Bibliothèque nationale du Canada

\forall

4

NOTICE

The quality of this microform is heavily dependent upon the quality of the original thesis submitted for microfilming. Every effort has been made to ensure the highest quality of , reproduction possible.

If pages are missing, contact the university which granted the degree.

Por
Some pages may have indistinct print especially if the original pages were typed with a poor typewriter ribbon or if the university sent us an inferior photocopy.

Reproduction in full or in part of this microform is governed by the Canadian Copyright Act, R.S.C. 1970, c. C-30, and subsequent amendments.

AVIS

La qualité de cette microforme dépenđ grandement de la qualité de la thèse soumise au microfilmage. Nous avons tout fait pour assurer une qualité supérieure de reproduction.

S'il manque des pages, veuillez communiquer avec l'université qui a contéré le grade.

La qualité d'impression de certaines pages peut laisser à désirer, surtout si les pages originales önt été dactylographiées à l'aide d'un ruban usé ou si l'université nous a fait parvenir une photocopie de qualité inférieure.

La reproduction, méme partielle, de cette microforme est soumise à la Loi canadienne sur le droit d'auteur, SRC 1970, c. C-30, et ses amendements subséquents.

RESOLVABLE AND NEAR-RESOLVABLE
 ORIENTED 3- AND 4-CYCLE DECOMPOSITIONS OF THE COMPLETE SYMMETRIC DIGRAPH

by

Susan Hamm
B.Sc., Simon Fraser University, 1987

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE (MATHEMATICS)

in the Faculty of Mathematics and Statistics

(C) Susan Hamm 1989

SIMON FRASER UNIVERSITY
Decenmber 1989

All rights reserved. This work may not be reproduced in whole or in part, by photocopy or other means, without permission of the author.

The author has granted an irrevocable nonexclusive licence allowing the National Library of Canada fob reproduce, loan, distribute or sell cosies of his/her thesis by any means and in any form or format, making this thesis available to interested persons.

The author retains ownership of the copyright in his/her thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without his/her permission.

L'auteur a accordé une licence irrévocable et non exclusive permettant ad la Bibliothéque nationale du Canada de reproduire, prêter, distribuer ou ventre desc copies de sa thèse de quelque manière et sous quelque forme que ce spit pour metre de exemplaires de cette thèse à la disposition de personnes intéressées.

L'auteur conserve la propriété du droitd'auteur quip protège sa these. Ni la thèse ni does extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

[^0]DEGREE: Master of Science (Mathematics)

TITLE OF THESIS:

- .

Resolvable and Near-Resolvable Oriented 3- and 4cycle Decompositions of the Complete Symmetric Digraph

EXAMINING COMMITTEE:

Chairman: Dr. A. H. Lachlan

Dr. K. Heinrich
Senior Supervisor

Dr. B. Alspach

Dr. T.C. Brown

Dr. C. Colbourn
E External Examiner
Professor, Department of Combinatorics and Optimization University of Waterloo

Thereby grant to Simon Fraser University the right fo lend my thesis, project or extended essay (the title of which is shown below) to user's of the simon Fraser University Library, and to make partial or single copies only for such users or in response to a request from the library of any other university, or other educational Institution, on its own behalf or for one of its users. I further agree that permission for multiple copying of this work forfscholarly purposes may be granted by me or the Dean of Graduate Studies. It is understood that copying or publication of this work for financial gain shall not be allowed without my written permission.

Title of Thesis/Project/Extended Essay

- K'eschable ana Mia Niscilvabli Oriented
\qquad
-

Author:
(signature)
,

"ABSTRACT

In this thesis we study resolyable and near-resolvable decompositions of the complete symmetric digraph on v vertices, DK_{ν}, into each of the two oriented 3-cycles, CT_{3} and TT_{3}, and into each of the four oriented 4-cycles, $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D , (where A, B, and C, are the oriented 4 -cycles with longest path leggths one, two and three re pectively, and D is the directed 4-cycle). In Chapter One we present a brief history of the problem,-together with some.preliminary results. This is followed, in Chapter Two, by a discussion of known results for oriented 3-cycle decompositions. In Chapters Three and Four we study necessary and sufficient conditions for the existence of resolvable and near-resolvable decompositions of DK_{v}^{i} into each of A, B, C and D . We show that $\mathrm{DK}_{\nu}{ }^{*}$ admits resolvable decompositions into B if and only if $v \equiv 0(\bmod 4), v \neq 4$ (with possible exceptions $v=20$ and $v=52$); दnto C if and only if $\nu \equiv 0(\bmod 4)$; and into D if and only if $v \equiv 0(\bmod 4), v \neq 4 . \mathrm{DK}_{v}$ cannot be resolvably , decomposed into A . Near-resolvable decompositions of DK_{v} into A and into D exist if and only if $v \equiv 1(\bmod 4)$, and into B and into C if and only if $v \equiv 1(\bmod 4), v \neq 5$ (with the possible exception of decompositions of DK_{21} into near B -factors). .

Table of Contents

Approval Page ii
Abstract iii
Table of Contents iv
List of Figures v
Chapter One - Introduction 3.1
Chapter Two - Resolvable and Near Resolvable Oriented 3-cycle Decompositions 9
Chapter Three - Resolvable Oriented 4-cycle Decompositions 16Chapter Fpur - Near-Resolvable Oriented 4-cycle Decompositions28
List of References ©. 43
8\rightarrow

List of Figures

Figure 1 5
Figure 2 .f............................... 6
Figure 3. 17
Figure 4. 18
Figure 5. 19
Figure 6 20
 23
Figure 8 23
Figure 9. 24
Figure 10. 29
Figure 11. 29
Figure 12. 31
Figure 13. $3{ }^{*}$
"Figure 14. 35
Figure 15. 38©Figure 16
Figure 17 41

${ }_{5}^{5}$
, \qquad
σ
2

Chapter 1-Introduction

- Let G be a finite multigraph with no loops. Let $\mathcal{H}=\left\{\mathrm{H}_{1}, \mathrm{H}_{2}, \ldots, \mathrm{H}_{n}\right\}$ be a collection of connected graphs on the vertex set of G whose edge-disjoint union is isomorphic to G . Then we say that \mathcal{H} is a decomposition of the graph G . In particular, if H_{i} is a cycle for $i=1,2, \ldots, n$, then \mathcal{H} is a cycle decomposition of G. If $\mathrm{H}_{i} \cong \mathrm{H}$ for all i then we say that H divides G, dênoted H / G. The question of when a given graph G has a certain type of cycle decomposition has been of considerable interest over the past several years. For a general survey we refer the reader to [4] - and [14]. In particular, there has been much work done when G is the complete graph on v vertices with edge multiplicity $\lambda, \lambda \mathrm{K}_{v}$, and all of the cycles in the decomposition have the same length. The problem formally stated is to determine the values of v for which $\lambda \mathrm{K}_{v}$ has a cycle decomposition into cycles of length k. Clearly, it is necessary that $v \geq k$, that k divide the number of edges in $\lambda \mathrm{K}_{\mathrm{v}}$, and that the degree, $\lambda(v-1)$, of each vertex be even. In this thesis we goncentrate on the cases where $k=3$ and $k=4$.

A Steiner Triple System on v points, (an $\operatorname{STS}(v)$) is a collection of 3-subsets of a v-set such that each pair of elements in the v-set occurs exactly once in some 3-subset. If we let the vertices of $K v$ be the elements of the v-set, each 3 -subset gives a 3-cycle in K_{ν} and each edge in K_{ν} occurs in exactly one 3-cycle. Hence K_{v} can be decomposed into cycles of length 3 exactly when an $\operatorname{STS}(v)$ exists; that is, when $v \equiv 1$ or $3(\bmod 6)$ [30]. Much work has been done on triple systems. Fdr a bibliographic sketch and for constructions of both $\operatorname{STS}(v)$ and of triple systems with various λ, we refer the reader to [30].

In 1965, Kotzig [24] investigated decompositions of K_{v} into $4 t$-cycles.
1.1. Theorem: (Kotzig, [24]) If $v \equiv 1(\bmod 8 t)$, then there is a decomposition of K_{v} into $4 t$-çycles; the condition being also necessary if t is a power of two.
8
In particular, if $t=1$, we have that K_{v} can be decomposed into 4-cycles if and only if $v \equiv 1(\bmod 8)$.

In this paper we restrict ourselves to the study of decompositions into 3- and 4-cycles. However, many other results for different cycle lengths are known and we refer the interested reader to [27] and [28].

Let $\mathcal{H}=\left\{\mathrm{H}_{1}, \mathrm{H}_{2}, \ldots, \mathrm{H}_{n}\right\}$ be a decomposition of a graph G with $|\mathrm{V}(\mathrm{G})|=v$. If we can partition the graphs H_{i} into classes, such that the H_{i} in a given class are vertex-disjoint, and their union is a spanning subgraph of G, then we say \mathcal{H} is a resolvable decomposition of G and call each class a parallel class.' If each of the $\mathrm{H}_{i} \in \mathcal{H}$ is a cycle of length k, then we say that \mathcal{H} is a resolvable k-gycle decomposition. If in addition, $\mathrm{H}_{i} \cong \mathrm{H}$ for all i, we may also say H divides G resolvably, denoted $\mathrm{HI}_{\mathrm{R}} \mathrm{G}$. In this case the parallel classes are called H -factors and we say G has an H-factorization. Observe that for a resolvable k-cycle decomposition to exist we must have $v \equiv \rho_{0}(\bmod k), v \geq k$ and $\lambda\left(\frac{v(v-1)}{2}\right) \equiv 0(\bmod k)$.

If we can partition the graph $\mathrm{H}_{i} \in \mathcal{H}$ into classes such that the H_{i} in each class are vertex-disjoint and their union is a spanning subgraph of $\mathrm{G}-\{x\}$, the graph G with one vertex removed, we say that \mathscr{H} is a near-resolvable decomposition of G and again call the classes parallel classes. If all $H_{i} \in \mathcal{H}$ are k-cycles we say that \mathcal{H} is a , near-resolvable k-cycle decomposition of G. If in addition, $\mathrm{H}_{i} \cong \mathrm{H}$ we may also say that H divides G near-resolvably, denoted $\left.H\right|_{N R} G$. In this case the parallel classes are called near H -factors, and we say G has a near H -factorization. For a
near-resolvable k-cycle decomposition of G we must have $v \equiv 1(\bmod k), v \geq k$, and $\lambda\left(\frac{v(v-1)}{2}\right) \equiv 0(\bmod k)$.

We define a 1 -factor of a graph G to be a set of vertex-disjoint edges which span G. A near 1 -factor of a graph G is a set of vertex-disjoint edges which span $\mathrm{G}-\{x\}$, the graph G with a vertex removed.

The question of when $K_{\nu}^{\bar{p}}$ can be resolvably decomposed into cycles dates back to the famed Oberwolfach problem, first formulated by Ringel and first mentioned in print in [16]. The specific case of finding resolvable decompositions of K_{ν} into 3-cycles is better khown as Kirkman's schoolgirl problem and was solved by Ray-Chauthuri and Wilson [26]. Such decompositions are called Kirkman triple - systems, KTS(v).
1.2. Theorem: (Ray-Chaudhuri and Wilson, [261) There is a resolvable decomosition of K_{v} into 3-cycles $(\operatorname{a~KTS}(v))$ if and only if $v \equiv 3(\bmod 6)$.

A proof of this theorem can also be found in [30, pp. 254-260].
3
We observe that there can be no resolvable decomposition of K_{v} into 4-cycles since this would require that $v \equiv 0(\bmod 4)$ and that v be odd, which is impossible.

After many years of pearch and papers by various mathematicians, the general problem for resolvable k-cycle decompositions of K_{v} was sived. The interested reader can find the culmination of the results in three papers, one by Alspach, Schellenberg, Stinson and Wagner [2], the second by Alspach and Häggkvist [1], and a later paper by Hoffman and Schellenberg [22].

In [18], Hanani settled the question of resolvable and near-resolvable decompositions of $2 \mathrm{~K}_{\nu}$ into 3-cycles.
1.3. Theorem: (Hanani, [18]) Resolvable decompositions of $2 \mathrm{~K}_{v}$ into 3-cycles exist if and only if $v \equiv 0(\bmod 3), v \neq 6$, and near-resolvable decompostions of $2 \mathrm{~K}_{\nu}$ into 3 -cycles exist if and only if $v \equiv 1(\bmod 3)$.

The existence of near-resolvable k-cycle decompositions of $2 \mathrm{~K}_{\nu}$ was completely resolved in [21] and [12]. (We note that no near-resolvable k-cycle . decomposition of K_{ν}, exists. Recall that the degree of each vertex must be even in order for the graph to admit a k-cycle decomposition. Hence v must be odd. Also, each parallel ${ }^{\circ}$ class uses $v-1$ edges, hence $\left|\mathrm{E}\left(\mathrm{K}_{v}\right)\right|=\frac{v(v-1)}{2}$ must be divisible by $v-1$. But this is not possible if v is odd.)

In [21], Heinrich, Lindner and Rodger show that the necessary condition that ${ }^{\prime}$ $\nu \equiv 1(\bmod k)$ is sufficient for the existence of a near-resolvable k-cycle decomposition of $2 \mathrm{~K}_{v}$ for k odd, $k \geq 3$, and in [12], Burling and Heinrich show that it is also sufficient. for k even. In particular we have near-resolvable 4-cycle decompositions,

- 1.4. Theorem: (Burling and Heinrich, [12]) Near-resolvable 4-cycle decompositions of $2 \mathrm{~K}_{\nu}$ exist if and only if $\nu \equiv 1(\bmod 4)$.

Analogous questions have also been asked concerning decompositions of directed graphs. If G is a graph, then let $D G$ be the directed graph obtained by replacing each edge $a b \in \mathrm{E}(\mathrm{G})$ with the two arcs (a, b) and (b, a). In particular we have the complete symmetric digraph, DK_{ν}. Decompositions of digraphs are particularly interesting since different orientations of the arcs are possible. For example, if we
wish to decompose DK_{v} into oriented 3-cycles we can consider the two possible orientations given in Figure 1:

Figure 1

The first we call a cyclic triple, denoted CT_{3}, and the second we call a transitive triple, denoted TT_{3}.

Mendelsohn was the first to study decompositions of DK_{v} into cyclic triples. In [25] he presents the idea of decomposing DK_{v} into cyclic triples as a generalization of Steiner triple systems and gïves necessary and sufficient conditions for the existence of such decompositions.
1.5. Theorem: . (Mendelsohn, [25]) DK_{v} can be decomposed into cyclic triples if and only if $v \equiv 0$ or $1(\bmod 3), v \neq 6$. 8 3

Later, Hung and Mendelsohn [23] established the analagous restult for transitive triples.

1.6. Theorem: (Hisung and Mendelsohn, [23]) DK_{v} can be decomposed into transitive triples if and onky if $v \equiv 0$ or $1(\bmod 3), v \neq 1$.

Thus whenever the necessary conditions are satisfied, DK_{v} can be decomposed into either the cyclic or the transitive tiple unless $v=6$.

The case of decomposing DK_{v} into oriented 4-cycles is again more complex as there are four possible orientations as shown in Figure 2.

Figure 2

We adopt the notation of [19] in naming these four graphs, denoting them A, B, C , and D respectively, where the later the letter, the longer the longest directed path.

A A is known as the alternator and D is often called the 4 -circuit.
5
Schönheim [29] and Bermond and Faber [6] independently worked on the problem of decomposing DK_{v} into D. Schönheim refers to Mendelsohn's generalization of triple systems [25] as his motivation for studying oriented ${ }^{\circ} 4$-cycle decompositions and in [29] gives necessary and sufficient conditions for such decompositions. 'Bermond worked on the more general problem of determining the values of v for which DK_{v} can be decomposed into k-circuits, directed k-cycles where the longest directed path is of length k. In [3] he conjectured that the necessary condition $v(v-1) \equiv 0(\bmod k)$ is also sufficient except for $v=6, k=3 ; v=4=k$; and $v=6=k$. In a joint paper with Faber [6] he developed many results for k even. In particular they resolve the case $k=4$.
1.7. Theorem: (Schönheim [29], Bermond and Faber [6]) DK_{v} can be decomposed into D if and only if $v>4$ and $v \equiv 0$ or $1(\bmod 4)$.

Necessity is clear since the number of edges must be divisible by 4 . If $v=4$ it can be shown by exhaustion that the decomposition does not exist.

Harary, Wallis and Heinrich [19] were the first to discuss the other possible orientations of the 4 -cycle.
1.8. Theorem: (Harary, Wallis and Heinrich[19])
(a) AlDK_{v} if and only if $v \cong 1(\bmod 4)$;
(b) BiDK_{v} if and only if $v \equiv 0$ or $1(\bmod 4), v \neq 4$ or 5 ;
(c) CIDK_{v} if and only if $\nu \equiv 0$ or $1(\bmod 4), v \neq 5$.

In what follows we focus on resolvable and near-resolvable decompostions of DK_{v}, restricting ourselves to the study of oriented 3-and 4-cycle decompostions. In Chapter 2 we give an overview of work done on resolvable and near-resolvable decompositions of DK_{v} into the two oriented 3-cycles. In Chapter 3 we discuss resolvable decompositions into the four oriented 4-cycles and establish the following ; theorem.

1.9. Theorem: a) $\mathrm{AX}_{\mathrm{R}} \mathrm{DK}_{v}$.

b) $\mathrm{B} l_{\mathrm{R}} \mathrm{DK}_{v}$ if and only if $v \equiv 0(\bmod 4), v \neq 4$, with the possible exceptions $v=20$ and $v=52$.
c) $\mathrm{Cl}_{\mathrm{R}} \mathrm{DK}_{\nu}$ if and only if $v \equiv 0(\bmod 4)$.
d) $\mathrm{DI}_{\mathrm{R}} \mathrm{DK}_{v}$ if and only if $v \equiv 0(\bmod 4)$, with the possible exception of $v=12$.

In Chapter 4 we discusis near resolvable decompositions into the four oriented 4-cycles and prove that:

1

1.10. Theorem:
a) A and D divide DK_{ν} near resolvably if and only if $\nu \equiv 1(\bmod 4)$.
b) Band C divide DK_{v} near resolvably if andonly if $v=1(\bmod 4), v \neq 5$, with the possible exception that B may not divide DK_{21} near resolvably.

\square

Chapter - 2 Resolvable and Near-Resolvable Oriented 3-Cycle Decompositions

§2.1. Definitions and Notation

In addition to the definitions and notation introduced in Cheter 1 , the following terms and conventions are used.

Let C_{k} denote the non-oriented k-cycle. In particular, C_{3} is the non-oriented 3-cycle. The cyclic triple CT_{3} with vertex-set $\{a, b, c\}$, has $\operatorname{arcs}(a, b),(b, c)$ and (c, a); while the transitive triple, TT_{3}, on the same vertex set has $\operatorname{arcs}(a, b),(b, c)$ and (a, c). In each case the triple is denoted (a, b, c). In the discussion that follows we use the symbol X_{3} to denote an oriented 3-cycle.

Given an oriented k-cycle C , the oriented cycle obtained by reversing the direction of each arc in C is called the converse of C . If C is isomorphic to its converse then we say that C is self-converse. In particular, we note that CT_{3} and TT_{3} are both self-converse.

Let K_{A} denote the complete graph with vertex set A and C_{A} denote a cycle with vertex set A . Let $\mathrm{K}(n, m)$ denote the complete multipartite graph with vertex set consisting of n parts of m vertices each, and let $\mathrm{C}(n, \dot{m})$ be the graph with vertex set consisting of n parts of m vertices each, $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots \mathrm{X}_{n}$, with $\mathrm{E}(\mathrm{C}(m, n))=\left\{x y: x \in \mathrm{X}_{i}\right.$ and, $\left.y \in \mathrm{X}_{(i+1)(\bmod n)}\right)$.

§2.2. Resolvable 3-cycle decompositions of DK_{v}

In 1979, Bermond, Germa and Sotteau [5] stablished necessary and sufficient conditions for pesolvable decompositions of DK_{ν} into CT_{3} and into TT_{3}.
2.1. Theorem: (Bermond, Gefma, Sotteau [5]) DK ${ }_{i v}$ admits 'resolvable decompositions into TT_{3} and into CT_{3} iffend only if $\nu \equiv 0(\bmod 3), v \neq 6$.

It is clear that for such decomposition to exist we require $v \equiv 0(\bmod 3)$ as the nuqper of vertices of DK_{ν} must be a multiple of 3 . To see that $v \neq 6$, suppose that either $\mathrm{CT}_{3} l_{\mathrm{R}} \mathrm{DK}_{6}$ or $\left.\mathrm{TT}_{3}\right|_{\mathrm{R}} \mathbb{4} \mathrm{K}_{6}$. Then on deleting the orientations of the arcs we have a resolvable decomposition of $2 \mathrm{~K}_{6}$ into C_{3} which contradicts Theorem 1.3.

We will prove the sufficiency of the theorem via a series Lqmmas.
2.2. Lemma: (Bermond, Germa, anđ Sotteau, $[5])$ When $v \equiv 3(\bmod 6)$, $\mathrm{X}_{3}{ }^{1} \mathrm{DK}_{v}$.

Proof: From Theorem 1.3., we have $\mathrm{C}_{3} l_{\mathrm{R}} \mathrm{K}_{v}$ if $v \equiv 3(\bmod 6)$. To each C_{3}, associate an oriented 3-cycle (either CT_{3} or TT_{3}) and its converse. Thus for each C_{3}-factor of K_{v}, we obtain two CT_{3}-(or TT_{3}-) factors of DK_{v}, giving resolvable decompostions of DK_{v} as required.

We, require several lemmas and another Theorem in order to provide resolvable decomposifions when $v=0(\bmod 6)$.
2.3. Lemma: $X_{3} \mathrm{DK}_{4}$.

Proof: Let the vertices of DK_{ν} be the four elements of GF(4): $0,1, \dot{x}, x^{2}$ with $x^{2}=x+1$ In each case the triples of a decomposition are $\left\{\left(\alpha+1, \alpha+x, \alpha+x^{2}\right): \alpha \in \operatorname{GF}(4)\right\}$.
2.4. Lemma: If $\mathrm{X}_{3}{ }_{\mathrm{R}} \mathrm{DK} K_{v}$, then $\mathrm{X}_{3}{ }_{1}{ }_{\mathrm{R}} \mathrm{DK}_{4 v}$.

Proof: Partition the vertices of $\mathrm{DK}_{4 v}$ into v sets $\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{v}$ with $\left|\mathrm{A}_{i}\right|=4$. Denote the vertices of A_{i} by $\left\{\mathrm{a}_{i}^{\alpha}: \alpha \in \operatorname{GF}(4)\right\}$. Let $\mathcal{C}_{1}, \mathcal{C}_{2}, \ldots, \mathcal{C}_{\nu-1}$ be the X_{3}-façtors of an X_{3}-factorization of $\dot{\mathrm{D}} \mathrm{K}_{v}$. From \mathcal{C}_{1} we construct seven edge disjoint X_{3}-factors of
$\mathrm{DK}_{4 v}$ by associating with each $(i, j, k) \in \mathcal{C}_{1}$ the seven sets of triples, each triple isomorphic to $\mathrm{X}_{3}:\left\{\left(\mathrm{a}_{i}^{\alpha}, \mathrm{a}_{j}^{\alpha} \mathcal{l}_{k}^{\alpha}\right),\left(\mathrm{a}_{i}^{\alpha+1}, \mathrm{a}_{i}^{\alpha+x}, \mathrm{a}_{i}^{\alpha+x^{2}}\right)\right\}\left(\mathrm{a}_{j}^{\alpha+1}, \mathrm{a}_{j}^{\alpha+x}, \mathrm{a}_{j}^{\alpha+x^{2}}\right)$, $\left.\left(\mathrm{a}_{k}^{\alpha+1}, \mathrm{a}_{k}^{\alpha+x}, \mathrm{a}_{k}^{\alpha+x^{2}}\right)\right\}$, where $\alpha \in \mathrm{GF}(4)$; and $\left\{\mathrm{a}_{i}^{p}, \mathrm{a}_{j}^{p^{p+1}}, \mathrm{a}_{k}^{p+2}\right)$, $\underset{p \in\{1,2,3\}}{\left.\left(\mathrm{a}_{i}^{x_{p+1}}, \mathrm{ax}_{j}^{p+1}+1, \mathrm{a}_{k}^{p+2}+1\right),\left(\mathrm{a}_{i}^{a^{p}+x}, \mathrm{a}_{j}^{p+1}+x, \mathrm{a}_{k}^{x^{p+2}+x}\right),\left(\mathrm{ax}^{p+x^{2}}, \mathrm{a}_{j}^{p^{p+1}+x^{2}}, \mathfrak{a}_{k}^{p+2}+x^{2}\right)\right\} \text { for }}$

From dach $C_{l}, 2 \leq l \leq v-1$ we construct four edge disjoint X_{3}-factors $\mathrm{DK}_{4 v}$ by associating with each $(i, j, k) \in \mathcal{C}_{l}$, the four sets of triples, each triple isomorphic to X_{3} : $\left\{\left(\mathrm{a}_{i}^{\alpha}, \mathrm{a}_{j}^{\alpha}, \mathrm{a}_{k}^{\alpha}\right),\left(\mathrm{a}_{i}^{\alpha+1}, \mathrm{a}_{j}^{\alpha+x}, \mathrm{a}_{k}^{\alpha+x^{2}}\right),\left(\mathrm{a}_{i}^{\alpha+x}, \mathrm{a}_{j}^{\alpha+x^{2}}, \mathrm{a}_{k}^{\alpha+1}\right),\left(\mathrm{a}_{i}^{\alpha+x^{2}}, \stackrel{\oplus}{j}_{\dot{\alpha+1}}^{\alpha+1}, \mathrm{a}_{j}^{\alpha+x}\right)\right\}, \alpha \in \mathrm{GF}(4)$.

This yields $7+4(v-2)=4 v-1 \mathrm{X}_{3}$-factors of $\mathrm{DK}_{4 v}$ and hence $\left.\mathrm{X}_{3}\right|_{\mathrm{R}} \mathrm{DK}_{4 v}{ }^{\circ}$:
n
We state the following three lemmas without proof.
2.5. Lemma: (Bermond, Getra, and Sotteau, [5]) $\mathrm{X}_{3}^{\circ}{ }_{R} \mathrm{DK}_{18},\left.\mathrm{X}_{3}\right|_{\mathrm{R}} \mathrm{DK}_{24}$, $\mathrm{X}_{3} \mathrm{l}_{\mathrm{R}} \mathrm{DK}_{30}$, and $\mathrm{X}_{3} \mathrm{l}_{\mathrm{R}} \mathrm{DK}_{42}$.
2.6. Lemma: (Bermond, Germa, and Sotteau, [5]) $\mathrm{DK}_{\mathrm{A} \cup \mathrm{B}}-\mathrm{DK}_{\mathrm{B}}$, where $|\mathrm{A}|=12$ and $|\mathrm{B}|=6$, can be decomposed into seventeen subgraphs, twelve of which are X_{3}-factors of $\mathrm{DK}_{\mathrm{A} \cup \mathrm{B}}$, and five of which are X_{3}-factors of DK_{A}.
2.7. Lemma: (Brouwer, Hanani, and Schrijver, [10]) For $r \geq 4, \mathrm{~K}_{4} \mid \mathrm{K}(r, 12)$.

4
2.8. Lemma: (Bermond, Germa, and Sotteau, [5]) When $v \equiv 6(\bmod 12)$, $\mathrm{X}_{3} l_{\mathrm{R}} \mathrm{DK} /{ }^{2}$.

Proof: Let $v=12 u+6$. When $u \leq 3$, the claim follows from Lemma 2.5. Let $u \geq 4$, and partition the set X of vertices of DK_{v} as follows: $\mathrm{X}={ }_{i=1}^{u} \mathrm{~A}_{i} \cup \mathrm{~B}$, where $\mathrm{A}_{i}=\left\{a_{j}^{i}: 1 \leq j \leq 12\right\}$ and $|\mathrm{B}|=6$. By Lemma 2.5, $\mathrm{DK}_{\mathrm{A}_{1} \cup \mathrm{~B}} \equiv \mathrm{DK}_{18}$ can be decomposed into ${ }^{\prime} \mathrm{X}_{3}$-factors $C_{j}^{1}, 1 \leq j \leq 17$. By Lemma 2.6, for $i=2,3, \ldots, u, \mathrm{DK}_{\mathrm{A}_{i} \cup \mathrm{~B}}-\mathrm{DK}_{\mathrm{B}}$ can be
decomposed into prècisely twelve \mathbb{K}_{3}-factors, $\mathcal{D}_{1}^{i}, \mathcal{D}_{2}^{i}, \ldots, \mathcal{D}_{12}$, of $\mathrm{DK}_{\mathrm{A}_{i} \cup \dot{B}}$, and five X_{3}-façors, $\mathcal{E}_{13}^{i}, \mathcal{E}_{14}^{i}, \ldots, \mathcal{E}_{17}^{i}$, of $\mathrm{DK}_{\mathrm{A}_{i} \cdot} \cdot$ From Lemma 2.7 , the graph $\mathrm{DK}_{\circ}(u, 12)$ with vertex set ${\underset{i=1}{u} \mathrm{~A}_{i} \text { where the } \mathrm{A}_{i} \text { are the independent sets, has a } \mathrm{DK}_{4} \text {-decomposition. }{ }^{\text {- }} \text {. }}^{\text {d }}$ Let S be the set of all DK_{4} in such a decomposition.

Let $a_{j}^{i \cdot} \in \mathrm{~A}_{i}$ and let $\mathscr{P}_{j=}^{i}=\left\{\mathrm{DK}_{4}: \mathrm{DK}_{4} \in \mathcal{S}\right.$ and $\left.a_{j}^{i} \in \mathrm{~V}\left(\mathrm{DK}_{4}\right)\right\}$. By Lemma 2.3, each . of these DK_{4} has an X_{3}-decomposition. Then let $\mathcal{F}_{j}^{i}=\left\{\mathrm{X}_{3}: \mathrm{DK}_{4} \stackrel{\circ}{\circ} \mathscr{P}_{j}^{i}, \mathrm{X}_{3}\right.$ iş an oriented 3-cycle in the decomposition ofDK ${ }_{4}$, and $a_{j \neq}^{i} \mathrm{X}_{3}$], Clearly \mathcal{F}_{j}^{i} is an X_{3}-factor of DK ($u-1,12$) with vertex set $\mathrm{V}(\mathrm{DK}(u, 12))-\mathrm{A}_{i}$.

We obtain an X_{3}-factorization of $\mathrm{DK}_{12 u+6}$ with the following $12 u+5$ parallel classes: $\mathcal{C}_{j}^{1} \cup \mathcal{F}_{j}^{1}$ for $j=1,2, \ldots, 12 ; \mathcal{C}_{j}^{\mathcal{1}} \cup_{i=2}^{\dot{u}} \mathcal{E}_{j}^{i}$ for $j=13, \ldots, 17$; and $\mathscr{D}_{j}^{i} \cup \mathcal{F}_{j}^{i}$ for $j=1,2, \ldots, 12$, $2 \leq i \leq u$. Hence $\left.\mathrm{X}_{3}\right|_{\mathrm{R}} \mathrm{DK}_{v}$ when $v \equiv 6(\bmod 12)$.
2.9. Lemma: (Bermond, Germa, and Sotteau, [5]) If $\nu \equiv 0(\bmod 12)$, then $\mathrm{X}_{3} \mathrm{l}_{\mathrm{R}} \mathrm{DK}{ }_{v}$.

Próof: Let $v=4 \alpha^{\alpha}$ where $q \equiv 0(\bmod 3)$ but $q \neq 0(\bmod 12)$. Since $X_{3} l_{\mathrm{R}} \mathrm{DK}_{q}$, for $q \neq 6$, (Lemmas 2.2 and 2.8) by repeatedly applying Lemma 2.4, we see that $\mathrm{X}_{3}{ }_{\mathrm{R}} \mathrm{DK}_{\nu}$, except when $q=6$. When $q=6$, let $v=4^{\alpha}(6)=4^{\alpha-1}(24)$ and since $\left.\mathrm{X}_{3}\right|_{\mathrm{R}} \mathrm{DK}{ }_{24}$, by Lemma 2.5, again on repeatedly applying Lemma 2.4 , we find $\dot{X}_{3}{ }^{\prime} \mathrm{DK}_{\nu}$, which completes the proof

The techniques used in the proof of this theorem are very useful in the following chapter on resधlvable oriented 4-cytle decompositions.

§2.3 Near-Resolvable Oriented 3-Cycle Decompositions

In 1981, Bennett and Sotteau [8] addressed the question of near-resolvable decompositions of DK_{ν} into the oriented 3-cycles.
2.10. Theorem: (Bennett and Sotteau [8]) DK_{ν} admits a near-resolvable decomposition into X_{3} if and only if $v \equiv 1(\bmod 3)$.

- Clearly $\nu \equiv 1(\bmod 3)$ is necessary since each near X_{3}-factor consists of oriented triples and an isolated vertex of $\mathrm{DK}_{\dot{v}}$. Recall from Lemma 2.3 that $\mathrm{X}_{3} 1_{\mathrm{NR}} \mathrm{DK}_{4}$.

In order to establish sufficiency we require a series of lemmas. Before we continue, we remind the reader of the definition of pairwise balanced designs.

A pairwise balanced design $\operatorname{PBD}(\nu, \mathrm{I}, \lambda)$ is a collection of i-subsets, $i \in \mathrm{I}$, called blocks, of a v-set such that each pair of elements in the v-set occurs in exactly λ blocks. In particular, we observe that if K_{ν} has a decomposition into H -factors where H is the edge-disjoint union of complete graphs, with orders in I , then there exists a $\operatorname{PBD}(\nu, \mathrm{I}, \lambda)$ and conversely.
2.11. Lemma: $X_{3} 1_{\mathrm{NR}} \mathrm{DK}_{7}$.

Proof: Let the vertices of DK_{7} be labelled by the elements of Z_{7} (the additive group of residues modulo 7). The seven parallel classes of a near-resolvable decomposition of DK_{7} into X_{3} are $\{i,(i+1, i+2, i+4),(i+6, i+5, i+3)\}, i \in \mathrm{Z}_{7}$.
2.12. Lemma: $\left.\mathrm{X}_{3}\right|_{\mathrm{NR}} \mathrm{DK}_{10}$.

Proof: Let the vertices of DK_{10} be labelled by the elements of Z_{10}. The ten parallel classes of a near-resolvable decomposition of DK_{10} into CT_{3} are: $\{0,(1,2,3) ;(4,7,8),(5,9,6)\},\{1,(2,6,0),(3,8,7),(4,9,5)\},\{2,(1,9,7),(3,5,8),(4,0,6)\}$, $\{3,(1,5,6),(2,0,7),(4,8,9)\},\{4,(1,7,5),(2,8,6),(3,9,0)\},\{5,(1,6,8),(2,7,9),(3,0,4)\}$,
 $\{9,(1,4,2),(3,7,6),(5,0,8)\}$. The ten parallel classes of a near-resolvable decompositon of DK_{10} into TT_{3} are:
$\{0,(1,2,3),(8,7,4),(9,6,5)\},\{1,(0,6,2),(7,8,3),(5,9,4)\},\{2,(9,7,1),(3,5,8),(6,4,0)\}$, , $\{3,(5,1,6),(7,2,0),(4,9,8)\},\{4,(1,7,5),(2,8,6),(0,3,9)\},\{5,(6,1,8),(2,7,9),(3,0,4)\}$, $\{6,(4,3,1),(8,9,2),(5,0,7)\},\{7,(0,8,1),(4,2,5),(6,9,3)\},\{8,(1,9,0),(5,3,2),(4,6,7)\}$, \{9,(2,1,4), (3,7,6), (8,0,5)\}.
2.13. Lemma: $\mathrm{X}_{3} \mathrm{l}_{\mathrm{NR}} \mathrm{DK}_{19}{ }^{\circ}$.

Proof: Let the vertices of DK_{19} be labelled by the elements of Z_{19}. The nineteen parallel classes of a near-resolvable X_{3}-decompostion of DK_{19} are $(i,(i+1, i+7, i+11),(i+2, i+14, i+3),(i+4, i+9, i+6),(i+18, i+12, i+8)$, $(i+17, i+5, i+16),(i+15, i+10, i+13)\}, i \in \mathrm{Z}_{19}$.

For the remaining cases, the next lemma is the key to showing sufficiency. Note that it is much like the method used in Lemma 2.8.
2.14. Lemma: If there exists a $\operatorname{PBD}(\nu, I, 1)$ and for every $\left(i \in \mathrm{I},\left.\mathrm{X}_{3}\right|_{\mathrm{NR}} \mathrm{DK}_{i}\right.$, then $\left.\mathrm{X}_{3}\right|_{\mathrm{NR}} \mathrm{DK}_{v}$.

Proof: The $\operatorname{PBD}(v, I, 1)$ gives us a decomposition of K_{v} into complete subgraphs $\mathrm{K}_{k}, k \in \mathrm{I}$, and hence a decomposition of DK_{ν} into $\mathrm{DK}_{k}, k \in \mathrm{I}$. For every x of $\mathrm{V}\left(\mathrm{DK}_{v}\right)$ consider those DK_{k} which contain x. These subgraphs have only the vertex x in common and between them contain all vertices of DK_{ν}. Since $\mathrm{X}_{3} \mathrm{l}_{\mathrm{NR}} \mathrm{DK}_{k}$, in each of these subgraphs we have a nëar X_{3}-factor covering all vertices but x. Together theṣe give us a near X_{3}-factor of DK_{v} which misses vertex x. All such near X_{3}-factors are edge-disjoint and thus yield $X_{3} /_{N R} \mathrm{DK}_{v}$.

We, are now ready to prove Theorem 2.10.

Proof of Theorem 2.10.:

Let us consider two cases.
Case 1: Let $v \equiv 1$ or $4(\bmod 12)$. Hanani [18] has shown that there exists a $\operatorname{PBD}(v,\{4\}, 1)$ if and only if $v \equiv 1$ or $4(\bmod 12)$. Hence, $\mathrm{K}_{4} \mid \mathrm{K}_{v}$ if $v \equiv 1$ or $4(\bmod 12)$. Then from Lemmas 2.14 and 2.3, it follows that $\mathrm{X}_{3} \mathrm{l}_{\mathrm{NR}} \mathrm{DK}_{v}$ when $v \equiv 1$ or $4(\bmod 12)$.

Case 2: Let $\nu \equiv 7$ or $10(\bmod 12)$. Brouwer [11] showed the existence of a ${ }^{2} \operatorname{PBD}(v,\{4,7\}, 1)$ with a unique block of size 7 if and only if $v \equiv 7$ or $10(\bmod 12), v \neq 10$ or 19. By applying Lemmas $2.3,2.11$, and 2.14 , it follows that $X_{3} l_{N R} D K_{v}$ when $\nu \equiv 7$ or $10(\bmod 12)$, and $v \neq 10$ or 19 . Since the factorizations for $v=10$ and $\nu=19$ have been shown in Lemmas 2.12 and 2.13 respectively, our proof is complete.

Hence $\mathrm{X}_{3} \mathrm{l}_{\mathrm{NR}} \mathrm{DK}_{v}$ if and only if $v \equiv 1(\bmod 3)$.

It has been shown by Colbourn and Colbourn [15] that given any decomposition of $2 \mathrm{~K}_{v}$ into 3-cycles, the 3-cycles can be oriented to give a decomposition of DK_{ν} into transitive triples. Together with Hanani's result, stated in Theorem 1.3, this provides another proof that $\left.\mathrm{T}_{3}\right|_{\mathrm{R}} \mathrm{DK}$, if and only if $\nu \equiv 0(\bmod 3), \nu \neq 6$, and $\left.\mathrm{TT}_{3}\right|_{\mathrm{NR}} \mathrm{DK}_{v}$ if and only if $v \equiv 1(\bmod 3)$.

This concludes the work which has been done on resolvable and near-resolvable oriented 3-cycle decompositions. We now move on to discuss resolvable and near-resolvable oriented 4 -cycle decompositions.

Chapter - 3 Resolvable Oriented 4-Cycle Decompositions

In [19], Harary, Wallis and Heinrich completely solved the problem of when DK_{ν} could be decomposed into each of the four oriented 4-cycles. Their constructions did not generally result in resolvable decompositions, leaying open the question of resolvable decompositions of DK_{v} into oriented 4-cycles. (We use the symbol X_{4} to stand for any one of the four oriented 4-cycles.)

To begin we note that if $\left.X_{4}\right|_{\mathrm{R}} D K_{v}$, then $v \equiv 0^{*}(\bmod 4)$, since each parallel class is made up of 4 -cycles. From now on, we let $v=4 n$, where n is a positive integer.

In this Chapter we establish the following theorem.

3.1. Theorem:

a) $\mathrm{Al}_{\mathrm{R}} \mathrm{DK}_{4 n}$.
b) $\mathrm{Bl}_{\mathrm{R}} \mathrm{DK}_{4 n}$ for all $n, n \neq 1$ except possibly when $n=5$ and $n=13$.
c) $\mathrm{Cl}_{\mathrm{R}} \mathrm{DK}_{4 n}$ for all n.
d) $\mathrm{DI}_{\mathrm{R}} \mathrm{DK}_{4 n}$ for all even n.

Then to complete ou discussion of resolvable decompositions of $\mathrm{DK}_{4 n}$ into the oriented 4-cycles, we discuss the following result of Bennett and Zhu.
3.2. Theorem: (Bepnett and Zhu [9]) $\mathrm{D}_{\mathrm{R}} \mathrm{DK}_{4 n}$ when n is odd, $n \neq 1$, except possibly when $n=3$.

impossible for A to divide $\mathrm{DK}_{4 n}$, and in particular A cannot divide $\mathrm{DK}_{4 n}$ resolvably.
3.4. Lemma: If $C_{4} \mid G$ then $X_{4} \mid D G$.

Proof: Each oriented 4 -cycle is self-converse. So each oriented 4-cycle divides DC_{4}. Hence the result follows.

3.5. Corollary: $\left.\mathrm{X}_{4}\right|_{\mathrm{R}} \mathrm{DK}_{4,4}$.

Proof: This follows immediately from Lemma 3.4, as $\mathrm{K}_{4,4}$ has a C_{4}-factorization as shown if Figure 3.

Figure 3

In this and Chapter 4 , the following notation is useful. Let G and H be graphs. Thén $G * H$ is the graph with vertex set $V(G) \times V(H)$ and edge set $\mathrm{E}(\mathrm{G} * \mathrm{H})=\left\{\left(\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right)\right\}: x_{1} y_{1} \in \mathrm{E}(\mathrm{G})\right.$ and $x_{2} y_{2} \in \mathrm{E}(\mathrm{H})$ or $x_{2}=y_{2}$ and $\left.x_{1} y_{1} \in \mathrm{E}(\mathrm{G})\right\} ;$ and $\mathrm{G} \bullet \mathrm{H}$ is the graph with vertex set $\mathrm{V}(\mathrm{G}) \times \mathrm{V}(\mathrm{H})$ and edge set $\mathrm{E}(\mathrm{G} \bullet \mathrm{H})=\left\{\left(\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right)\right\}: x_{1} y_{1} \in \mathrm{E}(\mathrm{G})\right.$ and $x_{2} y_{2} \in \mathrm{E}(\mathrm{H})$, or $x_{1}=y_{1}$ and $x_{2} y_{2} \in \mathrm{E}(\mathrm{H})$, or $x_{2}=y_{2}$ and $\left.x_{1} y_{1} \in \mathrm{E}(\dot{\mathrm{G}})\right\}$. We use $(n) \mathrm{G}$ to denote n vertex disjoint copies of the graph G.
3.6 Lemma: Let $\mathrm{G}=\mathrm{H} * \mathrm{~K}_{2}$ have $2 m$ vertices, where m is even, with vertex set $\mathrm{X}=S \cup T$ where $S=\left\{s_{1}, s_{2}, \ldots, s_{m}\right\}$, ${ }_{\text {and }} T=\left\{t_{1}, t_{2}, \ldots, t_{m}\right\}$ and the two copies of H are on the vertex sets S and T respectively. Then each 1 -factor F of H induces a C_{4}-factor of G .

Proof: Let F be a 1 -factor of H . Without loss of generality let $\mathrm{F}=\left\{s_{1} s_{2}, s_{3} s_{4}, \ldots, s_{m-1} s_{m}\right\}$. Then the resulting C_{4}-factor is $\left\{\left(s_{2 i-1}, s_{2 i,}, t_{2 i-1}, t_{2 i}\right)\right.$; $\left.1 \leq i \leq \frac{m}{2}\right\}$.

From Lemma 3.6 we obtain the following corollary.
w
3.7. Corollary: If H has a 1 -factorization, then $\mathrm{X}_{4} \mathrm{l}_{\mathrm{R}} \mathrm{D}\left(\mathrm{H} * \mathrm{~K}_{2}\right)$.

We now determine exactly when DK_{4} can be resolvably decomposed into the oriented 4-cycles B, C, and D.
3.8. Lemma: $\mathrm{Cl}_{\mathrm{R}} \mathrm{D}\left(\mathrm{K}_{4 n}-\mathrm{F}\right)$.

Proof: Consider $\mathrm{K}_{4 n}-\mathrm{F}$ on vertex set $\mathrm{X}=S \cup T$ where $S=\left\{s_{1}, s_{2}, \ldots, s_{2 n}\right\}$ and $T=\left\{t_{1}, t_{2}, \ldots, t_{2 n}\right\}$, so that $\mathrm{F}=\left\{s_{i} t_{i} ; 1 \leq i \leq 2 n\right\}$. Observe that $\mathrm{K}_{4 n}-\mathrm{F} \cong \mathrm{K}_{2 n} * \mathrm{~K}_{2}$. Then from Corollary 3.7, since $\mathrm{K}_{2 n}$ has a 1-factorization, it follows that $\mathrm{Cl}_{\mathrm{R}} \mathrm{D}\left(\mathrm{K}_{4 n}-\mathrm{F}\right)$.

Note that if $\mathrm{H}=\left\{\mathrm{H}_{1}, \mathrm{H}_{2}, \ldots, \mathrm{H}_{n}\right\}$ is a C -factor in the above C -factorization of $\mathrm{D}\left(\mathrm{K}_{4 n}-\mathrm{F}\right)$, then so too is $\mathrm{H}^{\prime}=\left\{\mathrm{H}_{1}, \mathrm{H}_{2}^{\prime}, \ldots, \mathrm{H}_{n}^{\prime}\right\}$, where H_{i}^{\prime} is the converse of H_{i}.
3.9. Lemma: $\mathrm{Cl}_{\mathrm{R}} \mathrm{DK}_{4}$ 。

Proof: The decomposition is as shown in Figure 4.

J

Figure 4
3.10. Theorem: $\mathrm{Cl}_{\mathrm{R}} \mathrm{DK}_{4 n}{ }^{*}$.

Proof: Let \mathscr{H} be the set of C -factors in the C -factorization of $\mathrm{D}\left(\mathrm{K}_{4 n}-\mathrm{F}\right)$ as described in Lemma 3.8. Choose any C -factor $\mathrm{H} \in \mathscr{H}$ together with its converse H '.

Then $\mathrm{H} \cup \mathrm{H}^{\prime} \cup \mathrm{D}(\mathrm{F}) \cong(n) \mathrm{DK}_{4}$. From Lemma 3.9, $\mathrm{C}_{\mathrm{R}} \mathrm{DK}_{4}$ and hence C-factorization of $\mathrm{H} \cup \mathrm{H}^{\prime} \cup \mathrm{D}(\mathrm{F})$ which when combined with ${ }^{\prime} \mathcal{H}-\left\{\mathrm{H}, \mathrm{H}^{\prime}\right\}$ yields a C-factorization of $\mathrm{DK}_{4 n}$. Therefore $\mathrm{Cl}_{\mathrm{R}} \mathrm{DK}_{4 n}$.

We now turn our attention to the oriented 4 -cycles B and D. Int view of Lemma 3.11, constructions in these cases will be somewhat more difficult.
3.11. Lemma: Neither the oriented cycle B nor the oriented cycle .D divide DK_{4} resolvable.

Proof: It can be shown by exhaustion that DK_{4} cannot be decomposed into B or D . Hence DK_{4} cannot be resolvable decomposed into B or D .

3.12. Lemma: $\mathrm{Bl}_{\mathrm{R}} \mathrm{DK}_{8}$ and $\mathrm{Dl}_{\mathrm{R}} \mathrm{DK}_{8}$.

Proof: Observe that the graphs X, Y, and Z as shown in Figure 5 partition the edges of K_{8}.

Figure 5

Each of X and Y determine two B - (or D -) factors of DK_{8} in the obvious way. The graph Z is the cube Q_{3}. Since B and D both divide DQ_{3} resolvable, as shown in Figure 6, it follows that $\left.{ }^{`} B\right|_{R} D K_{8}$ and $\left.D\right|_{R} D K_{8}$.

Figure 6
3.13. Lemma: Both $\mathrm{Bl}_{\mathrm{R}} \mathrm{DK}(n, 8)$ and $\mathrm{DI}_{\mathrm{R}} \mathrm{DK}(n, 8)$.

Proof: Let the vertex set of $\mathrm{DK}(n, 8)$ be $\mathrm{S}=\bigcup_{i=1}^{n} \mathrm{~S}_{i}$ where $\left|\mathrm{S}_{i}\right|=8$ and where each S_{i} is an independent set. Further, partition each S_{i} as $S_{i}=T_{i} \cup T_{i+n}$ where $\left|T_{i}\right|=\left|T_{i+n}\right|=4$, for $i=1,2, \ldots, n$. Consider $\mathrm{K}_{2 n}-\mathrm{F}$ with vertex set $\mathrm{V}=\{1,2, \ldots, 2 n\}$ and $\mathrm{F}=\{i(i+n): i=1,2, \ldots, n\}$, and let vertex i correspond to T_{i} for $i=1,2, \ldots, 2 n$. Observe that for any pair i and j, the vertex set $\mathrm{T}_{i} \cup \mathrm{~T}_{j}$ induces a subgraph, $\mathrm{DK}_{4,4}$, unless $i \equiv j(\bmod n)$, in which case the induced subgraph is $\overline{\mathrm{K}}_{8}$. It is well known that $\mathrm{K}_{2 n}-\mathrm{F}$ has a 1 -factorization. Each 1 -factor of $\mathrm{K}_{2 n}-\mathrm{F}$ corresponds to a $\mathrm{DK}_{4,4}$-factor of $\mathrm{DK}(n, 8)$. Since $\mathrm{Bl}_{\mathrm{R}} \mathrm{DK}_{4,4}$ and $\mathrm{DI}_{\mathrm{R}} \mathrm{DK}_{4,4}$, from Lemma 3.5, each factor gives four B -(or D-) factors of $\mathrm{DK}(n, 8)$. Therefore $\mathrm{Bl}_{\mathrm{R}} \mathrm{DK}(n, 8)$ ănd $\mathrm{DI}_{\mathrm{R}} \mathrm{DK}(n, 8)$.
3.14 Theorem: When n is even, $\mathrm{Bl}_{\mathrm{R}} \mathrm{DK}_{4 n}$ and $\left.\mathrm{D}\right|_{\mathrm{R}} \mathrm{DK}_{4 n}$.

Proof: Let $n=2$ 應 Then $\mathrm{DK}_{4 n}=\mathrm{DK}_{8 k}=(k) \mathrm{DK}_{8} \cup \mathrm{DK}(k, 8)$. Since both DK_{8} and $\mathrm{DK}(k, 8)$ have a B-factorization and a D-factorization (from Lemmas 3.12 and 3.13) it follows that $\mathrm{Bl}_{\mathrm{R}} \mathrm{DK} \mathrm{K}_{4 n}$ and $\mathrm{D} I_{\mathrm{R}} D K_{4 n}$.

We next consider the case when n is odd, considering B and D separately.
3.15. Lemma: $B l_{\mathrm{R}} \mathrm{DK} \mathrm{K}_{12}$.

Proof: Let the vertex set of DK_{12} be $\{0,1,2, \ldots, 10, \infty\}$. Then the eleven

B-factors of a resolvable decomposition of DK_{12} are: $\{(i+5, i+8, i+1, i+7),(i+10, i+6$, $i+4, i+9),(i+2, \infty, i, i+3)\}$ for $i=0,1,2, \ldots, 10$ and addition is modulo 11 .

For the next theorem we require the following lemma.
3.16. Lemma: If $t \geq 2$, then $\mathrm{K}_{2 t+2}-\mathrm{F}$ has a $\mathrm{C}_{2 t}$-decomposition.

Proof: Let the vertex set of $\mathrm{K}_{2 t+2}$ be $\left\{0,1,2, \ldots, 2 t-1, \infty_{1}, \infty_{2}\right\}$ and let ${ }^{-}$ $\mathrm{F}=\{i(t+i): i=0,1,2, \ldots t-1\} \cup\left\{\infty_{1} \infty_{2}\right\}$. When t is odd the $\mathrm{C}_{2 t}$-decomposition is given by: $\left\{\left(2 t-1+i, 1+i, 2 t-2+i, 2+i, \ldots,\left(\frac{t-1}{2}\right)+i, \infty_{1}, 2 t-\left(\frac{t+1}{2}\right)+i, \frac{t+1}{2}+i, 2 t-\left(\frac{t+3}{2}\right)+i\right.\right.$, $\left.\left.\left(\frac{t+5}{2}\right)+i \ldots, t-1+i, \infty_{2}\right): i=0,1,2, \ldots, t-1\right\} \cup\{(0,1,2, \ldots, 2 n-1)\}$. When t is even, the $\mathrm{C}_{2 t}$-decomposition is given by:

$$
\begin{aligned}
& \left\{\left(2 t-1+i, 1+i, 2 t-2+i, 2+i, \ldots, 2 t-\left(\frac{t}{2}\right)+i, \infty_{1},\left(\frac{t}{2}\right)+i, 2 t-\left(\left(\frac{t}{2}\right)+1\right)+i\right.\right. \\
& \left.\left.\left(\frac{t}{2}\right)+1+i, 2 t-\left(\left(\frac{t}{2}\right)+2\right)+i, \ldots, t-1+i, \infty_{2}\right): i=0,1,2, \ldots, t-1\right\} \cup\{(0,1,2, \ldots, 2 t-1)\} . \quad \text { Observe }
\end{aligned}
$$

that each $2 t$-cycle misses the endpoints of a distinct edge of the 1 -factor.
3.17. Corollary: If $t \geq 2$, then $\mathrm{K}_{2 t+3}$ has a $\left(\mathrm{C}_{2 t} \cup \mathrm{C}_{3}\right)$-factorization.
3.18. Theorem: When $n \equiv 3(\bmod 4), \mathrm{B}_{\mathrm{R}} \mathrm{DK}_{4 n}$.

Proof: Let $n=4 t+3$. Observe that $\mathrm{K}_{4 n} \cong \mathrm{~K}_{2 n} \bullet \mathrm{~K}_{2}$.
Suppose we have a decomposition of $\mathrm{K}_{2 n}$ into edge-disjoint subgraphs S , $P_{1}, P_{2}, F_{1}, F_{2}, \ldots, F_{8 t}$, such that: S is a factor of $K_{2 n}$ consisting of one copy of K_{6} (denoted S_{0}) and $2 t$ copies of K_{4} (denoted $\mathrm{S}_{i}, i=1,2, \ldots, 2 t$); each of P_{1} and P_{2} is a set of $4 t$ independent edges covering $\mathrm{V}\left(\mathrm{K}_{2 n}\right)-\mathrm{V}\left(\mathrm{S}_{0}\right)$; and $\mathrm{F}_{1}, \mathrm{~F}_{2}, \ldots, \mathrm{~F}_{8 t}$, are 1 -factors of $\mathrm{K}_{2 n}$. Then $\mathrm{K}_{4 n} \cong\left(\mathrm{~S} \bullet \mathrm{~K}_{2}\right) \cup\left(\cup_{i=1}^{2} \mathrm{P}_{i} * \mathrm{~K}_{2}\right) \cup\left(\bigcup_{i=1}^{8 t} \mathrm{~F}_{i} * \mathrm{~K}_{2}\right)$. Each of $\mathrm{F}_{i} * \mathrm{~K}_{2}$, for $i=1,2, \ldots, 8 t$, is
a C_{4}-factor of $\mathrm{K}_{4 n}$. So for each $i=1,2, \ldots, 8 t, \mathrm{D}\left(\mathrm{F}_{i} * \mathrm{~K}_{2}\right)$ can be decomposed into two B-factors which are alsó B-factors of $\mathrm{DK}_{4 n}$. Denote these by $\mathrm{F}_{i}^{(1)}$ and $\mathrm{F}_{i}^{(2)}$.

This leaves $\left(\mathrm{S} \bullet \mathrm{K}_{2}\right) \cup\left(\mathrm{P}_{1} * \mathrm{~K}_{2}\right) \cup\left(\mathrm{P}_{2} * \mathrm{~K}_{2}\right)$. Now
$\left(\mathrm{S} \bullet \mathrm{K}_{2}\right) \cong\left(\bigcup_{i=0}^{2 t} S_{i}\right) \bullet \mathrm{K}_{2}=\bigcup_{i=0}^{2 t}\left(\mathrm{~S}_{i} \bullet \mathrm{~K}_{2}\right)$. Note that $\mathrm{D}\left(\mathrm{S}_{i} \bullet \mathrm{~K}_{2}\right) \cong \mathrm{DK}_{12}$ which has a decomposition into eleven B-factors by Lemma 3.15. Denote these by $S_{0}^{(1)}$,
$\mathrm{S}_{0}^{(2)}, \ldots, \mathrm{S}_{0}^{(11)}$. For $i=1,2, \ldots, 2 t_{;} \mathrm{D}\left(\mathrm{S}_{i} \bullet \mathrm{~K}_{2}\right) \cong \mathrm{DK}_{8}$ which has a decomposition ito seven B-factors, $\mathrm{S}_{i}^{(1)}, \mathrm{S}_{i}^{(2)}, \ldots \mathrm{S}_{i}^{(7)}$. Then for each $j=1,2, \ldots, 7, \mathrm{~T}_{j}=\bigcup_{i=0}^{2 t} \mathrm{~S}_{i}^{(j)}$ is a B-factor of $\mathrm{DK}_{4 n}$. Now $\mathrm{P}_{1}^{i} * \mathrm{~K}_{2}$ and $\mathrm{P}_{2} * \mathrm{~K}_{2}$ are each a set of $4 t$ vertex-disjoint 4-cycles on $\mathrm{V}\left({ }_{i=1}^{2 t} \mathrm{~S}_{i} \bullet \mathrm{~K}_{2}\right)$. Hence for $j=1,2, \mathrm{D}\left(\mathrm{P}_{j} * \mathrm{~K}_{2}\right)$ can be decomposed into two B-factors on $\mathrm{V}\left(\bigcup_{i=1}^{2 t} \mathrm{~S}_{i} \bullet \mathrm{~K}_{2}\right)$, which we denote $P_{j}^{(1)}$ and $P_{j}^{(2)}$. Then we obtain four additional B-factors of $\mathrm{DK}_{4 n}$. These are $S_{0}^{(8)} \cup P_{1}^{(1)}, S_{0}^{(9)} \cup P_{1}^{(2)}, S_{0}^{(10)} \cup P_{2}^{(1)}$, and $S_{0}^{(11)} \cup P_{2}^{(2)}$. Thus we have $2(8 t)+7+4=16 t+11 \mathrm{~B}$-factors as required.

Therefore, to complete the proof of the theorem, all we need is to provide such a decomposition of $\mathrm{K}_{2 n}$.

Without loss of generality we can specify the factor S as described. We must then choose P_{1} and P_{2}, two sets of $4 t$ independent edges covering $\mathrm{V}\left(\mathrm{K}_{2 n}\right)-\mathrm{V}\left(\mathrm{S}_{0}\right)$, so that $G \cong \mathrm{~K}_{2 n^{-}}\left(\mathrm{S} \cup \mathrm{P}_{1} \cup \mathrm{P}_{2}\right)$ has a 1-factorization. Arbitrarily pair the $\mathrm{S}_{i}, i=1,2, \ldots, 2 t$; say as $\left\{\left(\mathrm{S}_{i}, \mathrm{~S}_{i+t}\right): i=1,2, \ldots, 2 t\right\}$. Let $\mathrm{L}_{i}^{(1)}$ and $\mathrm{L}_{i}^{(2)}$ be two edge-disjoint 1 -factors of the $\mathrm{K}_{4,4}, \mathrm{~K}_{\mathrm{S}_{i} \mathrm{~S}_{i+1}}$, for $i=1,2, \ldots, 2 t$. Let $\mathrm{P}_{1}={ }_{i=1}^{t} \mathrm{~L}_{i}^{(1)}$ and let $\mathrm{P}_{2}=\underset{i=1}{t} \mathrm{~L}_{i}^{(2)}$. We claim that $G \cong K_{2 n}-\left(S \cup P_{1} \cup P_{2}\right)$ has a 1 -factorization. Consider $K_{2 t+1}$ with vertex set $\left\{v_{0}, v_{1}, v_{2}, \ldots, v_{2 t}\right\}$ where v_{i} corresponds to S_{i} for $i=0,1,2, \ldots, 2 t$. If $t \geq 3$, from Corollary 3.17, $\mathrm{K}_{2 t+1}$ can be decomposed into t factors where each factor consists of a ($2 t-2$)-cycle and a 3 -cycle. In accord with that construction, we can denote these factors by $\mathrm{C}^{(i)} \cup \mathrm{C}_{\left\{v_{0}, v_{i}, v_{i+t}\right\}}$ for $i=1,2, \ldots, t$, where $\mathrm{C}^{(i)}$ is a ($2 t-2$)-cycle on $\mathrm{V}\left(\mathrm{K}_{2 t+1}-\left\{v_{0}, v_{i}, v_{i+t}\right\}\right)$. For each factor $\mathrm{C}^{(i)} \cup \mathrm{C}_{\left\{v_{0}, v_{i}, v_{i+t}\right\}}, i=1,2, \ldots, t$, we obtain eight 1 -factors of G as follows. In G, the cycle $C^{(i)}$ corresponds to a $C(2 t-2,4)$ which has a 1 -factorization made up of eight 1 -factors. In $G, C_{\left\{v_{0}, v_{i}, v_{i+\ell}\right\}}$ corresponds to the graph H shown in Figure 7. Clearly $H \cong H_{1} \cup H_{2}$, where $H_{1} \cong H_{2}$ and H_{1} is as shown in Figure 8, has a 1 -factorization made up of eight 1 -factors. Therefore the subgraph of G corresponding to $\mathrm{C}^{(i)} \cup \mathrm{C}_{\left\{v_{0}, v_{i}, v_{i+1}\right\}}$ has a 1 -factorization and thus so does G .

Figure 7

Figure 8

This completes the proof for $t \geq 3$. In Lemma 3.15 we showed that $\left.B\right|_{R} D K_{12}$. When $t=1$ or 2 , choose $\mathrm{S}, \mathrm{P}_{1}, \mathrm{P}_{2}$, and the F_{i} as described above. When $t=1, \mathrm{G} \cong \mathrm{H}$ so we are done, and when $t=2$ we factor G as shown in Figure 9. Therefore $\mathrm{Bl}_{\mathrm{R}} \mathrm{DK}_{4 n}$ when $n \equiv 3(\bmod 4)$.

Figure 9

Figure 9, continued

When $n \equiv 1(\bmod 4)$, we could follow the same proof as for Theorem 3.17, except that no simple construction for the 1 -factorization of G has been found. Thus we appeal to the following result of Chetwynd and Hitton [13] to prove that a 1 -factorization of G does indeed exist.
3.19. Theorem: (Chetwynd and Hilton [13]) A k-regular graph G with an even number of vertices has a 1 -factorization whenever $\left.k \geq \frac{1}{2}(\sqrt{7}-1) \right\rvert\, \mathrm{V}(\mathrm{G})$).

3.20. Theorem: $\mathrm{Bl}_{\mathrm{R}} \mathrm{DK}_{4 n}$ when $n \equiv 1(\bmod 4), n \geq 47$.

Proof: In the proof of Theorem 3.16 we showed that $\mathrm{B}_{l_{R}} \mathrm{DK}_{4 n}$ if the graph G , as described, has a 1-factorization. Since $|V(G)|=2 n$ and G isregular of degree $2 n-6$. Theorem 3.17 guarantees that G has a 1-factorization whenever $2 n-6 \geq \frac{1}{2}(\sqrt{7}-1)(2 n)$. This holds provided $n \geq 17$.

In addition, for the special case when $n=9$ we have the following result.
3.21. Lemma: $\mathrm{Bl}_{\mathrm{R}} \mathrm{DK}_{36}$.

Proof: Let $\mathrm{DK}_{36} \cong \mathrm{D}\left(\mathrm{K}_{18} \bullet \mathrm{~K}_{2}\right)$. Partition the vertex set of K_{18} into sets S_{1}, S_{2}, and S_{3}, where $\left|S_{i}\right|=6$. Then $K_{18} \xlongequal{3} \cup{ }_{i=1}^{3} \mathrm{~K}_{i} \cup K_{S_{1}, S_{2}, S_{3}}$ and $\mathrm{DK}_{36} \cong \mathrm{D}\left(\bigcup_{i=1}^{3} \mathrm{~K}_{\mathrm{S}_{i}} \bullet \mathrm{~K}_{2} \cup \mathrm{~K}_{\mathrm{S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3}} * \mathrm{~K}_{2}\right)=\bigcup_{i=1}^{3} \mathrm{D}\left(\mathrm{K}_{\mathrm{S}_{i}} \bullet \mathrm{~K}_{2}\right) \cup \mathrm{D}\left(\mathrm{K}_{\mathrm{s}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3}} * \mathrm{~K}_{2}\right)$. Now $\bigcup_{i=1}^{3} \mathrm{D}\left(\mathrm{K}_{S_{i}} \bullet \mathrm{~K}_{2}\right) \cong(3) \mathrm{DK}_{12}$, and since DK_{12} can be decomposed into eleven B -factors by Lemma 3.15, $\cup_{i=1}^{3} \mathrm{D}\left(\mathrm{K}_{S_{i}} \bullet \mathrm{~K}_{2}\right)$ can be decomposed into eleven B-factors of DK_{36}. By Corollary 3.7, if $\mathrm{K}_{\mathrm{S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3} \cong \mathrm{~K}_{6,6,6} \text { has a 1-factorization, then } \mathrm{D}\left(\mathrm{K}_{\mathrm{S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3}} * \mathrm{~K}_{2}\right) \text { has a }}$ B-factorization. We claim that such a 1-factorization exists and although it has been shown elsewhere, for completeness we include a proof here.

Let $S_{i=}=\bigcup_{j=1}^{2} S_{i}^{(j)}$ for $i=1,2,3$, where $\left|S_{i}^{(\mathrm{j})}\right|=3$. Consider $\mathrm{K}_{6}-\mathrm{F}$ with vertex set $\left\{v_{1}^{(1)}, v_{1}^{(2)}, v_{2}^{(1)}, v_{2}^{(2)}, v_{3}^{(1)}, v_{3}^{(2)}\right\}$ where $\mathrm{F}=\left\{v_{i}^{(1)} v_{i}^{(2)}: i=1,2,3\right\}$. Let $\mathrm{S}_{i}^{(\mathrm{j})}$ correspond to $v_{i}^{(j)}$ for $i=1,2,3, j=1,2 . \quad \mathrm{K}_{6}-\mathrm{F}$ has a 1 -factorization. This 1 -factorization corresponds to an R-factorization of $\mathrm{K}_{6,6,6}$ where $\mathrm{R} \cong(3) \mathrm{K}_{3,3}$. Clearly $\mathrm{K}_{3,3}$ has a 1-factorization into three 1 -factors and hence (3) $\mathrm{K}_{3,3}$ has a 1-factorization into three 1 -factors of $\mathrm{K}_{6,6,6}$. . . Therefore $\mathrm{D}\left(\mathrm{K}_{\mathrm{S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3}} * \mathrm{~K}_{2}\right)$ has a B -factorization and it follows that $\mathrm{Bl}_{\mathrm{R}} \mathrm{DK}_{36}$. $\because \quad \therefore \quad$. $\quad \underset{\sim}{\circ}$

This theorem still leaves unresolved the question of the existence of resolvable B-decompositions of DK_{20} and DK_{52}, as well as the existence of resolvable

D-decompositions of $\mathrm{DK}_{4 n}$ when n is odd. The latter question is answered by Bennett and Zhu [9]. In their study of resolvable Mendelsohn designs, they have established the following theorem.
3.22. Theorem: (Bennett and Zhu [9]) A ($4 n, 4,1$)-resolvable Mendelsohn design exists for all n except possibly when $n=3$.

A $(4 n, 4,1)$-resolvable Mendelsohn design is equivalent to a resolvable D-decomposition of $\mathrm{DK}_{4 n}$. Hence resolvable decompositions of $\mathrm{DK}_{4 n}$ exist when n is odd.

The proof of Theorem 3.1 follows from the above theorems and lemmas.

Proof of Theorem 3.1:

(a) See Theorem 3.3.
(b) See Theorems 3.14, 3.18, 3.20 and Lemma 3.21.
(c) See Theorem 3.10.
(d) See Theorems 3.14 and 3.22 .

Chapter 4 - Near-Resolvăble-Oriented 4-cycle Decompositions

We now turn to near-resolvable oriented 4 -cycle decompositions of DK_{v}. Since each paraliel class of such a decomposition omits exactly one vertex of DK_{ν}, it is clear that $\nu \equiv 1(\bmod 4)$ is a necessary condition for the decomposition to exist. In what follows we let $v=4 n+1$ and determine the values of n for which $\mathrm{DK}_{4 n+1}$ has a nearresolvable decomposition into each of the four oriented 4 -cycles. Recall that the oriented 4 -cycle A with vertex set $\{x, y, z, w\}$ has arcs $(x, y),(z, y),(z, w)$, and (x, w); while B has arcs $(x, y),(y, z),(x, w)$, and (w, z); C has arcs $(x ; y),(y, z),(z, w)$, and (x, w); and D has arcs $(x, y),(y, z),(z, w)$, and (w, x). Also recall that X_{4} is used to represent any one of the four oriented 4 -cycles.-

4.1. Lemma: $\left.\mathrm{X}_{4}\right|_{\mathrm{NR}} \mathrm{DK}_{9}$.

Proof: Let the vertices of DK_{9} be labelled by the elements of $Z 9$. The nine near X_{4}-factors of DK_{9} are $\{i,(i+1, i+5, i+2, i+3),(i+8, i+4, i+7, i+6)\}$.
4.2. Lemma: $\left.X_{4}\right|_{\mathrm{NR}} \mathrm{DK}_{17}$.

Proof: Let the vertices of DK_{17} be labelled by the elements of Z_{17}. The seventeen near X_{4}-factors of DK_{17} are $\{i,(i+1, i+9, i+14, i+7),(i+2, i+6, i+4, i+5)$, $(i+16, i+8, i+3, i+10),(i+15, i+11, i+13, i+12)\}$.
4.3. Lemma: $\mathrm{C}(2 k, 4)$ has a C_{4}-factorization.

Proof: Since $\mathrm{C}_{2 k}$ has a 1 -factorization into two 1 -factors, F_{1} and F_{2} then $\mathrm{C}(2 k, 4)$ has a $(k) \mathrm{K}_{4,4}$-factorization. Then since $\mathrm{K}_{4,4}$ can be decomposed into two C_{4}-factors, $\mathrm{C}(2 k, 4)$ has a C_{4}-factorization.
θ
4.4. Coroilary: $\mathrm{X}_{4}{ }_{\mathrm{R}} \mathrm{DC}(2 k, 4)$.
4.5. Theorem: $\left.\mathrm{X}_{4}\right|_{\mathrm{NR}} \mathrm{DK}_{4 n+1}$ when n is even.

Proof: Let $n=2 k$. When $k \leq 2$, suitable factorizations are given in Lemmas 4.1
and 4.2. So assume $k \geq 3$. Partition the vertex set X of $D K_{4 n+1}$ as $X=\bigcup_{i=1}^{2 k} S_{i} \cup\{\infty\}$, where $\left|S_{i}\right|=4,1 \leq i \leq 2 k$. Consider $K_{2 k+1}$ with vertex set $\left\{v_{0}, v_{1}, v_{2}, \ldots, v_{2 k}\right\}$ and associate v_{0} with vertex ∞ of $\mathrm{DK}_{4 n+1}$, and v_{i} with S_{i}, for $i=1,2, \ldots, 2 k$. From Corollary $3.17, \mathrm{~K}_{2 k+1}$ can be decomposed into k factors, $\mathrm{L}_{1}, \mathrm{~L}_{2}, \ldots, \mathrm{~L}_{k}$, so that each factor' L_{i} consists of a $(2 k-2)$-cycle, $\mathrm{C}^{(i)}$, where $\left.\mathrm{V}\left(\mathrm{C}^{(i)}\right)=\cdot \mathrm{V}\left(\mathrm{K}_{2 k+1}\right)-\left\{v_{0}, v_{i}, v_{i+k}\right\}\right)$, and a 3-cycle $\mathrm{C}_{\left\{\nu_{0}, v_{i}, v_{i+k}\right\}}$. These factors induce an R-factorization of $\mathrm{DK}_{4 n+1}$ where
 into nine near X_{4}-factors, $\mathrm{H}_{i}^{(1)}, \mathrm{H}_{i}^{(2)}, \ldots \mathrm{H}_{i}^{(8)}, \mathrm{H}_{i}^{(\infty)}$, where $\mathrm{H}_{i}^{(\infty)}$ misses vertex ∞. According to Corollary 4.4, $\mathrm{DC}(2 k-2,4)$ has a decomposition into eight X_{4}-factors, $\mathrm{H}_{i}^{(9)}, \mathrm{H}_{i}^{(10)}, \ldots, \mathrm{H}_{i}^{(16)}$, and so for each $i=1,2, \ldots, k$, we obtain eight near X_{4}-factors of
 $\left.\mathrm{X}_{4}\right|_{\mathrm{NR}} \mathrm{DK}_{4 n+1,}$ when n is even.

We now consider the case when n is odd.
4.6. Lemma: $\mathrm{Al}_{\mathrm{NR}^{2}} \mathrm{DK}_{5}$, and $\mathrm{Dl}_{\mathrm{NR}} \mathrm{DK}_{5}$.

Proof: A decomposition of DK_{5} into near A-factors is shown in Figure 10, and a decomposition into near D-factors is shown in Figure 11.

Figure 10

Figure 11
4.7. Theorem: When n is odd, $\mathrm{Al}_{\mathrm{NR}} \mathrm{DK}_{4 n+1}$ and $\mathrm{Dl}_{\mathrm{NR}} \mathrm{DK}_{4 n+1}$.

Proof: The case $n=1$ is shown in Lemma 4.6. Let n be odd, $n \geq 3$. Partition the vertex set X of $D K_{4 n+1}$ such that $X=\bigcup_{i=1}^{n} S_{i} \cup\{\infty\}$ where $\left|S_{i}\right|=4$ for $i=1,2, \ldots n$.

Consider the graph K_{n} with vertex set $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and let S_{i} correspond to v_{i} for $i=1,2, \ldots, n$. Since n is odd, K_{n} has a near 1 -factorization $\mathcal{F}=\left\{F_{1}, F_{2}, \ldots, F_{n}\right\}$ where F_{i} misses vertex v_{i}. Let each near 1-factor of K_{n} correspond to an R -factor of $\mathrm{DK}_{4 n+1}$ where $\mathrm{R} \cong\left(\frac{\pi 1}{2}\right) \mathrm{DK}_{4,4} \cup \mathrm{DK}_{5}$. In particular, for each $\mathrm{F}_{i}, i=1,2, \ldots, n$, let
 near A-factors $A_{i .}^{(1)}, A_{i}^{(2)}, A_{i}^{(3)}, A_{i}^{(4)}$, and $A_{i}^{(\infty)}$, where $A_{i}^{(\infty)}$ misses vertex ∞. Each $\mathrm{DK}_{\mathrm{s}_{j}, \mathrm{~S}_{k}}$ can be decomposed into four A-factors from Corollary 3.5. Hence for each $i=1,2, \ldots, n$ we obtain four A-factors of $\mathrm{DK}_{4 n+1}$ by taking the four A factors of $\underset{v_{j} v_{k} \in \mathrm{~F}_{i}}{ } \mathrm{DK}_{S_{j}, S_{k}}$ together with the four A-factors $\mathrm{A}_{i}^{(1)}, \mathrm{A}_{i}^{(2)}, \mathrm{A}_{i}^{(3)}$, awsed $\mathrm{A}_{i}^{(4)}$. This yields $4 n$ A-factors of $\mathrm{DK}_{4 n+1}$. The final A -factor of $\mathrm{DK}_{4 n+1}$ is $\bigcup_{i=1}^{n} \mathrm{~A}_{i}^{(\infty)}$. A similar argument shows that $\mathrm{Dl}_{\mathrm{NR}} \mathrm{DK}_{4 n+1}$.

Thus all near-resolvable X-factorizations of $\mathrm{DK}_{4 n+1}, \mathrm{X} \in\{\mathrm{A}, \mathrm{D}\}$ are possible. We note that the existence of near-resolvable decompositions of $\mathrm{DK}_{4 n+1}$ into D-factors for all n (except when $n=8,14,23$, or 33) can be deduced as a corollary of Bennett's work on Mendelsohn designs in [7].

We now tum to the remaining cases when $X_{4} \in\{B, C\}$ and n is odd.
4.8. Lemma: There is no near B - or near C -factorization of DK_{5}.

Proof: It can bé shown by exhaustion that $\mathrm{B}^{2} / \mathrm{DK}_{5}$ and CDK_{5}. So clearly there can be no near-resolvable decomposition of DK_{5} into B grinto C .
4.9. Lemma: $\mathrm{Bl}_{\mathrm{N}_{\mathrm{R}}} \mathrm{DK}_{13}$, and $\mathrm{Cl}_{\mathrm{NR}} \mathrm{DK}_{13}$.

Proof: Let the vertices of DK_{13} be labelled by the elements of Z_{13}. Then
thirteen near B-factors of DK_{13} are $\{(i,(i+3, i+2, i+5, i+12),(i+7, i+4, i+6, i+11)$, $(i+9, i+1, i+8, i+10)\}: i=0,1,2, \ldots, 12\}$, and thirteen near C -factors of DK_{13} are $\{\{i,(i+3, i+2, i+6, i+8),(i+4, i+10, i+11, i+1),(i+9, i+5, i+12, i+7)\}: i=0,1,2, \ldots, 12\}$.
4.10. Lemma: Both $\mathrm{B}_{\mathrm{NR}} \mathrm{D}\left(\mathrm{K}_{4,1} \cup \mathrm{C}_{4}\right)$.and $\mathrm{Cl}_{\mathrm{NR}} \mathrm{D}\left(\mathrm{K}_{4,1} \cup \mathrm{C}_{4}\right)$.

Proof: A near B-factorization of $D\left(K_{4,1} \cup C_{4}\right)$ is shown in Figure 12 and a near C-factorization is given in Figure 13.

Figure 12

Figure 13
4.11. Lemma: Let $n=2 k+1$. Partition the vertex set X of $\mathrm{DK}_{4 n+1}$, so that $\mathrm{X}=\mathrm{S} \cup \mathrm{T}$ where $|\mathrm{S}|=4(k+1)$ and $|\mathrm{T}|=4 k+1$. Then if

1) $\mathrm{DK}_{S} \cong \mathrm{DK}_{4(k+1)}$ has a decomposition into $4 k+3 \mathrm{~B}$ - (or C -) factors, such that the union of some two of these factors is isomorphic to $(k+1) \mathrm{DC}_{4}$, and 2) $\mathrm{DK}_{\mathrm{T}} \equiv \mathrm{DK}_{4 k+1}$ has a near-resolvable decomposition into $4 k+1$ near

4

B- (or C-) factors,
then $\mathrm{DK}_{4 n+1}$ has a near $\mathrm{B}-{ }^{\circ}$ (or C-) factorization.
Proof: Suppose we can partition the vertex set of $\mathrm{DK}_{4 n+1}$ as described above. Let $\mathrm{M}_{\mathrm{S}}^{(1)}, \mathrm{M}_{\mathrm{S}}^{(2)}, \ldots \mathrm{M}_{\mathrm{S}}^{(4 k+1)}, \mathrm{M}_{\mathrm{S}}^{(4 k+2)}, \mathrm{M}_{\mathrm{S}}^{(4 k+3)}$, be the B-factors of DK . Without loss of
 $i=1,2, \ldots, k+1$. Let $\mathrm{M}_{\mathrm{T}}^{(1)}, \mathrm{M}_{\mathrm{T}}^{(2)}, \ldots, \mathrm{M}_{\mathrm{T}}^{(4 k+1)}$ be the near B-factors of $\mathrm{DK}_{\mathrm{T}} .{ }^{9}$ Then $4 k+1$ near B-factors of $\mathrm{DK}_{4 n+1}$ are given by $\mathrm{M}_{\mathrm{S}}^{(i)} \cup \mathrm{M}_{\mathrm{T}}^{(i)}$ for $i=1,2, \ldots, 4 t+1$. Let $D \mathrm{H}$ be the graph obtained by removing these B -factors from $\mathrm{DK}_{4 n+1}$. Then $\mathrm{DH} \cong \mathrm{DC}_{4} \cup \mathrm{DK}_{\mathrm{S}, \mathrm{T}}$.

Consider $\mathrm{K}_{k+1, k+1}$ with bipartition $\mathrm{Y} \cup \mathrm{Z}$, where $\mathrm{Y}=\left\{y_{1}, y_{2}, \ldots, y_{k+1}\right\}$ and $\mathrm{Z}=\left\{z_{1}, z_{2}, \ldots, z_{k}, z_{\infty}\right\}$. Associate S_{i} with χ_{i} for $i=1,2, \ldots, k+1, \mathrm{~T}_{i}$ with z_{i} for $i=1,2, \ldots, k$, and the vertex ∞ with $z_{\infty} . \mathrm{K}_{k+1, k+1}$ has a 1 -factorization $\mathrm{F}_{1}, \mathrm{~F}_{2}, \ldots, \mathrm{~F}_{k+1,2}$ such that $y_{i} z_{\infty} \in \mathrm{F}_{i}$. This 1-factorization corresponds to an R -factorization of DH where $\mathrm{R} \cong(k) \mathrm{DK}_{4,4} \cup \mathrm{D}\left(\mathrm{K}_{4,1} \cup \mathrm{C}_{4}\right)$: Specifically, let F_{i} correspond to $\mathrm{R}_{i}=\underset{\substack{y_{j} j_{j k} \in \mathrm{~F}_{i}}}{ } \mathrm{FK}_{\mathrm{s}_{j}, \mathrm{~T}_{k}} \cup \mathrm{D}\left(\mathrm{K}_{\mathrm{s}_{i},(\infty\}} \cup \mathrm{C}_{s_{i}}\right)$. Since $\mathrm{DK}_{\mathrm{s}_{j}, \mathrm{~T}_{k}} \cong \mathrm{DK}_{4,4}$ can be factored into four B-factors from Corollary $3.5, \underset{\substack{y_{j} k_{j} \in \in \mathrm{~F}_{i}}}{\mathrm{DK}_{\mathrm{S}_{j}} \mathrm{~T}_{k}}$ can be factored into four B-factors. Denote these $\mathrm{L}_{i}^{(1)}, \mathrm{L}_{i}^{(2)}, \mathrm{L}_{i}^{(3)}$, and $\mathrm{L}_{i}^{(4)}$. Also $\mathrm{D}\left(\mathrm{K}_{S_{i},(\infty\}} \cup \mathrm{C}_{S_{i}}\right) \cong \mathrm{D}\left(\mathrm{K}_{4,1} \cup \mathrm{C}_{4}\right)$ can ${ }_{\text {pe factored }}$ into four near B-factors, $\mathrm{N}_{i}^{(1)}, \mathrm{N}_{i}^{(2)}, \mathrm{N}_{i}^{(3)}$, and $\mathrm{N}_{i}^{(4)}$, as shown in Lemma 4.10. Hence for - (ach R_{i} we obtain four near B-factors of $\mathrm{DK}_{4 n+1}, \mathrm{~L}_{i}^{(j)} \cup \mathrm{N}_{i}^{(j)}$, for $j=1,2,3,4$. Thus we have a total of $(4 k+1)+4(k+1)=4(2 k+1)+1=4 n+1$ near B-factors of $\mathrm{DK}_{4 n+1}$ as required. The argument for C follows in the same way.
4.12. Theorem: $\mathrm{Cl}_{\mathrm{NR}} \mathrm{DK}_{4 n+1}$ when n is odd, $n>1$.

Proof: Let $n=2 k+1$. We proceed by induction on k. When $k=1, \mathrm{C}_{\mathrm{NR}} \mathrm{DK}_{13}$ as shown in Lemma 4.9. Let $k>1$ and suppose $\mathrm{C}_{\mathbb{N R}} D \mathrm{~K}_{4 n+1}$ for all odd n when $n \leq 2(k-1)+1=2 k-1$. That is, $\mathrm{C}_{\mathrm{NR}} \mathrm{DK}_{4 n+1}$ when n is odd and $4 n+1 \leq 8 k-3$. We must
show that $\mathrm{Cl}_{\mathrm{NR}} \mathrm{DK}_{4(2 k+1)+1}$. This will follow if conditions 1 and 2 of Lemma 4.11. are satisfied.

1) $\mathrm{DK}_{4(k+1)}$ has a decomposition into C -factors such that the union of two of the C-factors is $(k+1) \mathrm{DC}_{4}$ as given in Lemma 3.10, provided $k \geq 1$.
2) Since $4 k+1<8 k-3$ when $k>1, \mathrm{DK}_{4 k+1}$ has a near C-factorization, when k is odd, by the induction hypothesis. When k is even, $\mathrm{DK}_{4} \stackrel{\bullet}{k+1}$ has a near C-factorization from Lemma 4.5.

Then from Lemma 4.11, $\mathrm{Cl}_{\mathrm{NR}} \mathrm{DK}_{4(2 k+1)+1}$ and therefore $\mathrm{Cl}_{\mathrm{NR}} \mathrm{DK}_{4 n+1}$ when n is. odd and $n>1$.

When k is even, $\mathrm{DK}_{4(k+1)}$ has either no known B -factorization (when $k=4$ or $k=12$, from Theorem 3.1) or the decompositions given in Theorems 3.18, 3.2 Q and in Lemma 3.21, do not necessarily satisfy condition 1) of Lemma 4.11. Hence to ,establish the existence of neár B-factorizationns of $\mathrm{DK}_{4}^{2} n+1$ we require a different argument. (The case when $n=5$ is still open.)

4.13. Lemma: $\mathrm{Bl}_{\mathrm{NR}} \mathrm{DK}_{29}$.

Proof: By Lemma 4.11, DK_{29} has a near B-factorization if conditions 1) and 2) of Lemma 4.11, are satisfied.

1) DK_{16} has a decomposition into B-factors such that the union of two of the B-factors is (4) DC_{4} as given in Lemma 3.14.
2) DK_{13} has a near B -factorization, as shown in Lemma 4.9.

Hence $\mathrm{Bl}_{\mathrm{NR}} \mathrm{DK}_{29}$.
4.14. Lemma: Partition the vertex set X of $\mathrm{DK}_{4 n+1}, n=2 k+1$, such that: $\mathrm{X}=\mathrm{S} \cup T \cup\{\infty\}$, where $|\mathrm{S}|=|\mathrm{T}|=2 n$; and $S=\bigcup_{i=0}^{k-1} \mathrm{~S}_{i}$, where $\left|\mathrm{S}_{0}\right|=6$ and $\left|S_{i}\right|=4$ for $i=1,2, \ldots, k-1$. If we can decompose K_{S} into factors $\mathrm{R}_{0}, \mathrm{R}_{1}, \mathrm{R}_{2}, \ldots, \mathrm{R}_{k-1}$, such that $\mathrm{R}_{i} \cong \mathrm{~K}_{\mathrm{S}_{i}} \cup \mathcal{F}_{i}$, where \mathcal{F}_{0} is a family of six edge disjoint 1-factors on $\mathrm{V}\left(\mathrm{K}_{\mathrm{S}}-\mathrm{K}_{\mathrm{S}_{0}}\right)$ and \mathcal{F}_{i}
is a family of four edge disjoint 1 -factors on $\mathrm{V}\left(\mathrm{K}_{S^{-}}-\mathrm{K}_{S_{i}}\right)$ for $i=1,2, \ldots, k-1$, then $\mathrm{DK}_{4 n+1}{ }^{\text {p }}$ has a near B -factorization.

Proof: Let $n=2 k+1$. Partition $\mathrm{V}\left(\mathrm{DK}_{4 n+1}\right)$ as described above and, in addition, let $\mathrm{T}=\bigcup_{i=1}^{k-1} \mathrm{~T}_{i}$ where $\left|\mathrm{T}_{0}\right|_{i}=6$ and $\left|\mathrm{T}_{i}\right|=4$ for $i=1,2, \ldots, k-1$. Suppose $\mathrm{K}_{\mathrm{S}}{\underset{\Xi}{i=0}}_{k-1}^{\bigcup_{i}} \mathrm{R}_{i}$ and consider $\mathrm{R}_{0} \cong \mathrm{~K}_{\mathrm{S}_{0}} \cup \mathcal{F}_{0}$. For this factor of K_{S} we obtain twelve near B-factors of $\mathrm{DK}_{4 n+1}$ as follows. From Lemma $4.9, \mathrm{DK}_{\mathrm{S}_{0} \cup \mathrm{~T}_{0} \cup\{\infty\}} \cong \mathrm{DK}_{13}$ can be decomposed into thirteen near B-factors $M_{0}^{(1)}, M_{0}^{(2)}, \ldots, M_{0}^{(12)}, M_{0}^{(\infty)}$ where $M_{0}^{(\infty)}$ misses vertex ∞. Each of the 1 -factors in \mathcal{F}_{0} gives two B -factors on $\dot{\mathrm{V}}\left(\mathrm{K}_{4 n+1}-\mathrm{K}_{S_{0} \cup \mathrm{~T}_{0} \cup\{\infty\}}\right)$ as described in Lemma 3.6, for a total of twelve B-factors of $\mathrm{D}\left(\mathrm{K}_{4 n+1}-\mathrm{K}_{S_{0} \cup T_{0} \cup\{\infty\}}\right)$, $\mathrm{N}_{0}^{(1)}, \mathrm{N}_{0}^{(2)}, \ldots, \mathrm{N}_{0}^{(12)}$, Then $\mathrm{M}_{0}^{(i)} \cup \mathrm{N}_{0}^{(i)}$ for $i=1,2, \ldots, 12$, gives twelve near B-factors of $\mathrm{DK}_{4 n+1}$. Now consider $\mathrm{R}_{i} \cong \mathrm{~K}_{\mathrm{S}_{i}} \cup \mathcal{F}_{i}$, where $i=1,2, \ldots, k-1 . \mathrm{DK}_{\mathrm{S}_{i} \cup \mathrm{~T}_{i} \cup\{\infty\}} \cong \mathrm{DK}_{9}$ can be decomposed into nine near B-factors, $M_{i}^{(1)}, M_{i}^{(2)}, \ldots, M_{i}^{(8)}, M_{i}^{(\infty)}$, where $M_{i}^{(\infty)}$ misses vertex ∞. Also, \mathcal{F}_{i} is a family of four edge disjoint 1 -factors and each of these 1-factors gives two B-factors on $\mathrm{V}\left(\mathrm{K}_{4 n+1}-\mathrm{K}_{\mathrm{S}_{i} \cup \mathrm{~T}_{i} \cup\{\infty\}}\right)$, for a total of eight B-factofs \Rightarrow of $\mathrm{D}\left(\mathrm{K}_{4 n+1}-\mathrm{K}_{S_{i} \cup \mathrm{~T}_{i} \cup\{\infty\}}\right), \mathrm{N}_{i}^{(1)}, \mathrm{N}_{i}^{(2)}, \ldots, \mathrm{N}_{i}^{(8)}$. So for each $\mathrm{R}_{i}, i=1,2, \ldots, k-1$, we obtain eight near B-factors of $\mathrm{DK}_{4 n+1}, \mathrm{M}_{i}^{(j)} \cup N_{i}^{(j)}$, for $j=1,2, \ldots, 8$. The remaining near B-factor
 near B -factors of $\mathrm{DK}_{4 n+1}$ as required.
4.15. Lemma: $\mathrm{Bl}_{\mathrm{NR}} \mathrm{DK}_{45}$.

Proof: Let $\mathrm{R}_{0} \cong \mathrm{~K}_{6} \cup \mathcal{F}_{0}$ and $\mathrm{R}_{i} \cong \mathrm{~K}_{4} \cup \mathcal{F}_{i}$ for $i=1,2,3,4$, where \mathcal{F}_{i} is as shown in Figure 14. Observe that $\bigcup_{i=0}^{4} \mathrm{R}_{i} \equiv \mathrm{~K}_{22}$. From Lemma 4.14 we conclude that DK_{45} has a near $\mathrm{B}-\mathrm{factorization}$.

Figure 14

Figure 14, continued

Figure 14, continued

Before constructing the remaining near B -factorizations, we need the following simple lemma.
4.16. Lemma: The graph $2 \mathrm{~K}_{2 p}, p \geq 2$ can be decomposed into ($2 p-1$)-cycles.

Proof: Label the vertices of $2 \mathrm{~K}_{2 p},\{0,1,2, \ldots, 2 p-2\} \cup\{\infty\}$. Then the $(2 p-1)$-cycles of a decomposition are $\mathrm{C}^{(i)}=(p+i,(p-1)+i,(p+1)+i,(p-2)+i,(p+2)+i$, $\ldots,(2 p-3)+i, 2+i,(2 p-2)+i, 1+i, \infty)$ for $i=0,1,2, \ldots, 2 p-2$, (where arithmetic is modulo $2 p-1)$, and $\mathrm{C}^{(\infty)}=(0,1,2, \ldots, 2 p-2)$.

For the following theorem it is useful to colour the edges of the ($2 p-1$)-cycles \}of $2 \mathrm{~K}_{2 p}$ either thin, dashed, or thick, as shown in Figure 15.

Figure 15
4.17. Theorem: $\left.\mathrm{B}\right|_{\mathrm{NR}} \mathrm{DK}_{4 n+1}$ when $n \equiv 1(\bmod 4), n \geq 9$.

Proof: Let $n=4 t+1$. Since $n \geq 9$, then $t \geq 2$. Note that $2 n=4(2 t-1)+6$. Partition the vertex set X of $\mathrm{DK}_{4 n+1}$ such that $X=S \cup T \cup\{\infty\}$, where $|S|=|T|=2 n$. Further partition S so that $S=\bigcup_{i=0}^{2 t-1} S_{i}$, where $\left|S_{0}\right|=6$ and $\left|S_{i}\right|=4$ for $i=1,2, \ldots, 2 t-1$, and

$\mathrm{K}_{\mathrm{S}} \stackrel{2 t-1}{\underset{i}{=}=0} \mathrm{R}_{i}$, where the R_{i} are as described in Lemma 4.14.
Consider $2 \mathrm{~K}_{2 t}$ with vertex set $\left\{v_{0}, v_{1}, v_{2}, \ldots, v_{2 t-2}\right\} \cup\left\{v_{\infty}\right\}$, and associate v_{∞} with S_{0} and associate v_{i} with S_{i+1} for $i=0,1,2, \ldots, 2 t-2$. From Lemma 4.16 , when $t \geq 2,2 \mathrm{~K}_{2 t}$ can be decomposed into $2 t(2 t-1)$-cycles, $\mathrm{C}^{(0)}, \mathrm{C}^{(1)}, \mathrm{C}^{(2)}, \ldots, \mathrm{C}^{(2 t-2)}, \mathrm{C}^{(\infty)}$ where $\mathrm{C}^{(i)}$ misses v_{i}. For each $\mathrm{C}^{(i)}, i=0,1, \ldots, 2 t-2$, let \mathcal{F}_{i+1} (a family of four edge disjoint 1-factors of $\mathrm{K}_{S}-\mathrm{K}_{S_{i+1}}$) be as shown in Figure 16. Note that if $v_{j} v_{k}$ is a thin edge in $C^{(i)}$, then we use one 1 -factor between S_{j+1} and S_{k+1}, and if $v_{j} v_{k}$ is dashed, we use three 1 -factors between S_{j+1} and S_{k+1}. It is important to observe that the union of these four 1 -factors is $K_{4,4} \cong \mathrm{~K}_{\mathrm{s}_{j+1}, s_{k+1}}$. For the thick edges, let $\mathrm{K}_{\mathrm{S}_{\infty}, \mathrm{S}_{m}} \cong \mathrm{~K}_{6,4} \cong \mathrm{~W}_{m} \cup \mathrm{Y}_{m}$ where $\mathrm{W}_{m} \cong \mathrm{Y}_{m} \cong \mathrm{~K}_{3,4}$, for $m=0,1,2, \ldots, 2 p-2$. The edge $v_{j} \infty$ lies in precisely two of the cycles $\mathrm{C}^{(i)}$. In one instance the four 1-factors defined partition $\mathrm{K}_{3,4} \cong \mathrm{~W}_{j+1}$ and in the other they partition $\mathrm{K}_{3,4} \cong \mathrm{Y}_{j+1}$. Finally, corresponding to $\mathrm{C}(\infty)$ we, define \mathcal{F}_{0} as shown in Figure 17. Each edge $v_{j} v_{k}$ in $\mathrm{C}^{\left({ }^{(}\right)}$is dashed so we use the three remaining 1 -factors between S_{j+1} and S_{k+1}. Let $\mathrm{R}_{i} \cong \mathrm{~K}_{S_{i}} \cup \mathcal{F}_{i}$ for $i=0,1,2, \ldots, 2 t-1$.
 $n \geq 9$.

Figure 16
\mathcal{F}_{0}

Figure 17
4.18. Theorem: $\mathrm{B}_{\mathrm{NR}} \mathrm{DK}_{4 n+1}$ when $n \equiv 3(\bmod 4)$.

Proof: Let $n=4 t+3$. We-proceed by induction on t. When $t=0, \mathrm{Bl}_{\mathrm{NR}} \mathrm{DK}_{13}$ from Lemma 4.9; when $t=1, \mathrm{~B}_{\mathrm{NR}} \mathrm{DK}_{29}$ from Lemma 4.13; and when $t=2, \mathrm{~B}_{\mathrm{NR}} \mathrm{DK}_{45}$ from Lemma 4.15. Let $t>$ and suppose $\mathrm{Bl}_{\mathrm{NR}} \mathrm{DK}_{4 n+1}$ when $n \leq 4(t-1)+3=4 t-1$ and $n \equiv 3(\bmod 4)$. We must show that $\mathrm{DK}_{4(4 t+3)+1}$ has a near B-factorization. Note that from Lemma 3.14, $\mathrm{DK}_{4[(2+1)+1]} \cong \mathrm{DK}_{4(2 t+2)}$ has a B-factorization such that the union of two of the B-factors is $(2 t+2) \mathrm{DC}_{4}$. Clearly $2 t+1<4 t-1$ when $\leftrightarrows 2$. If $\neg 2$ and
$2 t+1 \equiv 3(\bmod 4), \mathrm{DK}_{4(2 t+1)+1}$ has a near B.-factorization, either by the induction hypothesis or the induction base. If $2 t+1 \equiv 1(\bmod 4)$ and $\triangleright 2$, then $\mathrm{Bl}_{\mathrm{NR}} \mathrm{DK}_{4(2 t+1)+1}$ by Theorem 4.17. Hence conditions 1) and 2) of Lemma $4.1 \hat{1}$ are satisfied. Therefore $\mathrm{DK}_{4(4+3)+1}$ has a near B -factorization and we may conclude that $\mathrm{Bl}_{\mathrm{NR}} \mathrm{DK}_{4 n+1}$ when $n \equiv 3(\bmod 4)$.

We have now proven Theorem 1.10 which we restate here.
1.10. Theorem: a $\quad \mathrm{A}$ and D divide $\mathrm{DK}_{4 n+1}$ near resolvably for all $n \geq 1$.
b) B and C divide $\mathrm{DK}_{4 n+1}$ near resolvably for all $n>1$ (with the possible exception that B may notdivide DK_{21} near resolvably).
Proof: a) See Theorems 4.5 and 4.7.
b) See Theorems 4.5, 4.8, 4.12, 4.17, and 4.18.

List of References

[1] B. Alspach, R. Häggkvist, Some observations on the Oberwolfach problem, Journal of Graph Theory, 9 (1985), 177-187.

Brian Alspach, Paul Schellenberg, Doug Stinson and David Wagner, The Oberwolfach problem and factors of uniform odd length cycles, Journal of Combinatorial Theory, Series A52, No. 1, September 1989, 20-42.
[3] J.C. Bermond, Decomposition of K_{n}^{*} into k-circuits and balanced G-designs, Recent Advances in Graph Theory (ed. M. Fielder), Proc. Symp. Prague (1975), 57-68.
[4] J.C. Bermond, D. Sottéau, Graph decompositions and G-designs, Proceedings of the Fifth British Combinatorial Conference, 1975, 53-72.
[5] J.C. Bermond, A. Germa, and D. Sotteau, Resolvable decomposition of K ${ }_{n}^{*}$, Journal of Combinatorial Theory, A26 (1979), 179-185.
[6] J.C. Bermond,'V. Faber, Decomposition of theeomplete directed graph into k circuits, Journal of Combinatorial Theory, B21 (1976), 146-155.
[7] F.E. Bennett, Conjugate orthogonal Latin squares and Mendelsohn designs, Ars Combinatoria, Volume 19 (1985),51-62.
[8] F.E. Bennett, D. Sotteau, Almost resolvable decomposition of K_{n}^{*}, Journal of Combinatorial Theory, B30, No. 2, April 1981, 228-232.
[9] F.E. Bennett, Zhu Lie (personal correspondence).
[10] .A.E. Brouwer, H. Hanani, A. Schrijver, Group divisible designs with block size 4, Discrete Mathematics, 20 (1977), 1-10.
[11] A.E. Brouwer, Optimal packings of K_{4} 's into a K_{n}, Journal of Combinatorial Theory, A (1979), 278-297.
[12] James Burling, Katherine Heinrich, Near 2-factorizations of $2 \mathrm{~K}_{n}$: cycles of even length, to appear.
[13] A.G. Chetwynd and A.J.W. Hilton, 1-Factorizing regular graphs of high degree An improved bound, Discrete Mathematics, 75(1989), 103-112.
[14] F.R.K. Chung, R.L. Graham, Recent results in graph decompositions, Proceedings of the Eighth British Combinatorial Conference, 1981, 103-123.
[15] Charles J. Colbourn and Marlene J. Colbourn, Every twofold triple system can be directed, Journal of Combinatorial Theory, A34 (1983), 375-378.
[16] R.K. Guy, Unsolved combinatorial problems, Combinatorial Mathematies and its Applications, Proceedings, Conf. Oxford, 1967(D.J.A. Walsh, ed.), p.121, Adademic Press, New York, 1971.
[17] H. Hanani, Balanced incomplete block designts and related designs, Discrete Mathematics (1975), 255-369.
[18] H. Hanani, On resolvable balanced incomplete block designs, Journal of Combinatorial Theory, A17 (1974), 275-289.
[19] Frank Harary, W.D. Wallis and Katherine Heinrich, Decompositions of complete symmetric digraphs into the four oriented quadrilateralsm, Combinatorial Mathematics, Proceedings of the International Conference on Combinatorial Theory, Canberra, 1977, (D.A. Holton, Jennifer Seberry, eds.), Springer-Verlag, New York, 1977, 165-173
[20] K. Heinrich, P. Horák, A. Rosa, On Alspach's conjecture, Discrete Mathematics, 77 (1989), 1-25.
[21] Katherine Heinrich, C.C. Lindner, and C.A. Rodger, Almost resolvable decompositions of $2 \mathrm{~K}_{n}$ into cycles of odd length, Journal of Combinatorial Theory, A49 (1988), 218-232.
[22] D.G. Hoffman, P.J. Schellenberg, The Existence of C_{k}-factorizations of $\mathrm{K}_{2 n}-\mathrm{F}$, Combinatorics and Optimization, Discrete Mathematics, to appear.
[23] Stephen H.Y. Hung, N.S. Mendelsohn, Directed triple systems, Journal of Combinatorial Theory, A14 (1973), 310-318.
[24] A. Kotzig, On decompositions of complete graphs into $4 k$-gons, Mat.-Fyz. Cas. 15(1965), 229-233 (in Russian).
[25] N.S. Mendelsohn, A natural generalization of Steiner triple systems, Computers in Number Theory, Proc. Sci. Res. Council Atlas Sympos. No. 2, Oxford 1969 (Academic Press, London, 1971), 323-338.
[26] D.K Ray-Chaudhuri, R.M. Wilson, Solution of Kirkman's schoolgirl problem, Proc. Sympos. Pure Math., American Mathematical Society, Providence, R.I., (1971).
[27] A. Rosa, On the cyclic decomposition of the complete graph into polygons with odd number of edges, Casopis Pest. Math. 91 (1966), 53-63.
[28] A. Rosa, On cyclic decomposition of the complete graph into (4m+2)-gons, Math. Fyz. Casopis Sav., 16 (1966), 349-353.
[29] J. Schönheim, Partition of the edges of the directed complete graph into 4-cycles, Discrete Mathematics, 11(1975), 67-70.
[30] W.D. Wallis, Combinatorial Designs, Marcel'Decker, Inc., New York, 1988,* 236-262.

\leftarrow

[^0]: 1
 ISBN $0-315-59347-4$

