
ON NC' LANGUAGE RECOGNITION

Elizabeth McCarthy

B. Sc., University of New Mexico, 1985

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR

MASTER OF SCIENCE

in the Department of

Mathematics and Statistics

SIMON FRASER UNIVERSITY

December, 1989

@ Elizabeth McCarthy 1989

SIMON FRASER UNIVERSITY

December 1989

All rights reserved. This work may not be
reproduced in whole or in part, by photocopy

or other means, without permission from the author.

APPROVAL

Name : Elizabeth McCarthy

Degree : Master of Science

1
Title of thesis: On NC Language Recognition

Examining Committee:

Chairperson: Dr. A.H. Lachlan

dr. N.R. Reilly
Senior Supervisor

Dr. Y.R. Freedman

Ur. A. MeK~tr

-- -

Dr. K. Heinrich
External Examiner

Date approved: December 6, 1989

ii

PARTIAL COPYRIGHT LICENSE

I hereby g ran t t o Simon Fraser U n i v e r s i t y the r i g h t t o lend

my, thesis , p r o j e c t o r extended essay (t h e t i t l e o f which i s shown below)

t o users o f the Simon Fraser U n i v e r s i t y L ib rary , and t o make p a r t i a l o r

s i n g l e copies on ly f o r such users o r i n response t o a request from t h e

l i brat-) o f any o ther u n i v e r s i t y , o r o the r educat ional i n s t i t u t i o n , on

i t s own behalf o r f o r one o f i t s users. I f u r t h e r agree t h a t permiss ion

f o r m u l t i p l e copying o f t h i s work f o r scho la r l y purposes may be granted

by me o r the Dean o f Graduate Studies. I t i s understood t h a t copying

o r p u b l i c a t i o n o f t h i s work ' fo r f i n a n c i a l ga in sha l l no t be a l lowed

w i thout my w r i t t e n permission.

T i t l e o f Thesis/Project/Extended Essay

Author:

(s ignature)

ABSTRACT

The objective of this thesis is to give a self-contained account of some recent work in

automata theory and complexity theory. This account will focus primarily on David A.

Barrington's work on bounded width branching programs and the parallel complexity class

NC'. Preliminary topics necessary for a full understanding of the new work, including

languages, monoids, and Boolean circuits, are presented, a detailed reconstruction of the proof

of Barrington's main result is given, and related results are discussed.

iii

ACKNOWLEDGEMENTS

Many thanks to Dr. Norman Reilly for being my senior supervisor, and for suggesting

a thesis topic which couldn't have been more to my liking. Thanks to my committee members

for their helpful comments. Thanks to Sylvia for doing everything which didn't absolutely

have to be done by me. Thanks to Professors T. Evans and M. Neff of Emory University for

helpful courses and/or seminars while I was away from SFU. Finally, thanks to ".ANNn and

thanks and all my love to Luca.

TABLE OF CONTENTS

Introduction

Chapter I Preliminaries

5 1.1 Algebraic and Linguistic Preliminaries

5 1.2 Decidability, Computability, and Complexity

Chapter II Non- Uniform Models of Computation

!j 2.1 The Boolean Circuit Family Model of Computation

5 2.2 Bounded Width Branching Programs

3 2.3 Programs for a NUDFA over a Finite Monoid

Chapter 111 Non- Uniform Models of Computation and ~6

5 3.1 Uniform Boolean Circuit Families and the Complexity Class NC

3 3.2 Barrington's Branching Programs and RWBP

f 3.3 Branching Programs and Programs for a NUDFA over a Finite Monoid

5 3.4 Bounded Width Branching Programs and NC'

Conclusion

References

1

Introduction

The objective of this thesis is to give a self-contained account of some recent work in

automata theory and complexity theory. The primary focus is the work of David A.

Barrington on bounded width branching programs and the complexity class NC'. A detailed

reconstruction of his main result is given, and related results are also discussed.

Chapter I is divided into two sections. In the first section, we set up some notation, and

recall some fundamental definitions and results concerning semigroups and languages, which

will be used in the sequel. In the second section, we recall the definitions of a computable

function and a recognizable language, and present an informal discussion of some ideas in

complexity theory, to provide a context for later material.

Chapter I1 is devoted to a study of three non-uniform models of computation. In the

first section we discuss the Boolean circuit family as a model of computation. In the second

section, we discuss the family of branching programs as a model for language recognition, and

define a complexity class, BWBP, of languages based on the model. In the final section of

the chapter, we discuss the family of programs for a non-uniform deterministic finite

automaton (NUDFA) as .a model for language recognition, and define a complexity class,

PLP, of languages based on the model. We show that PLP contains the regular languages.

In Chapter 111, we establish numerous connections between the computational models

discussed in Chapter .II. In the first section we discuss the concept of uniformitv which

provides a "bridgen between non-uniform models of computation, such as those studied in

Chapter Two, and uniform models of computation, such as the Turing machine. We then

define the parallel complexity class NC' in terms of Boolean circuit families.

In section two, we present David A. Barrington's version of the branching program

model, and show that, given a certain choice of definition for the language recognized by one of

Barrington's branching programs, the complexity class CWBP of languages defined in terms

of his modified branching program model is the same as the complexity class BWBP of

languages defined in terms of the branching program model discussed in Chapter 11.

In section three, we show that, given a different choice of definition for the language

recognized by one of Barrington's branching programs, the complexity class CWBP of

languages defined in terms of his branching program model is the same as the complexity class

PLP of languages defined in terms of programs for a NUDFA over a finite monoid, as

discussed in Chapter 11.

2

In the fourth and final section, we present a detailed reconstruction of the proof of

Barrington's main result that the complexity class BWBP of languages is exactly (non-

uniform) NC'.

We conclude with a discussion of some of the consequences of Barrington's result, make

some further observations, and briefly summarize some further developments in this area.

3

Chapter I Preliminaries

In this chapter we briefly review some basic definitions and fundamental results in the

theories of semigroups, languages, decidability, computability, and complexity, from which the

work we will later examine in detail, evolved.

5 1.1 Algebraic and Linguistic Preliminaries

We assume a knowledge of the definitions of and basic results about groups (see, e.g.,

[14]), semigroups, and monoids (see, e.g., [18]), and a familiarity with homomorphisms and

congruences on these algebras. We also assume some knowledge of automata theory, including

finite state machines and regular languages ([13]).

Definition 1.1.1. Let w E z+. The set 1 2 , w is denoted [w]. The

transformation monoid, or the monoid of all functions from [w] to [w], is denoted M m . A

subsemigroup of a transformation monoid is called a transformation semiarouv. The

svmmetric m, or the group of all permutations of [w], is denoted Sw. We write g o f to

denote the composition of f and g, where (g o f)(x) = g(f(x)).

Proaosiiion 1.1.2. Every semigroup is isomorphic to a transformation semigroup. In

particular, if M is a finite monoid of cardinality w, denoted c(M) = w, then M is

isomorphic to a submonoid of Mw.

The following definitions and results may be found in Eilenberg ([13], vol. A).

Definition 1.1.3. Let n E Z+, and let C = {al,a2,. . .,a,}. Then C is called an

a l~habet , each ai is called a letter, and u = ailoi2...uik, where each ai E C, is called a
j

word over the a l~habet C of length k, denoted I u I = k. For each n E M, we write Cn ---
to denote the set of all words over C of length n. The unique word over C of length 0 is

denoted c . C* denotes the set of all words over the alvhabet C, which is, together with the

operation of concatenation, the free monoid generated bv the set C.

Definition 1.1.4. Let C be a finite alphabet. A subset L 2 C* is called a language

over C.

Although there are other characterizations for it, and a great deal is known about the

class of regular languages (see [13], [19]), the following is sufficient for our purposes.

Definition 1.1.5. Let C be a finite alphabet. A language L 2 C* is said to be

regular if there is a finite monoid M, a subset B of M, and a homomorphism

q5 : C* + M such that L = $-'(B).

4

Proposition 1.1.6. Let C and I? be finite alphabets, let L be a regular language over

C and let 4 : C* - I'* be a homomorphism such that $ - I (&) = E . Then $ (L) is a

regular language over r.

Definition 1.1.7. Let C and J? be finite alphabets, and let f be an injective function

from C* to I?*. The function f is said to be a coding. For each u E C*, the element

f(u) E r* is called the encoding of u, and u is called the decoding of the element

f(u) E r*.

3 1.2 Decidability, Computability, and Complexity

In this section we recall the definitions of a computable function and a recognizable

language, and briefly and informally discuss some ideas in complexity theory. Knowledge of

the definition of, and basic facts about the Turing machine is assumed (see [17]).

Definition 1.2.1. Let C and I? be finite alphabets. A function f : C* -, r* is said

to be com~utable if there is a Turing machine which, for each input u E C*, will halt and

output f(u). A partial function f : C* 4 I'* is said to be computable if there is a Turing

machine which will, for each u E C* such that f(u) is defined, halt and output f(u).

Definition 1.2.2. Let C be a finite alphabet. A language L 2 C* is said to be

recursive, or recognizable if there is a Turing machine, whose states are partitioned into

"accepting" and "rejecting" states, which halts on every input word u E C*, and which halts

in an 'accepting" state if and only if u E L. A language L C C* is said to be recufsivelv

enumerable if there is a Turing machine which will halt in an accepting state for each

u E C*, and which either halts in a rejecting state or does not halt if u @ L.

We recall that we may, without loss of generality, restrict our attention to functions on

{0,1)* and languages over {0,1), since every finite alphabet C can be encoded into words

over {0,1) in such a way that a language over C is recognizable if and only if the encoded

language over {0,1) is recognizable. There is an analogous result for functions f : C* -, I?*

(see [17]).

Once it had been established just what it means for a problem to be solvable, it seems

natural to ask, of a solvable problem, 'how hard is it to solve?," or, "how much time and/or

space is required for its solution?" These are some of the questions which concern complexity

theorists (see [12]). Given a model of computation, such as the Turing machine, we first define

the "resources" of the model. The "resources" of a Turing machine include time and space.

Once a Turing machine has been constructed which computes a particular function, the time

5

the Turing machine takes to compute the function is an upper bound on the time complexity

of the function, the space required to compute the function is an upper bound on the space

complexity of the function, and the time and space required to compute the function is an

upper bound on the simultaneous time and space complexity of the function. If a Turing

machine has been constructed which takes time T to compute a function f, and it is proven

that f cannot be computed by any Turing machine, in less time than T, then the function is

said to have time complexitv T. The s~ace complexity and simultaneous time and space

com~lexity of the function f are defined in an analogous manner.

Anyone who has ever attempted to construct a Turing machine which computes even a

very simple function can appreciate how difficult it must be to prove that one has constructed

an "optimal" Turing machine to compute a function. Complexity theorists look to other

computational models for which it may be easier to prove "lower bounds" on the complexity of

functions, which can then be translated into lower bounds on the complexity of the functions

as based on the standard Turing machine model ([16]). In the next chapter we will study

several computational models now under consideration in this context (see, e.g., [lo], [16], [24],

P51)-

6

Chapier 11 Non- Uniform Models of Computation

In this chapter, we study three different non-uniform models of computation. These

models are called non-uniform because, in contrast to more familiar models of computation,

such as the Turing machine, where one Turing machine works on input words of arbitrary

length, these models consist of families of "components", one component for each input length,

which processes input words of one length only. Because of their "non-uniformity", it is

difficult to see how these models compare with models such as the Turing machine (see [20]).

This "difficulty" will be addressed in Chapter three.

In section one, we look at Boolean circuit families. In section two, we look at families of

branching programs. In the third and final section of this chapter we study families of

programs for a non-uniform deterministic finite automaton over a finite monoid.

2.1 The Boolean Circuit Family Model of Computation

We begin the section with a discussion of Boolean circuits, the components of the

computational model by which the parallel complexity classes NC, N C ~ , and A C ~ will

eventually be defined. A Boolean function is a function from {0,1}" to { O , l where

n E Z+. Let Q = {A, V, 1) be the set of Boolean functions defined by the table below.

We review some facts concerning Boolean functions and Boolean formulas, all of which

can be found in, e.g., [26] or [23].

Definition 2.1.1. ' Let X = {xl,x2,. . .,xn,. . .) be a set whose elements are called

variables. A Boolean formula is defined inductively as follows:

(i) xi is a Boolean formula for all j E z'.
(ii) If CY 2nJ p - zP %olean fnrml1las, then (a A P), (a v P), and (l a) are

Boolean formulas.

n Since the functions A (and) and v (or) are associative, we will often write A xi to
i=l

denote the Boolean formula ((. . .((xl A x2) A x3) A.. .) A x*), and the case v will be handled

similarly. Let n E Z+, and let P(xl,xz,. . .,xn) be a Boolean formula containing the variables

7

{x1,x2,.. .,xn). The Boolean formula P defines a (Boolean) function from {0,1)" t o {0,1)

in the following way. For each a = ala2.. .an E {O,l)", the value P(a) is obtained by

replacing for each i E {1,2, ..., n) every occurrence of the variable xi in P with ai, and

evaluating the resulting expression according to the rules for A, v, and 1, given in the table

above.

Lemma 2.1.2 [26]. Let n E Z+, and let f : {0,1)" -+ {0,1) be a Boolean function. --
Then there is a Boolean formula P(xl,x2,., .,xn) such that Aa) = P(a) for all a E (0,l)".

Proof. Let a1,a2 ,..., ak E {O,l)" be such that f(a) = 1 if and only if a E {a1,a2 ,..., ak),
i j i i where 1 5 k 5 2". For each j E {1,2,. . .,k), a = ala 2...an, let Pj(xl,x2,. . .,xn) be the

Boolean formula 2 y, where y, = x, i if a, = 1, and y, = (12,) if a); = 0. Let
r=l

P(x1,x2,. . ., xn) be the Boolean formula Pi (xl,x2,. . .,tn). Then for b E {0,1)", P(b) = 1 if
t = l

and only if for some t E {1,2,. . .k), P,(b) = 1, that is, if and only if for all r E {1,2,. . .,n),

y,(b) = 1. By definition of Pi, yr = x, if at = 1, and yr = (T X ~) if a t = 0, SO that

yr(b) = 1 if and only if br = at . Therefore, P,(b) = 1 if and only if br = aF for all

r E {1,2,. . .,n), if and only if b = at, and P(b) = 1 if and only if b E {a1,a2,. . .,ak), that

is, if and only if f(b) = 1. Therefore, P is the desired Boolean formula. Cl

Let m, n E z', and let f be a function from {0,1)" to {O, l)m. For each

i E {1,2, ..., m), we define'a Boolean function fi : {0,1)" -+ {0,1) by fi(a) = (f(a))i, the

i-th letter of f(a), for all a E {0,1)". Then, for all a E {0,1)", f(a) = fl(a)f2(a)-..fm(a).

This observation and Lemma 2.1.2 give us the next corollary.

CoroNary 2.1.3. Let m, n E z', and let f be a function from { O , l) n to {O, l)m.

Then there are Boolean formulas P1(x1,x2,. . .,xn), P2(x1,x2,. . .,xn), . . ., P ~ (x ~ , x ~ , . . .,xn) such

ihat for all a E {0,1)", Aa) = /31(a)/32(a)-.-pm(a).

Proof. Direct application of Lemma 2.1.2 to the m functions fi defined as in the discussion

above. 0

Definition 2.1.4. Let l? = (0, 1, A, v, -I), where 0 and 1 are the constant Boolean

functions, with values 0 and 1 respectively, and A, v, and 1 are as defined in the table.

An extended Boolean formula is defined inductively as follows:

(;) !, ? -rd. * art. ~vtonded Boolean formulas for all j E Z+. I

(i i) If a and p are extended Boolean formulas, then (a! A P), (a! v P), and

(l a) are extended Boolean formulas.

Definition 2.1.5. An acvclic, directed a r a ~ h is a set of nodes together with a set of arcs,
each arc connecting two nodes which satisfies the following:

8

(2) each arc is an arrow directed from one node into another; and

(i i) each arc connects two distinct nodes, and any path traced along the arcs

following the direction of the arrows through the nodes will pass through a node of

the graph a t most once.

Definition 2.1.6. The indearee of a node in a directed graph is the number of arcs

directed into the node. The outdegree of a node in a directed graph is the number of arcs

directed out of the node. A node with indegree zero is called a source, and a node with

outdegree zero is called a sink.

Definition 2.1.7 (see [16], [Ill). A Boolean circuit on n variables is a finite, nonempty,

acyclic, directed graph with nodes called & and arcs called edges which satisfies the

following.

(a) There are k 2 n sources. For each i, 1 5 i < n, there is a source labelled

by the variable xi . Other sources, if any, carry one of the labels 0 and 1. The n

sources which carry the variables xi as labels are called i n ~ u t gates.

(i i) There are m sinks called o u t ~ u t gates, and for each j, 1 < j 5 m, there is

an output gate labeled by the variable yj.

(iii) All gates of indegree 1 carry the label -I.
(i v) All other gates are of indegree greater than or equal to two, and each of these

gates carries one of the labels A, v.

Definition 2.1.8. The of a Boolean circuit is the number of gates in the circuit. The

d e ~ t h of a Boolean circuit is the length of the longest path (i.e., greatest number of consecutive

edges) from an input gate of the circuit to an output gate of the circuit. The indegree of the

gate of largest indegree is the fan-in of the Boolean circuit.

Examvle 2.1.9. Consider the Boolean circuit below, where by convention all edges are

directed down.

9

This Boolean circuit has 8 sources, 6 input gates, and 7 sinks or output gates. Its

size is 16, its depth is 3, and it has fan-in 3.

We now describe how a Boolean circuit B with n input gates and m output gates

computes a function from {O,lIn to { O , l) m , where m, n E z+.

Definition 2.1.10. Let C be a Boolean circuit, and let g be a gate in C. The rank of

g is the length of the longest path from a source in C to g. Sources have rank 0.

Definition 2.1.11. Let C be a Boolean circuit with n input gates. Let

a = ala2;-.an E {0,1)". For each gate g in C, the value va(g) of the gate g on i n ~ u t a

is defined inductively as follows:

(i) If g has rank 0, then vn(g) = ai if the label of g is xi, va(g) = 1 if the label

of g is 1 and va(g) = 0 if the label of g is 0.

(ii) If g has rank k and va(h) has been defined for each gate h in C of smaller

rank, then if the label of g is V and hl, h2, ..., h, are gates from which there are

edges entering g, then va(g) = va(hl) V va(h2) V V va(ht). Similarly, if the

label of g is A , then va(g) = va(hl) A va(h2) A ... A va(ht). If the label of g is

1, then va(g) = -wa(hl).

Definition 2.1.12. Let C be af Boolean circuit with n input gates and m output

gates ol, 02, ..., om. Let f : { O n { 0 , l m be the function defined by

f(a) '= va(ol)va(02).-.va(om). We call f the function com~uted the Boolean circuit C.

The value of the function computed by C on input a is denoted C(a).

Note: If rn = 1, then the set {u E {O, l)* : B(u) = 1) is called the language -
recoenized B. Also, we will omit the labels yi on output gates whenever we have

constructed a circuit for which a description such as "the Cth output gate from the leftn makes

sense. In such a case, "the i-th output gate from the leftn, is understood to be the output gate

labelled yi. All edges are directed downward.

If B is a Boolean circuit with n input gates and one output gate, then B computes a

Boolean function. So by Lemma 2.1.2, there is a Boolean formula which corresponds to the

Boolean function computed by the circuit B. If the circuit B has more than one output gate,
'

then for each output gate Gi (labelled yi) of B, consider the subcircuit of B consisting of

Gi and all gates "above" it which lie along some path starting at Gi and traced backward

along the edges of B. This subcircuit of B has j 5 n input gates and one output gate Gi,

and therefore computes a Boolean function. Again by Lemma 2.1.2, there is an extended

Boolean formula which corresponds to the Boolean function computed by the subcircuit of B

10

with output gate Gi. It follows from Corollary 2.1.3 that for each Boolean circuit B with n

input gates and m output gates, there is a sequence of m extended Boolean formulas which

corresponds to the function from {0,1)" to {O, l)m computed by the Boolean circuit B. We

now provide an example to illustrate this verbal description of a method ([23], [26]) to obtain

extended Boolean formulas which correspond to a given Boolean circuit.

Examole 2.1.13. We first assign a number to each gate of the circuit of Example 2.1.9

which is not an output gate.

Then, yl = xl, y2 = (76) = (~ (1 ~ 2)) = (l(X2vt4)), y3 = 23, = 0,

y7 = (3 ~ 5) = (x5v1), Y4 = (6 ~ 2 ~ 7) = ((x ~ v x ~)) A x ~ A (x ~ A ~) = ((x ~ v x ~)) A x ~ A (z ~ A x ~) , and

Y5 = (19) = (~ (7 ~ 8)) = (~ ((x ~ A x ~) v (~ ~))) = (~ ((x ~ A x ~) v (~ x ~))) . Let Pi = yj for

1 5 i 5 7. Then PI, P2, P3, P4, P5, P6, P7 is the desired sequence of extended Boolean

formulas corresponding to the given Boolean circuit.

Example 2.1.14. From the above, we see that the Boolean circuit of Example 2.1.9

computes the function f : { 0 1 6 {0,17 defined by f(a) = Pl(a)P2(a)...P7(a) for all

a E (0,l)".

Conversely, given a sequence of extended Boolean formulas PI, Pa, . . ., P m , containing

variables among {xl,x2,.,.,x}, we would like to be able to construct the corresponding

Boolean circuit. Let j E {1,2,. . .,m). If the Boolean formula P j does not contain an element

of R, then p j = 0, or Pi = 1 or P j = xkl for some k E {1,2, ..., n). Then the Boolean

circuit corresponding to P j would be

1-1 , 1 or -1 , respectively. Assume that for some 1 2 0, if P j
~mt?,!?: 1 or fewer elements of R, then we can construct a Boolean circuit which corresponds

to the formula pi. Suppose P j contains 1 + 1 elements of R. Then P j = (a l A a2) , or

P = (a l v a2) , or Pi = (l a1) , where al and a2 are Boolean formulas containing 1 or

fewer elements of R. Since a1 and a2 contain 1 or fewer elements of R, we "have"

corresponding Boolean circuits A' and A2. The Boolean circuit C j corresponding to the

Boolean formula P j would then be

, o; , respectively.

A, Y j "7 Y j -1 Y j

Thus, by induction on the number of elements of R contained in an extended Boolean

formula, we can construct the corresponding Boolean circuit, so that for each j E {1,2,. . .,m),

we have a Boolean circuit C j which corresponds to the Boolean formula Pj. Rather than

duplicating them, we let the Boolean circuits C1, C2, ..., Cm "share" input gates in the

obvious way, and we obtain the Boolean circuit C which corresponds to the given sequence

Pl, P2, . . ., P m of Boolean formulas containing the variables {xl,x2,. . ., ~ n) , as shown below.

Of course, for each j, k E {1,2, ..., m) such that C j is the circuit x,, yj , and the 0
variable x, appears in the Boolean formula Pk, we let C j be as the circuit shown below, so

that Ck can "share" the input gate labelled z,.

Thus, any function f : {O, l)n + {O,l}m, where m, n E N, can be computed by a

Boolean circuit. We now look at some specific functions on {O,l}n and the Boolean circuits

which compute them, paying particular attention to the size and depth of these circuits.

Lemma 2.1.15. Let n > 2. Then there is a fan-in 2 Boolean circuit Cn of depth --
rlog2n] and size 2n - 1 which compuies the fznction 9 xk : {0,1)"--, {0,1).

k = l

Proof. We proceed by induction on n. Let C2 be the fan-in 2 Boolean circuit shown

below.

12

The circuit C2 computes xl v x2, has size 3, which equals 2(2) - 1 = 2n - 1,

and has depth [log221 = rlog2nl = 1, so the lemma holds for n = 2. Assume that for some

k 1 2, n <_ k implies that there is a fan-in 2 Boolean circuit of size 2n - 1 and depth
n

rlog2n] which computes the function V xj. Let r = [log2(k + I)]. I t is immediate that
j=1

2'-' - < k. This and the fact that k + 1 <_ 2' imply that both 2'-l and k + 1 - 2'-' are

less than or equal to k. By the induction hypothesis, there is a fan-in 2 Boolean circuit A

of size 2 (2) - 1 = 2 - 1 and depth rlog2(2'-')I = r - 1 which computes the
r-1

function 2,v xj, and there is a fan-in 2 Boolean circuit B of size 2(t) - 1 and depth
]=I k+l

rlog2t], where t = (k + 1 - 2'-I), which computes the function V xj. Let Ck+, be
j=zr-'+1

the fan-in 2 Boolean circuit shown below.

The circuit Ck+l computes A(xl,x2,. . ., x,) v B(x:,+' ,x,+~ ,. . ., xk+J, where
k+1

m = 2'-', which is equal to () V (+ = jYlxj. The circuit + has

size 1 + (2' - 1) + (2t) - 1 = (2' - 1) + 2(k + 1 - 2'-') = 2(k + 1) - 1. The circuit

Ck+l has depth 1 plus the maximum of the depths of A and B, which implies that Cktl

has depth 1 + r - I = r = pog2(k += I)]. Therefore, the lemma holds for all n 2 2.

Corollarv 2.1.16. For all n 2 2, there i s a fan-in 2 Boolean circuit of size 2n - 1

and depth rlog2n] which computes ihe function xk. k = l

Lemma 2.1.17. Let n E 7'. Then dhere is a fan-in 2 Boolean circuit C of size

8n - 1 and depth [log2n1 + 3 such that for all u, v E {O,lIn, q u v) = 1 if and only if

u = v.

Proof. Let u, v E {0,1)", where n E z+. Then u = u ~ u ~ " . u ~ = v ~ v ~ . " v ~ = v if and

only if ui = vi for all i E {1,2,. . .,n}. Let i E {1,2,. . .,n}. Consider the Boolean formula

~ i (x i , xn+ i) = ((-3) v x,+~) A (xi v (- Ix ,+~)) = xi - x ~ + ~ . For u, v E {0,1)", pi is such

that Pi(ui, vi) = 1 if and only if ((1 ~ ~) v vi) A (ui v (1 ~ ~)) = 1, that is, if and only if

((i u i) v vi) = 1 and (ui v (7vi)) = 1. If ui = 0 and (ui v (7 ~ ~)) = 1, then vi = 0. If

* ui = 1 and ((l u i) v vi) = 1, then vi = 1. Therefore, Pi(ui, vi) = 1 implies that

ui = vi. Clearly u = v implies that Pi(ui, vi) = 1, so we have that Pi(ui, vi) = 1 if
n

and only if ui = vi. Let P(xl,x2.. .xzn) be the Boolean formula A Pi. Then ~ (u v) = 1 if
j=1

and only if Pj(uj, vj) = 1 for all j E 1 2 . n } if and only if u j = v j for all

j E {1,2 ,..., n), if and only if u = v.

For each j E {1,2,. , .,n) let C j be the Boolean circuit shown below.

Clearly, C j is the Boolean circuit which corresponds to the Boolean formula

/3j(xj,xn+j). Let A be the Boolean circuit C j excluding input gates, and let C be the

Boolean circuit below.

The intention is, of course, that each pair of input gates labeled xj and xn+ be input

gates for the "partialn circuit A, and that the output gates of the n copies of A be

connected by "andn gates. The fan-in 2 Boolean circuit C computes the function from

{0,1}~" to (0,l) which corresponds to the Boolean formula ./I /3j(xjlxn+j). Therefore, for

all uv in {0 ,1}~~, C(uv) = 1 if and only if Pj(uj, vj) = 1 for all j 1 2 . n } that is,

if and only if u = v. The Boolean circuit C j has depth 3, so by Corollary 2.1.16, C has

depth rlog2nl + 3. C j has size 7 , so again by Corollary 2.1.16, C has size

7 n + (n - 1) = 8n - 1. Therefore, C is the desired Boolean circuit.

Corollaru 2.1.18. Let n E z', and let S be a nonempty subset of {O,l}n, where S

has cardinality s. Then there is a fan-in 2 Boolean circuit C of size 7sn + n - 1 and

depth [logznl + rlog2s1 + 3 such that for all u in {O,lIn, C(u) = 1 if and only if

u E S.

PTDOf. Let S = (u1,u2,...,ua}, u j = ului---u!. Let E denote the circuit of Lemma 2.1.17,

14

excluding input gates. Consider the fan-in 2 Boolean circuit C shown

below.

The intention is, of course, that for each j E 1 2 s } the input gates and the

sources corresponding to the element u j E S be "input gates" for the "partial circuitn E,
and that the output gates of the s copies of E be connected by "orn gates. By Lemmas

2.1.15 and 2.1.17, C has depth rlog2sl + 3 + rlog,nl and size

s(8n - 1) - (s - 1)n + s - 1 = 7sn + n - 1. Let u E {0,1}". It is clear that C(u) = 1

if and only if ~ (u u ~) = 1 for some uk E S, if and only if by Lemma 2.1.17, u = uk for

some uk E S; that is, if and only if u E S. Therefore, C is the desired Boolean circuit. 0

We would like to show next that the "problem" of multiplication in a finite

transformation monoid Mw can be "solvedn by Boolean circuits. Of course, the first thing we

need is a way of representing an element of M w as a word over the alphabet {0,1}.

Definition 2.1.19 ([3]). Let w E a+, and let f be a function from [w] to [w]. The

Boolean remesentation T of the function f is the word

(1 w2 T = (aij)y=l y'l E {0,1} ,
where a i j = 1 if f(i) = j , and otherwise a i j = 0. We often write (aij) to simplify

notation.

Lemma 2.1.20. Let w E Z+, and let f and g be functions from [w] to .[w], and --
-

, let f = (aij) and ij = (bij) be their Boolean representations. We define i j o 7 to be the
w -

word (cij), where for each pair i, j E [w], ci = V (aik A bk j). Then i j o f = g o f .
k = l

Proof. Note that ci j = 1 if and only if for some k E [w], aik A bkj = 1; that is, if

and only if for some k E [w], aik = bkj = 1. Since T and g are the Boolean

representations of the functions f and g, this is the case if and only if f(i) = k and

g(k) = j; that is, if and only if g(f(i)) = (g o f)(i) = j. Therefore, (cij) = 1 if and only if

(g o f)(i) = j, which implies that (cij) is the Boolean representation of g o f , and that

g o b g o

Lemma 2.1.21. Let w E E'. There is a fan-in 2 Boolean circuit of depth --
rlog2wl + 1 and size 2w3 + w2, which, given input 5, where ij are the Boolean

representations of functions f, g : [w] -, [w], will output 3.
Proof. We obtain the desired fan-in 2 Boolean circuit C as follows. First we need a row of

2w2 input gates. The first w2 input gates are labelled by the variables xij in the order

((x ~ ~) ~ . ~) ~ ! . ~ , and the other w2 input gates are labelled by the variables yij, in the same.

order. Let i, j E [w]. For each k E w, we connect the w pairs of input gates labelled by

the variables xik and ykj by an "A" gate. We then connect these w "A" gates by "vn

gates. By Lemma 2.1.15, this can be done using w - 1 fan-in 2 "v" gates in depth

rlog2wl. It is clear from Lemma 2.1.20, that the partial circuit we have thus far constructed

is the fan-in 2 Boolean circuit of size 2w2 + 2w - 1 and depth rlog2wl + 1 which

corresponds to the Boolean formula which defines cij. Therefore, this partial circuit outputs

(gof)ij on input @, where T and g are the Boolean representations of functions

f, g : [w] -t [w]. We complete the circuit by following this construction for the rest of the pairs

i, j E [w], being careful that the ij-th output gate is the output gate of the partial circuit

which computes (g o i We obtain the fan-in 2 Boolean circuit C below, where the

intention is of course that the circuit contains w2 - 1 additional copies of the partial circuit

which corresponds to (g o i j .

By Lemma 2.1.20, C computes 3 on input @ where ? and g are the Boolean

representations of f, g : [w] -+ [w]. C is a fan-in 2 Boolean circuit of size

2w2 + w2(2w - 1) = 2w3 + w2, and depth rlog2wl + 1. Therefore, C is the desired

Boolean circuit.

We say that the Boolean circuit C in Lemma 2.1.21 computes the product of 2

elements of the monoid Mw.

Lemma 2.1.22. Let w E z+. For each k 2 2, there is a fan-in 2 Boolean circuit of --
size (k - l)2w3 + w2 and depth rlog2k1(rlog2w1 + 1) which computes the product of k

elements of the monoid Mw.

Proof. Multiplication in the monoid Mw is associative, so the order in which the

compositions are computed does not matter. We proceed by induction on k. The case n = 2

is Lemma 2.1.21. Assume that for some n 2 2, 2 5 k < n implies that there is a fan-in 2

Boolean circuit which computes the product of k elements of Mw of the right size and depth.

Let k = n + 1. As in Lemma 2.1.15, if r = rlog2(n + 1)1, both 2'-' and n + 1 - 2'-'

are less than or equal to n. By the induction hypothesis, there is a fan-in 2 Boolean circuit

A of size (2'-' - 1)2w3 + w2 and depth (r - l) (l o g 2 w + 1 which computes the

product of 2'-I elements of M w . Also by the induction hypothesis, since n + 1 < 2', there

is a fan-in 2 Boolean circuit B of size (n - 2'-')2w3 + w2 and depth t, where t is at

most the depth of A, which computes the product of n + 1 - 2'-' elements of the monoid

Mw. Using the output gates of the circuits A and B as input gates for the circuit D of

Lemma 2.1.21, we obtain the fan-in 2 Boolean circuit C of size equal to the sum of the

sizes of the circuits A, B, and Dl less the 2w2 gates which are both output gates for A or

B,* and input gates for D, and depth equal to the maximum of the depths of A and B,

plus the depth of the circuit D, shown below.

B has depth less than or equal to the depth of A, and by Lemma 2.1.21 the circuit

D has depth [log2w1 + 1, SO (r - l)(rlog2w1 + 1) + rlog2w1 + 1 = 7(rlog2w1 + 1) is

the depth of C. Therefore, C has depth rlog2(n + l)l(rlog2w1 + 1). Since A has size

(2'-' - l)2w3 + w2, B has size (n - 2'-')2w3 + w2, and D has size 2w3 + w2, the

circuit C has size (n)2w3 + w2. Thus C is a fan-in 2 Boolean circuit of the right size and

, depth, which clearly computes the product of n + 1 elements of the monoid Mw.

Lemma 2.1.23. Let w E Z+ and let j, g E Mw be such that for some i , fii) = j --
and g(i) = k, where j # k, and for m # i, flm) = g(m). Then there is a fan-in 2

Boolean circuit of size w2 + 4 and depth 2 which will output f on input 1, and will '

output ?j on input 0.

17

Proof. Without loss of generality, j < k. By definition of their Boolean representations,

g = a l l - -+a i j-lOai j+l---aik-llaik+l. ..aww.

Consider the fan-in 2 Boolean circuit C shown below.

C is a fan-in 2 Boolean circuit of size w2 + 4 and depth 2. On input 1, C
-

outputs C(l) = all. . .aij-llaij+l.-.aik-lOaik+l.-,aww = f , and on input 0, C outputs

- 0 C(0) = all...aij-lOai j+l-.-aik-llaik+l-.-aww = g.

Corollary 2.1.24. Let w E z+. For any f, g E Mw, there is a fan-in 2 Boolean

circuit of size at most w2 + 3w + 1 and depth 2 which outputs 7 on inpet 1 , and

outputs 3 on input 0.

Proof. By definition of the Boolean representations f and g, there are at most w pairs j,

k E [w], j < k, such that a i j # bi j and aik # bik, where f = (a,,), and g = (b,,) r ,

t E [w]. Using Lemma 2.1.23 in the obvious way, we construct a fan-in 2 Boolean circuit of

depth 2 and size at most w2 + 3w + 1 which outputs ? on input 1, and outputs g on

input 0. 0

Now that we have a sufficient understanding of Boolean circuits, we are in a position to

show how a family of Boolean circuits constitutes a model of computation, which entails

showing how such a family can be said to "compute a function," and how such a family can be

said to "recognize a language." Prior to doing so we will make some observations about them.

Recalling how a Boolean circuit computes a function, it makes sense to think of the

depth of the circuit as being the time required by the circuit to compute the function.

Additionally, we note that in general, in the course of a computation performed by a Boolean

circuit, several "operations" are performed simultaneously. This being the case, the Boolean

circuit is said to compute tne Iunction I "in parallel." So-called parallel models of

computation, those which make use of many "processorsn to perform different parts of a

computation simultaneously, are the subject of much current research ([Ill). One obvious

motivation for the interest in such models is that there are many computational problems such

that the time required for their solution could be drastically reduced should a "parallel

18

computer" be available. The Boolean circuit family, as defined below, is one such parallel

model of computation.

Definiton 2.1.25 ([Ill). Let C = (Cn)TZo be a family of Boolean circuits such that for

each n E N, the Boolean circuit Cn has n input gates. Then the function c o m ~ u t e d & C

is the function C : {0,1)* --, {O,l)* defined by C(w) = Ck(w), where k is the length of w.

A function f : {0,1)* -+ {0,1)* is said to be com~utable & a Boolean circuit family if there is

a Boolean circuit family C = (Cn)rZo such that for each n E N, the Boolean circuit Cn

has n input gates, and is such that for all w E {0,1)", C ~ (W) = f(w).

Definition 2.1.26 ([16]). Let C = (Cn);=o be a family of Boolean circuits such that

for each n E N, the Boolean circuit Cn has n input gates and one output gate. Then the

lanauaae recognized C is the language L C { O , l) * defined by

L = {w E {0,1)* : C(w) = 1). A language L c {0,1)* is said to be recognizable 5

Boolean circuit family if there is a Boolean circuit family C = (Cn)SP,O such that for each

n E N, the Boolean circuit Cn has n input gates and one output gate, and is such that

{w E (0,l)" : C ~ (W) = 1) = L n {0,1)".

Given Definitions 2.1.25 and 2.1.26, we notice.that a Boolean circuit family computes

a function f : {0,1)* -+ {0,1)* if and only if for each n in N, there exists a k E Z+ such

that f(w) E {0,1)~ for all w E {0,1)", and that as it stands, every language over {0,1) is

recognizable by a Boolean circuit family ([20])! However, we are,.not concerned here with the

absolute computational power of Boolean circuit families. What interests us in our study of

Boolean circuit families is what they are able to do when "resource bounds" are imposed on

them. Before we can discuss this further, we need the following definitions and results

concerning the rate of growth of functions, all of which can be found in Davis [12].

Definition 2.1.27. Let f and g be functions from N to N. If there are positive

integers no and c such that for all n 2 no, f(n) 5 cg(n), we write f(n) = O(g(n)). If, in

addition, g(n) = O(f(n)), we write O(f(n)) = O(g(n)), and we say that the functions f

and g have the same rate of growth. If not, we say that the function g grows faster than

the function f.

Proposition 2.1.28. Let f and g be functions from N to W.
An) (i) O(fTn)) = O(g(n)) if and only if lim - = /3 for some /3 > 0.

An) "+" g(n)
(ii) If lim - - - m, then ihe function f grows faster than the function g.

" + oog(n)
(iii) If p(n) is a polynomial of degree r, then p and n' have the same rate of

growth. The polynomial p grows faster than nm if m < r, and nm grows faster

than p if m > r.
(iv) If p(n) is a polynomial of degree r 2 1, then p grows faster than 1og2n.

(v) If k > 1, then the function kn grows faster than any polynomial.

(vi) rlog2nl and log2n have the same rate of growth.

(vii) If a > 0 and b > 0, then arlog2nl + b and rlog2n1 have the same rate of

growth.

Definition 2.1.29 ([Ill). Let e = (Cn):=o be a family of Boolean circuits, where the

circuit Cn has n input gates. Let z and d be functions from N to R. For each n E N ,

let a(n) be the size of the circuit Cn, and let 6(n) be the depth of the circuit Cn. Clearly,

a and 6 are functions from N to N. We say that the family C has & z(n) if

u(n) = O(z(n)), and we say that e has d e ~ t h d(n) if 6(n) = O(d(n)).

Example 2.1.30. Let C = (Cn)2=l be the family of Boolean circuits such that for all

n E Z', C, is the circuit of Lemma 2.1.15 for inputs of length n. Then

a(n) = 2n - 1 = O(n), and 6(n) = [log2nl = 0(log2n), so that the family e of Boolean

circuits has size n and depth log2n.

The "resources" of a Boolean circuit family are its size and depth. As remarked

previously, our interest is in the capabilities of Boolean circuit families of a given size and

depth. Once resource bounds are imposed, it is clear that this will h i t the scope of

Definitions 2.1.25 and 2.1.26 to some extent. It would be even better if we could limit the

definitions so that every function (language) which is defined to be computable (recognizable)

by a Boolean circuit family will actually be computable (recognizable) by a Turing machine,

which is, after all, the definition of a computable function (recognizable language) ([17]). This

issue will be addressed in Chapter Three.

5 2.2 Bounded Width Branching Programs

In this section we discuss the computational model by which the class BWBP of

languages is defined. We begin with a discussion of branching programs, which are the

components of the model. Here we will be reasonably brief, because this model will be

b ~ ~ C . ~ u A ~ l t . \ : a5aL Ll CLpter three.

Definition 2.2.1 ([lo]). A branching momam B (abbreviated BP) on n variables is a

finite acyclic directed graph which satisfies:

(i) B has one source which is called the input node of B;

(it) all sinks of B carry one of the labels 0, 1;

20

(i i i) all other nodes are labeled by a variable in {x1,x2,, . .,tn);

(i v) there are at most two edges leaving each node of B. One edge carries the label 0,

the other edge carries the label 1. If there is only one edge leaving a node of B, that

edge is understood to carry both labels 0 and 1.

Definition 2.2.2 ([lo]). A directed graph is said to be levelled if it can be partitioned

into levels L1, L2,. . ., Lk, such that for a11 i E {0,1,2,. . .,k), every edge leaving a node on

level i enters a node on level i + 1.

Note that a graph is levelled if and only if every node v in the graph is such that every

path from a source to v is of length equal to the rank of v.

Definition 2.2.3. Let B be a branching program on n variables. The length of the

longest path in B from the input node to a sink of B is called the length of B. The number

of nodes in B is called the of B. If B is levelled, then the width of B is the number of

nodes on the level of B on which there is the largest number of nodes.

E X U ~ Q ~ 2.2.4. Consider

are directed down.

the branching program B below. By convention, all edges

The branching program B has size 8 and length 3. Note that B is not levelled, so

the width of .B is not defined. (

We now describe how a branching program B on n variables computes a Boolean

function from {0,1)" to {0,1). Given a = ala2-..a, E {0,1)", starting at the input node

labelled, say, xi, if ai is 1 (0), follow the edge labelled 1 (0) leaving the input node and

entering a node labelled xi. Then the edge leaving the node labelled xj which is labelled a j

is followed. This process continues until a sink is reached ([lo]). Then B(a) is defined to be

the label of the sink reached when B is given input a and "evaluatedn as described. The

branching program B of Example 2.2.4 computes the Boolean function from {0,1)~ to

{0,1) given by B(010) = 0, B(111) = 0, and for all other a E {0,1)~, B(a) = 1.

21

The set {u E {O,l)" : B(u) = 1) is called the language recognized by the branching

program B on n variables. We note that a language L {0,1)" is recognizable by a

branching program if and only if the Boolean function f : {0 , ln { O l defined by

f(u) = 1 if and only if u E L is computable by a branching program.

If a branching program is levelled, it has the advantage that the level of a node

represents the time required to reach the node in the course of a computation, viewing the

source node as level 0.

Proposition 2.2.5 ([g]). Let B be a branching program on n variables of size s and

length I. Then there is a levelled branching program B of length 1 and s i te at most s2

such that B (a) = B(a) for all a E {0,1)".

Proof. Throughout this proof, a "pathn means a path starting at the source node vl. Let B

be a branching program on n variables of length 1 and size s. We first create an array of

nodes with s columns and 1 + 1 rows, the top row being row 0, each row containing all of

the nodes vl, v2,...,vd of B. For each path of length k, 0 5 k 5 1 - 1 , in B ending at

node vi, and each edge from v, to vt labelled 0 (1) in B, we add an edge labelled 0 (1)

from node v j in row k of the array to the node vt in row k + 1 of the array. We then

remove all nodes of the array with indegree and outdegree zero. It is clear that this

construction will yield a levelled branching program B' of size at most s (l + 1) 5 s2 , since

1 + 4 5 s . It is also clear that this construction will yield a branching program B' which

will compute.the same function as that computed by B.

Proposition 2.2.5 shows that any Boolean function which is computable by a branching

program is computable by a levelled branching program, which allows us to restrict our

attention to levelled branching programs.

Example 2.2.6. Following the procedure in the proof of Proposition 2.2.5, a levelled

version of the branching program of Example 2.2.4 would be as shown below.

This branching program is levelled, has size 9, length 3, width 3, and computes the

22

same function as that computed by the branching program in Example 2.2.4.

As it stands, a levelled branching program I3 on n variables, of length 1 and width

w could have sinks on level k where k < I. Let m be the least integer such that there is a

sink labelled 0 on level m. Consider the following. "String together" a chain of 1 - m

nodes labelled by a variable x i , delete all edges entering the sink labelled 0 from nodes on

level m - 1, connect these nodes to one end of the chain by copies of the deleted edges, and

then connect the other end of the chain to the sink labelled 0. For each sink labelled 0 on

level 2, where m < 1 < I, delete the sink and connect all nodes on level 2 - 1, from which

an edge entered the sink, to the node in the chain of nodes labelled xi from which there is a

path of length I - t to the sink labelled 0 on level I. This moves all the sinks labelled 0

on level 2 < I down to level I, without changing the length of B or the function computed

by B. If we follow this procedure for sinks labelled 1, we obtain a branching program of

length I, of size less than or equal to s + 2(1 - 2), and of width less than or equal to

w + 2, which computes the same function as that computed by the branching program B

(PI).

The discussion above shows that any function computable by a levelled branching

program is computable by a levelled branching program where all sinks occur on the bottom

level. This allows us, without loss of generality, to restrict our attention to such branching

programs. From now on, by "a branching program", we will mean one of this type.

We now show how a family of branching programs can be said to compute a Boolean

function on {0,1)*, and how a family of branching programs can be said to recognize a

language over the alphabet {0,1).

Definition 2.2.7 ([lo]). Let 38 = (Bn)TZo be a family of branching programs, where

for each n E N, Bn is a branching program on n variables. The function com~uted bJ 38

is the Boolean function defined by %(u) = B ~ (u) , where u E (0,l)". The lanauaae

recognized bJ 38 is the language {u E {O, l)* : if lul = n, then Bn(u) = 1).

We conclude the section by defining the "resources" of a family of branching programs,

and defining a complexity class of languages recognizable by branching program families with

, bounded resources.

Definiton 2.2.8. Let f, h, and g be functions from N to R, and let 38 = (Bn)2,0

be a family of branching programs. Let a, A, and w be functions from N to N, where

a(n) is the size of the branching program Bn, A(n) is the length of the branching program

Bn, and w (n) is the width of the branching program Bn. We say that the family 38 has

23

size f(n) if u(n) = O(f(n)), we say that '3 has length h(n) if A(n) = O(h(n)), and we -
say that '3 has width g(n) if w(n) = O(g(n)).

Definition 2.2.9 ([3], [lo]). BWBP is the class of languages L 2 {0,1)* such that L

is recognizable by a family '3 = (Bn):=, of branching programs of bounded width, that is,

for which there is a w E Z+, such that for all n E N, w(n) 5 w , and polvnomial (or,

equivalently, polynomial length, given bounded width).

5 2.3 Programs For a NUDFA over a Finite Monoid

In this section we discuss our final non-uniform computational model, which was clearly

inspired by finite state machines for regular languages. In this case, the model does not consist

of a family of components, but it is a single machine along with a family of programs, one for

each input length.

Definition 2.3.1 ([3], [5]). Let M be a finite monoid, and C be a finite alphabet. A

non-uniform deterministic finite automaton N(M,C) over M with i n ~ u t alvhabet C is a

machine, which, for each n E N, given an input word in En and an n-vroeram Pn (as

defined below), produces an element of M as output.

A non-uniform deterministic finite automaton will hereafter be referred to as a

NUDFA, and "the NUDFA N over M with input alphabet C," will be denoted N(M,C).

Definition 2.3.2 ([5]). Let M be a finite monoid. An n-vrogram P n for a NUDFA

N(M,C) of length 1 is a sequence of instructions pl, p2, . . ., p,. For each k E {1,2,.. .,1},

pk = (ik, fk), where ik E {1,2, ..., n}, and fk is a function from C to M. The n-program

Pn defines a function from Cn to the monoid M as follows. For each

u = u ~ u ~ . . . u ~ E En, P ~ (u) = pl(u)p2(u)...pr(u), where for each k E {1,2, ..., 11,
pk(u) = fk(aik). For each m E M , there is a "constantn 0-program P r with no

instructions such that Porn(<) = m, where { c } = C'.

Thus, given an input word u = alu2. . .an E Cn and the n-program Pn, the

NUDFA N(M,C) produces the output P ~ (u) E M. We now describe how a NUDFA,

together with a family of n-programs, constitutes a model of computation, which, as usual,

' entails showing how a NUDFA can be said to compute a function, and how a NUDFA can

be said to recognize a language.

Definition 2.3.3. Let N(M,C) be a NUDFA, and let 9 = (P n) Z o be a family of ,

programs for N(M,C). The function com~uted b~ N(M,C) with familv of n-vrorrrams 9 is

the function N from C* to M defined by N(u) = P ~ (u) , where u E Cn.

Definition 2.3.4 (151). Let L C C*, where C is a finite alphabet. The language L is

said to be recoanizable a familv of n-~roarams for a NUDFA over a finite monoid if and

only if there is a finite monoid M and a family 9 = (Pn):=O of n-programs for the

NUDFA N(M,C), such that for each n E N, there is a subset An of M such that

Pn(u) E An if and only if u E L n En.

Provosition 2.3,5. Every regvlar language is recognizable by a family of n-programs for

a NUDFA over a finite naonoid.

Proof. Let C be a fitlite alphabet, and let L E C* be a regular language. Since L is

regular, there is a finite monoid M, a subset B of M, and a homomorphism 6 from C*

to M such that $(u) E B if and only if u E L. Let qi : C -+ M be the restriction of 4
-

to C. Let Pf be the 0-program for the NUDFA N(M,C) such that Porn(€) = I $ (€) =m.

Then Po(&) = m E B if and only if a E L r l C0 (since L is regular). For each n E z+,
let P n be the n-program for the NUDFA N(M,C) with sequence of instructions pl, ,u2, . , .,
pn, where for each k, 1 _< k < n, the instruction pk = (1, 4). Let n E a+,
u = u1u2...un E En. Then Pn(u) E B if and only if /.i1(u)/.i2(~)...pn(u) E B; that is, if

and only if 4 (~ ~) 4 (1 1 ~) , - . q i (~ ~) E B. Since the function qi : C -+ M is the restriction of the
-

homomorphism $ to C, 4 (~ ~) 4 (~ ~) . . . q i (~ n) = ~ (u ~ u ~ " . u ~) = $(u). Thus,

Pn(u) = $(u). Since $(u) E B if and only if u E L, it follows that Pn(u) E B if and only

if u E L n En. Therefore, the finite monoid M, and the family 9 = (Pn)pzo of

n-programs for the NUDFA N(M,C) are such that L is recognizable by the family 9 over

N(M,C). As L was an arbitrary regular language, it follows that every regular language is

recognizable by a family of n-programs for a NUDFA over a finite monoid.

Example 2.3.6. The non-regular language L = {unrn : n E N} (1131) over the

alphabet C = {a, r} is recognizable by a family of programs for a NUDFA over a finite

monoid. Let M be the monoid {0,1}, where 1 is the identity of M and 0 is a zero.

Then L is recognizable by the family 9 of n-programs over the NUDFA N(M,C), where

9 = (Pn):.o is defined as follows. Let P; be the 0-program such that P ~ (E) = 1. Let 5
denote the constant function from C to M with value 0. Let f, g : C -+ M be defined by

' u w 1, r 0 and u ++ 0, r w 1 respectively. For odd n, let P n be the n-program

(1, 8), and for n = 2k, k 2 1, let P n be the n-program (1, f) , (2, f) , ..., (k, f) , (k + 1, g),

(k + 2, g), ..., (n, g). Let p E Enj. If n = 0, then Po(p) E {I} if and only if

p = E E L n C O . If n isodd, then P n (p) E { l } i f andon ly if p E O = L n C n . If

n = 2k for some k 2 1, then p = P1P2"'PkPk+lPk+2"'pn, and Pn(p) E {I} if and only

25

if f(pl)f(p,)...f(pk)g(Pk+l)g(pk+2)-~~g(pn) = 1. A product of elements of M is the identity

1 of M if and only if each element in the product is 1, so that Pn(p) = 1 if and only if

f (~ ~) = 1 for all j { 1 2 , k } and g(pj) = 1 for all j E {k + 1, k + 2,.. .,n}. But

f(pi) = 1 if and only if pi = a, and g(pj) = 1 if and only if p j = T, together imply

that Pn(p) E (1) if and only if p = akrk E L n C". Therefore, L is recognizable by the

family 9 of n-programs for the NUDFA N(M,C).

We now define the "resources" of a family of programs for a NUDFA over a finite

monoid so that we will be able to define a complexity class of languages recognizable by a

family of n-programs with bounded resources.

Definition 2.3.7. Let 9 = (Pn);=-, be a family of programs for a NUDFA N(M,C),

let f be a function from N to R, and let X : N 4 N be such that X(n) is the length of

Pn. We say that the family 9 has length f(n) if X(n) = O(f(n)).

Definition 2.3.8. Let PLP denote the following class of languages. A language L

over a finite alphabet C is in PLP if and only if there is a finite monoid M, and a coding

(' from C* to {0,1}* such that the language ((L) is recognizable by a polynomial length

family of n-programs for the NUDFA N(M,{O,l}).

Proposition 2.3.9. Every regular language is in PLP.

Proof. Let L be a regular language over the alphabet C = {B1,B2, . . . ,~m) where

c(C) = m, m 2 3. Let -& be the coding from C* to {0,1)* which is uniquely determined

by the function ar : C -, {0,1}* given by ar(ai) = 0'-'10~-' , the word over {0,1} which

has only one 1 as the i-th letter, for 1 < i <m. Since -& is injective, & is such that

-&-I(&) = E . By Proposition 1.1.6, E(L) is a regular language over {0,1}. The proof of

Proposition 2.3.5 shows that every regular language is recognizable by a family of NUDFA

programs of length n, a polynomial, so there is a finite monoid M such that -&(L) is

recognizable by a polynomial length family of n-programs for the NUDFA N(M,{O,l}).

26

Chapier 111 Non-Uniform Models of Computaiion and N C ~

In this chapter we establish relationships between the various non-uniform models of

computation defined in Chapter Two, and, finally, establish a relationship between language

classes defined by these models and the class NC' of languages.

In Section one, we introduce the concept of uniformity. This concept enables us both to

define the parallel complexity class NC, and its subclasses Nck, and A C ~ , and to address

the difficulty in comparing non-uniform models of computation with more familiar uniform

models.

In Section two, we present some of D. A. Barrington's work on bounded width

branching programs. Specifically, we show how he redefined the branching program, and

selected a suitable definition of the language recognized by one of his branching programs,

under which the language class BWBP is preserved.

In Section three, using yet another definition of the language recognized by one of

Barrington's branching programs, we exhibit the relationship between the language classes

BWBP and PLP.

In Section four, we begin with a reconstruction of the proof of Barrington's result that

BWBP = (nonuniform) NC', from which it follows that PLP, the class of languages

recognizable by polynomial length families of n-programs for a NUDFA over a finite monoid

is also NC'. We state some consequences of this work, and give a sampling of some further

research which was inspired by it.

•˜ 3.1 Uniform Boolean Circuit Families and the Parallel Complexity Class NC

In the Section 2.1 we mentioned that Boolean circuit families cannot compute all

computable functions, and yet they can compute some functions which are not computable.

This makes it difficult to compare them with uniform models of computation such as the
.

Turing machine. There are two basic approaches which make comparison possible ([20]).

On'e approach, suggested by Borodin ([a]) is to impose a uniformity condition which

restricts the class of Boolean circuit families under consideration to those families 2 ryhich are

such that there is a Turing machine which can, given an input word of length n, generate a

description of the circuit Cn in C, using a certain amount of time and space. If this is the

case, then there is most certainly a Turing machine which can do this and then 'decode the

descriptionn and simulate the circuit Cn on that input word. Limiting the class of Boolean

27

circuit families to those which are uniform, in the sense of Borodin, thus guarantees that they

compute only functions which are computable.

The other approach (see [20], [24]) is to "make Turing machines non-uniform", meaning

allowing a Turing machine to work on inputs of only one length, by giving the Turing machine

some extra information (such as a description Cn of the n-th circuit in a family e of Boolean

circuits) for each input length n along with the input word w (of length n). If, given this

information, the Turing machine computes e(w) for all w E {0,1)*, we say that the Turing

machine "non-uniformly" computes C. Ordinarily we would say that the function computed

by the Turing machine is the function g from the set

{uw : u = cn, I w I = n for some n E N) to {0,1)* defined by g(uw) = C(w).

We now give some definitions which will enable us to give some uniformity conditions

on Boolean circuit families. We will then be in a position to define the parallel complexity class

NC, and its subclasses N C ~ and A C ~ .

Definition 3.1.1 (see 1261, [21], [ll]). Let C be a fan-in 2 Boolean circuit of size s

with n input gates and 1 output gate. Let each of the s gates gi of C,

i E {O,l,. . .,s- I), be assigned an "addressn--the binary representation ; of the integer i,

with enough zeros added at the right end to form a string of length rlog2sl; reserving 6 for

the output gate, and reserving i where 1 < q 5 n for the input gates labelled zq, If gi

has indegree two, let gi = ; r j i , where g j and gk are the gates of C which fan into the

gate gi, and T E {A, V) is the label of the gate gi. Of course, if gi has indegree 1, then
,. - 2i = i ~ j , where g j fans into gi. If gi has indegree 0 and is not an input gate, then

gi = ;T, where T E {0,1). If gi is an input gate, then let gi = ;x. The standard

encoding 2 of the Boolean circuit C is then 2 = gogl ...gs-l.

We note that the sequence (2n)FZo of standard encodings of a Boolean circuit family

C = (Cn);=, is one example of a "description" of the family e. Although it is only defined

for Boolean circuits with one output gate, it is clear how one would generalize the standard

encoding for more general Boolean circuits with fan-in greater than two, and more than one

output gate.

Definition 3.1.2 ([21]). Let g be a gate in a fan-in 2 Boolean circuit C, where for

each gate v in C, each edge entering v is assigned a different label Z E {L, R). Let

p = ZIZZ...Zn E {L, R)*. The gate g(p) determined b~ p g is defined inductively as

follows.

(i) For n = 0, g(p) is the gate g.

28

(ii) For n 2 1, g(p) is the gate which has an edge entering gate g(Z1Z2...Zn-l)

with label L (R) if Zn = L (if Zn = R).

Definition 3.1.3 (1211). Let C = (Cn)rZo be a family of fan-in 2 Boolean circuits of

size z(n) and depth d(n) such that for each n E N, the circuit Cn has n input gates and

one output gate, and each gate of Cn is assigned an address i, where i denotes the binary

representation of an integer k E {O,l , . . .,a(n)}, with 6 reserved for the output gate of Cn

and i reserved for the input gate of Cn labelled xq for 1 5 q < n, as in Definition 3.1.1,

and for every gate v in Cn, each edge from p to v is assigned a different label from

{L, R). Let p denote an element of {L, R)*, letting E denote the empty string. Let ;I,

be elements of {0,1)*, and let r denote an element of I' U {x}, where x is used to label

input gates as before. The extended connection lanc~uaae ECL(C) of the family C is the set

of all strings ;APT such that either

(i) p = E and the gate g in Cn with assignment I;I has label r,

(ii) p # E , 1 5 I p I 5 [log2z(n)l, and the gate g in Cn with assignment is

such that the gate g(p) has label r.

For each circuit Cn ,in a size z(n) family C = (Cn)FZo of fan-in 2 Boolean

circuits, the ECL of the family contains, for each gate g in each circuit Cn in the family,

an encoding of the label r and address m of g in Cnl and an encoding of the address

of g along with the path and the label of each gate from which there is a path p in the

circuit Cn of length less than or equal to rlog2z(n)l which ends at g. We observe that the

standard encoding is closely related to the subset of the ECL obtained by restricting the

paths to be of length less than or equal to 1. This subset is called the direct connection

lan~uacre, or DCL ([8]).

Recalling the observation that the standard encoding can be generalized for a fan-in k

Boolean circuit with n input gates and rn output gates, we must recognize the possibility of

generalizing the ECL to families of such circuits. We further note that a family

C = (Cn)r==l of fan-in 2 Boolean circuits of size z(n) and depth d(n) is "completely

described" by the ECL of C, though this fact is not as transparent as the fact that the

sequence of standard encodings of the circuits Cn in C nives a complete

description of the family C.

It is worth remarking that there is a Turing machine which will output the binary

representation ii of n when given any word of length n as input, in time 0(n3). It is also

worth remarking that any function which is computable by a Turing machine in space

29

~ ((l o ~ ~ n) ~) is computable in polynomial time ([20], [22]).

If the "complete descriptionn of a circuit family is such that we can make sense out of

it, then there most certainly exists a Turing machine which can make sense out of it, so it

could then be used by a Turing machine to %on-uniformlyn compute the function which is

computed by the family C. If, in addition, the complete description can be generated by a

Turing machine, the function would then be a computable function, as discussed previously.

Having described the standard encoding of a Boolean circuit, and the ECL of a family of

Boolean circuits, we are now ready to define some uniformity conditions on Boolean circuit

families. There are several others that we haven't included, and various relationships have

been shown between all the various uniformity conditions ([21], [8], [26]).

Definition 3.1.4 . Let C = (Cn)p=o be a family of fan-in 2 Boolean circuits of size

z(n) and depth d(n). Then

(i) the family C is said to be BGuniform ([8], [ll]) if there is a deterministic Turing

machine of space complexity log2z(n) which for each n E N, given the input fi,

generates the standard encoding 2n of the circuit Cn, and

(ii) the family C is said to be Erruniform (1211) if the language ECL(C) over

{A,v,~ ,~ ,O,~,L,R)* can be recognized by an Alternating Turing Machine in time

O(d(n)) and space 0(log2z(n)).

A discussion of Alternating Turing machines is beyond the scope of this thesis. Ruzzo

([21]) has suggested that the Alternating Turing machine is a generalization of the

nondeterministic Turing machine, and we will leave it a t that. We note that these uniformity

conditions, though they are, strictly speaking, defined for families of fan-in 2 Boolean circuits

with one output gate, can be generalized to apply to families of Boolean circuits with more

than one output gate, and fan-in greater than 2.

Definition 3.1.5 ([20], [26], [Ill)

(i) NC is the class of languages over {0,1) which are recognizable by a BCuniform

family of fan-in 2 Boolean circuits of size n j and depth (1 0 g ~ n) ~ for some

j, m E N.

(ii) For each k 3 1, N C ~ is the ckis GC 10rllgbO1ge, ""(;I { S , : ; which are recognizable

by a BCuniform family of fan-in 2 Boolean circuits of size n j and depth (1 0 ~ ~ n) ~

for some j E N.

(iii) For all k 3 0, A C ~ is the class of languages over {0,1) which are recognizable

by a BCuniform family of Boolean circuits of size a' and depth (l ~ ~ ~ n) ~ , for some

30

j E N, with no restriction on the fan-in of the circuits in the family.

Definition 3.1.6. A BCuniform family of fan-in 2 Boolean circuits of size n3 and

depth (1 0 ~ ~ n) ~ for some j, k E N is called an NCk circuit family. A BCuniform family of

Boolean circuits, with unrestricted fan-in, of size n3 and depth (l ~ ~ ~ n) ~ , for some j, k E N,

is called an ACk circuit family.

Let L E NC. Then L is recognizable by a BCuniform family C =(Cn):=o of fan-in

2 Boolean circuits of size nq and depth (log2n)' for some q, p E N. Consider the following

results, some of which have been mentioned previously.

(i) The binary representation of an integer n can be computed by a Turing machine

given any input word of length n in time 0(n3);

(i i) For k 2 1, a function computable by a Turing machine in space ~ (l o ~ ~ n) ~ is

computable in polynomial time ([20], [22]);

(iii) A language recognizable by a Boolean circuit family of size nq, where p 2 1, is

recognizable by a non-uniform Turing machine in time

0((nq)(log2(nq)))" = ~ ((n ~) (q l o ~ ~ n) ~) = ~ (n ~ + ~) ([20]).

Consider the Turing machine which, given an input word w of length n computes the

binary representation of n, from which it generates the standard encoding of the circuit Cn

of e, and then "simulates C" on input w. This Turing machine recognizes the language L.

The fact that C! is BGuniform, and the three results above, together imply that the Turing

machine recognizes L in polynomial time. Thus, L E P, from which it follows that

NC E P. Since it is widely held that the class P contains all problems which can be solved

using resources likely to be available ([12]), the fact that NC is contained in P means that

the interest in NC is not only theoretical.

Consider the definition of the class ACk. The absence of a fan-in restriction makes

ACk circuit families seem more powerful than NCk circuit families. The following

proposition indicates to what degree this is true.

Pro~osition 3.1.7 ([3]). For all k E N, A(? E N ~ + I . s

Proof. Let n, k E N, let L E ACk, and let C = (Cn):=o, be the ACk circuit family

, which recognizes the language L. Consider the Boolean circuit Cn. If Cn has fan-in 2,

then Cn is an N C ~ circuit family, so that L E NCk C NCk". Otherwise Cn is of fan-in

m > 2, and contains a gate u labelled V (or A) with indegree m. Let pl, p2,.,.,pm be

the rn gates which fan into u. By Proposition 2.1.15, for each m E Z+ there is a fan-in 2

Boolean circuit Am of size 2m - 1 and depth rlog2ml which computes xl v x2 v. ..v xm.

If we modify Cn by letting the gates pl, p2,. . .,pm be input gates and v be the output gate

for the circuit Am, we have increased the size of Cn by m - 1 and have increased the

depth of Cn by rlog2ml - 1. Thus, if we repeat this construction for each gate of Cn with

fan-in j such that m 2 j > 2, we obtain a fan-in 2 Boolean circuit Bn which recognizes

the same language as does Cn, of size at most m - 1 times the size of Cn and depth at

most rlog2ml times the depth of Cn. Certainly m is less than the size of Cn. The family

e is in A C ~ , so e has size nq for some p E N, and depth (1 0 ~ ~ n) ~ . This means that

there exist ro, s, t E N such that for all n > ro, Cn has size less than or equal to s(nq)

and depth less than or equal to t (l ~ ~ , n) ~ . Consider the family '3 = (Bn)r=o of fan-in 2

Boolean circuits where for each 1 E N, the circuit B, is the modified version of the circuit

C,. For n > ro, B, has size less than or equal to (s(nq))' and depth less than or equal to

= (~ ~ Z S I + r ~ l o g ~ n l) (t ~ g ~ n) ~ . By Proposition 2.1.28,

(rlog2sl + [qlog2n~)(trlog2n)E = ~ ((l o ~ ~ n) ~ + ') , so that 38 has depth (1 0 ~ ~ n) ~ " . Also by

Proposition 2.1.28, (~ (n ~)) ~ = 0(n2'), so that 38 has size n2', which is a polynomial.

Thus the family 93 is an NCk++' circuit family. Since '3 recognizes L, the language L is

in Nck+'. Since k and L were chosen arbitrarily, for ail k E N, A C ~ Nck+'.

Recall the definitions of BGuniform and Guniform. It has bee; shown ([21], [26]) that

for n > 2, the classes uniform)^^^ and (Guniform)NCk are the same, but that the

class (Guniform)NC1 is contained in the class u uniform)^^^, which suggests that

Guniformity gives a sharper characterization of these complexity classes. This is why we

included both definitions. After having taken the trouble to give uniformity conditions, we will

no longer be concerned with them, safely assuming that any circuit family for which we can

provide a description will be quite uniform.

From now on, we will focus on the class NC'. For an interesting survey of problems

which have been shown to be in NC, see [ll], and the references therein. In Chapter I1 we

constructed some circuits which give rise to NC' circuit families, so we have already seen

some NC' functions and languages. Many interesting results concerning NC' have been

obtained ([15], [I]). Of these results, we will consider new characterizations of this complexity

class.

5 3.2 Barrington's Branching Programs and B WBP

Recall from Chapter I1 that by 'a branching program," we mean a levelled branching

program where all sinks occur on the bottom level. When David Barrington began studying

branching programs, he found that one of the reasons for the difficulty in comparing branching

32

programs with other models for language recognition is that a branching program may depend

on more that one variable at a given time in the computation. He made the following

observation ([3]).

Proposition 3.2.1. Let B be a levelled branching program on n variables of width w

and length I, where each node on level k of B is assigned a distinct column number, an

integer in {1,2 ,..., wk), where wk is the width of level k of B. Then B can be expanded

to a levelled branching program B' of width at most 2w and length at most wl which

computes the same function as does B, and is such that every level k of B which is not the

bottom level af sinks has all of its nodes labelled by the same input variable.

Proof. We describe the expansion of level k of a branching program B on n variables of

width w and length I, where 1 < k 5 1 - 1. Let p be the width of level k of B, where

the 5 t h node on level k has label xjl and let q be the width of level k + 1 of B, where

the r-th node on level k + 1 has label y,. We begin by replacing each of the labels xl, x2,

..., xp of nodes on level 6 of B with the label xl, and we insert a (p - 1) x (p + q)

arrray of nodes between the relabelled level k and the original level k + 1 of B. The

p + q nodes in row m of the inserted array are labelled x,+~ for 1 < m < p - 1.

We connect the first node labelled xl in the rel la belle^ level k of B by an edge

labelled 0 (1) to the node labelled x2 in column i (J] of the inserted array if there is an

edge labelled 0 (1) from the first node (labelled xl) on level k to the i-th (j t h) node on

level k + 1 of B. Of course, i = j is allowed. For s = 2, 3,. .. p, connect the s-th node

labelled xl by an edge labelled 0, 1 to the (q + s)-th node labelled x2 in the first row of

the inserted array.

For m = 2, 3,..., p - 1, if n # q + m, connect the n t h node labelled xm in the

(m - 1)-th row of the inserted array to the n-th node labelled xm+l in row m of the

inserted array by an edge labelled 0, 1. Connect the (q + m)-th node labelled xm to the

node labelled x,+~ in column i (J] of the m-th row of the inserted array by an edge

labelled 0 (1) if there is an edge labelled 0 (1) from the m-th node on level k to the i-th

(j-th) node on level k + 1 of B.

Concc:t tE2 r,;A 1z!xlkr! ;, i,, column q + p of the bottom (p - 1)-th row of the

inserted array by an edge labelled 0 (1) to the i-th (j-th) node in level k + 1 of B if there

is an edge labelled 0 (1) from the p t h node on level k to the i-th (3th) node on level k + 1

of B. For n = 1, 2,..., q, connect the node labelled xp in the n-th column of the last row

of the inserted array to the n-th node in row k + 1 of B.

33

Let B' be the levelled branching program obtained from B by expanding each level k

of B, 1 5 k < 1 - 1, as in the construction above, and then removing all nodes which

cannot be reached by a path from the source. Clearly B' has width at most 2w and length

a t most wl, and is such that every level but the bottom has all its nodes labelled by the same

input variable. By construction, B' computes the same function as that computed by B,

since no branching occurs in B' which does not reflect branching in B, and all branching

occurring in B is reflected by branching in B'. In particular, if there is an edge labelled 0

(1) from a node xi to a node xp (xq) in B, then in B' there are edges labelled 0 and 1

from a node xi to distinct (if p # q) nodes xj, where xj is either the node 'next ton the

node xi or the first node on the level below the node xi in B; from xj there is a straight

path to xp (xq), with no further intermediate branching, and thus the function computed by

B' is the same as that computed by B. 0

We recall that a language L is in BWBP if and only if the Boolean function

f : {0,1}* -+ {0,1} defined by f(u) = 1 if and only if u E L is computable by a polynomial

size family of bounded width branching programs. Proposition 3.2.1 shows that if a language

over {0,1} is recognizable by a family of branching program of bounded width and

polynomial size, then it is recognizable by a bounded width, polynomial size family of

branching programs where each branching program in the family is such that all the nodes on

a given level are labelled by the same variable. Thus, the class BWBP is preserved, even if

we change the definition of a branching program so that it excludes branching programs which

contain nodes on the same level labelled by different variables. From now on, by 'a branching

program," we will mean a branching program such that all nodes on the same level are labelled

by the same variable.

Consider the following. Let B be a branching program on n variables of width w

and length I. For each j E {0,1,. . .,1) we assign a different integer k E {1,2,. . .,w} to each

node on level j of B, reserving 1 for the source. We then think of B as an array of nodes

with w columns and 1 + 1 rows. Suppose that the source of B, labelled xt, is such that

the edge labelled 0 feeds into a node assigned m, and the edge labelled 1 feeds into a node

assigned r, Then if x, = 1, that is, when the t-th letter of the input word is 1, then the

, first level of B can be said to "yield" the function fi E Mw given by 1 H r, and p H p

for all p E [w], p # 1. If x, = 0, that is, when the t-th letter of the input word is 0, then

the first level of B can be said to "yield" the function gl E Mw given by 1 H m, and for

all other p E [w], p H p. Once we have assigned a different integer in [w] to each node on

the same level of B, then each level k of B can be said to "yield" the function

34

fk (gk) E Mu if the variable xi which labels the nodes in level k - 1 of B is 1 (O), where

fk(i) = j (gk(i) = j) when there is an edge labelled 1 (0) from the node assigned the integer

i on level k - 1 of the array into the node assigned j on level k of the array. Then for

each input word in {0,1}", B "yields" the composition h, o o h2 o hl, where for each

k E {1,2,. . .,1}, hk E Mw is the function "yieldedn by level k of B when the variable xi

which labels the (k - 1)-th row of B takes on the value of the i-th letter of the input word.

For each word w in the language recognized by B, we put h(l), where h = B(w) is the

function in Mw yielded by B on input w into an "accepting" subset of [w]. We may then

define the language recognized by B to be the set of all words w such that on input w, B

yields a function h E M, such that h(1) is in the "accepting" subset of [w].

Examvle 3.2.2. Consider the branching program B on 3 variables of width 3 and

length 3 below, where each node of B is assigned an address.

B recognizes the language (000, 01 1, 101, 110). According to the addresses assigned to

the nodes of B, we see that if x2 = 1, level 1 of B yields the function fl E M3 given by

1 C) 1, 2 H 2, 3 H 3, and if x2 = 0, level 1 of B yields the function gl E M3 given by

1 w 3, 2 w 2, 3 H 3. If x1 = 1, level 2 of B yields the function f2 E M3 given by

1 H 3, 2 H 2, 3 H 1. Similarly, we find that g2 is the function 1 w 1, 2 H 2, 3 H 2,

f3 : 1 H 3, 2 H 1, 3 w 1, and g3 is the function 1 w 1, 2 H 3, 3 H 3. We see then

that B(000) yields the composition g3 o g2 o gl = kl, where kl(l) =k1(2) = k1(3) = 3,

B(001) yields f3 o g20gl = h,, where hl(l) = h1(2) = h1(3) = 1. h(010) yields

g3 o g2 o fl = g3, B(100) yields the composition g3 o f2 o gl = k2, where

k2(1) = k2(3) = 1, and k2(2) = 3. B(Ol1) yields f3 o g2 o fl = f3, B(101) yields

f3 o f2 o gl = k3, where k3(l) = k3(3) = 3 and k3(2) = 1. B(110) yields

h2 = g3 o f2 o fl, where h2(3) = 1 and h2(l) = h2(2) = 3, and B(111) yields

f3 o f2 o fl = h3, where h3(3) = 3, and h3(l) = h,(2) = 1. We notice that

B(w)(l) = 3 if and only if w E (000, 011, 101, 110), which is the language recognized by

The discussion and the example show that we may as well think of a branching program

B on n variables of width w and length 1 as a sequence of 1 "instructions," where each

instruction selects one of two possible elements of Mw, depending on the value of a particular

variable. The branching program B determines the composition of the yields of its

instructions, each of which depends on the value assigned to a particular variable by the input

word. This brings us to David A. Barrington's version of the branching program model for

language recognition.

Definition 3.2.3 ([3], [4]). Let n, w, 1 E z+. A B-branching Drogram B n

variables of width w and lenath 1 (abbreviated wBBP) is a sequence of instructions

(ji, fi, gi), 1 6 i 5 I, such that for all i E {1,2 ,..., 1), ji E {1,2 ,..., n), and f,, gi E Mw.

Given a word u E {O,l)*, the instruction &, fi, gi) "yields" fi if the ji-th letter of u is

1, and the instruction yields gi if the ji-th letter of u is 0. On input u, the wBBP B

yields the composition h = h, o o h2 o h, where hk is the yield of the instruction

(jk, fk, gk) on input u; that is B(u) = h.

It is clear that a B-branching program B on n variables of width w and length 1

can be viewed as an array of nodes with w columns and 1 + 1 rows, where nodes in row 0

are labelled by the variable xjl, nodes in row k - 1 of the array are labelled by the variable

xjb, and sinks in row 1 + 1 are labelled by the integers 1, 2,. ..,w, with edges labelled 0

and 1 connecting nodes in row k to row k + 1, according to the functions fk and gk

contained in the instruction (jk, fk, gk).

In contrast to the branching programs we looked at in Chapter 11, we cannot simply

label some of the sinks 0, and some of the sinks 1, and define the language recognized by a

B-branching program B to be all words which determine a path in B which ends a t a sink

labelled 1. This is because a B-branching program has w source nodes, so an input word

may define as many as w paths in B, so it could happen that for any choice of sink labels

we might make, there is some word in (0,l)" which determines one path in B which ends at

a sink labelled 0, and another path which ends at a sink labelled 1. However, for every

2 r..1 , ... each u E (0,l)" does determine a unique path in B, starting from j, that is,

B(u)(j), the sink ending the path in B determined by u starting from the node labelled xjl

in row 0, column j, is well defined. This fact suggests the following as a definition of the

language recognized by a B-branching program.

Definition 3.2.4 ([3]). Let B be a wBBP on n variables, and let A E [w]. Then the

with acce~tine; & A l a n ~ u a e recognized B - is the language

{U E {0,1)" : B(u)(l) E A).

Definition 3.2.5. Let 38 = (Bn):=, be a family of B-BPS such that for each n E N,

Bn is a B-branching program on n variables of width W n , and for each n E N, let

An [wn]. Then the language recognized 38 with family A = (An):=, of accepting sets
is the language {u E {0,1)* : lul = nand Bn(u)(l) E An). A language L C {0,1)* is said

to be recognizable & a family of BBPs if and only if for each n E N, there is a B-branching

program Bn on n variables of width wn and a subset An of [wn] such that

B(u)(l) E A" if and only if u E L n (0,l)". For each k E Z+ there is a B-branching

program B: with no instructions such that BE(&) = k.

Let z, w E z+. We remark that if z < w, then any element of M, can be extended

to a function from [w] to [w], so that any B-branching program of width z can be thought

of as a %branching program of width w for all w 2 z . As with the other models we've

discussed, we need to define the "resources" of a family of B-branching programs so that we

can define a complexity class of languages in terms of bounds on those resources.

Definition 3.2.6. Let '3 = (Bn)?', be a family of B-branching programs, where for

each n E N, Bn is a BBP on n variables. Let f be a function from N to W, and for

each n E N, let X(n) denote the length of Bn, and let w(n) denote the width of Bn. We

say that the family 38 has length ' f(n) if X(n) = O(f(n)). We say that the family 3 has

bounded width if for some w E Z+, w(n) _< w for all n E N. By the above comment,

bounded width is equivalent to constant width.

Definition 3.2.7. CWBP is the class of languages over {0,1) which are recognizable by

a constant width polynomial length family of B-branching programs.

Proposition 3.2.8 ([3]). CWBP = B WBP.

Proof. Proposition 2.2.5 shows that any language recognizable by a polynomial length family

of branching programs is recognizable by a polynomial length family of levelled branching

programs. Proposition 3.2.1 shows that any language recognizable by a polynomial length

bounded width family of levelled branching programs is recognizable by a polynomial length

bounded width family of levelled branching programs such that all nodes on the same level are

labelled by the same input variable. It is clear from discussion in this section that any

language recognizable by a bounded width polynomial length family of such programs is

recognizable by a constant width polynomial length family of BBPs. Therefore, BWBP is

contained in CWBP. Conversely, suppose L E (0,l)" is recognizable by a WBBP B of

37

length I with accepting set A C [w]. Consider the array of nodes which represents B. Let

D be the set of nodes which are connected by edges to the node labelled zjl in row 0,

column 1 of the array. Clearly D is a branching program of width at most w and length

I, except that sinks carry labels in [w]. But the language recognized by B is the set of

u E {0,1)" such that B(u)(l) E A. Therefore, when we assign the label 1 to each sink with

a label in A, and assign the label O to all other sinks, we obtain a branching program D of

width a t most w and length 1 such that D(u) = 1 if and only if u E L. It follows that

any language recognizable by a bounded width polynomial length family of B-branching

programs is recognizable by a bounded width polynomial length family of branching programs.

Therefore, CWBP is contained in BWBP, and thus BWBP = CWBP. 0

Having established the equivalence between the two branching program definitions, we

will see in the next section how Barrington's version facilitates the establishment of a

connection between branching programs and programs for a NUDFA over a finite monoid.

5 3.3 Branching Programs and Programs for a NUDFA over a Finite Monoid

Recall the definition of the language recognized by a B-branching program of width w

with accepting set A [w]. There are, of course, other possible definitions.

Definition 3.3.1 ([3]). Let L C {0,1)", n E N, w E z', and let B be a wBBP on

n variables. If there is a subset M of M, such that for all u E {0,1)", B(u) E M if and

only if u E L fl {0,1)", then B is said to weakly recoanize L. If f, g E MU, are such that

B(u) = f if and only if u E L n {0,1)", and otherwise B(u) = g, then B is said to

strondv recognize L. For each f E M,, there is a B-branching program B[with no
f instructions such that BO(&) = f . A language L C {0,1)* is recognizable by a family of

width w B-branching programs if and only if for all n E N, L n {0,1)" is weakly

recognizable by a w-BBP.

Examvle 3.3.2. The B-branching program obtained from the branching program in

Example 3.2.2 weakly recognizes the language (000, 011, 101, 110), since u E L if and only

if B(u)(l) = 3, if and only if B(u) E {kl, f3, k3, h2). Let B be the 2-BBP on three

variables with instructions (2, fo, f,), (3, f,, f,) where fo : 1 ct 1, 2 H 1, and fl : 1 H 1,

2 H 2. Then B strongly recognizes the language {OOO, 001, 100, 101), since B(u) = fl if

and only if u E L, and otherwise B(u) = fo. Note that B also strongly recognizes the

complement of L.

Recall (Definition 2.3.4) that a language L C {0,1)" is recognizable by a program for

38

a NUDFA over a finite monoid if and only if there is a finite monoid M, a subset B of M,

and an n-program P n for N(M,{O,l)) such that Pn(u) E B if and only if u E L. By

Proposition 1.1.2, every finite monoid M such that c(M) = w is isomorphic to a

submonoid of Mw, and this fact helps to show the following.

Provosition 3.3.3 ([3], [5]). A language L C {0,1)* is recognizable by a family of

programs for a NUDFA over a finite monoid if and only if there is a w E Z+ such that for

each n E N, L n {0,1)" is weakly recognizable by a branching program of width w.

Proof. Let L {0,1}* be recognizable by the family 9 = (Pn)rzo of programs for the

NUDFA N(Mwl{O,l}), where for each n E N, the subsets An, An E Mw are chosen such

that Pn(u) E An if and only if u E L n {0,1)". Let n E N. If n = 0, let B: be the
f B-branching program with no instructions such that if c E L (if s # L), then BO(s) = f

for some f E So (f # So). Otherwise, consider the n-program Pn with sequence of

instructions (jk, fk), 1 5 k 5 1, where fk : {0,1) -t Mw. Let Bn be the B-branching

program with sequence of instructions pk = (jk, fk(l), fk(0)), 1 5 k < 1. Since fk is a

function from {0,1) to Mw, f,.(l) and fk(0) are in Mw for 1 < k 5 I, Bn is a wBBP.

Then for all u E {O,l)n, u = ulu2...un, Bn(u) E An if and only(if hl o . . .o h2 0 hl E An,

where for each k, hk is the yield of the instruction pk. Since pk yields fk(l) if ujk = 1,

and pk yields fk(0) if uj, = 0, then for all k E {1,2,. . .,1), pk yields fk(ujk). Therefore,

En(l~) = hl 0. . .0 h2 o hl = fi(lijlj o - - . o f2(uj2) B fi(ujl) = P ~ (u) for all u E {0,1)", SO

that Bn(u) E An if and only if Pn(u) E An, that is, if and only if u E L fI {O, l)n .

Therefore, Bn weakly recognizes L n {0,1}". Since n was arbitrary, the language L is

recognizable by the family 38 = (Bn)r=o of width w branching programs.

Conversely, let L E {0,1)* be recognizable by the family 3B = (Bn)r=O of width w

branching programs, and let An E Mw be such that Bn(u) E An if and only if

u E L r l {0,1)". Let n E N. If n = 0, let P: be the 0-program for N(Mw,{O,l}) such

that if s E L (if s # L), then p i (&) = g where g E An (g # An). Otherwise, consider

the wBBP Bn with sequence of instructions vk = (jk, fk, gk), 1 k 5 1, where

fk, gk E Mw. For each k E {1,2, ...,1), let hk be the function from {0,1} to the finite

monoid Mw defined by hk(l) = fk, hk(0) = gk. Let Pn be the n-program for the

, NUDFA N (M w { O l) with sequence of instructions (jkl hk); 1 < k 5 I , where

j E 1 2 . n}. Then for u E {0,1)", u = u ~ u ~ . . . u ~ , Pn(u) E An if and only if

hl(ujl) o . . .o h2(uj2) o hl(ujl) E An. By definition of hk, hk is the yield of the instruction

vk on input u, SO that Pn(u) = B ~ (u) . Therefore, Pn(u) E An if and only if B(u) E An,

that is, if and only if u E L n {0,1}". Again, n arbitrary implies that the finite monoid

39

Mw, the family 9 = (Pn):=O of programs for the NUDF-4 N(Mw,{O,l)), and the subsets

An E Mw are such that L is recognizable by a family of programs for a NUDFA over a

finite monoid.

Corollarv 3.3.4. B WBP = PLP.

Proof. Let L E BWBP. Since BWBP =CWBP by Proposition 3.2.8, for some w E Z+

there is a polynomial length family '3 = (Bn):,O of ~ B B P s which weakly recognizes L.

Then there is a family of accepting sets (An):=o such that for each n E N,

Bn(u) E An C Mw if and only if u E L n (0,l)". The family 3 is polynomial size means

that there exist q, c, ro E N such that for all n 2 ro, X(n) 5 enq. By Proposition 3.3.3,

for each n E N there is an n-program P n of the same length as Bn such that Pn(u) E An

if and only if u E L f l (0,l)". Consider the family 9 = (Pn)TZo of programs for

N(Mw,{O,l)). Clearly L is recognized by the family 9 for the NUDFA over the finite

monoid Mw with alphabet (0,l). For all n 2 ro, the length of Bn which is the length of

Pn is less than or equal to enq, so that 9 has length cnq. Therefore, L is recognizable by

a polynomial length family of programs for a NUDFA over a finite monoid, so that

L E PLP. The language L was arbitrary, which implies that BWBP E PLP. A similar

argument shows that PLP $& BWBP, from which it follows that BWBP = PLP. CI

In the next section we will see how families of branching programs and families of

programs for a NUDFA over a (finite monoid relate to families of Boolean circuits and the

complexity class NC'.

$ 4 Bounded Width Branching Programs and NP

Having modified the definition of a branching program, Barrington continued the work

of others ([lo]), looking at branching programs of small width, hoping that his new definition

would provide some new insight. Given the new definition, one idea readily comes to mind.

The idea is that of considering branching programs such that every function contained in the

instructions is a permutation. In the study of such branching programs, one can employ the

power of group theory.

Definition 3.4.1 (131, [2]). Let n, w, 1 E z'. A permutation branching Drogram i; of

width w and length 1 (abbreviated wPBP) is a wBBP such that every function in an

instruction of B is a permutation of the set [w].

Barrington investigated the power of permutation branching programs of widths 2, 3,

and 4 ([3], [2]). We present here his analysis of width 5 permutation branching programs.

40

Definition 3.4.2 ([3], [4]). Let L {0,1)", and let B be a 5-PBP. B is said to

8-cvcle recognize L if there is a five cycle a E S5 such that B(u) = a if u E L, and

B(u) = e if u e L, where e is the identity of S5. We call a the o u t ~ u t of B, and we

say that B recognizes L with output a.

Lemma 3.4.3 ([3], [dl). Let L C {0,1)", and let B be a 5-PBP which recognizes L

with output the &cycle a. Then for any 5-cycle r in S5, there is a 5-PBP which

recognizes L with output T.

Proof. Let B be the 5-PBP with sequence of instructions v, = (j,, a,, P,), 1 5 k 5 1,

which 5-cycle recognizes L with output a. Let 8 E Sg be such that 8 o a o 0-' = T . Let

k E (13, ...,1), and consider pEl where p, = Cjk, 0 o a, o 0-', 0 o pk o K1). It is clear

that the instruction p, yields 8 o yk o e-l, where yk is the yield of the instruction v,.

Let B' be the permutation branching program of width 5 and length 1 with sequence of

instructions (j,, 0 o a, o 8-', 0 o p, o K'), 1 5 k < I. Then for u E {0,1)",

B+) = (e y, 8-I) ... (e y2 8-l) (0 yl r l) , which is equal to

8 o y, o ... o yg o yl o 0-' whenever B(u) = y, o.. .o y2 o 7,. If u E L, then, since B

&cycle recognizes L with output a, B(u) = a, so that B1(u) = 8 o a o 8-' = T . If

u e L, then B(u) = e, so that Bn(u) = 0 o e o 8-I = e. Therefore, B' is a 5-PBP of the

same length as B which 5-cycle recognizes L with output r. 0

Lemma 3.4.4 ([3], [4]). IF L C {0,1)" is 5-cycle recognized by a 5-PBP of length 1, --
then Ihe complement of L is 5-cycle recognized by a 5-PBP of length 1.

Proof. Suppose that L is 5-cycle recognized by the 5-PBP B of length 1 with output u,

and that the last instruction of B is djk, a, p). Let B' be the 5-PBP of length 1 such that

the first 1 - 1 instructions of B' are the first 1 - 1 instructions of B, and the last

instruction of B' is the instruction Ci;t, a-lo a, a"o p). Then for all u ~ { 0 , l) " ,

B(u) = y, o o yl implies that B'(u) = a-' oy, o...o yl.. If u E L, B(u) = a, so

that BP(u) = a-lo a = e. If u 6 L, B(u) = e, so that B(u) = a-lo e = a-l, which is

a 5-cycle. Therefore, B' is a 5-PBP of length 1 which recognizes the complement of L with

output a-'. 0

Theorem 3.4.5 ([3], [4]). Let. L C (0,l)" be such that there is a fan-in 2 Boolean

circuit C on n variables of depth d such that C(u) = 1 if and only if u E L. Then

there is a 5-PBP B of length at most 4d which 5-cycle recognizes L.

Proof. We proceed by induction on d. If d = 1, then C is one of the circuits below.

If C is the circuit with the A gate, then let B be the 5-PBP of length 4 with

sequence of instructions (j, (12345), e), (k, (13542), e), (j, (15432), e), (k, (12453), e). Let

u ~ { O , l) ~ . If u is an element of L, then u j = l and u k = 1, so that

B(u) = (12453) o (15432) o (13542) o (12345) = (13254). If u 6 L, then one of the

following holds. Either

(i) u j = 1 and uk = 0, SO that B(u) = (15432) o (12345) = e,

(ii) u j = 0 and uk = 1, SO that B(u) = (12453) o (13542) = e, or

(iii) u j = O and u k = O , sothat B (u) = e .

Therefore, B recognizes L with output (13254). If C is the circuit with the v gate, let B

be the 5-PBP of length 4 with sequence of instructions (j, e, (12345)), (k, e, (13542)),

(j, e, (15432)), (k, (14523), a o (12453)), where a =(14523) is the inverse of (13254). It is

clear that for all u E { O , l) n , B(u) = E if both of uj, u, are 0, and B(u) = o otherwise.

Therefore, B recognizes L with output o = (14523). If C is the circuit with the 1 gate,

let B be the 5-PBP with the single instruction (k, E , (12345)). Then it is clear that B

recognizes L with output (12345). Assume that for some k 2 1, if L is recognizable by a

fan-in 2 Booiean circuit of depth d 5 k, then there is a 5-PBP of length a t most 4d which

5-cycle recognizes L. Let L be recognizable by a fan-in 2 Boolean circuit C of depth

k + 1. We consider 3 cases

(i) C is the "and" of two fan-in 2 Boolean circuits A and D, each of depth less

than or equal to lc;

(ii) C is the "or" of two fan-in 2 Boolean circuits A and D, each of depth at most

lc;

(iii) C is the "not" of a fan-in 2 Boolean circuit A of depth k.

By the induction hypothesis, the languages L1 and L2 recognized by the fan-in 2 Boolean

circuits A and D can be 5-cycle recognized by 5-PBPs of length at most 4k.

Consider case (i), where L = L1 f~ La. By Lemma 3.4.3, there is a 5-PBP Ba which

a recognizes the language L1 with output a = (12345), and there is a 5-PBP Bd which

recognizes the language L2 with output T = (13542), each of length at most 4k. Also by

Lemma 3.4.3, there is a 5-PBP B a which 5-cycle recognizes the language L1 with output

(15432) = a-', and there is a 5-PBP Bd which 5-cycle recognizes the language L2 with

output (12453) = r-' each of length at most 4k. Let B be the 5-PBP of length a t most

42

4(4k) = 4kf1 whose sequence of instructions is the sequence of the instruction sequences of
-

Ba, Bd, Ba, Bd. Then, for all u E {O,l)", B(u) is equal to

Ed(u) o Eo(u) o Bd(u) o Ba(u). Let u E {0,1}". Then u E L1 implies that Ba(u) = a

and B ~ (u) = a-'; and u E L2 implies that Bd(u) = T and Bd(u) = T-I. Therefore,

u E L1 n L2 = L implies that B(u) = r" 0 a-I o r o a which equals (13254) = p. If

u L1, then Ba(u) = e and Ba(u) = e, so that B(u) = e or B(u) = r-'0 r = e.

Similarly, u L2 also implies that B(u) = E . Therefore, B is a 5-PBP of length at most
4k+l which 5-cycle recognizes L with output p .

Consider case (iii). L is the complement of the language L1, so by the induction

hypothesis, L1 is 5-cycle recognizable by a 5-PBP of length at most 4" By Lemma 3.4.4,

the complement L of L1 is 5-cycle recognizable by a 5-PBP B of length a t most 4k.

Consider case (ii), where L = L1 u L2. By the induction hypothesis and Lemma 3.4.4,

there are 5PBPs which 5-cycle recognize the complements of the languages L1 and La, each

of length a t most 4" By case (i) there is a 5-PBP B of length a t most 4k+1 which 5-cycle

recognizes the language El n E2, where El and E2 are the complements of the languages

L1 and L2. Again by Lemma 3.4.4, there is a 5-PBP of length at most 4k+1 which 5-cycle -
recognizes L = L1 n L2, the complement of El n La.

Corollarq 3.4.6 ([3], [21]). NC' 5-PBP B WBP.

Proof. Let L E NC'. Then there is a family C = (C):& of fan-in 2 Boolean circuits of

polynomial size and depth logan which recognizes L. That e has depth logan implies that

there exist integers k, c E Z+ such that for all n 2 k, 6(n) <_ clog2n. By Theorem 3.4.5,

for each n E N, there is a 5-PBP Bn of length at most 4*(") which 5-cycle recognizes

L n {0,1)". Consider the family '3 = (Bn):=l of 5-PBPs which recognizes L. For n 2 k,

X(n) < - 4'log2" = n2'. Therefore, X(n) = 0(n2'), and the language L is recognizable by a

polynomial length family of permutation branching programs of width 5. Therefore,

L E 5-PBP BWBP. The language L was arbitrary, so NC' 5-PBP E BWBP.

Theorem 3.4.7 ([3], [4]). If L 2 {0,1}" is recognizable by a branching program of

width w and length 1, then L Ss recognizable by a fan-in 2 Boolean circuit of depth

0(log21), where the constant depends only on w.

Proof. Let L 5 {0,1)" be recognized by the branching program B on n variables of width

w and length 1 with sequence of instructions vk = (jk, fk, gk), 1 k 5 1, where

fk, gk E Mw. B recognizes L, so there is a subset H = {hl, ha, ..., h,) E Mw such that for

all u E {0,1)", B(u) E H ifandonly if u E L.

43

(i) By Corollary 2.1.24, for each r E {1,2,. . ., 0, there is a fan-in 2 Boolean circuit

Z, of depth 2 and size a t most w2 + 3w + 1 which will "determine the yield" yr

of the instruction Vr, that is, which will, for any u E {0,1)"1 output the Boolean

representation of fr if u,, = 1, and will output the Boolean representation of g, if

uj, = 0.

(ii) By Lemma 2.1.22, there is a fan-in 2 Boolean circuit Q of depth

rlog211(rlog2wl + 1) and size a t most (I - l)2w3 + w2 which will "compute the

product" yl o...o y2 o y,, that is, which will output the Boolean representation

y, o . . . o y2 o yl of the product yl o.- .o y2 0 yl.

(iii) By Corollary 2.1.18, there is a fan-in 2 Boolean circuit F of depth

rlog2tl + [log2w21 + 3 = rlog2t] + r2(log2m)l + 3 and size 7w2t + w2 - 1 (where

t 5 ww), which "determines whether or not y, o...o y2 0 y1 is in H," that is,

whether or not yl o ... o y2 o y, = K p for some hp in H.

(iv) Let I = {1,2,. . .,n)\{j,,j2,. . .,jl), and let q 5 n denote ~(1) . If q > 1, then by

Corollary 2.1.16, there is a fan-in 2 Boolean circuit K of size 2q and depth

rlog2pl + 1 such that K(u) = 0 for all u E {0,1)~.

For each r €{1,2,. . .,1) let Yr be the circuit Zr excluding input and output gates, let

P be the circuit Q excluding input and output gates, let E be the circuit F excluding

input and output gates, ar.d let J be the circuit K excluding input and output gates.

Consider the Boolean circuit C shown below, keeping in mind that the jr are not necessarily

distinct, and that jr is not necessarily less than j,,,, even though the diagram has been

constructed to correspond to this case.

The fan-in 2 Boolean circuit C has depth rlog2ql + 2, or depth

2 + rlog2fl(rlog2wl + 1) + [log,t] + [2(log2w)l + 3, whichever is !arger. Without taking

into account that some gates belong to more than one subcircuit, C has size a t most

n + 2q + l(w2 + 3w + 1) + (I - l)2w3 + w2 + 7w2t + w2 - 1 + 1. If 0 < q < 1, then

C has depth 0(log21) where the constant depends only on w. Let u E {O,lIn, I

u = u ~ u ~ * . ' u ~ . Then, by definition of C, C(u) = 1 if and only if

0 vF(yl o..,o y2 o y1 ElEz...Et) = 1, if and only if F(Q(J,J~...J~)L~~,...E~) = 1, if and

only if F(Q(Zl(ujl)Z2(uj2)...~l(ujl))~1~2...&) = 1. By definition of the circuits F, Q, and

Zr, C(u) = 1 if and only if the composition of the yields of the instructions vl, v2,. . .,vl on

input u is in H, that is, if and only if B(u) E H. But B(u) E H if and only if u E L.

This implies that C(u) = 1 if and only if u f L. Therefore, C recognizes L. U

Corollarv 3.4.8 ([3], [4]). B WBP C NC'.
Proof. L E BWBP implies that there is a polynom& length family 53 = (Bn)zZo of

B-branching programs of width w 2 1 which recognizes L. Then for each n E N, there is a

subset An of Mw such that for all u E {O,l}n, Bn(u) E A, if and only if

u E L n (0,l)". 53 is polynomial length, so there are constants c 2 0, a 2 1, and no E N

such that for all n 2 no, X(n) 5 anc. From the proof of Theorem 3.4.7, for each n E N,

there is a fan-in 2 Boolean circuit C n of size at most

n + 29, + A(n)(w2 + 3w + 1) + (A(n) - l)2w3 + w2 + 7w21~,1 + w2, and depth the

larger of 5 + rlog2A(n)l(rlog2wl + 1) + rlog21Anl1 + r2(log2w)l and rlog2qnl + 2, which

recognizes L n {0,1)", where qn is the cardinality of the set of integers i, 1 5 i 5 n

which do not appear in the instructions for the wBBP Bn. For all n E N, qn 5 n, and

c(An) 5 c (M ~) = ww. Since Bn has size less than or equal to anc for all n 2 n,, for

such n, the fan-in 2 Boolean circuit Cn has depth a t most the larger of rlog2n1 + 2 and

5 + ~log2anc~(~log2wl + 1) + rw(log2w)l + r2(log2w)l, and Cn has size a t most

312 + (anc)(w2 + 3w + 1) + ((anc) - l)2w3 + 2w2 + 7wW+2. Since w is constant, by

Proposition 2.1.28, 6(n) = 0(log2n). Also by Proposition 2.1.28, since w is constant,

u(n) = O(nc). Thus, the family C = (Cn)rZo of fan-in 2 Boolean circuits has polynomial

size and depth log2n, and is such that for all n E N, Cn(u) = 1 if and only if

u E L n {0,1)". Therefore, L is in NC'. The language L was chosen arbitrarily, so

BWBP NC'. R

Theorem 3.4.9 PLP = BWBP = 5-PBP = NC?.

Proof. Corollaries 3.3.4, 3.4.6, and 3.4.8. O

Conclusion

Theorem 3.4.9 tells us that the language classes defined by the four "different" non- .

uniform models are the same. However, when it was shown that CWBP is the same class as

BWBP, one definition of the language recognized by a branching program was used, while

another definition was used in order to show that CWBP is the same class as PLP. Consider

the following. Let L be a language in NC'. Then for all n E N, L n {0,1)" can be

5-cycle recognized by a 5-PBP Bn, by Theorem 3.4.5. This means, firstly, that for all

n E N, L n {0,1)" is strongly recognized by Bn and, secondly, that for all n E N, there is

an element k of {1,2,3,4,5) such that Bn(u)(l) = k if and only if u E L n {O, l)n . Thus

for all n E N, L n {0,1)" is both weakly and strongly recognized by Bn (Definition 3.3.1),

and L n {O,lIn is recognized by Bn as in Definition 3.2.4. Since NC' is BWBP, we see

that BWBP remains the same regardless of the choice of definition for the language . .
a

recognized by a branching program. We note that, although we presented the proof of

Theorem 3.4.8 without taking uniformity into account, Barrington has shown that the result

holds in the uniform case as well ([3], [dl).

We now provide a sampling of some continuing work in this area. Denis Therien ([25])

has introduced the concept of a variety of congruences to add to the well known correspondence

46

between classes of languages and varieties of finite monoids (1131). Combining this work, and

the work that we have m resented in this thesis, Barrington and Therien ([5]) were able to

characterize AC' as the class of languages which are recognizable by a polynomial length

family of programs for a NUDFA over an aperiodic monoid, and they give a similar

characterization for another subclass of NC'. Howard Straubing, Barrington, and Therien

([6]) have looked at programs for NUDFAs over groups. Straubing, Barrington, Therien, and

Kevin Compton ([7]) have characterized regular languages in NC'.

We hope that we have provided an interesting and helpful introduction to this

fascinating and fruitful area of research.

References

M. Ajtai: C: Formulae on Finite Structures (Annals of Pure and
Applied Logic 1983, vol. 24, p. 1-48)

D. A. Barrington: Width Three Permutation Branching Programs (MIT
Technical Memorandum TM-293, 1985)

D. A. Barrington: Bounded Width Branching Programs (Ph. D. Thesis,
Massachusetts Institute of Technology 1986)

D. A. Barrington: Bounded Width, Polynomial Size Branching Programs
Recognize Exactly those Languages in NC' (Proceedings, 18th ACM Symposium on
the Theory of Computing 1986, p. 1-5)

D. A. Barrington and D. Therien: Finite Monoids and the Fine
Structure of NC' (Proceedings, 19th ACM Symposium on the Theory of Computing
1987, p. 101-109)

D. Barrington, H. Straubing, and D. Therien: Non-Uniform Automata
Over Groups (University of Massachusetts, Amherst 1988, COINS Technical Report
88-77)

D. Barrington, K. Compton, H. Straubing, and D. Therien: Regular
Languages in NC' (Boston College Technical Report BCCS-88-02, 1988)

A. Borodin: On Relating Time and Space to Size and Depth (S a m
Journal on Computing 1977, vol. 6, p. 733-744)

A. Borodin, M. Fischer, D. ~ i r k ~ a t r i c k , N. Lynch, and M. Tompa: . A Time
Space Tradeoff for Sorting on Non-Oblivious Machines (IEEE Symposium on the
Foundations of Computer Science 1979, p. 319-327)

A. Borodin, D. Dolev, F. Fich, and W. Paul: Bounds for Width Two
Branching Programs (Siam Journal on Computing 1986, vol. 15, p. 549-560)

S. Cook: A Taxonomy of Problems with Fast Parallel Algorithms
(Information and Control 1985, vol. 64, p. 2-22)

M. Davis and E. Weyuker: Computability, Complexity, and Languages
(Academic Press, Inc., New York 1983)

S. Eilenberg: Automata, Languages, and Machines (Academic Press, Inc.,
New Vnrl(vol A 147A, ~01. B 1976)

J. B. Fraleigh: A First Course in Abstract Algebra (3rd ed., Addison-
Wesley, Inc. Philippines 1982)

M. Furst, J. Saxe, and M. Sipser: Parity, Circuits, and the Polynomial
Time Hierarchy (Proceedings, 22nd IEEE Symposium on the Foundations of Compuier
Science 1981, p. 260-270)

48
J. Histad: Lower Bounds in Computational Complexity Theory
(Notices of the American Mathematical Society 1988, vol. 35, no. 5, p. 677-683)

J. Hopcroft and J. Ullman: Introduction to Automata Theory, Languages,
and Computabilaty (Addison-Wesley, Inc., Mass. 1979)

J. M. Howie: An Introduction to Semigroup Theo y (Academic Press,
Inc. London, Ltd. 1976)

G. Lallement: Semigroups and Combinatorial Applications (John Wiley
and Sons, Inc., New York 1979)

N. Pippenger: On Simultaneous Resource Bounds (Proceedings, 20th
IEEE Symposium on the Theory of Computing 1979, p. 307-311)

W. Ruzzo: On Uniform Circuit Complexity (Journal of Computer and
Systems Sciences 1981, vol. 22, p. 365-383)

J. Savage: Computational Work and Time on Finite Machines
(Association for Computing Machine ry Journal 1972, vol. 19, p. 660-674)

J. Savage: The Complexity of Computing (John Wiley and Sons, Inc., New
York 1976)

C. Schnorr: The Network Complexity and the Turing Machine
Complexity of Finite Functions (Acta Informatica 1976, vol. 7, p. 95-107)

D. Therien: Classification of Finite Monoids: The Language
Approach (Theoretical Compuier Science 1981, voi. 14, p. 135-208)

I. Wegener: The Complexity of Boolean Functions (John Wiley and Sons
Ltd, and B. G. Teubner, Stuttgart 1987)

