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Abstract 

This thesis addresses an efficiency problem in a mixed-integer linear programming (MILP) 

approach to automated synthesis of RT-level digital logic. The approach to the problem is to add an 

interactive front-end, the Data Path Synthesis Interactive System (DPSIS), to the MILP package 

BandBX, so that a human designer can participate in guiding the progress of a branch-and-bound 

MILP algorithm. 

The DPSIS extracts design information from the linear programming (LP) tableaux produced 

while solving the MILP problem. During the branch-and-bound process, the LP tableaux contain 

information about partial implementations. The DPSIS translates some of the design information in 

a tableau from its original mathematical formulation into a form which can be understood by a 

digital hardware designer (who often knows little or nothing of a constrained optimisation 

technique such as MILP). 
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Chapter 1 

Introduction 

In [4], Hafer and Parker describe a method for formally modeling digital systems using algebraic 

relations at the Register-Transfer (RT) level. The model can be viewed as a system of linear 

constraints with an objective function specified by the designer. It is solved as a mixed-integer 

linear programming (MILP) problem. 

This thesis describes research conducted in an attempt to extract information from the linear 

programming (LP) tableaux produced while solving the MILP problem - in other words, 

interpreting the tableau and the branch-and-bound tree maintained by the MILP package. During 

the branch-and-bound process, the LP tableaux contain information about partial implementations. 

The intent of the research is to translate information in a tableau from its original mathematical 

formulation into a form which can be understood by a digital hardware designer (who often knows 

little or nothing of a constrained optimisation technique such as MILP). Hopefully, this information 

will help the designer to guide the MILP package to quickly produce the most desirable 

implementation for a given behavioural specification. The approach to be used involves 

embedding an interactive module and a tableau interpretation module in the MILP program code. 

The designer will obtain the information extracted from the tableau through the interactive module. 

1.1. Motivation 

The general problem faced by a digital designer is to come up with a hardware implementation 

which is optimal with respect to some set of design goals or objectives. These goals or objectives 

often conflict with each other. In these situations, access to information about the partially 

completed implementation throughout the design process is very important, because with this 

information the designer will be able to select the set of hardware elements for the implementation 

which embodies the most acceptable tradeoff among the various objectives. Making the 



mathematical formulation visible to the designer will be useful because the designer will have the 

capability to interact with the system at intermediate points during the design process to extract 

information about the partial solution and suggest design decisions. With this feature we hope to 

minimise the exploration of unnecessary partial solutions in the branch-and-bound tree maintained 

by the MILP package. Therefore, it is worth extracting such information and making it 

understandable to the designer. 

At present, the greatest concern is for the development of CAD (Computer Aided Design) 

systems, covering from device to system levels, for VLSI, which is always increasing in scale and 

complexity and creating numerous design difficulties. One of the design difficuhies is that a vast 

amount of design information must be kept track of during the design process. Unfortunately, most 

humans (designers) have difficulty handling large numbers of related details. In this case, some of 

the design information needed by a designer and already present in the tableau can help the 

designer if designer interaction is allowed. Therefore, an interactive system for the model 

mentioned above is very useful because the designer can use the design information already present 

in the tableaux. 

Although strenuous efforts have been made to develop automated logic synthesis program, CAD 

designers have always faced a great many difficulties in putting their programs into practical use 

because the automatically designed results were often of lower quality than manually designed 

ones. Stand-alone interactive design systems have been introduced in many IC manufacturing 

plants and laboratories, which have severe requirements for high packing density to hold the 

fabrication cost down as low as possible. In such situations, however, design remains primarily a 

manual activity, aided by interactive graphic systems and other bookkeeping tools. 



1.2. Related Work 

1.2.1. CADIDA WORK 

Figure 1-1: The DA system 

The synthesis system to be used in this research is shown in Figure 1-1. The Instruction Set 

Processor Specification (ISPS) translator [1], Value Trace (VT) translator [11], [9] and IDDMA 

[6], were developed in the context of the Camegie-Mellon University Design Automation (CMU- 

DA) project (refer to [2] for further information). 

The register-transfer (RT) level logic synthesis method described in [4] expresses the design 

problem using an algebraic model and uses constrained optimisation techniques to solve the 

problem. The relations used in the model encompass the behaviour the design must support and the 



performance constraints it must satisfy. Binary variabIes aHow the inclusion of implementation 

decisions. These variables are used to represent the mapping of the operations and values of the 

data flow representation onto the operators and storage elements which will compose the 

implementation, and to specify how operation inputs are accessed. The relations are derived from a 

data flow representation (The Value Trace) [9] that expresses the original RT-level behavioural 

specification in terms of operations and values. A program, IDDMA, is used to automatically 

generate the model relations. The relations are then viewed as a system of constraints and solved 

as a mixed-integer linear programming (MILP) problem to optimise the objective function given by 

the designer for evaluating candidate implementations. The MILP software used in this research is 

BandBX [7] [8]. 

In [lo], Prakash investigated the effectiveness of using simplified versions of design paradigms 

practised by human designers to guide the progress of the branch-and-bound MILP algorithm. 

Three simplified human design strategies were considered (storage elements first, operators first, 

and critical path first), as well as several artificial strategies. The choice of strategy was shown to 

have a significant effect on the solution time. 

The approach adopted in [lo] used the notion of heuristically capturing design knowledge by 

using static priorities to fix the order in which decision variables are selected for evaluation. This 

approach does not take into account the effect of previous design decisions, i.e., it does not refine 

the importance of the rest of the variables depending on the form of the partial implementation. 

The idea of capturing design knowledge heuristically leads one to think about the notion of human 

(designer) interaction with the branch-and-bound MILP program, using the designer as the ultimate 

heuristic for assigning priorities to decision variables. 

1.3. The Problem 

From the above discussion, we know that the behavioural specifications for digital hardware 

designs can be expressed in a mathematical formulation. Unfortunately, such a mathematical 

formulation is often not transparent to the hardware designer. 

In addition to difficulties understanding the mathematical formulation, the designer also has 

difficulties obtaining design information already present in the tableau. 



The research will address these problems by trying to extract design information from the tableau 

of each partial solution and the branch-and-bound tree maintained by the MILP package. 

1.4. The Approach 

In order to extract design information from the tableau and branch-and-bound tree for a partial 

solution, it is necessary to incorporate into BandBX an interactive front-end that first translates 

between the variable names and concepts used by the designer and the mathematical reprekntation 

used by BandBX. 

Chapter 2 presents a brief discussion of the relationship between the synthesis model, the 

mathematical model and the designer. Chapter 3 will discuss some of the usehl design information 

we can obtain from the mathematical model. Chapter 4 presents the implementation aspect of the 

thesis. Chapter 5 describes the interactive system called DPSIS and its commands. Chapter 6 

demonstrates with examples how DPSIS helps the designer to guide the design process. Finally, 

Chapter 7 summarises the results of the thesis and suggests some directions for further research. 



Chapter 2 

The Synthesis Model and 
Mixed-Integer Linear Programming 

In this chapter, we will present a brief discussion of the synthesis model and the mathematical 

representation used for linear and mixed-integer linear programming. 

2.1. The Synthesis Model: Nonlinear Constraint Forms 

This section1 presents a brief summary of the constraint system for synthesis, using a set of 

nonlinear constraint forms. These forms are mathematically less tractable than the linear forms 

described in section 2.2, but it is much easier to see how they relate to the underlying algorithm and 

implementation. For a more complete exposition, the reader is referred to [4], or Chapter 4 of [3]. 

2.1.1. The Data Flow Representation and Labelling Convention 

For the purpose of generating a system of constraints, a data flow description of the algorithm is 

used. The particular data flow description is the Value Trace (vt) form developed at Carnegie- 

Mellon by Snow [12] and augmented by McFarland [93. Figure 2-1 shows a fragment of data flow 

with two activities, xal and xa2, and a flow of data from output o ~ ~ , ~ ~  of activity xal to input ia2,c2 

of activity xa2. This fragment will be used as an aid to explain the derivation of the nonlinear 

constraint forms. 

To refer to the set of all outputs of activity xa (there may, in general, be more than one) we will 

use 0,= (oJ. Similarly, I,= {ia,c) will refer to the set of all inputs of xu. 

For completeness, there must also be a convention for representing the outside world, as the logic 

'section 2.1 is excerpted from [6] with the permission of the author. 

6 



Figure 2-1: An illustrative vt fragment 

being synthesized must communicate with it to perform useful work. The set of inputs to the data 

flow description will be denoted as lo= {io,c}, and the set of outputs as 00= {o~ , , } .  The most 

consistent view is to look at the outside world as a large activity whose outputs become the inputs 

to the data flow description, and whose inputs are the values produced as outputs of the data flow. 

These values will be referred to as external inputs and outputs, to avoid confusion with the inputs 

and outputs of individual activities. 

2.1.2. Hardware Components 

It is assumed that there is a given set of operators and storage elements available with which to 

construct the implementation. Individual operators will be denoted by fd, individual storage 

elements by s,. 

A further assumption is that each activity x, in the data flow has been assigned a set of operators, 



Fa, capable of implementing the activity. (I.e., the operators are capable of performing the fUnction 

required by the activity and also satisfy any other a priori constraints.) In general, the sets will not 

be disjoint; the constraint system ensures a non-conflicting scheduling of activities on operators. 

Similarly, it is assumed that a set of storage elements, Sqf  has been associated with each value 

Oa,c. 

Operators and storage elements require finite time to perform activities or store values. Table 2-1 

describes the time delays which are incorporated in the synthesis model. 

Dfi(f> Propagation delay time of operator fd from the appearance of the input value(s) 
at the operator input(s) to the appearance of the output value(s) at the operator 
output(s). 

D~~(se)  Setup time at the data input of storage element s,; data at the input to storage 
element S, must be valid for at least this long prior to the transition at the clock 
input of the storage element. 

Dsh(se) Hold time.at the data input of storage element s,; data at the input of storage 
element s, must remain valid for at least this long after the transition at the 
clock input of the storage element. 

DsP(se) Propagation delay time of storage element s, from the transition at the clock 
input to the appearance of the value at the storage element data output. 

Table 2-1: Hardware timing values 

2.1.3. The Variables 

The variables used in the synthesis model can be divided into two classes, continuous variables 

which represent time, and binary variables which represent design decisions. Table 2-2 describes 

the continuous variables, and Table 2-3 describes the binary variables. 

2.1.4. The Constraint Forms 

Roughly speaking, the constraint forms can be divided into three groups: constraints which 

ensure that components are assigned when needed, constraints which enforce the timing 

relationships implied by the data flow, and constraints which make sure that no component is 

scheduled to do more than one thing simultaneously. 



Time when the value required by input iac of activity xu is available for use in 
the computation. 

Time when the computation of activity xu actually starts. 

Time when the output values 0, computed by activity xu are available at the 
outputs of the operator performing the activity. 

Time when all output values 0, of activity xu are no longer required, and thus 
the time that execution of the activity can cease. 

T i e  when the input values for activity xu are no longer required. 

Time when output value oac is no longer required, considering all uses 
(whether for creating a stored copy of the value, or directly as an input to 
another activity). 

Time when the storage element assigned to store a copy of output value oaSc is 
clocked. 

Time when the value o,,, is available at the output of the storage element 
assigned to store it. 

Time when the stored copy of value o , ,  is no longer required as an input to 
another activity. 

Table 2-2: Timing variables for the synthesis model 

Specifies the activity to operator mapping. %,,= 1 indicates that operator fd 
will implement activity xu. 

Pe,a,c Specifies the output value to storage element mapping. pe a ,= 1 indicates that , t 

storage element se will be used to store output value oas. 

Ya,c ya,,= 1 indicates that a stored copy of output value oa,, exists. 

'a,c Specifies how input i , ,  accesses the output value which is the source for the 
input. tia0= 1 indicates input i , ,  accesses the stored copy of the value. 

*a,c Specifies how input i,, accesses the output value which is the source for the 
input. 1 indicates input i , ,  accesses the value directly from the output of 
the operator producing the value. 

Table 2-3: Binary variables for the synthesis model 



2.1.4.1. Assigning Components 

Each activity xa must be assigned one and only one operator fde  Fa to perform the activity. This 

can be expressed by a summation over the binary variables od,a : 

Note that the constraint works because the qa are binary variables. At most one of them can take 

on the value 1, so that the summation is really enforcing a selection of one and only one operator. 

This notion of "summation as selection" is used frequently in the constraint relations. 

For values, the situation is somewhat different - storing a value o ~ , ~  is an optional operation, and a 

storage element s ~ E S ~ , ~  is needed only if the value is actually stored. This is expressed by a 

summation over the variables p e a ,  which is set equal to the binary variable y a ,  which specifies 
9 

whether the store actually occurs: 

It is worth noting that the synthesis constraint system does not enforce an if and only if relation for 

storage. There is nothing in the constraints to prevent the storage of a value, even though the stored 

copy is never accessed. An objective function which minimises cost will, however, remove 

unnecessary storage elements from the implementation. 

2.1.4.2. Enforcing Timing Relationships 

Referring to Figure 2-1, consider the conditions which must hold at the inputs Ia2 of activity xa2 

before execution of the activity can start. 

First, a unique source for the input must be selected. The value produced at output oal,cl can be 

obtained either directly from the output of the operator which is executing activity xal ,  or from a 

stored copy of the value. A constraint which expresses this is 

aa2.c2 + 'a2,c2 = 

Again, the constraint selects one of the two alternatives because the variables are binary. 



A further restriction is that the valu 

exists. The constraint 

'a2,c2' 'Yal .cl 

e cannot be obtained from a stored copy if no stored copy 

captures this requirement. 

With (2 .3)  ensuring that one of w ~ ~ , ~ ~  and is set to 1 and the other is 0 ,  the time that the 

value from output oal,cl will be available at input iaZc2 can be expressed as 

Tia(ia~,c2) = @ a ~ c 2  T ~ a ( " a ~ ) +  'a2,c2 Tsa("al,cl) ( 2 . 3  

Before the execution of activity xa2 can start, all its inputs must be available. This condition is 

expressed by the constraint 

Once the activity has started, the outputs will be available at a time 

The summation essentially selects the proper propagation delay, depending on the operator 

assigned to implement the activity. 

Consider now the lifetime of the output value oal,cl. One possible use of the value is to store it in 

a storage element, making a stored copy. In this case, the value produced by oal,cl must satisfy the 

setup and hold time requirements of the storage element. This is expressed by the constraint 

(Tss(oa,,cl) is constrained by (2.12) to satisfy the setup time, so that only the hold time appears in 

(2.8).)  Note that, in the case that the value is not stored, yalcl=O and the constraint reduces to 

. To,(oal,cl) 20, which is trivially satisfied. 



The value produced by o ~ ~ , ~ ~  may also be used directly by the inputs of any number of other 

activities in the data flow description. A constraint is necessary to ensure that the value lasts as 

long as it is required at these inputs: 

Tor("a~ ,c 1) ' MAX 
( ( a 2 4  I OalJl= src(idc2)) 

0a2,b2Tir(za2) 

Note that the set of inputs ia2,c2 in (2.9) is the exact same set of inputs which appears in (2.14), but 

an input only contributes to one of the constraints, because of (2.3). 

When all the outputs of an activity are no longer needed, then the execution of the activity can 

cease: 

When the activity is no longer executing, the values at its inputs are no longer needed: 

O l e l l  (2.11) 

The parameter e allows the constraint to take into account the fact that the outputs of the activity 

will not go away until some minimum propagation delay has elapsed after the inputs are removed. 

To store a value in a storage element, the clock to the storage element must not occur until the 

value has been present long enough to satisfy the setup time of the storage element. This is 

expressed by the constraint 

(The hold time of the storage element must also be satisfied; this is ensured by (2.8).) 

Once the storage element has been clocked, the value will be available at its output at a time 

Finally, when the inputs which are using the stored value no longer need it, the storage element 

can be freed to store some other value: 



2.1.43. Avoiding Component Usage Conflicts 

To make sure that no operator is ever assigned to execute two activities at once, one of two 

conditions must hold for each unique pair of activities which could use the operator: either the two 

activities are assigned to different components, or the execution intervals of the two activities do 

not overlap. 

Define an overlap function L over pairs of closed intervals [T1,T2], T1<T2, and [T3,T4], T3<T4, 

such that 

1 if the intervals overlap 
0 otherwise 

With the overlap function just defined, the constraint 

ensures that one of the two conditions will hold. There is one term in the summation for each 

unique pair of potential uses of an operator. If the activities are assigned to different operators, 

then the product will be 0, and the execution intervals can overlap. Otherwise, 

0d,al%a2 will be 1 ,  and the execution intervals must be disjoint. Since no term of the sum can be 

negative, all terms must be 0 for the sum to be 0. 

The same reasoning, applied to uses of storage elements to store values, produces the constraint 

to prevent the assignment of a storage element to store two values simultaneously. Table 2-4 

summarises the nonlinear constraint forms presented in this section. 



Table 2-4: Nonlinear constraint forms 



Table 2-4, continued 

2.2. Linearising the Model Relations 

The constraints outlined in Section 2.1 must be linearised before they can be solved as a MlLP 

problem. In [6], Hafer gives the necessary modifications to linearise the relations shown in Table 

2-4. For the purpose of linearising we will assume that, for any given synthesis problem, we can 

determine a time, f, which is greater than the largest value attained by any of the timing variables 

in the model. To illustrate the procedure, we will use equation (2.31) again, which is written to 

prevent usage overlaps for an operator fd. Since G ~ , ~ ~ ,  0da2, and the function L can take on only 

positive values, it is equivalent to write 

o d , a l ~ ~ L ( ~ T x s ~ ~ a l ~ ~ T X T ~ x a l ) ~  [Tm(xa2),T&a2)~) = (2.33) 

for each term of the summation. The development of linear forms for constraints (2.33) is quite 

complex. To motivate the development, it is helpful to restate the constraint as follows: 

If the binary variable aalta2 is introduced and defined so that 

if Txr(xa2) 2 TXT(xa1) * aal ,a2=o 

(2.34) can be restated as 
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if OdVal= 1 and Od,,2= 1 and aa1,a2=0 3 Txs(xa2)2Tm(xal) 

if = 1 and OdVa2= 1 and aal,a2= 1 * T , ( X , ~ ) ~ T , ( X , ~ )  

The linear fonns for (2.36) are 

The linear constraint forms for the relations presented in Table 2-4 are shown in Table 2-5. 

To indicate the presence or absence of a particular hardware component in an implementation, 

two more types of binary variables are required. Let Pd represent the presence (Pd  = 1) or absence 

( P d  = 0) of operator fd. Similarly, X,  represents the presence or absence of storage element s,. For 

each activity xu which could potentially use fd, there is a constraint, 

where N is the number of variables in the summation. The corresponding constraint form for 

storage elements is 

The variables Pd and X, are used to construct objective functions which include the cost of the 

implementation. 

2.3. Linear Programming and Mixed-Integer Linear Programming 

This section discusses models in the context of constrained optimisation, and explains the 

notation used in the thesis for LP and MILP problems. It is assumed that the reader is familiar with 

the theory of linear programming. 

When a technical person discusses a model of a situation which is being studied, he/she is 

referring to an idealized representation of an actual system. Typically, mathematical models for 



Table 2-5: Linear constraint forms 



constrained optimisation are structured to include four components: variables, parameters, 

constraints, and an objective function. 

The variables in a model represent the decision alternatives or items which can be varied in the 

real-life situation. Typically, we are seeking values for these variables which are feasible with 

respect to the system of constraints, and optimal with respect to the objective function. In the 

synthesis model described in Section 2.1, the variables represent design choices and execution 

timings. 

Parameters are inputs which may or may not be adjustable, but are known either exactly or 

approximately. In the synthesis model, propagation delays for components, or interface timing 

specifications, represent fixed parameters. Performance or cost limitations could be either fixed or 

adjustable, depending on the application. 

Constraints are the conditions which limit the values that the variables can assume. They are 

derived from the physical properties of the system being modelled. Some constraints correspond to 

global properties. For synthesis, variables which represent decisions are restricted to values of 0 or 

1, corresponding to the yes-no nature of a decision, while variables which represent time are 

constrained to be positive. Other constraints represent the interrelations between individual 

elements of the system. The constraints described in Section 2.1 fall into this class. 



The objective fimction measures the effectiveness of a solution as a function of the variables in 

the model. It provides a goal for the optimisation procedure. In working with the synthesis model, 

the cost and execution time of an implementation will be the objectives that are considered. 

The area of mathematical programming plays a prominent role in our research. It consists of a 

variety of techniques and algorithms for solving certain kinds of mathematical models. 

Mathematical programming has as its goal the solution of the model by finding values of the 

variables which maximise or minimise the objective function subject to a system of inequality and 

equality constraints. Mathematical programming is divided into several areas depending on the 

nature of the constraints, the objective function, and the variables. Linear programming (LP) deals 

with those models in which the constraints and the objective are linear expressions in the variables. 

Integer linear programming (lLP) deals with the special case in which the variables are constrained 

to take integer values. As we have discussed, the mathematical programming model used in this 

research is MILP, where some of the variables are restricted to be integral and others may take on 

any real value. In the particular case of the synthesis model used in this thesis, the integer variables 

are restricted to 0 or 1, and the other variables must be positive real values. In the next few 

sections, we will examine the relationship between the synthesis model and the MILP mathematical 

programming model in more detail. 

2.3.1. MILP Models 

In this section, we wiU explain how to set up a MILP mathematical model of our problem. 

Let 

II denote the set of decision variables, 
denote the set of continuous variables. 

Then the MILP model can be stated as follows: 



maximise clxl + C A  + ..... + cn& 

subject to constraints 

allxl + a1& + ..... + a l 2 ,  S (=) bl 

a2pl + a2g2 + . .. .. + wn < (=) b2 

0 

ampl + a,,,A + ..... + a d n  l (=) b, 

xi = 1 or 0, for xi E l-I and 

xi 2 0, for xi E cP. 

(2.49) is called the standard form. The linear relaxation of (2.49) retains the same constraints, 

with the exception that the condition of integrality for the variables ll is relaxed to 0 I xi I 1 ,  xi E 

n. 

Many LP algorithms require the constraint system to be statedin canonical form. This requires 

that all constraints be converted to equality constraints. Consider the constraint 

ailxl + ai2x2 + ..... + ai,pn I bi 

We may convert an inequality constraint to an equality constraint by introducing a new variable 

x,+~ and writing 

ailxl + ai2x2 + ... .. + ai,pn + x ~ + ~  = bi 

The variable x,+~ 2 0 is called a slack variable because it "takes up the slack" between the left 

side of the constraint and the right side. 

Corresponding to the way most mathematical programming algorithms are presented, we will use 

the abbreviated Tucker tableau in this thesis. The tableau can be stated as follows: 



The variables x~~ on the left side of the tableau are the basic variables and the constant values bioj 

are the basic variable values. The subscript i indicates the ith row of the tableau. The subscript j 

indicates the final tableau of subproblem j. The variables on the right side of the tableau are the 

nonbasic variables, each of which has the value of 0. 

(2.50) can be expressed in matrix and vector form as 

Xbasic = - Axnon-basic 

where A is the coefficient matrix, x ~ ~ ~ - ~ , ~ ~  is the vector of non-basic variables, b is the vector of 

basic variable values, and xbasic is the vector of basic variables. 

23.2. The Concept of Branch and Bound in MILP 

This section describes the branch-and-bound technique in MILP. Branch-and-bound is an 

optirnisation technique that uses binary tree enumeration. It involves calculating upper bounds and 

lower bounds on the objective function, in order to accelerate the process of reaching the optimal 

solution and thereby curtail the enumeration. The technique starts by solving the LP relaxation of 

the problem (i.e., solving the same constraint system, but without the integrality constraints). It 

then selects a non-integer binary variable2  xi^ and fixes it at values of 0 or 1, thereby creating 

two subproblems. Thus a sequence of subproblems is considered. Eventually, no further 

exploration from a subproblem is possible. Such a subproblem is said to be fathomed. 

Subproblems can be fathomed due to infeasibility, integrality, or by bounds. 

2The phrase "a non-integer binary variable". while something of an oxymoron, is more convenient than "a binary 
variable which has a fractional value in the optimal solution to the linear relaxation of the current subproblem". 



If a subproblem is fathomed due to integrality, the subproblem has reached an integer solution 

and no further exploration is necessary. 

If a subproblem is fathomed due to infeasibility, there is no solution of the relaxation problem 

which satisfies all the constraints. 

4, 

If a subproblem is fathomed by bounds, it means that the current bound on the objective function 

for the subproblem is less than or equal to the value of the objective function for the best integer 

solution already know (assuming that we are maximising the objective function). 

If the subproblem is not fathomed, one or more non-integer binary variables are selected and 

restricted to have values of 0 or 1. Such variables are appropriately called fixed or spec@ed 

variables. Similarly, variables which are not specified are calledfree or unspecified variables. 

Each node vj in the binary tree represents a subproblem; node vo (i.e., the root) represents the 

original problem. Each edge fixes a binary variable at 0 or 1, and the path vo to vj denoted by Pi 

represents a set of specified variables which describes the subproblem vi. vj will be referred to as a 

partial solution of the design. 

At this point, we going to define some notation that will be used in the rest of this thesis. 

Let 

Ti denote the final tableau resulting from the solution of the linear 
relaxation of subproblem vj . 

Bj denote the set of basic variables in 5 .  
NBj denote the set of nonbasic variables in Ti. 

B q  denote the set of timing variables in Bj. 

BDj denote the set of decision variables in Bj. 

II, denote the set of decision variables that are fixed along 
the path Pi. 



2.4. The BandBX Branch-and-Bound Algorithm 

2.4.1. Upward and Downward Penalties 

,'> 
After the linear relaxation problem defined at a given subproblem has been solved, the solution is 

checked for possible fathoming. If the subproblem still cannot be fathomed, the question of which 

non-integer binary variable should be selected to branch is still open. This problem will be 

considered after we show how to calculate a better bound. From (2.50), the value of each basic 

variable in the optimal solution to the linear relaxation at subproblem vj is 

xsi = bioj - C aikj xw xkj E NBj 
k 

Since vj was not fathomed due to integrality, there are non-integer binary variables among the basic 

variables. Since these variables must be forced to 0 or 1 to satisfy the integrality constraints, it is 

useful to calculate the penalty to the objective function which results when this is done. 

For each non-integer binary variable, the downward penalty Di which results when the variable is 

forced to 1 is defined as 

Di is a lower bound on the deterioration of the objective function value which will result if xBi is 

forced to 0. Similarly, 

is defined to be the upward penalty which results when xBi is forced to 1. 

Now, if the subproblem still cannot be fathomed by bounds after applying the penalties, then the 

algorithm proceeds to to either fix all monotone variables (non-integer basic binary variables that 

can assume only one value in successor subproblems due to penalties) or, if no monotone variables 

are present, to branch on a non-integer basic binary variable. The choice of the branching variable 

and the direction is made by selecting the largest among all up and down penalties and branching 

on the corresponding variable in the direction opposite that yielding the maximum penalty. 



2.4.2. Selecting a New Subproblem 

When a subproblem is fathomed, backtracking to retrieve a subproblem is flexible and the choice 

is made according to two options. The first option is to choose the subproblem with the most 

promising bound (i.e., the largest bound on the objective function). The second option is to use the 

best projection criterion based on the sum of integer infeasibilities, defrned as 

Thus if we let sj represent the sum of integer infeasibilities for the subproblem vi, the subproblem 

selected by this option is the one yielding the largest value of Ej where 

In the above expression, zj is the value of the objective function for subproblem vj and zs is the 

value of the current incumbent zero-one solution, unless there is no incumbent, in which case zs is 

the smallest objective function value encountered among feasible subproblems. zLp is the 

objective function value for the solution to the linear programming relaxation of the original 

problem, md sl is its integer infeasibility. 

2.4.3. Monotone Variables 

Let 
sufp = Z zs J - 

be the difference between the objective function value for the current incumbent solution and the 

objective function value for the linear relaxation at subproblem vj. If Di 2 sufp then xsi is a 

monotone increasing variable. It must be set to 1; setting it to 0 will cause the value of the 

objective function to become worse than the objective function value for the current incumbent 

solution. Similarly, if Ui 2 sub then xBi is a monotone decreasing variable and must be set to 0. 



2.4.4. Branching Rules 

After the linear relaxation problem defined for a given subproblem has been solved, the solution 

is checked for possible fathoming by infeasibility, bounds, and integrality. If the subproblem still 

cannot be fathomed, the algorithm proceeds to either fix all the monotone variables or, if no 

monotone variables are present, to branch on a non-integer basic zero-one variable. 

The choice of branching variable and direction is made by selecting the largest among all up and 

down penalties and branching on the corresponding variable in the direction opposite that yielding 

the maximum penalty. Let 
pen,, = MAX (Di,Ui) 

1 

be the maximum penalty over all non-integer binary variables in the solution to the linear 

relaxation. 

If pen,, is less than sufp and the value of pen,, is from an upward penalty (downward penalty) 

then the selected binary variableis fixed to 0 (1) and the algorithm stores the subproblem in which 

the variable is fixed to 1 (0). 

2.4.5. Fixing Variables 

Zero-one variables that are to be fixed at 0 or 1, either by branching or by being identified as 

monotone variables, are handled by assigning them an upper bound of 0 which forces them to 

remain at 0 in successor problems. The mechanism is straightforward for variables which are to be 

fixed at 0. Variables which are to be fixed at one are complemented by rewriting the constraints in 

which they occur and adding a correction to the value of the objective function. 

To complement a variable xky let 

where ; is the complementing variable of xkr Now, consider a constraint i such that ki 
ailjxlj + a. .X . + ..... + ainjxnj = biOj 

121 21 

Suppose xlj in the above constraint is to be fixed at 1. Constraint (2.52) is modified to 



and the new variable ; is fixed at 0 by giving it an upper bound of 0. The net effect is the same as 
ki 

fixing the original variable xu at 1. 

2.4.6. The Branch-and-Bound Algorithm 

In this section, we will discuss the technique used by BandBX. BandBX uses a branch-and- 

bound algorithm that involves the following major steps: 

1. Solve the linear programming relaxation problem (LP) of the mixed-integer linear 

programming problem (MILP) to provide a bound on the objective. 

2. Try to fathom the current subproblem by using bounds on the value of the objective 

function, infeasibility, and integrality. If a subproblem is fathomed then go to step 5. 

3. Try rounding tests if the LP problem remains unfathomed. These tests are optional. 

The system will do natural rounding first (i.e., rounding all non-integer binary 

variables to the nearest integer value). If this does not produce a feasible zero-one 

solution, then directed rounding is attempted. By directed rounding we mean 

rounding all non-integer binary variables in one direction (i.e., either to one or to 

zero). If either type of rounding produces a better incumbent zero-one solution the 

present integer solution will be replaced. Otherwise the system will continue solving 

the subproblem. 

4. If there are no monotone variables3, the system will pick a non-integer binary 

variable and force it to 1 or 0, creating two subproblems, and go to step 1. One 

problem is stored and the other becomes the active problem in step 1. Otherwise the 

system will force the monotone variables and go to step 1. 

3~on-iiteger variables for which only one value (0 or 1)  is possible. Monotone variables are identified based on 
penalty and feasibility tests. 



5. There are two options to select a subproblem when the current subproblem has been 

fathomed. The first option is to choose the subproblem with the largest bound on the 

objective function. The second is to use the best projection criterion based on the sum 

of integer infeasibilities. If there are no subproblems remaining then STOP otherwise 

select a new subproblem and go to step 1. 



Chapter 3 

Useful Information 

The main reason why we need an interactive system is to cut down the amount of computation. 

With the branch-and-bound method, if no clever heuristic or guideline is provided, the complete 

tree search has a size exponential in the number of decision variables. The size will become 

prohibitive once we have 20 or more decision variables. However, if we have a good heuristic, 

which in our case will come from the designer through interaction, we can greatly reduce the 

amount of computation because of quick fathoms or pruning of the branch-and-bound tree. In 

order to supply good guidelines, the user has to know what is going on in the middle of the 

computation. 

In this chapter we will discuss the available design information and suggest ways to interpret 

useful design information b m  the branch-and-band tree aqd the partial solution tableam We will 

explain the information in terms of the continuous variables (or timing variables) which represent 

time, and the binary variables (or decision variables) which represent design decisions. 

In the next chapter, we shall describe the interactive system, including the queries and commands 

a user can submit to find out information in the middle of the branch-and-bound process. 

3.1. BandBX Technique versus Designer Technique 

Before we discuss how to interpret design information from the tableau and the branch-and-bound 

tree, it is useful to describe the relationship between the branch-and-bound technique used in 

BandBX (described in section 2.4) and the human designer. This, in turn, will show why designer 

interaction is appropriate in certain steps of the branch-and-bound process. 

The partial solution to the MILP problem is analogous to a partially completed implementation of 



a design. When a human designer is at a certain stage of designing an implementation, helshe has 

to make various design decisions based on design information that helshe knows, such as : 

0 Whether storage elements and operators have been assigned. 

The propagation delay time of operators and storage elements. 

The setup time and hold time of storage elements. 

The time constraints between two operators that have been assigned in the partial 

design. 

Whether the active periods of operators are independent or overlap each other. 

Whether operators and storage elements can be released after a certain time (i.e., trying 

to reuse components that have been released). 

An examination of step 2 and step 3 of the branch-and-bound algorithm reveals that it searches 

for a better solution by computing the penalties and doing the rounding tests using the numerical 

values present in the tableau (i.e., the objective-function coefficients, the technological coefficients 

and the solution column). As for a human designer, shehe knows certain design information (as 

mentioned above) and based on this information, shehe tries to improve the partially designed 

circuit. There are certain similarities betweens step 2 and 3 of the branch-and-bound algorithm and 

the stage where a designer is trying to improve a partially designed circuit, and these provide the 

motivation for this research. It will examine how the information extracted from the tableau could 

help a designer gain a better understanding of a partially designed circuit. On the other hand, it will 

also examine how the knowledge that expert designers use to complete a partial design could help 

to guide the branch-and-bound search. 



3.2. Decision Variables 

Decision information is contained in the subprobIem's final tableau 5 and its place in the binary 

branch-and-bound tree. In this thesis, branch-and-bound trees are binary, because we're using 

binary integer variables. But also note that this is not always so, nor is material in the thesis 

restricted to this case. Each node v, of the binary tree represents a different subproblem. Using the 

notation given in the previous chapter, this section explains the design information we can obtain. 

There are three types of subproblem found at the leaves of the branch-and-bound tree. The first 

type are subproblems that were fathomed due to integrality. These are feasible, complete designs, 

and one of them is the current best solution. The second type are subproblems that were fathomed 

due to bounds or infeasibility. Such subproblems will either lead to no solution or will never lead 

to a solution better than the current best solution. The third type are the active subproblems (i.e., 

subproblems that can possibly lead to a better solution than the current best solution). 

With each subproblem, the user will be able to look at the the MILP information, which includes 

the branch-and-bound information such as the current bound on the value of the objective function 

and the currefit values cf the decision variables and timing variables. The order with which 

registers and operators were allocated for the design can be obtained by looking at the decision 

variables that have been fixed along the path from the root of the branch-and-bound tree to the 

subproblem. 

As described in section 2.3.2, decision variables can k f ixed  or free in a partial solution. In each 

case, the decision variables give different design information. The allocation of registers to output 

values, and operators to operations, is specified by the values of the p , , ,  and odPa decision 

variables. If the variable od,, has a value of 1, it indicates that operator fd will be used to 

implement activity xa in the current partial design; if it has a value 0, it indicates operator fd will 

not be used to implement (or operator fd is excluded from implementing) activity xa. In either case, 

if %a is not fixed, then the decision might change in subsequent partial implementations 

developed from the current one. But if od,a is fixed, the decision is permanent and will be present 

in every implementation derived from the current one. If the variable %a is free in the current 



partial design, then it indicates operator fd is still available to implement activity xu. This includes a 

free ad, variable which has a value of 0 or 1. The decision variables p , , ,  provide the same 

information about the use of storage elements to hold values. 

The ordering between two activities (or operations) can be inferred from the aal,d decision 

variable. If aal,d has a value of 0 (I), then activity xl (x2) starts ahead of activity x2 (xl) for the 

current partial design. If aal,& is not fixed, then the decision might change in later partial designs. 

Similarly, the variables aal,cl,d,d specify the relative order in which values are stored. 

To determine if an input value for an operation comes directly from an operator, or from a stored 

copy, we have to interpret the information from the 6,,, binary variables. If a variable 6,, has a 

value of 1, then i,, will access the stored copy, otherwise it will be connected directly to the 

operator producing the value. 

A user can make use of the above information in any way helshe sees fit. In particular, the 

following are some suggestions: 

(1) Setting decision variables. 

An expert designer may know from hisher previous experience which operators or storage 

elements are good choices for certain activities or output values. We know helshe is capable of 

doing this because this is how a designer designs without the help of a CAD system. In other 

words, the designer can supply hisher expertise in setting some decision variables, saving a lot of 

computation in the branch-and-bound execution. If possible, the designer can even supply a 

complete set of values for all the decision variables to give a good initial integer solution (i.e., a 

good completed design), which has a good chance to fathom a lot of other subproblems. We can 

see that without an initial solution, the branch-and-bound algorithm needs to run 2" subproblems in 

the worst case to get the first integer solution, where n is the number of decision variables. 

At the moment, it is difficult to formalise what rules a designer follows in making hisher design 

choices. We hope that through the interactive system, we can gain more understanding about the 

reasoning process of a designer and hence be able to formalise some rules. This is the first 

requirement for building any expert CAD system, and will be a good topic for future research. 



(2) Controlling exploration of partial designs, 

As described in section 2.4, each subproblem can be fathomed due to bounds, infeasibility, or 

integrality. In each case, BandBX uses the largest bound or best projection criterion to select 

another subproblem to continue. The algorithm does not allow BandBX to abandon the current 

subproblem at any time before fathoming occurs. If the designer is allowed to look at each active 

subproblem then the designer has the alternative to examine non-fathomed partial designs (partial 

implementations which can be improved with respect to the present bound) and to select one to 

replace the present one at any time, if helshe is not content with the present one. If helshe makes 

good choices, it will save a lot of branch-and-bound computation since it will lead to earlier 

fathoming of active branches. 

(3) Choosing between alternatives. 

A designer can find out the effect of different choices for a particular element in the middle of the 

design. For example, the designer may want to know what difference it will make if helshe chooses 

one operator instead of another for some activity. Helshe can set the decision variables for choosing 

the operaton and mi the corresponding subproblem. The resulting b m d s  will give an idea of 

how well each choice performs. 

(4) Find good or bad decisions. 

The user can look at the solutions along a path in the branch-and-bound tree. Each step in the path 

represents one (or more) design decisions. Suppose that in a path, a step S which fixes a decision 

variable x links subproblem A to subproblem B. If step S leads to a large change in the bound value 

from A to B, then the designer may conclude that the decision represented by the variable x is a 

significant one. 

The designer can also examine all partial solutions which cannot be improved (i.e., the inferior 

partial designs), corresponding to the subproblems which were fathomed due to bounds or 

penalties. Helshe could then attempt to deduce the choices which caused the fathom, and avoid 

them in later decision making. 



(5) Supply a strategy in the search. 

The designer may guide the search by supplying a limited number of altemative partial designs, 

each with some significant features, and the branch-and-bound search is activated with these 

starting points. The results will show the performance of each different feature, and the designer 

can pick one alternative to be refined. 

3.3. Time Information 

Beside decision information, we can interpret timing information from the continuous variables 

(i.e., timing variables). We distinguish between two types of values for timing variables based on 

the values of the decision variables that are related to each timing variable. In the synthesis 

constraint systems, timing relationships are described by equalities and inequalities and 

transformed into a set of linear relations. For example, the output time of an activity is the input 

start time plus the propagation delay through the operator assigned to implement the activity. The 

equation is written as: 

The summation essentially selects the proper propagation delay, depending on the operator 

assigned to implement the activity. When an operator fl is chosen, the value of o l ,  will be one 

while the values of ad,a for all other operators fd will be zero. We define a "proper value" of a 

timing variable recursively as follows: if a value is a constant, e.g., the initial time, then the value 

is proper. For equations like the above, if the timing variables on the right hand side (e.g., T&,) 

in the above) are proper, and the decision variables on the right hand side are either zero or one, 

then the value of the timing variable on the left hand side (e.g., the value of T,(O,) in the above) is 

a "proper value". 

However, in a partial solution, the choice of an operator for an activity may be undecided. In this 

case, some, or all, the values of C T ~ , ~  in the equation will be fractions between 0 and 1. In this case, 

the value of T,(Oa) obtained by equation (3.1) is not the exact time, and we call such values 

"improper values". Since Z odVa = 1, the sum Z fd) effectively calculates a weighted 



average of the propagation delays for all available operators. If the timing variable T,(xa) is 

proper then the improper value of variable T,(Oa) is the average output availability time for 

activity x,. 

The linear form that expresses the time a value can be stored is 

TSs(oa,J - T,(Oa) - ( ~ ~ ~ ( s ~ )  + f ) pe , a , , 2 -f 
(" Is,.s,J 

If 6d,c2 has a value of 1 for some input id,c2 which uses output value o , ,  then by (2.40) 

Z p , ~  = 1. In this case, the interpretation of the constraint is similar to that given for (3.1). 
However, if the values of the variables 6a2,c2 are 0 or fractional for all inputs which access 

the value o,,~, then it may be that x p,,, 5 1. In this case, the value assigned to Ts&oa,J is likely 

to be misleading and may be completely meaningless. Suppose that x p,, = 0.5, and note that f, 
as defined in section 2.2, is generally much greater than Dss(se). Then constraint (3.2) reduces to 

TSs(oa,J - Tm(Oa) 2 -0.5 f 

implying that the value o , ,  can be stored before it is available. 

The linear relations below express the requirement that no operator is ever assigned to execute 

two activities at once. 

7xs(xa2)-Tm(xa1)-f %al 1f(3d,a2+faa1,a2 -2f 

If one or more of the decision variables aaI,&, qaI or (3d,a2 have fractional values, then Txs(xd) 

and TW(xaI) are improper and their values are potentially misleading. 

From these examples, we can see that the user must be careful to interpret the values calculated 

for timing variables in the context of the decisions made to that point in the development of the 

partial implementation. Even in an integer solution (i.e., a complete implementation), some timing 

variables may have meaningless values. (E.g., when, in fact, a value is not stored in the 

implementation.) 



In spite of these difficulties, much useful information can be obtained from the values of the 

timing variables in the partial implementations: 

(1) Obtaining the maximum or minimum computation time 

For each activity xu, the set Fa contains the possible choices of operators to be used in the 

implementation. For each output value oa,,, the set S a ,  contains the possible choices of storage 

elements to be used in the implementation. 

In the partial solution of a subproblem, some choices of operators and storage elements are made 

but some are not. For an activity or output value that has a chosen operator or storage element, we 

know the exact propagation delay. For an activity or output value that does not have a chosen 

operator or storage element, we can still get an upper bound and a lower bound on the propagation 

delay by picking components with the maximum and minimum propagation delay from among the 

sets Fa and S,,. 

Therefore we shall be able to answer a query from the user when helshe wants to know the 

maximum or minimum computation time that may arise from the current partial solution. To get 

the maximum value, we use the exact time whenever a component has been decided, and we pick 

the component with the maximum delay for each undecided activity or value and calculate the total 

time. To get the minimum time bound, we use the exact time whenever a component has been 

decided, and we pick the component with the minimum delay for each undecided activity or value 

and calculate the total time. In the general case, specialised algorithms are required for this 

analysis, as described in [ 133. 

(2) Reusing operators and storage elements 

Txs(xa) is the time when computation of an activity starts, and T,(xa) is the time when all output 

values of an activity are no longer required. For two activities xal and xd, if Tm(xal) is less than 

T,(xd), and the times are proper, then the two activities are not overlapping. This means that the 

operator that implements activity xal can be reused by xd. This choice may lead to a good solution 

since it saves on the number of operators used and hence reduces the cost. The designer can ser the 

decision variables to choose the same operator for both activities. 
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If some activity or value that xal or xd depends on has not been assigned a specific operator or 

storage element, or the a variables for those activities or values are non-integer (or a combination 

of these cases), then the times T,(xal) or T,(xd) are improper. In such cases we can still derive 

some useful information. First we calculate the maximum possible value MAX for T A l ) .  This 

is found as outlined in (1) above. Similarly, we calculate the minimum possible value MIN for 

T,(xd). If MAX is less than MIN, then it is not possible for the two activities to overlap, and we 

can reuse the same operator. 

A similar analysis for TJO,~ ,~~)  and TJod ,2) can determine if it possible for the lifetimes of 

stored values to overlap. 



Chapter 4 

An Interactive System for Data Path Synthesis 

In this chapter we have chosen to focus primarily on an interactive environment for synthesizing 

register-level data paths from a data-flow specification. The interactive system is called the Data 

Path Synthesis Interactive System (DPSIS). DPSIS extracts design information from the 

mathematical formulation in a form which can be understood by a digital hardware designer (who 

often has little knowledge about constrained optimisation techniques). The remainder of this 

chapter will discuss the control flow and data flow of the DPSIS system. 

4.1. Overview of DPSIS 

DPSIS assists the user to minimise cost or maximise speed subject to time and resource 

constraints, allocate values to registers and operations to operators, schedule operations and 

optimise by exploring alternative designs. Since most synthesis problems are NP-complete, 

programs cannot investigate all alternatives. Therefore, flexibility is important for a synthesis 

program because the designer must either make decisions in the "best" order, or must be able to 

select alternatives. DPSIS can provide the above features depending on the designer's knowledge 

about design. . 

The overview of the control flow and data flow of DPSIS is illustrated in Figure 4-1. The 

following major components comprise DPSIS: 

IDDMA [ S ]  (The Model Generator Software) is an interactive aid for generating a 

synthesis model from a data flow representation of a desired behaviour. Two forms of 

output are provided, a human-oriented output in the form of symbolic relations, and a 

fixed format output for use by the BandBX module. Our research provides the ability 

to integrate IDDMA with BandBX by implementing an additional command mode 

called "intertt which we will discuss in more detail in the next chapter. 
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Figure 4-1: Cverview of DPSlS 

BandBX [8] is the program used to solve the synthesis model as a MILP problem 

(described in sections 2.3 and 2.4). BandBX uses certain criteria to select the decision 

variables on which to branch (i.e., make a design decision) and to select another 

subproblem (i.e., partial implementation) at which to continue when the present 

subproblem has been fathomed. DPSIS provides the flexibility to allow the user 

(designer) to select the decision variables and choose subproblems. 

Driver Routine is the driver that processes commands by calling the proper routines. 

The user enters the command hejshe needs, then the driver routine checks the 

command and calls the respective routine. The details of the commands will be 

discussed in the following sections and chapters. 



4.2. Representation of the Synthesis Model's Variables 

Table 4-1 shows the representation of variables in DPSIS, and DPSIS uses this format to display 

to the user. The notation in the first column has already been described in chapter 2. The construct 

%*a" in the DPSIS format for the variable names is an artifact of the data-flow representation. The 

vt translator numbers activities sequentially within larger subdivisions called vt bodies (roughly 

equivalent to subroutines). Hence both a vt body index and an activity index are necessary to 

uniquely specify an activity. The details of this representation can be obtained from [ S ] .  

Gs<d,v*a> 
Gr<e,v*a,c> 

Gd<v*a,c> 

Tia<v*a,c> 

Txs<v*a> 
Toa<v*a> 

Txr<v*a> 

Tir<v*a> 

Tor<v*a,c> 
Tss<v*a,c> 

Tsa<v*a,c> 

Tsr<v*a,c> 

Table 4-1: DPSIS representation of the synthesis model's variables 

4.3. Data Structures 

This section describes the data structures used in DPSIS and the information that these data 

structures contain. The dashed lines in Figure 4-1 represent the data flow in DPSIS. From Figure 

4-1 the data information in DPSIS is primarily contained in two major groups of data structures: 

IDDMA's data structures and partial solution data structures. 



43.1. IDDMA9s Data Structures 

The next few paragraphs will describe some of IDDMA's data structures that DPSIS uses to 

supply information to the user. 

There is a data structure that provides information about the hardware elements that can be used 

during the design process. The information that DPSIS can obtain about a hardware element are its 

actual name, the list of its functions, its size in bits, the setup time prior to clocking it, the hold time 

after clocking it, its propagation delay, and its cost. The designer usually needs this information 

when helshe is working on a partially implemented design. 

There are two data structures (matrices) that give information about the decision variables of type 

o and p. The columns in the matrices correspond to storage elements or operators, while the rows 

of the matrices correspond to outputs or activities. Columns of these matrices record which 

activities (values) are able to use a particular operator (storage element) for the design. The rows 

give information about which operators (storage elements) can be used to implement (store) a 

particular activity (value) during the design process. 

The constraint system (in the form (2.49)), is stored in a two dimensional sparse matrix. Each bi 

value is kept in a row header, each variable index is kept in a column header, and each value of aij 

is stored in an entry of the sparse matrix. With this data structure the designer can examine the 

original constraints. 

The data structure called the variable translation tree is an n-ary tree in IDDMA which is used to 

convert between the indexed variable associated with the vt components (as described in Table 4-1) 

and a uniform numbering scheme for the variables as required by BandBX. This data structure can 

provide a hurnan-readable name for any variable by traversing the tree to obtain the variable type 

and subscripts. 

The value trace data structure represents the algorithm to be implemented. This data structure is a 

directed acyclic graph (DAG) and provides a data-flow specification of the design, as written by 

the designer. With this data structure the designer knows the data-dependence information of the 



activities. Activity xd is data-dependent on activity xal if we can trace a directed path in the data 

flow graph from an output of activity xal to an input of activity xd. 

43.2. Partial Solution Data Structures 

As already described in the previous two chapters, BandBX solves the linear relaxation of the 

current subproblem, then acts on the results by fixing monotonic variables, branching, or fathoming 

the subproblem. But DPSIS intermpts BandBX after it solves the linear relaxation, at which point 

there is intermediate information regarding the partial implementation of the design. DPSIS and 

BandBX use this information to maintain the "partial solution data structures" as shown in Figure 

4-1. The partial solution data structures keep complete information only for the current 

subproblem. The next few paragraphs will discuss these data structures. 

The information of (2.51) (i.e., xbasic = b -  AX,,,-^,^,) is stored in a two-dimensional sparse 

matrix maintained by DPSIS. The values of b (basic values) are stored in the row header, the vector 

xbasic is stored in the row headers, and the values of A are stored in the entries of the sparse matrix. 

The first row stores the objective function of the subproblem, and the row header of this row 

contains the bound (i.e., the optimum value) of this subproblem. Each entry of the sparse matrix 

points to the column header which in turn points to the variable translation tree. 

In BandBX each decision variable and timing variable is represented by a numeric identifier. This 

number can be used to index into an array of structures maintained by DPSIS. Each structure in 

this array points back to the variable translation tree. With this feature, given any numeric variable 

identifier, DPSIS can traverse the variable translation tree to obtain the name (as described in Table 

4-1) of the design variable or to locate it in the IDDMA data structures. Each structure 

(corresponding to a variable) in this array also points to a row (if the variable is a basic variable) or 

a column (if the variable is a non-basic variable) of the two-dimensional sparse matrix that 

represents the tableau (2.51). In this case, the value of each variable can be obtained by looking up 

the corresponding array structure. If the variable is a basic variable then value is obtained from the 

corresponding row in the sparse matrix. If it is a non-basic variable then the variable has the value 

of 0. Together with the basic values and the corresponding variables in the variable translation tree 

DPSIS manages to display the the values of the partial design in a human-readable form. 



DPSIS also maintains its own copy of the branch-and-bound tree. As mentioned, each node of 

the tree represents a subproblem. Each node is represented by a structure in the actual 

implementation. This structure stores the subproblem number used by BandBX. If there are no 

monotonic variables the structure also stores the decision variable to be branched on and the values 

of the two subproblems resulting from the branch. In the implementation we defined these two 

subproblems as the right and left subproblems with respect to the current subproblem. The 

subproblem that is stored is called the left branch, indicated by the character "1" in the data 

structure. The subproblem that the system will continue to work on is called the right branch and is 

indicated by the character "r". If there are monotonic variables, the structure stores the monotonic 

variables and their values. For the case of monotonic variables there is no left branch because (by 

definition) a monotonic variable can take only one value, therefore the structure stores the character 

"c" indicating a forced branch to the next subproblem. With information stored in the structure, the 

designer can obtain the design decisions made between two subproblems by traversing the path 

between the two subproblems. 

There is an array structure that stores the address of each active subproblem in the branch-and- 

bound tree (i.e., the nodes in the tree structure mentioned in the previous paragraph). When a 

subproblem is fathomed, BandBX will update this array by removing the address of the 

subproblem and compacting the array. The use of this structure will be shown when we describe 

the command subpro in chapter 5. 

We have discussed the two matrices which describe the variables of type o and p in IDDMA's 

data structure. This paragraph will discuss a similar matrix, maintained by DPSIS for timing 

variables. The columns of the matrix correspond to the types of timing variables, while the rows 

correspond to outputs or activities. Each entry of the matrix represents an individual timing 

variable. Each entry points to the corresponding entry in the main DPSIS array used to link the 

IDDMA and BandBX variable representations. Therefore this structure can be used to obtain the 

value of all the timing variables in Ti. The main advantage of having this matrix is the flexibility of 

accessing the timing variables. With this data structure, DPSIS can access a particular type of 

timing variable by traversing down the column for the variable type. By accessing the rows DPSIS 

can find out all the timing values corresponding to a particular activity or value. 



4.4. Interface Software 

DPSIS uses a number of subprograms driven by a main driver to accomplish its tasks. Each of 

these subprograms performs one or more functions. Figure 4-2 gives the overview picture of 

functional flows of the driver routine. 

The driver calls the respective subprograms based on the command issued by the user. Table 4-2 

lists the commands (i.e., the functions) that have been implemented in DPSIS, with a capsule 

description. The commands will be discussed in detail in the next chapter. The subprograms 

display the requested design information to the user by extracting the partial solution data 

generated by the MILP package and translating it into human-readable form. 



Figure 4-2: Functional flows 



actfop 
actfos 

a n t  

fixvar 

flist 
help 

OPer 
pshoweqn 

quit 
select 

setfat 

showeqn 

stor 

subpro 

time 

var 

show what operators are available, excluded, and used by an activity. 
show what storage elements are available, excluded, and used by a value. 
allow the user to specify a number of subproblems for BandBX to execute 
before interaction resumes. 
allow the user to fix decision variables. 
show the decision variables that have been fixed, and their values. 

show the user a list of legal commands. 
show what activities are assigned, available and excluded from an operator. 

show an equation (i.e., a row) of the partial solution tableau. 

allow the user to quit executing DPSIS at any time. 
allow the user to select another partial solution. 

allow the user to select another partial solution when the present partial 
solution has been fathomed. 
show the user an original constraint relation. 

show what activities are assigned, available to, and excluded from a storage 
element. 
show the active subproblems. 

show the values of all timing variables. 

show the value of all variables of a particular type. 

Table 4-2: DPSIS commands 



Chapter 5 

DPSIS Commands 

DPSIS has two levels of interaction with the user. The first level of interaction has 18 commands 

mainly used for generating the constraint relations [S] and displaying human-oriented information 

about IDDMA internal data structures. The second level, which has been implemented for this 

thesis, allows the user to interact with the MILP software and obtain design information at any 

selected subproblem (i.e., partially implemented solution), thus providing flexibility to DPSIS. 

5.1. Usage 

In 151, Hafer has provided a command interface which can be used interactively or supplied with 

input from a command file. To interact with the MILP software, place the "inter" command at the 

end of the command file. Then, simply type 
% DPSIS < f i 1 e . d  

During the course of execution of the first level commands, there will be messages indicating the 

execution of the commands. Then the "inter" command is executed, which starts the second level of 

interaction by prompting 
INTER> 

In this level there are 16 commands. 

5.2. Command Descriptions 

In this section we will describe each second level command of DPSIS in detail. The description 

for each command will include: 

a summary of the command's function in terms of the designer's point of view. 

a summary of the command's function in terms of the mathematical formulation. 



an example. 

5.2.1. cont 

The cont command allows the user to specify the number of partial implementations that helshe 

wants DPSIS to explore before resuming the interaction. In other words, the cont command 

provides the designer the option of whether to participate in the design process or to allow DPSIS 

to make design decisions automatically. 

From a mathematical point of view, interaction is suppressed until BandBX has solved the 

specified number of subproblems. If the current subproblem is fathomed before the specified 

number is reached BandBX will select another subproblem and continue. But DPSIS provides 

another command called setfat that will set a flag to "off' or "on". If the flag is on then control is 

returned to the user after fathoming regardless of the subproblem count. 

The example below shows the user asking the system to solve five subproblems before helshe 

wants to interact with the system again. The user again asks the system to solve another five 

subproblems. The system abandons the partial implementation after solving two subproblems, 

because the cumnt partial implementation will not produce a better design. In this case the system 

will select a new partial implementation to work with. Interaction resumes after solving another 

three subproblems. 

Example : 

INTER > c0nt 5 ; 

5 more partial implementation 
4 more partial implementation 

0 

0 

1 more partial implementation 



INTER > cant 5 ; 

5 more partial  implementation 
4 more partial  implementation 

SUBPROBLEM FATHOMED DUE TO BOUND 

3 more partial  implementation 
2 more partial  implementation 
1 more partial  implementation 

INTER > 

5.2.2. flist 

The flist command allows the designer to check the design decisions that have been made for the 

partial design helshe is working on. This command does not show the order of these decisions. 

From a mathematical point of view, the branch-and-bound tree is traversed from node vj (i.e., the 

current subproblem) to node vo (i.e., the root), recording the values assigned to variables fixed due 

to branching and variables fixed when they were found be monotone. In other words, this 

command will show the designer the set q. 

The example shows the designer asking DPSIS to show the design decisions that have been made. 

The output shows that hardware componentfi is not going to be used to implement activity x5 and 

hardware component sl will be used to implement activity x4. The designer also knows that input 

il,l of activity xl and inputs i3,1 and i32 of activity x3 will be obtained from values held in storage 

elements. 

Example: 

INTER> f l is t  



5.2.3. help 

The help command gives the designer a table (with a capsule description) of the legal commands 

that are present in DPSIS. 

Example : 
INTER > help 

Table of Commands ----------------- 
help a show a list of legal  comnands. 
0 

0 

se lect  se lect  another partial  solution. 

INTER > 

5.2.4. quit 

The quit command allows the designer to stop the whole design process. The designer may wish 

to do this if cost or performance does not meet design specifications, if the designer is content with 

the design, or if there is no noninferior design. 

Example : 

0 

0 

INTER > quit ; 

the design process i s  terminated intentionally 

% (back t o  unix prompt) 

5.2.5. subpro 

The subpro command allows the designer to look at any active partial designs, and the 

information they contain. With this command the designer can determine, for each active partial 

implementation: 1) the order of design decisions that were made to reach it; 2) its objective value; 

and; 3) the next decision that BandBX will take; 

From the mathematical point of view, the designer is actually looking at the subproblems which 

are not fathomed (that is, the bound for these subproblems is still better than the current best integer 



solution). As already discussed, BandBX selects a binary variable to branch on. If it branches to a 

value of 1 (or 0) it will continue working on that subproblem and save the the other subproblem 

that branches to the value of 0 (or 1). In this case, the saved subproblem will contain the 

information specifying which binary variable it is going to branch on when BandBX recovers this 

subproblem to continue. 

With the addition of the interactive interface to BandBX, a second type of active subproblem is 

required. When the designer uses the select command (described in section 5.2.6) to choose 

another subproblem to work with and store the subproblem helshe is working on, a branching 

variable is not selected, hence the stored subproblem cannot specify one. 

The path Pi specifies which of the decision variables have been fixed, as described in the flist 

command, but the subpro command also shows the order in which the decision variables were 

fixed. 

There are two options in the command. First, the designer can specify the range of partial designs 

helshe wants to see. Second, the designer can randomly select the partial designs helshe wants. 

Example : 

INTER > subpro range 3 ,4  ; 

Number = 3 Current  Bound = -27.516879 
N o d e  # = 3 Var iab le  Gs<1,7*1> t o  be f i x e d  = 1 
Var iab le s  f i x e d  informat ion  i n  o r d e r  : 
Gd<7*1,2> = l r  Gd<7*5,1> = O r  

Number = 4 Current  Bound = -31.415799 
N o d e  # = 5 V a r i a b l e  Gb<5> t o  be f i x e d  = 0 
Var i ab le s  f i x e d  informat ion  i n  o r d e r  : 
Gs<5,7*5> = O c  Gs<l,7*1> = O r  Gd<7*1,2> = l r  
Gd<7*5,1> = O r  

INTER > subpro random 7 ; 

Number = 7 Current  Bound = -59.165001 
Node # = 8 V a r i a b l e  Gr<1,7*0,1> t o  be f i x e d  = 0 
V a r i a b l e s  f i x e d  informat ion  i n  o r d e r  : 
GlX6> = O r  Gb<l> = O r  Gb<5> = l r  
Gs<5,7*5> = Oc Gs<1,7*1> = O r  Gd<7*1,2> = l r  
Gd<7*5,1> = O r  



The examples show the designer asking DPSIS to display a) the subproblems ranging from 3 to 4, 

and b) the 7th subproblem. The command is set up this way because there is an array storing the 

actual location of each subproblem, as described in section 4.3.2. The number used in the 

command is not the actual subproblem number. Rather, it is the location in the array that contains 

the address of subproblem v,. The examples presented show that the designer can find out the 

current bound (i.e., the optimum value of the linear relaxation), the partial implementation helshe is 

working on (i.e., the node number), the order in which the fixed decision variables were specified, 

their value, and the direction these decision variables branch to. The letters "r", "I", and "c" 

indicate the branching direction of each subproblem, as discussed in section 4.3.2. 

5.2.6. select 

The select command provides the designer with the ability to control the order in which BandBX 

explores the branch-and-bound search tree. 

As explained in section 2.4, BandBX uses bounds and projection criteria to select a new 

subproblem when the current subproblem is fathomed. The select command allows the designer to 

intervene and select the partial implementation he/she considers most promising. The setfat 

command, described in section 5.2.10, is used to force BandBX to allow designer intervention after 

a subproblem is fathomed. 

It may also happen that the designer will wish to abandon a partial implementation before 

BandBX can fathom the subproblem. This will occur when the designer's experience leads 

himher to believe that the design choices already fixed in the partial implementation will preclude 

a good final implementation. 

From the mathematical point of view, some care is necessary in the second case. When the select 

command is used to force BandBX to another subproblem before the current one is fathomed, the 

current subproblem must be stored. This is necessary to ensure no potential optimal solution is 

missed due to premature pruning of a branch in the search tree. As mentioned in section 5.2.5, the 

subproblem which is stored differs from those created by BandBX during the normal branching 

process in that no branching variable has been selected; this choice is postponed until the 



subproblem is reactivated. 

Example : 
INTER > subpro random 4 ; 

Number = 4 Current Bound = -31.41579 
Node # = 5 Var iab le  Gb<5> t o  be f i x e d  = 0 
V a r i a b l e s  f i x e d  information i n  order  : 
Gs<5,7*5> = O c  Gs<1,7*1> = Or Gd<7*1,2> = 1r 
Gd<7*5,1> = Or 

INTER > select 4 ; 

The example shows the designer examining partial design number 4 with the subpro command, 

then asking DPSIS to store the current partial design and to activate partial design number 4. 

5.2.7. showeqn 

The showeqn command allows the designer to look at the original constraints of the synthesis 

model in a (more-or-less) human-readable format. 

The example below shows the designer asking DPSIS to display the first constraint. And the first 

constraint tells the designer that activity x7 can use hardware components f5, f6 or f7 during the 

design process. 

Example: 

INTE- showeqn 1 ; 

5.2.8. pshoweqn 

The function of pshoweqn is similar to showeqn, but it shows the constraints of the current 

partial solution, rather than those of the original model. 

From the mathematical point of view, we are looking at the rows of the tableau, xbasic = b - 

**non-basic. 

The example shows the designer asking DPSIS to display row number 4 of current tableau. 



Example: 

INTER> pshoweqn 4 ; 

INTER> 

The "S" character followed by a number is the name generated for a slack variable. The number 

"230" means variable x 2 3  in BandBX. Therefore, S230 is the slack variable for constraint number 

"230 - number of variables". The equation shows that the slack variable S230 is a member of Bj 

and has a value of 1 since bdOj = 1. The slack variable S116 has a value of 0 since S116 E NBi. As 

for variables Gd<7* 1,2> and Gdc7* 1 ,I>, they each have a value of 0 (since both are elements of 

NB,), unless they have been fixed at 1. 

5.2.9. var 

The syntax of the var command is "varctype of variable>". This command will display the 

values of all the variables of a particular type. 

From the mathematical point of view, for any type of timing variable DPSIS will search the set 

BTj to find the particular type of variable, then it will obtain the value of these variables from the 

basic value vector b. If the requested variable type is a decision variable, then DPSIS will search 

the set BDi. DPSIS also searches the set NBj to find variables of the particular type which are 

nonbasic and hence 0 (or possibly fixed at 1). 

The example shows the designer successively asking DPSIS to show the values of the o, p and 

T, variables. The "B1's beside the values mean that variables are in the set B q  (for timing 

variables) or in the set BDj for decision variables. The "*" can only apply to decision variables, and 

it means that the variable is fixed and is in the set nj. Variables after the "Nonbasic" are the 

nonbasic variables that have a value of 0. In the vars command, the variables Gsc5,7*5> and 

Gsc1,7*1> are displayed as variables that are fixed to the value of 0 and also nonbasic. 



Example : 

INTER> vars 

Nonbasic variables: 

INTER> varr 

Nonbasic variables: 

Gr<2,7*0,2>=0 Gr<2,7*2,1>=0 Gr<2,7*4,1>=0 
Gr<3,7*2,1>=0 Gr<3,7*4,1>=0 

INTER> vartxs 

Nonbasic variables: 

The setfat command acts as a switch to control the actions BandBX takes when a subproblem is 

fathomed. When this switch is on, it allows the designer to participate in selecting another partial 

implementation when the current partial implementation is fathomed. When the switch is off, 

BandBX will select a new subproblem and proceed automatically. 

This command does not have a mathematical explanation. But we could describe it as an 

additional feature for BandBX, allowing human expertise to aid in selecting the next subproblem. 

Normally, BandBX uses bounds and best integer projection criteria to select a new subproblem. 

In order to see the benefit of the setfat command, we give a clear example. The example shows 



the designer initially setting the switch "on", then asking DPSIS to solve five subproblems before 

resuming interaction. After solving t h e  subproblems, the subproblem was fathomed. Since the 

switch is "on" interaction is resumed, but when the designer tries to continue without selecting a 

new subproblem, DPSIS reminds the designer that there is no active subproblem. So the designer 

looks up the active subproblems in the tree and selects one to continue. 

Example : 
INTER> setfat on ; 

INTER> c o n t  5 ; 

5 more p a r t i a l  implementation 
4 more p a r t i a l  implementation 
3 more p a r t i a l  implementation 

SUBPROBLEM FATHOMED DUE TO INFEASIBILITY 

E n t e r  I n t e r a c t i o n  System Due t o  Fathom 

INTER > con t  2 ; 

No a c t i v e  subproblem t o  cont inue  

INTER > subpro range 5 , 6  ; 

Number  = 5 Curren t  Bound = -59.165001 
Node # = 8 Var i ab l e  Gr<1,7*0,1> t o  be f i x e d  = 0 

0 

INTER > select 5 ; 

5.2.11. fixvar 

The fixvar command allows the designer to participate in making design decisions. The designer 

uses other commands to obtain design information, which can help himher to identify the next 

feasible move in decision making (i.e., fixing the binary variables). 

In section 2.4 we learned that BandBX used upward and downward penalties to select a decision 

variable to fix in the next partial implementation. The fixvar command provides human interaction 

(i.e., human experience) in decision making, instead of basing it solely on mathematical criteria. 



From the mathematical point of view, the designer is creating another subproblem by adding 

another binary variable to the set llj of fixed variables. The other subproblem (formed using the 

opposite value of the binary variable) will be stored by BandBX. 

The example shows the designer making a design decision by assigning hardware component f5 

to implement activity x7. After telling DPSIS what variable to fix, the designer has to issue the cont 

command to ask BandBX to do the actual calculation. 

Example: 
INTER> vars 

Nonbasic variables: 

I N T E R >  fixvar one Gs<5,7*7> ; 

INTER> cont 1 ; 

5.2.12. actfop and oper 

The actfop and oper commands both yield selected information about the assignment of 

operators to activities in the current partial implementation. The difference between the two 

commands lies in the method of selection: actfop yields information about a given list of activities, 

whereas oper yields information about a given list of operators. 

During the design process, the designer needs to recall which operators have been assigned to a 

set of activities. Occasionally, the designer would like to know what operators are still available for 

assignment to a set of activities and what operators are excluded from being used to implement 

those activities. The actfop command provides this information. Conversely, the designer may 

need to know where a given set of operators are used, available, and excluded in the current partial 

design. The oper command provides this information. 



57 

The queries supported by the actfop and oper commands are very useful to a designer. Knowing 

the distribution of operators and the timing information (mentioned in sections 3.2 and 3.3), a 

designer might be able to swap operators to save cost or improve the performance of the design. 

From the mathematical point of view, the above queries can be answered by looking at the current 

values of o variables. Therefore, the command 

actfop scans all %a for a given activity xu and 

oper scans all %a for a given operator fd. 

Each command takes an additional argument specifying the cIass of information to be selected: 

"used" : An operator fd is used by an activity xu if and only if %a = 1. 

"exclude" : An operator fd is excluded from an activity xu if and only if od a = 0. 

"avail " : An operatorfd is available for an activity xu if and only if B ~ , ~  is not fixed to 

0. 

If %a E Ill. then its use is fixed in the partial implementation and in all implementations derived 

from it. This is indicated by a "*" in the command response. Operator fd is used by activity xu if 

od,, = 1; for consistency, the operator is also listed as being available for the activity. If Gd a is 

fixed at 0, then it is excluded from use by activity xu. 

If %a e, Ilj, the value of od,a gives the usage of the operator in this partial implementation. 

However, the use is not fixed, and may be completely different in implementations derived from 

the current one. Because the usage may change, fd will always be listed as available. If od a has a 

value of 0 or 1, fd is will also be listed as used or excluded, respectively. A variable od,, E NBDj 

which has a value of 0 and is not fixed, is indicated by a "-" in the command response. Table 5-1 

gives a summary of the above explanation. 



used 

available 

excluded 0 0 0 

Table 5-1: Design interpretation vs. values for o variables 



Example : 

INTER > vars  

Nonbasic var iables :  

INTER > act fop x1, x3, x5, x7 used ; 

a c t i v i t y  1 used 5 
a c t i v i t y  3 used 5 
a c t i v i t y  5 used 2 
a c t i v i t y  7 used 5 

INTER > act fop x1, x3, x5, x7 a v a i l  ; 

a c t i v i t y  1 ava i l ab le  5 
a c t i v i t y  3 ava i l ab le  6-, 5,3- 
a c t i v i t y  5 ava i l ab le  6 ,2 ,1  
a c t i v i t y  7 ava i l ab le  6-, 5,4-, 3- 

INTER > ac t f  op x1, x3, x5, x7 exclude ; 

a c t i v i t y  1 excluded l *  
a c t i v i t y  3 excluded 6-,3- 
a c t i v i t y  5 excluded 6,5*, 1 
a c t i v i t y  7 excluded 6-,4-,3- 

The above example shows the designer asking DPSIS to display the current operator allocation 

information for activities xl, x3, x5 and xp In the fourth query, the designer asks DPSIS to display 

the information about operators that are excluded by these activities. Consider the display for 

activity x5. Currently, none of the operators fi, fi or f6 are used to implement x5. For f5 this 

decision is fixed for all continuations of the the current partial implementation, whereas fl or f6 

might later be used to to implement activity x5. Consider the display for activity xp Currently, 

none of the operators f6, fq o r b  are used to implement xp 

Example : 



  on basic var iables :  

INTER> oper fl,f2,f3,f4,f5,f6 used ; 

Operator 1 used i n  a c t i v i t i e s  nowhere 
Operator 2 used i n  a c t i v i t i e s  nowhere 
Operator 3 used i n  a c t i v i t i e s  nowhere 
Operator 4 used i n  a c t i v i t i e s  nowhere 
Operator 5 used i n  a c t i v i t i e s  7*,3,1 
Operator 6 used i n  a c t i v i t i e s  nowhere 

INTER, oper fl,f2,f3,f4,f5,f6 a v a i l  ; 

Operator 1 avai lable  i n  a c t i v i t i e s  1- 
Operator 2 avai lable  i n  a c t i v i t i e s  5 
Operator 3 avai lable  i n  a c t i v i t i e s  7,3- 
Operator 4 avai lable  i n  a c t i v i t i e s  7- 
Operator 5 avai lable  i n  a c t i v i t i e s  7*, 5,3,1 
Operator 6 avai lable  i n  a c t i v i t i e s  6- 

INTER> oper fl,f2,f3,f4,f5,f6 exclude ; 

Operator 1 excluded i n  a c t i v i t i e s  5*,1- 
Operator 2 excluded i n  a c t i v i t i e s  nowhere 
Operator 3 excluded i n  a c t i v i t i e s  7,3- 
Operator 4 excluded i n  a c t i v i t i e s  7- 
Operator 5 excluded i n  a c t i v i t i e s  nowhere 

The example above shows DPSIS answering queries about operators fl through f6. In the third 

query, the designer asks DPSIS to display where these operators are still available. Consider the 

operators fl and f5. For operator fl, "I-" means that operator fl is currently not used to implement 

activity xl, but might be in some continuation of the current partial design. Operator f5 is currently 

available to implement activities x7, x5, x3 and XI. It will be used for x7 in all continuations of the 

current partial implementation, but possibly not for activities x5, x3 and X I .  



5.2.13. actfos and stor 

The actfos and stor commands are similar to the actfop and oper commands respectively. The 

difference is that they yield selected information about the assignment of storage elements to output 

values in the current partial implementation. 

From the mathematical p i n t  of view, the queries can be answered by looking at the current 

values of the variables of type p, instead variables of type a. Therefore, the command 

actfos scans all p, ., for a given value o,,,, and , I 

oper scans all p , , ,  for a given storage element se. 

The relationship between the mathematical explanation and the design interpretation is similar to 

that for the commands actfop and the oper, using the p, variables instead of the %a variables. 
1 > 

Table 5-2 gives a summary. Due to a design oversight in the implementation, these two commands 

Pe,a BDj Pe,a,c nj Pe,a,c E NBDj 

used i 1 n/a 

available 05 %,< 1 1 0 

excluded 0 0 0 

Table 5-2: Design interpretation vs. values for p variables 

do not provide complete information in some cases. The flaws are easy to patch up and will be 

illustrated in the examples. 

Example : 

INTER > varr 

Nonbasic variables: 



INTER > a c t f o s  ~ 2 ~ x 3 ~ ~ 4 ~ ~ 6  used ; 

output  a c t i v i t y  2 used : none 
output  a c t i v i t y  3 used : none 
output  a c t i v i t y  4 used I* 
output  a c t i v i t y  6 used : none 

INTER > a c t f o s  x2, x3, x4, x6 a v a i l  ; 

output  a c t i v i t y  2 a v a i l a b l e  3,2- ,1 
output  a c t i v i t y  3 a v a i l a b l e  : none 
output  a c t i v i t y  4 a v a i l a b l e  3-,2,1* 
output  a c t i v i t y  6 a v a i l a b l e  : none 

INTER > a c t f o s  x2, x3, x4, x6 exclude ; 

output  a c t i v i t y  2 excluded 3 ,2  - 
output  a c t i v i t y  3 excluded : none 
output  a c t i v i t y  4 excluded 3-, 2 
output  a c t i v i t y  6 excluded : none 

INTER > 

The above example shows the designer asking DPSIS to display the storage element allocation 

information for the output values of activities x2, x3, x4 and xg. The command should specify the 

outputs. Note that presently we are dealing with only one output from each activity, hence it is 

sufficient to simply specify the activity. In the third query, the designer asks DPSIS to display 

information about storage elements that are available to store the output value of the activities for 

the current partial design. Consider the output value of activity x4. Currently, storage elements sl, 

s2 and s3 are available, with sl selected for use. In continuations of the current partial 

implementation, sl will always be used. 

For reasons of expediency, the syntax for the actfos command is not adequate to uniquely specify 

some values. In particular, external inputs cannot be properly specified. Information given in 

response to a query about activity xo is specific to input ioJ. Inputs io,2, ioj, ... cannot be specified. 



Example : 
INTER> v a r r  

Nonbasic va r i ab les :  

Gr<3,7*2,1>=0 Gr<1,7*0,1>=0 Gr<1,7*4,1>=0 

INTER> s t o r  $1, s2, s 3  used ; 

Storage 1 used i n  a c t i v i t i e s  0* 
Storage 2 used i n  a c t i v i t i e s  4 
Storage 3 used i n  a c t i v i t i e s  nowhere 

INTER> s t o r  s l I s 2 , s 3  a v a i l  ; 

Storage 1 a v a i l a b l e  i n  a c t i v i t i e s  2,0* 
Storage 2 a v a i l a b l e  i n  a c t i v i t i e s  4,2,0 
Storage 3 a v a i l a b l e  i n  a c t i v i t i e s  4,2- 

INTER> s t o r  s l I s 2 , s 3  exclude ; 

Storage 1 excluded i n  a c t i v i t i e s  4* 
Storage 2 excluded i n  a c t i v i t i e s  nowhere 
Storage 3 excluded i n  a c t i v i t i e s  4,2- 

The example above shows the designer asking DPSIS about the allocation of storage elements sl, 

s2 and s3 in the current partial design. In the fourth query, the designer asks where these storage 

elements are not used. Consider the storage elements sl and s3 of this query. Currently, they are 

both excluded from being used to store the output value of activity x4. 

Similarly to command actfos, the stor command syntax is not adequate to uniquely specify some 

values. In particular, external inputs cannot be properly specified. Infonation given in response 

to query about storage elements to be used to store external values is specific to input ior1. Inputs 
. . zo3, ... cannot be specified. 



5.2.14. time 

The time command allows the designer to obtain the current values of timing variables of all 

types. Helshe can look at a list of individual timing variables, the timing variables of a list of 

activities, and specific types of timing variables for a list of activities. 

From the mathematical point of view, if a timing variable is an element of BT, then the value of 

the timing variable is the corresponding basic value. If a timing variable is an element of then 

the timing variable has a value of 0. 

Example : 
INTER> time Tor<7*4, I>, Tss<7*2, I>, Tor<7*7,1> ; 

INTER> time Txr,Txs ~ 1 ~ x 3  ; 

time information for activity : 1 
Txs<7*l> = 2.224599B 
Txr<7*l> = 134.224599B 

time information for activity : 3 
Txs<7*3> = 2.224599B 
Txr<7*3> = 134.224599B 
INTER> time x5,x6,x7 ; 

time information for activity : 5 
Tia<7*5> = 174.224599B 
Txs<7*5> = 174.224599B 
Txr<7*5> = 306.224599B 
Tor<7*5,l> = 306.224599B 

time information for activity : 6 
Tia<7* 6> = 281.224599B 
Tor<7*6,1> = 306.224599B 
Tss<7*6,1> = 306.224599B 
Tsr<7*6,1> = 9OO.OOOOOOB 

time information for activity : 7 
Tia<7*7> = 174.224599B 
Txs<7*7> = 174.2245998 
Txr<7*7> = 304.018109B 
Tor<7*7,1> = 304.018109B 



The above example shows three different ways the time command could display timing 

information. In the first query, the designer requests timing information for the individual timing 

variables Tor<7*4,1>, Tss<7*2,1> and Tor<7*7,1>. In the second query, the designer requests the 

values of the T, and T, variables for activities xl and x3. In the third query, the designer requests 

all timing information for activities x5, X6 and x7. 



Chapter 6 

Evaluation of DPSIS 

To investigate the effectiveness of DPSIS, we used it to solve a few synthesis problems. 

6.1. Evaluation Criteria 

DPSIS is an interactive system that lets the designer guide the exploration of the branch-and- 

bound tree maintained by the BandBX program. We are interested in whether this guiding results 

in the optimum solution earlier than if BandBX were allowed to run by itself. From the extensive 

set of statistics that BandBX compiles, the following three pieces of information were used to 

evaluate how much time the branch-and-bound process takes with and without DPSIS: 
The number of the subproblem at which the optimal solution was found. 

The total number of subproblems solved. 

The total number of simplex pivots performed to solve all  linear relaxations. 

Since DPSIS is a man-machine interface, the above three numbers will depend on the decisions 

made by the designer. 

The next three sections will introduce three design problems: CrissX, Logic and Power. We 

walk through a DPSIS session for each of these problems, showing how DPSIS helps the designer 

in making design decisions. 

6.2. CrissX ExampIe 

Figure 6-1 presents the data flow representation of the algorithm. Activities x2, x4, x6 and xg are 

field extraction operations which produce as outputs a subfield of their input. These field 

extraction operations are needed because activities xl, x3, x5 and x7 have 16 bit inputs and will 

produce an output of 17 bits. No operators are required to implement these activities, since they 

are performed simply by connecting to the proper bits of the values o5 o7 ol and 03,1. 



Figure 6-1: Data flow representation for the CrissX problem 



The period during which the inputs lo are valid is restricted to the interval 0 to 100 ns., and we 

have assumed a single control signal to latch the inputs. As shown in Figure 6-2, we have required 

the output values Oo to be accessed from register outputs, and forced the values 0 6 , ~  and ogPl to be 

stored, by setting the variables aO,i, 60,2, P1,6,1, and pzs to 1. The outputs have to be valid at the 

time t=800 ns. and remain vkid until the time t=9W ns. The objective of this design problem is to 

optirnise the cost. The proper objective function is 

19.8P6 + 19.8P5 + 23.70~7 + 23.7P3 + 1 4 ~ ~ ~ ~  + 14P1 + 8.8323 

where p and 2 are derived binary variables (described in section 2.2) which are 1 if the hardware 

element they represent is ever used in the implementation. The coefficient for each variable is the 

cost of the hardware element. 

Translated into a MILP constraint set, this problem consists of 144 constraints involving 88 

variables, of which 47 are decision (binary) variables. The details of the hardware set available for 

Figure 6-2: Restrictions on the implementation of CrissX 

implementation are given in Table 6- 1, in which the registers are sorted in non-decreasing order of 

their bits; the operators are sorted increasingly according to the number of functions that they can 

perform (IDDMA maintains this information, as described in section 4.3.1). 

To ease the explanation a number is attached to each command. We begin when BandBX has 

. just finished solving the first relaxation problem, when no decision variable has been fixed. 

Initially, the designer has the image of the data flow representation of this problem, and the goal 

of minimising its cost. The designer will try to reuse storage elements and operators whenever 



storage 

operator 

bits 

<16> 25 ns. 0 ns. 40 ns. 
<16> 25 ns. 0 ns. 40 ns. 
<16> 25 ns. 0 ns. 40 ns. 

bits function D~~ 

70 ns. 
70 ns. 
85 ns. 
85 ns. 
107 ns. 
107 ns. 

Table 6-1: Hardware elements for CrissX implementation 

cost 

cost 

helshe finds it possible. To begin with, the designer requests the current values of the operator 

mapping variables: 
1 INTER> vars 

N o n b a s i c  variables : 

The vars command shows the value of each operator mapping variable. Currently, activity x3 is 

using operator f5 (Gs<5,7*3> = 1). The designer knows that activity x5 is data-dependent on 

activity x3, and therefore x5 can reuse operator fs, thus decreasing the design cost. The designer 

instructs BandBX to fix this decision (by setting Gs<5,7*5> = 1) and go to the next partial design. 

The alternate partial design (in which Gs<5,7*5> = 0) is stored in case it's needed later. 
2 INTER> fixvar one Gs<5,7*5> ; 

3 INTER> cont 1 ; 

1 m o r e  partial  i q l e r n e n t a t i o n  



After making the decision the designer requests the information regarding the value of the operator 

mapping variables again. 
4 INTER> vars 

Nonbasic variables: 

The vars command shows that the designer's previous decision changed the value of variable 

Gsc5,7*3> from 1 to 0.98. Note that variable Gsc5,7*5> is fixed and in the nonbasic set. (The 

explanation is given in section 2.4.1.) The designer decides to make sure that the operator f5 will 

be used to implement activity x3 if there is a complete design for the current subproblem 
5 INTER> fixvar one Gs<5,7*3> ; 

6 INTER> cont 1 ; 

The designer tries to find out more information regarding the distribution of operator fs and the 

values of the operator mapping variables. 
7 INTER> oper f5 used ; 

Operator 5 used in  activit ies  5*, 3*, 1 

8 INTER> vars 

Nonbasic variables: 

From command 7, the designer knows that operator f5 is currently shared among activities xs, XJ 

and XI. The designer decides to have activity x7 use it as well (Gs<5,7*1> = 1). Then, if a complete 

solution results, it will use only one operator, which might minimise cost. 



9 INTER> f i x v a r  one Gs<5,7*7> ; 

10 INTER> cont  1 ; 

The designer confirms that the current design uses operator f5 in all thc activities that necd an 

operator. The designer then requests timing information (execution start and rclcasc timc) for all 

the activities. 
11 INTER> oper  f 5  used ; 

Operator  5 used i n  a c t i v i t i e s  7*, 5*, 3*, 1 

12 INTER> t ime Txs, Txr x1, x3, x5, x7 ; 

t ime  information f o r  a c t i v i t y  : 1 
Txs<7*l> = 2.224599B 
Txr<7 *1> = 134.224599B 

t i m e  information f o r  a c t i v i t y  : 3 
Txs<7 *3> = 2.224599B 
Txr<7*3> = 134.224599B 

t ime  information f o r  a c t i v i t y  : 5 
Txs<7*5> = 134.224599B 
Txr<7 *5> = 266.224599B 

time information f o r  a c t i v i t y  : 7 
Txs<7*7> = 134.224599B 
Txr<7 *7 > = 518.839984B 

Activity x l  ovcrlaps with x3 and activity x5 overlaps with x7 Thc designer would likc to obtain 

some information regarding the storage clements. 

13 INTER> s tor  s l r s 2 , s 3  used ; 

Storage  1 used i n  a c t i v i t i e s  nowhere 
Storage 2 used i n  a c t i v i t i e s  nowhere 
Storage 3 used i n  a c t i v i t i e s  nowhere 

14 INTER> vard  

Nonbasic v a r i a b l e s :  

The stor tells the designer that none of the storage elemcnts is assigned to an activity output. The 



vard command gives information about the inputs of all activities - whether an input comes from a 

storage element (6a,c = 1) or directly from an operator ( 6 , ,  = 0). This, together with the 

information provided by commands 11 and 12, indicates that storage elements have to be assigned 

to the output values of activities x3 and xl in order to allow reuse of operatorb by activities x5 and 

xp The designer decides to have the second input to activity x5 (i.e., i5 2 )  come from a storage 

element (Gd<7*5,2> = 1). Note that all the Gd<v*a,c> variables are basic. Therefore, there are no 

variables displayed after the "Nonbasic variables:" message. 
15 INTER> fimrar one Gd<7*5,2> ; 

16 INTER, cont 1 ; 

At this time, the designer is still trying to obtain information regarding where the inputs of each of 

the activities comes from. 
17 INTER> vard 

Nonbasic variables: 

From the new vard information, the designer knows that the second input to activity x7 (i.e., i7,2) 

has to come from a storage element (Gd<7*7,2> = I), if operator& is used in both activities x5 and 

X7- 
18 INTER> fixvar one Gd<7*7,2> ; 

It is now time to look at the ordering information between activities. 



20 INTER> vara 

Nonbasic variables: 

The vara command shows that the ordering of activities xl and x3, and of x5 and x7 has not bccn 

decided yet. The designer must dccide thc ordcr of activitics xl and x3 sincc thcy both use thc 

operator f5. First, the designer rccalls what design dccisions havc bccn madc, to cnsurc that hishcr 

prescnt analysis is on the right track. 
21 INTER> flist 

Then helshe checks the input available time, execution start timc and exccution relcase timc for 

activities xl and x3. 
22 INTER> time Tia, Txs, Txr x1, x3 ; 

time information for activity : 1 
Tia<7*l> = 2.224599B 
Txs<7*l> = 2.224599B 
Txr<7*l> = 134.224599B 

time information for activity : 3 
Tia<7*3> = 2.224599B 
Txs<7 *3> = 2.224599B 
Txr<7*3> = 134.224599B 

The data-flow diagram (Figure 6-1) shows that inputs to the activitics arc available at thc samc 

time. It will make no difference which activity starts first. The designer chooses to havc x3 start 

before xl (Ga<7*3,7*1> = 1). 

23 INTER> fixvar one Ga<7*3,7*1> ; 

24 INTER> cont 1 : 

The designer confirms the ordering between activitics xl and x3, and at the samc timc requcsts the 



ordering information for activities x5 and x? Then, the designer requests the current values of the 

operator mapping variables and the timing information for activities xl, x3, x5 and x7. 

25 

26 

27 

The vara 

INTER> vara 

Nonbasic variables: 

Ga<7*2,lI 7*O, 1>=0 Ga<7*2,l, 7*O, 2>=0 Ga<7*4,1,7*0,1>=0 
Ga<7*4,1,7*0,2>=0 Ga<7*4,1,7*2,1>=0 Ga<7*6,11 7*O, 1>=0 
Ga<7*6,l, 7*2,l>=O Ga<7*6,l, 7*4,1>=0 Ga<7*8,l, 7*O, 2>=0 
Ga<7*8,1,7*2,1>=0 Ga<7*8,1,7*4,1>=0 Ga<7*3,7*1>=0 

IWTER> vars 

Nonbasic variables: 

INTER> time Tia,Txs,Txr xl,x3,x5,x7 ; 

t h e  information for activity : 1 
Tia<7*l> = 65.327607B 
Txs<7*l> = 65.327607B 
Txr<7*l> = 243.121591B 

time information for activity : 3 
Tia<7*3> = 2.224599B 
Txs<7*3> = 2.224599B 
Txr<7 *3> = 134.224599B 

time information for activity : 5 
Tia<7*5> = 174.224599B 
Txs<7*5> = 174.224599B 
Txr<7 *5> = 306.224599B 

time information for activity : 7 
Tia<7*7> = 174.2245998 
Txs<7*7> = 174.224599B 
Txr<7 *7> = 306.224599B 

and time commands confirm that activity x3 starts before activity xl. The vars command 



indicates that opcrator fg is not fully assigncd to activity xl (Gs<5,7*1> = 0.93), which was 

assumed earlier. Knowing this information, the designcr is intcrestcd in where the inputs of thcse 

activities comc from. 
28 INTER> vard 

Nonbasic variables: 

The vard command tells the designcr that the inputs to activity xl have not been fixed to comc 

from a storagc element or directly from the outside world. Since the propagation delay time for 

opcrator f5 is 107 ns., and the output release times of inputs iOnl and i0,2 arc lcss than or equal to 

loons., the inputs to activity XI and x3 have to be stored in order to allow their sharing of operator 

fS. The designer gathers the information from thc last four commands and makcs threc dccisions. 

He/she assigns operator fg to activity xl (Gs<5,7*1> = 1) which was assumcd carlicr. Hclshc 

chooses to havc activity x5 start before activity x7 (Ga<7*7,7*5> = 0). (As with x1 and x3, it 

doesn't matter which goes first.) And he/shc dccidcs to havc thc second input to activity xl come 

from a storage elcment (Gd<7*1,2> = 1). 
29 INTER> fimrar one Gs<5,7*1>,Gd<7*1,2> ; 

30 INTER> fimrar zero Ga<7*7,7*5> ; 

31 INTER> cont 1 ; 

3 more partial implementation 
2 more partial implementation 
1 more partial implementation 

In command 31, thc dcsigncr asks DPSIS to continue to thc next subproblcm, but DPSIS displaycd 

thc information that thrce subproblems arc solvcd. Thc reason is, the dcsigncr has made threc 

decisions and BandBX has to fix the decision variables onc at a timc. Aftcr making these 

dccisions, the designer would like to know the information about the opcrator mapping variables 

and the timing variables. 
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32 INTER> oper f5 used ; 

Operator 5 used in activities I* 

33 INTER> vars 

Nonbasic variables: 

34 INTER> time Txs , Txr x1, x3, x5, x7 ; 

time information for activity : 1 
Txs<7*l> = 134.224599B 
Txr<7*l> = 306.224599B 

time information for activity : 3 
Txs<7*3> = 2.224599B 
Txr<7 *3> = 134.224599B 

time information for activity : 5 
Txs<7*5> = 306.224599B 
Txr<7*5> = 438.224599B 

time information for activity : 7 
Txs<7*7> = 438.224599B 
Txr<7 *7> = 570.224599B 

The oper command shows that if there is a complete design for the current partial design then 

operator f5 will bc used to implement all the activities that nced an operator. The time command 

indicates that the activities no longer overlap. The designer now must decidc where to allocate 

storage elements in thc current design. 



35 INTER> vard 

Nonbasic variables: 

36 INTER> stor s l I s 2 , s 3  used ; 

Storage 1 used i n  act iv i t ies  2 
Storage 2 used in act iv i t ies  0 
Storage 3 used in act iv i t ies  nowhere 

Due to the current implementation, the information for storage elemcnt s2 is incompletc. A proper 

rcsponse should specify the identity of the external input (the output of activity xo) that s2 is used 

for (see Section 5.3.3). 
37 INTER> varr 

Nonbasic variables: 

The vard command shows the dcsigncr that hisher last 3 dccisions havc forccd DPSIS to makc a 

decision, that is, the first input value to activity x5 must come from a storagc clemcnt (Gd<7*5,1> 

= I* is a monotonic variable). And the stor and varr commands show that no storage clcmcnt is 

pcrmancntly assigncd to any activity's output valuc. Sincc thc first inputs of activities x5 and x7 arc 

from the same storage clement, the dcsigncr makcs the obvious dccision (Gd<7*7,1> = 1). 
38 INTER> fixvar one Gd<7*7,1> ; 

39 INTER> cont 1 ; 

At this point, the designer continues invcstigating the distribution of storagc elcmcnts in the current 

partial design and then their timing information. 



40 INTER, stor s l , s2 , s3  exclude ; 

Storage 1 excluded in  act iv i t ies  nowhere 
Storage 2 excluded in  act iv i t ies  nowhere 
Storage 3 excluded in  act iv i t ies  4-,2 

41 INTER> vard 

Nonbasic variables: 

Gd<7*7,2>=0 Gd<7*7,1>=0 Gd<7*5,2>=0 
Gd<7*5,1>=0 Gd<7*l, 2>=0 

42 INTER> varr 

Nonbasic variables: 

Gr<3,7 * 4,1>=0 



43 INTER> time x2,x4,x6,x8 ; 

time information for activity : 2 
Tia<7 *2> = 241.224599B 
Tor<7*2,1> = 266.224599B 
Tss<7*2,1> = 266.224599B 
Tsr<7*2,1> = 570.224599B 

time information for activity : 4 
Tia<7*4> = 109.224599B 
Tor<7*4,1> = 134.224599B 
Tss<7*4,1> = 134.224599B 
Tsr<7*4,1> = 570.224599B 

time information for activity : 6 
Tia<7 * 6> = 413.224599B 
Tor<7*6,1> = 438.224599B 
Tss<7*6,1> = 438.224599B 
Tsr<7*6,1> = 900.000000B 

time information for activity : 8 
Tia<7*8> = 545.224599B 
Tor<7*8,1> = 570.224599B 
Tss<7*8,1> = 570.224599B 
Tsr<7*8,1> = 900.000000B 

From the vard command, the designer knows that both inputs to activities x7 and x5 arc from 

storage clemcnts. The time command shows that storage start timc (Tss) and storage relcasc timc 

(T,,) of activities x2 and x4 are overlapped. At this point, the designer knows that thc two inputs for 

activity x7 (and similarly, those for activity x5) have to be storcd in dillcrent storagc clcmcnts, since 

the activity needs both inputs to start. Therefore, the designer dccidcs to assign the storage 

elements s2 and sl to the output values of activities x2 (Gr<2,7*2, 1> = 1) and x4 (Gr<1 ,7*4,1> = 1) 

respectively. After making the decision, the designer asks DPSIS to run 200 subproblcms bcforc 

resuming interaction. 



44 INTER> fixvar one Gr<2,7*2,1>,G~<1,?*4,1> ; 

45 INTER> cont 200 ; 

1 more partial implementation 
2 more partial implementation 

las t  partial implementation report 

no active subproblem, therefore DPSfS stop. 

s ta t i s t i ca l  report 

% (back t o  unix) 

Before 200 subproblcms have becn examined, the system stops because thcrc are no alternative 

partial designs to cxplore. DPSIS displays a report which gives the statistical information for the 

design process. Some of this information will appear in Chapter 7 for comparison purposes. The 

sample session above shows how the information displayed by DPSIS's commands could help a 

designer to make design decisions for thc CrissX problem. 

6.3. Logic Example 

Figure 6-3 presents the data flow representation of the algorithm. 

The restrictions placed on the implementation an: shown in Figurc 6-4 and the dctails of thc 

hardware set are shown in Table 6-2. To ensure satisfactory pcrformance, wc rcquirc that the 

period during which the external output oo,, is valid is not less that 100 ns. The pcrformance 

requirements are that thc outputs have to bc valid at timc t=500 ns. and rcmain valid until time 

t=600 ns. The objectivc of this design problem is to optimisc the cost. Thc proper objectivc 

function 

Translated into a MILP constraint system, the problem contains 180 constraints involving 11 1 

variablcs of which 66 are decision (binary) variablcs. 



Figure 6-3: Data flow rcprcsentation for the Logic problem 



So.2 = b21 T0A(i0,2) = O 
= Is3 1 ToA(io,3) ' O 

S2,1 = {s2,s31 F2 = Cfl ,f6 1 
S3,1 = (s1,s2,s3] F3 = C f 3 9 f 6 )  

Ss,l = (sI's3) F5 = Cfi ,f2,f6,f7 
S6,1 = (s1,s2,s31 F6 = Cf3*f4*f6*f7 
S7,1 = b19s23s31 F7 = Cf5 ,f6 ,f7 ) 
TsS(io,l) = Tss(i0,2) = Tss(i0,3) 

Figure 6-4: Restrictions on the implementation of Logic 

storage bits %S D s ~  %P 

S1 <16> 25 ns. 0 ns. 25 ns. 
S2 <16> 25 ns. 0 ns. 25 ns. 
S3 c64> 25 ns. 0 ns. 25 ns. 

operator bits function D~~ 

4 c16> - OR 
f2 <16> OR 
f3 <16> AND 
5 c16> AND 
f5 c16> ALU 
f6 <16> ALU 

22 ns. 
22 ns. 
20 ns. 
20 ns. 
48 ns. 
48 ns. 

Table 6-2: Hardwarc elements for Logic implementation 

cost 

cost 

We now discuss a sample session for thc Logic problem. This sample shows the uscfulncss of 

DPSIS in a different aspect than the CrissX sample. This time, the dcsigncr participates in 

selecting an alternative design when the current design is fathomcd duc to bounds, integrality or 

infeasibility. 

We begin when BandBX has just finished solving the first relaxation problem, when no decision 

variable has been fixcd. To begin with, the designcr requcsts the currcnt values of the information 

about operator mapping variables: 



1 INTER> vars 

N o n b a s i c  variables: 

The vars command tells the designer that the current partial design uses f6 to irnplcment activity x2 

(Gs<6,7*2> = I), but that none of the other activities have been assigncd an operator. Since activity 

x3 is data-dependent on activity x2, the designer knows that operator fG can be rcused in activity x3 

(Gs<6,7*3> = I), which will lcad to a cheaper design. 
2 INTER> fixvar one Gs<6 ,7*3>  ; 

3 INTER> cont 1 ; 

1 m o r e  partial implementation 

The designer rcqucsts the current values of the operator mapping variables and where operator f6 is 

available. 

4 INTER, oper f 6  avail ; 

Operator 6 available i n  activities 7 , 6 , 5 - ,  3*, 2 

5 INTER> vars 

N o n b a s i c  variables: 

The designer knows that activity x3 is data-dcpendent on activity x2 and activity x7 is data- 

dependent on activity x3. Since operator fG is sure to be used to implcmcnt activity x3, thc dcsigncr 

decides to assign operator f6 to activities x2 (Gs<6,7*2> = 1) and x7 (Gs<6,7*7> = 1) as well. 



6 INTER> fixvar one Gs<6,7*2>,Gs<6,7*7> ; 

7 INTER> cont 1 ; 

2 more partial implementation 
1 more partial implementation 

Next, the designer has in mind to decide the ordering between activities x3 and x5. 
8 INTER> vara 

Nonbasic variables: 

9 INTER, vars 

Nonbasic variables: 

The vara command tells the dcsigner that the ordering of x3 and x5 is not decided yet 

(Ga<7*5,7*3> = 0.27). The vars command confirms that operator f6 will be used in activities x2, 

x3, and x7 if a complete design exists from the current design. If activities x2 and x5 use different 

operators, then activity x5 most probably will start before activity x3. If activities x2 and x5 sharc 

operator f6 then either activity can start first. So thc dcsigner decides to have activity x5 start bcfore 

activity x3 (Ga<7*5,7*3> = 1). 
10 INTER> fixvar one Ga<7*5,7*3> ; 

There are forced decision (monotonic variables) 

This message means that there are decisions which have to be made by DPSIS, so the designcr lcts 

DPSIS proceed. 



11 INTER> cont 1 ; 

1 more partial implementation 

The designer is interested in knowing what decision thc system has just made, and also whether the 

ordering between activities x3 and x5 has changed. 
12 INTER> flist 

Gs<6,7*7>=1 Gs<6,7*3>=1 Gs<6,7*2>=1 
Gd<7*3,2>=1 

13 INTER> vara 

Ga<7*5,7*2>=0.10B Ga<7*5,7*3>=0.27B Ga<7*6,7*3>=0.04B 

Nonbasic variables: 

The flist command shows that the forced decision was to have the second input to activity x3 come 

from a storage element (Gd<7*3,2> = 1). Thc vara command shows that ihe ordering information 

has not changed, so the designer goes ahead with his/hcr previous decision to have activity x j  start 

before activity x3 (Ga<7*5,7*3> = 1). 
14 INTER> fixvar one Ga<7*5,7*3> ; 

15 INTER> cont 1 ; 

1 more partial implementation 

The designer looks at the ordering information and the distribution of operators fi, f2? f6 and f7 in 

the design. 



f 6 INTER> vara 

Nonbasic variables: 

17 INTER> oper flIf2,f6,f7 used ; 

Operator 1 used in activities nowhere 
Operator 2 used in activities nowhere 
Operator 6 used in activities 7*,6,3*,2* 
Operator 7 used in activities nowhere 

18 INTER, vars 

Gs<1,7*2>=0.00B Gs<l17*5>=0.00B Gs<3,7*3>=0.00B 
Gs<3,7*6>=0. OOB Gs<6,7*2>=1* Gs<6,7*3>=1* 
Gs<6,7*6>=1. OOB Gs<6,7*7>=1* Gs<7,7*7>=0.OOB 

Nonbasic variables: 

The designer dccides to havc activity x5 start beforc activity x2 (Ga<7*5,7*2> = I), because helshc 

wants to know what the effect will be on thc operator mapping variables. Then hclshe checks thc 

timing information for these activitics. 
19 INTER> fimrar one Ga<7*5,7*2> ; 

1 more partial implementation 



21 INTER> vars 

Nonbasic variables: 

22 INTER> time TXS, Txr x2, x5 ; 

time information for activity : 2 
Txs<~ *2> = 0.000000B 
Txr<7*2> = 73.000000B 

time information for activity : 5 
Txs<7*5> = 0.0OOOOOB 
Txr<7*5> = 65.564738B 

The vars command shows that activity x5 has not been assigned an operator yet (Gs<6,7*5>=0.91 

and Gs<1,7*5>=0.09). The time command shows that the execution interval of x2 and x5 still 

overlap. At this point, the designer wants to know what the effect will be if instead, activity x2 

starts befon: activity xg. So helshe abandons the current partial design temporarily and selects the 

partial design that has activity x2 start before activity x5 (Gac7*5,7*2> = 0). 

23 INTER> subpro range 4,s ; 

Number = 4 Current Bound = -26.452857 
Node # = 5 Variable Ga<7*5,7*3> to be fixed = 0 
Variables fixed information in order : 
Gd<7*3,2> = Ic Gs<6,7*2> = lr Gs<6,7*7> = Ir 
Gs<6,7*3> = lr 
Number = 5 Current Bound = -26.452857 
Node # = 6 Variable Ga<7*5,7*2> to be fixed = 0 
Variables fixed information in order: 
Ga<7*5,7*3> = lr Gd<7*3,2> = lc Gs<6,7*2> = Ir 
Gs<6,7*7> = lr Gs<6,7*3> = Ir 

From the subpro command the designer knows that helshe wants to retrieve partial design number 

5 to continue. 



24 INTER> select 5 ; 

1 more part ial  implementation 

25 INTER> flist 

The flist command confirms that the designcr chose the right partial design (Ga<7*5,7*2>=0). At 

this stage heishe wants to look at the distribution of the operators and the operator mapping 

variables again. 

26 INTER> oper  f l , f 2 , f 6 , f 7  a v a i l  ; 

Opera tor  1 a v a i l a b l e  i n  a c t i v i t i e s  5 , 2  
Opera tor  2 a v a i l a b l e  i n  a c t i v i t i e s  5- 
Operator  6 a v a i l a b l e  i n  a c t i v i t i e s  7*,6,5,3*,2* 
Operator  7 a v a i l a b l e  i n  a c t i v i t i e s  7,6-, 5- 

27 INTER> v a r s  

Gs<1,7*2>=0.00B Gs<1,7*5>=0,02B Gs<3,7*3>=0.008 
Gs<3,7*6>=0. OOB Gs<6,7*2>=1* Gs<6,7*3>=1* 
Gs<6,7*5>=0.98B Gs<6,7*6>=1.0OB Gs<6,7*7>=1* 
Gs<7,7*7>=0.00B 

Nonbasic v a r i a b l e s :  

From commands 18,21 and 27, the dcsigncr sccs that the value 01 @s<1,7*5> changcd from 0 to 

0.09 and 0.02, when hc/she tried to ordcr activitics x2 and x5. Thcrc is still no opcrator assigned to 

activity x5, and the designcr notices that hclshc could share opcrator f6 with x5 (Gs<6,7*5> = I), 

which decision might minimise cost. 

28 INTER> fixvar one Gs<6,7*5> ; 

29 INTER> con t  1 ; 

1 m o r e  p a r t i a l  implementation 

At this point, the dcsigncr hopcs that the previous decisions will be a good start for a solution, so 



he/she decides to have DPSIS continue solving the design and only participate when a design is 

fathomed. 
30 INTER> setfat on ; 

The setfat command allows the designer to interact again when the current design s fathomed. 
31 INTER> cont 50 ; 

50 more partial irqlementation 
49 amre partial implementation 

SUBPROBLEX FATHOMED DUE TO INFEASIBILITY 

** Enter Interaction System Due to Fathom ** 

At this stage the designer wants to select another subproblem to continue. 
32 INTER> subpro random 6,8 ; 

Number = 6 Current Bound = -26.452857 
Node # = 8 Variable Gs<6,7*5> to be fixed 
Variables fixed information in order : 
Ga<7*5,7*2> = 01 Ga<7*5,7*3> = lr Gd<7*3,2> = 
Gs<6,7*2> = Ir Gs<6,7*7> = lr Gs<6,7*3> = 
Number = 8 Current Bound = -27.200861 
Node # = 10 Variable Gd<7*-l,l> to be fixed = 1 
Variables fixed information in order : 
Gr<1,7*5,1> = Or Gs<6,7*5> = 1r Ga<7*5,7*2> = 01 
Ga<7*5,7*3> = 1r Gd<7*3,2> = lc Gs<6,7*2> = lr 
GS<6,7*7> = lr Gs<6,7*3> = lr 

The designer decides not to choose subproblem number 6, because the next decision to be made is 

not assigning operator f6 to activity xs (Gs<6,7*5> = 1). The designer wants f6 to be used in 

activities xs and x2. AS for subproblem number 8, he/she does not like the idca that the output 

value of the problem comes from a storage element. The designer goes on looking for a 

subproblem to continue with. 



INTER> subpro range 4 , s  ; 

Number = 4 Current Bound = -26.452857 
N o d e  # = 5 Var iable  Ga<7*5,7*3> t o  be f i x e d  = 0 
V a r i a b l e s  f i x e d  information i n  o r d e r  : 
Gd<7*3,2> = l c  Gs<6,7*2> = 1r Gs<6,7*7> = l r  
Gs<6,7*3> = l r  

Number = 5 Current  Bound = -26.732685 
N o d e  # = 7 Var iab le  t o  be f i x e d  = none 
Var i ab les  f i x e d  information i n  o r d e r  : 
Ga<7*5,7*2> = 1r Ga<7*5,7*3> = lr Gd<7*3,2> = 1c 
Gs<6,7*2> = 1r Gs<6,7*7> = lr Gs<6,7*3> = l r  

The designer decides not to choose subproblem number 4, because the next decision to be made is 

to have activity x3 Start before activity x5. Finally, the designer decides on subproblem number 5 

since the previous design decisions (variables fixed) show that it is a feasible choice. 
34 INTER> select 5 ; 

35 INTER> cont  50 ; 

50 more p a r t i a l  implementation 
49 more p a r t i a l  implementation 

30 more p a r t i a l  implementation 

SUBPROBLEM FATHOMED DUE TO INFEASIBILITY 

** Ente r  I n t e r a c t i o n  System Due t o  Fathom ** 

At this stage, the designer looks at the active subproblems again to select another subproblem to 

continue with. 
INTER> subpro range 5 , 6  ; 

Number = 5 Current Bound = -26.452857 
Node # = 8 V a r i a b l e  Gs<6,7*5> t o  be f i x e d  = 0 
Var iab les  f i x e d  information i n  o r d e r  : 
Ga<7*5,7*2> = 0 1  Ga<7*5,7*3> = 1r Gd<7*3,2> = l c  
Gs<6,7*2> = l r  G8<6,7*7> = lr  Gs<6,7*3> = lr  



Number = 6 Current Bound = -27.12497 
Node # = 9 Variable Gr<1,7*5,1> to be fixed = 1 
Variables fixed information in order : 
Gs<6,7*5> = 1r Ga<7*5,7*2> = 01 Ga<7*5,7*3> = 1r 
Gd<7*3,2> = lc Gs<6,7*2> = 1r Gs<6,7*7> = 1r 
Gs<6,7*3> = lr 

The designer does not choose subproblem number 5 because in it, activity x5 excludes operator f6, 

while helshe wants x5 to share f6 with other activities. As for subproblem number 6, the operator f6 

is shared among activities XZ, x3, x5 and x7, and the next decision will be to assign storage element 

sl to the output value of activity xg. This seems reasonable since the output value of activity x5 

must have a storage element in order to share operator f6, so the designer selects subproblem 

number 6. 
37 INTER> select 6 : 

1 more partial implementation 

After this point, the designer decides not to participate in selecting a subproblem, if a subproblem is 

fathomed. 
38 INTER> setfat off ; 

39 INTER> cont 150 ; 

150 more partial implementation 
149 more partial implementation 

141 more partial implementation 

SUBPROBLEM FATHOMED DUE TO INFEASIBILITY 

140 more partial implementation 

1 more partial implementation 

After solving 9 subproblems the selected subproblem was fathomed, but by turning off the 

interaction switch in command 38, the designer let DPSIS to do the rest of the design, rather than 

resuming interaction. 



4 0  INTER > cont 3 0 0  ; 

SUBPROBLEM FATHOMeD DUE TO BOUNDS, 
TEST=-40.48092 BEST=-40.36000 

1 m o r e  partial implementation 

last  partial i m p l e m e n t a t i o n  report 

no active s u b p r o b l e m ,  therefore DPSIS stop 

statistical report 

% ( b a c k  t o  u n i x )  

The sample session above shows how the information displayed by DPSIS could help designer to 

participate in selecting an alternative design. Parts of the statistical report will be used in Section 

6.4. Power Example 

Figure 6-3 presents the data flow representation of the algorithm. 

The restrictions placed on the implementation are show in Figure 6-6 and the details of the 

hardware set are shown in Table 6-3. The performance requirements are that the outputs have to be 

valid at time t=500 ns. and remain valid until time t=600 ns. The objective of this design problem 

Translated into a MILP constraint system, the problem contains 201 constraints involving 138 
- variables, of which 77 are decision (binary) variables. 

We now discuss a sample session for the Power problem. This sample shows how DPSIS can 

guide the designer to the first integer solution. To begin with, the designer requests the current 

values of the operator mapping variables: 



Figure 6-5: Data flow representation for the Power problem 



storage 

operator 

bits 

20 ns. 
20 ns. 
20 ns. 
20 ns. 
20 ns. 
10 ns. 
10 ns. 
10 ns. 
10 ns. 
10 ns. 

5 ns. 
5 ns. 
5 ns. 
5 ns. 
5 ns. 
5 ns. 
5 ns. 
5 ns. 
5 ns. 
5 ns. 

27 ns. 
27 ns. 
27 ns. 
27 ns. 
27 ns. 
17 ns. 
17 ns. 
17 ns. 
17 ns. 
17 ns. 

bits function D~~ 

173 ns. 
173 ns. 
173 ns. 
73 ns. 
73 ns. 

180 ns. 
180 ns. 
90 ns. 
90 ns. 

cost 

Table 6-3: Hardware elements for Power implementation 



1 INTER> vars 

Nonbasic variables: 

Currently, activities x2 and x5 are using operator fJ (Gsc1,9*2> = Gs<1,9*5> = 1). The designer 

decides to have them share operatorf] with activity 
2 INTER> fixvar one Gs<1,9*10> ; 

3 INTER> cont 1 ; 

The designer requests the values of the operator mapping variables again. 
4 INTER> vars 

Nonbasic variables: 

The vars command shows that the designer's previous decision changed the assignment of operator 

fi to activity x2 (i.e., the vaIue of Gsc1,9*2> changed from 1 to 0.99). The designer decides to 

make sure that the operatorfi will be used to implement activity x2 if there is a complete design for 

the current subproblem. 
5 INTER> f ixvar one Gs<l, 9*2> ; 

The designer tries to find out more information regarding the distribution of operators and the 

values of the operator mapping variables. 



7 INTE;R> oper  f l I f 6 , f 8 , f 7 , f 9  used  ; 

Operator  1 used  i n  a c t i v i t i e s  10*,5,2* 
Operator  6 used  i n  a c t i v i t i e s  8 , 3  
Operator  8 used  i n  a c t i v i t i e s  nowhere 
Operator  7 used  i n  a c t i v i t i e s  nowhere 
Operator  9 used  i n  a c t i v i t i e s  nowhere 

8 INTER> v a r s  

Gs<6,9*3=1. OOB Gs<6,9*8>=1. OOB Gs<8,9*3>=0. OOB 
Gs<1,9*2>=1* Gs<II9*5>=1.00B Gs<1,9*10>=1* 
Gs<2,9*10>=0.00B Gs<4,9*2>=0.00B 

Nonbasic v a r i a b l e s :  

The designer learns that operator fl is used in activities xlo, x5 and x2. Operator f6 is used in 

activities xg and x3. At this point the designer wants to know information about the inputs to each 

activity. 
9 INTER> v a r d  

Manbasic v a r i a b l e s :  

The vard command shows that the first input to activity x3 (Gd<9*3,1> = 0.27) and the second 

output value of the problem (Gdc9*-1,2> = 0.28) have not been fixed to come from a storage 

element or an operator. From the information given by command 7, the designer knows that these 

two values have to come from storage elements (Gd<9*3,1> = Gd<9*-1,2> = 1) in order to use 

operators fi and f6 respectively. 



10 INTER> fixvar one Gd<9*-1,2>, Gd<9*3,1> ; 

11 INTER> cont 1 : 

2 mare partial implementation 
1 mare partial implementation 

The designer wants to look at the input information for the activities again and the ordering 

information between activities. 
12 INTER> vard 

Nonbasic variables: 

Gd<9*-1,2>=0 Gd<9*5,2>=0 Gd<9*8,2>=0 
Gd<9*8,1>=0 Gd<9*3,1>=0 Gd<9*3,2>=0 
Gd<9*10f P>=O Gd<9*1,1*0 Gd<9*2,1>=0 
Gd<9*4,1>=0 

13 INTER> vara 

Nonbasic variables: 

The vard command shows that the first (Gd<9*-1,1> = 0.15) and third (Gd<9*-1,3> = 0.28) output 

values are not accessed from a storage element. The vara command shows that the order of activity 

xlo with with respect to activities x2 and x5 is not decided yet. Before making the next decision, the 

designer needs to recall the decisions that have been made and the information regarding the 

execution start time (T,) and execution release time (T,,) of activities x2, x5 and xlo. 



1 4  INTER> f l ist  

15 INTER> t i m e  T x s , T x r  x 2 , x 5 , x 1 0  ; 

t i m a  i n f o r m a t i o n  for a c t i v i t y  : 2 
Txs<9*2> = 0.000000B 
Txr<9*2> = 198.000000B 

time informat: ion for  a c t i v i t y  : 5 
Txs<9*5> = 400.000000B 
Txr<9*5> = 598.000000B 

t ime i n f o r m a t i o n  for  a c t i v i t y  : 1 0  
Txs<9*lO> = 0.00000OB 
Txr<9*10> = 502.000000B 

1 6  INTER> vars 

N o n b a s i c  variables: 

The vars command shows that currently operator fi is shared among activities x2, x5 and xlo. From 

command 15, the designer decides that activity x2 will start before activity xlo (Ga<9*10,9*2> = 

O), and xlo will start before x~ (Ga<9*10,9*5> = 1). Because of this ordering assumption, the third 

output value might need a storage element to store it (Gd<9*- 1,3> = 1). 
1 7  INTER> fixvar o n e  Ga<9*10,9*5>, Gd<9*-1,3> ; 

1 8  INTER> fixvar zero Ga<9*10,9*2> ; 

1 9  INTER> c o n t  1 ; 

3 more  partial i m p l e m e n t a t i o n  
2 more  part ial  i m p l e m e n t a t i o n  
1 more  palrtial irrq?lementation 

The designer is interested in looking at the operator mapping information and ordering information. 



INTER> vars 

Nonbasic variables: 

Gs<3,9*5>=0 Gs<7,9* 8>=0 Gs<8,9*3>=0 
Gs<9,9*8>=0 Gs<lI 9*2>=0 G~<1~9*10>=0 
Gs<4,9*5>=0 Gs<4,9*10>=0 Gs<5,9*5>=0 
Gs<5,9*10>=0 

INTER, vara 

Nonbasic variables: 

Bcfore making thc ncxt decision, thc designer wants to find out timing information for somc of the 

activities. 
22 INTER> time Txs,Txr x2,x3,,x5,x8,x10 ; 

time information for activity : 2 
Txs<9*2> = 0.000000B 
Txr<9*2> = 188.000000B 

t h e  information for activity : 3 
Txs<9*3> = 200.000000B 
Txr<9*3> = 695.000000B 

time information for activity : 5 
Txs<9*5> = 380.192857B 
Txr<9*5> = 700.000000B 

time information for activity : 8 
Txs<9*8> = 0.OOOOOOB 
Txr<9*8> = 205.000000B 

time information for activity : 10 
Txs<9*10> = 188.000000B 
Txr<9*10> = 386.000000B 

The last three dccisions have caused a change in the assignment of operator fi to activity x5 (from 



1.00 to 0.99). The designer decides to make sure that it is used there (Gs<1,9*5> = 1). From the 

timing information the designer decides to have activity x8 start before activity x3 (Ga<9*8,9*3> = 

23 INTER, fixvar one Gsd, 9*5>, Ga<9*8,9*3> ; 

24 INTER, cont 1 ; 

2 more partial implementation 
1 more partial implementation 

At this point the designer wants to look at the component mapping information. 
25 INTER> vars 

Nonbasic variables: 

Gr<1,9*0,1>=0.00B Gr<2,9*0,2>=0.00B Gr<2,9*2,1>=0.60B 
Gr<2,9*3,1>=0.00B Gr<2,9*6,1>=0.00B Gr<4,9*0,4>=0.00B 
Gr<6,9*0,1>=0.00B Gr<7,9*2,1>=0.40B Gr<5,9*0,5>=0. OOB 
Gr<5,9*9,1>=1.00B Gr<10,9*9,1>=0.00B Gr<3, 9*O, 3>=O. 00B 
Gr<3,9*11,1>=1.00B ~r48,9*11,1>=O. 00B 

Nonbasic variables: 

The designer has in mind to assign a storage element to the output value of activity x2. The varr 

command shows that the output value of activity x2 can be stored in storage clcments s2 and s7. 

Since s2 is cheaper than s7, the designer decides to use s2 to store the value. 



27 INTER> 'fixvar one Gr<2,9*2,1> ; 

28 INTER> cont 1 ; 

At this point, the designer wants to examine the values of all decision variables. 
29 INTER> vars 

Gs<6,9*3>=1. OOB Gs<6,9*8>=1. OOB Gs<€i19*8>=0.00B 
Gs<1,9*2>=1* Gs<1, 9*5>=1* Gs<1, 9*10>=1* 
Gs<2,9*5>=0.00B Gs<2,9*10>=0.00B Gs<4,8*2>=0.00B 

Nonbasic variables: 

Gs<3,9*5>=0 Gs<6,9*8>=0 Gs<7,9*8>=0 
Gs<9,9*8>=0 Gsd, 9*2>=0 Gs<1,9*5>=0 
G s < ~  , 9*10>=0 Gs<4,9*5>=0 Gs<4,9*10>=0 
Gs<5,9*5>=0 Gs<5,9*10>=0 

30 IN!CER> varr 

Nonbasic variables: 

31 INTER> vara 

Monbasic variables: 



32 INTER> vard 

Gd<9*-1,3>=1* Gd<9*-1,2>=1* Gd<9*3,1>=1* 

Nonbasic variables: 

33 INTER> varb 

Noaasic variables: 

34 INTER> varc 

Nonbasic variables: 

From the varr command the designer knows that storage elements sl, s3, and s5 are used in the 

current design. The designer then decides to have decision variables Gc<3>, Gc<2> and Gc<5> 

fixed to one. 

36 INTER> fixvar one Gc<2>,Gc<3>,Gc<5> ; 

37 INTER> cont 1 ; 

1 more partial implementation 

SWPROBLEM FATHOMED IN INTGTR, 
CUIPBIND = -47.03417 BEST = -47.03417 

After obtaining the first complete design the designer lets DPSIS do the rest of the design. 



36 INTER> cont 200 ; 

200 more partial inqplementation 

138 more partial implementation 

SU%3PROBLEM FATBOMED DUE TO INFEASfBLLITY 

las t  partial implementation report 

no active subproblem, therefore DPSES stop. 

s ta t i s t i ca l  reports 

% (back t o  unix) 

This sample session shows that the designer can use the information provided by DPSIS to guide 

BandBX to the first integer solution. Some of the information in the statistical report will be used 

for discussion in section 7.2. 



Chapter 7 

Observations an 

/ 

This chapter charactefises DPSIS as described in the previous chapters and summarises the work 

done in this research. 

7.1. Observations 

In the previous chapter, we evaluated DPSIS using three examples. The CrissX example shows 

how DPSIS can help the designer make an initial set of trivial decisions. With this start, the 

designer hopes that BandBX will find a good integer solution earlier and start fathoming 

subproblems earlier. The Logic example shows how DPSIS allows the designer to select a 

subproblem from among the active subproblems. With designer involvement, some unprofitable 

subproblems may be identified earlier. These subproblems can be abandoned either temporarily or 

permanently. The Power example shows how the information provided by DPSIIS's commands can 

help the designer to obtain an initial good complete design. 

The example sessions reveal that DPSIS can translate information in a partial solution tableau 

(produced while solving the MILP problem) from its original mathematical formulation into a form 

which can be understood by a digital hardware designer, who can then use it to make design 

decisions. 

As mentioned in the last chapter, we are going to use three pieces of information from the 

statistics report generated by BandBX. 

Table 7-1 summarises the statistics for the three problems when using DPSIS during the design 

process. Table 7-2 shows the same set of statistics when DPSIS was not used. The first column of 



the tables is the number of subproblems needed to explore all the alternative designs. The second 

column is the number of simplex pivots needed to explore all the alternative subproblems. The 

third column is the number of the first subproblem that gives the optimal solution. 

Number of Number of Optimal Value 
Subproblems Pivots at Subproblem 

CrissX I 156 

Logic 507 

Pow 122 5308 12 

Table 7-1: Design with DPSIS guide 

Number of Number of Optimal Value 
Subproblems Pivots at Subproblem 

CrissX 274 6165 

Logic no solution no solution no solution 

Pow 472 17507 397 

Table 7-2: Design with no guide 

The Logic example in Table 7-2 does not have any statistical report. The reason is that, when 

BandBX ran this problem, it stopped at one of the subproblems due to round-off error. This 

indicates that a set of decision variables fixed in a particular order may lead a problem into round- 

off error. When the problem ran using DPSIS, the designer fixed certain decision variables. This 

resulted in an initial set of decisions that did not lead the problem into round-off error. 

With these three examples, the number of subproblems needed to explore all the alternative 

subproblems using the branch-and-bound technique is less using DPSIS than not using it. 

The third column of the two tables shows that the initial set of decisions made by the designer 

leads to an earlier optimal solution. With an earlier optimal solution, the designer can hope that 

more problems will be fathomed due to bounds. 



Note that the results are not always this way. Since DPSIS is a man-machine interface and 

humans can make poor decisions, the problems will sometimes run worse when using DPSIS. 

7.3. Further Research 
/ 

We have implemented a list of basic commands that allow users to interact with the design 

process. There are many other commands that can be added. In the following, we list a few useful 

commands that can be implemented in the future to provide more facilities for the users. 

A command to list out all the decision variables that are not fixed (basic and non- 

basic). This will give the designer a complete picture of what decisions he still has to 

make. 

A command that obtains the greatest or smallest bound change between two 

subproblems and examines the decision made. This will help the designer to identify 

the significance of the decision. 

A command that looks at all the active subproblems which have a certain decision 

pattern along the path vj to vo. This will help the designer group subproblems that 

he/she feels would produce a good design or bad design. 

A command for removing active subproblems from the branch-and-bound tree so that 

they will not be searched in the future. For example, if the designer is content with the 

objective range, then hefshe may use the command to delete some subproblems. 

A command that undoes the previous command. This gives the designer the option of 

testing variables. Also, thc designer might make a wrong decision that causes the 

infeasibility of a subproblem, and the undo command will help him to remove the 

decision and redecide. 

A command to fix variables that are trivial to the designer. At a certain stage of the 

design, the designer might wish to f i x  an obvious value without having BandBX create 

another branch. 
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The last three commands can be combined in a more general form. At any stage of the design 

process the designer should be able to disable or enable the exploration of certain portions of the 

branch-and-bound tree. With this feature the designer would be able to abandon a subtree 

temporarily or permnnently if helshe feels the previous decisions might lead to a poor design. 
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