‘Al K © - i .] ‘ .
l*l National Library Bibliothéque nationale

of Canada du Canada
"Canadian Theses Service Service des théses canadiennes ‘ . \
Oﬁawa. Canada -)
K1A ON4 ~
NOTICE AVIS

The quality of this microform s heavily dependent upon the

quality of the original thesis submitted for microfilming.

Every effort has been made to ensure the highest quality of
“reproduction possible.

I pages are missing, contact the umversny which granted
the degree.

Some pages may have indistinct print especially if the
original pages were typed with a poor typewriter ribbon or
if the university sent us an inferior photocopy. '

L]

Reproduction in full orinpart of this microform is governed
by the Canadian Copyright Act, R.S.C. 1970, c. C-30, and
subsequent amendments.

4

et

NL-339 (r 88/04) C T

La qualité de cette microforme dépend grandement de la
qualité de la these soumise au microfilmage. Nous avons
tout fait pour assurer une qualité supérieure de reproduc-
tion. ,

Sl manque des pages, veuillez communiquer avec
I'université qui a contére le grade.

La qual @ d'impression de certames pages peut laisser &
désirer, surtout si les pages ongmales ont été dactylogra-
phiées a l'aide d'un ruban usé ou si l'université nous a fait
parvenir une photocopie de qualité inférieure.

La reproduction, méme pamelle de cette microforme est

soumise a la Loi canadienne sur le droit d'auteur, SRC
1970, ¢. C-30, et ses amendements subséquents.

Canada

Multicasting in a High-‘Level Language

by
James Russell Gunson
B.A., Oxon., 1965

Ph.D., Dunelm, 1968
M.Ed., British Columbia, 1988

" A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE
in the School
of

»
/

Computing Science
© James Russell Gunson 1989
SIMON FRASER UNIVERSITY
April 1989

All rights reserved. This thesis may not be
reproduced iyfwhole or in part, by photocopy
or other means, without permission of the author.

i+l

Nationat Library Bibliothéque nationale
of Canada T du Canada

Canadian Theses Service Service des théses canadiennes-

Ottawa, Canada '
K1A ON4

The author has granted an irrevocable non-
exclusive licence allowing the National Library
of Canada to reproduce, loan, distribute or sell
copies of his/her thesis by.any means and in
any form or format, making this thesis available
to interested persons.

The author retains ownership of the copyright
in his/her thesis. Neither the thesis nor
substantial extracts from it may be printed or
otherwis®e reproduced without his/her per-
mission.

ISBN 0-315-

»

Canada

L'auteur a accordé une licence irrévocable et
non exclusive permettant a la Bibliotheque
nationale du Canada de reproduire, préter,
distribuer ou vendre des copies de sa thése
de quelque maniére et sous quelque forme
que ce soit pour mettre des exemplaires de
cette thése a la disposition des personnes
intéressées. ’

L'auteur conserve la propriété du droit d'auteur
qui protége sa thése. Ni la thése ni des extraits
substantiels de celle-ci ne doivent étre
imprimes ou autrement reproduits sans son
autorisation.

59346-6

-di-

' Approval
Nanje: James. Russell Gunson
Degree: ‘ Master of Sciencci
‘Title of Thesis : Multicasting in a High-level Language
Examining Committee: o ' R
Chairman: Dr. Joseph G. Peters. K\

Dr. M. Stella Atkins, Assistant Professor,
School of Computing Science,
Senior Supervisor.

Dr. F. Warren Burton, Professor,
School of Computing Science,
S isor.

Dr. Robert D. Cameron, Assistant Professor,
School of Computing Science,
Examiner. : . _ 5‘

Date of Approval: _Jume X7 89 -

PARTIAL COPYRIGHT LICENSE

" u

| hereby grant to Simon Fraser Unlversity the right to lend

my thesis, project or extended essay (the title of which is shown below)

to users of the SIan Fraser University Library, and to make partial or
single copies only for sqch users or in response to a request from the
library ot any other university, or other educational Institution, on
its own behalf or for one of its users. | further agree that permission
for multiple copying of this work for scholarly purposes may be granted
by me or the Dean of Graduate Studies. It is understood that copying

or publication of this work for financlal galin shall not be allowed

without my written permission.

1

Title ot Theslis/Project/Extended Essay

Multicasting in a High-Level Language

~F

Author: L P
(%}gnaf&ée)

-James Russell Gunson

{(name)

24 D 8

(daf;¥7

&

- 1ii -

$ ’ Abstréct

Multicasting allows a sender to send thc sam;e message simultaneously to a group
" of receivers, which may be required to /rcply. In comparison to a semantically
equivalent' series of onc-}o—onc mcssagcs; mul\ticasting faéilitatcs greater parallelism
among re;ccivcrs, reduces network traffic, and reduces the work performed by the
sender. At the lower levels, multicasting occurs between processes, one of which may

send to others in a given process group. Members of the group may be distributed over

a local area network.

The high-level distributed programming language SR was chosen as the testbed for
our multicasting experiments. In an operation-oriented language such as SR, the
receivers of a multicast must be a group of like operations. The set of receivers is
termed a multicast network, a distributed entity. Multicast network access may be con-

trolled by means of capabilities.

This thesis discusses several issues concerned with multicasting in SR, including
semantic, linguistic and implementation issues. The syntax and semantics of multicast-
ing are discussed from the perspective of message passing and remote procedure call

p;aradigms. The use of an explicit structurefl reply queue is discussed. The thesis also

proposes a way of implementing multicasting within the current SR implementation.

H
Rt
5

SRR
;

-1V -

ripe,
3y

ooap

% Dedication

In memory of rﬁy father,
George Charles Gunson,

who died during the preparation of this work.

s s

Acknowledgements

My thanks Dr. Stella Atkins. for suggesting the subject of this work, and,_for her help
- "and guidance. My thanks also to the other members of the examining committee for
their helpful criticisms. :

“F

This work was completed while the author was employed by Kwantlen College
Thanks go to John Levin, for his support of my studles

Last, but not least, my thanks to my.wife, for her tolerance and support.

-Vi-

°

" Table of Contents

Approval feeereeeseeeeressepesessseeesestestessetessseesesseretereeeiatenaettastetaeeeatteatheaesarteeatsrneesasnt ii
ADSEFACE ...ttt s e st e s e e s e e aaes iii
Dedicationlccccevecurnnnes eeeeeerenenenenran e enens ettt seeaeneesaens cerertent et snenas iv
ACKNOWIEAZEIMENLS\.........rvreeiverenitriereeee st tinsesss et eesessensenes et sbasas v
Table of Contents ... 7. 7 Th i o YOO SRR vi
Table of Figuresc.ccoccovvncccievcniennnenne feveresseseresseeresasessesaesenasesaneas ereerivessarasses viii
Y
L INTRODUCTION ..ottt ssssesssssssesasssssesnse 1
1.1 Unicasts, Multicasts and Broadcastscccciiiiiiniiniinniniieicnesnes 2
1.2 SYNCHIONISAtION ...cecciiivuiiiiriiinirneiieiiiiriec sttt sttt st ssasssae st aeenanes 3
1.3 Applications of MultiCastingcccccuveirineenniniinnnniinniiesen st saesrasees 6
1.3.1 Inter-process CommuniCationcveiviiiiniiinnneiinnnn T e et 7
1.3.2 Parallel PrOZIAMSccooiiciiiiineienicineceiiene st seesse et svassscssasssssesssessns sasssesnsesnas 7
1.4 Process Groups : Static or Dynamiccoviveininiiicinincciennennns e 8
1.5 Multicasting SemAantiCS.ccecevveiririinninniiniinicnsiitinsreesisne e sssesasssnsssasassas 9
1.6 Multicasting in SRccccciiiiiiiniiccnetttstcirnre e s s ess s 10
1.7 Remainder of ThESISccciiiiiiinieniniietiiric it esees sttt sn s essessas ssssasssasass 11
2. RELATED WORK ...ttt vt sseste st e sseessaese e e s ss saassans 12
2.1 Multicasting OPEIALONS ..eovevvvocvrveeieesieaensseeesesssensssssssssessssssssssssssesseresssanssessansanes 13
2.2 REBADIILY cevevieiiiierieeieneier et st se e ete st et st et e e e e st eteesstesnassmeesnsessnesasnsens 14
2.3 Parallel Procedure Callscccocveiiirenennd! ereeteee e et a st sarte st snavese e ses 16
3. THE SR LANGUAGE ..ottt s s sanesane s veeees 19
3.1 OVerviewouuveveieeiiiccieeceeeenennn et —————ees 19
3.2 RESOUTCES 1oevierrerirereeierettieeeesieesetenreesseeseeeseensesstseressessessassnessssssnssssnesesssssssssassassnses 19
3.3 Operationsccceevveeeeveeenvnrecnceesneennees treeestesateesasestesseiaateesatessitesannetssstensserteesaseas 21
3.4 Implementation Of SRcoceeiiiiiiiiii et e 22
35 Communication Primitives in SR .. ettt ettt st ta s b et et aeten e ttrans 22
4 MULTICASTING IN SR oottt s st saba s neeanee 25
4.1 Overviewccccceiiveenineccnencnenns et ereeererret et et e easeaae s ee e e s ae b e sr e e et ae b reat s 25
4.2 Multicasting within standard SRcccociviniiinininini e 26
4.3 Group Composition : Dynamic or StatiCccccciiiiiiniiniiiiinn s 28
4.4 Required Semantics of Multicast SHALEINENL .vovvvvereveeeeeeerecseseeseresee e s ssssennes 29
4.4.1 Synchronisation and Early Terrmnatlon ... 29

4.4.2 Reply Handling ..o s ssssssse s 30

¥

4.4.3 Reliability and Error Handlingcc.ccuvueee. S— NSRRI
'4.4.4 Same Order Multicastingocceceee.- eresense it s s e seeeensasasaataradanasssesestnnatens

~ = 4.5 Multicast Group SEmanticsceeeeeeeversas et anseenananes aeerenesessnseeresedasanns

4.6 Maintaining a Built-in MUltiCastercooeievirieevencereernnne eeesressssesssaeses e
4.7 SR Multicasting : Message Passmg Paradigmcovcievniniininenrrceciennrene,
47,1 MUltiCast SENQc.coveueremreerrnnesrrensssssassssanseesesiosserssessesees ereeretesatiteetasasaas
4.7.2 MUIHCASt Callc..iuceerioreereeessveeseseessssssssssssasssssssssssessesssssssssssssssnsssssanessensessonas
4.7.3 Get_1ePply .eoovervreencerriereree e reeeteresaanens eetesree s ss st et rasrans
4.7.4 Error-handlingoccoeieiiniennenninneicesntcniesesesesecnceesessassesnsssasssssssassnens
4.8 SR Multicasting: Remote Procedure Call Paradigmccccccoveneerneesncnesivnnnns
4.8.1 Error-handlingccioiiiienieninecoinsecseiensneeroiesiessscsesscsnaesesnessessesssssassassasenes ,
4.9 Conclusions with regard to the two paradlgms ...
4.10 Remote REPLY-QUEUESccccvvenriieniniinnirinsiinniintiniinsiissssssisssssisssssasssssssssssessessans
4.10.1 Synchronisation and Reply_quUeuescccvvviiveneesnnrennncnnns erennseeaenenesanis
4.10.2 Remote Reply Queues irthe Message Passmg Paradigmccocoevieiniennianne
4.10.3 Collector Statements and SEMANLCSiccvverrinrisirnsresrisinirinnsisesessessesens -
4.10.4 Declaration, Creation and Destruction of Built-in Collectorsiecueunenee
4.10.5 Remote Reply Queues in the RPC Paradigmccccovnincenicnccnncniniencnnnn
4.11 Other OPHONScovviviiiiniiirinniirenietessirsss e se e rete st st sscaeses s sssasssasatssssnansuens

5. DESIGN AND IMPLEMENTATION ISSUES ...t
5.1 Implementation of Resource and Operations ...,
5.2 MUIHCASHNE ...oecviriiirnienrrurereecraesssesassasessreesetacsotessetessessasessstassssensessessssasssssss s snsessans
5.2.1 Broadcasting on the Sun NEtWOIKcccceceniiniminninniinensinessncresssiessssecsseseens
5.2.2 Process Group Creauon/Dcstmcuon and Modificationcccccceceereeverinieneenns
5.2.3 VM-t0-VM MUltiCaStiNgccceceiviinininniiniinininiiniiiiessessestiississssesisssssssssssssssses
5.2.4 Multicast NEIWOTKSccccoeeriiecniirninricestescneenreieseesssatsssesest s nesanesanesaneenansnnas
5.3 Collectorsccccevveevurrvurrerarcceneannen teesteeteereete et e et st et s en e s et st e et e st sa e e sube st er e e
5.4 Implementing the Two Paradigmsccccciriiiinninninninccscirntinnenensnecsacsssessagenaes
5.5 Implementation of the PTOtOtypecccovnrnininiininnieninneneienninen S \'ﬁ

’

5.6 Potentiai Timesavings using MUltiCastscc.cocevicrinvrinnnsiniinsesesciinsesnesssnenss

6. CONCLUSIONS AND FUTURE RESEARCHuiiiiiriernecrennessecnenns
6.1 CONCIUSIONS «.vveieeeiiieeeieeeieteeeeteeeeesereeetseessssstassssssessssesssasseisssensssaessessrsssssessssssassans
6.2 FUuture RESEarchccoooiiiiiiiieccieci ettt et e et cts s besaessee st st assassanbaas

AppendixT A : Collector Pool MAaNAGETcccoceeiriiieninierenncneeseneenrenesesressesssssssenne
,Appendix B : Run-time Support Changes

Appendix C : Compiler Changes ceereeeeeeeenne RSO ereeeerereeraeeseeenes

ApPPEndix D : RTS COAE ..ottt sevectaesreesres s s e ba e sseesasssneranas

REE@I@IICES ...t e et e e ate e ae e e eeemease st eneaeseess e ssasaseensassesassessesassasasse sabessssasasensenen

‘1. INTRODUCTION B

]

The trend to replace single large computers by networks of smaller machines has
increased interest in the design of parallel and distributed algorithms, in distributed
operating systems, and in new languages which facilitate the programming of such.

algorithms and operating systems.

A crucial aspect of distributed systems is the communication scheme which per-
)
mits processors o{_;@iocesscs to pass information and synchronise their activities. For

-
efficient communication there must be a suitable physical link between machines, and
software to provide the reliability not provided by the hardware. In addition, the
operating system and language must provide the user with a convenient interface, per-

mitting reliable process-to-process communication. If the user employs a relatively

low-level language, such as C, this service will be provided by system calls.

Cog}munications may be onc-way, from sender to receiver, or two-way, if a reply
‘is required. The most common form of communication is from one entity to another,
and possibly back, the unicast. Recently interest has béen aroused in one-to-many com-
munications, broadcasts and multicasts, which are the focus of this work. Various
ways of synchronising the work of sender and receiver have been well addressed with
regard to one-to-one communications[Andrews83], but only recently with régard to
one-to-many [Cheriton85], [Navaratnam88], [Ahamad85], [Atkins89], [Birman87],
Marting7]

Issues related to one-to-many communications include dynamic process groups
(the 'many’ may change), how to incorporate suitable communications primitives into
languages, reliability (atomicity and same order delivery), and methods of implementa-

tion.

A-2_ \“‘ o &

1.1 Unicasts, Multicasts and Broadcasts

Ahamad and Bernstein describe three basic schemes of inter-process commﬁnica- '
tion: the unicast, multicast, and broadcast [Ahamad85]. The unicast is the ulsual one-
to-one scheme. The multicast consists of a message i)eing sent to a group of processes
running on any subset of the hosts in a network. A broadcast is sent to all hosts. It is
noted that one-to-many communicatibn may be applied to such problems as distributed-
commit protoecols, elections, reliable storage and others. Navaratmam et al. describe
multicasting as a communication with a process group using the group’s logical name

[Navaratnam§88)].

4

Communication on the Sun-Network [Leffler83] illustrates the relationship
between b_roadcasrting and multicasting: broadcasting takes place between host
machines, multicasting between processes. Machine-to-machine communication is
implemented using xmzlichine addresses and ports, which function as mailboxes on each
machine. One-to-one cor’nmunicationls use §pcciﬁc ports and machine addresses; broad- -
casts employ a wildcard value for the destination addréss, with a specific port numper,' “ /
and are delivered to that port on all machines in the network. A daemon process may)
be created on each processor to listen to a port and react to messages received. Each
broadcast mcisage is thus deliveréd to a group of daemon processes that typically offer
a specific service to the user. As the message is received by a subset of all processes,

the machine level broadcast effects a multicast at the process level.

Broadcasts and multicasts have several potentival advantages over unicasts. First, as,
in V [Cheriton85], they may permit a user to request a service without knowing the
identity of the server. Second, network traffic may be reduced as one message replaces
several. Third, the average time for a member of the process group to receive the mes-
sage will be reduced. Pourth, the user code miay be reduced in size and simplified¢as
one statement replaces several. The e;ctent of these advantages depends on the particu-

lar nature of algorithm being executed. A multicast replacing a series of unicasts, must

Z3. ‘ ' . 5“; ¥
carry the infoﬁnaﬁdn contained in all the unicasts. The praéfticality ot: this’ dcpends on
~the degree of duplication in the unicaSts’ data. Overall, the relative costs depend on the

. o [.. . : ~ . e
ratio of processing time to communication time, the speed of communications, the

_ nature of the algorithni; and the degree of reliability réquiréd.

/“'
7

1.2 Synchronisation |
| | . - .
Synchronisation refers to restrictions imposed on the order in which code of the

sending process and that of the receiving. i)rocesses may be executed. These constraints
may be ncceséary for the sender to receive replies from the receivers, or because the
;ssender must be assured that the receivers have completed théi: task befo;*e it (the
sgnaer) continues. | _ p - | .

Andrews and Schneide}[Andrew583] discuss at length the relatidnship between the
communication of data and synchronisationf They observe that two options exist for
synchronisation: shared variables and message passing. The authors also identify three
. main types of language: procedure oriented, message oriented and oberation
oriented. Procedure oriented [dnguages, such as Modula [Wirth77] or Concurrent
Pascal [Brich Hansen77], use shared variables to effect process interaction. Most such
languages are monitor based. Message oriented languages, such as CSP [Hoarg78],
Gypsy [Good79] or PLITS [Feldman79] employ §end and réceive statemenfs to pass
messages between processes. Operation orﬁiente?l/ languages, such as ’S‘R-@&‘:WSSH
and Ada [U.S.D.D.81], employ a form bf remote procedure call as their main Qomr:uni-

I

cation scheme.

[Andrews83] outlines a number o’f issues related to message péssing: how the
source and destination of d™message are to be specified, and what synchronisation
should apply. Direct naming is»when both the sender and receiver name eacq other,
9reziting a one-to-one channel. This paradigm does not permit a server to serve n;ultiplef‘

. . ‘ » - »
clients; in that case a many-to-one communications scheme is required.

PR LR A T AT TR T N SR LR BT s

In message passing, various synchronisation schemes are used, bésedmon the sender -
executing a s?nd state;nent and the receiver executing a receive stéterhent. These‘state-
ments may be blocking or non-blockinngthe statem:am may effect somé action and con-
tinue immediately (non-blocking), of may await the completion of the action, perhaps |
on a remote site (blocking). Whether a send is blocldng or non-blocking dépends on -
the buffering prov1de¢ If there exists an effecnvely unlimited buffering capacity, the
send may return 1mmeghately, assured that, short of fallure, the message will eventually
be passed to the receiver. Thxs. is termed asynchronous message passmg. In this
scheme the sender can get arbitrarily ahead of the recelver as in Figure 1. (In Figures
1 2 and 3, the {ime axis points downward a solid line indicates an executing process,

and a hatched region indicates that a process must block.)

Sender Receiver

Send |-.
Message buffered " =

Receive

Figure 1 Asynchrondus Message Passing

7

If, at the other extreme, no buffering exists, the send must block until the message has
been received by the sender, as in Figure 2: this is termed synchronous m&@sage pass-
ing. In this scheme the exchange of a message represents a synchronisation point for

the two processes.

,_5-

Receive statements are mostly blocking, as the process is often unable to proceed until

the message is received. However, operating systems may require a non-blocking

receive.

n

Sender Receiver
Send
Blocked
_>l Receive
Ack. -7
Recd.

Figure 2 Synchronous Message Passing

- Send and receive, taken in combination, allow the user to program a number of

communication and synchronisation schemes. In client-server interactions, the client

may execute a send and the server a receive, for the request for service to be made.

L e

The client may then execute a receive, and wait for a reply for the server, which exe-

cutes a send, as illustrated in Figure 3(a).

Client
(Sender)

Send
Receive

. Blocked

Reply
Recd.

~

-

-

Server Client Server
(Receiver) (Sender) (Receiver)
R} Receive Call - Receive
Processing Blocked | Processing
__-|send .--| Repl
-7 Replypl---~ Py \
Recd.

Figure 3 A Remote Procedure Call using (a) Send and R;,ccive, or (b) Call

-6-

This use of send a.nd re,;cei_ze is sufficiently common for many languages fo support it
directly as a remote procedure call (Figure 3(b)). The client executes a call which
blocks until the reply is received. The server may serve a call in two ways. A call may
be serviced by a process, which will execute when thc. call arrives, or to a receive-
~ statément, which may be placed at some point in the code of a process. The first
method resembles the conventional procedure call in that each call results in the execu-
tion of a body of code frorp beginning to end. In the second method, the receipt of a
message by a receive statement is a synchronisation point for the client and server
processes, termed a rendezvous. The rendezvous provides the server with | greater flexi-
bility in choosing when and how to serve the client. This is particularly trye if selective
communications are implemented: these are receive-statements which permit the server
to choose to receive one of a number of conipeting messages, possibly based on the

contents of the messages and the server’s state.

1.3 Applications of Multicasting
&

[Cheriton85] states that group communication (ﬁ)ulticasting) has two generic
uses: query and notification. Query refers to a common situation in operating systems,
where a number of servers offer a desired service, and a client, wishing to make use of
the service, multicasts.to the server group: the server(s) appointed to provide the service
to that client, or those that are currently available, reply. This application illustrates one
advantage of group communications: th‘c client may need to know only the group iden-°
tity, but not that of the individual servers. This scheme is particularly valuable at boot-
time as a new host may use a multicz;st to appeal for service. The alternative is, either
for each client to retain a li,st of its servers, or obtain the same from a much rﬁo_rc

extensive name server. Notification refers to the situation in distributed programming

when one process wishes to inform others of new information, or to control their opera-

tion.

-7-

: e o
Cheriton in [Cheriton85] and Martin in [Martin87] present several specific exam-
ples of multicast use. These may be categorised as either inter-process communicatiori, ‘

within the operating system, or as parallel programs

1.3.1 Inter:process Communication

Within V several server groups exist: kernel servers, file servers, pipe server, time
servers and team servers. The team server group uses multicasts to locate under-loaded
processors: the multicast specifies a load-level, and only processgs with a lesser load
need reply [Cheriton85]. In this case the team server makes use of a built-in reply

queue, that permits the team server to access replies subsequent to the first, which is

returned with the multicast statement.

A second server group application in V, is a decentralised name server. The name
and request are multicast to the appropriate server group. Those servers who recognise
the name respond. It is noted that this t}}pe of application requires process groups with
unrestricted access, or access based on user privil . Depending c;n the cir-
cumstances, such applications may require the user to iﬁc first reply only, or any
number of replies. Lighthouse algorithms [Martin87], in which hosts communicate

their view of the network, may also be implemented by multicast sends, with no replies.

1.3.2 Parallel Programs

Cheriton and Zwaenepoél [Cheriton85] describe the programming .of a distributed
%me. Multicasts are used to update local game managers as to the global state. A
second application noted is that parallel programs, such as a one for playing checkers,
may employ a group of processes performing a parallel search. ‘Multicasting may be
used to pass information, reducing and focusing the search effort. A similar application
is a concurrently executing rule-based system, with the resolution of subgoals being

exchanged.

8

Cheriton and Stumm'[Cheriton 87] promote. a model of parallei computiﬁg using a
multi-satellite star, a central controlling processor with a number of satellite v;'orkers.
They argue that certain types of distributed algorithm allow the code to be pre-loaded
on the satellite processors, and execution to be controlled by means of relatively short
messages. They also state that in a distributed branch-and-bound algorithm, multicast-
ing could be used towlylpdate the satellites on the best result so far. They say :

N\

Group communication has proven to be useful in terms of efficiency and pro-
gram simplicity. It is used for control purposes and for data transfer.

A further application is the implemention of disuii)utcd two-phase corﬁnﬁt proto-
cols for atomic transactions. The initiator sends a prepare-to-commit message, to which
"""»all members of the process group reply with yes or no. ﬁ‘s the initiator considers the
replies, and at some point sends a commit or abort message to all group members. The
initiator may use multicasts for each phase: the first must be reliable, and have a réply
queue, as all group members must commence to execute the protocol; the second need ™
not be reliable, as a receiver failing to get a final message may time-out and réquesf a
retransmission [Cheriton85]. Specific examples of a data-base update algorithm that
may be performed using a mul'ticast with replies are the Gemini Voting Algorithm [Bur-
khard87], which requires a quorum to vote in favour of committing b(see section 2.3),

and the available copies schemé [Bemstein83]f

1.4 Process Groups : Static or Dynamic

As Ahamad and Bernstein [Ahamad85] note, a'(multicast) process group may be
static, fixed before execution begins, or dynamic, with processes joining or leaving the
process group while the program executes. They also observe that rﬁulticasts may be
one-to-many, with one unique sender and many receivers, or many-to-many, with

several senders. In this latter case, processes may both send and receive multicasts.

The one-to-many multicast group is simpler to implement than the many-to-many,

since the requirement of some degree of reliability necessitates each host knowing at

L2

-9-

least the size of the process group, and possibly the membership, in order to collect
acknowledgements and, if necessary, time-out and retransmit. Navaratnam employs a
single group manager to maintain the membership list, and secondary managers on all
member sites serve as backup [Navaratnam88]. With one-to-many multicasting, the
group membership need be stored only on the unique sender’s processor: in the case of

dynamic groups, changes need be made only on that processof.

1.5 Multicasting Semantics.

In section 1.2 we discussed synchronisation issues as they relate to unicasts. It
should be noted that a unicast returning a value is, of necessity, synchronous, since the
statement may not return until the value is received. Since multicasts may return multi-
ple values, the issue here is not so clear. It is clear, however, that pfovision must be

A

made for a reply queue, which the user may access by some structured means.

Since reliability is a concern with‘ most multicasts,, we must consider how this may
be provided. It should be noted that any scheme that allows the multicast statement to
ternﬁnate without assurance that all implied actions haVe completed, is implicitly
prepared to ignore remote and communication errors: if these are significant, error
detection and handling may be implemented at a higher level. We concur with
[Atkins89], in proposing that the sender assume responsibility for determining the level
of reliability required.

In the case of unicasts, the operating system implements protocols to ensure that a
transmission is received and acknowledged, or that the user is informed of the failure to
do so. There are two approaches to this: providing a communication statement with pro-
visions for exception handling, or having the communication statement return a

boolean, indicating success or failure. SR takes the first approach; V takes the latter.

Reliability is commonly implemented by requiring the receiver to acknowledge the

receipt of a message. If the sender fails 40 receive an ACK within some time interval, it

\\‘_/

-10 -

must resend the message. Sequence numbers on messages prevent duplicates being mis-
taken for new messages. Navaratnam extends this teckaique to provide for the reliable
delivery of multicasts [Navaramaxn88j. A sender multicasts and then collects-ACst
from the process group members. Since each sender knows the composition of the pro-
cess group, both‘the size and individual members, it knows the number of ACKs it
should receive, and their source. If the ACKs fail to arrive within a ﬁxed'timé interval,
the sender transmits individual unicast duplicates of the message to each member that
failed to acknowledge. It should be noted that a re-multicast would have served the
same purpose: it requires all receivers to process the duplicate message, but would
avoid each sender having to know the identity of the individual group members, as
opposed to merely their number. Reliable multicasting is hard to support, unless the

number and identity of group members is known [Navaratnam88].

An issue closely related to synchronisation and reliability is the early termination
of a multicast: the greater the desired reliability or synchronisation constraint, the later
a multicast must terminate. This might mislead one to consider that early termination is
subsumed by the other issues. However, early termination is, per se, a means to achiev-
ing greater efficiency: a multicast should terminate és soon as sufficient replies have
arrived. This sufficiency may be determined by the number of replies, in which case
early termination and reliability may become synonymous, or by the content of the
replies, in which case the two issues diverge. This latter situation occurs when a client
wishes to access servers with sufficient capatity to perform a given task: when respon-
dents have reported sufficient capacity, the client has no use for additional replies, and
the multicast may terminate. A particular case of this is when the client requires one

server and will accept the first offer of service.

1.6 Multicasting in SR

This thesis concerns the use of multicasting within a high level language, SR, Syn-

-11 -

chronised Resources‘[Andrews87], [Andrews 88], [Olsson86]. Our choice of SR was

prompted by a number of considerations. Previous discussions and imple
v

ntations of
multicasting have been in the context of low-level languages, employing system calls;
our desire was to explore multicasting as an integral feature of a high level lan
The specific choice of SR was made because of the elegant way in which simple, yet
powerful, communicatior: primitives are integrated into the language. As SR is opera-
tiod oriented, and encapsulates data and code using resources, the integration of multi-

casting primitives is particularly challenging. Issues include:

- what semantics are'required -
- how the required semantics may be incorporated cleanly into the language
- how to implement the scheme | ‘

]

- how efficient is the proposed scheme.

1.7 Remainder of Thesis

Chapter 2 discusses in detail the related work. Chapter 3 gives an introduction to
the SR language, with particular émphasis on the semantics of the communication prim-
itives. Chapter 4 presents our proposal for introducing mulﬁcasdné within SR, using a
new pseudo-resource, the Multicast Netw'ork (MCN), which represents the group of
receivers. Multicasting is discussed with reference to message passing and remote pro- .A
cedure call paradigms, which suggest different syntax and semantics. We also discuss
the use of the collector, a structured reply queue. Chapter 5 deals with the design
issues o; the proposed scheme, within the context of the current implementation of SR,
using UNIX. We also describe the implementation of a prototype, and the _gaihs in

efficiency that a multicast or a pseudo-parallel co-statement may give. Chapter 6 gives

the conclusions of the work, and points to future research.

S12- &

2. RELATED WORK

Most of the work on multicasting has concehtrated on providing low-level primi-
tives and system calls, either in UNIX or V. Ahamad and Bernstein[Ahamad85], imple-
mented a new multicasting scheme in UNIX, creating a new type of socket: the effect is.
to allow a number of receivers to bind to one socket, and each receive a rriﬁlticast. The
service is unreliable, being based on the unreliable datagram service provided in Sun's

4.2BSd UNIX operating system [Leffler83].

[Cheriton85], [Atkins89], and [Navaratnam88} deal with communications in the V
operating system, a distributed message-based operating system, running on Sun works-
tations connected by an Ethernet. As part of the messaging scheme they introduce what
they term group communications (multicasting). Dynamic process groups are provided,
as it 1s necessary to maintain groups of like processes, when the message passing
scheme makes no lexical distinction bé’tween process types. Operations are provided to
pe@t a process to create, join or leave a process group. A sender can send a message
to the group, and can recei-ve multiple replies. Cheriton’s group built V with a semi-
reliable group communication primitive (one guaranteeing that one reply or ack-
Q nowledgement will return), arguing that implementing greater reliability would be too

costly.

Navaratnam, Chanson and Neufeld [Navaratnam88] implemented a reliable multi-
caéting scheme on top of the V. The protocol provides two leozels of reliability, using a
centralised control scheme. The system is somewhat tolerant of-machine failure and the

partitioning of the network.

Atkins, in [Atkins89], provided reliable multicasﬁng within the V kemnel itself,
showing that the cost of reliability is small, contrary to [Cheriton85]. Different degrees
of reliability may be chosen by the sender, requiring all or a specific number of replies

or acknowledgements. Note that V multicasts must be invoked as C library calls

-13-

_invoking V system calls. It should be also noted that the fundamental entity in V is the -
process, and that the communications are procgess-oriented, as both senders and

receivers of a messages are processes.

2.1 Multicasting Operations

<

Cheriton provides a number of function calls to provide multicastin!

AllocateGroupld() allocates and returns a new group identifier. The process

executing this function is automatically a member of the process group.

JoinGroup(groupld, pid) makes the process specified by pid a member of the
group given by groupld. The operation LeaveGroup(groupld, pid) removes the pro-

CESS.

Send(message, groupld) sends the contents of message to all members of the
process group specified by groupld. The first reply is inserted into message, and the
Send returns. Subsequent replies may be read using GetReply (see later). The same
function (Send) is used for multicasts and unicasts. Note that the messages employed
here are of a fixed, small, size: larger messages may be copied between process address
spaces, using different primitives. Send blocks until a reply is available, in which case
the id. of the responding process is returned, or until the kernel times-out, and zero is

returned, indicating failure.

Receive(message) blocks the invoking process to receive a message, in mes-

sage. The function returns the process id. of the sender.
Reply(message, pid) sends message to the process specified by pid.

GetReply(replyMessage) copies the next reply to a group send into replyMes-

sage, returning the process id. of the replying process (zero if the reply queue is

-14 -

empty). I\fote that unread and subsequent replics are discarded when the next Send is

performed by that sender. -

Navaratnam employs two new primitives to facilitate reliable multicasting

[Navaratnam§88]:

ugsen”d(msg, group_id, msg_type)
ogsend(msg, group _id, mSthype)

Unlike Cheriton’s Send, ugsend provides reliable delivery (to all group members). In
addition, ogsend provides same order delivery, in cases of many simultaneous senders.

~ Multicasts may be made non blocking by a suitable choice of msg_rype.

Atkins, Haftevani and Luk modified V functions to provide reliable multicasting,
within the V-kernel in [Atkins89]:

Send(message, id), seﬁds message to the process group specified by id. Mes-
sage contains two fields that specify whether replies or only ACKs are required, and

whether all, or some number of them, must return for the Send to succeed.

GetReply(message, time_limit), is intended to take a reply from the sender’s
reply queue and copy it to the variable message, within the time-limit, and return suc-

CCSS.

2.2 Reliability

There are a number of potential problems that can make communication unreli-
able: the communications service provided by the network may be unreliable, work-
stations or their network interfaces may fail, and the processes on the work-station may

fail.

-15-

The modes of reliability described in the literature include atomicity (reliable
deliver:y) and. séme order delivery. Atomic delivery implies that either all group
members receive a multicast or none. Naturally the first event is preferred, and thus
every attempt is made to deliver the message. Same order délivery implies that a

sequence of multicasts are received by each receiver in the same order.

Navaramam implement these delivery modes using a two layered system, with an
underlying group of managers, one per active host, as shown in. Figure~4. Each
manager maintains a list of local receivers for each group, and a list of other managers.
The managers themselves comprise the process group at the lower level. Inter-host mul-
ticasts and unicasts are then used to provide process-to—pfocess communication. The
authors are concerned that the multicasting ‘method be general and not dependent on
specific characteristics of the underlying network [Navaratnam88]. If the network pro-
vides broadcasting, each manager will receive multicasts which must then be demult-
plexed to the receivers on that host. If the network does not support broadcasting, hosts

may communicate via a sequence of unicasts.

Z

| ‘ Receiver

Manager

Figure 4 Two-level Multicasting.

In implementing efficient reliable multicast -communication in the V-system,

Atkins, Haftevani and Luk [Atkins89] provide two sets of semantics for terminating a

-16 -

multicast: ALL,_DELIVER (ALL_REPLY) and K__DELIVER (K_REPLY). Deliver-type o)
multicasts return after the message has been delivered to the receiver, rép'ly;t&pe Whén ;
the receivers’ replies have returned to the sender’s queue. The user may specify ‘how
| many ACKs or replies must arrive before the multicast succeeds and terminates. The’
ALL option specifies reliable delivery (reply) to all the group members extant at ‘the
time of the initial send. The K option permits the user to specify the number of ACKs
(replies) needed, as in Byzantine agreements. Setting the required number to one in the
K option provides for the multicast to return after the first ACK (reply), the level of
rgliability that V itself provides. It should be noted that in this scheme early armina-
tionr and reliabili{y are controlled by the same parameters, and are thus synonymous.
The values of the parameters xﬁay be set to achieve a certain reliability, or to achieve “

early termination, depending on the application.

Same order delivery requires that each receiver receive a sequence of multicasts in
the same order, and is a requirement of replicated data-b;se systems, when it is neces-
sary to maintain consistency at all sites. This may be implemented by executing a
multi-phased protocol [Birman87] , or by using a a central controller, through which
multicasts are funnelled [Navaratnam88). This second scheme unfortunately requires an
additional unicast, from the sender to the group manager, increasing the time taken for
each complete transmission. Navaratnam provides two modes of multicasting, one pro-
viding reliable delivery only, and the other providing complete same order delivery.:
We do not attempt to provide atomicity, due to its cost, and as it may be provided at

the user level.

2.3 Parallel Procedure Calls

The PARPC scheme [Martin87] gives semantics and syntax for parallel procedure
calls in a distributed UNIX environment, modelled on the remote. procedure calls

already provided in such environments as the Sun network [Leffler83]. PARPCs are

-17-

system calls within C or C++, simultaneously invoking a number of procedure calls.
By default, the calling process(blocks until a.result from one of the calls arrives: it then
unblocks and may service the result. The syntax for a PARPC is as follows:
<PARPC-invocation> ::

<PARPC_name> (<distributed_address _spaces>, <parameter_list>)

<result-statement>
The dzstrzbuted address_spaces is the set of distributed address spaces in which the
procedure is to be executed. The parameter list comprises the parameters to be passed
to each remote invocation of the basic proccdure. The result-statement is an optional
‘statement, normally a block of code, permitting the caller to ‘process .results as }they ‘
arrive. Within thev result-statement various semantics are possible: the calling process
may ignore a reply by executing a continue (blocking until another result arrives) or
cause early term‘ifration of the result-statement by executing a break. Data is passed to
the PARPC and returned by in or our parameters (equivalent to SR’s VAL z}nd RES
péraméters). If the procedures invoked by a PARPC have no out parameters, the call is -
asynchronous and non-bloock'tng: any result-statement does not execute. A user requir-
ing a synchronous 'PARPC with no replies, must employ a dummy our parameter.
'Replies to a P‘ARPC may only be received only by the result-statement, within the

scope of the PARPC-invocation.

The syntax and use of the PARPC is well illustrated by Martin’s example, in
which a replicated data-base is updated, after a quorum of hosts have replied [Mar-
tin87]. Ropen is a PARPC, which invokes a set of_database servers corresponding to the
address space hl. Filename and ballot are parameters which define the transaction to be
attempted at each site. The result statement counts replies, and, if a quorum is reachcd,
executes a break, to exit the PARPC. If a quorum has been reached, a commit order is
sent to all the databases, otherwise an aBort order. As Martin notes, corrvnit and abort

may be irhplementcd using PARPCs. The result statement also processes errors, and

/
-18-
‘ :
will exit when all members of the-remote procedure group have replied, directly or

through an error message. Early termination is flexible, as the result-statement may use

A

the replies’ contents in judging when to perform a break.

votes = 0; . ‘
ropen(hl filename,&ballot) { /* PARPC */
if (host_error(hl)) continue; /* remote error */
votes++; _ « [* positive vote */
if (votes > size(hl)/2) break; '
} ;o _ _
if (votes > size(hl)I2) commit(hl); /* comntitof abort in parallel */
else abort(hl); . :

—
¥

PARPC programs require the programmer to write a header file which describes
the PARPC interface using type and procedure declarations, and procedure argument
specifications. This header file permits the compilation and linkage of user code and
special PARPC code. PARPC programs perntit the procedures called to be on different,
. potentially heterogenous, host machines. The procedures forming the process group are,

however, statically determined at compile time. N

-19-

r .
3. THE SR LANGUAGE

3.1 Overvie_w

Synchronizing Resources, SR, [Andrews88], [Andrew587-], [Olsson86]‘, is a high
level distributed programming language, intended for both distributed operating systems
and distributed applications. SR is, in Andrews’ taxonomy, an operétion based
language [Andrews83]. 'Jsing two c;ommunications primitives (call and send), SR pro-
vides a variety. ;f éynchronisation ’séhem¢s in a way that is bbth simple and linguisti-
cally chsis%ént with other language éons_tructs.

g:The basic building block of an SR program is the resource, an entity that has asso-
ciated data structures and cédéj which may be accessed via structured operations. Note
that resource refers to both the lexically déﬁned resource-pattern and the dynamically
created instance of it, the resource-instance. Resource-instances may be created by
other resource-instances: the ability to access a given resource-instance, or one of its
opefations, may be passed from its creator to other resource-instances as a capability. A

resource may access another resource by invoking an operation on that resource, pro-

viding that it holds the capability to either the operation or the entire resource.

N\
3.2 Resources

Since SR embodies the philosophy that a resource’s external appearance and inter-
nal workings should be separated, a resource declaration has a specification and a body.‘
This facilitates modularity, permitting the design of the user interface of a resource and
its compilatdon as part of other resources, prior to, and separate from, its implementa-
tion. The specification defines the interface that the resource has with other resources,
declaring its operations and alsq the resources (patterns) that it impolrts. A resource
1nstance may create or destroy another, or invoke an operation on it, only if it imports

the pattern for that resource.

-20-

We present the specs of two resources, which will serve as examples throughout
the text. The first resource, dbase, serves a site of a distributed data-base and has opera-
tions vote, commit, and abort, to provide the semantiés required by the Gemini Protocol
[MarﬁnSZ]. These operations have a parameter transaction, of a globally defined type,
trans_type, which specifies the particular data-base transaction required. In addition
each site has an operation report_status, which is a request for the site to report certain
statistics. This is to be done by the site invoking some operation on a central control-
ling resource, asynchronously, in order to avoid the multicaster blocking. The opera-
tion report_status_now is a synchronous form of this operation, returning the status.

resource dbase :
op vote(transaction: trans_type)
op commit(transaction: trans_type)

op abort(transaction: trans_type)
op report_status() {send} # must be invoked via a send

op report_status _now(status: status_type)

The second resource, server, provides a service to clients. The operations
query load and query capacity return the current load'and capacity of the server. The
RES parameter server id permits the multicaster to identify each respondent.

resource server
' op query load(RES: server id : integer) returns load : real
op query_capacity(RES server id : integer) returns capacity : real

end

Resource variables corresponding to these resource-patterns may be declared as follows:

B

var my_server : cap server
var my _dbase : cap dbase

»

».

-21-

The body of a resource describes its implementation, which may involve four
types of code: initial, final, procs aﬁd processes, all executing in the same address
space. [nitial and final code are executed immediately after the resource is created and
immediately before its destruction. Procs ar;d processes service operation invocatioﬁs,

and perform other tasks.

When an operation serviced by a proc is invoked, a new instance of the proc of
that name is created and commences execution. A pracess, on the other hand, begins
execution after the resource is created and initialised, and normally continues execution
until the resource is terminated. Typically a process has a loop containing input-

statements, to service one or more operations.

An SR program begins with the creation of the main resource instance, which may
then create other resources instances, possibly on other machines: these may, in turn
create other resources instances. Capabilities to resources, or individual operations, may
be passed as a parameters, permitting the holder to invoke the operations of the

resource, or the individual operations.

¢ ¢

3.3 Operations

.g'R treats operations as being of the same type if, either the operations are expli-
citly declared. as being of the same op_type (as defined in an operation-type declara-
tion), or the oi)erations are implicitly of the same type, having the same number and
types of parameters, and the same type of return value. This approach permits one vari-
able to be assigned the capabilities of different, but equivalent, operations with similar
semantics (eg. a set of sorting routines). This continues the SR philosophy of separat-
ing semantics from implementation: operatigns with the same user interface are con-

sidered equivalent from a user perspective.

An operation on a resource may be serviced by the creation of new procs, or by

input-statements in one or more processes. When an invocation is received by a

-22.

resource, the SR run-time support (RTS) queues the invocation, and checks how the
invocation is to be serviced. When an operation serviced by a proc is invoked, a 'proc
instance is created and executes until termination, returning, if required, values to the
invoking resource. If the operation is serviced by a process, the situation is moré com-
plex: operations waiting to be serviced are queued, as are processes waiting to service
them. Operations may be waiting on a receive-statement, which services only one
specific operation, or be waiting on an input-statement, which may schicc a number of
different operations, one-by-one. Processes blocked on input compete to service eligible
invocations. Invocations competing to be serviced will be dealt with FIFO, unless syn-
Ao

chronisation or scheduling expressions require otherwise.

3.4 Implementation of SR

The current implementation of SR makes use of the UNIX operating system. Each
physical machine in the distributed system may act as host for ene or more virtual
machines. A virtual macfu’ne (VM) is an address space in SR, allowing resources on
the same VM to pass data by pointers. VMs are implemented as UNIX processes, and
execute two sets of code, that of the RTS and that of user resources, linked by the SR
compiler. The RTS provides for the creation and destruction of resoﬁrccs and operation

invocations, and links the VMs via the network.

S

3.5 Communication Primitives in SR
SR provides two communications primitives, the call and the send, along with the
co-statement that allows calls to be carried out in parallel*.

A send is asynchronous: the sender is blocked only undl its VM receives ack:

nowledgement that the invoking message has been buffered on the operation’s VM. No

* The use of sends within a co-statement was not implemented in the version of SR used for this
research. It has been subsequently.

-23 -

reply is returned to the sender. A send statement is of the form:

- send my dbase.report_status().

A call is synchronous: the caller is blocked until the invoked operation completes,
and replies (returned value and parameters) are delivered to the caller. A call may take

place within a call-statement: /

;/

—

call my_dbase.commit(transu)
or by using the denotation for the inv\o‘cationfa{ an expression, whose value will be the
value returned by the invocation:

write(CLoad is : °, my_server.query load(id)).

The parameters of an operation may be of type VAL (value or in), RES (result or
out), of VAR. (in ahd out). SR does not, per se, restrict the type of paramet\é:gs that may
appear with a ca%l or send. A returning call assigns values to arguments of type RES"
and modifies the values of those of type VAR. In addition, when the invocation deno-
tation occurs as an expression, the expression is assigned the value returned by the
operation. In the case of sends, no value will be assigned to RES parameters, and VAR

parameters will not change.

It should be noted that the two types of invocation, call and send, and the two
‘'ways in which an operation may be serviced, by procwer by process, permit the user to

achieve several of the common forms of synchronisation [Andrews88].

Invocation Serviced by Effect

call proc procedure call :
call process rendezvous

send proc dynamic process creation

send process message passing

The co-statement permits a number of calls tq) take place in quasi-parallel. "The
invocations are passed one-by-one to the RTS, which transmits them. Replies may be

received in any order: when one is recgived, the RTS may call back the SR code to

Y

execute the optional post-processing block corresponding to the returning invocation.
Early termination may be programmed by executing an exit, within the post-processing
block.

Invoking two servers within a co-statement is achieved as follows:

co

my load := my server.query load(id)
your load := your server.query load(id)
oc ‘

-

The purpose of the co-statement is to overlap the times taken to execute the opera-
tions contained within it. The actions performed in response to a co-statement, on the
invoker’s physical host, on the network and on the physical hosts of the VMs of the
invoked operatiohs, may occur in parallel. The invoker’s RTS processes the co-
statement, calls the network, processes replies and calls back to the user’s post-
processing block. The network transmits the invocation and return values. When
instances of the same operation are to be invoked on separate machines, further savings
might be made by employing a single multicast. This reduces network traffic, and

reduces the average time for a message to be buffered on each VM.

. ' -25-

4 MULTICASTING IN SR

4.1 Overview

v

The thrust of the research described in this thesis is the design and implementation
of a suitable multicasting scheme for the Seranguége. SR already provides a ;:ertain
"degree of parallelism, via the co-statement. This, however, requires one message per
operation invoked, as opposed to only a single mulu'ca'st' m"essage. In addition, the pro-
gi‘amming of multiple calls within a co-statemeﬁt is ﬁot a particularly elegant way of

describing parallel invocations.

We refer to the entity that pcrmits‘multicasti;i.g, equivalent to the process group, as
a multicast network (MCN). We argue that an MCN be considered, like the VM, a
pseudo-resource, which is, howe:/er, distributed Qvér the entire set of VMs. Multicasts
are to be performed by invoking the MCN-capabi}ity. We discuss the syntax and
semantics of an MCN: in particular, we examine and compare the effect of choosing a
message passing or remote procedure call paradigm. We also discuss the use of another

pseudo-resource, the collector, which acts as a separate reply queue.

The proposed implementation is similar to that described in [Navaratnam88], in
that each SR RTS will have multicasting code. In order to implement protocols for
changing group composition, we employ a central controller, modifying the central

name server, srx, for this additional purpose.

A number of criteria were employed in making design decisions:
Power
The system should allow the user to program a range of useful semantics with regard to

synchronisation, early termination, reply handling, reliability, and error handling.

Simplicity

The scheme should be linguistically and semantically simple for the user. The number

t

-26-

of new primitives ‘should be minimal. The potential for programmer error should be

minimised.

Compatlblllty

The scheme should be as consistefit as possible with existing SR sema.ntlcs and
any extension to the semantics should be minor. Extensions to the language should be

consistent with standard SR. The scheme should be in the spirit of SR.

o

Efficiency

Changes to the compiler and RTS should be minimised and have little effect on

performance. The implementau'oh should be as efficient as possible.

4.2 Muiticasting within standard SR \

It is possible to implement multjcasdng in standard SR by means of a true
resource, which holds the capabilities of receivers and invokes them all, when itself
invoked by a sender. The multicaster resource has operations join and leave, which
allow a receiver’s capability to be given to, or removed from, the resource. Multicast-
ing operations cause the multicaster to invoke its receivers via a series of separate uni-
cast invocations. Further get reply operations are needed in order for all replies to be
- made available to the user. A multicaster resource for multicasting to receiver

resources of type dbase (see section 3.2) would have specification:
) e

resource mcn

import dbase

op join(new_op:cap dbase)

op leave(old op: cap dbase)

op multicast vote(transaction: trans_type)

op multicast_commit(transaction: trans_type)

op multicast_abort(transaction: trans_type)

op multicast_report_status()

‘op get_reply vote(transaction: trans _type)

op get_reply commit(transaction: trans_type)

op ger_ reply abort(transaction: trans _type)

op get_reply report_status now(status status_type)
end

-27-

The true-resource multicaster has merit in demonstrating that multicasting can be
provided using 6nly standard SR, and as a model for the interface of a built-in multicas-
" ter, but has major limitations. First, though a single user statement may invoke multiple
receivers, the multicast is implemented as a sequence of unicasts: this is marginally less
effl%cient than a series of unicasts performed directly. Second, there is a proliferation of
6perations, two per operatioﬁ of the basic operation, if replies are required: a multicast
operzftion and a ger _reply operation. Lastly, as noted, SR’s strong typf"hg requires each
multicasting resource to be customised to correspond to the type of the receiver, and the
type and number of its parameters. This sort of modification should be performed
mechanically by a pre-processor or compiler. These limitations provide the justification |

for a built-in multicasting facility.

The work on multicasting described in chapter 2 referred to process-to-process
multicasting, as the languages and systems used were process oriented. SR is an
operation-oriented language [Andrews83]: its unit of encapsulation is the resource,
which sends messages' by invocations and receives messages via operations: thus, mul-
ticasts will be invocations by the sending resource of operations on the receiving
resources, as with the true-resource multicaster. While, in the work citeq, process
groups were groups of peers, there is a basic asymmetry with SR multicasts: the
regeivers for a multicast are a set of operations, the senders a set of invocations. There
is no requirement that the parent resources of the senders correspond to the parent

resources of the receivers.

The multicast, being a single operation with one set of parameters, must invoke
operations whose formal parameters correspond to the multicast’s parameters in both
number and type. This does not imply that the operations invoked need be instances of

the same operation, merely operations of the same type. :

An MCN may comprise a set of operations, or a set of resources. With a

resource-based MCN the operation required in a given multicast must be specified in

-28-

\

the multicast-statement. The choice of operations as the multicast group memBerS is
- the most general one; however, in the case of file access, a separate MCN would be
required for rcach file operatioﬁ (read, write, open, etc.), causing an excess of user-code
to create, and maintain the MCNs, and potentially a greater burden on the RTS: here the
choice of an entire resource as the multicast group member is more convenient. In
addition, as will be discussed later (section 4.4.4), the resource-based MCN is nec;,ssary |
to implement same order delivery for a set of operations, such as read and write. Unfor-
tunately the resource-based MCN precludes the invocation of operaaon-s of the sameﬁ
type, on resources of different types. Thus both resource-based and operation-based
MCNs should be provided. Note that this parallels the existence in SR of both resource

and operation capabilities.

4.3 Group Composition : Dynamic or Static

V provides for dynamic group creation, and for dynamic changes to group
membership; with PARPC, however, group composition is statically determined at
compile-time, raising the question as to whether dynamic groups are hecessary. With
most distributed user programs, the required processing power'Will be known at
compile-time, and statically defined groups will suffice. However, at the OS level, or
with ongoing systems such as distributed data-bases, the processing power may be
required to change dynamically. A server group, such as the servers of the sites of a
distributcd data-base, may change as new sites are added, and old ones taken out of ser-
vice: sites may also go-down, and require servicing and bringing-up. One option is to
stop all transactiof)s, make the change, and then restart the system.: this may be satis-
factory, if the cha\nges. are infrequent, and system down-time can be tolerated. In other

circumstances, the preferred approach would be to create and initialise the site, and then

add the server to the group dynamically, with minimal interruption to the service.,

-29 .-

Distributed algorithms may also require dynamic groups: as the job progresses, it
may prove advantageous to redistribute the work-load, creating new processes to per-
form certain tasks and reducing the number performing others. In this context, dynamic
-changes to the group composition are esscnﬁal, if time savings a:e to be achieved.

{ .
4.4 Required Semantics of Multicast Statement

A}

The literature’ [Atkins89] [Martin87] suggests a number of semantic features that
.should be incorporated into a multicast statement: synchronisation, early termination,

reply-handling, reliability, error-handling, and same order multicasting.

4.4.1 Synchronisation and Early Termination

Multicasts may be asynchronous or synchronous. Synchronous multicasts are
required for applications in which results are required, or where the user needs to be
assured that a set of operations have completed. A synchronous multicast will thus pro-
vide reliability similar to that provided by the synchronous unicast (call), guaranteeing

that all, or some number of operations have completed.

In order for the asynchronous multicast to provide the same reliability as the.asyn-
chronous unicast (send), its success must guarantee that the message has been buffered

on all VMs, or -some number of thgm.

As noted in chapter 1, there are algorithms that permit the multicast to terminate
. early, /ahd'thus be more efficient. The examples given in section 1.5 are cases in which
the user is satisfied when the replies returned so far satisfy some property: this may be
a function of the number of replies, or depend on the values returned. Early termination
for synchronous multicasts should permit these semantics, and those required when no
;iata is returned and the user needs to be assured that some number of tasks have been

completed, as in some data-base applications. Note that if no values are required, the

termination semantics can only depend on the number of replies.

-30-

3

Early téfmination of asynchronous multicasts appears to be of a lesser importance.
A potential application is when a user requires assurancé that data has been buffered on
at least one site, before continuing and era;sing the local copy. However, such a sc.he_me'
might prové inadcqilate if the buffering is in volatile storage. It should be noted that
setting the number of required ACKs to zero would specify totally unreliable delivery,
which may be permissible »iﬂkfome cases, with error checking at a higher level. We dlS-
cuss the provision of early teﬁe.ination for asynchronous multicasts, but do not regard
them as a crucial feature.

\
3

4.4.2 Reply Handling

Multicasts require replies in some applications, and not in others. Atkins permits
this choice, as does Martin (via the mechaniém of in and out parameters) in the
PARPC: in both cases, the absence of replies is taken to imply asynchrony. In PARPC,
the absence of outr parameters makes the PARPC asynchronous, and a user requiring no
replies, but wishing to be assured that a process has terminated, must employ a dummy
out parameter. This mechanism is inelegant and should be avoided, if poséible, in a
high-level language. ‘

L)

4.4.3 Reliability and Error Handling

Reliability and error handling are opposite sides of the same coin. The kind and
degree of reliability required depend on the applicaﬁdh. There are three possible ;cz'n'ds:
the scheme could be totally unreliable, with the message being sent, but nothing more,
deliver-reliable, with the sender being assured that the message has been buffered on
the remote machine(s), or reply-reliable, with the sender being assured of a reply, or
replies. The degree of reliability applies to multicasting, when the number of ACKs or

replies required may vary.

~ : -31-

It is important to distinguish between the different types of failure. Atkins provides for
a multicast to return success or failure, what may be termed semantic success or fail>ure:
the multicast-statemeni itself does not fail, in Phe sense of generating an exception, it
merely returns a process id. of zero. A PARPC does not fail either: exceptions may be
handled within the result-statement. SR’s unicast primitives do not return success or
failure: errors provoke exceptions, causing run-time errors, unless the user has provided
a handler, a block of error-handling code associated with the multicast statement. It
should be.noted that returning success or failure, is consistent with standard C program-

ming practice; in a high level language, this practice is less common.

The range of reliability is specified by Atkins, by means of a parameter which
specifies the kind (ALL_REPLY, K_REPLY, ALL_DELIVER, K_DELIVER) and, in°
the case of the K-option, an inte&er expression giving the required number of ACKs or
replies, the degree. It should be noted that this reliability could have been provided
using Cheriton’s earlier unreliable scheme, using higher level code. Atkins’s scheme
has the advantage of being more efficient, as it performs the cheﬁks within the V-kemel.

It appears that the justification for specifying reliability via parameters is based on two

grounds, efficiency and simpler code.

Martin employs a more flexible scheme, permitting the PARPC user to have expli-
cit access to both gentine replies and exceptions, which have separate entry points
within the result-statement. This is, however, at the potential cost of extra processing

time, as this functionality is provided by the user code, rather than at a lower level.

SR intends send and call to be deliver-reliable and reply-reliable, respectively: by
default, an exception provokes a run-time error. Rendering errors benign requires the
use of a handler. If we meld SR multicasts with the parametric approach to specifying
reliability, we are faced with a greater potential for exceptions, due to gcherally less
.reliable lower level communications, and to the greater number of hosts and receivers

that may fail. It should be noted that deliver-reliability guards against communication
-

-32-

failure, including the possibility of a receiver being unable to buffer a message. Reply-

reliability guards against both communication failure and remote exceptions. However,

it should be noted that k-reply-reliability does not imply (kéi)—deliver—reliability, and a

scheme providing k-reply-reliability must be prepared to deal with communication

u

CITors.

In distributed systems, errors are often passive, discovered by the absence of
action, rather than by action. An error checking scheme inevitably requires a local

timer: if no response occurs within a time-limit, an error is declared. This time-limit

must be set within the operating system, after a process of fine tuning. This is not appli- -

cable to calls, as the remote action may take an indefinite time to complete.

The present implementation of SR is fiot designed to withstand processor, cofn—
munications, or process¢failure. The failure of the name server process, srx, would
e\}entually be fatal, as its information is not feplicated. However, sﬂe cost of building in
the nccessa?y redundancy is substantial [Birman87], and bcyor;cﬁhé scope of this exper-
imental ianguage. In addition, such reliability comes at the cost of slower processing...

4.4.4 Same Order Multicasting

Same order multicasting with operation-based MCNs, does not provide the neces-
sary functionality for replicétcgi data-base applications: reads and ‘writes would have
separate MCNs, and ordering on each MCN would not imply that each site saw the
same ordering of reads and writes taken together. This problem is solved by resource-
based MCNs, on which all operations are ordered, eand is a potent argument for their
implementation. However, a distributed data-base may permit other operations, of a
diagnostic nature, which need not be part of the ordering. Thi§ example suggests the
need for resource-based MCNs, in which all operations, subsets of operations, or indivi-
dual operations would be ordered. However, specifying all possible ordering semantics

would be confusing.

P

-33-

b4 L3

Same order multicasting could be a static “attribute of a ;.given receiver group, a .
boolean to be dynamically toggled, or a property of individual multicast statements,
requiring the programmer to.correctly specify the nature of each multicast. Sbécifying"
- same order multicasting in an MCN declaration has several advan‘tages. Firstly, as
noted, this provides the functionality required to update replicated data-bases. Secondly,
by defining this attribute statically, the programmer- is relieved of responsibility for
correctly specifying the nature of each multicast, with the side effect of slightly siihpli-
fying the user code: as will be described shortly, the semantics of same order multi-
casts, are, in some cases, far from simple. The ‘other options for specifying same order

multicasting appear less useful, unless the algorithm being implemented has different

phases, requiring ordering and non-ordering multicasting at different times.

The effect of same order multicasts depends on the type of multicast, and on how
the operations are impfemented. Same order Synchronous multicasts guarantee that all
the operations .invoked will terminate before the next multicast, of whatever type, is
. started. Same order asynchronous multicasts guarantee only that the ii{;/ocations will
have bce'n Buffered before the ﬁext ordered multicast is allowed to'take place. When an
operation is implemented by a process, and in the absence of scheduling or synchroni-
sation expressions, FIFO will prevail and same order asynchronous multicasting will
imply that each receiving process dezils with the stream of multicasts in the same order.
If an operation is implemented by a proc, same order asynchronous ;nulticasting only
implies that the procs are created in the order in which the multicasts are sent. Even
though time-slicing is not presently implernented in SR, the ﬁ‘rst proc to start may not

finish first, as it may block, permitting the second multicast’s invocation, with different

parameters, to execute and possibly terminate first.

. As our scheme requires a central controller to facilitate VM-to-VM multicasting,
we propose that same order delivery, be implemented using this same controller, as
with the scheme of Navaratnam et al. [Navaratnam88].

\

1

-34-

4.5 Multicast Group Semantics

Access to SR resources is controlled by means of capabilities: an operation may be

invoked only by a resource holding its capability or that of its parent resource. To

explicitly maintain these semantics with dynamic process groups would be impractical,)

as each potential sending resource would be required to hold the capability to each
receiving operation. What is required is a way of controlling process group member-
ship,v for both sending resources and receiving operations, that maintains the spirit of
SR. ' . .

The true-resource multicaster of section 4.2 provides a model for fhe semantics of
a built-in multicaster:/'_I‘he right to multicast is restricted to those holdjng‘ the multicas-

ter capability, consistent with SR practice. We therefore propose that the right to multi-

cast to a given process group be controlled in this same manner. The resource creating

the group would obtain the capability, and could pass the same to other resources. The

multicast network (MCN) is the entity which has this capability.

Controlling the receivers of a MCN requires a different approach. Again the
" true-resource multicaster provides a model, in that a resource holding the capability of

an MCN and that of a potential receiver may pass the receiver capability to the multi-

caster resource, thus adding it to the group of receivers. Though this approach is suit- .

able for a built-in MCN, some clarification of the semantics is required.

Al

This raises an interesting point: resource A creates a multicast group, passes the
multicast capability to resource B, and joins an operation O to the group. Resource B,
which does not possess the capability of O, may now multicast to the grbup and invoke
O. This appears to violate SR semantics in that a resource can invoke an operation
whose capability it does not possess. This violation is, in fact, apparent only: a resource

may not directly invoke an operation whose capability it does not possess, but may do

so via an intermediary: the ability to invoke is transitive. In our case the multicast

group acts as intermediary.

“\"dz\

-135-

We suggest that the violation of SR semantics depicted above, is apparent only, as
the ‘semantics prgposed ‘do not differ from those that the true-resource multicaster pro-
vides within stLidard SR. The true-resource multicaster provides this functionality
because the ability to invoke is transitive. (A may indirectly invoke C, if A has the
capability of B, and B that of C.) If we-consider the MCN a pseudo-resource, the

semantics of standard SR will be maintained. We thus propose a minor clarification of

SR semantics:

that an MCN be a pseudo-resource, and that the right to jhulticast to the
receivers of an MCN be regulated by the sender being required to hold the capa-
bility to the MCN, i;litially owned by the group creator,
and ' S ' i

that a new receiver may be added to the MCN by any resource that holds
both the MCN and the receiver capabilities. ‘

N |
4.6 Maintaining a Built-in Multicaster

" We now describe the features of a built-in pseudo-resource MCN, its semantics .
and the changes required to the SR language for its impm;tation. In describing the
ways in which a MCN may be accessed, each language addition will be referenced to\
the appropriate section 'of the Revised Report on the SR Programming

Language[Andrews87], which we refer to as RR. %

As a pseudo-resource, an MCN-instance may be declared, created, or destroyed,
like a resource. To distinguish between a declaration of resource or operation, and that
of an MCN, we use a new keyword net in place of cap in RR (3.1):

<capability_definition> ::
<captype> <resource_oOr_operation_or optypc identifier> |

<captype> <component_ identifier.operation_or_optype_identifier> |
<captype> <operation_specification>

-36-
<captype>::= cap | net

This permits operation-based and resource-based MCN-declarations of the type:
var loads : nét servers.query load # an operation-based MCN **
> var commits : net dbase.commit # an operation based MCN

var dbases : net dbase # a resource-based MCN
var servers : net server # a resource-based MCN

When creating or destroying an MCN, we use standard syntax, vﬁ'th the word net
being the name of thq object created or destroyed. This generic name avoids the com-
plexities of specifying the type of each MCN, which is apparent from that of the vari-
able. There may be no initialisation values nor a host VM. Thus:

dbases := create net()
destroy dbases

Changes to a multicast group may be made by means of join and leave statemehts,
which must contain the capabilities of both the receiver operation or resource, and of
the MCN. We use thc;, following code to join/remove my dbase to/from the MCN

_dbases: |

join dbases(my_dbase)
leave dbases(my_dbase)

*

A new statement, mc_update statement, must be added to the list .of
| résource_control_statcmcnts in RR (6.3):

<resource_control_statement> ::=
<create_statement> | <destroy_statement> | <mcn_update_statement>

mcn_updﬁe:sm\}:menb 1= <join_statement> | <leave_statement>

<join_statement> j::=
Jjoin <men_identifier> (<resource_or_operation_identifier>)

<leave_statementy> ::=
leave <mcn_identifier> (<resource_or_operation_identifier>)

An operation or resource may bg joined tc:‘?a MCN as long as their types agree.

;
f\

** In SR # indicates a comment.

-37-

| Atkins and Martin ’providc two paradigms for the semantics and syntax. c;f multi-
casting: the message passing (MP) and remote procedure call (RPC) paradigms
[AﬂdnsSQ] [Martin87]. It is worth deécrib'mg the essential differences between them. In
the MP paradigm, separate primitives are used to perform multicasts and to acc‘ess‘
replies. This provides great flexibility, but implies that the scope of the entire multicast
| activity is not lexically defined. In the RPC paradigm, one pﬁmitive is used for the
entire multicast activity, including result processing. The scope of the multicast is well
© defined, resulting in an integrated approach. We examine how these may be used to

describe multicasting in SR, and discuss their relative merits.

4.7 SR Multicasting : Message Paésing Paradigm

In this paradigm, bas¢d on [Atkin589], reliability and early termination are
specified by an optional integer expression. The ALL_DELIVER option provides the
same semantics as the SR send, in that all receivers must acknowledge the receipt of the
message before the statemént terr;linates: ALL_REPLY is similar to SR’s call, in that

all receivers must reply. It should be noted that the éernantics required for multicaSts
correspond to those for unicasts, suggesting. that, as in V, the samc»two primitives (in
this case, send and call) be used t.o specify a}synchronous and synchronous multicasts. A

send or call statement will be a unicast or multicast depending on whether the associ-

ated denotation contains an operation or a multicast_operation.

We have made two changes to‘ the syntax, to accommodate the optional termina-
tion semantics and to provide the ger reply functionality. We have added the optional
termination semantics to the multicast denotation, rather than rcquiring new call and
send statements. This change also takes into account the use of denotations as expres-
sions. The following invocation terminates after the first reply has been received:

call dbases.report_status_now(status) return_after 1

providing an optimisation when the first reply will suffice.

-38-

The inclusion of the ger reply primitive presents ;ome problems. In the absence

of return-values, we could provide a get_reply statement as follows:

get_reply servers.query load(load,id)
where the operation query_load would have been redefined so thatlthe load is returned
as a parameter, not as a return-value: o

op query load(RES qud.' integer, RES server_id . integer)
If, however, return-values are required, the problem is how to specify the get reply
functionality in a denotation, along with the multicast operation, which identifies the
reply-queue being accessed. Ger_reply is effectively an operation on the reply-queue,l
which is implicitly specified by naming the multicast operation. Cne approach is to
explicitly define a reply-queue for each multicast: this is discussed in section 49. If
return-values are required, and there is no explicit reply-queue, there appears to be no
satisfactory way to incorporate get reply into the language. The option we have chosen‘
is to allow get_reply to be added as a prefix to avdenotation, which would otherwise
represent a multicast. The w;ak justification for this is that get_reply appears where call

would appear, were it not omitted when a call appears as an expression. Thus:

load := get reply servers.query load(id)
Modifying RR 7.3 to incorporate ger reply and termination semantics:

<denotation> ::=
[get_reply] <object_identifier> ([<argument_list>])
[<termination_semantics>] -
<termination_semantics> ::= return_after <integer_expression>
It is noted that only one of the termination semantics and get reply may be used, and
/
only if the denotation otherwise represents a multicast. The use of get_reply is so awk-
ward that it is perhaps better to specify that multicasts should have no return-values,

-and that RES par&meters be used in their place.

&

47.1 Multicast Send

Asynchronous multicasting is indicated by send:
send commits(trans)
send dbases.report_status()
The denotation for a rmulticast_operation contains either the capability of a operation-

based MCN, or that of a resource-based MCN qualified by a choice of operation.

By default, a multicast-send returns when all,VMs have acknbwledged receipt of
the message, providing asynchronous message passing. The optional termination
semantics provide for early termination, after a specified number of ACKs have been
received. Following the approach taken with unicasts, we permit any type of parameter
(RES, VAR or VAL), but of necessity, the VAR parameters will be unchanged and
RES parameters will not have been assigned values. However, compiler warnings are

warranted.

4.7.2 Multicast Call

Synchronous multicasts may appear in two types of statement, as is the case with
unicasts. Apart from the call-statement, a synchronous multicast may be performed
- when the appropriate denotation is employed as an expression. The two cases are illus-

trated by the following examples:

call dbases.vote(transaction)
load := servers.query load(id)

S

)
The synchronous multicast emulates the synchronous unicast in guaranteeing that

the invoked operations have terminated, before it terfninates. In some cases early termi-
nation may be desired, such as when the user requires a guarantee of.a minimum
number of successful invocations (as when working with a replicated data-base, or with

Byzantine agreefnents): in these cases the optional terminati03semantics may be used.

- 40 -

Parameters of all types (VAL, VAR and RES) are permitted, and have the same seman-
tics as for the unicast call, with the stipulation that the new values of RES and VAR

parameters will be those derived from the first reply.

It is necessary to consider the pathological case when the user specifies in the
optional semantics a value exceeding the size of the process group, the multicaster
) - ,
being unaware of the size of the group. The options appear to be either to have the

multicast fail, or set the number of replies required to ALL.

4.7.3 Get_reply

In V, get_reply only bldcks for a specified period: it then times-out and returns
failure. This approach may be satisfactory inh a message passing (;nvironmcnt, where
r;eplics can be expected within a reasonable, known, time. In SR, however, the time for »
an operation to complete may be large and is not likely to be known. Thus get_reply
must be bloclci.ng, which may cause a deadlock, unless the user can be assured that a
reply is on the queue, 6r will arrive. To make proper use of ger reply, the user needs
to know of the size of the group, which may be volatile. Without this knowledge,
maintained at a higher level, there appears 'no simple way to permit the user to consume
all replies. A primitive aliowing the user to determine the size of the receiver group
would return a potentially erroneous value. (This problem does not exist if we model

PC, as we show in section 4.8.) The reply_queue is automatically

-

new multicast-statement in the same process invokes the same MCN.

opose that the replies to a call be consumed only by the process which made

i \is the functionality provided by others, and that required by distributed

algorithms. This implies that there must be a separate reply-queue for each MCN

operation and pfoccss, rather than one per resource or VM. Such queues need not be
4

created until a multicast occurs, but may not be removed until it is certain that no

further use can be made of them, when all replies have been consumed or the next mul-

-41 -

.
ey,

ticast occurs. The simplest approach is to create a queue when 'required and never
remove it, unless the MCN is destroyed. The only maintenance required is to empty the
- queue when a new synchronous multicast occurs for the concqunding MCN operation.
If it is required that multiple processes or resources consume the replies, the fl.;nctional-

ity may be provided using a collector (section 4.10).

As the first and subsequent calls are returned differently, the code for processing
replies must be duplicated, leading to more complex code. To determine the total load
on the group servers, the following code is required:

total_load := 0
total_load := total load + servers.query load(id) # load from first reply
fai:=1toreply total -1 -> : ‘
total - load := total load + get reply servers.query load(id) # load from
subsequent reply
af .
write('Total load ', total load)

A solution to this asymmetry is to make call non-value-returning, and to have all
" replies returned to the reply queue.

total load := 0
call servers.query load(id)
fai:=1toreply total ->
total_load := total load + get_reply servers.query load(id)

write('Total load ', total load)
This simplifies code when multiple replies are to be used, but leads to more compli-
cated code when a single reply is required, as in a request for service in which the first

i
server responding is chosen.

4.7.4 Error-handling

VTS

Both synchronous and asynchronous multicasts are provided, and each may ter-
minate early, after a specified number of replies or ACKs have returned. It should be
noted that early termination of the multicast statement may not depend on the contents

of the replies; the user may, however, chose how many replies to process. This means

42 -

4

a

that the user mény not commence reply processing until the replies specified by the ter-

mination semantics have returned.

Error handling is problematical in this paradigm, as the high level syntax provides
no simple way of returning success or failure for a multicast. If the required semantics
fail, then the statement must fail, and either a run-time error occur, or a handler be
invoked. With unicasts the handler can be attached to the multicast statement, and will
deal with any exception detected for the single operation invoked. With multicasts
requiring all ACKSs or replies, the multicast statement will be currenf when an cxccpﬁon

returns, and 2 handler attached to the statement may be invoked.

If early termination is used, the handling bf late arriving exceptions is difficult, as
the executing statement will be without the scope of the multicast. The problcm is that
the message passing paradigm does not permit the lexical determination of the scope of
a multicast plus rcply-ha.ndling: with this paradigm there is no semantically and
linguistically simple way to specify error handling in all cases. It thus appears that the
MP paradigm does not admit the handling of remote exceptions arising from a multi-

cast.

It is our view that the early termination semantics have the intention of permitting

. . e .
exceptions to occur, as long as the required number of replies/ACKs return. Thus we
suggest that the handler should be concerned with the failure of the multicast, but not

explicitly with those of its receivers.

4.8 SR Multicasting: Remote Procedure Call Paradigm

PARPC [Martin87] suggests a syntax in which a reply-processing-block is associ-
ated with a multicast, to process replies and deal with exceptions. Modelled on other SR
statements with associated blocks of code, such as the do- or co-statements, we use a
keywofd (mc) to begin a multicast statement and its reverse (cm) to terminate it: To

!

accommodate this a new multicast statement must be added to the grammar in RR,

-43 -

section 6.1:

<invocation_statement> ::=
<call_statement> | <send_statement> | <multicast_statement>

<multicast_statement> ::= mc <denotation> [-> <reply_processing_block>] em

<reply_processing_block> ::= <block>

The multicast statement implicitly contains a loop, in. that the optional
reply_processing_block is executed, by default, once for each reply. With this syntax a
whole range of semantics may be specified: early termination, synchronous or asynchro-

nous multicasts, reply-handling and error-handling. A

w

It is necessary to specify how the parameters of the multicast Should behaye, and
in particular their scope. VAL parameters ﬁrc expressions which may in ugie variables
accessible within the scope of the block which contains the multicast: VAR paratheters
must be such variables. RES parameters and the return:value (if any) may be variables
local to the scope of reply_processing_block, or variables with wider scope. The values
returned by the mu.lt'icast, those of the VAR and RES parameters, must be accessible
within the reply_processing_block. While RES parameters could be specified to be
local to the reply-proccsgmg-block, this is not feasible with VAR parameters. We thus
specify that all variables used as actual parameters for a multicast must be declared lex-

ically prior to the multicast statement. It should be noted that this syntax precludes the

use of return-values, a minor-inconvenience.

Synchronous Multicasts with replies

In order to employ RPC multicasts, the specification of the resource server must
be changed to use arguments rather than return-values. We also add the server id. as a
RES argument, to allow the multicaster to identify the source of each reply. Thus:

op query load(RES load real; RES id : integer)
op query capacity(RES cpry : real; RES id : integer)

44

The load-querying example of section 4.7.4, may be written as follows:
total load :=.0
mc servers.query load(load, zd) ->
total_load := total_load + load
cm ,
write(’Total load is :°, toral _load)

Synchronous Multicasts with no replies:

Our example is the second phase of a Gemini Protocol, using synchronous multi-

casts, in which all sites are to commit, before the statement terminates. ,4%@)’1
mc voters.commit(transaction) -> sKip cm

The skip_statement is a null statement, which will be executed until all operations have

acknowledged.

Synchronous Multicasts with Early Termination:

Our example is that of a client wishing to identify servers whose total capacity is
sufficient to handle the client’s task.
initialise required_capacity to c.apacity needed for task.
mc servers.query_capacity(capacity,id) ->
required_capacity := required_capacity - capacity
instruct server (identified by id) to undertake part of task
if not (required_capacity > 0) -> exit fi # all work apportioned
cm .
The SR exit forces termination of the smallest unclosing iterative statement, which is, in

this case, the implicitly iterative reply_processing_block.

Asynchronous Multicasts:

Our example is the second phase of the Gemini protocol, using an asynchronous
multicast: failure to receive a commit or abort will be detected by the receiver at a

-

higher level, via time-out, and a retransmission requested.

mc voters.commit(transaction) cm

- 45 -

The absence of a post-processing block is taken to indicate asynchrony: the statement
g
terminatéé after all VMs acknowledge.

4.8.1 Error-handling
\

The RPC paradigm provi'des asynchronous and syncMonéM&Mcwts, with flexi-
ble early termination semantics, which may depend on the nature of the replies. Tﬁis
flexibility permits the user to process both genuine feplies and exceptions: the handler
may deal with individual exceptions, and not merely the failure of the entire statement,
as in the MP paradigm. Error handling may be achieved by providing two separate

blocks of codle:' a reply-processing-block and an exception handler.

Our scheme does not provide early termination for asynchronous multicasts. As
noted earlier (4.4.1) this functionality does not apf)ear essential; if it does prove neces-

sary, a simple addition to the syntax could be made.

As the authors of SR have not specified how to represent handlers we feel free to
choose the most appealing option. The same syntax will apply to both synchronous and
asynchronous multicasts. Our choice is to use mc_handler followed by a block of code,
thus:

<multicast_statement> ::= mc <denotation> [-> <reply_processing_statement>]
[mc_handler -> <exception-handling-statement>]
‘cm
The éxception-handling-statement is a block, but with special semantics that will permit

it to determine which gfoup member(s) provoked the exception, and its nature.
' &
To illustrate errcr-handling, we use Martin’s example of the Gemini protocel (sec-

tion 2.3):

- 46 -

votesfor:=0
mc dbases.vote(transaction) ->
votesfor++
if (votesfor > quorum) -> exit fi
mc_handler -> # error-processing-block
¢m # end of multicast statement
. if (votesfor > quorum) -> mc dbases.commit(transaction) cm

[1 else mc dbases.abort(transaction) cm
fi

4.9 Conclusions with regard to the two paradigms

A compaﬁson of the two paradigms reveals that the remote procedure call pafa—
digm and syntax is the more appropriate. This may be seen from examining how the
two models compare with regard to the functionality specified in section 4.4 and the
criteria given in section 4.1. It should be noted that generally either scheme can be
made to provide the same range of functionality. The reasons for preferring one para-
digm over the other relate to the relative simplicity and naturalness of the paradigm,

both semantically and syntactically, and its ease of use.

Synchronisation

Both paradigms permit synchronoﬁs ard asynchronous multicasts.

Early Termination
Both paradigms permit early termination, but the RPC paradigm is more flexible as the
termination semantics are programmed by the user and may make use of the values

contained in the rci)lics. This is at the expense of using higher level code. .

Reply Handling

Both schemes permit reply handling, but again the RPC is cleaner, semantically and
syntactically. The syntax for get reply in the MP paradigm is very awkward; however,
it should be noted that if return values are prohibited, as in the PARPC paradigm, this

awkwardness is reduced. Even so, there remains the problem of the blocking nature of

»

-47 -
get_reply and the volatile nature of the receiver group.

Reliability and Error handling
Here the RPC paradigm 1is clearly more powerful, as the linguisqic encapsulation of
reply-processing facilitates the handling of remote exceptions. The MP p‘aradigm’s

error-handling capability is restricted to handling the multicast-statement’s failure.

Same Order Multicasting
-

The two paradigms offer equal advantages in specifying same order multicasti‘%;. If
this is done lexically, there there is clearly no difference. If it is specified dynamically,

a keyword (ordered) may be attached to a multicast statement of either type.

In section 4.1, we outlined certain criteria for judging multicasting schemes: we
now compare the MP and RPC paradigms with respect to &re;e criteria. From the
above discussion we can conclude that neither scheme is intrinsically more powerful, in@
an absolute sense, in that either typé of syntax can be enlarged to provi&e semantic

equivalence to the bare form of the other. However, if we consider these bare forms,

the RPC model provides the greater power.

The RPC paradigm is also superior with respect to simplicity and ease of use,
requiring only one new primitive. In language design there is a tension between flexi-
bility and structure: the more flexible a language, the less structured it is, and hence it
has a greater potential for programmer error. We believe that the previous examples
show the RPC paradigm to be flexible enough to provide all necessary semantics, and
yet sufficienty structured to minintise the chance of programmer.error. The MP pa;a-
digm, on the other hand, is highly unstructured and would increase the potential for

error. The RPC is also mare SR-/ike and more compatible with standard SR.

As far as efficiency is concerned, there appears to be little to choose between the

two (see section 5.4) However, the more ﬂekiblhe error handling in the RPC paradigm, is

- 48 -

bought at the price of being potentially less efficient, as it is performed at a higl;er

level.

Overall we conclude that the RPC paradigm is supeﬁor. This is
surprising, as its single logical thread of control is more in tune with the semantics of a -

high-level operation-based language, than is message passing.

4.10 Remote Reply-queues -

Both multicasting paradigms permit replies to be returned to the multicaster; the
possibility exists, however, that some algorithms may exploit a schéme whereby replies
are delivered to other resources or processes, which we term consumers. The case for
having a remote reply-queue is circumstantial. A model with a central controlling
resource, an‘c\l a number of lesser controllers might employ this functxonahty by having
the central ‘éontroller multicast, instructing all its servers to send data to a subsidiary
controller. Note that the functionality we proposed for call did not allow the replies to
a multicast to be consumed by different processes, even within the same resource or
VM: this ability might be desirable in an multi-processor architecture. A second para-
digm that might support this functionality is asversion of Cheriton and Stumm’s multi-
star satellite, in which all the satellites might be instructed by the star to send partial

.-

results to a particular satellite.

An argument against providing this functionality via a remote reply-queue is that it
may also be provided using the orthodox scheme, with one additional message, from
the resource initiating the action to that‘which is to receive the data, instructing the
latter to perform a conventional multicast. The limitations of this approach are the extra
code required to support this extra messige, and the extra time and network traffic
incurred. None of these appear to be major problems. However, we c;onsider it

worthwhile to discuss the incorporation of a separate reply queue, which we term a col-

lector.

- 49 -

A collector has most aspects of a resource: it holds data,' performs tasks, and must
. : &~

be invoked by a consumer process to get replies, and by the MCN to queue rcplicsm
therefore choose to implememt the reply queue as a pseudo-resource, the collector,

located on a specific VM.

There appears little value in having resource-based collectors, as replies to dif-
ferent operations would have to be handled differently by the uscr-codc.'Wc thus res-
trict a collector to be associated with either a operation-based MCN, or with a specific

operation on a resource-based one.

The use of a separate .reply-queue appears more in tune with the MP rather than
the RPC paradigm. We therefore examine the collector principally in the MP p;mdlgm
with a brief addendum discussing it in the RPC paradigm. |

A

The use of a collector introduces a new control thread: the qucstion arises what the
multicast-statement’s synchronisation should be, and what should happen to exceptions:

should they be returned to the multicaster or the collector?

= & B

. Replies
Multicaster " Consumer

Collector

Operations

F
Figure 5 Multicasts with Replies delivered to a Collector.

-50-

. -

4.10.1 Synchronisation and Reply queues ~ ™. _—

In general, the user might desire a number of different synchronisation schemes,

corresponding to the following situations where the multicast would not complete until

(1) all invocations had completed, or
(2) the collcc{or_ received all (or all necessary) replies, or
(3) all (or all neccss:ary) replies, had been removed from the collector.

Note that sjmchronisation points must occur in this order. Another option is to make
collector multicasts asynchronous. It should be noted that synchronisation may also be
provide at the user level: the justification for providing it as part of the multicast is sim-
plicity, c‘fﬁciency, and possibility that not all synchronisation points may be pro-

grammed at the user level. : \

In the MP paradigm, it is possible to implement any of synchronisation points as
the signal for the multicast ;o terminate, based on the specification of termination
semantics as part of the call. chhavc taken the view that the call should succeed if the
required number of replies/ACKs return: exceptions are ignored. Applying this principle
to collector calls suggests that the multicast be regarded as a success if the given
number . of replies are delivered to the collector. This also guarantees synchronisation
point 1: the delay over a scheme that directly records the termination of operations is
small, being the time for one additional message. Note that each operation separately
acknowledging its completion would require an extra (n-1) haessages, where n is the

number of receivers. Synchronisation point 3 is not lexically defined, and is thus best
provided at the user level.

In the RPC scheme, exceptions were handled individually, along with genuine
replies. This suggests that exceptions be forwarded to the collector and handled there.
Replies will be processed by a block of code, the ger-reply-block. Unlike the situation

in the MP paradigm, there is no time at which all required replies have arrived: the

-51-

completion of the operations and the exit from the reply-processing are the only
significant synchronisation points. As exceptions are forwarded to the collector, it
makes sense to let the synchronisation point also be an attribute of the collector. We
thus propose that a collector call statement terminate when the collector get-reply-block
terminates. \ -,
/ |

In cases when the reliability of the multicast is not an issue, as when dbases are -
invoked by report_status, an asynchronous collector multicast may be adequate: the

rare failures may be handled at the user level. In the MP paradigm, this functionality

may be provided by using send, as in:
send dbases.report_status() overto status_collector

In the RPC paradigm, there is no obvious way to specify this; however, a simple nota-

tion could be provided.

4.10.2 Remote Reply Queues in the Message Passing Paradigm

Collector use requires changes to the syntax of the call:statement. It should be

Py
noted that the use of the collector precludes the call being part of an expression.

<call_statement> ::= [call] <dénotation> [overto <collector_id>]

A major design question is what operations the collector should have, and what
their.semantics should be. Clearly there must be an operation to allow the user to
remove replies from the queue: get_reply, which must block when the reply queue is
empty. This necessitates the provision of a gsize. non-blocking primitive to check the
queue size: This operation is particularly useful when the multicaster is unaware of the
size of the receiver group, and hence does not know how many replies may be removed
from the collector. We propose two other built-in operations: release_coll and

wait_for_coll, which operate a status, which will signify free or not free. Release _coll

-52-

will set a collector’s status to free: wait_for_coll will return if, or when, a collector is
free, and set the status to not free. These operations may be used to provide synchroni-
sation between the multicaster and consumer, as discussed in section 4.10.6. The use of

these operations to program a collector pool manager is shown in Appendix A.

4.10.3 Collector Stai:ements and Semantics

For direct user invocation, a collector could be programmed as a resource. A col-
lector to handle replies to the operation query load would be:
resource collector
import server
op gsize() returns q_length:int
op release_coll()
op wait_for_coll() - ‘
op get_reply(RES id : integer) returns load : real
end :

Note that the declaration of get reply agrees with that of the operation query load.

The true-resource collector, like the true-resource multicaster, does not meet our
needs, as the user must perform customisation best done by the compiler. Thus a
~bl;iﬂlt-in pseudo-resource collector is needed. As with other pseudo-resources, a collec-
tor must be declared, have a capability, be capable of being created, destroyed, and
invoked by a set of built-in operations. It is implicitly invoked by a call multicast.

4.10.4 Declaration, Creation and Destruction of Built-in Collectors

As with MCNs, we add a new capability definition to RR(3.1) :
<captype> ::= cap | net | collector
Noting that as a collector variable must correspond to an operation, we have declara-
tions of the following type:
var load_collector : cqllector server.query load
A collector will be created and destroyed using standard SR:

load_collector = create collector() [on vrmach]
destroy load collector

- - -53-

where the optional on vmach specifies the VM host of the collector, by default that of |
the resource creating the collector. Here the word collector plays the same role as did

net in the declaration of MCNs.

A collector may be invoked by a set of built-in operations, of the form:
collector identifier. collector operation
which are denotations, as defined in RR 7.3. The operations are get reply, gsize,

release_coll, and wait_for_coll.

Get_reply

The’ effect of ger_reply is to retrieve a reply, the result of a multicast invocation of
some receiver, from the collector, blocking if the reply_queue is empty. The syntax for
get_reply, as a built-in operation on a pseudo-resource conflicts with that for get_reply
when used to access replies to a regular call. When no explicit reply-queue is given, the
specific operation must be named in order to ensure that the replies are from the correct
call. Since a collector is associated with a specific operation, no operation nebd be
specified: the conflict between these two uses of get_reply can be seen from the follow-

ing example:

Multicaster consuming its own re‘plies
On multicaster:
call server.query load(id)

fai:= 110 no servers ->
total_load := total load + get_reply server.query load(id)
af

o

-54 -

‘ Replies sent to collector
3

On multicaster:

call server.query_load(id) over to load_collector

On consumer:

fai:= 110 nb._servers ->

total_load := total load + load_collector.get_reply(id)
af : :
The use of the parameters in a get-reply-statement needs clarifying. With opera-

' tion invocations, the values of VAL variables are passed by value to the operation: they
are unchanged by the operation, which returns to the invéker in the invocation block
packet, but unlike the vahges of RES parameters, they are not copied back to local vari-
ables of the invoker. If a multicast has VAL parameters, the structure of the parameter
"list for the get_reply statement presents a dilemma: either the get_reply statement will
have parameters conesponding to the VAL parameters of the: multicast, local variables
whose only function is to act as place-holders, or, by ‘omitting them, will have a param-
eter list which differs from that of the corresponding operation and multicast statement.

Neither option is desirable.

qsize
gsize returns the size of the rcply_Queue (of type integer), and is non blocking. It
permits the consumer to determine whether the queue is non-empty before executing a

blocking get reply.

release_coll
release coll frees a collector, and discards any remaining replies on its reply
queue. A collector is created with status free. The successful invocation of

wait_for coll makes the status not free.

-55-
wait_for_coll

wait_for_coll is a blocking operation that returns when the collector is free, setting

the collector’s status to not free.

4.10.5 Remote Reply Queues in-the RPC Paradigm

The use of remote reply-queues with the RPC paradigm is somewhat unnatural,
. resulting in multiple logical threads of control. The syntax employed for multicasting
must specify the collector, rather than reply-processing:

<multicast_statement> ::= mc <denotation> [-> <reply_processing_block>] cm |
mc <denotation> overto <collector_identifier> cm

Note that the denotation is that defined in standard SR, with no termination semantics.
The statement to invoke servers with the operation query load, and have the replies go
to the collector load _collector is:

mc servers.query_load(load,id) overto load_collector cm

As previously stated, we propose that the multicast-statement terminate when the
collector’s reply-processing statement exits. We also propose that exception-handling be
the responsibility of the collector. We propose the following syntax for collector use:

<collector_statement> ::= gr <denotation>
[-> <reply_processing_block>]
[gr_handler -> <exception_handling_block>]
reg
Here the denotation must be a collector_identifier followed by an argument list
corresponding to that of the operation invoked. The code to process the replies to
query_load and create a table load_list of loads for each server is:
gr load_collector(load, id) ->
load lisy(id) := load
re)

The semantics and syntax of the reply-processing-block are identical to that of the same

block of code used by the multicaster. This means that the consumer need have no

- 56-

khowledgc of the receiver group size, as the reply_processing_block will automatically -

terminate when all replies have been used.

-

It should be noted that the use of. collector within the RPC paradigm is somewhat
awkward, and the collector, though a pselido-resource, is invoked in a fashion that does

not correspond to operations. v "

4.11 Other Options

Querying the Group

The V system [Cheriton85] provides a primitive QueryGroup, that allows the user
to determine a number of facts about the group. QueryGroup(group-id,pid) femrns a
structure that tells whether the process could join the group? whether the process is

already a éroup member, whether the group exists, and the size of the process group.

In our scheme, querying whether or not a receiver can join a group is lexically
determined. Whether a process is currently a member of a group, whether a group is
active and the size of the plrocess group are all volatile, in the sense that each may
change immediately the QueryGroup call returns. This is an inevitable feature of a
decentralised process group. It thus appears that such information must be maintained at

the user level.

Security

s

¢

Within V one may chose to employ a certain level of security, by employing a
same user group, allowing only processes belonging to the same user to access a pro-
cess group. Our scheme, by its use of capabilities, already has a built in level of secu-
rity, which allows permissions to be granted in a structured way, and has the virfue that
several users may have a priva’t'g '{MCN, employing a MCN capability that is known

only to them.

-57 -

5. DESIGN AND IMPLEMENTATION ISSUES

In this chapter we discuss the implementatign of the schemie for multicasting and
cdllectors described in chapter‘ 4. Firstly, it is necessary to outline existing communica-
tions primitives and how the creation of VMs and resources is achieved%in SR. The
implementation described here is for the message passing paradigm. However, as we

note in section 5.6, only #ninor changes are required for the RPC paradigm.

5.1 Implementation of Resource and Operations

Each resource and operation is represented by an entry in the active resource or
operation table of its host VM: its capability is a pointer into one 6f these tables. Eacl;
?fewly created resource is assigned an entry in the active resource table. This entry.
includes the VM capability (an integer), a unique sequence number, and a pointer to the
operations table for each operation. The operations table has an entry for each active
opération, indicating whether the operation is serviced by a proc ﬂgr process: ‘in the
former cagc, the table has a pﬁr to the code for the proc, in the latter, it has a pointer
to ihc appropriate invocation block [Andrews88]. The capability to an operation is a

pointer to its host VM’s table of active operations.

The SR compil‘cr produces C-language code, which is then cognpilcd by the C-
cc;mpiler and linked with the RTS object code. The linked body of code runs as a UNIX
process, the VM. When a user runs th;a program, the VM starts to run on the user’s host .
machine. The C-code generated by the SR compiler provides for a remote action, such
as resource creation or operation invocation, by creating: blocks of data, which are
transmitted by the RTS, within a packet, to the appropriate VM: any replies or ack-
nowledgements are received, and the values of fnarameters and return values are copied

<

back to local variables.

-58 -

The RTS implements a multi-threaded system for multiple SR'processés, withir; the
VM. After an SR process has sent a message to create, destroy, or invoke a remote SR
process, it waits on a semaphore, whose identity is contained in the message packet.
The arrival of the packet on a VM causes an SR process to be spawned. This process
acknowledges completion, or sends back values in a return packet. When this arrives; i

the appropriate semaphore is signaled and the original SR process may continue. -

The initial VM forks a separate UNIX process called srx, that acts as a name server
for VMs, ensuring that each VM has a unique number; and allowing a VM to obtain the
socket address of another. Only this one instance of srx exists. Secondary VMs may be
created on chosen physical hosts via create-statements. In the C-code, the function
crevm is called with two argumen’ts, the id of the intended host physical machine and
the VM’s capability, the sequence number of which is filled in by the RTS before crevm
returns. Each VM is created via a call to srx, which assigﬁs a sequence number as the

TN

VM capability.

Each VM listens on a set of sockets, initially its listening sogket, known to sr:t, and
used by other VMs to establish contact. When contact is made a new socket is created
to provide a channel between the two VMs. Messages received on these sockets are
examined in a round-robin fashion, and used to invoke the appropriate part of the RTS.
These messages include ones to create and destroy resources, invoke operations, as well
as acknowledgements of earlier messages. When a VM is created, it is given the socket
for srx. A VM (A) wishing to transmit a message to resource B on another VM, checks
a local directory of VMs and sockets. If B is unknown, A sends a message to srx and
receives back the listening socket of B.

o

The C-code to create a resource assembles a creation block and calls the function

create. The creation block has fields for its size, a pointer to the entry for the resource

in the pattern table, the id. of the intended VM, the initialisation values, and a pointer to

the resource capability. When create returns, pointers to the active resource table entry

; L -59 -

for the resource will have been inserted into the resource capability.

Invocations are performed by having the invoker create an invocation block, which
holds the capability to the required operation and any arguments. The RTS is called by
the C-function invoke. The invocation block is sent to the required operation, which
may read the values of VAL and VAR parameters, and modify the values of those of
type VAR or RES. The operation may also insert the value of the return value of the
operation, if such exists. The invocation block is returned to its creator, whicix then

copies the returned value and the values of VAR and RES parameters to local variables.

The C-code for an invocation generates an invocation block and calls invoke. The
invocation block has fields for its size, the size of the operation’s arguments, the opera-
tion type (such as SEND_Ii\D, and the operation’s capability. /Tﬁe RTS, if necessary,
transmits the packet over the network to the appropriate V, .‘The VM pf the)invoked
operation uses the capability to find the operation table gntry for the operation: if ser-
viced by a proc, a new RTS process is spawned; if by a process, the invocation bléck is
queued, and may eventually be serviced via an input statement. If the invocation was a
send, the RTS of ¥the operation’s VM will acknowledge the packet receipt, and invoke
will return, causing the send to terminate. If the invocation was a call, the RTS of the
operation’s VM will await the return of invocation before acknowledging with a packet

containing the modified invocation block.

Calls within a co-statement are made sequentially without waiting for completion
of previous calls. The RTS sets up a structure to accept returning invocation blocks,
and if, necessary, invoke the post-processing block associated with each call. The entire
co-statement returns, either when all calls have returned and their post-processing is
completed, or when a, post-processing block performs an exit-statement. The order of
returning calls is non-deterministic. Unread packets, and those arriving after the co-

statement has terminated, are discarded.

TG : - 60 -

~—

‘\\

5.2 Multicasting ™.
\

Implementing multice\iting in SR requires a reliable VM—to—VM communications
scheme. If the multicast is to be efficient, each VM must be able to multicast to the
remainder. We thus employ a two léyered model: multicasts between VMs and mult-

casts to invoke operations. The latter are implemented via the former.

In the lower layer there is a process group of VMs, which must be created before
multicasting commences, and updated when VMs are created or destroyed. Each VM
will be required to know the size of the VM group, in order to know the number of

expected acknowledgements.

At the upper level is a process group of operations or resources. Multicasts on an
MCN (multicast hetwork) are first received and acknowledged by each VM, which then
demultiplexes the multicast to each of its local MCN receivers. This is the scheme

“ .described in section 2.2.1.

a

5.2.1 Broadcasting on the Sun Network ¢

The Sun-Network {Leffler83] provides both stream and datagram communications,
using sockets. Stream sdckeis provide reliable communications; datagrams are unreli-
able. Messages from Vprocgss to process are implemented using addresses: machine
addresses and port numbeers. “A process listening on a socket is waiting fo; a packet
addressed to a particqlar port on :a given machine. This is transparent to the user pro-
cess., whichiacquires a port by-the act of binding to a socket. Each port obtained in this
way is.unique and is bh?ld by thé process as long as it executes. Unfqrtunately the port
number a;signment scheme is host-specific, implying that some VMs may not be able to
bind to that port (it being in use), and also that some multicasts may be‘received by
unsuspecting processes listening on that port. In a practical implementation some

scheme for reserving a port number on a network-wide basis would be required.

F

_61- -

Broadcasting over the network iks achieved by using wildcard values for addresses,
and a specific port number. A specific port is chosen by having the first réccivcr bind
to a socket with. port number set to zero. The number Gf the port may be passed as a
parameter to other receivers and senders. Subsequent receivers will bind to a socket
with this value for its port number, and INADDR_ANY as its socket address. The
sender binds its socket using the port number and a wildcard value of zero for its socket

address.

The two-level multicasting scheme has a major limitation in’that it app‘ear§ that
only one UNIX, process may receive multicasts on a given host machine, as only one
socket on a given processor may bind using a particular port number. Consequently
only one VM per processor may belong to the VM process group and srx niay not
receive. multicasts. The solution to this problem is to introduce a new layer of daemon
processes one per machine. These wou}d multicast to each other, as described for VMs
above, and demultiplex the multicasts to the VMs and srx. Srx could easily be enhanced

to create the multicast managers as required, and act as a name server for them.

@ Operations

. SIX
VM

Multicasting

Manager

Figure 6 Three Layer Mulucasting -y

-62 -

In UNIX broadcasting works only .‘with dataérams. This means that the multicast-
ing systefn of SR must take stcps‘ to ensure reliability, based on acknowledgements,
timeout and re-transmission. A problem is that.datagram service requires that each
datagram be read from the socket in its entirety, by a single read statement. This is
problematical in a ‘system in which message sizes vary One solution 1is to require all
multicast packetg to be less than some ﬁx’ed size. The sender would reject excessively
large packets: the user would read any multicast packet into a fixed size buffer. A gen-
eral solution to ‘the problem would be to transmit overflow packets to carry the contents
of packets exceeding the fixed size. It should be noted that Ahamad and BemStein’é

multicast sockets could be employed here [Ahamad§85].

5.2.2 Process Group Creation/Destruction and Modification

Multicasting at either level occurs in two modes, transmission and maintenance.
Transmission mode refers to normal multicasting to provide communications, bétween
VMSs or to invoke operations. Maintenance mode refers to multicasts required to create,
destroy, or modify the process group. For VM-t0-VM rﬁulticasting, the addition or des-
truction of VMs requires maintenance multicasgs. For MCNs, the addition or removal of
receiving r;:sources or operations requires maintenance multicasts. Note that all multi-
casts at the upper level are transmission multicasts at the lower level. At either level,
maintenance multicasts must not oveflap transmission mul‘t:icastsg as reliability demands
that the size of the multicast group, either the number of receivers or VMs, must be
known. We prevent this overlap by suspending transmission multicasts while a mainte-

>

nance transmission takes place.

- ‘63 -
5.2.3 VM-to-VM Multicasting

s

Multicasting Reliability

In VM-to-VM communication, the multicasting VM broadcasts a packet, and col-
lects unicast acknowledgements (ACKs). If the number of ACKs fails to reach the
known humber of VMs before a timer times-out, a retransmission occurs. We choose to
re-multicast, rather than unicast to the delinquent VMs, as thi; latter approach requires
each VM to know the identity of other VMs, and to keep track of which VMs ack-
nowledge. The use of a sequence number allows VMs to quickly discard duplicates. If
retransmission a fixed -number of times fails to produce all the required acknowledge-

ments, VM must be regarded as unreachable, and an exception declared.

In order to perform both transmission and maintenance multicasts, protocols must
be used. It should be noted that while some of the ACKs are required for synchronisa-
ton, others are only required at a lower level, to provide reliability. In the diagrams
that illustrate”the protocols, we employ dotted lines to indicate ACKs required for relia-
bility only, thick lines for multicasts, and thin lines for ACKs required fo\r synchronisa-

fion.

The VM Process Group

The protocol for reliable multicasting relies on each VM knowing the total number
of VMs, the size of the VM process group. This implies that a protocol must be used
when a VM is being created or destroyed. (In our prototype we did not implement this
protocol. Its use is not essential if care is takgn to create all VMs before creating any
MCNs.) Our design implements this via a central VM controller within an enlarged srx,
which must now have a separate socket on which to receive multicast acknowledge-
ments and a separate SK process to deal with them. These are required because srx
currently has no internal queue, but queues requests at its sockets: messages are read

and processed in a round-robin fashion. If a request, such as a process group update,

-64 -

were received while such actions were blocked by the update protocol, srx would be
deadlocked. With the separate socket and SR process, multicast ACKs may be read and

processed at all tmes.

!

Creating and Destroying VMs

When the first VM forks srx, both processes must execute code to initialise the VM

group. For subsequent requests to create VMs, the following protocol must be executed:

1. srx performs an MCN_ADD_VM multcast and awaits
MCN_SUSPEND_ALL_ACK acknowledgements.

-

2. Each VM, on receipt of a MCN. ADD_VM multicast, continues to serve any
incoming multicasts, but will not initiate any. When all current outgoing multi-
casts complete, it acknowledges the srx.

3. srx, when it has received ACKs from all VMs, creates the new VM. After-
wards it will multicast a MC_CONTINUE message.

-,

4. Each VM, on receipt of a MC_CONTINUE message, increments the local
value for the number of VMs and acknowledges srx with a
MCN_CONTINUE_ACK.

1. MCN_ADD_VM

\ .

Srx
2MCN_SUSPEND_ALL_ACK

22222222222,
66606666600 C

4. MCN_CONTINUE_ACK

Figure 7 Protocol for Creating a VM

- 65 -

AY

This protocol ensures that all multicasts are suspended while a VM is being created
or destroyed. The MCN_CONTINUE_ACKS are not required by the protocol, but by
the need to ensure that the continue message has been received by all VMs.

W

5.2.4 Multicast Networks

In order for a VM to be able to demultiplex a multicast to a MCN, it must maintain
a list of the capabilities of local receivers for each MCN. The resource adding a receiver
to the MCN will have the receiver’s capability and will thus sent it to the rc;eiver’s VM
to be added to the list. In the case of operari-on-based MCNs, the C-code for a multicast
generates a multicast packet, containing an invocation block, as for a conventional invo-
cation, but with no specified operation. Each VM muét copy in turn the capability of

each operation on that MCN’s local receiver list into the invocation block, which may

now be used to invoke these operations.

With resource-based MCNs, multicasting is more complex. A multicast packet
must provide the information neces%ry for each VM to select the required operation
capabilities from the locally stored resource capabilities. This information is the offset
of the operation capability from the start of the resource capability, and its size. These
quantities have no current significance in the implementation of SR, but are currently

evaluated by the compiler.

Creating or Destroying a MCN

Creating and destroying a MCN is performed by a multicast MCN_CREATE
(MCN_DESTROY) mess;)ge from the creating VM, acknowledged by
MCN_CREATE_ACKs (MCN_DESTROY_ACK).

The capability of a MCN must be a unique system wide identifier. Since MCNs
may be created by any VM via a multicast, the capability’s uniqueness is ensured by

including the VM’s capability and a unique sequence number. The alternative would be

-

L

- 66 -

to use the srx as a name server for MCNs, and have requests to create MCNs sent to it.
This would require at least one extra unicast. The C-code for creating an MCN is the
function create_net, which has two arguments: pointers to the capabilikty of the MCN’s
host VM, and to the MCN's capability. A;t run-time the VM’s capability is copied into
the VM field of the MCN capability, aI;d a sequence mirriber is generated to complete
the MCN capability. The .protocol is illustrated in Figure 8, and works as follows:

1. The creating VM multicasts a MCN_CREATE packet, containing the MCN

capability, to the VMs.

2. Each VM adds the new MCN to the local list of MCNs.

Destroy net is implemented in a similar fashion. It may be noted that a VM may multi-
cast on an MCN and have the multicast reach a VM before it has created the VM, due to
the MCN_CREATE message getting lost. In this unlikely event the VM may ignore the
multicast, as it will be resent after the muldcasting VM times-out. Eventually the VM
will get a resent MCN_CRéATE multicast, and will subsequently be able to service the
resent multicast on that MC\))J.

1. MCN_CREATE

(MCN_DESTROY)

2. MCN_CREATE_ACK

(MCN_DESTROY _ACK)

Figure 8 Protocol for Creating or Destroying an MCN

-67 -

MCN Updates

A resource that has the capability to a suitable receiver may join it to an MCN,
and later remove it. Joining (removing) an operation to an MCN is done in C-code by
invoking the function net_join (net_leave) with two arguments: the MCN capability and
receiver capability. The RTS then creates an update block which contains the type of
update, MCN_JOIN (MCN_QUIT), and the capabilities of the receiver and MCN, and

sends the packet to the host VM of the receiver.

Updates to a given MCN require the suspension of transmissions on that given
MCN. This is achieved using a protocol similar to the one used for VM process group
changes. In our prototype we have avoided this complication by requiring the user to
keep a static process group, created before multicasting starts. The protocol is shown in

Figure 9, and works as follows:
1. The initiating VM sends an MCN_UPDATE packet.

2. The other VMs in the group, on receipt of an MCN_UPDATE packet,
suspend multicasting on the specific MCN and, when current multicasts ter-
minate, acknowledge with a MCN_SUSPEND_ACK packet and update their
local data-bases. The local update consists of incrementing or decrementing the
size of the process group, and storing or removing the operation’s capability on
the local-receiver-list for that MCN, if the operation is a local one.

3. The initiating VM, when all acknowledgements have been received, multi-
casts a MCN_CONTINUE packet.

4. The other VMs issue an MCN_ CONTINUE_ ACK packet and resume multi-
casting on that MCN.

P ! A
.68 -

I. MCN_UPDATE

4. MCN_CONTINUE_ACK

Figure 9 Protocol for MCN Updates

MCN Multicasting

As with unicasts, the values of VAL and VAR parameters must be copied
into the invocation block, before it is multicast. In the case of calls, reply pack-
ets must be made available to the user. The first reply will have its values
copied back to the user, those of RES and VAR parameters, and any return
valuc, where permitted. Get reply accesses the queue and col;ics back values in
the :}@_ way.

The required protocol is simple. The packet is multicast to the VMs. Each
VM acknowledges the receipt with a MCN_H\IVOKE_;ACK packet. This indi-
cates reliable delivery of the message, permitting a asynchro;lous multcast to
terrmuinate. In the case of yasynchronous multicasts, each completed operation
causes a return packet of type MCN_CALL_COMPLETE to be sent back to the
multicasting VM. This paékct will be placed on a queue by the RTS. The proto-

col 1s illustrated in Figure 10, and works as follows:

\ e

For MC_SEND
1. The multicasting VM sends a packet of type MCN_INVOKE.

2. The receiving VM replies with a packet of type MCN_INVOKE_ACK

3. The multicasting VM, upon the receipt of of MCN_INVOKE_ACKS from
all VMs, then terminates the multicast.

N
1.MCN_INVOKE

3. MCN_CALL_COMPLETE
(mc_call only)

Figure 10 Multicasting Messages for Send and Call Multicasts
For MC_CALL (also illustrated in Figure 10)

1. The multicasting VM sends a packet of type MCN_INVOKE.

L
o

2. The receiving VM replies with a packet of type MCN_INVOKE_ACK

3. When each operation completes it sends a packet of type
MCN_CALL_COMPLETE.

4. The multicasting VM uses the MCN_INVOKE_ACKS to check if a
retransmission is required. After, the required number of
MCN_CALL_COMPLETEs (all or the number set by the termination semantics)
has returned, the multicast terminates.

-70 -

Same order multicasting may be implemented using srx as a central multic;é;:}
| \
REQ_MCN_SEND and REQ_MCN_CALL packets are sent to srx, which then per-

forms the multicast.

5.3 Collectors

In our prototype we have not implemented collectors; however, the following

describes how this may be achieved.

A collector has a capability like that of an MCN: the capability of its host VM, and
a sequence number. When a collector is created in SR, a C-function create_col will be
called to send a MCN_COLL_CREATE packet to the host VM. The host VM will ini-
tialise a data structure for the collector, and complete the collector’s capability by
assigning a sequence number. The VM will then acknowledge with a
MCN_COLL,CREATE_;\CK packet, containing the collector capability. The VM ini-

tiating the creation will copy back the value of the capability.

When a VM receives a reply packet of type COLL_INVOKE, it must find the
collector’s data-structure usi‘ng the collector capability as key, and add the invocation

block to the reply_queue.

It is envisaged that in most cases consumers will be located on the same VM as the
collector. In other cases each collectar invocation will require new SR packets being
sent to the collector’s VM to invoke the collector, and return packets carrying values
and acknowledgements. This may be modelled directly on existing SR communications.

\

5.4 Implementing the Two Paradigms

Our prototype was designed to implement multicasting using the MP (Message
Passing) paradigm (section 4.7): here discuss the differences between implementing
this paradigm and the RPC (Remote Procedure Call) paradigm, as introduced in section

4.8. With asynchronous multicasts, the implementations will be virtually identical,

-71 -

since the same semantics apply. The one exception will be in the applicatign of the ter-
mination semantics in the MP paradigm: here the semaphore (on which the send waits)

will be signaled when the required number of ACKs have returned.

With synchronous multicasts, the two paradigms require very similar imp]cm?nta-

|
tions. The difference is that in the RPC paradigm a reply queue is created for each mul-
ticast and destroyed when the statement ends; in the MP paradigm the queue is per-

manent and associated with a particular multicast operation for that particular process.

With the MP paradigm, the first reply is copied back to local variables before the
call returns. Each time a ger reply is executed, the appropriate reply-queue is checked:
if empty, the statement blocks; otherwise the reply values are copied back to local vari-
ables and the statemen terminat/c_:s. Each new call empties the queue for that particular

multicast operation. The call_statement itself will not terminate until the required

number of replies, by default ALL, have arrived.

In the RPC paradigm, a reply-queuq is initialised for each multicast‘and deleted
when the multicast-statement terminates. The multicast-st&ement transmits its message,
and blocks until a reply arrives. The values in the reply are copied back to local vari-
ables, and the reply-processing-block executes, if it exists. The next reply is then copied
back and reply processing initiated. Each reply decrements a counter, initialised to th;e
number of receivers: this counter is checked to determine when to terminate the multi-

cast.

Though we did not attempt to design the error handling scheme, as this has not yet
been done for any SR statement, a few points are worth making. An exception may be
detected remotely, resulting in the return of a special type of packet, or locally, with the
failure of a VM to respond. In the latter case, the local RTS may prepare a special
packet. In either case the packet may be passed to a higher level. At this higher level,
the package type will be recognised and the handler executed, rather than the usual

reply-processing-block.

-T2

It is impossible to be definitive about the relative speed of the two paradigms, as
the costs depend on the application and implementation. There are, however, no major
implementation differences that would appear to lead to a significant difference in per-

formance

5.5 Implementation of the Prototype .

As previously noted in chapter 5, several features of the ’design were not imple-
mented in the prototype. Our view is that the only major issue that heeds resolving by
experiment is the relative efficiency of multicasts and unicasts within a co-statement.
This perspective permitted us to simplify the protocols for updating the VM group and
MCN membership, by assuming that both groups would be established before multicast-
ing commenced, and would remain unchanged. Furthermore, the features required to

support multiple replies and collectors were not implemented, as it was not expected

that substantial gains in efficiency would result here.

However, designing a prototype gave us a thorough understanding of the structure
of the invocation mechﬁnism, and enabled us to refine and improve our initial designs.
Implementing the prototype requires changes to both the RTS and the compiler. These
changes are outlined in Appendices B and C. Appendix D contains the two files: mcn.c

and bcutil.c, which contain the major portion of the extra RTS code required.

5.6 Potential Timesavings using Multicasts

The time taken to perform a set of invocations depends on the degree of parallel-
ism, which 1s maximal when all processors are active, as well as the network. We con-

sider three ways of invoking multiple operations:

/

(1) a sequence of unicast invocations
(2) the same set of unicast invocations within a co-statement,

(3) the same set of invocations effected by a multicast.

The co-statement fallows calls (but not sendsﬁo be performed in quasi-parallel.
The difference between a sequence of calls, and the sajne sequence performed within a
co-statement, is that within the co—statemf;nt the calls are nori—blocking, and network
packets may be sent one after aﬁgt;;, without waiting for each invocation to complete.
The co-statement collects the replies as they arri®e and associates each with the correct
call. The co-statement thus permits the invocations to be serviced in parallel, if the
operations are on different hosts; howcvef';ithe preparation and sending of the packets
containing the invocation, and the rcc'cipt and processing of the replies must be per-

"

 formed sequentially by the host initiating the invocations.

call

\

00
—

call 8.

I

O
2
22727,

277777,

- -

[\

Figure 11 A sequence of calls, without and withfp a co-statement

Examination of Figure 11 shows how the use of a co\-\;titemcnt saves time: It /is
clear that the extent of the time savings depends on the time taken. to service the invo-
cations. In the case when only one or a few replies are required, the ab;:gapplics, with
the additional advantage that the quorum may be reached sooner. With a sequence of
calls, it‘ unlikely that the user can attempt the fastest invocations first; however,
within the co-statement, the fastest invocations/{ctuming allow the user to continue

before the slower invocations have returned.

74 -

The major difference between a sequence of invocations and the use of multicast
is that only one network packet need be prepared and sent by the initiating VM, thus
saving processor and network time; reply or acknowledgement packets must be

/ Z
prepared, transmitted, and processed as before.

=75 -

6. 'CONCLUSIONS\AND FUTURE RESEARCH

4

6.1 Conclusions ,

We described a number of advantages of multicasts over a sequence of one-to-one

multicasts, which our design realises:

- our semantics allow a clier!t’ to request service from a server without knowing

its identity: the client need only have the MCN’s capability.

- network traffic is reduced, and the average time before each operation is

invoked will be reduced.

-

- user code is simiplified.

- the average time for a process grodp member to receive a message is reduced.

We detailed our design consideratioi’is for multicasting in SR, and the functionality
required in 3sections 4.1 and ;4.4. We claim these to be attainable: the scheme proposed
; is: powerful, permitting a wide range of different synchronisation schemes, inc;luding
early tern'iination: reply handling, and reliability. In section 4.9 we demonstrated that
multicasting based on the remote procedure call paradigm is more appropriate in SR
thax; multicasting based on the message passing paradigm, particularly with regard to its

reply handling and error-hahdling capabilities:

- the sémantjcs of the RPC are consistent with standard SR.
- the number gf new primitives required is smaH and their use is consistent with
’SR. The RPC syntax has an advanL;age over MP, in that 0;11)/ one multicasting primitive
is required, and that synchronisation, early termination and post-processing are all han-
dled in ways similar to those employed in standard SR.
"~ the changes required to the SR RTS and compiler are small, and appear

unlikely to have much effect on performance.

- 76 - | :

- the new primitives are simple to use. P
We have thus shown that multicasting can be introduced into z; high level language
in a way which is simple, both semantically and linguistically. Different forms of syn-
chronisation and the processing of replies can bekspeciﬁed with minor changes to the
grammar. The proposed scheme permits the user to create, m;)djfy, and destroy MCNs,

and to invoke them by a single statement, which permits simple and concise user code.

In conclusion it should be noted that the existing co-statement and the multicast
provide for the parallel execution of the invoked operations. The multicast has the addi-
tional advantage of reducing the time of communication, including that spent by the ini-

tiating RTS in pre'paﬁng and sending the packet.

" 6.2 Fliture Research

One aspect of the research that we were unable to complete, due to a intractable
bug in the communications scheme, was&to compare the time taken for multicasting and
sequences of unicasts, both within and without co-statements. Such comparisons must
be done experimentally, as the times depend on the specific hosts, network, network
traffic and the algorithm being executed. Thus, while the parallelism provided by either
the co-statement or multicasting provides substantial benefits, wh(;,ther the multicast is
significantly more efficient than a co-statement in practice, it still an open question.

Research of this nature could be performed in using various implementations, and in

other-than-UNIX environments.

A second area for future research is a close examination of distributed algorithms
to determine those for which multicasting isﬂapplicable, and to implement these in order
to determine what speed-ups are attainable: in particular the relative merits of the two
paradigms may be examined. Other high level languages may be examined to deter-
mine how multicasting may be incorporated. Lastly, the implementation of error-

handling schemes for multicasting appears a substantial topic.

7T . -

Appendix A : Collector Pool Manager

The collector pobl manager creates collectors and, on request, passes their capa-
bilities to users. After allocating a collector, the manager will invoke wait for_coll,

thus being alerted when the collector is freed.

3
%

It should be noted that in some cases collectors should not home on the collector
manager, but on the multicaster, for re-use. For this to be the case, the multicaster
should perform the wair_for_operation. However, only one wair_for coll will succeed
each time the collector is freed. This problem may be solved by giving the collector-
péol ma_naéer two get_collector operations: get collector and get_homing collector. In
the first case the collector will not execute wait_for coll. gThe provision of non-homing
collectors requires the provision of a return_collector operation, to permit the user to

explicitly release a collector to the manager. The code for such a manager is presented. -

For simplicity we have assumed a static pool of n collectors.

resource collector_pool _manager

import my_resource

get_collector() returns coll: collector my opn_type
get_homing_collector() returns-coll: collector my opn_type
return_collector(coll: collector my opn_type)

| end
body collector_manager(number_of colls : int)
op wait_til_free(my coll: collector my opn_type,n:int)
var coll[l:number of colls] : collector my opn: type

var free[l :number _of colls] : bool
var num_free : int := number of colls

initial
fai: =1 to number of colls ->
coll[n] := create collector() ' @
free[n] := true)
af

end

-78-

var coll: collector my _opn_type
var n :int
do true ->
in get_homing collector() and (num_free>0) ->
fai:= Il,to number of colls ->

if Yree[n]->
num_free--
free[n] := false
exit
fi
af
send wait_til free(coll[n],n)
return(coll[n])

[] get_collector() and (num:_free>0) ->
fai:= 1 to number of colls ->

if free[n]->

num_free--
free[n] := false
exit
fi
af
return(coll[n])

return_coll allows a user to return a non-homing collector

[] return_collector(coll) ->
coll.release _coll() # just to make sure
find which number coll it is. n, say
free[n] := true
num_free++
ni
od
end

wait_til free is a vulture proc that waits for the collector to be freed
and then updates manager’s data structures

proc wait_til_free(coll,n)
coll.wait_for coll()
free[n]:=true
num_free++

end

-79 -

~ Appendix B : Run-time Support Changes

Changes to the RTS may be grouped into three categories: specific code to deal
with MCNs (mcn.c), code to implement multicasting via datagram sockets (bcuril.c) and

A}

miscellaneous changes to the existing SR RTS (main.c, net.c, socket.c, remote.c, srx.c)

Broadcasting

Bcutil.c contains the ?ode to customise sockets for sending and receiving multi-
casts over the Sun network. Datagram sockets must be used for multicasting, as agaihst
the stream sockets used for VM-to-VM communication in SR [Leffler§3]. Hence each
VM must add a new socket of type DGRAM to receive incoming multicasts; a second

socket must be used for outgoing multicas&v

(1) The funcuon ger first rec_sock creates the first receiving socket by using
INADDR_ANY as the s_addr and by zeroing the port number, before binding the
socket. After binding, the socket has an assigned port number that may be found using

4

get_port.

(2) Get_rec_sock, used by subsequent VMs, creates and binds additional receiving
sockets. It is identical to ger first rec_sock except that the port number’s value is

assi gnecﬁby the user.

(3) Ger_send sock creates and connects sending sockets, using BC_WILDCARD

(zero) for the s_impno, and the user specified port number.

VM-to-VM Multicasting

During initialisation, VM 1 calls init_all_multicasts: this provides sockets for send-
ing and receiving multicasts. When VM 1 forks and execs srx, the port number is pro-
vided as an additional argument. When srx in turn forks other VMs, it also provides the

port number as a argument. These additional VMs execute init multicasts. to provide

-80 -

the required qsending and receiving sockets associated with this port.

The ability to receive multicasts must be incorporated into the network interface of
each VM, which with srx has a daemon SR process (net_recv) which selects on a set of
file descriptors. Rather than employ a second daemon process, we chose to implement
multicast reception as part of net_recv. This posed a number of problems, caused by, the
differences between stream and datagram sockets, the principal one being that a
datagram packet must be read once in its entirety, while a stream socket packet can be
read piecemeail. A major complication in modifying the RTS is that VMs and srx share
much of the communications code, and thus any modification to the code must be con-

sistent with both uses.

SR packets are read in two‘parts: net_recv reads the fixed length packet header,
which contains the size of the packet: net_more is called to read the rest. This is not
possible with datagrams, which must be read in their entirety. As datagllams are limited
in size they may be read into a fixed size buffer. Our solution does this, requiring
nef_recv to be able to distinguish between stream and datagram packets, and for
net_more to be called only for unicast packets. To facilitate these changes the space for
the packet is now allocated within net recv, which returns the packet, rather than its
type. Additional code was added to net_recv to trap multicasts received by the sending

VM: a dummy packet of type MSG_NONE is returned, and discarded.

In ordef to receive multicasts the receiving socket must be added to the set of file
descriptors selected on by net_recv. This is performed by mcn_c¢onn which is called by
each VM as part of its network initialising code. As noted above, net_recv must be able
tc{d]é{inguish bet\:veen ;nulﬁcasts and unicasts. 'Thiyost easily done by reserving a
particular file descriptor for in_cqming multicasts. As VMs and srx both use net_recv,
this number must be common to both. For VMs the file_descriptor is naturally 3; for srx

the omission of a multicast socket leaves file.descriptor 3 free for other use. This prob-

lem is solved by having srx duplicate a file descriptor as part of its initialisation: this is

-81- 7

3 and is thus never used by srx.

The fact that SR packets sent by datagram whifh may not exceed a fixed size,
implies that SR multigast packets that exceed this sizt must be transmitted in several
datagram packets. As we were constructing a prototype only, we decided to limit multi-

cast packets so as to fit into a single datagram packet.

Note that the comparative rarity of MCN creation, destruction and updating
implies that we need not be too concemned over the efficiency of these actions. These
actions are also simpler in that only one action is taken on each VM, to update the local
MCN database; with multicast invocations multiple operations may be invoked, each

_ potentially requiring an acknowledgement.

As noted we did not implement ACKs required'Eo ensure;reliability. In the
absence c)f sqdh/ ACKs, asynchronous multicasts do not require an;/ ACKs. The han-
dling of)\C_Kg requires the careful use of counting semaphores. After the initiating. VM
has initiated local action and sent the multicast, it waits on a counting semaphore: ack-
nowledgements signal the semaphore, allowing the initiating process to continue when
all the signals have been executed. In the case of multicast calls, the acknowledging

must wait until the operations complete: each each invoked operation must ack-

nowledge.

The above changes relate to an implementation of the MP paradigm. The differ-
ence between this and an implementations are minor, relating primarily to the manipu-

lation of the reply-queue.

B

-82-

Appendix C : Compiler Changes

The SR code i1s compiled into C code by a two-pass compiler. The C code is then
compiled into object code by the C compiler, and linked with the run-time support
code. The first pass of the SR compiler performs the lexical analysis, generates the sym-

bol table, and a list of intermediate code (i-code). The second pass processes the i-code,

kN
N

with reference to the symbol table, outputting C code.

Each variable in SR is typed by assigning it a signature. The signature gives the
data-type of low-level objects: for high level objects such as operations, it gives the
number and type of its parameters. The signature is employed to determine the compati-
bility of variables with respect to some binary operation, and in addition points to the

memory allocated to the variable at run-time.

The first step in modifying the compiler to handle multicasts was to introduce a
number of new tokens to capture certain new keywords: viz net, join, quit, mc_send,

mc_call

In order to permit the declaration of MCNs, the compiler code was modified so

sthat the keyword net would be accepted along with cap. This permits the declaration of

an MCN associated with any object with a capability, such as a resource or operation.
In declaring an MCN variable, the signature created is the same as that for a variable of
the corresponding operation or resource, except for the type being T_NET. When a

MCN declaration is parsed, run-time space is allocated to hold the MCN capability.

Statements for creating and destroying an MCN are parsed using the same code as
for creating and destroyihg other objects. The parser recognises that an MCN is being
created from the signature of the object being created, ané thus calls a new function
(net_create_stmt), instead of create stmt, to parse the remainder of the statement.
Net_create_stmt creates an empty list for initialisation arguments and uses

TK_CREATE_NET in place of TK_CREATE, which is used for creating other objects .

-83-

Statements for updating the MCN group or invoking it begin with a new keyword
(such as join or mc_send), permitting the parser to immediately identify the statement
type and call the appropriate new function to complete the parsing. The update state-
ments are easily parsed as they take two arguments, the MCN and the receiver. At
present no signature check is made as to whether the two are associated with the same
resource or operation type. The intermediate code uses TK_JOIN_NET and
TK_QUIT_NET. '

Multicasting statements require the parsing of an argument list. If the MCN is
associated with a resource, the name of the required operation must precede the list. As
the parsing problem here is identical with that for a regular invocation, we may make
use of cxistipg compiler code to parse the denotation. The intermediate code employs
TK_SEND_NET and TK_CALL_NET. In the prototype we have not provided for the
compiling of the optional termination semantics or the use of collectors. However,

incorporating these features is straightforward.

The i-code generation phase is generally straightforward, as each new feature has a
new type of i-code statement. MCN creation and destruction statements generate simply
C function calls with a pointer to the appropriate capability. The code for MCN updates
is similar, only in this case there are two arguments to the C function '—’\he MCN and

the receiver capabilities.

Multicasts require more complex C-code than creations or updates, due to the vari-
able number and size of arguments. The compiler must generate the code to create a
packet, fill in the values of arguments, and call a € function to effect the multcast. "This
closely resembles the actions required to perform a unicast, and hence mz\st of the same

code can be used.

In the prototype we have not incorporated most of the features required to support
‘the use of collectors. The compiler code for the declaration, creation.and destruction of

collectors parallels that for MCNs, and is easily written. The invocation of collectors is

-84 - .

simple, as the C-code required is merely a function call with a single parameter, except
for get _reply, which requiressthe use a variable size packet and the copying back of the
value of VAR or RES type parameters to local variables. This is already performed by

calls, and thus the same code cari be used, or mimicked.

The above describes the changes required to implement the MP paradigm. In order
to implement the RPC paradigm, some changes are required in both phases of the parse.
The i-code node for a multicast-statement must include the reply-processing-block. The
C-code generated must contain the multicast invocation and code to copy back values,
as before, the code for‘the reply-processing-block, with suitable labels and gotos to
implement the implicit reply-processing-loop, a counter for the replies, and a test-

statement to terminate the loop after all replies have been processed.

-85 -

Appendix D : RTS code

/************************** ﬁle mcn.c *************************************/
/* contains major functions required for multicasting A_ */

#include "rts.h"

/**/

/* data structures used to store identity of existing MCNs and their */
/* local receivers */
/* The list of MCNs on a VM is kept as a link-list of men_blocks */

/* Each mcn_block has a link-list of rec_blocks, one per local receiver */

typedef struct men_block_st *men_block; /* data-block for an mcn */
typedef struct rec_block_st *rec_block; /* data-block for a receiver */
struct rec_block_st{ /* data-block for a receiver */
struct ocap_st opn; /* operation’s capability *f
rec_block nextrec; /* pointer to next receiver */
};
struct men_block _st{ /* data-block for a MCN */
struct men_st id; /* mcn_capability */
int numrecs, /* total number of receivers */
int numlocal; /* number of local receivers */
rec_block recs; /* pointer to list of local receivers */
mcn_block nextmcn; /* pointer to next MCN block */

B

/********************** funCtiOns *************!ﬁ****************************/

mcn_block get_mcn_block(); /* returns a new MCN block */
short get_seqno(); /* returns a sequence number */
mcn_block find_mcn_block(); /* searches for.an MCN block */
void mulcast(); /* multicasts a packet */
void mulcast_in(); /* used in debugging without network */
void rem_mcn_block(); /* remove a MCN block */
void add_rec(); /* add a receiver to local list */
void rem_rec(); /* remove a receiver from local list */
void local_invoke(); /* invokes multicasts on each VM */
void men_ack(); /* acknowledge multicast */

/******iﬁ***************** globals ******************‘************************/

static men_block men_block_head = NULL; /* pointer to mcn-list */
static seq myseqno; /* sequence number */

- 86 - .

/**/

/* user called functions */
/***************************ﬂ**/

/**/

/* mcn_create : creates an MCN * o
/**/

void
mcn_create(netw)
int netw; /* pointer to MCN capability */

{

int packet; /* packet created . */
/* initialise MCN cap. */

((struct men_st *)netw)->netvm = my_vm;
((struct mcn_st *)netw)->mcnseqn = get_seqno();

/* create and initialise packet */
packet = (int) mem_alloc(INVOCATION_HEADER_SIZE, RTS_OWN);

((pach)packet) ->type'= MCN_CREATE;
((pach) packet)->net = *(struct mcn_st *) netw;
((pach) packet) ->size = INVOCATION_HEADER_SIZE;

mulcast((pach)packet);

reuun;
} #
/**/

/* men_destroy : destroys a mcn */
/**/

void

mcn_destroy(netw)

int netw; /* pointer to MCN capability */
{

int packet; /* packet created */
/* create and initialise packet */

(pach)mem_alloc(INVOCATION_HEADER_SIZE, RTS_OWN);

((pach) packet)->net = *(struct mcn_st *) netw;

((pach) packet) ->type = MCN_DESTROY;

((pach) packet) ->size = INVOCATION_HEADER_SIZE;

mulcast((pach)packet);

return;

-87-

£
/**/

/* men_update: updates the process group membership */

/**/

void
mcn_update(packet)
int packet; ' /* packet created by user code */

mulcast((pach) packet);

/***/

/* mcn_invoke : multicasts over a MCN */
/***/

void
mcn_invoke(packet)
int packet; /* invocation packet created by user code */

if (find_mcn_block(((pach)packet)->net)->numrecs ==0) /* no such MCN */ =
perror("no such mcn-in mcn_invoke");

((pach) packet)->type = MCN_INVOKE; /* could be done by compiler */ -
mulcast((pach)packet);
return;

}

/************************** hdUIX:AS]‘***********************************/

/* Mulcast uses the packet to effect local and remote actions */
/* Locally: it spawns a process to take the actions ¥
/* It also multicasts the packet to all VMs. These also spawn */
/* processes to take the actions. J */
/* The processes spaygied to take the actiops: rmcn_create,etc.. */
/* call men_ack to acknowledge their completion. */
/* Mulcast (meanwhile) has a loop containing a P, which executes */
/* each time an ack returns, until all acks have returned. */
void
mulcast(packet)
pach packet;
int n, rest; /* number of bytes sent and size of rest of message */
char *addr; /* pointer to remaining message */
remd rem; /* remote message descriptor */

int numacks; /* number of ACKs required */
int i; : :
L

-

B ‘ - 88 -

/* create semaphore */
P(rem_count);
P(rem_mutex);
rem = rem_f{ree;
rem_free = rem_free->next;

{

a,l
T Yo A

V(rem_mutex); _ ‘ o R \
/* find the number of acks */ S
switch{packet->type){
case MCN_CREATE:
case MCN_DESTROY: .
case MCN_UPDATE: ‘ \ 8
case MCN_SEND: ,
numacks = 2; - /* note: these are for reliability - */
break; /* reliability is not provided elsewhere */

case MCN_CALL:

{ mcn_block blk; /* data-block for the given mcn */
blk = find_mcn_block(packet->net);
numacks = blk->numrecs;

) R , .
break; - 3

/* initialise for return */

packet->origin = my_vm,;
packet ->rem = rem;
rem->ph = packet;
rem->wait = create_sem(0);

* /* local action */

switch (packet->type){ ’ .
case MCN_CREATE: Activate(Spawn(rmcn_create, RTS_OWN,1,packet));break;
case MCN_DESTROY: Activate(Spawn(rmcn_destroy,RTS_OWN, 1,packet));break;
case MCN_UPDATE: Activate(Spawn(rmcn_update,RTS_OWN, 1,packet));break;
case MCN_INVOKE: Acn’vatc(Spawn(rmcn_invokc,RTS_OWN, 1,packet));break;
)L | / |

/* send packet */

rest = packet->size;
addr = (char *) packet;
while (rest>0) {
n = write(mcast_send_sock,addr,rest);
if (n<0) perror("mulcast");
rest-=n; S
addr += n;
} v

»

-89. | o - A | N

/* wait for replies */

for(i=0;i<numacks;i++){ '
P(rem->wait); ‘

ldll_sem(rem->wéit);
/* free seméphorc */

P(rem-muf&xy:~
rem->next =.rem_ free
rem_free =rem; -
V(rem_mutex);
V(rem_count);

/***i********/

/* functions that are used to act on the contents of multicast packets X/
/* received by VMs. */

/**l

/**l

/* rmcn_update: adds or removes a receiver - */
/**/
void

rmen_update(packet)

pach packet;

struct crep_st *reply; /* acknowledgement packet R */
mcn_updb upblk; /* update block found in packet */
int size; /* size of ack packet */

upblk = (mcn_updb) packet;
/¥ join or remove recelver */

if(upblk->type== MCN_JOIN){
mcn_block mcnblk;
if ((mcnblk= find_mcn_block(packet- >nct)) != NULL) { ‘
mcnblk->numrecs++; /¥ increment total receivers */ °
if(upblk->receiver.vm==my_vm) /* receiver is local */
add_rec(upblk->receiver,packet->net);

else perror("No such network to be joined0);

else /* type is MCN_QUIT */
mcn_block mcnblk; /
if ((menblk= find_mcn_block(packet->net)) != NULL) {
mcnblk->numrecs--; /* decrements total receivers */
if (upblk->receiver.vm==my_vm)

rem_rec(upblk->receiver,packet->net);

else perror("No such network to be joined0);

P

-90 -

/* send acknowledgement packet */

size ='sizeof(struct crep_st) + sizeof(struct mcn_updb_st);

reply = (struct crep_st *) mem_alloc(size, RTS_OWN);

reply ->ph.rem = packet->rem,;
mcn_ack(packet->origin,ACK_MCN_UPDATE, &reply->ph,size);

mfree((daddr)reply);
Kill(cur_proc,FALSE);

/**/

. « /
/* rmcn_invoke *f
/**/
void
rmcn_invoke(packet)
pach packet;

invb invblk; /* invocation block in packet */
mcn_block menblk; /* mcn_block for a receiver */
int size; /* size of ack packet */
struct crep_st *reply; /* reply */

invblk = (invb) packet;

if((mcnblk =find_mcn_block(packet->net)) == NULL)
perror("No network to invokeQ);

/* if a CALL invoke receivers before acking */
if (invblk->type == MCN_CALL) local_invoke(mcnblk,invblk);

/* send acknowledgement */
size = sizeof(struct crep_st), + sizeof(struct mcn_updb_st);
reply = (struct crep_st *) mem_alloc(size, RTS_OWN);
reply ->ph.rem = packet->rem;
mcn_ack(packet->origin, ACK_MCN_UPDATE,&reply->ph,size);
if(invblk->type == MCN_SEND) local_invoke(mcnblk,invblk);

mfree((daddr)packet);
Kill(cur_proc,FALSE);

-91-

/***/

/* rmcn_create: creates an MCN */
/***/
void : .
rmcn_create(packet)
pach packet;

mcn_block newblock; /* new mcn_block */

int size; - /* size of reply */

struct crep_st *reply; /* reply block */ '

%

/* create and initialise new mcn-block */

newblock = get_mcn_block();
newblock->id = packet->net;

/* send ACK */

size = sizeof(struct crep_st) + sizeof(struct mcn_updb_st);
reply = (struct crep_st *) mem_alloc(size,RTS OWN)

reply ->ph.rem = packet->rem;

mcn_ack(packet->origin, ACK_MCN_CREATE,&reply->ph,size);

mfree((daddr)reply);
Kill(cur_proc,FALSE);

)

/***/

/* rmcn_destroy : destroys a MCN - * .
/***/

void
rmcn_destroy(packet)
pach packet;

{
int size; /* size of reply */
struct crep_st *reply; /* reply block */

/* destroy MCN */
rem_mcn_block(packet->net); ‘ .
/* send acknowledgemént */

size = sizeof(struct crep_st) + sizeof(INV OCATION HEADER SIZE)
“reply = (struct crep_st *) mem_alloc(size,RTS_OWN);

reply ->ph.rem = packet->rem;
mcn_ack(packet->origin, ACK_MCN_DESTROY ,&reply- >ph size);

mfree((daddr)reply);
Kill(cur_proc,FALSE);
}

-92.-

/**#***)x***************************/

/* local_invoke : invokes local receivers for an mcn */
/***/

~void
local_invoke(mcnblk,invblk)

mcn_block menblk; . /* mcn_block */ ,
invb invblk: " /* invocation block) */ .
(_
rec_block recblk; | /* receiver block */
recblk = mcnblk->recs:) /* first receiver * <

while (recblk !=NULL){
invblk->opc = recblk->opn; /* insert op. cap. in invocation block */

/* set type to ensure proper ack. behaviour */,

if (invblk->type == MCN_SEND) invblk->type = SEND_IN;
if (invblk->type == MCN_CALL) invblk->type = CALL_IN:

invoke(invblk); ‘ . " /* invoke the operation */
recblk = recblk->nextrec; - /* next receiver (*/
} /* end of while */ :

} -

/**/

/* men_ack: sends acknowledgement packet */
/**/

void
mcn_ack(dest,type,packet,size)

tindex dest; /¥ destination VM */

enum ms_type type; /* message type */

pach packet; /* packet . */

int size; /* size of packet */
{ .

if (packet->origin == my_vm) { /* locally initiated */.

V(packet->rem->wait),

else{ /* remotely initiated */
if(!(net_known(dest))) { /* if unknown ¥M, get its socket */
struct num_st mn; ‘
pach mph;

»

mn.num —dest
mph = remote(SRX_VM,REQ_FINDVM, (pach)&mn sizeof(mn));
net_conn(dest,((struct saddr_st *)mph)->addr);

)

net_send(dest,type,packet,size); /* send ack packet */
)
)

.

-93 .

/************* **/
/* utilities *]
/**/

/************************** mCﬂ_blOCk-lltilitieS ******************************/

3 %
@

/******************* get mcn blOCk ***************************************/ -
/* returns a new initialised men_block inserted at the front of thc mcn_list */

mcn_block
get_mcn_block()

mcn_block newblock; /* new men_block returned by function */

7

/* get new block and initialise */ .

newblock = (mcn_block) mem_alloc(sizeof(struct mcn_ block_st),RTS_OWN);
newblock->numrecs = 0;

newblock->numlocal =0;

newblock->recs = NULL;

/¥ add block to list of blocks */

newblock->nextmen = mcen_block_head; |
micn_block_head = newblock;

return(newblock);
} *

=

/************************ rem mcn block **********************************/

/* removes from the mcn_list the block corresponding to the given mcn id */
. void .
rem_mcn_block(net)
struct mcn_st net; : /* capability of mcn to be removed */
mcn_block blk; /* two mcn_blocks used for search */

mcn_block prev;
/* se“arch for men block for the given MCN */

blk = mcn_block_head;
prev =mcn_block_head;
while (blk !'=NULL){
if ((blk->id.netvm == net.netvm) && (blk->id.mcnseqn == net.mcnseqn)){

/* MCN fou‘nd */

if (blk == mcn_block_head) mcn_block_head = blk->nextmcen;
else prev->nextmcn = blk->nextmcen;

mem_free((int)blk);

retumn;

J

else{ /* not found */ L
prev = blk; ' ‘ Ak
blk = blk->nextmcn;

)
}

return,

/************************* ﬁnd mcn tﬂbCk *W*******************************/
/* returns a pointer to the mcn_block with the given men_id */

.

mcn_block

find_mcn block%nét)

struct mcn_st. net; . /* capability of mcn we seek */
men_block blk; /* men_block used for search */

blk = mcn_block_head;
blk->id =net;
while (blk '—NULL)['
if ((blk->id.netvin == net.netvm) & & (blk->1d. mcnseqn = net. mcnscqn))
return(blk); /* found it */
else blk = blk->nextmcn ; .

)
" return(NULL);

.**/

/* general utilities ' */
/************ ***/

/**********

/************************** prhndb ***********************************/

/* prints out the entire mcn database */
void
printdb()- ~

mcn_block blk; . /* blocks used for search of database */
rec_block rec; '

printf(" MCN_DB");
blk = mcn_block_head;)

while(blk '= NULL){ /* search all mcns %
printf("mcn: vm: %d seq: %d0,blk->id.netvm,blk->id.mcnseqn);
printf("numrecs: %d numlocal: %d 0,blk->numrecs,blk->numlocal);
rec = blk->recs; .
while(rec != NULL){ /* search each individual mcn db */
printf("rec: vm: %d op_index: %d seqn: %d0,rec->opn.vm,
rec->opn.oper_index,rec->opn.seqn);
rec=rec->nextrec;

}
blk=blk->nextmcn;

-0§.

/******************* receiver manipulation ************************/

Rk add_rec : adds a receiver to the local receiver list ***¥*/

~void
add_rec(receiver,net)
struct ocap_st receiver; /* new receiver , */
struct men_st net; /* mcn */
mcn;_block mcnblk; /* men-block of men - ¥/
rec_block recblk; /* new rec_block for ;eceiver */
if ((mcnblk =find_mcn_block(net)) '= NULL){ /¥ mcn exists */

/* create and initialise receiver block */

recblk = (rec_block) mem_alloc(sizeof(struct rec_block_st),RTS_OWN);

recblk->opn = receiver;

recblk->nextrec = mcnblk->recs;

mcnblk->recs = recblk;

mcnblk->numlocal++;

)

[F¥FdkkxRkkkx¥ remn Tec: remove local receiver from list ***************/
void
rem_rec(receiver,net)
struct ocap_st receiver;
struct mcn_st net;

)

rec_block recblk,prevrec;

mcn_block mcnblk;

/* receiver to be deleted */
/* mcn from which to delete it */

/* receiver blocks used to search list */
/* mcn block for given men */

/* find mcn_block */

if ((mcnblk find_mcn_block(net)) == NULL) return;

recblk = mcnblk->recs;
prevrec = recblk;
while (rccblk I=NULL){

if ((rccblk ->0opn.vm =

/* search for receiver */

/* if found delete */

= receiver.vm) && (recblk->opn.seqn == receiver. scqn)

&& (recblk->opn.oper_index == receiver.oper_index)){
if (recblk ==mcnblk->recs) mcnblk->recs = recblk->nextrec;
else prevrec->nextrec=recblk->nextrec;

mcnblk->numlocal--;
mem_free((int)recblk);

return;

else{
prevrec = recblk;

recblk = recblk->nextrec;

}
} /* while ¥/
return,

-96- |]

/***/
/************************ file: bc.e **/
***/

/* a set of utility functions for multicasting over the Suns */
#include "rts.h" -
int get. _ﬁrst rec sbck() /* gets a socket with unspecified port */
L5 /* gets a receiving socket for given port */ ;
int get_. send._sock(); /* gets a sending socket of given port */ .
u_short get_port(); /* gets to-port number for a given socket */ ‘

-»

-

/********************* iﬂit al] mcasts ***********************************/
e el T s P .. =
/* executed by initial VM to get multicast receiving sock and reserve port */

void ‘
init_all mcasts()

{

mcastfrcc sock = get_first_rec_sock(); /* get rec. sock */
mcast! port = get_port(mcast_rec_sock); /* find the port number * s
mcast_send_sock = get_send_sock(mcast_port); /* get sending socket */

)

/************************** iﬂit mecasts *********************************/
/* executed by later VMs to get a multicast receiving socket for given port */

void

init_mcasts()

{
mcast_rec_sock = get_rec_sock(mcast_port); /* get rec socket: given port */
mcast_send_sock = get_send_sock(mcast_port); /* get send socket . X

)

/**************************** get ﬁrSt rec SOCk ***************************/
/* reserves a port and returns a socket bound to it , */

int .
get_first_rec_sock()

{

int sock; /* socket */ 1
SOCK_ADDR_IN mysockname; /* socket name */
int name_len; /* length of sender_address */ :

/* set up socket for reading */
sock = socket(AF_INET,SOCK_DGRAM,0);
if (sock<0){ :
perror("'opening dg socket");
exit(1);

)

-97.-

/* create name with wildcards */

bzero((char *) &mysocknamc,ADDR_SIZE_[N);

mysockname.sin_family = AF_INET;

mysockname.sin_addr.s_addr = INADDR_ANY;

if (bind(sock, (SOCK ADDR_IN *) &mysockname, ADDR _SIZE_IN) <0){
perror("binding first dg socket");
exit(1);

)
/* get poft value */

name_len = ADDR_SIZE_IN;

if (getsockname(sock (SOCK_ADDR_IN *) &mysockname, &name _len) < 0) {
perror("ggtting socket name");
exit(1); \

return(sock);

/************************** * %k get rec SOCk ******************************/
/* get_rec_sock returns a broadcasting receiving socket bound to the given port ¥/

int

get_rec_sock(port)

u_short port; /* port number

int sock; - [*socket */
SOCK_ADDR_IN mysockname; /* socket name

int name_len; /* length of sender_address */

/* set up socket for reading */

sock = socket(AF_INET,SOCK_DGRAM,0);
if (sock<0){

perror("opening dg socket");

exit(1);

}

/¥ create name with wildcards */

bzero((char *) &mysockname,ADDR_SIZE_IN);

mysockname.sin_family = AF_INET;

mysockname.sin_addr.s_addr = INADDR_ANY;

mysockname.sin_port = port;

if (bind(sock, (SOCK_ADDR_IN *) &mysockname, ADDR_SIZE_IN) < 0){
perror("binding subsequent dg socket");
exit(1);

}

return(sock);

*/

*/

- 98 -

/#************************** gct Send SOCk *******3&**********&******4{******/
/* get_send_sock returns a broadcast sending socket bound to the given port */

int |

get_send_sock(port)

u_short port; g \
int sock; /* socket */
SOCK_ADDR_IN recsockname; /* address of socket */
struct hostent *host ; ' . /* host of sender*/

char my_name[MAXHOSTNAMELEN]; /* name of host */
/* set up socke:t for sending */ | |

sock = socket(AF_INET,SOCK_DGRAM,0);
if ¢sock <0){ g

perror("'opening dg socket");

exit(1);

)
/* get host */

gethostname(my_name, MAXHOSTNAMELEN); N
host = gethostbynams(my_name);

/* set up socketaddress */

bzero((char *) &recsockname, ADDR_SIZE_IN); '

bcopy((char *) host->h_addr,(char*) &recsockname.sin_addr,host->h_length);
recsockname.sin_family = AF_INET;

recsockname.sin_port = port;

recsockname.sin_addr.s_impno = (u_char) BC_WILDCARD ;

/* connect socket */

if '(connect(sock, (SOCK_ADDR_IN *) &recsockname, ADDR_SIZE_IN))
perror(“connecting sock: get send sock [%d],my_vm");

r%tum(sock); .

-99.

/********k********************** gct port ******************************/

/* get_port returns the’ port number for the given socket */ s

u_short '

get_port(sock) , ‘

int sock; - /* socket whose port number is sought */

1 B »
«4nt name_len; /* length of socket name */
SOCK_ADDR_IN mysockname . /* socket name */
u_short port; - /* port */

name_len = ADDR_SIZE_IN;

if (getsockname(sock, (SOCK_ADDR_IN *) &mysockname, &name_len) <0){
perror("'getting socket name");
exit(1);

port = htons(mysockname.sin_port);

return(port);

- 100 -

_ References = =~ ° - e

[Andrcw383] Andrews, G.R,, and Schncxdcr, FB.,, "Conccpts and Notaﬁons '
for Concurrent Programmmg" Computing Survcys, Vol. 15, No.1, March 1983.

' [Andrews88] Andrews, G.R., et al., "An Overview of the SR Language and A . /
Implementation”, A.C.M. Trans. on Programming Languages, Jan. 88. , v /
[Andrew§87] Andrews, G R., and Olsson, R.A.,"Revised Report on the SR : MV

Programrmn nguage". Dept of Computer Scxence University of
Anzona. (TR 2\7)

[Atkins89] Atkins, 'MS Haftevani, G.B., and Luk, W.S,, "An Efficient. -
Kernel Level Depcndable Multicast Protocol for sttnbutcd Systems",
8th™ Symposwm on Reliable Distributed Systems, Seattle, Oct. 89.

[Bemstem83] Bernstein, P. and Goodman,N. "The Fallure and Recovery Problem
for Distributed Databases" Proceedings of the Second Annual ACM Symposium on
Principles of Distributed Computing, Montreal, 83.

[Birman 87] Birman, K:P., and Joseph, T.A., "Reliable Communication in the
Presence of Failures”, A.C.M. Trans. on Computer Systems, Vol.5, No.1,87.

[Birkhard87] Birkhard, W.A., Martin, B.E., and Paris, J.F. "The Gemini
Replicated File System Test- bed" Proc. of the Third Intematlonal Conference
on Data Engmeenng, L.A., California, 87 .

- [Brich Hansen77] Bgich Hansen, P, "The Architecture of Concurrent Processes”,
Prentice Hall, Eaglcgv; Cliffs, N. 1., 71.

' [Chérlesworth87] Charlesworth, A., "The Multiway Rendezvous”, ACM
Transactions on Programming Languages and Systems, Vol 9, No. 2, July 1987,
- pp- 350-366.

[Cheriton85] Cheriton, D.R. and Zwanepoel, W, "Distributed Process Groups in the
V Kernel", A.CM. Transactions on Computer Systems, Vol. 3, No.2, yhy 1985.

[Cheriton 87] Cheriton, D.R. and Stumm, M. "The Multi-Satellite Star :7
Structuring Parallel Computations for a Workstation Cluster”,
Dept. of Computer Science, Stanford University.,87.

[Feldman] Feldman, J.A., "High Level Programming in distributed computing”, Commun
ACM 22,6, June 79.

- 101 -

[Good79] Good, D.I, Cohen, R.M., and Keeton-Williams, J,
"Principles of proving concurrent programs in Gypsy". In Proc. 6th ACM Symp.
Principles of Programmmg Languages" ACM, New York, 79.

. [Hoare78] Hoare, C .R., "Commumcatmg Sequential Processes”, Commun. ACM,
Aug. 78. '

[Leffler83] Leffler, S, Joy, W., and Fabry, R.,"4.2BSD Interprocess

Communication ‘
Primer", Computer Systems Research Group, Univ. of Cal,, Berkeley, July 83.

[Martin87] Martin, B., Bergan C,, and Russ B "PARPC : A System for

Parallel Procedure
Calls", Proc. of the 1987 International Conference on Parallel Processmg,

" Penn. State Univ. Press. F!

'[N;Waratnam87] Navaratnam, S., "Reliable Group Communications in Distributed
ﬁystems" Master’s Thesis, Un1vers1ty of British Columbia, 1987. -

[Navaratnam88] Navaratnam,S., Chanson, S., and Neufeld, G., "Rehable Group
. Communication in Distributed Systems" 8th International Conference
on Distributed Computer Systems, June 88.

[Olsson86] Olsson, R.A., "Issues in Dlsmbuted Programmmg Languages: The
Evolution of SR", Dept. of Computer Science, Un1vers1ty of
Arlzona (TR 86-21)

[USDDS81] U.S. D D. U.S. Department of Defence Programrmng Language Ada:
Reference Manual, vol 106, Lecture Notes i in Computer Science” Springer-Verlag,
New York,81.)

WVu‘Lh??] Wirth, N "Modula: A language for modular multi-programming", Softw.
Pract. Exper. 7, 77. .

