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Abstract 

Correct and efficient estimation of the Hurst parameter H of long-range dependent 

(LRD) traffic is important in traffic analysis. The low computational cost and the 

wavelets' scale invariance make wavelet transform suitable for analysis of LRD pro- 

cesses. In this thesis, we apply wavelet-based estimation of H to MPEG-1 and MPEG- 

4 encoded video sequences. Frequency-domain estimators (periodogram and wavelet- 

based) produce different Hurst parameters compared to time-domain estimators (R/S 

and variance-time plot). Wavelet-based estimators often produce Hurst parameters 

that are close to or greater than one. Our analysis indicates that a possible cause 

for the unreliable performance of the wavelet-based estimators is the non-stationarity 

of the scaling exponent. We also apply the monofractal wavelet-based estimator to 

traces of call holding and call inter-arrival times collected from a circuit-switched cel- 

lular wireless network. We test the time constancy of the scaling exponent a and 

compare the estimates of H from various time periods. 
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Chapter 1 

Introduction 

Analysis of traffic in communication networks is important for determining their oper- 

ational status. Furthermore, it is a step toward traffic modelling, which is necessary for 

predicting network resources utilization and provisioning, and for planning future net- 

work developments. As networks evolved from the first manually operated telephone 

networks to  today's high-speed Internet, so did the models of the traffic carried by 

those networks. The well-known Erlang models, derived and appropriate for telephone 

traffic, were popular due to their mathematical tractability [I]. They are based on a 

Poisson arrival process, with independent and exponentially distributed event-arrival 

times. However, in the first half of the '90s, studies of traffic in packet data networks 

showed that the network traffic exhibits self-similarity and long-range dependence. In 

their seminal work, Leland et al., [2], detected self-similarity in the aggregate back- 

bone network traffic and linked it to the aggregation of ON/OFF traffic sources with 

heavy-tailed ON and OFF periods. Subsequent studies of traffic from various proto- 

cols showed that not only aggregate traffic, but also traffic from FTP or TELNET 
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protocols separately exhibits long-range dependence [3]. Therefore, Poisson processes 

proved unsuitable for modelling traffic in packet networks. Furthermore, Poisson- 

based Erlang models may not be applicable even in certain circuit-switched networks 

due to the presence of long-range dependence in the call inter-arrival times [4]. 

1.1 Long-range dependence in MPEG video traces 

Multimedia network applications, such as video streaming and video conferencing, 

have gained popularity in the past years. Video traffic possesses two major character- 

istics: high bandwidth requirements and high variability [5]. In order to model and 

analyze the impact of the network performance on the quality of the received video, 

it is important to develop adequate models for the video sources. Analyses of the 

statistical properties of video sequences compressed by employing various encoding 

algorithms (MPEG-1, MPEG-4, H.263, and several proprietary algorithms) [6]-[lo], 

have shown that long-range dependence is an inherent property of the video traffic. 

Long-range dependent processes are characterized by the Hurst parameter H. Its 

estimation is a necessary first step in modelling traffic. There are several estimators 

for H, such as R/S plot, variance-time plot, periodogram, Whittle, and wavelet- 

based [Ill-[13]. Wavelet-based estimator is considered to be unbiased and robust with 

respect to presence of deterministic trends in the analyzed process [13], [14]. However, 

several studies [6], [15], [16], have indicated that the wavelet-based estimator leads to 

H > 1 when applied to video traces, which contradicts the findings that the traces 

were long-range dependent. In this thesis, we attempt to determine the source of such 

behaviour of the estimator. 
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1.2 Long-range dependence in circuit-switched 

radio networks 

Network traffic in circuit-switched radio networks is often modelled by the Erlang-C 

model [17], [18]. The model implies independent call holding and call inter-arrival 

times. A recent study [4] of the traffic collected from a public safety radio network 

operated by E-Comm [19] indicated that, while call holding times are indeed inde- 

pendent, call inter-arrival times exhibit certain degree of long-range dependence. The 

analysis was performed on the traffic data from three busy hours. In this thesis, we 

extend the study [4] by examining longer traces from various time periods and we 

investigate whether or not the assumption of independence of the call holding and 

call inter-arrival times holds. 

1.3 Organization of the thesis 

In Chapter 2, we first examine the implications of non-degenerate correlations of a 

stochastic process to its statistical properties, in particular, to the variance of its 

sample mean. Long-range dependence is introduced as a special case of correlation 

structure and its main characteristics are presented. Very often the term long-range 

dependence is identified with self-similarity. We try to avoid this misconception by 

following the discussion in [20] and by separately introducing self-similarity. Finally, 

we discuss the relationship between long-range dependent processes and self-similar 

processes, characterized by the Hurst parameter. 
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Chapter 3 provides an overview of wavelets, the wavelet transform, and the appli- 

cation of the discrete wavelet transform in analyzing long-range dependent processes. 

We begin by defining the continuous wavelet transform and its reduction to discrete 

wavelet transform and its practical implementation. We then introduce the monofrac- 

tal and multifractal wavelet-based estimators of the Hurst parameter. Finally, we 

present the basic concepts of the test for time constancy of the scaling exponent a. 

Chapter 4 presents the results of applying the wavelet-based estimator of H to 

MPEG-1 and MPEG-4 encoded video sequences. We compare the wavelet-based 

estimates of H with those obtained from other estimators (periodogram and R/S 

plot). Furthermore, we examine the source of unreliability of the estimates of H by 

testing the Gaussianity of the wavelet coefficients and the time constancy of a. 

In Chapter 5, we present the wavelet-based estimates of the Hurst parameter for 

weekly, daily, and hourly traces of call holding and call inter-arrival times collected 

from the E-Comm network. In addition, we perform the test for time constancy of a in 

order to determine whether or not the estimates of H are reliable. We also compare 

the estimates of H for traces collected over three years. The chapter is organized 

chronologically by the year of the analyzed traces. 

Finally, Chapter 6 concludes this thesis by outlining the most important findings 

and by giving directions for possible future research. 



Chapter 2 

Long-range dependence and Hurst 

parameter 

2.1 Long-range dependence 

Sample mean and variance of the sample mean are important quantities that charac- 

terize a discrete stochastic process X with a mean value p. A well-known result often 

used in practice states that the variance of the sample mean, var (X) ,  is inversely 

proportional to the sample size n [Ill: 

- u2 
var (X)  = -, 

n 

where x = Cy=, Xi is the sample mean and u2 = E{(Xi - p)2} is the variance of 

the observations Xi. One important assumption made in order to derive Eq. (2.1) is 

that the samples XI ,  X2, . . . , X, are uncorrelated. 

Treating X's  as uncorrelated may not be always justified. Very often, the under- 

lying processes have correlation structures that cannot be neglected. Let p ( i , j )  be 
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the autocorrelation between Xi and X j ,  given by 

Then, for the general case of non-degenerate correlations between the samples, the 

expression for the sample variance is 

-2  2 var (X) = n g x p ( i , j )  

Equation (2.3) is similar to Eq. (2.1), the only difference being the introduced 

correction term [l + bn(p)] = cn(p). This correction term is a result of the correlation 

structure that exists among the samples. Stochastic processes may exhibit three types 

of behaviour: 

1. If the samples are uncorrelated, then dn(p) = 0 and Eq. (2.3) is identical to 

Eq. (2.1). 

2. If # 0, but the limit 6(p) = limn,, &(p) exists and is finite and greater 

than -1, then the variance of the sample mean var (x) is still proportinal to 

n-l. For large sample sizes (n -+ m), var (X)  % o2 [1+ 6(p)] n-l. In this 

case, Eq. (2.3) differs from Eq. (2.1) only by the multiplicative constant factor 

11 + ~ ( P ) I .  

3. For certain processes, the variance of the sample mean differs from Eq. (2.1) 

not only by a constant term, but also by the speed of convergence to zero. For 

finite time series, this behavoiur can still be modelled by introducing a constant 
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multiplicative factor. However, the factor will increase with the increasing of 

the sample size. In general, a more elegant and simple way to account for the 

slower convergence of var (x) to zero is to model it as a power-law decay: 

where a is a constant such that 0 < a < 1 and c(p) is defined as 

c(p) = lim ndl+a) p(i, j) . n+m 
i#j 

We now examine the third case more closely, making one additional assumption. 

Let the process X be a wide-sense stationary stochastic process. This implies that its 

mean and variance are constant and that its autocorrelation function p(i, j) depends 

only on the lag k = li - j 1 ,  i.e., p(i, j) = p(k). It has been shown [Ill  that for a 

sample size n 

where K is a positive constant. Since a > 0, 

In other words, the autocorrelation function decays so slowly that the sum of all 

autocorrelation coefficients is infinite. Wide-sense stochastic processes for which (2.7) 

holds are called long-range dependent processes [ I l l ,  [20]. For large lags k, p(k) is 

modelled as a hyperbolically (power-law) decaying function 

where c, is a positive constant. 
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Long-range dependent processes are wide-sense stationary. Their power spectral 

density function can be calculated as a Fourier transform of the autocorrelation func- 

tion. Therefore, the condition for long-range dependence of a signal X,  given by 

Eq. (2.8), can be expressed in terms of the power spectrum. The power spectral 

density (PSD) f (v) of X satisfies 

where cf is a positive constant. We call a a scaling exponent [21], [22]. Hence, a 

power-law decay to zero of the autocorrelation function for large lags k implies a 

power-law behaviour of the PSD for low frequencies and a pole at  zero. 

2.2 Self-similarity and Hurst parameter 

Let Y ,  be a stochastic process. Y ,  is called self-similar with self-similarity param- 

eter H if, for any positive value c, the process cPH& is identical in distribution 

to the original process Y,. This implies that for any sequence t l ,  t2,  . . . , t k r  the se- 

quence c - ~  (yCtl, Yct2, . . . , YCtk ) has the same distribution as (xl, K2 , . . . , Kk).  The 

self-similarity parameter H is also called the Hurst parameter. Processes that are 

self-similar appear similar regardless of the timescale on which they are observed 

and analyzed. There are known examples of such processes, both in nature (yearly 

minimal water levels of the Nile river) and in computer communications (Bellcore 

Etherenet traces). Furthermore, if, for any k points t l ,  t2,  . . . , tk ,  the distribution of 

(XI+, - Y,l+c-l, Y,2+c - x2+c-l, . . . , XkSC - XkSC - 1) does not depend on c, then 

the process Yt is called self-similar with stationary increments. This type of process 

is important for modelling data that seem stationary. 
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Let Yt be a self-similar process with stationary increments Xi = Y, - i = 

1 ,2 ,3 ,  . . .. The autocorrelation function of the process Xi has the form 

1 
p(k) = 5 [(lkl + l)2H - 2k12H + (1k1 - 1)2H] (2.10) 

where k is the lag and H is the Hurst parameter. The process Xi is also called exactly 

second-order self-similar [20]. For large lags k -+ a, the behaviour of p(k) can be 

described as 

2H-2 p ( k ) z H ( 2 H - 1 ) k  . (2.11) 

For 1/2 < H < 1, Eq. (2.7) holds and the process Xi is long-range dependent. If 

H = 1/2 then the samples of the process Xi are uncorrelated. For values of H 

between 0 and 1/2, the sum of the autocorrelations of the process Xi is finite, which 

implies a short-range dependent process. 

Hurst parameter for LRD processes 

Strictly speaking, Hurst parameter characterizes the behaviour of self-similar pro- 

cesses. It does not appear in the definition (Eq. (2.7)) nor in the basic property of the 

autocorrelation function of a long-range dependent process (Eq. (2.8)). However, it is 

not uncommon to attribute the Hurst parameter to a long-range dependent process. 

This stems from the fact that if a process is self-similar with stationary increments and 

112 < H < 1, then its increments are long-range dependent. Moreover, long-range de- 

pendence implies second-order self-similarity and vice versa, with the restriction [20]. 

Comparing Eq. (2.7) and (2. ll), there is a linear relationship between the scaling 

exponent a! and the Hurst parameter H:  

H = 0.5(1 + a ) ,  
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or, equivalently, 

a = 2 H - 1  

with the restrictions 0 < cu < 1 (112 < H < 1). 

The Hurst parameter measures the degree of long-range dependence of a pro- 

cess. For short-range dependent processes (including those without correlation), 

0 < H 5 0.5. Values of H close to 1 indicate a process with a strong long-range 

dependence. For example, bursty network traffic has a large H [2]. 

As discussed in Section 2.1, a stochastic process may exhibit three types of be- 

haviour with respect to its autocorrelation. It is important to determine the type of 

behaviour because even simple statistics, such as the variance of the sample mean, are 

highly dependent on whether the process is uncorrelated, short-range or long-range 

dependent. The Hurst parameter identifies the type of the process. Therefore, its 

correct and efficient estimation is important in statistical analysis of time series. 



Chapter 3 

Wavelet-based estimator of the 

Hurst parameter 

3.1 Wavelet Transform 

Let X( t )  be a continuous-time signal with a finite energy. Its continuous wavelet 

transform is given by the inner product 

where 

is the basis function of the transformation, called a wavelet. The wavelet $,,,(t) is 

obtained by dilating (by a factor of a)  and time shifting (by T time units) of a reference 

function $(t) called a mother wavelet [21], [23]. In (3.2), a is called a scale factor and 

T is a translation factor. The first notable difference between the well-known Fourier 

transform and the wavelet transform is that there is no unique wavelet function to 
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serve as a basis of the transformation. Rather, there is a freedom of choice of the 

mot her wavelet, within certain constraints that define the behaviour of the wavelets. 

A function can be a wavelet if it possesses certain properties. In order for the 

transformation to be invertible, the mother wavelet must satisfy the admissibility 

condition, i.e., the mean value of the mother wavelet must be zero: 

This implies that the wavelets must be oscillating functions. Their frequency spectrum 

is bandpass and has a zero at the origin. Another property of the wavelets is their 

localization both in time and frequency. A function cannot be bandlimited and have 

a finite time support. Wavelets have most of their energy within a limited frequency 

band and within a limited period of time. The name wavelet itself summarizes the 

previous two properties (L'a small wave"). 

The mother wavelet has a number of vanishing moments N, defined as the largest 

N for which 

holds. Each wavelet has a t  least one vanishing moment because for k = 0, Eq. (3.4) 

becomes identical to the admissibility condition (3.3). The frequency spectrum Q(v) 

of the mother wavelet ?j(t) is proportional to IvIN close to the origin. 

Continuous wavelet transform is highly redundant. For example, it transforms a 

one-dimensional signal X( t )  into a two-dimensional continuous function w(a, T). In 

some cases, it is possible to sample w(a, T) without loss of information about X(t ) .  

The conditions imposed on the mother wavelet in order to achieve the lossless sampling 

are stated in [23 ] .  The sampling of the time-scale plane is performed on a dyadic grid: 
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a = 2j, T = 2jk, j E 2+, k E 2 [21] and the resulting transformation is called discrete 

wavelet transform (DWT). The value j is called octave and k is translation. The 

resulting wavelet coefficients are 

The DWT represents the signal X( t )  as a weighted sum of wavelets [21]. The 

reconstruction formula for the DWT is 

If the sum over j ' s  is split in two regions, j > j2 and 0 5 j < j2, Eq. (3.6) takes the 

form 

The first term in Eq. (3.7) represents an approximation of the signal at the octave j2. 

The second term is a sum of details. When added to the approximation, it produces 

the original signal X(t) . The function $j2,k (t) is called a scaling function at  octave j 2 .  

The corresponding coefficients c(j2, k) are called approximation coeficients at  octave 

j2. The octave j 2  measures the level of detail in the approximation. When j2 increases, 

the approximations become coarser and vice versa. 

An important property of the approximation and wavelet coefficients at octave j 

is that they can be obtained by linear, discrete-time filtering of the approximation 



CHAPTER 3. WAVELET-BASED ESTIMATOR O F  H 14 

coefficients at  octave j - 1 (the next finer octave) [21]. This allows calculation of 

the DWT of a signal X( t )  by employing discrete-time filter-bank based pyramidal 

algorithms that have very low computational cost. The input to the algorithm is 

the sequence of approximation coefficients at the finest octave, j = 0. In the case 

of discrete-time signals X(n ) ,  n E 2, the signal itself can be treated as the finest 

approximation. However, this approach introduces errors, particularly at  the finest 

octaves. For that reason, the original signal X(n)  should be pre-filtered in order to 

obtain the initial approximation sequence [13], [21]. 

The DWT captures a signal at  various time scales or levels of aggregation. Due to 

the scale invariance of the basis functions, it is suitable for analyzing properties that 

are present across a range of time scales, such as LRD. The low computational cost 

makes the DWT a popular tool for signal analysis. 

3.2 Wavelet-based Hurst parameter estimator 

The wavelet-based Hurst parameter estimator is based on the shape of the power 

spectral density (PSD) function (2.9) of the LRD signal X (t). It has been shown 

[13], [21], that when the PSD has a power-law behavior, the relationship between the 

variance of the wavelet coefficients on a given octave and the octave j is 

where the average is calculated for various k, a is the scaling exponent, and 

~ ( a ,  +) = J IV I * ( ~ ) I ~  dy (3.9) 

does not depend on the octave j .  In Eq. (3.9), q ( v )  is the Fourier transform of 

the mother wavelet $I. The integral given by Eq. (3.9) converges if the number of 
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vanishing moments of the mother wavelet satisfies N > 0.5(a - 1) [12]. For LRD 

processes 0 < a < 1, and, therefore, the integral converges for N 2 1, which is always 

satisfied. 

The number of vanishing moments N controls the correlation between any two 

wavelet coefficients d( j l ,  kl) and d(j2, k2) . When N > a /2 ,  the wavelet coefficients 

are not long-range dependent and the calculation of E{d(j, k),) becomes a simple 

time average or sample mean for all k's: 

where nj is the number of wavelet coefficients available at  octave j. Linear rela- 

tionship with a slope a (0 < a < 1) between log, E{d(j, k),) and j for a range of 

octaves, including the coarsest, indicates presence of LRD. Therefore, a is obtained 

by performing linear regression of log, E{d(j, k),) on j over a range of octaves. 

The estimator of the Hurst parameter is based on the following idealizations [13]: 

1. The process X ( t )  and its wavelet coefficients are Gaussian. 

2. For fixed j, d( j ,  k) are independent, identically distributed variables. 

3. The processes d( j l ,  k) and d(j2, k), for jl # j2 are independent. 

The first assumption is important for deriving analytical expressions for the variance 

of the estimates of log, E{d(j, k),). The second and the third are a basis for (3.10). 

The Hurst parameter H is calculated by using Eq. (2.12). We employed publicly 

available MATLAB code [24] to estimate a and H. The estimator first performs 

DWT on the input signal, employing wavelets from the Daubechies family. We used 

the wavelet Daubechies3, which has three vanishing moments. After computing the 
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DWT, the estimator calculates the estimates of log, E{d(j, k)2) and variances of these 

estimates and performs a weighted linear regression. The weights are inversely pro- 

portional to  the variances of the estimates of log, E{d(j, k)'). The estimator employs 

a weighted rather than simple linear regression because when j increases, nj decreases, 

and, therefore, the variance of log, E{d(j, k)') increases. This implies less accurate 

estimation of log, E{d(j, k)') for large j's. The weighted linear regression gives more 

significance to the estimates of log, E{d(j, k)') on finer octaves. This estimator is 

called monofractal wavelet estimator. 

An extension to the basic monofractal wavelet estimator is the multifractal esti- 

mator  [25]. In addition to the second moments (variances) of the wavelet coefficients, 

it also takes into account moments of higher order: 

The estimator estimates the slope a, by performing linear regression of log, Sq(j) 

for a range of j's. H is calculated using an expression analogous to (2.12), by taking 

into account the order of the moment: 

Both monofractal and multifractal estimators are used to produce logscale dia- 

grams. They plot log, E{d(j, k)') or log, Sq (j), with the corresponding confidence 

intervals, versus j .  An example of a logscale diagram is shown in Figure 3.1. The 

solid line connects the estimates of log, E{d(j, k)'). The vertical lines represent the 

confidence intervals of the estimates and the dashed line is the slope of the linear 

regression performed over the range of octaves [4-131. 
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2 4 6 8 10 12 
Octave j 

Figure 3.1: Logscale diagram for the MPEG-4 encoded "Star Wars IV" video sequence. 

3.3 Test for time constancy of the scaling exponent cu 

Long-range dependent processes are, by definition, wide-sense stationary. However, 

they possess certain characteristics that, at  first glance, make them look non-stationary. 

For example, LRD processes exhibit high variability [22] and there are relatively long 

periods where the observations stay at  high and low levels [ll]. The question is: 

how to distinguish between wide-sense stationary processes with LRD and inherently 

non-stationary processes? 

The scaling exponenet a characterizes the behaviour the autocorrelation function 

of a stochastic process. Therefore, if a changes over time, then the autocorrelation 

function of the process also chages over time. This implies a non-stationary pro- 

cess. An approach to determining, with a certain probability, whether a process with 
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H > 0.5 is LRD or non-stationary is to test whether the scaling exponent a is con- 

stant over the examined trace [22]. This is performed by splitting the original trace 

into rn sub-traces and estimating a for each sub-trace. If a is constant and 0 < a < 1, 

then the trace is LRD. Otherwise, the trace is non-stationary. 

The test relies on the wavelet-based estimator of a. Besides the idealizations made 

for the estimator, the test has two additional properties that play a key role in its 

definition and application: 

1. Estimates of a fit a Gaussian distribution, with a variance that depends only 

on the range of octaves where a is estimated and on the number of available 

wavelet coefficients at  a given octave. 

2. Estimates of a taken over non-overlapping blocks (sub-traces) are uncorrelated. 

Experimental verifications of the above assumptions are reported in [22]. When the 

assumptions hold, examining whether or not a is constant becomes equivalent to 

testing whether or not a sequence of uncorrelated Gaussian random variables with 

known variances have the same mean [22]. 

MATLAB implementation of the test is available online [24]. Testing the time 

constancy of a is performed in two steps: 

1. An initial estimation of a for the entire trace is performed. The range of octaves 

(if any) where there is a linear relationship between log, E{d(j, k),) and j with 

a slope a is identified from the obtained logscale diagram. 

2. The test for time constancy of a ,  for various values of rn, is applied in the range 

of octaves determined in Step 1. There is no optimal way of selecting rn, and, 

hence, the test should be repeated several times. 
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Figure 3.2: Test for time constancy of cu for m = 12 for the MPEG-4 encoded "Star 
Wars IV" video sequence. 

The test checks whether or not the hypothesis that cu is constant can be accepted. 

The significance level, which determines the threshold for acceptance or rejection of 

the hypothesis, can be varied. We used the default value of 5%. Figure 3.2 shows a 

sample graphical output of the test for m = 12. The estimates of cu are connected by 

a line. The vertical lines indicate the confidence intervals of the estimates. The solid 

horizontal line indicates the overall value of a. The dashed horizontal line shows the 

average of the estimates. The outcome of the test is shown in the top right-hand side 

of the graph. 



Chapter 4 

Analysis of MPEG video traces 

In this chapter, we describe the application of the wavelet-based estimator of the 

Hurst parameter to MPEG-1 and MPEG-4 encoded video sequences. We also address 

the unreliability of the estimates and test the Gaussianity of the wavelet coefficients 

and the time constancy of the scaling exponent a. 

4.1 Characteristics of MPEG traces 

MPEG (Motion Picture Expert Group) is a set of standards for compression of video, 

or sequences of images. There are several versions of the standards. MPEG-1 is older, 

while MPEG-4 is more advanced and achieves better compression performances than 

MPEG-1. The basic principles of operation of both standards are rather similar. 

Compression is achieved by reducing the spatial and temporal redundancy in the 

sequence of images (frames) [9]. Spatial redundancy (redundancy within an image) is 

reduced by applying algorithms for compression of still images (JPEG, for example). 

The major difference between MPEG-1 and MPEG-4 is in the algorithms and level of 



CHAPTER 4. ANALYSIS OF MPEG VIDEO TRACES 2 1 

reduction of the spatial redundancy. MPEG-1 coders employ discrete cosine transform 

on the complete original (uncompressed) image (frame-based compression). MPEG-4 

coders can utilize both discrete cosine and wavelet transforms not only on the entire 

frame, but also on parts of it (object-based compression) [26]. Temporal redundancy 

(redundant information between successive images in the video sequence) is reduced 

by prediction of the next image based on the previous one(s). Both MPEG-1 and 

MPEG-4 coders create three types of frames: I, P, and B. I frames are compressed 

versions of the original input frames. P frames are obtained by forward prediction 

with motion compensation with respect to the previous I or P frame. B frames can be 

obtained by both forward and backward prediction with respect to the previous and 

next I or P frames. At the output of the coder, frames are organized in a deterministic, 

periodic sequence, called Group of Pictures (GoP) [9]. Traces that are used in this 

thesis are obtained from compressed video sequences whose frames form the following 

GoP: IBBPBBPBBPBB. 

Objects of our interest are sequences of frame sizes. Typically, I frames are larger 

than P frames, which, in turn, are larger than B frames. This can be observed in 

Figure 4.1. It shows the sizes of several successive frames from the MPEG-1 encoded 

cartoon "Simpsons" [27]. 

MPEG-1 [27] and MPEG-4 [28] traces used in this thesis have a frame rate of 25 

frames per second. This implies that the time interval between successive frames is 

40 ms. Each sample (entry) in the traces represents the size of the corresponding 

frame in bits. MPEG-1 traces have 40,000 samples, corresponding to 26 minutes and 

40 seconds of video. MPEG-4 traces are of variable lengths, ranging from 22,498 

samples (15 minutes of video) to 89,998 samples (1 hour of video). Trace lengths are 
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17,065 17,077 17,089 
Frame number 

Figure 4.1: Excerpt from the series of frame sizes from the MPEG-1 encoded cartoon 
LLSimpsonsll. 

summarized in Table 4.1. 

4.2 Hurst parameter estimation 

We used wavelet-based monofractal and multifractal estimators to estimate the Hurst 

parameter of various traces listed in Table 4.1. The employed wavelet was Daubechies' 

wavelet of genus 3 (three vanishing moments). Previous studies [12], [15], have shown 

that wavelets with three vanishing moments are suitable for analyzing LRD processes. 

For the multifractal estimator, we estimated H for several values of q (order of the 
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Table 4.1: MPEG-1 and MPEG-4 trace lengths. 

Jurassic park I MPEG-1 I 40,000 1 26.67 1 

Trace 

MTV 

Mr. Bean I MPEG-1 I 40,000 1 26.67 I 

Encoding 

MPEG-1 

Simpsons 

&lence of the lambs I MPEG-1 1 40,000 1 26.67 1 
Talk show 1 MPEG-1 I 40,000 1 26.67 1 

Length (frames) 

40,000 

I I I 

MPEG-1 

Duration (min) 

26.67 

Formula 1 / MPEG-4 1 44,998 1 30.00 1 

40,000 

ARD news 

Die hard I11 

Futurama 1 MPEG-4 1 30,334 1 20.22 1 

26.67 

From dusk till dawn I MPEG-4 1 89,998 1 60.00 1 

MPEG-4 

MPEG-4 

First contact I MPEG-4 1 89,998 1 60.00 / 
Mr. Bean 1 MPEG-4 1 89,057 1 59.37 1 

22,498 

89,998 

15.00 

60.00 

VIVA video clips I MPEG-4 1 89,998 1 60.00 I 
Jurassic park 

N3 talk I MPEG-4 1 89,998 1 60.00 1 
Silence of the lambs I MPEG-4 1 89,998 1 60.00 1 

I 1 I 

MPEG-4 

moments), with similar results. In this thesis, we report the estimates of H obtained 

by considering the third-order moments (q = 3). 

Logscale diagrams from both monofractal and multifractal estimators for the 

MPEG-1 encoded "Simpsons" and MPEG-4 encoded "Jurassic Park" videos are shown 

in Figures 4.2-4.5. The remaining traces shown in Table 4.1 have similar shapes of 

89,998 

Simpsons 

Star wars IV 

60.00 

MPEG-4 

MPEG-4 

30,334 

89,998 

20.22 

60.00 
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6 8 
Octave j 

Figure 4.2: Monofractal estimator: logscale diagram for the MPEG-1 encoded 
"Simpsons" sequence. 

4 6 8 
Octave j 

Figure 4.3: Multifractal estimator: logscale diagram for the MPEG-1 encoded 
"Simpsons" sequence. 
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Figure 4.4: Monofractal estimator: logscale diagram for the MPEG-4 encoded 
l L  Jurassic park" sequence. 

2 4 6 8 10 12 
Octave j 

Figure 4.5: Multifractal estimator: logscale diagram for the MPEG-4 encoded 
"Jurassic park" sequence. 
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the logscale diagrams. They exhibit a linear relationship between log, E{d(j, k ) , )  

(Eq. (3.10)) or log, S,(j) (Eq. (3.11)) and j for the largest values of j (coarsest oc- 

taves or time scales). The linear region typically begins at j = 4 or 5. The lack of 

linearity over the finer octaves may be attributed to artifacts of MPEG compression 

algorithms or to a transition between short-term and long-term scaling behavior [6]. 

Numerical values of the estimates are summarized in Table 4.2. For each estimate 

of H ("value"), we report the range of octaves where the linear regression is performed 

("range"). These ranges were chosen by visual inspection of the logscale diagrams and 

identification of the linear region. The "periodogram" column contains estimates of 

H obtained from the periodogram-based estimator [29]. Column "R/S7' shows R/S 

estimates of H reported in [9] and [28]. 

Both monofractal and multifractal estimators produce similar results, as indicated 

by Table 4.2. They are in agreement with periodogram-based estimates. The linear- 

ity of logscale diagrams for the coarsest octaves and the match between wavelet and 

periodogram-based estimates indicate that PSD's of the traces exhibit power-law be- 

havior close to the origin, with exponents a often greater than one. This implies values 

of H greater than one, which contradicts the LRD assumption. For LRD processes, 

a,  and, consequently, H should be strictly smaller than one. 

We compared the wavelet-based estimates of H with estimates obtained from R/S 

plots. R/S plots yield values of H < 1, except for the trace "Silence of the lambs7' 

( H  = 1.007). Other studies [15], [6] reported estimates of H for MPEG video traces 

obtained from variance- time plots. These estimates were, in general, smaller than 

one. This indicates that estimators of H that operate in the time domain (R/S 

and variance-time plots) produce similar results. Also, estimators that operate in the 
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Table 4.2: Hurst parameter estimates of the video traces. 

frequency domain (periodogram and wavelet-based) yield similar estimates. However, 

estimates obtained from time-domain estimators (usually H < 1) differ from those 

obtained from frequency-domain estimators (often H > 1). 

Trace 

MTV 

Jurassic park 

Simpsons 

Mr. Bean 

Silence of the lambs 

Talk show 

ARD news 

Diehard I11 

Formula 1 

Futurama 

From dusk till dawn 

First contact 

Mr. Bean 

Jurassic park 

VIVA video clips 

N3 talk 

Silence of the lambs 

Simpsons 

Star wars IV 

Encoding 

MPEG-1 

MPEG-1 

MPEG-1 

MPEG-1 

MPEG-1 

MPEG-1 

MPEG-4 

MPEG-4 

MPEG-4 

MPEG-4 

MPEG-4 

MPEG-4 

MPEG-4 

MPEG-4 

MPEG-4 

MPEG-4 

MPEG-4 

MPEG-4 

MPEG-4 

R/S 

0.89 

0.88 

0.89 

0.85 

0.89 

0.89 

0.967 

0.969 

0.867 

0.877 

0.909 

0.931 

0.933 

0.973 

0.961 

0.882 

1.007 

0.889 

0.903 

Monofractal 

range 

4-12 

5-12 

5-12 

5-12 

5-12 

5-12 

5-11 

4-13 

4-12 

4-12 

4-13 

4-13 

4-13 

4-13 

2-13 

4-13 

4-13 

4-12 

4-13 

value 

0.959 

1.096 

0.926 

1.214 

1.130 

1.084 

1.382 

1.190 

1.189 

0.943 

1.139 

1.194 

1.083 

1.222 

1.000 

1.079 

1.277 

0.964 

1.013 

H 

Perio- 
dogram 

0.992 

1.191 

0.988 

1.295 

1.171 

1.174 

1.310 

1.233 

1.216 

1.064 

1.186 

1.268 

1.151 

1.293 

1.119 

1.188 

1.337 

1.061 

1.138 

Estimates of 

Multifractal 

range 

3-12 

4-12 

4-12 

5-12 

5-12 

5-12 

4-11 

4-13 

4-12 

4-12 

4-13 

4-13 

4-13 

4-13 

2-13 

4-13 

4-13 

4-12 

4-13 

value 

0.937 

1.012 

0.906 

1.258 

1.152 

1.132 

1.225 

1.208 

1.169 

0.909 

1.138 

1.213 

1.109 

1.247 

1.120 

1.131 

1.260 

0.941 

1.051 
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4.3 Investigating the sources of unreliability of the 

estimates 

For LRD processes, the Hurst parameter should satisfy H < 1. As reported in 

Section 4.2, wavelet-based estimators produce values of H greater than one. In order 

to investigate the possible sources of the unreliability of the wavelet estimator, we 

test the Gaussianity of the traces and the time constancy of the scaling exponent a. 

We also address the results regarding the performance of the wavelet-based estimator 

reported in [30]. 

4.3.1 Testing the Gaussianity of the wavelet coefficients 

One of the idealizations assumed by the wavelet estimator is that the analyzed process 

and its wavelet coefficients on various octaves are Gaussian [13], [21]. Therefore, 

we examined how close the traces and their wavelet coefficients are to a Gaussian 

distribution using q-q plots [31]. Q-q plots of the MPEG-4 encoded "Star Wars IV" 

video sequence and its wavelet coefficients on octaves 1-9 are shown in Figures 4.6 and 

4.7, respectively. The vertical axis represents the quantiles of the trace (Figure 4.6), 

or its wavelet coefficients (Figure 4.7). The horizontal axis represents the quantiles of 

a Gaussian distribution with the same mean and variance as the original trace or the 

corresponding set of wavelet coefficients. The dashed line is the reference line with a 

slope of one. The vertical lines mark the 10% and 90% quantiles. 

Figure 4.6 shows that the trace is highly non-Gaussian. As shown in Figure 4.7, 

wavelet coefficients on finer octaves (1 and 2) deviate from Gaussianity. However, 

in the range of octaves where H was estimated (from 4 or 5 and up), the wavelet 
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Quantiles of a Gaussian distribution 

Figure 4.6: Q-q plot of the trace "Star Wars IV" . 

coefficients have approximately Gaussian distribution, with several outliers at each 

tail. This indicates that the unreliable performance of the wavelet-based estimator 

cannot be attributed to the lack of Gaussianity of the trace. 

4.3.2 Testing the time constancy of a 

We examine the time constancy of a and perform a set of tests for each video trace. 

We chose the number of sub-traces m E {3,4,6,8,10,12,15). The lower bound of the 

range where a is estimated is set to  the value given in Table 4.2. It varies between 

2 and 5 .  The upper bound depends on m. For larger rn, the sub-traces are shorter 

and there are fewer available octaves. In our experiments, the upper octave varies 

between 8 and 12. 

Figures 4.8-4.10 show graphical outputs of the test for time constancy of a for three 

traces. The top graph is the time series of the corresponding trace. The remaining 
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Octave 2 

Octave 5 

Octave 8 

Octave 3 

Octave 6 

-1577 1593 

Octave 9 
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Figure 4.7: Q-q plots of the ~ v m l e t  coefficients for octaves 1-9 for the trace 
"Star Wars IV". 

threc graphs shom~ the values of a for every sub-t,race, for 111, = 12. 8, and 4. The 

estimates of (2 are colinected by a broken line. The vertical lines show the confidence 

intervals of the estimates of 0. The solid horizontal line reprcscnts the overall valuc of 

a. The dashed horizontal line shows the average of the estimates of 0. The outcome 

of the test is shown in the top left-hand side of the graph, where .wjectcdY mcans 

t1ia.t t,he trace did not pass the test for time constancy of a. 

Table 4.3 summarizes the results of the tcst for time constancy of a. For cnch 
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Figure 4.8: Test for time constancy of a for the MPEG-1 encoded "Simpsons" video 
sequence. 
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Figure 4.9: Test for time constancy of a for the MPEG-4 encoded "Jurassic park" 
video sequence. 
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Figure 4.10: Test for time constancy of a for the MPEG-4 encoded "Mr. Bean" video 
sequence. 
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trace, we report the outcomes of the test for various m, where R stands for "rejected" 

and N for "not rejected". The last two columns indicate the number of times the 

trace failed or passed the test. Our findings indicate that 12 traces fail the test for 

all values of m, while others pass the test for certain values of m. MPEG-1 encoded 

"Simpsons" and MPEG-4 encoded "ARD news" video sequences pass the test for over 

50% of m's. The remaining seven video traces pass the test for less than 50% of mls 

This indicates that a is not constant and varies with time. Therefore, estimating a 

and H for the entire trace is not meaningful and the estimates are not reliabale. 

4.4 Possible causes of the unreliable estimates 

The results presented in Section 4.2 show that the wavelet-based estimator produces 

values of H > 1. Estimates of H obtained from R/S plots are often greater than 

0.9, which indicates strong LRD component. We conjecture that video traces also 

posses a strong short-range dependent (SRD) component. Video sequences consist 

of various scenes. Video frames representing a single scene are similar due to  the 

identical or similar background and objects in the scene. This implies similar sizes 

of the adjacent frames, which indicates a strong positive correlation for small lags. 

It has been shown that the wavelet-based estimator produces unreliable results when 

applied to processes that possess both a strong SRD component and a strong LRD 

component [30]. 

Furthermore, the traces often failed the test for the time constancy of a. The 

linearity of the logscale diagrams may be attributed to the averaging of the nonsta- 

tionarities that manifest as variability of the scaling exponent a across the traces 
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Table 4.3: Results of the test for time constancy of a. 

[22]. However, as indicated by Figures 4.8-4.10, estimates of a even in the sub-traces 

are often greater than one. Shorter timeseries may be regarded as stationary, or at 

least wide-sense stationary. Outputs of the estimator indicate that close to the ori- 

gin, the behaviour of the PSD function of the sub-traces can be approximated by a 
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power-law with an exponent greater then one. This contradicts the LRD assumption 

that a should be strictly smaller than one. In our opinion, there are two possible 

explanations for the "unreliable" estimates of H for the sub-traces: 

1. Sub-traces, similarly to the whole traces, possess both strong LRD and SRD 

components, in which case estimates of a and H are indeed unreliable and 

should be abandoned. 

2. Traces and sub-traces have a correlation structure that is in contrast with the 

property (2.8). In this case, the cause of the unreliable estimates of a lies in the 

choice of inappropriate model for long-term correlations in the traces. We note 

that this can only be conjectured, because, to the best of our knowledge, there 

is no other model for LRD in literature. 



Chapter 5 

Analysis of E-Comm traffic traces 

We apply the monofractal wavelet-based estimator of the Hurst parameter to traffic 

traces from an operational, circuit-switched radio network operated by E-Comm [19]. 

We also test the time constancy of the scaling exponent a. 

5.1 E-Comm system and traffic traces 

E-Comm is an emergency communications centre that provides radio communications 

to several public safety agencies, such as police, fire department and ambulance, in the 

Greater Vancouver Regional District (GVRD) area. E-Comm employs the Enhanced 

Digital Access Communication System (EDACS). It consists of various interconnected 

network elements: data and PBX gateways, radio transceivers and repeaters, dispatch 

and management consoles, and network switches. The network is based on circuit 

switching and carries predominantly voice traffic. The radio interface has a cellular 

architecture. There are 11 cells covering disjoint areas within the GVRD. Each cell 

has a number of available frequencies (radio channels) that determine its capacity. 
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The cell covering Vancouver has the largest capacity and it handles the majority of 

calls [4], [32]. Therefore, we chose to examine the traffic from that cell. 

We had access to traffic data from E-Comm from 2001, 2002, and 2003. The data 

consisted of records of network events, such as established, queued, and dropped calls. 

Our analysis focused on established calls in the Vancouver cell. We analyzed traffic 

data from one week in 2003, one week in 2002, and two days in 2001. From the traffic 

data, we created and analyzed traces that consisted of the call holding times and call 

inter-arrival times. Analyses were performed separately on weekly, daily, and hourly 

traces. 

Figure 5.1 shows the time series of the hourly trace from 22:00:00 to 23:00:00 on 

March 26, 2003. The horizontal axis shows the timestamps of the calls. The vertical 

axis shows the call holding times in seconds. The inset graph is the one-minute interval 

between 22:18 and 22:19. Call inter-arrival times can be observed in the inset graph 

as time intervals between successive calls. 

5.2 Estimating the Hurst parameter and testing 

the time constancy of a 

Voice traffic in circuit-switched networks is often modelled as a Poisson stochastic 

process. This implies independent call holding and call inter-arrival times. A study 

on the call holding and call inter-arrival times from three busy hours in 2001 from 

the E-Comm network [4] indicated that the call inter-arrival times show evidence of 

long-range dependence. We extend this study by analyzing longer traces from various 
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22:20:00 22:40:00 
Time (hh:mm:ss) 

Figure 5.1: Time series of one busy hour of network traffic on March 26, 2003. 

periods using the wavelet-based estimator of the Hurst parameter. The wavelet- 

based estimator is suitable because weekly traces contain a large number of entries 

(more than 370,000) and the employed discrete wavelet transform has a very low 

computational cost. Furthermore, we test the time constancy of the scaling exponent 

a in order to determine the reliability of the estimates of H. 

5.2.1 Traffic traces from 2001 

Traffic traces from 2001 contain information about the established calls in the Van- 

couver cell on November 1 and 2, 2001. The two daily traces are analyzed separately. 
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We create 48 hourly traces and determine the number of calls during each hour in 

order to identify the busiest hours. We then analyze five busiest hours in the two 

days. 

5.2.1.1 2001: Analysis of daily traces 

Estimates of the Hurst parameter for the timeseries of call holding and call inter- 

arrival times from the two daily traces in 2001 are summarized in Table 5.1. The 

table also shows the number of calls in each day. The number of calls is equal to the 

number of call holding times. It is one larger than the number of call inter-arrival 

times. The range of octaves where the linear regression is performed is determined by 

visual inspection of the logscale diagrams. In all four traces (two of call holding and 

two of call inter-arrival times), this linear region begins with octave 5 and includes 

the coarsest octaves. 

For the traces of call inter-arrival times H > 0.7, which indicates presence of long- 

range dependence. For the trace of call holding times, 0.5 < H < 0.6. This is an 

indicator of a weak long-range dependence. However, the values of H are close to 0.5 

and, therefore, call holding times can be considered only short-range dependent. 

We test the time constancy of the scaling exponent a by dividing the traces into m 

sub-traces, where m E {14,12,10,8,6,4,3). Results of the test are shown in Table 5.2. 

For each value of m,  we report the outcome of the test. "N" stands for " not rejected7', 

meaning that the trace passed the test for time constancy of a. Similarly, "R" stands 

for "rejected", or that the trace failed the test. The numbers of times the trace failed 

or passed the test are shown in the last two columns. 

Both traces of call holding times pass the test for all 7 values of m, which implies 
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Table 5.1: 2001 daily traces: Hurst parameter estimates for the call holding and call 
inter-arrival times. 

Number of calls 1 Type of data 1 Range I H 1 
call holding times 

call inter-arrival times 

Table 5.2: 2001 daily traces: results of the test for time constancy of a for the call 
holding and call inter-arrival times. 

53,200 

that a can be considered constant throughout the traces and the estimated values of 

H are reliable. To the contrary, traces of call inter-arrival times fail the test for more 

than 50% of m's, which indicates unreliable estimates of a and, consequently, of H. 

5-13 

5-13 

5.2.1.2 2001: Analysis of hourly traces 

0.583 

0.732 

call holding times 

call inter-arrival times 

We create 48 hourly traces of call holding and call inter-arrival times from the two 

days of traffic data from 2001. We then determine the number of calls in each hour 

and identify the busiest hours. Estimation of the Hurst parameter and the test for 

time constancy of a are performed on the five busiest hours. 

The logscale diagram for the trace of call holding times from the busy hour between 

5-13 

5-13 

0.561 

0.737 
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Table 5.3: 2001 hourly traces: Hurst parameter estimates for the call holding and call 
inter-arrival times. 

Day/hour 

02.11.2001 
15:OO-16:OO 

01.11.2001 
0o:oo-01:oo 

02.11.2001 
16:OO-17:OO 

01.11.2001 
19:OO-20:OO 

Number of calls I Type of data I Range I H 

3,718 

16:00 and 17:00 on November 2, 2001 is shown in Figure 5.2. The slope of the linear 

regression is approximately zero, which yields Hurst parameter value of 0.5. This 

indicates lack of long-range dependence in the call holding times. 

Figure 5.3 shows the logscale diagram for the trace of call inter-arrival times from 

the busy hour between 16:00 and 17:00 on November 2, 2001. A linear region be- 

ginning from octave 4 and including the coarsest octaves can be clearly identified. 

The slope of the linear regression is greater than zero, which indicates presence of 

long-range dependence in the trace. The estimated value of the Hurst parameter is 

0.770, as indicated in Table 5.3. 

Estimates of the Hurst parameter for the five hourly traces of call holding and 

call inter-arrival times are shown in Table 5.3. The table also contains the number of 

calls in each of the busy hours. Hurst parameter estimates of the call holding times 

3:707 

3,492 

3,312 

3,227 

call holding times 

call inter-arrival times 

call holding times 

call inter-arrival times 

call holding times 

call inter-arrival times 

call holding times 

call inter-arrival times 

call holding times 

call inter-arrival times 

2-9 

4-9 

0.493 

0.907 

2-9 

4-9 

2-9 

4-9 

2-9 

4-9 

2-9 

4-9 

0.471 

0.802 

0.462 

0.770 

0.467 

0.774 

0.479 

0.663 
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Figure 5.2: Novemer 2, 2001, busy hour 16:OO-17:OO: logscale diagram for the call 
holding times. 

1 2 3 4 5 6  7 8 9  
Octave j 

Figure 5.3: Novemer 2, 2001, busy hour 16:OO-17:OO: logscale diagram for the call 
inter-arrival times. 
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are close to 0.5. Hence, the call holding times are not long-range dependent. The 

estimates of H for the call inter-arrival times vary between 0.663 and 0.907, which 

indicates long-range dependence. 

We perform the test for time constancy of a on the traces of call holding and call 

inter-arrival times. Results are shown in Tables 5.4 and 5.5, respectively. As indicated 

by the tables, all traces pass the test for time constancy of a for more than 50% of 

m's. Hence, values of a do not vary significantly across the traces and the estimates 

of the Hurst parameter can be considered reliable. 

5.2.2 Traffic traces from 2002 

The analyzed traffic data from 2002 span the period March 1-7, 2002. There were 

370,510 established calls during this period. We removed from the trace of call holding 

times two outliers with values significantly larger than the other samples. In the trace 

of call inter-arrival times there was an outlier with a value greater than 3,000 s, which 

was due to missing traffic data between 8:59:06 and 9:49:52 on March 4, 2002. The 

outlier was removed prior to estimating the Hurst parameter. We first analyze the two 

weekly traces (one of call holding and one of call inter-arrival times). We then split 

each trace into seven daily traces and analyze the daily traces separately. Finally, we 

create and analyze five hourly traces from the busiest hours. 

5.2.2.1 2002: Analysis of the weekly traces 

We estimate the Hurst parameter of the weekly traces of call holding and call inter- 

arrival times and the logscale diagrams are shown in Figures 5.4 and 5.5, respectively. 

The linear region in the logscale diagram of the call holding times begins with octave 6 
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Table 5.4: 2001 hourly traces: results of the test for time constancy of a for the call 
holding times. 

Table 5.5: 2001 hourly traces: results of the test for time constancy of cu for the call 
inter-arrival times. 

Day/hour 

02.11.2001/15:00-16:OO 

01.11.2001/00:00-01:OO 

02.11.2001/16:00-17:OO 

01.11.2001/19:00-20:OO 

02.11.2001/20:00-21:oo 

and extends across the coarsest octaves. The slope of the linear regression performed 

in the region is greater than zero. The estimated value of the Hurst parameter is 

0.614. This value suggests presence of long-range dependence in the weekly trace of 

call holding times. The logscale diagram of the trace of call inter-arrival times, shown 

in Figure 5.5, shows evidence of bi-scaling (presence of two distinct linear regions with 

different slopes). The Hurst parameter estimates over the ranges of octaves [3-111 and 

[lo-151 are 0.692 and 1.204, respectively. 

Day/hour 

02.11.2001/15:00-16:OO 
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Figure 5.4: 2002 weekly trace: logscale diagram for the call holding times. 

8 10 
Octave j 

Figure 5.5: 2002 weekly trace: logscale diagram for the call inter-arrival times. 
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We test the time constancy of a for the 2002 weekly traces. In the case of call 

inter-arrival times, the test for time constancy of a is performed in the range of 

octaves [3-111 because there are not enough available octaves greater than 10 in the 

sub-traces. The values of m employed by the test are 100, 50, 40, 30, 20, and 10. The 

trace of call holding times passed the test for all m's. To the contrary, the trace of call 

inter-arrival times failed the test for all values of m. This indicates that the estimate 

of the Hurst parameter is reliable for the call holding times and is not reliable for the 

call inter-arrival times. 

The graphical outputs from the test are shown in Figures 5.6 and 5.7. The top 

graph in each figure shows the timeseries of the corresponding trace. The remaining 

three graphs show the values of a in each sub-trace for m = 100 (second graph), 

m = 50 (third graph), and m = 20 (bottom graph). The solid horizontal line rep- 

resents the overall value of a. The dashed horizontal line shows the average of the 

estimates of a. As observed in the top graph of Figure 5.7, call inter-arrival times 

exhibit daily cycles that are not present in call holding times (Figure 5.6). We assume 

that the cycles render the trace non-stationary, and, therefore, considering it long- 

range dependent and estimating the Hurst parameter may not produce meaningful 

results. 

5.2.2.2 2002: Analysis of daily traces 

For each day of the week between March 1 and March 7, 2002, Table 5.6 shows the 

number of calls and the Hurst parameter estimates for the traces of call holding and 

call inter-arrival times. It also shows the range of octaves where the linear regression 

is performed. Similarly to the results presented in Section 5.2.1.1, the linear region 
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Figure 5.6: 2002 weekly trace: test for time constancy of a for the call holding times. 
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times. 
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begins with octave 5 and extends across the coarsest octaves. 

Call holding times show indication of a weak long-range dependence, with Hurst 

parameters between 0.5 and 0.6. The only exception is the trace from March 7, where 

the estimated Hurst parameter is 0.623. Hurst parameters of the call inter-arrival 

times are between 0.7 and 0.8, which indicates presence of long-range dependence in 

the traces. 

We test the time constancy of cr for m E {14,12,10,8,6,4,3). Results of the test 

are shown in Table 5.7. Traces of call holding times pass the test for all or almost all 

values of m. Of all traces of call inter-arrival times, one passes the test for all values 

of m, three pass for more than 50% of m's, and the remaining three pass the test for 

less than 50% of m's. This indicates that the Hurst parameter estimates 

0 for the traces of call holding times can be considered reliable; 

for the traces of call inter-arrival times from March 3, 4, and 6 may not be 

considered reliable; 

0 for the remaining four traces may be considered reliable. 

5.2.2.3 2002: Analysis of hourly traces 

We estimate the Hurst parameter and test the time constancy of a for traces of call 

holding and call inter-arrival times from the five busiest hours during the week March 

1-7, 2002. Table 5.8 shows the busiest hours and the number of established calls 

during each hour. It also shows the Hurst parameter estimates together with the 

corresponding range of octaves where the linear regression is performed. As the table 

indicates, values of the Hurst parameter for the call holding times are close to 0.5, and, 
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Table 5.6: 2002 daily traces: Hurst parameter estimates for the call holding and call 
inter-arrival times. 

Number of calls I Type of data I Range I H 

call holding times 

call inter-arrival times 

57,339 

53,685 

5-13 

5-13 

48,803 

0.560 

0.776 

call holding times 

call inter-arrival times 

call holding times 

call inter-arrival times 

52,949 

call holding times 

call inter-arrival times 

49,752 

hence, the traces are not long-range dependent. Traces of call inter-arrival times are 

long-range dependent because the estimates of the Hurst parameter are significantly 

greater than 0.5. 

Tables 5.9 and 5.10 summarize the results from the test for time constancy of a 

for the call holding times and call inter-arrival times, respectively. All ten traces pass 

the test for the majority of values of m, which indicates that the estimates of the 

Hurst parameter shown in Table 5.8 can be considered reliable. 

5-13 

5-13 

5-13 

5-13 

call holding times 

call inter-arrival times 

44,518 

0.589 

0.768 

0.592 

0.726 

5-12 

5-12 

call holding times 

call inter-arrival times 

0.577 

0.711 

5-13 

5-13 

call holding times 

call inter-arrival times 

0.584 

0.784 

5-13 

5-13 

0.579 

0.722 

5-12 

5-12 

0.623 

0.706 
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Table 5.7: 2002 daily traces: results of the test for time constancy of a for the call 
holding and call inter-arrival times. 

Day I Type of data L-Td-Tl 
call holding 

01.03.2002 

call holding 
02.03.2002 

I call holding I N  I N  I R  

call holding N R N  
03.03.2002 ' 

call inter-arrival R  R  R  

call holding R N N  
04.03.2002 

05.03.2002 

1 call holding I N  I N  ( N  

06.03.2002 

call inter-arrival 

call holding 

call inter-arrival 

I I I 

call inter-arrival 1 N  I R  I N  

N  N N N  0 7 

N N N R  2 5 

N N N N  1 6 

R N R N  5 2 

N N N N  1 6 

07.03.2002 

3 
N N N N  

N 

N  

- 
I I I 

call inter-arrival ( N  I N  I N  

5.2.3 Traffic traces from 2003 

N 

R N N  

N  

N  

N  

The analyzed traffic data from 2002 span the period March 24-30, 2003 and there 

were 387,340 established calls during this period. From the trace of call holding times, 

we removed twelve outliers with values significantly larger than the other samples. 

Similarly to the analysis of data from 2002, we first analyze the two weekly traces, 

then we divide each into seven daily traces and analyze the daily traces separately. 

Finally, five hourly traces from the busiest hours are created and analyzed. 
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Table 5.8: 2002 hourly traces: Hurst parameter estimates for the call holding and call 
inter-arrival times. 

I ~ a y / h o u r  / Number of calls / Type of data / Range I H 

01.03.2002 
04:OO-05:OO 

01.03.2002 
22:OO-23:OO 

4,436 

01.03.2002 
23:OO-24:OO 

4,314 

01.03.2002 
0o:oo-01:oo 

5.2.3.1 2003: Analysis of the weekly traces 

call holding times 

call inter-arrival times 

call holding times 

call inter-arrival times 

02.03.2002 
0O:OO-01:OO 

Hurst parameters of the weekly traces of call holding times and call inter-arrival 

times are estimated based on the logscale diagrams shown in Figures 5.8 and 5.9, 

respectively. In both logscale diagrams, bi-scaling can be observed. The distinct 

linear regions in the logcale diagram of the call holding times are in the ranges of 

octaves [5-121 and [lo-151. The corresponding values of the Hurst parameter are 

0.592 and 0.751. Similarly, in the logscale diagram of the call inter-arrival times, the 

linear regions are within the ranges of octaves [3-111 and [lo-151, with estimates of 

the Hurst parameter of 0.706 and 1.353, respectively. 

We test the time constancy of a in order to determine whether or not the estimates 

of the Hurst parameter are reliable. The test for time constancy of a for the trace of 

call holding times is performed in the range of octaves [5-121 because of the lack of 

call holding times 

call inter-arrival times 

3,971 

2-9 

4-9 

2-9 

4-9 

call holding times 

call inter-arrival times 

0.490 

0.679 

2-9 

4-9 

0.489 

0.780 

call holding times 

call inter-arrival times 

0.460 

0.757 

2-9 

4-9 

2-9 

4-9 

0.503 

0.747 

0.508 

0.741 
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Table 5.9: 2002 hourly traces: results of the test for time constancy of a for the call 
holding times. 

Table 5.10: 2002 hourly traces: results of the test for time constancy of a for the call 

Day/hour 

01.03.2002/04:00-05:OO 

01.03.2002/22:00-23:OO 

01.03.2002/23:00-24:OO 

01.03.2002/00:00-01:OO 

02.03.2002/00:00-01:OO 

inter-arrival times. 
I I I I 

available octaves greater than 10 in the sub-traces. For the same reason, we test the 

time constancy of a for the trace of call inter-arrival times in the range [3-111. The 

values of m employed by the test are 100, 50, 40, 30, 20, and 10. The trace of call 

holding times passed the test for all m's, except for rn = 30. Again, the trace of call 

inter-arrival times failed the test for all values of rn. This indicates that the estimate 

of the Hurst parameter is reliable for the call holding times and is not reliable for the 

call inter-arrival times. 

m 

Day/hour 

01.03.2002/04:00-05:OO 

01.03.2002/22:00-23:OO 

01.03.2002/23:00-24:OO 

01.03.2002/00:00-01:OO 

02.03.2002/00:00-01:OO 

Rejected 

0 

3 

2 

1 

1 

Not 
rejected 

7 

4 

5 

6 

6 

N 

N 

R 

N 

R 

N 

R 

N 

N 

N 

N 

N 

N 

R 

N 

7n 
Rejected 

1 

0 

1 

1 

0 

R 

N 

N 

N 

N 

1 0 8 7 6 5 4 3  

N 

R 

N 

N 

N 

Not 
rejected 

6 

7 

6 

6 

7 

N 

N 

R 

N 

N 

N 

N 

R 

N 

N 

N 

N 

N 

R 

N 

N 

N 

N 

N 

N 

1 0 8 7 6 5 4 3  
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N 
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N 

N 
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N 

N 

N 

N 

N 

N 

N 

N 

N 

N 
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N 

N 
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2 4 6 8 10 12 14 
Octave j 

Figure 5.8: 2003 weekly trace: logscale diagram for the call holding times. 

2 4 6 8 10 12 14 
Octave j 

Figure 5.9: 2003 weekly trace: logscale diagram for the call inter-arrival times. 
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The graphical outputs from the test are shown in Figures 5.10 and 5.11. The top 

graph in each figure shows the timeseries of the corresponding trace. The remaining 

three graphs plot the values of a in each sub-trace for m = 100 (second graph), m = 50 

(third graph), and m = 20 (bottom graph). The solid horizontal line represents the 

overall value of a and the dashed horizontal line shows the average of the estimates 

of a. As observed in the top graph of Figure 5.11, there are visible daily cycles in the 

trace of call inter-arrival times. 

5.2.3.2 2003: Analysis of daily traces 

We estimated the Hurst parameter of the daily traces from the week between March 

24 and March 30, 2003. Examples of logscale diagrams for the traces of call holding 

and call inter-arrival times are shown in Figures 5.12 and 5.13, respectively. In both 

logscale diagrams, linear regions with slopes greater than zero that begin with octave 

5 and include the coarsest octaves can be identified. This indicates presence of long- 

range dependence in the traces. Estimates of the Hurst parameter are presented in 

Table 5.11. The Hurst parameter of the traces of call holding times is approximately 

0.6, implying weak long-range dependence. The traces of call inter-arrival times have 

higher values of the Hurst parameter, ranging between 0.7 and 0.8. 

Table 5.12 summarizes the results of the test for time constancy of a. With the 

exception of the trace of call inter-arrival times from March 29, 2003, all traces pass 

the test for more than 50% of m's. Therefore, the majority of the estimates of H 

reported in Table 5.11 can be considered reliable. 
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Figure 5.10: 2003 weekly trace: test for time constancy of ai for the call holding times. 
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- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Sub-trace 

Figure 5.11: 2003 weekly trace: test for time constancy of a for the call inter-arrival 
times. 
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6 8 
Octave j 

Figure 5.12: March 28, 2003: logscale diagram for the call holding times. 

2 4 6 8 10 12 
Octave j 

Figure 5.13: March 28, 2003: logscale diagram for the call inter-arrival times. 
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Table 5.11: 2003 daily traces: Hurst parameter estimates for the call holding and call 
inter-arrival times. 

Day  I Number of calls I Type of data I Range I H 

call holding times 

call inter-arrival times 

25.03.2003 

5-13 

3-12 

26.03.2003 

0.617 

0.715 

51,076 

64,092 

62,720 

28.03.2003 

I I call holding times 1 5-12 / 0.566 

call holding times 

call inter-arrival times 

call holding times 

call inter-arrival times 

29.03.2003 

call holding times 

call inter-arrival times 

55,277 

5.2.3.3 2003: Analysis of hourly traces 

5-13 

5-13 

5-13 

5-13 

60,272 

30.03.2003 1 48,394 

We estimate the Hurst parameter and test the time constancy of Q for traces of call 

holding and call inter-arrival times from the five busiest hours during the week March 

24-30, 2003. Table 5.13 shows the busiest hours and the number of established calls 

in each. It also shows the Hurst parameter estimates together with the correspond- 

ing range of octaves where the linear regression is performed. Values of the Hurst 

parameter for the call holding times are close to 0.5, and, hence, the traces are not 

long-range dependent. Traces of call inter-arrival times are long-range dependent 

0.587 

0.775 

5-13 

5-13 

0.605 

0.708 

call holding times 

call inter-arrival times 

I I 

call inter-arrival times 1 5-12 1 0.739 

because the estimates of the Hurst parameter are significantly greater than 0.5. 

0.598 

0.764 

call holding times 

call inter-arrival times 

5-13 

5-13 

0.581 

0.794 

5-13 

5-13 

0.571 

0.685 
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Table 5.12: 2003 daily traces: Results of the test for time constancy of a for the call 
holding and call inter-arrival times. 

Tables 5.14 and 5.15 summarize the results from the test for time constancy of a 

for the call holding times and call inter-arrival times, respectively. Nine traces pass 

the test for the majority of values of m. The trace of call holding times from the busy 

hour between 23:OO and 24:OO on March 26, 2003 is the only trace that fails the test 

for more than 50% of m's. This indicates that most estimates of the Hurst parameter 

shown in Table 5.13 can be considered reliable. 

Day 

24.03.2003 

25.03.2003 

26.03.2003 

27.03.2003 

Rejected 

0 

1 

0 

0 

0 

3 

0 

0 

Not 
rejected 

7 

6 

7 

7 

7 

4 

7 

7 

Type of data 

call holding 

call inter-arrival 

ca.11 holding 

call inter-arrival 

call holding 

call inter-arrival 

call holding 

callinter-arrival 

30.03.2003 

nz 

call holding 

call inter-arrival 

14 

R 

N  

N  

N  

N  

12 

N  

N  

N  

N  

R 

8 

N N N N N N N  

N  

N N N N N N N  

N  

N N N N N N N  

R 

N N N N N N N  

N  

10 

N  

N  

N  

N  

N  

6 

N  

N  

N  

N  

N N N N N N N  

N  

4 

N  

N  

R 

N  

3 

N  

N  

R 

N  

R N  R 

0 

3 

7 

4 
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Table 5.13: 2003 hourly traces: Hurst parameter estimates for the call holding and 
call inter-arrival times. 

Day/hour Number of calls Type of data I Range I H 1 
call holding times 1 2-9 1 0.483 / 
call i n t e r - a r r i L E s  1 &! 1 ::I:: 1 
call holding times 

call inter-arrival times 0.832 

call holding times 1 2-9 1 0.526 1 

call holding times 

call inter-arrival times 

call inter-arrival times 1 4-9 1 0.696 1 

2-9 

4-9 

5.3 Summary and discussion 

0.463 

0.699 

call holding times 

call inter-arrival times 

We created and analyzed traffic traces containing call holding times and call inter- 

arrival times from E-Comm's traffic data. We employed the wavelet-based estimator 

of the Hurst parameter and tested the time constancy of the scaling exponent a in 

order to determine whether or not the estimates of H are reliable. The analysis was 

performed on the weekly, daily, and hourly traces. 

Both weekly traces of call holding times pass the test for time constancy of a. 

Hence, the estimates of H in the corresponding ranges of octaves, can be considered 

reliable. The traces of call inter-arrival times, however, fail the test and, hence, 

the estimates of H may not be reliable. Furthermore, as shown in Figures 5.5 and 

5.9, logscale diagrams of the call inter-arrival times show evidence of bi-scaling and 

the Hurst parameter estimates in the range of octaves including the coarsest are 

2-9 

4-9 

0.466 

0.705 
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Table 5.15: 2003 hourly traces: Results of the test for time constancy of CI for the 
inter-arrival times. 

I I I I 1 

Table 5.14: 2003 hourly traces: Results of the test for time constancy of a for the 
holding times. 

Day/hour 

26.03.2003/22:00-23:OO 

25.03.2003/23:00-24:OO 

26.03.2003/23:00-24:OO 

29.03.2003/02:00-03:OO 

29.03.2003/01:00-02:OO 

::I: 
N N N  

Day/hour 

26.03.2003 / 22:OO-23:OO 

call 

call 

m 

greater than 1.0. We assume that Hurst parameter estimates greater than 1.0 may 

be attributed to the non-stationarities in the traces that result from the presence of 

daily cycles. 

Daily traces of call holding times pass the test for time constancy of a. Hurst 

parameter estimates of the traces are usually between 0.5 and 0.6 and may be con- 

sidered reliable. This indicates that the traces are weakly long-range dependent. In 

the case of the daily traces of call inter-arrival times, the outcome of the test varies. 

Rejected 

2 

0 

4 

0 

0 

m 

Not 
rejected 

5 

7 

3 

7 

7 

N 

N 

N  

N  

N  

Rejected 

0 N  

1 0 8 7 6 5 4 3  

N 

N  

R 

N  

N  

Not 
rejected 

7 

R 

N 

R 

N  

N 

N  

N  

N  

R 

N  

N  

R 

N  

R 

N  

N 

N  

N 

N  

N  

N  

N 

N 

N  

N  

N  

N  

1 0 8 7 6 5 4 3  

N  N  N  N  
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Both traces from 2001 fail the test for more than 50% of m's, which implies possibly 

unreliable estimates. Four out of seven traces from 2002, and six out of seven traces 

from 2003 pass the test for more than 50% of m's. Although not all estimates of 

H can be considered reliable, their values are consistent. All but one estimates are 

between 0.7 and 0.8. The remaining one has a value of 0.685, which is still close to 

0.7. 

Analyzed hourly traces of both call holding and call inter-arrival times pass the 

test for time constancy of Q for the majority of m's. The only exception is the trace 

of call holding times from the busy hour between 23:OO and 24:OO on March 26, 2003, 

which passed the test for three and failed for four values of m. Hurst parameter 

estimates of the call holding times are close to 0.5, which implies absence of long- 

range dependence. Call inter-arrival times show evidence of long-range dependence 

because all estimates are greater than 0.5 and a majority of them are greater than 

0.75. These results are in good agreement with already reported findings [4]. 

We compared the Hurst parameter estimates of the daily and hourly traces from 

the various datasets in order to determine their fluctuations. Figure 5.14 shows the 

estimates of the Hurst parameter of the daily traces from 2002 and 2003. In order to 

better observe if the estimates follow certain trend, we sorted the series of estimates 

from the corresponding year before plotting. The horizontal axis represents the rank 

(position in the sorted series of estimates) and the vertical axis shows the values of 

the estimates. For example, points in the graph with a rank of two show the second 

smallest Hurst parameter estimate in each series. The differences between the largest 

and the smallest estimates are approximately 0.05 and 0.1 for the call holding and call 

inter-arrival times, respectively. As shown in the graph, Hurst parameter estimates 
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Figure 5.14: Daily traces from 2002 and 2003: Hurst parameter estimates. 

for the daily traces of call holding and call inter-arrival times from 2002 and 2003 

are very similar. This implies that the Hurst parameters of the daily traces remained 

unchanged between 2002 and 2003. 

Figure 5.15 shows the sorted series of Hurst parameter estimates for the hourly 

traces of call holding and call inter-arrival times from 2001, 2002, and 2003. Estimates 

of H of the traces of call holding times from the three years are very close to each 

other. Similarly to the case of daily traces, the difference between the largest and 

the smallest estimate is approximately 0.05. Estimates of H of the hourly traces 

of call inter-arrival times exhibit greater variability than for the daily traces. The 

difference between the largest and the smallest estimate is - 0.2 and, except for the 
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Figure 5.15: Hourly traces from 2001, 2002, and 2003: Hurst parameter estimates. 

smallest estimate, estimates of H for the busiest hours from 2001 are greater than the 

corresponding values from 2002 and 2003. 

We could not observe large differences or any trend (increaseldecrease of N across 

the years) when comparing the Hurst parameter estimates of the daily and hourly 

traces from the three years. This implies that the Hurst parameter can be regarded 

as an invariant characteristic of the traffic traces from E-Comm's network. Based on 

the estimates, we conclude that: 

1. daily and hourly traces of call inter-arrival times are long-range dependent with 

Hurst parameters of approximately 0.75 

2. daily traces of call holding times show evidence of weak long-range dependence, 
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with Hurst parameters of 0.55-0.6 

3. hourly traces of call holding times are independent. 



Chapter 6 

Conclusions 

The Hurst parameter of a stochastic process characterizes the type of correlation 

structure of the process: independence, short-range, or long-range dependence. Its 

reliable and efficient estimation is important for the statistical analysis of the pro- 

cesses. When the value of the Hurst parameter is between 0.5 and 1, the process 

is long-range dependent. Long-range dependent processes exhibit similar behaviour 

when observed on various time-scales. For that reason, wavelets, with their natural 

scale invariance, are suitable for analyzing such processes. 

In this thesis, we applied the wavelet-based Hurst parameter estimator to two 

datasets: MPEG-1 and MPEG-4 encoded video sequences and traffic traces from a 

deployed circuit-switched wireless network. We also investigated the reliability of the 

estimates. 

The wavelet-based estimator produced values of H that were often greater than 

one when applied to the MPEG video sequences. We examined the possible sources 

of unreliability and concluded that the unreliable performance may be attributed to 
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presence of both strong short-range and long-range components in the traces and 

to the time variability of the scaling exponent a. Furthermore, comparing various 

estimates of H for the MPEG video traces, we conjectured that their power spectral 

density function has a power-law behaviour with an exponent greater than one, which 

does not comply with the LRD assumption . 

We also applied wavelet-based estimation of the Hurst parameter to  traces of call 

holding and call inter-arrival times from a circuit-switched network. We analyzed 

weekly, daily, and hourly traces from 2001, 2002, and 2003. We tested the time 

constancy of a and concluded that, except for the weekly traces of call inter-arrival 

times, a can be considered constant and the estimates of H reliable. Both daily 

and hourly traces of call inter-arrival times are long-range dependent with Hurst 

parameters of approximately 0.75. Daily traces of call holding times are weakly long- 

range dependent, with H ranging from 0.55 to 0.6. Hourly traces of call holding 

times are independent. We observed no trend when comparing the Hurst parameter 

estimates from 2001, 2002, and 2003. We concluded that the estimated values of the 

Hurst parameter can be considered invariant of the traffic traces. 

There are two key areas of future research regarding the unreliable performance 

of the wavelet-based estimator of H. The estimator is unbiased due to an explicitly 

inserted bias correcting factor that is calculated based on certain assumptions, such 

as Gaussianity. If these assumptions do not hold, the bias may become non-negligible 

and the estimates of H unreliable. A possible improvement would be to introduce a 

more robust correction of the bias or adopt an approach that does not introduce bias. 

Furthermore, it is important to investigate the correlation structure of the traces under 

consideration and the behaviour of their power spectral density. The hyperbolically 
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decaying autocorrelation functions are non-summable and, therefore, fit the concept 

of long-range dependence. However, they are not the only non-summable functions. 

A possible future work may be finding functions that better model the autocorrelation 

function of the traces within the long-range dependence framework. Since the wavelet- 

based estimator of H is based on the power-law behaviour of the power spectral density 

(equivalent to a hyperbolically decaying autocorrelation function), the estimator may 

fail if the traces possess a different type of autocorrelation. In this case, a fundamental 

modification of the existing estimator may be necessary. 



Appendix A 

Other estimators of the Hurst 

parameter 

There are several estimators for the Hurst parameter of a stochastic process, such 

as R/S plot, periodogram, variance-time plot, Whittle and wavelet-based. In Chap- 

ter 3, we described the wavelet-based estimator. In this Appendix, we describe two 

additional popular estimators that have been used to estimate H of the MPEG video 

traces: R/S plot and periodogram [ll], [29], [33]. 

A . l  R/S plot 

Let Xi, i = 1 , 2 , .  . . , N ,  be a discrete stochastic process and Y ,  = c:=, Xi be its 

cumulative process. For every k, 0 5 Ic 5 N,  called lag, and every starting point t 

such that t + k 5 N ,  

i i 
R(t, k) = max K+i - YL - - ( K + k  - x)] - min [ K + ~  - K - - ( +  - ) (A.l) 

O<i<k k O<i<k k 
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is called the adjusted range. When R(t,  k) is normalized by the square root of the 

sample variance of the sub-series XtS1, . . . , Xt+k 

where Xt,* = k-' g;RI Xi, the statistic thus obtained is called rescaled adjusted 

range, or R/S [ I l l ,  [33], [34]: 

If Xi is long-range dependent with Hurst parameter H, then for large k, 

To estimate H, the series Xi is first divided into K blocks of size NIK.  For each 

lag k and starting points ti = iN/K + 1, i = 1 ,2 ,  . . . , and ti + k 5 N ,  the values of 

R/S(t i ,  k) are calculated. When k is smaller than N/K,  there are K values of the 

R / S  statistic for every k. For the largest lags k, there is only one value of R/S.  In 

practice, k's are logarithmically spaced and the estimates of R /S  for the smallest and 

the largest k's are ignored. The plot of log R / S  versus log k is called pox plot. H is 

estimated as the slope of the line fitted to the points in the pox plot. 

Figure A . l  shows the pox plot of the MPEG-4 encoded "Star Wars" video se- 

quence. The black diamonds mark the points considered in the estimation of H. The 

two dotted lines show the reference slopes of 1 and 0.5. Hurst parameter is estimated 

to be 0.955. 
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0 1 2 3 4 5 
log1 0 (k) 

Figure A.l :  Graphical output of the R/S plot for the MPEG-4 encoded "Star Wars 
IV" video sequence. 

A.2 Periodogram 

The periodogram of a discrete stochastic process Xi, .i = 1 , 2 , .  . . , N,  is defined as 

where v is the frequency [29]. When Xi is wide-sense stationary, then I (v )  is an esti- 

mator of its power spectral density function (PSD). The PSD of long-range dependent 

processes follows a power-law for low frequencies, as shown in Eq. (2.9). This implies 

that there is a linear relationship between log I (v )  and log v when v + 0 with a slope 

equal to -a. Therefore, a is estimated by performing linear regression of log I (v) on 

logv. In practice, only the lowest 10% of the frequencies are considered. The Hurst 
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Figure A.2: Graphical output of the periodogram for the MPEG-4 encoded "Star 
Wars IV" video sequence. 

parameter is calculated by employing Eq. (2.12). 

Figure A.2 shows the plot of the periodogram of the MPEG-4 encoded "Star 

Wars" video sequence. The dashed line represents the result of the linear regression. 

Estimated value of the Hurst parameter is 1.138. 
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