
A DYNAMIC PRIORITY PROTOCOL FOR REAL-TIME
APPLICATIONS USING A TOKEN RING

Bakul G. Khanna

B.E. (Electronics and Communications), University of Roorkee, India, 1982

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in the School

of

Computing Science

@ Bakul G. Khanna 1989

SIMON FRASER UNIVERSITY

February 1989

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

APPROVAL

Name:

Degree:

Title of thesis:

Baku1 G. Khanna

Master of Science

A Dynamic Priority Protocol for Real-Time Applications Using a

Token Ring

Examining Committee: Dr. Tiko Kameda
Chair

Dr. Stella Atkins

Senior Supervisor

Date Approved:

Dr. Steve Hardy

Senior Supervisor

Dr. Ramesh Krishnamurti

Commit tee Member

Dr. Paul K. M. Ho

External Examiner

PARTIAL COPYRIGHT L ICENSE

I hereby grant t o Simon Fraser Un ivers l t y the r i g h t t o lend

my thesis, p ro jec t o r extended essay (the t i t l e o f which i s shown below)

t o users o f the Simon Fraser Univers l ty Library, and t o make p a r t i a l o r

s i ng le copies only f o r such users o r i n response t o a request from the

l i b r a r y o f any other un ivers i ty , o r o ther educational i n s t i t u t i o n , on

i t s own behalf o r f o r one of i t s users. I fu r ther agree t h a t permission

f o r m u l t i p l e copying of t h i s work f o r scholar ly purposes may be granted

by me o r the Dean of Graduate Studies. It i s understood t h a t copying

o r pub l l ca t lon o f t h i s work f o r f inanc ia l ga in sha l l not be allowed

without my wr i t t en permission. ,.

T i t l e o f Thes i s/Project/Extended Essay

A Dynamic P r i o r i t y P r o t o c o l f o r Real-Time A p p l i c a t i o n s u s i n g a Token Ring.

Author:
/

(signature)

Baku1 Khanna

(date)

Abstract

The IEEE 802.5 token ring protocol is not suited for real-time applications where messages have

explicit deadlines and any message which does not meet its deadline is considered lost. This is

because the stations are served in a round-robin manner and message deadlines are not taken into

account.

This thesis proposes a dynamic priority protocol which exploits the priority mechanism specified

in the IEEE 802.5 token ring protocol. This dynamic priority protocol breaks the round-robin

mode of service and serves the messages in the order of their closeness to their deadlines. It aims

at maximizing the number of messages which meet their deadlines. Its application to the IEEE

802.5 token ring protocol results in a favourable performance improvement over the conventional

IEEE 802.5 token ring protocol. This improvement is achieved at the cost of an increase in the

message waiting time (i.e.,the time between the message arrival and its start, of service), which is

not important as long as the message is served before its deadline.

This thesis also develops a simulation model for the new dynamic priority protocol and studies

it for a variety of cases including different ring configurations and different traffic types.

Acknowledgements

I would like to thank my senior supervisors Stella Atkins and Steve Hardy for their guidance and their

encouragement which inspired me and kept me going. I am also thankful to Ramesh Krishnamurti

and Paul Ho for their helpful comments on the thesis. Most of this research was financed by Stella's

research grants which is gratefully acknowledged.

Thanks are also due to Steve Curnrning of the Systems Lab for his help with LATEX and to

Chao Cheng of the Engineering Science Lab for his help with system related problems. I am also

indebted to my friends and fellow graduate students, in particular Edward Lo for many enlightening

discussions, Ranabir Gupta for his thoughtful comments on the thesis and Sanjeev Mahajan for his

help with the analytical results. Finally, I would like to thank my husband for his constant support

and encouragement throughout this endeavour.

Contents

Abstract iii

Acknowledgements

1 Introduction 1

1.1 Local Area Networks . 1

1.2 The IEEE 802.5 Token Ring Protocol . 3

1.2.1 Background . 3

1.2.2 Operation . 5

1.3 Protocols for Real-Time Applications . 8

1.4 The New Dy~lamic Priority Protoco! . 9

1.5 Issues to be Explored . 10

1.6 Composition of the Thesis . 10

2 Overview 12

2.1 Earlier Token Ring Protocols for Real-Time Systems 12

2.1.1 A Static Message Based Priority Scheme . 12

2.1.2 An Adaptive Token Ring Strategy . 13

3 T h e Dynamic Priori ty Protocol 15

3.1 Dynamic Priority Protocol . 15

3.2 The Dynamic Priority protocol for Hard Real-Time Applications 18

3.3 Time Functions to Step up Priority . 19

3.4 Traffic Considerations . 19

3.4.1 Symmetric Traffic . 21

3.4.2 Asymmetric Traffic . 21

3.4.3 Avalanche Traffic . 21

4 Performance Modeling 2 2

. 4.1 System Models 22

. 4.2 Language Used 23

. 4.3 Statistical Considerations 23

. 4.4 Performance Measure 25

. 4.5 Analytical Model 26

. 4.6 Simulation Model 26

. 4.7 Validation 29

5 Resul ts a n d Evaluat ion 3 3

. 5.1 Ring Configuration 33

. 5.2 Single Priority Case 34

. 5.3 Multiple Priority Case 37

. . 5.4 DynamicCase 38

5.4.1 Symmetrical Traffic . 40

5.4.2 Asymmetric Traffic . 40

5 . 4 3 Avalanche Traffic . 41

5.4.4 Variation with Load . 43

. 5.4.5 Variation with Number of Stations 44

5.4.6 Variation with Deadline . 47

5.4.7 Non-linear Priority Function . 49

. 5.4.8 Optimum Range of A 52

5.4.9 The Dynamic Priority Protocol for Hard Real-Time Applications 53

6 Conclusions 5 5

6.1 Summary . 55

. 6.2 Conclusions 56

. 6.3 Future Work 56

A Analysis f o r Dynamic Pr ior i ty Pro tocol 5 7

A . l Analysis . 57

B Siniulation C o d e 6 0

Bibliography 106

List of Tables

5.1 Analytical and Simulation Results for Mean Message Waiting Time in micro sec for

a 3 Station, Single Priority Ring . 35

5.2 Analytical and Simulation Results for Mean Message Waiting Time in micro sec for

a 10 Station, Single Priority Ring . 35

5.3 Analytical and Simulation Results for Mean Message Waiting Time in micro sec for

a 20 Station, Single Priority Ring . 35

5.4 Analytical and Simulation Results for Mean Message Waiting Time in micro sec for

a 40 Station, Single Priority Ring . 35

5.5 Analytical and Simulation Results for Mean Message Waiting Time in micro sec for

an 80 Station, Single Priority Ring . 36

5.6 Improvement due to the Dynamic Priority Profccc! for Symmetric traffic for s 20

Station Ring 40

5.7 Improvement due to the Dynamic Priority Protocol for Asymmetric traffic for a 20

Station Ring . 41

5.8 Improvement due to the Dynamic Priority Protocol for Avalanche traffic for a 20

Station Ring . 43

5.9 Improvement for the Non-linear Avalanche case for a 3 station Ring 52

5.10 Percentage Messages Lost and Waiting Times for 2000 Asynchronous Deadline . . . 54

5.11 Percentage Messages Lost and Waiting Times for 3000 Asynchronous Deadline . . . 54

5.12 Percentage Messages Lost and Waiting Times for 4000 Asynchronous Deadline . . . 54

vii

List of Figures

1.1 Token Format .
1.2 Frame Format .

. 1.3 Access Control Field Format

3.1 Scenario 1 . 17

3.2 Scenario 2 . 17

3.3 Linear priority function . 20

3.4 Non-linear priority function . 20

3.5 Avalanche Traffic . 21

4.1 GPSS Model for the Fixed Priority Protocol . 30

4.2 GPSS Model for the Dynamic Priority Protocoi . Part a 31

4.3 GPSS Model for the Dynamic Priority Protocol . Part b 32

5.1 Waiting Time versus Load for a 3 Station Single Priority Ring 34

5.2 Waiting Time versus Load for a 10 Station Single Priority Ring 36

5.3 Waiting Time versus Load for a 20 Station Single Priority Ring 37

5.4 Waiting Time for Priority 1 and 8 for a 3 Station Multiple Priority Ring 38

5.5 Waiting Time for Priority 1 and 8 for a 10 Station Multiple Priority Ring 39

5.6 Waiting Time for Priority 1 and 8 for a 20 Station Multiple Priority Ring 39

5.7 Percentage Messages Lost for Symmetric Traffic . 20 Stations, 1000 Deadline 40

5.8 Percentage Messages Lost for Symmetric Traffic - 20 Stations, 2000 Deadline 41

5.9 Percentage Messages Lost for Asymmetric Traffic . 20 Stations, 1000 Deadline 42

5.10 Percentage Messages Lost for Asymmetric Traffic - 20 Stations, 2000 Deadline 42

. 5.11 Percentage Messages Lost for Avalanche Traffic - 3 Stations, 1000 Deadline 43

5.12 Percentage Messages Lost for Avalanche Traffic - 3 Stations, 2000 Deadline 44

. 5.13 Traffic Load versus Observed Load - 10 Stations 45

5.14 Percentage Messages Lost . 10 Stations, 1000 Deadline 45

. 5.15 Percentage Messages Lost - 10 Stations, 2000 Deadline 46

viii

5.16 Variation with Load . 10 Stations .
5.17 Percentage Messages Lost . 0.9 Load, 1000 Deadline
5.18 Percentage Messages Lost . 0.9 Load, 2000 Deadline
5.19 Variation with Number of Stations 0.9 Load
5.20 Percentage Messages Lost . 3 Stations, 0.85 Load
5.21 Percentage Messages Lost . 3 Stations, 0.95 Load
5.22 Variation with Deadlines . 3 Stations .
5.23 Percentage Messages Lost for Non-Linear case . 3 stations, 1000 Deadline

5.24 Percentage Messages Lost for Non-linear case . 3 Stations, 2000 Deadline

Chapter 1

Introduction

A conventional token ring protocol like the IEEE 802.5 protocol is not suited for some real-time ap-

plications (ie., systems where messages have explicit deadlines). This is so because the conventional

token ring protocol serves the stations in a round-robin manner and does not take message deadlines

into account. This results in fair service to all the stations but does not aim towards ensuring that

the messages individually meet their deadlines. This thesis develops a dynamic priority protocol

which exploits the priority mechanism of the IEEE 802.5.token ring protocol and makes it more

suitable for such real-time applications.

This chapter provides some background into the field of Local Area Networks, introduces the

subject of the thesis and explains the motivation behind it.

1.1 Local Area Networks

A Local Area Network (LAN) is typically defined as an interconnection of computing nodes via

a communication network that covers a limited geographical area [Liu84]. LAN's are generally

characterized in terms of their topologies; three of the common ones are star, ring and bus.

In the star topology, a central switching element is used to connect all the nodes in the network.

A station wishing to transmit data sends a request to a central switch for a connection to some

destination station, and the central element uses circuit switching to establish a path between the

two stations as if they were connected by a dedicated point-to-point link. This topology has the

advantage of simplicity but lacks robustness, because if the central switch fails, the entire network

is disabled. A Computerized Branch Exchange (CBX) is usually implemented using a star topology

[Sta84]. The CBX is a digital on-premise branch exchange designed to handle both voice and data

connections. Data rates to individual end points are typically low but bandwidth is guaranteed and

there is essentially no network delay, once a connection has been made. This mode of connection is

C H A P T E R 1. INTRODUCTION

called circuit switching and is in contrast with message switching where it is not necessary to set up

a dedicated path between the stations. Rather, if a station needs to send a message, it appends the

destination address to the message. This message is then passed through the network from node to

node. At each node the entire message is received, stored briefly and transmitted to the next node.

This delay at each station is the network delay. It is caused by waiting for all the bits of the message

to arrive at a station and a queuing delay which is caused by waiting for the opportunity to transmit

to the next node.

The ring topology consists of a closed loop, with each node attached to it by means of repeaters.

Data circulates around the ring on a series of point-to-point data links between repeaters. A station

wishing to transmit waits for its turn and then sends the data out onto the ring in the form of a

packet, which contains both the source and destination address fields as well as the data. As the

packet circulates, the destination node copies the data onto a local buffer. Since the ring is a closed

loop, the packet will circulate infinitely unless it is removkd. The packet may be removed by the

destination station. Alternatively, the packet could be removed by the transmitting station after it

has made one trip around the loop. The latter approach is more desirable because (1) it permits

automatic acknowledgements (the destination station flips a bit in the control sequence) and (2) it

permits multicast addressing: one packet sent simultaneously to multiple stations.

The bus topology is characterized by means of a multiple-access, broadcast medium. Since all

devices share a common transmission medium, only one device can transmit at a time. As in the

case of the ring topology, data is transmitted in the form of packets which contain the destination

and the source address and the data. Each station monitors the media and copies packets addressed

to itself.

The ring and the bus topologies are much more robust than the star but at the same time are also

more complex. Various channel access protocols exist for the ring and bus topologies. The IEEE 802

is a family of standards for LAN's which deal with the physical and the data link layer of the Open

Systems Interconnection (OSI) model. The data link layer is split into two parts, the upper layer

is the Logical Link Control (LLC) layer and the lower layer is the Medium Access Control (MAC)

layer. There are three standards at the MAC layer:

IEEE 802.3 - This is the Carrier Sensitive Multiple Access Protocol with Collision Detection

(CSMA/CD). It uses the bus topology. The station wishing to transmit listens to the medium

to determine if another transmission is in progress. If the medium is in use, the station backs

off some period of time and tries again. If the medium is idle the station may transmit. While

transmitting the station continues to listen to the medium. If a collision is detected during

transmission, the station ceases to transmit immediately and waits for a random amount of

time before trying again.

IEEE 802.4 - This is the token bus protocol. It uses a bus topology in which the stations on the

CHAPTER 1 . INTRODUCTION

bus form a logical ring (i.e., the stations are assigned positions in an ordered sequence with the

last member of the sequence following the first). Each station knows the identity of the station

preceding it and following it. A control packet known as the token regulates the right of access.

When a station receives the token, it is granted control of the medium for a specified time.

This station may transmit one or more packets and may poll stations and receive responses.

When it is done, it passes the token on to the next station in logical sequence. This station now

has permission to transmit. Non-token stations are also allowed on the bus. These stations

can only respond to polls or requests for acknowledgements.

0 IEEE 802.5 - This is the token ring protocol. It uses the ring topology and is similar to the

token bus protocol except that all the stations are connected on a unidirectional ring. As in

the case of the token bus, the token regulates the right of access to the medium.

This thesis develops a dynamic priority scheme which is an extension of the token ring protocol

and is more suitable for real-time applications. The token ring protocol was chosen for this purpose

because it provides for multiple priority operation which the token bus and CSMA/CD do not. The

token ring protocol will be described in detail in the following section.

1.2 The IEEE 802.5 Token Ring Protocol

The token ring protocol is the most popular of all ring protocols [Sta88]. The IEEE 802.5 token ring

protocol is based on the use of a small token packet that circulates around the ring. Each station

on the ring maintains a queue for messages to be transmitted to other stations via the data channel.

When a station wishes to transmit a message, it waits until it detects a token passing by. At this

point the station modifies the token from a free token to a busy token (also called Start-of2rame)

and transmits the queued messages immediately following the busy token. The busy token with

the message appended to it is called a frame. After the message is transmitted and the busy token

returns to the transmitting station, the transmitting station releases a new free token so that the

next station downstream can access the channel. The use of a token guarantees that only one station

may transmit at a time. Under lightly loaded conditions, there is some inefficiency since a station

must wait for a token to come around before transmitting. However, under heavy loads, the ring

functions in a round-robin manner, which is both efficient and fair.

The following subsections present the background necessary to understand the token ring protocol

and then describe the operation of the protocol.

1.2.1 Background

The number of messages served (ie., transmitted) at each station depends on the service strategy.

There are three common service strategies

CHAPTER 1. INTRODUCTION

0 Exhaustive Service - The station queue is emptied whenever that station is served.

Non-exhaustive Service - Only a prescribed number of messages axe served at each station. A

special case of this service discipline is in the situation where only one message is served at

each station. This is called the Limited-bone or Ordinary service discipline.

0 Gated Service - Only those messages in the queue are served which were present at the time

the token arrived at the station.

The amount of time a station may occupy the channel is controlled by a timer called the Token

Holding Timer (THT). This timer plays a role in the exhaustive and gated service strategies to

ensure that a station presenting an abnormal trafic load does not hold on to the token forever. The

traffic load is the ratio of the message arrival rate on the ring to the message service rate.

Ring latency is the total delay encountered by a bit of data when it traverses around the ring. It

is expressed in terms of bit time, where one bit time is the time one bit of data occupies on the ring.

The ring latency is present due to the processing delays at each station (ie . , station latency) and the

propogation delay of the transmission medium. If the ring latency is shorter than the token length,

then the station transmitting a token will start receiving the first few bits of the token before it has

finished transmitting. This will not allow the token to circulate continuously because the received

bits of the token will have to be buffered at the transmitting station until the station has finished

transmitting. To avoid this condition, an artificial delay is introduced into the ring to make the ring

iatency greater than the length of the token. This function is performed by the latency buffer which

is provided by one of the stations.

There are three ways in which a transmitting station can generate a new free token. They are

the single packet, single token and multiple token operation.

In the single packet case, a transmitting station waits until all its transmitted bits have travelled

around the ring and have been removed by the transmitting station. The station then releases a

new free token. This is the most conservative approach because it ensures that there is only one

transmission at any point in time. Very few implementations use this approach because it does not

utilize the token efficiently; nevertheless it is the simplest to implement and analyze.

In the single token case, a transmitting station waits only until it has received its busy token

back again. It then releases a new free token. If, however, the message transmission time is greater

than the ring latency, then the transmitting station will receive the busy token before it has finished

transmitting. In this case a new token is released right after transmission.

In the multiple token case, a station releases a token right after transmission. If the message

transmission time is shorter than the ring latency, it is possible to have several busy tokens and one

free token on the ring at the same time. If the message transmission time is longer than the ring

latency, multiple token operation is the same as the single token operation.

CHAPTER 1. INTRODUCTION

TOKEN FORMAT FOR THE IEEE 802.5 PROTOCOL

SD = Starting Delimiter(1 octet)
AC = Access Control(1 octet)
ED = Ending Delimiter(1 octet)

Figure 1.1: Token Format

Based on the above definitions, the following subsection describes the operation of the IEEE 802.5

token ring protocol.

1.2.2 Operation

The token and frame formats for the IEEE 802.5 token ring protocol, including the bit length for

each field, are shown in Figure 1.1 and Figure 1.2 respectively. The bit lengths are expressed in

terms of octets, where one octet is eight bits.

The token format consists of three fields: The Starting Delimiter (SD), the Access Control (AC)

field and the Ending Delimiter(ED). The SD is the means by which a station recognizes that the

transmission on the ring is indeed a token or a frame. The AC field contains three priority bits, a

token bit, a monitor bit and three reservation bits. The AC field format is shown in Figure 1.3. The

three bit reservation and priority fields allow for eight distinct priority levels. The reservation field

(R) is used by stations with high priority messages to indicate that the next free token be issued

at the priority of the waiting message. The priority field (P) indicates the current priority of the

token. Only those stations which have messages of priorities greater than or equal to the priority of

the token are allowed to seize the token. The token subfield (T) indicates whether the token is busy

or free. The monitor field (M) is modified only by the active monitor on the ring. The monitor is

the ring function that is responsible for the recovery of error situations. There is only one monitor

on the ring at a time which is referred to as the active monitor. When the IEEE 802.5 token ring

protocol operates at a single priority, the priority and reservation fields are not used. The Ending

Delimiter (ED) contains a special pattern for ED recognition, an intermediate frame bit and an error

bit.

The frame format consists of three fields: the Start-of J'rameSequence (SFS),

the Frame-CheckSequence (FCS) and the End-ofgrame-Sequence (EFS). The SFS is made

up of the SD and the AC fields which are the same as in the token format. However, when

CHAPTER 1. INTRODUCTION

FRAME FORMAT FOR THE IEEE 802.5 PROTOCOL

SD AC FC DA SA INFO FCS ED FS s
SFS = Start of Frame Sequence
FCS = Frame Check Sequence
EFS = End of Frame Sequence
SD = Starting Delimiter(1 octet)
AC = Access Control(1 octet)
FC = Frame Control(1 octet)
DA = Destination Address(2 or 6 octets)
SA = Source Address(2 or 6 octets)
INFO = Information(0 or more octets)
FCS = Frame Check Sequence(4 octets)
ED = E n d i g Delimiter(1 octet)
FS = Frame Stalus(1 octet)

Figure 1.2: Frame Format

ACCESS CONTROL FIELD FORMAT

P = Priority bit

T = Token bit
M = Monitor bit
R = Reservation bit

1

Figure 1.3: Access Control Field Format

P P P T M R R R

CHAPTER I . INTRODUCTION 7

these two octets are part of a frame, the token bit in the AC field is transmitted as a one. The

FCS is composed of one Frame-Control (FC) octet, either two or six Destination-Address (DA)

octets, two or six SourceAddress (SA) octets, an information field of zero or more octets and

a CyclicJledundancy-Check (CRC) field of four octets. The EFS is composed of an ED and a

FrameStatus (FS) field. The ED is identical to the ED in the token format. The FS field enables

the destination station to acknowledge the receipt of the packet to the source station.

The IEEE 802.5 token ring protocol also provides for multiple priority operation with a maximum

of eight priority levels. The priority algorithm of the token ring protocol can be summarized as

follows:

A station wishing to transmit a message must wait for a free token whose priority is less than or

equal to the priority of the message to be transmitted. While waiting, a station may reserve a token

at the priority level of the waiting message in the following manner:

If a busy token goes by, a station may set the reservation field in the token to the waiting

message priority only if the reservation field contains a value less than the message priority.

If a free token goes by, whose priority is greater than the waiting message priority, the station

may set the reservation field in the token to the message priority if the reservation field contains

a value less than the message priority.

When a station seizes a token, it marks the token as busy, sets the reservation field to the lowest

priority ievei and leaves the priority field unchanged.

After a station has finished transmitting a message, it releases a new free token with the priority

field in the token set to the maximum of the following values - the token priority, the reservation

field value and the waiting messsage priority. The reservation field is set to the maximum of the

reservation field value and the waiting message priority.

The station that upgraded the priority of the token is responsible for downgrading it to its

former level, when all higher priority stations are finished. This is to assure that no token circulates

indefinitely because its priority is too high. The priority is downgraded in the following manner:

When the station which upgraded the priority of the token to a certain level detects a free token

at that higher priority, it can assume that there is no more higher priority traffic waiting and it

downgrades the priority of the token before passing it on to the next station.

The net effect is round-robin within each of the eight priority levels. Starvation of lower priority

messages can easily occur. Only the highest priority level provides guaranteed message delivery time.

In the worst case, the first high priority waiting message will have to wait for almost two frame times

plus one round trip of the token before it gains access to the token. This is shown in Figure 1.2.2

where Pm denotes the priority of the waiting message. A frame time is the time taken for a frame

to traverse the ring. One frame time is needed due to the fact that the high priority message might

arrive at a station C just when the header of a frame has gone past (i.e., a reservation cannot be

CHAPTER 1 . INTRODUCTION

Station C, Pm = 7

Station A, Pm = 4

made). The second frame time arises from the fact that after the above message has been served

(by station A), the next station downstream i .e . , B may seize the token (a reservation is made when

this frame passes station C which has a high priority waiting message). The token round trip comes

from the fact that after the message on the ring returns to the transmitting station B, it removes

the message from the the ring and releases a new free token. Depending on the relative positions of

the stations, it can take one round trip for the free token to arrive at the requesting station.

1.3 Protocols for Real-Time Applications

Some real-time network applications involve message delivery with strict deadlines, where any mes-

sage whose service is not started by its deadline is considered lost. This is based on the observation

that the message contents of an excessively delayed message lose their value at the receiving end.

Therefore the transmitting station may discard such a message when it overshoots its deadline.

In so-called hard real-time networks, the network cannot afford to lose any time-critical messages.

For example, consider two communicating hard real-time tasks (executing on different nodes), where

one is required to precede the other. In this case scheduling decisions concerning a task are affected

by the completion time of the task that precedes it and by the delay in communication from that task.

The main issue for such applications is whether a certain schedule is feasible or not [Kur84]. In such

applications, traffic is classified as synchronous (time-critical) and asynchronous (not critical) traffic.

The current practice to schedule such traffic on the IEEE 802.5 token ring is to use round robin

scheduling with each station's THT set proportional to the time required to service its synchronous

message set. The asynchronous messages are served when there is no synchronous message waiting

[Str88].

In certain other, so-called soft real-time networks, a small amount of message loss is usually

tolerated. An example of such an application is packetized voice where the loss of a small fraction of

CHAPTER 1 . INTRODUCTION

the packets is usually tolerable since the speech is still intelligible to the receiver. Other applications

include distributed sensor networks and some real-time process control systems. Yet another example

is that of impatient customers who leave their queues if their service is not started before a certain

deadline or a system which has single buffers at each station and a message that arrives at a station

before the previous one has been served, overwrites it. The primary aim of such an application

running on a real-time LAN is to maximize the percentage-of messages which meet their deadlines.

This is a requirement quite different from that of a conventional LAN where the primary aim is

to minimize the mean message waiting time. This fundamentally different objective suggests that

conventional LAN protocols may not be suitable for real-time applications.

Several protocols exist for supporting hard real-time communication applications in ring networks,

Message based priorities are used to distinguish between synchronous and asynchronous traffic by

assigning synchronous messages a higher priority than the asynchronous messages [Rom81,Str88].

This breaks the round-robin mode of service by ensuring that all the higher priority messages are

served before the lower priority messages. It results in round-robin mode of service within each

priority level. This strategy may lead to starvation of low priority messages, which is not a problem

since the major concern is to ensure that the synchronous messages meet their deadlines.

None of the above schemes is applicable to soft real-time applications where the traffic presented

to the ring is of a single priority and the aim is to maximize the percentage of messages which meet

their deadlines. A single priority token ring protocol may not be suitable for real-time applications

because the stations on the ring are serviced in a round-robin manner and message deadlines are not

taken into account. Due to the round-robin mode of service there is an inherent priority assignment

imposed on the stations due to the topology of the ring.

A prioritized token ring protocol breaks the round-robin mode of service by ensuring that all high

priority messages are served before the lower priority messages. It results in round-robin service

within each priority level. The prioritized token ring can be used for hard real-time traffic by

assigning higher priorities to time-critical messages and lower priorities to background messages.

The following section introduces the new dynamic priority protocol whose application to the IEEE
802.5 token ring protocol aims at maximizing the number of messages which meet their deadlines

and hence makes it suitable for soft real-time applications.

1.4 The New Dynamic Priority Protocol

In this thesis, a dynamic priority protocol is proposed for a token ring network for soft real-time

applications. It serves the messages in the order of the closeness to their deadlines. The deadline

is assumed to be the deadline at the source station ie., the time before which the message service

should have begun. A message which has overshot its deadline is discarded by the source station.

At any time the priority of a queued message is determined by the amount of time remaining

CHAPTER 1 . INTRODUCTION

until its deadline. Channel access rights are given to nodes dynamically, depending on the priority

of the message at the head of queue at the node at that instant of time.

The new dynamic priority protocol is an extension of IEEE 802.5 token ring protocol. It is based

on the principle that as an unserviced message approaches its deadline, its priority is raised as a

function of time until it either gets served or it overshoots its deadline. If the deadline is overshot

then the message is discarded at the source station.

The dynamic priority protocol overrides the inherent priorities imposed on the stations in a token

ring LAN due to the interconnection topology. Round-robin scheduling takes effect only to serve

messages which are equally critical. For example, if more than one message on the ring at different

stations, at any instant of time, have the same time remaining until their deadlines, then those

messages should be served in an order specified by the round-robin scheme.

On the principle that one cannot achieve something for nothing, it is clear that an improvement

in the number of lost messages is achieved at the cost of some other measure, which in this case

is the message slack time. The message slack time is the difference between the message's start

of service and its deadline. The dynamic priority protocol results in the slack time being reduced

which essentially means that on the average, more messages are served closer to their deadlines. This

is not a cause for concern since a deadline exists and the message waiting time for a successfully

transmitted message is always less than the deadline.

1.5 Issues to be Explored

The following issues related to the dynamic priority protocol will be explored in the thesis.

0 The time function according to which the priority of a message is stepped up.

0 The improvement of the dynamic priority protocol over the conventional IEEE 802.5 protocol

in terms of the number of messages which meet their deadlines.

The variation of the above improvement with change in number of stations, network load and

message deadlines.

0 The application of the dynamic priority protocol to different traffic types and distributions, for

example: symmetric, asymmetric and avalanche traffic.

0 The application of the dynamic priority protocol to hard real-time networks.

1.6 Composition of the Thesis

Chapter 2 deals with an overview of the field. In particular, it presents some schemes based on the

token ring protocol for real-time applications and points out the drawbacks of these schemes. Chapter

CHAPTER 1. INTRODUCTION 11

3 explains the new dynamic priority protocol in detail. Chapter 4 discusses the implementation issues

of the protocol including the simulation models used to measure its performance. Chapter 5 presents

the results of the simulation runs. Chapter 6 summarizes the results and presents some conclusions

based on the simulation results. It also provides some insight into topics for future work.

Chapter 2

Overview

This chapter gives an overview of some earlier protocols based on the IEEE 802.5 token ring protocol.

It points out some of the drawbacks inherent with these schemes and shows how our new dynamic

priority protocol helps in alleviating some of these problems.

2.1 Earlier Token Ring Protocols for Real-Time Systems

2.1.1 A Static Message Based Priority Scheme

Two message based priority schemes have been proposed in [Rom81] for a token ring network. Both

these schemes are forerunners of the IEEE 802.5 token ring protocol and are based on the multiple

token operation. These include a preemptive and a non-prekmptive scheme. In the previous chapter

it was shown that the IEEE 802.5 prioritized token ring protocol can be made suitable for real-time

applications by assigning higher priorities to time-critical messages and lower priorities to non critical

traffic. This priority assignment leads to the stations not being served in a round-robin manner since

the high priority messages are served before the low priority messages. This scheme leads to the

starvation of lower priority messages.

In the preemptive scheme, [Rom81] each station with a message to transmit monitors the channel.

Each message transmitted is preceded by its priority. Assuming that each station can detect message

boundaries, if a station with a high priority message detects a lower priority message going past, it

intercepts the message and replaces the message with its own. This substitution implies that the

intercepted message has been lost and will have to be retransmitted. This scheme has the potential

to distort the transmission order of messages on the ring as will be seen in the following example. If

we assume that a small number denotes a low priority message, then consider a sequence of messages

going around the ring in the order of priorities 7, 5, 2, 1. If a station has a message of priority 6 to

transmit, it waits for the first message in the sequence, i.e. a priority 7 message to go past. It then

CHAPTER 2. OVERVIEW

detects the second message in the sequence of priority 5. It intercepts this message and places its

own message instead. So now the sequence of messages going around the ring have priorities in the

order 7, 6, 2, 1. We see that a message of priority 5 has been preempted but lower priority messages

(i . e . , 1 and 2) are allowed to continue on.

In the worst case, the first high priority waiting message may have to wait for one round trip of

the token or one frame time to access the channel. The round trip of the token is needed in case

there is no message being transmitted on the ring. In that case the station will need to wait for

one round trip of the token (worst case) to gain access to the channel. The frame time is needed in

case a Start-of-Frame has just passed the station. In that case the station will have to wait for

the Start-ofgrame of the next message because it cannot preempt the current message since the

field indicating the priority of the message may have already passed the station. It would definitely

not want to preempt a higher priority message. This scheme could lead to starvation of low priority

messages.

The non-preemptive scheme in [Rom81] alleviates some of the problems of the above preemptive

scheme. In this scheme, at the end of a successful message transmission, ready subscribers commence

a reservation period, during which the channel behaves as in the intercepting algorithm above. At the

end of this period, exactly one subscriber from the highest,priority class is identified and transmits

its message.

In the worst case two round trips of the token plus a frame delay will be required by a station

with the highest priority message to access the channel. The frame time is due to the fact that a

message may just have begun to get served when the high priority message arrives. After the current

message has been served, there is a reservation cycle which is exactly one round trip of the token.

The other round trip of the token is due to the distance the token has to travel to get to the station

with the high priority message, which, in the worst case can be one round trip of the token. Again,

as for any other scheme with static priorities, it could lead to starvation of lower priority messages.

2.1.2 An Adaptive Token Ring Strategy

An adaptive token ring strategy for a real time environment has been proposed in [Kim83]. It

combines the advantages of an exhaustive and a non-exhaustive service scheme (refer to Section

1.2.1 for definitions of exhaustive and non-exhaustive service disciplines). If we define the ring scan

time as the time taken for a station to receive the next usable token, it is clear that in a non-exhaustive

scheme, the ring scan time is better than that in an exhaustive scheme.

An advantage of the exhaustive scheme over the non-exhaustive scheme is clear if we consider the

following scenario. When the ring is poorly utilized, a station with a temporarily heavy traffic volume

will not degrade the overall ring performance under the exhaustive policy because that station will

simply empty out its queue when it seizes the token. The non-exhaustive ring will, however, not be

able to adjust to this type of dynamic behavior of the ring operations and may lead to an extended

CHAPTER 2. OVERVIEW

waiting time for packets that cannot be transmitted during the current scan cycle.

The adaptive token ring strategy in [Kim831 involves dynamically adjusting the allowed Token

Holding T i m e r (THT) by observing the ring activities at other stations (The THT ensures that a

station presenting a heavy load to the ring does not hold on to the token forever). Thus this scheme

incorporates the advantage of both the exhaustive and non-exhaustive ring, namely the lower scan

time and fairness of a non-exhaustive ring and the lower average waiting time of an exhaustive ring.

This is an adaptive strategy and works well for a real-time system because it adjusts to the mes-

sage load on each station by providing a dynamic means of assuring resource sharing in a distributed

manner. It is, in principle, similar to setting up a global schedule so that under heavy traffic condi-

tions it becomes a non-exhaustive scheme and every station gets a fair share of the bandwidth while

under light traffic conditions it becomes an exhaustive scheme. This scheme is in essence similar to

the FDDI token ring scheme [Ros86b,Ros86a,Sev87] where a global schedule is set up. In the FDDI

protocol time-critical traffic is transmitted at any reception of a free token while non-critical traffic

can only be transmitted if the token is running ahead of schedule.

The strategy in [Kim831 allows for selective removal of real-time traffic when congestion develops

in a system, to meet the strict delay constraints of real-time messages. This selective removal

is achieved in the following manner: after a station has transmitted its messages, (the number

determined by the THT timer) the station immediately discards all the messages still waiting in the

queue. Therefore messages waiting more than one token cycle time will be discarded.

The message based priority schemes in [Rom81] have, like all other static priority schemes, the

disadvantage of starvation of lower priority messages. The adaptive scheme in [Kim831 is not a

prioritized scheme but suffers from the drawback that the stations are served in a round-robin man-

ner. Thus, messages at the current station being served may jeopardize the chances of transmission

of messages at other stations which may be closer to their deadlines. The emphasis seems to be

on ensuring fairness as against ensuring that a maximum number of messages meet their deadlines

individually.

These drawbacks led to the idea of the dynamic priority scheme where the priority of a waiting

message is stepped up over time. The priority of a message at any time is determined by the time

remaining until its deadline, which essentially means that messages which are closer to their deadlines

have priority over messages which are not as critical.

Chapter 3

The Dynamic Priority Protocol

The preceding chapters gave an overview of the token ring protocol, presented some schemes based

on it and discussed the drawbacks of these schemes. The proposed dynamic priority protocol is based

on the IEEE 802.5 token ring protocol and attempts to minimize the percentage of lost messages

(i.e., messages which do not meet their deadlines and are thus considered lost). The dynamic priority

protocol is compared with the standard use of the IEEE 802.5 token ring protocol and is shown to

perform better under most cases.

3.1 Dynamic Priority Protocol

The dynamic priority protocol serves messages in the order of their closeness to their deadlines rather

than in the order imposed by the topology of the ring. This is in an attempt to maximize the number

of messages which meet their deadlines. The deadline is assumed to be the deadline at the source

station i.e., the instant of time before which the message service should have begun.

There are many possible message service schedules depending on the various message parameters.

For example, messages can be served in the order of message arrival times, message length, message

lifetimes (i.e., the time between the message generation time and its deadline) and message deadlines

(i.e., the amount of time remaining until the deadline). The service schedule chosen for this thesis

is according to message deadlines. There are several reasons for this choice.

If the messages are served in the order of their arrival times, it will lead to First Come First

Serve scheduling. Whatever the message deadline distribution, the messages will always be served in

their order of arrival. Deadline will not have any effect on this scheduling policy. Thus, if a certain

message is more critical than others - reflected by its closeness to its deadline, it will not be given

any priority over the others.

Messages served in the order of message lengths implements the Minimum Message Length First

CHAPTER 3. THE DYNAMIC PRIORITY PROTOCOL

scheduling policy. This thesis assumes constant message lengths which discards this choice as a

suitable service schedule.

If the messages are served in the order of their lifetimes it would lead to the shortest lifetime

first scheduling policy which may result in starvation of the longer lifetime messages. There may be

applications where the lifetime of a message may be a direct reflection of its priority (i.e., shorter

lifetimes would lead to higher priorities). In those cases it may be required to serve the shorter

lifetime messages first, even at the cost of starvation of the longer lifetime messages.

In the message deadline service, the messages are served in the order of their closeness to their

deadlines. For example, a newly generated message with a short lifetime may be placed in the queue

behind a message with a longer lifetime, but which has been in the queue for a longer time (i.e. it

is closer to its deadline). This scheme does not lead to starvation of longer lifetime messages. When

a message gets to the head of the queue, it is assigned a priority based on the time remaining until

its deadline. This is a truly dynamic scheme because the longer a message waits in the queue, the

closer it gets to its deadline and the higher its priority is stepped up.

The message deadline service schedule is found to be the most suitable for this thesis because the

aim is to maximize the number of messages which meet their deadlines. This can be accomplished

by serving those messages first which are closer to their deadlines rather than those which can wait

for some more time, which is the message deadline scheduling policy.

Consider the scenario in Figure 3.1. Assume that a message arrives at the head of the transmit

queue A time units or more before its deadline (A is a protocol parameter). This message is assigned

the lowest priority (i.e., one). Its priority stays the same until it reaches A time units before its

deadline. From then on its priority increases as a function of A, its deadline (D) and the current

time (t) until it gets served or its priority reaches the maximum level (i.e., eight), since there are

a maximum of eight priority levels allowed by the IEEE 802.5 token ring protocol. A message will

overshoot its deadline if it stays unserviced at priority level eight.

In Figure 3.2, a message arrives at the head of the queue less than A time units before its deadline.

It is thus assigned a priority based on the function f. As above, the priority is increased with time.

The parameter A and the function fare chosen such that only eight priority levels are allowed.

A message will overshoot its deadline if it stays unserviced at priority level eight.

The number of priority levels available can affect the performance of the protocol in the following

manner. A small number of priority levels could result in more than one message being assigned

the same priority, though they would have been at different levels if more levels had been available

[Leh86]. Since such ties are resolved by the round-robin scheme, it could lead to priority inversion,

the situation in which a message which an optimal algorithm would assign the highest priority, does

not get serviced first because it is assigned the same priority as another message less critical than

CHAPTER 3. THE DYNAMIC PRIORITY PROTOCOL

message
arrival at

head of queue
message

deadline(D)

Figure 3.1: Scenario 1

message
arrival at

head of queue

+ time(t)

D-A

message
deadline(D)

T

Figure 3.2: Scenario 2

4 A

CHAPTER 3. THE DYNAMIC PRIORITY PROTOCOL 18

itself. A very large number of priority levels will, on the other hand, result in more overhead for the

token ring protocol. This overhead arises due to the downgrading of the priority of the token when

there is no high priority traffic waiting. In the worst case this process of downgrading the priority

of the token to the priority level it was upgraded from, can take one round trip of the token.

In the worst case one round trip of the token plus two frame times will be required by the first

station with a high priority message to access the channel as in the IEEE 802.5 protocol.

In the case when A = 0, the dynamic priority protocol will behave exactly like the IEEE 802.5

single priority token ring protocol with deadlines. This is because the priority of a waiting message

starts to get stepped up 0 time units before its deadline, meaning thereby that the priority of the

message is never stepped up, which results in all messages staying at the same priority (i.e., the

priority they were generated at). Henceforth, this IEEE 802.5 single priority token ring protocol

with deadlines will be referred to as the fixed priority protocol and will be used as a basis for

comparison with the dynamic priority protocol.

3.2 The Dynamic Priority protocol for Hard Real-Time Ap-

plicat ions

The previous section described the dynamic priority protocol when applied to soft real-time traffic.

Hard real-time traffic involves two classes of traffic: the synchronous (i.e., time-critical) traffic and

the aynchronous (ie., non-critical) traffic. Synchronous traffic has hard deadlines (ie., it should

have guaranteed message delivery time). Asynchronous traffic, on the other hand is not time-critical

and is associated with soft deadlines. The standard method for scheduling such traffic, as described

in Section 1.3, results in the synchronous class messages being provided with guaranteed message

delivery time and a possibility of the asynchronous class messages being starved, This strategy is

used provided the data rate on the ring is sufficient to accomodate the synchronous traffic message

arrival rate.

A Deferred Server (DS) scheme has been developed in [Str88] which guarantees synchronous

class message delivery and improves the response of the asynchronous class of messages. It is based

on the principle that since there is no advantage to the system for the synchronous class messages

completing early, the DS algorithm assigns a priority higher than the synchronous traffic to the

asynchronous traffic up until the point where the synchronous messages would start to be late. High

priority asynchronous service is limited by a Deferrable Server which has a fixed capacity. When

the server's capacity is exhausted by asynchronous message arrivals, additional arrivals are assigned

background priority. This increases the responsiveness of the asynchronous class messages at the

cost of reducing the average slack time for the synchronous messages.

The dynamic priority protocol is not useful when applied to the above real-time traffic. This is so

because the dynamic priority protocol will assign priorities to both synchronous and asynchronous

CHAPTER 3. THE DYNAMIC PRIORITY PROTOCOL

messages based on their closeness to their deadlines and will, in no way, favour the synchronous

messages over the asynchronous messages. This will result in the asynchronous messages not being

starved and the synchronous messages not being provided with guaranteed access.

The dynamic protocol can, however, be adapted to a hard real-time environment in the following

manner. Synchronous class messages can be assigned the highest available priority (ie., eight), since

the highest priority messages are provided with guaranteed access in a prioritized token ring scheme.

Asynchronous class messages, at their time of generation, are assigned the lowest priority level and

their priority is incremented according to a priority function until they reach a level one less than

the level assigned to the synchronous set of messages or until they get served.

This scenario guarantees delivery of the synchronous class messages and increases the number

of asynchronous class messages which meet their deadlines. This improvement in the number of

asynchronous messages which meet their deadlines, is achieved at the cost of a decrease in the

average asynchronous message slack time.

Thus, we see that the dynamic priority protocol can be used with both hard and soft real-time

applications. The dynamic priority protocol is studied under a variety of different cases to observe

its performance. These different cases include different ring configurations, different traffic types and

different time functions. An attempt is made to arrive at a set of conditions under which it would

be most advantageous to use the dynamic priority protocol.

3.3 Time Functions to Step up Priority

This thesis explores two functions, the linear and the non-linear functions. In the linear case the

length A is divided into eight equal parts corresponding to the eight priority levels. This time

function is shown in Figure 3.3. In the non-linear case the length A is divided into eight unequal

parts. There can be many possible non-linear functions. An example of a non-linear function is

shown in Figure 3.4.

3.4 Traffic Considerations

Real-time traffic is multifarious in its length, arrival process and service requirements [B o u ~ ~] . Alarm

messages are very different in nature from bulk file transfers. Alarms produce short messages with a

high degree of emergency. Bulk file transfers produce large quantities of messages with a low degree

of emergency.

In real-time applications the external world is observed through a set of sensors. Most of them

produce periodic data of fixed size. These sources are not synchronous and may have many different

periods. Exceptionally, alarms are generated which correspond to abnormal physical events. Alarms

are subject to produce message avalanches which look like a load peak.

CHAPTER 3. THE DYNAMIC PRIORITY PROTOCOL

Linear Priority Function
10-

8 -
* - 6 - -
L

0 -
L

P
4 -

2 -
o l . . I . . , . . I . . 1 . . 1

0 2 4 6 8 10

-A-
t i m e

Figure 3.3: Linear priority function

Figure 3.4: Non-linear priority function

Non-linear Priority Function
10-

8-

6 -
4 -

2-
t 1

CHAPTER 3. THE DYNAMIC PRIORITY PROTOCOL

avalanche
duration

inter-message
delay
*

T v T r v I I I . c time

inter-avalanche
delay

Figure 3.5: Avalanche Traffic

This section describes different types of traffic commonly encountered in real-time applications.

3.4.1 Symmetric Traffic

In this case all the stations on the ring experience the same traffic load. This case does not occur

very often practically, but is of interest because it is the easiest to understand.

3.4.2 Asymmetric Traffic

In this case each station may experience a different traffic load. This makes the ring unbalanced.

Protocol response to asymmetric traffic is of considerable interest because many practical real-time

applications fall into this category. For example, a set of sensors connected to different nodes of the

ring may be observing different events at different rates.

3.4.3 Avalanche Traffic

The concept of an avalanche is used to represent the arrival of a large quantity of messages over

a short interval. There are three parameters used to define an avalanche. The first is the inter-

avalanche delay, the second is the inter-message delay in the avalanche and the third is the avalanche

duration. Figure 3.5 shows these parameters clearly.

Alarm traffic in a process control system can be modeled using the avalanche traffic model. The

inter-avalanche delay is the time between groups of alarms. The avalanche duration is the alarm

condition. The inter-message delay is the time between individual alarms.

Chapter 4

Performance Modeling

4.1 System Models

In order to predict the future performance of the system, an abstract representation of the system is

needed which will embody its behavior. This is called a model of the system [Mac85]. A model con-

tains parameters that can be varied to portray different conditions. There are two main approaches

to tackle these models: the analytical approach and the simulation approach.

A model solved by an analytical method represents the system by a set of mathematical equations.

These equations are solved to determine the performance of the system.

A model solved by simulation is a computer program that acts like the system. When the

simulation is run, the computer program keeps track of the contention for resources represented in

the model and calculates the performance measures based on what it has observed.

The analytical approach can be applied to relatively simple problems. The simulation approach,

on the other hand, can be applied to all kinds of problems but has the disadvantage of being statistical

in nature. This can introduce inaccuracies in the performance measures. Simulation when applied

to very detailed problems, also introduces the disadvantage of having to validate the simulation

program. The results produced by solving an analytical model are exact for that model. However,

the analytical model may not be an accurate representation of the actual system. Therefore, the

analytical results may not agree with the system behavior. Since a simulation model may be made as

detailed and realistic as we like, the results from the simulation model may be closer to the behavior

of the system in spite of the statistical variability.

In this thesis, due to the complexity of the protocol being analyzed, simulation has been used for

the performance evaluation of various models.

CHAPTER 4 . PERFORMANCE MODELING

4.2 Language Used

GPSS was the language used for simulation. There was a choice between using a simulation language

as against a general purpose language. A simulation language was chosen because it relieves the

programmer of the job of implementing the low level simulation functions. Among the simulation

language, there was a choice between using GPSS or SIMSCRIPT (These are the two simulation

languages available on the University Computer System). GPSS is a low level language and was

chosen because it is designed for relatively easy simulation of queuing systems. It also provides ease

in modifying the models for the various cases to be simulated.

GPSS/H was the version of the language which was used [Hen83]. A pre-processor was developed

in C to allow convenient entry of various system parameters. This pre-processor generates GPSS/H

code for the parameters entered. A post-processor was also written in C which calculates the results

based on the statistics gathered during simulation and also calculates the confidence intervals. The

pre-processor and the post-processor are based on Edward Lo's [Lo881 programs. I converted the

post-processor from FORTRAN (in which it was originally written) to C since the SUN version of

GPSS/H does not support the linking of FORTRAN programs.

4.3 Statistical Considerations

One of the most difficult problems concerned with using simulation is how to determine the accuracy

of the simulation estimates [Mac85]. One of the parameters which affects the statistical estimates of

the simulation run is the length of the run. Most tests are concerned with the steady state behavior

of the system. So the simulation should be run long enough to allow the system to come to steady

state. The question is how long is long enough. If a simulation were allowed to run for infinite time,

it would give the most accurate results, but this, unfortunately, is practically impossible. Another

parameter which affects the simulation estimates is the pseudo-random number sequence used.

There are some estimation techniques available, e.g., methods of obtaining confidence intervals

which permit us to make valid statistical inferences about'the model based on simulation output.

These techniques are also essential to address the tradeoff between simulation run length and the

level of precision of the simulation estimates. There are three commonly used methods for estimating

confidence intervals.

a Independent replications method - This is the preferred method for estimation of transient

conditions. It can be applied to estimation of steady state characteristics, but one of the

following two methods will generally be preferable for estimating steady state characteristics.

a Regenerative method - This is the preferred method for estimation of steady-state behavior

in models with regenerative characteristics (i.e., the tendency of the system to return to the

regenerative state which is similar to the initial state).

CHAPTER 4. PERFORMANCE MODELING

0 Spectral method - This is the preferred method for estimation of steady-state behavior in

models without regenerative characteristics.

Since the model being simulated has regenerative characteristics (i.e., no waiting message in the

system and a free token), and since we wish to study the steady state behavior of the system, the

regenerative method was chosen to estimate confidence intervals. A 90% confidence interval was

sought. This determined the number of regenerative cycles and hence the simulation run length

required to obtain the sought confidence interval [Cra77].

Another parameter which affects the simulation estimates is the pseudo-random sequence. To

establish the randomness of the GPSS pseudo-random number generator, the chi-square test was

used [Knu81]. The chi-square is the most basic and best known of all such statistical tests. It is

often used in connection with many other tests. Theoretically, there is no end to the number of tests

which can be performed. If a sequence behaves randomly with respect to tests TI, T2,, Tn, we

cannot be sure that it will not be a failure when subjected to test Tn+l. Yet each test gives us more

confidence about the randomness of the sequence.

The GPSS pseudo-random number sequence is a sequence of uniformly distributed numbers

between zero and one. Based on this sequence, a GPSS/H function RNj generates another sequence

with uniformly distributed numbers between 0 and 999 (end points included). This sequence is

subjected to the chi-square test. It involves generating a large test sequence of these random numbers

and tabulating the amount of times each number appeares in the sequence. Based on the observed

values of these counts and the expected values assuming a perfect random sequence, the percentage

departure of the observed sequence from the expected sequence is calculated. A value greater than

90% represents a significant departure from random behavior. A value less than 10% means that the

results are too close to the expected results and hence the sequence cannot be considered random.

We now present some notation and then give the expression used for calculating this percentage

departure.

V - A measure of the departure of the observed sequence from the expected sequence.

k - A count of the numbers which can appear in the sequence.

p - The probability of each number appearing in a k length sequence.

n - The experimental sequence length.

Y, - The observed count for the number s where 1 5 s 6 k .

C H A P T E R 4. PERFORMANCE MODELING

In an experiment, a 20,000 length sequence was generated (with the numbers distributed uni-

formly between 0 and 999). Three runs were conducted for the random number sequences with
different seeds each time. The value of V for these three cases was found to be as follows: 1002.46,

1002.86, and 986.96. With these values of V, the chi-square distribution table was looked up. It was

noticed that one of these values fall in the 25%-50% range and two of these values fall into the 50%-75%

range. Since none of these ranges are the suspect ranges we assume that the GPSS/H pseudo-random

number generators are satisfactory.

4.4 Performance Measure

The usual performance measure used for computer communication networks is the mean message

waiting time [Kle76]. The mean message waiting time is defined as the time between the start of

a request to transmit and the beginning of its transmission. Thus, a performance measure for the

conventional IEEE 802.5 token ring protocol is the mean waiting time.

In the fixed priority protocol or the dynamic priority protocol, the waiting time for each suc-

cessfully transmitted message will always be less than the deadline. Thus, the message waiting time

does not provide a useful performance measure. A useful measure in this case is the percentage of

messages lost (M L) due to their not having met their deadlines. If we define T M T and T M L as

follows:

T M L - Total messages lost

T M T - Total messages successfully transmitted.

then,

ML = TML
TMT + TML

The improvement in performance of the dynamic priority protocol over the fixed priority protocol

is the difference in the percentages of messages lost for each case, where:

ML(f) - Percentage of messages lost for the fixed priority protocol.

ML(d) - Percentage of messages lost for the dynamic priority protocol.

Improvement = ML(f) - ML(d)

ML(d) will be different for different values of A, e.g., ML(f) = ML(d) when A = 0. Henceforth

when ML(d) is referred to, it will be for that value of A for which ML(d) is minimum (i.e., the

improvement due to the dynamic priority protocol is maximum).

CHAPTER 4 . PERFORMANCE MODELING 26

The performance measure in the case of avalanche traffic is the percentage of avalanche messages

lost. There is one avalanche period in each regenerative cycle. The avalanche arrives at the start

of each regenerative cycle and the regenerative state is achieved as soon as the system goes empty

(i. e., all queues empty and a free token).

4.5 Analytical Model

Analytical results for the IEEE 802.5 multiple priority token ring protocol are not yet available.

Since the dynamic priority protocol is based on it, analytical results for the dynamic case are also

not available. There is, however, some analysis relevant to the dynamic priority protocol which is

presented in Appendix A.

Analytical results are available for the IEEE 802.5 single priority case. Exact analytical results are

available for the symmetric ring. In the symmetric ring, each station is identical in terms of its service

time distribution and switchover time. A survey of these results can be found in [Tak86]. Exact

results are also available for the asymmetric ring for the exhaustive and gated service discipline. The

case of interest in this thesis is the asymmetric ring with limited-to-one service discipline. The ring

is asymmetric due to the 27-bit latency buffer at one station which leads to asymmetric switchover

time [IEE85]. There are some approximate results available for the asymmetric ring with limited-

to-one service discipline. Extensive simulations show that the most accurate of these approximate

results are by Boxma and Meister [Box86]. These results were used to vaiidzke our simulstion mode!,

detailed below.

4.6 Simulation Model

This section describes the simplified GPSS/H simulation models for the fixed priority protocol and

the dynamic priority protocol. These models are described using the GPSS/H blocks [Sch74]. These

models use the single token strategy and the limited-to-one service discipline. The program is capable

of handling exponential and constant message inter-arrival times and message service times. The

deadlines can be constant or exponentially distributed. The full code is in Appendix B.
The GPSS/H model segment for the fixed priority protocol is shown in Figure 4.1 and the model

segment for the dynamic priority protocol is shown in Figures 4.2 and 4.3. Each station on the

ring is represented by a model segment. The model segment for station i is shown in the figures.

The GENERATE block represents the arrival of messages (in GPSS/H terminology, a transaction

represents a message) at the specified rate at each station. The ASSIGN block assigns a deadline

to each transaction. This transaction is then queued onto the user chain for that station by the

LINK block. It is queued in the order of its lifetime. The usage of a LINK block as against a

QUEUE block to queue the transaction makes the transaction scan-inactive and saves computing

CHAPTER 4 . PERFORMANCE MODELING

time dramatically. The transaction collects waiting time statistics while it is queued onto the user

chain. Program control is transferred to all stations in a round-robin manner representing the path

of the token.

The simulator clock keeps track of the time of events in a simulation run. It is incremented by

an ADVANCE block. The statistics gathered are based on this clock. A clock tick of one micro

sec was chosen for this program. One micro sec is equal to one bit time (One bit time is the time

occupied by one bit on the ring) for a one Mhz ring and hence is the smallest possible unit for this

application.

In the fixed priority protocol, each time a model segment is activated, it indicates the arrival of

a free token. This is point 1 in Figure 4.1. A transaction is dequeued from the user chain using the

UNLINK block. This dequeued transaction proceeds to the TEST block and the transaction that

entered the UNLINK block is removed from the system by the TERMINATE block. The TEST block

determines whether the dequeued transaction has overshot its deadline. If it has, the transaction is

discarded and a lost message is recorded. The user chain is then checked for another transaction.

If the transaction has not overshot its deadline, the token (i.e., the facility which is a single server)

is seized using the SEIZE block. The waiting time is tabulated using the TABULATE block. The

ADVANCE block increments the simulator clock by an amount equal to the message service time.

The token is released using the RELEASE block. The TEST block checks for the empty state of

the system. If the system is empty, the TERMINATE block is executed which indicates the end of

a regenerative cycle and it collects statistics about the previous cycle. Control is then transferred

to the next station indicating the arrival of a free token. If the system is not empty, control is

transferred to the next station indicating the arrival of a free token.

If there is no message waiting at a station, the UNLINK block does not dequeue any message and

control is transferred to point 2 in Figure 4.1. Here the ADVANCE block increments the simulator

clock by an amount equivalent to the station latency and the free token is transferred to the next

station downstream. We can get an estimate of the token utilization by measuring the amount of

time the token is in use.

The GPSS model segment for the dynamic priority protocol is shown in Figures 4.2 and 4.3. This

is more complicated because each time a token (free or busy) is received at a station, a transaction

must be dequeued from the user chain. This is in an attempt to transmit the transaction (if the token

is free and the priority of the transaction is greater than or equal to PR) or to make a reservation (if

it cannot be transmitted). This is unlike the case in the fixed priority protocol when the transactions

only needed to be dequeued from the user chain at the receipt of a free token. The shaded blocks in

these figures are not GPSS primitive blocks. They are, in turn, composed of many GPSS primitive

blocks and are used here to hide programming detail.

There are three global variables - PR, RR and BUSY. PR represents the priority of the token,

RR indicates the reservation field of the token and BUSY indicates whether the the token is busy or

CHAPTER 4 . PERFORMANCE MODELING

free.

Each time the model segment for a station is activated, it indicates the arrival of a token at

that station. This is represented by point 1 in Figure 4.2. The transaction goes through a pair of

TEST blocks which establish whether the current station is the transmitting station, in which case

the RELEASE block releases the token, the ADVANCE block increments the simulator clock by an

amount equal to the message service time and control is transferred to the UNLINK block. In case

the current station is not a transmitting station, control is transferred directly to the UNLINK block.

The UNLINK block dequeues a transaction from the head of the user chain. The transaction which

entered the UNLINK block waits until the dequeued message is either transmitted or is queued back

to the user chain. In case it is transmitted, this transaction is terminated by the TERMINATE block.

In case it is not transmitted, this transaction goes to the ADVANCE block where the simulator clock

is incremented by a time equal to the station latency and the token is transferred to the next station.

The dequeued transaction is transmitted to the TEST block where it is checked whether the

transaction has overshot its deadline. If it has, the transaction is discarded, a lost message is recorded

by the TABULATE block and the user chain is checked for another message. If the deadline has

not been missed and a free token has been received, then PR is downgraded as explained in Section

1.2.2. If the token is busy and station i is not the transmitting station then a reservation is made as

explained in Section 1.2.2. The message is then queued onto the head of the user chain. If station

i is the transmitting station then the transaction cannot be transmitted, the values of RR and PR

are updated as described in Section 1.2.2 and the transaction is queued onto the head of the user

chain by the LINK block.

After downgrading PR the priority of the transaction is calculated depending on the time re-

maining until its deadline and A. If this calculated priority is greater or equal to PR a SEIZE block

seizes the token , a TABULATE block records the waiting time, an ADVANCE block increments

the clock by an amount equal to the station latency and transmits the message to the next station.

If the calculated priority is less than PR, then a reservation is made (only if the calculated priority

is greater than RR) and the message is queued back onto the head of the user chain.

In case no transaction is dequeued from the user chain, control is transferred to point 2 in Figure

4.3.

For both the above protocols the regenerative method is used to estimate confidence intervals

which suggest that the simulation should be run for a certain number of regenerative cycles. The

regenerative approach is motivated by the fact that many statistical systems have the property of

starting afresh probabilistically from time to time (i.e., the' time the regenerative state is reached).

This enables one to observe independent and identically distributed blocks of data in the course of

a single simulation run [Cra77]. If the regenerative state is assumed to be the initial state of the

system (i.e., the state when all the queues are empty and the token is free), then each time during

the run when such a state is reached, the data from the previous cycle is stored and the program

CHAPTER 4. PERFORMANCE MODELING 29

starts to record new data for the next regenerative cycle. The simulation stops after the required

number of regenerative cycles is over.

The number of regenerative cycles used in our simulation program was 8000. It was calculated for

90% confidence intervals [Cra77]. The length of the simulation runs took of the order of 40 minutes

to 100 minutes when run on a SUN 3/50 workstation. The length of the run increased with the

increase in traffic load and number of stations.

The avalanche traffic model can be applied to both the fixed priority and the dynamic priority

protocol. Avalanche traffic is modeled as the arrival of a large quantity of messages over a short time

interval, superimposed upon background traffic. Background traffic is the traffic normally present on

the ring and is provided by the model.

4.7 Validat ion

The only way to prove the correctness of a simulation is to compare it against known analytical

results.

The simulation results for the single priority token ring protocol were validated by comparing

them against the approximate analytical results in [Box86].

The simulation results for the multiple priority token ring protocol cannot be validated against

any analytical results due to lack of any. However, the following check was made: In the multiple

priority token ring protocol, instead of entering the number of priority levels as eight, the n u d e r

of priority levels as one was entered. The results were then compared with the single priority token

ring results.

There exist no analytical results for the dynamic priority protocol. Thus, the only way to check

the validity of the simulation program is to monitor the program step by step and to make sure it

is obeying the protocol. This was done using the interactive debugging facilities in GPSS/H. The

program was also monitored by instumenting it with print statements which resulted in it printing

out trace information during its run. This information was later studied to justify the correctness of

the program.

The above means were used to justify the logical correctness of the simulation program. In order

to establish the accuracy of the simulation from the statistical point of view, confidence intervals

were calculated to test the accuracy of the simulation output and the chi-square test was conducted

to test the GPSS random number sequence.

CHAPTER 4. PERFORMANCE MODELING

Station (generate) ,

deadline - lzii&rl
link in the order

of lifetimes

deadline '?'
crossed I

seize

I

waiting
lost time
messages

I

< service time
4

advance
T -- 1 unlink

system not empty

tation i+

split

line delay

Figure 4.1: GPSS Model for the Fixed Priority Protocol

CHAPTER 4 . PERFORMANCE MODELING

advance servica I time

Station i

3

messages I

'%ken busy maeennn nrinriiu

l ink LIFO

message prio~

seize

time

, lost

line delay

transmitted
message Station i+l

Figure 4.2: GPSS Model for theaDynamic Priority Protocol - Part a

CHAPTER 4. PERFORMANCE MODELING

Station i

token busy
station i is not

transmrtting station

station i is
transmitting station I

system not empty

split I'
terminate 1 collect statistics 0

tine delay Station i+l

Figure 4.3: GPSS Model for the Dynamic Priority Protocol - Part b

Chapter 5

Results and Evaluation

Simulation runs were conducted for a variety of different cases which include different message arrival

rates and distributions, different number of stations and different types of message traffic.

5.1 Ring Configuration

The simulation runs have been conducted under the following conditions.

Infinite bufleer queues each station

Single token operation

a Limited-to-one Service

1 MHz ring

Errorless channel

256 bits constant service time

1 bit latency per station

27-bit latency buffer (at station 1)

Linear priority function for the dynamic case

8 priority levels with 1 as the lowest and 8 as the highest priority

The simulation runs have been conducted with exponential message inter-arrival time and expo-

nentially distributed lifetimes.

CHAPTER 5. RESULTS AND EVALUATION

3 Stations'

@I Analytic
Simulation

0.3 0.4 0.5 0.6 0.7 0.8 0.9

Network Load

Figure 5.1: Waiting Time versus Load for a 3 Station Single Priority Ring

All time units, unless otherwise specified, are in bit times. One bit time is the time occupied by

one bit on the ring. As the ring is a one Mhz ring, one bit time = one micro sec.

The improvement of the dynamic priority protocol over the fixed priority protocol is expressed

as a difference of percentages of messages lost for each case.

5.2 Single Priority Case

Simulation runs were conducted for 3, 10, 20, 40 and 80 stations for the IEEE 802.5 single priority

token ring. The results were compared with the approximate analytical results based on Boxma

and Meister's [Box861 model. There was close conformity between the analytical results based on

Boxmaand Meister's model and the simulation results produced by this thesis. There was an average

discrepency of 1% at low loads and 2.16% at high loads between the analytical and simulation results.

Tables 5.1, 5.2, 5.3 and 5.4 show the analytic and simulation results for a 3, 10, 20 and 40 station

ring; the data for 3, 10 and 20 stations is graphed in Figures 5.1, 5.2 and 5.3 respectively. It is

interesting to note that the waiting time for loads 0.55 to 0.90 decreases as the number of stations is

increased from 3 to 10, then increases with further increase in the number of stations. On the other

hand, if we consider a ring without the 27 bit latency buffer (i.e., the case where the ring latency

is directly proportional to the number of stations), the waiting time increases with the increase in

number of stations.

CHAPTER 5. RESULTS AND EVALUATION

Load I Analytic I Simulation
.35 1 96.72 1 94.66

Table 5.1: Analytical and Simulation Results for Mean Message Waiting Time in micro sec for a 3
Station, Single Priority Ring

Load I Analytic I Simulation
-35 1 99.15 1 98.11

Table 5.2: Analytical and Simulation Results for Mean Message Waiting Time in micro sec for a 10
Station, Single Priority Ring

Table 5.3: Analytical and Simulation Results for Mean Message Waiting Time in micro sec for a 20
Station, Single Priority Ring

Load I Analytic I Simulation
.35 1 121.33 1 121.74

Table 5.4: Analytical and Simulation Results for Mean Message Waiting Time in micro sec for a 40
Station, Single Priority Ring

CHAPTER 5. RESULTS AND EVALUATION

Table 5.5: Analytical and Simulation Results for Mean Message waiting Time in micro sec for an
80 Station, Single Priority Ring

10 Stations

Network Load

Figure 5.2: Waiting Time versus Load for a 10 Station Single Priority Ring

CHAPTER 5. RESULTS AND EVALUATION

20 Stations

Analytic
Simulation

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Network Load

Figure 5.3: Waiting Time versus Load for a 20 Station Single Priority Ring

5.3 Multiple Priority Case

Simulation runs were conducted for the multiple priority case with eight different priority levels.

There are no proven analytical results for the IEEE 802.5 multiple priority case as yet, so the

simulation results cannot be validated against any analytical results. However, the following check
. 4

was made. In the multiple priority GPSSJH :&ogram, instead of entering the number of priority
4

levels as 8, the number of priority levels 1 was eritkred. The results were compared with the single

priority results and found to be identical.
a t a;+

There are some analytic and simulation results for thk mqltiple priority token ring in [Ped88,
.J,

Ped87bJPed87a]. There is no proof of correctness available for tlie* knalytical results.
4

In order to compare our simulation results against those in [Ped88], we used the same set of

parameters as in [Ped88]. These parameters include exponential inter-arrival times for loads ranging

between .35 and .90. A constant service time of 256 micro sec was used and the ring configuration

used was as specified in Section 5.1. The results turned out to be different. In this thesis, the graphs
for the multiple priority case show a greater split between the waiting times for priority 1 and 8

than those in [Ped88]. The performance measure used in [Ped88] is the message delivery time. The

message delivery time is equal to the message waiting time plus the message service time plus half

the ring latency. This difference in performance measures was taken into account when comparing

results.

Attempts were made to explain this difference in results. I examined the PASCAL simulator used

in Ped88j and it conformed to the IEEE 802.5 token ring protocol. The only significant difference

CHAPTER 5. RESULTS AND EVALUATION

3 Stations

priority 1
priority 8

Network Load

Figure 5.4: Waiting Time for Priority l-and 8 for a 3 Station Multiple Priority Ring

between Peden's PASCAL simulator and the GPSS/H simulator used in this thesis was the random

number generators used in each case. GPSS/H uses its built-in random number generator. In [Ped88]

the random function of PASCAL was used to generate random numbers. Our GPSS/H simulation

model is assumed to be correct, as the results appear to be intuitively correct; we would expect the

highest priority messages to have a much smaller waiting time than the lowest priority messages.

Figures 5.4, 5.5 and 5.6 show the waiting time as achieved by our simulation model, for the

highest and lowest priority messages for 3, 10 and 20 stations respectively.

5.4 Dynamic Case

Using thn GPSS/H program for the multiple priority token ring as a basis, a program for the dynamic

priority protocol was developed. In this case all messages are generated with the same priority unlike

the multiple priority case where the messages are generated with uniformly distributed priorities

between one and eight. The priorities of the messages are stepped up according to a priority function.

The priority of any message in the queue at any instant of time depends on the time remaining until

its deadline. If certain messages (e.g., tdarm messages) are generated which need to be given priority

over the regular traffic, they can be associated with shorter lifetimes by means of which they will be

placed well ahead in the queue. They may not be placed at the head of queue because there may

be other longer lifetime messages which have been waiting for sometime and which may be closer to

their deadlines than the alarm message.

In this chapter the term deadline is used to refer to a time interval as against

CHAPTER 5. RESULTS AND EVALUATION

10 Stations

priority 1
priority 8

0.3 0.4 0.5 0.6 0.7 0.8 0.0

Network Load

.

Figure 5.5: Waiting Time for Priority 1 and 8 for a 10 Station Multiple Priority Ring

20 Stations

priority 1
priority 8

1 0 : . I . I . , . I . 1 . 1

0.3 0.4 0.5 0.6 0.7 0.8 0.9

Network Load

Figure 5.6: Waiting Time for Priority 1 and 8 for a 20 Station Multiple Priority Ring

CHAPTER 5. RESULTS AND EVALUATION

Stations = 20, Deadline = 1000

Figure 5.7: Percentage Messages Lost for Symmetric Traffic - 20 Stations, 1000 Deadline

20 -
0)

U)
n Load 0.95

'" 1s - Load = 0.75
8
* 16-

14

Table 5.6: Improvement due to the Dynamic Priority Protocol for Symmetric traffic for a 20 Station
Ring

.-.,!I-.I . . . -,,

Message
Deadline

1000
2000

5.4.1 Symmetrical Traffic

1 10 100 1000 10000 100000

Delta

Symmetric traffic implies that every station on the ring experiences the same traffic load. This kind

of symmetery is not encountered very often in practical situations, nevertheless, we studied it out of

interest. Figures 5.7 and 5.8 show the graphs of the percentage of messages lost versus A for a 20

station ring. Table 5.6 shows the improvement due to the dynamic priority protocol.

Improvement in the Fraction of Messages Lost

5.4.2 Asymmetric Traffic

Network Load = 0.75
1.75
2.38

Asymmetric traffic implies that all the stations on the ring do not receive the same traffic load. This

is a situation which occurs frequently in the industry when different nodes on the ring are connected

to different sensors observing different events at varying rates.

Two experiments were conducted for a 20 station asymmetric ring. In the first experiment, a

traffic load of 2.85 was applied to station 1 while the remaining 19 stations were subjected to a traffic

load of 0.85 resulting in an overall load of 0.95. In the second experiment, station 1 and 11 were

applied a traffic load of 1.65, the remaining 18 stations were applied a traffic load of 0.65 resulting

Network Load = 0.95
1.86
3.28

CHAPTER 5. RESULTS AND EVALUATION

20 Station, 1000 Deadline, Asymmetric Ring

Figure 5.9: Percentage Messages Lost for Asymmetric Traffic - 20 StationsJ000 Deadline

g 20 J

0)
Q

a 18 - i
* 16-

20 Station, 2000 Deadline, Asymmetric Ring

18 1

15 Load = 0.95
4 Load =0.75

0 Load = 0.95
4 Load -0.75

14 1- qml,, +
1 10 100 1000 10000 100000

Delta

Delta

Figure 5.10: Percentage Messages Lost for Asymmetric Traffic - 20 Stations,2000 Deadline

CHAPTER 5 . RESULTS AND EVALUATION

3 Station, 1000 Deadline, Linear Function

Delta

Figure 5.11: Percentage Messages Lost for Avalanche Traffic - 3 Stations, 1000 Deadline

Table 5.8: Improvement due to the Dynamic Priority Protocol for Avalanche traffic for a 20 Station
Ring

Avalanche
Traffic Load

.55

.85

background traffic deadline is 3000 and the avalanche duration is 5000. Table 5.8 represents the

improvement due to the dynamic priority protocol for different avalanche loads and deadlines.

The dynamic priority protocol performs significantly better for the case of avalanche traffic than

for the symmetric and asymmetric traffic cases for nearly the same traffic load. (The load referred

to in the case of avalanche traffic is only due to the avalanche traffic and not the background traBc.)

This is due to the fact that the avalanche of messages is only present for a short duration during

which the queues build up. After the avalanche is over, there is only the background traffic which

is relatively slow. This queue build-up leads to a high token utilization which leads to a large

improvement due to the dynamic priority protocol.

Improvement in the Fraction of Avalanche Messages Lost

5.4.4 Variation with Load

Avalanche Deadline=1000
5.50
6.86

Simulations were run for a 10 station ring with the traffic load varying from .35 to 1.0. It was seen

that the improvement exhibited by the dynamic priority protocol increased with the increase in the

traffic load until very high loads when it levelled off.

Avalanche Deadline=2000
4.27
6.00

CHAPTER 5. RESULTS AND EVALUATION

3 Station, 2000 Deadline, Linear Function

0.

1 10 100 1000 10000 100000

Delta

Figure 5.12: Percentage Messages Lost for Avalanche Traffic - 3 Stations, 2000 Deadline

If we define the observed load to be the fraction of the time the token is busy, it is clear that in

a system with deadlines, the observed load is always less than or equal to the traffic load.

Figure 5.13 shows the graph between the.traffic load and the observed load, for a 10 station ring.

At low loads, since there were few messages getting lost, there was not much room for improvement

by the dynamic priority protocol. As the load was increased, more messages started getting lost, and

the dynamic priority protocol resulted in greater improvements. As the traffic load was increased

to very high values, the number of messages getting lost increased further but the improvement did

not increase accordingly. It started to level off.

If we consider the extreme case of an overloaded ring, however much it is overloaded, the observed

load will never exceed 1 (i.e., the token cannot do better than to remain busy 100% of the time).

Thus the reason the improvement starts to level off at high loads is because the token is busy nearly

all the time and cannot do much better. Figures 5.14 and 5.15 show the graphs of the percentage of

messages lost versus A for two different deadlines. Figure 5.16 shows the improvement due to the

dynamic priority protocol.

5.4.5 Variation with Number of Stations

Simulation runs were conducted for 3, 10,20,40, 80 and 100 stations at 0.9 load. For a large number

of stations, the dynamic priority protocol performs worse than the fixed priority protocol at low

values of A. A large number of stations reeults in a large ring latency which leads to a large token

cycle time. The combination of the high cycle time with low values of A, results in the dynamic

CHAPTER 5. RESULTS AND EVALUATION

Fixed
1.2-

1 .o -
0.8 -
0.6 -

A

Priority Protocol, 10 Station

El Deadline - 1000
4 Deadline - 2000

Applied Load - Observed Load

0.2 "'4 0.2 0.4 0.6 0.8 1 .O , . 1.2

Applied ~ o a d

Figure 5.13: Traffic Load versus Observed Load - 10 Stations

EI load = 1

a load = .95
!? load- .85

4 load = .75
load = 5 5

0 load = 3 5

Figure 5.14: Percentage Messages Lost - 10 Stations, 1000 Deadline

CHAPTER 5. RESULTS AND EVALUATION

El load = 1
load = .95
load = .85
load= .75
load - .55
load = .35

1 10 100 1000 10000 100000

Delta

Figure 5.15: Percentage Messages Lost - 10 Stations,2000 Deadline

10 Stations - Improvement

El Deadline = 1000
4 Deadline = 2000

o : . . l . . , . . l . . l , , ,
0.2 0.4 0.6 0.8 1 .O 1.2

Network Load

Figure 5.16: Vari~tion with Load - 10 Stations

CHAPTER 5. RESULTS AND EVALUATION

100 Stations
4 80 Stations
n 40 Stations
4 20stations
m 10 Stations
0 3 Stations

Delta

Figure 5.17: Percentage Messages Lost - 0.9 Load, 1000 Deadline

This is so because a certain station may reserve a token at a high priority. Since the value of A is

small, by the time the token comes around to servicing that station at the requested priortity, that

message may have &!ready missed its deadhe a2d the next message in the quece rvould be 3 !cv:

priority message, which cannot be served. In a ring with a high latency, this overhead is significant,

resulting in poor performance.

The improvement due to the dynamic priority protocol first increases with the increase in the

number of stations, reaches an optimum and then starts to decrease as the number of stations is

increased furthur. Figures 5.17 and 5.18 show the graphs between the percentage of messages lost

versus A and Figure 5.19 shows the improvement of the dynamic priority protocol.

5.4.6 Variation with Deadline

Simulations were run for 3 stations with traffic loads of 3 5 and .95. The deadline was varied from 500

to 7000. It was noticed that the improvement exhibited by the dynamic priority protocol increased

with the increase in deadline, reached an optimum and then decreased as the deadline was furthur

increased.

The improvement was low at short deadlines because there were more messages getting lost and

the queues did not build up at the stations. This resulted in the token not being utilized efficiently.

In an extreme case, if there is queue build-up, the token will, at each station have a message to

carry resulting in higher token utilization and therefore better performance. As the deadline was

increased, the number of messages getting lost decreased and the queue build-up increased resulting

CHAPTER 5. RESULTS AND EVALUATION

I00 Stations
80 Stations
40 Stations
20 stations
10 Stations
3 Stations

Delta

Figure 5.18: Percentage Messages Lost - 0.9 Load,2000 Deadline

Improvement, 0.9 load

1 1
0 20 40 6 0 80 100 120

No. ot Stations

~1 Deadline = 1000
Deadline = 2000

Figure 5.19: Variation with Number of Stations 0.9 Load

CHAPTER 5. RESULTS AND EVALUATION

0 , . . .""., ".,7 "., . .-
1 10 100 1000 10000 100000

Delta

Figure 5.20: Percentage Messages Lost - 3 Stations, 0.85 Load

increased, the number of messages getting lost decreased and the queue build-up increased resulting

in greater improvement.

As the deadline was increased further, the number of messages getting lost decreased, queue

build-up increased resulting in a lower improvement. At the extremity, if the deadline were infinity,

there would be no messages getting lost, thus,'there would be no improvement. Figures 5.20 and

5.21 show the graphs of the percentage of messages lost versus A for a 3 station ring and Figure 5.22

shows the improvement of the dynamic priority protocol.

5.4.7 Non-linear Priority Function

The dynamic priority protocol with a non-linear priority function was studied for the case of avalanche

traffic. The ring configuration and the protocol parameters were exactly the same as in Section 5.4.1.

Figures 5.23 and 5.24 show the graphs of the percentage of messages lost versus A for the case of

a non-linear priority function. Figures 5.11 and 5.12 show the corresponding graphs for the linear

priority function.

Table 5.9 shows the improvements achieved by the non-linear priority function when applied to

avalanche traffic. Contrast this with Table 5.8 which shows the improvement for the linear priority

function when applied to avalanche traffic. The non-linear priority function case exhibits marginally

better improvement than the linear priority function.

A point of interest is that the range of A for which the dynamic priority protocol shows im-

provement is much larger for the non-linear priority case than in the linear priority case. Therefore,

CHAPTER 5 . RESULTS AND EVALUATZON

1 10 100 1000 ioooo 100000

Delta

Figure 5.21: Percentage Messages Lost - 3 stations, 0.95 load

3 Stations - Improvement

Deadline

Figure 5.22: Varitition with Deadlines - 3 Stations

CHAPTER 5. RESULTS AND EVALUATION

3 Station, 1000 Deadline, Non-linear Function

El
30

II

20
1 10 100 1000 10000 100000

Delta

Figure 5.23: Percentage Messages Lost for Non-Linear case - 3 stations, 1000 Deadline

3 Station, 2000 Deadline, Non-linear Function

10 J
1 10 100 1000 10000 100000

Delta

Figure 5.24: Percentage Messages Lcst for Non-linear case - 3 Stations, 2000 Deadline

CHAPTER 5 . RESULTS AND EVALUATION 53

Figures 5.20 and 5.21 also indicate that the range of operation of A increases with the increase in

deadline. For the same traffic load, a longer deadline results in a higher observed load as compared

to a shorter deadline. A high observed load results in a larger token cycle time which leads to high

operating values of A.

The improvement due to the dynamic priority protocol using the non-linear priority function is

less sensitive to the choice of A than in the case of the linear priority function. This is because the

optimum range of A is much larger for the non-linear priority function, therefore, it is much easier

to choose a reasonable value of A.

5.4.9 The Dynamic Priority Protocol for Hard Real-Time Applications

Hard real-time application involve synchronous and asynchronous message traffic where synchronous

traffic should have guaranteed message delivery time. We consider an example of a 3 station ring,

with station 1 generating synchronous class traffic. First we derive an expression for the maximum

bandwidth of synchronous traffic capable of being supported by the above ring configuration. If 'N'
is the number of stations on the ring, then

Ring Latency(RL) = N*Station Latency + Latency buffer + Propogation delay

= N*1+27

= 30 (for 3 stations and negligible propogation delay)

Max wait Time(W) = Token Time + 2*Message Time + Ring Latency

= 24 + 2*256 + 30

= 566

W has been calculated for a constant message service time of 256 micro see. In case of a variable

message service time, the expression for W would still be valid. The value of the message time used to

calculate W in that case should be the worst case message service time. Thus a synchronous message

will have to wait for a maximum of 566 micro sec to get served. If the message interarrival time

for synchronous traffic for a 3 station ring is greater than 566, then it will be capable of providing

guaranteed access. In the following experiment on a 3 station ring, the synchronous traffic load was

chosen to be .55 and the asynchronous traffic load was .95. The synchronous (hard) deadline was

equal to 566 and the asynchronous (soft) deadline was varied. Tables 5.10, 5.11 and 5.12 give the

results of the dynamic priority protocol when applied to the above data for different asynchronous

deadlines.

We see that there are no synchronous messages lost confirming the fact that the maximum

waiting time for synchronous messages is 566 micro sec. The dynamic priority protocol results in

an improvement in terms of the number of asynchronous messages which meet their deadlines when

applied to real-time traffic. This improvement is at the cost of increasing the asynchronous message

mean waiting time which is not important since the point of interest is whether a message meets its

deadline or not.

CHAPTER 5. RESULTS AND EVALUATION

I Traffic I Mean message I Percentag-

125.85

287.67 10.42
Sync. Traffic

Type
Sync. Traffic

Table 5.10: Percentage Messages Lost and Waiting Times for 2000 Asynchronous Deadline

Waiting ~ i m e
.

A=2500
Async. Traffic

Messages Lost

121.74

Traffic
Type

Sync. Traffic

0.00

A=O
Async. Traffic

Mean message
Waiting Time

A=O
Sync. Traffic

Table 5.11: Percentage Messages Lost and Waiting Times for 3000 Asynchronous Deadline

Percentage
Messages Lost

132.81

I Traffic I Mean message I Percentage I

0.00

357.16

0.00

6.52

A=2500
Async. Traffic

A=2500

7.91

130.89

476.33

Type
Sync. Traffic

Table 5.12: Percentage Messages Lost and Waiting Times for 4000 Asynchronous Deadline

A=O
Async. Traffic

A=O
Sync. Traffic

A=2500
Async. Traffic

A=2500

Waiting ~ i m e Messages Lost

136.72

426.08

131.35

549.05

0.00

6.41

0.00

5.26

Chapter 6

Conclusions

6.1 Summary

A new dynamic priority protocol has been proposed in this thesis. It exploits the priority mechanism

of the IEEE 802.5 token ring protocol and makes it more suitable for real-time applications.

The performance measure used in this study is the percentage of messages lost due to their

having missed their deadlines. This study shows that the dynamic priority protocol performs better

than the fixed priority protocol. This improvement is expressed as a difference of the percentage of

messages lost for the dynamic priority protocol and that for the fixed priority protocol.

The improvement is maximum for a certain range of A (i.e., a protocol parameter as defined in

Section 3.1) when A is not too large or too small. Too small a value of A means that the priority of

a waiting message starts being stepped up very shortly before its deadline. Thus the high priority

values for the messages are in effect for a very short time only. If a busy token happens to pass

by when the priority of a message is at one of the higher values, (this may not be very likely) a

reservation is made and the next token is issued at the requested priority. By the time this token

reaches the requesting station the message would probably have crossed its deadline. This results in

low values of improvements for small values of A. For cases when the ring latency is large compared

to the lifetime (i.e., the time between the message arrival and the deadline), the dynamic priority

protocol performs worse than the fixed priority protocol. This is because the overhead of the dynamic

priority protocol becomes significant for large ring latencies.

Very large values of A indicate that most messages, when they get to the head of the queue, are

much closer to the deadline as against to the point A units before the deadline when the priority

starts being stepped up. Thus, most of these messages are assigned 'higher' priorities when they get

to the head of queue. The situation is similar to Figure 3.2. In an extreme case (i.e., with very large

values of A), all messages are assigned the highest priority when they get to the head of queue. The

CHAPTER 6. CONCLUSIONS

ring thus functions as a single priority ring with all the messages at the same highest priority.

The improvement for the linear and the non-linear priority function are nearly the same. In case

of the non-linear priority function, we show that the performance is less sensitive to the choice of A
ie., we have a wider range of A to choose from. If the traffic distribution is not known it will be

safer to use the non-linear priority function which will assure us of a good value of A.

The degree of improvement exhibited by the dynamic priority protocol depends on various p a

rameters, e.g., the traffic load, number of stations, deadlines traffic type. The improvement is most

significant for a small number of stations, higher loads and avalanche traffic.

6.2 Conclusions

The dynamic priority protocol always performs better than the fixed priority protocol. The irn-

provemnts are of the order of 2% - 3% for symmetric and asymmetric traffic and of the order of 5% -
7% for avalanche traffic. There is a certain range of operation of A for which the dynamic priority

protocol shows maximum improvement. This range of A is much larger for the non-linear priority

function than for the linear priority function.

The improvement due to the dynamic priority protocol increases with the increase in traffic load

and then stablizes as the load approaches the point of overloading. It increases with the increase in

deadline, reaches an optimum and then decreases. It increases with the increase in the number of

stations, reaches an optirxrr, and then decreases with further increase in stations on the ring

For hard real-time applications the dynamic priority protocol, while guaranteeing synchronous

traffic response, also exhibits improvement for asynchronous traffic.

6.3 Future Work

An area of interest is the application of the dynamic priority protocol to the FDDI token ring protocol.

Since the FDDI token ring protocol does not have any restriction on the number of priority levels,

it would be interesting to determine an optimum number of priority levels.

Analytical results for the dynamic case are not available yet. They could lead to further insight

about the performance of the protocol.

An interesting subject of research would be to design a scheme by means of which we could

establish an upper bound on the improvement the dynamic priority protocol is capable of. This

could be very useful in terms of making sure that the dynamic priority protocol is made to operate

at its optimum.

The dynamic protocol could be modeled for a practical situation by the introduction of a certain

error rate on the transmission media This will require an acknowledgement and an error recovery

mechanism.

Appendix A

Analysis for Dynamic Priority

Protocol

A S Analysis

In order to analyze the dynamic priority protocol we require the Probability Distribution Function

(PDF) of the waiting time for priority level i (1 5 i 5 8) in the IEEE 802.5 protocol. These analytical

results for the multiple priority token ring are not available yet. However, some attempts have been

made to analyze simplified versions of the IEEE 802.5 token ring protocol [She85].

In this appendix we derive an expression to calculate the probability of message loss (due to their

having missed their deadlines) for the dynamic priority protocol assuming the analytical results for

the IEEE 802.5 token ring protocol are available. This analysis can be applied to the token bus

protocol also.

For the sake of simplicity, we assume that the dynamic priority protocol operates at 3 priority

levels. The analysis can be easily extended to 8 priority levels.

Consider the scenario in Figure A.1. The priority of a message stays at one until time 6+T, after

which it is stepped up according to the linear priority function.

S = D-A

W = Waiting time

Fi(t) = PDF of waiting time for a message of priority i in an IEEE 802.5 token ring.

APPENDIX A. ANALYSIS FOR DYNAMIC PRIORlTY PROTOCOL

message
arrival

at station
message

deadline(D)

= (1 - Prob(W 5 6 + T)) . Prob(W < t A N D S + T < W)
Prob(6 + T < W)

Prob(W < t A N D 6 + 2T < W)
1

= (1 - Prob(W 5 6 + T) - Prob(6 + T < W < 5 + 2T)) .
Prob(6 + 2T < W)

= (1 - F1(6+T) - ' - F1(6 + . F2 (6 + 2T) - F2 (6 + T)) F3(t) - F3(6 + 27')
1 - F2(6 + T) 1 - F3(6 + 2T)

6 + 2 T S t < D

'The fist term refers to the time before 6+T, when the priority of the waiting message is one. Thus Fl(t) will be
used in that term. The second term refers to the region 6 + T 5 t 5 6 + 2T in which case F2(t) will be used.

APPENDIX A. ANALYSIS FOR DYNAMIC PRIORITY PROTOCOL

Those messages will be lost whose waiting times are greater than D.

Probability of message loss = Prob(W 2 19)

= 1 - Prob(W < D)

s1 -Prob (W<S+T) -Prob (S+T< W < S + 2 T) - P r o b (S + 2 T < W < D)

Substituting the values for the gives us the probability of message loss in a dynamic

priority system.

Appendix B

Simulation Code

This appendix contains the source code listings for the pre-processor and the post-processor for the

following cases:

Single priority token ring protocol.

Multiple priority token ring protocol

Dynamic priority protocol.

Both the pre-processor (prepr0c.c) and the post-processor (C0NFID.c) are written in C.

: Mcdule name: single_priority/preproc.c x
* *
x Date l a s t modi f i ed : 5 Feb 1 9 8 9 k

* *
x Author: Baku1 Khanna *
* *
x D e s c r i p t i o n : Th i s program g e n e r a t e s GPSS/H *
x code f o r t h e s i n g l e p r i o r i t y t o k e n r i n g p r o t o c o l . x
x It prompts t h e u s e r f o r pa ramete r e n t r y which i n c l u d e *
* r i n g c o n f i g u r a t i o n , message i n t e r - a r r i v a l t i m e s , *
* message s e r v i c e t i m e s and message d e a d l i n e s . *
r I t c a l l s a r o u t i n e CONFID which c a l c u l a t e s t h e *
r c o n f i d e n c e i n t e r v a l s based on t h e s t a t i s t i c s g a t h e r e d *
* d u r i n g s i m u l a t i o n . * .

d e f i n e HEADER 56
d e f i n e LAT-BUF 27

l t a ; i n t nodes,stn-lat,ser-time,arr-time,deadline,de
i n t ar r - ind, sym, r ing- ind,grp , ser-ind;
i n t r i n g [l o o] [2] ;
f l o a t rho;
FILE *fp;

i n t range-check (lower , upper)
i n t lower , upper;
1 *
* This r o u t i n e makes s u r e t h a t t h e p a r a m e t e r e n t e r e d
* l ies between i t s lower and upper l i m i t s .
* /

I
i n t e n t r y ;
scanf ("%dW, & e n t r y) ;
w h i l e ((e n t r y h p p e r) I I (e n t r y < l o w e r))

I
p r i n t f (" e n t r y n o t w i t h i n r a n g e . t r y a g a i n \ n n) ;
scanf ("%dW, & e n t r y) ;
1

r e t u r n (e n t r y) ;
1

expand (num, i n d)
i n t num, i n d ;
/ *
* This r o u t i n e i s p a r t of t h e d e c l a r a t i o n f o r t h e
* v a r i a b l e REGEN
* /

I
i n t k;

. f o r (k = l ; k<num+l; k t +)
t
f p r i n t f (f p , "Q%dnn, (ind*lO+k)) ;
i f (k==num)

f p r i n t f (f p , ">0 \nU) ;
e l s e

f p r i n t f (f p , " > 0 t W) ;

header (1
/ * * This module g e n e r a t e s t h e header and t h e d e c l a r a t i o n s
* f o r t h e GPSS/H program.

i n t i, j;
fprintf(fp,"**************************X***********\nll);
f p r i n t f (f p , "* * \ n r r) ;
f p r i n t f (f p , "* %dm, nodes) ;
f p r i n t f (f p f V FIXED LATENCY STATIONS * \ n r r) ;
f p r i n t f (f p , "* *\nr l) ;
f p r i n t f (f p , "* *\nw) ;
fprintf(fp,"***************k"k""***********************\nll);
f p r i n t f (f p , "* \nW) ;
f p r i n t f (f p I w * S i n g l e p r i o r i t y Token R i n g \ n U) ;
f p r i n t f (f p I w * S i n g l e token o p e r a t i o n \ n V) ;
f p r i n t f (f p I W * Limited-to-one S e r v i c e D i s c i p l i n e \ n w) ;
f p r i n t f (f p , " * Regenera t ive method t o c a l c u l a t e conf idence i n t e r v a l s \ n U) ;
f p r i n t f (f p , "* \nW) ;
f p r i n t f (f p , " SIMULATE 10000S, SAVE \ n u) ;
f p r i n t f (f p , " RMULT ,111111111, 333333333, 555555555\nr1) ;
f p r i n t f (f p , " OPERCOL 6O\nw) ;
f p r i n t f (f p , " REALLOCATE COM140000\n");
f p r i n t f (f p , "* \nu) ;
f p r i n t f (f p , "* \nW) ;
f p r i n t f (f p , "* INITIALIZATIONS OF EXPONENTIAL FUNCTIONS AND VARIABLES\nW);
f p r i n t f (f p , "* \nu) ;
f p r i n t f (f p , "* \nW) ;
f p r i n t f (f p I n EXPO1 FUNCTION RN2,C24 FOR INTERARRIVAL TIMES\nw);
f p r i n t f (f p , "0 .0 ,0 .00/ .l, .104/ .2, .222/ .3, .355/ - 4 , .509 / .5 , . 691. 6 , . 915\nrr) ;
fprintf(fp,".7,1.2/.75,1.38/.8,1.6/.84,1.83/.88,2.12/.9,2.3\nrr);
fprintf(fp,".92,2.52/.94,2.81/.95l2.99/.96l3.2/.97,3.5\n11);
f p r i n t f (f p , " . 98 ,3 .9 / . 99 ,4 .6 / .995 ,5 .3 / . 998, 6 . 2 / . 999, 7 . O / .9997, 8 .O\nrr) ;
f p r i n t f (f p , " * \ n W) ;

f p r i n t f (f p I w EXPO^ FUNCTION RN3,C24 FOR MESSAGE SERVICE TIMES\nrr) ;
f p r i n t f (f p , "0 . O f 0.00/ . l , . l O 4 / .2 , .222 / .3, .355/ - 4 , -5091 - 5 , . 6 9 / . 6, . 915\nrr) ;
f p r i n t f (f p , ".7,1.2/.75,1.38/.8,1.6/.84,1.83/.88, 2 . 1 2 / . 9 , 2 . 3 \ n r r) ;
f p r i n t f (f p , " . 9 2 , 2 . 5 2 / . 9 4 , 2 . 8 1 / . 9 5 , 2 . 9 9 / . 9 6 , 3 . 2 / . 9 7 , 3 . 5 \ n r r) ;
f p r i n t f (f p , " . 98 ,3 .9 / . 99 ,4 .6 / . 995 ,5 .3 / . 998, 6 - 2 1 . 999, 7 . O / . 9997, 8 .O\nrr) ;
1

f p r i n t f (f p , "* \nV) ;
i f (nodes<=lO)

t
f p r i n t f (f p , " REGEN BVARIABLE ") ;
expand (nodes, 0) ;
f p r i n t f (f p , " * \ n n) ;
1

e l s e

t
f p r i n t f (f p , " %d", j) ;
f p r i n t f (f p , " BVARIABLE ") ;
e x p a n d (l 0 , j-1) ;
1

f p r i n t f (fp , " %dm, (nodes/lO) tl) ;
f p r i n t f (fp , " BVARIABLE ") ;
expand(nodes%lO,nodes/lO);
1

f p r i n t f (fp , " REGEN BVARIABLE ") ;
i f (nodes%lO == 0)

j = nodes/lO;
else

j = nodes/lO + 1;
f o r (i = l ; i < j + l ; i + t)

{
f p r i n t f (fp , "BVw) ;
f p r i n t f (fp , "%dn, i) ;
i f (i != j)

f p r i n t f (fp , "t") ;
e l s e

f p r i n t f (fp, " \nn) ;
1

1

f o r (i=l; i<nodes t l ; i++)
t
f p r i n t f (fp , " %d", i) ;
f p r i n t f (fp , " TABLE MI, 200,100, 20\nW) ;
1

f p r i n t f (fp , "* \nn) ;

f p r i n t f (fp , " SERS FVARIABLE %dl', ser-time) ;
f p r i n t f (fp , "*FN$EXPO2\n"l ;
1

else
{
f p r i n t f (fp ," SERS FVARIABLE %d\nql,ser-time);
1

f p r i n t f (fp , "* \nW) ;

i f (sym == 1)
I
i f (arr-ind == 1)

I
f p r i n t f (fp , " ARRS FVARIABLE %dl', arr-time) ;
f p r i n t f (fp , "*FN$EXPOl\nY ;
1

e l s e
(
f p r i n t f (fp , " ARRS FVARIABLE ' %d\n1I, arr-time) ;
1

1
else

I
f o r (i=l; i<nodes+l; i+t)

I
f p r i n t f (fp , " ARR%dV, i) ;
f p r i n t f (fp , FVARIABLE %dU, r i n g [i] [2]) ;
i f (r i n g [i] [1] == 1)

f p r i n t f (fp , " * F N $ E x P o ~ \ ~ ") ;
e l s e

f p r i n t f (fp , " \nW) ;
I

I
f p r i n t f (fp , "* \nU) ;
1

s e t u p ()
/ * * T h i s r o u t i n e s tar ts t h e t o k e n r o l l i n g and
* directs it t o s t a t i o n 1
* /

{
f p r i n t f (f p , " * \ n W) ;
f p r i n t f (f p , "*
f p r i n t f (f p , " * \ n W) ;
f p r i n t f (f p , "
f p r i n t f (f p , "
• ’ p r i n t • ’ (f p , "
f p r i n t f (f p , "

MAKE THE MODEL ACTIVE\^");

GENERATE l , , , l , l \ n l l) ;
SAVEVALUE ROUND, %d\nW , n o d e s) ;
S P L I T 1 , U S E l \ n n) ;
TERMINATE \nl ') ;

macro (1
/ *
* T h i s r o u t i n e p r i n t s o u t t h e body of t he m a i n m a c r o
* /

{
f p r i n t f (f p , " * \ n n) ;
• ’ p r i n t • ’ (f p , "* MACRO BEGINS\nn ') ;
f p r i n t f (f p , " * \ n u) ;
f p r i n t f (f p , MAIN START MACRO\^") ;
f p r i n t f (f p , " GENERATE
f p r i n t f (f p , " QUEUE
f p r i n t f (f p , " LINK
f p r i n t f (fp , " CAP#A S E I Z E
f p r i n t f (f p , " DEPART
f p r i n t f (f p , " TABULATE
f p r i n t f (f p , " NOD#A SAVEVALUE
f p r i n t f (f p , " TEST NE
f p r i n t f (f p , " SAVEVALUE
f p r i n t f (f p , " ADVANCE
f p r i n t f (f p , " TRANSFER
f p r i n t f (f p , " NEX#A ADVANCE
f p r i n t f (f p , " \ n u) ;
f p r i n t f (f p , :' SAVEVALUE
f p r i n t f (fp , "+%dm, s t n - l a t) ;

. n o d e s) ; f p r i n t f (f h , "*%d\nU,
f p r i n t f (f p , "
f p r i n t f (f p , "

f p r i n t f (fb ,"
f p r i n t f i f p i n
f p r i n t f (f p , "
f p r i n t f (f p , "
f p r i n t f (f p , "
f p r i n t f (f p , " USE#A
f p r i n t f (f p , "
f p r i n t f (f p , "
f p r i n t f (f p , " \ n W) ;
• ’ p r i n t • ’ (f p , " MEE#A
f p r i n t f (f ~ , "

f p r i n t f (f p , "
f p r i n t f (f p , "
f p r i n t f (f p , "* \nW) ;
f p r i n t f (f p , "*
f p r i n t f (f p , " * \ n u) ;
f p r i n t f (f p , " * \ n u) ;
1

~ \ n ") ;
#A, F 1 F O \ n W) ;
 TOKEN\^^^) ;
~ \ n ") ;
#A\nV1) ;
STATION, # A \ n W) ;
XSROUND, 0 , NEX#A\nn) ;
ROUND-, l \ n n) ;
~ \ n ") ;
, NOD#G \ n ") ;
%d" , HEADER) ;

HEAD , %dn , HEADER j ;

TEST G
ADVANCE
SAVEVALUE
RELEASE
ADVANCE
TEST E
S P L I T
TERMINATE
SAVEVALUE
TEST E
ADVANCE

UNLINK

V$SERS, X$HEAD, REE#A\n") ;
VSSERS-X$HEAD\nU) ;
ROUND, %d\nU , n o d e s) ;
TOKEN\nW) ;
E \ n W) ;
BVSREGEN, 0 , U s E # G \ n W) ;
1, USE#G\nW) ;
l \ n l ') ;
STATION, # A \ n W) ;
1, #A, MEE#A\nm) ;
% d" , LAT-BUF) ;

#A, CAP#A, 1, , , H E C # A \ ~ ") ;
 TERMINATE\^") ;
ADVANCE #E i n 1 ') ; .
TRANSFER , u S E # G \ ~ ") ;
ENDMACRO\ n") ;

MACRO ENDS\nl') ;

o u t p u t ()
/ *
* T h i s r o u t i n e i s t h e c o n t r o l p r o g r a m .
* I t s tar ts o f f t h e GPSS/H p r o g r a m , con t ro l
* i s t ransferred t o it a f t e r each regenerative
* cycle is over w h e n t h e s t a t i s t i c s for t h a t
* cycle a re collected and t h e r o u t i n e CONFID i s cal led
* a f t e r t h e required n u m b e r of r e g e n e r a t i v e
* cycles are over
* /

t
f p r i n t f (f p , " * \ n n) ;
f p r i n t f
f p r i n t f
f p r i n t f
f p r i n t f
f p r i n t f
f ~ r i n t f
f p r i n t f
f p r i n t f
• ’ p r i n t • ’
f p r i n t f
f p r i n t f
f p r i n t f

f p r 'I* CONTROL CARDS\^") ;
fp , " * \ n W) ;
 PI" INTEGER &I I & J DUMMY VARIABLE\^") ;
 PI" INTEGER &CYCLE # OF REGENERATIVE C y C L E S \ n n) ;
 PI I' INTEGER &NODE # OF NODES\nW) ;
f p r 'I INTEGER &TOTAL TOTAL # OF MESSAGES R U N \ n n) ;
 PI " INTEGER &MESS MAX. # OF MESSAGE\n t t) ;
 PI I' INTEGER &N (% d " , n o d e s) ;
fp , ") NUMBER OF CYCLES RUN FOR EACH N O D E \ n W) ;
 PI" REAL &SUMY (% d " , n o d e s) ;
f p , ") SUM OF ~ \ n ") ;
fp1 'I REAL &SUMY2 (% d " , n o d e s) ; (

f p r i n t f (f p , ") SUM OF SQUARE OF Y \ n W) ;
f p r i n t f (f p , " REAL &SUMA (% d B ' , n o d e s) ;
f p r i n t f (f p , ") SUM OF ALPHA\nW) ;
f p r i n t f (f p , " REAL &SUMA2 (% d m , n o d e s) ;
f p r i n t f (f p , ") SUM OF SQUARE OF ALPHA\nn) ;
f h r i n t f
f p r i n t f
f p r i n t f
f p r i n t f
f p r i n t f
f p r i n t f
f p r i n t f
f p r i n t f
f p r i n t f
f p r i n t f
f p r i n t f

fp l " REAL &SUMYA (% d " , n o d e s) ;
fp , ") SUM OF ALPHA*Y\nl') ;
fp, EXTERNAL &CONFID C SUBROUTINE\^");
fp, "*\nit) ;
 PI" LET &CYCLE=8000\n") ;
fp t " LET & M E S S = 1 0 0 0 0 0 \ n ") ;
 PI " LET & N O D E = % d \ n W , n o d e s) ;
f p t " START 1 , N P \ n W) ;
fPt " UNLIST C S E C H O \ ~ ") ;
fp , " * \ n u) ;
fp,"* START RUNNING\nn); (

f p r i n t f (f p , " * \ n u) ;
f p r i n t f (f p , " LET & I = l \ n X ') ;
f p r i n t f (f p , "* GIVE A FULL REPORT FOR THE LAST C Y C L E \ n V) ;
f p r i n t f (f p , " AGAIN I F (& I 1 L ' &CYCLE) \ n u ') ;
f p r i n t f (f p , " START 1, N P \ n W) ;
f p r i n t f (f p , " E L S E \ n W) ;
f p r i n t f (f p , " START l \ n W) ;
f p r i n t f (f p , " E N D I F \ n U) ;
f p r i n t f (f p , " * \ n N) ;
f p r i n t f (f p , " * RECORD THE IMPORTANT S T A T I S T I C S \ ~ ") ;
f p r i n t f (f p , " * \ n n) ;
f p r i n t f (f p , " DO & J = ~ , & N O D E \ ~ ") ;
f p r i n t f (f p , " I F (TC&J>O) \ n ") ;
f p r i n t f (f p , " LET &N (& J) =&N (& J) + l \ n 1 ') ;
f p r i n t f (f p , " LET &SUMY (& J) =&SUMY (& J) +TB& J*TC& J \ n W) ;
f p r i n t f (f p , " LET & S U M Y ~ (& J) = & S U M Y ~ (& J) + (TB& J*TC& J) * (TB& J*TC& J) \ n u t) ;
f p r i n t f (f p , " LET &SUMA (& J) =&SUMA (& J) +TC& J \ n t ') ;
f p r i n t f (fp , " LET &SUMA;! (& J) = & s u M A ~ (& J) +TC& J*TC& J \ n l ') ;
f p r i n t f (f p , " LET &SUMYA (& J) =&SUMYA (& J) + T C & J * (TC&J*TB&J) \ n ") ;
f p r i n t f (f p , " LET &TOTAL=&TOTAL+TC&J\~") ;
f p r i n t f (f p , " E N D I F \ n W) ;
f p r i n t f (f p , " ENDDO\ntl) ;
f p r i n t f (f p , " * \ n u) ;
f p r i n t f (f p , " * \ n W) ;

fprintf (fp, RESET F$TOKEN\nn) ;
fprintf (fp, " IF (&TOTAL>&MESS) \nn) ;
fprintf (fp, " GOT0 FIN FINISH THE RUN\nn) ;
fprintf (fp, " ENDIF\nW) :
fhrintf (fp, " IF (&I<&CYCLE) \nu) ;
fprintf (fp, I, LET &I=&I+l\nn) ;
fprintf (fp, " GOT0 AGAIN\nw) ;
fprintf (fp, " ENDIF\ntt) ;
fprintf (fp, "*\nw) ;
fprintf(fpIw* C SUBROUTINE TO CALCULATE CONFIDENCE INTERVALS\nu);
fprintf (fp, "*\nn) ;

fprintf (fp," FIN CALL &CONFID (&NODE, &N(l) , &SUMY (1) , &SUMY2 (1) ,-\nl') ;
fprintf(fpIW&S~MA(1) ,&SuMA2 (1) ,&SUMYA(~) ,FR$TOKEN) \ntt) ;
fprintf (fp, "*\nu) ;
fprintf (fp, "*\nW) ;
fprintf (fp, " END\ntl) ;
1

main (
/ * * This module prompts the user to enter various parameters
* /
(
int i, j;
printf("Number of stations ?\nn);
nodes = range-check (2,80) ;
printf ("Station Latency ?\nV) ;
stn-lat = range-check (l,20) ;
printf("Service Time: 1.Exponential 2.Constant\nn);
ser-ind = range-check (l,2) ;
if (ser-ind == 1)

printf("Exponentia1 service time ?\nW);
else

printf("Constant service time ?\nu);
ser-time = range-check (1, 500) ;
printf("l.Symmetric ring 2.Assymetric ring\nH);
sym = range-check (l,2) ;
if (sym ==I)

t
printf("1nter-arrival time distribution: 1.Exponential 2.Constant\nn);
arr-ind = range_check(l,2);
if (arr-ind == 1)

I
printf("Exponentia1 interarrival time ?\nW);
arr-time = range-check(l,500000);
1

else
t
printf("Constant interarrival time ?\nW);
arr-time = range-check (1,5OOOOO) ;
1

I
else

t
ring-ind = 1;
while (ring-ind < nodestl)
I
printf ("1. Individual entry 2 .Group entry ?\nl') ;
grp = range-check (l,2) ;
if (grp ==I)

I
("Node %d", ring-ind) ;
(" : Inter-arrival time distribution: 1.Exponential 2.Constant ?\nW);

arr-ind = range_check(l,2);
ring [ring-ind] [l] = arr-ind;
if (arr-ind == 1)

I
1

printf ("Node %dW , ring-ind) ;
print•’(": Exponential interarrival time ?\nW);
arr time = range-check(1,500000);
ring[ring-ind] [Z] = arr-time;
I

else
I
printf ("Node %dW, ring-ind) ;
print•’(": Constant interarrival time ?\nu);
arr-time = range-check (1,500000) ;
ring [ring-ind] [2] = arr-time;
I

ring-ind = ring-ind t 1;
I

else
t
printf ("group size ?\nn) ;
grp = range-check(1,nodes-ring-indtl);
printf ("Nodes %d", ring-ind) ;
printf ("-%dn, ring-indtgrp-1) ;
print•’(": 1nter-arrival time distribution: l.~xponential 2.Constant ?\nm);
arr-ind = range_check(l,2);
for (j=ring ind; j<ring-indtgrp; jtt)

rin<[j] [I] = arr-ind;
if (arr-ind == 1)

t
printf ("Node %dn, ring-ind) ;
printf ("-%d", ring-indtgrp-1) ; .
print•’(": Exponential interarrival time ?\nW);
arr time = range-check (1,500OOO) ;
for-(j=ring-ind; j<ring-indtgrp; jtt)

ring[j] [Z] = arr-time;
I

else
I
printf ("Node %d", ringind) :
printf ("-%d", ring-indtgrp-1) ;
print•’(": Constant interarrival time ?\nu');
arr-time = range-check (1,5OOOOO) ;
for (j=ring-ind; j<ring-indtgrp; jtt)

ring[j] [Z] = arr-time;
I

ring ind = ring-ind t grp; -
I

/ * calculate value of rho * /
if (sym == 1)

I
rho = (float)nodes*ser-time/arr-time;
I

else
I
rho = 0.0;
for (i=l; i<nodestl; it+)

rho = rho + (float) ser-time/ring [i] [2] ;
I

I
printf ("rho is %f \n", rho) ;

printf("W~RN1NG:queues w i l l b u i l d u p ! \ n W) ;
1

/ * p r i n t gpss code * /

i f ((f p = fopen("gpss.gps", "w")) < 0)
I
p e r r o r ("fopen") ;
e x i t (1) ;
1

header () ;
setup (1 ;
macro 0 ;

f p r i n t f (fp , "*\nw) ;
f p r i n t f (fp,"* CALL MACRO\nW) ;
f p r i n t f (fp , "*\nn) ;

/ * gene ra t e macro c a l l s . One f o r each s t a t i o n on t h e r i n g
* The fol lowing a r e t h e parameters of t h e macro c a l l
* #A - S t a t i o n number
* #B - not used
* #C - Message s e r v i c e time
* #D - not used
* #E - S t a t i o n l a t ency
* #F - Message i n t e r - a r r i v a l t ime
* #G - Next s t a t i o n on t h e r i n g
* /
f o r (i=l; i<nodes+l; i++)

I
f p r i n t f (fp , " M A I N MACRO %dn, i) ;
f p r i n t f (fp , ", , vSSERS") ;
f p r i n t f (fp , ", , %dW, s tn- la t) ;
i f (sym == 1)

f p r i n t f (fp , ",V$ARRS1') ;
e l s e

f p r i n t f (fp , ", V$ARR%d",i) ;
i f (i==nodes)

f p r i n t f (fp , ", 1") ;
e l s e

f p r i n t f (f p , ", %d", i+1) ;
f p r i n t f (fp , " STATION %d\nW, i) ;
i f (i==l)

f p r i n t f (fp , " UNLIST
1

f p r i n t f (fp , " PAGE\nn) ;

output () ;
1

/ * This module is meant for the single priority case * /

void CONFID (NODE, N, SUMY, SUMY2 , SUMA, Sum2 , SUMYA, UTIL)

/ *
*CCCCCCCCCCCCCCCCCCCCCCCC * C
* Declarations C
* C
*CCCCCCCCCCCCCCCCCCCCCCCC
*
* 11 J,F DUMMY VARIABLES
* NODE # OF NODES
* NN 1
* N O * (NO -1)

TOTAL TOTAL # OF MESSAGES TO THE SYSTEM * UTIL UTILIZATION OF SERVER
x Z A FACTOR NEEDED TO CALCULATE CONFIDENCE INTERVALS
*
* When variables below start with a T, they become the
* variables for all nodes combined.
*
* N (NODE) NUMBER OF CYCLES RUN FOR EACH NODE.
* R() MEAN WAITING TIME
* RVAL () +-INTERVAL FOR CONFIDENCE INTERVALS
* s2 0 VARIANCE OF WAITING TIME
* s110 VARIANCE OF Y
* s22 0 VARIANCE OF ALPHA
* sl2 0 COVARIANCE OF ALPHA AND Y
A SUMY (NODE) SUM OF Y
* SUMYZ(N0DE) SUM OF SQUARE OF Y
x SUMA(N0DE) SUM OF ALPHA
* SUMAZ(N0DE) SUM OF SQUARE OF ALPHA
* SUMYA(N0DE) SUM OF ALPHA*Y
* MEANY () MEAN OF Y
* VARIY () VARIANCE OF Y
* MEANA () MEAN OF ALPHA
x VARIA () VARIANCE OF ALPHA
*
*
* NOTE: 1. The factor Z needed to calculate the 90% confidence
* intervals is 1.645. But if different percentage is

used, you could just change the value for Z in the
initialization section.

2. To compile this module, perform the following steps
i) cc -r -c C0NFID.c
ii) Id -r C0NFID.o -1m -0 C0NFID.o

int *NODE, *N;
double *SUMY, *SUMY2, *SUMA, *SUMA2, *SUMYA, fUTIL;

t
int i, j;

double tn, tsumy, tsumy2, tsuma, tsuma2;
double tsumya;

double z,total;

int node, n[100];
double sumy [100], sumy2 [loo] ,suma [loo] , suma2 [loo] , sumya [loo] ,util;

double tr, trval, ts2, tsll, ts22, ts12;

double tmeany, tvariy, tmeana, tvaria;

double nnl;

double r [100], rva1[100], s2 [100], s11[100], s22 [100], s12 [loo] ;
double meany [lOQ], variy [loo], meana [100], varia [loo] ;

FILE *fp;

/ *
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C C
C INITIALIZATION OF VARIABLES C
C C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
* /

node = *NODE;
util = *UTIL;
for (i=l; i<nodetl; it+)

{

n [i] = * ti-1) ;
sumy [il = * (SUMY+~-1) ;
sumy2 [i] = * (SUMY2ti-1) ;
suma [il = * (SUmti-1) ;
suma2 [il = * (SUm2ti-1) ;
sumya [il = * (SUMYA+~-1) ;
1

if ((fp = fopen ("stat", "w")) <0)
t
perror ("fopen") ;
exit(1);
1

z = 1.645;
util = uti1/1000;
total = 0.0;
for (i=l; i<nodetl; it+)

t
r[il = 0.0;
rval[ij = 0.0;
s2 [il =O. 0;
s12 [il =O. 0;
sll [il=O.O;
s22 [i] =O. 0;
meany[i] = 0.0;
variy [i] = 0.0;
meana[i] = 0.0;
varia [i] = 0.0;
1

/ *
C ~ ~ ~ ~ ~ ~ C ~ C ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
C C
C CALCULATE THE IMPORTANT PARAMETERS C
C C
CCCCCCCCCCCCCcccCccc~cccccc~~~ccccc~cccc
* / '

for (i=l; i<nodetl; i++)
I
total = total + suma[i];
if (n [i] >= 2)

I
meany [i] = sumy [i] /n [i] ;
variy [il = sumy2 [i] / n [i] - meany [i] *meany [i] ;

meana [i l = suma [i] / n [i] ;
v a r i a [i l = suma2 [i 3 /n [i] - meana [i] *meana [i] ;
n n l = n [i l * (n [i] -1) ;
s l l [f I = sumy2 [i l / (n [i l - 1) - sumy [i] *sumy [i] / n n l ;
s22 [l l = suma2 [i l / (n [i l - 1) - suma [i] *suma [i] / n n l ;
s12 t i 1 = sumya [i] / (n t i] -1) - sumy [i] *suma [i] / n n l ;
r [i l = meany [i] /meana [i] ;
s 2 [i l = s l l [i] - 2 * r [i] *s12 [i l + r [i] * r [i] *s22 [i] ;
i f ((s 2 [i]>=O) & & (n [i]>=O))

r v a l [i l = z * s q r t (s 2 [i l l / (meana [i] * s q r t (n [i])) ;
I

I
/ *
CC~~~~~~~
C C
C OUTPUT STATISTICS I N A NEAT FORMAT C
C C
CC~~~~~~~
* /

fprintf(fp,"*****************************\n~~);
f p r i n t f (f p , "* *\nl ') ;
f p r i n t f (f p , "* *\n81) ;
• ’ p r i n t • ’ (f p , " * SUMMARY OF STATISTICS * \nVV) ;
f p r i n t f (f p , "* UTILIZATION = % f ", u t i l) ;
f p r i n t f (f p , " * \ n W) ;
f p r i n t f (f p , "* * \ n m) ;
f p r i n t f (f p , " * *\nl1) ;
fprintf(fp,"******************x***********\n~~);
f p r i n t f (f p , " ~ O T ~ ~ # OF MESSAGES % f \ n " , t o t a l) ;
f p r i n t f (f p , " Z USED % f \ n W , z) ;
f p r i n t f (f p , " \nV1) ;

f o r (i=l; i<node+l ; i++)
t
p r i n t f ("STATION # %d\nw , i) ;
p r i n t f ("TOTAL # of CYCLES % d \ n W , n [i]) ;
p r i n t f ("S2 = % f \ n W , s 2 [i]) ;
p r i n t f ("S11 = % f \n", s l l [i]) ;
p r i n t f ("S22 = % f \ n W , s22 [i]) ;
p r i n t f ("S12 = % f \n", s l 2 [i]) ;
p r i n t f (" S u ~ OF CYCLE WAITING TIME = % f \ n V , s u m y [i]) ;
p r i n t f ("SUM OF SQUARES = % f \n", sumy2 [i l) ;
printf("SUM OF # OF MESSAGES = % f \ n m , s u m a [i]) ;
printf("SUM OF SQUARES = % f \ n " , s u m a 2 [i l) ;
printf("SUM OF PROD. OF # MESS. AND WAITING TIME = % f \ n W , s u m y a [i]) ;
printf("MEAN W A I T I N G TIME / CYCLE = % f \ n n , m e a n y [i]) ;
p r i n t f ("VARIANCE = % f \ n W , v a r i y [i]) ;
p r i n t f ("MEAN # OF MESSAGES / CYCLE = % f \ n t l , meana [i]) ;
p r i n t f ("VARIANCE = %f \n", v a r i a [i]) ;
p r i n t f ("MEAN WAITING TIME = % f " , r [i]) ;
p r i n t f (" t - % f \ n V , r v a l [i]) ;
p r i n t f (" \nl ') ;
1

/ *
C
C CALCULATE THE STATISTICS FOR IDENTICAL STATIONS
C
* / .

t n = 0.0;
tsumy = 0.0;
tsumy2 = 0.0;
tsuma = 0.0;
tsuma2 = 0.0;
tsumya = 0.0;

tr - = 0.0;
trval = 0.0;
ts2 = 0.0;
tsll = 0.0;
ts22 = 0.0;
ts12 = 0.0;
tmeany = 0.0;
tvariy = 0.0;
tmeana = 0.0;
tvaria = 0.0;

for (i=l; i<node+l; it+)
I
tn = tn + n [i] ;
tsumy = tsumy + sumy[i];
tsumy2 = tsumy2 + sumy2[i];
tsuma = tsuma + suma[i];
tsuma2 = tsuma2 + suma2 [i];
tsumya = tsumya + sumya[i];
1

if (tn >= 2)
I
tmeany = tsumy/tn;
tvariy = tsumy2/tn - tmeanyktmeany;
tmeana = tsuma/tn;
tvaria = tsuma2/tn - tmeana*tmeana;
nnl = tn* (tn-1) ;
tsll = tsumy2/(tn-1) - tsumy*tsumy/nnl;
ts22 = tsuma2/(tn-1) - tsuma*tsuma/nnl;
ts12 = tsumya/(tn-1) - tsumy*tsuma/nnl;
tr = tmeany/tmeana;
ts2 = tsll - 2*tr*ts12 + tr*tr*ts22;
if ((ts2>=0) & & (tn>=O))

trval = z*sqrt (ts2) / (tmeanaksqrt (tn)) ;
I

fprintf(fptnFOR IDENTICAL STATIONS \nn);
fprintf(fp,"TOTAL # of CYCLES %f\nW,tn);
fprintf (fp, "S2 = %f\nn, ts2) ;
fprintf(fp,"Sll = %f\n",tsll);
fprintf (fp, "S22 = %f \nw, ts22) ;
fprintf(fp,"S12 = %f\nV,tsl2);
fprintf(fp,"SUM OF CYCLE WAITING TIME = %f\nW, tsumy);
fprintf (fp, "SUM OF SQUARES = %f\nW, tsumy2) ;
fprintf(fp,"S~~ OF # OF MESSAGES = %f\nU,tsuma);
fprintf (fp, "SUM OF SQUARES = %f \n", tsuma2) ;
fprintf(fplWSUM OF PROD. OF # MESS. AND WAITING TIME = %f\nn, tsumya);
fprintf(fptnMEAN WAITING TIME / CYCLE = %f\nW, tmeany);
fprintf (fp, "VARIANCE = %f \nW, tvariy) ;
fprintf(fptWMEAN # OF MESSAGES / CYCLE = %f\nu, tmeana);
fprintf (fp, "VARIANCE = %f \n", tvaria) ;
fprintf(fp,"MEAN WAITING TIME = %fU,tr);
fprintf (fp, " +-%f \nu, trval) ;
fprintf (fp, " \nl') ;
fclose (fp) ;
1

* Mcdule name: priority/mult/preproc.c * * *
* Date last modified: 5 Feb 1989 * * *
* Author: Baku1 Khanna x
* *
* Description: This program generates GPSS/H *
* code for the multiple priority token ring protocol *
* with eight levels of priority. *
* It prompts the user for parameter entry which include *
* ring configuration, message inter-arrival times, *
* message service times and message deadlines. *
* It calls a routine CONFID which calculates the *
* confidence intervals based on the statistics gathered *
* during simulation. x .

#define HEADER 56
#define LAT-BUF 27

int nodes,stn-lat,ser-timefarr-timefdeadline,delta;
int arr-ind, sym, ring-indf grp,que-opf ser-ind;
int ring[100] [2] ;
float rho;
FILE *fp;

int range-check (lower, upper)
int lower, upper;
/ *
* This routine makes sure that the parameter entered lies
* between its lower and upper limits.
* /

I
int entry;
scanf ("%dW, &entry) ;
while ((entryhpper) I I (entry<lower))

I
printf("entry not within range. try again\nW);
scanf ("%dl', &entry) ;
1

return (entry) ;
1

expand (num, ind)
int num, ind;
/ *
* This routine is part of the declaration for the
* variable REGEN
* /

I
int k;
for (k=l;k<num+l;kt+)

I
fprintf (fp, "Q%dvl, (ind*lO+k)) ;
if (k==num)

fprintf (fp, ">0\nU) ;
else

fprintf (fp, ">0tW) ;
1

h e a d e r ()
/ *
* T h i s r o u t i n e g e n e r a t e s t h e h e a d e r a n d t h e d e c l a r a t i o n s
* f o r t h e GPSS/H p r o g r a m .
* /

I
i n t i, j;
fprintf(fp,"**************************************\n");
f p r i n t f (f p , "* * \ n W) ;
f p r i n t f (f p , " * %dW, n o d e s) ;
f p r i n t f (f p l V FIXED LATENCY STATIONS *\nl ') ;
f p r i n t f (f p , "* * \ n W) ;
f p r i n t f (f p , "* *\n l ') ;
fprintf(fp,"**************************************\n'l);
f p r i n t f (f p , " * \ n W) ;
f p r i n t f (f p , " * ~ u l t i p l e p r i o r i t y t o k e n r i n g \ n W) ;
f p r i n t f (f p , " * S i n g l e t o k e n o p e r a t i o n \ n n) ;
f p r i n t f (f p I n * L i m i t e d - t o - o n e s e r v i c e D i s c i p l i n e \ n n) ;
f p r i n t f (f p I w * R e g e n e r a t i v e m e t h o d t o c a l c u l a t e c o f i d a n c e i n t e r v a l s \ n n) ;
f p r i n t f (f p , " * \ n W) ;
f p r i n t f (f p , " SIMULATE 1 0 0 0 0 0 ~ ~ ~ ~ ~ ~ \nl ') ;
f p r i n t f (f p , " RMULT ,111111111, 333333333, 555555555\n1 ') ;
f p r i n t f (f p , OPERCOL 6 0 \ n n) ;
f p r i n t f (f p , " REALLOCATE COM, 4 0 0 0 00 \n l ') ;
f p r i n t f (f p , " * \ n u) ;
f p r i n t f (f p , " * \ n n) ;
f p r i n t f (f p , ' I * INITIALIZATIONS OF EXPONENTIAL FUNCTIONS AND VARIABLES\nn);
f p r i n t f (f p , " * \ n u) ;
f p r i n t f (f p , " * \ n w) ;
f p r i n t f (f p I n EXPO1 FUNCTION RN2,C24 FOR INTERARRIVAL TIMES\nW);
f p r i n t f (f p , "0 . O r 0 . 0 0 / . I , . l O 4 / . 2 , . 2 2 2 / . 3 , . 3 5 5 / - 4 , . 5 0 9 / - 5 , . 6 9 / . 6 , . 9 l 5 \ n V 1) ;
f p r i n t f (f p , ". 7 , 1 . 2 / .75 , l . 3 8 / . 8 , 1 . 6 / . 84 , l . 8 3 / . 88 , 2 . 1 2 / . 9, 2 . 3\n1') ;
f p r i n t f (f p , " . 9 2 , 2 . 5 2 / . 9 4 , 2 . 8 1 / . 9 5 , 2 . 9 9 / . 96, 3 . 2 l . 9 7 , 3 .5 \n1 ') ;
f p r i n t f (f p , " . 9 8 , 3 . 9 / . 9 9 , 4 . 6 / . 9 9 5 , 5 . 3 / . 998, 6 . 2 / . 999, 7 . O / . 9997, 8 .0 \n1 ') ;
i f (s e r - i n d == 1)

I
f p r i n t f (f p , " EXPO2 FUNCTION RN3, C24 FOR INTERARRIVAL TIMES\nn) ;
f p r i n t f (f p , " 0 . 0 , 0 . 0 0 / . I , . 1 0 4 / .2, .222i . 3 , - 3 5 5 1 - 4 , . 5 0 9 / . 5 , . 6 9 / . 6, . 915\n1 ') ;
f p r i n t f (f p , " . 7 , 1 . 2 / .75 , 1 . 3 8 / . 8 , 1 . 6 / . 84, l . 8 3 / . 8 8 , 2 . 1 2 / . 9 , 2 . 3 \ n V 1) ;
f p r i n t f (fp1".92,2.52/.94J.81/.95, 2 . 9 9 / . 9 6 , 3 . 2 / . 9 7 , 3 .5 \n1 ') ;
f p r i n t f (f p , " . 9 8 , 3 . 9 / . 9 9 , 4 . 6 / . 9 9 5 , 5 . 3 / . 998, 6 . 2 / . 999 ,7 . O / . 9997, 8 .O\nl ') ;
I

f p r i n t f (f p , " * \ n V) ;

f p r i n t f (f p I w PRIORITY FUNCTION RN4,D8\nM);
f p r i n t f (f p , " . l 2 5 , 1 / . 2 5 , 2 / . 3 7 5 , 3 / . 5 , 4 / . 625, 5 1 - 7 5 , 6 / . 875 , 7 / 1 , 8 \n1 ') ;

f p r i n t f (f p , " * \ n n) ;

f o r (j = l ; j < n o d e s + l ; j++)
I
f p r i n t f (f p , " %dn, j) ;
f p r i n t f (f p , " BVARIABLE ") ;
e x p a n d (8 , j) ;
1

f p r i n t f (f p , " REGEN BVARIABLE ") ;
f o r (i=l; i < n o d e s + l ; i + +)

I
f p r i n t f (f p , "BV") ;
f p r i n t f (f p , "%dV, i) ;
i f (i != n o d e s)

f p r i n t f (fp , "+") ;
e l s e

f p r i n t f (fp , " \nW) ;
1

1
e l s e

I
i f (nodes<=lO)

{
f p r i n t f (fp , " REGEN BVARIABLE ") ;
expand (nodes, 0) ;
1

e l s e
I
f o r (j = l ; j< (nodes/lO) +I ; j++)

I
f p r i n t f (fp , " %d", j) ;
f p r i n t f (fp , " BVARIABLE ") ;
expand(l0, j-1) ;
1

I
f p r i n t f (fp , " %d", (nodes/lO) tl) ;
f p r i n t f (fp , " BVARIABLE ") ;
expand(nodes%lO,nodes/lO);
1

f p r i n t f (fp , " REGEN BVARIABLE ") ;
i f (nodes%lO == 0)

j = nodes/lO;
e l s e

j = nodes/lO + 1;
f o r (i=l; i < j + l ; i+t)

{
f p r i n t f (fp , "BV") ;
f p r i n t f (fp , "%dW, i) ;
i f (i != j)

f p r i n t f (fp , "t") ;
e l s e

f p r i n t f (fp , " \ n u) ;
1

f p r i n t f (fp , "* \nn) ;

f o r (i = l ; i < n o d e s t l ; i t +)
I
f o r (j = l ; j <9 ; j++)

I
f p r i n t f (f p , " %dn, , i) ;
f p r i n t f (fp , "%d", J) ;
f p r i n t f (fp , " TABLE MI, 200,100, 20\nW) ;

f p r i n t f (fp , "* \nu) ;
i f (ser-ind == 1)

I
f p r i n t f (f p l n SERS FVARIABLE %dff , ser - t ime) ;
f p r i n t f (fp , "*FN$EXPO2\n") ;
1

. e l s e
I
f p r i n t f (fp , SERS FVARIABLE %d\nW , ser-time) ;
1

f p r i n t f (fp , "* \nW) ;

i f (sym I= 1)
{
i f (arr-ind == 1)

1
f p r i n t f (f p , " ARRS FVARIABLE %dgl ,arr- t ime);
, • ’p r in t • ’ (fp , 8 t * ~ ~ $ ~ ~ ~ ~ 1 \ n ") ;

I
else

t
f p r i n t f (f p I n ARRS FVARIABLE %d\nn,arr- t ime);
I

1
else

t
f o r (i=l; i<nodes+l; i++)

I
f p r i n t f (fp , ARR%dW, i) ;
f p r i n t f (fp , " FVARIABLE %d", r i n g [i] [2]) ;
i f (r i n g [i] [I] == 1)

f p r i n t f (fp , "*FN$EXPO~\~") ;
e lse

f p r i n t f (fp , " \ n u) ;
1

I
f p r i n t f (fp , "* \nn) ;
1

se tup (
/ *
* This rou t ine con ta ins t h e i n i t i a l i z a t i o n macros and
* a l s o conta ins t h e code t o s t a r t t h e token r o l l i n g .
* The token i s d i r e c t e d t o s t a t i o n 1
* /

{
i n t i;
f p r i n t f (fp , "* \nN) ;
• ’p r in t • ’ (fp , "* I N I T MACRO BEG INS\^") ;
f p r i n t f (fp , "* \nu) ;

f p r i n t f (fp , " I N I T STARTMACRO\n") ;
f p r i n t f (fp , " ZP#A MATRIX H, 1 0 0 , 2 \nn) ;
f p r i n t f (fp , " SAVEVALUE P O I N T P # A , ~ , H \ ~ ") ;
f p r i n t f (fp , " END MACRO\^") ;

i p r i n t f (fp , "* \nu) ;
f p r i n t f (f p r u * QUE MACRO BEG INS\^");
f p r i n t f (fp , "* \nu) ;
f p r i n t f (f p r u QUE START MACRO\^");
f p r i n t f (f p , " QUEUE #A#B\nl') ;
f p r i n t f (fp , " L I N K #A#B, FIFO\nW) ;
f p r i n t f (fp , " END MACRO\^") ;
I

f p r i n t f (fp , "* \nW) ;
f p r i n t f (fp , "* MAKE THE MODEL ACTIVE\n") ;
f p r i n t f (fp , "* \nn) ;
f p r i n t f (f p , " UNLIST ABS\nV1) ;
f p r i n t f (fp , " GENERATE l , , , l , l \ n ~ ~) ;
f p r i n t f (fp , " SAVEVALUE STATION,l,H\n");
f p r i n t f (fp , " SAVEVALUE TX,O,H\nn);
f p r i n t f (f p , " SAVEVALUE PRTY, 1, H\n") ;
f p r i n t f (fp , " SAVEVALUE RR, 1, H\nU) ;

f p r i n t f (f p , " SAVEVALUE BUSY, 0 , ~ \ n ") ;
• ’ p r i n t f (f p, " SAVEVALUE F L A G , ~ , H \ ~ ") ;
f p r i n t f (fp , " UNLIST MACX\nV) ;
f o r (i = l ; i < n o d e s t l ; i t t)

t
f p r i n t f (. fp , " I N I T MACRO % d \ n n , i) ;
1

f p r i n t f (f p , " S P L I T 1 , U S E l \ n ") ;
f p r i n t f (f p , " TERMINATE l \ n ") ;
1

macro ()
/ * * T h i s r o u t i n e p r i n t s o u t t h e body of t h e m a i n m a c r o
* /

{
i n t i;
f p r i n t f (f p , " * \ n ") ;
f p r i n t f (f p , " * MAIN MACRO BEG INS\^");
f p r i n t f (f p , " * \ n u) ;

f p r i n t f (f p l V MAIN START MACRO\^");
f p r i n t f (f p , " UNLIST A B S \ n W) ;
f p r i n t f (f p , " GENERATE # F \ n H) ;
f p r i n t f (f p , " ASSIGN 1, F N $ P R I O R I T Y \ ~ ") ;

f p r i n t f (f p , " * \ n u) ;
f p r i n t f (f p , " * QUEUE TRANSACTION I N APPROPRIATE QUEUE\nVV) ;

f p r i n t f (f p , " TEST E
f p r i n t f (f p , " QUE MACRO
f p r i n t f (f p , " AGl#A TEST E
f p r i n t f (f p , " QUE MACRO
f p r i n t f (f p , " AG2#A TEST E
f p r i n t f (f p , " QUE MACRO
f p r i n t f (f p , " AG3#A TEST E
f p r i n t f (f p , " QUE MACRO
f p r i n t f (f p , " AG4#A TEST E
f p r i n t f (f p , " QUE MACRO
f p r i n t f (f p , " AGS#A TEST E
f p r i n t f (f p , " QUE MACRO
f p r i n t f (f p , " AG6#A TEST E
f p r i n t f (f p , " QUE MACRO
f p r i n t f (f p I v AG7#A QUEUE
f p r i n t f (f p , " LINK
1

else
I
f p r i n t f (f p , " QUEUE # A \ n V V) ;
f p r i n t f (f p , " LINK #A, F 1 F O \ n W) ;
1

f p r i n t f (f p , " * \ n W) ;
f p r i n t f (f p , " * A TRANSACTION I S READY TO BE TRANSMITTED\nW);
f p r i n t f (f p , "* \nu) ;

f p r i n t f (f p , " CAP#A S E I Z E TOKEN\nn) ;

f p r i n t f (f p , " * \ n u) ;
f ~ r i n t f (f p , " * DEPART FROM APPROPRIATE QUEUE\^");
f p r i n t f if;; " * \ n n) ;

i f (g u e - o p == 1)
I
f p r i n t f (fp , " TEST E
f p r i n t f (f p , " DEPART
f p r i n t f (f p , TRANSFER
f p r i n t f (f p l W A B l # A TEST E
f p r i n t f (fp, " DEPART
f p r i n t f (fp, " TRANSFER
f p r i n t f (f p , " AB2#A TEST E
f p r i n t f (fp , " DEPART
f p r i n t f (f p , " TRANSFER
f p r i n t f (f p , " AB3#A TEST E
f p r i n t f (f p , " DEPART
f p r i n t f (f p , " TRANSFER
f p r i n t f (fp , " AB4#A TEST E
f p r i n t f (f p , " DEPART
f p r i n t f (f p , " TRANSFER
f p r i n t f (f p , " AB5#A TEST E
f p r i n t f (f p , " DEPART
f p r i n t f (f p , TRANSFER
f p r i n t f (f p , " AB6#A TEST E
f p r i n t f (f p , " DEPART
f p r i n t f (f p , " TRANSFER
f p r i n t f (f p I w AB7#A DEPART
1

else
f p r i n t f (f p , " DEPART

f p r i n t f (f p , " * \ n u) ;
f p r i n t f (f p , " * TABULATE WAITING TIMES\^");

f p r i n t f (f p , " SON#A TEST E
f p r i n t f (f p , " TABULATE
f p r i n t f (f p , " TRANSFER
f p r i n t f (f p , " BXl#A TEST E
f p r i n t f (f p , " TABULATE
f p r i n t f (f p , " TRANSFER
f p r i n t f (f p , " BX2#A TEST E
f p r i n t f (f p , " TABULATE
f p r i n t f (f p , " TRANSFER
f p r i n t f (f p , " BX3#A TEST E
f p r i n t f (f p , " TABULATE
f p r i n t f (f p , " TRANSFER
f p r i n t f (f p , " BX4#A TEST E
f p r i n t f (f p , " TABULATE
f p r i n t f (f p , " TRANSFER
f p r i n t f (f p , " BX5#A TEST E
f p r i n t f (f p , " TABULATE
f p r i n t f (f p , " TRANSFER
f p r i n t f (f p I w BX6#A TEST E
f p r i n t f (f p , " TABULATE
f p r i n t f (f p , " TRANSFER
f p r i n t f (f p , " BX7#A TABULATE
f p r i n t f (f p l W SIN#A SAVEVALUE
f p r i n t f (f p , " SAVEVALUE
f p r i n t f (f p , " SAVEVALUE
f p r i n t f (f p , " ADVANCE
f p r i n t f (f p , " TRANSFER

f p r i n t f (f p , " * \ n W) ;

f p r i n t f (f p , " USE#A TEST E
f p r i n t f (f p , " ADVANCE
f p r i n t f (f p , " \ n W) ;
f p r i n t f (f p , " MEE#A TEST E

P I , 1 , B X 1 # A \ n W) ;
#A1 \nV1) ;
, S I N # A \ n W) ;
P 1 , 2 , B X 2 # A \ n ") ;
A 2 \ n n) ;
, S I N # A \ ~ ") ;
P 1 , 3 , B X 3 # A \ n M) ;
~ 3 \ n ") ;
, S I N # A \ n w) ;
P I , 4 , B X 4 # A \ n n) ;
~ 4 \ n ") ;
, S I N # A \ ~ ") ;
P 1 , 5, B X ~ # A \ ~ ") ;
~ 5 \ n ") ;
, S I N # A \ n W) ;
P 1 , 6 , B X 6 # A \ n n) ;
A 6 \ n W) ;
, S I N # A \ n W) ;
P I , 7 , B X 7 # A \ n H) ;
~ 7 \ n ") ;
, S I N # A \ n V ') ;
#A8 \ n l ') ;
B U S Y , l , H \ n u) ;
R R I 1 , H \ n u) ;
TX, #A, H \ n l ') ;
E \ n V ') ;
, U S E # G \ n n) ;

f p r i n t f (f p , " TEST E XH$TX, #A,MON#A\nU) ;
f p r i n t f (f p , " ADVANCE %dm, HEADER) ;
f p r i n t f (f p , " \ n n) ;
f p r i n t f (f p , " SAVEVALUE HEAD,%dU,HEADER);
f p r i n t f (f p , "+%dW, LAT-BUF) ;
f p r i n t f (f p , "+%dn, s t n - l a t) ;
f p r i n t f (f p , "*%d\nU, n o d e s) ;
f p r i n t f (f p , " TEST GE V$SERS, xSHEAD, R E E # A \ n W) ;
f p r i n t f (f p , " ADVANCE V$SERS-x$HEAD\~") ;
f p r i n t f (f p , " REE#A RELEASE TOKEN\^") ;

f p r i n t f (fp , " MON#A TEST NE BVSREGEN, 0, H A P # A \ ~ ") ;
f p r i n t f (f p , "* SAVEVALUE S T A T I O N , # A , H \ ~ ") ;
f p r i n t f (f p , "* P R I N T , , X H \ n n) ;
f p r i n t f (f p , "* PRINT , , C \ n l ') ;
f p r i n t f (f p , "* PRINT , I Q \ n l ') ;
i f (q u e - o p == 1)

{
f p r i n t f (f p , " HAP#A UNLINK # A ~ , N E X # A , 1, , , A H ~ # A \ ~ ") ;
f p r i n t f (f p , " TRANSFER , BLO#A\nl ') ;
f p r i n t f (f p , " AHl#A UNLINK #A7, NEX#A, 1, , , AH2#A\nW) ;
f p r i n t f (f p , " TRANSFER , B L O # A \ ~ ") ;
f p r i n t f (f p I n AH2#A UNLINK #A6, NEX#A, 1, , , A H ~ # A \ ~ ") ;
f p r i n t f (f p , " TRANSFER , BLO#A\nl ') ;
f p r i n t f (f p , " AH3#A UNLINK #AS, NEX#A, I , , , AH4#A\nW) ;
f p r i n t f (f p , " TRANSFER , BLO#A\nW) ;
f p r i n t f (f p , " AH4#A UNLINK #A4, NEX#A, 1, , , AHS#A\n") ;
f p r i n t f (f p , " TRANSFER , BLO#A\nn1) ;
f p r i n t f (f p , " AH5#A UNLINK #A3, NEX#A, I , , , A H ~ # A \ ~ ") ;
f p r i n t f (f p , " TRANSFER , B L O # A \ ~ ") ;
f p r i n t f (f p I n AH6#A UNLINK #A2, NEX#A, 1, , , AH7#A\n") ;
f p r i n t f (f p , " TRANSFER , B L O # A \ ~ ") ;
f p r i n t f (f p , I' AH7 #A UNLINK # A l l NEX#A, 1, , , HEC#A\n") ;
1

else
f p r i n t f (f p , " HAP#A UNLINK #A, NEX#A, I , , , HEC#A\n") ;

f p r i n t f (f p , " BLO#A TEST NE XHSFLAG, O \ n W) ;

f p r i n t f (f p , " * \ n u) ;
f p r i n t f (f p I K * ABOVE STATEMENT BLOCKS WHILE FLAG I S C'\n");
f p r i n t f (f p , " * \ n n) ;

f p r i n t f (f p , " TEST E XHSFLAG, 1, AGA#A\nW) ;
f p r i n t f (f p , " SAVEVALUE F L A G , O , H \ n ") ;
f p r i n t f (f p , " TERMINATE\nn) ;
f p r i n t f (f p , " AGA#A SAVEVALUE FLAG, 0 , H \ n U) ;
f p r i n t f (f p , " TRANSFER , CON#A\n1') ;

f p r i n t f (f p , " * \ n W) ;
f p r i n t f (f p I W * NO TRANSACTIONS UNLINKED FROM USER C H A I N \ n W) ;
f p r i n t f (f p , " * \ n M) ;

f p r i n t f (fp , " HEC#A TEST E XHSBUSY, 1, D O W # A \ ~ ") ;
f p r i n t f (f p , " TEST E XH$TX, #A, C O N # A \ ~ ") ;
f p r i n t f (f p , " SAVEVALUE BUSY, 0 , H \ n W) ;
f p r i n t f (f p , " TEST L XHSPRTY, XHSRR, PON#A \ n u) ;
f p r i n t f (f p , " TEST G XH$PRTY,MH$ZP#A (XH$POINTP#A-1, 1) , P I K # A \ ~ ~ ') ;
f p r i n t f (f p , " MSAVEVALUE ZP#A, XH$POINTP#A, 1, XH$RR, H\n") ;
f p r i n t f (f p , " MSAVEVALUE ZP#A,XH$POINTP#A,~,XH$PRTY,H\~");

- f p r i n t f (f p , " SAVEVALUE POINTP#A+, 1, H \ n W) ;
f p r i n t f (f p , " SAVEVALUE PRTY, XH$RR, H \ n U) ;
f p r i n t f (fp , " SAVEVALUE RR, 1 , H \ n ") ;
f p r i n t f (f p , " TRANSFER , pON#A\nl ') ;
f p r i n t f (f p , " P I K # A SAVEVALUE PRTY, X H $ R R , H \ ~ ") ;
f p r i n t f (f p , " SAVEVALUE R R , l , H \ n n) ;

f p r i n t f (f p , " MSAVEVALUE ZP#A, (XH$POINTP#A-1) ,1, XHSPRTY, H \ n T T) ;
f p r i n t f (f p , " PON#A SAVEVALUE TX, 0, ~ \ n ") ;
f p r i n t f (f p , " ADVANCE # E \ n V r) ; 8 0
f p r i n t f (f p , " TEST E BVSREGEN, 0 , U S E # G \ n U) ;
f p r i n t f (f p , " S P L I T ~ , u s E # G \ ~ ") ;
f p r i n t f (f p , " TERMINATE l \ n W) ;

f p r i n t f (f p , "* \nu) ;
f p r i n t f (f p I T r * UNLINKED TRANSACTIONS FROM USER CHAIN COME HERE\^");
f p r i n t f (f p , " * \ n W) ;

f p r i n t f (f p , " NEX#A TEST E XHSBUSY, 1, P R E # A \ n W) ;
f p r i n t f (f p , " TEST E XH$TX, #A, S H O # A \ ~ ") ;
f p r i n t f (f p , " SAVEVALUE BUSY, 0 , H \ n W) ;
f p r i n t f (f p , " TEST GE XHSPRTY, P I , G1N#A\nVr) ;
f p r i n t f (f p , " TEST GE XHSPRTY, XH$RR, GIN#A\n") ;
f p r i n t f (f p , " TEST L XHSRR, P l I P I ~ # A \ n w) ;
f p r i n t f (f p , " SAVEVALUE RR, P I , H \ n v) ;
f p r i n t f (f p , " TRANSFER , P I N # A \ n r ') ;
f p r i n t f (f p , " GIN#A TEST L XHSRR, P I , HOP#A \ n r T) ;
f p r i n t f (f p , " SAVEVALUE T E M P , P 1 , H \ n m) ;
f p r i n t f (f p , " TRANSFER , HON#A\nrT) ;
f p r i n t f (f p I n HOP#A SAVEVALUE TEMP,XH$RR,H\nW);
f p r i n t f (f p , " HON#A TEST G XH$PRTY,MH$ZP#A (XH$POINTP#A-1,1), K I K # A \ n r ') ;
f p r i n t f (f p , " MSAVEVALUE ZP#A, XH$POINTP#A, 1, XH$TEMP, H\n");
f p r i n t f (f p , " MSAVEVALUE ZP#A,XH$POINTP#A,~,XH$PRTY,H\~");
f p r i n t f (f p , " SAVEVALUE POINTP#A+, 1, H\n") ;
f p r i n t f (f p , " SAVEVALUE RR, 1, H \ n W) ;
f p r i n t f (f p , " SAVEVALUE PRTY,XH$TEMP,H\nU) ;
f p r i n t f (f p , " TRANSFER , P I N # A \ n U) ;
f p r i n t f (f p , " KIK#A MSAVEVALUE ZP#A, (XH$POINTP#A-1) , I , XHSTEMP, H \ n r T) ;
f p r i n t f (f p , " SAVEVALUE PRTY, XHSTEMP , H \ n W) ;
f p r i n t f (f p , " SAVEVALUE R R , l , H \ n ") ;
f p r i n t f (f p , " PIN#A SAVEVALUE TX, O , H \ n n) ;

f p r i n t f (f p , " ON#A SAVEVALUE FLAG, 2 , H \ n U) ;
f p r i n t f (f p , " BUFFER\^") ;
i f (q u e - o p == 1)

{
f p r i n t f (f p , " TEST E
f p r i n t f (fp , " LINK
f p r i n t f (f p , " A D l # A TEST E
f p r i n t f (f p , " LINK
f p r i n t f (f p , " AD2#A TEST E
f p r i n t f (f p , " LINK
f p r i n t f (fp , " AD3#A TEST E
f p r i n t f (f p , " LINK
f p r i n t f (f p , " AD4#A TEST E
f p r i n t f (f p , " LINK
f p r i n t f (f p , " AD5#A TEST E
f p r i n t f (f p , " LINK
f p r i n t f (f p , " AD6#A TEST E
f p r i n t f (f p , " LINK
f p r i n t f (f p , " AD7#A LINK
f p r i n t f (f p , " TRANSFER
1

else
f p r i n t f (f p , " LINK

f p r i n t f (f p , " \ n ") ;
- f p r i n t f (fp , 'I* DOWNGRADE P R I O R I T Y \ n l ') ;

f p r i n t f (f p , " \ n ") ;

f p r i n t f (f p I w DOW#A TEST E XH$PRTY,MH$ZP#A (XH$POINTP#A-1, 1) , CON#A\nr r) ;
f p r i n t f (f p , " TEST G XHSRR, MH$ZP#A (XH$POINTP#A-1, 2) , L U G # A \ n n) ;
f p r i n t f (f p , " SAVEVALUE PRTY, XHSRR, H \ n n) ;

f p r i n t f (fp, " MSAVEVALUE ZP#A, (XH$POINTP#A-1) ,1, XHSPRTY, H \ n V v) ;
f p r i n t f (f p , " SAVEVALUE R R , 1 , H \ n U) ; 8 1
f p r i n t f (fp, " TRANSFER , CON#A\nn1) ;
f p r i n t f (f p , " LUG#A SAVEVALUE PRTY, MH$ZP#A (XH$POINTP#A-1 , 2) , H\nV1) ;
f p r i n t f (f p , " SAVEVALUE POINTP#A-, 1, H \ n w) ;
f p r i n t f (f p , " CON#A ADVANCE # E \ n V) ;
f p r i n t f (fp , " TRANSFER , USE#G\nVs) ;

f p r i n t f
f p r i n t f
f p r i n t f

f p r i n t f

f p r i n t f
f p r i n t f
f p r i n t f
f p r i n t f
f p r i n t f

fp , " \ n u) ;
fp,"* FREE TOKEN\nW);
fp, " \ n W) ;

fp ," PRE#A TEST E XH$PRTY, MH$ZP#A (XH$POINTP#A-1 I 1) I HUG#A\nV1)

• ’ P I " TEST L Pl ,MH$ZP#A (XH$POINTP#A-1, 1) I HUG#A\nW) ;
f P r " TEST GE X H $ R R , P ~ , H O H # A \ ~ ") ;
fP, " SAVEVALUE B I G , XH$RR, H \ n n) ;
 PI " TRANSFER , DOH#A\nV1) ;
f p , " HOH#A SAVEVALUE B I G , P 1 , H \ n v) ; (

f p r i n t f (f p r n DOH#A TEST G XHBIG,MHZP#A(XH$POINTP#A-1,2),LOG#A\n");
f p r i n t f (f p , " SAVEVALUE PRTY, XHSBIG, H \ n w) ;
f p r i n t f (f p , " MSAVEVALUE ZP#A, (XH$POINTP#A-1) , ~ , x H $ B I G , H \ n t 1) ;
f p r i n t f (f p , " SAVEVALUE RR, 1, H \ n n v) ;
f p r i n t f (f p , " TRANSFER , HUG#A\nl') ;
f p r i n t f (f p , " LOG#A SAVEVALUE PRTY,MH$ZP#A (XH$POINTP#A-1 ,2), H\n") ;
f p r i n t f (f p , " SAVEVALUE POINTP#A-, 1, H \ n W) ;
f p r i n t f (f p , " SAVEVALUE RR, XHSBIG, H \ n n) ;
f p r i n t f (f p , " HUG#A TEST GE P I , XH$PRTY, PHO#A\nw) ;
f p r i n t f (f p , " SAVEVALUE FLAG, 1, H \ n W) ;
f p r i n t f (f p , " B U F F E R \ n W) ;
f p r i n t f (f p , " TRANSFER , CAP#A\nn l) ;
f p r i n t f (f p , " PHO#A TEST G XHSPRTY, MH$ZP#A (XH$POINTP#A-1 ,I), LNK#A\nl ') ;
f p r i n t f (f p , " SHO#A TEST L XH$RR, P I , LNK#A\nn) ;
f p r i n t f (f p , " SAVEVALUE R R , P l , H \ n ") ;
f p r i n t f (fp, " LNK#A TRANSFER , ON#A\nV') ;
f p r i n t f (f p , ENDMACRO\nl') ;
f p r i n t f (f p , " * \ n W) ;
f p r i n t f (f p , "* MACRO ENDS\n t l) ;
f p r i n t f (f p , " * \ n u) ;
1

o u t p u t ()
/ *
* T h i s r o u t i n e i s t h e c o n t r o l p r o g r a m .
* I t s ta r t s o f f t h e GPSS/H p r o g r a m , c o n t r o l it
* t r ans fe r red t o it a f t e r e a c h regenerat ive
* cycle i s over w h e n t h e s t a t i s t i c s f o r t h a t cycle
* a r e col lected. T h e r o u t i n e CONFID i s cal led
* a f t e r t h e r e q u i r e d n u m b e r of regenerat ive cycles
* are over
* /

1
i n t i;
f p r i n t f (f p , " * \ n u) ;
f p r i n t f (f p , " * CONTROL CARDS\nn) ;
f p r i n t f (f p , " * \ n U) ;
f p r i n t f (f p , " * \ n V) ;
f p r i n t f (f p , " INTEGER & I , & J , & K , & L \ n ") ;
f p r i n t f (f p , " INTEGER & C Y C L E \ n n) ;
f p r i n t f (f p , " INTEGER &NODE \ n u) ;
• ’ p r i n t • ’ (f p , " INTEGER & T O T A L \ n n) ;
f p r i n t f (fp , " INTEGER &MESS \ n v v) ;
i = n o d e s A 1 0 + 1 0 ;
f p r i n t f (f p , " INTEGER &N (% d n , i) ;

f p r i n t f (f p , ") \ n W) ;
f p r i n t f (f p , " REAL &SUMY (%dm, i) ;
f p r i n t f (f p , ") \ n W) ;
f p r i n t f (f p , " REAL LSUMY2 (%dw, i) ;
f p r i n t f (f p , ") \ n ") ;
f p r i n t f (f p , " REAL &SUMA (%dX', i) ;
f p r i n t f (fp , ") \ n W) ;
f p r i n t f (f p , " REAL &SUMA2 (% d W , i) ;
f p r i n t f (f p , ") \ n u) ;
f p r i n t f (f p , " REAL &SUMYA(%dW, i) ;
f p r i n t f (f p , ") \ n n) ;
f p r i n t f (f p , " REAL &LINDELAY\nn) ;
f p r i n t f (f p , " EXTERNAL & C O N F I D \ n n) ;

f p r i n t f (f p , " LET & C Y C L E = 8 0 0 0 \ n n) ;
f p r i n t f (f p , " LET & M E S S = 1 0 0 0 0 0 \ n ") ;
f p r i n t f (f p , " LET &NODE=%d\nW, n o d e s) ;
f p r i n t f (fp , " START 1, N P \ n n) ;
f p r i n t f (fp , " UNLIST CSECHO\nn) ;

f p r i n t f (f p , " LET & I = l \ n r ') ;
f p r i n t f (fp , " AGAIN I F (& I ' L t &CYCLE) \ n u) ;
f p r i n t f (f p , " START 1 , N P \ n U) ;
f p r i n t f (f p , " ELSE\^") ;
f p r i n t f (f p , " START l \ n U) ;
f p r i n t f (f p , " END IF\^") ;

f p r i n t f (f p , " * \ n u) ;
f p r i n t f (f p r W * RECORD THE IMPORTANT S T A T I S T I C S \ ~ ") ;
f p r i n t f (fp , " * \ n u) ;
f p r i n t f (f p , " DO &K=1, 8\nW) ;
f p r i n t f (f p , " DO &J=l, &NODE\nn) ;
f p r i n t f (f p , " LET & L = & J * 1 0 + & K \ n W) ;
f p r i n t f (fp , " I F (TC&L>O) \ n H) ;
f p r i n t f (f p , " LET &N (& L) =&N (& L) + l \ n W) ;
f p r i n t f (f p , " LET &SUMY (& L) = & S U M Y (& L) + T B & L * T C & L \ ~ ") ;
f p r i n t f (f p , " LET &SUMY2 (L L) =&SUMY2 (& L) + (TB&LkTC&L) * (TB&L*TC&L) i n ") ;
f p r i n t f (f p , " LET &SUMA(&L) =&SUMA(&L) +TC&L\nn ') ;
f p r i n t f (f p , " LET & S u m 2 (& L) = & s u m 2 (& L) + T C & L * T C & L \ ~ ") ;
f p r i n t f (f p , " LET &SUMYA(&L) =&SUMYA (& L) +TC&L* (TB&L*TC&L) \ n W ') ;
f p r i n t f (f p , " LET &ToTAL=&TOTAL+TC&L\~") ;
f p r i n t f (fp , " E N D I F \ n W) ;
f p r i n t f (fp , " ENDDO\nI1) ;
f p r i n t f (f p , " END DO\^") ;

f p r i n t f (f p , " RESET F$TOKEN\nn) ;

f p r i n t f (f p , " I F (&TOTAL>&MESS) \ n n) ;
f p r i n t f (f p , " GOT0 F I N \ n W) ;
f p r i n t f (f p , " E N D I F \ n W) ;
f p r i n t f (f p , " IF (&I<&CYCLE) \ n ") ;
f p r i n t f (f p , " LET & I = & I + l \ n U) ;
f p r i n t f (f p , " GOT0 A G A I N \ n n) ;
f p r i n t f (f p , " E N D I F \ n w) ;
f p r i n t f (f p t W * C ROUTINE TO CALCULATE CONFIDENCE I N T E R V A L S \ n W) ;
f p r i n t f (f p , " F I N DO &~=1 , 8 \ n W) ;
f p r i n t f (fp , " LET & L = l O t & ~ \ n ") ;
f p r i n t f (f p , " CALL &CONFID (&NODE, & N (& L) , &SUMY (& L) , & S U M Y ~ (& L) ,-\nl ') ;
f p r i n t f (f p , " & S U M A (& L) , & S u m 2 (& L) , &SUMYA(&L) ,FR$TOKEN) \ n ") ;
f p r i n t f (f p , " END DO\^") ;

f p r i n t f (fp , " END\^") ;
1

m a i n ()
/ *

*This module prompts the user to enter various paramaters
* /
I
int i, i ;

7"Number of stations ?\nW) ;
nodes = range-check (2,80) ;
printf ("Station latency ?\nu) ;
stn-lat = range-check (l,20) ;
printf("Service Time: 1.Exponential 2.Constant\nw);
ser-ind = range-check(l,2);
if (ser-ind == 1)

printf("Exponentia1 service time ?\nn);
else

printf ("Constant service time ?\nnl) ;
ser-time = range-check(1, 500);

printf("1.Symmetric ring 2.Assyrnetric ring\nv);
sym = range-check (l,2) ;
if (sym ==I)

t
printf("1nter-arrival time distribution: 1.Exponential 2.Constant\nn);
arr-ind = range_check(l,2);
if (arr-ind == 1)

t
printf("Exponentia1 interarrival time ?\nw);
arr-time = range-check (1,5OOOOO) ;
1

else
I
printf("Constant interarrival time ?\nn);
arr-time = range-check(1,500000) ;
1

1
else

I
ring-ind = 1;
while (ring-ind < nodes+l)
I
print•’ ("1. Individual entry 2 .Group entry ?\nW) ;
grp = range-check (1,Z) ;
if (grp ==1)

t
printf ("Node %dn, ring-ind) ;
print•’(": Inter-arrival time distribution: 1
arr-ind = range-check (l,2) ;
ring [ring-indl [I] = arr-ind;
if (arr-ind == 1)

t

Exponential 2

printf ("Node %d", ring-ind) ;
print•’(": Exponential interarrival time ?\nu);
arr-time = range-check(1,500000);
ring [ring-ind] [Z] = arr-time;
1

else
I
printf("Node %dU,ring-ind);
print•’(": Constant interarrival time ?\nm);
arr-time = range-check(1,500000);
ring [ring-ind] [2] = arr-time;
1

ring-ind = ring-ind t 1;
1

onstant ?\nn)

else
t
printf ("group size ?\nnn) ;
grp = range-check (1, nodes-ring-indtl) ;

printf ("Nodes %d", ring-ind) ;
print f (I1-%d" , ring-indtgrp-1) ; 84
print•’(": Inter-arrival time distribution: 1.Exponential 2.Constant ?\nW);
arr-ind = range-check (l,2) ;
for (j=ring-ind; j<ring-indtgrp; jtt)

ring [j] [l] = arr-ind;
if (arr-ind == 1)

I
printf ("Node %d", ring-ind) ;
printf ("-%d", ring-indtgrp-1) ;
print•’(": Exponential interarriva
arr-time = range-check (1,5OOOOO) ;
for (j=ring-ind; j<ring-indtgrp;

ring[j] [2] = arr-time;
1

1 time

j ++)

else
t
printf ("Node %d", ring-ind) ;
printf (I1-%d", ring-indtgrp-1) ;
print•’(": Constant interarrival time ?\nW);
arr time = range-check (l,5OOOOO) ;
for-(j=ring-ind; j<ring-indtgrp; jtt)

ring[j] [2] = arr-time;
I
J

ring-ind = ring-ind + grp;
I
I

1

printf("Queue operation: 1.Multi-queue 2.Single-queue ?\nu);
que-op = range-check (l,2) ;

/ * calculate value of rho * /
if (sym == 1)

[
;ho = (float) nodes*ser-time/arr-time;
I

else
I
rho = 0.0;
for (i=l; i<nodes+l; it+)

t
rho = rho + (f1oat)ser-time/ring[i][2];
I

I
printf ("rho is %f\nn, rho) ;
if (rho>l. 00)

printf("WARN1NG:queues will build up!\nn);
I

/ * print gpss code * /

if ((fp = fopen ("gpss .gpsW, "w"))<0)

perror ("f open") ;
exit (1) ;
I

header () ;
setup (1 ;
macro () ;

•’print•’ (fp, "*\nu) ;
fprintf (fp, " * CALL MACRO\nW) ;
fprintf (fp, "*\nW) ;

/ * Genera te macro c a l l s . One f o r each s t a t i o n on t h e r i n g .
* The fo l lowing a r e t h e pa ramete rs of t h e macro c a l l
* #A - S t a t i o n number
* #B - n o t used
* #C - Message s e r v i c e t ime
* #D - n o t used
* #E - S t a t i o n l a t e n c y
* #F - Meggase i n t e r - a r r i v a l t i m e
* #G - Next s t a t i o n on t h e r i n g
* /
f o r (i = l ; i < n o d e s + l ; i + +)

{
f p r i n t f (f p , " M A I N MACRO % d U , i) ;
f p r i n t f (f p , ", ,V$SERS") ;
f p r i n t f (f p , " , , % d " , s t n - l a t) ;
i f (sym == 1)

f p r i n t f (f p , ", V$ARRS") ;
e l s e

p r i n t f (f p , ", V$ARR%d", i) ;
i f (i==nodes)

f p r i n t f (f p , ", 1") ;
e l s e

f p r i n t f (f p , ", %d", itl) ;
f p r i n t f (f p , " STATION % d \ n U , i) ;
i f (i==l)

f p r i n t f (f p , " UNLIST MACX\ntt) ;
1

f p r i n t f (f p , " PAGE\nnn) ;

o u t p u t () ;

/ * This module is meant for the multiple priority case * /

void CONFID (NODE, N, SUMY, SUMY2, SUMA, SUMA2, SUMYA, UTIL)

/ *
*CCCCCCCCCCCCcCCCCCCCCCCC * C
* Declarations C
* C
"CCCCCCCCCCCCCCCCCCCCCCCC

1, JrF DUMMY VARIABLES
NODE # OF NODES
NN1 NOk(N0-1)
TOTAL TOTAL # OF MESSAGES TO THE SYSTEM
UTIL UTILIZATION OF SERVER
Z A FACTOR NEEDED TO CALCULATE CONFIDENCE INTERVALS

When variables below start with a T, they become the
variables for all nodes combined.

N (NODE)
R O
RVAL ()
s2 0
Sll 0
s22 0
s12 0
SUMY (NODE)
SUMY2 (NODE)
SUMA (NODE)
SUMA2 (NODE)
SUMYA (NODE)
MEANY ()
VARIY ()
MEANA ()
VARIA ()

NUMBER OF CYCLES RUN FOR EACH NODE
MEAN WAITING TIME
+-INTERVAL FOR CONFIDENCE INTERVALS
VARIANCE OF WAITING TIME
VARIANCE OF Y
VARIANCE OF ALPHA
COVARIANCE OF ALPHA AND Y
S.UM OF Y
SUM OF SQUARE OF Y
SUM OF ALPHA
SUM OF SQUARE OF ALPHA
SUM OF ALPHA*Y
MEAN OF Y
VARIANCE OF Y
MEAN OF ALPHA
VARIANCE OF ALPHA

NOTE: 1. The factor Z needed to calculate the 90% confidence
intervals is 1.645. But if different percentage is
used, you could just change the value for Z in the
initialization section.

2. Perform the following steps to compile this program
i) cc -r -c C0NFID.c
iil Id -r C0NFID.o -1m -0 C0NFID.o

int *NODE, *N;
double *SUMY,*SUMY2,*SUMArkSUMA2,*SUMYAI*UTIL;

{
int i, j;

double tn, tsumy, tsumy2, tsuma, tsuma2;
double tsumya;

double z , total;

int node, n[200];
double sumy[200],sumy2[200],suma[200],suma2[200l,sumya~2OOlrutil;

double tr, trval, ts2, tsll, ts22, ts12;
double tmeany, tvariy, tmeana, tvaria;

double nnl:

double r [ZOO], m a 1 [200], s2 [ZOO], s11 [ZOO], s22 [200], s12 [ZOO] ;
double meany [ZOO], variy [ZOO], meana [ZOO], varia [ZOO] ;

FILE *fp;

/ *
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C C
C INITIALIZATION OF VARIABLES C
C C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
* /

printf ("confid called\nW) ;
node = *NODE;
util = *UTIL;
for (i=l; i<nodetl; it+)

I
n [il = * (NS (i-1) *lo) ;
sumy [i] = * (SUMYt (i-1) *lo) ;
sumy2 [i] = * (SUMYZt (i-1) *lo) ;
suma [i] = * (SUMAt (i-1) *lo) ;
suma2 [i] = * (SUMAZt (i-1) *lo) ;
sumya [il = * (SUMYAt (i-1) *lo) ;
1

if ((fp = fopen("statW, "a")) <0)
I
perror ("f open") ;
exit (1) ;
1

z = 1.645;
util = uti1/1000;
total = 0.0;
for (i=l; i<nodetl; itt)

I
r[il = 0.0;
rval[i] = 0.0;
s2 [i]=O.O;
s12 [i] =O. 0;
sll [i]=O.O;
s22 [i] =O. 0;
meany[il = 0.0;
variy [il = 0.0;
meana[il = 0.0;
varia[i] = 0.0;
1

/ *
CC
C C
C CALCULATE THE IMPORTANT PARAMETERS C
C C
CC
* /

for (i=l; i<nodetl; it+)
I
total = total t suma[i];
if (n[i] >= 2)

I
meany [il = sumy [i] /n [i] ;

variy [i] = sumy2 [i] /n [il - meany [i] *meany [i] ;
meana [il = suma [i] /n [i] ;
varia [il = suma2 [i] /n [i] - meana [i] *meana [i] ;
nnl = n[i] * (n[i] -1) ;
sll [il = sumy2 [il/ (n [il-1) - sumy [i] *sumy [i] /nnl;
~ 2 2 [il = suma2 [i] / (n [i] -1) - suma [i] *suma [i] /nnl;
~ 1 2 [il = sumya [il/ (n [i] -1) - sumy [i] *suma [i] /nnl;
r [il = meany [i] /meana [i] ;
~2 [il = sll [i] - 2*r [i] *s12 [i] + r [i] *r [i] As22 [i] ;
if ((s2[iI>=O) & & (n[i]>=O))

rval [i] = z*sqrt (s2 [i]) / (meana [i] *sqrt (n [i])) ;
1

1
/ *
CCccccccc
C C
C OUTPUT STATISTICS IN A NEAT FORMAT C
C C
CCccccccc
* /

fprintf(fp,"*****************************\nll);
fprintf (fp, "* *\nV1) ;
fprintf (fp, "* *\nn) ;
fprintf (fp, "* SUMMARY OF STATISTICS *\nl') ;
fprintf (fp, " * UTILIZATION = %f ", util) ;
fprintf (fp, " *\nn) ;
fprintf (fp, "* *\nW) ;
fprintf (fp, " * *\nu) ;
fprintf(fp,"*****************************\n~~);
fprintf(fp,"TOTAL # OF MESSAGES %f\nV,total);
fprintf (fp, " Z USED %•’\nu, z) ;
fprintf (fp, \n") ;

for (i=l; i<node+l; it+)
I
fprintf (fp, "STATION # %d\nW, i) ;
fprintf (fpImTOTAL # of CYCLES %d\nW,n[il) ;
fprintf (fp, "S2 = %f \nu, s2 [i]) ;
fprintf(fp,"Sll = %f\nn,sll[i]);
fprintf (fp, "S22 = %f\nV, s22 [i]) ;
fprintf (fp,"S12 = %f\nn, s12 [i]) ;
fprintf(fpInSUM OF CYCLE WAITING TIME = %f\nW, sumy[i]);
fprintf (fp, "SUM OF SQUARES = %f \nn, sumy2 [i]) ;
fprintf (fp,"SUM OF # OF MESSAGES = %f \nu, suma [i]) ;
fprintf (fp, "SUM OF SQUARES = %•’\nu, suma2 [i]) ;
fprintf(fp,"SUM OF PROD. OF # MESS. AND WAITING TIME = %•’\nu, sumya[il);
fprintf (fp, "MEAN WAITING TIME / CYCLE = %f\nW, meany [i]) ;
fprintf (fp, "VARIANCE = %f \n", variy [i]) ;,
fprintf(fp,"MEAN # OF MESSAGES / CYCLE = %f\nn, meanatil);
fprintf (fp, "VARIANCE = %f \nu, varia [i]) ;
fprintf (fpImMEAN WAITING TIME = %fn,r[i]);
fprintf (fp, "+-%f \nW,rval [i]) ;
fprintf (fp, " \nl') ;
I

/ *
C
c . CALCULATE THE STATISTICS FOR IDENTICAL STATIONS
C
* /

tn = 0.0;
tsumy = 0.0;
tsumy2 = 0.0;
tsuma = 0.0;
tsuma2 = 0.0;
tsurnya = 0.0;

tr = 0.0;
trval = 0.0;
ts2 = 0.0;
tsll = 0.0;
ts22 = 0.0;
ts12 = 0.0;
tmeany = 0.0;
tvariy = 0.0;
tmeana = 0.0;
tvaria = 0.0;

for (i=l; i<nodetl; it+)
I
tn = tn t n[i];
tsumy = tsumy + sumy[i];
tsumy2 = tsumy2 + sumy2[i];
tsuma = tsuma t suma[i];
tsuma2 = tsuma2 t suma2 [i] ;
tsumya = tsumya + sumya[i];
1

if (tn >= 2)
{
tmeany = tsumy/tn;
tvariy = tsumy2/tn - tmeany*tmeany;
tmeana = tsuma/tn;
tvaria = tsuma2/tn - tmeana*tmeana;
nnl = tn* (tn-1) ;
tsll = tsumyZ/(tn-1) - tsumy*tsumy/nnl;
ts22 = tsumaZ/(tn-1) - tsuma*tsuma/nnl;
ts12 = tsumya/(tn-1) - tsumy*tsuma/nnl;
tr = tmeany/tmeana;
ts2 = tsll - 2*tr*ts12 t tr*tr*ts22;
if ((ts2>=0) & & (tn>=O))

trval = zksqrt (ts2) / (tmeana*sqrt (tn)) ;
I
J

fprintf(fp,"FOR IDENTICAL STATIONS \nW);
fprintf(fpIwTOTAL # of CYCLES %f\nW,tn);
fprintf (fp,"S2 = %f\nW,ts2);
fprintf (fp, "S11 = %f\nn, tsll) ;
fprintf (fp, "S22 = %•’\nu, ts22) ;
fprintf (fp, "S12 = %f \nu, tsl2) ;
fprintf(fp,"SUM OF CYCLE WAITING TIME = %f\nW, tsumy);
fprintf (fp, "SUM OF SQUARES = %f \n", tsumy2) ;
fprintf(fp,"SUM OF # OF MESSAGES = %f\n",tsuma);
fprintf(fp,"SUM OF SQUARES = %f\n",tsuma2);
fprintf(fpInSUM OF PROD. OF # MESS. AND WAITING TIME = %f\nn, tsumya);
fprintf(fplWMEAN WAITING TIME / CYCLE = %f\nW, tmeany);
fprintf(fpIwVARIANCE = %f\nn, tvariy);
fprintf (fp, "MEAN # OF MESSAGES / CYCLE = %f \n!', tmeana) ;
fprintf (fp, "VARIANCE = %f \nu, tvaria) ;
fprintf (fpIwMEAN WAITING TIME = %fn, tr) ;
fprintf (fp," +-%f\nn,trval);

* M~dule name: dynamic/preproc.c * * *
* Date last modified: 5 Feb 1989 *
* *
* Author: Baku1 Khanna *
* *
* Description: This program generates GPSS/H. *
* code for the dynamic priority protocol. x * It prompts the user for parameter entry which include *
* ring configuration, message inter-arrival times, *
* message service times and message deadlines. *
* It calls a routine CONFID which calculates the *
* confidence intervals based on the statistics gathered *
* during simulation. *
.

#define HEADER 56
#define LAT-BUF 27

int nodes,stn-lat,ser-time,arr-time,delta,deadline;
int arr ind, sym, ring-ind, grp,•’unc, ser-ind, dead-ind;
int rin<[1001 [21;
float rho;
FILE *fp;

int range-check (lower, upper)
int lower, upper;
/ *
* This routine makes sure that the parameter entered
* lies between its lower and upper limits.
* /

t
int entry;
scanf ("%dW, &entry) ;
while ((entryhpper) I I (entry<lower))

t
printf("entry not within range. try again\nV);
scanf ("%dU, &entry) ;
1

return (entry) ;
I

expand (num, ind)
int num, ind;
/ *
* This routine is part of the declaration for the
* variable REGEN
* /

t
int k;
for (k=l; k<num+l; kt+)

I
fprintf (fp, "CH%dn, (ind*lOtk)) ;
if (k==num)

fprintf (fp, ">O\nN) ;
else

fprintf (fp, ">0tW) ;
I

header ()
/ *
* This routine generates the header and the declarations
* for the GPSS/H program.
* /

t
int i, j;
fprintf(fp,"**************************************\nll);
fprintf (fp, "* *\nl') ;
fprintf(fpIw* %dU,nodes);
fPrintf(fp," FIXED LATENCY STATIONS *\nV1) ;
fprintf (fp, "* *\nW) ;
fprintf (fp, "* * \nSr) ;
fprintf(fp,n**************************************\n");
fprintf (fp, "*\nW) ;
fprintf(fp,"* Dynamic priority protocol\nU); '
fprintf(fptW* Single token operation\nW);
fprintf (fp, "* Limited-to-one service distribution\nn) ;
fprintf(fpIw* Regenerative method to calculate confidence intervals\nW);
fprintf (fp, "*\nW) ;
fprintf (fp, " SIMULATE 100000~~ SAVE \nrl) ;
fprintf (fp, " RMULT ,111111111,333333333, 55555555\n") ;
fprintf (fp," OPERCOL 60\nW) ;
fprintf (fp, " REALLOCATE COM, 40000\nU) ;
fprintf (fp, "*\nn) ;
fprintf (fp, "* INITIALIZATIONS OF EXPONENTIAL FUNCTIONS AND VARIABLES\nW);
fprintf (fp, "*\nn) ;
fprintf(fptW EXPO1 FUNCTION RN2,C24 FOR INTERARRIVAL TIMES\^");
fprintf (fp, "0.0,O. 00/. l,.lO4/ .2,.222/. 3, .355/.4, .509/.5, .69/. 6, . 915\nV') ;
fprintf(fp,".7,1.2/.75,1.38/.8,1.6/.84,1.83/.88,2.l2/.9f2.3\n");
fprintf(fp,".92,2.52/.94,2.81/.95,2.99/.96,3.2/.97,3.5\n");
fprintf (fp,".98,3.9/.99,4.6/.995,5.3/.998l6.2/.999,7.O/.9997,8.O\n");

fprintf (fp, "*\nu) ;

if (dead-ind == 1)
1
fprintf (fp, " DL FUNCTION RN3, C24 FOR DEADLINES\nU) ;
fprintf (fp, "0.0,O .00/ .l,.lO4/ .2, .222/ .3, .355/ -4, .509/ -5, .69/. 6, . 915\nB') ;
fprintf (fplW.7, 1 .2/.75,1.38/.8,1.6/.84f 1.83/.88,2 .12/. gf 2 .3\nt1) ;
fprintf(fp,".92,2.52/.94,2.81/.95I2.99/.96,3.2/.97,3.5\n~t);
fprintf (fp,". 98,3.9/. 99,4.6/. 995,5.3/. 998, 6.2/. 999, 7.0/. 9997, 8 .O\nvt) ;
1

fprintf (fp, "*\nu) ;

fprintf(fplV' EXPO2 FUNCTION RN3,C24 FOR MESSAGE SERVICE TIMES\nl');
fprintf (fp, "0.0,0.00/ .1,.104/ .2,.222/ .3, .355/.4, .509/ .5,. 691. 6, . 915\n1') ;
fprintf(fp,".7,1.2/.75,1.38/.8,1.6/.84,1.83/.88,2.l2/.9I2.3\n~~);
fprintf(fp,".92,2.52/.94,2.81/.95I2.99/.96,3.2/.97,3.5\nt');
fprintf (fp,". 98,3.9/. 99,4.6/. 995,5.3/. 998, 6.2/. 999, 7 .O/. 9997, 8. 0\nv') ;
1

fprintf (fp, "*\nn) ;
fprintf (fp, "*\nu) ;
if (nodes<=lO)

I
fprintf (fp, " REGEN BVARIABLE ") ;
expand (nodes, 0) ;
1

else
t

i p r i n t f (fp , I, %d", j) ;
f p r i n t f (fp , " BVARIABLE ") ;
expand(l0, j-1) ;

I
f p r i n t f (fp , %dl', (nodes/lO) + I) ;
f p r i n t f (f p , " BVARIABLE ") ;
expand(nodes%lO,nodes/lO);
\

f p r i n t f (fp , " REGEN BVARIABLE ") ;
i f (nodes%lO == 0)

j = nodes/lO;
e l s e

j = nodes/lO + 1;
f o r (i = l ; i < j + l ; i t t)

I
f p r i n t f (fp , "BV") ;
f p r i n t f (fp , "%d", i) ;
i f (i != j)

f p r i n t f (fp , "t") ;
e l s e

f p r i n t f (fp , "\n") ;
I

1
f p r i n t f (fp, "* \nu) ;
f p r i n t f (fp , "* \nu) ;

f o r (i = l ; i < n o d e s t l ; i t t)
I
f p r i n t f (fp , " %d", i) ;
• ’ p r i n t f (fp , " TABLE MI, 300,100, 20\nW) ;

f p r i n t f (fp , "* \nn) ;

t
f p r i n t f (fp , SERS FVARIABLE %d", ser-time) ;
f p r i n t f (fp , "*FN$EXPO2\n") ;
1

e l s e
I
f p r i n t f (f p , " SERS FVARIABLE %d\nU,ser- t ime);
I

f p r i n t f (fp , "* \nW) ;

i f (sym == 1)
I
i f (arr-ind == 1)

t
f p r i n t f (fp , " ARRS FVARIABLE %dl', arr-time) ;
f p r i n t f (f p t n * F ~ $ ~ ~ ~ O l \ n ") ;
1

e l s e
I
f p r i n t f (fp , " ARRS FVARIABLE %d\nW, arr-time) ;
I

I
e l s e

{
f o r (i=l; i<nodes+l; it+)

I

f p r i n t f (f p , " ARR%dW, i) ;
f p r i n t f (f p , " FVARIABLE %dl1, r i n g [i] [2]) ;
i f (r i n g [i] [1] == 1)

f p r i n t f (f p , "*FN$EXPOl\n") ;
else

f p r i n t f (f p , "\n") ;
1

1
f p r i n t f (f p , " * \ n W) ;
1

/ *
* T h i s r o u t i n e performs t h e necessa ry i n i t i a l i z a t i o n s ,
* s t a r t s t h e token r o l l i n g and d i r e c t s it t o
* s t a t i o n 1
* /

i n t i;
f p r i n t f (f p , "* \nu) ;
f p r i n t f (f p , "* I N I T MACRO BEG INS\^") ;
f p r i n t f (fp , "* \nu) ;

f p r i n t f (f p , " I N I T START MACRO\^") ;
f p r i n t f (f p , " ZP#A MATRIX H, 100, 2 \ n V) ;
f p r i n t f (f p , SAVEVALUE P O I N T P # A , ~ , H \ ~ ") ;
f p r i n t f (f p , " END MACRO\^") ;

f p r i n t f (f p l W * \ n ") ;
f p r i n t f (f p , "* MAKE THE MODEL ACTIVE\nl') ;
f p r i n t f (f p , "* \nW) ;
f p r i n t f (f p , " UNLIST A B S \ ~ ") ;
f p r i n t f (f p , " GENERATE l , , , l , l \ n ' l) ;
f p r i n t f (f p , " SAVEVALUE TX,O,H\n");
f p r i n t f (f p , " SAVEVALUE PRTY,l,H\nn);
f p r i n t f (f p , " SAVEVALUE RR,l ,H\n");
f p r i n t f (f p , " SAVEVALUE BUSY,O,H\~");
f p r i n t f (f p , " SAVEVALUE FLAG,O,H\n");
f p r i n t f (f p , " SAVEVALUE DELTA,%d",aeltaj;
f p r i n t f (f p , ", H\nW) ;
f p r i n t f (f p , " SAVEVALUE 1 , O , H\n") ;
f p r i n t f (f p , " UNLIST MACX\n8') ;
f o r (i = l ; i < n o d e s + l ; i t t)

I
f p r i n t f (f p , " I N I T MACRO % d \ n U , i) ;
I

f p r i n t f (f p , " SPLIT 1,USEl \ n ") ;
f p r i n t f (f p , " TERMINATE l \ n l ') ;
I

macro (1
/ *
* T h i s r o u t i n e p r i n t s ou t t h e body of t h e main macro
* /

{
i n t i;
f p r i n t f (f p l V * \ n ") ;
f p r i n t f (f p , " * M A I N MACRO BEGINS\n1') ;
f p r i n t f (f p , " * \ n u) ;

f p r i n t f (f p , " M A I N START MACRO\^") ;
f p r i n t f (f p , " UNLIST A B S \ ~ ' I) ;
f p r i n t f (f p , " GENERATE #??\XI") ;

i f (d e a d - i n d == 1)
f p r i n t f (f p , " ASSIGN 2 , #B*FN$DL\nV) ;

else
f p r i n t f (f p , " ASSIGN 2 , #B\nZ1) ;

f p r i n t f (f p , " ASSIGN 3, (~ 2 - ~ 1) \ n ") ;
f p r i n t f (f p , " ASSIGN 4 , (CH#A+l) \ n ") ;
f p r i n t f (f p , " SAVEVALUE GO, 0 \ n ") ;
f p r i n t f (f p, " OOK#A LOOP 4 , 0 0 ~ # ~ \ n ") ;
f p r i n t f (f p , " LINK #A, 3 \ n 1 ') ;
f p r i n t f (f p , " OOP#A UNLINK #A, OOM#A, l \ n " 1 ;
f p r i n t f (f p , " TEST NE X$GO, O \ n n) ;
f p r i n t f (f p , " SAVEVALUE GO, 0 \n") ;
f p r i n t f (f p , " TRANSFER , 00K#A\n3 ') ;
f p r i n t f (f p I w OOM#A ASSIGN 3, (P2-MI) \ n ") ;
f p r i n t f (f p , " SAVEVALUE GO, 1 \ n u) ;
f p r i n t f (fp , " BUFFER\^") ;
f p r i n t f (f p , " LINK #A, F I F O \ ~ ") ;

f p r i n t f (f p , "* A TRANSACTION I S READY TO BE TRANSMITTED\~") ;

f p r i n t f (f p , " CAP#A S E I Z E TOKEN\nW);

f p r i n t f (f p , " * TABULATE WAITING TIMES\^");

f p r i n t f (f p , " TABULATE
f p r i n t f (f p , " SAVEVALUE
f p r i n t f (f p , " SAVEVALUE
f p r i n t f (f p , " SAVEVALUE
f p r i n t f (f p , " ADVANCE
f p r i n t f (f p , " TRANSFER
f p r i n t f (f p , " USE#A TEST E
f p r i n t f (f p , " ADVANCE
f p r i n t f (f p , " \ n n) ;
f p r i n t f (f p , " MEE#A TEST E
f p r i n t f (f p , " TEST E
f p r i n t f (f p , " ADVANCE
f p r i n t f (f p , " \ n u) ;
f p r i n t f (f p , " SAVEVALUE
f p r i n t f (f p , "+%d", LAT-BUF) ;
f p r i n t f (f p , " + l * % d \ n " , n o d e s) ;
f p r i n t f (f p , " TEST GE
f p r i n t f (f p , " ADVANCE
f p r i n t f (f p , " REE#A RELEASE
f p r i n t f (f p , " MON#A UNLINK
f p r i n t f (f p , " TEST NE

A \ n t q) ;
B U S Y , l , H \ n V r) ;
R R , l , H \n l ') ;
TX, #A, H \ n n) ;
E \ n l ') ;
, U S E # G \ n n) ;
#A, 1, M E E # A \ ~ ") ;
%d", LAT-BUF) ;

XH$BUSY, l ,MON#A\n") ;
XH$TX, # A , M O N # A \ ~ ") ;
%d" , HEADER) ;

HEAD, %d" , HEADER) ;

f p r i n t f (f p r w * ABOVE STATEMENT BLOCKS WHILE FLAG I S O \ n l ') ;

f p r i n t f (f p , " TEST E XHSFLAG, 1 ,AGA#A\nW) ;
f p r i n t f (f p , " SAVEVALUE F L A G , O , H \ ~ ") ;
f p r i n t f (f p , " TERMINATE\^") ;
f p r i n t f (f p , " AGA#A TEST E XH$FLAG, 2 , AGB#A\nn) ;
f p r i n t f (f p , " SAVEVALUE FLAG, 0 , H \ n ") ;
f p r i n t f (f p , " TRANSFER , CON#A\nn) ;
f p r i n t f (f p , " AGB#A SAVEVALUE FLAG, O , H \ n n) ;
f p r i n t f (f p , " TRANSFER , H E C # A \ ~ ") ;

f p r i n t f (f p , l l * NO TRANSACTIONS UNLINKED FROM USER C H A I N \ n q q) ;

f p r i n t f (f p , " HEC#A TEST E XHSBUSY, 1, D o W # A \ ~ ") ;
f p r i n t f (f p l q q TEST E XH$TX, #A, CON#A\nn) ;
f p r i n t f (f p , " SAVEVALUE BUSY, 0 , H \ n W) ;
f p r i n t f (f p , " TEST L XH$PRTY, XH$RR, PON#A \ n q q) ;
f p r i n t f (f p , " TEST G XH$PRTY,MH$ZP#A (XH$POINTP#A-1, 1) , P I K # A \ n I 1) ;
f p r i n t f (f p , " MSAVEVALUE ZP#A, XH$POINTP#A, 1, XH$RR, H\n") ;
f p r i n t f (f p , " MSAVEVALUE ZP#A,XH$POINTP#A,~,XH$PRTY,H\~");

f p r i n t f (f p , " SAVEVALUE POINTP#A+, 1 , H \ n W) ;
f p r i n t f (f p , " SAVEVALUE PRTY, XH$RR, H \ n U) ;
f p r i n t f (f p , " SAVEVALUE R R , ~ , H \ ~ ") ;
f p r i n t f (f p , " TRANSFER , PON#A\nW) ;
f p r i n t f (f p , " P I K # A SAVEVALUE PRTY, XH$RR, H \ n V) ;
f p r i n t f (f p , " , SAVEVALUE RR, 1, H \ n n) ;
f p r i n t f (f p , " MSAVEVALUE ZP#A, (XH$POINTP#A-1) , I , XH$PRTY, H \ n U) ;
f p r i n t f (f p , " PON#A SAVEVALUE TX, 0, H \ n V ') ;
f p r i n t f (f p , " ADVANCE # G \ n l ') ;
f p r i n t f (f p , " TEST E BVSREGEN, 0, u S E # G \ n W) ;
f p r i n t f (f p , " S P L I T 1, USE#G\nW) ;
f p r i n t f (f p , " TERMINATE l \ n W) ;

f p r i n t f (f p I W * UNLINKED TRANSACTIONS FROM USER CHAIN COME H E R E \ n W) ;

f p r i n t f (f p , " NEX#A TEST E XHSBUSY, 1, P R E # A \ ~ ") ;
f p r i n t f (f p , " TEST G M l , P 2 , 0 ~ # A \ n ") ;
f p r i n t f (f p , " SAVEVALUE 1 + , 1 , H \ n ") ;
f p r i n t f (f p , " UNLINK #A, NEX#A, 1 , , , P E C # A \ ~ ") ;
f p r i n t f (f p , " TERMINATE\^") ;
f p r i n t f (f p , " PEC#A SAVEVALUE FLAG, 3 , H \ n W) ;
f p r i n t f (f p , " BUFFER\^") ;
f p r i n t f (f p , " TERMINATE\^") ;
f p r i n t f (f p , " BAC#A TEST GE XHSPRTY, P I , G I N # A \ ~ ") ;
f p r i n t f (f p , " TEST GE XHSPRTY, XH$RR, GIN#A\n") ;
f p r i n t f (f p , " TEST L XH$RR, P I , P I N # A \ n l ') ;
f p r i n t f (f p , " SAVEVALUE RR, P I , H \ n ") ;
f p r i n t f (f p , " TRANSFER , P I N # A \ n n) ;
f p r i n t f (f p , " GIN#A TEST L XHSRR, PI , HOP#A \n") ;
f p r i n t f (f p , " SAVEVALUE TEMP, P I , H \ n V ') ;
f p r i n t f (f p , " TRANSFER , HON#A\nV') ;
f p r i n t f (f p , " HOP#A SAVEVALUE TEMP, XH$RR, H \ n ") ;
f p r i n t f (f p , " HON#A TEST G X H $ P R T Y , M H $ ~ P # A (XH$POINTP#A-1,1), K I K # A \ ~ ") ;
f p r i n t f (f p , " MSAVEVALUE ZP#A,XH$POINTP#A,l,XH$TEMP,H\n");
f p r i n t f (f p , " MSAVEVALUE ZP#A,XH$POINTP#A,2,XH$PRTYIH\n");
f p r i n t f (f p , " SAVEVALUE POINTP#A+, 1, H \ n ") ;
f p r i n t f (f p , " SAVEVALUE RR, 1, H \ n ") ;
f p r i n t f (f p , " SAVEVALUE PRTY, xH$TEMP, H \ n W) ;
f p r i n t f (f p , " TRANSFER , PIN#A\n1I) ;
f p r i n t f (f p , " KIK#A MSAVEVALUE ZP#A, (XH$POINTP#A-1) , I , XHSTEMP, ~ \ n ") ;
f p r i n t f (f p , " SAVEVALUE RR, 1, H \ n n) ;
f p r i n t f (f p , " SAVEVALUE PRTY, XHSTEMP, H \ n l ') ;
f p r i n t f (f p , " P I N # A SAVEVALUE TX, 0, H \ n U) ;
f p r i n t f (f p , " SAVEVALUE B U S Y , O , H \ n W) ;

f p r i n t f (f p I W ON#A SAVEVALUE F L A G , 2 , H \ n V) ;
f p r i n t f (f p , " BUFFER\nU) ;

f p r i n t f (f p , " LINK #A, L I F 0 \ n W) ;

f p r i n t f (f p , "* DOWNGRADE P R I O R I T Y \ n n) ;

f p r i n t f (f p , " DOW#A TEST E XH$PRTY,MH$ZP#A.(XH$POINTP#A-1, 1) , CON#A\nV') ;
f p r i n t f (f p , " TEST G XHRR,MHZP#A(XH$POINTP#A-l12),~uG#~\nw);
f p r i n t f (f p , " SAVEVALUE PRTY, xHSRR, H \ n ") ;
f p r i n t f (f p , " MSAVEVALUE ZP#A, (XH$POINTP#A-1) , I , XHSPRTY, H \ n q t) ;
f p r i n t f (f p , " SAVEVALUE R R , l , H \ n ") ;
f p r i n t f (f p , " TRANSFER , CON#A\nq') ;
f p r i n t f (f p , " LUG#A SAVEVALUE PRTY, MH$ZP#A (XH$POINTP#A-1, 2) , H\nl ') ;
f p r i n t f (f p , " SAVEVALUE POINTP#A-, 1, ~ \ n ") ;

f p r i n t f (f p , " CON#A ADVANCE # E \ n M) ;
f p r i n t f (f p , " TRANSFER , USE#G\nt ') ;

f p r i n t f (f p , " * MAKE RESERVATION\^") ;
f p r i n t f (f p , " PHO#A TEST G XH$PRTY, MH$ZP#A (XH$POINTP#A-1 , 1) , 0 N # ~ \ n ") ;

fprintf (fp, " SHO#A TEST L XH$RR, PI, ON#A\nn) ;
fprintf (fp, " SAVEVALUE RR,P~,H\~");
fprintf (fp, " TRANSFER , ON#A\nV1) ;
fprintf (fp, "* FREE TOKEN\^") ;
fprintf (fp," PRE#A TEST E XH$PRTY,MH$~P#A (XH$POINTP#A-1, 1) , BoN#A\~") ;
fprintf (fp, " TEST L Pl,MH$ZP#A (XH$POINTP#A-1, 1) , BON#A\~") ;
fprintf (fp, " TEST GE XH$RR, PI, HOH#A\~") ;
fprintf (fp, " SAVEVALUE BIG, XH$RR, H\nW) ;
fprintf (fp, " TRANSFER , DOH#A\nt') ;
fprintf (fp, " HOH#A SAVEVALUE BIG,Pl, H\nV) ;
fprintf (fp, " DOH#A TEST G xHSBIG, MH$ZP#A (XH$POINTP#A-1, 2) ,LOG#A\n") ;
fprintf (fp, " SAVEVALUE PRTY, XH$BIG, H\n") ;
fprintf (fp," MSAVEVALUE ZP#A, (XH$POINTP#A-1) ,I, XH$BIG, H\nW) ;
fprintf (fp, " SAVEVALUE RR,l,H\n");
fprintf (fp, " TRANSFER , BON#A\n8') ;
fprintf(fp," LOG#A SAVEVALUE PRTY,MH$zP#A(xH$POINTP#A-1,2),H\nn);
fprintf (fp, " SAVEVALUE POINTP#A-,l,H\n");
fprintf (fp, " SAVEVALUE RR, XHSBIG, H\nl') ;
fprintf (fp, "\n") ;
fprintf(fplV* TEST IF DEADLINE HAS BEEN MISSED !\nn);
fprintf (fp, "\nW) ;
fprintf (fp, " BON#A TEST G MI, P2, 0K#A\nW) ;
fprintf (fp," SAVEVALUE FLAG,l,H\nn);
fprintf (fp, " BUFFER\nW) ;
fprintf (fp," SAVEVALUE l+,l,H\n");
fprintf (fp, " TEST E BVSREGEN, 0 , MON#A\~") ;
fprintf (fp, " SPLIT 1, MON#A\nW) ;
fprintf (fp, " TEWINATE l\n") ;
fprintf (fp, " OK#A TEST GE P2, XHSDELTA, SAM#A\n") ;
fprintf (fp, " TEST L MI, P2-XHSDELTA, SAM#A\n") ;
fprintf (fp, " ASSIGN 1, 1\nv') ;
fprintf (fp, " TRANSFER , LAM#A\nl') ;
fprintf(fpIn SAM#A SAVEVALUE DIS,Ml-PZSXH$DELTA,H\n");
if (func == 1)

fprintf (fp, " TEST LE XHDIS,XHDELTA*~/~,DA~#A\~");
else

fprintf (fp," TEST LE XH$DISIXH$DEL~~*1/2,DAl#A\n");
fprintf (fp, " ASSIGN 1, 1\nt1) ;
fprintf (fp, " TRANSFER , LAM#A\nU) ;
if (func == 1)

fprintf(fp," DAl#A TEST LE XHDIS,XHDELTA*~/~,DA~#A\~");
else

fprintf(fpIw DAl#A TEST LE XH$DIS1XH$DELTA*3/4,DA2#A\n");
fprintf (fp, " ASSIGN 1,2\nW) ;
fprintf (fp, " TRANSFER , LAM#A\~") ;
if (func == 1)

fprintf(fpIn DA2#A TEST LE XHDIS,XHDELTA*~/~,DA~#A\~");
else

fprintf(fpIn DA2#A TEST LE XHDIS,XHDELTA*~/~,DA~#A\~");
fprintf (fp, " ASSIGN 1, 3\nW) ;
fprintf (fp, " TRANSFER , LAM#A\nn) ;
if (func == 1)

fprintf(fpIn DA3#A TEST LE XHDIS,XHDELTA*~/~,DA~#A\~~);
else

fprintf(fp," DA3#A TEST LE XHDIS,XHDELTA*~~/~~,DA~#A\~"); - .

fprintf (fp, " ASSIGN 1, 4\nW) ;
fprintf (fp, " TRANSFER , L?iM#A\nn) ;
if (func==l)

fprintf(fprn DA4#A TEST LE XHDIS,XHDELTA*~/~,DA~#A\~");
else

fprintf(fp," DA4#A TEST LE X H $ D I S , X H $ D E L T A * ~ ~ / ~ ~ , D A ~ # A \ ~ ~) ;
fprintf (fp, " ASSIGN 1, 5\nV') ;
fprintf (fp, " TRANSFER , LAM#A\n") ;

i f (f u n c == 1)
f p r i n t f (f p I w DA5#A TEST LE XHDIS,XHDELTA*~/~,DA~#A\~");

- . else
f p r i n t f (f p I n DA5#A TEST LE XHDIS,XHDELTA*~~/~~,DA~#A\~");

f p r i n t f (f p , " ASSIGN 1, 6 \nvv) ;
f p r i n t f (f p , " TRANSFER , L A M # A \ ~ ") ;
i f (f u n c == 1)

f p r i n t f (f p t w DA6#A TEST LE XHDIS,XHDELTA*~/~,DA~#A\~");
e l s e

f p r i n t f (f p l U DA6#A TEST LE X H $ D I S , X H $ D E L T A * ~ ~ ~ / ~ ~ ~ , D A ~ # A \ ~ ") ;
f p r i n t f (f p , " ASSIGN 1, 7 \ n v v) ;
f p r i n t f (f p , " TRANSFER , LAM#A\nvv) ;
i f (f u n c == 1)

f p r i n t f (f p , " DA7#A ASSIGN 1, 8\nVv) ;
else

f p r i n t f (f p f W DA7#A ASSIGN 1 , 8\nVv) ;
f p r i n t f (f p , " LAM#A TEST E XHSBUSY, 1, D A M # A \ ~ ") ;
f p r i n t f (f p , " TEST E XHSTX, #A, S H O # A \ ~ ") ;
f p r i n t f (f p , " TRANSFER , BAC#A\nVv) ;
f p r i n t f (f p , " DAM#A TEST GE PI , XH$PRTY, PHO#A\~") ;
f p r i n t f (f p , " SAVEVALUE FLAG, 1, H\nqv) ;
f p r i n t f (f p , " BUFFER\^") ;
f p r i n t f (f p , " TRANSFER , CAP#A \n") ;
f p r i n t f (f p , " ENDMACRO\nn) ;
f p r i n t f (f p , "* \nV) ;
f p r i n t f (f p , "* MACRO ENDS\nM) ;
f p r i n t f (f p , "*\nn) ;
1

o u t p u t ()
/ *
* T h i s r o u t i n e i s t h e c o n t r o l program.
* I t s t a r t s of t h e GPSS/H program, c o n t r o l i s
* t r a n s f e r r e d t o it a f t e r each r e g e n e r a t i v e c y c l e
* i s o v e r . T h i s r o u t i n e t h e n c o l l e c t s s t a t i s t i c s
* g e n e r a t e d d u r i n g t h e p rev ious c y c l e .
* The e x t e r n a l r o u t i n e CONFID i s c a l l e d
* when t h e r e q u i r e d number of r e g e n e r a t i v e
* c y c l e s a r e o v e r
* /

I
f p r i n t f (f p , "* \nV) ;
f p r i n t f (f p , "* CONTROL CARDS \n") ;
f p r i n t f (f p , "* \nW) ;
f h r i n t f (f p , "*\nlV) ;
f p r i n t f (f p , " INTEGER & I , & J \ n W) ;
f p r i n t f (f p , " INTEGER &CYCLE\nm);
f p r i n t f (f p , " INTEGER &NODE \ n u) ;
f p r i n t f (f p , " INTEGER TOTAL\^");
f p r i n t f (f p , " INTEGER &MESS \n") ;
f p r i n t f (f p , " INTEGER & N (% d V , nodes) ;
f p r i n t f (f p , ") \ n u) ;
f p r i n t f (f p , " REAL &SUMY (%d", nodes) ;
f p r i n t f (•’6, ") \ n u) ;
f p r i n t f (f p , " REAL &SUMY2 (Bd", nodes) ;
f p r i n t f (f p , ") \ n W) ;
f p r i n t f (f p , " REAL &SUMA (% d n , nodes) ;
f p r i n t f (f p , ") \ n W) ;
f p r i n t f (f p , " REAL &SUMA2 (%d", nodes) ;
f p r i n t f (f p , ") \ n n) ;
f p r i n t f (f p , " REAL & SUMYA (% d W , nodes) ;
f p r i n t f (f p , ") \n") ;
f p r i n t f (f p , " REAL &LINDELAY\nV) ;
f p r i n t f (f p , " REAL &PERCEN\nn) ;

f p r i n t f (fp , "
f h r i n t f (• ’ 6 , "
f p r i n t f (fp , "

f p r i n t f (f p , "

f p r i n t f (fp , "
f p r i n t f (f p , "
f p r i n t f (f p , "
f p r i n t f (f p , "
f p r i n t f (f p , "
f p r i n t f (f p , "
f p r i n t f (f p , "

f p r i n t f (f p , "
f p r i n t f (f p , " AGAIN
f h r i n t f (f p , "
f p r i n t f (fp, "
f p r i n t f (f p , "
f p r i n t f (f p , "

REAL &SAV\n l ') ;
REAL &DEAD\nl ') ;
REAL & D E L T \ ~ ") ;

EXTERNAL & C O N F I D \ n w) ;

LET & C ~ C ~ ~ = 8 0 0 0 \ n ") ;
LET & M E S S = 1 0 0 0 0 0 \ n ") ;
LET & ~ O D E = % d \ n " , n o d e s) ;
LET & ~ E L T = % d \ n " , d e l t a) ;
LET & ~ ~ A D = % d \ n " , d e a d l i n e) ;
START 1 , N P \ n U) ;
UNLIST CSECHO\nn) ;

LET & I = l \ n V 1) ;
I F (& I 1 L' &CYCLE) \ n u) ;

START 1, N P \ n l ') ;
E L S E \ n l ') ;

START l \ n w) ;
END IF\^") ;

f p r i n t f (f p , " * \ n u) ;
f p r i n t f (f p I n * RECORD THE IMPORTANT S T A T I S T I C S \ ~ ") ;
f p r i n t f (f p , "* \ n u) ;
f p r i n t f (f p , " DO &J=1, & ~ 0 D E \ n l ') ;
f p r i n t f (f p , " I F (TC& J > O) \ n W) ;
f p r i n t f (f p , " LET &N (& J) =&N (&J) + l \ n U) ;
f p r i n t f (f p , " LET &SUMY (& J) =&SUMY (& J) + T B & J * T C & J \ ~ ") ;
f p r i n t f (f p , " LET &SUMY2 (& J) =&SUMY2 (& J) + (TB& J * T C & J) * (TB& J*TC& J) \ n l ') ;
f p r i n t f (f p , " LET & S U ~ (& J) = & S u m (& J) + T C & J \ n l ') ;
f p r i n t f (f p , " LET & s u m 2 (& J) = & S u m 2 (& J) +TC& J*TC& J \ n W) ;
f p r i n t f (f p , " LET &SUMYA (& J) =&SUMYA (& J) +TC& J* (TB& J*TC& J) \ n l ') ;
f p r i n t f (f p , " LET &TOTAL=&TOTAL+TC&J\~") ;
f p r i n t f (f p , " E N D I F \ n W) ;
f p r i n t f (f p , " ENDDO\nW) ;

f p r i n t f (f p , " LET &SAV=XHl \nW) ;
f p r i n t f (f p , " LET &PERCEN=&SAV*~OO/(&TOTAL+&SAV)\~");

f p r i n t f (f p , " RESET F$TOKEN\nZ j ;

f p r i n t f (f p , " I F (&TOTAL>&MESS) \ n w) ;
f p r i n t f (f p , " GOT0 F I N \ n ") ;
f p r i n t f (f p , " E N D I F \ n n) ;
f p r i n t f (f p , " I F (&I<&CYCLE) \ n ") ;
f p r i n t f (f p , " LET & I = & I t l \ n ") ;
f p r i n t f (f p , " GOT0 A G A I N \ n W) ;
f p r i n t f (f p , " E N D I F \ n W) ;
f p r i n t f (f p l U * C ROUTINE TO CALCULATE CONFIDENCE I N T E R V A L S \ n n) ;
f p r i n t f (f p , " * \ n u) ;
f p r i n t f (f p , " F I N CALL &CONFID (&NODE, &N (1) , &SUMY (1) , - \nag) ;
f p r i n t f (f p , "&SUMY2 (1) , & S U M A (l) , & S u m 2 (1) , &SUMYA(l) ,FR$TOKEN,-\nl') ;
f p r i n t f (f p , "&PERCEN, &DEAD, &DELT) \ n l ') ;
f p r i n t f (f p , " * \ n u) ;
f p r i n t f (f p , " END\nV') ;
1

main ()
/ *
* T h i s m o d u l e p r o m p t s t h e u s e r t o enter v a r i o u s p a r a m e t e r s
* /
I
i n t i, j;
p r i n t f (" N u m b e r of s t a t i o n s ? \ n u) ;
nodes = r a n g e - c h e c k (2 , 5 0) ;

printf ("Line delay ?\nW) ;
stn-lat = range-check (l,20) ;
printf("Service Time: 1.Exponential 2.Constant\nW);
ser-ind = range-check (l,2) ;
if (ser-ind == 1)

printf ("Exponential service time ?\nn) ;
else

printf ("Constant service time ?\nv1) ;
ser-time = range-check (1, 500) ;

print•’ ("1. Symmetric ring 2 .Assmetric ring\nS1) ;
sym = range-check (l,2) ;
if (sym ==I)

I
printf("1nter-arrival time distribution: 1.Exponential 2.Constant\nW);
arr-ind = range_check(l,2);
if (arr-ind == 1)

1
\

printf("Exponentia1 interarrival time ?\n");
arr-time = range-check (1, 500000) ;
1

else
t
print•’ ("Constant interarrival time ?\n") ;
arr-time = range-check (1,5OOOOO) ;
1

1
else

(
ring-ind = 1;
while (ring-ind < nodes+l)
I
printf("l.Individua1 entry 2.Group entry ?\nn);
grp = range-check (l,2) ;
if (grp ==I)

I
printf ("Node %dw,ring-ind) ;
print•’(": Inter-arrival time distribution: 1.Exponential 2.Constant ?\nu);
arr-ind = range-check (l,2) ;
ring [ring-ind] [l] = arr-ind;
if (arr-ind == 1)

printf ("Node %d", ring-ind) ;
print•’(": Exponential interarrival time ?\nW);
arr-time = range-check (1,500000) ;
ringiring-ind] [2] = arr-time;
1

else
I
printf ("Node %dw, ring-ind) ;
print•’(": Constant interarrival time ?\n");
arr time = range-check (1,500000) ;
rin<[ring-ind] [2] = arr-time;

else
I
printf ("group size ?\nn) ;
grp = range-check(1,nodes-ring-indtl);
printf ("Nodes %d" , ring-ind) ;
print •’ ("-%dW , ring-indtgrp-1) ;
print•’(": Inter-arrival time distribution: 1 Exponential 2.Constant ?\nW);
arr-ind = range-check(l,2) ;
for (j=ring ind; $ring-indtgrp; j++)

ring[j] [l] = arr-ind;

I
printf("Node %dW,ring-ind);
printf ("-%dM, ring-indtgrp-1) ;
printf(": Exponential interarrival time ?\nu);
arr-time = range-check (1,5OOOOO) ;
for (j=ring-ind; j<ring-ind+grp; jtt)

ring[j] [2] = arr-time;
I

printf ("Node %dm, ring-ind) ;
printf ("-%d", ring-indtgrp-1) ;
print•’(": Constant interarrival time ?\nu);
arr-time = range-check (1,500000) ;
for (j=ring-ind; j<ring-indtgrp; jtt)

ring[jl [2] = arr-time;
I

ring-ind = ring-ind t grp;
I

I
printf("Dead1ines: 1.Exponentially distributed 2.Constant\nW);
dead-ind = range-check(1,Z);
if (dead-ind == 1)

printf("mean for exponentially distributed deadlines ?\nW);
else

printf("constant deadline ?\nW);
deadline- = range-check (1,100000) ;
printf ("delta ?\nW) ;
delta = range-check (0,100000) ;
printf("Priority Function: 1.Linear 2.~0n-linear ?\nt');
f unc = range-check (l,2) ;

/ * calculate value of rho */
if (sym == 1)

t
rho = (float)nodes*ser-time/arr-time;
I

else
i
rho = 0.0;
for (i=l; i<nodes+l; it+)

I
rho = rho + (float) ser-time/ring [i] [23 ;
I

printf ("rho is %f \n", rho) ;
if (rho>l. 00)

I
printf("WAFQJ1NG:queues will build up!\nn);
I

/ * print gpss code * /

if ((fp = fopen ("gpss .gpsW, "w")) <O)
i
perror ("fopen") ;
exit (1) ;
1

header () ;
setup () ;
macro () ;

fprintf (fp, "*\nW) ;
fprintf (fp, "* CALL MACRO\nn);

f p r i n t f (fp, "*\nu) ;

/ * Generate macro c a l l s . One f o r each s t a t i o n
* on t h e r ing . The fol lowing a r e t h e parameters
* f o r t h e macro c a l l s .
* #A - Sta t ion number
* #B - Deadline
* #C - Message s e r v i c e time
* #D - not used
* #E - Sta t ion l a t ency
* #F - Message i n t e r - a r r i v a l t ime
* #G - Next s t a t i o n
* /
f o r (i = l ; i < n o d e s t l ; i + t)

{
f p r i n t f (f p, " MAIN MACRO %dn , i) ;
f p r i n t f (fp , ", %dn, deadl ine) ;
f p r i n t f (fp , ",V$SERS") ;
f p r i n t f (fp , ", , %dW, s tn- la t) ;
i f (sym == 1)

f p r i n t f (fp , ",V$ARRS") ;
e l s e

f p r i n t f (fp , ",V$ARR%d", i) ;
i f (i==nodes)

f p r i n t f (fp , ", 1") ;
e l s e

f p r i n t f (fp , ", %dn, itl) ;
f p r i n t f (fp , " STATION %d\nU, i) ;
i f (i==l)

f p r i n t f (fp , " UNLIST MACX\nl') ;
i

f p r i n t f (ip, " PAGE\nl') ;

output () ;

/ * This module is meant for the dynamic case*/

void CONFID (NODE, N, SUMY, SUMY2 , SUMA, SUMA2, SUMYA, UTIL, PERCEN, DL, DELT)
/ *
*CCCCCCCCCCCCCCCCCCCCCCCC * C
* Declarations C
* C
*CCCCCCCCCCCCCCCCCCCCCCCC

11 JtF DUMMY VARIABLES
NODE # OF NODES
NN 1 N O * (No -1)
TOTAL TOTAL # OF MESSAGES TO THE SYSTEM
UTIL UTILIZATION OF SERVER
Z A FACTOR NEEDED TO CALCULATE CONFIDENCE INTERVALS

When variables below start with a T, they become the
variables for all nodes comdined.

N (NODE)
R (1
RVAL ()
s2 0
S110
s22 0
s12 0
SUMY (NODE)
SUMY2 (NODE)
SUMA (NODE)
SUMA2 (NODE)
SUMYA (NODE)
MEANY ()
VARIY ()
MEANA ()
VARIA ()
PERCEN
DL
DELT

NUMBER OF CYCLES RUN FOR EACH NODE
MEAN WAITING TIME
+-INTERVAL FOR CONFIDENCE INTERVALS
VARIANCE OF WAITING TIME
VARIANCE OF Y
VARIANCE OF ALPHA
COVARIANCE OF ALPHA AND Y
SUM OF Y
SUM OF SQUARE OF Y
SUM OF ALPHA
SUM OF SQUARE OF ALPHA
SUM OF ALPHA*Y
MEAN OF Y
VARIANCE OF Y
MEAN OF ALPHA
VARIANCE OF ALPHA
PERCENTAGE OF MESSAGES LOST
DEADLINE
DELTA

NOTE: 1. The factor Z needed to calculate the 90% confidence
intervals is 1.645. But if different percentage is
used, you could just change the value for Z in the
initialization section.

2. To compile this program perform the following steps
i) cc -r -c C0NFID.c
ii) Id -r C0NFID.o -1m -0 C0NFID.o

int *NODE, *N;
double *SUMY, *SUMY2, *SUMA, *SUMA2, *SUMYA, *UTIL, *PERCEN, *DL;
double *DELT;

int i, j;

double tn, tsumy, tsumy2, tsuma, tsuma2;
double tsurnya,percen,dl,delta;

double z, total;

int node, n[1001;
double sumy [lOO], sumy2 [loo] +ma [loo] -ma2 [I001 , sumya [loo] ,util;

double tr, trval, ts2, tsll, ts22, ts12;
double tmeany, tvariy, tmeana, tvaria;

double nnl;

double r [100], rva1[100], s2 [loo], s11[100], s22 [loo] , s12 [loo] ;
double meany [100], variy [100], meana [100], varia [loo] ;

FILE *fp;

/ *
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C C
C INITIALIZATION OF VARIABLES C
C C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
* /

node = *NODE;
percen = *PERCEN;
dl = *DL;
delta = *DELT;
util = *UTIL;
for (i=l; i<node+l; itt)

(
n [il = * ti-1) ;
sumy [il = * (SU~yti-1) ;
sumy2 [il = * (SUMY~+~-1) ;
suma [il = * (SUMA+~-1) ;
suma2 [i] = * (SUMA2ti-1) ;
sumya [il = * (SUMYA+~-1) ;
1

if ((fp = fopen ("stat", "w")) <0)
I
perror ("fopen") ;
exit (1) ;
1

z = 1.645;
util = uti1/1000;
total = 0.0;
for (i=l; i<node+l; it+)

I
r[i] = 0.0;
rval[i] = 0.0;
5-2 [il =O. 0;
s12 [i]=O.O;
sll [il=O.O;
s22 [i] =O. 0;
meany[il = 0.0;
variy[i] = 0.0;
meana[i] = 0.0;
varia[il = 0.0;
1

/ *
CC
C C
C CALCULATE THE IMPORTANT PARAMETERS C
C C
CC
* 1

f o r (i=l; i<node+l ; it+)
{
t o t a l = t o t a l + suma[i] ;
i f (n [i] >= 2)

meany [i] = sumy [i] /n [i] ;
v a r i y [i] = sumy2 [i] / n [i] - meany [i] *meany [i] ;
meana [i] = suma [i] / n [i] ;
v a r i a [i] = suma2 [i] /n [i] - meana [i] *meana [i] ;
n n l = n [i l * (n [i] - 1) ;
s l l [i l = sumy2 [i l / (n [i] -1) - sumy [i] *sumy [i] / n n l ;
s22 [i] = suma2 [i l / (n [i] -1) - suma [i] *suma [i] / n n l ;
s12 [i] = sumya [i] / (n [i] -1) - sumy [i] *suma [i] / n n l ;
r [i l = meany [i l /meana [i] ;
s2 [i l = s l l [i l - 2 * r [i] *s12 [i] + r [i] * r [i] *s22 [i] ;
i f ((s 2 [i]>=O) & & (n [i] > = O))

r v a l [i l = z * s q r t (s 2 [i]) / (rneana [i l * s q r t (n [i l)) ;
1

~ C C C C C C ~ C C C C C ~ ~ C C C C C C ~ C C C C C C C C C C C C C C C C C C ~ ~ ~ ~ ~ ~ ~
C C
C OUTPUT STATISTICS I N A NEAT FORMAT C
C C
CCccccccc
* /

fprintf(fp,U*****************************\n~~);
f p r i n t f (f p , "* *\nl ') ;
f p r i n t f (f p , " * * \ n u) ;
f p r i n t f (f p , IN* SUMMARY OF STATISTICS *\nl ') ;
f p r i n t f (f p , "* UTILIZATION = % f n , u t i l) ;
f p r i n t f (f p , * \ n n) ;
f p r i n t f (f p , "* * \ n n) ;
f p r i n t f (f p r w * *\nll) ;
fprintf(fp,"*****************************\nlf);
fp r in t f (fp rwTOTAL # OF MESSAGES % f \ n W , t o t a l) ;
f p r i n t f (f p I n Z USED % f \ n n , z) ;
f p r i n t f (f p , \nl ') ;

f o r (i=l; i<node+l ; it+)
{
f p r i n t f (f p , "STATION # %d\nI1, i) ;
f p r i n t f (f p , "TOTAL # of CYCLES % d \ n U , n [i]) ;
f p r i n t f (f p , "S2 = % f \ n W , s2 [i]) ;
f p r i n t f (f p , "S11 = % f \ n n , sll [i]) ;
f p r i n t f (f p , "S22 = % f \ n q l , s22 [i]) ;
f p r i n t f (f p , "S12 = % f \ n n , s l 2 [i]) ;
f p r i n t f (f p , "SUM OF CYCLE WAITING TIME = % f \ n w , sumy [i]) ;
f p r i n t f (f p , " S u ~ OF SQUARES = % f \ n " , s u m y 2 [i l) ;
f p r i n t f (f p , "SUM OF # OF MESSAGES = % f \ n U , suma [i l) ;
f p r i n t f (f p , " S u ~ OF SQUARES = % f \ n " , s u m a 2 [i]) ;
f p r i n t f (f p , " S U ~ OF PROD. OF # MESS. AND WAITING TIME = %f\n l ' , s u m y a [i]) ;
fprintf(fp,"MEAN WAITING TIME / CYCLE = % f \ n W , m e a n y [i l) ;
f p r i n t f (f p , "VARIANCE = %f\nI1, v a r i y [i]) ;
fpr in t f (fp lWMEAN # OF MESSAGES / CYCLE = % f \ n W , r n e a n a [i l) ;
f p r i n t f (f p , "VARIANCE = % f \ n v , v a r i a [i]) ;
f p r i n t f (f p , "MEAN W A I T I N G TIME = % f w , r [i]) ;
f p r i n t f (f p , " + - % f \ n U , r v a l [i]) ;
f p r i n t f (f p , " \nV1) ;

C
C CALCULATE THE STATISTICS FOR IDENTICAL STATIONS
C
* /

t n = 0.0;

tsumy = 0.0;
tsumy2 = 0.0;
tsuma = 0.0;
tsuma2 = 0.0;
tsumya = 0.0;

tr = 0.0;
trval = 0.0;
ts2 = 0.0;
tsll = 0.0;
ts22 = 0.0;
ts12 = 0.0;
tmeany = 0.0;
tvariy = 0.0;
tmeana = 0.0;
tvaria = 0.0;

for (i=l; i<node+l; i++)
I
tn = tn + n[i];
tsumy = tsumy + sumy[il;
tsumy2 = tsumy2 + sumy2[i];
tsuma = tsuma + suma[i];
tsuma2 = tsuma2 + suma2[i]:
tsumya = tsumya + sumya[i];
1

if (tn >= 2)
I
tmeany = tsumy/tn;
tvariy = tsumyZ/tn - tmeanyktmeany;
tmeana = tsuma/tn;
tvaria = tsuma2/tn - tmeanaktmeana;
nnl = tn* (tn-1) ;
tsll = tsumyZ/(tn-1) - tsumy*tsumy/nnl;
ts22 = tsumaZ/(tn-1) - tsuma*tsuma/nnl;
ts12 = tsumya/(tn-1) - tsumy*tsuma/nnl;
tr = tmeany/tmeana;
ts2 = tsll - 2*tr*ts12 + tr*tr*ts22;
if ((ts2>=0) & & (tn>=O))

trval = z*sqrt (ts2) / (tmeana*sqrt (tn)) ;
1

fprintf (fp,"FOR IDENTICAL STATIONS \nu);
fprintf (fp, "TOTAL # of CYCLES %f \nu, tn) ;
fprintf(fpIwS2 = %f\nn,ts2);
fprintf (fp, "S11 = %f \nu, tsll) ;
fprintf (fp, "S22 = %f \n", ts22) ;
fprintf (fp, "S12 = %f\n",tsl2) ;
fprintf(fp,"SUM OF CYCLE WAITING TIME = %f\nW, tsumy);
fprintf(fpIwSuM OF SQUARES = %f\nn,tsumy2);
fprintf(fpIwSu~ OF # OF MESSAGES = %f\nn,tsuma);
fprintf(fp,"SUM OF SQUARES = %f\n",tsuma2);
fprintf(fpIwSUM OF PROD. OF # MESS. AND WAITING TIME = %•’\nu, tsumya);
fprintf(fplW~EAN WAITING TIME / CYCLE = %f\nW, tmeany);
fprintf (fp, "VARIANCE = %f\nW, tvariy) ;
fprintf(fp,"MEAN # OF MESSAGES / CYCLE = %f\nW, tmeana);
fprintf (fp, "VARIANCE = %f \n", tvaria) ;
fprintf(fp,"MEAN WAITING TIME = %f\nW,tr);
fprintf (fp," +-%f \nu, trval) ;
•’print•’ (fp, "DEADLINE = %f\nW,dl) ;
fprintf (fp, "DELTA = %f \nV,delta) ;
 PERCENTAGE OF MESSAGES LOST = %f\nn,percen) ;
fprintf (fp, " in") ;
f close (fp) ;
I

Bibliography

[Hen 8 31

[IEE85]

[Kim831

[Kle76]

[I<nu8 11

Boudenant, J . , Feydel, B. and Rolin, P. LYNX: an IEEE 802.3 compatible deterministic

protocol. In Proceedings INFOCOM 87, pages 573-579, IEEE Computer Society, March

1987.

Boxma, O.J. and Meister, B. Waiting-time approximations for cyclic-service systems with

switch-over times. Performance Evaluation Review, 14(1):254-259, May 1986.

Crane, M.A. and Lemoine, A.J. An introduction to the regenerative method for simulation

analysis. In Lecture Notes in Control and Information Sciences, pages 1-109, Spring-

Verlag, 1977.

Henriksen, J.O. and Crain, R.C. GPSS/H User's Manual. Wolverine Software Corpora-

tion, Annandale, VA 22003-2653, 1983.

IEEE Standards Board. Token Ring Access Method and Physical Layer Specifications. The

Institute of Electrical and Electronics Engineers, 345 East 47th Street, NY 10017, 1985.

Kim, B.G. An adaptive token ring serving real-time traffic. In COMPSAC 83, pages 105-

107, IEEE Computer Society, November 1983.

Kleinrock, L. Queueing Systems, Vol 1: Theory; Vol 2: Applications. John Wiley and

Sons, New York, 1975-76.

Knuth, D.E. The Art of Compuier Progmnzming, Vol. 2. Addison-Wesley Publishing

Company Inc., 1981.

Kurose, J .I?., Schwartz, M. and Yemini, Y. Access protocols and time-constrained com-

munication. ACM Computing Surveys, 16(1):43-70, March 1984.

Lehoczky, J.P. and Sha, L. Performance of real-time bus scheduling algorithms. Perfor-

mance 86, 44-53, 1986.

Liu, M.T. and Rouse, D.M. A study of ring networks. In Ring Technology Local Area

Networks, pages 1-39, Elsevier Science 1 &hers B.V., 1984.

BIBLIOGRAPHY

[Lo881 Lo, Edward Performance Evaluation and Comparison of a Token Ring Network with Full

Latency Stations and Dual Latency Stations. aster's thesis, Dept. of Elec. Engineering,

University of British Columbia, May 1988.

[Mac851 Macnair, C.A. and Sauer, C.H. Elements of Practical Performance Modeling. Prentice-

Hall, Inc., Englewood Cliffs, N.J. 07632, 1985.

[Ped87a] Peden, J.H. and Weaver, A.C. Performance of priorities on an 802.5 token ring. Computer

Communications Review, 17(5):58-66, August 1987.

[Ped87b] Peden, J.H. Performance Analysis of the IEEE 802.5 Token Ring. Master's thesis, Dept.

of Comp. Science, University of Virginia, Jan 1987.

[Ped88] Peden, J.H. and Weaver, A.C. Are priorities useful on an 802.5 token ring? IEEE Trans-

actions on Industrial Electronics, 35(3):361-365, August 1988.

[Rom81] Rom, R. and Tobagi, F.A. Message based priority functions in local multiaccess cornrnu-

nication systems. Computer Networks, 5(4):273-286, July 1981.

[Ros8Gaj Ross, F.E. FDDI - a tutorial. IEEE Communications Magazine, 24(5):10-17, May 1986.

[Ros86b] Ross, F.E. Fiber, farther, faster. In Proceedings INFOCOM, pages 323-330, IEEE Com-

puter Society, April 1986.

[Sc!l74] Schriber, T.J . Silnulaiion using GPSS. John Wi!ey and Sons, New York, 1974.

[Sch87] Schwartz, M. Tellecommunications Networks: Protocols, Modeling and Analysis. Addison-

Wesley Publishing Company Inc., 1987.

[Sev87] Sevcik, K.C. and Johnson, M.J. Cycle time properties of the FDDI token ring protocol.

IEEE Transactions on software Engg., SE-3(3):376-385, March 1987.

[She851 Shen, Z., Masuyama, S., Muro, S. and Masegawa, T. Performance evaluation of prioritized

token ring protocols. Teletrafic Issues in an Advanced Information Society, 5:648-654,

1985.

[Sta84] Stallings, W. Local networks. ACM Computing Surveys, 16(1):3-41, March 1984.

[Sta88] Stallings, W. Data and Computer Communications. McMillan Publishing Company, 866

Third Ave, N.Y.,10022, 1988.

[Str88] Strosnider, J.K., Marchok, T . and Lehoczky, J . Advanced real-time scheduling using the

IEEE 802.5 token ring. In Real-Time Systems Symposium, pages 42-52, IEEE Computer

Society, December 1988.

[Tak86] Takagi, Hideaki. Analysis of P 'ling Systems. The MIT Press, 1986.

