
A High-Level Approach to the Animation
of Human Secondary Movement

by

Claudia L. Morawetz

B.Sc., University of Toronto, 1984

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in the School

of

Computing Science

O Claudia L. Morawetz 1989

SIMON FRASER UNIVERSITY

April 1989

All rights reserved. This thesis may not be
reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

Approval

Natnc:
Claudia L. Morawcli

Dcgrcc:
Maslcr or Scicncc

Tillc of Thcsis:
A High-Lcvcl Approach Lo thc Animation of Human Secondary Movcmcnt

Examining Commillcc:

Dr. Zc-Nian Li, Chairman

- -
Dr. Thomas W. Calvcrt
h i o r Suncrvisor

Dr. Nick Ccrconc
Supcrvis~r

Suncrvisor ,

Dr. Romas A~cliunas
Ccnlrc for Syslcms Scicncc
Simon Frascr University
Extcmal Examincr

$kfi q,
Datc Approv

PARTIAL COPYRIGHT LICENSE

I hereby g r a n t t o Simon Fraser U n i v e r s i t y t h e r i g h t t o lend

my t h e s i s , p r o j e c t o r extended essay (t h e t i t l e o f which i s shown below)

t o users of the Simon Fraser U n i v e r s i t y L i b r a r y , and t o make p a r t i a l o r

s i n g l e copies o n l y f o r such users o r i n response t o a request f rom t h e

l i b r a r y o f any o t h e r u n i v e r s i t y , o r o t h e r educa t iona l i n s t i t u t i o n , on

i t s own beha l f o r f o r one o f i t s users . I f u r t h e r agree t h a t permiss ion

f o r m u l t i p l e copy ing o f t h i s work f o r s c h o l a r l y purposes may be g ran ted

by me o r t he Dean o f Graduate S tud ies . I t i s understood t h a t copy ing

o r p u b l i c a t i o n o f t h i s work f o r f i n a n c i a l ga in s h a l l n o t be a l lowed

w i t h o u t my w r i t t e n permiss ion.

Author :

(s i gna tu re)

Abstract

Animating human figures is one of the most challenging tasks in the field of computer graphics.

The complexity of articulated bodies makes the integration of movement between the various joints

a difficult problem. Ideally, a human animation system should provide the animator with high-

level control, while still producing life-like movements. Animated actors are more believable if

they display subtle gestures, or secondary movement, consistent with the characters they portray.

Animators should not be encumbered with having to specify these detailed movements while they

assign high level tasks to actors, such as walking or grasping an object.

In this thesis, an ideal framework for an animation system is described in which animators specify

goals for actors, and these goals are executed with varying styles depending on the actor's

character. A component of this framework has been implemented to demonstrate how secondary

movement can be generated from a high-level specification. In this system, gesture specification

functions capture information on how to execute gestures in a natural way. A graph is used as an

underlying representation of movements. Using this representation, gestures can be interrupted and

continued by other gestures at any time. The actors in the system are each given the goal of

walking. This goal will be attained by the actors in a wide variety of styles depending on the

personality and moods assigned to them. Animators can thus obtain appropriate secondary

movement while focusing on primary goals for their actors.

Acknowledgements

All the wonderful people I have met have made working on my thesis much more enjoyable. The

graphics lab and all its enthusiastic members provided a very inspiring work environment. Many

of my colleagues in computing science deserve mega-thanks for helping me pull everything

together at the end.

A few people who were extremely helpful while I was working on my thesis deserve special

mention. I would like to first thank my supervisor, Dr. Tom Calvert, who guidcd me into a

fascinating area of computer graphics and who has always been very encouraging in all my

endeavours. I am indebted to Chris Welman whose patience and crystal clear explanations helped

me quickly learn many graphics concepts. Howard Hamilton has always been very supportive and

has motivated me to continue when I thought I'd never make it! Many thanks also to Shari Beck

for being a special friend and for being as enthusiastic as I about my work!

I would also like to acknowledge the School of Computing Science and Simon Fraser University

which provided me with financial support in the forms of teaching assistantships and a Graduate

Fellowship. I also appreciated receiving research assistantships from my supervisor and Dr. Binay

B hattacharya.

Table of Contents

Approval
Abstract
Acknowledgements
Table of Contents
1. Introduction

1.1. Background
1.2. Proposed Work
1.3. Motivation

2. Related Research
3. A Conceptual Model for a Human Animation System

3.1. A General Framework
3.2. Issues in Secondary Movement

3.2.1. Characters and Movements
3.2.2. Action and Destination Movements
3.2.3. Interrupting Movement

3.3. Secondary Movement in GESTURE
4. GESTURE Implementation

4.1. The Movement Language Script
4.2. Producing the Animation Script
4.3. A Graphical Representation for Movement Specification
4.4. The Gesture Specification Functions
4.5. Presentation

5. System Evaluation
5.1. Analysis
5.2. General Evaluation
5.3. Comparative Results

6. Conclusion
Appendix A. Glossary
Appendix B. The Movement Script Language
Appendix C. The Mock Expert System
References

ii
iii
iv

List of Figures

Figure 3-1:
Figure 4-1:
Figure 4-2:
Figure 4-3:
Figure 4-4:
Figure 4-5:
Figure 4-6:
Figure 4-7:
Figure 4-8:
Figure 4-9:
Figure 4-10:
Figure 4-11:
Figure 4-12:
Figure 4-13:
Figure 5-1:
Figure 5-2:

Framework for a human animation system
A sample movement language script
Joint hierarchy for model of body used in GESTURE
Interrupting gestures in the channel table
Control Structure for GESTURE
Graph with two named states and one intermediary state
Graph with the action movement: "wave"
Graph with a temporary node caused by an interrupting gesture
Gesture Specification Function for gesture: on-waist
Gesture Specification Function for gesture: scratch
Gesture Specification Function for gesture: walk
The legs graph representing the walk and halt movements
Main screen of GESTURE
Character definition screen of GESTURE
Structure representing a node in the head graph
Movement script used to generate animation printed in margin

Chapter 1

Introduction

As computer graphics becomes an increasingly popular tool for creating animations1, ways must

be found to increase the animator's productivity by making these tools more flexible and easier to

use. Commercial animation systems, available from companies such as Cubicomp [Cubicomp 1,

Wavefront [Wavefront 1, or Alias [Alias 1, guide the animator from the conception of an animation,

through object modelling, motion specification and rendering to final production. However,

motion specification in all of these systems is based largely on keyframing, which is often tedious.

In particular, keyframing motion of an articulated body often results in awkward, unrealistic

movement. Recently several methods have emerged which allow human motion to be specified at

a high level, and which produce realistic movement by giving animators control over the resulting

movement without encumbering them with low-level details. This thesis will examine a method

for obtaining secondary movement through a high-level specification.

1.1. Background

The task of making a computer animation is simplest if the objects to bc animated are rigid. As

the number of articulations in the object incieases, the complexity of animating the object also

increases. Furthermore, if the links between joints are flexible, such as those in a worm, then

producing natural movement is even more complicated [Miller 881.

Articulated bodies can be modelled as a hierarchy of links connected at rotational joints, each

with three degrees of freedom [Zeltzer 82a, Calvert 881. A model of the human body can have over

200 degrees of freedom [McGhee 761 making control of all of these parameters over time an

'words or phrases used in this thesis which may not be considered standard terminology in the field of computing
science can be found in the Glossary in appendix A

Introduction 2

enormous task. Thus presenting animators with the task of specifying keyframes does not seem to

be an appropriate way for them to specify human motion. A program which takes the animator's

high-level specifications and automatically generates the keyframes would be more appropriate.

A popular approach to animating articulated bodies has been to consider the dynamics of the body

after applying forces and torques. This produces very realistic motion since the bodies obey the

laws of physics when they move. Many successful animations have been produced where at least

part of the movement is specified dynamically [Girard 85, Wilhelms 87, Bruderlin 881. The

drawback of this method is that the animator will normally have to describe motion by specifying

the numerical values of the forces applied to different limbs. This is not at all intuitive, and so the

appropriate numbers can only be attained by much trial and error.

Other approaches to animation have concentrated on developing a motion control language, or in

general some sort of high-level interface for the user. Lower level control parameters for the

movement algorithms are computed based on the user interaction at the higher level. From this

idea stemmed goal-directed animation systems in which the user specifies a goal and the computer

determines how to achieve that goal [Csuri 81, Drewery 86, Korein 82al. These systems often

determine how to accomplish a goal by consulting a knowledge base. A knowledge base contains

specific structured information about a problem encoded in such a way as to be readable,

understandable and easily modifiable. This knowledge is usually entered into the knowledge base

P
and maintained by a knowledge engineer, whose role is to incorporate expertise about a domain

into a system which uses this expertise for a particular purpose. In an animation system,

knowledge engineers need not be familiar with computer graphics: they only need to understand

the language in which the knowledge base encodes its expertise. The expertise, when applied to

solving goal-directed movement generation, will ensure the production of realistic movement.

Knowledge bases have been successfully used in goal-directed animation systems [Zeltzer 831.

The animator communicates with the system through a high-level goal-oriented language. Because

knowledge about how to accomplish these goals is embedded in the knowledge base, the level of

knowledge required by the user is reduced.

Introduction 3

Goal-directed systems have been successful in animating the achievement of primary goals

specified by the user. However very little work has been done on applying these types of systems

to character animation, in which actors' motion can be identified as certain character types. This

thesis presents a method for individualizing actors' movements by providing the animator with a

high-level animation system.

1.2. Proposed Work

Primary movement can be defined as the minimum movement required of a person to accomplish

a predetermined task. In contrast to this, secondary movement is the collection of gestures a person

carries out, largely sub-consciously. These gestures are consistent with the personality of that

person and the moods he or she feels at a given time. Examples of secondary movement are

lowering or scratching one's head, or brushing hair out of the eyes. Existing goal-directed systems

are generally concerned with executing primary movement - simulating movement that will satisfy

an actor's objectives. Secondary movement tends to be ignored, although if included it would

make an actor's movements more realistic.

This thesis, addresses the simulation of the subtle types of movement that people display while

achieving their primary objectives. The approach used is to embed algorithms that produce

secondary movement in the system, relieving the animator from having to specify it. The

justification for this method is that an animator would like to concentrate on the overall movement

a
of an actor, but would still desire the small gestures that make the actor's motion more believable.

In the field of psychology, secondary movement is best equated with kinesics. Duncan and

Fiske [Duncan 771 classify kinesics as one of the seven categories of communication in face-to-

face interaction. The other six are paralanguage (the speed of utterances, and the number of pauses

or interjections such as 'um' or 'er'), proxemics (the social and personal space), scent, haptics

(body contact between people), use of artifacts such as a pipe or kleenex, and of course the main

mode of communication, language. Psychologists have adopted a notation for recording these

many forms of communication and have correlated this to character traits [Bull 83, Duncan

77, Scheflen 72, Birdwhistell 701. The results of these studies provide a suitable basis for deciding

what secondary movement to attribute to the different actors in an animation system.

Introduction 4

Using previous work on human animation, and drawing knowledge from fields such as

psychology, kinesiology, robotics and physics, an ideal framework for human animation could be

created. Such a system would include a high-level user-interface where the animator defines

characters, and specifies goal-directed movements for the actors. The resulting movement would

be life-like. An expert system could apply knowledge from the field of robotics about path

planning and manoeuvring in a constrained environment to solve for the movements required to

accomplish goals specified by the animator. Expertise from psychology would be used to

determine the secondary movement. Depending on the types of movement, different methods

could be used for generating the movement.

The system, GESTURE, implements a portion of this ideal animation system. It has two actors,

Simon and Sally, whose sole primary goal is to walk past each other as if they were passing on the

street. The user can define the actors' personalities, such as how extroverted or introverted each

actor is, and moods, such as the degree of boredom each actor feels. A mock expert system applies

a set of rules to the values selected for the actors' personalities and moods and decides on the

secondary movement. A high-level specification for these movements is defined, and from this

description, an animation of the two actors is produced.

There are two primary objectives of this thesis. The first is to introduce a new type of movement

to human animation, namely secondary movement, which will make the animated actors more

believable. The second goal is to demonstrate that this type of movement can be incorporated into

actors' movements with very little interaction required from the animator. These two objectives

are met in the implementation of GESTURE as will be described in this thesis.

1.3. Motivation

At the time when hand-drawn pictures were the only way to create an animation, finding

techniques for obtaining realism was an art. With the advent of computer graphics, animators

could produce very realistic scenes, a task which was extremely difficult, if not impossible, with

traditional animation. In particular, computer animation systems which make use of sophisticated

modellers and rendering algorithms can produce convincingly real-world pictures which take less

time to produce and modify than hand-drawn pictures.

Introduction 5

One area where computer animation still cannot compete with traditional animation is when

animating articulated bodies. Whether the animator spends painstaking time with a keyframing

system, or uses a high-level control language, the movement seems stilted and unnatural. The film

Rendez-vow ci MontrCal [Thalmann 871 combines many state-of-the-art techniques for computer

animation, and yet the actors' movements still do not seem truly life-like.

Making actors' movements believable involves not only concentrating on the actor as an

individual, but also on how he or she interacts with other actors in the animation. Ridsdale

explored the types of movement that result when "like" and "hate" relations exist between the

different actors [Ridsdale 871. Reynolds extended this concept to flocks of birds, claiming that

each bird's movements are a consequence not only of its own goals but also of the movements of

the birds around it [Reynolds 871. Based on this observation, he has produced a successful

animation of a flock in motion. Extending the same idea to people, a convincing crowd scene can

result where each actor's secondary movement has been considered and the influence of the actors

around him or her has been taken into consideration.

The main purpose of this thesis is to demonstrate that by incorporating body language into the

actors' movements, a transformation will be seen from robot-like animations to life-like

personalities. Although the GESTURE program does not consider all possible types of secondary

movement, the small diverse set implemented is sufficient to show the value of this approach.

Section 5.2 summarizes the variety of techniques used to produce the secondary movement.

In chapter 2, a survey of the recent literature in computer animation will demonstrate the

difficulties in solving problems in human animation. Chapter 3 will present a general framework

for human animation, and chapter 4 will discuss the implementation of a component of this

suggested framework. The implementation will be evaluated for its success in addressing an area

in human animation in chapter 5. The concluding chapter will summarize the results of the

implementation and will suggest other directions to be explored in human animation.

Chapter 2

Related Research

Animated films are popular because of their ability to create fantasy worlds and situations that

cannot be captured using actors and places in the real world. Talking animals, shrubs that grow to

trees in seconds or a journey into someone's wild imagination become reality as thousands of

masterfully drawn pictures flip before the viewer's eyes. Animating live figures is the greatest

challenge as this type of motion is very complex, and the human eye is very sensitive to "mistakes"

in these movements. The Walt Disney era produced some of the best animated characters because

animators would spend long hours studying the movements of humans and animals that they would

eventually assign to their figures [Thomas 811. Techniques were applied afterwards to exaggerate

movements which could convey humour or draw the focus to objects in a scene. For example,

characters' movements can be accentuated by anticipation or follow-through at the beginning and

end of their motion, or, applying squash and stretch to a ball can make it appear more bouncy. 2
An animation sequence is usually displayed at a minimum of 24 frames/second so that the eye

perceives the series of still frames as continuous motion. This requires thousands of frames to

produce a few minutes of animation. In practice, the artist draws only the keyframes - the frames

in which a significant change of motion or mood occurs in the sequence. The inbetween frames,

the series of frames which make the transition between the keyframes, can be filled in by other

painters or can be generated by a computer. This process is called keyframe animation.

Early computer keyframing efforts were based on 2-dimensional drawings. The inbetweening

process was automated by having the animator specify the correspondence between lines in

successive keyframes, and the computer would interpolate between the lines [Burtnyk 711.

However the results of interpolating from flat images were not always successful because there is

no depth information. This led to the introduction of 3-D animation systems, in which objects and

Related Research 7

figures in the animation are represented in a 3-D world, and a 2-D image is produced by projecting

this world onto a plane [Sturman 861. Movement in the animation is achieved by a series of

rotations and translations on objects in the 3-D world. The inbetween images are more realistic

because the interpolations are applied in the 3-D world before collapsing by a dimension to 2-D.

With the advantages of increased realism when moving from 2-D to 3-D come a few other

problems which must be addressed. These are object modelling, movement specification and

image rendering. Animation is mostly concerned with the second issue, however specifying

movement for an object is dependent on how that object is represented. Animating human figures

is particularly difficult because the body is a very complex structure. The human model can be

thought of as consisting of a set of rigid links connected at joints, and organized in a tree-like

hierarchy [Zeltzer 82al. Movement is attained by applying 3-D transformation matrices at a joint.

A matrix that is applied at a joint in the hierarchy will be applied to all joints nested deeper in the

hierarchy. Connectivity of the model is assured if the transformations are all rotation matrices.

Thus if a hand is to be positioned in space, the arm can never be disconnected from the body with a

translation matrix; instead, joint rotations are applied at the pelvis, back joints, shoulder, elbow or

whatever combination of joints required in order that the hand reach the desired position.

Specifying movement for the human model involves assigning values to all joint angles for every

frame of the animation script. The human body has over 200 degrees of freedom [McGhee 761, so

that even if a model represents only 40 or 50 of these, an enormous amount of data must still be

specified. This would be an overwhelming task for an animator to determine manually, and

consequently many ways have been examined for representing movement and automating some of

the animator's task [Badler 79, Ridsdale 86, Calvert 881. Animation systems can be categorized at

three levels where at each higher level, the animator can obtain more complex movement with less

specification. These three types of systems are guiding systems, systems which specify movement

algorithmically, and task level systems.

Guiding systems are those for which there is no easy way to generalize movement specification.

For example, creating a dance sequence cannot be generalized so that many dancers could be

animated using the same set of moves but facing in different directions. They are synonymous

Related Research 8

with kinematic systems, in which the position of the body and all joint angles must be specified.

The film Brilliance is a successful example of an animation in which a robot's motion was obtained

from a live actor using rotoscoping to record her movements [Abel 851. Another way to record

human movement is by using an electrogoniometer [Calvert 821. However, this technique may

cause the person to move unnaturally as he or she may feel restricted by the equipment attached to

the body.

Keyframing systems represent another type of guiding system which allows animators to vcry

quickly specify the movement for an animation sequence using intermittently spaced key poses.

While the computer can save animators time by calculating position and joint angles for the

inbetween frames, the animators may wish to be more involved in the interpolation process.

Steketee and Badler describe a method for obtaining control over the nature of the motion that is

produced from the interpolation process [Steketee 851. Although these guiding systems give

animators complete freedom over a figure's motion, this can often be a hindrance since specifying

the motion at this level of detail can be very cumbersome.

At a second level, systems can describe motion algorithmically by providing data abstraction in

which graphical objects are manipulated as program types or by providing adaptive motion where

objects' motion can be altered by a changing environment. ASAS [Reynolds 821 and

MIRA [Thalmann 831, are examples of this type of system. The ASAS system is an extension to

LISP which allows the user to define graphical objects and apply operators such as shrink or

local-move to them. An object's motion can be adapted to a changing environment by the use of

message passing. In MIRA data abstraction is achieved through Pascal-like objects whose values

can be examined to decide on movements.

In both of these types of systems, the animator's creativity may be stifled because of the greater

amount of time involved in realizing ideas instead of developing them. With human animation it is

especially difficult to transfer the animator's ideas to the system quickly and easily because of the

complexity of the model.

A task-level animation system helps to correct this situation because it allows the animator to

Related Research 9

specify the actors' movements by task descriptions, and the appropriate motor programs are

invoked which will produce the desired movements. This type of movement specification opens up

new research areas in human animation. Given a task description, how does the computer select a

reasonable set of motor programs that will perform that task in a realistic way? Now that the

animator's skill in motion specification is replaced by a set of motor programs, how is believable

movement attainable? Finally, what will be the trade-off between how much control the animator

has on the resulting movement, and how much is automatically generated by the system?

The advantage of task-level animation systems is that they free the animator from specifying how

a task is accomplished and allow the animator to concentrate on specifying what the task is. Such

systems are labelled goal-directed because the movement generated is guided by user-specified

goals. Badler identifies some problems which must be addressed in goal-directed human

movement simulation [Badler 801. One problem is to define a schedule for the execution of

movements in the different parts of the body. This is difficult because in the hierarchical model of

the body, transformations applied to joints to execute one movement could affect the

transformations applied to accomplish another movement. A second problem is that of positioning

the end of a limb in space. For example, a goal could be to grasp an object, which would require

the hand to move to a particular location. Without any other information to constrain the problem,

such as an instruction specifying whether the elbow should be held high or low, there are an infinite

number of solutions to attaining this goal. This is the general inverse kinematics problem which is

difficult to solve for realistic movement of multi-link structures because in general there is no

knowledge about the constraints on even simple movements executed by humans. A large problem

in positioning the end of a linked system is to decide what constraints to place on the system so that

natural-looking movement of a limb will result. A suggested method is to provide a reach

description for a linked chain [Korein 82b, Korein 82al. In this solution, each joint in the chain is

rotated by the minimum amount required for the end of the chain to reach its goal position. This

solution, however, will not necessarily yield the most natural way a human would move a limb.

Other problems that must be examined in goal-directed systems are situations in which parts of the

body make contact with other parts of the body, maintaining balance while in locomotion, and the

orientation of the body segments.

Related Research 10

One goal-oriented system is POSIT [Badler 871. In this system the user defines positional goals

for different parts of the body. Each goal is assigned a numerical value which represents the

"strength" or likelihood in attaining that goal in relation to the weights assigned to other goals. If

two goals conflict, then the figure will lean towards achieving the goal with the higher strength

value. One situation that was modelled was that of a figure constrained by a car seatbelt and

reaching for an object. A large strength value restricts the body in the seat, and a smaller value is

assigned to the goal of the hand reaching. The figure in the simulation will reach forward until the

larger strength value restricts further reaching. This system demonstrates a method of moving a

body in a multiply constrained environment.

The concept of goal-directed systems has led to attempts to understanding how humans execute

movements [Csuri 811. In natural movement systems, a collection of joints and muscles controls a

class of motions. Csuri describes a goal-directed system which has abstracted this idea by

identifying three levels at which motions are processed. At the top level, or the task level, motions

are broken down and assigned to appropriate motor programs. The motor programs oversee the

execution of the motion using local motor programs, which use information about the current state

of the body to produce the movements. The Skeleton Animation (SA) system implements these

three levels of control to produce the movement of walking [Zeltzer 82bl. At the top level, the

animator interacts with the system by providing task descriptions. At a lower level, the motor

programs co-ordinate the execution of the local motor programs to produce the desired type of

walk, for example the velocity, or a pattern such as a limp. At the lowest level, local motor

programs control different stages of the walking cycle, for example those for a left leg swing and a

left leg stance. Decisions have to be made by the task processor about which motor programs to

invoke and in what order. For example, the motor program for standing must be invoked before

invoking the one for walking if the figure is sitting down. The task processor organizes a schedule

of motor programs by representing each movement by a frame in which there are preconditions

which must be satisfied before the movement can be executed [Zeltzer 831. This may involve

activating other frames which will cause other movements to be executed. In order to produce

realistic movement, the preconditions should address two issues. The feasibility of a movement is

dictated by which set of actions must be invoked to correctly execute the movement. For example,

Related Research 11

standing up, walking across the room, and reaching must all occur before grasping an object across

the room. Preconditions also ensure that movements follow each other in a natural way, for

example determining what distance to stop in front of a chair before sitting down. The movement

frames select the preconditions that need to be satisfied by consulting a "blackboard" which stores

the current state of the body.

Motor programs to execute realistic movement can be scheduled by a planning system. Drewery

and Tsotsos have proposed a frame-based system which invokes a planner to choose a sequence of

motions that will achieve a goal [Drewery 861. In this system the tasks are motion verbs which act

on objects. Both the objects in the world and the movements are represented by frames. The

movement frames have internally defined procedures which generate the motion.

The approaches in these goal-directed systems present potential solutions for animators where a

minimum amount of specification can produce life-like movement. However, it is crucial that the

motor programs used by goal-directed systems do not produce movement of quality inferior to that

which the animator could have achieved using some other method. Recently movement simulation

using dynamics has become very popular because the results are much more life-like than

kinematic simulations [Miller 88, Witkin 881. This is because the laws of physics are applied to the

moving objects. The increased realism is particularly noticeable when the objects are involved in

collisions with each other, or with the ground, because the mass of the object and forces involved

are considered in the movement simulation.

In human animation, dynamics is particularly suitable for forms of locomotion: walking and

running. In the PODA system, Girard and Maciejewski explore how dynamics can be used to

control the motion of multi-legged figures [Girard 851. Others examine how dynamics can be

applied to human locomotion by specifying forces which are applied to different parts of the

body [Wilhelms 85, Wilhelms 87, Armstrong 851. Human walking has also been dynamically

simulated using a goal-directed approach [Bruderlin 88, Bruderlin 891. From the results of these

systems, it can be concluded that dynamic simulations can be successfully used as motor programs.

Several approaches to human animation systems have been presented. The goal of all of these

Related Research 12

systems is to provide the animator with maximum control over the movement while requiring the

least amount of interaction. Ideally the results will be so realistic that the viewer will not be able to

determine if the actors are real people or were produced from an animation system. This is an

ambitious goal. As well as the problem of producing realistic motion, other areas in human

animation will need to be explored, such as the joint problem - how to model the body surface at a

joint [Chung 871 or how to model free-hanging material such as clothing [Weil 861, in order to

obtain completely realistic human animation.

The film Rendez-vow ci Montrtal [Thalmann 871 represented a major accomplishment in drawing

together many areas in human animation. Using the Human Factory system, synthetic actors were

modelled by a digitization process, and various animation methods were used to make the actors

move, grasp objects and speak. One of the successes of the system was its capability to attribute an

individual personality to each of the actors. This is a necessary requirement if an animation system

is to produce believable people, as no two people are alike. Animating convincing facial

expressions will help to transform robot-like figures into expressive actors [Parke 82, Pearce 861.

The rest of the body can also perform subtle movements which define a unique character for the

actor.

Human animation systems to date support a variety of methods for making actors accomplish

primary goals. Earlier systems, such as keyframing systems, are cumbersome and tedious to use,

3
however the animator also has control over actors' secondary movement. As the interface for

animation systems has been abstracted to the level where the animator need only specify tasks or

goals, animations can be created more quickly and easily with minimum specification. However,

in all of these high-level systems, there is no provision for secondary movement. Each actor will

perform the specified tasks and goals in exactly the same manner, regardless of their individual

personalities or moods. This thesis examines a method for attributing unique body language to

actors, while keeping in mind the idea of goal-directed systems where the animator will not be

required to specify the movements manually.

Chapter 3

A Conceptual Model for a Human Animation System

A number of approaches to human animation were presented in chapter 2. Each method

addresses one or more specific problems in human movement specification. A fully integrated

human animation system could combine many of these approaches. This chapter will describe a

framework for such a human animation system, and will then focus on the component dealing with

the generation of secondary movement. This latter component is the main contribution of this

thesis.

3.1. A General Framework -

Animating articulated bodies is much more complex than animating solid objects. The human

model used in our implementation has forty-four rotational joints. Considering that animations are

generally played at 24 frameslsecond, and that two or three actors may be on the stage at one time,

manually specifying all joint angles for all actors over time to produce natural-looking human

movement would be a near-impossible task. Human animation systems attempt to draw the focus

away from the lower level task of manually specifying angles to a higher level conceptual control,

where animators can describe the desired motion in English rather than numerically.

When one shifts from a low-level to a high-level movement specification, much of the skill of the

animator is replaced by the system. This could mean that many smaller movements that an

animator might specify for an actor may be lost, unless the animation system pays attention to this

kind of detail. It also implies that the animation system must now understand concepts which the

animator would consider intuitive, such as bumping into other actors, walking through objects, or

that actors must stand before walking. It is therefore natural that computer graphics has turned to

the field of artificial intelligence, where research problems include understanding and reasoning

about one's world. Expert systems are artificial intelligence programs which have expertise in a

A Conceptual Model for a Human Animation System 14

particular area, such as medicine or engineering, and can solve problems at a comparable level of

competence as an expert in that area. Many of these systems are used commercially to aid the

human experts in their work [Bachant 84, Winston 841. Expert systems can be applied to computer

animation by incorporating expertise in areas related to human movement.

Path planning, displacing objects and interacting with a changing environment are examples of

skills which humans put into practice every day without giving any thought to how they are done.

While performing these tasks is considered intuitive, understanding how we identify individual

movements which combine to execute tasks is an extremely difficult problem. This is one of the

main problems in a human animation system that aims to provide the animator with high-level

control. To animate humans realistically, animation systems become multi-disciplinary programs,

calling on knowledge of human behaviour and human movement from fields such as kinesiology,

robotics, psychology and sociology. The body of knowledge applicable to human animation is

fragmented across these various disciplines, with each fragment contributing some constraints

towards the choice of movements. Expert systems can apply these constraints to the selection of

appropriate human movement.

Choosing proper secondary movement for a character requires knowledge from psychology and

data about the actor's personality and moods. Researchers in the field of psychology have acquired

a lot of expertise about the correlation between people's character traits and the movements they

perform [Bull 83, Duncan 77, Scheflen 72, Birdwhistell 701. However this knowledge is not well

structured, and there is no systematic method for converting this knowledge into deductions about

the types of secondary movement people perform. Also, specifying how the movements are to be

done requires knowledge about what movements are likely to follow one another, or occur

together. For example, it would not be likely for a person to shyly look away from a stranger and

then wave. An expert system embodying this knowledge from psychology could assign

appropriate secondary movement to characters.

Given that an expert system can help to solve problems in human animation, the animator can be

presented with a very simple, yet powerful user-interface. In essence, the animator should play the

role of a stage director who assigns a character and a set of motives to the actors. A good actor

A Conceptual Model for a Human Animation System 15

should then be able to perform his or her actions while portraying the character assigned to himiher

without any further direction.

EXPERT SYSTEM r-l
goals describe primary

movement to
accomplish goals u

personality
and mood
definitions

I EXPERT SYSTEM

1 describe secondary
movement to add to
primary movement

expertise in expertise in

environment

specification
functions 'ti

human movement
algorithms

Figure 3-1: Framework for a human animation system

Figure 3-1 suggests a framework for an animation system where the animator chooses goals and

defines personalities and moods for actors, and from this minimal specification a life-like

animation is created. An expert system with expertise in robotics can be used to plan a series of

actions in order to accomplish the high-level movement goals. Using expertise from studies in

psychology which show the correlation between people's movements and their character traits,

another expert system can specify the secondary movement for the actors. These expert systems

will need to communicate with each other, and also use knowledge from the environment, such as

where objects are placed and what are the purposes of these objects. After considering the

animator's requests, the expert systems can produce a high-level movement script, which specifies

primary and secondary movement for an actor. From this description, an animation script is

produced by consulting gesture specification functions which have information on how the

A Conceptual Model for a Human Animation System 16

specified movements are executed. The animation script is a complete description of all joint

angles for the actor for every frame of the animation. The portion of the animation system that

transforms the movement script into an animation script has been implemented for this thesis.

A clearly defined interface exists between the expert system level and the animation system level.

This interface is a movement script for each actor written in a high-level movement language. The

script contains a list of completely qualified movements to be carried out, and at what time during

the animation these should be carried out.

When creating a movement script, the expert system is responsible for several tasks. One is

co-ordinating the different movements that the body can perform simultaneously. For example, if

the expert system requests a head scratch, and then later instructs the head to look in another

direction, it is up to this system to resolve what to do with the arm. The expert system must also

have some knowledge about how movements are executed. For example, if two actors walking

towards each other are to stop and talk, the time to decelerate and come to a stop must be taken into

consideration when specifying the time to halt in the movement script. Otherwise the actors may

pass each other before stopping. Multiple actors in an animation introduce a variety of other

challenges to specifying movement. Ridsdale has explored how actors' likes and dislikes for one

another affect the shape of their motion paths [Ridsdale 871. Secondary movement should be

modified to account for the approach of another actor, and should consider the relationship between

the two actors. The expert system must also ensure that requested movements do not conflict either

with each other, other actors' movements, or obstacles in the actor's world.

Once the movement script has been created, the remaining task of the animation system is to

create the animation script. This involves determining joint angles over time using movement

generation algorithms to produce the movement specified by the movement script in as realistic a

manner as possible. Each section of the animation system operates as an independent module, and

together they produce convincing human animation.

The GESTURE program is an implementation of the component in thc animation system that

produces an animation from the movement script. As this thesis is concerned mainly with

A Conceptual Model for a Human Animation System 17

secondary movement, only this type of movement is recognized in the movement script. The one

exception is the primary movement of walking. Incorporating one primary goal in the

implementation is helpful in justifying the secondary movement that is displayed. It is also

beneficial to create a mock front-end for GESTURE as a replacement of the expert system. The

user can prepare movement language scripts for GESTURE. Alternatively the user can assign

personalities and moods to the actors and an appropriate movement script for the animation will be

made available for GESTURE by this mock front-end.

3.2. Issues in Secondary Movement

3.2.1. Characters and Movements

In order for an actor to portray a certain character convincingly, appropriate secondary movement

for that character must be displayed. Psychologists have studied people's movements, and drawn

conclusions about their characters. They have also made the converse correlations which can be

used in human animation systems: given a character description, an expert system can supply 4%
appropriate secondary movement [Birdwhistell 70, Bull 831.

In GESTURE, the front-end of the system allows the user to select values for different personality

traits (how extroverted or introverted, cheerfid or gloomy, assertive or passive, and domineering or

submissive a person is) and moods (the degree of boredom, nervousness, tiredness, impatience and

fear). Depending on the values chosen, actors will display varying types of secondary movement.

An expert system has not been implemented to carry out the task of selecting the movements. Thus

no claim is made in the implementation as to the psychological validity of the movements chosen

with respect to the personality and mood definitions. However, a survey of some of the psychology

literature supports some of the decisions made in selecting secondary movement in GESTURE.

One study of human behaviour was conducted by Scheflen [Scheflen 721. He observed how

different types of people interacted socially. Many of the movements implemented in GESTURE

are drawn from the results of these studies. Strangers passing in the street, for example, observe a

ritual of "civil inattention". At 12-15', each person will glance at the other, longer glances

indicating a more sociable person, a short glance characterizing introvertedness or even hostility.

A Conceptual Model for a Human Animation System 18

When passing someone one is familiar with, an introverted person will nod at a distance and set the

head position as they pass. A less solitary person will salute or wave at a distance, and perhaps

stop for a quick hello.

More subtle movements, if noted, can reveal interesting character traits. A more passive person

will droop their head and hide their hands, their feet may be turned in, and they will tend to slouch.

A more assertive person will have better body balance with feet slightly apart, they will be relaxed,

and their body and head will be erect. A cheerfid or gloomy disposition can affect the speed and

bounciness in a walk. Hunched shoulders, a bowed head and hands clasped in front of the body

indicate a weaker character, whereas a more aggressive posture would include hands on hips, raised

head and perhaps clenched fists. The more domineering person will often step towards people,

whereas the more submissive person will give way to strangers.

Some types of movements appear only as the mood of a person varies. For example fatigue will

cause a person to slouch, and rub their eyes more. Nervousness introduces a variety of grooming

gestures, such as rubbing one's hands together, rubbing one's chin, scratching one's head or

brushing one's clothes off. Increased frequency of these gestures can signify impatience. Foot

tapping and posture shifts indicate boredom. Fear is displayed by hunching the shoulders, and

keeping the head up.

There are certainly many other types of secondary movement. Furthermore, the correlation

between character and movements can vary in interpretation. Gestures performed in one society

can have a new significance in a different ethnic group and vary betwecn age groups [Birdwhistell

701. The secondary movement presented in this section will form the basis of the movement

implemented in GESTURE.

3.2.2. Action and Destination Movements

Movements can appear in two forms: either the movement reaches an end, such as drooping one's

head, or the movement can continue for a duration of time, such as scratching one's head. These

two types of movements have been classified into the two categories, action and destination

movements. A destination movement involves placing a part of the body in a certain position.

A Conceptual Model for a Human Animation System 19

Action movements involve positioning a part of the body, and then continuing to cycle through

several body part positions. Examples of destination movements in GESTURE are a confirming

nod, making a fist or putting one's hands on one's waist. Examples of action movements are

scratching, waving or walking.

The distinction between these two types of movements is important, as they must be treated

differently in the animation system. When the movement script requests the execution of a

destination movement, the animation frames can be generated until that movement has been

satisfied. However, if the movement script requests the execution of an action movement, frames

can be generated for the body parts involved in that movement to reach the beginning of the cycle.

But then there is no way of determining how many times to cycle the body positions without

looking ahead in the movement script. To avoid having to look ahead in the movement script,

another method must be found for deciding how many times to cycle through the movement.

In GESTURE, when an action movement is encountered, an object containing critical information

about the movement is created. As the system proceeds through time in the movement script, joint

angles are computed for all body parts engaged in an action movement. The end of an action

movement is indicated by the beginning of another movement that would conflict with the

execution of the action movement. When the movement script signals the end of an action

movement, the object corresponding to that movement is removed.

3.2.3. Interrupting Movement

Algorithms have been developed for generating various types of human movement. For example,

kinematics has been used to produce reach descriptions for rigid links with joints [Korein

82b, Korein 82a], and locomotion has been controlled by dynamics algorithms [Armstrong

85, Bruderlin 88, Wilhelms 871. These algorithms can be used to provide a high-level front-end to

an animation system. In a high-level animation system, an animator can specify the desired

movement, and supply a qualitative description of the style in which this movement should be

executed. A good algorithm will have many parameters affecting the quality of the movement, and

will then compute the joint angles over time for the articulated figure, producing realistic

movement.

A Conceptual Model for a Human Animation System 20

These algorithms, although they can produce many styles of movement given their starting

conditions, usually do not easily allow for a change of style, or a complete change of movement,

once the movement begins. In Zeltzer's system [Zcltzer 831, actors can switch between several

completed movements - walking, sitting, lying. However, the system is not able to have the actor

begin to sit up and then lie down again. In this system, actors are always known to be in a certain

posture after completing a movement. Determining how to proceed to another movement mid-way

between two known body positions is a non-trivial task. In general this may entail solving the

inverse kinematics problem, which involves examining thc joint angles and then computing the

most natural way to resume a known posture.

Interrupting a movement may not be such a critical requirement for primary movement, where an

actor has a set of goals to achieve. However it is critical for secondary movement which usually is

not prompted by well-defined objectives. Rather, an actor's character is revealed by the manner in

which secondary movement is carried out including the frequency with which gestures are started

but not completed. This can reflect on a person's character as much as the types of gestures that

are carried out. Therefore the ability to interrupt movements and begin other movements at any

time is an important requirement in animating secondary movement.

A solution will be proposed that is similar to that proposed by Zeltzer [Zeltzer 831, in that certain

body positions represent known states. However new states can be created when a movement is

interrupted to represent the body position at the time when the interruption occurred. Although

there are limitations with this method, there is great flexibility in specifying the exact secondary

movement desired and when it will begin and end. Details of how interruptions are handled using

this method are discussed in section 4.3.

3.3. Secondary Movement in GESTURE

A general framework for a human animation system was presented in section 3.1. Within this

framework, the problem of producing the movement specified in the movement script was

identified. The GESTURE system has been implemented as a proposed solution to this problem.

This section will describe the components of GESTURE that support the generation of secondary

movement.

A Conceptual Model for a Human Animation System 21

The main objective of GESTURE is to transform a high-level description of movement into

realistic execution of these movements by the actors. The implementation is not concerned with

whether an appropriate set of movements is selected, but primarily with executing whatever

movements have been included in the script as realistically as possible. One of the issues that was

addressed was the flexibility of being able to interrupt movements with other movements at any

time. Thus a representation that supports this capability of interrupting movements at the same

time as executing these movements in the most natural way is required.

Chapter 2 discussed research in human animation, which has produced a variety of successful

algorithms for controlling the movements of an articulated body doing various specific tasks.

These motor programs usually excel in producing life-like movement for one particular task by

using specific knowledge about that task. An animation system concerned with being able to

handle a variety of movements should be able to incorporate these successes.

In GESTURE, a set of gesture specification functions have been implemented, each one

corresponding to a particular movement that can be specified in the movement script. Since each

of these functions is concerned with producing the movement for only one particular gesture, they

can make use of any knowledge about how that gesture is performed by humans. As each of these

functions is independent of the others, existing motor programs or new specialized algorithms for

particular movements can be incorporated into the animation system. Also, the technique for

producing movement that is most appropriate to that movement can be used. In GESTURE, most

of the movements have been generated using a keyframing system [Calvert 891, however the sole

primary movement that has been implemented - walking - uses dynamics to generate the

walk [Bruderlin 881 and kinematics to produce the arm swing.

The gesture specification functions fulfill the requirement of ensuring that the animation system

will produce realistic motion. However, the method with which movements will be able to proceed

from one to another, or interrupt each other must be resolved. A representation of movement

shared by all gesture specification functions has been suggested. Movement will be encoded in a

graph, and the execution of a movement will be equivalent to traversing the graph. Nodes in the

graph contain joint angle values for a collection of joints. These can be looked upon as key

A Conceptual Model for a Human Animation System 22

positions for a set of joints in the body model. Arcs are labelled with names of different

movements, and a number indicating the number of frames between key positions represented by

the surrounding nodes. A path along arcs of the same label represents the series of key positions to

assume in order to execute a particular movement. Continuing along a new arc with a different

label signifies beginning the execution of a new movement. The graph representation is a very

natural way to encode movement that has been generated by keyframing, where joint angle values

are not defined at every frame. Movement from an algorithm that generates joint angles at every

frame can be stored in the nodes of the graph, and 0 "inbetweens" can be assigned to the arcs for

that movement. In this way, movements produced from a kinematic algorithm or a dynamic

simulation can also use this underlying graphical representation of movement. If a movement

based on an algorithm is repeated, yet with different qualities which may alter the parameters to the

algorithm, the graph may be altered (the number of nodes, and/or values of joint angles at the

nodes) before the graph is traversed the second time.

The top-level control of GESTURE reads movements from the movement script and activates the

appropriate gesture specification functions. The specific knowledge about how to perform

movements is all contained in the gesture specification functions. These functions all use an

underlying graphical representation of movement. In chapter 4, the components of the animation

system will be examined in more detail, and examples from the implementation will be supplied.

Chapter 4

GESTURE Implementation

GESTURE is a stand-alone program which produces a computer animation from a description in

a movement script. The movement script uses a qualitative language to describe the gestures of an

actor. However there are no details as to how these gestures are to be translated into joint angles.

This chapter describes how gesture specification functions are consulted about each gesture, and

how a graph is used as a foundation on which to generate movement. Since GESTURE also

represents a module that would receive its input from an expert system, the movement language

script which is the interface between these two systems is described, and a description of how the

expert system is simulated is presented.

4.1. The Movement Language Script

The movement language script is the dividing line between the responsibilities of the expert

system and GESTURE, which generates the movement. This script is produced after considering

the movements which an actor should do, and the order in which they should be done. A

chronological list of movements is generated by the expert system which creates the movement

script. The gesture specification functions can apply specialized algorithms for producing the

movements from this script. Recall that the gesture specification functions each know how to

execute one movement very well. It is up to the expert system to ensure that it makes sense for the

movement to be executed at that time.

With the absence of an expert system in our implementation, it is up to the user of GESTURE to

guarantee that movement scripts are created with a logical selection of movements. In order to

fulfill this requirement, it is important to understand the syntax and semantics of the language used

for the movement script.

GESTURE Implementation 24

An animation script is some form of movement specification over time. The format of the

movement language script is a series of movement command lines. Each line specifies a time at

which a movement should begin, the movement and then an optional collection of words which

qualify the movement. The command lines must be sorted in chronological order by the specified

starting time of the movement. The times on the command line represent frame numbers.

Choosing another measure of time, such as seconds, was considered, however it was decided that

the movement specification should have the same time granularity as the animation it is scripting.

This implies that the expert system be aware of the frame rate of the final animation in order to be

able to control the speed of movements.

Movements are specified by words which uniquely define the movement. Each movement can be

qualified by words which will alter the way in which the movement is produced. In the absence of

qualifying words, defaults are chosen. Qualifying words that may be used, vary between

movements. The command line

1 5 l o o k up

will cause the head to begin looking upward at frame 15. Because the movement "look" can be

qualified by a direction (left, right, straight) and speed (fast, average, slow) as well as height (up,

down, ahead), the defaults "straight" and "average" will be chosen for the direction and speed of

the movement respectively.

walk
i n back
s c r a t c h l e f t
l o o k r i g h t a h e a d f a s t
on w a i s t l e f t
h a l t
nod
walk

walk forward
place arms behind body
scratch head with left hand
turn head quickly to the right
put left hand on waist
stop walking
nod head
walk forward

Figure 4-1: A sample movement language script

Figure 4-1 shows an example of a movement script that can be used by GESTURE to produce an

animation. Explanations of the movements are in italics. A complete description of the movement

script language can be found in appendix B. The example script shown in figure 4-1 is designed to

portray some of the issues that were discussed with respect to the responsibilities of the expert

GESTURE Implementation 25

system. Note that the head scratch which was begun at frame 20 will stop when interrupted by the

head turn at frame 50. However if the expert system had not specified the command to place the

hand that was scratching on the waist, the arm would remain in mid-air. This script was intended

for an actor who will stop and nod at another actor before continuing on. Although the halting

process begins at frame 60, the actor will not stop moving for a while, and so the nod is scheduled

to begin at frame 100, after the actor has come to a stop.

The expert system is responsible for specifying the order and timing of movements, but not for

specifying the most natural way to produce each moverncnt. Beginning at frame 20, the left arm

will move from behind the back to behind the head in prcparation for a head scratch. The most

direct way to make this transition would be for the arm to move up along the back until the hand

was behind the head. This movement would not only appear very unnatural, but is physically

impossible. It is up to the gesture specification function dealing with head scratches, in

conjunction with the graph, to specify a path, such as moving the hand in front of the body and then

up to the head. The movement script in figure 4-1 can be logically produced without concern for

how natural transitions between the movements will occur.

4.2. Producing the Animation Script

Creating an animation script from a given movement specification is the process of specifying

stage position and joint angles for all the actors for a number of frames. GESTURE carries out this

process, producing an animation script from the movement language script.

The body model used in our implementation is represented as a hierarchy of rotational joints

between limbs. Applying a rotation to a joint higher up in the hierarchy affects the position of, and

joints between, all links lower in the hierarchy. So, for example, a rotation of the whole body will

displace every part of the body, whereas a rotation of the elbow joint will be applied only to the

elbow, wrist and metacarpal joints of the same arm. The hierarchy of joints used in our model is

shown in figure 4-2.

The animation script produced by GESTURE contains joint angles, and the body location for an

actor for a determined number of frames. The control structure for reading the movement script

GESTURE Implementa~on

WHOLE-BODY

L-T
L-KNEE

I

L-AN h E

I
L-METATARSAL

THO ' ~ ~ 1 0 'I
THORAX9

I
THORAX8

I
THORAX7

THO d AX6
I

""8""'
THORAX4

I

"-TP
R-KNEE

R- &E
I

R-METATARSAL

THORAXI

L-STERNUM CERVICAL7 R-STERNUM

I I
CERVICAL6

I
L-SHoY

L-ELBOW
I

CERVICAL5
R-SHorDER

R-ELBOW
I

L-WRIST
I

CERVICAL4
I

R-WRIST
I

L-METACARPAL
I

CERVICAL3
I

R-METACARPAL

I
CERV CAL2 I
cERvY=l
ATLANTAL

Figure 4-2: Joint hierarchy for model of body used in GESTURE

GESTURE Implementation 27

and producing the animation script is relatively straightforward as most of the work in determining

what angles will produce the desired movements is performed by the gesture specification

functions. However a few concepts must be explained in order to fully understand the control

structure.

Due to the nature of the movement language script, GESTURE'S control is event driven. Joint

angles for the animation script are computed in sequential order through frame numbers. However

time does not advance in equal units, but rather is controlled by the times specified in the

movement script. These times are used to update a global clock, which represents the current clock

time. This is an important reason for ensuring that the times in the movement script are in

chronological order, as stated in the previous section.

Before the animation script is produced, the data must be stored in a temporary location while it is

being computed. A standard approach is to use a channel table to store joint values at key frame

numbers (keyframes) and then to interpolate between these keyframes to obtain values at every

frame. There is one channel per joint, and three channels for the (x, y, z) location of the actor on

the stage. Entries into the channel table are made by the gesture specification functions as

movements are requested by the movement script. When a movement event is processed, channels

may only be altered for the current clock time and future times. This means that an event cannot

change the movements that occurred previous to it. It does however allow for interruptions of

gestures.

Consider the case where we wish an actor to begin a wave from frames 0 to 10, and continue with

a head scratch after frame 10. The generation of a wave involves producing several keyframes for

several channels. For example, if the current clock time is t = 0, then a wave could cause the

placing of keyframes in the shoulder, elbow and wrist joints of one arm at t = 0, t = 30 and t = 40.

When at t = 10, the movement script calls for a head scratch, keyframes after the current clock time

(t = 30 and t = 40) would be removed, and new keyframes at t = 10 and t = 25, for example, could

be inserted. This example is illustrated in figure 4-3. Manipulating the channel table in this way

will cause an interruption of the wave by a scratch. This example demonstrates how the channel

table is used in general. A gesture specification function determines how to execute a movement,

GESTURE Implementa~on

0 wave
10 scratch

(a) Movement script for wave followed by scratch

(b) Movement "wave" involves placing keyfrarnes at current clocktime,
(clocktime + 30) and (clocktime + 40)

clock-time: 0

clock-time: 10

channel L-SHOULDER C

channel L-SHOULDER
scratch scratch

(c) Movement "scratch" involves placing keyfrarnes at current clocktime
and (clocktime + 15)

0
wave

Figure 4-3: Interrupting gestures in the channel table

and then produces keyframes in the appropriate channels at and after the current clock time,

removing existing keyframes when necessary.

If the designated movement is a destination movement, control can proceed to the next movement

in the script after keyframes have been generated. However, recall that for action movements,

keyframes are only generated until the beginning of the cyclic part of the movement (see section

3.2.2). After this, an action object corresponding to the cyclic part of the movement is created

before control proceeds to the next movement. The action object specifies how keyframes will be

generated at a later time to produce the cyclic movement. These keyframes are generated as

control proceeds through the movement script. At each new event, the clock time is advanced to

the starting time of that event, and keyframes for all active action objects are generated extending

30
wave

40
wave

GESTURE Implementation 29

at least to the current clock time. An action movement ends when a movement in the script is

specified which uses the same joints as the active action movement. The creation and deletion of

action objects will be discussed further in section 4.4.

After the whole movement script has been processed, the channel tables contain a representation

of all the movement specified in this script. One last step must be completed before an animation

script can be created: values for channels at the times when there are no keyframes must be

evaluated. These values will be determined by applying interpolation routines to each of the

channels.

Interpolating to obtain values for inbetween frames can be looked upon as a curve-fitting

problem, given a set of points. The choice of interpolation routincs can affect the values computed.

Interpolation algorithms based on Hermite or Bezier matrix forms guarantee first order continuity

and that the curve will pass through the given points. B-spline curves may only approximately pass

through the given points, but first and second order continuity is guaranteed [Foley 821. Careful

thought must be given to the method used to interpolate joint rotations. If joint rotations are

represented in the Euclidean co-ordinate system, then an interpolation is done on rotations around

each of the axes separately. A rotation is applied to a joint by defining an order of rotation around

the axes, for example, X then Y then Z. Unfortunately, rotations represented in the Euclidean

geometry can introduce Gimbal lock. This phenomenon occurs when the angle of rotation around

4
Y is 90 " . This rotation is applied before the rotation around Z, but after the rotation around X,

causing these two axes to be superimposed, and therefore losing one degree of freedom.

To avoid this problem, joint rotations are represented as quaternions and a quaternion

interpolation is applied to the joint channels [Shoemake 851. Quaternions specify an axis and an

angle of rotation around the axis. Since no arbitrary axes of rotation are specified as in the

Euclidean space, Gimbal lock is avoided. Also, only one channel per joint is required instead of

three since the interpolation treats a quaternion as one cntity.

Whereas quaternions are a natural way of representing rotations, they are not applicable to

translations. Since translations are independent of order if applied along orthogonal axes, stage

GESTURE Implementation 30

location is best represented in terms of an (x, y, z) position. Thus three channels are required for

specifying the location of the actor in the animation.

The interpolation routine applied to the three channels for specifying location is a spline

interpolation with local tension, continuity and bias control [Kochanek 841. This interpolation

method allows for much control over how the interpolation is camed out. The tension parameter

controls how sharply the curve bends at a key position. The bias controls the direction of the path

of the curve as it passes through keyframes. The continuity parameter varies the amount of

discontinuity at a keyframe. In GESTURE, these three parameters are not exploited to their full

extent. Experimenting with values for the parameters could produce varying styles of executing

movement. For example, introducing a discontinuity could produce a sudden change of direction

in the actor's movement. An animator may desire this effect to show a change of mind in the

actor's objectives. This area could be explored further by finding ways to relate the control

parameters to adjectives an animator may use to qualify movement.

The overall control structure of GESTURE can now be explained using the concepts presented

thus far in this section. Consider the pseudo-code for the control structure shown in figure 4-4.

GESTURE first initializes the channel tables. This essentially empties them of any keyframes in

preparation for processing a new movement script. A keyframe is then placed in each channel at

frame 0 with the body assuming a resting stance and an initial stage position (line 2). The global

clock is reset to 0 in preparation for advancing forward by event. The processing of each command

line in the movement script initiates a new event. The clock is pushed forward to the time of this

new event (line 6) and then keyframes are generated for the active action movements up to the new

current clock time (line 7). Control then proceeds to the step where frames for the movements are

generated (line 8). This is done by activating the gesture specification function corresponding to

the movement. After the channel table contains keyframes for all movements in the script, the

interpolation is applied to each channel, producing joint angles and stage position for all frames.

These values are then stored in an animation script which can be used to play back the animation.

The high-level control for GESTURE is general and quite straightforward. It is an event-driven

GESTURE Implementation

initialize channel tables

set first frame to rest position

clock - time c 0

while (there is still another line in the movement language script)

{

clock - time c time specified by new movement command

produce frames for active action movements to current clock time

activate gesture specification finction corresponding to gesture
in movement command

1

interpolate channels in channel table

place interpolated values for stage position and all joints in animation script

Figure 4-4: Control Structure for GESTURE

system, and requires no knowledge about how particular movements are executed. The remainder

of this chapter will discuss what happens at line 8 of the algorithm: how realistic movement is

achieved from a descriptive movement command line.

4.3. A Graphical Representation for Movement Specification

In the previous chapter, the notion of a representation for movement accessed by the gesture

specification functions was introduced. It was suggested that key body positions could be recorded

using nodes in a graph, and movement could be produced by traversing the graph. This section

will discuss the problems that arise when determining how to generate movement, and will present

the graph as a solution.

When a gesture specification function is activated, it has to know the current position of the body

before it can produce keyframes for the movement. For example, to scratch one's head the arm

must follow a completely different path from a stretching position, with both arms high above

one's head, than if both arms were hanging by one's side. The problem in producing keyframes for

GESTURE Implementation 32

a movement is to ensure that a sensible (i.e. a physically possible, and most likely) path is chosen,

and that the keyframes are placed at times that will produce the desired velocity. Therefore to

determine how and when the keyframes are to be placed, the current body position has to be

assessed for position and orientation.

An analysis of the body position can take on many different forms. At one end of the spectrum,

one could do a thorough mathematical analysis of all the joint angles, determine where all the joints

and end-effectors are in space, and compute a path. This method could produce very realistic

results, but would be very expensive computationally. The algorithm would also be dependent on

the limb that is being moved, and the movement that it is executing. This approach is very low-

level, and would be inappropriate for gesture specification functions which access information at a

higher level. At the other end of the spectrum, a set of states could be maintained which would

hold true for the body position at given times. This set would be updatcd as new movements are

executed. Then instead of examining 10 or 15 joint angles to determine where the right arm is, we

could retrieve information on the state of the right arm such as "right-arm-at-rest" or "right-arm-

stretching". Then it would be relatively straightforward to determine which set of keyframes to

produce in order to execute the next movement. The disadvantage of this method is that it is

coarse-grained. While a movement to a new state is in progress, there are no states corresponding

to the body positions during the transition period. This means that there is no information about

how to begin a new movement during this transition. Therefore complete movements will have to

be generated.

Secondary movement is a reflection on a person's character and emotions. As a person reacts to

his or her environment, this motion constantly changes. To make the motion realistic, it is

important to be able to switch quickly and smoothly between movements at any time. This

involves being able to evaluate very quickly what position different body parts are in, and

determining what path to follow to continue the smooth execution of another movement. We

would like to choose a representation of the body posture that allows for quick evaluation of the

pose the body is assuming and that easily conveys how to move from that pose to another one. The

suggested representation is a graph in which the nodes represent body positions and the arcs are

labelled with names of movements. If the body is in a position represented by a node in the graph,

GESTURE Implementation 33

then to execute a movement the graph is traversed along the arcs labelled with that movement.

Since each node represents a key position for joints, the nodes in a path through the graph are

equivalent to the keyframes in a channel; the keyframes can be interpolated to produce a smooth

animation of a set of movements. Let us examine this graph representation in more detail.

The nodes in the graph represent states of the body, or, body positions. States can either be

named states which correspond to actual poses, for example, "hands-on-waist", or intermediary

states between the poses. Intermediary states are not necessary if there is a direct path between two

named states. However intermediary states will have to be introduced to make the movement more

realistic. For example, if no intermediary state existed between the position of the arms behind the

back and the position of the arms in front of the body, the movement would be executed by pushing

the hands through the body until they were in front of the body. If an intermediary state is

introduced between these two states where the hand is slightly distanced from the body, the

movement of the arms from behind the back to in front of the body will appear more realistic.

Two types of states have been identified. The nodes can be named similarly to reflect the states

they represent: a named node represents the final pose of a movement, and an intermediary node

represents a transition state along a path between two (or more) named nodes. Figure 4-5 shows a

graph containing three nodes: two are named nodes, and the third node is an intermediary node

between two body positions.

The labels on the arcs in the graph are the names of gestures. A gesture in this context is a

movement that will achieve a certain body pose. Gestures, and thus arc labels, use the same names

as named states. This means that to attain the body position "on-waist" from any node in the graph,

the arcs with the gesture label "on-waist" should be traversed. Thus every node should have an arc

for all gestures that do not have the same name as the name of the node. For example, the node

named "rest" does not need an arc labelled "rest" since the body has already attained that position.

The other information that an arc must carry is some sort of distance measure between nodes.

Since nodes represent arbitrarily defined body positions, there is no reason that the time to travel

between any two pairs of nodes should be the same. When the final interpolation is applied to the

GESTURE Implementation

Figure 4-5: Graph with two named states
and one intermediary state

ordered set of nodes, representing the keyframes, there must be information about how many

frames to place between each of the keyframes. Thus the arcs are labelled with the number of

inbetween frames that should be placed between adjacent nodes in a path.

The idea of singling out some nodes as named states corresponding to the final body positions of

gestures works well for destination movements. But recall that there are also action movements

which do not reach one body position, but rather, cycle through several body positions; for

example, a head scratch or a wave. In the case of an action movement, we will assign the same

name to several nodes, and define an ordering of these nodes through which to cycle. An expanded

version of the above figure incorporating the wave gesture is shown in figure 4-6.

The nodes in the graph correspond to body positions. If we were to consider all the body

positions that could be assumed, the graph would certainly be very large. One way in which the

number of nodes can be reduced is to take into consideration the nature of a gesture. A gesture

does not normally involve the whole body. Usually a gesture is performed by the arm, the head or

the torso: in each case, some specific limb or part of the body is involved. For example, a wave is

done by an arm, a nod by the head, or a slouch by the torso. Two gestures that are performed by

different parts of the body are often independent of one another, and there is no reason they could

not be done in conjunction with each other, such as nodding while waving. If the nodes were to

GESTURE Implementation

on-waist
wave

Figure 4-6: Graph with the action movement: "wave"

define complete body positions, then for every movement of one body part there will have to be a

set of nodes with all possible movements of other body parts. This approach would yield a massive

graph containing much duplicated information. To reduce the number of nodes and avoid

repeating information, nodes are grouped into separate graphs, each graph pertaining to a unique

set of joints which form one body part. For example, the three arm gestures presented in figures

4-5 and 4-6 - rest, on-waist, wave - are in a graph that records only joint angles for the arm.

Execution of body movements can proceed by traversing several graphs concurrently, with each of

the graphs controlling the movement of one set of joints.

This method of localizing the joints involved in body positions for a graph works well because

gestures tend to correspond to local body parts. In fact, gestures are most naturally specified in

terms of the movements of end-effectors, for example "place hand on waist" as oppose to "rotate

shoulder and elbow joints such that ...". Graphs can naturally divide the body such that the joints

from the centre of the body to an end-effector form a graph. In GESTURE there are seven graphs:

two arms, two hands, head, torso and legs. The arm and hand have been separated for finer control

GESTURE Zmplementation 36

over movements of these limbs. Both legs have been grouped into one graph because of the nature

of the algorithm used for the only movement executable by the legs: walking. This will be

discussed in the next section.

Occasionally movements of different body parts will have to be co-ordinated. A head scratch, for

example, not only involves traversing the arm and hand graphs to position the hand against the

head, but also requires traversing the head graph to ensure that the head is positioned properly to

receive the scratch. It would not do if the hand was scratching in mid-air because the head had

turned away to look at something. Thus, some gestures may be common to two graphs, and the

graphs must be traversed concurrently along arcs with the same gesture name.

A node in the graph represents a body position in space assumed by a set of joints. Continuous

movement is achieved by smooth interpolation through a defined ordering of these nodes. So far in

the discussion, if one movement interrupts another, we have assumed that we are "at" a node (i.e.

the body is assuming a position defined by one of the nodes), and to continue with the next

movement, it suffices to follow the arc emanating from the current node labelled by this new

movement. However, recall that there is some distance between nodes, and therefore some time is

required to travel between nodes. Thus, it is possible that a movement will be interrupted while the

arc is being traversed, rather than when the body part is assuming a position at a node. In this case

we would not be able to follow the arc for the new gesture until we had reached the next node. If

this were the solution to interrupting gestures, it is likely that very few interruptions would be

observed in the movement, especially if there were very few intermediary nodes for a movement.

Thus the animation would result in a series of uninterrupted movements. This solution might be

acceptable for primary movement, where actors have clearly defined objectives. However

secondary movement is governed by sub-conscious thoughts, environmental changes or body

discomfort. So, for body language to convey anything, secondary movement should be able to

switch easily from one movement to another at any time.

In GESTURE, we would like the flexibility that would allow for movements to be interrupted and

continued with other movements, and perhaps for those to be interrupted in turn. This means that

when a new movement takes over after interrupting the body in the midst of executing a previous

GESTURE Implementation 37

movement, the body will not necessarily be in a predetermined state, but could be somewhere

between two states. A procedure is needed for going from this inbetween body position to a known

state, without having to digress to numerically analyzing this body position.

In order to implement this instantaneous fluctuation between gestures in the graph, it should be

possible to create new positions at any time. Thus if a movement is in the process of traversing an

arc when it is interrupted, a temporary node is created. This node is a special node which can act as

a keyframe for the final interpolation, but which will not be accessible in the graph as soon as it is

no longer the current node. The reason for this is that although the joint angles for that node can be

computed easily (by interpolating between the joint values of the two nodes connected by the arc

being traversed when the interruption occurred), it would be a non-trivial problem to determine

where all the arcs emanating from this new node should lead, and furthermore, what distance

measure should be associated with each of these new arcs. However this temporary node must at

least have an arc to the most appropriate node in the graph for beginning the execution of the new

movement. Therefore, the temporary node adopts the arcs and arc lengths of either the most recent

node or the destination node for the original gesture before the interruption, depending on which

node is closer (by the distance measure). Figure 4-7 shows an example of a movement of the arm

from rest position to putting the hand on the waist. (The intermediary nodes have been labelled A

and B in this figure to distinguish them.) After 3 time units, this movement is interrupted to put the

arm behind the back. A temporary node (labelled T in the figure) is created to represent the body

position at the time of the interruption. Since the body position was closer to the intermediary node

A than to the "rest" node when the interruption occurred, the temporary node adopts the arcs of the

intermediary node. This means that the temporary node will adopt an arc with the label "back" and

distance measure 2. Once this arc has been traversed, the intermediary node B has its own arcs for

all the gestures, and can continue the movement. From this point, the temporary node is

inaccessible until it is required in the final interpolation. The thicker solid lines in the figure

indicate the final path traversal and the node labelled T indicates the temporary node created when

the interruption occurred.

A method has been presented for representing movement. The graphical representation allows for

the continuation of any movement with any othcr movement by defining paths for the gestures

GESTURE Implementation

back::!

Figure 4-7: Graph with a temporary node
caused by an interrupting gesture

from every node in the graph. This solution presents a way of interrupting movements at any time

and recovering easily to continue with another movement. The flexibility of this representation is Id/
A

well-suited for animating secondary movement.

4.4. The Gesture Specification Functions

One difficulty in devising algorithms for human animation is that the human body is not a very

general structure. An algorithm that generates movement for one arm could be used to control the

motion of the other arm by applying a reflection operation. However the same algorithm would not

be suitable for controlling the motion of the legs, and even less appropriate for the head. Although

all these limbs are links connected at joints, the links are different sizes, there are different numbers

of joints in each limb, and constraints on the humanly possible rotations of the joints vary between

the joints. Human animation must therefore appeal to specialized algorithms with data about the

composition of the body.

Animation systems which incorporate knowledge focusing on particular types of human

movement can produce realistic motion, because different knowledge is required to animate

GESTURE Implementation 39

different parts of the body. GESTURE encodes knowledge about movements of different body

parts into gesture specification functions. In particular, each function generates keyframes to

perform a particular movement using the graph and two special-purpose tools, anchor and

traverse-graph.

Recall that a request for the execution of a movement initiates a new event at a certain clock time.

The gesture specification functions can alter the channel table from the current clock time onwards

to interrupt previous movements and generate keyframes for the new movement. Anchoring is a

mechanism for placing an appropriate keyframe at the current clock time, and then removing all

keyframes in the future of that time. The new keyframe that is created corresponds to a temporary

node in the graph. The joint values at this time are computed by applying an interpolation to the

segment defined by the keyframes surrounding the current clock time. The effect of anchoring a

channel at a particular time is to ensure that movements that were executing up to that time

continue to do so in the same way, and that the new (interrupting) movement can begin

immediately at the current clock time.

The other tool available to the gesture specification functions, traverse-graph, generates the

keyframes for the specified movement. The type of gesture desired is specified, along with a

qualitative description of how fast the movement should be executed (this will affect the inbetween

values on the arcs), and one keyframe is placed in the channel table for every node encountered in

the graph traversal. The traverse - graph tool also handles the creation and deletion of action

movement objects. Before the graph traversal begins, all active action objects are examined to see

if the joints used in executing their movement coincide with the current movement being

processed. If so, the action movement will no longer be able to continue its cycle and so the object

is removed. At the end of a graph traversal, the last node reached is examined to see if it represents

the last posture in a destination movement, or if it is one node in a cycle for an action movement.

If the latter is true, an action object is created for this new movement.

Most movements can be generated by the gesture specification functions using just the two tools

anchor and traverse - graph. Movements that are generated using predefined keyframes mostly fall

into this category, since the graph is a natural representation for keyframing. However,

GESTURE Implementalion 40

occasionally a gesture specification function may generate movement by applying an algorithm

such as a dynamic or a kinematic simulation. Using the results of such an algorithm could involve

altering body positions for nodes in the graph, or adding or removing nodes from the graph. In this

case, the gesture specification functions will require additional control besides simply using the two

tools. This situation will be discussed further in the latter part of this section.

Each of the gesture specification functions is invoked with four parameters. The clock-time is the

time at which the movement should begin execution. The other three parameters are adjectives

which describe specific ways the movements can be executed. The speedfactor describes how

quickly the movement should be executed. The hemisphere indicates if the left, right or both sides

of the body are involved in the movement, or in the case of the head, if the movement should be

done looking left, right or straight ahead. The height is used by head movements to signify if the

head is looking up or down, or in the case of a wave, if the gesture is large or small. If the

movement script does not qualify the movements, default values are used. The speed of the gesture

always defaults to an average speed, however the defaults of the other qualifiers dcpend on the

movement.

The speedfactor for a gesture requires further explanation. The sole primary movement in the

GESTURE implementation is walk. The velocity of a walk can be measured quite accurately, and

a slow, average and fast walk could be defined with respect to walking velocities of people.

However measuring the velocity of a head scratch, or of turning the head to look in another

direction is not so easily done. The secondary movement in GESTURE is generated from

keyframe data. This data was obtained by using a keyframing system COMPOSE [Calvert 891.

The joint angles for each of the positions created in this system were recorded in the graph nodes.

However a decision had to be made as to the measure attached to each of the arcs. Recall that this

measure represents the number of "inbetween" frames between key positions and that this value

will control the speed of the movement. The choice of measures on the arc was based on applying

the same kind of intuition an animator uses in a keyframing system. For each movement, a value

was selected that would produce a natural, average-looking velocity of that movement. The

qualifiers "slow" and "fast" simply multiply or divide these values by 2, to decrease or increase the

speed of the movements respectively.

GESTURE Implementation

* Gesture Specification Function: gs-on-waist
*
* Gesture Description:
* Put one or both hands on waist.
*
* Qualities Used (defaults in < > brackets) :
* speed-factor : SLOW-SPEED, <AVERAGE-SPEED>, FAST-SPEED

hemi sphere : LEFT-SIDE, RIGHT-SIDE, <BOTH-SIDES>
*
..
* /
void gs-on-waist(c1ock-time, speed-factor, hemisphere, height)
int clock-time;
int speed-factor;
int hemisphere;
int height;

{
#ifdef lint

height = height;
#endi f

/
* set defaults
*/

if (speed-f actor == NOQUALITY)
speed-factor = AVERAGE-SPEED;

if (hemisphere == NO-QUALITY)
hemisphere = BOTH-SIDES;

/*
* produce keyframes
* /
if (hemisphere == LEFT-SIDE I I

hemisphere == BOTH-SIDES)
{

anchor (GRAPH-LARM, clock-time) ;
traverse-graph(GRAPH-LARM, ULRMULRM0N-WAIST, speed-factor
anchor(GRAPH-LHAND, clock-time);
traverse-graph (GRAPH-LHAND, LHAND-WAIST, speed-f actor)

1

if (hemisphere == RIGHT-SIDE I I
hemisphere == BOTH-SIDES)

{
anchor (GRAPH-RARM, clock-time) ;
traverse-graph(GRAPH-RARM, RARM-ON-WAIST, speed-factor);
anchor(GRAPH-RHAND, clock-time);
traverse-graph(GRAPH-RHAND, RHAND-WAIST, speed-factor);

l
1

Figure 4-8: Gesture Specification Function for gesture: on-waist

The gesture specification function which controls the movement of placing one or both hands on

the waist is shown in figure 4-8. This function demonstrates the most basic use of the anchor and

traverse-graph tools to produce movement from the keyframing data in the graph. First the

GESTURE Implementation

* Gesture Specification Function: gs-scratch
*
* Gesture Description:
* Scratch back of head with left or right hand
*
* Qualities Used (defaults in < > brackets):
* speed-factor : SLOW-SPEED, <AVERAGESPEED>, FAST-SPEED
* hemisphere : LEFT-SIDE, <RIGHT-SIDE>

* /
void gs-scratch(c1ock-time, speed-factor, hemisphere, height)
int clock-time;
int speed-factor;
int hemisphere;
int height;

{
ACTION *action-movt;
CHAN-ENTRY *last-head, *last-arm;

#ifdef lint
height = height;

#endif

/*
set defaults

*/
if (speed-factor == NO-QUALITY)

speed-factor = AVERAGE-SPEED;
if (hemisphere == NO-QUALITY)

hemisphere = RIGHT-SIDE;

/*
* produce keyframes
/

if (hemisphere == LEFT-SIDE)
{

anchor (GRAPH-HEAD, clock-time) ;
traverse-graph(GRAPH-HEAD, HEAD-L-SCRATCH, speed-factor);

anchor (GRAPH-LHAND, clock-time) ;
traverse-graph (GRAPH-LHAND, LHAND-SCRATCH, speed-f actor) ;

anchor (GRAPH-LARM, clock-time) ;
action-movt =

traverse-graph (GRAPH-LARM, LARM-SCRATCH, speed-f act or) ;
action-movt->graphs-involved[GRAPH-HEAD] = TRUE;
action-movt->graphs-involved[GRAPH-LHAND] = TRUE;

1
else
t

anchor (GRAPH-HEAD, clock-time) ;
traverse-graph(GRAPH-HEAD, HEAD-R-SCRATCH, speed-factor);

anchor(GRAPH-RHAND, clock-time);
traverse-graph (GRAPH-RHAND, RHAND-SCRATCH, speed-factor) ;

anchor (GRAPH-RARM, clock-time) ;
action-movt =

traverse-graph (GRAPH--, RARM-SCRATCH, speed-factor) ;
action-movt->graphs-involved[GRAPH-HEAD] = TRUE;

GESTURE Implementation

action-movt->graphs~involved[GRAPH~F!HAND] = TRUE;
l
/*

if the arm gets in position before the head, we don't want
* to be scratching in mid-air, so anchor the arm to the time
* when the head is in position, so that it won't begin its
cycle 'till after that time

*/
last-head = chan-head;
while(1ast-head->next != NULL)

last-head = last-head->next;
last-arm = (hemisphere = LEFT-SIDE ? chan-lam : chan-ram);
while(1ast-am->next != NULL)

last-arm = last-am->next;

if (last-arm->time < last-head->time)
t

if (hemisphere == LEFT-SIDE)
anchor(GRAPH-LARM, last-head->time);

else
anchor(GRAPH-RARM, last-head->time);

l

Figure 4-9: Gesture Specification Function for gesture: scratch

defaults are set if the movement qualities were not specified in the script. This movement can only

be qualified by the speed and hemisphere, and so the height qualifier is ignored. By default both

hands are placed on the waist. Then, the channel table is anchored at the current clock time, and

the graphs are traversed; this places the keyframes required to put the hands on the waist in the

channel table. 1
The discussion of the graph in the last section raised the possibility of having to traverse two

graphs concurrently in order to execute some movements. One example is the head scratch which

must co-ordinate the movements of the arm and hand on one side of the body with the head. The

solution in GESTURE is shown in figure 4-9. This gesture has the added complication of being an

action movement, which means that an action movement object is created in the graph traversal for

the arm. Since a head scratch involves the joints controlled by three graphs, the action object

created stores this information so that if a movement involving any of thcse joints occurs at a later

time, this object will be removed, and the head scratching will cease. The gesture specification

function for head scratch must deal with one other point. When the head and arm graphs are

traversed, depending on where these limbs were positioned before the interruption occurrcd, one

limb might arrive at its destination before the other. If the arm is in position to scratch before the

head, it is important that the scratching cycle does not begin until the head has been properly

GESTURE Implementation

Gesture Specification Function: gs-walk
*
* Gesture Description:
* Start up a walk.
*
* Qualities Used (defaults in < > brackets):
* speed-factor : SLOW-SPEED, <AVERAGE-SPEED>, FAST-SPEED
*

*/
void gs-walk(c1ock-time, speed-factor, hemisphere, height)
int clock-time;
int speed-factor;
int hemisphere;
int height;
{

static void create-legsgraph();
static void set-swing();

#ifdef lint
hemisphere = hemisphere;
height = height;

#endif

/
* set defaults
* /
if (speed-factor == NO-QUALITY)

speed-factor = AVERAGE-SPEED;

/ *
* If this is the first time we have been asked to walk, we must
* create the legs graph and the location graph.
* We can tell if they haven't been created yet, because the
* arc labelled LEGS-WALK from the first node, will just point
* to itself (the first node), and not another node which we
* would traverse to get to the walk cycle nodes
*/
if (legs-states [0] .next-state [LEGS-WALK] == 0)

create-legs-graph(speed-factor, hemisphere, height);

/*
* produce keyframes
*/
anchor (GRAPH-LEGS, clock-time) ;
traverse-graph(GRAPH-LEGS, LEGS-WALK, speed-factor);

/*
* if the arm is *not* doing something else right now (ie. is at rest),

start the arm swinging with the legs
*/

last-arm = chan-lam;
while (last-arm->next ! = NULL)

last-arm = last-arm->next;
if (last-arm->state == 0)
(

set-swing (GRAPH-LARM) ;
t raverse-graph (GRAPH-=, LAFN-SWING , AVERAGE-SPEED) ;

l

GESTURE Zmplementation

last-arm = chan-ram;
while(1ast-arm->next != N U U)

last-arm = last-arm->next;
if (last-arm->state = 0)
I

set-swing (GRAPH-RARM) ;
traverse-graph(GRAPH-RARM, RARM-SWING, AVERAGE-SPEED);

1
1

Figure 4-10: Gesture Specification Function for gesture: walk

positioned. Therefore the channel table for the arm is anchored in the destination position for

scratching at the time when the head has reached its destination position.

The flexibility of the graph is demonstrated by the fact that it can not only represent movement

that has been specified by keyframing, but also by any other form of movement generation. The

movement walk serves not only as an example of primary movement in GESTURE, but also as an

example of movement generated using non-keyframing techniques. The gesture specification

function that generates the walking movement uses the graph to incorporate data produced from a

dynamic simulation of a walk [Bruderlin 881. Human walking also involves swinging each arm in

synchrony with the opposite leg. An arm swing is initiated by this same gesture specification

function using a kinematic description of the movement of the arm as a function of the movement

of the leg.

Figure 4-10 shows how the walk gesture specification function uses the graph to incorporate

dynamically and kinematically simulated movement. The subsidiary functions create-legs-graph

and set-swing are invoked which alter the graph by changing joint values at the nodes, and

modifying arcs and arc lengths. When the graph is traversed after this, animation frames will be

generated that control movement according to each of these simulations. The method for

incorporating each of these dynamic and kinematic algorithms into the graph will now be

examined.

Animating a human walk is a particularly complicated type of control over articulated bodies, as

it involves addressing such issues as balance and co-ordination as well as impact with the ground,

an external object to the body model. One way of producing very realistic motion for complex

human movement is to set up a dynamic simulation of the movement, which considers the forces

and torques applied to the body while executing this movement. To avoid the user having to

GESTURE Zmplementalion 46

supply these forces and torques to produce the desired movement, a high-level interface is

appropriate. Bruderlin has implemented a goal-directed system where the movement specification

for the walk includes supplying parameters such as the velocity, step length or step frequency,

pelvic list and lateral displacement [Bruderlin 881. The result of his simulation is a frame by frame

specification of joint angles in the legs for the duration of the walk. These results are used to

control the walk in GESTURE.

The style of an actor's walk depends on the personality and moods defined for the actor. A

gesture specification function can use the adjectives that qualify the walk in the movement script to

supply appropriate parameters to the walking algorithm. Once a walk is generated, the joint values

over time must be incorporated into the graph.

The function create-legs-graph assigns joint angles produced from the simulation to one node in

the legs graph for each frame of the walking sequence. Since the simulation produces every frame

in the walk, an interpolation is not required. To enforce this, the arcs that are created between the

nodes all have arc length 0. This is a general way to incorporate the data from any movement

generation algorithm that defines values for every frame. Thus the graph could also represent

movement from film data or rotoscoping, for example.

A walking sequence generated by this algorithm consists of three cycles: the develop, the

rhythmic and the decay cycles. The body accelerates to the specified velocity during the develop

cycle, walks at that velocity during the rhythmic cycle and then decelerates to a stop during the

decay cycle. The rhythmic cycle is represented by nodes in the graph which generate the

movement of two steps, one on the left foot and one on the right. The walk is therefore an action

movement, and the cycle through the nodes in the rhythmic cycle continues until the movement

script specifies a halt command.

An example of the nodes and arcs in the legs graph after the create-legs-graph function has been

executed is shown in figure 4-1 1. In general there will be of the order of 50 nodes in each of the

three walking cycles.

When people walk, they usually swing their arms. When a walk command is specified in the

GESTURE Implementation 47

halt ..-~--

walk walk

walk

walk
halt

DEVELOP cvcle RHYTHMIC cycle DECAY cycle

Figure 4-11: The legs graph representing the
walk and halt movements

movement script, the gesture specification function that knows about walking also generates an arm

swing, if appropriate. There are a few issues to be addressed with respect to this movement. First

of all, the style of arm swing is affected by the walk: a bouncy, light-hearted walk may cause a

more vigorous arm swing. Therefore the nodes in the arm graph that control the arm swing will be

modified accordingly. Secondly, frames for controlling the arm swing cannot be generated

independently of those controlling the walk. The gesture specification function must ensure that

the frame generating the left heel strike occurs at exactly the same time as when the right arm is in

its furthest forward position. Lastly, since arms can also be engaged in secondary movement, the

arm swing should not occur unless the arm was at rest next to the body. Furthermore, if an arm

was executing some secondary movement during the walk, and then is dropped to the side, the

gesture specification function that deals with placing the arm at rest must know to begin an arm

swing if the actor is walking. This involves creating arcs to the arm swing nodes from nodes

representing any other arm position, and determining the arc lengths that will put the arm swing in

synchrony with the walking cycle.

The function set-swing modifies the arm graphs so that traversing those graphs will produce an

arm swing meeting the three requirements stated above. The arm swing is generated kinematically

with the use of two keyframes representing the forward and back positions of the arm in the swing.

The joint angles for the arms at these keyframes are determined as a percentage of the joint angles

GESTURE Implementation 48

in the legs at heel strike and toe off. If the arm is to travel from an arbitrary node to one of the arm

swing nodes, the gesture specification function determines if it is more appropriate to go to the

forward or back position of the arm swing, and then calculates the arc length based on the number

of frames in the walk cycle that would synchronize the arm with the legs. The arm swing is then

represented by an action object which is removed only when the walk comes to a halt.

Assigning individual functions to be responsible for the execution of a single gesture has proved

to be an appropriate way to oversee the control of secondary movement. Since each gesture

requires special knowledge about how it is to be executed, gesture specification functions are a

good way to give individual attention to each of these movements. Furthermore, with the use of

the graph, the gesture specification functions can apply the most suitable movement generating

algorithm for each gesture. The approach to human animation presented here provides a flexible

and general way to produce and co-ordinate different types of movements.

4.5. Presentation

GESTURE is an interactive graphics program in which the user communicates through the mouse

and keyboard and the output is displayed on a colour monitor. The system is written in 'C' and

runs on an IRIS-2400. The IRIS geometry engines, which perfom matrix operations in hardware,

are used to increase the speed of matrix multiplications that are required to determine the rotation

of each joint in the model of the body.

The purpose of GESTURE is to demonstrate that secondary movement can be produced from a

description in a movement script. In implementing GESTURE, it was considered beneficial if the

user-interface simulated the environment of the ideal framework as presentcd in chapter 3. In this

ideal situation, the user selects the number of actors for the animation, assigns them all primary

goals, and defines the personality and mood of each actor which then dctcrmines their secondary

movement. The ideal framework has been restricted in the following way. The animator can work

with exactly two actors who are introduced as Simon and Sally. These actors have their own fixed

starting position, facing each other at opposite ends of the stage. Since GESTURE is concerned

only with secondary movement, the sole primary goal assumed for Simon and Sally is to walk to

the other end of the stage. This initial set-up is pictured in figure 4-12.

Figure 4-12: Main scrccn of GESTURE

In GESTURE, the animator has high-lcvcl control ovcr the actors' secondary movcmcnt by

dcfining cach of thc actors' pcrsonality and moods. Figurc 4-12 shows two buttons on thc scrccn

labcllcd "Simon" and "Sally". 11' onc of thcsc buttons is sclcclcd with thc mousc, Lhc charactcr

dcfinilion scrccn for ~ h c selcctcd actor is displayed, and thc animator can givc this actor a charactcr

(figure 4-13). In the uppcr half of thc scrccn, thc actor's pcrsonality is dcfincd by adjusting a scl of

two-cndcd slidcrs. For cxamplc, an actor can bc cithcr cxtrovcflcd or introvcrtcd on a scalc of 0 to

10. Thc othcr possiblc opposing pcrsonality traits to sclcct lrom arc a chccrful or gloomy

disposition, assertive or passivc and dorninccring or submissive. Thc lowcr half of thc scrccn

dctcrmincs thc mood of thc actor. An actor can cxhibit dcgrccs of borcdom, ncrvousncss,

tircdncss, impaticncc and fcar on a scalc of O to 10. Dcpcnding on Lhc valucs sclcctcd on this

scrccn, thc aclors will display diffcrcnt lypcs of secondary movcmcnt as thcy walk across the svagc.

For cxamplc, if thc valuc of "tircd" is vcry high, ~ h c actor will rub his or hcr cyc.

Figure 4-13: Character dcfinilion scrccn of GESTURE

Thc prcsentation of GESTURE dcmonstratcs how an animator can intcract with a goal-dircctcd

systcm and achicve realistic human movcmcnt. GESTURE docs not includc an cxpcrt systcm

which would base its sclcction of sccondary movcmcnt to display on thc characicr dcscriptions.

Howevcr, a function has bccn writtcn to simulatc thc bchaviour of thc cxpcrt systcm. This mock

expert system crcatcs a movcmcnt script by sclccting appropriatc gcsturcs at lixcd intervals of timc.

Sincc the primary goal in GESTURE is to walk, thcn "walk" is thc first command that is cntcrcd in

thc movcmcnt script. Thc spccd of thc walk is sclcctcd dcpcnding on how chccrful or gloomy thc

actor is, and on his or hcr dcgrcc of borcdom and tircdncss. Secondary movcmcnt is cntcrcd

dcpcnding on characteristics rclatcd to that gcsturc. For cxamplc a scratch will bc cntcrcd into thc

movcmcnt script more oftcn if thc actor is vcry ncrvous. Thc scratch will bc qualified by "fast" i f

thc actor is vcry impatient or fcarful and "slow" if thc actor is passivc. Thc "wavc" gcsture will

occur at most oncc as thc actors arc about to pass cach othcr, only if thc actor is not introvcrtcd.

Thc movemcnt script will tcrminatc with a "halt" command. Thc ruics uscd in thc mock cxpcrt

systcm can bc found in appcndix C.

GESTURE Implementation 51

The selection of secondary movement is based on the results of studies in psychology [Scheflen

721. In these studies the frequency and duration of movements were not specified. Frequency and

duration of gestures were chosen to adequately demonstrate secondary movement. in GESTURE.

The results may not be psychologically sound, however they demonstrate the effectiveness in

making the actors' motion believable. Movement scripts may also be specified manually and

processed by GESTURE in the same way as the ones produced by the mock expert system

described above. In this way, movement scripts can be specially constructed to contain realistic

combinations of secondary movement.

Chapter 5

System Evaluation

This thesis has presented a general framework for a human animation system, with the focus on a

high-level approach to incorporating secondary movement into actors' motion. GESTURE

implements the part of the framework that produces the secondary movement specified in a

movement script. In the first section, the success of the implementation of the graphs and gesture

specification functions will be examined. In the following section, the system will be evaluated

against various measures. The chapter will conclude by comparing the results of this system with

other research that has been conducted in similar areas.

5.1. Analysis

In the last chapter, the use of gesture specification fimctions along with a graph was presented as

a way to represent and generate movement, with the flexibility of interrupting movements at any

time. An advantage of using these functions is that knowledge about movements is represented in

an organized way, which is easy to understand and modify. Thus new gestures can be easily

introduced into the system. Many types of gestures were incorporated into the system, and it was

also demonstrated how movements simulated by various types of algorithms could be incorporated.

Adding a new gesture to the system requires the creation of a corresponding gesture specification

function. If the gesture can be produced by using nodes currently in the graph, writing this

function can be easily done using the two tools anchor and traverse-graph presented in section 4.4.

If body positions not currently represented in the graph must be used, new nodes and arcs must be

added to the graph in the following way. If the node is an intermediate node, then an arc must be

created from that node for every gesture. This is done so that any movement can be continued

from this intermediate node. If the node is a named node, as well as the arcs described above, an

arc must be added to every other node in the graph labelled with the name of the new node. This is

System Evaluation 53

done so that the gesture represented by this new node can be performed from any position

represented by all other nodes in the graph. The last step is to label all the arcs with the distance

measure.

Let us examine the complexity of representing the graph in terms of storage space. Assume the

graph has n nodes and g gestures. In general g < n because there can also be intermediate nodes.

Each named node must have an arc for every other gesture but the one labelling its node, thus g(g -
1) arcs. The intermediate nodes must have an arc for every gesture, thus (n - g)g arcs. A graph

must therefore store O(ng) arcs. Adding a node to the graph requires adding up to g arcs to the new

node, and possibly n arcs for the other nodes if the ncw node is named by a new gesturc. So adding

a new node can be done by adding O(n) arcs.

struct graph-head {
QUATERNION joint-value[NUM-HEAD-JOINTS];
short next-state[NUM-HEAD-GESTURES];
short arc-length[NUM-HEAD-GESTURES];

1;

Figure 5-1: Structure representing a node in the hcad graph
A

Consider for example the space used by the head graph in the GESTURE implementation. An arc B
can be represented by two integers, one representing the node it is pointing to and the other the \/I
distance measure. The storage for a node must also contain the quaternion values for each joint at

that node. A quaternion is represented by four floating point numbers. Figure 5-1 shows the

structure representing one node in the head graph. The number of head joints

(NUM-HEAD-JOINTS) is 8, one for the ATLANTAL and 7 CERVICAL joints in the neck. The

head graph has 13 (NUM-HEAD-GESTURES) gestures and there are 13 nodes in the graph. The

total storage space used for the head graph is 2340 bytes. This is not an unreasonable size for

storing a graph that represents the movements of one body part. The storage required for

representing an animation script of 126 frames is 90937 bytes, and so in comparison, the storage

for the graphs is not significant.

The number of arcs that must be added to the graph when introducing a new gesture must also be

gauged with respect to the amount of work involved in deciding which nodes to connect, and what

measure to assign to the arcs. Creating arcs can be a tedious process as a minimum of g (the

System Evaluation 54

number of gestures) arcs must be added for each new node. However, once the arcs have been

created, the graph provides a foundation for any combination of movements to be exccuted. The

arc creating process could be made easier by the use of a graph generating program. This program

would display nodes as body positions, and show the different arcs connecting them. The user

could modify arcs and arc lengths, and then specify a path through the graph which would define a

series of movements to be executed by a figure. This mini-script could be previewed, and then the

graph modified to adjust body positions or timing between the positions. A graph generating

program was not implemented since a keyframing tool was available which could be used to

preview movements, and adjust timing which would alter arc lengths [Calvert 891.

One point should be mentioned about the distance measure on the arcs. In general it is safe to say

that the further the physical distance between two body positions, the larger the distance measure

on the arc between the two nodes representing the two positions. However the arcs length should

not be viewed in this way. Instead, this measure, which is attached to an arc labelled by a gesture,

should be an indication of how long it would be natural to take when moving between the two

positions to perform the particular gesture. For example, consider the two body positions

represented by the hand at the side of the body, and the hand next to the head, and arcs for rubbing I I I
A

an eye and saluting which connect the nodes representing these positions. The distance measure on

the arc with the eye rubbing gesture will be larger than the measure on the arc with the salute

gesture, since the former gesture will probably be executed in a slower, lazier manner than the

latter. In fact, in GESTURE, the arc length of the eye rubbing arc is twice as large as the arc length

of the salute arc.

From this analysis, one can see that a great deal of time and care may be taken in creating the

graphs and producing gesture specification functions. However this time must only be invested

once. The time involved in giving studious attention to the specification of the various gestures

pays off in the endless number of possible scripts that can be created from the movements. This

process is analogous to developing an expert system: a knowledge engineer can spend many

months embodying an expert's knowledge into a system, but once it is complete, the expert system

can be used by many people in varying situations.

System Evaluation

5.2. General Evaluation

One of the objectives of this thesis is to show that incorporating secondary movement into a

human animation system can transform a robot-like figure into a very life-like actor. The success

of an animation is best judged by how believable the viewer considers the actors' movements to be.

In order to view the resulting animation produced from a movement script, a sequence has been

printed on the margin of the pages of this thesis. The animation can be viewed by flipping through

the pages in reverse order. The movement script that generated this sequence is shown in figure

5-2. This script generated 126 frames, however only frames 26 through to 101 are printed.

walk
r u b
wave f r i e n d l y
l o o k l e f t
l o o k r i g h t up
on-waist b o t h s l o w
c l e n c h b o t h
l o o k l e f t up
h a l t
l o o k s t r a i g h t a h e a d

Figure 5-2: Movement script used to
generate animation printed in margin

As well as the quality of the final animation, the system should also be assessed on its usability.

GESTURE implements only the part of the framework that reads movement scripts and produces

an animation script. However the whole framework setting has been simulated in order to provide

a more user-friendly environment for the system. GESTURE also has a well-defined interface

which could be used if an expert system were to be implemented and incorporated into the

framework. The movement script uses a language which is powerful and flexible. Movements can

be initiated at any clock time and without regard to the state of the body at that time. If a

movement is not completely qualified in the script, default qualities will be assumed. The

movement script completely defines the animation script that will be produced by GESTURE, and

is an elegant interface for other modules to specify the movements for GESTURE.

The gestures that have been implemented were chosen to cover a variety of different types of

movements and to demonstrate different techniques for generating movements. Movements such

System Evaluation 56

as "on-waist" or "in-front" simply use named nodes to keyframe their positions. An intermediary

node was introduced when the "in-back" gesture was added, to ensure that movements would not

force the arm through the body on the way to the back. The "scratch" gesture demonstrates how

movements in two graphs (the head and the arm) must be co-ordinated. Non-keyframed

movements can be generated by applying algorithms in the gesture specification functions and

modifying the graph to incorporate the results. The "walk" movement is an example of this type.

A complete list of the gestures implernentcd is found in appendix B. The number of gestures and

the variety of methods used to implement them supports the ease with which other secondary

movement could be incorporated.

Graphics programs are inherently time-consuming and resource-intensive because of the amount

of information that must be stored and displayed. For each frame in the animation, a hierarchy of

matrix transformations must be stored which corresponds to the joint rotations applied in the

hierarchical representation of the body for that frame. This is not only a storage problem, but will

also involve many matrix multiplications to display each frame. One of the options in GESTURE

is to select playback speed as real-time. This feature is made possible by using two techniques.

First of all, the animation script is preprocessed and all matrix multiplications are performed for

every frame. The script is then represented as a series of 3-D polygons which when drawn will

display the figure in the body position represented by the hierarchy of joint transformation

matrices. This optimization process increases the display speed significantly, however it is

possible that real-time will still not been attained. In these cases, real-time display is achieved by

skipping frames in the script so that only some of the frames are displayed. With this capability to

display animations in real-time, it is possible for animators to get a sense of the overall moverncnt.

Providing this option in GESTURE gives imrncdiate fcedback on the resulting movement.

The actual process of creating an animation script from the movement script also requires some

time. The movement script shown in figure 5-2 required 27 seconds of processing time to compute

the animation script. However, when the "walk" and corresponding "halt" commands were

removed, creating the animation script took only 3 seconds. This wide difference in time is due to

the fact that processing the "walk" command involves reading the data for the legs graph from a

file. In either case, the processing time is not very significant.

System Evaluation

5.3. Comparative Results

Animating human figures is such a complex task that research in human animation has been

divided into smaller sub-areas. There seems to be general agreement that goal-directed systems are

the most appropriate method for animating live figures because of their ability to produce complex

realistic motion with minimum input from the animator. However providing the kind of high-level

control a goal-directed system offers requires amalgamating solutions to the many problems of

specifying human movement.

In the last few years, many ways have been proposed for controlling the movement of specific

skills such as walking, sitting or grasping objects [Zeltzer 82b, Drcwery 86, Korein 82a].

Algorithms that generate these movements in very realistic ways have also been developed [Girard

85, Wilhelrns 87, Bruderlin 881. However very little work has been done on character animation,

where movement generation would concentrate on developing an individual character for an actor

rather than on making the actor execute specific tasks. One area from which character animation

can benefit greatly is facial animation. Apart from being able to simulate speech, animated faces

can also register emotions [Pearce 861. These results would blend nicely into a system where the

animator would specify the actors' disposition, and the actors' faces would express their moods.

An actor's moods can also be expressed in the way the whole body executes movements. In

Ridsdale's system [Ridsdale 871, an actor's path is chosen while considering the position of other

actors in the room whom the first actor may like or dislike. However in this system the movements

of the body are not considered. In the film Rendez-vous h Montrial [Thalmann 871, Humphrey

Bogart and Marilyn Monroe evoke their own personalities, however the movements that display

each of their characters had to be specified by the animator. In GESTURE, a system has been

developed where actors will perform movements in their own characteristic way. The use of

gesture specification functions implies that animators will have high-level control over secondary

movement and need not specify it manually.

Chapter 6

Conclusion

The two main objectives of this thesis were to introduce a new type of motion to animation

systems, secondary movement, for making animated figures more life-like, and to demonstrate that

this movement can be produced through the use of a high-level specification. The GESTURE

system demonstrates this by allowing the animator to assign personality traits and set moods for the

actors, and then determining the secondary movement that the actors display. With a minimum

amount of user interaction, animations of any length can be produced in which actors will carry out

gestures appropriate to their character for the duration of the sequence.

The benefit of describing actors' characters rather than directly assigning them their secondary

movement is that this process only needs to be done once. After the initial character defining stage,

all primary movements will be executed by the actors while displaying secondary movement

appropriate to their character. This means that the animator could specify the same goal for two

actors with different character traits, and the goals would be accomplished in slightly different

ways by each of the actors. GESTURE has demonstrated this by assigning the primary goal of

walking to each of the actors Simon and Sally, and producing varying types of animations for each

of them depending on the personality and moods that were given to them.

An important requirement in the design of GESTURE was that movements could be initiated and

interrupted at any time. This feature is important because secondary movement is not planned

motion and can vary with changing primary goals. The ability to interrupt movements at any time

is also very useful if actors are to be able to react immediately to a new situation. In GESTURE

there is complete flexibility in starting any movement at any time in the animation, even if the actor

was previously carrying out another movement.

Since a model of the human body is an irregular structure, localizing knowledge about different

Conclusion 59

body parts seems most appropriate for animating human movement. The approach used in

GESTURE allows specialized movement generating algorithms to be written for each movement

supported in the system. The animation system therefore does not rely on one method for

producing gestures. Each gesture specification function can apply the most suitable algorithm for

executing the movement it is responsible for as realistically as possible. The graph serves as an

underlying representation of all movements. While each gesture specification function handles

movements on an individual basis, the graph is used to represent the results of any algorithm

applied in the gesture specification functions.

The philosophy that was followed in designing GESTURE was to assume that the animator

would like to concentrate on specifying primary goals for actors, and have the secondary

movement incorporated without explicitly specifying this motion. However sometimes the

animator may wish to intervene with the automatic selection of the secondary movement by the

system. It would be interesting to investigate a way to compromise between animator and system

specified secondary movement. A system addressing this problem should automatically generate

movements from the animator's high-level specification, but should also allow the animator to

interact at a lower level of movement specification for part or all of the animation sequence.

The graph representation in GESTURE can be used to store movement that has been specified

from keyframing. The inbetween frames are automatically generated by the system to produce

smooth movement. The automatic interpolation between keyframes is another example where the

animator may desire finer control over the process. In section 4.2, the interpolation method used

for the stage location of the actor was discussed. In this interpolation method three parameters

affecting the continuity, tension and bias of the curve at key points can be used to control the result

of the interpolation. In GESTURE these parameters use only default values in all the

interpolations. However, varying the values of these parameters could result in the keyframed

movements being performed in different styles. For example if an animator was interpreting the

phrase "Suddenly he looked to the right" into an actor's motion, a discontinuity in the interpolation

could be introduced at the moment the actor looks right to make the movement appear abrupt. An

actor's movements could appear stiffer by increasing the tension parameter. An interesting area to

explore would be to map a set of adjectives to values for continuity, tension and bias providing the

Conclusion 60

animator with a high-level language to control the interpolation process, and thus the style of the

movements.

A direct extension of the work done in this thesis would be to incorporate other types of

secondary movement. This would not only include other "standard" forms of secondary

movement, but could also include movements that would be performed by old people or children,

or people from different ethnic backgrounds. There is also a whole different set of movements that

occur when people interact with one another, for example, hand signals people use while they

express certain ideas [Duncan 771. This research would be cross-disciplinary with the field of

psychology. It would also be interesting to work with a psychologist to develop the expert system

proposed in the ideal framework. Ultimately it would be very rewarding if many of these ideas and

other research in human animation could be combined to produce a powerful and comprehensive

goal-directed human animation system.

Appendix A

Glossary

Animation

Animation is a technique for creating the illusion of movement. This effect is achieved by

displaying pictures at a rate above the flicker fusion frequency (about 20 frames per second), so

that the viewer perceives them as one scene with moving components. Consecutive pictures must

be very similar if the motion is to appear smooth. A computer animation system provides tools for

increasing the speed at which an animation can be made and for improving the realism.

Articulated Body

An articulated body is a structure made up of links connected at spherical joints. The constraints

on such a body are that the links are rigid (ie. not bendable) and that they remain connected at the

joints. Such a structure therefore has 3 degrees of freedom, which specify the location of some

fixed point in the structure, plus 3 degrees of freedom for each joint in the structure.

Articulated bodies can be represented as a tree structure where each node in the tree represents a

joint connecting two or more links or segments. To ensure that the segments remain connected, the

hierarchy of the tree structure can be used to dictate the transformations that are applied at a joint:

for any node in the tree, the transformation matrices at all its ancestor nodes will be applied before

the rotation specified at that node. The human body is generally represented as an articulated body.

Glossary 62

Channel Table

In a keyframing system, the position and orientation of an object is specified for various frames in

the animation sequence, and then an interpolation through these keyframes defines the position and

orientation of the object for all the other frames. Before the interpolation is canied out, keyframes

are stored in a channel table which is made up of many channels. A channel is a place to store the

values of keyframes for one degree of freedom in the model of the object. So, for a rigid object

which has 6 degrees of freedom, the movement of the object can be represented in a channel table

using 6 channels.

Degrees of Freedom

The position and orientation of a structure in space can be completely defined using a

combination of (x, y, z) co-ordinates and (0, @, Y) angles of rotation around each of the axes. One

of these parameters represents a degree of freedom of the structure. The number of degrees of

freedom decreases as the structure is constrained by specifying values for these parameters. A rigid A
object has 6 degrees of freedom, 3 to specify its position in space, and 3 to define its orientation. 1
Dynamics

Dynamics is a method for specifying movement by supplying the forces and torques that act on

parts of the body. The resulting motion is realistic because the laws of physics are applied to the

body to compute the motion. In general, it is not intuitively obvious what motion will result when

forces and torques are specified.

The inverse dynamics problem is concerned with determining the forces and torques to be applied

in order to produce a given motion. For example, if the animator specifies the motion of kicking a

ball, the system will compute the forces and torques to apply to produce this movement.

Glossary 63

Event Driven

A program that simulates the occurrence of events over a period of time can be classified as a

time-driven or an event-driven system. A time-driven system carries out the simulation by

incrementing the clock by fixed intervals in time, and checking at each time if there are any events

to process. Event-driven systems process a queue of events that have arrived in chronological

order, and which have a time stamp identifying the time that the event occurred. At each step in

the simulation, the clock is advanced to the time associated with the next event to be processed.

Frame

In this thesis, a frame is used in two contexts.

An animation frame is one picture in a sequence of pictures which when viewed in rapid

succession give the illusion of movement.

A frame representation is a method used in artificial intelligence to store knowledge about a

concept [Minsky 751. A frame consists of slots, each of which describe an attribute of the concept,

and relationships between the slots. The slots can form a PART-OF hierarchy and the frames arc

organized in an IS-A hierarchy. For example, a car IS-A motorized vehicle. The concept

motorized vehicle could have a slot for engine, and a piston is PART-OF an engine.

Gesture

In the context of this thesis, a gesture is a movement which a person performs sub-consciously.

This can be in the form of an action that begins and ends in the same position, such as scratching

one's head, or can involve repositioning a part of the body, such as placing one's hands on one's

waist. The collection of gestures is called secondary movement.

Glossary 64

Goal-Directed

A goal-directed system is an animation system in which the animator specifies movement for the

actors by assigning them goals. Goals can take on various forms. One type of goal is an action

such as walk, sit or grasp. Goals can also be assigned to the ends of limbs in the human model to

position the body, such as in reaching for an object while seated. The development of human

animation systems is tending towards goal-directed approaches as it will simplify the task of

specifying the movement for such a complex structure as the human body.

Interpolation

Interpolation is the process of determining a set of missing values between two known values.

For example, in a curve-fitting program, a random set of points is given, and an interpolation will

determine the points that will make up a curve passing through the given points. In keyframe

animation, an interpolation between key positions of an object can help produce the 24

framesfsecond required for animation, relieving the animator from this tedious task. A more

flexible interpolation routine will provide some form of control on the shape of the resulting curve.

Keyframe

In 2-dimensional animation, a keyframe is one picture that will be part of an animation sequence.

One way for animators to quickly conceptualize what the movement will look like is to draw

frames at intervals in the animation. These are the keyframes. When the animator is satisfied with

this outline of the animation, the "inbetween" frames can be drawn. Producing animations through

this method is called keyframing. In 3-dimensional animation, instead of keyframing the

completed picture, positions and orientation of objects in the scene are defined, and the

"inbetweening" process computes the transitions the objects make betwecn the key positions.

Glossary

Kinematics

Kinematics is a method for specifying motion by supplying position, velocities and accelerations

for bodies without any regard to forces or torques that could be acting on the bodies. For example,

rotoscoping and keyframe animation describe movement in terms of positions of the body over

time.

In the inverse kinematics problem, the joint angles of a multi-link structure must be found such

that the end of the structure will be in a specified position in space. Since this problem is under-

constrained for a many-segmented structure, there are an infinite number of solutions. If the

structure represents a human limb, such as an arm, the problem becomes one of choosing

constraints that will determine a solution producing natural movement for the limb. This is a very

difficult problem.

Kinesiology

Kinesiology is the study of human movement and human performance. These arcas are studied

with respect to the anatomical, physiological, mechanical, developmental, psychological and 3
sociological aspects of movement. A typical application of kinesiology is in sports science where

human movement would be studied to find ways in which to improve the efficiency in

performance. In computer animation, kinesiology can be hclpful by providing information about

the way that people move naturally.

Knowledge Base

A knowledge base is a representation scheme for information which is structured in a way that is

easy to understand and modify. Representation schemes are often classified into three categories:

logical schemes (schemes that use logical formulae to represent knowledge), network schemes

(schemes that use nodes and edges in a semantic network) and procedural schemes (schemes whose

knowledge is retrieved by activating procedures) (see [Mylopoulos 831). The information

generally embodies some domain of knowledge, such as symptoms and cures for a class of

Glossary 66

diseases. A knowledge base is created and maintained by a knowledge engineer who will work

with an expert in the domain to capture his or her expertise in the knowledge base.

Motion Specification

The purpose of an animation system is to provide a means by which an animator can

communicate to a computer how actors should move. The process of describing the actors'

movements is called motion specification. Motion specification can take on many different forms.

At a low level, actor's movements can be described by assigning values to all the actor's joint

angles in every frame of the animation. This method is tedious, and so higher level ways of

specifying movement are being explored. Ideally motion should be specified in a language familiar

to the animator, and the animation system will produce the movements based on this motion

specification.

Rigid Body

A rigid body is one which has no flexible parts or movable joints. The positions and orientation

of a rigid object can be completely defined with 6 dcgrees of freedom. Examples of rigid objects

are a box or a ball.

Robotics

Robotics is the study of machines (robots) that can simulate human activities. Many robots can

perform complex activities that can aid humans in their work, such as handling hot or radioactive

items. Techniques developed for robotics can be applied to human animation if the machines are

modelled as humanoid figures. Algorithms that are used to control a robot's walking, lifting of

objects or planning a path in a cluttered environment can be applied to animating figures.

Appendix B

The Movement Script Language

The interface between the expert system and GESTURE is a script defined by a movement

language. The format of the scripts is a series of lines each containing movement commands.

Each line must be of the format:

clock-time gesture gesture-qualit y [gesture-quali t y]

The clock times on each line must be in increasing chronological order. These clock times

represent frame numbers. Thus, approximately 24 frames will be equivalent to 1 second of

animation. On the following page is a complete description of the movement language. The

gesture qualities in bold face represent the default value used for that quality if none is specified.

The Movement Script Language

drop-arm

Qualities Description I
slow, average, fast
left, right, both

slow, average, fast
left, right, both

drop the arm(s) to the rest position
next to the body

on-waist

in-front slow, average, fast
left, right, both

slow, average, fast
left, right, both

hold hand(s) in front of body

hold hand(s) behind back

scratch r slow, average, fast
left, right

slow, average, fast
left, right, both
emphatically, friendly, shyly

slow, average, fast
right

scratch the head with a hand

wave with arm (emphatically or friendly)
or with the fingers (shyly)

salute t raise hand to head in a salute

rub the leftjright eye with the leftlright hand slow, average, fast
left, right

relax-hand r slow, average, fast
left, right, both

slow, average, fast
left, right, both

open hand(s) in a relaxed position

make hand(s) into a fist clench

slow, average, fast
left, right, both

extend hand(s) in a flexed position I
turn head in a given direction slow, average, fast

left, right, straight
up, down, ahead

slow, average, fast
left, right, straight

lower and raise head in a confirmative nod

slouch

slow, average, fast straighten back into upright posture I
slouch back in a bent posture slow, average, fast

1 walk slow, average, fast accelerate and then begin walking I
1 halt decelerate from a walk and come to a stop I

Appendix C

The Mock Expert System

In the ideal framework presented in chapter 3, an expert system is used to produce the movement

language script. The expert system has not been implemented for this thcsis. In its place, a "mock

expert system" produces movement scripts based on the personality and mood definitions assigned

to actors by the animator. The rules used to produce these movement scripts are shown below.

if (gloomy >= 8 OR boredom >= 8 OR tiredness >= 9)
then "0 walk slow", walk-speed is SLOW.

else if (cheerful >= 7)
then "0 walk fast", walk-speed is FAST.

else
"0 walk average", walkspeed is AVERAGE.

if (tiredness >= 7 OR passive >= 9)
then "0 slouch".

if (fear >= 5)
then "0 slouch fast".

if (cheerful >= 2 OR fear >= 5)
then "0 look up".
if (cheerful >= 5)

then "0 in-back both".
else if (gloomy >= 2)

then "0 look down".

if (domineering <= 5 AND domineering > 0)
then "0 clench both".

else if (domineering >= 6)
then "0 on-waist".

else if (submissive >= 4)
then "0 in-front".

else if (passive >= 5)
then "0 flex both".

if (nervousness >= 2 OR impatience >= 2)
then "0 scratch left fast".

else if (tiredness >= 2)

The Mock Expert System

then "0 rub left".

if (nervousness >= 2 OR impatience >= 2 OR tiredness >= 2)
then "45 drop-arm left", "45 relax-hand left".

"45 look left".

"45 straighten".

if (introvert >= 6)
then "45 nod".

else if (introvert >= 1)
then "45 wave shyly".

else if (extrovert <= 5)
then "45 wave friendly".

else if (domineering >= 8)
then "45 salute".

else
"45 wave emphatically".

"90 drop-arm right".

if (domineering >= 5)
then "90 clench both".

else if (passive >= 5)
then "90 flex both".

else
"90 relax-hand both".

if (cheerful >= 4)
then "90 look right up".

else if (gloomy >= 2)
then "90 look down".

else
"90 look straight ahead".

if (nervousness >= 5 OR impatience >= 5)
then "90 scratch right fast".

else if (tiredness >= 5)
then "90 rub right fast".

if (fear >= 1)
then " 130 look straight up".

else if (cheerful >= 1)
then " 130 look left up".

else
" 130 look right".

if (tiredness >= 5)
then " 130 rub right".

The Mock Expert System

else if (nervousness >= 5 OR impatience >= 5)
then " 130 scratch right".

else if (domineering >= 2)
then " 130 on-waist right".

else if (submissive > 5 OR passive > 5)
then " 130 in-front both".

else
" 130 drop-arm right", " 130 relax-hand right".

if (walk-speed is FAST)
then " 150 look straight ahead", " 150 halt"

if (walk-speed is not FAST)
then
if (cheerful >= 1)

then " 160 look right".
else if (gloomy >= 1)

then "160 look down".
else

" 160 look ahead".

if (nervousness >= 5 OR tiredness >= 5 OR impatience >= 5)
then "160 drop-arm right fast", " 160 relax-hand right".

if (nervousness >= 1 OR impatience >= 1)
then " 160 scratch left fast".

if (tiredness >= 5)
then "160 slouch", "160 look down".

if (walk-speed is AVERAGE)
then "200 drop-arm both", "200 relax-hand both", "200 h:

if (walk-speed is SLOW)
then "300 drop-arm both", "300 relax-hand both", "300 halt"

References

[AM851

[Alias]

[Armstrong 851

[B achant 841

[Badler 791

[Badler 801

[Badler 871

Robert Abel and Associates.
SIGGRAPH Video Review, issue 20: The Making of Brilliance.
ACM, N.Y., 1985.

Alias Research Inc.
110 Richmond St. East, Suite 500, Toronto, Ont., Canada, M5C 1P1.

W.W. Armstrong and M. Green.
The Dynamics of Articulated Rigid Bodies for Purposes of Animation.
In Graphics Interface '85, pages 407415. 1985.

Judith Bachant and John McDermott.
R1 Revisited: Four Years in the Trenches.
The AI Magazine 5(3):2 1-32, 1984.

N.I. Badler and S.W. Smoliar.
Digital Representation of Human Movement.
Computing Surveys 11(1):19-38, 1979.

N.I. Badler, J. O'Rourke and B. Kaufman.
Special Problems in Human Movement Simulation.
Computer Graphics (Proc. Siggraph '80) 14(3):189-197, 1980.

Norman I. Badler, Kamran H. Manoochehri and Graham Walters.
Articulated Figure Positioning by Multiple Constraints.
IEEE Computer Graphics and Applications 7(6):28-38, 1987.

[Birdwhistell 701 Ray L. Birdwhistell.
Kinesics and Context: essays on body motion communication.
University of Pennsylvania Press, Philadelphia, 1970.

[Bruderlin 881 Armin Bruderlin.
Goal-Directed, Dynamic Animation of Bipedal Locomotion.
Master's thesis, School of Computing Science, Simon Fraser University, 1988.

[Bruderlin 891 Annin Bruderlin and Tom W. Calvert.
Goal-Directed, Dynamic Animation of Bipedal Locomotion.
Computer Graphics (Proc. Siggraph '89), to appear, 1989.

[Bull 831 Peter Bull.
Body Movement and Interpersonal Communication.
John Wiley & Sons Ltd., New York, 1983.

[Burtnyk 711 N. Burtnyk and M. Wein.
Computer-Generated Key-Frame Animation.
J. of SMPTE 80: 149-153, 1971.

[Calvert 821

Calvert 881

Calvert 891

[Chung 871

[Csuri 811

[Cubicomp]

Drewery 861

Duncan 771

[Foley 821

[Girard 851

[Kochanek 841

Korein 82a]

Korein 82b]

T.W. Calvert, J. Chapman and A. Patla.
Aspects of the Kinematic Simulation of Human Movement.
IEEE Computer Graphics and Applications 2(9):41-50, Nov. 1982.

Tom W. Calvert.
The Challenge of Human Figure Animation.
In Graphics Interface '88, pages 203-210. 1988.

Tom W. Calvert, Chris Welman, Severin Gaudet and Catherine Lee.
Composition of multiple figure sequences for dance and animation.
In Proceedings of Computer Graphics International Conference. Springer

Verlag, June 1989.

Chin Wah Tony Chung.
An Approach to Human Surface Modelling Using Cardinal Splines.
Master's thesis, School of Computing Science, Simon Fraser University, 1987.

Charles Csuri.
Goal-Directed Movement Simulation.
In CMCCS '8lIACCHO '81, pages 27 1-280. 198 1.

Cubicomp Canada.
1550 Alberni St., Suite 450, Vancouver, B.C., Canada, V6G 1A5.

Karin Drewery and John Tsotsos.
Goal-Directed Animation using English Motion Commands.
In Graphics Interface '86, pages 13 1-135. 1986.

Starkey Duncan Jr. and Donald W. Fiske.
Face-to-Face Interaction: Research, Method and Theory.
Lawrence Erlbaum Associates, Hillsdale, N.J., 1977.

James D. Foley and Andries Van Dam.
Fundamentals of Interactive Computer Graphics.
Addison-Wesley Publishing Co., Reading, Massachusetts, 1982.

Michael Girard and A. A. Maciejewski.
Computational Modeling for the Computer Animation of Legged Figures.
Computer Graphics (Proc. Siggraph '85) 19(3):263-270, 1985.

Doris H.U. Kochanek.
Interpolating Splines with Local Tension, Continuity and Bias Control.
Computer Graphics (Proc. Siggraph '84) 18(3):33-41, 1984.

James U. Korein and Norman I. Badler.
Techniques for Generating the Goal-Directed Motion of Articulated Structures.
IEEE Computer Graphics and Applications 2(9):71-8 1, Nov. 1982.

James U. Korein.
Using Reach Descriptions to Position Kinematic Chains.
In Proceedings CSCSIISCEIO, Saskatoon, pages 79-84. 1982.

[McGhee 761 R.B. McGhee.
Robot Locomotion.
Neural Control of locomotion.
Plenum Press, New York, 1976, pages 237-264.

[Miller 881 Gavin S.P. Miller.
The Motion Dynamics of Snakes and Worms.
Computer Graphics (Proc. Siggraph '88) 22(4):169-173, 1988.

[Minsky 751 Marvin Minsky.
The Psychology of Computer Vision.
A Framework for Representing Knowledge.
McGraw-Hill, New York, 1975.

[Mylopoulos 831 John Mylopoulos and Hector Levesque.
An Overview of Knowledge Representation.
On Computational Modelling: Perspectives from AI, Databases and

Programming Languages.
Springer-Verlag, New York, 1983, pages 5-12.

[Parke 821

[Pearce 861

[Reynolds 821

[Reynolds 871

[Ridsdale 861

[Ridsdale 871

[Scheflen 721

[Shoemake 851

Frederic I. Parke.
Parameterized Models for Facial Animation.
IEEE Computer Graphics and Applications 2(9):61-68, 1982.

Andrew Pearce, Brian Wyvill, Geoff Wyvill and David Hill.
Speech and Expression: A Computcr Solulion to Face Animation.
In Graphics Interface '86, pages 136-140. 1986.

Craig W. Reynolds.
Computer Animation with Scripts and Actors.
Computer Graphics (Proc. Siggraph '82) 16(3):289-296, 1982.

Craig W. Reynolds.
Flocks, Herds, and Schools: A Distributed Behaviour Model.
Computer Graphics (Proc. Siggraph '87) 21(4):25-34, 1987.

Gary Ridsdale, S. Hewitt and Tom W. Calvert.
The Interactive Specification of Human Animation.
In Graphics Interface '86, pages 121-130. 1986.

Gary Ridsdale.
The Director's Apprentice: Animating Figures in a Constrained Environment.
PhD thesis, School of Computing Science, Simon Fraser University, 1987.

Albert E. Scheflen.
Theory Body Language and the Social Order.
Prentice-Hall Inc., Englewood Cliffs, NJ, 1972.

Ken Shoemake.
Animating Rotation with Quaternion Curves.
Computer Graphics (Proc. Siggraph '85) 19(3):245-254, 1985.

[Steketee 851

[Sturman 861

[Thalmann 831

[Thalmann 871

[Thomas 8 11

[Wavefront]

[Weil 861

[Wilhelms 851

[Wilhelms 871

[Winston 841

[Witkin 881

[Zeltzer 82a]

[Zeltzer 82b]

Scott N. Steketee and Norman I. Badler.
Parametric Keyframe Interpolation Incorporating Kinetic Adjustment and

Phrasing Control.
Computer Graphics (Proc. Siggraph '85) 19(3):255-262, 1985.

David Sturman.
Interactive Keyframe Animation of 3-D Articulated Models.
In Graphics Interface '86 , Tutorial on Computer Animation. 1986.

Nadia Magnenat-Thalmann and Danicl Thalmam.
The Use of High-Level 3-D Graphical Types in the Mira Animation System.
IEEE Computer Graphics and Applications 3(9):9-16, 1983.

Nadia Magnenat-Thalmann and Daniel Thalmam.
The Direction of Synthetic Actors in the Film Rendez-vous a Montreal.
IEEE Computer Graphics and Applications 7(12):9-19, 1987.

Frank Thomas and Ollie Johnston.
Disney Animation: The Illusion of Life.
Abbeville Press, N.Y., 1981.

Wavefront Technologies.
530 East Montecito, Santa Barbara, CA, 93101.

Jerry Weil.
The Synthesis of Cloth Objects.
Computer Graphics (Proc. Siggraph '86) 20(4):49-54, 1986.

Jane Wilhelms.
Using Dynamic Analysis to Animate Articulated Bodies such as Humans and

Robots.
In Graphics Interface '85, pages 97-104. 1985.

Jane Wilhelms.
Using Dynamic Analysis for Realistic Animation of Articulated Bodies.
IEEE Computer Graphics and Applications 7(6): 12-27, 1987.

Patrick H. Winston and Karen A. Prendergast, e.d.
Theory of Knowledge.
MIT Press, Cambridge, Massachusetts, 1984.

Andrew Witkin and Michael Kass.
Spacetime Constraints.
Computer Graphics (Proc. Siggraph '88) 22(4):159-168, 1988.

David Zeltzer.
Representation of Complex Animated Figures.
In Graphics Inrefice '82 , pages 205-21 1. 1982.

David Zeltzer.
Motor Control Techniques of Figure Animation.
IEEE Computer Graphics and Applications 2(9):53-59, 1982.

[Zeltzer 831 David Zeltzer.
Knowledge-Based Animation.
In Workshop on Motion, pages 187-192. ACM SIGGRAPHISIGART, 1983.

