
ATTRIBUTE-ORIENTED INDUCTION

IN RELATIONAL DATABASES

Yandong Cai

B .Med. Sc, Jilin Medical University, 1977
M.Sc., Beijing Medical University, 1983

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in the School
of

Computing Science

O Yandong Cai 1989
SIMON FRASER UNIVERSITY

December 1989

All rights reserved. This thesis may not be
reproduced in whole or in part, by photocopy '

or other means, without the permission of the author.

Approval

Name: Yandong Cai

Degree: Master of Science

Title of Thesis: Attribute-Oriented Induction in Relational Databases

Fred Popowich
Chairman

Nick Cercone
f Seniou Suuervisor

Supervisor

Bob Hadley
Supervisor

/

/Gordon McCalla
External Examiner

Date Approved

PARTIAL COPYRIGHT LICENSE

I hereby grant t o Simon Fraser Un ive rs i t y the r i g h t t o lend

my thesis, p ro jec t o r extended essay (t he t i t l e o f which i s shown below)

t o users o f the Simon Fraser Un ive rs i t y L ibrary, and t o make p a r t i a l or

s i ng le copies only f o r such users o r i n response t o a request from the

l i b r a r y o f any o ther un ive rs i t y , o r other educational i n s t i t u t i o n , on

i t s own behalf o r f o r one o f i t s users, I f u r t he r agree t h a t permission

f o r mu l t i p l e copying o f t h i s work f o r scho lar ly purposes may be granted

by me o r the Dean of Graduate Studies. I t i s understood t h a t copying

o r publication o f t h i s work f o r f i nanc ia l galn sha l l not be allowed

wi thout my w r i t t e n permission.

T i t l e o f Thesis/Project/Extended Essay

Attribute-Oriented Induct ion i n Rela t ional Databases.

Author:

(s ignature)

Yandong Cai

(name)

December 14, 1989

(date)

ABSTRACT

It is beneficial as well as challenging to learn knowledge rules from relational

databases because of the vast amount of knowledge implied in databases and the

large amount of data stored in databases. In this thesis, we develop an attribute-

oriented induction method to extract characteristic rules and classification rules from

relational databases. The method adopts the artificial intelligence "learning from

examples" paradigm and applies an attribute-oriented concept tree ascending

technique in the learning process which integrates database operations with the

learning process and provides a simple, efficient way of learning from large

databases. Conjunctive rules as well as restricted forms of disjunctive rules are

learned using this method. Moreover, by incorporating statistical techniques,

qualitative rules with quantitative information can be learned and noisy data and

exceptional cases are elegantly handled. Our analysis of the algorithms indicates that

attribute-oriented induction substantially reduces the complexity of database learning

processes. A prototype database learning system, DBLEARN, has been designed and

implemented; early experiments with the prototype system illustrate the promise of

attribute-oriented learning in relational databases.

ACKNOWLEDGMENTS

I would like to thank my senior supervisor, Professor Nick Cercone, for

supervising this thesis. His work on knowledge representation and expert database

systems, his teaching on artificial intelligence, his support, guidance and

encouragement of the work, and especially his extraordinary patience while

modifying and editing my thesis drafts have made this thesis a reality. I would like to

thank the other members of my thesis supervisory committee: Professor Wo-Shun

Luk and Professor Bob Hadley. Professor Wo-Shun Luk led me to the area of

relational database systems. He taught me a great deal on introductory and advanced

relational database topics and has given me great encouragement and support since I

started my research on learning from relational databases. Professor Bob Hadley

introduced me to the area of machine learning. He has greatly encouraged my

working in this direction. He has spent a lot of his valuable time discussing many

issues with me, directing me to the important problems of this research. I am

indebted to Dr. Gordon McCalla for being my external examiner. Constructive

comments from Dr. Gordon McCalla have helped improving the original version of

the thesis. I would like to thank my husband, Professor Jiawei Han, for his valuable

help on my work. His love, understanding and support have always been a source of

confidence for me.

I would like to thank all the professors in the Department of Computing

Sciences who have led me through the various areas of computer science in the past

few years.

I should also express my thanks to all of my friends in S.F.U. They encouraged

me and helped me when I met difficulties, and made my stay in S.F.U. memorable.

In particular, Howard Hamilton, discussed many interesting issues with me, and

reviewed my papers for conferences. Pat T. Pattabhiraman helped me improve the

presentation of the thesis and polish the English of the early version of the thesis.

I would also like to acknowledge the financial support received from Simon

Fraser University and the Natural Sciences and Engineering Research Council of

Canada.

Finally, I would like to thank my parents for their love, education and support

since my childhood, and my sister, Yanhong Cai, for her encouragement and help.

CONTENTS

ABSTRACT ...

.. ACKNOWLEDGMENTS

Chapter 1 INTRODUCTION ...

Chapter 2 LEARNING FROM EXAMPLES: AN A1 APPROACH

2.1. Concepts of Learning from Examples ..

2.1.1. Basic Components in Learning from Examples

2.1.2. Generalization Rules ..

2.1.3. Types of Knowledge Rules ...

............................... 2.1.4. Control Strategies in Learning from Examples

........................... 2.2. Some Successful Models in Learning from Examples

2.2.1. Candidate Elimination Algorithm 1

2.2.2. AQll and AQ15 systems ..

2.3. Knowledge Discovery in Large Databases and Knowledges-Base

2.3.1. INLEN System ..

2.3.2. An Algorithm for Discovering Strong Rules in Databases

Chapter 3 CONCEPTS OF LEARNING FROM DATABASES

3.1. Primitives of Learning from Databases ..

3.1.1. Data Relevant to Learning Task ..

.............................. 3.1.2. Conceptual Bias Useful for Defining Concepts

3.1.3. Language Used to Phrase Definitions ... 29

3.2. Two Types of Rules .. 30

3.3. An Example ... 32

Chapter 4 ATTRIBUTE-ORIENTED INDUCTION IN RELATIONAL

DATABASES ... 37

4.1. Learning Characteristic Rules .. 38

4.2. Learning Classification Rules .. 46

Chapter 5 VARIATIONS OF THE LEARNING ALGORITHMS 54

5.1. Adjusting Thresholds for Different Learning Results 54

5.2. Dealing with Different Kinds of Concept Hierarchies 56

5.2.1. Generalization of the Concepts at Different Levels of a Hierar-

chy ... 56

.......... 5.2.2. Generalization of Concepts in the Hierarchies with Lattices 59

5.3. Nonuniqueness of Learning Results ... 60

5.4. Incorporating Quantitative Information .. 62

5.4.1. Association of Quantitative Information in the Induction Pro-

cess ... 64

5.4.2. Handling Noisy Data and Exceptional Cases 66

Chapter 6 DISCUSSION ... 71

.................................. 6.1. Necessary Condition versus Sufficient Condition 71

.................................... 6.2. A Comparison with Other Learning Algorithms 73

6.2.1. The Positiveness of the Learning Examples

6.2.2. Search Space ...

6.2.3. Conjunctive Rules and Disjunctive Rules

6.2.4. Handling Overlapping Instances ...

6.2.5. Utilizing Database Facilities ...

6.2.6. Limitations of the LCHR and LCLR Algorithms

6.3. Discovery of Concept Hierarchies ..

Chapter 7 IMPLEMENTATION AND EXPERIMENTS

7.1. Implementation of the Database Learning Algorithms

7.2. Experimental Results ..

Chapter 8 CONCLUSIONS AND FUTURE RESEARCH

8.1. Conclusions ...

8.2. Future Research ...

8.2.1. Applications of Knowledge Rules Discovered from Relational

Databases ..

8.2.2. Construction of an Interactive Learning System

8.2.3. Discovery of Concept Hierarchies ..

8.2.4. Performance Testing ...

REFERENCES ..

CHAPTER 1

INTRODUCTION

Learning is one of the most important characteristics of human and machine

intelligence. Machine learning is a fundamental area in Artificial Intelligence which

has achieved significant progress in the last two decades. Theories and algorithms for

machine learning have been studied extensively [MCM83, MCM861. Many learning

systems have been constructed for scientific, business, industrial and medical applica-

tions LBS83, MMH86, WGT87,Zyt87]. To extend machine learning to data-

intensive applications, it is important to develop learning mechanisms for knowledge

discovery in large databases, especially relational databases.

Relational database systems are pervasive and widely utilized in many applica-

tions v11891. It is advantageous to learn characteristics of data in relational data-

bases. By learning from databases, knowledge rules can be extracted from the large

amount of data and interesting relationships among data can be discovered automati-

cally. Moreover, relational database systems provide many attractive features for

machine learning. Relational databases store a large amount of information in a

structured and organized manner. Each tuple in the database can be viewed as a

typed logical formula in the conjunctive normal form. Such uniformity facilitates the

application of well developed database implementation techniques and the develop-

ment of efficient learning algorithms in large databases.

An important machine learning paradigm, learning from examples, that is, learn-

ing by generalizing specific facts or observations [GeN87], has been adopted in many

existing induction learning algorithms. Current systems for learning from examples

take training examples from various sources, such as, data extracted from experi-

ments [BuM78, Lan77, WGT871, examples given by teachers and experts [Mit77],

facts recognized by people [MiC80] and rules accumulated from past experience

[Qui83], etc. However, not many systems directly extract knowledge from data -
stored in relational databases. Since databases store a large amount of facts which

can be viewed as examples for learning processes, the paradigm learning from exam-

ples should be the first important candidate strategy for learning from databases.

From our point of view, one of the major reasons that the current learning sys-

tems do not integrate well with relational database systems is because of the

inefficiency of current learning algorithms when applying to large databases. Most

existing algorithms for learning from examples apply a tuple-oriented approach

which examines one tuple at a time. In order to discover the most specific concept

that is satisfied by all the training examples, the tuple-oriented approach must test the

concept coverage after each generalization on a single attribute value of a training

example [DiM83, Mic831. Since there are a large number of possible combinations in

such testing, the tuple-oriented approach is quite inefficient to perform learning from

large databases Wau861. For example, if there are 100 training examples (tuples),

each tuple has 5 attributes, and each attribute value can be one of the three concepts

on three different generalization levels, such coverage testing will be invoked up to

100 * 53 = 12500 times in the worst case. Moreover, most existing algorithms do not

take the features and implementation techniques provided by database systems. To

make learning algorithms applicable to database systems, highly efficient algorithms

should be explored in depth.

In this thesis, we develop an attribute-oriented induction method for learning

from relational databases. Following the learning from examples paradigm, our

approach applies an attribute-oriented concept tree ascending technique which

integrates database operations with the learning process. There are two types of

knowledge rules, characteristic rules and classijication rules, which can be easily

learned from relational databases. The attribute-oriented induction method is demon-

strated by two algorithms, an LCHR algorithm for Learning CHaracteristic Rules

and an LCLR algorithm for Learning CLassification Rules. The attribute-oriented

method effectively extracts both types of knowledge rules from relational databases.

Our analysis of the algorithms shows that attribute-oriented induction substantially

reduces the complexity of the database learning processes. Moreover, these two

algorithms can learn both conjunctive rules and restricted forms of disjunctive rules,

and learning can be performed with databases containing exceptions and noisy data

using database statistics. Our approach provides a simple and efficient way of learn-

ing from large databases.

This thesis is organized into eight chapters. A brief survey of the methods

developed for learning from examples and knowledge discovery in large databases is

presented in Chapter 2. The concepts of learning from relational databases are intro-

duced in Chapter 3; we address the primitives, the task and the characteristics in

learning from databases. To demonstrate our attribute-oriented induction approach,

- 3 -

the LCHR algorithm and the LCLR algorithm are presented in Chapter 4 along with

illustrative examples. Variations of the algorithms are discussed in Chapter 5. These

variations show that our learning algorithms can be extended to cope with different

learning situations. To demonstrate the power of our approach, our algorithms are

analyzed and compared with other learning algorithms in Chapter 6. The implemen-

tation of the database learning algorithms and the experimental results are presented

in Chapter 7. We provide concluding remarks, and propose some interesting topics

for future research in Chapter 8.

CHAPTER 2

LEARNING FROM EXAMPLES: AN A1 APPROACH

We survey some theoretical issues related to learning from examples, some suc-

cessful models for this learning paradigm, and some recent progress in knowledge

discovery in database systems and knowledge base systems which adopt the learning

from examples philosophy.

2.1. Concepts of Learning from Examples

As a basic method in empirical learning, learning from examples has been

explored extensively. We review the basic components and the generalization rules

of learning from examples, the types of knowledge rules which can be learned, and

the control strategies of the learning process.

2.1.1. Basic Components in Learning from Examples

Learning from examples can be characterized by a tuple <P, N, C, A>, where P

is a set of positive examples of a concept, N is a set of negative examples of a con-

cept, C is the conceptual bias which consists of a set of concepts to be used in

defining learning rules and results, and A is the logical bias which captures particular

logic forms [GeN87].

In most learning programs, the training examples are classified in advance by

the teacher into two disjoint sets, the positive example set and the negative example

set [Mic83]. The training examples represent low-level, specific information. The

learning task is to generalize these low-level concepts to general rules.

There could be numerous inductive conclusions derived fiom a set of training

examples. For instance, the concept "red" can be generalized in several ways: "red or

black", "dark color", "warm color", etc. To cope with this multiplicity of possibili-

ties, it is necessary to use some additional information, problem background

knowledge, to constrain the space of possible inductive conclusions and locate the

most desired one(s) [GeN87]. The conceptual bias and the logical bias provide the

desired concepts and logic forms which serve as this kind of background knowledge.

These biases restrict the candidates to formulas with a particular vocabulary and logic

forms. Only those concepts which can be written in terms of this fixed vocabulary

and logic forms are considered in the learning process.

Usually, the examples presented to the learning system consist of several attti-

butes. Depending on the structure of the attribute domains, we can distinguish among

three basic types of attributes [Mic83]:

(1) Nominal attributes

The value set of such attributes consists of independent symbols or names, that

is, no structure is assumed to relate the values in the domain. For example,

name, computer ID usually do not contain structure information, and are often

treated as nominal attributes.

(2) Numeric attributes

The value set of such attributes is a totally odered set. For example, weight,

salary and gpa are numeric attributes.

(3) Structured attributes

The value set of such attributes has a tree structure which forms a generalization

hierarchy. A parent node in such a structure represents a more general concept

than the concepts represented by its children nodes. The domain of structured

attributes is defined by the problem background knowledge.

For example, the attribute shape could be a structured attribute whose domain is

a tree structure with a set of leaves:

{triangle, circle, ellipse, hexagon, square, boat, spring),

and the non-leaf nodes are defined by rules:

{circle, ellipse) c oval

{triangle, square, hexagon) c polygon

{oval, polygon] c regular

{spring, boat) c irregular

This corresponds to the concept hierarchy in Figure 2.1.

2.1.2. Generalization Rules

Learning from examples can be viewed as a reasoning process from specific

instances to general concepts. The following generalization rules are particularly use-

ful in learning systems [CoF83, Mic831.

/\ /-\
oval polygon spring boat

/\ A
circle ellipse triangle square hexagon

Figure 2.1. The concept tree for the structured attribute shape.

(1) Turning constants into variables.

If the concept F(v) holds for v when v is a constant a, or a constant b, and so on,

then these concepts can be generalized into a statement that F(v) holds for every

value of v. This is the rule used most often in method's of inductive inference

employing predicate calculus. As a logic formula, this can be expressed as

(2. I), where the notation "I<" stands for "can be generalized to".

F (a) A F (b) A I<F(v) . (2.1)

(2) Dropping conditions.

Any conjunction can be generalized by dropping one of its conjuncts. A con-

junctive condition can be viewed as a constraint on the set of possible instances

that could satisfy the concept. By dropping a condition, one constraint is

removed and the concept is generalized. For example, the class of "red apples"

can be generalized to the class of all "apples" of any color by dropping the "red"

condition. This can be wniten as:

red (v) A apple (v) I< apple (v).

(3) Adding options.

By adding more conditions, the concept can be generalized because more

instances may satisfy this concept. An especially useful form of this rule is

when the alternative is added by extending the scope of permissible values of

one specific concept. For example, suppose that a concept is generalized by

allowing objects to be not only red but also blue. This can be expressed as fol-

lows:

red(v) I< red(v) v blue(v).

(4) Turning conjunction into disjunction.

A concept can be generalized by replacing the conjunction operator by the dis-

junction operator. This process is analogous to the adding-option generalization

rule. This rule can be written as follows:

red A circle I< red v circle

(5) Climbing a generalization tree

By ascending the generalization tree, the lower level concept is substituted for

by the higher level concept. This generalization rule is applicable only to the

concepts whose domain is a structured value set, (that is, concepts at different

levels of generality). Formally, this rule can be expressed as:

where L is a structured attribute; a, b, ... and i are the values of u, v, ... and z in

the attribute L, respectively; and s represents the lowest parent node whose des-

cendants include nodes a, b, ... and i.

2.1.3. Types of Knowledge Rules

Given a learning-from-examples problem characterized as <P, N, C, A>, several

different rules can-be extracted. The learned concept is a characteristic rule if and

only if it is satisfied by all of the positive examples. The learned concept is a discrim-

inant rule if and only if it is not satisfied by any of the negative examples. The

learned concept is an admissible rule if and only if it is both characteristic and

discriminant [DiM83, GeN871.

For example, suppose we are given:

positive examples - a small circle, a small ellipse.

negative examples - a large ellipse, a small triangle.

We may derive several possible rules from these examples. The derived rule, "a

small object", is characteristic but not discriminant, since it covers all of the positive

examples but also some of the negative examples. The rule, "a circle object", is

discriminant but not characteristic, since it excludes all of the negative examples but

also some of the positive examples. Given the background knowledge that the higher

level concept for circle and ellipse is oval, the rule, "a small oval object", is both

characteristic and discriminant and, therefore, is admissible.

Most learning algorithms are designed for learning admissible rules

[DiM83,Mic83]. A few algorithms, such as INDUCE 1.2 [DiM81], SPROUTER

[HaM77, HaM781, are designed for learning characteris tic rules.

2.1.4. Control Strategies in Learning from Examples

Induction methods can be divided into data-driven (bottom-up), model-driven

(top-down), and mixed methods depending on the strategy employed during the

search for generalized concepts PiM831. All of these methods maintain a set, H, of

the currently most plausible rules. These methods differ primarily in how they refine

the set H so that it eventually includes the desired concepts.

In the data-driven methods, the presentation of the training examples drives the

search. These methods process the input examples one at a time, gradually generaliz-

ing the current set of concepts until a final conjunctive generalization is computed.

The typical examples of such control strategy include the candidate-elimination algo-

rithm [Mit77, Mit791, the approach adopted in [HaM77, HaM78, Ver75, Win751, the

ID3 technique of Quinlan [Qui86], and the Bacon learning system [Lan77].

In the model-driven methods, an a priori model is used to constrain the search.

These methods search a set of possible generalizations in an attempt to find a few

"best" hypotheses that satisfy certain requirements. Typical examples of systems

which adopt this strategy are AM &en77], DENDRAL and Meta-DENDRAL

[BuM78], and the approach used in the INDUCE system PiM811.

Data-driven techniques generally have the advantage of supporting incremental

learning. The learning process can start not only from the specific training examples,

but also from the rules which have been discovered. The learning systems are capa-

ble of updating the existing hypotheses to account for each new example. In contrast,

the model-driven methods, which test and reject hypotheses based on an examination

of the whole body of data, are difficult to be used in incremental learning situations.

When new training examples become available, model-driven methods must either

backtrack or restart the learning process from the very beginning, because the criteria

by which hypotheses were originally tested (or schemas instantiated) have been

changed [DiM83].

An advantage of model-driven methods, on the other hand, is that they tend to

have good noise immunity. When a set of hypotheses, H, is tested against noisy train-

ing examples, the model-driven methods need not reject a hypothesis on the basis of

one or two counterexamples. Since the whole set of training examples is available,

the program can use statistic measures of how well a proposed hypothesis accounts

for the data. In the data-driven method, the set of hypotheses, H, is revised each time

on the basis of the current training example. Consequently, a single erroneous exam-

ple can cause a large perturbation in H (from which it may never recover) [DiM83].

2.2. Some Successful Models in Learning from Examples

Since the 1960's, many algorithms and experimental systems on learning from

examples have been developed mCM83, MCM861, which demonstrated aspects of

machine learning in science, industry and business applications
0

[Hau87a,Ren86, WaE87, WGT871. In this section, we present several successful

models which are related to our research work.

2.2.1. Candidate Elimination Algorithm

Mitchell developed an elegant framework, version space, for describing systems

that use a data-driven approach to concept learning Wit821. This framework can be

described as follows. Assume we are trying to learn some unknown target concept

defined on the instance space. We are given a sequence of positive and negative

examples which are called samples of the target concept. The task is to produce a

concept that is consistent with the samples. The set of all hypotheses, H, that are

consistent with the samples is called the version space of the samples. The version

space is empty in the case that no hypothesis is consistent with the samples.

Mitchell proposed an algorithm, called candidate-elimination algorithm, to solve

this learning task. The algorithm maintains two subsets of the version space: the set S

of the most specific hypotheses in the version space and the set G of the most general

hypotheses. These sets are updated with each new example. The positive examples

force the program to generalize the S set, and the negative examples force the pro-

gram to specify the G set. The learning process terminates when G = S.

A good feature of this method is that the incremental learning can be performed

by the learning program. The sets S and G can easily be modified to account for new

training examples without any recomputation.

However, as with all data-driven algorithms, the candidate elimination algo-

rithm has difficulty with noisy training examples. Since this algorithm seeks to find a

concept that is consistent with all of the training examples, any single bad example

(that is, a false positive or false negative example) can have a profound effect. When

the learning system is given a false positive example, for instance, the concept set

becomes overly generalized. Similarly, a false example causes the concept set to

become overly specialized. Eventually, noisy training examples can lead to a situa-

tion in which there are no concepts that are consistent with all of the training exam-

ples.

The second and most important weakness of this algorithm is its inability to dis-

cover disjunctive concepts. Many concepts have a disjunctive form, but if disjunc-

tions of arbitrary length are permitted in the representation language, the data-driven

algorithm described above never generalizes. Unlimited disjunction allows the par-

tially ordered rule space to become infinitely "branchy".

There are two computational problems associated with this method. The first

one is that in order to update the sets S and G we must have an efficient procedure for

testing whether or not one hypothesis is more general than another. Unfortunately,

this testing problem is NP-complete if we allow arbitrarily many examples and arbi-

trarily many atmbutes in hypotheses NaM781. The second computation problem is

that the size of the sets S and G can become unmanageably huge. It has been shown

that, if the number of attributes is large, the size of set S and set G can grow exponen-

tially in the number of examples [Hau86].

To improve computational efficiency, Haussler proposed a one-sided algorithm

which is in contrast to the two-sided approach of the candidate elimination algorithm.

The one-sided algorithm computes only the set S using the positive examples and

then checks to see if any negative examples are contained in the set S. If the rule in

the set S is not satisfied by any negative examples, the rule is valid. Otherwise, there

is no rule which can be discovered [Hau86, Hau87bI.

In some learning situations, it is possible for the user to select training examples

and to acquire information about their classification. In this case, a common strategy

to maximize the learning performance is to select an example that halves the number

of candidate formulas, that is, one that satisfies one-half of the candidates and does

not satisfy the other half. The advantage of this strategy is that, by getting the

classification of such an example, we can eliminate one-half of the remaining candi-

dates. However, the main problem with the halving strategy is computational

expense. In the worst case, we need to compare each example with each concept to

determine whether or not the example satisfies the concept. If there are m examples

and n candidates, then in the worst case we need mn steps to select-the best example.

This is infeasible when either m or n is very large.

Subrarnanian and Feigenbaum proposed a method, experiment generation, to

solve this problem [SuF86]. They proposed to partition an instance into several

independent sub-instances and to factor the entire version space into multiple

separate, smaller version spaces. The test procedure for selecting the best training

instance can be first performed in each factored version space, and then the resulting

"sub-instance" can be combined into a single instance to be tested. The computa-

tional advantages of factoring are striking. Suppose that a version space can be fac-

red A

any-color A any-shape

A
dark A any-shape any-color A oval /v\

any-shape any-color uv dark A circle red /\ oval

A circle

a) The entire version space

/
red

\- circle

b) The factored version spaces

Figure 2.2. The version spaces for the positive example "red A circle".

tored into k factors, with p nodes each. Whenever this is the case, the size of the

unfactored version space must be p k . If we can factor the version space, then we can

"factor" each instance into k parts, one for each factor of the version space. If there

are q possibilities for each part, then there must be q k instances. The total cost for

selecting a training instance without factoring is p q k , whereas the total cost with

factoring is just kpq , a substantial saving when p or q is large. Figure 2.2 shows the

entire version space and the factored version spaces in which the training example

"red A circle" is the sole positive example. While the entire version space contains 9

nodes, the factored version spaces consist of only 6 nodes.

2.2.2. A Q l l and AQ15 systems

Michalski and his colleagues have developed a series of AQ learning systems.

The AQ11 system [MiCSO] is designed to find the most general rule in the rule space

that discriminates training examples in a class from all training examples in all other

classes. Michalski et. al. call these types of rules discriminant descriptions or

discriminant rules since their purpose is to discriminate one class from a predeter-

mined set of other classes.

The language used by Michalski to represent discriminant rules is VL1, an

extension of the propositional calculus. VL1 is a fairly rich language that includes

conjunction, disjunction, and the set-membership operators. Consequently, the rule

space of all possible VL1 discriminant rules is quite large. To search this rule space,

AQl 1 uses the AQ algorithm, which is nearly equivalent to the repeated application

of the candidate-elimination algorithm. A Q l l converts the problem of learning

discriminant rules into a series of single-concept learning problems. To find a rule for

class A, it considers all of the known examples in class A as positive examples and all

other training examples in all of the remaining classes as negative examples. The AQ

algorithm is then applied to find a concept that covers all of the positive examples

without covering any of the negative examples. AQl l seeks the most general such

concept, which corresponds to a necessary condition for class membership.

a) The most general rules

b) The nonoverlapping rules

c) The most specific rules

Figure 2.3. Three different types of discriminant rules.

The discriminant rules may overlap in regions of the examples that have not yet

been observed, as shown in Figure 2.3a. AQll also has a method for finding a nono-

verlapping set of classification rules, which is schematically illustrated in Figure 2.3b.

The AQ algorithm has the power of performing incremental learning. This algorithm

can accept not only training examples (as represented by very specific points in the

rule space) but also generalized concepts that are conjuncts in the rule space

corresponding to sets of training examples. This allows AQll to treat the concepts

themselves as negative examples when it is learning the concept for a subsequent

class.

The discriminant rules developed by AQ11 correspond (roughly) to the set of

most general concepts consistent with the training examples. In many situations, it is

also good to develop the most specific concepts of that class (Figure 2.3c), thus per-

mitting a very explicit handling of the unobserved portions of the space.

When the most general concept and the most specific concept are both available,

definite classification (the examples are covered by the most specific concept), prob-

able classification (the examples are covered by the most general concept), and multi-

ple classification (the examples are covered by several most general concepts) can be

chosen to be performed.

Michalski and his colleagues conducted an interesting experiment to compare

the quality of rules for soybean disease obtained through expert consultation to rules

developed by the learning process [MiC80]. Surprisingly, the computer-generated

rules outperformed the expert-derived rules. Furthermore, the computer-derived rules

tended to list fewer alternative diagnoses. This experimental result shows that

automatic rule induction can, in some situations, lead to more reliable and more pre-

cise diagnosis rules than those obtained by consultation with the expert.

After developing the AQ11 system, Michalski et. al. proposed another inductive

learning system AQ15 in 1986 [MMH86, Mic871. This system is an extended version

of the A Q l l system, which is able to incrementally learn disjunctive concepts from

noisy and overlapping examples, and can perform constructive induction in which

new concepts are introduced in the formation of inductive conclusions.

To accommodate uncertainty in the learning process, AQ15 generates rules that

have a pair of weights associated with them, t-weight and u-weight. The t-weight

represents the total number of examples (events) explained by the rule, and the u-

weight represents the number of examples explained uniquely by that expression,

respectively. For example, the following rule

[Transport = car] <= [Weather-type = cloudy V rain] A [Temp = 40..60]

(t-weight:40, u-weight:22)

represents that there are 40 events that satisfy this rule, that is, if the weather is

cloudy or raining, and the temperature is 40 to 60 degrees, the means of transporta-

tion should be a car. Among these 40 events, 22 events can only satisfy this rule, and

18 events can not only satisfy this rule, but also some other rules.

The t-weight may be interpreted as a measure of the representativeness of a con-

cept. The u-weight may be interpreted as a measure of importance of the concept.

The concepts with very low u-weights can be viewed as describing rear, exceptional

cases. If the learning examples from which rules are derived are noisy, such "light"

concepts may be indicative of errors in the data.

To eliminate rules which are the least reliable and which represent the weakest

correlations found between attributes and classes, AQ15 performs "rule truncation"

after induction. The rules which have a light t weight are cut off. AJlexible matching

procedure is used whenever these truncated rules are applied. When matching a new

example against a set of decision rules, if there are several matches or no match, the

system activates the flexible evaluation schema that uses statistical techniques to

determine the best match (or the most probable one).

In an experimental application to three medical domains, the AQ15 program

learned decision rules that performed at the level of accuracy of human experts. A

surprising and potentially significant result is the demonstration that the complexity

of the knowledge base can be drastically decreased without affecting its performance

accuracy.

2.3. Knowledge Discovery in Large Databases and Knowledges-Base

Currently, the steady growth in the number and size of large databases in many

areas, including medicine, business and industry has created both a need and an

opportunity for extracting knowledge from databases. Some recent results have been

reported which extract different kinds of knowledge from databases.

Knowledge discovery in databases poses challenging problems, especially when

databases are large. Such databases are usually accompanied by substantial domain

knowledge to facilitate discovery. Access to large databases is expensive - hence it is

necessary to apply the techniques for sampling and other statistical methods. Furth-

ermore, knowledge discovery in databases can benefit from many available tools and

techniques in different fields, such as, expert systems, machine learning, intelligent

databases, knowledge acquisition, and statistics Lub89, Pia891.

2.3.1. INLEN System

The INLEN system was developed by Kaufman et. al. in 1989 m K 8 9] . The

name INLEN derives from Inference and Learning. This system combines database,

knowledge-base, and machine learning techniques to provide a user with an

integrated system of tools for conceptually analyzing data and searching for interest-

ing relationships and regularities among data. It merges several existing learning sys-

tems and provides a control system to facilitate access. Figure 2.4 illustrates the

organization of the system.

Figure 2.4. The organization of the INLEN System.

The INLEN system consists of a relational database for storing known facts

about a domain, and a knowledge base for storing rules, constraints, hierarchies, deci-

sion trees, equations accompanied with preconditions, and enabling conditions for

performing various actions on the database and/or knowledge base. The knowledge

base can contain not only the knowledge about the contents of the database, but also

meta-knowledge for the dynamic upkeep of the knowledge base itself.

INLEN employs three sets of operators: data management operators PMOS),

knowledge management operators (KMOs), and knowledge generation operators

(KGOs). The DMOs are standard operators for accessing, retrieving and manually

altering the information in the database. The KMOs are used to create, manipulate

and modify INLEN's knowledge base, thereby allowing the knowledge base to be

handled in a manner analogous to handling a database. The KGOs take input from

both the database and knowledge base, and invoke various machine learning pro-

grams to perform learning tasks. For example, the operator CLUS-TER creates con-

ceptual classifications of data, which is based on the conceptual clustering algorithm

developed in [MiS83]. The operator DIFF determines the discriminant rules, which

can be executed in an AQ program [MMH86]. The operator CHAR discovers the

characteristic rules, which is also implemented in an AQ program [Mic83]. The

operator VARSEL selects the most relevant attributes and the operator ESEL deter-

mines the most representative examples. The operator DISEQ discovers equations

governing numeric variables, which is based on the ABACUS-2 system for integrated

qualitative and quantitative discovery [FaM86]. ABACUS-2 is related to programs

such as BACON &BS83], FAHRENHEIT [Zyt87] and COPER [Kok86]. Most of

these machine learning programs invoked by KGOs are existing learning algorithms

which have been well implemented.

As in the case of many machine learning systems, the major challenge to the

INLEN system is the computational inefficiency. Many learning algorithms included

in this system adopt the tuple-oriented approach which examines the training exarn-

ples tuple by tuple. In the learning process, these algorithms usually have a large

search space and costly time complexity because they are not designed for large data-

bases. Although this system integrates database, knowledge-base and machine learn-

ing techniques, the database operations are applied only for retrieving data and stor-

ing knowledge rules. The algorithms in this system do not take advantage of data-

base implementation techniques in the learning processes.

2.3.2. An Algorithm for Discovering Strong Rules in Databases

Another interesting study on learning from relational databases was performed

by Piatetsky-Shapiro [Pia89]. He develped an algorithm to discover strong rules in

the relational databases. Somewhat different from an exact rule, which is a rule that

is always correct, a strong rule is one that is always or almost always correct. This

algorithm can find interesting strong rules of the form (A = a) -+ (B = b) from rela-

tional databases, that is, if the value of attribute A is a, then the value of attribute B is

This algorithm requires only one access to each database tuple. It is thus

optimal to within a constant factor, since at least one access is needed to each tuple to

check whether this tuple disproves any of the previously inferred rules.

The idea is to hash each tuple according to the value of A. When a tuple is

hashed to an empty cell, the cell is initialized. Each cell contains the value of A, the

Count of tuples hashed to that cell and a cumnt cell Tuple. When a tuple is hashed

to an occupied cell, it is compared with the cell Tuple and the comparison result is

stored in the cell Tuple. At the end of hashing a cell for (A = a) contains all the infor-

mation necessary for deriving rules implied by (A = a), such as, the number of tuples

whose value of attribute A are a and the differences among those tuples which are

hashed to the same cell.

A significant speed-up is achieved by using a test for early rejection of rules in

an attribute. For a nominal attribute, if the value in the newly hashed tuple is dif-

ferent from the value stored in the cell Tuple, this attribute can be removed from

further consideration. A taxonomic or an interval attribute is rejected when the inter-

mediate result covers more than a user specified threshold value which is the max-

imum allowed sample coverage.

Piatetsky-Shapiro has derived formulas for predicting rule accuracy on the

entire database after rules are discovered in a sample. These formulas measure the

significance of the correlation between two attributes based on some statistical tech-

niques.

This algorithm has been implemented in LISP and tested in relational databases.

While most machine learning algorithms suffer from computational inefficiency, this

algorithm can discover many strong rules from databases quickly, and can therefore

be applied to relatively large databases. However, this algorithm may generate a large

set of rules. For example, the author conducted an experiment on 500 tuples, each

having 12 attributes, and the learning algorithm produced 150 rules [Pia89]. This

system cannot perform incremental learning when the database is updated. The leam-

ing process must be restarted after the new data are inserted into a database, because

the criteria which determine whether a tuple should be rejected or saved have been

changed.

CHAPTER 3

CONCEPTS OF LEARNING FROM DATABASES

We introduce the concept primitives for learning from databases, discuss the

types of rules that can be learned from databases, and then present an example to

illustrate these ideas.

3.1. Primitives of Learning from Databases

Learning from databases can be characterized by a mple d>, C, A>, where D

represents the set of data in the database relevant to a specific learning task, C

represents a set of "concept biases" (generalization hierarchy, etc.) useful for defining

particular concepts, and A is a language used to phrase definitions.

3.1.1. Data Relevant to Learning Task

Although a relational system stores a large amount of data, usually only a por-

tion of it is relevant to a specific learning task. For example, to characterize the

features of graduate students, only the data relevant to graduate students are useful in

the learning process. Similarly, to distinguish graduate students from undergraduate

students, it is only necessary to consider the tuples for students. If the relevant data

are spread over several relations, appropriate operations should be performed on

those relations to obtain a new relation before the learning algorithm is applied.

Thus, D, the set of data in the database relevant to a specific learning task, should be

obtained by performing relational operations, such as selection, projection and join,

to collect the necessary data for learning. In this thesis, we assume that such prepro-

cessing has been performed, and we focus only on one data relation relevant to our

learning process.

Most learning from examples algorithms partition the set of examples into posi-

tive and negative sets. The positive examples are used to generalize the learning con-

cepts, and the negative examples are used to specialize the learning concepts

[DiM83, Mic831. However, since a relational database usually does not explicitly

store negative data, no specified negative examples can be used to perform the spe-

cialization process in learning. All of the data stored in the database which character-

ize the features of a property are positive data. However, most database applications

assume that all of the information about a property is stored in the database. There-

fore, negative data can be derived based on the closed world assumption [Rei84]. For

example, to distinguish graduate students from undergraduate students, the properties

which belong to undergraduate students can be viewed as negative data.

3.1.2. Conceptual Bias Useful for Defining Concepts

It is often necessary to incorporate higher level concepts in the learning process

[GeN87, Rus881. As in most learning processes, candidate rules are restricted to for-

mulas with a particular vocabulary, that is, a basis set called the conceptual bias, per-

mitting the learned rules to be represented in a simple and explicit form. Different

levels of concepts can be organized into a taxonomy of concepts. The concepts in a

taxonomy can be partially ordered according to general-to-specific ordering. The

most general point is the null description (described by a reserved word "ANY "), and

the most specific points correspond to the specific values of attributes in the database.

The specification of conceptual bias is a necessary and natural process for learning.

Usually, the conceptual bias should be provided by knowledge engineers or dornain-

specific experts. We assume that conceptual clustering produces a taxonomic hierar-

chy of classes of similar objects in which the subclasses of each class are mutually

exclusive and jointly exhaustive. In ow discussion, the conceptual bias is given for

each attribute which is represented as a concept tree. Such a concept tree is specified

using an IS-A hierarchy and stored in a relation table, the concept hierarchy table.

Other methods for automatically (or semi-automatically) obtaining a concept hierar-

chy in the database are discussed in Chapter 6.

3.1.3. Language Used to Phrase Definitions

We use first-order predicate calculus as the primitive language for learning from

databases. From the logical point of view, each relation tuple is a formula in the con-

junctive normal form. For example, the tuple

can be viewed as representing the logic formula:

Name
Jackson

3 t ((Name (t) = Jackson) A (Category (t) = senior) A (Major (t) = computing)

I\ (Birth-Place (t) = Vancouver) A (GPA (t) = 3.5)).

The intermediate and final learning results can also be represented using rela-

tional tables. Such a relation is called a generalized relation.

Category
senior

Major
computing

Birth-Place
Vancouver

GPA
3.5

Definition: A generalized relation is a relation obtained by substituting the specific

concept(s) by the general concept(s) in some attribute(s).

The final generalized relation may contain several tuples which represent a dis-

junction of several conjunctions (tuples). Therefore, our logic bias [GeN87] on the

learned rules (hypotheses) is not limited to conjunctive definitions but to a small

number of disjunctions. Such a relaxation makes learning more effective because it

is often necessary to represent the learning results in some disjunctive form. A max-

imum number of disjunctions of the resulting formula, that is, the maximum number

of tuples in a final generalized relation, can be specified by users as a threshold value

of the learning process. For example, if a threshold value is three, the learning pro-

cess will derive a rule consisting of at most three disjunctions with each being a

sequence of conjuncts.

3.2. Two Types of Rules

There are two types of rules, characteristic rules and classification rules, which

can be easily learned from relational databases.

Definition: A characteristic rule is an assertion which characterizes the concepts

satisfied by all of the data stored in the database.

For example, the symptoms of a specific disease can be summarized as a charac-

teristic rule.

Definition: A classification rule is an assertion which discriminates the concepts of

one class from other classes.

For example, to distinguish one disease from others, a classification rule should

summarize the symptoms that discriminate this disease from others.

Both characteristic rules and classification rules are useful in many applications.

A characteristic rule provides generalized concepts about a property which can help

people recognize the common features of the data in a class. The classification rule

gives a discriminant criterion which can be used to predict the class membership of

new data.

Since learning these two rules represents two different learning tasks, different

sets of examples are required for the learning processes. The characteristic rules only

concern the characteristics of the data. Therefore, positive examples alone are enough

to furnish the learning task. However, for learning classification rules, the negative

examples must be incorporated into the learning process to derive the concepts which

have the discriminant property.

The data relevant to the learning task can usually be classified into several

classes based on the values of a specific attribute. For example, the data about stu-

dents may be classified into graduate students and undergraduate students based on

the value of the attribute "Category". We introduce new concepts target class and

contrasting class.

Definition: A target class is a class in which the data are tuples in the database con-

sistent with the learning concepts.

Definition: A contrasting class is a class in which the data do not belong to the tar-

get class.

For instance, to distinguish graduate students from undergraduate students, the

class of graduate students is the target class, and the class of undergraduate students

is the contrasting class.

3.3. An Example

To illustrate these ideas, Table 3.1 is given as a relation of a sample university

database.

Example 3.1. "Student" is a relation of a sample university database with attributes

Name, Category, etc. Suppose that our task is to learn characteristic rules of graduate

students.

Name
Anderson

Bach
Carey
Fraser
Gupta
Hart

Jackson
Liu

Meyer
Monk
Wang
Wise

Category
M.A.
junior
junior ; g;g I Ri~hm;~d I so homore chemist
senior com utin Victoria
Ph.D. biolo Shan ai

so homore music Bumab 3.0

M.S.
Ph.D.

Major
history
math

liberal arts

Table 3.1. A relation Student in a sample university database.

physics
math

Ph.D.
M.S.

freshman

Clearly, only the facts related to "graduates" in the database are relevant to this

learning task. Therefore, to obtain the relevant set of data, D, selection should be

performed on the database. However, since there is no explicit attribute value "gra-

duate" stored in the student "Category", a concept hierarchy table specifying the rela-

Birth-Place
Vancouver

Calgary
Edmonton

GPA
3.5
3.7
2.6

Ottawa
Bombay

computing
statistics
literature

--

3.9
3.3

-

Victoria
Nanjing
Toronto

3.8 .
3.2
3.9

tionship between the values in category and "graduates" should be consulted in order

to extract the relevant set of data.

We then examine C, the conceptual bias. Suppose the concept hierarchy table

of Figure 3.1 is specified in the university database, where A c B indicates that B is a

"generalization" of A.

{ computing, math, biology, chemistry, statistics,
physics } c science

(music, history, liberal arts, literature) c art
{ freshman, sophomore, junior, senior) c undergraduate

M.S., M.A., Ph.D.) c graduate
(Bumaby, Richmond, Vancouver,

Victoria) c British Columbia
{ Calgary, Edmonton) c Alberta
{ Ottawa, Toronto) c Ontario
(Bombay } c India
[Shanghai, Nanjing) c China
(China, India) c Foreign
[British Columbia, Alberta, Ontario) c Canada
{ 2.0 - 2.9) c average
[3.0 - 3.4) c good
(3.5 - 4.0 } c excellent

Figure 3.1. A concept hierarchy table of the university database

The specified concept hierarchy represents a taxonomy of concepts of the values

in an attribute domain, which can be organized as a concept tree for each attribute

domain. The four concept trees in relation "Student" are in Figure 3.2.

ANY

a) Concept tree for "Category"

cmpt math physics biology.. literature music history ..
b) Concept tree for "Major"

ANY

A ,,\ ,\
B.C. Alberta .. India China

/\ A I\ I\
Burnaby Victoria Edmonton .. Bombay .. Nanjing ..

c) Concept tree for "Birth-Place"

(to be continued)

(continued)

excellent I An
2.0 2.9 3.0 3.4 3.5 4.0

d) Concept tree for "GPA"

Figure 3.2. Concept trees for the four attributes

After consulting the appropriate concept tree, the set of data about "graduates"

can be obtained by selection of only those students who are in the category of gradu-

ates, that is, their category values are in (M.S., M.A., Ph.D.). Retrieved data are

shown in Table 3.2.

Name
Anderson

Fraser
Gupta
Liu
Monk
Wang

Table 3.2. The set of data relevant to "graduates"

Finally, we examine the language A. Each positive instance is stored as a tuple

in the data relation, which can be viewed as a logic formula in conjunctive normal

form. For example, each tuple in Table 3.2 is a conjunction of 5 conjuncts. After the

learning process, the learned rule is represented by a small number of tuples (I thres-

hold) in the final generalized relation. Each tuple is in conjunctive normal form and

the relationship among these tuples is disjunction. For example, Table 3.3 shows the

final generalized relation derived by the learning process from data D (Table 3.2) and

the given conceptual bias (Figure 3.1 and Figure 3.2).

Canada excellent
science Forei

Table 3.3. The learned rule in relation table form

This final generalized relation corresponds to a rule which is in a disjunctive

normal form with 2 disjuncts, and each disjunct is a conjunction of 3 conjuncts.

CHAPTER 4

ATTRIBUTE-ORIENTED INDUCTION IN RELATIONAL DATABASES

Efficient induction techniques in relational databases are challenged by the large

size of relational databases. Most existing algorithms for learning from examples

conduct exhaustive searches of the given concept space, which makes the algorithms

infeasibly slow for large database applications [CoF83]. Furthermore, although rela-

tional databases provide many facilities which have been well implemented, most

machine learning algorithms do not take advantage of these facilities. Those learning

systems suffer from computational inefficiency when they are used for learning from

relational databases.

To make the learning mechanism applicable in relational databases, the learning

algorithm should be able to utilize the database implementation techniques and com-

pute efficiently. We develop an attribute-oriented induction approach which can

effectively learn the characteristic rules and classification rules from relational data-

bases [CCH89b]. Our approach integrates database operations with the learning pro-

cess and provides a simple and efficient way of learning from large databases. In

contrast to the tuple-oriented approach, the attribute-oriented approach performs gen-

eralization attribute by attribute. The training data are examined one attribute at a

time. After the generalized sub-concepts on each attribute have been generated, the

sub-concepts are combined to form the entire concept. Our approach is demonstrated

by two algorithms, the LCHR algorithm and the LCLR algorithm.

4.1. Learning Characteristic Rules

Since a large number of examples stored in the database usually provides infor-

mation rich enough to characterize a property, it is important to learn characteristic

rules from databases.

The first algorithm we developed is the LCHR &earning CHaracteristic Rules

from relational databases) algorithm [CCH89a]. In this algorithm, an attribute-

oriented concept tree ascending technique is applied which substitutes the lower-level

concept of the attribute in a tuple by its corresponding higher-level concept and thus

generalizes the relation. As a result, different tuples may be generalized to the same

concept. By eliminating identical tuples and using a threshold value to control the

generalization process, the final generalized relation consists of only a small number

of tuples, which can be transformed to a simple logic formula. We examine such a

generalization procedure by analyzing the learning process in Example 3.1.

Since the task of Example 3.1 is to learn the characteristic rule for graduate stu-

dents, it is unimportant to distinguish M.S. students and Ph.D. students. As long as

"graduate students" have been selected as the set of relevant data shown in Table 3.2,

the attribute "Category" can be removed in the learning process.

The first attribute, "Name", is the key of the relation. Since each key or candi-

date key is distinct in a relation, it represents a large set of distinct values which

should be generalized. If there is no higher level concept provided in the concept

tree, the attribute should be removed in the learning process. This process can also

be viewed as first generalizing the values to "ANY" (or "null" description), and then

removing the attribute since "ANY" does not provide interesting information on the

attribute. Removal of an attribute may also apply to a non-key attribute under similar

conditions. Therefore, we have

Generalization Strategy 4.1. (Attribute Removal) If there is a large set of distinct

values for an attribute but there is no higher level concept provided for the attribute,

the attribute should be removed during generalization.

Reasoning.

Removing attributes corresponds to the generalization rule, dropping conditions,

in learning from examples [Mic83]. Consider a tuple as a set of conjuncts in the logic

forms, and an attribute value as one of the conjuncts. By removing a conjunct, we

eliminate a constraint and thus generalize the rule. If there is a large set of distinct

values for an attribute, the large set of values must be generalized, because the learn-

ing task is to derive the generalized concepts. However, if there is no higher level

concept provided for the attribute, it cannot be generalized by ascending the concept

tree. Therefore, the attribute should be removed. 0

The key of a relation may consist of a set of decomposable components. For

example, two components, "student-id" and "course-id", form a composite key for the

relation "student-course-grade". Generalization should be performed on each com-

ponent of the composite key. Moreover, generalization may even be performed on a

single key attribute if the key consists of decomposable subcomponents. For exam-

ple, "student-id" may encode information about starting year and department, thus

generalization can still be performed on such a single key to obtain concepts like

"computer science students" or "new students". To simplify subsequent discussion,

we assume that any single attribute value is atomic (not decomposable). In general,

we have

Generalization Strategy 4.2. (Generalization on the smallest decomposable com-

ponents) Generalization should be performed on the smallest decomposable com-

ponents of a data relation.

Reasoning.

Learning characteristic rules is essentially a process of learning from positive

examples only. The least commitment principle (that is, commitment to minimally

generalized concepts) should be enforced for effective learning. By generalizing the

least decomposable components, we may discover the relationships among such com-

ponents without losing information about their composite components. 0

We then examine the remaining three attributes. None of these attributes is a

key or a candidate key. However, each attribute contains many distinct values and is

associated with some higher level concept in the concept tree of Figure 3.2. Clearly,

substituting the value of an attribute by its higher level concept in the concept tree

generalizes the rule, e.g., from "physics" to "science" and from "Vancouver" to

"B.C.". In general, we have

Generalization Strategy 4.3. (Ascending the concept tree) I f there are many dis-

tinct values for an attribute and there exists a higher level concept in the concept tree

for the attribute, each value in the attribute of the relation should be substituted by a

higher level concept in the learning process.

Reasoning.

This strategy corresponds to the generalization rule, climbing generalization

trees [Mic83]. The substitution of an attribute value by its higher-level concept

makes the tuple cover more cases than the original one and thus generalizes the tuple.

Ascending the concept tree one level at a time ensures that the least commitment

principle is followed and the overgeneralization is avoided.

By removing two attributes and generalizing the three remaining ones, the rela-

tion depicted in Table 3.2 is generalized to a new relation illustrated in Table 4.1

(with redundant tuples eliminated).

Table 4.1 is a generalized relation with five tuples which implies a rule with five

Major
art

science
science
science
science

disjuncts. Obviously, further generalization is needed to reduce the number of tuples.

In practice, it is often necessary to set up a threshold, an upper bound on the number

Table 4.1. A generalized relation

Birth-Place
B.C.

Ontario
B.C.
India
China

of tuples in the final generalized relation. Suppose our threshold value is set to three

GPA
excellent
excellent
excellent

good
good

in this example. Since only the attribute "Birthplace" contains four distinct values,

generalization should be performed on this attribute by ascending one level in the

concept tree resulting the relation shown in Table 4.2.

(Major I Birth-Place I GPA]
Canada excellent

science Canada excellent
science Forei

Table 4.2. Further generalization of the relation.

Since generalization is controlled by the threshold value, we have

Generalization Strategy 4.4. (Threshold control) If the number of distinct values

in a resulting relation is larger than the specijied threshold value, further generaliza-

tion on this attribute should be pel3formed.

Reasoning.

If the number of distinct values in a resulting relation is larger than the specified

threshold value, it should be generalized. Otherwise the final generalized relation

will contain more tuples than the specified threshold value. 0

Notice that generalization can be performed on one attribute several times con-

secutively by ascending several levels up a concept tree without generating inter-

mediate relations. Such localized generalization on one attribute saves processing

cost [Win75]. For example, the generalization on "Birth-Place" can be performed

twice because the first generalization produces four distinct values, which is still

above the threshold value, and it is necessary to perform one additional generaliza-

tion. Therefore, we obviate the need to generate Table 4.1; only Table 4.2 is gen-

erated.

The above processing ensures that the number of distinct values in each attribute

of the resulting relation is no larger than the specified threshold value. However, the

total number of tuples in the resulting relation may still be above the threshold value.

In this case, further generalization on some attribute should still be performed. The

choice of the generalized atmbute may depend on the tuple reduction ratio, simplicity

of the final learned rules, etc.

Among the three resulting tuples, simplification can be performed by "unioning"

the f is t two tuples if the set representation of an atmbute is allowed. Logically, this

is equivalent to

(x l A y A z) V (x 2 A y A z) = (x 1 V x 2) A y Az .

Thus we obtain Table 4.3:

Birth Place
art, science Canada excellent

science Forei

Table 4.3. Simplification of the generalized relation.

Since art and science cover all of the Major areas, {art, science) can be general-

ized to ANY and then removed from the representation. Therefore, the final general-

ized relation is shown in Table 3.3, which is equivalent to rule (4.1). That is, a gra-

duate is either a Canadian with an excellent GPA or a foreign student, majoring in

sciences with a good GPA.

(4.1) v (x) graduate(x) =>
(Birth-Place(x) E Canada A GPA(x) E excellent) V
(Major(x) E science A Birth-Place(x) E Foreign /\ GPA(x) E good).

Similarly, if the algorithm is applied to learn rules for "undergraduate students",

we will obtain rule (4.2), that is, all undergraduate students are Canadians.

(4.2) v (x) undergraduate(x) => Birth-Place(x) E Canada.

As shown in rules (4.1) and (4.2), since the learned rules cover all of the data in

the learning class, they are the necessary conditions of the learning class. We will

discuss this in more detail in Chapter 6.

From this discussion, the learning algorithm, LCHR, can be summarized as fol-

lows.

Algorithm 4.1. LCHR -Learning characteristic rules from relational databases.

Notation. () is used to enclose a comment. P is a relation of the database relevant

to the learning task, which consists of a set of attributes A,, 1 < i I n, where n is the

number of attributes in relation P. N stands for the total number of tuples in the

current (working) relation, and di is the number of distinct values of attribute Ai of

the current relation. T stands for the user-specified threshold value, i.e., the max-

imum number of disjuncts in the resulting rule.

Input.
(i) a relational database,

(ii) a concept hierarchy table,

(iii) the learning task, and

(iv) the threshold value (T).

Output. A characteristic rule learned from the database.

Method.

Step 1. Select the task-relevant data, relation P , using relational operations and

concept hierarchy table when necessary. (The method was discussed in Chapter

Step 2. Perfom attribute-oriented induction, which is described by the follow-

ing procedure.

Procedure Attribute-oriented induction for learning characteristic rules;

{ Generalization is performed as follows on each attribute Ai of P .)
BEGIN

FOR EACH attribute Ai DO
BEGIN

WHILE di > T DO
IF there is no higher level concept in the concept hierarchy table for

the values of A;
THEN remove attribute Ai
ELSE { There is a higher level concept.)

Substitute the values by its corresponding minimal generalized
concept, and
Eliminate redundant tuples;

END
{Nowdi I T)
WHILEN > T DO
BEGIN

Generalize the attributes containing substantially more distinct
values or those with a better reduction ratio (i.e., reducing to
a less number of tuples), and

Eliminate redundant tuples;
(NowN S T)

END
END. {Attribute-oriented inductionfor learning characteristic rules)

Step 3. Simplify the generalized relation.

If only one attribute of several tuples contains distinct values, the several tuples

can be reduced into one by taking the distinct values of that attribute as a set.

Step 4. Transform the final relation into logic formulas.

Based on the semantics of relations expressed in logic [GMN84], one tuple is

transformed to a conjunctive normal form, and multiple tuples are transformed

to a disjunctive normal form.

We are now in a position to state the following theorem.

Theorem 4.1. Algorithm LCHR correctly learns characteristic rules from relational

databases.

Proof Sketch.

Step 1 collects relevant data in the database for the learning task. Generaliza-

tion Strategy 4.2 is used in step 2 to ensure that generalization is performed on the

least decomposable components. The THEN-part in the first WHILE loop of Step 2

is based on Generalization Strategy 4.1 (removing attributes), and the ELSE-part is

based on Generalization Strategy 4.3 (ascending the concept tree). The second

WHILE loop in step 2 is based on Generalization Strategy 4.4 (controlled by the

threshold value). Each generalization statement in both WHILE loops applies the

least-commitment principle based on those strategies. Finally, steps 3 and 4 apply

logic transformations based on the correspondence between relational tuples and

logic formulas. Thus, the obtained rule should be the desired result which summar-

izes the characteristics of the class.

4.2. Learning Classification Rules

Besides the characteristic rules, the classification rules are also very useful in

many applications. Since a relational database stores a vast amount of data, it can be
'

viewed as a set of typical samples of the real world. The classification rules derived

from a databases can be used to classify the new data, and predict the properties of

the new data according to their class memberships.

We now describe the second database learning algorithm, LCLR, Learning

CLassification Rules from databases [CCHgO]. Similar to the LCHR algorithm, the

LCLR algorithms also applies the attribute-oriented induction technique. The differ-

ence is that in the extraction of classification rules, the facts which support the target

class serve as positive examples, while the facts which support the other classes serve

as negative examples. Since the learning task is to discover the concepts that have

discriminant properties, the portion of facts in the target class that overlaps with other

classes should be detected and removed from the description of classification rules.

We analyze such a learning process using another example.

Example 4.1. Learning a classification rule which distinguishes graduate students

from undergraduate students in the relation of Table 3.1.

Since all of the classes relevant to the learning task are used in the learning pro-

cess, it is necessary to extract the data related to those classes. For this learning task,

the data in the target class, graduate students, serve as positive examples, and the data

in the contrasting class, undergraduate students, serve as negative examples. Clearly,

the learning process should be performed on the entire relation in Table 3.1. To facil-

itate the learning process, the data should be clustered by classes. The attribute

"Category" can be removed after the relevant data are selected, which is the same as

that in LCHR because this attribute is not related to the learning task afterwards.

Similar to LCHR, this algorithm repeatedly performs generalization by "ascend-

ing the concept tree" or by "attribute removal". After removing two attributes, Name

and Category, and generalizing the three remaining attributes, Major, Birth-Place and

GPA, the relation depicted in Table 3.1 is generalized to a new relation as illustrated

in Table 4.4 (with redundant tuples eliminated). The first five tuples belong to the

class graduate-student, and the last six tuples belong to the class undergraduate-

student.

Learning Concept Maior Birth Place GPA Mark
art B.C. excellent

science Ontario excellent
graduate science B.C. excellent *

science India good
science China good
science Alberta excellent

art Alberta average
undergraduate science B.C. average

science B.C. excellent *
I art B.C. average
I art Ontario excellent

Table 4.4. A generalized relation

As shown in Table 4.4, different classes may share tuples. We define overlap-

ping tuples as follows.

Definition: A set of overlapping tuples is a set of tuples which are shared by dif-

ferent classes.

Obviously, the third tuple of class graduate-student and the fourth tuple of class

undergraduate-student are overlapping tuples, which indicates that a B.C. born stu-

dent, majoring in science with good GPA, may or may not be a graduate student.

Therefore, in order to get an effective classification rule, care must be taken to handle

the overlapping tuples. We have

Generalization Strategy 4.5. (Handling overlapping tuples) If there are overlap-

ping tuples in both target and contrasting classes, these tuples should be marked and

eliminated from the final generalized relation.

Reasoning.

Since the overlapping tuples represent the same assertions in the target class and

the contrasting class, they cannot be used to characterize the distinction of the target

class from the contrasting class. By detecting and removing the overlapping tuples,

only the assertions which have a discriminating property remain in the classification

rule, which guarantees the correctness of the learned rules. Removing a tuple is a

specialization process, which is the opposite operation of the generalization rule,

adding options. Consider multiple-tuples as a disjunction, and each tuple as one of

the disjuncts. By removing a disjunct, we eliminate one option and thus specialize

the rule. 17

After marking the third tuple in the class of graduate-student and the fourth

tuple in the class of undergraduate-student, the target class contains four unmarked

tuples as shown in Table 4.4, which implies that the resulting rule will contain four

disjuncts. Suppose the same threshold value, 3, is specified as before. Then based on

the arguments similar to those in LCHR, further generalization is performed on the

attribute "Birth-Place", which results in the relation shown in Table 4.5.

Learninn Concept Maior Birth Place GPA Mark
art Canada excellent *

graduate science Canada excellent *
science Foreign good
science Canada excellent *

undergraduate arts Canada average
science Canada average

art Canada excellent *
Table 49. A generalized relation

Notice that the overlapping mark should be inherited in their generalized tuples

because the generated concept still overlaps with the concept in other class(es).

Moreover, since such generalization may produce new overlapping tuples, overlap-

ping checking should be performed in each ascending of the concept tree. The judge-

ment for further generalization or attribute removal should rely on the unmarked

tuples in the target class. The generalization process is repeated until the number of

distinct values in each attribute in the unmarked tuples is under the specified thres-

hold value for the target class. Then, if the target class contains more unmarked

tuples than the threshold value, further generalization on some selected attribute is

still needed, which is similar to LCHR.

After eliminating the marked tuples, only one tuple is left in the target class in

the example. Based on the same principles in LCHR, the final generalized relation

can be transformed to the corresponding logic formula. The classification rule for

"graduates" is rule (4.3): if a student is from a foreign country, majoring in sciences

with a good GPA, helshe is a graduate student.

(4.3) v (x) graduate(x) <=
Major(x) E science A Birth-Place(x) E Foreign /\ GPA(x) E good

Similarly, the classification rule for "undergraduates" is rule (4.4): if a student is a

Canadian with an average GPA, helshe is an undergraduate student.

(4.4) v (x) undergraduate(x) <= Birth-Place(x) E Canada A GPA(x) E average

In contrast to the LCHR algorithm, this algorithm learns the rule which is the

sufficient condition of the learning concept, because the generalized rule excludes the

concepts which cover the tuples in other classes. More discussion on this will be

presented in Chapter 6.

From the above discussion, LCLR algorithm can be summarized as follows.

Algorithm 4.2. LCLR -Learning classification rules from relational databases.

Notation. (} is used to enclose a comment. P is a relation of the database relevant

to the learning task, which consists of a set of attributes Ai, 1 I i I n , where n is the

number of attributes in relation P. N stands for the total number of unmarked tuples

in a class, and di is the number of distinct values of attribute Ai in unmarked tuples

of a class. T stands for the user-specified threshold value, i.e., the maximum number

of disjuncts in the resulting rule.

Input.
(i) a relational database,

(ii) a concept hierarchy table,

(iii) the learning task, and

(iv) the threshold value (T).

Output. A classification rule for the target class learned from the database.

Method.

Step 1. Select the task-relevant data of the target class and the contrasting class

to form relation P and cluster the data by classes.

Step 2. Perform attribute-oriented induction, which is described by the follow-

ing procedure.

Procedure Attribute-oriented induction for learning classification rules;

{ Generalization is performed as follows on each attribute Ai of each class. }
BEGIN

FOR EACH attribute Ai DO
BEGIN

Perform intersection of both classes and mark the overlapping tuples;
WHILE di in the target class > T DO

IF there is no higher level concept in the concept hierarchy table of Ai
THEN remove attribute Ai ;
ELSE { There is a higher level concept. }

BEGIN
Substitute the values by its corresponding minimal generalized

concept (with overlapping marks automatically inherited);
Mark the newly generalized tuples which overlap with the tuples

in other classes; and
Eliminate identical tuples within each class

END
END

{ Now, the number of distinct values of each remaining attribute in the
target class is less than T .]
WHILE N in the target class > T DO
BEGIN

Generalize the attributes containing more distinct values than others
or those with a better reduction ratio (with overlapping marks
automatically inherited);

Mark the newly generalized tuples which overlap with those in the contrasting
class; and

Eliminate identical tuples within each class
END

END. {Attribute-oriented induction for learning classijication rules]

Step 3. Remove overlapping tuples and simplify the generalized relation.

In this step, the marked tuples are first eliminated; then the simplification pro-

cess is the same as that of LCHR.

Step 4. Tradorm the final relation into logic formulas.

This step is similar to Step 4 in LCHR except that the resulting formula is a

sufficient condition of the learning concept.

Theorem 4.2. Algorithm LCLR correctly learns classification rules from relational

databases.

Proof Sketch.

Step 1 collects the relevant data in the database for the learning task. Step 2

generalizes the concept in each attribute either by "ascending the concept tree" (Gen-

eralization Strategy 4.3) or by "attribute removal" (Generalization Strategy 4.1),

which simulates the generalization process of learning from examples. Moreover, the

specified threshold value ensures that the process of ascending of the tree terrninates

when it reaches the threshold-controlled number of disjunctions (Generalization Stra-

tegy 4.4), and "removing overlapping tuples" guarantees the resulting properties are

not shared by the contrasting class (Generalization Strategy 4.5). Step 3 and Step 4

perform simplification and transformation based on logic transformation rules. Thus,

the obtained rule should be the desired result which characterizes the discriminating

property of the class. 0

CHAPTER 5

VARIATIONS OF THE LEARNING ALGORITHMS

In Chapter 4 we presented a general outline for learning characteristic rules and

classification rules from relational databases and the LCHR and the LCLR learning

algorithms. We now discuss some variations of these algorithms which can cope

with different learning situations.

5.1. Adjusting Thresholds for Different Learning Results

Although there are some learning algorithms which can learn disjunctive rules

[MiC80,MMH86], many learning algorithms learn only conjunctive rules

[HaM77, HaM78, MCM86, Mit77, Mit82, Ver751. By permitting the threshold value

(the maximum number of disjunctions in the resulting formula) to be a small integer,

the LCHR algorithm and the LCLR algorithm can learn both conjunctive and disjunc-

tive rules. Such flexibility facilitates learning in many applications.

Algorithms LCHR and LCLR require the specification of threshold values by

users. There could be other variations, such as predefining the threshold value by a

database administrator or an expert. A threshold value, T, is usually small. There is

a tradeoff between small versus moderately large threshold values. A moderately

large threshold value may lead to relatively complex rule, containing many disjuncts

and some half-generalized results. A small threshold value leads to a small final rela-

tion, that is, a simple rule with few disjuncts. However, it may result in an over-

generalized rule, and some valuable information may be lost, as the following

example illustrates.

Example 5.1. Different threshold values result in different learning results.

Suppose we have a generalized relation depicted in Table 5.1.

Canada
science Canada excellent
science Forei

Table 5.1. A generalized relation.

If the threshold value is set to 3, this generalized relation is the learning result.

However, if 2 is the threshold value, the attribute "GPA" should be further general-

ized, which will give the learning result shown in Table 5.2.

I Major I Birth-Place I GPA I

Table 5.2. The learning result with the threshold value 2.

{art, science)
science

The appropriate threshold value varies in different learning situations [Fis88]. It

is not possible to define a uniform threshold value that is suitable for any learning

Canada
Foreign

task. A better way to determine a threshold value is to adjust the threshold values

ANY
ANY

within a reasonable range in several tests and then examine the learning results and

select the best one by consultation with domain experts and users.

The final relation resulting from LCHR algorithm and LCLR algorithm may

consist of a small set of disjuncts in which each disjunct is a set of conjuncts. The

advantage of our approach is that we learn some disjunctive rules and still keep the

number of disjuncts small. Note that some other algorithms such as [MiC80] can

learn such rules as well. If disjunctive forms were allowed at the early generalization

stage, many concepts may never be generalized because they can be represented by

disjunctive forms. Our approach restricts disjunct construction to a later stage. A

relaxation to this method is to allow some disjuncts in intermediate relations, which

makes the generalization process more conservative, and thus avoids some possible

over- generalization.

5.2. Dealing with Different Kinds of Concept Hierarchies

In our examples, all of the concept hierarchies are represented as the balanced

concept trees and all of the primitive concepts reside at the same level of a concept

tree. Hence generalization can be performed synchronously on each attribute to gen-

eralize the attribute values at the same lower level to the ones at the same higher

level. However, we may encounter other kinds of concept hierarchies or we may

encounter the case where the primitive concepts do not reside at the same level of a

concept tree.

5.2.1. Generalization of the Concepts at Different Levels of a Hierarchy

The concept hierarchies may be organized as unbalanced concept trees. For

example, the left branch of a tree may have fewer levels to the leaves than the right

branch. In these cases, synchronous tree ascension may reach the same level at dif-

ferent stages, which may result in an incorrect generalization at that level. A similar

problem may occur when the primitive concepts reside at the different levels of a

concept tree. These problems can be solved by checking whether one generalized

concept may cover other concepts of the same attribute. If one generalized concept

covers a concept several levels down the concept tree, the covered concept is then

substituted for by the generalized concept, that is, ascending the tree several levels at

once. In doing so, concepts at different levels can be handled correctly and

efficiently.

Example 5.2. Handling an unbalanced concept tree.

2a\ 5
circle ellipse triangle square hexagon

/\
small--circle large - -circle

Figure 5.1. An unbalanced concept tree.

Figure 5.1 shows an unbalanced concept tree. Based on the discussion above, as

long as the attribute value "ellipse" has been generalized to "oval", those attribute

values, "small-circle", "large-circle" and "circle", can be substituted by "oval" at

once.

This idea can be used for incremental learning as well. Relational databases are

characterized by frequent updating. As new data become available, it will be more

efficient to amend and reinforce what was learned from previous data than to restart

the learning process from scratch [KuS88,MMH86]. Our algorithms can be easily

extended to perform incremental learning. When new data are presented to a data-

base, an efficient approach to characterization and classification of data is to fist

generalize the concepts of the new data up to the level of the rules which have been

learned, then the LCHR and LCLR algorithms can be used to merge the generalized

concepts derived from the old data and the new data, which is illustrated in the fol-

lowing example.

Example 5.3. Incremental learning when new data are inserted into the database.

Suppose Table 5.3 is the characteristic rule for graduate students derived from

the original data in the database.

Table 5.3. The generalized relation induced from the original database.

Suppose the new data of Table 5.4 are inserted into the database.

Table 5.4. The new inserted data.

Instead of performing learning on the updated database from scratch, incremen-

tal learning can be performed by first generalizing the new data to the level of the

rule presented in Table 5.3, that derives Table 5.5.

Canada
science Canada excellent

Table 55. The generalized relation for new data.

Then merging the newly derived generalized relation (Table 5.5) and the old one

(Table 5.3). Suppose the threshold value is 3, then the merged generalized relation

table is Table 5.6 which is the new characteristic rule for graduate students.

Major (Birth-Place 1 GPA I
science Canada excellent
science Forei

Canada

Table 5.6. The new characteristic rule for graduate students.

Such incremental learning significantly saves computational cost, especially when the

size of the database is large.

5.2.2. Generalization of Concepts in the Hierarchies with Lattices

In all of our previous examples, the concept hierarchies are trees, that is, every

node has only one parent node at most. For any concept, therefore, there is only one

direction to perform the generalization. In some cases, however, the concept hierar-

chy may have lattice(s). Figure 5.2 illustrates this case.

Example 5.4. Handling a concept hierarchy with lattices.

some

C O U ~ T - ~

two three four jive six seven eight ..
Figure 5.2. A concept hierarchy with lattices.

Clearly, the concept "two" can be generalized either to couple or few. Both gen-

eralized concepts should be considered. Our method is to put all possible generalized

concepts into intermediate generalized relations when a lattice is encountered, and

then perform further generalization on all those tuples. In this example, after the

tuple containing attribute value "two" is generalized, two new tuples, containing attri-

bute values "couple" and "few", respectively, should be generated. For the concept

"six", the same technique should be applied. As a consequence, the size of the gen-

eralized relation table may increase at some stage of the generalization process

because of the effect of a lattice. However, since the generalization is controlled by

the specified threshold value, the generalized relation will eventually shrink in further

generalizations.

5.3. Nonuniqueness of Learning Results

When a relation is generalized close to the final stage, interesting rules can often

be discovered by generalization in several possible directions. For example, when

the number of distinct values in each attribute has been reduced to below the thres-

hold value, there could be several choices to select the attribute on which further gen-

eralization should be performed. Taking different attributes to perform further gen-

eralization may result in different learning results. Example 5.5 shows the possibility

of nonuniqueness of the learning results.

Example 5.5. Nonuniqueness of rules learned from the same data.

Suppose Table 5.7 is an intermediate generalized relation for learning a charac-

teristic rule of students.

Table 5.7. An intermediate generalized relation.

Major
art

science
science

art
science

Since Table 5.7 contains five tuples, which is beyond the specified threshold

value of 3, further generalization is needed. However, there are 2 choices on the attri-

Birth-Place
B.C.
B.C.
B.C.

Ontario
Ontario

butes to perform further generalization because the attribute "Major" and the attribute

GPA
good
good

excellent
good
good

"Birth-Place" have the same tuple reduction ratio. By generalization on the attribute

"Major", Table 5.8 can be derived.

Table 5.8. A possible learning result.

This table corresponds to the rule, all of the studentsfrom the province of B.C.

have good or excellent GPAs, and all of the students from the province of Ontario

have good GPAs.

On the other hand, if the further generalization is performed on the attribute

"Birth-Place", Table 5.9 should be the result.

Table 5.9. Another possible learning result

This rule represents a different concept from the previous one, that is, all stu-

dents majoring in art have good GPAs, and all students majoring in science have

good or excellent GPAs.

In such a situation, it is often desirable to perform generalizations in several

directions to obtain several final generalized relations, which corresponds to the fact

that different people learn differently from the same examples. The final generalized

relations should be examined by users or experts to filter out some trivial generaliza-

tions and preserve interesting results.

5.4. Incorporating Quantitative Information

Both characteristic rules and classification rules learned by LCHR algorithm and

LCLR algorithm represent qualitative knowledge rules which do not provide and util-

ize any quantitative information. These algorithms can be easily extended to dis-

cover additional quantitative information which can be used to provide quantitative

evaluation, as well as handle noisy data and exceptional cases.

The technique we adopt is to add a special attibute, Votes, to each generalized

relation. This attribute registers the number of tuples in the original relation which

are generalized to one tuple in the current generalized relation. For example, a gen-

eralized tuple associated with the Votes value 30 indicates that this tuple is derived

from 30 tuples in the original relation. Based on the values in the attribute Votes, we

can calculate two weights, t-weight and d-weight, where t stands for typical, and d

stands for discriminant.

Definition: Let qa be a generalized concept. The t-weight for qa is the percentage of

tuples covered by qa in a class.

Formally, the t-weight for concept qa can be defined as follows.

Votes (qa) t-weight = -
I; Votes (qi)

i =l

where N is the number of tuples in the h a 1 generalized relation, and q, is in (q 1 ..

q~ 1.

The range of values for t-weight is [0, 11. This weight may be interpreted as a

measure of the typicality or the representativeness of a generalized tuple as the

characteristic rule of the data.

Definition: Let q, be a generalized concept, and Cj be a class. The d-weight for q,

in C, is the ratio of the number of tuples in Cj covered by q, to the total number of

tuples in all of the classes covered by q,.

The following formula is used to calculate the d-weight of the concept qa in

class Cj:

Votes (q, in Cj)
d-weight = K

X Votes (q, in Ci)
i=l

where K stands for the total number of the classes, and C, is in (C 1 .. CK).

The range of values for d-weight is [0, 11. A high d-weight indicates that the

concept is mainly derived from the current class, and a low d-weight implies that the

concept is shared by other class(es).

5.4.1. Association of Quantitative Information in the Induction Process

By calculating the t-weight when learning characteristic rules, and calculating

t-weight and d-weight when learning classification rules, the learning process can be

augmented with quantitative evaluation. We present some examples to illustrate

these ideas.

Example 5.6. Calculating the t-weight for a characteristic rule.

Suppose the following final generalized relational table is derived as the charac-

teristic rule of students.

Table 5.10. An example of a characteristic rule.

Major
art

science
science

We can discover additional quantitative information by calculating the t-weight.

The t-weight for the first tuple in Table 5.10 can be calculated as follows.

Similarly, the t-weight for second and third tuples are 28% and 39%, respectively.

Birth-Place
Canada
Canada
Canada

Then we conclude that all of the students are Canadian students, among which 33%

of the students major in art with good GPAs, 28% of the students major in science

GPA
good

excellent
average

with excellent GPAs, and 39% of the students major in science with average GPAs.

Votes
30
25
35

Example 5.7. Calculating the t-weight and the d-weight for a classification rule.

Sup~ose we obtain the following final generalized relation for the classification

rule of graduate students.

I Learning Conce~t Maior Birth Place GPA Mark Votes 1
graduate science Canada excellent * 65

art Canada good * 15
science Foreign good * 45

undergraduate science Canada excellent * 65
art Canada good * 60

science Foreign good * 10
!

Table 5.11. An example of a classification rule.

Since all of the generalized concepts in these two classes are overlapping tuples,

no classification rule can be learned if the original algorithm is applied. However, we

still can discover valuable information if we calculate the t-weight and the d-weight.

Similar to the calculation in the last example, by applying the formula (5.1), we

obtain the information that 52% graduate students are from Canada, majoring in sci-

ence with excellent GPAs, 12% graduate students are Canadian and majors in art

with good GPAs, and 36% graduate students come from foreign counmes and major

in science with good GPAs.

Based on formula (5.2), the d-weight for the first tuple in the target class gradu-

ate is calculated as follows.

We can conclude that if a student is from Canada and majors in science with an

excellent GPA, he/she is a graduate student with a frequency of 50%. Similarly,

when a student has the conditions in the second tuple or the third tuple, the frequency

that the student is a graduate student are 20% or 82%, respectively. Note that if a gen-

eralized tuple is not shared with other classes, its d-weight will be 100%.
r.

In the real world, the instances of different classes will often be overlapped. By

calculating the d-weight, important information implied in this kind of data can be

discovered. The learned rules provide quantitative criteria to determine the class

membership of new data.

5.4.2. Handling Noisy Data and Exceptional Cases

Many learning systems have been developed under the assumption that there

exists no noise in the training examples. As a consequence of this assumption, careful

data gathering is required to ensure that the training examples are always paired with

their correct classification and that their descriptions are perfectly reliable in the

sense that they are error-free [MaK87, WoC881. In real applications, however, a

learning system has to operate in an enviroment where there are different sources of

uncertainty:

(1) incorrect, inconsistent and inaccurate values may be present;

(2) unusual, less representative values may be included;

(3) misclassified values may exist.

Many researchers consider a small number of unusual cases as noisy data, and

many techniques have been developed to cope with noisy - data

[MaK87, Qui86, WoC881. By incorporating quantitative information and using sta-
'I

tistical techniques, our algorithms can be extended to handle noisy data and excep-

tional cases presented in the relational database.

* Since the Votes of a generalized tuple indicates the number of tuples that it is . .

generalized from, and t-weights are derived from Votes, t-weights carry the statistical

information of a database. A high t-weight implies that the concept is induced from a

majority of data, and a very low t-weight implies that the concept is derived from

some rare, exceptional cases. Therefore, a high t-weighted tuple should be

in the generalized relation while a very low t-weighted tuple should be removed from

the generalized relation if the goal is to learn the characteristics of a majority number

of tuples. By doing so, the h a 1 generalized rule will characterize the majority of the

facts in the database. Example 5.8 illustrates this idea.

Example 5.8. Pruning noisy data and exceptional cases from the generalized relation

in Table 5.12.

Table 5.12. A generalized relation with an exceptional case.

Major
art

science
science

Obviously, the tuples in this generalized relation carry different t-weights,

which indicates that some concepts come from the majority of data, but some do not.

Birth-Place
Canada
Canada
Foreign

In general, we may specify a pruning threshold in the learning process. If the prun-

ing threshold value is set to 5%, the first tuple should be dropped since its t-weight is

GPA
average

excellent
good

1%. Then we conclude that 99% of students are science students with GPA ranging

Votes
1

64
35

from good to excellent.

As discussed in the presentation of the LCLR algorithm, there could be some

overlapping tuples discovered in learning classification rules. Some of these overlap-

ping tuples may come from an incorrect classification, and some may belong to some

exceptional case(s). By incorporating some statistical techniques, these kinds of noisy

data and exceptional cases can be detected. We adopt a method that measures the

correlation coefficient between a class and a generalized tuple

[ImC83, KKM88, Pia891.

We define association ratio, @, as follows.

Definition: Let C be a class, and Q be a generalized tuple. The association ratio, 4,

is the correlation coefficient between C and Q calculated by the following formula.

where N is the total number of tuples in the original task-relevant relation, IC I is the

total number of votes in the class C , lQ I is the number of votes of a generalized tuple

Q in all classes, and IC&Q I is the number of votes of Q in class C.

Measuring the association ratio is a standard statistical problem for 2 * 2 con-

t
tingency tables. This formula is derived from the formula (5.4) fbr calculating the

sample correlation coefficient.

which is approximately normally distributed PmC83, KKM88, Pia891.

The possible values of association ratio 4 range from -1 to 1, which can be

interpreted as the significance of association between C and Q . The more positive 4

is, the stronger is the association. This means that when 4 is close to 1, high I C I will

be likely associated with high l Q I, and low I C I will be likely associated with low

l Q I. The more negative @ is, the more negative is the association; that is, high I C I

may associate with low l Q I when @ is close to -1, and vice versa. In general, a very

low @ indicates that the generalized tuple Q is misplaced in the class C , or belongs to

the exceptional cases in the class C.

A threshold value, significance threshold, can be specified by users or experts.

If the association ratio + for C and Q is below the significance threshold, the general-

ized tuple Q should be removed from the class C. We use Example 5.9 to show this

method.

Example 5.9. Measurement of the association ratio between a class and a general-

ized tuple in Table 5.13.

Learning Conce~t Maior Birth Place GPA Mark Votes
graduate science Canada excellent * 40

. art Canada excellent 12
science Foreign good * 48

undergraduate science Canada excellent * 130
art Canada good 68

science Foreign good * 2

Table 5.13. A generalized relation for a classification rule.

By calculating the association ratio + for the third tuple in Table 5.13, we can

determine whether this tuple is significantly correlated with the class graduate.

Clearly, we have

Suppose the significance threshold value is set to 0.5. Then by this calculation, we

can conclude that the concept represented by the third tuple is significantly correlated

with the class graduate.

The sixth tuple in the Table 5.13 represents the case of another extreme.

lC&Ql = 2,
ICI = l3O+ 68+2=2OO,
IQI =48 +2=5O,
N=40+12+48+130+68+2=300,

Since the @ value is smaller than the significance threshold value, we can conjec-

ture that this generalized tuple is possibly derived from some exceptional cases or

from the data which are misclassified. After this tuple is excluded, the third tuple in

the class graduate becomes the unmarked tuple which should be included in the

learned rule.

We have studied several variations of the database learning algorithms in this

chapter. With these variations, our learning method can be extended to learning in

different situations. Further discussions on the two learning algorithms will be

presented in the next chapter.

CHAPTER 6

DISCUSSION

We study the relationship between LCHR algorithm and LCLR algorithm, com-

pare our algorithms with other learning from examples algorithms, and discuss the

automatic discovery of conceptual hierarchies.

6.1. Necessary Condition versus Sufficient Condition

We have developed two interesting algorithms, LCHR and LCLR, for learning

from databases. Both algorithms are attribute-oriented data-driven algorithms which

begin with a large number of data and perform generalization, attribute by attribute,

and step by step, without refemng to a fixed model.

The first algorithm, LCHR, takes task relevant tuples as positive examples and

adopts the least commitment principle (commitment to minimally generalized con-

cepts), ascending the concept tree only when necessary. Since the generalized rule

covers all of the positive examples in the database, it forms the necessary condition

of the learning concept. That is, the rule is in the form of

learning-class (x) => condition(x)

where condition(x) is the disjunctive or conjunctive formula containing x. The con-

dition must hold for all the examples of the database in the learning class. However,

since data in other classes are not taken as negative examples in the learning process,

there could be data in other classes which also meet the specified condition. There-

fore, the learned rule is not a sufficient condition but a necessary condition of the

learning class.

The second algorithm, LCLR, treats the tuples of the learning class as positive

examples and tuples of the contrasting class(es) as negative examples. Nevertheless,

it adopts the least commitment principle by ascending the concept tree only when

necessary. Figure 6.1 illustrates this idea schematically. The dots represent the tuples

in one class, and the stars the tuples in another class. Since the generalized rule

excludes the generalized concepts which cover the tuples in the contrasting classes,

the rule distinguishes the target class from the contrasting classes. However, the gen-

eralization may not cover all of the positive examples of the target class in the data-

base. Therefore, the learned rule is a sufficient condition of the learning concept but

may not be the necessary condition of the learning concept. The rule should be in the

form of

That is, if it meets the specified condition, it must be in the target class.

Figure 6.1. Problem space in learning classification rules

As a special case in which there are no overlapping data discovered (marked) in

the learning process by the LCLR algorithm, the learned rule represents both

necessary and sufficient conditions of the target class because it covers all of the

examples in the target class but no examples in the contrasting classes. The rule is of

the form

6.2. A Comparison with Other Learning Algorithms

Our approach has many distinct features when compared with other learning

algorithms.

6.2.1. The Positiveness of the Learning Examples

Many learning from examples algorithms perform learning from both positive

examples and negative examples [DiM83, Mic831. The candidate elimination algo-

rithm, the AQ I 1 algorithm and the AQ 15 algorithm are typical learning systems

which follow this paradigm [DiMgl, MMH86, Mit771. In the learning process, both

types of examples are necessary and play different roles. The posi&e examples are

used for generalization, and the negative examples are used for specialization. How-

ever, since negative examples are not stored in relational databases explicitly, our

approach mainly relies on the generalization process. In order to avoid over-

generalization, our approach adopts the least commitment principle and threshold

control. Negative data are never used in the LCHR algorithm because learning

characteristic rules does not have to incorporate such data. In the LCLR algorithm,

the data in the contrasting classes are used to exclude the features of the target class

which are shared by the contrasting classes. Since the data in the target class and the

contrasting classes are examined simultaneously by an attribute-oriented approach,

this specialization process is different from that of learning from examples.

6.2.2. Search Space

A concept tree ascending technique is the major generalization technique used

in both attribute-oriented generalization and tuple-oriented generalization. However,

the tuple-oriented approach performs generalization tuple by tuple, but the attribute-

oriented approach performs generalization attribute by attribute. We compare the

search spaces of our algorithms with that of a typical method of learning from exam-

ples, the candidate elimination algorithm [CoF83, GeN87, Mit77, Mit821.

In the candidate elimination algorithm, the set of all concepts which are con-

sistent with the training examples is called the version space of the training examples.

The learning process is the search in this version space to induce a generalized con-

cept which is satisfied by all of the positive examples and none of the negative exam-

ples.

Since generalization in an attribute-oriented approach is performed on indivi-

dual attributes, a concept hierarchy of each attribute can be treated as a factored ver-

sion space. Factoring the version space may significantly improve the computational

efficiency. Suppose there are p nodes in each concept tree and there are k concept

trees (attributes) in the relation, the total size of k factorized version spaces is pk.

However, the size of the unfactorized version space for the same concept tree should

,be p [SuF86]. This can be verified by Example 6.1.

Example 6.1. The entire version space and the factored version space for the concept

hierachy specified in Figure 6.2.

{ math, physics) c science
{ M.S., Ph.D. } c graduate

Figure 6.2. A concept hierarchy table.

The corresponding entire version space and factored version space are Figure

6.3a and Figure 6.3b, respectively.

graduate Ascience c
graduate Amath MS. Ascience P h D . Ascience graduate /\physics -

IXXXI
MS. /\math P h D . Amah MS. Aphysics P h D . Aphysics

a) The entire version space.

graduate science

b) The factored version spaces.

Figure 6.3. The entire and factored version spaces for the same concepts.

Obviously, the entire version space contains 32= 9 nodes, but the factored ver-
*

sion spaces contain a total of 3 * 2 = 6 nodes. The search space for our algorithms is

much smaller than the one for the candidate elimination algorithm.

-75 -

6.2.3. Conjunctive Rules and Disjunctive Rules

Many machine learning algorithms, such as Winston's algorithm for learning

concepts about the blocks world [Win75], the candidate elimination algorithm

[Mit77,Mit82] which is concerned with the discovery of a conjunctive rule when

both positive examples and negative examples are presented, program Thoth [Ver75]

and program SPROUTER maM77,HaM78] both of which are designed for finding

the maximally-specific conjunctive generalizations of a set of input positive exarn-

ples, can only learn conjunctive rules [CoF83]. The goal of the learning process per-

formed by such algorithms is to induce a conjunctive rule which can be satisfied by

all training examples. Since disjunctions allow a partially ordered rule space to

become infinitely "branchy", many algorithms do not permit disjunctions in the

representation language. However, in real world applications, there are many

knowledge rules which should be expressed in a disjunctive normal form. Our algo-

rithms can learn both conjunctive and disjunctive rules under rhe control of a

specified threshold value. If the threshold value is set to 1, the learning result will be

a conjunctive rule. Otherwise, if the threshold value is a small integer greater than 1,

the learning result will be a disjunctive rule consisting of a small number of con-

junct~. Our approach provides additional flexibility over many machine learning

algorithms. Moreover, by adjusting thresholds in the learning process, our approach

can learn knowledge rules in different conjunctive and disjunctive forms. This learn-

ing process provides more choices for experts and users to select the more desirable

ones.

6.2.4. Handling Overlapping Instances

We compare our method to another interesting learning program AQ11, which

is designed for learning a set of classification rules [MiC80]. AQll converts the

problem of learning classification rules into a series of single-concept learning prob-

lems. To find a rule for class A, it considers all of the known instances in class A as

positive instances and all the training instances in the remaining classes as negative

instances. The algorithm of AQ11 is then applied to find a concept that covers all of

the positive instances without covering any of the negative instances. This program

works only when there exist no overlapping instances among different classes. Our

algorithm can learn classification rules regardless of the existence of overlapping

instances. The overlapping instances can be detected during the learning process and

removed in the final learning step, which guarantees the discriminant property of the

learned rules. Thus our methods apply to more real world problems.

6.2.5. Utilizing Database Facilities

Relational database systems provide many attractive features for machine learn-

ing, such as the capacity to store a large amount of information in a structured and

organized manner and the availability of well developed implemetation techniques.

However, most existing algorithms do not take advantage of these database facilities

[DiM83, KMK89, Mic83, Pia891. An obvious advantage of our approach over many

other learning algorithms is the integration of the learning process with database

operations. Most of the operations used in our approach involve traditional relational

database operations, such as selection, join, projection (extracting relevant data and

removing attributes), tuple substitution (ascending concept trees), and intersection

(discovering common tuples among classes). These operations are set-oriented and

have been efficiently implemented in many relational systems. While most learning

algorithms suffer from inefficiency problems in a large database environment

piM83, Mic831, our approach can use database facilities to improve the perfor-

mance.

Moreover, in contrast to many machine learning algorithms which can learn

only qualitative rules, our approach can learn qualitative rules with quantitative infor-

mation. Some learning systems can only work in a "noise free" environment

[MaK87, WoC881, but our approach can handle noisy data and exceptional cases

elegantly by the incorporating statistical techniques in the learning process. With

these features, our approach provides a simple and efficient way to learn knowledge

rules from large databases.

6.2.6. Limitations of the LCHR and LCLR Algorithms

The LCHR and LCLR algorithms are designed for learning characteristic rules

and classification rules from relational databases. Therefore, both algorithms can

only handle the well-formatted data stored in relational databases. The databases of

many applications may contain complex data objects which may not be in the first

normal form, that is, an attribute of a tuple could contain structures or set values or be

represented in disjunctive forms [KoS86].

beyond the capability of our algorithms.

method.

The handling of such nonrelational data is

This is one of the major limitations of our

Many other learning algorithms learn complex formatted data which may not be

in the first normal form of the relational databases

maM77, Mic83, MMH86, Ver75, Win751. It is an interesting research issue to extend

our technique to complex data objects.

6.3. Discovery of Concept Hierarchies

One of the key input components to the LCHR and LCLR algorithms is the con-

cept hierarchy table (Figure 3.1), which organizes different levels of abstractions

relevant to each attribute of a relation. This table is assumed to be given and to be in

the form of concept trees in our algorithm. Now we examine how to discover con-

cept hierarchies.

Method 1: Concept hierarchies are provided by domain experts.

It is realistic to expect that the information about some concept hierarchy is pro-

vided by domain experts. Although a database may be large, a concept tree is gen-

erally simple and small, and can be input by domain experts in the form of an IS-A

hierarchy. A friendly user-interface can be built to facilitate users or domain experts

to input the concept hierarchies.

Method 2: Hierarchical information is stored in other portion of databases.

Actually, information about some generalization hierarchies is often be stored in

the database. Some data may imply concept hierarchies of other data in the database.

For example, "Vancouver is a city of British Columbia, which is in turn a province of

Canada", may not be explicitly stored in the attribute "Birth-Place". However, it is

often stored in a relation about the "Province" and "Country" of each city. If it is

- 79 -

stored in the same relation, the city portion of the "Birth-Place" attribute can be sim-

ply eliminated in the generalization process. Otherwise, the relation which stores

such information should be retrieved, and the lower level concepts should be substi-

tuted by their higher level correspondents. Such a generalization relationship is often

specified at the schema level instead of at the tuple level. For example, by indicating

the relationship of the attributes in the schema, "city c province c country", the tax-

onomy of all the cities stored in the relation are implicitly specified and can be used

in the learning process.

Method 3: Concept hierarchies are generated by statistics.

Numerical attributes can be organized in the form of discrete hierarchies to

facilitate ascension of concept trees and the representation of learning results

[MiS 83, S te871. Besides explicit specifications of concept hierarchies for numerical

values, concept trees can often be built automatically, based on database statistics.

Such automatic construction of concept trees can be performed by -fist obtaining the

distribution of attribute values in the database, then setting the range of the values

and considering more detailed classifications in more clustered subranges. For exarn-

ple, for an attribute "GPA", suppose that an examination of the values in the database

discloses that GPA is between 0 to 4 and most GPAs for graduates are clustered

between 3 and 4. One may classify 0 to 1.99 as one class, and 2 to 2.99 as another

but give more detailed classification for those between 3 and 4. Since the informa-

tion is extracted from database statistics, such a concept hierarchy can be constructed

automatic ally.

Even for attributes with discrete values, statistical techniques can be performed

under certain circumstances. For example, if the birth-places of most employees are

clustered in Canada and scattered in many different countries, the highest-level con-

cepts of the attribute can be categorized as "Canada" and "Foreign".

Method 4: Concept hierarchies are formed by conceptual clustering.

Some learning systems have been developed to organize the observed concepts

into a hierarchy of classes. The HUATUO system [ChF85] and the COBWEB system

[Fis87] are typical models in this category. The idea of the technique they adopt is to

measure the similarity of the concepts and form the hierarchy of classes based on this

measurement. The generated hierachy is a collection of concepts whose intra-class

similarity is high and inter-class similarity is low. A similar idea can be applied to

generate ~e concept hierarchies for our learning system.

For numeric attributes, the values which are close to each other can be grouped

together. The values can be first partitioned into several classes based on the similar-

ity measure, then following the same principle, each class can be further partioned

into sub-classes and so on. For example, the following set of values

can be organized as the concept hierarchy in Figure 6.4.

Figure 6.4. A concept hierarchy for a set of numeric value.

The symbols on the root and the intermediate nodes of the hierarchy can be

either the symbols automatically generated by the system or the concepts named by

domain experts.

For discrete attributes, a similar technique can be applied if the discrete values

can be first mapped to the numeric values using a certain mapping technique and then

conceptual clustering can be formed based on such mappings [ChF85].

This thesis is focused on the development of efficient database learning algo-

rithms. Further study on the automatic discovery of concept hierarchies is left for

future research.

CHAPTER 7

IMPLEMENTATION AND EXPERIMENTS

To test and experiment on the database learning algorithms developed in the

previous chapters, an experimental database learning system, DBLEARN, has been

constructed and some interesting experiments have been conducted in the learning

system.

7.1. Implementation of the Database Learning Algorithms

DBLEARN is implemented in C and runs under Unix on a Sun workstation. It

implements both the LCHR and LCLR algorithms. The architecture of DBLEARN is

presented in Figure 7.1.

In the learning process, DBLEARN first accepts the user's request through the

user-interface. Based on the specified learning task, DBLEARN obtains the relevant

data from a database and relevant conceptual bias from the file which stores concep-

tual bias information. One module of the learning program, either LCHR or LCLR, is

then invoked based on the user's learning request. After learning is performed, the

learning result is reported to the user through the user-interface. Some experiments

have been conducted in DBLEARN, which shows great promise of the learning sys-

tem.

A user-friendly interface is built in the DBLEARN system, by which users can

specify the learning task (either the characteristic rule, or the classification rule), the

I USER-INTERFACE I

LEARNINGPROGRAM 1

DATABASE CONCEPTUAL I BIAS I
Figure 7.1. The architecture of DBLEARN.

threshold value, the relation and the attributes relevant to the learning task, and the

concept to be learned (target class) and the concept to be compared (contrasting

class). This interface is implemented using the facilities LEX and YACC on the

UNIX system. The syntax of the language is specified in Figure 7.2 using the

extended BNF, where { ...) denotes one or more occurrences, Class - Name,

Target-Class-Name, Contrasting - Class-Name, Rel-Name, Attr-Name are the

corresponding names specified by users, and Int - Val is a constant greater than 0.

: learn <rule-type>
: <charact-rule> I <class-rule>
: characteristic-rule for Class-Name <LIB-name>

<am-list> <threshold>
: classification-rule for Target-Class-Name vs

{ Contrasting_Class-Name) <DB-name> <am-list> <threshold>
: from relation (Rel-Name]
: relevant to attributes <attrs>

<attrs> , <attr>
: Attr-Name
: with threshold = Int_Val

Figure 7.2. Syntactic specification of DBLEARN.

The following is a sample learning-request which specifies that the task is to

learn a characteristic rule for undergraduate students, referring to the attributes

Category, Major, Birth-Place and GPA, and the threshold is set to 3.

learn characteristic rule for undergraduate
from relation student
relevant to attributes Category, Major, Birth-Place, GPA
with threshold = 3

If the task is to learn a classification rule for undergraduate students versus gra-

duate students with the threshold value 3 and relevant to the attributes Category,

Major, Birth-Place and GPA, the query should be written as follows.

learn classification rule for undergraduate vs graduate
from relation student
relevant to attributes Category, Major, Birth-Place, GPA
with threshold = 3

Based on the learning task, the relevant data can be retrieved from a relational

database. Usually, the names of the target class and the contrasting class(es) are not

the primitive concepts stored in the relation table. For instance, in Example 3.1 and

Example 4.1, the concepts "graduate student" and "undergraduate student" cannot be

found in the data. Therefore, it is often necessary to consult the conceptual bias to

obtain a set of primitive concepts that belong to the target class or the contrasting

class(es). For example, the tuple whose value in attribute "Category" is in {M.S.,

M.A., Ph.D) should be retrieved for the class "Graduate", and the tuple whose value

in attribute "Category" is in {freshman, sophomore, junior, senior) should be

retrieved for the class "undergraduate".

A set of conceptual biases is coded in a conceptual bias file which is organized

as a three-column table. The first column contains the lower level concepts, the

second column contains the corresponding higher level concepts, and the third

column specifies the attribute names for which the conceptual bias serves. Such

organization facilitates the search of the conceptual bias during the learning process.

Table 7.1 is a sample table which stores the conceptual bias for the attribute

Tategory".

Table 7.1. The conceptual bias table for attribute "Category".

The learning program consists of two modules which implement the LCHR

algorithm and the LCLR algorithm, respectively. Either of these two modules can be

invoked by user's command. The entire learning process can be monitored if a

specific parameter, watch, is set on. That is, every intermediate generalized relation

will be printed on the terminal.

After the final generalized relation is derived, the DBLEARN system transforms

the learning result to the corresponding logic formula and reports to the user through

the user-interface.

7.2. Experimental Results

We have performed several experiments on different data domains to test the

LCHR algorithm and the LCLR algorithm. We report the results of two experiments

here.

Experiment 7.1. Learning a characteristic rule and a classification rule for graduate

students.

In this experiment, we test the DBLEARN system using the same data presented

in Table 3.1 and the same conceptual bias depicted in Figure 3.1 and Figure 3.2.

Learning-Request 7.1:

learn characteristic rule for graduate
from relation student
relevant to attributes Category, Major, Birth-Place, GPA
with threshold = 3

The DBLEARN system generates the following output.

The final generalized relation

Canada excellent
science Canada excellent
science forei

The characteristic rule for graduate students is:
graduate(x) =>

((Birth-Place(x) = Canada) and (GPA(x) = excellent))

((Major(x) = science) and (Birth-Place(x) = foreign) and (GPA(x) = good))

Learning-Request 7.2:

learn classijication-rule for graduate
from relation student
relevant to attributes Category, Major, Birth-Place, GPA
with threshold = 3

The following is the output generated by the DBLEARN system.

The classification rule for graduate students is:

graduate(x) <=
(Major(x) = science) and (Birth-Place(x) = foreign) and (GPA(x) = good)

The final generalized relation

Major
science

Birth-Place
foreign

GPA
good

Obviously, the system performs the learning process correctly. The learning

results are the exact ones that we expect.

Experiment 7.2. Learning characteristic rules and classification rules from a bank

relation.

Suppose Table 7.2 is a relation of a bank database with attributes Name, Age,

Address, Occupation and Balance. This experiment is designed to learn some charac-

teristic rules and classification rules from this relation.

(to be continued)

(continued)

Kim 1 37 1 W-Van

Levin Surre
Miller 45
Meyer 1 31 1 N-Van

Pinter
Rabin

Bumab

Nelson
Nerode
Orlin
Park

Reif Bumab
N-Van

Ro ers Bumab

Doctor 1 60028 1

Partson 43 Bumaby

56
27
33
28

Delta
Bumaby
W-Van
Delta

Mechanic 10977
Engineer 25446
Professor
Farmer

Mechanic
Engineer
Farmer

Tsou
Tucker

Table 7.2. A sample relation Bank.

33892
5022
30645
39487
9080

Yun
Zaks

52
47

62
29

Delta
N-Van

N-Van
Delta

Farmer
Professor

5399
45274

Professor
Plumber

46225
5987

Suppose Figure 7.3 is the specified set of concept hierarchies.

(21-30] ~20-30
{ 31 -40) c 30-40
(41 -50) ~40-50
{ 51 - 60) c 50-60
(61 - 70] c 60-70
{ 20-30] c young-age
(30-40,40-50] c mid-age
{ 50-60,60-70 } c old-age
(W-Van, Van) c West-part
(Bumaby, Coquitlam) c East-part
{ N-Van] c No-part
{ Surrey, Delta) c Soutkpart
{ Professor, Doctor, Engineer] c professional
{ Instructor, Mechanic, Farmmer, Plumber) c non-professional
{ 5k- 10k) C ~ O W

(1 1 k - 20k) c average
(2 1 k - 35k] c mid-high
{ 36k - 60k) c high

Figure 7.3. A concept hierarchy of the bank database

As defined in Figure 7.3, professional occupations include Professor, Doctor

and Engineer. And the nongrofessional ones include Instructor, Technician, Farm-

mer and Plumber. The following query invokes the DBLEARN system to discover

the characteristic rule for professionals.

Learning-Request 7.3:

learn characteristic - rule for professional
from relation bank
relevant to attributes Age, Address, Occupation, Balance
with threshold = 5

The DBLEARN system generates the following output.

- - - -

The final generalized relation

The characteristic rule for professional people is:

((Address(x) = West-part) and (Balance(x) = [high-bal , mid-high-ball))

((Address(x) = Nortkpart) and @alance(x) = [high-bal , mid-high-ball))
or

((Address(x) = East-part) and (Balance(x) = mid-high-bal))

If we want to learn a knowledge rule which distinguishes the professional peo-

ple from the non-professional people, Learning-Request 7.4 can be posted to

DBLEARN system.

Learning-Request 7.4:

learn classijication-rule for professional vs non-professional
from relation bank
relevant to attributes Age, Address, Occupation, Balance
with threshold = 5

The DBLEARN system generates the following learning result.

The final generalized relation

Age I Address I Balance
hi h-bal 1 1 west-~r t 1 1 1

West- art mid-hi h-bal
North- art hi h-bal
North- art mid-hi h-bal

The classification rule for professional people versus non-professional people
is:

professional(x) <=
((Address(x) = West-part) and (Balance(x) = [high-bal , mid-high-ball))

or
((Address(x) = North-part) and (Balance(x) = [high-bal , mid-high-ball))

Notes that this rule is slightly different from the rule derived from Learning-

Request 7.3. The tuple

((Address(x) = East-part) and (Balance(x) = mid-high-bal))

appears in the characteristic rule for professionals, but not in the classification rule for

professionals. The obvious reason is that among the people who are living in the

east-part of Vancouver area and have a mid-high balance in the bank, some are pro-

fessionals, but some are not. Thus, it is not possible to determine whether a person x

is a professional, based on "Address(x)" and "Balance(x)". The DBLEARN system

sets marks on these kinds of tuples in the generalized relation and removes them from

the representation of classification rules. This process enable the classification rules

to discriminate the concepts in the target class from the contrasting classes.

- 93 -

CHAPTER 8

CONCLUSIONS AND FUTURE RESEARCH

8.1. Conclusions

It is attractive and challenging to automatically compute generalization rules

from large databases. In this thesis, we have studied the methods of learning charac-

teristic rules and classification rules from relational databases and have developed

two efficient database learning algorithms, LCHR and LCLR. These algorithms

adopt the attribute-oriented induction approach, integrate database operations with

the learning processes, and provide an efficient way of extracting knowledge from

databases.

The LCHR algorithm is designed for learning characteristic rules from relational

databases. It adopts an attribute-oriented concept tree ascending-technique which

substitutes the lower-level concepts of the attribute in a tuple by its corresponding

higher-level concepts and thus generalizes the relation. By eliminating the redundant

tuples and applying a threshold value to control the generalization process, the final

generalized relation consists of only a small number of tuples which can be

transformed to a simple logic formula.

The LCLR algorithm is designed for learning classification rules from relational

databases. Similar to the LCHR algorithm, the LCLR algorithm also applies the

attribute-oriented concept tree ascending technique. However, this algorithm detects

the overlapping tuples in the learning process and removes such tuples from the final

generalized relation, thus ensuring that the learned concepts can be distinguished

from the concepts in other classes.

In order to cope with different learning situations, some variations of these

learning algorithms have been studied. By developing various kinds of techniques,

our approach can handle different types of concept hierarchies. By adjusting thres-

holds in the learning process, our approach can learn knowledge rules in different

conjunctive and disjunctive forms. By incorporating the statistical techniques, our

learning algorithms can discover qualitative rules with quantitative information and

handle noisy data and exceptional cases elegantly.

A comparison of our approach with many other algorithms for learning from

examples shows that our algorithms have many distinct features, such as, the ability

to use database facilities, learn disjunctive rules, handle overlapping instances, pro-

vide quantitative information, and handle noisy data and exceptional cases. Our

analysis of the algorithms demonstrates that the attribute-oriented induction approach

substantially reduces the complexity of the database learning process.

8.2. Future Research

There are many interesting research issues related to learning from large data-

bases.

8.2.1. Applications of Knowledge Rules Discovered from Relational Databases

Our learning system can learn characteristic rules and classification rules from

relational databases effectively. An immediate issue is the application of knowledge

rules discovered in the learning process.

The knowledge rules learned from relational database are very useful in

applications, some of which are listed below:

Discovery of knowledge rules for knowledge-base systems and expert systems.

Since rules are derived from a huge number of data stored in a relational data-

base, they represent important knowledge about data in the database. Thus, our

approach is an important method to obtain knowledge rules for knowledge-base

systems and expert systems.

Processing of queries which involve abstract concepts.

In general, relational databases can only answer queries which involve the con-

cepts presented in the database, but they cannot handle queries like "What are

the major characteristics of a graduate student?" and "How can we describe the

major differences between graduate students and undergraduate students?".

Such queries involve concepts which are at a higher level than the primitive data

stored in relational databases. By applying the knowledge rules obtained by our

learning algorithms, it is possible to answer such learning-requests in a natural

way.

Semantic query optimization using the learned rules.

Some queries can be answered more efficiently by the learned knowledge rules

without searching databases [CGMSS]. For example, the query, "Is there any

foreign student in the undergraduate program?", usually indicates that the rela-

tion undergraduate student must be searched. However, if the characteristic

rule indicates that there are no undergraduate students who come from other

countries, this query can be answered immediately without any search. A similar

situation occurs when the query is "Are all graduate students studying science?".

If the characteristic rule shows that the major of some students is "science", but

the major of some other students is "art", then the obvious answer to this query

is "No". Clearly, learned rules may speed up or optimize the database query

processing as previously studied in semantic query optimization [CGM88].

Notice that when there is a large number of learned rules, it is nontrivial to

search such a rule space. In such a case, there is a trade-off between performing

such semantic optimization versus searching database directly. More detailed

study in semantic query optimization using generalized rules may produce some

interesting results.

8.2.2. Construction of an Interactive Learning System

As shown in our learning system, the database learning process is guided by

experts or users. Experts and users must provide the conceptual bias, specify the

learning task and define the threshold value. It is important to obtain such informa-

tion by interaction with users and experts. We propose to build an interactive learn-

ing system which should provide the following features.

(1) The system should have a user-friendly interface to facilitate users' communica-

tion with the learning system. A more flexible database learning language

should be developed for such an interface.

(2) The entire learning process should be monitored and controlled by users. For

example, at some stage of the learning process, users may terminate the general-

ization on some selected attributes but continue the process on other attributes.

In order to obtain multiple rules, users may influence the learning process using

different threshold values.

8.2.3. Discovery of Concept Hierarchies

The current system DBLEARN needs users or domain experts to provide the

conceptual bias explicitly. We have examined in Chapter 7 some techniques for

automatic generation of concept hierarchies. Further research on this topic, espe-

cially on the discovery of concept hierarchies for discrete attributes, should be stu-

died in depth. The following possible approaches should be considered in future

research.

(1) Develop some specific mapping techniques which can map the discrete attribute

values to numeric values, and then apply cluster analysis and numeric taxonomy

to discover the concept hierarchies [ChF85, Fis871.

(2) Design an efficient method to search the concept hierarchies stored in the rela-

tional database, either from data or from integrity constraints.

8.2.4. Performance Testing

To further study the efficiency of the database learning algorithms, we plan to

perform a systematic study and some performance testing on different learning algo-

rithms in databases. Moreover, the complexity measurement of our algorithms will

be analyzed in more detail. Further improvement of our techniques will be examined

and experimented. The study will finally lead to a comprehensive efficient database

learning system.

REFERENCES

References

[BuM78] B. G. Buchanan and T. M. Mitchell, Model-Directed Learning of

Production Rules, in Waterman et. al. (eds.), Pattern-Directed Inference

System, Academic Press, 1978,297-312.

[CCH89a] Y. Cai, N. Cercone and J. Han, Learning Characteristic Rules from

Relational Databases, Proceedings of the International Symposium

Computational Intelligence'89, Milano, Italy, September 1989.

[CCH89b] Y. Cai, N. Cercone and J. Han, Attribute-Oriented Induction in

Relational Databases, Proceedings of IJCAl-89 Workshop on Knowledge

Discovery in Databases, Detroit, Michigan, August 1989,26-36.

[CCH9O] Y. Cai, N. Cercone and J. Han, An Attribute-Oriented Approach for

Learning Classification Rules from Relational Databases, Proceedings of

the 6th International Conference on Data Engineering, Los Angeles,

CA, February 1990.

[CGM88] U. S. Chakravarthy, J. Grant and J. Minker, Foundations of Semantic

Query Optimization for Deductive Databases, In J. Minker (ed.),

Foundations of Deductive Databases and Logic Programming, Morgan

Kaufmann, 1988,243-274.

[ChF85] Y. Cheng and K. S. Fu, Conceptual Clustering in Knowledge

Organization, IEEE Transactions on Pattern Analysis and Machine

Intelligence, Vol. 7, NOS, September 1985,592-598.

[CoF83] P. Cohen and E. A. Feigenbaum, The Handbook of Artificial Intelligence

(Vol. 111), Heuristic Press & William Kaufmann Inc., 1983.

[DiMSl] T. G. Dietterich and R. S. Michalski, Inductive Learning of Structural

Descriptions: Evaluation Criteria and Comparative Review of Selected

Methods, Artificial Intelligence , Vol. 16, 1981,257-294.

[DiM83] T. G. Dietterich and R. S. Michalski, A Comparative Review of Selected

Methods for Learning from Examples, in Michalski et. al. (eds.),

Machine Learning: An Artificial Intelligence Approach, Vol. I , Morgan

Kaufmann, 1983,4142.

[FaM86] B. C. Falkenhainer and R. S. Michalski, Integrating Quantitative and

Qualitative Discovery: the ABACUS system, Machine Learning , Vol. 1,

NO. 4 , 1986,367-401.

[Fist371 D. Fisher, Improving Inference Through Conceptual Clustering,

Proceedings of I987 AAAI Conference, Seattle, Washington, July 1987,

461-465.

[Fis88] D. Fisher, A Computational Account of Basic Level and Typicality

Effects, Proceedings of 1988 AAAI Conference , Saint Paul, Minnesota,

August 1988,233-238.

[GMN84] H. Gallaire, J. Minker and J. Nicolas, Logic and Databases : A Deductive

Approach, ACM Computing Surveys , 16(2), 1984,153-185.

[GeN87] M. Genesereth and N. Nilsson, Logical Foundations of Artificial

Intelligence, Morgan Kaufmann, 1987.

[Hau86] D. Haussler, Quantifying the Inductive Bias in Concept Learning,

Proceedings of I986 AAAI Conference , Philadelphia, PA, August 1986,

485-489.

[Hau87a] D. Haussler, Learning Conjuctive Concepts in Structural Domains,

Proceedings of 1987 AAAI Conference, Seattle, Washington, July 1987,

466-470.

[Hau87b] D. Haussler, Bias, Version Spaces and Valiant's Learning Framework,

Proceedings of the 4th International Workshop on Machine Learning,

Irvine, CA, 1987,324-336.

[HaM77] F. Hayes-Roth and J. McDermott, Knowledge Acquisition from

Structural Descriptions, Proceedings of 5th International Joint

Conference on Artificial Intelligence , Cambridge, MA, August 1977,

356-362.

[HaM78] F. Hayes-Roth and J. McDermott, An Interference Matching Technique

for Inducing Abstractions, Communications of the ACM, Vol. 21, NOS ,

1978,401-410.

[ImC83] R. L. Iman and W. J. Conover, A Modern Approach to Statistics, , 1983.

[KMK89] K. A. Kaufman, R. S. Michalski and L. Kerschberg, Mining for

Knowledge in Databases: Goals and General Description of the INLEN

System, Proceedings of IJCAI-89 Workshop on Knowledge Discovery in

Databases, Detroit, Michigan, August 1989, 158-172.

[KIWI881 D. G. Kleinbaum, L. L. Kupper and K. E. Muller, Applied Regression

Analysis and Other Multivariable Methods, , 1988.

[Kok86] M. M. Kokar, Coper: a Methodology for Learning Invariant Functional

Descriptions, in Michalski et. al. (eds.), Machine Learning: a Guide to

Current Research, Cluwer Academic Publishers, 1986,151-I54.

[KoS86] H. F. Korth and A. Silberschatz, Database System Concepts, McGraw-

Hill, 1986.

[KuS88] D. Kulkarni and H. A. Simon, The Process of Scientific Discovery: The

Strategy of Experimentation, Cognitive Science, Vol. 12, 1988, 139-175.

[Lan77] P. W. Langley, Rediscovering Phisics with BACON.3, Proceedings of

the 5th IJCAI Conference, Cambridge, MA, 1977,505-507.

[LBS83] P. W. Langley, G. L. Bradshaw and H. A. Simon, Rediscovering

Chemistry with the BACON System, in Michalski et. al. (eds.), Machine

Learning: An Artifxial Intelligence Approach, Vol. 1, Morgan

Kaufmann, 1983,307-330.

[Len771 D. B. Lenat, On Automated Scientific Theory Formation: a Case Study

Using the AM Program, In J. E. Hayes, D. Michie, and L. I. Mikulich

(eds.), Machine Intelligence 9, Halsted Press, 1977,251-286.

&ub89]

[MaK87]

[MiC80]

[Mic83]

[MiS 831

[MCM83]

[MMH861

D. J. Lubinsky, Discovery from Database: A Review of A1 and Statistical

Techniques, Proceedings of IJCAI-89 Workshop on Knowledge

Discovery in Databases, Detroit, Michigan, August 1989,204-218.

M. V. Manago and Y. Kodratoff, Noise and Knowledge Acquisition,

Proceedings of the 10th IJCAI Conference, Milan, Italy, 1987, 348-354.

R. S. Michalski and R. L. Chilausky, Learning by Being Told and

Learning from Examples: An Experimental Comparison of the Two

methods of Knowledge Acquisition in the Context of Developing an

Expert System for Soybean Disease Diagnosis , International Journal of

Policy Analysis and Information System , Vol. 4, 1980, 125-161.

R. S. Michalski, A Theory and Methodology of Inductive Learning, in

Michalski et. al. (eds.), Machine Learning: An Artijicial Intelligence

Approach, Vol. 1, Morgan Kaufmann, 1983,83-134.

R. S. Michalski and R. Stepp, Automated Construction of Classifications:

Conceptual Clustering Versus Numerical Taxonomy, IEEE Transactions

on Pattern Analysis and Machine Intelligence, 5, 1983,396-410.

R. S. Michalski, J. G. Carbonell and T. M. Mitchell, Machine Learning,

An ArtiJicial Intelligence Approach, Vol. 1, Morgan Kaufmann, 1983.

R. S. Michalski, L. Mozetic, J. Hong and N. Lavrac, The ~ulti-purpose

Incremental Learning System AQ15 and Its ~es t ing Application to 'Ihee

Medical Domains, Proceedings of I986 AAAI Conference , Philadelphia,

PA, 1986,1041-1045.

[MCM86] R. S. Michalski, J. G. Carbonell and T. M. Mitchell, Machine Learning,

An Artificial Intelligence Approach, Vol. 2, Morgan Kaufmann, 1986.

R. S. Michalski, How to Learn Imprecise Concepts: A Method for

Employing a Two-tiered Knowledge Representation in Learning,

Proceedings of the 4th International Workshop on Machine Learning,

Irvine, CA, 1987,50-57. ,

T. M. Mitchell, Version Spaces: A Candidate Elimination Approach to

Rule Learning, Proceedings of the 5th IJCAI Conference, Cambridge,

MA, 1977,305-310.

T. M. Mitchell, An Analysis of Generalization as a Search Problem,

Proceedings of the 6th IJCAl conference, Tokyo, Japan, 1979,577-582.

T. M. Mitchell, Generalization as Search, Artificial Intelligence, Vol. 18,

1982,203-226.

G. Piatetsky-Shapiro, Discovery of Strong Rules in Databases,

Proceedings of IJCAI-89 Workshop on Knowledge Discovery in

Databases, Detroit, Michigan, USA, August 1989,264-274.

J. R. Quinlan, Learning Efficient Classification Procedures and Their

Application to Chess End-Games, in Michalski et. al. (eds.), Machine

Learning: An Artificial Intelligence Approach, Vol. 1, Morgan

Kaufmann, 1983,463-482.

J. R. Quinlan, The Effect of Noise on Concept Learning, in Michalski et.

al. (eds.), Machine Learning: An Artificial Intelligence Approach, Vol. 2,

Morgan Kaufmann, 1986,149-166.

[Re841 R. Reiter, Towards a Logical Reconstruction of Relational Database

Theory, in M. Brodie, J. Mylopoulos, and J. Schmidt (Eds.), On

Conceptual Modeling, Spring-Verlag, 1984,191-233.

[Re11861 L. Rendell, A General Framework for Induction and a Study of Selective

Induction, Machine Learning, 1, 1986.

[Rus88] S. J. Russell, Tree-Structured Bias, Proceedings of 1988 AAAI

Conference, Minneapolis, Minnesota, August 1988,641-645.

[Ste87] R. E. Stepp, Concepts in Conceptual Clustering, Proceedings of the 10th

IJCAZ Conference, Milan, Italy, August 1987,211-213.

[SuF86] D. Subramanian and J. Feigenbaum, Factorization in Experiment

Generation, Proceedings of 1986 AAAI Conference, Philadelphia,

Pennsylvania, August 1986,518-522.

[U1189] J. D. Ullman, Principles of Database and Knowledge-Base Systems,

Vols. 1 & 2, Computer Science Press, 1989.

[Ver75] S. A. Vere, Induction of Concepts in the Predicate Calculus, Proceedings

of the 4th International Joint Conference on Artificial Intelligence, Los

Altos, CA, 1975,281-287.

[WaE87] L. Watanabe and R. Elio, Guiding Constructive Induction for

Incermental Learning from Examples, Proceedings of the 10th IJCAZ

Conference, Milan, Italy, August 1987,293-296.

[WGT87] S. M. Weiss, R. S. Galen and P. V. Tadepalli, Optimizing the Predictive

Value of Diagnostic Decision Rules, Proceedings of 1987 AAAI

conference, Seattle, Washington, July 1987,521-526.

[Win751 P. Winston, Learning Structural Descriptions from Examples, in

Winston, P. (eds.), The Psychology of Computer Vision, McGraw-Hill,

1975,157-209.

[WoC88] A. K. C. Wong and K. C. C. Chan, Learning from Examples in the

Presence of Uncertainty, Proceedings of International Computer Science

ConferenceJ88, Hong Kong, December 1988,369-376.

[Zyt87] J. M. Zytkow, Combining Many Searches in the FAHRENHEIT

Discovery System, Proceedings of the 4th International Workshop on

Machine Learning, Irvine, CA, 1987,28 1-287.

