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Abstract 

The IEEE 802.5 token ring protocol is not suited for real-time applications where messages have 

explicit deadlines and any message which does not meet its deadline is considered lost. This is 

because the stations are served in a round-robin manner and message deadlines are not taken into 

account. 

This thesis proposes a dynamic priority protocol which exploits the priority mechanism specified 

in the IEEE 802.5 token ring protocol. This dynamic priority protocol breaks the round-robin 

mode of service and serves the messages in the order of their closeness to their deadlines. It aims 

at maximizing the number of messages which meet their deadlines. Its application to the IEEE 

802.5 token ring protocol results in a favourable performance improvement over the conventional 

IEEE 802.5 token ring protocol. This improvement is achieved at the cost of an increase in the 

message waiting time (i.e.,the time between the message arrival and its start, of service), which is 

not important as long as the message is served before its deadline. 

This thesis also develops a simulation model for the new dynamic priority protocol and studies 

it for a variety of cases including different ring configurations and different traffic types. 
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Chapter 1 

Introduction 

A conventional token ring protocol like the IEEE 802.5 protocol is not suited for some real-time ap- 

plications (ie., systems where messages have explicit deadlines). This is so because the conventional 

token ring protocol serves the stations in a round-robin manner and does not take message deadlines 

into account. This results in fair service to all the stations but does not aim towards ensuring that 

the messages individually meet their deadlines. This thesis develops a dynamic priority protocol 

which exploits the priority mechanism of the IEEE 802.5.token ring protocol and makes it more 

suitable for such real-time applications. 

This chapter provides some background into the field of Local Area Networks, introduces the 

subject of the thesis and explains the motivation behind it. 

1.1 Local Area Networks 

A Local Area Network (LAN) is typically defined as an interconnection of computing nodes via 

a communication network that covers a limited geographical area [Liu84]. LAN's are generally 

characterized in terms of their topologies; three of the common ones are star, ring and bus. 

In the star topology, a central switching element is used to connect all the nodes in the network. 

A station wishing to transmit data sends a request to a central switch for a connection to some 

destination station, and the central element uses circuit switching to establish a path between the 

two stations as if they were connected by a dedicated point-to-point link. This topology has the 

advantage of simplicity but lacks robustness, because if the central switch fails, the entire network 

is disabled. A Computerized Branch Exchange (CBX) is usually implemented using a star topology 

[Sta84]. The CBX is a digital on-premise branch exchange designed to handle both voice and data 

connections. Data rates to individual end points are typically low but bandwidth is guaranteed and 

there is essentially no network delay, once a connection has been made. This mode of connection is 
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called circuit switching and is in contrast with message switching where it is not necessary to set up 

a dedicated path between the stations. Rather, if a station needs to send a message, it appends the 

destination address to the message. This message is then passed through the network from node to 

node. At each node the entire message is received, stored briefly and transmitted to the next node. 

This delay at each station is the network delay. It is caused by waiting for all the bits of the message 

to arrive at a station and a queuing delay which is caused by waiting for the opportunity to transmit 

to the next node. 

The ring topology consists of a closed loop, with each node attached to it by means of repeaters. 

Data circulates around the ring on a series of point-to-point data links between repeaters. A station 

wishing to transmit waits for its turn and then sends the data out onto the ring in the form of a 

packet, which contains both the source and destination address fields as well as the data. As the 

packet circulates, the destination node copies the data onto a local buffer. Since the ring is a closed 

loop, the packet will circulate infinitely unless it is removkd. The packet may be removed by the 

destination station. Alternatively, the packet could be removed by the transmitting station after it 

has made one trip around the loop. The latter approach is more desirable because (1) it permits 

automatic acknowledgements (the destination station flips a bit in the control sequence) and (2) it 

permits multicast addressing: one packet sent simultaneously to multiple stations. 

The bus topology is characterized by means of a multiple-access, broadcast medium. Since all 

devices share a common transmission medium, only one device can transmit at a time. As in the 

case of the ring topology, data is transmitted in the form of packets which contain the destination 

and the source address and the data. Each station monitors the media and copies packets addressed 

to itself. 

The ring and the bus topologies are much more robust than the star but at the same time are also 

more complex. Various channel access protocols exist for the ring and bus topologies. The IEEE 802 

is a family of standards for LAN's which deal with the physical and the data link layer of the Open 

Systems Interconnection (OSI) model. The data link layer is split into two parts, the upper layer 

is the Logical Link Control (LLC) layer and the lower layer is the Medium Access Control (MAC) 

layer. There are three standards at the MAC layer: 

IEEE 802.3 - This is the Carrier Sensitive Multiple Access Protocol with Collision Detection 

(CSMA/CD). It uses the bus topology. The station wishing to transmit listens to the medium 

to determine if another transmission is in progress. If the medium is in use, the station backs 

off some period of time and tries again. If the medium is idle the station may transmit. While 

transmitting the station continues to listen to the medium. If a collision is detected during 

transmission, the station ceases to transmit immediately and waits for a random amount of 

time before trying again. 

IEEE 802.4 - This is the token bus protocol. It uses a bus topology in which the stations on the 
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bus form a logical ring (i.e., the stations are assigned positions in an ordered sequence with the 

last member of the sequence following the first). Each station knows the identity of the station 

preceding it and following it. A control packet known as the token regulates the right of access. 

When a station receives the token, it is granted control of the medium for a specified time. 

This station may transmit one or more packets and may poll stations and receive responses. 

When it is done, it passes the token on to the next station in logical sequence. This station now 

has permission to transmit. Non-token stations are also allowed on the bus. These stations 

can only respond to polls or requests for acknowledgements. 

0 IEEE 802.5 - This is the token ring protocol. It uses the ring topology and is similar to the 

token bus protocol except that all the stations are connected on a unidirectional ring. As in 

the case of the token bus, the token regulates the right of access to the medium. 

This thesis develops a dynamic priority scheme which is an extension of the token ring protocol 

and is more suitable for real-time applications. The token ring protocol was chosen for this purpose 

because it provides for multiple priority operation which the token bus and CSMA/CD do not. The 

token ring protocol will be described in detail in the following section. 

1.2 The IEEE 802.5 Token Ring Protocol 

The token ring protocol is the most popular of all ring protocols [Sta88]. The IEEE 802.5 token ring 

protocol is based on the use of a small token packet that circulates around the ring. Each station 

on the ring maintains a queue for messages to be transmitted to other stations via the data channel. 

When a station wishes to transmit a message, it waits until it detects a token passing by. At this 

point the station modifies the token from a free token to a busy token (also called Start-of2rame) 

and transmits the queued messages immediately following the busy token. The busy token with 

the message appended to it is called a frame. After the message is transmitted and the busy token 

returns to the transmitting station, the transmitting station releases a new free token so that the 

next station downstream can access the channel. The use of a token guarantees that only one station 

may transmit at a time. Under lightly loaded conditions, there is some inefficiency since a station 

must wait for a token to come around before transmitting. However, under heavy loads, the ring 

functions in a round-robin manner, which is both efficient and fair. 

The following subsections present the background necessary to understand the token ring protocol 

and then describe the operation of the protocol. 

1.2.1 Background 

The number of messages served (ie., transmitted) at each station depends on the service strategy. 

There are three common service strategies 
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0 Exhaustive Service - The station queue is emptied whenever that station is served. 

Non-exhaustive Service - Only a prescribed number of messages axe served at each station. A 

special case of this service discipline is in the situation where only one message is served at 

each station. This is called the Limited-bone or Ordinary service discipline. 

0 Gated Service - Only those messages in the queue are served which were present at the time 

the token arrived at the station. 

The amount of time a station may occupy the channel is controlled by a timer called the Token 

Holding Timer (THT). This timer plays a role in the exhaustive and gated service strategies to 

ensure that a station presenting an abnormal trafic load does not hold on to the token forever. The 

traffic load is the ratio of the message arrival rate on the ring to the message service rate. 

Ring latency is the total delay encountered by a bit of data when it traverses around the ring. It 

is expressed in terms of bit time, where one bit time is the time one bit of data occupies on the ring. 

The ring latency is present due to the processing delays at each station ( ie . ,  station latency) and the 

propogation delay of the transmission medium. If the ring latency is shorter than the token length, 

then the station transmitting a token will start receiving the first few bits of the token before it has 

finished transmitting. This will not allow the token to circulate continuously because the received 

bits of the token will have to be buffered at the transmitting station until the station has finished 

transmitting. To avoid this condition, an artificial delay is introduced into the ring to make the ring 

iatency greater than the length of the token. This function is performed by the latency buffer which 

is provided by one of the stations. 

There are three ways in which a transmitting station can generate a new free token. They are 

the single packet, single token and multiple token operation. 

In the single packet case, a transmitting station waits until all its transmitted bits have travelled 

around the ring and have been removed by the transmitting station. The station then releases a 

new free token. This is the most conservative approach because it ensures that there is only one 

transmission at any point in time. Very few implementations use this approach because it does not 

utilize the token efficiently; nevertheless it is the simplest to implement and analyze. 

In the single token case, a transmitting station waits only until it has received its busy token 

back again. It then releases a new free token. If, however, the message transmission time is greater 

than the ring latency, then the transmitting station will receive the busy token before it has finished 

transmitting. In this case a new token is released right after transmission. 

In the multiple token case, a station releases a token right after transmission. If the message 

transmission time is shorter than the ring latency, it is possible to have several busy tokens and one 

free token on the ring at the same time. If the message transmission time is longer than the ring 

latency, multiple token operation is the same as the single token operation. 
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TOKEN FORMAT FOR THE IEEE 802.5 PROTOCOL 

SD = Starting Delimiter(1 octet) 
AC = Access Control(1 octet) 
ED = Ending Delimiter(1 octet) 

Figure 1.1: Token Format 

Based on the above definitions, the following subsection describes the operation of the IEEE 802.5 

token ring protocol. 

1.2.2 Operation 

The token and frame formats for the IEEE 802.5 token ring protocol, including the bit length for 

each field, are shown in Figure 1.1 and Figure 1.2 respectively. The bit lengths are expressed in 

terms of octets, where one octet is eight bits. 

The token format consists of three fields: The Starting Delimiter (SD), the Access Control (AC) 

field and the Ending Delimiter(ED). The SD is the means by which a station recognizes that the 

transmission on the ring is indeed a token or a frame. The AC field contains three priority bits, a 

token bit, a monitor bit and three reservation bits. The AC field format is shown in Figure 1.3. The 

three bit reservation and priority fields allow for eight distinct priority levels. The reservation field 

(R) is used by stations with high priority messages to indicate that the next free token be issued 

at the priority of the waiting message. The priority field (P) indicates the current priority of the 

token. Only those stations which have messages of priorities greater than or equal to the priority of 

the token are allowed to  seize the token. The token subfield (T) indicates whether the token is busy 

or free. The monitor field (M) is modified only by the active monitor on the ring. The monitor is 

the ring function that is responsible for the recovery of error situations. There is only one monitor 

on the ring at a time which is referred to as the active monitor. When the IEEE 802.5 token ring 

protocol operates at a single priority, the priority and reservation fields are not used. The Ending 

Delimiter (ED) contains a special pattern for ED recognition, an intermediate frame bit and an error 

bit. 

The frame format consists of three fields: the Start-of J'rameSequence (SFS), 

the Frame-CheckSequence (FCS) and the End-ofgrame-Sequence (EFS). The SFS is made 

up of the SD and the AC fields which are the same as in the token format. However, when 
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FRAME FORMAT FOR THE IEEE 802.5 PROTOCOL 

SD AC FC DA SA INFO FCS ED FS s 
SFS = Start of Frame Sequence 
FCS = Frame Check Sequence 
EFS = End of Frame Sequence 
SD = Starting Delimiter(1 octet) 
AC = Access Control(1 octet) 
FC = Frame Control(1 octet) 
DA = Destination Address(2 or 6 octets) 
SA = Source Address(2 or 6 octets) 
INFO = Information(0 or more octets) 
FCS = Frame Check Sequence(4 octets) 
ED = E n d i g  Delimiter(1 octet) 
FS = Frame Stalus(1 octet) 

Figure 1.2: Frame Format 

ACCESS CONTROL FIELD FORMAT 

P = Priority bit 

T = Token bit 
M = Monitor bit 
R = Reservation bit 

1 

Figure 1.3: Access Control Field Format 

P P P T M R R R  
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these two octets are part of a frame, the token bit in the AC field is transmitted as a one. The 

FCS is composed of one Frame-Control (FC) octet, either two or six Destination-Address (DA) 

octets, two or six SourceAddress (SA) octets, an information field of zero or more octets and 

a CyclicJledundancy-Check (CRC) field of four octets. The EFS is composed of an ED and a 

FrameStatus (FS) field. The ED is identical to the ED in the token format. The FS field enables 

the destination station to acknowledge the receipt of the packet to the source station. 

The IEEE 802.5 token ring protocol also provides for multiple priority operation with a maximum 

of eight priority levels. The priority algorithm of the token ring protocol can be summarized as 

follows: 

A station wishing to transmit a message must wait for a free token whose priority is less than or 

equal to the priority of the message to be transmitted. While waiting, a station may reserve a token 

at the priority level of the waiting message in the following manner: 

If a busy token goes by, a station may set the reservation field in the token to the waiting 

message priority only if the reservation field contains a value less than the message priority. 

If a free token goes by, whose priority is greater than the waiting message priority, the station 

may set the reservation field in the token to the message priority if the reservation field contains 

a value less than the message priority. 

When a station seizes a token, it marks the token as busy, sets the reservation field to the lowest 

priority ievei and leaves the priority field unchanged. 

After a station has finished transmitting a message, it releases a new free token with the priority 

field in the token set to the maximum of the following values - the token priority, the reservation 

field value and the waiting messsage priority. The reservation field is set to the maximum of the 

reservation field value and the waiting message priority. 

The station that upgraded the priority of the token is responsible for downgrading it to its 

former level, when all higher priority stations are finished. This is to assure that no token circulates 

indefinitely because its priority is too high. The priority is downgraded in the following manner: 

When the station which upgraded the priority of the token to a certain level detects a free token 

at that higher priority, it can assume that there is no more higher priority traffic waiting and it 

downgrades the priority of the token before passing it on to the next station. 

The net effect is round-robin within each of the eight priority levels. Starvation of lower priority 

messages can easily occur. Only the highest priority level provides guaranteed message delivery time. 

In the worst case, the first high priority waiting message will have to wait for almost two frame times 

plus one round trip of the token before it gains access to the token. This is shown in Figure 1.2.2 

where Pm denotes the priority of the waiting message. A frame time is the time taken for a frame 

to traverse the ring. One frame time is needed due to the fact that the high priority message might 

arrive at a station C just when the header of a frame has gone past (i.e., a reservation cannot be 
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Station C, Pm = 7 

Station A, Pm = 4 

made). The second frame time arises from the fact that after the above message has been served 

(by station A), the next station downstream i .e . ,  B may seize the token (a reservation is made when 

this frame passes station C which has a high priority waiting message). The token round trip comes 

from the fact that after the message on the ring returns to the transmitting station B, it removes 

the message from the the ring and releases a new free token. Depending on the relative positions of 

the stations, it can take one round trip for the free token to arrive at the requesting station. 

1.3 Protocols for Real-Time Applications 

Some real-time network applications involve message delivery with strict deadlines, where any mes- 

sage whose service is not started by its deadline is considered lost. This is based on the observation 

that the message contents of an excessively delayed message lose their value at the receiving end. 

Therefore the transmitting station may discard such a message when it overshoots its deadline. 

In so-called hard real-time networks, the network cannot afford to lose any time-critical messages. 

For example, consider two communicating hard real-time tasks (executing on different nodes), where 

one is required to precede the other. In this case scheduling decisions concerning a task are affected 

by the completion time of the task that precedes it and by the delay in communication from that task. 

The main issue for such applications is whether a certain schedule is feasible or not [Kur84]. In such 

applications, traffic is classified as synchronous (time-critical) and asynchronous (not critical) traffic. 

The current practice to schedule such traffic on the IEEE 802.5 token ring is to use round robin 

scheduling with each station's THT set proportional to the time required to service its synchronous 

message set. The asynchronous messages are served when there is no synchronous message waiting 

[Str88]. 

In certain other, so-called soft real-time networks, a small amount of message loss is usually 

tolerated. An example of such an application is packetized voice where the loss of a small fraction of 
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the packets is usually tolerable since the speech is still intelligible to the receiver. Other applications 

include distributed sensor networks and some real-time process control systems. Yet another example 

is that of impatient customers who leave their queues if their service is not started before a certain 

deadline or a system which has single buffers at each station and a message that arrives at a station 

before the previous one has been served, overwrites it. The primary aim of such an application 

running on a real-time LAN is to maximize the percentage-of messages which meet their deadlines. 

This is a requirement quite different from that of a conventional LAN where the primary aim is 

to minimize the mean message waiting time. This fundamentally different objective suggests that 

conventional LAN protocols may not be suitable for real-time applications. 

Several protocols exist for supporting hard real-time communication applications in ring networks, 

Message based priorities are used to distinguish between synchronous and asynchronous traffic by 

assigning synchronous messages a higher priority than the asynchronous messages [Rom81,Str88]. 

This breaks the round-robin mode of service by ensuring that all the higher priority messages are 

served before the lower priority messages. It results in round-robin mode of service within each 

priority level. This strategy may lead to starvation of low priority messages, which is not a problem 

since the major concern is to ensure that the synchronous messages meet their deadlines. 

None of the above schemes is applicable to soft real-time applications where the traffic presented 

to the ring is of a single priority and the aim is to maximize the percentage of messages which meet 

their deadlines. A single priority token ring protocol may not be suitable for real-time applications 

because the stations on the ring are serviced in a round-robin manner and message deadlines are not 

taken into account. Due to the round-robin mode of service there is an inherent priority assignment 

imposed on the stations due to the topology of the ring. 

A prioritized token ring protocol breaks the round-robin mode of service by ensuring that all high 

priority messages are served before the lower priority messages. It results in round-robin service 

within each priority level. The prioritized token ring can be used for hard real-time traffic by 

assigning higher priorities to time-critical messages and lower priorities to background messages. 

The following section introduces the new dynamic priority protocol whose application to the IEEE 
802.5 token ring protocol aims at maximizing the number of messages which meet their deadlines 

and hence makes it suitable for soft real-time applications. 

1.4 The New Dynamic Priority Protocol 

In this thesis, a dynamic priority protocol is proposed for a token ring network for soft real-time 

applications. It serves the messages in the order of the closeness to their deadlines. The deadline 

is assumed to be the deadline at the source station ie., the time before which the message service 

should have begun. A message which has overshot its deadline is discarded by the source station. 

At any time the priority of a queued message is determined by the amount of time remaining 
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until its deadline. Channel access rights are given to nodes dynamically, depending on the priority 

of the message at the head of queue at the node at that instant of time. 

The new dynamic priority protocol is an extension of IEEE 802.5 token ring protocol. It is based 

on the principle that as an unserviced message approaches its deadline, its priority is raised as a 

function of time until it either gets served or it overshoots its deadline. If the deadline is overshot 

then the message is discarded at the source station. 

The dynamic priority protocol overrides the inherent priorities imposed on the stations in a token 

ring LAN due to the interconnection topology. Round-robin scheduling takes effect only to serve 

messages which are equally critical. For example, if more than one message on the ring at different 

stations, at any instant of time, have the same time remaining until their deadlines, then those 

messages should be served in an order specified by the round-robin scheme. 

On the principle that one cannot achieve something for nothing, it is clear that an improvement 

in the number of lost messages is achieved at the cost of some other measure, which in this case 

is the message slack time. The message slack time is the difference between the message's start 

of service and its deadline. The dynamic priority protocol results in the slack time being reduced 

which essentially means that on the average, more messages are served closer to their deadlines. This 

is not a cause for concern since a deadline exists and the message waiting time for a successfully 

transmitted message is always less than the deadline. 

1.5 Issues to be Explored 

The following issues related to the dynamic priority protocol will be explored in the thesis. 

0 The time function according to which the priority of a message is stepped up. 

0 The improvement of the dynamic priority protocol over the conventional IEEE 802.5 protocol 

in terms of the number of messages which meet their deadlines. 

The variation of the above improvement with change in number of stations, network load and 

message deadlines. 

0 The application of the dynamic priority protocol to different traffic types and distributions, for 

example: symmetric, asymmetric and avalanche traffic. 

0 The application of the dynamic priority protocol to hard real-time networks. 

1.6 Composition of the Thesis 

Chapter 2 deals with an overview of the field. In particular, it presents some schemes based on the 

token ring protocol for real-time applications and points out the drawbacks of these schemes. Chapter 
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3 explains the new dynamic priority protocol in detail. Chapter 4 discusses the implementation issues 

of the protocol including the simulation models used to measure its performance. Chapter 5 presents 

the results of the simulation runs. Chapter 6 summarizes the results and presents some conclusions 

based on the simulation results. It also provides some insight into topics for future work. 



Chapter 2 

Overview 

This chapter gives an overview of some earlier protocols based on the IEEE 802.5 token ring protocol. 

It points out some of the drawbacks inherent with these schemes and shows how our new dynamic 

priority protocol helps in alleviating some of these problems. 

2.1 Earlier Token Ring Protocols for Real-Time Systems 

2.1.1 A Static Message Based Priority Scheme 

Two message based priority schemes have been proposed in [Rom81] for a token ring network. Both 

these schemes are forerunners of the IEEE 802.5 token ring protocol and are based on the multiple 

token operation. These include a preemptive and a non-prekmptive scheme. In the previous chapter 

it was shown that the IEEE 802.5 prioritized token ring protocol can be made suitable for real-time 

applications by assigning higher priorities to time-critical messages and lower priorities to non critical 

traffic. This priority assignment leads to the stations not being served in a round-robin manner since 

the high priority messages are served before the low priority messages. This scheme leads to the 

starvation of lower priority messages. 

In the preemptive scheme, [Rom81] each station with a message to transmit monitors the channel. 

Each message transmitted is preceded by its priority. Assuming that each station can detect message 

boundaries, if a station with a high priority message detects a lower priority message going past, it 

intercepts the message and replaces the message with its own. This substitution implies that the 

intercepted message has been lost and will have to be retransmitted. This scheme has the potential 

to distort the transmission order of messages on the ring as will be seen in the following example. If 

we assume that a small number denotes a low priority message, then consider a sequence of messages 

going around the ring in the order of priorities 7, 5, 2, 1. If a station has a message of priority 6 to 

transmit, it waits for the first message in the sequence, i.e. a priority 7 message to go past. It then 
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detects the second message in the sequence of priority 5. It intercepts this message and places its 

own message instead. So now the sequence of messages going around the ring have priorities in the 

order 7, 6, 2, 1. We see that a message of priority 5 has been preempted but lower priority messages 

( i . e . ,  1 and 2) are allowed to continue on. 

In the worst case, the first high priority waiting message may have to wait for one round trip of 

the token or one frame time to access the channel. The round trip of the token is needed in case 

there is no message being transmitted on the ring. In that case the station will need to wait for 

one round trip of the token (worst case) to gain access to the channel. The frame time is needed in 

case a Start-of-Frame has just passed the station. In that case the station will have to wait for 

the Start-ofgrame of the next message because it cannot preempt the current message since the 

field indicating the priority of the message may have already passed the station. It would definitely 

not want to preempt a higher priority message. This scheme could lead to starvation of low priority 

messages. 

The non-preemptive scheme in [Rom81] alleviates some of the problems of the above preemptive 

scheme. In this scheme, at the end of a successful message transmission, ready subscribers commence 

a reservation period, during which the channel behaves as in the intercepting algorithm above. At the 

end of this period, exactly one subscriber from the highest,priority class is identified and transmits 

its message. 

In the worst case two round trips of the token plus a frame delay will be required by a station 

with the highest priority message to access the channel. The frame time is due to the fact that a 

message may just have begun to get served when the high priority message arrives. After the current 

message has been served, there is a reservation cycle which is exactly one round trip of the token. 

The other round trip of the token is due to the distance the token has to travel to get to the station 

with the high priority message, which, in the worst case can be one round trip of the token. Again, 

as for any other scheme with static priorities, it could lead to starvation of lower priority messages. 

2.1.2 An Adaptive Token Ring Strategy 

An adaptive token ring strategy for a real time environment has been proposed in [Kim83]. It 

combines the advantages of an exhaustive and a non-exhaustive service scheme (refer to Section 

1.2.1 for definitions of exhaustive and non-exhaustive service disciplines). If we define the ring scan 

time as the time taken for a station to receive the next usable token, it is clear that in a non-exhaustive 

scheme, the ring scan time is better than that in an exhaustive scheme. 

An advantage of the exhaustive scheme over the non-exhaustive scheme is clear if we consider the 

following scenario. When the ring is poorly utilized, a station with a temporarily heavy traffic volume 

will not degrade the overall ring performance under the exhaustive policy because that station will 

simply empty out its queue when it seizes the token. The non-exhaustive ring will, however, not be 

able to adjust to this type of dynamic behavior of the ring operations and may lead to an extended 
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waiting time for packets that cannot be transmitted during the current scan cycle. 

The adaptive token ring strategy in [Kim831 involves dynamically adjusting the allowed Token 

Holding T i m e r  (THT) by observing the ring activities at other stations (The THT ensures that a 

station presenting a heavy load to the ring does not hold on to the token forever). Thus this scheme 

incorporates the advantage of both the exhaustive and non-exhaustive ring, namely the lower scan 

time and fairness of a non-exhaustive ring and the lower average waiting time of an exhaustive ring. 

This is an adaptive strategy and works well for a real-time system because it adjusts to the mes- 

sage load on each station by providing a dynamic means of assuring resource sharing in a distributed 

manner. It is, in principle, similar to setting up a global schedule so that under heavy traffic condi- 

tions it becomes a non-exhaustive scheme and every station gets a fair share of the bandwidth while 

under light traffic conditions it becomes an exhaustive scheme. This scheme is in essence similar to 

the FDDI token ring scheme [Ros86b,Ros86a,Sev87] where a global schedule is set up. In the FDDI 

protocol time-critical traffic is transmitted at any reception of a free token while non-critical traffic 

can only be transmitted if the token is running ahead of schedule. 

The strategy in [Kim831 allows for selective removal of real-time traffic when congestion develops 

in a system, to meet the strict delay constraints of real-time messages. This selective removal 

is achieved in the following manner: after a station has transmitted its messages, (the number 

determined by the THT timer) the station immediately discards all the messages still waiting in the 

queue. Therefore messages waiting more than one token cycle time will be discarded. 

The message based priority schemes in [Rom81] have, like all other static priority schemes, the 

disadvantage of starvation of lower priority messages. The adaptive scheme in [Kim831 is not a 

prioritized scheme but suffers from the drawback that the stations are served in a round-robin man- 

ner. Thus, messages at the current station being served may jeopardize the chances of transmission 

of messages at other stations which may be closer to their deadlines. The emphasis seems to be 

on ensuring fairness as against ensuring that a maximum number of messages meet their deadlines 

individually. 

These drawbacks led to the idea of the dynamic priority scheme where the priority of a waiting 

message is stepped up over time. The priority of a message at any time is determined by the time 

remaining until its deadline, which essentially means that messages which are closer to their deadlines 

have priority over messages which are not as critical. 



Chapter 3 

The Dynamic Priority Protocol 

The preceding chapters gave an overview of the token ring protocol, presented some schemes based 

on it and discussed the drawbacks of these schemes. The proposed dynamic priority protocol is based 

on the IEEE 802.5 token ring protocol and attempts to minimize the percentage of lost messages 

(i.e., messages which do not meet their deadlines and are thus considered lost). The dynamic priority 

protocol is compared with the standard use of the IEEE 802.5 token ring protocol and is shown to 

perform better under most cases. 

3.1 Dynamic Priority Protocol 

The dynamic priority protocol serves messages in the order of their closeness to their deadlines rather 

than in the order imposed by the topology of the ring. This is in an attempt to maximize the number 

of messages which meet their deadlines. The deadline is assumed to be the deadline at the source 

station i.e., the instant of time before which the message service should have begun. 

There are many possible message service schedules depending on the various message parameters. 

For example, messages can be served in the order of message arrival times, message length, message 

lifetimes (i.e., the time between the message generation time and its deadline) and message deadlines 

(i.e., the amount of time remaining until the deadline). The service schedule chosen for this thesis 

is according to message deadlines. There are several reasons for this choice. 

If the messages are served in the order of their arrival times, it will lead to First Come First 

Serve scheduling. Whatever the message deadline distribution, the messages will always be served in 

their order of arrival. Deadline will not have any effect on this scheduling policy. Thus, if a certain 

message is more critical than others - reflected by its closeness to its deadline, it will not be given 

any priority over the others. 

Messages served in the order of message lengths implements the Minimum Message Length First 
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scheduling policy. This thesis assumes constant message lengths which discards this choice as a 

suitable service schedule. 

If the messages are served in the order of their lifetimes it would lead to the shortest lifetime 

first scheduling policy which may result in starvation of the longer lifetime messages. There may be 

applications where the lifetime of a message may be a direct reflection of its priority (i.e., shorter 

lifetimes would lead to higher priorities). In those cases it may be required to serve the shorter 

lifetime messages first, even at the cost of starvation of the longer lifetime messages. 

In the message deadline service, the messages are served in the order of their closeness to their 

deadlines. For example, a newly generated message with a short lifetime may be placed in the queue 

behind a message with a longer lifetime, but which has been in the queue for a longer time (i.e. it 

is closer to its deadline). This scheme does not lead to starvation of longer lifetime messages. When 

a message gets to the head of the queue, it is assigned a priority based on the time remaining until 

its deadline. This is a truly dynamic scheme because the longer a message waits in the queue, the 

closer it gets to its deadline and the higher its priority is stepped up. 

The message deadline service schedule is found to be the most suitable for this thesis because the 

aim is to maximize the number of messages which meet their deadlines. This can be accomplished 

by serving those messages first which are closer to their deadlines rather than those which can wait 

for some more time, which is the message deadline scheduling policy. 

Consider the scenario in Figure 3.1. Assume that a message arrives at the head of the transmit 

queue A time units or more before its deadline (A is a protocol parameter). This message is assigned 

the lowest priority (i.e., one). Its priority stays the same until it reaches A time units before its 

deadline. From then on its priority increases as a function of A, its deadline (D) and the current 

time (t) until it gets served or its priority reaches the maximum level (i.e., eight), since there are 

a maximum of eight priority levels allowed by the IEEE 802.5 token ring protocol. A message will 

overshoot its deadline if it stays unserviced at priority level eight. 

In Figure 3.2, a message arrives at the head of the queue less than A time units before its deadline. 

It is thus assigned a priority based on the function f. As above, the priority is increased with time. 

The parameter A and the function fare chosen such that only eight priority levels are allowed. 

A message will overshoot its deadline if it stays unserviced at priority level eight. 

The number of priority levels available can affect the performance of the protocol in the following 

manner. A small number of priority levels could result in more than one message being assigned 

the same priority, though they would have been at different levels if more levels had been available 

[Leh86]. Since such ties are resolved by the round-robin scheme, it could lead to priority inversion, 

the situation in which a message which an optimal algorithm would assign the highest priority, does 

not get serviced first because it is assigned the same priority as another message less critical than 
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itself. A very large number of priority levels will, on the other hand, result in more overhead for the 

token ring protocol. This overhead arises due to the downgrading of the priority of the token when 

there is no high priority traffic waiting. In the worst case this process of downgrading the priority 

of the token to the priority level it was upgraded from, can take one round trip of the token. 

In the worst case one round trip of the token plus two frame times will be required by the first 

station with a high priority message to access the channel as in the IEEE 802.5 protocol. 

In the case when A = 0, the dynamic priority protocol will behave exactly like the IEEE 802.5 

single priority token ring protocol with deadlines. This is because the priority of a waiting message 

starts to get stepped up 0 time units before its deadline, meaning thereby that the priority of the 

message is never stepped up, which results in all messages staying at the same priority (i.e., the 

priority they were generated at). Henceforth, this IEEE 802.5 single priority token ring protocol 

with deadlines will be referred to as the fixed priority protocol and will be used as a basis for 

comparison with the dynamic priority protocol. 

3.2 The Dynamic Priority protocol for Hard Real-Time Ap- 

plicat ions 

The previous section described the dynamic priority protocol when applied to soft real-time traffic. 

Hard real-time traffic involves two classes of traffic: the synchronous (i.e., time-critical) traffic and 

the aynchronous (ie., non-critical) traffic. Synchronous traffic has hard deadlines (ie., it should 

have guaranteed message delivery time). Asynchronous traffic, on the other hand is not time-critical 

and is associated with soft deadlines. The standard method for scheduling such traffic, as described 

in Section 1.3, results in the synchronous class messages being provided with guaranteed message 

delivery time and a possibility of the asynchronous class messages being starved, This strategy is 

used provided the data rate on the ring is sufficient to accomodate the synchronous traffic message 

arrival rate. 

A Deferred Server (DS) scheme has been developed in [Str88] which guarantees synchronous 

class message delivery and improves the response of the asynchronous class of messages. It is based 

on the principle that since there is no advantage to the system for the synchronous class messages 

completing early, the DS algorithm assigns a priority higher than the synchronous traffic to the 

asynchronous traffic up until the point where the synchronous messages would start to be late. High 

priority asynchronous service is limited by a Deferrable Server which has a fixed capacity. When 

the server's capacity is exhausted by asynchronous message arrivals, additional arrivals are assigned 

background priority. This increases the responsiveness of the asynchronous class messages at the 

cost of reducing the average slack time for the synchronous messages. 

The dynamic priority protocol is not useful when applied to the above real-time traffic. This is so 

because the dynamic priority protocol will assign priorities to both synchronous and asynchronous 
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messages based on their closeness to their deadlines and will, in no way, favour the synchronous 

messages over the asynchronous messages. This will result in the asynchronous messages not being 

starved and the synchronous messages not being provided with guaranteed access. 

The dynamic protocol can, however, be adapted to a hard real-time environment in the following 

manner. Synchronous class messages can be assigned the highest available priority (ie., eight), since 

the highest priority messages are provided with guaranteed access in a prioritized token ring scheme. 

Asynchronous class messages, at their time of generation, are assigned the lowest priority level and 

their priority is incremented according to a priority function until they reach a level one less than 

the level assigned to the synchronous set of messages or until they get served. 

This scenario guarantees delivery of the synchronous class messages and increases the number 

of asynchronous class messages which meet their deadlines. This improvement in the number of 

asynchronous messages which meet their deadlines, is achieved at the cost of a decrease in the 

average asynchronous message slack time. 

Thus, we see that the dynamic priority protocol can be used with both hard and soft real-time 

applications. The dynamic priority protocol is studied under a variety of different cases to observe 

its performance. These different cases include different ring configurations, different traffic types and 

different time functions. An attempt is made to arrive at a set of conditions under which it would 

be most advantageous to use the dynamic priority protocol. 

3.3 Time Functions to Step up Priority 

This thesis explores two functions, the linear and the non-linear functions. In the linear case the 

length A is divided into eight equal parts corresponding to the eight priority levels. This time 

function is shown in Figure 3.3. In the non-linear case the length A is divided into eight unequal 

parts. There can be many possible non-linear functions. An example of a non-linear function is 

shown in Figure 3.4. 

3.4 Traffic Considerations 

Real-time traffic is multifarious in its length, arrival process and service requirements [ B o u ~ ~ ] .  Alarm 

messages are very different in nature from bulk file transfers. Alarms produce short messages with a 

high degree of emergency. Bulk file transfers produce large quantities of messages with a low degree 

of emergency. 

In real-time applications the external world is observed through a set of sensors. Most of them 

produce periodic data of fixed size. These sources are not synchronous and may have many different 

periods. Exceptionally, alarms are generated which correspond to abnormal physical events. Alarms 

are subject to produce message avalanches which look like a load peak. 
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Figure 3.5: Avalanche Traffic 

This section describes different types of traffic commonly encountered in real-time applications. 

3.4.1 Symmetric Traffic 

In this case all the stations on the ring experience the same traffic load. This case does not occur 

very often practically, but is of interest because it is the easiest to understand. 

3.4.2 Asymmetric Traffic 

In this case each station may experience a different traffic load. This makes the ring unbalanced. 

Protocol response to asymmetric traffic is of considerable interest because many practical real-time 

applications fall into this category. For example, a set of sensors connected to different nodes of the 

ring may be observing different events at  different rates. 

3.4.3 Avalanche Traffic 

The concept of an avalanche is used to represent the arrival of a large quantity of messages over 

a short interval. There are three parameters used to define an avalanche. The first is the inter- 

avalanche delay, the second is the inter-message delay in the avalanche and the third is the avalanche 

duration. Figure 3.5 shows these parameters clearly. 

Alarm traffic in a process control system can be modeled using the avalanche traffic model. The 

inter-avalanche delay is the time between groups of alarms. The avalanche duration is the alarm 

condition. The inter-message delay is the time between individual alarms. 



Chapter 4 

Performance Modeling 

4.1 System Models 

In order to predict the future performance of the system, an abstract representation of the system is 

needed which will embody its behavior. This is called a model of the system [Mac85]. A model con- 

tains parameters that can be varied to portray different conditions. There are two main approaches 

to tackle these models: the analytical approach and the simulation approach. 

A model solved by an analytical method represents the system by a set of mathematical equations. 

These equations are solved to determine the performance of the system. 

A model solved by simulation is a computer program that acts like the system. When the 

simulation is run, the computer program keeps track of the contention for resources represented in 

the model and calculates the performance measures based on what it has observed. 

The analytical approach can be applied to relatively simple problems. The simulation approach, 

on the other hand, can be applied to all kinds of problems but has the disadvantage of being statistical 

in nature. This can introduce inaccuracies in the performance measures. Simulation when applied 

to very detailed problems, also introduces the disadvantage of having to validate the simulation 

program. The results produced by solving an analytical model are exact for that model. However, 

the analytical model may not be an accurate representation of the actual system. Therefore, the 

analytical results may not agree with the system behavior. Since a simulation model may be made as 

detailed and realistic as we like, the results from the simulation model may be closer to the behavior 

of the system in spite of the statistical variability. 

In this thesis, due to the complexity of the protocol being analyzed, simulation has been used for 

the performance evaluation of various models. 
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4.2 Language Used 

GPSS was the language used for simulation. There was a choice between using a simulation language 

as against a general purpose language. A simulation language was chosen because it relieves the 

programmer of the job of implementing the low level simulation functions. Among the simulation 

language, there was a choice between using GPSS or SIMSCRIPT (These are the two simulation 

languages available on the University Computer System). GPSS is a low level language and was 

chosen because it is designed for relatively easy simulation of queuing systems. It also provides ease 

in modifying the models for the various cases to be simulated. 

GPSS/H was the version of the language which was used [Hen83]. A pre-processor was developed 

in C to allow convenient entry of various system parameters. This pre-processor generates GPSS/H 

code for the parameters entered. A post-processor was also written in C which calculates the results 

based on the statistics gathered during simulation and also calculates the confidence intervals. The 

pre-processor and the post-processor are based on Edward Lo's [Lo881 programs. I converted the 

post-processor from FORTRAN (in which it was originally written) to C since the SUN version of 

GPSS/H does not support the linking of FORTRAN programs. 

4.3 Statistical Considerations 

One of the most difficult problems concerned with using simulation is how to determine the accuracy 

of the simulation estimates [Mac85]. One of the parameters which affects the statistical estimates of 

the simulation run is the length of the run. Most tests are concerned with the steady state behavior 

of the system. So the simulation should be run long enough to allow the system to come to steady 

state. The question is how long is long enough. If a simulation were allowed to run for infinite time, 

it would give the most accurate results, but this, unfortunately, is practically impossible. Another 

parameter which affects the simulation estimates is the pseudo-random number sequence used. 

There are some estimation techniques available, e.g., methods of obtaining confidence intervals 

which permit us to make valid statistical inferences about'the model based on simulation output. 

These techniques are also essential to address the tradeoff between simulation run length and the 

level of precision of the simulation estimates. There are three commonly used methods for estimating 

confidence intervals. 

a Independent replications method - This is the preferred method for estimation of transient 

conditions. It can be applied to estimation of steady state characteristics, but one of the 

following two methods will generally be preferable for estimating steady state characteristics. 

a Regenerative method - This is the preferred method for estimation of steady-state behavior 

in models with regenerative characteristics (i.e., the tendency of the system to return to the 

regenerative state which is similar to the initial state). 
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0 Spectral method - This is the preferred method for estimation of steady-state behavior in 

models without regenerative characteristics. 

Since the model being simulated has regenerative characteristics (i.e., no waiting message in the 

system and a free token), and since we wish to study the steady state behavior of the system, the 

regenerative method was chosen to estimate confidence intervals. A 90% confidence interval was 

sought. This determined the number of regenerative cycles and hence the simulation run length 

required to obtain the sought confidence interval [Cra77]. 

Another parameter which affects the simulation estimates is the pseudo-random sequence. To 

establish the randomness of the GPSS pseudo-random number generator, the chi-square test was 

used [Knu81]. The chi-square is the most basic and best known of all such statistical tests. It is 

often used in connection with many other tests. Theoretically, there is no end to the number of tests 

which can be performed. If a sequence behaves randomly with respect to tests TI, T2, ....., Tn, we 

cannot be sure that it will not be a failure when subjected to test Tn+l. Yet each test gives us more 

confidence about the randomness of the sequence. 

The GPSS pseudo-random number sequence is a sequence of uniformly distributed numbers 

between zero and one. Based on this sequence, a GPSS/H function RNj generates another sequence 

with uniformly distributed numbers between 0 and 999 (end points included). This sequence is 

subjected to the chi-square test. It involves generating a large test sequence of these random numbers 

and tabulating the amount of times each number appeares in the sequence. Based on the observed 

values of these counts and the expected values assuming a perfect random sequence, the percentage 

departure of the observed sequence from the expected sequence is calculated. A value greater than 

90% represents a significant departure from random behavior. A value less than 10% means that the 

results are too close to the expected results and hence the sequence cannot be considered random. 

We now present some notation and then give the expression used for calculating this percentage 

departure. 

V - A measure of the departure of the observed sequence from the expected sequence. 

k - A count of the numbers which can appear in the sequence. 

p - The probability of each number appearing in a k length sequence. 

n - The experimental sequence length. 

Y, - The observed count for the number s where 1 5 s 6 k .  
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In an experiment, a 20,000 length sequence was generated (with the numbers distributed uni- 

formly between 0 and 999). Three runs were conducted for the random number sequences with 
different seeds each time. The value of V for these three cases was found to be as follows: 1002.46, 

1002.86, and 986.96. With these values of V, the chi-square distribution table was looked up. It was 

noticed that one of these values fall in the 25%-50% range and two of these values fall into the 50%-75% 

range. Since none of these ranges are the suspect ranges we assume that the GPSS/H pseudo-random 

number generators are satisfactory. 

4.4 Performance Measure 

The usual performance measure used for computer communication networks is the mean message 

waiting time [Kle76]. The mean message waiting time is defined as the time between the start of 

a request to transmit and the beginning of its transmission. Thus, a performance measure for the 

conventional IEEE 802.5 token ring protocol is the mean waiting time. 

In the fixed priority protocol or the dynamic priority protocol, the waiting time for each suc- 

cessfully transmitted message will always be less than the deadline. Thus, the message waiting time 

does not provide a useful performance measure. A useful measure in this case is the percentage of 

messages lost ( M L )  due to their not having met their deadlines. If we define T M T  and T M L  as 

follows: 

T M L  - Total messages lost 

T M T  - Total messages successfully transmitted. 

then, 

ML = TML 
TMT + TML 

The improvement in performance of the dynamic priority protocol over the fixed priority protocol 

is the difference in the percentages of messages lost for each case, where: 

ML(f) - Percentage of messages lost for the fixed priority protocol. 

ML(d) - Percentage of messages lost for the dynamic priority protocol. 

Improvement = ML(f)  - ML(d) 

ML(d) will be different for different values of A, e.g., ML(f) = ML(d) when A = 0. Henceforth 

when ML(d) is referred to, it will be for that value of A for which ML(d) is minimum (i.e., the 

improvement due to the dynamic priority protocol is maximum). 
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The performance measure in the case of avalanche traffic is the percentage of avalanche messages 

lost. There is one avalanche period in each regenerative cycle. The avalanche arrives at the start 

of each regenerative cycle and the regenerative state is achieved as soon as the system goes empty 

(i. e., all queues empty and a free token). 

4.5 Analytical Model 

Analytical results for the IEEE 802.5 multiple priority token ring protocol are not yet available. 

Since the dynamic priority protocol is based on it, analytical results for the dynamic case are also 

not available. There is, however, some analysis relevant to the dynamic priority protocol which is 

presented in Appendix A. 

Analytical results are available for the IEEE 802.5 single priority case. Exact analytical results are 

available for the symmetric ring. In the symmetric ring, each station is identical in terms of its service 

time distribution and switchover time. A survey of these results can be found in [Tak86]. Exact 

results are also available for the asymmetric ring for the exhaustive and gated service discipline. The 

case of interest in this thesis is the asymmetric ring with limited-to-one service discipline. The ring 

is asymmetric due to the 27-bit latency buffer at one station which leads to asymmetric switchover 

time [IEE85]. There are some approximate results available for the asymmetric ring with limited- 

to-one service discipline. Extensive simulations show that the most accurate of these approximate 

results are by Boxma and Meister [Box86]. These results were used to vaiidzke our simulstion mode!, 

detailed below. 

4.6 Simulation Model 

This section describes the simplified GPSS/H simulation models for the fixed priority protocol and 

the dynamic priority protocol. These models are described using the GPSS/H blocks [Sch74]. These 

models use the single token strategy and the limited-to-one service discipline. The program is capable 

of handling exponential and constant message inter-arrival times and message service times. The 

deadlines can be constant or exponentially distributed. The full code is in Appendix B. 
The GPSS/H model segment for the fixed priority protocol is shown in Figure 4.1 and the model 

segment for the dynamic priority protocol is shown in Figures 4.2 and 4.3. Each station on the 

ring is represented by a model segment. The model segment for station i is shown in the figures. 

The GENERATE block represents the arrival of messages (in GPSS/H terminology, a transaction 

represents a message) at the specified rate at each station. The ASSIGN block assigns a deadline 

to each transaction. This transaction is then queued onto the user chain for that station by the 

LINK block. It is queued in the order of its lifetime. The usage of a LINK block as against a 

QUEUE block to queue the transaction makes the transaction scan-inactive and saves computing 
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time dramatically. The transaction collects waiting time statistics while it is queued onto the user 

chain. Program control is transferred to all stations in a round-robin manner representing the path 

of the token. 

The simulator clock keeps track of the time of events in a simulation run. It is incremented by 

an ADVANCE block. The statistics gathered are based on this clock. A clock tick of one micro 

sec was chosen for this program. One micro sec is equal to one bit time (One bit time is the time 

occupied by one bit on the ring) for a one Mhz ring and hence is the smallest possible unit for this 

application. 

In the fixed priority protocol, each time a model segment is activated, it indicates the arrival of 

a free token. This is point 1 in Figure 4.1. A transaction is dequeued from the user chain using the 

UNLINK block. This dequeued transaction proceeds to the TEST block and the transaction that 

entered the UNLINK block is removed from the system by the TERMINATE block. The TEST block 

determines whether the dequeued transaction has overshot its deadline. If it has, the transaction is 

discarded and a lost message is recorded. The user chain is then checked for another transaction. 

If the transaction has not overshot its deadline, the token (i.e., the facility which is a single server) 

is seized using the SEIZE block. The waiting time is tabulated using the TABULATE block. The 

ADVANCE block increments the simulator clock by an amount equal to the message service time. 

The token is released using the RELEASE block. The TEST block checks for the empty state of 

the system. If the system is empty, the TERMINATE block is executed which indicates the end of 

a regenerative cycle and it collects statistics about the previous cycle. Control is then transferred 

to the next station indicating the arrival of a free token. If the system is not empty, control is 

transferred to the next station indicating the arrival of a free token. 

If there is no message waiting at a station, the UNLINK block does not dequeue any message and 

control is transferred to point 2 in Figure 4.1. Here the ADVANCE block increments the simulator 

clock by an amount equivalent to the station latency and the free token is transferred to the next 

station downstream. We can get an estimate of the token utilization by measuring the amount of 

time the token is in use. 

The GPSS model segment for the dynamic priority protocol is shown in Figures 4.2 and 4.3. This 

is more complicated because each time a token (free or busy) is received at a station, a transaction 

must be dequeued from the user chain. This is in an attempt to transmit the transaction (if the token 

is free and the priority of the transaction is greater than or equal to PR) or to make a reservation (if 

it cannot be transmitted). This is unlike the case in the fixed priority protocol when the transactions 

only needed to be dequeued from the user chain at the receipt of a free token. The shaded blocks in 

these figures are not GPSS primitive blocks. They are, in turn, composed of many GPSS primitive 

blocks and are used here to hide programming detail. 

There are three global variables - PR, RR and BUSY. PR represents the priority of the token, 

RR indicates the reservation field of the token and BUSY indicates whether the the token is busy or 
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free. 

Each time the model segment for a station is activated, it indicates the arrival of a token at 

that station. This is represented by point 1 in Figure 4.2. The transaction goes through a pair of 

TEST blocks which establish whether the current station is the transmitting station, in which case 

the RELEASE block releases the token, the ADVANCE block increments the simulator clock by an 

amount equal to the message service time and control is transferred to the UNLINK block. In case 

the current station is not a transmitting station, control is transferred directly to the UNLINK block. 

The UNLINK block dequeues a transaction from the head of the user chain. The transaction which 

entered the UNLINK block waits until the dequeued message is either transmitted or is queued back 

to the user chain. In case it is transmitted, this transaction is terminated by the TERMINATE block. 

In case it is not transmitted, this transaction goes to the ADVANCE block where the simulator clock 

is incremented by a time equal to the station latency and the token is transferred to the next station. 

The dequeued transaction is transmitted to the TEST block where it is checked whether the 

transaction has overshot its deadline. If it has, the transaction is discarded, a lost message is recorded 

by the TABULATE block and the user chain is checked for another message. If the deadline has 

not been missed and a free token has been received, then PR is downgraded as explained in Section 

1.2.2. If the token is busy and station i is not the transmitting station then a reservation is made as 

explained in Section 1.2.2. The message is then queued onto the head of the user chain. If station 

i is the transmitting station then the transaction cannot be transmitted, the values of RR and PR 

are updated as described in Section 1.2.2 and the transaction is queued onto the head of the user 

chain by the LINK block. 

After downgrading PR the priority of the transaction is calculated depending on the time re- 

maining until its deadline and A. If this calculated priority is greater or equal to PR a SEIZE block 

seizes the token , a TABULATE block records the waiting time, an ADVANCE block increments 

the clock by an amount equal to the station latency and transmits the message to the next station. 

If the calculated priority is less than PR, then a reservation is made (only if the calculated priority 

is greater than RR) and the message is queued back onto the head of the user chain. 

In case no transaction is dequeued from the user chain, control is transferred to point 2 in Figure 

4.3. 

For both the above protocols the regenerative method is used to estimate confidence intervals 

which suggest that the simulation should be run for a certain number of regenerative cycles. The 

regenerative approach is motivated by the fact that many statistical systems have the property of 

starting afresh probabilistically from time to time (i.e., the' time the regenerative state is reached). 

This enables one to observe independent and identically distributed blocks of data in the course of 

a single simulation run [Cra77]. If the regenerative state is assumed to be the initial state of the 

system (i.e., the state when all the queues are empty and the token is free), then each time during 

the run when such a state is reached, the data from the previous cycle is stored and the program 
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starts to record new data for the next regenerative cycle. The simulation stops after the required 

number of regenerative cycles is over. 

The number of regenerative cycles used in our simulation program was 8000. It was calculated for 

90% confidence intervals [Cra77]. The length of the simulation runs took of the order of 40 minutes 

to 100 minutes when run on a SUN 3/50 workstation. The length of the run increased with the 

increase in traffic load and number of stations. 

The avalanche traffic model can be applied to both the fixed priority and the dynamic priority 

protocol. Avalanche traffic is modeled as the arrival of a large quantity of messages over a short time 

interval, superimposed upon background traffic. Background traffic is the traffic normally present on 

the ring and is provided by the model. 

4.7 Validat ion 

The only way to prove the correctness of a simulation is to compare it against known analytical 

results. 

The simulation results for the single priority token ring protocol were validated by comparing 

them against the approximate analytical results in [Box86]. 

The simulation results for the multiple priority token ring protocol cannot be validated against 

any analytical results due to lack of any. However, the following check was made: In the multiple 

priority token ring protocol, instead of entering the number of priority levels as eight, the n u d e r  

of priority levels as one was entered. The results were then compared with the single priority token 

ring results. 

There exist no analytical results for the dynamic priority protocol. Thus, the only way to check 

the validity of the simulation program is to monitor the program step by step and to make sure it 

is obeying the protocol. This was done using the interactive debugging facilities in GPSS/H. The 

program was also monitored by instumenting it with print statements which resulted in it printing 

out trace information during its run. This information was later studied to justify the correctness of 

the program. 

The above means were used to justify the logical correctness of the simulation program. In order 

to establish the accuracy of the simulation from the statistical point of view, confidence intervals 

were calculated to test the accuracy of the simulation output and the chi-square test was conducted 

to test the GPSS random number sequence. 
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Chapter 5 

Results and Evaluation 

Simulation runs were conducted for a variety of different cases which include different message arrival 

rates and distributions, different number of stations and different types of message traffic. 

5.1 Ring Configuration 

The simulation runs have been conducted under the following conditions. 

Infinite bufleer queues each station 

Single token operation 

a Limited-to-one Service 

1 MHz ring 

Errorless channel 

256 bits constant service time 

1 bit latency per station 

27-bit latency buffer (at station 1) 

Linear priority function for the dynamic case 

8 priority levels with 1 as the lowest and 8 as the highest priority 

The simulation runs have been conducted with exponential message inter-arrival time and expo- 

nentially distributed lifetimes. 
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Figure 5.1: Waiting Time versus Load for a 3 Station Single Priority Ring 

All time units, unless otherwise specified, are in bit times. One bit time is the time occupied by 

one bit on the ring. As the ring is a one Mhz ring, one bit time = one micro sec. 

The improvement of the dynamic priority protocol over the fixed priority protocol is expressed 

as a difference of percentages of messages lost for each case. 

5.2 Single Priority Case 

Simulation runs were conducted for 3, 10, 20, 40 and 80 stations for the IEEE 802.5 single priority 

token ring. The results were compared with the approximate analytical results based on Boxma 

and Meister's [Box861 model. There was close conformity between the analytical results based on 

Boxmaand Meister's model and the simulation results produced by this thesis. There was an average 

discrepency of 1% at low loads and 2.16% at high loads between the analytical and simulation results. 

Tables 5.1, 5.2, 5.3 and 5.4 show the analytic and simulation results for a 3, 10, 20 and 40 station 

ring; the data for 3, 10 and 20 stations is graphed in Figures 5.1, 5.2 and 5.3 respectively. It is 

interesting to note that the waiting time for loads 0.55 to 0.90 decreases as the number of stations is 

increased from 3 to 10, then increases with further increase in the number of stations. On the other 

hand, if we consider a ring without the 27 bit latency buffer (i.e., the case where the ring latency 

is directly proportional to the number of stations), the waiting time increases with the increase in 

number of stations. 
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Load I Analytic I Simulation 
.35 1 96.72 1 94.66 

Table 5.1: Analytical and Simulation Results for Mean Message Waiting Time in micro sec for a 3 
Station, Single Priority Ring 

Load I Analytic I Simulation 
-35 1 99.15 1 98.11 

Table 5.2: Analytical and Simulation Results for Mean Message Waiting Time in micro sec for a 10 
Station, Single Priority Ring 

Table 5.3: Analytical and Simulation Results for Mean Message Waiting Time in micro sec for a 20 
Station, Single Priority Ring 

Load I Analytic I Simulation 
.35 1 121.33 1 121.74 

Table 5.4: Analytical and Simulation Results for Mean Message Waiting Time in micro sec for a 40 
Station, Single Priority Ring 
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Table 5.5: Analytical and Simulation Results for Mean Message waiting Time in micro sec for an 
80 Station, Single Priority Ring 

10 Stations 

Network Load 

Figure 5.2: Waiting Time versus Load for a 10 Station Single Priority Ring 
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Figure 5.3: Waiting Time versus Load for a 20 Station Single Priority Ring 

5.3 Multiple Priority Case 

Simulation runs were conducted for the multiple priority case with eight different priority levels. 

There are no proven analytical results for the IEEE 802.5 multiple priority case as yet, so the 

simulation results cannot be validated against any analytical results. However, the following check 
. 4  

was made. In the multiple priority GPSSJH :&ogram, instead of entering the number of priority 
4 

levels as 8, the number of priority levels 1 was eritkred. The results were compared with the single 

priority results and found to be identical. 
a t  a;+ 

There are some analytic and simulation results for thk mqltiple priority token ring in [Ped88, 
.J, 

Ped87bJPed87a]. There is no proof of correctness available for tlie* knalytical results. 
4 

In order to compare our simulation results against those in [Ped88], we used the same set of 

parameters as in [Ped88]. These parameters include exponential inter-arrival times for loads ranging 

between .35 and .90. A constant service time of 256 micro sec was used and the ring configuration 

used was as specified in Section 5.1. The results turned out to be different. In this thesis, the graphs 
for the multiple priority case show a greater split between the waiting times for priority 1 and 8 

than those in [Ped88]. The performance measure used in [Ped88] is the message delivery time. The 

message delivery time is equal to the message waiting time plus the message service time plus half 

the ring latency. This difference in performance measures was taken into account when comparing 

results. 

Attempts were made to explain this difference in results. I examined the PASCAL simulator used 

in Ped88j and it conformed to the IEEE 802.5 token ring protocol. The only significant difference 
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Figure 5.4: Waiting Time for Priority l-and 8 for a 3 Station Multiple Priority Ring 

between Peden's PASCAL simulator and the GPSS/H simulator used in this thesis was the random 

number generators used in each case. GPSS/H uses its built-in random number generator. In [Ped88] 

the random function of PASCAL was used to generate random numbers. Our GPSS/H simulation 

model is assumed to be correct, as the results appear to be intuitively correct; we would expect the 

highest priority messages to have a much smaller waiting time than the lowest priority messages. 

Figures 5.4, 5.5 and 5.6 show the waiting time as achieved by our simulation model, for the 

highest and lowest priority messages for 3, 10 and 20 stations respectively. 

5.4 Dynamic Case 

Using thn GPSS/H program for the multiple priority token ring as a basis, a program for the dynamic 

priority protocol was developed. In this case all messages are generated with the same priority unlike 

the multiple priority case where the messages are generated with uniformly distributed priorities 

between one and eight. The priorities of the messages are stepped up according to a priority function. 

The priority of any message in the queue at any instant of time depends on the time remaining until 

its deadline. If certain messages (e.g., tdarm messages) are generated which need to be given priority 

over the regular traffic, they can be associated with shorter lifetimes by means of which they will be 

placed well ahead in the queue. They may not be placed at the head of queue because there may 

be other longer lifetime messages which have been waiting for sometime and which may be closer to 

their deadlines than the alarm message. 

In this chapter the term deadline is used to refer to a time interval as against 
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Figure 5.5: Waiting Time for Priority 1 and 8 for a 10 Station Multiple Priority Ring 
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Figure 5.6: Waiting Time for Priority 1 and 8 for a 20 Station Multiple Priority Ring 
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Stations = 20, Deadline = 1000 

Figure 5.7: Percentage Messages Lost for Symmetric Traffic - 20 Stations, 1000 Deadline 
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Table 5.6: Improvement due to the Dynamic Priority Protocol for Symmetric traffic for a 20 Station 
Ring 
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Message 
Deadline 

1000 
2000 

5.4.1 Symmetrical Traffic 

1 10 100 1000 10000 100000 

Delta 

Symmetric traffic implies that every station on the ring experiences the same traffic load. This kind 

of symmetery is not encountered very often in practical situations, nevertheless, we studied it out of 

interest. Figures 5.7 and 5.8 show the graphs of the percentage of messages lost versus A for a 20 

station ring. Table 5.6 shows the improvement due to the dynamic priority protocol. 

Improvement in the Fraction of Messages Lost 

5.4.2 Asymmetric Traffic 

Network Load = 0.75 
1.75 
2.38 

Asymmetric traffic implies that all the stations on the ring do not receive the same traffic load. This 

is a situation which occurs frequently in the industry when different nodes on the ring are connected 

to different sensors observing different events at varying rates. 

Two experiments were conducted for a 20 station asymmetric ring. In the first experiment, a 

traffic load of 2.85 was applied to station 1 while the remaining 19 stations were subjected to a traffic 

load of 0.85 resulting in an overall load of 0.95. In the second experiment, station 1 and 11 were 

applied a traffic load of 1.65, the remaining 18 stations were applied a traffic load of 0.65 resulting 

Network Load = 0.95 
1.86 
3.28 
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20 Station, 1000 Deadline, Asymmetric Ring 

Figure 5.9: Percentage Messages Lost for Asymmetric Traffic - 20 StationsJ000 Deadline 
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Figure 5.10: Percentage Messages Lost for Asymmetric Traffic - 20 Stations,2000 Deadline 
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3 Station, 1000 Deadline, Linear Function 

Delta 

Figure 5.11: Percentage Messages Lost for Avalanche Traffic - 3 Stations, 1000 Deadline 

Table 5.8: Improvement due to the Dynamic Priority Protocol for Avalanche traffic for a 20 Station 
Ring 

Avalanche 
Traffic Load 

.55 

.85 

background traffic deadline is 3000 and the avalanche duration is 5000. Table 5.8 represents the 

improvement due to the dynamic priority protocol for different avalanche loads and deadlines. 

The dynamic priority protocol performs significantly better for the case of avalanche traffic than 

for the symmetric and asymmetric traffic cases for nearly the same traffic load. (The load referred 

to in the case of avalanche traffic is only due to the avalanche traffic and not the background traBc.) 

This is due to the fact that the avalanche of messages is only present for a short duration during 

which the queues build up. After the avalanche is over, there is only the background traffic which 

is relatively slow. This queue build-up leads to a high token utilization which leads to a large 

improvement due to the dynamic priority protocol. 

Improvement in the Fraction of Avalanche Messages Lost 

5.4.4 Variation with Load 

Avalanche Deadline=1000 
5.50 
6.86 

Simulations were run for a 10 station ring with the traffic load varying from .35 to 1.0. It was seen 

that the improvement exhibited by the dynamic priority protocol increased with the increase in the 

traffic load until very high loads when it levelled off. 

Avalanche Deadline=2000 
4.27 
6.00 
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Figure 5.12: Percentage Messages Lost for Avalanche Traffic - 3 Stations, 2000 Deadline 

If we define the observed load to be the fraction of the time the token is busy, it is clear that in 

a system with deadlines, the observed load is always less than or equal to the traffic load. 

Figure 5.13 shows the graph between the.traffic load and the observed load, for a 10 station ring. 

At low loads, since there were few messages getting lost, there was not much room for improvement 

by the dynamic priority protocol. As the load was increased, more messages started getting lost, and 

the dynamic priority protocol resulted in greater improvements. As the traffic load was increased 

to very high values, the number of messages getting lost increased further but the improvement did 

not increase accordingly. It started to level off. 

If we consider the extreme case of an overloaded ring, however much it is overloaded, the observed 

load will never exceed 1 (i.e., the token cannot do better than to remain busy 100% of the time). 

Thus the reason the improvement starts to level off at high loads is because the token is busy nearly 

all the time and cannot do much better. Figures 5.14 and 5.15 show the graphs of the percentage of 

messages lost versus A for two different deadlines. Figure 5.16 shows the improvement due to the 

dynamic priority protocol. 

5.4.5 Variation with Number of Stations 

Simulation runs were conducted for 3, 10,20,40, 80 and 100 stations at 0.9 load. For a large number 

of stations, the dynamic priority protocol performs worse than the fixed priority protocol at  low 

values of A. A large number of stations reeults in a large ring latency which leads to a large token 

cycle time. The combination of the high cycle time with low values of A, results in the dynamic 
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Figure 5.13: Traffic Load versus Observed Load - 10 Stations 
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Figure 5.14: Percentage Messages Lost - 10 Stations, 1000 Deadline 
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Figure 5.15: Percentage Messages Lost - 10 Stations,2000 Deadline 
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Figure 5.16: Vari~tion with Load - 10 Stations 
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Figure 5.17: Percentage Messages Lost - 0.9 Load, 1000 Deadline 

This is so because a certain station may reserve a token at a high priority. Since the value of A is 

small, by the time the token comes around to servicing that station at the requested priortity, that 

message may have &!ready missed its deadhe a2d the next message in the quece rvould be 3 !cv: 

priority message, which cannot be served. In a ring with a high latency, this overhead is significant, 

resulting in poor performance. 

The improvement due to the dynamic priority protocol first increases with the increase in the 

number of stations, reaches an optimum and then starts to decrease as the number of stations is 

increased furthur. Figures 5.17 and 5.18 show the graphs between the percentage of messages lost 

versus A and Figure 5.19 shows the improvement of the dynamic priority protocol. 

5.4.6 Variation with Deadline 

Simulations were run for 3 stations with traffic loads of 3 5  and .95. The deadline was varied from 500 

to 7000. It was noticed that the improvement exhibited by the dynamic priority protocol increased 

with the increase in deadline, reached an optimum and then decreased as the deadline was furthur 

increased. 

The improvement was low at short deadlines because there were more messages getting lost and 

the queues did not build up at the stations. This resulted in the token not being utilized efficiently. 

In an extreme case, if there is queue build-up, the token will, at each station have a message to 

carry resulting in higher token utilization and therefore better performance. As the deadline was 

increased, the number of messages getting lost decreased and the queue build-up increased resulting 
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Figure 5.18: Percentage Messages Lost - 0.9 Load,2000 Deadline 
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Figure 5.19: Variation with Number of Stations 0.9 Load 
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Figure 5.20: Percentage Messages Lost - 3 Stations, 0.85 Load 

increased, the number of messages getting lost decreased and the queue build-up increased resulting 

in greater improvement. 

As the deadline was increased further, the number of messages getting lost decreased, queue 

build-up increased resulting in a lower improvement. At the extremity, if the deadline were infinity, 

there would be no messages getting lost, thus,'there would be no improvement. Figures 5.20 and 

5.21 show the graphs of the percentage of messages lost versus A for a 3 station ring and Figure 5.22 

shows the improvement of the dynamic priority protocol. 

5.4.7 Non-linear Priority Function 

The dynamic priority protocol with a non-linear priority function was studied for the case of avalanche 

traffic. The ring configuration and the protocol parameters were exactly the same as in Section 5.4.1. 

Figures 5.23 and 5.24 show the graphs of the percentage of messages lost versus A for the case of 

a non-linear priority function. Figures 5.11 and 5.12 show the corresponding graphs for the linear 

priority function. 

Table 5.9 shows the improvements achieved by the non-linear priority function when applied to 

avalanche traffic. Contrast this with Table 5.8 which shows the improvement for the linear priority 

function when applied to avalanche traffic. The non-linear priority function case exhibits marginally 

better improvement than the linear priority function. 

A point of interest is that the range of A for which the dynamic priority protocol shows im- 

provement is much larger for the non-linear priority case than in the linear priority case. Therefore, 



CHAPTER 5 .  RESULTS AND EVALUATZON 

1 10 100 1000 ioooo 100000 

Delta 

Figure 5.21: Percentage Messages Lost - 3 stations, 0.95 load 
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Figure 5.22: Varitition with Deadlines - 3 Stations 
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Figure 5.23: Percentage Messages Lost for Non-Linear case - 3 stations, 1000 Deadline 
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Figure 5.24: Percentage Messages Lcst for Non-linear case - 3 Stations, 2000 Deadline 
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Figures 5.20 and 5.21 also indicate that the range of operation of A increases with the increase in 

deadline. For the same traffic load, a longer deadline results in a higher observed load as compared 

to a shorter deadline. A high observed load results in a larger token cycle time which leads to high 

operating values of A. 

The improvement due to the dynamic priority protocol using the non-linear priority function is 

less sensitive to the choice of A than in the case of the linear priority function. This is because the 

optimum range of A is much larger for the non-linear priority function, therefore, it is much easier 

to choose a reasonable value of A. 

5.4.9 The Dynamic Priority Protocol for Hard Real-Time Applications 

Hard real-time application involve synchronous and asynchronous message traffic where synchronous 

traffic should have guaranteed message delivery time. We consider an example of a 3 station ring, 

with station 1 generating synchronous class traffic. First we derive an expression for the maximum 

bandwidth of synchronous traffic capable of being supported by the above ring configuration. If 'N' 
is the number of stations on the ring, then 

Ring Latency(RL) = N*Station Latency + Latency buffer + Propogation delay 

= N*1+27 

= 30 (for 3 stations and negligible propogation delay) 

Max wait Time(W) = Token Time + 2*Message Time + Ring Latency 

= 24 + 2*256 + 30 

= 566 

W has been calculated for a constant message service time of 256 micro see. In case of a variable 

message service time, the expression for W would still be valid. The value of the message time used to 

calculate W in that case should be the worst case message service time. Thus a synchronous message 

will have to wait for a maximum of 566 micro sec to get served. If the message interarrival time 

for synchronous traffic for a 3 station ring is greater than 566, then it will be capable of providing 

guaranteed access. In the following experiment on a 3 station ring, the synchronous traffic load was 

chosen to be .55 and the asynchronous traffic load was .95. The synchronous (hard) deadline was 

equal to 566 and the asynchronous (soft) deadline was varied. Tables 5.10, 5.11 and 5.12 give the 

results of the dynamic priority protocol when applied to the above data for different asynchronous 

deadlines. 

We see that there are no synchronous messages lost confirming the fact that the maximum 

waiting time for synchronous messages is 566 micro sec. The dynamic priority protocol results in 

an improvement in terms of the number of asynchronous messages which meet their deadlines when 

applied to real-time traffic. This improvement is at the cost of increasing the asynchronous message 

mean waiting time which is not important since the point of interest is whether a message meets its 

deadline or not. 
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I Traffic I Mean message I Percentag- 

125.85 

287.67 10.42 
Sync. Traffic 

Type 
Sync. Traffic 

Table 5.10: Percentage Messages Lost and Waiting Times for 2000 Asynchronous Deadline 

Waiting ~ i m e  
. 

A=2500 
Async. Traffic 

Messages Lost 

121.74 

Traffic 
Type 

Sync. Traffic 

0.00 

A=O 
Async. Traffic 

Mean message 
Waiting Time 

A=O 
Sync. Traffic 

Table 5.11: Percentage Messages Lost and Waiting Times for 3000 Asynchronous Deadline 

Percentage 
Messages Lost 

132.81 

I Traffic I Mean message I Percentage I 

0.00 

357.16 

0.00 

6.52 

A=2500 
Async. Traffic 

A=2500 

7.91 

130.89 

476.33 

Type 
Sync. Traffic 

Table 5.12: Percentage Messages Lost and Waiting Times for 4000 Asynchronous Deadline 

A=O 
Async. Traffic 

A=O 
Sync. Traffic 

A=2500 
Async. Traffic 

A=2500 

Waiting ~ i m e  Messages Lost 

136.72 

426.08 

131.35 

549.05 

0.00 

6.41 

0.00 

5.26 



Chapter 6 

Conclusions 

6.1 Summary 

A new dynamic priority protocol has been proposed in this thesis. It exploits the priority mechanism 

of the IEEE 802.5 token ring protocol and makes it more suitable for real-time applications. 

The performance measure used in this study is the percentage of messages lost due to their 

having missed their deadlines. This study shows that the dynamic priority protocol performs better 

than the fixed priority protocol. This improvement is expressed as a difference of the percentage of 

messages lost for the dynamic priority protocol and that for the fixed priority protocol. 

The improvement is maximum for a certain range of A (i.e., a protocol parameter as defined in 

Section 3.1) when A is not too large or too small. Too small a value of A means that the priority of 

a waiting message starts being stepped up very shortly before its deadline. Thus the high priority 

values for the messages are in effect for a very short time only. If a busy token happens to pass 

by when the priority of a message is at one of the higher values, (this may not be very likely) a 

reservation is made and the next token is issued at the requested priority. By the time this token 

reaches the requesting station the message would probably have crossed its deadline. This results in 

low values of improvements for small values of A. For cases when the ring latency is large compared 

to the lifetime (i.e., the time between the message arrival and the deadline), the dynamic priority 

protocol performs worse than the fixed priority protocol. This is because the overhead of the dynamic 

priority protocol becomes significant for large ring latencies. 

Very large values of A indicate that most messages, when they get to the head of the queue, are 

much closer to the deadline as against to the point A units before the deadline when the priority 

starts being stepped up. Thus, most of these messages are assigned 'higher' priorities when they get 

to the head of queue. The situation is similar to Figure 3.2. In an extreme case (i.e., with very large 

values of A), all messages are assigned the highest priority when they get to the head of queue. The 
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ring thus functions as a single priority ring with all the messages at the same highest priority. 

The improvement for the linear and the non-linear priority function are nearly the same. In case 

of the non-linear priority function, we show that the performance is less sensitive to the choice of A 
ie., we have a wider range of A to choose from. If the traffic distribution is not known it will be 

safer to use the non-linear priority function which will assure us of a good value of A. 

The degree of improvement exhibited by the dynamic priority protocol depends on various p a  

rameters, e.g., the traffic load, number of stations, deadlines traffic type. The improvement is most 

significant for a small number of stations, higher loads and avalanche traffic. 

6.2 Conclusions 

The dynamic priority protocol always performs better than the fixed priority protocol. The irn- 

provemnts are of the order of 2% - 3% for symmetric and asymmetric traffic and of the order of 5% - 
7% for avalanche traffic. There is a certain range of operation of A for which the dynamic priority 

protocol shows maximum improvement. This range of A is much larger for the non-linear priority 

function than for the linear priority function. 

The improvement due to the dynamic priority protocol increases with the increase in traffic load 

and then stablizes as the load approaches the point of overloading. It increases with the increase in 

deadline, reaches an optimum and then decreases. It increases with the increase in the number of 

stations, reaches an optirxrr, and then decreases with further increase in stations on the ring 

For hard real-time applications the dynamic priority protocol, while guaranteeing synchronous 

traffic response, also exhibits improvement for asynchronous traffic. 

6.3 Future Work 

An area of interest is the application of the dynamic priority protocol to the FDDI token ring protocol. 

Since the FDDI token ring protocol does not have any restriction on the number of priority levels, 

it would be interesting to determine an optimum number of priority levels. 

Analytical results for the dynamic case are not available yet. They could lead to further insight 

about the performance of the protocol. 

An interesting subject of research would be to design a scheme by means of which we could 

establish an upper bound on the improvement the dynamic priority protocol is capable of. This 

could be very useful in terms of making sure that the dynamic priority protocol is made to operate 

at its optimum. 

The dynamic protocol could be modeled for a practical situation by the introduction of a certain 

error rate on the transmission media This will require an acknowledgement and an error recovery 

mechanism. 



Appendix A 

Analysis for Dynamic Priority 

Protocol 

A S  Analysis 

In order to analyze the dynamic priority protocol we require the Probability Distribution Function 

(PDF) of the waiting time for priority level i (1 5 i 5 8) in the IEEE 802.5 protocol. These analytical 

results for the multiple priority token ring are not available yet. However, some attempts have been 

made to analyze simplified versions of the IEEE 802.5 token ring protocol [She85]. 

In this appendix we derive an expression to calculate the probability of message loss (due to their 

having missed their deadlines) for the dynamic priority protocol assuming the analytical results for 

the IEEE 802.5 token ring protocol are available. This analysis can be applied to the token bus 

protocol also. 

For the sake of simplicity, we assume that the dynamic priority protocol operates at 3 priority 

levels. The analysis can be easily extended to 8 priority levels. 

Consider the scenario in Figure A.1. The priority of a message stays at  one until time 6+T, after 

which it is stepped up according to the linear priority function. 

S = D-A 

W = Waiting time 

Fi(t) = PDF of waiting time for a message of priority i in an IEEE 802.5 token ring. 
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message 
arrival 

at station 
message 

deadline(D) 

= (1 - Prob(W 5 6 + T ) )  . Prob(W < t A N D S + T <  W )  
Prob(6 + T < W )  

Prob(W < t A N D  6 + 2T < W )  
1 

= ( 1  - Prob(W 5 6 + T )  - Prob(6 + T < W < 5 + 2T))  . 
Prob(6 + 2T < W )  

= ( 1  - F1(6+T) - ' - F1(6 + . F2 (6 + 2T) - F2 (6 + T ) )  F3(t) - F3(6 + 27') 
1 - F2(6 + T )  1 - F3(6 + 2T) 

6 + 2 T S t < D  

'The fist term refers to the time before 6+T, when the priority of the waiting message is one. Thus Fl(t) will be 
used in that term. The second term refers to the region 6 + T 5 t 5 6 + 2T in which case F2(t) will be used. 
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Those messages will be lost whose waiting times are greater than D. 

Probability of message loss = Prob(W 2 19) 

= 1 - Prob(W < D) 

s1 -Prob (W<S+T) -Prob (S+T< W < S + 2 T ) - P r o b ( S + 2 T <  W < D )  

Substituting the values for the gives us the probability of message loss in a dynamic 

priority system. 
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Simulation Code 

This appendix contains the source code listings for the pre-processor and the post-processor for the 

following cases: 

Single priority token ring protocol. 

Multiple priority token ring protocol 

Dynamic priority protocol. 

Both the pre-processor (prepr0c.c) and the post-processor (C0NFID.c) are written in C. 



: Mcdule name: single_priority/preproc.c x 
* * 
x Date  l a s t  modi f i ed :  5 Feb 1 9 8 9  k 

* * 
x Author:  Baku1 Khanna * 
* * 
x D e s c r i p t i o n :  Th i s  program g e n e r a t e s  GPSS/H * 
x code f o r  t h e  s i n g l e  p r i o r i t y  t o k e n  r i n g  p r o t o c o l .  x 
x It prompts t h e  u s e r  f o r  pa ramete r  e n t r y  which i n c l u d e  * 
* r i n g  c o n f i g u r a t i o n ,  message i n t e r - a r r i v a l  t i m e s ,  * 
* message s e r v i c e  t i m e s  and message d e a d l i n e s .  * 
r I t  c a l l s  a r o u t i n e  CONFID which c a l c u l a t e s  t h e  * 
r c o n f i d e n c e  i n t e r v a l s  based  on t h e  s t a t i s t i c s  g a t h e r e d  * 
* d u r i n g  s i m u l a t i o n .  * . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

# d e f i n e  HEADER 56 
# d e f i n e  LAT-BUF 27 

l t a ;  i n t  nodes,stn-lat,ser-time,arr-time,deadline,de 
i n t  ar r - ind,  sym, r ing- ind,grp ,  ser-ind;  
i n t  r i n g  [ l o o ]  [2 ]  ; 
f l o a t  rho;  
FILE *fp;  

i n t  range-check ( lower ,  upper)  
i n t  lower ,  upper;  
1 * 
* This  r o u t i n e  makes s u r e  t h a t  t h e  p a r a m e t e r  e n t e r e d  
* l ies  between i t s  lower  and upper  l i m i t s .  
* / 

I 
i n t  e n t r y ;  
scanf  ("%dW, & e n t r y )  ; 
w h i l e  ( ( e n t r y h p p e r )  I I ( e n t r y < l o w e r )  ) 

I 
p r i n t f ( " e n t r y  n o t  w i t h i n  r a n g e .  t r y  a g a i n \ n n ) ;  
scanf  ( "%dW,  & e n t r y )  ; 
1 

r e t u r n  ( e n t r y )  ; 
1 

expand (num, i n d )  
i n t  num, i n d ;  
/ * 
* This  r o u t i n e  i s  p a r t  of t h e  d e c l a r a t i o n  f o r  t h e  
* v a r i a b l e  REGEN 
* / 

I 
i n t  k; 

. f o r  ( k = l ;  k<num+l; k t + )  
t 
f p r i n t f  ( f p ,  "Q%dnn, ( ind*lO+k) ) ; 
i f  (k==num) 

f p r i n t f  ( f p ,  ">0 \nU)  ; 
e l s e  

f p r i n t f  ( f p ,  " > 0 t W )  ; 



header  ( 1  
/ * * This  module g e n e r a t e s  t h e  header  and t h e  d e c l a r a t i o n s  
* f o r  t h e  GPSS/H program. 

i n t  i, j; 
fprintf(fp,"**************************X***********\nll); 
f p r i n t f  ( f p ,  "* * \ n r r )  ; 
f p r i n t f  ( f p ,  "* %dm,  nodes)  ; 
f p r i n t f ( f p f V  FIXED LATENCY STATIONS * \ n r r )  ; 
f p r i n t f  ( f p ,  "* *\nr l )  ; 
f p r i n t f  ( f p ,  "* *\nw ) ; 
fprintf(fp,"***************k"k""***********************\nll); 
f p r i n t f  ( f p ,  "* \nW)  ; 
f p r i n t f ( f p I w *  S i n g l e  p r i o r i t y  Token R i n g \ n U ) ;  
f p r i n t f  ( f p I w *  S i n g l e  token  o p e r a t i o n \ n V )  ; 
f p r i n t f ( f p I W *  Limited-to-one S e r v i c e  D i s c i p l i n e \ n w ) ;  
f p r i n t f ( f p , " *  Regenera t ive  method t o  c a l c u l a t e  conf idence  i n t e r v a l s \ n U ) ;  
f p r i n t f  ( f p ,  "* \nW)  ; 
f p r i n t f  ( f p ,  " SIMULATE 10000S, SAVE \ n u )  ; 
f p r i n t f  ( f p ,  " RMULT ,111111111, 333333333, 555555555\nr1) ; 
f p r i n t f  ( f p ,  " OPERCOL 6O\nw) ; 
f p r i n t f  ( f p ,  " REALLOCATE COM140000\n"); 
f p r i n t f  ( f p ,  "* \nu)  ; 
f p r i n t f  ( f p ,  "* \nW)  ; 
f p r i n t f  ( f p ,  "* INITIALIZATIONS OF EXPONENTIAL FUNCTIONS AND VARIABLES\nW); 
f p r i n t f  ( f p ,  "* \nu)  ; 
f p r i n t f  ( f p ,  "* \nW)  ; 
f p r i n t f ( f p I n  EXPO1 FUNCTION RN2,C24 FOR INTERARRIVAL TIMES\nw); 
f p r i n t f  ( f p ,  "0 .0 ,0 .00/  .l, .104/ .2, .222/ .3,  .355/ - 4 ,  .509 / .5 , .  691. 6 , .  915\nrr)  ; 
fprintf(fp,".7,1.2/.75,1.38/.8,1.6/.84,1.83/.88,2.12/.9,2.3\nrr); 
fprintf(fp,".92,2.52/.94,2.81/.95l2.99/.96l3.2/.97,3.5\n11); 
f p r i n t f  ( f p , " .  98 ,3 .9 / .  99 ,4 .6 / .995 ,5 .3 / .  998, 6 . 2 / .  999, 7 . O /  .9997, 8  .O\nrr) ; 
f p r i n t f  ( f p ,  " * \ n W )  ; 

f p r i n t f ( f p I w   EXPO^ FUNCTION RN3,C24 FOR MESSAGE SERVICE TIMES\nrr) ; 
f p r i n t f  ( f p ,  "0 . O f  0.00/ . l , . l O 4 /  .2 , .222 /  .3,  .355/ - 4 ,  -5091 - 5 ,  . 6 9 / .  6, . 915\nrr)  ; 
f p r i n t f  ( f p ,  ".7,1.2/.75,1.38/.8,1.6/.84,1.83/.88, 2 . 1 2 / . 9 , 2 . 3 \ n r r )  ; 
f p r i n t f ( f p , " . 9 2 , 2 . 5 2 / . 9 4 , 2 . 8 1 / . 9 5 , 2 . 9 9 / . 9 6 , 3 . 2 / . 9 7 , 3 . 5 \ n r r ) ;  
f p r i n t f  ( f p , " .  98 ,3 .9 / .  99 ,4 .6 / .  995 ,5 .3 / .  998, 6 - 2 1 .  999, 7 . O / .  9997, 8  .O\nrr)  ; 
1 

f p r i n t f  ( f p ,  "* \nV)  ; 
i f  (nodes<=lO) 

t 
f p r i n t f  ( f p ,  " REGEN BVARIABLE " )  ; 
expand (nodes,  0  ) ; 
f p r i n t f  ( f p ,  " * \ n n )  ; 
1 

e l s e  

t 
f p r i n t f  ( f p , "  %d", j ) ;  
f p r i n t f  ( f p ,  " BVARIABLE " ) ; 
e x p a n d ( l 0 ,  j-1) ; 
1 



f p r i n t f  ( fp ,  " %dm, (nodes/lO) tl) ; 
f p r i n t f  ( fp ,  " BVARIABLE " )  ; 
expand(nodes%lO,nodes/lO); 
1 

f p r i n t f  ( fp ,  " REGEN BVARIABLE " )  ; 
i f  (nodes%lO == 0 )  

j  = nodes/lO; 
else 

j = nodes/lO + 1; 
f o r  ( i = l ; i < j + l ; i + t )  

{ 
f p r i n t f  ( fp ,  "BVw) ; 
f p r i n t f  ( fp ,  "%dn,  i) ; 
i f  (i != j )  

f p r i n t f  ( fp ,  "t") ; 
e l s e  

f p r i n t f  ( fp,  " \nn )  ; 
1 

1 

f o r  (i=l; i<nodes t l ;  i++) 
t 
f p r i n t f  ( fp , "  %d", i) ; 
f p r i n t f  ( fp ,  " TABLE MI, 200,100, 20\nW) ; 
1 

f p r i n t f  ( fp ,  "* \nn)  ; 

f p r i n t f  ( fp ,  " SERS FVARIABLE %dl', ser-time) ; 
f p r i n t f  ( fp ,  "*FN$EXPO2\n"l ; 
1 

else 
{ 
f p r i n t f  ( fp ,"  SERS FVARIABLE %d\nql,ser-time); 
1 

f p r i n t f  ( fp ,  "* \nW) ; 

i f  (sym == 1) 
I 
i f  (arr-ind == 1) 

I 
f p r i n t f  ( fp ,  " ARRS FVARIABLE %dl', arr-time) ; 
f p r i n t f  ( fp ,  "*FN$EXPOl\nY ; 
1 

e l s e  
( 
f p r i n t f  ( fp ,  " ARRS FVARIABLE ' %d\n1I, arr-time) ; 
1 

1 
else 

I 
f o r  (i=l; i<nodes+l;  i+t) 

I 
f p r i n t f  ( fp ,  " ARR%dV, i) ; 
f p r i n t f  ( fp ,  FVARIABLE %dU, r i n g  [ i ]  [2]  ) ; 
i f  ( r i n g [ i ]  [1]  == 1) 

f p r i n t f  ( fp ,  " * F N $ E x P o ~ \ ~ " )  ; 
e l s e  

f p r i n t f  ( fp ,  " \nW)  ; 
I 

I 
f p r i n t f  ( fp , "* \nU)  ; 
1 



s e t u p  ( )  
/ * * T h i s  r o u t i n e  s tar ts  t h e  t o k e n  r o l l i n g  and 
* directs it t o  s t a t i o n  1 
* / 

{ 
f p r i n t f  ( f p ,  " * \ n W )  ; 
f p r i n t f  ( f p ,  "*  
f p r i n t f  ( f p ,  " * \ n W )  ; 
f p r i n t f  ( f p ,  " 
f p r i n t f  ( f p ,  " 
• ’ p r i n t • ’  ( f p ,  " 
f p r i n t f  ( f p ,  " 

MAKE THE MODEL  ACTIVE\^"); 

GENERATE l , , , l , l \ n l l ) ;  
SAVEVALUE ROUND, %d\nW , n o d e s )  ; 
S P L I T  1 , U S E l  \ n n )  ; 
TERMINATE \nl ' )  ; 

macro ( 1  
/ * 
* T h i s  r o u t i n e  p r i n t s  o u t  t h e  body of t he  m a i n  m a c r o  
* / 

{ 
f p r i n t f  ( f p ,  " * \ n n )  ; 
• ’ p r i n t • ’  ( f p ,  "*  MACRO BEGINS\nn ' )  ; 
f p r i n t f  ( f p ,  " * \ n u )  ; 
f p r i n t f  ( f p ,  MAIN START MACRO\^") ; 
f p r i n t f  ( f p ,  " GENERATE 
f p r i n t f  ( f p ,  " QUEUE 
f p r i n t f  ( f p ,  " LINK 
f p r i n t f  ( fp ,  " CAP#A S E I Z E  
f p r i n t f  ( f p ,  " DEPART 
f p r i n t f  ( f p ,  " TABULATE 
f p r i n t f ( f p , "  NOD#A SAVEVALUE 
f p r i n t f  ( f p ,  " TEST NE 
f p r i n t f  ( f p ,  " SAVEVALUE 
f p r i n t f  ( f p , "  ADVANCE 
f p r i n t f  ( f p ,  " TRANSFER 
f p r i n t f ( f p , "  NEX#A ADVANCE 
f p r i n t f  ( f p ,  " \ n u )  ; 
f p r i n t f  ( f p ,  :' SAVEVALUE 
f p r i n t f  ( fp ,  "+%dm, s t n - l a t )  ; 

. n o d e s )  ; f p r i n t f  ( f h ,  "*%d\nU, 
f p r i n t f  ( f p , "  
f p r i n t f  ( f p ,  " 

f p r i n t f  ( fb ,"  
f p r i n t f  i f p i n  
f p r i n t f  ( f p ,  " 
f p r i n t f  ( f p ,  " 
f p r i n t f  ( f p ,  " 
f p r i n t f  ( f p ,  " USE#A 
f p r i n t f  ( f p ,  " 
f p r i n t f  ( f p ,  " 
f p r i n t f  ( f p ,  " \ n W )  ; 
• ’ p r i n t • ’  ( f p ,  " MEE#A 
f p r i n t f  ( f ~ ,  " 

f p r i n t f  ( f p ,  " 
f p r i n t f  ( f p ,  " 
f p r i n t f  ( f p ,  "* \nW ) ; 
f p r i n t f  ( f p ,  "* 
f p r i n t f  ( f p ,  " * \ n u )  ; 
f p r i n t f  ( f p ,  " * \ n u )  ; 
1 

# ~ \ n "  ) ; 
#A, F 1 F O \ n W )  ; 
 TOKEN\^^^) ; 
# ~ \ n " )  ; 
#A\nV1 ) ; 
STATION, # A \ n W )  ; 
XSROUND, 0 ,  NEX#A\nn)  ; 
ROUND-, l \ n n )  ; 
# ~ \ n " )  ; 
, NOD#G \ n " )  ; 
%d" , HEADER) ; 

HEAD , %dn , HEADER j ; 

TEST G  
ADVANCE 
SAVEVALUE 
RELEASE 
ADVANCE 
TEST E  
S P L I T  
TERMINATE 
SAVEVALUE 
TEST E 
ADVANCE 

UNLINK 

V$SERS, X$HEAD, REE#A\n") ; 
VSSERS-X$HEAD\nU) ; 
ROUND, %d\nU , n o d e s )  ; 
TOKEN\nW) ; 
# E \ n W )  ; 
BVSREGEN, 0 ,  U s E # G \ n W )  ; 
1, USE#G\nW ) ; 
l \ n l ' )  ; 
STATION, # A \ n W )  ; 
1, #A, MEE#A\nm ) ; 
% d" , LAT-BUF ) ; 

#A, CAP#A, 1, , , H E C # A \ ~ "  ) ; 
 TERMINATE\^" ) ; 
ADVANCE #E i n 1 ' )  ; . 
TRANSFER , u S E # G \ ~ " )  ; 
ENDMACRO\ n" ) ; 

MACRO ENDS\nl') ; 



o u t p u t  ( )  
/ * 
* T h i s  r o u t i n e  i s  t h e  c o n t r o l  p r o g r a m .  
* I t  s tar ts  o f f  t h e  GPSS/H p r o g r a m ,  con t ro l  
* i s  t ransferred t o  it a f t e r  each regenerative 
* cycle is  over w h e n  t h e  s t a t i s t i c s  for t h a t  
* cycle a re  collected and t h e  r o u t i n e  CONFID i s  cal led 
* a f t e r  t h e  required n u m b e r  of r e g e n e r a t i v e  
* cycles are  over 
* / 

t 
f p r i n t f  ( f p ,  " * \ n n )  ; 
f p r i n t  f 
f p r i n t  f 
f p r i n t f  
f p r i n t f  
f p r i n t f  
f ~ r i n t f  
f p r i n t f  
f p r i n t f  
• ’ p r i n t • ’  
f p r i n t f  
f p r i n t  f 
f p r i n t  f 

f p r  'I* CONTROL  CARDS\^") ; 
fp ,  " * \ n W )  ; 
 PI" INTEGER &I I & J DUMMY  VARIABLE\^") ; 
 PI" INTEGER &CYCLE # OF REGENERATIVE C y C L E S \ n n ) ;  
 PI I' INTEGER &NODE # OF NODES\nW)  ; 
f p r  'I INTEGER &TOTAL TOTAL # OF MESSAGES R U N \ n n ) ;  
 PI " INTEGER &MESS MAX. # OF MESSAGE\n t t ) ;  
 PI I' INTEGER &N ( % d " ,  n o d e s )  ; 
fp ,  " )  NUMBER OF CYCLES RUN FOR EACH N O D E \ n W ) ;  
 PI" REAL &SUMY ( % d " ,  n o d e s )  ; 
f p , " )  SUM OF ~ \ n " )  ; 
fp1 'I REAL &SUMY2 ( % d " ,  n o d e s )  ; ( 

f p r i n t f  ( f p ,  " )  SUM OF SQUARE OF Y \ n W )  ; 
f p r i n t f  ( f p ,  " REAL &SUMA ( % d B ' ,  n o d e s )  ; 
f p r i n t f  ( f p ,  " )  SUM OF ALPHA\nW) ; 
f p r i n t f  ( f p ,  " REAL &SUMA2 ( % d m ,  n o d e s )  ; 
f p r i n t f  ( f p ,  " )  SUM OF SQUARE OF ALPHA\nn)  ; 
f h r i n t f  
f p r i n t f  
f p r i n t f  
f p r i n t f  
f p r i n t f  
f p r i n t f  
f p r i n t f  
f p r i n t f  
f p r i n t f  
f p r i n t f  
f p r i n t f  

fp l  " REAL &SUMYA ( % d " ,  n o d e s )  ; 
fp ,  " )  SUM OF ALPHA*Y\nl') ; 
fp,  EXTERNAL &CONFID C   SUBROUTINE\^"); 
fp, "*\nit) ; 
 PI" LET &CYCLE=8000\n" )  ; 
fp t "  LET & M E S S = 1 0 0 0 0 0 \ n " ) ;  
 PI " LET & N O D E = % d \ n W , n o d e s ) ;  
f p t "  START 1 , N P \ n W )  ; 
fPt " UNLIST C S E C H O \ ~ " ) ;  
fp ,  " * \ n u )  ; 
fp,"* START RUNNING\nn);  ( 

f p r i n t f  ( f p ,  " * \ n u )  ; 
f p r i n t f  ( f p ,  " LET & I = l \ n X ' )  ; 
f p r i n t f  ( f p ,  "* GIVE A  FULL REPORT FOR THE LAST C Y C L E \ n V ) ;  
f p r i n t f  ( f p ,  " AGAIN I F  ( & I 1 L '  &CYCLE) \ n u ' )  ; 
f p r i n t f  ( f p ,  " START 1, N P \ n W )  ; 
f p r i n t f  ( f p ,  " E L S E \ n W )  ; 
f p r i n t f  ( f p , "  START l \ n W )  ; 
f p r i n t f  ( f p , "  E N D I F \ n U ) ;  
f p r i n t f  ( f p ,  " * \ n N )  ; 
f p r i n t f ( f p , " *  RECORD THE IMPORTANT S T A T I S T I C S \ ~ " ) ;  
f p r i n t f  ( f p ,  " * \ n n )  ; 
f p r i n t f  ( f p ,  " DO & J = ~ , & N O D E \ ~ " ) ;  
f p r i n t f  ( f p ,  " I F  (TC&J>O)  \ n " )  ; 
f p r i n t f  ( f p ,  " LET &N ( & J )  =&N ( & J )  + l \ n 1 ' )  ; 
f p r i n t f  ( f p ,  " LET &SUMY ( &  J )  =&SUMY ( &  J )  +TB& J*TC& J \ n W )  ; 
f p r i n t f  ( f p ,  " LET & S U M Y ~  ( &  J)  = & S U M Y ~  ( &  J )  + (TB& J*TC& J )  * (TB& J*TC& J )  \ n u t )  ; 
f p r i n t f  ( f p ,  " LET &SUMA ( &  J )  =&SUMA ( &  J )  +TC& J \ n t ' )  ; 
f p r i n t f  ( fp , "  LET &SUMA;! ( &  J )  = & s u M A ~  ( &  J )  +TC& J*TC& J \ n l ' )  ; 
f p r i n t f  ( f p ,  " LET &SUMYA ( &  J )  =&SUMYA ( &  J )  + T C & J *  (TC&J*TB&J)  \ n " )  ; 
f p r i n t f  ( f p ,  " LET &TOTAL=&TOTAL+TC&J\~") ;  
f p r i n t f  ( f p ,  " E N D I F \ n W )  ; 
f p r i n t f  ( f p , "  ENDDO\ntl) ; 
f p r i n t f  ( f p ,  " * \ n u )  ; 
f p r i n t f  ( f p ,  " * \ n W )  ; 



fprintf (fp, RESET F$TOKEN\nn) ; 
fprintf (fp, " IF (&TOTAL>&MESS) \nn) ; 
fprintf (fp, " GOT0 FIN FINISH THE RUN\nn) ; 
fprintf (fp, " ENDIF\nW) : 
fhrintf (fp, " IF (&I<&CYCLE) \nu) ; 
fprintf (fp, I, LET &I=&I+l\nn) ; 
fprintf (fp, " GOT0 AGAIN\nw) ; 
fprintf (fp, " ENDIF\ntt) ; 
fprintf (fp, "*\nw) ; 
fprintf(fpIw* C SUBROUTINE TO CALCULATE CONFIDENCE INTERVALS\nu); 
fprintf (fp, "*\nn) ; 

fprintf (fp," FIN CALL &CONFID (&NODE, &N(l) , &SUMY (1) , &SUMY2 (1) ,-\nl') ; 
fprintf(fpIW&S~MA(1) ,&SuMA2 (1) ,&SUMYA(~) ,FR$TOKEN) \ntt) ; 
fprintf (fp, "*\nu) ; 
fprintf (fp, "*\nW) ; 
fprintf (fp, " END\ntl) ; 
1 

main ( 
/ * * This module prompts the user to enter various parameters 
* / 
( 
int i, j; 
printf("Number of stations ?\nn); 
nodes = range-check (2,80) ; 
printf ("Station Latency ?\nV) ; 
stn-lat = range-check (l,20) ; 
printf("Service Time: 1.Exponential 2.Constant\nn); 
ser-ind = range-check (l,2) ; 
if (ser-ind == 1) 

printf("Exponentia1 service time ?\nW); 
else 

printf("Constant service time ?\nu); 
ser-time = range-check (1, 500) ; 
printf("l.Symmetric ring 2.Assymetric ring\nH); 
sym = range-check (l,2) ; 
if (sym ==I) 

t 
printf("1nter-arrival time distribution: 1.Exponential 2.Constant\nn); 
arr-ind = range_check(l,2); 
if (arr-ind == 1) 

I 
printf("Exponentia1 interarrival time ?\nW); 
arr-time = range-check(l,500000); 
1 

else 
t 
printf("Constant interarrival time ?\nW); 
arr-time = range-check (1,5OOOOO) ; 
1 

I 
else 

t 
ring-ind = 1; 
while (ring-ind < nodestl) 
I 
printf ("1. Individual entry 2 .Group entry ?\nl') ; 
grp = range-check (l,2) ; 
if (grp ==I) 

I 
("Node %d", ring-ind) ; 
( " :  Inter-arrival time distribution: 1.Exponential 2.Constant ?\nW); 



arr-ind = range_check(l,2); 
ring [ring-ind] [l] = arr-ind; 
if (arr-ind == 1) 

I 
1 

printf ("Node %dW , ring-ind) ; 
print•’(": Exponential interarrival time ?\nW); 
arr time = range-check(1,500000); 
ring[ring-ind] [Z] = arr-time; 
I 

else 
I 
printf ("Node %dW, ring-ind) ; 
print•’(": Constant interarrival time ?\nu); 
arr-time = range-check (1,500000) ; 
ring [ring-ind] [2] = arr-time; 
I 

ring-ind = ring-ind t 1; 
I 

else 
t 
printf ("group size ?\nn) ; 
grp = range-check(1,nodes-ring-indtl); 
printf ("Nodes %d", ring-ind) ; 
printf ("-%dn, ring-indtgrp-1) ; 
print•’(": 1nter-arrival time distribution: l.~xponential 2.Constant ?\nm); 
arr-ind = range_check(l,2); 
for ( j=ring ind; j<ring-indtgrp; jtt) 

rin<[j] [I] = arr-ind; 
if (arr-ind == 1) 

t 
printf ("Node %dn, ring-ind) ; 
printf ("-%d", ring-indtgrp-1) ; . 
print•’(": Exponential interarrival time ?\nW); 
arr time = range-check (1,500OOO) ; 
for-(j=ring-ind; j<ring-indtgrp; jtt) 

ring[ j] [Z] = arr-time; 
I 

else 
I 
printf ("Node %d", ringind) : 
printf ("-%d", ring-indtgrp-1) ; 
print•’(": Constant interarrival time ?\nu'); 
arr-time = range-check (1,5OOOOO) ; 
for (j=ring-ind; j<ring-indtgrp; jtt) 

ring[ j] [Z] = arr-time; 
I 

ring ind = ring-ind t grp; - 
I 

/ *  calculate value of rho * /  
if (sym == 1) 

I 
rho = (float)nodes*ser-time/arr-time; 
I 

else 
I 
rho = 0.0; 
for (i=l; i<nodestl; it+) 

rho = rho + (float) ser-time/ring [i] [2] ; 
I 

I 
printf ("rho is %f \n", rho) ; 



printf("W~RN1NG:queues w i l l  b u i l d  u p ! \ n W ) ;  
1 

/ *  p r i n t  gpss  code * /  

i f  ( ( f p  = fopen("gpss.gps",  "w") ) < 0 )  
I 
p e r r o r  ( "fopen") ; 
e x i t  (1) ; 
1 

header ( )  ; 
setup ( 1  ; 
macro 0 ; 

f p r i n t f  ( fp ,  "*\nw) ; 
f p r i n t f  (fp,"* CALL MACRO\nW ) ; 
f p r i n t f  ( fp ,  "*\nn)  ; 

/ *  gene ra t e  macro c a l l s .  One f o r  each s t a t i o n  on t h e  r i n g  
* The fol lowing a r e  t h e  parameters of t h e  macro c a l l  
* #A - S t a t i o n  number 
* #B - not used 
* #C - Message s e r v i c e  time 
* #D - not  used 
* #E - S t a t i o n  l a t ency  
* #F - Message i n t e r - a r r i v a l  t ime 
* #G - Next s t a t i o n  on t h e  r i n g  
* / 
f o r  (i=l; i<nodes+l;  i++) 

I 
f p r i n t f  ( fp ,  " M A I N  MACRO %dn,  i) ; 
f p r i n t f  ( fp ,  ", , vSSERS") ; 
f p r i n t f  ( fp ,  ", , %dW, s tn- la t )  ; 
i f  (sym == 1) 

f p r i n t f  ( fp ,  ",V$ARRS1') ; 
e l s e  

f p r i n t f  ( fp ,  ", V$ARR%d",i) ; 
i f  ( i==nodes) 

f p r i n t f  ( fp ,  ", 1") ; 
e l s e  

f p r i n t f  ( f p ,  ", %d", i+1) ; 
f p r i n t f  ( fp ,  " STATION %d\nW,  i) ; 
i f  (i==l) 

f p r i n t f  ( fp ,  " UNLIST 
1 

f p r i n t f  ( fp ,  " PAGE\nn) ; 

output ( )  ; 
1 



/ *  This module is meant for the single priority case * /  

void CONFID (NODE, N, SUMY, SUMY2 , SUMA, Sum2 , SUMYA, UTIL) 

/ * 
*CCCCCCCCCCCCCCCCCCCCCCCC * C 
* Declarations C 
* C 
*CCCCCCCCCCCCCCCCCCCCCCCC 
* 
* 11 J,F DUMMY VARIABLES 
* NODE # OF NODES 
* NN 1 
* N O  * (NO -1) 

TOTAL TOTAL # OF MESSAGES TO THE SYSTEM * UTIL UTILIZATION OF SERVER 
x Z A FACTOR NEEDED TO CALCULATE CONFIDENCE INTERVALS 
* 
* When variables below start with a T, they become the 
* variables for all nodes combined. 
* 
* N (NODE) NUMBER OF CYCLES RUN FOR EACH NODE. 
* R() MEAN WAITING TIME 
* RVAL ( ) +-INTERVAL FOR CONFIDENCE INTERVALS 
* s2 0 VARIANCE OF WAITING TIME 
* s110 VARIANCE OF Y 
* s22 0 VARIANCE OF ALPHA 
* sl2 0 COVARIANCE OF ALPHA AND Y 
A SUMY (NODE) SUM OF Y 
* SUMYZ(N0DE) SUM OF SQUARE OF Y 
x SUMA(N0DE) SUM OF ALPHA 
* SUMAZ(N0DE) SUM OF SQUARE OF ALPHA 
* SUMYA(N0DE) SUM OF ALPHA*Y 
* MEANY ( ) MEAN OF Y 
* VARIY ( ) VARIANCE OF Y 
* MEANA ( ) MEAN OF ALPHA 
x VARIA ( ) VARIANCE OF ALPHA 
* 
* 
* NOTE: 1. The factor Z needed to calculate the 90% confidence 
* intervals is 1.645. But if different percentage is 

used, you could just change the value for Z in the 
initialization section. 

2. To compile this module, perform the following steps 
i) cc -r -c C0NFID.c 
ii) Id -r C0NFID.o -1m -0 C0NFID.o 

int *NODE, *N; 
double *SUMY, *SUMY2, *SUMA, *SUMA2, *SUMYA, fUTIL; 

t 
int i, j; 

double tn, tsumy, tsumy2, tsuma, tsuma2; 
double tsumya; 

double z,total; 

int node, n[100]; 
double sumy [100], sumy2 [loo] ,suma [loo] , suma2 [loo] , sumya [loo] ,util; 

double tr, trval, ts2, tsll, ts22, ts12; 



double tmeany, tvariy, tmeana, tvaria; 

double nnl; 

double r [100], rva1[100], s2 [100], s11[100], s22 [100], s12 [loo] ; 
double meany [lOQ], variy [loo], meana [100], varia [loo] ; 

FILE *fp; 

/ * 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C C 
C INITIALIZATION OF VARIABLES C 
C C 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
* / 

node = *NODE; 
util = *UTIL; 
for (i=l; i<nodetl; it+) 

{ 

n [i] = *  ti-1) ; 
sumy [il = * (SUMY+~-1) ; 
sumy2 [i] = * (SUMY2ti-1) ; 
suma [il = * (SUmti-1) ; 
suma2 [il = * (SUm2ti-1) ; 
sumya [il = * (SUMYA+~-1) ; 
1 

if ( (fp = fopen ("stat", "w") ) <0) 
t 
perror ("fopen") ; 
exit(1); 
1 

z = 1.645; 
util = uti1/1000; 
total = 0.0; 
for (i=l; i<nodetl; it+) 

t 
r[il = 0.0; 
rval[ij = 0.0; 
s2 [il =O. 0; 
s12 [il =O. 0; 
sll [il=O.O; 
s22 [i] =O. 0; 
meany[i] = 0.0; 
variy [i] = 0.0; 
meana[i] = 0.0; 
varia [i] = 0.0; 
1 

/ * 
C C C C C C C C C C C C C C C C C C C C C ~ ~ ~ ~ ~ ~ C ~ C ~ ~ ~ ~ ~ ~ ~ ~ ~ ~  
C C 
C CALCULATE THE IMPORTANT PARAMETERS C 
C C 
CCCCCCCCCCCCCcccCccc~cccccc~~~ccccc~cccc 
* /  ' 

for (i=l; i<nodetl; i++) 
I 
total = total + suma[i]; 
if (n [i] >= 2) 

I 
meany [i] = sumy [i] /n [i] ; 
variy [il = sumy2 [i] / n  [i] - meany [i] *meany [i] ; 



meana [ i l  = suma [ i ]  / n  [ i ]  ; 
v a r i a  [ i l  = suma2 [ i 3  /n  [ i ]  - meana [ i ]  *meana [ i ]  ; 
n n l  = n [ i l  * ( n  [ i ]  -1) ; 
s l l  [ f  I = sumy2 [ i l /  (n  [ i l - 1 )  - sumy [ i ]  *sumy [ i ]  / n n l ;  
s22 [ l l  = suma2 [ i l /  ( n  [ i l - 1 )  - suma [ i ]  *suma [ i ]  / n n l ;  
s12 t i 1  = sumya [ i ]  / (n  t i ]  -1) - sumy [ i ]  *suma [ i ]  / n n l ;  
r [ i l  = meany [ i ]  /meana [ i ]  ; 
s 2  [ i l  = s l l  [ i ]  - 2 * r  [ i ]  *s12 [ i l  + r [ i ]  * r  [ i ]  *s22 [ i ]  ; 
i f  ( ( s 2  [ i ]>=O) & &  (n [ i ]>=O)  ) 

r v a l  [ i l  = z * s q r t  ( s 2  [ i l l  / (meana [ i ]  * s q r t  ( n  [ i ]  ) ) ; 
I 

I 
/ * 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC~~~~~~~  
C C 
C OUTPUT STATISTICS I N  A NEAT FORMAT C 
C C 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC~~~~~~~  
* / 

fprintf(fp,"*****************************\n~~); 
f p r i n t f  ( f p ,  "* *\nl ' )  ; 
f p r i n t f  ( f p ,  "*  *\n81) ; 
• ’ p r i n t • ’  ( f p ,  " *  SUMMARY OF STATISTICS * \nVV)  ; 
f p r i n t f  ( f p ,  "*  UTILIZATION = % f  ", u t i l )  ; 
f p r i n t f  ( f p ,  " * \ n W )  ; 
f p r i n t f  ( f p ,  "* * \ n m )  ; 
f p r i n t f  ( f p ,  " *  *\nl1) ; 
fprintf(fp,"******************x***********\n~~); 
f p r i n t f ( f p , " ~ O T ~ ~  # OF MESSAGES % f \ n " , t o t a l ) ;  
f p r i n t f  ( f p ,  " Z  USED % f \ n W ,  z )  ; 
f p r i n t f  ( f p ,  " \nV1 ) ; 

f o r  (i=l; i<node+l ;  i++) 
t 
p r i n t f  ("STATION # %d\nw , i) ; 
p r i n t f  ("TOTAL # of  CYCLES % d \ n W ,  n [ i ]  ) ; 
p r i n t f  ("S2 = % f \ n W ,  s 2  [ i ]  ) ; 
p r i n t f  ("S11 = % f  \n", s l l  [ i ]  ) ; 
p r i n t f  ("S22 = % f  \ n W ,  s22 [ i ]  ) ; 
p r i n t f  ("S12 = % f  \n", s l 2  [ i ]  ) ; 
p r i n t f ( " S u ~  OF CYCLE WAITING TIME = % f \ n V ,  s u m y [ i ] ) ;  
p r i n t f  ("SUM OF SQUARES = % f  \n", sumy2 [ i l  ) ; 
printf("SUM OF # OF MESSAGES = % f \ n m ,  s u m a [ i ] ) ;  
printf("SUM OF SQUARES = % f \ n " , s u m a 2 [ i l ) ;  
printf("SUM OF PROD. OF # MESS. AND WAITING TIME = % f \ n W ,  s u m y a [ i ] ) ;  
printf("MEAN W A I T I N G  TIME / CYCLE = % f \ n n ,  m e a n y [ i ] ) ;  
p r i n t f  ("VARIANCE = % f \ n W ,  v a r i y  [ i ]  ) ; 
p r i n t f  ("MEAN # OF MESSAGES / CYCLE = % f \ n t l ,  meana [ i ]  ) ; 
p r i n t f  ("VARIANCE = %f \n", v a r i a  [ i ]  ) ; 
p r i n t f  ("MEAN WAITING TIME = % f " ,  r [ i ]  ) ; 
p r i n t f  ( " t - % f \ n V ,  r v a l  [ i ]  ) ; 
p r i n t f  ( "  \nl ' )  ; 
1 

/ * 
C 
C CALCULATE THE STATISTICS FOR IDENTICAL STATIONS 
C 
* /  . 

t n  = 0.0;  
tsumy = 0.0;  
tsumy2 = 0.0;  
tsuma = 0.0;  
tsuma2 = 0.0;  
tsumya = 0.0;  



tr - = 0.0; 
trval = 0.0; 
ts2 = 0.0; 
tsll = 0.0; 
ts22 = 0.0; 
ts12 = 0.0; 
tmeany = 0.0; 
tvariy = 0.0; 
tmeana = 0.0; 
tvaria = 0.0; 

for (i=l; i<node+l; it+) 
I 
tn = tn + n [i] ; 
tsumy = tsumy + sumy[i]; 
tsumy2 = tsumy2 + sumy2[i]; 
tsuma = tsuma + suma[i]; 
tsuma2 = tsuma2 + suma2 [i]; 
tsumya = tsumya + sumya[i]; 
1 

if (tn >= 2) 
I 
tmeany = tsumy/tn; 
tvariy = tsumy2/tn - tmeanyktmeany; 
tmeana = tsuma/tn; 
tvaria = tsuma2/tn - tmeana*tmeana; 
nnl = tn* (tn-1) ; 
tsll = tsumy2/(tn-1) - tsumy*tsumy/nnl; 
ts22 = tsuma2/(tn-1) - tsuma*tsuma/nnl; 
ts12 = tsumya/(tn-1) - tsumy*tsuma/nnl; 
tr = tmeany/tmeana; 
ts2 = tsll - 2*tr*ts12 + tr*tr*ts22; 
if ((ts2>=0) & &  (tn>=O)) 

trval = z*sqrt (ts2) / (tmeanaksqrt (tn) ) ; 
I 

fprintf(fptnFOR IDENTICAL STATIONS \nn); 
fprintf(fp,"TOTAL # of CYCLES %f\nW,tn); 
fprintf (fp, "S2 = %f\nn, ts2) ; 
fprintf(fp,"Sll = %f\n",tsll); 
fprintf (fp, "S22 = %f \nw, ts22) ; 
fprintf(fp,"S12 = %f\nV,tsl2); 
fprintf(fp,"SUM OF CYCLE WAITING TIME = %f\nW, tsumy); 
fprintf (fp, "SUM OF SQUARES = %f\nW, tsumy2) ; 
fprintf(fp,"S~~ OF # OF MESSAGES = %f\nU,tsuma); 
fprintf (fp, "SUM OF SQUARES = %f \n", tsuma2) ; 
fprintf(fplWSUM OF PROD. OF # MESS. AND WAITING TIME = %f\nn, tsumya); 
fprintf(fptnMEAN WAITING TIME / CYCLE = %f\nW, tmeany); 
fprintf (fp, "VARIANCE = %f \nW, tvariy) ; 
fprintf(fptWMEAN # OF MESSAGES / CYCLE = %f\nu, tmeana); 
fprintf (fp, "VARIANCE = %f \n", tvaria) ; 
fprintf(fp,"MEAN WAITING TIME = %fU,tr); 
fprintf (fp, " +-%f \nu, trval) ; 
fprintf (fp, " \nl') ; 
fclose (fp) ; 
1 



* Mcdule name: priority/mult/preproc.c * * * 
* Date last modified: 5 Feb 1989 * * * 
* Author: Baku1 Khanna x 
* * 
* Description: This program generates GPSS/H * 
* code for the multiple priority token ring protocol * 
* with eight levels of priority. * 
* It prompts the user for parameter entry which include * 
* ring configuration, message inter-arrival times, * 
* message service times and message deadlines. * 
* It calls a routine CONFID which calculates the * 
* confidence intervals based on the statistics gathered * 
* during simulation. x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

#define HEADER 56 
#define LAT-BUF 27 

int nodes,stn-lat,ser-timefarr-timefdeadline,delta; 
int arr-ind, sym, ring-indf grp,que-opf ser-ind; 
int ring[100] [ 2 ]  ; 
float rho; 
FILE *fp; 

int range-check (lower, upper) 
int lower, upper; 
/ * 
* This routine makes sure that the parameter entered lies 
* between its lower and upper limits. 
* / 

I 
int entry; 
scanf ("%dW, &entry) ; 
while ( (entryhpper) I I (entry<lower) ) 

I 
printf("entry not within range. try again\nW); 
scanf ("%dl', &entry) ; 
1 

return (entry) ; 
1 

expand (num, ind) 
int num, ind; 
/ *  
* This routine is part of the declaration for the 
* variable REGEN 
* / 

I 
int k; 
for (k=l;k<num+l;kt+) 

I 
fprintf (fp, "Q%dvl, (ind*lO+k) ) ; 
if (k==num) 

fprintf (fp, ">0\nU) ; 
else 

fprintf (fp, ">0tW) ; 
1 



h e a d e r  ( ) 
/ * 
* T h i s  r o u t i n e  g e n e r a t e s  t h e  h e a d e r  a n d  t h e  d e c l a r a t i o n s  
* f o r  t h e  GPSS/H p r o g r a m .  
* / 

I 
i n t  i, j; 
fprintf(fp,"**************************************\n"); 
f p r i n t f  ( f p ,  "* * \ n W )  ; 
f p r i n t f  ( f p ,  " *  %dW, n o d e s )  ; 
f p r i n t f ( f p l V  FIXED LATENCY STATIONS *\nl ' )  ; 
f p r i n t f  ( f p ,  "* * \ n W )  ; 
f p r i n t f  ( f p ,  "* *\n l ' )  ; 
fprintf(fp,"**************************************\n'l); 
f p r i n t f  ( f p ,  " * \ n W )  ; 
f p r i n t f ( f p , " *  ~ u l t i p l e  p r i o r i t y  t o k e n  r i n g \ n W ) ;  
f p r i n t f ( f p , " *  S i n g l e  t o k e n  o p e r a t i o n \ n n ) ;  
f p r i n t f ( f p I n *  L i m i t e d - t o - o n e  s e r v i c e  D i s c i p l i n e \ n n ) ;  
f p r i n t f ( f p I w *  R e g e n e r a t i v e  m e t h o d  t o  c a l c u l a t e  c o f i d a n c e  i n t e r v a l s \ n n ) ;  
f p r i n t f  ( f p ,  " * \ n W )  ; 
f p r i n t f  ( f p ,  " SIMULATE 1 0 0 0 0 0 ~ ~ ~ ~ ~ ~  \nl ' )  ; 
f p r i n t f  ( f p ,  " RMULT ,111111111, 333333333,  555555555\n1 ' )  ; 
f p r i n t f  ( f p ,  OPERCOL 6 0 \ n n )  ; 
f p r i n t f  ( f p ,  " REALLOCATE COM, 4  0  0  0  00 \n l ' )  ; 
f p r i n t f  ( f p ,  " * \ n u )  ; 
f p r i n t f  ( f p ,  " * \ n n )  ; 
f p r i n t f  ( f p ,  ' I *  INITIALIZATIONS OF EXPONENTIAL FUNCTIONS AND VARIABLES\nn); 
f p r i n t f  ( f p ,  " * \ n u )  ; 
f p r i n t f  ( f p ,  " * \ n w )  ; 
f p r i n t f ( f p I n  EXPO1 FUNCTION RN2,C24 FOR INTERARRIVAL TIMES\nW);  
f p r i n t f  ( f p ,  "0 . O r  0 . 0 0 /  . I ,  . l O 4 /  . 2 ,  . 2 2 2 /  . 3 ,  . 3 5 5 /  - 4 ,  . 5 0 9 /  - 5 ,  . 6 9 / .  6 , .  9 l 5 \ n V 1 )  ; 
f p r i n t f  ( f p ,  ". 7 , 1 . 2 /  .75 ,  l . 3 8 / .  8 ,  1 . 6 / .  84 ,  l . 8 3 / .  88 ,  2 . 1 2 / .  9, 2 .  3\n1')  ; 
f p r i n t f  ( f p , " .  9 2 , 2 . 5 2 / .  9 4 , 2 . 8 1 /  . 9 5 , 2 .  9 9 / .  96, 3 . 2 l . 9 7 ,  3 .5 \n1 ' )  ; 
f p r i n t f  ( f p , " .  9 8 , 3 . 9 / .  9 9 , 4 . 6 /  . 9 9 5 , 5 . 3 / .  998, 6 . 2 / .  999, 7  . O / .  9997,  8  .0 \n1 ' )  ; 
i f  ( s e r - i n d  == 1) 

I 
f p r i n t f  ( f p ,  " EXPO2 FUNCTION RN3, C24 FOR INTERARRIVAL TIMES\nn) ; 
f p r i n t f  ( f p ,  " 0 . 0 , 0 . 0 0 /  . I ,  . 1 0 4 /  .2, .222i . 3 ,  - 3 5 5 1  - 4 ,  . 5 0 9 / . 5 , .  6 9 / .  6, . 915\n1 ' )  ; 
f p r i n t f  ( f p , "  . 7 , 1 . 2 /  .75 ,  1 . 3 8 /  . 8 ,  1 . 6 / .  84,  l . 8 3 /  . 8 8 , 2  . 1 2 / .  9 , 2  . 3 \ n V 1 )  ; 
f p r i n t f  (fp1".92,2.52/.94J.81/.95, 2 . 9 9 / . 9 6 , 3 . 2 / . 9 7 ,  3 .5 \n1 ' )  ; 
f p r i n t f  ( f p ,  " .  9 8 , 3 . 9 / .  9 9 , 4 . 6 / .  9 9 5 , 5 . 3 / .  998, 6 . 2 / .  999 ,7  . O / .  9997,  8  .O\nl ')  ; 
I 

f p r i n t f  ( f p ,  " * \ n V )  ; 

f p r i n t f ( f p I w  PRIORITY FUNCTION RN4,D8\nM);  
f p r i n t f  ( f p , " .  l 2 5 , 1 /  . 2 5 , 2 /  . 3 7 5 , 3 /  . 5 , 4 / .  625,  5 1  - 7 5 ,  6 / .  875 ,  7 / 1 ,  8 \n1 ' )  ; 

f p r i n t f  ( f p ,  " * \ n n )  ; 

f o r  ( j = l ;  j < n o d e s + l ;  j++) 
I 
f p r i n t f  ( f p ,  " %dn, j )  ; 
f p r i n t f  ( f p ,  " BVARIABLE " ) ;  
e x p a n d ( 8 ,  j)  ; 
1 

f p r i n t f  ( f p ,  " REGEN BVARIABLE " )  ; 
f o r  (i=l; i < n o d e s + l ;  i + + )  

I 
f p r i n t f  ( f p ,  "BV") ; 
f p r i n t f  ( f p ,  "%dV, i) ; 
i f  (i != n o d e s )  



f p r i n t f  ( fp ,  "+") ; 
e l s e  

f p r i n t f  ( fp ,  " \nW)  ; 
1 

1 
e l s e  

I 
i f  (nodes<=lO) 

{ 
f p r i n t f  ( fp ,  " REGEN BVARIABLE " )  ; 
expand (nodes, 0 ) ; 
1 

e l s e  
I 
f o r  ( j = l ;  j< (nodes/lO) +I ;  j++) 

I 
f p r i n t f  ( fp ,  " %d", j )  ; 
f p r i n t f  ( fp ,  " BVARIABLE " ) ;  
expand(l0,  j-1) ; 
1 

I 
f p r i n t f  ( fp , "  %d", (nodes/lO) tl) ; 
f p r i n t f  ( fp ,  " BVARIABLE " ) ;  
expand(nodes%lO,nodes/lO); 
1 

f p r i n t f  ( fp ,  " REGEN BVARIABLE " )  ; 
i f  (nodes%lO == 0 )  

j = nodes/lO; 
e l s e  

j  = nodes/lO + 1; 
f o r  (i=l; i < j + l ;  i+t) 

{ 
f p r i n t f  ( fp ,  "BV") ; 
f p r i n t f  ( fp ,  "%dW, i) ; 
i f  (i != j )  

f p r i n t f  ( fp ,  "t") ; 
e l s e  

f p r i n t f  ( fp ,  " \ n u )  ; 
1 

f p r i n t f  ( fp ,  "* \nn)  ; 

f o r ( i = l ; i < n o d e s t l ; i t + )  
I 
f o r  ( j = l ;  j <9 ;  j++) 

I 
f p r i n t f  ( f p , "  %dn, , i )  ; 
f p r i n t f  ( fp ,  "%d", J )  ; 
f p r i n t f  ( fp ,  " TABLE MI, 200,100, 20\nW) ; 

f p r i n t f  ( fp ,  "* \nu )  ; 
i f  (ser-ind == 1) 

I 
f p r i n t f ( f p l n  SERS FVARIABLE %dff , ser - t ime) ;  
f p r i n t f  ( fp ,  "*FN$EXPO2\n") ; 
1 

. e l s e  
I 
f p r i n t f  ( fp ,  SERS FVARIABLE %d\nW , ser-time) ; 
1 

f p r i n t f  ( fp ,  "* \nW)  ; 



i f  (sym I= 1) 
{ 
i f  (arr-ind == 1) 

1 
f p r i n t f ( f p , "  ARRS FVARIABLE %dgl ,arr- t ime);  
, • ’p r in t • ’  ( fp ,  8 t * ~ ~ $ ~ ~ ~ ~ 1 \ n " )  ; 

I 
else 

t 
f p r i n t f ( f p I n  ARRS FVARIABLE %d\nn,arr- t ime);  
I 

1 
else 

t 
f o r  (i=l; i<nodes+l;  i++) 

I 
f p r i n t f  ( fp ,  ARR%dW, i) ; 
f p r i n t f  ( fp ,  " FVARIABLE %d", r i n g  [ i ]  [2] ) ; 
i f  ( r i n g  [ i ]  [ I ]  == 1) 

f p r i n t f  ( fp ,  "*FN$EXPO~\~") ;  
e lse  

f p r i n t f  ( fp ,  " \ n u )  ; 
1 

I 
f p r i n t f  ( fp ,  "* \nn)  ; 
1 

se tup  ( 
/ * 
* This  rou t ine  con ta ins  t h e  i n i t i a l i z a t i o n  macros and 
* a l s o  conta ins  t h e  code t o  s t a r t  t h e  token r o l l i n g .  
* The token i s  d i r e c t e d  t o  s t a t i o n  1 
* / 

{ 
i n t  i; 
f p r i n t f  ( fp , "* \nN)  ; 
• ’p r in t • ’  ( fp ,  "*  I N I T  MACRO BEG INS\^") ; 
f p r i n t f  ( fp ,  "* \nu)  ; 

f p r i n t f  ( fp ,  " I N I T  STARTMACRO\n") ; 
f p r i n t f  ( fp ,  " ZP#A MATRIX H, 1 0 0 ,  2 \nn)  ; 
f p r i n t f  ( fp ,  " SAVEVALUE P O I N T P # A , ~ , H \ ~ " ) ;  
f p r i n t f  ( fp ,  " END MACRO\^" ) ; 

i p r i n t f  ( fp ,  "* \nu)  ; 
f p r i n t f ( f p r u *  QUE MACRO BEG INS\^"); 
f p r i n t f  ( fp ,  "* \nu )  ; 
f p r i n t f ( f p r u  QUE START MACRO\^"); 
f p r i n t f  ( f p ,  " QUEUE #A#B\nl') ; 
f p r i n t f  ( fp ,  " L I N K  #A#B, FIFO\nW) ; 
f p r i n t f  ( fp ,  " END MACRO\^" ) ; 
I 

f p r i n t f  ( fp ,  "* \nW) ; 
f p r i n t f  ( fp ,  "* MAKE THE MODEL ACTIVE\n") ; 
f p r i n t f  ( fp ,  "* \nn)  ; 
f p r i n t f  ( f p , "  UNLIST ABS\nV1) ; 
f p r i n t f  ( fp ,  " GENERATE l , , , l , l \ n ~ ~ ) ;  
f p r i n t f  ( fp ,  " SAVEVALUE STATION,l,H\n"); 
f p r i n t f  ( fp ,  " SAVEVALUE TX,O,H\nn); 
f p r i n t f  ( f p , "  SAVEVALUE PRTY, 1, H\n" ) ; 
f p r i n t f  ( fp ,  " SAVEVALUE RR, 1, H\nU ) ; 



f p r i n t f  ( f p ,  " SAVEVALUE BUSY, 0 ,  ~ \ n "  ) ; 
• ’ p r i n t  f ( f p, " SAVEVALUE F L A G , ~ , H \ ~ " ) ;  
f p r i n t f  ( fp ,  " UNLIST MACX\nV ) ; 
f o r ( i = l ; i < n o d e s t l ; i t t )  

t 
f p r i n t f  ( . fp ,  " I N I T  MACRO % d \ n n ,  i )  ; 
1 

f p r i n t f  ( f p ,  " S P L I T  1 , U S E l  \ n " )  ; 
f p r i n t f  ( f p ,  " TERMINATE l \ n " )  ; 
1 

macro ( )  
/ * * T h i s  r o u t i n e  p r i n t s  o u t  t h e  body of t h e  m a i n  m a c r o  
* / 

{ 
i n t  i; 
f p r i n t f  ( f p , " * \ n " )  ; 
f p r i n t f ( f p , " *  MAIN MACRO BEG INS\^"); 
f p r i n t f  ( f p ,  " * \ n u )  ; 

f p r i n t f ( f p l V  MAIN START MACRO\^"); 
f p r i n t  f ( f p ,  " UNLIST A B S \ n W )  ; 
f p r i n t f  ( f p ,  " GENERATE # F \ n H )  ; 
f p r i n t f  ( f p ,  " ASSIGN 1, F N $ P R I O R I T Y \ ~ " )  ; 

f p r i n t f  ( f p ,  " * \ n u )  ; 
f p r i n t f  ( f p ,  " *  QUEUE TRANSACTION I N  APPROPRIATE QUEUE\nVV) ; 

f p r i n t f  ( f p ,  " TEST E  
f p r i n t f  ( f p ,  " QUE MACRO 
f p r i n t f  ( f p , "  AGl#A TEST E  
f p r i n t f  ( f p ,  " QUE MACRO 
f p r i n t f  ( f p ,  " AG2#A TEST E 
f p r i n t f  ( f p ,  " QUE MACRO 
f p r i n t f ( f p , "  AG3#A TEST E  
f p r i n t f  ( f p ,  " QUE MACRO 
f p r i n t f  ( f p , "  AG4#A TEST E  
f p r i n t f  ( f p ,  " QUE MACRO 
f p r i n t f  ( f p ,  " AGS#A TEST E  
f p r i n t f  ( f p ,  " QUE MACRO 
f p r i n t f  ( f p , "  AG6#A TEST E  
f p r i n t f  ( f p ,  " QUE MACRO 
f p r i n t f ( f p I v  AG7#A QUEUE 
f p r i n t f  ( f p , "  LINK 
1 

else 
I 
f p r i n t f  ( f p , "  QUEUE # A \ n V V )  ; 
f p r i n t f  ( f p ,  " LINK #A, F 1 F O \ n W )  ; 
1 

f p r i n t f  ( f p , " * \ n W )  ; 
f p r i n t f ( f p , " *  A  TRANSACTION I S  READY TO BE TRANSMITTED\nW);  
f p r i n t f  ( f p ,  "* \nu)  ; 

f p r i n t f  ( f p , "  CAP#A S E I Z E  TOKEN\nn ) ; 

f p r i n t f  ( f p ,  " * \ n u )  ; 
f ~ r i n t f ( f p , " *  DEPART FROM APPROPRIATE  QUEUE\^"); 
f p r i n t f  if;; " * \ n n )  ; 



i f  ( g u e - o p  == 1 )  
I 
f p r i n t f  ( fp ,  " TEST E 
f p r i n t f  ( f p ,  " DEPART 
f p r i n t f  ( f p ,  TRANSFER 
f p r i n t f ( f p l W  A B l # A  TEST E  
f p r i n t f  (fp,  " DEPART 
f p r i n t f  ( fp,  " TRANSFER 
f p r i n t f  ( f p , "  AB2#A TEST E  
f p r i n t f  ( fp ,  " DEPART 
f p r i n t f  ( f p ,  " TRANSFER 
f p r i n t f  ( f p ,  " AB3#A TEST E  
f p r i n t f  ( f p ,  " DEPART 
f p r i n t f  ( f p ,  " TRANSFER 
f p r i n t f  ( fp , "  AB4#A TEST E  
f p r i n t f  ( f p ,  " DEPART 
f p r i n t f  ( f p ,  " TRANSFER 
f p r i n t f ( f p , "  AB5#A TEST E  
f p r i n t f  ( f p ,  " DEPART 
f p r i n t f  ( f p ,  TRANSFER 
f p r i n t f  ( f p , "  AB6#A TEST E  
f p r i n t f  ( f p ,  " DEPART 
f p r i n t f  ( f p ,  " TRANSFER 
f p r i n t f ( f p I w  AB7#A DEPART 
1 

else 
f p r i n t f  ( f p ,  " DEPART 

f p r i n t f  ( f p ,  " * \ n u )  ; 
f p r i n t f ( f p , " *  TABULATE WAITING  TIMES\^"); 

f p r i n t f  ( f p ,  " SON#A TEST E  
f p r i n t f  ( f p ,  " TABULATE 
f p r i n t f  ( f p ,  " TRANSFER 
f p r i n t f  ( f p , "  BXl#A TEST E  
f p r i n t f  ( f p , "  TABULATE 
f p r i n t f  ( f p ,  " TRANSFER 
f p r i n t f  ( f p ,  " BX2#A TEST E  
f p r i n t f  ( f p ,  " TABULATE 
f p r i n t f  ( f p ,  " TRANSFER 
f p r i n t f  ( f p , "  BX3#A TEST E  
f p r i n t f  ( f p ,  " TABULATE 
f p r i n t f  ( f p ,  " TRANSFER 
f p r i n t f  ( f p ,  " BX4#A TEST E  
f p r i n t f  ( f p ,  " TABULATE 
f p r i n t f  ( f p ,  " TRANSFER 
f p r i n t f  ( f p ,  " BX5#A TEST E  
f p r i n t f  ( f p , "  TABULATE 
f p r i n t f  ( f p ,  " TRANSFER 
f p r i n t f ( f p I w  BX6#A TEST E  
f p r i n t f  ( f p ,  " TABULATE 
f p r i n t f  ( f p ,  " TRANSFER 
f p r i n t f  ( f p , "  BX7#A TABULATE 
f p r i n t f ( f p l W  SIN#A SAVEVALUE 
f p r i n t f  ( f p ,  " SAVEVALUE 
f p r i n t f  ( f p ,  " SAVEVALUE 
f p r i n t f  ( f p ,  " ADVANCE 
f p r i n t f  ( f p ,  " TRANSFER 

f p r i n t f  ( f p ,  " * \ n W )  ; 

f p r i n t f  ( f p , "  USE#A TEST E  
f p r i n t f  ( f p ,  " ADVANCE 
f p r i n t f  ( f p ,  " \ n W )  ; 
f p r i n t f  ( f p ,  " MEE#A TEST E  

P I ,  1 , B X 1 # A \ n W )  ; 
#A1 \nV1)  ; 
, S I N # A \ n W  ) ; 
P 1 , 2 , B X 2 # A \ n " )  ; 
# A 2 \ n n )  ; 
, S I N # A \ ~ " )  ; 
P 1 ,  3 , B X 3 # A \ n M )  ; 
# ~ 3 \ n " )  ; 
, S I N # A \ n w )  ; 
P I ,  4 , B X 4 # A \ n n )  ; 
# ~ 4 \ n " )  ; 
, S I N # A \ ~ " )  ; 
P 1 ,  5, B X ~ # A \ ~ " )  ; 
# ~ 5 \ n " )  ; 
, S I N # A \ n W  ) ; 
P 1 ,  6 ,  B X 6 # A \ n n )  ; 
# A 6 \ n W )  ; 
, S I N # A \ n W )  ; 
P I ,  7 , B X 7 # A \ n H )  ; 
# ~ 7 \ n " )  ; 
, S I N # A \ n V '  ) ; 
#A8 \ n l ' )  ; 
B U S Y , l , H  \ n u ) ;  
R R I 1 , H  \ n u )  ; 
TX, #A, H  \ n l ' )  ; 
# E \ n V ' )  ; 
, U S E # G \ n n )  ; 



f p r i n t f  ( f p , "  TEST E  XH$TX, #A,MON#A\nU) ; 
f p r i n t f  ( f p , "  ADVANCE %dm, HEADER) ; 
f p r i n t f  ( f p ,  " \ n n )  ; 
f p r i n t f  ( f p , "  SAVEVALUE HEAD,%dU,HEADER);  
f p r i n t f  ( f p ,  "+%dW, LAT-BUF) ; 
f p r i n t f  ( f p ,  "+%dn, s t n - l a t )  ; 
f p r i n t f  ( f p ,  "*%d\nU, n o d e s )  ; 
f p r i n t f  ( f p ,  " TEST GE V$SERS, xSHEAD, R E E # A \ n W )  ; 
f p r i n t f  ( f p ,  " ADVANCE V$SERS-x$HEAD\~" ) ; 
f p r i n t f  ( f p ,  " REE#A RELEASE  TOKEN\^") ; 

f p r i n t  f ( fp ,  " MON#A TEST NE BVSREGEN, 0, H A P # A \ ~ " )  ; 
f p r i n t f  ( f p ,  "* SAVEVALUE S T A T I O N , # A , H \ ~ " ) ;  
f p r i n t f  ( f p ,  "* P R I N T  , , X H \ n n )  ; 
f p r i n t f  ( f p ,  "* PRINT , , C \ n l ' )  ; 
f p r i n t f  ( f p ,  "* PRINT , I Q \ n l ' )  ; 
i f  ( q u e - o p  == 1 )  

{ 
f p r i n t f  ( f p ,  " HAP#A UNLINK # A ~ , N E X # A ,  1, , , A H ~ # A \ ~ " )  ; 
f p r i n t f  ( f p ,  " TRANSFER , BLO#A\nl ')  ; 
f p r i n t f  ( f p ,  " AHl#A UNLINK #A7,  NEX#A, 1, , , AH2#A\nW)  ; 
f p r i n t f  ( f p ,  " TRANSFER , B L O # A \ ~ " )  ; 
f p r i n t f ( f p I n  AH2#A UNLINK #A6,  NEX#A, 1, , , A H ~ # A \ ~ " )  ; 
f p r i n t f  ( f p ,  " TRANSFER , BLO#A\nl ')  ; 
f p r i n t f  ( f p ,  " AH3#A UNLINK #AS, NEX#A, I , ,  , AH4#A\nW)  ; 
f p r i n t f  ( f p , "  TRANSFER , BLO#A\nW ) ; 
f p r i n t f  ( f p ,  " AH4#A UNLINK #A4, NEX#A, 1, , , AHS#A\n") ; 
f p r i n t f  ( f p , "  TRANSFER , BLO#A\nn1) ; 
f p r i n t f ( f p , "  AH5#A UNLINK #A3,  NEX#A, I , ,  , A H ~ # A \ ~ " )  ; 
f p r i n t f  ( f p ,  " TRANSFER , B L O # A \ ~ " )  ; 
f p r i n t f ( f p I n  AH6#A UNLINK #A2,  NEX#A, 1, , , AH7#A\n") ; 
f p r i n t f  ( f p ,  " TRANSFER , B L O # A \ ~ " )  ; 
f p r i n t f  ( f p ,  I' AH7 #A UNLINK # A l l  NEX#A, 1, , , HEC#A\n") ; 
1 

else 
f p r i n t f ( f p , "  HAP#A UNLINK #A, NEX#A, I , ,  , HEC#A\n") ; 

f p r i n t f  ( f p ,  " BLO#A TEST NE XHSFLAG, O \ n W )  ; 

f p r i n t f  ( f p ,  " * \ n u )  ; 
f p r i n t f ( f p I K *  ABOVE STATEMENT BLOCKS WHILE FLAG I S  C'\n"); 
f p r i n t f  ( f p ,  " * \ n n )  ; 

f p r i n t f  ( f p ,  " TEST E  XHSFLAG, 1, AGA#A\nW) ; 
f p r i n t f  ( f p , "  SAVEVALUE F L A G , O , H \ n " ) ;  
f p r i n t f  ( f p , "  TERMINATE\nn)  ; 
f p r i n t f  ( f p , "  AGA#A SAVEVALUE FLAG, 0 ,  H \ n U )  ; 
f p r i n t f  ( f p ,  " TRANSFER , CON#A\n1') ; 

f p r i n t f  ( f p ,  " * \ n W )  ; 
f p r i n t f ( f p I W *  NO TRANSACTIONS UNLINKED FROM USER C H A I N \ n W ) ;  
f p r i n t f  ( f p ,  " * \ n M )  ; 

f p r i n t f  ( fp , "  HEC#A TEST E  XHSBUSY, 1, D O W # A \ ~ " )  ; 
f p r i n t f  ( f p ,  " TEST E  XH$TX, #A, C O N # A \ ~ " )  ; 
f p r i n t f  ( f p ,  " SAVEVALUE BUSY, 0 ,  H \ n W )  ; 
f p r i n t f  ( f p ,  " TEST L  XHSPRTY, XHSRR, PON#A \ n u )  ; 
f p r i n t f  ( f p , "  TEST G  XH$PRTY,MH$ZP#A (XH$POINTP#A-1, 1 )  , P I K # A \ ~ ~ ' )  ; 
f p r i n t f  ( f p , "  MSAVEVALUE ZP#A, XH$POINTP#A, 1, XH$RR, H\n") ; 
f p r i n t f  ( f p ,  " MSAVEVALUE ZP#A,XH$POINTP#A,~,XH$PRTY,H\~"); 

- f p r i n t f  ( f p , "  SAVEVALUE POINTP#A+,  1, H \ n W  ) ; 
f p r i n t f  ( f p ,  " SAVEVALUE PRTY, XH$RR, H \ n U )  ; 
f p r i n t f  ( fp ,  " SAVEVALUE RR, 1 , H \ n "  ) ; 
f p r i n t f  ( f p ,  " TRANSFER , pON#A\nl ' )  ; 
f p r i n t f  ( f p ,  " P I K # A  SAVEVALUE PRTY, X H $ R R , H \ ~ " )  ; 
f p r i n t f  ( f p ,  " SAVEVALUE R R , l , H \ n n ) ;  



f p r i n t f  ( f p ,  " MSAVEVALUE ZP#A, (XH$POINTP#A-1) ,1, XHSPRTY, H \ n T T )  ; 
f p r i n t f  ( f p ,  " PON#A SAVEVALUE TX, 0, ~ \ n " )  ; 
f p r i n t f  ( f p ,  " ADVANCE # E \ n V r  ) ; 8 0 
f p r i n t f  ( f p ,  " TEST E  BVSREGEN, 0 ,  U S E # G \ n U )  ; 
f p r i n t f  ( f p , "  S P L I T  ~ , u s E # G \ ~ " ) ;  
f p r i n t f  ( f p ,  " TERMINATE l \ n W  ) ; 

f p r i n t f  ( f p ,  "* \nu)  ; 
f p r i n t f ( f p I T r *  UNLINKED TRANSACTIONS FROM USER CHAIN COME  HERE\^"); 
f p r i n t f  ( f p ,  " * \ n W )  ; 

f p r i n t f  ( f p , "  NEX#A TEST E  XHSBUSY, 1, P R E # A \ n W )  ; 
f p r i n t f  ( f p ,  " TEST E XH$TX, #A, S H O # A \ ~ "  ) ; 
f p r i n t f  ( f p ,  " SAVEVALUE BUSY, 0 ,  H \ n W )  ; 
f p r i n t f  ( f p ,  " TEST GE XHSPRTY, P I ,  G1N#A\nVr)  ; 
f p r i n t f  ( f p ,  " TEST GE XHSPRTY, XH$RR, GIN#A\n") ; 
f p r i n t f  ( f p ,  " TEST L  XHSRR, P l I P I ~ # A \ n w )  ; 
f p r i n t f  ( f p ,  " SAVEVALUE RR, P I ,  H \ n v )  ; 
f p r i n t f  ( f p ,  " TRANSFER , P I N # A \ n r ' )  ; 
f p r i n t f  ( f p ,  " GIN#A TEST L  XHSRR, P I ,  HOP#A \ n r T )  ; 
f p r i n t f  ( f p ,  " SAVEVALUE T E M P , P 1 , H \ n m ) ;  
f p r i n t f  ( f p ,  " TRANSFER , HON#A\nrT) ; 
f p r i n t f ( f p I n  HOP#A SAVEVALUE TEMP,XH$RR,H\nW);  
f p r i n t f  ( f p ,  " HON#A TEST G  XH$PRTY,MH$ZP#A (XH$POINTP#A-1,1), K I K # A \ n r ' )  ; 
f p r i n t f  ( f p ,  " MSAVEVALUE ZP#A, XH$POINTP#A, 1, XH$TEMP, H\n"); 
f p r i n t f  ( f p ,  " MSAVEVALUE ZP#A,XH$POINTP#A,~,XH$PRTY,H\~"); 
f p r i n t f  ( f p ,  " SAVEVALUE POINTP#A+,  1, H\n"  ) ; 
f p r i n t f  ( f p ,  " SAVEVALUE RR, 1, H \ n W )  ; 
f p r i n t f  ( f p ,  " SAVEVALUE PRTY,XH$TEMP,H\nU) ;  
f p r i n t f  ( f p ,  " TRANSFER , P I N # A \ n U )  ; 
f p r i n t f  ( f p ,  " KIK#A MSAVEVALUE ZP#A, (XH$POINTP#A-1) , I ,  XHSTEMP, H \ n r T )  ; 
f p r i n t f  ( f p ,  " SAVEVALUE PRTY, XHSTEMP , H \ n W  ) ; 
f p r i n t f  ( f p ,  " SAVEVALUE R R , l , H \ n " ) ;  
f p r i n t f  ( f p ,  " PIN#A SAVEVALUE TX, O , H \ n n )  ; 

f p r i n t f  ( f p ,  " ON#A SAVEVALUE FLAG, 2 ,  H \ n U )  ; 
f p r i n t f  ( f p ,  "  BUFFER\^") ; 
i f  ( q u e - o p  == 1 )  

{ 
f p r i n t f  ( f p ,  " TEST E 
f p r i n t f  ( fp ,  " LINK 
f p r i n t f  ( f p , "  A D l # A  TEST E  
f p r i n t f  ( f p ,  " LINK 
f p r i n t f  ( f p ,  " AD2#A TEST E  
f p r i n t f  ( f p ,  " LINK 
f p r i n t f  ( fp ,  " AD3#A TEST E  
f p r i n t f  ( f p ,  " LINK 
f p r i n t f ( f p , "  AD4#A TEST E  
f p r i n t f  ( f p ,  " LINK 
f p r i n t f  ( f p , "  AD5#A TEST E  
f p r i n t f  ( f p ,  " LINK 
f p r i n t f  ( f p ,  " AD6#A TEST E 
f p r i n t f  ( f p ,  " LINK 
f p r i n t f  ( f p , "  AD7#A LINK 
f p r i n t f  ( f p , "  TRANSFER 
1 

else 
f p r i n t f  ( f p ,  " LINK 

f p r i n t f  ( f p ,  " \ n " )  ; 
- f p r i n t f  ( fp ,  'I* DOWNGRADE P R I O R I T Y \ n l ' )  ; 

f p r i n t f  ( f p ,  " \ n " )  ; 

f p r i n t f ( f p I w  DOW#A TEST E  XH$PRTY,MH$ZP#A (XH$POINTP#A-1, 1 )  , CON#A\nr r )  ; 
f p r i n t f  ( f p ,  " TEST G XHSRR, MH$ZP#A (XH$POINTP#A-1, 2 )  , L U G # A \ n n )  ; 
f p r i n t f  ( f p ,  " SAVEVALUE PRTY, XHSRR, H \ n n  ) ; 



f p r i n t f  ( fp,  " MSAVEVALUE ZP#A, (XH$POINTP#A-1) ,1, XHSPRTY, H \ n V v )  ; 
f p r i n t f  ( f p ,  " SAVEVALUE R R , 1 , H \ n U ) ;  8 1 
f p r i n t f  ( fp,  " TRANSFER , CON#A\nn1) ; 
f p r i n t f  ( f p ,  " LUG#A SAVEVALUE PRTY, MH$ZP#A (XH$POINTP#A-1 , 2 )  , H\nV1)  ; 
f p r i n t  f ( f p ,  " SAVEVALUE POINTP#A-, 1, H \ n w  ) ; 
f p r i n t f  ( f p ,  " CON#A ADVANCE # E \ n V )  ; 
f p r i n t f  ( fp ,  " TRANSFER , USE#G\nVs)  ; 

f p r i n t f  
f p r i n t f  
f p r i n t f  

f p r i n t f  

f p r i n t f  
f p r i n t  f 
f p r i n t f  
f p r i n t f  
f p r i n t  f 

fp ,  " \ n u )  ; 
fp,"* FREE TOKEN\nW);  
fp, " \ n W )  ; 

fp ,"  PRE#A TEST E  XH$PRTY, MH$ZP#A (XH$POINTP#A-1 I 1 )  I HUG#A\nV1) 

• ’ P I "  TEST L  Pl ,MH$ZP#A (XH$POINTP#A-1, 1 )  I HUG#A\nW) ; 
f P r "  TEST GE X H $ R R , P ~ ,  H O H # A \ ~ " )  ; 
fP,  " SAVEVALUE B I G ,  XH$RR, H \ n n )  ; 
 PI " TRANSFER , DOH#A\nV1) ; 
f p , "  HOH#A SAVEVALUE B I G , P 1 , H \ n v ) ;  ( 

f p r i n t f ( f p r n  DOH#A TEST G XH$BIG,MH$ZP#A(XH$POINTP#A-1,2),LOG#A\n"); 
f p r i n t f  ( f p ,  " SAVEVALUE PRTY, XHSBIG, H \ n w )  ; 
f p r i n t f  ( f p ,  " MSAVEVALUE ZP#A, (XH$POINTP#A-1) , ~ , x H $ B I G ,  H \ n t 1 )  ; 
f p r i n t f  ( f p ,  " SAVEVALUE RR, 1, H \ n n v  ) ; 
f p r i n t f  ( f p ,  " TRANSFER , HUG#A\nl') ; 
f p r i n t f  ( f p ,  " LOG#A SAVEVALUE PRTY,MH$ZP#A (XH$POINTP#A-1 ,2), H\n") ; 
f p r i n t f  ( f p ,  " SAVEVALUE POINTP#A-, 1, H \ n W )  ; 
f p r i n t f  ( f p ,  " SAVEVALUE RR, XHSBIG, H \ n n )  ; 
f p r i n t f  ( f p ,  " HUG#A TEST GE P I ,  XH$PRTY, PHO#A\nw)  ; 
f p r i n t f  ( f p ,  " SAVEVALUE FLAG, 1, H \ n W  ) ; 
f p r i n t f  ( f p , "  B U F F E R \ n W )  ; 
f p r i n t f  ( f p ,  " TRANSFER , CAP#A\nn l )  ; 
f p r i n t f  ( f p ,  " PHO#A TEST G XHSPRTY, MH$ZP#A (XH$POINTP#A-1 ,I), LNK#A\nl ')  ; 
f p r i n t f  ( f p ,  " SHO#A TEST L  XH$RR, P I ,  LNK#A\nn ) ; 
f p r i n t f  ( f p ,  " SAVEVALUE R R , P l , H \ n " ) ;  
f p r i n t f  (fp,  " LNK#A TRANSFER , ON#A\nV')  ; 
f p r i n t f  ( f p ,  ENDMACRO\nl' ) ; 
f p r i n t f  ( f p ,  " * \ n W )  ; 
f p r i n t f  ( f p ,  "* MACRO ENDS\n t l )  ; 
f p r i n t f  ( f p ,  " * \ n u )  ; 
1 

o u t p u t  ( )  
/ * 
* T h i s  r o u t i n e  i s  t h e  c o n t r o l  p r o g r a m .  
* I t  s ta r t s  o f f  t h e  GPSS/H p r o g r a m ,  c o n t r o l  it 
* t r ans fe r red  t o  it a f t e r  e a c h  regenerat ive 
* cycle i s  over w h e n  t h e  s t a t i s t i c s  f o r  t h a t  cycle 
* a r e  col lected.  T h e  r o u t i n e  CONFID i s  cal led 
* a f t e r  t h e  r e q u i r e d  n u m b e r  of regenerat ive cycles 
* are over 
* / 

1 
i n t  i; 
f p r i n t f  ( f p ,  " * \ n u )  ; 
f p r i n t f  ( f p ,  " *  CONTROL CARDS\nn ) ; 
f p r i n t f  ( f p , " * \ n U )  ; 
f p r i n t f  ( f p ,  " * \ n V )  ; 
f p r i n t f  ( f p ,  " INTEGER & I , & J , & K , & L \ n " ) ;  
f p r i n t f  ( f p , "  INTEGER & C Y C L E \ n n ) ;  
f p r i n t f  ( f p ,  " INTEGER &NODE \ n u ) ;  
• ’ p r i n t • ’  ( f p ,  " INTEGER & T O T A L \ n n ) ;  
f p r i n t f  ( fp ,  " INTEGER &MESS \ n v v )  ; 
i = n o d e s A 1 0  + 1 0 ;  
f p r i n t f  ( f p ,  " INTEGER &N ( % d n ,  i) ; 



f p r i n t f  ( f p ,  " )  \ n W )  ; 
f p r i n t f  ( f p ,  " REAL &SUMY (%dm, i )  ; 
f p r i n t f  ( f p ,  " )  \ n W )  ; 
f p r i n t f  ( f p ,  " REAL LSUMY2 (%dw, i )  ; 
f p r i n t f  ( f p ,  " )  \ n " )  ; 
f p r i n t f  ( f p ,  " REAL &SUMA (%dX', i )  ; 
f p r i n t f  ( fp ,  " )  \ n W )  ; 
f p r i n t f  ( f p ,  " REAL &SUMA2 ( % d W ,  i )  ; 
f p r i n t f  ( f p ,  " )  \ n u )  ; 
f p r i n t f  ( f p ,  " REAL &SUMYA(%dW, i )  ; 
f p r i n t f  ( f p ,  " )  \ n n )  ; 
f p r i n t f  ( f p ,  " REAL &LINDELAY\nn)  ; 
f p r i n t f  ( f p , "  EXTERNAL & C O N F I D \ n n ) ;  

f p r i n t f  ( f p , "  LET & C Y C L E = 8 0 0 0 \ n n )  ; 
f p r i n t f  ( f p ,  " LET & M E S S = 1 0 0 0 0 0 \ n " ) ;  
f p r i n t f  ( f p ,  " LET &NODE=%d\nW, n o d e s )  ; 
f p r i n t f  ( fp ,  " START 1, N P \ n n )  ; 
f p r i n t f  ( fp ,  " UNLIST CSECHO\nn) ;  

f p r i n t f  ( f p ,  " LET & I = l \ n r ' )  ; 
f p r i n t f  ( fp ,  " AGAIN I F  ( & I ' L t  &CYCLE) \ n u )  ; 
f p r i n t f  ( f p ,  " START 1 , N P \ n U )  ; 
f p r i n t f  ( f p ,  "  ELSE\^") ; 
f p r i n t f  ( f p ,  " START l \ n U ) ;  
f p r i n t f  ( f p ,  " END IF\^") ; 

f p r i n t f  ( f p ,  " * \ n u )  ; 
f p r i n t f ( f p r W *  RECORD THE IMPORTANT S T A T I S T I C S \ ~ " ) ;  
f p r i n t f  ( fp ,  " *  \ n u )  ; 
f p r i n t f  ( f p ,  " DO &K=1, 8\nW) ; 
f p r i n t f  ( f p ,  " DO &J=l, &NODE\nn)  ; 
f p r i n t f  ( f p ,  " LET & L = & J * 1 0 + & K \ n W ) ;  
f p r i n t f  ( fp ,  " I F  (TC&L>O) \ n H )  ; 
f p r i n t f  ( f p ,  " LET &N ( & L )  =&N ( & L )  + l \ n W )  ; 
f p r i n t f  ( f p ,  " LET &SUMY ( & L ) = & S U M Y  ( & L )  + T B & L * T C & L \ ~ " )  ; 
f p r i n t f  ( f p ,  " LET &SUMY2 ( L L )  =&SUMY2 ( & L )  + (TB&LkTC&L)  * (TB&L*TC&L) i n " )  ; 
f p r i n t f  ( f p ,  " LET &SUMA(&L) =&SUMA(&L) +TC&L\nn ' )  ; 
f p r i n t f  ( f p ,  " LET & S u m 2  ( & L )  = & s u m 2  ( & L )  + T C & L * T C & L \ ~ " )  ; 
f p r i n t f  ( f p ,  " LET &SUMYA(&L) =&SUMYA ( & L )  +TC&L* (TB&L*TC&L) \ n W ' )  ; 
f p r i n t f  ( f p ,  " LET &ToTAL=&TOTAL+TC&L\~") ;  
f p r i n t f  ( fp ,  " E N D I F \ n W )  ; 
f p r i n t f  ( fp , "  ENDDO\nI1) ; 
f p r i n t f  ( f p , "  END DO\^") ; 

f p r i n t f  ( f p ,  " RESET F$TOKEN\nn)  ; 

f p r i n t f  ( f p ,  " I F  (&TOTAL>&MESS) \ n n )  ; 
f p r i n t f  ( f p ,  " GOT0 F I N \ n W ) ;  
f p r i n t f  ( f p , "  E N D I F \ n W ) ;  
f p r i n t f  ( f p ,  " IF (&I<&CYCLE)  \ n " )  ; 
f p r i n t f  ( f p ,  " LET & I = & I + l \ n U )  ; 
f p r i n t f  ( f p ,  " GOT0 A G A I N \ n n )  ; 
f p r i n t f  ( f p , "  E N D I F \ n w )  ; 
f p r i n t f ( f p t W *  C ROUTINE TO CALCULATE CONFIDENCE I N T E R V A L S \ n W ) ;  
f p r i n t f  ( f p ,  " F I N  DO &~=1 ,  8 \ n W )  ; 
f p r i n t f  ( fp ,  " LET & L = l O t & ~ \ n " )  ; 
f p r i n t f  ( f p ,  " CALL &CONFID (&NODE, & N ( & L )  , &SUMY ( & L )  , & S U M Y ~  ( & L )  ,-\nl ')  ; 
f p r i n t f  ( f p ,  " & S U M A ( & L ) ,  & S u m 2  ( & L )  , &SUMYA(&L) ,FR$TOKEN) \ n " )  ; 
f p r i n t f  ( f p ,  " END DO\^") ; 

f p r i n t f  ( fp , "   END\^") ; 
1 

m a i n  ( )  
/ * 



*This module prompts the user to enter various paramaters 
* / 
I 
int i, i ;  

7"Number of stations ?\nW) ; 
nodes = range-check (2,80) ; 
printf ("Station latency ?\nu) ; 
stn-lat = range-check (l,20) ; 
printf("Service Time: 1.Exponential 2.Constant\nw); 
ser-ind = range-check(l,2); 
if (ser-ind == 1) 

printf("Exponentia1 service time ?\nn); 
else 

printf ("Constant service time ?\nnl) ; 
ser-time = range-check(1, 500); 

printf("1.Symmetric ring 2.Assyrnetric ring\nv); 
sym = range-check (l,2) ; 
if (sym ==I) 

t 
printf("1nter-arrival time distribution: 1.Exponential 2.Constant\nn); 
arr-ind = range_check(l,2); 
if (arr-ind == 1) 

t 
printf("Exponentia1 interarrival time ?\nw); 
arr-time = range-check (1,5OOOOO) ; 
1 

else 
I 
printf("Constant interarrival time ?\nn); 
arr-time = range-check(1,500000) ; 
1 

1 
else 

I 
ring-ind = 1; 
while (ring-ind < nodes+l) 
I 
print•’ ("1. Individual entry 2 .Group entry ?\nW) ; 
grp = range-check (1,Z) ; 
if (grp ==1) 

t 
printf ("Node %dn, ring-ind) ; 
print•’(": Inter-arrival time distribution: 1 
arr-ind = range-check (l,2) ; 
ring [ring-indl [I] = arr-ind; 
if (arr-ind == 1) 

t 

Exponential 2 

printf ("Node %d", ring-ind) ; 
print•’(": Exponential interarrival time ?\nu); 
arr-time = range-check(1,500000); 
ring [ ring-ind] [Z] = arr-time; 
1 

else 
I 
printf("Node %dU,ring-ind); 
print•’(": Constant interarrival time ?\nm); 
arr-time = range-check(1,500000); 
ring [ring-ind] [2] = arr-time; 
1 

ring-ind = ring-ind t 1; 
1 

onstant ?\nn) 

else 
t 
printf ("group size ?\nnn) ; 
grp = range-check (1, nodes-ring-indtl) ; 



printf ("Nodes %d", ring-ind) ; 
print f (I1-%d" , ring-indtgrp-1) ; 84 
print•’(": Inter-arrival time distribution: 1.Exponential 2.Constant ?\nW); 
arr-ind = range-check (l,2) ; 
for (j=ring-ind; j<ring-indtgrp; jtt) 

ring [ j] [l] = arr-ind; 
if (arr-ind == 1) 

I 
printf ("Node %d", ring-ind) ; 
printf ("-%d", ring-indtgrp-1) ; 
print•’(": Exponential interarriva 
arr-time = range-check (1,5OOOOO) ; 
for (j=ring-ind; j<ring-indtgrp; 

ring[j] [2] = arr-time; 
1 

1 time 

j ++) 

else 
t 
printf ("Node %d", ring-ind) ; 
printf (I1-%d", ring-indtgrp-1) ; 
print•’(": Constant interarrival time ?\nW); 
arr time = range-check (l,5OOOOO) ; 
for-(j=ring-ind; j<ring-indtgrp; jtt) 

ring[j] [2] = arr-time; 
I 
J 

ring-ind = ring-ind + grp; 
I 
I 

1 

printf("Queue operation: 1.Multi-queue 2.Single-queue ?\nu); 
que-op = range-check (l,2) ; 

/ *  calculate value of rho * /  
if (sym == 1) 

[ 
;ho = (float) nodes*ser-time/arr-time; 
I 

else 
I 
rho = 0.0; 
for (i=l; i<nodes+l; it+) 

t 
rho = rho + (f1oat)ser-time/ring[i][2]; 
I 

I 
printf ("rho is %f\nn, rho) ; 
if (rho>l. 00) 

printf("WARN1NG:queues will build up!\nn); 
I 

/ *  print gpss code * /  

if ( (fp = fopen ("gpss .gpsW, "w") )<0) 

perror ("f open") ; 
exit (1) ; 
I 

header ( )  ; 
setup ( 1  ; 
macro ( )  ; 

•’print•’ (fp, "*\nu) ; 
fprintf (fp, " *  CALL MACRO\nW) ; 
fprintf (fp, "*\nW) ; 



/ *  Genera te  macro c a l l s .  One f o r  each  s t a t i o n  on t h e  r i n g .  
* The fo l lowing  a r e  t h e  pa ramete rs  of t h e  macro c a l l  
* #A - S t a t i o n  number 
* #B - n o t  used 
* #C - Message s e r v i c e  t ime  
* #D - n o t  used 
* #E - S t a t i o n  l a t e n c y  
* #F - Meggase i n t e r - a r r i v a l  t i m e  
* #G - Next s t a t i o n  on t h e  r i n g  
* / 
f o r  ( i = l ; i < n o d e s + l ; i + + )  

{ 
f p r i n t f  ( f p ,  " M A I N  MACRO % d U ,  i) ; 
f p r i n t f  ( f p ,  ", ,V$SERS") ; 
f p r i n t f  ( f p , " ,  , % d " , s t n - l a t )  ; 
i f  (sym == 1) 

f p r i n t f  ( f p ,  ", V$ARRS") ; 
e l s e  

p r i n t f  ( f p ,  ", V$ARR%d", i) ; 
i f  ( i==nodes)  

f p r i n t f  ( f p ,  ", 1") ; 
e l s e  

f p r i n t f  ( f p ,  ", %d",  itl) ; 
f p r i n t f  ( f p ,  " STATION % d \ n U ,  i) ; 
i f  (i==l) 

f p r i n t f  ( f p ,  " UNLIST MACX\ntt ) ; 
1 

f p r i n t f  ( f p ,  " PAGE\nnn) ; 

o u t p u t  ( )  ; 



/ *  This module is meant for the multiple priority case * /  

void CONFID (NODE, N, SUMY, SUMY2, SUMA, SUMA2, SUMYA, UTIL) 

/ * 
*CCCCCCCCCCCCcCCCCCCCCCCC * C 
* Declarations C 
* C 
"CCCCCCCCCCCCCCCCCCCCCCCC 

1, JrF DUMMY VARIABLES 
NODE # OF NODES 
NN1 NOk(N0-1) 
TOTAL TOTAL # OF MESSAGES TO THE SYSTEM 
UTIL UTILIZATION OF SERVER 
Z A FACTOR NEEDED TO CALCULATE CONFIDENCE INTERVALS 

When variables below start with a T, they become the 
variables for all nodes combined. 

N (NODE) 
R O  
RVAL ( ) 
s2 0 
Sll 0 
s22 0 
s12 0 
SUMY (NODE) 
SUMY2 (NODE) 
SUMA (NODE) 
SUMA2 (NODE) 
SUMYA (NODE) 
MEANY ( ) 
VARIY ( )  
MEANA ( ) 
VARIA ( ) 

NUMBER OF CYCLES RUN FOR EACH NODE 
MEAN WAITING TIME 
+-INTERVAL FOR CONFIDENCE INTERVALS 
VARIANCE OF WAITING TIME 
VARIANCE OF Y 
VARIANCE OF ALPHA 
COVARIANCE OF ALPHA AND Y 
S.UM OF Y 
SUM OF SQUARE OF Y 
SUM OF ALPHA 
SUM OF SQUARE OF ALPHA 
SUM OF ALPHA*Y 
MEAN OF Y 
VARIANCE OF Y 
MEAN OF ALPHA 
VARIANCE OF ALPHA 

NOTE: 1. The factor Z needed to calculate the 90% confidence 
intervals is 1.645. But if different percentage is 
used, you could just change the value for Z in the 
initialization section. 

2. Perform the following steps to compile this program 
i) cc -r -c C0NFID.c 
iil Id -r C0NFID.o -1m -0 C0NFID.o 

int *NODE, *N; 
double *SUMY,*SUMY2,*SUMArkSUMA2,*SUMYAI*UTIL; 

{ 
int i, j; 

double tn, tsumy, tsumy2, tsuma, tsuma2; 
double tsumya; 

double z ,  total; 

int node, n[200]; 
double sumy[200],sumy2[200],suma[200],suma2[200l,sumya~2OOlrutil; 



double tr, trval, ts2, tsll, ts22, ts12; 
double tmeany, tvariy, tmeana, tvaria; 

double nnl: 

double r [ZOO], m a 1  [200], s2 [ZOO], s11 [ZOO], s22 [200], s12 [ZOO] ; 
double meany [ZOO], variy [ZOO], meana [ZOO], varia [ZOO] ; 

FILE *fp; 

/ * 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C C 
C INITIALIZATION OF VARIABLES C 
C C 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
* / 

printf ("confid called\nW) ; 
node = *NODE; 
util = *UTIL; 
for (i=l; i<nodetl; it+) 

I 
n [il = * (NS (i-1) *lo) ; 
sumy [i] = * (SUMYt (i-1) *lo) ; 
sumy2 [i] = * (SUMYZt (i-1) *lo) ; 
suma [i] = * (SUMAt (i-1) *lo) ; 
suma2 [i] = * (SUMAZt (i-1) *lo) ; 
sumya [il = * (SUMYAt (i-1) *lo) ; 
1 

if ( (fp = fopen("statW, "a") ) <0) 
I 
perror ("f open") ; 
exit (1) ; 
1 

z = 1.645; 
util = uti1/1000; 
total = 0.0; 
for (i=l; i<nodetl; itt) 

I 
r[il = 0.0; 
rval[i] = 0.0; 
s2 [i]=O.O; 
s12 [i] =O. 0; 
sll [i]=O.O; 
s22 [i] =O. 0; 
meany[il = 0.0; 
variy [il = 0.0; 
meana[il = 0.0; 
varia[i] = 0.0; 
1 

/ * 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C C 
C CALCULATE THE IMPORTANT PARAMETERS C 
C C 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
* / 

for (i=l; i<nodetl; it+) 
I 
total = total t suma[i]; 
if (n[i] >= 2) 

I 
meany [il = sumy [i] /n [i] ; 



variy [i] = sumy2 [i] /n [il - meany [i] *meany [i] ; 
meana [il = suma [i] /n [i] ; 
varia [il = suma2 [i] /n [i] - meana [i] *meana [i] ; 
nnl = n[i] * (n[i] -1) ; 
sll [il = sumy2 [il/ (n [il-1) - sumy [i] *sumy [i] /nnl; 
~ 2 2  [il = suma2 [i] / (n [i] -1) - suma [i] *suma [i] /nnl; 
~ 1 2  [il = sumya [il/ (n [i] -1) - sumy [i] *suma [i] /nnl; 
r [il = meany [i] /meana [i] ; 
~2 [il = sll [i] - 2*r [i] *s12 [i] + r [i] *r [i] As22 [i] ; 
if ((s2[iI>=O) & &  (n[i]>=O)) 

rval [i] = z*sqrt (s2 [i] ) / (meana [i] *sqrt (n [i] ) ) ; 
1 

1 
/ * 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCccccccc 
C C 
C OUTPUT STATISTICS IN A NEAT FORMAT C 
C C 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCccccccc 
* / 

fprintf(fp,"*****************************\nll); 
fprintf (fp, "* *\nV1) ; 
fprintf (fp, "* *\nn) ; 
fprintf (fp, "* SUMMARY OF STATISTICS *\nl') ; 
fprintf (fp, " *  UTILIZATION = %f ", util) ; 
fprintf (fp, " *\nn) ; 
fprintf (fp, "* *\nW) ; 
fprintf (fp, " *  *\nu) ; 
fprintf(fp,"*****************************\n~~); 
fprintf(fp,"TOTAL # OF MESSAGES %f\nV,total); 
fprintf (fp, " Z  USED %•’\nu, z )  ; 
fprintf (fp, \n") ; 

for (i=l; i<node+l; it+) 
I 
fprintf (fp, "STATION # %d\nW, i) ; 
fprintf (fpImTOTAL # of CYCLES %d\nW,n[il) ; 
fprintf (fp, "S2 = %f \nu, s2 [i] ) ; 
fprintf(fp,"Sll = %f\nn,sll[i]); 
fprintf (fp, "S22 = %f\nV, s22 [i] ) ; 
fprintf (fp,"S12 = %f\nn, s12 [i] ) ; 
fprintf(fpInSUM OF CYCLE WAITING TIME = %f\nW, sumy[i]); 
fprintf (fp, "SUM OF SQUARES = %f \nn, sumy2 [i] ) ; 
fprintf (fp,"SUM OF # OF MESSAGES = %f \nu, suma [i] ) ; 
fprintf (fp, "SUM OF SQUARES = %•’\nu, suma2 [i] ) ; 
fprintf(fp,"SUM OF PROD. OF # MESS. AND WAITING TIME = %•’\nu, sumya[il); 
fprintf (fp, "MEAN WAITING TIME / CYCLE = %f\nW, meany [i] ) ; 
fprintf (fp, "VARIANCE = %f \n", variy [i] ) ;, 
fprintf(fp,"MEAN # OF MESSAGES / CYCLE = %f\nn, meanatil); 
fprintf (fp, "VARIANCE = %f \nu, varia [i] ) ; 
fprintf (fpImMEAN WAITING TIME = %fn,r[i]); 
fprintf (fp, "+-%f \nW,rval [i] ) ; 
fprintf (fp, " \nl') ; 
I 

/ * 
C 
c .  CALCULATE THE STATISTICS FOR IDENTICAL STATIONS 
C 
* / 

tn = 0.0; 
tsumy = 0.0; 
tsumy2 = 0.0; 
tsuma = 0.0; 
tsuma2 = 0.0; 
tsurnya = 0.0; 



tr = 0.0; 
trval = 0.0; 
ts2 = 0.0; 
tsll = 0.0; 
ts22 = 0.0; 
ts12 = 0.0; 
tmeany = 0.0; 
tvariy = 0.0; 
tmeana = 0.0; 
tvaria = 0.0; 

for (i=l; i<nodetl; it+) 
I 
tn = tn t n[i]; 
tsumy = tsumy + sumy[i]; 
tsumy2 = tsumy2 + sumy2[i]; 
tsuma = tsuma t suma[i]; 
tsuma2 = tsuma2 t suma2 [i] ; 
tsumya = tsumya + sumya[i]; 
1 

if (tn >= 2) 
{ 
tmeany = tsumy/tn; 
tvariy = tsumy2/tn - tmeany*tmeany; 
tmeana = tsuma/tn; 
tvaria = tsuma2/tn - tmeana*tmeana; 
nnl = tn* (tn-1) ; 
tsll = tsumyZ/(tn-1) - tsumy*tsumy/nnl; 
ts22 = tsumaZ/(tn-1) - tsuma*tsuma/nnl; 
ts12 = tsumya/(tn-1) - tsumy*tsuma/nnl; 
tr = tmeany/tmeana; 
ts2 = tsll - 2*tr*ts12 t tr*tr*ts22; 
if ((ts2>=0) & &  (tn>=O)) 

trval = zksqrt (ts2) / (tmeana*sqrt (tn) ) ; 
I 
J 

fprintf(fp,"FOR IDENTICAL STATIONS \nW); 
fprintf(fpIwTOTAL # of CYCLES %f\nW,tn); 
fprintf (fp,"S2 = %f\nW,ts2); 
fprintf (fp, "S11 = %f\nn, tsll) ; 
fprintf (fp, "S22 = %•’\nu, ts22) ; 
fprintf (fp, "S12 = %f \nu, tsl2) ; 
fprintf(fp,"SUM OF CYCLE WAITING TIME = %f\nW, tsumy); 
fprintf (fp, "SUM OF SQUARES = %f \n", tsumy2) ; 
fprintf(fp,"SUM OF # OF MESSAGES = %f\n",tsuma); 
fprintf(fp,"SUM OF SQUARES = %f\n",tsuma2); 
fprintf(fpInSUM OF PROD. OF # MESS. AND WAITING TIME = %f\nn, tsumya); 
fprintf(fplWMEAN WAITING TIME / CYCLE = %f\nW, tmeany); 
fprintf(fpIwVARIANCE = %f\nn, tvariy); 
fprintf (fp, "MEAN # OF MESSAGES / CYCLE = %f \n!', tmeana) ; 
fprintf (fp, "VARIANCE = %f \nu, tvaria) ; 
fprintf (fpIwMEAN WAITING TIME = %fn, tr) ; 
fprintf (fp," +-%f\nn,trval); 



* M~dule name: dynamic/preproc.c * * * 
* Date last modified: 5 Feb 1989 * 
* * 
* Author: Baku1 Khanna * 
* * 
* Description: This program generates GPSS/H. * 
* code for the dynamic priority protocol. x * It prompts the user for parameter entry which include * 
* ring configuration, message inter-arrival times, * 
* message service times and message deadlines. * 
* It calls a routine CONFID which calculates the * 
* confidence intervals based on the statistics gathered * 
* during simulation. * 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

#define HEADER 56 
#define LAT-BUF 27 

int nodes,stn-lat,ser-time,arr-time,delta,deadline; 
int arr ind, sym, ring-ind, grp,•’unc, ser-ind, dead-ind; 
int rin<[1001 [21; 
float rho; 
FILE *fp; 

int range-check (lower, upper) 
int lower, upper; 
/ * 
* This routine makes sure that the parameter entered 
* lies between its lower and upper limits. 
* / 

t 
int entry; 
scanf ("%dW, &entry) ; 
while ( (entryhpper) I I (entry<lower) ) 

t 
printf("entry not within range. try again\nV); 
scanf ("%dU, &entry) ; 
1 

return (entry) ; 
I 

expand (num, ind) 
int num, ind; 
/ * 
* This routine is part of the declaration for the 
* variable REGEN 
* / 

t 
int k; 
for (k=l; k<num+l; kt+) 

I 
fprintf (fp, "CH%dn, (ind*lOtk) ) ; 
if (k==num) 

fprintf (fp, ">O\nN) ; 
else 

fprintf (fp, ">0tW) ; 
I 



header ( )  
/ * 
* This routine generates the header and the declarations 
* for the GPSS/H program. 
* / 

t 
int i, j; 
fprintf(fp,"**************************************\nll); 
fprintf (fp, "* *\nl') ; 
fprintf(fpIw* %dU,nodes); 
fPrintf(fp," FIXED LATENCY STATIONS *\nV1) ; 
fprintf (fp, "* *\nW) ; 
fprintf (fp, "* * \nSr ) ; 
fprintf(fp,n**************************************\n"); 
fprintf (fp, "*\nW) ; 
fprintf(fp,"* Dynamic priority protocol\nU); ' 
fprintf(fptW* Single token operation\nW); 
fprintf (fp, "* Limited-to-one service distribution\nn) ; 
fprintf(fpIw* Regenerative method to calculate confidence intervals\nW); 
fprintf (fp, "*\nW) ; 
fprintf (fp, " SIMULATE 100000~~ SAVE \nrl) ; 
fprintf (fp, " RMULT ,111111111,333333333, 55555555\n") ; 
fprintf (fp," OPERCOL 60\nW) ; 
fprintf (fp, " REALLOCATE COM, 40000\nU) ; 
fprintf (fp, "*\nn) ; 
fprintf (fp, "*  INITIALIZATIONS OF EXPONENTIAL FUNCTIONS AND VARIABLES\nW); 
fprintf (fp, "*\nn) ; 
fprintf(fptW EXPO1 FUNCTION RN2,C24 FOR INTERARRIVAL  TIMES\^"); 
fprintf (fp, "0.0,O. 00/. l,.lO4/ .2,.222/. 3, .355/.4, .509/.5, .69/. 6, . 915\nV') ; 
fprintf(fp,".7,1.2/.75,1.38/.8,1.6/.84,1.83/.88,2.l2/.9f2.3\n"); 
fprintf(fp,".92,2.52/.94,2.81/.95,2.99/.96,3.2/.97,3.5\n"); 
fprintf (fp,".98,3.9/.99,4.6/.995,5.3/.998l6.2/.999,7.O/.9997,8.O\n"); 

fprintf (fp, "*\nu) ; 

if (dead-ind == 1) 
1 
fprintf (fp, " DL FUNCTION RN3, C24 FOR DEADLINES\nU) ; 
fprintf (fp, "0.0,O .00/ .l,.lO4/ .2, .222/ .3, .355/ -4, .509/ -5, .69/. 6, . 915\nB') ; 
fprintf (fplW.7, 1 .2/.75,1.38/.8,1.6/.84f 1.83/.88,2 .12/. gf 2 .3\nt1) ; 
fprintf(fp,".92,2.52/.94,2.81/.95I2.99/.96,3.2/.97,3.5\n~t); 
fprintf (fp,". 98,3.9/. 99,4.6/. 995,5.3/. 998, 6.2/. 999, 7.0/. 9997, 8 .O\nvt) ; 
1 

fprintf (fp, "*\nu) ; 

fprintf(fplV' EXPO2 FUNCTION RN3,C24 FOR MESSAGE SERVICE TIMES\nl'); 
fprintf (fp, "0.0,0.00/ .1,.104/ .2,.222/ .3, .355/.4, .509/ .5,. 691. 6, . 915\n1') ; 
fprintf(fp,".7,1.2/.75,1.38/.8,1.6/.84,1.83/.88,2.l2/.9I2.3\n~~); 
fprintf(fp,".92,2.52/.94,2.81/.95I2.99/.96,3.2/.97,3.5\nt'); 
fprintf (fp,". 98,3.9/. 99,4.6/. 995,5.3/. 998, 6.2/. 999, 7 .O/. 9997, 8. 0\nv') ; 
1 

fprintf (fp, "*\nn) ; 
fprintf (fp, "*\nu) ; 
if (nodes<=lO) 

I 
fprintf (fp, " REGEN BVARIABLE " )  ; 
expand (nodes, 0) ; 
1 

else 
t 



i p r i n t f  ( fp ,  I, %d", j) ; 
f p r i n t f  ( fp ,  " BVARIABLE " ) ; 
expand(l0,  j-1) ; 

I 
f p r i n t f  ( fp ,  %dl', (nodes/lO) + I )  ; 
f p r i n t f  ( f p , "  BVARIABLE " )  ; 
expand(nodes%lO,nodes/lO); 
\ 

f p r i n t f  ( fp ,  " REGEN BVARIABLE " ) ; 
i f  (nodes%lO == 0) 

j = nodes/lO; 
e l s e  

j = nodes/lO + 1; 
f o r  ( i = l ; i < j + l ; i t t )  

I 
f p r i n t f  ( fp ,  "BV") ; 
f p r i n t f  ( fp ,  "%d", i) ; 
i f  (i != j )  

f p r i n t f  ( fp ,  "t") ; 
e l s e  

f p r i n t f  ( fp ,  "\n") ; 
I 

1 
f p r i n t f  ( fp,  "* \nu)  ; 
f p r i n t f  ( fp ,  "* \nu)  ; 

f o r  ( i = l ; i < n o d e s t l ; i t t )  
I 
f p r i n t f  ( fp ,  " %d", i) ; 
• ’ p r i n t  f  ( fp ,  " TABLE MI, 300,100, 20\nW) ; 

f p r i n t f  ( fp ,  "* \nn)  ; 

t 
f p r i n t f  ( fp ,  SERS FVARIABLE %d", ser-time) ; 
f p r i n t f  ( fp ,  "*FN$EXPO2\n") ; 
1 

e l s e  
I 
f p r i n t f ( f p , "  SERS FVARIABLE %d\nU,ser- t ime);  
I 

f p r i n t f  ( fp ,  "* \nW) ; 

i f  (sym == 1) 
I 
i f  (arr-ind == 1) 

t 
f p r i n t f  ( fp ,  " ARRS FVARIABLE %dl', arr-time) ; 
f p r i n t f  ( f p t n * F ~ $ ~ ~ ~ O l \ n " )  ; 
1 

e l s e  
I 
f p r i n t f  ( fp ,  " ARRS FVARIABLE %d\nW,  arr-time) ; 
I 

I 
e l s e  

{ 
f o r  (i=l; i<nodes+l;  it+) 

I 



f p r i n t f  ( f p ,  " ARR%dW, i) ; 
f p r i n t f  ( f p ,  " FVARIABLE %dl1, r i n g  [ i ]  [2] ) ; 
i f  ( r i n g [ i ]  [1]  == 1) 

f p r i n t f  ( f p ,  "*FN$EXPOl\n") ; 
else 

f p r i n t f  ( f p ,  "\n") ; 
1 

1 
f p r i n t f  ( f p ,  " * \ n W )  ; 
1 

/ * 
* T h i s  r o u t i n e  performs t h e  necessa ry  i n i t i a l i z a t i o n s ,  
* s t a r t s  t h e  token r o l l i n g  and d i r e c t s  it t o  
* s t a t i o n  1 
* / 

i n t  i; 
f p r i n t f  ( f p ,  "* \nu)  ; 
f p r i n t f  ( f p ,  "* I N I T  MACRO BEG INS\^") ; 
f p r i n t f  ( fp ,  "* \nu)  ; 

f p r i n t f  ( f p ,  " I N I T  START MACRO\^") ; 
f p r i n t f  ( f p , "  ZP#A MATRIX H, 100,  2 \ n V )  ; 
f p r i n t f  ( f p ,  SAVEVALUE P O I N T P # A , ~ , H \ ~ " ) ;  
f p r i n t f  ( f p , "  END MACRO\^") ; 

f p r i n t f  ( f p l W * \ n " )  ; 
f p r i n t f  ( f p ,  "* MAKE THE MODEL ACTIVE\nl' ) ; 
f p r i n t f  ( f p ,  "* \nW)  ; 
f p r i n t f  ( f p ,  " UNLIST A B S \ ~ " )  ; 
f p r i n t f  ( f p ,  " GENERATE l , , , l , l \ n ' l ) ;  
f p r i n t f  ( f p , "  SAVEVALUE TX,O,H\n"); 
f p r i n t f  ( f p ,  " SAVEVALUE PRTY,l,H\nn);  
f p r i n t f  ( f p , "  SAVEVALUE RR,l ,H\n");  
f p r i n t f  ( f p ,  " SAVEVALUE BUSY,O,H\~");  
f p r i n t f  ( f p ,  " SAVEVALUE FLAG,O,H\n"); 
f p r i n t f  ( f p ,  " SAVEVALUE DELTA,%d",aeltaj; 
f p r i n t f  ( f p ,  ", H\nW) ; 
f p r i n t f  ( f p , "  SAVEVALUE 1 , O ,  H\n" ) ; 
f p r i n t f  ( f p ,  " UNLIST MACX\n8') ; 
f o r ( i = l ; i < n o d e s + l ; i t t )  

I 
f p r i n t f  ( f p ,  " I N I T  MACRO % d \ n U ,  i) ; 
I 

f p r i n t f  ( f p ,  " SPLIT 1,USEl \ n " ) ;  
f p r i n t f  ( f p ,  " TERMINATE l \ n l ' )  ; 
I 

macro ( 1  
/ * 
* T h i s  r o u t i n e  p r i n t s  ou t  t h e  body of t h e  main macro 
* / 

{ 
i n t  i; 
f p r i n t f  ( f p l V * \ n " )  ; 
f p r i n t f  ( f p ,  " *  M A I N  MACRO BEGINS\n1') ; 
f p r i n t f  ( f p ,  " * \ n u )  ; 

f p r i n t f  ( f p ,  " M A I N  START MACRO\^") ; 
f p r i n t f  ( f p ,  " UNLIST A B S \ ~ ' I )  ; 
f p r i n t f  ( f p ,  " GENERATE #??\XI" ) ; 



i f  ( d e a d - i n d  == 1 )  
f p r i n t f  ( f p ,  " ASSIGN 2 ,  #B*FN$DL\nV) ; 

else 
f p r i n t f  ( f p ,  " ASSIGN 2 ,  #B\nZ1)  ; 

f p r i n t f  ( f p ,  " ASSIGN 3,  ( ~ 2 - ~ 1 )  \ n " )  ; 
f p r i n t f  ( f p , "  ASSIGN 4 ,  (CH#A+l) \ n " )  ; 
f p r i n t f  ( f p ,  " SAVEVALUE GO, 0 \ n " )  ; 
f p r i n t f  ( f p, " OOK#A LOOP 4 , 0 0 ~ # ~ \ n " )  ; 
f p r i n t f  ( f p ,  " LINK #A, 3 \ n 1 ' )  ; 
f p r i n t f  ( f p , "  OOP#A UNLINK #A, OOM#A, l \ n "  1 ; 
f p r i n t f  ( f p ,  " TEST NE X$GO, O \ n n )  ; 
f p r i n t f  ( f p ,  " SAVEVALUE GO, 0 \n" ) ; 
f p r i n t f  ( f p , "  TRANSFER , 00K#A\n3 ' )  ; 
f p r i n t f ( f p I w  OOM#A ASSIGN 3, (P2-MI)  \ n " )  ; 
f p r i n t f  ( f p ,  " SAVEVALUE GO, 1 \ n u )  ; 
f p r i n t f  ( fp ,  "  BUFFER\^") ; 
f p r i n t f  ( f p ,  " LINK #A, F I F O \ ~ "  ) ; 

f p r i n t f  ( f p ,  "* A  TRANSACTION I S  READY TO BE TRANSMITTED\~")  ; 

f p r i n t f  ( f p , "  CAP#A S E I Z E  TOKEN\nW);  

f p r i n t f ( f p , " *  TABULATE WAITING  TIMES\^"); 

f p r i n t f  ( f p ,  " TABULATE 
f p r i n t f  ( f p ,  " SAVEVALUE 
f p r i n t f  ( f p ,  " SAVEVALUE 
f p r i n t f  ( f p ,  " SAVEVALUE 
f p r i n t f  ( f p ,  " ADVANCE 
f p r i n t f  ( f p ,  " TRANSFER 
f p r i n t f  ( f p ,  " USE#A TEST E  
f p r i n t f  ( f p ,  " ADVANCE 
f p r i n t f  ( f p ,  " \ n n )  ; 
f p r i n t f  ( f p ,  " MEE#A TEST E  
f p r i n t f  ( f p ,  " TEST E  
f p r i n t f  ( f p ,  " ADVANCE 
f p r i n t f  ( f p ,  " \ n u )  ; 
f p r i n t f  ( f p ,  " SAVEVALUE 
f p r i n t f  ( f p ,  "+%d", LAT-BUF) ; 
f p r i n t f  ( f p ,  " + l * % d \ n " , n o d e s )  ; 
f p r i n t f  ( f p ,  " TEST GE 
f p r i n t f  ( f p ,  " ADVANCE 
f p r i n t f  ( f p ,  " REE#A RELEASE 
f p r i n t f  ( f p ,  " MON#A UNLINK 
f p r i n t f  ( f p ,  " TEST NE 

# A \ n t q )  ; 
B U S Y , l , H  \ n V r ) ;  
R R , l , H  \n l ' )  ; 
TX, #A, H  \ n n )  ; 
# E \ n l ' )  ; 
, U S E # G \ n n )  ; 
#A, 1, M E E # A \ ~ "  ) ; 
%d", LAT-BUF) ; 

XH$BUSY, l ,MON#A\n") ; 
XH$TX, # A , M O N # A \ ~ " )  ; 
%d" , HEADER) ; 

HEAD, %d" , HEADER) ; 

f p r i n t f ( f p r w *  ABOVE STATEMENT BLOCKS WHILE FLAG I S  O \ n l ' ) ;  

f p r i n t f  ( f p ,  " TEST E  XHSFLAG, 1 ,AGA#A\nW) ; 
f p r i n t f  ( f p ,  " SAVEVALUE F L A G , O , H \ ~ " ) ;  
f p r i n t f  ( f p ,  "  TERMINATE\^" ) ; 
f p r i n t f  ( f p ,  " AGA#A TEST E  XH$FLAG, 2 ,  AGB#A\nn)  ; 
f p r i n t f  ( f p ,  " SAVEVALUE FLAG, 0 ,  H \ n " )  ; 
f p r i n t f  ( f p ,  " TRANSFER , CON#A\nn)  ; 
f p r i n t f  ( f p ,  " AGB#A SAVEVALUE FLAG, O , H \ n n )  ; 
f p r i n t f  ( f p ,  " TRANSFER , H E C # A \ ~ " )  ; 

f p r i n t f ( f p , l l *  NO TRANSACTIONS UNLINKED FROM USER C H A I N \ n q q ) ;  

f p r i n t f  ( f p ,  " HEC#A TEST E  XHSBUSY, 1, D o W # A \ ~ " )  ; 
f p r i n t f  ( f p l q q  TEST E  XH$TX, #A, CON#A\nn)  ; 
f p r i n t f  ( f p ,  " SAVEVALUE BUSY, 0 ,  H \ n W )  ; 
f p r i n t f  ( f p ,  " TEST L  XH$PRTY, XH$RR, PON#A \ n q q )  ; 
f p r i n t f  ( f p ,  " TEST G  XH$PRTY,MH$ZP#A (XH$POINTP#A-1, 1 )  , P I K # A \ n I 1 )  ; 
f p r i n t f  ( f p ,  " MSAVEVALUE ZP#A, XH$POINTP#A, 1, XH$RR, H\n") ; 
f p r i n t f  ( f p ,  " MSAVEVALUE ZP#A,XH$POINTP#A,~,XH$PRTY,H\~"); 



f p r i n t f  ( f p ,  " SAVEVALUE POINTP#A+, 1 , H \ n W  ) ; 
f p r i n t f  ( f p ,  " SAVEVALUE PRTY, XH$RR, H \ n U )  ; 
f p r i n t f  ( f p ,  " SAVEVALUE R R , ~ , H \ ~ " ) ;  
f p r i n t f  ( f p ,  " TRANSFER , PON#A\nW) ; 
f p r i n t f  ( f p ,  " P I K # A  SAVEVALUE PRTY, XH$RR, H \ n V )  ; 
f p r i n t f  ( f p ,  " , SAVEVALUE RR, 1, H \ n n )  ; 
f p r i n t f  ( f p ,  " MSAVEVALUE ZP#A, (XH$POINTP#A-1) , I ,  XH$PRTY, H \ n U )  ; 
f p r i n t f  ( f p ,  " PON#A SAVEVALUE TX, 0, H \ n V ' )  ; 
f p r i n t f  ( f p ,  " ADVANCE # G \ n l ' )  ; 
f p r i n t f  ( f p ,  " TEST E  BVSREGEN, 0, u S E # G \ n W  ) ; 
f p r i n t f  ( f p ,  " S P L I T  1, USE#G\nW ) ; 
f p r i n t f  ( f p , "  TERMINATE l \ n W  ) ; 

f p r i n t f ( f p I W *  UNLINKED TRANSACTIONS FROM USER CHAIN COME H E R E \ n W ) ;  

f p r i n t f  ( f p ,  " NEX#A TEST E  XHSBUSY, 1, P R E # A \ ~ " )  ; 
f p r i n t f  ( f p ,  " TEST G  M l , P 2 , 0 ~ # A \ n " )  ; 
f p r i n t f  ( f p ,  " SAVEVALUE 1 + , 1 , H \ n " ) ;  
f p r i n t f  ( f p ,  " UNLINK #A, NEX#A, 1 , , , P E C # A \ ~ " )  ; 
f p r i n t f  ( f p ,  "  TERMINATE\^" ) ; 
f p r i n t f  ( f p ,  " PEC#A SAVEVALUE FLAG, 3 ,  H \ n W )  ; 
f p r i n t f  ( f p ,  "  BUFFER\^" ) ; 
f p r i n t f  ( f p ,  "  TERMINATE\^") ; 
f p r i n t f  ( f p ,  " BAC#A TEST GE XHSPRTY, P I ,  G I N # A \ ~ " )  ; 
f p r i n t f  ( f p ,  " TEST GE XHSPRTY, XH$RR, GIN#A\n") ; 
f p r i n t f  ( f p , "  TEST L  XH$RR, P I ,  P I N # A  \ n l ' )  ; 
f p r i n t f  ( f p ,  " SAVEVALUE RR, P I ,  H \ n "  ) ; 
f p r i n t f  ( f p ,  " TRANSFER , P I N # A \ n n  ) ; 
f p r i n t f  ( f p ,  " GIN#A TEST L  XHSRR, PI ,  HOP#A \n") ; 
f p r i n t f  ( f p ,  " SAVEVALUE TEMP, P I ,  H \ n V ' )  ; 
f p r i n t f  ( f p ,  " TRANSFER , HON#A\nV' ) ; 
f p r i n t f  ( f p ,  " HOP#A SAVEVALUE TEMP, XH$RR, H \ n " )  ; 
f p r i n t f  ( f p ,  " HON#A TEST G  X H $ P R T Y , M H $ ~ P # A  (XH$POINTP#A-1,1), K I K # A \ ~ " )  ; 
f p r i n t f  ( f p ,  " MSAVEVALUE ZP#A,XH$POINTP#A,l,XH$TEMP,H\n"); 
f p r i n t f  ( f p ,  " MSAVEVALUE ZP#A,XH$POINTP#A,2,XH$PRTYIH\n"); 
f p r i n t f  ( f p ,  " SAVEVALUE POINTP#A+, 1, H \ n "  ) ; 
f p r i n t f  ( f p ,  " SAVEVALUE RR, 1, H \ n "  ) ; 
f p r i n t f  ( f p ,  " SAVEVALUE PRTY, xH$TEMP, H \ n W  ) ; 
f p r i n t f  ( f p ,  " TRANSFER , PIN#A\n1I  ) ; 
f p r i n t f  ( f p ,  " KIK#A MSAVEVALUE ZP#A, (XH$POINTP#A-1) , I ,  XHSTEMP, ~ \ n " )  ; 
f p r i n t f  ( f p ,  " SAVEVALUE RR, 1, H \ n n  ) ; 
f p r i n t f  ( f p ,  " SAVEVALUE PRTY, XHSTEMP, H \ n l ' )  ; 
f p r i n t f  ( f p ,  " P I N # A  SAVEVALUE TX, 0, H \ n U )  ; 
f p r i n t f  ( f p ,  " SAVEVALUE B U S Y , O , H \ n W ) ;  

f p r i n t f ( f p I W  ON#A SAVEVALUE F L A G , 2 , H \ n V ) ;  
f p r i n t f  ( f p ,  " BUFFER\nU ) ; 

f p r i n t f  ( f p ,  " LINK #A, L I F 0 \ n W )  ; 

f p r i n t f  ( f p ,  "* DOWNGRADE P R I O R I T Y \ n n )  ; 

f p r i n t f  ( f p , "  DOW#A TEST E  XH$PRTY,MH$ZP#A.(XH$POINTP#A-1, 1 )  , CON#A\nV')  ; 
f p r i n t f  ( f p ,  " TEST G  XH$RR,MH$ZP#A(XH$POINTP#A-l12),~uG#~\nw); 
f p r i n t f  ( f p ,  " SAVEVALUE PRTY, xHSRR, H \ n "  ) ; 
f p r i n t f  ( f p , "  MSAVEVALUE ZP#A, (XH$POINTP#A-1) , I ,  XHSPRTY, H \ n q t )  ; 
f p r i n t f  ( f p ,  " SAVEVALUE R R , l , H \ n " ) ;  
f p r i n t f  ( f p ,  " TRANSFER , CON#A\nq') ; 
f p r i n t f  ( f p ,  " LUG#A SAVEVALUE PRTY, MH$ZP#A (XH$POINTP#A-1, 2 )  , H\nl ' )  ; 
f p r i n t f  ( f p ,  " SAVEVALUE POINTP#A-, 1, ~ \ n " )  ; 

f p r i n t f  ( f p ,  " CON#A ADVANCE # E \ n M )  ; 
f p r i n t f  ( f p ,  " TRANSFER , USE#G\nt '  ) ; 

f p r i n t f  ( f p ,  " *  MAKE  RESERVATION\^") ; 
f p r i n t f  ( f p ,  " PHO#A TEST G  XH$PRTY, MH$ZP#A (XH$POINTP#A-1 , 1 )  , 0 N # ~ \ n " )  ; 



fprintf (fp, " SHO#A TEST L XH$RR, PI, ON#A\nn) ; 
fprintf (fp, " SAVEVALUE RR,P~,H\~"); 
fprintf (fp, " TRANSFER , ON#A\nV1) ; 
fprintf (fp, "* FREE  TOKEN\^") ; 
fprintf (fp," PRE#A TEST E XH$PRTY,MH$~P#A (XH$POINTP#A-1, 1) , BoN#A\~") ; 
fprintf (fp, " TEST L Pl,MH$ZP#A (XH$POINTP#A-1, 1) , BON#A\~") ; 
fprintf (fp, " TEST GE XH$RR, PI, HOH#A\~") ; 
fprintf (fp, " SAVEVALUE BIG, XH$RR, H\nW) ; 
fprintf (fp, " TRANSFER , DOH#A\nt') ; 
fprintf (fp, " HOH#A SAVEVALUE BIG,Pl, H\nV) ; 
fprintf (fp, " DOH#A TEST G xHSBIG, MH$ZP#A (XH$POINTP#A-1, 2) ,LOG#A\n") ; 
fprintf (fp, " SAVEVALUE PRTY, XH$BIG, H\n") ; 
fprintf (fp," MSAVEVALUE ZP#A, (XH$POINTP#A-1) ,I, XH$BIG, H\nW) ; 
fprintf (fp, " SAVEVALUE RR,l,H\n"); 
fprintf (fp, " TRANSFER , BON#A\n8' ) ; 
fprintf(fp," LOG#A SAVEVALUE PRTY,MH$zP#A(xH$POINTP#A-1,2),H\nn); 
fprintf (fp, " SAVEVALUE POINTP#A-,l,H\n"); 
fprintf (fp, " SAVEVALUE RR, XHSBIG, H\nl') ; 
fprintf (fp, "\n") ; 
fprintf(fplV* TEST IF DEADLINE HAS BEEN MISSED !\nn); 
fprintf (fp, "\nW) ; 
fprintf (fp, " BON#A TEST G MI, P2, 0K#A\nW) ; 
fprintf (fp," SAVEVALUE FLAG,l,H\nn); 
fprintf (fp, " BUFFER\nW) ; 
fprintf (fp," SAVEVALUE l+,l,H\n"); 
fprintf (fp, " TEST E BVSREGEN, 0 , MON#A\~") ; 
fprintf (fp, " SPLIT 1, MON#A\nW ) ; 
fprintf (fp, " TEWINATE l\n") ; 
fprintf (fp, " OK#A TEST GE P2, XHSDELTA, SAM#A\n") ; 
fprintf (fp, " TEST L MI, P2-XHSDELTA, SAM#A\n") ; 
fprintf (fp, " ASSIGN 1, 1\nv') ; 
fprintf (fp, " TRANSFER , LAM#A\nl') ; 
fprintf(fpIn SAM#A SAVEVALUE DIS,Ml-PZSXH$DELTA,H\n"); 
if (func == 1) 

fprintf (fp, " TEST LE XH$DIS,XH$DELTA*~/~,DA~#A\~"); 
else 

fprintf (fp," TEST LE XH$DISIXH$DEL~~*1/2,DAl#A\n"); 
fprintf (fp, " ASSIGN 1, 1\nt1) ; 
fprintf (fp, " TRANSFER , LAM#A\nU ) ; 
if (func == 1) 

fprintf(fp," DAl#A TEST LE XH$DIS,XH$DELTA*~/~,DA~#A\~"); 
else 

fprintf(fpIw DAl#A TEST LE XH$DIS1XH$DELTA*3/4,DA2#A\n"); 
fprintf (fp, " ASSIGN 1,2\nW) ; 
fprintf (fp, " TRANSFER , LAM#A\~" ) ; 
if (func == 1) 

fprintf(fpIn DA2#A TEST LE XH$DIS,XH$DELTA*~/~,DA~#A\~"); 
else 

fprintf(fpIn DA2#A TEST LE XH$DIS,XH$DELTA*~/~,DA~#A\~"); 
fprintf (fp, " ASSIGN 1, 3\nW) ; 
fprintf (fp, " TRANSFER , LAM#A\nn ) ; 
if (func == 1) 

fprintf(fpIn DA3#A TEST LE XH$DIS,XH$DELTA*~/~,DA~#A\~~); 
else 

fprintf(fp," DA3#A TEST LE XH$DIS,XH$DELTA*~~/~~,DA~#A\~"); - .  

fprintf (fp, " ASSIGN 1, 4\nW) ; 
fprintf (fp, " TRANSFER , L?iM#A\nn) ; 
if (func==l) 

fprintf(fprn DA4#A TEST LE XH$DIS,XH$DELTA*~/~,DA~#A\~"); 
else 

fprintf(fp," DA4#A TEST LE X H $ D I S , X H $ D E L T A * ~ ~ / ~ ~ , D A ~ # A \ ~ ~ ) ;  
fprintf (fp, " ASSIGN 1, 5\nV') ; 
fprintf (fp, " TRANSFER , LAM#A\n") ; 



i f  ( f u n c  == 1) 
f p r i n t f ( f p I w  DA5#A TEST LE XH$DIS,XH$DELTA*~/~,DA~#A\~"); 

- .  else 
f p r i n t f ( f p I n  DA5#A TEST LE XH$DIS,XH$DELTA*~~/~~,DA~#A\~"); 

f p r i n t f  ( f p ,  " ASSIGN 1, 6 \nvv)  ; 
f p r i n t f  ( f p , "  TRANSFER , L A M # A \ ~ "  ) ; 
i f  ( f u n c  == 1) 

f p r i n t f ( f p t w  DA6#A TEST LE XH$DIS,XH$DELTA*~/~,DA~#A\~"); 
e l s e  

f p r i n t f ( f p l U  DA6#A TEST LE X H $ D I S , X H $ D E L T A * ~ ~ ~ / ~ ~ ~ , D A ~ # A \ ~ " ) ;  
f p r i n t f  ( f p , "  ASSIGN 1, 7 \ n v v )  ; 
f p r i n t f  ( f p ,  " TRANSFER , LAM#A\nvv) ; 
i f  ( f u n c  == 1) 

f p r i n t f  ( f p , "  DA7#A ASSIGN 1, 8\nVv)  ; 
else 

f p r i n t f ( f p f W  DA7#A ASSIGN 1 , 8\nVv)  ; 
f p r i n t f  ( f p ,  " LAM#A TEST E  XHSBUSY, 1, D A M # A \ ~ " )  ; 
f p r i n t f  ( f p ,  " TEST E  XHSTX, #A, S H O # A \ ~ " )  ; 
f p r i n t f  ( f p , "  TRANSFER , BAC#A\nVv) ; 
f p r i n t f  ( f p ,  " DAM#A TEST GE PI ,  XH$PRTY, PHO#A\~")  ; 
f p r i n t f  ( f p ,  " SAVEVALUE FLAG, 1, H\nqv ) ; 
f p r i n t f  ( f p , "   BUFFER\^") ; 
f p r i n t f  ( f p ,  " TRANSFER , CAP#A \n") ; 
f p r i n t f  ( f p , "  ENDMACRO\nn ) ; 
f p r i n t f  ( f p ,  "* \nV)  ; 
f p r i n t f  ( f p ,  "*  MACRO ENDS\nM) ; 
f p r i n t f  ( f p ,  "*\nn)  ; 
1 

o u t p u t  ( )  
/ * 
* T h i s  r o u t i n e  i s  t h e  c o n t r o l  program. 
* I t  s t a r t s  of t h e  GPSS/H program, c o n t r o l  i s  
* t r a n s f e r r e d  t o  it a f t e r  each r e g e n e r a t i v e  c y c l e  
* i s  o v e r .  T h i s  r o u t i n e  t h e n  c o l l e c t s  s t a t i s t i c s  
* g e n e r a t e d  d u r i n g  t h e  p rev ious  c y c l e .  
* The e x t e r n a l  r o u t i n e  CONFID i s  c a l l e d  
* when t h e  r e q u i r e d  number of r e g e n e r a t i v e  
* c y c l e s  a r e  o v e r  
* / 

I 
f p r i n t f  ( f p ,  "* \nV)  ; 
f p r i n t f  ( f p ,  "*  CONTROL CARDS \n" ) ; 
f p r i n t f  ( f p ,  "* \nW)  ; 
f h r i n t f  ( f p ,  "*\nlV) ; 
f p r i n t f  ( f p ,  " INTEGER & I , & J \ n W ) ;  
f p r i n t f  ( f p ,  " INTEGER &CYCLE\nm); 
f p r i n t f  ( f p ,  " INTEGER &NODE \ n u ) ;  
f p r i n t f  ( f p ,  " INTEGER   TOTAL\^"); 
f p r i n t f  ( f p , "  INTEGER &MESS \n") ; 
f p r i n t f  ( f p ,  " INTEGER & N  ( % d V ,  nodes)  ; 
f p r i n t f  ( f p ,  " )  \ n u )  ; 
f p r i n t f  ( f p ,  " REAL &SUMY (%d",  nodes)  ; 
f p r i n t f  (•’6,  " )  \ n u )  ; 
f p r i n t f  ( f p ,  " REAL &SUMY2 (Bd", nodes)  ; 
f p r i n t f  ( f p ,  " )  \ n W )  ; 
f p r i n t f  ( f p ,  " REAL &SUMA ( % d n ,  nodes)  ; 
f p r i n t f  ( f p ,  " )  \ n W )  ; 
f p r i n t f  ( f p , "  REAL &SUMA2 (%d", nodes) ; 
f p r i n t f  ( f p ,  " )  \ n n )  ; 
f p r i n t f  ( f p ,  " REAL & SUMYA ( % d W ,  nodes)  ; 
f p r i n t f  ( f p ,  " )  \n") ; 
f p r i n t f  ( f p ,  " REAL &LINDELAY\nV) ; 
f p r i n t f  ( f p ,  " REAL &PERCEN\nn) ; 



f p r i n t f  ( fp ,  " 
f h r i n t f  ( • ’ 6 ,  " 
f p r i n t f  ( fp ,  " 

f p r i n t f  ( f p ,  " 

f p r i n t f  ( fp ,  " 
f p r i n t f  ( f p ,  " 
f p r i n t f  ( f p ,  " 
f p r i n t f  ( f p ,  " 
f p r i n t f  ( f p ,  " 
f p r i n t f  ( f p ,  " 
f p r i n t f  ( f p ,  " 

f p r i n t f  ( f p ,  " 
f p r i n t f  ( f p ,  " AGAIN 
f h r i n t f  ( f p ,  " 
f p r i n t f  (fp,  " 
f p r i n t f  ( f p ,  " 
f p r i n t f  ( f p ,  " 

REAL &SAV\n l ' )  ; 
REAL &DEAD\nl ')  ; 
REAL & D E L T \ ~ " )  ; 

EXTERNAL & C O N F I D \ n w ) ;  

LET & C ~ C ~ ~ = 8 0 0 0 \ n " ) ;  
LET & M E S S = 1 0 0 0 0 0 \ n " ) ;  
LET & ~ O D E = % d \ n " , n o d e s ) ;  
LET & ~ E L T = % d \ n " , d e l t a ) ;  
LET & ~ ~ A D = % d \ n " , d e a d l i n e ) ;  
START 1 , N P \ n U ) ;  
UNLIST CSECHO\nn)  ; 

LET & I = l \ n V 1 )  ; 
I F  ( & I 1  L' &CYCLE) \ n u )  ; 

START 1, N P \ n l ' )  ; 
E L S E \ n l ' )  ; 

START l \ n w ) ;  
END IF\^") ; 

f p r i n t f  ( f p ,  " * \ n u )  ; 
f p r i n t f ( f p I n *  RECORD THE IMPORTANT S T A T I S T I C S \ ~ " ) ;  
f p r i n t f  ( f p ,  "* \ n u )  ; 
f p r i n t f  ( f p ,  " DO &J=1, & ~ 0 D E \ n l ' )  ; 
f p r i n t f  ( f p ,  " I F  (TC& J > O )  \ n W )  ; 
f p r i n t f  ( f p ,  " LET &N ( & J )  =&N (&J) + l \ n U )  ; 
f p r i n t f  ( f p ,  " LET &SUMY ( & J )  =&SUMY ( & J )  + T B & J * T C & J \ ~ " )  ; 
f p r i n t f  ( f p ,  " LET &SUMY2 ( &  J )  =&SUMY2 ( &  J )  + (TB& J * T C &  J )  * (TB& J*TC& J )  \ n l ' )  ; 
f p r i n t f  ( f p ,  " LET & S U ~  ( & J )  = & S u m  ( & J )  + T C & J \ n l ' )  ; 
f p r i n t f  ( f p ,  " LET & s u m 2  ( &  J )  = & S u m 2  ( &  J )  +TC& J*TC& J \ n W )  ; 
f p r i n t f  ( f p , "  LET &SUMYA ( &  J )  =&SUMYA ( &  J )  +TC& J* (TB& J*TC& J )  \ n l ' )  ; 
f p r i n t f  ( f p , "  LET &TOTAL=&TOTAL+TC&J\~") ;  
f p r i n t f  ( f p ,  " E N D I F \ n W )  ; 
f p r i n t f  ( f p ,  " ENDDO\nW) ; 

f p r i n t f  ( f p ,  " LET &SAV=XHl \nW)  ; 
f p r i n t f  ( f p ,  " LET &PERCEN=&SAV*~OO/(&TOTAL+&SAV)\~"); 

f p r i n t f  ( f p ,  " RESET F$TOKEN\nZ j ; 

f p r i n t f  ( f p ,  " I F  (&TOTAL>&MESS) \ n w )  ; 
f p r i n t f  ( f p ,  " GOT0 F I N \ n " ) ;  
f p r i n t f  ( f p ,  " E N D I F \ n n ) ;  
f p r i n t f  ( f p ,  " I F  (&I<&CYCLE)  \ n " )  ; 
f p r i n t f  ( f p ,  " LET & I = & I t l \ n " )  ; 
f p r i n t f  ( f p ,  " GOT0 A G A I N \ n W ) ;  
f p r i n t f  ( f p ,  " E N D I F \ n W )  ; 
f p r i n t f ( f p l U *  C  ROUTINE TO CALCULATE CONFIDENCE I N T E R V A L S \ n n ) ;  
f p r i n t f  ( f p ,  " * \ n u )  ; 
f p r i n t f  ( f p , "  F I N  CALL &CONFID (&NODE, &N (1) , &SUMY ( 1 )  , - \nag)  ; 
f p r i n t f  ( f p ,  "&SUMY2 ( 1 )  , & S U M A ( l )  , & S u m 2  ( 1 )  , &SUMYA(l)  ,FR$TOKEN,-\nl') ; 
f p r i n t f  ( f p ,  "&PERCEN, &DEAD, &DELT) \ n l ' )  ; 
f p r i n t f  ( f p ,  " * \ n u )  ; 
f p r i n t f  ( f p ,  " END\nV' )  ; 
1 

main ( )  
/ * 
* T h i s  m o d u l e  p r o m p t s  t h e  u s e r  t o  enter  v a r i o u s  p a r a m e t e r s  
* / 
I 
i n t  i, j; 
p r i n t f ( " N u m b e r  of s t a t i o n s  ? \ n u ) ;  
nodes = r a n g e - c h e c k  ( 2 , 5 0 )  ; 



printf ("Line delay ?\nW) ; 
stn-lat = range-check (l,20) ; 
printf("Service Time: 1.Exponential 2.Constant\nW); 
ser-ind = range-check (l,2) ; 
if (ser-ind == 1) 

printf ("Exponential service time ?\nn) ; 
else 

printf ("Constant service time ?\nv1) ; 
ser-time = range-check (1, 500) ; 

print•’ ("1. Symmetric ring 2 .Assmetric ring\nS1) ; 
sym = range-check (l,2) ; 
if (sym ==I) 

I 
printf("1nter-arrival time distribution: 1.Exponential 2.Constant\nW); 
arr-ind = range_check(l,2); 
if (arr-ind == 1) 

1 
\ 

printf("Exponentia1 interarrival time ?\n"); 
arr-time = range-check (1, 500000) ; 
1 

else 
t 
print•’ ("Constant interarrival time ?\n") ; 
arr-time = range-check (1,5OOOOO) ; 
1 

1 
else 

( 
ring-ind = 1; 
while (ring-ind < nodes+l) 
I 
printf("l.Individua1 entry 2.Group entry ?\nn); 
grp = range-check (l,2) ; 
if (grp ==I) 

I 
printf ("Node %dw,ring-ind) ; 
print•’(": Inter-arrival time distribution: 1.Exponential 2.Constant ?\nu); 
arr-ind = range-check (l,2) ; 
ring [ring-ind] [l] = arr-ind; 
if (arr-ind == 1) 

printf ("Node %d", ring-ind) ; 
print•’(": Exponential interarrival time ?\nW); 
arr-time = range-check (1,500000) ; 
ringiring-ind] [2] = arr-time; 
1 

else 
I 
printf ("Node %dw, ring-ind) ; 
print•’(": Constant interarrival time ?\n"); 
arr time = range-check (1,500000) ; 
rin<[ring-ind] [2] = arr-time; 

else 
I 
printf ("group size ?\nn) ; 
grp = range-check(1,nodes-ring-indtl); 
printf ("Nodes %d" , ring-ind) ; 
print •’ ( "-%dW , ring-indtgrp-1) ; 
print•’(": Inter-arrival time distribution: 1 Exponential 2.Constant ?\nW); 
arr-ind = range-check(l,2) ; 
for (j=ring ind; $ring-indtgrp; j++) 

ring[ j] [l] = arr-ind; 



I 
printf("Node %dW,ring-ind); 
printf ("-%dM, ring-indtgrp-1) ; 
printf(": Exponential interarrival time ?\nu); 
arr-time = range-check (1,5OOOOO) ; 
for (j=ring-ind; j<ring-ind+grp; jtt) 

ring[ j] [2] = arr-time; 
I 

printf ("Node %dm, ring-ind) ; 
printf ("-%d", ring-indtgrp-1) ; 
print•’(": Constant interarrival time ?\nu); 
arr-time = range-check (1,500000) ; 
for (j=ring-ind; j<ring-indtgrp; jtt) 

ring[jl [2] = arr-time; 
I 

ring-ind = ring-ind t grp; 
I 

I 
printf("Dead1ines: 1.Exponentially distributed 2.Constant\nW); 
dead-ind = range-check(1,Z); 
if (dead-ind == 1) 

printf("mean for exponentially distributed deadlines ?\nW); 
else 

printf("constant deadline ?\nW); 
deadline- = range-check (1,100000) ; 
printf ("delta ?\nW) ; 
delta = range-check (0,100000) ; 
printf("Priority Function: 1.Linear 2.~0n-linear ?\nt'); 
f unc = range-check (l,2) ; 

/ *  calculate value of rho */  
if (sym == 1) 

t 
rho = (float)nodes*ser-time/arr-time; 
I 

else 
i 
rho = 0.0; 
for (i=l; i<nodes+l; it+) 

I 
rho = rho + (float) ser-time/ring [i] [23 ; 
I 

printf ("rho is %f \n", rho) ; 
if (rho>l. 00) 

I 
printf("WAFQJ1NG:queues will build up!\nn); 
I 

/ *  print gpss code * /  

if ( (fp = fopen ("gpss .gpsW, "w") ) <O) 
i 
perror ("fopen") ; 
exit (1) ; 
1 

header ( )  ; 
setup ( )  ; 
macro ( )  ; 

fprintf (fp, "*\nW) ; 
fprintf (fp, "*  CALL MACRO\nn); 



f p r i n t f  ( fp,  "*\nu) ; 

/ *  Generate macro c a l l s .  One f o r  each s t a t i o n  
* on t h e  r ing .  The fol lowing a r e  t h e  parameters 
* f o r  t h e  macro c a l l s .  
* #A - Sta t ion  number 
* #B - Deadline 
* #C - Message s e r v i c e  time 
* #D - not  used 
* #E - Sta t ion  l a t ency  
* #F - Message i n t e r - a r r i v a l  t ime 
* #G - Next s t a t i o n  
* / 
f o r  ( i = l ; i < n o d e s t l ; i + t )  

{ 
f  p r i n t  f  ( f  p, " MAIN MACRO %dn ,  i) ; 
f p r i n t f  ( fp ,  ", %dn,  deadl ine)  ; 
f p r i n t f  ( fp ,  ",V$SERS") ; 
f p r i n t f  ( fp ,  ", , %dW, s tn- la t )  ; 
i f  (sym == 1) 

f p r i n t f  ( fp ,  ",V$ARRS") ; 
e l s e  

f p r i n t f  ( fp ,  ",V$ARR%d", i) ; 
i f  (i==nodes) 

f p r i n t f  ( fp ,  ", 1") ; 
e l s e  

f p r i n t f  ( fp ,  ", %dn,  itl) ; 
f p r i n t f  ( fp ,  " STATION %d\nU,  i) ; 
i f  (i==l) 

f p r i n t f  ( fp ,  " UNLIST MACX\nl' ) ; 
i 

f p r i n t f  (ip, " PAGE\nl') ; 

output  ( )  ; 



/ *  This module is meant for the dynamic case*/ 

void CONFID (NODE, N, SUMY, SUMY2 , SUMA, SUMA2, SUMYA, UTIL, PERCEN, DL, DELT) 
/ * 
*CCCCCCCCCCCCCCCCCCCCCCCC * C 
* Declarations C 
* C 
*CCCCCCCCCCCCCCCCCCCCCCCC 

11 JtF DUMMY VARIABLES 
NODE # OF NODES 
NN 1 N O  * (No -1) 
TOTAL TOTAL # OF MESSAGES TO THE SYSTEM 
UTIL UTILIZATION OF SERVER 
Z A FACTOR NEEDED TO CALCULATE CONFIDENCE INTERVALS 

When variables below start with a T, they become the 
variables for all nodes comdined. 

N (NODE) 
R ( 1  
RVAL ( ) 
s2 0 
S110 
s22 0 
s12 0 
SUMY (NODE) 
SUMY2 (NODE) 
SUMA (NODE) 
SUMA2 (NODE) 
SUMYA (NODE) 
MEANY ( ) 
VARIY ( )  
MEANA ( ) 
VARIA ( ) 
PERCEN 
DL 
DELT 

NUMBER OF CYCLES RUN FOR EACH NODE 
MEAN WAITING TIME 
+-INTERVAL FOR CONFIDENCE INTERVALS 
VARIANCE OF WAITING TIME 
VARIANCE OF Y 
VARIANCE OF ALPHA 
COVARIANCE OF ALPHA AND Y 
SUM OF Y 
SUM OF SQUARE OF Y 
SUM OF ALPHA 
SUM OF SQUARE OF ALPHA 
SUM OF ALPHA*Y 
MEAN OF Y 
VARIANCE OF Y 
MEAN OF ALPHA 
VARIANCE OF ALPHA 
PERCENTAGE OF MESSAGES LOST 
DEADLINE 
DELTA 

NOTE: 1. The factor Z needed to calculate the 90% confidence 
intervals is 1.645. But if different percentage is 
used, you could just change the value for Z in the 
initialization section. 

2. To compile this program perform the following steps 
i) cc -r -c C0NFID.c 
ii) Id -r C0NFID.o -1m -0 C0NFID.o 

int *NODE, *N; 
double *SUMY, *SUMY2, *SUMA, *SUMA2, *SUMYA, *UTIL, *PERCEN, *DL; 
double *DELT; 

int i, j;  

double tn, tsumy, tsumy2, tsuma, tsuma2; 
double tsurnya,percen,dl,delta; 

double z, total; 



int node, n[1001; 
double sumy [lOO], sumy2 [loo] +ma [loo] -ma2 [I001 , sumya [loo] ,util; 

double tr, trval, ts2, tsll, ts22, ts12; 
double tmeany, tvariy, tmeana, tvaria; 

double nnl; 

double r [100], rva1[100], s2 [loo], s11[100], s22 [loo] , s12 [loo] ; 
double meany [100], variy [100], meana [100], varia [loo] ; 

FILE *fp; 

/ * 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C C 
C INITIALIZATION OF VARIABLES C 
C C 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
* / 

node = *NODE; 
percen = *PERCEN; 
dl = *DL; 
delta = *DELT; 
util = *UTIL; 
for (i=l; i<node+l; itt) 

( 
n [il = *  ti-1) ; 
sumy [il = * (SU~yti-1) ; 
sumy2 [il = * (SUMY~+~-1) ; 
suma [il = * (SUMA+~-1) ; 
suma2 [i] = * (SUMA2ti-1) ; 
sumya [il = * (SUMYA+~-1) ; 
1 

if ( (fp = fopen ("stat", "w") ) <0) 
I 
perror ("fopen") ; 
exit (1) ; 
1 

z = 1.645; 
util = uti1/1000; 
total = 0.0; 
for (i=l; i<node+l; it+) 

I 
r[i] = 0.0; 
rval[i] = 0.0; 
5-2 [il =O. 0; 
s12 [i]=O.O; 
sll [il=O.O; 
s22 [i] =O. 0; 
meany[il = 0.0; 
variy[i] = 0.0; 
meana[i] = 0.0; 
varia[il = 0.0; 
1 

/ * 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C C 
C CALCULATE THE IMPORTANT PARAMETERS C 
C C 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
* 1 



f o r  (i=l; i<node+l ;  it+) 
{ 
t o t a l  = t o t a l  + suma[ i ] ;  
i f  ( n [ i ]  >= 2 )  

meany [ i ]  = sumy [ i ]  /n [ i ]  ; 
v a r i y  [ i ]  = sumy2 [ i ]  / n  [ i ]  - meany [ i ]  *meany [ i ]  ; 
meana [ i ]  = suma [ i ]  / n  [ i ]  ; 
v a r i a  [ i ]  = suma2 [ i ]  /n  [ i ]  - meana [ i ]  *meana [ i ]  ; 
n n l  = n [ i l  * ( n [ i ] - 1 )  ; 
s l l  [ i l  = sumy2 [ i l  / (n  [ i ]  -1) - sumy [ i ]  *sumy [ i ]  / n n l ;  
s22 [ i ]  = suma2 [ i l  / (n  [ i ]  -1) - suma [ i ]  *suma [ i ]  / n n l ;  
s12 [ i ]  = sumya [ i ]  / (n  [ i ]  -1) - sumy [ i ]  *suma [ i ]  / n n l ;  
r [ i l  = meany [ i l  /meana [ i ]  ; 
s2  [ i l  = s l l  [ i l  - 2 * r  [ i ]  *s12 [ i ]  + r [ i ]  * r  [ i ]  *s22 [ i ]  ; 
i f  ( ( s 2  [ i]>=O) & &  (n  [ i ]  > = O )  ) 

r v a l  [ i l  = z * s q r t  ( s 2  [ i ]  ) / (rneana [ i l  * s q r t  ( n  [ i l  ) ) ; 
1 

~ C C C C C C ~ C C C C C ~ ~ C C C C C C ~ C C C C C C C C C C C C C C C C C C ~ ~ ~ ~ ~ ~ ~  
C C 
C OUTPUT STATISTICS I N  A NEAT FORMAT C 
C C 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCccccccc 
* / 

fprintf(fp,U*****************************\n~~); 
f p r i n t f  ( f p ,  "* *\nl ' )  ; 
f p r i n t f  ( f p ,  " *  * \ n u )  ; 
f p r i n t f  ( f p ,  IN* SUMMARY OF STATISTICS *\nl ' )  ; 
f p r i n t f  ( f p ,  "* UTILIZATION = % f n , u t i l )  ; 
f p r i n t f  ( f p ,  * \ n n )  ; 
f p r i n t f  ( f p ,  "*  * \ n n )  ; 
f p r i n t f  ( f p r w *  *\nll)  ; 
fprintf(fp,"*****************************\nlf); 
fp r in t f ( fp rwTOTAL # OF MESSAGES % f \ n W , t o t a l ) ;  
f p r i n t f  ( f p I n Z  USED % f \ n n , z ) ;  
f p r i n t f  ( f p ,  \nl ' )  ; 

f o r  (i=l; i<node+l ;  it+) 
{ 
f p r i n t f  ( f p ,  "STATION # %d\nI1, i) ; 
f p r i n t f  ( f p ,  "TOTAL # of CYCLES % d \ n U ,  n  [ i ]  ) ; 
f p r i n t f  ( f p ,  "S2 = % f \ n W ,  s2  [ i ]  ) ; 
f p r i n t f  ( f p ,  "S11 = % f \ n n ,  sll [ i ]  ) ; 
f p r i n t f  ( f p ,  "S22 = % f \ n q l ,  s22 [ i ]  ) ; 
f p r i n t f  ( f p ,  "S12 = % f  \ n n ,  s l 2  [ i ]  ) ; 
f p r i n t f  ( f p ,  "SUM OF CYCLE WAITING TIME = % f  \ n w ,  sumy [ i ]  ) ; 
f p r i n t f ( f p , " S u ~  OF SQUARES = % f \ n " , s u m y 2 [ i l ) ;  
f p r i n t f  ( f p ,  "SUM OF # OF MESSAGES = % f \ n U ,  suma [ i l  ) ; 
f p r i n t f ( f p , " S u ~  OF SQUARES = % f \ n " , s u m a 2 [ i ] ) ;  
f p r i n t f ( f p , " S U ~  OF PROD. OF # MESS. AND WAITING TIME = %f\n l ' ,  s u m y a [ i ] ) ;  
fprintf(fp,"MEAN WAITING TIME / CYCLE = % f \ n W ,  m e a n y [ i l ) ;  
f p r i n t f  ( f p ,  "VARIANCE = %f\nI1,  v a r i y  [ i ]  ) ; 
fpr in t f ( fp lWMEAN # OF MESSAGES / CYCLE = % f \ n W ,  r n e a n a [ i l ) ;  
f p r i n t f  ( f p ,  "VARIANCE = % f  \ n v ,  v a r i a  [ i ]  ) ; 
f p r i n t f  ( f p ,  "MEAN W A I T I N G  TIME = % f w ,  r [ i ]  ) ; 
f p r i n t f  ( f p ,  " + - % f \ n U , r v a l  [ i ]  ) ; 
f p r i n t f  ( f p , "  \nV1) ; 

C 
C CALCULATE THE STATISTICS FOR IDENTICAL STATIONS 
C 
* / 

t n  = 0.0;  



tsumy = 0.0; 
tsumy2 = 0.0; 
tsuma = 0.0; 
tsuma2 = 0.0; 
tsumya = 0.0; 

tr = 0.0; 
trval = 0.0; 
ts2 = 0.0; 
tsll = 0.0; 
ts22 = 0.0; 
ts12 = 0.0; 
tmeany = 0.0; 
tvariy = 0.0; 
tmeana = 0.0; 
tvaria = 0.0; 

for (i=l; i<node+l; i++) 
I 
tn = tn + n[i]; 
tsumy = tsumy + sumy[il; 
tsumy2 = tsumy2 + sumy2[i]; 
tsuma = tsuma + suma[i]; 
tsuma2 = tsuma2 + suma2[i]: 
tsumya = tsumya + sumya[i]; 
1 

if (tn >= 2) 
I 
tmeany = tsumy/tn; 
tvariy = tsumyZ/tn - tmeanyktmeany; 
tmeana = tsuma/tn; 
tvaria = tsuma2/tn - tmeanaktmeana; 
nnl = tn* (tn-1) ; 
tsll = tsumyZ/(tn-1) - tsumy*tsumy/nnl; 
ts22 = tsumaZ/(tn-1) - tsuma*tsuma/nnl; 
ts12 = tsumya/(tn-1) - tsumy*tsuma/nnl; 
tr = tmeany/tmeana; 
ts2 = tsll - 2*tr*ts12 + tr*tr*ts22; 
if ((ts2>=0) & &  (tn>=O)) 

trval = z*sqrt (ts2) / (tmeana*sqrt (tn) ) ; 
1 

fprintf (fp,"FOR IDENTICAL STATIONS \nu); 
fprintf (fp, "TOTAL # of CYCLES %f \nu, tn) ; 
fprintf(fpIwS2 = %f\nn,ts2); 
fprintf (fp, "S11 = %f \nu, tsll) ; 
fprintf (fp, "S22 = %f \n", ts22) ; 
fprintf (fp, "S12 = %f\n",tsl2) ; 
fprintf(fp,"SUM OF CYCLE WAITING TIME = %f\nW, tsumy); 
fprintf(fpIwSuM OF SQUARES = %f\nn,tsumy2); 
fprintf(fpIwSu~ OF # OF MESSAGES = %f\nn,tsuma); 
fprintf(fp,"SUM OF SQUARES = %f\n",tsuma2); 
fprintf(fpIwSUM OF PROD. OF # MESS. AND WAITING TIME = %•’\nu, tsumya); 
fprintf(fplW~EAN WAITING TIME / CYCLE = %f\nW, tmeany); 
fprintf (fp, "VARIANCE = %f\nW, tvariy) ; 
fprintf(fp,"MEAN # OF MESSAGES / CYCLE = %f\nW, tmeana); 
fprintf (fp, "VARIANCE = %f \n", tvaria) ; 
fprintf(fp,"MEAN WAITING TIME = %f\nW,tr); 
fprintf (fp," +-%f \nu, trval) ; 
•’print•’ (fp, "DEADLINE = %f\nW,dl) ; 
fprintf (fp, "DELTA = %f \nV,delta) ; 
 PERCENTAGE OF MESSAGES LOST = %f\nn,percen) ; 
fprintf (fp, " in") ; 
f close (fp) ; 
I 
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