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+ Abstract 

Multicasting allows a sender to send the same message simultaneously to a group 

' of receivers, which may be required to reply. In comparison to a semantically 

equivalent. series of one-to-one messages, multicasting facilitates greater parallelism 
! 

among receivers, reduces network traffic, and reduces the work performed by the 

sender. At the lower levels, multicasting occurs between processes, one of which may 

send to others in a given process group. Members of the group may be distributed over 

a local area network. 

The high-level distributed programming language SR was chosen as the testbed for 

our multicasthg experiments. In an operation-oriented language such as SR, the 

receivers of a multicast must be a group of like operations. The set of receivers is 

termed a multicast network, a distributed entity. Multicast network access may be con- 

trolled by means of capabilities. 

This thesis discusses several issues concerned with multicasting in SR, including 

semantic, linguistic and implementation issues. The syntax and semantics of multicast- 

ing are discussed from the perspective of message passing and remote procedure call 

paradigms. The use of an explicit structured vply queue is discussed. The thesis also 
'. 

proposes a way of implementing multicasting within the current SR implementation. 
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1. INTRODUCTION 

.. 
The trend to replace single large computers by networks of smaller machines has 

(L B 

increased interest in the design of parallel and distributed algorithms, in distributed 
II 

operating systems, and in new lAguages which facilitate the programming of such. 

algorithms and operating systems. 

A crucial aspeqt of distributed systems is the communication scheme which per- 

mits pr&essors ~ & e s s e s  to pass information and synchronise their activities. For 
I 

efficient communication there must be a suitable physical link between machines, and 

software to provide the reliability not provided by the hardware. In addition, the 

operating system and language must provide the user with a convenient interface, per- 

mitting reliable process-to-process communication. If the user employs a relatively 

low-level language, such as C, this service will be provided by system calls. 

Communications may be one-way, from sender to receiver, or two-way, if a reply 
** 

is required. The most common form of communication is from one entity to another, 

and possibly back, the unicast. Recently interest has been aroused in one-to-many com- 

munications, broadcasts and multicasts, which are the focus of this work. Various 

ways of synchronising the work of sender and receiver have been well addressed with 

regard to one-to-one communications[An~ws83], but only recently with regard to 

one-to-many [Cheriton85], [Navaratnam88], [Ah&ad85], [Atkins89], [Birman87], 

[Martin87]. 

Issues related to one-to-many communications include dynamic process groups 

(the 'many' may change), how to incorporate suitable communications primitives into 

languages, reliability (atomicity and same order delivery), and methods of implementa- 

tion. 



Unicasts, Multicasts and Broadcasts 

Aharnad and Bernstein describe three basic schemes of inter-process cornrnunica- 

tion: the unicast, multicast, and broadcast [Ahamad85]. The unicast is the usual one- 

to-one scheme. The multicast consists of a message being sent to a group of processes 
w 

running on any subset of the hosts in a network. A broadcast is sent to all hosts. It is 

noted that one-to-many communication may be applied to such problems as distributed 

commit protcscols, elections, reliable storage and others. Navaratnam et al. describe 

multicasting as a communication with a process group using the group's logical name 

[Navaratnam88]. 

Communication on the Sun-Network [Leffler83] illustrates the relationship 

between broadcasting and multicasting: broadcasting takes place between host 

machines, multicasting between processes. Machine-to-machine aornmunication is 

implemented using machine addresses and ports, which function as mailboxes on each 

machine. One-to-one communications use specific ports and machine addresses; broad- 

casts employ a wildcard value for the destination address, with a specific port number,' 
a #++--/' 

and are delivered to that port on all machines in the network. A daemon process may 

be created on each processor to listen to a port and react to messages received. Each 

broadcast message is thus delivered to a group of daemon processes that typically offer 
?* 

a specific service to the user. As the message isTreceived by a subset of all processes, 

the machine level broadcast effects a multicast at the process level. 

Broadcasts and rnulticasts have several potential advantages over unicasts. First, as 
2 

in V [ ~ h k r i t o n ~ ~ ] ,  they may permit a user to request a senrice without knowing the 

identity of the server. Second, network traffic may be reduced as one message replaces 

several. Third, the average time for a member of the process group to receive the mes- 

sage will be reduced. Pourth, ihe user code may be reduced in size and sirnplifiedras 

one statement replaces several. The extent of these advantages depends on the particu- 

lar nature of algorithm being executed. A multicast replacing a series of unicasts, must 



L 

carry the information contained in all the unicasts. The pra&icality of thiddepends on 

the degree of duplication in the unicasts' data. Overall, the'relative costs depend on the 

ratio of processing h e  to communication time, the q&d of communications, the 

name of the algorithm and the degree of reliability r'equikd. 

J 
P 

1.2 Synchronisation 
a 

Synchronisation refers to restrictions imposed 

sending process and that of the receiving processes 

PC 

on the order in which code of the 

may be executed. These constraints 

may be necessary for the sender to receive replies from the receivers, or because the + 

sender must be assured that the receivers have completed their task before it (the 

sender) continues. I e 

Andrews and Schneider[Gndrews83] discuss at length the relationship between the 

communication of data and ~~nchronisation.' They observe that two options exist for 

synchronisation: shared variables and message passmg. The authors also identify three 

main types of language: procedure oriented, message oriented and operation 

oriented. Procedure oriented languages, such as Modula Wirth771 or Concurrent 

P m l  [Brich Hansen771, use shared variables to effect process interactidn. Most such 

languages are monitor based. Message oriented languages, such as CSP [~o*78], 

Gypsy [Good791 or PLITS [Feldrnan79] employ fend and receive 
\ 

/' 
.z~essages between processes. Operation oriented languages, such 

and AZa [U.S.D.D.81], employ a form of remote procedure call as their main cprnmuni- 
+ + 

cation scheme. 

[Andrews83] outlines a number of issues related to message passing: how the 

source and destination of Pmessage are to be specified, and what synchronisation 

should apply. Direct naming is when both the sender and receiver name each other, 

creating a one-to-one channel. This paradigm does not permit a server to serve multiplg 
4 

clients; in that case a many-to-one communications scheme is required. 



In message passing, various synchronisation schemes are used, based on the sender 

executing a send statement and the receiver executing a receive statement These state- 

ments may be blocking or non-blocking: -the statement may effect Some action and con- 
t 

time immediately (non-blocking), or may await the completion of the action, pahaps a 

on a remote site (blocking). Whether a send is blocking or non-blocking dZpcnds on 

the buffering provided. if there exists an effectively unlimited buffering capacity, the 
m 

send may return irnrnqately, assured that, short of failure, the message will eventually 

be passed to the receiver. This. is termed asynchronous message passing. In thig 

scheme the sender can get arbitrarily ahead of theereceiver, as in Figme 1. (In Figures - 
# 

1, 2 and 3, the pme s points downward, a solid .line indicates an executing process, 
I 

and a hatched region indicates that a process must block.) 

Sender Receiver 

Send 

G 

Message buffered 

Receive 

Figure 1 Asynchronous Message Passing 

If, at the other extreme, no buffering exists, the send must block until the message has 

been received by the sender, as in Figure 2: this is termed synchronous message pass- 

ing. In this scheme the exchange of a message represents a synchronisation point for 

the two processes. 



Receive statements are mostly blocking, as the process is often unable to proceed until 

the message is received. However, operating systems may require a non-blocking 

receive. 

Sender Receiver 

Receive 

Figure 2 Synchronous ~ e s s a ~ e  Passing 

Send and receive, taken in combination, allow the user to program a numder of 
7 

communication and synchronisation schemes. In client-server interactions, the client 

may execute a send and the server a receive, for the request for service to be made. 
_Yi 

The client may then execute a receive, and wait for a reply for the server, which exe- 

cutes a send, as illustrated in Figure 3(a). 

Client Server Client Server 

(Sender) (Receiver) (Sender) (Receiver) 

Receive . . 

d 
Blocked 

Recd. 

. . 
Blocked 

Recd. 

Receive 

Processing 

e 

Figure 3 A Remote Procedure Call using (a) Send and Receive, or,(b) Call 



. . 
This use of send and receiw is sufticiently common for many languages to support it 

directly as a remote procedure call ( Figure 3(b)). The client executes a call which 

blocks until the reply is received. The server may serve a call in two ways. A call may 
1 

be serviced by a process, which will execute when the call arrives, or to a receive- 

stathent, which may be placed at some point in the code of a process. The first 

method resembles the conventional procedure call in that each call results in the execu- 

tion of a body of code from beginning to end. In the second method, the receipt of a 
li 

message by a receive statement is a synchronisation point for the client and server 

processes, termed a rendezvous. The rendervous provides the server with greater flexi- 

bility in choosing when and how to serve the client. This is particularlylqe if 'selective . 

communications are implemented: these' are receive-statements which permit the server 

to choose to receive one of a number of competing messages, possibly based on the 

contents of the messages and the server's state. 

G 

1.3 Applications of Multicasting 
' t 

[Cheriton85] states that group communication (multicasting) has two generic 
A 

uses: query and notification. Query refers to a common situation in operating systems, 

where a number of servers offer a desired service, and a client, *shing to make use of 

the service, multicasts to the server group: the server(s) appointed to provide the service 

to that client, or those that are currently available, reply. This application illustrates one 

advantage of group communications: the client may need to know only the group iden-* 

tity, but not that of the individual servers. This scheme is particularly valuable at boot- 

time as a new host may use a multicast to appeal for service. The alternative is, either 

for each client to retain a list of its servers, or obtain the same from a much more 

extensive name server. Notification refers to the situation in distributed programming 

when one process wishes to inform others of new information, or to control their opera- 

tion. 
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I \ 

Cheriton in [Cheriton85] and Martin in [Martin871 present several specific exarn- 

ples of multicast use. These may be categorised as either inter-process communication, , 

within the operating system, or as parallel programs 

1.3.1 ~nter-process Communication 

Within V several server groups exist: kernel servers, file servers, pipe server, time 

servers and team servers. The team server group uses multicasts to locate under-loaded 

processors: the multicast specifies a load-level, and only processes with a lesser load 

need reply [Cheriton85]. In this case the team server makes use of a built-in reply 

t queue, that permits the team server to access replies subsequent to the first, which is 

returned with the multicast statement. 

A second server group application in V, is a decentralised name server. The name 

and request are multicast to the appropriate server group. Those servers who recognise 
3 

the name respond. It is noted that this type of application requires process groups with 

unrestricted access, or access based on user privil Depending on the cir- 

cumstances, such applications may require the user to e first reply only, or any . . 

number of replies. Lighthouse algorithms [Martin87], in which hosts communicate 
* 

their view of the network, may also be implemented by multicast sends, with no replies. 

1.3.2 Parallel Programs 

Cheriton and ~ w a e n e ~ o d l  [Cheriton85] describe the programming .of a distributed 
< 
game. Multicasts are used to update local game managers as to the global state. A 

second application noted is that parallel programs, such as a one for playing checkers, 

may employ a group of processes performing a parallel search. Multicasting may be 

used to pass information, reducing and focusing the search efort. A similar application 

is a concurrently executing rule-based system, with the resolution of subgoals being 

exchanged. 



Cheriton and Stumrn'[Cheriton 871 promote a mde l  of paralleI computing using a 

multi-satellite star, a central controlling processor with a number of satellite workers. 

They argue that certain types of distributed algorithm allow the code to be pre-loaded 

on the satellite processors, and execution to be controlled by means of relatively short 

messages. They also state that in a distributed branch-and- bound algorithm, multicast- 

ing could be used to update the satellites on the best result so far. They say : 

Group communication hus proven to be llseful in t e r n  of mciency and pro- 
gram simplicity. It is used for control purposes and for data transfer. 

A further application is $e implemention of distributed two-phase commit proto- 

cols for atomic transactions. The initiator sends a prepare-to-commit message, to which 

" %all members of the process group reply with yes or no. s the initiator considers the f 
replies, and at some point sends a commit or abort message to all group members. The 

initiator may use multicasts for each phase: the first must be reliable, and have a reply 

queue, as all group members must commence to execute the protocol; the second need 

not be reliable, as a receiver failing to get a final message may time-out and requestp a 

retransmission [Cheriton85]. Specific examples of a data-base update algorithm that 

may be performed using a multicast with replies are the Gemini Voting Algorithm [Bur- 
D 

khard871, which requires a quorum to vote in favour of committing (see section 2.3), 

and the available copies scheme [~emstein83]. 

' 1.4 Process Groups : Static or Dynamic 

As Aharnad and Bernstein [Ahamad851 note, a (multicast) process group may be 

static, fixed before execution begins, or dynamic, with processes joining or leaving the 

process group while the program executes. They also observe that multicasts may be 

one-to-many, with one unique sender and many receivers, or many-to-many, with 

several senders. In this latter case, processes may both send and receive multicasts. 

tw 
The one-to-many multikast group is simpler to implement than the many-to-many, 

since the requirement of some degree of reliability necessitates each host knowing at 
# 



least the size of the process group, and possibly the membership, in order to collect 

acknowledgements and, if necessary, time-out and retransmit. Navaratnam employs a 

single group manager to maintain the membership list, .and secondary managers on all ) 
member sites serve as backup [~avaratnam88]. With one-to-many multicasting, the 

group membership need be stored only on the unique sender's processor: in the case of 

dynamic p u p s ,  changes need be made only on that processor. 

1.5 Multicasting Semantics. 

In section 1.2 we discuSsed synchronisation issues as they relate to unicasts. It 

should be noted that a unicast returning a value is, of necessity, synchronous, since the 

statement may not return until the value is received. Since multicasts may return multi- 

ple values, the issue here is not so clear. It is clear, however, that provision must be 
1 

made for a reply queue, which the user may access by some structured means. 

Since reliability is a concern with most multicasts,, we must consider how this may 

be provided. It should be noted that any scheme that allows the multicast statement to 

terminate without assurance that all implied actions have completed, is implicitly 

prepared to ignore remote and communication errors: if these are significant, error 

detection and handling may be implemented at a higher level. We concur with 

[Atkins89], in proposing that the sender assume responsibility for determining the level 

of reliability required. 

In the case of unicasts, the operating system implements protocols to ensure that a 

transmission is received aid acknowledged, or that the user is informed of the failure to 

do so. There are two approaches to this: providing a communication statement with pro- 

visions for exception handing, or having the communication statement return a 

boolean, indicating success or failure. SR takes the first approach; V takes the latter. 

Reliability is commonly implemented by requiring the receiver to acknowledge the 

receipt of a message. If the sender fails 4 0  recei;e an ACK within some time interval, it 



must resend the message. Sequence numbers on messages prevent duplicates being mis- 

taken for new messages. Navaratnam extends this teckaique to provide for the reliable 

delivery of multicasts [Navaratnam88]. A sender multicasts and then collects ACKs 

from the process group members. Since each sender knows the composition of the pro- 

cess group, both the size and individual members, it knows tlie number of ACKs it 

should receive, and their source. If the ACKs fail to arrive within a fixed time interval, 

the sender transmits individui unicast duplicates of the message to each member that 

failed to ac~owledge.  It should be noted that a re-multicast would have served the 

C same urpose: it requires all receivers to process the duplicate message, but would 

avoid e h sender having to'know the identity of the individual group members, as 

opposed to merely their number. Reliable multicasting is hard to support, unless the 

number and identity of group members is known [Navaratnarn88]. 

An issue closely related to synchronisation and reliability is the early termination 

of a multicast: the greater the desired reliability or sgmchronisation constraint, the later 

a multicast must terminate. This might mislead one to consider that early termination is 
A 

subsumed by the other issues. However, early termination is, per se, a means to aehiev- 

ing greater efficiency: a multicast should terminate as soon as sufficient replies have 

arrived. This sufficiency may be determined by the number of *replies, in which case 

early termination and reliability may become synonymous, or by the content of the 

replies, in which case the two issues diverge. This latter situation occurs when a client 

wishes to access servers with sufficient capakity to perform a given task: when respon- 

dents have reported sufficient capacity, the client has no use for additional replies, and 

the multicast may terminate. A particular case of this is when the client requires one 

server and will accept the first offer of service. 

1.6 Multicasting in SR 

This thesis concerns the use of multicasting within a high level language, SR, Syn- 



chronised Resources [Andrews87], [Andrews 881, [Olsson86]. Our choice of SR was 
# 

prompted by a number of considerations. Previous discussions and imple 
P 

multicasting have been in the context of low-level languages, employing 

our desire was to explore multicasting as an integral feature of a high 

The specific choice of SR was made because of the elegant way in which simple, yet 

powerful, communication primitives are integrated into the language. As SR is qpera- 
0 

tiod oriented, and encapsulates data and code using resources, the integration of multi- 

casting primitives is particularly challenging. Issues include: 

.- 

- what semantics arelrequired - 
- how the required semantics may be incorporated cleanly into the language 

- how to implement the scheme 
I 

- how efficient is the proposed scheme. 

1.7 Remainder of Thesis 

Chapter 2 discusses in detail the related work. Chapter 3 gives an introduction to 

the SR language, with particular emphasis on the semantics of the communication prim- 
w 

itives. Chapter 4 presents our proposal for introducing multicasting within SR, using a 
f 

new pseudo-resource, the Multicast Network (MCN), which represents the group of 

receivers. Multicasting is discussed with reference to message passing and remote pro- 

cedure call paradigms, which suggest different syntax and semantics. We also discuss 

the use of, the collector, a structured reply queue. Chapter 5 deals with the design 
F 

issues of the proposed scheme, within the context of the current implementation of SR, 

using UNIX. We also describe the implementation of a prototype, and the gains in 

efficiency that a multicast or a pseudo-parallel co-statement may give. Chapter 6 gives 

the conclusions of the work, and points to future research. - 



2. RELATED WORK 

Most of the work on multicasting has concentrated on providing low-level primi- 

tives and system calls, either in UNIX or V. Ahamad and Bernstein[Ahamad85], imple- . 

mented a new multicasting scheme in UNIX, creating a new type of socket: the effect is 
\ 

to allow a number of receivers to bind to one socket, and each receive a multicast. The 

service is unreliable, being based on the unreliable datagram service provided in Sun's 

4.2BSd UNIX operating system [Leffler83]. 

[Cheriton85], [Atkins89], and [Navaratnam88] deal with communications in the V 

operating system, a distributed message-based operating system, running on Sun works- 

tations c o ~ e c t e d  by an Ethernet. As part of the messaging scheme they introduce what 

they term group communications (multicasting). Dynamic process groups are provided, 

as it is necessary to maintain groups of like processes, when the message passing 

scheme makes no lexical distinction between process types. Operations are provided to 

pepnit a process to create, join or leave a process group. A sender can send a message 

to the group, and can receive multiple replies. Cheriton's group built V with a semi- 

reliable group communication primitive (one guaranteeing that one reply or ack- 

nowledgement will return), arguing that implementing greater reliability would be too 

costly. 

Navaratnam, Chanson and Neufeld [Navaratnam88] implemented a reliable multi- 
- 

casting scheme on top of the V. The protocol provides two of reliability, using a 

centralised control scheme. The system is somewhat failure and the 

partitioning of the network. 

Atkins, in [Atkins89], provided reliable multicasting within the V kernel itself, , 

showing that the cost of reliability is small, contrary to [Cheriton85]. Different degrees 

of reliability may be chosen by the sender, requiring all or a specific number of replies 

or acknowledgements. Note that V multicasts must be invoked as C library calls 



invoking V system calls. It should be also noted that the fundamental entity in V is the 

process, and that the communications are progess-oriented, as both senders and 

receivers of a messages are processes. 

2.1 Multicasting Operations t 

- 

Cheriton provides a number of function calls to provide multicastin 

AIlocateGroupId() allocates and returns a new group identifier. The process 

executing this function is automatically a member of the process group. 

JoinGroup(groupId, pid) makes the process specified by pid a member of the 

group given by groupld. The operation LeaveGroup(gioupId, pid) removes the pro- 

cess. 

- Send(message, groupId) sends the contents of message to all members of the 

process group specified by groupld. The first reply is inserted into message, an4 the 

Send returns. Subsequent replies may be read using GetReply (see later). The same 

function (Send) is used for multicasts and unicasts. Note that the messages employed 

here are of a fixed, small, size: larger messages may be copied between process address 

spaces, using different primitives. Send blocks until a reply is available, in which case 

the id. of the responding process is returned, or until the kernel times-out, and zero is 

returned, indicating failure. 

Receive(message) blocks the 'invoking process to receive a message, in mes- 

sage. The function returns the process id. of the sender. 

Reply(message, p i 4  sends message to the process specified by pid. 

GetReply(rep1yMessage) copies the next reply to a group send into replyMes- 

sage, returning the process id. of the replying process (zero if the reply queue is 



empty). dote that unread and subsequent replies are discarded when the next Send is 

performed by that sender. . 

Navaratnam employs two new primitives to facilitate reliable multicasting 

[Navaramam88] : 

Unlike Cheriton's Send, ugsend provides reliable delivery (to all group members). In 

addition, ogsend provides same order delivery, in cases of many simultaneous senders. 

Multicasts may be made non blocking by a suitable choice of msg - type. 

Atkins, Haftevani and Luk modifled V functions to provide reliable muldcasting~ 

within the V-kernel in [Atkins89]: 

i 
Send(message, id), sends message to the process group specified by id. Mes- 

sage contains two fields that specify whether replies or orily ACKs are required, and 

whether all, or some number of them, must return for the Send to succeed. 

GetReply(message, time - limit), is intended to take a reply from the sender's 

reply queue and copy it to the variable message, within the time-limit, and return suc- 

cess. 

2.2 Reliability 

There are a number of potential problems that can make communication unreli- 

able: the communications service provided by the network may be unreliable, work- 

stations or their network interfaces may fail, and the processes on the work-station may 

fail. 



The modes of reliability described in the literature include atomicity (re&zble 

delivery) and. same order delivery. Atomic delivery implies that either all group 
t 

members receive a multicast or none. Naturally the first event is preferred, and thus 
ld 

every attehpt is made to deliver the message. Same order delivery implies that a 

sequence of multicasts are received by each receiver in the same order. 

Navaratnam implement these delivery modes using a two layered system, with an 

underlying group of managers, one per active host, as' shown in Figurw-4. Each 

manager maintains a list of local receivers for each group, and a list of other managers. 

The managers themselves comprise the process group at $e lower level. Inter-host mul- 

ticasts and unicasts are then used to provide process-to-process communication. The 

authors are concerned that the.multicasting -method be general and not dependent on 

specific characteristics of the underlying network [Navaratnam88]. If the network pro- 

vides broadcasting, each manager will receive multicasts which must'then be demulti- 

plexed to the receivers on that host. If the network does not support broadcasting, hosts 

may communicate via a sequence of'unicasts. 

Receiver 

Manager 

Figure 4 Two-level Multicasting. 

In implementing efficient reliable multicast communication in the V-system, 

Atkins, Haftevani and Luk [Arkins891 provide two sets of semantics for terminating a 
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multicast: ALL-DELIVER (ALL-REPLY) and K-DELIVER (K-REPLY). Delivq-type* 

multicasts return after the message has been delivered to the receiver, reply-type when 

the receivers' replies have returned to the sender's queue. The user may specify how 

many ACKs or replies must arrive before the multicast succeeds and terminates. The 

ALL option specifies reliable delivery (reply) to all the group members extant at .the 

time of the initial send, The K option permits the user to specify the number of ACKs 

(replies') needed, as in Byzantine agreements. Setting the required number to one in the 

K option provides for the multicast to return after the first ACK (reply), the level of 

reliability that V itself provides. It should be noted that in this scheme early 
# Pa- 

tion and reliability are controlled by the same parameters, and are thus synonymous. 

The values of the parameters may be set to achieve a certain reliability, or to achieve 

early termination, depending on the application. 

Same order delivery requires that each receiver receive a sequence of multicasts in 

~t of replicated data-base systems, when it is neces- 

sites. This may be implemented by executing a 

or by using a a central controller, through which 

multicasts are funnelled mavaramam88]. This second scheme unfortunately requires an 

additional unicast, from the sender to the group manager, increasing the time taken for 

each complete transmission. Navaratnarn provides two modes of multicasting, one pro- 

w 
viding reliable delivery only, and the other providing complete same order delivery.? 

We do not attempt to provide atomicity, due to its cost, and as it may be provided at 

the user level. 

the same order, and is a requiremen 

sary to maintain consistency at all 

multi-phased protocol [Birman87] , 

2.3 Parallel Procedure Calls 

The PARPC scheme [Martin871 gives semantics and syntax for parallel procedure 

calls ii-1 a distributed UNIX environment, modelled on the remote. procedure calls 

already provided in such environments as the Sun network [Leffler83]. PARPCs are 



system calls within C or C++, simultaneously - invoking ti number of procedure calls. 

By default, the calling process blocks until &result from one of the calls arrives: it then 

unblocks and may service the result. The syntax for a PARPC is as follows: 

The distributed - address-spaces is the set of distributed address spaces in which the 

prdcedure is to be executed. The parameter-list comprises the parameters td be passed 

to each remote invocation of the basic procedure. The result-statement is an op60nal 

statement, normally a block of code, permitting the caller to process results as they ' 

arrive. Within the result-statement . ;arious semantics are possible: the calling process 

may ignore a reply by executing a continue (blocking until another result arrives) or 
4 

cause early termination of the result-statement by exduting a break. Data is passed to 

the PARPC and returned by in or out parameters (equivalent to SR's VAL and RW 

param6ters). If the procedures invoked by a PARPC have no out parameters, the &dl is . 

asynchronous and non-blocking: any result-statement does not execute. A user requit- 

ing a synchronous P M P C  with no replies, must employ a dummy out parameter. 

Replies to a PARPC may only be received only by the result-statement, within the 
L 

scope of the PARPC-invocation. 

The syntax and use of the PARPC is well illustrated by Martin's example, in 

which a replicated data-base is updated, after a quorum of hosts have replied [Mar- 

tin871. Ropen is a PARPC, which invokes a set of database servers corresponding to the , 

address space hl. Filename and ballot are parameters which define the transaction to be , 

attempted at each site. The result statement counts replies, and, if a quorum is reached, 

executes a break, to exit the PARPC. If a quorum has been reached, a commit order is 

sent to all the databases, otherwise an abort order. As Martin notes, commit and ~ b o r t  

may be implemented using PARPCs. The result statement also processes errors, and 



\ 

will exit when all members of th&ote procedure group have replied, directly or 

through an error message. Early termination is flexible, as the result-statement may use 
t. 

the replies' contents in judging when to perform a break. 

votes = 0; 
ropen(W filename,& ballot) ( /* PARPC */ 

if (host-error(h1)) continue; I* remote error */ 
votes + + ; I* positive vote */ 
if (votes > size(hl)/2) break; 
1 J 

if (votes > size(hl)/2) comrnit(h1); /* comrhfWf abort in parallel */ 
else abort(h1); 

PARPC programs require the progranimer to write a header file which describes 

the PARPC interface using type and procedure declarations, and procedure argument 

specifications. This header file permits the compilation and) linkage of user code and 
" 

special P A R K  code. PARPC programs p e a  the procedures called to be on different, 

. potentially heterogenous, host machines. The procedures forming the process group ,are, 

however, statically determined at compile time. 
'b 



t' 
3. THE SR LANGUAGE 

3.1 Overview 

Synchronizing Resources, SR, [Andrews88], [Andrews87], [Olsson86], is a high - 

level distributed programming language, intended for both distributed operating systems 

and distributed applications. SR is, in Andrews' taxonomy, an operation based 

language [Andrews83]. IJsing two communications primitives (call and send), SR pro- 
es 

vides a variety of synchranisation schemes in a way that is both simple and linguisti- 
- 

-? 
cally consisjent with other. language constructs. 

- 2  

e basic building block of an SR program is the resource, an entity that has asso- 
- i 

ciated data structures and code, which may be accessed via structured operations. Note 

that resource refers to both the lexically defined resource-pattern and the dynamically 

created instance of it, the resource-instance. Resource-instances may be created by 

other resource-instances: the ability to access a given resource-instance, or one of its 

operations, may be passed from its creator to other resource-instances as a capability. A 

resource may access another resource by invoking an operation on that resource, pro- 

viding that it holds the capability to either the operation or the entire resource. fp. 

\ 
3.2 Resources 

Since SR embodies the philosophy that a resource's external appearance and inter- 

nal workmgs should be separated, a resource declaration has a specification and a body. 

This facilitates modularity, permitting the design of the user interface of a resource and 

its compilation as part of other resources, prior to, and separate from, its implementa- 

tion. The specification defines the interface that the resource has with other resources, I 

\ 
declaring its operations and also t h e  resources (patterns) that it imports. A resource 

in'stance may create or destroy another, or invoke an operation on it ,  only if i t  imports 

the pattern for that resource. 



We present the specs of two resources, which will serve as examples throughout 

the text. The first resource, dbase, serves a site of a distributed data-base and has opera- 

tions vote, commit, and abort, to provide the semantics required by the Gemini Protocol 

[Martin87]. These operations have a parameter tramaction,'of a globally defined type, 

trans - type, which specifies the particular data-base transaction required. In addition 

each site has an operation report - status, which is a request for the site to report certain 

statistics. This is to be done by the site invoking some operation on a central control- 

ling resource, asynchronously, in order to avoid the multicaster blocking. The opera- 

tion report-status-now is a synchronous form of this operation, returning the status. 

resource dbase 
op vote(tramaction: trans type) 
op comrnit(transaction: trans type) 
op abort(transaction: tram type) 
op report_status() (send) # must be invoked via a send 
op report - status - now(status: stam-type) 
. . . . . . . 

end 

The second resource, server, provides a service to clients. The operations 

query-load and query - capacity return the current loadland capacity of the server. The 
7 

RES parameter server - id permits the multicaster to identify each respondent. 

resource server 
op query load(RES: server id : integer) returns load : real 
op query-capacity( - RES server - id : integer) returns capacity : real 
. . . . . . . 

end 

Resource variables corresponding to these resource-patterns may be declared as follows: 

var my server : cap server 
var my-dbase - : cap dbase 



The body of a resource describes its implementation, which may involve four 

types of code: initial, final, procs and processes, all executing in the same address 

space. Initial and final code are executed immediately after the resource is created and 

immediately before its destruction. Procs and processes service operation invocations, 

and perform other tasks. 

When an operation serviced by a proc is invoked, a new instance of the proc of 

that name is created and commences execution. A process, on the other hand, begins 

execution after the resource is created and initialised, and normally continues execution 

until the resource is terminated. Typically a process has a loop containing input- 

statements, to service one or more operations. 

An SR program begins with the creation of the main resource instance, which may 

then create other resources instances, possibly on other machines: these may, in turn 

create other resources instances. Capabilities to resources, or individual operations, may 

be passed as a parameters, persnitting the holder to invoke the operations of the 

resource, or the individual operations. 

6 c 

3.3 Operations 
* 

SR treats operations as being of the same type if, either the operations are expli- 

citly declared as being of the same op-type (as defined in an operation-type declara- 

tion), or the operations are implicitly of the same type, having the same number and 

types of parameters, and the same type of return value. This approach 'permits one vari- 

able to be assigned the capabilities of different, but equivalent, operations with similar 

semantics (eg. a set of sorting routines). This continues the SR philosophy of separat- 

ing semantics from implementation: operatiags with the same user interface are con- 

sidered equivalent from a user perspective. 

An operation on a resource may be serviced by the creation of new procs, or by 

input-statements in  one or more processes. When an invocation is received by a 



resource, the SR run-time support (RTS) queues the invocation, and checks how the 

invocation is to ,be serviced. When an operation serviced by a proc is invoked, a proc 

instance is created and executes until termination, returning, if required, values to the 

invoking resou&e. If the operation is serviced by a process, the situation is more com- 

plex: operations waiting to be serviced are queued, as are processes waiting to service 

them. Operations may be waiting on a receive-statement, which services only one 

specific operation, or be waiting on an input-statement, which may service a number of 

chfferent operations, one-by-one. Processes blocked on input compete to service eligible 

invocations. Invocations competing to be serviced will be dealt with FIFO, unless syn- 
t 

chronisation or scheduling expressions require otherwise. 

3.4 Implementation of SR 

The current implementation of SR makes use of the UNZX operating system. Each 
k 

physical machine in the distributed system may act as host for m e  or more virtual 

machines. A virtual machine (VM) is an address space in SR, allowing resources on 

the same VM to pass data by pointers. VMs are implemented as UNrX processes, and 

execute two sets of code, that of the RTS and that of user resources, linked by the SR 

compiler. The RTS provides for the creation and destruction of resources and operation 

invocations, and links the VMs via the network. 
t. *, 

3.5 Communication primitives in SR 

- .  
4 

SR provides two communications primitives, the call and the send, along with the 

co-statement that allows calls to be carried out in parallel*. 

A send is asynchronous: the sender is blocked only until its VM 'receives ack- 

nowledgement that the invoking message has been buffered on the operation's VM. No 

* The use of sends within a co-statement was not implemented in  he version of SR used for this 
research. I t  has been subsequently. 



reply is returned to the sender. A send statement is of the form: 

send my - dbase.report - status(). % 

A call is synchronous: the caller is blocked until the invoked operation completes, 

and replies (returned value and parameters) are delivered to the caller. A call may take 

place within a call-statement: i 
/ 

call my - dbase.commit(tramy) 
w i '\ or by using the denotation for the invcjcatiorrdan expression, whose value will be the 

value returned by the invocation: 

write('load is : ', my - server.query-load(id)). 

The parameters of an operation may be of type VAL (value or in), RES (result or 

out), or VAR. (in and out). SR does not, per se, restrict the type of parametk$s that may 

appear with a ca)l or send. A returning call assigns values to arguments of type RES 

and modifies the values of those of type VAR. In addition, when the invocation deno- 

tation occurs as an expression, the expression is assigned the value returned by the 

operation. In the case of sends, no value will be assigned to RES parameters, and VAR 

parameters will not change. 

It should be noted that the two types of invocation, call and send, and the two 

ways in which an operation may be serviced, by promar by process, permit the user to 
- 

achieve several of the common forms of synchronisation [Andrews88]. 

Invocation Serviced by Effect 

call Proc procedure call 
call process rendezvous 
send Proc dynamic process creation 
send process message passing 

'3 The co-statement permits a number of calls ty take place in quasi-parallel. The 

invocations are passed one-by-one to the RTS, which transmits them. Replies may be 

received in any order: when one is received, the RTS may call back the SR code to 



execute the optional post-processing block corresponding to the returning invocation. 

Early termination may be programmed by executing an exit, within the post-processing 

block. 

Invoking two servers within a co-statement is achieved as follows: 

CO 
my load := my server.query load(id) 
yo& - load := your - server.qu2r-y - load(id) 

OC 4 

. 
The purpose of the co-statement is to overlap the times taken to execute the opera- 

tions contained within it. The actions performed in response to a co-statement, on the 

invoker's physical host, on the network and on the physical hosts of the VMs of the 

invoked operations, may occur in parallel. The invoker's RTS processes the co- 

statement, calls the network, processes replies and calls back to the user's post- 

processing block. The network transmits the invocation and return values. When 

instances of the same operation are to be invoked on separate machines, further savings 

might be made by employing a single multicast. This reduces network traffic, and 

reduces the average time for a message to be buffered on each VM. 



4 MULTICASTING -IN SR 

4.1 Overview 
+ 

The thrust of the research described in this thesis is the desen and implementation 

of a suitable multicasting scheme for the SR language. SR alreadi provides a certain 

degree of parallelism, via the co-statement. This, however, requires one message per 

operation invoked, as opposed to ody  a single multicast message. In addition, the pro- 

gramming of multiple calls within a co-statement is not a particularly elegant way of 

describing parallel invocations. 

We refer to the entity that permits multicastipg, equivalent to the process group, as 

a multicast network (MCN). We argue that an MCN be considered, like the VM, a 

pseudo-resource, which is, however, distributed over the entire set of VMs. Multicasts 

are to be performed by invoking the MCN-capability. We discuss the syntax and 
a 

semantics of an MCN: in particular, we examine and compare the effect of choosing a 

message passing or remote procedure call paiadigm. We also discuss the use of another 

pseudo-resource, the collector, which acts as a sepamte reply queue. 

The proposed implementation is similar to that described in [Navaratnarn88], in 

that each SR RTS will have multicasting code. In order to implement protocols for 

changing group composition, we employ a central controller, modifying the central 

name server, srx, for this additional purpose. 

A number of criteria were employed in making design decisions: 

Power 

The system should allow the user to program a range of useful semantics with regard to 

synchronisation, early termination, reply handling, reliability, and error handling. 

Simplicity 

The scheme should be linguistically and semantically simple for the user. The number 
n 



of new primitives 'should be minimal. The potential for programmer error should be 

- Compatibility 

The scheme should be as consisteht as possible with existing SR semwtics, and . 

any extension to the semantics should be minor. Extensions to the language should be 

consistent with standard SR. The scheme should be in the spirit of SR. 
b 

Efficiency 

Changes to the compiler and RTS should be minimised and have little effect on 

performance. The implementation should be as efficient as possible. 

4.2 Multicasting within standard SR 
\ .  

It is possible to implement multicasting in standard SR by means of a true 

resource, which holds the capabilities of receivers and invokes them all, when itself 

invoked by a sender. The multicaster resource has operations join and leave, which 

allow a receiver's capability to be given to, or removed from, the resource. Multicast- 

ing operations cause the multicaster to invoke its receivers via a series of separate uni- 

cast invocations. Further get-reply operations are needed in order for all replies to be 

made available to the user. A rnulticaster resource for multicasting to receiver 

resources of type dbase (see section 3.2) would have specification: 
6 

resource rncn 
import dbase 
op join(new op:cap dbase) 
op leave(o1J op: cap dbase) 
op multicast-vote(transaction: trans type) 
op multicast~commit(transaction: tr&s type) 
o p multicast-abort(transaction: trans-Gpe) 
op multicast report status() 
op get replyZvote(6ansaction: trans type) 
op get-reply commit(transaction: trans-type) 
o p g et-reply-abort(transaction: trans type) 
op  get-reply-report - - - status - now(statG: status - type) 

end 



The true-resource multicaster has merit in demonstrating that multicasting can be 

provided using only standard SR, and as a model for the interface of a built-in multicas- 

ter, but has major limitations. First, though a single user statement may invoke multiple 

receivers, the multicast is implemented as a sequence of unicasts: this is marginally less 

efficient than a series of unicasts performed directly. Second, there is a proliferation of 
3 

operations, two per operation of the basic operation, if replies are required: a multicast 

operation and a get-reply operation. Lastly, as noted, SR's strong typl"ng requires each 

multicasting resource to be custornised to correspond to tihe type of the receiver, and the - 

type and number of its parameters. This sort of modification should be performed 

mechanically by a pre-processor or compiler. These limitations provide the justification 

fop a built-in multicasting facility. 

The work on multicasting described in chapter 2 referred to process-to-process 

multicasting, as the languages and systems used were process oriented. SR' is an 

operation-oriented language [Andrews83]: its unit of encapsulation is the resource, 

which sends messages'by invocations and receives messages via operations: thus, mul- 

ticasts will be invocations by the sending resource of operations on the receiving 

resources, as with the true-resource multicaster. While, in the work cited, process 

groups were groups of peers, there is a basic asymmetry with SR multicasts: the 

receivers for a multicast are a set of operations, the senders a set of invocations. There 
I 

is no requirement that the parent resources of the senders correspond to the parent 

resources of the receivers. 

The multicast, being a single operation with one set of parameters, must invoke 

operations whbse formal parameters correspond to the multicast's parameters in both 

number and type. This does not imply that the operations invoked need be instances of 

the same operation, merely operations of the same type. t 

An MCN may comprise a set of operations, or a set of resources. With a 

resource-based MCN the operation required in a given multicast must be specified in 



- 28 - 
\ 

the multicast-statement. The choice of operations as the multicast group members is 
~ 

the most general one; however, in the case of file access, a separate MCN would be 

required for each file operation (read, write, open, etc.), causing an excess of user-code 

to create, and maintain the MCNs, and potentially a greater burden on the RTS: here the 

choice of an entire resource as the multicast group member is more convenient. In 

addition, & %ill be discussed later (section 4.4.4), the re~ource~based MCN is necessary 

to implement same order delivery for a set of operations, such as read and write. Unfor- 
- 

tunately the resource-based MCN precludes the invocation of operations of the same 

type, on resources of different types. Thus both resource-based and operation-based 

w M C N ~  should be provided. Note that this parallels the existence in SR of both* resource 

and operation capabilities. 

4.3 Group Composition : Dynamic or Static 

V provides for dynamic group creation, and for dynamic changes to group 

membership; with PARPC, however, group composition is statically determined at 

compile-time, raising the question as to whether dynamic groups are hecessary. With 

most distributed user programs, the required processing power' will be known at 

compile-time, and statically defined groups will suffice. However, at the OS level, or 

with ongoing systems such as distributed data-bases, the processing power may be 

required to change dynamically. A server group, such as the servers of the sites of a . 
distributed data-base, may change as new sites are added, and old ones taken out of ser- 

vice: sites may also go-down, and require servicing and bringing-up. One option is to 

stop all transactiois, make the change, and then restart the system.: this may be s'atis- 
\ 

factory, if the changes, are infrequent, and system down-time can be tolerated. In other 

circumstances, the preferred approach would be to create and initialise the site, and then 

add the server to the group dynamically, with minimal interruption to the service, 



Distributed algorithms may also require dynamic groups: as the job progresses, it 

prove advantageous to redistribute the work-load, creating new processes to per- 

form certain tasks and reducing the number performing others. In this context, dynamic 

changes to the group composition are essential, if time savings are to be achieved. 

I 

4.4 Required Semantics of Multicast Statement 

The literature [Atkins89] [Martin871 suggests a number of semantic features that 

should be incorporated into a multicast statement: synchronisation, early termination, 

reply-handling, reliabibity, error-handling, and same order multicasting. 

4.4.1 Synchronisation and Early Termination 

Multicasts may be asynchronous or synchronous. Synchronous multicasts are 

required for applications in which results are required, or where the user needs to be 

assured that a set of operations have completed. A synchronous multicast will thus pro- 

vide reliability similar to that provided by the synchronous unicast (call), guaranteeing 

that all, or some number of operations have completed. 

In order for the asynchronous multicast to provide the same reliability as the,asyn- 

chronous unicast (send), its success must guarantee that the message has been buffered 

on all VMs, or some number of them. 

As noted in chapter I, there are algorithms that pennit the multicast to terminate 
i 

, early, ahd-thus be more efficient. The examples given in section 1.5 are cases in which , 

the user is satisfied when the replies returned so f& satisfy some property: this may be 

a function of the number of replies, or depend on the values returned. Early termination 

for synchronous multicasts should permit these semantics, and those required when no 

data is returned and the user needs to be assured that some number of tasks have been 

completed, as in some data-base applications. Note that if no values are required, the 
9 

termination semantics can only depend on the number of replies. - 
k 



. i 
Early termination of asynchronous multicasts appears to be of a lesser importance. 

- 1, 
A potential application is when a user requires assuranc&that data has been buff& on 

at least one site, before continuing and erasing the local copy. However, such a schme 

might provd inadequate if the buffering is in volatile storage. It should be noted that 

setting the number of required ACKs to zero would specify totally unreliable delivery, 

which may be permissible i~.some cases, with e m r  checking at a higher level. We dis- 
\ 

cuss the provision of early te 'nation for asynchronous multicasts, but do not regard + 
them as a crucial feature. ! 

4.4.2 Reply Handling 

Multicasts require replies in some applications, and not in ofhers. Atkins permits 

this choice, as does Martin (via the mechanism of in and out parameters) in the 

PARPC: in both cases, the absence of replies is taken to imply asynchrony. In PARPC, 

the absence of out parameters makes the PARPC asynchronous, and a user requiring no 

replies, but wishing to be assured that a process has terminated, must employ a dummy 

out parameter. This mechanism is inelegant and should be avoided, if possible, in a 

high-level language. 

B 

4.4.3 Reliability and Error Handling 

Reliability and error handling are opposite sides of the same coin. The kind and 
4 

degree of reliability required depend on the. application. There are three possible kinds: 

the scheme could be totally unreliable, with the message being sent, but nothing more, 

deliver-reliable, with the sender being assured that the message has been buffered on 

the remote machine(s), or reply-reliable, with the sender being assured of a reply, or 

replies. The degree of reliability applies to multicasting, when the number of ACKs or 

replies required may vary. 



It is important to distinguish between the different types of failure. Atlcins pr$vides for 

a multicast to return success or failure, what may be termed semantic success or failure: 

the multicast-statement itself does not fail, in the sense of generating an 'exception, it 

merely r e b s  a process id. of zero. A PARPC does not fail either: exceptions may be 

handled within the result-statement. SR's unicast primitives do not return success or 

failure: errors provoke exceptions, causing run-time errors, unless the user has provided 

a handler, a block of error-handling code as$ociated with the multicast statemefit. It 

sh'ould knoted  that returning success or failure, is consistent with standard C program- 

ming practice; in a high level language, this practice is less common. 

The range of reliability is specified by Atkins, by means of a parameter which 

specifies the kind (ALL-REPLY, K-REPLY, ALL-DELIVER, K-DELIVER) and, in ' 

the case of the K-option, an inte er expression giving the required number of ACKs or Q 
replies, the degree. It should be noted that this reliability could have been provided 

using Cheriton' s earlier unreliable scheme, using higher level code. A &ins ' s scheme 
8 

has the advantage of being more efficient, as it performs the checks within the V-kernel. 

It appears that the justification for specifying reliability via parameters is based on two 

grounds, efficiency and simpler code. 

Martin employs a more flexible scheme, permitting the PARPC user to have expli- 

cit access to both gengiine replies and exceptions, which have separate entry points 
* 

within the result-statement. This is, however, at the potential cost of extra processing 

time, as this hnctionality is provided by the user code, rather than at a lower level. 

SR intends send and call to be deliver-reliable 'and reply-reliable, respectively: by 

default, an exception provokes a run-time error. Rendering errors benign requires the - 

use of a handler. If we meld SR multicasts with the parametric approach to specifying 

reliability, we are faced with a greater potential for exceptions, due to generally less 

,reliable lower level communications, and to the greater number of hosts and receivers 

that may fail. It should be noted that deliver-reliability guards against communication 
b 



failure, including the possibility of a receiver being unable to buffer a message. Reply- 
? 

reliability guards against both communication failure and remote exceptions. However, 
=,.. 

it should be noted that k-reply-reliability does not imply (k4l)-deliver-reliability, and a A 

scheme providing k-reply-reGability must be prepared to deal with communication 

errors. < 

In distributed systems, errors are often passive, discovered by the absence of 

action, rather than by action. An error checking scheme inevitably requires a local 

timer: if no response occurs within a time-limit, an error is declared. This time-limit 

must be set within the operating system, after a process of fine tuning. This is not appli- - 

cable to calls, as the remote action may take an indefinite time to complete. 

The present implementation of SR is rfbt designed to withstand processor, com- 

munications, or processefailure. The failure of the name server process, sm, would 

eventually be fatal, as its information is not replicated. However, $e cost of building in 
.-bl' 

the necessary redundancy is substantial Pirman871, and beyond the scope of this exper- 

imental language. In addition, such reliability comes at the cost of slower processing. 

4.4.4 Same Order Multicasting 

Same order multicasting with operation-based MCNs, does not provide the neces- 

sary functionality for replicated data-base applications: &ads and writes would have 

separate MCNs, and ordering on each MCN would not imply that each site saw the 

same ordering of reads and writes taken together. This problem is solved by resource: 

based MCNs, on which all operations are ordered, and is a potent argument for their 
B 

implementation. However, a distributed data-base may permit other operations, of a 

diagnostic nature, which need not be part of the o r d e ~ g .  This example suggests the - 
need for resource-based MCNs, in which all operations, subsets of operations, or indivi- 

dual operations would be ordered. However, specifying all possible ordering semantics f 

would be confusing. 
3 
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Same order multicasting could be a static 'attribute of a given receiver qoup, a . 
boolean to be dynamically toggled, or a property of individual multicast Statements, 

requiring the programmer toecorrectly specify the nature of each multicast. Specifying 
1 

same order multicasting in an MCN declaration has several advantages. Firstly, as 

noted, this provides the functionality required to update replicated data-bases. Secondly, 

by defining this attribute statically, the programmer.is relieved of responsibility for 

correctly specifying the name of each multicast, with the side effect of slightly simpli- 

fying the user code: as will be described shortly, the semantics of same order multi- 

casts, are, in some cases, far from simple. The other options for specifying same order 

multicasting appear less useful, unless the algorithm being implemented has different 

phases, requiring ordering and non-ordering multicasting at different times. 

The effect of same order multicasts depends on the type of multicast, and on how 

the operations are implemented. Same order synchronous multicasts guarantee that all - 
the operations invoked will terminate before the next multicast, of whatever type, is 

/ ' 
,, started. Same order asynchronous multicasts guarantee only that the ihvocations will 

have been buffered before the next ordered multicast is allowed to'take place. When an 

operation is implemented by a process, and in the absence of scheduling or synchroni- 

sation expressions, FIFO will prevail and same order asynchronous multicasting will 

imply that each receiving process deals with the stream of multicasts in the same order. 

If an operation is implemented by a proc, same order asynchronous multicasting only 

implies that the procs are created in the order in which the ~nulticasts are sent. Even 

though time-slicing is not presently implemented in SR, the first proc to start may not '. * 

finish first, as it may block, permitting the second multicast's invocation, with different 

parameters, to execute and possibly terminate first. 

, As our scheme requires a central controller to facilitate VM-to-VM multicasting, 

we propose that same order delivery, be implemented using this same controller, as 

with the scheme of Navaratnam et al. INavaratnam88). 1 



4.5 Multicast Group Semantics 

Access to SR resources is controlled by means of capabilities: an operation may be . 
invoked only by a resource holding its capability or that of its parent resource. To 

explicitly maintain these semantics with dynamic process groups would be impractical,' 

as each potential sending resource would be required to hold the capability to each 

receiving operation. What is required is a' way of controlling proces*s group member- 

ship, for both sending resources and receiving operations, that maintains the spirit of 

SR. 

The true-resource multicaster of section 4.2 provides a m a e l  for the semantics of 
-4 

a built-in multicaster. The right to multicast is restricted to those holding the multicas- 

ter capability, consistent with SR practice. We therefore propose that the right to multi- 

cast to a given process houp be controlled in this same manner. The resource creating 

the group would obtain the capability, and could pass the same to other resources. The 

multicast network (MCN) is the entity which has this capability. 

Controlling the receivers of a MCN requires a different approach. Again the . P 

true-resource multicaster provides a model, in that'a resource holding the capability of 

an MCN and that of a potential receiver may pass the receiver capability to the multi- 

caster resource, thus adding it to the group of receivers. Though this approach is suit- 
* 

able for a built-in MCN, some clarification of the semantics is required. 
b 

This raises an interesting point: resource A creates a multicast group, passes the 

multicast capability to resource B, and joins an operation 0 to the group. Resource B, 

$ which does not possess the capability of 0 ,  may now multicast to the group and invoke 

0 .  This appears to violate SR semantics in that a rksource can invoke an operation 

whose capability it does not possess. This violation is, in fact, apparent only: a resource 

may not ciuectly invoke an operation whose capability it does not possess, but may do 

so via an intermediary: the ability to invoke is transitive. Ln our case the multicast 

group acts as intermediary. 
'B 



We suggest that the violation of SR semantics depicted above, is apparent only, as 

the 'semantics do not differ from those that the true-resource multicaster pro- 

vides within SR. The true-resource multicaster provides this functionality 

because the ability to invoke is transitive. (A may indirectly invoke C, if A has  the 

capability of B, and B that of C.) If we consider the MCN a pseudo-resource, the 

semantics of standard SR will be maintained. We thus propose a minor clarification of 

SR semantics: 

that an MCN be a pseudo-resource, and that the right to@ulticast to the 

receivers of an MCN be regulated by the sender being required to hold the capa- 

bility to the MCN, hitially owned by the group creator, 

and i 

that a nem receiver may be added to the MCN by any resource that holds 

both the MCN and the receiver capabilities. 

\ 
4.6 Maintaining a Built-in Multicaster 

' We now describe the features of a built-in pseudo-resource MCN, its semantics 
P 

and the changes required to the SR language for its imp@kntation. In describing the 

ways in which a MCN may be accessed, each language addition will be referenced to 

the appropriate section of the Revised Report on the SR Programming 

Language[Andrews87], which we refer to as RR. P 

As a pseudo-resource, an MCN-instance may be declared, created, .or destroyed, 

like a resource. To distinguish between a declaration of resource or operation, and that 

of an MCN, we use a new keyword net in place of cap in RR (3.1): , 



<captype>::= cap I net 

This permits operation-based and resource-based MCN-declaratiops of the type: 
*. 

var loads : n& servers.query load # an operation-based MCN ** 
- var commits : net dbasexommit # operation based MCN 

var dbases : net dbase # a resource-based MCN 
var servers : net server # a resource-based MCN 

When creating or destroying an MCN, we use standard syntax, with the word net 

being the name of the object created or destroyed. This generic name avoids the com- 

plexities of specifying the type of each MCN, which is apparent from thqt of the vari- 

able. There may be no initialisation values nor a host VM. Thus: 

dbases := create net0 
destroy dbases 

Changes to a multicast group may be made by means of join and leave statements, 

which must contain the capabilities of both the receiver operation or resource, and of 

the MCN. We use the following code to jpdremove my-dbase tolfrom the MCN 

dbases: 

join dbases(my dbase) 
leave dbases(my_dbase) 

A new statement, mc update statement, must be added to the list of - - 

w c n - u p d > + ~ r n e n ~  ::= <join-statemeno I cleave-statemeno 

( <resource-or-operation-identifier> ) 

as long as their types agree. 

** In SR # indicates a comment. I 



Atkins and Martin provide two paradigms for the semantics and syntax of multi- 

casting: the message passing (MP) and remote procedure call (RPC) paradigms 

[Atkins89]wartin87]. It is worth describing the essential differences betwmr; hem. L"I 

the MP paradigm, separate primitives are used to perform multicasts and to access 

replies. This provides great flexibility, but implies that the scope of the entire multicast 

activity is not lexically defined. In the RPC paradigm, one primitive is used for the 

entire multicast activity, including result processing. The scope of the multicast is well 

defined, resulting in an integrated approach. We examine how these may be used to 

describe multicasting in SR, and discuss their relative merits. 

4.7 SR Multicasting : Message passing Paradigm 

In this paradigm, based on [Atkins89], reliability and early termination are 

specified by an optional integer expression. The AILDELIVER option provides the 
- 

same semantics as the SR send, in that all receivers must acknowledge the receipt of the 

message before the statement terminates: ALL-REPLY is similar to SR's call, in that 
\ 

all receivers must reply. It should be noted that the semantics required for multicasts 

correspond to those for unicasts, suggesting that, as in V, the same two primitives (in 

this case, send and call) be used to specify asynchronous and synchronous multicasts. A 

send or call statement will be a unicast or multicast depending on whether the associ- 

ated denotation contains an operation or a multicast-operation. 

We have made two changes to the syntax, to accommodate the optional termina- 

tion semantics and to provide the get - repfy functionality. We have added the optional 

termination semantics to the multicast denotation, rather than requiring new call and 

send statements. This change also takes into account the use of denotations as expres- 

sions. The following invocation terminates after the first reply has been received: 

call dbases.report - status - now(status) return - after 1 

providing an optirnisation when the first reply will suffice. 



The inclusion of the get - reply primitive presents some problems. In the absence 

of return-values, we could provide a get - reply - statement as follows: 

get - reply servers.query - load(load,id) 

where the operation query-load would have been redefined so that the load is returned b 

as a parameter, not as a return-value: , 

op query - load(RES load: integer, RES server-id : integer) 

If, however, return-values are required, the problem is how to specify the get - rep& 

functionality in a denotation, along with the multicast operation, which identifies the 

replyqueue being accessed. Get - reply is effectively an operation on the reply-queue, 

which is implicitly specified by naming the multicast operation. One approach is to 

explicitly define a replyqueue for each multicast: this is discussed in section 4.9. If 

return-values are required, and there is no explicit reply-queue, there appears to be no 

satisfactory way to incorporate get - reply into the language. The option we have chosen 

is to allow get - reply to be added as a prefix to a denotation, which would othemke 

represent a multicast. The weak justification for this is that get-reply appears where call 
# 

would appear, were it not or&& when a call appears as an expression. Thus: 

load := get - reply servers.query - load(id) 

Modifying RR 7.3 to incorporate reply and termination semantics: 

<termination-semantics> ::= return - after <integer-expression> 

It is noted that only one of the termination semantics and get-reply may be used, and 
/ 

only if the denotation otherwise represents a multicast. The use of get-reply is so awk- 
a 

ward that it is perhaps better to specify that multicasts should have no return-values, 

and that RES parameters be used in their place. 



4.7.1 Multicast Send 

Asynchronous multicasting is indicated by send: 

send cornmits(trans) 
send dbases.report-stam() 

The denotation for a multicast - operation contains either the capability of a operation- 

based MCN, or that bf a resource-based MCN qualified by a choice of operation. 

By default, a multicast-send returns when al1,VMs have acknowledged receipt of 

the message, providing asynchronous message passing. The optional termination 

semantics provide for early termination, after a specified number of ACKs have been 

received. Following the approach taken with unicasts, we permit any type of parameter 

(RES, VAR or VAL), but of .necessity, the VAR parameters will be unchanged and 

RES parameters will not have been assigned values. However, compiler warnings are 

warranted. 

4.7.2 Multicast CaH 
I 

. Synchronous multicasts may appear in two types of statement, as,is the case with 

unicasts. Apart from the call-statement, a synchronous multicast may be performed " 

e when the appropriate denotation is employed as an expression. The two cases are illus- 

trated by the following examples: 

call dba-ses.vote(transaction) 

load := servers.query - load(id) 

The synchronous multicast emulates the synchronous unicast in guaranteeing that 

the invoked operations have terminated, before it terhnates. In some cases early termi- 

nation may be desired, such as when the user requires a guarantee of-a minimum 

number of successful invocations (as when working with a replicated data-base, or with 

Byzantine agreements): in these cases the optional terminatio semantics may be used. 3 



Parameters of all types (VAL, VAR and RES) are permitted, and have the same seman- 

tics as for *e unicast call, with the stipulation that the new values of RES and VAR 

parameters will bk those derived from the first reply. 

It is necessary to consider the pathological case when the user specifies in fie 
, 

optional semantics a value exceeding the size of the process group, the multicaster 
4 

being unaware of the size of the group. The options appear to be either to have the 

multieast fail, or set the number of replies required to ALL. 

4.7.3 Get - reply 

In V, get-reply only blocks for a specified period: it then times-out and returns 

failure. This approach may be satisfactory in a message passing environment, where 

replies can be expected within a reasonable, kndwn, time. In SR, however, the time for 

an operation to complete may be large and is not likely to be known. Thus get-reply 

must be blocking, which may cause a deadlock, unless the user can be assured that a 

reply is on the queue, or will arrive. To make proper use of get - reply, the user needs 

to know of the size of the group, which may be volatile. Without this knowledge, 

maintained at a higher level, there appears no simple way to permit the user to consume 

all replies. A primitive dowing the user to determine the size of the receiver group 

would return a potentially erroneous value. (This problem does not exist if we model 

PC, as we show in section 4.8.) The reply-queue is automatically 
.. 

w multicast-statement in the same process invokes the same MCN. 

ose that the replies to a call be consumed only by the process which made 

the c a l l . b T  the functionality provided by others, and that required by distributed 

algorithms. This implies that there must be a separate reply-queue for each MCN 

operation and process, rather than one per resource or VM. Such queues need not be 
d 

created until a multicast occurs, but may not be removed until it is certain that no 

further use can be made of them, when all replies have been consumed or the next mul- 



ticast occurs. The simplest approach is to create a queue when required and never 

remove it, unless the MCN is destroyed. The only maintenance required is to empty the 

queue when a new synchronous multicast occurs for the cowesponding MCN operation. 

If it is required that multiple processes or resources consume the replies, the functional- 

ity may be provided using a collector (section 4.10). 

As the first and subsequent calls are returned differently, the code for processing 

replies must be duplicated, leading to more complex code. To determine the total load-. 

on the group servers, the following code is required: 

total load :=' 0 
total-load - := total load + servers.query - load(id) # load from first reply 
fa i:= 1 to rep& total - 1 -> 

total lo& := total - load + get - reply servers.query - load(id) # load from 
subsequent reply 

af 'i 

write('Tota1 load :', total - load) 

A solution to this asymmetry is to make call non-value-returning, and to have all 
I 

replies returned to the reply queue. 

total load := 0 
call &vers.query load(id) 
fa i:= I to reply total -> 

total - loacd := total - load + get - reply servers.query - load(id) 
a f  
write('Tota1 load :' , total - load) 

* 

This simplifies code when multiple replies are to be used, but leads to more compli- 

cated code when a single reply is required, as in  a request for service in which the first 
k 

server respondmg is chosen. 

4.7.4 Error-handling 
'W c 

Both synchronous and asynchronous multicasts are provided, and each may ter- 

minate early, after a specified number of replies or ACKs have returned. It should be 

noted that early termination of the multicast statement may not depend on the contents 

of the replies; the user may, however, chose how many replies to process. This means 
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that the user many not commence reply processing until the replies specified by the ter- 

mination semantics have returned. 

Error handling is problematical in this paradigm, as the high level syntax provides 

no simple way of returning success or failure for a multicast. If the required semantics 

fail, then the statement must fail, and either a run-time error occur, or a handler be 

invoked, With unicasts the handler can be attached to the multicast statement, and will 

deal with any exception detected for the single operation invoked. With multicasts 

requiring all ACKs or replies, the multicast statement will be current when an exception 

returns, and it handler attached to the statement may be invoked. 

If early termination is used, the handling%f late arriving exceptions is difficult, as 

the executing statement will be without the scope of the multicast. The problem is that 

the message passing paradigm does not permit the lexical determination of the scope of 

a multicast plus reply-handling: with this paradigm there is no semantically and 

linguistically simple way to specify error handling in all cases. It thus appears that the 

MP paradigm does not admit the handling of remote exceptions arising from a multi- 

cast. 

It is our view that the early termination semantics have the intention of permitting 

6' 
exceptions to occur, as long as the required number of replies/ACKs return. Thus we . 
suggest that the handler should be concemed with the failure of the multicast, but not 

explicitly with those of its receivers. 

4.8 SR Multicasting: Remote Procedure Call Paradigm 

PARPC [Martin871 suggests a syntax in which a reply-processing-block is associ- 

ated with a multicast, to process replies and deal with exceptions. Modelled on other SR 

statements with associated blocks of code, such as the do- or co-statements, we use a 

keywod (mc) to begin a multicast statement and its reverse (cm) to terminate it: To 

acco-date this a new multicast statement must be added to the grammar in RR, 



section 6.1 : 

The multicast statement implicitly contains a loop, i n .  that the optional 

reply-processing-block is executed, by default, once for each reply. With this syntax a 

whole range of semantics may be specified: early termination, synchronous or asynchro- 

nous multicasts, reply-handling and error-handling. a \ 

'w 

It is necessary to specify how the parameters of the multic 

in particular their scope. VAL parameters are expressions which may 
, B 

accessible within the scope of the block which contains the multicast: VAR parameters 

must be such variables. RES pararneters and the ret~rn~value (if any) may be variables 

local to the scope of reply-processing-block, or variables with wider scope. The values 

returned by the multicast, those of the VAR and RES parameters, must be accessible 

within the reply-processing-block. While RES parameters could be specified to be 
.B 

local to the reply-processing-block, this is not feasible with VAR parameters. We thus 

specify that all variables used as actual parameters for a multicast must be declared lex- 

ically prior to the multicast statement. It should be noted that this syntax precludes the 

use 'of return-values, a minor.inconvenience. 

Synchrongus Multicasts with replies 

In order to employ RPC multicasts, the specification of the resource server must 

be changed to use arguments rather than return-values. We also add the server id. as a 

RES argument, to allow the multicaster to identify the source of each reply. Thus: 

op-query load(RES load :real; RES id : integer) 
op query-capaci ty(~~S - cpty : real; RES id : integer) 
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The load-querying example of section 4.X4, may be written as follows: 

total load :=.O 
mc s&vers.query load(load,id) - > 

total-loadd:= total - load + load 
cm 
write('Tota1 load is :', total - load) 

Synchronous Multicasts with no replies: 
% 

Our example is the second phase of a Gemini Protocol, using synchronous multi- 

casts, in which all sites are to commit, before the statement terminates. %.y==-L 
mc voters.commit(transaction) - > skip cm 

The skip-statement is a null statement, 'which will be executed until all operations have 

acknowledged. 

Synchronous Multicasts with Early Termination: 

Our example is that of a client wishing to identify servers whose total capacity is 

sufficient to handle the client's task. 

# initialise required capacity to capacity needed for task. 
mc servers.query capacity(capacity,id) -> 

required %pacity := required capacity - capacity 
# instkct server (identified 6y id) to undertake part of task 

if not (required - capacity > 0)  -> exit fi # all work apportioned 
cm . 

The SR exit forces termination of the smallest unclosing iterative statement, which is, in 

this case, the implicitly iterative reply-processingblock. 

Asynchronous Multicasts: 

Our example is the second phase of the Gemini protocol, using an asynchronous 

multicast: failure to receive a commit or abort will be detected by the receiver at a 

higher level, via time-out, and a retransmission requested. P 



The absence of a post-processing 
d 
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block is taken to indicate asynchrony: the statement 

terminat&after al l  VMs acknowledge. 

The RPC paradigm provides asynchronous and s y n c h r o n o h k a s t s ,  with fleh- 

ble early termination semantics, which mtiy depend on the nature of the replies. This 

flexibility permits the user to process both genuine replies and exceptions: the handler 
* 

may deal with individual exceptions, and not merely the failure of the endre statement, 

as in the MP paradigm. Error handling may be achieved by providing two separate 

blocks of code: a reply-processing-block and an exception handler. 

Ow scheme does not provide early termination for asynchronous multicasts. As 

noted earlier (4.4.1) this functionality does not appear essential; if it does prove geces- 

say,  a simple addition to the syntax could be made. 

As the authors of SR have not specified how to represent handlers we feel free to 

choose the most appealing option. The same syntax will apply to both synchronous and 

asynchronous multicasts. Our choice is to use rnc - handler followed by a block of code, 

thus: 

unulticast-statemenu ::= mc <denotation> [-> <reply-processing_statemenu] 
[mc - handler -> <exception-handling-statement>] 
cm 

The exception-handling-statement is a block, but with special semantics that will permit 

it to determine which group member(s) provoked the exception, and its nature. 
4 

To illustrate errcr-handling, we use M&'s example of the Gemini protocol (sec- 

tion 2.3): 
I 



vote.$or: =O , 

mc dbases.vote(transaction) - > 
votesfor+ + 
if (votesj4or > quorum) -> exit fi 

mc - handler -> # error-pyocessing-block 

cm # end of multicast statement 

if (votesfor > quorum) -> mc iibases.cornmit(transaction) cm 
[I else mc dbases.abort(transaction) cm 
fi 

4.9 Conclusions with regard to the two paradigms 

A comparison of the two paradigms reveals that the remote procedure call para- 

digm and syntax is the more appropriate. This may be seen from examining how the 

two models compare with regard to the functionality specified in section 4.4 and the 

criteria gwen in section 4.1. It should be noted that generally either scheme can be 

made to provide the same range of functionality. The reasons for preferring one para- 

digm over the other relate to the relative simplicity and naturalness of the paradigm, 

both semantically and syntactically, and its ease of use. 

Synchronisation 

Both paradigms permit synchronous a ~ d  asynchronous multicasts. 

Early Termination 

Both paradigms permit early termination, but the RPC paradigm is more flexible as the 

termination semantics are programmed by the user and may make use of the values 
- 1 

contained in the replies. This is at the expense of using higher level code. % 

Reply Handling 
3 

Both schemes permit reply handling, but again the RPC is cleaner, semantically and 

syntactically. The syntax for get - reply in the M P  ,paradigm is very awkward; however, 

it should be noted that if return values are prohibited, as in the PARPC paradigm, this 

awkwardness is reduced. Even so, there remains the problem of the blocking nature of 
d 



get - reply and the volatile nature of the receiver group. 

Reliability and Error handling 

Here the RPC paradigm is clearly more powerful, as the linguisgc encapsulation of 

reply-processing facilitates the handling of remote exceptions. The MP paradigm's 

error-handling capability is restricted to handling @e multicast-statement's failure. 

Same Order Multicasting 
i- s 

' The two paradigms offer equal advantages in specifying same order multicasti .  If 

this is done lexically, there there is clearly no difference. If it is specified clparnically, 

a keyword (ordered) may be attached to a multicast statement of either type. 

In section 4.1, we outlined certain criteria for judging multicasting schemes: we 
.-----/ 

now compare the MP and RPC paradigms with respect to these criteria. From the 

above discassion we can conclude that neither scheme is intrinsically more powerful, in 
e 

an absolute sense, in that either typk of syntax can be enlarged to povide semantic 

equivalence to the bare form of the other. However, if we consider these bare forms, 

the RPC model provides the greater power. 

The RPC paradigm is also superior with respect to simplicity and eage of use, 

requiring only one new primitive. In language design there is a tension between flexi- 

bility and structure: the more flexible a language, the less structured it is, and hence it 

has a greater potential for programmer error. We believe that the previous examples 

show the RPC paradigm to be flexible enough to provide all necessary semantics, and 
Z 

0 

yet sufficiently structured to rnininfise the chance of prograrnmer=error. The MP para- 

&gm, on the other hand, is highly unstructured and would increase the potential for 

error. The RPC is also mare SR-like and more compatible with standard SR. 

As far as efficiency is concerned, there appears.to be little to choose between the 

two (see section 5.4) However, the more flexible error handling in  the RPC paradigm, is 



b 

bought at the price of being potentially less efficient, as it is performed at a higher 
\ 

level. 

\ Overall we conclude that the RPC paradigm is superior. This is rhaps not 

surprising, as its single logical thread of control is more in tune with the semdtics of a 

high-level operation-based language, than is message passing. 

4.10 Remote Reply -queues - 
Both multicasting paradigms permit replies to be returned to the 

possibility exists, however, that some algorithms may exploit a scheme 

mu1 ticas ter; the 
a 

whereby replies 

are delivered to other resources or processes, which we term consumers. The case for 

having' a remote reply-queue is circumstantial. A model with a central controlling 

resource, d a number of lesser controllers inight employ this functionality by having .a 
the central Eontroller multicast, instructing all its servers to send data to a subsidiary 

controller. Note that the functionality we proposed for call did not allow the replies to 

a multicast to be consumed by different processes, even within the same resource or 

VM: this ability might be desirable in an multi-processor architecture. A second para- 

digm that might support this functionality is atversion of Cheriton and Stumrn's multi- 

star satellite, in which all the satellites might be instructed by the star to send partial 
* 

results to a particular satellite. 

An argument against providing this functionality via a remote reply-queue is that it 

may also be provided using the orthodox scheme, with one additional message, from 

the resource initiating the action to that which is to receive the data, instructing the 

latter to perform a conventional multicast. The limitations of this approach are the extra 

code required to support this extra mesclge, and the extra time and network traffic 
\ 

incurred. None of these appear to be major problems. However, we consider it 

worthwhile to discuss the incorporation of a separate reply queue, which we term a col- 

lector. 



A collector has most aspects of a resource: it holds data, performs tasks, and must 

be invoked by a consumer process to get replies, and by the MCN to queue r e $ e s a  

therefore choose to implement the reply queue as a pseudo-resource, the collector, 

located on H specific VM. 

There appears little value in having resource-based collect~rs, as replies to dif- 

ferent operations would have to be handled differently by the user-code. We thus res- 

trict a collector' to be associated with either a operation-based MCN, or with a specific 

operation on a resource-based one. 
C 

w 

The use of a separate.replyqueue appears more in tune with the MP rather than 

the RPC paradigm. We therefore examine the collector principally in the MP {aradigm, 

with a brief addendum discussing it in the RPC paradigm. 

f l  
The use of a collector intrduces a new control thread: the question arises what the 

multicast-statement's synchronisation should be, a d  what should happen to exceptions: 

should they be returned torthe multicaster or the collector? 

U Collector 
Operations 

0 

B 

/ 
,9' 

Figure 5 Multicasts with Replies delivered to a ~ollecior. 
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4.10.1 Synchronisation and Reply-queues -'-'-\ , - 
k_._- 
, 

In general, the user might desire a number of different synchronisation schemes, 

corresponding to the following situations wxere the multicast would noto complete until 

(1) all invocations had completed, or 
- 

(2) the collecjor received all (or all necessary) replies, or 

(3) all (or all necessary) replies, had been removed from the collector. 

Note that synchronisation points must occur in this order. Another option is to make 

collector multicasts asynchronous. It should be noted that synchronisation may also be 

provide at the user level: the5 justification for providmg it as part of the multicast is sim- 

plicity, efficiency, and possibility that not all synchronisation points may be pro- 

grammed at the user level. \ 
In the MP paradigm, it is possible to implement any of synchronisation points as 

e 

the signal for the multicast to terminate, based on the specification of termination 

semihtics as part of the call. We have taken the view that the call should succeed if the 

required number of repliedACKs return: exceptions are ignored. Applying &s principle 

to collector calls suggests that the multicast be regarded as a success if the given 

number .of replies are delivered to the collector. This also guarantees synchronisation 

point 1: the delay over a scheme that directly records the termination of operations is 

small, being the time for one additional message. Note that each operation separately 

acknowledging its completion would require an extra (n-1) messages, where n is the 

number of receivers. Synchronisation point 3 is not lexically defined, and is thus best 

provided at the user level. 

In the RPC scheme, exceptions were handled individually, along with genuine 

replies. This suggests that exceptions be forwarded to the collector and handled there. 

Replies will be processed by a block of code, the get-reply-block. Unlike the situation 

in the MP paradigm, there is no time at which all required replies have arrived: the 



& 
completion of the operations and the exit from the reply-prsessing are the only 

significant synchronisation points. As exceptions are forwarded to the collector, it 

makes sense to l'et 

thus propme that a 

terminates. 

the synchronisation point also be an attribute of the collector. We 

collector call statement terminate when the collector get-reply-block 

In cases when the reliability of the multicast is not an issue, as when dbares are 

invoked by report - s t am,  an asynchronous collector multicast may be. adequate: the 

rare failures may be hardled at the user level. In the MP paradigm,'this functionality 

may be provided by using send, as in: 

send dbases-report-status() overto status-collector 

In the RPC paradigm, there is no obvious way to specify this; however, a simple nota- 
. . 

tion could be provided. 

4.10.2 Remote Reply Queues in the Message Passing Paradigm 

Collector use requires changes to the syntax of the ~all~statement. It should be 
%4 

noted that the use of the collector precludes the call being part of an expression. 

= 

<call-statemenu ::= [call] cde%otation> [overto <collector-id>] 

A major design question is what operations the collector should have, and what 

their.semantics should be. Clearly there must be an operation to allow the user to 

remove replies from the queue: get - reply, which must block when the reply queue is 

empty. This necessitates the provision of a qsize. non-blocking primitive to check the 

queue size: This operation is particularly useful when the multicaster is unaware of the 

size of the receiver group, and hence does not know how many replies may be removed 

from the collector. We propose two other built-in operations: release - coll and 

wait - for - coll, which operate a status, which will signify free or not free. Release - coll 



will set a collector's status to free: waitfor - c011 will return if, or when, a collector is 

free, and set the status to not free. These operations may be used to provide synchroni- 

sation between the multicaster and consumer, as discussed in section 4.10.6. The use of 

these operations to program a collector pool manager is shown in Appendix A. 

4.103 Collector Statements and Semantics 

For direct user invocation, a collector could be programrn.ed as a resource. A col- 

lector to handle replies to the operation query - load would be: 

resource collector 
import seiver 
op qsizeo returns q-1ength:int 
op release-dl() 
op wait-for-toll() . I 

op get-reply(RES id : integer) returns load : real 
end 

Note that the declaration of get - reply agrees with that of 
'.Bp 

the operation query - load. 

The true-resource collector, like the true-resource multicaster, does not meet our 

needs, as the user must perform customisation best done by the compiler. Thus a 

- built-in pseudo-resource collector is needed. As with other pseudo-resources, a collec- 

tor must be declared, have a capability, be capable of being created, destroyed, and 

invoked by a set of built-in operations. It is implicitly invoked by a call multicast. 

4.10.4 Declaration, Creation and Destruction of Built-in Collectors 

As with MCNs, we add a new capability definition to RR(3.1) : 

<captype> ::= cap I net I collector 

Noting that as a collector variable must correspond to an operation, we have declara- 

tions of the following type: 

var load - collector : collector server.query - load 

A collector will be created and destroyed using standard SR: 

load collecror := create collector() [on vmach] 
destroy load - collecror 



where the optional on vrnach specifies the VM host of the collector, by default that of 
\ 

the resource creating the collector. Here the word collector plays the same role as did 
+ 

net in the declaration of MCNs. 

A collector may be invoked by a set of built-in operations, of the form: 

collector - iakntifer. collector - operation 

which are denotations, as defined in RR 7.3. The operations are get-reply, qsize, 

release-coll, and wait-for-coll. 

Get - reply 
3 

The effect of get - reply is to retrieve a reply, the result of a multicast invocation of 

same receiver, from the collector, bloclung if the reply-queue is empty. The syntax for 

get-reply, as a built-in operation on a pseudo-resource conflicts with that for get-reply 

when used to access replies to a regular call. When no explicit reply-queue is given, the 
t 

specific operation must be named in order to ensure that the replies are from the correct 

call. Since a collector is associated with a specific operation, no operation need be 

specified: the conflict between these two uses of get-reply can be seen from the follow- 

ing example: 

Multicaster consuming its own replies 

On multicaster: 

call server.query load(id) 
fa i:= 1 to no servers -> 

total - bad := total' - load + get - reply server.query - load(id) 
af 

w 



Replies sent to collector 

On multicaster: 
- 

call server.query - load(id) over to load - collector 

On consumer: 

fa i; 4 I to no. servers - > 
total - bad  := total - load i load - collector.get - reply(id) 

af 

The use of the parameters in a get-reply-statement needs clarifying. With opera- 

tion invocations, the values of VAL variables are passed by value to the operation: they 

are unchanged by the operation, which returns to the invoker in the invocation block 

packet, but unlike the values of RES parameters, they are not copied back to local vari- 
1 

ables of the invoker. If a multicast has VAL parameters, the structure of the parameter 

list for the get-reply statement presents a dilemma: either the get-reply statement will 

have parameters corresponding to the VAL parameters of the multicast, local variables 

whose only function is to act as place-holders, or, by omitting them, will have a param- 

eter list which differs from that of the corresponding operation and multicast statement. 

Neither option is desirable. 

qsize 

qsize returns the size of the reply-queue (of type integer), and is non blocking. It 

permits the consumer to determine whether the queue is non-empty before executing a 

bloclung get - reply. 

release - coll 

release - coll frees a collector, and &scuds any remaining replies on its reply 

queue. A collector is created with status free. The successful invocation of 

waitfor - coll makes the status not free. 



wait - for - coll 

waitfor - CON is a blocking operation that returns when the collector is fre;, semng 

the collector's status to not free. 

4.10.5 Remote Reply Queues in the RPC Paradigm 

The use of remote reply-queues with the RPC paradigm is somewhat unnatural, 

resulting in multiple logical threads of control.' The Syntax employed for multicasting 

must specify the collector, rather than reply-processing: % 

unulticast-statemeno fi= mc <denotation> [-> ereply-processing_block>] cm I 
rnc <denotation> overto <collec tor-identifier> cm - 

Note that the denotation is that defined in standard SR, with no termination semantics. 

The statement to invoke servers with the operation query-load, and have the replies go 

to the collector load - collector is: 

mc servers.query - load(load,id) overto load - collector cm 

As previously stated, we propose that the multicast-statement terminate when the 

collector's reply-processing statement exits. We also propose that exception-handling be 

the responsibility of the collector. We propose the following syntax for collector use: 

ccollector-statemeno ::= gr <denotation> 
[-> aeply-processing_block>] 
[gr - handler -> <exception-handling_block>] 
r g 

Here the denotation must be a collector-identifier followed by an argument list 

corresponding to that of the operation invoked. The code to process the replies to 

query - load and create a table load - list of loads for each server is: 

gr load collector(load, id) -> 
road - list(id) := load 

r g 

The semantics and syntax of the reply-processing-block are identical to that of the same 

block of code used by the multicaster. This means that the consumer need have no 



knowledge of the receiver group size, as the reply-processingblock will automatically 

terminate when all replies have been used. 
q 

It should be noted that the use of. collector within the RPC paradigm is somewhat 

awkward, and the collector, though a pseudo-resource, is invoked in a fashion that does 

not correspond to operations. 

4.11 Other Options 

Querying the Group 

The V system [Cheriton85] provides a primitive QueryGroup, that allows the user ,a 

to determine a number of facts about the group. QueryGroup(group-id,pid) returns a 

structure that tells whether the process could join the p u g  whether the process is 

already a group member, whether the group exists, and the size of the process group. 

In our scheme, querying whether or not a receiver can join a group is lexically 

determined. Whether a process is currently a member of a group, whether a group is 
\ 

active and the size of the p'rocess group are a l l  volatile, in the sense that each may 

change immediately the QueryGroup call returns, This is an inevitable feature of a 

decentralised process group. It thus appears that such information must be maintained at 

the user level. 

Security 

I Within V one may chose to employ a certain level of security, by employing a 

same user group, allowing only processes belonging to the same user to access a pro- 

cess group. Our scheme, by its use of capabilities, already has a built in level of secu- 

rity, which allows permissions to be granted in a structured way, and has the virtue that 

several users may have a p r i v d ~ ~ ~ ,  employing a MCN capability that is known 
v 

only to them. 
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5. DESIGN AND IMPLEMENTATION ISSUES 

In this chapter we discuss the implementati h n of the schese for multicasting and 

cdJlectors described in chapter 4. Firstly, it is necessary to outline existing commu&ca- 
B 

tions primitives and how the creation of VMs and resources is achieved in SR. The 

implementation described here is for the message passing paradigm. However, as we 

note in section 5.6, only hunor changes are required for tha RPC paradigm. 

5.1 Implementation of ~esource and Operations 

Each resource and operation is represented by an entry in the active resource or 

operation table of its host VM: its capability is a pointer into one of these tables. Each 

% 
newly created resource is assigned an entry in the active resource table., This entry! 

includes the VM capability (an integer), a unique sequence number, and a pointer to the 

operations table for each operation. The operations table has an entry for each active 
I+ 

operation, indicating whe operation is serviced by a proc or process: 'in the 
P A 

former case, the table has to the code for the proc, in the latter, it has a pointer 

to the appropriate invocation block [Andrews88]. The capability to an operation is a 
P 

pointer to its host VM's table of active operations. 

The SR compiler producey C-language code, which is then compiled by the C- 
.fi 

compiler and linked with theeRTS object code. The linked body of code runs as a UNlX 

process, the VM. When a user runs the program, the VM starts to run on the usefs host 

machine. The C-code generated by the SR compiler provides for a remote action, such 

as resource creation or operation invocation, by creating blocks of data, which are 

transmitted by the RTS, within a packet, to the appropriate VM: any replies or ack- 
e 

nowledgements are received, and the values of parameters and return values are copied 
4 

back to local variables. 



The RTS implements a multi-threaded system for multiple SR processes, within the 

rt VM. After an SR process has sent a message to create, destroy, or invoke a remute SR 
w 

process, it waits on a semaphore, whose identity is contained in the message packet. 

The amval of the packet on a VM causes an SR process to be spawned. This process 

acknowledges completion, or sends back values in a return packet. When this arrivesi ' 

the appropriate semaphore is signaled and the original SR process may continue. - 

The initial VM forks a separate UNIX process called sm, that acts as a name server 

for VMs, ensuring that each VM has a unique numbee and allowing a VM to obtain the 

socket address of another. Only this one instance of srx exists. Secondary VMs may be 

created on chosen physical hosts via create-statements. In the C-code, the function 

crevm is called with two arguine&s, the id of the intended host physical machine and 

the VM's capability, the sequence number of which is filled in by the RTS before crevm 

returns. Each VM is created via a call to srx, which assigns a sequence number as the 
",-'+-''G 

VM capability. 
6 

Each VM listens on a set of sockets, initially its listening socket, known to sm, and 

used by other VMs to establish contact. When contact is made a new socket is created 

to provide a channel between the two VMs. Messages received on these sockets are 

examined in a round-robin fashion, and used to invoke the appropriate part of the RTS. 

These messages include ones to create and destroy resources, invoke operations, as well 

as acknowledgements of earlier messages. When a VM is created, it is given the socket 

for srx. A VM (A) wishing to transmit a message to resource B on another VM, checks 

a local directory of VMs and sockets. If B is unknown, A sends a message to srx and 

- 
--A receives back the listening socket of B. 

-'b 

The C-code to create a resource assembles a creation block and. calls the function 

create. The creation block has fields for its size, a pointer to the entry for the resource 

in the pattern table, the id. of the intended VM, the initialisation values, and a pointer to 

the resource capability. When create returns, pointers to the active resource table entry 



for the resource will have been inserted into the resource capability. 

Invocations are performed b; having the invoker create an inbocation block, which 

holds the capability so the required operation and any arguments. The RTS is called by 

- the C-function invoke. The invocation block is sent to the required operation, which 

may read the values of VAL and VAR parameters, and modify the values of those of 

type VAR or RES. The operation may also insert the value of the return value of the 

operation, if such' exists. The invocation block is returned to its creator, which then 

copies the returned value and the values of VAR and RES parameters to local variables. 

The C-code for an invocation generates an invocation block and calls invoke. The 

invocation block has fields for its size, the size of the operation's arguments, the opera- 

tion type (such as SEND-Ih), and the operation's capability.Ae RTS, if necessary, 

f transmits the packet over the network to the appropriate V The VM ~f the invoked 

operation uses the capability to find the operation table try for the operation: if ser- / 
viced by a proc, a new RTS process is spawned; if by a process, the invocation block is 

queued, and may eventually be serviced via an input statement. If the invocation was a 
i Y 

send, the RTS of the operation's VM will acknowledge the packet receipt, and invokz 

will return, causing the send-to terminate. If the invocation w~ a call, the RTS of the 

operation's VM will await the return of invocation before acknowledging with a packet 

containing the modified invocation block. 

Calls within a co-statement are made sequentially without waiting for completion 

of previous calls. The RTS sets up a structure to accept returning invocation blocks, 

and if, necessary, invoke the post-processing block associated with each c,all. The entire 

co-statement returns, either when all calls have returned and their post-processing is 

completed, or when a, post-processing block performs an exit-statement. The order of 

returning 

statement 

calls is non-deterministic. Unread packets, and those arriving after the co- 

has terminated, are discarded. 



\, 
5.2 Multicasting \..,, 

hplementing multic&ting in SR requires a reliable VM-to-Vhf communications 
\\ 

scheme. If the multicast is to be efficient, each V M  must be able to multicast to the 

remainder. We thus emp!oy a two layered model: multicasts- between VMs and multi- 

casts to invoke operations. The latter are implemented via the former. 

In the lower layer there is a process group of VMs, which must be created before 

multicasting commences, and updated when VMs are created or destroyed. Each VM 

will be required to know the size of the VM group, in order to know the number of 

expected acknowledgements. 

At the upper level is a process group of operations or resources. Multicasts on an 

MCN (multicast network) are first received and acknowledged by each VM, which then 

demultiplexes the multicast to each of its local MCN receivers. This is the scheme 
V 

ddescribed in section' 2.2.1. 

5.2.1 Broadcasting on the Sun Network ,d 

The Sun-Network ILeffler831 provides both stream and datagram communications, 

using sockets. Stream sockets provide reliable communications; datagrams are unreli- 

able. Messages from process to process are implemented using addresses: machine 

addresses and port numbers.;~ process listening on a socket is waiting for a packet 

addressed to a particular port on a given machine. This is transparent to the user pro- 

cess; whichJacquires a port by,the act of binding to a socket. Each port obtained in this 

way is unique and is held by the process as long as it executes. Unfortunately the port 

.number assignment scheme is host-specific, implying that some VMs'may not be able to 

bind to that port (it k ing  in use), and also that some multicasts may be received by 

unsuspecting processes listening on that port. In a 

scheme for reserving a port number on a network-wide 

practical implementation some 

basis would be required. 



\. 
Broadcasting 'over the network is achieved by using wildcard values for addresses, 

and a specific port number. A specific port is chosen by having the first receiver bind 

to a socket ~ i t h ~ p o r t  number set to zero. The number i3f the port may be passed as a 

parameter to other receivers and senders. Subsequent receivers will bind to a socket 

with this value for its port number, and INADDR-ANY as its socket address. The 

sender binds its socket using the port number and a wildcard value of zero for its socket .? 

> .  kf 

address. 

The two-level multicasting scheme has a major limitation in that it appears that 
E 

only one UNIX, process may receive multicasts on a given host machihe, as only one 

socket on a given processor may bind usin,g a particular port number. Consequently 

only one VM per processor may belong to the VM process group and ax may not 

,receive multicasts. The solution to this problem is to introduce a new layer of daemon 

processes one per machine. These would multicast to each other, as described for VMs 

above, and demultiplex the multicasts to the VMs and srx. S n  could easily be enhanced 

to create the multicast managers as required, and act as a name server for .them. 

Operations 

srx 

VM 

Multicasting ' 

Manager 

Figure 6 Three Layer Multicasting 



In UNIX broadcasting works only with data&uns. This means that the multicast- 

ing system of SR must take steps' to ensure reliability, based on acknowledgements, 

timeout and re-transmission. A problem is that datagram service requires that each 

datagram be read from the socket in its entirety, by a single read statement. This is 

problematical in a system in which message sizes vary. One solution is to require all 

multicast packets to be less than some fixed size. The sender would reject excessively 

large packets: the user would read any multicast packet into a fixed size buffer. A gen- 
I 

era1 solution to the problem would be to transmit overflow packets to carry the contents 

of packets exceeding the fixed size. It should be noted that Aharnad and Bemitein's 

multicast sockets could be epployed here [Ahamads 51. 

5.2.2 Process Group CreationIDestruction and Modification 

Multicasting at either level occurs in two modes, transmission and maintenance. 

Transmission mode refers to normal multicasting to provide communications, between 

VMs or a0 invoke operations. Maintenance mode refers to multicasts required to create, 

destroy, or modify the process group. For VM-to-VM multicasting, the addition or des- 

&tion of V M s  requires maintenance multicasts. For MCNs,  the addition or removal of 

receiving resources or operations requires maintenance multicasts. Note that all multi- 

casts at the upper level are transmission multicasts at the lower level. At either level, 

maintenance multicasts must not overlap transmission multicasts, as reliability demands 

that the size of the multicast group, either the number of rqeivers or VMs, must be 

known. We prevent this overlap by suspending transmission multicasts while a mainte- 
* 

nance transmission takes place. . 



5.2.3 VM-to-VM Multicasting 

Multicasting Reliability a 

In VM-to-VM communication, the multicasting VM broadcasts a packet, and col- 

lects unicast acknowledgements (ACKs). If the number of ACKs fails to reach the 

known 'humber of VMs before a timer times-out, a retransmission occurs. We choose to 

re-multicast, rather than unicast to the delinquent VMs, as this latter approach requires 

each VM to know the identity of other VMs, and to keep track of which VMs ack- 

nowledge. The use of a sequence number allows VMs to quickly discard duplicates. If 

retransmission a fixed number of times fails to produce all the required acknowledge- 

ments, VM must be regarded as unreachable, and an exception declared. 

In order to perform both transmission and maintenance multicasts, protocol5 must 

be used. It should be noted that while some of the ACKs are required for synchronisa- 

don, others are only required at a lower level, to provide reliability. In the diagrams 

that illustratethe protocols, we employ dotted lines to indicate ACKs required for relia- , 

bility only, thick lines for multicasts, and thin lines for ACKs required for synchronisa- 

tion. 

The VM Process Group 

The protocol for reliable multicasting relies on each VM knowing the total number 

of VMs, the size of the VM process group. This implies that a protocol must be used 

when a VM is being created or destroyed. (In our prototype we did not implement this 

protocol. Its use is not essential if care is t&tn to create all VMs before creating any 

MCNs.) Our design implements this via a central VM controller within an enlarged srx, 

which must now have a separate socket on which to receive multicast acknowledge- 

ments and a separate ST process to deal with them. These are required because srx 

currently has no internal queue, but queues requests at its sockets: messages are read 

and processed in a round-robin fashion. If a request, such as a process group update, 



were received while such actions were blocked by the update protocol, sm would be 

deadlocked With the separate socket and SR process, multicast ACKs may be read and 

processed at all times. 
r 

Creating and Destroying VMs 

When the first VM forks srx, both processes must execute code to initialise the VM 

group. For subsequent requests to create VMs, the following protocol must be executed: 

1. srx performs an MCN-ADD-VM multicast and awaits 
MCN-SUSPEND-ALL-ACK acknowledgements. 

d 

2. Each VM, on receipt of a MCNLADD-VM multicast, continues to serve any 
incoming multicasts, but will not initiate any. When all current outgoing multi- 
casts complete, it acknowledges the srx. 

- 
3. srx, when it has received ACKs from all VMs, creates the new VM. After- 
wards it will multicast a MC-CONTINUE message. 

4. Each VM, on receipt of a MC-CONTINUE message, increments the local 
value for the number of VMs and acknowledges sm with a 
MCN-CONTINUE-ACK. 

srx 

Figure 7 Protocol for Creating a VM 



This protocol ensures that all multicasts are suspended while a VM is being created 

or destroyed. The MCN-CONTINUE-ACKS are not required by the protocol, but by 

the need to ensure that the continue message has been received by all VMs. 

5.2.4 Multicast Networks 

In order for a VM to be able to demultiplex a multicast to a MCN, it must maintain 

a list of the capabilities of local receivers for each MCN. The resource adding a receiver 

to the MCN will have the receiver's capability and will thus sent it to the receiver's VM 

to be added to the list. In the case of operation-based MCNs, the C-code for a multicast 

generates a multicast packet, containing an invocation block, as for a conventional invo- 

cation, but with no specified opehion. Each VM must copy in turn the capability of 

each operation on that MCN's local receiver list into the invocation block, which may 

now be used to invoke these operations. 

With resource- based MCNs, mu1 ticas ting is more complex. A mujticast packet 

must provide the information neces for each VM to select the required operation 6 
capabilities from the locally stored resource capabilities. This information is the offset 

of the operation capability from the start of the resource capability, and its size. These 

quantities 

evaluated 

have no current significance in the implementation 

by the compiler. 

of SR, but are currently 

Creating or Destroying a MCN 

Creating and destroying a MCN is performed by a multicast MCN-CREATE -. 
It 

(MCN-DESTROY) message from the creating VM, acknowledged by 

MCN-CREATE-ACKs (MCN-DESTROY-ACK). 

The capability of a MCN must be a unique system wide identifier. Since MCNs 

may be created by any VM via a multicast, the capability's uniqueness is ensured by 
x, 

d 

including the V M ' s  capability and a unique sequence number. The alternative would be 



to use the srx as a name server for MCNs, and have requests to create MCNs sent to it. 

This would require at least one extra unicast. The Ccode for creating an MCN is the 

function create - net, which has two arguments: pointers to the capability of the MCN's 

host VM, m d  to the MCN's capability. At run-time the VM's capability is copied into 

the VM field of the MCN capability, and a sequence number is generated to complete 

the MCN capability. The.protoco1 is illustrated in Figure 8, and works as follows: 

1. The creating VM multicasts a MCN-CREATE packet, containing the MCN 
capability, to the VMs. 

2. Each VM adds the new MCN to the local list of MCNs. 

Destroy-~et is implemented in a similar fashion. It may be noted that a VM may multi- a, 
cast on an MCN and have the multicast reach a VM before it has created the VM, due to 

the MCN-CREATE message getting lost. In this unlikely event the VM may ignore the 

multicast, as it will be resent after the multicasting VM times-out. Eventually 'the VM 
T 

will get a resent MCN-CREATE multicast, and will subsequently be able to senice the 

resent multicast on that MC h . 

Vh? Grouu  

Figure X Protocol for Creating or Destroying an MCN 



MCN Updates 

A resource that has the capability to a suitable receiver may join it to an MCN, 

and lzter remove it. Joining (removing) an operation to an MCN is done in C-code by 

invoking the function netjoin (net - leave) with two arguments: the MCN capability and 

receiver capability. The RTS then creates an update block which contains the type of 

update, MCN-JOIN (MCN-QUIT), axad the capabilities of the receiver and MCN, and 

sends the packet to the host VM of the receiver. 

Updates to a given MCN require the suspension of transmissions on that given 

MCN.  This is achieved using a protocol similar to the one used for VM process group 

changes. In our prototype we have avoided this complication by requiring the user to 

keep a static process group, created before multicasting starts. The protocol is shown in 

Figure 9, and works as follows: 

1. The initiating VM sends an MCN-UPDATE packet. 

2. The other VMs in the group, on receipt of an MCN-UPDATE packet, 
suspend multicasting on the specific MCN and, when current multicasts ter- 
minate, acknowledge with a MCN-SUSPEND-ACK packet and update their 
local data-bases. The local update consists of incrementing or decrementing the 
size of the process group, and storing or removing the operation's capability on 
the local-receiver-list for that MCN, if the operation is a local one. 

3. The initiating VM, when all acknowledgements have been received, multi- 
casts a MCN-CONTINUE packet. 

4. The other VMs issue an MCN-CONTINUE-ACK packet, and resume multi- 
casting on that MCN. 



1.  MCN-UPDATE 

- - - G - - - . - - d - /  
Group 

4. hlCN-CONTINUE-ACK 

Figure 9 Protocol for MCN Updates 

MCN Multicasting 

As with unicasts, the values of VAL and VAR parameters must be copied 

into the invocation block, before it is multicast. Ln the case of calls, reply pack- 

ets must be made available to the user. The first reply will have its values 

copied back to the user, those of RES and VAR parameters, and any return 

value, where permitted. Gel - reply accesses the queue and co;ies back values in 

The required protocol is simple. The packet is multicast to the VMs. Each 

VM acknowledges the receipt with a MCN-INVOKE-ACK packet. This indi- 

cates reliable delivery of the message, permitting a asynchronous multicast to 
4 

terminate. In the case of asynchronous multicasts, each completed operation 

causes a return packet of type MCN-CALL-COMPLETE to be sent back to the 

multicasting VM. This will be placed on a queue by the RTS. The proto- 

col is illustrated i n  Figure 10, and works as follows: 



For MC - SEND 
1 

1 .  The multicasting VM sends a packet of type MCN-INVOKE. 

2. The receiving VM replies with a packet of type MCN-INVOKE-ACK 

3. The multicasting VM, upon the receipt of of MCN-WOKE-ACKS from 
all VMs, then terminates the multicast. 

3. MCN-CALL-COMPLETE 
(mc-call only) 

Figure 10 Multicasting Messages for Send and Call Multicasts 

For MC CALL (also illustrated in Figure 10) - 

1 .  The multicasting VM sends a packet of type MCN-INVOKE. 

2. The receiving VM replies with a packet of type MCN-INVOKE-ACK 
\ 

3. When each operation completes it  sends a packet of type 
MCN-CALL-COMPLETE. 

4. The multicasting VM uses the MCN-INVOKE-ACKS to check if a 
remansmission is required. Aftern the requlred number of 
MCN-CALL-COMPLETES (all or the number set by the termination semantics) 
has returned, the multicast terminates. 



Same order multicasting may be implemented using srx as a central multi 
\ 

REQMCN-SEND and REQMCN-CALL packets are sent to srx, which then per- 

forms the multicast. 

5.3 Collectors 

In our prototype we have not implemented collectors; however, the following 

describes how this may be achieved. 

A collector has a capability like that af an MCN: the capability of its host VM, and 

a sequence number. When a collector is created in SR, a C-function create - col will be 

called to send a MCN-COLL-CREATE packet to the host VM. The host VM will ini- 

tialise a data structure for the collector, and complete the collector's capability by 
-4k 

assigning a sequence number. The VM will then acknowledge with a 

MCN-COLL-CREATE-ACK packet, containing the collector capability. The VM ini- 

tiating the creation will copy back the value of the capability. 

When a VM receives a reply packet of type COLL-INVOKE, it must find the 

collector's data-structure using the collector capability as key, and add the invocation 

block to the reply-queue. 

It is envisaged that in most cases consumers will be located on the same VM as the 

collector. In other cases each collectar invocation will require new SR packets being 

sent to the collector's VM to invoke the collector, and return packets canying values 

and acknowledgements. This may be modelled directly on existing SR communications. 

\ 

5.4 Implementing the Two Paradigms 

Our prototype was designed to implement multicasting using the MP (Messp-ge 

Passing) paradigm (section 4.7): here the differences between implementing 

this paradigm and the RPC (Remote Procedure Call) paradigm, as introduced in section 

4.8. With asynchronous multicasts, the implementations will be virtually identical, 



since the same semantics apply. The one exception will be in the applicatip of the ter- 

mination semantics in the MP paradigm: here the semaphore (on which the send waits) 

will be signaled when the required number of ACKs have returned. 

With synchronous multicasts, the two paradigms require very similar implementa- 
$ 
\ 

tions. The Qlfference is that in the RPC paradigm a reply queue is created for each hul- 

ticast and destroyed when the statement ends; in the MP paradigm the queue is per- 

manent and associated with a particular multicast operation for that particular prokess. 

With the MP paradigm, the first reply is copied back to local variables before the 

call returns. Each time a get - reply is executed, the appropriate reply-queue is checked: 

if empty, the statement blocks; otherwise the reply values ak copied back to local vari- 
\ 

ables and the statemen\terminates. Each new call empties the queue for that particular 
1' \ 

multicast operation. The call-statement itself will not terminate until the required 

number of replies, by default ALL, have arrived. 

In the RPC paradigm, a reply-queue is initialised for each multicast and deleted 

when the multicast-statement terminates. The multicast-staement transmits its message, 

and blocks until a reply arrives. The values in the reply are copied back to local vari- 

ables, and the reply-processing-block executes, if it exists. The next reply is then copied 

back and reply processing initiated. Each reply decrements a counter, initialised to the 

number of receivers: this counter is checked to determine when to terminate the multi- 

cast. 

Though we did not attempt to design the error handling scheme, as this has not yet 

been done for any SR .statement, a few points are worth making. An exception may be 

detected remotely, resulting in the return of a special type of packet, or locally, with the 

failure of a VM to respond. In the latter case, the local RTS may prepare a special 

packet. In either case thg packet may be passed to a higher level. At this higher level, 

the package type will be recognised and the handler executed, rather than the usual 

reply-processing-block. 



It is impossible to be definitive about the relative speed of the two paradigms, as II 

the costs depend on the application and implementation. There are, however, no major 

implementation differences that would appear to lead to a sigdicant difference in per- 

formance 

5.5 Implementation of the Prototype -+ 

As previously noted in chapter 5, several features of the design were not imple- 

mented in the prototype. Our view is that the only major issue that i~eeds resol*g by 

experiment is the relative efficiency of multicasts and unicasts within a co-statement. 

This perspective permitted us to simplify the protocols for updating the VM group and 

MCN membership, by assuming that both groups would be established before multicast- 

ing commenced, and would remain unchanged. Furthermore, the features required to 

support multiple replies and collectors were not implemented, as it was not expected 

that substantial gains in efficiency would result here. 

However, designing a prototype gave us a thorough understanding of the structure 

A of the invocation mechanism, and enabled us to refine and improve our initial designs. 

Implementing the prototype requires changes to both the RTS and the compiler. These 

changes are outlined i.1 Appendices B and C. Appendix D contains the two files: mcn-c 

and bcutil.~, which contain the major portion of the extra RTS code required. 

5.6 Potential Timesavings using Multicasts 

The time taken to perform a set of invocations depends on the degree of parallel- 

ism, which is maximal when all processors are active, as well as the network. We con- 

sider three ways of invoking multiple operations: 
/ 

(1) a sequence of unicast invocations 

(2) the same set of unicast invocations within a co-statement, 
\ 

(3) the same set of invocations effected by a multicast. 



The co-statement  allows calls (but not sendsflo be performed in quasi-parallel. 
%a 

The difference between a sequence of calls, and the sqne  sequence performed within a 

co-statement, is that within the co-statement the calls are non-blocking, and network 

packets may be sent one after anothe A? , without waiting for each invocation to complete. 

The co-statement collects the replies as they arrive and associates each with the correct 

call. The co-statement thus permits the iqvocations to be serviced in parallel, if the 

opeiations are on different hosts; howeveii'the preparation and sending of the packets ' 

containing the invocation, and the receipt and processing of the replies must be per- 
, 
formed sequentially by the host initiating the invocations. 

call 

call 

.-. Figure 11 

Examination of 

i 

A sequence of calls, without and with a co-statement 41 
Figure 11 shows how the use of a co- a tatement saves ', time. 

clear that the extent of the time savings depends on the time taken. !o service the invo- 
'. 

LL. %, 

cations. In the case when only one or a few replies are required, the above applies, with 

the additional advantage that the quorum may be reached sooner. With a sequence of 

calls, it 6 unlikely that the user can attempt the fastest invocations first; however, 

withln the co-statement, the fastest invocations eturning allow the user to continue t 
before the slower invocations have returned. 



The major difference between a sequenc'e of invocations and the use of multicast % 

is that only one network packet need be prepared and sent by the initiating VM, thus 

saving processor and network time; reply or acknowledgement packets be 
2 

prepared, tiqsrnitted, and processed as before. 



* ,  

We described a number of advantages of multicasts over a sequence of one-to-one 

. multicasts, which our design realises: 

. - our semantics allow a client to request service from 

its identity: the client need only have the MCN'S capability. 

\ 

- network traffic is jeduced, and the average time 

a server without knowing 

before each operation is 

invoked will be reduced. 

- user, code is7 sirriplified. 

- the average time for a process grodp member to receive a message is reduced. 

We detailed our design consideratiohs for multicasting in SR, and the functionality 

required in sections 4.1 a d  4.4. We claim these to be attainable: the scheme proposed 

is powerful, permitting a wide range of different synchronisation schemes, including 

early ternhation, reply handling, and reliability. In section 4.9 we demonstrate. that 

multicasting based on the remote procedure call paradigm is more appropriate in SR 

than multicasting based on the message passing paradigm, particularly with regard to its 

reply handling and error-handling capabilities: 

-,the sernanhcs of the RPC are consistent with standard SR. 

- the number of new primitives required is small and their use is consistent with * 
SR. The RPC syntax has an advantage over MP, in that only one multicasting primitive 

is required, and that synchronisation, early termination and post-processing are all han- 

dled in ways similar to those employed in standard SR. 

- the changes required to the SP RTS and compiler are small, and appear 

unlikelv to have 'much effect on ~erformance. 



- the new primitives are simple to use. J' 
.J h 

We have thus shown that multicasting can be introduced into a high level language 

in a way which is simple, both semantically and linguistically. Different forms of syn- 
*- 

chronisation and the processing of replies can be specified with minor changes'to the 

grammar. The proposed scheme permits the user to create, modify, and destroy MCNs, 

and to invoke them by a single statement, which pennits simple and concise user code. 

In conclusion it should be noted that the existing co-statement and the multicast 

provide for the parallel execution of the invoked operations. The multicast has the addi- 

tional advantage of reducing the time of communication, including that spent by the ini- 

tiating RTS in preparing and sending the packet. 

b 

6.2 Future Research 

One aspect of the research that we were unable to complete, due to a intractable 
+ 

bug in the co?nmunications scheme, was to compare the time taken for multicasting and 

sequences of unicasts, both within and without co-statements. Such comparisons must 

be done experimentally, as the times depend on the specific hosts, network, network 

traffic and the algorithm being executed. Thus, while the parallelism provided by either 

the co-statement or multicasting provides substantial benefits, whether the multicast is 

significantly more efficient than a co-statement in practice, it still an open question. 

Research of this nature could be performed in using various implementations, and in - 
other-than-UNIX environments. 

A second area for future research is a close examination of distributed algorithms 

to determine those for which multicasting is applicable, and to implement these in order 

to determine what speed-ups are attainable: in particular the relative merits of the two 

paradigms may be examined. Other high level languages may be examined to deter- 

mine how multicasting may be incorporated. Lastly, the implementation of error- 

handling schemes for multicasting appears a substantial topic. 



Appendix A : Collector Pool Manager 

The collector pool manager creates collectors and, on request, passes their capa- 

L bilities to users. After allocating a collector, the manager will invoke waitfor coll, - 

thus being alerted when the collector is freed. 
3 

It should be noted that in some cases collectors should not home on the collector 

manager, but on the multicaster, for re-use. For this to be the case, the multicaster 

should perform the waitjor - operation. However, only one waitJor - coll will succeed 

each time the collector is freed. This problem may be solved by giving the collector- 

pool manager two get - collector operations: get - collector and get - homing - collector. In 
Q 

the first case the collector will not execute waitfor - coll. The provision of non-homing 

collectors requires the provision of a return - collector operation, to permit the user to 

explicitly release a collector to the manager. The code for such a manager is presented. 

For simplicity we have assumed a static pool of n collectors. 

resource collectorgool manager 
impoft my-resollrce 
get collector() returns coll: collector my opn type 
get-homing collector() re- -toll: coll~cror-my - opn - type 
return - coll~tor(coll: collector my - opn - type) 

end 

body collector - rnanager(number - of - colls : int) 

op wait - tilfree(my - coll: collector my - opn type;n:int) - 

var coll[l:number of colls] : collector my - opn. - type 
var free[l :number-of-colls] - - : boo1 
var numfree : int := number - of - colls \ 

initial 
fa i: = I to number - of - colls -> 

coll[n] := create collector() 
free[n] := true 

af 
end 



war coll: collector my-opn-type 
war n :int 
do true -> 

, in get - homing collector() and (nmfree>O) - > 
fa i:= I t o  number - of - colls - > 

ifYree[n]- > 
num free-- 
free[n] := false 
exit 

F 
af 
send wait tilfree(coll[n],n) 
return(con[n]) 

[ j  get - collector() and ( n m  free >O) - > 
fa i:= I to number - of - colls -> 

if free[n]- > 
nm free-- 
free[n] := false 
exit 

fi 
af 
return(coll[n]) 

# return - coll allows a user to return a non-homing collector 

[ ]  return collector(coll) -> 
coii.release toll() #just to make sure 
#find whi& number coll it is. n, say 
free[n] := true 
num free+ + 

ni 
od 
end 

# wait tilfree is a vulture proc that waits for the collector to be freed 
# and Then updates manager's data structures 

proc wait tilfree(col1,n) 
collwaitJor co11() 
free[n]: = true 
nmJree+ + 

end 



Appendix B : Run-time Support chsnges 

Changes to the RTS may be grouped into three categories: specific code to deal 

with MCNs (mcn.~), code to implement multicasting via datagram sockets (bcuti1.c) and 
$ 

miscellaneous changes to the existing SR RTS   main.^, net.c, sockem, rernote.c, sm.c ) 

Broadcasting 

h 
Bcuti1.c contains the code to customise sockets for sending and receiving multi- 

casts over the Sun network. Datagram sockets must be used for multicasting, as against 

the stream sockets used for VM-to-VM communication in SR [Leffler83]. Hence each 

VM must add a new socket of type DGRAM to receive incoming multicasts; a second 

socket must be used for outgoing multicasts. u 
( I )  The function getflrst - rec - sock creates the first receiving socket by using 

INADDR-ANY as the s-addr and by zeroing the port number, before binding the 

socket. After binding, the socket has an assigned port number that may be found using 

getgort .  tl 

(2) Get - rec - sock, used by subsequent VMs, creates and binds additional receiving 
I 

sockets. It is identical to  getfirst rec sock except that the port number's value is 
+i 

- - 

assigne&by the user. 

(3) Get - send - sock creates and connects sending sockets, using BC-WILDCARD 

(zero) for the s-impno, and the user specified port number. 

VM-to-VM Multicasting 

During initialisation, VM 1 calls init - all - multicasts: this provides sockets for send- 

ing and receiving multicasts. When VM 1 forks and execs sm, the port number is pro- 

vided as an additional argument. When sm in turn forks other VMs, it also provides the 

port number as a argument. These additional VMs execute init - multicasts. to provide 



the required sending and receiving sockets associated with this port. 

The ability to receive multicasts must be incqorated into 'the network interface of 

each VM, which with s m  has a daemon SR process (net - recv) which selects on a set of 

file descriptors. Rather than employ a second daemon process, we chose to implement 

multicast reception as part of net - recv. This posed a number of problems, caused by$the 

hfferences between stream and datagram sockets, the principal one being that a 

datagram packet must be read once in its entirety, while a stream socket packet can be 
I 

read piecemeal. A major complication in modifying the RTS is that VMs and srx share 

much of the comrriunications code, and thus any modification to the code must be con- 

sistent with both uses. 

SR packets x e  read in two'parts: net-recv reads the fixed length packet header, 

which contains the size of the packet: net-more is called to read the rest. This is not 
, 

possible with datagrams, which must be read in their entirety. As datagrams are limited 

in size they may be read into a fixed size buffer. Our solution does this, requiring 

nef - recv to be able to lstinguish between stream and datagram packets, and for 

net - more to be called only for unicast packets. To facilitqte these changes the space for 

the packet is now allocated within net recv, which returns the packet, rather than its 

type. Additional code was added to net - recv to triip multicasts received by the sending 

VM: a dummy packet of type MSG-NONE is returned, and discarded. 
s 

In order to receive multicasts the receiving socket must be added to the set of file 

descriptors selected on by net - recv. This is performed by men - conn which is called by 

each VM as part of its network initialising code. As noted above, net - recv must be able 

t m n g u i s h  betken kulticasts and unicasts. Thi ost easily done by reserving a 

particular file descriptor for incoming multicasts. As VMs and srx both use net - recv, 

this number must be common to both. For VMs the fil~~descriptor is naturally 3; for srx 

the omission of a multicast socket leaves file.descriptor 3 free for other use. This prob- 

lem is solved by having srx duplicate a file descriptor as part of its initialisation: this is 



3 and is thus never used by srx. 

The fact that SR packets sent by datagram may not exceed a fixed size, 
, 

implies that SR rnulqast packets that exceed this must be transmitted in several 

datagram packets. As we were constructing a prototype only, we decided to limit multi- 

cast packets so as to fit into a single datagram packet. 

Note that the comparative rarity of MCN creation, destruction and updating 

implies that we need not be too concerned over the efficiency of these actions. These 

actions are also simpler in that only one action is taken on each VM, to update the local 

MCN database; with multicast invocations multiple operations may be invoked, each 

potentially requiring an acknowledgement. 

As noted we did not implement ACKs requiredvto ensure reliability. In the 
D 

' i  

absence o S ~ A C K S ,  asynchronous multicasts do not require any ACKs. The han- P 
d ing  of d requires the careful use of counting semaphores. After the initiating. VM 

has initiated local action and sent the multicast, it waits on a counting semaphore: ack- 

nowledgements signal the semaphore, allowing the initiating process to continue when 

all the signals have been executed. In the case of multicast calls, the acknowledging 

must wait until the operations complete: each each invoked operation must ack- 

nowledge. 

The above changes relate to an implementation of the MP paradigm. The differ- 

ence between this and an implementations are minor, relating primarily to the manipu- 

lation of the reply-queue. 
L 



Appendix C : Compiler Changes 

The SR code is compiled into C code by a two-pass compiler. The C code is then 

compiled into object code by the C compiler, and linked with the run-time support 

code. The first pass of the SR compiler performs the lexical analysis, generates the sym- 

bol table, and a list of intermediate code (i-code). The second pass processes the i-code, 
1 

with reference to the symbol table, outputting C code. 

Each variable in SR is typed by assigning it a signature. The signature gives the 

data-type of low-level objects: for high level objects such as operations, it gives the 

number and type of its parameters. The signature is employed to determine the compati- 

bility of variables with respect to some binary operation, ind in addition points to the 

memory allocated to the variable at run-time. 

The 6rst step in modifying the compiler to handle multicasts was to introduce a 

number of new tokens to capture certain new keywords: viz net, join, quit, mc - send, 

mc - call * 

In order to permit the declaration of MCNs, the compiler code was modified so 

-,that the keyword net would be accepted along with cap. This pennits the declaration of 

an MCN associated with any object with a capability, such as a resource or operation. 

In declaring an MCN variable, the signature created is the same as that for a variable of 

the corresponding operation or resource, except for the type being T-NET. When a 

MCN declaration is parsed, run-time space is allocated to hold the MCN capability. 

Statements for creating and destroying an MCN are parsed using the same code as 

for creating and destroying other objects. The parser recognises that an MCN is being 

created from the signature of the object being created, and thus calls a new function 

(net-create - smt), instead of create - smt, to parse the remainder of the statement. 

Net - create - smt  creates an empty list for initialisation arguments and uses 

TK-CREATE-NET in place of TK-CREATE, which is used for creating other objects . 
' 



Statements for updating the MCN group or invoking it begin with a new keyword 

(such as join or mc-send), permitting the parser to immediately identify the statement 

type and call the appropriate new function to complete the parsing. The update state- 

ments are easily parsed as they take two arguments, the MCN and the receiver. At 

present no signature check is made as to whether the two are associated with the same 

resource or operation type. The intermediate code uses TK-JOIN-NET and 

Multicasting statements require the parsing of an argument list. If the MCN is 

associated with a resource, the name of the required operation must precede the list. As 

the parsing problem here is identical with that for a regular invocation, we may make 

use of existing compiler code to parse the denotation. The intermediate code employs 

TK-SEND-NET and TIC-CALL-NET. In the prototype we have not provided for the 

compiling of the optional termination semantics or the use of collectors. However, 

incorporating these features ,is straightforward. 

The i-code generation phase is generally straightforward, as each new feature has a 
\ 

new type of i-code statement. MCN creation and destruction statements generate simply 

C function calls with a pointer to the appropriate capability. The code for MCN updates 

is similar, only in this case there are two arguments to the C function he MCN and Y. 
the receiver capabilities. 

Multicasts require more complex C-code than creations or updates, due to the vari- 

able number and size of arguments. The compiler must generate the code to create a 

packet, fill in the values of arguments, and call a C function to effect the multicast. *This 
-7 

closely resembles the actions required to perform a unicast, and hence most of the same 

code can be used. 

In the prototype we have not incorporated most of the features required to support 

the use of collectors. The compiler code for the declaration, creation.and destruction of 

collectors parallels that for MCNs, and is easily written. The invocation of collectors is 



simple, as the C-code required is merely a function call with a single parameter, except 

for get - reply, which requiremhe use a variable size packet and the copying back of the 

value of VAR or RES type parameters to local variables. This is already performed by 

calls, and thus the same code can be used, or mimicked. 

The above describes the changes required to implement the MP paradigm. In order 

to implement the RPC paradigm, some changes are required in both phases of the parse. 

The i-code node for a multicast-statement must include the reply-processing-block. The 

C-code generated must contain the multicast invocation and code to copy back values, 

as before, the code for the reply-processing-block, with suitable labels and gotos to 

implement the implicit reply-processing-loop, a counter for the replies, and a test- 

statement to terminate the loop after all replies have been processed. 



Appendix D : RTS code 

? .......................................................................... 
I* data structures used to store identity of existhg MCNs and their */ 
/* local receivers */ 
/* The list of MCNs on a VM is kept as a link-list of mcn-blocks */ 
/* Each mcn-block has a link-list of rec-blocks, one per local receiver */ 

typedef struct mcn-block-st *men-block; I* data- block for an mcn */ 
typedef struct rec-block-st *rec-block; I* data-block for a receiver */ 

struct rec-block-st ( 
struct ocap-st opn; 
rec-block nextrec; 
1; 

I* data-block for a receiver */ 
I* operation's capability */ 
I* pointer to next receiver */ 

struct mcn-bIock-st ( I* data-block for a MCN */ 

struct mcn-st id; 
int numrecs; 
int nudocal;  
rec-block recs; 
mcn-block nex tmcn; 
1; 

I* mcn-capability */ 
I* total number of receivers */ 
I* number of local receivers */ 
I* pointer to list of local receivers */ 
I* pointer to next MCN block */ 

mcn-block get-mcn-block(); 
short get-seqno(); 
mcn-block find-mcn-block(); 
void mulcast(); 
void mulcast-in(); 
void rem-mcn-block(); 
void add-rec(); 
void rem-rec(); 
void local-invoke(); 
void mcn-ac k0; 

/* returns a new MCN block 
/* returns a sequence number 
/* searches for, an MCN block 
I* multicasts a packet 
I* used in debugging without network 
I* remove a MCN block 
I* add a receiver to local list 
I* remove a receiver from local list 
I* invokes multicasts on each VM 
I* acknowledge multicast 



- 
/* user called functions */ 
/***************************d********************************************/ 

/* mcn-create : creates an MCN *h .......................................................................... 
void 
mcn-create(netw) 
int new;  

int packet; 

I* pointer to MCN capability 

I* packet created 

I* initialise MCN cap. */ 

((struct mcn-st * )netw)->netvm = my-vm; 
((struct mcn-st -* )netw)->mcnseqn = get-seqno(); 

/* create and initialise packet *I 
7F 

packet = (int) mem~allw(INVOCATION~HEADER~SIZE, RTS-OWN); 

(@ac h)packet) ->typeb = MCN-CREATE; 
(@ac h) packet)->net = *(struct mcn-st *) netw; 
((pach) packet) ->size = INVOCATION-HEADER-SIZE; 

return; 
1 

I* mcndestmy : destroys a mcn * /  .......................................................................... 
void 
mcn-destmy(netw) 
int netw; 
{ 

/* pointer to MCN capability * /  

int packet; I* packet created */ 

/* create and initialise packet */ 

(pach)mem-alloc(INVOCATIONNHEADER_SIZE, RTS-OWN); 
I 

((pach) packet)->net = *(struct mcn-st *) netw; 
((pac h) packet) ->type = MCN-DESTROY; 
((pach) packet) ->size = INVOCATION-HEADER-SIZE; 

mulcas t((pach)packet); 

return; 
1 



I* men-update: updates the process group membership */ .......................................................................... 

void 
mcn-update(packet) 
int packet; I* packet created by user code */ 
( . f' 

mulcast((pach) packet); 
I 

/* mcn-invoke : multicasts over a MCN */ ......................................................................... 

void 
mcn-invoke(packet) 
int packet; 
I 

I* invocation pawet created by user code */ 

if (find-mcn-block(((pach)packet)->net)->nu- &) I* no such MCN */ -. 
perror("no such mcnin mcn-invoke"); 

((pach) packet)->type = MCN-INVOKE; I* coud  be done by compiler */ . 

mulcast((pach)packet); 
return; 
I 

Mulcast uses the packet to effect local and remote actions 
Locally: it spawns a process to take the actions 
It also multicasts the packet to all VMs. These also spawn 
processes to take the actions. 
The processes spa ed to take the actiop: rrncn-create,etc.. 
call mcn-ack to aC: % owledge their completion. 
Mulcast (meanwhile) has a loop containing a P, which executes 
each time an ack returns, until all acks have returned. 

void 
mulcast(packet) 
pach packet; 
I 

int n, rest; 
char *addr; 
remd rem; 
int numacks; 
int i; 

I* number of bytes sent and size of rest of message */ 
I* pointer to remaining message */ 
/* remote message descriptor "1 
I* number of ACKs required */ 



- . - 
I* create semaphore */ 

P(rtm-coun t); I 

P(rem-mu tex); , 
rem = rem-free; 
rem-free = rem-free->next; . -8 #> 3 
V(rem-mutex); r ,$-) *.- kL, j 

I* find the number of 'acks */ , *- it* 

switchipacket->type) ( 
case MCN-CREATE: 
case MCN-DESTROY: . . 
case MCN-UPDATE: b. 

case MCN-S END: 
\ a, 

numacks = 2; - I* note: these are for reliability- */ 
break; I* reliability is not provided elsewhere */ 

+ case MCN-CALL: 
( mcn-block blk; ' I* data-block for the given mcn */ 

blk = find-mcn-block(packet->net); 
numacks = blk->nurnrecs; 

1 
break; 2 > 

/* initialise for return */ 

packet->origin = my-vm; 
packet ->rem = rem; 
rem->ph = packet; 
rem->wait = create-sem(0); 

I* local action */ P 

'P" 
switch (packet->type) ( 

case MCN-CREATE: Activate(Spawn(rrncn-create,RTS-OWN, 1 ,packet));break; 
case MCN-DESTROY: Activate(Spawn(rmcn-destroy,RTS-OWN, 1 ,packet));break; 
case MCN-UPDATE: Activate(Spawn(rmcn-upd,ate,RTS-OWN, 1 ,packet)); break; 
case MCN-WOKE: A c t i v a t e ( ~ ~ a w n ( r m c n ~ i n v o k e , ~ ~ ~ ~ W N ,  1 ,packet));break; 
I 

/* send packet */ 

rest = packet->size; 
addr = (char *) packet; 
while (resuO) ( e 

n = write(mcast-send-sock,addr,rest); 
if (n<O) perror("mu1cast"); 
rest -= n; 
ad& += n;  

k 
1 4 



/* wait for replies */ 

1 
kill-sem(rem->w& t); 

a 

I* free semaphore */ 

P(rem,mu 
rem->next = rem-free; 
rem-free -m; 

' 
e 

V(rem-mu tex); 
V(rem-count); 

1 .......................................................................... 
/* functions that are used to act on the contents of multicast packets */ - 
/* received by VMs. */ ............................................................................ 

/* rmcn-update: adds or removes a receiver */ .......................................................................... 
void 
rmcn-update(packet) 
pach packet; 
( 

struct crep-st *reply; I* acknowledgement packet */ 
mcn updb upblk; /* update block found in packet */ 
int Zze; I* size of ack packet */ 

upblk = (mcn-updb) packet; 

/* join or remove receiver */ 

if(upblk->type== MCN-JOIN) ( 
mcn-block mcnblk; 
if ((mcnblk= find-mcn-block(pac ke t->ne t)) ! = NULL) ( 

mcnblk->numrecs++; /* increment total receivers */ 
if(upblk->receiver.vm==my-vm) I* receiver is local */ 
add-rec(upblk->receiver,pac ket->net); 

1 
else perror("No such network to be joined0); 
1 

else { I* type is MCN-QUIT */ 
mcn-block mcnblk; 
if ((mcnblk= find-mcn-block(packet->net)) != NULL) ( 

mcnblk->numrecs--; /* decrements total 
if(upb1k->receiver.vm==my-vm) 

rem-rec(upb1k->receiver,pac ket->net); 
1 
else perror("No such network to be joined0); 

1 



I* send acknowledgement packet */ 

size = sizeof(struct crep-st) + sizeof(struct mcn-updb-st); 
reply = (struca crep-st *) mem-alloc(size,RTS-OWN); 
reply ->ph.rem = packet-xem; 
mcn~ack(pa~ket->origin,ACK~MCN~UPDATE,&reply-~ph,size); 

mfree((daddr)repl y ); 
Kill(cur-proc,FALSE); 

1 

void 
rmcn-invoke(packet) 
pach packet; 
f 

invb invblk; /* invocation block in packet */ 
mcn-block mcnblk; /* mcn-block for a receiver */ 
int size; /* size of ack packet */ 
struct crep-st *reply; I* reply */ 

invblk = (invb) packet; 

if((mcnbk =find-rncn-blockbacket->net)) -- NULL) 
pemr("No network to invoke0); 

I* if a CALL invoke'receivers before acking */ 

if (invblk->type == MCN-CALL) local-invoke(mcnblk,invblk); 

/* send acknowledgement */ 

size = sizeof(struct crep-st), -t: sizeof(struct mcn-updb-st); 
reply = (struct crep-st *) mem-alloc(size,RTS-OWN); 
reply ->ph.rem = packet->rem; 
mcn~ack(pa~ket->origin,ACK~MCN~UPDATE,&reply-~ph,size); 

if(invblk->type == MCN-SEND) local-invoke(mcnblk,invblk); 



I* rrncn-create: creates an MCN */ ........................................................................... 
void '+ 

rmcn-create(packet) 
pach packet; 

mcn-block newblock; I* new mcn-block */ 
int size; I* size of reply */ 
struct crep-st *reply; I* reply block */ 

/* create and initialise new mcn-block */ 

newblock = get-mcn-block(); 
newblock->id = packet->net; 

/* send ACK */ 

size = sizeof(struct crep-st) + sizeof(struct mcn-updb-st); 
reply = (struct crep-st *) mem-alloc(size,RTS-OWN); 
reply ->ph.rem = packet->rem; 
mcn-ack(packet~>origin,ACK-MCN-CREATE,&reply->ph,size); 

........................................................................... 
I* rmcn-destroy : destroys a MCN * /  . ........................................................................... 
void 
rmcn-destroy (packet) 
pach packet; 
( 

int size; I* size of reply */ 
- struct crep-st *reply; I* reply block */ 

I* destroy MCN */ 

/* send a&nowledgement */ 

size = sizeof(struct crep-st) +  INVOCATION-HEADER-SIZE); 
* reply = (struct crep-s t *) mem-alloc(size,RTS-OWN); 
reply ->ph.rem = packet-xem; 
mcn~ack(packet->origin,ACKmcn_ack(packet->origin,ACK_MCN_DESTROY,&MCNNDESTROY ,&reply->ph,size); 



.............................................. ***************************/ 
/* localinvoke : invokes local receivers for an mcn \ ,  * /  
/*************************************************************************1 

-void 
local-invoke(mcn blk,invblk) 

*I mcnblock rncnblk; I* mcn-block 7 i 
r) 

*I 
I invb invblk; /* invocation block 

( 
4 

rec-block recblk; I* receiver block */ 

.m recblk = mcnblk->recs; I* first receiver */ . 

while (rec blk ! =NULL) ( 
invblk->opc = recblk-xpn; I* insert op. cap. in invocation block */ 

I* set type to ensure proper ack. behaviour */ . 
if (invblk->type == MCN-SEND) invblk->type = SEND-IN; 
if (invblk->type == MCN-CALL) invblk->type = CALL-IN; 

invoke(inv blk); . ' /* invoke the operation, 
i 

"1 
recblk = recbk-mextrec; /* next receiver * /  

) I* end of while */ 
1 .  
.......................................................................... 
I* mcn-ack: sends acknowledgement packet i /  .......................................................................... 6 

void 
mcn-ack(dest,type,packet,size) 

tindex dese I* destination VM */ 
enum ms-type type; I* message type *I 
pach packet; I* packet */ 
int size; I* size of packet * /  

{ 
if (packet->origin == my-vm) ( /* locally initiated */ 

V(packet-xem->wait); 
1 

else ( I* remotely initiated */ 
if(! (net-known(dest))) ( /* if unknown YM, get its socket */ 

struct qum-st mn; 
pach mph; 

mn.num =dest; 
mph = ~~~O~~(SRX-VM,REQFINDVM,(~~C h)&&,sizeof(rm~); 
net-conn(dest,((struct saddr-st *)mph)->ad&); 
1 I 

net-send(dest,type,packe t,size); I* send ack packet */ 



I*************** ........................................................... 
/* . u 6 Iities */ .......................................................................... 

mcn-block 
get-men-block() 
1 
mcn-block n'ew#$~ock; /* new mcn-block returned by function */ 

i 

/* get new block and initialise */ 
w 

newblock = (mcn-block) mem~alloc(sizeof(struct mcn-block-st),RTS-OWN); 
newblock->numrecs = 0; 
newblock->numlocal =O; 
newblock-xecs = NULL; 

/* add block to list of blocks */ 

newblock-xextmcn = mcn-block-head; 
nicn-block-head = newblock; 

I* removes from the mcn-list the block corresponding to the given mcn id *i 
, void 

rem-mcn-block(net) 
struct mcn-st net; /* capability of mcn to be removed */ 
{ 

mcn-block blk; 
mcn-block prev; 

I* two mcn-blocks used for search */ 

/* search for mcn block for the given MCN */ 

blk = mcn-block-head; 
prev =rncn-block-head; 
while (blk !=NULL) { 

if ((blk->id.netvrn == net.netvm) && (blk->id.mcnseqn == net.mcnseqn) ) { 

/* MCN fou,nd *I 

if (blk -1 mcn-block-head) mcn-block-head = blk-xextmcn; 
else prev-xextmcn = blk-xextmcn; 
mem-free((int)blk); 
return; 
1 



% 
mcn-block +B, 
find-mcn-blockbk) 
struct mcn-st net; I* capability of mcn we seek */ 
b 

mcn-block blk; I* mcn-block used for search */ 

blk = mcn-block-head; 
blk->id =net; 
while (blk !=NULL) ( 

if ((blk->id.netvm == net.netvm) && (blk->id.mcnseqn == net-mcnseqn) ) 
return(blk) ; I* found it */ 

else blk = blk-xextmcn ; 
1 

............................................................. 
/* general utili es 'h v 
I************ ............................................................ 

printf(" MCN-DB"); 
blk = mcn-block-head; 

while(blk != NULL) { /* search all mcns- *if 
printf("mcn: vm: %d seq: %dO,blk->id.netvm,blk->id.mcnseqn); 
printf("nurnrecs: %d numlocal: %d 0,blk->numrecs,blk->numlocal); 
rec = blk-xecs; 
while(rec != NULL)( search each individual rncn db */ 

printf("rec: vm: %d op-index: %d seqn: %dO,rec->opn.vm, 
rec->opn.oper-index,rec->opn,seqn); 

rec=rec->nextrec; 



It************** add-rec : adds a receiver to the local receiver list *****/ 
'void 
add-rez(receiver,ne t) 
struct ocap-st receiver; /* new receiver */ 

*/ struct mcn-st net; I* mcn 
( 

mcn-block mcnblk; I* men-block of mcn */ 
rec-block recblk; /* new rec-block for receiver */ 

if ((mcnblk =firid_mcn-block(net)) != NULL) ( /* mcn exists */ 
I* create and initialise receiver block */ 

recblk = (rec-block) mem-alloc(sizeof(struct rec-block-st),RTS-OWN); 

recblk-mpn = receiver, 
recblk-xextrec = mcnblk->recs; 
mcnblk->recs = recblk; ?. 

mcnblk->nurnlocal++; I 

I 
1 
I************** rem-rec: remove local receiver from list ***************I 
void 
rem-rec(receiver,net) 
struct map-st receiver; I* receiver to be deleted */ ' 

struct mcn-st net; /* mcn from which to delete it */ 
( 

rec-block recbk,prevrec; /* receiver blocks used to search list */ 
mcn-block mcnblk; /* mcn block for given mcn */ 

/* find mcn-block */ 
if ((mcnblk = find-mcn-block(net)) == NULL) return; 

I* search for receiver */ 
recblk = mcnblk-xecs; 
prevrec = recblk; 
while (recblk !=NULL)( I* if found delete */ 

4.. 

if ((recblk-mpn.vm == receiver.vm) && (recbk->opn.seqn == receiver.seqn) 
&& (recblk-mpn.oper-index == receiver.oper-index )) ( 

if (recblk ==mcnblk->recs) mcnblk->recs = recblk->nextrec; 
else prevrec->nextrec=recblk->nextrec; 
mcnblk->numlocal--; 

, mem-free((int)recblk); O 

return; 
1 
else ( 

prevrec = recbk; 
recbk = recblk->nextrec; 

1 
) /* while */ 
return; 

1 



.............................................................................. 

......................... file: bc.c *************************q*******-***/ 
............................................................................ 

/* a set of utility functions for multicasting over the Suns */ 

#include "rts.hV * v 

int ge /* gets a socket with unspecified port */ 
int ge /* gets a receiving socket for given port */ 
int get-sen&-sock(); /* gets a sending socket of given port */ 
u-short g e t p r t o ;  /* gets hr to-port number for a given socket */ B 

* 
c 

void 
init-all-rkastso 
( 

mcast rec-sock = ge t-firs t-rec-sock(); f I* 
mcasf-port = get-port(mcas t-rec-sock); /* 
mcast-send-sock = get-send-sock(mcast-port); I* 

1 

get rec. sock */ 
find the port number */ \ 

get sending socket * /  

void 
init-mcastso 
( 

mcast-rec-sock = get-rec-sock(mcast-port); /* get rec socket: given port */ 
mcast-send-sock = get-send-sock(mcast-port); I* get send socket a */ 

1 

dnt 
get-first-rec-soc k() 
1 
h t  sock; /* socket */ 
SOCK-ADDR-IN mysockname; I* socket name I */ 
int name-len; I* length of sender-address *I 

/* set up socket for reading */ 
u 

sock = swket(AFINET,SOCK-DGRAM,O); 
if (sock&) ( 

perror("opening dg socket"); 
exit(l>; 

1 



/* create name with wildcards */ 

bzero((char *) &mysockname,@DR-SIZEIN); 
mysocknarne.sin-family = AF-INET; 
mysocknarne.sin-addr.s-addr = INADDR-Am; 
if (bind(sock, (SOCK-ADDR-IN *) &mysockri&ne, ADDR-SIZE-IN ) < 0 ) ( 

pmr("binding first dg socket"); 
exit(1); 

1 

/* get port value */ 

name-len = ADDR-SIZE-IN; 
(SOCK-ADDR-IN *) &mysockname, &name-len) c 0) ( 

f 

return(soc k); 

int 
get-rec-sock@ort) 
u-Short port; 
i 
k t  sock; /* 
S OCK-mDR-IN my sockname; /* 
int nave-len; I* 

port number "/ 
@+ 

socket */ 
socket name */ 
length of sender-address */ 

I* set up socket for reading */ 

sock = socket(AFINET,SOCK-DGw,O); 
if (sock&) ( 

perror("opening dg socket "); 
exit(1); 

1 

I* create name with wildcards */ 

bzero( (char *) 
mysocknarne.sin-family = AF-INET; 
mysockname.sin-addr.s-addr = INADDR-ANY; 
mysockname.sin-port = port; 
if (bind(sock, (SOCK-ADDR-IN *) &mysockname, ADDR-SIZE-IN ) < 0 )( 

perror("binding subsequent dg socket"); 
exit(1); 

1 r 
return(soc k); 

1 



int , 
get-send-sock(port) 
u-short port; I 

( * 

int sock; I* socket *I 
S OCK-ADDR-IN recsockname; I* address of socket */ 
struct hostent *host ; 

4 I* host of sender*/ 
char my-name[MAXHOSTNAMELEN]; /* name of host 

/* set up socket for sending */ 

sock = socket(AFINET,SOCK-DGRAM,O); 
if fsock 4) { aD 

perror("opening dg socket"); 
exit( 1 ); 

1 

I* get host *I 

gethostnarne(my-name,MAXHOSTNAMELEN); 
host = gethostbynam=(my-name); 

/* set up socketaddress *I h 

bzero( (char *) &recsocknameADDR-SIZE-IN); * 

bcopy ((char *) host->h-addr,(char* ) &recsockname.sin-addr,host->h-length); 
recsockname.sin-family = AF-INET; 
recsockname.sin-port = port; 
recsockname.sin-addr.s-impno = (u-char) BC-WILDCARD ; 

I* connect socket */ 

if (connect( sock, (SOCK-ADDR-IN *) &recsocknarne, ADDR-SIZE-IN)) 
perror("comecting sock: get send sock [%d],my-vm"); 

B 
return(soc k); - 

1 



e 

................................ g~t,po~********************************/ 
I* get-port returns the'poq number for the given socket */ < - + 

, . u-short 

/* socket whose p6rt number is sought */ 
( 
4nt name-len; I* length of socket name *I 
SOCK-ADDR-b4 rnysockn&e; /* socket name */ 
u-short port; I* port */ 

,% 

name-len = ADDR-SIZEIN; 
if (getsockn&ne(sock, (SOCK-ADDR-IN *) &my sockname, &name-len) <0) ( 

psrror("getting socket name"}; 
exit( 1 ); . . .  

1 + 
port = htons(mysockname.sin_port); . 



[Andrews83] Andrew~, G.R., and Schneider, F.B., "Concepts and Notations ' 
for Concurrent Programming", Computing Surveys, Vol. 15, No.1, March 1983. , 

[Andrews88] ~nhrews,  G.R., et al., "An Overview of the SR Language'and 
Implementation", A.C.M. Trans. on Programming Languages, Jan. 88. 

G.R., and Olsson, R.A.,"Revised Report on the SR kt -./ 
Dept. of Computer Science, University of 

[Atkins89] Atkins, M.S., Haftevani, G.B., and Luk, W.S., "An Efficient 
Kernel Level Dependable Multicast Protocol for Distributed Systems", 
8th=Symposium on Reliable Distributed Systems, Seattle, Oct. 89. 

d 

[Bemstein83] Bernstein, P. and Goodman,N. "The Failure and Recovery Problem 
for Distributed Databases" Proceedings of the Second Annual ACM SyrnpoSium on . 

Principles of Distributed Computing, Montreal, 83. 

[Birrnan 871 Binnan, K~P.,  and Joseph, T.A., "Reliable Communication in the 
Presence of Failures", A.C.M. T m s .  on Computer Systems, Vo1.5, No.1,87. 

[Birkhard87] Birkhard, W.A., Martin, B.E., and Paris, J.F. "The Gemini 
Replicated File System Test-bed". of the Third International Conference 
on Data Engineering, L.A., California, 87 

[Brich Hansen771 B Hansen, P, "The Architecture of Concurrent Procesms"," 
Pre~tice Hall, Eagle Cliffs, N.J., 77. 

L 
i 

[Charlesworth87] Charle 1 worth, A., "The Multiway Rendezvous", ACM 
Transactions on Programming Languages and Systems, Vol9, No. 2, July 1987, 
pp. 350-366. 

[Cheriton85] Cheriton, D.R. and Zwanepoel, W, "Distributed Process &oups in the 
V Kernel", A.C.M. Transactions on Computer System$ Vol. 3, fl0.2, 1985. 

[Cheriton 871 Cheriton, D.R. and Stumm, M. "The Multi-Satellite Star : 
' 

Structuring Parallel Copputations for a Workstation Cluster", 
Dept. of Computer Science, Stanford UniversityJ7. 

[Feldman] Feldman, J. A., "High &el programming in distributed computing", Commun 
ACM 22,6 , June 79. 



[Good791 Good, D.I., Cohen, R.M., and Keeton-Williams, J, 
"Principles of proving concurrent programs in Gypsy". In Proc. 6th ACh 
Principles of Programming Languages", ACM, New York, 79. 

[Hoare78] Hoare, Cp.R., "Con-&unicating Sequential Processes", Commun. ACM, 
Aug. 78. 

. [leffler83] Leffler, S, Joy, W., and Fabry; R.,"4.2BSD Interprocess 
Communication 
Primer", Computer Systems Research Group, Univ. of Cal., Berkeley, July 83. 

\ 

[Martin871 Martin, B., Bqrgan C. ,  and Russ, B. "PARPC :   st stern for 
Parallel Procedure 
Calls", Proc. of the 1987 International Conference on Parallel Processing, 4 

Penn, State Univ. Press. b 
'[NpVaratnam87] Navaratnarn, S., "Reliable Group Communications in Distributed 

ys tems" ,  Master's Thesis, University of British Columbia,1987. 

[Navaratnam88] Navaratnam,S., Chanson, S., and Neufeld, G., "Regable Group 
, Communication in Distributed Systems", 8th International Conference 
on Distributed Computer Systems, Jdne 88. . 

. . 
[Olsson86] Olsson, R.A., "Issues in Dis~buted  Programming Languages: The 
Evolution of SR", Dept. of Computer Science, University of 
Arizona. (TR 86-21) 

-- 

[USDD8 11 U.S .D.D. U. S. Department of Defence . "Programming Language Ada: 
Reference Manual, vol 106, Lecture Notes in Computer Science" Springer-Verlag, 
New E'ork,8 1. 

rWirtt-1771 Wirth, N, "Modula: A language for modular multi-programming", Softw. 
Pract. Exper. 7 , 77. 




