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Abstract 

Animating human figures is one of the most challenging tasks in the field of computer graphics. 

The complexity of articulated bodies makes the integration of movement between the various joints 

a difficult problem. Ideally, a human animation system should provide the animator with high- 

level control, while still producing life-like movements. Animated actors are more believable if 

they display subtle gestures, or secondary movement, consistent with the characters they portray. 

Animators should not be encumbered with having to specify these detailed movements while they 

assign high level tasks to actors, such as walking or grasping an object. 

In this thesis, an ideal framework for an animation system is described in which animators specify 

goals for actors, and these goals are executed with varying styles depending on the actor's 

character. A component of this framework has been implemented to demonstrate how secondary 

movement can be generated from a high-level specification. In this system, gesture specification 

functions capture information on how to execute gestures in a natural way. A graph is used as an 

underlying representation of movements. Using this representation, gestures can be interrupted and 

continued by other gestures at any time. The actors in the system are each given the goal of 

walking. This goal will be attained by the actors in a wide variety of styles depending on the 

personality and moods assigned to them. Animators can thus obtain appropriate secondary 

movement while focusing on primary goals for their actors. 
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Chapter 1 

Introduction 

As computer graphics becomes an increasingly popular tool for creating animations1, ways must 

be found to increase the animator's productivity by making these tools more flexible and easier to 

use. Commercial animation systems, available from companies such as Cubicomp [Cubicomp 1, 

Wavefront [Wavefront 1, or Alias [Alias 1, guide the animator from the conception of an animation, 

through object modelling, motion specification and rendering to final production. However, 

motion specification in all of these systems is based largely on keyframing, which is often tedious. 

In particular, keyframing motion of an articulated body often results in awkward, unrealistic 

movement. Recently several methods have emerged which allow human motion to be specified at 

a high level, and which produce realistic movement by giving animators control over the resulting 

movement without encumbering them with low-level details. This thesis will examine a method 

for obtaining secondary movement through a high-level specification. 

1.1. Background 

The task of making a computer animation is simplest if the objects to bc animated are rigid. As 

the number of articulations in the object incieases, the complexity of animating the object also 

increases. Furthermore, if the links between joints are flexible, such as those in a worm, then 

producing natural movement is even more complicated [Miller 881. 

Articulated bodies can be modelled as a hierarchy of links connected at rotational joints, each 

with three degrees of freedom [Zeltzer 82a, Calvert 881. A model of the human body can have over 

200 degrees of freedom [McGhee 761 making control of all of these parameters over time an 

'words or phrases used in this thesis which may not be considered standard terminology in the field of computing 
science can be found in the Glossary in appendix A 
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enormous task. Thus presenting animators with the task of specifying keyframes does not seem to 

be an appropriate way for them to specify human motion. A program which takes the animator's 

high-level specifications and automatically generates the keyframes would be more appropriate. 

A popular approach to animating articulated bodies has been to consider the dynamics of the body 

after applying forces and torques. This produces very realistic motion since the bodies obey the 

laws of physics when they move. Many successful animations have been produced where at least 

part of the movement is specified dynamically [Girard 85, Wilhelms 87, Bruderlin 881. The 

drawback of this method is that the animator will normally have to describe motion by specifying 

the numerical values of the forces applied to different limbs. This is not at all intuitive, and so the 

appropriate numbers can only be attained by much trial and error. 

Other approaches to animation have concentrated on developing a motion control language, or in 

general some sort of high-level interface for the user. Lower level control parameters for the 

movement algorithms are computed based on the user interaction at the higher level. From this 

idea stemmed goal-directed animation systems in which the user specifies a goal and the computer 

determines how to achieve that goal [Csuri 81, Drewery 86, Korein 82al. These systems often 

determine how to accomplish a goal by consulting a knowledge base. A knowledge base contains 

specific structured information about a problem encoded in such a way as to be readable, 

understandable and easily modifiable. This knowledge is usually entered into the knowledge base 

P 
and maintained by a knowledge engineer, whose role is to incorporate expertise about a domain 

into a system which uses this expertise for a particular purpose. In an animation system, 

knowledge engineers need not be familiar with computer graphics: they only need to understand 

the language in which the knowledge base encodes its expertise. The expertise, when applied to 

solving goal-directed movement generation, will ensure the production of realistic movement. 

Knowledge bases have been successfully used in goal-directed animation systems [Zeltzer 831. 

The animator communicates with the system through a high-level goal-oriented language. Because 

knowledge about how to accomplish these goals is embedded in the knowledge base, the level of 

knowledge required by the user is reduced. 
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Goal-directed systems have been successful in animating the achievement of primary goals 

specified by the user. However very little work has been done on applying these types of systems 

to character animation, in which actors' motion can be identified as certain character types. This 

thesis presents a method for individualizing actors' movements by providing the animator with a 

high-level animation system. 

1.2. Proposed Work 

Primary movement can be defined as the minimum movement required of a person to accomplish 

a predetermined task. In contrast to this, secondary movement is the collection of gestures a person 

carries out, largely sub-consciously. These gestures are consistent with the personality of that 

person and the moods he or she feels at a given time. Examples of secondary movement are 

lowering or scratching one's head, or brushing hair out of the eyes. Existing goal-directed systems 

are generally concerned with executing primary movement - simulating movement that will satisfy 

an actor's objectives. Secondary movement tends to be ignored, although if included it would 

make an actor's movements more realistic. 

This thesis, addresses the simulation of the subtle types of movement that people display while 

achieving their primary objectives. The approach used is to embed algorithms that produce 

secondary movement in the system, relieving the animator from having to specify it. The 

justification for this method is that an animator would like to concentrate on the overall movement 

a 
of an actor, but would still desire the small gestures that make the actor's motion more believable. 

In the field of psychology, secondary movement is best equated with kinesics. Duncan and 

Fiske [Duncan 771 classify kinesics as one of the seven categories of communication in face-to- 

face interaction. The other six are paralanguage (the speed of utterances, and the number of pauses 

or interjections such as 'um' or 'er'), proxemics (the social and personal space), scent, haptics 

(body contact between people), use of artifacts such as a pipe or kleenex, and of course the main 

mode of communication, language. Psychologists have adopted a notation for recording these 

many forms of communication and have correlated this to character traits [Bull 83, Duncan 

77, Scheflen 72, Birdwhistell 701. The results of these studies provide a suitable basis for deciding 

what secondary movement to attribute to the different actors in an animation system. 



Introduction 4 

Using previous work on human animation, and drawing knowledge from fields such as 

psychology, kinesiology, robotics and physics, an ideal framework for human animation could be 

created. Such a system would include a high-level user-interface where the animator defines 

characters, and specifies goal-directed movements for the actors. The resulting movement would 

be life-like. An expert system could apply knowledge from the field of robotics about path 

planning and manoeuvring in a constrained environment to solve for the movements required to 

accomplish goals specified by the animator. Expertise from psychology would be used to 

determine the secondary movement. Depending on the types of movement, different methods 

could be used for generating the movement. 

The system, GESTURE, implements a portion of this ideal animation system. It has two actors, 

Simon and Sally, whose sole primary goal is to walk past each other as if they were passing on the 

street. The user can define the actors' personalities, such as how extroverted or introverted each 

actor is, and moods, such as the degree of boredom each actor feels. A mock expert system applies 

a set of rules to the values selected for the actors' personalities and moods and decides on the 

secondary movement. A high-level specification for these movements is defined, and from this 

description, an animation of the two actors is produced. 

There are two primary objectives of this thesis. The first is to introduce a new type of movement 

to human animation, namely secondary movement, which will make the animated actors more 

believable. The second goal is to demonstrate that this type of movement can be incorporated into 

actors' movements with very little interaction required from the animator. These two objectives 

are met in the implementation of GESTURE as will be described in this thesis. 

1.3. Motivation 

At the time when hand-drawn pictures were the only way to create an animation, finding 

techniques for obtaining realism was an art. With the advent of computer graphics, animators 

could produce very realistic scenes, a task which was extremely difficult, if not impossible, with 

traditional animation. In particular, computer animation systems which make use of sophisticated 

modellers and rendering algorithms can produce convincingly real-world pictures which take less 

time to produce and modify than hand-drawn pictures. 
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One area where computer animation still cannot compete with traditional animation is when 

animating articulated bodies. Whether the animator spends painstaking time with a keyframing 

system, or uses a high-level control language, the movement seems stilted and unnatural. The film 

Rendez-vow ci MontrCal [Thalmann 871 combines many state-of-the-art techniques for computer 

animation, and yet the actors' movements still do not seem truly life-like. 

Making actors' movements believable involves not only concentrating on the actor as an 

individual, but also on how he or she interacts with other actors in the animation. Ridsdale 

explored the types of movement that result when "like" and "hate" relations exist between the 

different actors [Ridsdale 871. Reynolds extended this concept to flocks of birds, claiming that 

each bird's movements are a consequence not only of its own goals but also of the movements of 

the birds around it [Reynolds 871. Based on this observation, he has produced a successful 

animation of a flock in motion. Extending the same idea to people, a convincing crowd scene can 

result where each actor's secondary movement has been considered and the influence of the actors 

around him or her has been taken into consideration. 

The main purpose of this thesis is to demonstrate that by incorporating body language into the 

actors' movements, a transformation will be seen from robot-like animations to life-like 

personalities. Although the GESTURE program does not consider all possible types of secondary 

movement, the small diverse set implemented is sufficient to show the value of this approach. 

Section 5.2 summarizes the variety of techniques used to produce the secondary movement. 

In chapter 2, a survey of the recent literature in computer animation will demonstrate the 

difficulties in solving problems in human animation. Chapter 3 will present a general framework 

for human animation, and chapter 4 will discuss the implementation of a component of this 

suggested framework. The implementation will be evaluated for its success in addressing an area 

in human animation in chapter 5. The concluding chapter will summarize the results of the 

implementation and will suggest other directions to be explored in human animation. 



Chapter 2 

Related Research 

Animated films are popular because of their ability to create fantasy worlds and situations that 

cannot be captured using actors and places in the real world. Talking animals, shrubs that grow to 

trees in seconds or a journey into someone's wild imagination become reality as thousands of 

masterfully drawn pictures flip before the viewer's eyes. Animating live figures is the greatest 

challenge as this type of motion is very complex, and the human eye is very sensitive to "mistakes" 

in these movements. The Walt Disney era produced some of the best animated characters because 

animators would spend long hours studying the movements of humans and animals that they would 

eventually assign to their figures [Thomas 811. Techniques were applied afterwards to exaggerate 

movements which could convey humour or draw the focus to objects in a scene. For example, 

characters' movements can be accentuated by anticipation or follow-through at the beginning and 

end of their motion, or, applying squash and stretch to a ball can make it appear more bouncy. 2 
An animation sequence is usually displayed at a minimum of 24 frames/second so that the eye 

perceives the series of still frames as continuous motion. This requires thousands of frames to 

produce a few minutes of animation. In practice, the artist draws only the keyframes - the frames 

in which a significant change of motion or mood occurs in the sequence. The inbetween frames, 

the series of frames which make the transition between the keyframes, can be filled in by other 

painters or can be generated by a computer. This process is called keyframe animation. 

Early computer keyframing efforts were based on 2-dimensional drawings. The inbetweening 

process was automated by having the animator specify the correspondence between lines in 

successive keyframes, and the computer would interpolate between the lines [Burtnyk 711. 

However the results of interpolating from flat images were not always successful because there is 

no depth information. This led to the introduction of 3-D animation systems, in which objects and 
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figures in the animation are represented in a 3-D world, and a 2-D image is produced by projecting 

this world onto a plane [Sturman 861. Movement in the animation is achieved by a series of 

rotations and translations on objects in the 3-D world. The inbetween images are more realistic 

because the interpolations are applied in the 3-D world before collapsing by a dimension to 2-D. 

With the advantages of increased realism when moving from 2-D to 3-D come a few other 

problems which must be addressed. These are object modelling, movement specification and 

image rendering. Animation is mostly concerned with the second issue, however specifying 

movement for an object is dependent on how that object is represented. Animating human figures 

is particularly difficult because the body is a very complex structure. The human model can be 

thought of as consisting of a set of rigid links connected at joints, and organized in a tree-like 

hierarchy [Zeltzer 82al. Movement is attained by applying 3-D transformation matrices at a joint. 

A matrix that is applied at a joint in the hierarchy will be applied to all joints nested deeper in the 

hierarchy. Connectivity of the model is assured if the transformations are all rotation matrices. 

Thus if a hand is to be positioned in space, the arm can never be disconnected from the body with a 

translation matrix; instead, joint rotations are applied at the pelvis, back joints, shoulder, elbow or 

whatever combination of joints required in order that the hand reach the desired position. 

Specifying movement for the human model involves assigning values to all joint angles for every 

frame of the animation script. The human body has over 200 degrees of freedom [McGhee 761, so 

that even if a model represents only 40 or 50 of these, an enormous amount of data must still be 

specified. This would be an overwhelming task for an animator to determine manually, and 

consequently many ways have been examined for representing movement and automating some of 

the animator's task [Badler 79, Ridsdale 86, Calvert 881. Animation systems can be categorized at 

three levels where at each higher level, the animator can obtain more complex movement with less 

specification. These three types of systems are guiding systems, systems which specify movement 

algorithmically, and task level systems. 

Guiding systems are those for which there is no easy way to generalize movement specification. 

For example, creating a dance sequence cannot be generalized so that many dancers could be 

animated using the same set of moves but facing in different directions. They are synonymous 
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with kinematic systems, in which the position of the body and all joint angles must be specified. 

The film Brilliance is a successful example of an animation in which a robot's motion was obtained 

from a live actor using rotoscoping to record her movements [Abel 851. Another way to record 

human movement is by using an electrogoniometer [Calvert 821. However, this technique may 

cause the person to move unnaturally as he or she may feel restricted by the equipment attached to 

the body. 

Keyframing systems represent another type of guiding system which allows animators to vcry 

quickly specify the movement for an animation sequence using intermittently spaced key poses. 

While the computer can save animators time by calculating position and joint angles for the 

inbetween frames, the animators may wish to be more involved in the interpolation process. 

Steketee and Badler describe a method for obtaining control over the nature of the motion that is 

produced from the interpolation process [Steketee 851. Although these guiding systems give 

animators complete freedom over a figure's motion, this can often be a hindrance since specifying 

the motion at this level of detail can be very cumbersome. 

At a second level, systems can describe motion algorithmically by providing data abstraction in 

which graphical objects are manipulated as program types or by providing adaptive motion where 

objects' motion can be altered by a changing environment. ASAS [Reynolds 821 and 

MIRA [Thalmann 831, are examples of this type of system. The ASAS system is an extension to 

LISP which allows the user to define graphical objects and apply operators such as shrink or 

local-move to them. An object's motion can be adapted to a changing environment by the use of 

message passing. In MIRA data abstraction is achieved through Pascal-like objects whose values 

can be examined to decide on movements. 

In both of these types of systems, the animator's creativity may be stifled because of the greater 

amount of time involved in realizing ideas instead of developing them. With human animation it is 

especially difficult to transfer the animator's ideas to the system quickly and easily because of the 

complexity of the model. 

A task-level animation system helps to correct this situation because it allows the animator to 
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specify the actors' movements by task descriptions, and the appropriate motor programs are 

invoked which will produce the desired movements. This type of movement specification opens up 

new research areas in human animation. Given a task description, how does the computer select a 

reasonable set of motor programs that will perform that task in a realistic way? Now that the 

animator's skill in motion specification is replaced by a set of motor programs, how is believable 

movement attainable? Finally, what will be the trade-off between how much control the animator 

has on the resulting movement, and how much is automatically generated by the system? 

The advantage of task-level animation systems is that they free the animator from specifying how 

a task is accomplished and allow the animator to concentrate on specifying what the task is. Such 

systems are labelled goal-directed because the movement generated is guided by user-specified 

goals. Badler identifies some problems which must be addressed in goal-directed human 

movement simulation [Badler 801. One problem is to define a schedule for the execution of 

movements in the different parts of the body. This is difficult because in the hierarchical model of 

the body, transformations applied to joints to execute one movement could affect the 

transformations applied to accomplish another movement. A second problem is that of positioning 

the end of a limb in space. For example, a goal could be to grasp an object, which would require 

the hand to move to a particular location. Without any other information to constrain the problem, 

such as an instruction specifying whether the elbow should be held high or low, there are an infinite 

number of solutions to attaining this goal. This is the general inverse kinematics problem which is 

difficult to solve for realistic movement of multi-link structures because in general there is no 

knowledge about the constraints on even simple movements executed by humans. A large problem 

in positioning the end of a linked system is to decide what constraints to place on the system so that 

natural-looking movement of a limb will result. A suggested method is to provide a reach 

description for a linked chain [Korein 82b, Korein 82al. In this solution, each joint in the chain is 

rotated by the minimum amount required for the end of the chain to reach its goal position. This 

solution, however, will not necessarily yield the most natural way a human would move a limb. 

Other problems that must be examined in goal-directed systems are situations in which parts of the 

body make contact with other parts of the body, maintaining balance while in locomotion, and the 

orientation of the body segments. 
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One goal-oriented system is POSIT [Badler 871. In this system the user defines positional goals 

for different parts of the body. Each goal is assigned a numerical value which represents the 

"strength" or likelihood in attaining that goal in relation to the weights assigned to other goals. If 

two goals conflict, then the figure will lean towards achieving the goal with the higher strength 

value. One situation that was modelled was that of a figure constrained by a car seatbelt and 

reaching for an object. A large strength value restricts the body in the seat, and a smaller value is 

assigned to the goal of the hand reaching. The figure in the simulation will reach forward until the 

larger strength value restricts further reaching. This system demonstrates a method of moving a 

body in a multiply constrained environment. 

The concept of goal-directed systems has led to attempts to understanding how humans execute 

movements [Csuri 811. In natural movement systems, a collection of joints and muscles controls a 

class of motions. Csuri describes a goal-directed system which has abstracted this idea by 

identifying three levels at which motions are processed. At the top level, or the task level, motions 

are broken down and assigned to appropriate motor programs. The motor programs oversee the 

execution of the motion using local motor programs, which use information about the current state 

of the body to produce the movements. The Skeleton Animation (SA) system implements these 

three levels of control to produce the movement of walking [Zeltzer 82bl. At the top level, the 

animator interacts with the system by providing task descriptions. At a lower level, the motor 

programs co-ordinate the execution of the local motor programs to produce the desired type of 

walk, for example the velocity, or a pattern such as a limp. At the lowest level, local motor 

programs control different stages of the walking cycle, for example those for a left leg swing and a 

left leg stance. Decisions have to be made by the task processor about which motor programs to 

invoke and in what order. For example, the motor program for standing must be invoked before 

invoking the one for walking if the figure is sitting down. The task processor organizes a schedule 

of motor programs by representing each movement by a frame in which there are preconditions 

which must be satisfied before the movement can be executed [Zeltzer 831. This may involve 

activating other frames which will cause other movements to be executed. In order to produce 

realistic movement, the preconditions should address two issues. The feasibility of a movement is 

dictated by which set of actions must be invoked to correctly execute the movement. For example, 
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standing up, walking across the room, and reaching must all occur before grasping an object across 

the room. Preconditions also ensure that movements follow each other in a natural way, for 

example determining what distance to stop in front of a chair before sitting down. The movement 

frames select the preconditions that need to be satisfied by consulting a "blackboard" which stores 

the current state of the body. 

Motor programs to execute realistic movement can be scheduled by a planning system. Drewery 

and Tsotsos have proposed a frame-based system which invokes a planner to choose a sequence of 

motions that will achieve a goal [Drewery 861. In this system the tasks are motion verbs which act 

on objects. Both the objects in the world and the movements are represented by frames. The 

movement frames have internally defined procedures which generate the motion. 

The approaches in these goal-directed systems present potential solutions for animators where a 

minimum amount of specification can produce life-like movement. However, it is crucial that the 

motor programs used by goal-directed systems do not produce movement of quality inferior to that 

which the animator could have achieved using some other method. Recently movement simulation 

using dynamics has become very popular because the results are much more life-like than 

kinematic simulations [Miller 88, Witkin 881. This is because the laws of physics are applied to the 

moving objects. The increased realism is particularly noticeable when the objects are involved in 

collisions with each other, or with the ground, because the mass of the object and forces involved 

are considered in the movement simulation. 

In human animation, dynamics is particularly suitable for forms of locomotion: walking and 

running. In the PODA system, Girard and Maciejewski explore how dynamics can be used to 

control the motion of multi-legged figures [Girard 851. Others examine how dynamics can be 

applied to human locomotion by specifying forces which are applied to different parts of the 

body [Wilhelms 85, Wilhelms 87, Armstrong 851. Human walking has also been dynamically 

simulated using a goal-directed approach [Bruderlin 88, Bruderlin 891. From the results of these 

systems, it can be concluded that dynamic simulations can be successfully used as motor programs. 

Several approaches to human animation systems have been presented. The goal of all of these 
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systems is to provide the animator with maximum control over the movement while requiring the 

least amount of interaction. Ideally the results will be so realistic that the viewer will not be able to 

determine if the actors are real people or were produced from an animation system. This is an 

ambitious goal. As well as the problem of producing realistic motion, other areas in human 

animation will need to be explored, such as the joint problem - how to model the body surface at a 

joint [Chung 871 or how to model free-hanging material such as clothing [Weil 861, in order to 

obtain completely realistic human animation. 

The film Rendez-vow ci Montrtal [Thalmann 871 represented a major accomplishment in drawing 

together many areas in human animation. Using the Human Factory system, synthetic actors were 

modelled by a digitization process, and various animation methods were used to make the actors 

move, grasp objects and speak. One of the successes of the system was its capability to attribute an 

individual personality to each of the actors. This is a necessary requirement if an animation system 

is to produce believable people, as no two people are alike. Animating convincing facial 

expressions will help to transform robot-like figures into expressive actors [Parke 82, Pearce 861. 

The rest of the body can also perform subtle movements which define a unique character for the 

actor. 

Human animation systems to date support a variety of methods for making actors accomplish 

primary goals. Earlier systems, such as keyframing systems, are cumbersome and tedious to use, 
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however the animator also has control over actors' secondary movement. As the interface for 

animation systems has been abstracted to the level where the animator need only specify tasks or 

goals, animations can be created more quickly and easily with minimum specification. However, 

in all of these high-level systems, there is no provision for secondary movement. Each actor will 

perform the specified tasks and goals in exactly the same manner, regardless of their individual 

personalities or moods. This thesis examines a method for attributing unique body language to 

actors, while keeping in mind the idea of goal-directed systems where the animator will not be 

required to specify the movements manually. 



Chapter 3 

A Conceptual Model for a Human Animation System 

A number of approaches to human animation were presented in chapter 2. Each method 

addresses one or more specific problems in human movement specification. A fully integrated 

human animation system could combine many of these approaches. This chapter will describe a 

framework for such a human animation system, and will then focus on the component dealing with 

the generation of secondary movement. This latter component is the main contribution of this 

thesis. 

3.1. A General Framework - 

Animating articulated bodies is much more complex than animating solid objects. The human 

model used in our implementation has forty-four rotational joints. Considering that animations are 

generally played at 24 frameslsecond, and that two or three actors may be on the stage at one time, 

manually specifying all joint angles for all actors over time to produce natural-looking human 

movement would be a near-impossible task. Human animation systems attempt to draw the focus 

away from the lower level task of manually specifying angles to a higher level conceptual control, 

where animators can describe the desired motion in English rather than numerically. 

When one shifts from a low-level to a high-level movement specification, much of the skill of the 

animator is replaced by the system. This could mean that many smaller movements that an 

animator might specify for an actor may be lost, unless the animation system pays attention to this 

kind of detail. It also implies that the animation system must now understand concepts which the 

animator would consider intuitive, such as bumping into other actors, walking through objects, or 

that actors must stand before walking. It is therefore natural that computer graphics has turned to 

the field of artificial intelligence, where research problems include understanding and reasoning 

about one's world. Expert systems are artificial intelligence programs which have expertise in a 
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particular area, such as medicine or engineering, and can solve problems at a comparable level of 

competence as an expert in that area. Many of these systems are used commercially to aid the 

human experts in their work [Bachant 84, Winston 841. Expert systems can be applied to computer 

animation by incorporating expertise in areas related to human movement. 

Path planning, displacing objects and interacting with a changing environment are examples of 

skills which humans put into practice every day without giving any thought to how they are done. 

While performing these tasks is considered intuitive, understanding how we identify individual 

movements which combine to execute tasks is an extremely difficult problem. This is one of the 

main problems in a human animation system that aims to provide the animator with high-level 

control. To animate humans realistically, animation systems become multi-disciplinary programs, 

calling on knowledge of human behaviour and human movement from fields such as kinesiology, 

robotics, psychology and sociology. The body of knowledge applicable to human animation is 

fragmented across these various disciplines, with each fragment contributing some constraints 

towards the choice of movements. Expert systems can apply these constraints to the selection of 

appropriate human movement. 

Choosing proper secondary movement for a character requires knowledge from psychology and 

data about the actor's personality and moods. Researchers in the field of psychology have acquired 

a lot of expertise about the correlation between people's character traits and the movements they 

perform [Bull 83, Duncan 77, Scheflen 72, Birdwhistell 701. However this knowledge is not well 

structured, and there is no systematic method for converting this knowledge into deductions about 

the types of secondary movement people perform. Also, specifying how the movements are to be 

done requires knowledge about what movements are likely to follow one another, or occur 

together. For example, it would not be likely for a person to shyly look away from a stranger and 

then wave. An expert system embodying this knowledge from psychology could assign 

appropriate secondary movement to characters. 

Given that an expert system can help to solve problems in human animation, the animator can be 

presented with a very simple, yet powerful user-interface. In essence, the animator should play the 

role of a stage director who assigns a character and a set of motives to the actors. A good actor 
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should then be able to perform his or her actions while portraying the character assigned to himiher 

without any further direction. 

EXPERT SYSTEM r-l 
goals describe primary 

movement to 
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Figure 3-1: Framework for a human animation system 

Figure 3-1 suggests a framework for an animation system where the animator chooses goals and 

defines personalities and moods for actors, and from this minimal specification a life-like 

animation is created. An expert system with expertise in robotics can be used to plan a series of 

actions in order to accomplish the high-level movement goals. Using expertise from studies in 

psychology which show the correlation between people's movements and their character traits, 

another expert system can specify the secondary movement for the actors. These expert systems 

will need to communicate with each other, and also use knowledge from the environment, such as 

where objects are placed and what are the purposes of these objects. After considering the 

animator's requests, the expert systems can produce a high-level movement script, which specifies 

primary and secondary movement for an actor. From this description, an animation script is 

produced by consulting gesture specification functions which have information on how the 
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specified movements are executed. The animation script is a complete description of all joint 

angles for the actor for every frame of the animation. The portion of the animation system that 

transforms the movement script into an animation script has been implemented for this thesis. 

A clearly defined interface exists between the expert system level and the animation system level. 

This interface is a movement script for each actor written in a high-level movement language. The 

script contains a list of completely qualified movements to be carried out, and at what time during 

the animation these should be carried out. 

When creating a movement script, the expert system is responsible for several tasks. One is 

co-ordinating the different movements that the body can perform simultaneously. For example, if 

the expert system requests a head scratch, and then later instructs the head to look in another 

direction, it is up to this system to resolve what to do with the arm. The expert system must also 

have some knowledge about how movements are executed. For example, if two actors walking 

towards each other are to stop and talk, the time to decelerate and come to a stop must be taken into 

consideration when specifying the time to halt in the movement script. Otherwise the actors may 

pass each other before stopping. Multiple actors in an animation introduce a variety of other 

challenges to specifying movement. Ridsdale has explored how actors' likes and dislikes for one 

another affect the shape of their motion paths [Ridsdale 871. Secondary movement should be 

modified to account for the approach of another actor, and should consider the relationship between 

the two actors. The expert system must also ensure that requested movements do not conflict either 

with each other, other actors' movements, or obstacles in the actor's world. 

Once the movement script has been created, the remaining task of the animation system is to 

create the animation script. This involves determining joint angles over time using movement 

generation algorithms to produce the movement specified by the movement script in as realistic a 

manner as possible. Each section of the animation system operates as an independent module, and 

together they produce convincing human animation. 

The GESTURE program is an implementation of the component in thc animation system that 

produces an animation from the movement script. As this thesis is concerned mainly with 
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secondary movement, only this type of movement is recognized in the movement script. The one 

exception is the primary movement of walking. Incorporating one primary goal in the 

implementation is helpful in justifying the secondary movement that is displayed. It is also 

beneficial to create a mock front-end for GESTURE as a replacement of the expert system. The 

user can prepare movement language scripts for GESTURE. Alternatively the user can assign 

personalities and moods to the actors and an appropriate movement script for the animation will be 

made available for GESTURE by this mock front-end. 

3.2. Issues in Secondary Movement 

3.2.1. Characters and Movements 

In order for an actor to portray a certain character convincingly, appropriate secondary movement 

for that character must be displayed. Psychologists have studied people's movements, and drawn 

conclusions about their characters. They have also made the converse correlations which can be 

used in human animation systems: given a character description, an expert system can supply 4% 
appropriate secondary movement [Birdwhistell 70, Bull 831. 

In GESTURE, the front-end of the system allows the user to select values for different personality 

traits (how extroverted or introverted, cheerfid or gloomy, assertive or passive, and domineering or 

submissive a person is) and moods (the degree of boredom, nervousness, tiredness, impatience and 

fear). Depending on the values chosen, actors will display varying types of secondary movement. 

An expert system has not been implemented to carry out the task of selecting the movements. Thus 

no claim is made in the implementation as to the psychological validity of the movements chosen 

with respect to the personality and mood definitions. However, a survey of some of the psychology 

literature supports some of the decisions made in selecting secondary movement in GESTURE. 

One study of human behaviour was conducted by Scheflen [Scheflen 721. He observed how 

different types of people interacted socially. Many of the movements implemented in GESTURE 

are drawn from the results of these studies. Strangers passing in the street, for example, observe a 

ritual of "civil inattention". At 12-15', each person will glance at the other, longer glances 

indicating a more sociable person, a short glance characterizing introvertedness or even hostility. 
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When passing someone one is familiar with, an introverted person will nod at a distance and set the 

head position as they pass. A less solitary person will salute or wave at a distance, and perhaps 

stop for a quick hello. 

More subtle movements, if noted, can reveal interesting character traits. A more passive person 

will droop their head and hide their hands, their feet may be turned in, and they will tend to slouch. 

A more assertive person will have better body balance with feet slightly apart, they will be relaxed, 

and their body and head will be erect. A cheerfid or gloomy disposition can affect the speed and 

bounciness in a walk. Hunched shoulders, a bowed head and hands clasped in front of the body 

indicate a weaker character, whereas a more aggressive posture would include hands on hips, raised 

head and perhaps clenched fists. The more domineering person will often step towards people, 

whereas the more submissive person will give way to strangers. 

Some types of movements appear only as the mood of a person varies. For example fatigue will 

cause a person to slouch, and rub their eyes more. Nervousness introduces a variety of grooming 

gestures, such as rubbing one's hands together, rubbing one's chin, scratching one's head or 

brushing one's clothes off. Increased frequency of these gestures can signify impatience. Foot 

tapping and posture shifts indicate boredom. Fear is displayed by hunching the shoulders, and 

keeping the head up. 

There are certainly many other types of secondary movement. Furthermore, the correlation 

between character and movements can vary in interpretation. Gestures performed in one society 

can have a new significance in a different ethnic group and vary betwecn age groups [Birdwhistell 

701. The secondary movement presented in this section will form the basis of the movement 

implemented in GESTURE. 

3.2.2. Action and Destination Movements 

Movements can appear in two forms: either the movement reaches an end, such as drooping one's 

head, or the movement can continue for a duration of time, such as scratching one's head. These 

two types of movements have been classified into the two categories, action and destination 

movements. A destination movement involves placing a part of the body in a certain position. 
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Action movements involve positioning a part of the body, and then continuing to cycle through 

several body part positions. Examples of destination movements in GESTURE are a confirming 

nod, making a fist or putting one's hands on one's waist. Examples of action movements are 

scratching, waving or walking. 

The distinction between these two types of movements is important, as they must be treated 

differently in the animation system. When the movement script requests the execution of a 

destination movement, the animation frames can be generated until that movement has been 

satisfied. However, if the movement script requests the execution of an action movement, frames 

can be generated for the body parts involved in that movement to reach the beginning of the cycle. 

But then there is no way of determining how many times to cycle the body positions without 

looking ahead in the movement script. To avoid having to look ahead in the movement script, 

another method must be found for deciding how many times to cycle through the movement. 

In GESTURE, when an action movement is encountered, an object containing critical information 

about the movement is created. As the system proceeds through time in the movement script, joint 

angles are computed for all body parts engaged in an action movement. The end of an action 

movement is indicated by the beginning of another movement that would conflict with the 

execution of the action movement. When the movement script signals the end of an action 

movement, the object corresponding to that movement is removed. 

3.2.3. Interrupting Movement 

Algorithms have been developed for generating various types of human movement. For example, 

kinematics has been used to produce reach descriptions for rigid links with joints [Korein 

82b, Korein 82a], and locomotion has been controlled by dynamics algorithms [Armstrong 

85, Bruderlin 88, Wilhelms 871. These algorithms can be used to provide a high-level front-end to 

an animation system. In a high-level animation system, an animator can specify the desired 

movement, and supply a qualitative description of the style in which this movement should be 

executed. A good algorithm will have many parameters affecting the quality of the movement, and 

will then compute the joint angles over time for the articulated figure, producing realistic 

movement. 
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These algorithms, although they can produce many styles of movement given their starting 

conditions, usually do not easily allow for a change of style, or a complete change of movement, 

once the movement begins. In Zeltzer's system [Zcltzer 831, actors can switch between several 

completed movements - walking, sitting, lying. However, the system is not able to have the actor 

begin to sit up and then lie down again. In this system, actors are always known to be in a certain 

posture after completing a movement. Determining how to proceed to another movement mid-way 

between two known body positions is a non-trivial task. In general this may entail solving the 

inverse kinematics problem, which involves examining thc joint angles and then computing the 

most natural way to resume a known posture. 

Interrupting a movement may not be such a critical requirement for primary movement, where an 

actor has a set of goals to achieve. However it is critical for secondary movement which usually is 

not prompted by well-defined objectives. Rather, an actor's character is revealed by the manner in 

which secondary movement is carried out including the frequency with which gestures are started 

but not completed. This can reflect on a person's character as much as the types of gestures that 

are carried out. Therefore the ability to interrupt movements and begin other movements at any 

time is an important requirement in animating secondary movement. 

A solution will be proposed that is similar to that proposed by Zeltzer [Zeltzer 831, in that certain 

body positions represent known states. However new states can be created when a movement is 

interrupted to represent the body position at the time when the interruption occurred. Although 

there are limitations with this method, there is great flexibility in specifying the exact secondary 

movement desired and when it will begin and end. Details of how interruptions are handled using 

this method are discussed in section 4.3. 

3.3. Secondary Movement in GESTURE 

A general framework for a human animation system was presented in section 3.1. Within this 

framework, the problem of producing the movement specified in the movement script was 

identified. The GESTURE system has been implemented as a proposed solution to this problem. 

This section will describe the components of GESTURE that support the generation of secondary 

movement. 
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The main objective of GESTURE is to transform a high-level description of movement into 

realistic execution of these movements by the actors. The implementation is not concerned with 

whether an appropriate set of movements is selected, but primarily with executing whatever 

movements have been included in the script as realistically as possible. One of the issues that was 

addressed was the flexibility of being able to interrupt movements with other movements at any 

time. Thus a representation that supports this capability of interrupting movements at the same 

time as executing these movements in the most natural way is required. 

Chapter 2 discussed research in human animation, which has produced a variety of successful 

algorithms for controlling the movements of an articulated body doing various specific tasks. 

These motor programs usually excel in producing life-like movement for one particular task by 

using specific knowledge about that task. An animation system concerned with being able to 

handle a variety of movements should be able to incorporate these successes. 

In GESTURE, a set of gesture specification functions have been implemented, each one 

corresponding to a particular movement that can be specified in the movement script. Since each 

of these functions is concerned with producing the movement for only one particular gesture, they 

can make use of any knowledge about how that gesture is performed by humans. As each of these 

functions is independent of the others, existing motor programs or new specialized algorithms for 

particular movements can be incorporated into the animation system. Also, the technique for 

producing movement that is most appropriate to that movement can be used. In GESTURE, most 

of the movements have been generated using a keyframing system [Calvert 891, however the sole 

primary movement that has been implemented - walking - uses dynamics to generate the 

walk [Bruderlin 881 and kinematics to produce the arm swing. 

The gesture specification functions fulfill the requirement of ensuring that the animation system 

will produce realistic motion. However, the method with which movements will be able to proceed 

from one to another, or interrupt each other must be resolved. A representation of movement 

shared by all gesture specification functions has been suggested. Movement will be encoded in a 

graph, and the execution of a movement will be equivalent to traversing the graph. Nodes in the 

graph contain joint angle values for a collection of joints. These can be looked upon as key 
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positions for a set of joints in the body model. Arcs are labelled with names of different 

movements, and a number indicating the number of frames between key positions represented by 

the surrounding nodes. A path along arcs of the same label represents the series of key positions to 

assume in order to execute a particular movement. Continuing along a new arc with a different 

label signifies beginning the execution of a new movement. The graph representation is a very 

natural way to encode movement that has been generated by keyframing, where joint angle values 

are not defined at every frame. Movement from an algorithm that generates joint angles at every 

frame can be stored in the nodes of the graph, and 0 "inbetweens" can be assigned to the arcs for 

that movement. In this way, movements produced from a kinematic algorithm or a dynamic 

simulation can also use this underlying graphical representation of movement. If a movement 

based on an algorithm is repeated, yet with different qualities which may alter the parameters to the 

algorithm, the graph may be altered (the number of nodes, and/or values of joint angles at the 

nodes) before the graph is traversed the second time. 

The top-level control of GESTURE reads movements from the movement script and activates the 

appropriate gesture specification functions. The specific knowledge about how to perform 

movements is all contained in the gesture specification functions. These functions all use an 

underlying graphical representation of movement. In chapter 4, the components of the animation 

system will be examined in more detail, and examples from the implementation will be supplied. 



Chapter 4 

GESTURE Implementation 

GESTURE is a stand-alone program which produces a computer animation from a description in 

a movement script. The movement script uses a qualitative language to describe the gestures of an 

actor. However there are no details as to how these gestures are to be translated into joint angles. 

This chapter describes how gesture specification functions are consulted about each gesture, and 

how a graph is used as a foundation on which to generate movement. Since GESTURE also 

represents a module that would receive its input from an expert system, the movement language 

script which is the interface between these two systems is described, and a description of how the 

expert system is simulated is presented. 

4.1. The Movement Language Script 

The movement language script is the dividing line between the responsibilities of the expert 

system and GESTURE, which generates the movement. This script is produced after considering 

the movements which an actor should do, and the order in which they should be done. A 

chronological list of movements is generated by the expert system which creates the movement 

script. The gesture specification functions can apply specialized algorithms for producing the 

movements from this script. Recall that the gesture specification functions each know how to 

execute one movement very well. It is up to the expert system to ensure that it makes sense for the 

movement to be executed at that time. 

With the absence of an expert system in our implementation, it is up to the user of GESTURE to 

guarantee that movement scripts are created with a logical selection of movements. In order to 

fulfill this requirement, it is important to understand the syntax and semantics of the language used 

for the movement script. 
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An animation script is some form of movement specification over time. The format of the 

movement language script is a series of movement command lines. Each line specifies a time at 

which a movement should begin, the movement and then an optional collection of words which 

qualify the movement. The command lines must be sorted in chronological order by the specified 

starting time of the movement. The times on the command line represent frame numbers. 

Choosing another measure of time, such as seconds, was considered, however it was decided that 

the movement specification should have the same time granularity as the animation it is scripting. 

This implies that the expert system be aware of the frame rate of the final animation in order to be 

able to control the speed of movements. 

Movements are specified by words which uniquely define the movement. Each movement can be 

qualified by words which will alter the way in which the movement is produced. In the absence of 

qualifying words, defaults are chosen. Qualifying words that may be used, vary between 

movements. The command line 

1 5  l o o k  up 

will cause the head to begin looking upward at frame 15. Because the movement "look" can be 

qualified by a direction (left, right, straight) and speed (fast, average, slow) as well as height (up, 

down, ahead), the defaults "straight" and "average" will be chosen for the direction and speed of 

the movement respectively. 

walk 
i n  back  
s c r a t c h  l e f t  
l o o k  r i g h t  a h e a d  f a s t  
on w a i s t  l e f t  
h a l t  
nod 
walk 

walk forward 
place arms behind body 
scratch head with left hand 
turn head quickly to the right 
put left hand on waist 
stop walking 
nod head 
walk forward 

Figure 4-1: A sample movement language script 

Figure 4-1 shows an example of a movement script that can be used by GESTURE to produce an 

animation. Explanations of the movements are in italics. A complete description of the movement 

script language can be found in appendix B. The example script shown in figure 4-1 is designed to 

portray some of the issues that were discussed with respect to the responsibilities of the expert 
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system. Note that the head scratch which was begun at frame 20 will stop when interrupted by the 

head turn at frame 50. However if the expert system had not specified the command to place the 

hand that was scratching on the waist, the arm would remain in mid-air. This script was intended 

for an actor who will stop and nod at another actor before continuing on. Although the halting 

process begins at frame 60, the actor will not stop moving for a while, and so the nod is scheduled 

to begin at frame 100, after the actor has come to a stop. 

The expert system is responsible for specifying the order and timing of movements, but not for 

specifying the most natural way to produce each moverncnt. Beginning at frame 20, the left arm 

will move from behind the back to behind the head in prcparation for a head scratch. The most 

direct way to make this transition would be for the arm to move up along the back until the hand 

was behind the head. This movement would not only appear very unnatural, but is physically 

impossible. It is up to the gesture specification function dealing with head scratches, in 

conjunction with the graph, to specify a path, such as moving the hand in front of the body and then 

up to the head. The movement script in figure 4-1 can be logically produced without concern for 

how natural transitions between the movements will occur. 

4.2. Producing the Animation Script 

Creating an animation script from a given movement specification is the process of specifying 

stage position and joint angles for all the actors for a number of frames. GESTURE carries out this 

process, producing an animation script from the movement language script. 

The body model used in our implementation is represented as a hierarchy of rotational joints 

between limbs. Applying a rotation to a joint higher up in the hierarchy affects the position of, and 

joints between, all links lower in the hierarchy. So, for example, a rotation of the whole body will 

displace every part of the body, whereas a rotation of the elbow joint will be applied only to the 

elbow, wrist and metacarpal joints of the same arm. The hierarchy of joints used in our model is 

shown in figure 4-2. 

The animation script produced by GESTURE contains joint angles, and the body location for an 

actor for a determined number of frames. The control structure for reading the movement script 
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Figure 4-2: Joint hierarchy for model of body used in GESTURE 
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and producing the animation script is relatively straightforward as most of the work in determining 

what angles will produce the desired movements is performed by the gesture specification 

functions. However a few concepts must be explained in order to fully understand the control 

structure. 

Due to the nature of the movement language script, GESTURE'S control is event driven. Joint 

angles for the animation script are computed in sequential order through frame numbers. However 

time does not advance in equal units, but rather is controlled by the times specified in the 

movement script. These times are used to update a global clock, which represents the current clock 

time. This is an important reason for ensuring that the times in the movement script are in 

chronological order, as stated in the previous section. 

Before the animation script is produced, the data must be stored in a temporary location while it is 

being computed. A standard approach is to use a channel table to store joint values at key frame 

numbers (keyframes) and then to interpolate between these keyframes to obtain values at every 

frame. There is one channel per joint, and three channels for the (x, y, z) location of the actor on 

the stage. Entries into the channel table are made by the gesture specification functions as 

movements are requested by the movement script. When a movement event is processed, channels 

may only be altered for the current clock time and future times. This means that an event cannot 

change the movements that occurred previous to it. It does however allow for interruptions of 

gestures. 

Consider the case where we wish an actor to begin a wave from frames 0 to 10, and continue with 

a head scratch after frame 10. The generation of a wave involves producing several keyframes for 

several channels. For example, if the current clock time is t = 0, then a wave could cause the 

placing of keyframes in the shoulder, elbow and wrist joints of one arm at t = 0, t = 30 and t = 40. 

When at t = 10, the movement script calls for a head scratch, keyframes after the current clock time 

(t = 30 and t = 40) would be removed, and new keyframes at t = 10 and t = 25, for example, could 

be inserted. This example is illustrated in figure 4-3. Manipulating the channel table in this way 

will cause an interruption of the wave by a scratch. This example demonstrates how the channel 

table is used in general. A gesture specification function determines how to execute a movement, 
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0 wave 
10 scratch 

(a) Movement script for wave followed by scratch 

(b) Movement "wave" involves placing keyfrarnes at current clocktime, 
(clocktime + 30) and (clocktime + 40) 

clock-time: 0 

clock-time: 10 

channel L-SHOULDER C 

channel L-SHOULDER 
scratch scratch 

(c) Movement "scratch" involves placing keyfrarnes at current clocktime 
and (clocktime + 15) 

0 
wave 

Figure 4-3: Interrupting gestures in the channel table 

and then produces keyframes in the appropriate channels at and after the current clock time, 

removing existing keyframes when necessary. 

If the designated movement is a destination movement, control can proceed to the next movement 

in the script after keyframes have been generated. However, recall that for action movements, 

keyframes are only generated until the beginning of the cyclic part of the movement (see section 

3.2.2). After this, an action object corresponding to the cyclic part of the movement is created 

before control proceeds to the next movement. The action object specifies how keyframes will be 

generated at a later time to produce the cyclic movement. These keyframes are generated as 

control proceeds through the movement script. At each new event, the clock time is advanced to 

the starting time of that event, and keyframes for all active action objects are generated extending 

30 
wave 

40 
wave 
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at least to the current clock time. An action movement ends when a movement in the script is 

specified which uses the same joints as the active action movement. The creation and deletion of 

action objects will be discussed further in section 4.4. 

After the whole movement script has been processed, the channel tables contain a representation 

of all the movement specified in this script. One last step must be completed before an animation 

script can be created: values for channels at the times when there are no keyframes must be 

evaluated. These values will be determined by applying interpolation routines to each of the 

channels. 

Interpolating to obtain values for inbetween frames can be looked upon as a curve-fitting 

problem, given a set of points. The choice of interpolation routincs can affect the values computed. 

Interpolation algorithms based on Hermite or Bezier matrix forms guarantee first order continuity 

and that the curve will pass through the given points. B-spline curves may only approximately pass 

through the given points, but first and second order continuity is guaranteed [Foley 821. Careful 

thought must be given to the method used to interpolate joint rotations. If joint rotations are 

represented in the Euclidean co-ordinate system, then an interpolation is done on rotations around 

each of the axes separately. A rotation is applied to a joint by defining an order of rotation around 

the axes, for example, X then Y then Z. Unfortunately, rotations represented in the Euclidean 

geometry can introduce Gimbal lock. This phenomenon occurs when the angle of rotation around 

4 
Y is 90 " . This rotation is applied before the rotation around Z, but after the rotation around X, 

causing these two axes to be superimposed, and therefore losing one degree of freedom. 

To avoid this problem, joint rotations are represented as quaternions and a quaternion 

interpolation is applied to the joint channels [Shoemake 851. Quaternions specify an axis and an 

angle of rotation around the axis. Since no arbitrary axes of rotation are specified as in the 

Euclidean space, Gimbal lock is avoided. Also, only one channel per joint is required instead of 

three since the interpolation treats a quaternion as one cntity. 

Whereas quaternions are a natural way of representing rotations, they are not applicable to 

translations. Since translations are independent of order if applied along orthogonal axes, stage 
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location is best represented in terms of an (x, y, z) position. Thus three channels are required for 

specifying the location of the actor in the animation. 

The interpolation routine applied to the three channels for specifying location is a spline 

interpolation with local tension, continuity and bias control [Kochanek 841. This interpolation 

method allows for much control over how the interpolation is camed out. The tension parameter 

controls how sharply the curve bends at a key position. The bias controls the direction of the path 

of the curve as it passes through keyframes. The continuity parameter varies the amount of 

discontinuity at a keyframe. In GESTURE, these three parameters are not exploited to their full 

extent. Experimenting with values for the parameters could produce varying styles of executing 

movement. For example, introducing a discontinuity could produce a sudden change of direction 

in the actor's movement. An animator may desire this effect to show a change of mind in the 

actor's objectives. This area could be explored further by finding ways to relate the control 

parameters to adjectives an animator may use to qualify movement. 

The overall control structure of GESTURE can now be explained using the concepts presented 

thus far in this section. Consider the pseudo-code for the control structure shown in figure 4-4. 

GESTURE first initializes the channel tables. This essentially empties them of any keyframes in 

preparation for processing a new movement script. A keyframe is then placed in each channel at 

frame 0 with the body assuming a resting stance and an initial stage position (line 2). The global 

clock is reset to 0 in preparation for advancing forward by event. The processing of each command 

line in the movement script initiates a new event. The clock is pushed forward to the time of this 

new event (line 6) and then keyframes are generated for the active action movements up to the new 

current clock time (line 7). Control then proceeds to the step where frames for the movements are 

generated (line 8). This is done by activating the gesture specification function corresponding to 

the movement. After the channel table contains keyframes for all movements in the script, the 

interpolation is applied to each channel, producing joint angles and stage position for all frames. 

These values are then stored in an animation script which can be used to play back the animation. 

The high-level control for GESTURE is general and quite straightforward. It is an event-driven 



GESTURE Implementation 

initialize channel tables 

set first frame to rest position 

clock - time c 0 

while (there is still another line in the movement language script) 

{ 

clock - time c time specified by new movement command 

produce frames for active action movements to current clock time 

activate gesture specification finction corresponding to gesture 
in movement command 

1 

interpolate channels in channel table 

place interpolated values for stage position and all joints in animation script 

Figure 4-4: Control Structure for GESTURE 

system, and requires no knowledge about how particular movements are executed. The remainder 

of this chapter will discuss what happens at line 8 of the algorithm: how realistic movement is 

achieved from a descriptive movement command line. 

4.3. A Graphical Representation for Movement Specification 

In the previous chapter, the notion of a representation for movement accessed by the gesture 

specification functions was introduced. It was suggested that key body positions could be recorded 

using nodes in a graph, and movement could be produced by traversing the graph. This section 

will discuss the problems that arise when determining how to generate movement, and will present 

the graph as a solution. 

When a gesture specification function is activated, it has to know the current position of the body 

before it can produce keyframes for the movement. For example, to scratch one's head the arm 

must follow a completely different path from a stretching position, with both arms high above 

one's head, than if both arms were hanging by one's side. The problem in producing keyframes for 
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a movement is to ensure that a sensible (i.e. a physically possible, and most likely) path is chosen, 

and that the keyframes are placed at times that will produce the desired velocity. Therefore to 

determine how and when the keyframes are to be placed, the current body position has to be 

assessed for position and orientation. 

An analysis of the body position can take on many different forms. At one end of the spectrum, 

one could do a thorough mathematical analysis of all the joint angles, determine where all the joints 

and end-effectors are in space, and compute a path. This method could produce very realistic 

results, but would be very expensive computationally. The algorithm would also be dependent on 

the limb that is being moved, and the movement that it is executing. This approach is very low- 

level, and would be inappropriate for gesture specification functions which access information at a 

higher level. At the other end of the spectrum, a set of states could be maintained which would 

hold true for the body position at given times. This set would be updatcd as new movements are 

executed. Then instead of examining 10 or 15 joint angles to determine where the right arm is, we 

could retrieve information on the state of the right arm such as "right-arm-at-rest" or "right-arm- 

stretching". Then it would be relatively straightforward to determine which set of keyframes to 

produce in order to execute the next movement. The disadvantage of this method is that it is 

coarse-grained. While a movement to a new state is in progress, there are no states corresponding 

to the body positions during the transition period. This means that there is no information about 

how to begin a new movement during this transition. Therefore complete movements will have to 

be generated. 

Secondary movement is a reflection on a person's character and emotions. As a person reacts to 

his or her environment, this motion constantly changes. To make the motion realistic, it is 

important to be able to switch quickly and smoothly between movements at any time. This 

involves being able to evaluate very quickly what position different body parts are in, and 

determining what path to follow to continue the smooth execution of another movement. We 

would like to choose a representation of the body posture that allows for quick evaluation of the 

pose the body is assuming and that easily conveys how to move from that pose to another one. The 

suggested representation is a graph in which the nodes represent body positions and the arcs are 

labelled with names of movements. If the body is in a position represented by a node in the graph, 
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then to execute a movement the graph is traversed along the arcs labelled with that movement. 

Since each node represents a key position for joints, the nodes in a path through the graph are 

equivalent to the keyframes in a channel; the keyframes can be interpolated to produce a smooth 

animation of a set of movements. Let us examine this graph representation in more detail. 

The nodes in the graph represent states of the body, or, body positions. States can either be 

named states which correspond to actual poses, for example, "hands-on-waist", or intermediary 

states between the poses. Intermediary states are not necessary if there is a direct path between two 

named states. However intermediary states will have to be introduced to make the movement more 

realistic. For example, if no intermediary state existed between the position of the arms behind the 

back and the position of the arms in front of the body, the movement would be executed by pushing 

the hands through the body until they were in front of the body. If an intermediary state is 

introduced between these two states where the hand is slightly distanced from the body, the 

movement of the arms from behind the back to in front of the body will appear more realistic. 

Two types of states have been identified. The nodes can be named similarly to reflect the states 

they represent: a named node represents the final pose of a movement, and an intermediary node 

represents a transition state along a path between two (or more) named nodes. Figure 4-5 shows a 

graph containing three nodes: two are named nodes, and the third node is an intermediary node 

between two body positions. 

The labels on the arcs in the graph are the names of gestures. A gesture in this context is a 

movement that will achieve a certain body pose. Gestures, and thus arc labels, use the same names 

as named states. This means that to attain the body position "on-waist" from any node in the graph, 

the arcs with the gesture label "on-waist" should be traversed. Thus every node should have an arc 

for all gestures that do not have the same name as the name of the node. For example, the node 

named "rest" does not need an arc labelled "rest" since the body has already attained that position. 

The other information that an arc must carry is some sort of distance measure between nodes. 

Since nodes represent arbitrarily defined body positions, there is no reason that the time to travel 

between any two pairs of nodes should be the same. When the final interpolation is applied to the 
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Figure 4-5: Graph with two named states 
and one intermediary state 

ordered set of nodes, representing the keyframes, there must be information about how many 

frames to place between each of the keyframes. Thus the arcs are labelled with the number of 

inbetween frames that should be placed between adjacent nodes in a path. 

The idea of singling out some nodes as named states corresponding to the final body positions of 

gestures works well for destination movements. But recall that there are also action movements 

which do not reach one body position, but rather, cycle through several body positions; for 

example, a head scratch or a wave. In the case of an action movement, we will assign the same 

name to several nodes, and define an ordering of these nodes through which to cycle. An expanded 

version of the above figure incorporating the wave gesture is shown in figure 4-6. 

The nodes in the graph correspond to body positions. If we were to consider all the body 

positions that could be assumed, the graph would certainly be very large. One way in which the 

number of nodes can be reduced is to take into consideration the nature of a gesture. A gesture 

does not normally involve the whole body. Usually a gesture is performed by the arm, the head or 

the torso: in each case, some specific limb or part of the body is involved. For example, a wave is 

done by an arm, a nod by the head, or a slouch by the torso. Two gestures that are performed by 

different parts of the body are often independent of one another, and there is no reason they could 

not be done in conjunction with each other, such as nodding while waving. If the nodes were to 
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on-waist 
wave 

Figure 4-6: Graph with the action movement: "wave" 

define complete body positions, then for every movement of one body part there will have to be a 

set of nodes with all possible movements of other body parts. This approach would yield a massive 

graph containing much duplicated information. To reduce the number of nodes and avoid 

repeating information, nodes are grouped into separate graphs, each graph pertaining to a unique 

set of joints which form one body part. For example, the three arm gestures presented in figures 

4-5 and 4-6 - rest, on-waist, wave - are in a graph that records only joint angles for the arm. 

Execution of body movements can proceed by traversing several graphs concurrently, with each of 

the graphs controlling the movement of one set of joints. 

This method of localizing the joints involved in body positions for a graph works well because 

gestures tend to correspond to local body parts. In fact, gestures are most naturally specified in 

terms of the movements of end-effectors, for example "place hand on waist" as oppose to "rotate 

shoulder and elbow joints such that ...". Graphs can naturally divide the body such that the joints 

from the centre of the body to an end-effector form a graph. In GESTURE there are seven graphs: 

two arms, two hands, head, torso and legs. The arm and hand have been separated for finer control 
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over movements of these limbs. Both legs have been grouped into one graph because of the nature 

of the algorithm used for the only movement executable by the legs: walking. This will be 

discussed in the next section. 

Occasionally movements of different body parts will have to be co-ordinated. A head scratch, for 

example, not only involves traversing the arm and hand graphs to position the hand against the 

head, but also requires traversing the head graph to ensure that the head is positioned properly to 

receive the scratch. It would not do if the hand was scratching in mid-air because the head had 

turned away to look at something. Thus, some gestures may be common to two graphs, and the 

graphs must be traversed concurrently along arcs with the same gesture name. 

A node in the graph represents a body position in space assumed by a set of joints. Continuous 

movement is achieved by smooth interpolation through a defined ordering of these nodes. So far in 

the discussion, if one movement interrupts another, we have assumed that we are "at" a node (i.e. 

the body is assuming a position defined by one of the nodes), and to continue with the next 

movement, it suffices to follow the arc emanating from the current node labelled by this new 

movement. However, recall that there is some distance between nodes, and therefore some time is 

required to travel between nodes. Thus, it is possible that a movement will be interrupted while the 

arc is being traversed, rather than when the body part is assuming a position at a node. In this case 

we would not be able to follow the arc for the new gesture until we had reached the next node. If 

this were the solution to interrupting gestures, it is likely that very few interruptions would be 

observed in the movement, especially if there were very few intermediary nodes for a movement. 

Thus the animation would result in a series of uninterrupted movements. This solution might be 

acceptable for primary movement, where actors have clearly defined objectives. However 

secondary movement is governed by sub-conscious thoughts, environmental changes or body 

discomfort. So, for body language to convey anything, secondary movement should be able to 

switch easily from one movement to another at any time. 

In GESTURE, we would like the flexibility that would allow for movements to be interrupted and 

continued with other movements, and perhaps for those to be interrupted in turn. This means that 

when a new movement takes over after interrupting the body in the midst of executing a previous 
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movement, the body will not necessarily be in a predetermined state, but could be somewhere 

between two states. A procedure is needed for going from this inbetween body position to a known 

state, without having to digress to numerically analyzing this body position. 

In order to implement this instantaneous fluctuation between gestures in the graph, it should be 

possible to create new positions at any time. Thus if a movement is in the process of traversing an 

arc when it is interrupted, a temporary node is created. This node is a special node which can act as 

a keyframe for the final interpolation, but which will not be accessible in the graph as soon as it is 

no longer the current node. The reason for this is that although the joint angles for that node can be 

computed easily (by interpolating between the joint values of the two nodes connected by the arc 

being traversed when the interruption occurred), it would be a non-trivial problem to determine 

where all the arcs emanating from this new node should lead, and furthermore, what distance 

measure should be associated with each of these new arcs. However this temporary node must at 

least have an arc to the most appropriate node in the graph for beginning the execution of the new 

movement. Therefore, the temporary node adopts the arcs and arc lengths of either the most recent 

node or the destination node for the original gesture before the interruption, depending on which 

node is closer (by the distance measure). Figure 4-7 shows an example of a movement of the arm 

from rest position to putting the hand on the waist. (The intermediary nodes have been labelled A 

and B in this figure to distinguish them.) After 3 time units, this movement is interrupted to put the 

arm behind the back. A temporary node (labelled T in the figure) is created to represent the body 

position at the time of the interruption. Since the body position was closer to the intermediary node 

A than to the "rest" node when the interruption occurred, the temporary node adopts the arcs of the 

intermediary node. This means that the temporary node will adopt an arc with the label "back" and 

distance measure 2. Once this arc has been traversed, the intermediary node B has its own arcs for 

all the gestures, and can continue the movement. From this point, the temporary node is 

inaccessible until it is required in the final interpolation. The thicker solid lines in the figure 

indicate the final path traversal and the node labelled T indicates the temporary node created when 

the interruption occurred. 

A method has been presented for representing movement. The graphical representation allows for 

the continuation of any movement with any othcr movement by defining paths for the gestures 
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back::! 

Figure 4-7: Graph with a temporary node 
caused by an interrupting gesture 

from every node in the graph. This solution presents a way of interrupting movements at any time 

and recovering easily to continue with another movement. The flexibility of this representation is Id/ 
A 

well-suited for animating secondary movement. 

4.4. The Gesture Specification Functions 

One difficulty in devising algorithms for human animation is that the human body is not a very 

general structure. An algorithm that generates movement for one arm could be used to control the 

motion of the other arm by applying a reflection operation. However the same algorithm would not 

be suitable for controlling the motion of the legs, and even less appropriate for the head. Although 

all these limbs are links connected at joints, the links are different sizes, there are different numbers 

of joints in each limb, and constraints on the humanly possible rotations of the joints vary between 

the joints. Human animation must therefore appeal to specialized algorithms with data about the 

composition of the body. 

Animation systems which incorporate knowledge focusing on particular types of human 

movement can produce realistic motion, because different knowledge is required to animate 
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different parts of the body. GESTURE encodes knowledge about movements of different body 

parts into gesture specification functions. In particular, each function generates keyframes to 

perform a particular movement using the graph and two special-purpose tools, anchor and 

traverse-graph. 

Recall that a request for the execution of a movement initiates a new event at a certain clock time. 

The gesture specification functions can alter the channel table from the current clock time onwards 

to interrupt previous movements and generate keyframes for the new movement. Anchoring is a 

mechanism for placing an appropriate keyframe at the current clock time, and then removing all 

keyframes in the future of that time. The new keyframe that is created corresponds to a temporary 

node in the graph. The joint values at this time are computed by applying an interpolation to the 

segment defined by the keyframes surrounding the current clock time. The effect of anchoring a 

channel at a particular time is to ensure that movements that were executing up to that time 

continue to do so in the same way, and that the new (interrupting) movement can begin 

immediately at the current clock time. 

The other tool available to the gesture specification functions, traverse-graph, generates the 

keyframes for the specified movement. The type of gesture desired is specified, along with a 

qualitative description of how fast the movement should be executed (this will affect the inbetween 

values on the arcs), and one keyframe is placed in the channel table for every node encountered in 

the graph traversal. The traverse - graph tool also handles the creation and deletion of action 

movement objects. Before the graph traversal begins, all active action objects are examined to see 

if the joints used in executing their movement coincide with the current movement being 

processed. If so, the action movement will no longer be able to continue its cycle and so the object 

is removed. At the end of a graph traversal, the last node reached is examined to see if it represents 

the last posture in a destination movement, or if it is one node in a cycle for an action movement. 

If the latter is true, an action object is created for this new movement. 

Most movements can be generated by the gesture specification functions using just the two tools 

anchor and traverse - graph. Movements that are generated using predefined keyframes mostly fall 

into this category, since the graph is a natural representation for keyframing. However, 
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occasionally a gesture specification function may generate movement by applying an algorithm 

such as a dynamic or a kinematic simulation. Using the results of such an algorithm could involve 

altering body positions for nodes in the graph, or adding or removing nodes from the graph. In this 

case, the gesture specification functions will require additional control besides simply using the two 

tools. This situation will be discussed further in the latter part of this section. 

Each of the gesture specification functions is invoked with four parameters. The clock-time is the 

time at which the movement should begin execution. The other three parameters are adjectives 

which describe specific ways the movements can be executed. The speedfactor describes how 

quickly the movement should be executed. The hemisphere indicates if the left, right or both sides 

of the body are involved in the movement, or in the case of the head, if the movement should be 

done looking left, right or straight ahead. The height is used by head movements to signify if the 

head is looking up or down, or in the case of a wave, if the gesture is large or small. If the 

movement script does not qualify the movements, default values are used. The speed of the gesture 

always defaults to an average speed, however the defaults of the other qualifiers dcpend on the 

movement. 

The speedfactor for a gesture requires further explanation. The sole primary movement in the 

GESTURE implementation is walk. The velocity of a walk can be measured quite accurately, and 

a slow, average and fast walk could be defined with respect to walking velocities of people. 

However measuring the velocity of a head scratch, or of turning the head to look in another 

direction is not so easily done. The secondary movement in GESTURE is generated from 

keyframe data. This data was obtained by using a keyframing system COMPOSE [Calvert 891. 

The joint angles for each of the positions created in this system were recorded in the graph nodes. 

However a decision had to be made as to the measure attached to each of the arcs. Recall that this 

measure represents the number of "inbetween" frames between key positions and that this value 

will control the speed of the movement. The choice of measures on the arc was based on applying 

the same kind of intuition an animator uses in a keyframing system. For each movement, a value 

was selected that would produce a natural, average-looking velocity of that movement. The 

qualifiers "slow" and "fast" simply multiply or divide these values by 2, to decrease or increase the 

speed of the movements respectively. 
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* Gesture Specification Function: gs-on-waist 
* 
* Gesture Description: 
* Put one or both hands on waist. 
* 
* Qualities Used (defaults in < > brackets) : 
* speed-factor : SLOW-SPEED, <AVERAGE-SPEED>, FAST-SPEED 

hemi sphere : LEFT-SIDE, RIGHT-SIDE, <BOTH-SIDES> 
* 
........................................................................ 
* / 
void gs-on-waist(c1ock-time, speed-factor, hemisphere, height) 
int clock-time; 
int speed-factor; 
int hemisphere; 
int height; 

{ 
#ifdef lint 

height = height; 
#endi f 

/ 
* set defaults 
*/ 

if (speed-f actor == NOQUALITY) 
speed-factor = AVERAGE-SPEED; 

if (hemisphere == NO-QUALITY) 
hemisphere = BOTH-SIDES; 

/* 
* produce keyframes 
* / 
if (hemisphere == LEFT-SIDE I I 

hemisphere == BOTH-SIDES) 
{ 

anchor (GRAPH-LARM, clock-time) ; 
traverse-graph(GRAPH-LARM, ULRMULRM0N-WAIST, speed-factor 
anchor(GRAPH-LHAND, clock-time); 
traverse-graph (GRAPH-LHAND, LHAND-WAIST, speed-f actor) 

1 

if (hemisphere == RIGHT-SIDE I I 
hemisphere == BOTH-SIDES) 

{ 
anchor (GRAPH-RARM, clock-time) ; 
traverse-graph(GRAPH-RARM, RARM-ON-WAIST, speed-factor); 
anchor(GRAPH-RHAND, clock-time); 
traverse-graph(GRAPH-RHAND, RHAND-WAIST, speed-factor); 

l 
1 

Figure 4-8: Gesture Specification Function for gesture: on-waist 

The gesture specification function which controls the movement of placing one or both hands on 

the waist is shown in figure 4-8. This function demonstrates the most basic use of the anchor and 

traverse-graph tools to produce movement from the keyframing data in the graph. First the 
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* Gesture Specification Function: gs-scratch 
* 
* Gesture Description: 
* Scratch back of head with left or right hand 
* 
* Qualities Used (defaults in < > brackets): 
* speed-factor : SLOW-SPEED, <AVERAGESPEED>, FAST-SPEED 
* hemisphere : LEFT-SIDE, <RIGHT-SIDE> 

* / 
void gs-scratch(c1ock-time, speed-factor, hemisphere, height) 
int clock-time; 
int speed-factor; 
int hemisphere; 
int height; 

{ 
ACTION *action-movt; 
CHAN-ENTRY *last-head, *last-arm; 

#ifdef lint 
height = height; 

#endif 

/* 
set defaults 

*/ 
if (speed-factor == NO-QUALITY) 

speed-factor = AVERAGE-SPEED; 
if (hemisphere == NO-QUALITY) 

hemisphere = RIGHT-SIDE; 

/* 
* produce keyframes 
/ 

if (hemisphere == LEFT-SIDE) 
{ 

anchor (GRAPH-HEAD, clock-time) ; 
traverse-graph(GRAPH-HEAD, HEAD-L-SCRATCH, speed-factor); 

anchor (GRAPH-LHAND, clock-time) ; 
traverse-graph (GRAPH-LHAND, LHAND-SCRATCH, speed-f actor) ; 

anchor (GRAPH-LARM, clock-time) ; 
action-movt = 

traverse-graph (GRAPH-LARM, LARM-SCRATCH, speed-f act or) ; 
action-movt->graphs-involved[GRAPH-HEAD] = TRUE; 
action-movt->graphs-involved[GRAPH-LHAND] = TRUE; 

1 
else 
t 

anchor (GRAPH-HEAD, clock-time) ; 
traverse-graph(GRAPH-HEAD, HEAD-R-SCRATCH, speed-factor); 

anchor(GRAPH-RHAND, clock-time); 
traverse-graph (GRAPH-RHAND, RHAND-SCRATCH, speed-factor) ; 

anchor (GRAPH-RARM, clock-time) ; 
action-movt = 

traverse-graph (GRAPH--, RARM-SCRATCH, speed-factor) ; 
action-movt->graphs-involved[GRAPH-HEAD] = TRUE; 
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action-movt->graphs~involved[GRAPH~F!HAND] = TRUE; 
l 
/* 

if the arm gets in position before the head, we don't want 
* to be scratching in mid-air, so anchor the arm to the time 
* when the head is in position, so that it won't begin its 
cycle 'till after that time 

*/ 
last-head = chan-head; 
while(1ast-head->next != NULL) 

last-head = last-head->next; 
last-arm = (hemisphere = LEFT-SIDE ? chan-lam : chan-ram); 
while(1ast-am->next != NULL) 

last-arm = last-am->next; 

if (last-arm->time < last-head->time) 
t 

if (hemisphere == LEFT-SIDE) 
anchor(GRAPH-LARM, last-head->time); 

else 
anchor(GRAPH-RARM, last-head->time); 

l 

Figure 4-9: Gesture Specification Function for gesture: scratch 

defaults are set if the movement qualities were not specified in the script. This movement can only 

be qualified by the speed and hemisphere, and so the height qualifier is ignored. By default both 

hands are placed on the waist. Then, the channel table is anchored at the current clock time, and 

the graphs are traversed; this places the keyframes required to put the hands on the waist in the 

channel table. 1 
The discussion of the graph in the last section raised the possibility of having to traverse two 

graphs concurrently in order to execute some movements. One example is the head scratch which 

must co-ordinate the movements of the arm and hand on one side of the body with the head. The 

solution in GESTURE is shown in figure 4-9. This gesture has the added complication of being an 

action movement, which means that an action movement object is created in the graph traversal for 

the arm. Since a head scratch involves the joints controlled by three graphs, the action object 

created stores this information so that if a movement involving any of thcse joints occurs at a later 

time, this object will be removed, and the head scratching will cease. The gesture specification 

function for head scratch must deal with one other point. When the head and arm graphs are 

traversed, depending on where these limbs were positioned before the interruption occurrcd, one 

limb might arrive at its destination before the other. If the arm is in position to scratch before the 

head, it is important that the scratching cycle does not begin until the head has been properly 
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Gesture Specification Function: gs-walk 
* 
* Gesture Description: 
* Start up a walk. 
* 
* Qualities Used (defaults in < > brackets): 
* speed-factor : SLOW-SPEED, <AVERAGE-SPEED>, FAST-SPEED 
* 

*/  
void gs-walk(c1ock-time, speed-factor, hemisphere, height) 
int clock-time; 
int speed-factor; 
int hemisphere; 
int height; 
{ 

static void create-legsgraph(); 
static void set-swing(); 

#ifdef lint 
hemisphere = hemisphere; 
height = height; 

#endif 

/ 
* set defaults 
* / 
if (speed-factor == NO-QUALITY) 

speed-factor = AVERAGE-SPEED; 

/ * 
* If this is the first time we have been asked to walk, we must 
* create the legs graph and the location graph. 
* We can tell if they haven't been created yet, because the 
* arc labelled LEGS-WALK from the first node, will just point 
* to itself (the first node), and not another node which we 
* would traverse to get to the walk cycle nodes 
*/ 
if (legs-states [0] .next-state [LEGS-WALK] == 0) 

create-legs-graph(speed-factor, hemisphere, height); 

/* 
* produce keyframes 
*/ 
anchor (GRAPH-LEGS, clock-time) ; 
traverse-graph(GRAPH-LEGS, LEGS-WALK, speed-factor); 

/* 
* if the arm is *not* doing something else right now (ie. is at rest), 

start the arm swinging with the legs 
*/ 

last-arm = chan-lam; 
while (last-arm->next ! = NULL) 

last-arm = last-arm->next; 
if (last-arm->state == 0) 
( 

set-swing (GRAPH-LARM) ; 
t raverse-graph (GRAPH-=, LAFN-SWING , AVERAGE-SPEED ) ; 

l 
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last-arm = chan-ram; 
while(1ast-arm->next != N U U )  

last-arm = last-arm->next; 
if (last-arm->state = 0) 
I 

set-swing (GRAPH-RARM) ; 
traverse-graph(GRAPH-RARM, RARM-SWING, AVERAGE-SPEED); 

1 
1 

Figure 4-10: Gesture Specification Function for gesture: walk 

positioned. Therefore the channel table for the arm is anchored in the destination position for 

scratching at the time when the head has reached its destination position. 

The flexibility of the graph is demonstrated by the fact that it can not only represent movement 

that has been specified by keyframing, but also by any other form of movement generation. The 

movement walk serves not only as an example of primary movement in GESTURE, but also as an 

example of movement generated using non-keyframing techniques. The gesture specification 

function that generates the walking movement uses the graph to incorporate data produced from a 

dynamic simulation of a walk [Bruderlin 881. Human walking also involves swinging each arm in 

synchrony with the opposite leg. An arm swing is initiated by this same gesture specification 

function using a kinematic description of the movement of the arm as a function of the movement 

of the leg. 

Figure 4-10 shows how the walk gesture specification function uses the graph to incorporate 

dynamically and kinematically simulated movement. The subsidiary functions create-legs-graph 

and set-swing are invoked which alter the graph by changing joint values at the nodes, and 

modifying arcs and arc lengths. When the graph is traversed after this, animation frames will be 

generated that control movement according to each of these simulations. The method for 

incorporating each of these dynamic and kinematic algorithms into the graph will now be 

examined. 

Animating a human walk is a particularly complicated type of control over articulated bodies, as 

it involves addressing such issues as balance and co-ordination as well as impact with the ground, 

an external object to the body model. One way of producing very realistic motion for complex 

human movement is to set up a dynamic simulation of the movement, which considers the forces 

and torques applied to the body while executing this movement. To avoid the user having to 
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supply these forces and torques to produce the desired movement, a high-level interface is 

appropriate. Bruderlin has implemented a goal-directed system where the movement specification 

for the walk includes supplying parameters such as the velocity, step length or step frequency, 

pelvic list and lateral displacement [Bruderlin 881. The result of his simulation is a frame by frame 

specification of joint angles in the legs for the duration of the walk. These results are used to 

control the walk in GESTURE. 

The style of an actor's walk depends on the personality and moods defined for the actor. A 

gesture specification function can use the adjectives that qualify the walk in the movement script to 

supply appropriate parameters to the walking algorithm. Once a walk is generated, the joint values 

over time must be incorporated into the graph. 

The function create-legs-graph assigns joint angles produced from the simulation to one node in 

the legs graph for each frame of the walking sequence. Since the simulation produces every frame 

in the walk, an interpolation is not required. To enforce this, the arcs that are created between the 

nodes all have arc length 0. This is a general way to incorporate the data from any movement 

generation algorithm that defines values for every frame. Thus the graph could also represent 

movement from film data or rotoscoping, for example. 

A walking sequence generated by this algorithm consists of three cycles: the develop, the 

rhythmic and the decay cycles. The body accelerates to the specified velocity during the develop 

cycle, walks at that velocity during the rhythmic cycle and then decelerates to a stop during the 

decay cycle. The rhythmic cycle is represented by nodes in the graph which generate the 

movement of two steps, one on the left foot and one on the right. The walk is therefore an action 

movement, and the cycle through the nodes in the rhythmic cycle continues until the movement 

script specifies a halt command. 

An example of the nodes and arcs in the legs graph after the create-legs-graph function has been 

executed is shown in figure 4-1 1. In general there will be of the order of 50 nodes in each of the 

three walking cycles. 

When people walk, they usually swing their arms. When a walk command is specified in the 
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halt ..-~-- 

walk walk 

walk 

walk 
halt 

DEVELOP cvcle RHYTHMIC cycle DECAY cycle 

Figure 4-11: The legs graph representing the 
walk and halt movements 

movement script, the gesture specification function that knows about walking also generates an arm 

swing, if appropriate. There are a few issues to be addressed with respect to this movement. First 

of all, the style of arm swing is affected by the walk: a bouncy, light-hearted walk may cause a 

more vigorous arm swing. Therefore the nodes in the arm graph that control the arm swing will be 

modified accordingly. Secondly, frames for controlling the arm swing cannot be generated 

independently of those controlling the walk. The gesture specification function must ensure that 

the frame generating the left heel strike occurs at exactly the same time as when the right arm is in 

its furthest forward position. Lastly, since arms can also be engaged in secondary movement, the 

arm swing should not occur unless the arm was at rest next to the body. Furthermore, if an arm 

was executing some secondary movement during the walk, and then is dropped to the side, the 

gesture specification function that deals with placing the arm at rest must know to begin an arm 

swing if the actor is walking. This involves creating arcs to the arm swing nodes from nodes 

representing any other arm position, and determining the arc lengths that will put the arm swing in 

synchrony with the walking cycle. 

The function set-swing modifies the arm graphs so that traversing those graphs will produce an 

arm swing meeting the three requirements stated above. The arm swing is generated kinematically 

with the use of two keyframes representing the forward and back positions of the arm in the swing. 

The joint angles for the arms at these keyframes are determined as a percentage of the joint angles 
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in the legs at heel strike and toe off. If the arm is to travel from an arbitrary node to one of the arm 

swing nodes, the gesture specification function determines if it is more appropriate to go to the 

forward or back position of the arm swing, and then calculates the arc length based on the number 

of frames in the walk cycle that would synchronize the arm with the legs. The arm swing is then 

represented by an action object which is removed only when the walk comes to a halt. 

Assigning individual functions to be responsible for the execution of a single gesture has proved 

to be an appropriate way to oversee the control of secondary movement. Since each gesture 

requires special knowledge about how it is to be executed, gesture specification functions are a 

good way to give individual attention to each of these movements. Furthermore, with the use of 

the graph, the gesture specification functions can apply the most suitable movement generating 

algorithm for each gesture. The approach to human animation presented here provides a flexible 

and general way to produce and co-ordinate different types of movements. 

4.5. Presentation 

GESTURE is an interactive graphics program in which the user communicates through the mouse 

and keyboard and the output is displayed on a colour monitor. The system is written in 'C' and 

runs on an IRIS-2400. The IRIS geometry engines, which perfom matrix operations in hardware, 

are used to increase the speed of matrix multiplications that are required to determine the rotation 

of each joint in the model of the body. 

The purpose of GESTURE is to demonstrate that secondary movement can be produced from a 

description in a movement script. In implementing GESTURE, it was considered beneficial if the 

user-interface simulated the environment of the ideal framework as presentcd in chapter 3. In this 

ideal situation, the user selects the number of actors for the animation, assigns them all primary 

goals, and defines the personality and mood of each actor which then dctcrmines their secondary 

movement. The ideal framework has been restricted in the following way. The animator can work 

with exactly two actors who are introduced as Simon and Sally. These actors have their own fixed 

starting position, facing each other at opposite ends of the stage. Since GESTURE is concerned 

only with secondary movement, the sole primary goal assumed for Simon and Sally is to walk to 

the other end of the stage. This initial set-up is pictured in figure 4-12. 



Figure 4-12: Main scrccn of GESTURE 

In GESTURE, the animator has high-lcvcl control ovcr the actors' secondary movcmcnt by 

dcfining cach of thc actors' pcrsonality and moods. Figurc 4-12 shows two buttons on thc scrccn 

labcllcd "Simon" and "Sally". 11' onc of thcsc buttons is sclcclcd with thc mousc, Lhc charactcr 

dcfinilion scrccn for ~ h c  selcctcd actor is displayed, and thc animator can givc this actor a charactcr 

(figure 4-13). In the uppcr half of thc scrccn, thc actor's pcrsonality is dcfincd by adjusting a scl of 

two-cndcd slidcrs. For cxamplc, an actor can bc cithcr cxtrovcflcd or introvcrtcd on a scalc of 0 to 

10. Thc othcr possiblc opposing pcrsonality traits to sclcct lrom arc a chccrful or gloomy 

disposition, assertive or passivc and dorninccring or submissive. Thc lowcr half of thc scrccn 

dctcrmincs thc mood of thc actor. An actor can cxhibit dcgrccs of borcdom, ncrvousncss, 

tircdncss, impaticncc and fcar on a scalc of O to 10. Dcpcnding on Lhc valucs sclcctcd on this 

scrccn, thc aclors will display diffcrcnt lypcs of secondary movcmcnt as thcy walk across the svagc. 

For cxamplc, if thc valuc of "tircd" is vcry high, ~ h c  actor will rub his or hcr cyc. 



Figure 4-13: Character dcfinilion scrccn of GESTURE 

Thc prcsentation of GESTURE dcmonstratcs how an animator can intcract with a goal-dircctcd 

systcm and achicve realistic human movcmcnt. GESTURE docs not includc an cxpcrt systcm 

which would base its sclcction of sccondary movcmcnt to display on thc characicr dcscriptions. 

Howevcr, a function has bccn writtcn to simulatc thc bchaviour of thc cxpcrt systcm. This mock 

expert system crcatcs a movcmcnt script by sclccting appropriatc gcsturcs at lixcd intervals of timc. 

Sincc the primary goal in GESTURE is to walk, thcn "walk" is thc first command that is cntcrcd in 

thc movcmcnt script. Thc spccd of thc walk is sclcctcd dcpcnding on how chccrful or gloomy thc 

actor is, and on his or hcr dcgrcc of borcdom and tircdncss. Secondary movcmcnt is cntcrcd 

dcpcnding on characteristics rclatcd to that gcsturc. For cxamplc a scratch will bc cntcrcd into thc 

movcmcnt script more oftcn if thc actor is vcry ncrvous. Thc scratch will bc qualified by "fast" i f  

thc actor is vcry impatient or fcarful and "slow" if thc actor is passivc. Thc "wavc" gcsture will 

occur at most oncc as thc actors arc about to pass cach othcr, only if thc actor is not introvcrtcd. 

Thc movemcnt script will tcrminatc with a "halt" command. Thc ruics uscd in thc mock cxpcrt 

systcm can bc found in appcndix C. 
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The selection of secondary movement is based on the results of studies in psychology [Scheflen 

721. In these studies the frequency and duration of movements were not specified. Frequency and 

duration of gestures were chosen to adequately demonstrate secondary movement. in GESTURE. 

The results may not be psychologically sound, however they demonstrate the effectiveness in 

making the actors' motion believable. Movement scripts may also be specified manually and 

processed by GESTURE in the same way as the ones produced by the mock expert system 

described above. In this way, movement scripts can be specially constructed to contain realistic 

combinations of secondary movement. 



Chapter 5 

System Evaluation 

This thesis has presented a general framework for a human animation system, with the focus on a 

high-level approach to incorporating secondary movement into actors' motion. GESTURE 

implements the part of the framework that produces the secondary movement specified in a 

movement script. In the first section, the success of the implementation of the graphs and gesture 

specification functions will be examined. In the following section, the system will be evaluated 

against various measures. The chapter will conclude by comparing the results of this system with 

other research that has been conducted in similar areas. 

5.1. Analysis 

In the last chapter, the use of gesture specification fimctions along with a graph was presented as 

a way to represent and generate movement, with the flexibility of interrupting movements at any 

time. An advantage of using these functions is that knowledge about movements is represented in 

an organized way, which is easy to understand and modify. Thus new gestures can be easily 

introduced into the system. Many types of gestures were incorporated into the system, and it was 

also demonstrated how movements simulated by various types of algorithms could be incorporated. 

Adding a new gesture to the system requires the creation of a corresponding gesture specification 

function. If the gesture can be produced by using nodes currently in the graph, writing this 

function can be easily done using the two tools anchor and traverse-graph presented in section 4.4. 

If body positions not currently represented in the graph must be used, new nodes and arcs must be 

added to the graph in the following way. If the node is an intermediate node, then an arc must be 

created from that node for every gesture. This is done so that any movement can be continued 

from this intermediate node. If the node is a named node, as well as the arcs described above, an 

arc must be added to every other node in the graph labelled with the name of the new node. This is 
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done so that the gesture represented by this new node can be performed from any position 

represented by all other nodes in the graph. The last step is to label all the arcs with the distance 

measure. 

Let us examine the complexity of representing the graph in terms of storage space. Assume the 

graph has n nodes and g gestures. In general g < n because there can also be intermediate nodes. 

Each named node must have an arc for every other gesture but the one labelling its node, thus g(g - 
1) arcs. The intermediate nodes must have an arc for every gesture, thus (n - g)g arcs. A graph 

must therefore store O(ng) arcs. Adding a node to the graph requires adding up to g arcs to the new 

node, and possibly n arcs for the other nodes if the ncw node is named by a new gesturc. So adding 

a new node can be done by adding O(n) arcs. 

struct graph-head { 
QUATERNION joint-value[NUM-HEAD-JOINTS]; 
short next-state[NUM-HEAD-GESTURES]; 
short arc-length[NUM-HEAD-GESTURES]; 

1; 

Figure 5-1: Structure representing a node in the hcad graph 
A 

Consider for example the space used by the head graph in the GESTURE implementation. An arc B 
can be represented by two integers, one representing the node it is pointing to and the other the \/I 
distance measure. The storage for a node must also contain the quaternion values for each joint at 

that node. A quaternion is represented by four floating point numbers. Figure 5-1 shows the 

structure representing one node in the head graph. The number of head joints 

(NUM-HEAD-JOINTS) is 8, one for the ATLANTAL and 7 CERVICAL joints in the neck. The 

head graph has 13 (NUM-HEAD-GESTURES) gestures and there are 13 nodes in the graph. The 

total storage space used for the head graph is 2340 bytes. This is not an unreasonable size for 

storing a graph that represents the movements of one body part. The storage required for 

representing an animation script of 126 frames is 90937 bytes, and so in comparison, the storage 

for the graphs is not significant. 

The number of arcs that must be added to the graph when introducing a new gesture must also be 

gauged with respect to the amount of work involved in deciding which nodes to connect, and what 

measure to assign to the arcs. Creating arcs can be a tedious process as a minimum of g (the 
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number of gestures) arcs must be added for each new node. However, once the arcs have been 

created, the graph provides a foundation for any combination of movements to be exccuted. The 

arc creating process could be made easier by the use of a graph generating program. This program 

would display nodes as body positions, and show the different arcs connecting them. The user 

could modify arcs and arc lengths, and then specify a path through the graph which would define a 

series of movements to be executed by a figure. This mini-script could be previewed, and then the 

graph modified to adjust body positions or timing between the positions. A graph generating 

program was not implemented since a keyframing tool was available which could be used to 

preview movements, and adjust timing which would alter arc lengths [Calvert 891. 

One point should be mentioned about the distance measure on the arcs. In general it is safe to say 

that the further the physical distance between two body positions, the larger the distance measure 

on the arc between the two nodes representing the two positions. However the arcs length should 

not be viewed in this way. Instead, this measure, which is attached to an arc labelled by a gesture, 

should be an indication of how long it would be natural to take when moving between the two 

positions to perform the particular gesture. For example, consider the two body positions 

represented by the hand at the side of the body, and the hand next to the head, and arcs for rubbing I I I 
A 

an eye and saluting which connect the nodes representing these positions. The distance measure on 

the arc with the eye rubbing gesture will be larger than the measure on the arc with the salute 

gesture, since the former gesture will probably be executed in a slower, lazier manner than the 

latter. In fact, in GESTURE, the arc length of the eye rubbing arc is twice as large as the arc length 

of the salute arc. 

From this analysis, one can see that a great deal of time and care may be taken in creating the 

graphs and producing gesture specification functions. However this time must only be invested 

once. The time involved in giving studious attention to the specification of the various gestures 

pays off in the endless number of possible scripts that can be created from the movements. This 

process is analogous to developing an expert system: a knowledge engineer can spend many 

months embodying an expert's knowledge into a system, but once it is complete, the expert system 

can be used by many people in varying situations. 
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5.2. General Evaluation 

One of the objectives of this thesis is to show that incorporating secondary movement into a 

human animation system can transform a robot-like figure into a very life-like actor. The success 

of an animation is best judged by how believable the viewer considers the actors' movements to be. 

In order to view the resulting animation produced from a movement script, a sequence has been 

printed on the margin of the pages of this thesis. The animation can be viewed by flipping through 

the pages in reverse order. The movement script that generated this sequence is shown in figure 

5-2. This script generated 126 frames, however only frames 26 through to 101 are printed. 

walk  
r u b  
wave f r i e n d l y  
l o o k  l e f t  
l o o k  r i g h t  up 
on-waist  b o t h  s l o w  
c l e n c h  b o t h  
l o o k  l e f t  up 
h a l t  
l o o k  s t r a i g h t  a h e a d  

Figure 5-2: Movement script used to 
generate animation printed in margin 

As well as the quality of the final animation, the system should also be assessed on its usability. 

GESTURE implements only the part of the framework that reads movement scripts and produces 

an animation script. However the whole framework setting has been simulated in order to provide 

a more user-friendly environment for the system. GESTURE also has a well-defined interface 

which could be used if an expert system were to be implemented and incorporated into the 

framework. The movement script uses a language which is powerful and flexible. Movements can 

be initiated at any clock time and without regard to the state of the body at that time. If a 

movement is not completely qualified in the script, default qualities will be assumed. The 

movement script completely defines the animation script that will be produced by GESTURE, and 

is an elegant interface for other modules to specify the movements for GESTURE. 

The gestures that have been implemented were chosen to cover a variety of different types of 

movements and to demonstrate different techniques for generating movements. Movements such 
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as "on-waist" or "in-front" simply use named nodes to keyframe their positions. An intermediary 

node was introduced when the "in-back" gesture was added, to ensure that movements would not 

force the arm through the body on the way to the back. The "scratch" gesture demonstrates how 

movements in two graphs (the head and the arm) must be co-ordinated. Non-keyframed 

movements can be generated by applying algorithms in the gesture specification functions and 

modifying the graph to incorporate the results. The "walk" movement is an example of this type. 

A complete list of the gestures implernentcd is found in appendix B. The number of gestures and 

the variety of methods used to implement them supports the ease with which other secondary 

movement could be incorporated. 

Graphics programs are inherently time-consuming and resource-intensive because of the amount 

of information that must be stored and displayed. For each frame in the animation, a hierarchy of 

matrix transformations must be stored which corresponds to the joint rotations applied in the 

hierarchical representation of the body for that frame. This is not only a storage problem, but will 

also involve many matrix multiplications to display each frame. One of the options in GESTURE 

is to select playback speed as real-time. This feature is made possible by using two techniques. 

First of all, the animation script is preprocessed and all matrix multiplications are performed for 

every frame. The script is then represented as a series of 3-D polygons which when drawn will 

display the figure in the body position represented by the hierarchy of joint transformation 

matrices. This optimization process increases the display speed significantly, however it is 

possible that real-time will still not been attained. In these cases, real-time display is achieved by 

skipping frames in the script so that only some of the frames are displayed. With this capability to 

display animations in real-time, it is possible for animators to get a sense of the overall moverncnt. 

Providing this option in GESTURE gives imrncdiate fcedback on the resulting movement. 

The actual process of creating an animation script from the movement script also requires some 

time. The movement script shown in figure 5-2 required 27 seconds of processing time to compute 

the animation script. However, when the "walk" and corresponding "halt" commands were 

removed, creating the animation script took only 3 seconds. This wide difference in time is due to 

the fact that processing the "walk" command involves reading the data for the legs graph from a 

file. In either case, the processing time is not very significant. 
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5.3. Comparative Results 

Animating human figures is such a complex task that research in human animation has been 

divided into smaller sub-areas. There seems to be general agreement that goal-directed systems are 

the most appropriate method for animating live figures because of their ability to produce complex 

realistic motion with minimum input from the animator. However providing the kind of high-level 

control a goal-directed system offers requires amalgamating solutions to the many problems of 

specifying human movement. 

In the last few years, many ways have been proposed for controlling the movement of specific 

skills such as walking, sitting or grasping objects [Zeltzer 82b, Drcwery 86, Korein 82a]. 

Algorithms that generate these movements in very realistic ways have also been developed [Girard 

85, Wilhelrns 87, Bruderlin 881. However very little work has been done on character animation, 

where movement generation would concentrate on developing an individual character for an actor 

rather than on making the actor execute specific tasks. One area from which character animation 

can benefit greatly is facial animation. Apart from being able to simulate speech, animated faces 

can also register emotions [Pearce 861. These results would blend nicely into a system where the 

animator would specify the actors' disposition, and the actors' faces would express their moods. 

An actor's moods can also be expressed in the way the whole body executes movements. In 

Ridsdale's system [Ridsdale 871, an actor's path is chosen while considering the position of other 

actors in the room whom the first actor may like or dislike. However in this system the movements 

of the body are not considered. In the film Rendez-vous h Montrial [Thalmann 871, Humphrey 

Bogart and Marilyn Monroe evoke their own personalities, however the movements that display 

each of their characters had to be specified by the animator. In GESTURE, a system has been 

developed where actors will perform movements in their own characteristic way. The use of 

gesture specification functions implies that animators will have high-level control over secondary 

movement and need not specify it manually. 



Chapter 6 

Conclusion 

The two main objectives of this thesis were to introduce a new type of motion to animation 

systems, secondary movement, for making animated figures more life-like, and to demonstrate that 

this movement can be produced through the use of a high-level specification. The GESTURE 

system demonstrates this by allowing the animator to assign personality traits and set moods for the 

actors, and then determining the secondary movement that the actors display. With a minimum 

amount of user interaction, animations of any length can be produced in which actors will carry out 

gestures appropriate to their character for the duration of the sequence. 

The benefit of describing actors' characters rather than directly assigning them their secondary 

movement is that this process only needs to be done once. After the initial character defining stage, 

all primary movements will be executed by the actors while displaying secondary movement 

appropriate to their character. This means that the animator could specify the same goal for two 

actors with different character traits, and the goals would be accomplished in slightly different 

ways by each of the actors. GESTURE has demonstrated this by assigning the primary goal of 

walking to each of the actors Simon and Sally, and producing varying types of animations for each 

of them depending on the personality and moods that were given to them. 

An important requirement in the design of GESTURE was that movements could be initiated and 

interrupted at any time. This feature is important because secondary movement is not planned 

motion and can vary with changing primary goals. The ability to interrupt movements at any time 

is also very useful if actors are to be able to react immediately to a new situation. In GESTURE 

there is complete flexibility in starting any movement at any time in the animation, even if the actor 

was previously carrying out another movement. 

Since a model of the human body is an irregular structure, localizing knowledge about different 
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body parts seems most appropriate for animating human movement. The approach used in 

GESTURE allows specialized movement generating algorithms to be written for each movement 

supported in the system. The animation system therefore does not rely on one method for 

producing gestures. Each gesture specification function can apply the most suitable algorithm for 

executing the movement it is responsible for as realistically as possible. The graph serves as an 

underlying representation of all movements. While each gesture specification function handles 

movements on an individual basis, the graph is used to represent the results of any algorithm 

applied in the gesture specification functions. 

The philosophy that was followed in designing GESTURE was to assume that the animator 

would like to concentrate on specifying primary goals for actors, and have the secondary 

movement incorporated without explicitly specifying this motion. However sometimes the 

animator may wish to intervene with the automatic selection of the secondary movement by the 

system. It would be interesting to investigate a way to compromise between animator and system 

specified secondary movement. A system addressing this problem should automatically generate 

movements from the animator's high-level specification, but should also allow the animator to 

interact at a lower level of movement specification for part or all of the animation sequence. 

The graph representation in GESTURE can be used to store movement that has been specified 

from keyframing. The inbetween frames are automatically generated by the system to produce 

smooth movement. The automatic interpolation between keyframes is another example where the 

animator may desire finer control over the process. In section 4.2, the interpolation method used 

for the stage location of the actor was discussed. In this interpolation method three parameters 

affecting the continuity, tension and bias of the curve at key points can be used to control the result 

of the interpolation. In GESTURE these parameters use only default values in all the 

interpolations. However, varying the values of these parameters could result in the keyframed 

movements being performed in different styles. For example if an animator was interpreting the 

phrase "Suddenly he looked to the right" into an actor's motion, a discontinuity in the interpolation 

could be introduced at the moment the actor looks right to make the movement appear abrupt. An 

actor's movements could appear stiffer by increasing the tension parameter. An interesting area to 

explore would be to map a set of adjectives to values for continuity, tension and bias providing the 
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animator with a high-level language to control the interpolation process, and thus the style of the 

movements. 

A direct extension of the work done in this thesis would be to incorporate other types of 

secondary movement. This would not only include other "standard" forms of secondary 

movement, but could also include movements that would be performed by old people or children, 

or people from different ethnic backgrounds. There is also a whole different set of movements that 

occur when people interact with one another, for example, hand signals people use while they 

express certain ideas [Duncan 771. This research would be cross-disciplinary with the field of 

psychology. It would also be interesting to work with a psychologist to develop the expert system 

proposed in the ideal framework. Ultimately it would be very rewarding if many of these ideas and 

other research in human animation could be combined to produce a powerful and comprehensive 

goal-directed human animation system. 



Appendix A 

Glossary 

Animation 

Animation is a technique for creating the illusion of movement. This effect is achieved by 

displaying pictures at a rate above the flicker fusion frequency (about 20 frames per second), so 

that the viewer perceives them as one scene with moving components. Consecutive pictures must 

be very similar if the motion is to appear smooth. A computer animation system provides tools for 

increasing the speed at which an animation can be made and for improving the realism. 

Articulated Body 

An articulated body is a structure made up of links connected at spherical joints. The constraints 

on such a body are that the links are rigid (ie. not bendable) and that they remain connected at the 

joints. Such a structure therefore has 3 degrees of freedom, which specify the location of some 

fixed point in the structure, plus 3 degrees of freedom for each joint in the structure. 

Articulated bodies can be represented as a tree structure where each node in the tree represents a 

joint connecting two or more links or segments. To ensure that the segments remain connected, the 

hierarchy of the tree structure can be used to dictate the transformations that are applied at a joint: 

for any node in the tree, the transformation matrices at all its ancestor nodes will be applied before 

the rotation specified at that node. The human body is generally represented as an articulated body. 
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Channel Table 

In a keyframing system, the position and orientation of an object is specified for various frames in 

the animation sequence, and then an interpolation through these keyframes defines the position and 

orientation of the object for all the other frames. Before the interpolation is canied out, keyframes 

are stored in a channel table which is made up of many channels. A channel is a place to store the 

values of keyframes for one degree of freedom in the model of the object. So, for a rigid object 

which has 6 degrees of freedom, the movement of the object can be represented in a channel table 

using 6 channels. 

Degrees of Freedom 

The position and orientation of a structure in space can be completely defined using a 

combination of (x, y, z) co-ordinates and (0, @, Y) angles of rotation around each of the axes. One 

of these parameters represents a degree of freedom of the structure. The number of degrees of 

freedom decreases as the structure is constrained by specifying values for these parameters. A rigid A 
object has 6 degrees of freedom, 3 to specify its position in space, and 3 to define its orientation. 1 
Dynamics 

Dynamics is a method for specifying movement by supplying the forces and torques that act on 

parts of the body. The resulting motion is realistic because the laws of physics are applied to the 

body to compute the motion. In general, it is not intuitively obvious what motion will result when 

forces and torques are specified. 

The inverse dynamics problem is concerned with determining the forces and torques to be applied 

in order to produce a given motion. For example, if the animator specifies the motion of kicking a 

ball, the system will compute the forces and torques to apply to produce this movement. 
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Event Driven 

A program that simulates the occurrence of events over a period of time can be classified as a 

time-driven or an event-driven system. A time-driven system carries out the simulation by 

incrementing the clock by fixed intervals in time, and checking at each time if there are any events 

to process. Event-driven systems process a queue of events that have arrived in chronological 

order, and which have a time stamp identifying the time that the event occurred. At each step in 

the simulation, the clock is advanced to the time associated with the next event to be processed. 

Frame 

In this thesis, a frame is used in two contexts. 

An animation frame is one picture in a sequence of pictures which when viewed in rapid 

succession give the illusion of movement. 

A frame representation is a method used in artificial intelligence to store knowledge about a 

concept [Minsky 751. A frame consists of slots, each of which describe an attribute of the concept, 

and relationships between the slots. The slots can form a PART-OF hierarchy and the frames arc 

organized in an IS-A hierarchy. For example, a car IS-A motorized vehicle. The concept 

motorized vehicle could have a slot for engine, and a piston is PART-OF an engine. 

Gesture 

In the context of this thesis, a gesture is a movement which a person performs sub-consciously. 

This can be in the form of an action that begins and ends in the same position, such as scratching 

one's head, or can involve repositioning a part of the body, such as placing one's hands on one's 

waist. The collection of gestures is called secondary movement. 
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Goal-Directed 

A goal-directed system is an animation system in which the animator specifies movement for the 

actors by assigning them goals. Goals can take on various forms. One type of goal is an action 

such as walk, sit or grasp. Goals can also be assigned to the ends of limbs in the human model to 

position the body, such as in reaching for an object while seated. The development of human 

animation systems is tending towards goal-directed approaches as it will simplify the task of 

specifying the movement for such a complex structure as the human body. 

Interpolation 

Interpolation is the process of determining a set of missing values between two known values. 

For example, in a curve-fitting program, a random set of points is given, and an interpolation will 

determine the points that will make up a curve passing through the given points. In keyframe 

animation, an interpolation between key positions of an object can help produce the 24 

framesfsecond required for animation, relieving the animator from this tedious task. A more 

flexible interpolation routine will provide some form of control on the shape of the resulting curve. 

Keyframe 

In 2-dimensional animation, a keyframe is one picture that will be part of an animation sequence. 

One way for animators to quickly conceptualize what the movement will look like is to draw 

frames at intervals in the animation. These are the keyframes. When the animator is satisfied with 

this outline of the animation, the "inbetween" frames can be drawn. Producing animations through 

this method is called keyframing. In 3-dimensional animation, instead of keyframing the 

completed picture, positions and orientation of objects in the scene are defined, and the 

"inbetweening" process computes the transitions the objects make betwecn the key positions. 
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Kinematics 

Kinematics is a method for specifying motion by supplying position, velocities and accelerations 

for bodies without any regard to forces or torques that could be acting on the bodies. For example, 

rotoscoping and keyframe animation describe movement in terms of positions of the body over 

time. 

In the inverse kinematics problem, the joint angles of a multi-link structure must be found such 

that the end of the structure will be in a specified position in space. Since this problem is under- 

constrained for a many-segmented structure, there are an infinite number of solutions. If the 

structure represents a human limb, such as an arm, the problem becomes one of choosing 

constraints that will determine a solution producing natural movement for the limb. This is a very 

difficult problem. 

Kinesiology 

Kinesiology is the study of human movement and human performance. These arcas are studied 

with respect to the anatomical, physiological, mechanical, developmental, psychological and 3 
sociological aspects of movement. A typical application of kinesiology is in sports science where 

human movement would be studied to find ways in which to improve the efficiency in 

performance. In computer animation, kinesiology can be hclpful by providing information about 

the way that people move naturally. 

Knowledge Base 

A knowledge base is a representation scheme for information which is structured in a way that is 

easy to understand and modify. Representation schemes are often classified into three categories: 

logical schemes (schemes that use logical formulae to represent knowledge), network schemes 

(schemes that use nodes and edges in a semantic network) and procedural schemes (schemes whose 

knowledge is retrieved by activating procedures) (see [Mylopoulos 831). The information 

generally embodies some domain of knowledge, such as symptoms and cures for a class of 
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diseases. A knowledge base is created and maintained by a knowledge engineer who will work 

with an expert in the domain to capture his or her expertise in the knowledge base. 

Motion Specification 

The purpose of an animation system is to provide a means by which an animator can 

communicate to a computer how actors should move. The process of describing the actors' 

movements is called motion specification. Motion specification can take on many different forms. 

At a low level, actor's movements can be described by assigning values to all the actor's joint 

angles in every frame of the animation. This method is tedious, and so higher level ways of 

specifying movement are being explored. Ideally motion should be specified in a language familiar 

to the animator, and the animation system will produce the movements based on this motion 

specification. 

Rigid Body 

A rigid body is one which has no flexible parts or movable joints. The positions and orientation 

of a rigid object can be completely defined with 6 dcgrees of freedom. Examples of rigid objects 

are a box or a ball. 

Robotics 

Robotics is the study of machines (robots) that can simulate human activities. Many robots can 

perform complex activities that can aid humans in their work, such as handling hot or radioactive 

items. Techniques developed for robotics can be applied to human animation if the machines are 

modelled as humanoid figures. Algorithms that are used to control a robot's walking, lifting of 

objects or planning a path in a cluttered environment can be applied to animating figures. 
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The Movement Script Language 

The interface between the expert system and GESTURE is a script defined by a movement 

language. The format of the scripts is a series of lines each containing movement commands. 

Each line must be of the format: 

clock-time gesture gesture-qualit y [gesture-quali t y ] 

The clock times on each line must be in increasing chronological order. These clock times 

represent frame numbers. Thus, approximately 24 frames will be equivalent to 1 second of 

animation. On the following page is a complete description of the movement language. The 

gesture qualities in bold face represent the default value used for that quality if none is specified. 
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drop-arm 

Qualities Description I 
slow, average, fast 
left, right, both 

slow, average, fast 
left, right, both 

drop the arm(s) to the rest position 
next to the body 

on-waist 

in-front slow, average, fast 
left, right, both 

slow, average, fast 
left, right, both 

hold hand(s) in front of body 

hold hand(s) behind back 

scratch r slow, average, fast 
left, right 

slow, average, fast 
left, right, both 
emphatically, friendly, shyly 

slow, average, fast 
right 

scratch the head with a hand 

wave with arm (emphatically or friendly) 
or with the fingers (shyly) 

salute t raise hand to head in a salute 

rub the leftjright eye with the leftlright hand slow, average, fast 
left, right 

relax-hand r slow, average, fast 
left, right, both 

slow, average, fast 
left, right, both 

open hand(s) in a relaxed position 

make hand(s) into a fist clench 

slow, average, fast 
left, right, both 

extend hand(s) in a flexed position I 
turn head in a given direction slow, average, fast 

left, right, straight 
up, down, ahead 

slow, average, fast 
left, right, straight 

lower and raise head in a confirmative nod 

slouch 

slow, average, fast straighten back into upright posture I 
slouch back in a bent posture slow, average, fast 

1 walk slow, average, fast accelerate and then begin walking I 
1 halt decelerate from a walk and come to a stop I 
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The Mock Expert System 

In the ideal framework presented in chapter 3, an expert system is used to produce the movement 

language script. The expert system has not been implemented for this thcsis. In its place, a "mock 

expert system" produces movement scripts based on the personality and mood definitions assigned 

to actors by the animator. The rules used to produce these movement scripts are shown below. 

if (gloomy >= 8 OR boredom >= 8 OR tiredness >= 9) 
then "0 walk slow", walk-speed is SLOW. 

else if (cheerful >= 7) 
then "0 walk fast", walk-speed is FAST. 

else 
"0 walk average", walkspeed is AVERAGE. 

if (tiredness >= 7 OR passive >= 9) 
then "0 slouch". 

if (fear >= 5) 
then "0 slouch fast". 

if (cheerful >= 2 OR fear >= 5) 
then "0 look up". 
if (cheerful >= 5) 

then "0 in-back both". 
else if (gloomy >= 2) 

then "0 look down". 

if (domineering <= 5 AND domineering > 0) 
then "0 clench both". 

else if (domineering >= 6) 
then "0 on-waist". 

else if (submissive >= 4) 
then "0 in-front". 

else if (passive >= 5) 
then "0 flex both". 

if (nervousness >= 2 OR impatience >= 2) 
then "0 scratch left fast". 

else if (tiredness >= 2) 
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then "0 rub left". 

if (nervousness >= 2 OR impatience >= 2 OR tiredness >= 2) 
then "45 drop-arm left", "45 relax-hand left". 

"45 look left". 

"45 straighten". 

if (introvert >= 6) 
then "45 nod". 

else if (introvert >= 1) 
then "45 wave shyly". 

else if (extrovert <= 5) 
then "45 wave friendly". 

else if (domineering >= 8) 
then "45 salute". 

else 
"45 wave emphatically". 

"90 drop-arm right". 

if (domineering >= 5) 
then "90 clench both". 

else if (passive >= 5) 
then "90 flex both". 

else 
"90 relax-hand both". 

if (cheerful >= 4) 
then "90 look right up". 

else if (gloomy >= 2) 
then "90 look down". 

else 
"90 look straight ahead". 

if (nervousness >= 5 OR impatience >= 5) 
then "90 scratch right fast". 

else if (tiredness >= 5) 
then "90 rub right fast". 

if (fear >= 1) 
then " 130 look straight up". 

else if (cheerful >= 1) 
then " 130 look left up". 

else 
" 130 look right". 

if (tiredness >= 5) 
then " 130 rub right". 
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else if (nervousness >= 5 OR impatience >= 5) 
then " 130 scratch right". 

else if (domineering >= 2) 
then " 130 on-waist right". 

else if (submissive > 5 OR passive > 5) 
then " 130 in-front both". 

else 
" 130 drop-arm right", " 130 relax-hand right". 

if (walk-speed is FAST) 
then " 150 look straight ahead", " 150 halt" 

if (walk-speed is not FAST) 
then 
if (cheerful >= 1) 

then " 160 look right". 
else if (gloomy >= 1) 

then "160 look down". 
else 

" 160 look ahead". 

if (nervousness >= 5 OR tiredness >= 5 OR impatience >= 5) 
then "160 drop-arm right fast", " 160 relax-hand right". 

if (nervousness >= 1 OR impatience >= 1) 
then " 160 scratch left fast". 

if (tiredness >= 5) 
then "160 slouch", "160 look down". 

if (walk-speed is AVERAGE) 
then "200 drop-arm both", "200 relax-hand both", "200 h: 

if (walk-speed is SLOW) 
then "300 drop-arm both", "300 relax-hand both", "300 halt" 
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