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Abstract 

This thesis presents an alternate way to represent harmonic amplitude envelopes of 

musical instrument sounds using principal component analysis. Analysis reveals con- 

siderable correlation between the harmonic amplitude values at different time posi- 

tions in the envelopes. This correlation is exploited in order to reduce the dimension- 

ality of envelope specification. It was found that two or three parameters provide a 

reasonable approximation to the different harmonic envelope curves present in mu- 

sical instrument sounds. A4pproximations to harmonic amplitude envelopes can be 

quickly reconstructed from a set of bases (common to all envelopes) and a set of 

scalar weights derived from the principal component analysis. The representation is 

suitable for the development of high level control mechanisms for manipulating the 

timbre of resynthesized harmonic sounds. 
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Chapter 1 

Introduction 

Digital sound synthesis is a rapidly evolving technique useful in musical applications 

and psychoacoustic research. A sound generating algorithm creates waveforms (stored 

in computer memory as a series of numbers) which are output to a digital-to-analog 

converter for conversion to correspondingly varying voltages. These voltages are read- 

ily transformed to sound waves via common analog hardware (amplifiers and speak- 

ers). 

One advantage of representing sound waveforms in a digital form is the flexibility 

inherent in the algorithmic manipulation of the numbers malung up the waveform. 

Virtually any sound, including those produced by acoustic musical instruments such 

as guitars, pianos, wind instruments, etc., can be created and altered given an ap- 

propriate algorithm. Unfortunately many of the existing digital synthesis methods 

applicable to acoustic instrument sounds are limited in scope or too cumbersome 

and low level to be useful to sound designers. The problem is the large amount of 

information that is required to fully specify the sound. 

This thesis will attempt to develop a method (and a rudimentary implementation 

of it) that addresses this problem. The focus will be on the data reduction of one 

particular aspect of the sound specification-the harmonic amplitude envelopes of 

instruments with a harmonic spectrum. The method may also be useful for research 
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on timbre. 

1.1 Sound and Music 

Sound is characterized by physicists as a variation over space and time of the density of 

the medium transmitting the sound. Sound typically results from pressure variations 

in air emanating from a vibratory source as longitudinal waves. At a fixed point in 

space (for example the human eardrum) a record of the air pressure variation as a 

function of time completely characterizes the sound signal. The amount of deviation in 

air pressure from a stable equilibrium is related to the intensity of the sound. Although 

the sound signal is not necessarily periodic, the record of pressure variations over time 

is referred to as a waveform. Periodic or quasi-periodic variations in air pressure have 

a frequency (or frequencies) associated with them (the inverse of the period). 

After processing by perceptual and cognitive mechanisms the sound signal yields 

a percept. Loudness is a property of this percept and is related logarithmically to the 

intensity of the sound. If the sound signal is periodic (or quasi-periodic) in nature, 

the percept may have a pitch associated with it. The relationship between pitch and 

frequency is complex. Pitch is often directly related to the fundamental frequency of 

musical sounds. 

A third property, timbre, is commonly associated with the perception of some 

sounds. Musical instruments produce a sound that is heard as possessing a distinctive 

and recognizable timbre. Timbre is closely associated with the spectrum of a sound 

(the proportional mixture of frequencies making up the sound). Due to the physical 

nature of certain types of musical instruments, the frequencies making up their sound 

spectrum are (approximately) integer multiples of some fundament a1 frequency. 

For example, with stringed instruments the fundamental frequency is directly re- 

lated to the tension and mass of the string and to the length of string free to vibrate 

between two fixed ends. The string will also tend to vibrate in integral fractional 
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lengths and corresponding frequency multiples (harmonics). String stiffness and in- 

ertia may result in slightly detuned harmonics. A soundboard connected to one end 

of the string provides a good impedance match for string vibrations and amplifies the 

vibratory string motion-which in turn causes air to vibrate. The air vibrations enter 

the ear, and the ear and brain together construct the conscious awareness of sound. 

Sound Specification 

A specification of the sound signal has two representations, a t ime  domain repre- 

sentation and a Ji-equency domain representation. The time domain representation 

characterizes the variation in air pressure over time. The frequency domain represen- 

tation characterizes the harmonic frequency content of the sound-which may also 

vary over time. The two domains are related by the Fourier transformations. 

One useful strategy for the digital synthesis of natural instruments is the Analysis 

and Resynthesis method [57]. Actual instrument sounds are analyzed and information 

is extracted that can be used to resynthesize the sounds1. Most musical instrument 

sounds have a harmonic frequency content that changes over time. This information 

can be specified with an amplitude envelope for each harmonic in the sound. The 

amplitude envelope specifies how the amplitude (intensity) of a particular harmonic 

changes over the duration of the sound. The changing spectrum of a sound-captured 

by the set of amplitude envelopes for the constituent harmonics-plays a significant 

role in the perception of timbre. The harmonic frequencies also tend to fluctuate 

slightly over time. Frequency fluctuations can also be extracted from an analysis of 

sound. 

Sounds can be resynthesized using the harmonic amplitude envelopes, the har- 

monic frequency fluctuations, a fundamental frequency value, and an appropriate 

sampling rate (see equation 2.1 on page 16). Since analyzing a sound requires that it 

'Digital resynthesis entails constructing the numerical representation of the time domain 
waveform-usually from frequency domain information. 
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already be in a digital format ', a reasonable question might be: Why bother analyzing 

a sound and then resynthesizing it when the sound waveform is already available? The 

answer is that it is easier to manipulate a sound in the frequency domain, and the 

goal is to not only replicate natural sounds but to be able to alter them to produce 

desired effects. The timbre of a sound is one of the qualities that can be manipulated. 

As with computational vision, it would be helpful to understand how physical 

information is processed by perceptual mechanisms-in this case the extraction of 

timbral percepts from variations in air pressure. This may provide clues as to rea- 

sonable strategies to employ in the manipulation of the signal parameters to produce 

the desired timbral effects. These issues will be discussed in Chapter 2, Physical 

Correlates of Timbre. 

Data Reduction 

In order to resynthesize sound with realistic (natural) timbres, a great deal of in- 

formation is required. If we assume for the moment that each harmonic amplitude 

envelope could take the form of an arbitrary curve, then resynthesizing 3 seconds of 

sound with 40 harmonics-where the harmonic amplitude values are specified at 50 

ms intervals-would require 2400 values for just the amplitude curves alone. This 

poses more of a conceptual problem than a computational problem. It is extremely 

difficult to alter the timbre of a sound (in a predictable fashion) when so much data 

specification is involved. 

One of the existing methods of reducing envelope information is with line segment 

approximations (see page 18). While this method does reduce the amount of informa- 

tion involved, it does not entirely solve the problem of how to manipulate the envelope 

curve data in a meaningful way. Extracting line segments from analyzed data is also 

not a trivial problem (see page 19). 

'Other forms of analysis are possible that do not require the sound to be digitized, however, they 
have been largely superceded by more powerful digital analysis techniques. 
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Empirical evidence from sound analysis (for both vowel speech and musical instru- 

ment sound, see page 29) indicates that the spectra of sound (the frequency content) 

can be considerably reduced in dimension by a principal component analysis of the 

class of sounds under consideration. The sounds analyzed in these studies are steady- 

state sounds (unchanging frequency content). 

Since many of the interesting properties of musical sound result from the variation 

of the spectral content over time [56] and considerable work has already been done 

on characterizing musical sound in terms of harmonic amplitude envelopes [27, 48, 

49, 501, the proposal in this thesis is to apply principal component data reduction to 

the harmonic amplitude envelopes. In addition to being reduced in dimension, the 

envelope specification will be standardized which may be useful for manipulating the 

envelopes to facilitate changes in timbre. 

1.4 Chapter Contents 

The following is a short summary of the contents of each chapter. 

Chapter 1 Introduction 

Chapter 1 contains a brief introduction to musical sound and digital synthesis. The 

general background and motivation for the research undertaken is presented. 

Chapter 2 Physical Correlates of Timbre 

Chapter 2 surveys the research literature on the psychoacoustics of timbre and its 

application to musical sound synthesis. Some of the existing strategies for the analysis 

and resynthesis of musical instrument sound are discussed. 
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Chapter 3 An Alternate Envelope Representation 

Chapter 3 begins with a summary of the relevant research from chapter 2. The pro- 

posed representation of harmonic amplitude envelopes based on a principal component 

analysis of actual instrument envelopes is introduced. The chapter also contains an 

explanation of principal component data reduction using an intuitive geometric model. 

Chapter 4 Data Collection and Analysis 

Chapter 4 outlines the methods used to collect the data (harmonic amplitude en- 

velopes of 280 musical sounds) and the mathematical manipulations involved in prin- 

cipal component analysis. The sounds included in the analysis are described in this 

chapter. 

Chapter 5 Analysis Results and Interpretation 

Chapter 5 discusses the results obtained fkom the principal component analysis of 

harmonic amplitude envelopes. The results are interpreted and discussed with respect 

to previous research and potential applications. 

Chapter 6 Conclusions 

Chapter 6 briefly summarizes the results from chapter 5 and suggests ways that the 

analysis could be improved. The chapter ends with suggestions for future research. 

1.5 How to Read this Thesis 

There are several ways to avoid reading the entire thesis. Readers familiar with re- 

search on timbre and sound synthesis could skip chapter 2. Chapter 3 contains a 

short summary of the relevant research and introduces the proposed envelope repre- 

sentation. Reading chapter 3 and a summary of the results in chapter 6 should be 
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sufficient to provide a concise overview of the thesis. 

Chapter 4 is an in-depth look at the analysis methods used (both the extraction 

of harmonic amplitude envelopes and the principal component analysis of them) and 

is not required reading for understanding the analysis results presented in chapter 5. 

Chapter 5 should be read by those who are considering using the methods devel- 

oped in this thesis. Appropriate references are given to other sections that explain 

envelope reconstruction (mostly in chapter 4). Chapter 5 also goes into more detail 

on some of the proposed uses for the method. 

Information on principal component analysis is scattered throughout the thesis. 

Those unfamiliar with the method might want to read the geometric interpret ation 

of principal component data reduction in chapter 3 before they read the Principal 

Component Analysis of Spectra section or the Multidimensional Scaling section in 

chapter 2. Chapter 4 outlines the mathematics of principal component analysis. 

Liberal cross-referencing is used throughout the thesis (thanks to EATEX) which 

should make it possible tc  read only the sections cf interest. 



Chapter 2 

Physical Correlates of Timbre 

Timbre is an aural attribute of sounds whose tone quality evokes-in some sense-- 

a unified percept. Although timbral qualities could be attributed to any cohesive 

sound, in practice the term is usually applied to the sounds produced by the human 

voice and some musical instruments, particularly ones generating sounds that exhibit 

a harmonic spectrum. 

A long-standing but vague definition of timbre is that it is the quality of a sound 

not accounted for by loudness or pitch. Hence two sounds of the same loudness and 

pitch may be discriminated on the basis of timbral differences, for example, the sounds 

produced by a trumpet and a trombone. 

Conversely, sounds of different pitch or loudness-produced by the same instru- 

ment (or voice)-may be recognized as originating from the same source because of 

timbral similarities. 

Identification of sounds by their timbre is surprisingly resistant to distortions in 

the sound signal (including spectral distortions) produced by environmental factors, 
I 

for example, a saxophone sounds like a saxophone whether played in a reverberant 

concert hall or significantly distorted by a toy radio. 

This raises several questions: 
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0 Do we simply learn to identify sounds as originating from the same instrument 

using some sort of cognitive pattern matching? 

Have perceptual mechanisms evolved to extract (or construct) invariant features 

in the physical world to tie similar sounds together? 

0 If these physical invariants exist, what are they? 

This chapter will look at some of the research pertinent to the last question. 

The digital computer has made it possible to manipulate the internal microstruc- 

ture of sound with the same freedom as more conventional musical structures (inter- 

vals, rhythm, melody, etc.). While constructing timbral sounds (digitally) involves 

manipulating a physical model of sound, the effect of that manipulation can only be 

assessed in the perceptual realm. Rather than relying on trial and error or heuristics 

to produce a given aural effect, it would be more useful to explore the relationship 

between the physical processes that produce sound and the perception of sound with 

the aim of understanding the underlying mechanisms that relate them. 

Psychophysics 

Psychophysics is the study of the effect of physical processes on the mental processes 

of an organism (psychoacoustics is the subset of psychophysics restricted to the sense 

of hearing). The at tempt to establish quantitative psychophysical relationships is one 

of the oldest branches of psychology [8]. To illustrate some of the inherent problems, 

consider the relatively simple relationships involved in pitch perception. The same 

problems will be apparent in the psychophysics of timbre. 

2.1.1 Simple Tone Pitch Perception 

It is easy to demonstrate that there is a monotonic relationship between the frequency 

of a simple (pure sine wave) tone and the pitch it evokes. As the frequency increases 
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or decreases the perceived pitch does the same (or at least stays the same if the fre- 

quency change is small). Beyond this monotonic relationship between frequency and 

pitch-and a corresponding ordinal relationship between pitches-further quantifica- 

tion of the link between the physical and psychological phenomena involved in pitch 

perception is questionable1. 

2.1.2 Physiological Mechanisms 

If the intervening physiology of the pitch detection mechanisms in the inner ear are 

considered, the psychophysical relationship between simple tone frequency and pitch 

can be better understood. 

Pitch is detected by unique resonance regions on the basilar membrane (of the 

cochlea) that correspond to the frequency components of the complex vibrations trans- 

mitted to the cochlear fluid-in the form of a standing wave-by the eardrum and 

the middle ear bone chain [13, 591. The basilar membrane resonances in turn activate 

hair cells connected neurally with the brain. 

The relative positions of the resonance regions on the basilar membrane bear a 

roughly logarithmic relationship to the frequencies of the vibrations enervating those 

regions. A simple Place Theory of Hearing [59] has been proposed to account for the 

pitch perception of simple tones2. 

2.1.3 Complex Tone Pitch Perception 

When a complex harmonic sound is heard, many resonance regions are activated on 

the basilar m e m b r a n m n e  region for each harmonic component of the sound. Due 

to the logarithmic relationship between frequency and resonance position, and the 

'Attempts to quantify the relationship have been made, for example, the relationship between 
the mel pitch scale and frequency [72]. The relationship is questionable because of the dubiousness . - 

of the me1 scale. 
2The Place Theory of Hearing cannot account for the degree of accuracy (e.g. jnd) observed in 

human pitch perception [72]. It does however play an important role in the perception of timbre. 
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nature of the harmonic series (geometric), an invariant spatial pattern is activated on 

the basilar membrane for all harmonic sounds. 

The logarithmic scale of resonance positions results in higher harmonics being 

grouped into progressively smaller areas on the basilar membrane. Since the mem- 

brane has limited spatial resolution, frequencies falling within the same resolution 

region cannot be resolved as distinct pitch (or timbral) components3. Consequently 

frequencies can be lumped together into groups corresponding to the critical band 

frequency resolution of the ear4 [59]. 

The intriguing aspect of pitch perception of harmonic sounds is that a unified 

percept (one and only one pitch) is associated with each sound. While it is possi- 

ble, with practice, to "hear out" frequency components of a harmonic sound, the 

default percept is a pitch at the periodicity pitch of the related harmonic components 

(periodicity pitch corresponds to the lowest possible frequency that could have the 

sound's component frequencies as harmonics [59, 651). As a result, a complete set of 

harmonics--or even a fundamental-is not required for consistent pitch perception of 

harmonic sounds. Pitch is invariant under a wide variety of conditions and stimuli. 

The physiological mechanisms involved in the pitch perception of complex tones are 

not as well understood as for simple tones. It seems likely that higher neural processes 

come into play to recognize spatial resonance patterns on the basilar membrane. Time 

domain signal information is also transmitted to the brain via neural pulse rates and 

may also contribute to periodicity pitch detection through time distribution analysis 

[59, sections 2.9 and 4.81. 

3Searle [66] notes that the frequency analyzing power of the ear is cleverly arranged to give good 
frequency resolution in low frequency (slowly-varying formant) regions and good temporal resolution 
at high frequencies (short wide-band consonant bursts). Good temporal resolution in the high 
frequency region of the basilar membrane follows from the ear's poor high frequency resolution in 
the same region--since time and frequency resolution are inversely proportional to each other, even 
for the ear. 

4Grouping of frequencies (or harmonics) falling within a critical band may be acceptable for pitch 
detection analysis but not necessarily acceptable for timbre judgements since different arrangements 
of closely spaced harmonics can alter the "texture" of a sound. 
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2.1.4 Important Issues in Psychophysics 

The relatively simple psychophysical relation between signal frequencies and pitch 

perception illustrates some important issues that provide a useful theoretical footing 

to examine the more complex phenomena involved in timbre perception. 

Inter and Intra Relationships 

In establishing psychophysical relationships, the principal relationship is between the 

physical and mental phenomena. In other words the bridge between the two domains 

is the focus of interest. Relationships also exist within each domain. For example, 

with pitch detection a simple ordinal relationship exists between simple as well as 

complex sounds. The intra relationships between harmonic sounds in the physical 

domain are more complex. 

Dimensionality 

Pitch can be classified with respect to one dimension-the "tone height" of the pitch. 

Dimensionality usually applies to intra relationships. As we shall see, timbre percep- 

tion can better be captured with multiple dimensions5. 

Invariance 

A many-to-one mapping is common for psychophysical relationships. Perception 

seems to rely heavily on invariants--either by constructing them from disparate sen- 

sory input, or by tuning into existing invariants in the physical world. James J .  Gibson 

[22] is the major proponent of the latter position. 

5The other principal attribute of sound-loudness-is also (to a first approximation) a one di- 
mensional phenomenon. The loudness of a sound is correlated with the total sonic energy arriving at 
the ear. Note that these one dimensional relationships only hold if all other factors are kept constant, 
for example, the loudness of a sound also depends on its frequency content. 
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For pitch detection of complex harmonic sounds, the invariant would be the period- 

icity "pitch" of the frequency components. Examples of invariants in visual perception 

are color constancy (the ability to separate the color of an illuminant from the intrin- 

sic color of an illuminated object-the signal reaching the eye is a synthesis of the 

two phenomena) and the highly developed skill of facial recognition despite radical 

changes due to age, cosmetic changes, novel perspectives, etc. 

Data Reduction and Redundancy 

In many cases much of the information associated with physical events does not ap- 

pear to be necessary to form an unambiguous percept. For example, many of the 

harmonic components of a complex sound may be unnecessary to establish the peri- 

odicity pitch (they may however be required for timbre perception). Data reduction 

is made possible by redundancy in the physical signal. Redundant information can 

often serve as backup for unusual or error prone situations. 

Perceptual Fusion 

Many different physical components may be involved in the production of a single 

percept. For example, the harmonic components of a complex sound fuse into one 

unified pitch percept. 

Given the efficacy of evolutionary theory, it seems reasonable that our perceptual 

apparatus evolved in such a way as to focus on essential environmental information and 

to recognize similar situations across widely varying conditions. The most efficient way 

to lighten the perceptual workload would be some form of synthesis of relevant sensory 

input. Perceptual fusion is closely related to dimensionality, invariance, redundancy 

and data reduction. 
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Physiological Link 

Understanding the physiological link can clarify the psychophysical relationship. In 

the case of simple tone pitch perception, the physiological mechanisms are well un- 

derstood and provide a more quantitative basis for the relationship they mediate. 

Quantification Problem 

Even with the relatively straightforward relationship between frequency and pitch and 

the known logarithmic physiological connection, it is hardly reasonable to posit a log 

function, mapping frequencies to pitch6. For example it makes little sense to say that 

one pitch is 1; times greater than another one. 

Another problem is that psychophysical relationships are often confounded with 

other psychophysical phenomena. For example, perceived pitch can be altered to some 

degree by the amplitude and the duration of a sound [59]. Psychophysical relationships 

are also susceptible to widely varying individual differences and the human ability to 

alter perceptual skills through learning. 

2.2 Two Approaches to Studying Timbre 

Since psychophysics bridges two domains, the physical and the mental, it is not sur- 

prising that timbre research has been approached from two different perspectives and 

disciplines-physics and psychology. 

One approach begins with a model of sound and by manipulating it attempts to 

find features of the physical model that are relevant to timbre perception. Much of 

the work here is focused on creating adequate sound models that capture-with as 

few parameters as possible-a wide variety of timbres. This approach will be referred 

to as Manipulating a Sound Model (see page 15).  

61n fact it has been suggested by Schoenberg (quoted in [17]) that pitch perception be subsumed 
under the overriding influence of the overtone series. 
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The second approach focuses on timbre as a multidimensional percept and at- 

tempts to partition it into a meaningful set of orthogonal components-and optionally 

look for physical correlates of these components. This approach will be referred to as 

Categorizing Timbrak Percepts (see page 32).  

Clearly the two approaches complement each other. In many cases effort is pru- 

dently divided between them. 

2.3 Manipulating A Sound Model 

2.3.1 Additive Model of Harmonic Sound 

Timbre perception has been associated with the spectrum of a sound7 since the pi- 

oneering research of von Helmholtz [75] .  Powerful digital analysis tools developed 

in the last 30 years [46] reveal that the spectrum of a harmonic sound can change 

considerably over the duration of the sound. Analysis also reveals that harmonic fre- 

quencies fluctuate somewhat over time [56] and that inharmonic components, noise 

for example, are present in natural harmonic sounds [48, 49, 501. 

Digital techniques can also be used to resynthesize musical sounds, based on in- 

formation extracted from an analysis. A mathematical model of harmonic sound is 

constructed from a theoretical knowledge of sound-taking into consideration empir- 

ical information gained from analysis. Resynthesis allows the efficacy of the physical 

model to be assessed by comparing the resynthesized sounds to the originals on which 

the analyses were based. A physical model also allows information extracted from an 

analysis to be parameterized and manipulated before being resynthesized. 

This methodology, referred to as the Analysis Resynthesis Method [57], is a pow- 

erful tool for studying timbre. The mathematical model most commonly used with it 

7 ~ n  general a time domain representation of sound is not suitable as a physical model in timbre 
research since it is very complex (the most effective way to reduce the complexity is to convert the 
signal to the frequency domain). Waveforms are also not suitable for exploring the physical correlates 
of timbre since they are greatly altered by changes in phase, while timbre perception is not [9, 41, 531. 
Synthesis methods that manipulate waveforms directly are usually assessed in the frequency domain. 
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is the additive synthesis model8. 

Digital sound synthesis requires the construction of a sampled time domain repre- 

sentation of the sound. This numerical representation is converted to analog voltages 

(via digital to analog converters) and then to air pressure waves by amplifying the 

signal and sending it to appropriate transducers (speakers). The time domain repre- 

sentation can be constructed from frequency domain parameters using the following 

variant [27, 461 of the additive synthesis modelg, 

Where, 

a n is the sample number (0 5 n < N), N is the total number of samples. 

a At is the time in seconds between consecutive samples and nAt is the time of 

occurrence of the nth sample. 

a X is a function of n and At and is the time domain signal at time nAt. 

k is the harmonic number (1 5 k 5 M ) .  

M is the number of harmonics. 

a w is the fundamental frequency of the sound in Hz. 

'While a variety of methods exist for the digital synthesis of sound [16], most are not general 
enough to serve as a model of harmonic sound. Additive synthesis serves both as a synthesis tech- 
nique and as a model general and flexible enough to represent many varieties of harmonic sound. 
Additive synthesis has an additional advantage when studying the psychophysics of timbre since the 
ear is also capable (in a limited fashion) of analyzing time domain sound signals into (crude) fre- 
quency components. Models of musical sound have been proposed that are based on the underlying 
physics of instrument behaviour [29, 301. These models are powerful synthesis tools (given a set 

1 of initial conditions) and (potentially at least) very general, but they are extremely complex and 
not particularly suited to timbre research. Risset and Wessel [57] classify these models as acoustic 
models, to distinguish them from perceptual models such as additive synthesis. 

'Several factors are not accounted for in this model. These include the effect of onset transients, 
noise, and other inharmonic components. 
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r Ak is a function of n and At and is the amplitude of harmonic lc at time nAt.  

Ak is assumed to vary slowly with time. 

r Fk is a function of n and At and is the frequency deviation (in Hz) of harmonic 

k-at time nAt-from the theoretical harmonic frequency Icw. Fk is assumed 

to vary slowly with time. 

A time domain signal can be constructed with equation 2 .1  (for each value of n )  

by choosing a sampling period1' At, a fundamental frequency w ,  harmonic amplitude 

envelope curves Ak, and harmonic frequency fluctuation curves Fk. These curves can 

be extracted from a spectral analysis of an actual sound or constructed algorithmically. 

The model bears a superficial resemblance to Fourier series synthesis except that: 

r The synthesis is bandlimited (the frequency response of the ear is also bandlim- 

ited). 

Phase considerations are ignored. 

r The Fourier series sine coefficients are replaced with slowly time-varying func- 

tions. 

The harmonic frequencies are allowed to vary slowly with time. 

Phase information is ignored since its effect on timbre perception is relatively 

small [9, 41 ,  531 and is somewhat obviated given the fluctuating harmonic frequencies. 

Risset and Wessel [57] point out that this insensitivity to phase makes sense from 

an evolutionary perspective since phases are significantly distorted in a reverberant 

environment. 

The slowly varying behaviour of Ak and Fk has been determined empirically [20, 

48,  49, 50, 561. Note however that Ak and Fk tend to exhibit small but rapidly 

varying fluctuations. &sset and Mathews [56] characterize these variations in Fk as 

"quasi-random" . 
''The sampling period is the inverse of the sampling rate, for example, a sampling period of 25 

microseconds corresponds to a sampling rate of 40,000 samples per second. 
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The magnitude of the harmonic frequency variations also tends to be small-except 

for effects such as vibrato, deliberate frequency glides, or intonation problems at the 

onset of wind and brass instrument soundsl1. 

2.3.2 Line Segment Envelope Approximations 

The mathematical model of harmonic sound defined by equation 2.1 (page 16) is 

a simplification of physical sound in that it ignores subtle inharmonic components. 

However, if the amplitude envelope functions Ak and frequency fluctuation functions 

Fk are unconstrained for each sample12, then no further simplification or data reduc- 

t ion  would result from using this model. In other words to specify the sound would 

require O(n) values of Ak and Fk-the same complexity required to specify the time 

domain signal X in equation 2.1 (page 16). 

The fact that Ak varies slowly with time can be used to reduce the information 

required to specify the sound. For example, Ak can be approximated with a set of 

straight line segments since changes in Ak are gradual and the first derivatives (slopes) 

are relatively constant over some regions of the sound. A straight line produces a 

reasonable approximation to the amplitude envelopes over these regions. 

Rzsset and Mathews were the first to propose this method of data reduction in 

a study of trumpet tones [56]. Their study and subsequent ones [27, 48, 49, 501 

indicate that line segment approximations to harmonic amplitude envelopes result 

in resynthesized sounds that in many cases are indistinguishable from the sounds 

resynthesized with the original (fully specified) amplitude envelopes. 

"The transients produced at the onset of a sound tend to defy the assumptions of slowly-varying 
functions and small frequency fluctuations. However, these effects usually occur only within the first 
10-100 ms of a sound's onset 1401. - - 

12This is not strictly possible when At is derived from an actual analysis since frequency resolution 
is inversely proportional to time resolution [66]. In order to obtain a frequency resolution Af that 
is adequate to separate harmonics and ascertain their amplitudes, T discrete time domain signals 
are required, where T = [&I. The values of Ak extracted would then represent the frequency 
information for harmonic k averaged over T samples. Of course values for Ak can be interpolated 
for each At interval in equation 2.1 (page 16). 
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Mixed results have been reported when the original digitized sounds are com- 

pared with either variety of resynthesized sound. hsset  and Mathews [56] claim they 

were indistinguishable but Grey and Moorer [27] found that original tones could be 

discriminated to some extent from the resynthesized versions13. 

The success of line segment approximations tends to eliminate the microstmcture 

of amplitude envelopes from consideration as a perceptually relevant physical correlate 

of timbrel4 (this may not be true for the onset transient portion of a sound). In 

addition, envelope simplification affords the researcher a clearer picture of the physical 

stimuli taking part in the psychophysical relationship. A simpler physical model 

should make it easier to discover salient features to tie to perceptual phenomena. 

Problems with Line Segment Extraction 

One difficulty with the line segment approach is the methods available to extract them 

from the original curves. In some cases [25, 27,50, 561 the line segments were extracted 

manually (the optimal number of breakpoints required depends on the shapes of the 

original curves). This method produces non-standardized results in that it is not 

always clear what heuristics are being used in placing breakpoints. Deciding how to 

cope with local non-monotonic variations in the envelopes (for example the "blips" 

that occur for the onset portion of brass instrument sounds [40, 50, 70, 711) is a 

particularly difficult problem. The method is also very tedious if a large number of 

samples are being approximated. 

Automating Line Segment Extraction 

Strawn [69] suggests several methods of automating this process using approximation 

theory and pattern recognition algorithms. One method uses a predetermined number 

13This was attributed to various noise and random factors present in the original sounds. Grey- 
and Moorer also used more than one type of instrument while Risset and Mathews based their 
conclusions solely on the trumpet. 

14The microstructure referred to includes both small rapidly varying amplitude modulations as 
well as the larger scale "curve straightening" introduced by the line segment approximations. 
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of breakpoints and error minimization techniques to fit first-order splines (straight 

line segments) to the curve data. Another method allows the specification of an error 

threshold and has the algorithm select the number of line segments required to meet 

these conditions. 

Strawn states that it has proven impossible to find a suitable paradigm for choosing 

a threshold that preserves salient perceptual features while eliminating extraneous 

features. He concludes that no single algorithm of this type will be sufficient for 

systematically exploring timbre and data reduction, primarily because global and 

local considerations are not both handled adequately. 

Strawn also experimented with hierarchical syntactic analysis techniques from Ar- 

tificial Intelligence research. The basic idea is that envelope curves would be parsed by 

a suitable grammar terminating in a set of primitive features and resulting in a tree- 

like data structure. This method appears better suited to the extraction of features 

at different levels. 

2.3.3 Interharmonic Relationships 

One problem with the general additive model is the potentially unconstrained indepen- 

dence of the harmonic components. This problem remains even when the individual 

harmonic amplitude envelopes are simplified. Attempts have been made to find de- 

pendent relationships among harmonic components in order to obtain a more global 

perspective on the resulting sound. 

Formants versus Fixed Spectral Shape 

A longstanding issue in timbre research is the role played by formants in identifiying 
' 

sounds over widely varying conditions. Formant structures are fixed-frequency am- 

plification patterns induced by passive sound-producing mechanisms. Natural reso- 

nances of the air cavity in the vocal tract [14] or in musical instrument bodies [2, 51- 

as well as other transducer resonances (such as the natural modes of vibration of 
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stringed instrument soundboards [31])-tend to reinforce frequency components in 

fixed regions of the spectrum. Typically there are several formant regions and each 

region is distributed over some range of frequencies, with a pronounced peak at a 

particular frequency. 

Our ability to discern speech vowels (essentially based on timbral distinctions) is 

largely due to the varying formant structures resulting from changes to the size and 

shape of the vocal tract air cavity by positioning the tongue, lips, and teeth [14]. 

Formant structures for musical instruments are less variable and could conceivably be 

the invariant physical correlate that makes it possible to identify instrument sounds 

under different conditions. 

An alternate theory is that the shape of an instrument's sound spectrum is rel- 

atively invariant. For example, according to this theory an instrument might be 

identified because the odd harmonics are pronounced with respect to the even har- 

monics, irrespective of the fundamental frequency of the note played. The formant 

theory would claim, on the other hand, that the pronounced harmonics would be 

the ones that happen to fall into the fixed resonance regions of the instrument. As 

the fundamental frequency changes, the pattern of pronounced harmonics would also 

change15. These invariant resonance regions would then be the aural clues to instru- 

ment identification. 

Slawson [67] argues that the primary stimuli for timbre research should be the 

sounds produced by the human voice-reasoning that whatever timbre perception 

mechanisms are in place probably evolved to handle sounds produced by the human 

vocal tract. Subjects in Slawson's study were asked to assess either the differences in 

the vowel quality or the differences in musical timbre between two synthesized stimuli 

(the same stimuli were presented to both groups). 

The stimulus pairs were constructed and varied so as to determine which of the two 

theories-the formant theory or the fixed spectral shape theory-would be supported. 

The formant theory was clearly superior. 

151t is important to keep in mind that the harmonic amplitudes are also changing over time. Hence 
the interharmonic relationships will also change to some extent over the duration of the sound. 



CHAPTER 2. PHYSICAL CORRELATES OF TIMBRE 22 

Small changes in the peak frequencies of the two lowest formants also resulted in 

large differences in timbre. Slawson speculated that timbre invariance is more likely to 

be the result of built-in genetic mechanisms than learned responses, and that musical 

timbre and vowel quality are based on the same set of physical correlates. 

The stimuli in Slawson's study were sounds produced by an analog speech synthe- 

sizer modeled on vocal tract mechanisms (a pulse train filtered to emulate the vocal 

tract air cavity [14]). While Slawson's conclusions may be valid for these types of 

stimuli, it is not necessarily the case that all instrument sounds are a proper subset 

of vowel-like sounds. 

In fact evidence from other studies indicates that for many harmonic instruments 

the formant theory does not appear valid--or only valid to a limited degree16. The 

results are somewhat contradictory. In some studies (of a variety of brass and wood- 

wind instruments) evidence of formant structures was found [36, 56, 70, 711. Other 

studies on some of the same instruments [40, 501 found little or no evidence of formant 

structures. A study by Saldanha and Corso [61] was inconclusive. It does appears 

that some instruments exhibit more of a formant structure than others (oboe [GI], 

bassoon [36]). 

Because of the inconclusive (and often contradictory) results, a formant analysis of 

musical instruments may not be as useful as it is for speech vowels. The fixed spectral 

shape theory is also questionable since the spectrum of an instrument's sound (and 

its temporal evolution) can be altered significantly by both the note played (register) 

and player controlled dynamics (intensity) [36, 39, 40, 56, 70, 711. 

Spectrum and Intensity Variations 

Luce [39] has systematically studied the effect of intensity variations on the spectrum 
' of musical instrument sounds. In general, it appears that high frequency content 

increases with intensity, however, the amount of increase is instrument specific and 

16Formant structures are a part of any resonant chamber, however, their effect on the resulting 
sound may be inconsequential because of other more powerful influences. 
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for some instruments the relationship does not hold. 

Nonlinear Relationships 

Several methods have been developed that overcome the numerous degrees of free- 

dom inherent in the additive model. Risset, in follow-up work to [56] (discussed in 

[57]), related the amplitude envelopes of all upper harmonics to the envelope of the 

fundamental. The proposed interharmonic relationships are nonlinear and specific to 

the brass instrument family-and closely tied to the physics of sound production in 

these instruments (see also Beauchamp [3]). 

In more recent work, Beauchamp [4] used the spectral "centre of gravity" (the 

midpoint of the spectral energy distribution)-as it changes over the duration of a 

sound-as a parameter for resynthesis. The spectral centre of gravity is highly cor- 

related with the "brightness" or "sharpness" of a sound [26, 73, 741. Beauchamp's 

synthesis technique is compatible with efficient synthesis methods (such as nonlin- 

earlfilter synthesis or FM) and the results car, be compared mathematically with 

additive analysis data. 

Envelope Data Reduction 

Charbonneau [lo] has studied the perceptual effects of various forms of data reduction 

on additive parameters (see also the section on Frequency Fluctuations on page 27). 

Amplitude envelopes were simplified by averaging all the harmonic amplitude en- 

velopes (extracted from a time-varying spectral analysis of a given sound) and recon- 

structing the sound from four parameters: 

a The amplitude mean curve (normalized to a peak amplitude of 1). 

a The starting time of each harmonic. 

a The ending time of each harmonic. 

a The maximum amplitude of each harmonic. 
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Each harmonic curve was reconstructed by weighting the mean curve with the 

maximum amplitude for that harmonic and shifting and scaling the weighted curve's 

time duration in accordance with the starting and ending times of the harmonic 

(envelope reconstruction is nonlinear). The harmonics were then combined in the 

normal additive fashion. 

The success of the resynthesized sounds (when compared to the originals) varied 

considerably over the range of instrument sounds analyzed. In many cases the resyn- 

thesized sound was surprisingly close to the original. The discrepancies between the 

resynthesized and original sounds are probably due to the lack of envelope "shape" 

variations-in particular the time occurrence of the peak harmonic amplitudes is not 

preserved in the resynthesis. 

Schindler [64] has combined features of Charbonneau's amplitude envelope data 

reduction with Strawn's hierarchical syntactic structures [69] (see page 19). The result 

is a real-time control scheme for additive synthesis-with intuitive control parameters 

aimed at sound designers/musicians. The control parameters are embedded within a 

multidimensional model of timbre space (see also Wessel [77], described on page 39). 

The hierarchical nature of the control scheme allows a sound designer to rough in a 

sound and then refine it with lower-level control features. 

Grouping Harmonics 

Recent work by Kleczkowski [34] attempts to combine the conceptual simplicity of 

the additive model with data reduction, by grouping harmonics based on a criterion 

of similarity. Since Charbonneau's research [lo] indicated that data reduction of 

amplitude data has more of a perceptual effect than reduction of frequency data, 

Kleczkowski chose to group harmonics with respect to amplitude envelope similarity. 
I The specific grouping criterion used was the sum-of-squares distance between two 

amplitude envelopes (line segment approximated envelopes were used). 

A common envelope shape (the average of the grouped harmonics' envelopes) is 

weighted by the average amplitude of each harmonic in the group. The result is 
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summed (in the manner of equation 2.1 on page 16) to get the contribution of that 

group to the waveform. The groups are then summed to get the complete waveform. 

A common frequency fluctuation factor is used for all harmonics in a group. Al- 

ternate methods allow the individual harmonics (within a group) to be scaled in time 

(to preserve onset and ending times) and provide a variety of simpler ways to compute 

the common frequency fluctuations. The algorithm becomes more complicated when 

grouped harmonics are not all adjacent. 

The model is aimed both at decreasing computational time for additive synthesis 

and reducing the data specification required. The sounds produced by three group- 

ings of harmonics were deemed sufficiently close to the original (line segment approxi- 

mated) sounds for several instruments. Four or five groupings were required for other 

instruments. Reducing the number of groupings also appears to result in gradual 

timbre alterations. 

2.3.4 Attack Transients 

Psychological research on the perception of attack transients indicates that they play 

a significant role in the recognition of instrument timbre [7,  61, 76]17. Moorer and 

Grey [49] cite research [23, 381 showing that the attack portion alone is more useful 

in identifying instrument timbre than the steady state portion alone. 

Grey and Moorer [27], using multidimensional scaling of timbre comparisons, found 

that attack information comprises a distinct perceptual dimension (see also Timbre 

Spaces on page 35). Attack information was taken to be the low-amplitude inharmonic 

components at the onset of a sound-for example, the "breathy" quality at the start 

of a woodwind sound-rather than the initial steep rise of harmonic amplitudes. 

1 7 ~  study by Saldanha and Corso [61] indicates that the final transients in a sound provide no 
' 

information useful for identifying instruments. Final transients occur when the energy source driving 
an instrument is removed-allowing the sound to decay naturally. The nature of final transients 
varies considerably depending on how the instrument is activated. The instruments in Saldanha and 
Corso's study were either wind or bowed instruments, for which the sound quickly dies out when the 
energy source is removed. Final transients obviously play a much more significant role in plucked or 
struck instruments such as the guitar or piano. 
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The attack transients of the brass instrument family have been studied exten- 

sively [39, 40, 50, 56, 711. The steep initial rise of harmonic amplitudes is generally 

considered part of the "attack" in these studies. According to Luce and Clark [40] 

all the brass instruments included in their analysis of 900 trombone, trumpet, tuba 

and French horn sounds-with the exception of the French horn-had similar attack 

characteristics. These included: 

0 Significant frequency and amplitude modulation occurs during the first 50 f 20 

ms of a tone. The duration is independent of fundamental frequency. The 

amplitude modulation frequency is very high (about 20% of the fundamental). 

0 Higher harmonics start later and have slower rise times. 

The amplitude envelopes exhibit characteristic L'blips" at the end of the transient 

period. The "blips" are more pronounced for lower notes, higher harmonics, and 

louder sounds. 

Luce and Clark suggest that the commonality in attack characteristics of brass 

instruments may be one of the invariant physical correlates that uniquely identifies 

this family of "brassy-sounding" instruments. 

Some of the attack characteristics described above do not accord well with the 

additive model described by equation 2.1 ( page 16). However the success of line 

segment approximated resynthesis [27, 49, 50, 561 seems to indicate that the rapid 

amplitude modulations are not perceptually significant. Moorer and Grey 1501 also 

claim that it is not necessary to include the characteristic amplitude "blips" when 

resynthesizing trumpet soundsls . 

It is reasonable to assume that the microstructure of attack transients would vary 

substantially for different types of instruments (guitar, piano, brass, bowed strings) 

since attack characteristics result from the physics of the initially unstable interaction 

18~hese  are the same "blips" that gave Strawn's line segment extraction algorithms so much 
trouble [69] (see page 19). 



CHAPTER 2.' PHYSICAL CORRELATES OF TIMBRE 27 

between the energy source driving the instrument and the instrument itself (see Luce 

[39] for a clear description of this interaction for brass instruments). 

Attack transients are good candidates for the physical invariants of recognition of 

certain instrument classes. The classes could likely be discriminated on the basis of 

the method used to input energy to the instrument (struck, blown into, bowed, etc.), 

however, it may be difficult to adequately capture the perceptual subtleties resulting 

from attack transients within the framework of the additive model. 

2.3.5 Frequency Fluctuations 

The analysis methods used by various researchers (pitch-synchronous analysis [42], 

heterodyne filter [45], and the phase vocoder [47]) yield time-varying frequencies as 

well as harmonic amplitude variations. Analysis of harmonic sound reveals that the 

harmonic frequencies are to some degree inharmonic (not exact integer multiples of 

the fundamental frequency) lg . Over and above this average (macro) inharmonicity 

the frequencies also fluctuate over t ine  [27, 48, 49, 50, 561. 

ksset  and Mathews [56] resynthesized trumpet sounds using constant harmonic 

frequencies and added "quasi-random" fluctuations to simulate the effect of the orig- 

inal frequency variations. The resynthesized versions apparently sounded much like 

the originals. 

Grey and Moorer [27] conducted experiments to test the "perceptual distance" be- 

tween a) sounds reconstructed with constant frequencies in place of the original time- 

varying functions (the amplitude envelopes were approximated by line segments), 

and b)  sounds resynthesized with all the analysis information or sounds resynt he- 

sized with the original time-varying frequency functions and line segment amplitude 

approximations. The constant frequency sounds were easily discriminated from the 

other two. They concluded that this degree of simplification is too drastic (for all but 

''An early study by Fletcher [20] on piano tones indicates that inharmonicity in the piano is 
perceptually important and adds to the "warmth" of the sound (inharmonicity is often missing in 
electric pianos and other imitations). 
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one instrument-the English horn). 

Charbonneau [lo] in his study of the effects of data reduction on additive synthe- 

sis parameters (see also Envelope Data Reduction on page 23) arrived at a slightly 

different conclusion. Charbonneau data reduced the harmonic frequency functions 

(Fk in equation 2.1 on page 16) by using the fundamental frequency function Fl as 

a reference function. For each harmonic k, the kth harmonic frequency function was 

reconstructed from Fl by multiplying it by k at each time point for which the kth 

harmonic amplitude was nonzero. The resynthesized sound thus lost any average 

inharmonicity present in the original and all harmonics fluctuated in synchronicity. 

These sounds were compared to the fully-specified, frequency-varying sounds (am- 

plitude envelopes were approximated by line segments for both sounds). Subjects 

judged the two sounds to be "perhaps slightly different" on average (discriminability 

varied over instruments and subjects). Charbonneau concluded that the ear is rela- 

tively insensitive to individual harmonic frequency fluctuations, although some sort 

of variation is required in the harmonic set as whole. 

A useful extension to Charbonneau's experiments might be to assess the perceptual 

impact of algorithmically generated frequency varying functions-or one reference 

frequency function for a variety of notes and playing intensities on the same instrument 

(or instrument family). This would reduce the sound specification requirements even 

further. It seems plausible that unique F1 analysis data is not required for every 

sound reconstructed by analysis and resynthesis. 

2.3.6 Non-additive Models 

Non-additive synthesis (such as FM [Ill or Karplus-Strong plucked string synthesis 

[32, 331) has great appeal because of its computational efficiency and simple control 

parameters. However additive models are usually preferred over non-additive models 

for timbre research since they are more flexible and the control parameters transfer 

well to the perceptual realm (although there are often too many of them). 

Recent advances in waveshaping synthesis [I ,  35, 631 may change this bias against 
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non-additive techniques. Waveshaping synthesis essentially uses one function to mod- 

ify another one in a nonlinear fashionz0, to produce the waveform of the sound di- 

rectly. Two parameters (a scalar a and a sampled function f )  are sufficient to specify 

all waveforms. 

The power of the technique comes from the ability to produce a waveform corre- 

sponding to any given harmonic spectrum-and change it over time-by manipulat- 

ing the parameter a and the function f .  f controls the steady state spectrum and 

changing the value of a over the duration of the synthesis alters the spectrum. 

While the spectrum can be changed over time by changing only one parameter, it 

does not (yet) appear to be possible to create arbitrary spectral changes over time [35, 

page 2631. The major difficulty is the complexity of the mathematics involved-what 

is easy to do in additive synthesis (fully specifying a dynamically changing spectra) 

becomes very complex in waveshaping. 

The method is very efficient and shows promise as a flexible alternative to the 

additive synthesis model. However, additive models may still be more appropriate for 

studying the psychophysics of timbre given current knowledge of how the ear processes 

harmonic sound. 

2.4 Principal Component Analysis of Spectra 

Principal component analysis is a multivariate statistical technique useful in reducing 

the dimensionality of large data sets comprised of many variables. Principal compo- 

nent analysis has been used by researchers to data reduce vowel spectra information 

[52, 66, 781 and to classify timbre percepts (using multidimensional scaling-a cousin 

of ~rincipal component analysis) [24, 26, 27, 44, 51, 74, 76, 771 (see also Multidimen- 

sional Scaling on page 32, and Timbre Spaces on page 35). 

A geometric interpretation of principal component analysis on page 48 provides 

an intuitive explanation of what the analysis does. 

20Waveshaping as described by Le Brun [35] subsumes FM synthesis. 
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Plomp, Pols and van de Geer [52] used a principal component analysis to reduce 

the information necessary to specify vowel spectra. 15 vowel sounds produced by 10 

subjects were analyzed by octave filters into 18 frequency bands. A 100 ms section 

was used to compute spectra for each vowel sound. When the spectral data was 

submitted to principal component analysis, the first 4 principal components accounted 

for 84% of the variance. 

Plomp suggests that principal component analysis has advantages over formant 

analysis since it takes into account the whole spectrum (even though it is reduced 

to only 4 parameters). Formants typically are specified by their peak frequency and 

ignore the shape of the distribution of frequency energy surrounding the peak. The 

first two principal components were in fact related to the first two formants. A 2- 

dimensional plot of the first formant frequencies versus the second formant frequencies 

(for all 15 vowels) had the same configuration as a 2-dimensional plot of the the first 

two principal component weights (coordinates in the transformed space). 

Principal component analysis has potential for automated speech recognition. 

Vowel sounds analyzed by extracting principai components would be identified by 

their proximity to previously analyzed and known vowels in a 2-dimensional space 

of the first two principal component weights. Plomp points out that it is much eas- 

ier to analyze 18 frequency bands and extract principal component weights than to 

determine formant frequencies. It was suggested that the method be extended to 

analyze speech spectra at short time intervals (to see how they change over time) and 

to include consonants in the analyses. 

Zahorian and Rothenberg [78] used an analysis-resynthesis paradigm to test the 

effect of principal component data reduction on the intelligibility of speech. One of 

the aims of their research was to determine the type of amplitude data best suited for 

data reduction. As they put it, "[the assumption]. . . that data variance is equivalent 

to data ('information". . . depends strongly o n  the proper scaling of the data." Their 

work indicates that logarithmic amplitude coding is superior to linear coding. 
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Zahorian and Rothenberg found that speech that was resynthesized with 3 prin- 

cipal components was judged to be 70% intelligible (on a standard test). The intel- 

ligibility went up to 85% for 5 components. The principal component basis vectors 

(rotated axes) were very similar for speakers of the same sex and the first few basis 

vectors were largely speaker independent. 

It is noteworthy that the intelligibility scores, for a given number of components, 

compare roughly to the spectral variance accounted for, for the same number of com- 

ponents. This seems to indicate that the data variance corresponds somewhat to 

perceptually relevant information and that a loss of spectral "information" has a 

concomitant effect on aural perception. 

Searle [66] performed a principal component analysis of speech spectra on a run- 

ning sample of speech and concluded that speech spectra have perhaps 5 degrees of 

freedom. The component basis vectors (which are weighted and then summed to re- 

produce the approximated spectra) were roughly the shape of a half cosine series2'. 

However, when the spectra were reconstructed with exact half cosine series basis vec- 

tors, the error was substantiaily increased. Therefore, establishing a data dependent 

set of basis vectors appears to be worth the effort. 

Searle made an interesting observation about consonants. Vowels tend to show 

up as clusters in the transformed space since they change slowly over time and the 

changes are small. Stop consonants on the other'hand are better represented as 

trajectories through the space as a function of time. As a direction for future research 

Searle recommends that a temporal dimension be included in the transformation (by 

coordinate rotations over time) so that trajectories will appear as clusters instead of 

lines. 

21The first basis (the constant term) is a straight line, the second is a cosine shape from 0 to T ,  

the third a cosine shape from 0 to 27r, etc. 
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2.5 Categorizing Timbral Percepts 

The section on Manipulating a Sound Model (page 15) looked at timbre research that 

employs a common paradigm of systematically manipulating sound parameters and 

observing the perceptual effects. The research outlined in this section approaches the 

problem from the other end. Timbre is first examined as a purely psychological (or 

perceptual) phenomenon. Some of the questions to be answered are: 

a Are there different dimensions of timbre classification? If so what are they? 

a To what degree is it possible to interpolate between dimensions in "timbre 

space?" 

a What are the verbal dimensions of timbre distinctions? Is language capable of 

categorizing timbral differences or are judgements made at a more basic cognitive 

level? 

If timbre percepts can be categorized in a meaningful way it may be possible to 

work backwards and discover physical correlates of these categories. This could con- 

ceivably give sound designers (and musicians) low-dimensional control over sounds by 

the manipulation of intuitive perceptual parameters. The details of the actual signal 

construction could be transparent and take advantage of the established psychophys- 

ical relationships. 

2.5.1 Multidimensional Scaling 

Studying psychological phenomena, particularly complex ones like timbre, requires 

powerful analysis tools. Factor analysis (which includes principal component analysis, 
' see pages 29 and 48) is one such methodz2. Since factor analysis is a mathematical 

technique, it requires data to be in numerical form. Unfortunately psychological 

22Both the physical and psychological domains can benefit from dimension reduction. Wedin and 
Goude [76] applied dimension reduction to timbre comparisons and sound stimuli in order to test 
the correlations between them. 
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judgement scales are quite different from quantifiable physical scales in that they are 

not as "number-crunchable" (for example, how would you rate the similarity of two 

sounds on a meaningful numerical scale?)23. Multidimensional scaling is a technique 

that has been developed to allow factor analytic methods to be applied to judgements 

of similarity [6]. 

In order to quantitatively assess similarity judgements with multidimensional scal- 

ing, all possible pair-wise comparisons between the stimuli must be madez4. These 

similarity judgements are taken to represent subjective "distances" when the stimuli 

are (conceptually) mapped into a space whose dimension is the same as the number 

of stimuli. Each stimulus defines a point in this space. 

If there are common strategies underlying the similarity judgements then a factor 

analysis on the sums of cross-products of all the paired comparisons [6, chapter 61 will 

reduce the number of dimensions required to assess the stimuli  difference^^^. 

The reduced dimensions will reflect the range of stimuli involved, therefore it is 

important to choose a representative sample of stimuli if the results are to be gener- 

alized. For example, timbral dimensions could be assessed with stimuli restricted to 

harmonic sounds, or percussive and inharmonic sounds could be included as well. In 

the latter case, homogeneity of stimuli may be important. For example, large (percep- 

tual) distances between instrument families (e.g. percussive and non-percussive) can 

cause degenerate multidimensional scaling solutions. This can be avoided by includ- 

ing sounds that bridge the gap between the two families. Nonhomogeneity of stimuli 

can also result in poor intra-family distinctions [77]. 

The number of stimuli will in general affect the distance resolution within the 

23Psychological variables can be discrete or continuous and are typically categorized as nominal, 
ordinal, interval, or ratio. Ratio variables inherit all the properties of the number system that are 
taken for granted in most physical variables-such as equal intervals, equality of ratios (an implied 
absolute zero), etc. Judgement scales employ, at best, interval variables--ordinal variables are more 
common [18]. Sones (loudness) and mebs (pitch) are two of the aural scales that have been developed 

[721. 
24This imposes a practical limit on the number of stimuli in an experiment since for n stimuli 

comparisons are required (n(n  - 1) if order of presentation is included). 
25The original space (with dimension equal to the number of stimuli) allows for the possibility 

that every comparison could be based on a different criterion. 
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reduced dimension space. Wessel [77] indicates that 10 stimuli are a minimum for 

reduction to 2-dimensions (15 stimuli for 3-dimensions), although better results will 

be obtained with more stimuli. Stimuli should also be equalized for potentially con- 

founding influences-for example, loudness, pitch, and duration should be the same 

when timbral similarities are being judged. 

Distances between stimuli will be preserved (with some degree of approximation) 

in this reduced dimension spacez6. Reduction to 2 or 3 dimensions allows stimuli 

distances to be visualized so that patterns can be more easily seen-for example, 

clusters of stimuli points would indicate that these stimuli are perceived as similar. 

Each dimension corresponds to some as yet unnamed criterion of similarity. 

At this point it is up to the researcher to interpret the dimensions. Typically 

this is done by correlating stimuli positions (on a particular dimension) with other 

phenomena--either other psychological factors or in the case of perception, physical 

correlates. 

One way of interpreting the dimensions resulting from timbre comparisons is by 

answering the question: What factors in the sound signal are causing timbres to  be 

discriminated o n  this one dimension? If for example the amount of high harmonic 

content27 in the signal was found to be linearly correlated with the arrangement of 

stimuli on a particular dimension axis-and other studies indicated that sounds with 

high harmonic content are heard as "shrilln-then there is a case to be made for 

labeling the axis as one of "shrillness" discrimination. 

Multidimensional scaling requires no a priori knowledge of judgement criteria, 

hence, the choice of stimuli is not constrained by preconceived ideas of what is being 

measured. A variation of multidimensional scaling uses semantic scales rather than 

similarity judgements. Subjects rate stimuli differences based on proximity to a pair 

(usually several pairs) of bipolar adjectives. This restricts subject responses to those 

26As with variance accounted for in principal component data reduction (see page 51), mulitidi- 
mensional scaling computes an overall error between the original similarity judgements and their 
dimension reduced approximations. 

2 7 ~ h e  amount of high harmonic content would have to be reduced to some scalar measure in order 
to  correlate it with the distance relations on a perceptual axis. 
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that the researcher feels are relevant, hence, a priori knowledge of similarity criteria 

is useful. One hazard of semantic scales is that relevant (original) dimensions may be 

omitted--or even more serious-that some stimuli discriminations may not be easily 

translated into words 1231. 

An advantage of multidimensional analysis of similarities is that subjects are re- 

quired to make a synthetic judgment as opposed to an analytic one 1211. Synthetic 

judgements are ones in which subjects assess stimuli as a whole rather than having 

to concentrate on a single aspect of the stimuli. This allows the use of a wide range 

of natural stimuli instead of ones artificially created to represent analytic categories. 

Freed and Martens 1211 consider synthetic judgements to be more natural for percep- 

tion research. 

2.5.2 Timbre Spaces 

Wedin and Goude [76] reduced similarity judgements between 10 different instrument 

sounds to 3 dimensions with a variant of multidimensional scaling (3 dimensions ac- 

counted for 75% of the variance). The perceptual dimensions did not discriminate 

the instrument families involved (woodwind, brass, and strings). However when the 

names  of the instruments were presented as stimuli instead of their sounds, the di- 

mensions coincided quite well with the three instrument families. Wedin and Goude 

concluded that the "cognitive structure" of timbre distinctions does not coincide with 

the "perceptual structure." 

The steady state spectra of the stimuli were also factor analyzed (3 factors ac- 

counting for 95% of the variance). Correlations between the acoustic basis vectors 

and the perceptual basis vectors revealed that the first perceptual dimension was re- 

lated to '(overtone richness," the second to "overtone poorness,'' and the third to a 

low fundamental combined with increasing intensity of the first overtones. Wedin 

and Goude also found that the presence or absence of the attack portions of sound 

affected instrument identifiability but did no t  alter the dimensional structure. Sub- 

sequent studies have not supported these results 124, 26, 771 except that in all cases 
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the first dimension is in some way related to the sound spectrum. 

Miller and Carterette [44] used artificial tones with carefully manipulated charac- 

teristics. Multidimensional scaling revealed three perceptual dimensions for timbral 

similarity judgements. The first two dimensions were correlated with the number 

of harmonics in the artificial sound and the shape of the temporal energy envelope, 

respectively. The use of simplistic stimuli in this experiment limits the usefulness of 

these results. Freed and Martens [21] state, Yt seems intuitively obvious that mu- 

sically relevant timbre research cannot employ musically useless timbres as stimuli." 

They go on to cite Gibson's claim [22] that perceptual systems require complexity in 

order to function properly-the justification being that perception targets physical 

properties of sound sources, which are inherently complex. 

The most comprehensive work in categorizing the dimensions of timbre has been 

done by Grey [23, 24, 26, 271 and Wessel [77]. 

Grey 

Grey [24] analyzed 16 instrument sounds from 12 instruments of the woodwind, brass, 

and stringed instrument families. Multidimensional scaling of all-pairs timbre com- 

parisons (over 35 subjects) was performed to obtain 2, 3, and 4-dimensional timbre 

spaces. The 2-dimensional space was difficult to interpret and the 4-dimensional space 

yielded no additional useful information over the 3-dimensional space. Since the stim- 

uli were sounds resynthesized from time-varying spectral analyses (with line segment 

envelopes), it was possible to informally relate the perceptual dimensions to properties 

of a simplified additive model. 

A preliminary analysis revealed that the first dimension was related to the spectral 

energy distribution of the sounds. The second and third dimensions appeared to 
I correspond to temporal features of the sounds. 

The second dimension was associated with a lack of attack synchronicity of har- 

monics and an accompanying spectral fluctuation over time28. Spectral fluctuation 

28Apparently these two signal characteristics occurred in tandem for the instruments analyzed. For 
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here refers to macro level changes in the shape of the spectrum over time. The second 

dimension also discriminated the woodwind, brass, and stringed instrument families, 

with two exceptions-the bassoon was grouped with the brass, and the flute was 

grouped with the strings. 

The third perceptual dimension was related to low-amplitude, high-frequency, in- 

harmonic energy in the attack portion of a sound. Brasses tend to have very little 

while strings and some woodwinds have considerably more. 

The distribution of instrument stimuli in the 3-dimensional space had another in- 

terpretation. Grey also analyzed the instrument spatial relationships with a hierarchi- 

cal clustering algorithm-grouping instruments by their inter-distances in the space, 

irrespective of dimension. The analysis revealed that instrument families tended to 

cluster together 29. Instrument family clusters were configured in a roughly cylindrical 

pattern around the first (spectral energy distribution) dimension. Therefore, com- 

bining the second and third dimensions appears to group instruments by temporal 

qualities, which are somewhat related to family characteristics. The exceptions in- 

dicate that temporal attributes of an instrument's sound override traditional family 

groupings. 

Grey and Gordon 1261 confirmed and extended some of the dimension interpre- 

tations of Grey's original study [24]. Eight of the original sounds were altered by 

exchanging spectral envelopes in pairs. This consisted of keeping the same harmonic 

amplitude envelope "shapes," but altering the peak harmonic amplitudes attained, 

in accordance with the other sound. The same bandwidth for the altered sounds 

was maintained by not swapping peak values for harmonics that were not present in 

the original sounds. The point of swapping spectral envelopes in this manner was 

example woodwind upper harmonics tended to enter as a group, with the spectral shape somewhat 
invariant over time when all harmonics were present. Strings and brass, on the other hand, tended 
to have staggered patterns of harmonic onset and exit (see Attack l?mnsients, page 25) with more 
spectral variation over time. 

2gThe exceptions to  family clustering (bassoon with the brass; trumpet, French horn, and flute 
with the strings) could be explained by the uncharacteristic articulatory patterns of these instruments 
(with respect to other members of their families). Grey speculates that temporal qualities of the 
attack may override familial groupings. 
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to exchange spectral energy distributions without perturbing temporal qualities (the 

change in harmonic envelope slopes did alter temporal qualities to some extent). 

A multidimensional analysis of the 8 altered and 8 unaltered sounds resulted in 

the same dimension configurations as the original study 1241-except that the altered 

sounds swapped positions along the first dimension. Positions in the other two dimen- 

sions were only slightly altered. This supports the original interpretation of the first 

dimension as resulting from the spectral energy distribution of sound and indicates 

that the first dimension is indeed independent of the other two (as it should be given 

the orthogonal multidimensional scaling solution). 

The altered sounds were heard as a hybrid of the original and its swapping partner. 

The articulatory qualities of the original were combined with the vowel-like tone 

"color" of the other. 

Grey also confirmed the first dimension interpretation by deriving a quantitative 

measure of spectral energy distribution and correlating it with positions on the first 

dimension axis. Several alternate strategies of assessing spectral energy distribution 

were tried. They all resulted in high correlations with the first axis positions. The 

best correlation resulted from deriving a line spectrum from the harmonic (linear 

scale) amplitudes averaged over time-with critical band loudness corrections. The 

scalar value for energy distribution was derived from the line spectrum by taking its 

centroid. 

Grey suggested some subjective interpretations for the two temporal dimensions. 

The second dimension (which correlated with spectral fluctuation) was said to capture 

the quality of static versus dynamic tones. 

The third dimension was associated with attack characteristics. Low-amplitude, 

high-frequency, inharmonic content in the attack has a noiselike quality which, ac- 

, cording to Wessel (cited in [26]), results in a subjective impression of a soft, long 

lasting attack (more time is in fact taken to reach maximum amplitude). On the 

other extreme, low noise attacks-where the lower harmonics come in quickly-have 

a fast, harder, more explosive sounding attack. 
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In Grey and Moorer's study [27] of the effects of three types of data reduction on 

instrument resynthesis quality (see also Attack Transients on page 25), the differences 

between the test sounds were analyzed with multidimensional scaling to see if different 

similarity criteria played a part in discriminating the various types of data reduction3'. 

A one-dimensional solution resulted in the following ordering along the dimension, 

original tone, complex resynthesis (all the analysis information included), line segment 

approximation, and constant frequency approximation (with line segment amplitude 

envelopes). 

The two-dimensional solution revealed that a similar criterion was used to dis- 

criminate all but the "cut-attack" approximation which had the second dimension all 

to itself. This supports the conjecture that the attack portion of a sound (at least a 

noisy one) forms a separate basis for categorizing instrument sounds that cuts across 

instrument family boundaries. 

Grey has also looked at timbre discrimination in musical contexts [25] and inter- 

polation between positions in timbre space [23]. 

Wessel 

Wessel [77] constructed a model of timbre space with the intent of making it a useful 

tool for the compositional control of timbre in musicd contexts. The ultimate goal is 

high level control of timbral sounds using perceptual parameters. 

The 24 instrument sounds used by Grey (16 natural instruments plus the 8 hybrids 

used in [26])31 were rated for similarity (by Wessel himself). A 2-dimensional timbre 

30Similarity judgements were also analyzed to determine the degree to which the tones could 
be distinguished in pairs. The least discriminable were the complex resynthesis and line segment 
approximations. The most discriminable were the "cut-attack" approximations (removal of low- 
amplitude, high-frequency, inharmonic energy in the attack)-with everything else. The constant 
frequency approximation was found to be highly discriminable with the complex resynthesis and 
the line segment approximations. The original tone was somewhat discriminable from the complex 
resynthesis and the line segment approximated sounds. 

31These 16 instrument sounds, originating from CCRMA, have been widely used in timbre research 
[lo, 23, 24, 25, 26, 27, 34, 46, 49, 50, 64, 69, 771. The sounds are short (280-400 ms) Eb (z 311 
Hz) notes of 12 different instruments-oboe, English horn, bassoon, Eb clarinet, bass clarinet, flute, 
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space was constructed from the similarity judgements using multidimensional scaling. 

The first dimension was interpreted as a perceptual correlate of spectral energy 

distribution (as with Grey) and the second as a correlate of onset transient character- 

istics. Sounds on the first dimension varied from "bright" to "mellow." The second 

dimension characterized the quality of the "bite" in the attack. The first dimension 

correlated well with a centroid measure of the spectral energy distribution (similar to 

Grey's measure [26]). 

To illustrate the usefulness of the timbre space parameters in musical contexts, 

Wessel demonstrated auditory streaming effects [43] created by varying timbres with 

respect to timbre space location. A 3 note ascending sequence of notes was played 

repeatedly. The timbre of alternate notes could be altered (in unison) by choosing 

sounds at different positions along the spectral energy distribution dimension of the 

timbre space. When the timbres of adjacent notes were similar (in terms of timbre 

space position), the ascending pitch line of the notes dominated perception. However, 

as the two timbres were moved apart (in timbre space), the perceptual organization 

of the note pattern split into two ascending series of notes. 

Repeating the experiment with timbres varying on the "attack bite" dimension 

resulted in the rhythm of the musical pattern moving from even to irregular. Wessel 

concluded that altering the attack characteristics of a sound affects the subjective 

onset time. 

Wessel also experimented with timbral analogies. Subjects were presented with 

two sounds, A and B, which had different timbre space positions. A third sound C 

(at another timbre space location) was presented and subjects were asked to decide 

which of 4 additional sounds was the best analogy with respect to C of the timbral 

relationship between A and B. The results indicated that the sound selected had 

a timbre that came the closest to completing a parallelogram in the 2-dimensional 

timbre space. In addition, the rank ordering of the alternatives corresponded with 

alto saxophone, soprano saxophone, trumpet, French horn, muted trombone, and cello. The sounds 
include a complete attack and a natural decay. The additional 4 sounds were produced with the 
same instruments under different playing conditions. Sounds were recorded to tape and digitized at 
12 bit resolution with a sampling rate of 25,600 samples per second. 
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their proximity to the ideal parallelogram position. 

An interactive graphics program was developed to synthesize sounds that would 

correspond to a given position in timbre space-by manipulating line segment en- 

velopes (spectral energy distribution)-and attack characteristics (second dimension). 

Choices are presented on a 2-dimensional grid and by selecting a point in this space, 

a sound with the desired characteristics can be synthesized. Wessel reports that per- 

ceptually smooth transitions result when moving around in the space. This structural 

continuity suggests that a reasonably quantitative psychophysical timbre relationship 

has been developed--one that holds up well in a musical context. Wessel states that 

an efficient control scheme for manipulating envelopes is required to facilitate more 

complex forms of sound manipulation in timbre space. 

2.5.3 Timbre Semantics 

Work from the previous section on Timbre Spaces arranged timbres in a space without 

resorting to verbal attributes (although the resulting spaces could be described in 

those terms). This section looks at how language discriminates timbre. 

Lichte [37] in an early study (1941) found three attributes of complex tones (other 

than loudness and pitch). "Brightness" was related to the mid-point of the spectral 

energy distribution, "roughness" to the presence and location of partials above the 

sixth, and L'fullness" to the relative presence of odd and even partials. All the stimuli 

were artificial. 

Solomon studied the semantics of auditory perception of complex tones [68]. Navy 

sonarmen were asked to rate 20 actual sonar sounds on 50 seven-point scales of bipo- 

lar adjectives (heavy-light, smooth-rough, clean-dirty, etc.). All the participants were 

experienced at interpreting sonar sounds and had developed their own informal vo- 

cabulary in order to communicate to others the qualities of sonar sounds. Solomon 

used a standard test, the Semantic Differential (similar to multidimensional scaling), 

to determine the essential "semantic space" of the sonarmen judgements of sound 

quality. 
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Eight factors accounted for 42% of the variance. Factors were correlated with 

the bipolar adjectives to yield an interpretion of the semantic dimensions. The first 

three dimensions were found to be "magnitude," aesthetic judgement, and "clarity." 

A reasonable conclusion is that the first dimension is related to either pitch or loud- 

ness (corresponding adjectives were heavy, large, rumbling, low, wide, etc.), and the 

second and third dimensions to timbral qualities. Unfortunately the results are likely 

confounded with what the sonar sounds usually mean-for example, the size of a 

submarine. No attempt was made to relate semantic dimensions to acoustic qualities 

of the sonar sounds. 

Von Bismarck investigated the verbal attributes of timbre of steady state sounds 

[74]. The Semantic Differential scales were preselected by the subjects for their appro- 

priateness to the task. Von Bismarck's hypothesis was that timbres can be uniquely 

described by a small number of verbal categories. 

The 35 artificial timbres were found to be categorizable with only 4 of the original 

30 scales. The first factor, labeled "sharpness," was the only one deemed consistent 

enough to be a general attribute of timbre. Sharpness judgements were correlated 

with the frequency location of the energy concentration in stimuli spectra. The other 

factors were plagued by large individual differences among the subjects. The features 

(dimensions) of timbre not accounted for by sharpness did not appear to have obvious 

verbal labels. 

In a subsequent study Von Bismarck explored the psychophysical relationships in- 

volved in the "sharpness" dimension [73]. Sharpness judgements were scaled to several 

acoustic parameters including limiting frequencies of broadband sounds and spectral 

envelope slopes. Sharpness scales were consistent over a reasonable range of physical 

parameters when sounds were equalized for loudness and pitch. The interaction of 

loudness and pitch with sharpness judgements was complex. 

Research on the linguistic categories of timbre has not been as fruitful as the timbre 

space research. The prearranged categories for subject judgements in semantic studies 

is a much less useful paradigm than the unspecified judgement criteria in timbre space 

research. 
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The major reason for the poor results from semantic studies may simply be that 

words do not capture the experience of timbre. The perceptual mechanisms responsi- 

ble for vision and hearing are several orders of magnitude anterior to language mech- 

anisms. Visual and aural experience may use a language that cannot be put into 

words. 



Chapter 3 

An Alternate Envelope 

Represent at ion 

The following section summarizes some of the results from the previous chapter, Phys- 

ical Correlates of Timbre. 

3.1 Data Reduction and the Additive Model 

Virtually any harmonic sound can be digitally constructed using the additive syn- 

thesis model, including sounds that mimic acoustic instruments. Unfortunately the 

complexity of the model makes this extremely cumbersome. There are simply too 

many degrees of freedom. 

Analysis of acoustic instrument sound reveals that there is a considerable amount 

of redundancy in the signal specification. This redundancy results from the cohe- 

siveness of physical processes and can be used to reduce the dimensionality of model 

data [ lo ,  34, 641. In terms of the additive model expressed by equation 2.1 (page 16), 

this redundancy results in autocorrelation within the harmonic amplitude function 

Ak-both over time,and over the k harmonics. Frequency fluctuations Fk appear to 

be more random. 
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Factor analysis, of which principal component analysis and multidimensional scal- 

ing are two variants, is a powerful method of exploiting redundancy to reduce model 

dimensionality. Principal component analysis of vowel speech indicates that the fre- 

quency information contained in steady-state vowel spectra [52, 66, 781 can be use- 

fully reduced to 3 to 5 dimensions (see page 29). Similar reductions occur for musical 

sound spectra [76]. Multidimensional scaling of timbral similarities also uncovers 

low-dimensional perceptual processes [24, 26, 27, 44, 51, 74, 76, 771 (see page 35). 

The results obtained by Grey [23, 24, 26, 271 (see page 36) and Wessel [77] (see 

page 39) with timbre spaces indicates that the low-dimensionality of both physical 

and perceptual processes can be put to good use in constructing musically interesting 

timbres with a small number of perceptually relevant parameters. 

However, the global parameters used by Grey and Wessel to capture physical 

dimensions (centroid of the spectral energy distribution, attack profiles, etc.) are 

fairly crude1. Finer control over additive parameters is desirable, without any loss 

of high level access. A hierarchical control scheme as proposed by Strawn [69] (see 

page 19) and Schindier [64] (see page 24) wouid be desirable. 

Within the additive model expressed by equation 2.1 (page 16), two possible 

sources exist for significant dataldimension reduction, harmonic amplitude envelopes 

Ak and harmonic frequency fluctuations Fk . 

3.1.1 Harmonic Frequency Fluctuations 

Good results have been obtained for the reduction of frequency fluctuation data. 

While Grey [27] concluded that constant frequency approximations to harmonic com- 

ponents were highly discriminable, further work by Charbonneau [lo] (see page 28) 

and Kleczkowski [34] (see page 24) indicates that frequencies need not be allowed to 

fluctuate independently over harmonics. Risset and Mathews' original research [56] 

'These parameters are aimed primarily at providing interpretations of timbre space dimensions 
(by correlating the parameters with the distribution of sounds in timbre space) rather than as useful 
resynthesis parameters. 
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also indicates that "quasi-random" approximations are an adequate replacement for 

detailed fluctuation functions. In general, some sort of harmonic frequency fluctua- 

tion appears to be desirable for capturing the nature of realistic acoustic instrument 

sound. Frequency fluctuations may be suitable for an algorithmic treatment, rather 

than having to be derived from sound analyses. 

3.1.2 Attack Transients 

Research indicates that this aspect of instrument sound is very important for instru- 

ment recognition [7, 61, 761 (see page 25). It also appears that a distinct perceptual di- 

mension is involved in processing the onset characteristics of sound [23, 24, 26, 27, 771 

(see page 35). Attack characteristics vary widely over instruments and instrument 

families and are dictated somewhat by the method used to input energy to the in- 

strument. Studies of instrument specific attack transients indicate that considerable 

additive parameter fluctuation occurs [19, 39, 40, 50, 56, 711-so much in fact that 

it may be questionable to refer to attack reconstruction as an additive (harmonic) 

process. 

It is not clear how to incorporate attack transients into the additive model. Some 

transient characteristics can be captured with amplitude envelope and frequency fluc- 

tuation parameters2. However, it may be necessary to add additional attack detail 

with some other module or method, in order to satisfy the ear's high discriminability 

for attack characteristics. 

3.1.3 Harmonic Amplitude Envelopes 

Envelope approximation with line segments has been quite successful [27, 501 (see 

page 18). Further data reduction is possible using line segment envelopes as a base, 

by taking advantage of interharmonic correlations [ lo ,  34, 641 (see page 23). 

'A spectral analysis of sound digitized at a high sampling rate facilitates the extraction of rapidly 
changing onset characteristics. However, the frequency components are likely to be both inharmonic 
and unstable. 
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Line segment approximations, on the other hand, are difficult to obtain [69] (see 

page 19), and while manipulating breakpoints (of individual harmonics) may be 

straightforward, the technique is heuristic and offers no standardized way to com- 

pare and manipulate envelopes across harmonics and sounds. Strawn proposes some 

solutions to the problem of line segment extraction in [69] (see page 19). 

As with attack transients, the information provided by amplitude envelopes is 

largely sound specijic (envelopes will vary over instrument, intensity, note register, 

player parameters, room acoustics, etc.). For the foreseeable future at least, repro- 

ducing subtle differences in acoustic instrument timbre will likely require the use of 

information obtained from a pre-analysis of actual sounds. 

The problem then becomes how to best reduce the information contained in in- 

dividual (analyzed) envelopes and combine that information on a larger scale over 

all the harmonics of a sound. Instrument specific methods (mostly brass) exist for 

exploiting interharmonic relationships [3, 4, 571 (see page 23), as well as more general 

methods [ lo ,  34, 641 (see pages 23 and 24). The general methods rely on line seg- 

ment envelopes with their attendant problems. Wessei i77] states that a more eificient 

means of representing and manipulating envelopes would be a great asset in utilizing 

the power of timbre spaces (see page 39). 

Since harmonic envelopes are themselves multidimensional phenomena, it is some- 

what surprising that the dimension-reducing capabilities of principal component anal- 

ysis have not been applied to harmonic envelopes3. Reducing the dimensionality of 

envelope data with principal component analysis would also have the advantage of 

expressing envelope variance in a standard form. 

3The method has been used by Wedin and Goude [76] for spectra reduction (see page 35) but 
only for the purpose of correlating physical and perceptual dimensions. 
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3.2 Geometric Interpretation of Principal Com- 

ponent Analysis 

Principal component analysis is a multivariate statistical technique useful in reducing 

the dimensionality of large data sets comprised of many variables4. Principal compo- 

nent analysis has been used by researchers to data reduce vowel spectra information 

(see page 29), and to classify timbre percepts (see page 32). 

While principal component analysis is realized by eigenvalue solutions to the co- 

variance (or correlation) matrix of a set of variables (see page 71), it also has a 

geometric interpretation that aids in understanding what it does and why it is useful. 

3.2.1 Spectral Data Reduction Example 

To illustrate the technique, consider the spectral shape of a steady-state harmonic 

sound (ignore variations over time for the moment). 

For any given harmonic sound, graphing SPL (sound pressure levels [72]) on the Y 

axis versus frequency on the X axis will result in points plotted on the graph at each 

harmonic frequency (the "spectral shape" can be considered to be the curve resulting 

from connecting adjacent points with straight line segments). As discussed previously 

(page 20), spectral shape is useful in characterizing the timbre of a sound. 

If the sounds are composed of k harmonics, then k SPL values would be required 

to fully specify the spectral shape. These k SPL values can also be conceptualized as 

a vector in k-dimensional space. Each of the k axes (one for each component of the 

vector) would record the SPL levels for a particular harmonic over all sounds5. If we 

4See [6, 601 for a readable introduction to multivariate methods and applied factor analysis, and 
[12, 551 for a mathematical treatment. 

51t is important to realize that these coordinate axes (each defined by a particular harmonic) 
are not orthogonal (perpendicular to each other). They are not orthogonal since the harmonic SPL 
values are correlated with each other. For example, if it happened to be the case (for the set of 
sounds we are analyzing) that a high SPL value for the 2nd harmonic generally indicates that the 
4th harmonic SPL value will be high then the 2nd harmonic is said to be correlated with the 4th 
harmonic. This correlation means that the vectors that represent the axes are statistically dependent 
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limit the number of harmonics to 3 (so that k = 3) then it is easy to visualize the 3 

SPL values as defining a point in the 3-dimensional space we are accustomed to. 

3.2.2 Comparing Spectral Shapes 

Since the hypothesis is that spectral shape is a correlate of timbre, it would be useful 

to analyze many harmonic sounds and plot each spectral shape (now represented as 

a k-vector) in our k-dimensional space. Sounds with similar spectral shapes will be 

close together in this k-space (you can demonstrate this by drawing several similar 

shapes for k = 3 and plotting them). 

If the sounds represented by points that cluster together are determined to all 

have a similar timbre (we could stipulate that pitch and loudness are the same for all 

sounds) then we could conclude that small variations in spectral shape (the physical 

correlate) lead to small variations in timbre (the perceptual attribute)-this is in fact 

the case but somewhat trivial. 

A geometric interpretation allows us to conceptualize in a simple way the relation- 

ships between points in this space-and hence the relationships between timbres. For 

example, it might be the case that dzflerent cluster groups (Plomp refers to them 

as "clouds" [52]) would correspond to instrument families with similar timbre. We 

could now compare this physical correlate of timbre (spectral shape) over different 

instrument families. 

However the geometric interpretation is somewhat illusory. The simple "point" 

in the geometric model is a convenient spatial abstraction. What we really have is a 

large collection of numbers-k-vectors-to describe each point. What is needed is a 

way to reduce the number of numbers involved. This is where principal component 

analysis comes in. 

on each other. Dependent vectors are not orthogonal. Part of what principal component analysis 
does is to replace the original axes with a set of orthogonal axes. 
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3.2.3 Orthogonal Rotated Axes 

What principal component analysis does essentially is to move the origin of the k- 

dimensional space to the "center of gravity" of all the points in the space6 and then 

rotate the axes about the new origin so that the princzpal axis minimizes the variance7 

of all the points about that axis. For a 3-dimensional space, the cluster of points might 

all be contained within an ellipsoid and the principal axis would be the major axis 

of the ellipsoid. The second axis is also aligned to minimize the variance-subject to 

the constraints that the first (principal) axis is now fixed in position and the second 

axis must be orthogonal to the first axis. The next k - 3 axes are aligned in a similar 

fashion (the last axis has no choice in the matter since there are only k - 1 degrees 

of freedom). 

While the original axes have a simple interpretation (for example, positions on 

the first axis represent the SPL values of the fundamentals) the newly translated and 

rotated axes do not. The new axes "cut through" many of the dimensions of the 

original axes and no longer represent something measurable in the physical world. 

The advantage of the transformation is that if the set of points has a non-random 

configuration (some sort of k-dimensional "shape" to it) then the new principal axis 

will capture more information as to how the original set of points varied. For example, 

with 3 dimensions and an ehpsoidal set of points, the points will be spread out to a 

large degree along the principal axis since the principal axis coincides with the major 

axis of the elhpsoid. 

'The origin is translated to  the "center of gravity" of the points if each of the SPL values for a 
particular harmonic is subtracted from the mean of all the SPL values (for the same harmonic) over 
all sounds. Principal component analysis can also be done on the raw values. This is more difficult 
to visualize in the geometric interpretation. 

7 ~ h e  variance is the sum-over all points-of the squared shortest distances between the points 
and the axis in question, divided by the number of points. Minimizing the variance with respect to 
the axis essentially means fitting the "best" straight line through the set of points. 
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3.2.4 Variance Accounted For 

The spread of points is maximized along the principal axis. This is a side effect of 

the variance minimization when setting the first rotation. For this reason the largest 

variance accounted for is attributed to the principal axis. Since the next rotation (for 

the second axis) repeats the process of minimizing variance, the next largest variance 

accounted for is due to the second axis. . . and so on8. 

3.2.5 Reducing the Number of Dimensions 

The point of the axes rotation is that it may now be possible to approximate the 

original set of data (points in k-dimensional space or k-vectors) by considerably fewer 

dimensions. 

For example, the coordinate of a point with respect to the first principal component 

axis is an approximation to the point since moving from the origin to that coordinate 

brings us closer to the point. If from here we now move in the direction of the second 

principal component axis by an amount equal to the point's coordinate for that axis, 

we get even closer to the point. . . and so on for the remaining axes. Since the variance 

accounted for is inversely proportional to the principal component dimension number, 

adding progressively more dimensions to the reconstruction of the point's position has 

increasingly less impact as we zero in on the original pointg. 

Depending on the degree of dimension reduction possible with the rotated axes, 

the approximations may be quite accurate. The amount of dimension reduction that 

occurs will depend on: 

0 The nature of the data set. Data that has a great deal of redundancy built in 

is well suited to principal component analysis. 

'The total variance is the sum of the squared distances of all points from the translated origin, 
divided by the number of points. Since the total variance is the sum of the variances for each 
dimension (the Pythagorean theorem applies since the axes are now orthogonal), the variance about 
each axis can be said to "account for" some portion of the total variance. 

'The original points can always be reconstructed ezactly from their new coordinates in the rotated 
space by using all the dimensions. 
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The relative amount of variance accounted for by the first few components. 

The number of principal components used in the reconstruction. 

For example, if 3 principal components capture 85% of the data set variance and 

the number of original axes was 20 (harmonics) then only 3 numbers are required to 

approximate the spectral shapes-down from the original 20. This is a considerable 

data reduction. The shapes can be reconstructed with 85% accuracy (averaged over 

all the spectral shapes originally analyzed). 

Reconstructing an approximation to the original spectral curves involves a simple 

linear transformation using the principal component axes (the new axes are k-vectors 

in the original space) and the coordinates1' of the point with respect to those axes 

(see equation 4.6 on page 72). 

Principal component analysis is a statistical technique commonly applied to data 

with stochastic properties, hence, some points--out in left field so to speak (hopefully 

a small number)-may not be well approximated with a small number of components. 

3.2.6 Factor Analysis 

Factor analysis begins with a principal component analysis (or something similar) but 

often goes further in assigning meaning to the newly rotated axes by observing which 

of the original dimensions are correlated with them1'. This usually makes more sense 

when the dimensions (variables) measure different phenomena (for example, different 

economic indicators). However, it is useful when using homologous variables (such 

as harmonic SPL values) to look for correlations between principal components and 

phenomena other than the original variables. For example, the second component in 

the spectral shape example might weight the high harmonics and be correlated with 

"brightness of tone'' judgements. 

1•‹These coordinates are the weights referred to in the more technical explanation of principal 
component analysis on page 71. The newly rotated axes are the bases. 

''Factors can be further rotated to facilitate this. 
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3.3 Proposed Envelope Representation 

The explanation of principal component analysis in the previous section used as an 

example the data reduction of steady-state spectral curves. Variations of spectra 

over time were not considered. However, principal component analysis is capable 

of reducing the dimensionality of a n y  set of data curves. Since harmonic spectrum 

variation over time plays a significant role in the perception of timbre, and spectral 

changes can be captured by the amplitude envelopes of individual harmonics, it may 

be of some advantage to apply principal component data reduction to the harmonic 

amplitudes as they vary over time. 

For example, if the amplitude envelope curves (derived from an analyis of sound) 

were specified at 50 ms intervals over the duration of a sound, then 20 envelope points 

(per harmonic) would be required to specify the amplitude changes over 1 second of 

sound. If the amplitude curves are similar in shape, over different harmonics and 

sounds, then principal component analysis may be capable of reducing the number of 

parameters required to specify the curves (with some degree of approximation). The 

method used to reconstruct the curves is described on page 71. 

One advantage of representing the envelope curves with this reduced representation 

is that all curves will be reconstructed from a set of bases (the rotated axes in the 

previous example) that are fixed for all envelope curves. Hence, the few parameters 

(weights) required to specify the curves will be directly comparable. This may be 

useful for the development of higher level control mechanisms that manipulate these 

curve-altering parameters to produce changes in timbre. 

The other major advantage is that the extraction of bases and weights is au- 

tomated. This makes it feasible to catalogue a large number of sounds with subtle 

differences in timbre. The standardized representation may allow the effects of various 

parameters on timbre (note register, note intensity, etc.) to be better understood. 

The Principal Component  Analysis of Envelopes section in Chapter 4 (page 69) 

goes into more detail on the representation and also outlines the mathematical ma- 

nipulations involved. 



Chapter 4 

Data Collect ion and Analysis 

In order to extract representative principal components of harmonic amplitude en- 

velopes, a large number of envelope curves were required. Existing data was not 

available in sufficient quantity or suitable form. To obtain the curves, a program was 

written on a microcomputer to analyze digitized sounds. The sounds analyzed were 

musical instrument sounds of either 2.7 seconds duration (208 sounds), or .65 seconds 

duration (72 sounds). The instruments included were, trombone, Eb clarinet, flute, 

tenor saxophone, piano, classical guitar, and steel string guitar (see Sound Samples 

on page 67). 

4.1 Equipment 

An AKG D1200E microphone was used to record the sounds to cassette tape. Sounds 

were input to an Amiga microcomputer with an inexpensive 8 bit analog to digital 

converter connected to the computer's parallel port. Sounds were digitized at a sam- 

pling rate of 28,185 samples per second, and a commercial program was used to edit 

and store the digitized sounds to disk (in a standard Interchange File Format-IFF). 
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4.2 Spectral Analysis Method 

A C program was written to analyze the sound samples and extract time-varying 

spectra. Harmonic amplitude envelopes were obtained with a Fast Fourier Transform 

(FFT) applied at successive positions in the sound samples1. The FFT is an algorithm 

for computing the Discrete Fourier Transform (DFT) [54]. 

The DFT is the discrete version of the Fourier integral, hence a sampled time 

domain is transformed into a sampled frequency domain with a frequency resolution 

Af derived from the DFT window size N (number of samples being considered), and 

the sampling interval At (see below). The equation for the DFT is, 

or (using the identity e'je = cos 0 j sin 0), 

Where, 

n is the time sample index, n = 0,1 ,2 , .  . . , N -1. 

N is the number of samples in the DFT (or FFT) window. 

At is the time between samples in seconds. 

NAt is the window size in seconds. 

k is the frequency domain index, k = 0,1,2,  . . . , N - 1. 

A f is the frequency spacing (resolution) in Hz, where A f = A. 
Xt  is the time domain values at time nAt. 

'The FFT was used because of its O(n1ogn) computational efficiency since a large number of 
sounds were to  be analyzed. 
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Xf is the frequency domain values obtained from the DFT of X,(nAt). 

DFT frequencies are, in general, positive and negative. For real valued functions 

(such as sound) the sampled frequencies that result are 0, A f ,  2A f ,  3A f ,  . . . , 5 A f . 

4.3 Analysis and Resynthesis Program 

The program is designed as an interactive tool for exploratory data analysis. A 

graphical user interface is incorporated for ease of use. A graphical display of data 

aids in the selection of optimal parameters to use for envelope extraction and is 

important for visually assessing the results of envelope reconstruction with principal 

components. Some of the program features are outlined below. 

4.3.1 Frequency Resolution 

\ The FFT was imp!err,er,ted with a p w e r  of 2 dgorithm ( N  = 2i where i=!,2,3,. . . I .  

The window size N can be specified2 to obtain various frequency resolutions Af .  

For a sampling rate of 28,185 samples per second, some practical window sizes and 

corresponding time and frequency resolutions are: 256 samples (time resolution 9 ms, 

A f of 110 Hz), 512 samples (18 ms, 55 Hz), 1,024 samples (36 ms, 27.5 Hz). . .4,096 

samples (145 ms, 6.9 Hz). . .65,536 samples (2,325 ms, 0.4 Hz). An FFT analysis took 

approximately 3 seconds for a 1,024 sample window. 

4.3.2 Window Type 

Two choices of window type are available, rectangular (square pulse) or Hamming 

, (cosine from -: to $, on a pedestal). The Hamming window compensates for artifacts 

(leakage error) introduced by the abrupt cutoff of the rectangular window [54, chapter 

61. 

'As the window size N is increased, the frequency resolution improves, however, the amplitude 
values will then be averaged over a longer time span, resulting in poorer time resolution. 
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Figure 4.1: Frequency domain resulting from a Hamming window FFT of an A note 
(220 Hz) played by an Eb clarinet. The FFT frequency under the wavy vertical line has 
been selected with the mouse. Information on this frequency component is displayed 
immediately above the graph. This discrete FFT frequency is the one closest to the 
1 l t h  harmonic frequency. 

Figure 4.1 (page 57) shows a frequency domain display using a Hamming window 

and figure 4.2 (page 58) shows a frequency domain display using a rectangular window 

for the same sample, extraction parameters, and time position. Note the spectral line 

widening at the base of the rectangular window harmonic components (leakage error) 

and the narrower base of the Hamming window harmonic components. The rectangu- 

lar window does have the advantage of "sharper" harmonic peaks. The amplitudes in 

the Hamming window are also scaled down in comparison to the rectangular window 

amplitudes, however, the relative amplitudes are not changed. Since the resynthe- 

sized sound will have to be scaled to the bit resolution of the playback device, only 

the relative amplitudes are important. 

4.3.3 Time and Frequency Display 

The time domain and frequency domain values (for the current FFT window size) can 

be graphically displayed. In addition, a numerical display of FFT discrete frequency, 



CHAPTER 4. DATA COLLECTION AND ANALEFSIS 5 8 

Analysis  t i m z i l ~ ~ ~ (  
- 

1 pos i  t  ion in  sound b u f f e r  1 I 

sdtmljnrr r a t e  28185 

s i z e  in  bytes  86616 
fundamental 

buf posn msecs 242 
bur Posn b y t e s  6811 , 

f f t  length ~ 4 - 8 2 4  
f  f  t  fund ~+m 228 

11 f r e  1 a 

Figure 4.2: Frequency domain resulting from a rectangular window FFT. The frequen- 
cies tend to spread out at the base of harmonic peaks, in comparison to the Hamming 
window (see figure 4.1 on page 57). This is due to the convolution of the window's 
frequency domain transformation with the near impulse train of the harmonic sound. 
The frequency domain transformation of the Hamming window produces a narrower 
center spike with lower side lobes 154, page 1411. 

amplitude for that frequency, and harmonic number (if applicable), can be obtained 

by mouse clicking on the bar graph display of the frequency domain data. 

Figure 4.2 (page 58) shows a frequency domain display and figure 4.3 (page 59) 

shows a time domain display. Harmonic frequency components are also highlighted 

in a different color (not shown in the figures). 

4.3.4 Sound Buffer Positioning 

.4ny position in the sound buffer can be selected for analysis by adjusting a pictorial 

slider consisting of a rectangular "knob" constrained to move in a container (illus- 

trated near the top of figure 4.2 on page 58). The position of the slider knob in the 

slider container indicates the current position in the buffer. The numerical values of 

sample and time positions in the buffer are also displayed. The length of the slider 

knob (with respect to the length of the slider container) reflects the proportion of the 
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Figure 4.3: Time domain display of a Trombone B note (123 Hz) starting at the 30 
ms position of a short 740 ms sound. 512 samples are displayed since the current FFT 
window size is 512. Note the discrepancy between the fundamental frequency (123 
Hz) and the closest FFT frequency (110 Hz). 

- -  

buffer included in the current FFT window. The slider knob also moves through the 

container while a full FFT scan of the sound is underway in order to see the current 

analysis position. Precision positioning in the buffer can be accomplished by typing 

the sample number or time in ms (from the start of the sound) into string (integer) 

"gadgets". 

4.3.5 Fundamental Frequency 

A fundamental frequency value can be selected and the FFT frequencies closest to the 

corresponding harmonic frequencies will be highlighted on the frequency domain bar 

graph display. Alternately, the fundamental frequency of a sound can be stored along 

with the IFF sample information. This is the default fundamental frequency used if 

it is available. A. simple fundamental frequency extraction algorithm could have been 

implemented (see Harris and Weiss [28]) but was not required since the fundamental 

frequencies of all sounds were known. 
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4.3.6 Sample Resolution 

The program will accept 8 ,  12, or 16 bit samples. Only 8 bit samples were used since 

12 or 16 bit digitizers were not available. The 8 bit samples had a noticeably poor 

signal to noise ratio (% 48 dB) but otherwise sounded quite good-probably due to 

the relatively high sampling rate. 

4.3.7 Sound Playback 

The Amiga is only capable of playing back 8 bit samples since the 4 built-in digital 

to analog converters (DACs) are 8 bits (with 6 bit volume controls). The original 

and resynthesized samples can be played back through the DACs and out to a stereo 

system through RCA jacks. The playback sampling rate is also restricted to 28,185 

samples per second due to DMA limitations (sound output is coprocessor based). 

Any portion of the sample buffer can be played back (for example the first 15 ms of 

a sound). 

4.3.8 Envelope Extraction 

The envelopes are obtained by moving an FFT analysis window through the sound 

sample3 and extracting the harmonic amplitudes at each time position. The spacing 

between envelope points is determined by the window size N ,  the sampling interval 

At, and the amount of window overlap (spacing = N At seconds for no overlap). When 

sounds are later resynthesized with the envelopes, the first envelope time position is 

placed at seconds (amplitude values are linearly interpolated between envelope 

time positions). 

3The FFT window can be moved through the sound sample at consecutive positions or in over- 
' lapping positions (double, triple, or quadruple). 
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4.3.9 Inharmonic Partials 

An algorithm is used to extract slightly inharmonic partials since it was empirically 

determined that the average deviation from integral harmonics can be as high as 2% 

for some instruments ("dead" guitar strings for example). 

A large-window FFT analysis (typically 8,192 samples with a Af of 3.4 Hz, or 

16,384 samples with a Af of 1.7 Hz) is first performed to determine an accurate 

fundamental and an average difference between partial frequencies (Ah,,,). This is 

accomplished by using the integral harmonic frequency values to search for neighbor- 

ing peaks of FFT frequencies close to the theoretical harmonic frequencies and then 

averaging the frequency differences between all harmonics to determine Ah,,, . 

Ah,,, is used to set tentative harmonic frequencies for extraction of harmonic 

envelopes at a much lower frequency resolution4 (typically 1,024 samples per window 

for a A f of 27.5 Hz). The method follows5. 

A harmonic is searched for in a (settable) range of 10-60% of Af from the esti- 

mated harmonic frequency (both sharp and flat harmonics were searched for). The 

FFT frequency component with the highest amplitude in this range is chosen as the 

"harmonic", and its amplitude recorded as the value for that harmonic. The next har- 

monic is searched for in a similar fashion-by starting at the previously determined 

harmonic frequency plus Ah,,,. . .and so on. 

Note that even when little inharmonicity is present in the sound (Ah,,, = the 

fundamental frequency) the above search procedure is still required since the dis- 

crete FFT frequencies do not necessarily coincide with harmonic frequencies and the 

harmonic frequencies are likely to fluctuate over the sample. 

All the numerical harmonic information that is extracted (for a single FFT anal- 

ysis) can be displayed in order to compare it with the frequency domain bar graph 

display to see how well the algorithm is working (it works quite well). 

*A much smaller window size is necessary to achieve decent time resolution for the extraction of 
harmonic amplitudes as they vary over time. 

5The algorithms used to search for (slightly) inharmonic frequencies (both in large and "standard" 
sized FFT analysis windows) were complex, tedious, and heuristic. The details have been omitted. 
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4.3.10 Frequency Fluctuations 

The FFT discrete frequencies closest to the harmonic components are not used for 

frequency fluctuation values due to the relatively large frequency resolution Af in 

the actual envelope extraction6. Another method of analysis (heterodyne filter [45] 

or phase vocoder [47]) would be better suited to determining frequency fluctuations. 

Since the goal here was to extract a large number of amplitude envelopes, the FFT 

was used. 

4.3.11 Number of Harmonics 

Any number of harmonics can be extracted (up to the Nyquist limit of the sampling 

rate). The principal component analysis will accept a different number of harmonics 

for each sound. The number of harmonics extracted can also be determined by a user 

specified upper frequency limit. 

4.3.12 Number of Envelope Points 

The maximum number of envelope points analyzed (one point for each FFT window) 

can be set by the user. Since the principal component analysis uses time positions as 

variables (see page 71), the same number of envelope points is used for all sounds in 

a particular principal component analysis (missing values are permitted but were not 

used). 

4.3.13 Dynamic Envelope Display 

The envelope curves are displayed as they are extracted. The extraction can be 

aborted at any time. The harmonic amplitude values (for all harmonics) are displayed 

6A larger window (with a smaller A f )  would of course allow finer frequency fluctuation assessment, 
however, to capture the relatively small fluctuations involved would require a window so large that  
the time resolution would be too large to  be useful. 
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Figure 4.4: The dynamic envelope display just after the envelope extraction has corn- 
pleted. The sound is an E note (330 Hz) on the flute. A 256 sample window was 
used for the extraction ( A  f is 110 Hz). The FFT discrete frequency closest to the 
fundamental just happens to be exactly the same as the fundamental. 

for the first FFT window position in the sound on a "pseudo 3-D" graph. Similarly 

for the second FFT window position.. . and so on, until the end of the sound sample or 

the required number of envelope points has been extracted. Envelope curves are also 

displayed during resynthesis-in this case all of the first harmonic amplitude curve 

is drawn first (and added into the sample buffer), followed by the second amplitude 

curve.. .and so on. Figure 4.4 (page 63) illustrates the dynamic envelope display. 

4.3.14 Static Envelope Display 

When all the amplitude envelopes have been extracted they are displayed on a 16 

color "pseudo 3-D" graph (not illustrated). The principal component reconstructed 

envelopes are displayed beside them (if available) for visual comparison. The principal 

component basis vectors can be optionally displayed, as well as a 2-dimensional plot 

of the first 2 principal component basis weights of all harmonic envelopes of a sound. 
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4.3.15 Automated Envelope Extraction 

Envelope data is saved to disk in a standard IFF format (my own). Any number of 

digitized sounds (subject to disk space constraints) can be analyzed and saved to disk 

without user intervention (after setting up all the extraction parameters). This takes 

approximately 8 hours for 50 sounds of 76,800 samples each. 

4.3.16 Resynthesis 

The resynthesis algorithm reconstructs the sounds from the harmonic envelopes and 

corresponding harmonic frequencies. 

The actual FFT (discrete) frequencies are not used in the reconstruction--only 

their amplitudes (due to the poor frequency resolution A f ). Instead, the slightly 

inharmonic frequencies extracted from the initial large-window FFT (with good fre- 

quency resolution) are used as the "harmonic" frequencies (see page 61). These fre- 

quencies are an average over a large part of the sound sample and hence reflect macro- 

level inharmonicity (if any is present)7. Sounds can also be reconstructed using the 

integral harmonic frequencies. 

The harmonic frequencies are kept constant throughout the resynthesis. The sec- 

tion on Frequency Fluctuations (page 27) discusses the perceptual impact of using 

constant frequency harmonics. 

A (settable) threshold is established below which harmonic amplitude values will 

not be included in the resynthesis. This considerably speeds up resynthesis when high 

harmonics die out quickly (if the harmonic amplitude later rises above the threshold 

it will be included again). 

 h he major reason for including this macro inharmonicity was that the pitch of a sound was 
affected when inharmonicity greater than 1% was present (averaged over all harmonics). In this 
case a digitized sound would be perceived as sharp (inharmonic partials were usually sharp) with 
respect to  the resynthesized version of it-if the integral harmonics were used. Inharmonic partials 
were common in steel string guitar sounds. The timbre did not appear to be affected by resynthesizing 
with integral harmonics. Unfortunately, resynthesizing with inharmonic partials often resulted in 
unpleasant beating. 
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Resynthesis was not done with the inverse FFT since a) a lot of information had 

been discarded and there was no point in computing with zero amplitude frequencies, 

b) it would not have been possible to interpolate amplitude values for each sample, 

and c) an integer math version of the FFT (with variable window size) is difficult to 

code and possibly inaccurate. 

Sounds can be resynthesized with any number of harmonics as long as it is less 

than or equal to the number of harmonics extracted in the analysis. 

4.3.17 Integer Math Resynthesis 

Sounds were resynthesized using the following formula, 

Where, k is the harmonic number, M is the number of harmonics, n is the sample 

number, N is the total number of samples, Ah is the amplitude value of harmonic 

k for the nth sample (interpolated), hk is the kth harmonic frequency (integral or 

empirically determined), and At is the sampling interval. 

Considerable computational saving (with minimal loss in accuracy) can be realized 

when using integer math8 with equation 4.3. The sine term can be rewritten as 

sin[(3)hkn] where S is the sampling rate (S = &). If a sine table is pre-computed at 

27rAt intervals with a size equal to S then one full sine period is in the table, sampled 

at discrete 27rAt intervals. We can then use [hkn mod S] as an index into this table 

(array) to retrieve the value of sin[(y)hkn] with no sine table sampling error (meaning 

that an exact sine value will be in the table for every possible value of [(%)hkn]). 

The inner loop in equation 4.3 can then be computed by a) adding ha to a running 

total-each time through the loop-to compute hkn, b) taking the modulus of hkn 

with respect to S, c) retrieving a sine array value using [hkn mod S] as the index, d) 

multiplying the retrieved array value by Ah (Ah is also incremented (or decremented) 

'The computer that was used had no floating point coprocessor. 
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by an interpolation factor for each sample), and e) adding the result to the previous 

outer loop value. 

Reducing computation in the inner loop of equation 4.3 is important since the 

loop will be executed MS times for each second of sound (computation is on the 

order of lo6 operations for 2 seconds of (20 harmonic) sound at a sampling rate of 

28,185 samples per second). 

The sine table is set up by computing floating point values of sine at 2nAt intervals 

and then scaling these sine values (-1.0 to 1.0) up to suitably large integer values 

in order to use 32 bit integer math. If a constant sampling rate is used then the 

sine table needs to be computed only once (computing a 28,185 size sine table takes 

approximately 30 seconds on the Amiga). Values of Ah are also scaled up and 

hk rounded off to an integer value. When all the 32 bit integer samples have been 

computed with equation 4.3, they are scaled down to the bit resolution of the playback 

samples (8 bits in this case). 

However, even with the computational savings described above, resynthesis is still 

slow, z 1 minute for each second of sound (20 harmonics) at a sampling rate of 28,185 

samples per second. 

4.3.18 Principal Component Envelopes 

Principal component approximated envelopes can be reconstructed by using the basis 

weights and vectors extracted from the analysis (see equation 4.6 on page 72). An 

arbitrary set of envelopes can also be reconstructed by manipulating slider L'gadgets" 

which alter the weights of the basis curves (see figure 5.1 on page 90). The new enve- 

lope curves can be constructed in real-time and the sound can then be resynthesized 

(unfortunately nowhere near real-time). These envelope manipulations are discussed 

on page 89. 
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4.3.19 Guitar Attack Algorithm 

An experimental guitar attack algorithm is available. It is added on top of the har- 

monic reconstruction as a separate module (see page 95). The algorithm does not use 

any sound specific analysis information. 

4.3.20 Envelope Extraction Parameters 

After much experimentation the following envelope extraction parameters were used. 

Sample windows were 1,024 samples in size. This is a good compromise of 

time (36 ms) and frequency (27.5 Hz) resolutions for sounds with fundamental 

frequencies varying from 82 Hz to 1318 Hz (the range of sounds analyzed). 

Analyzing sounds with lower fundamentals naturally presents more of a problem 

for accurate envelope extraction since harmonics will be tightly packed in the 

FFT discrete frequencies-which do not necessarily (in fact rarely) coincide with 

harmonic frequencies. 

A Hamming window was used. 

0 Windows were not overlapped. 

20 harmonics were extracted (if they were available). 

8 75 envelope points were used for the 2.7 second sounds, and 18 envelope points 

for the .65 second sounds. 

The true partial frequencies were extracted with a 8,192 sample FFT (Af of 

3.4 Hz). 

4.4 Sound Samples 

A total of 280 sounds were digitized and analyzed-208 of 2.7 seconds duration and 

72 of .65 seconds duration. All sounds were digitized at a sampling rate of 28,185 
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samples per second with 8 bit resolution. 

Room acoustics varied considerably for the sounds. The wind instrument sounds 

(except the tenor saxophone) were recorded in a highly reverberant room with concrete 

walls. The guitar, piano, and tenor saxophone were recorded in a less reverberant 

environment. Room acoustics were dictated by the availability of instrument players. 

4.4.1 Wind Instruments 

The 2.7 second sounds consisted of 24 each of trombone, Eb clarinet, fluteg and tenor 

saxophone, in semitone increments (starting at F (87 Hz) for the trombone, D (147 

Hz) for the clarinet, C# (277 Hz) for the flute, and B (123 Hz) for the tenor saxophone). 

These sounds had no decay since the analysis stopped before the end of the sound. 

24 sounds of .65 seconds duration were also analyzed for the trombone, Eb clarinet, 

and flute (over the same range of notes). The natural decay portion of these sounds 

was included in the analysislO. 

4.4.2 Piano 

49 piano sounds of 2.7 seconds duration were analyzed, ranging from E (82 Hz) to E 

(1318 Hz) at semitone intervals. Since piano notes have variable decay rates, some 

of the higher notes had died out before the end of the analysis period (similarly for 

guitar high notes). This did not pose a problem for reconstructing the sounds with 

'The flute was only analyzed for the first 1.8 seconds of sound (50 envelope points) since some 
notes had not been sustained for the full 2.7 seconds when recorded. 

''The decay portions of the 2.7 second sounds of the wind instruments (trombone, clarinet, tenor 
saxophone, and flute) were not included in the analysis since the sounds that were recorded varied too 
much in duration. Wind generated sounds tend to decay rapidly when wind energy to the instrument 
is removed. It is not anticipated that excluding the decay portion of these sounds will significantly 

' affect a principal component analysis of the harmonic amplitude envelopes (other than to alter the 
basis shapes towards the end of the sound). Research also indicates that the decay portion of an 
instrument's sound has little affect on the identification of the instrument (see footnote on page 25). 
Resynthesizing wind instrument sounds (with decay) with principal component bases could simply 
taper off the overall amplitude of the sound at the end-a better solution would be to repeat the 
analyses with sounds recorded with equal durations. 
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principal component bases and weights (at least when more than 1 basis was used-see 

page 86). 

4.4.3 Guitar 

63 guitar sounds of 2.7 seconds duration were analyzed, 9 for the classical guitar and 

54 for the steel string guitar. A mixture of old and new strings was used with a variety 

of picking positions and plectrums (hard pick, fleshy part of the finger, etc.). 

Guitar timbre can be substantially altered by the picking position (for example 

piclung near the bridge results in a thin metallic sound and picking near the midpoint 

position on the string results in a full mellow sound). The piclung position effects were , 

quite audible in the original digitized versions-for extreme differences in position- 

much less so for slight and moderate picking position differences. 

It was difficult to detect the plectrum type used to produce a guitar sound in the 

digitized versions. The difference in sound between old and new strings was also not 

readily apparent in the digitized sounds. A higher sampling rate or bit resolution 

would probably make these effects more audible. 

4.5 Principal Component Analysis of Envelopes 

Once all the harmonic amplitude envelopes had been extracted from the sounds, they 

were subjected to a principal component analysis (PCA). A variety of instrument 

groupings were used (see Table 5.1 on page 75). The PCA was done on amplitude 

envelopes over time rather than spectra (see page 48 for a PCA example using spectral 

curves). 

4.5.1 Vector Interpretation of Envelopes 

The harmonic amplitude envelopes can be represented as vectors, 
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Where, 

Zk is the vector representing the lcth amplitude envelope. 

The vector component a& (i = 1,2,3,  . . . , n )  is the amplitude of the kth envelope 

at the ith time position. 

There are a total of n time positions and a value for the harmonic amplitude at 

each position (akl is the amplitude of the lcth harmonic envelope at the start of 

the sound and a h  is the amplitude of the kth harmonic envelope at the end of 

the sound). 

4.5.2 Principal Component Data Matrix 

All the envelopes are grouped together (over ail harmonics and ail sounds being ana- 

lyzed) into a data matrix which is input to the PCA. The data matrix is, 

/ all a12 a13 . . . ~ l n  \ 
a21 a22 a23 . . . a2n 

a31 a32 a33 - . . a3n 

. . .  . . .  . . .  . . .  . . .  

ah1 ah2 ah3 a .  . ah, ) 

h is the number of envelope curves being analyzed. The matrix can be quite large. 

One of the PCA analyses had n = 75 and h = 2,354 (121 sounds, % 20 harmonics per 

sound). 

In terms of the geometric interpretation of principal component analysis (see 

page 48) each row in the data matrix (an envelope "shape") defines a point in an 

n-dimensional space where each of the n axes represent the harmonic amplitudes at 

a particular time position in the sound. 
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4.5.3 Extracting the Principal Components 

PCA interprets each column in the data matrix as the values of a variable. The 

column vectors are not statistically independent (amplitude values at different time 

positions are correlated with each other), hence, the vector space defined by the n 

column vectors can be reduced in dimension (in a statistical sense). 

The PCA computes an n x n covariance matrix C from the data matrix. Solving 

the determinant equation IC - LII = 0 for L (where I is the identity matrix and L 

is the diagonal' matrix of latent eigenvalue solutions) produces the eigenvalues. The 

eigenvectors corresponding to the eigenvalues are the basis vectors that will be used 

to reconstruct envelope curves. The size of the eigenvalues yield a measure of the 

variance accounted for by the corresponding eigenvectors (see page 51). 

4.5.4 Reducing the Bases Representation 

The number of bases (or eigenvectors) that can be produced by the PCA is n-the 

same as the original set of variables (n time positions). However, as discussed on 

page 51 a significantly fewer number of bases can be used to reconstruct the original 

envelope curves (with a small amount of error). 

For this study only 5 basis vectors were extracted for each PCA of the envelope 

data1' (5 bases typically accounted for 98-99% of the variance for these data sets). 

4.5.5 Reconstructing the Envelopes with Weighted Bases 

The PCA also produces a set of weights wk; (one for each basis vector i)  for each 

original envelope curve k in the data matrix (k = 1 , 2 , 3 ,  . . . , h).  The original curves 

t can be reconstructed (approximately) from the bases and weights as follows, 

''The PCA was done on the raw data rather than mean corrected data using SHAZAM (an econo- 
metrics statistical analysis package) on the MTS system at Simon Fraser. The following SHAZAM 
options were used, LIST RAW PEVEC MAXFACT=5. 
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or equivalently, 

Where, 

iik is the vector approximation to iil, (see equation 4.4 on page 70) and iik = 

(ak1,a62,a;3,...>aLn). 

R is the number of basis vectors used in the reconstruction. 

8 wk; is the scalar weight for the ith basis vector for envelope curve k.  

& is the ith basis vector, Gi = (hl, biz, bi3, . . . , bin) where bil is the ith basis 

value at the first envelope time position and bin is the ith basis value at the 

last envelope time position. Figures 5.4 to 5.13 on pages 99 to 103 present a 

graphical display of some basis vectors. 

4.5.6 Alternate Envelope Represent at ion 

Note that in the reconstruction of ak only the weights wk; are specific to that envelope 
-+ 

' curve. The bases bi are common to all the envelope curves. Hence, the approximated 

envelope curve lik can be represented by the set of weights wk; (i = 1,2,3,  . . . , R)  which 

can also be expressed as a vector (wkl, 7 4 2 ,  Wk3, . . . , wkR). If R = 2 or R = 3 then the 

weights for a particular envelope curve can be plotted on a 2 or 3-dimensional graph. 
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This facilitates visualization and comparison of the envelope curves, particularly if 

some meaning can be attached to the basis vectors. Alternate ways of conceptualizing 

the weight information (over the sound as a whole) are presented in Higher Level 

Control Mechanisms on page 90. 

4.5.7 Representing Envelopes not in the Original Analysis 

Reconstructing envelopes with the bases is not limited to envelopes included in the 

original principal component analysis. For an arbitrary amplitude envelope vector 
4 

Ci: = (a1, a2, a3, . . . ,a,) and a set of R basis vectors b; = (bil, bi2, bi3, . . . ,bin) (i = 

1,2,3,  . . . , R), if the time positions represented by j in aj and bij are the same then 

taking the dot products of G and b; yields the weights wi needed to compute &-the 

approximation to Ci: (see equation 4.6 on page 72). 

This simple transformation is a result of the orthogonal nature of the basis vectors. 

The basis vectors need to be in normalized form12 in equation 4.7 (each basis element 

bij is divided by Jb:; + b:, + b:; + -.  . + b;). 
If a sufficiently general set of basis vectors is available then the PCA analysis need 

not be repeated to included new sounds in the reconstruction procedures. All that is 

required is that the harmonic amplitude envelopes a; for the sound be known (where 

m is the number of harmonics) at the same time positions j as the set of bases13. 

''Most PCA analysis packages return the basis vectors in normalized form. 
13The envelope amplitudes could also be interpolated to  produce values at the j time intervals. 
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Analysis Results and 

Interpret at ion 

The harmonic amplitude envelopes of 280 musical instrument sounds (see Sound Sam- 

ples on page 67) were extracted and a principal component analysis (PCA) of them 

was performed for various instrument groupings. Table 5.1 (page 75) lists the different 

instrument groups analyzed. Initially only individual instruments were included in 

a PCA. The success of the data reduction of envelope shapes for single instruments 

suggested that more diverse groups of instruments be included in a PCA. 

Table 5.1 also lists the variance accounted for by the first 5 basis vectors of all the 

instrument groupings (see page 51 for an intuitive explanation of variance accounted 

for). 

Figures 5.4 to 5.13 (pages 99 to 103) show a graphical display of the basis vectors 

for the various instrument groupings. 

Envelope curves are reconstructed by weighting each basis vector (with a value 

produced by the analysis) and summing the results over the number of basis vectors 

included in the reconstruction (see equation 4.6 on page 72). The more basis vectors 

used in the reconstruction the better the approximation to the original envelope curves 

will be. 
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Instruments  / Number  of I Cumulative % of variance 
included in 
each analysis 

piano, saxophone 
clarinet, trombone 
saxophone 
clarinet, trombone 
guitar, clarinet 
guitar 

sounds per 
ins t rument  

49, 24 

- 

piano 
trombone 

24, 24 
24 

24, 24 
15, 15 

6 3 

clarinet 
saxophone 
flute1 
trombone2 

Table 5.1: A principal component analysis of harmonic amplitude envelope curves 
was performed on various grogpings of instruments. The variance accounted for in 
each analysis is summarized here. Each sound consisted of 20 (analyzed) harmonics 
(or less if the Nyquist frequency was exceeded) therefore the total number of envelope 
curves included in each analysis is approximately 20 times the number of sounds in 
the analysis. 

accounted for by the bases 

49 
24 

flute, clarinet 

Figures 5.14 to 5.18 (pages 104 to 108) show the degree of approximation resulting 

from the envelope reconstruction of a clarinet sound with from 1 to 5 basis vectors. 

Figures 5.19 to 5.21 (pages 109 to 111) show clarinet envelopes reconstructed with 

alternate bases. Figures 5.22 to 5.28 (pages 112 to 118) illustrate additional envelope 

reconstructions for guitar, tenor saxophone, piano, trombone, and flute. 

1st 

90.4 

95.6 
91.7 
89.5 

24 
24 
24 
24 

24, 24 1 88.3 1 93.7 1 96.1 1 97.2 1 98.0 

'Only the first 50 envelope points (1.8 seconds duration) were analyzed for the flute since some 
of the recorded notes had not been sustained for the full 2.7 seconds. 

, 2All the sounds in this group were .65 seconds in duration, with a natural decay. The sounds in 
all the other groups (except the flute) were 2.7 seconds in duration. The 2.7 second tenor saxophone, 
clarinet, and trombone sounds, and the 1.8 second flute sounds, had no decay (see Sound Samples 
on page 67). 

89.1 
95.7 

2nd 

96.9 

97.7 
97.5 
97.1 

95.2 
96.8 
98.3 

94.1 
97.6 

3rd 

97.9 

98.3 
98.3 
98.5 

97.6 
98.1 
98.9 

96.2 
98.3 

4 t h  

98.4 

98.7 
98.7 
99.1 

98.1 
98.8 
99.3 

5th  

98.8 

99.0 
99.0 
99.3 

97.4 
98.7 

98.2 
99.0 

98.6 
99.1 
99.5 

98.9 
99.3 
99.6 
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5.1 Basis Vectors 

The basis vectors corresponding to the instrument groupings in Table 5.1 are illus- 

trated in figures 5.4 to 5.13 on pages 99 to 103. 

5.1.1 Variance Accounted For 

As can be seen in Table 5.1 the variance accounted for is quite high for all instrument 

groups. The first basis accounts for an average of 93.1% of the variance (over all 

instrument groups), the second for 96.9%, the third for 98.0%, the fourth for 98.5%, 

and the fifth for 98.9% (these percentages are cumulative). 

The section on Aural Evaluation (page 84) discusses the perceptual effect of re- 

constructing envelopes with different numbers of basis vectors. In general, sounds 

reconstructed with only a first basis approximation to the envelope curves possess a 

timbre that is characteristic of the instrument, but with a very uninteresting sound 

that is distinctly different from the sounds reconstructed from the original envelopes. 

The perceptual difference between sounds reconstructed with from 2 to 5 bases is 

much less noticeable. In some cases it is difficult to detect differences in sound when 

adding in bases after the second. 

The high proportion of the variance accounted for by the first basis-and the low 

quality sound resulting from envelopes reconstructed with one basis-indicates that 

the variance accounted for does not necessarily translate into meaningful ratios in the 

perceptual realm (see Zahorian and Rothenberg's work [78] discussed on page 30). 

5.1.2 Basis Inversion 

Some of the bases have been inverted (along with the corresponding weights) to make 

interpretation easier. The first basis returned by the PCA analysis was always negative 

(with all negative weights) and it was common for the third and fifth bases to be 
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negative at the start of the sound (with a mixture of positive and negative weights)3. 

The second to fifth basis vectors were inverted (if necessary) to produce positive spikes 

at the start of the vectors. 

5.1.3 Data Dependent Bases 

All the basis sets analyzed (figures 5.4 to 5.13 on pages 99 to 103) indicate that 

the envelope shape information that is captured is concentrated at the start (attack 

portion) of the sound. These data dependent bases bear a superficial resemblance to 

other orthogonal basis sets (such as the Fourier sine series) except that the oscillations 

are crowded into the (perceptually important) onset of the sound, where most of the 

data variance presumably occurs4. 

5.1.4 Basis Fluctuations 

The piano bases (page 99) and guitar bases (page 102) are much smoother in ap- 

pearance than the bases for the wind instruments (pages 99, 100, and 103). This 

follows from the generally smoother envelope curves of the piano and guitar sounds 

(see pages 112 and 115) as compared to the wind instrument envelopes (see pages 106, 

114, 116, and 117). 

Including more envelopes in a PCA also appears to smooth out the basis curves 

(compare the 72 sound PCA of sax, clarinet, and trombone sounds (page 101) with 

the 24 sound PCA for each instrument separately (pages 99 and 100) )~ .  

3For the bases as displayed in figures 5.4 to 5.13 (pages 99 to 103), the first basis weights are always 
positive (after being "flipped"). The second to  fifth bases, when weighted with positive weights, add 
components to the envelope curves for positive regions of the bases and subtract components for 
negative regions of the bases. When the second to  fifth bases are weighted with negative weights, 
the converse is true. 

4Searle compared the amount of information captured with data dependent bases versus data 
independent bases [66] (discussed on page 31). 

'The smoother bases for the three wind instruments combined may also be due to  the averaging 
effects induced by including more than one instrument in the PCA. 
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5.1.5 Two Instrument Classes 

An inspection of the first basis curves over all groups indicates that there are two 

distinct sound classes present here-sounds where the energy level can be sustained 

by the player (wind instruments) and sounds whose decay is not controlled by the 

player (plucked or struck stringed instruments). The first basis vectors of the latter 

class of sounds (piano on page 99 and guitar on page 102) taper off to reflect the 

overall amplitude decay of the sound. In contrast, the first basis vectors for the wind 

instrument sounds (pages 99, 100, and 103) are relatively constant over the duration 

of the sound (except for some attack information at the start). 

The inclusion of the two classes of instrument sound in one PCA analysis- 

piano, tenor saxophone, clarinet, and trombone (page 101)-and guitar and clarinet 

(page 102), produced some interesting results. The sounds resynthesized with these 

bases did not differ significantly from the sounds resynthesized with the single in- 

strument bases (with the exception of the I-basis guitar and piano sounds, see Aural 

Evaluation on page 84). It appears that the overall decay informahion moved into 

higher order bases when the two instrument classes were combined in one PCA. The 

two sets of basis vectors on page 101 illustrate the effect of including piano sounds in 

a PCA of wind instrument sounds. 

The basis vectors also replicate the early decay of higher harmonics as can be seen 

for harmonics 12 to 20 for the guitar (page 112) and harmonic 20 for the clarinet 

(page 106). 

5.1.6 Interpretation of Bases 

First Basis 

The first basis vector produced by the PCA is based on the averages of the column 

vectors (time positions) in the data matrix (formula 4.5 on page 70). These averages 

are normalized to a unit vector. The weights for the first basis vector scale the vector 

to produce the best overall "fit" to the original curves, hence, this scalar weight is 
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a reasonably good (relative) measure of a harmonic's amplitude averaged over the 

duration of the sound. A graphical illustration of this can be seen in the 1-basis 

approximations of figure 5.14 on page 104. This correspondence of the first basis to 

the overall harmonic amplitude levels indicates that the first basis weights, considered 

as a whole over all the harmonics in a sound, can be taken as a rough measure of the 

spectral energy distribution of the sound. 

While the higher order bases can also alter the amplitude level of harmonics (in 

the process of adjusting the "shape" of the envelope curve), the effect is slight in 

comparison to the amplitude factor introduced by the first basis weights. For example, 

the average of the first basis weights (over all 20 harmonics) of the clarinet note 

depicted on page 105 is approximately 66. The average of the second basis weights is 

approximately 9 (the absolute values of the weights were used to compute the average). 

The third and higher-order basis-weight averages decrease (to a lesser extent) from 

the second basis-weight averages. This is a result of the decreasing variance accounted 

for by the higher order bases. Note also that second and higher order bases both add 

and subtract amplitude components at different time periods in the envelopes. These 

tend to cancel out, leaving the average amplitudes unchanged. 

In a sense the first basis weights correspond to the von Helmholtz [75] conjec- 

ture that a steady-state, harmonic distribution characterizes the timbre of a sound. 

Resynthesis with one basis does in fact appear to allow instrument identification but 

results a dull lifeless sound (see Aural Evaluation on page 84). 

It is also interesting that the first basis weights yield a measure (spectral energy 

distribution) that was used to interpret the first dimension of the timbre spaces of 

Grey 124, 261 and Wessel [77] (see Grey on page 36, and Wessel on page 39). The set 

of first basis weights (over all the harmonics of a sound) could be used to compute an 

approximation to the centroid of the spectral energy distribution. 
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Second Basis 

Inspecting the second basis curves (figures 5.4 to 5.13, pages 99 to 103) indicates that 

these are "attack shapers." A positive weight for the second basis will in general 

increase the attack rate and the peak onset-amplitude reached, as well as subtract 

harmonic amplitude from the later portion of the sound. A negative weight for the 

second basis alters the first basis shape contribution to produce a slower, less intense 

attack that builds slowly (the negative portion of the second basis is added to the 

contribution of the first basis shape). 

The role played by the second basis appears to correspond to the "attack bite" 

interpretation of Wessel's second timbre space dimension [77] (see Wessel on page 39). 

It may be possible to compute a simple measure of the attack character of a sound 

using the second basis weights, although more attack information is also spread over 

the higher order bases (see below). 

Third a d  Higher Order Bases 

It is more difficult to interpret third and higher order bases. They appear to perform 

some of the same function as the second basis-refining the attack portion of a sound. 

Note that for higher order bases the first peak is reached at progressively earlier time 

positions. 

The higher order bases are also capable of adding and subtracting peaks and 

valleys at later positions in the sound. 
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5.2 Envelope Approximations 

5.2.1 Clarinet Sound 

Figures 5.14 to 5.18 (pages 104 to 108) illustrate the envelope reconstruction for a 

clarinet sound with 1, 2, 3, 4, and 5 basis vectors. The bases used for these reconstruc- 

tions were the ones derived from a combination of piano, tenor saxophone, trombone, 

and clarinet sounds (figure 5.8 on page 101). The clarinet sound was selected for 

illustration since the original envelope curves exhibit a significant degree of macro 

and microstructure variation. In addition, the bases used in the reconstruction are 

the most general ones available. 

5.2.2 Macro and Microstructure 

No formal criterion is used to distinguish macro and microstructure variation in am- 

plitude envelopes fcr the fcllowing discussion. In genera!, macrostmctnre variatio~i 

occurs over a longer time span than microstructure variation. 

Macrostructure 

Comparing the 5 figures (pages 104 to 108) reveals that the macrostructure approx- 

imations improve when more bases are included in the reconstruction. The 1-basis 

approximations (using the weights derived from the analysis) capture the overall am- 

plitude for each harmonic averaged over the time period of the envelopes. Each 

additional basis adds progressively more macroscopic features. This is particularly 

apparent for harmonics 5, 7, and 11 to 16 in figures 5.14 to 5.18. 

Microstructure 

The figures reveal that microstructure variation is not captured in any of the recon- 

structions. The 5 bases envelope approximations (page 108) are still smooth (although 
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more of the macro variation is i n ~ l u d e d ) ~  

A large number of bases would likely be required to approach the detailed mi- 

crostructure of the original curves7. Eliminating the microstructure variation may in 

fact be desirable since some research indicates that it is not perceptually significant 

[27, 48, 49, 50, 561 (see Line Segment Envelope Approximations on page 18). 

Local Features 

One of the problems illustrated by the clarinet envelopes is that it is not always clear 

whether a shape feature should be classified as part of the microstructure (and omitted 

from the reconstruction) or included as part of the macrostructure. This is the same 

problem encountered by Strawn [69] (see page 19) in attempting to automate the 

extraction of line segment approximations to envelopes. 

Progressively more local features ( L'blips", non-monotonic decay, et c. ) tend to be 

included with each additional basis for the PCA envelope approximations. An example 

of a local feature that is not included by the PCA reconstruction (and perhaps should 

be) is illustrated by harmonic 9 in the 5 bases approximation on page 108. The 

original envelope curve has a "bump" at approximately a third of the way into the 

envelope. This bump is not captured by the 5 bases approximation but has instead 

been smoothed into the overall macrostructure of the envelope curve. Harmonic 14 

(page 108) also has a bump at the midpoint envelope position that is missing in the 

reconstruction. 

Since only 5 bases were retained from the PCA, it is not possible to assess the effect 

of additional bases on the reconstruction of these particular features. Presumably they 

would be included by the next few bases. Perhaps a more relevant question is: To 

'The first few PCA basis vectors tend to average out any random fluctuations in the original 
envelope curves. The first basis vector is based on a simple average (over all envelopes) of the 
amplitude values at each time position. The second basis vector is also based on an average of all 
envelope time positions, after the influence of the first basis vector has been removed.. .and so on. 

 asis is n oscillates n - 1 times between positive and negative regions (see figures 5.4 to 5.13, 
pages 99 to 103). As n increases, the oscillations will be capable of adding more detailed fluctuation 
to the reconstructed envelopes. 
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what degree is  the omission of these apparent features perceptually significant? This 

question will be addressed in Aural Evaluation on page 84. 

5.2.3 Effect of Higher Order Bases 

Attack Refinement 

The interpretation of the higher order bases as refining the attack portion of the 

envelopes (page 80) is supported by the reconstructed envelopes of harmonics 11 and 

13. The inclusion of the 4th basis (page 107) captures the "blip" at the start of 

harmonic 11 (which was missing in the 3 bases reconstruction on page 106) and the 

inclusion of the 5th basis (page 108) introduces the onset blip for harmonic 13. 

Non-monotonic Variation 

The 4th and 5th bases also appear to include non-monotonic variation in the later 

portions of the envelopes that is missing from the 3-bases approximations (compare 

harmonics 5, 11, 14, and 15, on pages 106, 107 and 108)'. 

5.2.4 General versus Instrument Specific Bases 

Figure 5.19 (page 109) illustrates the 5 basis reconstruction of the same clarinet sound 

using the clarinet analysis bases. Comparing figure 5.19 to figure 5.18 (page 108) 

reveals very little difference between the reconstructed curves. This seems to indicate 

that a general basis set is feasible for a wide range of instruments. 

'PCA bases reconstruction (with all the bases available) would be a useful tool in assessing the 
perceptual impact of a variety of local features and degrees of envelope data reduction. 

'Fletcher's study of the quality of piano tones 1201 revealed that piano harmonics can increase in 
amplitude during the decay and that eliminating this non-monotonic behaviour in resynthesis was 
not perceptually noticeable. Harmonic 4 for the piano in figure 5.25 (page 115) exhibits this decay 
pattern. 
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Figures 5.20 and 5.21 (pages 110 and 111) illustrate the 3 and 5 bases reconstruc- 

tion of a clarinet sound using the guitar-clarinet analysis bases. 

5.2.5 Other Instruments 

Figures 5.22 to 5.28 (pages 112 to 118) illustrate envelope reconstruction for guitar, 

tenor saxophone, piano, trombone, flute, and a short trombone sound. 

The flute reconstruction (page 117) is noteworthy since the variance accounted for 

by the first few bases (see Table 5.1 on page 75) is very high (98.3% for the first basis, 

98.9% for the second, etc.). As can be seen in figure 5.27 (page 117), there is very 

little difference between any of the envelope curves reconstructed with more than 2 

bases. 

5.2.6 Algorithmic Microstructure 

The original envelopes of the wind instruments tend to have considerable microstruc- 

ture ("jagged" fluctuations) while the piano and guitar do not. These jagged fluctua- 

tions appear to be somewhat random, hence, it may be possible to add such amplitude 

fluctuations (to the PCA reconstructions) in an algorithmic manner, if they are found 

to have perceptual significance. 

5.3 Aural Evaluation 

The previous section compared the original harmonic amplitude envelopes with the 

envelopes reconstructed from PCA basis vectors and weights by visual inspection of 

, the envelope shapes. A better test of the effectiveness of the reconstruction is to 

compare the sounds produced by both groups of envelopes. Ideally the differences 

would be assessed by a discrimination measure similar to the one employed by Grey 

and Moorer [27] and Charbonneau [lo]. This testing was not carried out. In lieu of a 

more rigorous assessment the following subjective evaluation is presented. 
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5.3.1 Sound Categories for Comparison 

The following sound groups were compared for timbre similarity and quality. 

0 A. The original digitized versions of the musical instrument sounds (sampled at 

8 bit resolution with a sampling rate of 28,185 samples per second). 

0 B. The sounds resynthesized with all the original amplitude envelope informa- 

tion (spaced at 36 ms intervals). Constant integral harmonic frequencies were 

used1'. 

0 C. The sounds resynthesized with from 2 to 5 basis vectors and weights (derived 

from the PC A). Constant integral harmonic frequencies were used. 

0 D. The sounds resynthesized with 1 basis vector and weight (per harmonic). 

Constant integral harmonic frequencies were used. 

The sounds resynthesized with 1 basis vector and weight (group D) are placed in a 

separate category since they were easily distinguished from sounds resynthesized with 

2 or more bases (group C). 

5.3.2 Sampled Sound versus Resynthesized Sound 

In all cases the most obvious difference in sound quality was between the original 

digitized sounds in group A and a n y  of the resynthesized versions (except the 1-basis 

approximations in group D). All the resynthesized sounds (groups B, C, and D) 

tended to lack subtle attack characteristics of the original digitized sounds. A certain 

"liveliness" was also missing in many of the resynthesized sounds, most likely due to 

the fixed harmonic frequencies or the 20 harmonic limit to the resynthesized sounds. 

However the timbral quality of the resynthesized sounds in groups B and C were, 

for the most part, acceptable-particularly if the sounds were not compared directly to 

1•‹Slightly inharmonic frequency values were available from the analysis but were not used due to 
the occasional presence of beating between the harmonics. 
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the original digitized versions in group A. The exception to this was the piano sounds. 

Piano sound quality was quite poor for groups B, C, and D ,  and it is questionable 

whether the sounds are recognizable as originating from a piano1'. Since the timbre 

quality was poor for group B, it is not reasonable to expect an increase in the number 

of basis vectors, in group C, to improve the sound quality. 

5.3.3 Sounds Resynthesized with 1 Basis 

Instrument Identification 

The sounds produced by 1-basis approximations in group D were surprisingly char- 

acteristic of the instrument producing the sound (see the interpretation of the first 

basis on page 78). Envelopes reconstructed with 1 basis are illustrated in figure 5.14 

on page 104 and figure 5.28 on page 118. 

Instrument Class and General Bases 

The major exception to 1-basis instrument identifiability was for the guitar and piano 

sounds that were resynthesized with a set of bases derived from a combination of 

instruments that included the energy-sustained wind instruments (see Two Instrument 

Classes on page 78). 

The first basis vector from these analyses (see figure 5.8 on page 101 and figure 5.1 1 

on page 102) does not capture the overall decay characteristics of the guitar and piano 

sounds. It was difficult to identify the instrument producing the sound due to the lack 

of characteristic decay. Resynthesis with more than 1 basis did produce acceptable 

sound for the guitar which indicates that the decay information has moved into higher- 

order bases. The guitar sounds reconstructed with 1 basis, using the guitar analysis 

''The poor resynthesized piano sound is probably due to a) inharmonicity caused by radically dif- 
ferent string thicknesses and lengths, b) multiple strings per note-resulting in subtle beating effects 
(good piano tuners slightly mistune the unisons), c) complex resonances of the large soundboard, 
and d) complex sympathetic vibrations induced by a common bridge for several hundred strings. 
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bases (figure 5.10 on page 102) were identifiable as guitar sounds12. Resynthesis of 

piano sounds with more than 1 basis produced a sound that was similar to the sounds 

resulting from resynthesis with all the envelope information (poor). 

Sound Quality 

All sounds resynthesized with a 1-basis approximation (group D) were noticeably dif- 

ferent from the same sounds resynthesized with all the envelope information (group 

B) as well as those sounds resynthesized with more than 1 basis (group C). The 

1-basis sound was lifeless and unchanging, as would be expected given that all har- 

monic envelopes had the same "shape." The trombone and guitar sounds (with the 

guitar specific bases) produced by 1-basis approximations fared better than the other 

instruments. 

5.3.4 Sounds Resynthesized with 2 or More Bases 

The envelopes produced by 2, 3, 4, and 5 bases approximations capture progressively 

more of the macrostructure of the original envelopes. This is illustrated in figures 5.15 

to 5.18 (pages 105 to 108) and discussed on page 81. However, the perceptual difference 

between 2 to 5 bases approximations (within group C) is not as pronounced as a visual 

inspection of the envelopes would suggest. 

Guitar and Piano 

For the guitar and piano, the difference between 2 to 5 basis approximations (within 

group C) was minimal or non-existent. In addition, a comparison of group C sounds 

to the group B sounds (all the envelope information included) revealed little or no 

' difference. 

Figures 5.22 and 5.23 (pages 112 and 113) illustrate the envelope curves for 2 and 

l2 Higher guitar notes that died out rapidly tended to sustain too long with a 1-basis approximation. 
Two or more bases approximations captured the early decay. 
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5 bases guitar sounds. Figure 5.25 (page 115) illustrates the envelope curves for 2, 3, 

and 5 bases piano sounds. 

Wind Instruments 

The wind instruments did exhibit a noticeable difference between group C sounds and 

group B sounds. The group B sounds "fluctuated" in a manner that suggested the 

player's interaction with the instrument. The sound was uneven, probably as a result 

of the 'jaggedness" of the envelopes (see figure 5.18 page 108). Increasing the number 

of bases to 5 in group C had only a slight effect on the sound and did not capture the 

"unevenness" in the group B versions. Except for this unevenness the timbre quality 

was almost identical between group B and C sounds. 

5.3.5 Perception of Microstructure 

Given the perceptual differences between the group B and C wind instrument sounds, 

a tentative conclusion is that the microstructure envelope variation does have a per- 

ceptible impact-not so much on the timbre as on the sense of a player interacting 

with the instrument. The sounds in group C sounded "perfect" and to some extent 

not as interesting as the uneven sounds in group B. As discussed on page 84, it may 

be possible to replicate this effect algorithmically. 

Several previous studies have concluded that microstructure envelope variation is 

not perceptually significant [27, 48, 49, 50, 561. The sounds included in these studies 

were short (less than half a second) and most of the sounds included in this study were 

considerably longer (2.7 seconds). It may be the case that microstructure variation is 

significantly more noticeable in longer sounds. 
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5.4 Creating New Sounds with PCA Envelopes 

The P CA basis vector representation of harmonic amplitude envelopes stores envelope 

information in a parsimonious, standardized format. The representation also allows 

the expression of additional sounds, not included in the original analysis, in terms of 

weighted basis vectors (see Representing Envelopes not in the Original Analysis on 

page 73). 

The original sounds can be replicated (with some degree of approximation) by 

reconstructing the envelopes with equation 4.6 on page 72 and resynthesizing the 

sound with formula 4.3 on page 65. 

5.4.1 Low Level Envelope Manipulation 

It is also possible to alter the sound by manipulating the weights associated with 

each basis and harmonic. Figure 5.1 on page 90 illustrates a user interface for the 

manipulation of harmonic amplitude envelopes. 

This form of envelope manipulation is suitable for low-level control of sound re- 

construction. The major deficiency with this scheme (figure 5.1) is that the envelopes 

are manipulated individually. From the perspective of a sound designer, it would 

be advantageous to have access to higher-level control mechanisms that take into 

consideration the harmonic envelopes as a whole. 

The simplest method of increasing high-level control would be to manipulate the 

harmonic envelopes as a group, for example, using the basis weight sliders in figure 5.1 

to alter all the envelopes in unison, or just the odd harmonics, etc. This method is too 

coarse for producing realistic acoustic instrument sounds. However, it would be useful 

for roughing in a sound before fine-tuning the envelopes with the interface illustrated 

in figure 5.1. 
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Figure 5.1: A user interface for constructing harmonic amplitude envelopes by ma- 
nipulating PCA basis weights. The 5 vertical sliders on the left alter the weights for 
the basis vectors displayed immediately to their right. The envelope shape is altered 
continuously as the slider is moved. From 1 to 5 basis vectors can be used to recon- 
struct th; amplitude envelope of any harmonic. Tlie envelopes for a particular sound 
(for example a trombone F# note) can be selected as a starting point. The effect of 
the envelope alterations can be assessed by resynthesizing the sound. 

5.5 Higher Level Control Mechanisms 

The advantage of the PCA basis representation of envelopes is that all envelopes 

have a common underlying representation (weighted basis vectors). This property 

can be exploited in the generation of higher-level control schemes. The following 

sections suggest some possible strategies for the development of higher-level control 

mechanisms. They have not been implemented. 

5.5.1 2-Dimensional Weight Graphs 

Figure 5.2, on page 91 graphs the first two basis weights of a clarinet sound. Since 

additional bases add little to the perceptual qualities of the sound (see page 88)) 

the information displayed in figure 5.2 captures a significant amount of the relevant 
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I 2 dimensional display of f i rs t  2 PCfl weights 

I 
2nd basis 

Figure 5.2: A 2-dimensional graph of the first two basis weights for the clarinet A 
(220 Hz) note depicted in figure 5.15 (page 105). Only the first 14 harmonics are 
displayed (harmonics 15 to 20 overlap the first 14). Different scales are used for the 
2 axes. 

-- envelope information for the sound. 

Even though all the envelope information for the sound is displayed on one graph, 

it is difficult to interpret it since the harmonics are scattered over the graph in no 

particular order. Manipulating the first two basis weights in this format (by setting 

envelope points in a 2-dimensional grid) is not intuitive and not likely to be useful 

as a means of higher-level control. Futhermore, the placement of harmonic points 

in this 2-dimensional space is unconstrained and it would be difficult to implement 

meaningful 2-dimensional constraints on the placement of harmonics points. 

Since the first two bases represent different aspects of envelope "shapen-and 

have different interpretations (see Interpretation of Bases on page 78)-it may be 

more useful to display weight information on 1-dimensional graphs. 
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5.5.2 1-Dimensional Weight Graphs 

First Basis Weights 

Figures 5.29 to 5.31 (pages 119 to 121) display the first basis weights (for all harmon- 

ics) for three different sounds. Figures 5.29 and 5.30 are directly comparable since 

the underlying bases are the same. 

Given the interpretation of the first basis (page 78), these graphs can be taken 

as a rough approximation to the "steady-state" spectrum for the sounds illustrated. 

The graphs illustrate the overall relationships between the harmonics of a sound (see 

Interharmonic Relationships on page 20). The characteristic clarinet emphasis on 

odd harmonics is readily seen in figure 5.29. 

Second Basis Weights 

Figures 5.32 to 5.34 (pages 122 to 124) display the second basis weights (for all 

harmonics) for the same three sounds illustrated in figures 5.29 to 5.31. 

Given the interpretation of the second basis (page 78) these graphs can be taken 

as a rough approximation to the degree of "attack bite" for the sounds illustrated. 

Note that the weights can be positive or negative. Negative weights decrease the 

"attack bite", result in lower rise times, and increase the harmonic amplitude later in 

the sound. 

Manipulating the Graphs 

Manipulating the harmonic amplitude envelopes for a sound would appear to be 

somewhat more intuitive when the weight information (for one basis) for all envelopes 

is displayed on the same graph. All of the envelope weights can be compared directly 

and the sets of weights for the first two bases have interpretations that translate into 

simple perceptual effects (see Interpretation of Bases on page 78, and Wessel's work 

on Timbre Space [77], described on page 39). 
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Similar graphs for the higher order bases would probably not be as useful. 

An implementation might include a graphical interface that allows a user to in- 

teractively construct the weight curves (over all harmonics) for each basis (as in 

figures 5.29 to 5.34 on pages 119 to 124). 

Constraining the Selection of Weights 

One problem with the interface suggested above is that the form that the weight curves 

can take would still not be constrained in a useful manner13. A possible solution is 

to incorporate limits on the range of values that the weights can assume, in order to 

stay within the timbre range of a particular instrument. For example, a maximum 

and minimum value for the weight of each harmonic could be plotted on a graph 

similar to figure 5.29 (page 119). Connecting adjacent (harmonic) maximum weights, 

and adjacent minimum weights, and highlighting the enclosed regions, would give a 

sound designer an overview of a reasonable set of weights to use. The maximum and 

minimum weight values would be taken from the actual weights of analyzed sounds 

for a particular instrument-ranging over note register, intensity, etc. Figure 5.35 on 

page 125 shows a hypothetical example. 

A simple scatter plot of weights (for each harmonic) could supply additional in- 

formation as to the distribution of analyzed weights for a particular range of sounds. 

Color Coded Constraints 

This application is also well suited to the visual display of information using color. 

For example, shading of the acceptable regions for a set of weights might color the 

average weight path in a darker shade with progressively lighter shading towards the 

, maxima and minima extremes. Shading intensity could also be varied (using standard 

13~xperience with constructing envelopes with the low-level interface illustrated in figure 5.1 
(page go), and then listening to the resulting sound, reveals that the bases are quite general and that 
a wide variety of sounds can be constructed. The characteristic timbre of a particular instrument 
can be quickly lost when manipulating the basis weights of the envelopes. 
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deviations as units) to reflect the distribution of the weight values. A particular sound 

(e.g. a G# clarinet sound) could be plotted over top of the distribution to act as a 

reference point. 

Interpolation between instrument timbre could be facilitated by color coding ac- 

ceptable ranges for different instruments, all displayed on the same graph. Assessing 

the impact of different parameters on the basis weights (such as note intensity, picking 

position on a guitar string, etc.) could also benefit from a color coded display. 

Range of Sounds 

A preliminary investigation reveals that the range of sounds included for display on 

the same graph would have to carefully selected. For example, the first basis weights 

of the fundamental envelopes of the 24 clarinet sounds included in the piano-sax- 

clarinet-trombone analysis (see Table 5.1 on page 75) have a mean of 199, a standard 

deviation of 121, a maximum of 508, and a minimum of 77. This imposes very little 

constraint on the range of first basis weights for fu~damental envelopes. 

However these 24 sounds range over 2 octaves on the clarinet. The variation 

in fundamental weights is much more constrained when the sounds are grouped by 

octave. The equivalent statistics for sounds limited to the 12 notes of the clarinet's 

first octave are; a mean of 120, a standard deviation of 28, a maximum of 167, and a 

minimum of 77. 

This clearly illustrates both the degree to which the envelopes change for different 

registers of the same instrument and the problems faced in attempting to characterize 

an instrument's timbre (as a whole) in terms of the harmonic amplitude envelopes. 

A variety of other timbre control and manipulation schemes are no doubt possible 

with a bases representation of envelopes. The underlying representation and construc- 

tion mechanisms could be made apparent or hidden from the user. Low-level control 

of the envelopes (as in figure 5.1 on page 90) would still be available for fine-tuning 

the sound. 
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5.6 Guitar Attack Algorithm 

Capturing the subtleties of the attack portion of a sound for any of the instruments 

included in this study proved difficult. There was simply much more going on at 

the start of a sound than could be captured with a Fourier analysis, given the fre- 

quencyltime resolution tradeoff (see Frequency Resokution on page 56). 

The resynthesized guitar attack, in particular, lacked the onset "bite" of the orig- 

inal digitized sound. This was most prevalent for notes in the upper registers of the 

instrument. Adding random frequency components at the start of the sound did not 

replicate the "low frequency clunk" characteristic of the original onset transients. 

5.6.1 Air and Top Resonances 

An examination of the frequency domain display at the beginning of guitar sounds 

revealed inharmonic components of fixed frequency. Since the fixed frequencies were in 

the range of the air resonance and major top resonance of the acoustic guitar'" further 

experiments were performed to get accurate frequency readings for these components. 

A large-window FFT (32,768 samples with a frequency resolution A f of .86 Hz) re- 

vealed three fixed inharmonic frequency components l5 present in many guitar sounds 

of widely different fundamental frequencies. The inharmonic frequencies were 103 Hz, 

195 Hz, and 385 Hz. 

Figure 5.3 on page 96 shows a frequency display that includes the air and first top 

resonance of a guitar sound. The second top resonance (385 Hz) is between the first 

top resonance and the fundamental but has very low amplitude in this example. 

14This information was obtained from previous experience as a luthier. 
''These inharmonic components were discernible but of very low amplitude since the inharmonic 

, onset transients tended to die out quickly and more than 1 second of sound was involved in this 
frequency analysis. 
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Figure 5.3: -4 frequency domain display of a C# (554 Hz) guitar sound illustrating 
the inharmonic air resonance and first top resonance. These resonances typically 
appear at the onset of a guitar sound and quickly decay. The frequency analysis was 
performed over the first 72 ms of the sound. 

5.6.2 Verifying the Air Resonance 

The first inharmonic component (103 Hz) was verified as the air resonance of the 

instrument by humming into the instrument to activate the air resonance (the in- 

strument "comes alive" at the air resonance frequency) and digitizing the resulting 

sound. A frequency analysis (with a small A f )  of the humming sound revealed a 

pronounced peak at 103 Hz. It was not possible to verify the other two frequencies as 

top resonances (there are usually several16), however, the first major top resonance 

for the guitar is typically in the 175-220 Hz range. 

5.6.3 Resonance Characteristics 

The envelope extraction algorithm (see Inhamonic Partials on page 61) was expanded 

to extract and store the three resonances. Graphing the resonance amplitudes over 

time revealed a roughly exponential decay for these components, tapering to zero 

16See Hutchins [31] for a graphical display of the top resonances (eigenmodes) of violin plates. 
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amplitude in approximately 100-300 ms. The amplitude values of the resonances 

at the onset of the sound varied considerably-anywhere from 10-60% of the initial 

fundamental amplitude. It was not possible to distinguish resonance components from 

harmonic components for sounds with harmonic frequencies close to the resonance 

frequencies. 

5.6.4 Resonance Hypothesis 

These inharmonic frequency components were unexpected since they are not part of 

the harmonic structure of the string vibrations. They are somewhat different from 

formant frequencies since they do not merely reinforce certain frequency ranges but 

actively contribute to the sound, irrespective of the note being played on the instru- 

ment. Since the resonances appear to die out exponentially, a tentative hypothesis as 

to how they are produced is the following: 

When the string is first struck, the motion (and resulting frequency content) is 

chaotic. This broadband energy manages to excite the air and top resonances of 

the instrument via energy transferred to the instrument by the bridge connecting the 

strings to the top. The string vibrations quickly stabilize into simple harmonic motion, 

leaving the air and top inharmonic vibrations to die out naturally, at a damping rate 

determined by the physical characteristics of the instrument. In other words, the 

instrument body behaves like a bell at the onset of the sound (with considerably 

higher damping than a metal bell). 

5.6.5 Resynthesizing the Resonance Components 

At tempts were made to resynthesize these attack resonance components. The first 

I method simply used the resonance frequency information extracted from the analysis 

by adding the resonance amplitude envelopes (at the resonance frequencies) to the 

harmonic components. 

The second method reconstructed this information as a separate module added 
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on top of the harmonic resynthesis-using no analysis information-by specifying 

the initial amplitude of the air resonance (as a percentage of the initial fundamental 

amplitude) and the decay time. The top resonance amplitudes were scaled down from 

the stronger air resonance component. The exponential decay was approximated with 

three straight line segments. A reasonable setting for the intial amplitude of the air 

resonance was in the 10-30% range, with a decay time of 150-200 ms. 

The resynthesized sounds captured to some degree the flavor of the attack in the 

digitized versions. Although the resynthesized attack sounds were not as full or as 

rich as the original, the results do appear to support the hypothesis that a significant 

portion of the attack qualities in guitar sounds is produced by a bell-like decay of the 

instrument resonances. 

The initial amplitude setting and decay time were critical for blending the inhar- 

monic resonance components into the overall sound. Too high an amplitude setting 

or too long a decay resulted in an unnatural, distracting quality in the attack portion 

of the sound. 

The algorithm could benefit from the inclusion of additional top resonance com- 

ponents, however, it was difficult to discern distinct top resonances beyond the second 

one (385 Hz). Higher top resonances are most likely weak but numerous. It may be 

possible to simply choose arbitrary inharmonic values for these resonances. 
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I Piano Bases Tenor Saxophone Bases 

Figure 5.4: (left) Principal component bases for piano. The first 5 principal com- 
ponent bases for the harmonic amplitude envelopes of 49 piano sounds (75 envelope 
points-2.7 seconds of sound). 

Figure 5.5: (right) Principal component bases for tenor saxophone. The first 
, 5 principal component bases for the harmonic amplitude envelopes of 24 tenor saxo- 

phone sounds (75 envelope points-2.7 seconds of sound with no decay). 
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Clarinet Bases Trombone Bases 

Figure 5.6: (left) Principal component bases for clarinet. The first 5 principal 
component bases for the harmonic amplitude envelopes of 24 clarinet sounds (75 
envelope points-2.7 seconds of sound with no decay). 

Figure 5.7: (right) Principal component bases for trombone. The first 5 prin- 
, cipal component bases for the harmonic amplitude envelopes of 24 trombone sounds 

(75 envelope points-2.7 seconds of sound with no decay). 
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Piano-Sax-Clarine t -Trombone Bases Sawclarinet -Trombone Bases 

Figure 5.8: (left) Principal component bases for piano-sax-clarinet-trombone . 
The first 5 principal component bases for the harmonic amplitude envelopes of 24 
sounds each of tenor saxophone, clarinet, and trombone (with no decay), as well as 
49 piano sounds (75 envelope points-2.7 seconds of sound). 

Figure 5.9: (right) Principal component bases for sax-clarinet-trombone . The 
first 5 principal component bases for the harmonic amplitude envelopes of 24 sounds 
each of tenor saxophone, clarinet, and trombone (75 envelope points-2.7 seconds of 
sound with no decay). 
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I Guitar Bases Gui tar-Clarine t Bases 

Figure 5.10: (left) Principal component bases for acoustic guitar. The first 5 
principal component bases for the harmonic amplitude envelopes of 63 acoustic guitar 
sounds (75 envelope points-2.7 seconds of sound). 

Figure 5.11: (right) Principal component bases for guitar-clarinet . The first 5 
principal component bases for the harmonic amplitude envelopes of 15 clarinet sounds 

' 
(with no decay), and 15 acoustic guitar sounds (75 envelope points-2.7 seconds of 
sound). 
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Flute Bases 

Figure 5.12: Principal component bases for flute. The first 5 principal component 
bases for the harmonic amplitude envelopes of 24 flute sounds (50 envelope points-1.8 
seconds of sound with no decay). 

Trombone-Flu t e-Clar inet Bases 

Figure 5.13: Principal component bases for trombone-clarinet-flute (short 
sounds). The first 5 principal component bases for the harmonic amplitude envelopes 
of 24 sounds each of trombone, clarinet, and flute (18 envelope points-.65 seconds 
of sound with natural decay). 
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wiqinal curves I PCA basis original curves 1 PCA basis 

Figure 5.14: Envelope reconstruction of a clarinet A note with 1 PCA basis. 
The original envelopes for the first 20 harmonics of an A (220 Hz) clarinet sound are 
on the left half of the above graphs. The envelopes reconstructed with 1 PCA basis 
vector and weight for the same sound are on the right. The basis used was from the 
piano-sax-trombone-clarinet PCA analysis (figure 5.8 on page 101). The time span is 
2.7 seconds. 
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Figure 5.15: Envelope reconstruction of a clarinet A note with 2 PCA bases. 
The original envelopes for the first 20 harmonics of an A (220 Hz) clarinet sound are 
on the left half of the above graphs. The envelopes reconstructed with 2 PCA basis 
vectors and weights for the same sound are on the right. The bases used are from the 
piano-sax-trombone-clarinet analysis (figure 5.8 on page 101). The time span is 2.7 
seconds. 
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Figure 5.16: Envelope reconstruction of a clarinet A note with 3 PCA bases. 
The original envelopes for the first 20 harmonics of an A (220 Hz) clarinet sound are 
on the left half of the above graphs. The envelopes reconstructed with 3 PCA basis 
vectors and weights for the same sound are on the right. The bases used are from the 

I piano-sax-trombone-clarinet analysis (figure 5.8 on page 101). The time span is 2.7 
seconds. 
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Figure 5.17: Envelope reconstruction of a clarinet A note with 4 PCA bases. 
The original envelopes for the first 20 harmonics of an A (220 Hz) clarinet sound are 
on the left half of the above graphs. The envelopes reconstructed with 4 PCA basis 
vectors and weights for the same sound are on the right. The bases used are from the 

' piano-sax-trombone-clarinet analysis (figure 5.8 on page 101). The time span is 2.7 
seconds. 
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Figure 5.18: Envelope reconstruction of a clarinet A note with 5 PCA bases. 
The original envelopes for the first 20 harmonics of an A (220 Hz) clarinet sound are 
on the left half of the above graphs. The envelopes reconstructed with 5 PCA basis 
vectors and weights for the same sound are on the right. The bases used are from the 

I piano-sax-trombone-clarinet analysis (figure 5.8 on page 101). The time span is 2.7 
seconds. 
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original curves 5 PCA bases oriqinal curves 5 PCA bases 

Figure 5.19: Envelope reconstruction of a clarinet A note with 5 PCA bases 
from the clarinet analysis. The original envelopes for the first 20 harmonics of an 
A (220 Hz) clarinet sound are on the left half of the above graphs. The envelopes 
reconstructed with 5 PCA basis vectors and weights for the same sound are on the 
right. The bases used are from the clarinet analysis (figure 5.6 on page 100). The 
time span is 2.7 seconds. The envelopes reconstructed here can be compared to the 
envelopes reconstructed with a more general bases set in figure 5.18 on page 108. 
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oriainal 3 PCA bases original 3 PCA bases 

Figure 5.20: Envelope reconstruction of a clarinet B note with 3 PCA bases 
from the guitar-clarinet analysis. The original envelopes for the first 20 harmonics 
of a clarinet B (247 Hz) sound are on the left half of the above graphs. The envelopes 
reconstructed with 3 PCA basis vectors and weights for the same sound are on the 

1 right. The bases used are from the guitar-clarinet analysis (figure 5.11 on page 102). 
The time span is 2.7 seconds. 
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original 5 PCA bases or i~inal  5 PCA bases 

Figure 5.21: Envelope reconstruction of a clarinet B note with 5 PCA bases 
from the guitar-clarinet analysis. The original envelopes for the first 20 harmonics 
of a clarinet B (247 Hz) sound are on the left half of the above graphs. The envelopes 
reconstructed with 5 PCA basis vectors and weights for the same sound are on the 
right. The bases used are from the guitar-clarinet analysis (figure 5.11 on page 102). 
The time span is 2.7 seconds. 
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Figure 5.22: Envelope reconstruction of a guitar D note with 2 PCA bases. 
The original envelopes for the first 20 harmonics of a guitar D (147 Hz) sound are 
on the left half of the above graphs. The envelopes reconstructed with 2 PCA basis 
vectors and weights for the same sound are on the right. The bases used are from the 

' 
guitar analysis (figure 5.10 on page 102). The time span is 2.7 seconds. 
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Figure 5.23: Envelope reconstruction of a guitar D note with 5 PCA bases. 
The original envelopes for the first 20 harmonics of a guitar D (147 Hz) sound are 
on the left half of the above graphs. The envelopes reconstructed with 5 PCA basis 
vectors and weights for the same sound are on the right. The bases used are from the 
guitar analysis (figure 5.10 on page 102). The time span is 2.7 seconds. 
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oriainal 3 PCA bases original 3 PCA bases 

Figure 5.24: Envelope reconstruction of a saxophone G note with 3 PCA 
bases. The original envelopes for the first 20 harmonics of a tenor saxophone G (200 
Hz) sound are on the left half of the above graphs. The envelopes reconstructed with 
3 PCA basis vectors and weights for the same sound are on the right. The bases used 
are from the sax-clarinet-trombone analysis (figure 5.9 on page 101). The time span 
is 2.7 seconds. . 
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Figure 5.25: Envelope reconstruction of a piano A note with 2,  3, and 5 
PCA bases. The original envelopes for the first 10 harmonics of a piano A (110 Hz) 
sound are on the left of the above graph. The envelopes reconstructed with 2, 3, and 
5 PCX basis vectors and weights for the same sound are on the right. The bases used 
are from the piano-sax-clarinet-trombone analysis (figure 5.8 on page 101). The time 
span is 2.7 seconds. 
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original 2 PCA bases 3 PCA bases 4 PCA bases 

Figure 5.26: Envelope reconstruction of a trombone Dtf note with 2, 3, and 
4 PCA bases. The original envelopes for the first 10 harmonics of a trombone Di  
(311 Hz) sound are on the left of the above graph. The envelopes reconstructed with 
2, 3, and 4 PCA basis vectors and weights for the same sound are on the right. The 

' bases used are from the trombone analysis (figure 5.7 on page 100). The time span is 
2.7 seconds. 
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Figure 5.27: Envelope reconstruction of a flute G note with 2, 3, 4, and 5 
PCA bases. The original envelopes for the first 10 harmonics of a flute G (392 Hz) 
sound are on the left of the above graph. The envelopes reconstructed with 2, 3, 
4, and 5 PCA basis vectors and weights for the same sound are on the right. The 
bases used are from the flute analysis (figure 5.12 on page 103). The time span is 1.8 
seconds. 
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Figure 5.28: Envelope reconstruction of a (short) trombone B note with 1, 
2, 3, 4, and 5 PCA bases. The original envelopes for the first 10 harmonics of a 
short trombone B (123 Hz) sound are on the left of the above graph. The envelopes 
reconstructed with 1, 2, 3,  4, and 5 PCA basis vectors and weights for the same sound 
are on the right. The bases used are from the trombone-clarinet-flute (short sound) 
analysis (figure 5.13 on page 103). The time span is .65 seconds and the sound decays 
naturally. 
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Figure 5.29: First basis weights for a clarinet A (220 Hz) note. The enve- 
lope curves resulting from these first basis weights are illustrated in figure 5.14 on 
page 104. The bases used are from the piano-sax-clarinet-trombone analysis (fig- 
ure 5.8 on page 101). Note that the first basis vector is weighted heavily for the odd 
harmonics-a characteristic of clarinet sounds. 

I i a i  
First basis weights for  Clarinet A (228 Hz> note 
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Figure 5.30: First basis weights for a tenor saxophone (196 Hz) G note. The 
bases used are from the piano-sax-clarinet-trombone analysis (figure 5.8 on page 101). 
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Figure 5.31: First basis weights for a guitar D (147 Hz) note. The envelope 
curves resulting from these first basis weights (as well as the second basis weights) 
are illustrated in figure 5.22 on page 112. The bases used are from the guitar analysis 
(figure 5.10 on page 102). 
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Figure 5.32: Second basis weights for a clarinet A (220 Hz) note. The envelope 
curves resulting from these second basis weights (as well as the first basis weights) 
are illustrated in figure 5.15 on page 105. The bases used are from the piano-sax- 
clarinet-trombone analysis (figure 5.8 on page 101). Note the low "attack" values for 
harmonics 10 and 11. This is reflected in the envelope curves in figure 5.15. 
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Figure 5.33: Second basis weights for a tenor saxophone (196 Hz) G note. 
The bases used are from the piano-sax-clarinet-trombone analysis (figure 5.8 on 
page 101). 
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Figure 5.34: Second basis weights for a guitar D (147 Hz) note. The envelope 
curves resulting from these second basis weights (as well as the first basis weights) 
are illustrated in figure 5.22 on page 112. The bases used are from the guitar analysis 
(figure 5.10 on page 102). 
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Figure 5.35: Constraints on the weights for a range of sounds. This graph 
shows the weight constraints (first basis) for a hypothetical example. The user would 
select a weight path within the bounds illustrated, in order to construct sounds with 
closely related timbral qualities. 



Chapter 6 

Conclusions 

The following section summarizes the previous chapter, Analysis Results and Inter- 

pretation. 

6.1 Summary of Results 

A principal component analysis (PCA) of the harmonic amplitude envelopes of 280 

musical instrument sounds was quite successful at reducing the dimensionality of 

the envelope curves. Two principal components accounted for approximately 97% 

of the variance of the envelope curves and five principal components accounted for 

approximately 99% of the variance. Table 5.1 on page 75 summarizes the variance 

accounted for in the various instrument groups analyzed. 

A PCA bases representation of harmonic amplitude envelopes is proposed as an 

alternate to the approximation of envelopes with line segments (see page 18). 

6.1.1 Advantages of Bases Representation 

A PCA bases representation has the following advantages: 



CHAPTER 6. ,CONCLUSIONS 

a Smoothly varying envelopes curves can be reconstructed quickly (typically sev- 

eral hundred multiplications and additions, see equation 4.6 on page 72) from 

a set of bases (common to all envelopes) and a small number of scalar weights 

for each envelope curve. 

a The extraction of bases and weights is automated. Heuristic methods of line 

segment approximation or complex extraction algorithms as proposed by Strawn 

[69] (see page 19) are not required. 

a Envelope curves can be significantly reduced in dimension and represented by 

as few as two parameters, without the loss of perceptually important features 

of the envelopes. Reduction to one dimension retains some of the qualities of 

instrument timbre, useful for instrument identification. 

a Gradated levels of approximation to the original envelopes are available by se- 

lecting the number of basis vectors to use in the envelope reconstruction. Spe- 

cific local features ("blips", non-monotonic variation, etc.) can be captured by 

increasing the number of bases in the reconstruction. 

a Envelope "shapes" are represented in a standardized form, over all envelopes 

(common bases). This facilitates the comparison of harmonic amplitude en- 

velopes and provides an alternate strategy for .grouping harmonics (see Char- 

bonneau [lo] discussed on page 23, and Kleczkowski [34] discussed on page 24). 

a The common bases representation allows grouping of envelopes-over all the 

harmonics of a sound-to produce higher level control mechanisms. 

a The bases representation allows both high and low level control mechanisms to 

use the same underlying representation. 

a The first few bases have a simple perceptual interpretation that may be useful 

in developing intuitive control strategies. 

a The representation can incorporate new envelopes (and sounds) not included in 

the original analysis. 
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The mathematical technique used to extract the bases automatically smooths 

out random fluctuation in envelopes. 

The orthogonal bases are data dependent and hence maximize data reduction 

of the envelope curves. 

The PCA data collection and analysis is completely separate from a resynthesis 

implementation using the bases representation. The basis vectors and weights 

are in the form of ASCII floating point data and can be implemented on any 

system, using any sample resolution or sampling rate1. 

6.1.2 Interpretation of Bases 

A tentative interpretation of the basis vectors is the following: 

The first basis vector captures the overall amplitude of harmonics averaged over 

the duration of the sound. The first basis weights, considered as a group (over 

all harmonics of a sound), yield a measure of the spectral energy distribution of 

a sound. 

The second basis vector captures temporal qualities of the attackldecay char- 

acteristics of harmonics. 

Third and higher order bases refine the attackldecay characteristics of harmon- 

ics as well as include local envelope features throughout the duration of the 

sound. 

An examination of the first basis vectors over the different instrument groups 

included in the analyses (see Table 5.1 on page 75) indicates that the instrument 

sounds can be grouped into two major classes: 

'Resynthesizing with a higher sampling rate would simply require computing more sample values 
between envelope points. 
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a Sounds whose overall energy (wind instruments) is sustained throughout the 

sound2. 

a Sounds with a natural decay (plucked or struck stringed instruments-the guitar 

and piano in this study). 

Mixing instruments from the two classes-in one PCA-works surprisingly well. 

The major disadvantage is that decay information (for the instruments with natural 

decay) moves into higher order bases. Hence, 1-basis approximations for these sounds 

lose the character of the instrument. For two or more bases approximations it appears 

reasonable to include any  harmonic instrument in the analysis group. The range of 

instruments included in a PCA analysis can be limited for optimal accuracy for a 

particular instrument (or instruments) or a wide assortment can be included for gen- 

erality. Once the envelope curves are available, any particular grouping of instrument 

sounds can be selected for PCA analysis. The choice of bases to use for resynthesis 

can then be left up to the user for different applications. In some cases it may be de- 

sirable to separate instruments into the two classes mentioned above. In other cases, 

grouping of instruments over the two classes may be more appropriate. 

The early decay of harmonics (or the sound as a whole) does not pose a problem 

when 2 or more bases are used in the reconstruction of envelopes. In these cases the 

second basis "subtracts" amplitude components from the first basis contribution at 

later positions in the sound. 

6.1.3 Aural Evaluation 

The major aural discrepancy was between the original digitized versions of instrument 

sounds and any  of the resynthesized versions. Detailed attack information was no- 
' 

ticeably absent from the resynthesized sounds. Resynthesized sounds also lacked the 

"liveliness" of the digitized sounds. This is most likely due to the constant frequency 

'Including the decay portion of wind instrument sounds in the PCA analyses would not likely 
alter the two-class interpretation since wind instrument sounds die out quickly when wind energy is 
removed from the instrument. 
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harmonics, the 20 harmonic analysis limit, and the lack of inharmonic components in 

the resynthesized versions. The resynthesized piano sounds were particularly poor. 

Sounds reconstructed with 1-basis approximations to the envelopes were clearly 

inferior to the sounds resynthesized with all the original envelope information. How- 

ever, instruments were still recognizable with l-basis approximations (with a few 

exceptions, see page 86). 

On the other hand, there was little perceptual difference (with some exceptions) 

between sounds resynthesized using all the envelope information extracted from the 

Fourier analyses, and sounds resynthesized with 2 or more PCA bases approxima- 

tions. The principal discrepancy in timbre quality was with the wind instrument 

sounds. These sounds resynthesized with PCA bases approximations lacked some 

of the "uneveness" present in sounds resynthesized with all the envelope informa- 

tion. An inspection of the envelopes of wind instrument sounds reveals considerable 

microstructure. A tentative hypothesis is that envelope microstructure conveys the 

influence of player induced idiosyncrasies on the sound. It may be possible to repli- 

cate this effect algorithmicaliy rather than extracting microstructure variations from 

a sound specific analysis. 

6.1.4 Guitar Attack 

Inharmonic components of fixed frequency were found to be present at the onset 

of guitar sounds. Analysis revealed the major inharmonic component to be the air 

resonance of the instrument body. It is suggested that the other fixed inharmonic 

components result from resonances of the soundboard, although it was not possible 

to verify this. All the inharmonic components decayed at a roughly exponential rate 

from the onset of the sound. 

It is hypothesized that a significant portion of the characteristic sound produced at 

the onset of guitar sounds is a result of a bell-like decay of these instrument resonances. 

An algorithm was developed to replicate this effect, using no sound specific in- 

formation (other than the empirically determined resonances of the instrument). A 
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subjective assessment of the sounds produced, with and without the resonance com- 

ponents, tends to support the hypothesis. 

6.2 Suggested Analysis Improvements 

The two major deficiencies of the sound analysis performed for this thesis are the 8 

bit sample resolution and the lack of frequency fluctuation information. 

While frequency fluctuations were not the focus of data reduction, their availability 

for resynthesis would allow a better aural assessment of the success of the bases 

approximation of harmonic envelope curves. 

Additive resynthesis (see equation 2.1 on page 16) can be modularized into three 

separate (independent3) components: 1) harmonic amplitude changes over time, 2) 

frequency fluctuations, and 3) attack reconstruction4 (optional). To fully assess the 

effectiveness of resynthesis methods applied to one of the components (harmonic 

amplitude envelopes in this case) the other components (attack characteristics and 

frequency fluctuations) should replicate as closely as possible the effects they are 

trying to emulate. Any discrepancies between resynthesized sounds and the original 

digitized versions can then be attributed to the resynthesis module being manipulated. 

For this study, the perceptual similarity between sounds resynthesized with PC A 

bases envelopes and sounds resynthesized with all the envelope information, supports 

the efficacy of the representation. Even stronger support would result if the PCA 

bases approximated sounds and the original digitized versions were perceptually in- 

distinguishable. This was not the case. Extracting the original frequency fluctuations 

from the sounds and using them in the resynthesis might reduce the discrepancy 

between the digitized and resynthesized versions and allow the effects of amplitude 

envelope manipulation to be assessed independently of the other two components. 

3 ~ h i l e  frequency fluctuations and spectral changes over time are not necessarily independent 
physical processes, it may be advantageous to manipulate them independently in resynthesis- 
particularly if frequency fluctuations can be generated algorithmically. 

4This module would add instrument specific attack information (possibly inharmonic) not cap- 
tured by the other two modules. 
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While the 8 bit sample resolution is less of an issue in analysis as opposed to 

resynthesis, analyzing sounds with a 16 bit sample resolution would allow dynamics 

(intensity variations) to be included in the sounds analyzed. 

The following improvements are suggested for any future analysis of principal 

components of amplitude envelopes: 

Extract frequency fluctuations from the samples and include them in all resyn- 

t hesized versions of the original digitized sounds. 

Digitize sounds at 16 bit resolution and at a higher sampling rate (e.g. 44.1 

kHz). 

Include more harmonics in the analysis (e.g. 40-100). A higher sampling rate 

would allow this. 

Include intensity variations in the instrument sounds-and any other influences 

that are of interest. 

Include more instruments and instrument families in the sounds analyzed. 

Use a standardized recording environment or an anechoic chamber. 

Analyze longer sounds and include the natural decay of all instruments (this 

will involve carefully timing wind instrument sound duration during recording). 

Concentrate envelope points in the critical onset of the sound. Envelope (anal- 

ysis) points need not be equally spaced and wider spacing would likely be ac- 

ceptable later in the sound. 

' 6.3 Potential Applications and Future Research 

There are two principal applications of the PCA bases representation of harmonic 

amplitude envelopes. The first is as a research tool for studying the psychoacoustics 
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of timbre, the second is as a practical method of envelope manipulation in musical 

sound synthesis. 

6.3.1 Psychacoustic Research on Timbre 

Relevance of Local Envelope Features 

One of the issues in timbre research is the perceptual relevance of local features in 

envelope curves [ lo ,  34, 64, 691. Given that data reduction of the signal information 

in harmonic sound aids in establishing psychophysical relationships, the question is: 

To what degree can the envelope information be simplified without losing perceptually 

important information? 

A PCA representation of the envelopes with all the bases available may help to 

answer this question. Psychological testing of subject reactions to sounds resynthe- 

sized with increasing numbers of bases could establish the point at which envelope 

curve information is redundant. 

Such a study might also address the question raised in this thesis as to the per- 

ceptual role played by the microstructure of envelope variation. 

Timbre Space 

Given the tentative interpretations assigned to the first few bases, and the correspon- 

dence of the interpretations to the physical parameters of Wessel's timbre space [77] 

(see page 39), it would be useful to assess the similarity judgements (using multidi- 

mensional scaling, see page 32) of sounds reconstructed with the first two bases. 

The ordering of the sounds in a 2-dimensional timbre space could be correlated 

with various (scalar) measures extracted from the set of weights (over all harmonics 

of a sound) of the first two bases5. A high correlation would indicate that useful 

51t may be necessary to  include higher order bases in the derivation of a scalar "attack bite" 
measure. 
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parameters have been found for resynthesizing sounds with simple perceptual param- 

eters. These measures would be suitable for the high-level manipulation of parameters 

in timbre space. In addition the full power of PCA bases approximated resynthesis 

would be available (at a lower level) to fine-tune the sounds within the constraints 

imposed by the simple scalar measures. 

Assessing the Effects of Various Parameters on Timbre 

Since the envelopes all have the same underlying representation (weighted bases), 

the effect of parameters such as note register, note intensity, and various instrument 

specific parameters (picking position on a guitar string, etc.) can be assessed both 

graphically and statistically. This may be useful in exploring the phenomenon of 

timbral constancy of instruments across widely varying harmonic envelope shapes. 

Automated Instrument Identification 

The standardized envelope representation may be useful in developing pattern match- 

ing criteria for instrument identification (vowel recognition using principal component 

analysis is discussed by Plomp, Pols, and van de Geer [52 ] ,  see page 30). This would 

be most useful in the machine recognition of polyphonic music (see Moorer [45]). 

Spectral Changes over Time 

Principal component analysis could also be applied to the harmonic spectrum curves 

at different time points in the sounds. The evolution of the sound could then be 

plotted in terms of the bases weights as they change over time. This would provide 

an alternate (perhaps complementary) perspective on the timbre of sound. 
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cognitive Strategies 

Principal component data reduction has been useful in computational color vision for 

developing image analysis and resynthesis algorithms. While these methods do not 

imply that the same strategies are employed in human perception, they do provide 

existence proofs for data reduction on the same scale as is hypothesized to exist 

in human perception. Principal component analysis might play a similar role in 

computational audition, particularly with respect to the problem of timbral constancy. 

6.3.2 Musical Synthesis Applications 

A modular approach to synthesis of acoustic musical instrument sounds has some 

advantages, the primary one being that each module can be manipulated (and studied) 

independently. 

Three modules are proposed: 

0 1. Harmonic amplitude envelope generation. 

0 2. Harmonic frequency fluctation generation. 

3. Generating attack characteristics not  accounted for by the first two modules. 

Frequency Fluctuation Generation 

The work of Charbonneau [lo] and Kleczkowski [34] (see pages 28 and 24) indicates 

that considerable data reduction of harmonic frequency fluctuations is possible. The 

f o rm  that this data reduction takes is different from the data reduction of harmonic 

envelopes. Frequency fluctuations also appear to be suitable for manipulation inde- 

pendently of harmonic amplitude envelopes. Further data reduction of frequency fluc- 

tuations may be possible by generating the fluctuations algorithmically (as originally 

proposed by Risset and Mathews [56]). Different instruments may require different 

treatment. 
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Generating Attack Characteristic 

Attack characteristics may also require an instrument specific treatment, given the 

ear's high discriminability for onset transients. The guitar attack algorithm discussed 

on page 95 is an example. Further work on this algorithm might concentrate on 

verifying the soundboard resonance components and expanding the number of sound- 

board resonances-either through analysis or choosing arbitrary resonance frequencies 

(soundboard resonances will in general vary from instrument to instrument). Attack 

algorithms might also be developed for other instruments. 

Harmonic Amplitude Envelope Generation 

A PC A bases representation of harmonic amplitude envelopes-as developed in this 

thesis-is proposed as an alternative to line segment approximations. Some of the 

advantages are listed on page 126 and some suggested refinements of the analysis 

method are outlined on page 132. Futher empirical work might focus on methods of 

adding microstructure variations to bases reconstructed envelopes. This may require 

instrument (or instrument family) specific algorithms. 

Additional work is also required on ways to alter the duration of the resynthesized 

sounds, since the PCA bases extend over a fixed time frame. There are several strate- 

gies that could be employed. The first is to analyze sounds of different duration6 and 

use a different set of bases for each time frame. 

It may also be possible to simply reduce the volume level of the sound (as a whole) 

to emulate the natural decay of instrument sound. This may be appropriate for instru- 

ments whose intensity level can be maintained by the player (the wind instruments 

for example). A study by Saldanha and Corso indicates that the decay characteristics 

of sound have little perceptual significance 1611 (see footnote on page 25). 

Sustaining sound beyond the bases time frame, by splicing in "steady state" sound, 

'Sounds produced by acoustic guitars and the piano have a natural decay, largely independent of 
player influence. For this class of instrument sound, the analysis time frame should be long enough 
to include the longest sustaining note or at least a significant portion of it. 
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is possible but not likely to produce realistic instrument sound. This may however be 

required for very long sustaining sounds. A better strategy may be to analyze sound 

with a long time frame and shorten the sound by reducing the intensity level to zero 

as discussed above. 

Some suggested uses for the bases representation of envelopes in a musical context 

are the following: 

0 Cataloging a large number of instrument sounds over a wide variety of conditions 

(instrument, note register, intensity, et c.). The parsimonious representation and 

automated extraction of basis weights makes this "brute force" method feasible. 

A large number of subtle influences on timbre can be easily captured and stored 

in a database. 

0 The representation may be useful for the development of hierarchical control 

structures with intuitive control parameters (see Higher Level Control Mecha- 

nisms on page 90). 

The representation may be appropriate as the underlying envelope manipulation 

strategy in Wessel's timbre space [77] (see page 39). 

0 Interpolation between instrument sounds. The common bases representation 

facilitates the alteration of envelopes in a smooth, predictable fashion. 

0 Altering the timbre of sounds while staying within specified timbral bound- 

aries. This could be implemented with a graphical display of constraints (see 

Constraining the Selection of Weights on page 93). 

The bases representation of harmonic amplitude envelopes is well suited to graphi- 

cally oriented resynthesis applications as well as a useful tool for timbre research. Real- 

istic musical instrument envelopes can be reconstructed easily and quickly. The prob- 

lem of real-time (additive) resynthesis could be solved by implementing the method 

on a computer with a hardware interface to a Digital Signal Processor. 
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