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Abstract 

Significant technological advances in such fields as computer architecture and very 

large scale integration have made it feasible to consider firmware-based 

alternatives to soine systems traditionally implemented in software. Some form of 

reprcsentatiori can usually be-found for the underlying basis of such systems. If 

t hbsc rcprescnt a t ions can bc implemented using the new designs and techniques, 

increased systc~n perfor~nance can he achieved. 

JVc investigate one such representation, based on the 2"-ary trec, which has 

hccn successfully implemented at the software level. Its broad scope of 

applicability motivates the investigation of possible firmware alternatives. Since > 
m o t  her feature of this representation is the inherent parallelism of its operations, 

and estensivc work is also I>eing performed in the area of concurrent archtectures. 

a pr ima~y objective was to clcsigli thrcc such architectures for this representation. 

-4s secondary object ivcs. a set - t heorctic represent ation from which our scheme can 

be transfornled was described and its parallel characteristics were analysed. 
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Chapter 1 ~ntroduction~ 

Two issues whch must be considered by the systems1 designer in planning 

cornput cr-based applications are the data representation to be used (particularly 

from thc pointas of view of stor ge and operations) and its implementation. A 7 
rcprescnt ation must he chosen which fillfills the requirements of the application. 

This representation may take the form of some previously defined scheme, a 

modification ofXEXliEr representation, or the task may he such that an entirely 

new represent at ion is needed. 

Traditionally, it was onlj- necessary to consider software implement ation smce, 

liardwarc implementation was not feasible. In recent ye rs, the focus of study 
i d 

twtx-ecn software versus hardware techniques has shifteth;tn the direction of the 

latter. Processors have evolved from the ungainly units of b t e 1950's and 1960's' 

to the single 32-bit microchip of the 1980's. There has been a progression from 
h 

ferrite core memory to CD ROhl 1-LS13 has provided a means of placing more of 

the co~nputer's hardware components onto the microchip, while at the same time 

i~ilproving upon component performarice. Developments such as these have made 

~t nccrssary for the systc~ns designer to become aware of the llardwarc 

arcli tcc t ures which are available. 

It has bccn suggcsted that prior to these advances, it was possiblc to divide 

?-<tern functionality into three distinct classes: applicat b r i  specific soft war(.; 

'Let a s y s f ~ m  refer to the  da ta  and s e t  of tools applicable to thc task at h a n d .  

'CD R O \ I  - Compact Disc Read O n l y  hleniory.  

'i'I,SI ]'pry Large  Scalp Integration. 



Traditional Trends Anticipated Future Trends 

A - General purpose hardware 
B - General purpose software 
C - Application specific software 
D - Application specific hardware 

Table 1.1: Relative Division of System ~ u n c t i o n d i t ~  

general purpose software, and general purpose hardware [17]. The anticipated 

future breakdown would involve an additional category, that of application specific 

hardware. Table 1.1 presents an estimation of the relative contribution of each 

class to this functionality considering present and anticipated trends. 

System performance analysis is another issue that the designer is required to 

address. Candidate solutions must be evaluated on various criteria, and a decision 

made based Qn these results. The task facing the designer is compounded by the 

fact that thc two estremcs of the solution, that is, an entirely software or 

VLSI-based approach, may in fact only provide a partial solution to the overall 

problcm. Another point to consider is that neither of these extremes may provide - 

the most efficient solution. A compromise may be necessary to provide the the 

most attainable and efficient overall solution. 



This dissertation addresses two specific tasks. The first involves the 
b 

development of a set - t heoret ic represent at  ion scheme. The second considers three 

system archtectures which are designed for one form of this scheme and its 

associated properties. As will become apparent in the following section and 

chapters, a represent at ion defined using a set- theoret ic approach is very powerful 

in terms of its scope, ahd in the number of operations possible. It will be shown 

that the zN-ary tree scheme is a transformation of this set representation. 

A further implication of this set-based represent at  ion concerns the order in 
\ 

which operations are executed on the entities of a particular application. Tasks 

can be executed in a sequential or parallel manner. The operations on the 2N-ary 

t,ree a.re inherent,ly parallel, and it is this fact which is exploited in developing 

viable architect w e  alternatives to the representation's software implementation. 
4 

The remainder of this chapter discusses the criteria necessary for designing and 

el-aluating a representation scheme, followed by an expansion of some of the 

reasons presented earlier for the importance of hardware and VLSI technologies in 

systems desigx. A particular focus is the motivation behind developing an 

alternative to the software approach to zK-ary trees. The chapter concludes with 

an informal definition of the 2"-arY tree, and a presentatioI.1 of typical algorithms 

for t,hese trees within the scope of computer graphics. 

The dissertation continues with Chapter '2 which presents a formal definition of 

the set- theoretic representation scheme. The 2N-ary tree represent ation is then 

defined as a transformation of this scheme. Given this transformation, a more 

concrete ba.sis t,o the earlier quad- and oct-tree definitions can be cxt,riipola.tcd. 

Chapter 3 deals with a time complexity analysis of binary opera t io~qon 

cpadtrees. This type of analysis allows generalizations to bc made for tllc zN-asy 

tree. The first of three architectures is given in Chapter 4. This architecture 

attempts to map the logical 2"-ary scheme on an array of interchanging rows of 

processing elements and interconnection networks. In Chapter 5, the mapping of a 

binary tree onto a VLSI arrrLy is given, in addition to a justification for using such 



; 
a mechanism y an alternative to the more general 2"-ary tree. The third 

i 
9 1 

architectum;can be considered a linear arrangement of processor elements which 
$ * .  

access a Ka,6k of shared memory modules in which instances of trees are stored and 

this description is given in Chapter 6. A simulation was implemented for this last 

architecfure and this is described in Chapter 7. The dissertation concludes with a 

discussion of additional issues which must be considered in all three architectures. 

1.1 Properties Associated With Any Representation 

Scheme 

-4 primary consideration in developing a solution to a problem is the choice of a 

foundation or representation which will facilitate generation of a solution. A 

number of factors exist which must be considered when defining or evaluating a 

representation scheme [31]. Some formal properties inherent in any scheme are: 

Domain 

The domain is an indication of the descriptive power of a representation. In 

particular, the domain is the set of objects or entit,ies that can be 

' represented by some scheme S; 

Validity 

The range of a representation scheme S is the set of syntactically valid or 

correct representations that are images of elements of the domain of S.  The 

application of certain algorithms on invalid representations may lead to 

inconsistent results xhich may or may not be detected by the user; 

Completeness 
"\ 

-4 representation R in the range of some scheme S is complete if it 

corresponds to a single object in the domain. The scheme S is itself 

complete if all of its valid representations are t,hemselves complete. Each R \ 
contains slifficient information to distinguish one object from all other 

P 



entities of the same domain. This is a critical property if S is t be used 

over a wide range of applications; 
k 

Uniqueness 

A representation R in the range of some scheme S is unique if the objects 

that it defines cannot be represented by any other representation in S. Any 

S is unique if each its valid representations are unique. Uniqueness is 

important when considering whether two or more representations are 

responsible for the same object. 

In addition to these formal considerations, there also exist some properties 

which are informal in nature: 

Conciseness 

This property concerns itself with the storage requirements of a 

representation in a scheme. The ease with which a representation is stored 
9 and manipulated is dependent upon the concise nature of the structure 

itself. Redundant information about a representation is also minimized if its 
I 

definition is concise. 

w 
Ease of creation 

A valid representat,ion should be reasonably easy to create. In general, the 

a repkentat ion is, the easier it is to create, since there is less 

Effectiveness 

This point consitlcrs effectiveness in terms of the context of applications. 

.Algorithms must he dcvelopccl in such a way that the representations 

then-,selves can bc considered a data for these algorithms. A representation 

schcmc is effective if thc algorithms appliqble to thc. scheme arc correct, 

I efficient (both in tcnns of storagc and computational complexity), and 

rcliablc ~i-hrm ~ u b t l c  error5 in thc repre5entation arc cncountcred. 



These factors provide some guidelines for representation development. It is 

understandable that certain schemes may be relatively deficient in some of these 

points when compared against other representations. However, the opposite may 

also occur - these same schemes may be more favour e in terms of some other 

factors. In many cases, the representation chosen will ide a compromise 

between all of these points. The goal bf the designer should be to strive for the 

most complete scheme which provides the best performance. 

1.2 Consideration of Hardware Techniques in 

Applications/System Design 

4 s  indicated earlier, systems development has typically followed a software 

approa.ch. Howcver, in recent years there has been a shift from these traditional 

methocls to solutions incorporating ha.rdware/VLSI-based techniques. Some 

reasons for this progressi~n include the following: 

advances i n  VLSI t&hnology have resulted in cost reductions, while 

increasing performance and chip density characteristics; 

t,he use of ever-improving computer-aided design (CAP)  techniques in VLSI 
E' 

development has simplified the t,ask of designing chips; 

I an Tncreayed research effort in the area of developing VLSI-based alternatives 
, 
L. 

to existing software funct ions/st ructures has produced interesting results; 

certain applications, such as real-time sensing and control systems, r#!e 

response tirlles which current software methods cannot provide. 

I 

The claim here is that softwarc solutions can frequentb be supplemented with 
J' 

t ion specific, as opposed t obgeneral fllrpose, 'hardware architecture. - 



1.3 An Informal Definition of the 2'Y-ary Tree 

The following definition of the 2N-ary tree representation involves~references to 

entities such as N-dimensional objects, unit cells, and volume. This reflects the 

influence that the scheme has had in the area of computer graphics. It was this 

computer graphics theme which was the motivation for proceeding with this 

dissertation. The general nature of the representation provides for a very broad n 9domaii to which this scheme ca5 be applied. 
, . 

Objects exist within some universe U ,  which is of order N, and is a finite 
a%@ 

section within some N-dimensional space. This space is defined by N orthogonal 
1 

axes. -An object that exists in U is of the same order as the universe. A 2-D 

object cannot exist within a 3-D universe. The smallest object in such a universe 

would he the smallest resolvable unit of space 

In a typical situation involving the representation of some N-dimensional 

object, the universe is a 2hfN array of unit cubes or cells. ated with each of 

these cells is a value from the domain of some distinguishi 

, colour, radiation intensities, material type, densi 

ristics). The dzametcr, D, of such an object array is 2 M ,  where M > 0, 

and may be divided into "v non-overlapping cube-shaped arrays of diameter 

? ' ' - I .  When ,"i: = 2. the universe is a square, a cube when N = 3, and a 

hypercube for 117 > 3 

The symmetric recursive indexing process subdiviges an object array into 2N 

subarrays, each of 'equal volume." Every subarray is classified as being either 

homogeneous or heterogeneous, based on the predefined distinguishing property. 

Each heterogeneous subarray is further divided into 2N additional subasrays. This' 

continues until all subarrays are homogeneous. The subdivision technique may 

eventually have some sul~arrays being composed of a single element. 

"ere. ~ ~ o l u r n c  is a general term used to  ref& t~ the  form t h a t  a suharray, or hypercube, will take 



For any object array, the entire procedure generates a 2N-ary tree 

represent ation. A node in the tree is either a leaf (representing a homogeneous 

subarray) of indegree 1, or an internal node (representing a heterogeneous portion 

of the object) with an indegree of 1 and an outdegree of 2N (each child corresponds 

to one of the 2N subarrays). Every level in the tree is identified by some integer i, 

0 < i < hl. The root node of such a tree represents the entire object array, w l ik  
**P 

each of its children represents one of the subarrays of the object. The root node is 

at  level 0. The nodes a t  level i completely describe the object to the resolution of 

that level. M is commonly referred to as the resolution of the universe (m,aximal 

re,polution of the object). Depending upon the amount of information needed, it is 

only neceswry to display part of the tree. Thus, the root node presents the 

coarsest display of the object,, while the display of levels near the bottom of the 

tree lead to finer representations. The information in this tree is implicit, and 

requires the application of the representation's operations for its retrieval. 

Figure 1.1 (modifie'd from Dyer et al. [ll]) presents a 2-D object (fi = 2) that 

is encoded into a 22-ary or q ~ a d t r e e . ~  The region is shown in Figure 1.1 (a). The 

object is considered to be part of some universe. This encapsulation is evident in 

Figure 1.1 (b) .  The figure also shows the &visions that have been made in the 

universe to decompose each quadrant into its homogeneous state. Finally, the 

quadtree for Figure 1.1 (b) is shown in Figure 1.1 (c). It is important to note that 

the quadtree represents the decomposition of the universe, and that object 

representation is due to the object being a subset of the universe. In this way, the 

region is represented as a union of maximal units, where each unit is of a standard 

size and position (powers of 2 ) .  The simplest property that can be used on an 
k 

object is based on whether 4 not a subunit is associated with the object. VOID 

,indicates that the subunit, does not contain any part of the object. FULL is used 
L 

* if the subunit is part of the object. If the subunit is a composite of the two types, 

then PARTIAL is used. The tree's interior nodes are circular (representing 

' ~ n  extensive survey  on t h e  quadtree  can  be found in [ 3 5 ] .  



PARTIAL subunits) while leaves are square (FULL or VOID). 

When dealing with a 3-D object, N = 3, and the tree (or octree 1251) generated 

is of degree 8 ( 2 3 ) .  Likewise, each of the eight subarrays is called an octant. To 

access some point (X,Y,Z)  in an octree, it is necessary to com 

representations of X, Y, and Z as xox lx~  . . . xi, y0y1 y~ . . . y,, a 

respectively. The object in Figure 1.2 (a) (modified from Srihari [42]) spans the . 
width of the limiting universe (D = 8). Therefore, the maximum npmber of levels 

in the corresponding octree will be three (A4 = 3). Figure 1.2 (b) shows one of the 

many ways that the octants within a block may be traversed. Figure 1.2 (c) 

presents the oct,ree generated from the successive division of the universe. 

1.4 Some graphics-based 2N-ary tree algorithms I, PI LY 
L/ 

In computer graphics, images cam be stored as 2N-ary trees, where quad- and 

oct- trees are the most common forms of the representation. Algorithms have been 

developed for operat,ions such as: 

area, V O ~ I ~ I ~ C ,  c o rnp l~me~~ t ,  intersection and union [39] 

i transformations such as rotation, translation, and scaling 120,251 

o m ~ e  drt crmination, and nearest neighbour identification [10,33] 

stereographic project ions onto multiple planes [15] - 

display of images [ lo ]  e. 

Schneier's parallel algorithms for the INTERSECTION and AREA operations on 

quadtrees are presented here to provide an indication of the representation's 

simplicity. The algorithms for greater values of ilr are straightforward extensions 

of t h e  quadtrce routines. Doctor's algorithm for the display of octrees is also given. 



(a) Region (b) Subdivision of (a) 

(c) Quadtree representation of (b) 

I J M N C D F C '  
i 

Figure 1.1: Quadtree encoding 



(a) Object in 3-Space 

G- 

(b) Numbering convention 

(c) Octree representation of (a) 

Figure 1.2: Octree encoding 



The following conditions exist in performing these operations. It is assumed 

, khat the leaves represent BLACK and WHITE areas within the images, where 
- Pb 

WHITE is the background value. Interior tree nodes &e given the value G R E Y .  

BLACK,  W H I T E ,  and G R E Y  are equivalent to the FULL,  VOID, and 

PARTIAL values of our informal defiaition. It is assumed that the quadrants of 
d 

a region can be addressed as NW, NE, S W ,  and SE.  The auxiliary routines 

G R E Y ,  BLACK,  and W H I T E  return the value of the parameter node. The 

SET-QCHILD routine adds a child node at some given quadrant to its parent. 
e 

The P A R E N T  function creates a node which represents the parent of a given 

child node. C O P Y  generates a structure which is identical to the given tree - 
argument. The procedure SET-AND stores the result of performing an A N D  

%4L 
operation on the children of a quadtree in said tree. 

1.4.1 The INTERSECTION operation 

'Y 

algorithm returns a quadtree result which represents the common regions of 

quadtrees. If a leaf is BLACK and its equivalent node in the other tree is 
- 

non-BLACK, the result node will be a copy of the non-BLACK node's subtree. 

If a leaf is W H I T E ,  then it,s corresponding result leaf will also be W H I T E .  

function INTERSECTION(TreeA, TreeB : quadtree) : quadtree; 
begin 

TreeAND : quadtree; 
I : quadrant; 

if BLACK(TreeA) or WHITE(TreeB) then 
INTERSECTION : =  COPY(TreeB); 

else 
if BLACK(TreeB) or WHITE(TreeA) then 

INTERSECTION : =  COPY(TreeA); 
TreeAND : =  CREATENODE() / *  create root node * /  
for I in (NW, NE, SW, SE) do / *  in parallel */  

begin 
SETJCHILD ( T ~ ~ ~ A N D ,  I, INTERSECTION (QCHILD (TreeA, I) , 

e, 
QCHILD(TreeB, I))) ; 

end ; 
b * 



3 
SET-AND (TreeAMD) ; - 

INTERSECTION := TreeAND; 
e n d  ; 

1.4.2 Find the AREA of a quadtree 

The following algorithm determines the area,of an ima.ge, where the number of 

black nodes in a quadtree represents this area. The parameters to  the function 

AREA include the quadtree and diameter of the image. 

f u n c t i o n  AREA(Tree : q u a d t r e e ;  D : i n t e g e r )  : i n t e g e r ;  
b e g i n  

TempAREA : i n t e g e r ;  
I : $ a d r a n t ;  

TempAREA : =  0 ;  
i f  GREY(Tree) t h e n  

f o r  I i n  ( N W ,  NE, SW, SE) do 
TempAREA : = TeinpAREA +-+ AREA (QCHILD ( T r e e ,  I )  , D- 1) ; 

e l s e  
i f  BLACK(Tree) t h e n  

TempAREA : = TempAREA + 2** (2*D) ; 
AREA :=  TempAREA; 
end ;- 

1.4.3 Display algorithm for an &tree 

$11 interesting consideration in the prrscntation of an objvct rcl)rcscntcd as a 

tllrce-dimensional oct,ree is t,hat the display device is usually two-dimensional. 

Quadtrccs provide a \very efficient means of representing two-(li~nensioilal objects. 

By using thc transformation of a11 octrcc to a q i i a d ~ ~ e e ,  very cffcctivc display 

algorithms for psoblcms such as hiddcn-s~lrface rcrnoval may he clcveloped 

.4clditional algorithms usi11g different shading tcchiqur~s,  illi11ni1iatio11, and 

se~nitransparcnt objccts ha\-t also hccn developed using t l i r .  octrcc.-to-cliiadtrec 



By traversing the nodes in a specific front-to-back order, the hidden surface 

removal procedure is very straightforward. The quadtree generated can then be 

sent to the display device. In the following algorithm, the front four octa ts are 

P L! numbered 0 through 3, while the back four are 4 o 7. The two parameters are the ' 

octree to be displayed, and the intermediate quadtree, which is initially a ULL 

tree. The function OCHILD is analagous to the QCHILD routine for quadtrees. 

HOMOGENEOUS is a function which determines whether a node i w  leaf or 
/ 

interior node. COLOUR returns a, quadtree of one node whose value field 

represents the display colour. The MAKETREE function creabes a quadtree 

with a new root node that has as its children the four quadtree parameters. 

,' function SHOW(0ctree : octree; Quadtree : quadtree) : quadtree; 
begin 

.r 

if HOMOGENEOUS(0ctree) then 
if not WHITE(0ctree) then 

SHOW : =  COLOUR(VALUE(0ctree)); 
else 

SHOW : =  Quadtree 
4 

else 
SHOW : = MAKETREE((OCHILD(OC~~~~, 0) , 

S H O W ( O C H I L D ( O C ~ ~ ~ ~ ,  41, QCHILD(Quadtree, O)), 
S H O W ( O C H I L D ( O C ~ ~ ~ ~ ,  I ) ,  

end ; 

SHOW (OCHILD (Octree, 5) , QCHILD (Quadtree, 1) ) , 
~HoW(0CH1LD(Octree, 2 ) ,  

SHOW(OCHILD(Octree, 6 ) ,  QCHILD(Quadtree, 2 ) ) ,  
S H O W ( O C H I L D ( O C ~ ~ ~ ~ ,  31, 

~HoW(0CH1LD(Octree, 7 ) ,  QCHILD(Quadtree, 3)) 1, 

function COLOUR(Va1ue: colour-values) : quadtree.; 

begin 
COLOUR : =  CREATENODE(Va1ue); 
end ; 



1.5 General observations of the quad- and oct-tree 

represent at ions 

Extensive effort has gone into investigating the properties of the quad- and 

'oct- tree representation schemes. Computer graphics, pat tern recognition, and 

image processing have been the primary areas of application. The use of octrees in 

solid object modelling has been shown to  be very beneficial [31]. Considerable 

success has been achieved in applying this representation to geographic 

information syst,ems (1,271. This research has concluded that there are a number 

of advantages to using the representation. As the three algorithms of the previous 
8 

section show, the operations are reasonably straightforward to develop. Numerous 

algorithms have been generated to convert between quadtrees and other 

representations[33,36,37,34]. One feature which makes this representation useful is 

that there is only one primitive object, such as the square or cube, to  contend 

with. The size of this primitive determines the level of representation for any 

given object. The operations defined for this representation are only required to 

deal with this pri~nitive. Ordering is implied in this representation, which further 

si~nplifies algori thrn develop~nent . 

Sitlia tions do oxist where the more common 2- and 3-D subdivision nlethods 

a r c  not sufficient to fulfill certain requirements. Application of this represent ation 

t o  4 - D  leads to a hextree, a tree with 16 subarrays. It is then possible to represent 

time-varying 3-D images. Two examples of a 4-D image include the dynamic, 

spatial reconstruction of a beating heart and the breathing lung [44]. The 

generalization of this method to dimensions greater than four is also useful. Onc 
2' 

such application involves robot a notion planning and mliltidimcnsional 

configlirat ion spaces [49]. 



I 

Chapter 2 Set Theoretic Basis of the 2N-ary Tree 

Set theory can provide the mathematical justification for the 2N-ary tree's 

extensive domain of applicability. It can be safely stated that most 

computer-based applicat'ions deal with data which are naturally related. ~owe/er ,  

there are situations where the relationships are not obvious, yet require that this 

data be expressed in such a way as to maintain these relationships. A method 

must be developed which can accommodate both cases. Set theory fulfills this 

requirement in that these relations can be expressed as a set of ordered pairs, 
%. 

while at the same time providing a significant collection of operations. An added 

feature of following this approach is that these operations can be executed rapidly. 

2.1 ~06ulat ions and Attributes I 

- 

The following dcfinitio~ls provide the set theoretic foundation upon which the 

21v-ary tree is developed. 

Definition 2.1 L e t  t h e  population @ be a f in i te  co l lec t ion  o f  i t e m s .  

Definition 2.2 E a c h  h a s  assoc ia ted  w i t h  i t  a  s e t  o f  a t t r i b u t e s  A* 

Definition 2.3 E a c h  has  aasociated w i t h  it a s e t  of v a l ~ ~ e s  VQ,. In a d d i t i o n ,  

t h e r e  i~ a spec ia l  va lue  1-OID (I-DON'T-CARE) w h i c h  i s  par t  o f  each  V*,. As 

a u c h ,  each  7 of c a n  be ass igned  a zialue f r o m  V*,. 



= collection of pixels making up an image 

= a map of British Columbia 

( P 2  = a population of people 

Aao = {colour) 

- {landuse, population, economic activity) Ao1 - 

&2 = {education, marital status, salary, sex) 

~ c o ~ o u r  = {RED, WHITE, BLACK, VOID) 

1 landuse = {FARMING, LOGGING, MINING, VOID) 

Table 2.1: Examples of populations, attributes, and values 

The definit,ions of iP, A and V permit the accommodation of a,dditional items, 

at tributqs and values, respectively, as the need arises. 

\ Table $2.1 presents a number of examples involving populations, attributes, and 

associated values 

Definition 2.4 T h e  overall picture for s o m e  population iP consists  of t h e  set  
- 
P +  = {Pa,  : 0 E A @ ) .  F+ can  be considered as n family  of sets ,  and Pip, is a 

subpicture of  iP for a. E A@. A m o r e  precise def in i t ion of Po, i s  t o  follow. 

To this point, sets have been exclusively used in the definition of @, A @ ,  V@,, 

and Pa. Given this fact, any valid set operation can b e  applied to these various 

sets. These oprrations can b a p p l i e d  to all of Pa. Two example definitions 

involving set operations and are shown in Table 2.2. 

An interesting fact here is that any result generated from a set operation 

involving Ti+ or any of its elements, is a new subpicture Po,. The examples of 

arid n& arc two such cases. The new attribute v is defined as a function of ? 
the operations and attributes used to generate this new subpicture/result. 



The unary union of Pqi: 
uFr = { e : (3Pip, E F a ) ( e  E P a , ) }  

Table 2.2: Two set operation definitions giveq with respect to pictures 

- - - -- - - - - - - - - - - - -  

Definition 2.5 L e t  5 be t h e  se t  of a t t r ibutes  f r o m  A* involved in a query ,  and  t h e  

cardinali ty  of cr i s  greater t h a n  o n e  (#E > 1).  G i v e n  a n y  q u e r y  invo lv ing  t w o  o r  

m o r e  a t t r ibutes  f r o m  .4@, a n e w  at tr ibute  u c a n  be defined based o n  t h e  

conso l ida t ion  of  these  a t t r ibutes .  T h e  values  of t h i s  u belong t o  t h e  se t  

V , ,  = {TRUE, F,4LSE, VOID) .  A@ n o w  becomes ,4@ U { p ( ~ ) )  where  p(E)  re turns  

9 s ing le ton  s e t  containzng a ,unique label/at tribute based o n  t h e  e l e m e n t s  of  E. 

If #Z = 0, then no attributes are involved in the query. In the case of #Z = 1, 

the result is the set of elements from P+,whose attribute values match those of 

t,he queried attribute value. When #Z > 1, the query will a.ccess those pictures for 

which the attribut,es are being considered. The result will the be taken from these 

pi~t~ures.  The  element,^ of this result ~vill have values taken from the set I/&,. 

2.1.1 An Example 

Table 2.1 presented a number of different populat,ions, together with each 

collection's set of attributes and associated values. The following exa~np!e 

considers = @, = { p e o p l e ) ,  where the specific query asks: 

Find all females  with post -secondary  educat ion 

The newly-generated attribute will involve "sex and education". The next step is 

to categorize each element of as either having or not having this property. A 



7 

a '  

subpopulation @,, where a, 2 @, exists such that each element of a, either 
A. 

fulfills this query OT it does not. 

' The at tribute v is equivalent to "female with a p o s t - ~ e c o n d a r y ~ t i o n ' ~ .  

This may seem unnatural since most attributes deal with single categories rather 

than in more complex relationships. The function T has n + 1 parameters, where 

n is the number of attributes under consideration in the current query. The 

purpose of this function is to return one element from the set V*, for each y in @. 

2.2 n-tuples and EQ, 

Definit,ion 2.4 refers to the subpicture P+, a$ a component of Pa. The majority 

of abstractions considered to this point (for example, Q P a ,  A*, and V Q ~ )  have 

been based on set constructions. As such, set operations on these abstractions are 

perfectly valid. By defining it at, a gross level, P a ,  can also be considered as a 

set-theoretic abstraction. 

2.6 A subpicture P a ,  is a n  ordered pair of t h e  f o r m  

=<I ,&, ,  EQ, >. where a E EQ, = {Y: y E @, val,(-y) E V@,) 

The function aab maps an element -, of a, to a single value from the range 

la,. Vab is not a one-to-one function as i t  is highly probable that different 

~lerncnts from the domain may have the same image via t h s  mapping. At this 

level of abstraction. the ordcred pair P+, can still be represented on a 

" wt-thcoretic basisi. 

Each 2 is also an ordered pair. v-here the first component is a unique identifier 

within a. and the second i q  an n-tliple. slab,(-,) ( # a  = n ) .  This second term can 

'Hers. an  ordered pair is defined as < a .  h >= { { a } .  { a ,  b } } [ 2 3 ] .  



A 

! 
be considered as a vector of values that a y possesses for each attribute involved in 

the picture. The appropriate selector, recognizer, and constructor functions are 

defined to process the first or second components of y. The same types of 

functions are available ,to access the n- tuple. 

2.3 Partitioning of @ 

a 

For any P*,, its corresponding E@, may prove to be very inefficient in terms of 

stora.ge considerations. It is necessary to store each component of E*, in memory. 

Therefore, if the cardinality of @ is great,, a significant cost in terms of this storage. . 

will be accrued. These will be a s  even greater storage requirement if the 

cardinality of i l ~  is also large, 

Of the two components and E@,, it is most likely the latter which 

contributes most unfavourably to the storage costs. The primary reason is that 
F \  

each object in @ is an identifier for an element in E@, ( #@ = #E&, ). A 

significant reduction in #E@,  can be made if each element of @ is pla.ced into a 

- .  subset with other elements of O that have the same value for the attribute being 

considered. i 

For any P*,, i t  is possible to reduce the cardinality of EGO to a maximum of 

#I,;, , or to a minimum of 1 

Definition .2.7 L e t  E@, be r e p r e s e n t e d  aa: 

-4 partition on @ is formed where each element of EG, will be a non-empty set 

and represents a z7 E I;,. -An item -, E will belong to that set for which 

val,/ -{ ) = v. 111 the xorst case. EG, will consist of #I.&, non-empty sets. If for all 

\ , ' - E @. val,(?j is the same. then #E@, = 1. 

In the above redefinition of E@,. i t  is evident that each -r E @ will have to be 

tested to place -; in the appropriate element of E@,. Any decrease in storage 



requirements will be offset by the considerable amount of time needed to complete 

the partitioning of @ in a sequential manner. 

An interesting property of any partition is that any two sets from this family 

of sets are disjoint. This implies an inherent parallelism in the processing that 

may be performed to generaie the sets that make up E@,. As e&ry y E 8 is 

independent of other elements of a, ea.ch y can be processed independently. One 

extreme situation would involve processing each such y in parallel with the other - 

elements of a. Obviously the other case would require a strictly sequential 

approach in generating the elements of E@,. A 'compromise between these two 

limits must be made. 

The compromise also involves deciding upon a partitioning that makes use of a 

cranularity whch is acceptable in terms of the processing power available. Another 0 

point which is considered in attaining this compromise is that data tends to be 

grouped together. For example, if our @ is a database of vegetation for a specific 

province, there will be regions represented which will consist predominantly of one 

form of vegetation: Of course, there will be cases where this similar neighbour 

effect will not apply, and it will be necessary to consider a finer partitioning. 

Rather'than attempting to&onsolidate similu.elements of B into distinct 

subsets, an arbitrary partitioning approach can be taken. Some function A f  maps 

the elements of a set @' to the subsets comprising a partition on @, without regard 

for att,ribute value homogeneity within a subset. The values that these elements 
d 

7' E @' assume are determined by the values of t,he subsets that they map onto. 
4 

To simplify the not at ion. the following 'two definitions assume that the 

operands and fu~ct ions  refer to specific attributes a. E .AG. For example, yk is 

equivalent to 7 ' .  

Definition 2.8 11'1.; a o n e - t o - o n e  func t ion  u ~ h i c h  m a p s  7' E @' t o  a  s u b s e t  S\ C Q 



P 

Definition 2:9 For every E @I, 

e b e  setval(yl, PARTIAL). 

This new population @I can have a similar mapping scheme M' applied to 

generate O". This mapping implies a series of levels where each level is composed 

of a finer partition than its predecessor level. A partition A is finer than partition 

B if each' subset of A is a subset of one of B's subsets. It follows that B is coarser 

than A. The coarsest level consists of one subset which represents the entire a 

h u l a t i o n  O. The first level consists of #O subsets in its partition - one per 

y E O. Figure 2.1 presents a partitioning on some population @ such that each 

subset of the partition consists of elements'with the same attribute value. This 

requires just one mapping. Figure 2.2 is an example of random partitioning, where 

defined subsets may not be homogeneous in terms of attribute value. 

Consequently, a ditional partitions are needed on subsequent levels of @ to get to P 
its most compact state, that is, the state in which further partitions are not 

possible. 

2.4 The Well-ordered 2lY-ary Tree Mapped o n t o 4  

The mappings described in the pfevious sections are not restricted in terms of the 

number and size of the subsets in a particular partition. This can lead to  irregular 

mappings. If the number of subsets in a partition, and the number of objects in a 

subset is consistent, bn implementation is much easier to devise. This consistency 

can be considered as a regular mapping. A tree-based representation scheme is 
-. 

ope method which provides this regularity and consistency. 
I 

A &mher of interesting properties exist for any tree. A tree is a connected, 

acyclic directed graph where the root node has indegree 0, while other nodes have 

indegree 1. This implies a linear ordering betxeen the root node and its successors. 



Mappings: 

Figure 2.1: Efficient partition of a population @ 

Mappings: M" 

Figure 2.2: Random partition of some population 



In generar, the direct successor nodes of any nodes are also linearly ordered. Each 

subtree in the tree also has a first element. Trees are then well-ordered structures. 
4 - 

Consider the case of some 2N-ary tree T where all interior and leaf nodes are of 

indegree 1, and the root and interior nodes are of outdegree 2 N .  If there exists 

some mapping M from the leaves of T to the partition of for some Pa,, then> T 

is a tree for Pa, .  The value of each leaf in T is based upon the value of its 

particular partition component p (where M ( 1 e a f )  = val,(p)).  The interior nodes 

of T map to those partitions p where there is no homogeneity of v E VQ, via the 

mapping function M r .  The root of T maps ' h f  a. Function M is the, 

restriction of &I' to the leaves of T. Figure 2.3 is an example of such a regular 

mapping on a population. It is essenthlly the same as that of Figure 1.1. However, 

in the latter case, it was assumed that tHe 2N-ary tree was valid only as a graphic n 

representation scheme. The subsequent discussion has shown the scheme as a very 

general technique which can function through general or specific mappings. 
,- 

The existence of suih a mapping between the well-ordered 2N-ary tree and @ 

implies that @ is also well-ordered. It is this property of well-order which is a 

critical factor in the fast execution times offered by the set representation. 



Tree of this population Some population 

Mappings: M : leaf nodes ---> population (object level) 
M' : interior nodes --> population (non-bbject levels) 

1 

Figure 2.3: Mapping of tree T to a population B 



Chapter 3 Analysis 

the 

of Parallel 

Quadtree 

Time-Steps for 

The following analysis concerns itself with determining the number of time slices 

that are required to  execute a binary operation involving two quadtrees, and a 

collect,ion of processors. This study exploits the parallel nature of .the quadtree. 

Although it is only the quadtree that is considered, the same type of reasoning can - 
be applied to other 2.'-arS- trees. 

Some preliminary notation and conventions must be assumed. Given any 

quadtree, there are a total of A4 nodes in the structure.. The number of processors 

in the system is P. Let 7 correspond to a particular leaf level. L, denotes the 

nodes at  level z in the tree. Figure 3.1 presents a particular situation where there 

are 1 + 1 levels in the tree, and numbering of levels begins at the root node ( L o ) .  

The leaves are represented by Ll .  -b 

There are tu-o cases which must be considered in this analysis. 
' 

P 2 4' ( the number of nodes at leaf level 1 ); 

3.1 Worst case on a binary operation 

-4 double traversal of the tree is necessary, from the root node to the leaves, and 

back to the root. This lattcr traversal is required to process any waiting tasks that 



4- Level 0 
4- Level 1 

+- Level 1-I 

A + Level 1 

Figure 3.1: Typical quadtree for the time-step analysis 
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Figure 3.2: Effective double traversal of a tree for a binary operation 

I 

/ are dependent ubon the results at lower levels in the tree. In general, tasks at  level 

i, 0 < i < I, must wait for the results a t  level i + l to become available. This worst 

case situation can be envisioned as shown in Figure 3.2. In going from Lo to LI ,  

tasks are created as thc processing proceeds from the root to the leaf nodes. The 

bottom half of the figure represents the progression bwk to the root node after 

the leaf processing has been completed. 

Let Sp,, correspond to the time required to finish a complete, double traversal 

of an I-level tree with P processors. The start time begins with the root node at  

time 0. ' ~ e t  S, denote the time when some node j in the tree is finished with its - 
processing. The first claim is that the minimum amount of time Sp,/ required to 

L' 
1 

perform this t w ~ w a y  t r d r s a l  is: 



In a tree, or subtree, with nodes P, Q, R, S, and T, the times SQ, SR, SS, and ST 

may be equal. However, Sp may not equal SQ, SR, SS, or ST . In other words, a 

& 

parent node must complete processing before its child nodes can begin their 

processing.' The minimum time required to process any level will be attained if all 

nodes a t  a level can complete their processing a t  the same time. There are (1 + 1) 

time levels going down the tree, and 1 time levels going back up. These two values 

the minimum time SRI of Equation 3.1. 

Taking this result for minimum time, the minimum number of processors P,;, 
* 

to  achieve this result is equal to the number of leave nodes Ml: 

4. 

The next task is to find ~ r f o r  any quadtree with 1 levels, 1 2 0: 

Only thosc situations where P = 2", for any integer x >_ 0, are considered here. 

The first case involves MI = 4' = 2='. If x > 21, SpVl = S2r,1 ?= 21 + 1. At level I, 

only one time unit is required to process tasks at  that level. Therefore, for all 

m < I ,  A[,,, < M,. This provides the minimum time' of 21 + 1. 

In the second case, P =.2', for any integer 0 5 x < 21, Equation 3.3 still 

applies, but now consists of two components as given in Equation 3.4. Note that 

the case of P = 221, prcsent in the first situation, can also be considered here. 



Figure 3.3: Situation for the case of P = 2', 0 5 x < 21 



This presents the situation given in Figure 3.3. Now two additional cases arise 

from this scenario. The first involves some odd integer x, 0 < x < 21: 

5 ,,I-,. 1 
SP, 1 

- - = x+-(- j 3 ,  for o < .E < 21, and s is odd. 
3 ( 3 . 5 )  

--b- 

In the case of some even integer x ,  0 < x < 21, the following exists: 

- 9 
3.,21-~ - SI..~ = s + -, - -. for 0 5 .r 5 21. and .r is c-.vcn. 
3 3 

The only diffiwnw hctn-wn Equations 3.5 and 3.6 inwlvrs th r  constant t m n s  : 
2 and 3. rrspccti~ely.  A gr i i r~nl  q u a t i o n  for P = 2'. 0 < - x < 21 c a n  then I F  r I ( . f i ~ i d :  

Figurc 3.4 prescnts a plot of Equation 3.7 for I- ,  2-, 3- .  and 4- level trccs, 

~vhere  the nlmlber of processors P = 3'. 0 5 i 5 8. 



The Number of Time Steps Required for Double Tree Traversal 
(where number of processors is a power of 2) 

I 8 16 24 32 40 48 56 

Number of Processors - 

Figure 3.4: Number of time steps for 2' processors 



3.2 The case-of Pf 2", f r any integer 0 5 x < 21 P 
In the case of P # 2", 0 5 x < 21, and 1 + 1 corresponds to  the 

number of levels in . 

(3.8) 
/' 

One of theyAameters of g is the number of levels in the tree where 

P 2 4', 0 < i 5 1 - 1. G providks the number of processor-time units necessary for 

the traversal of levels 0 to  1 - 1. 'H returns the number of time units required to  

complete the processing of level I. Functions G and 'FI do not consider the 

-- situation where time units can spread over adjacent levels in the tree. An earlier 

condition stated that for any subtree, if the root node of this subtree was executed 

at  T,, the children of this node could not execute at TI ,  if T, 2 T,. This implies 

that those nodes which do not belong to a particular subtree, can execute a t  some 

time T,, where T, may or may not he less than, or equal to TI .  The functions G 

and X ~vill provide exact results in the .number of time units necessary to process 

a level in' the- tree, but in terms of final time count, the carry-over to  the next level 

will n8t be considered. This carry-over imy  come ahout in the following fashion. 

If there are S processors available. and the current processing level 172 requircs Er 

processors. such that S > I - ,  then i t  is possible to use the relnaining ,Y - IF  

processors for the lercl 17, + 1 at the same T, as the 1- processors a t  levc 77~. This j n , 
would only occur if there arc -y - 1-  nodes at levtl 711 + 1 which (10 no >clang to 

the subtrees xliosc root nodes arc bcing proccsscd by the S - 1. processors. To 

accommodate this situation. i t  is necessary to apply an error function & which 

rcturns the numlwr of levels in thc trec ~vhere there 11my has.(' b c ~ n  S O I ~ ~  

ox-crcompcnsation in thc fiinctions G and 'H. 

Hcrc. I p ,  corrcsponrli to tllc n~ lmf~er  of lcvcls in the double traversal whcre thc 

nllrnl~er of proccswrq P cscccds L , .  for some lcvcl 2 .  



The components of Equation 3.8 are defined as follows: , 

.After consolidating the terms in Equations 3.10, 3.11, and 3.12, a general equation 

for Sp,[ can he with the restrgtion that P < 4' 
-(ab . 

Figure 3.5 presents a 3.13 involving four trees of different levels. 

JT'hcn compared to 3.5 indicates that the error function 

provides a reasonable approximation of two-level time-unit carry-over. 
8 

3.3 Cumulative idle processor time 

.Another criterion which nnist he considered in determining t,he effectiveness of a 

parallel-oriented '3"-ary tree representation is the amount of time that is consumed 

by processor inactivity. -4s in the pre\.ious section, a tree of 1 + 1 levels, and P 

processors are involved in the analysis. The double traversal is still required. 

In general. the amount of idle or wasted processor time Tit, is given by: 

. In thc case of P > '2'. :r 2 '31. Trl is given by: 



The Number of Time Steps Required for Double Tree Traversal 
(where number of processors is NOT a power of 2) 

1 8 16 24 32 40 48 56 64 

Number of Processors 

. Figure 3.5: Number of time steps for P # 2' 



Processor Idle ~ i m e  
(where number of processors is a power of 2) 

Number of Processors (2Ax) 

Figure 3.6: Processor idle time for P = 2' 

With P = 2") 0 5 x < 21, Tbv is given by: 

One interesting point about Equation 3.16 is that the number of levels in the 

tree is not involved in the calculation. This is a reflection of the fact that P = 2", 

and that there will be processors idle at  those levels in the tree where 

L; < P, 0 < i < 2. - 1. Figure 3.6 presents a plot of Equation 3.16 for P = 2', 

In the case involving P # 2', Equation 3.14 can again be used as the basis for 

the calculation. The first term of the equation can be replaced with 
P 

Equation 3.13. However, the presence of ceiling and logarithmic terms in the 

latter makes reduction of the equation difficult. 



hapt er 4 A Topologically-Derived Architecture 
4 

for the 2N-ary Tree 

The structure of this first a.rchitecture is based on the 2N7ary tree topology. The 
ry -- 

hardware incorporates layers of processing elements and interconnection networks 

in a manner similar to the levels of a tree. It is the software that generates the 

child tasks which must be sent to the sIave processors for execution. References 

involving a computer graphics application are again used. 

4.1 System Components 

' 
Figure 4.1 ~~r-eil ts  an overall view of the components which make up this 

architecture. Since i t  is the array .construction which is of prinlxy concern here, 
d 

only a general overview of the other components is provided. 

4.1.1 User Interface UI 

The UI provides a user friendly environment from which commands are formatted 
1 

in a manncr acc~ptablc to the Master Controller MG. 

4.1.2 Staging Memory SM 

The SM functions as a buffer bct\vc.cn the extcrnal data  source and the primary 

component of . t  he architecture. tllc Processor-Irltcrconnectim Network Array 
3 



Figure 4.1: Overall system view of the architecture 
f 
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P-INA. This SM formathaw ddta into a sequence which can be accepted and 

stored in tfhe array. If the been formatted, it is passed directly to 

the array. 

The unit consists of a memory copponent and a central processing unit 

(CPU). Due to the wide variety of applications which may, use this architecture, . 

there are numerous external data formats. It is unreasonable to assume that one 

formatting mechanism can accommodate all possible cases. The tremendous 

flexibility of software control makes it the deSIred alternative over some 
e 

hardware-based scheme. This requires that random access memory be available .to 

the CPU to retain the necessary formatting instructions. 

A queskon now arises based upon economics. In most cases, the users of such 

. a system view it as a data of information, and are concerned with the s eed 
L Y q  4 dot 

at which queries can be resolved. The time required to set up the database 

as critical. 'Of course, unbearably long delays in set-up time are unacceptable, 

regardless of the situation. With this in mind, the user may require fast 

throughput for all components. If cost is not a concern, cache memory can be 

included in the S M .  The instructions necessary for the current formatting 

operation can be brought into this cache, along with blocks of t,he input stream. 

The control signals from the MC to the S M  provide information relating to 

the type of-iformatting required. the complexity of the 2N-ary tree, and data sizr. 

The S M  uses this information to format t& data into blocks of valnes which 
j -4. '9 reflect the 2&'-arY nature of the data at its owcst level (in the graphics application 

this would be the picture element, or pixel). This step generates the finest level of 

subtree groupings in the tree. -4s formatting continues, these packets are sent out 

ont,o the array's input bus. .For any image and configuration, there is one row in 

* .  
the array lvhich represents the actual (1  - 1 )"' level of its tree, where I is the 

a 
number of lrv$s in thr t rw.  It is this row's Processor Controller PC which takes 

the packets off 't t le bus. and further formats the data to reflect the actual sibling 

node/processing element corrcsponrlencc. 'a 
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Figure 4.2: Dat a-input sequencing. 
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Figure 4.2 shows the case of a simple 4 pixel by 4 pixel digitized input image 

that is stored on tape as a sequence of bit-intensity values. With the given 
1 

numbering convention, and a request for a sequence acceptable for quadtree 

+ 

generation, the SM provides the given output packets which are then placed on 

the P-INA input bus. 

4.1.3 Processor-Interconnection Network Array P-INA 

The array consists of alternating rows of processors elements P s  and 

interconnection networks ICNs. A general view of the array is shown in 

Figure 4.3. The basic premise is that each row of processors represents a level of 

the 2N-ary tree. The nodes of the tree are then mapped to the processors in this 

array. The interconnection networks, which link consecutive rows of processors 

together, are analogous to the edges which link a parent node in a tree to its child 
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Figure 4.3: The processor-interconnection network array 



Master C o n t r o l l e r  MC 

The  MC is a processor whlch, although not part of the  array per se, provides a 

significant level of control t,o the entire structure. Once a request enters the 

system via the user interface, the MC ca.n initiate any number of activities. If . 

dat,a formatting is necessary, control signals from the MC a.re sent t o  the S M ' s  

processor which, in turn,  activates its own set of routines. . 

The MC also provides the array with sufficient control information to build 

and manipulate the trees. Some of this information involves tree size, 

processor-r w entry level. network switch settings, and synchronization markers. ! 1 

Associatecl with the MC is p r i m a q  memory that contains all of the tree 

manipulation routines. standard network switch settings, and functions to 
P 

generate new settings. Some of these operations are specific for the network 

controllers, thc processor controllers, or for the processing elcnlcnts thenisclws. 

P r o c e s s o r  Con t ro l l e r  P C  I 

Rat her than ha\-c the M C  comrnunicat e directly wit11 the processing tlements of 

the array. n-hich n-ould lead to a coninmnication bottleneck, a lei-el of P C s  is 

introduced to the system. Therc is one P C  per row of P s .  This allows thc M C  to 

allocatc tasks to a managcable nurnlwr of P C s  rather than to  the numerous row 

processors. Synclironization of tasks between thc M C  and the row processors is 

also simplified 1,. the incllision of tlic PC  cornporicnt,. Each PC has local memory 

xvllich is used to store thr. trcc optrations. However, this local memory does not 

co~i t  ain all fli11ct ions. h i t  0111~. t 1iosC i~lstruct ions which are necessary to solve the 

clirrent ~ i sc r  rcq~icst. Thcsc arc copiccl to cach P C ' s  memory fro111 the MC.  This 

serves a mirnber of purposes. Contention is not a fact.or here ~vlicm each PC has its 

ox7,-n memory to store in~tructions.  The algoritlirr~s for 2.'-ary trcc manipulation 

arc reasonab1~- ~traiglitforn-arc1 s~icli that their programs are not very large. If 

ipced is a major conccrn. tllc.11 rarllc. Inmior. can 1~ uscd hy c.ac.11 PC. Instructio~i 



1 

retrieval and execution will be very fast. Each row's PC broadcasts the necessary 

instructions t o  the P s  under its control for subsequent execution by these P s .  

Control lines exist between each PC and the MC, and between adjacent P C s .  

This allows for the necessary synchroniza.tion between levels of row processors. 

Row Processor P 

The simple tree algorit hnis require that  the P s  need not be complex. For the 

majority of cases involving this application, stock microprocessoq with the 
, 

hardware capabilities implied by the processing element of Figure 4.4 are 

sufficient. C'haptcr 4.3 presents a case where these simple microprocessors may be 

replaced with Iiiorc powerful clcr~ients. 

Each P consists of the following components. ,4 logic gate controls the 

direction of data through 1e processor. Data can flow from ''top" to  "bottom" or 

\-ice versa in the arraj7 he logic gate maintains this directional consistency. The  /f" 
gate also clianncls data to  the arithmetic logic unit ALU. 

The operations tak'nn place within a proccssor arc under tlic clircction of the + 
control lmit CU, n-hich receives its signals from the row's P C  via the row control 

lines. ll'hen a program ~egrnerit from the PC is to be stored in the element's local 

Iilcmory, i t  is the CU ~vhicli ox-crsces the storage process. The logic gate receives 

tlic necessary +pals fro111 the CU,  as do the ALU. and accumulator. 

.?it tlic ALU. the approp~ia tc  op~ra t ions  arc applied to  the data entering the 

clement t o  satisfy the reqliirimcnts of the user query. For ~xan lp l e ,  with a hinary 

o p ~ r a t i o n  OII a 22-t  rec. the fo11r cllild val~ics of a node enter tlic clc~ncrit 

vqllentially. and ha1.c the opcxation appliccl to t h n .  The intcrrrlcdiatc rexlilt of 

applying thi< opcra tion 011 two of the child values is routed to tlit  accu~nlilator ;trid 

a latch L. ndiicli i q  1 1 4  t o  hold a value i~idcfinitcly until i t  rcccivcs the appropriate 

5iqlal f r o ~ n  thc CU Thc temporary rr.<~ilt in thc accurn~~lator  is p a s v ~ l  to the 

A L U  for tiic c s c c ~ l t ~ o ~ i  of  tlic. n r ~ t  in5t mcc  of t l i t '  opcratio~i.  Oricc. all four inlll~t 
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Figure 4.4: The row processing element 



values have been processed, L releases the result to an internal bus from where the 

value will be stored in the element's local memory as a node of the resultant tree. 
/- 

, , 
The presence of this internal bus permits data to travel between the local 

memory, acc~miulator. and the external row data  bus. The external bus is critical 

in that program segments can be passed from the PC to each P under its cont 

In the case of data realignment between P s  of the same row, node valucs can b 

moved from one processor to another. 

In t e rconnec t ion  N e t w o r k  Cont ro l le r  NC 

Each NC provides the necessary control mechanism for its respective 

interconnection network. This mechanism is implemented through the use of the 

appropriate control programs. which are initially stored in the M C .  In this 

respect, the N C  is similar to the PC in that i t  is not necessary for the unit to 

store all network control programs. ~ns tead ,  the M C  prm-ides only those 

\ programs which arc needed to complete the-current user request. The M C  also 

makes ax-ailal~li to each N C  the switcli settings that are req6Gcd for tlir network 

under its influrncr. This implies than an NC has lo31  1 1 i c 1 1 q  To speed up the 
, 

csccntion process of the N C .  the switch sct t irlgs d d r  in aesepara rnenngry with 3 
the unit. apart from tlir program nlcnlory. 

cA) Each NC recrirri cont 1-01 signals from the M C .  in addition to 

rc/cirinq signals to and from t he nctu-ork. 

Swi tch ing  E l e m e n t  SE 

Thc switching clc~ncnr s n-11icli niakf. lip t lit, I C N s  arc sinipli. 2x2 switc11c.s that c . x i  

t ~ c  in any of eight roliti~lg 5tatr.s. Tlic four states permitting the passagi. of data 

f ro~n  top' to bottom of thc array arc sliosv~i in Figurt. 4.5. Tlit. rrmaini~ig four 
J 

5 t  at cs a r t  mirror i~nagci  of t 1it.sc st a tw .  ~vhicli allolv for data transfer from tmtto~ri 

t o  top. -411 SE'. . i t a t f a  i ,  (Ictr,rr~li~lrvl 1 ) ) -  tllc settings x~ l l i c l id t  rcccil-cs from its NC. 
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Figure 4.5: Switching states 

The broadcast stages are needed to provide the mapping of root and child 

nodes of the logical tree structure to  the P s  of the m a y .  The broadcasting from 

successive levels of S E s  in the ICN eventually generates the'communication links 

between a root P and its 2N child P s  .in the adjacent row. With this broadcasting, 

only one cycle is needed to send out the data  values. However, in the case of data  

entering a SE, the element can only read one value a t  a time. Therefore, for the 

two-input case, two cycles will have to  be used to read these values through the 

element. 

* 
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4.2 The Interconnection Network ICN 

The previous section described the components of the P-INA. However, it is the 

intcrconnection scheme linking adjacent rows of processors that allows this 

architecture to succeed as a hardwxe alternative for; the 2N-ary tree 
t 

representation. The nature of the representation dictates that the network be 

reconfigurabIe, that it support broadtasting of information, and that two-way 

communication exist bet\v&en levels of processors. 



One class of networks which fulfills these requirements is the delta 

net work [9,47]. The components of delta networks include: 

2T input links and 2T output links; 

0 T stages'so, . . . , ST-1 and; 

0 for each stage t ,  0 5 t < T, there are 2T-1 2x2 crossbar switches. 

4.2.1 Network candidates 

The simple E x F  crossbar switch is a candidate for the ICN since it has some 

attractive features, the primary of which is its O(1og E) or O(1og F) gate delays 

for the switch setting process. -4 E x F  crossbar permits the connection of E 

processors to F other processors. It is usually discussed in the context of linking 

each' of E pr~)ccssoss to F ~nemory units. The one-to-one and one-to-many 

mappings betxeen stages is also favourable. Unfortunately, the nurnbc-r of 

inter&nnections arc extensive. and the complexity of the switch increases as E 

arid F become large. The number of gates is proportional to E F .  

Of the delta-cla,ss network. t h ~ e e  interesting options are the Bcnc5 network [GI,  

the Batcher sorting network 131. and the omega R net,&rk [22] Thc fonncr has 

thc same capahlit>. as t l i t  crossbar switch but only requires O ( E  log E )  gates for a 

E s E  ~ictn-ork. Tlic tirnc scquircd to pass data through the network is O(1og E). 

The ~icgative asl)cc-t of the BcncS scheme is the difficdty in setting 1111 a particular 

alig~lmcnt, the coinplcxitj. of n-liich is O( E log E). 



are O(E  log E) gates in the network. The topology rules for the 52 network can be 

stated b the following definition. c 
Definition 4.1 G i v e n  E = zT i n p u t  l ines,  represent  each l ine  in i t s  b i n a r y  

encoded f o r m ,  ET-1ET-2 . . . EO. T h e n  i t s  corresponding o u t p u t  l ink  i s  

The ExE omega network consists of T = log E identical stages, each of which 

is made up of 5 switching elements. One of the primary differences between this 

and the pre\.ious two networks involves the number of stages. The  0 network 

log E(log E+1) requires log E, while the BeneS and Batcher networks need 2 , and 

2 log E - 1 levels, respectively. The logic involved in the three networks is different 

hut the conlplcsity of the switches is similar. 

Figirc  4.6 shows an example of an 12 network with E = 8 and T = 3 where the 

iritercorlnecti~lg links and a candidate configuration for a quadtree ( N  = 2) are 
I 

shown. 

4.2.2 Network configuration 

From t hc prcvious subsect ion. t hcrc are T = log E stages, labelled So, . . . , ST-1, 

iiil<l 5 s~vitclies p c . ~  stage for an E x E  R network. Under most circumstances, the 

one-to-one t napping which the R nctn-ork provides is sufficient. However, with the 

.> .V _ - arj- tr& schcnir. i t  is nrcessary for a onrto-?" mapping. This can be 

accornplislicd hy the broadcasting capabilities of tKe switching elements. 

Bsoadca~ting for a 2'-;1ry trse begins at  and continues t o  STpl 
Y ( 1 .  2, = 2 ) Tlw mapping fronr So to  isone- toone.  

Tlic rilirrit)cr o f  possihlc ~iiappirigs on an array is.estensive. -4s an example, for 

some roiv 7, in tllr ana?.  a.1rr1-c E processors map to  E nodes, there are $ P s  in 

E row R,-, n-hich arc t 1 1 ~  fatlicrs of tlicsc processors. There are tlien E - P s  ill 
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Figure 4.6: Example of a 8-processor/row 0 network 
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randimness of selection, any 3 P s  can be used. In effect, there are 

possible choices for these parent processors. 

4.3 Overview of the scheme 

This architecture exploits two features of the 2N-ary tree. For any subtree's wit 

, a root node r at Ievel 1 in the tree, S is independent of the other subtrees with 

k 
root nodes at level I. As we progress down through each level of. the tree, a finer 

representation of the image is obtained. Therefore, for any image I, and its L-lgvel 

tree representation, the subtree defined by the root node and the next i, i < L, 

levels still provides a valid definition of I. 

The scheme takes some 2N-ary tree A ,  and maps it onto a P-INA consisting 

of R processor rows (labelled O , l , .  . . , R - l ) ,  each made up of E processors. 

Separating consecutive rows of processors are T stages ( E  = 2 T )  of switching 

elements which make up the local ICN. T 2x2 crossbar switches ( E  = 2T) are 

prcser,t in each stage. 

For any tree A ,  its root node (level Lo in the tree) maps to a processing 

element in  row &, of the array. 2" processing elements in R1 correspond to the 2N 
L 

children of thc root node. The ICN between Ro and R1 utilizes the appropriate 

switch settings to realize this mapping. The nodes of L2 of A are then mapped to 

the appropriate elements of R2.  Each of the elements of R2 are linked to its parent 

processing element in R1. This procedure continues until the entire tree is mapped 

onto the array. Of course this complete mapping of the tree will only occur if 

Two fraturc.~ of such an organization are that the mappings for different 

instances of trees with q u a 1  ,kT are the sarne, and synchronization of processing 

element execution is simplifid. J'5'ith the for;mer, this leads to prckessing elements 

representing thr sarne relatirr n id r  for all similar i n s t ' a n ~ ~ s .  ~ icornpar ing  the 



1 4- 
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values for these different instances, it is not necessary to access some form of , 

shared memory which can lead to contention, but instead, the element's local 

memory contains these values. Only two memory accesses ar6 needed to load the 

appropriate values i n k  the data registers of the processing element. In terms of 

synchronization, execution of the tree takes place one level at a time. Therefore, 

the processors of an active row begin the execution of their instructions at the 

same time. The next row of processors can then initiate theirsequence of 

instruct ions once the processors of th&xcvious row haw completed their last 

instruction. 

B 

4.3.1 The incomplete mapping of the tree 

When L > R, there are two approaches which can be taken. First, an incomplete 

tree mapping can be made on the array. The to$  levels df the tree are mapped 

onto the array. However, instead of containing node information as in the previous 

R - 1 rows, each of the mapped elements of the (R - l)"t row of the array contain 

all of the information of their respective node's subtree for which it is the root 

node. Figure 4.7 11a.s an example of just such an incomplete mapping, where 

R = 3, and L = 4. For clarity, the I C N s  have not been included in the figure. 

This storage of information in the last row of the array is possible due to the 

existence of local memory for each element. 

This solution is not as straig~ltforwarh as expected. In the first R - 1 rows, the 

processing  element,^ perform relat,ively simple tasks such as the routing and 

queueing of data, and register compariso~ls. This can a11 be p e r f o r n d  Gith the 

type of processing elements descrihetl in Chapter 4.1.3. H m ~ v e r ,  the elements 

which occupy the R - 1"' row of t,he array now must process each l e ~ ~ e l  of its 

stored subt,ree. This increased complcxify in processing can be accommodated in 

two ways. -411 of the pr,occssing elcmcnts can be replaced with more powerful 

microprocessors. This nlaintains thc 11omoge"neity of thr. array, at the expense of 
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Figure 4.7: Incomplete mapping of a 2'-tree onto a P-INA 



wasted power, as it is only the last row which requires these enhanced processors. 

Array maintenance is simplified since only one type of element is needed. 

Alternatively, the economic solution is to replace only the last row of elements 

with the more powerful microprocessors. These processors re 

the M C  just as thsother  processors in the array do, albeit the complexity of the 
\ 

routines-is greater. 

, ,/ 

4.3.2 Folding of the 2N-ary tree 

An alternative to the  incomplete tree mapping involves the folding of subtrees 

- whh root nodes.& level R - 1 onto the array in a botto~n-up fashion. The nodes 

at level R of the tree would he mapped onto the appropriate elements in row 

R - 2 of the array. The nodes at level R - 2 map to row R - 3. This continues 

until the entire tree is folded onto the array. This will necessitate multiple foldings 

if L 2 2R. Figure 4.8 shows the case of an L = 4 binary tree mapped onto a R = 3 

P - I N A .  To simplify the figure, the I C N s  are not shown. 

With this approach, the elements in the array are all of the same complexity, 
r\ 

so there is no extra cost incurred with using different processor types. However, 

the f o l d i n w u h t r e e s  back onto the array brings about a ~roblern with processor 

contention. This is not present in the mapping of the first R levels of the tree. In 
6 

the initial mapping, each element that represents a node in a level of the tree is 

part of a single subtree. However, upon folding, an element may represent a node 

in two or more different subtrees. The processing element has to store the 

inforination for these different subtrees, and process them seq~ent~ially. 

y. 

4.4 Execution of operations on the P-INA 

There are two components involved in the execution of operations on an array. 

The first concerns that of the elerncnts making up each processor row. The second 
"--, 

5.3 
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involves t,he ICN between adjacent processor rows. 

JF 

4.4.1 Row processors and execution of operations 

As shown in Chapter 3, it is necessary to  traverse the tree in both directions in 

evaluating a binary operation. With the P - I N A ,  this requires that  the 

appropriate switch settings be retrieved and set for the I C N s .  Once this has been 

completed, the P C s  can initiate the appropriate actions for each row. The P in 

row Ro, which represents the root node in the trees, performs its sequence .. of 

instrlictions, and sends any of the necessary values to its 2" children P s .  The 
1 

critical point here is that  all P s  in a row must complete execution before the next 

rolv of processors are activated. This is reasonable as the tinling restraint given in 

Cliaptcr 3.1 still applies. Synchronization between rows is accomplished by having 

the P C s  conmlunicate witli_each other. For exampre, &ce PCo has received all of 

the required sig~ials from tllt P s  under its control, it sends a signal down to  PC, ,  

whicli in turn will activate the processing clement s undcr its control. 

However, in traversi~ig hack u11 tlie tree/array, we h a w  a situation wlicrc sonic 

P s  ha\-c to scqucritially read in niorc than one value. Th~rcforc ,  cach row \vliicli is 

aff(~ctct1 I)>-  this type of ni~ilti-valued i n p t  has to have a longer execution time 

heforr corit sol is pnssctl to its parrmt row. 

This last poi~it must also lw consiclcrccl in the caw of tlic array of sufficiclit ~ i w  

and t hc incomplctc mapping scenario. Hoxcvcr, t he necessary sy~ichronization is 

not as comfilcx as this clirrcnt situation with tlie folding trcc. 4 s  indicated car1ic.r. 

tlic folding trec schcnlc can l~ccome ungainly to control with nlldtiplc suhtrces , 

rnapped onto thcr same subset of processors. The time at each row obviously 

iricreast~s as t l i r ,  rilirnl~cr of mapped su1)trcts increase. In atlditio~i to tlic grc3atcr 

nllrnl>cr of valucs whicli rrnlst 1)c scad in 1,- a proccssi~ig c l c~nc~ i t .  cvt,rj- 11c.n: 

folding rcq~lircs that a cmnplctc set of snitch s r t t i ~ i ~ s  he ~riotlificd to  

ac~01ii1110(1atc this foldi~ig. The, ICN dcl;iJ- c;m 1,c ~iii~iiniizc(l if t l lv  new sx-itch 



settings for the folding stage between rows R,, and R,+i can be  set immediately 

after the current pass through the ICN has been completed. 

Chapter 4.5 presents an analysis for all three cases, and the delays associated 

wit, h folding will become obvious. 

4.4.2 ICNs and execution of operations 

The situation i~ivolving ICNs lias direct parallels to  that of the processor rows. 

The NC whicli controls each ICN provides the necessary synchronization to  allow 

for tlic efficient passage of data.  The standard switch settings which are stored in 
& 

tlic memory accessible 1)). tlie MC are scnt to the NC, which then relays this 

inforxnatio~i to thc~ SEs .  

The ro\vs of  processors in the array are mapped in such a way so as t,o represent 

9 a trec. The stages witliiri an ICN also map out a trec. hut this is a inodified 

hinary trec. In the first pass through the array, tliere is no difficlilty with switch 

elements l~roaclcasting x-alucs. However. the problem associated with nliilt,iple 

valucs entering a processing ele~ncnt is also present wit.h the SEs .  The  solution 

inr-olvcs s \ ~ i  t ch sj-nchronizat ion wit 11 the NC. The data passing from some row 

R,+, t o  its p a ~ - ( ~ i t  row R, first goes through ST-,  , where the last broadcast step 

takcs placc i11 tlic initial ])ass. Two cycles arc necessary to  pass these t\vo valucs 

t liroligli this st age. A4\ t 11c data approaches ST-,1', additional cycles are nccessaq 
3 

to  process t l i~ s  data tlirollgh tlic stages. Tliis is co~nparahlc to a pipeline effect, in 

that a \.all~e is sent tlirol~gh a SE at the same time as a similar value is scnt 

througli an SE at a lon-cr stage. Since the number of stages per ICN is the same 

t hrouglio~it t lic arra:.. t llc t imc for (la t a to pass tlirough any ICN is consisterlt 



4.5 - Time frarn; analysis of the architecture 
\ 

This analysis of the P-INA architecture takes a similar approach to that of 

Chapter 3. Thc task is to  determine the time complexity of binary operations on 

trccs mapped on the array. The following conventions are used: 

e I.r and IB refer to tlie two imagcs that are involved in some binary operation 

of the form I.4 O P  IH ; 

e ,w is thc l~ixel width of thc imxgc (thcreforc, there are 1v2 pixels in tjhe image); 

tlicrc arc 3" children per i>arcmt node i11 tlic tree; 

L =  lo^;,,,^ w2 + 1 = 111111ilm of les-(31s in tree (labclcd Lo,  L1,  . . . , LL-I ); 

R r c f ~ r s  t o  tlw 11111111)cr o f  rows in the P-INA: 
4 

E is t l i t ,  11111111)(~ of p r o ~ ~ ~ s s o r s  P l ) ~ r  row of t lit' P-INA, m c l  R = 1 q 2 N  E + 1; 

4.5.1 Scenario involving P-INA of sufficient size - L < R 



N 115th sufficient rows and processors in the array to  map the given 2 -ary tree, 

there is no contention for any processor P. The L levels in the tree require L time 

units for the downward traversal (Equation 4.2). In going back up the tree, it is 

necessary for mliltiple valucs to be passed back to  the parent processors. However, 

only one value can be read 13y a processor froni the network at  a time. This ' 

accounts for thc 2.' + 1 tcrrn in Equation 4.3.  There are 2." values going to  thc 

parent node of a suhtrec. in addition to thc proccssirig time needctl to c o m p l e t ~  

thc operation in the parcnt processor itself - in a fashion sinlilar t o  pipeline 

processing. The overall complcsity of the worst case situation is then O ( z N L ) .  

4.5.2 Scenario involving P-INA of insufficient size - L > R 
> 

11-lien tlic P-INA doe:, riot l l a v ~  the capacit~.  to map a ?.'-ar- tree in one pass of 

the array. w. car1 list thc two approaclic~ spccificd in C'liaptcrs 4.3.1 and 4.3.2. 

Analysis of incomplete tree mapping 

S,,,,,, .. t l i r ,  t i r r i c ~  riwclccl to p r o w s  t l ir.  first R - 1 lcvcls of t lie t rc~' :  

S , n c v r n p ~ F l f .  tlic tilnc ~ i t ~ ~ l m l - t o  p r o ~ c s ~  tlic last L - R + 1 1 ~ 1 ~ ~ 1 s  of tlic t r c ~  

and: 



The number of time steps to  complete a binary operation is then: 

One problem with Equation 4.7 involves the fact that S,nc,mplete is essentially 
i 

t hc contribution of a soft~varc-based processing step, and is a function of N, L ,  and 

R.  There is an obvious disparity between the execution times of an operation 

irnplementcd in software versus its hardware equivalent,. This requires t$t the 

, contribution of S,,,,,,,,,t, bc reduced to minirriizc its effect on the P-INA. From 

Equation 4.7, if SV.~; .~ ,L  is to he kept constant, decreasing the cont~ibution of the 

software-inl~,lclnc~itcd incomplete niapping requires t,liat R or :V be increased. 

I n t  l i i  t ia-cly, this compcnsat ion for reducing the software-depe~ldc~lce on the 

~r iap~) ing  is lvllat is t o  1,c espcctcd. Of tlic t ~ o  alternativc's. adtli~ig adclitional 

rows of processors is tlic easiest (nlodifying iY will require cntircly nc\v mappings 

and switch set tings). -4s R -+ L ,  S ,,,,,,, r P t ,  -t 0, and E(luatiori 4.7 rccluccs 20 

Eq~iatiori 4.4 if the array's last row is accounted for. Its coritri1)ution to 

cspri.ssio11 is 2." + 2 time stvps. 

Analysis of t h e  t ree  folding al ternative 



With no contention for processors in the first pass of the array, - 
CI S d p a s s  = R (4.10) 

sup,,, = (8 - l)PN + 1) (4.11) 

The reasoning here follows the same as that given in Chapter 4.5.1 

An indication of the time required for the folding of a tree onto an array is the 

number of effective suhtrees which remain to be mapped after the first R - 1 levels 

of the tree have themselves been mapped. This value is given by 

L-R  
?'Yt 

\ I b However. this term docs not consider the processing o ~ w l a p  w11icli ma)- occur 
; J 

Taking tliesc t w o  tcrrns. t l i v  cffcctivc folding tirric is 
J 

that t hc anlourit of folding 



* 

The fha l  term is SunJoid. There are three contributing factors in the S,,,r,rd 

expression. The first provides an approximation of the total amount of time 

needed to process the last level of subtrees folded onto the array, and is given by 

~ N ( L - z )  +V - - + I )  
E 

A x  always. 2,' + 1 is the n u ~ r h e r  of time units required to process the children of a 

parent node in going back u p  the tree. The level at which these critical subtrees 

csist is L - 3. The clivisio11 hy  E reflects the fact at 1evc.l R - 1 in the tree, there, 

arc E noclcs. ancl a-5sociatcd suhtrees. Each of thcse suhtrces can he processed 

cl(~tcrxiil~r~s t l ~ c s  c.o~itr.il)iition of t11v suhtrws hetwctln the second t o  last level of the 

o r  for L < R + 2 .  
9 . Y ( 1 , - 2 )  

S . L , , = ( ? " + l )  
E 



Otherwise, 

Unfortunately, the nature of these eqliat ions makes sirnplificat ion difficult 

4.6 Reducing the Number of Inactive Nodes 

If an applkation requires e i t rc~ne ly  large trees (as  would be the case in a 

geographical information system), t lic t re~ncnclous overhead in irit,erconnec tion 

settings between adjacent processor rows rnakcs the folding scheme very inefficient,. 

Tlle ir1coln1)letc i~lappirlg clocs riot p r c : s~ t  as complicated a sitliation as t,he 

folding. HO\Y(YYT. thcre will 1,t. a large nlini\>cr of i~lactive row processors if there 

arc rnari~. pror~ssors  p c ~  row. and many rows in the a r r q .  ,At the root, level of the 

array which 11as E processors arid nraI,peil for a ?"-as?- trcr, only 5 are actively 
2 .v 

~isecl. The sccond lc\.el utilizes of these processors. In addition, tliosc row levels 

mapping to the top portion of a trcc will not have as  ~rilicli intra-row processor 

co~nn~liriicat ion t o  contcncl with, as those levels lower in the array. A more 

cffwti~-c 1 1 ~  of  t 11c availal~lc processing power in the array can he made if the trcc 

r~odcs art, ~rial)puI 11ior.t. r ~ ~ ~ ~ i l y .  Thiq coflsistent distribution is possible considering 

that t hcrc csi5t ro~iirri~ir~icat ion lirik5 lwtwcen adjacent rows, and arllongst 

proccssors of  cach row. Tlic algorith~ns of the representation are unchanged but it 
\ 

ivill he 11ccessa1.- to nlodify the c01it1.01 algori th~~is  ~rlaintaining the system. They 



Chapter 5 Embedding of Restricted 2N-ary Trees 
t 

on VLSI Arrays 

The  emphasis t o  this point lias heell on trees i~ivolvi~ig any valid iV. 111 this 

chapter. wc prcscnt a11 arcliitcct,urc wliicli is basctl on tlic '7l-ary or binary trcc. At, 

the allst ract level, dcali~ig with 2~"'-ary trees is more attractive than  the simple 

biliary trec. Hoivcvcr. significant advanccs have already l > c w i  niadc in thc  

t levc~lopnic~~t of binary trcc-l)asecl a r c l~ i t~c tu r e s .  It  has tven  I ) c t ~ i  sllggcsted that, 

thc binary trec is a natural  method in wliicli to approach problem solving. and 

that i t  can bc 11scd as a hc11)ful c o ~ n p t a t i o n a l  ..;tructurc [24]. \Vitli the typc3s of 

t rc ts  at the ~norricmt. 

5.1  I(ictionnry Machines 

has go~ i c  into t l i t ,  clt~vr~lo~)rric~~it of a ~ l i t s s  of arcliitc.ct~lrc. c d l ( ~ 1  t l l ~  

Thc n w a r c h  ~ m d c r t a l m ~  h ~ ,  ~ > ~ i t l c > ~ -  and Kmig has ~)rovi(lv(l 

irivcst iqa t ion illto this (Ic'sig~i 171. So~ili' favollral>lv rcw~lt  s call 



where it is necessary to  apply some function F over every stored record, These 
- ,  

types of problems occur in many different applications such as information 

processing, statistics, and in areas requiring set manipulation. It is these types of 

applications that  can use the 2N-ary tree represent ation. 

For the most part ,  these machines are based upon the binary tree organization. 

The leaves of the tree contain the records, where each consists of two fields, one 

containing the key k, and the other, the actual da ta  d. Some valid operations are 

i n s e r t i o n ,  deletzon, and search. Queries are passed to  the ~nachine via the root 

node, and progress down to the leaf level. The partial solution is then passed back 

up the tree. This tw pass mechanism is similar to that described earlier involving d 

It is this hinary tree topcllogy which allows the c l i c t i o n a ~  nlachine and wstrzc ted  

3x-asy t rec reprcscnt at ion to ni&c use of tlevelopment s in the area of embedding . 
trees in VLSI arrays&f processing clernrrits? The t r rm restrzcted is used in the 

contest of t he spccial case where ,V = 1. Each node in the tree corresponds to  a 

P E  in the array. The edge\ of tlic t r w  correspond to the conmiunication links 

hctwem pairs of P E s .  Thr, simple arid regular i~itcrconnections that  cornprise the 

tree nlalir. i t  a pr-imc. cari(lic1at~~ for \.*LSI i ~ n ~ ) l ~ ~ r l i r ~ r l t ; ~ t i o ~ i ,  i n  part because 

corn~nunicatio~i is a major considcratio~~ in VLSI design. Tlw ad\-antagcs inherent 

with the trcc ah t rac t ion  arc rcalizccl in its implenlentat ion. In the worst case 

csaniplc, to arccss tlic P E s  wllich rc.~)rcsc~it thr. -11 leaves in the tree would rcquirc 

log, -11 t i ~ n c  stcps. In addition. i t  is possi1)lc to pipclinc> qucrics through the.tree 

~nach i~ ic~ .  This lcacls t o  a grvat ~r I I ~  ilizat io11 of t he P E s  witllin the array. , 
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Figure 5.1: The  overall architecture using binary tree-mapped chips 

of the machine is dependent upon the $E utilization and the extent of the 

comrnunicat ion between these P E s .  The  binary tree provides a compact structure 

with the least fan-out of the 'hr-ary tree an-out refers to  the number of chldren SA 
that a node has. The smaller the fan-out, then the more compact and regular the 

mapping on the array. This also reduces the number of unused P E s .  Figurc 5.1 

presents the entire architecture. The  mapping ~ncchanism, and descriptions of the 

major components follow. . 

5.2.1 Mapping of the Binary Tree . i 

Two i~npostant evaluation criteria tllat can he used for considering different VLSI 

interconnection schemes <are area efficiency and propagation delay. The fonncr 

refers to  the ratio bet~vecn the actual number of P E s  that  arc mapped from the 
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Figure 5.2: A 5-level binary H-tree mapped onto a 7x7 'PE array 

abstraction and the total &umber of PEs on the VLSI chip. With the binary tree, 

the mapped P E s  are those which represent nodes of the tree. Propagation delay , 

refers to the distances between any two mapped P E s  in terms of the number of 

interconnections between them (including connection PEs) .  

An example of a binary tree mapping includes the H-tree method of Horowitz 

and Zorat [Is]. The connections are rectangular, have unit width, and occupy an 

area proportional to their length. The rectangular connection restriction prevents 

comer connections being made. Figure 5.2 shows the mapping of a 5-level binary 

tree (32 nodes) on a 7x7 PE chip array: The basic unit is the 3-level tree. The 

area efficiency of this mapping is approximately 65%. The maximum propagation 

delay is 7 units. 

A second type of mapping is the hexagonal array proposed by Gordon et  



Figure 5.3: A blevel binary Hexagonal-tree. mapped onto a 5x7 PE array 
. I 

al. [16]. A benefit of this mappings is t h a t  two additional connections are nowo 

possible (six versus the four of the H-tree). A 5-level binary tree mapped onto a 

5x7 grid is shown in Figure 5.3. One observation between the two different 

mappings is the smaller number of inactive P E s  in the hexagonal approach x (an 

area efficiency of approximately 9090, and a propagation delay of five units). It is I 

possible to take the Scor 6-level mapping as a basic unit to build higher level trees. 

Although Gordon's hexagonal mapping is reasonably efficient, a third - 

mapping, which has recently been developed by Youn and Singh, provides for 

greater PE utilization 16 th some improvedent in propagation delay [50]. The 

number of PEs invoiLed as intermediate connectors has decreased. Figure 5.4 

shows both the 4- and 5-level mappings. Note that the latter is forme$ from two 

4-le~~el units. Youn has also summarized the area efficiencies and propagation 



4-level binary uee module .- 5-level binary module (2x4-level units) . 
Connection PE 

Figure 5.4: Youn's mapping of 4 and 5-level binary trees 

C7 
r all three methods. They present a series of equations which indicate 

that this new mapping scheme is more area efficient, and pbvides a consid&able 

reduction in propagation delay than the hexagonal tree. The H-tree is khe least 

efficient method of the three mappings for both criteria. 

Some additional benefits of Youn's mapping scheme will be presented when the 

thiee 2N-ary tree architectures  are evaluated in terms of fault tolerance. 

All three tree m a p p i ~ g s  make use of a basic unit"coisiqting of 3 7  G levels. It is 

the replication and connection of these units which allows for the mapping of 
, .' 

larger trees. 



5.2.2 The Processing Element 

Once a mappi~ig schenie lias ljec~i selected to  embed a full binary tree onto a PE 

array, it is necessary to corisidcr other requirements of the representation to  make 

this architcct~irc more c4icicnt. One rncc.1rariisrn which providcs an increase in this 

desired efficiency is bit-serial proccssing [4]. Instead of processing an array of 100 

32-bit numbers scqucnt ially one n~lnlbcr a t  a time, thc bit -sefial rnethod only 

rcquires 32 timc units instead of the c.xpcctcd 100, sincc bit-slicing is used to  

access t l i r .  vall~cs. Other ad~wi tages  arc. that data  items car1 bc of any length (it is 

not nrcrssary to pad them with null vali~es to  fill tlre niacliinr \vord): co~isirlerable 

time savings can he rcalizcd if only part of an o1)czirid is rcquircd for an 

operation. For c~sample, given a set of positive arid negative integers, one query 
\ 

may hc to  return the n111n1:~ of negative integers. It is only necessary to  access 
-/ 

tlic. sign bit instead of the mtirc  numbcr. The design of the PE attempts t o  11lakc 

IISC of this bit-sc'rial proccssing feature whcrcvcr possit)lc. R a  thcr t ha11 defining a 

l ~ c  co~lsiclcrcd in tornis of a single cycle. 
I 

Figure 5.5 1)rcsents tlic major co~nponc~i t s  of tlic PE. Each PE can l x  

iclcntificd by a. 11niq11~ aclclrcss. The adtlrcss of t.hc root PE is t,hc L- l i t  value 

(lo . . . O L - , .  w11~1.c L is tlic 1iii1ii1)cr of lcvels i11 tlic largest tree that can he ~ n a ~ ) p v ( l  

onto the arraj. arclri t c c t u r ~ .  Tlic ~ iodes /PEs  are secjucntially iclcmtificd i11 somc 

corisisterit mariIic3r across a lr.\-r.l arid towarcls tlic L - 1"' 1cvc.l. For example, thc 



RB that  provide temporary storage. Between these two registers exists an ALU 

which executes all i~ l s tn~c t ions  between RA and R g  in parallel by shiftin 

contents of thescx registers through it. Thc result of an operation usually goes into 

RA. There is also a link hetwetn RA the element's PEid. 

The actual da ta  for tlic reprcscntatio~i sc.licmc is stored in a parallel shift 

register which co~isists of 32 33-hit words. The 32 words may act,ually be 

increased, as Iriay tlic word lcngtli. The logic necessary to  support the types of 

operations that are pcrfornied on 2"'-ary t r c ~ s  is rc.latively sirnple because the 

operatio~is t2lcmsclvcs arc siniplc. Tliis 32-bit wiclth allows for the storage of 

~nultiplc nodc valllcs pcr word. For tsar~iplc.  if tllc ~ilirnbcr of values that  a tree 

nodc can liavc is thrcc ( BLACK, WHITE, arid GREY ), two bits are ~ieeded 

per noclc. Tlicrcforc, sistccri cornplctc riodcs can be stored per word (without 

llavi~ig overlaI) o ~ i t  o the 11r.st word). .As iridicated carlicr. tlic hit,-serial method 

provitlcs for cfficicnt sc>l(,ction of spccific bits from a \vord. -4 rnask can he s t o r d  

in RA wliilc RB contairls tlic t a r g ~ t  ~vord.  T h t  appropriate flmction can be 

applicd to RA and R B  via the ALU to  isolate the desired t &  bits. Sel~ct ion of 

tlic rieccssaq- word from this mcniory is done) tlirougli a ~nliltiplesor, and requires 

5 ])its ( 2 5  = 33). 

5.2.3 Data/Instruction Buses 

Communication hetwccn the P E s  of the I'LSI tree is accomplished through the 

data and i~istruction huscs. These can be considered as the edges connecting the 

11odcs hctn-ccn adjacent lei-cls in the tree. An i~istruction is passed from the M C  

to thc root P E .  which can forn-ard/hroadcast the instruction to its child nodes. In 

a tree with L = log -11 + 1 levels. n.hcre -11 is the number of data  items, and the 

log function is of base 3. the leaf P E s  can receive instructions from the root PE in 

L cycles. 11-e hat1 prcl-io~isl~.  mad? rrference to high level "time units" and "time 

T 
- ~ t ~ p i ; "  \vhich ~0113is td  uf adrlit ional ~ s ~ c ~ i t i o n  steps/cycles. 1%-ith the bit serial 
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Figure 5.5: A proce~sing element in the VLSI array 



processing capabilities of the architecture, it is now possible t o  use these cycles as 

a frame of rcfercnce. Data  can also he passed back and  forth between parent and 

child nodes in time consistent with its hit width. 

WTith these instruction and data transfers, it is also necessary to  consider 

transmission delay between P E s .  In the analysis of a particular VLSI model, one - 
' 

criterion for model effect iveness is the bit transfer time across the connections 

between P E s  [ % I .  Oric. school of rcwarchers assume a delay of O(1og D).  wherc D 

is the conn t~ t ion  length. Yet another usc.s an O( D)  delay. Due to  the 

predominantly direct links bctwccm nodes at succcssivc levels in the tree offered by 

Youn's tree mapping sclicnic. i t  is possible to assu~nc aE O(1)  delay between 

successive P E s .  

'? 

5.3 Analysis of Two Operations on the  2l-ary Tree 

5.3.1 Building a T'ree 

The parallcl time stcp analysis of Chal)tcr 3 prcscntcd a worst case scenario where 

i t  was ncccssary to effectively traverse the trcc twice. Ari example of such an 

operation is the of data ( t he  values which are storccl in t,he leaves of a 

trcc). and s ~ i l ~ s q u e ~ l t  l~liildirig of t h ~  tree. Tlie init,ial pass down through the tree 

requires - 2 1  + log2 -21 - 1 I ~ H J O I -  time s t ~ p s  for ,I1 data items. If pipelining is not 

uscd. this time increases to :If log ,I1 units. 

The loading of an image with -11 values into the array of chips requires that  

the M C  compute the numhcr of lcvels, L = log it1 + 1, and the starting leaf PE 

address ( the remaining leaf addresses follow sequentially after this first address) 

for the tree. he M C  then sends an instruction to  each PE via the root PE P 
requesting that its particular identification key be copied into its RA. Once the 

starting address is stored in the R.B of each P E  a cornparisoil requiring only O(1)  

cycle time is made n-ith the contcnts of RA. The leaf data  is sent out on the data 



bus, and bit-shifted into t'he destination PE. 

For some S - b i t  \ d u e  to be shifted i n t o ' R ~ ,  the complete value can be stored 

in S cycles, as each bit rclquires one cycle. In the storage of PE addresses, the 

rnasirn~im tree tlcptll offered by a chip configuration also provides the bit length of 

the largest PE address. If the rnaxi~nunl nurnhcr of l e d  nodes is M ,  the11 the 

1naxi1111im atltlrcss sin. is givcli by L hits. L cyclcs arc needed to load this v a l k  

into a PE's register. 

111 building a t r w  of nlasirnuni dcptli from a set of 11f da ta  valucs, the storage 

of the lcaf vall~cs rccjliircs O( - l lL )  ~riirior cycles. Each pair of child P E s  at lcvcl 

L - 1 ~nlist  pass their corrc~sporil in values to their parent PE on lcvcl L - 3. 111 

effect, a total of 2L bits 1r111st hc scnt to RA and RB of tlic. p ~ v c ~ i t ,  wliicll 

rcquires 0 ( 3  L ) = O( L ) mirior cj-clcs. Tlie hit-serial application o f  the appropriatv 

( ~ I I ~ I - y  f~mction gcncratw a vall~c for the parcnt nodc~ (O(1  ) time). This r w d t  is 

storccl ill-the PE's data Iricmory in O ( L )  ti~nr.. Stori~ig this vallic can 1~ done in 

conjunct ion wit 11 passing t he rcs111t to the ~ i c ~ t  liiglicst lcvcl so that an acltfitio~ial 

root va lw nccds an additional L cyclcs. The. c~it irc procedl~rc rcqliircs 

3 log2 -11 + ( 5  + -11) log 111 + or O(.\l log A l )  cycles. Using a conscrvativc 

~ s t i n i a t e  of a 10 megaliertz ( h l H z )  clock rate, approximately 1 millisecond would 

1)e ntcdcd to  store 1000 values. 

5.3.2 Double Pass Query/Operation 

Operations involving tn-o or more oh jec t s ~ ~ s u a l l y  involve dolihlc passes t hrougli 

the trccs. It is neressary to c o p  the/contcnts of entity .+I into RA, and of B into 



RB ( O ( 2 L )  cycles). The compare and branch operations require 2 cycles. These 

2L + 2 cycles arc performed for the L levels of the downward pass of the tree. At 

level L - 1, it is necessary to save tlie result at each leaf P E .  The storage of leaf 

values can be done wliiledhe result is passed back up the tree. This presents a 

savings of L cyclcs. Rcturning to the root node requires 3L  + 3 cycles per level for 

L - 1 levels. The final root valuc needs a separate L cycles for its storage. The 

total number of cycles is 4~~ + 3L - 2, or ()(log2 -If). 

5.4 The Case of Insufficient Chip Levels 

The analysi~ in t h ~  previo~~s  section ~ L S S I ~ I I ~ C S  that there arc slificient tree lcvels in 

provided by the I7LSI  napping to acco~n~nodate any rcqwst presented to i t .  

Vnfortunatcly, there tvill he sit~lations lvhere this assunlption will not be valid. 

The sirnplcst solution wndd 11(. to add additional cliips to our array, with tlie 

appropriate i~itcrcon~icctio~is. A sitllation will 1)c rcachcd where the packaging of 

these binary &ips becomes the limiting factor to.a successful implementation. 
I 

Homevcr. wiFh tlir plir~nomrnal dcvclo~mie~~ts  taking place ill VLSI chip 

tcclmology. PE tlcnsitics arc increasing at a significant s&e, as arc the PE 
. 9  

ccrnplea~t Ira. U'ith t lie ?l- i ry rrpresent ation, this increase in PE conlplcsi ty can 

he sacrificed for greatcr chip tlensit ies. 

Essentially, most of the altcmiatives wllich arc available to our first two 

architectures cannot be used here. Some involve network reconfigliration wliich 

are difficult to achieve when PE- to -PE links are hard-wired into the chip. 

One feasible a1 t emat ive follows an approach t aka1 hy the reconfigurable 
J 

processor-interconnection scheme. The P E s  on the last level of thekrray can be of 

greater complexity than those of other levels. Those chips that map to the lower 

levels of a tree may consist of P E s  which contain greater amounts of local 
f .  

memoq, program stores. and control logic. The function of these P E s  is to 
I ,  

"r r * process the lower subtrees of these large trees, rat,her than single nodes of the tree. 



Chapter 6 A Multiprocessor System for the 

2'-ary Tree 

Tlic. flcxi1)ili ty offvrrtl I)!. t lie ~ i i l i l t  iprocvssor organizatio~i niakcs i t  snitable for 

\ 
a largr. n ~ i ~ n h r r  of applications. -4rcliitc~ctl1ri~s sucli as tlic array co~nl)litcr, which is 

classified as helo~lging to thil 'SIMD c l ; m ,  arc. most c.ffcctivc in dealing with 
a 

1-cctor-type conll)utations. Tliesc co111putntions can hc mapped onto a MIMD 

sj-stcni 1,- ~liodifying thc~ ~~ecessary  algoritlinls. T l i ~  s a n e  cannot be said in the 

opposite case. A non-vecthr co~nputation that can be proccssecl by a MIMD 

arrangement may bc such that it cannot be reworked into a form cb~isistent with 
1 

the array coniput~r ' s  requirements. 

To distinguish bctwcen differe~it ~nultiprocessor designs, the type of processor 

~ m i t  i Prl: )-memory unit ( SIC) in&rfacc. t he hornogcnrity of the PrUs, and PrU 



Memory I ~ p t / O u t p u t  

Figure 6.1 : A High-level view of multiprocessor ar~hitectures 
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intercommunication are most often considered [3]. In terms of the former, a tightly 

coupled.n;ultiprocessor system is one in which all of the PrUs share common 

memory. The number of PrUs can be h e d ,  and under the control df a strict 

supervisory mechanism. Some features of such a system include dynamic load 

balancing and f a g t  tolerance. An important advantage of utilizing the tight 

coupling along the critical path between the PrUs and MUs is that it is possible to 

incrementally increase the processing power of thc system. Another advantage is 

that all of the PrUs are equivalent, so there is no need to distinguish between 

them in assigning tasks. Since the data is in one location, only one data accessing 

mechanism is needed. 

In a loosely coupled system, each PrU has its olvn local memory. 

Communication between these PrUs is accomplished via message passing. This 

action is slow since it is processed at the subroutine level with software. The 

recipient PrU must also be prepared for the incoming message. Extra overhead is 

incurred if additional PrUs must act as intermediaries for messages between two 
?-. 

distant PrUs. 



t 
The system t,o be described makes use of a compromise between these two 

Both the tightly and loosely c o ~ i ~ l c d  systems can be considered as local 

syste~ns in that the PIUS. hIUs, ii~id supporting co~nponcnts are defined as one 

 ini it. A third type of interconnection \chemc can bc co~lsidcred as linking 

i~itlcpc~idcnt c o ~ l l p u t c ~  5ystcrris t l l ro~gh  some form of ~ictwork [40]. This last 

sit ~ i a t  ion is bcyo~icl t lie scopc of t lie cliswrt at ion 

6.1 Components and Issues of Multiprocessor Systems 

4 

6.1.1 Contention in Multiprocessor Systems 

Tlicre are both liardwarc an({ software linlitatio~ls in the di~sign of ~ntiltiprocesor 

systems [39]. In the case of the. former, these includc the nli~nber of processors, 

Iiicmory Ixmd\vidtli, and thc interconnection bandwidth. Software li~nitations deal 

with data sharing anlongst marly PrUs. There arc also four types of contentiori 

nliich  mist 11c atldrcsscd in tlcsigni~lg ~nultiproccwor syster~ls [32]: 

processor- to-memory intercon~iection; 

the interconricc tion ~nechanism; 

the rncmory module, and; 

the niemory location. 



Contention between the PrUs and MUs 

,Adding additional PrUs will generally increase the processing capacity of the 

syste~n up to tlic point where the effects of contention through the interconnection 

negate these increases. If the number of MUs is also increased, there will be a 

greater number of paths between the PrUs and MUs. The interconnection scheme 

can be designed to provide the means by which many PrUs can readlwrite the 

shared memory in parallel 

Contention through the Interconnectioi~ 

\Vhile . there ma.  be sufficient paths bctwccn the proc.c.ssors and rric~ilory u i i  ts. 

there still exists a possibility that two br more PrUs can attempt to access the 

same path througli the interconnection. Two possible actions can l x  used to 

resolve this problem. In the case of a blocking approacli, only one request is 

;tllowt.cl to  u s t  t h  pzttli. The remaining requests are queued at the point of 
' 

contmtion, alid conti~iue only after the initial request reaches its destination. The 

pat 11 tlicri bvconies availal~le for further use. With the n o n -  blockzng 

interconnection, a request is sent through, while the other contending requests are 

abortcct, to be sent again by the processors. One critical disadvantage of the 

former method is that blocked requests actually maintain and block already 

traversed nodes and their resources in the switch. This is an example of switch 

,saturation.  The non-t>locking switch does not suffer frorn this. 

Memory Module Contention 

qnon-uniform clistribution of refercnccs to the hlUs results in greater contention 
\ 

problems compared to a uniform distribution. Unfortunately, program and data  . 

locahty make the former case the predominant oqe. 

If nlorf. PrLs are adtlccl to tlic s>-stcni. this memory content ip  will also 

increase A -  the lmltln.idt11 of a ~ncinory ~nodlilc is fixed. adding memory to a 
P 



rnodu& will not reduce this contention to accommodate this PrU increase. 

Instead, it is necessary to add additional MUs. The next concern is t o  consider 

program locality and how the code segmehts are to be distributed amongst the 

LILTs to lower the amount of conteritio~i. 

. , .  

Memory Locat ion Contention jl - \ 
. . . t . ., . - 

" 

i 

This type of contention occllrs when two or ~norc~  PrUs attc~ilpt to access. the same 

memory location. Examples leading to this contention iriclu& the accessing of a. , 

wrrmpliore for R critical section, anT tlir index ~a r i ab le~of  a rrpetiLive language 

constrt~ct 5uch as a parallel DO or FOR. b 

6.1.2 The Proces~or-to-Memory Switch 
B 

The relatioilsliip 1)ct.wccn PrUs ancl h4Us requires a processor-to-niemory switch. 

Figure 6.2 prcscnts tllrce hasic topologies which proyidc surh a founcla.tion in . 

1 

The Time-Shared Multiplex Bus 
* 

The sirnplest co~inection ~riechanisni between components of a ~nultiprocessor 

system involves the single tinic-shared multiplex INS. It  is very cost effwtive an d 
reliable because of the low logic, swit,ching, and control function reciuirements 

needed to allow the bus system to operate. Unfortunately, this single bus can also 

cause the entire system to become inoperational if it malfunctions. The overall 
0 

system processing power can be considered a fu -  ction of the bus' capabilities, such Y 
as bandwidth and speed. -4s only a single trinsaction is allowecl on the bus at  a 

time, the system perfo;rnanrr level mill he  very low. A comprornis~ between this 

4 low processing power and minimal systcm cost is necessary. 

These ppcrfor-rnancc lcv~ls  can t)& irnprbved by increasing the number of uni- dr 

multi-directional buses. Anotllcr approach is t o  provide separate bus scis for each 
9 



a) Time-shared Multiplex Bus 

b) Crossbar Switch 

a 

Figure 6.2: 'Basic switch topologies ,is a m,ultiprocessor system , ' 

' 8. . . - .  



logical component of the system, and then have additional interconnection 

mechanisms between these sets. These bus sets can be used for processor groups, 
7 

memory arrangements, and input /output devices. T h s  increase in system C 
performance is at the expense of increased system cost. 

In th  multiple bus, time shared scheme shown in Figure 6.2.a, memory "7 s 

connections between the PrUs and MUs involve a considerable amount of 

redundancy. ,JVith P PrUs, M MUs, and B buses, B(M + P) connections are 
* 

ire . w m p l e t e  configuration. However, alternatives have been developed - . 

which reduce t-mbcr of connection$ while a t  the same time maintaining i 

similar throughfits [21]. A reduction of 25% in the number of connections can be 

hl - reaIized if B = and P = AI .  Reducing just the number of connections in the 
. . 

memory-bus componPnt while using a fully connected PrU-bus arringement can 

lead to the minimal number of connections. 

T h e  Cross  ar Switch L 
{ 

- ,  
If the'number of buses added to t, le system results in each M U  having a separate '' 

bus, we essentially haxre a crossbar swi'tgch arrangement: This switch was. * 



to its o;vn hlU that ro~itairis i h r  code that  i t  is t,o execute, and the  PrUs  . 
. t occasionally acccss ot hcr hlUs; 

. P PrUs arid 1 shaicd h4C' c-arh PrU has its own l o e a l m r ~ n o r y  LM, which 
~ 4 

reduces the ~ i l ~ n ~ b t ~ r  of ai-rcss to t hc. MU.  It is lcss tightly coupled so that  a 

linear i ~ ~ c r t w c  o f  P in pcrformancc lcvcl is c~xpcctcd. A - s ta te  - is reached for . 
- 

PrU has its ow11 Lhf. The  hcncfits of both prcvio~is systcrrls arc realized here 

(tlic forlncr provi(1c.s ;t dy11~1nic t ~ n v i r o ~ ~ ~ n e ~ l t ,  wit11 no performance 

' .  
proc&.r;or ratio. IVit 11 t lit. wcor~d ,  t14p sirlglc global h lU  prevents dynamically 

allocated mcrnory, as rnost of  tlic prograrris arid data art1 storc-(1 in tlic privat,c' LMs 

of tlic PrUs. For a relatively high acccss-ttrhiU prohahility, arl(1 a low nwn1)c.r o f  

consccut ivc mcmory access, t lie cost pcr processor ratio I I I R ~ ~ S  this syht(wl , 

favoura1)lc. If t11cw limits arc cxcccdcd, the ratio approacllcs irifinity. This is riot 

t he- approach that high pcr forma~icc~a~~~) l ica t ions  would use. 111 t, he c ~ s i .  of the 

third systcrr~. tlic cost per processor ratio iricrcasc.~ li~lcarly wit11 r l o  pcrfornlilncc , 

saturation rcgartllr~ss of P. Howc.vcr, prolmrir~rits of  t,ight,ly c011l)lc~l sys tc~ns  may 

switch which cxccccls the present rcc l~i i rc~nc~l ts  of tRp system can have a nmnbcr of  

inactive notlcs. T h e w  nodes can enter the, active stat(. whmcvc>r additional PrUs 

and/or  hlCs arc made available to  tlic systcrri. 

P 

One of thc  mrlicst systcnls ~~ t i l i z i ng  a crossfiar i11tcrco1111ectio11 ~ncchanism was 

t he Carncgic- hIcllon rnul t i-nliniproecssor C ' .~nmp ,[40,4S]. It consists of sixteen 

PDP-11 rninicornputrrs. and sistccri memory niodulcs. Tliis is an cxarnplc of a 

t.Cry large rn~ilt iproccssor s>.st ~ 1 1 1 .  ancl t lic cost o f  t 11c crossbar switch is 
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significantly lower than the minicomputers being used. It was designed as a 

general purpose multiprocessor. Our System is used for a much simpler, more 

specific application which does not require all of the supporting components of the 

The Multipart Memory Bus Scheme 

The third organization is the rnultiport memory system. Each PrU has its own 

bus that allows access to all MUs. The switching mechanism is located at  each 

h l U  Memory access conflicts arc resolved by assigni* fixed priorities to each port 

such that specific PrUs can preferentially access certain hlUs. Throughput is 

intermediate between the single bus and crossbar systems. 

The hardware requirement is similar t,o the crossbar system, and the level of 

concurrency is the minimum of the number ofi%'r~s and MUs. One disadvantage 

of such a system is that t he number of ports that a h lU has also limits the number 

of PrUs t,hat can access i t .  The complex control and switching mechanism.of each 

LILT makes this arrangement very expensive. 

6.1.3 Memory Considerations 

Issues such as the usage of local and/or shared memory, and the types-of memory 

mapping schemes must be considered in designing a multiprocessor system for a 

particular application. 

Local memory at each P r y  can be used to reduce the dependency on the 

interconnection mechanism. These local memories contain data  which are used 

most frequently b ~ -  the PrUs. This will result in greater overall performance as 

effectively higher bandwidth is achieved, and the data is more readily 

thc  PrU. 

, d/' Two problcms mist with the use of local memory. If a request for data from 

PrU, 's  local rncmorJ- is marl? from PrU,. the value returned may not be correct, 



e 

Figure 6.3: Storage of a 2-D &ky of numbers 

particularly if the data is volatile. The second problem deals with data which is \ 

heavily used by more than one PrU. The affected local memories will contain 

copies of this data which may be manipulated by their respective PrUs, leading to 
\ .F 

data corruption. 

, 
The use of shared memory can reduce the levels of this corruption by providin 

only a single set of data to ali of the PrUs. The PrU-MU interconnection scheme 
Y 

will determine one level of contention in using shared memory. An effective f 

m e n o t y  mapping mechanism can reduck the amount of memory contention. This 

mapping is similar to the mappinglpaging practices present in operating systems 

using virtual memory. These maps translate a PrU-generated logical address into 

a physical address thqt corresponds to some location in a particular MU. If the 

applicat;on is considered in'defining a mapping scheme, exploiting properties of the 

application's data structures can further reduce the levels of memory contention. 

For example, one application may require the storage of a 2-dimensional array 

of AT numbers. The simplest arrangement of these values distributed over M MUs 

would be as shown in Figure 6.3. 

Only one memory cycle is required to access any row or diagonal of values over 



f' 
. 1.- ' 

the MUs:   ow ever', accessing the numbers in a single MU leads to  contention, and , 

[El memory accesses will be needed t o  process every value in the MU. It is ' - 
k .  

obvious that this t y p ~  of distribution of values, is unacceptable for most 

operations. If the array value4 c ,thpou'ghoA\the MUs, 
- \ 

'1 
the number of accesses to  any o the exterh-of . s 

- - 
contention. This memory i n t e . ~ ~ e a v i n ~  can be of the following types: - ' ' 

\ .  . . 

coarse consecutive blocks of memory, addressed sequentially, are'found in each 

MU. The high order bits of an address indicate the module; I 

4, 

fine consecutive memofy addresses are located in consecutive modules, The low . 
, order bits of an address are used here to specify the .module; ,-,,- 

. - 

mixed both methods can be combined' to provide a n  intermediate form of 
" 8 

interleaving. Hardware may cof)rol thencoarse interleatkg, while the fine. 
Cr 

interleaving codd  he accornrnoaated through software. , 

Information such as the type of PrU-MU interconnection scheme, and the - . 
. m  

application will some asisfance in determining which formbof ipterleaving * - ,  . 

to use. If bhe crossbar switch is being used, coarse interleaving will provide the: 

lowest level of contention. For the most part, independent ptocess'ors will access 
*+ l 

individual hICs. If fine interleaving is used, these seemingly independent PrUs ace 

required to cycle through most of the MUs to get the requested data. If a common 

bus structure is the interconnect.ion. fine interleaving will provide a lower level of , 

memory contention than the coarse alternative. 
. . - 

The process of interleaving can be dealt with at the hardware or soft@are level. 

In the case of the latter. facilities may be built into compilers so that the memory 

distribution is made transparent to t,he user. Conversely, functions can be defined 

which allow 'the applications programmer to explicitly specify the arrangement of 

the data structures in memory. 



' 6 . 1 4  Software  ons side gat ions 

" Some references to s~ f tware  techrhques were alluaed to  in the discussion of * .  

. multiprocessor system components. Three additional issues which must be 

tonsidered in such a ~ s t c m  are control, synchronizatio eduling of the 

processors. Thcre are three different control organizatio , * 

b 

Tkc'easiest to i~nplenlent is the former, although its major disadvantage is that . - 
once the mast& processor fails, the entire system also fails. A major advafitage of 

sech a system is that specialized hardware is much easier to  add to the system, ,. 

thereby reducing the rxecufive's overhead. An example of this specialized 
d 

.L 

- - hardw&-e is associative memery. With the second, each PrU has its own copy of 

' 4  , the executive. The fault tolerant benefits of this- organization exceed those of the 

fomer .  With the symmetric approach, each PrU has access to the master 

execbtire, and. has t he'&ility tgschedole itself. The fault tolerance of this 
a i 

organization is far super io~ tllan the first two, as it its reliability. This scheduling 

feature permits functioping PrUs to compensate for any failed processors. 

Synchronization hetmrcn processrs/tasks is another major issue which'must be 

addressed in multiprocessor systems. The accessing of shared variables by the 

PrY-s must also be c h i d e r e d .  The use of semaphores, different priority levels, 

and  guaranteetl.processor via fair scheduling practices arc all techniques 

which. can be used t ;  p r~&lk  the necessary synchronization. 



6:2 . dp,Architecture Applied to the 2N-ary Tree 

. Tl-re above h%s been considered in designing a multiprocessdr-based architecture for 
' 

' the-zN-ary trcekaplication. The design, which is shown in Figure 6.4, depends on 
. , 

' ,the pro ' i~r t i& ,and characteristics of the representation. The following subsections 

present each system component, and justifies its particular configuration. 
? 

6.2.1- .*The SharedMemory Module Units 

, The system's shared memriry cbmponent consists of a bank of memory modules 
. .* 

that are used'tocstore the data ank tree representations for any user applications. 
' a  

' L  

The type oE memory inteslcaving that is uscd to store some instance of the 
v 

representation is a critical Consideration. The preferred scheme calls for the use of 
1 .  

1 . '  

coarse memory interleaving for a number of reasons'. The concurrent processing of 

each subtree of p tree is-dependent upon the disjoint property of each subtree at a 

given tree lev$]. Consider the case of a simple four MU system where we are 
8 s. 

evaluat'ing some. operation invblving two quadtrees. This arrangement is shown in 
I 

Figure 6.5. A processor can access the equivalent node values in both trees with 

two read-instructions from the same hlU. By storing equivalent subtrees for 

different instances in the same M U ,  there is no need to follow a second 

interconnection path to andther module. In one case, the path to a particular 

module is held for the two reads. and one wri"te-back if there is a need for a 

r e s i t  ant third subtrep to be stored. 4 s  for possible conflicts involving the nodes . . 

at diffepni trcc levels. one rec~uirement which was specified in Chapter 3 is that 
* 

children of a ndde cannot be processed until the parent has been accessed. This 
i 

prevents memory contention by processors attempting to access a parent and child 

node of the same subtree. both of which are stored in the same hlU. Even with 

the possibility of traversing back up the tree, the accessing of nodes at  some level 
b 

z + 1 must be completed prior to the parent at level i .  

Ti-ith our example; contention will arise when processing the nodes at the third 
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d 

I 

Figure 6.4: A multiprocessor a,rchitecture for the 2*-ary tree 



Tree A 

Tree B 

Figure 6.5: Memory interleaving for the tree representation 



. and subsequed levels of the tree. The primary cause of this contention is the small 
b. 

* .  
number of MUs (4) beink used. By adding more MUs, memory location contention 

can be reduced. If twenty MUs are used-in the system, memory cbntentipn will 

- not be a concern in the processing;ofJhe first three levels of the quadtiees. Of 

course, the extreme case would provide one MU .per node of a tree. Even with 

inexpensive memory, there are some factors which pake  the one IvIU/node 
I 

app$oach unfeasible. The principal of which is the increased cost incurred by the 

interconnect ion scheme, that must now become much mere complex. Ineffective - .  

use-of the storage is ,$so a problem in that few nodes are stored per MU. ~ 

A compromise would. involve a reduced number of-MUS, and an appropriate 
9 1 . 

"nwmory   napping scheme which functions on the premise that storing 

non-consecutive tree levels in a h  MU will not lead to -an increase ih mommy 

contention. This is a consequence of the prent-children node prqcessing 
S 

- ~ s t r i c t i o n  he premise assumes that if processing is taking place at  some level i 

in the tree, there is no  conchrent processing being done on level i f E of the same 

subtree, where E is some value sufficient to make this a valid assumption. 

Obviously, values of 0 and 1 are inappropriate for E .  This approach is similar to 

the folding of trces presented in Chapter 4. 

6.2.2 The Interconnection ~ c h e k e  

The interconnection arrangement in this archi tcctnrc 3s a mu1 tistage network 

x-hich uses the binary tree topology. This is convenient in that the order of the 

application is some power of 2. Consistent with the observations concerning the 

mapping of d a b  in the previous section, there exist paths through the A4level 

network to 3'" hIUs, where ill > 1. E a c h  of these MUs wild store the equivalent 

subtreesfor a number ofatree instances. A simple example of such a network 

utilizes a 3-level n'etwork and is given in Figure 6.6. In the example, the two 

processors PrUo and PrCl can access eight hlUs. To provide the necessary routing 

paths for t.hese PrUs and 1IL-s, seven switches are needed in the network tree. ' 
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MU. MU MU MU MU MU MU JmJ ,r 3 v. 

0 9 2 3 4 5 ' 6 7 
S - Unused Switch  PO^ 

Figure 6.6: A 3-level interconnection network 

The figure also shows that there are six unused switch ports. The addition of 

extra switches will make use of these ports. All ports will be accounted for if eight 

PrUs and twelve switches are used. T 

The nodes of the network are actually simple 2~2icrossbar switches. It was 

stated earlier that the crossbar switch is very expensive to implement. Howeyer, 
I*, 

with the binary tree topology that is being used here, the node count is reduced 

from 0(n2) ,  in the case of a regular nxn switch, to 0 ( f  log, n) ,  where n is the 

number of PrUs/MUs in the system, log, n the number of node levels, and there 

are nodes at the bottom ofdhe network tree. The fan out of each node is the 



base of the log function. With the binary tree, 

out of each node switch is b, the no.de count is 
- 

the base is 2. In general, if the  fan 

There will be network contention through the network if t&o or more PrUs 

attempt to access data in the MUs through the same path. The frequency of such 

conflicts can be reduced if the number of candidate paths are increased. One 

method of achieving this is to increase the fan out b of each switch, which also 

reduces the number of nodes in the network. The effect for the special ,case of 

b = 2" is an environment similar to a complete 'crossbar switch with its associated 

disadvantages. As has been stated a number of times throughout this dissertation, 

a compromise between extremes is the most effective solution. b p  

6.2.3 The 

Given the type 

Processor Units 

of power, and 
&;. *. 

local memory requirements needed by the 

functions of the representation, certain stock microprocessors can be used. 

Alternatively, an entirely new processor could be developed for this application. &. 
- t, '- 

Given the nature of the _operations, and cost efficiency considerations, ekisting 

designs are more than adequate. :- 

One such class of stock processor is the I\/IC68Q00 family, whose favourable 

characteristics include fast instruction times, sufficient data-path width, 

reasonable memory size, and a rich instruction set. The memory "size i s  critical 

since each PrU has its own local memory, ghich reduces the number of accesses to . 

shared memory. Rather than have all of the representation's programs in shared 

memoy for the PrUs to access,-each has its own set of routines. At first, this may 

seem to be redundant. However, the advantages of using local memory far 
- 

outweigh the disagdvantages of the redundancy. With a large number of PrUs, 

accessing the shared memorj- for each each instruction block will lead to a 

significant contention problem. These requests for instructions will also have to 

contend with requests for actual representation data. The simple algorithms for 



I . a  

i 

the operations make it practical to store these instructions in local memory. The 
\ - 

problem of Jcontention due to instruction fetch is eliminated. If the amount of local - 

memory available to each PrU i s  insufficient to contain all of the programs; or& 
d U . 

those functions which are required by. the current user request qay-be stored in . ,  
this memory. The idea here is to have the entire operation set in shared memory, - 

- 
and broadcast to the PrUs, for local storage, the programs needed for the user 

query. This approach is again a compromise between two extremes. + 

Each of the PrUs are identical and-can fyction as independent units. The . 
' i 

fault tolerant benefitsof such an arrangemenLare obvious. If a PrU becomes 
# 

inoperable, there will be a slight deterioration in overall system performance. 
\ . 4  

Scheduling of t as mains as before, the only difference b e i ~ g  that there is one 

fewer PrU to process these tasks. The system will not come to a halt as would be 

the case if the ~ r ~ s  were dependent upon each other. 

6.2.4 The Master Controller , 

There is one processor which serves as the master controller MC'for the intire 

r' architechre. The MC receives queries/instructions from the User Interface and 
11 

passes these req&sts- to an)- available PW. Until this initial request is fulfilled, the 
' . 

MC isjnvolved in the schedtlling of any task requests that are sent to it by the 
' $3 

PrUs. This scheduling responsibility requires that the MC has sufficient .local . = ** .J 

memory to maintain the necessary t i k  queues and s t&cR The task specifications 
\ 

contain no PrU dependencies such as PrU ion, and can then be 

considered as *autonomous entities., The avai PrUs for task processing 

must also be known to the hIC. Each PrU resented b y  a single bit in a 

register stored in the h4C - a 0 indicates a PrU currently in use; a 1 for available. 

Intermpt/acknowledge control lines between the MC and PrUs are used to send 
* n 

special signals to the MC, such as for a defective PrU. In this c'ase, the 
, - 

corresponding PrU register bit is set to 0 until a replacement PrU is added. As 
. . 

h 

with the PrUs, microprocessors such as those available in the MC68000 class 
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, a -' 

would be ap&opri<te here because . .  of their suyport of interkpt  h&lin$ 
a ;. * .  - .  

% 
Task scheduling is, the primary -re&cksibility P of'the MC! ff fdr so& reason the 

' f 
MC becomes inactive through some component * malfunctiog, Y ther'entirk system 

becomes inoperable. For this reason it may be advisable to provide a n  auxiliary' . 
= * 

MC which can replace the primary MC upon its failure. 
s 

4 

0-1 I s 

1 '  
0 

* - 3 - 9 '  -, 
. a  

6.2.5 Additional Gompanents , 

, . b 

d There are some additional less critical components that make up thi6 system: , 

T h e  User Interface UI provides a user-friendly enjironment to which user 

' 

' q,ueries/instructions are encoded and directed to the WC. 
< .  

To test the integrity* of the shared rnerhory modules, a ~ ' d  to reduce the need 
7 .  , . 

for the MC to monitor the status of these modules, there-is a~shared 

mem'ory controller whose primary purpose is tb maintain these modules. 

, Another function of .the SMC is to coordinate the p$ssage.of formatted and 

unformat ted data between the system and the. out side environment. 

k 
To facilitate the entry of data into the system, t h q e  exist a series of channel 

.: 
buffers which accept data from some secondary,storage device such as a 

a *  
I +s :- - . -. and perfow some, preliminary preformatting on the raw data, if necessar 

b 
.P ,, These buffers direct this data to the shared memo& modules. Of course, 

instances of the representation can be stored on secondary storage devices 

by going through the buffers. These channel buffers are under the control of 

the external memory controller EMC. The EMC and SMC both cooperate in 
C 

b the data traffic between' the external environment and the system. 

k" 4 
In the application on which this dissertation was initially based, that is, as a 

representation technique for computer graphics, there is an obvious need for 

a display device. An instance of the representation is first routed to $ 

'1 memory buffer which can be loaded in parallel from the shared memory 
P 
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modules. Once the buffer is filled, it is presented to the display device in a 

single,step. This could be khought of as loading the background buffer of a 
. - 

-, 
two-buffer device. Switching of buffer glanes renders the effect of instant , 

* 
display. 



Chapter 7 Simulation of the Multiprocessor 

Architecture 

This chapter presents the results of a si~nulatiori of the multiprocessor architecture 

clevelopcd in thc previous chapter. The tern1 . q z ~ n ~ ~ I a t ~ o n  is not used in the truest . 

real-tjmc process is gene ra td ,  and observations are made of this history to 
* 

develop inferences or hvpothcses concerning the characteristics of the syste111. 

F'ith respect to thr  rlissrrtation, the type of software facilities availalrle has inarlc 

it possible to i~nplement a psc,ldo-simulation which uses multiple processes to  

rcprescnt the processors of our systcm, and mcssagc passing to represent the 

network co~n~nlinicat  ion ~nechanis~ns.  111 effect, a software-based cvquivalent to t 1 1 ~  

the ,I~ehavio~ir of  y i r  system. 

configurations arc used the act ,la1 csncrinlcnts. Tllcse follow tllc 



7.1 Implementation Details 

i 
7.1,.1 The Processors 

- The implementation of t.he simulation makes use of various features made 

at-ailable by the UNIX' operating system with its System V enhancements, such 

as facilities for using shared memory, semaphores, and message passing. 

The architecture specifies that the operat,ions of the representation are stored 

in each PrTj's local memory. There is no need to consider accessing some shared 

memory for the required instructions. Therefore, this implementation only has one 

set of operations which are readily available to all processors. The code does not 

havc to be considered a critical-section -- which would require the bse of 
/ 

sen&hores or other control constructs as a means of mdia t ing  mutual exclusion. 

Each processor in the architecture is represented by an independent process 

that has its ow11 ident ificatiori - to facilitate processor-teprocessor 

(process-toprocess in the irnplerncntation) communication. Ynless otherwise 

indicated. the sim~ilation's process is equivalent to the architecture's processor .  

Thc control functions and data structures available to the slave processes are very 

simple. Thc main control loop sfor a s1a1.e essentially consists of: 

slave: process 
for TRUE { 

RECEIVE ( task ) 

cmd : =  SELECT ( task ) 
, EXECUTE ( cmd, task ) 

SIGNAL ( FREE, MASTER ) 

Tht RECEIVE operation places the processor in a waiting st e until some 

in5tnuction/task is sent to i t  \I:- the  ma.5tcr prokessor LIC. Upon receipt of such a 



task, the appropriate function is invoked by the processor with the included 'i 
kguments. The task contains the function identifier, and its arguments. Once the 

operation has been completed, the MC is sent a signal indicating that this 

particular processor is available for further task acceptance. 

' Although the responsibilities of the hiIC exceed those of the slave processors, 

the control structure of the implementation has a similar internal arrangement: 
. - 

m a s t e r : .  pr&ss 
f o r  TRUE ( 

RECEIVE ( u s e r - r e q u e s t  ) 

s l a v e  : =  SCHEDULE ( a v a i l a b l e  ) 
SEND ( u s e r - r e q u e s t ,  s l a v e  ) 

f o r  - DONE ( ) ( 
RECEIVE ( t a s k  ) 
cmd : =  SELECT ( t a s k  ) 

i f  cmd i n  (slave-commands) { 
s l a v e  :=  SCHEDULE ( a v a i l a b l e  ) 
SEND ( t a s k ,  s l a v e  ) 

1 
e l s e  

EXECUTE ( cmd, t a s k  ) 

Thc olitcr control loop permits the 1IC to R E C E I V E  requests from the user 

interface. This R E C E I V E  fiinctio~i is si~nilar to that available with the PrU 

operations in that thc processor is in a waiting state until a request is received. 

01ice a request has been acccptcd by the LIC, the S C H E D U L E  function is used 

to select an available s1al.c processor. after which, this initial task is sent to the 
a 

The internal loop contin~ics until the recl~iirements of the user rcqucst havc 

h e n  fulfilld. Thiq completion state is determined h. the function D O N E  which 

tests 1.ariolis control data stn~ctrircs such as the task queues and stacks. - 
Obi-iouqlj-. i f  thc t a i k  qilciic i \  not cmpty. the userseques t  has not been 



completed. As an example, a request may be for the generation of a tree from the 

application of the binary operation AND on two trees. The processing within the 

inner loop continues until the result tree has been derived. This processing 

involves the receiving of subsequent slave tasks, further scheduling, and the 

disp&ching to the next available processor these tasks. 

The dat-a structures required for the MC include: a processor-availability 

queue containing the identification of each slave processor currently idle; a request 

queue that is used to recall multistep tree operations - for example, in building a 

tree, the two steps involved are to load the tree's leaves with data  values, and the 

actual generation of the tree, and; a task stack that holds the tree tasks which are 

created by the slaves upon execution of the various operations of the 

- representation. This last structure is the most volatile of all the structures since it 

has to  accept all of the child processes which are generated in going down a level 

of a tree. For example. in the case of a quadtree, if it is necessary to  process the 

children of some node, four tasks have to be created and sent to  the MC, to  be 

pla.ced on the task stack. This struct,ure is a stack rather than a queue to preserve 

the integrity of t,he tree nest,ing as processing continues from level to  level. 

7.1.2 Shared Memory 

-4 major component of the architectyge is the bank of shared memory modules 
y 

that contain t,he inst,ances of the tree representation. System V's shared memory 

can be accessed by independent processes usingamemory identifiers - similar to 

the idea of process identifiers in LT?;IX. These memory blocks can be cast as any 

valid data structure. In this case, the implementation sets these blocks as - & 

tn-o-cbmensional arrays of the character data type. This type permits byte 

addressing. By having a series of the blocks, we can simulate the architecture's 2 
hank of shared memory rnodliles. It is then possible to  access any 

byte-addressable memory location by providing a module identifier, and a lacal or 

rclat i\-e memor), address. 



7.1.3 The Interconnection Network 

The interconnection.network is simulated with a series of simple variables which 

are identified by means of their row in the network tree, and their relative position 

withm a row. A value of 0 or 1 in a network variable indicates whether the node 

that it represents is currently being used or not used in a memory access. For each 

memory address <module#,memory #> generated, the network tree path is also 

~ determined. If -- each of the network variables that is required for a successful access 

is available, t,he memory value is either read or written. If not, the task is sent 

back t,o the MC and placed back on its task stack. 

7.1.4 Contention Considerations 

8. 

In this implementation, there are two areas of contention which are considered: 
i' 

network path and memory module conflicts. Actual memory location is not 

considered. This is a valid assumption since at  the leaf level, there is never a case 

of two tasks accessing the same memory location -- a property of the 

repre~entat~ion. The network and module cbnfici ,~ cany  th:,ough at  the 

implementation level since actual sharing of memory (the System V sharcxd 

memory and the network variables) is also taking place. To accommodate this, 

semaphores are used. In fact. the network variables are actually semaphores. 

11-ith the memory modules. each has its own semaphore. The module is only ; 
? 

accessible if no other processor has set the module semaphore. Once a processor 

has finished accessing a module, t.he module semaphore is reset to indicate its 

ax-ailability, as are the netn-ork node semaphores. 

a. 

7.2 Simulation Configurations 
\ 

The sim~llation has been configured to accept anywhere from one to nine 

processors. and tight shared memory modules. This requires that there he three 



, . levels of . mdes . in the interconnection network, each level with four nodes. 

simulation runs utilizing one to nine processors have been performed. Given the 

nature of the interconnection network, that of a binary tree topology, eight r .  
d 

processors would be the maximum permitted. However, this implementation has 

been set up for the required eight PrUs, in addition to an extra PrU. The intent is . * 
.4 to provide as much data as possible for later i n t e~p re t a t i oq~ i t h in  the 'constraints 

of the implement ation environment. This environment makes extensive use of a 

limited number of sockets, pipes, and file descriptors. Nine PrUs is the &mimum 

number of processors which can be simulated with these limitations. The uSe of 

one slave processor is a special case in that it most closely resembles the sequential 

uniprocessor situation where a simple construct such as a FOR loop allows each 

child of a tree node to be processed. Of course, these two cases are truly not 

equivalent since some processing overhead is accumulated through the message 

passing between the PIC and the-slave processor. 

The size of the data set, and the type of trees which make up the simulation 

sample set, requires that only four shared memory modules be used. Even with 

four modules, it is still necessary to have three levels of nodes to allow for the 

eight PrUs.,All of the experiments use the quadtree as the tree configuration. In 

terms of data size, statistics are obtained for images which are 8x8, 16x16, 32x32, 

and 64x64 pixels in size. Each data size involved three different types of image, 

one being what would be considered an average case where the quadtree is not a 

complete tree, a best case in which only one level of the tree must be processed, 
- 

and the worst case where the image is of a checkerboard type. These various ' 
k?, P 

images serve as input for a number of the representations operations. Tests are 

performed using the operations: LOAD U N F O R M A T T E D ,  which takes 

.unformat ted data and generates a quadtree; and A N D ,  which is applied to two 

quadtree, creating a third. A binary OR operation has also been defined, 

essentially using the same routines as the A N D .  For this reason, tests have not 

, been run Lvith the OR. The application of these different data sets with the two 



operations allows comparisons to be made between trials that require both 

complete and partial tree traversal. It is this which provides the best, averagk, and 

worst case scenarios. For each different set of circumstances, ten trials are run. 

7.3 Pre~entat~ion of Simulation Results 

The results obtained from the following experiments provide some indication of 

the architecture's behaviour. To facilitate comparisons between the different 

operations, this section is organized in a manner where all of the results for a 

particular criterion are presented toget hes. In the following six subsections, the 

results involving the MC are given independently of the slave processors. The 

results and obser\-ations for each statistic are preceded by a brief description of 

the statistic itself. The last three subsections deal with the slave processor results. 

7.3.1 Total Execution Time 

Of significant eoncern to the user is the m o u n t  of time required to complete a 

request, from its submission to the notification of the job's termination. Figure 7.1 

presents the three graphs for the LOAD U N F O R M A T T E D ,  average case 

A N D ,  and best case A N D  operations. 

In general, the LOAD U N F O R M A T T E D  and average case A N D  graphs 

show a substantial improvement in completion times as the number of processors 

increase. As expected. the &se of the number of slave processors P = 1 requires 

the most time to complete a query. The results obtained here are similar to those 
\ 4 

generated mathematically in Chapter 3. The absolute time to complete the 

L O A D  U N F O R M A T T E D  operation is expected to require the beatest time 

since i t  requires that the entire tree be generated - a case of t ~ o  cbmplete tree 

tra~rersals being necessary. The time needed to complete the best case A N D  is 

significantly less than the previous tn-o cases. This is understandable in that only 



T o w  Time Required to Format D& 
(average case) 

Number of Processors 

Total Time Required to Resolve Binary Query 
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Figure 7.1: Total execution time of a user query 



one level of the two trees have to be processed. As the remaining criteria are 

presented, it will'become obvious that this last case proi.ides a base from which 

the other operations can be considered. One interesting point which can be made 

about all three sets of results involves the trial where P = 4. After showing 

consistent decreases in processing time for P = 2,3 ,  there is a slight increase for 

P = 4. This is most evident with the 64x64 pixel image. 

The results of Figure 7.1 can be used to determine the figure of merit for each 

operation. This value is the ratio 

where TI is the time needed for one processor to complete an operation. The 

number of processors used in a cular run is given by N ,  and TN is the 
6 

completion time for these proc . If the FM = 1 for some range 1 . .  . N ,  then 

we have linear speedup. Figure 7.2 presents the figure of merit graphs for the 

three operations studied here. 

The situation presented by the best case AND operation is as expected 

considering that the minimum processing time can be accommodated by*one 

processor. Addi t,ional processors contribute nothing to operat ion speedup. With 

the remaining operations, the ctr reduction is not as severe over a span of the first 

five proBcessors. 

Two addit,ional graphs are included here which deal with tree generation times. 

,Both consider image sizes which are much larger than those actually tested. These 

sizes range from 128x128 to 1024x1024 pixels. Using Equation 3.7, and a constant 

processing rate of 1.5 msec/node, we arrive at the graph given in Figure 7.3. 

It is also possible to extrapolate execution times for these large images using 

the simulation results. The processing rate per node is much higher, as is 

indicated in Figure 7.4. 
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Figure 7.2: Figure of Merit ratios of tree operation execution times 
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Figure 7.4: Extrapolated tree generation tmes  for large images 
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7.3.2 Absolute .Active Time 

In initiating, mediating, and terminating a query, the MC is usually in one of two 

states, that of being busy or waiting. A reflection of the MC's busy state is its 

absolute active time, which is defined here as b6ing,the number of iterations of the 

inner processing loop that it completes to resolve a query. The results for the 

three operations are given in Figure 7.5. 
a 

1 
The most noticeable observation from these graphs is the significant drop in 

operations executed from P = 1 to P = 3, and then the subsequent stabilization 

Tor P > 3, with the 64x64 pixel image. This indicates that although there are more 
1 

' 

tasks to schedule, by keeping the PrUs busy with job processing, the  MC can stay 

idle for a period of t i~ne .  With the other three images, the reduction in operations - 

executed is not as significant. The best case AND situation requires the least 
-%= 

number of MC operations, as expected. There is also some fluctuation in operati& 
i - .  

count as P --+ 9, but this is acceptable considering the scale reduction. Comparing 

this figure to that of Figure 7.1, it is possible to see that the active times for the 

MC follow a similar pat tern to che total execution time for the entire system. 

7.3.3 Absolute Idle Time 

During the course of resolving a user query, there are periods of time when the 

MC is in a waiting state performing no activity. For example, in a situation wherk ' 

all of the slave processors are busy executing their own independent tasks, the MC , 

essentially just waits idle until some request or signal is sent by the other 

processors in the system. With the best case AND operation, there is very little 

processing necessary with the MC and slave processors since only a very few Pi-Us 

are required to complete the entire comparison. Although there seems to  be a 

slight upward trend in idle times as P --+ 9, the overall processing required with 

t h s  case is very fast, and it is very difficult to comprehend t h a t  a d a b l e  

environment is attained so quickly. The results can really be considered a baseline 
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Absolute Active Time for Master Processor 
(best i a s t  AND operation) 

Figurc 7.5: Absolute activc timc of a user query for the Master Controller 



profile of the MC's activities, from which more complex examples can be 

compared. 

With the LOAD UNFORMATTED query, there is another slight upward L 

trend noticeable. However, in comparing the- magnitude of these idle times with 

that of the absolute active times given in Figure 7.5, the increase is not significant. 

The idle time is essentially constant in the average AND case. 

t 

7.3.4 Relative Active Time 

-4 more meaningful indication of how busy the hIC is in coordinating the various 

system activities is the r e l a b e  activc time, which is the ratio of active to  overall 

time based on unit operation5. As Figure 7.7 indicates, the hlC is busy for most of 

the time which is available to  i t .  The inconsistent nature of the results for the best 

case AND with thc 64x64 pixel image can again be explained by the fact that 

only one level of the trees has t,o be processed, and not all slave processors have to 

ht. used to fiilfill these processing requirements. - 

7.3.5 Relative Idle Time 

Figurc 7.8 sl iow~ the rcsults of tlic rclative idle time for the AIC. ll'ith the 

exception of two suns, I st of the rcsults arc consistent. The best case AND 
. f 

operation with tllc 64x64 image. and the LOAD UNFORMATTED 8x8 query 

h a w  relative idle time values which are slightly higher than the results of the 

other experiment s. 

7.3.6 Maximum Task Stack Length 

This statistic provides s'omc information as to tlie ra.te that the MC' dispenses with 

the tasks which are sent to i t  b' thc slave processors. 
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Figurc 7.6: Absolutc idlc time of a user query for the Master Controller 
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Figurc 7.7: Rclativc active timc of a user query for the Master Controller 
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Fi y r c  7.8: Relative idle timc of a user query for the Master Controller 
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Figure 7.0:' ivfasirnum task  stack size in thc Mastcr Controller for a uscr query 



Figure 7.9 presents these results. In the best case AND query, the consistent 

LENGTH = 1 result for all processor and image combination can be explained by 

the fact that there is only one task which must be created and processed. This is 

the task which compares the root nodes of the lnvolved trees. With the other two 

queries, there is a steady increase in Icngth of the stack until P = 3, at which 

point there is very little, if any, change. This increase, and levelling off can be 

explained by realizing that as the number of slave processors increase, there will 

be an appreciable increase in the number of tasks received by the MC. With the 
4 

given image sizes, a st,at,e is reached where the number of tasks being received by 

the hIC can be accommodated by t,he availability of slave processors. 

7.3.7 Average Utilization Time for Slaves 

The results for the slave processors' average utilization time is given in 

Figure 7.10. L7:ith the LOAD UNFORMATTED and average case A N D  

there is an obvious decrease in average processing time being performed by t 

slaves as their number increase. One interesting observation is that with the 

tests, 

,he 

former. the utilization of the processors does not decrease significantly for P > 3 

xheh compared to P = 3. Of course, this is a reflection of the image sizes that we 

are using. As indicated in Chapter 3. this special value of P will increase as the 

image size increases. The results of the best case A N D  query are essentially 

linear if experimental error is taken into account. This case can really be 

considered as a lower limit on the amount of time that is needed by the processors 

7.3.8 Average Number of Tasks Processed by Slaves 

Each sla1.e processor generates and processes tasks which are needed for the 

representation's operations. The purpose of this criterion is to  show the direct 

correlation between proccsor utilization time and the number of tasks that the 

slal-e processors muit execute.  This is done by comparing Figure 7.11 with that of 
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Fi y r c  7.10: Avcrage slave proccssor utilization time for a user query 
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Figure 7.10. As expected, the trends evident in the first two graphs of both figures 

are consistent. Comparing the appropriate graphs for the best case A N D  case, 

there does not seem to be anything in common . The graph in Figure 7.11 is 

consistent with that of the LOAD UNFORMATTED, and average case AND. 

7.3.9 Average Number of IMU Accesses for Slaves 

The distribution of shared memory accesses by the slave processors is presented in 

Figure 7.12. In all cases, the trend is for a decrease in access frequency as P gets 
9 

larger. This is expected since the number of shared memory accesses is a function 

r of a PrU's processing load. The moreptasks that a processor must execute, the 

greater the probability that som of these tasks require information from the k 
shared memory. 

;1 
7.4 Discussion of Simulation Results 

Of the various statistics which have been accumulated during these experiments, 

it is the total execution time which is of most interest. The other criteria may 

provide very fayourable results which confirm the architecture's mechanism of 

action, but if t,he execution times &re excessive, the architecture would be 

unacceptable. Chapter '7.3.1 presented some observations about the execution 

time, the principal one being that there is a marked decrease in completion time 

between 'P = 1 and P = 3 on the tyo cases (LOAD UNFORMATTED and 

average case AND)  n-hich require a reasonable amount of processing. For values 

of P > 2. the execution times vary by no more than 10% from the average. Given 

the image sizes which xere used. there really is no need to use large values of P. 

Using the equations of Chapter 3, and considering the trends shown in Figure 7.1, 

queries involving larger image sizes will follow the same pattern as here, with an 

appropriate P providing a lo~ver limit of consistent execution time. 
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Fiyle  7.11: Average number of commands executcd by a slave processor 
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Figure 7.12: Average number of memory accesses by the slave processor 
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The actual execution times obtained duririg this simulation are measured in 

b units of seconds, which may sugges that the architecture is very inefficient for 

even small processing tasks. However, the implementation is entirely 

software-based, and uses the relatively slow method of message passing to 
L 

transmit tasks from one process to another. If the number of unit operations given 

for the absolute active times of the MC are assumed to take lpsecond each to 

complete, an operation1 such as a binary AND on a 64x64 pixel image requires a 

favourable 11 milliseconds. The simulation of the interconnection.network also 

contributes to the inflated execution times. If the magnitude of these quantitative 

results are ignored, the obvious trends indicated by this simulation do reflect the 

system's anticipated behaviour under various situations. 
' 

Although the network is a major cause of the slow execution t,imes, it itself is 

dependent upon another component of the system. This is the number of s,hared 

memory modules. With such a small number of modules (4), the number of 

a.ccesses to these modules will be much higher than if there were more modules. 

By increasing the module count, there will be fewer accesses per memory unit. 

This reduction in contention will also lower the execution times. The figure of 

merit ratios can be expected to imp-significantly as a result of this. Obviously, 

if the application involves a large data size, it will be beneficial to have a large 

number of memory modules. 

Figures 7.3 and 7.4 were included to consider more complex images. The 

differences in execution times can again be attributed to t e o erhead resulting 7 
from contention through the network due to an insufficient number of memory 

modules. 

The increasing size of the task stack for' larger data sets being accessed by the 

11C requires thaFits local memory be of sufficient size to accommodate such a 

large data structure. It is hghly unlikely that there are a sufficient number of 

hardware registers on the processing chip to store all of these tasks. One option 

available to the designer is to place the top R tasks which are on the top of the 



I 

. I 

stack into the chip's R stack registers. ~ e w l ~  arrived tasks to the MC are placed - 
on this stack; while those tasks at the bottom of these registers are sent t o  the 

4 

MC's local memory. The tasks at the top of the stack are the most volatile, and L? - 

-? 
by placing them into fast hardware registers, they can be dispatched to the next 

available slave processors quickly. 

As the results indicate, the extent to which the MC is occupied wit,h its 

processing, essentially just task scheduling, is dependent upon both the type of 

query and image size. Large images may be processed quickly if the query is as 

straightforward as the best case AND. Moderately sized images may require more 

processing time if the query is similar to the average case AND, The processing -. 

0 

load on the MC can provide a bottleneck if it is proceeding at full capacity. One 

method of reducing this possibility is to use the alternative suggested earlier, that 

of allowing the slave processors to &>their own scheduling. A second approach is 
A 

to distribute the processing load between additional MCs. With this latter 

method, questions such as how will tasks be allocated to the MCs (possibly via a 
\ 

shared memory scheme), and what is the '&&mum number of MCs are raised. 

Neither of these alternatives have been simulated for this dissertation. 
J 

With respect to the -slave processors, observations have been made which 

indicate that after some value of P for a given image size and query, there is not 

that great of an improvement in processing times. As to the ramifications of this 

point, the desiper'must 'consider the application's data and operation set. 

Initially, some minimal val'ue of P may be sufficient for a start-up system. 
* I, 

I 

However, as the needs of the application increase, fq.3lities must be in place to 
\ 

allow for the addition of more slave processors. One concern is that of processor 

cost. If this cost is prohibitive, the number of slaves used should be that of this 

optimal P. f 



Chapter 8 Djscussion 

8 

8.1 The Representation 

Before the three architectures designed for the 2N-&y tree can be discussed, it is 

necessary to consider the representation itself. By using straightforward set 

t heoretic principles, it has been possible to define a general representation which 

has a very broad range of applicability. The large number of operations provided 

by set theory makes this representation even more attractive to the user. If it is 

possible to define a collection of objects as a population, then it is possible to use 
d 

our defined set representation on these objects. Another critical property of this 

representation involves the -fact that subsets of objects within an instance of the 

representation are disjoint entities. Therefore, it is possible to apply any valid 

operation on these subsets in parallel. Understandably, the parallel execution' of 

an operation will be completed before its sequential version does. 
J 

4" A transformation was performed on this general set representation to give us , 
i ,  

the 2"-ary tree representafibn. The operations and properties of the set . 

representat,ion are also valid w i t h  the scope of the 2N-ary tree. This 

transformation confers some order upon this new scheme, which simplifies the 
. . 

process of developing simulation models to test these properties and operations. 

Each of the three architec trlres presented provide a significantly different 

approach in implementing this zN-ary tree representation. At one extreme, we 

have the mapping of hinary trees onto a VLSI array of p@cessing elements, while 



at the other, the system configuration consists of shared memory and a linear 

arrangeme* of high-level processing elements that execute tasks from a * 

sophisticated Master Controller. Intermediate to these two systems is the 

architecture utilizing linear arrays of processing elements that are linked via 

2N-ary tree mappings on interconnection networks. Each offers certain advantages 

over the others. I 4 

8.2 Performance , 

Ob~~iously,  performance is one feature which must be considered in any . 

comparison or evaluation. The sliared memoq simulation has provided the only 

results from which the valicli~y of the theoret,ical analyses can be determined. 

Some of the results were discussed earlier in the dissertation. Based on these 

results. a prirnar~. observation is that tlw number of memory modules in the 

systan is critical. 'The complexity of the interconnection network is directly 

related to this nlimber. Therefore, what may be considered as a deficiency in the 

network capability can actually be attributed to the memory modules. With the 

sj-stem that was test cd i b "  c simulation, e interconnect ion contention was e"t 
dcfinitely a reslilt of the s~rlall nurnlxr of rnodiiles. 

With the ot licr. arcilitcct ures. I\-c can compare the time~complexity for ,the 

execution of l~iriary o~)cratiorls. Fro111 EquatiiQn 4.4, we see that the complexity for 

I' the PE-ICN sj-stc~ri is O(3 '  L ) .  n-lierc L = log2.v P + 1, and P is the number of 

objects in the instance. In thc original analysis, the pixel width w was used-in 

place of P. b ~ i t  the relationship P = w2 nlakes these two entities interchangeable. 

For the 1-LSI system. t hc time. ro~nplcxity of a binary operation is 0 ( L 2 ) .  Here, 

L = log, P.  For tllc casc of  -1- = 1 in the PE-ICN system, we are actually 

mapping a 1)iriarj- trcc onto t h ~  ron-s of processors. A direct comparison to the 

binary t r w  rria~~ping or1 r l l c  I'LSI array shows t,llat, the former architecture is 

faster by a factor of L .  .4 e;cxlcral co~nparison bctween these two complexities may 



be made with the following approximation: 

Using Equation 8.5 as a ratio between VLSI and PE-ICN times, as the value of 

-V increases, it will take the latter system significantly more time to complete the 
B 

same type of operation. The major contributing factor to this relatively inefficient 

PE-ICN system is the time required to pass children values to a parent node in a 

sequential manner. If this can also he performed in parallel, the complexity of 

passing through a tree is reduced from o(?"L) to O ( L ) .  The above comparison 

n-ith the PE-ICN system has used the case where the nu~nber  of levels in the 

an the number of .PE rows. If we have the opposite case, then it is 

~iolis that the 17LSI system is more time efficient than tlie PE-ICN 

sys t ern. ? 

8.2.1 Mult i-operand and More Diverse Operations 

The operations that t>een consitlcred to this point have eithcr rcqliirtd singlr. 

or double operands. arc two approaches that can he ;isc(l i11 cvaluati~ig 

qucrits that rcquirc more than tn-o para111ct crs. A s  t lic reprcscnt at ion provic1c.s a 
-- 

T 

significant number of set-ty1)e opcratio~i\. i t  is possible to use principlt's such as P 

aswciatil-i tj-. cornmutat i \ - i  tj.. dist 1-ih11t i~ . i t j - .  and Delforgai's 1au.s t o  rcconst rust 

the qucry as a wries of binary operations. For example. the cjtirry .-I U B U C' ca11 

bc evaluated as (.-I u B )  uC'. n-here the rtslilt of .-I U B t)ccorrics the otliw opc~a~ic l  

for the second union operation. Tht. scco~ld approach irir-olvcs t11c sccl~ie~it ial 



considered. With an example as A n B n C, the intersection of the root node for A 

and B is stored temporarily in the processing element so that the root for C can 

be obtained h d  applied with t h s  value on the intersection operation. If 

necessary, subsequent tree levels can be processed in a similar manner. 

The most efficient archtecture in this case is that system which stores similar 

trees in the same memory module, be it  in shared memory or as part of a 

processing element's local memory. The VLSI binary tree and shared memory 

schemes are significantly more effective than the PE-ICN architecture. The 

binary tree h w o n e  root node, so that all tree instances must begin'at this PE. 

Each PE has sufficient storage to accomodate a number of trees. The bit-serial 

feature also allows for quick node retrieval - of the necessary trees from this local 

memory. The shared memory system can also process such requests. If equivalent 

nodes of R operandtrees are stored in the same memory modules, the P E s  

maintain their paths though  the ICN for R read cycles. This allows sufficient 

time for the R nodes to he passed to the requesting P E .  The PE-ICN system 

the most ineffective met hod of the three architectures in that equil~alent tree 

instances ma!- not be stored using t hasame type of switch settings t,lrrough the 

\-aI-ious I C N s .  This requires that acldit ional synchronization steps be taken to 

allo~v valucs along a processor row to be passed between P E s  to  bring the required 

node values together in onc PE.  L 
The operations that ha\-? been uwd in the simulation and the various analyses 

arc v t  bawd . Howe\-er. there exist other algorithms that use the ?'-an. tree data  

-truct,ire which arr not. Some of t hece include raster-to-quadtree conversion [34]. 

and location of nearcst-neighbo~~rs 1.331. Features of the representation. such as 

disjoint subtrrts. still m i s t .  Tlw sequential form of the algorithms will ha\-e to be 

morlifiecl to t akc ad\-ant a r ~  of t h c v  properties. 



8.3 Consideration of Large Databases 

i 

The test cases considered in the simulation have involved relatively small data  

sets. In applications such as geographic information systems, da ta  representing 

areas spanning many kilometers must be transformed into the tree scheme. For 

example, if a region of about 1000km2 is mapped to 100 meters, it is necessary to 

generate a 13-level quadtree. The complete tree requires approximately 90x10~ 

nodes. Attempting to  map, such a tree onto either of the first two architectures 

x-ould be very difficult due to the tremendous number of nodes that are involved. 

The folding tree mapping of the P-INA system would most probably be required. 

Task synchronization between level,s&would be very difficult to  maintain if multiple 

tree foldings arc needed. The shared memory system provides a reasonable 

solution as the tree can be easily managed in the memory modules. The 

interconnection nctwork can also he expanded easily if more memory units have to 

be added. 

t 
In the case of systems with a limited number of modules, it is necessary to - 

divide the trees into subtrees of consistent depth. While thc top block of subtrees 

occupies the modules, the nest block can be brought into the channel buffers from 
f 

secondary storage. Thr, transfer of information between these two components is 

potentially a n  input /outplit bot tlcneck that must he resolved. A high-speed data  

bus bctn-ccn the buffers and niodulcs can facilitate thc swapping of these subtrees. 

8.4 Fault Tolerance 

One isslicl t o  rorisicltr is the. fault tolerant 1)cliaviour of these systems. Fault 

tolcra~lt corrlplit ing call bc. clcfi~lccl as t hc process by wllich an algorithm is 

rscclitcd corrcctly cx-f.11 i11 tlic prcscncr of defects in the system [40]. Of course, it 

is as>111ncrl that ,algori t 11111 has bccri implcmcnt ed in the appropriate fashion. A 

failure can bc considcrccl a i  mrne physical damage while a fault is generated 

~ ~ h c n ~ ~ - r r  S O I ~ C  I - 3 1 1 1 ~  differs from its c s p e c t d  value. One approach to 



make a system fault tolerant is through redundancy. This can be in the form of 

repeated calculations, or through extra hardware and software. The more 

economical option available to the designer ig handling permanent faults that are 

caused by some failure is t,o use hardware .redundancy. However, if we are dealing 

with faults that are caused by some system inconsistency or external influence, the 

practical solution involves repetitive calculations. The following discussion on the 

fault tolerant behaviour of each system is very general, and no attempt is made at  

providing an in-depth analysis of concepts such as fault detection, diagnosis, 

isolation and repair. 

The shared mcmory and 17LSI array systems provide a greater number of 

advantages when compared to the alternating PE-ICN scheme. From a high level 

perspective, memory is less prone to malfunction that the more complex 

processing elements. with components such as the CPUs and ALUs. The shared 
-. . 

memory modules of our third architecture provide stability to the system. If any of 

'the mcmory rnodules do happcn to malfunction, entire subtrees of objects may be 

lost. This requires that memory backups be done at  regular intervals. On a finer 

scale. data corruption can be controlled using error-correcting code on memory. 

117th the shared mernorj- system. the P E s ,  and MC are the critical 

components whch must he protected with some fault tolerant mechanism. If the 

J hlC malf~inctions. the entire system will shutdown. In the event of an M C  

brcakdon-n. an alternate MC may continue in its place. The results of the 

simulation have shon.11 that after a ccrtain number of processors P in an E PE 

sj-?tern. svhcrc E > P. increasing P ni l1  not result in exceptionally great advances 

in throughput. These E - P P E s  can hc considered as the redundant component. 

The MC'? schctfuling mechaniqm doc? not require any significant action in the 

c a ~  of a PE  malfunction -4 qignal is received from the defective PE to inchcate 

that i t  is in a failure state. arid to allow the MC's table of al-ailable slave 

processors to be rnoilifi~il to rrflwt thiq component breakdo~un. scheduling of 

t a sk<  cont in~~cs  with t l i i -  rrillicccl nllrnhcr of  P E s .  



The shared memory system is very modular, consisting of memory units, and 

different processor units. Each of these may reside on an individual microchip. If 

2 ' any of these modules become faulty, thky can be isolated from the rest of the 

system. Repair may only require that the unit be replaced by a similm module. 
' 

In the case of the VLSI array, the situation presented by Youn [50] calls for 

interconnection buses to run  horizontal!^ and vertically between the P E s  of a 

module. At each bus junction there exists a switch which affects the four P E s  

that surround it. Regardless of whether we are dealing with interior or leaf nodes, 

a switch is used to connect a parent node to  its two children, thus leaving one 

redundant PE  per four-unit cluster. If a PE in a cluster malfunctions, the extra 

PE can,be switched on in its place. 

The situation presented by the alternating P E - I C N  archftecture is 

significantly more complex. There are two additional module types to contend 

n-ith. those which are responsible for controlling the rows of slave processors, arid 

those that control the I C N s .  The major concern arises with the I C N s .  There 

may also bc multiple mappings through the I C N s  in the case of representation 

instances which require more tree levels than there are processor levcls. The I C N s  

nlllst function properly otherwise these mappings will be corrupted. There is some 

inherent redundancy in the system. In Chapter 4.3.3? it was shown that for the 

?'-ay tree with E slaves per row. wc have a situation where for sowe row r ,  any 

E 
- P E s  can he used for the rolv mapping Therc are then E - $ PEs in this row 
2 '" 

r ~vhich provide adequate redundancy. 

8.5 Expandability 

Expandability of system< is another fcaturc to consider in comparing thesc 

qs t ems .  Thc modularity of t e shared memory architecture makes it relatively jl 
po\ver is needed. atldi t ional slave processors 

rcquire that addit iond snrit,ch lcvels bc 
a 



added to  the ICN. Increasing the number bf memory modules may also be 

necessary. These a d d i t i p s  will have little affect on the MC and its task 

scheduling. Of course, the controller will have to be notified of these extra slaves, 

but the scheduling procedure remains the same. 

The PE-ICN is also very modular, and the vertical expansion of this system -- 

by adding extra rows of slave processors is straightforward. Connection networks 
, 

between these new rows will also have to be included. However, the situation is 

more complex if it is decided to add extra slaves to  a particular row. This type of 

horizontal expansion requires that each row of processors also get the same 

number of additional slaves. This is necessary, otherwise adjacent interconnection 

networks will be inconsistent in size and complexity. 

With the VLSI system, a single microchip may consist of an S-level binary 

tree, where _Y is some reasonable value such as 4 or 5. This can be considered as 

the basic building block. Connecting some of these chips into a cluster allows trees 

of greater depth to be stored and processed. However, as these clusters become 

greater in size and occupy more area, the distances between adjacent clusters also 

increases, resulting in increased communication times. Minimization of these 

distances through alternative clustering techniques will make expansion of this 

system worthwhile. 

8.6 Other Comments on the Architectures 

In designing the I'LSI architecture, the use of a binary tree mapping of the 

processing elements of the array was the most beneficial. The binary tree .provides 

a compact structure because of its s~nal l  fan-out. In trees with greater fan-out, 

such as the quadtree and octree. the structure requires more area to connect all 

chilclrcn to a parent node. T17ith this greater area, there are more unused 

processing elcrncnts on t l l t  array unless some irregular mapping scheme can be 

developed. rlnother rcason for ~ising t h e  binary tree involved work which has 



already been done on binary tree mappings by different resear& groups. Efficient 

mapping schemes that incorporate some interesting features have been devised for 

the binary tree. For example, consideration of fault tolerance has been included in 

these mapping schemes. Even with these features in favour of the restricted 

2"-axy tree mapping, the question may still arise as to  why not use a ma3ping for 

N > 1 where there will be fewer levels in the tree, and therefore, faster processing 
I 

times. To this, one may answer that the compactness of thk binary tree more than 

compensates for this need of extra levels in the tree. One consequence of this is 

that the interprocessor distances are much smaller. Therefore, there will be less 
4 

delay in travelling between these additional levels. In addition, the advances being 

made in VLSI technology allows for more complex and faster processiirg elements. 

The discussion to this point can he summarized as presented in Table 8.1. The 

relative ranking is, for the most part, a subjective measure of the expandability, 

fault tolerant capability, ~erformance,  and complexity of each architecture. The 

shared memory approach is the most favourable of the three, while the P-INA 

structure is least effective. 

-4 fair indication of the 01-era11 cost effectiveness of the three systems is 

" provided by the above rankings and criteria. The shared memory architecture's 

features make i t  an attractive system. With the cost of microprocessors and 

memory decreasing, justification for the use of this system, which relies heavily on 

these two components, is obvious. The interconnection network can be readily 

espandcd to accomrnodatc any reasonable increase in system requirements. The 

simple structure of the s~vitching elements also translates to cost efficiency. 
2 

ST'ith our other two syste~ns. i t  is more difficult to present arguments in favour 

of their cost cffcctiveness. Bccause of the effort required to develop and set up 

these syst,ems. one may counter that a powerful uniprocessor with the necessxy 

, softivare implement at ion of the represc~t  at ion is preferred. The task facing the 

dcsigncr is to arrive at a dccision bascd upon these options. There is no hard and 

fast r d c  which t;tipilla'tcs n-hcn a mliltiproccssor based system should be used. 



P-INA 

VLSI-based 

Shared memory 

Relative ranking: A - best 

B -OK 
C - not too good 

I ---- Expandability 

II -- Fault tolerance 

111 --- Performance- 

IV --- Complexity 

Table S.1: Relative ranking of the three systems 



8.7 Consideration 
rg 

of ~ltekbative,  , B  Architectures . 
\ 
/ . -i 

The architectures which have been prese&ted are three methods by which the 
6 * 

zN-ary tree representation can be implemented. Recent advances in parallel 

processing have introduced further alternatives for the system designer to  select 

from in taking advantage of the 2N-ary tree's properties. For example, the 

hypercube topology has been used at  Caltech in the development of the Cosmic 

- Cube [38]. General purpose parallel computers, such as Intel's iPSC personal 

supercomputer with its 32, 64, or 128 processing nodes connected in a hypercube 

arrangement, are now becoming commercially available. With the iPSC, 16-bit 
' 

 microprocessor^ are used as nodes, with 512Ii bytes of memory. Adjacent node4 
'. 

are connected via et hernet links which allow fdr l0hllbi t per second transfer rates! 
.--- 

The nature of the hypercube model allows for different applications to  use the 

same 'st ruc t u x .  For example. comput ationally htensive applications such as 

computer vision have successfully used the hypercube to achieve useful 

improvements in processing times [XI. il'ithin the context of the 2"'-?ry tree 

scheme, algorithms have been developcd to embed trees into hypercubes [GI. The 

binary tree approach has bwn found to he one of the sinlplcst struct~ires to 

embed [8]. To re-emphasize a point made earlier, the case in using the binary tree 

topolog~. to solve the current prohlem justifics its ~isc .  

IVork at 1IIT resulted in thc dc~.elopment of a massively parallcl computer 

which consists of a SIAlD array of X G I i  one-bit processors [45]. The Connection 

llachine uses t,wo communication netu-orks. one linking nearest ncighhours, and 

the second allowing for communication I ~ c t ~ v e e ~ i  any two arbitrary processors. 

This second network can then hc u ~ d  to generate a trcc composed of processors. 

The size of the llachine makes its general availability rcstrictivc. For csample, it 

can support cight front-end computers. most of which are eit1ic.r lr.4X or 

Symbolic5 LISP llachineq 4096 nlicrocliips arc ~iscd, cach of ~vhich contain 16 

proctSsors. The proccqqor? are arrangccl a\ 12-di~nensional hypercubes with 16 

prnccssors at cach vcrtes. The 1Iachinc essentially flinctions by gcntrating a 



solution tree for the problem, and then dynamically pruning the tree through the 

broadcasting of necessary constraint conditions for the p r o b l b  to all of the 

processors. One problem with such a scheme is that the entire tree be first 

mapped onto the array. New techniques have been developed for the Connection 

hlachine which allows it to selectively grow specific regions of the tree, prune these 

subtrees, and then generate new levels [14]. Applications for iyhich the Connection 

Machme has proven to be successful in generating solutions include VLSI circuit 

simulations, machine learning, modeling of fluid dynamics, pattern recognition, 

and image processing. 

A third type of general purpose architecture which has been successful as a 
.J 

parallel computer is the D-ADO processor [43]. The current prototype consists of 

1023 processors all connected in a complete binary tree. The DADO project 

builds on the work of Bentley and Kung [7]. Applications for which the DADO 

architecture has shown to be very efficient include logic programming, relational 

database. and pat tern recognition. 



Chapter 9 Conclusion 

The original intent of t h s  dissertation was to develop an architecture which 

ut.ilized the inherent parallelism of the 2N-ary tree represent at  ion. The primary 

application of this representation and architecture was computer graphics. As the 

research progressed, two addit,ional architectures were developed, both of which 

were significantly different in structure. The nature of the representation and its 

operat,ions are such that a general representation can be defined based on set 

theory. This new representation can be used in many different applications, such 

as image processing, computer animation, database processing, and general C 

information sys terns. 

In addit.ion to the m:ide range of applicability for this representation, its basis 

in set theory allows for the use of many operations, most of which are derived 

from equivalent set t heoretic functions. .Another property of this representation is 

the manner in which components of an instance are defined as being disjoint 

subsets of the instance. It is this feature which allows the operations of the 

represent ation to be executed in parallcl. L 

Once th t  '2.'-arY tree representation was defined as a transformation of the 

senera! set theoretic representation, it was possible to proceed with an analysis of 

the effectiveness of executing these operations in parallel. This parallel time step 

analysis was performed on the quadtree. but the reasoning used in the analysis 

could be extended to the general 2.'-ary tree case. As expected, the primary 

results of this analysis ha\-e shown that there is indeed an improvement in 



4 performance if multiple processoi: are used. A significant difference in execution 

time is evident in just going from a uniprocessor to a dual processor environment. 

However, one interesting observation that the analysis presented was that-after 

some particular value for P (the number of processors used), the difference in 

execution times is negligible. This value of P was dependent upon the size of the 
P 

object being represented, and the operation being performed. 
I 

The fist architecture which was developed for the representation m a m e  of 
r- 

alternating rows of slave processors and interconnection networks. The basic idea 

was that the 2.N-ary tree would be mapped on top of this array of slaves and 

networks. The slave processors represented the nodes of the tree while the 
p' 

networks provided the links or edges between parent and child nodes. It was 

determined that if the number of rows of slaves exceeded the number of levels in 

the trees using the system, then the implementation was worth pursuing. 

However, if multiple mappings were needed, as in those cases where there are ' 

5 
insufficient processor rows. then the processor and Scheduling overhead necessary 

to accommodate these mappings far exCeeds the benefits of the system. An 

alternative solution which avoided this multiple mapping made use of more 

complex slave prpcessors that allowed actual subtrees of instances to be stored at 

each leaf slave. If primitive used. then only one node value would be - 
stored in each processor. 

In the case of the 1-LSI-based archtecture, a binary tree topology was used in 

the processing element mapping. The use of the binary-tree was justified on a 

number of points. The architecture ~vas  also shown to perform more effectively 

than t h e P E I C N  sj-stem for luge  values of .\.. 

Our 1 s t  systtnl sva.q ticsigned using shared menlo y y l e s ,  a series of s l ~ v e  

processors. and a rrlaster used the,benefits of both 

curent  hardware and the previous two schemes 

v;hich stored t rre ~-;ilucs n-i t hin t h> processing elements themselves. t h s  approach 

used the mernoq- mociulec for rtce storase. The processors simply processed the 



tree values. This requi&d that the slaves communicate with the master controller, 

which handled all of the scheduling duties of the system. The simulation tha&was 

developed for this architecture produced results which were conqstent with those " .  

presented-in the preliminary quadtree analysis. Specifically, hhere was considerable 

improvement in execution times for binary operations as the number of slaves 

increased. However, a levelling off in execution time was noticed after a critical 

number of slaves was reached. L? 

Of these three architectures, the simplest to actually implement would be the 

latter. The modular nature of the system would permit the use of existing 

hardware such a.s microprocessors, and memory microchips. The interconnection 

network linking the slaves to the. shared memory could be constructed from simple 

2x2 crossbar switches. The alternating row scheme, although modular-in nature, is 

more complex with the added c~ntrollers, and multiple interconnection networks. 

The VLSI array would require that the actual binary tree be laid out onto the 

chip. The most likely method would require the use of laser technology to set the 

qpropriate  swi tcl+es. 
. , 

a T h e  Discussion losed th brief descriptions of three powerful general-purpose . 

archtectures that permit mappings of trees. The considerable size of these 

architectures from the standpoint of processing elements indicates that issues such 

as communication difficulties, and memory contention have been successfully 

a d d r e w .  A representation such as the 2N-ary tree could be effectively 

inlplement'ed on any of these structures. The multidimensional arrangement of the 

Connection Machine's hypercube and point-to-point communication facilities 

makes the actual mapping of a 2"-ary 

machine, with its restricted topology. 

tree more possible than with the DADO 

To conclude. i t  is necessary to re-iterate a number of points which have been 

explicitly state$ or at least implied as the dissertation progressed. The approach 
$ 

to be taken in the implementation of the representation must be one Chich is both 

cost effective and slifficierltly fast to satisfy typical user requests. If the situation is 



such that a fast uniprocessor can fulfill the needs of the application, then it should 

be considered as a candidate solution. The technology, facilities, and components 

necessary for the system must be available. Compromise is a term which 

contributes significantly to t,he selection process in system design. 
%. 
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