@

g National Libr
l*l of nggdar o du Canada

Bibliothéque nationale

=

Canadian Theses Service ~ Service des théses canadiennes

gﬁ%iifanada ' S ':E(g’%

NOTICE

The quality of this microformis heavily dependent upon the

guality of the original thesis submitted for microfilming.
Every effort has begn made to ensure the highest quality of
reproduction possible.

If pages are missing, contact the university which granted
the degree. .

Some pages may have indistinct print especially if the
original pages were typed with a poor typewriter ribbon or
if the university sent us an inferior photocopy.

Heprodlxctidn in full or in part of this microformis governed
by thé Canadian Copyright Act, R.S.C. 1970, ¢. C-30, and
subsequent amendments.

Nt .1YG (v QA ~

AVIS

La qualité de cette microforme dépend grandement de la
qualité de la thése soumise au microfilmage. Nous avons
tout fait pour assurer une qualité supérieure de reproduc-
tion.

S'il manque des pages, veuillez communiquer avec

“funiversité qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser a
désirer, surtout si les pages originales ont été dactylogra-
phiées a I'aide d'un ruban usé ou si l'université nous a fait
parvenir une photocopie de qualité inférieure.

La reproduction, méme partielle, de cette microforme est
soumise & la Loi canadienne sur le droit d'auteur, SRC
1970, c. C-30, et ses amendements subséquents.

T

Canadsy

A

THE PAIR TREE:
A PARALLEL ARCHITECTURE FOR IMAGE REPRESENTATION
BASED ON SYMMETRIC RECURSIVE INDEXING

<t

by

Williain Paul Kastelic
B. Sc.. Simon Fraser University, 1982

Extended Studies Diploma. Simon Fraser Uﬁiversity, 1984

—

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQLTIREME.NTS FOR THE DEGREE OF
MA_STER& OF SCIENCE
-in the School
of

Computing Science

©William Paul Kastelic 1989
SINON FRASER UNIVERSITY
January. 1989

All rights reserved. This work may not be
" reproduced in whole or in part, by photocopy
or other means. without permission of the author.

i+l

National Library Bibliothéque nationale
of Canada du Canada

. Canadian Theses Service Service des théses canadiennes

Ottawa. Canada
K1 A ON4

RO

-

-

The author has granted an irrevocable non-
exclusive licence allowing the National Library
of Canada to reproduce, loan, distribute or sell
copies of his/her thesis by any means and in
any form or format, making this thesis available
to interested persons. :

AN)

)

The author retains ownership of the copyright
in his/her thesis. Neither the thesis nor -
substantial extracts from it may be printed or
otherwise reproduced without his/her per-
mission.

L'auteur a accordé une licence irréevocable et
non exclusive permettant a la Bibliothéque
nationale du Canada de reproduire, préter,
distribuer ou vendre des copies de sa thése
de quelque maniére et sous quelque forme
que ce soit pour mettre des exemplaires de
cette thése a la disposition des personnes

intéressées.

L'auteur conserve la propriété du droit d’auteur

qui protége sa thése. Ni la thése ni des extraits
substantiels de celle-ci ne doivent étre
imprimés ou autrement reproduits sans son
autorisation. ’

ISBN 0-315-59351-2

i+

Canada

APPROVA

Name: William Paul Kastelic
Degree: Master of Science
Title of Thesis: The PAIR Tree — A Parallel Architecture

for Image Representation based on Symmetric
Recursive Indexing

Examining Committee:

Chairman: Dr. S. Pilarski

Dr.-T. W. G. Calvert
Senior Supervisor
Professor, School of Computing Science

Dr. R. Hobson

Director and Associate Professor, School of Computing Science

Dr. F. W. Burton
External Examiner
Professor.. School of Computing Science

Date Approved: W//a“(}’»u’l /71 /?"D?

J

1

PARTIAL COPYRIGHT LICENSE

le hereby grant to Simon Fraser University the right to lend
my thesis, pmnfpt or extended essay “(the title of which is shown below)
to users of the §lpon Fraser Unnversnty Library, and to make partial or
single copies onFy for such users or in response to a request from the
library of any othb{ university, or other educational |nst|tut|on on
its own behalf or for one of its users. | further agree that permission
for multlpleﬂtopylng of this work for scholarly purposes may be granted
by me or the Dean of Graduate Studies. It is understood that copying

or publlcatlon of this work for fi -~ncial gain shall not be allowed

without my written permission.

Title of Thesis/Project/Extended Essay

The 0/41!2' Ti:ge - ﬂ QZ&/&L[@(A(Cht‘fec'(U(Q
\QC </Mc:\lcl¢ [?e_pf%addtav\ ng on

§7MM6;{L(‘;'C QCC,V(\SUJQ ' /m/e,x.ug,

: : F

Author:

(signature)

LollLiaAM PAVL KASTELC

(name)

bed. 27/59

(date)

Abstract

Significant technological advances in such fields as computer architecture and very
large scale integration have made it feasible to consider firmware-based
alternatives to some systems traditionally implemented in software. Some form of
representation can usually be-found for the underlying basis of such systems. If
these representations can be implemented using the new designs and techniques,

increased systemn performance can he achieved.

We investigate one such representation, based on the 2V-ary tree, which has
been successfully implemented at the software level. Its broad scope of
applicability motivates the investigation of possible firmware alternatives. Sinceg
another feature of this representation is the inherent parallelism of its operations,
and extensive work is also being performed in the area of concurrent architectures,
a primary objective was to design three such architectures for this representation.

As secondary objectives. a set-theoretic representation from which our scheme can

be transformed was described and its parallel characteristics were analysed.

111 ,

Dedication

To Nom, Dad and Tania.

For their love, encouragement and support.

V' zahvalo in poklon Mom, Dad ter Tania.

Za njihovo ljubezensko podporo in potrpezljivost, pri uspehu tega dela.

NI

v

"Research 1s what I'm doing when I don’t know what I'm doing”

-—Wernher von Braun

“Acknowledgements .

‘ -
First and foremost‘, I would like to thank my supervisor, Dr. Tom Calvert, for the
numerous suggestions and comments.that he has made during ‘\t‘he course of this’
research and in the prooffeading of the thesis. The patience that he has exhibited
throughout this experience is appreciafed. The constructive criticisms made by
the other members of the Examining Committee, Drs. Warrgn Burton, Slawomir
Pilarski, and Rick Hobson, provid(,;d further insight into the research problem and

solution considerations.

The assistance provided by the School of Computing Science’s system
administrators Ed Brvant and Keith Wneent simplified my programmning task.

The School’s administrative assistant., Mrs. Elma Krbavac, with her sense of

2

humour, personality, and optunlsm made. the daily jaunts to the General Office
interesting. Those froquont trips to the Pub with other graduate students where
the intent was to discuss the relevant issues of computing science, were always

enjoyvable.

Finally, acknowledgement must be made to the Department of Computer

Science at the University of Victoria for allowing me to use their facilities in

4
-

continuing with this research.

V1

Contents

Aﬁ‘proval
'Abstract“
Dedicafion
Acknowledgeménts
List of Tables

List of Figures

1 Introduction

11 Properties Associated With Any Representation Scheme L

1.2 Consideration of Hardware Techniques in Appiications/System De-

SIgn e .
1.3 | An Informal Definition of the N ary Tree
1.4 Some graphics-based 2V-ary tree algorithms D o
1.41 The INTERSECTION operation. o L
142 Find the AREA of a quadtree e

1.4.3 Display algorithm for an octree e .

1.5 General observations of the quad- and oct-tree representations

2 Set Theoretic Basis of the 2¥-ary Tree
2.1 Populations and Attributes oL 0L
211 An Example oo

2.2 "n-tuplesand Ep,
2.3 Partitioningof &00 e
2.4 The Well-Ordered 2" -ary Tree R_Iabped onto®

Vil

il
111
iv
vi
x1

x1l

3 Analysis of Parallel Time-Steps for the Quadtree__ 26
3.1 Worst case on a binary operation/ 26 .
3.2 The case of P # 27, for any integer 0 < x < 2. . e 33
3.3 Cumulative idle Processor time 34

4° A Topologically-Derived Architecture for the 2V-ary Tree 37
4.1 System Components 37

41.1 User Interface UT. I
4.1.2 Staging Memory SM 37
4.1.3 Processor-Interconnection Network Array P-INA 40
4.2 The Interconnection Network ICN 46 .
421 * Network candidates o0 47
4.2.2 Network (‘onﬁguration 48
| 4.3 Overview of the scheme o900

4.3.1 .The incomplete mapping of the tree
4.3.2 Folding of the 2N ary tree
4.4 Execution-of operations on the P-INA P

44.1 Row processors and execution of operations 55
442 ICNs and execution of operations 56

4.5 Time frame ;xnalysis of the architecture o7
4.5.1 Scenario involving P-INA of sufficient size - L< R 57
4.5.2 Scenario involving P-INA of insufficient size - L > R 38

4.6 Reducing the Number of Inactive Nodes 62
5 Embedding of Restricted 2V-ary Trees on VLSI Arrays - 63
5.1 Dictionary Machines B 63
5.2 The Architecture S 64
5.2.1 Mapping of the Binary Trec g 65
5.2.2 The Processing Element 69

5.2.3 Data/Instruction Buses 70

5.3 Analysis of Two Operations on the 2'-ary Tree 72
' 5.3.1 Building a Tree T e 72
532 \Double Pass Query/Operation 73

5.4 The Case of Insufficient Chip Levels P 74

Vil

6 A Multiprocessor System for the 2V-ary Tree 75
6.1 Comi)onents and Issues of Multiprocessor Systems 77

- 6.1.1 Contention in Multiprocessor Systems LT

< 6.1.2 The Processor-to-Memory Switch- . 79
6.1.3 Memor& Considerations 83

6.1.4 Software Considerations T e 86

6.2 An Architecture Applied to the 2V-ary Tree 87

b 6.2.1 The Shared Memory Module Units 87
6.2.2 The Interconnection Scheme e e 90

6.2.3 The Procéssqr Units AR 92

6.2.4 The Master Controller 93

6.2.5 Additional Components94

7 Simulation of the Multip{:ocessor Architecture 96
7.1 Implementation Details 97
7.1.1 The Processors 97

7.1.2 Shared Memory S v 99

7.1.3 The Interconnection Network B 100

.7.1.4 Contention Considerations R 100

7.2 Simulation Configurations . . o o 100
7.3 Presefitation of Simulation Results | o 102
7.3.1 Total Execution Time @ .. 102

7.3.2 Absolute Active Time 4. 108

~_ 73.3 Absolute Idle Time o PR ... 108
g V034 Relative Active Thme .+« 110
7.3.5 Relative Idle Time e - .. 110

7.316 Maximum Task Stack Length -~ 110

7.3.7 Average Utilization Time for Slaves I 115

7.3.8 Average Number of Tasks Processed By Slaves 115

7.3.9 Average Number of IMU Accesses for Slaves 117

7.4 Discussion of Simulation Results . .~ 117

\

8 Di\shlésion ~ ' ‘ 122

8.1 The Representation D e 122
8.2 Performance. o P 2
8.2.1 Multi-operand and More‘: Di\;erse Operations 124

8.3 Consideration of'Larg“e Databases e . 126
8.4 Fault Tolerance 126
85 Expandabilityo P .. . 128
8.6 Other Comments on the Architectures e 129
8.7 Consideration of Alternative Architectures 132

9 Conclusion ‘ ' ‘ 134

List of Tables

1.1

o

S
Q] -

Relative Division of System Functionality 2
- Examples of populations, attributes, and values 17
Two set operation definitions given with respect to pictures - 18
Relative ranking of the three systems . . / 131
J
k4
]

X1

xs.l
.

List of Figures

1.1 Quadtree encoding

1.2 Octree encoding e

2.1 Efficient partition of a population &
2.2 Random partition of some poputation®
2.3 Mapping of tree T to a population & S

3.1 Typical quadtr}xlx'for the time-step analysis
3.2 Effective double traversal of a tree for a biﬁary operation L
3.3 Situation for the case off P =27 0<or <2l
3.4 Number of time steps for 2' processors e
3.5 Number of time steps for P#2' 000

3.6 Processor idle time for P =2 L.

11 Overall svstem view of the architecture 00 0 0000000
4.2 Data inﬁut SCQUENCINE. . . . o o o v i e e
1.3 The proCossof—illterC()llllo('ti()n network array 000 L
4.4 The row processing element 0000000
4.5 Switching states
4.6 Example of a 8-processor/row Q network

4.7 Inecomplete mapping of a 2'-trec onto a P-INA

1.8 Folding of a binaryv trec onte a P-INA

3.1 The overall architecture using binary tree-mapped chips
5.2 A 5-level binary H-tree mapped onto a 7x7 PE array
5.3 A S-level binaf}' Hexagonal-tree mapped onto a 5x7 PE array
5.4 Youn's mapping of 4- and 3-level binary trees

R ..
X1

5.9

6.1
6.2
6.3

6.4
6.5
6.6

PO B Bt B Bt B
O o0 -1 O O W~ W N

A processing element in the VLST array - 71

A High-level view of multiprocessor architectures 76
Basic switch topologies in a multiprocessor system 80
Storage of a 2-D array of numberso 84
A multiprocessor architecture for the 2¥-ary tree 88
Memory interleaving for the tree representétion 89
A 3-level interconnection networko 91
Total execution time of a user query 103
Figure of Merit ratios of tree ope;;t/'r,on execution times L 105
'Estimated tree generation times for large images. 106
Extrapolated tree generation times for large images 107
Absolute active time of a user query for the Master Controller 109
Absolute idle time of a user query for the Master Contrdller 111
Relative active time of a user query for the Master Controller 112
Relative idle time of a user query for the Master Controller 113

Maximum task stack size in the Master Controller for a user query . 114

Average slave processor utilization time for a user query 116
Average number of commands executed by a slave processor 118
Average number of memory accesses by the slave processor 119

X111

-

Chapter 1 Introductio’n&

B

t

Two issues which must be considered by the systems' designer in planning
computer-based applications are the data representation to be used (particularly
from the points of view of storige and operations) and its implementation. A
representation must be chosen which fulfills the requireménts of the application.
This representation may take the form of some previously defined scheme, a
modification ofmr’r'ebresentation, or the task may be such that an entirely

new representation is needed.

Traditionally, it was only necessary to consider software implementationsince__
liardware implementation was not feasible. In recent ‘yeggthe focus of study
between software versus hardware techniques has shiftedsin the direction of the
latter. Processors have evolved from the ungainly unitsd:f\—t‘?\e 1950’s and 1960’s,
to the single 32-bit microchip of the 1980’5: There has been a progression from

.
ferrite core memory to CD ROM@ VLSI® has provided a‘means of placing more of
the computer’s hardware components onto the microchip, while at the same time
improving upon component performance. Developments such as these have made

1t necessary for the systems designer to become aware of the hardware

architectures which are available.

It has been suggested that prior to these advances, it was possible to divide

svstem functionality into three distinct classes: application specific software;

'Let a system refer to the data and set of tools applicable to the task at hand.

“CD ROM - Compact Disc Read Only Memory.

L

SVLSI - Very Large Scale Integration.

.

Traditional Trends Anticipated Future Trends

\\ A - General purpose hardware
B - General purpose software
- C - Application specific software
D - Application specific hardware

Table 1.1: Relative Division of System Functionality

general purpose software, and general purpose hardware [17]. The anticipated
future breakdown would involve an additional category, that of application specific

hardware. Table 1.1 presents an estimation of the relative contribution of each

class to this functionality considering present and anticipated trends.

System performance analysis is another issue that the designer is required to
address. Candidate solutions must be evaluated on various criteria, and a dec;sion
made based on these results. The task facing the designer is compounded by the
fact that the rtwo extremes of the solution, th-at is, an entirely software or
VLSI-based approach, may in fact only provide a partial solution to the overall
problem. Another point to consider is that neither of these extremes may provide -

the most efficient solution. A compromise may be necessary to provide the the

most attainable and efficient overall solution.

This dissertation addresses t\:vo specific tasks. The first involves the
development of a set-theoretic representation scheme. The second considers three
system architeéctures which are designed for one form of this scheme and its
associated proi)erties. As will become apparent in the following section and
chapters, a representation defined using a set-theoretic approach is very powerful
in terms of its scope, ahd in the number of operations possible. It will be shown

that the 2V-ary tree scheme is a transformation of this set representation.

A further implication of this set-based representation concerns the order in
which operations are executed on the entities of a particular application. Tasks
can be executed in a sequential or parallel manner. The operations on the 2V-ary
tree are inherently parallel, and it is this fact which is exploited in developing

viable architecture alternatives to the representation’;e/ software implementation.
The remainder of this chapter discusses the critéria necessary for designing and
evaluating a representation scheme, followed by an expansion of some of the
reasons presented earlier for the importance of hardware and VLSI technologies in
systems design. A particular focus is the motivation behind developing an
alternative to the software approach to 2V-ary trees. The chapter concludes with

an informal definition of the 2¥-ary tree, and a presentation of typical algorithms

for these trees within the scope of computer graphics.

The dissertation continues with Chapter 2 which presents a formal definition of
the set-theoretic representation scheme. The 2V-ary tree rcpres‘entation 1s then
defined as a transformation of this scheme. Given this transformation, a more
concrete basis to the earlier quad- and oct-tree definitions can be extrapolated.
Chapter 3 deals with a time complexity analysis of binary operations on)
quadtrees. This type of analysis allows generalizations to be made for tilC 2N ary
tree. The first of three architectures is given in Chapter 4. This architecture
attempts to map the logical 2"V-ary scheme on an array of interchanging rows of

processing elements and interconnection networks. In Chapter 5, the mapping of a

binary tree onto a VLSI array is given, in addition to a justification for using such

.y

j’.
PAVES
N

L
a 'rnechanisr;‘i @san alternative to the more general 2V-ary tree. The third
arc}ﬁtectugéféan be considered a linear arrangement of processor elements which
access a ba,f:xk of shared memory modules in which instances of trees are stored and
this desc;i}jtion is given in Chapter 6. A simulation was implemented for this last

architecjﬁ)hfe and this is described in Chapter 7. The dissertation concludes with a

discussion of additional issues which must be considered in all three architectures.

1.1 Properties Associated With Any Representation

Scheme

A primary consideration in developing a solution to a problem is the choice of a
foundation or representation which will facilitate generation of a solution. A
number of factors exist which must be considered when defining or evaluating a

representation scheme [31]. Some formal properties inherent in any scheme are:

Domain
The domain is an indication of the descriptive power of a representation. In
particular, the domain is the set of objects or entities that can be

" represented by some scheme S;

Validity
The range of a representation scheme S is the set of syntactically valid or
correct representations that are images of elements of the domain of S. The
application of certain algorithms on invalid representations may lead to

inconsistent results which may or may not be detected by the user;

Completeness
A representation R in the range of some scheme S is complete if it
corresponds to a Siﬁgle object in the domain. The scheme S is itself Q
complete if all of its valid representations are themselves complete. Each R

contains sufficient information to distinguish one object from all other
-

entities of the same domain. This is a critical property if S is f‘@@\be used

over a wide range of applications;

Uniqueness
A representation R in the range of some scheme S is unique if the objects
that it defines cannot be represented by any other representation in S. Any
S is unique if each of its valid representations are unique. Uniqueness is
important when considering whether two or more representations are

responsible for the same object.

In addition to these formal considerations, there also exist some properties

which are informal in nature:

Conciseness
This property concerns itself with the storage requirements of a
representatlon in a scheme. The ease with which a representation is stored
and manipulated 1s dependent upon the concise nature of the structure

itself. Redundant information about a representation is also minimized if its
¥

[

definition is concise.

Ease of creation
A valid representation should be reasonably easy to create. In general, the

more concjse a representation is, the easier it 1s to create, since there 1s less

data redugdancy.

Effectiveness
This point considers effectiveness in terms of the context of applications.
Algorithms must be developed in such a way that the representations
themselves can be considered as data for these algorithms. A representation
scheme 1s effective if the algorithms applicable to the scheme are correct,

\ eflicient (both in terms of storage and computational complexity), and

reliable when subtle errors in the representation are encountered.

These factors provide some guidelines for representation development. It is
understandable that certain schemes may be relatively deficient in somé of these
points when compared against other representations. However, the opposite may
also occur — these same schemes may be more favourghle in terms of some other
factors. In many cases, the répresentation chosen will provide a comprornisé

between all of these points. The goal of the designer should be to strive for the

most complete scheme which provides the best performance.

1.2 Consideration of Hardware Techniques in

Applications/System Design

As indicated earlier, systems development has typically followed a software
approach. However, in recent years there has been a shift from these traditional
methods to solutions incorporating hardware/VLSI-based techniques. Some

reasons for this progressien include the following:

® advancesin VLSI téchnology have resulted in cost reductions, while

increasing performance and chip density characteristics;

® the use of éver-improving computer-aided design (CAD) techniques in VLSI

development has simplified the task of designing chips;

e an §ncreased research effort in the area of developing VLSI-based alternatives

to elest‘ing software functions/structures has produced interesting results;

® certain applications, such as real-time sensing and control systems, re "e

response times which current software methods cannot provide.

. . . 4 - .
The claim here is that software solutions car}frequent/ly be supplemented with

appli&xtion specific, as opposed tobgeneralﬁlrpose,“hardware architecture.
N

1.3 An Informal Definition of the ZN-ary Tree

The following definition of the 2N-a,;y tree‘ representation involves references to
entities stuch as N-dimensional objects, unit cells, and volume. This reflects the
influence that the scheme has had in the area of computer graphics. It was this
computer graphics theme which was the mc;tivation for p‘r;)ceeding with this

: disserfatién. The general nature of the representation provides for a very broad

-

"’(;loma,i‘n to which this scheme can be applied.

\ Objects exist within some universe U, which is of order NV, and is a finite
section within some N-dimensional space. This space is defined by N orthogonal
axes. -An object that exists in U is of the same order as the universe. A 2-D .
object cannot exist within a 3-D universe. The smallest object in such a universe

would be the smallest resolvable unit of space. .

In a typical situation involving the representation of some /N-dimensional

oMN

array of unit cubes or cells. Agsagiated with each of

property (for °

object, the universe is a

these cells is a value from the domain of some distinguishin

examiple, colour, radiation intensities, material type, density, land-use

tacteristics). The diameter, D, of such an object array is 2M where M > 0,
and may be divided into 2 non-overlapping cube-shaped arrays of diameter
2M=1 "When N = 2, the universe is a square, a cube when N = 3, and a

hypercube for N > 3.

The symmetric recursive ind’exing process subdivides an object array into 2N
subarrays, each of ‘e(r{ual volume.? Every subarray is classified as being either
homogeneous or heterogeneous, based on the predefined distinguishing property.
Each heterogeneous subarray is further divided into 2V additional subasrays. This
continues until all subarrays are homogeneous. The subdivision technique may

eventually have some subarrays being composed of a single element.

YHere, rolume is a general term used to refer to the form that a subarray, or hypercube, will take

when NV > 2.

For any ob jectiarray, the entire procedure generateé a 2N-ary tree
representation. A node in the tfgee is either a leaf (representing a homogeneous
subarray) of indegree 1, or an internal node (representing a heterogeneous portion
of the object) with an indegree of 1 and an outdegree of 2V (each child corresponds
to one of the 2V subarrays). Every level in the tree is identified by some integer 1,
0<:< M. The rooﬁgvnode of such a tree represents the entire object array, while
each of its children represents one of the subarrays of the object. Thé root node is
at level 0. The nodes at level 1 completely describe the object to the resolution of
that level. M i1s commonly referred to as the resolutzon of the universe (mazimal
resolution of the object). Depending upon the amount of information needed, it is
only necessgry to display part of the tree. Thus, the root node presents the
coarsest display of the object, while the display of levels near tlhe bottom of the

tree lead to finer representations. The information in this tree is implicit, and

requires the application of the representation’s operations for its retrieval.

Figure 1.1 (modified from Dyer et al. [11]) presén'gs a 2-D object (N = 2) that
is encoded into a 2*-ary or quadtree.’> The region is shown iﬁ Figure 1.1 (a). The
object is considered to be part of some universe. This encapsulation is evident in
Figure 1.1 (b). The figure also shows the divisions that have been made in the
universe to decompose each quadrant into its homogeneous state. Finally, the
quadtree for Figure 1.1 (b) is shown in Figure 1.1 (c). It is important to note that
the quadtree represents the decomposition of the universe, and that object
representation is due to the object being a subset of the universe. In this way, the
region is represented as a union of maximal units, where each unit is of a standard
size and position (powers of 2). The simplest property that can be used on an
object is based on whether Gi\not a subunit 1s associated with the object. VOID
indicates that the subunit does not contain any part of the object. FULL is used

A

if the subunit is part of the object. If the subunit is a composite of the two types,

then PARTIAL is used. The tree's interior nodes are circular (representing

SAn extensive survey on the quadtree can be found in [35].

>

PARTIAL subunits) while leaves are square (FULL or VOID).

When dealing w&th a 3-D object, N = 3, and the tree (or octree [25]) generated
is of degree 8 (2%). Likewise, each of the eight subarrays is called an octant. To
access some poinit (X,Y,Z) in an octree, it is necessary to compute, the binary |
representations of X, Y, and Z as zoz,25...2;, YoY1Y2.--Yi, and/zizlz? Ce8 Ziy
respectively. The object in Figure 1.2 (a) (modified from Srihari [42]) spans the -
width of the limiting universe (D = 8). Therefore, the maximum nymber of levels
in the corresponding octree will be three (M = 3). Figure 1.2 (b) shows one of the

many ways that the octants within a block may be traversed. Figure 1.2 (c)

presents the octree generated from the successive division of the universe.

g
1.4 Some graphics-based 2"-ary tree algorithms

In computer graphics, images can be stored as 2¥-ary trees, where quad- and
oct-trees are the most common forms of the representation. Algorithms have been

developed for operations such as:

e area, volume, complement, intersection and union [39]

e transformations such as rotation, translation; and scaling [20,25]
e outline determination, and nearest neighbour identification [19,33]
e stereographic projections onto multiple planes [15]

display of images [10] v

Schneier’s parallel algorithms for the INTERSECTION and AREA operations on
quadtrees are presented here to provide an indication of the representation’s
simplicity. The algorithms for greater values of NV are straightforward extensions

of the quadtree routines. Doctor’s algorithm for the display of octrees is also given.

I

J

A |-B Pl g
= /FA G
2
V141 A7/,
H Ibeé L
NV /])

(a) Region (b) Subdivision of (a)

. e

M N

n
C

N

| . (¢) Quadtree representation of (b)

@

&'

D F G’

Figure 1.1: Quadtree encoding

b

10

|

| I N I

(a) Object in 3-Space

-

(b) Numbering convention

(c) Octree representation of (a)

(][] & | O ll 0

0 1 2 3 4

5 6 7 0 1t 2 3 4 5 6 7

=

Figure 1.2: Octree encoding

-

)
<

The following condjtions exist in performing these operations. It is assumed

. that the ieaves represent BLAC‘K and WHITE areas within the images, where
WHITE is the background value. Interior tree nodes are given the value GREY.
BLACK, WHITE, and GREY are equivalent to the FULL, VOID, and
PARTIAL values of our informal definition. It 1s assurned that the quadrants of
a regiorjcan be addressed as NW, NE, SW, and SE. The auxiliary rolltines
GREY, BLACK, and WHITE return the value of the parameter node. The
SET_QCHILD routine adds a child node at some given quadrant to its parent.
The PARENT function creates a node which represents the parent of a given ‘

child node. COPY generates a structure which is identical to the given tree >

argument. The procedure SET_AND stores the result of performing an AND -

. . . . #*
operation on the children of a quadtree in said tree.

| -
1.4.1 The INTERSECTION operation

L

This algorithm returns a quadtree result which represents the common regions of
/qvo quadtrees. If a leaf is BLACK and its equivalent node in the other tree is
non-BLACK, the result node will be a copy of the non-BLACK node’s subtree.
If a leaf is WHITE, then its corresponding result leaf will also be WHITE.
function INTERSECTION(TreeA, TreeB : quadtree) : quadtree;

begin
TreeAND : quadtree;
I : quadrant;

if BLACK(TreeA) or WHITE(TreeB) then
INTERSECTION := COPY(TreeB);
else
if BLACK(TreeB) or WHITE(TreeA) then
INTERSECTION := COPY(TreeA);

TreeAND := CREATENODE() /* create root node */
for I in {NW, NE, SW, SE} do /* in parallel =/
begin ‘

SET_QCHILD(TreeAND, I, INTERSECTION(QCHILD(Treea, I),
QCHILD(TreeB, I)));

end;

[3

SET_AND(TreeAND); - : o
INTERSECTION := TreeAND;
end;

1.4.2 Find the AREA of a quadtree a

The following algorithm determines the area of an image, where the number of
black nodes in a quadtree represents this area. The parameters to the function

AREA include the quadtree and diameter of the image.

.

function AREA(Tree : quadtree; D : integer) : integer;
begin '
TempAREA : integer;
I : gqhadrant,; '

TempAREA := 0O;
if GREY(Tree) then
for I in {NW, NE, SW, SE} do
TempAREA := TempAREA-+ AREA(QCHILD(Tree, I), D-1);
else
if BLACK(Tree) then
TempAREA := TempAREA + 2%%(2%D);
AREA := TempAREA;
end;

1.4.3 Display algorithm for an octree

ﬁﬁrlintcresthlg consideration in the presentation of an object reéresented as a
three-dimensional octree is that the display device 1s usually two-dimensional.
Quadtrees provide a very efficient means of representing two-dimensional objects.
By using the transformation of an octree to a quadiree, very cffective display
algorithms for problems such as hidden-surface removal may be developed.
Additional algorithms using different éhéding techmiques, illumination, and
semitransparent objects have also been developed using the octree-to-quadtree

transformation [10].

13

By traversing the nodes in a specific front-to-back order, the hidden. surface
removal procedure is very straightforward. The quadtree generated can then be
sent to the display device. In the following algorithm, the front four octants are
numbered 0 through 3, while the back four are 4?0 7. The two parameters|are the
octree to be diéplayed, and the intermediate quadtree, which is initially a NULL
tree. The function OCHILD is analagous to the QCHILD routine for quadtrees.
HOMOGENEOUS is a function which determines whether a node isyas leaf or
interior node. COLOUR returns a quadtree of one node whose value field
represents the display colour. The MAKETREE function creates a quadtree

with a new root node that has as its children the four quadtree parameters.

. function SHOW(Octree : octree; Quadtree : quadtree) : quadtree;

begin

if HOMOGENEQUS(Octree) then
if not WHITE(Octree) then
SHOW := COLOUR(VALUE(Octree));
else)
"SHOW := Quadtree

else
SHOW := MAKETREE((OCHILD(Octree, 0),
SHOW(OCHILD(Octree, 4), QCHILD(Quadtree, 0)),
SHOW(OCHILD(Octree, 1),
SHOW(OCHILD(Octree, 5), QCHILD(Quadtree, 1)),
SHOW(OCHILD(Octree, 2),
SHOW(OCHILD(Octree, 6), QCHILD(Quadtree, 2)),
SHOW(OCHILD(Octree, 3),
SHOW(OCHILD(Octree, 7), QCHILD(Quadtree, 3))))
end;

~—

function COLOUR(Value: colour_values) : quadtree;
begin '
COLOUR := CREATENODE(Value);
end; t

H

1.5 General observations of the quad- and oct-tree

representations

Extensive effort has gone into investigating the properties of the quad- and
‘oct-tree representation schemes. Computer graphics, pattern recognition, and
image processing have been the primary areas of application. The use of octrees in
solid object modelling has been shown to be very beneficial [31]. Considerable
success has been achieved in applying this representation to geographic
information systems [1,27]. This research has concluded that there are a number
of advantages to using the representation. As the thre(; algorithms of the previous
section show, the operations are reasonably straightforward to develop. Numerous
algorithms have been generated to convert between quadtrees and other
representations[33,36,37,34]. One feature which makes this representation useful is
that there is only one primitive object, such as the square or cube, to contend
with. The size of this primitive determines tHe level of representation for any
given object. The operations defined for this representation are only required to
deal with this primitive. Ordering is implied in this representation, which further

simplifies algorithin development.

Situations do exist where the more common 2- and 3-D subdivision methods
are not sufficient to fulfill certain requirements. Application of this representation
to 4-D leads to a hextree, a tree with 16 subarrays. It is then possible to represent
time-varving 3-D images. Two examples of a 4-D image include the dynamic,
spatial reconstruction of a beating heart and the breathing lung [44]. The
generalization of this method to dimensions greater than four is also useful. One

such application involves robot motion planning and multidimensional

configuration spaces [49].

-

Chapter 2 Set Theoretic Basis of the 2¥-ary Tree

Set theory can provide the mathematical justification for the 2V-ary tree’s
extensive domain of applicability. It can be safely stated that most
computer-based applications deal with data which are naturally related. However,
there are situations where the relationships are not obvious, yet require that this
data be expressed in such a way as to maintain these relationships. A method
must be developed which can accommodate both cases. Set theory fulfills this
requirement in that these relations can be expressed as a set of ordered pairs,

while at the same time providing a significant collection of operations. An added

feature of following this approach is that these operations can be executed rapidly.

\ .
2.1 Populations and Attributes

The following definitions provide the set theoretic foundation upon which the

2V ary tree is developed.
Definition 2.1 Let the population ® be a finite collection of 1tems.
Definition 2.2 Fach ® has associated with it a set of attributes Ag.

Definition 2.3 Each Ag has associated with it a set of values V.. In addition,
there 13 a special value VOID (I-DON'T-CARE) which is part of each Vg,. As

such. each v of ® can be assigned a value from Vg,.

16

® = collection of pixels making up an image
®, = a map of British Columbia

®, = a population of people

.4(1)0 = {Cblour}
Ag, = {landuse, population, economic activity}

Ag, = {education, marital status, salary, sex}

Vaoeow = {RED, WHITE, BLACK, VOID}
Votanduee = {FARMING, LOGGING, MINING, VOID}

Table 2.1: Examples of populations, attributes, and values

The definitions of &, A and V permit the accommodation of additional items,

attributes and values, respectively, as the need arises.

Table' 2.1 presents a number of examples involving populations, attributes, and

associated values.

Definition 2.4 The overall picture for some population ® consists of the set
Py ={Pg,:a € Ag}. Py can be considered as a family of sets, and Pg,, 13 a

subpicture of ® for o € Ag. A more precise definition of Pg, 13 to follow.

To this point, sets have been exclusively used in the definition of &, As, Vs,,
and Pg. Given this fact, any valid set operation can be applied to these various
sets. These operations can k@applied to all of Pg. Two example definitions

involving set operations and Pg are shown in Table 2.2.

An interesting fact here is that any result generated from a set operation
involving Pg or any of its elements, is a new subpicture Pg,. The examples of
UP& War{d NP4 are two such cases. The new attribute v is defined as a function of

the operations and attributes used to generate this new subpicture/result.

17

The unary union of Ps: .
UPs ={e:(3Ps, € Pg)(c € Pg,)}

The unary intersection of Pg:

NPs = {e:(VPs, € Ps)(c € Ps,)}

Table 2.2: Two set operation definitions given with respect to pictures

Definition 2.5 Let @ be the set of attributes from Ag involved in a query, and the
cardinality of o 18 greater than one (#a& > 1). Given any query involving two or
more attributes from Ag, a new attribute v can be defined based on the
consolidation of these attributes. The values of this v belong to the set

Ve, = {TRUE,FALSE, VOID}. A4 now becomes Ag U {p(@)} where p(@) returns

a singleton set containing o unique label/attribute based on the elements of @.

If #a =0, then no attributes are involved in the query. In the case of #a =1,
the result is the set of elements from Pg_, whose attribute values match those of
the queried attribute value. When #a > 1, the query will access those pictures for
which the attributes are being considered. The result will the be taken from these

pictures. The elements of this result will have values taken from the set Vg,,.

2.1.1 An Example

Table 2.1 presented a number of different populations, together with each
collection’s set of attributes and associated values. The following example

considers ¢ = &, = {people}, where the specific query asks:
Find all females with post-secondary education

The newly-generated attribute will involve “sex and education”. The next step is

to categorize each element of @ as either having or not having this property. A

18

-
é

subpopulation ®,, where ®, C @, exists such that each element of @, either

fulfills this query or it does not.

Vs, = {TRUE, FALSE, VOID}
¢, = {y:v € ®,setval, (v, T(Vp,, valser(v) = FEM, val.4..(7) = PSEC))}

The attribute v is equivalent to “female with a post-secondary edieation”.
This may seem unnatural since most attributes deal with éingle categories rather
than in more complex relationships. The function T has n + 1 parameters, wher‘e
n 1s the number of attributes under consideration in the current query. The

purpose of this function is to return one element from the set Vs, for each v in ®.

2.2 n-tuples and Fg,

Definition 2.4 refers to the subpicture Pg, a$ a component of Pg. The majority
of abstractions considered to this point (for example, @, Ps, Ag, and VQ;) have
been based on set constructions. As such, set operations on these abstractions are
perfectly valid. By defining it at a gross level, Pg, can also be considered as a

set-theoretic abstraction.

Definition 2.6 A subpicture Pg, 1s an ordered pair of the form
g@a =< Vo, Ep, >. where a € Ag. Eg, = {v:7 € @, val,(v) € Vo, }

The function val maps an element 4 of @, to a single value from the range
V3,. Valis not a one-to-one function as it is highly probable that different
elements from the domain may have the same image via this mapping. At this
level of abstraction. the ordered pair Pg, can still be represegted on a

set-theoretic basis’.) -

Each ~ is also an ordered pair. where the first component is a unique identifier

i

within ®. and the second is an n-tuple. val,(v) (#a = n). This second term can

SHere. an ordered pair is defined as < a.b >= {{a}.{a,b}}[23).

. 19

</
. be considered as a vector of values that a v possesses for each attribute involved in
the picture. The appropriate selector, recognizer, and constructor functions are
defined, to process the first or second components of 7. The same types of

functions are available to access the n-tuple.

2.3 Partitioning of @

%

For any Pg,; its corresponding Fg, may prove to be very inefficient in terms of

storage considerations. It is necessary to store each component of Eg, in memofy.
Therefore, if the cardinality of @ is great, a significant cost in terms of this storage- .
will be accrued. There will be an even greater storage re‘quirement if the

cardinality of Ag is also large,

Of the two components 4¢ and Fg,, it is most likely the latter which
contributes most unfavourably to the storage costs. The primary reason is that
each object in @ is an identifier for an element in Fg, (#® = #Eg‘f’)\ A
significant reduction in #Es, can be made if each element of ® is placed into a
subset with other elements of ® that have the same value for the attribute being

|

considered.

For any Pg,, it is possible to reduce the cardinality of Es, to a maximum of

#V%, . or to a minimum of 1.

Definition 2.7 Let Eg4, be represented as:
Eo, = {e: (37)(v € Vo,)7 € @)(vala(v) = v)(y € €)}

A partition on @ is formed where each element of Es, will be a non-empty set
and represents a v € 13,. An item 7 € & will belong to that set for which

vala(%) = v. In the worst case. Fg, will consist of #V5, non-empty sets. If for all

~ E\@ val,(+) is the same. then #Es, = 1

i

In the above redefinition of Eg,. it is evident that each v € & will have to be

tested to place ~ in the appropriate element of Fg,. Any decrease in storage

20

requirements will be offset by the considerable amount of time needed to completé

the partitioning of @ in a sequential manner.

An interesting property of any partition is that any two sets from this family
of sets are disjoint. This implies an inherent parallelism in the processing that
may be performed to generaée the sets that make up‘ Es¢,. As e\>ery YED 13
independent of other elements of ®, each v can be processed indepfindently. One
extreme situation would involve processing each such v }n parallel with the other
elements of ®. Obviously the 'other case would require a strictly sequential
approach in generating the elements of Fg,. A compromise between these two

limits must be made.

The compromise also involves deciding upon a partitioning that makes use of a
granularity which is acceptable in terms of the processing power available. Another
point which is considered in attaining this compromise 1s that data tends to be
grouped together. For example, if our ® is a database of vegetation for a specific
province, there will be regions represented which will consist predominantly of one
form of vegetation. Of course, there will be cases where this similar neighbour

effect will not apply. and it will be necessary to consider a finer partitioning.

Rather than attempting tofronsolidate similar.elements of @ into distinct
subsets, an arbitrary partitioning approach can be taken. Some function M maps
the elements of a set @' to the subsets comprising a partition on ®, without regard
for attribute value homogeneity within a subset. The values that these elements

-

4" € &' assume are determined by the values of the subsets that they map onto.

2

To simplify the notation. the following two definitions assume that the
operands and functions refer to specific attributes o € A¢. For example, v/, is

equivalent to ~'.

Definition 2.8 M'1s a one-to-one function which maps ' € &' to a subset S, C

(the partitioning of ® 1s vmplied by N s functionality).

1
14

| Definition 2.9 For every ¥ € &',
if #{val(): v € S.,M(v') =S} =1, setval(y/,val(y € S))
else setval(y’, PARTIAL).

This new population @' can have a similar mapping scheme M’ applied to
generate ®”. 'fhis mapping implies a series of levels where each level is composed
of a finer pai‘tition than its predecessor level. A partition A is finer than partition
B if each subset of A is a subset of one of B’s subsets. It.follows that B is coarser
than A. The coarsest level consists of one subset which represents the entire

‘/Bcgulation ®. The first level consists of #® subsets in its partition — one per
~ € ®. Figure 2.1 presents a partitioning on some population @ such that each
subset of the partition consists of elements with the same attribute value. This
requires just one mapping. Figure 2.2 is an example of random partitioning, where
defined subsets may not be homogeneous in terms of attribute value.
Consequently, %dditional partitions are needed on subsequent levels of & to get to
its most compact state, that is, the state in which further partitions are not

possible.

2.4 The Well-Ordered 2¥.ary Tree Mapped onto- ®

The mappings described in the ptevious sections are not restricted in terms of the
number and size of the subsets in a particular partition. This can lead to irregular
mappings. If the number of subsets in a partition, and the number of objects in a
subset is Cons:istent, ®n implementation is mﬁch easier to devise. This consistency
can be considered as a regular mapping. A tree-based representation scheme is

one method which provides this regularity and consistency.
' o

A number of interesting properties exist for any tree. A tree is a connected,
acyclic directed graph where the root node has indegree 0, while other nodes have

indegree 1. This implies a linear ordering between the root node and its successors.

|SW)
(W]

Mappings: M’ M

Figure 2.1: Efficient partition of a population ¢

o ® o
® ® |,
10 @)
Mappings: M' M’ M

Figure 2.2: Random partition of some population @

23

In general, the direct successor nodes of any nodes are also linearly ordered. Each

subtree in the tree also has a first element. Trees are then well-ordered structures.

Consider the case of some 2V -a.ry tree T where all interior and leaf nodes are of
indegree 1, and the root and interior nodes are of outdegree“’QN. If there exiéts
some mapping M from the leaves of T to the partition of ® for some Pg,, then T
is a tree for Pg,. The value of each leaf in T is based upon the; value of its ‘
particular partition component p:(where M(leaf) = val,(p)). The interior nbdes
of T map to those partitions p where fhere is no homogeneity of v € Vg, via the
mapping function M’. The root of T' maps MLOf ®. Function M is the
restriction of M’ to the leaves of T. Figure 2.3 is an example of such a regular
mapping on a population. It is essenttally the same as that of Figure 1.1. However,
in the latter case, it was assumed that the 2N ary tree was va,l‘id only as a graphic
representation scheme. The subsequent discussion has shown the scheme as a very

general technique which can function through general or specific mappings.

The existence of such a mapping between the well-ordered 2"V-ary tree and &
implies that @ is also well-ordered. It is this property of well-order which is a

critical factor in the fast execution times offered by the set representation.

f
-

Tree of this population . Some population

Mappings: M : leaf nodes ---> population (objéct level)
: M’ : interior nodes --> population (non-object levels)

Figure 2.3: Mapping of tree T to a population &

Chapter 3 Analysis of Parallel Time-Steps for
the Quadtree

The following analysis concerns itself with determining the number of time slices
that are required to execute a binary operation involving two quadtrees, and a
collection of processors. This study exploits the parallel nature of the quadtree.
Although it is only the quadtree that is considered, the same t};p? of reasoning can
be applied to other 2™ -ary trees.

Some preliminary notation and conventions must be assumed. Given any
quadtree, there are a total of M nodes in the structure. The number of processors
in the system 1s P. Let ¢ correspond to a particular leaf level. L; denotes the
nodes at levél 2 1n the tree. Figure 3.1 presents a particular situation where there

are [+ 1 levels in the tree, and numbering of levels begins at the root node (Ly).

c—

The leaves are represented by L. N
There are two cases which must be considered in this analysis.
® P > 4! (the number of nodes at leaf level [)

o 1 <P <4l

4

3.1 Worst case on a binary operation

A double traversal of the tree is necessary, from the root node to the leaves, and ‘

back to the root. This latter traversal is required to process any waiting tasks that

26

44— I.JCVCIO
, o) 4———— Level 1
TEEK) TR XX XEE K

4— Level [-]

D%D < Level /
® ® & 00

Figure 3.1: Typical quadtree for the time-step analysis

\

N R

>

4

AN AA

) ‘ ® Down

DDDD.....DDDD....QDDDD Level /

Y YY T

Level 0

Figure 3.2: Effective double traversal of a tree for a binary operation

-

i
are dependent u(pon the results at lower levels in the tree. In general, tasks at level

7,0 <17 < I, must wait for the results at level ¢ + 1 to become available. This worst
case situation can be envisioned as shown in Figure 3.2. In going fronr Ly to Ly,
tasks are created as the processing proceeds from the root to the leaf nodes. The
bottom half of the figure represents the progression bgck to the root node after

the leaf processing has been completed.

Let Sp; correspond to the time required to finish a complete double traversal
of an [l-level tree with P processors. The start time begins with the root node at
time 0. Let S; denote the time when some node j in the tree is finished with its

[~

processing. The first claim is that the minimum amount of time Sp, required to

perform this two-way traﬁ’ersal 1s:

¥ ?n[=2{+ 1. (3.1)

In a tree, or subtree, with nodes P, @, R, S, and T, the times Sg, Sg, Ss, and Sp

may be equal. However, Sp may not equal Sg, Sg, Ss, or S . In other words, a

SqQ Sk Ss ST

parent node must complete processing before its child nodes can begin their

processing. The minimum time required to process any level will be attained if all
. nodes at a level can complete their processing at the same time. There are (I 4+ 1)
time levels going down the tree, and ! time levels going back up. These two values

provide the minimum time Sp; of Equation 3.1.

Taking this result for minimum time, the minimum number of processors Pp,

-

to achieve this result is equal to the number of leave nodes M;:
Poin = 4!, M = 4 - (3.2)

4

The next task is to find Sp; for any quadtree with [levels, [> 0:
Sp = F(P,I) (3.3)

Only those situations where P = 27, for any integer = > 0, are considered here.
The first case involves M; = 4! = 2%, If £ > 21, Sp; = Sp=; £ 214+ 1. At level [,
only one time unit is required to process tasks at that level. Therefore, for all

m < 1, M,, < M,. This provides the minimum time of 2/ + 1.

In the second case, P =.2%, for any integer 0 < z < 2/, Equation 3.3 still
applies, but now consists of two components as given in Equation 3.4. Note that

the case of P = 2%, present in the first situation, can also be considered here.
Sp1=2G(P,1-1)+H(PI) {3.4)

29

oo 000 0000 4__H

Nz

Figure 3.3: Situation for the case of P =27, 0 <z < 2!

N .
‘\KB
~.

30

This presents the situation given in Figure 3.3. Now two additional cases arise

from this scenario. The first involves some odd integer z, 0 < z < 2I:
-1 (4i I
4 4
Sp; = 2 — —
v = 2 (5] {5

=l -1
- 9 XQ: 14+ Z 22i—1‘ + 221——1‘
1=0 ,':-"-'_‘2!'_1

-1 221—::'__2
= 2<$ +1+———> +2%°7

1
Sp, = r+ g <22["r> -3 for 0 < x < 2I, and r is odd. (3.5)

In the case of some even integer x, 0 < z < 2, the following exists:

-1 4i 41
R
2P T\ P

3 1-1
- 9 Z]- 4 Z 221—1‘ + 92-r
S
T -1
_ 9 92i—r ‘)2[—1‘
= 2|5+1+ ZQH +2

2 8 !
— 2 _221—r _ _) 221—1‘
r+ 24+ <3 3 +
5 92— 2 .
Sp; = 1+ 52' T — 3 for 0 < z < 2{, and x 1s even. _ (3.6)

The only difference between Equations 3.5 and 3.6 involves the constant terms %

and % respectively. A general equation for P = 27,0 < r < 2] can then be defined:

SV]

. 12 ‘

Figure 3.4 presents a plot of Equation 3.7 for 1—,2— 3~ and 4~ level trees,

w

where the nnmber of processors P = 2. 0 <7 < 8.

Number of Processor-Time Units

450.0

3375

The Number of Time Steps Required for Double Tree Traversal
(where number of processors is a power of 2)

level=4 ‘
. [}
Ez;. —
24 32 40 48 56 64

Number of Processors

-—

Figure 3.4: Number of time steps for 2' processors

L NS

32

3.2 The case.of P # 2%, for any integer 0 < z < 2/

In the case of P # 27, for apy integer 0 < r < 2/, and [+ 1 corresponds to the

number of levels in the tfee (I > 0), -

/5,3', = G(P,1—-1)+H(P,I)+E(P,I) (3.8)

e
One of the »Lm{ameters of G is the number of levels in the tree where

P >4 0 <:<1l-1. G provides the number of processor-time units necessary for
the traversal of levels 0 to | — 1. H returns the number of time units required to
complete the processing of level I. Functions G and ‘H do not consider the

situation where time units can spread over adjacent levels in the tree. An earlier
condition stated that for any subtree, if the root node of this subtree was executed
at T:, the children of this node could not execute at T, if T; > T;. This implies

that those nodes which do not belong to a particular subtree, can execute at some
time T;. where T; may or may not be less than, or equal to T,. The functions G

and ‘H will provide exact results in the number of time units necessary to process

a level in"the tree, but 1n terms of final time count, the carry-over to the next level
will n6t be considered. This carry-over inay come about in the following fashion.

If there are X processors available, and the current processing level m requires Y
Processors, such that X > Y. then it is possible to use the remaining X — Y
processors for the level m + 1 at the same T; as the Y processors at levef m. This ‘
would only ’occur if there are X — Y nodes at level m + 1 which do not/belong to
the subtrees whose root nodes are being processed by the X — Y processors. To
accommodate this situation. it is'necessary to appiy an error function & which

returns the number of levels in the tree where there may have been some

overcompensation in the functions G and H.

E = Sp;—lp. (3.9)

Here. Ip. corresponds to the number of levels in the double traversal where the

number of processors P exceeds L,. for some level 7.

33

The components of Equation 3.8 are defined as follows:

[log, P) -1 4
G(PI1-1) = 2(Z 1+) [F") (3.10)

' i=|log, P]+1

4—11 (3

H(P) = [P

_E(Pl) ———'gpvl—?dﬂog‘ip]

E(P.1) = 21—2[log,P]+1 (3.12)

After consolidating the terms in Equations 3.10, 3.11, and 3.12, a general equation
for Sp; can be presented, with the restriction that P < 4!
,ﬂ(w’; .

4[-1 4i
- 4(1og4p1+[}5]+2 3 {F]—(Ql-#l) (3.13)

i=[log, P]

Sp

Figure 3.5 presents a plot of Equation 3.13 involving four trees of different levels.

When compared to Fighge 3.4. Figure 3.5 indicates that the error function

provides a reasonable approximation of two-level time-unit carry-over. ' o

AN

3.3 Cumulative idle processor time

Another criterion which must be considered in determining the effectiveness of a
parallel-oriented 2V-ary tree representation is the amount of time that is consumed
by processor inactivity. As in the previous section, a tree of [+ 1 levels, and P

processors are involved in the analysis. The double traversal is still required.

In general. the amount of idle or wasted processor time Ty 1s given by:

Tw = Sp;,-P—5;-1 (3.14)
In the case of P > 27, r > 2] Ty is given by:

5 2
T, = (20+1)P— <-4f——> 3.15
3 (20+1) 3 3 | (40)

34

Number of Processor-Time Units

450.0

3375

225.0

1125

0.0

The Number of Time Steps Required for Double Tree Traversal
(where number of processors is NOT a power of 2)

B

........................

........................

24

32 40 48 - 56 64

Number of Processors

. Figure 3.5: Number of time steps for P # 2

35

Number of Idle Processor Time Units

Processor Idle Time
(where number of processors is a power of 2)

150.0

e S X L RTTESTEEH

‘1125

75.0

315

0.0 H : H : i : : :
4 5 6 7 8

Number of Processors (2/x)

Figure 3.6: Processor idle time for P = 2°

With P =27 0 <z < 2l, Tw is given by:

oz (rmod2) 2 2
Tw = 2 ($+ 3 —3 +3 (316)

One interesting point about Equation 3.16 is that the number of levels in the
" tree is not involved in the calculation. This is a reflection of the fact that P = 2%,
and that there will be processors idle at those levels in the tree where
L; < P,0<i<z—1. Figure 3.6 presents a plot of Equation 3.16 for P = 2",
0<i<5. | '

In the case involving P # 2%, Equation 3.14 can again be used as the basis for

the calculation. The first term of the equation can be replaced with

Equation 3.13. However, the presence of ceilir‘;g and logarithmic terms in the

latter makes reduction of the equation difficult.

36

{Chapter 4 A Topologically-Derived Architecture
A
for the 2"-ary Tree

The structure of this first architecture is based on the 2V ary tree topology. The
, —_~

hardware incorporates layers of processing elements and interconnection networks

in a manner similar to the levels of a tree. It is the software that generates the

child tasks which must be sent to the slave processors for execution. References

involving a computer graphics application are again used.

4.1 System Components

Figure 4.1 presents an overall view of the components which make up this
architecture. Since it is the array construction which is of primary concern here,

€
only a general overview of the other components is provided.

— -

4A.1.1 User Interface Ul

The UI provides a user friendly environment from which commands are formatted

in a manner acceptable to the Master Controller MC.

4.1.2 Staging Memory SM

The SM functions as a buffer between the external data source and the primary

component of the architecture, the Processor-Interconnection Network Array
) 0

37

Lines

AN

s

Staging
Memory

Figure 4.1: Overall system view of the architecture

Master
Controlier

Interconnection Network -,

Multiprocessor

Amy

JInput
Bus

a

+

38

P-INA. This SM formats Yaw d4ta into a sequence which can be accepted and
stored in the array. If the data already been formatted, it is passed directly to

the array.

The unit consists of a memory compenent and a central processing unit
(CPU). Due to the wide variety of applications which may use this architecture, |
there are numerous external data formats. It is unreasonable to assume that one
formatting mechanism can accommodate all possible cases. The tremendous
flexibility of software control makes it the dedired alternative over some
hardware-based scheme. This requires that random access memory be available to

the CPU to retain the necessary formatting instructions.

A queston now arises based upon economics. In most cases, the users of such
.a system view it as a data Qe of information, and are concerned with the speed

at which queries can be resolved. The time required to set up the database 1

as critical. Of course, unbeafably long delays in set-up time ére anacceptable,
regardless of the situation. With this in mind, the user may require fast
throughput for all components. If cost is not a concern, cache memory can be
included in the SM. The instructions necessary for the current formatting

operation can be brought into this cache, along with blocks of the input stream.

The control signals from the MC to the SM provide information relating to
the type of formatting required, the complexity of the 2V-ary tree, and data size.
The SM uses this information to format the data into blocks of values which

\?e.ﬂect the 2V-arv nature of the data at iﬁwest level (in the graphics application
this would be the picture element, or pizel). This sfep generates the finest level of
subtree groupings in the tree. As formatting continues, these packets are sent out
onto the array’s input bus. For any image and configuration, there is one row in
the array which represents the actual ({ — 1)* level of its tree, where [is the
number of levels in the tree. It 1s tﬁis row's Processor Controller PC Wh‘ich takes
the packets off the bus. and further formats the data to reflect the actual sibling

node/processing Cl(fIllGI{lt correspondence. .

39

0 1 4 5
1 3 Stagi)
ging
5161 7 Memory : 2 3 6 17
8 (9] 10|n > . -
SM . 8§ 9 12 13
12 {13] 14] 15
10 11 14 15
Original Image
(p%lxel form)g) Staging Memory
Output Data Packets

Figure 4.2: Data input sequencing.

Figure 4.2 shows the case of a simple 4 pixel by 4 pixel digitized input image
that is stored on tape as a sequence of bit-intensity values. With the given
{
numbering convention, and a request for a sequence acceptable for quadtree

generation, the SM provides the given output packets which are then placed on

the P-INA input bus.

4.1.3 Processor-Interconnection Network Array P-INA

The array consists of alternating rows of processors elements Ps and
interconnection networks ICNS. A general view of the array is shown in

Figure 4.3. The basic premise is that each row of processors fepresents a level of
the 2V-ary tree. The nodes of the tree are then mapped to the processors in this
array. The intgrconnection networks, which link consecutive rows of processors

together, are analogous to the edges which link a parent node in a tree to its child

nodes. //\\

40

From User ,

Input Output
Bus Bus
A Master A

Controller

1 0 Py H1 P cescece PPp o P, TEq >

ICN NC
0

PC 1 1

ICN NC

ICN NC
R-2 R-2

T T ..\... T l

PC
P2 I—P Py Py cceeres PP PEy *TEE_I—-’#

Figure 4.3: The processor-interconnection network array

41

Master Controller MC

The MC is a processor which, although not part of the array per se, provides a
significant level of control to the entire structure. Once a request enters the
system via the user interface, the MC can initiate any number of activities. If
data formatting is necessary, control signals from the MC are sent to the SM’s

processor which, in turn, activates its own set of routines.

The MC also provides the array with sufficient control information to build
and manipulate the trees. Some of this information involves tree size,

processor-rpw entry level. network switch settings, and synchronization markers.

Associated with the MC is primary memory that contains all of the tree
manipulation routines. standard network switch settings, and functions to
generate new settings. Some of these operations are specific for the network

controllers, the processor controllers. or for the processing elements themselves.

Processor Controller PC

Rather than have the MC communicate directly with the processing elements of
the array. which would lead to a communication bottleneck, a level of PCs is
introduced to the svstem. There is one PC per row of Ps. This allows the MC to
allocate tasks to a manageable number of PCs rather than to the numerous row
processors. Synchronization of tasks between the MC and the row processors 1s
also simplified by the inclusion of the PC component. Each PC has local memory
which 1s used to store the tree operations. However, this local memory does not
contain all functions. but only those instructions which are necessary to solve the
current user request. These are copied to cach PC’s memory from the MC. This
serves a number of purposes. Contention is not a factor here when cach PC has its
OWIl Memory t(; store instructions. The algorithms for 2V-ary tree manipulation
are reasonably straightforward such that their programs are not very large. If
speed 1s a major concern. then cache memory can be used by each PC. Instruction
A

42

L}

retrieval and execution will be very fast. Each row’s PC broadcasts the necessary

instructions to the Ps under its control for subsequent execution by these Ps.

Control lines exist between each PC and the MC, and between adjacent PCs.

This allows for the necessary synchronization between levels of row processors.

Row Processor P

The simple tree algorithms require that the Ps need not be complex. For the
majority of cases involving this application, stock microprocessors with the
hardware capabilities implied by the processing element of Figure 4.4 are
sufficient. Chapter 4.3 presents a case where these simple microprocessors may be

replaced with more powerful elements.

Each P consists of the following components. A logic gate controls the -

direction of data through

'he processor. Data can flow from “top” to “bottom” or
vice versa in the array,/The logic gate maintains this directional consistency. The

gate also channels data to the arithmetic logic unit ALU.

The operations tak"@g place within a processor are under the direction of the
control umit CU, which receives its signals from the row’s PC via the row control
lines. When a program segment from the PC is to be stored in the element’s local
memory. 1t 1s the CU which oversees the storage process. The logic gate receivcs&

the necessary signals from the CU, as do the ALU, and accumulator.

At the ALU. the appropriate operations are applied to the data entering the
element to satisfv the requirements of the user query. For exampie, with a binary
" operation on a 2%-tree. the four child values of a node enter the element
sequentially. and have the operation applied to themn. The intermediate result of
applyving this operation on two of the child values is routed to the accumulator and
a latch L. which is used to hold a value indefinitely until it receives the appropriate
signal from the CU. The temporary result in the accumulator is passed to the
ALU for the execution of the next instance of the operation. Onee all four input

13 {/

7
S

¢

Row processor/element

r-(y - - —- _— _ — O - - - 1
| ! t |
l $[\ l
[Logic . é L |
| gate Em_c':l.o_n U |
[[
[|
| N |
| P |
| —_— AC | |
! Control |
[Unit [
| |
| I Internal bus ‘ |
l < Sl
[I
[To I
ICN
I —
* Row bus

« ow v

~Row Control lines

Figure 4.4: The row processing element

values have been processed, L releases the result to an internal bus from where the

value will be stored in the element’s local memory as a node of the resultant tree.

The presence of this intef/rla/l bus permits data to travel between the local
memory, accumnulator. and the external row data bus. The external bus 1s critical
in that prograin segments can be passed from the PC to each P under its conthol.
In the case of data realignment between Ps of the same row, node values can b

moved from one processor to another.

Interconnection Network Controller NC

Each NC provides the necessary control mechanism for its respective
interconnection network. This mechanism is implemented through the use of the
appropriate control programs, which are initially stored in the M C. In this
respect, the NC 1s similar to the PC in that it is not necessary for the unit to
store all network control programs. Instead, the MC provides only those
programs which are needed to complete the-current user request. The MC also
makes available to each NC the switch settings that are reqfiired for the network
under its influence. This implies tl.lan an NC has local memory. To speed up the
execution process of the NC. the switch settings r€side in a’separat™® memqry with

the unit. apart from the program memory. .

rcéei\'ing signals to and from the network.

Switching Element SE

The switching elemenrs which make up the ICNs are simple 2x2 switches that can
be 1n any of eight routing states. The four states permitting the passage of data
from top to bottom of the array are shown in Figure 4.5. The remaining four

states are mirror immages of these states. which allow for data transfer from bottom

to top. An SE’s srate 1s determmmned by the settings whichgt receives from its NC.

15

Straight Exchange Broadcast 1 Broadcast IT

Figure 4.5: Switching states

The broadcast stages are needed to provide the mapping of root and child
nodes of the logical tree structure to the Ps of the array. The broadcasting from
successive levels of SEs in the ICN eventually generates the ‘communication links
between a root P and its 2V child Ps in the adjacent row. With this broadcasting,
only one cycle is needed to send out the data valués. However, in the case of data
entering a SE, the element can only read one value at a time. Therefore, for the

two-input case, two cycles will have to be used to read these values through the

element.

. 4.2 The Interconnection Network ICN

The previous section described the cémponents of the P-INA. Hovk'/ever, it is the
interconnection scheme linking adjacent rows of processors that allows this
architecture to suchcced as a hardware alternative for the 2V-ary tree
representation. The nature of the representation dictates that the network be

reconfigurable, that it support broadcasting of information, and that two-way

communication exist between levels of processors.

46

One class of networks which fulfills these requirements is the delta

network [9,47]. The components of delta networks include:
e 27 input links and 27 output links;
o T stages'Sy,...,S57_, and;

e for each stage t, 0 <t < T, there are 2T-1 9%2 crossbar switches.

4.2.1 Network candidates

The simple ExF crossbar switch is a candidate for the ICN since it has some
attractive features, the primz;ry of which is its O(log E) or O(log F') gate delays
for the switch setting process. A ExF crossbar permits the connection of E
processors to F other processors. It is usually discussed in the context of linking
eacht of F processors to F memory units. The one-to-one and one-to-many
mappings betsveen stages is also favourable. Unfortunately, the number of
interc‘dﬁnections are extensive. and the complexity of the switch increases as F

and F become large. The number of gates is proportional to EF.

- Of the delta-class network. three interesting options are the Benes network [6],
the Batcher sorting network [3]. and the omega Q network [22]. The former has
the same capability as the crossbar switch but only requires O(E log E') gates for a
ExE network. The time required to pass data through the network 1s O(log E).
The negative aspect of the Benes scheme 1s the difficulty in setting up a particular

alignment. the complexity of which 1s O(E'log E).

Like the Benes network. the Batcher sorting network has similar capabilities to
. . 2 . .
the crossbar switch. but only requires O(log” E') time units for data passage
rhrough the network since it ix <et up as the data flows through 1it. However. this
network requires O{ Elog” E) gates.
The O nerwork 1s the preferred scheme since it i1s relatively mexpensive to

nuplement and has only Otlog E) gate delays to control and transmit data. There

47

are O(E log E) gates in the network. The topology rules for the §2 network can be
stated b&the following definition.

Definition 4.1 Given E = 27 input lines, represent each line in its binary
encoded form, Ex_E1_q---Ey. Then 1ts corresponding output link 1s

Er_sEr_3- - EoEr_,.

The ExE omega network consists of T' = log E identical stages, each of which
1s made ﬁp of % switching elements. One of the primary differences between this
and the previous two netwo‘rks involves the number of stages. The 2 network
requires log E, while the Benes and Batcher networks need MQ%M, and
2log E — 1 levels. respectively. The logic involved in the three networks is different

but the complexity of the switches is similar.

Figure 4.6 shows an example of an 2 network with £ = 8 and T = 3 where the
interconnecting lilnks and a candidate configuration for a quadtree (N = 2) are

shown.

4.2.2 Network configuration

From the previous subsection, there are T = log E stages, labelled Sy, -+, 571,

and = switches per stage for an ExE) network. Under most circumstances, the

w

one-to-one mapping which the network provides is sufficient. However, with the
2V ary tree scheme. it is necessary for a one-to-2" mapping. This can be
accomplished by the broadcasting capabilities of thie switching elements.
Broadcasting for a 2% -ary tree begins at St_y, and continues to Sr_,

(%:1\ 2= 2V, Th@ mapping from Sp to Sp_y_1 1s one-to-one.

The number of possible mappings on an array 1s.extensive. As an example, for
some row r 1 the arrav where E processors map to E nodes, there are 2% Ps in
row R, which are the fathers of these processors. There are then £ — 2—% Ps

row R,y that are available for other mappings. To further imcrease the

[N
oD

Row i

Stage 0

Stage 1

Stage 2

Row i+l

Mapped route
Configuration links

Figure 4.6: Example of a 8-processor/row {l network

49

i
£

randomness of selection, any -2% Ps can be used. In effect, there are

-

possible choices for these parent processors.

4.3 Overview of the scheme

This architecture exploits two featur’es of the 2V-ary tree. For any subtree S Wi}
,a root node 7 at level [in the tree, S is independent of the other subtrees with
root nodes at level . As we progress down through each level of the tree, a finer
representation of the image is obtained. Therefore, for any image I, and its L-lgvel
tree representation, the subtree defined by the root node and the next 2, : < L,

levels still provides a valid definition of I.

The scheme takes some 2V-ary tree A, and maps it onto a P-INA consisting
of R processor rows (labelled 0,1, -+, R — 1), each made up of E processors.
Separating consecutive rows of processors are T stages (E = 2T) of switching
elements which make up the local ICN. T 2x2 crossbar switches (E = 2T') are

presert in each stage.

For any tree A, its root node (level Ly in the tree) maps to a processing
element in row R, of the array. 2V processing elements in R, correspond to the 2&
children of the root node. The ICN between R, and R; utilizes the appropriate |
switch settings to realize this mapping. The nodes of L, of A are then mapped to
the appropriate elements of R;. Each of the elements of R, are linked to its parent
processing element in R;. This procedure continues until the entire tree is mapped
onto the array. Of course this complete mapping of the tree will only occur if

X
¢

L <R

Two features of such an organization are that the mappings for different
istances of trees with equal N are the same, and synchronization of processing
element execution is simplified. With the former, this leads to prdcessing elements

representing the same relative node for all similar instances. In comparing the

50

s/ B

values for these different instances, it is not necess;ry to access some form of |
shared memory which can lead to contention, but instead, the elerﬁent ’s local
memory contains these values. Only two memory accesses aré needed to load the
appropriate values intg the data registers of the processing element. In terms of
synchronization, execution of the tree takes place one level at a time. Therefore,
the processors of an active row begin the execution of their instructions at the-
same time. The next row of processors can then initiate their.sequence of
instructions once the processors of thé~ptevious row have completed their last

instruction.

L3

4.3.1 The incomplete mapping of the tree

When L > R, there are two approaches which can be taken. First, an incomplete

tree mapping can be made on the array. The top R'levels of the tree are mapped

onto the array. However, instead of containing node information as in the previous

* row of the array contain

R — 1 rows, each of the mapped elements of the (R — 1)°
all of the information of their respective node’s subtree for which it is the root
node. Figure 4.7 has an example of just such an incomplete mapping, where -

R =3, and L = 4. For clarity, the ICNs have not been included in the figure.

This storage of information in the last row of the array is possible due to the

existence of local memory for each element.

This solution is not as straightforwar’d as expected. In éhe first R — 1 rows, the
processing elements perform relatively éimple tasks such as the routing and
queueing of data, and register comparisons. This can all be performed with the
type of processing elements described in Chapter 4.1.3. Howgver, the clements

st

which occupy the R — 1% row of the array now must process each level of its
stored subtree. This increased complexify in processing can be accommodated in
two ways. All of the processing elements can be replaced with more powerful

microprocessors. This maintains the homogeneity of the array, at the expense of

-

o1

N

0508

Processor-Interconnection
Binary tree of some image A N Network Array

(incomplete mapping)

Figure 4.7: Incomplete mapping of a 2'-tree onto a P-INA

/.r

‘\‘(

a

wasted power, as it is only the last row which requires these enhanced processors.

Array maintenance is simplified since only one type of element is needed.

Alternatively, the economic solution is to replace only the last row of elements
with the more powerful microprocessors. These processors re%ve programs from
the MC just as the other processors in the array do, albeit the complexity of the

\
routines. 1s greater.

4.3.2 Folding of the 2"-ary tree

An alternative to the incomplete tree mapping involves the folding of subtrees

.~ with root nodes.at level R — 1 onto the array in a bottom-up fashion. The nodes
at level R of the tree would be mapped onto the appropriate elements in row

R — 2 of the array. The nodes at level R — 2 map to row R — 3. This continues
until the entire tree is folded onto the array. This will necessitate multiple foldings
if L > 2R. Figure 4.8 shows the case of an L = 4 binary tree rﬁapped ontoa R=3
P-INA. To simplify the figure, the ICNs are n’ot shown.

With this approach, the elements in the array are all of the same complexity,

S

so there is no extra cost incurred with using different processor types. However,
the foldin(g_gt/mbtrees back onto the array brings abbut a problem with processor
contention. This is not present in the mapping of the first R levels of th.e tree. In
the initial mapping, each element that represgnts a node in a level of the tree is
part of a single subtree. However, upon folding, an element may represent a node
in two or more different subtrees. The processing element has to store the

inforination for these different subtrees, and process them sequentially.

4.4 Execution of operations on the P-INA

9

There are two components involved in the execution of operations on an array.

The first concerns that of the elements making up each processor row. The second
53

| A .

Processor-Interconnection
Binary tree of some image A Network Amay
(folding technique)

A

4
t
)

Figure 4.8: Folding of a binary tree onto a P-INA
/

o4

involves the ICIN between adjacent processor rows.

A

4.4.1 Row processors and execution of operations

As shown in Chapter 3, it is necessary to traverse the tree in both directions in
evaluating a binary operation. With the P-INA, this requires that the
appropriate switch settings be retrieved and set for the ICNs. Once this has been
completed, the PCs can initiate the appropriaté actions for each row. The P in
row Rg, which represents the root node in the trees, performs its sequence of
instructions, and sends any of the necessary values to its 2% children Ps. The
critical point here is that all Ps in a row must complete execution before the next
row of processors are activated. This i1s reasonable as the timing restraint given in
Chapter 3.1 still applies. Synchronization between rows 1s accomplished by having
the PCs communicate with_each o'ther. For example. ofice PCy has received all of
the required signals from the Ps under its control, it sends a signal down to PC,,

which in turn will activate the processing clements under its control.

However, in traversing back up the tree/array, we have a situation where some
Ps have to sequentially read in more than one value. Thercfore, each row which is
affected by this type of multi-valued input has to have a Jonger execution time

before control is passed to 1ts parent row.

This last point must also be considered in the case of the array of sufficient size
o

and the incomplete mapping scenario. However, the necessary synchromzation is
not as complex as this current situation with the folding tree. As indicated carlier,
the folding tree scheme can become ungainly-to control with multiple subtrees
mapped onto the same subset of processors. The time at cach row obviously
increases as the number of mapped subtrees increase. In addition to the greater
number of values which must be read in by a processing element. every new
folding requires that a complete set of switch settings be modified to

accommmodate this folding. The ICN delay can be mininuzed if the new switch

settings for the folding stage between rows R;, and R;;; can be set immediately

after the current pass through the ICN has been completed.

Chapter 4.5 presents an analysis for all three cases, and the delays associated

with folding will become obvious.

4.4.2 ICNs and execution of operations

The situation‘involving ICNSs has direct parallels to that of the processor rows.
The NC which controls each ICN provides the necessary synchronization to allow
for the efficient passage of data. The standard switch settings which are stored in
the memory accessible by the MC are sent to the NC, which then relays this

information to the SEs.

The rows of processors in the array are mapped in such a way so as to represent
a tree. The stages within an ICN also map out a tree, but this is a modified
binary tree. In the first pass through the array, there is no difficulty with switch
elements broadceasting values. However, the problem associated with miltiple
values entering a processing element is also present with the SEs. The solution
involves switch synchronization with the NC. The data passing from some row
R4y toits parent row R, first goes through Sp_;, where the last broadcast step
takes place in the initial pass. Two cycles are necessary to pass these two values
through this stage. As the data approaches Sy_u ., additional cycles are necessary
t(:process this data through the stages. This is comparable to a pipeline effect, in
that a value 1s sent through a SE at the same time as a similar value is sent

through an SE at a lower stage. Since the number of stages per ICN is the same

throughout the array. the time for data to pass through any ICN 1s consistent.

4.5 - Time frame analysis of the architecture

N
This analysis of the P-INA architecture takes a similar approach to that of
Chapter 3. The task is to determine the time complexity of binary operations on

trees mapped on the array. The following conventions are used:

o I, and Ig refer to the two images that are involved in some binary operation
of the form I4 OP. Ig;

e wis the pixel width of the image (therefore, there are 10? pixels in the image);

e there are 2% children per parent node in the tree;

e L =log,y w®+ 1 = number of levels in tree (labeled Lo, Ly,---,Ly_y);

e R refers to the number of rows in the P-INA:

e Eis the number of processors P oper row of the P-INA, and R = log,n E' + 1;

the time necessary to traverse a 2%-ary trec with L levels mapped on an

E-processor/row R-row P-INAis Sy ro-

The analysis also assumnes that a parallel tinie step unit consists of the processing

. . . \\
time for a row in the array and the ICN setup time between rows of the array. >
This setup thne can be considered constant.

There are two situations which must be considered here. The first mvolves the
case where L < R aud E > w?. The second deals with L > R,
4.5.1 Scenario involving P-INA of sufficient size - L < I}
The number of parallel time steps necessary to complete a binary operation on a
pan of trees s given by the following components:
Sxenr = Siwnt Sy : (4.1)

Sioun = L (4.2)
S = (L—1)2Y+1) (4.3)
Svenrp = 2L+2VL-2Y -1 (4.4)

With sufficient rows and processors in the array to map the given 2V-ary tree,
there is no contention for any processor P. The L levels in the tree require L time
units for the downward traversal (Equation 4.2). In going back up the tree, it is
necessary for multiple values to be passed back to the parent processors. However,
only one value can be read by a procéssor from the network at a time. This
accounts for the 2% 4+ 1 term in Equation 4.3. There are 2V values going to the
parent node of a subtree. in addition to the processing time needed to complete

the operation in the parent processor itself -— in a fashion similar to pipeline

processing. The overall complexity of the worst case situation is then O(2VL).

4.5.2 Scenario involving P-INA of insufficient size - L > R

When the P-INA does not have the capacity to map a 2V-ary tree in one pass of

the array. we can use the two approaches specified in Chapters 4.3.1 and 4.3.2.

&

Analysis of incomplete tree mapping

The time step analysis for an incomplete mapping can be broken down mto three

conmiponents:

® Siun. the time necded to process the first B — 1 levels of the tree:

® Sincomptere. the time needed-to process the last L — R + 1 levels of the tree

anel;

~

e S5,.. the time needed to traverse back up the tree from level R — 2.

[N §
[V

The number of time steps to complete a binary operation is then:.

SN,E,R,L - Sdown + Sincomplete + Sup (45)
= (R — 1)+ Sincomplete + (R —=2)(2V + 1) (4.6)
SN,E,R,L = (R - 2)(2N + 2) + Sinromplets +]j (47)

One problem with Equation 4.7 involves the fact that Si,complete 18 essentially
the contribution of a software-based processing step, and 1s a function of NV, L, and)
R. There is an obvious disparity between the execution times of an operation
implemented in software versus its hardware equivalent. This requires tl\%t the
. contribution of S;,comptere be reduced to minimize its effect on the P-INA. From
Equation 4.7, if Sx g rr is to be kept constant, decreasing the contribution of the
software-implemented incomplete mapping requires that ‘R or NV be increased.
Intuitively, this compensation for reducing the software-dependence on the
mapping is what is to be expected. Of the two alternatives. adding additional
rows of processors is the easiest (modifving N will require entirely new mappings
and switch settings). As R — L. Sincomptere — 0. and Equation 4.7 reduces to

Equation 4.4 if the array’s last row is accounted for. Its contribution to the

expression is 2% 4 2 time steps.

Analysis of the tree folding alternative

The number of time steps necessary to complete a binary operation using this
niethod are:

Svent = Siun+ Sup . (4.8)

SA'\'.[:‘.R.[, - S/ipqss + Sfulfi + Sunfold + Supass (49)
Sipass refers to the number of time units required for the first traversal of all It
rows of the array. S, is the time needed to traverse row IR — 1 to row 0 of the

array. To fold levels R+ L — 1 onto the array calls for Sy To unfold these

L — R levels from the array requires S, thie.

59

With no contention for processors in the first pass of the array,

-

- | Sipass = R (4.10).

Supass = ('R - 1)(2N + 1) (411>
The reasoning here follows the same as that given in Chapter 4.5.1

An indication of the time required for the folding of a tree onto an array is the
number of effective subtrees which remain to be mapped after the first R — 1 levels

of the tree have themselves been mapped. This value is given by

However. this term does not consider the processing overlap which may occur f
;
§

when two subtrees are not mapped onto the same set of processors. This
reduction 1 the number of subtrees is represented by

L-R-1

HEANEY

1=1

Taking these two termns. the effective folding time is

)
L-R L—R-1
p AN AN
Spu= 3 2N = 3 2M 1)
=1 1=1
whieh can be reduced to
Spg =22 4 L - R -1 (4.12)

Again. by following our intuition. we would expect that the amount of folding
necessary, and thus the time for folding. decreases as the number of rows in the

array increase. This is exactly what Equation 4.12 predicts. As R — L.
]

IML=R) 1 and SfUH — 0.

]
Combining Equations 4.10 and 4.12. we arrive at:] N

S, =M R (4.13)

60

The final term is Synf.a. There are three contributing factors in the Sy, fo14
expression. The first provides an approximation of the total amount of time

needed to process the last level of subtrees folded onto the array, and is given by
2N(L——2)(2N + 1)
E

As always. 2% + 1 is the number of time units required to process the children of a
parent node in going back up the tree. The level at which these critical subtrees
exist is L — 2. The division by E reflects the fact at level R — 1 in the tree, there,
are E nodes. and associated subtrees. Each of these subtrees can be processed

independently of the remaining E — 1 subtrees.

The second component of the S, term,

L-3

STt + 1),

R

determines the contribution of the subtrees between the second to last level of the

tree. and the R level of the tree.

~

A' . . . -
Finallv. if L > R + 2. then the third component is 2. This is the contribution
to the final value due to the subtrees rooted at level R — 1. S, 704 can then be

expressed as

IN(L=2) o N + 1) L-3 . 2N i L > R+2
Sunj'u['l = -) + 2(2\ + 1) + (414)

R () otherwise

Using Equations 4.11 and +.14. expressions for S, can be derived. Tn the case of

L>R+2.
} 2 N(L=2) i
511}?:(2‘\+1)(([‘_2)+——E‘“—)_1 (4.15)
or for L < R+ 2.
' ‘ SN(L-2)
5,4,:("2‘\+1)<(L—3)+T> (4.16)

Finally, by combining these expressions with Equation 4,13, two equations for
S~y r.rp can be generated. For the case of L > R+ 2. we have
ON(L-2)

Svpng =270 400N 4 (L -2+ :—E——> + L =2 (4.17)

61

Otherwise,

N(L-2)\ -

Sverr =2V 2V 1) L-3+-T +L -1 (4.18)

Unfortunately, the nature of these equations makes simplification difficult.

4.6 Reducing the Number of Inactive Nodes

If an appligation requires extremely large trees (as would be the case in a
geographical infonnation;system), the tremendous overhead in interconnection
settings between adjacent processor rows makes the folding scheme very inefficient.
The incomplete mapping does not present as complicated a situation as the
folding. However. there will be a large number of inactive row processors if there

are many processors per row. and many rows in the array. At the root level of the

array which has E processors and mapped for a 2¥-ary tree, only < are actively
.y QN .
used. The second level utilizes i— of these processors. In addition, those row levels

mapping to the top portion of a tree will not have as much intra-row processor
communication to contend with, as those levels lower in the array. A more
effective use of the available processing power in the array can be made if the tree

nodes are mapped more evenly. This consistent distribution is possible considering

that there exist communication links between adjacent rows, and amongst

5

processors of eaclh row. The algorithms of the representation are unchanged but it
\

will be necessary to modify the control algorithms maintaining the system. They

will be more complex than those of the incomplete mapping method as additional

synchromization gteps are needed. Even with these modifications, the benefit of

utilizing wore of the available processing power is obvious.. .

'

Chapter 5 Embedding of Restricted 2N-ai'y Trees

13

on VLSI Arrays

The emphasis to this point has been on trees involving any valid V. In this
chapter. we present an architecture which is based on the 2'-ary or binary tree. At
the abstract level, dealing with 2V>'-ary trees is more attractive than the simple
binary tree. However. significant advances have already been made in the
development of binary tree-based architectures. [t has even been suggested that
the binary tree is a natural method in which to approach problem solving. and
that 1t can b(; used as a helpful computational structure [24]. With the types of
operations which the 2¥-ary tree scheme provides, the binary tree architecture
N>1

may offer such significant advantages that it is not necessary to consider 27> -ary

trees at the moment.

5.1 ictionary Machines

Extensive ifort has gone into the development of a class of architecture called the
dictionary machine. vTh(’ rescarch undertaken byﬂ Bé<l(‘y and Kung has provided
the basis f6r further investigation into this design [7]. Some favourable ‘I‘(,‘SUITS can
be fourid in {2.13.30}. The machine can he considered as a means of solving
search-type problems. For example. given M records, the machine may be queried
to locate the record containing the kev k. Another type of query may request the

munber of records with key & Dictionary machines can be used 1 those cases

63

where it 1s necessary to apply some function F over every stored record. These
types of problems occur in many different applications such as information
processing, statistics, and in areas requiring set manipulation. It is these types of

applications that can use the 2V-ary tree representation.

For the most part, thc‘se machines are based upon the binary tree organization.
The leaves of the tree contain the records, where each consists of two fields, one
containing the key k, and the other, the actual data d. Some valid operations are
insertion, deletion, and search. Queries are passed to the machine via the root
* node, and progress down to the leaf level. The partial solution is then passed back

up the tree. This twp-pass mechanism 1s similar to that described earlier involving

the parallel time-step analysis.

5.2 The Architecture

It 1s this binary tree topalogy which allows the dictionary machine and restricted
2N.ary tree representation to make use of developments in the arca of embedding
trees in VLSI a.rrays%f processing elements®. The term restricted is used in the
context of the special case where N = 1. Each node in the tree corresponds to a
PE in the array. The edges of the tree correspond to the communication links
between pairs of PEs. The simple and regular interconnections that comprise the
tree make it a prime candidate for VLSI implementation, in part because
communication 1s a major consideration in VLSI design. The advantages inherent
with the tree abstraction are realized in its implementation. In the worst éase
exaniple, to access the PEs which represent the M leaves in the tree would require
log, M time steps. In addition. it i1s possible to pipelines queries through the-tree

nmachine. This leads to a greater utilization of the PEs within the array.

A question arises as to why is there a restriction on only using binary trees.

Could a similar mapping be applied to the 2% -ary tree in general? The efficiency

‘

"Let PE denote ane processing element

64

Data Staging
Source Memory

Figure 5.1: The overall architecture using binary tree-mapped chips

of the machine is dependent upon the PE utilization and the extent of the
communication between these PEs. The binary tree provides a compact structure
with the least fan-out of the 2V-ary tiggs,»Fan-out refers to the number of children
that a node has. The smaller the fzm-oﬁt, then the more compact r;nd regular the
mapping on the array. This also reduces the number of unuscé PEs. Figure 5.1
presents the entire architecture. The mapping mechanism, and descriptions of the

major components follow.

5.2.1 Mapping of the Binary Tree

Two unportant evaluation criteria that can be used for considering different VLSI
interconnection schemes are area efficiency and propagation delay. The former

refers to the ratio between the actual number of PEs that are mapped from the

O 2 @- 1 @ 2 O
- s| - 5 5 |® 5
4 3 4 4 3 4
5 @) 5 ‘ 5 @) 5
@ Connection PE
O Inactive PE N
N | NodePE |

Figure 5.2: A 5-level binary H-tree mapped onté a 7x7 PE array

abstraction and the total ﬁ)umber of PEs on the VLSI chip. With the binary tree,
the mapped PEs are those which represent nodes of the tree. Propagation delay |
refers to the distances between any two mapped PEs in terms of the number of

interconnections between them (including connection PEs).

An example of a binary tree mapping includes the H-tree method of Horowitz
and Zorat [18]. The connections are rectangular, have unit width, and occupy an
area proportional to their length. The rectangular connection restriction prevents
corner connections being made. Figure 5.2 shows the mai)ping of a 5-level binary
tree (32 nodes) on a 7x7 PE chip array.” The basic unit is the 3-level tree. The
area efficiency of this mapping is approximately 65%. The maximum propagation

delay is 7 units.

A second type of mapping is the hexagonal array proposed by Gordon et

66

~ @ Connection PE
QO Inactive PE

N1 NodePE

Figure 5.3: A 5-level binary Hexagonal-tree mapped onto a 5x7 PE array

al. [16]. A Beneﬁt of this nﬁappings is that two additioﬁa.i co’nne-ctions are now"
possible (six versus the four of the H-tree). A 5-level binary tree mapped onto a
5x7 grid is shown in Figure 5.3. One observation between the two different ‘
mappings 1s the smaller number of inactive PEs in the hexagonaj approach (an - i
area efficiency of approximately 90%, and a propz:xgation delay of five units).. It is |

possible to take the 5- or 6-level mapping as a basic unit to build higher level trees.

Although Gordon’s hexagonal mapping is reasonably efﬁéient, a third
mapping, which has recently been developed by Youn and Singh, provides for
greater PE utilizatibtllm\\v]tll some improverfient in propagaﬁion delay [50]. The
number of PEs involved as intermediate ;:onnectors has decreased. Figure 5.4
shows both the 4- and 5-level mappings. Note that the latter is formed from two
4-level units. Youn has also summarized the area efficiencies and propagatioh a

’

Y 67

4 3 4 5 4 5 1 s 4 5
4 1 2 4 5 3 2 5 5 2 3 5
3 2 4 3 4 5 3 4 4 3 5 4
4 4 3 4 5 4 5 5 5)“5 4 5

4-level binary tree module . 5-level binary module (2x4-level units)

@ Connection PE
N | Node PE

Figure 5.4: Youn’s mapping of 4- and 5-level binary trees

El

~
delays f})r all three methods. They present a series of equations which indicate
that this new mapping scheme is more area efficient, and provides a considerable

reduction in propagation delay than the hexagonal tree. The H-tree is the least

efficient method of the three mappings for both criteria.

Some additional ber;eﬁts of Youn’s mapping scheme will be presented when the

three 2V-ary tree architectures are evaluated in terms of fault tolerance.
All three tree mappings make use of a basic unit corisisting of 3~ G levels. It 1s
the replication and connection of these unit_s’ which allows for the mapping of

larger trees.

=

fe ‘;‘“ o

fe

5.2.2 The Processing Element

Once a mapping scheme has been selected to embed a full binary tree onto a PE
array, 1t 1s necessary to qnmidor oth'er requirements of the representation to make
this architecture more cfficient. One mechanisim which provides an increase in this
desired efficiency is bit-serial processing [4]. Instead of processing an array of 100
32-bit numbers sequentially one number at a time, the }')it—sef‘ial method only
requires 32 time units instead of the éxpcctod 100, since bit-slicing is used to
access the values. Other advantages are that data items can be of any length (it is
not necessary to pad them with null values to fill the machine word); considerable
time savings can be realized if only part of an operand 1s required for an
operation. For (}xample,’gfwcn a set of positive and negative integers, one query

AN
may be to return the numﬁ(‘\r“of negative integers. It is only necessary to access
the sign bit instead of the entire number. The design of the PE attempts to make
use of this bit-serial processing feature wherever possible. Rather than defining a

tine unit as a function of a complex struction’s execution tune, a time unit can

be considered in terms of a single cvcle. ,

L

Figure 5.5 presents the major components of the PE. Eachi PE can be
identified by a.unique address. The address of the root PE is the L-bit value
07—y, where L 1s the number of levels in the largest tree that can be mapped
onto the array architecture. The nodes/PEs are sequentially identified in some

consistent manner across a level and towards the L — 1% level. For example, the

1

left and right children at level 1 could be accessed via the addresses 0001 and 0016,

for a 4-level tr(}o.‘: The children at level 2 are addressed as 0011, 0100, 0101‘;&11(1, ‘

P

0110. The PE-address identifier is stored in the L-bit shift register PEld‘ A« e

There is also a status register FLAG which is just an array of RE\M The ‘

“w‘ (“c_"r

elements of this array are used to indicate specific xtate% df th(”PE For, @kampl
one bit can be used to identify the PE as being active or _]Llhtr d (‘O!}].IIPC‘EIOIf ’g

% Qp'

element. In the case of a connection PE. data is p«?r};sed dlr{‘{:tl\' fhroﬁgh the

element. There are two general purpose 37«b1t parall q’h}ft reglster% RA an(l .

) LN
o o i
. & - e

69 . a/: - . . ﬁ‘,

-
o = - ¥
- . . . t -

&
xr
k]

<

RPB that provide temporary storage. Between these two registers exists an ALU
which executes all instructions between RA and RB in parallel by Shiftingéhe
contents of these registers through it. The result of an operation usually goes into

R A. There is also a link between R A the element’s PE;jd.

The actual data for the representation scheme is stored in a parallel shift
register which consists of 32 32-bit words. The 32 words may actually be
increased, as may the word length. The logic necessary to support the types of
operations that are performed on 2¥-ary trees is relatively simple because the
operations themselves are simple. This 32-bit width allows for the storage of
multiple node values per word. For example, if the nunber of values that a tree
node can have is three (BLACK, WHITE, and GREY), two bits are needed
per node. Therefore, sixteen complete nodes can be stored per word (without
having overlap onto the next word). As indicated earlier. the bit-serial method
provides for efficient selection of specific bits from a \\"()r(l. A mask can be stored
in RA while RB contains the target word. The appropriate function can be
applied to RA and RB via the ALU to isolate the desired two bits. Selection of
the necessary word from this memory is done through a multiplexor, and requires

5 bits (2° = 32).

5.2.3 Data/Instruction Buses

Communication between the PEs of the VLSI tree is accomplished through the
data and instruction buses. These can be considered as the edges connecting the
nodes between adjacent levels in the tree. An instruction is passed from the MC
to the root PE. which can forward/broadcast the instruction to its child nodes. In
a tree with L = log M 41 levels. where M is the number of data items, and the
log function is of base 2. the leaf PEs can receive instructions from the root PE in
L C}:’Cl‘f‘S. We had previously made reference to high level “time units” and “time
steps” which consisted of additional execution steps/cyvcles. With the bit serial

[

70

Processing element

r---- - - - - - -_ - —- —"-"=-= - — - - - =]
I RA l¢——— PEM |
| I |
| N |
| Bit-serial ALU |
| I |
| Local M |
| Memory b U [R® |
X |
I "
| |
| |
l FLAG R Bsw |
J
Lo I R S 3 J
, Broadcast line
: v v ' Data line

Figure 5.5: A processing element in the VLSI array

71

-

processing capabilities of the architecture, it i1s now possible to use these cycles as
a frame of reference. Data can also be passed back and forth between parent and

child nodes in time consistent with its bit width.

With these instruction and data transfers, it is also necessary to consider
transmission delay between PEs. In the analysis of a particular VLSI model, one
criterion for model effectiveness is the bit transfer time across the connections
between PEs [28]. One school of researchers assume a delay of O(log D). where D
is the connection length. Yet another uses an O(D) delay. Due to the ‘
predominantly direct links between nodes at successive levels in the tree offered by

Youn's tree mapping scheimne. it is possible to assuune an O(1) delay between

successive PEs.

5.3 Analysis of Two Opératio_ns on the 2'-ary Tree

5.3.1 Building a Tree

The parallel time step analysis of Chéptor 3 presented a worst case scenario where
it was necessary to effectively traverse the tree twice. An example of such an
operation is the storage of data (the values which are sfored in the leaves of a
tree), and subsequent building of the tree. The initial pass down through the tree
requires M +log, M — 1 major tumne steps for M data items. If pipelining is not

used. this time increases to M log M units.

The loading of an image with 1/ values into the array of chips requires that
the MC compute the number of levels, L = log Al + 1, and the starting leaf PE
address (the remaining leaf addresses follow sequentially after this first address)
for the tree. The MC then sends an instruction to each PE via the root PE
requesting that its particular identification key be copied into its RA. Once the
starting address is stored in the RB of each PE a comparison requiring only O(1)

cvcle time 1s made with the contents of RA. The leaf data is sent out on the data

-

=1
]

bus, and bit-shifted into the destination PE.

For some X -bit value to be shifted into'RB, the complete value can be stored
in X cycles, as each bit requires one cycle. In the storage of PE addresses, the
maximum tree depth offered by akchip configuration also provides the bit length of
the largest PE address. If the maximum number of leaf nodes is M, then the
maximum address size is given by L bits. L cycles are needed to load this value

mto a PE’s register. :

In building a tree of maximum depth from a set of A data values, the storage
of the leaf values requires O(A L) minor cycles. Each pair of child PEs at level
L — 1 must pass their corresponding values to their parent PE on level L — 2. In
effect, a total of 2L bits must be sent to RA and RB of the parent, which
requires O(2L) = O(L) minor cycles. The bit-serial application of the appr()p‘riatc
query function generates a value for the parent n()‘d(* (O(1) time). This result i1s
stored in the PE’s data memory in O(L) time. Storing this value can be done in

conjunction with passing the result to the next highest level so that an additional

O(L) cycles are not required.

As shown earlier. M + log Af — 1 time steps are needed to store A values in
the leaf PEs. These leaf PEs must pass their values back to their parent nodes,
which will then compare the items and store the result. These steps require 2L + 2
cycles for each of the romaini‘ng L — 1 levels back to the root PE. Storage of the
root value needs an additional L cycles. The entire procedure requires
3log? M + (54 M)log M + M or O(M log M) cycles. Using a conservative
estimate of a 10 megalertz (MHz) clock rate, approximately 1,millisecond would

be needed to store 1000 values.

5.3.2 Double Pass Query/Operation

Operations involving two or more objects usually involve double passes through

the trees. It is necessary to copy the/contents of entity A into RA, and of B into

T3

RB (O(2L) cycles). The compare and branch operations require 2 cycles. These
2L + 2 cycles are performed for the L levels of the downward pass of the tree. At
level L — 1, it is necessary to save the result at each leaf PE. The storage of leaf
values can be done while<the result is passed back up the tree. This presents a
savings of L cycles. Returning to the root node requires 2L + 2 cycles per level for
L — 1 levels. The final root value needs a separate L cycles for its storage. The

total number of cycles is 4L% 4+ 3L — 2, or O(log® M).

5.4 The Case of Insufficient Chip Levels

The analysis in the previous section assumes that there are sufficient tree levels in
provided by the VLSI mapping to accommodate any request presented to it.
Unfortunately, there will be situations where this assumption will not be valid.
The simplest solution would be to add additional chips to our array, with the
appropriate interconnections. A situation will be reached where the packaging of
these binary (“i}lips becomes the limiting factor to-a suecessful implementation.
Howm‘or.‘ with the phenomenal developments taking place in VLSI chip
technology, PE densities are increasing at a significant rate, as are the PE
complexiﬁes. With the 2'-ary representation, this increase in PE complexity can

be sacrificed for greater chip densities.

Essentially. most of the alternatives which are available to our first two
architectures cannot be used here. Some involve network reconfiguration which

are difficult to achieve when PE-to-PE links are hard-wired into the chip.

One feasible alternative follows an approach taken by the reconﬁgu‘r/able
processor-interconnection scheme. The PEs on the last level of thefarray can be of
greater complexity than those of other levels. Those chips that map to the 7lowe_r
‘levels of a tree may consist of PEs which contain greater amounts of local
memory, program stores. and control logic. The function of these PEs is td

process the lower subtrees of these large trees, rather than single nodes of the tree.

74 _ -

T

[

Chapter 6 A Multiprocessor System for the

' 2V_ary Tree

This particular architecture for the 2% -ary tree has properties which are consistent

with other multiprocessor systems, which inelude [12):

e the sharing of cominon memory by all processors;

e accessibility to input/output channels, devices, and control units by each

processor, and;

e svstemn control through a single operating system.

At a high level, a multiproeessor system can be represented as shown m Figure 6.1.

The flexibility offered by the multiprocessor organization makes it suitable for
a large number of applications. Architectures such as the array computer, which 1s
classified as belonging to the SIMD class, are most effective in dealing with
vector-type computations. These computations can be mapped onto a MIMD
system by modifving the necessary algorithms. The same cannot be said in the
opposite case. A non-vector computation that can be processed by a MIMD
arrangement may be such that it cannot be reworked into a form consistent with

the array computer’s requirements.

To distinguish between different multiprocessor designs, the type of processor

unit (PrU)-memory unit (MU) in#&rfacc. the homogeneity of the PrUs, and PrU

Memory Input/Output

Interconnection
Network

Processor
Units

Figure 6.1: A High-level view of multiprocessor architectures

-,

intercommunication are most often considered [3]. In terms of the former, a tightly
coupled niultiprocessor system is one in which all of the PrUs share common
memory. The number of PrUs can be fixed, and under the control of a strict
supervisory mechanism. Some features of such a system include dynamic load
balancing and fault tolerance. An important advantage of utilizing the tight

‘ coupling along the critical path between the PrUs and MUs is that it is possible to
incrementally increase the processing p‘ower of the system. Another advantage is
that all of the PrUs are equivalent, so there is no need to distinguish between

them in assigning tasks. Since the data is in one location, only one data accessing
mechanism is needed. |

In a loosely coupled system, each PrU has its own local memory.
Communication between these PrUs is accomplished via message passing. This
action is slow since 1t is processed at the subroutine level with software. The
recipient PrU must also be prepared for the incoming message. Extra overhead is

incurred if additional PrUs must act as intermediaries for messages between two

distant PrUs.

76

The system to be described makes use of a compromise between these two

approaches.

Both the tightly and loosely coupled systems can be considered as local
systems in that the Pr(‘Js. I\"IUIS, and supporting components are defined as one
unit. A third type of interconnection scheme can be considered as linking
independent computer svstems through sowe form of network [40]. This last

situation is beyond the scope of the dissertation.

6.1 Components and Issues of Multiprocessor Systems

We begin by considering the forms of contention which may affect the components
of a multiprocessor system. This is followed by a further description of these same
components, additional issues associated with such systems, and possible methods

to alleviate the contention problem.

$

6.1.1 Contention in Multiprocessor Systems

There are both hardware and software limitations in the design of multiprocesor
systems [29]. In the case of the former, these include the number of processors,

memory bandwidth, and the interconnection bandwidth. Software himitations deal

3

with data sharing amongst many PrUs. There are also four types of contention

which must be addressed in designing multiprocessor systems [32]:

® processor-to-memory interconnection;
e the interconnection mechanism;

e the memory module, and;

the memory location.

t

Contention between the PrUs and MUs

Adding additional PrUs will generally increase the processing capacity of the
system up to the point where the effects of contention through the interconnection
negate these increases. If the number of MUs is also increased, there will be a
greater number of paths between the PrUs and MUs. The interconnection scheme
can be designed to provide the means by which many PrUs can read/write the

shared memory 1n parallel. H\

Contention through the Interconnection

While there I'nay be sufficient paths between the processors and memory units,
there still exists a possibility that two or more PrUs can attempt to access the
same path through the interconnection. Two possible actions can be used to
resolve this problem. In the case of a blocking approaclf, only one request is
allowed to use the path. The remaining requests are queued at the point of
contention, and continue only after the initial request reaches its destination. The
path then becomes available for further use. With the non-blocking
interconnection, a request 1s sent through, while the other contending reques<ts are
aborte&, to be sent again by the processors. One critical disadvantage of the
‘forrner method is that blocked requests actually maintain and block already
traversed nodes and their resources in the switch. This is an example of switch

saturation. The non-blocking switch does not suffer from this.

Memory Module Contention

.SE\non—uniforrn distribution of references to the MUs results in greater contention

A\ . — . ' :
problems compared to a uniform distribution. Unfortunately, program and data -

locality make the former case the predominant one.

If mo1r PrUs are added to the system. this memory contentipn will also

merease. A< the bandwidth of a meinory module 1s fixed. adding memory to a

"

i

on

moduffe will not reduce this contention to accommodate this PrU increase.
Instead, it is necessary to add additional MUs. The next concern is to consider
program locality and how the code segments are to be distributed amongst the

i\'IUS to lower the amount of contention.

Memory Location Contention - P
R . RN

This type of contention occurs when two or more PrUs attempt to access.the same
memory location. Examples leading to this contention include the accessing of a’
semaphore for a critical section, and the index variable_of a repetitive language

construct such as a parallel DO or FOR. S ’ P

.

6.1.2 The Processor-to-Memory Switch
&

The relationship between PrUs and MUs requires a processor-to-memory switch.
Figure 6.2 presents three basic topologies which provide such a foundation in -

multiprocessor systems. . .

The Time-Shared Multiplex Bus

-
13

The simplest connection mechanism between components of a multiprocessor
svstem involves the single time-shared mtiltiplex bus. It 1s very cost effective an';{
reliable because of the low logic, switching, and control function requirements
’needed to allow the bus system to operate. Unfortunately, this single bus can also
cause the entire systmh to become inoperational if it malfunctions. The overall
system proceséing power can be COﬂIlSid(‘I:Cd a fur_l{tion of the bus’ capabilities, sﬂuch‘
as bandwidth and speed. As only a single transaction is allowed on the bus at a)
timne, the system berfo%mance level will be very low. A compromise between this

low processing power and minimal system cost 1s necessary. R

These performance levels can be improved by increasing the number of uni- or

"

multi-directional buses. Anothier approach is te provide separate bus sets for each

)

T 0

rul [pu]l MU MU rul [pul MU MU

/0 1/0
‘ ne o

a) Time-shared Multiplex Bus

MU
\\ J‘i T— ”—9
S SN
MU < }ﬂk —————¢
< ,
&
MU —r— 1

PrU PrU PrU PrU

b) Cross-bar Switch

*
Pru @ —{MU P
1
\
PrU - —e MU '
] .
PrU ——e MU
>~
il c) MultiponMemory:Bg ’

Al

Figure 6.2: Basic switch topologies in a m:u]tiprocessor system .

B

.80

logical component of the system, and then have additional interconnection
mechanisms between these sets. These bus sets can be used for processor groups,
memory arrangements, and input/output devices. This increase in system

performance is at the expense of increased system cost.

In th? multiple bus, time shared scheme shown in Figure 6.2.a, memory
connections k;ctween the PrUs and MUs involve a considerable amount of
redundaricy. With P PrUs, M MUs, and B buses, B(M + P) connections ére

red=. mplete configuration. However, alternatives have been developed
which reduce th‘e\riumbe: of connections, while at the same time maintaining
similar throughp“uts [21]. A red'ucgion of 25% in the number of connections can be
reah7ed if B=2 and P = M. Reducing just the number of connections in the

memory-bus Componént while using a fully connected PrU-bus arrangement can

lead to the minimal number of connections.

The Cross@itch

If the' number of buses added to the system results in each MU having a separate

bus, we essentially have a crossbar switch arrangernenta This switch was

s \

(‘omldered as a possﬂﬂe mechamsm for the 2 D prore‘ssor/111ter?C(>nnectf10nenetwork

i s 2\ . *?’ -
but as md ted in our earher dlqcmql(m 1ts expenblve ndture as The number of-
B4 .
N
PrUs and MUs became larger made it an unattlaétlvc solutlon Ano‘ther dlfﬁculby
. ug .

\\'1th the crosqbar mvol\ esithe access COllﬂlctS te the rﬁemd’ry unﬁtq (memoryz

l 2w
,,Contentlon) Since ‘the S\\ltCh supp@rtq <1multancous trarasfers for all MQ& it must

-

i
"o

*

~

be able to re\sol\é muTtLple reque%tq to a;.mgle MU A pnorlty ’Scheme ma? be n u i

[>

place which the mntc'hos use'te arbxtmte a.ll memory a‘ccc,ssttrcqnests; Tshls _

- n

requires mote comple}\\'@\\'lt(‘heq wln(‘h results‘m ulcleased Rp S”Lcm Cost. .. .4

5

- -
- K -7 LoE

ltA-(3 r_“s g L)
EI

A studv lias v estlgated ‘three different. SVStemq that utlhze the, CI‘OSbb&I‘

R & V"~,d-'

S,\i'ltch {41]. Thpse consist of: o N

:

. v o
. . - . - N .
L . . 5 - - > . - &

R

) P PrLS an(l U fu/fl\ mt,gr(onnected global \4Ls where each PrU has a'c‘ctés,s‘

- -~ Y
. . oy ., - B -
- - [., - N -

2
e k-

~

10

to its own MU that contains the code that it is to execute, and the PrUs .

occasionally access other MUs;

l

e P PrUs and 1 shared MG - each PrU has its own local memory LM, which
reduces the number of aé‘("oss to the MU. It is less tightly coupled so that a
linear increase of P in performance level is (‘xl)ecté‘d. A state is reached for .
some r where no further increase in perforiance is possible;

o

e a combination of the first two systems - P PrUs and M MUs, where each
PrU has its own LM. The benefits of both previous systems are realized here
“(the former provides a dynamic environment, with no performance

saturation, while the second offers low memory contention).

The pn'mcary drawback of the first system is the exponentially increasing cost per
processor ratio. With the second, the single global MU prevents dynamically
allocated memory, as most of the programs and data are stored in the private LMs
of the PrUs). For a relatively high access-to-MU probability, and a low nunber of
consecutive memory access, the cost per processor ratio makes this system .
favourable. If these linits are exceeded, the ratio approaches infinity. This is not
the-approach that high performance-applications would use. In the case of the
third system, the cost per processor ratio increases linearly with no performance _

saturation regardless of P. However, proponents of tightly coupled systemns may

find this arrangement unacceptable.

Expandability of the switch is another coneern placed upon the designer. A
switch which exceeds the present requirements of tlie system can have a number of
mactive nodes. These nodes can enter the active state whenever additional PrUs

and/or MUs are made available to the systemn.

One of the carliest systems utilizing a crosshar interconnection mechanism was
the Carnegie-Mellon multi-miniprocessor C.mmp [40,48]. It consists of sixteen
PDP-11 minicomputers, and sixteen memory modules. This 1s an example of a

very large multiprocessor svstem. and the cost of the crossbar switch is

82

. ©
significantly lower than the minicomputers being used. It was designed as a

general purpose multiprocessor. Our system is used for a much simpler, more

specific application which does not require all of the supporting components of the

C.mr_np‘. . o,

The Multiport Memory Bus Scheme

The third organization is the multiport memory system. Each PrU has its own
bus that allows access to all MUs. The switching mechanism is located at each
MU. Memory access conflicts are resolved by assigni;g/g fixed priorities to each port
such that specific PrUs can preferentially access certain MUs. Throughput is

“intermediate between the single bus and crossbar systems.

The hardware requirement is similar to the crossbar system, and the level of
concurrency 1s the minimum of the number of/PrUs and MUs. One disadvantage
of such a system 1s that the number of ports that a MU has also limits the number
of PrUs that can access it. The complex control and switching mechanism.of each

MU makes this arrangement very expensive.

6.1.3 Memory Considerations

Issues such as the usage of local and/or shared memory, and the types-of memory
mapping schemes must be considered in designing a multiprocessor system for a

particular application.

Local memory at each PrU can be used to reduce the dependency on the
interconnection mechanism. These local memories contain data which are used
most frequently by the PrUs. This will result in greater overall performance as an
effectively higher bandwidth is achieved, and the data is more readily

the PrU. | ,

Two problems exist with the use of local memory. If a request for data from

PrU,’s local memory 1s made from PrU,. the value returned may not be correct,

(78}
L

n n n N n
0 1 2 3
L4

n N n n
.4 5 6 7

n n n n
8] 7 10 11

MU o MU Y MU MU
0 1 2 3

Figure 6.3: Storage of a 2-D @j‘éfay of numbers

particularly if the data is volatile. The second problem deals with data which is \
heavily used by more than one PrU. The affected local memories will contain
copies of this data which may be manipulated by their respective PrUs, leading to

v oo
data corruption.

The use of shared memory can reduce the levels of this corruption by providinéf’
only/,a single set‘ of data to all of the PrUs. The PrU-MU interconnection scheme
will determine one level of contention in using shared memory. An effective
memory mapping mechanism can reduce the amount of memory contention. This
mapping is similar to the mapping/paging practices present in operating systems
using virtual memory. These maps translate a PrU-generated logical address into
a physical address that corresponds to some location in a particular MU. If the
applicati‘tm is conside;ed in defining a mapping scheme, exploiting properties of the

application’s data structures can further reduce the levels of memory contention.

For example, one application may require the storage of a 2-dimensional array
of N numbers. The simplest arrangement of these values distributed over M MUs
would be as shown in Figure 6.3.

Only one memory cycle is required to access any row or diagonal of values over

-

g4

Vs

the MUS" However, accessing the numbers in a single MU leads to contention, and

f%] mémory accesses will be needed to process every value in the MU It 1s

obvious that this type of distribution of values is unacceptable for most

operations. If the array values can/be uniformly distributed thpoughout the MUs,

the number of accesses to any one MU will decredse, thus reducmg the ex&ntwof

contention. This memory interleaving can be of the followmg types
\

“« a

coarse consecutive blocks of memory, addressed sequentially, are'found in each

MU. The high order bits of an address indicate the x'nodule;A

fine consecutive memory addresses are located in consecutive modules. Tbe low

order bits of an address are used here to specify the module; \ e

mixed both methods can be combined to provide an intermediate form of

interleaving. Hardware may comjrol the®coarse interleaving, while the fine.
Qs

interleaving could be accommodated through software. .

Information such as the type of PrU-MU interconnection scheme, and the - -

application will provide some a551stance n determlnlng which forrn of mterleavmg
to use. If the crossbar switch is being used, coarse lnterleavmg w11] provide the

lowest level of contention. For the most part, mdependent pr,ocessors will access

individual MUs. If fine interleaving is used. these seemingly independent PrUs are

reqmred to cycle through most of the MUs to get the requested data. If a cornrnon

bus structure is the interconnection. fine interleaving will provide a lower lqvel of

memory contention than the coarse alternative.

s

The process of interleaving can be dealt with at the hardware orAson;Ware level.-

In the case of the latter. facilities may be built into compilers so that the memory

distribution is made transparent to the user. Conversely, functions can be defined

which allow the applications programmer to explicitly specify the arrangement of

the data structures in memory.

on
Ut

e

é\) 6.1.4 Software Considerations

@

Some references to software techriiques were alhi?ied to in the discussion of
. multiprocessor qystom components. Three additional issues which must be
¢onsidered in such a gystem are control, sy nchromzatlon% andgscheduhng of the

processors. There are three different control organizationﬁfl?ﬁ.\v -

e master-slave;

‘e separate and;

<

s

e Symmetrrc.

The easiest to implement is the former, although its major disadvantage is that
once the master proeessor fails, the entire system also fails. A major advahtage of
such a sy %tem is that qpe(‘lahzed hardware is much easier to add to the system,
thereby reducmg the executne s overhead An example of this specialized
hardware 1s assoc1at1ve memery. VVlth the second, each PrU has its own copy of

< the executlve The fault tolerant benefits of this organization exceed those of the

_ former. V‘Vlth the symmetnc approach each PrU has access to the master

e\ecutne and has the a’blht} to,,schedule 1tself The fault tolerance of this
orgamzatlon is far superlor than the first two as it 1ts rehabllity This scheduling

feature permits functioning PrUs to compensate for any failed processors.

Syhchronization‘ between processes/t'asks is another major issue which must be
addressed in multiprocessor systems. The accessing of shared variables by the
PrUs must also be considered. The use of semaphores, different priority levels,
and guaranteed-processor execution via fair scheduling practices are all techrriques
whi\ch‘ can be used to provide the necessary synchronization.

v

86

3

@ .

6.2 An,Architecture Applied to the 2V.ary Tree

. The above has been considered in designing a rnultxprocessOr ba.sed architecture for
the-2N-ary tree. a,pphcatlon The design, which is shown in Flgure 6.4, depends on

inthe propertles -and?charactenstlcs of the representation. The following subsect10ns~
present each syetem component', and justifies its particular configuration. :

T

, L

6.2.1- ~The :Shared""Memory Module Units

The system’s shared memdry component consists of a bank of memory modules
that are used to’ store the data "and tree representatlons for any user apphcatlons
The t)\, pe, of memor} interleaving that is used to store some instance of tlie

representatlon is a critical ¢onsideration. The preferred scheme calls for the use of

N s

coarse memory interleaying for a number of rea’sons‘. The concurrent processing of
each subfree of a tree is‘ .dependent upon the disjoint property of each subtree at a
given tree level. Consider the case of a Slmple four MU system where we are
evaluatmg“some«Doperatior} involving two quadtrees. This arrangement is shqwn in
Figure 6.5. A processor c;.n access, the equivalent no.de’va,lues in both trees with
two réad-instructions from the same MU: By storing equi.valent subtrees for
different instances in the same MU, there is no need to follow a second
interconnection path to another module. In one case, the path to a particular
module is held for the two reads, and one write-back if there is a need for a
resultant third subtree to be st.oeed. As for possible conflicts involving the nodes
at diffe%en‘t tree levels, one requirement which was specified in Chapter 3 is that
Chi}dren of a néde cannot be processed until the parent has been accessed. This
prevents memory cen;ention by processors attem‘pting to aecess a parent and child
node of the samte subtree. both of which are stored in the same MU. Even with

~the possibility of tfaversing back up the tree, the acces'sing of nodes at some level

: + 1 must be completed prior to the parent at level ;.

With our example: contention will arise when processing the nodes at the third

<

i

Figure 6.4: A multiprocessor architecture for the 2N ary tree

% 7 i
f' y 3
(Y
&
External annel Buffers
rMCanTy DD ooo:ooo EDD
) . {Controllcs .
? .
Shared Memory. .
Output
Shared 3 Imu | [Imu mu | flmu bMemory
Mcmory_‘ 0 1 IEEXREN] N2 N_l Buffer
Controlle .
Interconnection Network
U Processors
ser .,
Master :
Interface/ ontrolle > Pr [} Pr Prf|Pr Display
Host 0 vl seesee M2} IM-1
Compute

88

-

&
. g Tree A
R %
- P y
MUO MU 1 MU 2 MU 3
Tree B

Figure 6.5: Memory interleaving for the tree representation

89

.’y

-

. and subsequent levels of the tree. The prin;a.ry cause of this contention is the small
nurr?ber of MUs (4) beiné used. By addingﬁmore MUs; memory location contention
can be reduced. If tweﬁty MUs are used in the system, memory cententi_on will |
not be a concern in tl;e processin-gl;{of,the first three levels of the quedtrees. Of
ceurse, the extreme case would pre\'ide one MU per node of a tree. Even with
inexpensive memory, there are some factors which make the one MU /node
-app”;oach unfeasible. The principal of which is the increased cost incurred by the

mterconnectlon scheme, that must now becorne much mere complex. Ineffective

use of the storage 1s also a problem in that few nodes are stored per MU

A compromise would involve a reduced number of MUS, and an appropriate)
-‘-me‘r‘noryﬁmapping scheme whi‘ch functiens on the premise that storing
non-consecutive tree levels in an MU will not lead to an increase in rnernory
contention. This is a consequence of the parent children node processing
PCS;I’IICtIOHhhe premise assumes that if processing is taking place at some level z
in the tree, there is no conctirrent processing being done on level 7 & € of the same
subtree, where € is some value sufficient to make this a valid assumption.

Obviously, values of 0 and 1 are inappropriate for e. This approach is similar to

the folding of trees presented in Chapter 4.

6.2.2 The Interconnection Scheme

The interconnection arrangement}in this architectureis a multistage network -
which uses the binary tree topology. This is convenient in that the order of the
application is some power of 2. Consistent with the observations concerning the
mapping of date in the previous section, there exist paths through the AM-level
network to 2% MUs, where M > 1. Each of: these MUs will store the equivalent
subtrees for a number of-tree instances. A simple example of such a network
utilizes a 3-level network and is given in Figure 6.6. In t‘he example, the two
processors PrUg and PrU; can access eight MUs. To provide the necessary routing

paths for these PrUs and MUs, seven switches are needed in the network tree.

90

‘o

@—————— Unused Switch Port

Figure 6.6: A 3-level interconnection network

The figure also shows that there are six unused switch ports. The addition of
extra switches will make use of these ports. All porrs will be accounted for if eight
PrUs and twelve switches are used. .

The nodes\i)f the network are actually simple 2x2 crossbar switches. It was
stated earlier that the crossbar switch is very expensxve to 1rnp1ernent Howeypr
with the binary tree topology that is being used here, the node count is reduced
from O(n?), in the case of a regular nxn switch, to O(E log, n) where n is the

number of PrUs/MUs in the system, log, n the number of node levels, and there

are 12‘- nodes at the bottomn of the network tree. The fan out of each node is the

91~

base of the log function. With the binary tree, the base is 2. In general, if the fan

out of each node switch is b, the node count is O (-’21 log, n).

There will be network contention through the network if two or more PrUs
attempt to access data in the MUs through the same path. The frequency of such
conflicts can be reduced if the number of candidate paths are increased. One
method of acliteving this is to increase the fan out b of each switch, which also
reduces the number of nodes in the network. The effect for the special case of
b = 2™ is an environment similar to a complete crossbar switch with its associated
disadvantages. As has been stated a number of times throughout this dissertation,

a compromise between extremes is the most effective solution. Lo

6.2.3 The Processor Units ’ o =

Given the type of processing power, and local memory requirements needed by the

functions of the representatioﬁ, certain stock microprocessors can be used.

Alternatively, an entirely new processor could be developed for this application. -
: s

Given the nature of the operations, and cost efficiency considerations, existing

designs are more than adequate. ’ : : o

One such class of stock processor is the MC68Q00 family, whose favourable
characteristics include fast instruction times, sufficient da/ta—path vx-lidth,
reasonable memory size, and a rich instruction set. The memory %ize is c’i‘itical
since each PrU has its own local memory, which reduces the number of accesses to
shared memory. Rather than have all of the répresentation’s programs in shared
memory for the PrUs to access ~each has its own set of routinés At first, this may
seem to be redundant. However, the advantages of using local memory far i
outweigh the disadvantages of the redundancy. With a large nummber of PrUs
accessing the shared memory for each each instruction block will lead to a

significant contention problem. These requests for instructions will also have to

contend with requests for actual representation data. The simple algorithms for

92

¥

} ,
the operations make-it practical to store these instructions in local memory. The

preblem of ‘contention due to instruction fetch is eliminated If the amount of local)

memory available to each PrUis insufficient to contain all of the programs, only

those functlons Wthh are’ requlred by the current user request may be stored in

this rnernory. The idea here is to have the entire operation set in shared mernory, .

and broadcast to the PrUs, for local stdrage, the programs needed for the uieer

query. This approach is again a compromise between two extremes.

Each ef the PrUs are identical andgcail function as independent units. The’h
fault tolerant benefits-of such an arrangement_are obvious. If a PrU becdmes
_ inoperable\{ there will be a slight deterioration in overall system performance.
Scheduling?cif tas@emains as before, the only difference being ,that there is-one

fewer PrU to process these tasks. The system will not. come to a halt as would be

the case if the Pst were dependent upon each other.

6.2.4 The Master Controller

There is one processor which serves as the master controller MC for the entire
architecture. The MC receives queries/instructions from the User Interface and
passes these requests-to any availaible PaU. Until this initial request is fulfilled, the
MC is:involved in the scheduling of any task requests that are sent to it by the-
PrUs. This scheduling responsibility requires that the MC hasisufﬁcient local .
memory to maintain the necessary task queues and stacks. The task speqiﬁcatioﬁs

contain no PrU dependencies such as PrU igentification, and can then be

considered as autonomous entities. The availabfjty of PrUs for task processing
must also be known to the MC. Each PrU can be
- register stored in the MC — a 0 indicates a PrU cuirently in use; a 1 for available.
Interrupt/acknowledge control lines between the MC and Pst are used to send
special signals to the MC, such as for a defeciive PrU. In this case, the ‘
corresponding PrU register bit is set to 0 until a replacement PrU is added As

with the PrUs, microprocessors such as those a\rallable in the MC68000 class -

93

W

da

would be appropnate here because of thelr suPport of lnterrupt handhng
-

Task scheduhng is the primary* responSIbllity of the MC H' for some reason the
MC becornes inactive through some component’ malfunctlon ‘the“entire system
becomes inoperable. For thls reason it may be adv1sab1e to prov1de an aux1hary

MC which can replace the primary MC upon 1ts failure. s

” - '
(2 e « o~
e V

P
\ .
° o, . . M .o ¢ - 3

6.2.5 Additional Components

There are some additional less critical components that make up thi$ system:

@ The User Interface Ul provides a user-friendly environment to which user

" queries/instructions are encoded and directed to the MC.

@ To test the integrity of the shared memory modules, and to reduce the need
for the MC to rnonitor tbe status of these trnodu'les, theresis a'shared
memjbry controller whose or"irnary purpose 1s to ,rnai:nta'm‘ these modules.
Another functipn of the SMC is to coordinate the passa‘gefof formatted and

unformatted data between the system and the outside environment.

® To facalltate the entry of data into the system the,re exist a series of channel
: buffers whxch accept data from some secondary storage device such as a tape,
and perfoi;m somg -prehrmnary preformatting on the raw data, if necessarj
.- These buffers direct this data to the shared mernor'y modules. Of course,
instances of the representation can be stored on secondary storage devices
, by going through the buffers. Tbese channel buffers are under the controt of
the external memory controller EMC. The EMC and SMC both cooperate in

the data traffic between the external-énvironment and the system.

/

® In the application on which this dissertation was initially based, that 1s, as a™
representation technique for computer graphics, there is an obvious need for
a display device. An instance of the representation is first routed to &

memory buffer which can be loaded in parallel from the shared memory
N [

o

94

I modules. Once the buffer is filled, 1t is presentkéd to the display device in a
| singlestep. This could be thotght of as loading the background buffer of a
. two-buffer device. Switching "(;f\bufi'erﬁglanes renders ;the effect of instant
display. |

4

8

&

e

’ v

Chapter 7 Simulation of the Multiprocessor

Architecture

This chapter presents the results of a simulation of the multiprocessor architecture
developed in the previous chapter. The term simulation is not used in the truest
sense of the word. Typically, the synthesized behaviour of some system or
rCal—gi;ne process is generated, and observations are made of this history to
develop inferences or hypotheses concerning the characteristics of the system.
With respect to the dissertation, the type of software facilities available has made
it possible to implement a pscudo-simulation which uses multiple processes to
represent the processors of our system, and message passing to represent the
network communication mechanisms. In effect, a software-based equivalent to the

architecture has bheen developed which allows various statistics to be obtained on

the behaviour of our system.

i -

The chapter is organized as follows. First, some of the implcmontatibn details
of the simulation are presented. A number of different processor and data
configurations are used in the actual exneriments. These follow the
implementation details. Finally, the results of these experiments are given in the

-

form of graphs and observations.

\

96

7.1 Implementation Details

7.1;.1 The Processors

The implementation of the simulation makes use of various features made
available by the UNIX’ operating system with its System V enhancements, such

as facilities for using shared memory, semaphores, and message passing.

The architecture specifies that the operations of the representation are stored
in each PrU’s local memory. There is no need to consider accessing some shared
memory for the required instructions. Therefore, this implementation only has one
set of operations which are readily available to all processors. The code does not ”
have to be considered a critical-section — which would require the use of

) 7
senmaphores or other control constructs as a means of m@éiating mutual exclusion.

.Each processor in the architecture is represented by an independent process
that has its own identification -~ to facilitate processor-to-processor
(process-to-process in the implementation) communication. Unless otherwise
indicated. the simulation’s process is equivalent to the architecture’s proce:«rsor.
The control functions and data structures available to the slave processes are very

simple. The main control loop for a slave essentially consists of:

-

slave: process
for TRUE {
RECEIVE (task)
cmd := SELECT (task)
EXECUTE (cmd, task)
SIGNAL (FREE, MASTER) f/

4

The RECEIVE operation places the processor in a waiting st€te, until some

mstruction/task 1s sent to 1t by the master protessor MC. Upon receipt of such a

TUNIX s a registered trademark of AT&T Bell Laboratories.

0T

task,sthe appropriate function is invoked by the processor with the included
arguments. The task contains the function identifier, and its arguments. Once the
operation has been completed, the MC is sent a signal indicating that this

particular processor is available for further task acceptance.

Although the responsibilities of the MC exceed those of the slave processors,

the ¢ontrol structure of the implementation has a similar internal arrangement:

i

master: pr&gss

for TRUE {
RECEIVE (user_request)
slave := SCHEDULE (available)
SEND (user_request, slave)
for ~ DONE () {
RECEIVE (‘task) {
cmd := SELECT (task)
if cmd in {slave_commands} {
slave := SCHEDULE (available)
SEND (task, slave)
}

‘ else
EXECUTE (¢md, task)

The outer control loop permits the MC to RECEIVE requests from the user
interface. This RECEIVE function is similar to that available with the PrU
operations in that the processor is in a waiting state until a request is received.
Once a request has been accepted by the MC, the SCHEDULE function is used
to select an available slave processor. after which, this initial task is sent to the

.

slave.

The internal loop continues until the requirements of the user request have
been fulfilled. This completion state is determined by the function DONE which-
tests various control data structures such as the task queues and stacks.

Obviously. if the task queue is not empty. the user_request has not been

08

completed. ‘As an example, a request may be for the generation of a tree from the
appli‘cation of the binary qperation AND on two trees. The processing within the
inner loop continues until the result tree has been derived. This processing
involves the receiving of subsequent slave tasks, further scheduling, and the

dispatching to the next available processor these tasks.

The data structures required for the MC include: a processor-availability
queue containing the identification of each slave processor currently idle; a request
queue that is used to recall multistep tree operations — for example, in building a
tree, the two stepé involved are to load the tree’s leaves with data values, and the
actual generatioﬁ of the tree, and; a task stack that holds the‘tree tasks which are
created by the slaves upon execution of the various operations of the
representation. This last structure is the most volatile o.f all the structures since it
has to accept all of the child processes which are generated in going down a level
of a tree. For example. in the case of a quadtree, if it is necessary to precess the
children of some node, four tasks have to be created and sent to the MC, to be
placed on the task stack. This structure is.a stack rather than a queue to preserve

the integrity of the tree nesting as processing continues from level to level.

7.1.2 Shared Memory

A major component of the architect%;e is the bank of shared memory modules
that contain the instances of the treeﬂ representation. System V's shared memory
can be accessed by independent processes using*memory identifiers — similar to
the 1dea of process identifiers in UNIX. These memory blocks can be cast as any
valid data structure. In this case, the implementation sets these blocks as
two-dimensional arravs of the Char.‘ehlct.er data type. This type permits byte
addressing. By having a series of these blocks, we can simulate the architecture’s
bank of shared memory xllo(hi;{then possible to access any

byte-addressable memory location by providing a module identifier, and a lecal or

relative memory address.

99

7.1.3 The Interconnection Network

The interconnection.network is simulated with a series of simple va.riablés which
are identified by means of their row in the network tree, and their relative position
within a row. A value of 0 or 1 in a network variable indicates whether the node
that it represents is currently being used or not used in a rnérnory access. For each
memory address <module#,memory# > generated, the network tree path is also

‘ determined; If each of the network variables that is required for a successful access
is available, the memory value is either read or written. If not, the task is sent

back to the MC and placed back on its task stack.

7.1.4 Contention Considerations

& .
In this implementation, there are two areas of contention which are considered:

network path and memory module conflicts. Aictual memory location is not‘
considered. This is a valid assumption since at the leaf level, there is never a case
of two tasks accessing the same memory location —— a property of the |
representation. The network and module conflicte carty through at the
implementation level since actual sharing of memory (the System V shared
memory and the network variables) is also taking place. To accommodate this,
semaphores are used. In fact. the network variables are actually semaphores.
With the memory modules. each has its own semaphore. The module is onlyj
accessible if no other processor has set the module s}ernaphore. Once a processor
has finished accessing a module, the module semaphore is reset to indicate its

availability, as are the network node semaphores.

7.2 Simulation Configurations

The simulation has been configured to accept anywhere from one to nine

processors. and eight shared memory modules. This requires that there be three

100

levels of modes in the interconnection network, each level with four nodes.
Simulation runs utilizing one to nine processors have been performed. Given the
nature of the interconnection network, that of a binary tree topoiogy, eight
processors would be the maximum permitted. However, this implementation has
been set up for the reciuired eight PrUs, in addition to an extra-PrU. The intent is
to provide as much data as possible for later interpretation_within the ‘constraints
of the implementation environment. This environment makes extensive use of a
limited number of sockets, pipes, and file descriptors. Nine PrUs is the maximum
number of processors which can be simulated with these limitations. The use of
one slave processor is a special case in that it most closely resembles the sequential
uniprocessor situation where a simple construct such as a FOR loop allows each
child of a tree node to be processed. Of course, these two cases are truly not
equivalent since some p}ocessing overhead 1s accumulated through the message

passing between the MC and the-slave processor.

The size of the data set, and the type of trees which make up the simulation
sample set, requires that only {four shared memory modules be used. Even with
four modules,- it 1s still necessary to have three levels of nodes to allow for the
eight PrUs. All of the experiments use the quadtree as the tree configuration. In
terms of data size, statistics are obtained for images which are 8x8, 16x16, 32x32,
and 64x64 pixels in size. Each data size involved three different types of image,
one being what would be considered an average case where the quadtree is not a

complete tree, a best case in which only one level of the tree must be processed,

- and the worst case where the image is of a checkerboard type. These various
-~ AR

1mages serve as input for a number of the representations operations. Tests are

performed using the operations: LOAD UNFORMATTED, which takes

.unformatted ‘data and generates a quadtree; and AND, which is applied to two

quadtree, creating a third. A binary OR operafion has also been defined,

essentially using the same routines as the AND. For this reason, tests have not

“been run with the OR. The application of these different data sets with the two

101

operations allows comparisons to be made between trials that require both
complete and partial tree traversal. It is this which provides the best, average, and

worst case scenarios. For each different set of circumstances, ten trials are run.

7.3 Presentation of Simulation Results

The results obtained from the following experiments provide some indication of
‘the architecture’s behaviour. To facilitate comparisons between the different
operations, this section is organized in a manner where all of the results for a
particular criterion are presented together. In the following six subsections, the
results involving the MC are given independently of the slave processors. The -
results and observations for each statistic are preceded by a brief description of

the statistic itself. The last three subsections deal with the slave processor results.

7.3.1 Total Execution Time

Of significant concern to the user is the amount of time required to complete a
request, from its submission to the notification of the job’s termination. Figure 7.1
presents the three graphs for.the LOAD UNFORMATTED, average case
AND, and best case AND operrations.

In general, the LOAD UNFORMATTED and average case AND graphs
show a substantial improvement in completion times as the number of processors
increase. As expected, the case of the number of slave processors P = 1 requires
the most time to complete a query. The results obtained here are similar to those
generated mathematically i:Chapter 3. The absolute time to complete the
LOAD UNFORMATTED operation is expected to require the gereatest time
since it requires that the entire tree be generated — a case of two complete tree

traversals being necessary. The time needed to complete the best case AND is

significantly less than the prévious two cases. This is understandable in that only

102

s

v '
. . .
CE

Time (sec)

Time (sec)

Time (sec)

Total Time Required to Format Data
(average case)

100 64"{4
=
75 \‘
\\
o ———t
50 \\/
— /
2 16x{6 T
828 \"\ ——
a0
I 2 3 4 R 5 \ [7 8 9
Number of Processors
Total Time Required to Resolve Binary Query
(average case AND opération) -
50
375 =
™\
N 353
25 = — e
\/
1.25 "\\ T&ie
——) 513
0.0
1 2 3 4 5 6 7 8 9
Number of Processors <
Total Time Required to Resblve Binary Query
(best case AND operation)
Lo
Q75 X
(151 S prarmnd
Q23
Qo
1 2 3 4 -5 6 7 8 9

Number of Processors

Figure 7.1: Total execution time of a user query

103

one level of the two trees have to be processed. As the remaining criteria are
presented, it will become obvious that this last case provides a base from which
the other operations can be considered. One interesting point which can be made
about all three sets of results involves the trial where P = 4. After showing
consistent decreases in processing time for P = 2,3, there is a slight increase for

P = 4. This is most evident with the 64x64 pixel image.

The results of Figure 7.1 can be used to determine the figure of merit for each

operation. This value is the ratio

T NTy

‘FM

where T} is the time needed for one processor to complete an operation. The
- number of processors used in a@cular run is given by N, and Ty is the

, L4
completion time for these procesdqrs. If the Fjy = 1 for some range 1... N, then

we have linear speedup. Figure 7.2 presents the figure of merit graphs for the

three operations studied here.

-

The situation presented by the best case AND operation is as expected
considering that the minimum processing time can be accommodated by one
processor. Additional processors contribute nothing to operation speedup. With
the remaining operations, the Fis reductioﬁ is not as severe over a span of the first

.
five processors.

Two additional graphs are included here which deal with tree generation times.
‘Both consider image sizes which are much larger than those actually tested. These
sizes range from 128x128 to 1024x1024 pixels. Using Equation 3.7, and a constant

processing rate of 1.5 msec/node, we arrive at the graph given in Figure 7.3.

It 1s also possible to extrapolate execution times for these large 1mages using
the simulation results. The processing rate per node is much higher, as is

indicated in Figure 7.4.

104

" Ratio (T1/NxTN)

_Figure of Merit Plot for Building a Tree

04825 W » \E‘ ;
| ass \ ‘\

0275

Number of Proce;sors

Figure of Merit Plot for a Binary Query
(average case AND operation)

075 - \ * N

; l6llé

8x8

Ratio (T1/NxTN)

Number of Processors

Figure of Merit Plot for a Resolve Binary Query
(best case AND operation)

10 5
ars
05 H

......................

Ratio (TI/(NXTN)

00

Number of Processors
Figure 7.2: Figure of Merit ratios of tree operation execution times

105

Time (minutes)

" Estimated Tree-Generation Completion Time
(at a constant rate of 1.5msec/node) ’

50.0

ORIV SRR P [.

25.0

125

0.0

Number of Processors

Figure 7.3: Estimated tree generation times for large images

106

Time (min)

45.0

33.75

b

—
—
T

0.0

&

Extrapolated Execution Time for Tree Construction

1024x1024

Number of Processors

5

Figure 7.4: Extrapolated tree generation times for large images

107

e
7.3.2 Absolute Active Time

In initiating, mediating, and terminating a query, the MC is usuail); in one of two
states, that of being busy or waiting. A reflection of the MC’s busy state is its’
abséluté active time, which is defined here as béing.the number of iterations of the
inner processing loop that it completes to resolve a query. The results for the

three operations are given in Figure 7.5.
: ~

The most noticeable observation from these graphs is the significant drop in
operations executed from P =1 to P = 3, and then the subsequent stabilization
for P > 3, with the 64x64 pixel image. This indicates that élthough there are more
tasks to schedule, by keeping the PrUs busy wigh job processing, the MC can stay
idle for a périod of time. VVi.th the other three images, the reduction in operations
executed is not as significant. The best case AND situation requires the least N
number of MC operations, as expected. There is also some fluctuation in operaticé'ﬁ
count as P — 9, but this is acceptable considerin-g the scéle réduc_tion. Comparing

this figure to that of Figure 7.1, it is possible to see that the active times for the

MC follow a similar pattern tc the total execution time for the entire system. .

7.3.3 Absolute Idle Time

During the course of ruésolving é user query, there are periods of time when the
" MC is in a waiting state performing no activity. For example, in a éituation wheré
all of the slave processors are busy executing their own independent tasks, the MC
essentially: just waits idle until some request or signal is sent by the other
processors in the system. With the best case AND operation, there is very little
processing necessary with the MC and slave processors since only a very few PrUs
are required to complete the entire comparison. Although there seems to be a
slight upward trend in idle times as P — 9, the overall processing required with
this case is very fast, and it'is very difficult to comprehend that‘a.étable

environment 1s attained so quickly. The results can really be considered a baseline

108

A

S) z
Absolute Active Time for Master Processor
(LOAD UNFORMATTED operation)

.

.
2 56000 ~
.2 .
E 64264 \\‘\
8.‘ 4200.0
o
‘8
5 2800.0
S’
Q 17 i :
E a0 P23 R
&= o
7y g =
2 00 — &
] 1 2 3 4 s 6 7 8 9
Number of Processors
. 5
Absolute Active Time for Master Processor
(average case AND operation)

~~ : #
[.)

11000.0
8 [T~ I | '
.E ! - I

8250.0 '
= J
2
5 ss00
S’
Q
£ 32134
2 2750.0 f———
> Y551 : 4 "
I = m— : : : ! L]
m 1 2 3 4 s 6 7 s 9’

Number of Processors

Absolute Active Time for Master Processor

(best case AND operation)

~~ s A »

4] 0.0

=] .

I 51652 — B -

5] 45.0 T

(=¥

o -«
Y

R’ 64x64 -

(3] P} SRR S
g 15.0

=

2 |

v

= 0.0 - ——

1 2 3 4 5 6 7 9

Number of Processors

Figure 7.5: Absolute active time of a user query for the Master Controller

<

109

profile of the MC’s activities, from which more complex examples can be

compared.

With the LOAD UNFORMATTED query, there is another slight upward
trend noticeable. However, in comparing the magnitude of these idle times with
that of the absolute active times given in Figure 7.5, the increase is not significant.

The idle time is essentially constant in the average AND case.

7.3.4 Relative Active Time

A more meaningful indication of how busy the MC is in coordinating the various
system activities is the relative active time, which is the ratio of active to overall

time based on unit operations. As Figure 7.7 indicates, the MC 1s busy for most of

the time which is available to it. The inconsistent nature of the results for the best
case AND with the 64x64 pixel image can again be explained by the fact that
only one level of the trees has to be processed, and not all slave processors have to

be used to fulfill these processing requirements.

2 -

7.3.5 Relative Idle Time

Figure 7.8 shows the results of the relative idle time for the MC. With the
exception of two runs, I%H of the results are consistent. The best case AND
operation with the 64:(6; image, and the LOAD UNFORMATTED 8x8 query
have relative idle time values which are Sliglltl}" higher than the results of the

other experiments.

7.3.6 Maximum Task Stack Length

This statistic provides some information as to the rate that the MC dispenses with

the tasks which are sent to it by the slave processors.

110

A

. Absolute Idle Time Spent by Master Processor

(LOAD UNFORMATTED operation)
) 1000
5 7
=
E‘;’ 750 \
=3 N\
o \ y —
.H S0.0 [—]
g N—T = —
@ 32233 S
E o=t
= 3,16
3
— 0, 2 3 4 s 6 7 s 9 //
“Number of Processors ‘ K
2
Absolute Idle Time Spent by Master Processor
(average case AND operation)
@ son0 . .
8 223 - -
S .! T
o 50 : ! ;
=% ' i ! | |
0 I | |
= i s H
2500 -
E) ! | | = | i .5
'} » H H ; 3 + ;
£ 1230 ‘&“? ‘ ; : S B B—
= ! i i ?
') Y} l :
= 0o : : e
] 2 3 4 5 6 7 8 9
Number of Processors
Absolute Idle Time Spent by Master Processor
(best case AND operation)
~~
@ 30.0 —
-9 ¢ o N //
é)- 2 4// /_,//
= S pd
5 15.0 / \
o ped I R
P @ \\/
g
=
2
E CLOI 2 3 4 5 6 . 7 8 9

~

Number of Processors

Figure 7.6: Absolute idle time of a user query for the Master Controller

111 -

¥Relative Active Time for Master Processor
(LOAD UNFORMATTED operation)

100.0 ;
I o 163264 | | ——
5 |
:g 750
s
Q
g 500
f=
fry
3 250
/0
0.0 ' T
1 2 3 4 5 6 7 3 9
Number of Processors
Relative Active Time for Master Processor
(average case AND operation)
100.0 = — e e i
8,16,32,64 P S~
7~~~
&
5] 150
R
N’
-5
£ 500
f=
o
5 25.0
m
0.0
H 2 3 4 5 [7 3 9
Number of Processors
Relative Active Time for Master Processor
(best case AND operation)
100.0 } 1 —
|._B.16,32 e s]
o)
A 150 v
BQ 4z
N’
[-5) [
£ 500
f= i
o ;
3 250
m -
a0 i l !
1 2 3 4 5 6 7 3 9

Number of Processors

Figure 7.7: Relative active time of a user query for the Master Controller

112

LY

Idle Time (%oage)

Idle Time (%age)

Idle Time (%age)

Relative Idlc Time for Master Processor
(LOAD UNFORMATTED operation)

10.0 — ;
75
5.0 ‘ 71‘5&?‘
7 322
25 /\!_ i .
L—" i [123(3
! //‘ i ! i 64264
[+10} - :
! r I 3 4 5 6 7 H 9
Number of Processors
Relative Idle Time Spent by Master Processor
(average case AND opceration)
100.0 ’ Y ’ !, 5 : T
75.0 l
i
500
! | . R S S [——
250 —— = ?‘ ==y
163264 !
0.0
| 2 3 4 5 6 7 8 g
Number of Processors
Relative Idle Time Spent by Master Processor
(best casc AND operation) .
100.0 i [] '—r
750 " T |]
T 7 A }
P pd i _—
S
: i ;
250 "‘Grn : i
o i 1 i
1 2 k) 4 5 [} 7) 9

Number of Processors

Figure 7.8: Relative idle time of a user query for the Master Controller

-113

Maximum Length of Task Stack Under Master Processor’s Control
(average case LOAD UNFORMATTED operation)

150
% o
| —~—
%7 11.25
% . : — | i
& 15 |5 313l
Y
S 7///] —]
?o 37 P =t -
= 61 :
3 w
0.0
1 2 3 4 5 [7 8 9
Number of Processors
Maximum Length of Task Stack Under Master Processor’s Control
(average casc AND operation)
20
S
g &
w 15 p S sty pry
%
= — — =
10
“6 P // S~ //
5 = i T&1¢
b0 s] o
g " 8x%
0
4 b 6 7 8 9

Number of Processors

Maximum Length of Task Stack Under Master Processor’s Control

(best case AND operation)
40

Y |

[S)

it

v 3.0

A

(%]

[3°]

&= 20

G

o

5 8163264

& 10 ' :
g !

= 1

. w0 6 7 s 9

! 2 3 4 s

Number of Processors

Figure 7.9: Maximum task stack size in the Master Controller for a uscr query

114

Figure 7.9 presents these results. In the best case AND query, the consistent
LENGTH =1 result for all processor and image combination can be explained by
the fact that there is only one task which must be created and processed. This is
the task which compares the root nodes of the involved trees. With the other two
queI“ies; there i1s a steady increase in length of the stack until P = 3, at which
point there is very little, if any, change. This increase, and levelling off can be
explained by realizing that as the number of slave processors increase, there will
be an appreciable increase in the number of tasks received by the MC. With the

given image sizes, a state is reached where the number of tasks being received by

the MC can be accommodated by the availability of slave processors.

7.3.7 Average Utilization Time for Slaves

The results for the slave processors’ average utilization time is given in

Figure 7.10. With the LOAD UNFORMATTED and average case AND tests,
there 1s an obvious decrease in average processing time being performed by the
slaves as their number increase. One interesting observation is that with the
former. the utilization of the processors does not decrease significantly for P > 3
when compared to P = 3. Of course, this is a réﬂection of the image sizes that we
are using. As indicated in Chapter 3. this special value of P will increase as the
1mage size increases. The results of the best case AIND query are essentially
linear if experimental error is taken into account. This case can really be

considered as a lower limit on the amount of time that is needed by the processors

7.3.8 Average Number of Tasks Processed by Slaves

Each slave processor generates and processes tasks which are needed for the
representation’s operations. The purpose of this criterion is to show the direct
correlation between processor utilization time and the number of tasks that the

slave processors must execute. This is done by comparing Figure 7.11 with that of

115

Average Processor Utilization Time

Time Processor in Use (sec)

(LOAD UNFORMATTED operation)
100 -
46
1.5 \
50 \
o 32332 \
0.0
1 2 3 4 5 6 - 7] 9
Number of Piocessors
Average Processor Utilization Time
(average case AND operation)
—_
3 6
O ‘
5 4 —J
-5 \
= M,
2 3
(7]
8]
(8]
e | =32:32
o
5 16216
£ el m— *
= 1 2 3 4 s 3 7 t 9
Number of Processors
. Ll
Average Processor Utilization Time
(best case AND operation)
160.0
120.0
8.0 T304
T —— o 2] ¥
on oS T~ e —
i ! _
a0) 4 5 6 7] 9

Time Processor in Use (msec) -

Number of Processors

Figure 7.10: Avcrage slave processor utilization time for a user query

116

AV

Figure 7.10. As expected, the trends evident in the first two graphs of both ﬁgures“
are consistent. Comparing the appropriate graphs for the best case AND case,
“there does not seem to be anything in common . The graph in Figure 7.11 is

consistent with that of the LOAD UNFORMATTED, and average case AND.

7.3.9 Average Number of IMU Accesses for Slaves

The distribution of shared memory accesses by the slave proceséors 1s presented in
Figure 7.12. In all cases, the trend is for a decrease in access frequency as P gets
larger. This i1s expected since the number of shared memory accesses is a function
of a PrU’s processing load. The morefﬁsks that a processo; must execute, the

greater the probability that some of these tasks require information from the

shared memory.

7.4 Discussion of Simulation Results

Of the various statistics which have been accumulated during these experiments,
it is the total execufion time which is of most interest. The other criteria may
provide very favourable results which confirm the architecture’s mechanism of
action, but if the execution times are excessive, the architecture would be
unacceptable. Chapter 7.3.1 presented some observations about the exeéution
time, the principal one being that there is a marked decrease in completion time
between P =1 and P = 3 on the two cases (LOAD UNFORMATTED and
average case AND) which require a reasonable amount of processing. For values
of P > 2, the execution ti’mes vary by no more than 10% from the average. Given -
the image sizes which were used. there really is no need to use large values of P.
Using the equations of Chapter 3. and considering the trends shown in Figure 7.1,
querles involving larger image sizes will follow the same pattern as here, with an

appropriate P providing a lower limit of consistent execution time.

117

Number of Commands Received

Number of Commands Received

Number of Corhmands Received

Figure 7.11: Average number of commands cxecuted by a slave processor

The Average Number of Commands Received by Processor

(LOAD UNFORMATTED operation)
3200.0 7
2400.0 “x@\
1600.0
soag |22 N
'\ _\%
8,16 I
0.0
1 2 3 . 4 5 [7 L]
Number 6f Processors
The Average Number of Commands Received by Processor
(average case AND operation) :
6000 64x64
N\
4500
N
3000 \\
T~
\>
1500 1 ‘__‘S n
T
0
1 2 3 4 5 6 7 8
Number of Processors
The Average Number of Commands Received by Processor
(best case AND operation)
100
15 \S{G’-z'“
N
25 ~
. QD
i 2 3 4 5 [7 g

Number of Processors

118

The Average Number of IMU Accesses by Processor
(LOAD UNFORMATTED operation)

§ 3000.0 TV
b,
g 500 K2 sas{ N\
N
< N\ ~.
E \\ F
]
“5 TN B
|
750.0
- Tl —~— |
S &g] T
0.0 -
< 1 2 3 4 5 6 7 s 9
Number of Processors

The Average Number of IMU Accesses by Processor
(average casec AND opcration)

;‘:’ 4000 T < inid
b N
< \\ |~
T
D \ \\ .
E 2000 Y {
5)
o 1000 16216 \\\‘
[—

—g] o ’

818 1|
pa 0

1 2 3 4 s 6 7 s 9

Number of Processors

The Average Number of IMU Accesses by Processor

(best case AND operation)
S 0
w2
(%]
8 5163264
é:’ 15.0
E 10.0 \\
Yt \\
o o=
t-. |~
_g 50 ~ |

]

z‘ Q0 6 7 | 9

1 2 3 4 5
Number of Processors

Figure 7.12: Average number of memory accesses by the slave processor

119

The actual execution times obtained during this simulation are measured in

' units of seconds, which may sugges\b that the architecture is very ineflicient for
even small processing tasks. However, the implementation-is entirely
software-based, and uses the relatively slow method of message passing to
transmit tasks from one process to another. If the number of unit operations given
for the absolute active times of the MC are assumed to fake lusecond each to
complete, an operationisuch as a binary AND on a 64x64 pixel image requires a
favourable 11 milliseconds. The simulation of the interconnection network also
contributes to the inflated execution times. If the magnitude of these quantitative
results are ignored, the obvious trends indicated by this simulation do reflect the

system’s anticipated behaviour under various situations.

Although the‘network is a major cause of the slow execution times, it itself is
dependent upon another component of the system. This is the number of shared
‘memory modules. With such a small number of modules (4), the number of
accesses to these modules will be much higher than if there were more modules.
By increasing the module count, there will be fewer accesses per memory unit.
This reduction in contention will also lower the execution times. The figure of
merit ratios can be expected to improve-significantly as a result of this. Obviously,
if the application involves a large data size, it will be beneficial to have a large .

number of memory modules..

Figures 7.3 and 7.4 were included to consider more complex images. The
differences in execution times can again be attributed to the/o\s\erhead resulting
from contention through the network due to an insufficient number of memory

modules.

The increasing size of the task stack for' larger data sets being accessed by the
MC requires thafits local memory be of sufficient size to accommodate such a
large data structure. It is highly unlikely that there are a sufficient number of
hardware registers on the processing chip to store all of these tasks. One option

availlable to the designer is to place the top R tasks which are on the top of the

120

1

o)

stack into the chi‘p’s R stack registers. Newly arrived tasks to the MC are placed -
on this stack, while those tasks at the bottom of these registers are sent tothe

MC’sb‘local memory. The tasks at the top of the stack are the most volatile; and T
by placing them into fast hardware registers, they can be dispatched to the next

available slave processors quickly.

As the results indicate, the extent to which the MC is occupiéd with its
_proceséing, essentially just task scheduling, is dependent upon both the type of
query and image size. Large images may be processed quickly if the query is as
straightforward as the best case AND. Moderately sized images may require more
procefsing time if the query is similar to the average case AND. The processing -
load on the MC can provide a bottleneck if it is proceeding at full capacity. One
method of reducing this possibility is to use the alternative suggested earlier, that
of allowing the slave processors to dostheir own scheduling. A second approach is
to distribute the processing loacAl between additional MCs. With this latter
method, questions such as how ;Jvill tasks fbe allocated to the MCs (possibly via a
shared memory scheme), and what is the ‘Bpt—]mum number of MCs are raised.

Neither of these alternatives have been simulated for this dissertation.

With respect to the slave processors, observations have been made which
indicate that after some value of P for a given image size and query, there is not
that great of an improvement in processing times. As tc; the ramifications of this
point, the designer must consider the application’s data and operation set.
Initially, some minimal valiie of P may be sufficient for a start-up system.
However, as the needs of the application increase, fa;ilities must be in place to
allow for the a:ldition of more slave processors. One concern is that of procéssor
cost. If this cost is prohibitive, the number of slaves used should be that of this

\

optimal P.

™~

4

Chapter 8 Discussion

&

8.1 The Representation

Before the three architectures designed for the ZJY—ziry tree can be discussed, it 1s
necessary to consider the representation itself. By using straightforward set
theoretic principles, it has been possible to define a general represéntation which
has a very broad range of applicability. The large number of operations provided
by set theory makes this representation even more attractive to the user. If it is
possible to define a collection of objects as a population, then it is’possible to use
our defined set represqn‘;ation on these objects. Another critical property of this
representation involves the fact that subsets of objects wilthin an instance of the
representation are disjoint entities. Therefore, it is possible to apply any valid
operation on these subsets in parallel. Understandably, the parallel execution of

an operation will be completed before its sequential version does.

/

A transformation was éerformed on this general set repres;(}rﬁtion to give us
the 2V-ary tree representation. The opefzf;tiéns and properties of the set
representation are also valid within the scope of the 2V-ary tree. This
transformation confers some order upon this new scheme, which simplifies the

process of developing simulation models to test these properties and dperations.

Each of the three architectures presented provide a significantly different
approach in implementing this 2V-ary tree representation. At one extrepﬂe, we

have the mapping of binary trees onto a VLSI array of px}'écessing elements, while

122

| o
at the other, the syst-em configuration consists of shared memory and a linear
arrangement of high-level processing elements that execute tasks froma -
sophisticated Master Controlier. Intermediate to these two systems is the
architecture utilizing linear arrays of processing elements that are linked via ,

2N_ary tree mappings on interconnection networks. Each offers certain advantages

over the others. / ‘ ‘ .

8.2 Performance ‘

Obx’iousl}', performance is one feature which must be considered in any
comparison or evaluation. The shared memory simulation has provided the only
results from which the V'ali(iig,}' of the theoretical analyses can be determined.
Someé of the results were discussed earlier in the dissertation. Based on these
results. a primary observation is that the number of memory modules in the
system 1s critical. 'The complexity of the interconnection network is directly
related to this number. Therefore, what may be considered as a deficiency in the
network capability can actually be attributed to the memory modules. With the
svstem that was tested iéﬁhe éimulation, ﬁi{e Interconnection contentien was

definitely a result of the small number of modules.

With the other architorrures‘. we Caﬁ compare the time-complexity for the
execution of binary operations. From Equati®h 4.4, we see that the complexity for
the PE-ICN svstem i1s O(2Y L). where L = log,» P+ 1, and P is the number of
objects in the instance. In the original analysis, the pixel width w was used in
place of P, but the relationship P _ w? makes these two entities interchangeable.
For the VLSI system. the time complexity of a binary operation is O(L?). Here,

L =log, P. For the case of N = 1 in the PE-ICN system, we are actually
mapping a binary tree onto the rows of processors. A direct comparison to the
binary tree mapping on the V'LSI array shows that the former architecture is

faster by a factor of L. A general comparison between these two complexities may

123

be made with the following approximation:

Pyist = Ppe-icn | ~(81)

L?* = 2Vlog,n P (8.2)

log2P = 2Vlog,w P (8.3)
Nlogiv P = 2Vlog,v P (8.4)
N%log,wn P = 2V (8.5)

Using Equation 8.5 as a ratio between VLSI and PE-ICN timeé, as the value of
N increases, it will take the latter system significantly mdre time to complete the
same type of operation. The major contributing factor to this relatively fefficient
PE-ICN system is the time required to pass children values to a parent node in a
sequential manner. If this can also be performed in parallel, the complexity of
passing through a tree is reduced from O(2VL) to O(L). The above comparison
with the PE-ICN system has used the case where the number of levels in the
trees is less $han the number of PE rows. If we have the opposite case, then it 1s

even more ob¥ious that the VLSI system is more time efficient than the PE-ICN

system. 7

8.2.1 Multi-operand and More Diverse Operations

The operations thatj‘\‘ave been considered to this point have either required single
or double operands.“There are two approaches that can be used in evaluating
querles that require more than two parameters. As the representation provides a
significant number of set-tvpe operations. it is possible to use principles Ts‘uch as
associativity, commutativity. distributivity. and DeMorgan's laws to reconstrugt
the query as a series of binary operations. For example, the query 4 U B U C can
be evaluated as (4 U B) UC. where the result of A U B becomes the other operand

for the second union operation. The second approach involves the sequential

evaluation for each level of the operand trees. before the lower levels are

124

considered. With an example as AN BN C, the intersection of the root node for A
and B is stored temporarily in the processing element so that the root for C can -
be obtained and applied with this value on the intersection operation. If

necessary, subsequent tree levels can be processed in a similar manner.

The most efficient architecture in this case is that system which stores similar
trees in the same memory module, be it in shared memory or as part of a
procéssing element’s local memory. The VLSI binary tree and shared memory
schemes are significantly more effective than the PE-ICN architecture. The
binary tree has one root node, so that all tree instances must begin ‘at this PE.
Each PE has sufficient storage to accomodate a number of trees. The bit-serial
feature also allows for quick node retrieval of the necessary trees from this local
memory. The shared memory system can also process such requests. If equivalent
node; of R operand.trees are stored in the same memory modules, the PEs
maintain their i)aths through the ICN‘ for R read cycles. This allows sufficient
time for the R nodes to be passed to the requesting PE. The PE-ICN system is
the most ineffective method of the three architectures in that equivalent tree
instances may not be stored using th&same type of switch settings through the
various ICNs. This requires that additional synchronization steps be taken to

allow values along a processor row to be passed between PEs to bring the required

node values together in one PE. L

The operations that have been used in the simulation and the various analyses
are set based . However. there exist other algorithms that use the 2V-ary tree data
structure which are not. Some of these include raster-to-quadtree conversion [34].
and location of nearest-neighbours [39]. Features of the representation, such as
disjoint subtrees. still exist. The sequential form of the algorithms will have to be

modified ro take advantage of these properties.

-
]
(]

8.3 Consideration of Large Databases

The test cases considered in the simulation have involved relatively small data
sets. In applications such as geographic information systems, data representing
areas spanning many kilometers must be transformed into the tree scherpe. For
example, if a region of about 1000km? is mapped to 100 meters, it is necessary to
generate a 13-level quadtree. The complete tree requires approximately 90x10°
nodes. Attempting to map such a tree onto either of the first two architectures
would be very difficult due to the tremendous number of nodes that are involved.
The folding tree mapping of the P-INA system would most probably be required.
Task synchronization between levels would be very difficult to maintain if multiple
tree foldings are needed. The shared memory system provides a reasonable
solution as the tree can be easily managed in the memory modules. The
interconnection network can also be expanded easily 1f more memory units have to

be added.

In the case of systems \xtith a limited number of modules, it is necessary to
divide the trees‘into subtrees of consistent deptli. While the top block of subtrees
occupies the modules, the next block can be brought into the channel bufters from
secondary storage. The transfer of information between these two components 1s
potentially an input/output bottleneck that must be résolved. A high-speed data

bus between the buffers and modules can facilitate the swapping of these subtrees.

8.4 Fault Tolerance

One issue to consider is the fault tolerant behaviour of these systems. Fault
tolerant computing can be defined as the process by which an algorithm 1s
executed correctly even in the presence of defects in the system [40]. Of course, it
1s assumed that algorithim has been implemented in the appropriate fashion. A
failure can be considered as some physical damage while a fault 1s generated

whenever some logical valne differs from its expected value. One approach to

126

make a system fault tolerant is through redundancy. This can be in the form of
repeated calculations, or through extra hardware and software. The more
econemical option available to the designer in handling permanent faults that are
caused by some failure is to use hardware redundancy. However, if we are dealing
with faults that are caused by some system inconsistency or external influence, the
practical solution involves repetitive calculations. The following discussion on the
fault tolerant behaviour of each system is very general, and no attempt is made at
providing an in-depth analysis of concepts such as fault detection, diagnosis,

isolation and repair.

The shared memory and V'LSI array systemnis provide a greater number of
advantages when compared to the alternating PE—ICN scheme. From a high level
perspective, memory is less prone to malfunction that the more complex
processing elements. with components such as the CPUs and ALUs. The shared
memory modules of our third architecture provide stability to the system. If any of
the memory modules do happen to malfunction, entire subtrees of objects may be
lost. This requires that memory backups be done at regular intervals. Cn a finer

scale. data corruption can be controlled using error-correcting code on memory.

With the shared memory svstem. the PEs, and MC are the critical
components which must be protected with some fault tolerant mechanism. If the
MC malfunctions. the entire svstem will shutdown. In the event of an MC
breakdown. an alternate MC may continue in its place. The results of the
simulation have shown that after a certain number of processors P in an £ PE
system. where £ > P. increasing P will not result in exceptionally great advances
in throughput. These £ — P PEs can be considered as the redundant component.
The MC's scheduling mechanism does not require any significant action in the
case of a PE malfunction. A signal is received from the defective PE to indicate
that 1t is in a fallure state. and to allow the MC's table of available slave
processors to be modified ro reflect this component breakdown. Scheduling of

tasks continues with this rediiced number of PEs.

127

The shared memory system is very modular, consisting of memory unité, and
different processor units. Each of these may reside on an individual microchip. If
" any of these modules become faulty, they can be isolated from the rest of the .

system. Repair may only require that the unit be replaced by a similar module.

In the case of the VLSI array, the situation presented by Youn [50] calls for
interconnection buses to run horizontally and vertically between the PEs ofé
module. At each bus junction there exists a switch which affects the four PEs
that surround it. Regardless of whether we are dealing with interior or leaf nodes,
a switch is used to connect a parent node to its two children, thus leaving one
redundant PE per four-unit cluster. If a PE in a cluster malfunctions, the extra

PE can be switched on in its place.

The situation presented by the alternating PE-ICN architecture is
significantly more complex. There are two additional module types to contend
with. those which are responsible for controlling the rows of slave processors, and
those that control the ICNs. The major concern arises with the ICNs. There
may also be multiple mappings through the ICNs in the case of representatioh
instances which require more tree levels than there are processor levels. The ICNs
must function properly otherwise these fnappings will be corrupted. There is some
inherent redundancy in the system. In Chapter 4.2.2, it was shown that for the
2:\'—ary tree with E slaves per row. we have a situation where for some row r, any
E

>+ PEs can be used for the row mapping. There are then E — 5’% PEs in this row

r which provide adequate redundancy.

8.5 Expandability

Expandability of systems is another feature to consider in comparing these
svstems. The modularity of the shared memory architecture makes it relatively

simple to enhance. If extra processing power is needed. additional slave processors

may be added. ese extra slaves may require that additional switch levels be
&

128

added to the ICN. Increasing the number of memory modules may also be
necessary. These additions will have little affect on the MC and its task
scheduling. Of course, the controller will have to be notified of these extra slaves,

but the scheduling procedure remains the same.

The PE-ICN is also very modular, and the vertical expansion of this system
by adding extra rows of slave processors is straightforward. Connection networks-
between these new rows will also have to be included. However, the situation is '
more complex if it is decided to add extra slaves to a particular row. This type of
horizontal expansion requires that each row of processors also get the same

number of additional slaves. This is necessary, otherwise adjacent interconnection

networks will be inconsistent in size and complexity.

‘With the VLSI system, a single microchip may consist of an X'-level binary
tree, where X is some reasonable value such as 4 or 5. This can be considered as
the basic building block. Connecting some of these chips into a cluster allows trees
of greater depth to be stored and processed. However, as these clusters become
greater in size and occupy more area, the distances-between adjacent clusters also
increases, resulting in increased communication times. Minimization of these
distances through alternative clustering techniques will make expansion of this

system worthwhile.

8.6 Other Comments on the Architectures

In designing the VLSI archifecture, the use of a binary tree mapping of the
processing elements of the array was the most beneficial. The binary tree provides
a compact structure because of its small fan-out. In trees with greater fan-out,
such as the quadtree and octree, the structure requires more area to connect all
children to a parent node. \Vith' this greater area, there are more unused
processing elements on the array unless some irregular mapping scheme can be

developed. Another reason for using the binary tree involved work which has

129

already been done on binary tree mappings by different research groups. Efficient
mapping schemes that incorporate some interesting features have been devised for
the binary tree. For example, consideration of fault tolerance has been included in
these mapping schemes. Even with these features in favour of the restricted
2N_ary tree mapping, the question may still arise as to why not use a mapping for ~
N > 1 where there will be fewer levels in the tree, and therefore, faster processing
times. To this, one may answer that the compactness of t}r‘l‘(i“ binary tree more than
compensates for this need of extra levels in ;:he tree. One consequence of this is
that the interprocessor distances are much smaller. Thezefore, there will be less

delay in travelling between these additional levels. In addition, the advances being

made in VLSI technology allows for more complex and faster processing elements.

The discussion to this point can be summarized as presented in Table 8.1. The
relative ranking is, for the most part, a subjective measure of the expandability,
fault tolerant capability, performance, and complexity of each architecture. The
shared memory approach is the most favourable of the three, while the P-INA

structure is least effective.

A fair indication of the overall cost effectiveness of the three systems is
provided by the above rankings and criteria. The shared memory architecture’s
features make it an attractive system. With the cost of microprocessors and
memory decreasing, justification for the use of this system, which relies heavily on
these two components, is obvious. The interconnection network can be readily
expanded to accommodate any reasonable increase in system requirements. The

simple structure of the switching elements also translates to cost efficiency.
N

With our other two svstems. 1t 1s more difficult to present arguments in favour
of their cost effectiveness. Because of the effort required to develop and set up
these systems. one may counter that a powerful uniprocessor with the necessary

.software implementation of the representation is preferred. The task facing the
clesigner is to arrive at a decision based upon these options. There is no hard and

fast rule which stipulates when a multiprocessor based system should be used.

130 >

P-INA B C C C
VLSI-based C B A A
Shared memory A A A-B A

Relative ranking: A - best
~ B-OK
C - not too good
| ---- Expandability
Il --—- Fault tolerance

I ---- Performance.

IV ---- Complexity

Table 8.1: Relative ranking of the three systems

131

8.7 Consideration of Alte\fffggative_Architeétures :
. 3 ’5{: b

e

+
PR 3

e ——e -

- The architectures which ha\-/é beegﬂzglfeéé;lt‘ed'are Lhree methods by which the

2N ary tree représentation can be ifn;)lemented. Recent advances in parallel
processing have introduced further alternatives for the system designer to select
from in taking advantage of the 2V-ary tree’s properties. For example, the .
hypercube topology has been used at Caltech in the development of the Cosmic
Cube [38]. General purpose parallel computers, such as Intel’s iPSC personal
supercomputer with its 32, 64, or 128 processing nodes connected in a hypercube
arrangement, are now becoming commercially available. With tfle 1PSC, 16-bit

microprocessors are used as nodes, with 512K bytes of memory. Adjacent nodes,
-

are connected via ethernet links which allow for 10Mbit per second transfer rates.}

The nature of the hypercube model éllows for different applications to use the
same structure. For example, computationally Intensive applications such as
computer vision have successfully used the hypercube to achieve useful
improvements in processing times [26]. Within the context of the 2™¥-ary tree
scheme, algorithms have been developed to embed trees into hypercubes [46]. The
binary tree approach has been found to be one of the simplest structures to
embed [8]. To re-emphasize a point made earlier, the case in using the binary tree

topology to solve the current problem justifies its use.

Work at MIT resulted in the development of a massively parallel computer
which consists of a SIMD array of 256K one-bit processors [45]. The Connection
Machine uses two communication networks. one linkingvnearest neighbours, and
the second allowing for Communication‘ between any two arbitrary processors.
This second network can then be used to generate a tree composed of processors.
The size of the Machine makes its general availability restrictive. For example, it
can support eight front-end computers. most of which are either VAX or
Symbolics LISP Machines. 4096 microchips are used, each of which contain 16
processors. The processors are arranged as 12-dimensional hypercubes with 16

processors at each vertex. The Machine essentially functions by generating a

132

solution tree for the problem, and then dynamically pruning the tree through the
broadcasting of necessary constraint conditions for the probI@m to all of the
processors. One problem with such a scheme is that the entire tree be first
mapped onto the array. New techniques have been developed for the Connection
Machine which allows it to selectively grow specific regions of the tree, prune these
subtrees, and then generate new levels [14]. Applications for which the Connection
Machine has proven to be successful in generating solutions include VLSI circuit
simulations, machine learning, modeling of fluid dynamics, pattern recognition,
and image processing.

A third type of general purpose architecture which’}}as been successful as a
parallel computer is the DADO processor [43]. The cu/rrent prototype consists of
1023 processors all connected in a complete binary tree. The DADO project
builds on the work of Bentley and Kung [7]. Applications for which the DADO
architecture has shown to be very efficient include logic programming, relational

database, and pattern recognition.

133

Chapter 9 Conclusion

A3

The original intent of this dissertation was to develop an architecture which
utilized the inherent parallelism of the 2V-ary tree representation. The primary
application of this representation and architecture was computer graphics. As the
research progressed, two additional architectures were developed, both of which
were significantly different in structure. The nature of the representation and its
operations are such that a general representation can be defined based on set
theory. This new representation can be used in many different applications, such
as image processing, computer animation, database processing, and general

information systems.

In addition to the wide range of applicability for this representation, its basis
in set theory allows for the use of many operations, most of which are derived
from equivalent set theoretic functions. Another property of this representation is
the manner in which components of an instance are defined as being disjoint
subsets of the instance. It is this feature which allows the operations of the

representation to be executed in parallel. :

Once the 2V -ary tree representation was defined as a transformation of the
general set theoretic representation, it was possible to proceed with an analysis of
the effectiveness of executing these operations in parallel. This parallel time step
analysis was performed on the.quadtree. but the reasoning used in the analysis
could be extended to the general 2 -ary tree case. As expected, the primary

results of this analvsis have shown that there is indeed an 1mprovement in

134

performance if multiple processo%!éire used. A significant difference in execution
time is evident in just going from a uniprocessor to a dual processor environment.
However, one interesting observation that the analysis presented was that after
some particular value for P (the number of processors used), the difference in
execution times is negligible. This value of P was dependent upon the size of the

object being representged, and the operation being performed.

The first architecture which was developed for the representation ma@’s’e of
alternating rows of slave processors and interconnection networks. T};z basic idea
was that the 2V-ary tree would be mapped on top of this array of slaves and
networks. The sLave processors represented the nodes of the tree while the
networks provided the links or edges between parent and child nodes. It was
determined that if the number of rows of slaves exceeded the number of levels in
the trees using the system, then the implementation was worth pursuing.
However, if multiple mapplngs were needed, as in those cases where there are
insufficient processor rows. thgn the processor a.nd scheduling overhead necessary
to accommodate these mappings far exceeds the benefits of the system. An
alternative solution which avoided this multiple mapping made use of more
complex slave processors that allowed actual subtrees of instances to be stored at

each leaf slave. If primitive sla\éivere used. then only one node value would be

stored in each processor.

In the case of the VLSI-based architecture, a binary tree topology was used in
the processing element mapping. The use of the binary .tree was justified on a
number of points. The architecture was also shown to perform more effectively

than the PE-ICN system for large values of V.

Our last svstemn was designed using shared menwdules a series of slave
processors. and a master controller y approach used the Jbenefits of both
current hardware and software developments. Unlike the previous two schemes

which stored tree values wirhin the processing elements themselves, this approach

used the memory modules for ttee storage. The processors simply processed the

135

)

tree values. This required that the slaves communicate with the master controller,

-

which handled all of the scheduling duties of the system. The simulation thaewas
developed for this architecture produced results which were consistent with those
presented-in the preliminary quadtree analysis. Specifically, theré was considerable
improvement in execution times for binary operations as the number of slaves
increased. However, a levelling off in execution time was noticed after a ‘cAritical

number of slaves was reached. 4

Of these three architectures, the simplest to actually implement would be the
latter. The modular nature of the system would permit the use of existing
hardware such as microprocessors, and memdry microchips. The interconnection
network linking the slaves to the shared memorsf could be constructed from simple
2x2 crossbar switches. The alternating row scheme, although modular-in nature, s
more complex with the added controllers, and multiple interconnection networks.
The VLSI array would require that the actual binary tree be laid out onto the

chip. The most likely method would require the use of laser technology to set the

2

appropriate switcli.

_The Discussion klosed ‘ZSth Brief descriptions of three powerful general-purpose
~ architectures that permit mappings of trees. The considerable size of these

architectures from the standpoint of processing elements indicates that issues such
as communication difficulties, and memory contention have been successfully
addré@d. A representation such as the 2V-ary tree could be effectively
implemented on any of these structures. The multidimensional arrangement of the
Connection Machine's hypercube and point-to-point communication facilities
makes the actual mapping of a 2V-ary tree more possible than with the DADO

machine, with its restricted topology.

To conclude, 1t is necessary, to re-iterate a number of points which have been
explicitly statelad or at least implied as the dissertation progressed. The approach
to be taken in the implement ation of the representation must be one which is both

cost effective and sufficiently fast to satisfy typical user requests. If the situation is

136

(j% .

such that a fast uniprocessor can fulfill the needs of the application, then it should
be considered as a candidate solution. The technology, facilities, and components
necessary for the system must be available. Compromise is a term which

contributes significantly to the selection process in system design.

.

137

- Bibliography

[

D. J. Abel. Some elemental operations on linear quadtrees for geographic
information systems. Computer Journal, 29(1):73-77, 1985.

M. J. Atallah and S. R. Kosarajo. A generalized dictionary machine for
VLSI. IEEE Transactions on Computers, C-34(2):151-155, February 1985.

J. L. Baer. Computer Systems Architecture. Computer Science Press, Inc.,

Rockville, Maryland. 1980.

K. E. Batcher. Bit-serial parallel processing Listems. IEEE Transactions on
Computers, C-31(5):377-384, May 1982.

K. E. Batcher. Sorting networks and their applications. In AFIPS Conf.
Proc. SJCC. pages 307-314. Thomson Books,” Washington D. C., 1968.

V. E. Benes. Mathematical theory of connecting networks and telephone
traffic. Academic Press. New York. 1965.

J. L. Bentley and H. T. Kung. A Tree Machine for Searching Problemas.
Technical Report CMU-CS-79-142. Carnegie-Mellon University. 1979.

S. R. Deshpande and R. M. Jenevein. Scalability of a binary tree on a
hypercube. In Proceedings Int. Conf. Parallel Processing, pages 661-668.
19086.

D. Dias and J. R. Jump. Analyvsis and siinulation of buffered data networks.
IEEE Transactions on Computers. C-30(4):331-346. April 1981.

L. J. Doctor and John G. Torborg. Display techniques for octree-cncoded
objects. IEEE Computer Graphics and Applicdtions, 1(7):29-38. July 1981.

C. R. Dyver. A. Rosenfeld. and H. Samet. Region representation: boundary
codes from quadtrees. Communications of the Association for Computing.

23(3):171-179. NMarch 1980.

P. H. Enslow. NMultiprocessor organization - A survey. Computing Surveys,

0(1):103-130. NMarch 1977.

3

A. L. Fisher. Dictionary machines with a small number of processors. In 11th

" Annual International Symposium on Computer Architecture, pages 151-156,

June 1984,

J. G. Harris A. M. Flynn. Object recognition using the connection machine’s
router. IEEE Computer Vision and Pattern Recognition, 5:134-145, 1986.

I. Gargantini. Linear octtrees for fast processing of three-dimensional ijects.
Computer Graphics and Image Processing, 20:365-374, 1982.

D. Gordon, I. Koren. and G. M. Silberman. Embedding tree structures in

VLSI hexagonal arrays. IEEE Transactions on Computers, C-33(1):104-107,

January 1984. e

~. -

A. C. Hartmann. Software or silicon? The designer’s option. In Proc. IEEE,
pages 861-874. June 1986.

E. Horowitz and A. Zorat. The binary tree as an interconnection network:
applications to multiprocessor systems and VLSI. IEEE Transactions on
Computers. C-30(4):247-253, April 1981.

G. M. Hunter and K. Steiglitz. Operations on images using quad trees. JEEE
Transactions on Pattern Analysis and Machine Intelligence.

PAMNI-1(2):145-153. Apnl 1979.

C. L. Jackins and S. L. Tanimoto. Oct-trees and their use in representing
three-dimensional objects. Computer Graphics and Image Processing,
14:249-270. 80.

T. Lang. M. Valero. and M. A. Fiol. Reduction of connections for multibus
organization. IEEE Transactions on Computers. C-32(8):707-716. August
1983.

D. H. Lawrie. Access and alignment of data in an array processor. IEEE
Transactions on Computers. C-24(12):173-183. December 1975.

A. Levy. Basic Set Theory. Springer-Verlag, Berlin, Heidelberg. New York,
1979. :

C. Mead and L. Conway. Introduction to VLSI Systems. Addison-Wesley,
Reading. Maine. 1980.

D. Meagher. Geometric modeling using octree encoding. Computer Graphics
and Image Processing. 19:129-147. 1982.

- T. N. Mudge. Vision algorithms for hypercube machines. JEEE Computer

Architectures for Pattern Analysis and Image Database Management.
3:225-230. 1935.

139

[27]

0]

41

?

G. Nagy and S. Wagle. Geographic data processing. Computing Surveys,
11(2):139-181, June 1979.

D. Nath, S. N. Maheshwari, and P. C. P. Bhatt. Efficient VLSI networks for
parallel processing based on orthogonal trees. IEEE Transactions on °
Computers, C-32(6):569-581, June 1983.

L. M. Ni and C. E. Wu. Design trade-offs for process scheduling in tightly
coupled multiprocessor systems. In Proceedings IEEE 1985 Intl. Conf on
Parallel Processing, pages 63-70, 1985.

T. A. Ottmann, A. L. Rosenberg, and L. J. Stockmeyer. A dictionary
machine (for VLSI). IEEE Transactions on Computers, C-31(9):892-897,
September 1982,

A. A G. Requicha. Representation for rigid solids: Theory, methods, and
systems. ACM Computing Surveys, 12(4):437-464, December 1980.

R. Rettberg and R. Thomas. Contention is no obstacle to shared-memory
multiprocessing. Communications ACM, 29(12):1202-1212, December 1986.

A. Rosenfeld. Tree structures for region representation. Map Data

Procesaing, 137-150. 1980.

H. Samet. An algorithm for converting rasters to quadtrees. IEEE
Transactions on Pattern Analysis and Machine Intelligence.

PAMI-3(1):93-95. January 1981.

H. Samet. The quadtree and related hierarchical data structures. ACM
Computing Surveys. 16(2):223-260. June 1984.

H. Samet. Region representation: Quadtrees from binary arrays. Computer

Graphics and Image Processing. 13:88-93. 1980.

H. Samet. Region representation: Quadtrees from boundary codes.
Communications of the Association for Computing, 23(3):163-170, March
1980. ’

v

C. L. Seitz. The Cosimic Cube. Communications of the Association for
Computing. 28(1):22-33. January 1985. ‘

1ML Shneier. Caleulations of geometric properties using quadtrees. Computer

Graphics and Image Processing. 16:296 302, 1981.

D. P. Siewiorek. C. G. Bell. and A. Newell. Computer structures: Principles
and eramples. McGraw-Hill Book Company. New York, New York. 1982.

K. O. Siomalas and B. A. Bowen. Performarnce of crossbar multipr;)cess
svstems. [EEE Transactions on Computers. C- 32(8):689-695. August 1983.

140

[42] S. N. Srihari. Representation of three-dimensional digital images. ACM
Computing Surveys, 13(4):399-424, December 1981.

[43] S. J. Stolfo. Initial performance of the DADO2 prototype. IEEE Computer,
75—83, January 1987.

[44] J. K. Udupa, S. N. Srihari, and G. T. Herman. Boundary detection in
multidimensions. IEEE Transactions on Pattern Analysis and Machine
Intelligence, PAMI-4:41-50, 1982.

[45] D. L. Waltz. Applications of the Connection machine. IEEE Computer,
85-97, January 1987.

[46] A. Y. Wu. Embedding of tree networks into hypercubes. J. Distributed
Computing, 2:238-249, 1985.

[47] C. Wu and T. Feng. On a class of multistage interconnection networks. IEEE ~
Transactions on Computers, C-29(8):108-116, August 1980.

(48] W. A, Wulf and G. C. Bell. C.mmp - A multi-miniprocessor. In AFIPS
Conf. Proc. FJCC, pages 765-777, AFIPS Press, Montvale, N. J., 1972.

[49] M. Yau and S. N. Srihari. A hierarchical data structure for multidimensional
digital images. Communications of the Association for Computing,

26(7):504-515. July 1983.

[50] H. Y. Youn and A. D. Singh. On Area Efficient and Fault Tolerant Tree
Embedding in VLSI Technical Report CS-87-151, University of

Massachusetts, 1987.

141

