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ABSTRACT 

A rectilinear path is a path composed only of horizontal and vertical line segments. Such 

paths may be constrained by requiring that they lie only within certain areas. One way of 

doing this is to require that a rectilinear path be entirely contained within a given simple 

polygon. We show that between any two non-vertex points in any simple polygon, there 

is a rectilinear path entirely contained within the polygon, which simultaneously 

possesses the properties that it is of no greater length and has no more bends than any 

other rectilinear path between the two given points and lying within the given polygon. 

Such a path is termed a smallest path. We further give an O(n log n) sequential algorithm 

to calculate the length and number of bends of a smallest path between two given points 

in any simple polygon, where n is the number of vertices of the polygon, and also 

develop parallel algorithms to do the same task, which run in 0(log2 n) time using n/log n 

processors, or in O(1og n log log n) time using n processors. Finally, we consider the 

case where rather than being restricted to the inside of a simple polygon, we restrict our 

rectilinear paths to lie outside a set of rectlinear objects, and given an 0(n3) seqential 

algorithm to determine if a smallest path exists in such an environment, where n is the 

total number of comers in the set of rectilinear obstacles. 
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1. Tntroduction 

Rectilinear paths are paths between points consisting only of vertical and horizontal line 

segments. As with most types of paths, the most common metric for measuring rectilinear 

paths is the length of the path, and in many environments, it may be desirable to find 

shortest rectilinear paths between points. Another obvious metric for use with rectilinear 

paths may be obtained by considering the number of bends (or distinct segments) in a 

rectilinear path; this metric could perhaps be termed the "straightness" of a rectilinear path, 

and in various situations it may be desirable to find rectilinear paths containing a minimum 

number of bends. 

The problem of finding shortest rectilinear paths in the plane has been extensively studied. 

Most variants of the problem involve finding a shortest rectilinear path between two points 

in the plane that avoids a set of obstacles which may be rectangles [I], rectilinear polygons 

[2], or simple polygons [3; 41. Variants in which the path must use line segments from a 

given set of lines have also been studied [5] .  There are also many related papers dealing 

with robot motion planning. See [61 for a survey. 

Problems involving minimum-bend paths have not received as much attention as shortest 

paths. Lipski [7; 81 has studied the variant in which the path m.ust use line segments from a 

given set of lines. Asano, Sato, and Ohtsuki [9] describe an algorithm based on Lipski's for 

finding a minimum-bend rectilinear path between two points which avoids rectilinear 

obstacles. Suri [lo], Ke [11] and others have studied a variety of problems involving 

minimum-bend non-rectilinear paths. 

By combining the problems of trying to find a minimum-length rectilinear path and a 

minimum-bend rectilinear path, and attempting to find a rectilinear path which is 

simultaneously minimum-length and minimum-bend, an interesting new problem can be 



synthesized, which we term the smallest path problen~. We call a path which 

simultaneously minimizes length and number of bends a smallest path. 

There are various areas of application for smallest rectilinear paths. In the VLSI setting, it 

is sometimes desirable to find paths such that all horizontal wires lie in the first layer and 

all vertical wires lie in the second layer [12]. A smallest path minimizes both distance and 

the number of vias. Smallest paths might also be useful when planning traffic routes in 

cities with grid-like road systems because minimum-distance routes which require the 

fewest turns are in general the most efficient. 

The main result of this thesis is an algorithm for finding the length and number of segments 

of smallest paths between pairs of points in simple polygons. It is shown that, except for 

paths involving some easily identifiable vertex points, smallest paths between any two 

points in a simple polygon always exist. Examples are given to show that the number of 

segments of a smallest path in a simple polygon is not necessarily bounded by any function 

of the number of vertices n of the polygon, and an O(n log n) time sequential algorithm is 

given to find the dimensions (length and number of segments) of a smallest path between 

any two points in a simple polygon. In the process, an interesting technique for finding the 

dimensions of smallest paths through a restricted class of simple polygons called funnels is 

developed. The sequential algorithm is then generalized to a parallel algorithm for use on a 

CREW PRAM, which can find dimensions of a smallest path.between two points in a 

simple polygon in 0(10g2 n) time, using O(n/log n) processors, or in O(log n log log n) 

time, using O(n) processors. Finally, a brief consideration of finding smallest paths in an 

environment containing rectangular obstacles is given. It is shown that in such an 

environment, a smallest path between two points does not necessarily exist. Given that 

there are n rectangular obstacles in the environment, an 0(n3) time algorithm is given to 

determine, for two specified points, if a rectilinear path of length less than or equal to a 

specified rational number L and number of segments less than or equal to a specified 

integer exist. This algorithm also permits determination, in the same amount of time, of 



whether or not a smallest path between the points esists. 

The main original contributions of the thesis may be summarized as follows: 1) Smallest- 

path problems are defined, one class of smallest-path problems (involving smallest paths in 

simple polygons) is thoroughly investigated, and another class of smallest path problems 

(concerning smallest paths around rectilinear barriers) is briefly discussed (see chapter 7): 

2) A technique for simplifying a polygon into a structure called apseudogon is demonstrat- 

ed: 3) A class of polygons called funnels is defined, and it is shown how to find the 

number of segments and length of a smallest path through such polygons: 4) Efficient 

sequential and parallel algorithms are given to find the length and number of segments in 

smallest paths in simple polygons. 

These points all seem to be quite new to the field. This researcher has encountered no 

papers which even mention the idea of simultaneously minimizing both number of 

segments and length of a rectilinear path. For example, Larson and Li in [4] discuss 

minimum-length rectilinear paths in the presence of barriers, and must deal with the 

possibility that some paths will have a large number of segments due to the presence of the 

barriers, but make no attempt to minimize the number of path segments. Addressing the 

second point, while many other algorithms use simplification of polygons in their 

execution (trapezoidal decomposition and triangulation are both commonly used 

techniques which may be viewed as polygonal simplification), these techniques are not 

common to problems dealing with rectilinear paths; as well, the construction of what is 

termed the pseudogon, and the use of the properties inherent in it, are certainly new to 

rectilinear path problems. Funnels also seem to be an entirely new concept in the field of 

rectilinear path problems, which is not surprising, as the work done in this thesis on finding 

minimum-segment rectilinear paths (or more accurately, the number of segments in 

minimum-segment rectilinear paths) in the presence of non-rectilinear barriers (i.e. the 

non-rectilinear sides of a simple polygon) seems to be entirely new. All previous known 

work in finding minimum-segment rectilinear paths [5; 7; 8; 9; 121 has considered only 



rectilinear barriers. Finally, since the smallest-path problem is a new problem, and many 

of the considerations it raises are also new, the algorithms to solve it are original. 

The thesis is organized as follows. Chapter 2 gives basic definitions, and proves the 

existence of smallest paths in simple polygons. Chapter 3 gives a topological analysis of 

the smallest path problem. Chapter 4 uses the results of chapter 3 to develop an efficient 

sequential algorithm for determining the dimensions of a smallest path between two points 

in a simple polygon, but defers discussion of a particular subclass of simple polygons 

called funnels until chapter 6. Chapter 5 shows how the algorithms of chapter 4 may be 

adapted for use on a parallel processing machine, and also defers discussion of funnels 

until chapter 6. Chapter 6 addresses the problems presented in finding the dimensions of 

smallest paths in funnels, and gives efficient sequential and parallel algorithms for doing 

so. Chapter 7 discusses smallest paths in environments containing rectangular obstacles. 

Finally, Chapter 8 provides a summary of the thesis. Three appendices respectively 

discuss the use of traversal numbers (used in chapters 4 and 3, give a graphical illustration 

of the execution of the SIMPLIFY algorithm described in Chapters 4 and 5, and illustrate 

the parallel prefix operation (used throughout the parallel portions of the thesis). 



2. The Smallest-Path Problem 

Definitions: [simple polygon, boundary, interior, rectilinear path, in, within]: A simple 

polygon Q is a finite region on the plane whose boundary, denoted bdy(Q), is given by a 

cycle of line segments, connected end-to-end and otherwise non-intersecting. The finite 

region the boundary encloses, not including the boundary itself, is called the interior of Q, 

or int(Q), and Q refers to int(Q) u bdy(Q). A rectilinear path from a point x to a point y is 

a sequence of horizontal and vertical line segments, connected end-to-end, such that the 

free end of the first segment in the sequence is at x, and the free end of the last segment in 

the sequence is at y. A point is in Q (or alternatively, within Q) if it is a member of the set 

of points bdy(Q) u int(Q), and a path is in Q or within Q if every point on the path is 

within Q. 

Definitions: [line segment, maximal line segment, chord]: For the purposes of this thesis, 

we define a line segment to be a rectilinear line segment within Q, unless otherwise noted. 

A maximal line segment L is a rectilinear line segment in Q such that there is no rectilinear 

line segment in Q longer than L and containing L. A chord C of a polygon Q is a line 

segment such that the endpoints of C intersect bdy(Q), and no other points on C intersect 

bdy(Q). This definition corresponds to what would normally be called a rectilinear chord, 

but since all chords referred to in this thesis will be rectilineq, we simply call them chords. 

Definitions: [length, straightness]: If P is a rectilinear path between two points in Q, then 

the length of P, denoted len(P), is the sum of the lengths of the segments which make up P, 

and the straightness of P, seg(P), is the number of distinct segments forming P (1 + the 

number of bends in P). We say that a path P is shorter than a path P' if len(P) c len(P8), 

and P is straighter than P' if seg(P) < seg(P'). P is shortest out of a set of paths M if P is in 

M and no path in M is shorter than P, and P is straightest in a set of paths M if P is in M 

and no path in M is straighter than P. 



Definitions: [shortest, straightest, smallest paths between points]: Let S and T be two 

points in Q. A shortest path P from S to T is a shortest path out of the set of all paths in Q 

from S to T. A straightest path P' from S to T is a path which is straightest out of the set of 

all paths in Q from S to T. A smallest path from S to T is a path from S to T which is both 

shortest and straightest. 

Definitions: [shortest, straightest, smallest paths from a point to a line segment]: Let S be 

a point in Q and let L be a rectilinear line segment in Q. A shortest path from S to L is a 

rectilinear path P1 in Q, from S to some point wl  on L, s.t. if w2 is any point on L and P2 

is a shortest path from S to w2, then len(P2) 2 len(P1). A straightest path from S to L is a 

rectilinear path P1 in Q, from S to some point wl on L, s.t. if w2 is any point on L and P2 

is a straightest path from S to w2, then seg(P2) 2 seg(P1). A smallest path from S to L is a 

path from S to L which is both shortest and straightest. 

Definitions: [shortest, straightest, smallest paths between two line segments in Ql: Let L l  

and L2 be two line segments in Q. A path P from a point wl  on L1 to a point w2 on L2 is 

a shortest path from L1 to L2 if for any path P' from a point wl '  on L1 to a point w2' on 

L2, lencP') 2 len(P). P is a straightest path from L1 to L2 if for any path P' from a point 

wl '  on L1 to a point w2' on L2, seg(P') 2 seg(P). P is a smallest path from L1 to L2 if P is 

both a shortest and a straightest path from L1 to L2. 

Definition: [dimensions of a path]: We define the dimensions of a rectilinear path to be 

the Ztuple composed of the length of the path and the number of segments in the path. 

Problem: [smallest-path problem]: Given a simple polygon Q, and points S and T in Q, 

the smallest-path problem is to find the dimensions of a smallest path from S to T in Q, if 

one exists. 



figure 1 

If v is a vertex of Q and the grey region is the 
interior of Q, then there is no rectilinear path 
of a finite number of segments in Q from v to 
any other point in Q. 

Note: If S or T is on a vertex v of Q such that the two segments of bdy(Q) incident on v 

are non-rectilinear and in the same quadrant of the plane relative to v (see figure I), then 

there can be no smallest path of a finite number of segments in Q from S to T, and so in the 

following, we assume that neither S nor T is located on such a vertex. As well, we will 

assume for the sake of convenience in later parts of the thesis that S#T. 

Definitions: [notational devices]: In order to avoid continuous redefinition of frequently 

used geometric constructs, we will let certain identifiers always represent a specific type of 

geometric construct. In particular, the following apply unless specifically noted otherwise: 

Q will denote an arbitrary simple polygon in which we wish to find a 

smallest path. 

P will denote an arbitrary rectilinear path in Q. 
- 
xy will denote the rectilinear line segment between points x and y. 

C will denote an arbitrary rectilinear chord of Q. 

L will denote an arbitrary rectilinear line segment in Q. 

S, T will indicate the points in Q between which we wish to find a smallest 

path. 

"Arbitrary" in the above should be understood to mean subject to any resmctions that may 



be given for a particular use of an identifier. 

Nearest Point Lemma: Let P be a shortest path from S to a -maximal rectilinear line 

segment L, and let x be the point on L at which P ends. The following statements are then 

true: 

1) If y is a point on L and PSy is a shortest path from S to y, then the length of Psy is 

given by len(Ps,) = len(P) + len(q). 

2) There is a shortest path from S to L, which ends at x and which is also a 

straightest path from S to L, and is therefore a smallest path from S to L. 

Proof: [by induction on the number of segments in a straightest path from S to L] 

Note: In the following proof, be careful to distinguish between a shortest path 

from S to a line segment L, where the path happens to end at a point x on L, and a 

shortest path from S to a point x, where x happens to be a point on a line segment 

L. The two paths are not necessarily the same length, and the difference is 

important. 

Basis: For a maximal line segment L such that there is a shortest path of one or 

two segments from S to L, the lemma is obviously true. 

Inductive Assumption: For some integer k, k22, assume that the lemma holds for 

all maximal line segments L such that there is a straightest path P from S to L 

having k or fewer segments. 

Inductive Step: Let L1 be a maximal line segment such that a straightest path P 

from S to L1 has k+l segments. Because L1 is maximal, the k+lst segment of P 

(incident on L1) will be perpendicular to L1. We continue this proof with 



reference to figure 2, and all orientations and directions mentioned in the proof 

should be taken relative to this diagram. 

If every maximal line segment L2 passing through a point of the kth segment of P 

and perpendicular to that segment intersected L1, then the light grey rectangle 

shown in the diagram would be entirely contained in Q, and a k-1-segment path 

could be constructed to a point on L1 by extending segment k-1 of P (if necessary) 

until it intersects L1, and taking the point of intersection as the terminus of a k-1 

segment path from S to L1. We have defined L1 to be a maximal line segment s.t. 

the straightest path from S to L1 takes at least k+l segments, so this is 

impossible-there must be at least one maximal line segment L2 through segment 

k of P and perpendicular to it, such that L1 and L2 do not intersect, as shown in the 

drawing. 

Having obtained L2, we can construct a smallest path PC (c stands for comer, 

because PC forms a comer) between L2 and L1. Such a path will obviously 

figure 2 

seg k+l of P 

- 
scg k-1 of P goes in one 
of these two directions. 

Thick lines rcpresent paths in Q, thin lines represent 
bdy(Q), dark grey areas indicate cxt(Q), and dotted lines 
represent maximal line segments in Q. 



exist-it is the two-segment path from a point on L2 to a point on L1 such that 

moving the horizontal segment of PC any farther down (in this diagram) will cause 

some part of it to be outside of Q, and moving the vertical segment to the left (in 

this diagram) will cause some part of it to be outside of Q. Let x be the endpoint of 

PC on L1. Given PC we can form a maximal horizontal line segment L3 containing 

the horizontal segment of PC and intersecting the kth segment of P. PC will be in 

the grey rectangle defined by the kth and k+lst segments of P, and so L3 will 

intersect the kth segment of P. 

Let Psx, be a smallest path from S to L3, ending at some point x', and let P,, be the 

path from S to x formed by adding x'x to the end of Ps,: By the inductive 

assumption, Psx is a shortest path from S to x and has length 

len(Psx)=len(Psx.)+len(fi) ( I ) .  

Now let Psy be a shortest path from S to some point y on L1. Because of the way 

in which L3 was constructed, Psy will intersect L3 at some point y' (the y' shown 

in the diagram is purely arbitrary, and is shown simply to give the reader a concrete 

representation of y'). The length of Psy may be given as 

len(Psy) = len(Psy.) + len(Py.,) (2),  
where P s ,  and Py., are the subpaths of PSy fi-om S to y' and from y' to y 

respectively. Since Ps, is a shortest path from S to y, P,,. will be a shortest path 

from S to y', and so by the inductive assumption, we have 

len(Ps .) = len(Ps,.) + l e n ( w )  (3). 

Pyp can be created as a one- or two-segment path (one segment from y' to x, and if 

x#y, another segment from x to y), so its length can be given as rectilinear distance 

between y' and y, expressed as 

len(Pyr) = l e n ( 5 )  + len(e)  (4) .  

If l e n ( 5 )  were greater than len(f i ) ,  then Psy would not be a shortest path from S 

to y (a shorter path to y could be constructed by going through x'), and so we can 



assume that len(y'x) I len(x'x)-that is, y' is on the portion of L1 between x' and 

x, and so 
- 

len(x'y') + len(y'x) = len(x'x) (5). 

These observations lead to the identity 

len(Psy) = len(Psy,) + len(Py-,), by (2) 
- 

= len(Psx,) + len(x'y') + len(y'x) + len(v), by (3) and (4) 

= len(Psx,) + l e n ( 5 )  + len(?), by (5) 

= len(Psx) + len(v) ,  by ( I )  

which proves the first statement of the lemma, as Ps, is a shortest path from S to x. 

From the above identity, it is apparent that len(Psy) will be minimized (for y a 

point on L1) when x=y, and so Psx is a shortest path from S to L1. As well, since 

L3 can be reached by a k-segment path (the subpath of P from S to L3), and since 

Psx, is a smallest and therefore straightest path from S to L3, we can see that P,,, 

can have at most k segments, and so Psx will have at most k+l segments-the 

number of segments in Psx, plus the single segment x'x. Since by definition of L1, 

anyr path from S to L1 has at least k+l segments, we conclude that P,, has k+l 

segments, and is thus a straightest path from S to L1. These two facts mean that 

Psx is a smallest path from S to L1, proving the second statement of the lemma. 

End of nearest point lemma. 

Definition: [nearest point]: If L is a line segment in Q and there is some point x on L such 

that all smallest paths from S to L terminate at x, then x is called the nearesrpoint of L 

relative to S. Since S will usually be understood to be arbitrary but fixed, we generally 

refer to the nearest point of L. Note that the definition implies that if L has a nearest point, 

then it has a unique nearest point. 



Corollary: Any maximal line segment L in Q has a nearest point relative to any point S in 

Q. 

Proof: Let L be a maximal line segment in Q, and let S be a point in Q. Let P be a 

shortest path from S to L, which ends at some point x on L. If there were any other point y 

on L such that there was a path from S to y of the same length as P or less, it would be easy 

to show that statement 1 of the nearest point lemma was untrue. Hence, it must be the case 

that all other paths from S to a point y on L, where y#x, must have length greater than P. 

This is sufficient to ensure that x must be the nearest point of L relative to S. 

Corollary: Any rectilinear line segment L' in Q has a nearest point. That is, a smallest 

path from S to L' exists, and all smallest paths from S to L' end at some unique point x. 

Proof: This can easily be seen by letting L be the maximal line segment containing L', 

and then doing cases depending on whether or not L' includes the nearest point of L. Note 

that if L' does not contain the nearest point of L, a smallest path from S to L' may require 

one more segment than a smallest path from S to L. 

Smallest-Path Theorem: For any two points S and T in Q other than vertices such as 

shown in figure 1, a smallest path from S to T exists. 

Proof: Let S and T be two points such that a straightest path from S to T consists of k 

segments, and let P be a k-segment path from S to T. Choose L to be a maximal line 

segment containing the kth segment of P. Using the nearest point lemma, let P' be a 

smallest path from S to L, ending at some point x on L. The path formed by concatenating 

P' and ?i' is a k-segment (and therefore straightest) path from S to T, and by the first state- 

ment of the Nearest Point Lemma it is also a shortest path from S to T. Therefore, it is a 

smallest path from S to T. 



3. The Tonolow of the Smallest-Path Problem 

Given a simple polygon Q and points S and T in Q, it is generally the case that there will 

be large areas of Q through which no smallest path from S to T will pass. This occurs 

because of the fact that any path from S to T passing through these areas would be longer 

than a shortest path from S to T. The purpose if this chapter is to show how such areas 

may be identified, provide geometrical constructs which will be later used for 

algorithmically removing such areas, and proving some needed properties about what is 

left after these unnecessary areas are removed. 

This is a thesis written by a computing science student, and intended to be read by others in 

the field of computing science. The author has only a basic knowledge of topology, and 

assumes the same to be true for most of the readers of the thesis. Nonetheless, the thesis 

depends upon some nontrivial topological constructs; this creates a conflict, with the 

topological naivete of the author and readers on one side, and the need for reasonable 

mathematical rigor on the other. 

Fortunately, the needed proofs concern objects in an environment (the Cartesian plane) 

where most people have a well developed, correct intuition concerning the behaviour of 

constructs such as paths, polygons, points, and so forth. The following section will thus 

take a highly diagrammatic, somewhat informal approach to proving the results it 

needs-while not completely rigorous, this approach will satisfactorily demonstrate the 

existence of the constructs and theorems necessary to the remainder of the thesis, and has 

the advantage of being accessible to the reader1. 

The reader may find this chapter somewhat strange in that, while the thesis deals with the 

problem of finding the dimensions of smallest paths in simple polygons, the entirety of this 

1. And, for that matter,  he author. 



chapter is concerned with eliminating areas of simple polygons through which no shortest 

paths may pass. However, recall that we have already shown that smallest paths in simple 

polygons are always possible (barring the involvement of pathological vertices); thus, by 

removing areas of the polygon through which no shortest path can travel, we also remove 

areas through which no smallest path can travel. Removal of these areas will give us a 

geometric structure with particularly attractive properties which make finding a smallest 

path quite easy. 

The remainder of this chapter consists of four sections. The first, very short section, 

contains a few points which do not belong in any other section. The second section shows 

how, given Q, S, and T, some parts of Q may be removed from consideration, as no 

shortest and hence no smallest path from S to T will pass through those parts of Q. The 

third section proves a particularly important lemma concerning those points in regions of Q 

which the second section shows may be removed. The final section proves that what 

remains after removing these unnecessary parts of Q is a particularly simple and well- 

defined structure called the pseudogon. This is the structure through which we will 

eventually find our smallest path 

3.1. Miscellaneous 

When considering the topology of simple polygons and paths within them, it is frequently 

convenient to switch between views of geometric constructs as the constructs themselves, 

defined in some "high-level" manner, and constructs as sets of points. For convenience, 

we do not go to great length to differentiate these viewpoints, so phrases such as, "a point 

w is in a line segment L," are common, meaning of course that w is one of the points in the 

set of points which constitute L. 

The following definition is used in later subsections. 



figure 3 

(a) (b) (c) 

Examples of arcs. (a) is simple, while (b) and (c) are sclf- 
intersecting. 

Definition: [arc]: An arc is a continuous curve of finite length joining two points on the 

plane. Examples of arcs are shown in figure 3. A precise topological definition of an arc 

would involve defining topologically continuous mappings and several other concepts, an 

onerous task. We trust instead to the intuition of the reader. An arc is simple if it does not 

intersect itself so as to bound a finite region of the plane. (a) in the given examples of arcs 

is simple, while (b) and (c) are not. An arc which is not simple is called self-intersecting. 

Note that a path is just an arc composed of rectilinear line segments. 

The following lemmas are used many times in later sections. 

Lemma: Any subpath of a shortest path is shortest. 

Proof: [by contradiction]: Let P be a shortest path, and let P' be a subpath of P. If there 

were a shorter path P" between the endpoints of P', we could substitute P" for P' in P, and 

hence make P shorter. This is not possible, and so P' must be a shortest path. 

Lemma: No self-intersecting path is shortest. 



Proof: Obvious. 

The following assumptions are necessary in later sections. Their formal proofs would 

require some fairly intricate topology. Luckily, the fact that they are correct (or at least, 

that they are correct in the real plane) is obvious. 

Definition: [closed curve, simple closed curve]: A closed curve is an arc whose endpoints 

are congruent, i.e. an arc which self-intersects at its endpoints. A simple closed curve is an 

arc which self-intersects only at its endpoints. Simple closed curves are also known as 

Jordan curves. All simple polygons are simple closed curves. 

Assumption: Let C be a simple closed curve in the plane, bounding a finite area A, A 

inclusive of C. If C' is any closed curve (not necessarily simple) contained in A, then all 

finite areas bounded by C' are contained in A. 

Assumption: Let C be a simple closed curve, let L be a maximal line segment in C 

partitioning C into two or more distinct finite area, and let w l  and w2 be two points inside 

of C but not in the same area of C as induced by L. Any path from wl  to w2 which does 

not cross C must intersect L at at least one point. 

3.2. Unnecessary Regions 

We now show that various sections of Q are such that no smallest path from S to T in Q 

will contain a point in these sections. The strategy will be to show that there are some 

areas of Q which no shortest path will pass through. Because a smallest path is necessarily 

a shortest path, it follows that no smallest path will pass through these areas either. 

Definitions: [highest, lowest, leftmost, rightmost, extreme, doubly extreme, horizontally 



extreme, vertically extreme, total extreme points]: See figure 4 for illustrations of the 

following definitions. Let v be a vertex of Q, concave into Q (i.e. the angle across v taken 

through Q is greater than 180 degrees). We say v is a highest point of Q if its y-coordinate 

is greater than or equal to the y-coordinates of all points on the two boundary segments of 

Q incident on v. Lowest, rightmost, and leftmost points are defined in the obvious similar 

manner. A vertex which is highest, lowest, rightmost, or leftmost is called an extreme 

point. An extreme point which is highest or lowest is a horizontally extreme point, and an 

extreme point which is leftmost or rightmost is a vertically extreme point. An extreme 

point which is both horizontally and vertically extreme is a doubly extremepoint. A 

highest point v l  is total highest if its y-coordinate is greater than the y-coordinate of any 

other point v2 on either of the two boundary segments incident on v l ,  and similarly for 

lowest, leftmost, and rightmost. A total horizontal extreme point is one which is total 

highest or total lowest, and similarly for total vertical extreme points. A point which is 

both total vertical extreme and total horizontal extreme is a total doubly extreme point. 

Definitions: [induced subpolygons, interior and exterior boundaries]: If L=Z is a 

rectilinear line in Q, and there is a subpath B of bdy(Q) from a to b such that 

figure 4 

A is total rightmost, B is total highest, C is total highest and total rightmost 
and therefore total doubly extreme. D is highest and total leftmost, and so is 
doubly extrcmc but not total doubly extreme. E is lowcst and rightmost, but 
not total in either respcct. F is lowest. B, C, D, E, and F are horizontally 
extreme vertices, while A, C, D, and E are vertically extreme. 



L n B = {a, b) and L u B forms the boundary of a polygon Q', we say that L induces the 

subpolygon Q' on Q. Q' will be contained in Q because bdy(Q') is contained in Q, and Q' 

will be simple because its boundary is non-intersecting except at the endpoints of adjacent 

boundary segments. L is called the interior boundary of Q', denoted ibd(Q3, and B is 

called the exterior bo~indary of Q', denoted ebd(Q'). 

Notation: Here and in the following, we use the 'Y symbol to implement relative 

complement. (Set subtraction.) 

Definitions: [region, interior and exterior boundary of a region, unnecessary region, 

unnecessary point]: Let L be a rectilinear line in Q inducing the subpolygon Q', and let R 

be the area of Q defined by R=Q'L. We say R is the region induced by L, foregoing the 

more general connotations of the word region. We also say that R is the region induced by, 

or bounded by, Q'. The interior boundary and exterior boundary of R, denoted ibd(R) and 

ebd(R) respectively, are identical to the interior and exterior boundaries of Q'. Note that 

while Q' contains both its interior and exterior boundaries, R does not contain ibd(R), and 

does not contain the endpoints of ebd(R). If neither S nor T is in R, then R is said to be an 

unnecessary region. If w is a point in an unnecessary region, then w is said to be an 

unnecessary point. 

Exclusion Lemma: Let R be an unnecessary region of Q. No smallest path from S to T 

will contain a point in R. 

Proof: Let L be ibd(R), and let P be a path from S to T which passes through a point w in 

R. Both endpoints of P must be outside of R, since R is an unnecessary region, and so 

there will be a subpath of P which starts and ends in Q\R, and passes through the point w in 

R; hence, if we view P as a directed path, we can see that P must either start on L or cross 

L before it reaches w, and must either end on L, or cross L after it reaches w. Let P' be the 

subpath of P s.t. P' contains w and the endpoints of P' are on L, but no other point of P' is 



figure 5 

Examples of sliding. L1 may be slid to Ll', or any point in between, but not past 
Ll'. L2 may be slid to L2' or any point in between, but not past L2'. L3 may be 
slid to the right, but not to v. 

m L. Because L is rectilinear and w is not on L, P' will be longer than the subsegment of 

L between the endpoints of P', so by substituting for P' the subsegment of L which joins 

the two ends of P', we could make P shorter, and so P cannot be a smallest path. 

Definition: [slide]: Let L be a vertical line segment in Q with both endpoints on bdy(Q) 

such that neither endpoint of L is a rightmost extreme point, and no other point of L 

intersects a leftmost extreme point. We can slide L to the right by continuously increasing 

the x-coordinate of C, while continuously adjusting the y-coordinates of the endpoints of C 

so that the endpoints remain on bdy(Q). Sliding L right, past a point where one of L's 

endpoints is on a rightmost extreme point, or past a point where a non-endpoint of L 

intersects a leftmost extreme point, or to a point where the endpoints of L merge, is not 

defined. See figure 5 for examples of sliding. 

Definition: [orientation of subpolygons or regions relative to the line segments inducing 

them]: Let Q' be a subpolygon (R be a region) induced by the vertical line segment L', 



I figure 6 

The shaded subpolygon Q' is induced by the solid line L', 
contained in the line L. Q' is to the right of L (and to the 
right of L') as shown by the existcnce of E, but is not to 
the left of L, as the only line segment on L' projecting to 
the left into Q' is on an endpoint of L'. 

where L' is contained in the vertical line segment L. We say Q' (R) is to the right of L if 

there is some point w on L' but not an endpoint of L', and some line segment E 

perpendicular to L' and with its left endpoint at w, such that E is in Q' (El{ w ) is in R). See 

figure 6. We can in an obvious similar manner define what it means for Q' (R) to be to the 

left of L, or if L is horizontal, what it means for Q' (R) to be to the above or below L. 

Definition: [partial pseudochord]: Let L be a vertical line segment in Q containing a 

vertical extreme point or S or T, or a horizontal line segment containing a horizontd 

extreme point or S or T, such that L induces a region R. Then L is called a partial 

pseudochord. 

Lemma: Any unnecessary region Rl induced by a rectilinear line segment L is contained 

in an unnecessary region R2 induced by some partial pseudochord. 

Proof: [constructive]: WLOG, let R1 be an unnecessary region induced by and to the left 

of the vertical line segment L. If L contains a vertical extreme point or S or T, then we are 



figure 7 

In (a), the thick line L pseudochord-induces Q2, as can be seen by the presence of 
the dotted line connecting points on B1 and B2, but L does not pseudochord- 
induce Q1. In (b), the reverse is true. In (c), L is not a pseudochord, as it does not 
contain a horizontal extreme point and hence is not a partial pseudochord. 

done, otherwise we can slide L to the right, until one of the endpoints of L reaches a 

rightmost extreme point or S or T, or until a non-endpoint of L intersects a leftmost 

extreme point or S or T. One of these events must occur, for if they did not, it would mean 

that neither S nor T were in the region to the right of L, and hence were not in Q. After we 

have finished sliding L, it contains a vertical extreme point or S or T, and the region R2 

induced by and to the left of L is unnecessary and contains R1, so the lemma is proved. 

Definitions: [half-plane subpolygon, pseudochord, pseudochord-induced subpolygons and 

regions]: Let L be a line segment in Q inducing a subpolygon Q'. Let B1 and B2 be the 

two boundary segments of ebd(Q8) which are incident on the endpoints of L. If there is a 

rectilinear line segment L', parallel to but distinct from L and contained in Q', such that 

one endpoint of L' is on B 1 and the other endpoint of L' is on B2, then Q' is a halfplane 

subpolygon. A line segment in Q is a pseudochord if it is a partial pseudochord and 

induces a half-plane subpolygon Q'; Q' is said to be pseudochord-induced by L. The 

region R'=Q'U, is also said to be pseudochord-induced by L. See figure 7 for examples. 

Inclusion Lemma: All points in an unnecessary region are in an unnecessary region 

pseudochord-induced by some pseudochord. 



Proof: Let w be a point in an unnecessary region R1 induced by a rectilinear line segment. 

By a previous lemma, there is a partial pseudochord L1 inducing an unnecessary region R 

containing R1 and hence w. 

Now assume WLOG that L1 is vertical and R is to the left of L1. Let Ql=ebd(R)uLluR 

be the subpolygon bounding R, and let B 1 and B2 be the two segments of ebd(R) incident 

on the endpoints of L1. If B1 and B2 can be joined with a vertical line in R, then L1 is a 

pseudochord which pseudochord-induces R, and we are done. Assume that B 1 and B2 

cannot be joined with a vertical line in R. The remainder of this proof will be done with 

the aid of a diagram. 

Consider figure 8. It shows R, L1, B1, and B2, with B2 in the half-plane to the left of and 

including L1, and B 1 in the half-plane to the right of and including L1. Note that R 

includes the region labeled R1. Because B 1 goes the "wrong way", L1 is not a 

pseudochord. However, if we form the line segment L1' containing L1 by projecting the 

ends of L1 up and down in Q as far as they will go (in the case of figure 8, this results in an 

extension to L1 upwards), then Ll '  will contain one or more pseudochords pseudochord- 

inducing unnecessary regions containing all of the points in R strictly to the left of Ll', and 

one or more pseudochords pseudochord-inducing regions containing all of the points in 

regions R to the right of Ll'. For example, in figure 8, L1' itself is a pseudochord 

pseudochord-inducing an unnecessary region containing all points in R to the left of Ll', 

and the extension that was added to L1 is a pseudochord which pseudochord-induces an 

unnecessary region containing all points in R to the right of L1'-those points in the region 

R1. Thus, Ll '  contains pseudochords which pseudochord-induce unnecessary regions 

containing all points in R except those points of R which are on Ll ' \Ll .  

Now, let e l  be the top endpoint of L1. If L1' extends above e l  (as in figure 8) we form a 

line segment L2 by extending e l  as far to the left and the right as it will go in R, as shown 



figure 8 
The extension of L1. 

in the diagram. L2 will contain a pseudochord pseudochord-inducing an unnecessary 

region containing all of the points in L1'\ L1 above el .  (In the diagram, L2 itself is this 

pseudochord.) If necessary, we could construct a similar line segment with the bottom 

endpoint e2 of L1, and so show that some pseudochord induces an unnecessary region 

containing all points in L1 ' \L1 below e2. This construct will work even if B1 or B2 or 

both are parallel to L1. 

The above shows that every point in R is in an unnecessary region pseudochord-induced by 

some pseudochord. Since w is in R1 and R1 is in R, w is in an unnecessary region induced 

by some pseudochord. Because w was chosen arbitrarily from those points in R1, which 

was itself an arbitrary unnecessary region, it follows that all points in unnecessary regions 

are in an unnecessary region pseudochord-induced by some pseudochord. 

This ends the proof for the inclusion lemma. 



Lemma: For any polygon Q with n vertices, there are at most O(n) pseudochords in Q. 

Proof: WLOG, let w be a highest extreme point in Q. If there are any horizontal 

pseudochords with one endpoint at w and extending right from w, then there will be at 

most two such horizontal pseudochords, one inducing a region above itself, and the other 

inducing a region below itself. Likewise, there are at most two horizontal pseudochords 

with an endpoint at w and extending to the left from w, at most two vertical pseudochords 

with an endpoint at w and extending up from w, and at most two vertical pseudochords 

with an endpoint at w and extending down from w. 

Now form a line w 1 w2, where w 1 is the point found by projecting w to the left until the 

projection intersects a lowest point of Q or until taking the projection any further to the left 

would take it outside of Q, whichever comes first, and where w2 is found in the same 

manner by projecting w to the right. w lw2 is the only horizontal pseudochord which 

contains w as a non-endpoint. Likewise, there is at most one (there may not be any) 

vertical pseudochord containing w as a non-endpoint. 

Thus, each extreme point in Q may be contained in at most 10 distinct pseudochords2. It is 

also easy to show that S and T can be contained in at most a constant number of 

pseudochords. Since each pseudochord must by definition contain at least one extreme 

point, there are O(n) pseudochords in Q, where n is the number of vertices in Q. As well, 

each pseudochord can pseudochord-induce at most two regions-for instance, a horizontal 

pseudochord HP will pseudochord-induce at most one region above HP and at most one 

region below HP. Therefore, the number of pseudochord-induced regions in Q to test for 

being unnecessary is at most O(n), and the number of unnecessary regions which must be 

removed from Q, in order to remove all unnecess'q points from Q, is at most O(n). 

2. The actual bound is much lowcr than this, but proving this lowcr bound is more difficult 

24 



3.3. The Bad Point Lemma 

This section proves an important lemma concerning the points contained in unnecessary 

regions. 

Definition: [bridge]: If P is a path in Q and there is a rectilinear line segment L in Q such 

that the endpoints of L are on P but L is not contained in P, then L is a bridge for P. 

Lemma: If P is a shortest path, then there are no bridges for P. 

Proof: Let P be a shortest path and assume it has a bridge L. We can take the minimal 

subpath P' of P and the minimal subsegment L' of L such that L' is a bridge for P'. L' and 

P' will intersect only at their endpoints, and since L' is a rectilinear line segment and P' is 

not identical to L', it is apparent that the distance traveled by P' is longer than the distance 

traveled by L'. However, this means that by substituting L' for P' in P, we can make P 

shorter, which contradicts the fact that P is a shortest path, and so our assumption that P 

has a bridge must be incorrect. 

Definition: [3-path]: Any rectilinear path composed of a sequence of three line segments 

is a 3-path. 

Lemma: Let P be a rectilinear path. If all 3-paths in P are shortest, then P is shortest. 

Proof: [by induction]: 

Basis: For paths P of one or two segments, the lemma is vacuously true. For a path 

P having three segments, the lemma is trivially true. 

Inductive Assumption: For some integer k, k23, assume for all paths P having k or 



fewer segments that if all 3-paths contained in P are shortest, then P is shortest. 

Inductive Step: Let P be a path from a point S to a point T with k+l segments, such 

that all 3-paths contained in P are shortest. Let Pi denote the subpath of P consisting 

of the first i segments of P, counting from the segment incident on S. If i I k, we 

have by the inductive assumption that Pi is shortest. 

WLOG orient P so that the k+lst segment of P (incident on T) is vertical and 

intersects the kth segment of P at its lower endpoint. There are two possible 

configurations for the last three segments of P, as shown in figure 9. We call the 

configuration in (a) the 'Z' configuration, and the configuration in (b) the 'U' 

configuration. In either case, let L be the maximal line segment in Q containing the 

kth segment of P. The rest of the proof will be done refemng to the illustrations in 

figure 9, using their orientations. 

In (a), it is apparent that any path from S to T must intersect L. In (b), because (by 

assumption) the last three segments of P form a shortest 3-path, there must be some 

figure 9 

The two configurations (barring reflections and rotations) for the last three segments of a k+l 
segment path, k > 3. 



lowest extreme point e l  of bdy(Q) incident on the kth segment of P, such that there 

are no bridges between the k-1st and k+lst segments of P, as shown in the diagram; 

otherwise, there would be a non-shortest 3-path in P. Some subsegment L' of L to 

the right of (and possibly including) e l  will induce a region R containing S but not 

T. Any path from a point in R to a point outside of R, such as T, will have to 

intersect L', and so must also intersect L. Therefore, in both (a) and (b), any path 

and hence any shortest path from S to T must intersect L. 

Let w 1 and w2 be the right and left endpoints, respectively, of the kth segment of P. 

In both (a) and (b), the nearest point of L relative to S must be on or to the right of 

wl ,  otherwise we could use the nearest point lemma to show than Pk (the subpath of 

P from S to w2) was not a shortest path. Let N be the nearest point of L relative to 

S, and let P' be a shortest path from S to T, which as previously shown must 

intersect L at some point w3. By a previous lemma the subpath P'w3T of P' from w3 

to T will be a shortest path, and since there is a two segment path from any point on 

L to T, the length of PTw3T will be just the rectilinear distance between w3 and T, 

which can be expressed as 

len(P',3T)=len(w3w2)+len(w2T) ( I ) .  

If D is the length of a shortest path from S to L, then by the nearest point lemma we 

have that 

len(P') = D + l e n ( m )  + len(=) + l e n ( m )  (2). 

A path of length D + l e n ( m )  + l e n ( m )  from S to T can be constructed by taking 
- - 

a shortest path from S to L, and adding to it the segments Nw2 and w2T-since P' is 

a shortest path from S to T, we have 

len(P') I D + l e n ( m )  + len(w2T) (3). 

From (2), however, it is easy to see that 

len(P') 2 D + l e n ( m )  + l e n ( m )  (4), 
- - 

and so by (3) and (4), len(P') = D + len(Nw2) + len(w2T). Since len(Pk) = D + 
l e n ( m ) ,  the length of a shortest path from S to w2, and since the subpath of P 



from S to w2 is a shortest path, we have that len(P') is the length of P; and since P' 

is a shortest path from S to T, it follows that P is a shortest path from S to T. 

This completes the proof of the 3-path lemma. 

Definition: [bad point]: A point w in Q is called a badpoint if the sum of the lengths of 

shortest paths from S to w and from w to T is greater than the length of a shortest path from 

S to T. 

Bad Point Lemma: All bad points are unnecessary. 

Proof: [constructive]: For any bad point w, we will show how to construct a line segment 

containing a subsegment which induces an unnecessary region containing w. 

Let w be a bad point in Q, let P1 be a shortest path from S to w, and let P2 be a shortest 

path from T to w. We consider two cases; either PI and P2 intersect at some point other 

than w, or they do not. 

1) K P1 and P2 intersect at a point other than w, then let w' be the point on P1 nearest 

S which intersects P2. Because subpaths of shortest paths are also shortest paths, 

the subpath PI,, of P1 from w' to w must be the same length as the subpath P2,; 

of P2 from w ' to w. Therefore, if we modify P1 by replacing Pl,,, with P2,,, then 

P1 will still be a shortest path from S to w. See figure 10. 

Because P1 and P2 intersect and follow one another on their approach to w, there is 

some rectilinear line segment L in Q with one end at w such that the segments of P1 

and P2 incident on w both contain L. Take any point on L other than its endpoints, 

and construct a chord C perpendicular to L through this point. C induces two 

subpolygons Q1 and 4 2  on Q, with w in Ql\C, and the segments of P1 and P2 



I figure 10 I 

One way of obtaining L and a chord C 
whicn induces an unnecessary region 
containing w. 

incident on w both crossing into Q3. P1 and P2 cannot intersect C at any other 

point, for if either did, C would contain a bridge for P1 and/or P2, which is 

impossible, as PI and P2 are shortest paths. Since P1 and P2 cannot intersect C at 

any other point, their other endpoints S and T must be in Q2, and not in Q1. 

Therefore, C induces the unnecessary region Ql\C containing w. 

2) Assume P1 and P2 do not intersect at any point other than w; then we can form a 

path P from S to T by appending P2 to PI. w is a bad point, and therefore P is not a 

shortest path from S to T, and so by the 3-path lemma we have that P contains some 

non-shortest 3-path P'. Because P1 and P2 are both shortest, neither will contain a 

non-shortest 3-path, and so P' must have one segment in one of P1 or P2, say Pl,  

and the other two segments in the other of P1 and P2, in this case P2. If the three 

segments of P' form a 'Z' configuration, as for example do the last three segments 

of the path from S to T shown in figure 9(a), then P' cannot be a non-shortest 3- 

path, so the three segments of P' must form a 'U' configuration, as shown in 

figure 11. Because P' is non-shortest, we can find a shortest path P" between the 

ends a and b of P'. Using the orientation and constructs of figure 11, we can see 



figure 11 

Grey regions indicate ext(Q). P' is the three-segment rcctilincar path connecting a and b. 
P" is the path formed by moving from a to a', from a' to b' along P,", and then moving 

from b' to b. P,' is the path from a' to w to b'. The simple curve G mentioned in the text is 

the curve found by starting at b', going along P," to a', going left and then down the 

rectilinear segments to w and then going right to b'. 

that P" cannot intersect any point to the left of or on the vertical line through w, for 

if P" did, it would necessarily be at least as long as P'. (This can be seen through 

simple vector addition.) 

Now, consider both P' and P" as directed paths from a to b. Let a' be the point 

farthest from a on P" such that the subpaths of P' and P" from a to a' are identical, 

and let b' be the point farthest from b on P" such that the subpaths of P' and P" 

from b' to b are identical. a' and b' will both be on both P' and P". Let P,' be the 

subpath of P' from a' to b' (s stands for subpath in this case, and has nothing to do 

with the point S), and let P," be the subpath of P" from a' to b'. P," will be 

shortest because it is a subpath of a shortest path; it cannot intersect the lower or 

upper horizontal segments of P' at any other points than a' and b', for if it did, then 

one of the horizontal segments of P' would contain a bridge for P,". As was 



previously shown, P" cannot intersect any point on or to the left of the vertical 

segment of P', and so neither can P,". Therefore, Ps" and P,' intersect at only the 

points a' and b', and so form a simple closed curve G, as shown in figure 11. Since 

G is contained in Q, all points in G will also be in Q. 

Let w" be the leftmost point of P,", and let L be a maximal vertical line segment 

passing through some point wi, where wi is to the right of w, to the left of w", above 

b', and below a'. wi will be an interior point of G, and by virtue of the fact that all 

points in G are in Q, L will certainly contain single points on the upper and lower 

horizontal segments of P', which is to say, on P1 and P2 (which, recall, are shortest 

paths from S to w and from w to T respectively). However, P1 and P2 cannot 

intersect L at any other point, otherwise L would contain bridges for P1 and/or P2. 

Therefore, both S and T will be in region(s) generated by and to the right of L, and 

w will be in some region R generated by and to the left of L. Because R does not 

contain either of S or T, it is unnecessary, and the lemma is proved for this case. 

End of bad point lemma. 

Corollary: Every point not in an unnecessary region of Q is contained in some shortest 

path from S to T. 

3.4. Structure of the Pseudogon 

Definitions: [pseudogon, cutQ1: Let Q be a polygon with points S and T in Q between 

which we wish to find a smallest path, and let cutQ be the structure resulting when all 

unnecessary points have been removed from Q. We call cutQ the pseudogon for Q. Since 

the simple polygon in which we are trying to find a smallest path is for convenience always 

named Q, we will in the following use "cutQ" and "the pseudogon" interchangeably, to 

avoid monotony. 



The remainder of this section shows that the pseudogon will have a particularly simple 

structure, well-suited for efficient analysis by computer. 

3.4.1. General Properties of the Pseudogon 

Lemma: cutQ can be expressed as a finite union of simple polygons, line segments, and 

points. 

Proof: Let cutQH be the structure formed from Q by removing all points of Q contained 

in unnecessary regions of Q pseudochord-induced by horizontal pseudochords of Q, and let 

cutQV be the construct formed from Q by removing all points of Q in unnecessary regions 

pseudochord-induced by vertical pseudochords. It is apparent that both cutQH and cutQV 

can be expressed as a finite union of simple polygons and line segments. cutQ is just 

cutQH n cutQV. Because the intersection of a simple polygon or line segment with another 

simple polygon or line segment is always expressible as a finite union of simple polygons, 

line segments, and points, and because cutQH and cutQV are both expressible as a finite 

union of line segments and simple polygons, it is therefore apparent that 

cutQ = cutQH n cutQV is expressible as a finite union of points, line segments, and simple 

polygons. In fact, as will become apparent, cutQ is always expressible as a finite union of 

line segments and simple polygons. 

Definitions: [boundary points of a pseudogon, subpolygons and isolated line segments of 

a pseudogon]: Let cutQ be the pseudogon generated by removing all unnecessary points 

from Q. The boundary points of cutQ are exactly those points w satisfying at least one of 

the following: 

1) w is on a pseudochord of Q which pseudochord-induces an unnecessary region, but 



w is not itself an unnecessary point. 

2) w is a point in bdy(Q) and is not an unnecessary point. 

If Q' is a simple polygon whose boundary is a subset of the set of boundary points of cutQ, 

then we say Q' is a subpolygon (or just a polygon) of cutQ. If L is a line segment in cutQ 

such that no subsegment of L forms part of a boundary segment for a subpolygon of cutQ, 

then L is an isolated line segment of cutQ. 

Since there are a finite number of pseudochords, and a finite number of unnecessary 

regions which will thus be removed from Q to produce cutQ, it is easy to see that the 

boundary points of cutQ will be contained in a finite number of line segments. We now 

turn our attention to making more powerful statements. 

Lemma: cutQ is connected. That is, for any two points in cutQ, there is a rectilinear path 

in cutQ connecting them. 

Proof: By a corollary of the bad point lemma, all points in cutQ are on some shortest path 

from S to T. Since all shortest paths from S to T are in cutQ, as was shown by a previous 

lemma, it follows that for any two points wl  and w2 in cutQ, there must be a rectilinear 

path from S to w l  in cutQ, and a rectilinear path from S to w2 in cutQ, and hence a 

rectilinear path from wl  to w2 through S in cutQ. 

Corollary: cutQ may be expressed as a finite union of isolated line segments and simple 

polygons (because any single point of cutQ must be contained in a subpolygon or isolated 

line segment of cutQ, in order for cutQ to be connected.) 

Definition: [arcwise connected]: We say a set of points X is arcwise connected if for any 

two points wl and w2 in the set and a finite distance apart (using either the Euclidian or 



rectilinear memcs, it doesn't matter which) there is some arc in X connecting w l  and w2. 

A set which is not arcwise connected is arcwise disconnected. 

Lemma: If two sets X and Y are arcwise connected, and there is a path from a point in X 

to a point in Y such that the path is in XUY, then XUY is arcwise connected. 

Proof: Obvious. 

Definitions: [U, exterior of a set of points]: For convenience, we henceforth reserve the 

letter U to denote the real plane, the universe of discourse. If X is a set of points in U, then 

the exterior of X, denoted ext(X), is just W. 

Lemma: ext(cutQ) is arcwise connected. 

Proof: Let w l  and w2 be any two points a finite distance apart in ext(cutQ). If they are 

both in ext(Q), there there is obviously a path between them in ext(Q) and hence in 

ext(cutQ). If w l  is in ext(Q) and w2 is in a pseudochord-induced unnecessary region R of 

Q, then from the fact that R is arcwise connected within itself (obvious) and from the fact 

that R will include some part of bdy(Q) (obvious), it is apparent that we can draw a path in 

R from w2 to a point w3 on bdy(Q) and in R, and then draw a path in Ruext(Q) from w3 to 

w l ,  and so construct a path in Ruext(Q) from w2 to wl. If both w l  and w2 are in 

pseudochord-induced unnecessary regions of Q, then we can draw a path in ext(cutQ) from 

w l  to a point w3 in ext(Q), and then a path in ext(cutQ) from w3 to w2, and thus construct 

a path in ext(cutQ) from wl  to w2. 

Definitions: [ball, interior of a set of points]: Let w be a point in U, the real plane; the 

ball of radius r centred at w, denoted B,(w), is the set of all points w' in U such that the 

distance from w to w' is less than or equal to r. If we use the Euclidian metric, then a ball 

centred at w will actually be a disc centred at w, and if we use the rectilinear metric, then a 



ball centred at w will actually be a diamond centred at w. Either of these types of balls is 

adequate for our purposes, and because it is more familiar, we will use the disc. A point w 

in a set of points X is said to be an interiorpoint of X if there is some finite, positive real 

number r such that B,(w) is a subset of X. The interior of X, denoted int(X), is the set of 

all interior points of X. If X is a simple polygon, then this definition of interior is in accord 

with the previous, less formal definition for the interior of a simple polygon. 

Lemma: No point of bdy(cutQ) is in int(cutQ). 

Proof: Let w be a point in bdy(cutQ). Then w is either a point on bdy(Q), or a point on a 

pseudochord L pseudochord-inducing an unnecessary region R in Q, or both. If w is a 

point on bdy(Q), then every ball of finite radius centred at w will include points in ext(Q), 

and hence in ext(cutQ). If w is a point on a pseudochord L which pseudochord-induces an 

unnecessary region R, then every ball of finite radius and centred at w will include point in 

R, and hence in ext(cutQ). This proves the lemma. 

3.4.2. Subpolvgons in the Pseudogon 

Entry Lemma: Let Q' be a subpolygon of cutQ, and let w be a point in cutQ\Q'. Then 

there is a unique point wl  on bdy(cutQ) such that any path from w to any point in Q' must 

contain w 1. 

Proof: Let P1 and P2 be paths in cutQ from w to points in Q'. Because they connect a 

point in Q' with a point not in Q', both P1 and P2 will have to intersect bdy(Q'). Assume 

that wl  is the first point along P1 at which P1 intersects bdy(QO), and that w2 is the first 

point along P2 at which P2 intersects bdy(Q'). If for all possible P1 and P2 wl=w2, then 

we are done, otherwise assume wlzw2. As shown in figure 12, wl  and w2 divide bdy(QO) 

into two paths PQ1 and PQ2 such that PQluPluP2 forms a closed curve (not necessarily 
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If P1 and P2 are both in cutQ, then because ext(cutQ) is arcwise 
connected we have that the area bounded by PI, P2, and PQ1 is 
in cutQ. This would mean that points on PQ2 (except possibly 
wl  and w2) would be interior points of cutQ, and hence not 
boundary points of cutQ. 

simple) bounding a finite area G containing PQ2. Assume some point w' in int(G) is in 

ext(cutQ); any path from w' to a point in ext(Q) would have to cross one of PQ1, PI, or P2, 

which would contradict a previous lemma stating that ext(cutQ) is connected. Thus, G 

must be in cutQ. However, this means that some point w" on PQ2 would be in int(cutQ, 

which is not possible, as all points on bdy(Q') and hence all points on PQ2 are boundary 

points of cutQ, and a previous lemma shows that no boundary points of cutQ are interior 

points of cutQ. Thus, our previous assumption that wl  and w2 are distinct was erroneous; 

w2 must be identical to wl ,  and since P2 was a path from w to an arbitrary point in Q', it 

follows that any path in cutQ from w to a point in Q' must contain wl. 

Lemma: Both S and T are on bdy(cutQ). 

Proof: We show that S is not in int(cutQ). If S is on bdy(Q), then it must be on 

bdy(cutQ), and we are done. If it is not on bdy(Q), then it is in int(Q); in this case, there 

will be one or two vertical pseudochords through S, pseudochord-inducing regions R1 and 

R2 to the right and left of S; T cannot be in both R1 and R2, so at least one of R1 and R2 



will be unnecessary. Thus, S will be a point on a pseudochord which pseudochord-induces 

an unnecessary region of Q, and so by definition will be on bdy(cutQ.) 

Definition: [required points]: A point w in cutQ is a reqrriredpoint if every shortest path 

from S to T in cutQ contains w. 

Required Point Lemma: Every subpolygon Q' of cutQ contains two distinct required 

points on its boundary. 

Proof: Let Q' be a subpolygon of cutQ. We proceed by cases: 

1) Assume neither S nor T is in Q'. By a corollary to the bad point lemma, every point 

in Q' is contained in some shortest path from S to T, and by the entry lemma, there is 

a point wl  on bdy(Q') such that every path from S to a point in Q' must contain w 1, 

and a point w2 on bdy(Q') such that any path from T to a point in Q' must contain 

w2. 

First we show that wl  and w2 are distinct. Assume wl  and w2 are the same; then let 

w3 be another point in Q'; there will be some shortest path from S to T containing 

w3, and by the nature of w l  and w2, this path must have a subpath going from S to 

w3 through wl ,  and a subpath going from w3 to T through w2; this would mean that 

the path was self-intersecting and so not shortest; thus, our assumption that wl  and 

w2 were the same must be wrong, and hence wl  and w2 are distinct. 

From the definitions of wl  and w2, any shortest path from S to T containing a point 

in Q' must contain wl  and w2. NOW, if all shortest paths from S to T contain both wl 

and w2, we are done; otherwise, there is a shortest path P from S to T containing wl 

and w2, and a shortest path P' from S to T which does not contain any point of Q'. 

Let P1 be the subpath of P from S to wl ,  and let P2 be the subpath of P from w2 to T. 



The situation is as shown in figure 13. wl and w2 split bdy(Q') into two paths PQ1 

and PQ2 from wl to w2 such that PluPQluP2uP' bounds a finite area containing 

PQ2. However, by an argument identical to one used in the entry lemma, this would 

then mean that all points on PQ2 except possibly its endpoints would be in int(cutQ), 

and so could not be boundary points for a subpolygon of cutQ. This is a 

contradiction, and so our assumption that there is some shortest path from S to T not 

containing w 1 and w2 must be incorrect, and wl  and w2 are required points. 

2) If exactly one of S or T, say T, is in Q', then by the immediately preceding lemma T 

is on bdy(Q') and forms one required point for Q'. Since S is outside of Q', there is a 

point wl  such that any shortest path from S to a point in Q' (such as T) contains wl. 

If w l  is distinct from T, then we are done. If wl  is not distinct from T, then take a 

point w2 in Q', distinct from wl; there nlust be a shortest path P from S to T 

containing w2; by the nature of wl(=T), P must go from S through T to w4, which 

makes it apparent that P is not a shortest path from S to T. Our assumption that wl=T 

must therefore be incorrect, and wl is our second required point. 



3) If both S and T are in Q', then they must both be on bdy(Q'). By assumption, S#T, 

and so S and T themselves are our required points. 

From the immediately previous proof, it is apparent that for any subpolygon Q' of cutQ, 

we can find two distinct required points wl and w2 on bdy(Q') (with one or both possibly 

being S and/or T) such that for any shortest path P from S to T, P will have a subpath P1 

from S to wl shorter than any other subpath of P from S to a point in Q', and P will have a 

subpath P2 from w2 to T shorter than any other subpath of P from a point in Q' to T. 

Definition: [points of subpolygons nearest S and TI: Let wl  and w2 be as indicated 

above; we call w 1 the point of Q ' nearest S,  and w2 is the point of Q ' nearest T. Together, 

w 1 and w2 are called the nearest points of Q'. 

Lemma: If Q' is a subpolygon of cutQ, then any shortest path P from S to T contains a 

subpath P' which is a shortest path in Q' between the nearest points of Q'. 

Proof: Let w l  be the point of Q' nearest S, and let w2 be the point of Q' nearest T. 

Because wl  and w2 are nearest points, and hence required and distinct, any shortest path P 

from S to T will have to contain a shortest subpath P' from wl  to w2. If P' is in Q' then 

we are done, otherwise assume P" is a subpath of P' such that the endpoints of P" are in 

Q' but the other points of P" are not in Q'. P" together with some subsection of bdy(QO) 

will bound a finite area containing the rest of bdy(Q') (the situation is similar to that shown 

in figure 12), and as in previous such situations, we can show that this means some points 

of bdy(QO) must be in int(cutQ), which is a contradiction. Thus, our assumption that some 

subpath of P' is not contained in Q' must be false, and P' satisfies the lemma. 

Lemma: Let Q' be a subpolygon of cutQ, let P be a shortest path from S to T, and let P' 

be a subpath of P between the nearest points of Q'. The points in P' are the only points in 

Q' on P. 



Proof: Suppose w is a point of Q' on P but not on P'. Assume WLOG that w is on the 

subpath of P from S to the point wl of P' nearest S. w cannot be wl ,  because w l  is a point 

of P' but w is not. But then the subpath of P from S to w, a point in Q', does not contain 

wl; this is impossible, as wl was chosen to be the point of Q' nearest S. Thus, our 

assumption that w is not on P' must be wrong. 

Lemma: Let Q' be a subpolygon of cutQ, and let P be any shortest path in Q'. No 3-path 

in P forms a 'U' configuration. 

Proof: Assume some subpath P' of P does form a 'U', as shown in figure 14. We use the 

orientation and labeling of figure 14 for the remainder of this proof. Because P is a 

shortest path, there must be no bridge connecting the vertical segments of P'; the only thing 

which could prevent the existence of such a bridge is the presence of a lowest extreme 

point w of bdy(Q) on the horizontal segment of P', such as shown in figure 14. Because Q 

and Q' are both simple polygons, w cannot be contained in any segment of bdy(Q) or 

bdy(QO) other than the two segments of bdy(Q')~Q for which w is an endpoint, and so 

there exists a vertical line segment L1 of some finite length and contained in Q and in Q', 

such that one endpoint of L1 is on w and the rest of L1 is below w and contained in 

int(Q')dnt(Q). Let L2 be the maximal horizontal line segment in Q containing w. L2 will 

generate a region R containing the points in Ll\{w). P in Q cannot intersect L2 at any 

point not on the horizontal segment of P', for if it did, then a bridge would exist for P, and 

P would be not be a shortest path in either Q or cutQ. This makes its apparent that neither 

S nor T can be in L ~ u R ,  and so R is an unnecessary region. However, if R is an 

unnecessary region, then Ll\(w) cannot be in cutQ, let alone in int(QO), which is a 

contradiction. Therefore, our original assumption that there is some subpath of P which 

forms a 'U' must be incorrect. 

Definitions: [doubly-monotone path, doubly-monotone polygon, ends of a doubly-mono- 



tone polygon, funnel]: Let P be a directed path composed of straight (not necessarily 

rectilinear) line segments; P is a doubly-monotone path if every segment of P, considered 

as a vector, points into the same quadrant of the plane as every other segment of P. A 

simple polygon Q is a doubly-nzonorone polygon if bdy(Q) can be considered to be made 

up of two doubly-monotone paths P1 and P2, joined at their endpoints. The two points 

formed by the intersection of the endpoints of P1 and P2 (i.e. the two points in P1 n P2) are 

called the ends of Q. If Q is a doubly-monotone polygon and bdy(Q) is such that there is a 

rectilinear boundary segment of Q adjacent to each end of Q, then Q is a funnel. Requiring 

that Q have rectilinear boundary segments adjacent to each of its ends is necessary and 

sufficient to ensure that a rectilinear path may be constructed within Q and between its 

ends. See figure 15 for examples of funnels. 

Note that if Q is a rectangle, then it is a funnel, but its ends are not uniquely 

determined-they may be either pair of diagonally opposite vertices of Q, depending on 

the context. If Q is a funnel which is not a rectangle, then this problem disappears, and the 

ends of Q will always be unique. 

figure 14 

Grey regions denote ext(Q). L1 must exist 
in both Q and Q', otherwise they arc not 
simple polygons. However, L2 generates an  
unnecessary region containing L l  \ (w), and 
so L1 cannot exist in CY. 



Lemma: If Q' is a subpolygon of cutQ, wl and w2 are the nearest points of Q', and P is a 

shortest path in Q' from wl  to w2, then P is doubly monotone. 

Proof: Obvious from the fact that by the previous lemma, P may not have any 3-paths in a 
'U' configuration. 

Funnel Lemma: Any subpolygon Q' of cutQ is a funnel, and the nearest points of Q' are 

the ends of the funnel. 

Proof: Let w l  and w2 be the distinct nearest points of Q'. Assume they share the same y- 

(or x- ) coordinate. Any shortest path P between w 1 and w2 must be doubly monotone and 

hence a straight line. By previous lemmas, P is also a subpath of a shortest path P' from S 

to T, and the only points of Q' contained in P' are those in P. However, a corollary of the 

bad point lemma states that every point of Q' has some shortest path from S to T 

containing it. This is clearly impossible for any points in Q' not on w 1 w2, and so Q' may 

not contain any points not on m. But for this to be the case, Q' must be a single line, 

not a polygon, and so by contradiction, our original assumption that wl  and w2 shared the 

same y- or x-coordinate must be incorrect. 



Now, let w l  and w2 be such that they share neither their y- nor x-coordinates. WLOG 

assume that wl  is above and to the left of w2. We wish to show that Q' is a funnel; we do 

this by considering bdy(Q7 as being formed as the union of two directed paths, P1 and P2, 

which each go from wl  to w2 and do not otherwise intersect. Given that wl  and w2 are 

distinct, as is the case here, the boundary of any simple polygon can be represented in this 

manner, and so we do not miss any possible cases by this representation. To prove that Q' 

is a funnel, we must first show that each of P1 and P2 is a doubly-monotone path. We do 

this somewhat informally, and with the aid of figure 16, as follows. 

First, note that no part of Q' can be outside of the isothetic rectangle defined by wl  and 

w2, for if there were a point w of Q' outside of this rectangle, there would by previous 

lemmas have to be a shortest path from wl to w2 going through this point, and thus outside 

the rectangle defined by wl  and w2; but because a shortest path from w 1 to w2 is doubly- 

monotone and hence has length equal to just the rectilinear distance between wl  and w2, 

figure 16 

Grey region denotes the interior of Q', dotted rectangle is the 
isothetic rectangle defined by wl  and w2. Any path in Q' 
from wl  to w2 and containing w4 will be of greater length 
than the rectilinear distance from wl to w2, and so will not 
be a shortest path from wl to w2. 



this is impossible. 

Choose P1 to be the directed path from wl to w2 contained in bdy(Q') such that int(QO) is 

to the right of P1 relative to a traversal of PI. Let B 1 be the segment of P1 incident on wl.  

Considered as a segment of a directed path, it must point into the lower right-hand quadrant 

of the Cartesian plane centred at wl,  because of the restriction that Q' is confined to the 

rectangle defined by w l  and w2. Let w3 be the other end of B1 (the end that is not wl), let 

B2 be the next segment of P1 after B1 (B2 originates at w3), and assume that B2 points 

into the upper right-hand quadrant of the Cartesian plane centred at w3. Let the other 

endpoint of B2 (the endpoint that is not w3) be w4. Because Q' is simple, any path from 

wl  to w4 will have to go down to or below w3 before going back up to reach w4, and so 

will have length greater than the rectilinear distance between wl  and w4. Clearly, then, 

any path from w l  to w2 containing w4 will be also have length greater than the rectilinear 

distance between wl  and w2. But then, the shortest path from S to T containing w4 will 

have a non-shortest subpath (the subpath from wl  to w2 containing w4), and so will not in 

fact be a shortest path from S to T. Thus, by contradiction, our assumption that B2 can 

point up and to the right must be incorrect. 

In a similar vein, we can show that B2 may not point into the lower left-hand or upper left- 

hand quadrants of the Cartesian plane centred at w3, and so must point into the lower right- 

hand quadrant. We can then repeat this process for the next segment B3 in PI, and so by 

an informal induction continue until P1 terminates at w2, showing that each directed 

segment of P1 points into the lower right-hand quadrant of the Cartesian plane centered at 

its origin. P1 is therefore a doubly-monotone path. 

The same procedure will work to show that P2 is a doubly monotone path; the fact that 

int(QO) is on the left-hand side of P2, rather than the right-hand side, makes no difference. 

We have now shown (albeit informally) that the boundary of Q' may be represented as the 
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union of two doubly-monotone paths, intersecting at w 1 and w2 (the endpoints of the 

paths), and not intersecting at any other point. This means that Q' is a doubly-monotone 

polygon, with ends wl and w2. To show that Q' is a funnel, we still need to show that 

there is a rectilinear boundary segment of Q' adjacent to each of wl and w2. However, 

this is both a necessary as well as sufficient condition for the existence of a rectilinear path 

in Q' from wl to w2, and since we know that such a path exists, we can see that this final 

condition also must be fulfilled. Thus, Q' is a funnel. 

The fact that wl  and w2, the nearest points of Q', are also the ends of Q' is obvious from 

the fact that wl  and w2 are the only points of intersection of P1 and P2, the doubly- 

monotone paths which make up bdy(QO). 

End of funnel lemma. 

Definitions: [ends of a funnel nearest S and TI: Since the nearest points of a funnel are 

just its ends, we can speak of the end of a funnel nearest S, or the end of a funnel nearest T. 

3.4.3. Tsolated Line Segments in the Pseudogon 

Various statements concerning subpolygons in cutQ have been presented and proved. 

Most of these statements have counterparts concerning isolated line segments in cutQ, and 

these counterparts have proofs very similar to those given for the statements made about 

subpolygons of cutQ. Going through these proofs in detail would be a tedious experience, 

both for the author and the reader. Instead, we will prove the isolated line segment version 

of the entry lemma in detail, and then make further statements about the properties of 

isolated line segments in cutQ with rather terse proofs. 

Isolated Line Segment Entry Lemma: Let L be an isolated line segment in cutQ, and w 



figure 17 

The finite region bounded by L, PI, and P2 
must b contained in cutQ, and so the points on 
L between wl and w2 must be points on the 
boundary of a subpolygon of cutQ. 

a point of cutQ not in L. There is a unique point w l  such that every path from w to a point 

in L contains w 1. 

Proof: Given L and w as above, let P1 be a path in cutQ from w to a point in L, and let wl 

be the point of P1 nearest w which is also on L. If all paths in cutQ from w to a point on L 

contain wl  then we are done, otherwise let P2 be a path in cutQ from w to a point on L 

such that P2 does not contain wl ,  and let w2 be the point on P2 nearest w that is contained 

in L. The situation is as shown in figure 17. The closed curve (not necessarily a simple 

closed curve) formed by PluP2uwlw2 is completely contained in cutQ, and because 

ext(cutQ) is connected, the finite area G bounded by this curve must also be in cutQ. 

Because cutQ can be expressed as a finite union of subpolygons and line segments, G must 

be contained in some subpolygon(s) of cutQ; however, this would mean that those points 

of L between wl  and w2 are either in the interior of some subpolygon of cutQ, or are on 

the boundary of some subpolygon of cutQ (the case shown in figure 17), and in either case 

form a subsegment of L that cannot be an isolated line segment (by the definition of 

isolated line segment). Therefore, our original assumption that there is a path from w to a 



point in L not containing w 1 must be false, and w 1 satisfies the lemma. 

As can be seen, the main difference between the above proof and that of the original entry 

lemma is that in the above, we show an assun~ption contradicting the lemma leads to the 

result that some subsegment of L is either in the interior of a subpolygon of cutQ or on the 

boundary of a subpolygon of cutQ, while in the proof of the original entry lemma, we 

showed that an assumption contrary to the lemma led to the conclusion that some boundary 

points of cutQ where in fact interior points of a subpolygon of cutQ. This difference is the 

major difference between proofs of properties of subpolygons of cutQ, and proofs of the 

similar properties of isolated line segments of cutQ. 

Isolated Line Segment Required Point Lemma: If L is an isolated line segment of cutQ, 

then there are two distinct required points on L. 

Proof: As for the Required Point Lemma, but substitute "L" for every instance of "Q"' or 

"bdy(Q')", modify the diagram given with the Required Point Lemma (figure 13, page 38) 

so that a rectilinear line segment L is put in the place of Q', and take as the contradiction 

the fact that wlw2 must be inside of or part of a boundary segment for a subpolygon of 

cutQ. 

Definitions: [points of an isolated line segment nearest S and TI: For any isolated line 

segment L in cutQ, let w l  and w2 be distinct required points on L (with one or both 

possibly being S and/or T) such that for any shortest path P from S to T, P will have a 

subpath P1 from S to wl  shorter than any other subpath of P from S to a point in L, and P 

will have a subpath P2 from w2 to T shorter than any other subpath of P from a point in L 

to T. If they exist, w l  and w2 are each unique in this regard; we call wl  the point of Q' 

nearest S, and w2 is the point of L nearest T. Together, wl  and w2 are called the nearest 

points of L. 



Lemma: Nearest points exist for any isolated line segment in cutQ. 

Proof: Assume WLOG that there is no point of L nearest S. Because L possesses at least 

two distinct required points, there must then be shortest paths P1 and P2 from S to T such 

that the point wl on P1 nearest S and contained in L is distinct from the point w2 on P2 

nearest S and contained in L. By arguments identical to those used above, it is then easy to 

show that wlw2 cannot be part of an isolated line segment because it either bounds or is 

contained in a subpolygon of cutQ. 

Lemma: The nearest points of an isolated line segment L in cutQ are the endpoints of that 

segment. 

Proof: Assume this is not the case, let w 1 and w2 be the nearest points of L, and let e be 

an endpoint of L which is not a nearest point. It is easy to show that e must be a bad point, 

which (by contradiction) proves the lemma. 

Note: Since the endpoints of an isolated line segment L are also its nearest points, we can 

speak of the end of L nearest S or the end of L nearest T, as was done with funnels. 

Lemma: Let L be an isolated line segment in cutQ. Any shortest path from S to T in cutQ 

has L as a subpath. 

Proof: Trivial, from the fact that the nearest points of L are its endpoints. 

Specific Structure of the Pseudogon 

Definition: [element of cutQ]: An element of cutQ is a subpolygon of cutQ or a maximal 

isolated line segment of cutQ. 



Lemma: If E l  and E2 are two elements of cutQ, then El  and E2 intersect at at most one 

point. 

Proof: By cases. 

1) If both E l  and E2 are isolated line segments, then if they are perpendicular they will 

intersect at at most one point, and if they are parallel, they will not intersect at all 

(for if they did, they would not be maximal isolated line segments, and so would not 

be elements of cutQ.) 

2) If E l  is an isolated line segment and E2 is a subpolygon, assume E l  and E2 

intersect at distinct points wl and w2; in this case, we have the situation shown in 

figure 18, and since El  and one subsection of bdy(E2) define a finite region 

containing the rest of bdy(E2), we have by arguments used previously that some 

parts of bdy(E2) must be in int(cutQ, which is a contradiction. 

3) If E l  and E2 are both subpolygons of cutQ, a situation similar to that shown in case 

2 arises, i.e. some boundary points of cutQ must be in int(cutQ, which is a 

uontradic tion. 

So, by contradiction, we have shown that E l  and E2 may not intersect at more than one 

point. 

Lemma: Let E l  and E2 be elements of cutQ which intersect at a point w. Then w 

contains the point nearest S in one of E l  or E2, and the point nearest T in the other. 

Proof: Let E l  and E2 be elements of cutQ intersecting at the single point w. Let P be a 

shortest path from S to T containing w; by a corollary of the bad point lemma, P must exist. 

We proceed by cases: 



I figure 18 

If El and E2 intcrsect at wl  and w2, the 
shorter section of bdy(E2) between wl  and 
w2 will be in int(cutQ). 

1) w is not a nearest point of E l  or E2: By previous lemmas, P must contain a 

subpath P1 in El ,  between the nearest points of E l  and containing w, and P must 

contain a subpath P2 in E2, between the nearest points of E2 and containing w. See 

figure 19, which gives an example where both E l  and E2 are subpolygons of cutQ. 

Since El  and E2 do not intersect except at w, P1 and P2 will not intersect except at 

w; but since P1 and P2 travel between the nearest points of E l  and E2 respectively, 

and all of these nearest points are distinct from w, it is apparent that w cannot be an 

endpoint of either P1 or P2. Because P1 and P2 are subpaths of P, w must be a 

point where P self-intersects, and so P cannot be a shortest path. This contradiction 

leads us to conclude that our assumption that none of the nearest points of E l  and 

E2 are on w must be false. 

2) If w is a nearest point of El,  but is not a nearest point of E2, the argument is much 

the same as for case 1; P, PI, and P2 are constructed in the same manner, and while 

w may be an endpoint of PI, it will still not be an endpoint of P2, so P still self- 

intersects at w, leading to a contradiction. 



3) If the point in E l  nearest S is on w and the point in  E2 nearest S is on w, then we 

again construct P, PI, and P2 as in case 1. As before, -P1 and P2 will be disjoint, 

except for w. There are two possibilities: 

i) S=w, in which case PluP2 constitutes a subpath of P passing through S, but not 

actually containing S as an endpoint. This makes it apparent that P cannot be a 

shortest path from S to T. 

ii) S#w, in which case there must be a subpath P3 of P from S to w; because w is 

the point of both E l  and E2 nearest S, w is the only point of E l  or E2 contained 

in P3. Because P1 is entirely contained in El ,  P2 in E2, and since P3 does not 

contain any points of E l  or E2 outside of w, it follows that PI, P2, and P3 

intersect only w, and thus P self-intersects at w in much the same manner as in 

case 2. 

Of course, the same type of proof applies when dealing with the points of E l  and E2 

nearest T. 

I figure 19 

PI bctween the nearest points of E l  and P2 
bctween the nearest points of E2. 



4) The only possibility left is that w contains the point nearest S of one of E l  and E2, 

and the point nearest T of the other. This is the possibility we wished to prove, and 

by elimination of other possibilities, we have done so. Note that w will contain only 

these nearest points of E l  and E2, as the other nearest points of E l  and E2 are 

necessarily distinct from w. 

Pseudogon Lemma: Let cutQ be the pseudogon obtained from a simple polygon Q. cutQ 

can be expressed as a finite union of n elements El, E2, . . ., En consisting of funnels and 

maximal isolated line segments, such that if w l(Ei) and w2(Ei) denote the ends of Ei 

nearest S and T respectively, then wl(E1)=S, ~ 2 ( E ~ ) = w l ( E ~ + ~ )  for 14<n, w2(En)=T, and 

the various elements do not intersect otherwise. 

Proof: Obvious from the preceding lemmas. 



4. find in^ the Dimensions of Smallest Paths Efficientlv 

In the previous chapter, we have shown that bad points, those through which no shortest 

and hence no smallest path from S to T may pass, may be removed from Q. In doing so, 

we have developed a powerful set of tools for simplifying Q, so as to make it easier to find 

a smallest path in Q from S to T. From the exclusion lemma, we know that no point in an 

unnecessary region of Q will be in a smallest path from S to T, and so we can remove all 

points in such regions from Q. From the inclusion lemma, we know that all unnecessary 

points in Q are included in an unnecessary region of Q pseudochord-induced by some 

pseudochord, and by finding and eliminating at most O(n) pseudochord-induced 

unnecessary regions of Q, where n is the number of vertices in Q, we will remove all 

unnecessary points in P. Once this simplification of Q has taken place, it will be much 

easier to find a smallest path in the remaining parts of Q. The major sections of this 

chapter address the efficient removal of unnecessary regions from Q, and finding the 

dimensions of a smallest path from S to T in the resulting pseudogon. 

4.1. Representation and Size of Q, S, and T 

A simple polygon may be given as an ordered list or vector of the coordinates of its 

vertices, or as a list of line segments making up the boundary of the polygon, in any case 

taking up O(n) space for an n vertex polygon under the usual assumption of a unit-cost 

RAM. Under the same assumption, S and T take up only an additional constant amount of 

storage. Thus, the obvious measure for an instance of the smallest-path problem is n, the 

number of vertices in the enclosing polygon. 

4.2. Removing Unnecessary Points 

Chapter 3 proved various lemmas concerning the topology of smallest paths in simple 
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polygons, including the fact that all unnecessary points are contained in unnecessary 

regions pseudochord-induced by a set of O(n) pseudochords, where n is the number of 

vertices in Q, and the fact that removal of all unnecessary points from Q results in a simple 

structure known as the pseudogon. Using these results, we will now develop an algorithm 

SIMPLIFY which analyzes Q, S, and T, and in O(n log n) time produces the resulting 

pseudogon, cutQ. 

4.2.1. The SIMPLIFY Algorithm-Overview 

Describing SIMPLIN in a standard algorithmic language would be tedious and 

unenlightening, as there are many minor details cluttering up an actual implementation. 

The following is a prose outline of SIMPLIN, which glosses over many details. It is 

intended to outline to the reader the basic skeleton of SIMPLIFY, which will be fleshed out 

later, by describing the details of each step. Appendix I1 provides a series of illustrations, 

showing the important constructs generated by SIMPLIFY as it processes a polygon, on a 

step-by-step basis (with some steps omitted), and should be read in conjunction with the 

following explanation. 

Begin SIMPLIFY (Basic outline of SIMPLIFY ) 

1) If the edges of Q are not already sorted according to their traversal order, do so. 

2) Calculate traversal numbers for Q, based on S and T, and store these numbers 

(two for each segment) with the segments. traversal numbers are used to 

determine if given regions of Q are unnecessary (do not contain either of S or 

T). See Appendix I for details concerning the use of traversal numbers. 



3) Find the horizontal and vertical extreme points in Q, and find boundary edges 

of Q directly above, below, to the left, and to the right of the extreme points 

and S and T. 

Comment: Step 3 ends the preprocessing phase of SIMPLIFY, which constructs 

the data structures needed to provide basic information to the remaining steps of 

SIMPLIFY. The next phase is the "horizontal" processing phase, contained in 

steps 4-7. 

4) Find all horizontal pseudochords in Q (including the horizontal pseudochords 

through S and T), and store these pseudochords in a data structure called HS. 

5) For each pseudochord L in HS, find the region R which L pseudochord-induces 

on Q, and if R is an unnecessary region, indicate this by marking the endpoints 

of ebd(R), which are just the endpoints of L. If no unnecessary region is 

pseudochord-induced by L, then we have no further use for L, so it may be 

removed from HS. 

Comment: Note that for any unnecessary region R, the endpoints of ebd(R) are not 

in R, so the marked endpoints of ebd(R) should not themselves be taken as part of 

Traverse bdy(Q), propagating the information generated by step 5, in order to 

mark all segments or partial segments of bdy(Q) which comprise part of ebd(R) 

for some unnecessary region R found in step 5. 

For each pseudochord L in HS, if L is contained in an unnecessary region 

pseudochord-induced by another member of HS (i.e. an unnecessary region 

identified by steps 5 and 6) then remove L from HS. 



Comment: Let L1 be a pseudochord in HS which pseudochord-induces an 

unnecessary region R1, and let L2 be a pseudochord in HS which pseudochord- 

induces an unnecessary region R2 s.t. R2 is a proper subset of R1. The execution 

of step 7 will remove L2 from HS. When step 7 has been completed, there will be 

no unnecessary regions (as pseudochord-induced by pseudochords in HS) nested 

within other unnecessary regions. So, for each unnecessary region R pseudochord- 

induced by a remaining member L of HS, we may associate ebd(R) with L, as L is 

the unique pseudochord in HS which pseudochord-induces an unnecessary region 

R containing points of ebd(R). This association will be performed by marking each 

segment B or partial segment PB in bdy(Q) which forms a segment of ebd(R) as 

"belonging" to the pseudochord in HS which pseudochord-induces R. The marking 

is done by step 8. 

8) Traverse the boundary of Q, marking each boundary segment or partial 

boundary segment of Q which forms a boundary segment of ebd(R), for some 

unnecessary region R pseudochord-induced by a horizontal pseudochord, as 

belonging to the pseudochord in HS which pseudochord-induces R 

Comment: Step 8 ends the "horizontal" processing phase of SIMPLIFY. The next 

phase is the "vertical" phase, which consists of repeating steps 4-8, but using all 

vertical pseudochords through vertical extreme points, and storing these 

pseudochords in VS. 

9-13) Repeat steps 4 through 8, with the modifications that everywhere the word 

"horizontal" appears, "vertical" should be substituted, and (for the sake of 

form) everywhere "HS" appears, "VS" should be substituted. References to 

other steps in the horizontal phase should be appropriately renumbered to refer 

to the similar steps in the vertical phase. 



Comment: Step 13 ends the "vertical" processing phase of SIMPLIFY. At this 

point, we have identified the minimum set HS of horizontal pseudochords which 

will "remove" as much as possible of Q when only horizontal pseudochords are 

considered, and we have identified the minimum set VS of vertical pseudochords 

which will "remove" as much as possible of Q when only vertical pseudochords are 

considered. We have also marked the boundary of Q so as to identify those 

segments or parts of segments on bdy(Q) which form a boundary segment of 

ebd(R), for some unnecessary region R. By traversing bdy(Q) and removing the 

marked segmentsiparts of segments, we will be left with those sections of bdy(Q) 

which will actually be used in the pseudogon. What remains to be done is to 

identify and remove those horizontal pseudochords or parts of horizontal 

pseudochords which are in an unnecessary region pseudochord-induced by some 

vertical pseudochord, and to find and remove those vertical pseudochords or parts 

of vertical pseudochords contained in an unnecessary region pseudochord-induced 

by some horizontal pseudochord. This is done by "clipping" the pseudochords of 

each set against the pseudochord of the other set, as handled by steps 14-16. 

143 For each pseudochord L in HS, check to see if L is entirely contained in an 

unnecessary region R pseudochord-induced by some vertical pseudochord. 

Any such R would have been identified during the vertical processing phase of 

simplify. If L is contained in such an unnecessary region, remove it from HS. 

15) Repeat step 14, with the roles of vertical and horizontal pseudochords reversed. 

16) For each pseudochord L in HS, remove those sections of L in unnecessary 

regions pseudochord-induced by a member of VS, and for each member L of 

VS, remove those sections of L in unnecessary regions pseudochord-induced 

by members of HS. 



Comment: Having marked which sections of bdy(Q) are to be removed, and 

having clipped HS and VS against each other, all that remains to be done is to go 

through the rubble, so to speak, and out of it build the pseudogon cutQ. 

17) Traverse bdy(Q), collecting those subsections of it which are not marked for 

removal. Use these subsections, together with the pseudochords remaining in 

HS and VS, to build cutQ as a series of funnels and isolated line segments from 

S to T. 

End SIMPLIFY 

4.2.2. The PROJECT Function 

In describing SIMPLIFY in more detail in the next section, we will make use of an 

auxiliary function PROJECT. This section gives an operational definition of PROJECT, 

which should be read for a complete understanding of how SIMPLIFY works, and details 

on the implementation of PROJECT, which the reader may ignore if he or she so desires. 

4.2.2.1. Operational Definition of PROJECT 

PROJECT is a function which takes three arguments, the first being a point w, the second 

being one of the four rectilinear directions (up, down, left, right), and the third being a 

polygon (which w is assumed to be in), and projects w in the given direction, until w hits 

the boundary of Q and certain conditions are satisfied. PROJECT returns a two-tuple <w', 

segmentOf(w')> as result, where w' is a point on bdy(Q), and segmentOf(w') is the 

boundary segment on which w' is located, or pair of boundary segments if w' is a vertex. 

PROJECT is precisely defined as follows: 



( In the following, [d w] should be read as "to the left of w", "above w", 

etc., depending on the direction of d. ] 

PROJECT(d, w, Q) = 
7 <w, segmentOf(w)> if there is no point w' [d w] s.t. ww is in Q 

<w', segmentOf(w8)> where w' is the first point [d w] s.t. w' is on 

bdy(Q and w' is contained in a boundary segment which does 

not contain w. 

( This last does not mean that w' is not contained by any boundary 

segment containing w, but simply that w' must at least be in at 

least one boundary segment not containing w. If w' is a vertex 

of Q, it may be on both types of boundary segments. This case 

ensures that vertices which have a rectilinear boundary segment 

incident upon them do not just project into that segment, but that 

instead their projection reaches another boundary segment. } 

See figure 20 for an example of the operation of PROJECT. 

When using a tuple returned by PROJECT, we will not bother explicitly accessing the 

fields of the tuple, but will just refer to, "the point returned by PROJECT," or, "the 

segment returned by PROJECT". 

The above is an operational definition of PROJECT. As shown in the next section, this 

function can be constructed to run in constant time, with O(n log n) preprocessing. 

4.2.2.2. Implementation of PROJECT 



Given a simple polygon Q, the trapezoidal edges for a vertex v of Q are those boundary 

segments B directly above or below v such that there is a vertical line segment L within Q 

joining v and B. If we wish to project v up, and there is no vertical boundary segment 

incident on v and above it, then v's projection (if it exists) will clearly be on the upper 

trapezoidal edge of v. We may check for a vertical boundary segment incident on and 

above v in constant time, return the upper end of the segment as the projection of v, if such 

a segment exists, and otherwise find the upper trapezoidal edge of v, take the intersection 

of it with the vertical line through v in constant time, and return this as the projection of v 

upwards. Hence, the time to project v upwards is at most the time to find the upper 

trapezoidal edge of v. We can perform a similar operation if we wish to project v 

downwards, or in one of the horizontal directions. 

A paper by Chazelle and Incerpi[i3] shows how the trapezoidal edges for all n vertices in a 

simple polygon may be found by an algorithm taking O(n log n) time to execute. Since 

there is a bounded number of trapezoidal edges associated with each vertex, we can store 

these edges with their vertices so that any query on the trapezoidal edges of a vertex may 

thereafter be answered in constant time. 

Projecting w up, down, and to the left with 
PROJECT. Projecting w to the right just 
returns w. 



We also need to be able to apply PROJECT to S and T, if they are not vertices of Q. For 

any point w in Q, it is an easy matter to find the edge of bdy(Q) directly above w; we sort 

the edges to get rid of those edges completely to the left of w, sort the remaining edges to 

get rid of those edges to the right of w, and sort again to get rid of those edges below w, 

and to find the edge directly above w. Since we need to apply this procedure only a 

constant number of times, and only in the preprocessing phase of the algorithm, 

preprocessing S and T so that PROJECT may later be applied to them in constant time may 

also be done in O(n log n) time. 

Therefore, PROJECT may be made to run in constant time, assuming O(n log n) 

preprocessing. 

4.2.3. SIMPLIFY In More Detail 

Many of the steps in the outline of SIMPLIFY above are described in a purposely vague 

manner, so as not to obscure the structure of the algorithm. The following paragraphs fill 

in the details, to the degree necessary to show how each step of SIMPLIFY may be 

completed in O(n) or O(n log n) time. 

Steps 1 , 2 ,  and 3--Sort edges into traversal order, compute traversal numbers, find 

extreme points and preprocess them for use with PROJECT. 

The first three steps, the preprocessing phase, are the easiest. In step 1, if the edges of Q 

are not sorted in traversal order around the boundary of Q, this can be accomplished by 

considering each edge as a pair of points containing links back to their parent edges, and 

then sorting all of the points, primarily by x-coordinate and secondarily by y-coordinate. 

Identical endpoints of adjacent segments will be placed next to one another by this process, 

and by using the edge information supplied with the points, we can then start at some 



vertex vl  of Q, take an edge e l  incident to v, take the other endpoint v2 of e l ,  take the 

other edge e2 incident to v2, and continue in this manner, chaining around the boundary of 

Q until arriving back at v. Sorting for step 1 may be done in O(n log n) time, and 

constructing a traversal by chaining will take an additional O(n) time. 

Once step 1 is complete, step 2 can be performed in O(n) time by traversing the boundary 

of Q. Finding horizontal extreme points from step 3 can also be done in O(n) time, and 

once these are found, the information needed to use PROJECT with these extreme points 

and S and T in future steps may be preprocessed in O(n log n) time, as detailed in the 

section on the implementation of PROJECT. 

Step &Find all horizontal pseudochords 

Step 4 is slightly more complex. The complications arise from the fact that a single 

horizontal line L in Q may contain many pseudochords, if L passes through many 

horizontal extreme points which all happen to share the same y-coordinate. The following 

makes use of the fact that no extreme point will be contained by more than a constant 

number of pseudochords, as was shown previously. 

4.1) Sort the horizontal extreme points of Q, plus S and T, by y-coordinate. The rest 

of this algorithm is to be performed for each set HEy of these points with the 

same y-coordinate. 

4.2) For each point w in HEY, find the points returned by PROJECT(w, left) and 

PROJECT(w, right), and add them to HEY. 

4.3) Sort HEy by x-coordinate, and get rid of multiple copies of the same points. 

4.4) Let e l  be the leftmost point in HEY, and let e2 be the rightmost point in HEY. 
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All horizontal extreme points in HEy will be between (and not on) e l  and e2, 

and so all horizontal pseudochords with the given y-coordinate will be on m. 
- 

Sweep ele2 from e l  to e2 (left to right) by iterating down the sorted points in 

HEY. Let w be the point under inspection. Let an upper pseudochord be one 

which pseudochord-induces a region below itself, and a lower pseudochord be a 

pseudochord which pseudochord-induces a region above itself. We analyze by 

cases: 

1) w is total lowest: then w signals the end (right endpoint) of a lower 

pseudochord, and the beginning (left endpoint) of a new lower 

pseudochord. 

2) w is lowest, but not total lowest: then w signals the end of a lower 

pseudochord, if the horizontal segment of bdy(Q) incident on w is to the 

right of w, or the beginning of a lower pseudochord, if the horizontal 

segment of bdy(Q) incident on w is to the left of w. 

3) w is total highest: as for (I), but for upper pseudochords. 

4) w is highest, but not total highest: as for (2), but for upper pseudochords. 

5) w is S or T and not on a non-horizontal segment of bdy(Q): then ignore w. 

6)  w is neither lowest nor highest (and may be S or T): then w is on bdy(Q), 

and depending on whether the points immediately to the left of w are 

contained in Q or not, w will signal either an end for both an upper and 

lower pseudochord, or a beginning for both an upper and lower 

pseudochord. (el and e2 are handled by this case, but points between them 

may also be handled by this case, if ele2 is not wholly contained in Q.) 

- 
During the sweep of ele2, we add to HS pseudochords found by the sweep as we 

encounter their right endpoints. Note that at no point do we have to keep track of 

more than two pseudochords, one upper and one lower. 



Step 4.1 can be done in O(n log n) time. Applied over all the HEY, step 4.2 takes O(n) 

time, since PROJECT can be done in O(1) time and the total of all points in all HEy will be 

at most O(n). Applied over all the distinct HEY, step 4.3 will cumulatively take between 

O(n) and O(n log n) time, depending on the partitioning of the HEY. Finally, step 4.4 can 

be done over all the HEy in O(n) time, as HS is maintained in an unsorted order, and so we 

can add an element to HS in constant time. So, step 4 can be done in a total of O(n log n) 

time. 

Step 5--Mark boundary of Q at points intersected by horizontal pseudochords 

The main components of step 5 are the detection and marking of unnecessary regions. 

Detecting unnecessary regions can easily be done in constant time for each pseudochord to 

be examined, as described in appendix I, for a total time of at most O(n). When marking 

the boundary segments of unnecessary subpolygons (i.e. those parts of bdy(Q) which will 

later be removed), it is not sufficient to simply mark where bdy(Q) will be cut; we also 

need to mark which side of each cutpoint will be removed. We do this with arrows 

pointing in the direction of the boundary subpath to be removed. An example of this can 

be seen in figure 21. An arrow marker could simply consist of a point and a direction 

associated with the boundary segment on which the point is located. 

A potential problem is that in unusual cases, we could have up to O(n) arrow markers on a 

single boundary segment of Q. If not handled carefully, this could cause efficiency 

problems in later processing steps, which must use the marker information associated with 

each boundary segment. Luckily, this problem is easily dealt with, for if ever there are 

three distinct arrow markers Al ,  A2, and A3 on a single boundary segment B, where Al,  

A2, and A3 have been generated by horizontal pseudochords L1, L2, and L3 respectively, 

then at least one of L1, L2, or L3 is in an unnecessary region pseudochord-induced by one 

of the other two of L1, L2, and L3. WLOG say that L1 is in an unnecessary region 

pseudochord-induced by L2; then L1 and its associated m o w  markers, including Al,  may 



be removed, and in this manner we can ensure that there are never more than two arrow 

markers generated by horizontal pseudochords on any boundary segment. Note, however, 

that if L1 were vertical and L2 horizontal, then we cannot perform the same mck, as L1 

and L2 may cross. Therefore, we will need up to two additional arrow markers associated 

with each boundary segment of Q, to mark the ends of vertical pseudochords occumng at 

each segment, and we will need to differentiate between markers induced by horizontal or 

vertical pseudochords. 

Finally, we arbitrarily state that an arrow marker whose origin is at a vertex of Q should be 

stored with the boundary segment of Q into which it points. With this decision, we have 

concluded our detailed description of step 5. 

Step 6-Propagate marking from step 5 to all boundary segments 

While step 5 indicates subpaths of bdy(Q) to later be disposed of by marking the endpoints 

of sections of bdy(Q) which are to be excised, it does not mark every boundary segment in 
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those subpaths; instead, it only marks such segments as are touched by a horizontal 

pseudochord which pseudochord-induces an unnecessary region. In order to propagate this 

information to all affected segments, step 6 traverses bdy(Q), counting arrow markers as it 

goes, and marking boundary segments or (in the case of boundary segments divided into 

subsegments by an arrow marker) boundary subsegments according to its count at that 

point. The count begins at 0; every time an arrow marker pointing in the direction of the 

traversal is encountered, the count is incremented by 1, and every time an arrow marker 

pointing opposite to the direction of the traversal is encountered, the count is decremented 

by 1. At the end of the traversal, those segments or subsegments to be kept will be marked 

with the lowest count generated during the traversal; since step 6 cannot be sure of starting 

on a segment marked for keeping, it may turn out that the lowest count generated during 

the traversal was a negative number. In any case, once step 6 has completed the count 

traversal and found a lowest count, it does a second traversal, marking segments and 

subsegments for disposal if they were assigned a count greater than the lowest count on the 

first traversal. A constant time will be spent processing each boundary segment, for a total 

time of O(n) spent in step 6. 

Note: The purpose of steps 5 and 6 is to mark those segments and subsegments of bdy(Q 

which are in unnecessary regions pseudochord-induced by horizontal pseudochords. 

Likewise, the purpose of the analogues of steps 5 and 6 in the "vertical phasey7 of 

processing is to mark those segments and subsegments of bdy(Q) which are in unnecessary 

regions pseudochord-induced by vertical pseudochords. Keeping this horizontal and 

vertical information seperate is necessary for the correct functioning of other steps. 

Step '/--Remove redundant horizontal pseudochords 

Once step 6 is done, we check the endpoints e l  and e2 of each pseudochord L in HS. If e l  

and e2 are on a portion of a boundary subsegment of Q marked for disposal during step 6, 

then L is entirely contained in an unnecessary subpolygon induced by another horizontal 



pseudochord, and L and its arrow markers may all be removed, as the information they 

provide is subsumed by other information. Note that because no two horizontal 

pseudochords will cross, we will never have a case where e l  indicates that L may be 

removed, but e2 indicates the opposite, so, for each L, we need actually check only one of 

its endpoints. There are at most O(n) pseudochords to check, and checking each may be 

accomplished in constant time, so the total time for step 7 is O(n). 

Step &Mark boundary segments according to what pseudochords they belong to 

Once step 7 is complete, we have removed all unnecessary horizontal pseudochords, 

relative to the set of horizontal pseudochords-there are no longer any horizontal 

pseudochords inside unnecessary regions pseudochord-induced by other horizontal 

pseudochords. We have also marked those sections of bdy(Q) contained in an unnecessary 

region pseudochord-induced by some horizontal pseudochord. As a result, we may 

indicate each marked segment/subsegment of bdy(Q) as having been marked for disposal 

by a unique pseudochord in HS--or to put this in a terser form, we further mark each 

marked (sub)segment as "belonging" to the element of HS which causes that (sub)segment 

to be marked. This may easily be done in O(n) time by numbering the remaining elements 

of HS, putting these numbers into the corresponding arrow markers, and then performing a 

traversal of bdy(Q) to propagate this information to all boundary segments. 

Steps 9-13--Repeat steps 4-8 with a vertical orientation 

Steps 9-13 are the analogues in the vertical processing phase of steps 4-8 in the horizontal 

processing phase. Except for the change in orientation, nothing is different. Just 

remember to keep the vertical information seperate from the horizontal information. 

Steps 14-1.5--Remove redundant horizontal and vertical pseudochords 



Up to this point, the vertical and horizontal pseudochords have been considered seperately 

from one another-this tradition ends with steps 14 and 15. These two steps check for 

horizontal pseudochords contained entirely within unnecess,axy subpolygons induced by 

vertical pseudochords, and vice-versa, and remove such wholly contained pseudochords. 

The check is done by considering the two ends e l  and e2 of each horizontal pseudochord 

L, and checking these ends against the vertical pseudochord information to see if e l  and e2 

are both on boundary segments or subsegments which are marked for disposal by the same 

vertical pseudochord. If this is the case, then L is contained in an unnecessary region 

induced by a vertical pseudochord and may be removed. Vertical pseudochords are 

checked in the obvious similar manner. Note that both ends of a pseudochord must be 

checked for inclusion in the same unnecessary region, as vertical and horizontal 

pseudochords can cross, which case is handled in the next step. 

Using the information generated in steps 8 and 13, steps 14 and 15 may be performed in 

O(n) time. 

Step I -lip pseudochords against each other 

We have now reduced HS and VS to the point where each member of HS and VS will play 

a part in the final pseudogon. However, the members of HS and VS may still cross into the 

unnecessary regions pseudochord-induced by each other. Step 16 remedies this. It is 

accomplished by checking each end of each member LV of VS. If an endpoint e l  of LV is 

on a part of bdy(Q) in an unnecessary region RH pseudochord-induced by some horizontal 

pseudochord LH, then LH and LV each cross into (but are not wholly contained in) the 

unnecessary region pseudochord-induced by the other. For any LV, there are at most two 

such LH7s (one for each end of LV), and each such LH may be found in constant time by 

using the information generated in step 8. Once LH is known, we simply readjust the y- 

coordinate of e l  and the x-coordinate of e2 so that e l  and e2 are the same point, i.e. the 

point of intersection of LH and LV. For each vertical pseudochord LV, this process can be 



carried out for each end in constant time, and since there are at most O(n) vertical 

pseudochords, step 16 can be accomplished in O(n) time. 

Step 17-Form cute from remaining pseudochords and boundary segments 

Step 17 goes through the remaining boundary segments and pseudochords of HS, VS, and 

bdy(Q), and produces a representation of the pseudogon as a series of elements (isolated 

line segments and funnels) connected end-to-end, from S to T. This is done in a number of 

steps: 

Comment: Some parallel pseudochords may overlapthis occurs, for instance, in a 

polygon such as shown in figure 22. Step 1 takes care of this problem. 

1) First, sort the remaining elements of HS by y-coordinate. Then, for each set HSy of 

HS with identical y-coordinates, label the endpoints of each member of HSy as to 

whether they are left or right endpoints. Sort these endpoints into a vector V by x- 

coordinate, and iterate down V, merging overlapping members of HSy. These 

various sorting stages may be performed in cumulative O(n log n) time, and the 
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To correct this, first sort all boundary endpoints by y coordinate, and then within 

each set Sy of segment endpoints with the same y-coordinate, sort the members of 

Sy by x-coordinate. By iterating down the members of Sy, we can identify each 

horizontal boundary segment HB of cutQ, and find the points inside HI3 at which 

other boundary segments of cutQ intersect HB; HB should be segmented at these 

points, and we do so. Doing this processing will take O(n log n) time, due to the 

sorting. 

merging of overlapping members of HSy may then be canied out in linear time on 

the size of HSy, for each HSy, resulting a total sequential time of O(n log n) for this 

step. 

After processing HS in this manner, we merge overlapping elements of VS, using a 

similar process. 

Comment: There will be no overlapping segments in the remaining sections of 

bdy(Q), so we do not need to merge overlapping segments of bdy(Q). 

Identify each remaining segment in HS, VS, and bdy(Q) with a unique 

identification number, and label the endpoints of each segment with the same 

number, in O(n) time. For brevity, we will henceforth refer to the remaining 

segments of HS, VS, and bdy(Q) as just boundary segments, meaning segments of 

bdy(cutQ). 

In merging overlapping members of HS and VS, we may have inadvertently 

merged some boundary segments of subpolygons of cutQ with isolated line 

segments of cutQ, or merged a boundary segment of one funnel with a boundary 

segment of another. 



After having processed the horizontal segments of cutQ in this manner, re-son the 

endpoints of the boundary segments and process in the obvious similar manner, so 

as to segment the vertical boundary segments of cutQ. 

4) Move all endpoints of all boundary se,gnents into a vector V. Sort these endpoints 

primarily by x-coordinate, then secondarily by y-coordinate. Congruent points will 

be placed next to one another in V. Total time for this step is O(n log n). 

5) Initialize the variable CP (current point) to S. 

6 )  Find the point or points in V congruent to CP, doable in O(n) time by a linear 

search. There are two possible cases: 

6.1) If two points of V are congruent to CP, then two segments of bdy(cutQ) are 

incident on CP, and CP is one endpoint of a funnel. Segment information will 

permit us to find the other ends of the boundary segments incident on CP, and 

then by chaining from one endpoint of a boundary segment to the next (as was 

done in step 1 of SIMPLIFY), we can move down each doubly-monotone path 

making up the funnel, building the funnel in a seperate data structure as we go. 

The other end of the funnel will be reached when a point congruent to T is 

encountered, or a point with more than two boundary segments incident on it is 

encountered. (This last condition is testable in constant time, as if there are, 

say, three boundary segments incident on a vertex w, there will be three 

adjacent copies of w in V.) Once the other end of the funnel is reached, set CP 

to this other end, remove from V the information concerning this funnel, and if 

necessary (if T was not reached), repeat step 6  on the next element of cutQ, 

whose endpoint nearest S will now be CP. 

6.2) If there is only one point of V congruent to CP, then CP is one end of an 



isolated line segment or series of line segments. We can chain down these line 

segments, inserting them into the copy of cutQ under construction as we go. 

We proceed in this manner until T is encountered or a vertex with more than 

one segment of bdy(cutQ) is encountered, at which point we modify CP to the 

new vertex, remove from V the information concerning the line segments we 

have chained down, and if necessary (if T has not been reached), repeat step 6. 

Step 6 will spend a constant amount of time on each boundary segment of cutQ, and 

hence requires a total of O(1og n) time. 

7) After T has been reached, the elements of cutQ will have been extracted from HS, 

VS, and bdy(Q) in the order a smallest path from S to T would encounter them. 

Each of the above 6 steps took a maximum of O(n log n) time, and so step 17 of 

SIMPLIFY takes a total of O(n log n) time. This completes step 17 of SIMPLIFY. 

4.3. Analyzing the Pseudogon 

At the end of step 17 of SIMPLIFY, we have reduced our original polygon Q to a 

pseudogon, cutQ. Since the pseudogon was constructed by removing regions of Q which 

by the exclusion lemma would not contain any part of a smallest path from S to T, it is 

apparent that by finding a smallest path in the pseudogon, we also find a smallest path in 

Q. However, there is a very significant potential efficiency problem with actually 

specifying a smallest path in the pseudogon, as discussed in the next subsection. Instead, 

we will concentrate on finding the dimensions of a smallest path from S to T in the 

pseudogon, a task which will be addressed by a later subsection. 

4.3.1. Smallest Paths in the Pseudogon 



Generating a smallest path through cutQ is a matter of generating smallest paths through 

the isolated line segments and funnels comprising cutQ, and linking these various smallest 

paths. Generating smallest paths through the isolated line segment portions of cutQ can 

easily be accomplished by a traversal of cutQ, using the information generated by step 17 

of SIMPLIFY, and if we knew a smallest path through each funnel in cutQ, a further 

traversal of cutQ would serve to link all the smallest paths together. However, consider the 

polygon shown in figure 23, which is a funnel and its own pseudogon. Without specifying 

any particular strategy for finding a smallest path from S to T in this polygon, it is apparent 

that a large number of segments will be needed in any rectilinear path from S to T in the 

polygon. Even worse, polygons of the same shape, but with less distance between the 

diagonal boundary segments, will need many more segments in a rectilinear path from S to 

T. In fact, as we consider narrower and narrower polygons, the number of segments 

needed in a smallest path from S to T grows without being bounded in any way by the 

number of vertices in the enclosing polygon. Since generating a smallest path will always 

involve at least O(1) time for each segment in the path, it is obvious that we cannot obtain 

an "efficient" algorithm for generating a smallest path. Hence, in the next subsection we 
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turn our attention to finding the dimensions (length and straightness) of a smallest path 

from S to T. 

Note, however, that although the number of segments in a smallest path through a polygon 

or funnel such as in figure 23 is not bounded by the number of vertices in the polygon (or 

funnel), this does not mean that the number of segments in a smallest path through such a 

polygon is unbounded on the input size of the problem. Polygons such as in figure 23 are 

"long" and "narrow", and so require large absolute differences in the x- and y- coordinates 

of their various vertices. Given this, it seems likely that in a logarithmic-cost RAM, a 

more realistic model than the unit-cost RAM for large problem instances, the number of 

segments in a smallest path from S to T would have a bound exponential on the input size 

of the problem. My thanks to Luis Goddyn of the Department of Mathematics for 

reminding me of this point. 

4.3.2. Dimensions of Smallest Paths in the Pseudo~on 

Calculating the dimensions of a smallest path from one end of a funnel to the other is a 

significant problem in its own right, and we defer discussion of it until chapter 5. For now 

we assume that the dimensions of a smallest path through a funnel (between its ends) can 

be calculated in O(m) time, where m is the number of vertices which define the funnel. 

This result will be shown in chapter 6. 

Given a pseudogon represented as a chain of elements of cutQ from S to T, and with the 

above assumption, finding the dimensions of a smallest path from S to T in cutQ (and 

hence in Q) is reasonably straightforward. Basically, we calculate the dimensions of a 

smallest path through each element of cutQ (between the ends of each element), and decide 

at the intersection w of each adjacent pair of elements whether or not a smallest path from 

S to T will require a bend at w; if so, w is assigned a value of 1, otherwise it receives a 



value of 0. Then, by chaining down the elements of cutQ from S to T, we can 

cumulatively find the number of bends (or segments) a smallest path from S to T will 

require, and its length. There will be at most O(n) elements of cutQ, where n is the number 

of vertices in Q, so this process is executable in O(n)+f(n) time, where f(n) is the order 

function representing the time needed to calculate the dimensions of smallest paths through 

all the funnels of cutQ. As will be shown in chapter 6, dimensions of a smallest path 

through each funnel may be found in O(m) sequential time, where m is the number of 

vertices in the funnel, and since the total number of vertices in all funnels will not exceed 

n, f(n) will be just O(n). 

The one point which makes this process slightly more involved than the above might 

suggest is the possibility of funnels such as shown in figure 24. Here we have two smallest 

paths through the funnel, indicated by the thick lines, such that each of the paths arrives at 

each end of the funnel going in a different direction than the other path. These paths really 

represent two classes of paths possible in any such funnel, each possible smallest path 

through such a funnel being put into one class or the other depending on whether its last 



Funnels such as this could conceivably cause problems if they were chained together, as a 

"ripple effect" might be encountered, where we are unsure of exactly which class of 

smallest paths of such a funnel to consider in calculating the dimensions of a smallest path 

through cutQ. If there were O(n) of these funnels, with two potential classes of smallest 

paths through each, then we would have O(2") possible combinations to consider, in order 

to determine the correct number of bends in a smallest path through cutQ. n could be as 

large as the number of vertices in Q. 

Closer inspection shows that this problem does not arise. In order to have a ripple effect as 

described above, we need to have a series of funnels such that the intersection point of 

adjacent funnels has two rectilinear boundary segments of each funnel incident on it, as 

shown in figure 25. However, this configuration will never arise, as if it did, it would 

imply that either Q was not a simple polygon, or that some shortest path from S to T is not 

entirely contained in cutQ, which contradicts a previous lemma. The reader is invited to 

verify this in more detail. Any other configuration of an intersection point w between a 

funnel and a funnel or a funnel and a line segment forces a smallest path from S to T to 
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pass through w with a specific orientation, and thus ~ n ~ e r t a i n t y  as to which orientation 

should be assumed is impossible. Thus, no ripple effect may occur. 

This does not mean that funnels such as shown in figure 24 will not occur in cutQ. It does 

mean that deciding whether we should use one class of path or the other through such a 

funnel F, when trying to minimize the number of bends that will occur in a smallest path 

from S to T at the intersection points of elements of cutQ, may be made as a local decision. 

Thus, handling funnels such as shown in figure 24 will cause the running time for the 

overall algorithm to be multiplied by at most two, because at most we need to do a local 

consideration in each funnel of which of two possible classes of smallest paths to use in 

that funnel. 



5. find in^ the Dimensions of Smallest Paths in Parallel 

A CREW PRAM is a theoretical model of a parallel processing computer. The acronym 

stands for Concurrent Read Exclusive Write Parallel Random Access Machine. A CREW 

PRAM assumes some number of processors n, all operating simultaneously. At any time, 

any processor can read any memory location that is not being written to by another 

processor, and can write any memory location that is not being written to by another 

processor. The dimensions of a smallest path from S to T in a polygon Q may be found in 

0(log2 n) time on a nPog n-processor CREW PRAM, which is an optimal speedup of the 

sequential algorithm, or in O(1og n log log n) time on a n-processor CREW PRAM, which 

is a non-optimal speedup, but a better time bound. The following material describes how 

this may be accomplished. 

To solve the overall problem in parallel, we first describe how the simplification of the 

polygon into a pseudogon may be solved in O(1og n) parallel time, using O(n) processors. 

Then, assuming the problem of finding the dimensions of smallest paths through funnels 

has been solved (which solution will be given in chapter 6), we show how the dimensions 

of a smallest path through the resulting pseudogon may be obtained in O(1og n) parallel 

time using O(n) processors . Chapter 6 will show that the dimensions of smallest paths 

through the various funnels may be found in 0(log2 n) time, using O(n/log n) processors, 

or in O(1og n log log n) time using O(n) processors. Since we will be able to simplify the 

polygon and (ignoring the time to solve the funnel problem) find the dimensions of a 

smallest path through the pseudogon in O(log n) time using O(n) processors, it will 

immediately follow that the entire problem may be solved in 0(log2 n) time on a n~log n- 

processor CREW PRAM, or in O(1og n log log n) time on a n-processor CREW PRAM. 

5.1. A Parallel Algorithm for Generating cutQ 
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We assume the presence of n processors, one assigned to each vertex of Q. The following 

are how the steps of SIMPLIFY (previously described) may be done in O(1og n) parallel 

time. 

Step I--Sort Polygon Edges into Traversal Order 

As for the sequential version, we sort the points defining line segments primarily by x-co- 

ordinate and secondarily by y-coordinate, using Cole's sorting algorithm[l4], 

which provides a low-overhead O(1og n), n processors general-use sort. We then use 

recursive doubling [15] to fuse portions of the boundary into successively larger boundary 

portions in traversal order, starting with adjacent boundary segments. This will permit us 

to build a traversal order data structure of the boundary segments in O(1og n) phases, each 

phase taking O(1) time. 

Step 2--Calculate traversal Numbers 

Assume we are calculating the traversal numbers relative to S. At each vertex of Q, we 

calculate in constant time the "traversal number increment7'-the amount the traversal 

number would change when going through that vertex in a sequential traversal. Then, 

using parallel prefix, the traversal numbers over all the boundary segments may be 

calculated in O(1og n) time using n/log n processors. See appendix 111 for a description of 

the parallel prefix operation. 

Step 3-Find Horizontal and Vertical Extreme Points, Compute Trapezoidal Edges 

Each processor may decide in constant time if the vertex it is assigned to is a horizontal or 

vertical extreme point. An O(1og n log log n)time algorithm using n processors for 



trapezoidal edge finding is given in [16], and this timing may be improved to O(1og n) time 

using n processors through the application of fractional cascading[l7]. 

Step &Find Horizontal Pseudochords 

We take the extreme points as sorted on their y-coordinate, possible in O(1og n), n 

processors parallel time. This sorted set may be partitioned so that all vertices in the same 

partition have the same y-coordinate; partitioning in this manner may be accomplished in 

O(1og n) time, through use of the parallel prefix algorithm. Next, for each vertex v, find 

the points returned by PROJECI'(v, left) and PROJECT(v, right), and add them to v's 

partition. This may be accomplished by storing all vertices v into a vector which leaves an 

empty element to each side of each v, and then storing the results of the PROJECT 

functions in the empty elements. Each partition is then sorted by x-coordinate and 

duplicates are removed, taking a maximum of O(1og n) parallel time for all partitions. 

Then, with a constant number of vertices assigned to each processor, each point in a 

partition may be tested in constant time as to whether it is just a point on a boundary, or a 

highest or lowest, total or non-total extreme point. Depending upon the results of this test, 

we can mark each point as being the start (left endpoint) or end (right endpoint), or both 

start and end of some upper or lower pseudochord, or in the case of S and T, as being 

uninvolved. See step 4.4 in the sequential description of this step of the algorithm for 

details on how each point should be marked. Once this marking is accomplished, it may be 

distributed via two applications of parallel prefix (one for upper pseudochords and one for 

lower pseudochords) using a maximum of O(1og n) time, and the pseudochords themselves 

may then easily be extracted. See appendix III for an example of how parallel prefix may 

be used to distribute information through a vector in this manner. 

Step 5-Mark points at which horizontal pseudochords intersect boundary segments 

Step 5 considers each pseudochord, and marks where that pseudochord intersects the 



boundary of Q if the pseudochord induces an unnecessary subpolygon on Q. Testing for 

unnecessary subpolygons is easily done in constant parallel time by making use of traversal 

numbers, but care must be taken with cases where we have a large number of markers to 

put on one boundary segment. Assume we are considering the right ends of horizontal 

pseudochords, and wish to perform a mark of the boundary segments according to these 

right ends. We may order the horizontal pseudochords by y-coordinate, number them 

according to their order, and associate with each pseudochord the boundary segment the 

right end of the pseudochord will mark, using some arbitrary numbering of the boundary 

segments to identify them. By sorting this vector on the field containing the boundary 

segment identification numbers and partitioning it according to these numbers, we can then 

find out exactly what and how many horizontal pseudochords have their right end on each 

particular boundary segment. From this point, processing is easy-we could, for instance, 

associate with each boundary segment a vector large enough to contain the right ends of all 

pseudochords incident on that boundary segment, use the vector to contain the 

pseudochord marking information, and when marking is complete, perform a parallel 

prefix on the vector to distribute the marking information across the edge. 

Using Cole's sorting algorithm and the parallel prefix algorithm, we may do all of the 

above in O(1og n) time using n processors. 

Step &Traverse bdy(Q), propagating information from step 5 

By putting the salient information from step 5 into a traversal-ordered vector of edges and 

then doing a parallel prefix on that vector, this step may be accomplished in O(1og n), 

nPog n processors time. 

Step 7--Remove redundant horizontal pseudochords 

O(n) horizontal pseudochords may be checked in constant time to see if they are redundant, 



and actual removal may be done in a number of ways, in a maximum of O(1og n) parallel 

time, assuming we wish a compacted (no holes) data structure after the removal. 

Step 8--Mark boundary segments or parts thereof according to what pseudochords the 

segments belong to 

May be done with parallel prefix in O(1og n) parallel time. 

Steps 9-13-Vertical analogues of steps 4-8 

As described. 

Steps 14 and 15---Remove redundant horizontal and vertical pseudochords 

This involves only a local check on each remaining pseudochord, so is doable in constant 

time, plus an additional O(1og n) time for data structure compaction, if desired. 

Step I M l i p  horizontal and vertical pseudochords against one another 

May be done in parallel for each pseudochord, in constant time. 

Step 17-From the remnants, build cute in traversal order 

As in the sequential implementation of step 17, the parallel version of step 17 of 

SIMPLIFY begins by first merging overlapping vertical and horizontal boundary segments, 

then segmenting the merged segments to the extent necessary to ensure that merged 

segments do not go through vertices of bdy(cutQ). The iterations over vectors performed 

in the sequential version may be done in the parallel version using parallel prefix, and the 

other processing involved in these steps is parallelizable in an obvious manner. 



As in step 1 of the parallel version of SIMPLIFY, we use recursive doubling to build up 

pointer links spanning subpaths of bdy(cutQ) which contain only vertices with exactly two 

segments of bdy(cutQ) incident on them. To do this, we must first sort the vertices of 

bdy(cutQ) so that congruent points end up adjacent to one another, as was done in step 17 

of the sequential version of the algorithm. Using Cole's algorithm, this may be 

accomplished in O(1og n) time using n processors. This step makes the recursive doubling 

possible because we now have a constant-time test to determine if more than two segments 

of bdy(cutQ) are incident on one vertex, and so we know when not to continue fusing 

subpaths of bdy(cutQ) during the recursive doubling. Given n vertices in cutQ, the 

recursive doubling will take O(1og n) steps using n processors, each step executing in 

constant time. 

Once we have determined the endpoints of subpaths of bdy(cutQ) containing only vertices 

with exactly two segments of bdy(cutQ) incident upon them, it is an easy matter to identify 

which subpaths constitute part of a funnel boundary (just those subpaths which share their 

endpoints with some other subpath), and which subpaths consist of chains of isolated line 

segments. By assigning a unique id number to each subpath identified by the recursive 

doubling, and then running the recursive doubling process in reverse, we can distribute 

each subpath id to each boundary segment in the given subpath. Sorting on the subpath id 

then gives a set of vertices (some of which are duplicated, because they belong to more 

than one funnelfisolated line segment) partitioned according to which funnel or chain of 

isolated line segments the vertices belong to. From this point, it is a simple matter to build 

each funnel or chain of isolated line segments, and then by sorting on the endpoints of the 

funnelshine segment chains and performing one more recursive doubling to link everything 

together, we can build cutQ as a series of pseudogon elements from S to T in O(1og n) 

time, using n processors. 

Since each of the above steps is doable in O(log n) time using an n-processor CREW 



PRAM, we conclude that the parallel version of SIMPLIFY may be accomplished in 

O(1og n) time using n processors. 

5.2. Finding the Dimensions of Smallest Paths in Parallel 

In the chapter concerning smallest paths through funnels, it will be shown that the 

dimensions of a smallest path through any funnel can be obtained in 0(log2 n) time using 

d o g  n processors, or in O(1og n log log n) time using n processors, where n is the number 

of vertices in the funnel. Given that step 17 of SIMPLIFY has produced a representation 

of cutQ as a series of line segments and funnels from S to T, chapter 6 shows how to find, 

in parallel, the dimensions of smallest paths through each of these line segments and 

funnels, find the appropriate bend increment to use at each intersection of two elements of 

cutQ, and then use parallel prefix to determine the dimensions of a smallest path from S to 

T. Time bounds for these operations will be a cumulative maximum of 0(log2 n) using 

nPog n processors, or O(1og n log log n) using n processors (the limit on efficiency being 

imposed by the parallel processing of funnels, as described in chapter 6). 

Except for the use of parallel prefix, finding the dimensions of a smallest path through 

cutQ in parallel is almost the same as doing the same thing sequentially, so refer to the 

section on finding smallest path dimensions sequentially (section 4.3.2) for more details. 



Smallest paths through funnels may require a number of segments not bounded by any 

function on the number of vertices in the funnel. This provides a strong incentive to look 

for procedures which permit efficient determination of the dimensions of smallest paths 

through funnels, without necessarily constructing such paths. Procedures of such a nature 

are the subject of this chapter of the thesis. 

The following exposition will be considerably simplified if we make certain assumptions 

about the nature of the funnels we are dealing with. The following section of this chapter 

gives various definitions, and then describes these assumptions. Further sections in the 

chapter will then show how to efficiently determine the dimensions of smallest paths 

through such funnels sequentially and in parallel, and a closing section will discuss what 

need be done to generalize these results to all funnels. 

6.1. Definitions, Assumptions, and Basic Results Concerning Funnels 

Recall from Chapter 3 that a funnel is a doubly-monotone polygon with the added property 

that each end of a funnel has a rectilinear boundary segment incident on it. The following 

definitions apply. 

Definitions: [degenerate, simple, and diagonal funnels, PDFs]: A degenerate funnel is 

one which has only three boundary segments. A simple funnel is one which has four 

boundary segments. A diagonal funnel is a non-degenerate funnel which has only diagonal 

boundary segments, excepting one rectilinear segment adjacent to each end of the funnel. 

A parallel diagonal funnel, abbreviated PDF, is a diagonal funnel F such that the two 

rectilinear boundary segments of F (one adjacent to each end of F) are parallel. 



Assumption: From this point until the end of this chapter (where there is a subsection on 

dealing with funnels which are not parallel diagonal funnels), we will assume that all 

funnels are parallel diagonal funnels, unless explicitly noted otherwise. 

Definitions: [entry, exit, end-segment, funnel corner]: Let F be a funnel. We will be 

considering only paths through F which connect the two ends. For convenience, we will 

treat any path P within F and between its two ends as a directed path, and say that the end 

of F which is the origin of P is the entry to F, and the end of F which is the terminus of P is 

the exit of F. The two rectilinear boundary segments adjacent to the ends of F (one at each 

end) are called the end-segments; the end-segment adjacent to the funnel entrance is called 

the entry segment and the one adjacent to the funnel exit is called the exit segment. The 

endpoints of the end-segments which are not the ends of F are called the corners of F; the 

corner of F which is an endpoint of the entry segment is the entry corner and the comer of 

F which is an endpoint of the exit segment if the exit corner. See figure 26 for examples. 

Definition: [standard position]: A funnel is in standard position if it is oriented so that its 

entry segment is horizontal, and its exit point is below and to the right of the entry point. 

The diagonal boundary segments of a funnel in standard form will all slope down and to 

the right. The funnel of figure 26 is in standard position. 

Any funnel can be put into standard position by use of reflections and rotations, and doing 

so permits us to talk about it without the problem of handling different orientations. A 

funnel put into standard position can be returned to its original position by inverting the 

original sequence of reflections and rotations, and any paths constructed in the funnel can 

be transformed along with it, so considering funnels only in standard position involves no 

loss of generality. 

Definitions: [projection of a point through a funnel, projection path, standard projections]: 
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Let F be a PDF in standard position, and let w be a point on the entry segment of F, but not 

the entry point itself. The projection of w through F, denoted pF(w) is the point w' on the 

exit segment of F obtained by the following process: 

Project w down until it intersects a point w l  on bdy(Q). 

Project w 1. to the right until it intersects a point w2 on bdy(Q). 

Project w2 down until it intersects a point w3 on bdy(Q). 

Project w3 to the right . . . 

Project wn-1 (for some n) to the right until it hits a point wn on bdy(Q). 

Project wn down until it hits a point w' on the exit segment. 

Of course, we may not even need as many projections as explicitly given above, eg. 

we might find w' immediately upon projecting w downward. 



The projection path generated by projecting w through F, denoted ppF(w) is the path whose 
-- I segments are ww 1, wlw2, m, . . ., wn-1 wn, wnw . 

By projecting points up and to the left, we can in a similar manner define the inverse 

projecnon of a point w' on the end segment onto a point w on the entry segment, denoted 

~ ' ~ ( w ' ) ,  and the accompanying inverse projection path, denoted ~p '~(w ' ) .  pF and p'F are 

inverse functions, and so P'~(P~(w))=w, and pF(p ' F ( ~  '))=w '. The standard projection and 

standard projection path are obtained by projecting the entry corner through F, and the 

inverse standard projection and inverse standard projecnon path are obtained by 

projecting the exit corner through F. 

When there is no danger of confusion as to which funnel we wish to project a point 

through, we will abbreviate pF(w) to just p(w), and ppF(w) to just pp(w). As well, pF(w) 

and P '~(w')  are distinguishable as a projection and an inverse projection simply by virtue 

of the fact that w is on the entry segment of F while w' is on the exit segment of F. Thus, 

as long as a point on which the projection is to be taken is specified, we do not need to 

explicitly differentiate between projection and inverse projection functions, and so for 

convenience we will generally write pIF(wO) as just pF(w'), and similarly for ~ p ' ~ ( w ' ) .  

Projection Path Lemma: For any parallel diagonal funnel F, the standard projection path 

is a straightest path from the entry segment to the exit segment. 

Proof: [by induction on the number of segments in the standard projection path]: 

First, note that because the first and last se,pents of any path P between the ends of a 

parallel diagonal funnel will be parallel, the number of segments in P must be odd. 

Basis: For any PDF F, the entry and exit segments will be non-intersecting, so if 

the standard projection path through F has just one segment, the lemma is obvious. 



Inductive Assumption: For some integer k, for any PDF F, assume that if the 

standard projection path P of F has k or fewer segments,. then P is a straightest path 

from the entry segment of F to the exit segment of F. 

Inductive Step: Let F be some PDF such that its standard projection path PA has 

k+2 segments. We can form a parallel diagonal subfunnel F' of F by taking that 

portion of F below and including the first horizontal segment L in PA. See 

figure 27. The subpath PA' of PA in F' from the entry comer of F' to the exit 

segment of F' will then form a k-segment standard projection path for F', and so the 

inductive assumption applies. L forms a chord for F, inducing two regions in F 

with one region containing the entry segment of F and one region containing the 

exit segment of F, so any path from a point on the entry segment of F to a point on 

figure 27 
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A highly schematic diagram. In particular, note that PB is shown as a 
smooth curve, when it is of course a rectilinear path. For clarity, many of 
the components of the diagram arc not named. 



the exit segment of F must cross L. Let PB be a path from a point wl  on the entry 

segment of F to a point w2 on the exit segment of F, let wL be the first point of PB 

which is on L, and let PB 1 be the subpath of PB from wl  to wL. There are two 

cases, depending on the configuration of PB 1. 

1) If PB 1 is anything other than the first segment in PA, then let PB2 be the 

subpath of PB from wL to w2. PBl must have at least three segments (a 

vertical segment leaving the entry segment of F, a horizontal segment, and a 

vertical segment arriving at wL), and by the inductive assumption, PB2 must 

have at least k segments; even if the last segment of PB1 and the first segment 

of PB2 form a single segment in the path PB, this still means that PB must 

have at least k+2 segments. 

2) If PBl is just the first segment in PA, then because the first segment of PA 

can by definition go no farther down, the second segment of PB will have to 

be a horizontal segment contained in the second segment of PA, linking the 

first segment of PB with the subpath PB3 made up of the third to the last 

segments of PB. This means that the inductive assumption applies to PB3, 

and so this subpath has at least k segments. Since the horizontal second 

segment of PB cannot merge with the vertical first segment of PB or the 

vertical first segment of PB3-the third segment of PB-this means that PB is 

composed of at least k segments in PB3, plus its own first two segments, for a 

total of at least k+2 segments. 

Therefore, we have by induction that the standard projection path through any 

diagonal funnel F is a straightest path between the end-segments of F. This 

completes the proof of the projection path lemma. 

Corollary: The inverse standard projection path through a funnel F is also a straightest 



path between the end-segments of F. 

Definition: [standard end-to-end path and inverse standard end-to-end path through a 

funnel]: Let F be a funnel with entry e l ,  exit e2, entry corner c l  and exit corner c2, and let 

c l '  and c2' be the projection and inverse projection respectively. The standard end-to-end 
- 

path through F is the path from e l  to e2 formed by the concatenation of e lc l ,  the standard 

projection path, and c l  'e2. The inverse standard end-to-end path is the path from e 1 to e2 

formed by the concatenation of elc2', the inverse standard projection path through F, and 
- 
c2e2. 

End-to-End Lemma: Let F be a funnel in standard position, with entry e l  and exit e2, 

and let P be the standard end-to-end path through F. P is a smallest path from e l  to e2. 

Proof: P will be a shortest path because it is monotone in both rectilinear directions. Also, 

if P' is the subpath formed by removing the first and last segments of P, we know by the 

projection path lemma that P' is a straightest path from the entry segment of F to the exit 

segment of F. Because F is a diagonal funnel, any path between its endpoints must have a 

horizontal first and last segment, and a subpath between the entry and exit segments, which 

for P is PO. since P* is a straightest path between the two end-segments, and since the first 

and last horizontal segments are unavoidable, we conclude that P is a straightest path 

between the two ends of F. Since P is both shortest and straightest, it is therefore smallest. 

Corollary: The inverse standard end-to-end path through a funnel F is also a smallest path 

between the endpoints of F. 

Note: The end-to-end lemma means that to find the number of segments in a smallest path 

through a funnel, we need simply find the number of segments in a standard projection 

path through that funnel, and add two. The problem of finding the length of a smallest path 

through a funnel has a trivial solution-this length will just be the rectilinear distance 



between the funnel ends. Therefore, succeeding sections concentrate on how to find the 

number of bends in a standard projection path through an arbitrary funnel. 

6.2. Projection Paths through Simple Funnels 

This section will show that the projection of any point through a simple PDF, and the 

number of segments in its projection path, can both be found in constant time. 

Consider a simple PDF in standard form; in particular, consider the funnel F shown in 

figure 28. In this case, the exit segment is shorter than the entry segment, causing the 

funnel to narrow as it moves downwards. If the standard projection path through F has just 

one, two, or three segments, we can calculate it in constant time. Otherwise, let A, B, and 

C be the first three segments in the standard projection path P through F. 

figure 28 
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If the two diagonal boundary segments off  have slopes ml and m2 as shown, and the 

lengths of A, B, and C are a, b, and c respectively, we can certainly say that Im,l = c/b, and 

Im21 = ah, and hence Iml/m21 = (c/b)/(a/b) = cla. Because of the way P is defined, this 

calculation will produce the same ratio when applied to any pair of successive vertical 

segments excepting the last vertical segment, and so we can see that any vertical segment 

in P, except the first and last vertical segments, will have length (c/a)*L, where L is the 

length of the preceding vertical segment in P. The length of the first vertical segment in P 

will be just a, and the length of the last vertical segment in P is not necessarily related to 

the lengths of the preceding segments in any way, because this last segment may (and 

usually will) reach the exit segment before it encounters the lower diagonal boundary of P. 

If we say that P has k+l vertical segments, then it is easy to see that the lengths of the first 

k vertical segments may be obtained through the use of the ration cla, while the length of 

the last vertical segment of P cannot necessarily be obtained in this manner. The total 

vertical distance d traveled by P must be 

where u is the length of the last vertical segment in P, which cannot be included in the 

summation because its length cannot be predicted from the length of the previous vertical 

segment in P. Using the closed form of the expression, we can solve fork and obtain 

where d will of course be just the vertical dimension of the funnel. Making use of the fact 

that u 5 a ( ~ / a ) ~ ,  and hence 



we can then set u in (2) to 0, solve for k, and take rkl as the number of vertical se,oments in 

P. Given rkl, the number of vertical segments in P, the number of horizontal segments in P 

will be rkl-1, and so the total number of segments in P is Tkl-1. 

From the preceding, it is apparent that the following pieces of information may be 

calculated in constant time: 

i) c/a=Iml/m21. 

ii) a = len 1 *lmll, where lenl is the length of the entry segment. 

iii) k, from equation (2).  

iv) number of segments in P = Xkl-1 

v) vertical dimension of P = vertical dimension of F. 

vi) horizontal dimension of P = a* [ 1 - ( ~ / a ) ~ - ~ ~ ] / [ l  -(c/a)]/lm21. This is derived 

from the fact that a*[l-(~/a)~~-"]/[l-(c/a)] is the vertical distance traveled by 

P less the length of the last (vertical) segment of P; that dividing this result 

by Im21 gives the horizontal distance traveled by P can be seen be 

considering the width of triangle T in figure 28. 

The above applies to simple PDFs which narrow as they move from the entry to the exit. 

For parallel simple diagonal funnels which widen as they move from the entry to the exit, 

we will need to use a different closed form in place of equation (2); alternatively, we could 

do a conceptual switch of the entry and exit. Parallel simple diagonal funnels whose 

diagonal sides are themselves parallel have a particularly simple closed form (just 

d = ka + u) which must be used in place of (2).  

The above result may be used to find the projection or dimensions of a projection path for 

any point on the entry segment of F, and not just the entry comer. Let w be some point on 

the entry segment of a simple PDF F, as shown in figure 29. The first and if necessary the 
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The second segment of ppF(w) induces the 

subfunnel F' on F, and the third to the last 
segments of ppF(w) form a standard 

projection path for F. 

second segments of ppF(w) can be calculated in constant time; if it exists, the second 

segment L of ppF(w) induces a subfunnel F' of F, below L. The third to the last segments 

of ppF(w) will form a standard projection path for F', and so it is easy to analyze this 

section of ppF(w) and then use the results of such an analysis to find the pF(w) and the 

straightness of ppF(w). 

From the above, it is obvious that the projection of any point w on the entry segment of a 

simple funnel F through F may be found in constant time, as maythe number of segments 

in the projection path of w. 

6.3. Sequential Calculation of Smallest Paths through Non-Simple Funnels 

Given any non-simple funnel, we can view it as a union of simple funnels. The smallest 

set of simple funnels whose union forms a non-simple funnel F is known as the 

decomposition of F. 



Definition: [decomposition of a funnel]: Let F be a PDF, let V be the set of vertices of F, 

and let Vd=V\(el, e2, c l ,  c2), where e l  and e2 are the funnel ends and c l  and c2 are the 

funnel comers. The set Hd of horizontal chords of F with one or both endpoints in Vd is 

called the decomposition set for F, and the partitioning Hd induces is called the 

decomposition of F. See figure 30 for an example of the decomposition of a funnel. 

Given a funnel F with n vertices, we can partition it into O(n) simple funnels in O(n) time 

by doing a traversal and merge of the vertices of F, assuming the edges of F are stored in 

traversal order. Once we have obtained a decomposition, we can take the entry comer of 

F, project it through the topmost simple funnel of the decomposition in constant time, 

project the resulting point through the next simple funnel in the decomposition in constant 

time, and so forth, and in this way find a standard projection path through F in O(n) time. 

6.4. Parallel Calculation of Smallest Paths through Non-Simple Funnels 

figure 30 
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In this section, we will show how the number of segments in a straightest path through a 

PDF may be obtained in 0(log2 n) time using nPog n processors, or in O(1og n log log n) 

time using n processors. This assumes that the funnel is given as a vector of vertices sorted 

in traversal order. 

6.4.1. Funnel Medians 

To calculate the number of segments in a smallest path through a PDF in parallel, we make 

use of the fact that any end-segment of any PDF F may be considered as being made up of 

two line segments, such that all projection paths through F originating on one of these line 

segments have a certain number of segments, and all projection paths through F originating 

on the other of the segments have a different number of segments. This result is described 

more formally and proved in this section, and then used in later sections. 

Notation: [intervals]: The following will make extensive use of standard interval 

notation, where [xl, x2] denotes the real interval from xl to x2 inclusive, (xl, x2) denotes 

the real interval from xl to x2 exclusive of xl and x2, and (xl, x2] and [xl, x2) denote the 

intervals from xl to x2 exclusive of xl and x2 respectively. 

Definitions: [entry and exit medians, median pair, projection path pair, major and minor 

entry and exit intervals]: Let F be a PDF with entry e l ,  exit e2, entry comer c l ,  exit comer 

c2, entry segment s l ,  and exit segment s2, and having k segments in its standard projection 

path. We use x- and y-subscripts to denote the x- and y-coordinates respectively of the 

subscripted point. If there are points ml on s l  and m2 on s2 such that the following two 

statements hold: 

1) Every point w on s l  s.t. w, E (el,, ml,) projects to a point w' on s2 s.t. 

w', E (m2,, e2,), using a projection path of k+2 segments, and 



2) Every point w on s l  s.t. w, E [ml,, cl,] projects to a point w' on s2 s.t. 

w', E [c2,, &,I, using a projection path of k segments 

then the 2-tuple <k, k+2> is called the projection path pair for F, and ml  and m2 are called 

median points of F, with ml  being the entry median and m2 the exit median. Collectively, 

m l  and m2 are often called the median pair for F. The open-ended subsegment of s 1 with 

points whose x-coordinates are in the range (el,, ml,) is called the minor entry interval for 

F, and the corresponding subsegment of s2 with points having x-coordinates in the range 

(&,, e2,) is called the minor exit interval for F. The subsegment of s l  with points having 

x-coordinates in the range [ml,, cl,] is the major entry interval for F, and the subsegment 

of s2 with points whose x-coordinates are in [c2,, m2,] is called the major exit interval for 

F. 

We have the following lemmas. 

Simple Interval Lemma: Let F be a simple PDF with entry e 1, exit e2, entry comer c 1, 

and exit corner c2. p(c1) is an exit median for F, and p(c2) is an entry median for F. 

Proof: Let F be a simple PDF with a standard projection path of k segments, two diagonal 

boundary segments with the leftmost labeled G and rightmost labeled H, and all other parts 

of F labeled as shown in the example (with k=3) of figure 3 1. From G we can form the 

linear function g, valid on the interval [el,, c2,] and defined by g(x)=y s.t. (x, y) is a point 

on G. Similarly, from H we can define the linear function h(y)=x s.t. (x, y) is a point on H, 

h valid for y E [cl,,, e2J. If w is a point on m ( e 1 )  (a point on the entry segment but 

not the entry point) and w, is the x-coordinate of w, then it is apparent that w, will be the 

x-coordinate of the f is t  segment of pp(w), and that the x-coordinate of the (2i+l)st 

segment of pp(w) will be (h0g)'(wX), for i an integer s.t. 3 I (2i+l) I k, where k is the 

number of segments in pp(w). As well, since h and g are both order-inverting linear 
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functions, we have that (h"g)' is an order-preserving linear function for all i > 0, so that if 

wl ,  w2, and w3 are all points on elcl s.t. wlx  < w2,< w 3 ,  and t = (hog)' for some i is s.t. 

t(wl,), t(w2,), and t(w3,) all exist, then t(w1,) < t(w2,) < t(w3,), which means the (2i+l)st 

segment of pp(w2) will be between the (2i+l)st segments of pp(w1) and pp(w3). If 

wl=c2'=p(c2), w3=cl, and w2 is any point on c2'cl, then the x-coordinate of the kth 

segment of pp(w2) will lie between the x-coordinates of the point.c2 and cl'=p(cl). 

Therefore, p(w2) will be on c2cl' and pp(w2) will contain k segments. In a similar 

manner, it can be shown that if a point w4 is on e lc22(el ,  c2'), then the jth vertical 

segment of pp(w4) is to the left of the jth vertical segment of pp(c27, but that the j+lst 

vertical segment of pp(w4) is to the right of the jth vertical segment of pp(cl), and that 

therefore any point w4 on e lc22(el ,  c2') must project to a point on c 1 'e2\{c 1 ', e2}, using 

a projection path of k+2 segments. The same process works in reverse of course (i.e. 

projecting from the exit segment of F to the entry segment). This proves the simple 

interval lemma. 



From the above, it is easy to see that the linear function t l  which maps the x-coordinates of 

points on c2'cl to the x-coordinates of their projections maps the interval [c2',, cl,] into 

and onto the interval [c2,, c l  ',I. Thus, t l  must be defined by 

cl' .-  c2, 
tl(x) = (x - c2', + c2, for c2',1 x l c l ,  

and similarly, the linear function t2 which maps the x-coordinates of points on 

elc22(el ,  c2') to the x-coordinates of their projections must be defined by 

t2(x) = (X - e l  x ) ( e 2 ~  - 1 + c Y x  for e l X < x < c 2 ' ,  ~ 2 ' ~ - e l ,  

Definition: [height of a funnel]: If F is a funnel with k chords in its decomposition set, 

then the height of F is defined to be k+l. This is just the number of simple funnels in the 

decomposition of F. 

General Interval Lemma: Any PDF F has a median pair. 

Proof: [By induction on the height of F]: 

Basis: If the height of F is 1, then F is a simple funnel, and by the simple interval 

lemma, we know that F has a median pair. 

Inductive Assumption: Assume for some integer k that any funnel with height less 

than or equal to k has a median pair. 

Inductive Step: Let F be a funnel with height k+l. Let C be a chord in the 

decomposition set of F, and let FA and FB be the subfunnels C induces on F. 

Both FA and FB will have height 5 k, so the inductive assumption applies. Now 



let ma1 and ma2 be the entry and exit medians respectively for FA, and mbl and 

mb2 be the entry and exit medians respectively for FB. There are three cases, one 

with ma2 to the left of mbl, one with ma2 to the right of mbl, and one with ma2 

and mbl being identical. 

Note: In the following, for the sake of convenience we shall be rather loose with 

interval notation, and make statements such as, "the point r is on (el,  cl)", which 
- - 

should be read as, "r is a point on elcl\(el ,  c l  ] ," or as, "r is a point on e lc  1 such 

that r, E (el,, cl,)". The same shorthand will also be used with closed intervals. 

case 1: [ma2 to the left of mbl]: This situation is shown in figure 32. Assume 

that a standard projection path through FA has k, segments, and a standard 

projection path through FB has kb segments. Using the inductive assumption and 

the medians mal, ma2, mbl, and mb2, it can be seen that points on (el, pFA(mbl)) 

will project through F to points on (pFB(ma2), e2), using projection paths of 

(ka+2)+(kb+2)-1 segments, each projection path consisting of a ka+2 segment 

subpath from a point wl  on (el, pFA(mbl)) to a point w2 on (ma2, mbl), a further 

kb+2 segment subpath from w2 to a point w3 on (pm(ma2), e2), and a correction 

of -1 because the last segment of the path from wl  to w2 and the first segment of 

the path from w2 to w3 are a single segment in the path from w 1 to w3. So, points 

on (el, pFA(mbl)) project through F to points on (pm(ma2), e2) with projection 

paths of ka+kb+3 segments. In a similar manner, we can show that points on 

[pFA(mbl), mal) project through F to points on [cb2, mb2) using paths of 

(ka+2)+kb-l=ka+kb+l segments, and that points on [mal, call project to points on 

[mb2, pFB(ma2)] using paths of ka+(kb+2)-l=ka+kb+l segments. Note that the 

endpoints of these intervals may need to be handled as special cases. 

Therefore, (el, pFA(mbl)) projects through F to (pFB(ma2), e2) in ka+kb+3 

segments, and [pFA(mbl), call projects to [cb2, pFB(ma2)l in k,+kb+l segments, 



and of course the inverse projections map (pm(ma2), e2) to (el, pFA(mbl)) and 

[cb2, pm(ma2)] onto [pFA(mbl), call, using ka+k,+3 and ka+kb+l segments 

respectively. This means that ppA(mbl) and pFB(ma2) meet the requirements for a 

entrylexit median pair for F, and the lemma is proved for case 1. 

case 2: [ma2 to the right of mbl]: This case can be analyzed in the same manner 

as case 1, and the only difference is that projection paths will take ka+kb+l or 

ka+kb-1 segments to go through F, rather than ka+k,+3 or ka+k,+l. 

case 3: [ma2 and mbl are the same]: This works out just like case 2, if we 

consider [ma& mbl] as a single-point interval. 

Medians in Fare formed by projccting the cxit mcdian of FA through FB and 
projecting the entry median of FB through FA respectively. 



In fact, as can be seen by considering figure 32, pF,(mbl) and pm(ma2) are just the 

projections of c2 and c 1 respectively, and from the diagram and the above proof, it is clear 

that for any PDF F, the median pair for F can be obtained just by finding the projections of 

the comers of F. 

6.4.2. The Parallel Funnel Al~orithm 

In describing a parallel algorithm for finding the number of segments in a straightest path 

through a PDF F, we will assume that the decomposition of F consists of 2k simple 

subfunnels, for some integer k. This will make both the algorithmic description and timing 

analysis significantly simpler, without changing any of their salient features. 

The algorithm can be outlined as follows: 

1) Decompose F into 2k simple subfunnels, and find the medians of these 

subfunnels. 

Next, consider F as the root node of a complete binary tree; the children of any 

funnel F' in the tree are the two subfunnels Fl '  and F2' making up F' s.t. Fl '  and 

F2' contain the same number of simple funnels. The leaves of F will be the 

simple funnels into which F can be decomposed. This leads to step 2. 

2) While the tree described above has not been collapsed back into its root node F, 

do the following: 

For each pair of leaf subfunnels F l  ' and F2' with common parent F', merge 

F1' and F2' by finding the medians of their union (the medians of F') and 

the projection path pair for F', store this information in F', and remove F1' 

and F2' from the tree. On the next iteration of this step, F' will be a leaf 

subfunnel. 



We will process each level of the tree rooted at F in parallel, with the result that processing 

F will consist of k+l distinct phases; the first phase decomposes F and calculates the 

median pair and projection path pair for all simple subfunnels of F, and each successive 

stage merges 2J pairs of adjacent subfunnels from the preceding phase into 2J subfunnels, 

for some j<k. 

We will consider two different cases, one where we have O(n/log n) processors to process 

the polygon Q, and hence O(m/log m) processors for each funnel of m vertices, and 

another where we have O(n) processors for Q, and so O(m) processors for a funnel of m 

vertices. The first case will result in optimal parallel speedup for the entire algorithm, 

while the second case will give suboptimal speedup but a faster time bound. Neither case 

gives optimal speedup for the processing of funnels. (Recall that the dimensions of a 

smallest path through a funnel of m vertices may be calculated in O(m) time.) This is due 

to the fact that the parallel algorithm actually does more work-as well as calculating the 

dimensions of a smallest path through a funnel, it constructs a data structure which permits 

the projection of any point on the entry segment of the funnel through to the exit segment 

in O(1og m) sequential time. 

6.4.2.1. Decomposing a Funnel 

As previously stated, we assume that we are given a PDF F represented as a vector of m 

vertices, sorted in traversal order. If the ends of F are not identified, this is irrelevant; we 

can in constant time and using m processors or in O(log m) time using mAog m processors 

test each funnel vertex as to whether or not it forms an acute angle. If it does, then it is a 

funnel end, otherwise it is not. Once the ends have been identified, it is a simple matter to 

split the vector of vertices into two vectors V1 and V2, each containing the vertices of one 

of the doubly-monotone paths which make up the funnel. This can be accomplished in 

constant time, with m processors, by indexing on each element of the original vector, 



relative to the positions of the funnel ends. 

Once V1 and V2 have been obtained, we mark the vertices in each according as to whether 

they are on V1 or V2, and then merge V1 and V2 into a single vector V in 0(log2 m) time 

using d o g  m processors [18], or in O(log m log log m) time using m processors [19; 201, 

depending on the number of processors we are using. Assuming our original funnel F was 

in standard position, V will be a vector containing the y-coordinates of the tops and 

bottoms of all the simple funnels in the decomposition of F. By storing with each element 

of V the two boundary edges of F incident on the vertex contained by that element of V, 

and then performing a parallel prefix operation on V so that boundary segment incidence 

information for vertices from V1 is distributed to vertices from V2 and vice-versa, we can 

find in further O(1og m) time using m/log m processors the boundary segments of F 

intersected by the partition set of F. It is then a trivial matter to build a vector representing 

the simple funnels in F. 

The.''treeV of subfunnels described in the outline of the parallel funnel algorithm is a 

conceptual tool only-it need not be constructed. 

6.4.2.2. Merging Funnels 

Given two adjacent subfunnels whose medians have been computed, we merge them by 

projecting the appropriate median of each through the other, to find the medians for the 

parent funnel. So, in figure 32, to merge FA and FB into F, we project ma2 through FB, 

and mbl through FA. At the same time, we calculate the projection path pair for F by 

considering the relation of ma2 to mbl, and applying the rules from the general interval 

lemma. 

Definitions: [merge partitions]: Let s l  be the entry segment for some PDF F containing m 



vertices, and assume that s l  less the entry point for F can be given as a disjoint union of 

k I (m-2) subsegments s l  s12, . . ., s lk  of s1, where each endpoint of a subsegment may 

be either open (the subsegment does not include the endpoint), or closed (the subsegment 

does include the endpoint), and such that associated with each subsegment s l i  is a linear 

function fi which, given the x-coordinate of a point w in s l i  returns the x-coordinate of 

pF(w). Such a partition of s l  is called an entry partition. We can define a similar partition 

on the exit segment s2 of F, containing linear functions which also map x-coordinates of 

points on their associated subsegments to the x-coordinates of the projections of those 

points through F; such a partition of s2 is called the exit partition. Together, the entry and 

exit partitions of F are known as the merge partitions of F. For any particular merge 

partition, the points which define that partition (the endpoints of the subsegments of the 

partition, along with information describing whether each endpoint is open or closed) are 

know as the partition points of that merge partition. Note that for any merge partition, the 

number of partition points in that partition is one greater than the number of subsegments 

defined by the partition. 

Lemma: Every PDF has merge partitions. 

Proof: [by constructive induction]: Every simple PDF has merge partitions defined just 

by the medians of the PDF and the four linear functions which can be used to project points 

back and forth in the PDF. Consider a non-simple PDF F made up of subfunnels FA and 

FB, containing j and k vertices respectively, as shown in figure 32. If we assume that FA 

and FB both have merge partitions, then we can form an entry partition for F by the 

following process: 

1) Let points1 be the set of partition points for the entry partition part1 of FA. 

2) Let points2 be the set of points obtained by projecting the partition points for the 

entry partition part2 of FB through FA. 

3) Let points3 be the union of points1 and points2. points3 will induce a partition 



part3 on the entry segment s l  of F. Let ~3~ be any subsegment (interval) of part3 

defined by adjacent points of part3. If w is a point on then ppF(w) will start in 

a subsegment s l j  of partl, and will pass through a subsegment ~2~ of part2 If the 

projection functions associated with these subsegments are f l j  and fZk respectively, 

then we can form the function f3i = f l j  Qk, which will be a projection function for 

~ 3 ~ .  Deciding if a subsegment of part3 contains its endpoints is easily done by 

inspecting the subsegment on partl containing part3, and the subsegment of part2 

whose projection through FA contains partl, to see if these subsegments contain 

their endpoints. pointsl and points2 contain j-1 or fewer points and k-1 or fewer 

points respectively (by our assumption that FA and FB have merge partitions), so 

because the endpoints of pointsl and points2 are identical and hence each be 

included only once, we have that the number of partition points in part3 will be at 

most (j+k-2)-2. Therefore, part3 will have at most j+k-5 subsegments in it, and so 

there will be at most j+k-5 linear functions associated with part3. Since F will 

contain at least j+k-3 vertices (up to three vertex counts may "disappear" in the 

merge of FA and FB), this means that part3 satisfies the requirements for an entry 

partition of F. 

In a similar manner, we can find an exit partition for F. Of course, some attention to detail 

will be needed to ensure that open and closed endpoints of subsegments are processed 

properly. Keeping track of whether endpoints are open or closed is a minor technical 

matter, and will not be discussed further in this section. 

Since simple PDFs have merge partitions, and since the merge of two funnels with merge 

partitions also has merge partitions, it is easy to see by an informal induction that all PDFs 

have merge partitions. 

End of proof. 



We return to the merge of FA and FB, and discuss how to obtain the merge partitions of F 

efficiently. The exit partition of FA can be expressed as a vector VA of O(m) rational 

numbers, with associated information to indicate whether or not a segment contains one or 

both of its endpoints, and the entry partition of FB can be expressed as a similarly sized 

vector of rationals and associated information VB. The elements of VA and VB can be 

considered as points whose y-coordinates are all identical and implicit, where each point 

may have further information associated with it. Assume that the projection function for a 

segment in a VA or VB is stored with one of the endpoints of the segment. Mark each 

element of VA and VB according to whether it is in VA or VB, and then take the merge of 

VA and VB by x-coordinate into a vector V in O(1og m) time using rn/log m processors 

[181, or in O(1og log m) time using m processors with the algorithm of [20], which is 

implementable on a CREW PRAM[19]. Every element tB of V originally from VB will be 

in a subsegment of the exit segment of FA defined by elements tAl and tA2 in V and 

originally from VA. Parallel prefix may be used in O(1og m) time to distribute to all such 

tB from VB the information as to what elements tAl and tA2 from VA define a 

subsegment containing tB. tAl and tA2 are adjacent points in the exit partition of FA 

which define a subsegment of the exit segment of FA containing tB, and since the 

projection function for projecting a point in this subsegment through FA is associated with 

one of tAl or tA2, we can use one processor to find this projection function and project tB 

onto the entry segment of F in constant time. The projection of all points defined by VB 

(the partition points of the entry partition of FB) onto the entry segment of FA may be then 

accomplished in constant time using m processors, and because the projected points will be 

in the same relative order, they may easily be cast into the form of a sorted vector. 

The partition points of the entry segment of FA, together with the projections onto the 

entry segment of FA of the partition points of the entry segment of FB, are then marked as 

to which of these two classes they fall into, and merged into a vector PS of partition points 

for the entry segment of F, in O(1og m) time. Each point pB in PS which was obtained by 

projecting a point from VB through FA will be on a subsegment of the entry segment of 



I contained in PS. Conversely each point in PS which was originally a partition point of the 

entry segment of FA will be bracketed by two points obtained from the projection through 

FA of two points from VB. This information may be distributed to each point in PS 

through two applications of parallel prefix to PS. For the purposes of the next paragraph, 

this information will be known as bracketing information. 

Now, let p l  and p2 be two adjacent partition points in PS. The subsegment $$2 of the 

entry segment of F defined by p l  and p2 will be the intersection of a subsegment ssA of the 

entry segment of FA defined by adjacent points of the entry partition of FA, and a 

subsegment of the entry segment of FA, defined by the projection through FA of adjacent 

partition points of the entry segment of FB, which also define a subsegment ssB of the 

entry segment of FB. The projection of any point w in through F can be obtained by 

projecting it to a point of ssB, using the linear projection function fAi associated with ssA, 

and then projecting the resulting point through FB, using the linear projection function fS1 
associated with ssB. So, any point w on may be projected through F by use of the 

- 
linear function fk = fBjOfAi. fk forms a projection function for plp2. fAi and fBj will both 

be obtainable as functions associated either with p l  or p2, or with points obtainable (in 

constant time, assuming the appropriate links have been kept) from the bracketing 

information associated with pl  and p2. Thus, we can form fk in constant time, and since 

the entry partition for F will contain O(m) points, we can calculate the projection functions 

associated with the enny partition in constant time using m processors, or in O(1og m) time 

using d o g  m processors,. This completes the computation of the entry partition of F. 

Of course, the exit partition of F may be calculated in a similar manner. 

A diagram, showing the projections after each major step in the processing of a funnel F 

which decomposes into four simple funnels, is shown in figure 33. 



6.4.2.3. Overall Timing for the Parallel Funnel Algorithm 

From the above, it is apparent that the merge of two funnels, each containing O(m) 

vertices, may be done in O(1og m) time using m/log m processors, or in O(1og log m) time 

using m processors. Once a funnel F containing 2k = O(m) simple funnels has been 

decomposed, it may then be processed using k merge phases. (If necessary, a funnel may 

be "padded out" with null simple funnels so that it contains a total of 2k simple 

funnels-this will never more than double the number of simple funnels to be considered.) 

If we index the merging of the simple funnels of F as the first merge phase, and assume 

that processors are evenly distributed over subfunnels during any particular merge phase 

(which will be true to within as small an error as desired in the asymptotic limit), then 

figure 33 

Projections in a funnel being merged in three steps. Dotted lines indicate projections 
produced by the step just completed, solid lines indicate projections produced in previous 
steps. The projection paths are shown for ease of understanding, but are not actually 
generated by the process. After the first stcp, entry and exit partitions have been found for 
the simple funnels. After the second step (the first merge), entry and exit partitions have 
been found for the funnel containing the top two simple funnels, and for the funnel 
containing the bottom two simple funnels. Aftcr the third step (the second merge phase), 
entry and exit partitions have been found for the entire funnel. Because each projection is 
accomplishcd using linear functions produced in the previous step, no projection takes 
more than constant time. However, each merge phase will take more than constant time, 
due to the need to merge vcctors of projected points. 



merge phase i will perform 2k-i seperate merges in parallel, each of these merges involving 

! two subfunnels containing a total of not more than 4*2j vertices. Thus, it will take O(1og i) 

time to merge subfunnels at merge phase i if we are assuming m processors, or O(i) time to 

merge the same subfunnels if we are assuming mllog m processors. Therefore, the total 

timing for the merge portion of the parallel funnel algorithm on a funnel F containing m 

vertices is just 

using m~log m processors, or 

log m 

T(m) = z l o g i  = O(1og mlog logm) 

using m processors. The decomposition of F may be accomplished with either timing, and 

so the dimensions of a smallest path through any PDF F with m vertices can be found in 

0(log2 m) time using rn/log m processors, or in O(1og m log log m) time using m 

processors. 

6.5. Smallest Paths through non-PDFs 

There are a number of extensions and modifications which must be made to the preceding 

sections, if we wish to handle anything other than parallel diagonal funnels. 

Firstly, degenerate (i.e. triangular) and rectangular funnels should be handled as special 

cases. Two-segment smallest paths through such funnels are mvially findable, and so we 

need not apply any of the definitions or methods outlined above for general PDFs. 



We may encounter non-parallel funnels, those in which the end-segments are perpendicular 

rather than parallel. In such a situation, a carefully drawn line will divide the funnel into a 

PDF and another funnel through which every straightest path has two segments, and so this 

case may easily be solved. See figure 34 for an example of this. 

Next, non-diagonal funnels (those in which more than two boundary segments may be 

rectilinear) require some care. First, since each funnel end may have two rectilinear 

boundary segments incident on it, there may not be a unique pair of end-segments. A 

simple workaround to this problem is to process the funnel for every possible pair of end- 

segments, a maximum of four different combinations, and keep all the results for possible 

future use. Of course, more elegant solutions to this difficulty are easily imaginable. A 

second difficulty posed by the inclusion of rectilinear boundary segments which are not 

end-segments is the possibility that a projection path segment may run along a boundary 

segment. The current definition for the projection function does not take this into account, 

and must be appropriately modified, as must various other related elements of the 

preceding sections. These modifications are tedious but otherwise trivial. Thirdly, the 

inclusion of rectilinear boundary segments other than the end-segments raises the 

I figure 34 

The above non-parallel funnel may be considered as a composition of 
a parallel funnel FA, and a funnel FB whose particularly simple 
structure makes analysis of straightcst paths through FB quite easy. 



possibility that some of the simple funnels in the decomposition of a PDF may be 

rectangular, which in turn raises the question of how to define the end-segments for a 

rectangular funnel in such a situation. The simplest solution is to simply remove all 

rectangular subfunnels from the decomposition of a PDF, as these subfunnels can have no 

effect on the straightness of paths through the PDF-they affect the lengths of paths only. 

Finally, various combinations of these cases must be considered. An enumeration of such 

cases would be boring to the point of tears, and for the most part unenlightening, and I 

leave it to the intrepid reader to verify that the techniques outlined above are applicable (in 

modified form) to all such combinations, if he or she so wishes to check. 

6.6. Summary of Results Concerning Funnels 

It has been shown that given any PDF F containing m vertices, the dimensions of a 

smallest path through F (from one end of F to the other) may be calculated in O(m) sequen- 

tial time, or in 0(log2 m) time using rn~log m processors, or in O(1og m log log m) time 

using m processors. Brief descriptions have also been given as to how these results may be 

generalized to any funnel, with no loss of asymptotic efficiency. 



figure 35 
Shortest and straightest paths exist 
between S and T, but no path 
between them is smallest. 

7.$mallest Paths through Rectilinear Obstacles 

Definition: [RO Smallest Path Problem]: Consider the following problem: We are given 

a set of simple, nonintersecting rectilinear polygons, specified as lists of coordinates 

indicating the positions of their comers; a source point S and a sink point T, neither in any 

of the obstacles, although they may occur on the obstacle boundaries; a rational number r, 

and an integer k. In such a situation, a smallest path from S to T may not exist- 

see figure 35. One problem is to determine if there exists a rectilinear path from S to T, not 

intersecting any of the polygons except possibly at the polygon boundaries, such that the 

length of the path is I r and the number of bends in the path is I k. We call this problem 

the RO smallest path problem. 

In this chapter we will show how this problem may be solved in 0(n3) time, where n is the 

number of comers in the set of obstacles. 

With each comer in the obstacle set, we associate two arrows, originating at the corner, and 

going out along the segments of the obstacle which form the comer. We also associate 



four arrows with each of the source and sink, in the four rectilinear directions. (See 

figure 36.) There are no other arrows to be talked about in this problem, so, "arrows," 

always refers the arrows associated with obstaclz comers, or the source or sink. 

Arrow Theorem: Let I be an instance of the RO smallest path problem, with n comers in 

the obstacle set. Assume there exists a rectilinear path P of k bends and length r from S to 

T, not passing through any of the obstacle polygons. Then there exists a directed 

rectilinear path P' from S to T of k or fewer bends and length less than or equal to r which 

does not pass through any of the obstacle polygons, such that each segment of the path 

passes through the origin of at least one arrow in the direction pointed by the arrow. 

Proof: [constructive]: We show how P may be modified to produce a path P' which 

satisfies the theorem. 

It is apparent that segments of P incident on the source or sink will satisfy the theorem. (If 

it is a sink arrow, "passes through," may simply mean, "intersects.") Now consider any 

segment of P other than the initial or final segment. Such a segment may have its adjacent 

segments on one side, or on opposite sides, as shown in figure 37. 

figure 36 
Associating arrows with 
corners .  . . 

. . . or with the source 
or sink 



figure 37 

Consider case 1. If the segment of interest, call it e, passes through the origin of an arrow 

pointing in the direction of travel of the segment, then that segment is in accordance with 

theorem 1, and we need not consider it further. Otherwise, our strategy is to raise or lower 

e (or, if e is vertical, to move it to one side or the other), without causing it to go through an 

obstacle. The choice of raising or lowering is decided by which direction the path is travel- 

ing-we shift e in the direction opposite to the direction of travel of its two adjacent 

Grey hnes md~cate  where other 
segments m~ght  110. Or,  there may 
be no further segments, but instead, 
the source or the sink. 

segments. Say we lower e. This is accomplished by decreasing the y coordinates of the 

endpoints of e, and shortening or lengthening the adjacent segments to keep the path 

connected. In doing so, one of three things can happen: 

Segment of 
Interest. (e )  

' - "  Y.W- 

a) The segment we are shortening disappears, and e comes into contact with the source 

or the sink. If this happens, e now passes through the origin of one of the source or sink 

arrows, in the direction of the arrow. 

,/ 
-Lee-- 

.rmamaa I - l  

b) e hits the boundary of an obstacle. If this happens, the geometry of the situation 

ensures that e will pass through the origin of at least one comer arrow in the direction of 

the arrow. 

) ) * , -m.O-  
Case 1 Case 2 



figure 38 

Old position of e. I A 

Thick lines indicate 
segment intersection. 

Branch and Loop 

Case i-Intersecting segments 
travel in opposite directions. 

I r' 
Old position of e. 

Loop 

Case ii-Intersecting segments 
travel in same direction. 

c) e intersects another path segment with the same orientation. (i.e. horizontal or 

vertical.) See figure 38. In this case, a loop, or a branch, or a loop at the end of a branch, 

is formed. If the intersecting segments travel in opposite directions (case i of figure 38), 

we can simply chop off the loop and/or branch. If the intersecting segments travel in the 

same direction (case ii), we have a spiral. One of the source or sink will be inside the 

spiral, and one will be outside the spiral. In this case, there will be a loop, but no 

extraneous branch. We simply remove the loop, except for that part of it where the two 

segments intersect. 

If we consider case 2 of figure 37, essentially the same transformations can be applied. 

The only difference is that e must be moved so that both of its adjacent segments become 

shorter. 

Considering the three possible results of transforming the path in the manner outlined 

above, we see that they share the following two properties: 



1) They result in a path with a length less than or equal to the original path, and 

number of bends less than or equal to the original path. 

2) They result in a reduction by at least one of the number of path segments which do 

not pass through the origin of an arrow pointing in the same direction as the path 

segment. 

And, since at least one of the above three transformations can be applied whenever there is 

at least one path segment not going though the origin of an arrow in the direction of the 

arrow, we conclude that repeated applications of the transformations will eventually 

produce a path with length less than or equal to the original, and number of bends less than 

or equal to the original, such that each path segment intersects the origin of an arrow which 

points in the same direction as the path segment. 

This proves the arrow theorem. 

With this theorem proved, we can now construct an 0(n3) algorithm to determine if, given 

a set of rectilinear obstacles, points S and T, a rational r, and an integer k, there exists a 

rectilinear path from S to T, of length less than or equal to r and number of bends less than 

or equal to k, which does not pass through any of the given obstacles. 

The algorithm makes use of the fact that, given a set of m rectilinear line segments H we 

can, in O(m log2 m) time, construct a segment tree, which then permits one to take another 

rectilinear segment e and find in 0(log2 m) time whether e intersects a segment in H [713. 

The first step in the algorithm is to construct a segment tree consisting of the sides of 

obstacles. This takes O(n log2 n) time. 

3. These time bounds can actually be improved slightly beyond this, at a considerable increase in 
complexity, as explained by Lipski's paper. These improvements have no effect on the net running time 
of  the algorithm presented here. 



Next is a special case test, which consists of determining if S and T share the same x or y 

coordinate, and if they do, test using the segment tree to see if the straight line joining them 

intersects any obstacles. If not, then we are done, as we have a shortest possible path with 

the smallest possible number of bends. This test handles the possibility that there might be 

a zero bend path joining S and T, and takes 0(log2 n) time to perform. 

Then, we construct an 0(n2) adjacency matrix, M, formed by taking the cross-product of 

the set of arrows Arr with itself. The matrix is initialized to infinity. For every vertical 

arrow v and horizontal arrow h, the matrix element M[v,h] is then assigned the value x iff 

there is a directed rectilinear path having one bend, of length x, from the origin of v to the 

origin of h such that the segment intersecting the origin of v has the same direction as v, 

and the segment intersecting the origin of h has the same direction as h. Likewise, the 

element M[h,v] is given value x iff there is a path of one bend from the origin of h to the 

origin of v, etc. Determining if there is a path from v to h or h to v is simple. We first ask 

if v and h are in the proper configuration, i.e. is it possible to draw a one-bend path from 

the first to the second, maintaining correct directionality? This test can be performed by 

cases, in O(1) time. If such a path exists, there will be only one-split it into its two 

segments, a id  test each to see if it passes through the edge of an obstacle, in 0(1og2 n) 

time. If neither segment does, then M[v,h] or M[h,v] is set to the rectilinear distance 

between their origins. There are 0(n2) <v,h> pairs to consider, so. setting up M takes 0(n2 

log2 n) time. 

There are two things to realize when considering the rest of the algorithm. First, when 

trying to find a path with length no greater than r and bends no more than k, we need not 

look for paths with loops, as any such path contains a path without loops which is closer to 

optimal. Second, any path without loops which meets the conditions given in the arrow 

theorem can have at most n+l bends, as shown below. 



Lemma: Consider a RO smallest path problem instance I and path, as described in the 

arrow theorem. Then there exists a (loopless) path from S to T of the same or lesser length 

and the same or lesser bends, and with no more than n+l bends, where n is the total 

number of comers of polygons in the problem. 

Proof: We see this by counting arrows. The first and last segment in the path each touch 

the origins of at least four arrows. The other segments each touch the origins of at least 

two arrows. There are only (2n+8) arrows in total-two on each obstacle comer, and four 

each on S and T-so a path which does not loop (intersect itself) can have at most n+2 

segments-n+ 1 bends. 

So, we need only look for (loopless) paths with n+l or fewer bends. 

The main part of the algorithm will fill in an 0(n2) array, A. The array is indexed first on 

the set of arrows Arr of the problem instance I, and second on an integer index ranging 

from 1 to n+l. A is originally initialized to infinity. At the end of the algorithm, the 

element A[v, i] of A will have a finite value x iff there is a path of length x and i bends, 

starting at S and ending at the origin of arrow v, such that the last segment of the path 

travels in the same direction as v. Similarly for A[h, i]. 

We set the A[v, 11's and A[h, 11's by the following: 

FOR each v, element of the vertical mows of Arr 

FOR h, the horizontal arrows originating at S 

A[v,l] := M[h,v] 

FOR each h, element of the horizontal arrows of Arr 

FOR v, the vertical arrows originating at S 

A[h, l ]  := M[v,h] 



This leaves each element of A with a second coordinate of 1 set to the distance of a one- 

bend path from S to the arrow corresponding to the first coordinate of the element, 

assuming such a path exists. If no such path exists, the element is set to infinity. This 

entire initialization process takes O(n) time. 

The main part of the algorithm is as follows: 

FOR N := 2 to n+l 

FOR each v, element of the vertical arrows of I 

FOR each h, element of the horizontal arrows of I 

IF A[h, N-1] + M[h, v] < A[v, N] 

THEN A[v, N] := A[h, N-1] + M[h, v] 

IF A[v, N-1] + M[v, h] < A[h, N] 

THEN A[h, N] := A[v, N-1] + M[v, h] 

Recall that A[h, i] is the i-bend distance from S to h, and M[h, v] is the 1-bend distance 

from h to v. Each iteration of the outer loop extends rectilinear paths rooted at S by one 

bend. The "<" tests in the IF statements ensure that of multiple i-bend paths to an arrow, 

the shortest i-bend path is chosen. Order of calculation in the two inner loops is not of 

concern, because only information calculated before the present iteration of the outer loop 

is used. Time for this part of the algorithm is, obviously, 0(n3). 

Finally, given a maximum length r, and a maximum number of bends k, we inspect the 

elements A[a,i], where a is one of the four arrows associated with T, and i is in the range 

l..min(n+l, k}. If any of these elements of A have a value less than or equal to r, then 

there is a path of length no greater than r, and bends no greater than k, from S to T. 

Performing this check takes O(n) time. 



In summary, the algorithm is comprised of the following parts, taking the given times: 

1) Build the segment tree-O(n log2 n). 

2) Check for straight line from S to T -O( IO~~  n). 

3) Build ~ - 0 ( n ~  log2 n). 

4) Build ~ - 0 ( n ~ ) .  

5) Check for an answer-O(n). 

The total time for the algorithm is 0(n3), where n is the number of vertices in the obstacle 

set. 

A few notes about this algorithm are in order. 

It is inherently inefficient in making use of r and k, using them only when the main part of 

the algorithm is done. Speeding up the algorithm will likely involve using these values to 

limit the amount of work done by the algorithm, before it checks for an answer. 

Once the algorithm has run, we can get the answer for any r and k in O(n) time. 

The algorithm answers if there is a path fitting r and k, but does not actually give one. 

Modifying it to return a path is quite easy, as we can simply keep a mamx of links corre- 

sponding to the elements of A, and whenever an element of A is modified, indicating that it 

has been "reached" by some path, we update the corresponding element of the link mamx 

to point to the element of A from which the path "reaching" e was extended. Backtracking 

will then enable us to extract a path. 



8. Concluding Remarks 

In this thesis, we have defined a new problem, that of finding smallest paths between 

points, which combines aspects of two previously well-known and useful problems, 

namely finding minimum-length rectilinear paths and finding minimum-segment rectilinear 

paths. It has been shown that smallest paths between two points in a simple polygon 

always exist (except for easy to detect cases involving pathological vertices). The problem 

of actually finding smallest paths in a simple polygon has been studied and examples have 

been given to indicate that generating a smallest path in a simple polygon is a problem with 

an inherently large lower performance bound, as a function of the number or vertices in the 

polygon. By proving and exploiting non-obvious properties of smallest paths in simple 

polygons, an efficient O(n log n) time algorithm has been given to find dimensions of 

smallest paths between two points in a simple polygon, where n is the number of vertices 

in the polygon. This algorithm has been generalized to an 0(log2 n) time parallel 

algorithm with optimal parallel speedup, and to an O(1og n log log n) time parallel 

algorithm with slightly suboptimal parallel speedup. In the course of designing both the 

parallel and sequential smallest path algorithms, an interesting subproblem, that of finding 

smallest paths through funnels, has been studied and solved. Finally, some research 

concerning smallest paths in an environment containing rectilinear obstacles has been 

done. In this environment, it has been shown that smallest paths do not necessarily exist 

between points, and the smallest path problem has been cast in a more general form, as a 

decision problem. An algorithm has been developed to decide this problem in time 

polynomial in the number of obstacle vertices. 

Research to date has left many questions unanswered, and several interesting problems 

suggest themselves. The current algorithm for smallest paths in simple polygons requires 

that the source and destination of the path be specified before any processing begins. It 

would be worthwhile to generalize this to a query problem, where only the source point S 



is given, and the polygon is preprocessed so that given any other point T in the polygon, 

the dimensions of a smallest path between S and T may be quickly ascertained. 

Preliminary research into this problem indicates that it is perhaps solvable in O(n log2 n) or 

even O(n log n) sequential preprocessing time, with O(1og n) query time. An even more 

interesting prospect is that of preprocessing the polygon in such a manner that a query as to 

the dimensions of a smallest path between any two points in the polygon may be quickly 

answered. Although formidable, some very preliminary research indicates that this form of 

the query problem may also be solvable with a very reasonable worst-case time bound, by 

isolating vertices of the polygon through which all smallest paths between certain sections 

of the polygon will travel. 

Given that the above query problems may be solved in an efficient sequential manner, it 

seems likely that queries could then be easily conducted in parallel. In order to make 

maximal use of this ability, however, the preprocessing for the problem solutions should 

also be accomplished in parallel, and parallelizing this preprocessing would be another 

worthwhile goal. The research done on funnels in this paper should be a significant help in 

achieving this aim. 

Problems involving smallest paths not resmcted to the interior of simple polygons have 

been left virtually untouched by this thesis, and a large number of interesting topics suggest 

themselves in this area. One task of immediate interest would be that of obtaining a more 

efficient polynomial time algorithm for determining minimal paths in environments 

containing rectilinear obstacles. Even after obtaining efficient basic smallest path 

algorithms in this environment (to the degree possible, as smallest paths in such an 

environment will not always exist), practical applications in many areas may well benefit 

from query andfor parallel versions. Finally, considering non-rectilinear (polygonal) 

obstacles should provide some very interesting, and in all likelihood some very difficult, 

problems. Finding efficient smallest path algorithms in such environments will necessitate 

the use of techniques for finding smallest paths in environments with rectilinear obstacles, 



along with techniques for handling constructs such as funnels. Even after both of these 

problems are well understood, combining their solutions to provide an algorithm for 

finding smallest paths around general polygonal barriers will probably require a significant 

amount of effort. 



b ~ e n d i x  I; traversal numbers. 

traversal numbers provide a convenient algorithmic method of determining if a point w is 

inside or outside of a simple polygon Q. We illustrate their use with an example. 

Consider the polygon shown in figure 39. We wish to determine if the point w is inside or 

outside of Q, by doing a traversal of bdy(Q). Assume for now that w is not on bdy(Q). 

The algorithm we will use is best understood by visualizing oneself at the point x on 

bdy(Q), facing in the direction indicated by the arrow. To do a traversal of bdy(Q), walk 

along the boundary until a vertex is reached, then turn in the obvious manner to line up 

with the next boundary segment (technically, turn continuously so that the semi-infinite ray 

indicating current direction does not sweep over the boundary segment being exited from), 

and continue the traversal, going on in this manner until the starting point is reached. 

The traversal is started with a counter variable initialized to some number, generally 0, and 

is performed looking only straight ahead, even when doing a turn at a polygon vertex. 

I figure 39 

+1 +b 
Traversal numbers (vertex increments and cumulative sums) for a traversal of Q 
starting at x, relative to w. Traversal numbers for the two subpolygons induced 
by L have not been shown, to maintain clarity, but note that the accumulated 
sum across L for the rightmost of these subpolygons is consistent, and so w is 
inside this subpolygon, where the opposite is true for the leftmost subpolygon. 
Circular arrows indicate direction of turns at sample vertices. 



Thus, the line of sight during the traversal may be considered as a semi-infinite ray. We 

view ourselves (the person doing the traversal) as stationary, while the plane moves around 

us; every time w comes into the line of sight from the left, or leaves the line of sight to the 

right, the counter variable is incremented by 112; every time w comes into the line of sight 

from the right, or leaves the line of sight to the left, the counter variable is decremented by 

112. Thus, every time w appears to cross the line of sight from left going to the right, the 

counter variable will be incremented by 1, and every time w appears to cross the line of 

sight going to the left, the counter variable is decremented by 1. The turn performed at 

each vertex of the polygon will have a certain increment or decrement associated with it, 

and the segments of bdy(Q) will have some cumulative sum associated with them, as the 

line of sight will never change when traversing along a boundary segment. These 

increments and sums are shown in figure 39. 

As it turns out, if upon returning to the starting point, the current value of the counter 

variable is the same as its initial value, we will have that w is inside of Q. If the counter 

has any other value, then w is outside of Q. This is provable through either the use of 

partial derivatives (which will show this property for general simple curves), or (for simple 

polygons only), through induction. A sketch of an inductive proof for this statement as 

applied to simple polygons is given at the end of this appendix. 

The advantage of using traversal numbers in this manner is that if we now take a line 

segment L in Q inducing a subpolygon Q', we can find the increments across the vertices L 

forms in Q' in constant time, and in further constant time check if the accumulated sum 

across L is consistent-if it is, then w will be in Q', otherwise w will not be in Q'. The 

reader is encouraged to verify this fact with L as shown in figure 39. 

There remains the problem of what to do if w is on L or on bdy(Q). Handling the case that 

w is on L is easy-we can simply check in constant time if this is the case. To handle the 

case that w might be on bdy(Q), we can preprocess Q by numbering its boundary 



segments, and determining the number N of the boundary segment of Q on which w 

resides. Any subpolygon of Q induced by a horizontal or vertical line segment will have 

an external boundary defined by some numbered sequence (taken modulo the number of 

boundary segments of Q) of boundary segments of Q-detemining, in constant time, if N 

is in this range will answer if N is in the induced subpolygon. (There are a few other 

details necessary to use this technique-for instance, the first and last segments of the 

exterior boundary of the induced subpolygon of Q may not be complete boundary 

segments of Q, and this must be tested for-but the details are minor and easily handled.) 

The remainder of this appendix sketches a proof that traversal numbers in simple polygons 

will operate as described above. 

Definition: [outcropping of a simple polygon, shear]: Let Q be a simple polygon, let 

w 1 w2 and w2w3 be two adjacent boundary segments of Q with endpoints w 1, w2, and w3, 

and assume that the line wlw3 is entirely contained in Q and intersects bdy(Q) at only wl 
-- 

and w3. The triangle T1 whose boundary is defined by wlw2, w2w3, and wlw3 is called 

an outcropping of Q, and the shear of Q relative to TI,  denoted shear(Q, TI)  is given by 

shear(Q, TI) = (Q\Tl)u=. 

Lemma: Let Q be a simple polygon with four or more boundary segments, and let B be a 

boundary segment of Q. Q contains an outcropping which does not intersect B except at 

possibly a single point which is one of the endpoints of B. 

Proof: [by induction] : 

Basis: If Q is just a quadrilateral, then it will have at least one diagonal which will 

induce two outcroppings of Q. Any boundary segment B of Q can be a boundary 

segment for at most one of these outcroppings, and so the other of the two 

outcroppings will satisfy the lemma. 



Inductive Assumption: For some k, k24, assume that any simple polygon with k or 

fewer sides (and at least 4 sides) satisfies the lemma. 

Inductive Step: Let Q be a polygon with k+l sides, and let B be one of the sides of 

Q. We take it as obvious that there are two points wl and w2 in Q such that the 

line w lw2 is contained in Q and does not intersect bdy(Q) except at the points w 1 

and w2. wlw2 induces two subpolygons Q1 and 4 2  on Q, each with k or fewer 

sides. Assume WLOG that Q1 is the subpolygon which has B as a boundary 

segment. If Q2 is an outcropping of Q, then we are done, otherwise Q2 has at 

least 4 vertices and by the inductive hypothesis we can find an outcropping of 4 2  

which does not contain w lw2; this will also be an outcropping of Q, and 

obviously it will satisfy the lemma, so we are again done. 

Lemma: Let Q be a simple polygon with five or more vertices (i.e. five or more boundary 

segments). Q has at least two outcroppings T1 and T2 such that T1 and T2 do not intersect 

except possibly at a single point which is a vertex of Q. 

Proof: We take it as obvious that there are two points w 1 and w2 in Q such that the line 

w lw2 is contained in Q and does not intersect bdy(q) except at the points w 1 and w2. 

wlw2 induces two subpolygons Q1 and Q2 on Q. If one of Ql  or 4 2  (say Q1) is an 

outcropping, then it is T1, and in this case, 4 2  must have four or more sides, so by a 

previous lemma we can find an outcropping of Q2 which does not contain wlw2, and this 

will be T2. If neither Q1 nor Q2 is a triangle, then be a previous lemma they must 

respectively contain outcroppings T1 and T2 which do not contain wlw2. In either case, 

T1 and T2 will satisfy the lemma. 

Lemma: Let Q be a simple polygon, and let w be a point in Q and not in bdy(Q). The 



method or traversal numbers described previously provides a valid way of determining 

whether or not w is in Q. 

Proof: [by induction on the boundary segments of Q]: 

Basis: If Q is a triangle, then during a traversal of Q, w will never appear to cross the 

line-of-sight of the person doing the traversal if w is inside of Q, and will cross the 

line-of-sight only once if it is outside of Q. In either case, the result is as desired. 

If Q is a quadrilateral, then analysis is slightly more complex (but only slightly), 

as a quadrilateral may have a single vertex which is concave into the quadrilateral. 

It is left as an exercise to the reader to verify that traversal numbers function 

correctly in quadrilaterals. 

Inductive Assumption: Assume for some integer k, k24, that traversal numbers 

provide a valid method of determining if a point w is inside or outside a simple 

polygon Q, if Q has k or fewer boundary segments. 

Inductive Step: Let Q be a simple polygon with k+l boundary segments, and let w 

be a point inside or outside of Q, but not on bdy(Q). By a previous lemma, Q will 

contain two outcropping T1 and T2 which do not intersect except except possibly 

at a vertex of Q. Since w is not on bdy(Q), it will be contained in at most one of 

T1 or T2, and one of T1 or T2 will not contain w. Call the outcropping which 

does not contain w T. 

We consider the two segments of bdy(Q) which are also boundary segments of T, 

along with the two segments of bdy(Q) adjacent to these segments. These are the 

involved segments. There are three cases to consider, as shown in figure 40, 

depending on whether or not the angles A1 and A2 between T and the segments 

adjacent to it are convex or concave relative to Q. We will prove the first of these 



cases. and leave the others to the reader. 

Consider figure 41, which shows us the outcropping T of Q, and the boundary 

segments of Q immediately adjacent to T. From the way we chose T, we know 

that w is not in T. Therefore, the traversal numbers for Q should indicate that w is 

inside or outside of Q if the traversal numbers for shear(Q, T) respectively indicate 

that w is inside or outside of shear(Q, T). By the inductive assumption we know 

that traversal numbers will give a correct result on shear(Q, T), so if we can show 

that traversal numbers give the identical answer on Q, we will have completed our 

inductive step. 

That traversal numbers answer identically as to whether or not w is in Q or in 

shear(Q, T) may be seen by considering two points w l  and w5, one on each of the 

boundary segments of Q adjacent to T. We will show that the traversal number 

changes by the same amount when going from wl  to w5 in Q is it does when 

going from wl to w5 in shear(Q, T). Since Q and shear(Q, T) are otherwise 

identical, it will follow that the traversal sequences are otherwise identical, and so 

traversal numbers will obviously report w inside of Q iff they report w inside of 

. shear(Q, T). 

figure 40 

The three possible cases for an outcropping T in Q depending on whter the 
angles the outcropping forms with the boudary segments on either side of it are 
concave or convex relative to Q. 



figure 41 

Arrows along boundary segments indicate direction of traversal. If w is in 
the striped region, then traversing the path wlw2w3w4w5 or the path 
wlw2w4w5 will result in a net decrement of 1 to the traversal number 
counter, and if w is not in this region, then either traveral will leave the 
traversal number from wl to w5 unchanged. 

That the traversal number changes by the same amount in going from wl  to w5 in 

either Q or shear(Q, T) can be shown by performing "symbolic traversals" of the 

paths w l  w2w3w4w5 and w 1 w2w4w5, and asking if there are any places where w 

could be located so as to cause the traversal increment over one path to be 

different from the traversal increment over the other. By doing such "symbolic 

traversals", it is easy to see that the only place w might be which would cause this 

to be m e  is inside T, which by our choice of T is not possible. The other 

possibilities are as desired; in figure 41, if w is in the striped region, then either 

traversal from wl  to w5 will result in a decrement of 1 to the traversal number, 

while if w is in any other permissible region, then neither traversal from wl  to w5 

will have a net effect on the traversal number. (Note: Actually, we must take into 

account the special cases that w may occur on one or both of the rays which define 

the boundary of the striped region. This is quite simple, it simply involves 

considering traversal increments of +1/2, and we leave it to the reader to make this 



extension.) 

Depending on the configuration of the boundary segments of Q adjacent to T, the 

striped region may be finite or infinite, but because it does not depend on the 

boundary segments of Q which define T, it will be the same in both Q and 

shear(Q, T). 

Thus, the answer returned by a traversal of Q as to whether w is inside Q will be 

the same as the answer returned by a traversal of shear(Q, T) as to whether w is 

inside shear(Q, T). Since w is inside shear(Q, T) iff w is inside Q, and since by 

the inductive assumption traversal numbers answer correctly as to whether or not 

w is inside shear(Q, T), we have that traversal numbers also answer correctly as to 

whether or not w is inside Q. 

Conclusion: By induction, we have shown that traversal numbers provide a valid 

method of determining if a point is inside or outside of a simple polygon Q, where 

Q has any number of sides. 



A ~ n e n d i x  11: An Examnle 

This appendix contains a series of illustrations showing the major constructs and 

information found at various stages in the processing of a polygon by SIMPLIFY. The 

data structures and data links used in the processing are for the most part not shown. 

The illustrations begin on the following page. 



Before Step 1 of SIMPLIFY 

We wish to find a smallest path from S to T in Q. 



Traversal numbers (for 6 ,  TI, given by a traversal from the arrow in the direction 
shown), extreme points, and trapezoidal edges, as found by the first three steps of 
SIMPLIFY. The traversal numbers are low because the spirality of Q is purposely low. 
Most of the trapezoidal edges will not be used by SIMPLIFY. Most of the information 
given in this diagram will be deleted in later diagrams, for the sake of clarity. 



After Step 4 

The thick lines are horizontal pscudochords, as found by step 3 of SIMPLIFY. Many 
of them overlap or are contained in others, so some endpoints are not discernible. 
Arrows from the centre of each pseudochord point into the region(s) induced by that 
pseudochord. 



After Step 5 

Step 5 of SIMPLIFY marks the endpoints of ebd(R), for unnecessary regions R induced 
by horizontal pseudochords. 



After Step 8 

Steps 6 marks those sections of bdy(n) which are in an unnecessary region induced by 
a horizontal pseudochord, as shown by the thick lines. Step 7 remove redundant 
horizontal pseudochords. For each subsegrnent B of bdy(Q) which forms part of the 
boundary of an unnecessary region R, stcp 8 marks the horizontal pseudochord 
inducing R, as shown by the arrows. Because there are no redundant horizontal 
pseudochords in this example, thcse three steps are collapsed into one diagram-see 
their counterparts in thc vertical processing phase for more dctail. 



The thick lines are vertical pseudochords, as found by step 9 of SIMPLIFY. 
Arrows from the centre of each pseudochord point into the region(s) induced 
by that pseudochord. Because the pseudochords overlap or contain other 
pseudochords, not all endpoints are visible. 



After Step 

Step 10 marks the ends of exterior boundaries for unnecessary regions R 
induced by vertical pseudochords. 



Step 11 marks all portions of bdy(Q) in unnecessary regions induced by 
vertical pseudochords-marked sections of bdy(Q) are shown by thick lines. 
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After Step 12 

Step 12 removes vertical pseudochords entirely contained in an unnecessary 
region induced by other vertical pseudochords. Step 13, marking which 
vertical pseudochords own which sections of unnecessary parts of bdy(Q), 
will not be shown, as it is clear from the above. 



Before Step 14 /f 

This is the state of Q after step 13 and before execution of steps 14 and 15. All 
remaining pseudochords are shown, as are those parts of bdy(Q) marked in previous 
steps as being part of a pseudochord-induced unnecessary region. 



After S ten 15 

Q immediately after execution of steps 14 and 15. Horizontal pseudochords contained 
in unnecessary regions pseudochord-induced by vertical pseudochord have been 
removed, and vertical pseudochords in pseudochord-induced unnecessary regions 
induced by horizontal pseudochords have been removed. In this example, only a 
single pseudochord has actually been removed as a result of this process. Segments of 
bdy(Q) in unnecessary regions are shown by thick lines. 



After Step 16 

After execution of step 16, the ends of the remaining pseudochords have been adjusted 
so they no longer cross into unnecessary regions pseudochord-induced by 
pseudochords with a different orientation. 



After Step 17 

At the end of step 17, those portions of bdy (Q) in an unnecessary region of Q (shown 
by the thick lines in the previous illustration) have been rcmoved, and the remaining 
sections of bdy(Q) and the remaining sections of pseudochords have been organized 
into the pseudogon. 



Appendix 111: The Parallel Prefix Operation 

Parallel prefix is simply an operation to find, in parallel O(log n) time using n/log n 

processors, the n initial partial sums of an n-element vector. However, its great utility in 

distributing information through the elements of a vector may not at first be apparent to 

readers unfamiliar with the operation. This appendix gives an example of parallel prefix 

used in this manner. 

We represent vectors as series of integers bounded by square brackets: [I 2 3 4 51. We 

name the parallel prefix function pre. As a simple example of what we mean by the initial 

partial sums, pre[3 5 3 7 41 = [3 8 11 18 221. 

pre can distribute information across the elements of a vector. For instance, suppose, 1 

represents a left parentheses and -1 represents a right parentheses. A series of -l's, l's, and 

0's can be used to represent a series of (non-nested) parentheses and place-holders 

(representing concrete data in another vector, perhaps.) For example, "(a b c)(d e)(f g h i)" 

might be represented as the two vectors 

V 1 = [ 1 0 0 0 - 1  1 0 0 - 1  1 0 0 0 0 - 1 ] m d  

V2=[0abcOOdeOOfghiO] .  

To find out from the vector representation i f f  is enclosed in the same set of parentheses as 

h, we first modify V1 to V1•‹ by replacing every -1 with a 0 (which takes constant time 

with n processors): 

v 1 ' = [ 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 ] ,  

take 

Vl"=pre(Vl ')=[l  1 1  1 1 2 2 2 2 3 3 3 3 3 3 1  

and check to see if the element of V1" corresponding to f in V2 is the same as the element 

of V1" corresponding to h in V2; if these elements are the same, then f and h are in the 

same set of parentheses. 
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