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ABSTRACT 

The purpose of this thesis is to assess the feasibility of using Radon transforms ((n-1) 

dimensional projections of an n dimensional object) in the reconstruction of good images 

from 3D positron emission data. To show such feasibility it is necessary to solve two 

problems. First it must be demonstrated that the Radon transform can be satisfactorily 

obtained from the emission data, and second, it must be shown that in some non-trivial 

case a good image can be reconstructed from the t 

presented for both of these problems. 

The solution to the first problem consists of 

nsform. In 

computer a1 

lis paper, solutions are 

xithm which credits a 

line (one unit of data) to each member of a set of predefined planes in which it is 

considered to lie (2D projection). The solution to the second problem requires a 

demonstration that it is theoretically correct to use Radon transforms and that the 

discretization errors introduced when the algorithm is implemented on a computer can be 

corrected. Examples of final images produced by these algorithms are shown, with and 

without these corrections, to support claims made in this thesis. The question as to 

whether the results are promising enough to continue work in this area is addressed and the 

direction of further work is discussed 
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1. Introduction 

Positron emission tomography (PET) is one of many imaging techniques used in 

medicine to obtain, in a non-invasive manner, information about the internal form or 

function of a subject from externally gathered data. The existence of some of these 

techniques, such as electroencephalography (EEG), X-ray, ultrasound and computer 

assisted tomography (CAT, CT or XCT), is common knowledge. Some lesser known 

imaging modalities are magnetic resonance imaging (MRI), single photon emission 

computed tomography (SPECT) and PET. The tomographic methods and MRI use a 

mathematical technique which takes the externally gathered data and uses it to reconstruct 

a cross section through the subject (hence the use of the word 'tomography', tomo=cut or 

slice). The usefulness of being able to view a cross section of a living subject by non- 

invasive means is without question, and the different techniques just mentioned provide 

varied kinds of information about the subject. 

In CAT, X-ray beams are passed through the subject from many directions and 

detected on the opposite side. The intensity of the X-ray beam when it is detected on the 

far side is inversely related to the density of the material in-between. This information can 

be used to reconstruct a density map of the plane which was X-rayed. Such a map shows 

structures like bone, cartilage, water, air, etc. MRI also produces data about the density of 

an object. The density of hydrogen nuclei over a plane is measured and reconstructed, and 

the values of the hydrogen density are related to the density of the object over the 

reconstructed plane. Rather than measure density, SPECT and PET measure the 

distribution of a radioactive tracer which has been injected into the subject. This data is 

reconstructed into a 2-dimensional (2D) map of the distribution of the tracer over that 
1 



plane. SPECT and PET differ in the type of radioactive emitter used, SPECT uses a low 

energy photon emitter where PET uses a high energy positron emitter. The difference 

between these two methods of imaging primarily lies in the types of tracers that can be 

used, and in the hardware employed to collect the data. 

The theoretical basis for reconstruction of the data into images for the above 

modalities is virtually the same [Deans 19831. The difference between the modalities lies 

in the type of data measured and in the manner in which such data is measured, and also in 

the meaning attached to the final images. 

In this work we are interested in reconstruction methods for fully 3D PET data, 

meaning data which has been collected from a wide section of the subject, rather than from 

a single slice. Since 3D positron emission data is neither obtained nor reconstructed in 

slices, the technique is properly called positron volume imaging (PVI) rather than PET 

The first step in reconstructing 3D images is collecting the data, the tomograph1 must be 

capable of measuring data over a 3D section of the subject. Our work is designed for a 

new PVI machine currently being designed at TRIUMF. When the data has been obtained, 

there are two ways of reconstructing the image. The fxst, and most common, method is to 

use 1D projections of the data onto 2D spaces, filter over the 2D spaces and reconstruct the 

3D object. The second, and equally valid, method is to use 2D projections of the object 

onto 1D spaces, filter over the 1D space and reconstruct. Note that in 2D image 

reconstruction there is no difference between these two methods. It is with this second, 

and less common method, that this thesis is concerned. Both methods will be discussed 

further in later chapters. 

1. Unfortunately all positron emission machines are called tomographs, regardless of how 
they collect data. In this thesis the type of machine in question will be made clear by 
the context. 
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The set of 2D projections of a 3D function is the Radon transform [Radon 19171 of 

the function. Radon [I9171 states that given the set of (n-1) dimensional projections of an 

n dimensional function, it is possible to reconstruct the original nD function. In PVI the 

nD function is the distribution of radioactivity in the object and the (n-l)D projections are 

obtained from the measured data. This method for reconstruction has been applied to 

many different forms of image reconstruction, including optics and electronmicroscopy, 

but it has not been applied to PVI. An unsuccessful attempt was made to apply Radon 

reconstruction to MRI [Shepp 19801. The reasons why the attempt failed are important to 

this work and will be discussed in detail later. 

We shall be specifically concerned with testing the feasibility of using Radon's 

transform in PVI reconstruction. There are two main problem to overcome before Radon 

transforms can be used. The first lies in the fact that the Radon transform is not directly 

measured by the tomograph and that the data must be converted to Radon transform form. 

The second is that of reconstructing good images from the transform. Both of these 

problems are considered and acceptable solutions found for them, indicating the feasibility 

of the method. Although the application of the theory in this paper is with positron 

emission data, it could be applied to any image reconstruction method where the data can 

be put into Radon transforms. 

PVI cannot be considered common knowledge in Computing Science, so chapter 2 

of this thesis will contain an introduction to the technique. It will also contain a discussion 

of the reasons for doing the 3D imaging and present some medical applications for the 

work. Chapter 3 provides the theoretical background for 3D imaging and proves that both 

methods of 3D image reconstruction are theoretically valid. The reason for investigating 

the feasibility of Radon transforms rather than using the more common ID projection 

method is presented here as well. The conversion of the measured data to the Radon 
3 



transform and the implementation of the Radon reconstruction method is described in 

chapter 4 and the testing and results of the implementation are in chapter 5. Chapter 6 

contains the conclusions and a discussion of further work to be done in this area. 



2. Positron Volume Imaging 

2.1. Introduction to 2D and 3D image reconstruction 

The aim of positron emission imaging is to measure accurately the distribution of a 

radioactive tracer inside a 3D object. The radioactive tracer is composed of a positron 

emitter attached to some biological molecule like oxygen, water or glucose whose actions 

are of interest to a scientist or doctor. The tracer is injected into the object2, where it 

follows the normal path taken by the biological molecule. As each radioactive molecule 

travels through the body, it emits one positron which travels a short distance, finds an 

electron and annihilates. The exact time at which the positron is emitted varies for each 

molecule, the overall rate is determined by the radioactive decay of the tracer. Each 

annihilation, called an event, produces 2 gamma rays which travel away from their point 

of production at 180' to one another (opposite directions along a straight line) and are 

detected by the tomograph detectors surrounding the object. A diagram showing one 

annihilation is given in figure 2.1. The positions in space where the gamma rays are 

detected define a line, called an event line, through the object, somewhere along which the 

annihilation, or event, took place. Knowing the position of the event line gives an 

indication of the position of the tracer molecule at the time the positron was emitted. 

Given enough event lines, it is possible to reconstruct the original distribution of the tracer 

molecules within the imaged object. Intuitively it seems that the number of detected 

2. Note that in the following discussion the 'object' being imaged is assumed to be human 
and the region of interest is the brain. It is, of course, both possible and useful to image 
other regions, and while this may make a difference to the design and cost of the 
tomograph, it makes no difference to this discussion and no distinction will be made. 
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Figure 2.l:Diagram of a single annihilation (not to scale). 

events must be large for this to be possible, and in fact this is the case. 

There are, of course, errors in the above simple statement. The positron annihilates a 

few mm away from the point of production, the gamma rays do not travel at exactly 180' 

from one another, some gamma rays are lost (attenuated) or scattered as they travel 

through tissue and the detectors themselves are not perfectly accurate in recording the 

position of the rays. To accentuate the problem further, it is impossible to enclose the 

object with detectors completely. Either the machine would have to be large enough to 

contain the entire body (theoretically as well as financially difficult) or else just the 

interesting section is surrounded by a ring of detectors. These considerations, and others, 

such as patient movement, cause a deterioration in the quality of the image and place a 

limit on the machine's resolution. Compensation for and/or correction of attenuation, 

scatter and detector error are made to the data before the image reconstruction work is 

started. In order to focus on the problems that the reconstruction algorithms must deal 
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with, the data used in this thesis is taken either from a perfect sampling of an object, that is, 

a sampling which contains no statistical noise, detection error, scatter or attenuation, or 

from a sampling which does contain statistical noise but not detection error, scatter or 

attenuation. 

In PET (that is, imaging just a plane through the object) only events which lie in a 

plane are detected and used in reconstruction. These are the events which come in 

perpendicular to the axis of symmetry of the detector surface where the detector surface is 

a ring of detectors. In all commercial and most research machines, its resolution is 

partially determined by the size of the detectors, so the individual detectors in the ring are 

small, and the ring is very thin as shown in figure 2.2a. Since the entire object carries the 

radioactive tracer, and gamma rays may travel in any direction, most events are never 

detected. This is essentially wasted radiation dose to the subject. A further waste is the 

time taken to collect enough events for the reconstruction of an image which is not too 

badly affected by statistical noise. 

More data can be collected if detector rings are placed side by side to form a stack. 

Events which lie in any plane imaged by a ring will be used. It is even possible to use 

events which are detected in adjacent rings, but not any detected in non-adjacent rings. 

Any gamma ray pair which is detected across two rings which are not adjacent, is rejected. 

Most tomographs are built like this, with the rings of detectors separated by lead septa 

which block any gamma rays which do not lie in or near the plane determined by a detector 

ring. Commonly these machines are called multiple slice machines [Evans, Hmop, 

Heywood, er a1 19831. With this hardware setup, the reconstructed images of each plane 

can be stacked up to form a 3D image, but this is not considered proper 3D imaging since 

the events used are still primarily those which are perpendicular to the axis of symmetry of 

the detector ring. With these tomographs, all gamma rays detected are assumed to have hit 
7 



Figure 2.2a : Single slice detection. Figure 2.2b : Cross section of a slice. 

Only the area of the object which is Simplified diagram showing the angle at 
surrounded by the detectors can be which events may be detected in a slice. 
imaged. 

the centre of the detector, regardless of their actual position, so the detector size determines 

the lower limit of the resolution. The space requirements for the electronics associated 

with each detector places a limit on how small the detectors can get. A different problem 

with these machines is the uneven imaging over the thickness of each slice (a slice is only 

as thin as the detectors are small). Consider the cross section of one slice. Any source of 

radioactivity at the middle of a slice produces events which may vary over a range of 

angles and still be accepted into that slice and be credited to the centre of the slice. A 

radioactive source placed at the edge of a slice will emit far fewer gamma rays which are 

detected entirely within that slice. It would therefore not appear to be as radioactive as the 

source in the middle (see figure 2.3b). This creates a problem, called the partial volume ef- 

fect. There is non-uniformity within slices along the axial direction. 

In fully 3D imaging3, all detected events are used. The image is reconstructed as a 

- 

3. For the remainder of this paper, fully 3D will be called simply 3D, the other methods 
will be referred to as single slice or multiple slice 2D reconstruction 



imaged slices v- 
Figure 2.3a : Multiple slice detection. Figure 2.3b : Cross section. 

A larger section of the object is imaged, Simplified diagram demonstrating the 
but only those events which are detected non-uniformity in the axial direction 
in a slice are used. (along the z axis). 

true 3D object rather than as a stack of 2D ones. Since no data is wasted, a better image 

can be reconstructed with the same amount of radiation dose to the subject or, alternately, 

the same image can be reconstructed with less dose to the person. 3D imaging can be 

accomplished in two different ways. One is to use a stack of detector rings without the 

septa, the other is to use large, position sensitive detectors (as in figure 2.4a). In the first 

method, resolution in the axial direction (along the z axis) is still limited by the width of 

the detector rings. The second method has an axial resolution which is equivalent to the 

resolution in the x and y directions and so does not have this problem. Our reconstruction 

method is designed for the PVI tomograph with large, position sensitive detectors which is 

currently being designed at TRIUMF [Rogers, Hanop, Coombes, et a1 19891. There are no 

commercial machines of this kind as yet. 

Of course 3D imaging has its own set of problems. The main difficulty concerns the 

number of scattered events. A scattered event is one where at least one ray of the gamma 

ray pair changes course at least once before it is detected. The event line produced by a 
9 



Figure 2.4a : 3D detection 

All events where both gamma rays 
hit some detector are collected. 

Figure 2.4b : Cross section 

The object is imaged continuously 
and smoothly along the z axis. 

scattered event is not the line along which the event occurred and therefore shouldn't be 

used in reconstruction. The problem lies in recognizing and correcting for, or removing, 

these events. In 2D imaging, only events which scatter inside the plane and which remain 

inside the plane will be collected by the detectors. This is not a large fraction of the total 

number of events detected and therefore is not a great problem. With 3D imaging, any 

gamma ray pair where both rays hit detectors is accepted. This is a large percentage of all 

events and is a significant problem. It is not, however, a reconstruction problem and is not 

part of this thesis except insofar as its existence needs to be noted and it need to be 

mentioned that there are empirical methods by which the problem can be handled, and 

better methods are being developed 

2.2.2D Image Reconstruction 

Reconstruction can be considered to be an inverse transform operation applied to a 
10 



function. Suppose f(x,y) is the 2D distribution of tracer in the object. The set of event 

lines (measured data), F(B,s), can be considered as a transform of the function f(x,y). Here 

(x,y) are the Cartesian coordinates for a point in 2D space, 8 specifies the angle of a line 

through the origin and s is a position on that line. The line (8,s) is the line at s which is 

perpendicular to 8. In order to get the original distribution back an inverse transform must 

be performed on the measured data; f(x,y) = T-~F(~,s),  In PET the inverse transform is 

performed by reconstruction, of which the two main steps are filtering and backprojection. 

Filtering is done to correct for errors introduced by the discreteness of the data 

collection and by the backprojection process. Backprojection is the method by which the 

image is reconstructed. These two can be done in any order, and though the filters would 

differ, the results would be same. Usually it is computationally easier to do the filtering on 

the transform before it is backprojected. In this discussion, backprojection will be 

onto a 1D space 

Figure 2.5 : One projection direction for 2D image reconstruction 



explained first in order to make clear the errors introduced which are corrected by the 

filter. 

In 2D reconstruction all the event lines, as they are detected, are binned into 

projections (which are set by the hardware). This is done by crediting all events detected 

along a line to that line4. The final value for the line represents the sum of all the activity 

inside the object over that line. This is a 1D projection of the distribution of the tracer over 

the plane being imaged. These projection lines vary over all directions from which data is 

collected. Each set of parallel projections (varying s for some fixed 8, as shown in figure 

2.5) comprise one view of the plane. Each view is called a projection direction and is 

defined by the direction of the 1D projections. 

To reconstruct the image, the values of the 1D projection in all projection directions 

are spread back over the image. The value of one projection is credited to all points in the 

reconstruction space which lie on that line. This is the problem with backprojection, as can 

be seen in figure 2.6. The collected data is indiscriminately credited to all points across the 

image where the event may have originated, including areas where there never was any 

radioactivity.This problem is handled by applying a filter to each view of the object (each 

projection direction), as in figure 2.7. The filter adds negative values to the data where it 

was previously zero so that, during backprojection, the positive values outside the object 

from one direction will be canceled by negative values from other directions. This, of 

course, only works where projections overlap, which brings in a different problem, the 

number of projection directions. If the object is viewed from too few directions the 

reconstruction will contain artifacts from uncanceled portions of the backprojected data. 

The size of the area around the object which properly cancels out increases as the number 

4. Except in the theoretical portion of this paper, all woints, lines and planes have 
'thickness',due to the discreteness of the data and algorithms. 
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1D projections 

object with 2 sources 
of radioactivity 

unfiltered backprojec tion 

Figure 2.6 : Data collection in 3 projection directions, and unfiltered backprojection. 

The error introduced by indiscriminately crediting all points which lie on a 
projection line with the value of the projection is clearly shown. 

of projection directions increase. 

Another problem with the number of projection directions is the inadequate sampling 

of the data [Barney 1988, Kak and Slaney 19881. High frequency components are not 

sampled often enough to be correctly measured and can appear to be of a lower frequency. 

This problem is called aliasing and it also introduces artifacts into the image which can 

only be removed by better sampling. All frequencies above the Nyquist frequency (that is, 

I the highest frequency which the data collection method can correctly sample) are known to 

be incorrect and are removed by introducing a cutoff window at a frequency less than or 

equal to the Nyquist frequency. Applying a sharp cutoff to the data introduces another 

error. It is called spectral leakage and it adds error to the reconstructed image [Chesler 
I 
i and Riederer 19751. This effect is reduced by applying a function to the cutoff window so I 
I 

I that the window approaches zero smoothly. By choosing a cutoff which is less than the 
I 

Nyquist frequency the data can be smoothed so that a nicer looking image is produced, but 

1 this will cause a deterioration in the resolution and may obscure valid results. 
I 
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Figure 2.7 : Filtered backprojection. 

When a filter is used on the data before backprojection, the negative and positive 
values cancel out around the radioactive sources. Note that in this diagram, only the 
positive values have been shaded in. Accumulations of negative values do affect the 
image but would only cause cause confusion here. 

The cutoff window can be applied to the filter before the filter is convolved with the 

projection data so that the data need only be convolved with one filter rather than with both 

the filter and the cutoff window. Since convolution is a time consuming procedure, this is 

important for reducing the time necessary for image reconstruction. 

2.3.3D Image Reconstruction 

The main difference between 2D and 3D reconstruction is just the addition of the 

I extra dimension to the reconstruction process. This can be done in two ways. The first 
I 
I 

I method is to collect the data into a set of 1D projections, as for 2D reconstruction, but then 

have the parallel projections vary over a plane (2D space) instead of a line [Kinahan, 

Harrop, Rogers and Johnson 19881. A 1D projection is specified by (B,$,s,t), where (84) 

14 



I 

direction 

(%$> 1D projections 
onto a 2D space 

Figure 2.8 : 1D projections onto 2D space. 

The set of 1D projections (8=90, @=0; s, t varying) are arranged as a set of parallel 
lines on a plane ("bed of nails"), as shown in the diagram. 

defines the plane through the origin which is orthogonal to the line (€I,$), and (SJ) defines 

a point on the plane (as in figure 2.8). 8 is the angle between the line and the z axis and @ 

is the angle through the x-y plane. The line (8,$,s,t) is the line through the point (s,t) 

parallel to the line (84). The projection planes then vary over all directions (all 8 4 )  from 

which data is collected. Each projection plane is a 2D view of the object and is considered 

to be one projection direction. The filtering is done on this 2D space and the filtered ID 

projections are backprojected over the 3D reconstruction space. As with 2D, the value of 

the filtered 1D projection is credited to all points which lie on the line. This method has 

been successfully used to reconstruct 3D images. 

Prior to this thesis the second method, the Radon transform method, had not been 

applied to positron emission data. Some researchers have mentioned the method, but not 
15 



done any actual work with it. It has been applied to MRI by Shepp [I9801 and his work 

was used extensively as a basis against which this research was tested. This method differs 

from the above method in that the data is collected into 2D projections (planes) rather than 

1D projections. Each plane is defined by (8,$,p), where (€I,@) define a line through the 

origin and p is a point on that line. The plane is at point p, orthogonal to the line (84). 2D 

projections of a 3D object form the Radon transform of the 3D object. Each 2D projection 

represents the integral of the radioactivity in the object over a plane. The collected data is 

in the form of a 1D set of values associated with a stack of parallel planes (8,$ constant, p 

varying) through the object varying over all directions (8,$) (Note that this is not just the 

directions from which the tornograph collects data, but &l directions), as is diagrammed in 

figure 2.9. The projection direction is defined by the line (8,$) through the origin and the 

value of each plane is a point @) on the line. The data is filtered along the line (ID), then 

backprojected. Since each value is associated with a plane rather than a line, the value is 

backprojected over that plane. All points in the image which lie on the plane are credited 

with the value of the plane. 

The advantage of using Radon's method is expected to be in the fact that the filtering 

is done over one dimension. Filtering in object space involves convolution, which is very 

time consuming and reducing this should reduce the reconstruction time considerably. 

Another possible advantage is statistical in nature. With the Radon transform, all event 

lines occurring in a plane are summed to that plane, regardless of direction (there is no loss 

of information since any individual event gets credited to many planes). The 1D 

projections method splits these events into separate projection directions, which removes 

any smoothing effects obtained by summing the events. 



I 

(e,$> 2D projections 
onto a 1D space 

Figure 2.9 : 2D projections onto a 1D space. 

One projection direction (0=90, $=0; varying s), that is, one 'stack' of Radon planes. 

The error introduced by backprojection is the same as in 2D reconstruction, as is the solu- 

tion. The effects of insufficient projection directions are also the same. A complete dis- 

cussion of the theory of 3D reconstruction follows in the next chapter along with a proof of 

the equivalence of the two methods just described. 

2.4. Applications of PET and PVI 

The final image produced by PET is of interest in &edical research and diagnosis 

I because it is one of the few methods available for relatively non-invasive viewing of a 

living organ. Where modalities such as MRI, ultrasound and CAT show physical 

i structure, and EEG and MEG show electrical activity, PET and SPECT can show 

metabolism. One particular application is the study of Alzheimer's disease [McGeer, 
17 



Kamo, Harrop, et a1 19861, a condition where part of the brain stops functioning. 

Diagnosing this disease can be difficult since the symptoms can look like the symptoms of 

other problems such as depression, or other diseases such as Pick's disease. This study 

uses a FDG (flouro-deoxyglucose) tracer. FDG is basically a radioactive form of glucose. 

When it is injected into the body, the tracer goes to wherever glucose is needed. Since 

glucose is the sole form of nutrition for brain cells, some of it will go to the brain and be 

caught up in brain metabolism At this point the difference between the tracer and normal 

glucose becomes apparent, the tracer does not undergo complete glucose metabolism, it 

passes from the bloodstream into the cell and remains there without getting used by the cell 

for energy. Approximately 40 minutes after the FDG has been injected, most glucose has 

been taken up by the cells and is relatively stationary. An image of this tracer distribution 

shows which parts of the brain are active (and are therefore using glucose) and which parts 

aren't. Since the areas of the brain effected by Alzheimer's are different than those effected 

by Pick's, the PET image is capable of differentiating the two diseases [Kamo, et a1 19871. 



3. Theory of 3D Image Reconstruction 

The two methods of 3D image reconstruction which were described in the previous 

chapter can be mathematically explained using Fourier transforms [Brooks and Di Chiro 

19761; let f(x, y,x) be the original distribution of radioactivity with some choice of origin 0 

and rectangular Cartesian coordinate axes Ox, Oy, Oz. Let F(s,t,u) be the 3D Fourier 

transform off,  then by the definition of Fourier transform, 

The origin of F~urier space is taken at O and the s,t,u axes in &p, direction ef the 

x,y,z axes respectively. Note that the Fourier transform is independent of the directions of 

the axes of the 3D space and is only dependent on the origin, that is, with fixed origin, it is 

a function of position in space, independent of choice of the axes. 

The function f is supposed to be a function of position, that is, determined at each 

point in space with a value not dependent on the rectangular coordinate system chosen to 

specify the point. F(s,t,u), the Fourier transform off ,  will be a function of position (with 

I fixed origin) if it can be shown that, given (x,y,z), (s,t,u), the value of 

I f(x,y,z)e-2ni(xs+yt+zu) depends only on the positions (in the object and superimposed 

Fourier space) of (x,y,z), (s,t,u) and the origin (0,0,0). The required result is true since 

xs+yt+zu is the scalar product of (x,y,z) with (s,t,u) and depends only on the magnitudes of 
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the vectors (x,y,z) and (s,t,u) (the directed lines from the origin to (x,y,z) and (s,t,u), 

respectively) and the cosine of the angle between these two lines. The lengths of the lines 

and the cosine of the angle between them only depend of the positions of the points (x,y,z), 

(s,t,u) and the origin, and not on the coordinate system. 

Since this is the case, given any point (s,t,u) in Fourier space, axes (x',yt,z'), (s',tt,u') 

can be chosen such that this point lies in the plane u'=O (there are many possible choices of 

axes, one of which is shown in figure 3.1). If f is the object function and F' is its Fourier 

transform referred to the new axes, then, for corresponding points (x,y,z), (x',yt,z') and 

(s,t,u), (st,t',u'), f(x,y,z) = f(xt,y',z') and F(s,t,u) = F'(s',tt,u'). Thus, for the given point, the 

following is true: 

dz' 

F(s,t,u) - the 3D Fourier transform F(s;t,u) = F'(s',tV,u') 
of f(x,y,z) 

Figure 3.1 : 1D projection onto a u' = 0 plane. 



It will be noticed that since u'=O the exponent is no longer dependent on z'. Hence, for all 

points for which u'=O, 

F(s,t,u) = (If (x',y',z')dz') e -2ai(x's1+y't') Y' . 

The term Jf'(x',y',z')dz' is one 1D projection of the function f (xt,y',z') onto the x'-y' 

plane. Recall from the previous chapter that this is one possible form of the measured 

data. This means that the value of F(s,t,u) can be found by performing a 2D Fourier trans- 

form with respect to x', y' on the 1D projection data (Jf(x',y',z)dz'). Thus, given any 
L 

projection direction, the value of F(s,t,u) can be determined at all points on the plane 

through the origin perpendicular to that direction. If the projection directions define ID 
I 

projections which cover the entire object, then the 2D Fourier transform of all the projec- 

tion planes will completely specify F(s,t,u). This is just the 'Fourier slice theorem'. Given 

the complete specification of F(s,t,u) for all (s,t,u), an inverse Fourier transform will give 

the original function f(x,y,z), which was the 3D distribution of radioactivity in the object, 

In order for the projection planes (planes perpendicular to the sets of parallel 1D projec- 

tions) to cover the entire object, a complete set of projection directions over a half great 

circle around the object is required [Orlov 1975(a)]. Since the detectors form a ring 

around the object, the requirement is satisfied. 

1 Suppose, in the above example, given the point (s,t,u), axes (x",yW,z"), (s",t",u") are 

chosen so that the point lies on the line uW=O, t"=O (figure 3.2). Then, with notation as 

above, for any point (s,t,u) on the line u"=t"=O through the origin, 



that is, 

The term ~Jft(x",y",z")dy"dz" is a 2D projection of the function ft(x",y",z") onto the 

x" axis at the point (xW,O,O). This corresponds to the other possible format for assembling 

the measured data (the Radon transform of the distribution of radioactivity). The equation 

shows that the Fourier transform along the x" axis is obtainable by applying a ID Fourier 

transform to the set of 2D projections (constant 84 ,  varying p) at points along the line 8,@. 

If all lines through the origin are considered, F(s,t,u) is known for all s,t,u, and the original 

function can be found by applying the inverse Fourier transform. To specify the Fourier 

transform at all points, the projection directions must cover a complete hemisphere [Orlov 

1975(a)! (the implementation of this req~irement is considered in chapter 4). 

rotate axes - 
F(s,t,u) - the 3D Fourier transform F(sJ,u) = F't(~'t,t 't,~'t) 

of f(x,y,z) 
Figure 3.2 : 2D projection onto the t" = u" = 0 line. 



In most actual implementations of the above two reconstruction methods, the 

required set of Fourier transforms on the projections, and the 3D inverse transform, are not 

actually calculated. Filtering and backprojection are equivalent, as the following shows 

[Shepp 19801, and are used instead. 

Using the definition of inverse Fourier transform, 

f(x,y,z) = J J J ~ J ( S ~ ~ ~ ~ )  e 2xi(xs+yt+zu) dx d Y &  

let f(x,y,z) = g (0,@,p) and F(s,t,u) G(h,p,p) where (x,y,z) is a point in object space rasing 

Cartesian coordinates, (s,t,u) is the same point in Fourier space, also in Cartesian coordi- 

nates, and (0,$,p), (X,p,p) are the same point in polar coordinates in object md Fourier 

space respectively. Then 

s = p sin h cos p, t = p sin h sin p and u = p cos h . 

Equation A becomes 



Let r (p) be the Radon transform for the line through the origin for given values of 
LP 

h and p and let % (p) be the 1D Fourier transform for the line through the origin for 
C1 

given values of h,p. Then, 

Rhp(p) = G(Lp,p) all p. 

Hence B becomes 

2nip(x sin). cosP + y sin1 + zcosh) $dp] dh dy. . (C) f(xYy94 = ;=o (=o [ I: RhJp) e 

From our definition of r (p), r (p) = JI", %Jp) e2nipP dp ).YP ).YW 



For given x, y, z,h, p let 

p = x sin h cos p. + y sin h sin p + z cos h . 

Then the bracketed integral in C equals 

Thus 

The partial second derivative is the filter for the measured data am3 the double 

integral is the backprojection operation. The computer implementation of the above 

equation is discussed in section 4.2. 

The theoretical work shows what may be one of the main advantages of using Radon 

transforms, namely that the 1D Fourier transform of all the projection lines is required in- 

stead of a 2D Fourier transform of all the projection planes. When put into the filtering 

and backprojection form, the 2D Fourier transform becomes a 2D convolution, which 

involves considerably more operations than the 1D convolution which arises from the ID 

Fourier transform. 



On the other hand, and this might be considered a disadvantage of the Radon meth- 

od, PVI does not measure a 2D projection directly. It does not, of course, exactly measure 

1D projections either, but the data is almost in that form and it requires much less handling 

to get the data into 1D projections than into 2D projections. The exact method used to ob- 

tain the Radon transform is discussed in the next chapter along with the actual implementa- 

tion used to do the filtering and backprojection. 



4. Implementation 

In chapter 3 it was shown that, in theory, Radon transforms are a valid method for 

PVI image reconstruction. The next step in this feasibility study is to do a computer 

implementation of the theory in a discretized form, and show that it can be used to produce 

usable images. To implement and test the theory, it will be assumed that the data is 

collected with a complete sphere of detectors. This arrangement is necessary because the 

theory assumes that all projection directions of the Radon transform can be weighted 

equally in image reconstruction. What this means is that the values of the 2D projections 

over all directions should depend only on the amount of radioactivity in the projection and 

not on any aspect of the detector arrangement. If a cylindrical arrangement of detectors 

were used, this requirement would not be easily satisfied [Orlov 1975(b)] and some non- 

trivial corrections would have to be made during reconstruction. Although any final form 

of a reconstruction method will have to work on data coiiected by some form of a detector 

cylinder (the only practical arrangement), it was considered appropriate for this study to 

just test the discretized form of the theory, without correction for detector arrangement, 

and decide from these results if continued work on the Radon method is justified. Since 

the data used to test the reconstruction algorithm is generated by software, there is no 

difficulty in making the tests with a spherical detector arrangement. 

Some consideration has been given to possible solutions for the problem of 

implementing Radon reconstruction with the detector ring, and it is felt that methods the 

same as, or similar to, those used to correct this problem with 1D projections [Kinahan and 

Rogers 19891 could be used on 2D projections. 



When testing the discrete form of the Radon theory, the first implementation prob- 

lem is in getting the Radon transform from the PVI data. Recall from chapter 2 that each 

event is specified by the line on which it occurred. These event lines have to be put into 

2D projections. The second problem is, obviously enough, the reconstruction of the image. 

The following two sections present the detailed solutions to the problems of getting the 

Radon transform and of performing the filtering and backprojection operations. 

4.1. Getting the Radon Transform 

The Radon transform must be defined for projection directions over an entire hemi- 

sphere. The theoretical reasons for this were presented in chapter 3, the practical implica- 

tion is that the 2D projections along a line must be known for all lines through a 3D object. 

In this work the Radon transform is defined as r(8,@,p) where 0O.s 8,@ < 180' and -20 I p 

5 20 (where the distance is measured in cm). This defines the transform over the entire 

area inside a 20 cm radius sphere of detectors, a size which is appropriate for a head 

tomograph. Each 8,@ defines a line through the origin and p is the directed distance from 

the origin (in cm) of a point along that line. The value of r(B,@,p) is the integral of all m- 

dioactivity over the plane defined by that point. 

In order to obtain a representation of the Radon transform from real PVI data, each 

event line must be credited to all members of a set of predefined planes in which it can be 

considered to lie. Each of these planes is considered to be one point in the Radon trans- 

form. When all the event lines have been credited to the set of planes, each plane will have 

a value which represents the integral of the radioactivity in the plane. 
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The first decision which had to be made in this section, was what the set of pre- 

defined planes would look like. It was decided to vary 8 over 180' and $ over 180•‹, defin- 

ing the hemisphere of projection directions, and to sample each projection from -20 to 20 

cm. This covers the entire 3D area over which the Radon transform is non-zero (it is 

assumed that the object fits inside the 20 cm radius sphere of detectors). Testing was done 

with the angular sampling at every 5' or every 2' (0:175 by 5 or 0:178 by 2) and with pro- 

jection sampling at every 5 mm or 2 rnm. 

The next decision to be made was how to credit event lines to the Radon planes, that 

is, how to decide when a line was to be considered close enough to a plane to be consid- 

ered to lie in it (recall that all planes have thickness). It is desirable to maintain data con- 

sistency along a stack of planes (along one projection direction). This means that a point 

source of radioactivity should appear equally bright no matter where it is located in a stack 

of planes. Essentially this is the same problem as was mentioned in chapter 2, the partid 

volume effect present in multi-slice tomographs. Since the set of Radon planes is not de- 

fmed by the hardware (unlike the slices imaged with a 2D tomograph) it is possible to 

choose a method of crediting events to planes which will avoid this. 

If the criterion for crediting an event line to a plane were that the line must entirely 

lie within the plane, then the partial volume effect would be a problem just as with 2D to- 

mographs, since this is how events are credited to slices in a 2D tomograph. To avoid its 

effect, it was decided to credit a plane with any event line provided it was such that its 

midpoint was close enough to the centre of the plane, and the angle (a) between the event 

line and the plane was less than some maximum. For this work the distance of the centre 

of the line from the centre of the plane is at most 1 mm and a is at most O.lO, where the 
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planes were defined as being 2 mm apart, so any event line which has a within 0. lo of my 

plane in some stack will be within 1 mm of one and only one plane in that stack. The fol- 

lowing inequality was used to test for a , 

where (xl,yl z1)(x2,y2,?) are the endpoints of the event line and r is equal to cbc 

(x2-xl) sin q cos Q + (y2-yl) sin 8 sin Q + ( z p l )  cos 0 

r r r 

length of the event line ( r = [(XZ-~1)2+(y2-yl)2+(Z2-zl)2]1/2). This inequality uses the 

I cos (90 - a )  

scalar product of the direction cosines of the event line and of the line (84) (normal. of cbe 

plane) to find the cosine of the angle between them. If the angle is between 90-a and 

90+a, then the event line is considered to lie in a plane with the norrnal(8,$). 

Since the decision about which planes get credited with which event lines is only de- 

pendent on the 'nearness' of an event line to a plane, an event line may get credited to a 

group of adjacent planes. Because the criterion used to test if a line belongs in a plane is 

'nearness', the result depends only on the relative positions of the line and the plane. It 

should be observed that an event is not credited to some fixed number of planes. If that 

were the case, then the number of events credited to any one plane would be dependent on 

the number of planes nearby, which would result in inconsistent data sampling. This is due 

to the fact that it is not possible to uniformly tessellate a solid sphere. We are simulating a 
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sampling of Radon space, so it is important to ensure that the value obtained for the sample 

at a point is independent of the presence or absence of other planes in the sampling set. 

The most obvious method of finding all the planes that an event line should be 

credited to, is to take the event line and check it against the (0,@) of all stacks of parallel 

planes. If the direction of line is within a of the plane through the origin, then it will be 

within 1 mm of some plane in that stack. Clearly, this method would work, but it is very 

time consuming. A method was found where, given a line and @ for a stack of planes, it 

was possible to find directly all values of 0 for which planes might be credited by the line. 

Although this did help speed up the running time of the program considerably, getting the 

Radon transform was still a time consuming process. At this point in the feasibility study 

it was considered inappropriate to spend a lot of time looking for an optimal method to 

generate the Radon transform once a method was found which was reasonably satisfactory. 

Nevertheless, some effort was put into the design of a faster method. A lookup table was 

generated so that, given an event line, it was possible to look up all the planes in which that 

line lay. Such a table need only be generated once. It can then be used on all data sets. To 

keep the table down to a manageable size, the directions of all event lines were rounded to 

the nearest degree in 0 and @, and, to reduce it still further, the algorithm made use of the 

following two facts; 

1 If an event line is rotated round the z axis through an angle which is an integer 
) 

number of degrees, then the 0's and p's of the Radon planes associated with the line will se- 

main the same; the @'s will vary by the amount of rotation. 



2 If an event line is translated through some distance without change of direction, 

then the 0's and @'s of the Radon planes will remain the same and the p's will vary by some 

amount less than or equal to the amount of translation. 

It follows from these facts that the 0 of an event line is all that is necessary to find the stack 

of Radon planes appropriate for any event lines; given 0 of an event line, look up the 

Radon planes for the event (0,0,0) and then rotate the planes by @ of the event line and &- 

rectly calculate p. This method gives considerable improvement in computation time over 

directly finding all planes for every event line, but the rounding of the event line directions 

to the nearest degree has an effect on the number of events credited to planes. 

This problem is caused by the uneven tessellation of the sphere. Radon planes which 

have normals with 0 near 0" or 180" (called the polar planes) are more crowded, so the 

area over which events are binned to a polar plane is much smaller than the area from 

which events are binned to an equatorial plane (0 of the normal near 90"). The effect is 

that fewer events get credited to a polar plane than to an equatorial plane even when there 

is actually the same amount of radiation in both planes. The number of event lines credited 

to the planes varies as a function of sin 0 and a (the maximum permitted angle between the 

event line and a containing plane). It would be both necessary and possible to correct for 

this if the table look up method should be implemented. Since it seems likely that hard- 

ware would be used to implement some, if not all, of the Radon reconstruction work, no 

further work has been done in pursuing the relative advantages and disadvantages of these 



two methods, now that they have been shown to be feasible. 

4.2. Filtering 

Once the data has been put into the Radon transform, the next step is to filter it. The 

data could be backprojected before it is filtered (using a different filter), with the same re- 

sults, but it is easier to implement the filter on the transform rather than on the image. 

The theoretical form for reconstruction from the Radon transform, as derived in 

chapter 3 is 

f(x,y,z) = ~r [ rl'(B,$.p) sin 0 dB d$ . 
47c 0 

The simplest way to implement the inverse transform on real data is to sample the 

object at discrete intervals and apply the 2nd difference filter (approximation to znd 
derivative). This is the approach used by Shepp [1980]. His discrete formula is 

where n and rn are the number of projection directions in $ and 0 respectively. The z " ~  
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derivative filter only accounts for the errors introduced by backprojection since the theoret- 

ical form of the transform uses infinitely many projection directions and infinitely many 

samples along each direction, that is, continuous projection directions and continuous 

sampling along each direction. When the formula is discretized on real data, the filter must 

be changed to handle the new errors caused by finite sampling. These changes include the 

introduction of a cutoff window to remove high frequency noise caused by inadequate 

sampling and a raised cosine function to smooth the cutoff window and remove statistical 

noise. The 2nd difference filter doesn't do either of these operations and Shepp got poor 

images. He concluded that his reconstructions could not be used in a clinical setting and, 

since this thesis is concerned with the possibility of eventually using Radon transforms in 

clinical settings, Shepp's work has been repeated to verify his results and to compare them 

with images obtained using the filter being suggested. 

The filter designed here for use with Radon transforms [Kinahan 19881 was 

originally developed in Fourier space since the components of the filter are easier to under- 

stand in that context. The first part of the filter is a cutoff window. This removes all fre- 

quencies above the Nyquist frequency , which was determined as follows; the function is 

considered as sampled every 1 unit of length, therefore the shortest wavelength that is cor- 

rectly sample is 2 units, and the highest frequency correctly measured is 112 per unit. This 

is the Nyquist frequency (f,). It is possible to remove more frequencies by using a smaller 

cutoff which would take out more statistical noise and give a nicer looking image, but 

would degrade the resolution . For the testing in this work, f, was taken as 0.5 per unit 

length. The second part of the filter is a raised cosine function. This smooths the data, re- 

moving statistical variations (provided that the statistical noise is within some reasonable 

limit) and provides a smooth approach to the cutoff window. 



The exact form of the filter is derived as follows prooks and Di Chiro 1976, Chesler 

and Riederer 19751. Given the reconstruction formula: 

y ,  = +P [ rt'(O,$,p) sin o dm 
4n: 0 

where f(x,y,z) is the original function; r(B,$,p) is the known Radon transform of f(x,y,z) 

and r"(B,$,p) is the (partial) second derivative of r(B,$,p) with respect to pp, we txy to 

determine a 1D convolution filter h such that r" = r*h (where ' * ' denotes convolution) that 

is, such that 

From the definition of Fourier transform and differentiation under the integral sign, it 

can be shown that, for any integer n 2 0, 

where F denotes 1D Fourier transform and X(f) = F[x(p)]. 

In particular, x"(p) = F - I  [-4n:T ~ ( f ) ] .  Replacing x" (p) with rW(B,$,p) gives 
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where [-4n2f2] is the Fourier transform of h(p). In this form, the need for the cutoff 

window can clearly be seen. For large values of f  (that is, the high frequencies which are 

known to be incorrect), the value of -4n2f2 will be large. This will amplify the high 

frequency noise and introduce error into the reconstruction. Adding a cutoff window at the 

Nyquist frequency suppresses this noise amplification. However, the sharp edge 

introduced by the window function in frequency space, will bring a ringing effect into the 

data in object space [Barney 1988, Chesler and Riederer 19751, unless the window is made 

to approach zero smoothly. 

The smoothed version of r"(p) is given by F -'[-4n2f2 W(f)] * r (8,@,p). The window 

function (W(f)) chosen for this work is the Hamming window, which has a cutoff at the 

Nyquist frequency (f,) and uses a raised cosine function to smooth the cutoff. It is given 

by 



1 7cf f W(f) =-[ 1 + cos(-)] rect(-) , where rect (x) = { 1 if 1x1 ,< 112 
2 fn 2fn 0 otherwise . 

cutoff window 1, 
raised cosine funcion 

FIgure 4.1: the Hamming window 

So the 1D Radon convolution filter (called the Hamming filter for the remai.nder of this 

paper) in frequency space is: 

HO = -2rr2f2 [I + cos(!ff)] rect (&) . 
n 

It was decided to reconstruct the data in object space, so chis filter (which is in 

I Fourier space) must be inverse transformed. The final form is 

f* 
2 2 2  27c fn p -1 

where k(p) =T~~~(27cfnp) + sin(2ltf,p) . 
P 2rr3p3 



The details of the inverse transform is given in Appendix A, and the method of 

calculation of k(0) is given in Appendix B. 

This filter is convolved with the 2D projection in each projection direction and the results 

are backprojected over a 1 OOx lOOx 100 image space. 

4.3. Backprojection 

The data for each point in the Radon transform is collected from a plane through the 

object and therefore must be backprojected back over that plane. This is accomplished by 

crediting each voxel in the image with a contribution from each stack of Radon planes. 

This method is called voxel-driven backprojection. To avoid interpolating between planes 

for every voxel, the values along a projection direction are interpolated before they are 

backprojected. Once backprojection is done the reconstruction process is complete, 



5. Testing 

The main work in testing the Radon transform method is divided into two sections. 

The first section is the testing of the algorithm which places the PVI data into the Radon 

planes and the second is the testing of the reconstruction filters. The primary consideration 

during testing was to ascertain the correctness of the algorithms developed, not to show 

that they were the most efficient possible. It would be premature to do any fine tuning 

before the feasibility of Radon reconstruction in clinical work has been shown. 

5.1. Getting the Radon Transform 

To test this portion of the work, simulation data was acquired from a Monte Cads 

simulation program (PHANTOM). This program simulates the detection of events from 

some radioactive object by a tomograph with some arrangement of detectors. It is possible 

to define any detector configuration and any phantom (the radioactive object) over a wide 

range of possibilities. Although the program is capable of simulating scatter and attenua- 

tion, these were not necessary for this thesis. In order to test the Radon reconstruction 

method properly, only those problems which the reconstruction method is expected to han- 

dle should exist in the data, namely statistical noise and inadequate sampling. 

PHANTOM was used to produce event lines for a centred, 10 cm radius sphere of 

uniform radioactivity inside a 20 cm radius sphere of detectors. Three million events were 

collected, all of which were 'perfect' (a 'perfect' event is one which did not scatter or 



attenuate). The molecule which emitted the positron was exactly on the event line, and the 

detectors recorded the event perfectly. These events were run through two programs; 

DIRECT which directly finds all planes in which each event line lies, and TABLE which 

uses a look up table to find which planes are credited with an event. In both programs 

36x36~8 1 Radon planes were used; 36x36 projection directions (0: 175 by 5' in 0 and $) 

and 8 1 samples along a projection (-20:20 by 0.5 cm in p). The Radon transform of the 

uniformly radioactive sphere looks like a parabola along each projection direction (the 

areas of the intersections of a stack of parallel planes with a sphere, plotted against the 

position of the intersection of the plane with the corresponding direction line, is a parabolic 

function). Only three million events were used for this test, so the results had some 

statistical variation, but both programs produced a parabola along each projection 

direction. The results of the two programs were not identical, due to the sin 0 and a 

factors from the extra binning in TABLE where each event is rounded to the nearest degree 

in 8 and $ in order to look up ihe Radon planes in the table. 

The result of DIRECT was fbrther tested by running the reconstruction program on 

it; the reconstruction showed a centred sphere of uniform activity (see figures 5.18~5.2) as 

desired. 



Figure 5.1: Reconstruction of a centred sphere of uniform radioactivity with 3 
million events using the 2nd difference filter. The slice is taken at the z=0 plane; the 
line is taken along the x axis. 
Due to the requirements of the image display routines, all reconstructed images were 
scaled to a maximum value of 125, so the plots of lines through the images show only 
relative, not absolute, values. Also, the plotted values were rounded to the nearest 5,  

Figure 5.2: Reconstruction of the centred sphere with 3 million events using h e  
Hamming filter. The slice is taken at the z=0 plane; the line is taken along the x axis 



5.2. Filtered Backprojection 

The spherical shape of the phantom is particularly suitable for testing the effects of 

statistical noise. Because the Radon transform along any projection direction is a parabola, 

and the 2nd difference of a parabolic function is the same as the 2nd derivative, and is 

constant (which means the difference filter is exactly correct for this function), the 

reconstruction of the sphere using the 2" difference filter is not affected by inadequate 

sampling. Since the PHANTOM data did not contain scatter or attenuation, the 

reconstructed images will only show the effects of the smoothing function (raised cosine) 

of the Hamming filter. Three million events are not sufficient to get a good image of any 

object much more complicated than a simple geometric shape, like a sphere, but the image 

does show very clearly statistical noise which is what is required for this test. Figure 5.1 

shows a reccnstr~ctiox wit!! the 2nd difference fi!ter. There is considerable noise in the 

image (differentiation and the 2" difference function actually enhance noise), but the 

general shape is clear. The Hamming filter derived in the last chapter was used to 

reconstruct figure 5.2. The image is much smoother. 

To test the sampling problem in the reconstruction, a program, PERFECT was 

written which generates perfect Radon transforms for any arrangement of generalized 

ellipsoids, which represent solid areas of uniform activity, The term 'perfect Radon 

transform' means that the program calculates the exact areas of intersection of the 

predefined Radon planes with the ellipsoids. The value of the Radon plane is exact, but 

the transform is sampled at a finite number of points. This means the data has no statistical 

noise and no attenuation or scatter. The only problem which could cause artifacts in the 



final image is the inadequate sampling of the 3D distribution of radioactivity (the 

arrangement of ellipsoids). The exact formula for the calculation of area of intersection of 

an ellipsoid with a plane was taken directly from Shepp [I9801 after its correctness had 

been verified. 

The PERFECT program was first used to calculate the Radon transform for a single, 

centred ellipsoid (semiaxes a = 4 cm, b = 2 cm and c = 3 cm), with the axes aligned with 

the system co-ordinate axes. Two different sets of predefined planes were used as the 

sampling points, one had 36x36~201 points (0:175 by 5' in 8 and $; -20:20 by 0.2 cm in 

p), the other had 90x90~201 points (0: 178 by 2' in 8 and $; same in p). Each of these two 

sets were reconstructed twice, once with the 2nd difference filter and once with the 

Hamming filter. The images of these reconstructions, shown in figures 5.3 to 5.6, are from 

a slice through the centre (z = O), the line used in the plot is the y axis. 

The first reconstructed image (figure 5.3) shows clearly, even with this single 

ellipsoid, the reconstruction artifacts that Shepp found with his multiple ellipsoid phantom. 

The effect of using the cutoff at the Nyquist frequency and some smoothing effects are 

shown in figure 5.4. The star-like effects are still very visible but the noise around the 

ellipsoid has been removed. In particular the two very low spots directly above and below 

the ellipsoid are gone. Figure 5.5 shows the effect of using more projection directions with 

the 2nd difference filter, the star shaped artifacts are almost entirely gone, but the spectral 

leakage artifacts can still be seen. There are no leakage artifacts in the figure 5.6, 

reconstructed with the Hamming filter and the 90x90 projection directions, further the star 

artifacts are much reduced. The artifacts which are still present in figure 5.6 would likely 

be acceptable for clinical applications and if better reconstructions are required, they can 



be obtained by using a still finer sampling of the function. 

The lack of a correct discretized form of the filter in Shepp's MRI work generated a 

lot of artifacts in his reconstructions. Since the amplitudes of the artifacts are related to the 

density of the object which caused them, the high density objects in Shepp's phantom 

caused artifacts with high values throughout his images. In clinical settings these large 

errors could not be tolerated because they cannot be distinguished from real information. 

Using a corrected filter, the Hamming filter, it would appear that we are able to remove 

these errors. 

In order to demonstrate further that the Hamming filter can take out all serious 

imaging artifacts it is necessary to reconstruct a more complicated phantom. To do this, a 

reduced version of Shepp's head phantom was used, namely the following (lengths in mrn). 

Head Part ,-. 1 chipsoid centre Semiaxes Length and Orientation Grey Scak 

1 skull (0,070) (72,96,13) (1 ,o,O)(o, l,o)(o,o, 1) 2.0 

2. nose (0,114,-20) (13,34,17) (1,0,0)(0,55,-84)(0,84,55) 1.5 

7. right ventricle (22,0,38) (1 1,3 1,25) (95,-3 1,0)(31,95,0)(0,0,1) -0.02 

The grey scale values correspond to hydrogen density values in Shepp's work and to 



levels of radioactivity in ours. Where the ellipsoids overlap, the grey scale values are 

summed. These seven ellipsoids were considered enough to test the filter properly without 

complicating the issue too much. 

Two reconstructions were done on this data, one with 36x36~201 and the 2nd 

difference filter (figure 5.7), and the other with 90x90~201 and the Hamming filter (figure 

5.8). Both figures show the reconstruction through the plane at z = 3.8 cm. The ventricles 

and tumors are in this plane, but the nose is not. Figure 5.7 shows how the effect of the 

nose makes itself felt throughout the entire object, the ventricles can be seen but the 

artifacts are as big or bigger than the real objects. The effects of the nose have been almost 

completely eliminated in figure 5.8, but the tumors are still obscured. The loss of the 

tumors is due to the lack of contrast between them and their background (0.3%). The data 

must be scaled in order to display it and these small differences are lost. If an extremely 

accurate image is displayed, the tumors do show up. However, in clinical work, the regions 

of interest tend to be larger, and have greater contrast, so extremely accurate images are 

unnecessary. 



Figure 5.3 : Single ellipsoid, 36x36 with 2nd difference fdter. 
The reconstructed slice is taken on the x-y plane, the line is the first half of the values 
along the Y axis (since the image is symmetric, no information is missing). 

Figure 5.4 : Single ellipsoid, 36x36 with the Hamming filter. 
The plane and slice are the same as in figure 5.3. Note that, although there is still 
significant noise at the edges, the Hamming filter has removed much of it from around 
the ellipsoid. 
The slices shown of all single ellipsoid reconstructions have been displayed with just 
3 grey scale values to bring out the artifacts; negative values are black, zero values are 
grey and positive values are white. 
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Figure 5.5: Single ellipsoid, reconstructed with 90x90~201 sampling points and 
the 2nd difference filter. 
The outside of the ellipsoid is much smoother, due to the increased sampling, but 
the area near its edge is noisy. 

Figure 5.6: Reconstruction of the single ellipsoid with 90x90~201 sampling points 
and the Hamming filter. 



Figure 5.7: Reconstruction of 7 ellipsoids from Shepp's head phantom using 
36x36~201 sampling points. The reconstructed plane is at z = 3.8 cm, which 
contains the ventricles and the tumors, but not the nose. 
Almost all of the artifacts in this image are caused by the nose and its large grey 
scale value. 

Figure 5.8: 7 ellipsoids from Shepp's head phantom, reconstructed with , 

90x90~201 sampling pokts, the reconstructed plane is at z = 3.8 cm. 
Both the reconstructions of 7 ellipsoids were displayed with a shifted grey scale 
which emphasized small differences at the top 10% of the image values. 



6. Discussion 

The aim of this thesis was to test the feasibility of using Radon transforms for fully 

3D PVI image reconstruction. The concepts of image reconstruction have been discussed 

and the underlying theory presented. The bulk of the work has been first, to make sure that 

PVI data can be converted satisfactorily into Radon transform form and second, to use a 

method of reconstruction based on the transform to reconstruct an image which is good 

enough to be used in a clinical setting. Both of these targets have been satisfactorily 

obtained for a special case of detector arrangement (spherical detectors). 

A solution to the first problem was pursued until it was determined. that a method did 

exist which would produce a satisfactory Radon transform. In fact, two methods were 

found which may be used to convert the data. Continued work in fine tuning these 

methods is reserved until the extension to this work is done and a method is developed for 

reconstruction from data collected by cylindrical detectors. There is little use in putting 

effort toward perfecting any particular portion of the Radon redonstruction work until the 

whole method is known to be feasible. 

A full and complete solution to the second problem has been defined, encoded, tested 

and presented in the thesis. The findings of this work is that, at this stage it would appear 

to be feasible to use Radon transforms for fully 3D PVI reconstruction. There could also 

be an application of this technique, with the Hamming filter, in MR15. 

5. MRI is capable of measuring the Radon transform directly and need not translate the 
measured data before reconstruction. 
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Due to the spherical detector arrangement, no final statement can be made as to 

whether or not this method could be used in a real tomograph in a clinical setting. In order 

to determine this, it will be necessary to do the next step, which is to attempt to solve the 

problem of imaging with a cylindrical arrangement of detectors. Some thought has been 

given to this step and it is considered that the solution used in 1D projection reconstruction 

will also be applicable to the 2D projection method. The method is fully described in 

Kinahan and Rogers [1989]. The basic idea is to do two reconstructions, the first pass uses 

only the 1D projections which are not affected by the detector arrangement, that is, only 

those events which are perpendicular to the axial direction of the detector surface. A 

reconstruction is performed on this data and a low statistics image is produced, this 

information is then used with all detected events to do a second, high statistics image. This 

method would also offer some advantages for scatter and attenuation correction, since the 

low statistics image could be used to find where scatter and attenuation would have 

occurred and use this to help to correct all the data for the second pass reconstruction. This 

is particularly important because the potential of PVI imaging depends heavily on the 

success of the scatter correction technique. It is realized that, to use this method with 2D 

projections there will be a translation in dimension and there would be some theoretical 

difficulty with using the restricted data set for the frst pass reconstruction. An extension 

to the thesis, to include the cylindrical detector arrangement, would be far from trivial, but, 

due to the good results obtained so far, it seems that it would be well worthwhile to pursue 

such an extended feasibility study. 
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APPENDIX A 

Inverse Fourier transform of the Hamming filter 

From page 37, h is given by 

= -27c2 (F -' [f2 rect (4 )] * F -'[I. + cos (p)]) 
n n 

Now 



*(PI = fn f2 (cos (2nfp) + i sin ( 9 d f  = 2 f2 cos (216~1) df - fn 
0 

that is, 

and h is given by 



APPENDIX B 

Calculation of k(0) 

From Appendix A, k is given by 

Using the expansion formula for the sine and cosine functions, that is, 

sinx = x-x%!+x5/5!-xx!-. . .  

2 4 6 
COS X = 1 - X h! + X 14! - X 16! + ,.. 9 

this gives 



Ignoring terms with p2 or higher powers of p 

= 2J3 f: + (terms with p2 and higher order) 

and thus k(0) = 2h fn3 . 

It is also possible to calculate k(0) using ~ '~Gpi t a l ' s  rule. 



APPENDIX C 

Source code 



PROGRAM GENTAB 

Generates a lookup tab le  fo r  a limited number of event l ines.  
The events put i n to  the  tab le  are those that have PHI=O and 
pass through t h e  origin. The table is accessed by THFTA of the  
event l i n e  and contains t he  angle of the planes in which t h e  
event line lies. The planes are specified by the  normal t o  
t h e  plane. 

INTM;ER*4 eTHETA, rTHE, rPHI, TABLE(O:179,0:220), I, COUNT 
REAL*8 ex, e Z ,  ROOT, ALPHA, HIALPHA, TEMP, FPEFF, rlTiEI'A, PSI 
LOGICAI;*l DONE 

eTHISTA - theta of the  event l i n e  
ex - X dimension of t he  event l i ne  
e Z  - Z dimension of the event l i ne  - the ta  of t he  Radon plane REAL*4 
rTHE - the ta  of the  Radon plane INTEGER*4 
rPHI - phi of t h e  Radon plane 

- 
WRITE ( * , 5 )  a l ~ h a :  
READ (*#tj).c~~~Hk 
FORMAT (A$) 
READ (cW?HA,*) ALPHA ! change t o  r ea l  number 
WRITE ( * , 6 )  ALPHA 
FORMAT (1X,F6.3) 

mALPHA = COSD(9O - ALPHA) 
DO eTHFTA=O, 179 !  loo^' throuah event l ines  

, , 
1 = 0  
DONE = .FALSE. 
DO sPKI=Q, 179 ! loop 'sough ail Radon PHIf s 

ROOT = SQRT((eX*COSD(FUIAT(rPHI)))**2 + eZ**2) 
I F  (ROOT .EQ. 0) THEN ! math from p.77 

YJXETA = 90 ! of lab b o k .  
ELSE ! simplified using 

rTRETA = ACOSD ( (eX*mSD (FLOAT (rPHI) ) ) /ROOT) ! ePHI=O and nit 
IF (eTHETA .LT. 90) rTHETA = 180 - HXETA ! vectors. 

END IF 
PSI = - (MOD (?THETA, DBLE(180) ) ) 
ITHE = MOD(MNT (rTHETA) + 1, 180) 
TEMP = ROOT * SIND(rTHE + PSI) 
COUNT=o 

Test t h a t  (1) - t he  event l i n e  is within alpha of the  plane 
(2) - no more than 180 planes have been found f o r  any 1 event 
(3) - only 1 plane (1  phi) for  t h e  theta=O plane is used 

DO WHILE (ABS(TEISIIP1 .LE. mALeHA .AND. 
-cOUT%J? .I&. 179) ! (1) .AND. (2)  

I F  ((.NOT. DONE) .AND. FIFE .EQ. 0) THEN ! (3) 
DONE = .TRUE. 
I = I + l  
TABLE(eTHETA,I) = rPHI*1000 + rTHE 

EISE IF (FIFE .NE. 0) THEN 
I = I + 1  
TABLE(eTHFTA,I) = rPHI*1000 + rTHE 

END IF  
zTHE = MOD (m + 1, 180) 
TEm = ROOT * SIND(rTHE + PSI) 
COUNT = COUNT + 1 

ENDDO 
I F  (COUNT .LE. 179) THEN ! only do 2nd loop if 



TEIW = h * Sh(* + PSI) 
DO WHILE (ABS(TEMP) .LE. ~ A ~ P H A  .AND. coma .LE. 179) i (a) .md, (2) 
IF ((.NOT. DONE) .AND. rTHE .EQ. 0 )  THEN (3 )  
DONE = .TRUE. 
I = I + l  
TABLe(eTHETA, I) = rPHI*1000 + rTHE 

ELSE IF (rTHE .NE. 0) THEN 
I = I + l  
TABLE (eTHETA, I) = rPHI*1000 + rTHE 

END IF 
rTHE=rTHE-1 
IF (FtXE .EQ. -1) rTHE = 179 
TEMP = ROOT * SIND(rTHE + PSI) 
COUNT = COUNT + 1  

ENDDO 
END IF 

ENDDO ! Radon PHI values 
TABLE(eTHETA,O) = I  ! # planes for this event . 

WRITE (*,7) IeTHETA: I, eTHETA, I #  planes = I ,  I  
FORMAT (lX8A8,13, 4X,All,I) 
EM)W ! event lines 

OPEN(UNIT--l,FILG=lLOO~.TBL~fSTATUS=lNEW') 
WRITE (1,lO) ( (TABLE(eTHFTA,I), 1~0,220) ,eTHETA=O, 179) 
FORMAT (lO(lX.16.6) 11 

END 



Takes individual events i n  t h e  format (XI, Y1, 21, X2, Y2, 22) fin& 
t h e  planes i n  which the  line l i e s  and mcrements them. The PHI and 
THETA values of the Radon planes are found in a lookup table, the If 
values are calculated fo r  each plane. 

REAL*4 -1, eTHFTA, X l ,  y l ,  21, x2, y2, 22, 
1 mi=, midY, midZ, eX, e Y ,  e Z ,  EVENT(20) 

INTM;ER*2 CHAN, IOSB(4) 
INTM;ER*4 I, J, K, TABLE(0: l8O,O:22O), eTHE, TEMP, nEVENT, 

1 RADON(-100:100,0:89,0:89), NUMPL, rTHE, rPHI, P i  
2 SYS$ASSIGN, STATUS, C 

LOGICAL FIRSTCALL 
CHARACTER O I I T F I L E * ~ ~  

EVENT - holds t he  event parameters 
CHAN - 110 channel fo r  the tape dr ive 
IOSB(*) - 110 s t a tu s  block (called INIOSB (, ) in m) 
FIRSTCALL - i f  the tape has been read ye t  
rTHE - theta  of t he  Radon plane 
rPHI - phi of the  Radon plane 
P - distance of the plane from the  origin 
x,y,z (1) ;x, y, z (2) - endpoints of t he  event l i n e  
e (xIy ,z )  - directionof the  event line 
eTHETA - theta  of t he  event l ine  REAL*4 
eTHE - theta  of the event l i ne  INT*4 
ePHI - phi of t he  event l i ne  
mi=,  midY, midZ - midpoint of the  event l i n e  

do a l l  arithmetic operations i n  REAL t o  avoid truncation problems 

OPEN (UNIlkl, FILE='I1X)KUP. TBL' , STATUS='OLD', READONLY) 
READ (1,lO) ( (TABLE(eTHE, I) , 1=0,220), eTHE=O, 179) 
FORMAT (1O(lXII6j/) 
CLOSE (UNIT=l) 

WRITE (*,15) number of events: 
FORMAT (A$) 
READ ( * I * )  - 
WRITE (*,15) output f i l e  name: 
READ (*, 15) OUTFILE 
C = INDEX (OUTFILE, . ) ! i f  the  f i l e  does not have an extension 
IF  (C .EQ. 0) THEN ! then defaul t  t o  .PLN. 

C = INDM(OUTFILE,t I )  

OUTFILE (C: C+3) = I .  PLN' 
END I F  

STATUS = SYS$ASSIGN ( 'MUAO : I ,  CHAN, , ) ! set up tape drive 
I F  (.NOT. STATUS) THEN ! check fo r  e r ror  

WRITE (*,*) ' problem with tape drive 
CALL LIBSSTOP (%VAZI(STATLJS) ) 

END I F  
FIRSTCALL = .TRUE. ! tape hasn't ye t  been read 

C = O  
CALL GET EVENT(EVENT,FIRSTCALL,CHAN,IOSB) ! read 1 event from tape 

I F  (.Nm. IOSB(1)) THEN ! test fo r  EOT 
~ T E  (*,*) ,'end of tape, # events used = ', C 
GOTO 200 

END IF  
I F  ( MOD(CI1OO) .EQ. 0) WRITE (*,*) ' event # I ,  C 
I F  (C .EQ. nEVENT.) GOTO 200 ! c u t  the data set short  



C = c+1 
Xl = EVENT(1) 
Yl = m ( 2 )  
Zl = EVENT(3) 
xz = EVENT(4) 
Y2 = -(s) 
22 = EVENT(6) 
mi- = ((xl+x2) 12) *lo ! find the midpoint of the line 
midY = ((yl+y2) /2) *lo ! and convert to mm. 
midZ = ((21+22) /2) *lo 
eX = x1*10 - midx ! find the direction of the line 
eY = yl*10 -  mid^ 
eZ = z1*10 - midz 

convert to cartesian co-ordinates 
eTHETA = ACOSD(eZ/SQRT(eX**2 + eY**2 + eZ**2)) 
IF (eTHETA .EQ. 0) THEN 
e m 1  = o 

ELSE 
ePHI = ACOSD(eX/SQRT(eX**2 + eY**2)) 

END IF 
IF (eZ .LT. 0) THEN 
eTXErA = 180 - eTHErA 
ePHI = 180 - ePHI 

END IF 
eTHE = MOD(NINT(eTXErA), 180) ! 0 <= THETA <= 179 
ePHI = MOD (ePHI, 180.0) ! 0 <= PHI <= 179 
NUMPL = TABLE (eTHE, 0) ! get the number of planes for this THETA. 
DO I=l,NUMPL 
TEMP = TABLE(eTHE, I) ! get PHI and THFTA of each plane. 
rPHI = ~ ~ 4 ~ 1 1 0 0 0  
ITHE = TEMP' - rpHI*1ooo 
rPHI = rPHI + NINT(ePHI) ! rotate for correct phi value, note t h a t  

! PHI is binned to 1 degree here, 
IF (rPHI .GE. 180) THEN ! use the part of the line in the 
rPHI = rPHI - 180 ! +ive Y hemishere. 
rTHE = 180 - ZTIE 

END IF 
P = NINT (midx*sIND (REAL (ITHE) ) *COSD (m(rPHI) ) + 

1 midY*SIND(REAL(rTHE) ) *SIND(REAL(rPHI) ) + 
2 midZ*COSD (REAL (ITHE) ) ) 

IF (MOD(P,2) .NE. 0) P = P + 1 ! round to nearest 2 m  
W N ( P / 2 , M O D ( N I N T ( R E A L ( r T H E ) / 2 ) ,  go), 

1 MOD (NINT (REAL (rPHI) 12) , 90) ) = 
2 RADON(P/2,MOD(NINT(REAL(rTHE)/2), go), 
3 MOD (NINT (REAL (rPHI) 12) , 90) ) + 1 

ENDDO 
GOTO 100 ! get next event 

2 00 CZI)SE (UNIPl) ! used all events 

OPEN (UNIT=l, FIIJ3=OI]TFILE, STATUS='NEW', RECL=l206) 
WRITE (1,210) (((RADON(I,J,K), I=-100,100), J=0,89), K=0,89) 

2 10 FORMAT (101 (1X. 15) ) 
CJfiDSE (LiN1lSl) . ! - kitten all planes 
END 



PROGRAM DIRECT 

Takes individual events from tape i n  the format 
(XI, Y1, Z1, X2, Y2, ZZ), finds the planes i n  which 
the l i n e  l i e s  (within some angle alpha) and incremenfs them. 
Prints out t he  f u l l  s e t  of Radon planes, ready f o r  f l l t e r m g  md  
baclcpro j ection. 

REAL*8 ALPHA, IDALPHA, 
Xl, y1, 21, x2, y2, 22, LENm, 
eX, eY, eZ, ROOT, TEMP, rmETA, PSI, 
midX.  midY. midZ. sinP. cosP 

REAL*4 EVEN'i'(20) ' 

INTEGER*4 I, J, K, COUNT, C, MAX, PI SYS$ASSIGN, STATUS, 
RADON(-4O:4OIO:35,O:35), r!l"HE, rPHI 

INTEGER*2 CHAN, IOSB(4) 
LOGICAL FIRSTCALL 
CHARACTER INFUE*15, cALPHA*~, OUTFILE*15 

EVENT - holds the event parameters 
x,y, z (1) X, y, z(2) - 2 endpoints of the event l i ne  
LENGTH - length of the  event l i n e  
STATUS - return s t a tu s  of a system call 
CHAN - 110 channel f o r  the  tape drive 
IOSB - 110 s t a tu s  block (called INIOSB(,) i n  EVENT) 
FIRSTGILL - i f  the tape has been read yet  
ex - X dimension of the  event l i ne  
eY - Y dimension of the event l i ne  
eZ - Z dimension of t he  event l i ne  
rTHETA - the ta  of the  Radon plane REAL*4 
rTHE - the ta  of the Radon plane INTEGER*4 
rPHI - phi of the  Radon plane 
midX, midY, midZ - midpoint of the event l i n e  
MAX - maximum number of events t o  process 
P - distance of the Radon plane from the origin along the narmai 

WRITE (*,5) alpha: 
READ (*,5) CACPHA 
FORMAT (A$) 
READ (CAWHA,*) ALPHA ! change t o  r e a l  number 
mALPHA = COSD(90 - ALPHA) 
WRITE (*, 5) number of events: 
Fwa ( * I * )  MAX 

WRITE (*,5) output f i l e  name: 
READ (*,5) OUTFILE 
C = INDM(OUTFILZI1.') ! i f  the f i l e  does not have an &ension 
IF (C .EQ. 0) THEN ! then defaul t  t o  .PLN. 
C = INDM(OUTFILE,r I )  

oUTFILZ (c:c+~) = ;. PLhl 
END IF 

STATUS = SYSSASSIGN ( 'MUAO : ' , CHAN, , ) ! set up tape drive 
IF (.NOT. STATUS) THEN ! check fo r  e r ro r  

WRITE (*, *) problem with tape drive ' 
CALL LIB$STOP(%VAL(STATUS)) 

END IF 
FIRSTCALL = .TRUE. ! tape hasn't ye t  been read 

C = O  
100 CALL GGT EVENT(~,FIl?STCAtL,cHAN,IOsB) ! read 1 event from tape 

IF (.NbT. IOSB(1)) THEN ! test f o r  WT 
WRITE (*,*) ' end of tape, # events used = I ,  C 



GOTO 200 
END IF 
IF ( MOD(C, 100) 
IF (C .me MAX) 
C = c+1 
Xl = EVENT(1) 
Yl = EVENT(2) 
Zl = EVENT(3) 
x2 = EVENT(4) 
y2 = EVENT(5) 
22 = m ( 6 1  

.EQ. O) WRITE (*,*) * event # *, C 
GcTrO 200 1 cut the data set short 

midX = ( (xi+jr2) 
midY = ((yl+y2) 
mid2 = ((21+22) . 
ex = x1*10 - mi& 
eY = yl*10 -  mid^ 
eZ = 21*10 - midZ 
LENGTH = SQFLT(eX**2 + eY**2 + eZ**2) ! 
ex = eX/LENWH 

find the midpoint of the line 
and convert to mm. 

find the direction of the line 

use unit vectors 

DO ~PHI=O, 179 ! loop through all 
sinP = SINDIREALfrPHII I 
COSP = COSD (RZAL (~PHI j j 
ROOT = SQRT((e~*cosp + e~*sinP)**2 + eZ**2) 
IF (ROOT .EQ. 01 THEN 
rTHFl'A = 90 . 

ELSE 
xTFIl3A = ACOSD((eX*cosP + eY*sinP)/ROOT) 
IF (eZ .GE. 0) rTHErA = 180 - rTHGTA 

END IF 

Radon PHIrs 

! math from p.77 
! of lab book. 
! simplified using 
! unit vectors. 

PSI = -(MOD(-A, DBLE(180))) 
rTHE = MOD(INT(rTHFTA) + 1, 180) 
TEMP = ROOT * SIND(rTHE + PSI) 
COUNT = 0 

Test that (1) - the event line is within angle alpha of the plane. 
(2) - no more than 180 planes have been found for any f event. 

Do WHILE (ABS ( T m )  . LE . W H A  .AND. 
1 COUNT .LE. 179) ! (1) .AND. (2) 

I = I + l  

calculate P 
P = NINT(midX*SIND(REAL (rTHE) ) *cosP + 

1 midY *SIND (REAL   THE) ) *sinP + 
2 midZ*COSD(REAL(rTHE) ) ) ! -200: 20Omm 

increment the Radon plane 
RADoN(NINT(m(P1 15) 

MOD(NINT(REAL(rnE) /5), 
MOD (NINT (REAL (rPHI) 15) , 

RADON (NINT(REAL(P)/5) r 
MOD (NINT (REAL (IME) 15) 
MOD (NINT (REAZl (rPHI) 15) 

m = MOD(xTHE + 1, 180) 
TEMP=ROOT * SIND(rTHE + PSI) 
COUNT = COUNT + 1 

ENDDO 
IF (COUNT .LE. 179) THEN ! only do 2nd loop if 

rTHE = MOD(INT(-PSI) , 180) ! the 1st didn't go to 180 
TEMP = ROOT * SIND(rTHE + PSI) 
DO WHILE (ABS(TEMP) .LE. mALPHA .AND. COUNT .LE. 179) 



calculate P 
P = NxNT(midX*SIND(REAL(flPHE) ) *cosP + 

@dY*SIND (REAL(flPHE) ) *sinP + 
mdZ*COSD (REAL ( m )  ) ) ! -200:200mm 

T- = ROOT -* sIND (m + PSI) 
COUNT = COUNT + 1 

ENDDO 
END IF 

ENDDO ! Radon PHI values 
GOTO 100 ! get next event 

CLOSE (UNI-1) ! used all events 

OPEN (UNI-1, FIL&=OUTFILE, STATUS='NEWr , RECL486) 
WRITE (1,210) (((RADON(I,J,K) , I=-40,40), J=O,35), K=0,35) 
FORMAT (8l(lX,I5) ) 
CLOSE (iTN~l&l) ! 'written all planes to file 

END 



SUBROUTINE GGT-EVENT (EVENT, FIRSTCALL,CHAN, IOSB) 

Returns t h e  parameters fo r  one event, read from tape and 
s tored i n  t he  EVENT(2O) array. Parameters are retrieved 
in t h e  dame # and order a s  they w e r e  stored by PHANTOM. 
S p l i t  events are ignored (l/block). Program assumes that 
the  tape drive has already been set up and an 110 channel 
has been assigned. 

=*4 EVENT(20) ! parameters of one event 
LOGICAL FIRSTCALL ! TRUE the 1st time this routine is called 
INTEGER*2 CHAN, ! tape drive 110 channel (called I N p  i n  FVENT) 

1 IOSB (4) , ! 110 s ta tus  block (called INIOSB ( , ) m EVENT) 
3 BUFFER(1: 16383), ! holds block of events from tape (IN63UF) 
4 BLKSZw, ! blocksize i n  words (INSUL) 
5 BLKSZb, I II bytes (INBYTES) 
6 thisEV, ! pointer t o  start of current event (INDEXO) 
7 nextEV I n * next event (INDM1) 

INTEGER*4 STATUS, ! return s tatus  of the  system call 
1 SYS$QIOW ! read fram CHAN with wait 

EXTERNAL 10s-READVBLK 

IF (FIRSTCALL) THEN ! i f  t h i s  is the  f i r s t  time the routine 
FIRSTCALL = . FALSE. ! is called, need t o  ge t  a block of 
nextEV = BLKSZw + 1 ! data from the tape. 

END I F  

IF  (nextEV .GT. BLXSZw) THEN ! need t o  ge t  a new block 
STATUS = SYS$QIOW (%VAL( I) , ! use event flag #1 

1 %VAL(-), ! channel allocated for  tape X i 0  
2 %VAL (%LOC (10s-READVBLK) ) , ! function t o  be performed 
3 IOSB(l), , , ! return s ta tus  
4 BUFFER(l), ! where t o  start writing a t  
5 %VAL(BLKSZb),,,,) ! # bytes t o  t ransfer  

IF  ( .NOT. STATUS) CAW IJBSSIGNa (%VAL(STA!L'US) ) 
IF  (.NOT. IOSB(1)) RETURN ! end of tape 
thisEV = nextEV - BLKsZw ! reset pointers in new buffer 
nextEV = thisEV + BUFFER(thisEV) 
IF (thisEV .LT. 0 .OR. thisEV .GE. 200) THEN ! data is meaningless 
WRITE (*,*) ' invalid data on tape' 
cALT.A UB$STOP(%VAL(l) ) 

END IF  r 

END IF  

fetch one event from the buffer 

CALL LTBSMOVC3 ( (BUFFER(thisEV) -2) *2, ! # bytes t o  be moved (skip laeader) 
1 BUFFER (thisEV+2) , ! where from (skip header) 
2 EVENT) ! where t o  

thisEV = nextEV ! rese t  pointers in current buffer 
n e .  = nextEV + BUFFER(nextEV) 

END 



PROGRAM PERFECT 

Program generates a perfect Radon transform and 
places it in a file for use with RECOW. 
UNITS ARE CURRFSJTLY Imm 

INTEGER*4 PHI, lXEl?A, PI ELIPS, numELIPS, I, 
1 Ainc, sinc, REC Lm 

REAI;*4 RADON(-200:200~. w. AREA 
REAL*8 P x , ~ , P z , ~ , . a ,  b,&, 

1 KUJIPSOID(~~,~O), Ex, Ey, Ez, Va(3), Vb(3), Vc(3), 
2 ALPHAa, ALPHAb. ALPHAc. sscrrd. PI 

PHI, THErA, P 
Ainc, Sinc 

AREA 
REC-LEN 

- define the Radon plane - increments in the projection directions and 
along the projection line - direction coslnes of the normal to the Radon plane - parameters of the ellipsoids - values of the Radon planes along 1 projection line - co-ordinates for the center of th8 ellipsoid - direction cosines for the orthonormal axes of the ellipso - lengths of the semiaxes - grey scale of the ellipsoid 

ALPHAc - projection of the normal to the plane onto each 
axis of the ellipsoid - square of the distance from (Ex,Ey,Ez) to the tangent 
plane in the direction normal to the plane. - distance from (Ex,Ey,Ez) to the planelin the direction 
normal to the plane - area of the intersection of the plane with the ellipsoid - size of the output record 

DATA PI /3.141592654/ 
DATA numELIPS /6/ 
DATA ELLIPSOID I ellipsoid data in m 

1 /O,O,O, 10,20,30, 1,0,0, 0,1,0, 0,0,1, 1, 
1 o,o,o, 95,95,95, 1,0,0, 0,1,0, 0,0,1, 0, 
1 O,O,O, 15,15,15, 1,0,0, 0,1,0, 0,0,1, 0, 
1 112*0/ 
2 /0,0,0,~72.3,96.4,127, 1,0,0, 0,1,0, 0,0,1, 1.02, ! inner skull 
2 -8,-60.5,38.1, 4.6,2.3,2.3, 1,0,0, 0,1,0, 0,0,1, .01, ! tumor 1 
2 0,-60.5,38.1, 2.3,2.3,4.6, 1,0,0, 0,1,0, OIO,lI -01, 1 " 2  
2 6,-60.5,38.1, 2.3,4.6,2.3, 1,0,0, 0,1,0, 0,0,1, .01, ! " 3 
2 22,0,38.1, 11,31,25.4, .st-.31, 0, .31, .95,0, 0,0,1, -. 02, ! r ventrical 
2 -22,0,38.1, 16,41,38.1, -.95,-.3i,o, -.31, .95,0, o,D,~, -.02, ! 1 venbical 
2 0,114,-19.6, 12.7,34,17, 1,o,o, 0,.54,-.84, 0,.84,.54, 1.5, ! nose 
2 48*0/ 

WRITE (*, 5) * output file name: f 

READ (*,5) OUTFILE 
FORMAT (A$) 
I = INDM(OUTFILE,*.*) ! if the file lacks an extension 
IF (I .EQ. 0) THEN ! then default to .PLN. 
I = INDM(OVTFILE, ' ') 
OVTFILE(I:I+3) = *.PLNf 

END IF 

WRITE (*, 5) * Angular increment (degrees) : ' 
REAI) (*,*) Ainc - 
WRITE (*,5) ' Sampling increment (nun): 
READ (*,*) Sinc 



OPEN (UNIT=l, FaG.oUTFILE, STATUS=' NEW' , RECIrREC-LEN) 
DO PHI=0,179,Ainc 
DO THE!TA=O, 179, Ainc 
Px = SIND (DBLE (=A) ) *COSD (DBLE (PHI) ) ! direction c o s f n ~  
Py = SIND (DBLE (THGIIA) ) *SIND (DBLE (PHI) ) ! of the plane. 
Pi? = COSD(DBLE(THETA) ) 

C get the ellipsoid parameters from the array 
DO E!LIPS=l,nmEIJPS 
Ex = ELGTPSOID (1, ELIPS) 
Ey = ELTJPSOID(2, ELIPS) 
Ez = ELLIPSOID (3, ELIPS) 
a = ELWCPSOID(4,ELIPS) 
b = ELLIPSOID (5, ELIPS) 
c = ELLIPSOID(6, ELIPS) 
DO I=1,3 
Va (I) = ELLIPSOID (6+I, ELIPS) ! 7,8,9 
Vb (I) = ELLIPSOID (9+I, ELIPS) ! 10,11,12 
Vc(1) = ELLIPSOID(12+I,ELIPS) ! 13,14,15 

ENDDO 
GRFY = ELLIPSOID(16,ELIPS) 

find the distance from the origin of the ellipsoid to the 
tangent of the plane with the ellipsoid. 

ALSHAa = Px*Va(l) + Py*Va(2) + Pz*Va(3) 
ALPHAb = Px*Vb(l) + Py*Vb(2) + PZ*Vb(3) 
ALPHAc = PX*Vc(1) + Py*VC(2) + Pz*VC(~) 
Ssqrd = ALPHAa**2*a**2 + ALPHAb**2*b**2 + ALPHAc**2*c**2 

calculate the interception with each plane in this stack 
W *-200,200,Sinc 
D = P - (-*Ex + Py*Ey + Pz*Ez) ! distance of plane Erom ellipsoid 
IF (D**2 .LE. Ssqrd) THEN ! does the plane htersect the e%%i 
AREA = (PI*a*b*c*GREY* (Ssqrd - D**2) ) fSsqrd** (3.0/2.0) 
RADON(P f Sinc) = RADON (P/Smc) + AREA 

END IF 
ENDDO 

E N D W  
write out values for this set of planes 
WRITE (1,lO) (NINT(RADON(P) ) , P=-20O/Sinc, 2OO/Sinc) 
DO P=-2OO/Sinc,2OO/Sinc 
RADON(P) = 0 

E N D W  
ENDDO 
WRITE (*,*) ' PHI:',PHI 
ENDDO 

10 FORMAT (<REX LEN/ 6> (lX, 15) ) 
m S E   UNIT=^) 

END 



does straight & filtered backprojection, taking the Radon transfom 
(set of planes) and backprojecting it onto a 3D array of 
voxels . 
IfJTEX;ER*4 RADON(-200:200), I, PHI, THEIA, PI Ainc, Sinc, n m  

1 X, Y, Z, CUTOFF, FILTER, TEMP, lo, hi, REC-LEN 
2 FIU-ORG, LEN, TYPE, WORD-SZ, SPE-ORG 

INTEGER*2 ARRAY (-5O:50,-5O: 50) 
REAL*4 VOXEL(-50: 50, -50: 50, -50: 50) , sinT, COST, sinP, cosP, 

1 J. Jm. JD. k. PI. h(0:60). Fn. SUM. INTERPI-2000:2000) 

F N ( P )  - Radon transform for constant phi, theta; varying p 
Amc, S m c  - increments in the prejection directions and along 

the projection line. 
R (P) - filtered Radon transf orm 
PHI - phi value of the Radon plane (0:179) 
THETA - theta value of the Radon plane (0:179) 
P - distance along the normal of the plane (-200:200 wa) 
X,Y,Z - artesian co-ord of the voxel being reconstructed 

(-115:115 m) 
CVMFF - sampling cutoff for Paul's filter 
Fn - Nyquist frequency 
VOXEL - 3D array of the reconstucted image 
INTERP - interpolated values along the normal of a stack of 

planes (.m; -2000:2000) 
Mx - maximum absolute image value, used for scaling 
SF - scale factor 
FILTER - type of filter to be used in the reconsruction; 

1 - 2nd difference filter 
2 - Hamming filter 

XEC-LEPT - length of the output record 

WRITE (*, 20) ' Radon plane file: 
READ t*,20) INFILE 
FORMAT (~$j 
TEMP = INDM(INFILE,l.l) ! if the file does not have an &ension 
IF (TEMP .EQ. 0) THEN ! then default to .PLN. 
TW = INDM(INFILE,~ I )  

INFILE(TEMP:TEMF'+3) = '.PIX1 
END IF 

WRITE (*,20) .SPE file: 
READ (*,20) OUTFILE 
TEMP = INDEX(OUTFILE,'. I )  ! if the file does not have an edens ion  
IF (TEMP .EQ. 0) THEN ! then default to .SPE and add the 
TEMP = INDM(OUTFILE, I I) ! directory specifier 
OUTFILE (TEMP: TEMP+3) = . SPE, 
DUMMY1 = 'EMJTDATA:'//OUTFILE 
OVTFILE = DUMMY1 

END IF 

WRITE (*, 20) Angular increments (degrees) : ' 
READ (*,*) Ainc 
WRITE (*,20) ' Sampling increments (mm): 
READ (*,*) Sinc 
REC LEN = ( (4OO/Sinc) +1) * 6  
n d  = 2OO/Sinc 



WRITE (*, 20) ' filter ( 1-2nd dif f. ; 2 - H d n g  ) : ' 
(*I*) FILTER 

IF (FILTER .EQ. 2) THEN 
WRITE (*,20) ' cutoff: ' 
READ ( * I * )  CUTOFF 
WRITE (*,20) ' Fn: ' 
READ (*,20) cFn 

(cFn,*) Fn ! translate to a REAL number 

DO J=O, CUTOFF ! generate filter 
Jm = J - (1/(2*~n) ) 
Jp = J + (1/(2*Fn) ) 
h(J) = -2*PI**2*(k(JIFn) + .S*k(Jm,Fn) + .S*k(Jp,Fn)) 
IF (J .EQ. 0) THEN 
SUM = SUM + h(J)/2 

ELSE 
SUM = SUM + h(J) 

END IF 
ENDDO 
WRITE (*,*) ' SUM: ',SUM 

END IF 

CALL OPEN SPECTRUM(OUTFILE,FILE ORG,MAX SN) ! prepare output Rj la  
OPEN (UNI~~,FILE=INFILE,STATUS~'OI~)',~NLY,RECLFREC-~) 
DO PHI=0,179,Ainc ! 0:179 
WRITE (*,15) 'PK = ', PHI 
FORMAT (lX, A6, I3 1 
sine = SIND (REAL(PHI) ) 
COSP = COSD (REAL (PHI) ) 

DO THETA=O, 179,Ainc ! 0:179 
sinT = SIND (REAL (THETA) ) 
COST = COSD (REAL (THETA) ) 

get the Radon transform data 

READ (2,lO) (RADON (P) , P=-numP, numP) 
FORMAT (A) 
FORMAT (&c LEN/6> (lX, IS) ) 
IF (FILTER .EQ. 2) THEN ! Hamming filter. 
DO P=-nW, numP ! for everv element of the transfom; 
R(P) = 0. 

- 
DO J=-CVPOFF, CUTOFF ! convolve with the filter. 
R(P) = R(P) + RADON (P+J) *h(ABS(J) ) 

ENDW 

ELSE ! 2nd difference filter. 
DO P=-(numP-1) .numP-1 

R (P) '= - (FW%N(P-1) + RADON (P+l) - 2*RADON(P) ) 
ENDDO 
R(-numP) = - (RADON(-nm) ) 
R(numP) = -(RADON(numP) ) 

END IF 

i C for each stack of planes (phi & theta constant; p,vaqing], 30 m 
C interpolahon along p, increasing the number of blns by a factor Q% fQ. 



C Do reconstruction over the largest cube which entirely fits inside 
C the sphere where the Radon transform is defined. Do ~t backwards 
C because of E'QRTRAN ordering of array elements. 
C scaling: 2.3lnrm/voxel. 

SF = 2.311 (0. l*Sinc) 
DO *-SO, 50 ! set x,y,z to reconstruct lOOxlOOxlOO 
DO Y=-50,50 
DO X=-50,50 

C find which plane in this stack contains the point (x,y,z) 
C scale P to be .l(Sinc)mm 

P = NINT( (X*sinT*cosP + Y*sinT*sinP + Z*cosT) *SF) 
VOXEL(X,Y, Z) = VOXEL(X, Y, Z) + INTERP(P) *sinT 
IF (ABS(VOXEL(X,Y,Z)) .GT. MX) MX = ABS(VOXEL(X,Y,Z)) 

ENDDO 
ENDDO 
ENDDO ! finished backprojecting one stack 

ENDDO 
END DO ! finished backprojection 
CLOSE (UNIT=2) 

DO 2.;-50,50 ! scale the image to 0:250 with 0 @ 125 
DO Y=-50t50 
DO X=-50,50 
ARRAY(X,Y) = NINT(((voxEL(x,Y,z)+~)*~~o.o) 1 (2*m)) 

ENDW - -  - -  
ENDDO ! output data in PERITEK displayable format 
CALL READ SPE-DES(IRIPTION(I,FI~-oRG,LEN,TYPE,WORD_SZ,SPE-~~~) 
CALL WRITF~SPECTRUM (AWIAY , LEN, SPE-OX) 

ENDDO 

END 

REAL FUNcrION k(J,Fn) 

REAL*4 J, Fn, PI, PIsqd, PIcbd 

PI = 3.141592654 
PIsqd = PI**2 
PIcbd = PI**3 

IF (J .NE. 0) THEN 
k = (Fnl (PIsqd*J**2) ) * COS (2*PI*Fn*J) + 

1 ((2*PI~qd*Fn**2*J**2 - 1)/(2*PIcbd*J**3)) * 
2 (SIN(2*PI*Fn*JI 1 . . 

ELSE 
k =  (2.0/3.0)*Fn**3 ! k(0) term 

END IF 


