﬁne the rano of pilot tone power to data 51gna1

ppwer.as T, given by:

Ml

v o @3

R
- ; ) . . S5

"Ry, in (2.3), denotes the bit rate of the system. -



* opom warsks -

-z em3ug

Lot

: 4

SA :
N v
" i N

2 N

*

pue
Quiboly|

1om1npow

¥




IR Thecomplex gain can be wﬁ»ttexi’as‘: :

©°.2.2. Fading Channel

| ‘ 'The pﬂot-added data 51gna1 z(t) is multhhed by a tlme-varymg complex gam c(t) Comp}ex -

"_.whlte Gauss1an noise n(t), thh power spectral densny (PSD) No, is then added to. the modx-l i |

A 'ﬁed data s1gnal to form the recelved 51gnal rs(t) glven by

o

PR .‘\

U where g(t) isa ume»vaxymg gam represenung the effect of mulupath fadmg g(t) 1s modeled by ol
SRR f‘"a zero mean complex Gaussmn process wnh doppler bandw1dth fD = v/?x where v is the Vchl-: : -

' cIe speed and Ads the wavelenth of the carner fo denotes the ﬁequency offset between the B

. u-ansmmer and recelver osc11}ators

EXERE

o

: Thespectrum of c(t), denoted' bySc, ca.n be expressed i tcnﬂs of the specrﬁ'umiof"_\g(t)a as: .
Sc(f')_=sg(f;fo) . S SR 28)
o Sg‘(f) can be written as: S

SO=GsO e

o




Sy

= thorc oz is the total power gain andgg(f) is the fade spcctrum normaﬁiéd to;nmt pchf._’

~The scattenng due to. mulnpath rcﬂecuon 1s assumed to be 1sotroplc such that the normahzedljk “

_ { fade spcctrum is glven by

- for Whi'c;h the autocorrelation furiction is; -

9

C R = F {Sg(f)l Io(2nfD1) B @Iy o e
Jo( ) in Q. 11) is the Bessel funcuon of Lhe ﬁrst kmd wnh order zcm Flgurc 2 2 shows the

shape of the fade spcctrum.

- Asg(f) .

ol " > - - - -

1
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Figure 2.2 - Isotropic Fade Spectrum ~ * - O~
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°2i3. Received Signal .
o The recelved srgnal is spht mto two branches, one for processmg the data srgnal and the other
, for processmg the prlot. o - ’ -

. 2.3.1. Data Signal Processinig Branch -

- At the data proces‘smg branch the rece1ved srgnal r(t) passes through a unit energy ﬁlter whxch N
s matched to the modulatmg pulse shape p(). The resultmg signal is then sampled at rate 1/T

E ) whrch is assumed here to equal the b1t rate, Rb Samphng time is assumed to be in perfect

f. N ahgnment w1th the b1t boundary Delay is added to the matched filter output in order to equal-
- 1ze the extra delay in: the prlot branch Assummg that the doppler frequency is much less than
the b1t rate, the delayed ﬁlter output is glven by
WKT) = ckT) Ab+mykT) 7"’@\ @12)
where nu(kT) is addmve wh1te Gaussran norse (AWGN) with variance Ng." The délayed
matched ﬁlter output is phase-corrected by the pllot ﬁlter output w(kT) to form the data decr- |

~sion ‘variable: S . : S ",
Ak =ReukDWKD] - ey

Since the modulauon is assumed to be BPSK, the deC1sron dev1ce merely consists of a thresh-

P

| ~old comparator

12



In order to remove the data dependence in delayed matched filter output u(kT), the demodulated
, data, Bk is multplied w1th u(kT) The resultlng data removed signal, u(kT), is then used as a_L
performance reference for the adapuve pllOt filter. The technique of removmg data dependence"

-

in u(k‘I’) by usmg demodulated data, 1s known as decision direction.

2.3.2. ‘Pilot Signal ":i?;;oceSSi'ng Branch -

_M"I'he pilot processing branch is'respoiisible for producmg a pilot ;eference with as little distor-

I Uon as p0551ble To accomphsh thS task, the data modulatlon in the recelved signal is first

‘ removed by the use of an ﬁtegrate and dump ﬁlter The mtegrate and dump ﬁlter output is then

sampled and ﬁ]tered by the adaptlve pﬂotﬁlter The pllot filter output i is conjugated and multi-

" plied with the delayed matched ﬁIter output for phase-correctxon In ﬁgure 2.1, conjugation
‘A has been denoted by (-_ gwﬂl be throughout the rest- of the thesis where applicable.

e
&

The sampled integrate and dump filter ourputis: -
’ rp(kT)-:,a ckT) +‘np(k;1;) S (2114) .

where np(kT) is additive wh1te Gaussmn noise (AWGN) w1th vanance No. np(kT) is assumed
to be uncorrelated thh the noise t°rm nu(kT) present in the recelved data srgnal

One should note that the mtegrate and dump filter cannot remove all of the data modulation due-
to the dlstomons caused by the fading channel. The result is the presence of data dependent or |
self noise in the received pﬂot The effect of self-nmse is invest gated using simulations for the

SGT filter and filter 1mplemented w1th the FSA in sections 5.5.2 and 7. 4 respecuvely .

.
2
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 sion for BER reduces to:

-~

3. BER OF A TONE-CALIBRATED TRANSMISSION SYSTEM USING BPSK
Analytical results related to the transmission of BPSK in a Rayleigh fading cilanncl;using _-pilotb |
tone has been derived by Cavers [10]. Some of these results‘l are reproduced heré,,wi't;h per-

mission, because they form the basis of many of the analysis pr‘é’sehtcd in this thesis.

One of the most important results from [10] is the analytical ex_rprc.ssion rélating BER and the .

complex correlation coefficient between matched filter output and pilot filter output, i.e.

o [/ -p21-pd)

Pe———'—'_._z—:: 3.1
2‘\/ 1-p;

In this relation, p; and p; are the real and imaginary parts of the corni)lex correlation coefficient p

bl

where p itself is given by:

2_11:' f ;‘ Sg(6@-90)) Hy(ei®)* do »
1 (3.2)

No TR =, . : N
‘\ﬁ+(1+1’) I_Ef'\[ﬁj-n §g(eit@-©0)) al(eJ‘").l2 do + (1+1) E—:— %";

p:

In (3;2), Hb(ejw) and By, denote the frequency response ana the noise equivalent bandwidth of.

- _ the pilot filter. For a"p'ilot filter with a real frequency response, p; equals zero; so, the expres-

B | . (33)
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- For a rectangular pilot filter, the correlation coefficient is given by:

;o

| P= 1 No = N, 2B 3.4
‘\/l.+(l+r)-lf —\/Pd + (1+1) Ef R

where

Pg= 1 {ércsin [ mi"[B"’fg)+f°] "f°] - arcsin [ max[_B”’ng#o] fo ] } (3;"5h)’q K
. .

K3

~and Bpis the bﬁséband pilbt filter bandwidth such that the frequency response of a unit ene}gy" ‘

L

rectangular pilot filter is defined by' the following:

' | — B - B, < < 2nB -
Hp(eio) = { V2Bp TP = 0.5 2 R X
P 0 otherwise - ‘ o
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4. PILOT FILTER IMPLEMENTATIONS’

This chapter examines the vnon-aziaptivé and adaptive approaches for pﬂot filtering. In section.

4.1, we present some resuits obtained using the traditional non-adaptive filtering fechnique.

Section 4.2-discusses some of the considerations in using an adaptive implementation in gen- |

. eral and also some of the pros:'and' cons of ea_c‘}{ of the three adaptive schemes which are inves-

tigated in the later chapters. /
4.1. Non-Adaptive Caée

Coﬂvenu'onal pildt‘ filter imi;lementations has assumed an ideal rectangular filter [4,8]. Because
- doppler frcquenc/)"@i{ subjected to change and oscillator frequency offset is normally unknown,
the bandvﬁdth 6f a noh-adjapiive pilot filter needs to be wide enough to accommodate the
largest dopplé{ freQuenc_:y and oscillator frequency offset which are to be expected during oper-
auon __“‘I'he optimurx_} bandwidth for a symmetric rectangular pilot filter, i.e. rectangular filter
-with a s_ymmétric frequency response, is approxirha‘tely equal to the sum of the doppler fre-
| quency a_nd— ffequency offset. The BER performance of a rectangular pilot filter, with band-
' w1dth wider than the optimal is degraded due to excess noise alloned into the pilot. Figure 4.1

- shows the difference in BER performance at various doppjer frequencies between a rectangular ’q
o .. pilot ﬁltér with optimum bandwidth and one whose bandwidth is fixed at 150Hz. The per-
form;mce penalty fo} using,a wider filter is 2.0, 1.4-and 0.8 dB for doppler of 10, 50 and .

- 00Hz respectively. r

16
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4.2. Adaptive Case
7
1In the adaptive 1mp1cmcntat10ns, the central idea is to make the pllOt ﬁltcr adapt to the frequency
offset and changes in doppler frequency. An adaptwc filter, by deﬁmnon, is a filter whose co-
efficients vary with time according to some pcrformancc criterion. An important conmdcr_auon
in adaptive pilot filter implementations is the convergence time, especially fdr'bhrst,systcms,
because the BER is often poor whilg the filter is adapting. The situation is worst for the case
when the dopﬁler is increasing b&:ausc when the filter bandwidth cannot widen fast enough,
part of the pilot energy is filtered out. The result is a serious distortion in the filtered piiot |
- which can lead to large degradation in BER. Moreover, because of the particular shape of the
fade spectrum, there is more energy in the two "horns" of the spectrum for a given frequency
range near the dppplcr frequency (approximately 15% energy in 5% of the bandwidth) than in
the center section of the spectrum. For example, using a rcct‘angiﬂar pilot filter with bandwidth
of 50Hz ai a doppler of 50Hz, the BER at Ep/N, of 20dB is 3.59 x 10-3, éésunﬁng no fre-
quency offset. When the doppler takes a sudden increase to 60Hz, the BER now becomes
1.07 x 10‘,‘1\. In reality, 'thc change in doppler is gradual and slow so that an adaptive pilot filter

does not need to have a very fast convergence speed to track these changes and maintain a low

BER during convergence.

There are three adaptive schemes investigated in this thesis. Each has different advantages and

disadvantages; the following.sections discusses some of them.

18
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4.2.1. Stochastic Gradient Transversal Joint Process Estimator Lo

The SGT ﬁitcr is simple to implerﬁcnf.' It usés a minimum mean square error (MMSE) criterié\r;l
whichw[: 1n section 5.2 to be equivalent to minimizing the BER with reSpéct to the
filter coefficients. As a characteristic of all stochastic gradient adaptive algorithms, the result-
ing average: mean square error, or in this case, average BER, is higher than_optifnal due to the
use of the stochastic gradient approximation. The major disadvantage of this adaptive filtering
scheme is the dcpcndehce of convergence speed on the eigenvalue spread of the input correla- |

tion matrix (13, 14, 15]'. As will be shown later, this results in a very slow convergence at :

hjghiEb/No due to the high eigenvalue spread under this condition.
4.2.2. Stochastic Gradient Lattice Joint Process Estimator

The SGL’-JPE» is slightly more complex than the SGT filter because it has an additional lattice
structure. It also uses MMSE criterion and the sfbchastié dient approximation so that there
is some degradation’in BER compared to the optimal filter:g%gé of the main advantages of the
SGL-JPE over the SGT fﬂ-&KlS that its convergence behavior is not sensitive to the eigenvalue

spread. Its major problem in the present application lies in the high sensitivity of the BER to |

]
changes in filter coefficients.

4.2.3. Filter Switching Algorithm

The filter switching algorithm is the most complex in terms of computation and memory re-

quirements. However, the algorithm provides a mean of trading off complexity for conver-

gence speed. Recall from section 4.1 that the maximum gain for using an adaptive filter over a

19



‘ fixed rcctﬁnguiar filter is only about 0.8 dB for 100Hz doppler. This suggests that BER per-

- formance is extrernely important in determinihg the usefulness of an adaptive pilot filter. I_t will

be shown later that the filter switching algorithm can provide a better BER performance than

- the other two schemes which makes it a good candidate for ian adaptiver pilot filter implemént‘a:} -

N 8

tion.

- 20

g



: P
. N )
5. STOCHASTIC GRADIENT TRANSVERS_AL PILOT \TONE,FI{TERING

Thf: tranéversal or t;pped-delayb line is one of the most widely used structures for implementing
an adaptive filter. The main réason for its popularity is because of 1ts non-recursive structure
which makes analysis of its behavior simplé. A popular algorithm for adapting the transversal
filter coefficients is the Stéchastic Gradient (SG), also called tl;c Least Méan Square, algo-
rithm. This algorithin is designed to minimize the mean square error (MSE) between a desired

‘rés'ponse and the filter output. We will show in this section that the stochastic gradient
transversal filter can adapt itself toﬁmin’in.xizc thé BER in a pilot tone aided transmission system
for a given set of parameters. Although the adaptation process is slow under certain congli-
tions, it has its merits in that the adaptation is unaffected by frcﬁuency offset in the fade spec- |
trum and changes in fade statistics due to shifts in'\dopplér frequency. Sectidn 5.1 gives a

- derivation of the SG algorithm. In section 5.2, we establish the cquiva‘lence between mini-

| miiing BER énd the minimization of the MSE. Section 5.3 deals with the analysis of the mean
convergence behavior and section 5.4 utilizes these results for compﬁting méan convergence
curves for BER Section 5.5 provides some»sitnula»tion results and lastly, section 5.6 gives a

brief summary of the results obtained using the SGT pilot filter.

5.1. . Filter Derivation »

N

Detailed derivation of'the SGT filter can be found in many references f13, 14,' 15]. A brief
derivation has been included here for completeness. Before we proceed, some notations need
to be clarified. Letters in bold w111 be used to denote vectors or matrices. (-)’;‘, denotes trans-
position and (+)H denotes hermitian (or conjugate) transpose. Sampling period T will be

Ma

dropped from all expressions where applicable.
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Flgufre 5.1 shows the basic structure of the adapuve g_arﬁ\'ersal pllOt filter. Input to the pilot
filter is the data-removed recelved 51gnal rp(k) Expressron for rp(k) is g1ven by (2.14) and is
- reproduced hefe for convenience: '

1p(k) = a ck) +npk) CIPEC )
np(k) is AWGN with variance No,. a s

T,

‘ ‘.Note that a Movmg Wmdow Averager (MWA)ahas been mcluded as part of the ﬁlter structure. .
wJ;uch is not found in a conventional SGT ﬁlter The MWA helps reduce the requued numberf:;
of coefficients by enabhng the overall 1mpulse response to cover a longer time span Averaged.
samples are delayed and multiplied by filter coefficients h(k) where h(k) is thg'e‘ col-pmn vectorr R

defined by: ) - L

e

h(k) = [h.L, ..;; h.y, hg, hy, ..., AT | - (5.2)

o

’ re ]
h(kl are adapted to reduce the MSE between the pilot filter o‘utput.ah‘c‘l reference ‘syrrlbol se- )
quence (k) :vhere G(k) is the decision corrected matched ﬁlter output. Although-the txltim_ate
goal for the present application is to minimize BER, it will be shown later that the rr_xihuirnum"
MSE solution is also one which gives minimum BER. |

-

The pilot filter output is given by:

w(k) = hH r(k) g I (5.3)
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=

r(k) [r(k-L), o T 1, ), DT T sy
g e Awby

Sy

r(k?’a chk.)'; n(k) sy

o ( .n(k) 1s AWGN Wlth vanance NOK where K is the length of the MWA Wthh is assumed to be- BN

‘ odd. . Error e(k) is formed by takmg the dlfference between desued symbol and pxlot ﬁlter‘i o

3

i output such that:

e’ = (k) - w(k) R o
= bk u) - ' rx) T L 6e

b

u(k) is given by (2.12) and is reprinted here for conveuieu’c‘e: ,

u =ck) Abg+ngk) | e

@

From (5.6) and (5.7), the expression for MSE can be shown.ta be:
I =Ele®?] -

- =0,2-hH E[&u(k)r(k)] | B R
-E[f uk) rH(k)]h+hH E{r(k)rﬂ(k)] h 68
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: where ou2 denotes the vanance of u(k) Th15 equatlon reveals that 1f ho is the opnmal coeffi;
cient vector gwen that Bk bk then another solutlon Wthh mnumues I (h) 1s h = -ho gwen':h -

. that Sk = -bk In other words there isa tw0efold amblgmty assoc;ated wnh the muumum MSE’—I
o soluuon vector caused by decxsmn dn'ccnon One way to resolve [hlS ambrgulty is to employ ~' i
L ‘dlfferenual encodmg or to Emahze the adaptanon process wnh a ummng seq uence at the LY
'stan of the a]gorrthm It has been found usmg smulanons that 20 tralmng bits are sufﬁcrent to SRS

av01d rmsadaptauon thferenual cncodmg 1s not recommended because it 1mposes a 3-dB . S

) ,‘ Y
) .

h penalty in a Raylelgh fa envu'onment »
 Terms involving fy can be expanded and simplified mthc following manner:  © .-, 0

Bl @ ] - E[&c (Abkc (t:)+1nu (k)) W R
";-E[&tbk] E[Ac () r(k)] +E[&] E[nu (k) r(k)] B ',"{-('5;9)

e Here, Bk and bk are assumcd to be mdependent of c(k), r(k) and nu(k) When the BER 1s =
/7 © small, Sk bx. So E[fy bi =1, E[bd ~1 and . 9) can beapproxunatcd by SR

E[fx u* (k) r(k)] =E[(Ac*(k)+nu*(k))r(k)] o V (5 10)

Let us denote the cross-cotrelauon vector betwcen u(k) and r(k) by p and the rrelaﬁ‘én mam 7_» N‘
ofr(k)byRsuchthat a ' SRR e Tt

[N

p=Ef"00r®] ~E[Ac*® +n0)r®] . sAn L




. 44115--“3 : R ' R : : . .

R=EFGHG] 5.1%)

. I(h).Cah th\@;n be written as:

o
Jh)=o2-hHp-pHh+hHR K . (5.13)

| Tb ﬁnd the mmunum MSE solution, we differentiate the MSE with respect to the cocfﬁcient
- 'vec:to'r“h. ‘Di'fférentiation of the terms hH p, pH h, and hH R h with respect to h results in the
| following [15]: -

,d(f:ihgt:p R g (5.14)

b _op | (5.15)

and . . R .

db_RD) g0~ - o _é”aéma

. where 0 is a null vector with the same dimension as h. Usi;ng (5.15) and (5.16), the gradient

a

' o'f‘J(h) is.thus given byf

dJ(h)

Tho =2p+2Rh T (5.17)

. - Next, we equate the gradient to the null vector giving:
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" Rhg=p _ . S (5.18)

v

e

~ with h,, denoting the optimum coefficient vector. Thc'optimum filter represented by h;, is
called Wiener filter. -Eq’uation 5.18 is known as the normal equation . The reason for -this\j
name isbei:ziuse wh«.j,n the optimum ﬁltef is used, the cstirpation error vecfor; eok), is nonndl \
tb the filter output vector, w(k).
Solving 9.18) by-estimating R aﬁd p, and inverting R qan_be computationally difficult. An
kaltemati\(e is to find hg in successive steps by making correction to the coefficient vgctor in é

direction opposite to the gradient vector (i.e. dinection of the steepest descent). This procedure

i€ known as the method of steepest descent [14]. The steepest descent algorithm 1s représenéﬁd

by the update equation:

A . : - ) _

where A controls the step size. The factor of two is introduced for convenience only. The
gradient vector given by (5.17) isﬂa statistically averaged quantity. In pracﬁcc, it is common to
use an instantaneous estimate of the gradic_ht (hence the name stochastic gradient) forrhed by
removing the expectation in the expressions defining R and p. The resulting update equation
can be shownOto be: ‘ a

h(k+1) = h(k) + A e*(K) r(k) : (5.20)

_This upddte equation completely describes the stochasticé g1~adj¢nt algorithm. *
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i:Although use of the stochastic gradieﬁt greatly‘sim;hifies the coefﬁciexif update algorithfn a
price has to be pald in the form of mcreased average MSE and hence mcreased BER The
) excess average MSE (deﬁned as Joo - Jmm) is due to random fluctuations of t,he gradlent esti-
mate ‘An analyucal expression exists for computing the excess average MSE [14]. However
similar expr_es\slon for excess BER is d;_fﬁcult to derive due to the complex dependence of BER
on h. Nevertheless, effect of various parameters on the exceSs BER will be investigated m -

detail using simulation results.

Since the pilot filter implemeniation is digital, the delay mismatcg betyﬁé}éw pilot filter outpl;t
end x'natche'dv filter output is negligible if an appropriate delay compensation is used. If we fur-
ﬂ;er assume that the fading process is stationary (so that Rg(k) is conjugate symmetric), then
the resultiﬁg optimum coefficient vector wiﬂ be conjugate symmetric. This means that, at any
given time instant, only positive time samples are necessary in determining signal statistics
w;:ile negative time samples give the same stochastic information. One can take advantage of
this redundant information to reduce the émoent of noise present in the gradient estimate and

therefore decrease the excess BER by averaging the positive and negative timg.samples. We do

' this by changing the update equation to the foilowing: .

hi(k+1) = k) “+ﬁ23- (e() P*(k-i) + e*®) r(k+D)) i = 0,...L © (521

One can easily show that the msulﬁﬁgcoefﬁcient \;ector h described by (5.21) is now(kconju-

gate symmetric so that h_j(k+1) = hj*(k+1).

28



5.2. Equivalence between Minimum BER and Minimum Mean Square Error

Solutiens

In this section, we will show that the use of coefficient vector v;/hich,"minimizes the mean
’ square error between G(k) and wi(k) also result in minimum BER. To begin, we first make the
assumption that the filter is forced to be conjugate symmetric. From Fourier transform theory
[ 16], this implies that the resulting filter frequency rcspbnse will be real. As discussed in sec-

tion 3, the correlation coefficient between G(k) and w(k), under this condition, will also be real

- and the expfession for the BER is given by (3.3).

The correlation coefficient between G(k) and w(k) is defined by:

_ otw? ' , :
p == (5.22)

———————~ -
- S

where 62 denotes the covariance between (k) and w(k) and 6?2 denotes the variance of
w(k). Using (5.3) and (5.1), the terms Gw? and Gy can be expanded in matrix notation as:

\
ojw? = E[U(k) w*(k)] = pH h (5.23)

and

~

ow = VE[w(k) w* k)] =V hHR h | (5.24)

Equation 5.22 may then be written as:
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. H * C }:, o
=-1——Lh : "1’:‘ . , (5.25) -
GﬁQhHR h S

T E
L

- From (3. 3), we see that the solution which glvcs minimum BER is one whlch maxlmxzes p V

AWe maximize p by d1fferent1at1ng (5.25) mtkarespect to h and equating Lhe rcsult to thc null_ i

vector (see ref. [15] for a review in vector differentiation). The resultmg cquatlon can be-

shown to.be:

Y

Since ojw? is real (because p is real), it can be written as:

1
hw? = 7 (opw? + oﬁwz*")

5-;- (pH h + hH p) L : | (5.27)

: - dofw? . .
Using (5.27), we can evaluate —3h o give:

.
dot”. o \ (5.28)

The next step is to obtain ?ih lefc‘;;gmaung (5.24) with respect to h gives:

doy _ 1 d(h’ R h)
dh " VhHRL 9B
1
=5o—2Rh ,
=-Gl—Rh ‘ (5.29)
i w =
B : s

Substituting (5.28) and (5.29) into (5.26) gives the following result:
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~ To see 1fthcsolut10n to the normal e,cjuau'on also solves (5.30), we substitute the normal éqﬁa—

 tion into (5.30) and we.get: . - -

cw?_;= o‘ﬁw2 o ;P’(.S.IB"I) | Y
| From (523) épd (:5.24), \eq;lat‘ién 5.32 can be gxpandéd };o 'givgf T
ho“ R ;10‘=»b“ h, : | S N S (5.32)
Sincc"pﬁ ho 1s real, pH‘ h, can bc replaced by hoH pkso dlat (5:3;2) becomes:
' hoH R ho = hoH p | ' 63

Finally, if we again substitute the'normal equation into (5.33), we see that the RHS of (5.33)
now equals the LHS This completes the proof Closer examination Qf (5 33) reveals that the
use of any multiple of h, will give rise to a minimum BER meaning that the opumum coeffi-

cicnt vector (for minimum BER) is gain independent. This fact is evident from (5.25).

Expression for lhc minimum BER can be obtained by substituting the normal equation into ‘

(5.25) to find the maximum corrclatidh coefficient and then make use of (3.3). The maxiiilum

correlation coefficient is given by:
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(5.34)

5.3. Convergence Analysis

All recursive algorithms go through a trahsient or éonvergence period before a steadj;' state caﬁ
be reachcd These ﬂgérithms invariﬁbly involve fecdback and therefore are subjected to- instai-
bility.. Thus, we necd to first examine the condmons which ma.ke the algorithm stable For

simplicity, we will assume that the fadmg process is stauonary
Defining the coefficient-error vector as:
¢(k) = h(k) - by, - 63y

we now perform a coordmate transformatlon by substuutmg (5 6) and (5. 35) into- the update

cquauon 5.20. The result 1s

e(k+1)'= (I- A r() rH) e + A (1) B w*(0) - @ MO hy) - (5.36)
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e

where I is the idcntify matrix. If we now take éxpcctation of ¢(k+1) and replace various terms

fwith p and‘R, '{vc have:
Ele(k+1)] = (I‘- AR)E[ck)]+A(P-Rhy . | ‘ (5.37)
Using the normal equation, (5.37) can be reduced to: o
| E[c(k+1)] = (I_ A R) E[c(k)] . | 4 ‘ | (5.38)
We now diag_ogalize R so that it.can beVWritten as [15, 17]:

R=MAMH | | (5.39)

Here, M is a matrix with its columns consisting'of eigenvectors of R, and A is a diagonal
- matrix with cige'nvalues o§ R asits diagonal elements. Using (5.39), E[c(Ak'+l)] can be ex-

‘pressed as:

| E[c(ic+_1)j=(1-AMAL§§)'E{c(k5] - | (5.40)
| Chaﬁgiﬁg. vmables so that q(k) - MH l_ztc(k)], we rewrite (5.40) as:
q(i;fliecl-AA)d(k)‘ | R (5.40)

The séparatc dimensions of E[c(k+1)] are now decoupled into their natural "modes” so that we

can write:
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qi(k+1) = (1 -'A ) qi(k) i=-'L,.'.,.’,Lk; A 54

" where A, is the ith eigenvalue of the correlation matrix R. Equation 5.42 can be rewritten in a

more convenient form:

-

w

qi(k+1) = (1 - A Ak qi(0) | | ; | e . | , '(5-433
Recognizing that (5.43) represents a geometric series, we obtain the stability‘condiu'oni' :
% |1-A1i|<1- ‘ ‘ | - _ | .. (5.44)7
Thus, for stability, the step size A must satisfy the follpwing:

O<Aa<E foralli (5.45)

A

Since the fading process is assumed stationary, the correlation matrix R is positive definite [15]

and its eigenvalues are all real and positive. It is sufficient that the following is true for stabil-

ity:

O0<A< M:ax (5.46)

Equation 5.46 describes the condition for "mean" convergence. In reality, in order to avoid
divergence due to statistical variations, it is common [15] to use a more restrictive bound for

selecting the step size A:

2
O0<A <m . ) (547)
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Here, we have rr‘nade use of the following inequality:

?

L )
Max S 2 M | o (5.48)
‘ =L - : , -
and the fact that [15):
" | |
i = sum of mean-square values of all tap inputs . ©(5.49)

Having established the stability condition, we proceed fo analyze the convergence properties.
In terms of convergence, we require that all modes of the algorithm to converge before steady
state can be reached. From (5.43), it is clear th'at4 (;onvergence speed increases witl; the step
size. However, step size is limited by (5.46). Step size which is small énough to ensure sta-
bility can make convergence slow for modes with small eigenvalues. Assuming that we set A
to its upper limit, 2/Amax, fhen convergence speed is limited by Amax / Amin, 1.e. the eigenvalue
spread. The effect of eigenvalue‘spréad on convergence can be visualized by plotting contours
of é(iui-MSE as function of c(k). Figure 5.2 shows equi-MSE contours for a second order

system with small and large eigenvalue spreads.
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Figure 5.2 - Contours of MSE as a function of c(k)
When eigenvalue spread is small (= 1), €he resulting contour is circulark This 'meéns thzi't-t}ie
direction of negative gradient vector is always in the dlrcctxon of rmmmum MSE as ﬂlustrated

in ﬁgure 5.2a. For the case of a large elgenvalue sprcad the contour is clhpucal [13] as shown

in ﬁgurc 5. 2b each step does not go directly toward the rmmmum So thc number of steps.,'

required to reach the minimum increases. It should also be clear from figure 5.2 that conve‘r-

gence speed is also highly dependent on the initial coefficient vector as one cah choose an initial
Lo . - - .

vector which is arbitrarily close to the minimum.

Aside from the eigenvalues, the conesi)onding eigen;/ectors of R also play an important rolein

determining convergence behavior. From the definition of q(k), we see that the coefficient

error vector is simply a linear combination of the eigenvectors such that:

1
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i=L

WiSaws 0 ae

i=L

. ;\-

where &; is the ith eigenvector correspondmg to M Thus each ei genvector shapes the: ﬁlter re— o
sponse independently and the amount of shapm gor welghtmg is determmed by qjk). In other o

words, the overall convergence behawor is affected by the amount of conmbunon of each

, mode to the MSE or BER as well as how fast the individual mode converges

In order to further.understand the convergence behavior of the SGT filter, we need to under-

:Astand some of the physical signiﬁcance of eigenvalue:spread. First consider the case when the

successwe samples of I are. uncorrelated Wlth the assumpuon that the 1nput process is

statlonar)r this 1mp11es that R is.a mulnple of I In tlus case, the elgenvalue spread is at 1ts

minimum, i.e. equal to one. Conversely, when ris completely correlated (correlauon coeffi- DR
cient = 1), then all elements of R are identical. It can be shown that, in this case, at least one of -

“the eigenvalues of R must be zero meaning that the éigenvalue spread is infinite, So, e1gen-

value spread can be consrdered asa measure of the correlatedness between time samples ofa e

stochastic process, in thls case I. We can therefore expect that when samples of r arelughly
correlated convergence will be slow. This is intuitively sat1$fy1n g because if we con51der cor- - f";
relation as a measure of mformauon content, h1gh correlauon in the mput sanmles 1mp11es low e

information content. This means that it will take many samples in order to chatacterize the. ” .~

process which generated these samples.

~ -
L
e -

5.4. Computed Results

In this section, we attempt to predict the effect of various parameters on the convergence of the REEnE

SGT by evaluadng the input eigenvalue spread. We will present some computed results
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N L e e T [
< R ‘J\:‘A T da -

) showmg the convergence of BER as a funcnon of tlme in the fonn of lcarmng curves [ 14] We g .

proceed by first denvmg expressmns for computlng the correlatlon mamx R and the cross— .
. . TR N . 2
- eoxrelanon vector p.. EE
_ The carrelation matrix R can be deﬁnedjaS a mamxthhelements
© Rum@=Ef"GemrGem] . (55
l, Expanding r using (5.5) and rerriémbering thaf'input samples Ato ihe~'nanwerSal ﬁlxefvfis. sepa- A
, rated in time by KT, we get: | | - |
?

(K N, | (K ne
Rum(9 =E[(a 3 c*(Gemki) +n ((k-n)K))( > (G m)K'J) 4 n((k m)K))]
o i=-(K-1)2 j=-K-12
K-~ (K-1)r2 ;

=2y Y E[cf((k—n>K—1) c((k- m)K'J)] +Eln ((k-n)x) n((k m)K)]
i=-(K-1)2 j=-(K-12° . . '
K12 K-DR

=22 Y Y Rg(<n-'m>K+<x-J))‘f)zNox_anm 6y
o 1=-(K1)/2 ]——(Kl)lz . - oo o o

where Onm is the Kronecker delta funcnon In (5 52) we have madc use of the assumpnon

‘that n(1) and c(j) are uncorrelated Now deﬁnmg 1=i- J and q(l) = K- I 11 and maklng use of

_ the conjugate symmetry of Rg, we can combme the donble summanon in (5 52)'into a smgle .

~ oneand get: Lo RS o 3
D S . A
“Rom(k) = 2a2 Z q(I) Rg((n m)K+ 1) +2N0K8nm S0 (5.53)
38
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Expressmn for the cross—correlauon vector elements can be denved in a 51m11ar fashlon to

'obtam the followmg rcsult S

2 q(l) ﬁg((ﬂ*m)K"' l) + 5;;::;}
e 0

= 2N0K {Eb xRy’ Z q(l) ﬁg((n-m)K+ l) + Sm,,}

an(k) - 2N0K {‘a.“’

IH.IS =Ky

bt

- -7 « v o ' (Kbl)/z B - . R ,‘ o | ‘ D . “ K : »I-A ;'M ,‘ B ‘b“. ' . »
pn(k) = 2 Eb lr v E ﬁg(nK. 1) TSR L (556) Ao

: For a glven set of channel and filter parameters, we can compute R and p usmg S 55 and 5 56. -

" V.Wlth R and p, wc ‘can compute the optlmum coefﬁCIcnt vector ho by solvmg the norma} equa-

‘ The el genva]ues and ei genvectors are needed to eompute the nmc cvoluuon of the ﬁltcf coefﬁ~
o vcxent Vcctor‘ From the cocfﬁcxcnt vector, we can compute the BER at each time- step usmg

| e 25) and 3. o

o

-

. v non and all elgenvalues and e1genvcctors assoc1ated thh R by. usmg standard rounnes [18]

-



 5.4.1, Input Eigenvalues-

The input eigenvalue spread has been computed as a function of various parameters in order to
', predrct the convergence performance of the algom.hm under various conditions. The results are

' summanzed below

. Eb/N0 Ergenvalue spread is dJrectly propomonal to Ex/No. In terrns of the correlation
rnatnx R, decreasing noise level decreases values of the diagonal elements of R which
| directly decreases the eigenvalues. Since Eyp/N, can vary slgmﬁcantly (10 30dB typl-

" cally), the eigenvalue spread may vary up to 100 fold.

- fpT - Eigenvalue spread is a decreasing funcnon w1th increasing doppler frequency
Increasmg fpT has the effect of narrowing the autocorrelatlon function zof the fadmg o
process, Rg. Since Rg has a decreasmg envelope with time, successive samples of the
fading process appear less correlated wrth increasing doppler Change in eigenvalue
spread as a function of fpT is small compared to Ey/Ny. For fpT varied from 0.5% to

4%, the eigenvdlue spread is appmMately halved. | |

s MWA'- Increasmg MWA length also increases ei genvalue spread. Reecall from section
5.1 that the len gth of the MWA deterrmnes the effecnve time separation between suc--. |
cessive samples of the input. of the transversal filter. Hence, as the length of the MWA
increases, the time separauon also mcreases and succesﬁvé samples become less cor-
related. However, the averaglng.has the opposite effect of i mcreasmg the correlauon
between samples Even at moderate doppler frequency, the correlation funcnon of the
~fad1ng process has a relanveWw:de main lobe. As such, the decrease in correlation due

 to the increase in time separauon is small compared to the increase in correlation due t&s{

averaging. The result is an overall increase in eigenvalue spread. Like fpT, the chan ge -

-

. -

40



1s small as compared to change due to Eb/No For an increase of MWA length from 1.
to 5, the increase in mgenvalue spread is approx1mately 2 5 times. '

"« . pilot to signal power ratlo r- cha.nge in exgenva}ue spread due to ris small Computa;
tion shows a 1 S fold increase in eigenvalue spread for r mcreased from 0. 2 to O 5

« filter length - longer ‘filter tends to mcrease the exgenvalue spread. However, the“

~ change is\negli'gibly small compared to changes due to other parameters.

/The following conclusmn can be drawn from these results. Convergence will be slgw at low
doppler frequency (and hence low vehxcle speed). It will be VERY slow for a system operat-
ing at hlgh Eb/N0 such as 30-40dB Fortunately, most mobile. commumcatlon systems operate

~

at the vicinity of 20dB where exgenvalue spread is not a prob]em
5.4.2. Convergence of BER in the Mean

Traditionally, a learning curve is defined asa piot of MSE versus the number of iterations. For

/
ya

.the present application, we will use it to represent a plot of BER versus number of iterations.

Procedures for evaluating mean convergence of the coefficient vector a.nd BER at each iteration. -

: has been dlscussed earlier. Herc, we present some learmng curves in an attempt to gain more

'msx ght into the convergence behavxor before proceedmg with simulations.

-

Figure 5.3 shows_the BER le;irning curve _for Various‘fDT; - The following parameters were
usedl:" ‘ E | L |

Eb/NV ==:20dB ﬁher length '5; MWA length -3; and step size = 0.1. Note the two clearly
deﬁned sections ev1dent in the two learnmg curves with fDT equal to 0.0208 and 0.0417. The /

" flat portion of the curves were due to slow convergence of modes with small eigenvalues.
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Figure 5.4 shows learning curves for different Ep/No with fpT of 0.0208 and same filter .

parameters as used for the previous figure. The set of curves illustrates heavy dependence of

. convergence speed on Ey/N,. Note that evcn though convcrgence is slow for Eb/No of 30dB,

the BER is already below 10-3 after about 300 iterations.
One of the most important advantage of an adaptive pilpt filter over a non-adaptive one is the
ability of the adaptive pilot filter to adjust its bandwidth when the vehicle speed changes. Con-
vergence speed during vehicle decclératio‘n iS not a problem because this only means thaE thé
- filter bandwidth is too wide, resulting in more noise being admitted than is ne;cevssary. Ata
| :‘typical Ep/No, the deterioration of BER in this case is small. However,o during vehicle acceler-
ation, the bandwidth of the adapting filter will be too narrow to cover the entire fade spectrum.
The result is a larch increase in BER Whilc the filter tries to adapt its coefficients to increase its
bandwidth. This phenomenon is illustrated by figure 5.5 which shows the learning curves for
increasing doppler frequency at various Eb}NO.@fDT for each of the curves are increased by
10/2400 every 3000 bits (corresponding to a stepwise acceleration of 10 kmph/sec for é 2400
bps system) from 70.00417 to 0.0417. For the initial 6000 bits, the Ep/Ng has been set at 15dB |
for all cuwc;. This'is necessary to enable fast convcrgence so that thé SGT filter is very close
to being converged at each Ey/N, before the doppler is stepped up. For’Eb/N(', of 10 and
20dB, the jumps in BER are not as evident because convergence at these signal to noise ratios
is relatively fast. The large "bump" in BER for Ey/N, of 40dB shows hig'h.scnsitivity of BER
to vehicle acceleration at high Ey/No. For comparison, the BER at various Ep/N, for a ideal
rectangular pilot filter with normalized bandwidth of 0.0625 are also shown in figure 5.5. At
- Ep/No 2 20dB, rectangular filter is better than SGT filter except during initial part of the accel-
o ‘eration penod For Eb/No <20dB, SGT filter is better through most part of the acceleration.
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§.5. Simulation Results

Monte Carlo simulations were performed as a final part in the investigation of the use of a SGT .

pilot filter. The main purposes of the simulations were (1) to verify convergence behavior as
_predicted by results foin;d in section 5.4.2, (2) to obtairi the steady state average BER under

various conditions, and (3) to investigate the effect of self-noise and decision direction.

- Gain data of the fading process was generated by passing white‘Pscudo-Noise (PN) sequence
through a FIR filter for which the magnitude squared of the frequency rcspogée approximated
the fade §péctrum, Sg. Another PN sequence, which was made independent of ihc sequence
uséd'to gcrierate the gain data, was used to represent additive noise. Received samples were
then formed and processed gccording to the model given in figure 5.6 with 8 samples used to
represent each data bit. Note that this figure differs from figure 2.1 in that the removal of data
dependence in the reference signal, u(k), has been made perfect. Also, the pilot tone and data
signal wcrclfﬁ‘a.nsmittcd and processed separately so that ’th‘c results obtained in theSirﬁulations
were not affected By self-noise. All of the simulations followed the conﬁgﬁadon illustrated in

figure 5.6 except where the effects of decision direction and self noise were being investigated.

Unless specified otherwise, the following parametcrs- were used fgr all 'simﬁl-atiori results ‘ ‘
givén: . | | ' o | .
Ep/Ng = 20dB, fpT = 0.0208, f,T = 0, p‘owcf split ratior = 0.2, stcb sizc;, = 0.0s, ﬁlter length
=5 and MWA length = 3. The SGT filter was forced to be éonj’u gate symmetric using update

equation 5.21.

S
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) e
5.5.1. Steady State Average Bit Error Rate

The steady state average BER was obtained by running simulation for a sufficient number of

iterations to reach convergence (or ¢lose to convergence) and time averaging the post-conver-

gence BER. The Wh iteration was computed using (3.3) and (5.25).
Effect of step size

Figure 5.7 shows the average BER versus Ey/Nj for various step sizes, A. The average BER

increases with increasing A as expected because A determines the size of the fluctuations of the

coefficient vector from the optimum. Clearly, the larger the fluctuations, the higher is the

average BER. The amount of excess power required to compensate for the increase in average

BER due to the use of noisy gradient, which we will refer to as excess loss, increases with_

Ep/Np. For A of 0.025 and 0.05, the excess loss was approximately 0.1dB at a BER of 10-2
and 0.3dB at 104. '

Effect of fpT

The effect of the doppler frequency on the average BER is illustrated in figure 5.8. Here, we
can ob§ewe that the excess loss increased with increasing fpT. This makes intuitive senSé
because variations in the gain are more rapid at a higher fpT, which causes the MSE gradient
- estimate to al‘so wander more rapidly. Excess loss at fpT of 0.00417 was found to be negligi-
ble; whereas for'fpT of 0.0208 and 0.0417, the excess lésses were 0.2 and 0.5dB iéspcc-
tively. Compared to an ideal reéténgular pilot ﬁlt& with normalized bandwidth of 0.0625, the
SGT ﬂltc; was infcriO{ a£ all Ep/N, for fpT of 0.0417. For fpT of 0.0208, SGT filter wé§

A



bétter for Ep/Ng less than 20dB. SGT filter was better for all Ep/N, at fpT of 0.Ml7. The
breakeven doppler frequency was at approximately 002, ‘ :

Effect of f,T ° ' . S

Frequency offset was found to have negligible effect on the steady state avci'agc BER for foT

of up to 10%. The ability of the SGT filter to compensate for f,T is<onl‘y limited by the MWA

and the matched filter.

| | ~
Effect of Filter Length and Moving Window Averager
Figure 5.9 gives the average BER versus Eb/N(; ﬁsing various filter and MWA lengths. We
can see from figure 5.9 that the use of filter length greater than 11 should be avoided. The best i
comBii;ation of filter length and MWA ovcra]l was 5 and 5 respectively. Longér MWA pro-
duced better results. However, it should be rcmcmbered tﬁat a lenger MW A rcducjcs‘ avéragck

BER at the expense of decreased correction range for ﬁ'cqucncy offset.
Effect of Decision Direction and Self-Noise

Previous results had been obtained without the effecgs of decisién direction and self-noise. We
investigated the offects of decision direction by ﬁsing demodulator decisions to rémove the data
dependence in u(k); "'I'hc'effects of sclf-noise had also ._becn selectively included in";h;: simula--
tion by combining the pilqt tth and data signal in the transmitter as illustratéd‘ ‘by thc‘/ system
model given in figure 2_.ll. The results are illustrated in ﬁgﬁrc 5.10 which shows the BER per-

 formance with and without the effect of decision direction and sél‘f‘-.poisc‘. A reference Ltréihing -

sequence of 20 bits was used for the simulations using decision direction. Effect of decision

L4
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direction is not discernible in figure 5.10. However, examination of BER values revealed a

slight increase in average BER at low Ep/N,. This is to be expecied as there are fnoré dccision

errors at low Ep/N,. Self-noise had little effect at low Eb/NO But at high Ep/N,, self-noise

caused a large increase in avcragc BER. The amount of sclf-noxsc is not depcndent on Ey/N,

[

5o that bit errors at, low Eb/N0 are dominated by additive noise whereas at hlgh ,Eb/NO, bit

errors are dominated by self-noise. The excess loss due to self-noise at a BER of }0'4 was ap-

| proximately 3dB. It should be noted thai this numerical results is for the use of Manchestor :

ccoding in creating the spcctfal null required for placing the pilot. Other techniques such as

S §
}?ﬁase-locked TTIB (9] can provide a much smaller excess loss due to self-noise.

: '
. . . -
. - . ]

\

Conj*lparison with Complex Filter

The benefit of forcmg conjugate symmetry on the coefficient vector is illustrated by fi gure 5.11

. which compares average BER for ﬁlters using update equations 5.20 and 5.21. A forced con-

jugate symmetric filter was found to be better at all Et,/N0 Additional excess loss for a com-
plex filter is negligible at BER higher than 10-3, For BER of 10'4 the additional excess loss is .

0.5dB. It was also found that the additional excess loss was greater for longer filter.

50



1L 101 LOS 1o YE S5ery ot uo azigidarg jo 1003

A

m-hm omSiy

SY

(ap) °N/93 B

oy sg  of sz - pz sy

L v . mJOF
7 . N R 4 B
. Q4|1 JOURIA —mmm I
©bT0' = y/a a1} 198 = T4-01
S0°0 = V/m 40411} 195 -——- 1
$Z0°0 ='V/A 40411} 195 ———- y
> +GZ90°0 = 1da/m 4d1d 904 ——
aN3931 1
=Y Rl - »1 u”
Fe-0l o
m
- 2
£ 201
& o
-1 =01
% o !
1
£ 0t
A »
S i
' 9

¢

st



C 4“._ L ‘l‘.‘. . P 1

wu_ozuscoum .Qaaoﬂ mso:m > 1 ._u:E uozm HOw oﬁ wo 3:«::85& Mm.m owﬁ@>< w.w qu_m_ .

1o 1 Amnv o z\nu : R
Sy . oy Se og A MN O.N . S ot S ,
r »" ——t ' ' —— —t ' . g-0t
" £9991%0°0 = 10} 10} 1411} a0USIA e 1
. © ££78020°0 = 104 Joj 4eyy)) seusim - o
‘ EA £991¥00°0 = 10} o) 1eyyy} seue(m o I
. © £9991%0°0 = 19y 40}, 18411} 1108 —emm X,.0l
: : - £££8020°0 = 194 Joj aeyy1) i8S p.,...\.!-, ,
; SRR NS £991%00°0 = »9 10} 18411} 198 —--- +
| R mumo o Em\.. 4did ,,oo._ —_— +
: | azuouq.
. Fe-0b o
i A m
, ] T R
- ! +
v,,
,. V .I.WN'O—. 4
‘l s ol
e £ o0l
: | | ' . ku B
\\ ’ . n&( -
., N , , N
” ;4.. Y . v

52



oeleror ss os ) sz Tz s o s

|,
1

J .

: wﬁwcoq Swﬂu>< Bov_: >> w:SoE pue
miw:oq Hu:_m msonm > S§ S:E Sﬁm HOw ay mo oo:mnuotom Mmm om§o>< m [ Eswi

i " . i d

-
+

* g T ¥

YiBus| YAN/A LOS -—-—
- YiBue| YAN/A 19§ ———

TITRFE
193114

1]
=
e
o
c .
@
wd

I
L
-

o ]

c

©
-

L]
L
-
o
c-
L
-

- M
nou

- 104114 G = YiBue| VAN/M 1DS »-omm S
= 4iBue Je4)1d4 £ = YjBue] VAN/A 1D ~—-= -0t
= yjbueq Jeyl14 1 = yibue) VYAN/A 19S ———- - - -
$Z90°0 u;:_m\; 3d1d .oo._%l, .
. T o QN3937
Cee T = ST
S . ﬂlO—ME;
L s m
- 30
. K
_ z-0b
, FIO,—,
| L



x
RN

[ -

33111 1011 _LOS 943 104 YAF 5LIAY Y3 U0 UOROAII(] UOISICAC] PUE SSI0U-J[3S JO 190 - 01°€ SISty

\ _ (gp) °N/93
Sy  -0¥ S¢ o¢ sz o0z

“i|p “oep pub es|ou jjes/a i04 |1} 19§/~
“i1p -oep/m e[t} 196
esjoUu j|e8 /M 0411 yos - 3 Ve .vI.OT .
. Je4114 hgst ———- S
$290°0 = 1da/m id1d +oe)
. aN3973)

J38

- 54



]

11 10]ld OS SWmawwAg arednluo) e pue
oL 5—& .bOw xo_anU B U29M]ag 20UBULIOS YA 23eiaAy jo :owE&EoU : S oSwE

b =

Sy

L ~ (ap) °N/%a
oy - s¢ - oOf X4 0Z Sl ob, §

" N "

™ — * Y t

10411} OUGIM —mem

10311} 19S “WWAS °|UOD - _
16411} 19S x0]dWod ——eu
GZ90°0 = ._.n_m\! 4d1d 3984 ——
aN3931

- c-0L

z-0l

W= a

438

55



5.5.2.- Convergence Time.

L . %
In companng convergence performance it is convement to use convergence tnnc.‘ For the

e
present: apphcauon we define convcrgence time as Lhe nurnber of iterations requrred for the

1nstantaneous BER to drop below Lhc steady state averagc BER for the ﬁmt'nme. 1t should be T

noted that convergence time depends heavily on the choice of initial coefficient vector, espe-
o cially at high Ep/No,. Thc résults obtained in this section utilized an asymmemc inital vcctor of
[14j, 0, 0, -1+, 01 '

Effect of step size
Figure 5.12 shows the BER leaming curve for-different st'epl sizes. The convergence time as a

function of various step sizes, A, are tabulated in table 5.1. Convergence time decreased With

Aas expccted. One should note from ﬁgure 5.12 Lhat the magnitude of the random fluctuations

also increased wnh A.

A Conv. time
0.025 1000
0.05 - 1850
& 0.1 3600

Table 5.1- Convergence Ti_me ofsthe SGT Filter as a function of the Step Size



/-

N

N
N ~

changing fpT.

Effect of Ey/N,

P
5

From resulfs found }n section 5.4, convergence speed is expected to increase significantly with
increased Ep/Ny. This was found to be true as illustrated by figure 5.13. Table 5.2 gives the
convergence time as a function of Ep/N,. Note the slow convergence for Ep/Ng of 30 and
40dB. For comparison, the comput_ed learning curves for mean convergence are also shown in

figure 5.13. The computed and simulation results are indeed very close.

o

Ey/No Conv. time
10 | 400

20 - 1850

30 16100
40 >100000

Table 5.2 - Conver”g'ence time of the SGT.Filter as a function of Eb/No

P

Effect of fDT

‘{'he effect of fpT is 1llustrated7£m figures 5.14 and 5.15. Figure 5.14 shows the learning |
curves for various doppler frequ(egfes The convergence time as a function of fpT is tabulated

in table 5.3. Cenvergence time decreaseg with fpT as expected. From figure 5.14, it is ‘al'so

evident that the amount of rar.dom fluctuations of BER increases as fpT is increased. Figure

5.15 shows the simulated and cofpputed ‘(mean) convergence curves for stepwise increase of
fpT simulating a vehicle acceleration ‘oyf 10 kmph/eec at 40dB. Simulated results we?e indeed
found to be very close to the computed results. One point to remember is Hgat 40dB <is an
unrealistically high Ep/No.value. This value is used here only to acceritua’t’eﬁthe'effect of

\

T

LN
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fpT = | Conv. time .

0.00417 2600
0.0208 1850

0.0417 1500

"Table 5.3 - Codvergencc t1me of the SGT Fi}ter_ as a function of

Normalized Dopplér Fréciuency
R . §
Effect of f,T *
. Figure 5.16 shows learning curves for various fréquency offsets. \foT has no noticeable gffébt ‘
on convergerice cxécpt for foT of 0.1667 where BER is deteriorated byvdjstom'on of the re-

ceived pilot by the MWA,

Effect of Filter Length

[

Increasing the filter length has the effect of increasing the amount\of fluctuations of BER as
shown in figure 5.17. This is because long filter increases the susceptibility to gradient fluctu-
ations. Convergence time was also found to increase with increasing filter length. So, in '

terms of convergence behavior, a shorter filter is better.
Effect of Moving Window Averager Length

There was an increase in random fluctuations in BER due to increase in MWA length. How-

“ ever, change in convergence time was small as the length of the MWA was increased.

e
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Effect of Self-Noise

The effects of self-noise on convergence behavior are shown in figures 5.18 and 5.19 for filter
lengths of 5 and 11 respectively. Convergence time was found to change little with the pres-
ence of self-noise. However, self-noise caused a greater flﬁctuations of BER at high Ep/N,
and hence deteriorated the steady state average BER as found earlier. Compaﬁson between

figures 5.18 and 5.19 also showed that self-noise had a much greater impact on lohger filter.

Effect of Decision Direction

Figure 5.20 shows learning curve with decision direction at various Ey/No. There was some -

degradation in the BER when Ep/N, was low. Overall, changes in the convergence time due to

decision direction were negligible.

Co"mparisbn with Complex Filter

———

Convergence was found to be unaffected by enforcing conjugate symmetry in the coefficient

vector. : ‘ ‘ | .
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5.6. Summary and Comments ’

L

For Ep/No less than m, the SGT filter was found to be able to adapt itself quickly enoughto

follow changes in vehicle speed assuming that data"is‘continqously transmitted. When the
normalized doppler frequency is less than 2% (cor;cSponding to a vehicle speed of 60 l‘cmph
for a 2400bps system operating atv850Mhz), the use of a SGT‘ pilot filter can provide a lower
BE,R“' than using an ideal rectangular filter with a normalized bandwidth of 0.0625. So, the
SGT-ﬁlt’cr is suitable for use iﬁ an urban environment where vehicle speed is expected to be
low. However, if the doppler is greatér than 2%, then using a fixed filter will give better BER

perfofmancc. Frequency offset, decision direction and self-noise were found to have negligi-

ble effect on convergence.
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6. STOCHASTIC GRADIENT LATTICE PILOT TONE FILTERING

Recall that the main drawback of the SGT filter is the dependence of coﬁvergence speed on th;a
eigenvalue spread of the input correlation Ii;laﬂ‘iX. There are other algorithms which have been
demonstrated ;o have overcome this problem [1‘3]. One such algorithm is the stochastic gradi;
ent lattice joint process estimator (SGL-JPE) which uses a lattice filter in addition to a transver-

sal structure. This chapter explores the possible use of the SGL-JPE as pilot filter.

The SGL-JPE was first proposed by Makhoul {19} and Griffiths [12]-in the context of noise
cancellation. The main idea behind the SGL-JPE is to overcome the problem of eigenvalue |
spread of the SGT filter by preceding it with a decorrelator. The lattice filter is ideal for use as
a decorrelator because the backward prediction error outputs of each of its stages are orthogo-
nal. Thus, instead of forming the LMS estimate using delayed samples of the input signal di-

rectly, we first pass the input signal Lhrough a lattice filter and then form the LMS estimate

. using a linear combination of the backward prediction errors. ‘Because of the orthogonality of

"the backward prediction errors, their eigenvalues are easy to estimate. (The eigenvalues are
simply equal to _@comsponding prediction error powers.) An appropriate step size can then
be uscéi to update each coefficient used to form the LMS estimate, resultin g in a vast improve-
ment in convergéncc speed. Unfortunately, it will be shown later than this improvement in

convergence speed is at the expense of large degrad:tion'in BER due to the sensitivity of the

1

BER to the filter coefficients. -

The latdce filter is closely associated with linear predicﬁon theory. Hence, it is natural to begin
this section with a discussion of linear prediction theory. Following this, brief derivations of

the important expressions related to the SGL-JPE will be given. Prpcedufe for computing the
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BER given the lattice aﬁd JPE coefficients are discussed. Some numerical analysis of the
sensitikvity of the BER to the lattice and JPE coefficients will then be presented followed by

simulation results.

<

6.1. Linear Prediction Theory

Linear prediction deals with by the use of a linear filter on past samples of a stochastic process

to predict a future value. Inone form, the prediction problem can be formulated as:

2

. | |
X(K) = > ymn® x(k-ny a C(6.1)
n=1 l° b : ) .

This formulation is called forward prediction. x(k) is the sample of the stochastic process at '
time kT and ymp is the n-th forward prediction coefficient for an order M predictor. Another

form, called backward prediction, uses values x(k) ... x(k-M-1) to make prediction of the

sample x(k-M) such that: .
AL M
X(k-M) = D cmn® x(k-n+1) (6.2)
T R

where cM p is the backward preasction coefficient. Defining fpm(k) and bpm(k) as the forward

and backward prediction error$ of order M, then (k) ard bpm(k) are given by:

fmck) = x(k) - X(k)

. M
] =Y gM.n x(k-n) (6.3)
4 T | /
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~and e

. .
. »

bM(k) = x(k M) x(k M)

= 2 amn x(k-n+1) SR O (6.4)
where - .
{1 n=0 | )
gM,n { !:)’M,n*‘ n = 1,“., M ) 3 o
v'and
a =141 -CM,n n=0,.., M-1 (6.6)
M. { 1 n =M x

gM.,n and am p are the n-th forward and backward prediction error coefficients of order M. The

FIR filters in which they represent are called forward and backward prediction error filters. »

Equatiéns 6.3 and 6.4 can be solved to minimjzc‘the mean square forward and backward

~prediction errors. The results are two normal equations identical in form to (5.18) from wiener

g’”‘ filter theory and are given by: \
7/ |
R yo=sf (6.7)
and
Rco=sp (6.8)
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" where Rs the correlation matrix of the input process; yg*and ¢, are the optimal forward and

backward prediction coefficient vectors; sg and sp, are the forward and backward correlation

vectors. Denoting x(k-1) as the input vector such that:

x(h-l),=_[x(k-1),‘x(k-2), o x(-MIT o (69)

then R, sf and sy are given by:

R}F= E[x(k) xH(k)] B : (6.10)
s = E[x(k-1) x*(K)] = [s¢-1), 5(-2), .... SCMT o (6.11)
sb = E[x(k) x*(k-M)] = [s(M), s(M-1), ..., s(D]T | (6.12)

where s(k) is the autocorrelation functibn of x with a lag of kT.

Recall that for the optimum filter, the estimation error vector is normal to the filter output
vector. Using this fact and along with (6.4) and (6.6), one cvan'shc‘)w" that"the sequence of

backward prediction errors bn, by, ..., bM are all orthogonal to one another when the optimal

prediction coefficients are used [15]; i.e.:

Efbm (k) bi"(0] = { 7 m 613
5 o

no#

where P, is the prediction error-power of order m. This orthogon_a_litil makes the convergence

speed of the SGL-JPE insensitive to eigenvalue spread. . e
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An efficient technique for solving the normal (6.7) and (6.8) exists and is known as the Levin-
\

son-Durbin recursion [15]. The Levinson-Durbin algorithm makes use of the Toeplitz property

of the correlation matrix R to recursively compute the solution to the normal equation starting

from order 1 mroué/h to the final order of the filter. The Levinson-Durbin algorithm can be

summarized by the folloWing equations: | '\\
am,n = am_I,n + rm am-lm-n‘ ’ n= O, 1, ey IM (6.14)

where Iy, is known as the reflection coefficient of order m.

6.2. Filter Derivation

The SGL—JPE is a well known algonthm and detailed denvanons can be found in many litera-

ture [13,15]. A surnmary of the derivations is gresemed here.

Figure 6.1 shows the structure of the SGLéJPE.



(1m <4

S
P ..r..
wylioBly :
elepdn
‘§eog 3dr
{11)e
@
. +
uojlaeg ;
voprwne3
8802014 .
wior
uojlaeg
LRS! ’
%) (o |7

:,_5

e

(1

75

~



X

The lattice filter section is degcribcd by the pair of equations:
fn(k) = fp-1(k) + T'm" bm-1(k-1) ) m=1, ., M (6.16)
bm(k) = bm-1(k-1) + I'm fm-1(k) o m=1,.,M (6.17)

where f, and by, are th; m-th order forward and ‘backvward prediction errors as discussed in the
previous Sec.tion. Mris the order of the SGL-JPE which is assumed to be odd. The lattice ﬁlr& |
section is preceded by a MWA as in the SGT cas€. In the most c'olmmon foonn, the reﬂection
coefficients, I‘m; are chosen 'to minimize the sﬁm of mean vsquared forward ar_ld backward

prediction en'oré defined ._by:'k
em(k) = E[fm()2] + E[lbm()1?] | (6.18)

We can perform the minimization adaptively by using the stochastic gradient algorithrh as

)
3

before. In this case, the gradient of ey, is given by:
&em@: 3 P {Elfm1002] + Ellbg. 16321} +4 E[fm17() b1 (- 1)]
dI'm(k) _ ’ ) : v :

(6.19)

[

" To reduce the fmean square error, we take steps in direction opposite to the direction of the gra-

dient vector so that:

dem(® - :
(k1) = Do (k) - S (k) SSmil ) 6.20
m(k;" ) m(k) 2l»1m( )drm(k) ‘ ( )
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where Uy is the step size for order m update. Replacing the gradient of ey, with an instanta-

neous estimate, we get:

Fin(k+1) = Tm@6) - tm(®) { Ten(k) 12001 + B 1(k-1)2] + 2 i1 °(K) e}
6.21)

Next, we choose the step size to be the reciprocal of an &stimate of the prediction error power, -

Em-1, yielding [20]:

Im(k+1) =Iyp(k) - Tll(ﬂ' {rm®) [fm-12()! + b1 (k- 1)I2] + 2 f1 (k) b’m-l(k~1)} ‘

(6.22)

. Expanding this and 'making use of ‘_(6.1'6) and (6.17), we can simplify (6.22) to'give:

S0 TaG) =Tn® - g (000 b + bt D "0} 623)

Theiprediclibn error power estimate is compﬁted as:
Em-1(k) = A Emc1(k-1) +1f-1(0)2 + .1 (k-1)12 L (6249)

where A is an aging coefficient introduced to allow tracking of chéngin‘g input statistics. e

" The joint-process estimation section is identical in structure to.the SGT filter with input to each

~ stage replaced”by'thc backward prcdiction errors. The JPE coefficients are adapted using the _ i

“ ~ stochastic gradient algorithm as are the SGT filter coefficients. The deference in this case isin

the choice of step 51ze When the lattice is converged, the backward pred1ct10n errors are
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orthogonal. This means that the backward pred‘ivc:tion error pbwers are equal to the eigenvalues

' of the respective stages. Furthiermore, it can be shojn that E[ f 1k)12] = E{lbm.1(k-1)12] [15].

So we can make use of (6. 24) to obtam an csnmatc for the ei gcnvaluc of stage m. For stage m,

we use a step size A(m) such that

-

A(m) = _1(1?' S AP ” (6.25),
It follo}ws"that- the IPE coefﬁci.qflt update eq;iat.ion 'i.s:

o) =xr;<k)_+gf@ Lerdo ] B ) <‘6._z:6«?"“
yvhere e(k) is the es»ﬁt‘imtzllt»i()n error giyen by:

et =800 kHbG) R ."T,'(_ﬁ-?-‘?)

Ay
@v

6.3. BER Computation

To compute the BER, we need to transform the sets of reflection and joint-process estimator o

- coefficients into an 'cquivalem‘set of FIR coefficients. To accomplish this, we-make uSe of

- (6.4) which relates the backwa:d prediction error of a particular order to the mput vector. The

~ setof equauons descnbmg the backward prediction” error for each order. can bc grouped to-

gether to form the following matrix equation:

bk) = Lr(k) L e
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whcrc
- A = :
1 0 0 0 ﬂ
11 0 0
- a,1 J 0
L = .
a.M'M a}q,M-l aMM-2 .- 2 U L '
L o T d o (6.29)
T
and .
r(k)’= [r(k- “—‘2'—1), .., T(k-1), 1(k), r(k+1), ..., r(k+ ‘M—z‘l)]T o (630)
) Output of the joint-process estimator is:
“wk) =kHbk) ' ‘ C (6.31)
Substituting (6.28) into (6.31) yields: ’ .
o | | o~ | |
wk)=xHLr(k) - . , 16.32)

- Comparing this cquat{on wiin'(5.3), the set of equivalent FIR cogfficients can be readily

. recognized to be:

h=LHg o (633
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5 A

o leen the set of eQurvalem FIR coefficrents. the- blt errqr rate can now be computed using thc

h . procedure outhned in sect:on 5 4 The only remammg*rtem requxred for Lhc computauon 1s the‘

- 3c1ents by usmgtheLevmson Durbm recursron ’ e S T Yo,

e 6 4 BER Sensitivity to‘_'FilJter: Coefficien_ts-

- “matnx of predrctlon coefﬁcxents L whxch can be easxly obtained from the ref'Iecnon coeffi-

f\,\‘

B

e lThe SGL JPE is: dcﬁned by two sets of coefﬁc1ents Wthh together determme rhe ﬂlter re- - .

o j"sponse Thc filterr reSponse 15 a hxghly non- lmear funcuOn of the reﬂectlon coefﬁments makm g

'V,.any type of analysrs dlfficult In order to deterrmne the sen51t1v1ty of BER to changes in the SR

two sets of coefﬁclents wc have pursued a computatxonal approach The BER was computed .
: as a funcuon of changes in the ﬁlter coefficxems for the. foUong parameters Eb/NO = 40dB,
fDT 0 0208 r= O 2, M 4 and a MWA of Iength 3 Us1ng the opumal sets of reﬂectron and

| Jornt—process esumator coefﬁcmnts for the above parameter the. BER was found & be 3, 573 X

o . 10 S, Results of BER calculated asa functron of percemage changes in the. reﬂecnon and Jomt- .

: ’~process esnmator coefﬂcxems are glven in: table 6 1 In table 6 1 sensmvn;y is deﬁned as:

" 3BER 2 -"'ABER DR
m= T—ﬂ=‘——§ﬁ<‘ﬁ ST e e (6.34)

where z e {T'(, I, AF'3',VI~4} Ko k‘li,‘lcz,‘ vc3 K4}, o

. ‘80‘ V‘w



% change

% incr in BER

Coeff. changed BER Sensitivity
I -1# 1.047 x 104 | 88 88 '
: 32 1239x 104 | 329 o
£-10 2.973 % 103 5230
1.764 x 102 | 31550
I 573x105 2.8 12.8
6.105 x 105 ] 9.5 :
1.91 x 104 | 243
: -50 | 3.25x 103 | 5730 - ‘
T3 { -10 5.573x 105 | ~0 0
» -50 5.573x 105 | ~0
T4 -10 5.573x 105 | ~0 1o
Ay -50 5.602x 105 [ .5 :
o -1 6016 x 105 J8 8
2. 7.39x 105 | 33
-10 5.697 x 104 | 922
-50 2.416 x 102 | 43250
K1 -1 6.049 x 105 | 8.5 8.5
-2 7.455 x 105 | 34
-10 5.408 x 104 | 870
, -50 1.493 x 102 | 25960
X2 -1 5.575x 105} 0.04 0.04
-2 5.591x 105 ] 0.3
-10 6.236 x 105 | 12
-50 2.354x 104 [ 322
K3¥ -10 5.594 x 105 ] 0.3 0.03
-50 6267 x105 12 ‘
X4 -10 5.582 x 105 } 0.2 0.02
-50 5724x 105 |3

Table 6.1 - BER Sensitivity to Lattice and Joint Process Estimator Coefficients

81

From this table, we can observe that the BER was extremely sensitive to the two lowest order
reflection and JPE coefficients, particularly the lowest order reflection coefficient. Sensitivity
also increased with increased percentage change in coefficients. Itis clear from these observa-

tions that any sizeable fluctuations in the lower order coefficients will be detrimental to the per-



‘ i formancc of the SGL-JPE. Th:s hypothesxs wﬂl be f%gher dcmonsn'ated to be true in the

o followmg simulation results.
6.5. Simulation Results

Monte Ca.rl'o.simulations were performed with the SGL-JPE algorithm USing a similar proce-
v @ dure as for the SGT case. Figure 6.2 shows the learning curves for different values of Ev/Ng
. " . - \p&% ke
% " with aging coefficient l 0. 995 fpT = 0.0208 and r=0.2. In terms cf convergence speed,

the SGL-JPE is significantly faster than SGT eSpec1ally at high Ep/N,,. The learning curve is

smooth at low Eb/N;). At high Ep/N,, there are large ﬂhcniations in BER. The presence of the
fluctuations can be explained by exammmg-ﬁgme-6.3 which shows the evolution of the imagi-
~nary pari of ihe lowest order reﬂcctidn coefficient. The fluctuations in the reflection coefficient
match almost perfectly with those in the BER curves. The reason for the increase in-BER

’ flyctuations w1th Eb/N0 was because at low Ep/N, the received mgnal was dominated by addi-
tive white Gaussian noise thus masking out the effect of the fluctuations in thc reflection "
coefficient. Athigher Eb/No, fluctuations in the reflection coef_ﬁcicntv ﬁecbmg dominant and are
manifested as fluctuations in BER. From these results, we can cciﬁclﬁd;;::hat although the .
SGL-JPE provides more tapid convergence over SGT, it’is'rié't‘ suitabié for use in the pilot

filter application because of the high sensitivity of the BER to the filter coefficients.

e
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A

.7. FILTER SWITCHING ALGORITHM

*

We have seen in chapter 5 that the use ot{h:s‘tochastic gmdjent transversal filter for"exvtracting’

pﬂot tone has the problem of convergmg very slowly when the recewed signal energy to noise

den51ty ratio is high. We have also demonstFated in chapter 6 that the gradlent adaptwe lattlce

joint-process estimator is not suitable for use a% pilot filter because of the high sensmvnv of .

o

~ the resulting BER to changes in the filter coefficlents In [hlS chapter, we present a novel tech-
nique for extracting the pilot by storing a pre-calculated bank of filters and sunply se1ect1ng onet

.as pilot filter. The technique has been given the name, filter switching algorithm (FSA).

One of the fundamental drawbacks of the'SGT, SGL-JPE and other popular adaptive ﬁltérin g

algorithmé is the need of these algorithms to update each and every filter coefficient. In a

sense, they all perfoi'm a multi- dimensiona] adaptau'on in one form or another. In the pilot filter
apphcauon we have found that the optimum filter is the Wiener filter. An adapnve pilot filter
needs only to adJust for changes in doppler frequency and frequency offset. This means that
the adaptauon process can be reduced to two dimensions. The FSA is formulated based on this
idea. Ir will be shown that this approach can provide significant improvement in BER and
convergence speed over the SGT and SGL-JPE algorithms. The FSA cliscnssed infthis chapter

provides adjustment only for the doppler frequency. The problem of fnequency>offset

compensation is considered separately in section 7.8 where a method for estimating the fre-

quency offset is presented.

This chapter begins with a detailed description of the filter operation and derivations of the

switching algorithm. In section 7.2, we present an analytical model which enabled us to com-

pute the average BER and convergence speed of the new adaptation scheme. Sections 7.3 and
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7.1. FILTER DESCRIPTION

v -
- LR e ~—

- e L - -
S e

1.4 prov1des some’ numcncal results computed usmg the gnalyucal model JUS[ mennoncd

+

| followcd by sxmulated rcsults demonstraung the accuracy of thc model glven in sccnpn 7.5.

Secnon 7.6 dcals wwh some of the factors which need to be considered when 1mp1emem1ng the

_ FSA Sccnon 7 7 glvcs a summary of ﬁndmgs and comparcs the pcrformancc of a pilot ﬁlter :

| , 1mplcmcntcdv using the FSA with ‘that of a SGT,pxlot ﬁltcr -The ﬁnal sccnon dxscusscs the

‘problcm of frequcncy offset ‘compensation.

o)

- 4

-~ T
.

-

-

7.1.1. Signal Flow - = -

o

e b
Fo.

The structure of a pilot filter using the ﬁhér switching algorithm is éhown in figure 7.1. The
inp;Jf sémplcs, rp(k), are first averaged by a movipg window averager MWA). The MWA
reduces the storage and computational rcquuements of the algorithm. The averaged samples
are-then spht into two branches. The t:)p branch consists of a set of reduced coefficient filters,
one of which is selected to perform fhe .actual ﬁltermg of the pilot. The reduced coefficient

filter has non-zero coefficients spaced by the length of the MWA. We denote the overall time

response of the combined MWA and reduced coefficient filter by hp(i, k), where i is the index

of a particular filter in the filter bank and k is the time index. The pilot filer output can be

- written in terms of hp(j, k) as:

w(k) = a [c(k) * hp@, k)] + nw(k) ' | (7.1)

where * denotes convolution.
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The lower branch of pﬂot filter comprises an adaptauon loop which prov1des the mechanism
~ for selecting the appropriate rcduced coefﬁc1ent filter from the ﬁlter ensemble The adaptatlon‘
loop 1ts’elf consists of a bank of gradient filters and a sample averager Each gradlent filter has.
an 1mpulsc rcsponse which equals the difference between impulse rcsponses of two reduced |
coefficient filters and there is one corresponding gradient filter for each reduced coefficient

filter in the upper branch. Let us denote the time re.sponse of the combined MWA and gfadient

filter by:
Ahp(i,k) = hp(i+1,k) - hp(i.k) | | (7.2)
The gradient filter output is then given by:
V() =alel) * ARl +av(k) | (7.3)

Q

v(k) is conjugated and multiplied by the decision corrected data signal ﬁ(k) to form an instanta-
neous estimate of the cross-correlation y(k): y(k) is averaged by a sample averager with length

N to give a sampled cross-correlation:

@@=~y ykm= 1Y Hk-m)vk-my* (1.4)
N m=0 N m=0 : -

The decision variable Re[q(k)], denoted by x(k), determines the next filter to be used,
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7.1.2. Filter Operation ' o - L

The bank of reduced coefficient filters consists of filters optirnized'for different tloppler fre-
quencies and is arranged in order of 1ncreasmg -doppler. During initial 0peranon the filter
optirmzed for the, largest doppler is selected. A performance index is then evaluated at some 7:
fixed time interval which deterrmnes whether to switch to a filter optimized for a larger doppler
or one which is optimized for a smaller doppler frequency. Ata parttcular_doppler frequency,
it can be sliown that as one increases the length of the optimum (W iener) filter, 1ts frequency

response approaches that of a rectangular low pass ﬁlter and this approximatlon improves wrth

1ncreased signal to noise ratio. _If we approximate the set of optimum filters w1th rectangular
53&,

filters, then we can accommodate changes in doppler frequency by simply.varying the pilot

filter bandwidth. This approximation eases the analysis and understanding of the effects that
o

various parameters have on the FSA. The effect of using sets of rectangular filters vs optimum

FIR filters will be discussed later in section 7.3.2.

Assuming that the frequency responses of the combinations of MWA and reduced coefficient

filters are ideal rectangular, then after convergence, the pilot filter bandwidth jitters about the
optimal value equal to (fp + fo) [l(l]. If at a particular time filter i is selected, it is possible to
switch from filter i to filter i+n where i+n is less than or equal to the total number of filters in
the set. To simplify analysis, we restrict n to only take on values +1 or -1.

4

Some of the parameters important to the performance of the algorithm are: filter shape, filter

length and bandwidth spacing. The widest bandwidth filter is set to equal to (fp max + fo max)-

Overall shape of the filters affects performance. As shown by the results in section 7.3.2,
rectangular filters do not give the best performance. Selection of filter length involves the usual

radeoff between performance, computation complexity and the amoupt of delay. Smaller
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bandw1dth spacing provides %me 1mprovement which will be d1scussed in section 7.3.1.
However, the number of filters and hence the amount of st orage space requlred is 1nversely

proportional to the bandw1dth spacmg Agam some tradeoff needs tobe made. . -

7.1.3. Performance Index Selection

Integral to the design of all adaptive algorithms is the need for a perfofmance index; for the
"LMS algorithrns, mean square error is used. ’l'he"'t)erfonnance index needs to be well behaved.
This means that the performanee index as a function of the filter bandwidth must not have any
local peaks In the present application, we would like to minimize the BER For a pilot filter
with a real frequency response, this corresponds to maxumzmg the correlation coéfficient p
between the matched filter and piiot filter output as evident from (3.3). However, p is not a
suitable performance index because it is difficult to compute and analyze. An alternative is to
simply employ the covariance which, for Rayleigh fading, is equivalent to the cross-correlation
since E[u(k)] = E[w(k)] = 0 There are two ‘advantages in using the cross-correlation as per-
formance index. uOne advantage is that it is easier to compute than correlation coefficient be-
cause there is no need to obtain the variances of the filters' input and output as in the case of
~ correlation coefficient. The second advantage is related to the fact that the cross-correlation is
, lin'ear with respect to the pilot filter response (see equation 3.2). This means thatbet)mputing %
the difference in cross-correlation for two ﬁlter output is equivalent to computing the cross-
correlation for a filter whose impulse response is the difference in impulse response between
the two filters. This third filter is the gradient filter referred to earlier. For a pilot filter

ensemble made up of rectangular filters, each gradient filters will have a frequency response as

shown in figure 7.2.

boN
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Figure 7.2 - Gradient Filter Frequency Response (for rectangular pilot filters)

At this time; we should point out that rectangular filters with identical gain cannot be utili;ed if
cross-correlation is to' be used as performance index. This is because the cross-correlation for
rectangular filters having the same gain are identical if their bandwidths are greater than (fp + .
| fo). Usin%g identical gain rectangular filters, the switching algorithm will select ANY of the
filters with bandwidths greater than fp + f, at random. Obviously, only the filter with band-
width closest to (angl greater than) fp + fj is optimal.

Denoting the cross-correlation by C, two questions remain in determining whether C is ‘suitable
as a performance index. The first questioﬁ is whether the pilot ﬁlté\r bandwidth corresponding .
to maximum C, denoted by Bp max, also gives minimum BER; or equivalently, whethgr”pr'max.
gives maximum p. The second questién is whether AC is well-behaved. The first quésﬁon (%an- ’
be answered by differéntiating C.and p with respect to the,'pilot filter bandwidth Bp. settji;l g the |

derivatives to zero and solving for Bpmax. It can be shown that in both of these cases, Bp max
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= fD+E£,I. (Scé Appendix 1 for the derivations). From the same analysis, it can also be shown '

e

that C has no local pcaks
7.1.4. Derivation of the Filter Switching Aigoriihm

The filter switching algorithm can be summarized as taking a step in a direction opposite to the

gradient of C. This'is the steepest desce‘nt'algorithm. The update equation is given by: - ¢

By(k+1) = Bp(k) - ug’g | - T 19

where Bp is the filter bandwidth, p is a positive scalar constant and k is the time index. Ap-

proximating - 5B by AAB and letting p' = Z%l; then:

By(kt1) = By(k) - ' AC - | 1.6
- AC s defined as:_/,>
C ( E[00) v(0"] P o o an

4

We now quantize By so that only a discrete'number of filters is required. To simplify the algo-

rithm, we further replace AC with sign(AC) and appr‘oiimate AC by the real part of'a sdxnplc
’

mean 'so that the de0151on variable becomes x(k) = Re[q(k)] whcre q(k) is defined by (7.4).

a

The resultmg algonthm is then to calculate x(k): .

Bp(k+1) ={ Bp(k) + ABp x(k) > 0 . w
Bp(k) - ABp otherwise
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Assuming that the ith filter is used at time k, i.e. ,Bp(k):= Bp(i.k), thea-lgarithm"canﬁe rewrit-

ten as:

. Bp(k+1) = { Bp(i+1,k+1) @) > 0 o - .
Bp(l 1k+1) ' otherwise - : el ‘

7.2. FILTER SWITCHING ANALYSIS

N,

This section provides an analytical model for the filter switching‘algoﬁthm from which the

convergence speed and the average BER can be computed.’ We first begin with a discussion of -
) - M + . » ) . T

oy

some of the assumptions made. o |
, L | ‘ -
7.2.1. Assumptions . f \_\\

In order to simplify analysis, there are three major assumptions made.

a

-

{,,; S ’
(1) Time between each adaptation step, or adaptation‘ period,1s equal to the time spanned by

- the sample size of q(k), denoted by N so that values of q(k) used for cach adaptation

step contain no overlappmg samples. L

(2) Values of q(k) taken N samples apart are uneoxrela{ted h

‘‘‘‘‘

(3) There are enough mde}gendent samples in q(k) such that the sum is &‘aussmn Some

Vgt

justification for this and the prewous assumption is the fact that the cross-cor“relatlon isa

function of J, 0(2nfbk) which ’has'an envelope that decreases with time.
- v g‘tv ' ) ;v Lo ’/,«-*"“"“%m\
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7.2.2. Markov Chain Model

x(k)isa randorn vanable S1nce the selecuon of ﬁlters depends on x(k) the index associated .
"w1th each ﬁlter in the ﬁlter banks isa dlscrete time random vanable From assumptions (2) and
(3), successive values of x('k) used in the SWI[ChlI‘l g dec1310n are independent. This u'nphes that
the filter 1ndex iat the next adaptauon step depends only on the present value of i. So the pro-
cess descnbmg 1 forms a Markov cham Assomated w1th every Markov chain is a transition
" probability. matrix. and an initial state probablltty Vector. For the present application, the transi-
tion probabllmes are detertmned by the prébabﬂlty den51ty function (pdf) of x(k) The initial -
- state probab111ty vector has the value one for the highest stateM correspondln g to the index of |
- filter with the w1dest bandvvldth and Zero for all others. Given the ‘transition probabilities and
~ the initial state probab111ty vector‘ a set of steady state probab111t1es can be computed if the
Markov chain is 1rredu01ble1 -For a partlcular fp and pilot filter used, BER can be computed

‘usmg (3.2) and (3.3). The'average BER i is simply the sum of BER given each filter, weighted

by the state probabilities sucn that:

M LT e
E[Pe] =Y 1_'%11\,&‘ ; o L (1.8)
. i=1 . ) ’
where v; denotes the steady state probability for filter i.

An illustration of the Markov chain model representing the filter switching algorithm is given in

figure 7.3.

1" A markov chain is said to be irreducible if every state can be reached from every other state in a firiite number

of steps.
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Figure 7.3 - Markov Chain Model of the Filter Switching Process

&

In queueing theorf,‘this is the Markov chain of the binh--death process [21] with transitions
restricted to neighboring states only. The \transitioh probabilities of the' Markov chain are rep-
resented ‘y bj and d; dcnot:ing the birth and death probabilities at state i\respectively. As men-
tioned earher, in order tov obtain the average BER, the steady state probabilities are needed.
Unfortunatcly., the model as shown in ﬁguré 7.3 strictly does not have a steady state because
no state is allowed to Jurpp back to itself in a smgle transition, i.e. there i isno self—loop How-
ever, the model can be modlﬁed by considering the following. Assummg that the number of
time steps taken is-odd, then every odd state can be reached if the initial state is even. The
chain will be in an even state only at the start. Similarly, if the number of stcps taken is even, .
then the process will be able to reach every even state. If the mmal state is odd, then every
even state can be reached in an odd number of steps. If the number of steps takcn is even, then
the process w111 be able t(; reach every odd state given that the initial ssate is odd. The above
~ observations indicate that the original chain can be split into two, an even and an odd states
chain. If we group every two transitions on the original chain into one transition on one of the
even or odd state chains and considcf even and odd step transitions separately, then this model

1s identical to that shown in figure 7.3.

 The new model is called dual Markov chain (DMC) model and is shown in figure 7.4 for the

case when M is even. &



P1.1 P3.3 Ps,5 PM-3,M-3 PM-1,M-1

PM-2,M-2 PM.M

b. Evén State Chain

Figure 7.;1 - Dual Markov Chain Model of the Filter SWitching Process for M even

The transition probability métrices of the DMC model, Pogg and Peven can be obtained from the

transition probability matrix of the original chain P as given by:

ar

Podd = Peven =P2 _ 7 (7.9)

—

It can be shown that the even and odd states chains are irreducible so that steady state probabil-
ities exist. Details of the derivation of the steady state probability vector V for an irreducible
Markov chain can be found in [21]. In general, the procedure is to make use of the matrix

equation:

v =[v1,v%, vi,.]=V P (7.10)
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where Y. vi =1 | BENCATY

: : . | - '
In terms of the state indices of the original chain, the steady state probability vector of the odd

states chains can be shown to be:

i
__Vi2pi-2i(2) _ pi-2i(2) s ;

T piie2(2) —J;=3_°dd pj.j-2(2) v i=3t10M:-1 | (7.12‘)

where v D
i li = (7.13)

- . (2)
1+ Y Pj-2,ijl<) |
- i=3,0dd { j=££>[dd Pj.j-2(2)} | _ ;

and p; j(n) denotes the n-step transition probability from state i to state j. Similarly, for the

even states chain, the steady state probabilities are given by:

L | .
Vi-2 Pi-2,i(2) pj-2,i(2 ) .
i Ty = 1=4,M (7.14)
! Pi.i-2(2) j=41.—c:['en Pj.j- 2(2) :
where
.
V2 = ! (7.15)

M-1
Pj-2,i(2 .
+i=4.2even { _]-41::['en in&)A v

1Y

At any ume, the probabilities of having taken an odd or an even number of steps are the same
) #

and are equal to 1/2. This means that the process on the average spéhd's half its time in the odd
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state chain and half its time in the even state chain. Consequently, the average steady state

probability is simply given by:

Viavg = 3[Vil (7.16)

-~
-

The transition probabilities bj is derived from the pdf of the decision variable, x(k) which
equals Re[q(k)], as follows. The adaptation anorithm> dictates that if the process is at state i, it
should switch to the next higher state if x(k) > O; otherwise switch to the next lower state.

Thus the probability of switching from state i to state i+1 is simply given by:

bi = pi,i+1 = Pr(x(k) > 0) : _ (7.17)

. 4
With the Gaussian approximation of x(k), all that are required are the first and second order

statistics of x(k) which are derived niaxt

7.2.3. " Staﬁstics of the Sampled Cross-Correlation
First Order.i’.Sta‘t.istics

The m<ian of x(k) is given by:

' N-1
Elx(®)] = E[S ¥, Re [3k) v()*]]
k=0

N-1
Z E [Gl(k) vik) + I’J\Q(k) VQ(k)]

k=0 i ‘ . ~
= Rivi(0) + Riguo(O) - (7.18)

Z|~
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where Rfyjvy(k) and RﬁQVQ(k) are the cross-cerrelation functions between and v as given in

Appendix 3.
Second Order Statistics

The variance of x(k) can be expressed as:

" N-1 .
Var[x()] =Var[ £ Re [fik) v(] ]
=0 ’
1 11:-1 Ay ‘ * 2 1 piy rA - 2
=E[{ § X Re [0 v }]- {E[£ Y Re [B) v 1}
k=0 k=0

= E[{Re [q()]}2] - (E[x(K)]}2 , (7.19)

where

3

- N-1

El{Re [q®1)2) =E[{ £ ¥ Re [da0v@1}7]
. k=0"

Z

N- "
=ZE[Y ¥ {16 vit) 1o vice) + 1) vii) o) vo(k)
i =0 .

—

I}
(=4
=

+ 1gG) vo() k) vik) + i) vQ() Ggk) vok)} ]
(7.20)
and E[)i(k)] is given by (7.18). Using the result on high order joint moments of Gaussian

random variables [22] and after some simple algebraic manipulations, the second moment of

Re[q(k)] can be shown to be:
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N-

E[{Relq)F =23 3 { 2 Ripug(0)2 + Riyy(i-K) Rypyy(-K) + Reyuy (i°K)2
‘ , i=0 k=0

+ Riyg(kei) Rupvge-d) - Rivg-k)2 } (7.21)

—
—

P

Tﬁis equation can be further simplified by converﬁng the double sum into a single one by using.

'~ the substitution 1 = i-k. For any function f, it can be shown that:

N-1 N-1 N-1,
Y {tiw}= Y {emfw} ) (7.22)
i=0 k=0 1=:(N-1) B ,
where e(l) = N- 11l . : - .

The resulting expression for Var[x(k)] is:

. | | ,‘
valx@] = 27 Y, {e® [2 Ripg(0)2 + Riyty® Rypwy(D) + Ripy(1)2
o 1=-(N-1) ;

+ Riyd(D Ry - Rig®2] } - {Ropa(0) + Rigug@}  (7.23)

where e(l) = N- Ill as defined previously.

Expressions for the correlation functions Ryfi;(1), Ry;vy(D), R"}I{\Q(l), RVI‘;Q(D, ‘R{f,ivl(l)‘and

Rivq(D) are given in Appendix 3.
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7.2.4. Convergence time

Convergence time of a Markov chain is defined here as the expected number of steps required

to reach a particular (destination) state for the first time. The method of deriving this conver-

gence time is by first changing the destination state to an absorbing state and renumbering its

. state index to that of the last state. The transition probability of the modified chain, P, is

given by:

P'

Let YN be the number of steps required to reach state N, the probability that the process is at’

P'

h=la=lha=)

P1,i-1 P1,i+1
P2,i-1 P2,i+1
Pi-1,i-1 Pi-1,is1 - - -
Pi+1,i-1 DPi+l,i+1 ..
PMi-1 PM,i+1

0 0

1M1 PiM
2M-1  PaM
3,M-1

lp'3,M
v
v

SR .
- PM-IM-1LpP M-I M

L e R A . T S B R e Y

.P1I,M Pl
-P2M  P2,i

Pi-1M Di-1,i

. Pi+1 M Pi+l,

-«PMM PMii
. 0 1

i

-—-_—-—wmmemewew w w -

- -

(7.?4)

— (7.25)

state N after n stéps be denoted by p'N(n) and p'(n) be the row vector with elements p'i(n),

then:

and

pN(@) =Pr[YN <n]

p'(n) =[p'm) | pN(n) ]
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=[p'(@-1) | pNO-1) ] P’ | ‘
=[p'(@-1) Al $'(0-1) b +pN@D-1) ] (1.27)

where §'(n-1) = [ p1(n-1), p2(0-1), p3(-1),'.., PN-1(0-1) |

From (7.27), we get the following relations: |

p'(n) =P'(n-1) A

= p'(0) AP | o (7.28a)
and - o
pN@) = B'(n-1) b + p'N(n-1) ' (7.28b)

The pdf of YN can be obtained from (7.%8):

Pr[YN=n] = Pr[Y]\’; <n] - Pr{Yn<n-1]

= p'N(@) - PN(n-1) |

;f = $'(0) An-l b : . (7.29)
- The moment generating function of Y can be shown to e:
R | - -
Py @ =50 [5]b : (7.305

The convergence time is then given by:
E[YN] = - 3 PY(@ | 2=1 = B'0) [%]% | (7.31)
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7.2.5. Variations of 'Aigorithm Implementations

~ Step margin -

It has been found that using a PLPF which is too nari‘ow, i.e. less than (fp + fo), can raise the
error floor [10]. This indicates that some margin of safety should be added to the pilot filter
baridwidth chosen because the index will fluctuate about the optimum value. This idea has
been incAorpo‘r'ated"into the filter sWitching algorithm by selecting a reduced coefficient filter
whose bandwidth is a number of steps wider than the bandwidth of the filter corresponding to
" the gradient filter in use. The maigin of safety is called the step margin./ Section 7.3.1 will

‘""disc‘uss‘ the efféct of step margin on BER performance.

Exponential Bandwidth Ihcremept

| ¢
Discussion thus far has assumed that the bandwidth spacing in the ensemble of filters is con-
stant. However, this spacing arrangement may not prox?ide thé best overall pérformance for
reasons which will be explained vlater..' Ong alternative énangemeqt is to employ exponential
bandwidth increment, i.e. to have the bandwidth increment arranged so that successive band-

widths follow an exponential function. As will be shown in section 7.3.1, this scheme intro-

duces some tradeoff. , ' ,

- Dual Threshold

°

Recall from the Markov model presented earlier, steady state probabilities do not exist because

no self—lodp is allowed. This leads to instability as there is a tendency for the algorithm to jitfet
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about the optimal state after convergence. One solution to this problem is to add self-loop
probability. To do this, we alter the switchin g algorithm as follow: ‘ ‘ -
If x(k) > T1,.
- elseif x(k) < T1 and x(k) £ T2,
Bp(k+1) = Bp(k)
else, , N

T1, T2 are transition thresholds. We can see from this new switching algorithm that there is
. now a finite probability of not changiﬁg state which is equal to Pr(T1 < x(k) € T2). The
Markov chain describing the new anoriﬁlm is one which represents a pure birth-death process
with finite number of states[21]. It can be shown that the nev&; Markov chain is irreducible and
the steady state probability vector can be easily computed by solving (7.10).and (7.11). ' The
steady state BER follows from (7.8). " One should note that, for ‘thils algorithm, the transition
thresholds need to be made a function of Ep (or Ep/Ng s;nce N, is not expected to change)
because, as are evi@ent from (7.18) and (7.23) the mean and variance of the decisic;n variable

x(k) are functions of E,. This means that either E;, or Ep/Ng needs to be estimated by the algo-

* rithm.
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7.3. COMPUTED BER PERFORMANCE BASED ON MARKOV MODEL

The effects of various parameters on the BER were investigated. BER}cur;c_s were computed
based on the proceduré discussed in section 7.3. All results obtained in thlS section ass?mcd
the following unless stated otherwise: ideal rcct;ngular pilot filters, Rp = 2400bps, r'= 0.2, f,
= 0, number of filters = 401 cross-correlation sample size = 299 and ba"ndwidtﬁ increment ABy,

= SHz.

7.3.1. General Results Using Ideal Rectangular Pilot Filters™

\
Figure 7.5 shows the upward transition probabilities and average steady state probabilities as

functions of the filter number (or state index) for fp of 100Hz and Eb/NO of 20dB with no step

margin.

Transition probabilities depend on the amount of area in the fade speétmm covered by AHp, (see
equations 7.18, A3.38 and A3.41). Because of the shape of the assumed U-shaped fade spec-
trum, one expects an increase in upward transition probability with state index which indicates
an increasing tendency to move upward (i.e. to a higher state) for filters with Bp < fp. This is
shown by figure 7.5 to be true. An interesting observation is the fact that upward transition
probability is néarly zerolfor Bp > fp. The large tendency to move™pwnward is caused by the
negative gain of the gradient filter response in the range (-Bp,Bp). 1Se ﬁ gure 7.2 for an illus-
tration of the gradient filter frequency response.) The small values of the upward transition
probabilities are due to the more rapid decay o,f‘ the correlation functions Ryy and Rjy for By >
fp. As expected, the steady state probability curve indicates an increase as By increases to fp.
Another point worth noting is the fact that the steady state probabilities had significant values

—
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S

a2 -

" for Bp 2 80Hz (state 16) and Bp < IOOHz (state 20). One expects a h;gh error floor asa result
because hlgh steady state probablhtles for Bp < fp suggest high probablhues of using ﬁlters -
Wthh WEre 00 narrow. Fortunately,{he hlgl'r error floor can be reduced-by usmg step margln

as w1ll ‘be shown later in this secuon i

1.2 , ‘ — | 8

-z upward trans. prob.
-o- steady state prob.

computed probabliities

™0 Y 10 : 20 30 40
fllter no.

Figure 7.5 - Computed PI'ObablhthS for Filter Sw1tch1ng Algonthm usin g
K Ideal Rectangular FlltCI’S '

Convergence time was 21 steps from the last state (1argest Bp) and 32 steps from the first state
(smallest Bp) Because the transition probabilities are nearly O for states with Bp > fD, the ‘
process spends almost no time in these states. 32 steps is the worst case convergence time
correspondmg to the situation of a vehlcle accelerating from standsull to 127 kmph in zero time
| (assurnmg 850 MHz carrier). In terms of fp/s, this is 25 Hz/sec (One step = 125 msec.)

Realistically, the fastest change in fp which can be expected is only about 15.2 Hz/sec A
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' (eofre‘éponding to at anaeeelerau'on of 0-1(50» kmph in 5 séc). So the convergence speed of the
ﬁlter sw1tch1ng algonthm is more than adequate to accommodate changes in fp from vehicle
accelerauon As mscussed in section 5.4.2, convergence during vehicle deceleranon isnota

fproblem One should also note that because downward transition probablhty is nearly 1 for Bp

> fp, trackmg is faster for a decrease in fp than for an mcrease -

'Figure 7.6 shows the average BER vs Ep/Ny. Note the enormous error floor due to transitions
into states with too narrow a bandwidth. Also shown in figure 7.6 is the BER curve for a non-

adaptive system using an ideal rectangﬁlai filter with Bp of 150Hz. Although:it seems like the

FSA performed very poorly here against the non-adap_tive scheme, it will be shown later that - - R

this situation can be turned around by introducing step margin. .
The optimum power split ratio r was relatively insensitive to changesr in Ep/N, and was found

“to be 0.33.
Effect of Step Margin

The effect of varying step margin was investigated and the results are: shown in figure 7.7 for
fp of 50Hz. The irreducible error floor dropped as the step margin was ineredsed. ‘If;or/a
margin of 6 the BER curve is alnlosf nara,llel to that of the non-adaptive caseand we can ob-
serve some significant improvement of the FSA over menon-adaptive»'oase in \vhich a rectan- "

: guiar pilot with 150Hz bandwidth was assumed" “The improvement at a BER of 10‘2 was.
_about 0.8dB. A polnt Wthh is worth notmg is that as the margm ‘was increased, the low
Eb/No pornon\c‘»ﬁge BER curve moved upward as a result of increase in the average band-.. , |
width. This shows a tradeoff between BER in thedow and hlghEb/No regions when the step. |
margin-is’varied.» . . - o ey
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Effect of Number of Filters |

The effect of vearylng‘ the number of ﬁlters used was negligible for a fp of 10()Hz. Recall that,
the steady state probabilities were nearly zero for Bp > 100Hz, This suggests that ﬁlters with
| > 100Hz were rarely used and adding ﬁlters with Bp > 100Hz would have very 11tt1e effect.

Also using a step margin of 5. had the effect of shifting the steady state probab111t1es up 5
‘ states ThlS means that steady state probablhtles could then be non-zero for Bpup to 125sz
and. nearly zero for Bp greater than 125Hz So, filters with Bp uP to 125Hz were needed in
this case. The important point to realize here is that, dependmg on the bandw1dth increment

chosen, we only need to use enough ﬁlters 50 that Bp max is greater than ( fp max + frequencﬁy’?

margin ).

Effect of fp

Figure 7.8 ,sho\}ys BER for various fp Ewith a step margin of 5. BER for a lovwer fp _;Nas :
smaller than for a higher fp. This bis because on the average at lower fp, narrower filters were
used more frequently than at higher fp causing léss noise to appear at the pilot filter output.' At
a BER of 10-2, improvement was about 1.0dB for 50Hz doppler and 0.3dB for 100Hz. The
error floor was also found to be higlter fora lower fp due to the increase in the low frequency
component (or flat portion) of Sy as fp was decreased. It can be shown that this low frequency
component increases as 1/fp for small fp. So for small fD, larger part of Sg was covered by
the negative gain portion of the gradlent filter frequency response than for large fp with the

* same gradient filter. This indicates that more margin was needed for small fp. -
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Effect of Bandwidth Increment

Figure 7.9 shows the BER for two sets of ﬁftcrs with a'iffercntr ABp, for fp of 50Hz. Different
step margins were used so that the margin in frequcnéy remained the same.u ~P§rformancc at
low Ep/N, was about the same for both ABy, but the error floor nearly disappeared for the
smaller ABp. This is intuitively satisfying because d.c. gain of the gradient filter decreases”
with decreasing ABp. A smaller (and negative) d.c. gain means a higher cross-correlation
bwhi'ch weﬁld res_ult in larger upward transition probabilities and smaller steady state prdbabili-
ties for Bp < fp. .Since the d.c. gain has inverse dependence on By, steady state probabilities at
~smaller Bp get affected more. Overall result is that variations in Bp is less, which means that
one can use a smaller step margin and get a corresponding irnp\rover‘ncnt in BER. The cost of
using a smaller ABp is the increased storage requ'irem_cm for mdre filters and the increase in

convergence time.
Effect of f,

The effect of f, on BER ﬁcrformancc is illustrated by figure 7.10 which shows BER for vari-
ous f, wnh a step margin of 6. The dcgradétion in BER performance was primarily in the in-
crease of the error floor as f, was increased. W/hen fo Was increased, one of the "horns" of the
U-shaped fade spectrum moved closer to the low frequency portion of the gradient ﬁltcr~ re-
sponse which had-a negative gam From (7.18), (A3.38) and (A3.41), we see that E[x(k)]
would decream fo which meaﬁs that the upward transition probability had to decrease as.
well. When the upward transition probability became smaller, the variations in Bp became
la£ger thus spreading out the steady state probabilities The spreading of the steady state prob-
abilities was the primary cause of the increase in the error floor. In order to compensate for the

spreading, we could increase the step margin at the expense of hcgradi_ng the BER performance
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at low Ep/No. The spreading of steady state probability is illustrated by .ﬁgure 7.11 which
shows the steady state probabilities for systefn operating at Ey/N, of 20 dB with vaﬁous-fo. It
can be observed from figure 7.10 that the maximum tolerable frequency offset was 10Hz for a

step margin of 6. However, the step margin could be increased in order to accommodate a

larger offset.

Effect of Cross-Correlation S>ample Size
. v l
The cross-correlation sample size affects BER performance and convergence time as it deter-
mines the accuracy in the estimation of the cross-correlation. Figure 7.12 shows the effect of

sample size on the BER for fp of 100Hz. The decrease in the sample size produced a corre-

sponding increase in the error floor. Fewer samples means a shorter time span covering the

fading process, leading to greater uncertainty in the cross-correlation estimate.  This in turn

causes a larger steady state probability spread and as a result, a larger error floor. The re-

/

sponse time was also proportionally increased. Figure 7.12 indicates that a minimum of 150 |

samples were needed in order to keep the error floor 1ow ¢nough. One should note that it is the

total length of the time spanned by the cross-correlation samples which is important in deter-

mining BER. One could reduce the sample size by increasing the time between samples, or by

using a'longer MWA, and obtain a similar BER performance. This is true as long as the recip-

rocal of the time between samplés is greater than the Nyquist rate of the fading process.

b

Exponential Bandwidth Increment

' The results of using exponential bandwidth increment are shown in figures 7.13 and 7.14 for
fp of 50 and 100Hz. Successive filter bandwidths are fitted using an cxponentiél function such

that the bandwidths at states 1 (the lowest state) and 40 (the highest state) are 5 and 200Hz
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respectiveiy. For 50Hz, exponential bandwidth inorement performed better than linear incre-_
ment at small step margin. With step rnargin greater than 1, linear increment was better. For
fp of 100ﬁz, exponential increment had a slight advantage over linear increment at high Ey/N,
(> 20dB) while the reverse was true at lower Ep/Ng. The ttbove observations cé.n be explained.

by considering step margin as frequency steps. At small fp, the algorithm operates with small

Byp; ABp is small for exponential bandwidth increment which means that the frequency margin ~

above the optimal bandwidth is smaller for»exponential increment than for linear increment
scheme usmg the same step margin. Asa result, thé exponential increment scheme gave better
performance for small step margin. At larger fD, the frequency margm is larger for exponenuali
increment. So for the same step margin using exponential increment provides a lower irre-
ducible error floor. However, this also meftnsdhat the average ba’ndwidth isalso larger whieh

causes inferior BER performanee at low Et,/NO In general, we expect fp to be small for urban |
driving and we need a step margin of 5 in order to keep the error hmr low enough. Under |

these circumstances, using a linear bandwidth increment will provide better performance.
Dual Threshold

Figure 7.15 gives the results\of u;’ing the dual threshold algorithm fdr t’D ofb 100Hz whth vari-
ous thresholds and no step margin. For simplicity, we ‘h“ad set the two thresholds to be con-
stant multiples of E/Ng and they were made symmetn'catl such that T2 = -T1 where T1 > 0.
. One striking feature as evident from figure 7.15 is the improvement in error floor as the sym-
metrical thresholds are increased. With thresholds of +1.0 Ey/N,, we could almost dd away
with step margin, The drastic improvement was due to the increase in the ratios between up-.
ward and downward transition probabiltties since these ratios determined the steady state prob-
abilities. When Bp< fp and frequency offset is absent, we would like the steady state proba-

bilities to be small for all states with Bp < fp in order to obtain a small error floor. This means

i
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that we- need the upward to ciownwardtransitién probability ratio to be large. élearly, the
transition probability ratio increases with i;gcreasing threshold values. Hence, increasing the
transition thresholdé had the effect of decreasing the error ﬂoqr. .Unfortunately, this reductibn
in érr’Qr floor also resulted m the drastic increase in convergence time, as is indicated by figure
7.’16 which shows the convergence time (in number of steps) as a fuh‘cticm of ‘transitilon
mresﬂold (in multiple of Ep/No). The increase in convergence time was caused by the in- ‘
vcreased self-loop probability. In practice, BER performance will also be degraded by noise
present in the Ep/N, estimate. Thus; with all consideréﬁons, using a single threshold of zero is

* superior to using a dual threshold scheme.

7.3.2. Optimum FIR Filter

Ideal rectangular pilot filters were used to obtain all of the previous results. For the rerha.inder
of the discussion, we investigate the effect of using FIR filters optimized for various fp at a
fixed Ey/No of 40dB. The optimum filters have been designed for increasing fp at SHz incre-
ment starting at* Hz and ending at 125Hz. The filters are numbered in-order of increasing fp -
so that filter number 1 corresponds to' a filter optimized for SHz doppler and filter number 2
corresponds to a filter optimized for 10Hz doppler, etc. As shown in Appendix 2, the cross-
correlation for a set of optimum FIR filters is not as "well behaved" as its rectangular counter-
part. However, it will be shown later in th1$ sectlon that using a set of optimum FIR filters can
offer BER performance comparable to that using a set of igeal rectangular filters. First, we
investigate the effgct gfyarying the length of the MWA azl;shaping filter in a non-adaptive

environment.



Effect of MWA and Shaping Filter Length . - .

- Figures 7.17, 7.18 and 7.19 shows BER for fp of 100 with various shaping filter length and

MWA length of 1, 3 and 5 respectively. MWA lehgth of 1 is equivalent to no MWA. The

_ filter lengths are defined such that overall filter length equals MWA length x shaping filter

len/gth. For the three MWA lengths used, shaping filter lengths greater than or equal to 51
were close in performance. However, an increase in filter length means va' corresponding
increase in both the amount of /éomputation and meémory space. With a MWA length 6f 5,
shaping filter length as low as’' 11 gave reasonable performance. One should note, however,
that in actual operation with the FSA, a filter length below 21 is undesirable. The reason is
becaﬁse'tbe passband ripples in the frequency response for a short filter can cause the upward
transition probabilities _to decrease, so that a larger step margin is required in order to maintain a
low error floor. For the best comﬁrorrﬁse between BER performance and complexity, a MWA
length of 5 and filter length of 51 should be used. |

Ideal Rectangular vs Optimum FIR Filter °

Figure 7.20 shows the BER using various step margins for fpy of 50Hz, svlglaping filter fength of -

51 and MWA length of 3. The error floor was n_egligiblyy small for step margfn greater than 4.,

This is in contrast with results found using ideal rectangular filters as given in figure 7.7 which - -
shows error fl&or still present with a margin of«6. The main reason for this is because of the
gradual roll-off ‘of the FIR filter low pass frequency response which allows for more of the

fade spectrum to be covered.
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Figure 7.11 - Effect of f, on Steady State Probabilities of FSA at Eb/N9 of 20dB
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7.4. COMPUTED CONVERGENCE TIME BASED ON MARKOV MODEL
: s
The,effectsqf_ygrious parameters on the mean convergence time of the FSA are investigated in
this section. 'The mean convergence time has been computed usiﬁg (7.31) assuming that the
f'.lrst state (corresponding tok Bp of 5Hz) is the starting state. The first state convergence time
has been used here because, as found in section 7.3., convergence to a higher state is slower
than to a lower state. As in section 7.3., allvres;ilts obtained in this section assumed the fol-
lowing unless stated otherwise: ideal rectangular pilot filters, Ry = 2400b;;s, r=02,f;=0,
number of filters - 40, cross-correlation sample size = 299 and bandwidth increment ABp =

SHz.
7.4.1. Effect of Ep/N,

Ew/No was found to have negligible effect on the convergence time. This is in contrast with the
results found for pilot filter implemented using the SGT filter algorithm where convergence

speed was found to be highly sensitive to Ep/N,.
7.4.2. Effect of fp

The effect of doppler frequency on the convergence time is shown in figure 7.21. The conver-
gence time increases with increasing doppler. This is as expected because a wider bandwidth
pilot filter is required to cover the fade spectrum at higher doppler which means that FSA needs
to traverse more states before reaching the op;imal state (of bandwwidth). Since each transition

is restricted to one step only, it therefore takes more iteration to-arrive at the optimal state at
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high fp. The convergence "speed”, defined here as the average number of state traversed per
iteration, remains nearly the same for 50 and 100Hz doppler. “

b

f. 4.3, Effect of Bandwidth Increment

A
Figure 7.22 shows the coh’vergence time as a function of bandwidth increment. Based on this
figure, we observed that increasing the bandwidth increment had the effect of deéieasihg the
convergence time. This is of no surprise because, for a larger bandwidth increment, less states
need to be traversed before reaching a given bandwidth. The convergence speed was faster for

. L
larger bandwidth increment.

7.4.4. Effect of Cross-Correlation Sample Size

Increasing the cross-correlation sample size decreases the variance in the cross-correlation
estimate. The decrease in variance increases the upward transition probabilities and thus results
in a decrease in convergence time in number of iutferations. Recall that the time between itera-
\tiofis in number of bit periods is equal to the sample size. Hence, when we consider the con-
vergence time in number of bits, increasing the cross-éorrelation sample size has the opposite
effect of incréasing the convergence time. Overall, the convergence time in number of bits
increases almost linearly with increasing sample size. Figure 7.23 showS the convergence

time as a function of cross-correlation sample size which illustrates this.
7.4.5. Effect of f, : .

The effect of f, on the convergence time is shown in figure 7.24. The convergence time was

found to increase with increasing f,,; the amount of increase was most significant for f, greater
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than 20Hz. The increase in convergence time was due to the decrease in upward transition
probabilities, as explained in section 7.3.1., and to the increase in the optimal bandwidth as £,

was increased.
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7.5. SIMULATION RESULTS

S

=

Sirfmiations were performed to determine the accuracy of the model and to assess.the effectsof -
self-noise and decision direction. The simulation' method used to obtain the results given in

this section was the’same as that outlined at the beginning of section 5.5.

7.5.1. Accuracy of the Markov Model

-

Figure 7.25 shows the steady state probabilities from the‘si'mula't\cd and computed values for fp
of 50Hz and a bandwidth increment of SHz.

0.5
-
0.4 4
. ®

8
s 0.3 4
] e
= - sim. steady p
% g calc. steadyp
»

¢ <

_ fiiter no.

Figure 7.25 - Calculated vs. Simulated Steady State Probabilities of the FSA
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7.5.2. Effect of Decision Direction and SelffNo'ise K “o

o

Some discrepancies can be noted for filters wh1ch are one step wider and one step narrower

than the opumum. These have been attnbuted to the dev1at10n of the sampled cross- correlauon

’4from the Gaussian approxunatlon One should note that the filter bandwidth with the h1ghest

steady state probablhty mdrcated by figure 7.25 is 40Hz (state 8) not S0Hz (State 10) as would

be expected 1f rectangular filters are used. The particular distribution of steady state probability B

- was again a result of the gradual roll-off of the FIR filter frequency response.

-5

kS

Y

=

Results obtained in'section 7 4 assumed perfect removal of data dependence in the reference

srgnal u(k). In.order to investigate the effect of decrsmn direction, s1mulat10ns were per-

formedfor fp = 50Hz Ep/No = 10dB, r = 0.2 using demodulator decision to. Temove the data |

demsron drrectron has very little efféct on the average steady state probablhtles even at low |

Ep/No. The simulated average steady state probabﬂmes were very close to the calculated value -

N3

Previous results had also assumed that the pilot tone and data signal were transmitted s::%amtely'

so that the results obtained were not affected by self-noise. We investigated the effects of self-
noise by transrnitting the pilot and data signal over the same (simulated) ch{mel-as shown in
the system model glven in ﬁgure 2. L. The following parameters were used in the srmulauons

fp = 100Hz, Eb/No = 20dB, r = 0.2. Fast fading w&s\chosen because it mtroduced larger

spectral spread so that 1f the effect of self-noise is small for large fp, then the effect will be -

~even less at smaller fp. Results of the smmlatmn are summanzed in figure 7. 27 Here, it

sqsw
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' dependence in (k). (See figure 2. 1) Figure 7.26 ‘shows the results whlch mdwates\that )



there is larger discrepancy between the values prcdlcted by the Markov model and the simulated
results. One should note from figure 7.27 that this discrepancy is not related to self-noise, but

is due to the increvased»stalistical variations as a result of a larger doppler frequency.

0.5

< nodec.dir .
-0~ w/dec. dir
-& calculated

i

steady state prob.

" filter no.

Figure 7.26 - Simulated Steady State Probabilities of the FSA with Decision Direction




0.5

< no self noise
_ -0~ w/ self noise
-4 calculated

steady state prob.

fiiter no. i

>

" Figure 7.27 - Simulated Steady State Probabilities of the FSA with Self-Noise

7.6. SOME IMPLEMENTATION CONSIDERATIONS

Recall that the filter switchi algorithm described thus far assumes that the adaptation period is
equal to the sample size 0; the sampledlcross-con'elation. This implementation is the simplest |
in terms of analysié ar;d compléxity. By changing the adaptatioh period, tradeoffs between
complexity and convergence speed can be made. One varfition is to take an adaptation step
every bit period, which is equivalent to the use of an adaptation period of one. ‘Intuitivcly, this
scheme should offer great improvement in convergence speed because thé algorithm can now
make transitions more often. Successive values of the sampled cross-correlation in this case
will be highly correlated thus making the Markov model invalid. One, will have to rely ‘on

computer simulations to determine the BER and convergence behaviors. The difference in
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: computauonal complexity between the two algorlthms is 51gmﬁcant For sample size N and
filter length M the original algonthm requu'es approximately M mulnply-add operations per b1t i
to compute the sampled cross-correlation whereas the second algorithm requires M x N multi-
ply-adds per bit. Other values of the ad;ptation period will provide different tradeoffs between

complexity and convcrgencé specd

IS

=

' When implementing the FSA in practice, it is necessary to assign different weights to each
cross-correlation samplé in forming the sample mean because the fading process is non-
stationary in generaj. Itis posSible to use an exponential decay averaging scheme for comput-

ing the cross-correlation estimate. The cross-correlation estimate can be computed as:

x(k+1) = A x(k) + Re[d(K) v*(¥)] | : (7.32)
)
where A is the aging coefficient. This method is simpler to implement than a sample averager

and may provide satisfactory results, but only simulations can determine its performance.

7.7. SUMMARY OF RESULTS

Results obtained for the filter swﬁtching algorithm can be summarized as follow.

i

¢ Compared with a non-adaptive pilot tone calibration system using a rectangular ﬁlter
with bandwidth of 150Hz, the“ FSA provided an improvement in'average BER which
was a function of the doppler'frequency. At-a BER of 10-2, the improvement was
about 0.3dB for 100Hz doppler, 1.0dB for 50Hz doppler and almost 2.0dB for a 10Hz

doppler.
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‘Increasing the step margin had the effect of rt:ducing the error floor but at the same
time, increasing the average BER at low Ep/N,. A step margin corresponding to a fre-
quency margin of 60Hz gave a good compfomise. L
The bandwidth increment and the number of rcdqced coefficient filters reqﬁifed should
be chosen such that Bp max > (fD max + freque;g margin ).
bThe maximum frequency offset in the fade spectrum which could be tolerated was
10Hz. Larger offset had the effect of raising th_e error floor. Increase in the error floor
could be compensated for by increasing the step margin, at the expense of degrading-
the BER at low Ep/N,,

%or a 2400bps system, a minimum cross-correlation sample size of 150 was necessary
to give a reasonably low error floor. Decreasing the sample size had the effect of in-
creasing -;l1e error floor.

Usingv:; constant bandwidth spacing of 5SHz was found to be effective. For smaller
spacing, BER improved éhghﬂy but more filters were required and convergence time
also increased. The reverse was true for larger spacing. h

The set of reduced coefficient filters could be designed effectively using mean squarcd
error optimization. Compared to rectangular filters, the set of optimum filters required
léss step margin to give the same error floor. . |
The optimal combination of MWA and shaping filter length was 5 and 51 respectively.
Worst case convergence time was 32 steps for a crgss-correlation sample size of 299.
With a 2400bps system, this corresponds to 4 sec.

Ep/Ng has very little éffect on convergence time. However, it increases significantly
with increasing fo. . |

Effects of decision direction and self-noise were negligible.
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7.7.1. Coniparison with SGT Filter \

Figure 7.28 shows the BER vs Ey/N, curves for pilot filter implemented using the FSA and the
SGT algorithm at various doppler frequencies. The filter length was 11. and th:/;[W A length
was 3 for bot‘h cases. Except for fpT of 0.00417 (IOHz at 2400bps), the FSA pgrform;d
better than the SGT filter. The difference in performance at a BER of 10-2 was -0.5, 0.7 and
1.1dB for fpT of 10.00417, 0.0208 and 0.0417;cspectivcly; Onc should keep in mind that the
BER performance of the SGT filter in the presence of sclf—noisé is_significantly dctcriorated
whereas for the FSA, self-noise has vei'y little effect on BER. Also, rcéall that the BER per-
formance of the SGT filter deteriofates with increasing ﬁlter\ length beyond 11 whereas the
perfémnance of the FSA increases w1th filter length. Figure 7.29 shows the BER curve for
FSA with length 51 filters and SGT filter of length 11. The FSA out-perforﬁled the SGT ﬁlt;r
for all fpT. The difference in BER performance in this case was 0.2, 0.8 and 1.2 dB.at 10-2
BER for dopplers of 0.00417, 0.0208 and 0.0417.

In terms of convergence behavior, pint filter using the FSA is also superior than a SGT pilot
filter. Figure 7.30 shows the learning curves from simulations of stepwise iﬁcreasc in fpT
from 0.00417 to 0.0417 at Ey/N, of 40 dB for both implementations. Length, 51 ii\lters were
| used for the FSA and length 5 filter was used for the SGT algofiihm. We can see'that oﬁce o
converged, the; FSA had no difficulty in tracking\ increases in the doppler frequency. As for
SGT ﬁltcr,_thcre were jumps in BER due to the inability of the SGT algorithm to follow the

changes in doppler at high Ep/N,. The difference in convergence performance between the two

algorithms would be smaller at low Ep/Ng.
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7.8. FREQUENCY OFFSET. ADJUSTMENT

The frequency offset which exists m the spectrum of the fading process is a dii;éct result of the
difference in frequency between the tran\snrit and receive oscillators ThlS offset can be.
consrdered constant for a particular transmitter-receiver pair. Therefore in order to provide an
appropriate correction for this offset, one needs only to estimate it once during system initial-
ization. The offset estimate, denoted by f, can then be used to de-rotate the received sarnples
dunng subsequent operation by multlplymg the samples with e-2xfokT, This realization sug-
gests ‘that there is no need for dynarmc tracking of the frequency offset. It is one of the reasons
why frequency offset adjustment has not been incorporated into the FSA as a two-dimensional
adaptation. In this section, we consider a method for estimating the frequency~offset by the use

of a FM discriminator.

Figure 7.31 shows block diagram and the associated model of the subsystem for estimating the

frequency offset using a FM discriminator.

_ v '
The discriminator is preceded by a limiter which limits the amplitude fluctuation of the input
‘signal. The input to the limiter, rp(t), is given in discrete time by (2.14). In continuous time,

rp(t) can also be written as:

¢

rp(t) = a A(t) exp (joot + (1)) + np(t) : ' (7.33)
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where the complex gain c(t) has been represented by its amplitude and frequency components.

The use of continuous time representation is for simplicity only. Results obtained are also

applicable for discrete time implementation.

| ® >
FM d{t) LPE o

p (1 | Discriminator ,

VCO :+---— 270!

- - -

(a) Block Diagxam‘

TLong (Y ?'(1)

h () f—> @

(b) Model

Figure 7.31 - Block Diagram and Model of Frequency Offset Estimation Subsystem

- with FM Discriminator

The frequency discriminator, assumed to be ideal with unity gain, is followed by a low pass

filter (LPF) for noise reduction. OQutput of the discriminator is:

dn
d(n) = wp + S5 4 L0

= 0o+ 9(0) + np'(D) “ o as.
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Estimate of the ﬁ#@uency offset in radian is given by:

00’ =d@)* L) ,, i
= o HL(0) + ¢'(t) * hL(®) + np'(®) * h(1) e - (.35)

where hy (t) is the impulse response of the LPF and Hj (0) is the d.c. value of the Fourier
transform of hy (t). From (7.35), we see that the output of the subsystem has a mean value
which is proportional to the desired frequency offset but it i; perturbed by twd noise terms. To .
investigate the amount of variations expected from the frequency offset estimate, we need to
calculate its variarice. Assuming that ¢(t) and ny(t) have zero means, the variance of W' is
given by:r |

oy 2= | Np'@ HL@P do + [ ¢'(e) HL(0)? do (1.36)

1

where Np'(0) and ¢'(0) are the Fourier transforms of np'(t) and ¢'(t) respectively. Statistics
of the random FM component ¢'(t) has been studied elsewhere [6, 7, 23]. Its spectrum has

been numerically computed and has the shape which is shown in figure 7.32 [23].
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log,o(f /12f})

Figure 7.32 - Power Spectrum of Ranciom FM: (taken from [23]) )
: &

np'(t) is AWGN passed through a discriminator. From FM communication theory [24], we

know that np'(t) has a parabolic spectruni given by:

Nyp'() = —22- - N (7.37)
) = . , .
P 41t2rcn , i‘k,,\ .

where r¢y is the carrier to noise ratio.
If we assume that the LPF is ideal with unity gain and bandwidth W, then the two integrals in
(7.36) can be evaluated using figure 7.32 and (7.37) to give: »

Cog2=T0mfpW | 7 (7.38)

zfq‘

A typical carrier to noise ratio of 10dB is assumed’in obtaining (7.38). The average amount of

-variations in the frequency offset can be expressed as:
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Oty ~082Nfp B T sy
- where B is the single sided bandwidth of LPF in Hz. h
- ' o S

. lFfom (7. 39); we s;ee that the deviation in £, is approximately 8.92 VB for 100Hz doppler. In
order to mamtam a small deviation, we need to have a very narrow filter. For eaa;ample to -
obtam a dewauon of 1e§$s than 10Hz, Whlch is about the maximum frequency offset tolerable by
.- the FSA, we will need a LPF with bandwidth smaller than 2.5Hz. Although a filter w1th this
narrow a bandwidth will have a long delay (~ 60ms), this delay will not pose a problem be- .

‘cause the LPF is not in the data processmg path
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~ 8. CONCLUSIONS AND RECOMMENDATIONS

E  This thesrs has addressed the 1ssue of mtroduclng adaptivity into the pllot filter for a tone mdcd
transmission system Adaptmty i mtroduced to allow the pllot filter to operafe at or near .
optimum bandw1dth under changmg vehlcle speed The present stuely mvesugated the perfor-
mance of » vanous adaptwe ﬁltenng schemes 'I'he general approach taken in th1s study isto
first denve the vanous adaptatlon algonthms in the context of- prlot filter;mg The BER and‘

L convergence performance are then analyzed wherever possmle, and supported w1th smulanon |

Tesults.

Two conventionafadaptive filtering algorithms'have been investigated' the Stochastic Gradient

Transversal filter and the Stochastlc Gradxent Latuce Jo;nt-Process Estmator/” Although the

WO stochasuc gradlent algorrthms use m1mmum mean square error as criterion, it hag been

shown here that m1_mrmzmg the mean square error between the pilot ﬁlter output and the data
- a .

derived reference is equivalent to the minimization of BER.

Analysis has shown that the Convergenc'espt};P f the SGT filter is hlghly sensitive to the .

eigenvalue spread of the mput correlation matrix. The smaller is the exgenvalue spread the

(=4

' slower is the. convergence Speed The most 1mportant parameter affectmg input eigenvalue

spread is Eb,’N0 because of its large dynamic range Input elgenvalue spread is found to be .
~ directly proporuonal to-the Eb/No At high Eb/NO, the elgenvalue spread is very large, wh1ch
means that convergence is very slow. Fortunately, practical systems generally operate at the

vicinity of 20dB where elgenvalue spread has been shown not to be a problem. %
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,Because of the stochastic gradient approximation, there is an excess loss associated with the

BER performance of the SGT ﬁlter so that its BER is always hrgher than that achievable with
the optimal filter. This is also true for the SGT-JPE. However, it is found that if one forces
‘the SGT filter coefficients to be conjugate symmetric, then the excess loss can‘be reduced
without affecting convergence. The _eXceSS‘.loss is an increasing function withbincreasing
doppler and it can be as. much as 0.5 dB at 4% doppler. This makes the use of a SGT pilot
: ﬁlter suitable ‘only for low vehicle speed because the maximum performance gain of an‘adaptive |
sjste'm‘over a non-adaptive system is already very small at high doppler.

For most applications, the SGL-JPE is e;tpecte &t perform better than the SGT filter, espe-

“cially with respect to convergence speed, because Phé decorrelating property ol’ the lattice
section used in the SGL-JPE. However, both nrical_analysis and simulation results have
shown that the SGL-JPE is not suitable to be used in the pilot filtering application becatlse of
the high sensitivity of the BER to fluctuations in the SGL-IPE coefﬁcients.

[}

Due to the various problems associated with the two stochastic gradient algorithms, a novel -

* - approach hasbeen taken, leading to the deyelopment of:a new adaptive filtering algorithm. By

- reduclng the adaptmty to one dimension, namely bandwrdth the ﬁlter sw1tch1ng algorithm is
- capable of ach1ev1.ng high convergence speed at'the expense of processing complexrty

g In order to. analyze the performance of the algonthm a dﬁal Markov-model has been intro-
*duced Thls model enables the computauon of both the average BER_ and the tonvergence

speed Slmulatlons haVe been performed which showed that the model has a high degree of -
' accuracy Although the model is valid only for the FSA rmplemented in its simplest form, it
* s

: .prowdes insights mto the effect of vanous parameters on the algonthm performance Usmg the

'.Markov model, the FSA, even in its- smplest and slowest form, is found to converge fast
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enough to track the changes in doppler during vehicle acceleration. BER performance of the
FSA has been compared with that of a' non-adaptive system using‘a rectangular pilof filter with
‘bandwidth of 150Hz. For a 2400 bps system operating at a BER of 102, the impfovement is
0.3dB for 100Hz doppler, 1.0dB for 50Hz doppler and 2.0dB for 10Hz doppler. In addition
to these improvements, the FSA is very robust in the sense that self-noise and decisioh direc-
tion have very little effect on its performance. Convergence time is also found to be‘insensiti‘ve
to changes in Ey/N,,.

Compared to the two stochastic gradient algorithms, thé FSA provides better performance in
both BER and convergencé speed. The FSA can be used in othér filtering applications where
bandwidth adaptivity is important. However, one must evaluate the suitability of usi;lg cross-

correlation as performance index in the particular application.

A simple scheme of utilizing a FM discriminator for estimating the transmitter-receiver oscilla-

tor frequency offset has been presented. This scheme is found to require a very nanowband

, vlow pass filter in order to keep the variance of the frequency offset estimatior} small. The long

ﬁlter‘delay of the low pass filter is no; a problem bec;u?é'w!{e frequency offset is relatively

stationary with time. ’ , |
~

Future work in the area of this thesis may include the following:

g mvesﬁgaﬁon into the use of recursive least square algorithms such as the fast )
vtrans‘versa\l ﬁlter [15] can be undertaken. The convergence speeds of these algo-
rithms have been demonstrated to be insensitive to input eigenvalue spread and they
have been known to provide a lower average mean square error than stochastié gia-

dient algorithms. Most-of these algorithms, however, are susceptible to numerical
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instability. Algorithms which utilize the latticc joint-proccsé structure should also
be avoided. - |
Investigation into the use of adaptive pilo;/mtcrpolaﬁoh filter for a pilot symbol
aided transmissioﬁ system is recommended. Similar performance improvements
are expected because of its functional similarity to tone aided systems.

7
ks
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. APPENDIX 1 : Derivations of Cmax and pmax for a Rectangular Pilot Filter

)
In this appendix, we will demonstrate that for a rectangular pilot filter, the bandwidth which

gives maximum cross-correlaggn (Cmax) also gives maximum correlation coefficient '(Pmax)-
At the same time, we will show that the cross-con'elatibn function, C, has no local peaks other
than Cmax. To accomplish this, a combination of analytical and grdphical techniques will be

used.

Analysis of ‘Cross-Correlation

i

We begm by ﬁrst d1fferent1anng C with rcspect to the bandwidth, Bp, and then compute B, for

' wh1ch— uals 0.
dBp <q

The pilot filter is assumed to be unit energy so that its frequency response is given by:

, 1 :
e Iff £ B
Hp() = { V2Bp : P (AL1)
0 otherwise
“with Bp assumed to be positive.
The cross-correlation, C, can be shown to be [10]: -
c =2, =B J Sy(t-£o) Hp'(D df | (A12)
¥

For a rectangular pilot filter, this reduces to:
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N ,rm i [Byp, fD-i-fé,]
= No /__E P (A1.3)
. y 2B, d |

where vy and P4 are given by:

_ A
y=2e e , (Al.4)

and:

¢

_ min [Bp, fp+£ol 3
Py = [ s [-Bp, ~fp+fo] Sg(f-fo) df

sin [ min [Bp,fgyfo] - fo

[ max [-BD’ 'fD+f0] - fo ] } (A]..S)

] - arcsin D

L

Because of discontinuities in Sg(f) and Hp(f), we need to examine two cases: (i) when fg is

negative and (ii) when £, is non-negative.

Case (i) : fo <0

We consider Bp in three non-overlapping regions: ' \
(@) . Bp<fo+fD
~,
(b) fo+fD < Bp < fD'fo

© Bp>fpfo

.
B

Region (a) : Bp <&t~f;D

We differentiate C by first finding the derivative of Pg.
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5Bp [ [fz '(B -f )2]1/2 [fz f'{'Bp‘fo)z]l/z] o . N (A1.6) k

&Py, is positive in regién (a).

From (A1.6), we can see that B , .
5 . e . _ .

‘ 82P -1 | Bp'fo‘ 'Bp'fo ‘r ' ) | . N

o e—— - - ) Alk

e B e R . (D
o <

<

In (A 1‘.7), the denominator of the first term is less than. that of the second term and the numer-

ator of the first term is greater than the numerator of the second term. Therefore, the first term

must be greater than the second term meaning that g-zz—gi, is also positive jn region (a).

P
The derivative of C with respect to Bpis given by: ~
s_cf _No /er [ Py 1 ]
8By . Y 8By \/gp 2(3 )3/2 e
NO I:Rb 21 BPd Pd . ‘ =
=—= ‘\/ - B - == : Al.8
¥ 2 (Bp)3/2 [ p SBP 2 ] . - . ( )
Let f(Bp) = [ Bpf’Pd 241, then
Sf(Bp) 3Py 8Py 168Pg 2Py 18Pg4 o
=B - - =B -+ - Al .9
B, Py, OBy 28Bp g, 2 8By, . (AL9)
& ‘.
} ' . »r

which is posmve because, as shown earlier, both the ﬁrst and second derivatives of Pd are

positive. Consequently, f(Bp) is monotomcally mcreasmg in region (a). ‘Since f(O) 0, f(Bp)

‘must necessarily be positive. ThlS unphes that = «SBp is positive and that C(Bp) is mono-

’
+

tonically increasing in the region Bp < fo+p. | -
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Region (b) : fo+fp < Bp S fp-fo

In this région,

Pg=21 {3 - arcsid [i‘?-g'ﬁ]} | (A1.10)
T D

" Its first and second derivatives with respect to Bp are:

8¢ _ 1 L R Al.11

8Bp om " [fpe(-Bp-£s)?] 12 ] o )
and - . )

¥Pq _ 1 Bpfe ] | (AL.12)

8, 2m [th-(-Bp-f)2]372

Clearly, one cannot determine from (A1.8), (A1.10) and (A1.11) whether any local extremum
exists. Instead, we have made use of graphicaily techniques in order tb demonstrate that no
local extremum exists in this regiox;. Figures Al.1, Al1.2, A1.3 and A1.4 show the cross-cor-
relation as a function of the filter bandwidth for various doppler frequencies at 20dB Ep/No
with 0, -10, -50 afld -100Hz offset respectively. Based on these figures, we can observe that

C(Bp) is monotonically increasing and that no local extremum exists for fo+fp < Bp < fp-fo.
Region (c) : Bp < fp-fo
In this region,

Pg=1.

The derivative of C with respect to By, with Pq equal unity, is:
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: 8%% ='%\/§5(—B-bm (A1.13)
which is negative. C(Bp) is, thus, monotonically deérezi'sing in the region Bp < fp-fo. Since
C(Bp) is monotonically increasing in regions (a) and (b) but is monotonically decreasing in
region (c), this implies that there is a unique global maximum which must occur at the bound-
ary between regions (b) and (c); i.e.

\ Bpmax =D - fo for f,<0 : (Al1.14)
FigurZs Al.l, Al.2, Al1.3, and A1l.4 confirm this conclusion. A

Case (ii) : £, 20

We Iagain divide the analysis into three non-overlapping regions:
(a) Bp<fp-fy
(b) fp-fosBps f0+fD\
() Bp>fo+D

| By symmetry, the results from the corresponding regions for case (i) also apply for case (ii),
i.e. C(Bp) is monotonically increasing in regions (a) and (b) but it is monotonically decreasing
in region (c). We can, therefore, draw a similar conclusion as for case (i), i.e. there is a unique
globai maximum for C as a function of Bp whicp occurs at:

Bpmax = fp + fo for 520 (A1.15)
We can conlude from the above analysis that, for a rectangular pilot filter, the cross-correlation
function is "well behaved" and it attains maximum value for

Bp,max = fD + Ifol. ' (A1.16)
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Analysis of Correla@ioh Coefficient

Following a sin;ilar approach as used for the analysis of the cross-correlation, we diffem;l;iate

the correlation coefficient p with respect to the filter bandwidth Bp by first reducing the ’

. 2
expression for p into a simpler form.

From (3.2), the expression for the correlation coefficient, p, is given by: .

[ 8g(t-fo) Hp*() df - “
— (A1.17)

p= —~ :
B 11>
[aen { | Se-to) HpdR af + R} P
For a rectangular pilot filter, this reduces to:
min (Bp, fp+fo]
.[max [-gp, fD:fO] Sg(f-fo) df
p = ' 1
min (Byp, fp+fo] 2B 1n
[(1+Y) {jmax ['%p' fofo] Sg(f-fo) df + _r.ﬁga}]
) . 1 | (A1.18)
[(1+y) {Pd + Y.g_B_E} 2

rRp

. _ )
Again, we examine the cases where fj is negative and where f; is non-negative, separately.

Case (i) : f5 <0 .

158



We consider B, in three non-overlapping regions:
(@) Bp<fo+p
(b) fotfp <Bp <fp-fy
() Bp>fpf,

-~

Region (a) : Bp < fo+fD

The derivative of p with respect to Bp is:

| 3
& __1 8Pd 2 1 Y¥2Bp\ 3 SP
58, '_—1»4-[5 ,;bB) N 5 (P4 b) (5 er)P]
<1 8Py OPg - - ,
__1 Pa -t Ry B PRy (AL19)
2 7 :
V1+‘Y (P +l¥_§
d Rp

Denoting the numerator in (A1.19) by g(Bp), then the derivative of g(Bp) is given by:

-

( ) 52Pd _I_ﬁPd B 52Pd
Bp Ry SBP er 823p

(A1.20)

Since both the first and second derivatives of P4 with respect to Bp are positive, it follows that

= is also positive in region (a). With g(0) =0, g(Bp) must be postive as well meaning that

&
5B,
p(Bp) is monotonicalf’y increasing in the region By < fo+{p.

As with cross-correlation, graphical techniques have been used to determine whether p is

monotonically increasing in this region. Figures Al.5, A1.6, A1.7 and Al.8 show the bit
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error rate as a function of the filter bandwidth for various doppler frequencies at 20dB Ey/Ng
with 0, -10, -50 and -100Hz offséi-respcctively. From (3.3), p is related to the bit error rate

for a rectangular pilot filter simply as: \ ;
p=1-2P, B O (A121)

BER has been used here. for cbn_yeniencfe only. All of the figures show that BER is monotoni-

cally decreasing for fo+Hp<Bp < fD-f(; which means that p is monotonically increasing in this

region.

Region (c) : Bp < fp-fo

In this region,
Pg=1
and -
. 3
2 =-amglam@ P <0 (A1)

p is, therefore, monotonicaily decreasing for Bb < fp-fo. With the results found for regions (a)
and (b), we c':oncludev thax‘ p has a unique global maximum at:

Bpmax =fpfo for fo<0 (A123)
Figures A1.5, A6, AL.7 and A1.8 confirm this result. | |

Case (ii): fo 20 - a-

Again, by symmetry, we can conclude that there is a unique global maximum for p which

oCccCurs at:

Bpmax = D+ fo for f520 (A1.24)
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Combining with (A1.23), we can»“eXpress the aptimum bandwidth at which maximum correla-
“ tlon cocfﬁment occurs as: ‘ o |
13p max = D+ Ifol " , ' .(A1.25)
This equation is  of course 1dent1ca1 to (Al 16) which gives the optimal bandwidth for peak
cross-correlation. We have therefore shown that for a rectangular pilot filter, both the Cross-

correlation and correlation coefficient attain their maxima for the same filter bandwxdth as given

by (A1.16). ) - ‘ -
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APPENDIX 2 : Behavior\of the Cross-Correlation for a Set of
Optimum FIR Filters

<

a3

It has been shown in Appendix 1 that the cross-correlation is "well behaved" for a set of rect-
angular pilot ﬁlters Here, we examine, graphically, the behavior of the cross-correlation when
a set of optimum FIR filters is used. The set of opnmum FIR filters refers to filters which have

been optimized for different doppler at fixed Ey/No and tone-to-signal power ratio.

Figures A2.1 and A2.2 show mé cross-correlation and BER as functions of the filter number
(or state index) at various doppler for Ep/N, of 20dB. Filter length of 51 and MWA length of
3 have been used. The -optimnm filte'rs have been designed for increasing fp at SHz increment
starting at SHz and ending at 125Hz. The ﬁlters are numbered in order of increasing fp so that
filter number.1 corresponds to a filter optimized Afor 5Hz doppler and filter number 2 corre-

sponds to a filter optimized for 10Hz doppler, etc. ’

We can abserve from figure A2.1 that .the cross;correlation function contains a" n’ummber of

"plateaus" especially at high doppler These plateaus are due to the ripples and gradnal roll-off '
of the filter frequency responses The peaks of the cross-correlation do not occur at the ex-
pected filter number as for a set of rectangular filters. For example, usmg a set rectangular
filters at fp of 50Hz with a s1m11ar bandvz'xdth arrangement (5Hz mcrement), we expect the
.cross-correlation to peak at filter number 10. For the set ‘of bptixnum FIR filters used, the
cross-correlation peaked at filter number 8. The difference is again due to the gradual roll off '

of the filter frequency response

- 170



Similar phenomena can be observed for the BER as a function of the filter number inr ﬁgﬁrc
A2.2. Careful examination of figures A2.1 and A2.2 will reveal that the filter numbers which
give mmunum BER (and hence maximum correlation coefﬁcicnt. for the $et of filters used) do
not correspond tb thoSe which give max1mum cross-correlation. Figure A2.3 shows the loca-
tions of the respective peaks of the cross-correlation and correlation céefﬁcicnt at different
’doppler frequencies. The locations of the peaks differ by only one state except for states 1 and

2. These differences can be easily compcnsated for, by using appropriate numbers of step
, « _

margin.

It should be noted from figure A2.1, as well as in A2.2, that there is a small local maximum for
- fp of 70Hz Fortunately, because of the stochasuc nature of the fadmg process, there is no
_danger of the algorithm being "trapped" at the particular statc where the local maximum is suu-
ated. In general, the cross-correlation for a set of opnmum FIR filters is not as "well behaved"
| as for a set of rectangular filters. However, as shown by the results given in section 7 3.2,
|   the BER performance of the FSA usmg an ensemble of optlmum FIR filters is comparable to »
that usmg a set of rectangular filtcrs

T,
&

.
e
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APPENDIX 3 : Derivations of the Correlation Functions of ﬁ(k} and v(k) -

This appcnd1x presents detail dcrwauons of the correlauon funcnons bctween the in- phasc and

quadrature components of ack) and v(k) ‘These correlauon functions are:

D Ry =EB® &0 (A3
2)  Rifgl-b =Efim ool . Ay
'3)  Riglglik) = Efliql) )] - (A3.3)
4) Ryl = E[vi() vi] (A34)
5)  Rupgli-k) = Elvit) vQ)] . (A3.5)
6 Rigg@o=Elvgdvoll  (A36)
7 Rip(i-k) = ERLG) vitk)] (A3.7)
8)  Ripqli-k) = ERi) vkl | (A3.8)
9)  Rigvi(i-k) = EffiqQ) vitk)] (A3.9)
10) Rigugli-k) = Effiq() vo(k)] s

-

with GI , GQ VI, vQ denoting the in-phase and quadrature components of il and v.

'The given derivations assume that the in-phase and quadrature componcnts.()f the fading pro- =
~ cess, g, and the noise process in the decision corrected rcfcrcncc nu, are uncorrelatcd Fur-
thermorc thc auto-correlation functions of their in-phase and quadraturc componcnts are

;assumed to be the same. These assumpnons lead to the following:

3

| E[gxﬁ)gq(k)]=Ei§§1‘(i)nuq(k)]=o‘_ o - (Aé.i;)!,
‘Elzi()gi0] = Efgq(igq(i] = Re(iok) - D e a1

v i75_-__ o



‘. Elng@ng@0] =Elngg@mg®l - L Ay

: - S RN |
The expressions for 3@) and v(i) can be expanded to give their in-phase and quadrature com-

porieﬂts as given below:

u(1) = A g(i) exp(21l:fo1) + nu(l)
= A {gi)+jg) } {COS(ZTtﬂul)ﬂsm(anol)} + {nv1(1)+Jan(1)} ‘

=A { g1(3) cos(2rfoi) - go) sm(27tf01)} +jA {gQ(l) cos(21rf01) + gi(i) sin(2nfoi) }

+ {nv)+invgd) (A3.14) -
. 'g ’ | | - ¢ - ’ ) ;
b = A {g16) cos(2nfol) - gQi) sin(2nfch} +ny) a315)
Sq0) = A {gol) cos@nfei) + 1) sin@tfoi)} +0vg® - (A316)
vi) —a[c<x)*Ahp<x)]+nv<x) ° .
=a Z (gGn) expomfoo -m) Ahg(n)} + ny(i)
=a Z (Certi-my+jgqt-m) (cos(@nfuli- ﬂ))"‘JSlﬁ(ZWfo(Pﬂ))) (Ahm(n)ﬂAhpQ(n))}
+(nv1<x)+JnVQ<x)) o

=a Z {gI(x n) cos(21tf0(x n)) Ahm(n) gqQl- n) cos(21tfo(1 n)) AhpQ(n)

n=-ce

- g1Gin) sm(znfoo-n)) AhpQ<n> QU sin@atolom) Abp @)
45 (B snRto1) Abpy®) - ) SRR G- Ale)
.+ g1(1 n) cos(21tfo(1 n)) AhpQ(n) + gq(x -n) cos(21tfo(1 n)) Ahm(n)} ’
R +(nv1(1)+Jan(1)) - T (A3 17) -

"i,;!"

vl - 3 (e cos(znfoo ) Ahm(n) gQ(l-n) cos(2nfoi-n)) Al

n=-so -

76




\ .

- gi(i-n) sin(2nfo(i-n)) AhpQ(n)'- gQ(i-n) sin(2mfy(i-n)) Abpy(n)} + 'D‘kal(i)j-i ’d
(A318)
vo) = Y, {gl-n) sin(2nfo(i-n)) Ahpy(n) - gQGi-n) sin(2nfy(i-n)) Abpo(n)

n=-oco
o

2+ g1(-n) cos(2mio(i-n)) Altpg(n) + gQli-n) CosRfali-n)) Ahpy(m) ).+ nug)

(A3.19)
‘The variances of the in-phase and cﬁadratﬁr’@ components of the gradient filler output noise =~
. process, nyy(i) and nvy(i), have been derived separately in Appendix 4.

D The auto-correlation function, Rﬁlﬁiﬁ-k), is given by = .

| fj.'f’RoIaI(l-k) oL R :
- "= E[{A () cos(znfoo gQ(l) sm(mrfom fng@)
«{A (a0 cos(2nfok) - () Slﬁ(zﬁfnk)} +nur<k)}]
e E[A2 {gm) cos(2nto) gl(k) cos(znfok)} R -
+ A2 (go(i) sin(2nfoi) go(k) sin(2nfok)} + @) nul(k)] .
= Elgi0) gi0] A2 cos Qo)+ Blnu() O] | |
= A2 Rg(‘i -k). cos(2ﬂ:fo(1-k)) + G 5,3 |
= A2 02 Rg(l k) cos(21rfo(1-k)) + 02 8[[( | B

H"T»:Rs(l k)COS(ano(l-k))+02 ka L @)

.
LI

' In (A3 20) and alI subsccment denvanons tcrms mvolvmg E[gl(') gQ( )] E[“UI( ) gl( )] :
,;,E[nulo) gQ(')] E[an(-) gI(‘)} E[nuqm gQ(‘)l and E[nux< ) nuo< )] will not be shown as ‘hey o

-
T
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& o
*equal 0. Also, equation 5.54 will be used extensively to relate the terms a2 652, A2 6,2, and

A a'cgzr to Eb,’as‘ it has been used to obtain (A3.20).

& -

«
&
£

2) The auto-correlation function, R (i-k), is given by

Rifoll) =EmiMugl] |
= E[{ Al &10D) cos(2roi) - gQ) sin@nfod) +ny )}
« { Al Q) cos2mfek) + g1(k) sin(2mfok)) + nug(k) } ]
& E[ A2 { gi(i) cos(2nfoi) gi(k) sin(2nfok) )
- A2 { o) sin(2rtfoi) gQ(K) cosmfok) }]
= - Elgi6) 1] A2 sin(2to(i-k)) ;

= - A2 Ry(i-k) sin@o(i-k))
=. %; Ry(i-k) sin@nfo(i-k) ., (A3.21)

3) The auto-correlation-function, RﬁQﬁQ(i-k), is given bsr
Righo(i-k) = Eftq() iig®)]
= E[A( gq(i) cos(@fod) + g10) sin(2mfod)} + hugli)
x A g(k) cos(2mfok) + g1(k) sin(2mfok)) + nug(k)]
= E[A2 { gq(i) cos(2rfoi) g(k) cosnfok) } |
+ A2 gi(i) sin(2rfoi) gi(k) sin(2mfok) } + nug(i) nug()]

= E[gqQ(i) 8Q(k)] A2 cos(2mfo(i-k)) + E[nug(1) nug(k)]
= A2 Rg(i-k) cos(2mf(i-K)) + oﬁuQ Sik
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= Rgo 9 cos(21tfo(1 K)+oy B

= Eti0) §i00] ' | ‘ (A3.22)

e .
R e

=

4) - The auto-correlation function, Rypvi(i-k), is given by:

Ry =EmOwi0l |
= E[{a Re[c(i) * Ahp()] + ny(D)} {a Re[c(k) * Ahp(k)] + ny;(k)} ]

=E[{a Z Re{g(in) exp(j2nfo(i-n) Ahp(n)} + nvI(l)}

Nn=-oc . . .

x{a Z Re(g(k-m) exp(2nfo(k-m)) Ahp(m)) + nvl(k)}]

m._.oo

= E[{a z {g1(1 n) cos(2nfo(i-n)) Ahp(n) - gQ(l -n) cos(21tfo(1 -n)) AhpQ(n)

n=-co

- g1(i-n) sin(2nfo(i-n) Ahpy(n) - go(i-n) sin(2nfe(i-n)) Ahpy(n) + ny(i) } }

{a Y {g10cm) cos2nt(k-m)) Ahgy(m) - ggom) cos(2to(k-m)) Ahpo(m)

m=-eo

- gi(k-m) sin(2nfo(k-m)) Ahpo(m) - go(k-m) sin(2fo(k-m)) Ahpy(m) }+ nyi) }]

Z Z {Elg1-n) g}’('ﬁfm)] Ahp(n) Ahm(m) cos(2nfo(i-n)) cos(2nfo(k-m))

- Elgi(i-n) gi(k-m)] Ahpy(n) Ahp(m) cos(2rfo(i-n)) Sin(27tfo(k'ml))

+ E[gq(i-n) go(k-m)] AhpQ(n) AhpQ(m) cos(2nfy(i-n)) cos(21tfo(k-m5)
+ E[gqQ(i-n) go(k-m)] Ahp(n) Ahp(m) cos(2nfo(i-n)) sin(2nfo(k-m))
+ E[gi(i-n) gi(k-m)] Ahpn(n) Ahp(m) sin(27to(i-n)) sin(2nfo(k-m))

- E[gi1(-n) gi(k-m)] Ahp(n) Ahpy(m) sin(2nfo(i-n)) cos(2nfo(k-m))
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5)

+ E[gq(-n) gig(k-m)] Ahp(n) Ahp(m) sin(2rfo(i-n)) sin(2nfo(k-m))
+ Elgq(i-n) g(k-m)] Ahy(n) Ahp(m) sin(2nfo(i-n)) cos(2nf(k-m)) }
+ E[nvI(i)ﬂnvI(k)] o

)

o0

Y {Rgli-n-(k-m)) cos@afy(i-n-(k-m))) Ahpy(n) Ahp(m)

m=-oo

+ Rg(i-n-(k-m)) sin(2nfo(i-n-(k-m))) Ahp(n) AhpQ(m)

ok

= a2

1]
3

1

-+ Rgfi-n-(k-m)) cos(2nfo(i-n-(k-m))) Ahpo(n) Ahp(m)
- Rgli-n-(k-m)) sin(2ifo(i-n-(k-m))) Ahpo(n) Ahpy(m) } + 07 i
T .

=Ry 2 Z { Rg(i-n-(k-m)) cos(2nfo(i-n-(k-m))) Ahpy(n) Ahpy(m)

+ Rg(i-n-(k-m)) sin2nfo(i-n-(k-m))) Ahp(n) AhpQ(m)
+ Rgi-n-(k-m)) cos(2mfo(i-n-(k-m))) Ahpe(n) Ahpo(m)
- Rg(i-n-(k-m)) sin(2fo(i-n-(k-m))) Ahpo(n) Ahpy(m) }
+02 B : ~ (A3.23)

Ny

The auto-correlation function, RVIVQ(i-k), is g]'vcn’b)ﬂz;f,
j

Rupg(ik) = Evih) vo)]

= E[ {a Re[c(i) * Ahy®)] + ny(@)) (a Imfc(k) * Ahp(k)] + ny(k)) ]

-

=E[{a X Re(gli-n) exp(2ntolion) Ahp(m) + nvy(i)}

x {a 2 Im{ g(k-m) exp(j2tfo(k-m)) Ahp(m)) + nyq(k) }]

N
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=E[{a Y {&1-n) cos2nfo(i-n)) Ahpy(n) - gqli-n) cos(2nfo(i-n)) Ahpo(n)

N=-c0

- g1(i-n) sin@@nfo(i-n)) AhpQ(n) - gQ(i-n) sin(nfoi-n)) Ahpy(n) } + (i) }

x {a > { g1(-m) sin(2rfo(k-m)) Ahp(m) - go(k-m) sin(2nfo(k-m)) Ahp(m)

Nn=-co

- + gi(k-m) c65(21er(k-m)) AhpQ(m)+ gQ(k-m) cos(2nfy(k-m)) Ahpl(m)} + an(k)}]

=32 Z Z { E[gi(i—n) g1(k-\m)] Ahpy(n) Ahp(m) cos(2nfe(i-n)) s'in(27tfo_(k-m))

+ Elgi(i-n) gi(k-m)] Ahpy(n) Ahpg(m) cos(2nrfo(i-n)) cos(2nfo(k-m))
+ E[gQ(i-n) gQ(k-m)] Ahp(n) Ahpo(m) cos(2nfq(i-n)) sin(2nfo(k-m))
- E[gq(i-n) gQ(k-m)] Ahpg(n) Ahp(m) cos(2nfo(i-n)) cos(2nfo(k-m))
- E[glki-n) gi(k-m)] Ahp(n) Ahpy(m) sin(2nfo(i-n)) sin(2nfo(k-m))

.- Elgii-n) gi(k-m)] Ahpy(n) Ahp(m) sin(27nfo(i-n)) cos(2nfo(k-m))
+ E[gq(i-n) gQ(k-m)] Ahpy(n) Ahp(m) sin(2rfo(i-n)) sin(2nfo(k-m))
- E[gq(i-n) gq(k-m)] Ahgy(n) Ahp(m) sin(2nfo(i-n)) cos(2nfo(k-m)) }

=22y Y {-Rg(i-n-(k-m)) sin(2nfo(i-n-(k-m))) Ahpy(n) Ahp(rm)

+ Rg(in-(k-m)) cos(2o(i-n-(k-m))) Ahpy(n) Ahpo(m)
- Rgli-n-(k-m)) sin(2fo(i-n-(k-m))) Ahpg(n) Ahpe(m)
- Rg(i-n-(k-m)) cos(2mfoi-n-(k-m))) Ahpg(n) Ahpy(m) }

=LERp Y, Y {- Ryli-n-(k-m)) sin(2ufo(i-n-(k-m))) Ahpy(n) Ahpy(m)

+ ﬁg(i-n-(k-m)) cos(2nfo(i-n-(k-m))) Ahp(n) AhPQ(El)_
— ﬁg(i-n-(k-m)) sin(2nfy(i-n-(k-m))) AhpQ(n) AhpQ(m)
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- Rg(i-n-(k-m)) cos(2mfo(i-n-(k-m))) Ahpe(n) Ahpy(m) }

(A3.24)
6) The auto-correlation furiction, RVQVQ(i-k), is given by:

Rugqugli-k) = Elvq() vkl
= E[ (2 Im{c(i) * Ahp(@)] + nvo} {a Imlc() * Ahph)] + nvq@}] -

=E[{a Y Im{g(i-n) exp(2nfo(i-n)) Ahp(n)} + nyg) }

n=-o0

x {a Y Im(g(k-m) exp(2nfo(k-m)) Ahp(m)} + nvg(o) }]

=E[{a ¥ {10 sin@nfo(i-n) Ahpy(n) - gqli-n) sin(2nfy(i-n)) Ahpg(n)

n=-ec

+ gi(i-n) cos(2nfo(i-n)) AhpQ(n) + gQ(i-n) cos(2mfo(i-n)) Ahpy(m) + nvo@ } }

x {a z { gi(k-m) sin(2nfy(k-m)) Ahg(m) - go(k-m) sin(2nfy(k-m)) Ahp(m)

+ gik-m) c..3(2nfo(k-m)) Ahpo(m) + g(k-m) cos(2nfo(k-m)) Ahp(m) } +nyo() } ]

-
e

=22 Y Y {Efgi-n) gitk-m)] Ahp(n) Ahpy(m) sin(2nfo(i-n)) sin(2nfo(k-m))

+ E[gi(i-n) gi(k-m)] Ahpy(n) Ahpg(m) sin(2rfo(i-n)) cos(2nfo(k-m))
+ E[gq(i-n) ga(k-m)] Ahpo(n) Ahpo(m) sin2nfo(i-n) sin(ano(k‘-m)‘)
- E[gq(i-n) gQ(k-m)] Ahpy(n) Ahp(m) sin(2nfo(i-n)) cos(2nfo(k-m))
+ E[gi(i-n) gi(k-m)] Ahpg(n) Ahps(m) cos(2mfo(i-n)) cos(2nfo(k-m))
+ E[gi(i-n) gi(k-m)] Ahpo(n) Ahp(m) cos(2nfo(i-n)) sin(2nfo(k-m))
+ E[gq(i-n) gé(k—m)] Ahp;(n) Ahp(m) cos(2nfo(i-n)) cos(2nfy(k-m))
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- Elgo(i-n) gqtk-m)] Ahpy(n) Ahpo(m) cos(2nfo(i-n)) sin(2nfo(k-m)) }

+ E’(an(i) an(k)]

N

ll
ng

Z { Rg(i-n-(k-m)) cos(21tf°(1 n-(k-m))) Ahpy(n) Ahp(m)

+ Rg(i-n-(k-m)) Sin(2to(i-n-(k-m))) Ahpy(n) Ahpo(m)

i + Rg(i-n-(k-m)) cos(2ntfo(i-n-(k-m))) Ahpey(n) Ahpy(m)
- Rg(i-n-(k-m)) sin\(znfo(i-n-(g-m))) Ahpo(n) Ahp(m) } + oﬁvQ Sik

= —EbRbZ > { Ryli-n-(k-m)) cos(2afo(i-n-(k-m))):Ahpy(n) Ahp(m)

1+r
n=-« Mm=-co

+ Rg(i-n-(k-m)) sin(2nfo(i-n-(k-m))) Ahpy(n) AhpQ(m)
+ Rg(i-n-(k-m)) cos(2nfo(i-n- (k m))) AhpQ(n) AhpQ(m)
- Rg(i-n-(k-m)) sin(2nfo(i-n-(k-m))) Ahpo(n) Ahpy(m) }

+ Gﬁ 0 511(
= E[vi(i) vi(k)] ~ : - . (A3.25)
.“7) The auto—oori'elation function, R, (i-k), is giveh by \\\ '

Ripv(-k) = E[i@) vik)]
= E[ { A(g16i) cos(@ntoi) - o) sin(2mfoi)} + @) }
x {aRelc(k) * Ahp(K)] + nyy() } ]

= E[{ A(g16i) cos(2nfoi) - gq() sin@nfed} + ny (i) }

{ 2 Re{g(k -n) exp(_]21tfo(k n) Ahp(n)} + nyy(k) }]

n=-o
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°

= E[{ Atgr) cos2ntod) - @) sm(znfol)} + nm@J

oo

x{ y {gl(k-n) cos(2nfo(k-n)) Ahm(n) gj[(k-n) sin(2nfo(k-n)) Ahpo(n)

- gQllen) cos(2ig(k-n) Ahpg(n) - gollen) sig(2nfok-m) Ahp()} + (k) }

[

=aA 2 {El gI(l) g1(k-n)] cos(21l:f01) cos(21tfo(k n)) Ahpy(n)

n=-oo

- E[ g109) g1(k-n) ] cos(2nfoi) sin(2mfo(k-n)) Ahpe(n)
+ E[ gq(i) gQlk-n) ] sin(2rfoi) cos(2nfo(k-n)) Ahpn(n)
+ E[ gQ(i) gq(k-n) ] sin(2rfol) sin(2mfo(k-n)) Ahp(n) }

=aA Y, {Rgli-t-n)) cos@af(i-(k-n))) Abp(n)

n=-co

+ Rgfi-(k-n)) sin(2mfo(k-n)) Ahpo(n) }

= Bp > Z { Rgl-(k-n) cos(2fo(i- -(k-n))) Ahpy(n)

+ Rg(i-(k-n)) sin(2nfo(k-n)) Ahpg(n) } | (A3.26)
8) The auto-correlétion function, Rivq(i-k), is given by
 Ripgl-b) = E[i) vo(k)]
= E[{ A{ &10)) cos@fai) - gQ() sin@mfei)} + nyy(i) }

x {aIm{c() * Ahp()] + nvo®) } ]

= E[A{ g10) cos(2nfoi) - gQ(i) sin(2ntfoi)) + nyy(i)
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x{a ¥ Im(g(k-n) exp(i2nfo(k-n)) Ahp(n)} + nvo®) } ]

nN=-c0 Lo

= E[A{ 16) cos(2nfoi) - goti) sin(2mfo)) + ny(i)

x{a 3, { gtkn) sin@nfo(k-n)) Ahpy(n) + gr(k-ny cos(2nfo(k-n)) Ahpg(n)

N=-o0

- gq(k-n) sin(2f(k-n)) Ahpo(n) + gQUk-n) cos(2mfo(k-n)) Ahpy(n) +nyg(k) } }

=aA 2, {El gi) gik-n) ] cos(2nfoi) sin(2fo(k-n)) Ahgy(n)

Ni=-oo

VX 4 ELa® mem ] cos2ut) cos(2rtolken) Algg®)
+ E[ gq() go(k-n) ] sin(2nfoi) sin(2nfo(k-n)) Ahpo(n)
- El gqli) gqfk-n) ] sin(2nfoi) cos(2mfo(ic-n) Ap(m) }

=aA Y, {-Ry(i-(k-n)) sin@nfo(i-(k-n))) Ahp(n)

+ Ryli-(crm) cos(2efo(k-n)) Abpg(®) }

#

iRy { - Ry-(k-n)) sin(2mfo(i-(k-n))) Abpy(n)

I+r
+ Ry(i-(k-n)) cos(2nfo(k-n) Ahpo(n) } (A3.27)
9) The auto-correlation function, RQQVI(i-k), is given by
Rig(ik) =ElliqG) vi(k)]

=E[{ A (gq() cos@nfoi) + g1 sin@nfei)) + nug() }
x {aRelc(k) * Ahp(K)] + nyy(k) } ]
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§

=E[A (200) cos(2nfol) + gi(i) sin@nfoi)) + nug)

x {a Z Re{g(k-n) exp(]21cfo(k-n) Ahp(@)) + i) 11

n=-co

= E[A({ gqti) cos(2mfoi) + g1(i) sin(2fod)) + an(i)

«{a 3 {er0en) cos(2ntolken) Ahgn)- gik-n) sin@nfo(k-n)) Ap(n)

) n—-oe

- gQ(k-n) cos(2mfo(k-n)) Ahpo(n)- gQ(k-n) sin(2nfo(k-n)) Ahg(n) + ny(k) } }

=aA Z { E[ go(i) gok-n) ] cos(21rf01) cos(2nfy(k-n)) AhpQ(n)

- E[ gq(i) gqQ(k-n) ] cos(2nf,i) sin(2nfy(k-n)) Ahp(n)
+ ELg1(D) gi(k-n) ] sin(2nfoi) cos(2mfo(k-n)) Ahpy(n)
-~ E[ 210) gr(k-n) ] sin(2nfo) sin(2mfo(k-n)) Ahpe(n) }

=aA Z {- RgG-(x- ) cos(2fy(i-(k-n))) Ahpo(n)

n=-o00

+ Ry(i-(k-n)) sin(2nfo(k-n)) Ahp(n) }

"fb Z { - Ryli-(kn)) cos(fyi-(k-n))) Apg(m)

+ Rg(i-(k-n)) sin(2nfo(k-n)) Ahp(n) }

= - E[81(i) voW)] o | (A3.28)
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10) The auto-correlation function, RﬁQVQ(i-k), is given by

Rigug-k) = E[”Qo) vl
- =g[{A (g cos(21tf01)+g1(1) sm(21tf01)} + nyg(i) }
x {2 Imlc(k) * Ahp(k)] + nvg) }]

=E[{ A (gq() cos(2nfod) + g16i) sin(2foi)} + nug() }

x{a 2 Im(g(k-n) exp(i2nfolk-n)) Ahp(n)} + nyo() } | :
nr-co

= E[A{ gqti) cos(2nfsi) + gi(i) sin(2&foi)} + nyo)

X { Z {gI(k-n) sin(2ntfy(k-n)) AhpI(n) + gi(k-n) cos(2rfy(k-n)) AhpQ(n)

n--“

- gQ(k-n) sin(2nfo(k-n)) Ahpg(n) + go(k-n) cos(2nfo(k-n)) Ahpy(n) + () } }

=aA Y {-El gql) gqlk-n) ] cos(2nfoi) sin(2nfo(k-n)) Ahpg(n)

N=-c0

+ E[ go() gqlk-n) ] cos(2nrfoi) cos(2rfy(k-n)) Ahp(n)
+ E[ g10) gxl-n) ] sin(2nfo)) sin(nfo(k-n)) Ahpy(n)
+ ELg1(i) gitken) ] sin(@nfoi) cos(2mfo(k-n) Ahpg(n) }

=aA Y {Rgl-(k-n)) sin(@nfo(i-(k-n))) Ahpo(n)

N=-o0

+ Ry(i-(k-n)) cos(2nfo(k-n)) Ahpy(n) }

= Ep ‘f’fmzm { Rgl-(-n)) sin@nfo(i- Gen) Ahp(n)
+ Ry(i-(k-n)) cos(2nfo(k-n)) Ahp(n) } (A3.29)
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- Each summation term in the correlation functions involVing the in-phase and/or quadrature .

components of v is in the form:,

b

Z Z {RGi-n-(k-m)) Ak, (n) A, (m) )

where R(i-n-(k-m)) = Rg(i-n-(k-m)) sin(2rfy(i-n-(k-m)))
or Rg(i-n-(k-m)) cos(2nfo(i-n-(k-m)))
Ahp, (n) = Ahp;(n) or AhpQ(n) ’
Ahp,(m) = Ahp;(m) or AhpQ(m) .

For convenience, define AHp,(eJ®) = F {Ahp, (n)} ,
AHp,(ei®) = F {Ahp,(n)} and

S(el®) =F {R(n)'}.

Let 1 =n-m, then

o0

Z > {RG-n-(k-m)) Ahp, (n) Ahm(m)}

N=-00 IMN=-c0

= Z R(i-k-1) Z Ahy, (I+m) Ahpz(m) |

m=-co

o0

=y RGik-) h()  where h(l) = z Ahp, (I+m) Ahp,(m) , and

l=-e0 m=-co

F {h(D} = [AHp,(ei®)]* AHp,(ei®)

-F1{F (3, Rk )} }

]=-00
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= F -1{S(el%) [AHp, (/)] * AHpy(ei®)} “
==L [ ¥ 5(ei®) [AHp, (ei9)]™ AHp,(ei®) ei@(-K) de (A3.30)

2n J-n

s

Similarly, each summation term in the correlation functions involving-the in-phase and/or

A .. -
quadrature components of u and v is in the form:

-

Y {RG-(k-m) Ahpym) }  where R(i{kn) = Rgli-(k-n)) sin(nfo(i-(k-n)))

n=-oo

or Rg(i-(k-n)) cos(2rfy(i-(k-n)))
Ahp, (n) = Ahp(n) or Ahpg(n) as before.

> {RG-(k-n) Ahp,(n) } =F-1{F {3 RG-Gen)) Ahp,(m)}}

= F 1{5(e0) AHp (i)}

= 2—11; j;‘ S(ei®) AHp, (ei®) @Gk dey (A3.31)

(A3.30) and (A3.31) can be Psed to derive expressions for RVIYI(i'k); BWVQ(i'k)’ RVQVQ(i-k),
R(}m(i-k), RﬁIVQ(i-k), RﬁQvI(i-k), and R{‘,QVQ(i-k) in the frequency domain.

The results are summarized as follows:

D R{)I{}I(i-vl‘c)d: fTbrAig(i-k) c‘os(21tf0(i-k))+cy§uI Sik ‘ (A3.32) |

2) RﬁIgQ(i-k):l% Rg(i-k) sinQ2nfo(i-k)) | .+ (A3.33)

3) Riglgl-k) = Riphy-k) (A3.34)
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4) Rvm(l -k) = EbRbZ Z { Rg(l -n-(k-m)) cos(27tfo(1-n-(k-m))) AhpI(n) AhpI(m)

Nn=-o0c M=-c0

+, ﬁg(x-n-(k-m)) sm(27|:f0(1-n (k- m))) Ahpég;AhpQ(m)
+ Rg(l-n-(k m)) cos(27|:fo(1 -n- (k—m))) AhpQ(n) AhpQ(m)
- Rg(i-n-(k-m)} sin(2nfo(i-n-(k-m))) Ahpe(n) Ahpy(m) }

et oﬁvl Oik
1+r EtRp {21t In §z(ej(°)"‘°°))2+ §(ei(@+0)) [AHp( ejoy]* AHPI‘( i) el 4o
P L[ sg(ej<w—wo}>2 : S0 g o)) AHpeei) L0l g
* 3 | sg(ej(m;wf?)); [AHpg(ei)]* AHpq(el"’) el (i) doy
i 21c : = (ej(m-m))z]g e o) [AHpQ(eJ'“’)] AHp;(ei®) eio(-k) do }
+6} Bk (A335)

vy

5 Ruigl) =f=ExRy 3, 3, { - Rylion-em)) sin2tofin-(om) Shpy(n) Ay (m)

n=-o0 M=o

+ Rg(x-n-(k-m)) cos(2nfo(i-n-(k-m))) AhpI(n) AhpQ(m)
- Rg(i-n-(k-m)) sin(2mfo(i-n-(k-m))) Ahpg(n) Ahpg(m)
- Ry(i-n-(k-m)) cos(2nfoi-n-(k-m))) Ahpg(n) Ahp(m) }

1 S, (ej(0~®0)y . §_(ei(0+wo) .k . .
= TFI%bR b {- 3 ;= )21 e 2 [AHp(e19)]* AHpy(ei®) oK) day
5, (ei(@-0)) 4 §_(eil@+w0) - L

1 In §,(ei(@-00)) . § (ei(c+ao

" 2n 2 [AHpQ(C-'m)] AHpq(e)?) ela(i-k) d(:?
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- Sg(ef(©-00)) + 5, (eilerwo)
e , il _ ) [AHpQ(elw)] AHp(ei®) el dm}
(A3.36)
6) Rugug(i-k) = Rypy(i-k)- | (A3.37)
‘ff_R—b

7 Roplik) =

2 { Rg(l (k) cos(2nfo(i-(k-n))) Ahpy(n)

+ Rg(i-(k-n)) sin(2nfo(k-n)) Ahgo(m) }

By Yo (L 1 7 So(el@700) + §y@raw
2n

) o
Tor 2 AHpy(el®) el0(k) doy

1 nS(eJ(“’""O))S(eJ( D atr st i
-] BT SO0 e g0 a0 (w339

‘jf’ 2 { - Rgli-tken)) sin@nfo(i-(c-n)) Ahm@)

8) ‘RﬁIVQ(i'k) =

+ Rg(i-(k-n)) cos(2ntodc-n)) Ahpo(m) }

E n Sp(el(@-00)) 4 T (ei(@+w0))
{ 2r J‘

Tor 7 AHpg(el) () du
Sy (ei(@-w0)) | (ei(+wo)y - Co .4
I L2 AHp(el9) €00 do (A3.39)
9 Rigy@k) =-Ripgil) - (A3.40)
10) Rigvqfizk) = Ripvyli-k) T - (A3.41)

191



Symmetries in the Correlation Functions of #(k) and v(k)

Since Ahp is conjugate symmetric, Ahp; has even symmetry and Ahpg has odd symmetry.

This, in addition to the fact that Ry is real and even, means that the following symmetries exist:

1) Rydy-k) = Ryl _ (A3.42)

2) Riyligli-k) = - Ralglk-D (A3.43)
3) Rigligl-k) = Rghglk-i) - (A3.44)

&) Ry = Rypyyie) | C (A349)
5)  Rupgli-k) = - Rypvglk-i) | . (A3.46)
6) Ruguqli-l) = Ruquglk) » (A3.47)
7)  Ripv(i-k) = Riypvy(k-i) o ~ (A3.48)
8) Ripgik) =- Ripgked) | - (A3.49)
9 Rigu(i-k) = - Riguy(k-D) | (A3.50)
10) Rguqi-k) = Riguglk-) . (A351)
. ) 4
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APPENDIX 4 : Derivation of Noise Variance at the Gradient Filter Ol;tput

‘The Gaussian noise at the gradient filter output can be e:éprcssed in terms of the in-phase and

quadrature components of the input noise and filter impulse response as follows:

ny(i) = Y, 'n(i-n) Ahp(n)

Nn=-oo

= X {n1(i-n)+ingG-n)} { Ahp(n)+Ahpo(n))}

&
o0

=Y {n1i-) Ahp(n) - nQ(i-n) Ahpg(m)} +j {nQ(i-n) Ahpo(m) + ny(i-n) Ahgy(n))}
| PQ PQ )

Nn=-co

(A4.1)

where n(i) is the input noise assumed to be white Gaussian.‘
The in-phase and quadrature components of ny are thus given by: “

nv(i) = 2, {niG-n) Ahp(n) - nq(i-n) AhpQ(n)} ) (A4.2)

nvo() = 3, {nQ(i-n) Ahpo(n) + ny(in) Ahpy(n)) T (A43)

n=-eo v . N

The variances of ny; and Nyq can be derived as follows:

oﬁvl = E[nyy(i)nvy(i)] .

g e

oo

- =E[ Y, {ni(i-n) Ahyy(n) - no(i-n) Ahpo(n))

oo

x 3, (ni-m) Ahpy(m) - ng-m) Ahpg(m)} ]

m=-co
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> {Elny(i-n) n(i-m)] Ahpy(n) Ahp(m)

oo
n=-c® M=-co

= +Elnq(i-n) nQ(-m)] Ahpe(n) Ahpo(m))

=2 2. {Rom(m-n) Ahp(n) Ahp(m) + Rngng(m-n) Ahpo(n) Ahpo(m)}

N=-00 [I=-c0

X | (A4.9)
Terms involving (fqu(o)nQ(-)] are omitted as they equal 0. : 4
Since samples of ny and ng are uncorrelétcd, Rppnp(m-n) = RnénQ(m-n) = {g:o : : : ‘

where N is the variance of the input noise. Su_bsﬁtuting for Ryjny(m-n) and RnQnQ(m-n) and

using Parseval's theorem gives:

A o =N Z { Ahp(n)2 +AhpQ(n)2} -

Nyl
n=-oo

= gﬂ . {1AHp(e9)12 + |AHpo (e19)2} dey © (A4.5)
T

The variance of the quadrature component of ny, oﬁvQ , can be derived in a similar fashion and -

can be shown to be equal to O'IZM .
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