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ABSTRACT 

The objective of this thesis is to give a self-contained account of some recent work in 

automata theory and complexity theory. This account will focus primarily on David A. 

Barrington's work on bounded width branching programs and the parallel complexity class 

NC'. Preliminary topics necessary for a full understanding of the new work, including 

languages, monoids, and Boolean circuits, are presented, a detailed reconstruction of the proof 

of Barrington's main result is given, and related results are discussed. 

iii 



ACKNOWLEDGEMENTS 

Many thanks to Dr. Norman Reilly for being my senior supervisor, and for suggesting 

a thesis topic which couldn't have been more to my liking. Thanks to my committee members 

for their helpful comments. Thanks to Sylvia for doing everything which didn't absolutely 

have to be done by me. Thanks to Professors T. Evans and M. Neff of Emory University for 

helpful courses and/or seminars while I was away from SFU. Finally, thanks to ".ANNn and 

thanks and all my love to Luca. 



TABLE OF CONTENTS 

Introduction 

Chapter I Preliminaries 

5 1.1 Algebraic and Linguistic Preliminaries 

5 1.2 Decidability, Computability, and Complexity 

Chapter II Non- Uniform Models of Computation 

!j 2.1 The Boolean Circuit Family Model of Computation 

5 2.2 Bounded Width Branching Programs 

3 2.3 Programs for a NUDFA over a Finite Monoid 

Chapter 111 Non- Uniform Models of Computation and ~6 

5 3.1 Uniform Boolean Circuit Families and the Complexity Class NC 

3 3.2 Barrington's Branching Programs and RWBP 

f 3.3 Branching Programs and Programs for a NUDFA over a Finite Monoid 

5 3.4 Bounded Width Branching Programs and NC' 

Conclusion 

References 



1 

Introduction 

The objective of this thesis is to give a self-contained account of some recent work in 

automata theory and complexity theory. The primary focus is the work of David A. 

Barrington on bounded width branching programs and the complexity class NC'. A detailed 

reconstruction of his main result is given, and related results are also discussed. 

Chapter I is divided into two sections. In the first section, we set up some notation, and 

recall some fundamental definitions and results concerning semigroups and languages, which 

will be used in the sequel. In the second section, we recall the definitions of a computable 

function and a recognizable language, and present an informal discussion of some ideas in 

complexity theory, to provide a context for later material. 

Chapter I1 is devoted to a study of three non-uniform models of computation. In the 

first section we discuss the Boolean circuit family as a model of computation. In the second 

section, we discuss the family of branching programs as a model for language recognition, and 

define a complexity class, BWBP, of languages based on the model. In the final section of 

the chapter, we discuss the family of programs for a non-uniform deterministic finite 

automaton (NUDFA) as .a  model for language recognition, and define a complexity class, 

PLP, of languages based on the model. We show that PLP contains the regular languages. 

In Chapter 111, we establish numerous connections between the computational models 

discussed in Chapter .II. In the first section we discuss the concept of uniformitv which 

provides a "bridgen between non-uniform models of computation, such as those studied in 

Chapter Two, and uniform models of computation, such as the Turing machine. We then 

define the parallel complexity class NC' in terms of Boolean circuit families. 

In section two, we present David A. Barrington's version of the branching program 

model, and show that, given a certain choice of definition for the language recognized by one of 

Barrington's branching programs, the complexity class CWBP of languages defined in terms 

of his modified branching program model is the same as the complexity class BWBP of 

languages defined in terms of the branching program model discussed in Chapter 11. 

In section three, we show that, given a different choice of definition for the language 

recognized by one of Barrington's branching programs, the complexity class CWBP of 

languages defined in terms of his branching program model is the same as the complexity class 

PLP of languages defined in terms of programs for a NUDFA over a finite monoid, as 

discussed in Chapter 11. 
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In the fourth and final section, we present a detailed reconstruction of the proof of 

Barrington's main result that the complexity class BWBP of languages is exactly (non- 

uniform) NC'. 

We conclude with a discussion of some of the consequences of Barrington's result, make 

some further observations, and briefly summarize some further developments in this area. 
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Chapter I Preliminaries 

In this chapter we briefly review some basic definitions and fundamental results in the 

theories of semigroups, languages, decidability, computability, and complexity, from which the 

work we will later examine in detail, evolved. 

5 1.1 Algebraic and Linguistic Preliminaries 

We assume a knowledge of the definitions of and basic results about groups (see, e.g., 

[14]), semigroups, and monoids (see, e.g., [18]), and a familiarity with homomorphisms and 

congruences on these algebras. We also assume some knowledge of automata theory, including 

finite state machines and regular languages ([13]). 

Definition 1.1.1. Let w E z+. The set 1 2 ,  w is denoted [w]. The 

transformation monoid, or the monoid of all functions from [w] to [w], is denoted M m .  A 

subsemigroup of a transformation monoid is called a transformation semiarouv. The 

svmmetric m, or the group of all permutations of [w], is denoted Sw.  We write g o f to 

denote the composition of f and g, where (g o f)(x) = g(f(x)). 

Proaosiiion 1.1.2. Every semigroup is isomorphic to  a transformation semigroup. In 

particular, if M is a finite monoid of cardinality w, denoted c(M) = w, then M is 

isomorphic to  a submonoid of Mw. 

The following definitions and results may be found in Eilenberg ([13], vol. A). 

Definition 1.1.3. Let n E Z+, and let C = {al,a2,. . .,a,}. Then C is called an 

a l~habet ,  each ai is called a letter, and u = ailoi2...uik, where each ai E C, is called a 
j 

word over the a l~habet  C of length k, denoted I u I = k. For each n E M, we write Cn --- 
to denote the set of all words over C of length n. The unique word over C of length 0 is 

denoted c .  C* denotes the set of all words over the alvhabet C, which is, together with the 

operation of concatenation, the free monoid generated bv the set C. 

Definition 1.1.4. Let C be a finite alphabet. A subset L 2 C* is called a language 

over C. 

Although there are other characterizations for it, and a great deal is known about the 

class of regular languages (see [13], [19]), the following is sufficient for our purposes. 

Definition 1.1.5. Let C be a finite alphabet. A language L 2 C* is said to be 

regular if there is a finite monoid M, a subset B of M, and a homomorphism 

q5 : C* + M such that L = $-'(B). 
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Proposition 1.1.6. Let C and I? be finite alphabets, let L be a regular language over 

C and let 4 : C* - I'* be a homomorphism such that $ - I ( & )  = E .  Then $ ( L )  is a 

regular language over r. 

Definition 1.1.7. Let C and J? be finite alphabets, and let f be an injective function 

from C* to I?*. The function f is said to be a coding. For each u E C*, the element 

f(u) E r* is called the encoding of u, and u is called the decoding of the element 

f(u) E r*. 

3 1.2 Decidability, Computability, and Complexity 

In this section we recall the definitions of a computable function and a recognizable 

language, and briefly and informally discuss some ideas in complexity theory. Knowledge of 

the definition of, and basic facts about the Turing machine is assumed (see [17]). 

Definition 1.2.1. Let C and I? be finite alphabets. A function f : C* -, r* is said 

to be com~utable if there is a Turing machine which, for each input u E C*, will halt and 

output f(u). A partial function f : C* 4 I'* is said to be computable if there is a Turing 

machine which will, for each u E C* such that f(u) is defined, halt and output f(u). 

Definition 1.2.2. Let C be a finite alphabet. A language L 2 C* is said to be 

recursive, or recognizable if there is a Turing machine, whose states are partitioned into 

"accepting" and "rejecting" states, which halts on every input word u E C*, and which halts 

in an 'accepting" state if and only if u E L. A language L C C* is said to be recufsivelv 

enumerable if there is a Turing machine which will halt in an accepting state for each 

u E C*, and which either halts in a rejecting state or does not halt if u @ L. 

We recall that we may, without loss of generality, restrict our attention to functions on 

{0,1)* and languages over {0,1), since every finite alphabet C can be encoded into words 

over {0,1) in such a way that a language over C is recognizable if and only if the encoded 

language over {0,1) is recognizable. There is an analogous result for functions f : C* -, I?* 

(see [17]). 

Once it had been established just what it means for a problem to be solvable, it seems 

natural to ask, of a solvable problem, 'how hard is it to solve?," or, "how much time and/or 

space is required for its solution?" These are some of the questions which concern complexity 

theorists (see [12]). Given a model of computation, such as the Turing machine, we first define 

the "resources" of the model. The "resources" of a Turing machine include time and space. 

Once a Turing machine has been constructed which computes a particular function, the time 
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the Turing machine takes to compute the function is an upper bound on the time complexity 

of the function, the space required to compute the function is an upper bound on the space 

complexity of the function, and the time and space required to compute the function is an 

upper bound on the simultaneous time and space complexity of the function. If a Turing 

machine has been constructed which takes time T to compute a function f, and it is proven 

that f cannot be computed by any Turing machine, in less time than T,  then the function is 

said to have time complexitv T. The s~ace complexity and simultaneous time and space 

com~lexity of the function f are defined in an analogous manner. 

Anyone who has ever attempted to construct a Turing machine which computes even a 

very simple function can appreciate how difficult it must be to prove that one has constructed 

an "optimal" Turing machine to compute a function. Complexity theorists look to other 

computational models for which it may be easier to prove "lower bounds" on the complexity of 

functions, which can then be translated into lower bounds on the complexity of the functions 

as based on the standard Turing machine model ([16]). In the next chapter we will study 

several computational models now under consideration in this context (see, e.g., [lo], [16], [24], 

P51)- 
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Chapier 11 Non- Uniform Models of Computation 

In this chapter, we study three different non-uniform models of computation. These 

models are called non-uniform because, in contrast to more familiar models of computation, 

such as the Turing machine, where one Turing machine works on input words of arbitrary 

length, these models consist of families of "components", one component for each input length, 

which processes input words of one length only. Because of their "non-uniformity", it is 

difficult to see how these models compare with models such as the Turing machine (see [20]). 

This "difficulty" will be addressed in Chapter three. 

In section one, we look at  Boolean circuit families. In section two, we look at  families of 

branching programs. In the third and final section of this chapter we study families of 

programs for a non-uniform deterministic finite automaton over a finite monoid. 

2.1 The Boolean Circuit Family Model of Computation 

We begin the section with a discussion of Boolean circuits, the components of the 

computational model by which the parallel complexity classes NC, N C ~ ,  and A C ~  will 

eventually be defined. A Boolean function is a function from {0,1}" to { O , l  where 

n E Z+. Let Q = {A, V, 1) be the set of Boolean functions defined by the table below. 

We review some facts concerning Boolean functions and Boolean formulas, all of which 

can be found in, e.g., [26] or [23]. 

Definition 2.1.1. ' Let X = {xl,x2,. . .,xn,. . .) be a set whose elements are called 

variables. A Boolean formula is defined inductively as follows: 

( i )  xi is a Boolean formula for all j E z'. 
(ii) If CY 2nJ p - zP  %olean fnrml1las, then ( a  A P), (a v P), and ( l a )  are 

Boolean formulas. 

n Since the functions A (and) and v (or) are associative, we will often write A xi to 
i=l 

denote the Boolean formula ((. . .((xl A x2) A x3) A..  .) A x*), and the case v will be handled 

similarly. Let n E Z+, and let P(xl,xz,. . .,xn) be a Boolean formula containing the variables 
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{x1,x2,.. .,xn). The Boolean formula P defines a (Boolean) function from {0,1)" t o  {0,1) 

in the following way. For each a = ala2.. .an E {O,l)", the value P(a) is obtained by 

replacing for each i E {1,2, ..., n) every occurrence of the variable xi in P with ai, and 

evaluating the resulting expression according to the rules for A, v, and 1, given in the table 

above. 

Lemma 2.1.2 [26]. Let n E Z+, and let f :  {0,1)" -+ {0,1) be a Boolean function. -- 
Then there is a Boolean formula P(xl,x2,., .,xn) such that Aa) = P(a) for all a E (0,l)". 

Proof. Let a1,a2 ,..., ak E {O,l)" be such that f(a) = 1 if and only if a E {a1,a2 ,..., ak), 
i j i  i where 1 5 k 5 2". For each j E {1,2,. . .,k), a = ala 2...an, let Pj(xl,x2,. . .,xn) be the 

Boolean formula 2 y, where y, = x, i if a, = 1, and y, = (12,) if a); = 0. Let 
r=l 

P(x1,x2,. . ., xn) be the Boolean formula Pi (xl,x2,. . .,tn). Then for b E {0,1)", P(b) = 1 if 
t = l  

and only if for some t E {1,2,. . .k), P,(b) = 1, that is, if and only if for all r E {1,2,. . .,n), 

y,(b) = 1. By definition of Pi, yr = x, if at = 1, and yr = ( T X ~ )  if a t  = 0, SO that 

yr(b) = 1 if and only if br = at .  Therefore, P,(b) = 1 if and only if br = aF for all 

r E {1,2,. . .,n), if and only if b = at, and P(b) = 1 if and only if b E {a1,a2,. . .,ak), that 

is, if and only if f(b) = 1. Therefore, P is the desired Boolean formula. Cl 

Let m, n E z', and let f be a function from {0,1)" to {O, l )m.  For each 

i E {1,2, ..., m), we define'a Boolean function fi : {0,1)" -+ {0,1) by fi(a) = (f(a))i, the 

i-th letter of f(a), for all a E {0,1)". Then, for all a E {0,1)", f(a) = fl(a)f2(a)-..fm(a). 

This observation and Lemma 2.1.2 give us the next corollary. 

CoroNary 2.1.3. Let m, n E z', and let f be a function from { O , l ) n  to {O, l )m.  

Then there are Boolean formulas P1(x1,x2,. . .,xn), P2(x1,x2,. . .,xn), . . ., P ~ ( x ~ , x ~ , .  . .,xn) such 

ihat for all a E {0,1)", Aa) = /31(a)/32(a)-.-pm(a). 

Proof. Direct application of Lemma 2.1.2 to the m functions fi defined as in the discussion 

above. 0 

Definition 2.1.4. Let l? = (0, 1, A, v, -I), where 0 and 1 are the constant Boolean 

functions, with values 0 and 1 respectively, and A, v, and 1 are as defined in the table. 

An extended Boolean formula is defined inductively as follows: 

(;) !, ? -rd. * art. ~vtonded Boolean formulas for all j E Z+. I 

( i i )  If a and p are extended Boolean formulas, then (a! A P), (a! v P), and 

( l a )  are extended Boolean formulas. 

Definition 2.1.5. An acvclic, directed a r a ~ h  is a set of nodes together with a set of arcs, 
each arc connecting two nodes which satisfies the following: 
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( 2 )  each arc is an arrow directed from one node into another; and 

( i i )  each arc connects two distinct nodes, and any path traced along the arcs 

following the direction of the arrows through the nodes will pass through a node of 

the graph a t  most once. 

Definition 2.1.6. The indearee of a node in a directed graph is the number of arcs 

directed into the node. The outdegree of a node in a directed graph is the number of arcs 

directed out of the node. A node with indegree zero is called a source, and a node with 

outdegree zero is called a sink. 

Definition 2.1.7 (see [16], [Ill). A Boolean circuit on n variables is a finite, nonempty, 

acyclic, directed graph with nodes called & and arcs called edges which satisfies the 

following. 

( a )  There are k 2 n sources. For each i, 1 5 i < n, there is a source labelled 

by the variable xi .  Other sources, if any, carry one of the labels 0 and 1. The n 

sources which carry the variables xi as labels are called i n ~ u t  gates. 

( i i )  There are m sinks called o u t ~ u t  gates, and for each j, 1 < j 5 m, there is 

an output gate labeled by the variable yj. 

(iii) All gates of indegree 1 carry the label -I. 
( i v )  All other gates are of indegree greater than or equal to two, and each of these 

gates carries one of the labels A, v. 

Definition 2.1.8. The of a Boolean circuit is the number of gates in the circuit. The 

d e ~ t h  of a Boolean circuit is the length of the longest path (i.e., greatest number of consecutive 

edges) from an input gate of the circuit to an output gate of the circuit. The indegree of the 

gate of largest indegree is the fan-in of the Boolean circuit. 

Examvle 2.1.9. Consider the Boolean circuit below, where by convention all edges are 

directed down. 
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This Boolean circuit has 8 sources, 6 input gates, and 7 sinks or output gates. Its 

size is 16, its depth is 3, and it has fan-in 3. 

We now describe how a Boolean circuit B with n input gates and m output gates 

computes a function from {O,lIn to { O , l ) m ,  where m, n E z+. 

Definition 2.1.10. Let C be a Boolean circuit, and let g be a gate in C. The rank of 

g is the length of the longest path from a source in C to g. Sources have rank 0. 

Definition 2.1.11. Let C be a Boolean circuit with n input gates. Let 

a = ala2;-.an E {0,1)". For each gate g in C, the value va(g) of the gate g on i n ~ u t  a 

is defined inductively as follows: 

(i) If g has rank 0, then vn(g) = ai if the label of g is xi, va(g) = 1 if the label 

of g is 1 and va(g) = 0 if the label of g is 0. 

(ii) If g has rank k and va(h) has been defined for each gate h in C of smaller 

rank, then if the label of g is V and hl, h2, ..., h, are gates from which there are 

edges entering g, then va(g) = va(hl) V va(h2) V V va(ht). Similarly, if the 

label of g is A ,  then va(g) = va(hl) A va(h2) A ... A va(ht). If the label of g is 

1, then va(g) = -wa(hl). 

Definition 2.1.12. Let C be af Boolean circuit with n input gates and m output 

gates ol, 02, ..., om. Let f : { O n  { 0 , l m  be the function defined by 

f(a) '= va(ol)va(02).-.va(om). We call f the function com~uted the Boolean circuit C. 

The value of the function computed by C on input a is denoted C(a). 

Note: If rn = 1, then the set {u E {O, l )*  : B(u) = 1) is called the language - 
recoenized B. Also, we will omit the labels yi on output gates whenever we have 

constructed a circuit for which a description such as "the Cth output gate from the leftn makes 

sense. In such a case, "the i-th output gate from the leftn, is understood to be the output gate 

labelled yi. All edges are directed downward. 

If B is a Boolean circuit with n input gates and one output gate, then B computes a 

Boolean function. So by Lemma 2.1.2, there is a Boolean formula which corresponds to the 

Boolean function computed by the circuit B. If the circuit B has more than one output gate, 
' 

then for each output gate Gi (labelled yi) of B, consider the subcircuit of B consisting of 

Gi and all gates "above" it which lie along some path starting at  Gi and traced backward 

along the edges of B. This subcircuit of B has j 5 n input gates and one output gate Gi, 

and therefore computes a Boolean function. Again by Lemma 2.1.2, there is an extended 

Boolean formula which corresponds to the Boolean function computed by the subcircuit of B 
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with output gate Gi.  It follows from Corollary 2.1.3 that for each Boolean circuit B with n 

input gates and m output gates, there is a sequence of m extended Boolean formulas which 

corresponds to the function from {0,1)" to {O, l )m computed by the Boolean circuit B. We 

now provide an example to illustrate this verbal description of a method ([23], [26]) to obtain 

extended Boolean formulas which correspond to a given Boolean circuit. 

Examole 2.1.13. We first assign a number to each gate of the circuit of Example 2.1.9 

which is not an output gate. 

Then, yl = xl, y2 = (76) = ( ~ ( 1 ~ 2 ) )  = (l(X2vt4)), y3 = 23, = 0, 

y7 = ( 3 ~ 5 )  = (x5v1), Y4 = ( 6 ~ 2 ~ 7 )  = ( ( x ~ v x ~ ) ) A x ~ A ( x ~ A ~ )  = ( ( x ~ v x ~ ) ) A x ~ A ( z ~ A x ~ ) ,  and 

Y5 = (19) = ( ~ ( 7 ~ 8 ) )  = ( ~ ( ( x ~ A x ~ ) v ( ~ ~ ) ) )  = ( ~ ( ( x ~ A x ~ ) v ( ~ x ~ ) ) ) .  Let Pi = yj for 

1 5 i 5 7. Then PI, P2, P3, P4, P5, P6, P7 is the desired sequence of extended Boolean 

formulas corresponding to the given Boolean circuit. 

Example 2.1.14. From the above, we see that the Boolean circuit of Example 2.1.9 

computes the function f : { 0 1 6  {0,17 defined by f(a) = Pl(a)P2(a)...P7(a) for all 

a E (0,l)". 

Conversely, given a sequence of extended Boolean formulas PI, Pa, . . ., P m ,  containing 

variables among {xl,x2,.,.,x}, we would like to be able to construct the corresponding 

Boolean circuit. Let j E {1,2,. . .,m). If the Boolean formula P j  does not contain an element 

of R, then p j  = 0, or Pi = 1 or P j  = xkl for some k E {1,2, ..., n). Then the Boolean 

circuit corresponding to P j  would be 

1-1 , 1 or -1 , respectively. Assume that for some 1 2 0, if P j  
~mt?,!?: 1 or fewer elements of R, then we can construct a Boolean circuit which corresponds 

to the formula pi. Suppose P j  contains 1 + 1 elements of R. Then P j  = ( a l  A a2 ) ,  or 

P = ( a l  v a2) ,  or Pi = ( l a1 ) ,  where al and a2 are Boolean formulas containing 1 or 

fewer elements of R. Since a1 and a2 contain 1 or fewer elements of R, we "have" 

corresponding Boolean circuits A' and A2. The Boolean circuit C j  corresponding to the 



Boolean formula P j  would then be 

, o; , respectively. 

A, Y j  "7 Y j  -1 Y j  

Thus, by induction on the number of elements of R contained in an extended Boolean 

formula, we can construct the corresponding Boolean circuit, so that for each j E {1,2,. . .,m), 

we have a Boolean circuit C j  which corresponds to the Boolean formula Pj. Rather than 

duplicating them, we let the Boolean circuits C1, C2, ..., Cm "share" input gates in the 

obvious way, and we obtain the Boolean circuit C which corresponds to the given sequence 

Pl, P2, . . ., P m  of Boolean formulas containing the variables {xl,x2,. . ., ~ n ) ,  as shown below. 

Of course, for each j, k E {1,2, ..., m) such that C j  is the circuit x,, yj , and the 0 
variable x, appears in the Boolean formula Pk, we let C j  be as the circuit shown below, so 

that Ck can "share" the input gate labelled z,. 

Thus, any function f : {O, l )n  + {O,l}m, where m, n E N, can be computed by a 

Boolean circuit. We now look at  some specific functions on {O,l}n and the Boolean circuits 

which compute them, paying particular attention to the size and depth of these circuits. 

Lemma 2.1.15. Let n > 2. Then there is  a fan-in 2 Boolean circuit Cn of depth -- 
rlog2n] and size 2n - 1 which compuies the fznction 9 xk : {0,1)"--, {0,1). 

k = l  

Proof. We proceed by induction on n. Let C2 be the fan-in 2 Boolean circuit shown 

below. 
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The circuit C2 computes xl v x2, has size 3, which equals 2(2) - 1 = 2n - 1, 

and has depth [log221 = rlog2nl = 1, so the lemma holds for n = 2. Assume that for some 

k 1 2, n <_ k implies that there is a fan-in 2 Boolean circuit of size 2n - 1 and depth 
n 

rlog2n] which computes the function V xj. Let r = [log2(k + I)]. I t  is immediate that 
j=1 

2'-' - < k. This and the fact that k + 1 <_ 2' imply that both 2'-l and k + 1 - 2'-' are 

less than or equal to k. By the induction hypothesis, there is a fan-in 2 Boolean circuit A 

of size 2 ( 2 )  - 1 = 2 - 1 and depth rlog2(2'-')I = r - 1 which computes the 
r-1 

function 2,v xj, and there is a fan-in 2 Boolean circuit B of size 2(t) - 1 and depth 
]=I k+l 

rlog2t], where t = (k + 1 - 2'-I), which computes the function V xj. Let Ck+, be 
j=zr-'+1 

the fan-in 2 Boolean circuit shown below. 

The circuit Ck+l computes A(xl,x2,. . ., x,) v B(x:,+' ,x,+~ ,. . ., xk+J, where 
k+1 

m = 2'-', which is equal to ( )  V ( +  = jYlxj. The circuit + has 

size 1 + (2' - 1) + (2t) - 1 = (2' - 1) + 2(k + 1 - 2'-') = 2(k + 1) - 1. The circuit 

Ck+l has depth 1 plus the maximum of the depths of A and B, which implies that Cktl 

has depth 1 + r - I = r = pog2(k += I)]. Therefore, the lemma holds for all n 2 2. 

Corollarv 2.1.16. For all n 2 2, there i s  a fan-in 2 Boolean circuit of size 2n - 1 

and depth rlog2n] which computes ihe function xk. k = l  

Lemma 2.1.17. Let n E 7'. Then dhere is a fan-in 2 Boolean circuit C of size 

8n - 1 and depth [log2n1 + 3 such that for all u, v E {O,lIn, q u v )  = 1 if and only if 

u = v.  

Proof. Let u, v E {0,1)", where n E z+. Then u = u ~ u ~ " . u ~  = v ~ v ~ . " v ~  = v if and 

only if ui = vi for all i E {1,2,. . .,n}. Let i E {1,2,. . .,n}. Consider the Boolean formula 

~ i (x i , xn+ i )  = ((-3) v x,+~) A (xi v ( - Ix ,+~))  = xi - x ~ + ~ .  For u, v E {0,1)", pi is such 

that Pi(ui, vi) = 1 if and only if ( ( 1 ~ ~ )  v vi) A (ui v ( 1 ~ ~ ) )  = 1, that is, if and only if 

( ( i u i )  v vi) = 1 and (ui v (7vi)) = 1. If ui = 0 and (ui v ( 7 ~ ~ ) )  = 1, then vi = 0. If 

* ui = 1 and ( ( l u i )  v vi) = 1, then vi = 1. Therefore, Pi(ui, vi) = 1 implies that 

ui = vi. Clearly u = v implies that Pi(ui, vi) = 1, so we have that Pi(ui,  vi) = 1 if 
n 

and only if ui = vi. Let P(xl,x2.. .xzn) be the Boolean formula A Pi. Then ~ ( u v )  = 1 if 
j=1 

and only if Pj(uj,  vj) = 1 for all j E 1 2  . n }  if and only if u j  = v j  for all 

j E {1,2 ,..., n), if and only if u = v. 



For each j E {1,2,. , .,n) let C j  be the Boolean circuit shown below. 

Clearly, C j  is the Boolean circuit which corresponds to the Boolean formula 

/3j(xj,xn+j). Let A be the Boolean circuit C j  excluding input gates, and let C be the 

Boolean circuit below. 

The intention is, of course, that each pair of input gates labeled xj and xn+ be input 

gates for the "partialn circuit A, and that the output gates of the n copies of A be 

connected by "andn gates. The fan-in 2 Boolean circuit C computes the function from 

{0,1}~" to (0,l) which corresponds to the Boolean formula ./I /3j(xjlxn+j). Therefore, for 

all uv in {0 ,1}~~,  C(uv) = 1 if and only if Pj(uj, vj) = 1 for all j 1 2  . n }  that is, 

if and only if u = v. The Boolean circuit C j  has depth 3, so by Corollary 2.1.16, C has 

depth rlog2nl + 3. C j  has size 7 ,  so again by Corollary 2.1.16, C has size 

7 n  + ( n  - 1) = 8n - 1. Therefore, C is the desired Boolean circuit. 

Corollaru 2.1.18. Let n E z', and let S be a nonempty subset of {O,l}n, where S 

has cardinality s. Then there is a fan-in 2 Boolean circuit C of size 7sn + n - 1 and 

depth [logznl + rlog2s1 + 3 such that for all u in {O,lIn, C(u) = 1 if and only if 

u E S. 

PTDOf. Let S = (u1,u2,...,ua}, u j  = ului---u!. Let E denote the circuit of Lemma 2.1.17, 
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excluding input gates. Consider the fan-in 2 Boolean circuit C shown 

below. 

The intention is, of course, that for each j E 1 2  s }  the input gates and the 

sources corresponding to the element u j  E S be "input gates" for the "partial circuitn E, 
and that the output gates of the s copies of E be connected by "orn gates. By Lemmas 

2.1.15 and 2.1.17, C has depth rlog2sl + 3 + rlog,nl and size 

s(8n - 1) - (s - 1)n + s - 1 = 7sn + n - 1. Let u E {0,1}". It is clear that C(u) = 1 

if and only if ~ ( u u ~ )  = 1 for some uk E S, if and only if by Lemma 2.1.17, u = uk for 

some uk E S; that is, if and only if u E S. Therefore, C is the desired Boolean circuit. 0 

We would like to show next that the "problem" of multiplication in a finite 

transformation monoid Mw can be "solvedn by Boolean circuits. Of course, the first thing we 

need is a way of representing an element of M w  as a word over the alphabet {0,1}. 

Definition 2.1.19 ([3]). Let w E a+, and let f be a function from [w] to [w]. The 

Boolean remesentation T of the function f is the word 

( 1 w2 T = (aij)y=l y'l E {0,1} , 
where a i j  = 1 if f(i) = j ,  and otherwise a i j  = 0. We often write (aij) to simplify 

notation. 

Lemma 2.1.20. Let w E Z+, and let f and g be functions from [w] to .[w], and -- 
- 

, let f = (aij) and ij = (bij) be their Boolean representations. We define i j  o 7 to be the 
w - 

word (cij), where for each pair i, j E [w], ci = V (aik A bk j). Then i j  o f = g o f .  
k = l  

Proof. Note that ci j  = 1 if and only if for some k E [w], aik A bkj = 1; that is, if 

and only if for some k E [w], aik = bkj = 1. Since T and g are the Boolean 

representations of the functions f and g, this is the case if and only if f(i) = k and 



g(k) = j; that is, if and only if g(f(i)) = (g o f)(i) = j. Therefore, (cij) = 1 if and only if 

(g o  f)(i) = j, which implies that (cij) is the Boolean representation of g o f ,  and that 

g o b g o  

Lemma 2.1.21. Let w E E'. There is a fan-in 2 Boolean circuit of depth -- 
rlog2wl + 1 and size 2w3 + w2, which, given input 5, where ij are the Boolean 

representations of functions f, g : [w] -, [w], will output 3. 
Proof. We obtain the desired fan-in 2 Boolean circuit C as follows. First we need a row of 

2w2 input gates. The first w2 input gates are labelled by the variables xij in the order 

( ( x ~ ~ ) ~ . ~ ) ~ ! . ~ ,  and the other w2 input gates are labelled by the variables yij, in the same. 

order. Let i, j E [w]. For each k E w, we connect the w pairs of input gates labelled by 

the variables xik and ykj by an "A" gate. We then connect these w "A" gates by "vn 

gates. By Lemma 2.1.15, this can be done using w - 1 fan-in 2 "v" gates in depth 

rlog2wl. It is clear from Lemma 2.1.20, that the partial circuit we have thus far constructed 

is the fan-in 2 Boolean circuit of size 2w2 + 2w - 1 and depth rlog2wl + 1 which 

corresponds to the Boolean formula which defines cij. Therefore, this partial circuit outputs 

(gof)ij on input @, where T and g are the Boolean representations of functions 

f, g : [w] -t [w]. We complete the circuit by following this construction for the rest of the pairs 

i, j E [w], being careful that the ij-th output gate is the output gate of the partial circuit 

which computes ( g o i  We obtain the fan-in 2 Boolean circuit C below, where the 

intention is of course that the circuit contains w2 - 1 additional copies of the partial circuit 

which corresponds to ( g o i j .  

By Lemma 2.1.20, C computes 3 on input @ where ? and g are the Boolean 

representations of f, g : [w] -+ [w]. C is a fan-in 2 Boolean circuit of size 

2w2 + w2(2w - 1) = 2w3 + w2, and depth rlog2wl + 1. Therefore, C is the desired 

Boolean circuit. 



We say that the Boolean circuit C in Lemma 2.1.21 computes the product of 2 

elements of the monoid Mw. 

Lemma 2.1.22. Let w E z+. For each k 2 2, there is a fan-in 2 Boolean circuit of -- 
size (k - l)2w3 + w2 and depth rlog2k1(rlog2w1 + 1) which computes the product of k 

elements of the monoid Mw. 

Proof. Multiplication in the monoid Mw is associative, so the order in which the 

compositions are computed does not matter. We proceed by induction on k. The case n = 2 

is Lemma 2.1.21. Assume that for some n 2 2, 2 5 k < n implies that there is a fan-in 2 

Boolean circuit which computes the product of k elements of Mw of the right size and depth. 

Let k = n + 1. As in Lemma 2.1.15, if r = rlog2(n + 1)1, both 2'-' and n + 1 - 2'-' 

are less than or equal to n. By the induction hypothesis, there is a fan-in 2 Boolean circuit 

A of size (2'-' - 1)2w3 + w2 and depth ( r  - l ) ( l o g 2 w  + 1 which computes the 

product of 2'-I elements of M w .  Also by the induction hypothesis, since n + 1 < 2', there 

is a fan-in 2 Boolean circuit B of size (n - 2'-')2w3 + w2 and depth t, where t is at  

most the depth of A, which computes the product of n + 1 - 2'-' elements of the monoid 

Mw. Using the output gates of the circuits A and B as input gates for the circuit D of 

Lemma 2.1.21, we obtain the fan-in 2 Boolean circuit C of size equal to the sum of the 

sizes of the circuits A, B, and Dl less the 2w2 gates which are both output gates for A or 

B,* and input gates for D, and depth equal to the maximum of the depths of A and B, 

plus the depth of the circuit D, shown below. 

B has depth less than or equal to the depth of A, and by Lemma 2.1.21 the circuit 

D has depth [log2w1 + 1, SO ( r  - l)(rlog2w1 + 1) + rlog2w1 + 1 = 7(rlog2w1 + 1) is 

the depth of C. Therefore, C has depth rlog2(n + l)l(rlog2w1 + 1). Since A has size 

(2'-' - l)2w3 + w2, B has size (n - 2'-')2w3 + w2, and D has size 2w3 + w2, the 

circuit C has size (n)2w3 + w2. Thus C is a fan-in 2 Boolean circuit of the right size and 

, depth, which clearly computes the product of n + 1 elements of the monoid Mw. 

Lemma 2.1.23. Let w E Z+ and let j, g E Mw be such that for some i ,  fii) = j -- 
and g(i) = k, where j # k, and for  m # i, flm) = g(m). Then there is a fan-in 2 

Boolean circuit of size w2 + 4 and depth 2 which will output f on input 1, and will ' 

output ?j on input 0. 
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Proof. Without loss of generality, j < k. By definition of their Boolean representations, 

g = a l l - -+a i  j-lOai j+l---aik-llaik+l. ..aww. 

Consider the fan-in 2 Boolean circuit C shown below. 

C is a fan-in 2 Boolean circuit of size w2 + 4 and depth 2. On input 1, C 
- 

outputs C(l)  = all. .  .aij-llaij+l.-.aik-lOaik+l.-,aww = f ,  and on input 0, C outputs 

- 0 C(0) = all...aij-lOai j+l-.-aik-llaik+l-.-aww = g. 

Corollary 2.1.24. Let w E z+. For any f, g E Mw, there is a fan-in 2 Boolean 

circuit of size at most w2 + 3w + 1 and depth 2 which outputs 7 on inpet 1 ,  and 

outputs 3 on input 0. 

Proof. By definition of the Boolean representations f and g, there are at  most w pairs j, 

k E [w], j < k, such that a i j  # bi j  and aik # bik, where f = (a,,), and g = (b,,) r ,  

t E [w]. Using Lemma 2.1.23 in the obvious way, we construct a fan-in 2 Boolean circuit of 

depth 2 and size at  most w2 + 3w + 1 which outputs ? on input 1, and outputs g on 

input 0. 0 

Now that we have a sufficient understanding of Boolean circuits, we are in a position to 

show how a family of Boolean circuits constitutes a model of computation, which entails 

showing how such a family can be said to "compute a function," and how such a family can be 

said to "recognize a language." Prior to doing so we will make some observations about them. 

Recalling how a Boolean circuit computes a function, it makes sense to think of the 

depth of the circuit as being the time required by the circuit to compute the function. 

Additionally, we note that in general, in the course of a computation performed by a Boolean 

circuit, several "operations" are performed simultaneously. This being the case, the Boolean 

circuit is said to compute tne Iunction I "in parallel." So-called parallel models of 

computation, those which make use of many "processorsn to perform different parts of a 

computation simultaneously, are the subject of much current research ([Ill). One obvious 

motivation for the interest in such models is that there are many computational problems such 

that the time required for their solution could be drastically reduced should a "parallel 
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computer" be available. The Boolean circuit family, as defined below, is one such parallel 

model of computation. 

Definiton 2.1.25 ([Ill). Let C = (Cn)TZo be a family of Boolean circuits such that for 

each n E N, the Boolean circuit Cn has n input gates. Then the function c o m ~ u t e d  & C 

is the function C : {0,1)* --, {O,l)* defined by C(w) = Ck(w), where k is the length of w. 

A function f : {0,1)* -+ {0,1)* is said to be com~utable  & a Boolean circuit family if there is 

a Boolean circuit family C = (Cn)rZo such that for each n E N, the Boolean circuit Cn 

has n input gates, and is such that for all w E {0,1)", C ~ ( W )  = f(w). 

Definition 2.1.26 ([16]). Let C = (Cn);=o be a family of Boolean circuits such that 

for each n E N, the Boolean circuit Cn has n input gates and one output gate. Then the 

lanauaae recognized C is the language L C { O , l ) *  defined by 

L = {w E {0,1)* : C(w) = 1). A language L c {0,1)* is said to be recognizable 5 

Boolean circuit family if there is a Boolean circuit family C = (Cn)SP,O such that for each 

n E N, the Boolean circuit Cn has n input gates and one output gate, and is such that 

{w E (0,l)" : C ~ ( W )  = 1) = L n {0,1)". 

Given Definitions 2.1.25 and 2.1.26, we notice.that a Boolean circuit family computes 

a function f : {0,1)* -+ {0,1)* if and only if for each n in N, there exists a k E Z+ such 

that f(w) E {0,1)~ for all w E {0,1)", and that as it stands, every language over {0,1) is 

recognizable by a Boolean circuit family ([20])! However, we are,.not concerned here with the 

absolute computational power of Boolean circuit families. What interests us in our study of 

Boolean circuit families is what they are able to do when "resource bounds" are imposed on 

them. Before we can discuss this further, we need the following definitions and results 

concerning the rate of growth of functions, all of which can be found in Davis [12]. 

Definition 2.1.27. Let f and g be functions from N to N. If there are positive 

integers no and c such that for all n 2 no, f(n) 5 cg(n), we write f(n) = O(g(n)). If, in 

addition, g(n) = O(f(n)), we write O(f(n)) = O(g(n)), and we say that the functions f 

and g have the same rate of growth. If not, we say that the function g grows faster than 

the function f. 

Proposition 2.1.28. Let f and g be functions from N to W. 
An) (i) O(fTn)) = O(g(n)) if and only if lim - = /3 for some /3 > 0. 

An) "+" g(n) 
(ii) If lim - - - m, then ihe function f grows faster than the function g. 

" + oog( n) 
(iii) If p(n) is a polynomial of degree r, then p and n' have the same rate of 

growth. The polynomial p grows faster than nm if m < r, and nm grows faster 



than p if m > r. 
(iv) If p(n) is a polynomial of degree r 2 1, then p grows faster than 1og2n. 

( v )  If k > 1, then the function kn grows faster than any polynomial. 

(vi) rlog2nl and log2n have the same rate of growth. 

(vii) If a > 0 and b > 0, then arlog2nl + b and rlog2n1 have the same rate of 

growth. 

Definition 2.1.29 ([Ill). Let e = (Cn):=o be a family of Boolean circuits, where the 

circuit Cn has n input gates. Let z and d be functions from N to R. For each n E N ,  

let a(n)  be the size of the circuit Cn, and let 6(n) be the depth of the circuit Cn. Clearly, 

a and 6 are functions from N to N. We say that the family C has & z(n) if 

u(n) = O(z(n)), and we say that e has d e ~ t h  d(n) if 6(n) = O(d(n)). 

Example 2.1.30. Let C = (Cn)2=l be the family of Boolean circuits such that for all 

n E Z', C, is the circuit of Lemma 2.1.15 for inputs of length n. Then 

a(n)  = 2n - 1 = O(n), and 6(n) = [log2nl = 0(log2n), so that the family e of Boolean 

circuits has size n and depth log2n. 

The "resources" of a Boolean circuit family are its size and depth. As remarked 

previously, our interest is in the capabilities of Boolean circuit families of a given size and 

depth. Once resource bounds are imposed, it is clear that this will h i t  the scope of 

Definitions 2.1.25 and 2.1.26 to some extent. It  would be even better if we could limit the 

definitions so that every function (language) which is defined to be computable (recognizable) 

by a Boolean circuit family will actually be computable (recognizable) by a Turing machine, 

which is, after all, the definition of a computable function (recognizable language) ([17]). This 

issue will be addressed in Chapter Three. 

5 2.2 Bounded Width Branching Programs 

In this section we discuss the computational model by which the class BWBP of 

languages is defined. We begin with a discussion of branching programs, which are the 

components of the model. Here we will be reasonably brief, because this model will be 

b ~ ~ C . ~ u A ~ l t . \ :  a5aL Ll CLpter  three. 

Definition 2.2.1 ([lo]). A branching momam B (abbreviated BP) on n variables is a 

finite acyclic directed graph which satisfies: 

(i) B has one source which is called the input node of B; 

(it) all sinks of B carry one of the labels 0, 1; 
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( i i i )  all other nodes are labeled by a variable in {x1,x2,, . .,tn); 

( i v )  there are at most two edges leaving each node of B. One edge carries the label 0, 

the other edge carries the label 1. If there is only one edge leaving a node of B, that 

edge is understood to carry both labels 0 and 1. 

Definition 2.2.2 ([lo]). A directed graph is said to be levelled if it can be partitioned 

into levels L1, L2,. . ., Lk, such that for a11 i E {0,1,2,. . .,k), every edge leaving a node on 

level i enters a node on level i + 1. 

Note that a graph is levelled if and only if every node v in the graph is such that every 

path from a source to v is of length equal to the rank of v. 

Definition 2.2.3. Let B be a branching program on n variables. The length of the 

longest path in B from the input node to a sink of B is called the length of B. The number 

of nodes in B is called the of B. If B is levelled, then the width of B is the number of 

nodes on the level of B on which there is the largest number of nodes. 

E X U ~ Q ~  2.2.4. Consider 

are directed down. 

the branching program B below. By convention, all edges 

The branching program B has size 8 and length 3. Note that B is not levelled, so 

the width of .B is not defined. ( 

We now describe how a branching program B on n variables computes a Boolean 

function from {0,1)" to {0,1). Given a = ala2-..a, E {0,1)", starting at the input node 

labelled, say, xi, if ai  is 1 (0), follow the edge labelled 1 (0) leaving the input node and 

entering a node labelled xi. Then the edge leaving the node labelled xj which is labelled a j  

is followed. This process continues until a sink is reached ([lo]). Then B(a) is defined to be 

the label of the sink reached when B is given input a and "evaluatedn as described. The 

branching program B of Example 2.2.4 computes the Boolean function from {0,1)~ to 

{0,1) given by B(010) = 0, B(111) = 0, and for all other a E {0,1)~, B(a) = 1. 
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The set {u E {O,l)"  : B(u) = 1) is called the language recognized by the branching 

program B on n variables. We note that a language L {0,1)" is recognizable by a 

branching program if and only if the Boolean function f : {0 , ln  { O l  defined by 

f(u) = 1 if and only if u E L is computable by a branching program. 

If a branching program is levelled, it has the advantage that the level of a node 

represents the time required to reach the node in the course of a computation, viewing the 

source node as level 0. 

Proposition 2.2.5 ([g]). Let B be a branching program on n variables of size s and 

length I. Then there is a levelled branching program B of length 1 and s i te  at most s2 

such that B ( a )  = B(a) for all a E {0,1)". 

Proof. Throughout this proof, a "pathn means a path starting at  the source node vl. Let B 

be a branching program on n variables of length 1 and size s. We first create an array of 

nodes with s columns and 1 + 1 rows, the top row being row 0, each row containing all of 

the nodes vl, v2,...,vd of B. For each path of length k, 0 5 k 5 1 - 1 ,  in B ending at  

node vi, and each edge from v, to vt labelled 0 (1) in B, we add an edge labelled 0 (1) 

from node v j  in row k of the array to the node vt in row k + 1 of the array. We then 

remove all nodes of the array with indegree and outdegree zero. It is clear that this 

construction will yield a levelled branching program B' of size at  most s ( l  + 1) 5 s2 ,  since 

1 + 4 5 s .  It is also clear that this construction will yield a branching program B' which 

will compute.the same function as  that computed by B. 

Proposition 2.2.5 shows that any Boolean function which is computable by a branching 

program is computable by a levelled branching program, which allows us to restrict our 

attention to levelled branching programs. 

Example 2.2.6. Following the procedure in the proof of Proposition 2.2.5, a levelled 

version of the branching program of Example 2.2.4 would be as shown below. 

This branching program is levelled, has size 9, length 3, width 3, and computes the 
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same function as that computed by the branching program in Example 2.2.4. 

As it stands, a levelled branching program I3 on n variables, of length 1 and width 

w could have sinks on level k where k < I. Let m be the least integer such that there is a 

sink labelled 0 on level m. Consider the following. "String together" a chain of 1 - m 

nodes labelled by a variable x i ,  delete all edges entering the sink labelled 0 from nodes on 

level m - 1, connect these nodes to one end of the chain by copies of the deleted edges, and 

then connect the other end of the chain to the sink labelled 0. For each sink labelled 0 on 

level 2, where m < 1 < I, delete the sink and connect all nodes on level 2 - 1, from which 

an edge entered the sink, to the node in the chain of nodes labelled xi from which there is a 

path of length I - t to the sink labelled 0 on level I. This moves all the sinks labelled 0 

on level 2 < I down to level I, without changing the length of B or the function computed 

by B. If we follow this procedure for sinks labelled 1, we obtain a branching program of 

length I, of size less than or equal to s + 2(1 - 2), and of width less than or equal to 

w + 2, which computes the same function as that computed by the branching program B 

(PI). 

The discussion above shows that any function computable by a levelled branching 

program is computable by a levelled branching program where all sinks occur on the bottom 

level. This allows us, without loss of generality, to restrict our attention to such branching 

programs. From now on, by "a branching program", we will mean one of this type. 

We now show how a family of branching programs can be said to compute a Boolean 

function on {0,1)*, and how a family of branching programs can be said to recognize a 

language over the alphabet {0,1). 

Definition 2.2.7 ([lo]). Let 38 = (Bn)TZo be a family of branching programs, where 

for each n E N, Bn is a branching program on n variables. The function com~uted bJ 38 

is the Boolean function defined by %(u) = B ~ ( u ) ,  where u E (0,l)". The lanauaae 

recognized bJ 38 is the language {u E {O, l )*  : if lul = n, then Bn(u) = 1). 

We conclude the section by defining the "resources" of a family of branching programs, 

and defining a complexity class of languages recognizable by branching program families with 

, bounded resources. 

Definiton 2.2.8. Let f, h, and g be functions from N to R, and let 38 = (Bn)2,0 

be a family of branching programs. Let a, A, and w be functions from N to N, where 

a(n) is the size of the branching program Bn, A(n) is the length of the branching program 

Bn, and w ( n )  is the width of the branching program Bn. We say that the family 38 has 
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size f(n) if u(n) = O(f(n)), we say that '3 has length h(n) if A(n) = O(h(n)), and we - 
say that '3 has width g(n) if w(n) = O(g(n)). 

Definition 2.2.9 ([3], [lo]). BWBP is the class of languages L 2 {0,1)* such that L 

is recognizable by a family '3 = (Bn):=, of branching programs of bounded width, that is, 

for which there is a w E Z+, such that for all n E N, w(n) 5 w ,  and polvnomial (or, 

equivalently, polynomial length, given bounded width). 

5 2.3 Programs For a NUDFA over a Finite Monoid 

In this section we discuss our final non-uniform computational model, which was clearly 

inspired by finite state machines for regular languages. In this case, the model does not consist 

of a family of components, but it is a single machine along with a family of programs, one for 

each input length. 

Definition 2.3.1 ([3], [5]). Let M be a finite monoid, and C be a finite alphabet. A 

non-uniform deterministic finite automaton N(M,C) over M with i n ~ u t  alvhabet C is a 

machine, which, for each n E N, given an input word in En  and an n-vroeram Pn (as 

defined below), produces an element of M as output. 

A non-uniform deterministic finite automaton will hereafter be referred to as a 

NUDFA, and "the NUDFA N over M with input alphabet C," will be denoted N(M,C). 

Definition 2.3.2 ([5]). Let M be a finite monoid. An n-vrogram P n  for a NUDFA 

N(M,C) of length 1 is a sequence of instructions pl, p2, . . ., p,. For each k E {1,2,.. .,1}, 

pk  = (ik, fk), where ik E {1,2, ..., n}, and fk is a function from C to M. The n-program 

Pn defines a function from Cn to the monoid M as follows. For each 

u = u ~ u ~ . . . u ~  E En, P ~ ( u )  = pl(u)p2(u)...pr(u), where for each k E {1,2, ..., 11, 
pk(u) = fk(aik). For each m E M ,  there is a "constantn 0-program P r  with no 

instructions such that Porn(<) = m, where { c }  = C'. 

Thus, given an input word u = alu2. . .an E Cn and the n-program Pn, the 

NUDFA N(M,C) produces the output P ~ ( u )  E M. We now describe how a NUDFA, 

together with a family of n-programs, constitutes a model of computation, which, as usual, 

' entails showing how a NUDFA can be said to compute a function, and how a NUDFA can 

be said to recognize a language. 

Definition 2.3.3. Let N(M,C) be a NUDFA, and let 9 = ( P n ) Z o  be a family of , 

programs for N(M,C). The function com~uted b~ N(M,C) with familv of n-vrorrrams 9 is 



the function N from C* to M defined by N(u) = P ~ ( u ) ,  where u E Cn. 

Definition 2.3.4 (151). Let L C C*, where C is a finite alphabet. The language L is 

said to be recoanizable a familv of n-~roarams for a NUDFA over a finite monoid if and 

only if there is a finite monoid M and a family 9 = (Pn):=O of n-programs for the 

NUDFA N(M,C), such that for each n E N, there is a subset An of M such that 

Pn(u) E An if and only if u E L n En. 

Provosition 2.3,5. Every regvlar language is recognizable by a family of n-programs for 

a NUDFA over a finite naonoid. 

Proof. Let C be a fitlite alphabet, and let L E C* be a regular language. Since L is 

regular, there is a finite monoid M, a subset B of M, and a homomorphism 6 from C* 

to M such that $(u) E B if and only if u E L. Let qi : C -+ M be the restriction of 4 
- 

to C. Let Pf be the 0-program for the NUDFA N(M,C) such that Porn(€) = I $ ( € )  =m. 

Then Po(&) = m E B if and only if a E L r l  C0 (since L is regular). For each n E z+, 
let P n  be the n-program for the NUDFA N(M,C) with sequence of instructions pl, ,u2, . , ., 
pn, where for each k, 1 _< k < n, the instruction pk = (1, 4). Let n E a+, 
u = u1u2...un E En. Then Pn(u) E B if and only if /.i1(u)/.i2(~)...pn(u) E B; that is, if 

and only if 4 ( ~ ~ ) 4 ( 1 1 ~ ) , - . q i ( ~ ~ )  E B. Since the function qi : C -+ M is the restriction of the 
- 

homomorphism $ to C, 4 ( ~ ~ ) 4 ( ~ ~ ) . . . q i ( ~ n )  = ~ ( u ~ u ~ " . u ~ )  = $(u). Thus, 

Pn(u) = $(u). Since $(u) E B if and only if u E L, it follows that Pn(u) E B if and only 

if u E L n En. Therefore, the finite monoid M, and the family 9 = (Pn)pzo of 

n-programs for the NUDFA N(M,C) are such that L is recognizable by the family 9 over 

N(M,C). As L was an arbitrary regular language, it follows that every regular language is 

recognizable by a family of n-programs for a NUDFA over a finite monoid. 

Example 2.3.6. The non-regular language L = {unrn  : n E N} (1131) over the 

alphabet C = {a, r} is recognizable by a family of programs for a NUDFA over a finite 

monoid. Let M be the monoid {0,1}, where 1 is the identity of M and 0 is a zero. 

Then L is recognizable by the family 9 of n-programs over the NUDFA N(M,C), where 

9 = (Pn):.o is defined as follows. Let P; be the 0-program such that P ~ ( E )  = 1. Let 5 
denote the constant function from C to M with value 0. Let f, g : C -+ M be defined by 

' u w 1, r 0 and u ++ 0, r w 1 respectively. For odd n, let P n  be the n-program 

(1, 8), and for n = 2k, k 2 1, let P n  be the n-program (1, f ) ,  (2, f ) ,  ..., (k, f ) ,  (k + 1, g), 

(k + 2, g), ..., (n, g). Let p E Enj. If n = 0, then Po(p) E {I} if and only if 

p =  E E L n C O .  If n isodd,  then P n ( p ) E { l }  i f andon ly  if p E O = L n C n .  If 

n = 2k for some k 2 1, then p = P1P2"'PkPk+lPk+2"'pn, and Pn(p) E {I} if and only 
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if f(pl)f(p,)...f(pk)g(Pk+l)g(pk+2)-~~g(pn) = 1. A product of elements of M is the identity 

1 of M if and only if each element in the product is 1, so that Pn(p) = 1 if and only if 

f ( ~ ~ )  = 1 for all j { 1 2 ,  k }  and g(pj) = 1 for all j E {k + 1, k + 2,.. .,n}. But 

f(pi) = 1 if and only if pi = a, and g(pj) = 1 if and only if p j  = T, together imply 

that Pn(p) E (1) if and only if p = akrk E L n C". Therefore, L is recognizable by the 

family 9 of n-programs for the NUDFA N(M,C). 

We now define the "resources" of a family of programs for a NUDFA over a finite 

monoid so that we will be able to define a complexity class of languages recognizable by a 

family of n-programs with bounded resources. 

Definition 2.3.7. Let 9 = (Pn);=-, be a family of programs for a NUDFA N(M,C), 

let f be a function from N to R, and let X : N 4 N be such that X(n) is the length of 

Pn. We say that the family 9 has length f(n) if X(n) = O(f(n)). 

Definition 2.3.8. Let PLP denote the following class of languages. A language L 

over a finite alphabet C is in PLP if and only if there is a finite monoid M, and a coding 

(' from C* to {0,1}* such that the language ((L) is recognizable by a polynomial length 

family of n-programs for the NUDFA N(M,{O,l}). 

Proposition 2.3.9. Every regular language is  in PLP. 

Proof. Let L be a regular language over the alphabet C = {B1,B2, . . . ,~m) where 

c(C) = m, m 2 3. Let -& be the coding from C* to {0,1)* which is uniquely determined 

by the function ar : C -, {0,1}* given by ar(ai) = 0'-'10~-' , the word over {0,1} which 

has only one 1 as the i-th letter, for 1 < i <m. Since -& is injective, & is such that 

-&-I(&) = E .  By Proposition 1.1.6, E(L) is a regular language over {0,1}. The proof of 

Proposition 2.3.5 shows that every regular language is recognizable by a family of NUDFA 

programs of length n, a polynomial, so there is a finite monoid M such that -&(L) is 

recognizable by a polynomial length family of n-programs for the NUDFA N(M,{O,l}). 
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Chapier 111 Non-Uniform Models of Computaiion and N C ~  

In this chapter we establish relationships between the various non-uniform models of 

computation defined in Chapter Two, and, finally, establish a relationship between language 

classes defined by these models and the class NC' of languages. 

In Section one, we introduce the concept of uniformity. This concept enables us both to 

define the parallel complexity class NC, and its subclasses Nck, and A C ~ ,  and to address 

the difficulty in comparing non-uniform models of computation with more familiar uniform 

models. 

In Section two, we present some of D. A. Barrington's work on bounded width 

branching programs. Specifically, we show how he redefined the branching program, and 

selected a suitable definition of the language recognized by one of his branching programs, 

under which the language class BWBP is preserved. 

In Section three, using yet another definition of the language recognized by one of 

Barrington's branching programs, we exhibit the relationship between the language classes 

BWBP and PLP. 

In Section four, we begin with a reconstruction of the proof of Barrington's result that 

BWBP = (nonuniform) NC', from which it follows that PLP, the class of languages 

recognizable by polynomial length families of n-programs for a NUDFA over a finite monoid 

is also NC'. We state some consequences of this work, and give a sampling of some further 

research which was inspired by it. 

•˜ 3.1 Uniform Boolean Circuit Families and the Parallel Complexity Class NC 

In the Section 2.1 we mentioned that Boolean circuit families cannot compute all 

computable functions, and yet they can compute some functions which are not computable. 

This makes it difficult to compare them with uniform models of computation such as the 
. 

Turing machine. There are two basic approaches which make comparison possible ([20]). 

On'e approach, suggested by Borodin ([a]) is to impose a uniformity condition which 

restricts the class of Boolean circuit families under consideration to those families 2 ryhich are 

such that there is a Turing machine which can, given an input word of length n, generate a 

description of the circuit Cn in C, using a certain amount of time and space. If this is the 

case, then there is most certainly a Turing machine which can do this and then 'decode the 

descriptionn and simulate the circuit Cn on that input word. Limiting the class of Boolean 
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circuit families to those which are uniform, in the sense of Borodin, thus guarantees that they 

compute only functions which are computable. 

The other approach (see [20], [24]) is to "make Turing machines non-uniform", meaning 

allowing a Turing machine to work on inputs of only one length, by giving the Turing machine 

some extra information (such as a description Cn of the n-th circuit in a family e of Boolean 

circuits) for each input length n along with the input word w (of length n). If, given this 

information, the Turing machine computes e(w) for all w E {0,1)*, we say that the Turing 

machine "non-uniformly" computes C. Ordinarily we would say that the function computed 

by the Turing machine is the function g from the set 

{uw : u = cn, I w I = n for some n E N) to {0,1)* defined by g(uw) = C(w). 

We now give some definitions which will enable us to give some uniformity conditions 

on Boolean circuit families. We will then be in a position to define the parallel complexity class 

NC, and its subclasses N C ~  and A C ~ .  

Definition 3.1.1 (see 1261, [21], [ll]). Let C be a fan-in 2 Boolean circuit of size s 

with n input gates and 1 output gate. Let each of the s gates gi of C, 

i E {O,l,. . .,s- I), be assigned an "addressn--the binary representation ; of the integer i, 

with enough zeros added at  the right end to form a string of length rlog2sl; reserving 6 for 

the output gate, and reserving i where 1 < q 5 n for the input gates labelled zq, If gi 

has indegree two, let gi = ; r j i ,  where g j  and gk are the gates of C which fan into the 

gate gi, and T E {A, V) is the label of the gate gi. Of course, if gi has indegree 1, then 
,. - 2i = i ~ j ,  where g j  fans into gi. If gi has indegree 0 and is not an input gate, then 

gi = ;T, where T E {0,1). If gi is an input gate, then let gi = ;x. The standard 

encoding 2 of the Boolean circuit C is then 2 = gogl ...gs-l. 

We note that the sequence (2n)FZo of standard encodings of a Boolean circuit family 

C = (Cn);=, is one example of a "description" of the family e. Although it is only defined 

for Boolean circuits with one output gate, it is clear how one would generalize the standard 

encoding for more general Boolean circuits with fan-in greater than two, and more than one 

output gate. 

Definition 3.1.2 ([21]). Let g be a gate in a fan-in 2 Boolean circuit C, where for 

each gate v in C, each edge entering v is assigned a different label Z E {L, R). Let 

p = ZIZZ...Zn E {L, R)*. The gate g(p) determined b~ p g is defined inductively as 

follows. 

( i )  For n = 0, g(p) is the gate g. 
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(ii) For n 2 1, g(p) is the gate which has an edge entering gate g(Z1Z2...Zn-l) 

with label L (R) if Zn = L (if Zn = R). 

Definition 3.1.3 (1211). Let C = (Cn)rZo be a family of fan-in 2 Boolean circuits of 

size z(n) and depth d(n) such that for each n E N, the circuit Cn has n input gates and 

one output gate, and each gate of Cn is assigned an address i, where i denotes the binary 

representation of an integer k E {O,l , . .  .,a(n)}, with 6 reserved for the output gate of Cn 

and i reserved for the input gate of Cn labelled xq for 1 5 q < n, as in Definition 3.1.1, 

and for every gate v in Cn, each edge from p to v is assigned a different label from 

{L, R). Let p denote an element of {L, R)*, letting E denote the empty string. Let ;I, 

be elements of {0,1)*, and let r denote an element of I' U {x}, where x is used to label 

input gates as before. The extended connection lanc~uaae ECL(C) of the family C is the set 

of all strings ;APT such that either 

( i )  p = E and the gate g in Cn with assignment I;I has label r, 

(ii) p # E ,  1 5 I p I 5 [log2z(n)l, and the gate g in Cn with assignment is 

such that the gate g(p) has label r. 

For each circuit Cn ,in a size z(n) family C = (Cn)FZo of fan-in 2 Boolean 

circuits, the ECL of the family contains, for each gate g in each circuit Cn in the family, 

an encoding of the label r and address m of g in Cnl and an encoding of the address 

of g along with the path and the label of each gate from which there is a path p in the 

circuit Cn of length less than or equal to rlog2z(n)l which ends at  g. We observe that the 

standard encoding is closely related to the subset of the ECL obtained by restricting the 

paths to be of length less than or equal to 1. This subset is called the direct connection 

lan~uacre, or DCL ([8]). 

Recalling the observation that the standard encoding can be generalized for a fan-in k 

Boolean circuit with n input gates and rn output gates, we must recognize the possibility of 

generalizing the ECL to families of such circuits. We further note that a family 

C = (Cn)r==l of fan-in 2 Boolean circuits of size z(n) and depth d(n) is "completely 

described" by the ECL of C, though this fact is not as transparent as the fact that the 

sequence of standard encodings of the circuits Cn in C nives a complete 

description of the family C. 

It is worth remarking that there is a Turing machine which will output the binary 

representation ii of n when given any word of length n as input, in time 0(n3). It is also 

worth remarking that any function which is computable by a Turing machine in space 
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~ ( ( l o ~ ~ n ) ~ )  is computable in polynomial time ([20], [22]). 

If the "complete descriptionn of a circuit family is such that we can make sense out of 

it, then there most certainly exists a Turing machine which can make sense out of it, so it 

could then be used by a Turing machine to %on-uniformlyn compute the function which is 

computed by the family C. If, in addition, the complete description can be generated by a 

Turing machine, the function would then be a computable function, as discussed previously. 

Having described the standard encoding of a Boolean circuit, and the ECL of a family of 

Boolean circuits, we are now ready to define some uniformity conditions on Boolean circuit 

families. There are several others that we haven't included, and various relationships have 

been shown between all the various uniformity conditions ([21], [8], [26]). 

Definition 3.1.4 . Let C = (Cn)p=o be a family of fan-in 2 Boolean circuits of size 

z(n) and depth d(n). Then 

(i) the family C is said to be BGuniform ([8], [ll]) if there is a deterministic Turing 

machine of space complexity log2z(n) which for each n E N, given the input fi, 

generates the standard encoding 2n of the circuit Cn, and 

(ii) the family C is said to be Erruniform (1211) if the language ECL(C) over 

{A,v,~ ,~ ,O,~,L,R)* can be recognized by an Alternating Turing Machine in time 

O(d(n)) and space 0(log2z(n)). 

A discussion of Alternating Turing machines is beyond the scope of this thesis. Ruzzo 

([21]) has suggested that the Alternating Turing machine is a generalization of the 

nondeterministic Turing machine, and we will leave it a t  that. We note that these uniformity 

conditions, though they are, strictly speaking, defined for families of fan-in 2 Boolean circuits 

with one output gate, can be generalized to apply to families of Boolean circuits with more 

than one output gate, and fan-in greater than 2. 

Definition 3.1.5 ([20], [26], [Ill) 

(i) NC is the class of languages over {0,1) which are recognizable by a BCuniform 

family of fan-in 2 Boolean circuits of size n j  and depth ( 1 0 g ~ n ) ~  for some 

j, m E N. 

(ii) For each k 3 1, N C ~  is the ckis  GC 10rllgbO1ge, ""(;I { S , : ;  which are recognizable 

by a BCuniform family of fan-in 2 Boolean circuits of size n j  and depth ( 1 0 ~ ~ n ) ~  

for some j E N. 

(iii) For all k 3 0, A C ~  is the class of languages over {0,1) which are recognizable 

by a BCuniform family of Boolean circuits of size a' and depth ( l ~ ~ ~ n ) ~ ,  for some 
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j E N, with no restriction on the fan-in of the circuits in the family. 

Definition 3.1.6. A BCuniform family of fan-in 2 Boolean circuits of size n3 and 

depth ( 1 0 ~ ~ n ) ~  for some j, k E N is called an NCk circuit family. A BCuniform family of 

Boolean circuits, with unrestricted fan-in, of size n3 and depth ( l ~ ~ ~ n ) ~ ,  for some j, k E N, 

is called an ACk circuit family. 

Let L E NC. Then L is recognizable by a BCuniform family C =(Cn):=o of fan-in 

2 Boolean circuits of size nq and depth (log2n)' for some q, p E N. Consider the following 

results, some of which have been mentioned previously. 

( i )  The binary representation of an integer n can be computed by a Turing machine 

given any input word of length n in time 0(n3); 

( i i )  For k 2 1, a function computable by a Turing machine in space ~ ( l o ~ ~ n ) ~  is 

computable in polynomial time ([20], [22]); 

(iii) A language recognizable by a Boolean circuit family of size nq, where p 2 1, is 

recognizable by a non-uniform Turing machine in time 

0((nq)(log2(nq)))" = ~ ( ( n ~ ) ( q l o ~ ~ n ) ~ )  = ~ ( n ~ + ~ )  ([20]). 

Consider the Turing machine which, given an input word w of length n computes the 

binary representation of n, from which it generates the standard encoding of the circuit Cn 

of e, and then "simulates C" on input w. This Turing machine recognizes the language L. 

The fact that C! is BGuniform, and the three results above, together imply that the Turing 

machine recognizes L in polynomial time. Thus, L E P, from which it follows that 

NC E P. Since it is widely held that the class P contains all problems which can be solved 

using resources likely to be available ([12]), the fact that NC is contained in P means that 

the interest in NC is not only theoretical. 

Consider the definition of the class ACk. The absence of a fan-in restriction makes 

ACk circuit families seem more powerful than NCk circuit families. The following 

proposition indicates to what degree this is true. 

Pro~osition 3.1.7 ([3]). For all k E N, A(? E N ~ + I .  s 

Proof. Let n, k E N, let L E ACk, and let C = (Cn):=o, be the ACk circuit family 

, which recognizes the language L. Consider the Boolean circuit Cn. If Cn has fan-in 2, 

then Cn is an N C ~  circuit family, so that L E NCk C NCk". Otherwise Cn is of fan-in 

m > 2, and contains a gate u labelled V (or A) with indegree m. Let pl, p2,.,.,pm be 

the rn gates which fan into u. By Proposition 2.1.15, for each m E Z+ there is a fan-in 2 

Boolean circuit Am of size 2m - 1 and depth rlog2ml which computes xl v x2 v. ..v xm. 



If we modify Cn by letting the gates pl, p2,. . .,pm be input gates and v be the output gate 

for the circuit Am, we have increased the size of Cn by m - 1 and have increased the 

depth of Cn by rlog2ml - 1. Thus, if we repeat this construction for each gate of Cn with 

fan-in j such that m 2 j > 2, we obtain a fan-in 2 Boolean circuit Bn which recognizes 

the same language as does Cn, of size at  most m - 1 times the size of Cn and depth at  

most rlog2ml times the depth of Cn. Certainly m is less than the size of Cn. The family 

e is in A C ~ ,  so e has size nq for some p E N, and depth ( 1 0 ~ ~ n ) ~ .  This means that 

there exist ro, s, t E N such that for all n > ro, Cn has size less than or equal to s(nq) 

and depth less than or equal to t ( l ~ ~ , n ) ~ .  Consider the family '3 = (Bn)r=o of fan-in 2 

Boolean circuits where for each 1 E N, the circuit B, is the modified version of the circuit 

C,. For n > ro, B, has size less than or equal to (s(nq))' and depth less than or equal to 

= ( ~ ~ Z S I  + r ~ l o g ~ n l ) ( t ~ g ~ n ) ~ .  By Proposition 2.1.28, 

(rlog2sl + [qlog2n~)(trlog2n)E = ~ ( ( l o ~ ~ n ) ~ + ' ) ,  so that 38 has depth ( 1 0 ~ ~ n ) ~ " .  Also by 

Proposition 2.1.28, ( ~ ( n ~ ) ) ~  = 0(n2'), so that 38 has size n2', which is a polynomial. 

Thus the family 93 is an NCk++' circuit family. Since '3 recognizes L, the language L is 

in Nck+'. Since k and L were chosen arbitrarily, for ail k E N, A C ~  Nck+'. 

Recall the definitions of BGuniform and Guniform. It has bee; shown ([21], [26]) that 

for n > 2, the classes  uniform)^^^ and (Guniform)NCk are the same, but that the 

class (Guniform)NC1 is contained in the class   u uniform)^^^, which suggests that 

Guniformity gives a sharper characterization of these complexity classes. This is why we 

included both definitions. After having taken the trouble to give uniformity conditions, we will 

no longer be concerned with them, safely assuming that any circuit family for which we can 

provide a description will be quite uniform. 

From now on, we will focus on the class NC'. For an interesting survey of problems 

which have been shown to be in NC, see [ll], and the references therein. In Chapter I1 we 

constructed some circuits which give rise to NC' circuit families, so we have already seen 

some NC' functions and languages. Many interesting results concerning NC' have been 

obtained ([15], [I]). Of these results, we will consider new characterizations of this complexity 

class. 

5 3.2 Barrington's Branching Programs and B WBP 

Recall from Chapter I1 that by 'a branching program," we mean a levelled branching 

program where all sinks occur on the bottom level. When David Barrington began studying 

branching programs, he found that one of the reasons for the difficulty in comparing branching 
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programs with other models for language recognition is that a branching program may depend 

on more that one variable at a given time in the computation. He made the following 

observation ([3]). 

Proposition 3.2.1. Let B be a levelled branching program on n variables of width w 

and length I, where each node on level k of B is assigned a distinct column number, an 

integer in {1,2 ,..., wk), where wk is the width of level k of B. Then B can be expanded 

to a levelled branching program B' of width at most 2w and length at most wl which 

computes the same function as does B, and is such that every level k of B which is not the 

bottom level af sinks has all of its nodes labelled by the same input variable. 

Proof. We describe the expansion of level k of a branching program B on n variables of 

width w and length I, where 1 < k 5 1 - 1. Let p be the width of level k of B, where 

the 5 t h  node on level k has label xjl and let q be the width of level k + 1 of B, where 

the r-th node on level k + 1 has label y,. We begin by replacing each of the labels xl, x2, 

..., xp of nodes on level 6 of B with the label xl, and we insert a (p - 1) x (p + q) 

arrray of nodes between the relabelled level k and the original level k + 1 of B. The 

p + q nodes in row m of the inserted array are labelled x,+~ for 1 < m < p - 1. 

We connect the first node labelled xl in the  rel la belle^ level k of B by an edge 

labelled 0 (1) to the node labelled x2 in column i (J] of the inserted array if there is an 

edge labelled 0 (1) from the first node (labelled xl) on level k to the i-th ( j t h )  node on 

level k + 1 of B. Of course, i = j is allowed. For s = 2, 3,. .. p, connect the s-th node 

labelled xl by an edge labelled 0, 1 to the (q + s)-th node labelled x2 in the first row of 

the inserted array. 

For m = 2, 3,..., p - 1, if n # q + m, connect the n t h  node labelled xm in the 

(m - 1)-th row of the inserted array to the n-th node labelled xm+l in row m of the 

inserted array by an edge labelled 0, 1. Connect the (q + m)-th node labelled xm to the 

node labelled x,+~ in column i ( J ]  of the m-th row of the inserted array by an edge 

labelled 0 (1) if there is an edge labelled 0 (1) from the m-th node on level k to the i-th 

(j-th) node on level k + 1 of B. 

Concc:t tE2 r,;A 1z!xlkr! ;, i,, column q + p of the bottom (p - 1)-th row of the 

inserted array by an edge labelled 0 (1) to the i-th (j-th) node in level k + 1 of B if there 

is an edge labelled 0 (1) from the p t h  node on level k to the i-th (3th) node on level k + 1 

of B. For n = 1, 2,..., q, connect the node labelled xp in the n-th column of the last row 

of the inserted array to the n-th node in row k + 1 of B. 
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Let B' be the levelled branching program obtained from B by expanding each level k 

of B, 1 5 k < 1 - 1, as in the construction above, and then removing all nodes which 

cannot be reached by a path from the source. Clearly B' has width at  most 2w and length 

a t  most wl, and is such that every level but the bottom has all its nodes labelled by the same 

input variable. By construction, B' computes the same function as that computed by B, 

since no branching occurs in B' which does not reflect branching in B, and all branching 

occurring in B is reflected by branching in B'. In particular, if there is an edge labelled 0 

(1) from a node xi to a node xp (xq) in B, then in B' there are edges labelled 0 and 1 

from a node xi to distinct (if p # q) nodes xj, where xj is either the node 'next ton the 

node xi or the first node on the level below the node xi in B; from xj there is a straight 

path to xp (xq), with no further intermediate branching, and thus the function computed by 

B' is the same as that computed by B. 0 

We recall that a language L is in BWBP if and only if the Boolean function 

f : {0,1}* -+ {0,1} defined by f(u) = 1 if and only if u E L is computable by a polynomial 

size family of bounded width branching programs. Proposition 3.2.1 shows that if a language 

over {0,1} is recognizable by a family of branching program of bounded width and 

polynomial size, then it is recognizable by a bounded width, polynomial size family of 

branching programs where each branching program in the family is such that all the nodes on 

a given level are labelled by the same variable. Thus, the class BWBP is preserved, even if 

we change the definition of a branching program so that it excludes branching programs which 

contain nodes on the same level labelled by different variables. From now on, by 'a branching 

program," we will mean a branching program such that all nodes on the same level are labelled 

by the same variable. 

Consider the following. Let B be a branching program on n variables of width w 

and length I. For each j E {0,1,. . .,1) we assign a different integer k E {1,2,. . .,w} to each 

node on level j of B, reserving 1 for the source. We then think of B as an array of nodes 

with w columns and 1 + 1 rows. Suppose that the source of B, labelled xt, is such that 

the edge labelled 0 feeds into a node assigned m, and the edge labelled 1 feeds into a node 

assigned r, Then if x, = 1, that is, when the t-th letter of the input word is 1, then the 

, first level of B can be said to "yield" the function fi E Mw given by 1 H r, and p H p 

for all p E [w], p # 1. If x, = 0, that is, when the t-th letter of the input word is 0, then 

the first level of B can be said to "yield" the function gl E Mw given by 1 H m, and for 

all other p E [w], p H p. Once we have assigned a different integer in [w] to each node on 

the same level of B, then each level k of B can be said to "yield" the function 
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fk (gk) E Mu if the variable xi which labels the nodes in level k - 1 of B is 1 (O), where 

fk(i) = j (gk(i) = j) when there is an edge labelled 1 (0) from the node assigned the integer 

i on level k - 1 of the array into the node assigned j on level k of the array. Then for 

each input word in {0,1}", B "yields" the composition h, o o h2 o hl, where for each 

k E {1,2,. . .,1}, hk E Mw is the function "yieldedn by level k of B when the variable xi 

which labels the (k - 1)-th row of B takes on the value of the i-th letter of the input word. 

For each word w in the language recognized by B, we put h(l), where h = B(w) is the 

function in Mw yielded by B on input w into an "accepting" subset of [w]. We may then 

define the language recognized by B to be the set of all words w such that on input w, B 

yields a function h E M, such that h(1) is in the "accepting" subset of [w]. 

Examvle 3.2.2. Consider the branching program B on 3 variables of width 3 and 

length 3 below, where each node of B is assigned an address. 

B recognizes the language (000, 01 1, 101, 110). According to the addresses assigned to 

the nodes of B, we see that if x2 = 1, level 1 of B yields the function fl E M3 given by 

1 C) 1, 2 H 2, 3 H 3, and if x2 = 0, level 1 of B yields the function gl E M3 given by 

1 w 3, 2 w 2, 3 H 3. If x1 = 1, level 2 of B yields the function f2 E M3 given by 

1 H 3, 2 H 2, 3 H 1. Similarly, we find that g2 is the function 1 w 1, 2 H 2, 3 H 2, 

f3 : 1 H 3, 2 H 1, 3 w 1, and g3 is the function 1 w 1, 2 H 3, 3 H 3. We see then 

that B(000) yields the composition g3 o g2 o gl = kl, where kl(l) =k1(2) = k1(3) = 3, 

B(001) yields f3 o g20gl = h,, where hl(l)  = h1(2) = h1(3) = 1. h(010) yields 

g3 o g2 o fl = g3, B(100) yields the composition g3 o f2 o gl = k2, where 

k2(1) = k2(3) = 1, and k2(2) = 3. B(Ol1) yields f3 o g2 o fl = f3, B(101) yields 

f3 o f2 o gl = k3, where k3(l) = k3(3) = 3 and k3(2) = 1. B(110) yields 

h2 = g3 o f2 o fl, where h2(3) = 1 and h2(l) = h2(2) = 3, and B(111) yields 

f3 o f2 o fl = h3, where h3(3) = 3, and h3(l) = h,(2) = 1. We notice that 

B(w)(l) = 3 if and only if w E (000, 011, 101, 110), which is the language recognized by 



The discussion and the example show that we may as well think of a branching program 

B on n variables of width w and length 1 as a sequence of 1 "instructions," where each 

instruction selects one of two possible elements of Mw, depending on the value of a particular 

variable. The branching program B determines the composition of the yields of its 

instructions, each of which depends on the value assigned to a particular variable by the input 

word. This brings us to David A. Barrington's version of the branching program model for 

language recognition. 

Definition 3.2.3 ([3], [4]). Let n, w, 1 E z+. A B-branching Drogram B n 

variables of width w and lenath 1 (abbreviated wBBP) is a sequence of instructions 

(ji, fi, gi), 1 6 i 5 I, such that for all i E {1,2 ,..., 1), ji E {1,2 ,..., n), and f,, gi E Mw. 

Given a word u E {O,l)*, the instruction &, fi, gi) "yields" fi if the ji-th letter of u is 

1, and the instruction yields gi if the ji-th letter of u is 0. On input u, the wBBP B 

yields the composition h = h, o o h2 o h, where hk is the yield of the instruction 

(jk, fk, gk) on input u; that is B(u) = h. 

It is clear that a B-branching program B on n variables of width w and length 1 

can be viewed as an array of nodes with w columns and 1 + 1 rows, where nodes in row 0 

are labelled by the variable xjl, nodes in row k - 1 of the array are labelled by the variable 

xjb, and sinks in row 1 + 1 are labelled by the integers 1, 2,. ..,w, with edges labelled 0 

and 1 connecting nodes in row k to row k + 1, according to the functions fk and gk 

contained in the instruction (jk, fk, gk). 

In contrast to the branching programs we looked at  in Chapter 11, we cannot simply 

label some of the sinks 0, and some of the sinks 1, and define the language recognized by a 

B-branching program B to be all words which determine a path in B which ends a t  a sink 

labelled 1. This is because a B-branching program has w source nodes, so an input word 

may define as many as w paths in B, so it could happen that for any choice of sink labels 

we might make, there is some word in (0,l)" which determines one path in B which ends at  

a sink labelled 0, and another path which ends at  a sink labelled 1. However, for every 

2 r..1 , ... each u E (0,l)" does determine a unique path in B, starting from j, that is, 

B(u)(j), the sink ending the path in B determined by u starting from the node labelled xjl 

in row 0, column j, is well defined. This fact suggests the following as a definition of the 

language recognized by a B-branching program. 

Definition 3.2.4 ([3]). Let B be a wBBP on n variables, and let A E [w]. Then the 
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{U E {0,1)" : B(u)(l) E A). 

Definition 3.2.5. Let 38 = (Bn):=, be a family of B-BPS such that for each n E N, 

Bn is a B-branching program on n variables of width W n ,  and for each n E N, let 

An [wn]. Then the language recognized 38 with family A = (An):=, of accepting sets 
is the language {u E {0,1)* : lul = nand Bn(u)(l) E An). A language L C {0,1)* is said 

to be recognizable & a family of BBPs if and only if for each n E N, there is a B-branching 

program Bn on n variables of width wn and a subset An of [wn] such that 

B(u)(l) E A" if and only if u E L n (0,l)". For each k E Z+ there is a B-branching 

program B: with no instructions such that BE(&) = k. 

Let z, w E z+. We remark that if z < w, then any element of M, can be extended 

to a function from [w] to [w], so that any B-branching program of width z can be thought 

of as a %branching program of width w for all w 2 z .  As with the other models we've 

discussed, we need to define the "resources" of a family of B-branching programs so that we 

can define a complexity class of languages in terms of bounds on those resources. 

Definition 3.2.6. Let '3 = (Bn)?', be a family of B-branching programs, where for 

each n E N, Bn is a BBP on n variables. Let f be a function from N to W, and for 

each n E N, let X(n) denote the length of Bn, and let w(n) denote the width of Bn. We 

say that the family 38 has length ' f(n) if X(n) = O(f(n)). We say that the family 3 has 

bounded width if for some w E Z+, w(n) _< w for all n E N. By the above comment, 

bounded width is equivalent to constant width. 

Definition 3.2.7. CWBP is the class of languages over {0,1) which are recognizable by 

a constant width polynomial length family of B-branching programs. 

Proposition 3.2.8 ([3]). CWBP = B WBP. 

Proof. Proposition 2.2.5 shows that any language recognizable by a polynomial length family 

of branching programs is recognizable by a polynomial length family of levelled branching 

programs. Proposition 3.2.1 shows that any language recognizable by a polynomial length 

bounded width family of levelled branching programs is recognizable by a polynomial length 

bounded width family of levelled branching programs such that all nodes on the same level are 

labelled by the same input variable. It is clear from discussion in this section that any 

language recognizable by a bounded width polynomial length family of such programs is 

recognizable by a constant width polynomial length family of BBPs. Therefore, BWBP is 

contained in CWBP. Conversely, suppose L E (0,l)" is recognizable by a WBBP B of 
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length I with accepting set A C [w]. Consider the array of nodes which represents B. Let 

D be the set of nodes which are connected by edges to the node labelled zjl in row 0, 

column 1 of the array. Clearly D is a branching program of width at  most w and length 

I, except that sinks carry labels in [w]. But the language recognized by B is the set of 

u E {0,1)" such that B(u)(l) E A. Therefore, when we assign the label 1 to each sink with 

a label in A, and assign the label O to all other sinks, we obtain a branching program D of 

width a t  most w and length 1 such that D(u) = 1 if and only if u E L. It follows that 

any language recognizable by a bounded width polynomial length family of B-branching 

programs is recognizable by a bounded width polynomial length family of branching programs. 

Therefore, CWBP is contained in BWBP, and thus BWBP = CWBP. 0 

Having established the equivalence between the two branching program definitions, we 

will see in the next section how Barrington's version facilitates the establishment of a 

connection between branching programs and programs for a NUDFA over a finite monoid. 

5 3.3 Branching Programs and Programs for a NUDFA over a Finite Monoid 

Recall the definition of the language recognized by a B-branching program of width w 

with accepting set A [w]. There are, of course, other possible definitions. 

Definition 3.3.1 ([3]). Let L C {0,1)", n E N, w E z', and let B be a wBBP on 

n variables. If there is a subset M of M, such that for all u E {0,1)", B(u) E M if and 

only if u E L fl {0,1)", then B is said to weakly recoanize L. If f, g E MU, are such that 

B(u) = f if and only if u E L n {0,1)", and otherwise B(u) = g, then B is said to 

strondv recognize L. For each f E M,, there is a B-branching program B[ with no 
f instructions such that BO(&) = f .  A language L C {0,1)* is recognizable by a family of 

width w B-branching programs if and only if for all n E N, L n {0,1)" is weakly 

recognizable by a w-BBP. 

Examvle 3.3.2. The B-branching program obtained from the branching program in 

Example 3.2.2 weakly recognizes the language (000, 011, 101, 110), since u E L if and only 

if B(u)(l) = 3, if and only if B(u) E {kl, f3, k3, h2). Let B be the 2-BBP on three 

variables with instructions (2, fo, f,), (3, f,, f,) where fo : 1 ct 1, 2 H 1, and fl : 1 H 1, 

2 H 2. Then B strongly recognizes the language {OOO, 001, 100, 101), since B(u) = fl if 

and only if u E L, and otherwise B(u) = fo. Note that B also strongly recognizes the 

complement of L. 

Recall (Definition 2.3.4) that a language L C {0,1)" is recognizable by a program for 
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a NUDFA over a finite monoid if and only if there is a finite monoid M, a subset B of M, 

and an n-program P n  for N(M,{O,l)) such that Pn(u) E B if and only if u E L. By 

Proposition 1.1.2, every finite monoid M such that c(M) = w is isomorphic to a 

submonoid of Mw, and this fact helps to show the following. 

Provosition 3.3.3 ([3], [5]). A language L C {0,1)* is recognizable by a family of 

programs for a NUDFA over a finite monoid if and only if there is a w E Z+ such that for 

each n E N, L n {0,1)" is weakly recognizable by a branching program of width w. 

Proof. Let L {0,1}* be recognizable by the family 9 = (Pn)rzo of programs for the 

NUDFA N(Mwl{O,l}), where for each n E N, the subsets An, An E Mw are chosen such 

that Pn(u) E An if and only if u E L n {0,1)". Let n E N. If n = 0, let B: be the 
f B-branching program with no instructions such that if c E L (if s # L), then BO(s)  = f 

for some f E So (f # So). Otherwise, consider the n-program Pn with sequence of 

instructions (jk, fk), 1 5 k 5 1, where fk : {0,1) -t Mw. Let Bn be the B-branching 

program with sequence of instructions pk  = (jk, fk(l),  fk(0)), 1 5 k < 1. Since fk is a 

function from {0,1) to Mw, f,.(l) and fk(0) are in Mw for 1 < k 5 I, Bn is a wBBP. 

Then for all u E {O,l)n, u = ulu2...un, Bn(u) E An if and only(if hl o . . .o  h2 0 hl E An, 

where for each k, hk is the yield of the instruction pk. Since pk  yields fk(l)  if ujk = 1, 

and pk  yields fk(0) if uj, = 0, then for all k E {1,2,. . .,1), pk  yields fk(ujk). Therefore, 

En( l~)  = hl 0. . .0  h2 o hl = fi(lijlj o - - . o  f2(uj2) B fi(ujl) = P ~ ( u )  for all u E {0,1)", SO 

that Bn(u) E An if and only if Pn(u) E An, that is, if and only if u E L fI {O, l )n .  

Therefore, Bn weakly recognizes L n {0,1}". Since n was arbitrary, the language L is 

recognizable by the family 38 = (Bn)r=o of width w branching programs. 

Conversely, let L E {0,1)* be recognizable by the family 3B = (Bn)r=O of width w 

branching programs, and let An E Mw be such that Bn(u) E An if and only if 

u E L r l  {0,1)". Let n E N. If n = 0, let P: be the 0-program for N(Mw,{O,l}) such 

that if s E L (if s # L), then p i ( & )  = g where g E An (g # An). Otherwise, consider 

the wBBP Bn with sequence of instructions vk = (jk, fk, gk), 1 k 5 1, where 

fk,  gk E Mw. For each k E {1,2, ...,1), let hk be the function from {0,1} to the finite 

monoid Mw defined by hk( l )  = fk, hk(0) = gk. Let Pn be the n-program for the 

, NUDFA N ( M w { O l )  with sequence of instructions (jkl hk); 1 < k 5 I ,  where 

j E 1 2  . n}. Then for u E {0,1)", u = u ~ u ~ . . . u ~ ,  Pn(u) E An if and only if 

hl(ujl) o . . .o  h2(uj2) o  hl(ujl) E An. By definition of hk, hk is the yield of the instruction 

vk on input u, SO that Pn(u) = B ~ ( u ) .  Therefore, Pn(u) E An if and only if B(u) E An, 

that is, if and only if u E L n {0,1}". Again, n arbitrary implies that the finite monoid 
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Mw, the family 9 = (Pn):=O of programs for the NUDF-4 N(Mw,{O,l)), and the subsets 

An E Mw are such that L is recognizable by a family of programs for a NUDFA over a 

finite monoid. 

Corollarv 3.3.4. B WBP = PLP. 

Proof. Let L E BWBP. Since BWBP =CWBP by Proposition 3.2.8, for some w E Z+ 

there is a polynomial length family '3 = (Bn):,O of ~ B B P s  which weakly recognizes L. 

Then there is a family of accepting sets (An):=o such that for each n E N, 

Bn(u) E An C Mw if and only if u E L n (0,l)". The family 3 is polynomial size means 

that there exist q, c, ro E N such that for all n 2 ro, X(n) 5 enq. By Proposition 3.3.3, 

for each n E N there is an n-program P n  of the same length as Bn such that Pn(u) E An 

if and only if u E L f l  (0,l)". Consider the family 9 = (Pn)TZo of programs for 

N(Mw,{O,l)). Clearly L is recognized by the family 9 for the NUDFA over the finite 

monoid Mw with alphabet (0,l). For all n 2 ro, the length of Bn which is the length of 

Pn is less than or equal to enq, so that 9 has length cnq. Therefore, L is recognizable by 

a polynomial length family of programs for a NUDFA over a finite monoid, so that 

L E PLP. The language L was arbitrary, which implies that BWBP E PLP. A similar 

argument shows that PLP $& BWBP, from which it follows that BWBP = PLP. CI 

In the next section we will see how families of branching programs and families of 

programs for a NUDFA over a (finite monoid relate to families of Boolean circuits and the 

complexity class NC'. 

$ 4 Bounded Width Branching Programs and NP 

Having modified the definition of a branching program, Barrington continued the work 

of others ([lo]), looking at  branching programs of small width, hoping that his new definition 

would provide some new insight. Given the new definition, one idea readily comes to mind. 

The idea is that of considering branching programs such that every function contained in the 

instructions is a permutation. In the study of such branching programs, one can employ the 

power of group theory. 

Definition 3.4.1 (131, [2]). Let n, w, 1 E z'. A permutation branching Drogram i; of 

width w and length 1 (abbreviated wPBP) is a wBBP such that every function in an 

instruction of B is a permutation of the set [w]. 

Barrington investigated the power of permutation branching programs of widths 2, 3, 

and 4 ([3], [2]). We present here his analysis of width 5 permutation branching programs. 
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Definition 3.4.2 ([3], [4]). Let L {0,1)", and let B be a 5-PBP. B is said to 

8-cvcle recognize L if there is a five cycle a E S5 such that B(u) = a if u E L, and 

B(u) = e if u e L, where e is the identity of S5. We call a the o u t ~ u t  of B, and we 

say that B recognizes L with output a. 

Lemma 3.4.3 ([3], [dl). Let L C {0,1)", and let B be a 5-PBP which recognizes L 

with output the &cycle a. Then for any 5-cycle r in S5, there is a 5-PBP which 

recognizes L with output T.  

Proof. Let B be the 5-PBP with sequence of instructions v,  = (j,, a,, P,), 1 5 k 5 1, 

which 5-cycle recognizes L with output a. Let 8 E Sg be such that 8 o a o 0-' = T .  Let 

k E (13, ...,1), and consider pEl where p, = Cjk,  0 o a, o 0-', 0 o pk o K1). It is clear 

that the instruction p, yields 8 o yk o e-l, where yk is the yield of the instruction v,. 

Let B' be the permutation branching program of width 5 and length 1 with sequence of 

instructions (j,, 0 o a, o 8-', 0 o p, o K'), 1 5 k < I. Then for u E {0,1)", 

B+) = (e y, 8-I) ... (e y2 8-l) (0 yl r l ) ,  which is equal to 

8 o y, o ... o yg o yl o 0-' whenever B(u) = y, o.. .o y2 o 7,. If u E L, then, since B 

&cycle recognizes L with output a, B(u) = a, so that B1(u) = 8 o a o 8-' = T .  If 

u e L, then B(u) = e, so that Bn(u) = 0 o e o 8-I = e. Therefore, B' is a 5-PBP of the 

same length as B which 5-cycle recognizes L with output r. 0 

Lemma 3.4.4 ([3], [4]). IF L C {0,1)" is 5-cycle recognized by a 5-PBP of length 1, -- 
then Ihe complement of L is 5-cycle recognized by a 5-PBP of length 1. 

Proof. Suppose that L is 5-cycle recognized by the 5-PBP B of length 1 with output u, 

and that the last instruction of B is djk, a, p). Let B' be the 5-PBP of length 1 such that 

the first 1 - 1 instructions of B' are the first 1 - 1 instructions of B, and the last 

instruction of B' is the instruction Ci;t, a-lo a, a"o p). Then for all u ~ { 0 , l ) " ,  

B(u) = y, o o yl implies that B'(u) = a-' oy, o...o yl.. If u E L, B(u) = a, so 

that BP(u) = a-lo a = e. If u 6 L, B(u) = e, so that B(u) = a-lo e = a-l, which is 

a 5-cycle. Therefore, B' is a 5-PBP of length 1 which recognizes the complement of L with 

output a-'. 0 

Theorem 3.4.5 ([3], [4]). Let. L C (0,l)" be such that there is a fan-in 2 Boolean 

circuit C on n variables of depth d such that C(u) = 1 if and only if u E L. Then 

there is a 5-PBP B of length at most 4d which 5-cycle recognizes L. 

Proof. We proceed by induction on d. If d = 1, then C is one of the circuits below. 



If C is the circuit with the A gate, then let B be the 5-PBP of length 4 with 

sequence of instructions (j, (12345), e), (k, (13542), e), (j, (15432), e), (k, (12453), e). Let 

u ~ { O , l ) ~ .  If u is an element of L, then u j = l  and u k =  1, so that 

B(u) = (12453) o (15432) o (13542) o (12345) = (13254). If u 6 L, then one of the 

following holds. Either 

(i) u j  = 1 and uk = 0, SO that B(u) = (15432) o (12345) = e, 

(ii) u j  = 0 and uk = 1, SO that B(u) = (12453) o (13542) = e, or 

(iii) u j = O  and u k = O ,  sothat  B ( u ) = e .  

Therefore, B recognizes L with output (13254). If C is the circuit with the v gate, let B 

be the 5-PBP of length 4 with sequence of instructions (j, e, (12345)), (k, e, (13542)), 

(j, e, (15432)), (k, (14523), a o (12453)), where a =(14523) is the inverse of (13254). It is 

clear that for all u E { O , l ) n ,  B(u) = E if both of uj, u, are 0, and B(u) = o otherwise. 

Therefore, B recognizes L with output o = (14523). If C is the circuit with the 1 gate, 

let B be the 5-PBP with the single instruction (k, E ,  (12345)). Then it is clear that B 

recognizes L with output (12345). Assume that for some k 2 1, if L is recognizable by a 

fan-in 2 Booiean circuit of depth d 5 k, then there is a 5-PBP of length a t  most 4d which 

5-cycle recognizes L. Let L be recognizable by a fan-in 2 Boolean circuit C of depth 

k + 1. We consider 3 cases 

( i )  C is the "and" of two fan-in 2 Boolean circuits A and D, each of depth less 

than or equal to lc; 

(ii) C is the "or" of two fan-in 2 Boolean circuits A and D, each of depth at  most 

lc; 

(iii) C is the "not" of a fan-in 2 Boolean circuit A of depth k. 

By the induction hypothesis, the languages L1 and L2 recognized by the fan-in 2 Boolean 

circuits A and D can be 5-cycle recognized by 5-PBPs of length at  most 4k. 

Consider case (i), where L = L1 f~ La. By Lemma 3.4.3, there is a 5-PBP Ba which 

a recognizes the language L1 with output a = (12345), and there is a 5-PBP Bd which 

recognizes the language L2 with output T = (13542), each of length at  most 4k. Also by 

Lemma 3.4.3, there is a 5-PBP B a  which 5-cycle recognizes the language L1 with output 

(15432) = a-', and there is a 5-PBP Bd which 5-cycle recognizes the language L2 with 

output (12453) = r-' each of length at  most 4k. Let B be the 5-PBP of length a t  most 
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4(4k) = 4kf1 whose sequence of instructions is the sequence of the instruction sequences of 
- 

Ba, Bd, Ba, Bd. Then, for all u E {O,l)", B(u) is equal to 

Ed(u) o Eo(u) o Bd(u) o Ba(u). Let u E {0,1}". Then u E L1 implies that Ba(u) = a 

and B ~ ( u )  = a-'; and u E L2 implies that Bd(u) = T and Bd(u) = T-I. Therefore, 

u E L1 n L2 = L implies that B(u) = r" 0 a-I o r o a which equals (13254) = p.  If 

u L1, then Ba(u) = e and Ba(u) = e, so that B(u) = e or B(u) = r-'0 r = e. 

Similarly, u L2 also implies that B(u) = E .  Therefore, B is a 5-PBP of length at  most 
4k+l which 5-cycle recognizes L with output p . 

Consider case (iii). L is the complement of the language L1, so by the induction 

hypothesis, L1 is 5-cycle recognizable by a 5-PBP of length at  most 4" By Lemma 3.4.4, 

the complement L of L1 is 5-cycle recognizable by a 5-PBP B of length a t  most 4k. 

Consider case (ii), where L = L1 u L2. By the induction hypothesis and Lemma 3.4.4, 

there are 5PBPs  which 5-cycle recognize the complements of the languages L1 and La, each 

of length a t  most 4" By case (i) there is a 5-PBP B of length a t  most 4k+1 which 5-cycle 

recognizes the language El n E2, where El and E2 are the complements of the languages 

L1 and L2. Again by Lemma 3.4.4, there is a 5-PBP of length at  most 4k+1 which 5-cycle - 
recognizes L = L1 n L2, the complement of El n La. 

Corollarq 3.4.6 ([3], [21]). NC' 5-PBP B WBP. 

Proof. Let L E NC'. Then there is a family C = (C):& of fan-in 2 Boolean circuits of 

polynomial size and depth logan which recognizes L. That e has depth logan implies that 

there exist integers k, c E Z+ such that for all n 2 k, 6(n) <_ clog2n. By Theorem 3.4.5, 

for each n E N, there is a 5-PBP Bn of length at  most 4*(") which 5-cycle recognizes 

L n {0,1)". Consider the family '3 = (Bn):=l of 5-PBPs which recognizes L. For n 2 k,  

X(n) < - 4'log2" = n2'. Therefore, X(n) = 0(n2'), and the language L is recognizable by a 

polynomial length family of permutation branching programs of width 5. Therefore, 

L E 5-PBP BWBP. The language L was arbitrary, so NC' 5-PBP E BWBP. 

Theorem 3.4.7 ([3], [4]). If L 2 {0,1}" is recognizable by a branching program of 

width w and length 1, then L Ss recognizable by a fan-in 2 Boolean circuit of depth 

0(log21), where the constant depends only on w. 

Proof. Let L 5 {0,1)" be recognized by the branching program B on n variables of width 

w and length 1 with sequence of instructions vk = (jk, fk, gk), 1 k 5 1, where 

fk, gk E Mw. B recognizes L, so there is a subset H = {hl, ha, ..., h,) E Mw such that for 

all u E {0,1)", B(u) E H ifandonly if u E L. 
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( i )  By Corollary 2.1.24, for each r E {1,2,. . ., 0, there is a fan-in 2 Boolean circuit 

Z, of depth 2 and size a t  most w2 + 3w + 1 which will "determine the yield" yr 

of the instruction Vr,  that is, which will, for any u E {0,1)"1 output the Boolean 

representation of fr if u,, = 1, and will output the Boolean representation of g, if 

uj, = 0. 

(ii) By Lemma 2.1.22, there is a fan-in 2 Boolean circuit Q of depth 

rlog211(rlog2wl + 1) and size a t  most ( I  - l)2w3 + w2 which will "compute the 

product" yl o...o y2 o y,, that is, which will output the Boolean representation 

y, o . . . o  y2 o yl of the product yl o.- .o  y2 0 yl. 

(iii) By Corollary 2.1.18, there is a fan-in 2 Boolean circuit F of depth 

rlog2tl + [log2w21 + 3 = rlog2t] + r2(log2m)l + 3 and size 7w2t + w2 - 1 (where 

t 5 ww), which "determines whether or not y, o...o y2 0 y1 is in H," that is, 

whether or not yl o ... o y2 o y, = K p  for some hp in H. 

(iv) Let I = {1,2,. . .,n)\{j,,j2,. . .,jl), and let q 5 n denote ~(1) .  If q > 1, then by 

Corollary 2.1.16, there is a fan-in 2 Boolean circuit K of size 2q and depth 

rlog2pl + 1 such that K(u) = 0 for all u E {0,1)~. 

For each r €{1,2,. . .,1) let Yr be the circuit Zr excluding input and output gates, let 

P be the circuit Q excluding input and output gates, let E be the circuit F excluding 

input and output gates, ar.d let J be the circuit K excluding input and output gates. 

Consider the Boolean circuit C shown below, keeping in mind that the jr are not necessarily 

distinct, and that jr is not necessarily less than j,,,, even though the diagram has been 

constructed to correspond to this case. 



The fan-in 2 Boolean circuit C has depth rlog2ql + 2, or depth 

2 + rlog2fl(rlog2wl + 1) + [log,t] + [2(log2w)l + 3, whichever is !arger. Without taking 

into account that some gates belong to more than one subcircuit, C has size a t  most 

n + 2q + l(w2 + 3w + 1) + (I - l)2w3 + w2 + 7w2t + w2 - 1 + 1. If 0 < q < 1, then 

C has depth 0(log21) where the constant depends only on w. Let u E {O,lIn, I 

u = u ~ u ~ * . ' u ~ .  Then, by definition of C, C(u) = 1 if and only if 

0 vF(yl  o..,o y2 o y1 ElEz...Et) = 1, if and only if F(Q(J,J~...J~)L~~,...E~) = 1, if and 

only if F(Q(Zl(ujl)Z2(uj2)...~l(ujl))~1~2...&) = 1. By definition of the circuits F, Q, and 

Zr, C(u) = 1 if and only if the composition of the yields of the instructions vl, v2,. . .,vl on 

input u is in H, that is, if and only if B(u) E H. But B(u) E H if and only if u E L. 

This implies that C(u) = 1 if and only if u f L. Therefore, C recognizes L. U 

Corollarv 3.4.8 ([3], [4]). B WBP C NC'. 
Proof. L E BWBP implies that there is a polynom& length family 53 = (Bn)zZo of 

B-branching programs of width w 2 1 which recognizes L. Then for each n E N, there is a 

subset An of Mw such that for all u E {O,l}n, Bn(u) E A, if and only if 

u E L n (0,l)". 53 is polynomial length, so there are constants c 2 0, a 2 1, and no E N 

such that for all n 2 no, X(n) 5 anc. From the proof of Theorem 3.4.7, for each n E N, 



there is a fan-in 2 Boolean circuit C n  of size at most 

n + 29, + A(n)(w2 + 3w + 1) + (A(n) - l)2w3 + w2 + 7w21~,1 + w2, and depth the 

larger of 5 + rlog2A(n)l(rlog2wl + 1) + rlog21Anl1 + r2(log2w)l and rlog2qnl + 2, which 

recognizes L n {0,1)", where qn is the cardinality of the set of integers i, 1 5 i 5 n 

which do not appear in the instructions for the wBBP Bn. For all n E N, qn 5 n, and 

c(An) 5 c ( M ~ )  = ww. Since Bn has size less than or equal to anc for all n 2 n,, for 

such n, the fan-in 2 Boolean circuit Cn has depth a t  most the larger of rlog2n1 + 2 and 

5 + ~log2anc~(~log2wl + 1) + rw(log2w)l + r2(log2w)l, and Cn has size a t  most 

312 + (anc)(w2 + 3w + 1) + ((anc) - l)2w3 + 2w2 + 7wW+2. Since w is constant, by 

Proposition 2.1.28, 6(n) = 0(log2n). Also by Proposition 2.1.28, since w is constant, 

u(n) = O(nc). Thus, the family C = (Cn)rZo of fan-in 2 Boolean circuits has polynomial 

size and depth log2n, and is such that for all n E N, Cn(u) = 1 if and only if 

u E L n {0,1)". Therefore, L is in NC'. The language L was chosen arbitrarily, so 

BWBP NC'. R 

Theorem 3.4.9 PLP = BWBP = 5-PBP = NC?. 

Proof. Corollaries 3.3.4, 3.4.6, and 3.4.8. O 

Conclusion 

Theorem 3.4.9 tells us that the language classes defined by the four "different" non- . 

uniform models are the same. However, when it was shown that CWBP is the same class as 

BWBP, one definition of the language recognized by a branching program was used, while 

another definition was used in order to show that CWBP is the same class as PLP. Consider 

the following. Let L be a language in NC'. Then for all n E N, L n {0,1)" can be 

5-cycle recognized by a 5-PBP Bn, by Theorem 3.4.5. This means, firstly, that for all 

n E N, L n {0,1)" is strongly recognized by Bn and, secondly, that for all n E N, there is 

an element k of {1,2,3,4,5) such that Bn(u)(l) = k if and only if u E L n {O, l )n .  Thus 

for all n E N, L n {0,1)" is both weakly and strongly recognized by Bn (Definition 3.3.1), 

and L n {O,lIn is recognized by Bn as in Definition 3.2.4. Since NC' is BWBP, we see 

that BWBP remains the same regardless of the choice of definition for the language . . 
a 

recognized by a branching program. We note that, although we presented the proof of 

Theorem 3.4.8 without taking uniformity into account, Barrington has shown that the result 

holds in the uniform case as well ([3], [dl). 

We now provide a sampling of some continuing work in this area. Denis Therien ([25]) 

has introduced the concept of a variety of congruences to add to the well known correspondence 
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between classes of languages and varieties of finite monoids (1131). Combining this work, and 

the work that we have m resented in this thesis, Barrington and Therien ( [ 5 ] )  were able to 

characterize AC' as the class of languages which are recognizable by a polynomial length 

family of programs for a NUDFA over an aperiodic monoid, and they give a similar 

characterization for another subclass of NC'. Howard Straubing, Barrington, and Therien 

([6]) have looked at  programs for NUDFAs over groups. Straubing, Barrington, Therien, and 

Kevin Compton ([7]) have characterized regular languages in NC'. 

We hope that we have provided an interesting and helpful introduction to this 

fascinating and fruitful area of research. 
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