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'"ABSTRACT 

In this thesis we study resolvable and near-resolvable decompositions of the 
" * - 

0 
- complete syrpmetric.dlgraph - on v vertices, DKv, into each of the twooriented i 3-cycles, 

i )  - 
w 5 )  - CT3 and 'IT3,-andhto each of the fohr oriented Ccycles, A, B, C and D, (wherg A, B, 

-, - 4 0 Q 
- 

- , -- and C, are theoriented Ccyclcs with longest path l eggu  one, two and three 
- - ,i 

, refpectively, and D w is the directed Ccycle). In Chapter One we present a brief 

history of the pioblep, together with somqalirninary results. This is followed, in 
"I 

Chapter Two, by a discussion of know5 resu1ts"for oriented 3-cycle decompositions. 
ww 

, In Chapters Three and Four we study necessary and sufficient conditions for the 
T 

existence of rebolvable lvable decompositions of D& into each of A, B, , 

b .  m 
C and D. W e  show r e s o w l e  decompositions into B if and only if 

v=O(mod 4), v t 4 (with possible exceptions v = 20 and v = P);fnto C if and only if 
-, 

v=O(mod 4); &d into D if and only if v=O(ktod 4), v # 4. DK, cannot be resolvably 4 

'B decomposed into A. Near-resolvable decompositions of DK, into\A and exist if a \ '8 

and only if v=l(mod 4), and intoS and into C if and only if v=l(mod 4), v t 5 (with the . 

possible exception of decompositions of DK21 into near B-factors). F 
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Chapter 1 - Introduction i 
Y 

> * -- 
Let G be a finite multigraph with do loops. Let tH = kHl, H2, ... ,H,J be a 

collection of connected graphs on tffe vertex set of G whose edge-disjoint union is 

iso;horphic to G. Then we say that H is a decomposition o f h e  graph G. In -, h 
9 

particular,  if'^^ is a cycle for i = 1,2, ..., n, then is a cycle decomposition of G .  If 
I 

H i  n H for all i then we say that H divides G, dEnoted HIG. The question of when a 

given graph G has a certain t d e  of cycle dGomposition has been of considerable 

intkrest over the past several years. F Q ~  a ge,neral survey we refer the reader to [4] 

@and [14]. 1; particular, there has a n  much bork done when G is the complete graph 
4 

on v vertices wit& edge multiplicity h, hKv, and all of the cycled in the decomposition 
68 

have the same length. The problem formally stated is to determine the values of v for 

which hKv has a cycle decomposition into cycles of length k. Clearly, it is necessary 

that v 2 k,  that k divide the number of edggs in hK,, and that the degree, h(v-1), of 

each vertex be even. In this thesis we ncentrate on the cases where k = 3 and P 0 

k = 4. 4 
R 

-i 

I A Steiner Triple System on v points, (an STS(v)) is a collection of 3-spbsets 

of a v-set such that each pair of elements in the v-set occurs exactly80nce in some 

3-subset. If we let the vertices of 7 be the elements of the v-set, each 3-subset 

gives a 3-cycle in Kv and each.edge41n Kv occurs in exactly one 3-cycle. Hence K, 

can be decomposed"into cycles of length 3 exactly when an STS(v) exists; that is, 

a when v=l or 3(mod 6) [30]. k k h  work has been done on triple systems. F % 

bibliographic sketch and for cdnstructions of both STS(v)'and of triple systems with 
. . 

various h, we refer the reader to [30]. 

In 1965, Kotzig [24] inve'stigated decompositions of Kv into 4t-cycles. 



u , . & 

1.1. Theorem: (Kotzig, [24]) If v-l(mod 8t), then there is a decomposition 
I 

, of Kv into 4t-qycles; the condition being aIso necessary if t is a power of two. 
3 B 

' ! 
; In particular, if t=l, we have that K, c& decomposed into 4-cycles if and 

only if v-1 (mod 8). , 

I 

In this paper we restrict ourselves to the study of decompositions into 3- and 
1 

. 4-cyqles. However, many other results for different cycle lengths are known and we 
t l -  

refer the interesied r&der to [27] and [28]. 
. . 

Let H= (HI, H2, ... , H,) be a decomposition of a graph 
. , . , IV(G)I = v. If 

we can partition the graphs Hi into classes, such that the Hi in a given class are i 
. vertex-disjoint, and thee h i o n  is a spanning subgraph of G ,  &en we say H i s  a 

/ resolvable decomposition of G and call-each class a parallel .&lass.' 1 .  If each of the 

Hi E H is a cycle of length k, then we say that H i s  a resolvable k:wcle 

, decomposition. If in additqn, Hi for $1 i, we may also say H divides Gresolvably, 
\ 

denoted HIRG. In thiscase the parallel classes are called H-factors b and we say G has 

an H-factorization. Observe that for a resolvable k-cycle decomposition to exist we 

must have v r mod k), v2k and h ( v )  - O(mod k). P 
a If we can partition the grapbs Hi E Hinto classes such that the Hi in each 

class are vertexdsjoint and their union is a spanning subgraph of G-(x), the graph G 

with one venex removed, we say that H i s  a near-resolvablb decomposition . of G and 

again call the classes parallel classes. If all Hi E Hare  k-cycles we say that H i s  a 

*'ear-resolvable k-cycle decomposition of G. If in addition, Hi PH we may also say 

that H divides G near-resolvably, denoted HINRG. In this case the parallel classes are 

called near H-factors, and we say G has a near H-factorization. For a 
2 . . 



near-resolvable k-cycle decomposition of G we must have vzl(mod k) ,  vzk, and 
4 

h ( v )  E O(rnod k ) .  , =P 

- - 

We definka 1-factor of a graph G to be a set of vertex-Wsjoint edges which 

span G. A near 1-factor o! a graph G is a set gf vertex-disjoint edges- which span 

G-(x) , the graph G with a vertex removed. 
.. 

The question of when K; can be resolvably @composed into cycles dates back 
<- 

to the famed Oberwolfach problem, first formulated by Ringel and first mentioned in 
-* 

print in [16]. Th of finding resolvable~decompositions of Kv into , 

3-cycles 4 schoolgirl probkm and was solved by 

R a y - d h a u k i  and  on [26]. Such decompositions are called Kirkman triple 
'9 8 

a systems, KT v). 

I 1.2. Theorem: ( ~ a ~ - ~ h a u d h u r i  and ~ i i s o n ,  [26]) There is a iesolvable 

Be ~n of K, into 3-eycle (a KTS(v)) if and only if v=3(mod 6). 
P 

A proof of this theorem can also be found in [30, pp. 254-2601. , 

We observe that there can be no resolvable decomposition of Kv into 4-cycles 

this would require that v= O(mod 4) and that v be odd, which is impossible. , 

- 
After many years of $search and paperk by various mathematicians, the - 

,," L 

general problem for resolvable k-cycle decompositions of Kv was spced. The 
d. 

interested reader can find the cu1rnination"of the results in three papers: one by 

~ls~ach ,%hel lehber~ ,  Stinson and ~ i i n e r  [2], the second by Alspach and 

Haggkvist [I], and a later paper by Hoffman and Schellenberg [22]. 
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k.2. - 
r .  

- .  . - 
&- - In [18], Hanani settled the question of resolvable and near-resolvable a 

- \' 

decompositions of 2Kv into 3-cycles. 

1.3.  heo or em:' (~ana;. [18]) Resolvable .decompositions of 2Kv into = 

G. 
3-cycles exist if and only if v = 0 (mod 3), ~ $ 6 ,  and near-resolvable decompostions of 

b 

2Kv into 3-cycles exist if and only if v= l(mod 3). - . T 

The existence of near-resolvable k-cycle .decompositions of 2Kv was 

completely resolved in [21] and [12]. (We note that no near-resolvable k-cycle 

dewinposition of Kv , exists. Recall that the degree of each vertex must be even in 

order for the graph to admit a k-cycle decomposition. Hence v must be odd: Also, 
v(v- 1) 

each piralleloclass uses v- 1 edies, hence IE(Kv)I = 7 mukt be divisible by v-1 . 

But this is not possible if v is odd.) 
?? 

a 
In [21], Heinrich, Lindner and Rodger show that the necessary condition that' 

% 
i 

v ~ l ( m o d  k) is sufficient for the existence of a near-resolvable k-cycle decomposition 

of 2Kv for k odd, k23, and in [12]. Burling and Heinrich show that it is also sufficient. 

for k even. In particular we have near-resolvable 4-cycle decompositions. 

-. .. 1.4. Theorem: (Burling and Heinrich, [12]) Near-resolvable 4-cycle - 

decompositions of 2Kv exist if and only if v= l(mod 4). 

Analogous questions have also' been asked concerning decompositiois of 

directed graphs. If G is a graph, then let DG be the directed graph obtained by 

replacing each edge a b ~  E(G) with the two arcs (a,b) and (b,a). In particular we have 

the complete symmetric digraph, DKv. Decdmpositions of digraphs are particularly 

interesting since different orientations of the arcs are possible. For example, if we 
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L 

+ 

7 
P 

wish to dec&npose DKv into oriented 3-cycles we can consider the twb possible 
3 

d 

orientations given ,in Figure 1 : 
\ 

Figure 1 

The fvst we call a cyclic friple, denoted CT3, and the second we call a 

transitive triple, denoted TT3. 
P -  

Mehdelsohn was the first to study decompositions of DK, into cyclic triples. 
/ 

$ 8  

In [25] he presents the idea of decomposing DK, into cyclic triples as a 
a w c L  k r L ~ C Y  

i .  L 

B 
>; 

generalizatiop of Steiner triple systems an g&es necepary and s~fficient~conditions '" L ,  

.' LlO - - 
. L F Y : e 2  A " ,  < 

for thefexistence of such decomposition$. e 

- - P A P - r - - - +  -d 

I.$. Theorem: .(Mendelsohn, [a) DK, can be decomposed into cyclio 
1 

Q 

\ triples if and only if v r 0 or l(mod 3), ~ 6 .  ?> 
\ "b 

." 

Later, Hung and Mend&o& [23] establiihbd the analagous reShlt for trmsi%ve 
b- , ,. 

/ 
triples. . $ p k  + 

0 

P -'L 

, 1.6. Theorem: (&ung and %ndelsohn, 1231) DKv can be decomposed into 
0 0  % 

transitive triples if and on& if vk 0 or l(mod 3), vzl.  
0. I 

Q 
4 c' 

Thus whenever the neceshy conditions are satisfied, DK, caq be decomposed into 
I 1  f 0. 

either the cyclic or the trdhsitive &ple unless v= 6. 
0 



The ca2e of decomposing DKv into oriented 4-cycles is again more complex as 

there are four possible orientations as shown in Figure 2. 

Figure 2 ' 

We adopt the notation of [19] in naming these four graphs, denoting them A, B, 

C, and D respectively, where the later the letter, the longer the longest directed path. 

A is known as the alternator and D is often called the 4-circuit. I 

b P 
Schonheim [29] and Bermond and Faber [6]  independently worked on the 

ti 
problem of decoinposing DK, into D. Schonheim refers to Mepdelsohn's 

7 
generalization of mple systems [25] as his motivation for studying orienteda-cycle 

decompositions and in 1291 gives necessary aod sufficient conditions for such 
J 

decompositions. Bermond worked on the more general problem of determining the 

values of v for which DK, can be decomposed into k-circuits, directed k-cycles where 
- i 

the longest directed path is of length k: In [3]  heconjectured that the necessary 

condition v(v-1) r O(mod k) is also sufficient except for v=6, k=3; v=4=k; and v=6=k. 

In a joint paper with Faber [6] he dpeloped many results for k even. In particular 

they resolve the case k=4. 

1.7. Theorem: (Sc a onheim [29], B'ermond and Faber [ 6 ] )  DKv can be 

" decomposed into D if and only if v>4 and v=O or l(mod4). 
---, 



Necessity is clear since the number of edges must be divisible by 4. If v=4 it can 
0 .  

shown by exhaustion that the  omp position does not exist. 
v 

I 

Harary, Wallis and Heinrich [19] were the first to discuss the other possible 

orientations of the 4-cycle. - 
1.8. Theorem: ( ~ a r G  Wallis and Heinrich[l9]) 

- - 
(a) AIDK, if and only if v r l  (mod 4); 

(b) BIDK, if and only if or 1 (mod 4), v+l or 5; 

(c) ClDK, if and only if v=O or 1 (mod 4), v#5. 

In what follows we focus on resolvable and near-resolvable decompostions of 

DK,, restricting ourselves to the study of oriented 3- and 4-cycle decompostions. In 

Chapter 2 we give an overview of work done on resolvable and near-resolvable 

decompositions of DK, into the two oriented 3-cycles. In Chapter 3 we discuss 

resolvable decompositions into the four oriented 4-cycles and establish the following * 

theorem. 

1.9. Theorem: a) AY, DKv. 
I 

b) BIR DK, if and only if v=O(m'od 4), v#4, with tlie possible 

" exceptions v=20 and v=52. B 

c) CIRDKv if and only if va (mod  4). 

d) DIRDKv if and only if v=O(mod 4), with the possible 

exception of v= 12. 

In Chapter 4 we discus; near resolvable decompositions into the four oriented 

4-cycles and prove that : 

a .\ 

7 \-.'\ 



u 1.10. Theorem: a) A and D divide DKv near resohably if and only if 
.i 

v= 1 (mod 4). 

6 

C divide DK, new resolvably if an4only if 

k), v#5, with the possible exception that B may 
'a' 3 

not divide DK21 near resolvably. 

B . 
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Chapter - 2 ~&olvable and Near-Resolvable Oriented 3-Cycle 

- 
V 

,-&L - - 
- 

52.1. Definitions and Notation 
'S 

- 
In addition to the defini 

terms and conventions are used. 

/ - - \ -  

Let Ck denote the C3 is the non-oriented 

3-cycle. The cyclic triple CT3+ith vertex-set {a ,  b,  c) ,  has arcs (a,b),(b,c) and (c,a); : 

while the transitive triple, TT3, on the same vertex set has arcs (a,b), (b,c) and (a,c). 
=?- 

In each case the triple is denoted (a, b, c). In the discussion that-follows we use the 'i 

symbol X3 to denote an oriented 3-cycle. 
G 

I 

Given an oriented k-cycle C, the oriented cycle obtained by reversing the 

direction of each arc in C is called the converse of C. If C is isomorphic to its converse 
L 

then we say that C isaself-converse. Sn particular, we note that CT3 and 'IT3 are both 

self-converse. '% 
- 

Let KA denote the complete graph with vertex set A and CA denote a cycle 
C 

with verrex set A. Let K(n,m) denote the complete multipartite p p h  with vertex set 
\ 

consisting of n parts of m vertices each, p d  let C(n,m) be the graph with vertex set . r 

consisting of n parts of m vertices each, XI, X2, ... X,, with E(C(m,n))=(xy : XE X i  and, 
w - 

52.2. Resolvable 3-cycle decompositions of DK, 

In 1979, Bermond, Germa and Sotteau [5] tablished necessary and sufficient 
0 

olvable decompositions of DK, into CT3 and into TT3. 
9 



- 
a 

C C 

2.1. Theorem: (Bermond, I(-, admits resolvable 
- 

d 

C 

decompositions into ?T3 and into CT3 only if v & ( ~ o d  3), ~ 6 . '  @ - 
-4: 

- 

- It is clear that for such decomposition-to exist we require v~O(mod 3) as the 
w 

nu ber of vertices of DKv must be a multiple of 3. To see that v&, suppose that Y a 
either CT31RDK6 of ? T ~ I , ~ K ~ .  Then on deleting the orientations of ihe arcs we have a 

resolvable decomposition of $K6 into C3 which co~tradicts Theorem 1-3. 

Q 

g, 
We will prove the sufficiency of the theorem &a a series mas. 

2.2. Lemma: (Bermond, Germa, an8 Sotteau, [i) When ~-3(mod6), 
"J 

B 
X3IRDKv. 

il 

Proof: From Theorem 1.3., we have C31,Kv if v=3(mod 6). To each C3, 
4 

associate an oriented 3-cycle (either CT3 or lT3)  and s converse. Thus for each 

C3-factor of &,we obtain two CT3-(or TT3-) factors of DK,, giving resolvable 
\ 

decompostions of DK, as required. H 

We-require several lemmas and another Theorem in order to provide resolvable 
b 

P @ 
8, 

1 

2.3. Lemma: X31D&. U 

d 
Proof: Let the vertices of DKv be the four elements ,of GF(4): 0, 1, x, x2 with 

3 

x2=x+1 In each case the triples of a-decomposition are r B 

( (a+!, a+x, a+xi): aE GU(4)). e 

2.4. Lemma: If X3IRDKv, then % 3 ~ R ~ ~ 4 v .  
8 

Proof: Partition the vertices of D&, into v sets A1,A2, ..., AV with IAiI=4. 

Denote the vertices of Ai by ( a p : a ~  GF(4)). Let Cl, C2, ..., Cv-1 be the x?-fa{tors of 
I 

* 
an X3-factorization of DKv. From Cl we construct seven edge disjoint X3-factors of 



- - \ 

(y - - 
.D 

, - 
DK4, by associating - with (i$& E Cl the seven sets of triples, each triple ,' w 

isomorphic to Xg: (by, , (a?+ < a:'", $ + x ~ ) ,  ( a r l ,  a?+* ' a u + ~ ~ ) ,  I L. 

2 P 

(a;+1; aa+x R ' k  aa+x )}, where ae GF(4); and (8, afltl, .I $"i, 
4 s s 

} for 

From bach Cl, 2 5 1 5 v-1 wk construct four edge disjoint X3-factors DK4, by 

associating with each (I j , k ) ~  Cr, the four sets of triples, each triple isomorphic to X3: 
2 2 + I  a+ 

{(a?, a?, a;), (a:+', (a:+x , ,aj 3). 0% W 4 ) -  

This ields 7+4(v-2) = 4v - 1 X3-factors of DK4, and hence X~I,DK~;. m L 
3 Q 

We state the follo as without proof. a 

0 9  

2.5. Lemma: (Bermon , and ~ o u e a u ,  151) X3IRDK18, X3IRDK24, - 
B 

X3 1~DK3(k grid X31~DK42. 
-I 

Sotteau, 151) DKAvB - DKB, where i ; .  
G 

seventeen subgiaphs, twelve of which %. 

e z3-.factors of DKAUB, and five of which are X3-factors of DKA. 
:-0 , 

2.7. Lemma: (Brouber, Hanani, and Schrijver, [lo]) For r24, K41 K(r,l2). 

We are now in a position to show: - 
9 

2.8.' Lemma: (Bermond, Germa, and ~ofieau,  [5]) When v=6(mod 121, - 

I Proof: .Let v= 12u + 6. When u I 3, the claim follows from Lemma 2.5. Let 
il u 

u24, and partition the set X of*vertices of DK, as follows: X = U A i  u B, where 
i= 1 

i 
Ai = {a,: 1 SjI12) and 1B1=6. By Lemma 2.5,~S)KAlUe9DKl8 can be decomposed into 

1 
$* 

X3-factors C, , l l j ~ l 7 .  By Lemma 2.6, for i = 2,3 ,..., u, D K A , ~ B  - DKB can be 



. * 3 

. decompore~ imo prkciseely twelve ?-&tors, #, 4, ...,3,, of DKA~,~,  and five 

X3-factors, <37g4,...,2117, of DKAi: From Lemma 2.7, the graph DK(u,l2) with 

u 
vertex set r = l  v A i  h e r e  theQAj are the independent sets, has a D&-decomposition. 

d 

Let S be the set of all DK4 in such a decomposition. 
i. i i 

Let aj E Ai and let 4p{DK4: DK4€Sand a ,~v(D&)) .  By Lemma 2.3, each 

of these D& has an X3-decomposition. Then let F;={x3: D K ~ ;  P;, X3 i$ an oriented e 
6 

- . 1  

I 
3-cycle in the decomposition ofD&, and a;ex3). dlearly yj is X3-factor of 

4 f -  *DK(u-1,212) with vertex set V(DK(u,l2)) - Ai. 
0 0 b 

We obtain an X3-factorization of DK12u+6 with the following 12ui-5 parallel 
U . ' 1 i 1 

classes:, GuF, forj=1,2: ,.., 12; 4 u v $ f o r j =  13 ,..., 17; and q-u!Fjforj=1,2 ,..., 12, 
%% 1=2 

d 

2 I i l u .  Hence X~I,DK, when v=6(mod 12). . 
9 - * 

6Y"' 
2.9. Lemma: (bermond, Germa, and Sotteau, [5]) If v=O(mod 12), then 

fs- 

X3 IRDKv. @ a 

Pr6of: kt v=4$whek qa(rnod3) but q+0(mod 12). Since X31RDKq,for qg6, I 
I 

(Lemmas 2.2 and 2.8) ts& repeatedly applying L e h a  2.4, we see that x ~ ~ K , ,  

except when q=6. When q=6, let v=4a(6)=4a-l(24) and since X31RDK24, by Lemma 
3 

2.5, again on repeatedly appl ing  Lemma 1 4 ,  we find X31RDKv, which completes thd 
'-% 

w 
I F ,  i 

proof. @ 



I $ 'r 
- 

- P 
/ t 

82.3 Near-Resolvable Oriented 3-Cycle Decompositions 
, 

In 198~1, Bennett and Sotteau [8] addressed the question of near-resolvable 

decompositions of DK, into the oriented 3-cycles. 

L 

2.10. Theorem: (Bennett and Sotteau [8]) DK. a s t s  a near-resolvable 

decomposition into X3 if and only if v=l(mod 3). 
i 

4 .- C@ly v-l(mod 3) is necessaqffsince each near X3-factor consists of oriented 
* 

triples and an isolated vertex of DK,,. Recall from Lemma 2.3 that X31,DK4. 

In order to establish sufficiency we.?equire a series & lqmmas. Befoie we 

continue, we remind the reader of the definition of painuise_balpn~ed designs. ' C  

A pairwise balanced design PBD(v,I,X) is a collection'of i-subsets, ie  I, &led 

blocks, of a v-set such that each pair of qlements in the v-set occurs in exkcfly h 

blocks. In particular, we observe that if K, has a decomposition into H-factorswhere 

H is the edge-disjoint union of complete graphs, with orders in I, then there exists a 

PBD(v,I,X) and conversely. 

2.11. Lemma: X31,DK7. , 

Proofr Let the vertices of DK7 be labelled by the elements of Z7 (the additiwe 

group of residues modulo 7). The seven parallel classes O of a near-resolvable . 
, 

* 

decomposition of DK7 into X3 are (i, (i+l, i+2, i+4), (i+6, i+5, i+3)), ie Z7. 
< P 



,3,4), (2,9,8), (5,7,O) 1, (7, (1,8,0), (2,4,5), (3,691 1, ( 8, (1,0,9), (2,5,3), (4,6,7)L - 
.o 

(9,(1,4,2), (3,7,6), (5,0,8)). v e  teri parallel classes of a near-resolvable 

{3,(5,1,6), (7,2,0), (4,9,8)),, (4,(1,7,5), (2,8,61, (0,3,9)1, ( 5, (6,1,8), (2,7,9), (3,0,4)l, 

(6, (4,3,1), (8,9,2), (5,0,7)), 17, (0,8,1), (4.23, (6,9,3)). (8,'(1,9,0), &3,2), (4.6,7)], 

{9,(2,1,4), (3,7,6), (8,095) I - 
* 

. 2.13. Lemma: X3INRDKl9. .. 

Proof: Let the vertices of DKi9 be labelled by the elements of Z19. The 
" 8 - nineteen parallel classes of a-near-resolvable X3-decompostion of DK19 are 

I 

- (i ,  (i+l, i+7, i+l l) ,  (i+2, i+14, i+3), (i+4, i+9, i+6), (i+18, i+12, i+8), 

For the remaining cases, the next lemma is the key to showing sufficiency. ' i "- 

t 
Note that it is much like the method used in Lemma 2.8. 

2.14. Lemma: If there exists a PBD(v,I;l) and for every& I, X3ImDKi, then 
1 

X31mDKv. 

Proof: The PBD(v,I,l) gives us a decomposition of Kv into complete 

\ 
\ 

subgraphs Kk, k~ I, and hence a decomposition of DK, into DKk, k~ I. For every x of 

V(DKv) consider those DKk which contain x. These subgraphs have only the vertex x . 
in common and between them contain all vertices of DKv. Since X31,DKk, in ad1-4 ' 

these subgraphs we have a d a r  X3-factor covering all vertices but x. Together these 

give us a near X3-factorof DK, which misses vertex x. All such near X3-factors are 

Age-disjoint and thus yield X31,DK,. 

We are now ready to prove Theorem 2.10. 



Proof of Theorem 2.10.: 

Let us consider two cases. 
I * 

Case 1: Let v=l  or 4 (mod 12). Hanani [18] has shown that there exists a 

PBD(v,(.i),l) if and only if ~1 or 4 (mod 12). ~ e n c e ,  K41Kv if v=1 or 4 (mod 12). 

Then from Lemmas 2.14 and 2.3, it follows that X31,,DK, when v=l or 4 (mod 12). 

Case 2 : - h  v17 or 10 (mod 12). Brouwer [ l l ]  showed the existence of a 

, PBD(v,{4,7),1) with a unique block of size 7 if and only if v=7 or 10 (mod 12), ~ $ 1 0  or - 
19. By applying Lemmas 2.3, 2.1 1, and 2.14, it fibllows that X31,DKv when 

vz7 or 10 (mod 12), and vzXlO or 19. Since the factorizations for v=10 and v=19 have 
J 

been shown in Lemmas 2.12 and 2.13 respectively, our.proof is complete. 

Hence X31,DK, if and only if v=l (mod3). . . 
- It has been shown by Colbourn and Colbourn [15] that given any 

decomposition of 2Kv into 3-cycles, the 3-cycles can be oriented to give a A 

decomposition of DK, into transitive triples. Together with Hanani's result, stated in 

Theorem 1.3, thiscprovides another proof that TT31,DKv if and only if v=O(mod 3), v#6, 
e 

and 'FT31,DKv if and only if v=l(mod 3). 

1 
This concludes the work which has'been done on resolvable and 

near-resolvable oriented 3-cycle decompositions. We now move on to discuss 

resolvable and near-resolvable oriented 4-cycle decompositions. 
+ 



Chapter - 3 Rdolvable Oriented +Cycle Decompositions - 
L 

&, 
In [19], ~arar$$ Wallis and Heinrich completely solved the problem of when 

DK, could be decomposed into each of the four oriented 4-cydes. Their conshuctions 

; did not generally result in resolvable decompositions, leaying open the question of. 
L 

, resolvable decom~ositions of DK, into oriented 4-cycles. (We use the symbol X4 to 
4 - h 

stand for any one of the four oriented 4-cycles.) 
4 

To begin we note that if X4IRDK,, then v I 0 ( m d 4 ) ,  since each parallel class 

is made up of 4-cycles. From now on, we let v ='4n, where n is a positive integer. * 
. In this Chapter we establishthe following theorem. 

1 

3.1. Theorem: B 

d 

a) A J R D G ~ .  

b) BIRD&, for all n, n#l except possibly when n=5 and n=13. 
4 

c )  C I ~ D K ~ ,  for all n. ' 

d) DIRDl& for all even n. 

  hen to coinplete ou~iscuss ion  of resolvable decompositions of Dl& into the 

oriented 4-cycles, we discuss the following result of Bennett and Zhu. 

-\\ 
3.2. Theorem: (Be nett and Zhu [9]) DIRDK4, when n is odd, n#l, except 

\ t 
d ' .  possibly when n = 3. a 

- .  
* 

Combining Theorems 3.1 and 3.2 gives Theorem 1.9 as stated in Chapter 1. 

9.;. 
3:3. Theorem: There is no resolvable ,. decomposition of 

Proof: Observe th$t each vertex of A has even in'- 

dgree.  In DK4., each vertex has odd in-degree, and odd 

-& 
\ k  16 
L- + 

f i  

3 

3 ' -  



D . 
h 

impossible for A to divide DI&, and in particular A cannot divide D&, resolvably. a 

3.4. Lemma: If C41G then X41DG. B --. 

Proof: Each oriented 4-cycle is self-converse. So each oriented 4-cycle 
, 

_-I 

divides DC4. Hence the result follows. u 

3.5. Corollary: )41iRDK4,4. 

Proof: This follows immediately from Lemma 3.4, as K4,4 has a 

C4-factorization as shown if Figure 3. 

Figure 3 

In this and C h q t e d ,  the following notation is useful. Let G i and H be graphs. 

~ h g n  G*H is the graph with vertex set V(G)xV(H) and edge set . 

% or x2=y2 and x l y l ~  E(G)). We ;se (n)G to denote n vertex disjoint copies of ihe 
8 -  

graph G. I 

3.6 Lemma: Let G = H*K2 have 2m vertices, where m is even, with vertex 

.a 
set X = S u T where S=(sl,s2 ,..., s , ) ~ n d  T=rtl,t2 ,..., t,) and the two copies of H are 

on the vertex sets S and T respectively. Then each 1-factor F of H induces a 



5 
I 

\ 

t 
d 

Proof: k t  F be a 1-factor of H. Without l o y  of generality let a 

F={SIs2, s ~ s ~ , . . . , s ~ - ~ s ~ ) .  Then the resulthg C4-factdr /, "-2 is { ( s ~ . ~ , s ~ ~ , ~ ~ ~ . ~ ~ ~ ~ ) :  - .  

From Lemma' 3.6 we obtain the fkllowing corollary. 
& 

f 

3.7. Corollary: If H has a 1-f$etorizdtion, then X4IRD(H*K2). 

1 

We now determine exactly when DK4 can be resolvably decomposed into the 

oriented 4-cycles B, C, and D. * 
\ 3.8. Lemma: CIRD(K4, - F). 

Proof: Consider K4, - F on vertex set X = SUT where S = ( S ~ ~ S ~ , . . . J ~ ~ )  and 
.i 

T={tl,t2,...,t2,), SO that F = (siti: 15  i I 2n).  Observe that Kq, - F z K2,*K2. Then 

from Corollary 3.7, since K2, has a 1-factorization, it follows -that CIRD(l& - F). . 
% 

Note that if H = (H1,H2, ..., Hn) is a C-factor in the above C-factorization of 

D(&, - F), then so too is H' = {Hi ,Hi,...,HA), where H) is the converse of Hi. 

3.9. Lemma : CIRD& 
J 

Proof: The decomposition is as shown in Figure 4. 

4 Figure 4 
7 

*the set of C-factors in the C-factorizationof D ( G n  - F) as 

described in Lemma 3.8. Choose any C-factor H E %together with its converse H'. 
18 



C 

.Then HuH1uD(F) e (n)DK4. F & ~ L  ~emma,k9, CI&& and 

C-factorization of HuH1uD(F)-which when H- {H,H') yi&s a 

C-factorization of D&,. Therefore CIRD&. C 4% 

- 
8 

We now-turn ou; attention to qq oriqted Ccycles B and D, I n  view of Lemma 
L, L 

3.1 1, constructions in these cases will be somewhat more difficult. 
* 

3.11. Lemma: Ngith r the oriented cycle B nor the oriented cycler) divfde 
&1, 

DK4 resolvably. --= 4 - 
L 

Proof: It can be shown by exhaustion that DK4 cannot be decomposed into B 

Hence D Q  cannot - be resolvdbly decomposed into B or D. 
-8 * 

. . 

3.12. Lemma: BI,DK8 and DlaDKg. 

Proof: Observe that the graphs X, Y, and Z as shown in Figure 5 partition the 
' 

-. 
,", , 

- -1 
edges of ~ g .  fl 

I a 

Figure 5 

Each of X and Y determine two B- (or D-) factors of DKg in the obvious way. 
? 

The graph Z is the cube Qs. Since B and D both divide DQs resolvably, as shown in 

' Figure 6 ,  it follows that "BIRDK8 and DIRDK8. 



Figure 6 

3.13. Lemma: Both BIRDK(n,8) and DIRDK(n,8). 
n 

Proof: Let the vertex set of DK(n,8) be S = u  Si where lSil = 8 and where . 
r= 1 

each Si is an independent set. Further, partition each Si as Si= TiLJTi+, where 

lTil = ITi+,l = 4, for i= 1,2 ,..., n. Consider Kh- F with vertex set V={ 1,2 ,..., 2n} and 

F= ( i(i+n): i= 1,2, ..., n ) , and let vertex i correspond to Ti for i= 1,2, ..., 2n. Observe 

that for any pair i and j, the vertex set TiuTj  induces a subgraph, DK4.4, unless 
L .  

i=j(mod n), in which case the induced subgraph is Ks It is well known that K2, - F 

has a 1-factorization. ~ a c h i  1-factor of Kzn- F corresponds t o  a D&,4-factor of 

DK(n,8). Since and DIRD&,4, from Lemma 3.5, each factor gives four B-(or 
d 

D-) factors of DK(n,8). Therefore BIRDK(n,8) hnd DIRDK(n,8). W 

5 

3.14 Theorem: When n is even, BIRDK4, and DIRDK4, . 
i? 

Proof: Let n=24  Then DGn=DKst=(k)DKs u DK(k.8). Since both DKs and 
%*+ 

DK(k,8) have a B-factorization and a D-factorization (from Lemmas 3.12 and 3.13) it 

follows that BIRDK4, and DIRDK4,. . , 

We next consider the casf when n is odd, considering B and D separately. 

3.v. Lemma: BIRDKI2, '. 
.I 

Proof: Let the vertex set of DK12 be {0,1,2 ,..., 10.-}. Then the eleven / 



4 
B-factors of atgsdvable decomposition of DKI2 are: ((i+5, i+8, i+l ,  i+7), (i+10, i+6, S-: 

i+4, i+9), (i+2, -, i, i+3)) for i = 0,1,2 ,..., 10 and addition is modulo 11. .M 
i 

For the next theorem we require the following lemma. 

3.16. Lemma: If t 2 2, then K2+2 - F has a C2t-decomposition. , 

@ Proof: Let the. vertex set of K2t+2 be (0,1,2, ..., 2t- 1 ,wl ,w2) and let ' 

F = (i(t+i): i=0,1,2, ... t-1) ~ ; r  When t is odd the C2,-decomposition is given 
t -  1 t+ 1 t+ 1 

bj.: ((2t- l+i, l+i, Zt-2+i; 2+i, ...,(T)+i,-l, 2t-(?)+i, l + i ,  2t- ( y ) + i ,  

( + i ,  t - l i , -2):  i 0 , , 2 ,  . 1 ) u ((0,1,2, . 2 - 1 )  When t is even, the 

' C2-decomposition is given by: 

( (2t- l+i ,  l+i, 2t-2+i, .2+i,..., &-(i)+i,-1, (i)+i, 2t-((i)+l)+i, 
I 

(;)+l+i,2t-((;)+2)+i ,... J-l+i,w2): i 0,1,2, . 1 ) u ( 0,1,2,  . 2 ) .  Observe 

that each 2t-cycle misses the endpoints of a distinct edge of the l-factor. 

3.17. Corollary: If t 2 2, then K2t+3 has a (C2[ u C3)-factorization. 

3.18. Theorem: When n=3(mod 4), BI,DK4,. 
r\ 

Proof: Let n = 4t + 3. Observe that K2n*K2. 
# 

Suppose we have a decomposition of K2, into edge-disjoint subgraphs S, 

P1,P2, F1, F2, ..., Fgl, such that: S is a factor of K2, consisting of one copy of Kg 

(denoted So) and 2t copies of Kq (denoted Si, i =1,2, ..., 2t); each of P1 and P2 is a set of 

4t independent edges covering V(K2,) - V(So); and F1, F2, ..., Fgt, are 1-factors of 
2 81 

K h .  Then Qn=(S*K2) v (U Pi *K2) V(U Fi *K2). Each of F; *K2, for i= 1,2, ..., 8t, is 
r= 1 i=l 

a C4-factor of Gn. SO for each i=1,2, ..., 8t, D(Fi *K2) can be decomposed into two 

B-factors which are alsdB-factors of D b , .  Denote these by'$') and If2) 
. < 

v (PI *K2) v (P2*K2). Now 
21 2t 

(S*K2)_ (u  Si) *K2 = u (Si *K2). Note that D(Si K2)-DKl2 which has a 
r=O 1 =O - 

(1 decomposition into eleven B-factors by Lemma 3':15. ~ e n o t ;  ihese by So , 

2 1 



, . . . , S 1 .  For i=l ,2,...,2tr D(Si l K2).DKs which has a decomposition ito seven 

(7)  2 0  B-factors, sI1), s?), ... Si . Then for each j= 1,2 ,..., 7, T, = y Si is a B-factor of DK4,. 
1=0 

2t 
Now P;*K2 and P2*K2 are each a set of 4t vertex-disjoint 4-cycles on V ( u  SieK2). 

r = l  
2r 

Hence for j= 1,2, D(Pj*K2) can be decomposed into two B-factors on V ( u  SieK2), 
i= 1 

(1) which we denote P, and P:). Then we obtain fowdditional B-factorsof DK4,. 

(2) (10) ' These are S?)U f), s(o9)>u P, , So +(:I, and So ("I v 6;). Thus we have 

2(8t) + 7 + 4 = 161 + 11 B-factors as required. 

Therefore, to complete the proof of the theorem, all we need is to provide such 

a decomposition of K2n. 

Without loss of generality we can specify the factor S as described. We must 

then choose P1 and P2, two sets of 4t independent edges covering V(K2,) - V(So), so 

that G E K ~ ~ - ( S U P ~ U P ~ )  has a l-factorization. Arbitrarily pair the Si , i=1,2, ..., 2t; 
(1) (2) say as ((Si, Si+l): i=1,2, ..., 2r). Let Li and Li be G o  edge-disjoint l-factors of the 

(1) K4,4, KSi,Si+,, for i=1,2 ,..., 21. Let P1=uLi and let P~=:L~). We claim that 
r= 1 r= 1 

GzK2, - (SuP1uP2) has a 1-factorization. Consider K2(+1 with'vertex set 

{v0,v1,v2,.. . , v ~ ~ }  where vi corresponds to Si for i=0,1,2 ,... ,2t. If t 2 3, from Corollary 

3.17, Ka+l can be decomposed into t factors where each factor consists of a. 

(2t - 2)-cycle and a 3-cycle. In accord with that construction, we can denote these 

factors by di) v CIvo,Vi, vi+t) for i=1,2, ..., f, where di) is a (2t - 2)-cycle on 

6'' V(Kzt+1 - (v0, Vi, vi+t)). For each factor u C(VO,vi, vi+t), i= 1,2, ..., t, we obtain 

' eight 1-factors of G as follows. In G, the cycle di) corresponds to a C(2r -2,4) which 

has a l-factorization made up of eight 1-factors. In G, C(vo,vi, v i+ l j  corresponds to the 

graph H shown in Figure 7. CIearly I-kH1uH2, where H1gH2 and H1 is as shown in  

Figure 8, has a l-factorization made up of eight l-factors. Therefore the subgraph of 
6'' G corresponding to u C(vo,Yi, vi+l) has a l-factorization and thus so does G. 



Two edge disjoint l-factors 

Figure 7 

a One 1 -•’actor 

Figure 8 
- 

This completes the proof for t 2 3. In Lemma 3.15 we showed that BIRDK12. 

When t = 1 or 2, choose S, PI ,  P2, and the Fi as described above. When t = 1, GzH so 

we are done, and when t = 2 we factor G as shown in Figure 9. Therefore BIRD&, 

when n=3(mod 4). 



Figure 



Figure 9, continued i 

i 
When n-l(mod 4), we could follow the same proof as for Theorem 3.17, excbpt 

c that no simple construction for the 1-factorization of G has been found. Thus we 
u 

appeal to the following result of Chetwynd and ~ i l t o n  [13] to prove that a O , 

1-factorization of G does indeed exist. 

3.19. Theorem: (Chetwynd and Hilton [13]) k-regular graph G with an 
1 

even number of verticds has a 1-factorization whenever k 2 2 (fi- l)lV(G)l. 



\ 
w L 

d - # "Ir$ 

*r- 

3.20. Theorem: BI,DK4, when w 1 (mod 4), n 2 57. 8 

Proof: In the proof of Theorem 3.16 we&owed that BhDK4, if the graph G, a 
as described, has a 1-factorization. Since IV(G)I=2n and G bqegular of  degree 2n-6. a 

-?v 

1 
2n - 6 > (fi- 1)(2n). This holds provided n > 17. , 

\ Theorem 3.17 guarantees that G has a 1-factorization whenever 

5 .  

In addition, for thep&ial case w k n  n=9 we ha e the following result. 'L 
0 

0. 

3.21. Lemma: BIRDK36. 

C ll Proof: Let DK36=D(K18*K2). ~ I $ & x T T ~  set of K18 into sets S1, S2, 
h 

and S3, where lSil = 6. Then 

3 i 
DK36 D(!J Ksi *K2 u D ( K s ~ , s ~ , s ~  *K2h N& 

4, 

r = l  
a 3 

. . 
u D(Ksi *K2)z(39DKl2, and since DKlz can be decomposed into eleven B-factors by 
r=l 

3 
Lemma 3.15, uD(Ksi  *IS2) can be decomposed into eleven B-factors of DK36. By 

r = l  

Corollary 3.7, if Ksl,s2,ss ~K6.6.6 has a 1-factorization, then D(Ksl,s2,s3 *K2) has a 

B-factorization. We claim that such a 1-factorization exists and although it has been 

shown elsewhere; fof completeness we include a proof here. 
Ci) Ci) Let S i=y  Si for i=1,2,3, where ISi I = 3. Consider K6-F with vertex set 

/= 1 
(1) (2) (1) (2) (1) (2) (1) (2) 

{v, . vl .'v2 , v2 , v3 T, v3 ) where F = (v.  I v .  I : i= 1,2,3). Lets:) correspond to 

? * 0.1 
v , for i= 1,2,3, j= 1,2. K6-F has a 1-factorizatipn. This 1 -factorization corresponds to 

1 

't - an R-factorization of ~ 6 . 6 , ~  where &(3)K3,3. ~ l e a r ~ ~ k ~ , ~  has a 1-factorization into 

three 1-factors and hence (3)K3,3 has a 1-factorization into three 1-factors of K6,6,6. 

I - Therefore D(KSI,S2,~3 *K2) has a B-factorization and it follows that BIRDK36. 

. 
This theorem still leaves unresolved the question of the existence, of resalvable 

B-decompositions of DK20 and DK52, as well as the existence of resolvable 

2 6 -- 



, 

D-decornposit~ons of DK4. when n is odd. The latter question is answered by B 
= 

4 a ,  Bennett and Zhu - [9]. In their study of resolvable Mendelsohn designs, they have . 
established the following theorem. 

J 

i 
3.22. Theorem: (Bennett and Zhu [9]) A (4n,4,1)-resolvable Mendelsohn 

design exists for all n except possibly when n=3. 1 
A (4n,4,1)-resolvable Mendelsohn design is equivalent to a resolvable 

D-decomposition of D&,. Hence resolvable decompositions of D&, exist when n is \ 

The pr&f of Theorem 3.1 follows from the above theoremsand lemmas. \ O  

- \ #  
7 

Proof of Theorem 3.1: 

(a) See -Theorem 3.3. Ga 

i ,  

(b) See The~rems 3.14, 3.18, 3.20 and L e v a  3.2 1. , - 
(c) See Thprgm 3.10. 

(d) See Theorems 3.14 and 3.22. . 6/ 

k. 



P U 

We now turn to near-reso~able briented 3-cycle, decompositions of DKv. - 
9 

Since each para1 class of such a decomposition omits exactly one vertex of DK,, it is 

clear that v=l(mod 4) is a necessary ~ondition for the decompsition tocexist. In what 

follows we let ~ = 4 n + l  and determine the values of n for which, DK4R+1 has q near- 
4 

resolvable decomposition into each of theifour oriented 4-cycles. Recall that the , 

b 
& 

oiiented 4-cycle A with vertex set {x,y,z,w) has arcs (x,y), (z,y), (z,w), and (x;w); 
I 

Lhile B has arcs (x,y), @,I), (x,w), and (w,z); C has arcs (x-,y), Q,z), (z,w), and 
' 

(x,w); and D has arcs (x,y), @,z), (z,w), and (wj) .  Also recall that Xq is used to 

represent any one of the four oriented 4-cycles.- 
1 

4 

4.1. Lemma: X&DK9. 

Proof: Let the vertices of DK9 be labelled $y the elements of ZJ? The nine '. 4 
near X,-factors of DK9 are (i,  (i+l, i+5, [+2, i+3), (i+8, ig4, i+7, i+6)). H 

9" 
'- - 

1 Y 

'4.2. lemma: X41,DKI7. -. 
crP 

Proi)$: Let the vertices of DK17 be labelled by the elements of ZI7. The 

seventeen near X4-factors of DK17 are (i,  ( i i l ,  i+9, i+14, i+7), (i+2, i+6, i+4, i+5), 

4.3. Lemma; C(2k,4) has a C4-factorization. 

Proof: Since C2k has a 1-factorization into two 1-factors, F1 and F2 then 

C(2k,4) has a (k)K4,4-factorization. Then since K4,4 can be decomposed into two 

C4-factors, C(2k,4) has a C4-factorization. . 
B 

A 
4.4. ~ o r o l l a f ~ :  X41,DC(2k,4). 

4.5. Theorem: X41NRDK4n+l when n is even. WJ 

Proof: Let n=2k.  When k G ,  suitable ,factorizations are given in  Lemmas 4.1 



2k 
anq4.2. So assume k23. Partition the vertex set X of DK4n+l as X = v Si u {-), 

r=1 

where ISiI = 4, 11i52k.* Consider K2k+l -with vertex set {v0,v1,v2,. . . , v ~ ~ )  and 

associate vo with vertek- of DK4n+l, i d  V i  with Si, tor i = 1,2, ..., 2k. F r m  ~ o r o l l a r ~  

3.17, K2k+l can be decomposed into k factors, L1, L2, ..., Lk, SO that each factor Li 
* 

cqnsists of a (2k-2)-cycle, C('), where V(C(9) = -v(K2k+l) - ( v o , v ~ , v ~ + ~ ) ) ,  and a 

3-cycle C{vo,vi,vi+k). These factors induce an R-factorization of DI&+l where 

ikDC(2k-2,4) y DK9. Ffom Lemma 4.1, DKsi,si+p(0)zDK9 can be decomposed 

(1) .#) H(8) $9 
. , where H;-' misses vertex -. into nine near $-factors, Hi , , ... , , 

According to Corollary 4.4, DC(2k-2,4) has a &cornposition into eight &-factors, 
(9) (10) 

Hi , Hi , ... ,H:'~', and so for each i=1,2 ,..., k, we obtain eight near &-factors of 
1 k 
DK4n+l by t a k i n ~  H:) u H?~) ,  j+1,2, ..., 8. The final Gear ~ ~ - f a c t o r , $ . u ~ ~ ~ ) .  Hence , B, '=I 

X41,DK4,kJ when n is even. H 

2 We now consider the case when n is odd. 

4.6. Lemma: AITD%, and DI,DK5. 

Proof: A decomposition of DK5 into near A-factors is shown in Figure 10, 

and a decomposition into near D-factors is shown in Figure 11. 

Figure 10 

Figure 11 
29 



L- - 4.7. Theorem: When n is odd, AImD&,,+l and DImDK4,+1. 

Proof: The case 'is Shown in Lemma 4.6. Let n be dd, n23. Partition the 
n P f 

vertex set X-of DK4n+I such that X = USiu(-) where lSil = 4 for i = 1,2, ... n. 
t i= 1 

C 

Consider the graph K, with vertex set (vl,v2, ..., v,) and let Si correspond to Vi for 

n is odd, K, has a near 1-factorization F=  {F1, F2 ,...,, Fn) where Fi 

Let each near 1-factor of K correspond to an R-factor of DK4,+1 3 
u DK5. In particular, for each Fi, i= 1,2 ,... ,n, let 

Ri= u DKS,,~, u DKs,(,j. By Lemma 4.1, DKsl,(,l can be'decomposed into five a 
vjVE Fi 

(1) (2) (3) near A-factors Ai+ , A, , Ai , A:), and A:=), where A(-) misses vertex -. Each 

DKsjPsk can be decomposed into foura-factors from Corollary 3.5. Hence for each 
'P i=1,2, ..., n we obtain four A-factors of DK4n+l by taking the four A factors of 0 

(1) (2) (3) u DKsjqsk together with the four A-factors Ai , Ai , Ai A:). This yields 4n 
VjVkE Fi  

n 
A-factors of DGnt l .  The final A-factor of DK4n+l is UA;'). A similar argument 

J \  i= 1 

shows that DINRDK4n+l. .. 
Thus all near-resolvable X-factorizations of DK4,+1, XE (A,D) *are possible. 

We note that the existence of near-resolvable decompositions of DK4,+1 into 

D-factors for all n (except when n=8, 14,23, or 33) can be deduced as a corollary of 

Bennett's work on Mendelsohn designs in [7]. 

We now turn to the remaining cases when X4e (B,C) and n is odd. 

4.8. urnma: There is no near B- or near C-factorization of DK5. 
\ 

Proof: It can bd shown by exhaustion that BlDK5 and W K 5 .  So clearly there 

caq be no near-resolvable decomposition of DK5 into B jg into C. 
i 

.t -. 

4.9. Lemma: BI,,DK13, and CI,DK13. 

Proof: Let the vertices of DK13 be labelled by the elements of Z13. Then 
(i 

30 



thirteen near B-factors of DKls are J { i ,  (i+3, i+2: i+5, i+12), (i+T, i+4, i+6, i+ 1 1 ),, 

(i+9, i+1, i+8, i+10)) : i = 0,1,2, ..., 12) ,  and thirteen near C-factors of DKls are 

( ( i ,  (i+3, i+2, i+6, i+8), (i+4, i+lO, i+l 1,  i+l), (i+9, i+5, i+12, i+7)) : i = 0,1,2,.. ., 12). - 
' . 

< 
4.10. Lemma: Both BI,D(K~J u C4)-and CI,D(K~J u C4). 

Proof: A near B-factorization of D&J u C4) is shown in F i b e  12 and a 

near C-factorization is given in ~ i ~ u r e  13. - 

Figure 12 

Figure 13 

, 4.11. Lemma: Let n=2k+l .  Partition the vertex set X of D K 4 n + l , ~ ~  that 

X=SwT where IS1 = 4(k+l) and IT1 = 4k+l. Then if A 

~ ) D K s z D K ~ ( ~ + ~ )  has a decomposition into 4k+3 B- (or C-), factors, 

2 such that the union of some two of these factors is isomorphic to (k+l)DC4, and 
I, 

~ ) D K T z D K ~ ~ + ~  has a near-resolvable decompos"ition into 4k+ 1 near 



9 

r- 
o t B- (or C-) factors, 

then k n + 1  has a ne& B-'(or C-) factorization. .. 
Proof: Suppose we %an partition the vertex set of D&+l as described above. 

b i 

(1) (2) (4k+l), M y + 2 )  (4k+3) Let Ms , Ms , ... Ms , Ms , be the B-factors of DKs. Without loss of - 
* (4k+2) (4k+3) - k+ 1 k+ 1 

generalityletMs uM,. s ( k + l ) D C 4 ~ ~ D C s i , w h e r e S ~ S i , a n d l S i l = 4 ,  
r= 1 r = l  

/ 

(1) (2) (4k+l) i=1;2 ,..., k+l. Let MT MT ,..., MT be the near B-factors of 4k+l near 
'1 - 43 

A (4 (i) 6 B-factors of DGn+1 ar given by Ms u MT for i = 1,2, ..., 4t+l. Let H be the graph 

06tained by removing these B-factors from DGn+1. Then DHz DC4uDKs,~. 
7 1 

k 
Further partition T so that T = . u T i ~ ( w } ,  where lTil = 4 for i= 1,2, ..., k. 

r=1 

Consider Kk+l,k+l with bipartition Y u 2, where Y=(yl,y2, ...,yk+lJ and 

Z=(zl,z2 ,..., zk,z,). Associate Si withyi for i = 1,2 ,..., k+l, Ti with zi for i= 1,2 ,..., k, and 
-. \ 

the vertex = with z,. Kk+l,k+l has a 1-factorization F1, Fz, ..., Fk+l such thk 
. <i 

4 . - 
yizw E Fi. This 1-factorization corresponds to an R-factorization of DH where 

\ 

R n(k)DGS4 u D(&,JUC~)~  Specifically, let Fi correspond to 

Ri = u DKsjVTk u D(Ksi,(,) u Csi). Since D K s ~ , T ~  s DK4.4 can be factored 'iinto four 
Yjz,kE Fi . 

jd 

B-factors from Corollary 3.5, u DKs,,Tk~an be factored into four B-factors. Denote 
Y j z k E  Fi 

ld 

(1) (2) (3) (4) 
C 

these L i  , Li , Li , and Li . Also D(Ksi,(,} u Csi) - D(K4,~uC4) canke factored 

(1) (2) (3) (4) into four near B-factors, Ni , Ni , Ni , and Ni , as shown in Lemma 4.10. Hence for 
\ ti) O 4 c h  Ri we obtain four near B-factors of D&,l, Li u N i  , for j = 1,2,3,4. Thus we 

have a total of (4k+l) + 4(k+l) = 4(2k+l) + 1 = 4n+l near B-factors of DK4n+l as 

required. The argument for C follows in the same way. 

I 

4.12, Theorem: CI,,DK4n+1 when n is odd, n>l. 
/ 

Proof: Let n=2k+l. We proceed by induction on k. When k=l, CImDK13 as 
e 

shown in Lemma 4.9. Let k>l and suppose CINRD&n+l for all odd n . when , 

nl2(k-l)+l = 2k-1. That is, CINRD&n+l when n is odd and 4n+l I 8k-3. We must 



, L 

" 

* show that CINRD&(2X+l)+l. This will follow if co@itions 1 y d  2 of Lernrna 4.11. are 

satisfied. 
< 

(1) DK4(k+l) has a decompositidn into C-factors such that the union of two of 

the C-factors is (k+l)DC4 as given in Lemma 3.10, provided k21. - 

2) Since 4k+l < 8k-3 when kzl; D&k+l has p near C-factorization, when k is 
- 

odd, by the induction -h)pothesis.. When k is even, DK&+~ has a near C-factorization 
* L 

from Lemma 4.5. - + 
I F 

Then froin Lemma 4.11, and therefore CIdDI<4n+l when n is, 
. , . ., 

odd and n>l. W , 

. ?  / 
When k is even, D K & ~ + ~ )  has either no known (when k = 4 

or k = 12, frpm Theorem 3.1) or the decompositions &en in Theorems 3.18, 3 . 5 ~  and ,' 

Q .% in Lernrna 3.2 1, do not necessarily satisfy conhiion 1) of Lemiha 4.1 1. Hence to, ' 

,establish the existence of neb  B-factorikati s of DG~+~ we require a different a 

argumen't. (The case when-n = 5 is stiu open.) AS 

6 

- 4.13. Lemma: BI,DK29. L .  

-+a 

Proof: By Lemma 4.11, DK29 has a near B-factorization if conditions 1) and 

2) of Lemma 4.1 bare satisfied. 

I)  DK16 has a decomposition i ko  B-factors such that the union of two of the 
I 

B-factors is (4)DC4 as given in Lemma 3.14. 

2) DK13 has a near B-factorization, as shown in Lemma 4.9. 9 

Hence BI,,DK29. 

4.14.; Lemma: Partition the vertex set X of DGn+1, n=2k+l, such that: 
k- 1 

X=SuTu (w), where IS1 = IT1 =2n; and S = .u S. where lSol = 6 and lSil = 4 for ,=o " 

i=1,2,..., - 1  If we can decompose Ks into factor~+~,R~,R2 ,..., Rk-1, such that 
\ 

RizKsi u 5, where F0 is a family of six edge disjoint 1-factors on V(Ks-KsO) and 
6 

b 

.. 33 
P 
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is a family of four edge disjoint 1-factors on V(Ks-Ksi) for i=1,2, ...A7 1, then DK4wr ' 

has a near B-factorization. 

Proof: Let n=2k+l. Partition V@K4n+l) as described above and, in addition, 
k- 1 k- 1 

let T = , uT i  where I T o l ~  6 and lTil = 4 for i = 1,2, ..., k-1. Suppose Ks=uRi and 
L= 1 7=0 

consider R@Kso u yo. For this factor of Ks we obtain twelve near B-factors of 
C 

DK4,+i as follows. From Lemma 4.9, DKsou~oV{m)aK13 can be decomposed into 

thirteen near B-factors M:), M!), ..., ,$2), Mbm) when MLm) misses vertex -. Each 

of the 1-factors in jFo gives two B-factors on v(&+~ - K s ~ ~ ~ ~ ~ { ~ ) )  as described i n ,  

Lemma 3.6, for a total of twelve B-factors of D(K4n+1 - KSouTou{mj), 

(1) ( 2 )  (i) (i) T- No , No . , N Then Mo u No for i=1,2 ,..., 12, gwes twelve near B-factors of 

DQn+,. NOW consider RizKsi u 5 ,  where i= 1,2, ..., k-1. DKs,fllu{,)~DK9 can be 

decomposed into nine near B-factors, Mi1), MY), ..., MY), M!~), where M!~)  misses - 

vertex -. Also, 5 is a family of four edge disjoint 1-factors and each of these ' 
f 

1-factors giies two B-factors on V(,K4n+l - K S , ~ T ~ ~ { ~ ) ) ,  for a total of eight B-factofs 

(8) of D(Qn+l - K s ~ ~ T , ~ ( ~ ~ ) ,  N:'), N:~) ,..., Ni . SO for each Ri, i=1,2 ,..., k-1, we obtain 
63 ti) ti) 

eight near fWactors of DQn+l, Mi u N i  , for j= 1,2, ..., 8. The remaining near B-factor 
k- 1 

of DK4nrl is v M:-). Thus we have 12 + 8(k-1) + 1 = 8k + 5 = 4(2k + 1) + 1 = 4n + 1 
1=0 

\- 
near B-factors of DK4n+1 as required. . 

4.15. Lemma: BI,DK45. 
7 

Proof: Let R@K6 u Fo and Ri2K4 u 5 for i=1,2,3,4, where 5 is as shown in 
4 

Figure 14. Observe that u R15K22. From Lemma 4.14 we conclude that DG5 has a 
1=0 

L 
near B-factorization. 

t I 



Figure 



Figure 14, continued 



Figure 14, continued 



- 
4 

Before constructing the remaining near B-factorizations, we need the following 

simple lemma. 
-d 

4.16. Lemma: The graph 2K2p, p22 can be decomposed into (2p-1)-cycles. 

Proof: Label the vertices of 2K2p, {0,1,2,.:.,2p-2) u {-I. Then the 

(2p-1)-cycles of a decomposition are C(') = @+i, @-l)+i, @+l)+i, (pb)+i, @+2)+i, 

..., (2p-3)+i, 2+i, (2p-2)+i, 1 +i, w) for i=0,1,2 ,..., 2 ~ 2 ,  (where arithmetic is modulo 
I 

2pJ 2 ,  and C(-) = (0,1,2 ,..., 2p-2). . 
... 

For the following theorem it is useful to colour the edges of the (2p-1)-cycles 

kf  2Ka either thin, dashed, or thick, as shown in Figure 15. 
. 

Figure 15 

4.17. Theorem: BI&K4n+l when n=l(mod 4), n29. 

Proof: Let n = 4t + 1. Since n29, then t22. Note that 2n = 4(2t - 1) + 6. 

Partition the vertex set X of DK4n+l such that X=SuTu{-), where IS1 = IT1 =2n. 
21- 1 

Further partition S so that S = u Si ,  where lSol = 6 and lSil = 4 for i = 1,2, ..., 2t-1, and 
1=0 

21- 1 
T so that T = ,uTi  where lTol = 6 and.lTil = 4 for i = 1,2, ..., 2t-1. We will show that 

1= 1 s 
%. 

3 8 



- 
2t- 1 

Ks=uRi, where the Rr are as described in Lemma 4.14. -i=o 

Consider 2K2t with vertex set {vo,v1,v2, ..., va-2) u {v,}, and associate v, with 

So anQ associate viwith Si+l for i= 0,1,2, ..., 2t-2. From Lemma 4.16, when t22, 21Czl 

can be -decomposed into 2t (2t-1)-cycles, C(O), 0 1 ) .  C(2), ..., W - 3 ,  0-1 where C(9 

misses vi. For each i = 0,1, ..., 2t-2, let +1 (a family of four edge disjoint 
. e: 

1-factors of Ks-Ksi+l) be as shown in Figure 16. Note that if VjVk is a thin edge in 

C('), then we use one 1-factor between Sj+1 and Sk+1, and if vjvk is dashed, we use 

three 1-factors between Sj+l and Sk+1. It is'impoqtant to observe that the union of 
I b 

1 these four 1-factors is K4,eKS,+l,Sr+l. For the thick edges, let 

KS,,Sm~K6,e Wmu,Ym where W,G Y, z K3,4, for m=0,1,2 ,..., 2p-2. The edge v,- lies 

in precisely two of the cycles In one instance the four 1-factors defined partition 

Kn4~Wj+l and in the other they partition K3 ,~Yj+l .  Finally, corresponding to (3-1 

we, define Fo as shown in Figure 17. Each edge vjvk in C(-) is dashed so we use the 
4 

three remaining 1-factors between S,+l and Sk+l. Let RizKsi u 5 for i=0,1,2, ..., 2t-1. 
21- 1 

Clearly, Ksg.URi. Hence from Lemma 4.14, we have BiNRD&,+l when n=l(mod 4), 
1=0 



Figure 16 



- Figure ,17 

4.18. Theorem: BI,DK4,+l when n=3(mod 4). 

Proof: Let n = 4t + 3. We-proceed by induction on t. When t= 0, BIm9)Kl3 

from Lemma 4.9; when t=l, BI,DK29 from Lemma 4.13; and when t= 2, BImDb5 

from Lemma 4.15. Let t > f2 and suppose BI,D&,+l when n I 4(~--1) + 3 = 4t - 1 

and n=3(mod 4). We must.show that DK4(4t+3)+l has a near B-factorization. Note 

that from Le ma 3.14, DK4[(2t+1 l~DK4(2t+2) has a B-factorization such that the T 
union of two of the B-factors is (2t+2)DC4. Clearly 2t+1<4t-1 when n 2 .  If n 2  and 

4 1 



2t+173(mod 4), DKq(2t+l)+l h s  a nez  8-factorization, either by the induction 

hypothesis or the induction base. If 2t+l=l(mod 4) and n2, then BImDK4(2r+l 

Theorem 4.17. Hence conditions 1) and 2) of Lemma 4.17 are satisfied. Therefore 

DK4(4r+3)+1 has a near B-factorization and we may conclude that BImDK4,+1 when 

t I 
\ 

We have now proven Theorem 1.10 which we restate here. 

1.10.   he or em: agdA and D divide near resolvably for all n2l. 
d 

b) B and C divide DQn+1 near resolvably for all n>l (with the 

possible exception that B may notdivide DK21 near resolvably). 

Proof: a) See Theorems 4.5 and 4.7. 

b) See Theorems 4.5, 4.8, 4.12, 4.17, and4.18. 
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