
Tableau Interpretation for a MILP Problem
Using an

Interactive Approach

Steven F. L. Yap

B.Sc., University of Windsor, 1983

A THESIS SUBMI'ITED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in the School

of

Computing Science

O Steven F. L. Yap 1989

SIMON FRASER UNIVERSITY

March 1989

All rights reserved. This thesis may not be
reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

Approval

Name: Steven F.L. Yap

Degree: Master of Science

Title of Thesis: Tableau Interpretation of a MILP Problem Using an Interactive Approach

Examining Commitee:

Chairman: Dr. R. Krishnamurti

Dr. Pavol Hell,
Supervisory Committee Member

f3r;-Siawomir Pilarski,
External Committee Member

~ j ~ r - 4 ZI,
Date k ~ ~ g o v a l

,

PART IAL COPYRIGHT LICENSE

I hereby grant t o Simon Fraser U n i v e r s i t y the r i g h t t o lend

my thes i s , p r o j e c t o r extended essay (t h e t i t l e o f which i s shown below)

t o users o f the Simon Fraser U n i v e r s i t y L i b r a r y , and t o make p a r t i a l o r

s i n g l e copies o n l y f o r such users o r i n response t o a request from the

l i b r a r y o f any o the r u n i v e r s i t y , o r o the r educat ional i n s t i t u t i o n , on

i t s own beha l f o r f o r one o f i t s users. I f u r t h e r agree t h a t permission

f o r m u l t i p l e copying o f t h i s work f o r s c h o l a r l y purposes may be granted

by me o r the Dean o f Graduate Studies. I t i s understood t h a t copying

o r p u b l i c a t i o n o f t h i s work f o r f i n a n c i a l gain s h a l l no t be al lowed

w i thou t my w r i t t e n permission.

T i t l e o f Thesis/Project/Extended Essay

Author:

(name)

(date)

Abstract

This thesis addresses an efficiency problem in a mixed-integer linear programming (MILP)

approach to automated synthesis of RT-level digital logic. The approach to the problem is to add an

interactive front-end, the Data Path Synthesis Interactive System (DPSIS), to the MILP package

BandBX, so that a human designer can participate in guiding the progress of a branch-and-bound

MILP algorithm.

The DPSIS extracts design information from the linear programming (LP) tableaux produced

while solving the MILP problem. During the branch-and-bound process, the LP tableaux contain

information about partial implementations. The DPSIS translates some of the design information in

a tableau from its original mathematical formulation into a form which can be understood by a

digital hardware designer (who often knows little or nothing of a constrained optimisation

technique such as MILP).

iii

Acknowledgements

I wish to express special appreciation and gratitude to Professor Lou Hafer, my senior supervisor,

for his constant guidance, advice, support and availability. Without his support and supervision

which I enjoyed during my study at Simon Fraser, the completion of this thesis would not have

been possible. His insistence on precision and clarity in writing has been immensely helpful in the

preparation of this thesis.

I am also indebted to Dr. Pavol Hell, not only for his reading and commenting on this thesis, but

also for his constant advice and encouragement. Thanks are also due to Dr. Slawomir Pilarski, the

external examiner of this thesis, for his valuable and stimulating suggestions and comments.

My special thanks to my friend and fellow student Michael Dyck who spent much of his precious

time reading my thesis and correcting my grammatical mistakes. I would like to thank Elma

Krbavac for giving me various kinds of advice and help.

My thanks go also to many of the graduate students in the School of Computing Science at Simon

Fraser, who either read and commented parts of my thesis, or provided me with various kinds of

help when they were most needed: Wuyi Wu, Mimi Kao, Frank Tong, Paul Wu, Pattabhiraman,

Siu-Cheung Chau, Vincent Ng, Pierre Massi and many others.

Finally, this work is dedicated to my father, my late mother and Ada. They gave me love and

support, and encouraged my endeavour to study.

Table of Contents

Approval
Abstract
Acknowledgements
Table of Contents
1. Introduction

1.1. Motivation
1.2. Related Work

1.2.1. CADPA WORK
1.3. The Problem
1.4. The Approach

2. The Synthesis Model and Mixed-Integer Linear Programming
2.1. The Synthesis Model: Nonlinear Constraint Forms

2.1.1. The Data Flow Representation and Labelling Convention
2.1.2. Hardware Components
2.1.3. The Variables
2.1.4. The Constraint Forms

2.1.4.1. Assigning Components
2.1.4.2. Enforcing Timing Relationships
2.1.4.3. Avoiding Component Usage Conflicts

2.2. Linearising the Model Relations
2.3. Linear Programming and Mixed-Integer Linear Programming

2.3.1. MILP Models
2.3.2. The Concept of Branch and Bound in MPLP

2.4. The BandBX Branch-and-Bound Algorithm
2.4.1. Upward and Downward Penalties
2.4.2. Selecting a New Subproblem
2.4.3. Monotone Variables
2.4.4. Branching Rules
2.4.5. Fixing Variables
2.4.6. The Branch-and-Bound Algorithm

3. Useful Information
3.1. BandBX Technique versus Designer Technique
3.2. Decision Variables
3.3. Time Information

4. An Interactive System for Data Path Synthesis
4.1. Overview of DPSIS
4.2. Representation of the Synthesis Model's Variables
4.3. Data Structures

4.3.1. IDDMA's Data Structures

ii
iii
iv
v
1

1
3
3
4
5

6
6
6
7
8
8

10
10
13
15
16
19
2 1
23
23
24
24
25
25
26

28
28
30
33

37
37
39
39
40

4.3.2. Partial Solution Data Structures
4.4. Interface Software

5. DPSIS Commands
5.1. Usage
5.2. Command Descriptions

5.2.1. cont
5.2.2. flist
5.2.3. help
5.2.4. quit
5.2.5. subpm
5.2.6. select
5.2.7. showeqn
5.2.8. pshoweqn
5.2.9. var
5.2.10. setfat
5.2.1 1. fixvar
5.2.12. actfop and oper
5.2.13. actfos and stor
5.2.14. time

6. Evaluation of DPSIS
6.1. Evaluation Criteria
6.2. CrissX Example
6.3. Logic Example
6.4. Power Example

7. Observations and Conclusion
7.1. Observations
7.2. Comparisons
7.3. Further Research

References

List of Tables

Table 2-1:
Table 2-2:
Table 2-3:
Table 2-4:
Table 2-5:
Table 4-1:
Table 4-2:
Table 5-1:
Table 5-2:
Table 6-1:
Table 6-2:
Table 6-3:
Table 7-1:
Table 7-2:

Hardware timing values
Timing variables for the synthesis model
Binary variables for the synthesis model
Nonlinear constraint forms
Linear constraint forms
DPSIS representation of the synthesis model's variables
DPSIS commands
Design interpretation vs. values for o variables
Design interpretation vs. values for p variables
Hardware elements for CrissX implementation
Hardware elements for Logic implementation
Hardware elements for Power implementation
Design with DPSIS guide
Design with no guide

vii

Figure 1-1:
Figure 2-1:
Figure 4-1:
Figure 4-2:
Figure 6-1:
Figure 6-2:
Figure 6-3:
Figure 6-4:
Figure 6-5:
Figure 6-6:

List of Figures

The DA system
An illustrative vt fragment
Overview of DPSIS
Functional flows
Data flow representation for the CrissX problem
Restrictions on the implementation of CrissX
Data flow representation for the Logic problem
Restrictions on the implementation of Logic
Data flow representation for the Power problem
Restrictions on the implementation of Power

viii

Chapter 1

Introduction

In [4], Hafer and Parker describe a method for formally modeling digital systems using algebraic

relations at the Register-Transfer (RT) level. The model can be viewed as a system of linear

constraints with an objective function specified by the designer. It is solved as a mixed-integer

linear programming (MILP) problem.

This thesis describes research conducted in an attempt to extract information from the linear

programming (LP) tableaux produced while solving the MILP problem - in other words,

interpreting the tableau and the branch-and-bound tree maintained by the MILP package. During

the branch-and-bound process, the LP tableaux contain information about partial implementations.

The intent of the research is to translate information in a tableau from its original mathematical

formulation into a form which can be understood by a digital hardware designer (who often knows

little or nothing of a constrained optimisation technique such as MILP). Hopefully, this information

will help the designer to guide the MILP package to quickly produce the most desirable

implementation for a given behavioural specification. The approach to be used involves

embedding an interactive module and a tableau interpretation module in the MILP program code.

The designer will obtain the information extracted from the tableau through the interactive module.

1.1. Motivation

The general problem faced by a digital designer is to come up with a hardware implementation

which is optimal with respect to some set of design goals or objectives. These goals or objectives

often conflict with each other. In these situations, access to information about the partially

completed implementation throughout the design process is very important, because with this

information the designer will be able to select the set of hardware elements for the implementation

which embodies the most acceptable tradeoff among the various objectives. Making the

mathematical formulation visible to the designer will be useful because the designer will have the

capability to interact with the system at intermediate points during the design process to extract

information about the partial solution and suggest design decisions. With this feature we hope to

minimise the exploration of unnecessary partial solutions in the branch-and-bound tree maintained

by the MILP package. Therefore, it is worth extracting such information and making it

understandable to the designer.

At present, the greatest concern is for the development of CAD (Computer Aided Design)

systems, covering from device to system levels, for VLSI, which is always increasing in scale and

complexity and creating numerous design difficulties. One of the design difficuhies is that a vast

amount of design information must be kept track of during the design process. Unfortunately, most

humans (designers) have difficulty handling large numbers of related details. In this case, some of

the design information needed by a designer and already present in the tableau can help the

designer if designer interaction is allowed. Therefore, an interactive system for the model

mentioned above is very useful because the designer can use the design information already present

in the tableaux.

Although strenuous efforts have been made to develop automated logic synthesis program, CAD

designers have always faced a great many difficulties in putting their programs into practical use

because the automatically designed results were often of lower quality than manually designed

ones. Stand-alone interactive design systems have been introduced in many IC manufacturing

plants and laboratories, which have severe requirements for high packing density to hold the

fabrication cost down as low as possible. In such situations, however, design remains primarily a

manual activity, aided by interactive graphic systems and other bookkeeping tools.

1.2. Related Work

1.2.1. CADIDA WORK

Figure 1-1: The DA system

The synthesis system to be used in this research is shown in Figure 1-1. The Instruction Set

Processor Specification (ISPS) translator [1], Value Trace (VT) translator [11], [9] and IDDMA

[6], were developed in the context of the Camegie-Mellon University Design Automation (CMU-

DA) project (refer to [2] for further information).

The register-transfer (RT) level logic synthesis method described in [4] expresses the design

problem using an algebraic model and uses constrained optimisation techniques to solve the

problem. The relations used in the model encompass the behaviour the design must support and the

performance constraints it must satisfy. Binary variabIes aHow the inclusion of implementation

decisions. These variables are used to represent the mapping of the operations and values of the

data flow representation onto the operators and storage elements which will compose the

implementation, and to specify how operation inputs are accessed. The relations are derived from a

data flow representation (The Value Trace) [9] that expresses the original RT-level behavioural

specification in terms of operations and values. A program, IDDMA, is used to automatically

generate the model relations. The relations are then viewed as a system of constraints and solved

as a mixed-integer linear programming (MILP) problem to optimise the objective function given by

the designer for evaluating candidate implementations. The MILP software used in this research is

BandBX [7] [8].

In [lo], Prakash investigated the effectiveness of using simplified versions of design paradigms

practised by human designers to guide the progress of the branch-and-bound MILP algorithm.

Three simplified human design strategies were considered (storage elements first, operators first,

and critical path first), as well as several artificial strategies. The choice of strategy was shown to

have a significant effect on the solution time.

The approach adopted in [lo] used the notion of heuristically capturing design knowledge by

using static priorities to fix the order in which decision variables are selected for evaluation. This

approach does not take into account the effect of previous design decisions, i.e., it does not refine

the importance of the rest of the variables depending on the form of the partial implementation.

The idea of capturing design knowledge heuristically leads one to think about the notion of human

(designer) interaction with the branch-and-bound MILP program, using the designer as the ultimate

heuristic for assigning priorities to decision variables.

1.3. The Problem

From the above discussion, we know that the behavioural specifications for digital hardware

designs can be expressed in a mathematical formulation. Unfortunately, such a mathematical

formulation is often not transparent to the hardware designer.

In addition to difficulties understanding the mathematical formulation, the designer also has

difficulties obtaining design information already present in the tableau.

The research will address these problems by trying to extract design information from the tableau

of each partial solution and the branch-and-bound tree maintained by the MILP package.

1.4. The Approach

In order to extract design information from the tableau and branch-and-bound tree for a partial

solution, it is necessary to incorporate into BandBX an interactive front-end that first translates

between the variable names and concepts used by the designer and the mathematical reprekntation

used by BandBX.

Chapter 2 presents a brief discussion of the relationship between the synthesis model, the

mathematical model and the designer. Chapter 3 will discuss some of the usehl design information

we can obtain from the mathematical model. Chapter 4 presents the implementation aspect of the

thesis. Chapter 5 describes the interactive system called DPSIS and its commands. Chapter 6

demonstrates with examples how DPSIS helps the designer to guide the design process. Finally,

Chapter 7 summarises the results of the thesis and suggests some directions for further research.

Chapter 2

The Synthesis Model and
Mixed-Integer Linear Programming

In this chapter, we will present a brief discussion of the synthesis model and the mathematical

representation used for linear and mixed-integer linear programming.

2.1. The Synthesis Model: Nonlinear Constraint Forms

This section1 presents a brief summary of the constraint system for synthesis, using a set of

nonlinear constraint forms. These forms are mathematically less tractable than the linear forms

described in section 2.2, but it is much easier to see how they relate to the underlying algorithm and

implementation. For a more complete exposition, the reader is referred to [4], or Chapter 4 of [3].

2.1.1. The Data Flow Representation and Labelling Convention

For the purpose of generating a system of constraints, a data flow description of the algorithm is

used. The particular data flow description is the Value Trace (vt) form developed at Carnegie-

Mellon by Snow [12] and augmented by McFarland [93. Figure 2-1 shows a fragment of data flow

with two activities, xal and xa2, and a flow of data from output o ~ ~ , ~ ~ of activity xal to input ia2,c2

of activity xa2. This fragment will be used as an aid to explain the derivation of the nonlinear

constraint forms.

To refer to the set of all outputs of activity xa (there may, in general, be more than one) we will

use 0,= (oJ. Similarly, I,= {ia,c) will refer to the set of all inputs of xu.

For completeness, there must also be a convention for representing the outside world, as the logic

'section 2.1 is excerpted from [6] with the permission of the author.

6

Figure 2-1: An illustrative vt fragment

being synthesized must communicate with it to perform useful work. The set of inputs to the data

flow description will be denoted as lo= {io,c}, and the set of outputs as 00= {o~ , , } . The most

consistent view is to look at the outside world as a large activity whose outputs become the inputs

to the data flow description, and whose inputs are the values produced as outputs of the data flow.

These values will be referred to as external inputs and outputs, to avoid confusion with the inputs

and outputs of individual activities.

2.1.2. Hardware Components

It is assumed that there is a given set of operators and storage elements available with which to

construct the implementation. Individual operators will be denoted by fd, individual storage

elements by s,.

A further assumption is that each activity x, in the data flow has been assigned a set of operators,

Fa, capable of implementing the activity. (I.e., the operators are capable of performing the fUnction

required by the activity and also satisfy any other a priori constraints.) In general, the sets will not

be disjoint; the constraint system ensures a non-conflicting scheduling of activities on operators.

Similarly, it is assumed that a set of storage elements, Sqf has been associated with each value

Oa,c.

Operators and storage elements require finite time to perform activities or store values. Table 2-1

describes the time delays which are incorporated in the synthesis model.

Dfi(f> Propagation delay time of operator fd from the appearance of the input value(s)
at the operator input(s) to the appearance of the output value(s) at the operator
output(s).

D~~(se) Setup time at the data input of storage element s,; data at the input to storage
element S, must be valid for at least this long prior to the transition at the clock
input of the storage element.

Dsh(se) Hold time.at the data input of storage element s,; data at the input of storage
element s, must remain valid for at least this long after the transition at the
clock input of the storage element.

DsP(se) Propagation delay time of storage element s, from the transition at the clock
input to the appearance of the value at the storage element data output.

Table 2-1: Hardware timing values

2.1.3. The Variables

The variables used in the synthesis model can be divided into two classes, continuous variables

which represent time, and binary variables which represent design decisions. Table 2-2 describes

the continuous variables, and Table 2-3 describes the binary variables.

2.1.4. The Constraint Forms

Roughly speaking, the constraint forms can be divided into three groups: constraints which

ensure that components are assigned when needed, constraints which enforce the timing

relationships implied by the data flow, and constraints which make sure that no component is

scheduled to do more than one thing simultaneously.

Time when the value required by input iac of activity xu is available for use in
the computation.

Time when the computation of activity xu actually starts.

Time when the output values 0, computed by activity xu are available at the
outputs of the operator performing the activity.

Time when all output values 0, of activity xu are no longer required, and thus
the time that execution of the activity can cease.

T i e when the input values for activity xu are no longer required.

Time when output value oac is no longer required, considering all uses
(whether for creating a stored copy of the value, or directly as an input to
another activity).

Time when the storage element assigned to store a copy of output value oaSc is
clocked.

Time when the value o,,, is available at the output of the storage element
assigned to store it.

Time when the stored copy of value o , , is no longer required as an input to
another activity.

Table 2-2: Timing variables for the synthesis model

Specifies the activity to operator mapping. %,,= 1 indicates that operator fd
will implement activity xu.

Pe,a,c Specifies the output value to storage element mapping. pe a ,= 1 indicates that , t

storage element se will be used to store output value oas.

Ya,c ya,,= 1 indicates that a stored copy of output value oa,, exists.

'a,c Specifies how input i , , accesses the output value which is the source for the
input. tia0= 1 indicates input i , , accesses the stored copy of the value.

*a,c Specifies how input i,, accesses the output value which is the source for the
input. 1 indicates input i , , accesses the value directly from the output of
the operator producing the value.

Table 2-3: Binary variables for the synthesis model

2.1.4.1. Assigning Components

Each activity xa must be assigned one and only one operator fde Fa to perform the activity. This

can be expressed by a summation over the binary variables od,a :

Note that the constraint works because the qa are binary variables. At most one of them can take

on the value 1, so that the summation is really enforcing a selection of one and only one operator.

This notion of "summation as selection" is used frequently in the constraint relations.

For values, the situation is somewhat different - storing a value o ~ , ~ is an optional operation, and a

storage element s ~ E S ~ , ~ is needed only if the value is actually stored. This is expressed by a

summation over the variables p e a , which is set equal to the binary variable y a , which specifies
9

whether the store actually occurs:

It is worth noting that the synthesis constraint system does not enforce an if and only if relation for

storage. There is nothing in the constraints to prevent the storage of a value, even though the stored

copy is never accessed. An objective function which minimises cost will, however, remove

unnecessary storage elements from the implementation.

2.1.4.2. Enforcing Timing Relationships

Referring to Figure 2-1, consider the conditions which must hold at the inputs Ia2 of activity xa2

before execution of the activity can start.

First, a unique source for the input must be selected. The value produced at output oal,cl can be

obtained either directly from the output of the operator which is executing activity xal , or from a

stored copy of the value. A constraint which expresses this is

aa2.c2 + 'a2,c2 =

Again, the constraint selects one of the two alternatives because the variables are binary.

A further restriction is that the valu

exists. The constraint

'a2,c2' 'Yal .cl

e cannot be obtained from a stored copy if no stored copy

captures this requirement.

With (2 .3) ensuring that one of w ~ ~ , ~ ~ and is set to 1 and the other is 0 , the time that the

value from output oal,cl will be available at input iaZc2 can be expressed as

Tia(ia~,c2) = @ a ~ c 2 T ~ a (" a ~) + 'a2,c2 Tsa("al,cl) (2 . 3

Before the execution of activity xa2 can start, all its inputs must be available. This condition is

expressed by the constraint

Once the activity has started, the outputs will be available at a time

The summation essentially selects the proper propagation delay, depending on the operator

assigned to implement the activity.

Consider now the lifetime of the output value oal,cl. One possible use of the value is to store it in

a storage element, making a stored copy. In this case, the value produced by oal,cl must satisfy the

setup and hold time requirements of the storage element. This is expressed by the constraint

(Tss(oa,,cl) is constrained by (2.12) to satisfy the setup time, so that only the hold time appears in

(2.8).) Note that, in the case that the value is not stored, yalcl=O and the constraint reduces to

. To,(oal,cl) 20, which is trivially satisfied.

The value produced by o ~ ~ , ~ ~ may also be used directly by the inputs of any number of other

activities in the data flow description. A constraint is necessary to ensure that the value lasts as

long as it is required at these inputs:

Tor("a~ ,c 1) ' MAX
((a 2 4 I OalJl= src(idc2))

0a2,b2Tir(za2)

Note that the set of inputs ia2,c2 in (2.9) is the exact same set of inputs which appears in (2.14), but

an input only contributes to one of the constraints, because of (2.3).

When all the outputs of an activity are no longer needed, then the execution of the activity can

cease:

When the activity is no longer executing, the values at its inputs are no longer needed:

O l e l l (2.11)

The parameter e allows the constraint to take into account the fact that the outputs of the activity

will not go away until some minimum propagation delay has elapsed after the inputs are removed.

To store a value in a storage element, the clock to the storage element must not occur until the

value has been present long enough to satisfy the setup time of the storage element. This is

expressed by the constraint

(The hold time of the storage element must also be satisfied; this is ensured by (2.8).)

Once the storage element has been clocked, the value will be available at its output at a time

Finally, when the inputs which are using the stored value no longer need it, the storage element

can be freed to store some other value:

2.1.43. Avoiding Component Usage Conflicts

To make sure that no operator is ever assigned to execute two activities at once, one of two

conditions must hold for each unique pair of activities which could use the operator: either the two

activities are assigned to different components, or the execution intervals of the two activities do

not overlap.

Define an overlap function L over pairs of closed intervals [T1,T2], T1<T2, and [T3,T4], T3<T4,

such that

1 if the intervals overlap
0 otherwise

With the overlap function just defined, the constraint

ensures that one of the two conditions will hold. There is one term in the summation for each

unique pair of potential uses of an operator. If the activities are assigned to different operators,

then the product will be 0, and the execution intervals can overlap. Otherwise,

0d,al%a2 will be 1 , and the execution intervals must be disjoint. Since no term of the sum can be

negative, all terms must be 0 for the sum to be 0.

The same reasoning, applied to uses of storage elements to store values, produces the constraint

to prevent the assignment of a storage element to store two values simultaneously. Table 2-4

summarises the nonlinear constraint forms presented in this section.

Table 2-4: Nonlinear constraint forms

Table 2-4, continued

2.2. Linearising the Model Relations

The constraints outlined in Section 2.1 must be linearised before they can be solved as a MlLP

problem. In [6], Hafer gives the necessary modifications to linearise the relations shown in Table

2-4. For the purpose of linearising we will assume that, for any given synthesis problem, we can

determine a time, f, which is greater than the largest value attained by any of the timing variables

in the model. To illustrate the procedure, we will use equation (2.31) again, which is written to

prevent usage overlaps for an operator fd. Since G ~ , ~ ~ , 0da2, and the function L can take on only

positive values, it is equivalent to write

o d , a l ~ ~ L (~ T x s ~ ~ a l ~ ~ T X T ~ x a l) ~ [Tm(xa2),T&a2)~) = (2.33)

for each term of the summation. The development of linear forms for constraints (2.33) is quite

complex. To motivate the development, it is helpful to restate the constraint as follows:

If the binary variable aalta2 is introduced and defined so that

if Txr(xa2) 2 TXT(xa1) * aal ,a2=o

(2.34) can be restated as

16

if OdVal= 1 and Od,,2= 1 and aa1,a2=0 3 Txs(xa2)2Tm(xal)

if = 1 and OdVa2= 1 and aal,a2= 1 * T , (X , ~) ~ T , (X , ~)

The linear fonns for (2.36) are

The linear constraint forms for the relations presented in Table 2-4 are shown in Table 2-5.

To indicate the presence or absence of a particular hardware component in an implementation,

two more types of binary variables are required. Let Pd represent the presence (Pd = 1) or absence

(P d = 0) of operator fd. Similarly, X, represents the presence or absence of storage element s,. For

each activity xu which could potentially use fd, there is a constraint,

where N is the number of variables in the summation. The corresponding constraint form for

storage elements is

The variables Pd and X, are used to construct objective functions which include the cost of the

implementation.

2.3. Linear Programming and Mixed-Integer Linear Programming

This section discusses models in the context of constrained optimisation, and explains the

notation used in the thesis for LP and MILP problems. It is assumed that the reader is familiar with

the theory of linear programming.

When a technical person discusses a model of a situation which is being studied, he/she is

referring to an idealized representation of an actual system. Typically, mathematical models for

Table 2-5: Linear constraint forms

constrained optimisation are structured to include four components: variables, parameters,

constraints, and an objective function.

The variables in a model represent the decision alternatives or items which can be varied in the

real-life situation. Typically, we are seeking values for these variables which are feasible with

respect to the system of constraints, and optimal with respect to the objective function. In the

synthesis model described in Section 2.1, the variables represent design choices and execution

timings.

Parameters are inputs which may or may not be adjustable, but are known either exactly or

approximately. In the synthesis model, propagation delays for components, or interface timing

specifications, represent fixed parameters. Performance or cost limitations could be either fixed or

adjustable, depending on the application.

Constraints are the conditions which limit the values that the variables can assume. They are

derived from the physical properties of the system being modelled. Some constraints correspond to

global properties. For synthesis, variables which represent decisions are restricted to values of 0 or

1, corresponding to the yes-no nature of a decision, while variables which represent time are

constrained to be positive. Other constraints represent the interrelations between individual

elements of the system. The constraints described in Section 2.1 fall into this class.

The objective fimction measures the effectiveness of a solution as a function of the variables in

the model. It provides a goal for the optimisation procedure. In working with the synthesis model,

the cost and execution time of an implementation will be the objectives that are considered.

The area of mathematical programming plays a prominent role in our research. It consists of a

variety of techniques and algorithms for solving certain kinds of mathematical models.

Mathematical programming has as its goal the solution of the model by finding values of the

variables which maximise or minimise the objective function subject to a system of inequality and

equality constraints. Mathematical programming is divided into several areas depending on the

nature of the constraints, the objective function, and the variables. Linear programming (LP) deals

with those models in which the constraints and the objective are linear expressions in the variables.

Integer linear programming (lLP) deals with the special case in which the variables are constrained

to take integer values. As we have discussed, the mathematical programming model used in this

research is MILP, where some of the variables are restricted to be integral and others may take on

any real value. In the particular case of the synthesis model used in this thesis, the integer variables

are restricted to 0 or 1, and the other variables must be positive real values. In the next few

sections, we will examine the relationship between the synthesis model and the MILP mathematical

programming model in more detail.

2.3.1. MILP Models

In this section, we wiU explain how to set up a MILP mathematical model of our problem.

Let

II denote the set of decision variables,
denote the set of continuous variables.

Then the MILP model can be stated as follows:

maximise clxl + C A + + cn&

subject to constraints

allxl + a1& + + a l 2 , S (=) bl

a2pl + a2g2 + + wn < (=) b2

0

ampl + a,,,A + + a d n l (=) b,

xi = 1 or 0, for xi E l-I and

xi 2 0, for xi E cP.

(2.49) is called the standard form. The linear relaxation of (2.49) retains the same constraints,

with the exception that the condition of integrality for the variables ll is relaxed to 0 I xi I 1 , xi E

n.

Many LP algorithms require the constraint system to be statedin canonical form. This requires

that all constraints be converted to equality constraints. Consider the constraint

ailxl + ai2x2 + + ai,pn I bi

We may convert an inequality constraint to an equality constraint by introducing a new variable

x,+~ and writing

ailxl + ai2x2 + + ai,pn + x ~ + ~ = bi

The variable x,+~ 2 0 is called a slack variable because it "takes up the slack" between the left

side of the constraint and the right side.

Corresponding to the way most mathematical programming algorithms are presented, we will use

the abbreviated Tucker tableau in this thesis. The tableau can be stated as follows:

The variables x~~ on the left side of the tableau are the basic variables and the constant values bioj

are the basic variable values. The subscript i indicates the ith row of the tableau. The subscript j

indicates the final tableau of subproblem j. The variables on the right side of the tableau are the

nonbasic variables, each of which has the value of 0.

(2.50) can be expressed in matrix and vector form as

Xbasic = - Axnon-basic

where A is the coefficient matrix, x ~ ~ ~ - ~ , ~ ~ is the vector of non-basic variables, b is the vector of

basic variable values, and xbasic is the vector of basic variables.

23.2. The Concept of Branch and Bound in MILP

This section describes the branch-and-bound technique in MILP. Branch-and-bound is an

optirnisation technique that uses binary tree enumeration. It involves calculating upper bounds and

lower bounds on the objective function, in order to accelerate the process of reaching the optimal

solution and thereby curtail the enumeration. The technique starts by solving the LP relaxation of

the problem (i.e., solving the same constraint system, but without the integrality constraints). It

then selects a non-integer binary variable2 xi^ and fixes it at values of 0 or 1, thereby creating

two subproblems. Thus a sequence of subproblems is considered. Eventually, no further

exploration from a subproblem is possible. Such a subproblem is said to be fathomed.

Subproblems can be fathomed due to infeasibility, integrality, or by bounds.

2The phrase "a non-integer binary variable". while something of an oxymoron, is more convenient than "a binary
variable which has a fractional value in the optimal solution to the linear relaxation of the current subproblem".

If a subproblem is fathomed due to integrality, the subproblem has reached an integer solution

and no further exploration is necessary.

If a subproblem is fathomed due to infeasibility, there is no solution of the relaxation problem

which satisfies all the constraints.

4,

If a subproblem is fathomed by bounds, it means that the current bound on the objective function

for the subproblem is less than or equal to the value of the objective function for the best integer

solution already know (assuming that we are maximising the objective function).

If the subproblem is not fathomed, one or more non-integer binary variables are selected and

restricted to have values of 0 or 1. Such variables are appropriately called fixed or spec@ed

variables. Similarly, variables which are not specified are calledfree or unspecified variables.

Each node vj in the binary tree represents a subproblem; node vo (i.e., the root) represents the

original problem. Each edge fixes a binary variable at 0 or 1, and the path vo to vj denoted by Pi

represents a set of specified variables which describes the subproblem vi. vj will be referred to as a

partial solution of the design.

At this point, we going to define some notation that will be used in the rest of this thesis.

Let

Ti denote the final tableau resulting from the solution of the linear
relaxation of subproblem vj .

Bj denote the set of basic variables in 5 .
NBj denote the set of nonbasic variables in Ti.

B q denote the set of timing variables in Bj.

BDj denote the set of decision variables in Bj.

II, denote the set of decision variables that are fixed along
the path Pi.

2.4. The BandBX Branch-and-Bound Algorithm

2.4.1. Upward and Downward Penalties

,'>
After the linear relaxation problem defined at a given subproblem has been solved, the solution is

checked for possible fathoming. If the subproblem still cannot be fathomed, the question of which

non-integer binary variable should be selected to branch is still open. This problem will be

considered after we show how to calculate a better bound. From (2.50), the value of each basic

variable in the optimal solution to the linear relaxation at subproblem vj is

xsi = bioj - C aikj xw xkj E NBj
k

Since vj was not fathomed due to integrality, there are non-integer binary variables among the basic

variables. Since these variables must be forced to 0 or 1 to satisfy the integrality constraints, it is

useful to calculate the penalty to the objective function which results when this is done.

For each non-integer binary variable, the downward penalty Di which results when the variable is

forced to 1 is defined as

Di is a lower bound on the deterioration of the objective function value which will result if xBi is

forced to 0. Similarly,

is defined to be the upward penalty which results when xBi is forced to 1.

Now, if the subproblem still cannot be fathomed by bounds after applying the penalties, then the

algorithm proceeds to to either fix all monotone variables (non-integer basic binary variables that

can assume only one value in successor subproblems due to penalties) or, if no monotone variables

are present, to branch on a non-integer basic binary variable. The choice of the branching variable

and the direction is made by selecting the largest among all up and down penalties and branching

on the corresponding variable in the direction opposite that yielding the maximum penalty.

2.4.2. Selecting a New Subproblem

When a subproblem is fathomed, backtracking to retrieve a subproblem is flexible and the choice

is made according to two options. The first option is to choose the subproblem with the most

promising bound (i.e., the largest bound on the objective function). The second option is to use the

best projection criterion based on the sum of integer infeasibilities, defrned as

Thus if we let sj represent the sum of integer infeasibilities for the subproblem vi, the subproblem

selected by this option is the one yielding the largest value of Ej where

In the above expression, zj is the value of the objective function for subproblem vj and zs is the

value of the current incumbent zero-one solution, unless there is no incumbent, in which case zs is

the smallest objective function value encountered among feasible subproblems. zLp is the

objective function value for the solution to the linear programming relaxation of the original

problem, md sl is its integer infeasibility.

2.4.3. Monotone Variables

Let
sufp = Z zs J -

be the difference between the objective function value for the current incumbent solution and the

objective function value for the linear relaxation at subproblem vj. If Di 2 sufp then xsi is a

monotone increasing variable. It must be set to 1; setting it to 0 will cause the value of the

objective function to become worse than the objective function value for the current incumbent

solution. Similarly, if Ui 2 sub then xBi is a monotone decreasing variable and must be set to 0.

2.4.4. Branching Rules

After the linear relaxation problem defined for a given subproblem has been solved, the solution

is checked for possible fathoming by infeasibility, bounds, and integrality. If the subproblem still

cannot be fathomed, the algorithm proceeds to either fix all the monotone variables or, if no

monotone variables are present, to branch on a non-integer basic zero-one variable.

The choice of branching variable and direction is made by selecting the largest among all up and

down penalties and branching on the corresponding variable in the direction opposite that yielding

the maximum penalty. Let
pen,, = MAX (Di,Ui)

1

be the maximum penalty over all non-integer binary variables in the solution to the linear

relaxation.

If pen,, is less than sufp and the value of pen,, is from an upward penalty (downward penalty)

then the selected binary variableis fixed to 0 (1) and the algorithm stores the subproblem in which

the variable is fixed to 1 (0).

2.4.5. Fixing Variables

Zero-one variables that are to be fixed at 0 or 1, either by branching or by being identified as

monotone variables, are handled by assigning them an upper bound of 0 which forces them to

remain at 0 in successor problems. The mechanism is straightforward for variables which are to be

fixed at 0. Variables which are to be fixed at one are complemented by rewriting the constraints in

which they occur and adding a correction to the value of the objective function.

To complement a variable xky let

where ; is the complementing variable of xkr Now, consider a constraint i such that ki
ailjxlj + a. .X . + + ainjxnj = biOj

121 21

Suppose xlj in the above constraint is to be fixed at 1. Constraint (2.52) is modified to

and the new variable ; is fixed at 0 by giving it an upper bound of 0. The net effect is the same as
ki

fixing the original variable xu at 1.

2.4.6. The Branch-and-Bound Algorithm

In this section, we will discuss the technique used by BandBX. BandBX uses a branch-and-

bound algorithm that involves the following major steps:

1. Solve the linear programming relaxation problem (LP) of the mixed-integer linear

programming problem (MILP) to provide a bound on the objective.

2. Try to fathom the current subproblem by using bounds on the value of the objective

function, infeasibility, and integrality. If a subproblem is fathomed then go to step 5.

3. Try rounding tests if the LP problem remains unfathomed. These tests are optional.

The system will do natural rounding first (i.e., rounding all non-integer binary

variables to the nearest integer value). If this does not produce a feasible zero-one

solution, then directed rounding is attempted. By directed rounding we mean

rounding all non-integer binary variables in one direction (i.e., either to one or to

zero). If either type of rounding produces a better incumbent zero-one solution the

present integer solution will be replaced. Otherwise the system will continue solving

the subproblem.

4. If there are no monotone variables3, the system will pick a non-integer binary

variable and force it to 1 or 0, creating two subproblems, and go to step 1. One

problem is stored and the other becomes the active problem in step 1. Otherwise the

system will force the monotone variables and go to step 1.

3~on-iiteger variables for which only one value (0 or 1) is possible. Monotone variables are identified based on
penalty and feasibility tests.

5. There are two options to select a subproblem when the current subproblem has been

fathomed. The first option is to choose the subproblem with the largest bound on the

objective function. The second is to use the best projection criterion based on the sum

of integer infeasibilities. If there are no subproblems remaining then STOP otherwise

select a new subproblem and go to step 1.

Chapter 3

Useful Information

The main reason why we need an interactive system is to cut down the amount of computation.

With the branch-and-bound method, if no clever heuristic or guideline is provided, the complete

tree search has a size exponential in the number of decision variables. The size will become

prohibitive once we have 20 or more decision variables. However, if we have a good heuristic,

which in our case will come from the designer through interaction, we can greatly reduce the

amount of computation because of quick fathoms or pruning of the branch-and-bound tree. In

order to supply good guidelines, the user has to know what is going on in the middle of the

computation.

In this chapter we will discuss the available design information and suggest ways to interpret

useful design information b m the branch-and-band tree aqd the partial solution tableam We will

explain the information in terms of the continuous variables (or timing variables) which represent

time, and the binary variables (or decision variables) which represent design decisions.

In the next chapter, we shall describe the interactive system, including the queries and commands

a user can submit to find out information in the middle of the branch-and-bound process.

3.1. BandBX Technique versus Designer Technique

Before we discuss how to interpret design information from the tableau and the branch-and-bound

tree, it is useful to describe the relationship between the branch-and-bound technique used in

BandBX (described in section 2.4) and the human designer. This, in turn, will show why designer

interaction is appropriate in certain steps of the branch-and-bound process.

The partial solution to the MILP problem is analogous to a partially completed implementation of

a design. When a human designer is at a certain stage of designing an implementation, helshe has

to make various design decisions based on design information that helshe knows, such as :

0 Whether storage elements and operators have been assigned.

The propagation delay time of operators and storage elements.

The setup time and hold time of storage elements.

The time constraints between two operators that have been assigned in the partial

design.

Whether the active periods of operators are independent or overlap each other.

Whether operators and storage elements can be released after a certain time (i.e., trying

to reuse components that have been released).

An examination of step 2 and step 3 of the branch-and-bound algorithm reveals that it searches

for a better solution by computing the penalties and doing the rounding tests using the numerical

values present in the tableau (i.e., the objective-function coefficients, the technological coefficients

and the solution column). As for a human designer, shehe knows certain design information (as

mentioned above) and based on this information, shehe tries to improve the partially designed

circuit. There are certain similarities betweens step 2 and 3 of the branch-and-bound algorithm and

the stage where a designer is trying to improve a partially designed circuit, and these provide the

motivation for this research. It will examine how the information extracted from the tableau could

help a designer gain a better understanding of a partially designed circuit. On the other hand, it will

also examine how the knowledge that expert designers use to complete a partial design could help

to guide the branch-and-bound search.

3.2. Decision Variables

Decision information is contained in the subprobIem's final tableau 5 and its place in the binary

branch-and-bound tree. In this thesis, branch-and-bound trees are binary, because we're using

binary integer variables. But also note that this is not always so, nor is material in the thesis

restricted to this case. Each node v, of the binary tree represents a different subproblem. Using the

notation given in the previous chapter, this section explains the design information we can obtain.

There are three types of subproblem found at the leaves of the branch-and-bound tree. The first

type are subproblems that were fathomed due to integrality. These are feasible, complete designs,

and one of them is the current best solution. The second type are subproblems that were fathomed

due to bounds or infeasibility. Such subproblems will either lead to no solution or will never lead

to a solution better than the current best solution. The third type are the active subproblems (i.e.,

subproblems that can possibly lead to a better solution than the current best solution).

With each subproblem, the user will be able to look at the the MILP information, which includes

the branch-and-bound information such as the current bound on the value of the objective function

and the currefit values cf the decision variables and timing variables. The order with which

registers and operators were allocated for the design can be obtained by looking at the decision

variables that have been fixed along the path from the root of the branch-and-bound tree to the

subproblem.

As described in section 2.3.2, decision variables can k f ixed or free in a partial solution. In each

case, the decision variables give different design information. The allocation of registers to output

values, and operators to operations, is specified by the values of the p , , , and odPa decision

variables. If the variable od,, has a value of 1, it indicates that operator fd will be used to

implement activity xa in the current partial design; if it has a value 0, it indicates operator fd will

not be used to implement (or operator fd is excluded from implementing) activity xa. In either case,

if %a is not fixed, then the decision might change in subsequent partial implementations

developed from the current one. But if od,a is fixed, the decision is permanent and will be present

in every implementation derived from the current one. If the variable %a is free in the current

partial design, then it indicates operator fd is still available to implement activity xu. This includes a

free ad, variable which has a value of 0 or 1. The decision variables p , , , provide the same

information about the use of storage elements to hold values.

The ordering between two activities (or operations) can be inferred from the aal,d decision

variable. If aal,d has a value of 0 (I), then activity xl (x2) starts ahead of activity x2 (xl) for the

current partial design. If aal,& is not fixed, then the decision might change in later partial designs.

Similarly, the variables aal,cl,d,d specify the relative order in which values are stored.

To determine if an input value for an operation comes directly from an operator, or from a stored

copy, we have to interpret the information from the 6,,, binary variables. If a variable 6,, has a

value of 1, then i,, will access the stored copy, otherwise it will be connected directly to the

operator producing the value.

A user can make use of the above information in any way helshe sees fit. In particular, the

following are some suggestions:

(1) Setting decision variables.

An expert designer may know from hisher previous experience which operators or storage

elements are good choices for certain activities or output values. We know helshe is capable of

doing this because this is how a designer designs without the help of a CAD system. In other

words, the designer can supply hisher expertise in setting some decision variables, saving a lot of

computation in the branch-and-bound execution. If possible, the designer can even supply a

complete set of values for all the decision variables to give a good initial integer solution (i.e., a

good completed design), which has a good chance to fathom a lot of other subproblems. We can

see that without an initial solution, the branch-and-bound algorithm needs to run 2" subproblems in

the worst case to get the first integer solution, where n is the number of decision variables.

At the moment, it is difficult to formalise what rules a designer follows in making hisher design

choices. We hope that through the interactive system, we can gain more understanding about the

reasoning process of a designer and hence be able to formalise some rules. This is the first

requirement for building any expert CAD system, and will be a good topic for future research.

(2) Controlling exploration of partial designs,

As described in section 2.4, each subproblem can be fathomed due to bounds, infeasibility, or

integrality. In each case, BandBX uses the largest bound or best projection criterion to select

another subproblem to continue. The algorithm does not allow BandBX to abandon the current

subproblem at any time before fathoming occurs. If the designer is allowed to look at each active

subproblem then the designer has the alternative to examine non-fathomed partial designs (partial

implementations which can be improved with respect to the present bound) and to select one to

replace the present one at any time, if helshe is not content with the present one. If helshe makes

good choices, it will save a lot of branch-and-bound computation since it will lead to earlier

fathoming of active branches.

(3) Choosing between alternatives.

A designer can find out the effect of different choices for a particular element in the middle of the

design. For example, the designer may want to know what difference it will make if helshe chooses

one operator instead of another for some activity. Helshe can set the decision variables for choosing

the operaton and mi the corresponding subproblem. The resulting b m d s will give an idea of

how well each choice performs.

(4) Find good or bad decisions.

The user can look at the solutions along a path in the branch-and-bound tree. Each step in the path

represents one (or more) design decisions. Suppose that in a path, a step S which fixes a decision

variable x links subproblem A to subproblem B. If step S leads to a large change in the bound value

from A to B, then the designer may conclude that the decision represented by the variable x is a

significant one.

The designer can also examine all partial solutions which cannot be improved (i.e., the inferior

partial designs), corresponding to the subproblems which were fathomed due to bounds or

penalties. Helshe could then attempt to deduce the choices which caused the fathom, and avoid

them in later decision making.

(5) Supply a strategy in the search.

The designer may guide the search by supplying a limited number of altemative partial designs,

each with some significant features, and the branch-and-bound search is activated with these

starting points. The results will show the performance of each different feature, and the designer

can pick one alternative to be refined.

3.3. Time Information

Beside decision information, we can interpret timing information from the continuous variables

(i.e., timing variables). We distinguish between two types of values for timing variables based on

the values of the decision variables that are related to each timing variable. In the synthesis

constraint systems, timing relationships are described by equalities and inequalities and

transformed into a set of linear relations. For example, the output time of an activity is the input

start time plus the propagation delay through the operator assigned to implement the activity. The

equation is written as:

The summation essentially selects the proper propagation delay, depending on the operator

assigned to implement the activity. When an operator fl is chosen, the value of o l , will be one

while the values of ad,a for all other operators fd will be zero. We define a "proper value" of a

timing variable recursively as follows: if a value is a constant, e.g., the initial time, then the value

is proper. For equations like the above, if the timing variables on the right hand side (e.g., T&,)

in the above) are proper, and the decision variables on the right hand side are either zero or one,

then the value of the timing variable on the left hand side (e.g., the value of T,(O,) in the above) is

a "proper value".

However, in a partial solution, the choice of an operator for an activity may be undecided. In this

case, some, or all, the values of C T ~ , ~ in the equation will be fractions between 0 and 1. In this case,

the value of T,(Oa) obtained by equation (3.1) is not the exact time, and we call such values

"improper values". Since Z odVa = 1, the sum Z fd) effectively calculates a weighted

average of the propagation delays for all available operators. If the timing variable T,(xa) is

proper then the improper value of variable T,(Oa) is the average output availability time for

activity x,.

The linear form that expresses the time a value can be stored is

TSs(oa,J - T,(Oa) - (~ ~ ~ (s ~) + f) pe , a , , 2 -f
(" Is,.s,J

If 6d,c2 has a value of 1 for some input id,c2 which uses output value o , , then by (2.40)

Z p , ~ = 1. In this case, the interpretation of the constraint is similar to that given for (3.1).
However, if the values of the variables 6a2,c2 are 0 or fractional for all inputs which access

the value o,,~, then it may be that x p,,, 5 1. In this case, the value assigned to Ts&oa,J is likely

to be misleading and may be completely meaningless. Suppose that x p,, = 0.5, and note that f,
as defined in section 2.2, is generally much greater than Dss(se). Then constraint (3.2) reduces to

TSs(oa,J - Tm(Oa) 2 -0.5 f

implying that the value o , , can be stored before it is available.

The linear relations below express the requirement that no operator is ever assigned to execute

two activities at once.

7xs(xa2)-Tm(xa1)-f %al 1f(3d,a2+faa1,a2 -2f

If one or more of the decision variables aaI,&, qaI or (3d,a2 have fractional values, then Txs(xd)

and TW(xaI) are improper and their values are potentially misleading.

From these examples, we can see that the user must be careful to interpret the values calculated

for timing variables in the context of the decisions made to that point in the development of the

partial implementation. Even in an integer solution (i.e., a complete implementation), some timing

variables may have meaningless values. (E.g., when, in fact, a value is not stored in the

implementation.)

In spite of these difficulties, much useful information can be obtained from the values of the

timing variables in the partial implementations:

(1) Obtaining the maximum or minimum computation time

For each activity xu, the set Fa contains the possible choices of operators to be used in the

implementation. For each output value oa,,, the set S a , contains the possible choices of storage

elements to be used in the implementation.

In the partial solution of a subproblem, some choices of operators and storage elements are made

but some are not. For an activity or output value that has a chosen operator or storage element, we

know the exact propagation delay. For an activity or output value that does not have a chosen

operator or storage element, we can still get an upper bound and a lower bound on the propagation

delay by picking components with the maximum and minimum propagation delay from among the

sets Fa and S,,.

Therefore we shall be able to answer a query from the user when helshe wants to know the

maximum or minimum computation time that may arise from the current partial solution. To get

the maximum value, we use the exact time whenever a component has been decided, and we pick

the component with the maximum delay for each undecided activity or value and calculate the total

time. To get the minimum time bound, we use the exact time whenever a component has been

decided, and we pick the component with the minimum delay for each undecided activity or value

and calculate the total time. In the general case, specialised algorithms are required for this

analysis, as described in [133.

(2) Reusing operators and storage elements

Txs(xa) is the time when computation of an activity starts, and T,(xa) is the time when all output

values of an activity are no longer required. For two activities xal and xd, if Tm(xal) is less than

T,(xd), and the times are proper, then the two activities are not overlapping. This means that the

operator that implements activity xal can be reused by xd. This choice may lead to a good solution

since it saves on the number of operators used and hence reduces the cost. The designer can ser the

decision variables to choose the same operator for both activities.

36

If some activity or value that xal or xd depends on has not been assigned a specific operator or

storage element, or the a variables for those activities or values are non-integer (or a combination

of these cases), then the times T,(xal) or T,(xd) are improper. In such cases we can still derive

some useful information. First we calculate the maximum possible value MAX for T A l) . This

is found as outlined in (1) above. Similarly, we calculate the minimum possible value MIN for

T,(xd). If MAX is less than MIN, then it is not possible for the two activities to overlap, and we

can reuse the same operator.

A similar analysis for TJO,~ ,~~) and TJod ,2) can determine if it possible for the lifetimes of

stored values to overlap.

Chapter 4

An Interactive System for Data Path Synthesis

In this chapter we have chosen to focus primarily on an interactive environment for synthesizing

register-level data paths from a data-flow specification. The interactive system is called the Data

Path Synthesis Interactive System (DPSIS). DPSIS extracts design information from the

mathematical formulation in a form which can be understood by a digital hardware designer (who

often has little knowledge about constrained optimisation techniques). The remainder of this

chapter will discuss the control flow and data flow of the DPSIS system.

4.1. Overview of DPSIS

DPSIS assists the user to minimise cost or maximise speed subject to time and resource

constraints, allocate values to registers and operations to operators, schedule operations and

optimise by exploring alternative designs. Since most synthesis problems are NP-complete,

programs cannot investigate all alternatives. Therefore, flexibility is important for a synthesis

program because the designer must either make decisions in the "best" order, or must be able to

select alternatives. DPSIS can provide the above features depending on the designer's knowledge

about design. .

The overview of the control flow and data flow of DPSIS is illustrated in Figure 4-1. The

following major components comprise DPSIS:

IDDMA [S] (The Model Generator Software) is an interactive aid for generating a

synthesis model from a data flow representation of a desired behaviour. Two forms of

output are provided, a human-oriented output in the form of symbolic relations, and a

fixed format output for use by the BandBX module. Our research provides the ability

to integrate IDDMA with BandBX by implementing an additional command mode

called "intertt which we will discuss in more detail in the next chapter.

37

Figure 4-1: Cverview of DPSlS

BandBX [8] is the program used to solve the synthesis model as a MILP problem

(described in sections 2.3 and 2.4). BandBX uses certain criteria to select the decision

variables on which to branch (i.e., make a design decision) and to select another

subproblem (i.e., partial implementation) at which to continue when the present

subproblem has been fathomed. DPSIS provides the flexibility to allow the user

(designer) to select the decision variables and choose subproblems.

Driver Routine is the driver that processes commands by calling the proper routines.

The user enters the command hejshe needs, then the driver routine checks the

command and calls the respective routine. The details of the commands will be

discussed in the following sections and chapters.

4.2. Representation of the Synthesis Model's Variables

Table 4-1 shows the representation of variables in DPSIS, and DPSIS uses this format to display

to the user. The notation in the first column has already been described in chapter 2. The construct

%*a" in the DPSIS format for the variable names is an artifact of the data-flow representation. The

vt translator numbers activities sequentially within larger subdivisions called vt bodies (roughly

equivalent to subroutines). Hence both a vt body index and an activity index are necessary to

uniquely specify an activity. The details of this representation can be obtained from [S] .

Gs<d,v*a>
Gr<e,v*a,c>

Gd<v*a,c>

Tia<v*a,c>

Txs<v*a>
Toa<v*a>

Txr<v*a>

Tir<v*a>

Tor<v*a,c>
Tss<v*a,c>

Tsa<v*a,c>

Tsr<v*a,c>

Table 4-1: DPSIS representation of the synthesis model's variables

4.3. Data Structures

This section describes the data structures used in DPSIS and the information that these data

structures contain. The dashed lines in Figure 4-1 represent the data flow in DPSIS. From Figure

4-1 the data information in DPSIS is primarily contained in two major groups of data structures:

IDDMA's data structures and partial solution data structures.

43.1. IDDMA9s Data Structures

The next few paragraphs will describe some of IDDMA's data structures that DPSIS uses to

supply information to the user.

There is a data structure that provides information about the hardware elements that can be used

during the design process. The information that DPSIS can obtain about a hardware element are its

actual name, the list of its functions, its size in bits, the setup time prior to clocking it, the hold time

after clocking it, its propagation delay, and its cost. The designer usually needs this information

when helshe is working on a partially implemented design.

There are two data structures (matrices) that give information about the decision variables of type

o and p. The columns in the matrices correspond to storage elements or operators, while the rows

of the matrices correspond to outputs or activities. Columns of these matrices record which

activities (values) are able to use a particular operator (storage element) for the design. The rows

give information about which operators (storage elements) can be used to implement (store) a

particular activity (value) during the design process.

The constraint system (in the form (2.49)), is stored in a two dimensional sparse matrix. Each bi

value is kept in a row header, each variable index is kept in a column header, and each value of aij

is stored in an entry of the sparse matrix. With this data structure the designer can examine the

original constraints.

The data structure called the variable translation tree is an n-ary tree in IDDMA which is used to

convert between the indexed variable associated with the vt components (as described in Table 4-1)

and a uniform numbering scheme for the variables as required by BandBX. This data structure can

provide a hurnan-readable name for any variable by traversing the tree to obtain the variable type

and subscripts.

The value trace data structure represents the algorithm to be implemented. This data structure is a

directed acyclic graph (DAG) and provides a data-flow specification of the design, as written by

the designer. With this data structure the designer knows the data-dependence information of the

activities. Activity xd is data-dependent on activity xal if we can trace a directed path in the data

flow graph from an output of activity xal to an input of activity xd.

43.2. Partial Solution Data Structures

As already described in the previous two chapters, BandBX solves the linear relaxation of the

current subproblem, then acts on the results by fixing monotonic variables, branching, or fathoming

the subproblem. But DPSIS intermpts BandBX after it solves the linear relaxation, at which point

there is intermediate information regarding the partial implementation of the design. DPSIS and

BandBX use this information to maintain the "partial solution data structures" as shown in Figure

4-1. The partial solution data structures keep complete information only for the current

subproblem. The next few paragraphs will discuss these data structures.

The information of (2.51) (i.e., xbasic = b - AX,,,-^,^,) is stored in a two-dimensional sparse

matrix maintained by DPSIS. The values of b (basic values) are stored in the row header, the vector

xbasic is stored in the row headers, and the values of A are stored in the entries of the sparse matrix.

The first row stores the objective function of the subproblem, and the row header of this row

contains the bound (i.e., the optimum value) of this subproblem. Each entry of the sparse matrix

points to the column header which in turn points to the variable translation tree.

In BandBX each decision variable and timing variable is represented by a numeric identifier. This

number can be used to index into an array of structures maintained by DPSIS. Each structure in

this array points back to the variable translation tree. With this feature, given any numeric variable

identifier, DPSIS can traverse the variable translation tree to obtain the name (as described in Table

4-1) of the design variable or to locate it in the IDDMA data structures. Each structure

(corresponding to a variable) in this array also points to a row (if the variable is a basic variable) or

a column (if the variable is a non-basic variable) of the two-dimensional sparse matrix that

represents the tableau (2.51). In this case, the value of each variable can be obtained by looking up

the corresponding array structure. If the variable is a basic variable then value is obtained from the

corresponding row in the sparse matrix. If it is a non-basic variable then the variable has the value

of 0. Together with the basic values and the corresponding variables in the variable translation tree

DPSIS manages to display the the values of the partial design in a human-readable form.

DPSIS also maintains its own copy of the branch-and-bound tree. As mentioned, each node of

the tree represents a subproblem. Each node is represented by a structure in the actual

implementation. This structure stores the subproblem number used by BandBX. If there are no

monotonic variables the structure also stores the decision variable to be branched on and the values

of the two subproblems resulting from the branch. In the implementation we defined these two

subproblems as the right and left subproblems with respect to the current subproblem. The

subproblem that is stored is called the left branch, indicated by the character "1" in the data

structure. The subproblem that the system will continue to work on is called the right branch and is

indicated by the character "r". If there are monotonic variables, the structure stores the monotonic

variables and their values. For the case of monotonic variables there is no left branch because (by

definition) a monotonic variable can take only one value, therefore the structure stores the character

"c" indicating a forced branch to the next subproblem. With information stored in the structure, the

designer can obtain the design decisions made between two subproblems by traversing the path

between the two subproblems.

There is an array structure that stores the address of each active subproblem in the branch-and-

bound tree (i.e., the nodes in the tree structure mentioned in the previous paragraph). When a

subproblem is fathomed, BandBX will update this array by removing the address of the

subproblem and compacting the array. The use of this structure will be shown when we describe

the command subpro in chapter 5.

We have discussed the two matrices which describe the variables of type o and p in IDDMA's

data structure. This paragraph will discuss a similar matrix, maintained by DPSIS for timing

variables. The columns of the matrix correspond to the types of timing variables, while the rows

correspond to outputs or activities. Each entry of the matrix represents an individual timing

variable. Each entry points to the corresponding entry in the main DPSIS array used to link the

IDDMA and BandBX variable representations. Therefore this structure can be used to obtain the

value of all the timing variables in Ti. The main advantage of having this matrix is the flexibility of

accessing the timing variables. With this data structure, DPSIS can access a particular type of

timing variable by traversing down the column for the variable type. By accessing the rows DPSIS

can find out all the timing values corresponding to a particular activity or value.

4.4. Interface Software

DPSIS uses a number of subprograms driven by a main driver to accomplish its tasks. Each of

these subprograms performs one or more functions. Figure 4-2 gives the overview picture of

functional flows of the driver routine.

The driver calls the respective subprograms based on the command issued by the user. Table 4-2

lists the commands (i.e., the functions) that have been implemented in DPSIS, with a capsule

description. The commands will be discussed in detail in the next chapter. The subprograms

display the requested design information to the user by extracting the partial solution data

generated by the MILP package and translating it into human-readable form.

Figure 4-2: Functional flows

actfop
actfos

a n t

fixvar

flist
help

OPer
pshoweqn

quit
select

setfat

showeqn

stor

subpro

time

var

show what operators are available, excluded, and used by an activity.
show what storage elements are available, excluded, and used by a value.
allow the user to specify a number of subproblems for BandBX to execute
before interaction resumes.
allow the user to fix decision variables.
show the decision variables that have been fixed, and their values.

show the user a list of legal commands.
show what activities are assigned, available and excluded from an operator.

show an equation (i.e., a row) of the partial solution tableau.

allow the user to quit executing DPSIS at any time.
allow the user to select another partial solution.

allow the user to select another partial solution when the present partial
solution has been fathomed.
show the user an original constraint relation.

show what activities are assigned, available to, and excluded from a storage
element.
show the active subproblems.

show the values of all timing variables.

show the value of all variables of a particular type.

Table 4-2: DPSIS commands

Chapter 5

DPSIS Commands

DPSIS has two levels of interaction with the user. The first level of interaction has 18 commands

mainly used for generating the constraint relations [S] and displaying human-oriented information

about IDDMA internal data structures. The second level, which has been implemented for this

thesis, allows the user to interact with the MILP software and obtain design information at any

selected subproblem (i.e., partially implemented solution), thus providing flexibility to DPSIS.

5.1. Usage

In 151, Hafer has provided a command interface which can be used interactively or supplied with

input from a command file. To interact with the MILP software, place the "inter" command at the

end of the command file. Then, simply type
% DPSIS < f i 1 e . d

During the course of execution of the first level commands, there will be messages indicating the

execution of the commands. Then the "inter" command is executed, which starts the second level of

interaction by prompting
INTER>

In this level there are 16 commands.

5.2. Command Descriptions

In this section we will describe each second level command of DPSIS in detail. The description

for each command will include:

a summary of the command's function in terms of the designer's point of view.

a summary of the command's function in terms of the mathematical formulation.

an example.

5.2.1. cont

The cont command allows the user to specify the number of partial implementations that helshe

wants DPSIS to explore before resuming the interaction. In other words, the cont command

provides the designer the option of whether to participate in the design process or to allow DPSIS

to make design decisions automatically.

From a mathematical point of view, interaction is suppressed until BandBX has solved the

specified number of subproblems. If the current subproblem is fathomed before the specified

number is reached BandBX will select another subproblem and continue. But DPSIS provides

another command called setfat that will set a flag to "off' or "on". If the flag is on then control is

returned to the user after fathoming regardless of the subproblem count.

The example below shows the user asking the system to solve five subproblems before helshe

wants to interact with the system again. The user again asks the system to solve another five

subproblems. The system abandons the partial implementation after solving two subproblems,

because the cumnt partial implementation will not produce a better design. In this case the system

will select a new partial implementation to work with. Interaction resumes after solving another

three subproblems.

Example :

INTER > c0nt 5 ;

5 more partial implementation
4 more partial implementation

0

0

1 more partial implementation

INTER > cant 5 ;

5 more partial implementation
4 more partial implementation

SUBPROBLEM FATHOMED DUE TO BOUND

3 more partial implementation
2 more partial implementation
1 more partial implementation

INTER >

5.2.2. flist

The flist command allows the designer to check the design decisions that have been made for the

partial design helshe is working on. This command does not show the order of these decisions.

From a mathematical point of view, the branch-and-bound tree is traversed from node vj (i.e., the

current subproblem) to node vo (i.e., the root), recording the values assigned to variables fixed due

to branching and variables fixed when they were found be monotone. In other words, this

command will show the designer the set q.

The example shows the designer asking DPSIS to show the design decisions that have been made.

The output shows that hardware componentfi is not going to be used to implement activity x5 and

hardware component sl will be used to implement activity x4. The designer also knows that input

il,l of activity xl and inputs i3,1 and i32 of activity x3 will be obtained from values held in storage

elements.

Example:

INTER> f l is t

5.2.3. help

The help command gives the designer a table (with a capsule description) of the legal commands

that are present in DPSIS.

Example :
INTER > help

Table of Commands -----------------
help a show a list of legal comnands.
0

0

se lect se lect another partial solution.

INTER >

5.2.4. quit

The quit command allows the designer to stop the whole design process. The designer may wish

to do this if cost or performance does not meet design specifications, if the designer is content with

the design, or if there is no noninferior design.

Example :

0

0

INTER > quit ;

the design process i s terminated intentionally

% (back t o unix prompt)

5.2.5. subpro

The subpro command allows the designer to look at any active partial designs, and the

information they contain. With this command the designer can determine, for each active partial

implementation: 1) the order of design decisions that were made to reach it; 2) its objective value;

and; 3) the next decision that BandBX will take;

From the mathematical point of view, the designer is actually looking at the subproblems which

are not fathomed (that is, the bound for these subproblems is still better than the current best integer

solution). As already discussed, BandBX selects a binary variable to branch on. If it branches to a

value of 1 (or 0) it will continue working on that subproblem and save the the other subproblem

that branches to the value of 0 (or 1). In this case, the saved subproblem will contain the

information specifying which binary variable it is going to branch on when BandBX recovers this

subproblem to continue.

With the addition of the interactive interface to BandBX, a second type of active subproblem is

required. When the designer uses the select command (described in section 5.2.6) to choose

another subproblem to work with and store the subproblem helshe is working on, a branching

variable is not selected, hence the stored subproblem cannot specify one.

The path Pi specifies which of the decision variables have been fixed, as described in the flist

command, but the subpro command also shows the order in which the decision variables were

fixed.

There are two options in the command. First, the designer can specify the range of partial designs

helshe wants to see. Second, the designer can randomly select the partial designs helshe wants.

Example :

INTER > subpro range 3 ,4 ;

Number = 3 Current Bound = -27.516879
N o d e # = 3 Var iab le Gs<1,7*1> t o be f i x e d = 1
Var iab le s f i x e d informat ion i n o r d e r :
Gd<7*1,2> = l r Gd<7*5,1> = O r

Number = 4 Current Bound = -31.415799
N o d e # = 5 V a r i a b l e Gb<5> t o be f i x e d = 0
Var i ab le s f i x e d informat ion i n o r d e r :
Gs<5,7*5> = O c Gs<l,7*1> = O r Gd<7*1,2> = l r
Gd<7*5,1> = O r

INTER > subpro random 7 ;

Number = 7 Current Bound = -59.165001
Node # = 8 V a r i a b l e Gr<1,7*0,1> t o be f i x e d = 0
V a r i a b l e s f i x e d informat ion i n o r d e r :
GlX6> = O r Gb<l> = O r Gb<5> = l r
Gs<5,7*5> = Oc Gs<1,7*1> = O r Gd<7*1,2> = l r
Gd<7*5,1> = O r

The examples show the designer asking DPSIS to display a) the subproblems ranging from 3 to 4,

and b) the 7th subproblem. The command is set up this way because there is an array storing the

actual location of each subproblem, as described in section 4.3.2. The number used in the

command is not the actual subproblem number. Rather, it is the location in the array that contains

the address of subproblem v,. The examples presented show that the designer can find out the

current bound (i.e., the optimum value of the linear relaxation), the partial implementation helshe is

working on (i.e., the node number), the order in which the fixed decision variables were specified,

their value, and the direction these decision variables branch to. The letters "r", "I", and "c"

indicate the branching direction of each subproblem, as discussed in section 4.3.2.

5.2.6. select

The select command provides the designer with the ability to control the order in which BandBX

explores the branch-and-bound search tree.

As explained in section 2.4, BandBX uses bounds and projection criteria to select a new

subproblem when the current subproblem is fathomed. The select command allows the designer to

intervene and select the partial implementation he/she considers most promising. The setfat

command, described in section 5.2.10, is used to force BandBX to allow designer intervention after

a subproblem is fathomed.

It may also happen that the designer will wish to abandon a partial implementation before

BandBX can fathom the subproblem. This will occur when the designer's experience leads

himher to believe that the design choices already fixed in the partial implementation will preclude

a good final implementation.

From the mathematical point of view, some care is necessary in the second case. When the select

command is used to force BandBX to another subproblem before the current one is fathomed, the

current subproblem must be stored. This is necessary to ensure no potential optimal solution is

missed due to premature pruning of a branch in the search tree. As mentioned in section 5.2.5, the

subproblem which is stored differs from those created by BandBX during the normal branching

process in that no branching variable has been selected; this choice is postponed until the

subproblem is reactivated.

Example :
INTER > subpro random 4 ;

Number = 4 Current Bound = -31.41579
Node # = 5 Var iab le Gb<5> t o be f i x e d = 0
V a r i a b l e s f i x e d information i n order :
Gs<5,7*5> = O c Gs<1,7*1> = Or Gd<7*1,2> = 1r
Gd<7*5,1> = Or

INTER > select 4 ;

The example shows the designer examining partial design number 4 with the subpro command,

then asking DPSIS to store the current partial design and to activate partial design number 4.

5.2.7. showeqn

The showeqn command allows the designer to look at the original constraints of the synthesis

model in a (more-or-less) human-readable format.

The example below shows the designer asking DPSIS to display the first constraint. And the first

constraint tells the designer that activity x7 can use hardware components f5, f6 or f7 during the

design process.

Example:

INTE- showeqn 1 ;

5.2.8. pshoweqn

The function of pshoweqn is similar to showeqn, but it shows the constraints of the current

partial solution, rather than those of the original model.

From the mathematical point of view, we are looking at the rows of the tableau, xbasic = b -

**non-basic.

The example shows the designer asking DPSIS to display row number 4 of current tableau.

Example:

INTER> pshoweqn 4 ;

INTER>

The "S" character followed by a number is the name generated for a slack variable. The number

"230" means variable x 2 3 in BandBX. Therefore, S230 is the slack variable for constraint number

"230 - number of variables". The equation shows that the slack variable S230 is a member of Bj

and has a value of 1 since bdOj = 1. The slack variable S116 has a value of 0 since S116 E NBi. As

for variables Gd<7* 1,2> and Gdc7* 1 ,I>, they each have a value of 0 (since both are elements of

NB,), unless they have been fixed at 1.

5.2.9. var

The syntax of the var command is "varctype of variable>". This command will display the

values of all the variables of a particular type.

From the mathematical point of view, for any type of timing variable DPSIS will search the set

BTj to find the particular type of variable, then it will obtain the value of these variables from the

basic value vector b. If the requested variable type is a decision variable, then DPSIS will search

the set BDi. DPSIS also searches the set NBj to find variables of the particular type which are

nonbasic and hence 0 (or possibly fixed at 1).

The example shows the designer successively asking DPSIS to show the values of the o, p and

T, variables. The "B1's beside the values mean that variables are in the set B q (for timing

variables) or in the set BDj for decision variables. The "*" can only apply to decision variables, and

it means that the variable is fixed and is in the set nj. Variables after the "Nonbasic" are the

nonbasic variables that have a value of 0. In the vars command, the variables Gsc5,7*5> and

Gsc1,7*1> are displayed as variables that are fixed to the value of 0 and also nonbasic.

Example :

INTER> vars

Nonbasic variables:

INTER> varr

Nonbasic variables:

Gr<2,7*0,2>=0 Gr<2,7*2,1>=0 Gr<2,7*4,1>=0
Gr<3,7*2,1>=0 Gr<3,7*4,1>=0

INTER> vartxs

Nonbasic variables:

The setfat command acts as a switch to control the actions BandBX takes when a subproblem is

fathomed. When this switch is on, it allows the designer to participate in selecting another partial

implementation when the current partial implementation is fathomed. When the switch is off,

BandBX will select a new subproblem and proceed automatically.

This command does not have a mathematical explanation. But we could describe it as an

additional feature for BandBX, allowing human expertise to aid in selecting the next subproblem.

Normally, BandBX uses bounds and best integer projection criteria to select a new subproblem.

In order to see the benefit of the setfat command, we give a clear example. The example shows

the designer initially setting the switch "on", then asking DPSIS to solve five subproblems before

resuming interaction. After solving t h e subproblems, the subproblem was fathomed. Since the

switch is "on" interaction is resumed, but when the designer tries to continue without selecting a

new subproblem, DPSIS reminds the designer that there is no active subproblem. So the designer

looks up the active subproblems in the tree and selects one to continue.

Example :
INTER> setfat on ;

INTER> c o n t 5 ;

5 more p a r t i a l implementation
4 more p a r t i a l implementation
3 more p a r t i a l implementation

SUBPROBLEM FATHOMED DUE TO INFEASIBILITY

E n t e r I n t e r a c t i o n System Due t o Fathom

INTER > con t 2 ;

No a c t i v e subproblem t o cont inue

INTER > subpro range 5 , 6 ;

Number = 5 Curren t Bound = -59.165001
Node # = 8 Var i ab l e Gr<1,7*0,1> t o be f i x e d = 0

0

INTER > select 5 ;

5.2.11. fixvar

The fixvar command allows the designer to participate in making design decisions. The designer

uses other commands to obtain design information, which can help himher to identify the next

feasible move in decision making (i.e., fixing the binary variables).

In section 2.4 we learned that BandBX used upward and downward penalties to select a decision

variable to fix in the next partial implementation. The fixvar command provides human interaction

(i.e., human experience) in decision making, instead of basing it solely on mathematical criteria.

From the mathematical point of view, the designer is creating another subproblem by adding

another binary variable to the set llj of fixed variables. The other subproblem (formed using the

opposite value of the binary variable) will be stored by BandBX.

The example shows the designer making a design decision by assigning hardware component f5

to implement activity x7. After telling DPSIS what variable to fix, the designer has to issue the cont

command to ask BandBX to do the actual calculation.

Example:
INTER> vars

Nonbasic variables:

I N T E R > fixvar one Gs<5,7*7> ;

INTER> cont 1 ;

5.2.12. actfop and oper

The actfop and oper commands both yield selected information about the assignment of

operators to activities in the current partial implementation. The difference between the two

commands lies in the method of selection: actfop yields information about a given list of activities,

whereas oper yields information about a given list of operators.

During the design process, the designer needs to recall which operators have been assigned to a

set of activities. Occasionally, the designer would like to know what operators are still available for

assignment to a set of activities and what operators are excluded from being used to implement

those activities. The actfop command provides this information. Conversely, the designer may

need to know where a given set of operators are used, available, and excluded in the current partial

design. The oper command provides this information.

57

The queries supported by the actfop and oper commands are very useful to a designer. Knowing

the distribution of operators and the timing information (mentioned in sections 3.2 and 3.3), a

designer might be able to swap operators to save cost or improve the performance of the design.

From the mathematical point of view, the above queries can be answered by looking at the current

values of o variables. Therefore, the command

actfop scans all %a for a given activity xu and

oper scans all %a for a given operator fd.

Each command takes an additional argument specifying the cIass of information to be selected:

"used" : An operator fd is used by an activity xu if and only if %a = 1.

"exclude" : An operator fd is excluded from an activity xu if and only if od a = 0.

"avail " : An operatorfd is available for an activity xu if and only if B ~ , ~ is not fixed to

0.

If %a E Ill. then its use is fixed in the partial implementation and in all implementations derived

from it. This is indicated by a "*" in the command response. Operator fd is used by activity xu if

od,, = 1; for consistency, the operator is also listed as being available for the activity. If Gd a is

fixed at 0, then it is excluded from use by activity xu.

If %a e, Ilj, the value of od,a gives the usage of the operator in this partial implementation.

However, the use is not fixed, and may be completely different in implementations derived from

the current one. Because the usage may change, fd will always be listed as available. If od a has a

value of 0 or 1, fd is will also be listed as used or excluded, respectively. A variable od,, E NBDj

which has a value of 0 and is not fixed, is indicated by a "-" in the command response. Table 5-1

gives a summary of the above explanation.

used

available

excluded 0 0 0

Table 5-1: Design interpretation vs. values for o variables

Example :

INTER > vars

Nonbasic var iables :

INTER > act fop x1, x3, x5, x7 used ;

a c t i v i t y 1 used 5
a c t i v i t y 3 used 5
a c t i v i t y 5 used 2
a c t i v i t y 7 used 5

INTER > act fop x1, x3, x5, x7 a v a i l ;

a c t i v i t y 1 ava i l ab le 5
a c t i v i t y 3 ava i l ab le 6-, 5,3-
a c t i v i t y 5 ava i l ab le 6 ,2 ,1
a c t i v i t y 7 ava i l ab le 6-, 5,4-, 3-

INTER > ac t f op x1, x3, x5, x7 exclude ;

a c t i v i t y 1 excluded l *
a c t i v i t y 3 excluded 6-,3-
a c t i v i t y 5 excluded 6,5*, 1
a c t i v i t y 7 excluded 6-,4-,3-

The above example shows the designer asking DPSIS to display the current operator allocation

information for activities xl, x3, x5 and xp In the fourth query, the designer asks DPSIS to display

the information about operators that are excluded by these activities. Consider the display for

activity x5. Currently, none of the operators fi, fi or f6 are used to implement x5. For f5 this

decision is fixed for all continuations of the the current partial implementation, whereas fl or f6

might later be used to to implement activity x5. Consider the display for activity xp Currently,

none of the operators f6, fq o r b are used to implement xp

Example :

 on basic var iables :

INTER> oper fl,f2,f3,f4,f5,f6 used ;

Operator 1 used i n a c t i v i t i e s nowhere
Operator 2 used i n a c t i v i t i e s nowhere
Operator 3 used i n a c t i v i t i e s nowhere
Operator 4 used i n a c t i v i t i e s nowhere
Operator 5 used i n a c t i v i t i e s 7*,3,1
Operator 6 used i n a c t i v i t i e s nowhere

INTER, oper fl,f2,f3,f4,f5,f6 a v a i l ;

Operator 1 avai lable i n a c t i v i t i e s 1-
Operator 2 avai lable i n a c t i v i t i e s 5
Operator 3 avai lable i n a c t i v i t i e s 7,3-
Operator 4 avai lable i n a c t i v i t i e s 7-
Operator 5 avai lable i n a c t i v i t i e s 7*, 5,3,1
Operator 6 avai lable i n a c t i v i t i e s 6-

INTER> oper fl,f2,f3,f4,f5,f6 exclude ;

Operator 1 excluded i n a c t i v i t i e s 5*,1-
Operator 2 excluded i n a c t i v i t i e s nowhere
Operator 3 excluded i n a c t i v i t i e s 7,3-
Operator 4 excluded i n a c t i v i t i e s 7-
Operator 5 excluded i n a c t i v i t i e s nowhere

The example above shows DPSIS answering queries about operators fl through f6. In the third

query, the designer asks DPSIS to display where these operators are still available. Consider the

operators fl and f5. For operator fl, "I-" means that operator fl is currently not used to implement

activity xl, but might be in some continuation of the current partial design. Operator f5 is currently

available to implement activities x7, x5, x3 and XI. It will be used for x7 in all continuations of the

current partial implementation, but possibly not for activities x5, x3 and X I .

5.2.13. actfos and stor

The actfos and stor commands are similar to the actfop and oper commands respectively. The

difference is that they yield selected information about the assignment of storage elements to output

values in the current partial implementation.

From the mathematical p i n t of view, the queries can be answered by looking at the current

values of the variables of type p, instead variables of type a. Therefore, the command

actfos scans all p, ., for a given value o,,,, and , I

oper scans all p , , , for a given storage element se.

The relationship between the mathematical explanation and the design interpretation is similar to

that for the commands actfop and the oper, using the p, variables instead of the %a variables.
1 >

Table 5-2 gives a summary. Due to a design oversight in the implementation, these two commands

Pe,a BDj Pe,a,c nj Pe,a,c E NBDj

used i 1 n/a

available 05 %,< 1 1 0

excluded 0 0 0

Table 5-2: Design interpretation vs. values for p variables

do not provide complete information in some cases. The flaws are easy to patch up and will be

illustrated in the examples.

Example :

INTER > varr

Nonbasic variables:

INTER > a c t f o s ~ 2 ~ x 3 ~ ~ 4 ~ ~ 6 used ;

output a c t i v i t y 2 used : none
output a c t i v i t y 3 used : none
output a c t i v i t y 4 used I*
output a c t i v i t y 6 used : none

INTER > a c t f o s x2, x3, x4, x6 a v a i l ;

output a c t i v i t y 2 a v a i l a b l e 3,2- ,1
output a c t i v i t y 3 a v a i l a b l e : none
output a c t i v i t y 4 a v a i l a b l e 3-,2,1*
output a c t i v i t y 6 a v a i l a b l e : none

INTER > a c t f o s x2, x3, x4, x6 exclude ;

output a c t i v i t y 2 excluded 3 ,2 -
output a c t i v i t y 3 excluded : none
output a c t i v i t y 4 excluded 3-, 2
output a c t i v i t y 6 excluded : none

INTER >

The above example shows the designer asking DPSIS to display the storage element allocation

information for the output values of activities x2, x3, x4 and xg. The command should specify the

outputs. Note that presently we are dealing with only one output from each activity, hence it is

sufficient to simply specify the activity. In the third query, the designer asks DPSIS to display

information about storage elements that are available to store the output value of the activities for

the current partial design. Consider the output value of activity x4. Currently, storage elements sl,

s2 and s3 are available, with sl selected for use. In continuations of the current partial

implementation, sl will always be used.

For reasons of expediency, the syntax for the actfos command is not adequate to uniquely specify

some values. In particular, external inputs cannot be properly specified. Information given in

response to a query about activity xo is specific to input ioJ. Inputs io,2, ioj, ... cannot be specified.

Example :
INTER> v a r r

Nonbasic va r i ab les :

Gr<3,7*2,1>=0 Gr<1,7*0,1>=0 Gr<1,7*4,1>=0

INTER> s t o r $1, s2, s 3 used ;

Storage 1 used i n a c t i v i t i e s 0*
Storage 2 used i n a c t i v i t i e s 4
Storage 3 used i n a c t i v i t i e s nowhere

INTER> s t o r s l I s 2 , s 3 a v a i l ;

Storage 1 a v a i l a b l e i n a c t i v i t i e s 2,0*
Storage 2 a v a i l a b l e i n a c t i v i t i e s 4,2,0
Storage 3 a v a i l a b l e i n a c t i v i t i e s 4,2-

INTER> s t o r s l I s 2 , s 3 exclude ;

Storage 1 excluded i n a c t i v i t i e s 4*
Storage 2 excluded i n a c t i v i t i e s nowhere
Storage 3 excluded i n a c t i v i t i e s 4,2-

The example above shows the designer asking DPSIS about the allocation of storage elements sl,

s2 and s3 in the current partial design. In the fourth query, the designer asks where these storage

elements are not used. Consider the storage elements sl and s3 of this query. Currently, they are

both excluded from being used to store the output value of activity x4.

Similarly to command actfos, the stor command syntax is not adequate to uniquely specify some

values. In particular, external inputs cannot be properly specified. Infonation given in response

to query about storage elements to be used to store external values is specific to input ior1. Inputs
. . zo3, ... cannot be specified.

5.2.14. time

The time command allows the designer to obtain the current values of timing variables of all

types. Helshe can look at a list of individual timing variables, the timing variables of a list of

activities, and specific types of timing variables for a list of activities.

From the mathematical point of view, if a timing variable is an element of BT, then the value of

the timing variable is the corresponding basic value. If a timing variable is an element of then

the timing variable has a value of 0.

Example :
INTER> time Tor<7*4, I>, Tss<7*2, I>, Tor<7*7,1> ;

INTER> time Txr,Txs ~ 1 ~ x 3 ;

time information for activity : 1
Txs<7*l> = 2.224599B
Txr<7*l> = 134.224599B

time information for activity : 3
Txs<7*3> = 2.224599B
Txr<7*3> = 134.224599B
INTER> time x5,x6,x7 ;

time information for activity : 5
Tia<7*5> = 174.224599B
Txs<7*5> = 174.224599B
Txr<7*5> = 306.224599B
Tor<7*5,l> = 306.224599B

time information for activity : 6
Tia<7* 6> = 281.224599B
Tor<7*6,1> = 306.224599B
Tss<7*6,1> = 306.224599B
Tsr<7*6,1> = 9OO.OOOOOOB

time information for activity : 7
Tia<7*7> = 174.224599B
Txs<7*7> = 174.2245998
Txr<7*7> = 304.018109B
Tor<7*7,1> = 304.018109B

The above example shows three different ways the time command could display timing

information. In the first query, the designer requests timing information for the individual timing

variables Tor<7*4,1>, Tss<7*2,1> and Tor<7*7,1>. In the second query, the designer requests the

values of the T, and T, variables for activities xl and x3. In the third query, the designer requests

all timing information for activities x5, X6 and x7.

Chapter 6

Evaluation of DPSIS

To investigate the effectiveness of DPSIS, we used it to solve a few synthesis problems.

6.1. Evaluation Criteria

DPSIS is an interactive system that lets the designer guide the exploration of the branch-and-

bound tree maintained by the BandBX program. We are interested in whether this guiding results

in the optimum solution earlier than if BandBX were allowed to run by itself. From the extensive

set of statistics that BandBX compiles, the following three pieces of information were used to

evaluate how much time the branch-and-bound process takes with and without DPSIS:
The number of the subproblem at which the optimal solution was found.

The total number of subproblems solved.

The total number of simplex pivots performed to solve all linear relaxations.

Since DPSIS is a man-machine interface, the above three numbers will depend on the decisions

made by the designer.

The next three sections will introduce three design problems: CrissX, Logic and Power. We

walk through a DPSIS session for each of these problems, showing how DPSIS helps the designer

in making design decisions.

6.2. CrissX ExampIe

Figure 6-1 presents the data flow representation of the algorithm. Activities x2, x4, x6 and xg are

field extraction operations which produce as outputs a subfield of their input. These field

extraction operations are needed because activities xl, x3, x5 and x7 have 16 bit inputs and will

produce an output of 17 bits. No operators are required to implement these activities, since they

are performed simply by connecting to the proper bits of the values o5 o7 ol and 03,1.

Figure 6-1: Data flow representation for the CrissX problem

The period during which the inputs lo are valid is restricted to the interval 0 to 100 ns., and we

have assumed a single control signal to latch the inputs. As shown in Figure 6-2, we have required

the output values Oo to be accessed from register outputs, and forced the values 0 6 , ~ and ogPl to be

stored, by setting the variables aO,i, 60,2, P1,6,1, and pzs to 1. The outputs have to be valid at the

time t=800 ns. and remain vkid until the time t=9W ns. The objective of this design problem is to

optirnise the cost. The proper objective function is

19.8P6 + 19.8P5 + 23.70~7 + 23.7P3 + 1 4 ~ ~ ~ ~ + 14P1 + 8.8323

where p and 2 are derived binary variables (described in section 2.2) which are 1 if the hardware

element they represent is ever used in the implementation. The coefficient for each variable is the

cost of the hardware element.

Translated into a MILP constraint set, this problem consists of 144 constraints involving 88

variables, of which 47 are decision (binary) variables. The details of the hardware set available for

Figure 6-2: Restrictions on the implementation of CrissX

implementation are given in Table 6- 1, in which the registers are sorted in non-decreasing order of

their bits; the operators are sorted increasingly according to the number of functions that they can

perform (IDDMA maintains this information, as described in section 4.3.1).

To ease the explanation a number is attached to each command. We begin when BandBX has

. just finished solving the first relaxation problem, when no decision variable has been fixed.

Initially, the designer has the image of the data flow representation of this problem, and the goal

of minimising its cost. The designer will try to reuse storage elements and operators whenever

storage

operator

bits

<16> 25 ns. 0 ns. 40 ns.
<16> 25 ns. 0 ns. 40 ns.
<16> 25 ns. 0 ns. 40 ns.

bits function D~~

70 ns.
70 ns.
85 ns.
85 ns.
107 ns.
107 ns.

Table 6-1: Hardware elements for CrissX implementation

cost

cost

helshe finds it possible. To begin with, the designer requests the current values of the operator

mapping variables:
1 INTER> vars

N o n b a s i c variables :

The vars command shows the value of each operator mapping variable. Currently, activity x3 is

using operator f5 (Gs<5,7*3> = 1). The designer knows that activity x5 is data-dependent on

activity x3, and therefore x5 can reuse operator fs, thus decreasing the design cost. The designer

instructs BandBX to fix this decision (by setting Gs<5,7*5> = 1) and go to the next partial design.

The alternate partial design (in which Gs<5,7*5> = 0) is stored in case it's needed later.
2 INTER> fixvar one Gs<5,7*5> ;

3 INTER> cont 1 ;

1 m o r e partial i q l e r n e n t a t i o n

After making the decision the designer requests the information regarding the value of the operator

mapping variables again.
4 INTER> vars

Nonbasic variables:

The vars command shows that the designer's previous decision changed the value of variable

Gsc5,7*3> from 1 to 0.98. Note that variable Gsc5,7*5> is fixed and in the nonbasic set. (The

explanation is given in section 2.4.1.) The designer decides to make sure that the operator f5 will

be used to implement activity x3 if there is a complete design for the current subproblem
5 INTER> fixvar one Gs<5,7*3> ;

6 INTER> cont 1 ;

The designer tries to find out more information regarding the distribution of operator fs and the

values of the operator mapping variables.
7 INTER> oper f5 used ;

Operator 5 used in activit ies 5*, 3*, 1

8 INTER> vars

Nonbasic variables:

From command 7, the designer knows that operator f5 is currently shared among activities xs, XJ

and XI. The designer decides to have activity x7 use it as well (Gs<5,7*1> = 1). Then, if a complete

solution results, it will use only one operator, which might minimise cost.

9 INTER> f i x v a r one Gs<5,7*7> ;

10 INTER> cont 1 ;

The designer confirms that the current design uses operator f5 in all thc activities that necd an

operator. The designer then requests timing information (execution start and rclcasc timc) for all

the activities.
11 INTER> oper f 5 used ;

Operator 5 used i n a c t i v i t i e s 7*, 5*, 3*, 1

12 INTER> t ime Txs, Txr x1, x3, x5, x7 ;

t ime information f o r a c t i v i t y : 1
Txs<7*l> = 2.224599B
Txr<7 *1> = 134.224599B

t i m e information f o r a c t i v i t y : 3
Txs<7 *3> = 2.224599B
Txr<7*3> = 134.224599B

t ime information f o r a c t i v i t y : 5
Txs<7*5> = 134.224599B
Txr<7 *5> = 266.224599B

time information f o r a c t i v i t y : 7
Txs<7*7> = 134.224599B
Txr<7 *7 > = 518.839984B

Activity x l ovcrlaps with x3 and activity x5 overlaps with x7 Thc designer would likc to obtain

some information regarding the storage clements.

13 INTER> s tor s l r s 2 , s 3 used ;

Storage 1 used i n a c t i v i t i e s nowhere
Storage 2 used i n a c t i v i t i e s nowhere
Storage 3 used i n a c t i v i t i e s nowhere

14 INTER> vard

Nonbasic v a r i a b l e s :

The stor tells the designer that none of the storage elemcnts is assigned to an activity output. The

vard command gives information about the inputs of all activities - whether an input comes from a

storage element (6a,c = 1) or directly from an operator (6 , , = 0). This, together with the

information provided by commands 11 and 12, indicates that storage elements have to be assigned

to the output values of activities x3 and xl in order to allow reuse of operatorb by activities x5 and

xp The designer decides to have the second input to activity x5 (i.e., i5 2) come from a storage

element (Gd<7*5,2> = 1). Note that all the Gd<v*a,c> variables are basic. Therefore, there are no

variables displayed after the "Nonbasic variables:" message.
15 INTER> fimrar one Gd<7*5,2> ;

16 INTER, cont 1 ;

At this time, the designer is still trying to obtain information regarding where the inputs of each of

the activities comes from.
17 INTER> vard

Nonbasic variables:

From the new vard information, the designer knows that the second input to activity x7 (i.e., i7,2)

has to come from a storage element (Gd<7*7,2> = I), if operator& is used in both activities x5 and

X7-
18 INTER> fixvar one Gd<7*7,2> ;

It is now time to look at the ordering information between activities.

20 INTER> vara

Nonbasic variables:

The vara command shows that the ordering of activities xl and x3, and of x5 and x7 has not bccn

decided yet. The designer must dccide thc ordcr of activitics xl and x3 sincc thcy both use thc

operator f5. First, the designer rccalls what design dccisions havc bccn madc, to cnsurc that hishcr

prescnt analysis is on the right track.
21 INTER> flist

Then helshe checks the input available time, execution start timc and exccution relcase timc for

activities xl and x3.
22 INTER> time Tia, Txs, Txr x1, x3 ;

time information for activity : 1
Tia<7*l> = 2.224599B
Txs<7*l> = 2.224599B
Txr<7*l> = 134.224599B

time information for activity : 3
Tia<7*3> = 2.224599B
Txs<7 *3> = 2.224599B
Txr<7*3> = 134.224599B

The data-flow diagram (Figure 6-1) shows that inputs to the activitics arc available at thc samc

time. It will make no difference which activity starts first. The designer chooses to havc x3 start

before xl (Ga<7*3,7*1> = 1).

23 INTER> fixvar one Ga<7*3,7*1> ;

24 INTER> cont 1 :

The designer confirms the ordering between activitics xl and x3, and at the samc timc requcsts the

ordering information for activities x5 and x? Then, the designer requests the current values of the

operator mapping variables and the timing information for activities xl, x3, x5 and x7.

25

26

27

The vara

INTER> vara

Nonbasic variables:

Ga<7*2,lI 7*O, 1>=0 Ga<7*2,l, 7*O, 2>=0 Ga<7*4,1,7*0,1>=0
Ga<7*4,1,7*0,2>=0 Ga<7*4,1,7*2,1>=0 Ga<7*6,11 7*O, 1>=0
Ga<7*6,l, 7*2,l>=O Ga<7*6,l, 7*4,1>=0 Ga<7*8,l, 7*O, 2>=0
Ga<7*8,1,7*2,1>=0 Ga<7*8,1,7*4,1>=0 Ga<7*3,7*1>=0

IWTER> vars

Nonbasic variables:

INTER> time Tia,Txs,Txr xl,x3,x5,x7 ;

t h e information for activity : 1
Tia<7*l> = 65.327607B
Txs<7*l> = 65.327607B
Txr<7*l> = 243.121591B

time information for activity : 3
Tia<7*3> = 2.224599B
Txs<7*3> = 2.224599B
Txr<7 *3> = 134.224599B

time information for activity : 5
Tia<7*5> = 174.224599B
Txs<7*5> = 174.224599B
Txr<7 *5> = 306.224599B

time information for activity : 7
Tia<7*7> = 174.2245998
Txs<7*7> = 174.224599B
Txr<7 *7> = 306.224599B

and time commands confirm that activity x3 starts before activity xl. The vars command

indicates that opcrator fg is not fully assigncd to activity xl (Gs<5,7*1> = 0.93), which was

assumed earlier. Knowing this information, the designcr is intcrestcd in where the inputs of thcse

activities comc from.
28 INTER> vard

Nonbasic variables:

The vard command tells the designcr that the inputs to activity xl have not been fixed to comc

from a storagc element or directly from the outside world. Since the propagation delay time for

opcrator f5 is 107 ns., and the output release times of inputs iOnl and i0,2 arc lcss than or equal to

loons., the inputs to activity XI and x3 have to be stored in order to allow their sharing of operator

fS. The designer gathers the information from thc last four commands and makcs threc dccisions.

He/she assigns operator fg to activity xl (Gs<5,7*1> = 1) which was assumcd carlicr. Hclshc

chooses to havc activity x5 start before activity x7 (Ga<7*7,7*5> = 0). (As with x1 and x3, it

doesn't matter which goes first.) And he/shc dccidcs to havc thc second input to activity xl come

from a storage elcment (Gd<7*1,2> = 1).
29 INTER> fimrar one Gs<5,7*1>,Gd<7*1,2> ;

30 INTER> fimrar zero Ga<7*7,7*5> ;

31 INTER> cont 1 ;

3 more partial implementation
2 more partial implementation
1 more partial implementation

In command 31, thc dcsigncr asks DPSIS to continue to thc next subproblcm, but DPSIS displaycd

thc information that thrce subproblems arc solvcd. Thc reason is, the dcsigncr has made threc

decisions and BandBX has to fix the decision variables onc at a timc. Aftcr making these

dccisions, the designer would like to know the information about the opcrator mapping variables

and the timing variables.

76

32 INTER> oper f5 used ;

Operator 5 used in activities I*

33 INTER> vars

Nonbasic variables:

34 INTER> time Txs , Txr x1, x3, x5, x7 ;

time information for activity : 1
Txs<7*l> = 134.224599B
Txr<7*l> = 306.224599B

time information for activity : 3
Txs<7*3> = 2.224599B
Txr<7 *3> = 134.224599B

time information for activity : 5
Txs<7*5> = 306.224599B
Txr<7*5> = 438.224599B

time information for activity : 7
Txs<7*7> = 438.224599B
Txr<7 *7> = 570.224599B

The oper command shows that if there is a complete design for the current partial design then

operator f5 will bc used to implement all the activities that nced an operator. The time command

indicates that the activities no longer overlap. The designer now must decidc where to allocate

storage elements in thc current design.

35 INTER> vard

Nonbasic variables:

36 INTER> stor s l I s 2 , s 3 used ;

Storage 1 used i n act iv i t ies 2
Storage 2 used in act iv i t ies 0
Storage 3 used in act iv i t ies nowhere

Due to the current implementation, the information for storage elemcnt s2 is incompletc. A proper

rcsponse should specify the identity of the external input (the output of activity xo) that s2 is used

for (see Section 5.3.3).
37 INTER> varr

Nonbasic variables:

The vard command shows the dcsigncr that hisher last 3 dccisions havc forccd DPSIS to makc a

decision, that is, the first input value to activity x5 must come from a storagc clemcnt (Gd<7*5,1>

= I* is a monotonic variable). And the stor and varr commands show that no storage clcmcnt is

pcrmancntly assigncd to any activity's output valuc. Sincc thc first inputs of activities x5 and x7 arc

from the same storage clement, the dcsigncr makcs the obvious dccision (Gd<7*7,1> = 1).
38 INTER> fixvar one Gd<7*7,1> ;

39 INTER> cont 1 ;

At this point, the designer continues invcstigating the distribution of storagc elcmcnts in the current

partial design and then their timing information.

40 INTER, stor s l , s2 , s3 exclude ;

Storage 1 excluded in act iv i t ies nowhere
Storage 2 excluded in act iv i t ies nowhere
Storage 3 excluded in act iv i t ies 4-,2

41 INTER> vard

Nonbasic variables:

Gd<7*7,2>=0 Gd<7*7,1>=0 Gd<7*5,2>=0
Gd<7*5,1>=0 Gd<7*l, 2>=0

42 INTER> varr

Nonbasic variables:

Gr<3,7 * 4,1>=0

43 INTER> time x2,x4,x6,x8 ;

time information for activity : 2
Tia<7 *2> = 241.224599B
Tor<7*2,1> = 266.224599B
Tss<7*2,1> = 266.224599B
Tsr<7*2,1> = 570.224599B

time information for activity : 4
Tia<7*4> = 109.224599B
Tor<7*4,1> = 134.224599B
Tss<7*4,1> = 134.224599B
Tsr<7*4,1> = 570.224599B

time information for activity : 6
Tia<7 * 6> = 413.224599B
Tor<7*6,1> = 438.224599B
Tss<7*6,1> = 438.224599B
Tsr<7*6,1> = 900.000000B

time information for activity : 8
Tia<7*8> = 545.224599B
Tor<7*8,1> = 570.224599B
Tss<7*8,1> = 570.224599B
Tsr<7*8,1> = 900.000000B

From the vard command, the designer knows that both inputs to activities x7 and x5 arc from

storage clemcnts. The time command shows that storage start timc (Tss) and storage relcasc timc

(T,,) of activities x2 and x4 are overlapped. At this point, the designer knows that thc two inputs for

activity x7 (and similarly, those for activity x5) have to be storcd in dillcrent storagc clcmcnts, since

the activity needs both inputs to start. Therefore, the designer dccidcs to assign the storage

elements s2 and sl to the output values of activities x2 (Gr<2,7*2, 1> = 1) and x4 (Gr<1 ,7*4,1> = 1)

respectively. After making the decision, the designer asks DPSIS to run 200 subproblcms bcforc

resuming interaction.

44 INTER> fixvar one Gr<2,7*2,1>,G~<1,?*4,1> ;

45 INTER> cont 200 ;

1 more partial implementation
2 more partial implementation

las t partial implementation report

no active subproblem, therefore DPSfS stop.

s ta t i s t i ca l report

% (back t o unix)

Before 200 subproblcms have becn examined, the system stops because thcrc are no alternative

partial designs to cxplore. DPSIS displays a report which gives the statistical information for the

design process. Some of this information will appear in Chapter 7 for comparison purposes. The

sample session above shows how the information displayed by DPSIS's commands could help a

designer to make design decisions for thc CrissX problem.

6.3. Logic Example

Figure 6-3 presents the data flow representation of the algorithm.

The restrictions placed on the implementation an: shown in Figurc 6-4 and the dctails of thc

hardware set are shown in Table 6-2. To ensure satisfactory pcrformance, wc rcquirc that the

period during which the external output oo,, is valid is not less that 100 ns. The pcrformance

requirements are that thc outputs have to bc valid at timc t=500 ns. and rcmain valid until time

t=600 ns. The objectivc of this design problem is to optimisc the cost. Thc proper objectivc

function

Translated into a MILP constraint system, the problem contains 180 constraints involving 11 1

variablcs of which 66 are decision (binary) variablcs.

Figure 6-3: Data flow rcprcsentation for the Logic problem

So.2 = b21 T0A(i0,2) = O
= Is3 1 ToA(io,3) ' O

S2,1 = {s2,s31 F2 = Cfl ,f6 1
S3,1 = (s1,s2,s3] F3 = C f 3 9 f 6)

Ss,l = (sI's3) F5 = Cfi ,f2,f6,f7
S6,1 = (s1,s2,s31 F6 = Cf3*f4*f6*f7
S7,1 = b19s23s31 F7 = Cf5 ,f6 ,f7)
TsS(io,l) = Tss(i0,2) = Tss(i0,3)

Figure 6-4: Restrictions on the implementation of Logic

storage bits %S D s ~ %P

S1 <16> 25 ns. 0 ns. 25 ns.
S2 <16> 25 ns. 0 ns. 25 ns.
S3 c64> 25 ns. 0 ns. 25 ns.

operator bits function D~~

4 c16> - OR
f2 <16> OR
f3 <16> AND
5 c16> AND
f5 c16> ALU
f6 <16> ALU

22 ns.
22 ns.
20 ns.
20 ns.
48 ns.
48 ns.

Table 6-2: Hardwarc elements for Logic implementation

cost

cost

We now discuss a sample session for thc Logic problem. This sample shows the uscfulncss of

DPSIS in a different aspect than the CrissX sample. This time, the dcsigncr participates in

selecting an alternative design when the current design is fathomcd duc to bounds, integrality or

infeasibility.

We begin when BandBX has just finished solving the first relaxation problem, when no decision

variable has been fixcd. To begin with, the designcr requcsts the currcnt values of the information

about operator mapping variables:

1 INTER> vars

N o n b a s i c variables:

The vars command tells the designer that the current partial design uses f6 to irnplcment activity x2

(Gs<6,7*2> = I), but that none of the other activities have been assigncd an operator. Since activity

x3 is data-dependent on activity x2, the designer knows that operator fG can be rcused in activity x3

(Gs<6,7*3> = I), which will lcad to a cheaper design.
2 INTER> fixvar one Gs<6 ,7*3> ;

3 INTER> cont 1 ;

1 m o r e partial implementation

The designer rcqucsts the current values of the operator mapping variables and where operator f6 is

available.

4 INTER, oper f 6 avail ;

Operator 6 available i n activities 7 , 6 , 5 - , 3*, 2

5 INTER> vars

N o n b a s i c variables:

The designer knows that activity x3 is data-dcpendent on activity x2 and activity x7 is data-

dependent on activity x3. Since operator fG is sure to be used to implcmcnt activity x3, thc dcsigncr

decides to assign operator f6 to activities x2 (Gs<6,7*2> = 1) and x7 (Gs<6,7*7> = 1) as well.

6 INTER> fixvar one Gs<6,7*2>,Gs<6,7*7> ;

7 INTER> cont 1 ;

2 more partial implementation
1 more partial implementation

Next, the designer has in mind to decide the ordering between activities x3 and x5.
8 INTER> vara

Nonbasic variables:

9 INTER, vars

Nonbasic variables:

The vara command tells the dcsigner that the ordering of x3 and x5 is not decided yet

(Ga<7*5,7*3> = 0.27). The vars command confirms that operator f6 will be used in activities x2,

x3, and x7 if a complete design exists from the current design. If activities x2 and x5 use different

operators, then activity x5 most probably will start before activity x3. If activities x2 and x5 sharc

operator f6 then either activity can start first. So thc dcsigner decides to have activity x5 start bcfore

activity x3 (Ga<7*5,7*3> = 1).
10 INTER> fixvar one Ga<7*5,7*3> ;

There are forced decision (monotonic variables)

This message means that there are decisions which have to be made by DPSIS, so the designcr lcts

DPSIS proceed.

11 INTER> cont 1 ;

1 more partial implementation

The designer is interested in knowing what decision thc system has just made, and also whether the

ordering between activities x3 and x5 has changed.
12 INTER> flist

Gs<6,7*7>=1 Gs<6,7*3>=1 Gs<6,7*2>=1
Gd<7*3,2>=1

13 INTER> vara

Ga<7*5,7*2>=0.10B Ga<7*5,7*3>=0.27B Ga<7*6,7*3>=0.04B

Nonbasic variables:

The flist command shows that the forced decision was to have the second input to activity x3 come

from a storage element (Gd<7*3,2> = 1). Thc vara command shows that ihe ordering information

has not changed, so the designer goes ahead with his/hcr previous decision to have activity x j start

before activity x3 (Ga<7*5,7*3> = 1).
14 INTER> fixvar one Ga<7*5,7*3> ;

15 INTER> cont 1 ;

1 more partial implementation

The designer looks at the ordering information and the distribution of operators fi, f2? f6 and f7 in

the design.

f 6 INTER> vara

Nonbasic variables:

17 INTER> oper flIf2,f6,f7 used ;

Operator 1 used in activities nowhere
Operator 2 used in activities nowhere
Operator 6 used in activities 7*,6,3*,2*
Operator 7 used in activities nowhere

18 INTER, vars

Gs<1,7*2>=0.00B Gs<l17*5>=0.00B Gs<3,7*3>=0.00B
Gs<3,7*6>=0. OOB Gs<6,7*2>=1* Gs<6,7*3>=1*
Gs<6,7*6>=1. OOB Gs<6,7*7>=1* Gs<7,7*7>=0.OOB

Nonbasic variables:

The designer dccides to havc activity x5 start beforc activity x2 (Ga<7*5,7*2> = I), because helshc

wants to know what the effect will be on thc operator mapping variables. Then hclshe checks thc

timing information for these activitics.
19 INTER> fimrar one Ga<7*5,7*2> ;

1 more partial implementation

21 INTER> vars

Nonbasic variables:

22 INTER> time TXS, Txr x2, x5 ;

time information for activity : 2
Txs<~ *2> = 0.000000B
Txr<7*2> = 73.000000B

time information for activity : 5
Txs<7*5> = 0.0OOOOOB
Txr<7*5> = 65.564738B

The vars command shows that activity x5 has not been assigned an operator yet (Gs<6,7*5>=0.91

and Gs<1,7*5>=0.09). The time command shows that the execution interval of x2 and x5 still

overlap. At this point, the designer wants to know what the effect will be if instead, activity x2

starts befon: activity xg. So helshe abandons the current partial design temporarily and selects the

partial design that has activity x2 start before activity x5 (Gac7*5,7*2> = 0).

23 INTER> subpro range 4,s ;

Number = 4 Current Bound = -26.452857
Node # = 5 Variable Ga<7*5,7*3> to be fixed = 0
Variables fixed information in order :
Gd<7*3,2> = Ic Gs<6,7*2> = lr Gs<6,7*7> = Ir
Gs<6,7*3> = lr
Number = 5 Current Bound = -26.452857
Node # = 6 Variable Ga<7*5,7*2> to be fixed = 0
Variables fixed information in order:
Ga<7*5,7*3> = lr Gd<7*3,2> = lc Gs<6,7*2> = Ir
Gs<6,7*7> = lr Gs<6,7*3> = Ir

From the subpro command the designer knows that helshe wants to retrieve partial design number

5 to continue.

24 INTER> select 5 ;

1 more part ial implementation

25 INTER> flist

The flist command confirms that the designcr chose the right partial design (Ga<7*5,7*2>=0). At

this stage heishe wants to look at the distribution of the operators and the operator mapping

variables again.

26 INTER> oper f l , f 2 , f 6 , f 7 a v a i l ;

Opera tor 1 a v a i l a b l e i n a c t i v i t i e s 5 , 2
Opera tor 2 a v a i l a b l e i n a c t i v i t i e s 5-
Operator 6 a v a i l a b l e i n a c t i v i t i e s 7*,6,5,3*,2*
Operator 7 a v a i l a b l e i n a c t i v i t i e s 7,6-, 5-

27 INTER> v a r s

Gs<1,7*2>=0.00B Gs<1,7*5>=0,02B Gs<3,7*3>=0.008
Gs<3,7*6>=0. OOB Gs<6,7*2>=1* Gs<6,7*3>=1*
Gs<6,7*5>=0.98B Gs<6,7*6>=1.0OB Gs<6,7*7>=1*
Gs<7,7*7>=0.00B

Nonbasic v a r i a b l e s :

From commands 18,21 and 27, the dcsigncr sccs that the value 01 @s<1,7*5> changcd from 0 to

0.09 and 0.02, when hc/she tried to ordcr activitics x2 and x5. Thcrc is still no opcrator assigned to

activity x5, and the designcr notices that hclshc could share opcrator f6 with x5 (Gs<6,7*5> = I),

which decision might minimise cost.

28 INTER> fixvar one Gs<6,7*5> ;

29 INTER> con t 1 ;

1 m o r e p a r t i a l implementation

At this point, the dcsigncr hopcs that the previous decisions will be a good start for a solution, so

he/she decides to have DPSIS continue solving the design and only participate when a design is

fathomed.
30 INTER> setfat on ;

The setfat command allows the designer to interact again when the current design s fathomed.
31 INTER> cont 50 ;

50 more partial irqlementation
49 amre partial implementation

SUBPROBLEX FATHOMED DUE TO INFEASIBILITY

** Enter Interaction System Due to Fathom **

At this stage the designer wants to select another subproblem to continue.
32 INTER> subpro random 6,8 ;

Number = 6 Current Bound = -26.452857
Node # = 8 Variable Gs<6,7*5> to be fixed
Variables fixed information in order :
Ga<7*5,7*2> = 01 Ga<7*5,7*3> = lr Gd<7*3,2> =
Gs<6,7*2> = Ir Gs<6,7*7> = lr Gs<6,7*3> =
Number = 8 Current Bound = -27.200861
Node # = 10 Variable Gd<7*-l,l> to be fixed = 1
Variables fixed information in order :
Gr<1,7*5,1> = Or Gs<6,7*5> = 1r Ga<7*5,7*2> = 01
Ga<7*5,7*3> = 1r Gd<7*3,2> = lc Gs<6,7*2> = lr
GS<6,7*7> = lr Gs<6,7*3> = lr

The designer decides not to choose subproblem number 6, because the next decision to be made is

not assigning operator f6 to activity xs (Gs<6,7*5> = 1). The designer wants f6 to be used in

activities xs and x2. AS for subproblem number 8, he/she does not like the idca that the output

value of the problem comes from a storage element. The designer goes on looking for a

subproblem to continue with.

INTER> subpro range 4 , s ;

Number = 4 Current Bound = -26.452857
N o d e # = 5 Var iable Ga<7*5,7*3> t o be f i x e d = 0
V a r i a b l e s f i x e d information i n o r d e r :
Gd<7*3,2> = l c Gs<6,7*2> = 1r Gs<6,7*7> = l r
Gs<6,7*3> = l r

Number = 5 Current Bound = -26.732685
N o d e # = 7 Var iab le t o be f i x e d = none
Var i ab les f i x e d information i n o r d e r :
Ga<7*5,7*2> = 1r Ga<7*5,7*3> = lr Gd<7*3,2> = 1c
Gs<6,7*2> = 1r Gs<6,7*7> = lr Gs<6,7*3> = l r

The designer decides not to choose subproblem number 4, because the next decision to be made is

to have activity x3 Start before activity x5. Finally, the designer decides on subproblem number 5

since the previous design decisions (variables fixed) show that it is a feasible choice.
34 INTER> select 5 ;

35 INTER> cont 50 ;

50 more p a r t i a l implementation
49 more p a r t i a l implementation

30 more p a r t i a l implementation

SUBPROBLEM FATHOMED DUE TO INFEASIBILITY

** Ente r I n t e r a c t i o n System Due t o Fathom **

At this stage, the designer looks at the active subproblems again to select another subproblem to

continue with.
INTER> subpro range 5 , 6 ;

Number = 5 Current Bound = -26.452857
Node # = 8 V a r i a b l e Gs<6,7*5> t o be f i x e d = 0
Var iab les f i x e d information i n o r d e r :
Ga<7*5,7*2> = 0 1 Ga<7*5,7*3> = 1r Gd<7*3,2> = l c
Gs<6,7*2> = l r G8<6,7*7> = lr Gs<6,7*3> = lr

Number = 6 Current Bound = -27.12497
Node # = 9 Variable Gr<1,7*5,1> to be fixed = 1
Variables fixed information in order :
Gs<6,7*5> = 1r Ga<7*5,7*2> = 01 Ga<7*5,7*3> = 1r
Gd<7*3,2> = lc Gs<6,7*2> = 1r Gs<6,7*7> = 1r
Gs<6,7*3> = lr

The designer does not choose subproblem number 5 because in it, activity x5 excludes operator f6,

while helshe wants x5 to share f6 with other activities. As for subproblem number 6, the operator f6

is shared among activities XZ, x3, x5 and x7, and the next decision will be to assign storage element

sl to the output value of activity xg. This seems reasonable since the output value of activity x5

must have a storage element in order to share operator f6, so the designer selects subproblem

number 6.
37 INTER> select 6 :

1 more partial implementation

After this point, the designer decides not to participate in selecting a subproblem, if a subproblem is

fathomed.
38 INTER> setfat off ;

39 INTER> cont 150 ;

150 more partial implementation
149 more partial implementation

141 more partial implementation

SUBPROBLEM FATHOMED DUE TO INFEASIBILITY

140 more partial implementation

1 more partial implementation

After solving 9 subproblems the selected subproblem was fathomed, but by turning off the

interaction switch in command 38, the designer let DPSIS to do the rest of the design, rather than

resuming interaction.

4 0 INTER > cont 3 0 0 ;

SUBPROBLEM FATHOMeD DUE TO BOUNDS,
TEST=-40.48092 BEST=-40.36000

1 m o r e partial implementation

last partial i m p l e m e n t a t i o n report

no active s u b p r o b l e m , therefore DPSIS stop

statistical report

% (b a c k t o u n i x)

The sample session above shows how the information displayed by DPSIS could help designer to

participate in selecting an alternative design. Parts of the statistical report will be used in Section

6.4. Power Example

Figure 6-3 presents the data flow representation of the algorithm.

The restrictions placed on the implementation are show in Figure 6-6 and the details of the

hardware set are shown in Table 6-3. The performance requirements are that the outputs have to be

valid at time t=500 ns. and remain valid until time t=600 ns. The objective of this design problem

Translated into a MILP constraint system, the problem contains 201 constraints involving 138
- variables, of which 77 are decision (binary) variables.

We now discuss a sample session for the Power problem. This sample shows how DPSIS can

guide the designer to the first integer solution. To begin with, the designer requests the current

values of the operator mapping variables:

Figure 6-5: Data flow representation for the Power problem

storage

operator

bits

20 ns.
20 ns.
20 ns.
20 ns.
20 ns.
10 ns.
10 ns.
10 ns.
10 ns.
10 ns.

5 ns.
5 ns.
5 ns.
5 ns.
5 ns.
5 ns.
5 ns.
5 ns.
5 ns.
5 ns.

27 ns.
27 ns.
27 ns.
27 ns.
27 ns.
17 ns.
17 ns.
17 ns.
17 ns.
17 ns.

bits function D~~

173 ns.
173 ns.
173 ns.
73 ns.
73 ns.

180 ns.
180 ns.
90 ns.
90 ns.

cost

Table 6-3: Hardware elements for Power implementation

1 INTER> vars

Nonbasic variables:

Currently, activities x2 and x5 are using operator fJ (Gsc1,9*2> = Gs<1,9*5> = 1). The designer

decides to have them share operatorf] with activity
2 INTER> fixvar one Gs<1,9*10> ;

3 INTER> cont 1 ;

The designer requests the values of the operator mapping variables again.
4 INTER> vars

Nonbasic variables:

The vars command shows that the designer's previous decision changed the assignment of operator

fi to activity x2 (i.e., the vaIue of Gsc1,9*2> changed from 1 to 0.99). The designer decides to

make sure that the operatorfi will be used to implement activity x2 if there is a complete design for

the current subproblem.
5 INTER> f ixvar one Gs<l, 9*2> ;

The designer tries to find out more information regarding the distribution of operators and the

values of the operator mapping variables.

7 INTE;R> oper f l I f 6 , f 8 , f 7 , f 9 used ;

Operator 1 used i n a c t i v i t i e s 10*,5,2*
Operator 6 used i n a c t i v i t i e s 8 , 3
Operator 8 used i n a c t i v i t i e s nowhere
Operator 7 used i n a c t i v i t i e s nowhere
Operator 9 used i n a c t i v i t i e s nowhere

8 INTER> v a r s

Gs<6,9*3=1. OOB Gs<6,9*8>=1. OOB Gs<8,9*3>=0. OOB
Gs<1,9*2>=1* Gs<II9*5>=1.00B Gs<1,9*10>=1*
Gs<2,9*10>=0.00B Gs<4,9*2>=0.00B

Nonbasic v a r i a b l e s :

The designer learns that operator fl is used in activities xlo, x5 and x2. Operator f6 is used in

activities xg and x3. At this point the designer wants to know information about the inputs to each

activity.
9 INTER> v a r d

Manbasic v a r i a b l e s :

The vard command shows that the first input to activity x3 (Gd<9*3,1> = 0.27) and the second

output value of the problem (Gdc9*-1,2> = 0.28) have not been fixed to come from a storage

element or an operator. From the information given by command 7, the designer knows that these

two values have to come from storage elements (Gd<9*3,1> = Gd<9*-1,2> = 1) in order to use

operators fi and f6 respectively.

10 INTER> fixvar one Gd<9*-1,2>, Gd<9*3,1> ;

11 INTER> cont 1 :

2 mare partial implementation
1 mare partial implementation

The designer wants to look at the input information for the activities again and the ordering

information between activities.
12 INTER> vard

Nonbasic variables:

Gd<9*-1,2>=0 Gd<9*5,2>=0 Gd<9*8,2>=0
Gd<9*8,1>=0 Gd<9*3,1>=0 Gd<9*3,2>=0
Gd<9*10f P>=O Gd<9*1,1*0 Gd<9*2,1>=0
Gd<9*4,1>=0

13 INTER> vara

Nonbasic variables:

The vard command shows that the first (Gd<9*-1,1> = 0.15) and third (Gd<9*-1,3> = 0.28) output

values are not accessed from a storage element. The vara command shows that the order of activity

xlo with with respect to activities x2 and x5 is not decided yet. Before making the next decision, the

designer needs to recall the decisions that have been made and the information regarding the

execution start time (T,) and execution release time (T,,) of activities x2, x5 and xlo.

1 4 INTER> f l ist

15 INTER> t i m e T x s , T x r x 2 , x 5 , x 1 0 ;

t i m a i n f o r m a t i o n for a c t i v i t y : 2
Txs<9*2> = 0.000000B
Txr<9*2> = 198.000000B

time informat: ion for a c t i v i t y : 5
Txs<9*5> = 400.000000B
Txr<9*5> = 598.000000B

t ime i n f o r m a t i o n for a c t i v i t y : 1 0
Txs<9*lO> = 0.00000OB
Txr<9*10> = 502.000000B

1 6 INTER> vars

N o n b a s i c variables:

The vars command shows that currently operator fi is shared among activities x2, x5 and xlo. From

command 15, the designer decides that activity x2 will start before activity xlo (Ga<9*10,9*2> =

O), and xlo will start before x~ (Ga<9*10,9*5> = 1). Because of this ordering assumption, the third

output value might need a storage element to store it (Gd<9*- 1,3> = 1).
1 7 INTER> fixvar o n e Ga<9*10,9*5>, Gd<9*-1,3> ;

1 8 INTER> fixvar zero Ga<9*10,9*2> ;

1 9 INTER> c o n t 1 ;

3 more partial i m p l e m e n t a t i o n
2 more part ial i m p l e m e n t a t i o n
1 more palrtial irrq?lementation

The designer is interested in looking at the operator mapping information and ordering information.

INTER> vars

Nonbasic variables:

Gs<3,9*5>=0 Gs<7,9* 8>=0 Gs<8,9*3>=0
Gs<9,9*8>=0 Gs<lI 9*2>=0 G~<1~9*10>=0
Gs<4,9*5>=0 Gs<4,9*10>=0 Gs<5,9*5>=0
Gs<5,9*10>=0

INTER, vara

Nonbasic variables:

Bcfore making thc ncxt decision, thc designer wants to find out timing information for somc of the

activities.
22 INTER> time Txs,Txr x2,x3,,x5,x8,x10 ;

time information for activity : 2
Txs<9*2> = 0.000000B
Txr<9*2> = 188.000000B

t h e information for activity : 3
Txs<9*3> = 200.000000B
Txr<9*3> = 695.000000B

time information for activity : 5
Txs<9*5> = 380.192857B
Txr<9*5> = 700.000000B

time information for activity : 8
Txs<9*8> = 0.OOOOOOB
Txr<9*8> = 205.000000B

time information for activity : 10
Txs<9*10> = 188.000000B
Txr<9*10> = 386.000000B

The last three dccisions have caused a change in the assignment of operator fi to activity x5 (from

1.00 to 0.99). The designer decides to make sure that it is used there (Gs<1,9*5> = 1). From the

timing information the designer decides to have activity x8 start before activity x3 (Ga<9*8,9*3> =

23 INTER, fixvar one Gsd, 9*5>, Ga<9*8,9*3> ;

24 INTER, cont 1 ;

2 more partial implementation
1 more partial implementation

At this point the designer wants to look at the component mapping information.
25 INTER> vars

Nonbasic variables:

Gr<1,9*0,1>=0.00B Gr<2,9*0,2>=0.00B Gr<2,9*2,1>=0.60B
Gr<2,9*3,1>=0.00B Gr<2,9*6,1>=0.00B Gr<4,9*0,4>=0.00B
Gr<6,9*0,1>=0.00B Gr<7,9*2,1>=0.40B Gr<5,9*0,5>=0. OOB
Gr<5,9*9,1>=1.00B Gr<10,9*9,1>=0.00B Gr<3, 9*O, 3>=O. 00B
Gr<3,9*11,1>=1.00B ~r48,9*11,1>=O. 00B

Nonbasic variables:

The designer has in mind to assign a storage element to the output value of activity x2. The varr

command shows that the output value of activity x2 can be stored in storage clcments s2 and s7.

Since s2 is cheaper than s7, the designer decides to use s2 to store the value.

27 INTER> 'fixvar one Gr<2,9*2,1> ;

28 INTER> cont 1 ;

At this point, the designer wants to examine the values of all decision variables.
29 INTER> vars

Gs<6,9*3>=1. OOB Gs<6,9*8>=1. OOB Gs<€i19*8>=0.00B
Gs<1,9*2>=1* Gs<1, 9*5>=1* Gs<1, 9*10>=1*
Gs<2,9*5>=0.00B Gs<2,9*10>=0.00B Gs<4,8*2>=0.00B

Nonbasic variables:

Gs<3,9*5>=0 Gs<6,9*8>=0 Gs<7,9*8>=0
Gs<9,9*8>=0 Gsd, 9*2>=0 Gs<1,9*5>=0
G s < ~ , 9*10>=0 Gs<4,9*5>=0 Gs<4,9*10>=0
Gs<5,9*5>=0 Gs<5,9*10>=0

30 IN!CER> varr

Nonbasic variables:

31 INTER> vara

Monbasic variables:

32 INTER> vard

Gd<9*-1,3>=1* Gd<9*-1,2>=1* Gd<9*3,1>=1*

Nonbasic variables:

33 INTER> varb

Noaasic variables:

34 INTER> varc

Nonbasic variables:

From the varr command the designer knows that storage elements sl, s3, and s5 are used in the

current design. The designer then decides to have decision variables Gc<3>, Gc<2> and Gc<5>

fixed to one.

36 INTER> fixvar one Gc<2>,Gc<3>,Gc<5> ;

37 INTER> cont 1 ;

1 more partial implementation

SWPROBLEM FATHOMED IN INTGTR,
CUIPBIND = -47.03417 BEST = -47.03417

After obtaining the first complete design the designer lets DPSIS do the rest of the design.

36 INTER> cont 200 ;

200 more partial inqplementation

138 more partial implementation

SU%3PROBLEM FATBOMED DUE TO INFEASfBLLITY

las t partial implementation report

no active subproblem, therefore DPSES stop.

s ta t i s t i ca l reports

% (back t o unix)

This sample session shows that the designer can use the information provided by DPSIS to guide

BandBX to the first integer solution. Some of the information in the statistical report will be used

for discussion in section 7.2.

Chapter 7

Observations an

/

This chapter charactefises DPSIS as described in the previous chapters and summarises the work

done in this research.

7.1. Observations

In the previous chapter, we evaluated DPSIS using three examples. The CrissX example shows

how DPSIS can help the designer make an initial set of trivial decisions. With this start, the

designer hopes that BandBX will find a good integer solution earlier and start fathoming

subproblems earlier. The Logic example shows how DPSIS allows the designer to select a

subproblem from among the active subproblems. With designer involvement, some unprofitable

subproblems may be identified earlier. These subproblems can be abandoned either temporarily or

permanently. The Power example shows how the information provided by DPSIIS's commands can

help the designer to obtain an initial good complete design.

The example sessions reveal that DPSIS can translate information in a partial solution tableau

(produced while solving the MILP problem) from its original mathematical formulation into a form

which can be understood by a digital hardware designer, who can then use it to make design

decisions.

As mentioned in the last chapter, we are going to use three pieces of information from the

statistics report generated by BandBX.

Table 7-1 summarises the statistics for the three problems when using DPSIS during the design

process. Table 7-2 shows the same set of statistics when DPSIS was not used. The first column of

the tables is the number of subproblems needed to explore all the alternative designs. The second

column is the number of simplex pivots needed to explore all the alternative subproblems. The

third column is the number of the first subproblem that gives the optimal solution.

Number of Number of Optimal Value
Subproblems Pivots at Subproblem

CrissX I 156

Logic 507

Pow 122 5308 12

Table 7-1: Design with DPSIS guide

Number of Number of Optimal Value
Subproblems Pivots at Subproblem

CrissX 274 6165

Logic no solution no solution no solution

Pow 472 17507 397

Table 7-2: Design with no guide

The Logic example in Table 7-2 does not have any statistical report. The reason is that, when

BandBX ran this problem, it stopped at one of the subproblems due to round-off error. This

indicates that a set of decision variables fixed in a particular order may lead a problem into round-

off error. When the problem ran using DPSIS, the designer fixed certain decision variables. This

resulted in an initial set of decisions that did not lead the problem into round-off error.

With these three examples, the number of subproblems needed to explore all the alternative

subproblems using the branch-and-bound technique is less using DPSIS than not using it.

The third column of the two tables shows that the initial set of decisions made by the designer

leads to an earlier optimal solution. With an earlier optimal solution, the designer can hope that

more problems will be fathomed due to bounds.

Note that the results are not always this way. Since DPSIS is a man-machine interface and

humans can make poor decisions, the problems will sometimes run worse when using DPSIS.

7.3. Further Research
/

We have implemented a list of basic commands that allow users to interact with the design

process. There are many other commands that can be added. In the following, we list a few useful

commands that can be implemented in the future to provide more facilities for the users.

A command to list out all the decision variables that are not fixed (basic and non-

basic). This will give the designer a complete picture of what decisions he still has to

make.

A command that obtains the greatest or smallest bound change between two

subproblems and examines the decision made. This will help the designer to identify

the significance of the decision.

A command that looks at all the active subproblems which have a certain decision

pattern along the path vj to vo. This will help the designer group subproblems that

he/she feels would produce a good design or bad design.

A command for removing active subproblems from the branch-and-bound tree so that

they will not be searched in the future. For example, if the designer is content with the

objective range, then hefshe may use the command to delete some subproblems.

A command that undoes the previous command. This gives the designer the option of

testing variables. Also, thc designer might make a wrong decision that causes the

infeasibility of a subproblem, and the undo command will help him to remove the

decision and redecide.

A command to fix variables that are trivial to the designer. At a certain stage of the

design, the designer might wish to f i x an obvious value without having BandBX create

another branch.

107

The last three commands can be combined in a more general form. At any stage of the design

process the designer should be able to disable or enable the exploration of certain portions of the

branch-and-bound tree. With this feature the designer would be able to abandon a subtree

temporarily or permnnently if helshe feels the previous decisions might lead to a poor design.

References

1. Barbacci, M., Bames, G., Cattell, R., Siewiorek, D. The Symbolic Manipulation of Computer
Descriptions ; The ISPS Computer Description Language. Dept. of Computer Science, Camegie-
Mellon University, Pittsburgh, Pa.,March, 1978.

2. Satoshi Goto. Automatic Data Path Synthesis. In Design Methodologies, North-Holland, New
York, N.Y., 1985, Chap. 13, pp. 401-439.

3. Hafer, L. Automated Data-Memory Synthesis : A Formal Method for the Specification,
Analysis, and Design of Register-Transfer Level Digital Logic. Ph.D. Th., Dept. of Electrical
Engineering, Camegie-Mellon University, Pittsburgh, Pa., May 1981. Also available from the
Design Research Center, Carnegie-Mellon University, as Technical Report DRC-02-05-81.

4. Hafer, L., Parker, A. "A Formal Method for the Specification, Analysis, and Design of
Register-Transfer Level Digital Logic". IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems CAD-2, 1 (January 1983)' 4- 18.

5. Hafer, L. IDDMA User's Manual. Simon Fraser University, Burnaby, B.C., 1987.

6. Hafer, L. Logic Synthesis by Mixed-Integer Linear Programming. Dept. of Computer Science,
Simon Fraser University, Bumaby, B.C.,May, 1988.

7. Martin, C. LIPPRO: A Linear Prqpmming Code for Experiments in Mathematical
Programming. Industrial and Systems Engineering Dept., Ohio State University, 1977.

8. Martin, C. BANDBX: An Enumeration Code for Pure and Mixed Zero-One Programming
Problems. Industrial and Systems Engineering Dept., Ohio State University, 1978.

9. McFarland, M. The Value Trace: A Data Base for Automated Digital Design. Master Th.,
Dept. of Electrical Engineering, Camegie-Mellon University, Pittsburgh, Pa.,December 1978.

10. Shiv Prakash. Guiding I4csign Decisions in RT-level Logic Synthesis. Master Th., School of
Computing Science, Simon Fraser University, Bumaby, BC.,March 1987.

11. Snow, E. Automation of Module Set Independent Register Transfer Level Design. Ph.D. Th.,
Dept. of Electrical Engineering, Carnegie-Mellon University, Pittsburgh, Pa., April 1978.

12. Snow, E., Siewiorek, D., Thomas, D. A Technology-Relative Computer Aided Design
System: Abstract Representations, Transformations, and Design Tradeoffs. Design Automation
Conference Proceedings no. 15, ACM SIGDA, IEEE Computer Society-DATC, June, 1978, pP.
220-226.

13. Wuyi Wu. Heuristic Bounds for Automated Logic Synthesis. Master Th., School of
Computing Science, Simon Fraser University, Bumaby, BC.,January 1987.

