
National Library 1+1 of Capada
BiMiath&pe nationale
du Canada

Canadian Theses Service Semite des theses canadiennes
:u

Ottawa, Canada
K I A ON4

NOTICE

The quality of this microform is heavily dependent upon the
quality of, the original thesis submitted for microfilming.
Every effort h.as begn made to ensure the highest quality of
reproduction possible.

If pages are missing; contact the university which granted
the degree.

Some pages may have indistinct print especially if the
original pages were typed with a poor typewriter ribbon or
if the university sent us an inferior photocopy.

* .

Reproduction in full or in part of this microform is overned
bytheCanadiancopyright Act, R.S.C. 1970, c. -30, and
subsequent amendments.

e

La qualit6 de cette microforme depend grandement de la
qualit6 de la these soumise au microfilmage. Nous avons
tout fait pour assurer une qualitd supdrieure de reproduc-
tion.

S'il manque des pages, veuillez communiquer avec
-runiversit6 qui a cgnf6rb le grade.

La qualit6 d'impression de ceGaines pages peut laisser 3
dbsirer, surtout si les pages originales ont 6t6 dactylogra-
phibes A I'aide d'un ruban us6 ou si I'universit6 nous a fait
parvenir une photocopie de qualit6 infbrieure.

La reproduction, m6me partielle, de cette microforme est
soumise A la Loi canadienne sur le droit d'auteur, SRC
1970, c. C-30, et ses amendements subs6quents

'\

T H E PAIR TREE:

A P-4RALLEL ARCHITECTURE FOR IMAGE REPRESENTATION

BASED ON SYhlhIETRIC RECURSIVE INDEXING

11-illiarn Paul Iiastelic

B. Sc.. Simon Fsaser Unirer~ity, 1982
.

Est c~idcd St ~iclies Diploma. Simon Frascr C~iirersi ty, 1984
1

THESIS SCBIIITTED 1 3 P.4RTIAL FULFILLAIEST O F

THE REQCIRELIESTS FOR THE DEGREE O F

AI.4STEh OF SCIENCE

.in the School

of

C'orrip~~t irig Science

@IT-illiam Paul Iiastelic 1989

S I l I O S FRrllSER UNIVERSITY

.Ja~iliar~.. 1989

.411 r i ~ l i t 5 rcwrl-cd. This work may not be
' I . F ' ~ I ~ (~ I I c c (~ in 1 ~ 1 1 0 1 ~ or iri part, by photocopy

o r othcr rnea~is. n-itliout permission of the author

Natronaf Library
of Canada

BrM~oth@ue nationale
du Canada

.. Canadian' Theses Servlce Servce des theses canadiennis

Otrawa. Canada
K I A ON4

The author has granted an irrevocable non-
exclusive licence allowing the National Library
of Canada to reproduce, loan, distribute or sell
copies of hislher thesis by any means and in
any form or format, making this thesis available
to interested persons.

\
' \

The author retains ownership of the copyright
- in hislher thesis. Neither the thesis nor

substantial extracts from it may be printed or
otherwise reproduced without hidher per-
mission.

L'auteur a accord6 une licence irrbvocable et
non exclusive perinettant a la Bibliotheque
nationale du Canada de reproduire, pr&er,
distribuer ou vendre des copies de sa these
de quelque maniere et sous quelque forme
que ce soit pour mettre des exemplaires de
cette these a la disposition des personnes
interessees.

L'auteur conserve la propriete du droit d'auteur
qui prot6ge sa these. Ni la these ni des extraits
substantiels de celle-ci ne doivent &re
imprimes ou autrement reproduits sans son
autorisation . tl

ISBN 0-315-59351-2

Name: William Paul Iiastelic

Degree: blaster of Science

Title of Thesis: The PAIR Tree - A Parallel Archtecture
for Image Representation based on Symmetric

- Recursive Indexing

Examining Commit tee:

Chairman: Dr. S. Pilarski

Dr.- T. W. G. Calvert
Senior Supervisor
Professor, School of Computing Science

Dr. R. Hobson
Director and Associate Profersor, School of Computing Science

Dr. F. W. Burton
External Examiner
Professor,& School of Computing Science

= PARTIAL COPYRIGHT LICENSE

l e h e r e b y g r a n t t o Simon F r a s e r U n i v e r s i t y t h e r i g h t t o l e n d

my t h e s i s , p r o j c t o r ex tended e s s i y ' (t h e t i t l e o f w h i c h i s shown be low)
i s

t o u s e r s o f t h e $,igon F r a s e r U n i v e r s i t y L i b r a r y , and t o make p a r t i a l o r

s i n g l e c o p i e s onR/ f o r such u s e r s o r i n response t o a r e q u e s t f r o m t h e - -

l i b r a r y o f any o t r u n i v e r s i t y , o r o t h e r e d u c a t i o n a l i n s t i t u t i o n , on -9 *
i t s own b e h a l f o r f o r one o f i t s u s e r s . I f u r t h e r a g r e e t h a t p e r m i s s i o n

f o r m u l t i p l e e o p y i n g o f t h i s work f o r s c h o l a r l y purposes may be g r a c t e d

by me o r t he Dean o f Graduate S t u d i e s . I t i s u n d e r s t o o d t h a t c o p y i n g
w

o r pub1 i c a t i o n o f t h i s work f o r f i . n c i a l g a i n s h a l 1 n o t be a1 lowed

w i t h o u t my w r i t t e n p e r m i s s i o n .

T i t l e o f T h e s i s / P r o j e c t / E x t e n d e d Essay

A u t h o r :

(s i gna t u r e)

(name)

(d a t e)

Abstract

Significant technological advances in such fields as computer architecture and very

large scale integration have made it feasible to consider firmware-based

alternatives to soine systems traditionally implemented in software. Some form of

reprcsentatiori can usually be-found for the underlying basis of such systems. If

t hbsc rcprescnt a t ions can bc implemented using the new designs and techniques,

increased systc~n perfor~nance can he achieved.

JVc investigate one such representation, based on the 2"-ary trec, which has

hccn successfully implemented at the software level. Its broad scope of

applicability motivates the investigation of possible firmware alternatives. Since >
m o t her feature of this representation is the inherent parallelism of its operations,

and estensivc work is also I>eing performed in the area of concurrent archtectures.

a pr ima~y objective was to clcsigli thrcc such architectures for this representation.

-4s secondary object ivcs. a set - t heorctic represent ation from which our scheme can

be transfornled was described and its parallel characteristics were analysed.

Dedication

To hlom, Dad and Tania.

For tlicir love. erlc.ouragtment and support.

1' zahr-alo in poklon hlom, Dad ter Tmia .

Za njiliovo l jubeze~~sko podporo in potrpeiljivost, pri uspehu tega dela.

a

"Research is what I'm doing when I don't know what I'm doing"

-- Wernher von Braun

First and foremost, I would like to thank rliy supervisor, Dr. Torn Calvert, for the

numerous suggestions and comments .that he has made during 'the course .of this '

research and,in the proofreading of the thesis. The patience that he has exhibited

t h r o ~ ~ ~ h o u t this~.experie~ice is appreciated. T l k constructive criticisms made by
. %

t,he other 1i1errlh6rs of the Examining Cornmittee, Drs. Warren Burton, Slawomir .

Pilarski, and Rick Hobson, provided further insight into the rcsearch problem and

solution considmat ions.

The assist,ancc provicled by the School of:Conlp~ting Scicnco'c syst,cm

atl~riinist~rators E(l Bryant arid Keith V?nccnt sirnplifiecl lily pr~grit~~~~~li~~~:iing task.

The School's ad~ali~iist,rativc assist.ant, Mrs. Elma Iirhrt~iic, with her sense of
*

liumonr, prrsonality, irrlrl opti~nisrn, made. the daily jaunts to tlic GI-nerd Office

interesting. Thosr frryucrit trips to the ~ h b ~ w i t l i other graduate s tudr~i t~s , where
.

the intent was to cliscuss t hc rclevant issues of computing scicncc, were always

continuing wit 11 this rrscarch

Contents

Abstract

List of Tables

I I -

~ i s t of ' ~ i ~ u r e s xii

1 Introduction 1

1.1 Properties .Associated With Any Representation Scheme 4

1.2 Consideration of Hardware Techniques in Applications/System De-
sign - 6

1.3 An Informal ~ef in i t iod of the 2N-ary Tree . .- 7

1.4 So~ne graphics-based 2N-ary tree algorithms 9

1.4.1 The INTERSECTION operatian' . . . 12

1.4.2 Find the AREA of a quadtree ' 13

1.4.3 Display algorithm for an octree -' . 13 ,

1.5 General observations of the quad- and oct-tree representations . . . 15

2 Set Th'eoretic Basis of the 2"-ary Tree , . 16 ..

1 Populations an? Attributes . 16

2.1.1 An Example . 18

2.2 -n , - tuplesandE@, ' : . . 19

2.3 Partitioning of . 20

3.4 The Well-Ordered 2,'-arY Tree LIapped onto : . 22

3 Analysis of Parallel Time-Steps for the Quadtree . 26

. 3.1 Worst case on a binary operation 3 . 26
. 3.2 The case of P # 2", for any integer 0 5 x < 21 33

. 3.3 Cumulative idle processor time 34

4 - A Topologically-Derived Architecture for the 2N-ary Tree 37

.
.. 4.1 System Components 37

. 4.1.1 User Interface UI 37

. 4.1.2 Staging Memory SM 37

. 4.1.3 Processor-Interconnection ~etworkc Array P-INA 40

. 4.2 Thc Intcrconncction Network ICN 46 .
. 4.2.1 ' Kctwork candidates 47

. 4.2.2 Network configl~ration 48
t

. 4.3 Ovcr\icw of tlic schcnlc b \ 50

. 4.3.1 .The incomplete mapping of thc trce .'

. 4.3.2 Folding of the 2N-ary tree

. 4.4 Execution of operations on the P-INA 53

. 4.4.1 Row processors and execution of operatio~is 55
-\ 4.4.2 ICNs and execution of operations 56

8

4.5 Time franlc analysis of the architecture 57

. 4.5.1 Scenario involving P-INA of sufficient size - L < R 57

. . . . I 4.5.2 Scenario involving P-INA of insufficient size - L > R 58

. 4.6 Reducing the Numbcr of Inactive Nodes 62

5 Embedding of Restricted 2"'-ary Trees on VLSI Arrays 63

5.1 Dictionary hlachines . 63

. 5 .2 Thc Architecture 64

. 5.2.1 l lapping of the Binary Tree cr 65

. 5.2.2 The Processing Element 69

. 5.2.3 Data/InstructionBuscs 70

3.3 -4nalysis of Two Operations on the 2'-ary Tree 72

. 5.3.1 Building a Trcc r 72
\

5.3.2 Double Pass Qucry/Operation 73

5.4 Thc Case of In5ufficicnt Chip Levels 74

6 A Multiprocessor System for the 2N-ary Tree

6.1 Components and Issues of ~ u l t i ~ r o c e s s o r ' systems . .

. 6.1.1 Contention in Multiprocessor Systems 77

\ 6.1.2 The Processor-to-Memory Switch 79

6.1.3 Memory Considerations . 83

6.1.4 Software Considerations . 86

6.2 An Architecture Applied to the 2N-ary Tree 87

6.2.1 The Shared Memov Module Units 87 -
6.2.2 The Interconnection Scheme 90

6.2.3 The Processor Units . 92

6.2.4 The Master Controller . 93

6.2.5 Additional Components . 94

7 Simulation of the Multipqocessor Architecture
\

96

7.1 Implementation Details . 97

7.1.1 The Processors . 97

7.1.2 Shared Memory . : 99

7.1.3 The Interconnect ion Network 100

7.1.4 Contention Considerations . 100 .

7.2 Simulation Configurations . 100

7.3 ~ r e s a a t i o n of Simulation Results
' 8 " " " ' '

102

7.3.1 Total Execution Time
' 6 " " ' 102

7.3.2 A4bsolute Active Time i. . . . : 108

. P---, 7.3.3 Absolute Idle Time I

1 ' 7.3.4 Rela.tive Active Time . 110

7.3.5 Relative Idle Time . 110

7.3.6 Maximum Task Stack Length -110

. 7.3.7 Average Utilization Time for Slaves- 115

. 7.3.8 Average N~gnber of Tasks Processed by Slaves . . 115

. 7.3.9 .4 verage Number of IhIU Accesses for Slaves 117
-
r . 4 Discussion of Simlilation Rcsults . 117

t l 8.1 The Representation .. 122

8.2 Performa.nce '. 123
2

8.2.1 Multi-operand and More Diverse Operations 124
'

8.3 Consideration of Large Databases -.' 126

8.4 Fault Tolerance . 126
0

8.5 Expandability : . 128

8.6 Other Comments on the Architectures '. 129
t

8.7 Consideration of Alternative Architectures 132

9 Conclusion 134

List of Tables

1.1 Relative Division of System Functionality 2
a

2.1 Examples of populations, attributes, and values 17

2.2 Two set operation definitions given with respect to pictures : - 18
r"

8.1 Relative ranking of the three systems . . (. 131
t

List of Figures

1.1 Quadtree encoding . 10

1.2 Octree encoding . 11

2 . 1 Efficient partition of a population 23

2.3 Rando~n partition of sonlc poptdatio~i @ 33

2.3 Mapping of tree T to a population : 25
7

3.1 Typical quadtree h or the tixne-step arialysis 27

3.2 Effective double traversal of a tree for a biriary operation 28

3.3 Sitliation for the case of P = 3'. 0 5 s < 21 30

3.4 Numbcr of tirlie steps for '2' processors 32

3.5 Numlm- of time steps for P # 3' . 35

3.6 Processor itllc tinic for P = 3' . 36

. 4.1 Overall systcni view of tlic arcliit c3ct lire 38

4.3 Data input scquerlcing . 40

. 4.3 Thc proccsmr-interco~l~iectiori ~ictwork array 41

. 4.4 The row processing elexnerit 44

4.5 Sa i t riling statcs . 46

. 4.6 Exa~nplc of a S-I~rocessor/row fl rictwork 49

4.7 Incomplete mappi~ig of a 3'-trcc onto a P - I N A 52

4.8 Folding of a b i n a r ~ . t rcc . ontc., a P-JNA 54

. 1 The elm-all a r c h tcct ure using hiriary t rcvmapptd clii1)s 65

5 . 2 -4 5-le\-cl hinary H-trtc mapped onto a 7x7 PE array 66

. . . . 5 . 3 -4 5-lcvcl hinary H~sagonalLtrct niappcd onto a 5x7 PE arr;? 67

5 . 4 1-olin's napping o f 4- and 5.ltl.c.l 1)iriaq trees 68

sii

5.5 A processing element in the VLSI array : 91

. 6.1 A High-level view of multiprocessor architectures 76

. 6.2 Basic switch topologies in a multiprocessor system 80

. 6.3 Storage of a 2-D array of iiumbers 84

6.4 ,4 multiprocessor architecture for the 2"-ary tree 88

. 6.5 Memory interleaving for the tree representation : .. . 89

. 6.6 ,4 3-level int. erconnection network 91

. 7.1 Total execution time of a user query 103
/-

. 7.2 Figure of Merit ratios of tree operatyn execution times 105

7.3 Estimated tree generation times for large images 106 7
I 4 Extrapolated tree generation times for large i~nages 107

7.5 Absolute active time of a user query for the Master Controller 109

7.6 Absolute idle time of a user query for the Master Contrdller 111
. .
I . I Relative active time of a user query for the Xiaster Controller 113

7.8 Relative idle t h e of a user query for the Master Controller 113

3 hlasim~im task stack size in the Master Controller for a user query . 114
.
.. 10 Avcrage sla1.e processor utilization time for a user query 116
.
I . 11 Average number of commands executed by a slave processor 118
.
r . 12 Average number of memory accesses by the slave processor 119

siii

Chapter 1 ~ntroduction~

Two issues whch must be considered by the systems1 designer in planning

cornput cr-based applications are the data representation to be used (particularly

from thc pointas of view of stor ge and operations) and its implementation. A 7
rcprescnt ation must he chosen which fillfills the requirements of the application.

This representation may take the form of some previously defined scheme, a

modification ofXEXliEr representation, or the task may he such that an entirely

new represent at ion is needed.

Traditionally, it was onlj- necessary to consider software implement ation smce,

liardwarc implementation was not feasible. In recent ye rs, the focus of study
i d

twtx-ecn software versus hardware techniques has shifteth;tn the direction of the

latter. Processors have evolved from the ungainly units of b t e 1950's and 1960's'

to the single 32-bit microchip of the 1980's. There has been a progression from
h

ferrite core memory to CD ROhl 1-LS13 has provided a means of placing more of

the co~nputer's hardware components onto the microchip, while at the same time

i~ilproving upon component performarice. Developments such as these have made

~t nccrssary for the systc~ns designer to become aware of the llardwarc

arcli tcc t ures which are available.

It has bccn suggcsted that prior to these advances, it was possiblc to divide

?-<tern functionality into three distinct classes: applicat b r i specific soft war(.;

'Let a s y s f ~ m refer to the da ta and s e t of tools applicable to thc task at h a n d .

'CD R O \ I - Compact Disc Read O n l y hleniory.

'i'I,SI]'pry Large Scalp Integration.

Traditional Trends Anticipated Future Trends

A - General purpose hardware
B - General purpose software
C - Application specific software
D - Application specific hardware

Table 1.1: Relative Division of System ~ u n c t i o n d i t ~

general purpose software, and general purpose hardware [17]. The anticipated

future breakdown would involve an additional category, that of application specific

hardware. Table 1.1 presents an estimation of the relative contribution of each

class to this functionality considering present and anticipated trends.

System performance analysis is another issue that the designer is required to

address. Candidate solutions must be evaluated on various criteria, and a decision

made based Qn these results. The task facing the designer is compounded by the

fact that thc two estremcs of the solution, that is, an entirely software or

VLSI-based approach, may in fact only provide a partial solution to the overall

problcm. Another point to consider is that neither of these extremes may provide -

the most efficient solution. A compromise may be necessary to provide the the

most attainable and efficient overall solution.

This dissertation addresses two specific tasks. The first involves the
b

development of a set - t heoret ic represent at ion scheme. The second considers three

system archtectures which are designed for one form of this scheme and its

associated properties. As will become apparent in the following section and

chapters, a represent at ion defined using a set- theoret ic approach is very powerful

in terms of its scope, ahd in the number of operations possible. It will be shown

that the zN-ary tree scheme is a transformation of this set representation.

A further implication of this set-based represent at ion concerns the order in
\

which operations are executed on the entities of a particular application. Tasks

can be executed in a sequential or parallel manner. The operations on the 2N-ary

t,ree a.re inherent,ly parallel, and it is this fact which is exploited in developing

viable architect w e alternatives to the representation's software implementation.
4

The remainder of this chapter discusses the criteria necessary for designing and

el-aluating a representation scheme, followed by an expansion of some of the

reasons presented earlier for the importance of hardware and VLSI technologies in

systems desigx. A particular focus is the motivation behind developing an

alternative to the software approach to zK-ary trees. The chapter concludes with

an informal definition of the 2"-arY tree, and a presentatioI.1 of typical algorithms

for t,hese trees within the scope of computer graphics.

The dissertation continues with Chapter '2 which presents a formal definition of

the set- theoretic representation scheme. The 2N-ary tree represent ation is then

defined as a transformation of this scheme. Given this transformation, a more

concrete ba.sis t,o the earlier quad- and oct-tree definitions can be cxt,riipola.tcd.

Chapter 3 deals with a time complexity analysis of binary opera t io~qon

cpadtrees. This type of analysis allows generalizations to bc made for tllc zN-asy

tree. The first of three architectures is given in Chapter 4. This architecture

attempts to map the logical 2"-ary scheme on an array of interchanging rows of

processing elements and interconnection networks. In Chapter 5, the mapping of a

binary tree onto a VLSI arrrLy is given, in addition to a justification for using such

;
a mechanism y an alternative to the more general 2"-ary tree. The third

i
9 1

architectum;can be considered a linear arrangement of processor elements which
$ * .

access a Ka,6k of shared memory modules in which instances of trees are stored and

this description is given in Chapter 6. A simulation was implemented for this last

architecfure and this is described in Chapter 7. The dissertation concludes with a

discussion of additional issues which must be considered in all three architectures.

1.1 Properties Associated With Any Representation

Scheme

-4 primary consideration in developing a solution to a problem is the choice of a

foundation or representation which will facilitate generation of a solution. A

number of factors exist which must be considered when defining or evaluating a

representation scheme [31]. Some formal properties inherent in any scheme are:

Domain

The domain is an indication of the descriptive power of a representation. In

particular, the domain is the set of objects or entit,ies that can be

' represented by some scheme S;

Validity

The range of a representation scheme S is the set of syntactically valid or

correct representations that are images of elements of the domain of S. The

application of certain algorithms on invalid representations may lead to

inconsistent results xhich may or may not be detected by the user;

Completeness
"\

-4 representation R in the range of some scheme S is complete if it

corresponds to a single object in the domain. The scheme S is itself

complete if all of its valid representations are t,hemselves complete. Each R \
contains slifficient information to distinguish one object from all other

P

entities of the same domain. This is a critical property if S is t be used

over a wide range of applications;
k

Uniqueness

A representation R in the range of some scheme S is unique if the objects

that it defines cannot be represented by any other representation in S. Any

S is unique if each its valid representations are unique. Uniqueness is

important when considering whether two or more representations are

responsible for the same object.

In addition to these formal considerations, there also exist some properties

which are informal in nature:

Conciseness

This property concerns itself with the storage requirements of a

representation in a scheme. The ease with which a representation is stored
9 and manipulated is dependent upon the concise nature of the structure

itself. Redundant information about a representation is also minimized if its
I

definition is concise.

w
Ease of creation

A valid representat,ion should be reasonably easy to create. In general, the

a repkentat ion is, the easier it is to create, since there is less

Effectiveness

This point consitlcrs effectiveness in terms of the context of applications.

.Algorithms must he dcvelopccl in such a way that the representations

then-,selves can bc considered a data for these algorithms. A representation

schcmc is effective if thc algorithms appliqble to thc. scheme arc correct,

I efficient (both in tcnns of storagc and computational complexity), and

rcliablc ~i-hrm ~ u b t l c error5 in thc repre5entation arc cncountcred.

These factors provide some guidelines for representation development. It is

understandable that certain schemes may be relatively deficient in some of these

points when compared against other representations. However, the opposite may

also occur - these same schemes may be more favour e in terms of some other

factors. In many cases, the representation chosen will ide a compromise

between all of these points. The goal bf the designer should be to strive for the

most complete scheme which provides the best performance.

1.2 Consideration of Hardware Techniques in

Applications/System Design

4 s indicated earlier, systems development has typically followed a software

approa.ch. Howcver, in recent years there has been a shift from these traditional

methocls to solutions incorporating ha.rdware/VLSI-based techniques. Some

reasons for this progressi~n include the following:

advances i n VLSI t&hnology have resulted in cost reductions, while

increasing performance and chip density characteristics;

t,he use of ever-improving computer-aided design (CAP) techniques in VLSI
E'

development has simplified the t,ask of designing chips;

I an Tncreayed research effort in the area of developing VLSI-based alternatives
,
L.

to existing software funct ions/st ructures has produced interesting results;

certain applications, such as real-time sensing and control systems, r#!e

response tirlles which current software methods cannot provide.

I

The claim here is that softwarc solutions can frequentb be supplemented with
J'

t ion specific, as opposed t obgeneral fllrpose, 'hardware architecture. -

1.3 An Informal Definition of the 2'Y-ary Tree

The following definition of the 2N-ary tree representation involves~references to

entities such as N-dimensional objects, unit cells, and volume. This reflects the

influence that the scheme has had in the area of computer graphics. It was this

computer graphics theme which was the motivation for proceeding with this

dissertation. The general nature of the representation provides for a very broad n 9domaii to which this scheme ca5 be applied.
, .

Objects exist within some universe U , which is of order N, and is a finite
a%@

section within some N-dimensional space. This space is defined by N orthogonal
1

axes. -An object that exists in U is of the same order as the universe. A 2-D

object cannot exist within a 3-D universe. The smallest object in such a universe

would he the smallest resolvable unit of space

In a typical situation involving the representation of some N-dimensional

object, the universe is a 2hfN array of unit cubes or cells. ated with each of

these cells is a value from the domain of some distinguishi

, colour, radiation intensities, material type, densi

ristics). The dzametcr, D, of such an object array is 2 M , where M > 0,

and may be divided into "v non-overlapping cube-shaped arrays of diameter

? ' ' - I . When ,"i: = 2. the universe is a square, a cube when N = 3, and a

hypercube for 117 > 3

The symmetric recursive indexing process subdiviges an object array into 2N

subarrays, each of 'equal volume." Every subarray is classified as being either

homogeneous or heterogeneous, based on the predefined distinguishing property.

Each heterogeneous subarray is further divided into 2N additional subasrays. This'

continues until all subarrays are homogeneous. The subdivision technique may

eventually have some sul~arrays being composed of a single element.

"ere. ~ ~ o l u r n c is a general term used to ref& t~ the form t h a t a suharray, or hypercube, will take

For any object array, the entire procedure generates a 2N-ary tree

represent ation. A node in the tree is either a leaf (representing a homogeneous

subarray) of indegree 1, or an internal node (representing a heterogeneous portion

of the object) with an indegree of 1 and an outdegree of 2N (each child corresponds

to one of the 2N subarrays). Every level in the tree is identified by some integer i,

0 < i < hl. The root node of such a tree represents the entire object array, w l ik
**P

each of its children represents one of the subarrays of the object. The root node is

at level 0. The nodes a t level i completely describe the object to the resolution of

that level. M is commonly referred to as the resolution of the universe (m,aximal

re,polution of the object). Depending upon the amount of information needed, it is

only neceswry to display part of the tree. Thus, the root node presents the

coarsest display of the object,, while the display of levels near the bottom of the

tree lead to finer representations. The information in this tree is implicit, and

requires the application of the representation's operations for its retrieval.

Figure 1.1 (modifie'd from Dyer et al. [ll]) presents a 2-D object (fi = 2) that

is encoded into a 22-ary or q ~ a d t r e e . ~ The region is shown in Figure 1.1 (a). The

object is considered to be part of some universe. This encapsulation is evident in

Figure 1.1 (b) . The figure also shows the &visions that have been made in the

universe to decompose each quadrant into its homogeneous state. Finally, the

quadtree for Figure 1.1 (b) is shown in Figure 1.1 (c). It is important to note that

the quadtree represents the decomposition of the universe, and that object

representation is due to the object being a subset of the universe. In this way, the

region is represented as a union of maximal units, where each unit is of a standard

size and position (powers of 2) . The simplest property that can be used on an
k

object is based on whether 4 not a subunit is associated with the object. VOID

,indicates that the subunit, does not contain any part of the object. FULL is used
L

* if the subunit is part of the object. If the subunit is a composite of the two types,

then PARTIAL is used. The tree's interior nodes are circular (representing

' ~ n extensive survey on t h e quadtree can be found in [3 5] .

PARTIAL subunits) while leaves are square (FULL or VOID).

When dealing with a 3-D object, N = 3, and the tree (or octree 1251) generated

is of degree 8 (2 3) . Likewise, each of the eight subarrays is called an octant. To

access some point (X,Y,Z) in an octree, it is necessary to com

representations of X, Y, and Z as xox lx~ . . . xi, y0y1 y~ . . . y,, a

respectively. The object in Figure 1.2 (a) (modified from Srihari [42]) spans the .
width of the limiting universe (D = 8). Therefore, the maximum npmber of levels

in the corresponding octree will be three (A4 = 3). Figure 1.2 (b) shows one of the

many ways that the octants within a block may be traversed. Figure 1.2 (c)

presents the oct,ree generated from the successive division of the universe.

1.4 Some graphics-based 2N-ary tree algorithms I, PI LY
L/

In computer graphics, images cam be stored as 2N-ary trees, where quad- and

oct- trees are the most common forms of the representation. Algorithms have been

developed for operat,ions such as:

area, V O ~ I ~ I ~ C , c o rnp l~me~~ t , intersection and union [39]

i transformations such as rotation, translation, and scaling 120,251

o m ~ e drt crmination, and nearest neighbour identification [10,33]

stereographic project ions onto multiple planes [15] -

display of images [lo] e.

Schneier's parallel algorithms for the INTERSECTION and AREA operations on

quadtrees are presented here to provide an indication of the representation's

simplicity. The algorithms for greater values of ilr are straightforward extensions

of t h e quadtrce routines. Doctor's algorithm for the display of octrees is also given.

(a) Region (b) Subdivision of (a)

(c) Quadtree representation of (b)

I J M N C D F C '
i

Figure 1.1: Quadtree encoding

(a) Object in 3-Space

G-

(b) Numbering convention

(c) Octree representation of (a)

Figure 1.2: Octree encoding

The following conditions exist in performing these operations. It is assumed

, khat the leaves represent BLACK and WHITE areas within the images, where
- Pb

WHITE is the background value. Interior tree nodes &e given the value G R E Y .

BLACK, W H I T E , and G R E Y are equivalent to the FULL, VOID, and

PARTIAL values of our informal defiaition. It is assumed that the quadrants of
d

a region can be addressed as NW, NE, S W , and SE. The auxiliary routines

G R E Y , BLACK, and W H I T E return the value of the parameter node. The

SET-QCHILD routine adds a child node at some given quadrant to its parent.
e

The P A R E N T function creates a node which represents the parent of a given

child node. C O P Y generates a structure which is identical to the given tree -
argument. The procedure SET-AND stores the result of performing an A N D

%4L
operation on the children of a quadtree in said tree.

1.4.1 The INTERSECTION operation

'Y

algorithm returns a quadtree result which represents the common regions of

quadtrees. If a leaf is BLACK and its equivalent node in the other tree is
-

non-BLACK, the result node will be a copy of the non-BLACK node's subtree.

If a leaf is W H I T E , then it,s corresponding result leaf will also be W H I T E .

function INTERSECTION(TreeA, TreeB : quadtree) : quadtree;
begin

TreeAND : quadtree;
I : quadrant;

if BLACK(TreeA) or WHITE(TreeB) then
INTERSECTION : = COPY(TreeB);

else
if BLACK(TreeB) or WHITE(TreeA) then

INTERSECTION : = COPY(TreeA);
TreeAND : = CREATENODE() / * create root node * /
for I in (NW, NE, SW, SE) do / * in parallel */

begin
SETJCHILD (T ~ ~ ~ A N D , I, INTERSECTION (QCHILD (TreeA, I) ,

e,
QCHILD(TreeB, I))) ;

end ;
b *

3
SET-AND (TreeAMD) ; -

INTERSECTION := TreeAND;
e n d ;

1.4.2 Find the AREA of a quadtree

The following algorithm determines the area,of an ima.ge, where the number of

black nodes in a quadtree represents this area. The parameters to the function

AREA include the quadtree and diameter of the image.

f u n c t i o n AREA(Tree : q u a d t r e e ; D : i n t e g e r) : i n t e g e r ;
b e g i n

TempAREA : i n t e g e r ;
I : $ a d r a n t ;

TempAREA : = 0 ;
i f GREY(Tree) t h e n

f o r I i n (N W , NE, SW, SE) do
TempAREA : = TeinpAREA +-+ AREA (QCHILD (T r e e , I) , D- 1) ;

e l s e
i f BLACK(Tree) t h e n

TempAREA : = TempAREA + 2** (2*D) ;
AREA := TempAREA;
end ;-

1.4.3 Display algorithm for an &tree

$11 interesting consideration in the prrscntation of an objvct rcl)rcscntcd as a

tllrce-dimensional oct,ree is t,hat the display device is usually two-dimensional.

Quadtrccs provide a \very efficient means of representing two-(li~nensioilal objects.

By using thc transformation of a11 octrcc to a q i i a d ~ ~ e e , very cffcctivc display

algorithms for psoblcms such as hiddcn-s~lrface rcrnoval may he clcveloped

.4clditional algorithms usi11g different shading tcchiqur~s, illi11ni1iatio11, and

se~nitransparcnt objccts ha\-t also hccn developed using t l i r . octrcc.-to-cliiadtrec

By traversing the nodes in a specific front-to-back order, the hidden surface

removal procedure is very straightforward. The quadtree generated can then be

sent to the display device. In the following algorithm, the front four octa ts are

P L! numbered 0 through 3, while the back four are 4 o 7. The two parameters are the '

octree to be displayed, and the intermediate quadtree, which is initially a ULL

tree. The function OCHILD is analagous to the QCHILD routine for quadtrees.

HOMOGENEOUS is a function which determines whether a node i w leaf or
/

interior node. COLOUR returns a, quadtree of one node whose value field

represents the display colour. The MAKETREE function creabes a quadtree

with a new root node that has as its children the four quadtree parameters.

,' function SHOW(0ctree : octree; Quadtree : quadtree) : quadtree;
begin

.r

if HOMOGENEOUS(0ctree) then
if not WHITE(0ctree) then

SHOW : = COLOUR(VALUE(0ctree));
else

SHOW : = Quadtree
4

else
SHOW : = MAKETREE((OCHILD(OC~~~~, 0) ,

S H O W (O C H I L D (O C ~ ~ ~ ~ , 41, QCHILD(Quadtree, O)),
S H O W (O C H I L D (O C ~ ~ ~ ~ , I) ,

end ;

SHOW (OCHILD (Octree, 5) , QCHILD (Quadtree, 1)) ,
~HoW(0CH1LD(Octree, 2) ,

SHOW(OCHILD(Octree, 6) , QCHILD(Quadtree, 2)) ,
S H O W (O C H I L D (O C ~ ~ ~ ~ , 31,

~HoW(0CH1LD(Octree, 7) , QCHILD(Quadtree, 3)) 1,

function COLOUR(Va1ue: colour-values) : quadtree.;

begin
COLOUR : = CREATENODE(Va1ue);
end ;

1.5 General observations of the quad- and oct-tree

represent at ions

Extensive effort has gone into investigating the properties of the quad- and

'oct- tree representation schemes. Computer graphics, pat tern recognition, and

image processing have been the primary areas of application. The use of octrees in

solid object modelling has been shown to be very beneficial [31]. Considerable

success has been achieved in applying this representation to geographic

information syst,ems (1,271. This research has concluded that there are a number

of advantages to using the representation. As the three algorithms of the previous
8

section show, the operations are reasonably straightforward to develop. Numerous

algorithms have been generated to convert between quadtrees and other

representations[33,36,37,34]. One feature which makes this representation useful is

that there is only one primitive object, such as the square or cube, to contend

with. The size of this primitive determines the level of representation for any

given object. The operations defined for this representation are only required to

deal with this pri~nitive. Ordering is implied in this representation, which further

si~nplifies algori thrn develop~nent .

Sitlia tions do oxist where the more common 2- and 3-D subdivision nlethods

a r c not sufficient to fulfill certain requirements. Application of this represent ation

t o 4 - D leads to a hextree, a tree with 16 subarrays. It is then possible to represent

time-varying 3-D images. Two examples of a 4-D image include the dynamic,

spatial reconstruction of a beating heart and the breathing lung [44]. The

generalization of this method to dimensions greater than four is also useful. Onc
2'

such application involves robot a notion planning and mliltidimcnsional

configlirat ion spaces [49].

I

Chapter 2 Set Theoretic Basis of the 2N-ary Tree

Set theory can provide the mathematical justification for the 2N-ary tree's

extensive domain of applicability. It can be safely stated that most

computer-based applicat'ions deal with data which are naturally related. ~owe/er ,

there are situations where the relationships are not obvious, yet require that this

data be expressed in such a way as to maintain these relationships. A method

must be developed which can accommodate both cases. Set theory fulfills this

requirement in that these relations can be expressed as a set of ordered pairs,
%.

while at the same time providing a significant collection of operations. An added

feature of following this approach is that these operations can be executed rapidly.

2.1 ~06ulat ions and Attributes I

-

The following dcfinitio~ls provide the set theoretic foundation upon which the

21v-ary tree is developed.

Definition 2.1 L e t t h e population @ be a f in i te co l lec t ion o f i t e m s .

Definition 2.2 E a c h h a s assoc ia ted w i t h i t a s e t o f a t t r i b u t e s A*

Definition 2.3 E a c h has aasociated w i t h it a s e t of v a l ~ ~ e s VQ,. In a d d i t i o n ,

t h e r e i~ a spec ia l va lue 1-OID (I-DON'T-CARE) w h i c h i s par t o f each V*,. As

a u c h , each 7 of c a n be ass igned a zialue f r o m V*,.

= collection of pixels making up an image

= a map of British Columbia

(P 2 = a population of people

Aao = {colour)

- {landuse, population, economic activity) Ao1 -

&2 = {education, marital status, salary, sex)

~ c o ~ o u r = {RED, WHITE, BLACK, VOID)

1 landuse = {FARMING, LOGGING, MINING, VOID)

Table 2.1: Examples of populations, attributes, and values

The definit,ions of iP, A and V permit the accommodation of a,dditional items,

at tributqs and values, respectively, as the need arises.

\ Table $2.1 presents a number of examples involving populations, attributes, and

associated values

Definition 2.4 T h e overall picture for s o m e population iP consists of t h e set
-
P + = {Pa, : 0 E A @) . F+ can be considered as n family of sets , and Pip, is a

subpicture of iP for a. E A@. A m o r e precise def in i t ion of Po, i s t o follow.

To this point, sets have been exclusively used in the definition of @, A @ , V@,,

and Pa. Given this fact, any valid set operation can b e applied to these various

sets. These oprrations can b a p p l i e d to all of Pa. Two example definitions

involving set operations and are shown in Table 2.2.

An interesting fact here is that any result generated from a set operation

involving Ti+ or any of its elements, is a new subpicture Po,. The examples of

arid n& arc two such cases. The new attribute v is defined as a function of ?
the operations and attributes used to generate this new subpicture/result.

The unary union of Pqi:
uFr = { e : (3Pip, E F a) (e E P a ,) }

Table 2.2: Two set operation definitions giveq with respect to pictures

- - - -- - - - - - - - - - - - -

Definition 2.5 L e t 5 be t h e se t of a t t r ibutes f r o m A* involved in a query , and t h e

cardinali ty of cr i s greater t h a n o n e (#E > 1). G i v e n a n y q u e r y invo lv ing t w o o r

m o r e a t t r ibutes f r o m .4@, a n e w at tr ibute u c a n be defined based o n t h e

conso l ida t ion of these a t t r ibutes . T h e values of t h i s u belong t o t h e se t

V , , = {TRUE, F,4LSE, VOID) . A@ n o w becomes ,4@ U { p (~)) where p(E) re turns

9 s ing le ton s e t containzng a ,unique label/at tribute based o n t h e e l e m e n t s of E.

If #Z = 0, then no attributes are involved in the query. In the case of #Z = 1,

the result is the set of elements from P+,whose attribute values match those of

t,he queried attribute value. When #Z > 1, the query will a.ccess those pictures for

which the attribut,es are being considered. The result will the be taken from these

pi~t~ures. The element,^ of this result ~vill have values taken from the set I/&,.

2.1.1 An Example

Table 2.1 presented a number of different populat,ions, together with each

collection's set of attributes and associated values. The following exa~np!e

considers = @, = { p e o p l e) , where the specific query asks:

Find all females with post -secondary educat ion

The newly-generated attribute will involve "sex and education". The next step is

to categorize each element of as either having or not having this property. A

7

a '

subpopulation @,, where a, 2 @, exists such that each element of a, either
A.

fulfills this query OT it does not.

' The at tribute v is equivalent to "female with a p o s t - ~ e c o n d a r y ~ t i o n ' ~ .

This may seem unnatural since most attributes deal with single categories rather

than in more complex relationships. The function T has n + 1 parameters, where

n is the number of attributes under consideration in the current query. The

purpose of this function is to return one element from the set V*, for each y in @.

2.2 n-tuples and EQ,

Definit,ion 2.4 refers to the subpicture P+, a$ a component of Pa. The majority

of abstractions considered to this point (for example, Q P a , A*, and V Q ~) have

been based on set constructions. As such, set operations on these abstractions are

perfectly valid. By defining it at, a gross level, P a , can also be considered as a

set-theoretic abstraction.

2.6 A subpicture P a , is a n ordered pair of t h e f o r m

=<I ,&, , EQ, >. where a E EQ, = {Y: y E @, val,(-y) E V@,)

The function aab maps an element -, of a, to a single value from the range

la,. Vab is not a one-to-one function as i t is highly probable that different

~lerncnts from the domain may have the same image via t h s mapping. At this

level of abstraction. the ordcred pair P+, can still be represented on a

" wt-thcoretic basisi.

Each 2 is also an ordered pair. v-here the first component is a unique identifier

within a. and the second i q an n-tliple. slab,(-,) (# a = n) . This second term can

'Hers. an ordered pair is defined as < a . h >= { { a } . { a , b } } [2 3] .

A

!
be considered as a vector of values that a y possesses for each attribute involved in

the picture. The appropriate selector, recognizer, and constructor functions are

defined to process the first or second components of y. The same types of

functions are available ,to access the n- tuple.

2.3 Partitioning of @

a

For any P*,, its corresponding E@, may prove to be very inefficient in terms of

stora.ge considerations. It is necessary to store each component of E*, in memory.

Therefore, if the cardinality of @ is great,, a significant cost in terms of this storage. .

will be accrued. These will be a s even greater storage requirement if the

cardinality of i l ~ is also large,

Of the two components and E@,, it is most likely the latter which

contributes most unfavourably to the storage costs. The primary reason is that
F \

each object in @ is an identifier for an element in E@, (#@ = #E&,). A

significant reduction in #E@, can be made if each element of @ is pla.ced into a

- . subset with other elements of O that have the same value for the attribute being

considered. i

For any P*,, i t is possible to reduce the cardinality of EGO to a maximum of

#I,;, , or to a minimum of 1

Definition .2.7 L e t E@, be r e p r e s e n t e d aa:

-4 partition on @ is formed where each element of EG, will be a non-empty set

and represents a z7 E I;,. -An item -, E will belong to that set for which

val,/ -{) = v. 111 the xorst case. EG, will consist of #I.&, non-empty sets. If for all

\ , ' - E @. val,(?j is the same. then #E@, = 1.

In the above redefinition of E@,. i t is evident that each -r E @ will have to be

tested to place -; in the appropriate element of E@,. Any decrease in storage

requirements will be offset by the considerable amount of time needed to complete

the partitioning of @ in a sequential manner.

An interesting property of any partition is that any two sets from this family

of sets are disjoint. This implies an inherent parallelism in the processing that

may be performed to generaie the sets that make up E@,. As e&ry y E 8 is

independent of other elements of a, ea.ch y can be processed independently. One

extreme situation would involve processing each such y in parallel with the other -

elements of a. Obviously the other case would require a strictly sequential

approach in generating the elements of E@,. A 'compromise between these two

limits must be made.

The compromise also involves deciding upon a partitioning that makes use of a

cranularity whch is acceptable in terms of the processing power available. Another 0

point which is considered in attaining this compromise is that data tends to be

grouped together. For example, if our @ is a database of vegetation for a specific

province, there will be regions represented which will consist predominantly of one

form of vegetation: Of course, there will be cases where this similar neighbour

effect will not apply, and it will be necessary to consider a finer partitioning.

Rather'than attempting to&onsolidate similu.elements of B into distinct

subsets, an arbitrary partitioning approach can be taken. Some function A f maps

the elements of a set @' to the subsets comprising a partition on @, without regard

for att,ribute value homogeneity within a subset. The values that these elements
d

7' E @' assume are determined by the values of t,he subsets that they map onto.
4

To simplify the not at ion. the following 'two definitions assume that the

operands and fu~ct ions refer to specific attributes a. E .AG. For example, yk is

equivalent to 7 ' .

Definition 2.8 11'1.; a o n e - t o - o n e func t ion u ~ h i c h m a p s 7' E @' t o a s u b s e t S\ C Q

P

Definition 2:9 For every E @I,

e b e setval(yl, PARTIAL).

This new population @I can have a similar mapping scheme M' applied to

generate O". This mapping implies a series of levels where each level is composed

of a finer partition than its predecessor level. A partition A is finer than partition

B if each' subset of A is a subset of one of B's subsets. It follows that B is coarser

than A. The coarsest level consists of one subset which represents the entire a

h u l a t i o n O. The first level consists of #O subsets in its partition - one per

y E O. Figure 2.1 presents a partitioning on some population @ such that each

subset of the partition consists of elements'with the same attribute value. This

requires just one mapping. Figure 2.2 is an example of random partitioning, where

defined subsets may not be homogeneous in terms of attribute value.

Consequently, a ditional partitions are needed on subsequent levels of @ to get to P
its most compact state, that is, the state in which further partitions are not

possible.

2.4 The Well-ordered 2lY-ary Tree Mapped o n t o 4

The mappings described in the pfevious sections are not restricted in terms of the

number and size of the subsets in a particular partition. This can lead to irregular

mappings. If the number of subsets in a partition, and the number of objects in a

subset is consistent, bn implementation is much easier to devise. This consistency

can be considered as a regular mapping. A tree-based representation scheme is
-.

ope method which provides this regularity and consistency.
I

A &mher of interesting properties exist for any tree. A tree is a connected,

acyclic directed graph where the root node has indegree 0, while other nodes have

indegree 1. This implies a linear ordering betxeen the root node and its successors.

Mappings:

Figure 2.1: Efficient partition of a population @

Mappings: M"

Figure 2.2: Random partition of some population

In generar, the direct successor nodes of any nodes are also linearly ordered. Each

subtree in the tree also has a first element. Trees are then well-ordered structures.
4 -

Consider the case of some 2N-ary tree T where all interior and leaf nodes are of

indegree 1, and the root and interior nodes are of outdegree 2 N . If there exists

some mapping M from the leaves of T to the partition of for some Pa,, then> T

is a tree for Pa, . The value of each leaf in T is based upon the value of its

particular partition component p (where M (1 e a f) = val,(p)). The interior nodes

of T map to those partitions p where there is no homogeneity of v E VQ, via the

mapping function M r . The root of T maps ' h f a. Function M is the,

restriction of &I' to the leaves of T. Figure 2.3 is an example of such a regular

mapping on a population. It is essenthlly the same as that of Figure 1.1. However,

in the latter case, it was assumed that tHe 2N-ary tree was valid only as a graphic n

representation scheme. The subsequent discussion has shown the scheme as a very

general technique which can function through general or specific mappings.
,-

The existence of suih a mapping between the well-ordered 2N-ary tree and @

implies that @ is also well-ordered. It is this property of well-order which is a

critical factor in the fast execution times offered by the set representation.

Tree of this population Some population

Mappings: M : leaf nodes ---> population (object level)
M' : interior nodes --> population (non-bbject levels)

1

Figure 2.3: Mapping of tree T to a population B

Chapter 3 Analysis

the

of Parallel

Quadtree

Time-Steps for

The following analysis concerns itself with determining the number of time slices

that are required to execute a binary operation involving two quadtrees, and a

collect,ion of processors. This study exploits the parallel nature of .the quadtree.

Although it is only the quadtree that is considered, the same type of reasoning can -
be applied to other 2.'-arS- trees.

Some preliminary notation and conventions must be assumed. Given any

quadtree, there are a total of A4 nodes in the structure.. The number of processors

in the system is P. Let 7 correspond to a particular leaf level. L, denotes the

nodes at level z in the tree. Figure 3.1 presents a particular situation where there

are 1 + 1 levels in the tree, and numbering of levels begins at the root node (L o) .

The leaves are represented by Ll . -b

There are tu-o cases which must be considered in this analysis.
'

P 2 4' (the number of nodes at leaf level 1);

3.1 Worst case on a binary operation

-4 double traversal of the tree is necessary, from the root node to the leaves, and

back to the root. This lattcr traversal is required to process any waiting tasks that

4- Level 0
4- Level 1

+- Level 1-I

A + Level 1

Figure 3.1: Typical quadtree for the time-step analysis

, A L~VG

A A A A Level I

l

UP

1
Level 0

Figure 3.2: Effective double traversal of a tree for a binary operation

I

/ are dependent ubon the results at lower levels in the tree. In general, tasks at level

i, 0 < i < I, must wait for the results a t level i + l to become available. This worst

case situation can be envisioned as shown in Figure 3.2. In going from Lo to LI ,

tasks are created as thc processing proceeds from the root to the leaf nodes. The

bottom half of the figure represents the progression bwk to the root node after

the leaf processing has been completed.

Let Sp,, correspond to the time required to finish a complete, double traversal

of an I-level tree with P processors. The start time begins with the root node at

time 0. ' ~ e t S, denote the time when some node j in the tree is finished with its -
processing. The first claim is that the minimum amount of time Sp,/ required to

L'
1

perform this t w ~ w a y t r d r s a l is:

In a tree, or subtree, with nodes P, Q, R, S, and T, the times SQ, SR, SS, and ST

may be equal. However, Sp may not equal SQ, SR, SS, or ST . In other words, a

&

parent node must complete processing before its child nodes can begin their

processing.' The minimum time required to process any level will be attained if all

nodes a t a level can complete their processing a t the same time. There are (1 + 1)

time levels going down the tree, and 1 time levels going back up. These two values

the minimum time SRI of Equation 3.1.

Taking this result for minimum time, the minimum number of processors P,;,
*

to achieve this result is equal to the number of leave nodes Ml:

4.

The next task is to find ~ r f o r any quadtree with 1 levels, 1 2 0:

Only thosc situations where P = 2", for any integer x >_ 0, are considered here.

The first case involves MI = 4' = 2='. If x > 21, SpVl = S2r,1 ?= 21 + 1. At level I,

only one time unit is required to process tasks at that level. Therefore, for all

m < I , A[,,, < M,. This provides the minimum time' of 21 + 1.

In the second case, P =.2', for any integer 0 5 x < 21, Equation 3.3 still

applies, but now consists of two components as given in Equation 3.4. Note that

the case of P = 221, prcsent in the first situation, can also be considered here.

Figure 3.3: Situation for the case of P = 2', 0 5 x < 21

This presents the situation given in Figure 3.3. Now two additional cases arise

from this scenario. The first involves some odd integer x, 0 < x < 21:

5 ,,I-,. 1
SP, 1

- - = x+-(- j 3 , for o < .E < 21, and s is odd.
3 (3 . 5)

--b-

In the case of some even integer x , 0 < x < 21, the following exists:

- 9
3.,21-~ - SI..~ = s + -, - -. for 0 5 .r 5 21. and .r is c-.vcn.
3 3

The only diffiwnw hctn-wn Equations 3.5 and 3.6 inwlvrs th r constant t m n s :
2 and 3. rrspccti~ely. A gr i i r~nl q u a t i o n for P = 2'. 0 < - x < 21 c a n then I F r I (. f i ~ i d :

Figurc 3.4 prescnts a plot of Equation 3.7 for I- , 2-, 3- . and 4- level trccs,

~vhere the nlmlber of processors P = 3'. 0 5 i 5 8.

The Number of Time Steps Required for Double Tree Traversal
(where number of processors is a power of 2)

I 8 16 24 32 40 48 56

Number of Processors -

Figure 3.4: Number of time steps for 2' processors

3.2 The case-of Pf 2", f r any integer 0 5 x < 21 P
In the case of P # 2", 0 5 x < 21, and 1 + 1 corresponds to the

number of levels in .

(3.8)
/'

One of theyAameters of g is the number of levels in the tree where

P 2 4', 0 < i 5 1 - 1. G providks the number of processor-time units necessary for

the traversal of levels 0 to 1 - 1. 'H returns the number of time units required to

complete the processing of level I. Functions G and 'FI do not consider the

-- situation where time units can spread over adjacent levels in the tree. An earlier

condition stated that for any subtree, if the root node of this subtree was executed

at T,, the children of this node could not execute at TI , if T, 2 T,. This implies

that those nodes which do not belong to a particular subtree, can execute a t some

time T,, where T, may or may not he less than, or equal to TI . The functions G

and X ~vill provide exact results in the .number of time units necessary to process

a level in' the- tree, but in terms of final time count, the carry-over to the next level

will n8t be considered. This carry-over imy come ahout in the following fashion.

If there are S processors available. and the current processing level 172 requircs Er

processors. such that S > I - , then i t is possible to use the relnaining ,Y - IF

processors for the lercl 17, + 1 at the same T, as the 1- processors a t levc 77~. This j n ,
would only occur if there arc -y - 1- nodes at levtl 711 + 1 which (10 no >clang to

the subtrees xliosc root nodes arc bcing proccsscd by the S - 1. processors. To

accommodate this situation. i t is necessary to apply an error function & which

rcturns the numlwr of levels in thc trec ~vhere there 11my has.(' b c ~ n S O I ~ ~

ox-crcompcnsation in thc fiinctions G and 'H.

Hcrc. I p , corrcsponrli to tllc n~ lmf~er of lcvcls in the double traversal whcre thc

nllrnl~er of proccswrq P cscccds L , . for some lcvcl 2 .

The components of Equation 3.8 are defined as follows: ,

.After consolidating the terms in Equations 3.10, 3.11, and 3.12, a general equation

for Sp,[can he with the restrgtion that P < 4'
-(ab .

Figure 3.5 presents a 3.13 involving four trees of different levels.

JT'hcn compared to 3.5 indicates that the error function

provides a reasonable approximation of two-level time-unit carry-over.
8

3.3 Cumulative idle processor time

.Another criterion which nnist he considered in determining t,he effectiveness of a

parallel-oriented '3"-ary tree representation is the amount of time that is consumed

by processor inactivity. -4s in the pre\.ious section, a tree of 1 + 1 levels, and P

processors are involved in the analysis. The double traversal is still required.

In general. the amount of idle or wasted processor time Tit, is given by:

. In thc case of P > '2'. :r 2 '31. Trl is given by:

The Number of Time Steps Required for Double Tree Traversal
(where number of processors is NOT a power of 2)

1 8 16 24 32 40 48 56 64

Number of Processors

. Figure 3.5: Number of time steps for P # 2'

Processor Idle ~ i m e
(where number of processors is a power of 2)

Number of Processors (2Ax)

Figure 3.6: Processor idle time for P = 2'

With P = 2") 0 5 x < 21, Tbv is given by:

One interesting point about Equation 3.16 is that the number of levels in the

tree is not involved in the calculation. This is a reflection of the fact that P = 2",

and that there will be processors idle at those levels in the tree where

L; < P, 0 < i < 2. - 1. Figure 3.6 presents a plot of Equation 3.16 for P = 2',

In the case involving P # 2', Equation 3.14 can again be used as the basis for

the calculation. The first term of the equation can be replaced with
P

Equation 3.13. However, the presence of ceiling and logarithmic terms in the

latter makes reduction of the equation difficult.

hapt er 4 A Topologically-Derived Architecture
4

for the 2N-ary Tree

The structure of this first a.rchitecture is based on the 2N7ary tree topology. The
ry --

hardware incorporates layers of processing elements and interconnection networks

in a manner similar to the levels of a tree. It is the software that generates the

child tasks which must be sent to the sIave processors for execution. References

involving a computer graphics application are again used.

4.1 System Components

'
Figure 4.1 ~~r-eil ts an overall view of the components which make up this

architecture. Since i t is the array .construction which is of prinlxy concern here,
d

only a general overview of the other components is provided.

4.1.1 User Interface UI

The UI provides a user friendly environment from which commands are formatted
1

in a manncr acc~ptablc to the Master Controller MG.

4.1.2 Staging Memory SM

The SM functions as a buffer bct\vc.cn the extcrnal data source and the primary

component of . t he architecture. tllc Processor-Irltcrconnectim Network Array
3

Figure 4.1: Overall system view of the architecture
f

,I

P-INA. This SM formathaw ddta into a sequence which can be accepted and

stored in tfhe array. If the been formatted, it is passed directly to

the array.

The unit consists of a memory copponent and a central processing unit

(CPU). Due to the wide variety of applications which may, use this architecture, .

there are numerous external data formats. It is unreasonable to assume that one

formatting mechanism can accommodate all possible cases. The tremendous

flexibility of software control makes it the deSIred alternative over some
e

hardware-based scheme. This requires that random access memory be available .to

the CPU to retain the necessary formatting instructions.

A queskon now arises based upon economics. In most cases, the users of such

. a system view it as a data of information, and are concerned with the s eed
L Y q 4 dot

at which queries can be resolved. The time required to set up the database

as critical. 'Of course, unbearably long delays in set-up time are unacceptable,

regardless of the situation. With this in mind, the user may require fast

throughput for all components. If cost is not a concern, cache memory can be

included in the S M . The instructions necessary for the current formatting

operation can be brought into this cache, along with blocks of t,he input stream.

The control signals from the MC to the S M provide information relating to

the type of-iformatting required. the complexity of the 2N-ary tree, and data sizr.

The S M uses this information to format t& data into blocks of valnes which
j -4. '9 reflect the 2&'-arY nature of the data at its owcst level (in the graphics application

this would be the picture element, or pixel). This step generates the finest level of

subtree groupings in the tree. -4s formatting continues, these packets are sent out

ont,o the array's input bus. .For any image and configuration, there is one row in

* .
the array lvhich represents the actual (1 - 1)"' level of its tree, where I is the

a
number of lrv$s in thr t rw. It is this row's Processor Controller PC which takes

the packets off 't t le bus. and further formats the data to reflect the actual sibling

node/processing element corrcsponrlencc. 'a

Original Image
(pixel form)

8 9 10 J1

12 13 14 15 m-
Figure 4.2: Dat a-input sequencing.

Staging Memory
Output Data Packets

Staging
Memory

SM

L

Figure 4.2 shows the case of a simple 4 pixel by 4 pixel digitized input image

that is stored on tape as a sequence of bit-intensity values. With the given
1

numbering convention, and a request for a sequence acceptable for quadtree

+

generation, the SM provides the given output packets which are then placed on

the P-INA input bus.

4.1.3 Processor-Interconnection Network Array P-INA

The array consists of alternating rows of processors elements P s and

interconnection networks ICNs. A general view of the array is shown in

Figure 4.3. The basic premise is that each row of processors represents a level of

the 2N-ary tree. The nodes of the tree are then mapped to the processors in this

array. The interconnection networks, which link consecutive rows of processors

together, are analogous to the edges which link a parent node in a tree to its child

Input
Bus

From User

Mader
Controller

I 1

. - -
PC' I I I 1

+ 1 1 q pow P 1 @ 4 ' E - 2 N PE-1 ~1
-.=

- -

I i 1

Output

Figure 4.3: The processor-interconnection network array

Master C o n t r o l l e r MC

The MC is a processor whlch, although not part of the array per se, provides a

significant level of control t,o the entire structure. Once a request enters the

system via the user interface, the MC ca.n initiate any number of activities. If .

dat,a formatting is necessary, control signals from the MC a.re sent t o the S M ' s

processor which, in turn, activates its own set of routines. .

The MC also provides the array with sufficient control information to build

and manipulate the trees. Some of this information involves tree size,

processor-r w entry level. network switch settings, and synchronization markers. ! 1

Associatecl with the MC is p r i m a q memory that contains all of the tree

manipulation routines. standard network switch settings, and functions to
P

generate new settings. Some of these operations are specific for the network

controllers, thc processor controllers, or for the processing elcnlcnts thenisclws.

P r o c e s s o r Con t ro l l e r P C I

Rat her than ha\-c the M C comrnunicat e directly wit11 the processing tlements of

the array. n-hich n-ould lead to a coninmnication bottleneck, a lei-el of P C s is

introduced to the system. Therc is one P C per row of P s . This allows thc M C to

allocatc tasks to a managcable nurnlwr of P C s rather than to the numerous row

processors. Synclironization of tasks between thc M C and the row processors is

also simplified 1,. the incllision of tlic PC cornporicnt,. Each PC has local memory

xvllich is used to store thr. trcc optrations. However, this local memory does not

co~i t ain all fli11ct ions. h i t 0111~. t 1iosC i~lstruct ions which are necessary to solve the

clirrent ~ i sc r rcq~icst. Thcsc arc copiccl to cach P C ' s memory fro111 the MC. This

serves a mirnber of purposes. Contention is not a fact.or here ~vlicm each PC has its

ox7,-n memory to store in~tructions. The algoritlirr~s for 2.'-ary trcc manipulation

arc reasonab1~- ~traiglitforn-arc1 s~icli that their programs are not very large. If

ipced is a major conccrn. tllc.11 rarllc. Inmior. can 1~ uscd hy c.ac.11 PC. Instructio~i

1

retrieval and execution will be very fast. Each row's PC broadcasts the necessary

instructions t o the P s under its control for subsequent execution by these P s .

Control lines exist between each PC and the MC, and between adjacent P C s .

This allows for the necessary synchroniza.tion between levels of row processors.

Row Processor P

The simple tree algorit hnis require that the P s need not be complex. For the

majority of cases involving this application, stock microprocessoq with the
,

hardware capabilities implied by the processing element of Figure 4.4 are

sufficient. C'haptcr 4.3 presents a case where these simple microprocessors may be

replaced with Iiiorc powerful clcr~ients.

Each P consists of the following components. ,4 logic gate controls the

direction of data through 1e processor. Data can flow from ''top" to "bottom" or

\-ice versa in the arraj7 he logic gate maintains this directional consistency. The /f"
gate also clianncls data to the arithmetic logic unit ALU.

The operations tak'nn place within a proccssor arc under tlic clircction of the +
control lmit CU, n-hich receives its signals from the row's P C via the row control

lines. ll'hen a program ~egrnerit from the PC is to be stored in the element's local

Iilcmory, i t is the CU ~vhicli ox-crsces the storage process. The logic gate receives

tlic necessary +pals fro111 the CU, as do the ALU. and accumulator.

.?it tlic ALU. the approp~ia tc op~ra t ions arc applied to the data entering the

clement t o satisfy the reqliirimcnts of the user query. For ~xan lp l e , with a hinary

o p ~ r a t i o n OII a 22-t rec. the fo11r cllild val~ics of a node enter tlic clc~ncrit

vqllentially. and ha1.c the opcxation appliccl to t h n . The intcrrrlcdiatc rexlilt of

applying thi< opcra tion 011 two of the child values is routed to tlit accu~nlilator ;trid

a latch L. ndiicli i q 1 1 4 t o hold a value i~idcfinitcly until i t rcccivcs the appropriate

5iqlal f r o ~ n thc CU Thc temporary rr.<~ilt in thc accurn~~lator is p a s v ~ l to the

A L U for tiic c s c c ~ l t ~ o ~ i of tlic. n r ~ t in5t mcc of t l i t ' opcratio~i. Oricc. all four inlll~t

Row wocessor/element

To
ICN
F

4
Row bus

b
I

Row Control lines

Figure 4.4: The row processing element

values have been processed, L releases the result to an internal bus from where the

value will be stored in the element's local memory as a node of the resultant tree.
/-

, ,
The presence of this internal bus permits data to travel between the local

memory, acc~miulator. and the external row data bus. The external bus is critical

in that program segments can be passed from the PC to each P under its cont

In the case of data realignment between P s of the same row, node valucs can b

moved from one processor to another.

In t e rconnec t ion N e t w o r k Cont ro l le r NC

Each NC provides the necessary control mechanism for its respective

interconnection network. This mechanism is implemented through the use of the

appropriate control programs. which are initially stored in the M C . In this

respect, the N C is similar to the PC in that i t is not necessary for the unit to

store all network control programs. ~ns tead , the M C prm-ides only those

\ programs which arc needed to complete the-current user request. The M C also

makes ax-ailal~li to each N C the switcli settings that are req6Gcd for tlir network

under its influrncr. This implies than an NC has lo31 1 1 i c 1 1 q To speed up the
,

csccntion process of the N C . the switch sct t irlgs d d r in aesepara rnenngry with 3
the unit. apart from tlir program nlcnlory.

cA) Each NC recrirri cont 1-01 signals from the M C . in addition to

rc/cirinq signals to and from t he nctu-ork.

Swi tch ing E l e m e n t SE

Thc switching clc~ncnr s n-11icli niakf. lip t lit, I C N s arc sinipli. 2x2 switc11c.s that c . x i

t ~ c in any of eight roliti~lg 5tatr.s. Tlic four states permitting the passagi. of data

f ro~n top' to bottom of thc array arc sliosv~i in Figurt. 4.5. Tlit. rrmaini~ig four
J

5 t at cs a r t mirror i~nagci of t 1it.sc st a tw . ~vhicli allolv for data transfer from tmtto~ri

t o top. -411 SE'. . i t a t f a i , (Ictr,rr~li~lrvl 1)) - tllc settings x~ l l i c l id t rcccil-cs from its NC.

Straight Exchange Braadcast1 Broadcast I1

Figure 4.5: Switching states

The broadcast stages are needed to provide the mapping of root and child

nodes of the logical tree structure to the P s of the m a y . The broadcasting from

successive levels of S E s in the ICN eventually generates the'communication links

between a root P and its 2N child P s .in the adjacent row. With this broadcasting,

only one cycle is needed to send out the data values. However, in the case of data

entering a SE, the element can only read one value a t a time. Therefore, for the

two-input case, two cycles will have to be used to read these values through the

element.

*

'2

4.2 The Interconnection Network ICN

The previous section described the components of the P-INA. However, it is the

intcrconnection scheme linking adjacent rows of processors that allows this

architecture to succeed as a hardwxe alternative for; the 2N-ary tree
t

representation. The nature of the representation dictates that the network be

reconfigurabIe, that it support broadtasting of information, and that two-way

communication exist bet\v&en levels of processors.

One class of networks which fulfills these requirements is the delta

net work [9,47]. The components of delta networks include:

2T input links and 2T output links;

0 T stages'so, . . . , ST-1 and;

0 for each stage t , 0 5 t < T, there are 2T-1 2x2 crossbar switches.

4.2.1 Network candidates

The simple E x F crossbar switch is a candidate for the ICN since it has some

attractive features, the primary of which is its O(1og E) or O(1og F) gate delays

for the switch setting process. -4 E x F crossbar permits the connection of E

processors to F other processors. It is usually discussed in the context of linking

each' of E pr~)ccssoss to F ~nemory units. The one-to-one and one-to-many

mappings betxeen stages is also favourable. Unfortunately, the nurnbc-r of

inter&nnections arc extensive. and the complexity of the switch increases as E

arid F become large. The number of gates is proportional to E F .

Of the delta-cla,ss network. t h ~ e e interesting options are the Bcnc5 network [GI,

the Batcher sorting network 131. and the omega R net,&rk [22] Thc fonncr has

thc same capahlit>. as t l i t crossbar switch but only requires O (E log E) gates for a

E s E ~ictn-ork. Tlic tirnc scquircd to pass data through the network is O(1og E).

The ~icgative asl)cc-t of the BcncS scheme is the difficdty in setting 1111 a particular

alig~lmcnt, the coinplcxitj. of n-liich is O(E log E).

are O(E log E) gates in the network. The topology rules for the 52 network can be

stated b the following definition. c
Definition 4.1 G i v e n E = zT i n p u t l ines, represent each l ine in i t s b i n a r y

encoded f o r m , ET-1ET-2 . . . EO. T h e n i t s corresponding o u t p u t l ink i s

The ExE omega network consists of T = log E identical stages, each of which

is made up of 5 switching elements. One of the primary differences between this

and the pre\.ious two networks involves the number of stages. The 0 network

log E(log E+1) requires log E, while the BeneS and Batcher networks need 2 , and

2 log E - 1 levels, respectively. The logic involved in the three networks is different

hut the conlplcsity of the switches is similar.

Figirc 4.6 shows an example of an 12 network with E = 8 and T = 3 where the

iritercorlnecti~lg links and a candidate configuration for a quadtree (N = 2) are
I

shown.

4.2.2 Network configuration

From t hc prcvious subsect ion. t hcrc are T = log E stages, labelled So, . . . , ST-1,

iiil<l 5 s~vitclies p c . ~ stage for an E x E R network. Under most circumstances, the

one-to-one t napping which the R nctn-ork provides is sufficient. However, with the

.> .V _ - arj- tr& schcnir. i t is nrcessary for a onrto-?" mapping. This can be

accornplislicd hy the broadcasting capabilities of tKe switching elements.

Bsoadca~ting for a 2'-;1ry trse begins at and continues t o STpl
Y (1 . 2, = 2) Tlw mapping fronr So to isone- toone.

Tlic rilirrit)cr o f possihlc ~iiappirigs on an array is.estensive. -4s an example, for

some roiv 7, in tllr ana?. a.1rr1-c E processors map to E nodes, there are $ P s in

E row R,-, n-hich arc t 1 1 ~ fatlicrs of tlicsc processors. There are tlien E - P s ill

Row i

I Stage 0

1 Stage 1

I Stage 2

Mapped route

Configuration links

Figure 4.6: Example of a 8-processor/row 0 network

si)

randimness of selection, any 3 P s can be used. In effect, there are

possible choices for these parent processors.

4.3 Overview of the scheme

This architecture exploits two features of the 2N-ary tree. For any subtree's wit

, a root node r at Ievel 1 in the tree, S is independent of the other subtrees with

k
root nodes at level I. As we progress down through each level of. the tree, a finer

representation of the image is obtained. Therefore, for any image I, and its L-lgvel

tree representation, the subtree defined by the root node and the next i, i < L,

levels still provides a valid definition of I.

The scheme takes some 2N-ary tree A , and maps it onto a P-INA consisting

of R processor rows (labelled O , l , . . . , R - l) , each made up of E processors.

Separating consecutive rows of processors are T stages (E = 2 T) of switching

elements which make up the local ICN. T 2x2 crossbar switches (E = 2T) are

prcser,t in each stage.

For any tree A , its root node (level Lo in the tree) maps to a processing

element in row &, of the array. 2" processing elements in R1 correspond to the 2N
L

children of thc root node. The ICN between Ro and R1 utilizes the appropriate

switch settings to realize this mapping. The nodes of L2 of A are then mapped to

the appropriate elements of R2. Each of the elements of R2 are linked to its parent

processing element in R1. This procedure continues until the entire tree is mapped

onto the array. Of course this complete mapping of the tree will only occur if

Two fraturc.~ of such an organization are that the mappings for different

instances of trees with q u a 1 ,kT are the sarne, and synchronization of processing

element execution is simplifid. J'5'ith the for;mer, this leads to prckessing elements

representing thr sarne relatirr n id r for all similar i n s t ' a n ~ ~ s . ~ icornpar ing the

1 4-
-

values for these different instances, it is not necessary to access some form of ,

shared memory which can lead to contention, but instead, the element's local

memory contains these values. Only two memory accesses ar6 needed to load the

appropriate values i n k the data registers of the processing element. In terms of

synchronization, execution of the tree takes place one level at a time. Therefore,

the processors of an active row begin the execution of their instructions at the

same time. The next row of processors can then initiate theirsequence of

instruct ions once the processors of th&xcvious row haw completed their last

instruction.

B

4.3.1 The incomplete mapping of the tree

When L > R, there are two approaches which can be taken. First, an incomplete

tree mapping can be made on the array. The to$ levels df the tree are mapped

onto the array. However, instead of containing node information as in the previous

R - 1 rows, each of the mapped elements of the (R - l)"t row of the array contain

all of the information of their respective node's subtree for which it is the root

node. Figure 4.7 11a.s an example of just such an incomplete mapping, where

R = 3, and L = 4. For clarity, the I C N s have not been included in the figure.

This storage of information in the last row of the array is possible due to the

existence of local memory for each element.

This solution is not as straig~ltforwarh as expected. In the first R - 1 rows, the

processing element,^ perform relat,ively simple tasks such as the routing and

queueing of data, and register compariso~ls. This can a11 be p e r f o r n d Gith the

type of processing elements descrihetl in Chapter 4.1.3. H m ~ v e r , the elements

which occupy the R - 1"' row of t,he array now must process each l e ~ ~ e l of its

stored subt,ree. This increased complcxify in processing can be accommodated in

two ways. -411 of the pr,occssing elcmcnts can be replaced with more powerful

microprocessors. This nlaintains thc 11omoge"neity of thr. array, at the expense of

Binary tree of some image A
Proce~sor-Intercom tion

Network Array

Figure 4.7: Incomplete mapping of a 2'-tree onto a P-INA

wasted power, as it is only the last row which requires these enhanced processors.

Array maintenance is simplified since only one type of element is needed.

Alternatively, the economic solution is to replace only the last row of elements

with the more powerful microprocessors. These processors re

the M C just as thsother processors in the array do, albeit the complexity of the
\

routines-is greater.

, ,/

4.3.2 Folding of the 2N-ary tree

An alternative to the incomplete tree mapping involves the folding of subtrees

- whh root nodes.& level R - 1 onto the array in a botto~n-up fashion. The nodes

at level R of the tree would he mapped onto the appropriate elements in row

R - 2 of the array. The nodes at level R - 2 map to row R - 3. This continues

until the entire tree is folded onto the array. This will necessitate multiple foldings

if L 2 2R. Figure 4.8 shows the case of an L = 4 binary tree mapped onto a R = 3

P - I N A . To simplify the figure, the I C N s are not shown.

With this approach, the elements in the array are all of the same complexity,
r\

so there is no extra cost incurred with using different processor types. However,

the f o l d i n w u h t r e e s back onto the array brings about a ~roblern with processor

contention. This is not present in the mapping of the first R levels of the tree. In
6

the initial mapping, each element that represents a node in a level of the tree is

part of a single subtree. However, upon folding, an element may represent a node

in two or more different subtrees. The processing element has to store the

inforination for these different subtrees, and process them seq~ent~ially.

y.

4.4 Execution of operations on the P-INA

There are two components involved in the execution of operations on an array.

The first concerns that of the elerncnts making up each processor row. The second
"--,

5.3

Binary tree of some image A

'I

Processor-Intemnnection
Network Anay

(folding technique)

Figure 4.8: Folding of a binary tree onto a P-INA
1

involves t,he ICN between adjacent processor rows.

JF

4.4.1 Row processors and execution of operations

As shown in Chapter 3, it is necessary to traverse the tree in both directions in

evaluating a binary operation. With the P - I N A , this requires that the

appropriate switch settings be retrieved and set for the I C N s . Once this has been

completed, the P C s can initiate the appropriate actions for each row. The P in

row Ro, which represents the root node in the trees, performs its sequence .. of

instrlictions, and sends any of the necessary values to its 2" children P s . The
1

critical point here is that all P s in a row must complete execution before the next

rolv of processors are activated. This is reasonable as the tinling restraint given in

Cliaptcr 3.1 still applies. Synchronization between rows is accomplished by having

the P C s conmlunicate witli_each other. For exampre, &ce PCo has received all of

the required sig~ials from tllt P s under its control, it sends a signal down to PC, ,

whicli in turn will activate the processing clement s undcr its control.

However, in traversi~ig hack u11 tlie tree/array, we h a w a situation wlicrc sonic

P s ha\-c to scqucritially read in niorc than one value. Th~rcforc , cach row \vliicli is

aff(~ctct1 I)>- this type of ni~ilti-valued i n p t has to have a longer execution time

heforr corit sol is pnssctl to its parrmt row.

This last poi~it must also lw consiclcrccl in the caw of tlic array of sufficiclit ~ i w

and t hc incomplctc mapping scenario. Hoxcvcr, t he necessary sy~ichronization is

not as comfilcx as this clirrcnt situation with tlie folding trcc. 4 s indicated car1ic.r.

tlic folding trec schcnlc can l~ccome ungainly to control with nlldtiplc suhtrces ,

rnapped onto thcr same subset of processors. The time at each row obviously

iricreast~s as t l i r , rilirnl~cr of mapped su1)trcts increase. In atlditio~i to tlic grc3atcr

nllrnl>cr of valucs whicli rrnlst 1)c scad in 1,- a proccssi~ig c l c~nc~ i t . cvt,rj- 11c.n:

folding rcq~lircs that a cmnplctc set of snitch s r t t i ~ i ~ s he ~riotlificd to

ac~01ii1110(1atc this foldi~ig. The, ICN dcl;iJ- c;m 1,c ~iii~iiniizc(l if t l lv new sx-itch

settings for the folding stage between rows R,, and R,+i can be set immediately

after the current pass through the ICN has been completed.

Chapter 4.5 presents an analysis for all three cases, and the delays associated

wit, h folding will become obvious.

4.4.2 ICNs and execution of operations

The situation i~ivolving ICNs lias direct parallels to that of the processor rows.

The NC whicli controls each ICN provides the necessary synchronization to allow

for tlic efficient passage of data. The standard switch settings which are stored in
&

tlic memory accessible 1)). tlie MC are scnt to the NC, which then relays this

inforxnatio~i to thc~ SEs .

The ro\vs of processors in the array are mapped in such a way so as t,o represent

9 a trec. The stages witliiri an ICN also map out a trec. hut this is a inodified

hinary trec. In the first pass through the array, tliere is no difficlilty with switch

elements l~roaclcasting x-alucs. However. the problem associated with nliilt,iple

valucs entering a processing ele~ncnt is also present wit.h the SEs . The solution

inr-olvcs s \ ~ i t ch sj-nchronizat ion wit 11 the NC. The data passing from some row

R,+, t o its p a ~ - (~ i t row R, first goes through ST-, , where the last broadcast step

takcs placc i11 tlic initial])ass. Two cycles arc necessary to pass these t\vo valucs

t liroligli this st age. A4\ t 11c data approaches ST-,1', additional cycles are nccessaq
3

to process t l i~ s data tlirollgh tlic stages. Tliis is co~nparahlc to a pipeline effect, in

that a \.all~e is sent tlirol~gh a SE at the same time as a similar value is scnt

througli an SE at a lon-cr stage. Since the number of stages per ICN is the same

t hrouglio~it t lic arra:.. t llc t imc for (la t a to pass tlirough any ICN is consisterlt

4.5 - Time frarn; analysis of the architecture
\

This analysis of the P-INA architecture takes a similar approach to that of

Chapter 3. Thc task is to determine the time complexity of binary operations on

trccs mapped on the array. The following conventions are used:

e I.r and IB refer to tlie two imagcs that are involved in some binary operation

of the form I.4 O P IH ;

e ,w is thc l~ixel width of thc imxgc (thcreforc, there are 1v2 pixels in tjhe image);

tlicrc arc 3" children per i>arcmt node i11 tlic tree;

L = lo^;,,,^ w2 + 1 = 111111ilm of les-(31s in tree (labclcd Lo, L1, . . . , LL-I);

R r c f ~ r s t o tlw 11111111)cr o f rows in the P-INA:
4

E is t l i t , 11111111)(~ of p r o ~ ~ ~ s s o r s P l) ~ r row of t lit' P-INA, m c l R = 1 q 2 N E + 1;

4.5.1 Scenario involving P-INA of sufficient size - L < R

N 115th sufficient rows and processors in the array to map the given 2 -ary tree,

there is no contention for any processor P. The L levels in the tree require L time

units for the downward traversal (Equation 4.2). In going back up the tree, it is

necessary for mliltiple valucs to be passed back to the parent processors. However,

only one value can be read 13y a processor froni the network at a time. This '

accounts for thc 2.' + 1 tcrrn in Equation 4.3. There are 2." values going to thc

parent node of a suhtrec. in addition to thc proccssirig time needctl to c o m p l e t ~

thc operation in the parcnt processor itself - in a fashion sinlilar t o pipeline

processing. The overall complcsity of the worst case situation is then O (z N L) .

4.5.2 Scenario involving P-INA of insufficient size - L > R
>

11-lien tlic P-INA doe:, riot l l a v ~ the capacit~. to map a ?.'-ar- tree in one pass of

the array. w. car1 list thc two approaclic~ spccificd in C'liaptcrs 4.3.1 and 4.3.2.

Analysis of incomplete tree mapping

S,,,,,, .. t l i r , t i r r i c ~ riwclccl to p r o w s t l ir. first R - 1 lcvcls of t lie t rc~' :

S , n c v r n p ~ F l f . tlic tilnc ~ i t ~ ~ l m l - t o p r o ~ c s ~ tlic last L - R + 1 1 ~ 1 ~ ~ 1 s of tlic t r c ~

and:

The number of time steps to complete a binary operation is then:

One problem with Equation 4.7 involves the fact that S,nc,mplete is essentially
i

t hc contribution of a soft~varc-based processing step, and is a function of N, L , and

R. There is an obvious disparity between the execution times of an operation

irnplementcd in software versus its hardware equivalent,. This requires t$t the

, contribution of S,,,,,,,,,t, bc reduced to minirriizc its effect on the P-INA. From

Equation 4.7, if SV.~; .~ ,L is to he kept constant, decreasing the cont~ibution of the

software-inl~,lclnc~itcd incomplete niapping requires t,liat R or :V be increased.

I n t l i i t ia-cly, this compcnsat ion for reducing the software-depe~ldc~lce on the

~r iap~) ing is lvllat is t o 1,c espcctcd. Of tlic t ~ o alternativc's. adtli~ig adclitional

rows of processors is tlic easiest (nlodifying iY will require cntircly nc\v mappings

and switch set tings). -4s R -+ L , S ,,,,,,, r P t , -t 0, and E(luatiori 4.7 rccluccs 20

Eq~iatiori 4.4 if the array's last row is accounted for. Its coritri1)ution to

cspri.ssio11 is 2." + 2 time stvps.

Analysis of t h e t ree folding al ternative

With no contention for processors in the first pass of the array, -
CI S d p a s s = R (4.10)

sup,,, = (8 - l)PN + 1) (4.11)

The reasoning here follows the same as that given in Chapter 4.5.1

An indication of the time required for the folding of a tree onto an array is the

number of effective suhtrees which remain to be mapped after the first R - 1 levels

of the tree have themselves been mapped. This value is given by

L-R
?'Yt

\ I b However. this term docs not consider the processing o ~ w l a p w11icli ma)- occur
; J

Taking tliesc t w o tcrrns. t l i v cffcctivc folding tirric is
J

that t hc anlourit of folding

*

The fha l term is SunJoid. There are three contributing factors in the S,,,r,rd

expression. The first provides an approximation of the total amount of time

needed to process the last level of subtrees folded onto the array, and is given by

~ N (L - z) +V - - + I)
E

A x always. 2,' + 1 is the n u ~ r h e r of time units required to process the children of a

parent node in going back u p the tree. The level at which these critical subtrees

csist is L - 3. The clivisio11 hy E reflects the fact at 1evc.l R - 1 in the tree, there,

arc E noclcs. ancl a-5sociatcd suhtrees. Each of thcse suhtrces can he processed

cl(~tcrxiil~r~s t l ~ c s c.o~itr.il)iition of t11v suhtrws hetwctln the second t o last level of the

o r for L < R + 2 .
9 . Y (1 , - 2)

S . L , , = (? " + l)
E

Otherwise,

Unfortunately, the nature of these eqliat ions makes sirnplificat ion difficult

4.6 Reducing the Number of Inactive Nodes

If an applkation requires e i t rc~ne ly large trees (as would be the case in a

geographical information system), t lic t re~ncnclous overhead in irit,erconnec tion

settings between adjacent processor rows rnakcs the folding scheme very inefficient,.

Tlle ir1coln1)letc i~lappirlg clocs riot p r c : s~ t as complicated a sitliation as t,he

folding. HO\Y(YYT. thcre will 1,t. a large nlini\>cr of i~lactive row processors if there

arc rnari~. pror~ssors p c ~ row. and many rows in the a r r q . ,At the root, level of the

array which 11as E processors arid nraI,peil for a ?"-as?- trcr, only 5 are actively
2 .v

~isecl. The sccond lc\.el utilizes of these processors. In addition, tliosc row levels

mapping to the top portion of a trcc will not have as ~rilicli intra-row processor

co~nn~liriicat ion t o contcncl with, as those levels lower in the array. A more

cffwti~-c 1 1 ~ of t 11c availal~lc processing power in the array can he made if the trcc

r~odcs art, ~rial)puI 11ior.t. r ~ ~ ~ ~ i l y . Thiq coflsistent distribution is possible considering

that t hcrc csi5t ro~iirri~ir~icat ion lirik5 lwtwcen adjacent rows, and arllongst

proccssors of cach row. Tlic algorith~ns of the representation are unchanged but it
\

ivill he 11ccessa1.- to nlodify the c01it1.01 algori th~~is ~rlaintaining the system. They

Chapter 5 Embedding of Restricted 2N-ary Trees
t

on VLSI Arrays

The emphasis t o this point lias heell on trees i~ivolvi~ig any valid iV. 111 this

chapter. wc prcscnt a11 arcliitcct,urc wliicli is basctl on tlic '7l-ary or binary trcc. At,

the allst ract level, dcali~ig with 2~"'-ary trees is more attractive than the simple

biliary trec. Hoivcvcr. significant advanccs have already l > c w i niadc in thc

t levc~lopnic~~t of binary trcc-l)asecl a r c l~ i t~c tu r e s . It has tven I) c t ~ i sllggcsted that,

thc binary trec is a natural method in wliicli to approach problem solving. and

that i t can bc 11scd as a hc11)ful c o ~ n p t a t i o n a l ..;tructurc [24]. \Vitli the typc3s of

t rc ts at the ~norricmt.

5.1 I(ictionnry Machines

has go~ i c into t l i t , clt~vr~lo~)rric~~it of a ~ l i t s s of arcliitc.ct~lrc. c d l (~ 1 t l l ~

Thc n w a r c h ~ m d c r t a l m ~ h ~ , ~ > ~ i t l c > ~ - and Kmig has ~)rovi(lv(l

irivcst iqa t ion illto this (Ic'sig~i 171. So~ili' favollral>lv rcw~lt s call

where it is necessary to apply some function F over every stored record, These
- ,

types of problems occur in many different applications such as information

processing, statistics, and in areas requiring set manipulation. It is these types of

applications that can use the 2N-ary tree represent ation.

For the most part , these machines are based upon the binary tree organization.

The leaves of the tree contain the records, where each consists of two fields, one

containing the key k, and the other, the actual da ta d. Some valid operations are

i n s e r t i o n , deletzon, and search. Queries are passed to the ~nachine via the root

node, and progress down to the leaf level. The partial solution is then passed back

up the tree. This tw pass mechanism is similar to that described earlier involving d

It is this hinary tree topcllogy which allows the c l i c t i o n a ~ nlachine and wstrzc ted

3x-asy t rec reprcscnt at ion to ni&c use of tlevelopment s in the area of embedding .
trees in VLSI arrays&f processing clernrrits? The t r rm restrzcted is used in the

contest of t he spccial case where ,V = 1. Each node in the tree corresponds to a

P E in the array. The edge\ of tlic t r w correspond to the conmiunication links

hctwem pairs of P E s . Thr, simple arid regular i~itcrconnections that cornprise the

tree nlalir. i t a pr-imc. cari(lic1at~~ for \.*LSI i ~ n ~) l ~ ~ r l i r ~ r l t ; ~ t i o ~ i , i n part because

corn~nunicatio~i is a major considcratio~~ in VLSI design. Tlw ad\-antagcs inherent

with the trcc ah t rac t ion arc rcalizccl in its implenlentat ion. In the worst case

csaniplc, to arccss tlic P E s wllich rc.~)rcsc~it thr. -11 leaves in the tree would rcquirc

log, -11 t i ~ n c stcps. In addition. i t is possi1)lc to pipclinc> qucrics through the.tree

~nach i~ ic~ . This lcacls t o a grvat ~r I I ~ ilizat io11 of t he P E s witllin the array. ,

Chip

Input Anay Output

Bus Bus .
Display 4

Figure 5.1: The overall architecture using binary tree-mapped chips

of the machine is dependent upon the $E utilization and the extent of the

comrnunicat ion between these P E s . The binary tree provides a compact structure

with the least fan-out of the 'hr-ary tree an-out refers to the number of chldren SA
that a node has. The smaller the fan-out, then the more compact and regular the

mapping on the array. This also reduces the number of unused P E s . Figurc 5.1

presents the entire architecture. The mapping ~ncchanism, and descriptions of the

major components follow. .

5.2.1 Mapping of the Binary Tree . i

Two i~npostant evaluation criteria tllat can he used for considering different VLSI

interconnection schemes <are area efficiency and propagation delay. The fonncr

refers to the ratio bet~vecn the actual number of P E s that arc mapped from the

Connection PE

0 InactivePE

NodePE
1

Figure 5.2: A 5-level binary H-tree mapped onto a 7x7 'PE array

abstraction and the total &umber of PEs on the VLSI chip. With the binary tree,

the mapped P E s are those which represent nodes of the tree. Propagation delay ,

refers to the distances between any two mapped P E s in terms of the number of

interconnections between them (including connection PEs) .

An example of a binary tree mapping includes the H-tree method of Horowitz

and Zorat [Is]. The connections are rectangular, have unit width, and occupy an

area proportional to their length. The rectangular connection restriction prevents

comer connections being made. Figure 5.2 shows the mapping of a 5-level binary

tree (32 nodes) on a 7x7 PE chip array: The basic unit is the 3-level tree. The

area efficiency of this mapping is approximately 65%. The maximum propagation

delay is 7 units.

A second type of mapping is the hexagonal array proposed by Gordon et

Figure 5.3: A blevel binary Hexagonal-tree. mapped onto a 5x7 PE array
. I

al. [16]. A benefit of this mappings is t h a t two additional connections are nowo

possible (six versus the four of the H-tree). A 5-level binary tree mapped onto a

5x7 grid is shown in Figure 5.3. One observation between the two different

mappings is the smaller number of inactive P E s in the hexagonal approach x (an

area efficiency of approximately 9090, and a propagation delay of five units). It is I

possible to take the Scor 6-level mapping as a basic unit to build higher level trees.

Although Gordon's hexagonal mapping is reasonably efficient, a third -

mapping, which has recently been developed by Youn and Singh, provides for

greater PE utilization 16 th some improvedent in propagation delay [50]. The

number of PEs invoiLed as intermediate connectors has decreased. Figure 5.4

shows both the 4- and 5-level mappings. Note that the latter is forme$ from two

4-le~~el units. Youn has also summarized the area efficiencies and propagation

4-level binary uee module .- 5-level binary module (2x4-level units) .
Connection PE

Figure 5.4: Youn's mapping of 4 and 5-level binary trees

C7
r all three methods. They present a series of equations which indicate

that this new mapping scheme is more area efficient, and pbvides a consid&able

reduction in propagation delay than the hexagonal tree. The H-tree is khe least

efficient method of the three mappings for both criteria.

Some additional benefits of Youn's mapping scheme will be presented when the

thiee 2N-ary tree architectures are evaluated in terms of fault tolerance.

All three tree m a p p i ~ g s make use of a basic unit"coisiqting of 3 7 G levels. It is

the replication and connection of these units which allows for the mapping of
, .'

larger trees.

5.2.2 The Processing Element

Once a mappi~ig schenie lias ljec~i selected to embed a full binary tree onto a PE

array, it is necessary to corisidcr other requirements of the representation to make

this architcct~irc more c4icicnt. One rncc.1rariisrn which providcs an increase in this

desired efficiency is bit-serial proccssing [4]. Instead of processing an array of 100

32-bit numbers scqucnt ially one n~lnlbcr a t a time, thc bit -sefial rnethod only

rcquires 32 timc units instead of the c.xpcctcd 100, sincc bit-slicing is used to

access t l i r . vall~cs. Other ad~wi tages arc. that data items car1 bc of any length (it is

not nrcrssary to pad them with null vali~es to fill tlre niacliinr \vord): co~isirlerable

time savings can he rcalizcd if only part of an o1)czirid is rcquircd for an

operation. For c~sample, given a set of positive arid negative integers, one query
\

may hc to return the n111n1:~ of negative integers. It is only necessary to access
-/

tlic. sign bit instead of the mtirc numbcr. The design of the PE attempts t o 11lakc

IISC of this bit-sc'rial proccssing feature whcrcvcr possit)lc. R a thcr t ha11 defining a

l ~ c co~lsiclcrcd in tornis of a single cycle.
I

Figure 5.5 1)rcsents tlic major co~nponc~i t s of tlic PE. Each PE can l x

iclcntificd by a. 11niq11~ aclclrcss. The adtlrcss of t.hc root PE is t,hc L- l i t value

(lo . . . O L - , . w11~1.c L is tlic 1iii1ii1)cr of lcvels i11 tlic largest tree that can he ~ n a ~) p v (l

onto the arraj. arclri t c c t u r ~ . Tlic ~ iodes /PEs are secjucntially iclcmtificd i11 somc

corisisterit mariIic3r across a lr.\-r.l arid towarcls tlic L - 1"' 1cvc.l. For example, thc

RB that provide temporary storage. Between these two registers exists an ALU

which executes all i~ l s tn~c t ions between RA and R g in parallel by shiftin

contents of thescx registers through it. Thc result of an operation usually goes into

RA. There is also a link hetwetn RA the element's PEid.

The actual da ta for tlic reprcscntatio~i sc.licmc is stored in a parallel shift

register which co~isists of 32 33-hit words. The 32 words may act,ually be

increased, as Iriay tlic word lcngtli. The logic necessary to support the types of

operations that are pcrfornied on 2"'-ary t r c ~ s is rc.latively sirnple because the

operatio~is t2lcmsclvcs arc siniplc. Tliis 32-bit wiclth allows for the storage of

~nultiplc nodc valllcs pcr word. For tsar~iplc. if tllc ~ilirnbcr of values that a tree

nodc can liavc is thrcc (BLACK, WHITE, arid GREY), two bits are ~ieeded

per noclc. Tlicrcforc, sistccri cornplctc riodcs can be stored per word (without

llavi~ig overlaI) o ~ i t o the 11r.st word). .As iridicated carlicr. tlic hit,-serial method

provitlcs for cfficicnt sc>l(,ction of spccific bits from a \vord. -4 rnask can he s t o r d

in RA wliilc RB contairls tlic t a r g ~ t ~vord. T h t appropriate flmction can be

applicd to RA and R B via the ALU to isolate the desired t & bits. Sel~ct ion of

tlic rieccssaq- word from this mcniory is done) tlirougli a ~nliltiplesor, and requires

5])its (2 5 = 33).

5.2.3 Data/Instruction Buses

Communication hetwccn the P E s of the I'LSI tree is accomplished through the

data and i~istruction huscs. These can be considered as the edges connecting the

11odcs hctn-ccn adjacent lei-cls in the tree. An i~istruction is passed from the M C

to thc root P E . which can forn-ard/hroadcast the instruction to its child nodes. In

a tree with L = log -11 + 1 levels. n.hcre -11 is the number of data items, and the

log function is of base 3. the leaf P E s can receive instructions from the root PE in

L cycles. 11-e hat1 prcl-io~isl~. mad? rrference to high level "time units" and "time

T
- ~ t ~ p i ; " \vhich ~0113is td uf adrlit ional ~ s ~ c ~ i t i o n steps/cycles. 1%-ith the bit serial

Processing element

Local
Memory

PEid I
4

-
Broadcast line

4
t t Data line

4 b

Figure 5.5: A proce~sing element in the VLSI array

processing capabilities of the architecture, it is now possible t o use these cycles as

a frame of rcfercnce. Data can also he passed back and forth between parent and

child nodes in time consistent with its hit width.

WTith these instruction and data transfers, it is also necessary to consider

transmission delay between P E s . In the analysis of a particular VLSI model, one -
'

criterion for model effect iveness is the bit transfer time across the connections

between P E s [% I . Oric. school of rcwarchers assume a delay of O(1og D). wherc D

is the conn t~ t ion length. Yet another usc.s an O(D) delay. Due to the

predominantly direct links bctwccm nodes at succcssivc levels in the tree offered by

Youn's tree mapping sclicnic. i t is possible to assu~nc aE O(1) delay between

successive P E s .

'?

5.3 Analysis of Two Operations on the 2l-ary Tree

5.3.1 Building a T'ree

The parallcl time stcp analysis of Chal)tcr 3 prcscntcd a worst case scenario where

i t was ncccssary to effectively traverse the trcc twice. Ari example of such an

operation is the of data (t he values which are storccl in t,he leaves of a

trcc). and s ~ i l ~ s q u e ~ l t l~liildirig of t h ~ tree. Tlie init,ial pass down through the tree

requires - 2 1 + log2 -21 - 1 I ~ H J O I - time s t ~ p s for ,I1 data items. If pipelining is not

uscd. this time increases to :If log ,I1 units.

The loading of an image with -11 values into the array of chips requires that

the M C compute the numhcr of lcvels, L = log it1 + 1, and the starting leaf PE

address (the remaining leaf addresses follow sequentially after this first address)

for the tree. he M C then sends an instruction to each PE via the root PE P
requesting that its particular identification key be copied into its RA. Once the

starting address is stored in the R.B of each P E a cornparisoil requiring only O(1)

cycle time is made n-ith the contcnts of RA. The leaf data is sent out on the data

bus, and bit-shifted into t'he destination PE.

For some S - b i t \ d u e to be shifted i n t o ' R ~ , the complete value can be stored

in S cycles, as each bit rclquires one cycle. In the storage of PE addresses, the

rnasirn~im tree tlcptll offered by a chip configuration also provides the bit length of

the largest PE address. If the rnaxi~nunl nurnhcr of l e d nodes is M , the11 the

1naxi1111im atltlrcss sin. is givcli by L hits. L cyclcs arc needed to load this v a l k

into a PE's register.

111 building a t r w of nlasirnuni dcptli from a set of 11f da ta valucs, the storage

of the lcaf vall~cs rccjliircs O(- l lL) ~riirior cycles. Each pair of child P E s at lcvcl

L - 1 ~nlist pass their corrc~sporil in values to their parent PE on lcvcl L - 3. 111

effect, a total of 2L bits 1r111st hc scnt to RA and RB of tlic. p ~ v c ~ i t , wliicll

rcquires 0 (3 L) = O(L) mirior cj-clcs. Tlie hit-serial application o f the appropriatv

(~ I I ~ I - y f~mction gcncratw a vall~c for the parcnt nodc~ (O(1) time). This r w d t is

storccl ill-the PE's data Iricmory in O (L) ti~nr.. Stori~ig this vallic can 1~ done in

conjunct ion wit 11 passing t he rcs111t to the ~ i c ~ t liiglicst lcvcl so that an acltfitio~ial

root va lw nccds an additional L cyclcs. The. c~it irc procedl~rc rcqliircs

3 log2 -11 + (5 + -11) log 111 + or O(.\l log A l) cycles. Using a conscrvativc

~ s t i n i a t e of a 10 megaliertz (h l H z) clock rate, approximately 1 millisecond would

1)e ntcdcd to store 1000 values.

5.3.2 Double Pass Query/Operation

Operations involving tn-o or more oh jec t s ~ ~ s u a l l y involve dolihlc passes t hrougli

the trccs. It is neressary to c o p the/contcnts of entity .+I into RA, and of B into

RB (O (2 L) cycles). The compare and branch operations require 2 cycles. These

2L + 2 cycles arc performed for the L levels of the downward pass of the tree. At

level L - 1, it is necessary to save tlie result at each leaf P E . The storage of leaf

values can be done wliiledhe result is passed back up the tree. This presents a

savings of L cyclcs. Rcturning to the root node requires 3L + 3 cycles per level for

L - 1 levels. The final root valuc needs a separate L cycles for its storage. The

total number of cycles is 4~~ + 3L - 2, or ()(log2 -If).

5.4 The Case of Insufficient Chip Levels

The analysi~ in t h ~ previo~~s section ~ L S S I ~ I I ~ C S that there arc slificient tree lcvels in

provided by the I7LSI napping to acco~n~nodate any rcqwst presented to i t .

Vnfortunatcly, there tvill he sit~lations lvhere this assunlption will not be valid.

The sirnplcst solution wndd 11(. to add additional cliips to our array, with tlie

appropriate i~itcrcon~icctio~is. A sitllation will 1)c rcachcd where the packaging of

these binary &ips becomes the limiting factor to.a successful implementation.
I

Homevcr. wiFh tlir plir~nomrnal dcvclo~mie~~ts taking place ill VLSI chip

tcclmology. PE tlcnsitics arc increasing at a significant s&e, as arc the PE
. 9

ccrnplea~t Ira. U'ith t lie ?l- i ry rrpresent ation, this increase in PE conlplcsi ty can

he sacrificed for greatcr chip tlensit ies.

Essentially, most of the altcmiatives wllich arc available to our first two

architectures cannot be used here. Some involve network reconfigliration wliich

are difficult to achieve when PE- to -PE links are hard-wired into the chip.

One feasible a1 t emat ive follows an approach t aka1 hy the reconfigurable
J

processor-interconnection scheme. The P E s on the last level of thekrray can be of

greater complexity than those of other levels. Those chips that map to the lower

levels of a tree may consist of P E s which contain greater amounts of local
f .

memoq, program stores. and control logic. The function of these P E s is to
I ,

"r r * process the lower subtrees of these large trees, rat,her than single nodes of the tree.

Chapter 6 A Multiprocessor System for the

2'-ary Tree

Tlic. flcxi1)ili ty offvrrtl I)!. t lie ~ i i l i l t iprocvssor organizatio~i niakcs i t snitable for

\
a largr. n ~ i ~ n h r r of applications. -4rcliitc~ctl1ri~s sucli as tlic array co~nl)litcr, which is

classified as helo~lging to thil 'SIMD c l ; m , arc. most c.ffcctivc in dealing with
a

1-cctor-type conll)utations. Tliesc co111putntions can hc mapped onto a MIMD

sj-stcni 1,- ~liodifying thc~ ~~ecessary algoritlinls. T l i ~ s a n e cannot be said in the

opposite case. A non-vecthr co~nputation that can be proccssecl by a MIMD

arrangement may bc such that it cannot be reworked into a form cb~isistent with
1

the array coniput~r ' s requirements.

To distinguish bctwcen differe~it ~nultiprocessor designs, the type of processor

~ m i t i Prl:)-memory unit (SIC) in&rfacc. t he hornogcnrity of the PrUs, and PrU

Memory I ~ p t / O u t p u t

Figure 6.1 : A High-level view of multiprocessor ar~hitectures

B

intercommunication are most often considered [3]. In terms of the former, a tightly

coupled.n;ultiprocessor system is one in which all of the PrUs share common

memory. The number of PrUs can be h e d , and under the control df a strict

supervisory mechanism. Some features of such a system include dynamic load

balancing and f a g t tolerance. An important advantage of utilizing the tight

coupling along the critical path between the PrUs and MUs is that it is possible to

incrementally increase the processing power of thc system. Another advantage is

that all of the PrUs are equivalent, so there is no need to distinguish between

them in assigning tasks. Since the data is in one location, only one data accessing

mechanism is needed.

In a loosely coupled system, each PrU has its olvn local memory.

Communication between these PrUs is accomplished via message passing. This

action is slow since it is processed at the subroutine level with software. The

recipient PrU must also be prepared for the incoming message. Extra overhead is

incurred if additional PrUs must act as intermediaries for messages between two
?-.

distant PrUs.

t
The system t,o be described makes use of a compromise between these two

Both the tightly and loosely c o ~ i ~ l c d systems can be considered as local

syste~ns in that the PIUS. hIUs, ii~id supporting co~nponcnts are defined as one

 ini it. A third type of interconnection \chemc can bc co~lsidcred as linking

i~itlcpc~idcnt c o ~ l l p u t c ~ 5ystcrris t l l ro~gh some form of ~ictwork [40]. This last

sit ~ i a t ion is bcyo~icl t lie scopc of t lie cliswrt at ion

6.1 Components and Issues of Multiprocessor Systems

4

6.1.1 Contention in Multiprocessor Systems

Tlicre are both liardwarc an({ software linlitatio~ls in the di~sign of ~ntiltiprocesor

systems [39]. In the case of the. former, these includc the nli~nber of processors,

Iiicmory Ixmd\vidtli, and thc interconnection bandwidth. Software li~nitations deal

with data sharing anlongst marly PrUs. There arc also four types of contentiori

nliich mist 11c atldrcsscd in tlcsigni~lg ~nultiproccwor syster~ls [32]:

processor- to-memory intercon~iection;

the interconricc tion ~nechanism;

the rncmory module, and;

the niemory location.

Contention between the PrUs and MUs

,Adding additional PrUs will generally increase the processing capacity of the

syste~n up to tlic point where the effects of contention through the interconnection

negate these increases. If the number of MUs is also increased, there will be a

greater number of paths between the PrUs and MUs. The interconnection scheme

can be designed to provide the means by which many PrUs can readlwrite the

shared memory in parallel

Contention through the Interconnectioi~

\Vhile . there ma. be sufficient paths bctwccn the proc.c.ssors and rric~ilory u i i ts.

there still exists a possibility that two br more PrUs can attempt to access the

same path througli the interconnection. Two possible actions can l x used to

resolve this problem. In the case of a blocking approacli, only one request is

;tllowt.cl to u s t t h pzttli. The remaining requests are queued at the point of
'

contmtion, alid conti~iue only after the initial request reaches its destination. The

pat 11 tlicri bvconies availal~le for further use. With the n o n - blockzng

interconnection, a request is sent through, while the other contending requests are

abortcct, to be sent again by the processors. One critical disadvantage of the

former method is that blocked requests actually maintain and block already

traversed nodes and their resources in the switch. This is an example of switch

,saturation. The non-t>locking switch does not suffer frorn this.

Memory Module Contention

qnon-uniform clistribution of refercnccs to the hlUs results in greater contention
\

problems compared to a uniform distribution. Unfortunately, program and data .

locahty make the former case the predominant oqe.

If nlorf. PrLs are adtlccl to tlic s>-stcni. this memory content ip will also

increase A - the lmltln.idt11 of a ~ncinory ~nodlilc is fixed. adding memory to a
P

rnodu& will not reduce this contention to accommodate this PrU increase.

Instead, it is necessary to add additional MUs. The next concern is t o consider

program locality and how the code segmehts are to be distributed amongst the

LILTs to lower the amount of conteritio~i.

. , .

Memory Locat ion Contention jl - \
. . . t . ., . -

"

i

This type of contention occllrs when two or ~norc~ PrUs attc~ilpt to access. the same

memory location. Examples leading to this contention iriclu& the accessing of a. ,

wrrmpliore for R critical section, anT tlir index ~a r i ab le~of a rrpetiLive language

constrt~ct 5uch as a parallel DO or FOR. b

6.1.2 The Proces~or-to-Memory Switch
B

The relatioilsliip 1)ct.wccn PrUs ancl h4Us requires a processor-to-niemory switch.

Figure 6.2 prcscnts tllrce hasic topologies which proyidc surh a founcla.tion in .

1

The Time-Shared Multiplex Bus
*

The sirnplest co~inection ~riechanisni between components of a ~nultiprocessor

system involves the single tinic-shared multiplex INS. It is very cost effwtive an d
reliable because of the low logic, swit,ching, and control function reciuirements

needed to allow the bus system to operate. Unfortunately, this single bus can also

cause the entire system to become inoperational if it malfunctions. The overall
0

system processing power can be considered a fu - ction of the bus' capabilities, such Y
as bandwidth and speed. -4s only a single trinsaction is allowecl on the bus at a

time, the system perfo;rnanrr level mill he very low. A comprornis~ between this

4 low processing power and minimal systcm cost is necessary.

These ppcrfor-rnancc lcv~ls can t)& irnprbved by increasing the number of uni- dr

multi-directional buses. Anotllcr approach is t o provide separate bus scis for each
9

a) Time-shared Multiplex Bus

b) Crossbar Switch

a

Figure 6.2: 'Basic switch topologies ,is a m,ultiprocessor system , '

' 8. . . - .

logical component of the system, and then have additional interconnection

mechanisms between these sets. These bus sets can be used for processor groups,
7

memory arrangements, and input /output devices. T h s increase in system C
performance is at the expense of increased system cost.

In th multiple bus, time shared scheme shown in Figure 6.2.a, memory "7 s

connections between the PrUs and MUs involve a considerable amount of

redundancy. ,JVith P PrUs, M MUs, and B buses, B(M + P) connections are
*

ire . w m p l e t e configuration. However, alternatives have been developed - .

which reduce t-mbcr of connection$ while a t the same time maintaining i

similar throughfits [21]. A reduction of 25% in the number of connections can be

hl - reaIized if B = and P = AI . Reducing just the number of connections in the
. .

memory-bus componPnt while using a fully connected PrU-bus arringement can

lead to the minimal number of connections.

T h e Cross ar Switch L
{

- ,
If the'number of buses added to t, le system results in each M U having a separate ''

bus, we essentially haxre a crossbar swi'tgch arrangement: This switch was. *

to its o;vn hlU that ro~itairis i h r code that i t is t,o execute, and the PrUs .
. t occasionally acccss ot hcr hlUs;

. P PrUs arid 1 shaicd h4C' c-arh PrU has its own l o e a l m r ~ n o r y LM, which
~ 4

reduces the ~ i l ~ n ~ b t ~ r of ai-rcss to t hc. MU. It is lcss tightly coupled so that a

linear i ~ ~ c r t w c o f P in pcrformancc lcvcl is c~xpcctcd. A - s ta te - is reached for .
-

PrU has its ow11 Lhf. The hcncfits of both prcvio~is systcrrls arc realized here

(tlic forlncr provi(1c.s ;t dy11~1nic t ~ n v i r o ~ ~ ~ n e ~ l t , wit11 no performance

' .
proc&.r;or ratio. IVit 11 t lit. wcor~d , t14p sirlglc global h lU prevents dynamically

allocated mcrnory, as rnost of tlic prograrris arid data art1 storc-(1 in tlic privat,c' LMs

of tlic PrUs. For a relatively high acccss-ttrhiU prohahility, arl(1 a low nwn1)c.r o f

consccut ivc mcmory access, t lie cost pcr processor ratio I I I R ~ ~ S this syht(wl ,

favoura1)lc. If t11cw limits arc cxcccdcd, the ratio approacllcs irifinity. This is riot

t he- approach that high pcr forma~icc~a~~~) l ica t ions would use. 111 t, he c ~ s i . of the

third systcrr~. tlic cost per processor ratio iricrcasc.~ li~lcarly wit11 r l o pcrfornlilncc ,

saturation rcgartllr~ss of P. Howc.vcr, prolmrir~rits of t,ight,ly c011l)lc~l sys tc~ns may

switch which cxccccls the present rcc l~i i rc~nc~l ts of tRp system can have a nmnbcr of

inactive notlcs. T h e w nodes can enter the, active stat(. whmcvc>r additional PrUs

and/or hlCs arc made available to tlic systcrri.

P

One of thc mrlicst systcnls ~~ t i l i z i ng a crossfiar i11tcrco1111ectio11 ~ncchanism was

t he Carncgic- hIcllon rnul t i-nliniproecssor C ' .~nmp ,[40,4S]. It consists of sixteen

PDP-11 rninicornputrrs. and sistccri memory niodulcs. Tliis is an cxarnplc of a

t.Cry large rn~ilt iproccssor s>.st ~ 1 1 1 . ancl t lic cost o f t 11c crossbar switch is

Ig

significantly lower than the minicomputers being used. It was designed as a

general purpose multiprocessor. Our System is used for a much simpler, more

specific application which does not require all of the supporting components of the

The Multipart Memory Bus Scheme

The third organization is the rnultiport memory system. Each PrU has its own

bus that allows access to all MUs. The switching mechanism is located at each

h l U Memory access conflicts arc resolved by assigni* fixed priorities to each port

such that specific PrUs can preferentially access certain hlUs. Throughput is

intermediate between the single bus and crossbar systems.

The hardware requirement is similar t,o the crossbar system, and the level of

concurrency is the minimum of the number ofi%'r~s and MUs. One disadvantage

of such a system is that t he number of ports that a h lU has also limits the number

of PrUs t,hat can access i t . The complex control and switching mechanism.of each

LILT makes this arrangement very expensive.

6.1.3 Memory Considerations

Issues such as the usage of local and/or shared memory, and the types-of memory

mapping schemes must be considered in designing a multiprocessor system for a

particular application.

Local memory at each P r y can be used to reduce the dependency on the

interconnection mechanism. These local memories contain data which are used

most frequently b ~ - the PrUs. This will result in greater overall performance as

effectively higher bandwidth is achieved, and the data is more readily

thc PrU.

, d/' Two problcms mist with the use of local memory. If a request for data from

PrU, 's local rncmorJ- is marl? from PrU,. the value returned may not be correct,

e

Figure 6.3: Storage of a 2-D &ky of numbers

particularly if the data is volatile. The second problem deals with data which is \

heavily used by more than one PrU. The affected local memories will contain

copies of this data which may be manipulated by their respective PrUs, leading to
\ .F

data corruption.

,
The use of shared memory can reduce the levels of this corruption by providin

only a single set of data to ali of the PrUs. The PrU-MU interconnection scheme
Y

will determine one level of contention in using shared memory. An effective f

m e n o t y mapping mechanism can reduck the amount of memory contention. This

mapping is similar to the mappinglpaging practices present in operating systems

using virtual memory. These maps translate a PrU-generated logical address into

a physical address thqt corresponds to some location in a particular MU. If the

applicat;on is considered in'defining a mapping scheme, exploiting properties of the

application's data structures can further reduce the levels of memory contention.

For example, one application may require the storage of a 2-dimensional array

of AT numbers. The simplest arrangement of these values distributed over M MUs

would be as shown in Figure 6.3.

Only one memory cycle is required to access any row or diagonal of values over

f'
. 1.- '

the MUs: ow ever', accessing the numbers in a single MU leads to contention, and ,

[El memory accesses will be needed t o process every value in the MU. It is ' -
k .

obvious that this t y p ~ of distribution of values, is unacceptable for most

operations. If the array value4 c ,thpou'ghoA\the MUs,
- \

'1
the number of accesses to any o the exterh-of . s

- -
contention. This memory i n t e . ~ ~ e a v i n ~ can be of the following types: - ' '

\ . . .

coarse consecutive blocks of memory, addressed sequentially, are'found in each

MU. The high order bits of an address indicate the module; I

4,

fine consecutive memofy addresses are located in consecutive modules, The low .
, order bits of an address are used here to specify the .module; ,-,,-

. -

mixed both methods can be combined' to provide a n intermediate form of
" 8

interleaving. Hardware may cof)rol thencoarse interleatkg, while the fine.
Cr

interleaving codd he accornrnoaated through software. ,

Information such as the type of PrU-MU interconnection scheme, and the - .
. m

application will some asisfance in determining which formbof ipterleaving * - , .

to use. If bhe crossbar switch is being used, coarse interleaving will provide the:

lowest level of contention. For the most part, independent ptocess'ors will access
*+ l

individual hICs. If fine interleaving is used, these seemingly independent PrUs ace

required to cycle through most of the MUs to get the requested data. If a common

bus structure is the interconnect.ion. fine interleaving will provide a lower level of ,

memory contention than the coarse alternative.
. . -

The process of interleaving can be dealt with at the hardware or soft@are level.

In the case of the latter. facilities may be built into compilers so that the memory

distribution is made transparent to t,he user. Conversely, functions can be defined

which allow 'the applications programmer to explicitly specify the arrangement of

the data structures in memory.

' 6 . 1 4 Software ons side gat ions

" Some references to s~ f tware techrhques were alluaed to in the discussion of * .

. multiprocessor system components. Three additional issues which must be

tonsidered in such a ~ s t c m are control, synchronizatio eduling of the

processors. Thcre are three different control organizatio , *

b

Tkc'easiest to i~nplenlent is the former, although its major disadvantage is that . -
once the mast& processor fails, the entire system also fails. A major advafitage of

sech a system is that specialized hardware is much easier to add to the system, ,.

thereby reducing the rxecufive's overhead. An example of this specialized
d

.L

- - hardw&-e is associative memery. With the second, each PrU has its own copy of

' 4 , the executive. The fault tolerant benefits of this- organization exceed those of the

fomer . With the symmetric approach, each PrU has access to the master

execbtire, and. has t he'&ility tgschedole itself. The fault tolerance of this
a i

organization is far super io~ tllan the first two, as it its reliability. This scheduling

feature permits functioping PrUs to compensate for any failed processors.

Synchronization hetmrcn processrs/tasks is another major issue which'must be

addressed in multiprocessor systems. The accessing of shared variables by the

PrY-s must also be c h i d e r e d . The use of semaphores, different priority levels,

and guaranteetl.processor via fair scheduling practices arc all techniques

which. can be used t ; p r~&lk the necessary synchronization.

6:2 . dp,Architecture Applied to the 2N-ary Tree

. Tl-re above h%s been considered in designing a multiprocessdr-based architecture for
'

' the-zN-ary trcekaplication. The design, which is shown in Figure 6.4, depends on
. ,

' ,the pro ' i~r t i& ,and characteristics of the representation. The following subsections

present each system component, and justifies its particular configuration.
?

6.2.1- .*The SharedMemory Module Units

, The system's shared memriry cbmponent consists of a bank of memory modules
. .*

that are used'tocstore the data ank tree representations for any user applications.
' a

' L

The type oE memory inteslcaving that is uscd to store some instance of the
v

representation is a critical Consideration. The preferred scheme calls for the use of
1 .

1 . '

coarse memory interleaving for a number of reasons'. The concurrent processing of

each subtree of p tree is-dependent upon the disjoint property of each subtree at a

given tree lev$]. Consider the case of a simple four MU system where we are
8 s.

evaluat'ing some. operation invblving two quadtrees. This arrangement is shown in
I

Figure 6.5. A processor can access the equivalent node values in both trees with

two read-instructions from the same hlU. By storing equivalent subtrees for

different instances in the same M U , there is no need to follow a second

interconnection path to andther module. In one case, the path to a particular

module is held for the two reads. and one wri"te-back if there is a need for a

r e s i t ant third subtrep to be stored. 4 s for possible conflicts involving the nodes . .

at diffepni trcc levels. one rec~uirement which was specified in Chapter 3 is that
*

children of a ndde cannot be processed until the parent has been accessed. This
i

prevents memory contention by processors attempting to access a parent and child

node of the same subtree. both of which are stored in the same hlU. Even with

the possibility of traversing back up the tree, the accessing of nodes at some level
b

z + 1 must be completed prior to the parent at level i .

Ti-ith our example; contention will arise when processing the nodes at the third

\

d

I

Figure 6.4: A multiprocessor a,rchitecture for the 2*-ary tree

Tree A

Tree B

Figure 6.5: Memory interleaving for the tree representation

. and subsequed levels of the tree. The primary cause of this contention is the small
b.

* .
number of MUs (4) beink used. By adding more MUs, memory location contention

can be reduced. If twenty MUs are used-in the system, memory cbntentipn will

- not be a concern in the processing;ofJhe first three levels of the quadtiees. Of

course, the extreme case would provide one MU .per node of a tree. Even with

inexpensive memory, there are some factors which pake the one IvIU/node
I

app$oach unfeasible. The principal of which is the increased cost incurred by the

interconnect ion scheme, that must now become much mere complex. Ineffective - .

use-of the storage is ,$so a problem in that few nodes are stored per MU. ~

A compromise would. involve a reduced number of-MUS, and an appropriate
9 1 .

"nwmory napping scheme which functions on the premise that storing

non-consecutive tree levels in a h MU will not lead to -an increase ih mommy

contention. This is a consequence of the prent-children node prqcessing
S

- ~ s t r i c t i o n he premise assumes that if processing is taking place at some level i

in the tree, there is no conchrent processing being done on level i f E of the same

subtree, where E is some value sufficient to make this a valid assumption.

Obviously, values of 0 and 1 are inappropriate for E . This approach is similar to

the folding of trces presented in Chapter 4.

6.2.2 The Interconnection ~ c h e k e

The interconnection arrangement in this archi tcctnrc 3s a mu1 tistage network

x-hich uses the binary tree topology. This is convenient in that the order of the

application is some power of 2. Consistent with the observations concerning the

mapping of d a b in the previous section, there exist paths through the A4level

network to 3'" hIUs, where ill > 1. E a c h of these MUs wild store the equivalent

subtreesfor a number ofatree instances. A simple example of such a network

utilizes a 3-level n'etwork and is given in Figure 6.6. In the example, the two

processors PrUo and PrCl can access eight hlUs. To provide the necessary routing

paths for t.hese PrUs and 1IL-s, seven switches are needed in the network tree. '

8

MU. MU MU MU MU MU MU JmJ ,r 3 v.

0 9 2 3 4 5 ' 6 7
S - Unused Switch PO^

Figure 6.6: A 3-level interconnection network

The figure also shows that there are six unused switch ports. The addition of

extra switches will make use of these ports. All ports will be accounted for if eight

PrUs and twelve switches are used. T

The nodes of the network are actually simple 2~2icrossbar switches. It was

stated earlier that the crossbar switch is very expensive to implement. Howeyer,
I*,

with the binary tree topology that is being used here, the node count is reduced

from 0(n2) , in the case of a regular nxn switch, to 0 (f log, n) , where n is the

number of PrUs/MUs in the system, log, n the number of node levels, and there

are nodes at the bottom ofdhe network tree. The fan out of each node is the

base of the log function. With the binary tree,

out of each node switch is b, the no.de count is
-

the base is 2. In general, if the fan

There will be network contention through the network if t&o or more PrUs

attempt to access data in the MUs through the same path. The frequency of such

conflicts can be reduced if the number of candidate paths are increased. One

method of achieving this is to increase the fan out b of each switch, which also

reduces the number of nodes in the network. The effect for the special ,case of

b = 2" is an environment similar to a complete 'crossbar switch with its associated

disadvantages. As has been stated a number of times throughout this dissertation,

a compromise between extremes is the most effective solution. b p

6.2.3 The

Given the type

Processor Units

of power, and
&;. *.

local memory requirements needed by the

functions of the representation, certain stock microprocessors can be used.

Alternatively, an entirely new processor could be developed for this application. &.
- t, '-

Given the nature of the _operations, and cost efficiency considerations, ekisting

designs are more than adequate. :-

One such class of stock processor is the I\/IC68Q00 family, whose favourable

characteristics include fast instruction times, sufficient data-path width,

reasonable memory size, and a rich instruction set. The memory "size i s critical

since each PrU has its own local memory, ghich reduces the number of accesses to .

shared memory. Rather than have all of the representation's programs in shared

memoy for the PrUs to access,-each has its own set of routines. At first, this may

seem to be redundant. However, the advantages of using local memory far
-

outweigh the disagdvantages of the redundancy. With a large number of PrUs,

accessing the shared memorj- for each each instruction block will lead to a

significant contention problem. These requests for instructions will also have to

contend with requests for actual representation data. The simple algorithms for

I . a

i

the operations make it practical to store these instructions in local memory. The
\ -

problem of Jcontention due to instruction fetch is eliminated. If the amount of local -

memory available to each PrU i s insufficient to contain all of the programs; or&
d U .

those functions which are required by. the current user request qay-be stored in . ,
this memory. The idea here is to have the entire operation set in shared memory, -

-
and broadcast to the PrUs, for local storage, the programs needed for the user

query. This approach is again a compromise between two extremes. +

Each of the PrUs are identical and-can fyction as independent units. The .
' i

fault tolerant benefitsof such an arrangemenLare obvious. If a PrU becomes

inoperable, there will be a slight deterioration in overall system performance.
\ . 4

Scheduling of t as mains as before, the only difference b e i ~ g that there is one

fewer PrU to process these tasks. The system will not come to a halt as would be

the case if the ~ r ~ s were dependent upon each other.

6.2.4 The Master Controller ,

There is one processor which serves as the master controller MC'for the intire

r' architechre. The MC receives queries/instructions from the User Interface and
11

passes these req&sts- to an)- available PW. Until this initial request is fulfilled, the
' .

MC isjnvolved in the schedtlling of any task requests that are sent to it by the
' $3

PrUs. This scheduling responsibility requires that the MC has sufficient .local . = ** .J

memory to maintain the necessary t i k queues and s t&cR The task specifications
\

contain no PrU dependencies such as PrU ion, and can then be

considered as *autonomous entities., The avai PrUs for task processing

must also be known to the hIC. Each PrU resented b y a single bit in a

register stored in the h4C - a 0 indicates a PrU currently in use; a 1 for available.

Intermpt/acknowledge control lines between the MC and PrUs are used to send
* n

special signals to the MC, such as for a defective PrU. In this c'ase, the
, -

corresponding PrU register bit is set to 0 until a replacement PrU is added. As
. .

h

with the PrUs, microprocessors such as those available in the MC68000 class

4

, a -'

would be ap&opri<te here because . . of their suyport of interkpt h&lin$
a ;. * . - .

%
Task scheduling is, the primary -re&cksibility P of'the MC! ff fdr so& reason the

' f
MC becomes inactive through some component * malfunctiog, Y ther'entirk system

becomes inoperable. For this reason it may be advisable to provide a n auxiliary' .
= *

MC which can replace the primary MC upon its failure.
s

4

0-1 I s

1 '
0

* - 3 - 9 ' -,
. a

6.2.5 Additional Gompanents ,

, . b

d There are some additional less critical components that make up thi6 system: ,

T h e User Interface UI provides a user-friendly enjironment to which user

'

' q,ueries/instructions are encoded and directed to the WC.
< .

To test the integrity* of the shared rnerhory modules, a ~ ' d to reduce the need
7 . , .

for the MC to monitor the status of these modules, there-is a~shared

mem'ory controller whose primary purpose is tb maintain these modules.

, Another function of .the SMC is to coordinate the p$ssage.of formatted and

unformat ted data between the system and the. out side environment.

k
To facilitate the entry of data into the system, t h q e exist a series of channel

.:
buffers which accept data from some secondary,storage device such as a

a *
I +s :- - . -. and perfow some, preliminary preformatting on the raw data, if necessar

b
.P ,, These buffers direct this data to the shared memo& modules. Of course,

instances of the representation can be stored on secondary storage devices

by going through the buffers. These channel buffers are under the control of

the external memory controller EMC. The EMC and SMC both cooperate in
C

b the data traffic between' the external environment and the system.

k" 4
In the application on which this dissertation was initially based, that is, as a

representation technique for computer graphics, there is an obvious need for

a display device. An instance of the representation is first routed to $

'1 memory buffer which can be loaded in parallel from the shared memory
P

94

t

modules. Once the buffer is filled, it is presented to the display device in a

single,step. This could be khought of as loading the background buffer of a
. -

-,
two-buffer device. Switching of buffer glanes renders the effect of instant ,

*
display.

Chapter 7 Simulation of the Multiprocessor

Architecture

This chapter presents the results of a si~nulatiori of the multiprocessor architecture

clevelopcd in thc previous chapter. The tern1 . q z ~ n ~ ~ I a t ~ o n is not used in the truest .

real-tjmc process is gene ra td , and observations are made of this history to
*

develop inferences or hvpothcses concerning the characteristics of the syste111.

F'ith respect to thr rlissrrtation, the type of software facilities availalrle has inarlc

it possible to i~nplement a psc,ldo-simulation which uses multiple processes to

rcprescnt the processors of our systcm, and mcssagc passing to represent the

network co~n~nlinicat ion ~nechanis~ns. 111 effect, a software-based cvquivalent to t 1 1 ~

the ,I~ehavio~ir of y i r system.

configurations arc used the act ,la1 csncrinlcnts. Tllcse follow tllc

7.1 Implementation Details

i
7.1,.1 The Processors

- The implementation of t.he simulation makes use of various features made

at-ailable by the UNIX' operating system with its System V enhancements, such

as facilities for using shared memory, semaphores, and message passing.

The architecture specifies that the operat,ions of the representation are stored

in each PrTj's local memory. There is no need to consider accessing some shared

memory for the required instructions. Therefore, this implementation only has one

set of operations which are readily available to all processors. The code does not

havc to be considered a critical-section -- which would require the bse of
/

sen&hores or other control constructs as a means of mdia t ing mutual exclusion.

Each processor in the architecture is represented by an independent process

that has its ow11 ident ificatiori - to facilitate processor-teprocessor

(process-toprocess in the irnplerncntation) communication. Ynless otherwise

indicated. the sim~ilation's process is equivalent to the architecture's processor .

Thc control functions and data structures available to the slave processes are very

simple. Thc main control loop sfor a s1a1.e essentially consists of:

slave: process
for TRUE {

RECEIVE (task)

cmd : = SELECT (task)
, EXECUTE (cmd, task)

SIGNAL (FREE, MASTER)

Tht RECEIVE operation places the processor in a waiting st e until some

in5tnuction/task is sent to i t \I:- the ma.5tcr prokessor LIC. Upon receipt of such a

task, the appropriate function is invoked by the processor with the included 'i
kguments. The task contains the function identifier, and its arguments. Once the

operation has been completed, the MC is sent a signal indicating that this

particular processor is available for further task acceptance.

' Although the responsibilities of the hiIC exceed those of the slave processors,

the control structure of the implementation has a similar internal arrangement:
. -

m a s t e r : . pr&ss
f o r TRUE (

RECEIVE (u s e r - r e q u e s t)

s l a v e : = SCHEDULE (a v a i l a b l e)
SEND (u s e r - r e q u e s t , s l a v e)

f o r - DONE () (
RECEIVE (t a s k)
cmd : = SELECT (t a s k)

i f cmd i n (slave-commands) {
s l a v e := SCHEDULE (a v a i l a b l e)
SEND (t a s k , s l a v e)

1
e l s e

EXECUTE (cmd, t a s k)

Thc olitcr control loop permits the 1IC to R E C E I V E requests from the user

interface. This R E C E I V E fiinctio~i is si~nilar to that available with the PrU

operations in that thc processor is in a waiting state until a request is received.

01ice a request has been acccptcd by the LIC, the S C H E D U L E function is used

to select an available s1al.c processor. after which, this initial task is sent to the
a

The internal loop contin~ics until the recl~iirements of the user rcqucst havc

h e n fulfilld. Thiq completion state is determined h. the function D O N E which

tests 1.ariolis control data stn~ctrircs such as the task queues and stacks. -
Obi-iouqlj-. i f thc t a i k qilciic i \ not cmpty. the userseques t has not been

completed. As an example, a request may be for the generation of a tree from the

application of the binary operation AND on two trees. The processing within the

inner loop continues until the result tree has been derived. This processing

involves the receiving of subsequent slave tasks, further scheduling, and the

disp&ching to the next available processor these tasks.

The dat-a structures required for the MC include: a processor-availability

queue containing the identification of each slave processor currently idle; a request

queue that is used to recall multistep tree operations - for example, in building a

tree, the two steps involved are to load the tree's leaves with data values, and the

actual generation of the tree, and; a task stack that holds the tree tasks which are

created by the slaves upon execution of the various operations of the

- representation. This last structure is the most volatile of all the structures since it

has to accept all of the child processes which are generated in going down a level

of a tree. For example. in the case of a quadtree, if it is necessary to process the

children of some node, four tasks have to be created and sent to the MC, to be

pla.ced on the task stack. This struct,ure is a stack rather than a queue to preserve

the integrity of t,he tree nest,ing as processing continues from level to level.

7.1.2 Shared Memory

-4 major component of the architectyge is the bank of shared memory modules
y

that contain t,he inst,ances of the tree representation. System V's shared memory

can be accessed by independent processes usingamemory identifiers - similar to

the idea of process identifiers in LT?;IX. These memory blocks can be cast as any

valid data structure. In this case, the implementation sets these blocks as - &

tn-o-cbmensional arrays of the character data type. This type permits byte

addressing. By having a series of the blocks, we can simulate the architecture's 2
hank of shared memory rnodliles. It is then possible to access any

byte-addressable memory location by providing a module identifier, and a lacal or

rclat i\-e memor), address.

7.1.3 The Interconnection Network

The interconnection.network is simulated with a series of simple variables which

are identified by means of their row in the network tree, and their relative position

withm a row. A value of 0 or 1 in a network variable indicates whether the node

that it represents is currently being used or not used in a memory access. For each

memory address <module#,memory #> generated, the network tree path is also

~ determined. If -- each of the network variables that is required for a successful access

is available, t,he memory value is either read or written. If not, the task is sent

back t,o the MC and placed back on its task stack.

7.1.4 Contention Considerations

8.

In this implementation, there are two areas of contention which are considered:
i'

network path and memory module conflicts. Actual memory location is not

considered. This is a valid assumption since at the leaf level, there is never a case

of two tasks accessing the same memory location -- a property of the

repre~entat~ion. The network and module cbnfici ,~ cany th:,ough at the

implementation level since actual sharing of memory (the System V sharcxd

memory and the network variables) is also taking place. To accommodate this,

semaphores are used. In fact. the network variables are actually semaphores.

11-ith the memory modules. each has its own semaphore. The module is only ;
?

accessible if no other processor has set the module semaphore. Once a processor

has finished accessing a module, t.he module semaphore is reset to indicate its

ax-ailability, as are the netn-ork node semaphores.

a.

7.2 Simulation Configurations
\

The sim~llation has been configured to accept anywhere from one to nine

processors. and tight shared memory modules. This requires that there he three

, . levels of . mdes . in the interconnection network, each level with four nodes.

simulation runs utilizing one to nine processors have been performed. Given the

nature of the interconnection network, that of a binary tree topology, eight r .
d

processors would be the maximum permitted. However, this implementation has

been set up for the required eight PrUs, in addition to an extra PrU. The intent is . *
.4 to provide as much data as possible for later i n t e~p re t a t i oq~ i t h in the 'constraints

of the implement ation environment. This environment makes extensive use of a

limited number of sockets, pipes, and file descriptors. Nine PrUs is the &mimum

number of processors which can be simulated with these limitations. The uSe of

one slave processor is a special case in that it most closely resembles the sequential

uniprocessor situation where a simple construct such as a FOR loop allows each

child of a tree node to be processed. Of course, these two cases are truly not

equivalent since some processing overhead is accumulated through the message

passing between the PIC and the-slave processor.

The size of the data set, and the type of trees which make up the simulation

sample set, requires that only four shared memory modules be used. Even with

four modules, it is still necessary to have three levels of nodes to allow for the

eight PrUs.,All of the experiments use the quadtree as the tree configuration. In

terms of data size, statistics are obtained for images which are 8x8, 16x16, 32x32,

and 64x64 pixels in size. Each data size involved three different types of image,

one being what would be considered an average case where the quadtree is not a

complete tree, a best case in which only one level of the tree must be processed,
-

and the worst case where the image is of a checkerboard type. These various '
k?, P

images serve as input for a number of the representations operations. Tests are

performed using the operations: LOAD U N F O R M A T T E D , which takes

.unformat ted data and generates a quadtree; and A N D , which is applied to two

quadtree, creating a third. A binary OR operation has also been defined,

essentially using the same routines as the A N D . For this reason, tests have not

, been run Lvith the OR. The application of these different data sets with the two

operations allows comparisons to be made between trials that require both

complete and partial tree traversal. It is this which provides the best, averagk, and

worst case scenarios. For each different set of circumstances, ten trials are run.

7.3 Pre~entat~ion of Simulation Results

The results obtained from the following experiments provide some indication of

the architecture's behaviour. To facilitate comparisons between the different

operations, this section is organized in a manner where all of the results for a

particular criterion are presented toget hes. In the following six subsections, the

results involving the MC are given independently of the slave processors. The

results and obser\-ations for each statistic are preceded by a brief description of

the statistic itself. The last three subsections deal with the slave processor results.

7.3.1 Total Execution Time

Of significant eoncern to the user is the m o u n t of time required to complete a

request, from its submission to the notification of the job's termination. Figure 7.1

presents the three graphs for the LOAD U N F O R M A T T E D , average case

A N D , and best case A N D operations.

In general, the LOAD U N F O R M A T T E D and average case A N D graphs

show a substantial improvement in completion times as the number of processors

increase. As expected. the &se of the number of slave processors P = 1 requires

the most time to complete a query. The results obtained here are similar to those
\ 4

generated mathematically in Chapter 3. The absolute time to complete the

L O A D U N F O R M A T T E D operation is expected to require the beatest time

since i t requires that the entire tree be generated - a case of t ~ o cbmplete tree

tra~rersals being necessary. The time needed to complete the best case A N D is

significantly less than the previous tn-o cases. This is understandable in that only

T o w Time Required to Format D&
(average case)

Number of Processors

Total Time Required to Resolve Binary Query
(avenge case AND optration)

Number of Processors

Total Time Required to ResbIvc Binary Query
(best case AND o ration) 4

1 2 3 4 . 5 6 7 8 9

Numbcr of Processors

Figure 7.1: Total execution time of a user query

one level of the two trees have to be processed. As the remaining criteria are

presented, it will'become obvious that this last case proi.ides a base from which

the other operations can be considered. One interesting point which can be made

about all three sets of results involves the trial where P = 4. After showing

consistent decreases in processing time for P = 2,3 , there is a slight increase for

P = 4. This is most evident with the 64x64 pixel image.

The results of Figure 7.1 can be used to determine the figure of merit for each

operation. This value is the ratio

where TI is the time needed for one processor to complete an operation. The

number of processors used in a cular run is given by N , and TN is the
6

completion time for these proc . If the FM = 1 for some range 1 . . . N , then

we have linear speedup. Figure 7.2 presents the figure of merit graphs for the

three operations studied here.

The situation presented by the best case AND operation is as expected

considering that the minimum processing time can be accommodated by*one

processor. Addi t,ional processors contribute nothing to operat ion speedup. With

the remaining operations, the ctr reduction is not as severe over a span of the first

five proBcessors.

Two addit,ional graphs are included here which deal with tree generation times.

,Both consider image sizes which are much larger than those actually tested. These

sizes range from 128x128 to 1024x1024 pixels. Using Equation 3.7, and a constant

processing rate of 1.5 msec/node, we arrive at the graph given in Figure 7.3.

It is also possible to extrapolate execution times for these large images using

the simulation results. The processing rate per node is much higher, as is

indicated in Figure 7.4.

Figure of Merit Plot far Building a ~ ; e e

Number of ~roceisors

Figure of Merit plot for a Binary Query
(average case AND operation)

Number of Processors

- Figure of Merit Plot for a Resolve Binary Query
(best case AND operation)

I 2 3 4 5 6 7 9

Numkr of Processors
Figure 7.2: Figure of Merit ratios of tree operation execution times

~stimated Tree-Generation Completion T'
(at a constant rate of 1 .Smsec/node) tme .

Number of Processors

Figure 7.3: Estimated tree generation times for large images

1

Extrapolated Execution Time for Tree Construction

,

Number 'of Processors

Figure 7.4: Extrapolated tree generation tmes for large images
-9

7.3.2 Absolute .Active Time

In initiating, mediating, and terminating a query, the MC is usually in one of two

states, that of being busy or waiting. A reflection of the MC's busy state is its

absolute active time, which is defined here as b6ing,the number of iterations of the

inner processing loop that it completes to resolve a query. The results for the

three operations are given in Figure 7.5.
a

1
The most noticeable observation from these graphs is the significant drop in

operations executed from P = 1 to P = 3, and then the subsequent stabilization

Tor P > 3, with the 64x64 pixel image. This indicates that although there are more
1

'

tasks to schedule, by keeping the PrUs busy with job processing, the MC can stay

idle for a period of t i~ne . With the other three images, the reduction in operations -

executed is not as significant. The best case AND situation requires the least
-%=

number of MC operations, as expected. There is also some fluctuation in operati&
i - .

count as P --+ 9, but this is acceptable considering the scale reduction. Comparing

this figure to that of Figure 7.1, it is possible to see that the active times for the

MC follow a similar pat tern to che total execution time for the entire system.

7.3.3 Absolute Idle Time

During the course of resolving a user query, there are periods of time when the

MC is in a waiting state performing no activity. For example, in a situation wherk '

all of the slave processors are busy executing their own independent tasks, the MC ,

essentially just waits idle until some request or signal is sent by the other

processors in the system. With the best case AND operation, there is very little

processing necessary with the MC and slave processors since only a very few Pi-Us

are required to complete the entire comparison. Although there seems to be a

slight upward trend in idle times as P --+ 9, the overall processing required with

t h s case is very fast, and it is very difficult to comprehend t h a t a d a b l e

environment is attained so quickly. The results can really be considered a baseline

, .

\
. . d

~ b s h u te Active Tfmc for Master Processor
(LOAD UNFORMA'ITED operation)

Number of Processors

Absolute Active Time for Master Processor
(avenge case AND operation)

Number of Processors

Absolute Active Time for Master Processor
(best i a s t AND operation)

Figurc 7.5: Absolute activc timc of a user query for the Master Controller

profile of the MC's activities, from which more complex examples can be

compared.

With the LOAD UNFORMATTED query, there is another slight upward L

trend noticeable. However, in comparing the- magnitude of these idle times with

that of the absolute active times given in Figure 7.5, the increase is not significant.

The idle time is essentially constant in the average AND case.

t

7.3.4 Relative Active Time

-4 more meaningful indication of how busy the hIC is in coordinating the various

system activities is the r e l a b e activc time, which is the ratio of active to overall

time based on unit operation5. As Figure 7.7 indicates, the hlC is busy for most of

the time which is available to i t . The inconsistent nature of the results for the best

case AND with thc 64x64 pixel image can again be explained by the fact that

only one level of the trees has t,o be processed, and not all slave processors have to

ht. used to fiilfill these processing requirements. -

7.3.5 Relative Idle Time

Figurc 7.8 sl iow~ the rcsults of tlic rclative idle time for the AIC. ll'ith the

exception of two suns, I st of the rcsults arc consistent. The best case AND
. f

operation with tllc 64x64 image. and the LOAD UNFORMATTED 8x8 query

h a w relative idle time values which are slightly higher than the results of the

other experiment s.

7.3.6 Maximum Task Stack Length

This statistic provides s'omc information as to tlie ra.te that the MC' dispenses with

the tasks which are sent to i t b' thc slave processors.

, Absolute Idle Time Spent by Master Processor
(LDAD UNFORMATTED operation)

Number of Processors

Absolute Idle Time Spent by Master Processor
(avenge case AND operation)

Number of Processors

Absolutc Idle Time Spent by Master Processor
(best case AND opention)

Number of Proccssm

Figurc 7.6: Absolutc idlc time of a user query for the Master Controller

@Reiativc Active Tie for Master Processor
(LOAD UNFORMATED operation)

Number of Processors

Relative Active Time for Master Processor
(avenge case AND opention)

l Oao

75.0

50.0

z.0

ao
I 2 3 4 5 6 7 I 9

Number of Processors

Relative Active Time for Master Processor
(bcst casc AND operation)

Number of Processors

Figurc 7.7: Rclativc active timc of a user query for the Master Controller

-.h

Rclative Idlc Time for Master Processor
(LOA D UNFORMATTED operation)

Numbcr of Processors

Rclative Idle Time Spent by Master Proccssor
(average case AND opcmtion)

Numbcr of Processors

Relative Idlc Time Spent by Master Processor
@cst case AND opention)

Numtcr of Processors

Fi y r c 7.8: Relative idle timc of a user query for the Master Controller

- 113

Maximum Length of Task Stack Under Master Process.or's Control
(average case LOAD UNFORMA'ITED operation)

Number of Processors

M'uimum Lcngth of Task Shck Under Master Processor's Control
(avenge c x c AND opcntion)

Number of Processors

Maximum Length of Task Stack Under Master Processor's Control -
(best case AND operation)

Number of Processors

Figure 7.0:' ivfasirnum task stack size in thc Mastcr Controller for a uscr query

Figure 7.9 presents these results. In the best case AND query, the consistent

LENGTH = 1 result for all processor and image combination can be explained by

the fact that there is only one task which must be created and processed. This is

the task which compares the root nodes of the lnvolved trees. With the other two

queries, there is a steady increase in Icngth of the stack until P = 3, at which

point there is very little, if any, change. This increase, and levelling off can be

explained by realizing that as the number of slave processors increase, there will

be an appreciable increase in the number of tasks received by the MC. With the
4

given image sizes, a st,at,e is reached where the number of tasks being received by

the hIC can be accommodated by t,he availability of slave processors.

7.3.7 Average Utilization Time for Slaves

The results for the slave processors' average utilization time is given in

Figure 7.10. L7:ith the LOAD UNFORMATTED and average case A N D

there is an obvious decrease in average processing time being performed by t

slaves as their number increase. One interesting observation is that with the

tests,

,he

former. the utilization of the processors does not decrease significantly for P > 3

xheh compared to P = 3. Of course, this is a reflection of the image sizes that we

are using. As indicated in Chapter 3. this special value of P will increase as the

image size increases. The results of the best case A N D query are essentially

linear if experimental error is taken into account. This case can really be

considered as a lower limit on the amount of time that is needed by the processors

7.3.8 Average Number of Tasks Processed by Slaves

Each sla1.e processor generates and processes tasks which are needed for the

representation's operations. The purpose of this criterion is to show the direct

correlation between proccsor utilization time and the number of tasks that the

slal-e processors muit execute. This is done by comparing Figure 7.11 with that of

Avenge Processor Utilization Time
(LOAD UNFORMATTED operation)

Number of Piocessors

Avenge Processor Utilization Time
(avenge case AND opention)

Numbcr of Processors

Avengc Processor Utilization Time
(best case AND opcntion)

Numbcr of Processors

Fi y r c 7.10: Avcrage slave proccssor utilization time for a user query

4

Figure 7.10. As expected, the trends evident in the first two graphs of both figures

are consistent. Comparing the appropriate graphs for the best case A N D case,

there does not seem to be anything in common . The graph in Figure 7.11 is

consistent with that of the LOAD UNFORMATTED, and average case AND.

7.3.9 Average Number of IMU Accesses for Slaves

The distribution of shared memory accesses by the slave processors is presented in

Figure 7.12. In all cases, the trend is for a decrease in access frequency as P gets
9

larger. This is expected since the number of shared memory accesses is a function

r of a PrU's processing load. The moreptasks that a processor must execute, the

greater the probability that som of these tasks require information from the k
shared memory.

;1
7.4 Discussion of Simulation Results

Of the various statistics which have been accumulated during these experiments,

it is the total execution time which is of most interest. The other criteria may

provide very fayourable results which confirm the architecture's mechanism of

action, but if t,he execution times &re excessive, the architecture would be

unacceptable. Chapter '7.3.1 presented some observations about the execution

time, the principal one being that there is a marked decrease in completion time

between 'P = 1 and P = 3 on the tyo cases (LOAD UNFORMATTED and

average case AND) n-hich require a reasonable amount of processing. For values

of P > 2. the execution times vary by no more than 10% from the average. Given

the image sizes which xere used. there really is no need to use large values of P.

Using the equations of Chapter 3, and considering the trends shown in Figure 7.1,

queries involving larger image sizes will follow the same pattern as here, with an

appropriate P providing a lo~ver limit of consistent execution time.

The Average Nurnber of Commands Received by Processor
(LOAD UNFORMATED operation)

Number 6f Processors

The Avenge Number of Commands Received by Processor
(averagc case AND opention)

Number of Processors

?be Avenge Nurnber of commands Received by Processor
(best case AND operation)

Number of Processors

Fiyle 7.11: Average number of commands executcd by a slave processor

The Avenge Number of IMU Accesses by Processor
(LOAD UNFORMA'ITED operation)

Number of Processors

The Average Number oi IMU Accesses by Processor
(average case AND operation)

Number of Processors

11e Avenge Number of IMU Accesses by Processor
(best case AND operation)

Number of Proccssors

Figure 7.12: Average number of memory accesses by the slave processor

119

The actual execution times obtained duririg this simulation are measured in

b units of seconds, which may sugges that the architecture is very inefficient for

even small processing tasks. However, the implementation is entirely

software-based, and uses the relatively slow method of message passing to
L

transmit tasks from one process to another. If the number of unit operations given

for the absolute active times of the MC are assumed to take lpsecond each to

complete, an operation1 such as a binary AND on a 64x64 pixel image requires a

favourable 11 milliseconds. The simulation of the interconnection.network also

contributes to the inflated execution times. If the magnitude of these quantitative

results are ignored, the obvious trends indicated by this simulation do reflect the

system's anticipated behaviour under various situations.
'

Although the network is a major cause of the slow execution t,imes, it itself is

dependent upon another component of the system. This is the number of s,hared

memory modules. With such a small number of modules (4), the number of

a.ccesses to these modules will be much higher than if there were more modules.

By increasing the module count, there will be fewer accesses per memory unit.

This reduction in contention will also lower the execution times. The figure of

merit ratios can be expected to imp-significantly as a result of this. Obviously,

if the application involves a large data size, it will be beneficial to have a large

number of memory modules.

Figures 7.3 and 7.4 were included to consider more complex images. The

differences in execution times can again be attributed to t e o erhead resulting 7
from contention through the network due to an insufficient number of memory

modules.

The increasing size of the task stack for' larger data sets being accessed by the

11C requires thaFits local memory be of sufficient size to accommodate such a

large data structure. It is hghly unlikely that there are a sufficient number of

hardware registers on the processing chip to store all of these tasks. One option

available to the designer is to place the top R tasks which are on the top of the

I

. I

stack into the chip's R stack registers. ~ e w l ~ arrived tasks to the MC are placed -
on this stack; while those tasks at the bottom of these registers are sent t o the

4

MC's local memory. The tasks at the top of the stack are the most volatile, and L? -

-?
by placing them into fast hardware registers, they can be dispatched to the next

available slave processors quickly.

As the results indicate, the extent to which the MC is occupied wit,h its

processing, essentially just task scheduling, is dependent upon both the type of

query and image size. Large images may be processed quickly if the query is as

straightforward as the best case AND. Moderately sized images may require more

processing time if the query is similar to the average case AND, The processing -.

0

load on the MC can provide a bottleneck if it is proceeding at full capacity. One

method of reducing this possibility is to use the alternative suggested earlier, that

of allowing the slave processors to &>their own scheduling. A second approach is
A

to distribute the processing load between additional MCs. With this latter

method, questions such as how will tasks be allocated to the MCs (possibly via a
\

shared memory scheme), and what is the '&&mum number of MCs are raised.

Neither of these alternatives have been simulated for this dissertation.
J

With respect to the -slave processors, observations have been made which

indicate that after some value of P for a given image size and query, there is not

that great of an improvement in processing times. As to the ramifications of this

point, the desiper'must 'consider the application's data and operation set.

Initially, some minimal val'ue of P may be sufficient for a start-up system.
* I,

I

However, as the needs of the application increase, fq.3lities must be in place to
\

allow for the addition of more slave processors. One concern is that of processor

cost. If this cost is prohibitive, the number of slaves used should be that of this

optimal P. f

Chapter 8 Djscussion

8

8.1 The Representation

Before the three architectures designed for the 2N-&y tree can be discussed, it is

necessary to consider the representation itself. By using straightforward set

t heoretic principles, it has been possible to define a general representation which

has a very broad range of applicability. The large number of operations provided

by set theory makes this representation even more attractive to the user. If it is

possible to define a collection of objects as a population, then it is possible to use
d

our defined set representation on these objects. Another critical property of this

representation involves the -fact that subsets of objects within an instance of the

representation are disjoint entities. Therefore, it is possible to apply any valid

operation on these subsets in parallel. Understandably, the parallel execution' of

an operation will be completed before its sequential version does.
J

4" A transformation was performed on this general set representation to give us ,
i ,

the 2"-ary tree representafibn. The operations and properties of the set .

representat,ion are also valid w i t h the scope of the 2N-ary tree. This

transformation confers some order upon this new scheme, which simplifies the
. .

process of developing simulation models to test these properties and operations.

Each of the three architec trlres presented provide a significantly different

approach in implementing this zN-ary tree representation. At one extreme, we

have the mapping of hinary trees onto a VLSI array of p@cessing elements, while

at the other, the system configuration consists of shared memory and a linear

arrangeme* of high-level processing elements that execute tasks from a *

sophisticated Master Controller. Intermediate to these two systems is the

architecture utilizing linear arrays of processing elements that are linked via

2N-ary tree mappings on interconnection networks. Each offers certain advantages

over the others. I 4

8.2 Performance ,

Ob~~iously, performance is one feature which must be considered in any .

comparison or evaluation. The sliared memoq simulation has provided the only

results from which the valicli~y of the theoret,ical analyses can be determined.

Some of the results were discussed earlier in the dissertation. Based on these

results. a prirnar~. observation is that tlw number of memory modules in the

systan is critical. 'The complexity of the interconnection network is directly

related to this nlimber. Therefore, what may be considered as a deficiency in the

network capability can actually be attributed to the memory modules. With the

sj-stem that was test cd i b " c simulation, e interconnect ion contention was e"t
dcfinitely a reslilt of the s~rlall nurnlxr of rnodiiles.

With the ot licr. arcilitcct ures. I\-c can compare the time~complexity for ,the

execution of l~iriary o~)cratiorls. Fro111 EquatiiQn 4.4, we see that the complexity for

I' the PE-ICN sj-stc~ri is O(3 ' L) . n-lierc L = log2.v P + 1, and P is the number of

objects in the instance. In thc original analysis, the pixel width w was used-in

place of P. b ~ i t the relationship P = w2 nlakes these two entities interchangeable.

For the 1-LSI system. t hc time. ro~nplcxity of a binary operation is 0 (L 2) . Here,

L = log, P. For tllc casc of -1- = 1 in the PE-ICN system, we are actually

mapping a 1)iriarj- trcc onto t h ~ ron-s of processors. A direct comparison to the

binary t r w rria~~ping or1 r l l c I'LSI array shows t,llat, the former architecture is

faster by a factor of L . .4 e;cxlcral co~nparison bctween these two complexities may

be made with the following approximation:

Using Equation 8.5 as a ratio between VLSI and PE-ICN times, as the value of

-V increases, it will take the latter system significantly more time to complete the
B

same type of operation. The major contributing factor to this relatively inefficient

PE-ICN system is the time required to pass children values to a parent node in a

sequential manner. If this can also he performed in parallel, the complexity of

passing through a tree is reduced from o(?"L) to O (L) . The above comparison

n-ith the PE-ICN system has used the case where the nu~nber of levels in the

an the number of .PE rows. If we have the opposite case, then it is

~iolis that the 17LSI system is more time efficient than tlie PE-ICN

sys t ern. ?

8.2.1 Mult i-operand and More Diverse Operations

The operations that t>een consitlcred to this point have eithcr rcqliirtd singlr.

or double operands. arc two approaches that can he ;isc(l i11 cvaluati~ig

qucrits that rcquirc more than tn-o para111ct crs. A s t lic reprcscnt at ion provic1c.s a
--

T

significant number of set-ty1)e opcratio~i\. i t is possible to use principlt's such as P

aswciatil-i tj-. cornmutat i \ - i tj.. dist 1-ih11t i~ . i t j - . and Delforgai's 1au.s t o rcconst rust

the qucry as a wries of binary operations. For example. the cjtirry .-I U B U C' ca11

bc evaluated as (.-I u B) uC'. n-here the rtslilt of .-I U B t)ccorrics the otliw opc~a~ic l

for the second union operation. Tht. scco~ld approach irir-olvcs t11c sccl~ie~it ial

considered. With an example as A n B n C, the intersection of the root node for A

and B is stored temporarily in the processing element so that the root for C can

be obtained h d applied with t h s value on the intersection operation. If

necessary, subsequent tree levels can be processed in a similar manner.

The most efficient archtecture in this case is that system which stores similar

trees in the same memory module, be it in shared memory or as part of a

processing element's local memory. The VLSI binary tree and shared memory

schemes are significantly more effective than the PE-ICN architecture. The

binary tree h w o n e root node, so that all tree instances must begin'at this PE.

Each PE has sufficient storage to accomodate a number of trees. The bit-serial

feature also allows for quick node retrieval - of the necessary trees from this local

memory. The shared memory system can also process such requests. If equivalent

nodes of R operandtrees are stored in the same memory modules, the P E s

maintain their paths though the ICN for R read cycles. This allows sufficient

time for the R nodes to he passed to the requesting P E . The PE-ICN system

the most ineffective met hod of the three architectures in that equil~alent tree

instances ma!- not be stored using t hasame type of switch settings t,lrrough the

\-aI-ious I C N s . This requires that acldit ional synchronization steps be taken to

allo~v valucs along a processor row to be passed between P E s to bring the required

node values together in onc PE. L
The operations that ha\-? been uwd in the simulation and the various analyses

arc v t bawd . Howe\-er. there exist other algorithms that use the ?'-an. tree data

-truct,ire which arr not. Some of t hece include raster-to-quadtree conversion [34].

and location of nearcst-neighbo~~rs 1.331. Features of the representation. such as

disjoint subtrrts. still m i s t . Tlw sequential form of the algorithms will ha\-e to be

morlifiecl to t akc ad\-ant a r ~ of t h c v properties.

8.3 Consideration of Large Databases

i

The test cases considered in the simulation have involved relatively small data

sets. In applications such as geographic information systems, da ta representing

areas spanning many kilometers must be transformed into the tree scheme. For

example, if a region of about 1000km2 is mapped to 100 meters, it is necessary to

generate a 13-level quadtree. The complete tree requires approximately 90x10~

nodes. Attempting to map, such a tree onto either of the first two architectures

x-ould be very difficult due to the tremendous number of nodes that are involved.

The folding tree mapping of the P-INA system would most probably be required.

Task synchronization between level,s&would be very difficult to maintain if multiple

tree foldings arc needed. The shared memory system provides a reasonable

solution as the tree can be easily managed in the memory modules. The

interconnection nctwork can also he expanded easily if more memory units have to

be added.

t
In the case of systems with a limited number of modules, it is necessary to -

divide the trees into subtrees of consistent depth. While thc top block of subtrees

occupies the modules, the nest block can be brought into the channel buffers from
f

secondary storage. Thr, transfer of information between these two components is

potentially a n input /outplit bot tlcneck that must he resolved. A high-speed data

bus bctn-ccn the buffers and niodulcs can facilitate thc swapping of these subtrees.

8.4 Fault Tolerance

One isslicl t o rorisicltr is the. fault tolerant 1)cliaviour of these systems. Fault

tolcra~lt corrlplit ing call bc. clcfi~lccl as t hc process by wllich an algorithm is

rscclitcd corrcctly cx-f.11 i11 tlic prcscncr of defects in the system [40]. Of course, it

is as>111ncrl that ,algori t 11111 has bccri implcmcnt ed in the appropriate fashion. A

failure can bc considcrccl a i mrne physical damage while a fault is generated

~ ~ h c n ~ ~ - r r S O I ~ C I - 3 1 1 1 ~ differs from its c s p e c t d value. One approach to

make a system fault tolerant is through redundancy. This can be in the form of

repeated calculations, or through extra hardware and software. The more

economical option available to the designer ig handling permanent faults that are

caused by some failure is t,o use hardware .redundancy. However, if we are dealing

with faults that are caused by some system inconsistency or external influence, the

practical solution involves repetitive calculations. The following discussion on the

fault tolerant behaviour of each system is very general, and no attempt is made at

providing an in-depth analysis of concepts such as fault detection, diagnosis,

isolation and repair.

The shared mcmory and 17LSI array systems provide a greater number of

advantages when compared to the alternating PE-ICN scheme. From a high level

perspective, memory is less prone to malfunction that the more complex

processing elements. with components such as the CPUs and ALUs. The shared
-. .

memory modules of our third architecture provide stability to the system. If any of

'the mcmory rnodules do happcn to malfunction, entire subtrees of objects may be

lost. This requires that memory backups be done at regular intervals. On a finer

scale. data corruption can be controlled using error-correcting code on memory.

117th the shared mernorj- system. the P E s , and MC are the critical

components whch must he protected with some fault tolerant mechanism. If the

J hlC malf~inctions. the entire system will shutdown. In the event of an M C

brcakdon-n. an alternate MC may continue in its place. The results of the

simulation have shon.11 that after a ccrtain number of processors P in an E PE

sj-?tern. svhcrc E > P. increasing P ni l1 not result in exceptionally great advances

in throughput. These E - P P E s can hc considered as the redundant component.

The MC'? schctfuling mechaniqm doc? not require any significant action in the

c a ~ of a PE malfunction -4 qignal is received from the defective PE to inchcate

that i t is in a failure state. arid to allow the MC's table of al-ailable slave

processors to be rnoilifi~il to rrflwt thiq component breakdo~un. scheduling of

t a sk< cont in~~cs with t l i i - rrillicccl nllrnhcr of P E s .

The shared memory system is very modular, consisting of memory units, and

different processor units. Each of these may reside on an individual microchip. If

2 ' any of these modules become faulty, thky can be isolated from the rest of the

system. Repair may only require that the unit be replaced by a similm module.
'

In the case of the VLSI array, the situation presented by Youn [50] calls for

interconnection buses to run horizontal!^ and vertically between the P E s of a

module. At each bus junction there exists a switch which affects the four P E s

that surround it. Regardless of whether we are dealing with interior or leaf nodes,

a switch is used to connect a parent node to its two children, thus leaving one

redundant PE per four-unit cluster. If a PE in a cluster malfunctions, the extra

PE can,be switched on in its place.

The situation presented by the alternating P E - I C N archftecture is

significantly more complex. There are two additional module types to contend

n-ith. those which are responsible for controlling the rows of slave processors, arid

those that control the I C N s . The major concern arises with the I C N s . There

may also bc multiple mappings through the I C N s in the case of representation

instances which require more tree levels than there are processor levcls. The I C N s

nlllst function properly otherwise these mappings will be corrupted. There is some

inherent redundancy in the system. In Chapter 4.3.3? it was shown that for the

?'-ay tree with E slaves per row. wc have a situation where for sowe row r , any

E
- P E s can he used for the rolv mapping Therc are then E - $ PEs in this row
2 '"

r ~vhich provide adequate redundancy.

8.5 Expandability

Expandability of system< is another fcaturc to consider in comparing thesc

qs t ems . Thc modularity of t e shared memory architecture makes it relatively jl
po\ver is needed. atldi t ional slave processors

rcquire that addit iond snrit,ch lcvels bc
a

added to the ICN. Increasing the number bf memory modules may also be

necessary. These a d d i t i p s will have little affect on the MC and its task

scheduling. Of course, the controller will have to be notified of these extra slaves,

but the scheduling procedure remains the same.

The PE-ICN is also very modular, and the vertical expansion of this system --

by adding extra rows of slave processors is straightforward. Connection networks
,

between these new rows will also have to be included. However, the situation is

more complex if it is decided to add extra slaves to a particular row. This type of

horizontal expansion requires that each row of processors also get the same

number of additional slaves. This is necessary, otherwise adjacent interconnection

networks will be inconsistent in size and complexity.

With the VLSI system, a single microchip may consist of an S-level binary

tree, where _Y is some reasonable value such as 4 or 5. This can be considered as

the basic building block. Connecting some of these chips into a cluster allows trees

of greater depth to be stored and processed. However, as these clusters become

greater in size and occupy more area, the distances between adjacent clusters also

increases, resulting in increased communication times. Minimization of these

distances through alternative clustering techniques will make expansion of this

system worthwhile.

8.6 Other Comments on the Architectures

In designing the I'LSI architecture, the use of a binary tree mapping of the

processing elements of the array was the most beneficial. The binary tree .provides

a compact structure because of its s~nal l fan-out. In trees with greater fan-out,

such as the quadtree and octree. the structure requires more area to connect all

chilclrcn to a parent node. T17ith this greater area, there are more unused

processing elcrncnts on t l l t array unless some irregular mapping scheme can be

developed. rlnother rcason for ~ising t h e binary tree involved work which has

already been done on binary tree mappings by different resear& groups. Efficient

mapping schemes that incorporate some interesting features have been devised for

the binary tree. For example, consideration of fault tolerance has been included in

these mapping schemes. Even with these features in favour of the restricted

2"-axy tree mapping, the question may still arise as to why not use a ma3ping for

N > 1 where there will be fewer levels in the tree, and therefore, faster processing
I

times. To this, one may answer that the compactness of thk binary tree more than

compensates for this need of extra levels in the tree. One consequence of this is

that the interprocessor distances are much smaller. Therefore, there will be less
4

delay in travelling between these additional levels. In addition, the advances being

made in VLSI technology allows for more complex and faster processiirg elements.

The discussion to this point can he summarized as presented in Table 8.1. The

relative ranking is, for the most part, a subjective measure of the expandability,

fault tolerant capability, ~erformance, and complexity of each architecture. The

shared memory approach is the most favourable of the three, while the P-INA

structure is least effective.

-4 fair indication of the 01-era11 cost effectiveness of the three systems is

" provided by the above rankings and criteria. The shared memory architecture's

features make i t an attractive system. With the cost of microprocessors and

memory decreasing, justification for the use of this system, which relies heavily on

these two components, is obvious. The interconnection network can be readily

espandcd to accomrnodatc any reasonable increase in system requirements. The

simple structure of the s~vitching elements also translates to cost efficiency.
2

ST'ith our other two syste~ns. i t is more difficult to present arguments in favour

of their cost cffcctiveness. Bccause of the effort required to develop and set up

these syst,ems. one may counter that a powerful uniprocessor with the necessxy

, softivare implement at ion of the represc~t at ion is preferred. The task facing the

dcsigncr is to arrive at a dccision bascd upon these options. There is no hard and

fast r d c which t;tipilla'tcs n-hcn a mliltiproccssor based system should be used.

P-INA

VLSI-based

Shared memory

Relative ranking: A - best

B -OK
C - not too good

I ---- Expandability

II -- Fault tolerance

111 --- Performance-

IV --- Complexity

Table S.1: Relative ranking of the three systems

8.7 Consideration
rg

of ~ltekbative, , B Architectures .
\
/ . -i

The architectures which have been prese&ted are three methods by which the
6 *

zN-ary tree representation can be implemented. Recent advances in parallel

processing have introduced further alternatives for the system designer to select

from in taking advantage of the 2N-ary tree's properties. For example, the

hypercube topology has been used at Caltech in the development of the Cosmic

- Cube [38]. General purpose parallel computers, such as Intel's iPSC personal

supercomputer with its 32, 64, or 128 processing nodes connected in a hypercube

arrangement, are now becoming commercially available. With the iPSC, 16-bit
'

 microprocessor^ are used as nodes, with 512Ii bytes of memory. Adjacent node4
'.

are connected via et hernet links which allow fdr l0hllbi t per second transfer rates!
.---

The nature of the hypercube model allows for different applications to use the

same 'st ruc t u x . For example. comput ationally htensive applications such as

computer vision have successfully used the hypercube to achieve useful

improvements in processing times [XI. il'ithin the context of the 2"'-?ry tree

scheme, algorithms have been developcd to embed trees into hypercubes [GI. The

binary tree approach has bwn found to he one of the sinlplcst struct~ires to

embed [8]. To re-emphasize a point made earlier, the case in using the binary tree

topolog~. to solve the current prohlem justifics its ~isc .

IVork at 1IIT resulted in thc dc~.elopment of a massively parallcl computer

which consists of a SIAlD array of X G I i one-bit processors [45]. The Connection

llachine uses t,wo communication netu-orks. one linking nearest ncighhours, and

the second allowing for communication I ~ c t ~ v e e ~ i any two arbitrary processors.

This second network can then hc u ~ d to generate a trcc composed of processors.

The size of the llachine makes its general availability rcstrictivc. For csample, it

can support cight front-end computers. most of which are eit1ic.r lr.4X or

Symbolic5 LISP llachineq 4096 nlicrocliips arc ~iscd, cach of ~vhich contain 16

proctSsors. The proccqqor? are arrangccl a\ 12-di~nensional hypercubes with 16

prnccssors at cach vcrtes. The 1Iachinc essentially flinctions by gcntrating a

solution tree for the problem, and then dynamically pruning the tree through the

broadcasting of necessary constraint conditions for the p r o b l b to all of the

processors. One problem with such a scheme is that the entire tree be first

mapped onto the array. New techniques have been developed for the Connection

hlachine which allows it to selectively grow specific regions of the tree, prune these

subtrees, and then generate new levels [14]. Applications for iyhich the Connection

Machme has proven to be successful in generating solutions include VLSI circuit

simulations, machine learning, modeling of fluid dynamics, pattern recognition,

and image processing.

A third type of general purpose architecture which has been successful as a
.J

parallel computer is the D-ADO processor [43]. The current prototype consists of

1023 processors all connected in a complete binary tree. The DADO project

builds on the work of Bentley and Kung [7]. Applications for which the DADO

architecture has shown to be very efficient include logic programming, relational

database. and pat tern recognition.

Chapter 9 Conclusion

The original intent of t h s dissertation was to develop an architecture which

ut.ilized the inherent parallelism of the 2N-ary tree represent at ion. The primary

application of this representation and architecture was computer graphics. As the

research progressed, two addit,ional architectures were developed, both of which

were significantly different in structure. The nature of the representation and its

operat,ions are such that a general representation can be defined based on set

theory. This new representation can be used in many different applications, such

as image processing, computer animation, database processing, and general C

information sys terns.

In addit.ion to the m:ide range of applicability for this representation, its basis

in set theory allows for the use of many operations, most of which are derived

from equivalent set t heoretic functions. .Another property of this representation is

the manner in which components of an instance are defined as being disjoint

subsets of the instance. It is this feature which allows the operations of the

represent ation to be executed in parallcl. L

Once th t '2.'-arY tree representation was defined as a transformation of the

senera! set theoretic representation, it was possible to proceed with an analysis of

the effectiveness of executing these operations in parallel. This parallel time step

analysis was performed on the quadtree. but the reasoning used in the analysis

could be extended to the general 2.'-ary tree case. As expected, the primary

results of this analysis ha\-e shown that there is indeed an improvement in

4 performance if multiple processoi: are used. A significant difference in execution

time is evident in just going from a uniprocessor to a dual processor environment.

However, one interesting observation that the analysis presented was that-after

some particular value for P (the number of processors used), the difference in

execution times is negligible. This value of P was dependent upon the size of the
P

object being represented, and the operation being performed.
I

The fist architecture which was developed for the representation m a m e of
r-

alternating rows of slave processors and interconnection networks. The basic idea

was that the 2.N-ary tree would be mapped on top of this array of slaves and

networks. The slave processors represented the nodes of the tree while the
p'

networks provided the links or edges between parent and child nodes. It was

determined that if the number of rows of slaves exceeded the number of levels in

the trees using the system, then the implementation was worth pursuing.

However, if multiple mappings were needed, as in those cases where there are '

5
insufficient processor rows. then the processor and Scheduling overhead necessary

to accommodate these mappings far exCeeds the benefits of the system. An

alternative solution which avoided this multiple mapping made use of more

complex slave prpcessors that allowed actual subtrees of instances to be stored at

each leaf slave. If primitive used. then only one node value would be -
stored in each processor.

In the case of the 1-LSI-based archtecture, a binary tree topology was used in

the processing element mapping. The use of the binary-tree was justified on a

number of points. The architecture ~vas also shown to perform more effectively

than t h e P E I C N sj-stem for luge values of .\..

Our 1 s t systtnl sva.q ticsigned using shared menlo y y l e s , a series of s l ~ v e

processors. and a rrlaster used the,benefits of both

curent hardware and the previous two schemes

v;hich stored t rre ~-;ilucs n-i t hin t h> processing elements themselves. t h s approach

used the mernoq- mociulec for rtce storase. The processors simply processed the

tree values. This requi&d that the slaves communicate with the master controller,

which handled all of the scheduling duties of the system. The simulation tha&was

developed for this architecture produced results which were conqstent with those " .

presented-in the preliminary quadtree analysis. Specifically, hhere was considerable

improvement in execution times for binary operations as the number of slaves

increased. However, a levelling off in execution time was noticed after a critical

number of slaves was reached. L?

Of these three architectures, the simplest to actually implement would be the

latter. The modular nature of the system would permit the use of existing

hardware such a.s microprocessors, and memory microchips. The interconnection

network linking the slaves to the. shared memory could be constructed from simple

2x2 crossbar switches. The alternating row scheme, although modular-in nature, is

more complex with the added c~ntrollers, and multiple interconnection networks.

The VLSI array would require that the actual binary tree be laid out onto the

chip. The most likely method would require the use of laser technology to set the

qpropriate swi tcl+es.
. ,

a T h e Discussion losed th brief descriptions of three powerful general-purpose .

archtectures that permit mappings of trees. The considerable size of these

architectures from the standpoint of processing elements indicates that issues such

as communication difficulties, and memory contention have been successfully

a d d r e w . A representation such as the 2N-ary tree could be effectively

inlplement'ed on any of these structures. The multidimensional arrangement of the

Connection Machine's hypercube and point-to-point communication facilities

makes the actual mapping of a 2"-ary

machine, with its restricted topology.

tree more possible than with the DADO

To conclude. i t is necessary to re-iterate a number of points which have been

explicitly state$ or at least implied as the dissertation progressed. The approach
$

to be taken in the implementation of the representation must be one Chich is both

cost effective and slifficierltly fast to satisfy typical user requests. If the situation is

such that a fast uniprocessor can fulfill the needs of the application, then it should

be considered as a candidate solution. The technology, facilities, and components

necessary for the system must be available. Compromise is a term which

contributes significantly to t,he selection process in system design.
%.

Bibliography

[I] D. J . Abel. Some element a1 operations on linear quadtrees for geographic
information systems. Computer Journal, 29(1):73-77, 1985.

[3] hI. J. Atallah and S. R . Kosarajo. A generalized dictionary machine for
1,'LSI. IEEE Transactions on Cornputer.q, C-34(2):151-155, February 1985.

[3] 3. L. Baer. compute^ Sy3tem.c Architecture. Computer Science Press, Inc ..
Rockville, hlaryland. 1980.

[?I I i E. Batcher. Bit-scrial paralli,l processing si%tems. IEEE Tran~act ionr on
C o m p ~ ~ t e r s , C--31(3):377-384, \lay 1982.

[5] I i . E. Batclicr. Sorting networks and their applications. I!: A F I P S Conf.
Proc. SJCC. pages 307-314. Thomso~i Books,~iVa.c;l~i~lgtori D. C.. 1968.

['GI 1.. E. Belles. Mathematical theo'ry of connecting netu,ork.c and telephone
traf ic . Acaclcniic Press. Xew J'ork. 1965.

' [7] J L. Bentley and H. T. Iiung. A Treq Machine for Searching Problenw.
Technical Report ClIL--CS 79142 . Canlegie-Me11011 Vrii~.crsity. 1979.

[S] S. R . Deshpande and R. 11. .Jcncvcin. Scalability of a binary t r w on a
hypcrculw. In Proceedzng.s Int. Con f, Pa,rallel Procesazng, pages 661 6 6 8 ,
1986.

[!I] D. Dias and .I. R . .J~lnip. h a l y s i s arid si~nulatiori of huffcred da ta networks.
I E E E Tran..qnction.s on Computers. C-30(4):331-346. April 1981.

[I 01 L . J . Doctor and John C:. Torl~org. Display tcchniq~ies for oct rce-cwcocltd
objects. IEEE Comp u f ~ r Gmphzc,q and Applzcc"Zttons, 1(7) : B 38. .July 1981.

-.

1111 C. R . Dl-cr. A . Rosc~ifclcl. xlcl H . Sarnet . Regio~i r e p r ~ s c ~ l t at ion: t ~ d m t l a r ~
codes from cllladtrees. Commt~nica , t ion~ of the Association for Computing.
2313):lrl-179. 1Iarch 1980.

1

1131 A. L. Fisher. Dictionary machines with a small number of processors. In 11 th
Annual International ~ ~ r n ~ b s i u m on Computer Architecture, pages 151-156,

-

June 1984.

[14] J. G . Harris A. Id. Flynn. Object recognition using the connection machine's
router. IEEE Computer Vision and Pattern Recognition, 5:134-145, 1986.

[lz] I. Gargant.ini. Linear octtrees for fast processing of three-dimensional objects.
Computer Graphics and Image Processing, 20:365-374, 1982.

[16] D. Gordon, I. Iioren, and G. hl. Silberman. Embedding tree structures in
VLSI hexagonal arrays. IEEE Transactions on Computers, C-33(1):104-107,
January 1984. /f- -- ,.-

[IT] -4. C. Hartmann. Software or silicon? The designer's option. In Proc. IEEE,
pages 861-874. June 1986.

[IS] E. Hormi-itz and A . Zorat. Thc binary tree as an interconnection network:
applications to multiprocessor systems and VLSI. IEEE Transactions on
Compwter,s. C-30(4):247-353, April 1981.

1191 G . XI. Huntcr and I<. Steiglitz. Operations on images using quad trees. IEEE
Transaction-s on Pattern Analysis and Machine Intelligence.
P-4111-l(2):145-153. -April 1979.

[2O] C. L. .Jackiris and S. L . Tanimoto. Oct-trees and their use in representing
three-dimensional ohjccts. Computer Graphzcs and Image Processing,
1 : 'TO. 80.

['I] T . Lang. 11. 1-alcro. and 11. .A. Fiol. Reduction of connections for multihus
organization. IEEE Tran3actzons on Comp~~ters , C-32(S):iO7-716, August
1983.

mj D. H. Lan-ric. .Access and alignment of data in an m a y processor. IEEE 1-- 9 Transactzons on C o m p u t ~ r ~ . C-24(12):lT3-183. December 1975.

[23] -4. Levy. B n ~ z c Srt Th e o q . Springer-1erlag. Berlin, Heidelberg. ?;en. J'or-k,
1379.

[?-I] C'. 1Ieacl and L. C'onn-ay. Introd l~ctlon to VLSI system^. .4ddiso11-\Yeslq-.
Readmg. llainc. l9SO.

[?.?I D. llcagher-. Geometric ~nocleling llsing octrcc encoding. C o m p ~ ~ t e r Graphic3
a.nd Image Procesi.sng. 19:129-147. 13s'.

-261 . , T. 3. lIiidge. 1-ision algorithms for hypercube machines. IEEE Computer
 architecture.^ for P a t t ~ r n Analy.slr and Image Da tabase Management.
3:225 230. 1935.

t

[27] G. Nagy and S. Wagle. Geographic data processing. C o m p u t i n g S u r v e y s ,
11(2):139-181, June 1979.

[28] D. Nath, S. N. Maheshwari, and P. C. P. Bhatt . , Efficient VLSI networks for
parallel processing based on orthogonal trees. IEEE T r a n s a c t i o n s o n
C o m p u t e r s , C-32(6):569-581, June 1983.

[29] L. M. Ni and C. E. 13%. Design trade-offs for process scheduling in tightly
coupled multiprocessor systems. In Proceedings IEEE 1985 I n t l . C o n f o n
Paral le l Proces s ing , pages 63-70, 1985.

[30] T. A . Ottmann, A. L. Rosenberg, and L. J . St,ockmeyer. A dictionary
machine (for VLSI). IEEE T r a n s a c t i o n s o n C o m p u t e r s , C-31(9):892-897,
September 1982.

[31] -4. A. G . Rcquicha. Representation for rigid solids: Theory, methods, and
systems. ACM C o m p u t i n g S ~ ~ r v e y s , 12(4):437-464, December 1980.

[32] R . Rettl~crg and R. Thomas. Contention is no obstacle to shared-memory
mult iprocessing. C o m m u n i c a t i o n s A C M , 29(12): 1202-1213, Decembcr 1986.

[33] -4. Rosenfeld. Tree structures for region represenj ation. M a p D a t a
Proces,sing, 137-150, 1980.

[34] H. Samet. .An algorith~n for converting rasters to quadtrees. IEEE
Transaction.q o n P a t t e r n A n a l y s i s a n d M a c h i n e In t e l l i gence .
P.IM-3(1):93-95. .January 1981.

1351 H. Samet. The quadtree and related hierarchical data structures. ACM
C o m p u t i n g S i ~ r u e y ~ s . 16('2):'3'33-260. June 1984.

[3G] H. Samct . Region rcprcwnt at ion: Quadt rees from hinary a r r v s . C o m p u t e r
Grnph7cs and I m a g e P r o r ~ s s z n g . 13:ES-93. 1980.

1.371 H . Samet . Region rcprescnt at ion: Quadt rees from boundary codes.
C o m m ~ ~ n z c a t z o n s of t h e Assoczataon for C o m p u t i n g . 23(3):163 170, lfarcli
1980. r/

I331 C'. L . Scitz. Thc Corrnic Cube. C o 7 n m ~ n i c a t i o n ~ q o f the As .soc ia t ion for
C o m p u t i n g . '3Si 1 I : ? ? -33. . J a n u q 1985.

. '401 , D. P. Sicniorek. C. G. B~11. and -A. Se\vc.ll. C o m p u t e r ,structure,s: Princip1e.q
a n d ernmple . s . llcC;ra\s--Hill Book Company. Nelv J;)rk, K\;ew York. 1982.

4 1; I i . 0. Sionla1a.q and B. A . 13on.r.n. Pcrformmcc of crossbar multiprocess
c;~.~te111s. IEEE Tran.;nrtzon.q o n C o m p ~ ~ t e r . s . C 32(S):689-695. August 1983.

[42] S. N. Srihaxi. Representation of three-dimensional digital images. ACM
Computing Surveys, 13(4):399-424, December 1981.

[43] S. J. Stolfo. Initial performance of the DAD02 prototype. IEEE Computer,
75-83, January 1987.

[44] J. K. Udupa, S. N. Srihari, and G . T. Herman. Boundary detection in
multidimensions. IEEE Transactions on Pattern Analysis and Machine
Intelligence, PAMI-4:41-50, 1982.

[45] D. L. Waltz. Applications of the Connection machine. IEEE Computer,
85-97, January 1987.

[46] A. Y. 13'~. Embedding of tree networks into hypercubes. J. Distributed .

Computing, 3:238-249, 1985.

[37] C. TVu and T. Feng. On a class of multistage interconnection networks. IEEE
Tranaactiona on Cornp~~tera, C-29(8):108-116, August 1980.

[4S] J5:. -4. ITSTulf and G. C. Bell. C.mmp - -4 multi-miniprocessor. In A FIPS
. . Conf. Proc. FJCC, pages 76.5-777, l lFIPS Press, Montvale, N. J . , 1972.

[-I91 11. Yau and S. N. Srihari. -4 hierarchical data structure for multidimensional
digital images. Comm~~nications of the Association for Computing,
26(7):504-515, July 1983.

[5O] H. Y. You11 and -4.. D. Singh. On Area E@cdent and Fault Tolerant Tree
Embedding in VLSI. Technical Report CS-87-151, University of
1Iassachusct ts. 1987.

