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ABSTRACT 

This thesis describes the ideas underlying 

modern interidor methods for the solution of 

linear programming problems which find the 

solution in the worst case xpolynomial time. 

Much of the thesis is taken up by an exposition of 

Karmarkar's algorithm; we have attempted to give 

an intuitive description of the working of this 

algorithm, whose standard exposition can be quite 

difficult to read. The thesis ends with a 

description of recent results in the field. 
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INTRODUCTION 

r d 

This thesis describes algorithms for the solution of 

t,, Li.near Programming Problems (~PP's),by so-called interior 
methods. These include the LPP algorithms with the best 

' known wdrst-case complexity. Although I offer no new 
I 

algorithm, the thesis attempts to present the main ideas in 

an intuitive and "motivational" way.   he original idea of 

describing "the state of the art" was lost sight of rather 

quickly because of the rapid advance of the fiekd; however I 

include some discussion of interesting results as of Sept 

1988 [81,[91,[101. 

0.1. Linear4Proqramming problems. 

we consider only LPP's with integer coefficients. Them 

theory of LPP1s with integer coefficients is appropriate to 

the solution of LPP1s on digital computers (any fixed 

precision problem can be scaled to such a problem),, and the 

various polynomial time LPP algorithms which have appeared 

since 1975 - Khachian's and Karmarkar's algorithms, 

path-following methods, etc. - apply to this class of LPP. 



We also assume that a first feasible point exists whenever 

this is convenient, since in principle finding one feasible 

point is straightforward, cf. 51.3. This paper takes a very 
2 

geometric approach. We avoid the (pon-trivial)- matter of 

applications entirely (see Chapters 1 1  to 15-af [4] for a 

discussion of applications) and consider an LPP to be an 
3 

objective vector c C E plus a constraint space, which is a 
n 

subset of the positive orthant of En . The problem is to find 
a point in the constraint space which maximizes (or 

minimizes) cx . In this paper we always write an LPP in the 
slack variable or affine space form 

~aximize X(x) = tx 

under the constraints 

c$. 
where A(x) is a linear objective function whose value is cx  , 



and P+ is the positive orthant, i.e. the set 4- 
- 

-. 

{ x  : x i  2 0: i=1,2, ... ,n) . The set of solutions of the linear 
system, 

is called an a'•’ f ine space (or translated vector space; see 

the next sec'tion). Evidently an affine space is the 

intersection of a finite number of hyperplanes of E n . The 
part of this intersection which lies in P+ is the constraint - 

space. In the sequel the affine space determined by (0.1.2) 

will be called D . Thus this constraint could have been 
written "x € Q f l  P + " .  Fig. 1 shows c and D fl P+ for one 

possible LPP (.0.1.1) in 3 variables. 

Fig. 1 

/- The space Q looks like a vector subspace of En except that it 



L 

need not hit the originV(see 50.3). Finally, we usually 

write the linear equations in LPP (0.1.1) i~ the matrix form 

where A is the matrix [ aij ] . One also meets a corm of LPP 
which is identical to (0.'1.1) except that some of the 

Ts 

equations that define the constraint space are replaced by 
c3 

inequalities. Thus 

instead of 

This form' is likely to appear when appliSations of LPP's are 

considered. The reader is probably familiar with the ..h 

technique called 'addition of slack variables', which 

converts the form with inequalities to the form (0.1.1). 
, . 

Geometric aspects of LPP's. 

This section summarizes some ideas that arise naturally 

when one employs the strongly geometric view of LPP's that is . 
'essential here. These will be used in the sequel without 

further comment. 



M i 
L' 

(0.2.1) I f  c is an objective vector, then for x C E n , 
the objective value cx is llcl times the length of x 

projected onto c (see Fig 2). Hence for all vectors x of 

length 11x1 = p ,the maximal value of cx is ~ 1 1 ~ 1  and 

occurs when the direction of x is the direction of c . 

Fig. 2 

(0.2.2) DEFINITION. I f  F : S -b R is a mapping ( R  is 

the set of reals) and S c En , we let m denote a 
S,F 

maximal point of S under F , i.e. a point m with 
F(m) 2 F(X) for x C S . 

Evidently m is a solution 01 LPP (0.1.1). If F is the 
pAna, x 

objective function X(x)= cx , we frequently write just m S . 
Obviously m and m may not be unique. Minimal points M 

S,F S S,F 
and p are defined analogously. 

S 



( 0 . 2 . 3 )  Let 
w n ( x i  - p  

be the equation of an ellipsoid axially aligned in En 

dcentre . with principal axes a t  , a2, ... 
( P ~ I  P ~ I  Pn) . Then a mapping 4 of\&; onto itself which 
carries the unit ball onto the eld1ipsoid is tgilen by 

I 

The presence of so much linearity makes it tempting to 

look for linear mappings which 'map the LPP' in some sense 

while-preserving the solution. This is dangerous because 

linear mappings do not preserve inner~products, and hence may 

not preserve the value of the objective function. 

Nevertheless in 5 1 . 4  we will have to look at mapping of LPP's 

since this idea i s  fundamental to Karmarkar's algorithm. 

i .. 
7 '  

0.3. Affine spaces and affine maps. 

An affine space ,Q can be considered either as a 

translated vector space or as the space of solution vectors x 

of the system A X  = b , where A is an nxm matrix and b an 

n-vector. Let q be any solution of system.Ax = b . By 
linearity ofrmatrix multiplication, i f  y iS ine the null space 



ol A (i.e. i f  Ay = 0 is true) then q + y is a solution of 

Ax = b . Hence a = q + V , where V = {x : Ax = O ]  . Evidently ' 
q can be any point in , ahd in the case of an LPP a 

convenient base .is the, first feasible point. 

Affine mappings. A mapping T of En to itself is called 

an affine mappinq i f  T = 87 where 8 is a linear mapping and T 

is a translation given by r(x) = x + q . Alternatively one 
can write T in the equivalent form = 7'8 (for the same 

mapping 8 but a new translation 7'1, since 

S a 

where ~ ' ( y )  = y + 8(q) . The mapping 4 of 5 0 . 2 . 3  which 

carries the? unit sphere onto an ellipsoid is an affine 
6 

mapping. I t  follows from the prece.ding paragraph that T will 

carry an affine space onto an affine spack.' The composition 

of two affine mappings,Ti = B i r i  , i = 1 , 2 ,  is an affine 

mapping since 

which is clearly affine. / i n  this essqy I'll consider only 

non-singular affine -mappings. Th-mportant property of an 
'- . 

affine mapping T, usually called simply "the affine 

property", is 
e l  



- 

% 

(0.3.1) Affine Property of the mapping T : for vectors 

Xi, i = 1 , ... 4, and scalar a , 
a( T(xl) - T(x2) ) = T(x3) - T(x4) is trueiff 

a(x, - x ) = x3 - x4 is true. 2 

Prqof : 

I t  is important that there are non-affine mappings which 

carry affine spaces onto affine spaces; we will meet one in 

52.4.1. 

1 .  INTERIOR METHODS FOR THE SOLUTION OF LPP'S 

These are simply methods which seek the solution point 
-8 

of an.LPP by directing a 'search path' through the interior 

of the constraint golyhedron. This is to be contrasted wiLth 

the simplex method, which searches through a sequence of 

vertices along a path in the edges of the constraint 



polyhedron. An interior method attacks the LPP by beginning 

at a feasible point q and tracing a path x(t.) , t 2 0 in $2 

such that x(O) = q and objective value cx(t) continually 

improves as r increases. How should x(t) be specified? 

$2 f l  P is convex, so conceivably a search path could trace a + 
straight line from the terminal point of q to the terminal 

point of m i.e. we could set x(t) = q + tz where z is a 
P nQ + 

unit vector. From (0.2.1), the obvious choice of direction 
! 

for z would be c itself i f  it were not that c , whose b 

direction is arbitrary, is likely -to point out of the space 

R . The best direction turns out to be c,, the projection of 

vector-c into affine sDace Q .  

Fig. 3 



(1.0.1) DEFINITION. Vector z, is the projection of vector z 

into affine space 52 i f  for a-ny coordinate system such that 

the origin 0 C Q 
\ 

i )  z,lies i n Q ,  

ii) (z - Z=)X = 0 for all x C Q .  

Fig. 3 shows the situation for a 2-dimensional Q in 3-space. 

Vector z is shown as a vector with initial point in the plane 

Q ; then z - z, is represented by a perpendicular dropped 

from the terminal point of z to Q . 
Once we know the value cq for the first feasible point 

q C R , then for computing the objective value of any point 

x C R , the projection c, is as good as c because 

= cq + c,(x-q) + 0 (from the definition 
of c , ) .  

Vector c, is found using methods described in the Appendix. 

I t  is possible for c, to be 0 : this simply means that c is 

orthogonal to all of R and thusany feasible point is 

optimal. In the sequel I ' l l  often ignore this trivial case. 



We can now write down an easy interior method which 

sometimes provides a useful approximation of the solution of 

LPP (0.1.1): 

- the input is objective vector c  , which we take to be a 

unit vector, and feasible point q f int(C2 f l  P+) . 
- find c ,  , the projection of objective vector c  intb the 

affine space Ci . We assume that c ,  is non-zero. 

- travel from the feasible point q in the direction of c ,  

(that is, set x(t) = q + t c ,  and trace the path x(t) 

with t increasing from 0) until the boundary of P+ is 

encountered at point q' which is the output. 

( 1 . 0 . 2 )  

This method is sometimes called "crashing", i.e. the path 

' takes off' from q and. collides simple-mindedly witbi the 

boundary. Its virtue is that it always maximises the rate 

d - - h ( x )  . Its defect is that while it improves the objective dt 

value, it usually gets the wrong snswer, -as can be seen by 

trying some experimental values of c and q on the example in 

fig. 1 .  Considered as a method of approximating the solution 

point m 
P nCi ' this method demonstrates two problems typical + 

of interior methods: things get much more complicated if q 



lies on the boundary of P+; and the improvement in the 

objective value may be arbitrarily close to zero for unlucky 

pairs q and c . 

1 . 1 .  Interior methods and approximation. .# 

All interior methods I have encountered have the 

property that they approximate the solution but nevertheless 

obtain an exact answer. The reason that this can happen was 

first stated explicitly by Khachian in 1978 [ l l ] .  

(1.1.1) GRANULARITY THEOREM. Let L be the number of 

bits required to encode all constants in the LPP 

(Since we assume integer coefficients, L will be 

finite). Let an approximate solution Y of the LPP 
-(L+1) 

lie within a distance 2 of the exact solution 

Z. Then value Y, rounded to a precision of L bits, 

is exactly Z . 
This idea was 'around' in a general sort of way in the 

'60s (its background is discussed in [ 4 ] ) ,  but it was not 

until Khachian's paper [11] that it was realized that 

approximation methods could be a good place to look for 

polynomial time solutions to LPP's. Some (non-~ussian) 

scientists could be heard grumbling that the whole thing was 

obvious and should have been seen through much earlier. 

Typically an interior method using approximation needs to 

begin by knowing a (probably large) bounded subset C of En in 



b 

.+ which the Solution point of the LPP is guaranteed to lie. 

Such a set is not obvious, since t e LPP ( 0 . 1 . 1 )  may have 5' 
maximal points arbitrarily far from the origin, (e.g. let 

T 
Q = E  2 l C  = [ - I ,  01,  then any point lei' for y 2 0 ise. 
maximal). Karmarkar's algorithm provides a special solution i 
to the problem of finding C , but the usual answer is 

provided by the .. 
(1.1.2) RANGE THEOREM. A solution point of the LPP 

t 

must lie in the cube C given by (x : 0 5 x 2 2 4 )  i f  i 
any solution point exists.. Furthermore llcxll < 2L for 

any x t C . Here L is the encoding length defined 
above . 

Hence once it is known that a solution of LPP ( 0 . 1 . 1 )  exists, 

an approximation of th,is solution begins by looking in a 

large cube of known size and then finds successive 

approximations to the answer until it finds one with an 

absolute error less than 2 
-O(L) . This final approximation, 

rounded L bits, the exact solution. Proofs the 

Granularity and Range Vheorems are easy corollaries of Lemma 
P 

1 of [ 3 1 .  

1.2. Local and Global Approximation. Assume that the solution 

of an LPP is being approximated by a sequence of .points 

Q, r q2 , - - . I  qr which converges to the maximal point m P ns2 of 
+ 

P fl f2 . A method of global approximation is one in which the + "4 



P 

procedure which produces qi+l from qi considers all points i,n 
& 

the constraint space, whereas in a local approximation some 

points .of the space (say those remote from q )  tend to be left 

out of consideration. At the moment we lack the background 

to give an example of a method of local approximation (one 

will appear in 51.4.1) and must make do with examples which 

do not use approximating sequences. Algorithm (1.0.2) is a 

local method which takes a single coarse approximating step. 

Beginning with point q C 1nt(~+) f l  Q , algorithm (1.0.2) will 

produce feasible point q' C B ~ ( P  ) with X ( q ' )  > A ( • ÷ ) '  + 
(assuming the LPP is not unbounded). Point q' depends only . 

on q, c, and the nearest coordinate hyperplane, and will be a 

poo7 choice for some locations of q . The simplex algorithm 
for LPP (0.1.1) is a good example of a local method: 

essentially it adopts the "best strategy for the next pivot", 

which may be a poor global strategy (the well-known 

Klee-Minty examples demonstrate this - a good brief 

description is in Ch 16 of [ 4 ] ;  the paper itself is [ 5 ]  1 .  

Methods of global approximation for LPP's are rare: 

< 
Karmarkar's algorithm and related methods are the only 

successful ones. I'll give an example of a successful global 

method (not an approximation) which, unfortunately, does not 



solve LPP (0.1.1) but instead solves this special problem: 

~aximize objective value cx 

under the constraints 

Ax = b , or equivalently x € 52 for 
a some affine space . 

x C Ex : IIx-pII 5 P I  
.where p is a point in 52 , p a real number 

(1.2'1) 

Here x , which may be of any dimension, is constrained to lie 

in an n-ball of radius p .  % 

(1.2.2) Theorem I. Let c, be rhe projection of objective 

vector c into'affine space 52 . Then the solution of LPP 
(1.2.1) is found by beginning at the feasible point p and 

travelling in the direction of c, for a distance equal to 

the radius p . 
The easy proof follows from (0.2.1). 

1.3. First feasible points and infeasibility - 

LPP (0.1.1) may be infeasible, a case of both practical 

and theoretical importance. I t  wbuld be nice fo detect this, 

by a cheap method that precedes and may make unnecessary the 

main problem solving operation. Additionally, methods to 

detect infeasibility usually report feasibility by producing 

a feasible point, which may be essential to the main method. 

A two-phase method of solution of LPP (0.1.1) consists of a 



first phase which analyses the problem and either detects 

infeasibility or finds a first feasible point, followed if 

necessary by a second phase which takes the objective value 

of the first feasible point and applies some form of 

progressive optimization. The two-phase method is standard 
-* 

in practical implementations of the simplex method. 

The operation of the first phase is straightforward. To 

simplify things 1'11 use the form of LPP in which equations 

are replaced by inequalities. I f  the constraint space D fl P+ 

of the LPP is given by 

Zj= l a i  jxj b i  ; i = I,..., m 

then to find some point in Sl f l  P+ we can define the 

artificial variable x and solve the new problem 0 

under the constraint 

( 1 . 3 . 1 )  

Problem ( 1 . 3 . 1 )  has an obvious feasible point: the point 

whose every coordinate is zero except xo which is set so 
,- 

large that -xo is less than any b i  . We can solvd ( 1 . 3 . 1 )  ,/ 
5 

( 
.. . 



because we know how to do the second phase; hence we can 

obtain the minimum value of xo . I f  this minimum is 0, then 

any point in the constraint space of (1.3.1) which satisfies 

= 0 can be interpreted as a feasible point in LPP (O.,l.l). 

I • ’  the minimum is greater than zero, then evidently LPP 

(0.1.1) is infeasible. 

I t  is also possible ti6 solve LPP (0.1.1) by a "one-phase 

approach'. Approximation methods for (0.1.1) usually require +. 
the approximating sequence to consist of feasible points. 

However one can imagine at least in a vague way an approach 

in which this requirement is removed and no first feasible 
-\ ,> 

point is needed. I f  we know how to approximate the-solution 

of 0 1 . 1  by a feasible sequence q l ,  q2, ..., qr, ... , then we 

can begin at an arbitrary point q;', not necessarily in 0 ,  

and construct a sequence q;, q;, ..., q;, ... using rules like 

those for constructing tKe qi except that the locations of 

the points qi are perturbed so that the qi lie continually 

closer to $2 . For methods which are good at keeping the 
approximating sequence inside P+ (the 'barrier methods', see 

5 3 )  this is a practical procedure, and something like it is 

used in Karmarkar's algorithm [I]. 

Approximation methods which start at an infeasible point 

all seem to have the defect that their usual method of 

detecting infeasibility is to converge, perhaps slowly, 
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to an infeasible point. In fact there is some indication 

that finding first feasible points and detecting 

infeasibility may not be easy in practical algorithms based 

on Karmarkar's method. In a conversation with one of. the 

authors of [6] I was told that the stystem described in [ 6 1 ,  

which is a state-of-the-art implementation of path-following 

methods, was a two-phase method which was using far more time 

.- to establish feasibility and provide a first feasible point 
4; 

than it was using to solve the rest of the prpblem. 

1.4. Good and bad  transformation.^ of LPP's. 

As remarked earlier. a transformation of an LPP, say in 
& 

the form of a non-singular linear transformation of c and 

Sl f l  P+ cannot be expected to preserve solution points m 
s2np + 

in fact the only linear transformations that preserve the 

solution point are transpositions and rotations. However it 

is still possible to use transformations to solve LPP's. 
\ 



Suppose we wish to solve the problem 

Maximize i(x) = cx 

fl  under the constraint 

X C Q  

where c, E, $2 are the vector, elliptical disk, and line shownm 

in fig. 4. Note that the origin 0 is feasible. 

Fig. 4 

We decide to find the solution to this*LPP by transforming c, 
B 1 

Q and E to the vector c', line Q' and unit.circle B shewn to 

the right in fig. 4. I f  E has major and minor axes of length 

2 and 1 and centre 0 a; shown in the figure, then the 

non-singular linear transformation that carries circle B onto 



E can be written in matrix form as 

Ignoring the warning in 50.2, we might hope that'the mapping 
- 1 

x' = D x can be used to transform the LPP on the left of 

fig. 4 to the 'transformed LPP' on the right; and might then 
D 

invent-the following method to solve LPP (1.4.1) (writing,D 

, for both the matrix and the transformation) 

- Solve the LPP 
- 1 

Maximize D cx" 

under the constraint 3 
X *  c D%) n D-'(E) = n* n B 

I 

- I f  z' is a solution to the transformed LPP then-hope 

that z = Dz' is a solution to the original 

problem. 

But, as fig. 4 shows, this doesn't work, since the maximal 

point z' of the transformed LPP does not map back to m EnQ, h ' 
- 1 

The reason is that D . , which does not preserve inner 
- 1 

produkts, has altered the angle between c and Q so that D c 
- 1 

projects onto D (Q) in exactly the wrong direction. The way 

to solve the problem in Fig. 4 is: 



- Solve the LPP 

Maximize cDx' = h'(x') 

under the constraint 
- 1 

X' c D (52) n B \ 
L. 

- i f  z' is the solution to the transformed problem, 
C 

then the solvtion to the original problem is Dz' . 

- 1 
Here c is mapped under D rather than D to get the 

'compensating function' A' ( i t  would be more correct to write 
T 

A '  = c o D  but I think the meaning is clear). The reason t h i ~  
- 1 

works is that mapping points x t 52 under D and objective 

vector c under D preserves the value of the objective 

function, i.e. e 

So i f  the transPormed problem has a solution point 
- - 1  

z' 6 D (!J) fl B with objective value cDz' , then LPP (1.4.1) 

has a feasible point z = Dz' with the same objective value, 

which must 'be maximal since the transformation h(x) = X'(x8) 

clearly preserves maximality. , 



In general, to attack the optimization problem 

Maximize F(x) 

. . under the constraint 9- 

x C S  where S is some 

constraint space 

by the method of transfoxmation means first to specify a 

non-singular mapFing T of S to a space S' and a 'compensating . 
- 1 

function' F' such that F"(T(x)) = F(x) , i.e. F' = FT . 
Then, taking x' = ~ ( x ) ,  try to solve the transformed problem 

Maximize ~'(x') 

under the constraint 

which we hope is more tractable than the original. I f  we 
- 1 

find m then we know that m = T '(m 1 .  
S',F' S,F S',F' 

Furthermore the maximal objective value of the original 

problem is F(m ) = F'(m 
S I F S' ,F' 

) 

This broad definition allows for the fact that the 

transformed problem might not be a LPP, although in all the 

cases we will meet space S' will be affine. The method of 

transformation works well in nice cases where T is an affine 

mapping and can also be made to work when T is non-aff~ne. 

i,dditionally in nice cases the transformed objective function 

will be linear. Soon we will meet Karmarkar's algorithm, 



which is not one of the nice cases. 

1.4.1. An approximation using ellipsoids. We will attempt to 

solve LPP (0.1.1) using a sequence Eo, E l ,  E2, ... of 

approx-iqating ellipsoids. The sequence of the Ei approaches 

a solution point of (0.1.1) in a way that the reader will 

probably find 'pictorialy convincing' (see fig. 5 ) ;  

1 ) L ,  
I i 

I -- 

i 

Fig. 5. 

however we will not give a proof that the Ei converge to a 

solution since we do not know a short proof of this and since 

the method given in this section is useful only as an 

introduction to Karmarkar's algorithm (whose rate of 

convergence will be analysed at some length). Some fussy 

details will be skipped, in particular we assume that the LPP 

is not unbounded and that objective vector c is not 



orthogonal to Q . Fig. 5 shows P+ for n = 2. The range 

theorem provides that the mahmal point of 52 n P+ lies in an 
\ 

n-cube C, whicb is also shown. Rescale everything so that a 

side of C has length 2: thus point uo in fig. 5 is 

We also assume that there is a feasible point in 1nt(C), and 
I 

that uo is feasible (although the argument works after a 

fashion for any first feasible point in 1nt(C) ) .  

Step one: Construct ellipsoid E o  as a ball concentric 

with the inscri'bed ball B of C but with half the radius of B. 

Find the maximal point of Eo f l  Q using Theorem I (1.2.2) and 

the fact that uo is feasible. Call this maximal point u, . 
The /irst stage is easy since E o  is a ball. 

St p two: u l  is not optimal since it lies in 1nt(C) R 
(assuming that c is not orthogonal to 0 )  so we look for a 

point with a better objective value. Let E; be the largest 

ellipsoid lying in C having centre u l  and axes parallel to 

the coordinate axes (the unnecessary 'parallel' requirement 

simplifies the example). Let E l  be an ellipsoid concentric 

with E ;  but with one-half the diameter. Find the maximal 
i 

point u2 of E l  fl Q (see fig. 5). Since u, C 1 n t ( ~ ,  fl R )  and 

c ,  is not zero by assumption, A(u2) > h ( u l )  . 
P' 



Step three, four, etc. Evidently we could continue in 

this wgy to define points uj, u4, ... . with monotonically 

increasing values of X(ui) . From fig. 5 it is plausible (and 
in fact true) that the Ei converge to the solution of the 

LPP. 

This.method requires us to find the maximal points of 

the ellipsoids in fig. 5. 
we find m ~ l n ~  

using the method of 

transformation. Begin by constructing an affine mapping 4 

which carries the inscribed unit ball B of C onto E l  

(0.2.3) i f  ellipsoid E l  is given by 
*ym 

then, allowing for the fact that the centre of B 5s not the 

origin but u 0 4 is defined by 

where D ik I ,  " . To apply the method of 
1 id 

I \ 
L 7 ,  .I 

- 1 - 1 transformation we need 4 (x) = D (x -+XU + uO) . This is an 
1 

- 1 
affine map and Q' = 4 (Q) is an affine space. (The reader 

1 

may prefer E l  -, B as the natural direction of $I ; however I 

use the direction 4:B -, E because it will turn out to 
1 

agree with Karmarkar's usage in [ I ] ! )  



- 1 
Now let x' = 4 (x) , and transform the problem 

Maximize h(x) = cx 

+der the constraint 

X C Q ~ E ,  

to the problem 

Maximize h'(x') = cq5(x') = cDx' + c(u,-uo) 

under the constraint 

X *  c n a )  

Despite the extra constant term in the objective function, 

this can obviously be solved by Theorem I since Q' is affine. 

It is easy to check'that objective value A'(x') = X(x) , 

since 

- 1 
X'(x') = c~(x') = c44 (x) = CX = X(x) . 

Hence if z' i s m  
BflQ' , A' 

thhn @(z') = z is m 
E p , h  

Evidently all the points u2, u3, etc. can be obtained in 

this way. This method converges poorly to ii . Intuitively 
the Ei 'get too small too fast' so that the value cui may 

increase arbitrarily slowly, and it was more or less assumed 

that there was no way to prevent this behaviour until the 

surhising appearance of Karmarkar ' s algorithm, whi 

very sophistic ellipsoidal approximation with 

time convergenc 



2. KARMARKAR'S ALGORITHM 

Karmarkar's algofithm, which appeared in 1980 [ I ] ,  
'\ 

'.\ , was the first algorithm to solve LPP's in reasonably fast 
4 , ( n L ) polynomial time. The worst case time of the 

/ 

version presented here is O ( ~ L )  iterations each of time 

3 
O(n ) ;  where L is the number of bits required to encode all 

3 4 

the constants in LPP (0.1.1). The O(n ) time of each 

iteration is due to the fact that in each iteration an n x n 

matrix must be inverted. In [ I ]  Karmarkar decribes a 

variation of the algorithm in which the sequence of inverted 

matrices is produced by 'updating' - each matrix in the 

sequence is used to generate an approximation of the next by 

"rank one modification" [ 2 ] .  This approach reduces the worst 

2.5 
case complexity of each iteration to O(n . Thus 

Karmarkar's algorithm can be made to run in time of o ( ~ ~ * ~ L )  

operations. Karmarkar's algorithm is still considered f.ast: 

the current best time for the solution of the LPP (0.1.1) 

3 
(see [9]) is O(n ) operations. 

Before describing how the algorithm works, there is a 

technical detail to attend to: Karmarkar's approach requires 



the reader to visualize the LPP not in the form ( 0 . 1 . 1 )  but 

in terms of a whole new picture which involves replacing our 

familiar c ,  Q and P+ with new objects c', a ' ,  Z . A feature 

of the new form is the fact that the positive orthant P+ is 

replaced by an n-simplex C which lies obliquely in the space. 

This new "Karmarkar standard form" will be described in the 'L 

next section. 

2.1. This section describes the new Karmarkar standard form of 

the LPP which replaces the form (0.1.1). In this new fo'rm, 

the affine space Q of (0.1.1) is replaced by a new affine 

space Q' which is actually a vector space (i.e. meets the 

origin) and the positive orthant P+ in En is replaced by a 

'unit' n-s-implex C embedded in E ('unit' meaning that the n+ 1 

vertices of C are (1,0,0, ... , 0 ) ,  (O,l,O, ... ,O), 
- 

( 0  . 0 ... 0 O r O  . 0 . Thus although the 

simplex 2: is n-dimensional, there are n+l variables.' We will 

often refer to the centre p of C , where 

The definition of the new form is 



Minimize c"x 
,' '., 

under the constraint I \ \ 

1 x C 51','where 51' is the qffine,space defined 

by A'x = 0 (here A' is a fatrix of 

dimension mx(n+l) ) 

x C C , where the 
n-simplex C is defined by 

We illustrate this in fig. 6, in which n = 2, C is 

2-dimensioBa1, and $2' is a two dimensional space. In fig. 6 

the constraint space is a line segment. 

n+ 1 
I n  the sequel, let J stand for the n-plane C .  x = 1 . 

= 1. i 



discussions of Karmarkar's algorithm. Recall that u s  or u SIX 

stands for a minimal point of the set S . 
This new form is unexpected; the reader may doubt that 

applicationsowill arise naturally in form (2.1.1). I'll 

describe how to transform a LPP in form (0.1.1) to one in 

form (2.1.1). That is, suppose there is an LPP in form 

(0.1.1) specified by objective vector c ,  mxn matrix A, and 

m-vector b . I will show how to construct vector c ' ,  and 

m~(n+l) matrix A '  so that with these values LPP (2.1.11 

corresponds to LPP (0.1.1). 'Corresponds' means that there 

will be a mapping 3 of En into E n+ 1 which carries the 

constraint space of form (0.1.1) into that of form (2.1.1) 

i) 



and preserves optimal points and the value of the objective 

function. 

I'll give the construction of the mapping Z first; then 

c' and A '  are easily found. The range theorem (1.1.2) 

provides that we can consider the constraint space of (0.1.1) 

to be C fl f2 , where f2 is defined in (0.1.1) and C is the cube 
L 

(x : 0 5 x < 2 ) c En . Rescale C f l  $2 by dividing every i 
L 

vector in the space by the scalar n2 (L is the precision 

number from (1.1.2)) so that the constraint space becomes 

1 C* n a* with C* = (x : 0 I x I-) and' Q* given by i n 
L 

Ax = b/n2 , where A ,  b, Q are taken from (0.1.1) (n.b. nzL 
L 

not (n+1)2 , even though we intend to map to E ) .  n+ 1 

Obviously minimal points and objective values are preserved, 
L 

allowing for the scale factor n2 . The mapping Z is a 
- composition of mappings E l ,  - -2 . Mapping, Zl embeds C* into 

the (~~+~=O)-hyperplane of E ; thus for x C C* , define 
n+ 1 - - 1 ( x )  = [:If E , Fig. 7 shows this for n = 2. As 

n+l 

suggested by fig. 7 we easily check that Zl(C*) lies entirely 



d 

Fig. 7 

in the positive orthant of E and entirely on the origin n+'l 

side of the unit n-simplex C except for a single point in C . 
Next define Z2 , whose action will be to project Z1(C*) in 

the direction of the positive x -axis into J (recall that.J n +  1 

is the hyperplane containing Z). Thus i f  Pl(x) = B, then 
P. - define .z2;1 (x) = = [X] = El, where X is uniquely chosen so 

-2 0 

that C J . Check that when E l  (C*) i s  projected in this way 
- , the image remains in the positive orthant of E by 22 n+l ' 

hence E(C*) c C and E(C* n Q*) c C . 
Now that we have the mapping Z we can describe the 

affine space Q' ,which correspohds to S l  in form (O,1,1). We 

will find a determining linear system A'y  = 0 for Q' so that. 

Q' fl J = Z(Q*) . Note first that if x C Q* , where a* is 



b L 
'given by Ax = b/n2 , and y = Z ( x )  c J , then '. . 
[A j'0Jy = b/n2L . This would be the system we want except that 

L 
it is not homogeneous. To bring the system p / O ] y  = b/n2 to 

the homogeneous form required by form (2.1.1)~ simply rewrite 

i t  with an extra m+llst equation that says that y € J , i.e. 

that ta.' ' y i  = 1 . In matrix form this is ~ 

1=1 

Now apply row operations to equations 1 ... m , thatais add 
L 

-bl/n2 times the m+llst equation to qquation 1, etc., rq as 

to get 

where A '  is the mx(n+l) matrix we want. Points y which 
n+l 

satisfy both [ ~ / d ~  = and Z y i  = 1 , that is points 
i = 1  

of 3(Q*), continue to satisfy the new system. ' Strip off the 

, m+t'st row to get ~ ' y  = 0 which defines the affine space 52' . 
We can now give the transformation of the form (O,.1.1) 

into the form (2.1.1): i f  the original LPP is 



minimise cx 

under &the constraints 

T 
and objective vector c is c'*, ... cn] , then the 

F .  

transformed objective vector c ' ~  is 
L 

(n2 )[cl, c2, ... c,,, 0 1  , and the transformed EPP, is 

minimise c'y 

under the constraint 

A'y = 0. 

Y C C  

where y = Z(x) and C is defined as in (2.1.1). It  is 

straightforward to check that this transformation preserves 
P 

minimal points since it obviously preserves'the objective 
.Y 

value under 3 and since boundary 2oints of P+ are carried to 

boundary points of C . 
In the remainder of'khis section 2, I'll forget the 

primes on A ,  51, and c ; thus c, d ,  Ax = 0 will always refer '. 
b 

to the objective vector and affineWspace associated with the 

Karmarkar standard form (2.1.1). I'll use p for the centre 

of simplex C,  B for the inscribed n-dimensi.ona1 ball of C 

(i.e. B lies in the plane J )  and B* for the escribed 

n-dimensional ball. 



2.2. The Basic Idea of the Algorithm. 

In Sections 2.2, 2.3, 2.4 I'll describe the ideas that 

motivate Karmarkar's algorithm. We will use the Karmarkar 

standard form, but for much of the time will look only at the 

simplex C . Karmarkar's algorithm can be thought of as a kind 
of ellipsoidal approximation method. I'll begin by 

- \ 

describiang roughly 'how one would approximate the solution of 
- 

d 
LPP (2.1.1) in a naive way using a sequence of ellipsoids in 

I 

C , rather like the sequence in 5 1.4.1. ~ e x t  I'll give an 

argument - which i's Karmarkar's first important idea - 

leading to a hope that an approximation of this kind might 

converge in polynomial time. I t  will turn out that the naive' 

approach d-oesn't work; my reason for spending time on it is 
- e-. 

that Karmar-kar's method, which does work, is simply the naive 

method with its faults repaired, unfartunately in a 

sophisticated manner which is not easy to describe. 1'11 

analyse the weaknesses of the naive method at length in order 

to motivate Karmarkar's use of non-linear functions - the 

famous 'projective mapping' and 'potential function' - in 

order to convert the naive method into one which converges in 

polynomial time. 

2.2.1. Consider LPP ( 2 . 1 . 1 )  with the additional assumption that 

the centre p of the simplex C is known to be feasible. We 



'Will attempt to solve this problem by an ellipsoidal 

approximation li'ke the one in 5 1 . 4 . 1 .  The description will 

be sketchy in places since our construction resembles that of 

fig. 5. Fig. 8 shows the first three stages of an 

Fig. 8 
I 

ellipsoidal approximation of the minimal point p cns1 ' 

Although the ellipsoids in fig. 5 were axially aligned, we 

don't require this in fig. 8. We define an approximating 

sequence uo = p, u,, u2, ... and ellipsoids Ei c Z whose 

centres are the ui . B is the inscribed ball of Z with centre 

uO . Ball Eo is half the radius of B but with the same 
centre. Point u, is the minimal point p , which is 

Eoflsl, A 

easily found. Ellipsoid E; is an ellipsoid with centre u l  

which is as large as possible but still fits into Z . E l  is 
an ellipsoid concentric with E ;  and half the diameter (E; is 



not shown in fig. 8). Let u2 . Let E; be the 

largest ellipsoid with centre u2 that fits in E and let E2 be 

concentric with and half the size of E; (the vagueness about 

how the 'largest ellipsoid' is fitted into C will not harm 

the discussion in this section). 

It's easy to find point u l  using Theorem I (1.2.2). To 

f i nd u2 = ,rrE requires the method of transformation; in 

view of the resemblance of iig. 8 to fig. 5, I'll give only a 

sketch of this. Define antaffine mapping which carries Eo 

onto E l  and a compensating objective function X; = A d 1  . 
- 1 

Mapping o l  is defined as $yl(x) = D T ~ ( X - U ~ + U ~ )  , where D is 

the matrix that maps ball Eo onto the. translated ellipsoid 

( y . :  y = x-ul+uo , x C E l )  . (Matrix D probably won't be 
diagonal this time since the 'fit' of E l  into Z is likely to 

require rotation of E l  , but for the present purposes we can 
- 1 

ignore this). Let Q' = Q,~-(Q) . Transform the problem in 
E, fl Q to one in Eo fl QO/ , and map the point pEOnn,,X, back 

to E l  to get u2 . 

Evidently we can continue in this way to find u3 = 
- 1 

- - " E ~ ~ R  
- 

using a mapping @2' and compensating function X i  defined 
- 1 .  

analogously to and A ;  , then define E3 , u4, etc. As in 

5 1 . 4 . 1  ' i t  looks as though' the ui converge to a point 
I 

G = p  
CnQ ' 

but this time we will look seriously at the rate 

of convergence. 



2.2.2. I'll examine the convergence of the first few points ui 

in fig. 8 in terms of the differences cui - c3  of the 
L 

objective values, that is, we are looking at the convergence 

of objective values cui to.cG rather than convergence of 

locations ui to 6. A sequence of$points ui which converges 

in this weak sense might not converge in the usual sense; 

however convergence of objective values is good enough to 

f ind some pznn (this does mean though that there is little to 

be gained from drawing "the point 6 " in these figures). 
4 

According to his paper [ I ] ,  the first thing Karmarkar 

noticed was that for the first easy step, i.e. finding the 
. 

minimal poir~t of the ball Eo , the inequality 

where n is the dimension of C , gives the improvement of the 

'objective distance' h(u,) - h(6) over objective distance 



Fig. 9 

Proof of inequality (2.2.1): define E8 to be the 

escribed ball of Z . EE is taken to be a subset of the 
hyperplane J . The number 2n appears in (2.2.1) because 

4 

radius(~2j) 
2n is the ratio (this is easily computed from 

radius(e0) 

the geometry). Find u, = P u? = P from Theorem I 
EOnQ EBnQ 

1 . 2 2  These points are feasible, and Theorem I implies 

that the terminal points of uo, u,, u; are collinear as shown 

in fig. 9. Now fig. 9 shows that 



and by the linearity of X 

i 

Then, since h(G) 2 X(u;) (because 3 is in the ball Ea with 

minimal point u; 1 ,  we have 

Now (2.2.1) follows from the computation 
d* 



This idea applies so far only to Pall E o  ; but we have 

the method of transformation, which makes ellipsoids behave 

in some ways like balls. We could be forgiven for wishful 

thinking along these lines: could we use the above argument . 
plus the method of transformation to show that an inequality 

like (2.2.1) governs the convergence of the sequence 
- 

uO, u l ,  u2, .... at each point ui ? By this vague phrase I 

mean something like the following: 

r / 

Fig. 16 

Look at fig. 10, which shows E l ,  u,, u2, etc. Let 
- 1 

d l  (XI = X' ; Could we use the method ot transformation to 

prove the analogue of (2.2.1) for E l  ? i.e. can we prove 



- 1 
by usin.9 dl to transform the problem from El to Eo as 

suggested by fig. 1 1 ,  letting Xi = X4, and proving 

Then, since h{(x') = X ( x )  , (2.2.8) would imply (2.2.7) by 

the usual argument. The fact that fig. 1 1  looks a great deal 

like fig. 9 adds plausibility to this idea. I f  this approach 

turned out to work, might we even hope to get the uniform 

ratio 



for each point in the sequence u l l  u2, ... ? The answer is 

no, but the idea is attractive because a nice thing that - 

would happen i f  (2.2.9) were true is that then we could write 

(2.2.10) 

with the following happy result: a standard argument shows 
A 

that (1-1/A) < 1/2 for any positive integer A , 
2n 

i . .  - 1 2 n  < '1/2; so i f  k is taken to be 5nL, then 



and 

-2.5L L L 
(2 + 2 )  < 2 (Range theorem) 

-L 
< 2 

(assuming a version of the Range theorem appropriate to the 

n-simplex C). This means that i f  (2.2.9) were true and k = 

3nL, then h(uk) would be so close to the solution h(G) that 

by the Granularity Theorem, h(uk) would be exactly h(G) and 

uk would be a minimal point of the simplex Z . This would 
mean that the approximating sequence u l ,  u2, u3, ... finds 

a solution to (2.1.1) in k steps, i.e. in a number of steps 

polynomial in n and L . 

2.3. Failure of inequality (2.2.9) 

Unfortunately (2.2.9) isn't true i f  we use the met'hod of 

transformation as described in • ˜ \ . 4 . 1 ,  that is i f  we find the 

successive points u - - L l ~ l  
by defining affine mappings $i 

i+l 
1 - 1 

and compensating functions A; so that +i (Ei) = Eo  and 

hi = A@i . In the speculative and incorrect argument we gave 
in the previous section, the important flaw is in the alleged 

inequality (2.2.8). However Karmarkar altered the method of 

transformation by changing @ and A' so that something like 

(2.2.8) is true. The method is complicated; to see why such 



elaborate means are necessary I'll look at the reason why 

(2.2.8) fails i f  we use the method of transformation as we 

understand it so far. I f  (2.2.8l.were true in fig. 11, then 

there would be essentially no barrier to proving (2.2.7') and 

the more general (2.2.9) etc., leading to the desired,' 

polynomial time convergence of the ui . 
Why does (2.2.8) fail? Suppose that we have the 

- 1 
situation in fig. 1 1 .  Define the mappings $i in the usual 

way. We will find that the $i must satisfy two seemingly 

contradictory requirements i f  we want to prove (2.2.8) and 

make the 'wish list' (2.2.7), (2.2.9) (2.2.10) come true. We 

will find that the $i must map Eo into (small) approximating 

sets Ei but simultaneously map Ea into very 1arge.sets. 

2.3.1. Hard questions about the affinity of @ . 
The alleged inequality (2.2.8) looks'a lot like the true 

statement (2.2.5), so we will look at fig. 1 1  and try to 

prove (2.2.8) by imitating the reasoning which led to. 

statement (2.2.5). To prove statement (2.2.5) we first had 

to prove 
4' 

radius(~8) 
uo - u* = 1 (uO - u,) = 2n(u0 - u l )  (2.2.2) r a d i u s ( ~ ~ )  



- 1 
.TO attack (2.2.8) we will let O' = (R) t A7 = A@1 I 

- 1 
Ul' = 4 ,  (u,) = UO f u2' = '~~flSl', hp "2' = "E;*~o*, A *  where 

E;' = EB , and look at the analogous statements 

which are like (2.2.2) and (2.2.3) and are proved in the same 

way (n.b. (2.3.1.2) uses the affine property of h{ = X,@ ) .  

Now move everything to ellipsoid E l  . Since hi(%') = hl(x) , 

which is analogous to (2.2.3). Note that we must define u$ 

to be gl(u$') . From previous arguments we see that u5 is the 
minimal point of E; = g1(E8) . 

The- trouble appears when we try to prove an inequality 

analogous to (2.2.4), viz. 

Looking at the way (2.2.4) was proved we see that to prove 

dbib 



(2.3.1.4) we need 

that is, there must be some minimal point ii in Et . But 
fig. 12 shows that (2.3.1.4) could be false. 

/ 

\ 

'7 Fig. 12 

When we proved (2.2.4) we used the fact that 3 € E2 , which - 
0 

is true because EB contains all of Z . But E; = @ l ( ~ B )  could 
be small and miss every minimal point ii . 

P 

There are strong arguments that this difficulty is 

wedded to the fact that 4, is. an affine map (essentially, if 

nothing else but the E; shown in fig. 12). Ksrmarkar solved 

the problem boldly by changing $i to a non-affine mapping ai 

which maps E S  to an image ai(EE) = r: which contains every 



minimal point (and in fact all of C); then he had to fix 

problems caused by the definition of the new mapping +i; this 

was done mostly by using an ingenious variation of the method 

of transformation. Altering the mapping 9 so that the 
3 

equivalent of E t  in fig. 12 contains all of Z 1 a s  Karmarkar 
0 

did is extremely audacious. One would wonder what k,ind of 
i 

sequence of mappings bi could map Eo to a sequence 

b l ( ~ o ) ,  Q2(Ea), ... which approximates kznn while at the 

same time mapping E6 so that every bi(~a) is bigger than Z ! 

For the rest of this section 2 we describe Karmarkar's 

algorithm. The general form of the algorithm is like that of 

the naive ellipsoidal approximation just described. We 

con.centrate on the problem of obtaining an.inequality 
P 

analogous to ( 2 . 2 . 4 )  - once this is done we quickly get the 

desired fast convergence. But matters are complicated by the 

details of the mappings bi and by the fact that to use the bi 

we must introduce a downright tricky version of the method of 

transformation. 

2 . 4 .  Description of Karmarkar's algorithm: the pseudo-ellipsoid 

series. 

For the purposes (only) of motivating the appearance of 

the unusual features of Karmarkar's algorithm, we can imagine 

that Karmarkar set out to patch the flawed proof of the wish 

list (2.3.7),(2.3.9),(2.3.iO) (in actual fact, of course, I 



have no right to pretend to know what ~armarkar was 

thinking). Karmarkar got the wish list, or something very 
L. . 

like it, to work by introducing two new ideas into the 

situation in fig. 8. 

The first kdea was to replace the ellipsoids Ei in 

fig. 8 by pseudo-ellipsoids ri which will be described in the - 
next sections. The Ti are subsets o-f Z that act like the Ei 

in fig. 8. r0 is the inscrib;d ball B of Z . ~ o r . i - >  0 the 

Ti are defined by the pseudo-elliptical mappings +i , thus 

Ti = +i(TO) . The act like the Gi in 5 2 . 2  to define an 
.?9 

approximating sequence TO, r l ,  ... but additionally they 

always map rb , which is just B*, so that the image contains 

C and*hence every minimal point ;( cns2 ' 
The +i ate (and must 

be) non-affine and can behave in an extremely non-linear 

fashion. Karmarkar's second important idea is a new way to 
1 I .  

apply the method of transformation. This will be described 

in 52.7 et seq. 

We now begin the construction of Karmarkar's algorithm, 

using the same general approach as that used in 5 2 . 2 . 1 .  

Given LPP (2.1.1.) we will define an approximating sequence 

of points of t , viz. vo, v,, v2, v3, ... with 

v C Int(C) . We also construct a sequence of i 

pseudo-ellipsoids TO, T I ,  T2, . . . . Begin by taking p = vo 

and TO = 8 ,  the inscribed ball. We easily find the point 



using Theorem I (1.2.2). Then v ,  will be a point 
"ronn, 
located at a certain fraction a < 1 of the distance along the 

line connecting vo and p . The parameter a is needed r0nn 
later for the convergence arguments and immediately to ensur; 

that vl C 1nt(Z). Eventually a wilJ be something like 1 / 4 .  

See Lig. 13. 
I 

Fig. 13 

Point vl will be the 'pseudocentre' of the next pseudoellipse 

rl in a sense to be explained. In general, each v is a 
i + l  

point in the interior of ri ; then v is the pseudocentre 
i+l, = 

of '(i+l) i + l  is a point located at a fraction a < 1 of 

the distance along the line connecting the pseudocentre vi to 

a point on the boundary of Ti which for the moment we can 

think of as being p ; later we will see that the 'new way rin0 
to apply the method of transformation' causes this not to be 



quite true. I t  is important that vi C lnt(Ti) c Int(Z) since 

our proofs often require vi > 0 . The pretty unsatisfactory 
fig. 14 attempts to suggest that the Pi can be thought of as 

distorted ellipses which 'direct' the v i  so that they 

approach C = 5 - m  just as the Ei direct the ui toward 3 in 

fig. 9. Fig. 14 is not supposed to help the reader visualize 

the ri which are extraordinarily hard to 'see', but merely 

to suggest that the Ti are 'something like ellipses', that 

they lie entirely in E and that the pseudocentres vi are not 

'in the middle of the ri' in any obvious way. 

Fig. 14 

2.5. Pseudo-elliptical mappings and pseudo-ellipsoids., At the 

ith stage of the approximation we will have constructed 

points v v 0 '  1 '  v 2 ,  ... v . We now want to construct the i 

pseudo-ellipsoid Ti of which vi is the pseudocentre. The 
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1 
Q(x) can be written as . We must show that the - . e Dix 

T T 
denominator e Dix is nonpzero., Therreason is that e Dix is a 

sum of terms (x) .(v.) (from the definition of D ~ ) ,  which is 
I 1 1  

not zero because vi > 0 and x 2 0 with some component 

positive. 

2.5.1. Assume that Qi has been defined with respect to some 

v. t Int(Z) . The important properties of Qi are 
1 

h 

(eas,ily computed). 

2) Q is non-singular considered as a mapping of J onto 

itself, and its inverse is given by 

(can be checked straightforwardly) 

Proof: let x C Z . We know vi > 0 and x 2 0 with 
T 

some (x) > 0 . Thus e Dix > 0 , Dix 2 0 , and 
j 

Dix 
T 

= ai(x) 2 0 , which means Qi(x) C P+ . 
e Dix 

From the definition all components of Qi(x) sum 

to 1 ;  therefore Qi(x) lies in P+ fl J = Z . 



This shows that +i(C) c C . A similar argument 
shows that +yl(Z) c Z . Hence, since +i is 
non-singular, +i(C) = C . 

4) All of Ti = cBi(B) lies in Z . All of Z lies in 

+;(B*) . All minimal points in LPP (2.1.1) map 
under 01' into B*. Here B (resp. B*) is the 

inscribed (escribed) n-ball of C . 
(Three corollaries to 3 )  above). 

I 

5 )  carries affine spaces onto affine spaces. 

Proof: I'll just prove this for the case that 

will be needed later, viz. that i f  x C C fl !2 , 

then 91' carries x into an affine space of the 

same dimension intersected with C . Specifically, 
I'll show that i f  Q is given by Ax = 0 and 

x C Q fl C , then x8 = +il(x) C Q *  fl C , where !2' 

is given by ADix = 0 . This follows from the 
computation 

T 

4 .  ,.. = AD~D:~X/~ Dix (check that 
denom. f 0  ) 

Thus F' is in the null space of AD;', which has 



the same dimension as the null space of A because 

matrix D is nonsingular. Finally we know from 3) 

that x' C C . 

2.6. The transformation method refined: 'two assumptions. 

In my discussion of 'where (2.2.4) went wrong' in 52.3, 

I concentrated on the fact that although the mappings $i map 

ED into a sequence $l(E ) ,  B2(EO), $3(E0), ... which 0 

approximates some 3 , they also do something we don't want, 

which is to map Eo (the escribed ball of Z )  so that the image 

. is small and could miss every 3 . The failure occurred in 
(2.3.1.4)~ whose proof will not-work unless there is a G in 

every $ i ( ~ o )  . NOW i f  we replace the $i by the 

pseudo-ellyptical mappings Oi , then (I won't give the 

detailed argument) the + i ( ~ o )  = Ti will approximate 3 and 

also each a i ( ~ 6 )  will contain a S ; so in this respect the Oi 

succeed where the @i fail. We could ask i f  we can now prove 

the wish list (2.3.7), (2.3.9), (2.3.10) taking into account 

the change from $i to ai etc., but the answer is : not 

without altering the method of transformation. In 52.3 we 

looked carefully at (2.3.1.1),(2.3.1.2), etc. Notice how the 
\ 

affinity of 4; was used in (2.3.1.2) to change the ratio 



into a ratio of objective values 

Since 9i is non-affine, this part of the argument will not 

work i f  ai replaces #i . Karmarkar made something jyst as 
good work by introducing an ingenious variation of the method 

of transformation which uses properties of 9i to transform 

the ratios. I'll - give a .brief outline of this variation 
(more detail in 5 2 . 4 ) :  it's easy to find p , and it's ens2 ,,h 
clearly true that c 

We want to preserve this ratio in something involving 

Xi = , Qi = $i(Q) . I t  would be nice to prove 

which is like ( 2 . 2 . 3 ) ,  but it's not clear how since h' is not 

affine. In the variant of the method which we- are about to 

introduce, we replace Xi by ADi and get interested in 



which is true since ADi is affine.   he reason for the 

appearance of ADi at this point isn't obvious. 

However now we introduce a whole new (and complicated) 

function f , whose properties, speaking very roughly, allow 

us to use h and ADi as i f  they were a 'compensating pair', 

i.e as i f  h ~ ~ 9i'(x) = A(x) . Then a logarithmic version of 
(2.2.9) and in fact of the whole wish list turns out to be 

true. 

I n  5 2 . 7  I'll define the new function f and describe the 

analytic ideas that make f central to the operation of the 

algorithm. But before doing so, I need to mention that to 

make the analysis work Karmarkar has to impose two 

assumptions that he later shows how to remove. The first 

assumption is that the first feasible point is p = center of 

C . In [ I ]  Karmarkar eventually removes this assumption by 

showing how to start his algorithm at the centre p of C 

regardless of the feasibility of p and without having 

obtained a first feasible point, however I will omit this 

part of the algorithm and assume that a first feasible point 

has been provided by the first phase of a two phase method. 



The second assumption is that the minimal objective 

function value A(?) must be.a known constant - for our e, 

purposes zero. This almost saunas like a promise that our 

complex machinery will solve the LPP provided that we know 

the answer to begin with!! The reason that this assumption 

does no harm is that i f  we know how to construct a sequence 

to approximate A(G) in the case where we know that A(?) is a 

given constant, we can find the answer for the case where we 

don't know A(?) by the following procedure which I will only " 

sketch roughly: guess a value MIN for A ( ? )  and approximate 

A(3) assuming that A ( ? )  = MIN. I f  we have made a wrong guess 

then the approximation f(vi) -C A ( ? )  doesn't converge to 

MIN, and the approximation arrow points in the direction of a 

better A(?) . This direction is used to 'aim' the next stage 

of a binary search over possible values of A(?) . 
I 
\ 

2.7. T:,e new objective function f -; oriqin and definition. 

Assume the LPP in the Karmarkar Standard Form (2.1.11, with 

A(x) = cx . Let x ~nt(C) and write (x) for the jth 
j 

component of x . Then we define a new objective function f by 

The funct-ion f looks odd, with its repetition of X(x) n times 

and its division by the product of all the components of x . 



Function f could also be written as 

Recall that h(pZnQ) = 0 by the special (and essential) 

assumption. This means that f(pznn) is undefined. or -a if 

you wis.h'. Points p cnn behave like 'poles', and f is a 

potential function on the field containing the points p CnQ ' 

The way the function f is used is that the sequence (vi] (all 

the vi will be in 1nt(Z)) will be defined by a procedure like 

the one -in fig. 13 but involving the special objective 

function f : then i t  will turn out that the values f(vi) are 

pushed progressively more negative; in fact we will get 

uniformly for every i = 1 ,  2, 3, ... . Thys f(Vi) -. -a . 
I 

which drives h(vi) toward zero, since 

(To check, the last line note that 0 < (x) < 1 because 
j 



x C ~nt(C) ) .  Thus if f(%) -, -a , then log h ( x )  -, -a and 

We will also need the compensating function fi = f+i , 

which is 

where the L 

X'D: x  

the 1 .  are the diagonal entries d l ,  P2, ... d  of 
I n+ 1 

diagonal matrix Di . There is a different fi for each Di . 
Let +il(x) = x 0  . As an example of computing with f, 1'11 



Now since D T ~  is diagonal, each quotient (DT~x), above is 
J 

1 just , and the whole expression becomes 
j j 

which is exactly f(x) . This is true for any positive integer 

I'll now describe the ideas that motivate the appearance 

of the'admittedly odd-looking function f . Go back to fig. 13 
and imagine that we are trying to construct the sequence {vi) 

and have produced the easy point v l ,  which is near (and can 

be assumed for now to be) p . We have constructed 
BflSt, X 

v2, v3, . . .  V. successfully .and we now want v 
1 

which we 
i+l 

would like to be a point such that 

The discussion in (2.3.1 1 ,  (2.3.2) has shown that the 



construction of a v with the above property is the c r u x  of 
i+l 

the problem. Karmarkar found v using a variation on the i+l 
method of transformation. 

Let +;'(a) = Qi and look at fl a )  = B fl Qi using a, 

special cbjective function ADi I which .is -just 6art of the 

function f '  . Check that p is feasible in the image B n'Qi 
using properties of a;' . Remember that AD~OT' (x) = h(x) is 

not true since these mappings are not compensating pairs. We 

easily find p from Th. I (1.2.2) since ADi is a nice 
BnQi , ADi 

linear function. Let C be the point at a fraction a of the 

distance from p in the direction of M . In the sequel BflSZi , ADi 
I'll assume that a ,  the steplength parameter,is always 1/4. 

B 
Ka'rmarkar gives this as a practical value for a ; I won't 

discuss the choice of values for the steplength parameter 

since thi's is an element in a hard piece,of.analysis in [ I ]  

which I intend to omit. Evidently another way to de•’ine C , 

would be as p ; where ~ ( p ,  r/4) stands for' -the .- 
B(p,r/4)nQirADi 

sub-n-ball of B with centre p and radius r/4. This will be 

needed when we refer in detail to [ 1 1 .  We also easily get . ' 

C* = 
' B * ~ ~ , A D ~  

Now we pull the rabbit out of the hat; because point 

gi(3i'*is going to be v . The rest of this section . 
. 

i + l  

describes the analytic argument which justifies this 

assertion. The description will establish ( 2 . 7 . 1 )  and will 



be complete except thdt I ' 11 omit one passage of lengthy 

analysis. ( 2 . J . 1 )  is the theorem that makes everything work. 

In the formal description of Karmarkar's algorithm which 

follows this section immediately, (2.7.1) establishes fast - . , . * . -  - .  . /  

convergence in about a page. 

Following earlier computations in 5 2 . 3  and making some 

obvious changes, 

(the '417' coming"from the fact that a = 1/4). B y  the affine 

property of ADi 

Now for some let t be + : ' ( a )  . By property 41 of 5 2 . 5 . 1 ,  

+r l  carries 3 into B* . The fact that ai does this is the 
point of the whole elaborate definition of ai . It's not 
known that has any minimal property with respect to ADi , 

but we can still say 

' * since 6 B* , and go o h t o  compute 

using a computation modelled exactly on the one which 



produced ( 2 . 2 . 1 )  d rom ( 2 . 2 . 4 ) .  Now h D i l  = 0 ,  s i n c e  

= h D i D T 1 y / e T ~ l l ~  (check  t h a t  denom.#O) 

Hence we can  r -eplace  A D i [  by 0 i n  ( 2 . 7 . 3 )  and g e t  

No t i ce  t h a t  e v e r y t h i n g  would now work i f  ADi were t h e  

compensat ing f u n c t i o n  of h wi th  r e s p e c t  t o  t h e  mapping OT' : 

because  t hen  A D ~ + I ' ( x )  = A(x)  would be t r u e  and a t  t h e  i t h  

s t a g e ,  p = v , C = v ; s o  we cou ld  say i i + l  

which i s  j u s t  what we want ; i .e .  i t ' s  a v e r s i o n  of ( 2 . 2 . 9 )  in 

t h e  wish l i s t ;  ( n o t e  a l s o  t h a t  i t ' s  l i k e  ( 2 . 7 . 1 )  i f  you ,al low 
" 

f o r  t h e  l o g s ) .  However ADi  i s n ' t  t h e  c o r r e c t  compensat ing 

f u n c t i o n ,  s o  we use  a  t r i c k .  We w i l l  a l t e r  ADi s o  t h a t  i t  

l o o k s  l i k e  t h e  compensat ing f u n c t i o n  o f  f w . r . t .  - and 

s t i l l  p r e s e r v e s  ( 2 . 7 . 4 ) .  F i r s t  make ( 2 . 7 . 4 )  i n t o  a  , . 



logarithmic ratio; thus (2.7.4) becomes 

log ADi+ - log ADip 5 log (1-1/4n) . 

Make the LHS look more like f': 

n+ 1 
prove that log (1 - 4/n) < -1/4: 

Proof: By looking at the graphs it's clear that Y 

I log (1-1/4n) 5 - - ,  since n > 0 4n 

1 
n log (1-1/4n) 5 -3 

n+ 1 n 1 
log (1-1/4n) log (1-1/4n) 5 -3 

So the RHS of (2.7.5) can be replaced by -1/4. It's 

encouraging thdt this inequality is uniform over every ith 

step of the construction of the (vi) . NOW add some odd bits: 

wh+ere ( x )  means the jth component o'f x . In (2.7.6) we have 
j 

added a term which 'trims' the R.H.S. to -1/8. Justification 

of (2.7.6) takes a long passage of analysis (several pages) 

in [ I ]  and I'm going to omit it in this paper. Rearrange 



(2.7.6) to g e t  

In this analysis we always assume that the parameter a used 

to define C is 114, i.e. that C is the minimal point with 

respect to ADi of R i  intersected with a ball having centre p 

and radius equal to a quarter of the radius of B . 
It's now only a short step to (2.7.1), for in the 

construction of any v given v , p will be vi' and v ' 
i + l  i i + l  

will be defined to be G , i.e. v will be +i(C) . Then we 
i + l  

use the basic equation $;(x0) = ji(x) to get (2.7.1). In  the 

formal statement of the algorithm which follows immediately 

after this section,' the logarithmic inequality (2.7.1) will 
m 

L.. 
be shown to be as good as (2.2.9)' for the purpose of driving 

k. 

the Ai(vi) to t h e  optimal value in polynodial time. Since I 



have omitted some of the details of the proof of (2.7.7), ,.a 

I'll quote the result from [ I ] that establishes (2.7.7), 

making some obvious notational adjustments. Recall that Qi 

is a ; ' ( "  , p is the centre of the inscribed n-ball B of Z , 

J is the plane containing C and B . 

(2.7.8) Theorem 4 of [I]. Let r be the radius of B . Let 
C be p , where B(p,r/4) c J stands for 

B(p,r/4)nQi,ADi 

the sub-n-ball of B with radius = r/4 and centre p . Then 
i f  A ( + )  is not zero (i.e. i f  we do not obtain the answer 

to LPP (2.1.1) immediately), we have 

J p )  - f p i )  S -  - 1 
8 

This inequality is true for any index i. 

we have now described the various ideas which occur in 

Karmarkar's algorithm. I t  only remains to give a formal 

statement of the algorithm. 

2.8. Formal statement of Karmarkar's alqorithm. Given the 

"KarmarKar stgndard form" we assume that p 
CnS2, A = 0 and that 

p = centre of B is feasible. We will construct a sequence of 

feasible points vo, v l ,  v2, ..., v 
l i 

such that h(vi) -. 0 as i 

increases. The vi have been described in 52.5 as the 

'pseudocentres' of the pseudoellipses T I ,  r2, r3, ... but 

the ri w i l l  not be explicitly constructed. By the 



* 

granularity theorem there is an integer k such that 

h(vk) = 0, and it will turn out that k can be taken to be 

2.8.1. Starting the approximating sequence. The first point vo 
p' 

of the sequence will be the feasible point p , the centre of 

Z . Assume that vi has been constructed. The next section 

describes the construction of v i+t 

2.8.2. Inductive construction of the sequence.   he 

construction of point v takes three steps, using a variant i + l  

of the method of transformation. 

Step One: construct the transformed affine space Qi fl J 

required by (2.7.8). Space C4 is given by 

and Qi is given by 

(see property 5 in 52.5.1). The intersection with J imposes 

the additional constra-int that feasible points must lie in 

J . This is done by adding an additional equation to the 
system ADix = 0 which says that the coefficients of x add to 

1 .  Thus the final representation of the transformed affine 

space Qi fl J is 



e 

Step two: find the point G described in 52.7. 1n~52.7, 

G was defined with respect to a parameter a ; we continue to 

take a = 1 / 4 .  The objective •’unction X in 2 . 1 1  is given 

T 
by X(x) = c x . Define the transformed objective function Xi 

T 
by X;(x) = ADix = c Dix . Thus the transformed objective 
vector is c' = D i c  . T h i ~  choice of Xi is the result of the. 

special form of the method of transformation used here. To 

find 6 , project the vector c' into Oi fl J using the method 

in the ~ppendix. Call the projected vector c' . I f  r is the 
7T 

radius of ball B ,  then. let 6 be the point obtained by 

starting at centre p and travelling in the direction of c' 
7T 

for distance r/4. By Theorem I ,  plus the fact that c'x = c'x 
7T 

f o r x t J ,  6 i s p  (for B(p,r/4) see the 
B ( ~ , K - / ~ ) ~ R ~ ,  A D T I  

statement of Theorem 4 of [ I ]  quoted in the previous 

section.) 

Step three: The required point v = +;(C) , taking Gi 
i + l  

as defined in 52.5. 

2 . 8 . 3 .  Termination: For K = O(nL) , X(v ) is the optimal point 
K 

of LPP (2.1.1). 



2.9. The c.omplexity of the alqorithm. Construction of G as 

satisfies the requirements of Theorem 4 of 
' ~ ( ~ , r / 4 ) n ~ ~   AD;^ 
[ I ]  quoted as (2.7.8). Hence we now know that 

where f and f I  are defined as in 62.7. But by construction 

v is ai(8) so taking v ' = +il(v ) we can write 
i+l i + l  i + l  

and the equation f(x) = fi(x') immediately gives 

uniformly in i f  which says that each time we define a new 

pseudocentre v we drive the value of the 
i + l  

'pseudo-objective function' f negative by at least 1 / 8 .  

Evidently we can define-an induction on the sequence 

v O l  v l f  v2. ... with f(v ) - f(vi) C - 1/8  (the logs in the 
i + l  

computation will not work i f  any h(vi) = 0 ; but in this case 
1 

just let the optimal point be v. ) .  j Then 
.1 . 



. As remarked previously this is good enough to give polynomial 
time convergence. The computation is: 

C V. 
1 i 

( 1 )  log,- T 5 Z log (v.) - Z log (vo)j - - 
j 1 j j 8 .  

vo 

But since vi C Int(Z.1 , 0 < ( v . )  < 1 ,  which means that 
1 j 

Z log ( v . ) .  < 0. ~ l s o  each (v ) = l/(n+l) since vo is the 
j 1 1  

0 j 

centre of Z , so Z log (v ) is just -(n+l) log (n+l). Thus 
j 0 j 

the inequality becomes 

where integer k counts the number of iterations, i.e. the 

number of times we construct a new vi . Iterate K times where 



K = 40(n+l)( L + log (n+l) , then K = O(nL), assuming that L 

dominates log n+l. I f  we set k . =  K, we get 

and 

which means, by an argument given earlier at the end of 52.2, 

that v is the exact solution of L P P  ( 2 . 1 . 1 ) .  The time of 
K 

each iteration is dominated by the time needed to project cDi 

3 
into Q i  which is O(n ) operations. Hence the algorithm as a 

4 
whole takes O(n L) operations. As remarked previously, 

3 . 5  
Karmarkar reduced this time to O(n L). 



3. OTHER INTERIOR METHODS. FURTHER DEVELOPMENTS TO 1988. 

In this last section we consider the standard LPP t , ~  be 
,/ 

Minimize X(x) = cx 

under the constraints 

where $2, P+ are defined as usual, i.e. as in (O.1.1), 

including the fact that !2 is defined by the linear system 

Ax = b . Evidently (3.1.1) is just (0.1.1) using minimization 

rather than maximization. 

3.1. + Barrier Methods. 

, Assume that we intend to solve (3.1.1) by some search 

procedure (eventually we will construct a sequence ivil which 

approximates p 
P rm . A barrier method for -the solution of 

+ 
(3.1.1) is a method which establishes a 'barrier' on the 

boundary of P which prevents the search procedure from + 

leaving the positive orthant P +  . In the example barrier 



method which we will describe, the objqctive function X ( x )  is 

replaced by a non-linear function 

where (x) is- the jth component of x and II is a real positive 
j 

parameter. Function F, is just X with the addition of 

-PC .log(x) , which is one of many possible barrier 
I j 

functions. Intuitively i f  x C P+ approaches the boundary of 

P then at least one component of x will contribute a + 
pos-itive number which increases without bound to the value of 

F, . Thus Fp will have a minimal point in P+ fl Q i f  1 > 0 

although this point will probably not be D 
P nQ,x 

. We wouLd 
+ 

hope that as P approaches 0 the sequence P approaches 
P + nQ,F, 

u , and this turns out to be true (there is a proof in 

In [ 8 ] ,  Gill et al. describe a straightforward barrier 

method algorithm which constructs an approximating sequence 

vOr v1 , vZr . . .  which converges to the.minima1 point of 
6 

P fl $2 in LPP ( 3 . 1 . 1 )  beginning with a strictly feasible + 

point vo ('strictly feasible' means-that vo C 1nt(.P fl Q). + 
I f  point vi has been constructed, then v is found by the 

i + l  

fo1,lowing procedure: set u i  = l/i and write the truncated 

Taylor approximation of F as 
'i 



Then i f  vi + xo is the minimal point of F (x) in Q (and 
'li 

necessarily also in P+), FWi (vi+xO) is approximated by 

and the vector xL,points from vi to the minimal point of the 
d 

ith subproblem, although not precisely. In [ 8 ] ,  the vector 

xO , the Newton search direction, is found as the solution of 

the problem 

l T 2  Minimize VF, (vi)x + ~x V F (vi)x . 
i 'i 

under the constraint Ax = 0 . 

This is solved using Laqrange multipliers. Then v is 
i + l  

defined to be vi + axo w,here o > 0 is a steplength parameter 

which may be varied in the course of empirical tests of the 

method. The typical experience (as described in, say, [6]) 

is that a small value of a makes 'for an elegant convergence 

proof, but in practical applications a much larger value 

gives increased speed without evident harm to the operation 

of the method. 



3.2. Gill et al. on Karmarkar's alqorithm as a particular 

barrier method. 

The authors of [81 showed that with some reservations 

concerning the sign of the parameter L I ,  Karmarkar's algorithm 

is equivalent to the.logarithmic barrier method described in 

43.1, provided that the' additional constraint 

x a component 
j 

' is added to the problem (3.1.11, thus effectively conyerting 

(3.1.1) to the Karmarkar standard form. Gill et al. describe 

a detailed implementation of the algorithm in 53.1 and 

present numerical results obtalned by applying the algorithm 

to various standard LPP, examples. They co.ncl,ude that a 

generak barrier method can be comparable in speed to the 

simplex algorithm. The paper [8] does not attempt to.prove 

polynomial complexity for any version of the barrier method. 

not equivalent to Karmarkar's algorithm. 

3.3. An Exchange in SIAM News concerning Karmarkar's alqorithm 

The newspaper SIAM News in [12] and following issues 
P 

carried an exchange of views on whether Karmarkar's algorithm 

was in fact a practical advance over the work on barrier 

methods which had been going on at least as early as 1957. 

The originality of Karmarkar's convergence proof was 



acknowledged, but there was. some expression of doubt whether 

his claimed ewerimental results, which were exceedingly 

optimistic, were likely to be confirmed. A group from 

: Stanford University - which I take to be more or less the 
'r. 

authors of [ 8 ]  - were of the opinion that all the desirable 

properties of Karmarkar's algorithm are to be found in 

general barrier methods.' I t  was noticeable that this group 
- .  

reported experimental results which were much more modest 

than ~ariarkar's; for example, while karmarkar claimed that 

a" implementation of his method was s,uperiot to the simplex 

. method on every problem tested, the Stanford group simply 

reporte'd that their experiments showed barrier methods'to be , 

sometimes better than the simplex method and sometimes not. 

Correspondents in issues subsequent to [ 1 2 ]  complained that 

Karmarkar was unhelpful to researchers trying to confirm his 

- . results, which were after all over fou,r years 01d;and that 

he was reluctant' to acknowledge. that his method belongs to 

the class of barrier methods. Other writers provided a 

r-ebuttal: the difficulty c.f cpmmunication .could be explained 

by the fact that Karmarkar's employer clearly intended to 

patent the method. As regards the relation of Karmarkar's 

work to work on barrier methods, Karmarkar's reluctance to ' 
- ,  ' 

acknowledge this was indefensible; however his work .was not 



subsumed in what was known about barrier methods but was in 

fact an important contribution to it. 

3.4. Recent progr,ess to 1988 

Gill at al. had presented empirical evidence that 

barrier methods could compete with the simplex algorithm and 

presumably with the canonical form of Karmarkar's algorithm; 

however [8] left open the question* of the'worst case 
. . 

complexity of barrier methods, especially those which did not 

use the Karmarkar standard form. Several papers by. Clovis 

Gonzaga (ciked in-[6]) establish that the barrier method can 

be'applied to the problem (3.1:l) (i.e. not in Karmarkar 

, standard form) so as to have polynomial worst case 

complexity. I'll violate proper practice here -by citing a 

paper I have not seen and have been unagle to obtain: 
, I 

reference [ 9 ]  by Gonzaga seems to establish the best known 

, w r s t  case complexity for the solution of LPP 3 1 . 1  at 
4 

7 

> '  3 
i 

,+' O(n L) operations. This is a small but significant 

:. . +  improvement on Karmarkar's time. The only paper L. by Gonzaga I 
i --. 

have looked a-k in which he gives complexity arg.hents is 
3.5 

[lo], in which he proves convergence in 0(n L) operations 

for a path following method which solves the standard LPP 

0 . 1 1  The complexity arguments in [lo] usually do not 

prove polynomial convergence; where they do, they depend on 

Karmarkar's methods which they refer to in an extremely 



general way, inviting the reader to "repeat the analysis of 

Karmarkar" in [ I ] .  I t  must be borne in mind that Gonzaga's 

construction of an algorithm which solves ( 0 . 1 . 1 )  and is 

amenable to Karmarkar's analysis is a quite significant 

advance. Nevertheless it appears that ~a'rmarkar's methods in 

[ I ]  are still basic to complexity proofs in this area. The 

most recent paper I have seen is. [ 6 ]  which is uninterested in 

the question of worst case complexity. I t  describes a state 

of the art implementation of a primal-dual method due 

originally to Montiero and Adler, who showed that their 

3 
method has worst case time of O(n L) operations. 



APPEND I X , 

T h i s  appendix  d e s c r i b e s  how t o  p r o j e c t  t h e  o b j e c t i v e  

v e c t o r  c i n t o  t h e  a f f i n e  space  $2 . To p r o j e c t  c into '52 means 

t o  f i n d  a  v e c t o r  c, such t h a t  i f  0  C Q , then  c, C $2 and -. 

c - c, i s  o r t h o g o n a l  t o  a l l  of 0 . Let 0 be t h e  a f f i n e  s p a r e  

i n  E de t e rmined  by t h e  sys tem o f  l i n e a r  e q u a t i o n s  Ax = b 
n 

where A i s  an m x n  m a t r i x .  Assume t h a t - 0  C Ci , o r  more 

p r e c i s e l y  t r a n s l a t e  t h e  o ~ i g i n  t o  a  p o i n t  i n  D ; t h e  

d e t e r m i n i n g  e q u a t i o n  of D w i l l  then be Ax = 0 , i . e .  Ci i s  t h e  

n u l l  s pace  of A .  We want t o  w r i t e  c a s  a  sum c = c ,  + c, 

where c, C D and c,x = 0 f o r  a l l  x C Q . 

What we w i l l  a c t u a l l y  do i s  p r o j e c t .  c i n t o  t h e  row space  

T 
R = {x : x  = A h ;  h  C E 1 , t h a t  i s ,  we want t h e  unique 

n 

v e c t o r  z C R such t h a t  (c-z)x = 0 • ’ o r  x  C R . S i n c e  R i s  t h e  

o r t h o g o n a l  complement of S-2 (which i s  t h e  n u l l  s pace  of A ) ,  c, 
T 

i s  e v i d e n t l y  c - z . To f i n d  z ,  w r i t e  any p o i n t  of R a s  A h  

T 
f o r  any h  C E , and z a s  A ho f o r  a p a r t i c u l a r  v e c t o r  ho. . 

n 
T 

Then c - A ho i s  o r t h o g o n a l  t o  eve ry  p o i n t  of R, t h a t  i s  

T T T T 
f o r  eve ry  h  C E ; which means t h a t  c A - hOAA i s  t h e  z e r o  

n 

v e c t o r .  Now compute 



which gives us the unique vector h o  ; and 

T - 1  
I n  the last part of the argument we need ( A A  ) . I t  is a 

T - 1  
standard theorem that ( A A  exists i f  A  is row-independent. 

This means that we must assume in LPP ( 2 . 1 . 1 )  that matrix A -  

has been brought to row-independent form'by some convenient 

met hod. 

As remarked earlier, i f  z is the projection of c into 

space R ,  then the projection c, of c into R is c - z ; that 

T T - 1  T T - 1  
CX, = c - A  ( A A  ) A C  = [ I  - A  ( A A  ) A ] C  . 

T 
Because of the need to invert A A  , the task of 

3 projecting c into R takes O(n ) operations. 
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