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ABSTRACT 

It is beneficial as well as challenging to learn knowledge rules from relational 

databases because of the vast amount of knowledge implied in databases and the 

large amount of data stored in databases. In this thesis, we develop an attribute- 

oriented induction method to extract characteristic rules and classification rules from 

relational databases. The method adopts the artificial intelligence "learning from 

examples" paradigm and applies an attribute-oriented concept tree ascending 

technique in the learning process which integrates database operations with the 

learning process and provides a simple, efficient way of learning from large 

databases. Conjunctive rules as well as restricted forms of disjunctive rules are 

learned using this method. Moreover, by incorporating statistical techniques, 

qualitative rules with quantitative information can be learned and noisy data and 

exceptional cases are elegantly handled. Our analysis of the algorithms indicates that 

attribute-oriented induction substantially reduces the complexity of database learning 

processes. A prototype database learning system, DBLEARN, has been designed and 

implemented; early experiments with the prototype system illustrate the promise of 

attribute-oriented learning in relational databases. 
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CHAPTER 1 

INTRODUCTION 

Learning is one of the most important characteristics of human and machine 

intelligence. Machine learning is a fundamental area in Artificial Intelligence which 

has achieved significant progress in the last two decades. Theories and algorithms for 

machine learning have been studied extensively [MCM83, MCM861. Many learning 

systems have been constructed for scientific, business, industrial and medical applica- 

tions LBS83, MMH86, WGT87,Zyt87]. To extend machine learning to data- 

intensive applications, it is important to develop learning mechanisms for knowledge 

discovery in large databases, especially relational databases. 

Relational database systems are pervasive and widely utilized in many applica- 

tions v11891. It is advantageous to learn characteristics of data in relational data- 

bases. By learning from databases, knowledge rules can be extracted from the large 

amount of data and interesting relationships among data can be discovered automati- 

cally. Moreover, relational database systems provide many attractive features for 

machine learning. Relational databases store a large amount of information in a 

structured and organized manner. Each tuple in the database can be viewed as a 

typed logical formula in the conjunctive normal form. Such uniformity facilitates the 

application of well developed database implementation techniques and the develop- 

ment of efficient learning algorithms in large databases. 



An important machine learning paradigm, learning from examples, that is, learn- 

ing by generalizing specific facts or observations [GeN87], has been adopted in many 

existing induction learning algorithms. Current systems for learning from examples 

take training examples from various sources, such as, data extracted from experi- 

ments [BuM78, Lan77, WGT871, examples given by teachers and experts [Mit77], 

facts recognized by people [MiC80] and rules accumulated from past experience 

[Qui83], etc. However, not many systems directly extract knowledge from data - 
stored in relational databases. Since databases store a large amount of facts which 

can be viewed as examples for learning processes, the paradigm learning from exam- 

ples should be the first important candidate strategy for learning from databases. 

From our point of view, one of the major reasons that the current learning sys- 

tems do not integrate well with relational database systems is because of the 

inefficiency of current learning algorithms when applying to large databases. Most 

existing algorithms for learning from examples apply a tuple-oriented approach 

which examines one tuple at a time. In order to discover the most specific concept 

that is satisfied by all the training examples, the tuple-oriented approach must test the 

concept coverage after each generalization on a single attribute value of a training 

example [DiM83, Mic831. Since there are a large number of possible combinations in 

such testing, the tuple-oriented approach is quite inefficient to perform learning from 

large databases Wau861. For example, if there are 100 training examples (tuples), 

each tuple has 5 attributes, and each attribute value can be one of the three concepts 

on three different generalization levels, such coverage testing will be invoked up to 

100 * 53 = 12500 times in the worst case. Moreover, most existing algorithms do not 



take the features and implementation techniques provided by database systems. To 

make learning algorithms applicable to database systems, highly efficient algorithms 

should be explored in depth. 

In this thesis, we develop an attribute-oriented induction method for learning 

from relational databases. Following the learning from examples paradigm, our 

approach applies an attribute-oriented concept tree ascending technique which 

integrates database operations with the learning process. There are two types of 

knowledge rules, characteristic rules and classijication rules, which can be easily 

learned from relational databases. The attribute-oriented induction method is demon- 

strated by two algorithms, an LCHR algorithm for Learning CHaracteristic Rules 

and an LCLR algorithm for Learning CLassification Rules. The attribute-oriented 

method effectively extracts both types of knowledge rules from relational databases. 

Our analysis of the algorithms shows that attribute-oriented induction substantially 

reduces the complexity of the database learning processes. Moreover, these two 

algorithms can learn both conjunctive rules and restricted forms of disjunctive rules, 

and learning can be performed with databases containing exceptions and noisy data 

using database statistics. Our approach provides a simple and efficient way of learn- 

ing from large databases. 

This thesis is organized into eight chapters. A brief survey of the methods 

developed for learning from examples and knowledge discovery in large databases is 

presented in Chapter 2. The concepts of learning from relational databases are intro- 

duced in Chapter 3; we address the primitives, the task and the characteristics in 

learning from databases. To demonstrate our attribute-oriented induction approach, 

- 3 -  



the LCHR algorithm and the LCLR algorithm are presented in Chapter 4 along with 

illustrative examples. Variations of the algorithms are discussed in Chapter 5. These 

variations show that our learning algorithms can be extended to cope with different 

learning situations. To demonstrate the power of our approach, our algorithms are 

analyzed and compared with other learning algorithms in Chapter 6. The implemen- 

tation of the database learning algorithms and the experimental results are presented 

in Chapter 7. We provide concluding remarks, and propose some interesting topics 

for future research in Chapter 8. 



CHAPTER 2 

LEARNING FROM EXAMPLES: AN A1 APPROACH 

We survey some theoretical issues related to learning from examples, some suc- 

cessful models for this learning paradigm, and some recent progress in knowledge 

discovery in database systems and knowledge base systems which adopt the learning 

from examples philosophy. 

2.1. Concepts of Learning from Examples 

As a basic method in empirical learning, learning from examples has been 

explored extensively. We review the basic components and the generalization rules 

of learning from examples, the types of knowledge rules which can be learned, and 

the control strategies of the learning process. 

2.1.1. Basic Components in Learning from Examples 

Learning from examples can be characterized by a tuple <P, N, C, A>, where P 

is a set of positive examples of a concept, N is a set of negative examples of a con- 

cept, C is the conceptual bias which consists of a set of concepts to be used in 

defining learning rules and results, and A is the logical bias which captures particular 

logic forms [GeN87]. 

In most learning programs, the training examples are classified in advance by 

the teacher into two disjoint sets, the positive example set and the negative example 

set [Mic83]. The training examples represent low-level, specific information. The 



learning task is to generalize these low-level concepts to general rules. 

There could be numerous inductive conclusions derived fiom a set of training 

examples. For instance, the concept "red" can be generalized in several ways: "red or 

black", "dark color", "warm color", etc. To cope with this multiplicity of possibili- 

ties, it is necessary to use some additional information, problem background 

knowledge, to constrain the space of possible inductive conclusions and locate the 

most desired one(s) [GeN87]. The conceptual bias and the logical bias provide the 

desired concepts and logic forms which serve as this kind of background knowledge. 

These biases restrict the candidates to formulas with a particular vocabulary and logic 

forms. Only those concepts which can be written in terms of this fixed vocabulary 

and logic forms are considered in the learning process. 

Usually, the examples presented to the learning system consist of several attti- 

butes. Depending on the structure of the attribute domains, we can distinguish among 

three basic types of attributes [Mic83]: 

(1) Nominal attributes 

The value set of such attributes consists of independent symbols or names, that 

is, no structure is assumed to relate the values in the domain. For example, 

name, computer ID usually do not contain structure information, and are often 

treated as nominal attributes. 

(2) Numeric attributes 

The value set of such attributes is a totally odered set. For example, weight, 

salary and gpa are numeric attributes. 



(3) Structured attributes 

The value set of such attributes has a tree structure which forms a generalization 

hierarchy. A parent node in such a structure represents a more general concept 

than the concepts represented by its children nodes. The domain of structured 

attributes is defined by the problem background knowledge. 

For example, the attribute shape could be a structured attribute whose domain is 

a tree structure with a set of leaves: 

{triangle, circle, ellipse, hexagon, square, boat, spring), 

and the non-leaf nodes are defined by rules: 

{circle, ellipse) c oval 

{triangle, square, hexagon) c polygon 

{oval, polygon] c regular 

{spring, boat) c irregular 

This corresponds to the concept hierarchy in Figure 2.1. 

2.1.2. Generalization Rules 

Learning from examples can be viewed as a reasoning process from specific 

instances to general concepts. The following generalization rules are particularly use- 

ful in learning systems [CoF83, Mic831. 
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Figure 2.1. The concept tree for the structured attribute shape. 

(1) Turning constants into variables. 

If the concept F(v) holds for v when v is a constant a, or a constant b, and so on, 

then these concepts can be generalized into a statement that F(v) holds for every 

value of v. This is the rule used most often in method's of inductive inference 

employing predicate calculus. As a logic formula, this can be expressed as 

(2. I), where the notation "I<" stands for "can be generalized to". 

F ( a ) A F ( b ) A  I<F(v) .  (2.1) 

(2) Dropping conditions. 

Any conjunction can be generalized by dropping one of its conjuncts. A con- 

junctive condition can be viewed as a constraint on the set of possible instances 

that could satisfy the concept. By dropping a condition, one constraint is 

removed and the concept is generalized. For example, the class of "red apples" 

can be generalized to the class of all "apples" of any color by dropping the "red" 

condition. This can be wniten as: 



red (v ) A apple (v ) I< apple (v ). 

(3) Adding options. 

By adding more conditions, the concept can be generalized because more 

instances may satisfy this concept. An especially useful form of this rule is 

when the alternative is added by extending the scope of permissible values of 

one specific concept. For example, suppose that a concept is generalized by 

allowing objects to be not only red but also blue. This can be expressed as fol- 

lows: 

red(v)  I< red(v)  v blue(v). 

(4) Turning conjunction into disjunction. 

A concept can be generalized by replacing the conjunction operator by the dis- 

junction operator. This process is analogous to the adding-option generalization 

rule. This rule can be written as follows: 

red A circle I< red v circle 

(5) Climbing a generalization tree 

By ascending the generalization tree, the lower level concept is substituted for 

by the higher level concept. This generalization rule is applicable only to the 

concepts whose domain is a structured value set, (that is, concepts at different 

levels of generality). Formally, this rule can be expressed as: 



where L is a structured attribute; a, b, ... and i are the values of u, v, ... and z in 

the attribute L, respectively; and s represents the lowest parent node whose des- 

cendants include nodes a, b, ... and i. 

2.1.3. Types of Knowledge Rules 

Given a learning-from-examples problem characterized as <P, N, C, A>, several 

different rules can-be extracted. The learned concept is a characteristic rule if and 

only if it is satisfied by all of the positive examples. The learned concept is a discrim- 

inant rule if and only if it is not satisfied by any of the negative examples. The 

learned concept is an admissible rule if and only if it is both characteristic and 

discriminant [DiM83, GeN871. 

For example, suppose we are given: 

positive examples - a small circle, a small ellipse. 

negative examples - a large ellipse, a small triangle. 

We may derive several possible rules from these examples. The derived rule, "a 

small object", is characteristic but not discriminant, since it covers all of the positive 

examples but also some of the negative examples. The rule, "a circle object", is 

discriminant but not characteristic, since it excludes all of the negative examples but 

also some of the positive examples. Given the background knowledge that the higher 



level concept for circle and ellipse is oval, the rule, "a small oval object", is both 

characteristic and discriminant and, therefore, is admissible. 

Most learning algorithms are designed for learning admissible rules 

[DiM83,Mic83]. A few algorithms, such as INDUCE 1.2 [DiM81], SPROUTER 

[HaM77, HaM781, are designed for learning characteris tic rules. 

2.1.4. Control Strategies in Learning from Examples 

Induction methods can be divided into data-driven (bottom-up), model-driven 

(top-down), and mixed methods depending on the strategy employed during the 

search for generalized concepts PiM831. All of these methods maintain a set, H, of 

the currently most plausible rules. These methods differ primarily in how they refine 

the set H so that it eventually includes the desired concepts. 

In the data-driven methods, the presentation of the training examples drives the 

search. These methods process the input examples one at a time, gradually generaliz- 

ing the current set of concepts until a final conjunctive generalization is computed. 

The typical examples of such control strategy include the candidate-elimination algo- 

rithm [Mit77, Mit791, the approach adopted in [HaM77, HaM78, Ver75, Win751, the 

ID3 technique of Quinlan [Qui86], and the Bacon learning system [Lan77]. 

In the model-driven methods, an a priori model is used to constrain the search. 

These methods search a set of possible generalizations in an attempt to find a few 

"best" hypotheses that satisfy certain requirements. Typical examples of systems 

which adopt this strategy are AM &en77], DENDRAL and Meta-DENDRAL 

[BuM78], and the approach used in the INDUCE system PiM811. 



Data-driven techniques generally have the advantage of supporting incremental 

learning. The learning process can start not only from the specific training examples, 

but also from the rules which have been discovered. The learning systems are capa- 

ble of updating the existing hypotheses to account for each new example. In contrast, 

the model-driven methods, which test and reject hypotheses based on an examination 

of the whole body of data, are difficult to be used in incremental learning situations. 

When new training examples become available, model-driven methods must either 

backtrack or restart the learning process from the very beginning, because the criteria 

by which hypotheses were originally tested (or schemas instantiated) have been 

changed [DiM83]. 

An advantage of model-driven methods, on the other hand, is that they tend to 

have good noise immunity. When a set of hypotheses, H, is tested against noisy train- 

ing examples, the model-driven methods need not reject a hypothesis on the basis of 

one or two counterexamples. Since the whole set of training examples is available, 

the program can use statistic measures of how well a proposed hypothesis accounts 

for the data. In the data-driven method, the set of hypotheses, H, is revised each time 

on the basis of the current training example. Consequently, a single erroneous exam- 

ple can cause a large perturbation in H (from which it may never recover) [DiM83]. 

2.2. Some Successful Models in Learning from Examples 

Since the 1960's, many algorithms and experimental systems on learning from 

examples have been developed mCM83, MCM861, which demonstrated aspects of 

machine learning in science, industry and business applications 
0 



[Hau87a,Ren86, WaE87, WGT871. In this section, we present several successful 

models which are related to our research work. 

2.2.1. Candidate Elimination Algorithm 

Mitchell developed an elegant framework, version space, for describing systems 

that use a data-driven approach to concept learning Wit821. This framework can be 

described as follows. Assume we are trying to learn some unknown target concept 

defined on the instance space. We are given a sequence of positive and negative 

examples which are called samples of the target concept. The task is to produce a 

concept that is consistent with the samples. The set of all hypotheses, H, that are 

consistent with the samples is called the version space of the samples. The version 

space is empty in the case that no hypothesis is consistent with the samples. 

Mitchell proposed an algorithm, called candidate-elimination algorithm, to solve 

this learning task. The algorithm maintains two subsets of the version space: the set S 

of the most specific hypotheses in the version space and the set G of the most general 

hypotheses. These sets are updated with each new example. The positive examples 

force the program to generalize the S set, and the negative examples force the pro- 

gram to specify the G set. The learning process terminates when G = S. 

A good feature of this method is that the incremental learning can be performed 

by the learning program. The sets S and G can easily be modified to account for new 

training examples without any recomputation. 

However, as with all data-driven algorithms, the candidate elimination algo- 

rithm has difficulty with noisy training examples. Since this algorithm seeks to find a 



concept that is consistent with all of the training examples, any single bad example 

(that is, a false positive or false negative example) can have a profound effect. When 

the learning system is given a false positive example, for instance, the concept set 

becomes overly generalized. Similarly, a false example causes the concept set to 

become overly specialized. Eventually, noisy training examples can lead to a situa- 

tion in which there are no concepts that are consistent with all of the training exam- 

ples. 

The second and most important weakness of this algorithm is its inability to dis- 

cover disjunctive concepts. Many concepts have a disjunctive form, but if disjunc- 

tions of arbitrary length are permitted in the representation language, the data-driven 

algorithm described above never generalizes. Unlimited disjunction allows the par- 

tially ordered rule space to become infinitely "branchy". 

There are two computational problems associated with this method. The first 

one is that in order to update the sets S and G we must have an efficient procedure for 

testing whether or not one hypothesis is more general than another. Unfortunately, 

this testing problem is NP-complete if we allow arbitrarily many examples and arbi- 

trarily many atmbutes in hypotheses NaM781. The second computation problem is 

that the size of the sets S and G can become unmanageably huge. It has been shown 

that, if the number of attributes is large, the size of set S and set G can grow exponen- 

tially in the number of examples [Hau86]. 

To improve computational efficiency, Haussler proposed a one-sided algorithm 

which is in contrast to the two-sided approach of the candidate elimination algorithm. 



The one-sided algorithm computes only the set S using the positive examples and 

then checks to see if any negative examples are contained in the set S. If the rule in 

the set S is not satisfied by any negative examples, the rule is valid. Otherwise, there 

is no rule which can be discovered [Hau86, Hau87bI. 

In some learning situations, it is possible for the user to select training examples 

and to acquire information about their classification. In this case, a common strategy 

to maximize the learning performance is to select an example that halves the number 

of candidate formulas, that is, one that satisfies one-half of the candidates and does 

not satisfy the other half. The advantage of this strategy is that, by getting the 

classification of such an example, we can eliminate one-half of the remaining candi- 

dates. However, the main problem with the halving strategy is computational 

expense. In the worst case, we need to compare each example with each concept to 

determine whether or not the example satisfies the concept. If there are m examples 

and n candidates, then in the worst case we need mn steps to select-the best example. 

This is infeasible when either m or n is very large. 

Subrarnanian and Feigenbaum proposed a method, experiment generation, to 

solve this problem [SuF86]. They proposed to partition an instance into several 

independent sub-instances and to factor the entire version space into multiple 

separate, smaller version spaces. The test procedure for selecting the best training 

instance can be first performed in each factored version space, and then the resulting 

"sub-instance" can be combined into a single instance to be tested. The computa- 

tional advantages of factoring are striking. Suppose that a version space can be fac- 
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Figure 2.2. The version spaces for the positive example "red A circle". 

tored into k factors, with p nodes each. Whenever this is the case, the size of the 

unfactored version space must be p k .  If we can factor the version space, then we can 

"factor" each instance into k parts, one for each factor of the version space. If there 

are q possibilities for each part, then there must be q k  instances. The total cost for 

selecting a training instance without factoring is p q k ,  whereas the total cost with 

factoring is just kpq ,  a substantial saving when p or q is large. Figure 2.2 shows the 



entire version space and the factored version spaces in which the training example 

"red A circle" is the sole positive example. While the entire version space contains 9 

nodes, the factored version spaces consist of only 6 nodes. 

2.2.2. A Q l l  and AQ15 systems 

Michalski and his colleagues have developed a series of AQ learning systems. 

The AQ11 system [MiCSO] is designed to find the most general rule in the rule space 

that discriminates training examples in a class from all training examples in all other 

classes. Michalski et. al. call these types of rules discriminant descriptions or 

discriminant rules since their purpose is to discriminate one class from a predeter- 

mined set of other classes. 

The language used by Michalski to represent discriminant rules is VL1, an 

extension of the propositional calculus. VL1 is a fairly rich language that includes 

conjunction, disjunction, and the set-membership operators. Consequently, the rule 

space of all possible VL1 discriminant rules is quite large. To search this rule space, 

AQl 1 uses the AQ algorithm, which is nearly equivalent to the repeated application 

of the candidate-elimination algorithm. A Q l l  converts the problem of learning 

discriminant rules into a series of single-concept learning problems. To find a rule for 

class A, it considers all of the known examples in class A as positive examples and all 

other training examples in all of the remaining classes as negative examples. The AQ 

algorithm is then applied to find a concept that covers all of the positive examples 

without covering any of the negative examples. AQl l  seeks the most general such 

concept, which corresponds to a necessary condition for class membership. 



a) The most general rules 

b) The nonoverlapping rules 

c) The most specific rules 

Figure 2.3. Three different types of discriminant rules. 

The discriminant rules may overlap in regions of the examples that have not yet 

been observed, as shown in Figure 2.3a. AQll also has a method for finding a nono- 

verlapping set of classification rules, which is schematically illustrated in Figure 2.3b. 

The AQ algorithm has the power of performing incremental learning. This algorithm 

can accept not only training examples (as represented by very specific points in the 



rule space) but also generalized concepts that are conjuncts in the rule space 

corresponding to sets of training examples. This allows AQll  to treat the concepts 

themselves as negative examples when it is learning the concept for a subsequent 

class. 

The discriminant rules developed by AQ11 correspond (roughly) to the set of 

most general concepts consistent with the training examples. In many situations, it is 

also good to develop the most specific concepts of that class (Figure 2.3c), thus per- 

mitting a very explicit handling of the unobserved portions of the space. 

When the most general concept and the most specific concept are both available, 

definite classification (the examples are covered by the most specific concept), prob- 

able classification (the examples are covered by the most general concept), and multi- 

ple classification (the examples are covered by several most general concepts) can be 

chosen to be performed. 

Michalski and his colleagues conducted an interesting experiment to compare 

the quality of rules for soybean disease obtained through expert consultation to rules 

developed by the learning process [MiC80]. Surprisingly, the computer-generated 

rules outperformed the expert-derived rules. Furthermore, the computer-derived rules 

tended to list fewer alternative diagnoses. This experimental result shows that 

automatic rule induction can, in some situations, lead to more reliable and more pre- 

cise diagnosis rules than those obtained by consultation with the expert. 

After developing the AQ11 system, Michalski et. al. proposed another inductive 

learning system AQ15 in 1986 [MMH86, Mic871. This system is an extended version 



of the A Q l l  system, which is able to incrementally learn disjunctive concepts from 

noisy and overlapping examples, and can perform constructive induction in which 

new concepts are introduced in the formation of inductive conclusions. 

To accommodate uncertainty in the learning process, AQ15 generates rules that 

have a pair of weights associated with them, t-weight and u-weight. The t-weight 

represents the total number of examples (events) explained by the rule, and the u- 

weight represents the number of examples explained uniquely by that expression, 

respectively. For example, the following rule 

[Transport = car] <= [Weather-type = cloudy V rain] A [Temp = 40..60] 

(t-weight:40, u-weight:22) 

represents that there are 40 events that satisfy this rule, that is, if the weather is 

cloudy or raining, and the temperature is 40 to 60 degrees, the means of transporta- 

tion should be a car. Among these 40 events, 22 events can only satisfy this rule, and 

18 events can not only satisfy this rule, but also some other rules. 

The t-weight may be interpreted as a measure of the representativeness of a con- 

cept. The u-weight may be interpreted as a measure of importance of the concept. 

The concepts with very low u-weights can be viewed as describing rear, exceptional 

cases. If the learning examples from which rules are derived are noisy, such "light" 

concepts may be indicative of errors in the data. 

To eliminate rules which are the least reliable and which represent the weakest 

correlations found between attributes and classes, AQ15 performs "rule truncation" 

after induction. The rules which have a light t weight are cut off. AJlexible matching 



procedure is used whenever these truncated rules are applied. When matching a new 

example against a set of decision rules, if there are several matches or no match, the 

system activates the flexible evaluation schema that uses statistical techniques to 

determine the best match (or the most probable one). 

In an experimental application to three medical domains, the AQ15 program 

learned decision rules that performed at the level of accuracy of human experts. A 

surprising and potentially significant result is the demonstration that the complexity 

of the knowledge base can be drastically decreased without affecting its performance 

accuracy. 

2.3. Knowledge Discovery in Large Databases and Knowledges-Base 

Currently, the steady growth in the number and size of large databases in many 

areas, including medicine, business and industry has created both a need and an 

opportunity for extracting knowledge from databases. Some recent results have been 

reported which extract different kinds of knowledge from databases. 

Knowledge discovery in databases poses challenging problems, especially when 

databases are large. Such databases are usually accompanied by substantial domain 

knowledge to facilitate discovery. Access to large databases is expensive - hence it is 

necessary to apply the techniques for sampling and other statistical methods. Furth- 

ermore, knowledge discovery in databases can benefit from many available tools and 

techniques in different fields, such as, expert systems, machine learning, intelligent 

databases, knowledge acquisition, and statistics Lub89, Pia891. 



2.3.1. INLEN System 

The INLEN system was developed by Kaufman et. al. in 1989 m K 8 9 ] .  The 

name INLEN derives from Inference and Learning. This system combines database, 

knowledge-base, and machine learning techniques to provide a user with an 

integrated system of tools for conceptually analyzing data and searching for interest- 

ing relationships and regularities among data. It merges several existing learning sys- 

tems and provides a control system to facilitate access. Figure 2.4 illustrates the 

organization of the system. 

Figure 2.4. The organization of the INLEN System. 



The INLEN system consists of a relational database for storing known facts 

about a domain, and a knowledge base for storing rules, constraints, hierarchies, deci- 

sion trees, equations accompanied with preconditions, and enabling conditions for 

performing various actions on the database and/or knowledge base. The knowledge 

base can contain not only the knowledge about the contents of the database, but also 

meta-knowledge for the dynamic upkeep of the knowledge base itself. 

INLEN employs three sets of operators: data management operators PMOS), 

knowledge management operators (KMOs), and knowledge generation operators 

(KGOs). The DMOs are standard operators for accessing, retrieving and manually 

altering the information in the database. The KMOs are used to create, manipulate 

and modify INLEN's knowledge base, thereby allowing the knowledge base to be 

handled in a manner analogous to handling a database. The KGOs take input from 

both the database and knowledge base, and invoke various machine learning pro- 

grams to perform learning tasks. For example, the operator CLUS-TER creates con- 

ceptual classifications of data, which is based on the conceptual clustering algorithm 

developed in [MiS83]. The operator DIFF determines the discriminant rules, which 

can be executed in an AQ program [MMH86]. The operator CHAR discovers the 

characteristic rules, which is also implemented in an AQ program [Mic83]. The 

operator VARSEL selects the most relevant attributes and the operator ESEL deter- 

mines the most representative examples. The operator DISEQ discovers equations 

governing numeric variables, which is based on the ABACUS-2 system for integrated 

qualitative and quantitative discovery [FaM86]. ABACUS-2 is related to programs 

such as BACON &BS83], FAHRENHEIT [Zyt87] and COPER [Kok86]. Most of 



these machine learning programs invoked by KGOs are existing learning algorithms 

which have been well implemented. 

As in the case of many machine learning systems, the major challenge to the 

INLEN system is the computational inefficiency. Many learning algorithms included 

in this system adopt the tuple-oriented approach which examines the training exarn- 

ples tuple by tuple. In the learning process, these algorithms usually have a large 

search space and costly time complexity because they are not designed for large data- 

bases. Although this system integrates database, knowledge-base and machine learn- 

ing techniques, the database operations are applied only for retrieving data and stor- 

ing knowledge rules. The algorithms in this system do not take advantage of data- 

base implementation techniques in the learning processes. 

2.3.2. An Algorithm for Discovering Strong Rules in Databases 

Another interesting study on learning from relational databases was performed 

by Piatetsky-Shapiro [Pia89]. He develped an algorithm to discover strong rules in 

the relational databases. Somewhat different from an exact rule, which is a rule that 

is always correct, a strong rule is one that is always or almost always correct. This 

algorithm can find interesting strong rules of the form (A = a) -+ (B = b) from rela- 

tional databases, that is, if the value of attribute A is a,  then the value of attribute B is 

This algorithm requires only one access to each database tuple. It is thus 

optimal to within a constant factor, since at least one access is needed to each tuple to 

check whether this tuple disproves any of the previously inferred rules. 



The idea is to hash each tuple according to the value of A. When a tuple is 

hashed to an empty cell, the cell is initialized. Each cell contains the value of A, the 

Count of tuples hashed to that cell and a cumnt cell Tuple. When a tuple is hashed 

to an occupied cell, it is compared with the cell Tuple and the comparison result is 

stored in the cell Tuple. At the end of hashing a cell for (A = a) contains all the infor- 

mation necessary for deriving rules implied by (A = a), such as, the number of tuples 

whose value of attribute A are a and the differences among those tuples which are 

hashed to the same cell. 

A significant speed-up is achieved by using a test for early rejection of rules in 

an attribute. For a nominal attribute, if the value in the newly hashed tuple is dif- 

ferent from the value stored in the cell Tuple, this attribute can be removed from 

further consideration. A taxonomic or an interval attribute is rejected when the inter- 

mediate result covers more than a user specified threshold value which is the max- 

imum allowed sample coverage. 

Piatetsky-Shapiro has derived formulas for predicting rule accuracy on the 

entire database after rules are discovered in a sample. These formulas measure the 

significance of the correlation between two attributes based on some statistical tech- 

niques. 

This algorithm has been implemented in LISP and tested in relational databases. 

While most machine learning algorithms suffer from computational inefficiency, this 

algorithm can discover many strong rules from databases quickly, and can therefore 

be applied to relatively large databases. However, this algorithm may generate a large 



set of rules. For example, the author conducted an experiment on 500 tuples, each 

having 12 attributes, and the learning algorithm produced 150 rules [Pia89]. This 

system cannot perform incremental learning when the database is updated. The leam- 

ing process must be restarted after the new data are inserted into a database, because 

the criteria which determine whether a tuple should be rejected or saved have been 

changed. 



CHAPTER 3 

CONCEPTS OF LEARNING FROM DATABASES 

We introduce the concept primitives for learning from databases, discuss the 

types of rules that can be learned from databases, and then present an example to 

illustrate these ideas. 

3.1. Primitives of Learning from Databases 

Learning from databases can be characterized by a mple d>, C, A>, where D 

represents the set of data in the database relevant to a specific learning task, C 

represents a set of "concept biases" (generalization hierarchy, etc.) useful for defining 

particular concepts, and A is a language used to phrase definitions. 

3.1.1. Data Relevant to Learning Task 

Although a relational system stores a large amount of data, usually only a por- 

tion of it is relevant to a specific learning task. For example, to characterize the 

features of graduate students, only the data relevant to graduate students are useful in 

the learning process. Similarly, to distinguish graduate students from undergraduate 

students, it is only necessary to consider the tuples for students. If the relevant data 

are spread over several relations, appropriate operations should be performed on 

those relations to obtain a new relation before the learning algorithm is applied. 

Thus, D, the set of data in the database relevant to a specific learning task, should be 

obtained by performing relational operations, such as selection, projection and join, 



to collect the necessary data for learning. In this thesis, we assume that such prepro- 

cessing has been performed, and we focus only on one data relation relevant to our 

learning process. 

Most learning from examples algorithms partition the set of examples into posi- 

tive and negative sets. The positive examples are used to generalize the learning con- 

cepts, and the negative examples are used to specialize the learning concepts 

[DiM83, Mic831. However, since a relational database usually does not explicitly 

store negative data, no specified negative examples can be used to perform the spe- 

cialization process in learning. All of the data stored in the database which character- 

ize the features of a property are positive data. However, most database applications 

assume that all of the information about a property is stored in the database. There- 

fore, negative data can be derived based on the closed world assumption [Rei84]. For 

example, to distinguish graduate students from undergraduate students, the properties 

which belong to undergraduate students can be viewed as negative data. 

3.1.2. Conceptual Bias Useful for Defining Concepts 

It is often necessary to incorporate higher level concepts in the learning process 

[GeN87, Rus881. As in most learning processes, candidate rules are restricted to for- 

mulas with a particular vocabulary, that is, a basis set called the conceptual bias, per- 

mitting the learned rules to be represented in a simple and explicit form. Different 

levels of concepts can be organized into a taxonomy of concepts. The concepts in a 

taxonomy can be partially ordered according to general-to-specific ordering. The 

most general point is the null description (described by a reserved word "ANY "), and 



the most specific points correspond to the specific values of attributes in the database. 

The specification of conceptual bias is a necessary and natural process for learning. 

Usually, the conceptual bias should be provided by knowledge engineers or dornain- 

specific experts. We assume that conceptual clustering produces a taxonomic hierar- 

chy of classes of similar objects in which the subclasses of each class are mutually 

exclusive and jointly exhaustive. In ow discussion, the conceptual bias is given for 

each attribute which is represented as a concept tree. Such a concept tree is specified 

using an IS-A hierarchy and stored in a relation table, the concept hierarchy table. 

Other methods for automatically (or semi-automatically) obtaining a concept hierar- 

chy in the database are discussed in Chapter 6. 

3.1.3. Language Used to Phrase Definitions 

We use first-order predicate calculus as the primitive language for learning from 

databases. From the logical point of view, each relation tuple is a formula in the con- 

junctive normal form. For example, the tuple 

can be viewed as representing the logic formula: 

Name 
Jackson 

3 t ( (Name (t ) = Jackson) A (Category (t ) = senior) A (Major (t ) = computing) 

I\ (Birth-Place (t) = Vancouver) A (GPA (t) = 3.5) ). 

The intermediate and final learning results can also be represented using rela- 

tional tables. Such a relation is called a generalized relation. 

Category 
senior 

Major 
computing 

Birth-Place 
Vancouver 

GPA 
3.5 



Definition: A generalized relation is a relation obtained by substituting the specific 

concept(s) by the general concept(s) in some attribute(s). 

The final generalized relation may contain several tuples which represent a dis- 

junction of several conjunctions (tuples). Therefore, our logic bias [GeN87] on the 

learned rules (hypotheses) is not limited to conjunctive definitions but to a small 

number of disjunctions. Such a relaxation makes learning more effective because it 

is often necessary to represent the learning results in some disjunctive form. A max- 

imum number of disjunctions of the resulting formula, that is, the maximum number 

of tuples in a final generalized relation, can be specified by users as a threshold value 

of the learning process. For example, if a threshold value is three, the learning pro- 

cess will derive a rule consisting of at most three disjunctions with each being a 

sequence of conjuncts. 

3.2. Two Types of Rules 

There are two types of rules, characteristic rules and classification rules, which 

can be easily learned from relational databases. 

Definition: A characteristic rule is an assertion which characterizes the concepts 

satisfied by all of the data stored in the database. 

For example, the symptoms of a specific disease can be summarized as a charac- 

teristic rule. 

Definition: A classification rule is an assertion which discriminates the concepts of 

one class from other classes. 



For example, to distinguish one disease from others, a classification rule should 

summarize the symptoms that discriminate this disease from others. 

Both characteristic rules and classification rules are useful in many applications. 

A characteristic rule provides generalized concepts about a property which can help 

people recognize the common features of the data in a class. The classification rule 

gives a discriminant criterion which can be used to predict the class membership of 

new data. 

Since learning these two rules represents two different learning tasks, different 

sets of examples are required for the learning processes. The characteristic rules only 

concern the characteristics of the data. Therefore, positive examples alone are enough 

to furnish the learning task. However, for learning classification rules, the negative 

examples must be incorporated into the learning process to derive the concepts which 

have the discriminant property. 

The data relevant to the learning task can usually be classified into several 

classes based on the values of a specific attribute. For example, the data about stu- 

dents may be classified into graduate students and undergraduate students based on 

the value of the attribute "Category". We introduce new concepts target class and 

contrasting class. 

Definition: A target class is a class in which the data are tuples in the database con- 

sistent with the learning concepts. 

Definition: A contrasting class is a class in which the data do not belong to the tar- 

get class. 



For instance, to distinguish graduate students from undergraduate students, the 

class of graduate students is the target class, and the class of undergraduate students 

is the contrasting class. 

3.3. An Example 

To illustrate these ideas, Table 3.1 is given as a relation of a sample university 

database. 

Example 3.1. "Student" is a relation of a sample university database with attributes 

Name, Category, etc. Suppose that our task is to learn characteristic rules of graduate 

students. 

Name 
Anderson 

Bach 
Carey 
Fraser 
Gupta 
Hart 

Jackson 
Liu 

Meyer 
Monk 
Wang 
Wise 

Category 
M.A. 
junior 
junior ; g;g I Ri~hm;~d I so homore chemist 
senior com utin Victoria 
Ph.D. biolo Shan ai 

so homore music Bumab 3.0 

M.S. 
Ph.D. 

Major 
history 
math 

liberal arts 

Table 3.1. A relation Student in a sample university database. 

physics 
math 

Ph.D. 
M.S. 

freshman 

Clearly, only the facts related to "graduates" in the database are relevant to this 

learning task. Therefore, to obtain the relevant set of data, D, selection should be 

performed on the database. However, since there is no explicit attribute value "gra- 

duate" stored in the student "Category", a concept hierarchy table specifying the rela- 

Birth-Place 
Vancouver 

Calgary 
Edmonton 

GPA 
3.5 
3.7 
2.6 

Ottawa 
Bombay 

computing 
statistics 
literature 

-- 

3.9 
3.3 

- 

Victoria 
Nanjing 
Toronto 

3.8 . 
3.2 
3.9 



tionship between the values in category and "graduates" should be consulted in order 

to extract the relevant set of data. 

We then examine C, the conceptual bias. Suppose the concept hierarchy table 

of Figure 3.1 is specified in the university database, where A c B indicates that B is a 

"generalization" of A. 

{ computing, math, biology, chemistry, statistics, 
physics } c science 

( music, history, liberal arts, literature ) c art 
{ freshman, sophomore, junior, senior ) c undergraduate 

M.S., M.A., Ph.D. ) c graduate 
( Bumaby, Richmond, Vancouver, 

Victoria ) c British Columbia 
{ Calgary, Edmonton ) c Alberta 
{ Ottawa, Toronto ) c Ontario 
( Bombay } c India 
[ Shanghai, Nanjing ) c China 
( China, India ) c Foreign 
[ British Columbia, Alberta, Ontario ) c Canada 
{ 2.0 - 2.9 ) c average 
[ 3.0 - 3.4 ) c good 
( 3.5 - 4.0 } c excellent 

Figure 3.1. A concept hierarchy table of the university database 

The specified concept hierarchy represents a taxonomy of concepts of the values 

in an attribute domain, which can be organized as a concept tree for each attribute 

domain. The four concept trees in relation "Student" are in Figure 3.2. 



ANY 

a) Concept tree for "Category" 

cmpt math physics biology.. literature music history .. 
b) Concept tree for "Major" 

ANY 

A ,,\ ,\ 
B.C. Alberta .. India China 

/\ A I\ I\ 
Burnaby Victoria Edmonton .. Bombay .. Nanjing .. 

c) Concept tree for "Birth-Place" 

(to be continued) 



(continued) 

excellent I An 
2.0 2.9 3.0 3.4 3.5 4.0 

d) Concept tree for "GPA" 

Figure 3.2. Concept trees for the four attributes 

After consulting the appropriate concept tree, the set of data about "graduates" 

can be obtained by selection of only those students who are in the category of gradu- 

ates, that is, their category values are in ( M.S., M.A., Ph.D. ). Retrieved data are 

shown in Table 3.2. 

Name 
Anderson 

Fraser 
Gupta 
Liu 
Monk 
Wang 

Table 3.2. The set of data relevant to "graduates" 

Finally, we examine the language A. Each positive instance is stored as a tuple 

in the data relation, which can be viewed as a logic formula in conjunctive normal 

form. For example, each tuple in Table 3.2 is a conjunction of 5 conjuncts. After the 

learning process, the learned rule is represented by a small number of tuples (I thres- 

hold) in the final generalized relation. Each tuple is in conjunctive normal form and 



the relationship among these tuples is disjunction. For example, Table 3.3 shows the 

final generalized relation derived by the learning process from data D (Table 3.2) and 

the given conceptual bias (Figure 3.1 and Figure 3.2). 

Canada excellent 
science Forei 

Table 3.3. The learned rule in relation table form 

This final generalized relation corresponds to a rule which is in a disjunctive 

normal form with 2 disjuncts, and each disjunct is a conjunction of 3 conjuncts. 



CHAPTER 4 

ATTRIBUTE-ORIENTED INDUCTION IN RELATIONAL DATABASES 

Efficient induction techniques in relational databases are challenged by the large 

size of relational databases. Most existing algorithms for learning from examples 

conduct exhaustive searches of the given concept space, which makes the algorithms 

infeasibly slow for large database applications [CoF83]. Furthermore, although rela- 

tional databases provide many facilities which have been well implemented, most 

machine learning algorithms do not take advantage of these facilities. Those learning 

systems suffer from computational inefficiency when they are used for learning from 

relational databases. 

To make the learning mechanism applicable in relational databases, the learning 

algorithm should be able to utilize the database implementation techniques and com- 

pute efficiently. We develop an attribute-oriented induction approach which can 

effectively learn the characteristic rules and classification rules from relational data- 

bases [CCH89b]. Our approach integrates database operations with the learning pro- 

cess and provides a simple and efficient way of learning from large databases. In 

contrast to the tuple-oriented approach, the attribute-oriented approach performs gen- 

eralization attribute by attribute. The training data are examined one attribute at a 

time. After the generalized sub-concepts on each attribute have been generated, the 

sub-concepts are combined to form the entire concept. Our approach is demonstrated 

by two algorithms, the LCHR algorithm and the LCLR algorithm. 



4.1. Learning Characteristic Rules 

Since a large number of examples stored in the database usually provides infor- 

mation rich enough to characterize a property, it is important to learn characteristic 

rules from databases. 

The first algorithm we developed is the LCHR &earning CHaracteristic Rules 

from relational databases) algorithm [CCH89a]. In this algorithm, an attribute- 

oriented concept tree ascending technique is applied which substitutes the lower-level 

concept of the attribute in a tuple by its corresponding higher-level concept and thus 

generalizes the relation. As a result, different tuples may be generalized to the same 

concept. By eliminating identical tuples and using a threshold value to control the 

generalization process, the final generalized relation consists of only a small number 

of tuples, which can be transformed to a simple logic formula. We examine such a 

generalization procedure by analyzing the learning process in Example 3.1. 

Since the task of Example 3.1 is to learn the characteristic rule for graduate stu- 

dents, it is unimportant to distinguish M.S. students and Ph.D. students. As long as 

"graduate students" have been selected as the set of relevant data shown in Table 3.2, 

the attribute "Category" can be removed in the learning process. 

The first attribute, "Name", is the key of the relation. Since each key or candi- 

date key is distinct in a relation, it represents a large set of distinct values which 

should be generalized. If there is no higher level concept provided in the concept 

tree, the attribute should be removed in the learning process. This process can also 

be viewed as first generalizing the values to "ANY" (or "null" description), and then 



removing the attribute since "ANY" does not provide interesting information on the 

attribute. Removal of an attribute may also apply to a non-key attribute under similar 

conditions. Therefore, we have 

Generalization Strategy 4.1. (Attribute Removal) If there is a large set of distinct 

values for an attribute but there is no higher level concept provided for the attribute, 

the attribute should be removed during generalization. 

Reasoning. 

Removing attributes corresponds to the generalization rule, dropping conditions, 

in learning from examples [Mic83]. Consider a tuple as a set of conjuncts in the logic 

forms, and an attribute value as one of the conjuncts. By removing a conjunct, we 

eliminate a constraint and thus generalize the rule. If there is a large set of distinct 

values for an attribute, the large set of values must be generalized, because the learn- 

ing task is to derive the generalized concepts. However, if there is no higher level 

concept provided for the attribute, it cannot be generalized by ascending the concept 

tree. Therefore, the attribute should be removed. 0 

The key of a relation may consist of a set of decomposable components. For 

example, two components, "student-id" and "course-id", form a composite key for the 

relation "student-course-grade". Generalization should be performed on each com- 

ponent of the composite key. Moreover, generalization may even be performed on a 

single key attribute if the key consists of decomposable subcomponents. For exam- 

ple, "student-id" may encode information about starting year and department, thus 

generalization can still be performed on such a single key to obtain concepts like 



"computer science students" or "new students". To simplify subsequent discussion, 

we assume that any single attribute value is atomic (not decomposable). In general, 

we have 

Generalization Strategy 4.2. (Generalization on the smallest decomposable com- 

ponents) Generalization should be performed on the smallest decomposable com- 

ponents of a data relation. 

Reasoning. 

Learning characteristic rules is essentially a process of learning from positive 

examples only. The least commitment principle (that is, commitment to minimally 

generalized concepts) should be enforced for effective learning. By generalizing the 

least decomposable components, we may discover the relationships among such com- 

ponents without losing information about their composite components. 0 

We then examine the remaining three attributes. None of these attributes is a 

key or a candidate key. However, each attribute contains many distinct values and is 

associated with some higher level concept in the concept tree of Figure 3.2. Clearly, 

substituting the value of an attribute by its higher level concept in the concept tree 

generalizes the rule, e.g., from "physics" to "science" and from "Vancouver" to 

"B.C.". In general, we have 

Generalization Strategy 4.3. (Ascending the concept tree) I f  there are many dis- 

tinct values for an attribute and there exists a higher level concept in the concept tree 

for the attribute, each value in the attribute of the relation should be substituted by a 

higher level concept in the learning process. 



Reasoning. 

This strategy corresponds to the generalization rule, climbing generalization 

trees [Mic83]. The substitution of an attribute value by its higher-level concept 

makes the tuple cover more cases than the original one and thus generalizes the tuple. 

Ascending the concept tree one level at a time ensures that the least commitment 

principle is followed and the overgeneralization is avoided. 

By removing two attributes and generalizing the three remaining ones, the rela- 

tion depicted in Table 3.2 is generalized to a new relation illustrated in Table 4.1 

(with redundant tuples eliminated). 

Table 4.1 is a generalized relation with five tuples which implies a rule with five 

Major 
art 

science 
science 
science 
science 

disjuncts. Obviously, further generalization is needed to reduce the number of tuples. 

In practice, it is often necessary to set up a threshold, an upper bound on the number 

Table 4.1. A generalized relation 

Birth-Place 
B.C. 

Ontario 
B.C. 
India 
China 

of tuples in the final generalized relation. Suppose our threshold value is set to three 

GPA 
excellent 
excellent 
excellent 

good 
good 

in this example. Since only the attribute "Birthplace" contains four distinct values, 

generalization should be performed on this attribute by ascending one level in the 

concept tree resulting the relation shown in Table 4.2. 



( Major I Birth-Place I GPA ] 
Canada excellent 

science Canada excellent 
science Forei 

Table 4.2. Further generalization of the relation. 

Since generalization is controlled by the threshold value, we have 

Generalization Strategy 4.4. (Threshold control) If the number of distinct values 

in a resulting relation is larger than the specijied threshold value, further generaliza- 

tion on this attribute should be pel3formed. 

Reasoning. 

If the number of distinct values in a resulting relation is larger than the specified 

threshold value, it should be generalized. Otherwise the final generalized relation 

will contain more tuples than the specified threshold value. 0 

Notice that generalization can be performed on one attribute several times con- 

secutively by ascending several levels up a concept tree without generating inter- 

mediate relations. Such localized generalization on one attribute saves processing 

cost [Win75]. For example, the generalization on "Birth-Place" can be performed 

twice because the first generalization produces four distinct values, which is still 

above the threshold value, and it is necessary to perform one additional generaliza- 

tion. Therefore, we obviate the need to generate Table 4.1; only Table 4.2 is gen- 

erated. 

The above processing ensures that the number of distinct values in each attribute 

of the resulting relation is no larger than the specified threshold value. However, the 



total number of tuples in the resulting relation may still be above the threshold value. 

In this case, further generalization on some attribute should still be performed. The 

choice of the generalized atmbute may depend on the tuple reduction ratio, simplicity 

of the final learned rules, etc. 

Among the three resulting tuples, simplification can be performed by "unioning" 

the f is t  two tuples if the set representation of an atmbute is allowed. Logically, this 

is equivalent to 

( x l A y  A z ) V ( x 2 A y  A z ) = ( x 1 V x 2 ) A y  Az .  

Thus we obtain Table 4.3: 

Birth Place 
art, science Canada excellent 

science Forei 

Table 4.3. Simplification of the generalized relation. 

Since art and science cover all of the Major areas, {art, science) can be general- 

ized to ANY and then removed from the representation. Therefore, the final general- 

ized relation is shown in Table 3.3, which is equivalent to rule (4.1 ). That is, a gra- 

duate is either a Canadian with an excellent GPA or a foreign student, majoring in 

sciences with a good GPA. 

(4.1) v (x) graduate(x) => 
( Birth-Place(x) E Canada A GPA(x) E excellent ) V 
( Major(x) E science A Birth-Place(x) E Foreign /\ GPA(x) E good ). 

Similarly, if the algorithm is applied to learn rules for "undergraduate students", 

we will obtain rule (4.2 ), that is, all undergraduate students are Canadians. 



(4.2) v (x) undergraduate(x) => Birth-Place(x) E Canada. 

As shown in rules (4.1) and (4.2), since the learned rules cover all of the data in 

the learning class, they are the necessary conditions of the learning class. We will 

discuss this in more detail in Chapter 6. 

From this discussion, the learning algorithm, LCHR, can be summarized as fol- 

lows. 

Algorithm 4.1. LCHR -Learning characteristic rules from relational databases. 

Notation. ( ) is used to enclose a comment. P is a relation of the database relevant 

to the learning task, which consists of a set of attributes A,, 1 < i I n,  where n is the 

number of attributes in relation P. N stands for the total number of tuples in the 

current (working) relation, and di is the number of distinct values of attribute Ai of 

the current relation. T stands for the user-specified threshold value, i.e., the max- 

imum number of disjuncts in the resulting rule. 

Input. 
(i) a relational database, 

(ii) a concept hierarchy table, 

(iii) the learning task, and 

(iv) the threshold value (T). 

Output. A characteristic rule learned from the database. 

Method. 

Step 1. Select the task-relevant data, relation P , using relational operations and 



concept hierarchy table when necessary. (The method was discussed in Chapter 

Step 2. Perfom attribute-oriented induction, which is described by the follow- 

ing procedure. 

Procedure Attribute-oriented induction for learning characteristic rules; 

{ Generalization is performed as follows on each attribute Ai of P . ) 
BEGIN 

FOR EACH attribute Ai DO 
BEGIN 

WHILE di > T DO 
IF there is no higher level concept in the concept hierarchy table for 

the values of A; 
THEN remove attribute Ai 
ELSE { There is a higher level concept. ) 

Substitute the values by its corresponding minimal generalized 
concept, and 
Eliminate redundant tuples; 

END 
{Nowdi  I T  ) 
WHILEN > T  DO 
BEGIN 

Generalize the attributes containing substantially more distinct 
values or those with a better reduction ratio (i.e., reducing to 
a less number of tuples), and 

Eliminate redundant tuples; 
(NowN S T  ) 

END 
END. {Attribute-oriented inductionfor learning characteristic rules) 

Step 3. Simplify the generalized relation. 

If only one attribute of several tuples contains distinct values, the several tuples 

can be reduced into one by taking the distinct values of that attribute as a set. 

Step 4. Transform the final relation into logic formulas. 

Based on the semantics of relations expressed in logic [GMN84], one tuple is 



transformed to a conjunctive normal form, and multiple tuples are transformed 

to a disjunctive normal form. 

We are now in a position to state the following theorem. 

Theorem 4.1. Algorithm LCHR correctly learns characteristic rules from relational 

databases. 

Proof Sketch. 

Step 1 collects relevant data in the database for the learning task. Generaliza- 

tion Strategy 4.2 is used in step 2 to ensure that generalization is performed on the 

least decomposable components. The THEN-part in the first WHILE loop of Step 2 

is based on Generalization Strategy 4.1 (removing attributes), and the ELSE-part is 

based on Generalization Strategy 4.3 (ascending the concept tree). The second 

WHILE loop in step 2 is based on Generalization Strategy 4.4 (controlled by the 

threshold value). Each generalization statement in both WHILE loops applies the 

least-commitment principle based on those strategies. Finally, steps 3 and 4 apply 

logic transformations based on the correspondence between relational tuples and 

logic formulas. Thus, the obtained rule should be the desired result which summar- 

izes the characteristics of the class. 

4.2. Learning Classification Rules 

Besides the characteristic rules, the classification rules are also very useful in 

many applications. Since a relational database stores a vast amount of data, it can be 
' 

viewed as a set of typical samples of the real world. The classification rules derived 



from a databases can be used to classify the new data, and predict the properties of 

the new data according to their class memberships. 

We now describe the second database learning algorithm, LCLR, Learning 

CLassification Rules from databases [CCHgO]. Similar to the LCHR algorithm, the 

LCLR algorithms also applies the attribute-oriented induction technique. The differ- 

ence is that in the extraction of classification rules, the facts which support the target 

class serve as positive examples, while the facts which support the other classes serve 

as negative examples. Since the learning task is to discover the concepts that have 

discriminant properties, the portion of facts in the target class that overlaps with other 

classes should be detected and removed from the description of classification rules. 

We analyze such a learning process using another example. 

Example 4.1. Learning a classification rule which distinguishes graduate students 

from undergraduate students in the relation of Table 3.1. 

Since all of the classes relevant to the learning task are used in the learning pro- 

cess, it is necessary to extract the data related to those classes. For this learning task, 

the data in the target class, graduate students, serve as positive examples, and the data 

in the contrasting class, undergraduate students, serve as negative examples. Clearly, 

the learning process should be performed on the entire relation in Table 3.1. To facil- 

itate the learning process, the data should be clustered by classes. The attribute 

"Category" can be removed after the relevant data are selected, which is the same as 

that in LCHR because this attribute is not related to the learning task afterwards. 



Similar to LCHR, this algorithm repeatedly performs generalization by "ascend- 

ing the concept tree" or by "attribute removal". After removing two attributes, Name 

and Category, and generalizing the three remaining attributes, Major, Birth-Place and 

GPA, the relation depicted in Table 3.1 is generalized to a new relation as illustrated 

in Table 4.4 (with redundant tuples eliminated). The first five tuples belong to the 

class graduate-student, and the last six tuples belong to the class undergraduate- 

student. 

Learning Concept Maior Birth Place GPA Mark 
art B.C. excellent 

science Ontario excellent 
graduate science B.C. excellent * 

science India good 
science China good 
science Alberta excellent 

art Alberta average 
undergraduate science B.C. average 

science B.C. excellent * 
I art B.C. average 
I art Ontario excellent 

Table 4.4. A generalized relation 

As shown in Table 4.4, different classes may share tuples. We define overlap- 

ping tuples as follows. 

Definition: A set of overlapping tuples is a set of tuples which are shared by dif- 

ferent classes. 

Obviously, the third tuple of class graduate-student and the fourth tuple of class 

undergraduate-student are overlapping tuples, which indicates that a B.C. born stu- 

dent, majoring in science with good GPA, may or may not be a graduate student. 

Therefore, in order to get an effective classification rule, care must be taken to handle 



the overlapping tuples. We have 

Generalization Strategy 4.5. (Handling overlapping tuples) If there are overlap- 

ping tuples in both target and contrasting classes, these tuples should be marked and 

eliminated from the final generalized relation. 

Reasoning. 

Since the overlapping tuples represent the same assertions in the target class and 

the contrasting class, they cannot be used to characterize the distinction of the target 

class from the contrasting class. By detecting and removing the overlapping tuples, 

only the assertions which have a discriminating property remain in the classification 

rule, which guarantees the correctness of the learned rules. Removing a tuple is a 

specialization process, which is the opposite operation of the generalization rule, 

adding options. Consider multiple-tuples as a disjunction, and each tuple as one of 

the disjuncts. By removing a disjunct, we eliminate one option and thus specialize 

the rule. 17 

After marking the third tuple in the class of graduate-student and the fourth 

tuple in the class of undergraduate-student, the target class contains four unmarked 

tuples as shown in Table 4.4, which implies that the resulting rule will contain four 

disjuncts. Suppose the same threshold value, 3, is specified as before. Then based on 

the arguments similar to those in LCHR, further generalization is performed on the 

attribute "Birth-Place", which results in the relation shown in Table 4.5. 



Learninn Concept Maior Birth Place GPA Mark 
art Canada excellent * 

graduate science Canada excellent * 
science Foreign good 
science Canada excellent * 

undergraduate arts Canada average 
science Canada average 

art Canada excellent * 
Table 49.  A generalized relation 

Notice that the overlapping mark should be inherited in their generalized tuples 

because the generated concept still overlaps with the concept in other class(es). 

Moreover, since such generalization may produce new overlapping tuples, overlap- 

ping checking should be performed in each ascending of the concept tree. The judge- 

ment for further generalization or attribute removal should rely on the unmarked 

tuples in the target class. The generalization process is repeated until the number of 

distinct values in each attribute in the unmarked tuples is under the specified thres- 

hold value for the target class. Then, if the target class contains more unmarked 

tuples than the threshold value, further generalization on some selected attribute is 

still needed, which is similar to LCHR. 

After eliminating the marked tuples, only one tuple is left in the target class in 

the example. Based on the same principles in LCHR, the final generalized relation 

can be transformed to the corresponding logic formula. The classification rule for 

"graduates" is rule (4.3 ): if a student is from a foreign country, majoring in sciences 

with a good GPA, helshe is a graduate student. 

(4.3) v (x) graduate(x) <= 
Major(x) E science A Birth-Place(x) E Foreign /\ GPA(x) E good 



Similarly, the classification rule for "undergraduates" is rule (4.4 ): if a student is a 

Canadian with an average GPA, helshe is an undergraduate student. 

(4.4) v (x) undergraduate(x) <= Birth-Place(x) E Canada A GPA(x) E average 

In contrast to the LCHR algorithm, this algorithm learns the rule which is the 

sufficient condition of the learning concept, because the generalized rule excludes the 

concepts which cover the tuples in other classes. More discussion on this will be 

presented in Chapter 6. 

From the above discussion, LCLR algorithm can be summarized as follows. 

Algorithm 4.2. LCLR -Learning classification rules from relational databases. 

Notation. ( } is used to enclose a comment. P is a relation of the database relevant 

to the learning task, which consists of a set of attributes Ai, 1 I i I n , where n is the 

number of attributes in relation P. N stands for the total number of unmarked tuples 

in a class, and di is the number of distinct values of attribute Ai in unmarked tuples 

of a class. T stands for the user-specified threshold value, i.e., the maximum number 

of disjuncts in the resulting rule. 

Input. 
(i) a relational database, 

(ii) a concept hierarchy table, 

(iii) the learning task, and 

(iv) the threshold value (T). 

Output. A classification rule for the target class learned from the database. 



Method. 

Step 1. Select the task-relevant data of the target class and the contrasting class 

to form relation P and cluster the data by classes. 

Step 2. Perform attribute-oriented induction, which is described by the follow- 

ing procedure. 

Procedure Attribute-oriented induction for learning classification rules; 

{ Generalization is performed as follows on each attribute Ai of each class. } 
BEGIN 

FOR EACH attribute Ai DO 
BEGIN 

Perform intersection of both classes and mark the overlapping tuples; 
WHILE di in the target class > T DO 

IF there is no higher level concept in the concept hierarchy table of Ai 
THEN remove attribute Ai ; 
ELSE { There is a higher level concept. } 

BEGIN 
Substitute the values by its corresponding minimal generalized 

concept (with overlapping marks automatically inherited); 
Mark the newly generalized tuples which overlap with the tuples 

in other classes; and 
Eliminate identical tuples within each class 

END 
END 

{ Now, the number of distinct values of each remaining attribute in the 
target class is less than T . ] 
WHILE N in the target class > T DO 
BEGIN 

Generalize the attributes containing more distinct values than others 
or those with a better reduction ratio (with overlapping marks 
automatically inherited); 

Mark the newly generalized tuples which overlap with those in the contrasting 
class; and 

Eliminate identical tuples within each class 
END 

END. {Attribute-oriented induction for learning classijication rules] 

Step 3. Remove overlapping tuples and simplify the generalized relation. 



In this step, the marked tuples are first eliminated; then the simplification pro- 

cess is the same as that of LCHR. 

Step 4.  Tradorm the final relation into logic formulas. 

This step is similar to Step 4 in LCHR except that the resulting formula is a 

sufficient condition of the learning concept. 

Theorem 4.2. Algorithm LCLR correctly learns classification rules from relational 

databases. 

Proof Sketch. 

Step 1 collects the relevant data in the database for the learning task. Step 2 

generalizes the concept in each attribute either by "ascending the concept tree" (Gen- 

eralization Strategy 4.3) or by "attribute removal" (Generalization Strategy 4.1), 

which simulates the generalization process of learning from examples. Moreover, the 

specified threshold value ensures that the process of ascending of the tree terrninates 

when it reaches the threshold-controlled number of disjunctions (Generalization Stra- 

tegy 4.4), and "removing overlapping tuples" guarantees the resulting properties are 

not shared by the contrasting class (Generalization Strategy 4.5). Step 3 and Step 4 

perform simplification and transformation based on logic transformation rules. Thus, 

the obtained rule should be the desired result which characterizes the discriminating 

property of the class. 0 



CHAPTER 5 

VARIATIONS OF THE LEARNING ALGORITHMS 

In Chapter 4 we presented a general outline for learning characteristic rules and 

classification rules from relational databases and the LCHR and the LCLR learning 

algorithms. We now discuss some variations of these algorithms which can cope 

with different learning situations. 

5.1. Adjusting Thresholds for Different Learning Results 

Although there are some learning algorithms which can learn disjunctive rules 

[MiC80,MMH86], many learning algorithms learn only conjunctive rules 

[HaM77, HaM78, MCM86, Mit77, Mit82, Ver751. By permitting the threshold value 

(the maximum number of disjunctions in the resulting formula) to be a small integer, 

the LCHR algorithm and the LCLR algorithm can learn both conjunctive and disjunc- 

tive rules. Such flexibility facilitates learning in many applications. 

Algorithms LCHR and LCLR require the specification of threshold values by 

users. There could be other variations, such as predefining the threshold value by a 

database administrator or an expert. A threshold value, T, is usually small. There is 

a tradeoff between small versus moderately large threshold values. A moderately 

large threshold value may lead to relatively complex rule, containing many disjuncts 

and some half-generalized results. A small threshold value leads to a small final rela- 

tion, that is, a simple rule with few disjuncts. However, it may result in an over- 

generalized rule, and some valuable information may be lost, as the following 



example illustrates. 

Example 5.1. Different threshold values result in different learning results. 

Suppose we have a generalized relation depicted in Table 5.1. 

Canada 
science Canada excellent 
science Forei 

Table 5.1. A generalized relation. 

If the threshold value is set to 3, this generalized relation is the learning result. 

However, if 2 is the threshold value, the attribute "GPA" should be further general- 

ized, which will give the learning result shown in Table 5.2. 

I Major I Birth-Place I GPA I 

Table 5.2. The learning result with the threshold value 2. 

{art, science) 
science 

The appropriate threshold value varies in different learning situations [Fis88]. It 

is not possible to define a uniform threshold value that is suitable for any learning 

Canada 
Foreign 

task. A better way to determine a threshold value is to adjust the threshold values 

ANY 
ANY 

within a reasonable range in several tests and then examine the learning results and 

select the best one by consultation with domain experts and users. 

The final relation resulting from LCHR algorithm and LCLR algorithm may 

consist of a small set of disjuncts in which each disjunct is a set of conjuncts. The 

advantage of our approach is that we learn some disjunctive rules and still keep the 

number of disjuncts small. Note that some other algorithms such as [MiC80] can 



learn such rules as well. If disjunctive forms were allowed at the early generalization 

stage, many concepts may never be generalized because they can be represented by 

disjunctive forms. Our approach restricts disjunct construction to a later stage. A 

relaxation to this method is to allow some disjuncts in intermediate relations, which 

makes the generalization process more conservative, and thus avoids some possible 

over- generalization. 

5.2. Dealing with Different Kinds of Concept Hierarchies 

In our examples, all of the concept hierarchies are represented as the balanced 

concept trees and all of the primitive concepts reside at the same level of a concept 

tree. Hence generalization can be performed synchronously on each attribute to gen- 

eralize the attribute values at the same lower level to the ones at the same higher 

level. However, we may encounter other kinds of concept hierarchies or we may 

encounter the case where the primitive concepts do not reside at the same level of a 

concept tree. 

5.2.1. Generalization of the Concepts at Different Levels of a Hierarchy 

The concept hierarchies may be organized as unbalanced concept trees. For 

example, the left branch of a tree may have fewer levels to the leaves than the right 

branch. In these cases, synchronous tree ascension may reach the same level at dif- 

ferent stages, which may result in an incorrect generalization at that level. A similar 

problem may occur when the primitive concepts reside at the different levels of a 

concept tree. These problems can be solved by checking whether one generalized 

concept may cover other concepts of the same attribute. If one generalized concept 



covers a concept several levels down the concept tree, the covered concept is then 

substituted for by the generalized concept, that is, ascending the tree several levels at 

once. In doing so, concepts at different levels can be handled correctly and 

efficiently. 

Example 5.2. Handling an unbalanced concept tree. 

2a\ 5 
circle ellipse triangle square hexagon 

/\ 
small--circle large - -circle 

Figure 5.1. An unbalanced concept tree. 

Figure 5.1 shows an unbalanced concept tree. Based on the discussion above, as 

long as the attribute value "ellipse" has been generalized to "oval", those attribute 

values, "small-circle", "large-circle" and "circle", can be substituted by "oval" at 

once. 

This idea can be used for incremental learning as well. Relational databases are 

characterized by frequent updating. As new data become available, it will be more 

efficient to amend and reinforce what was learned from previous data than to restart 

the learning process from scratch [KuS88,MMH86]. Our algorithms can be easily 

extended to perform incremental learning. When new data are presented to a data- 

base, an efficient approach to characterization and classification of data is to fist 



generalize the concepts of the new data up to the level of the rules which have been 

learned, then the LCHR and LCLR algorithms can be used to merge the generalized 

concepts derived from the old data and the new data, which is illustrated in the fol- 

lowing example. 

Example 5.3. Incremental learning when new data are inserted into the database. 

Suppose Table 5.3 is the characteristic rule for graduate students derived from 

the original data in the database. 

Table 5.3. The generalized relation induced from the original database. 

Suppose the new data of Table 5.4 are inserted into the database. 

Table 5.4. The new inserted data. 

Instead of performing learning on the updated database from scratch, incremen- 

tal learning can be performed by first generalizing the new data to the level of the 

rule presented in Table 5.3, that derives Table 5.5. 

Canada 
science Canada excellent 

Table 55. The generalized relation for new data. 



Then merging the newly derived generalized relation (Table 5.5) and the old one 

(Table 5.3). Suppose the threshold value is 3, then the merged generalized relation 

table is Table 5.6 which is the new characteristic rule for graduate students. 

Major ( Birth-Place 1 GPA I 
science Canada excellent 
science Forei 

Canada 

Table 5.6. The new characteristic rule for graduate students. 

Such incremental learning significantly saves computational cost, especially when the 

size of the database is large. 

5.2.2. Generalization of Concepts in the Hierarchies with Lattices 

In all of our previous examples, the concept hierarchies are trees, that is, every 

node has only one parent node at most. For any concept, therefore, there is only one 

direction to perform the generalization. In some cases, however, the concept hierar- 

chy may have lattice(s). Figure 5.2 illustrates this case. 

Example 5.4. Handling a concept hierarchy with lattices. 

some 

C O U ~ T - ~  

two three four jive six seven eight .. 
Figure 5.2. A concept hierarchy with lattices. 



Clearly, the concept "two" can be generalized either to couple or few. Both gen- 

eralized concepts should be considered. Our method is to put all possible generalized 

concepts into intermediate generalized relations when a lattice is encountered, and 

then perform further generalization on all those tuples. In this example, after the 

tuple containing attribute value "two" is generalized, two new tuples, containing attri- 

bute values "couple" and "few", respectively, should be generated. For the concept 

"six", the same technique should be applied. As a consequence, the size of the gen- 

eralized relation table may increase at some stage of the generalization process 

because of the effect of a lattice. However, since the generalization is controlled by 

the specified threshold value, the generalized relation will eventually shrink in further 

generalizations. 

5.3. Nonuniqueness of Learning Results 

When a relation is generalized close to the final stage, interesting rules can often 

be discovered by generalization in several possible directions. For example, when 

the number of distinct values in each attribute has been reduced to below the thres- 

hold value, there could be several choices to select the attribute on which further gen- 

eralization should be performed. Taking different attributes to perform further gen- 

eralization may result in different learning results. Example 5.5 shows the possibility 

of nonuniqueness of the learning results. 

Example 5.5. Nonuniqueness of rules learned from the same data. 

Suppose Table 5.7 is an intermediate generalized relation for learning a charac- 

teristic rule of students. 



Table 5.7. An intermediate generalized relation. 

Major 
art 

science 
science 

art 
science 

Since Table 5.7 contains five tuples, which is beyond the specified threshold 

value of 3, further generalization is needed. However, there are 2 choices on the attri- 

Birth-Place 
B.C. 
B.C. 
B.C. 

Ontario 
Ontario 

butes to perform further generalization because the attribute "Major" and the attribute 

GPA 
good 
good 

excellent 
good 
good 

"Birth-Place" have the same tuple reduction ratio. By generalization on the attribute 

"Major", Table 5.8 can be derived. 

Table 5.8. A possible learning result. 

This table corresponds to the rule, all of the studentsfrom the province of B.C. 

have good or excellent GPAs, and all of the students from the province of Ontario 

have good GPAs. 

On the other hand, if the further generalization is performed on the attribute 

"Birth-Place", Table 5.9 should be the result. 

Table 5.9. Another possible learning result 



This rule represents a different concept from the previous one, that is, all stu- 

dents majoring in art have good GPAs, and all students majoring in science have 

good or excellent GPAs. 

In such a situation, it is often desirable to perform generalizations in several 

directions to obtain several final generalized relations, which corresponds to the fact 

that different people learn differently from the same examples. The final generalized 

relations should be examined by users or experts to filter out some trivial generaliza- 

tions and preserve interesting results. 

5.4. Incorporating Quantitative Information 

Both characteristic rules and classification rules learned by LCHR algorithm and 

LCLR algorithm represent qualitative knowledge rules which do not provide and util- 

ize any quantitative information. These algorithms can be easily extended to dis- 

cover additional quantitative information which can be used to provide quantitative 

evaluation, as well as handle noisy data and exceptional cases. 

The technique we adopt is to add a special attibute, Votes, to each generalized 

relation. This attribute registers the number of tuples in the original relation which 

are generalized to one tuple in the current generalized relation. For example, a gen- 

eralized tuple associated with the Votes value 30 indicates that this tuple is derived 

from 30 tuples in the original relation. Based on the values in the attribute Votes, we 

can calculate two weights, t-weight and d-weight, where t stands for typical, and d 

stands for discriminant. 

Definition: Let qa be a generalized concept. The t-weight for qa is the percentage of 



tuples covered by qa in a class. 

Formally, the t-weight for concept qa can be defined as follows. 

Votes (qa ) t-weight = - 
I; Votes (qi )  

i =l 

where N is the number of tuples in the h a 1  generalized relation, and q, is in ( q  1 .. 

q~ 1. 

The range of values for t-weight is [0, 11. This weight may be interpreted as a 

measure of the typicality or the representativeness of a generalized tuple as the 

characteristic rule of the data. 

Definition: Let q, be a generalized concept, and Cj be a class. The d-weight for q, 

in C, is the ratio of the number of tuples in Cj covered by q, to the total number of 

tuples in all of the classes covered by q,. 

The following formula is used to calculate the d-weight of the concept qa in 

class Cj: 

Votes (q, in Cj) 
d-weight = K 

X Votes (q, in Ci ) 
i=l 

where K stands for the total number of the classes, and C, is in (C 1 .. CK ). 

The range of values for d-weight is [0, 11. A high d-weight indicates that the 

concept is mainly derived from the current class, and a low d-weight implies that the 

concept is shared by other class(es). 



5.4.1. Association of Quantitative Information in the Induction Process 

By calculating the t-weight when learning characteristic rules, and calculating 

t-weight and d-weight when learning classification rules, the learning process can be 

augmented with quantitative evaluation. We present some examples to illustrate 

these ideas. 

Example 5.6. Calculating the t-weight for a characteristic rule. 

Suppose the following final generalized relational table is derived as the charac- 

teristic rule of students. 

Table 5.10. An example of a characteristic rule. 

Major 
art 

science 
science 

We can discover additional quantitative information by calculating the t-weight. 

The t-weight for the first tuple in Table 5.10 can be calculated as follows. 

Similarly, the t-weight for second and third tuples are 28% and 39%, respectively. 

Birth-Place 
Canada 
Canada 
Canada 

Then we conclude that all of the students are Canadian students, among which 33% 

of the students major in art with good GPAs, 28% of the students major in science 

GPA 
good 

excellent 
average 

with excellent GPAs, and 39% of the students major in science with average GPAs. 

Votes 
30 
25 
35 

Example 5.7. Calculating the t-weight and the d-weight for a classification rule. 

Sup~ose we obtain the following final generalized relation for the classification 

rule of graduate students. 



I Learning Conce~t Maior Birth Place GPA Mark Votes 1 
graduate science Canada excellent * 65 

art Canada good * 15 
science Foreign good * 45 

undergraduate science Canada excellent * 65 
art Canada good * 60 

science Foreign good * 10 
! 

Table 5.11. An example of a classification rule. 

Since all of the generalized concepts in these two classes are overlapping tuples, 

no classification rule can be learned if the original algorithm is applied. However, we 

still can discover valuable information if we calculate the t-weight and the d-weight. 

Similar to the calculation in the last example, by applying the formula (5.1), we 

obtain the information that 52% graduate students are from Canada, majoring in sci- 

ence with excellent GPAs, 12% graduate students are Canadian and majors in art 

with good GPAs, and 36% graduate students come from foreign counmes and major 

in science with good GPAs. 

Based on formula (5.2), the d-weight for the first tuple in the target class gradu- 

ate is calculated as follows. 

We can conclude that if a student is from Canada and majors in science with an 

excellent GPA, he/she is a graduate student with a frequency of 50%. Similarly, 

when a student has the conditions in the second tuple or the third tuple, the frequency 

that the student is a graduate student are 20% or 82%, respectively. Note that if a gen- 

eralized tuple is not shared with other classes, its d-weight will be 100%. 
r. 



In the real world, the instances of different classes will often be overlapped. By 

calculating the d-weight, important information implied in this kind of data can be 

discovered. The learned rules provide quantitative criteria to determine the class 

membership of new data. 

5.4.2. Handling Noisy Data and Exceptional Cases 

Many learning systems have been developed under the assumption that there 

exists no noise in the training examples. As a consequence of this assumption, careful 

data gathering is required to ensure that the training examples are always paired with 

their correct classification and that their descriptions are perfectly reliable in the 

sense that they are error-free [MaK87, WoC881. In real applications, however, a 

learning system has to operate in an enviroment where there are different sources of 

uncertainty: 

(1) incorrect, inconsistent and inaccurate values may be present; 

(2) unusual, less representative values may be included; 

(3) misclassified values may exist. 

Many researchers consider a small number of unusual cases as noisy data, and 

many techniques have been developed to cope with noisy - data 

[MaK87, Qui86, WoC881. By incorporating quantitative information and using sta- 
'I 

tistical techniques, our algorithms can be extended to handle noisy data and excep- 

tional cases presented in the relational database. 

* Since the Votes of a generalized tuple indicates the number of tuples that it is . . 

generalized from, and t-weights are derived from Votes, t-weights carry the statistical 



information of a database. A high t-weight implies that the concept is induced from a 

majority of data, and a very low t-weight implies that the concept is derived from 

some rare, exceptional cases. Therefore, a high t-weighted tuple should be 

in the generalized relation while a very low t-weighted tuple should be removed from 

the generalized relation if the goal is to learn the characteristics of a majority number 

of tuples. By doing so, the h a 1  generalized rule will characterize the majority of the 

facts in the database. Example 5.8 illustrates this idea. 

Example 5.8. Pruning noisy data and exceptional cases from the generalized relation 

in Table 5.12. 

Table 5.12. A generalized relation with an exceptional case. 

Major 
art 

science 
science 

Obviously, the tuples in this generalized relation carry different t-weights, 

which indicates that some concepts come from the majority of data, but some do not. 

Birth-Place 
Canada 
Canada 
Foreign 

In general, we may specify a pruning threshold in the learning process. If the prun- 

ing threshold value is set to 5%, the first tuple should be dropped since its t-weight is 

GPA 
average 

excellent 
good 

1%. Then we conclude that 99% of students are science students with GPA ranging 

Votes 
1 

64 
35 

from good to excellent. 

As discussed in the presentation of the LCLR algorithm, there could be some 

overlapping tuples discovered in learning classification rules. Some of these overlap- 

ping tuples may come from an incorrect classification, and some may belong to some 



exceptional case(s). By incorporating some statistical techniques, these kinds of noisy 

data and exceptional cases can be detected. We adopt a method that measures the 

correlation coefficient between a class and a generalized tuple 

[ImC83, KKM88, Pia891. 

We define association ratio, @, as follows. 

Definition: Let C be a class, and Q be a generalized tuple. The association ratio, 4, 

is the correlation coefficient between C and Q calculated by the following formula. 

where N is the total number of tuples in the original task-relevant relation, IC I is the 

total number of votes in the class C ,  lQ I is the number of votes of a generalized tuple 

Q in all classes, and IC&Q I is the number of votes of Q in class C. 

Measuring the association ratio is a standard statistical problem for 2 * 2 con- 

t 
tingency tables. This formula is derived from the formula (5.4) fbr calculating the 

sample correlation coefficient. 

which is approximately normally distributed PmC83, KKM88, Pia891. 

The possible values of association ratio 4 range from -1 to 1, which can be 

interpreted as the significance of association between C and Q . The more positive 4 

is, the stronger is the association. This means that when 4 is close to 1, high I C I will 



be likely associated with high l Q I, and low I C I will be likely associated with low 

l Q I. The more negative @ is, the more negative is the association; that is, high I C I 

may associate with low l Q I when @ is close to -1, and vice versa. In general, a very 

low @ indicates that the generalized tuple Q is misplaced in the class C ,  or belongs to 

the exceptional cases in the class C.  

A threshold value, significance threshold, can be specified by users or experts. 

If the association ratio + for C and Q is below the significance threshold, the general- 

ized tuple Q should be removed from the class C.  We use Example 5.9 to show this 

method. 

Example 5.9. Measurement of the association ratio between a class and a general- 

ized tuple in Table 5.13. 

Learning Conce~t Maior Birth Place GPA Mark Votes 
graduate science Canada excellent * 40 

. art Canada excellent 12 
science Foreign good * 48 

undergraduate science Canada excellent * 130 
art Canada good 68 

science Foreign good * 2 

Table 5.13. A generalized relation for a classification rule. 

By calculating the association ratio + for the third tuple in Table 5.13, we can 

determine whether this tuple is significantly correlated with the class graduate. 

Clearly, we have 



Suppose the significance threshold value is set to 0.5. Then by this calculation, we 

can conclude that the concept represented by the third tuple is significantly correlated 

with the class graduate. 

The sixth tuple in the Table 5.13 represents the case of another extreme. 

lC&Ql = 2, 
ICI = l3O+ 68+2=2OO, 
IQI =48  +2=5O,  
N=40+12+48+130+68+2=300, 

Since the @ value is smaller than the significance threshold value, we can conjec- 

ture that this generalized tuple is possibly derived from some exceptional cases or 

from the data which are misclassified. After this tuple is excluded, the third tuple in 

the class graduate becomes the unmarked tuple which should be included in the 

learned rule. 

We have studied several variations of the database learning algorithms in this 

chapter. With these variations, our learning method can be extended to learning in 

different situations. Further discussions on the two learning algorithms will be 

presented in the next chapter. 



CHAPTER 6 

DISCUSSION 

We study the relationship between LCHR algorithm and LCLR algorithm, com- 

pare our algorithms with other learning from examples algorithms, and discuss the 

automatic discovery of conceptual hierarchies. 

6.1. Necessary Condition versus Sufficient Condition 

We have developed two interesting algorithms, LCHR and LCLR, for learning 

from databases. Both algorithms are attribute-oriented data-driven algorithms which 

begin with a large number of data and perform generalization, attribute by attribute, 

and step by step, without refemng to a fixed model. 

The first algorithm, LCHR, takes task relevant tuples as positive examples and 

adopts the least commitment principle (commitment to minimally generalized con- 

cepts), ascending the concept tree only when necessary. Since the generalized rule 

covers all of the positive examples in the database, it forms the necessary condition 

of the learning concept. That is, the rule is in the form of 

learning-class (x) => condition(x) 

where condition(x) is the disjunctive or conjunctive formula containing x. The con- 

dition must hold for all the examples of the database in the learning class. However, 

since data in other classes are not taken as negative examples in the learning process, 

there could be data in other classes which also meet the specified condition. There- 



fore, the learned rule is not a sufficient condition but a necessary condition of the 

learning class. 

The second algorithm, LCLR, treats the tuples of the learning class as positive 

examples and tuples of the contrasting class(es) as negative examples. Nevertheless, 

it adopts the least commitment principle by ascending the concept tree only when 

necessary. Figure 6.1 illustrates this idea schematically. The dots represent the tuples 

in one class, and the stars the tuples in another class. Since the generalized rule 

excludes the generalized concepts which cover the tuples in the contrasting classes, 

the rule distinguishes the target class from the contrasting classes. However, the gen- 

eralization may not cover all of the positive examples of the target class in the data- 

base. Therefore, the learned rule is a sufficient condition of the learning concept but 

may not be the necessary condition of the learning concept. The rule should be in the 

form of 

That is, if it meets the specified condition, it must be in the target class. 

Figure 6.1. Problem space in learning classification rules 

As a special case in which there are no overlapping data discovered (marked) in 

the learning process by the LCLR algorithm, the learned rule represents both 



necessary and sufficient conditions of the target class because it covers all of the 

examples in the target class but no examples in the contrasting classes. The rule is of 

the form 

6.2. A Comparison with Other Learning Algorithms 

Our approach has many distinct features when compared with other learning 

algorithms. 

6.2.1. The Positiveness of the Learning Examples 

Many learning from examples algorithms perform learning from both positive 

examples and negative examples [DiM83, Mic831. The candidate elimination algo- 

rithm, the AQ I 1  algorithm and the AQ 15 algorithm are typical learning systems 

which follow this paradigm [DiMgl, MMH86, Mit771. In the learning process, both 

types of examples are necessary and play different roles. The posi&e examples are 

used for generalization, and the negative examples are used for specialization. How- 

ever, since negative examples are not stored in relational databases explicitly, our 

approach mainly relies on the generalization process. In order to avoid over- 

generalization, our approach adopts the least commitment principle and threshold 

control. Negative data are never used in the LCHR algorithm because learning 

characteristic rules does not have to incorporate such data. In the LCLR algorithm, 

the data in the contrasting classes are used to exclude the features of the target class 

which are shared by the contrasting classes. Since the data in the target class and the 



contrasting classes are examined simultaneously by an attribute-oriented approach, 

this specialization process is different from that of learning from examples. 

6.2.2. Search Space 

A concept tree ascending technique is the major generalization technique used 

in both attribute-oriented generalization and tuple-oriented generalization. However, 

the tuple-oriented approach performs generalization tuple by tuple, but the attribute- 

oriented approach performs generalization attribute by attribute. We compare the 

search spaces of our algorithms with that of a typical method of learning from exam- 

ples, the candidate elimination algorithm [CoF83, GeN87, Mit77, Mit821. 

In the candidate elimination algorithm, the set of all concepts which are con- 

sistent with the training examples is called the version space of the training examples. 

The learning process is the search in this version space to induce a generalized con- 

cept which is satisfied by all of the positive examples and none of the negative exam- 

ples. 

Since generalization in an attribute-oriented approach is performed on indivi- 

dual attributes, a concept hierarchy of each attribute can be treated as a factored ver- 

sion space. Factoring the version space may significantly improve the computational 

efficiency. Suppose there are p nodes in each concept tree and there are k concept 

trees (attributes) in the relation, the total size of k factorized version spaces is pk. 

However, the size of the unfactorized version space for the same concept tree should 

,be p [SuF86]. This can be verified by Example 6.1. 

Example 6.1. The entire version space and the factored version space for the concept 



hierachy specified in Figure 6.2. 

{ math, physics ) c science 
{ M.S., Ph.D. } c graduate 

Figure 6.2. A concept hierarchy table. 

The corresponding entire version space and factored version space are Figure 

6.3a and Figure 6.3b, respectively. 

graduate Ascience c 
graduate Amath MS. Ascience P h D .  Ascience graduate /\physics - 

IXXXI 
MS. /\math P h D .  Amah MS. Aphysics P h D .  Aphysics 

a) The entire version space. 

graduate science 

b) The factored version spaces. 

Figure 6.3. The entire and factored version spaces for the same concepts. 

Obviously, the entire version space contains 32= 9 nodes, but the factored ver- 
* 

sion spaces contain a total of 3 * 2 = 6 nodes. The search space for our algorithms is 

much smaller than the one for the candidate elimination algorithm. 
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6.2.3. Conjunctive Rules and Disjunctive Rules 

Many machine learning algorithms, such as Winston's algorithm for learning 

concepts about the blocks world [Win75], the candidate elimination algorithm 

[Mit77,Mit82] which is concerned with the discovery of a conjunctive rule when 

both positive examples and negative examples are presented, program Thoth [Ver75] 

and program SPROUTER maM77,HaM78] both of which are designed for finding 

the maximally-specific conjunctive generalizations of a set of input positive exarn- 

ples, can only learn conjunctive rules [CoF83]. The goal of the learning process per- 

formed by such algorithms is to induce a conjunctive rule which can be satisfied by 

all training examples. Since disjunctions allow a partially ordered rule space to 

become infinitely "branchy", many algorithms do not permit disjunctions in the 

representation language. However, in real world applications, there are many 

knowledge rules which should be expressed in a disjunctive normal form. Our algo- 

rithms can learn both conjunctive and disjunctive rules under rhe control of a 

specified threshold value. If the threshold value is set to 1, the learning result will be 

a conjunctive rule. Otherwise, if the threshold value is a small integer greater than 1, 

the learning result will be a disjunctive rule consisting of a small number of con- 

junct~. Our approach provides additional flexibility over many machine learning 

algorithms. Moreover, by adjusting thresholds in the learning process, our approach 

can learn knowledge rules in different conjunctive and disjunctive forms. This learn- 

ing process provides more choices for experts and users to select the more desirable 

ones. 



6.2.4. Handling Overlapping Instances 

We compare our method to another interesting learning program AQ11, which 

is designed for learning a set of classification rules [MiC80]. AQll  converts the 

problem of learning classification rules into a series of single-concept learning prob- 

lems. To find a rule for class A, it considers all of the known instances in class A as 

positive instances and all the training instances in the remaining classes as negative 

instances. The algorithm of AQ11 is then applied to find a concept that covers all of 

the positive instances without covering any of the negative instances. This program 

works only when there exist no overlapping instances among different classes. Our 

algorithm can learn classification rules regardless of the existence of overlapping 

instances. The overlapping instances can be detected during the learning process and 

removed in the final learning step, which guarantees the discriminant property of the 

learned rules. Thus our methods apply to more real world problems. 

6.2.5. Utilizing Database Facilities 

Relational database systems provide many attractive features for machine learn- 

ing, such as the capacity to store a large amount of information in a structured and 

organized manner and the availability of well developed implemetation techniques. 

However, most existing algorithms do not take advantage of these database facilities 

[DiM83, KMK89, Mic83, Pia891. An obvious advantage of our approach over many 

other learning algorithms is the integration of the learning process with database 

operations. Most of the operations used in our approach involve traditional relational 

database operations, such as selection, join, projection (extracting relevant data and 



removing attributes), tuple substitution (ascending concept trees), and intersection 

(discovering common tuples among classes). These operations are set-oriented and 

have been efficiently implemented in many relational systems. While most learning 

algorithms suffer from inefficiency problems in a large database environment 

piM83, Mic831, our approach can use database facilities to improve the perfor- 

mance. 

Moreover, in contrast to many machine learning algorithms which can learn 

only qualitative rules, our approach can learn qualitative rules with quantitative infor- 

mation. Some learning systems can only work in a "noise free" environment 

[MaK87, WoC881, but our approach can handle noisy data and exceptional cases 

elegantly by the incorporating statistical techniques in the learning process. With 

these features, our approach provides a simple and efficient way to learn knowledge 

rules from large databases. 

6.2.6. Limitations of the LCHR and LCLR Algorithms 

The LCHR and LCLR algorithms are designed for learning characteristic rules 

and classification rules from relational databases. Therefore, both algorithms can 

only handle the well-formatted data stored in relational databases. The databases of 

many applications may contain complex data objects which may not be in the first 

normal form, that is, an attribute of a tuple could contain structures or set values or be 

represented in disjunctive forms [KoS86]. 

beyond the capability of our algorithms. 

method. 

The handling of such nonrelational data is 

This is one of the major limitations of our 



Many other learning algorithms learn complex formatted data which may not be 

in the first normal form of the relational databases 

maM77, Mic83, MMH86, Ver75, Win751. It is an interesting research issue to extend 

our technique to complex data objects. 

6.3. Discovery of Concept Hierarchies 

One of the key input components to the LCHR and LCLR algorithms is the con- 

cept hierarchy table (Figure 3.1), which organizes different levels of abstractions 

relevant to each attribute of a relation. This table is assumed to be given and to be in 

the form of concept trees in our algorithm. Now we examine how to discover con- 

cept hierarchies. 

Method 1: Concept hierarchies are provided by domain experts. 

It is realistic to expect that the information about some concept hierarchy is pro- 

vided by domain experts. Although a database may be large, a concept tree is gen- 

erally simple and small, and can be input by domain experts in the form of an IS-A 

hierarchy. A friendly user-interface can be built to facilitate users or domain experts 

to input the concept hierarchies. 

Method 2: Hierarchical information is stored in other portion of databases. 

Actually, information about some generalization hierarchies is often be stored in 

the database. Some data may imply concept hierarchies of other data in the database. 

For example, "Vancouver is a city of British Columbia, which is in turn a province of 

Canada", may not be explicitly stored in the attribute "Birth-Place". However, it is 

often stored in a relation about the "Province" and "Country" of each city. If it is 
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stored in the same relation, the city portion of the "Birth-Place" attribute can be sim- 

ply eliminated in the generalization process. Otherwise, the relation which stores 

such information should be retrieved, and the lower level concepts should be substi- 

tuted by their higher level correspondents. Such a generalization relationship is often 

specified at the schema level instead of at the tuple level. For example, by indicating 

the relationship of the attributes in the schema, "city c province c country", the tax- 

onomy of all the cities stored in the relation are implicitly specified and can be used 

in the learning process. 

Method 3: Concept hierarchies are generated by statistics. 

Numerical attributes can be organized in the form of discrete hierarchies to 

facilitate ascension of concept trees and the representation of learning results 

[MiS 83, S te871. Besides explicit specifications of concept hierarchies for numerical 

values, concept trees can often be built automatically, based on database statistics. 

Such automatic construction of concept trees can be performed by -fist obtaining the 

distribution of attribute values in the database, then setting the range of the values 

and considering more detailed classifications in more clustered subranges. For exarn- 

ple, for an attribute "GPA", suppose that an examination of the values in the database 

discloses that GPA is between 0 to 4 and most GPAs for graduates are clustered 

between 3 and 4. One may classify 0 to 1.99 as one class, and 2 to 2.99 as another 

but give more detailed classification for those between 3 and 4. Since the informa- 

tion is extracted from database statistics, such a concept hierarchy can be constructed 

automatic ally. 



Even for attributes with discrete values, statistical techniques can be performed 

under certain circumstances. For example, if the birth-places of most employees are 

clustered in Canada and scattered in many different countries, the highest-level con- 

cepts of the attribute can be categorized as "Canada" and "Foreign". 

Method 4: Concept hierarchies are formed by conceptual clustering. 

Some learning systems have been developed to organize the observed concepts 

into a hierarchy of classes. The HUATUO system [ChF85] and the COBWEB system 

[Fis87] are typical models in this category. The idea of the technique they adopt is to 

measure the similarity of the concepts and form the hierarchy of classes based on this 

measurement. The generated hierachy is a collection of concepts whose intra-class 

similarity is high and inter-class similarity is low. A similar idea can be applied to 

generate ~e concept hierarchies for our learning system. 

For numeric attributes, the values which are close to each other can be grouped 

together. The values can be first partitioned into several classes based on the similar- 

ity measure, then following the same principle, each class can be further partioned 

into sub-classes and so on. For example, the following set of values 

can be organized as the concept hierarchy in Figure 6.4. 



Figure 6.4. A concept hierarchy for a set of numeric value. 

The symbols on the root and the intermediate nodes of the hierarchy can be 

either the symbols automatically generated by the system or the concepts named by 

domain experts. 

For discrete attributes, a similar technique can be applied if the discrete values 

can be first mapped to the numeric values using a certain mapping technique and then 

conceptual clustering can be formed based on such mappings [ChF85]. 

This thesis is focused on the development of efficient database learning algo- 

rithms. Further study on the automatic discovery of concept hierarchies is left for 

future research. 



CHAPTER 7 

IMPLEMENTATION AND EXPERIMENTS 

To test and experiment on the database learning algorithms developed in the 

previous chapters, an experimental database learning system, DBLEARN, has been 

constructed and some interesting experiments have been conducted in the learning 

system. 

7.1. Implementation of the Database Learning Algorithms 

DBLEARN is implemented in C and runs under Unix on a Sun workstation. It 

implements both the LCHR and LCLR algorithms. The architecture of DBLEARN is 

presented in Figure 7.1. 

In the learning process, DBLEARN first accepts the user's request through the 

user-interface. Based on the specified learning task, DBLEARN obtains the relevant 

data from a database and relevant conceptual bias from the file which stores concep- 

tual bias information. One module of the learning program, either LCHR or LCLR, is 

then invoked based on the user's learning request. After learning is performed, the 

learning result is reported to the user through the user-interface. Some experiments 

have been conducted in DBLEARN, which shows great promise of the learning sys- 

tem. 

A user-friendly interface is built in the DBLEARN system, by which users can 

specify the learning task (either the characteristic rule, or the classification rule), the 



I USER-INTERFACE I 

LEARNINGPROGRAM 1 

DATABASE CONCEPTUAL I BIAS I 
Figure 7.1. The architecture of DBLEARN. 

threshold value, the relation and the attributes relevant to the learning task, and the 

concept to be learned (target class) and the concept to be compared (contrasting 

class). This interface is implemented using the facilities LEX and YACC on the 

UNIX system. The syntax of the language is specified in Figure 7.2 using the 

extended BNF, where { ... ) denotes one or more occurrences, Class - Name, 

Target-Class-Name, Contrasting - Class-Name, Rel-Name, Attr-Name are the 

corresponding names specified by users, and Int - Val is a constant greater than 0. 



: learn <rule-type> 
: <charact-rule> I <class-rule> 
: characteristic-rule for Class-Name <LIB-name> 

<am-list> <threshold> 
: classification-rule for Target-Class-Name vs 

{ Contrasting_Class-Name ) <DB-name> <am-list> <threshold> 
: from relation ( Rel-Name ] 
: relevant to attributes <attrs> 

<attrs> , <attr> 
: Attr-Name 
: with threshold = Int_Val 

Figure 7.2. Syntactic specification of DBLEARN. 

The following is a sample learning-request which specifies that the task is to 

learn a characteristic rule for undergraduate students, referring to the attributes 

Category, Major, Birth-Place and GPA, and the threshold is set to 3. 

learn characteristic rule for undergraduate 
from relation student 
relevant to attributes Category, Major, Birth-Place, GPA 
with threshold = 3 

If the task is to learn a classification rule for undergraduate students versus gra- 

duate students with the threshold value 3 and relevant to the attributes Category, 

Major, Birth-Place and GPA, the query should be written as follows. 

learn classification rule for undergraduate vs graduate 
from relation student 
relevant to attributes Category, Major, Birth-Place, GPA 
with threshold = 3 

Based on the learning task, the relevant data can be retrieved from a relational 

database. Usually, the names of the target class and the contrasting class(es) are not 

the primitive concepts stored in the relation table. For instance, in Example 3.1 and 



Example 4.1, the concepts "graduate student" and "undergraduate student" cannot be 

found in the data. Therefore, it is often necessary to consult the conceptual bias to 

obtain a set of primitive concepts that belong to the target class or the contrasting 

class(es). For example, the tuple whose value in attribute "Category" is in {M.S., 

M.A., Ph.D) should be retrieved for the class "Graduate", and the tuple whose value 

in attribute "Category" is in {freshman, sophomore, junior, senior) should be 

retrieved for the class "undergraduate". 

A set of conceptual biases is coded in a conceptual bias file which is organized 

as a three-column table. The first column contains the lower level concepts, the 

second column contains the corresponding higher level concepts, and the third 

column specifies the attribute names for which the conceptual bias serves. Such 

organization facilitates the search of the conceptual bias during the learning process. 

Table 7.1 is a sample table which stores the conceptual bias for the attribute 

Tategory". 

Table 7.1. The conceptual bias table for attribute "Category". 

The learning program consists of two modules which implement the LCHR 

algorithm and the LCLR algorithm, respectively. Either of these two modules can be 

invoked by user's command. The entire learning process can be monitored if a 



specific parameter, watch, is set on. That is, every intermediate generalized relation 

will be printed on the terminal. 

After the final generalized relation is derived, the DBLEARN system transforms 

the learning result to the corresponding logic formula and reports to the user through 

the user-interface. 

7.2. Experimental Results 

We have performed several experiments on different data domains to test the 

LCHR algorithm and the LCLR algorithm. We report the results of two experiments 

here. 

Experiment 7.1. Learning a characteristic rule and a classification rule for graduate 

students. 

In this experiment, we test the DBLEARN system using the same data presented 

in Table 3.1 and the same conceptual bias depicted in Figure 3.1 and Figure 3.2. 

Learning-Request 7.1: 

learn characteristic rule for graduate 
from relation student 
relevant to attributes Category, Major, Birth-Place, GPA 
with threshold = 3 



The DBLEARN system generates the following output. 

The final generalized relation 

Canada excellent 
science Canada excellent 
science forei 

The characteristic rule for graduate students is: 
graduate(x) => 

((Birth-Place(x) = Canada) and (GPA(x) = excellent)) 

((Major(x) = science) and (Birth-Place(x) = foreign) and (GPA(x) = good)) 

Learning-Request 7.2: 

learn classijication-rule for graduate 
from relation student 
relevant to attributes Category, Major, Birth-Place, GPA 
with threshold = 3 

The following is the output generated by the DBLEARN system. 

The classification rule for graduate students is: 

graduate(x) <= 
(Major(x) = science) and (Birth-Place(x) = foreign) and (GPA(x) = good) 

The final generalized relation 

Major 
science 

Birth-Place 
foreign 

GPA 
good 



Obviously, the system performs the learning process correctly. The learning 

results are the exact ones that we expect. 

Experiment 7.2. Learning characteristic rules and classification rules from a bank 

relation. 

Suppose Table 7.2 is a relation of a bank database with attributes Name, Age, 

Address, Occupation and Balance. This experiment is designed to learn some charac- 

teristic rules and classification rules from this relation. 

(to be continued) 



(continued) 

Kim 1 37 1 W-Van 

Levin Surre 
Miller 45 
Meyer 1 31 1 N-Van 

Pinter 
Rabin 

Bumab 

Nelson 
Nerode 
Orlin 
Park 

Reif Bumab 
N-Van 

Ro ers Bumab 

Doctor 1 60028 1 

Partson 43 Bumaby 

56 
27 
33 
28 

Delta 
Bumaby 
W-Van 
Delta 

Mechanic 10977 
Engineer 25446 
Professor 
Farmer 

Mechanic 
Engineer 
Farmer 

Tsou 
Tucker 

Table 7.2. A sample relation Bank. 

33892 
5022 
30645 
39487 
9080 

Yun 
Zaks 

52 
47 

62 
29 

Delta 
N-Van 

N-Van 
Delta 

Farmer 
Professor 

5399 
45274 

Professor 
Plumber 

46225 
5987 



Suppose Figure 7.3 is the specified set of concept hierarchies. 

( 21-30] ~20-30 
{ 31 -40 ) c 30-40 
( 41 -50 ) ~40-50 
{ 51 - 60 ) c 50-60 
( 61 - 70 ] c 60-70 
{ 20-30 ] c young-age 
( 30-40,40-50 ] c mid-age 
{ 50-60,60-70 } c old-age 
( W-Van, Van ) c West-part 
( Bumaby, Coquitlam ) c East-part 
{ N-Van ] c No-part 
{ Surrey, Delta ) c Soutkpart 
{ Professor, Doctor, Engineer ] c professional 
{ Instructor, Mechanic, Farmmer, Plumber ) c non-professional 
{ 5k- 10k ) C ~ O W  

( 1 1 k - 20k ) c average 
( 2 1 k - 35k ] c mid-high 
{ 36k - 60k ) c high 

Figure 7.3. A concept hierarchy of the bank database 

As defined in Figure 7.3, professional occupations include Professor, Doctor 

and Engineer. And the nongrofessional ones include Instructor, Technician, Farm- 

mer and Plumber. The following query invokes the DBLEARN system to discover 

the characteristic rule for professionals. 

Learning-Request 7.3: 

learn characteristic - rule for professional 
from relation bank 
relevant to attributes Age, Address, Occupation, Balance 
with threshold = 5 



The DBLEARN system generates the following output. 

- -  - -  

The final generalized relation 

The characteristic rule for professional people is: 

((Address(x) = West-part) and (Balance(x) = [high-bal , mid-high-ball)) 

((Address(x) = Nortkpart) and @alance(x) = [high-bal , mid-high-ball)) 
or 

((Address(x) = East-part) and (Balance(x) = mid-high-bal)) 

If we want to learn a knowledge rule which distinguishes the professional peo- 

ple from the non-professional people, Learning-Request 7.4 can be posted to 

DBLEARN system. 

Learning-Request 7.4: 

learn classijication-rule for professional vs non-professional 
from relation bank 
relevant to attributes Age, Address, Occupation, Balance 
with threshold = 5 



The DBLEARN system generates the following learning result. 

The final generalized relation 

Age I Address I Balance 
hi h-bal 1 1 west-~r t  1 1 1 

West- art mid-hi h-bal 
North- art hi h-bal 
North- art mid-hi h-bal 

The classification rule for professional people versus non-professional people 
is: 

professional(x) <= 
((Address(x) = West-part) and (Balance(x) = [high-bal , mid-high-ball)) 

or 
((Address(x) = North-part) and (Balance(x) = [high-bal , mid-high-ball)) 

Notes that this rule is slightly different from the rule derived from Learning- 

Request 7.3. The tuple 

((Address(x) = East-part) and (Balance(x) = mid-high-bal)) 

appears in the characteristic rule for professionals, but not in the classification rule for 

professionals. The obvious reason is that among the people who are living in the 

east-part of Vancouver area and have a mid-high balance in the bank, some are pro- 

fessionals, but some are not. Thus, it is not possible to determine whether a person x 

is a professional, based on "Address(x)" and "Balance(x)". The DBLEARN system 

sets marks on these kinds of tuples in the generalized relation and removes them from 

the representation of classification rules. This process enable the classification rules 

to discriminate the concepts in the target class from the contrasting classes. 
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CHAPTER 8 

CONCLUSIONS AND FUTURE RESEARCH 

8.1. Conclusions 

It is attractive and challenging to automatically compute generalization rules 

from large databases. In this thesis, we have studied the methods of learning charac- 

teristic rules and classification rules from relational databases and have developed 

two efficient database learning algorithms, LCHR and LCLR. These algorithms 

adopt the attribute-oriented induction approach, integrate database operations with 

the learning processes, and provide an efficient way of extracting knowledge from 

databases. 

The LCHR algorithm is designed for learning characteristic rules from relational 

databases. It adopts an attribute-oriented concept tree ascending-technique which 

substitutes the lower-level concepts of the attribute in a tuple by its corresponding 

higher-level concepts and thus generalizes the relation. By eliminating the redundant 

tuples and applying a threshold value to control the generalization process, the final 

generalized relation consists of only a small number of tuples which can be 

transformed to a simple logic formula. 

The LCLR algorithm is designed for learning classification rules from relational 

databases. Similar to the LCHR algorithm, the LCLR algorithm also applies the 

attribute-oriented concept tree ascending technique. However, this algorithm detects 

the overlapping tuples in the learning process and removes such tuples from the final 



generalized relation, thus ensuring that the learned concepts can be distinguished 

from the concepts in other classes. 

In order to cope with different learning situations, some variations of these 

learning algorithms have been studied. By developing various kinds of techniques, 

our approach can handle different types of concept hierarchies. By adjusting thres- 

holds in the learning process, our approach can learn knowledge rules in different 

conjunctive and disjunctive forms. By incorporating the statistical techniques, our 

learning algorithms can discover qualitative rules with quantitative information and 

handle noisy data and exceptional cases elegantly. 

A comparison of our approach with many other algorithms for learning from 

examples shows that our algorithms have many distinct features, such as, the ability 

to use database facilities, learn disjunctive rules, handle overlapping instances, pro- 

vide quantitative information, and handle noisy data and exceptional cases. Our 

analysis of the algorithms demonstrates that the attribute-oriented induction approach 

substantially reduces the complexity of the database learning process. 

8.2. Future Research 

There are many interesting research issues related to learning from large data- 

bases. 

8.2.1. Applications of Knowledge Rules Discovered from Relational Databases 

Our learning system can learn characteristic rules and classification rules from 

relational databases effectively. An immediate issue is the application of knowledge 



rules discovered in the learning process. 

The knowledge rules learned from relational database are very useful in 

applications, some of which are listed below: 

Discovery of knowledge rules for knowledge-base systems and expert systems. 

Since rules are derived from a huge number of data stored in a relational data- 

base, they represent important knowledge about data in the database. Thus, our 

approach is an important method to obtain knowledge rules for knowledge-base 

systems and expert systems. 

Processing of queries which involve abstract concepts. 

In general, relational databases can only answer queries which involve the con- 

cepts presented in the database, but they cannot handle queries like "What are 

the major characteristics of a graduate student?" and "How can we describe the 

major differences between graduate students and undergraduate students?". 

Such queries involve concepts which are at a higher level than the primitive data 

stored in relational databases. By applying the knowledge rules obtained by our 

learning algorithms, it is possible to answer such learning-requests in a natural 

way. 

Semantic query optimization using the learned rules. 

Some queries can be answered more efficiently by the learned knowledge rules 

without searching databases [CGMSS]. For example, the query, "Is there any 

foreign student in the undergraduate program?", usually indicates that the rela- 

tion undergraduate student must be searched. However, if the characteristic 



rule indicates that there are no undergraduate students who come from other 

countries, this query can be answered immediately without any search. A similar 

situation occurs when the query is "Are all graduate students studying science?". 

If the characteristic rule shows that the major of some students is "science", but 

the major of some other students is "art", then the obvious answer to this query 

is "No". Clearly, learned rules may speed up or optimize the database query 

processing as previously studied in semantic query optimization [CGM88]. 

Notice that when there is a large number of learned rules, it is nontrivial to 

search such a rule space. In such a case, there is a trade-off between performing 

such semantic optimization versus searching database directly. More detailed 

study in semantic query optimization using generalized rules may produce some 

interesting results. 

8.2.2. Construction of an Interactive Learning System 

As shown in our learning system, the database learning process is guided by 

experts or users. Experts and users must provide the conceptual bias, specify the 

learning task and define the threshold value. It is important to obtain such informa- 

tion by interaction with users and experts. We propose to build an interactive learn- 

ing system which should provide the following features. 

(1) The system should have a user-friendly interface to facilitate users' communica- 

tion with the learning system. A more flexible database learning language 

should be developed for such an interface. 



(2) The entire learning process should be monitored and controlled by users. For 

example, at some stage of the learning process, users may terminate the general- 

ization on some selected attributes but continue the process on other attributes. 

In order to obtain multiple rules, users may influence the learning process using 

different threshold values. 

8.2.3. Discovery of Concept Hierarchies 

The current system DBLEARN needs users or domain experts to provide the 

conceptual bias explicitly. We have examined in Chapter 7 some techniques for 

automatic generation of concept hierarchies. Further research on this topic, espe- 

cially on the discovery of concept hierarchies for discrete attributes, should be stu- 

died in depth. The following possible approaches should be considered in future 

research. 

(1) Develop some specific mapping techniques which can map the discrete attribute 

values to numeric values, and then apply cluster analysis and numeric taxonomy 

to discover the concept hierarchies [ChF85, Fis871. 

(2) Design an efficient method to search the concept hierarchies stored in the rela- 

tional database, either from data or from integrity constraints. 

8.2.4. Performance Testing 

To further study the efficiency of the database learning algorithms, we plan to 

perform a systematic study and some performance testing on different learning algo- 

rithms in databases. Moreover, the complexity measurement of our algorithms will 



be analyzed in more detail. Further improvement of our techniques will be examined 

and experimented. The study will finally lead to a comprehensive efficient database 

learning system. 
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