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"ABSTRACT

W

In this. thes1s we study resolvable and near-resolvable decompositions of the

. .

o complete symmemc digraph on v vemces DKV, into each of the twor orxented 3-cycles,

- CT 3 and T'I‘3, and mto each of the four onented 4-cycles, A, B, Cand D, (where A, B,

and C are the oriented 4 cycles w1th longest path leggths one, two and three

. vrefpectlvely and D 1s the directed 4-cycle). In Chapter One we present a brief

history of the problergl -together with some.preliminary results. ThlS is followed, in

Chapter Two, by a dlscussmn of known results for onented 3-cycle decomposmons

-

, In Chapters Three and Four we study necessary and sufficient conditions for the

existeréce‘ of fe'solvable and;nea,r-re&solvable decompositions of DK@T into each yoi A, B,
C and D. We show that DK~ admits resglyb"le decompositions into B if and only if
véO(mod 4),v+4 (With possible exceptions v =20 and v = 52); }nto C if and only if
v=0(mod 4); and into D if anti only if V‘=‘0(rnod 4), v #4 DK, cannot be resolvably
decgmposed into A. Nea}-resolvable decompositions of DK, into*A and into D exist if

and only if v=1(mod 4), and into'B and into C if and only if v=1(mod 4), v # 5 (with the

possible exception of decompositions of DK3; into near B-factors). %

4
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« - Chapter 1 - Introduction j

»
- ~

- Let G\ be a finite mtiltigraph with ngo loops. Let ‘H = LHI, Hz .., Hp} be a
« collection of connected graphs on tfle vertex set of G whose edge-disjoint union is
isoi‘norphic to G. Then we say that A is a decomposition of the graph G. In‘\
particular, if‘Hi is acycle for i = 1,2,...,gn, then % is a cycle decomposition of G. If
H; = H for all { then we say that H divides. G, dénoted HIG. The question of whc;n a
given graph G has a ceﬁain type of eycle de?:omposition has been of considerable
interest over the past !several years. For a general survey we refer the reader to [4]
E *and [14]. II‘I particular, there has‘l;&n much ;\'ork done when G is the complete graph
on v vertices with edge multipligityf l,“lKv, and all of the cycles in the decomposition
have the same length. The problem formally stated is to determine the values of v for
which AK, has a cycle dccoml;osition into cycles of length k. Clearly, it is necessary
that v 2 k, that k divide the number of edggsnin AK,, and that the deéree, A(v-1), of

each vertex be even. In this thesis we fOnce‘ntrate on the cases where k£ = 3 and

k = 4. . e

' A Steiner Triple System on v points, (an STS(v)) is a collection (;f 3-subsets
of a v-set such thét each pair of elements in the v-set occurs exactly once in some
} 3-subset. 'If we let the vertices ofA « be the elements of the v-set, each 3-subset
gives a 3-cycle in K, and each.edge‘in K, occurs in exactly one 3-cycle. Her_lcé K,
- can be decomposed’into cycles of length 3 exactly when an STS(v) exists;. that is,
when v=1 or 3(mod 6) [30]. Mich work has been done on triple systems. F&"”ﬁ
bibliographic sketch and for«cc'i'r)structions of both STS(v) and of triple systems with

various 7&, we refer the reader to [30].

A
In 1965, Kotzig [24] investigated decompositions of K, into 4t-cycles.

© /1

E
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1.1. ‘Theorem: (Kotzig, [24j) If v=1(mod 8¢), then there is a deéorrfpositioh

of K, into 4r-cycles; the condition being also necessary if ¢ is a power of two.
b ) . ’ g :

In particular, if =1, we have that K, can-be decomposed into 4-cycles if and

only if v=1(mod 8). : .

]
v

" In this paper we restrict ourselves to the study of decompositions into 3- and
_4-cycles. However, many other results for different cycle lengths are known and we Y

refer the interested rez;dér to [27] and [28].

Let H = (Hy, Hy, ..., Ha} be a decomposition of a graph G ith IV(G)l = v. If
we can partition the graphs H; into classes, such that the H; (in a given class are
vertex-disjoint, and their union is a spanning subgraph of G, jhcn we say Hisa
resolvable decomposition of G and call hc.ach class a parallel \é\laséf If each of the
Hje H is a cycle of length k, then we say that # is a resolvable k-gycle
decomposition. If in additign, H; =H for all i, we may also say H divides G resolvably,

denoted HIgG. In this'case the parallel classes are called H-facto;s and we say G has

an H-factorization. Observe that for a resolvable k-cycle decomposition to exist we
. i 1
must have v = /9,(mod k), v2k and X(——v(vz )) = 0(mod k).

If we can partition the grapgs H; € # into classes such that the H; in each
class are vertex-disjoint and their union is a spaf;ning subgraph of G—{x}, the graph G
with one vertex removed, we Say thét His a ncar-rcsolvabl%‘ def:omposition 6f G and
again call the classes parallel classes. If all H; € # are k-cycles we say that # is a,
near-resolvable k-cycle decomposition of G. If in addition, H; =H we may also say
that H divides G near-resolvably, denoted HIxgG. In this case the parallel classes are

called near H-factors, and we say G has a near H-factorization. For a
, 5 .
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N !
near-resolvable k-cycile decompositionm of G we must have v=1(mod k), v2k, and
-1 ‘
M(252) = o(mod &). / -

e

— - ’ @ P
We define a 1-factor of a graph G to be a set of vertex-¥isjoint edges which

span G. A near 1-factor of a graph G is a set of vertex-disjoint edges- which span

G—{x}, the graph G with a vertex removed.

-

"
& -

~ The question of when Kt can be resolvably decomposed into cycles dateé back
to the famed Oberwolfach problem, first formulated by Ringel and first mentioned in
print in [16]. Thegi:ciﬁc case of finding resolvable-decompositions of K, into -

3-cycles is better K wn as Kirkman's schoolgirl problem and was solved by

’U/Ii and Wﬁs_on [26]. Such decompositions are called Kirkman triple

Ray-Chau

Y,
> systems, KTS(v).

1.2. Theorem: (Ray-Chaﬁdhuri and Wilson, [26]) There is a resolvable
de l%itign of K, into 3-Cycle§ (a KTS(v)) if and only if v=3(mod 6).

)
»

A proof of this theorem can also be found in [30, pp. 254-260].

»

We observe that there can be no resolvable decomposition of K, into 4-cycles

si}\i:e this would require that v= O(mod 4) and that v be odd, which is impossible. .

-

After many years of Esearch and paper.:; by various mathematicians, the
general problem for resolv‘able k-cycle decompositions of K, wa‘; s@%d. The '
interested reader can find the culmination'of the results in three papers, one by
Alspach,%helle“nberg, Stinson and Wagner [2], the second by Alspach and

Higgkvist [1], and a later paper by Hoffman and Schellenberg [22].

- N
f«'_ ¥ J\ n{



In [18], Hanani settled the question of resolvable and near-resolvable AN

decompositions of 2K, into 3-cycles.

1.3.” Theorem: (I.{anan‘;i, [18]) Resolvable decompositions of 2K, into

3-cycles exist if and only if v =0 (mod 3), v#6, and near-resolvable decompostions of

2K, into 3-cycles exist if and only if v= 1(mod 3). = . | )

The existence of near-resolvable k-cycle decompositions of 2K, was

| completely resolved in [21] and [12]. (We note that no near-resolvable k-cycle .

deeomposition of K, , exists. Recall that the degree of each vertex must be even in

order for the graph to admit a k-cycle decomposition. Hence v must be odd. Alse,

each parallel class uses v-1 edges, hcncc_a IE(K)I = v(; !) must be divisible by v-1.

»

But this is not possible if v is odd.)

: ~
In [21], Heinrich, Lindner and Rodger show that the necessary condition that®

v=1(mod k) is sufficient for the existence of a near-resolvable k-cycle decompositior;
of 2K, for k odd, k23, dnd in [12], Burling and Heinrich show that it is also sufficient.

for k even. In particular we have near-resolvable 4-cycle decompositions,

-~ 1.4. Theorem: (Burling and Heinrich, [12]) Near-resolvable 4-cycle

decompositions of 2K, exist if and only if v= 1(mod 4).

- Analogous questions have also' been asked cbncerning decompositions of
directed graphs. If G is a graph, then let DG be the directed graph obtained by

replacing each edge abe E(G) with the two arcs (a,b) and (b,a). In particular we have

“the complete symmetric digraph, DK, Decompositions of digraphs are particularly _?.

interesting since different orientations of the arcs are possible. For example, if we

4 : T
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wish to decompose DK, into oriented 3-cycles we can consider the two possibleg;

e S N
- T

orientations given in Figure 1:

1 ~

-

LY ' . 'o . : >
] ) ‘ " .
. CT3 TT3 . -

\ Figure 1

The first we call a cyclic triple, denbted CTs, and the second we call a

transitive triple, denoted TTs. .
; -

Mendelsohn was the first to study decompositions of DK, into cyclic triples.
. /

In [25] he presents the idea of decomposing DK, into cyclic triples as a

.

generalization of Steiner triple systems agg gives necessary and sufficient conditions

W ) ‘
. T
1
[ i .

[, FRC TR
[ N o b 3
ST i TR B e, - o
T %R G
B ST % o
“ . N AL I

-~ Mol ¢ ¢

1.5. Theorem:.’(Mcnq‘;lsohn, [25]) DK, can be decomposed into cyclic .

for the-existence of such decompositions.

©

\_triples if and only if v =0 or 1(mod 3), v#6. . o SRR

7
[}

Later, Hung and Mendébgoﬁxgo [23] established the analagous reSult for transitojve

/

triples. ° Y

.

poal ©

2 ‘ . " '
1.6. Theorem: (Hung and N{Sﬂdelsohn, [23]) DK, can be decomposed inte
6 o » . . :

0

transitive triples if and onfy if v= 0 or 1(mod 3), v#1. \‘ :
t e

Thus whenever the necesgary conditions are satisfied, DK, can be decomposed into

LN f a3 !
either the cyclic or the transitive tfiple unless v=6. = - o §

o

)



The case of decomposing DK, into oriented 4-cycles is again more complex as

there are four possii)le orientations as shown in Figure 2.
' A B C D _

Figure 2

We adopt the notation of [19] in naming these four grapﬁs, denoting them A, B,
C, and D respectively, where the later the letter, the longer the longest directed path.

A is known as the alternator and D is often called the 4-circuit.

'faJ
Schonheim [29] and Bermond and Faber [6] independently worked on the

problem of decomposing DK, into D. Schonheim refers to Mepdels%hn's
generalization of triple systems [25] as his motiv;ition for studying oriented~d-cycle
décompositions and in [29] gives necessary and sufficient conditions for such ¢
decompositions. “Bermond worked on the more general problem of determining the
values of v for which DK, can be decomposed into k-circuits, directed k-cycles where
the longest directed path is of lgngth k. In [3] he conjectured that the necessrary
condition v(v-1) = O(mod k) is also sufficient except for v=6, k=3; v=4=k; and v=6=k.

In a joint paper with Faber [6] he dgveloped many results for k even. In particular

they resolve the case k=4.

1.7. Theorem: (Sc;t'mheim [29], Bermond and Faber [6]) DK, can be

* decomposed into D if and only if v>4 and v=0 or 1(mod4).

- J»,\%J



~
Necessity is clear since the number of edges must be divisible by 4. If v=4 it can be

shown by exhaustion that the decomposition does not exist. .

Harary, Wallis and Heinrich [19] were the first to discuss the other possible
orientations of the é}-cycle. )
1.8. Theorem: (Harary, Wallis and Heinrich[19])
(a) AIDK, if and only if v=1(mod 4);
(b) BIDK,, if and only if v=0 or 1 (mod 4), v#4 or 5;
(c) CIDK, if and only if v=0 or 1 (mod 4), v#5.

In what follows we focus on resolvable and near-resolvable decompostions of
DK,, restricting ourselves to the ﬂstudy of oriented 3- and 4-cycle decompostions. In
Chapter 2 we give an overview of work done on resolvable and near-resolvable
decompositions of DK, into the two oriented 3-cycles. In Chapter 3 we discuss
resolvable dec;ompositions into the four orientéd 4-cycles and establish the following

theorem. ;

1.9. The(;rem: a) A\ DK,. :
b) Blr DK, if and only if v=0(mod 4), v#4, with the possible
exceptions v=20 and v=52. ' ¢
¢) CikDK, if and only if v=0(mod 4).
d) DIRDK, if and only if v=0(mod 4), with the possible

exception of v=12.

. - * .. . .
In Chapter 4 we discuss$ near resolvable decompositions into the four oriented

4-cycles and prove that :

) Nl



/\-—

1.10. Theorem:

&~

a) A and D divide DK, near resolvhbiy if and only if
v=l(mod 4). ) |
b) d C divide DK, near resolvably if and only if

vx1(mod 21), v#5, with the possible exception that B ma};

not divide DKj3; near resolvably.

J :
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/Ch;pi:eir‘ -2 }—lésolvablé; anid 'Near-Resolvabie Oriented 3-Cy‘éle

Decompositions

<

§2.1. Definitions and Notation B

S L= - I - co-

In addition to ﬁhe definitigns and notation introduced in g\ er 1, the following

“terms and conventions are used.

s - -~

Lvetka:denote the rx_prul'-orieri'te&k-cle‘.} In p;afticuklar, C:;J 1s the rion-drié\n‘ted;
3-cycle. The cyclic tripleA CTs“4with vertex-set {a, b, ¢}, has arcs (a,b),(b,c) and (c,a);
while the transitive triple, *I'I'3‘, on the same vertex set has arcs (a,b), (b,c) and (a.c).
In each case the triple is denoted (a, b, ¢). In‘ thq discussion that follows we use the

symbol X3 to denote an oriented 3-cycle.
€

_ N . ; ! i
Given an oriented k-cycle C, the oriented cycle obtained by reversing the

direction of each arc in C is called the converse of C. If C-is isomorphic to its converse

then we say that C is self-converse. 4dn particular, we note that CT3 and TT3 are both

self-converse.

Let K4 denote the complete graph with vertex set A and Ca denote a cgele
with vertex sef{A. Let K(n,m) denote the complete multipartite graph with vertex set
consisting of n parts of m vertices each, and let C(n,/n) be the graph with vertex set
consisting of n parts of m vertices each, X1, X3,...X,, with E(C(m,n))={xy : xe X; and.

¥ X(i+1)(mod n)}- .

§2.2. Resolvable 3-cycle decompositions of DK,

Stablished necessary and sufficient

In 1979, Berr%ond, Germa and Sotteau [5] ;

conditions for pgsolvable decompositions of DK, into CT3 and into TTj3,
9

p-
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It is clcar that for such decomposition to exist we rcqulre v= O(mod 3) as, the : \\\ )
nu ber of vertices of DK, must be a multiple of 3. To see that v¢6 suppose that . o
elther CT3lkDKg or TT3IR&K6 Then on deleting the orientations of the arcs we have a )

resolvable- decomposition of QK(, into C3 which coﬁn\tradlcts Theorem 1.3. e s
We will prove the sfilnfﬁciency of the theorem via a series @gmmas.

D2.2. Lemma: (ﬂ}?ermbnd,‘ Germa, and Sotteau, [5:3) When v=3(mod6),
X3lgDK,. ’ |
Proof: From Theorem 1.3., we have C3igK, if VEB(mod 6). To each Cs,

v 7assoc1ate an oriented 3-cycle (elther CT3 or TT3) and jgts converse. Thus for each

Cs-factor of K,,we obtain two CT Is- (or TTs-) factors of DK,, g1v1ng resolvable Q\d

decompostions of DKvas required. W

S

We_require several lemmas and another Theorem in order to providé resolvable

=decompo§g%ons when v=0(mod 6).
N @2

X

2.3. Lemma: X3IDKq4. é/ ’
Proof: Let the vertices of QKV be the four elements.of GF(4): 0, 1, x, x2 with
x2=x+1,In each case the triples of ; decomposition are
((o+1, o+, o+x?): e GE(4)). W %
2.4. Lemma: If X3;DK,, then X5l:DKy,.
Proof: Partition the vertices of DKy, into v sets Aj,Az,...,A, with 1A;=4.
Denote the vertices of A; by {a%:ae GF(4)}). Let (i, (&, ..., Cy1 be the X3-fa{tors of

an X3-factorization of DK,. From (; we construct seven edge disjoint X3-factors of

10
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DK4, by as,so;cie_ltin\gf wftfr’ea‘chv(ij;k) E Cl ‘t}re‘ sévén sets of ‘trir‘ylé‘s'v each triple
2

isomorphic to X3: {£a?, af, A%), a8+, a2+, a0 +52), (ag A, A, .

(ag+, a@+%, @+, where ae GF(); and (a7, ¥, &™) )
| (axP+1 d"p 1.4 a‘p+2+1) (a¢p+x axp+1_'_x a‘p+2+x) ( xp+x axp+1+x2§alp+2+x2)} for

pe{123} S e .

% @

From ach (, 2 </ < v—l wé construct four edge disjoint X3-factors DKy, by
~associating w1th each (ij,k)e G, the four sets of triples, each trrpIc 1somorphlc to X3

J J

2 2 @
{(aa aa a%) (aa+l aon+x aa+x ) (aa+x aoz+x kH)’ (a?+x \ ay_a+1’a;;z+x)\}, oe GF(4), |

This yields 7"f4(V-2) = 4v — 1 X3-factors of DKy, and hence X3lDKy,. W

Y

2.5. Lemma: (Bermon‘ Nt

r N
X3lkDK30, and X31gDKyo,

9

2.6. Lemma: ennond, G_er“mé, d Sotteau, [5]) DKaup — DKg, where %

"JAl=12 and IBl = 6, can be decompn éd into seventeen subglééphs, twelve of whith

) @ Xs-factors of DK o g, and five of which are X3-factors of DK 4.

. 2.7. Lemma: (Brouwer, Hanani, and Schrijver, [10]) For r24, K4l K(r,12).

L) ?

~ _We are now in a position to show:

&

2.8. Lemma: (Bermond, Germa, and Sotteau, [5]) When v=6(mod 12),

X3|RQ§§V.

Proof: Letv=12u +6. Whenu <3, the claim follows from Lemma 2.5. Let

- B u
u24, and partition the set X of vertices of DK, as follows: X = uA~ U B, where

{a 1<j<12) and /BI=6. By Lemma 2. 5 @KAlug_DKlg can be decomposed into

X3 factors Cj ,1</<17. By Lemma 2.6, forz =2,3,...,u, DKy;u — DKp can be

11 .

Qe
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. - - ~ N S N . - ° .
. decomposed into précisely twelve %—factors, 2 \ U2 se D)y, of DKp;UB, and five

X3-factors, ‘Zf;3,‘£‘14,...,'£f;7, of DKy,;.- From Lemma 2.7, the graph DK(«,12) with

u ‘ "
© vertex set ,uiA,- vsllgere the’A; are the independent sets, has a DK4-decomposition.
; = < .

Let S be the set of all\ DK4in such a decomposit}on: ‘ S
Let a; € A; and let P ={DKy: DKse S and aje V(DKy)}. By Lemma 2.3, each

@

of these Dﬁg has an X3-decomposition. Then let F ;-={X3: DK4e ﬂ’;-, X3 155 an oriented
3 R ’ 3 . “ '

l\ 3-cycle in the decomposition ofDK4, and ajlé Xs3}. Clearly F ; is an X3-factor of

L4 -

DK(u-1,°12) with vertcxﬁs?;V(DK(u,IZ)) - A; o A It
We obtain an X3-factoﬂzaﬁon of DKjju4¢ with the following 12u+5 parallel

, ) . . .
classes:Y Cju}'} for j=1,2,...,12; C;-lu,u‘E{ forj=13,...,17; and Q)lufl-forj=1,2,...,12,
4 . ‘ [} 1_—_2 J .’ .’
L
2 <i<u. Hence X3kDK, when v=6(mod 12). W

2.9. Lemma: (Bermond, Germa, and Sotteau, [5]) If v=0(mod 12), then
e ’

X3IRDKV ¥ . &
Proof: i‘g,et v=4°§ where g=0(mod3) but g#0(mod 12). Since X3lkDKy,for g6, .

¢

™ _’ (Lemnias 2.2 and 2.8) by repeatedly applying Lemma 2.4, we see that X;‘R\DKV,
except when g=6. When ¢=6, let v=4%(6)=4-1(24) and since X3lgkDK24, by Lemma

2.5, again on repgatedly applfjng Lemma 24, we find 5(3|RDKV, which completes the

p%f. i .

i

12

Vs

bi\, £ -
P
¥



> < - o %, | N 5/

§2.3 Near-Resolvable Oriented 3-Cycle ‘Decbmpositions

In 1981, Bennett and Sotteau [8] addressed the question of near-resolvable ;

decompositions of DK, into the oriented 3-cycles.

2.10. Theorem: (Bennett and Sotteau [8]) DK, admits a near-r'esolvgible

decomposition into X3 if and only if v=1(mod 3).

o

- s . .
(;rlgarly v=1(mod 3) is necessary since each near X3-factor consists of oriented

triples and an isolated vertex of DK;. Recall from Lemma 2.3 that X3igDKj.

In order to establish sufficiency wc‘,t"equire a series of lemmas. Before we

continue, we remind the reader of the definition of pairwise balanced designs. e

A pairwise balanced design PBD(v,L,A) is a collection‘of i-subsets, ie 1, called
blocks, of a v-set such that each pair of elements in the v-set occurs in ex;lctly A
blocks. In particular, we observe that if K, has\a‘dccomposition into H-factors where

H is the edge-disjoint union of complete graphs, with orders in I, then there exists a

PBD(v,I,A) and conversely.

2.11. Lemma: X3hyzDKj.

Y

Proof: Let ihe vertices of DK7 be labelled by the élements of Z7 (the additive
group of rcsjdues modulo 7). The seven parallel classes of a near-resolvable -

decompositibn of DKy into X3 are (i, (i+1, i+2, i+4), (i+6, i+5, i+3)}, i€ Z1. C o

®

r

2.12. Lemm;a: X3hxkDKjo.

Proof: Let the vertices of DKjg be labelled by the elements of meﬁThe te;

parallel classes of a near-resolvable decorhposition of DK;¢ into CTj3 are: b

{0,(1,2,3);(4,7,8), (5,9,6)}, {l,(2,6,{0), (3,8,7), (4,9,5)}, (2, (1,9;7), (3,5.8), (4,0,6)},
{3:,(1,5,6),(2,0,7), (4,8,9)), {4,(1,7.,5), (2,8,6), (3,9,0)}, {5, (1,6,8), (2,7,9), (3,0,4)},

-13



1.3,4), (298), (5.7,0)}, [7 (1,8,0), 2.4.5), (369)), (8, (1,0,9), (2,5,3), (467)1 | (

®

ri{9 (1,4,2), (3,7,6), (5 0,8)}. The ten parallel classes of a near-resolvable
decompos1ton of DKjg into TT3 are: | N
{0,(1,2,3),(8,7,4), 9,6 5)}‘[1 (0,6,2), (7,8,3), (59,0}, (% (9,7,1), (3 5,8), (6:4,0)},,
(3,(5,1,6), (7,2,0), (4,9,8)},. (4,1, 75) (2,8,6), (039)} [5 (6,1,8), (2,7,9), (3,0,4)},

{6, (4,3,1), (8,9,2), (5,0,71}, {7, (O, 8 1), 4,2,5), (6 9,3)}, (8,%1,9,0), (5 3,2), (4, 6,7},
{9,(2,1,4), (3,7,6), (8,0,5)}. '

2.13. Lemma: X3heDKjo S
Proof: Let the vertices of DK19 be labelled by the elements of 219 The
nineteen parallel classes of a.near- resolvable X3-decompostion of DKjg are
i, 4L, 4T, 1D), (42, 414, i43), (i+4, i+9, i+6), (i+18, i+12, i+8),
(i+17, i+5, i+16), (i+15, i+10, i+13)}, ieZi9. W

For the remaining cases, the next lemma is the key to showing sufficiency.

Note that it is much like the method used in Lemma 2.8.

2.14. Lemma: If there exists a PBD(v,],1) and for everye I, X3l\gDK;, then

A X3lwDK,.
Proof: The PBD(v,],1) gives us a decomposition of K, into complete
subgraphs Ky, k€1, and hence a decomposltion of DKV into I_)Kk, kel. For every x of
V(DK,) consider those DK, which contain x. These subgraphs have only the vertex x

in common and between them contain all vertiees of DK,. Since X3INRDKk, in m;;f
these subgraphs we have a néar Xs-factor covering all vertices but x. Together these

give us a near X3-factorof DK, which misses vertex x. All such near X3-factors are

edge-disjoint and thus yield X3l\gxDK,. B

We, are now ready to prove Theorem 2.10.

re

14



Proof of Theorem 2.10.:
Let us consider two cases. ,
Case 1: Letv=lor4 (rx;od 12). Hanani [18] has shown that there exists a.
PBD(v,{4},1) if and only if v=1 or 4 (mod 12). Hence, K4/K, if v=1 or 4 (mod 1>2).
Then from Lemmas 2.14 and 2.3, it follovx;s that X3heDK, when v=1 br 4 (mod 12).
Case 2: Let v=7 or 10 (mod 12). Brogwer [11] showed the existence of a
o PBD(,{4,7},1) with a unique block of size 7 if and only if v=7 or 10 (mod 12), v#10 or
19. By applying Lemmas 2.3, 2.11, and 2.14, it fdllows that X3z DK, when
v=T7 or 10 (mod 12), and v#*lO or 19, Since the factorizations for v=10 and v=19 have

been shown in Lemmas 2.12 and 2.13 respectively, our.proof is complete.

Hence X3hgDK, if and only if v=1(mod3). B -

It has been shown by Colbourn and Colbourn [15] that given any
decomposition of 2K, into 3-cycles, the 3-cycles can be oriented to give a .
decomposition of DK, into transitive triples. Together with Hanani’s result,‘statec‘l in
Theorem 13 thif _provides another proof that TT3/kDK, if and only if v=0(mod 3), v=6,
and TT3hxkDK, if and only if v=1(mod 3).

. . : 3
This concludes the work which has been done on resolvable and
near-resolvable oriented 3-cycle decompositions. We now move on to discuss

resolvable and near-resolvable oriented 4-cycle decompositions.

15
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Chapter - 3 Resolvable Oriented 4-Cycle Decompositions

)

In [19],"Harar§t Wallis and Heinrich completely solvf:d th\e/firoblém of when
DK, could be decomposed into each of the four oriented 4-cycles. Their constrqction;
> did not generally result in resolvable decompositions, leaying open the ‘question of -
- resolvable decompositions of DK, into oriented 4-cycles. (We use thew symbol X4 to
stand for an;/ one of the four oriented 4-cycles.) "
4

To begin we note that if X4lgkDK,, then v = O(mod’ 4), since each parallel class

is made up of 4-cycles. From now on, we let v = 4n, where n is a positive integer.
-

In this Chapter we establish the following theorem.

L

3.1. Theorem:
; a) ARDKy,.
b) BIrkDK4, for‘ all n, n#1 excep; possibly when n=5 and n=13.
¢) ClxDK4y,, for all n."

d) DigDKy,, for all even n.

Then to complete ougdiscussion of resolvable decompositions of DKy, into the
P : 0 P

oriented 4-cycles, we discuss the following result of Bennett and Zhu.
T

kN
AY

L possibly when n=3. / : S

3.2. Theorem: (Bepnett and Zhu [9]) DIRDK4y, when » is odd, n#l,"except

-

Combining Theorems 3.1 and 3.2 gives Theorem 1.9 as stated in Chapter 1.

S 16 .
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impossible for A to divide DK4,, and in particular A cannot divide DKy, resolvably. .
[ |

3.4. Lemma: If C4lG then X4IDG.
Proof: Each oriented 4'-cycle is self-converse. So each oriented 4-cycle

divides DC4. Hence the result follows. l

3.5. Corollary: XylgDKy 4.
Proof: This follows immediately from Lemma 3.4, as K44 has a

Cs-factorization as shown if Figure 3. Il

Figure 3

In this and Chapter4, the following notaFion is useful. Let q and H be graphs.
Thén G+*H is the graph with vertex set V(G)xV(H) and edge set
EG+H)=({(x1, x2)(¥1.y2)): x1y1€ E(G) and xzye E(H) or xp=y and x1y;€ E©G)};
and GeH is the graph with vertex set V(G)xV(H) and edge\set"ﬂ; ,
E(GeH)={{(x1, x2)(y1,y2)}: x1y1€ E(G) and xzy2€ E(H), or x1=y) and x2y,¢€ E(H),

9

or x2=y7 and x;y1€ E(G)}. We use (n)G to denote n vertex disjoint éopies of the

F ]

graph G. . o ) o

3.6 Lemma: Let G = H*K; have 2m vertices, where m is even, with vertex
{ ’ .
set X =85 U T where S={5y,52,...,5m},and T={11,12,...,t,»} and the two copies of H are
on the vertex sets § and T respectively. Then each 1-factor F of Hinduces a

C,-factor of G.- o .

17
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. (

. T a . .

. Proof: LetF be a 1-factor of H. Without IOs§ of generality let

. - . - ~
F={s5152, §3545...,Sm-15Sm}. Then the resulting Cy-factor is {(s2;.1,52i,82i-1,82i):
R L~ -

. _.._m N j
1<i<s}). W .

. . o ’ N
v ' . ' N

From Lemma' 3.6 we obtain the following cé;éuary.

. v - wg '
'3.7. Corollary: If H has a 1-faetorizition, then X4lrD(H*K>).

. 1
We now determine exactly when DK4 can be resolvably decomposed into the

oriented 4-cycles B, C, and D. ' ‘ ®

' 3.8. Lemma: CikD(K4,— F).
Proof: Consider Ky, — F on vertex set X = SUT where S={s1,53,...,52,} and
T={t1,t2,..:t2,,}, so'that F = {si.t‘-: 1<i<2n}. Observe that K4,, — F = Ky,%K,. Then

from Corollary 3.7, since K, has a 1-factorization, it follows that CRD(K4,—F). B

Note that if H = {H;,H»,...,H,} is a C-factor in the above C-factorization of

4

D(K4n — F), then so too is H' = {Hj{,H3,...,H,;}, where H; is the converse of H;.

3.9. Lemma : ClzpDK4 _

Proof: The decomposition is as shown in Figure 4.

X M

) ) | Figure 4

3.10. Theor%I: ClgrDKy;,

Proof: Let -be 'the set of C-factors in the C-factorization of D(Ky4, —~ F) as

described in Lemma 3.8. Choose any C-factor H € # together with its converse H'.
18



Fos . .

: g & ,
.Then HUH'UD(F) = (m)DKy. From Lemma 3.9, ClrDK, and hencé%?‘é‘ have a

[N

C-factorization of HuH'uD(F)’which when combined With H — {H,H'} yields a
C-factorization of DK4y. Therefore CkDKyy. il . v

. - —

We now-turn our attention to the orignted 4-éyclcs B and D. Irirview of Lemma

LN

3.11, constructions in these cases will be somewhat more difficult.

€

3.11. Lemma: Néithir\;hi oriented cycle B nor the oriented cyclewD!djvfde

DK4 resolvably. .
y n} . ) o .\‘ .

Proof: It can be shown by exhaustion that DK4 cannot be decompbsed into B

or D. Hence DK4 cannot be resolvably decomposed into B or D. o |

r

3.12. Lemma: BlRDKjg and DlﬁDK“g.
Proof: Observe that the graphs X, Y, and Z as shown in Figure 5 partition the

edvges o"f .Klg.

Figure 5

-

Each of X and Y determine two B- (or D-) factqrs of DKg in the obvious wa)}.‘
The graph Z is the cube Q3. Since B and D both divide DQj resolvably, as shown in
" Figure 6, it follows that BlzDKg and DizDKg. Hll

19
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B-factorization D-factorization

=%

Figure 6 -

3.13. Lemma: Both BIlzDK(n,8) and DIrRDK(n,8).

n P
Proof: Let the vertex set of DK(n,8) be S=lgl S; where IS;l = 8 and where.

each S; is an independent set. Further, partition eéch S; as S;i= T;UT;;n where

IT] = IT;1nl =4, for i= 1,2,...,n. Consider K;,— F with vertex set V={ 1,2,...,2n} and
F={i(i+n): i= 1,2,...,n}, and let vertex i correspond to T; for i=1,2,...,2n. Observe
that for any pair i and j, the vertex set T;UT; induces a subgraph, DK44, unless
i=j(mod n), in which case the induced subgraph is Kg. Itis well knov;n that Ky, —~ F
has a 1-factorization. Each 1-factor of K3, F corresponds to a DKy 4-factor of
DK(n,8). Since BlzDK4 4 and DIgDKy 4, from Lemma 3.5, each factor gives four B-(ot
D-) factors of DK(n,8). Thg:rcfore BigkDK(#n,8) and DIRDK(n,8). M

3.14 Theorem: When n is even, BIgkDK4, and DIgDKy, .
ﬂ *
Proof: Let n=2& Then DK4,=DKg;=(k)DKg L DK(%,8). Since both DKg and
- ‘ g
DK (k;8) have a B-factorization and a D-factorization (from Lemmas 3.12 and 3.13) it

follows that BgkDKy, and DigDK4,,. W
We next consider the casg when n is odd, considering Band D separately.

3.@. Lemma: BiRDKj; N

“

Proof: Let the vertex set of DK;; be {0,1,2,...,10,0}. Then the eleven/
20

s




e

B-factors of a tesalvable Elccomposition of DKy are: {(i+5, i+8, i+1, i+7), (i+10, i+6, [

i+4, i+49), (i+2, oo, i, i+3)) for i = 0,1,2,...,10 and addition is modulo 11. M
~ ' /

For the next theorem we require the following lemma.

3.16. Lemma: Ifr=2, then Ky — Fhas a Cz,—decorpposition; .
v Proof: Let the. vertex set of Koa be {0,1,2,...,26-1,001,00) and let”
= (i(t+i): i=0,1,2,...1-1} W {eo1007}. When ¢ is odd the Cy,-decomposition is given
by: (a-1+i, 14, 262485 24 (5 ) pioon, 20- (5 )i, i, 20-(5) 4,
(%) it Lo = 0,1,2,08:1) U {(0,1,2,...26-1)). When ¢ is even, the
Cy;-decomposition is given by:
(=14, 140, 26240, 240,..., 20-(5)+ioor, (3) i, 2-((5) + D)+,
(2)+1+1 21 ((2)+2)+1 A14ieg): i= 0,1,2,00-1) U {(0,1,2,..26-1)). Observe .

that each 2¢-cycle misses the endpoints of a distinct edge of the 1-factor. W

3.17. Corollary: I r > 2, then K2,;3 has a (Cy w Cj3)-factorization.

3.18. Theorem: When n=3(mod 4), BIiRkDK4,.

Proof: Let n = 4r+ 3. Observe that Ky,= K;,0K,.

Suppose we have a decomposition of Ky, into edge-disjoint subgraphs S,
Py,Py, Fy, Fo, ..., Fg}, such that: S is a factor of K3, consistingﬁ of one copy of K¢
(fienotcd Sp) and 2¢ copieé of K4 (denoted S;, i =>1,2,...,2t); each of Py and P; is a set of
4t independent edges covering V(K3,) — V(So); and Fy, Fy, ..., Fg,, are 1-factors of |
K2,. Then K4,=(SeK3) U (é)lPi *K7) u(;ilei *K7). Each of F; *K», for i= 1,2,..., 8¢, is
a Cy-factor of K4,. So for each i=1,2,..., 8¢, D(F; *K5) can be decomposed into two
B-factors which are also/ B-factors of DKy4,. Denote thesé byfﬁ(l) and 5(2)

ThlS leaves (S{Kz) U, (Pl*Kz) U (P,*K3). Now
(SeK>y)= (u S) eK, = u (S *K,). Note that D(S; ¢ K;)=DK, which has a

decomposition into eleven B-factors by Lemma 3'15. Denote these by S(0 ),

21



SE)Z),...,S(O”). For i=1,2,...,2t; D(S; ¢ K2)=DKg which has a decomposition ito seven

2
B-factors, S\, S, ... S, Then for each j= 12,...7, Tj= U S{" is a B-factor of DKy,
1=
. 2t
Now P;*K, and P,*K are each a set of 4t vertex-disjoint 4-cycles on V(_UIS,-OKz).
1=
2t
Hence for j= 1,2, D(Pj*K3) can be decomposed into two B-factors on V(iL_JISiOKg),

which we denote PEI) and Piz). Then we obtain fo&éadditional B-factors of DKy,
These are S(Os)u P(ll), S(Og)‘u P(lz), S(010) U P(zl), and S(Ou) ] P(zz). Thus we have
2(81) +7 + 4 =161 + 11 B-factors as required.

Therefore, to complete the proof of the theorem, all we need is to provide such
a decomposition of Kjy,.

Without loss of generality we can specify the factor S as described. We must
then choose P; and Py, two sets of 4r independent edges covering V(Kz,) — V(Sy), so
that G=K,,—(SUP;UP,) has a 1-factortzation. Arbitrarily pair the S;, i=1,2,...,21;
say as {(S;, Si+p): i=1,2,...,2t}. Let L(il) and LEZ) be two edge-disjoint 1-factors of the
Ku 4, Ks,s,,p fOT i=12,00 20, Let Pr=ULand let P,=UL®. We claim that

GEK’z,,— (SUP;UP,) has a 1-factorization. Consider Ky, With vertex set
{Vo,V1,V2,...,v2:} Where v; corresponds to S; for i=0,1,2,...,2¢. If 12 3, from Corollary
3.17, K2,+1 can be dccomposed into ¢ factors where each factor consists of a-
(2t - 2)-cycle and a 3-cycle. In accord with that construction, we can denote these

factors by (,U) U C(Vo,vi, Vi) for i=1;2,...,t, where (,(i) is a (2t — 2)-cycle on

+t

V(Ky41 — {vo, Vi, vist}). For each factor (,(‘) U C(Vo-"i' Vi) 1= 1,2,...,t, we obtain

| eight 1-factors of G as follows. In G, the cycle di) corresponds to a C(2r -2, 4) which

has a 1-factorization made up of eight 1-factors. In G, C[VO‘V‘., Viet) corresponds to the

graph H shown in Figure 7. Clearly H=H;\UH,, where H;=H; and H; is as shown in

Figure 8, has a 1-factorization made up of eight 1-factors. Therefore the subgraph of

G corresponding to U C{vg.v;. v;,,) has a 1-factorization and thus so does G.

22



Two edge disjoint 1-factors
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Figure 7

This completes the proof for r > 3. In Lemma 3.15 we showed that BIlRDKj3.

=H so

as described above. Whent=1,G

, P1, P2, and the F;

When t =1 or 2, choose S

we are done, and when 7 = 2 we factor G as shown in Figure 9. Therefore BIlRDK4,

3(mod 4). N

when n

23



Figure 9
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Figure 9, continued ' Y

When n=1(mod 4), we could follow the same proof as for Theorem 3.17, except
that no simple construction for the 1-factorization of G has been found. Thus we

appeal to the foilowing result of Chetwynd and Hilton [13] to prove that a B

1-factorization of G does indeed exist.

3.19. Theorem: (Chetwynd and Hilton [13]) A k;regular graph G with an

. 1 A
even number of vertices has a 1-factorization whenever k 2 5 (\/—7_— DIV(G)I.

78]



,) 3.20. Theorem: BixDKy, when n=1(mod 4), n 2 17. .
Proof: In the proof of Theorem 3.16 w&ﬁowed that BRDKa4y if the graph G,
as described, has a 1-factorization. Since IV(G)l=2n and G Mhegular of degree 2n—6.

Theorem 3.17 guarantees that G has a 1-factorization whenever

2n— 625 (N7 - 1)2n). This holds provided n > 17. M.

«<

In addition, for the ;pécial case when n=9 we have the foilqwing result. .
3.21. Lemma: BlDKss. % | |
Proof: Let DK36=D(K13°Kj3). P\ar&a@mhwvenei( set of K;g into sets Sq, So,

and S3, where ISl = 6. Then Klgzi;]§i J Ks1.52,83 and :

DK36 = D(iiUlei *Ks U Ks;,55,53 *K2)‘.‘§J1D(K\SC?‘;) U D(Ks, 5,53 *K2). Now >

‘_Lle D(Ks ; °K2)=(39DK 2, ;md since Df(lz can be decomposed into eleven B-factors by

3
Lemma 3.15, ul D(Ks; *K5) can be decomposed into eleven B-factors of DK36. By
‘. . l= ! r .

Corollary 3.7, if Ks;,s,.53 =Kg,6,6 has a 1-factorization, then D(Ks s, 55 *K2) has a
B-factorization. We claim that such a 1-factorization exists and although it has been

shown elsewhere, for completeness we include a proof here.
. 2 . . -
Let $;zUS” for i=1,2,3, where IS = 3. Consider K¢~F with vertex set
j:

1 @ @ 2 1O (@ (1) (2)

o o 6)
{v1 A A A AR } where F = {v‘. v, ti= 1,2,3}. Let S;” correspond to

v,(,] for i= 1,2,3, j=1,2. Kg¢—F has a 1-factorization. This 1-factorization corresponds to

“
an R-factorization of K¢ 6 where R=(3)K3 3. Clearly)’K3,3 has a 1-factorization into
three 1-factors and hence (3)K3 3 has a 1-factorization into three 1-factors of K¢ 6.
«  Therefore D(Ks, s, 53 *K2) has a B-factorization and it follows that BlrDK 3.
- | \
This theorem still leaves unresolved the question of the existences of resalvable

B-decompositions of DKy and DK52, as well as the existence of resolvable
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] D-decomposit{ons of DKy, when n is odd. The latter question is answered by - /
“Bennett and Zhu [9]. In their study of resolvable Mendelsohn dééigns, they have

established the following theorem.

3.22. Theorem: (Bennett and Zhu [9]) A (4n,4,1)—resoivable Mendelsohn
design exists for all n except possibly when n=3. l

A (4n,4,1)-resolvable Mendelsohn design is equivalent to a resolvable

R

D-decomposition of DK4,. Hence resolvable decompositions of DKy, exist when n is
odd. h o : -
_ The proof of Theorem 3.1 follows from the above theorems(/ind lemmas\l‘ .\
-
Proof of Theorem 3.17
" (a) See Theorem 3.3. ’ - =
(b) See Theorems 3.14,3.18,3.20 and Lemma 321.  ~ -

(c) See Theorem 3.10.
(d) See Theorems 3.14 and 3.22. W -

"éy\» - T Ay
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represent any one of the four oriented 4-cycles.-

. ¥
| | o ™
Chaptep;/f - Nea&;-Reso;l'v“gblewOr’iente‘d 4-cycle Decompositions

y . )
We now turn to near-resolvable oriented 4-cycle decompositions of DK,.

Since each paralﬁl class of such a Hecomposition omits exactly one vertex of DK,, it is
clear that v=1(mod 4) is a nécessary condition for the decompdsition to ‘exist. In what
follows we let v=4n}1 and determin;; the values of n for which DK4,.1 has a near-
resolvable deéomposition into each of the, four oriented 4-cycles. Recall that the -
onented 4-cycle A with vertex set {x,y,z,w} has arcs (x,y), (z,y) (z,w), and (x,w);
iwhxle B has arcs (r,y), (y,2), (x,w), and (w,z); C has arcs (x,y) (»,2), (z,w),.and

(x,w); and D has arcs x,y), (v,2), (z,w), and (w,x). Also recall that X4 is used to

. - ;

4.1. Lemma: X4l \xDKop.
Proof: Let the vel;\tic"es of DKo be labelled by the elements of Z§” The nine

near X,-factors of DKy are {i, (i+1, i+5, i+2, i+3), (i+8, i+4, i+7, i+6)). W

-y
L]

N '4.2. Lemma: X4I;JRDK;7_ h
Proof; Let the vertices of DK;7 be labelled by the elements of Z,7. The
seventeen near X4-factors of DKq are {i, (i+1, i+9, i+14, i+7), (i+2, i+6, i+4, i+5),

(i+16, i+8, i+3, i+10), (i+15, i+11, i+13, i+12)}. A

4.3. Lemma;: C(2k,4) has a C4-factorization.
Proof: Since Cy; has a 1-factorization into two 1-factors, F; and F, then
C(2k,4) has a (k)K4 4-factorization. Then since K4 4 can be decomposed into two

C4—factofs, C(2k,4) has a Cy4-factorization. W

. ~
4.4. Corollary: X4lxDC(2k,4).
4.5. Theorem: X4hxDKynyy when n is even. .  a

Proof: Let n=2k. When k<2, suitable factorizations are given in Lemmas 4.1
A 5\
28 N



' - T 2% :
an<;l'4.2. So assume k23. Partition the vertex set X of DKypi1 as X = LI,ZIS,- U {eo},

where 1S, = 4, 1<i<2k.. Consider K2k+1 with vertex set {vo,v1,v2,.. »V2k} and
~ associate vg w1th vertexf oo of DK 4,41, and v; with S;, fori=1,2,...,2k. Frem Corollary
8317, Kore1 can \be decomposed into k factors, L, L»,..., L, so that each factor L,-
cansists of a (2k-2)-cycle, C®, where V(€M) = V(K1) = {Vovisvisk)), and a
3-cycle C{Vo,vi,vi i) These factors induce an R-factorization of DK4,+1 where
R=DC(2k-2, 4) U DKy. From Lemma 4.1, DKS,.U‘Si+kU{’,,,sDK9 can be decomposed
into nine near X4-factors, H( ) H(-z) H(S) H( ) , where H ) misses vertex oo,
According to Corollary 4.4, DC(2k-2, 4) has a decomposmon into elght Xy- factors
\Hfg), Hflo), ,HEIG), and so for each i=1,2,...,k, we obtain eight near Xy-factors of

DK 4n41 by taking H(’) H(’+8) ,j+1,2,....8. The final near X4 factor g»s uH( ). Heénce
X 4lxaDKsniy when n is even. B E \Q v )

We now consider the case when n is odd. : W

4.6. Lemma: AINEDKQ, and DIzDKs.
2 :
Proof: A decomposition of DK into near A-factors is shown in Figure 10,

and a decomposition into near D-factors 1s shown in Flgure il.

G ,§>w |

Figure 10

My <y %w

Figure 11 '. - .
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4.7. Theorem: When n is odd, AINRDK4,,+1 and DIyzDK4n41.
. \ Proof: The case n—% is shown in Lemma 4.6. Let n be ]9dd n>3. Partition the
vertex set X~0f DK4,,+1 such that X = uS ;U{eo} where IS;l =4 fori = ‘1 2,0,

5

Consider the graph K, with vertex set {v,v2,...,v»} and let S; correspond to v; for

.n. Since n is odd, K, has a near 1-factorization ¥ = {Fy, Fs,..., F,} where F;

i=1,2x.
- misses ve v;. Let each near 1-factor of K,ﬂ correspond to an R-factor of DK4ns1
where R=("§")DK44 U DKs. In particular, for cach Fj, i=1,2,...,n, let

R;= vke DKSJ s Y DKsu(«}. By Lemma 4.1, DKs, (=} can be decomposed into five
Vj ‘
near A-factors A(l) A(2) A(3) A(4) dA where A rnisses vertex eo. Each

DKsj S k can be decomposed into foursA-factors from Corollary 3.5. Hence for each
i=1,2,.. n we obtain four A-factors of DKy, by taking the four A factors of

U __DKs;s, together with the four A-factors Af-l) , Agz) @ , awd A( ) This yields 4n

VijE F“

A-factors of DKy4,+1. The fmal A-factor of DKypy1 is ul Afo?). A similar argument
y = ‘
shows that DIygkDK4,41. .1

Thus all near-resolvable X-factorizations of DK4p41, Xe {A,D} are possible.
We note that the existence of near-resolvable decompositions of DK4p+1 into
D-factors for all n (except when n=8, 14, 23, or 33) can be deduced as a corollary of

Bennett's work on Mendelsohn designs in [7].
We now turn to the remaining cases when X4e {B,C} and n is odd.

4.8. Lamma: There is no near B- or near C-factorization of DKs.

\

Proof: It can bé shown by exhaustion that B/DKs and CJDKs5. So clearly there

can be no near-resolvable decomposition of DK into\ B & inoC.
4

4.9. Lemma: BlyDKj3, and ClygDKj3.

s fa

Proof: Let the vertices of DK;3 be labelled by the elements of Z13. Then
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thirteen near B-factors of DKj3 are {{i, (i+3, i+2, i+5, i+12), (i+7, i+4, i+6, i+11),
(i+9, i+1, i+8, i+10)}: i = 0,1,2,...,12}, and thirteen near C-factors of DK;3 are |
({i, (i+3, i+2, i+6, i+8), (i+4, i+10, i+11, i+1), (i49, i+5, i+12, i+7)}: i = 0,1,2,...,12).
]

4.10. Lemma: Both BigD(K4,1 v C4)-and ChgD(Ky,; U Ca).
Proof: A near B-factorization of D(K4 1 U Cy) is shown in Figure 12 and a

near C-factorization is given in Figure 13.

N

Figure 12
I>< { hN E.?
° ' .
Figure 13

, 4.11. Lemma: Let n=2k+1. Partition the vertex set X of. DK4,+1 50 that
X=SUT where IS| = 4(k+1) and IT| = 4k+1. Then if K
l)DKSEDK4(k+1) has a decomposition into 4k+3 B- (or C-) fabtors,
such that the union of some two of these factors is isomorphic to (k+1)DC4, and

C
2)DKT1=DKyi+1 has a near-resolvable décomposition into 4k+1 near
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B- (or C-) factors,
then DKypq has a near B-x(or C-) factorization.

~ Proof: Suppose we can partition the vertex set of DK4,,+1 as described above.

Let Mg) , M(z) . M(4k+1) M(4k+2) M§4k+3) be the B-factors of DKS Wlthout loss of

generality let M{™“"? M‘4"+3’-(k+1)Dc4—u DCs,, where S—u S;, and IS} = 4,

-

=12,..k+1. Let M, MP_ M“"“'" be the near B-factors of DKr."Then 4k+1 near

B-factors of DKyn+1 are}given by M ‘ ® for i=12,.,4+1. Let DH be the graph
obtamed by removing these B-factors from DK4,,+1 Then DH= DC4UDKs 7.
Further partition T so that T = uTu{oo} where IT)| =4 for i= 1,2,...k.

Consider K1 k41 with bipartition Y U Z, where Y={y1,¥2,....Yx+1} and
Z={zl,22,...,—zk,zm}. Associate S; with y; for f= 1,2,....k+1, T; with z; for i= 1,2,...,k, and ‘

the vertex oo with zeo. Kpy 441 has a 1-factorization Fy, Fy,..., Fyyq such that
¢ .

e .
YiZe € F;. This 1-factorization corresponds to an R-factorization of DH where

R =(k)DK44 U D(K4,1uC4)x Specifically, let F; correspond to

R;= 5 ) DKsj Ty Y D(Ks (=} Y Cs,). Since DKs T = DKy .4 can be factored mto four
2K

J

B-factors from Corollary 3.5, u DKs Ty can be factored into four B-factors. Denote

jtl

these L;, L, L, and L. Also D(Ks; () U Cs;) = D(Kg 1UCa) canyh\o factored

into four near B-factors, Nf-l) , NE.2) , N§3), and NE ), as shown in Lemma 4.10. Hence for

. .
,o\éach R; we obtain four near B-factors of DKy,41, L(-’) ) N(-D, forj=1,2,3,4. Thus we

-~
~

t

have a total of (4k+1) + 4(k+1) = 4(2k+1) + 1 = 4n+1 near B- factors of DK4,,+1 as
required. The argument for C follows in the same way.

4.12, Theorem: ClzDK4,+1 when nis odd, n>1.

Proof: Let n=2k+1. We proceed by induction on k. ‘When k=1, Cl\gkDK 3 as
[

shown in Lemma 4.9. Let k>1 and suppose ClygDK4n41 for all odd n when
n< 2(k-1)+1 = 2k-1. That is, ClygDK4pn+1 when nis odd and 4n+1 < 8k—3. We must

32



L.
4

_show that CINRI?K4(2k+1)+1. This will follow if conglitions 1 a;‘;d 2 of Lemma 4.11. are
satisfied. o
1) DK4(k+1) has a decomposition into C-faétogs Such that the union of two of
_ the C-factors is (k+1)DCy as éive;l in Lemma 3.10, prO\{ided k1.
2) Since 4k+1 < 8k—3 when k>1, DKags1 has a near C-factorization, when k is
odd, by the induction 'h'}'potileéis., Whenvk is even, DKuj,; has a near C-factorization

P

frofn Lemma 4.5. -

&

Then from Lemma 4.11, Clmﬁm(yﬁl)ﬂ and therefore CIN‘RDK;«,,,H when n is

odd and n>1. W
- When £ is even, DKg(Hf; has either no known B-f;%orization (when k=4 \
or k = 12, from Theorem 3.1) or the deéompositions gi\ven in Theorems 3.18, 3..2Q and )

in Lemma 3.21, do not gecessarily saﬁsfy condition 1) of Lemma 4.11. Hence to, ‘
establish the existence of near B-factorizatigns of DK, we require a different - '

argument. (The case whern =5 is still open.)

- 4:33. Lemma: Bl DKy,
Proof: By Lemrna}4. 11, DK2'9 has a near B-factorization if conditions 1) and
2) of Lemma 4.11:are satisfied.

1) DK16‘has a decomposition into B-factors such that the union of two of the
B-factors is (4)DC4 as given in Lemma 3.14. '

2) DKj3 has a near B-factoﬁzation, as shown in Lemma 4.9.

Hence BlygkDKy9. H

4.14. : Lemma: Partitiod the vertex set X of DK4pns1, n=2k+1, such that:
. k-1
X=SUTuU/{e}, where IS| = ITl =2n; and S =iE)()S-i’ where 1Sgl = 6 and IS} = 4 for

i=1,2,...,k-1. If we can decompose Kg into factors-Ro,R1,R2,...,R.1, such that |
A \

Ri=Ks; U Fi, where Fo is a family of six edge disjoint 1-factors on V(Ks-Ks) an'd F
. . )
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is a family of four edge disjoint 1-factors on V(KS—KS‘.) for i=1,2,....k-1, then DK4n+1

has a near B-factorization.
Proof: Let n=2k+1. Partition V(DKy,,1)as described above and, in addition,

k-1 k-1 :
let T =i:{T,- where ITol = 6 and IT{d = 4 for i = 1,2,....k~1. Suppose Kssi_k:)OR,- and

consider Ro=Ks, U Fo. For this factor of Ks we obtain twelve near B-factors of
: &

DKyn.i as follows. From Lemma 4.9, DKsyutgu{~)=DK13 can be decomposed into

(12)

thirteen near B-factors M(l), Mf)z),..., M, ", Mg”) where Mg”) misses vertex oo. Each

of the 1-factors in J gives two B-factors on V(Kgn+1 — KsguTguie}) as described in

Lemma 3.6, for a total of twelve B-faétors of D(K4n+1 — KsguTgu{=})s

Ng), Nf)z),..., Ngz),. Then Mg) U Ng) for i=1,2,...,12,§gi-ves twelve near B-factors of
DKyns1. Now consider R=Ks; U F, where i= 1,2,..., k-1. DKs;ur;u{==DKs can be
decomposed into nine near B-factors, Mf:l) , Mf-z),..., Mf.s) , Mf-m), where Mf-oo) misses -
vertexloo. Also, ¥ is a f’amily of four edge disjoint 1-factors anq each of these ’
1-factors gives two B-factors on V(Kg,41 — KsuT;u{=}), for a total of eight B-factofi
of D(K4n41 — Ksiqu{.,.,}), Nf.l), Nf-z),..., Nf.g). So for each R;, i=1,2,...,k~1, we obtain
eight ngear B-factors of DK4pn41, M?) UN?), for j= 1,2,...,8. The remaining near B-factor

k-1 (oo -
Of DKane1 is Y M. Thus we have 12+ 8(k=1) + 1 =8k + 5= 22k + 1)+ 1 =dn + 1
-

near B-factors of DKy, as required. W

~

4.15. Lemma: Bl gDKys.

, .
Proof: Let Ro=K¢ U Fp and Ri=K4 U ¥F; for i=1,2,3,4, where ¥; is as shown in

4
Figure 14. Observe that .UOR.EKzz- From Lemma 4.14 we conclude that DKys has a
* 1= ' ’

near B-factorization. W

/ |
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Before constructing the remaining near B-factorizations, we need the following
simple lemma.

4.16. Lemma: The graph 2Kj,, p22 can be decomposed {nto (2p-1)-cycles.

Proof: Label the »vertices of 2K3p, (0,1,2,..-.,2p—2} U {oo}. Then the

(2p—1)-cycles of a decomposition are C = (p+i, (p¥1)+i, (p+1)+i, (p—‘2)+i, (p+2)+i,
wer 2p=3)+i, 2+i, 2p-2)+i, 1+i, o) for i=0,1,2,...,2pa—2, (where arithmetic is modulo
2p-1), and C® = (0,1,2,...2p-2). B "

~

For the following theorem it is useful to colour the edges of the (2p—1)-cycles
of 2Ky, either thin, dashed, or thick, as shown in Figure 15. %

2p-2 O i
2p-3 --0.
,"W’ ~~‘\ 2
2p-4 o e
2p_5 ’.1 \\Q 3
J ! \
\
\
o ¢
[ ] |
]
.o b 5
[ J
A} “
p+3 i\ )
p+2® 9. _--%p.2
p+i ¥Ry
p

Figure 15

4.17. Theorem: BixzDK4,i1 when n=1(mod 4), n29.

Proof: Let n =4r+ 1. Since n>9, then £22. Note that 2n =42t 1) + 6.
Partition the vertex set X of DKy4,4; such that X=SUTuU{e}, where IS| = ITl =2n.

2t-1 .
Further partition S so that S =l_yOS,-, where 1Sgl = 6 and ISl = 4 fori = 1,2,...,2¢-1, and

2¢-1
T sothat T =,u1T,~ where |Tgl = 6 and IT;l =4 for i = 1,2,...,2t—1. We will show that
1= ,

&
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2t-1
KSE,E{)R& where the R; are as described in Lemma 4.14.

Considpr 2K, wi'th vertex set {vg,v1,v2,....v22} U {v..}, and assopiate Voo With
Soand associate v; with S;, for i= 0,1,2,...,2t-2. From Lemma 4.16, when 22, 7Ky,
can be decomposed into 2t (2t-1)-cycles, CO, C(D), C@),..., C(2+-2), (=) where C(D‘ -
misses v;. For each C, i =0,1,..., 2¢-2, let F; ;1 (a family of four edge disjoint

1-factors of Ks~Ks;, ;) be as shown in Figure 16. Note that if vjvy is a thin edge in

C(®, then we use one 1-factor between S;,; and Sg,1, and if vjv, is dashed, we use
three 1-factors between S;,; and Sgyq. It is important to observe that the union of
Y ‘ ' v ®

these four 1-factors is K4,4-—”=Ksj;1,sk+1- For the thick edges, let

Ks...s=K64= WU Y,, where VY,,,_=_ Y = K3 4, for m=0,1,2,...,2p-2. The edge vjeo lies

in precisely two of the cycles C(). In one instance the four 1-factors defined partition
K34=Wj,1 and in the other they partition K34=Yj;1. Finally, corresponding to Ct=)
we, define ¥ as shown in Figure 17. Each eage vjvgin C)is dashed so we use the
three remajping 1-factors between Sj;; and Sg4q. Let Ri=Ks; U ¥ for i=(:1,2,...,2t—1.
Clearly, KSEZJ)IRL Hence from Lemma 4.14, we have Blx\gkDKy,+1 when n=1(mod 4),

£

n>9. W
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- " Figure 17

4.18. Theorem: Bl DK4y,,; when n=3(mod 4).

Proof: Let n=4t+ 3. We. proceed by induction on t. When =0, Bl\gkDKj3
from Lemma 4.9; whcn =1, BlygkDKyg from Lemma 4.13; and when =2, Bl\zDKys
from Lemma 4.15. Let t >® and suppose BlygDKynyq when n < 4(1-1) +3 =411
and n=3(mod 4). We must show that DK4(4;43)+1 has a ncaf B-factorization.' Note
that from Len7ma 3.14, DKy((2s+1)+1)1=DK4(2142) has a B-factorization such that the
union of two of the B-factors is (2t+2)DCy4. Clearly 2t+1<41~1 when £>2. If £>2 and
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2t+1=3(mod 4), DK4(2:+1)+1 has a near B-factorization, either by the induction
hypothesis or the induction base. If 2¢+1=1(mod 4) and >2, then B|NRDK4(2:'+1%JKY/;‘
Theorem 4.17. Hence conditions 1) and 2) of Lemma 4.11 are satisfied. Therefore
DXK4(4+3)+1 has a near B-factorization and we may conclude that BlxgDKy,11 when

n=3(mod 4). W —~

, - L
We have now p}oven Theorem 1.10 whicli we restate here.
i.lO. Theorem: 2)9-'A and D divi&e DK4y,+1 near resolvably fdr all n21,
b) B and C divide DKy, near resolvably for all n>1 (with the

possible exception that B may notdivide DKj; near resolvably).

Proof: a) See Theorems 4.5 and 4.7.
b) See Theorems 4.5, 4.8, 4.12,4.17, and 4.18.

-~
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