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Abstract 

The problem of testing goodness-of-fit when fitting linear regression models is approached 

in this thesis through a careful study of the weak convergence properties of the empirical 

processes based on regression residuals. For normal theory linear regression models, the 

effect of estimating regression parameters and the effect of estimating the standard devi- 

ation of the error distribution are shown to be separable, and are each identified. Also 

identified is the effect of the Box-Cox transformation on estimation of regression parameters 

and error standard deviation. The weak convergence properties established here cover two 

different situations: (1) the number of regression parameters is fixed finite; (2) the number 

of regression parameters increases as sample size increases. 

When the error distribution is not normal, a group of contiguous alternatives are stud- 

ied in detail, and weak convergence properties of residual empirical processes under these 

contiguous alternatives are obtained. 

Applications of the above mentioned weak convergence properties are sought in three 

areas: (a) testing overall goodness-of-fit when fitting linear regression models; (b) testing 

overall goodness-of-fit for Box-Cox transformations; and (c) testing composite goodness-of- 

fit hypotheses for continuous distributions. 

Proposals are made to extend the basic ideas of EDF tests to  the areas of generalized 

linear models (GLIM) and transform-both-sides (TBS) models. 

iii 
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Chapter 1 

Introduction 

It is exciting experience studying the works concerning empirical distribution functions and 

the related empirical processes. 

Let yl, 92,. . . , yn be n real-valued observations from an experiment. For any real value 

y, let the proportion of the yi's that are less than or equal to y be denoted by F,(y). For 

a fixed y, Fn(y) is a function of the sample values y;, thus it is random; for a fixed sample 

{yl, ~ 2 , .  . . , yn), Fn(y) is a real-valued step function of y, also called a sample path, taking 

values between zero and one. Such a (random) function as Fn(y), which also enjoys all the 

properties of an ordinary distribution function, is called an empirical distribution function. 

1.1 Why Empirical Distribution Function? 

One of the most basic statistical problems is to learn about the behaviour of a population as a 

whole through taking sample observations on certain representative states of the population. 

It is not difficult for one to see that some principles are needed to guide the way in which 

the population is defined properly for a planned study, and the way in which data are 

collected and analyzed to answer questions proposed in the planned study. Among these 

considerations, one sooner or later needs to think about the following fundamental questions: 
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How can one know that one can come to understand population behaviour by just gathering 

and studying sample observations of the population? If one can, how well can one know the 

population? 

Although the world is full of uncertainties and mysteries, within the realm of statistics 

the answers to the above questions are certain and clear. In its simplest yet perhaps the 

most informative form the answers read: Yes, sample observations do reveal population 

properties, and with the increase of sample information, the understanding of the population 

characteristics is continuously improved, and when sample information piles up to infinity, 

one is bound to know the population for sure. 

In a more formal way to express the above answers, suppose the population distribution 

function is F(y), from which a random sample { yl , y ~ ,  . . . , yn) is taken. Then the famous 

Glivenko-Cantelli theorem says: almost surely, 

SUP IFn(y) - F(Y)I - 0 
- w < y  <+m 

as n + oo. That is, the empirical distribution function Fn(y) serves the basic role of 

exploring population properties through sample observations. Lokve (1955) called the above 

theorem "the fundamental theorem of statistics" and Pitman (1972, p79) called the above 

theorem "the existence theorem for statistics as a branch of applied mathematics."' It is 

noted here that the sample information Fn(y) and the population F ( y )  are compared over 

the whole range directly. 

1.2 Empirical Processes 

Almost sure properties are indeed good properties if estimation problems are of concern. 

However, distribution properties are often needed in order to test statistical hypotheses. For 

the above F,(y) and F(y), that IFn(y) - F(y)l converges almost surely to zero uniformly 

in y implies that for every y the limiting distribution of I Fn(y) - F(y)l is degenerate, i.e., 

 nothe her fundamental theorem is the central limit theorem of probability theory. 
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taking the value zero with probability one. This is a result that is of little use in telling 

the distributional difference between F,(y), which is known, and F(y), which is usually 

unknown. 

In fact, one does not have to work with the limiting distribution if one can find out 

the finite sample distribution directly. In the present context, it is possible to  do so for 

IF,(y) - F(y)l or its supremum over y provided {yl, y2,. . . , y,} is a random sample from 

the population F(y) and F(y) does not contain unknown parameters which need to be 

estimated. In general, however, finding exact finite sample distributions involving empirical 

distribution functions can be very difficult, if not impossible. 

Truth is often told in ideal situations as can be seen from the above arguments. But to 

work towards seeing the truth, fine balance between ideal situations and practical situations 

is necessarily required. Luckily, another fundamental theorem exists in the study of empirical 

distribution functions which points a way out. Let 

which is called the empirical process of the sample {yl, yz, . . . , y,}. For random sampling, 

this theorem says: as n + 0, Y,(y) converges weakly2 to  a Gaussian process3, whose distri- 

bution is non-degenerate and calculable. This is true even when some unknown parameters 

of F(y)  have to  be estimated. 

The balance that this thesis is to  take can be described as below: After randomly 

sampling a hypothesized distribution with known form but unknown parameters, some 

parameters of interest are estimated, say, through doing regression, and quantities called 

residuals are produced and used to  construct estimated or residual empirical distribution 

function i n ( y )  and further estimated or residual empirical process Y ~ ( Y ) ~ .  The limiting 

distribution of the residual empirical process Yn(y) is then found and used to  check the 

2See section 2.1 for the definition of weak convergence of stochastic processes. 
3See section 2.1 for the definition of a Gaussian process. 
'See section 2.1 for detailed definitions. 
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adequacy of the hypothesized distribution in regard to describing the sample observations. 

In other words, residuals from doing regression will take the place of the random sample 

in the ideal situations mentioned above, and results similar to those obtainable in the ideal 

situations using random samples will be obtained using the residuals. This approach for 

finding distributions is well supported by the rich literature in the general theory of function 

spaces and has proved successful. As a result, it is termed the stochastic process approach. 

1.3 A Review of Literature 

To clarify some of the points made in the above two sections further, and to put this thesis 

into perspective, a review of the literature on which this thesis is based is given below. This 

review is not meant to be comprehensive. Instead, this review begins by introducing the 

historical background in some detail, then a highly selected and highly condensed summary 

of those papers which either influenced the research done in this thesis directly, or pointed 

to different approaches and directions in the area of empirical distribution functions and 

empirical processes, is presented. For a good one-volume source, one can consult Shorack 

and Wellner (1986). 

The pioneer work was J. Doob's 1949 paper, Heuristic approach to the Kolmogorov- 

Smirnov theorems. There are two important themes studied in this paper: the first theme 

challenged the later theoretical statisticians; the second theme is called the invariance prin- 

ciple today. Together, these two themes laid down the corner-stone of the stochastic process 

approach, mentioned in section 1.2. 

Since if a random variable Y is distributed according to a continuous distribution F(y) ,  

then U = F(Y) is distributed as a uniform random variable U(0, I), one can consider the 

basic case of a random sample {ul, u2,. . . , un) from U(0,l). In this case let Un(t) be 

the proportion of the ui's that are less than or equal to  t ,  0 5 t 5 1, and let Bn(t) = 

Js;{Un(t) - t ) ,  0 < t < 1. 
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For any fixed t, nU,(t) is a binomial (n,p) random variable, where p = t, and B,(t) is 

nU,(t) standardized, therefore, as n -., oo, B,(t) converges in distribution to the normal 

distribution N (0, t - t2). Similarly, for any pair (tl , tz), (Bn(tl ), Bn(t2)) converges in distri- 

bution to the bivariate normal distribution with zero mean and covariance min(tl, t2) - t i t2.  

In fact, for any finite k and any t l , t2 , .  . .,tk, the k-vector (Bn(tl), Bn(t2), . . ., B,(tk)) con- 

verges in distribution to (B(tl), B(t2), . . . , B(tk)), a k-variate normal distribution with zero 

mean and covariance C whose (i, j)th element is min(t;, tj) - tjtj. This type of convergence 

is called convergence in finite distributions and is denoted B, -+ j .d .  B, as n -+ oo. For 

the present case, the process B(t) is the so-called tied-down Brownian motion or Brownian 

bridge characterized by: 

( B l )  B has continuous sample paths between the two fixed points t = 0 and t = 1, 

(B2) For any finite k and any tl, t2 , .  . . , tk, (Bn(tl), . . . , Bn(tk)) has a multivariate normal 

distribution with zero mean and a covariance matrix whose (i, j) th element is 

To test whether a random sample really come from the uniform distribution, many statis- 

tics have been suggested. Among those already available in the late 40's, the Kolmogorov- 

Smirnov (two-sided) statistic is defined by 

Dn = SUP IUn(t) - tl. 
OStSl 

The finite sample distribution of D, was difficult and unknown5 when Doob wrote his paper, 

but it was known that for any b > 0, 

P( sup IB(t)l > b) = 2 C e-2k2b. 
OStSl k=l  

Since B,(t) = fi{Un(t) - t) +fed. B(t), Doob argued (he wrote x, and x instead of B, 

and B): 

5This is known now, see Durbin, J.  (1973), section 2.4. 
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We shall assume, until a contradiction 

reasoning, that in calculating asymptotic x, 

frustrates our devotion to heuristic 

,(t) process distributions when n 4 oo 

we may simply replace the x,(t) process by the x(t) process. It is clear that this 

cannot be done in all possible situations, but let the reader who has never used 

this sort of reasoning exhibit the first counter example. 

Two things are implied by Doob's heuristic argument. The first thing is the relationship 

between convergence in finite distributions and what nowadays is called weak convergence6. 

Doob was quite right to  say ". . .this cannot be done in all possible situations, . . ." because 

convergence in finite distributions does not imply weak convergence in general. This problem 

was subtle and theoretical statisticians and probabilists worked hard for years to  develop a 

useful theory of weak convergence. See Billingsley (1968). 

The second thing implied is the invariance property which roughly says that the limiting 

distributions of the statistics calculated from B, in a continuous fashion should be the same 

as that calculated from B, the weak limit of B,. The invariance property allows one to  

design different statistics to catch different features of the problem in such a way in which 

one does not need to  worry about finding the limiting distributions of the statistics proposed, 

as long as the basic weak convergence from B, t o  B has been established. 

As with many landmark works, Doob's conjecture has been proved right (Donsker, 

(1952)). More importantly, his conjecture directed people to  develop useful theories and 

to  find other interesting applications. 

Given the above historical background, the following is an annotated list of references 

given in chronological order. 

1. Kac, M. and Siegert, A.J.F. (1947). An explicit representation of a stationary Gaus- 

sian process. A Gaussian process with a positive definite and square-integrable co- 

variance function (or kernel) can be written as a weighted infinite sum of independent 

'See section 2.1 for definition. 
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chi-square random variables, each of which is on one degree of freedom. The weights 

are a,ll positive, and are eigenvalues to a Fredholm integral equation of the first kind 

in which the covariance function is the kernel. This result is the theoretical basis of 

some numerical calculations. 

2. Donsker, M.D. (1952). Justification and extension of Doob's heuristic approach to 

the Kolmogorov-Smirnov theorems. The material here is a version of the invariance 

principle discussed above. 

3. Anderson, T.W. and Darling, D.A. (1952). Asymptotic theory of certain 'goodness-of- 

fit'criteria based on stochastic processes. A detailed account of the stochastic approach 

to finding goodness-of-fit test statistics and the corresponding (limiting) distributions 

is given in this paper. 

4. Darling, D.A. (1955). The Cmme'r-von Mises test in the parametric case. Centered 

at the concept of convergence in finite distributions, a fairly general formulation of 

constructing CramCr- type goodness-of-fit tests is discussed. 

5. Kac, M., Kieffer, J. and Wolfowitz, J. (1955). On tests of normality and other tests of 

goodness-of-fit based on distance method. The effects of estimating mean and variance 

on the limiting distribution of the test statistics based on integral-type distance are 

found explicitly. Many later works can be viewed as extensions of this basic result. 

6. Imhof, J.P. (1961). Computing the distribution of quadratic forms in normal vari- 

ables. A general working method is presented here to calculate probabilities related 

to quadratic forms in normal random variables. This is needed to carry through the 

stochastic approach to perform goodness-of-fit tests. 

7. Sukhatme, S. (1972). Fredholm determinant of a positive kernel of a special type and 

its applications. Ways of finding eigenvalues to Fredholm integral equations of the first 
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kind with a special type of kernels are investigated. The results are useful to perform 

goodness-of-fit tests when some parameters are estimated. 

8. Durbin, J. (1973a). Weak convergence of the sample distribution function when pamm- 

eters are estimated. A long-waited serious treatment of the weak convergence of some 

basic empirical processes is given here for the independent and identically distributed 

case. 

9. Stephens, M .A. (1974). EDF statistics for goodness-of-fit and some comparisons. 

Practically usable EDF tests of goodness-of-fit and their empirical powers are dis- 

cussed. 

10. Rao, J.S. and Sethuraman, J. (1975). Weak convergence of empirical distribution 

functions of mndom variables subject to perturbations and scale factors. A method for 

rigorously proving weak convergence of empirical processes is demonstrated. 

11. Stephens, M.A. (1976). Asymptotic results for goodness-of-ft statistics with unknown 

parameters. Some fine relationships are given between eigenvalues and the means and 

variances of some EDF statistics for testing goodness-of-fit of normal and exponential 

distributions with unknown parameters. 

12. Neuhaus, G. (1976). Weak convergence under contiguous alternatives of the empirical 

processes when parameters are estimated: The Dk appmch. Weak convergence of 

multi-dimensional empirical processes is studied. 

13. Mukantseva, L.A. (1977). Testing normality in one-dimensional and 

multi-dimensional linear regression. Empirical processes defined using residuals from 

straight line regressions with normal errors are investigated in detail. Extension to 

general linear regression situation is indicated. 

14. Pierce, D.A. and Kopecky, K.J. (1979). Testing goodness-of-fit for the distribution 

of errors in regression models. It is shown here that the covariance function of the 
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empirical processes defined using residuals from fitting linear regression models with 

normal errors and with a constant in the model matrix has the information structure 

of a location and scale family. 

15. Loynes, R.M. (1980). The empirical distribution function of residuals from general- 

ized regression. Weak convergence of residual empirical processes is considered for 

independent but non-identically distributed error distributions. 

16. Khmaladze, E.V. (1981). Martingale approach in the theory of goodness-of-fit tests. 

Weak convergence of empirical processes is studied through martingale theory. 

17. Koul, H.L. (1984). Tests of goodness-of-fit in linear regression. A fairly general for- 

mulation for studying ordinary and weighted empirical processes and rank processes 

with general errors is presented here. 

18. Shorack, G.R. (1984). Empirical and mnk processes of observations and residuals. A 

unified approach to investigate empirical and rank processes with or without nuisance 

parameters is provided. 

19. Pierce, D.A. (1985). Testing normality in autoregressive models. This paper tries to 

extend the results that hold for residual empirical processes from normal theory linear 

regression to stationary and invertible autoregressive models. 

20. D'Agostino, and Stephens, M.A. (1986). Goodness-of-fit techniques. A comprehensive 

treatment of commonly used goodness-of-fit methods is given here for applications. 

21. Meester, S.G. and Lockhart, R.A. (1988). Testing for normal errors in designs with 

many blocks. This paper studies EDF tests of goodness-of-fit in analysis of variance 

models when the number of parameters increases linearly with sample size. 

22. Koul, H.L. and Levental, S. (1989). Weak convergence of the residual empirical process 

in explosive autoregression. This paper tries to show that the results valid for residual 
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empirical processes from normal theory linear regression can be extended to explosive 

autoregression. 

23. Hjort, N.L. (1990). Goodness-of-fit tests in models for life history data based on cu- 

mulative hazard rates. This paper represents the current status of a new approach on 

goodness-of-fit problems in life testing and survival analysis. The theory of counting- 

process is used and cumulative hazard functions are studied directly. 

24. Terry, M. et al. (1990). Martingale-based residuals for survival models. Martingale, 

score and deviance residuals are reviewed for graphical methods of diagnostics for 

survival models. Analytic methods based on these residuals would be of potential 

applications and are worth investigating. 

The plan for this thesis is the following. Chapter 2 presents a careful study of the weak 

convergence properties of the empirical processes based on regression residuals. For normal 

theory linear regression models, the effect of estimating regression parameters and the effect 

of estimating standard deviation of the error distribution are shown to be separable, and 

are each identified. Also identified is the effect of the Box-Cox transformation on estimation 

of regression parameters and error standard deviation. The weak convergence properties 

established here cover two different situations: (1) the number of regression parameters is 

fixed finite; (2) the number of regression parameters is increasing as sample size increases. 

When the error distribution is not normal, a group of contiguous alternatives are stud- 

ied in detail, and weak convergence properties of residual empirical processes under these 

contiguous alternatives are obtained. Chapter 3 contains this material. 

Chapters 4 to 6 are direct applications of the previous two chapters. The problem of 

testing overall goodness-of-fit when fitting linear regression models is studied in Chapter 4; 

the problem of testing overall goodness-of-fit for Box-Cox transformations is investigated in 

Chapter 5; and the problem of testing composite goodness-of-fit hypotheses for continuous 

distributions is examined in Chapter 6. 
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Chapter 7 proposes extensions and further developments of the basic ideas of EDF tests 

into the areas of generalized linear models (GLIM) and transform-both-sides (TBS) models. 



Chapter 2 

Residual Empirical Processes: 

Linear Regression 

Empirical processes constructed by using residuals from ordinary normal theory linear re- 

gression are studied in this chapter. To this end, the concept of weak convergence in metric 

spaces is introduced in section 2.1, and some useful properties of least squares estimators of 

regression parameters are given in section 2.2. The next three sections are devoted to three 

important situations. 

Section 2.3 presents two theorems which handle the effect of estimating the standard 

deviation of the error distribution. Theorem 2.3.1 identifies the effect of estimating the stan- 

dard deviation a of the error distribution; Theorem 2.3.2 separates the effect of estimating 

a and the effect of estimating regression parameters 8 and shows that any weak convergence 

result for the empirical processes of residuals when a is known implies a corresponding result 

when a must be estimated. These two theorems allow one to concentrate, without losing 

any rigour, on the effect of estimating regression parameters 8. 

Section 2.4 studies the effect of estimating regression parameters 8 when the dimension 

of 6 is fixed finite. This effect is identified in Theorem 2.4.1; and a rigorous treatment of 
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the related weak convergence problems is given in Theorem 2.4.2. The main results for 

estimating both a and 9 are summarized in Theorem 2.4.3. It is noted that Theorem 2.4.2 

is a special but interesting application of Loynes (1980) and Rao and Sethuraman (1975). 

Some comments are given at the beginning of Section 2.4. 

Section 2.5 studies empirical processes related to analysis of variance models. By paying 

close attention to the simple structure of the model matrix, a less well-known weak con- 

vergence result, which was obtained for one-way layout by Meester and Lockhart (1988), is 

shown to hold for more general analysis of variance models, including balanced two-way lay- 

out (without interactions and with interactions, respectively), randomized complete block 

designs, and two-factor nested models. 

2.1 Weak Convergence in Metric Spaces 

Throughout this thesis, let ( 0 ,  A, P) be the underlying probability space. Let (S, &, d) be a 

metric space, where S is a set, d is a metric on S and & is the Borel a-field generated from 

all d-open subsets of S. Any map M: R + S is said to be a random element taking values 

in S if M-'(E)  E A for every E E &. In short, M is called a random element in S. 

2.1.1 Definition of weak convergence in metric spaces 

A functional on (S, &, d) is a mapping g from S to the real line R. R is always endowed with 

Euclidean metric d,, the absolute value, and B is the Borel a-field on the real line. Then 

g is •’-measurable if g-'(B) E & for every B E B; g is bounded if there exists an L > 0 

such that Ig(s)l < L for all s E S ;  g is d-continuous if sn,s E S and d(s,,s) -+ 0 imply 

Ig(sn) - g(s)I -+ 0, as n + 

Given a sequence of random elements Y,, n 2 0, in S, one can construct a sequence of 

probability measures Pn on (S, &) through defining for each n and any E E & 
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Here P, is called the probability measure induced by Y,. 

Definition 1 (Weak convergence) A sequence of random elements Y,, n 2 1, in S 

is said to converge weakly to a random element Yo in S if for every bounded, d-continuous, 

&-measurable functional g on S ,  

as n + oo. This type of convergence is denoted Y, + Yo or Pn + Po, as n -t 00, and Yo is 

also called a weak limit of Y,. 

For properties and criteria of weak convergence in general metric spaces, one can consult 

Billingsley (1968), Bergstrom (1982) and Pollard (1984). In particular, when (S, &, d)  = 

( R ,  B, d,), where d, is the absolute value metric on the real line R, the concept of weak 

convergence coincides with convergence in distribution of real random variables; the latter 

is denoted, say, Y, -+d Yo for random variables Y, and Yo. 

Closely related to the concept of weak convergence are the concepts of relative compact- 

ness and tightness. 

Definition 2 (Relative compactness, Tightness) A family II of probability 

measures on S is said to be relatively compact, if each sequence of members of II 

contains a sub-sequence which converges weakly to a pmbability measure on S ;  II is said to 

be tight i f  for every c > 0, there exists a compact subset K,  of S such that n(K,) > 1 - c for 

all ?r E II. 

These two concepts are related by the following result due to Prohorov (1956), which 

makes it easier to apply the theory of weak,convergence: 

For general metric spaces, if II is tight, then 11 is relatively compact; 

For separable metric spaces, if II is relatively compact, then 11 is tight. 
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2.1.2 Convergence in probability and product spaces 

Many concepts about univariate and multivariate random variables can be generalized to 

the context of random elements in general metric spaces. 

For a sequence of random elements Y, in S and an element s E S ,  if for each E > 0, 

as n -, oo, then Y, is said to converge in probability to s, denoted by Y, +, s. Here, s can 

be regarded as a constant-valued random element. 

Let X ,  X, be random elements in metric space S1, let Y, Yn be random elements in 

metric space $2. If both S1 and S2 are separable, then the product space S' = Sl x S2 is 

separable and (X,Y) and (Xn,Yn) are random elements in 5''. The following list of facts 

will be needed later, and their proofs can be found in Billingsley (1968). 

Fact 1 Y, -+, s if and only if Y, + s. 

Fact 2 If S = S1 = S2 is separable, then Yn + Y and d(Y,, X,) +, 0 imply X, + Y. 

Fact 3 If S1 and S2 are separable, then X, + X and Yn -+, s imply (X,,Y,) (X,s),  

where s E S2. 

Fact 4 If S1 and S2 are general metric spaces and S* = Sl x S2, then probability measures 

on S* are tight if and only if the two sets of marginal probability measures are tight 

on Sl and S2, respectively. 

2.1.3 Space C[O,l] and space D[O,l] 

For applications of weak convergence theory to the study of empirical distribution functions 

and empirical processes, the general metric space (S, C, d) needs to assume a special form. 

Define D[O, 11 to be the collection of all real-valued functions x : [O, 11 -+ R that are 

right-continuous and have left-hand limits. For example, the sample paths of the empirical 
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distribution function U,(t) of a sample from U(0, l )  belong to D[O, 11 for every n. D[O, 11 

will be the basic space used in this thesis. 

Also, let C[O, 11 be the collection of all real continuous functions defined on [0,1]. Clearly, 

C[O, 11 C D[O, 11. When endowed with the uniform metric d, defined for x, y E C[O, 11 by 

(C[O, l],d,) becomes a complete separable metric space. Let C denote the Borel a-field 

generated by all the d,-open subsets of C[O, 11. 

To introduce a suitable metric on D[O, 11, subtleties arise. The problem is essentially 

the. problem of measurability when one wants to work with some functionals of empirical 

processes, such as Kolmogorov-Smirnov statistics. The situation can be worse. For example, 

if the uniform metric d, is adopted for D[O, 11 and & is the Borel a-field generated by all 

the d,-open subsets of D[O, 11, then even the empirical process from a U(0,l) sample is not 

a random element in D[O, 11 if one is willing to accept the axiom of choice of set theory 

(Pollard, (1984)), therefore, there is no way to study any distributional property. With the 

uniform metric d,, the problem is that & contains too many sets. 

There are different ways to overcome the difficulty associated with the measurability 

problem. The way presented below comes from Billingsley (1968). Other approaches can 

be found in Pollard (1984), Shorack and Wellner (1986) and references therein. 

Define, for x, y E D[O, 11, 

where A consists of all strictly increasing continuous functions from [0,1] onto [0,1]. That d, 

is a metric is a standard result now, due to Skorohod (1956). Thus d, is called the Skorohod 

metric. The Borel a-field generated by all the d,-open subsets of D[O, 11 is denoted by 2). 

Equipped with d,, D[O, 11 becomes a complete separable metric space, too'. Complete- 

ness of (D[O, l],d,) is not important if the existence of a limiting process is known, but 

' (D[o ,  I],&) is complete but not separable. 
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separability is vital to ensure measurability for many interesting applications. 

For a sequence of random elements Y,, n 2 0, in D[O, 11, the following sufficient condi- 

tions for weak convergence and tightness in D[O, 11 are very useful. 

Weak Convergence: If Y, 4 j . d .  Yo (Y, converges in finite distributions to Yo) and 

Yn, n 2 1, is tight, then Yn =+ Yo; 

Tightness: For 6 > 0, define 

If (i) for any > 0, there exists an a > 0 such that for all n 2 1, 

and (ii) for any 7 > 0 and any y > 0, there exist 6 E (0 , l )  and no = no(6, 7, y) such 

that for all n 2 no, 

P{Wy,,(fi) 2 71 5 7, 

then Yn, n 2 1, is tight. See Billingsley (1968). 

The above sufficient conditions also apply to random elements in C[O, 11. Moreover, 

between space (C[O, 11, d,) and space (D[O, 11, d,), there is the relationship that for any x, y 

in D[O, 11, d,(x, y )  2 d,(x, y) and C = C[O, l ] n D ,  that is, on C[O, 11 d, and d, determine the 

same topology. Note also that weak convergence depends only on the topology on S, that 

is, if two different metrics lead to the same topology on S, the notion of weak convergence 

on S will be the same regardless of which metric is actually used. 

2.1.4 Gaussian process and the stochastic process approach 

The limiting processes which will be derived in this thesis are known as Gaussian processes 

in general. Formally, a Gaussian process with index set T is a collection of real-valued 

random variables {Yt I t E T) such that for every k 2 1 and all indices t l ,  ta, . . . , tk in 
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T, ( X I , .  . . , X k )  is a k-variate normal random vector. Knowing the mean and covariance 

structure is equivalent to  knowing the distributional properties if the process involved is 

Gaussian. 

The Brownian bridge is a continuous sample path Gaussian process indexed by T = [O, 11 

with zero mean and covariance function 

po(s, t) = min(s, t) - st, s, t, E [0, 11. 

Now one can see the starting point of the stochastic process approach more clearly. For 

a sample { u ; ) ~ ~ ~  from U(0, I) ,  that is, u; : 52 -, [ O ,  11 is a random variable, i = 1,2, .  . . , n, 

the empirical distribution function is, strictly speaking, a function of w and t, i.e., Un(w, t), 

where w E 52 and t E [0, 11. One can view this as a stochastic process indexed by T = [O, 11 

if the "evolution" of the process is of interest. On the other hand, for goodness-of-fit type 

problems, the behaviour of Un(w, t) over the entire range of t needs to be considered at  the 

same time. When this is the case, for each w it is better to  think of Un(w, t) as a point 

in D[O, 11. This point of view is especially useful when one analyzes functionals defined on 

D[O, 11 involving Un(w, t ) ,  because the analysis can then be done in two stages: the analysis 

of U,(o, t )  and the analysis of the functionals. If one can prove weak convergence of Un(w, t), 

one is ready to  analyze any continuous functionals of Un(w, t) in the same manner. 

2.2 Some Useful Results for Least Squares Estimators in 

Linear Regression 

Linear regression, assuming a normal error distribution, is one of the most widely used 

statistical techniques. For this and because of this, methods for fitting models, estimating 

parameters, checking model adequacies and predicting future responses have been studied 

extensively. 
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ASSUMPTIONS VIOLATIONS 

Linearity and additive errors Non-linear dependence on 0 

yi = xfe+&; ,  and/or non-additive errors. 

where 8 = (el,. . . , Op)t is the 

unknown regression parameter. 

Independence of errors Correlated errors. 

E; are mutually independent. 

Constant error variance Heterogeneous variances. 

V(E;) - u2. 

Normal error distribution Skewed and/or long/short 

each E; is normally distributed. tailed error distribution. 

Error-free covariates Random covariates. 

xf are measured without error. 

Uniqueness of Collinearity among Xj's, 

rank(X) = p, full rank, where Xj's are the 

X = (XI, .  . . ,Xp).  columns of X .  

Table 2.1: Assumptions of normal theory linear regression and possible violations. 

2.2.1 Assumptions of linear regression 

As with many formalized statistical techniques, linear regression is based on a number of 

assumptions, each of which has its evil competitor. In the following, these assumptions are 

listed in such a way that allows one to see the kinds of violations that may occur. 

Let y; be the ith response associated with covariates sf = (x ;~ ,  . . . , x;,) (a row vector, 

here t denotes transpose) and error E ; .  Let X = (XI, X2,.  . . , Xp) be the model matrix, 

where Xj is the jth column of X .  Table 2.1 lists six assumptions for a standard linear 

regression model and some possible violations. 
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2.2.2 Properties of least squares estimators in linear regression 

Suppose the six assumptions in Table 2.1 are met. Using matrix notations, a linear regression 

model can be written as 

Y = X ~ + U & ,  ( 2 . 2 4  

where Y is an n x 1 vector of responses; X is an n x p matrix of covariates with known values 

and rank(X) = p; 8 is a p x 1 vector of unknown regression parameters; a is the unknown 

standard deviation of the error distribution; and E N N,(O, I), where I is the n x n identity 

matrix. 

By minimizing the residual sum of squares SSR(8) = (Y - X8)t(Y - XB) with respect 

to 8, one obtains the least squares estimator 9 of 8, predicted values Y ,  ordinary residuals 

R and an estimator &2 of a2. Some useful properties of these estimators and a number of 

other quantities are listed below for future reference. 

1. Properties of 9: 

1.1 9 = (XtX)-'XtY. 

1.2 ~ ( 9 )  = 0. 

1.3 9 is BLUE, i.e., among the class of all linear unbiased estimators of 8, 9 has the 

smallest variance. 

1.4 v(9) = a2(xtx)-'. 

1.5 9 - 8 N N,(o, a2(XtX)-'). 

2. Properties of Y: 

2.1 = ~9 = HY, where H = X(XtX)-'Xt is called the hat matrix or the projec- 

tion matrix. 

2.2 E(P) = xe. 

2.3 V(Y) = a 2 ~ .  
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3. Properties of R: 

3.1 R = Y - Y = ( I  - H)Y = u ( I  - H)E. 

3.2 E(R) = 0. 

3.3 V(R) = a 2 ( I  - H). 

3.4 R ~ ~ ( 0 ,  U ~ ( I  - H ) ) .  

3.5 R ~ R / U ~  N x:-,, where X:-p is a X2 random variable on n - p degrees of freedom. 

4. Properties of i?2: 

5. Properties of H and I - H: 

5.1 H  and I - H are symmetric and idempotent, in particular, hi; = C;==, h$, for 

i = l , 2 , . - . , n .  

5.2 trace(H) = p, trace(1- H )  = n - p. 

5.3 0 5 hi; 5 1 for all i, -0.5 h;j 5 0.5 for all i # j .  

6. Independence Lemma: Let 0 and R be defined as above and define the standardized 

residuals r  by 
R Y - P  

Then the triple ( e ,  8, r )  has three mutually independent components. 

Proof. It suffices to show that r is independent of ( e ,  d) ,  as the other cases are standard 

results which can be found in Seber (1977) and Chatterijee and Hadi (1988). 
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It is tricky to prove (Arnold (1981), page 64), but it is true, that (8,6) is jointly complete 

and sufficient for (8, a). Note that 

has a distribution free of a. By Basu's theorem, T is independent of (8,6). 0 

2.3 Residual Empirical Process: Two Theorems for Han- 

dling the Effect of Estimating Standard Deviation a 

When responses Y = (yl, yz, . . . , yn)t satisfy the linear regression model defined in section 

2.2.2, namely, 

Y = X ~ + U E ,  & Nn(O,I), (2.3.1) 

or in its component form 

yj = xf 8 + a&;, ~j are independent N (0, I), (2.3.2) 

both 6 and a need to be estimated in most real situations. It turns out that the contribution 

from estimating 6 is different from that of estimating a, and these two sources of contribu- 

tions can be clearly separated-a miracle that comes from the normality assumption as will 

be seen. This section is devoted to the study of the effect of estimating a. 

2.3.1 Definitions of residual empirical processes Y,(t) and Fn(t) 

The notations introduced in section 2.2.2 are also used in this section. In particular, R = 

Y - p, and r = Rib, where b2 = RtR/(n - p). The component form of R is 

while the component form of r is 
yj - xiti 

Ti  = 
6 .  
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Furthermore. define 

Let @(z) = J_1, +(y)dy, where +(y) = (2x)-1/2exp{-iy2), -oo < y < +oo. For t E [ O , l ] ,  

let Jl(t)  = 4(@-'(t)), J2(t) = Jl(t)@-'(t). 

Definition 3 (Residual empirical process) In linear regression (2.3.1), 

let e; = @(R;)  and E, = @ ( r ; ) ,  i = 1,2,.  . ., n. Then for t E [0, 11 define 

n 

Yn(t) = n-lI2 x {I[e; < t] - 1) , using ei 's, (2.3.3) 
i=l 

n 

Fn(t) = n-lI2 x {I[G < t] - t) , using E; 's, (2.3.4) 
i=l 

as empirical processes based on residuals, or simply, residual empirical processes, for the 

2.3.2 The first decomposition of residual empirical process: 

R ( t ) = (Yn 0 Hn ) (t ) + Zn (t ) 

Observe that 

V i e'; < t 

iff yi - ~ f e  6W1(t)  

iff e; < @ (&@-l(t)) . 

Denoting Hn(t) = @(6@-'(t)) and Zn(t) = +(H,(t) - t), t E [ O , l ] ,  one arrives at the 

following decomposition of pn (2): 

It can be seen that in the first component of the above decomposition, Yn(t) appears, 

which comes from estimating 8 alone, but there is a random change of time involved; in 
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the second component, the only part which is random is 6. This is exactly the result of 

estimating a. The idea here is to find the limiting distributions of Yn and Zn first, then 

through random change of time, to obtain the limiting distribution of Yn. 

2.3.3 Study of Zn(t): Zn(t)  converges weakly to a Gaussian Process 

Taylor expansion method will be employed to  find the weak limit of 2,. To simplify notation, 

some notational conventions are introduced here and used throughout this thesis. 

When a function f satisfies the conditions of Taylor expansion about a point a ,  one has 

1 
f ( t )  = f (a)  + C hf (k ) ( a ) ( t  - aIk + f(n+1')(77)(t - a)"", 

k= 1 (n + I)! 
where 77 is a number lying between t and a. In general, 17 changes when t and a change, but 

when the exact location of 77 is not important, as will be seen in many cases in the rest of 

this thesis, it is agreed to write a t  the same time, say, 

etc, using the same 7; when dependence on t and a is important, it is agreed to  write, say, 

Lemma 2.3.1 Let v = n-p and &(t) = 2-1/2~2(t)(2u)-1/2 (uh2 - u), t E [0, I]. Then 

(1) (2~)- 'I2 ( ~ 6 ~  - u) +d N(O,1) a s  u -t oo, 

(2) {jn(t))r=l is tight in both C[O, 11 and D[O, 11. 

Proof. Without loss of generality, assume a = 1. If X N X E ,  the characteristic function 

of X is 

cp, (t) = (1 - 2it)-5. 
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Let Y = (X - u)/&, then the characteristic function of Y is 

2 
As v + 00, one can show that y y ( t )  + e-t 12. By LCvy-Cram& theorem, Y +d N(0 , l ) .  

Since ub2 N XZ, therefore, (2u)-'I2 (ub2 - v) 4 d  N(0 , l ) .  

According to  section 2.1.3, the following two conditions are sufficient for 2, to  be tight: 

(i) V I) > 0, there exists an a > 0 such that for all n 2 1, 

(ii) V y > 0, V I) > 0, there exist 6 E ( 0 , l )  and no = no(6, y ,  7) such that  for all n 2 no, 

~ ( ~ ~ ( 6 1  t Y} < I ) ,  

where Wi.(6) = ~upl.-~l<s l%t(s) - in(f ) l .  

Now &(o) = 0 because J2(0) = 0, so (i) is satisfied. To prove (ii), notice that 

Because J2( t )  is continuous on [0,1] (Shorack and Wellner (1986), page 181), for any y > 0 

and I) > 0, one can choose 6 E ( 0 , l )  such that  supl,-,l<b 1 J2(s)  - J2(t)l = b, where b has the 

property that  2{1 - @(fi7/b)) I 7,112. Let a, = (2v)-'I2 (vd2 - u), since a, --td N(0, I) ,  

one can choose no such that  for all n 2 no 

Therefore, 
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Lemma 2.3.2 For a n y  fixed a > 0, 

( 1 )  4(a9- ' ( t ))9- ' ( t )  and 4 ' ( ~ 9 - ' ( t ) ) [ 9 - ' ( t ) ] ~  are continuous functions of t 

on [O,  11, 

( 2 )  Let A(q, t )  = 4(q)Q-'(t) ,  and B(q ,  t )  = 4'(q)[9-'(t)]2, where q is random 

and is lying between &a-'( t )  and 9- ' ( t ) .  I f  x,  +, 0,  then 

xvA(77, t )  = xvB(q, t )  = op( l ) .  

Proof. To prove b(o9- ' ( t ))9- ' ( t )  is continuous on [0,1], it suffices to prove that the 

right hand limit at 0 and the left hand limit at 1 exist. Let x = a- ' ( t ) ,  then 

lim 4(a9- ' ( t ))9- ' ( t )  = lim 4(ax)x  = 0. 
t+o+ x+-00 

Similarly, 

lim +(a@-'(t))@-'(t) = lim q!(ax)x = 0. 
t+1- x++m 

Similar arguments show that q5(09-'(t))[9-'(t)]~ is continuous on [0,1]. 

Since B +, a ,  for any 6 ,  r > 0, there exists a vo such that for v > vo, 

Without loss of generality, suppose o - 6 > 0. Then from ( I ) ,  there is a constant M ( a )  > 0 

Because xu +, 0,  one can find an m > vo such that for all v > m ,  P{lx,l > 6 / M ( a ) )  < r /2 .  

Then for v > m, 

that is, for any 6 > 0,  P { s u ~ ~ < ~ < ~ I x ~ A ( ~ , ~ ) ~  - - > 6 )  --+ 0, as v = n - p  --+ oo. This proves 

xvA(q, t )  = op( l ) .  Similarly, one can show that xvB(q,  t )  = op( l ) .  0 
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Theorem 2.3.1 (The effect of estimating a) In linear regression model 

(2.3.1), let Zn(t) = ,/?l(Hn(t) - t), where Hn(t) = a(&@-'(t)). If d = limn,, n l v  exists, 

where v = n - p and 1 < d < oo, then Zn(t) + Z(t), a Gaussian process with zero mean 

and covariance function 

Proof. Without loss of generality, suppose that the true value of a is 1. 

Step 1. Zn(t) = &in( t )  + op(l), where i n ( t )  = 2-'I2 ~2( t ) (2v) - ' /~  (ye2 - v). 

This expansion comes from expanding Hn(t) about 9-'(t), which gives 

where lies between 9-'(t) and 69-'(t). Note that 

&(e2 - 1) = f i  (2u)-l/2 (ud2 - u), 

4 2  f i (6  - 1)2 = ( 6  - 1) - (24-'I2 (v62 - u). 
a + l  

Because 6 - 1 +, 0 as v -t oo, (2~)-'I2 ( ~ 6 ~  - u) +,j N(0, l )  from (2) of Lemma 2.3.1, by 

Slutsky's theorem, fi(? - 1)2 = o,(l), hence, by Lemma 2.3.2, 

Thus 

Rewriting f i ( 6  - 1) as a ( &  + 1)-'(2~)-'I2 (ud2 - u) and using the fact that 6 +p 1 and 

Jz(t)  is continuous on [0,1], one has, by Slutsky' theorem again, 
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therefore, 

Step 2. gn(t)  -+f.d. normal distributions. For any k 2 1 and any such that 

0 I t l  I t2 I,. . .,tk 5 1, consider the random k-vector Wn = (Zn(tl),.  . . , in ( tk) ) t .  

Clearly, E(Wn) = 0, because ~ ( ( 2 v ) - ' / ~ ( v & ~  - u)) = 0. Let a, = ( 2 ~ ) - ~ / ~ ( v 6 ~  - u), 

define rn = (rj;) = V(Wn) = E(WiWn), where 

Since E(a,) = 0 and V(a,) = 1 for any v, r;l = J2(tj)J2(t1) is independent of n. 

Let < u, v >= ~ i k , ~  ujv; denote the usual inner product in Euclidean space R ~ .  Then 

for u E R ~ ,  

On the other hand, the characteristic function of W, is 
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Comparing (2.3.8) with (2.3.9) gives 

Step 3. From Lemma 2.3.1 (2) and step 2, Z,(t) is tight and converges to normal laws in 

finite distributions, thus jn( t )  converges weakly to some Gaussian process, say, Z(t). The 

above calculations show that Z(t) has zero mean and covariance function 

1 
Cov(z(s), z( t ) )  = J2(5) J2(f). 

Since Z,(t) = d j n ( t )  + o,(l), where 1 5 d = limn,, n/u < ca, by fact 2 of section 2.1.2, 

Zn(t) * d Z ( t ) ,  which is a Gaussian process with zero mean and covariance function 

2.3.4 Random change of time 

Let Do[O, 11 = {x : x E D[O, 11, x is nondecreasing, 0 2 x(t) 5 1). Let Do = Do[O, 11 n V. 

For x E D[O, 11 and g E Do[O, 11, define Q : D[O, 11 x Do[& 11 + D[O, 11 by 

Then Q is measurable, see Billingsley (1968), page 232. 

For random elements Xn, X in D[O, 11 and random elements G,, G in Do[O, 11, Xn o Gn 

is a random element in D[O, 11, resulted from subjecting Xn to the random "time" change 

represented by G,. From Billingsley (1968), pages 144-145, if 

P{X E C[O, I]) = P{G E C[O, 11) = 1, 

then Xn o G, * X o G in D[O, 11. 
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2.3.5 Separating the effect of estimating standard deviation a and regres- 

sion parameter 8 

The residual empirical process Yn( t ) ,  constructed essentially from the standardized residuals 

after estimating regression parameter 9 and standard deviation 0 ,  was decomposed into 

in section 2.3.2 and the weak limit of the second term Zn( t )  of this decomposition has been 

found in section 2.3.3. 

There are two more things to be noticed here. Firstly, Hn(t)  is a random element in 

Do[O, 11; secondly, Z,(t) is independent of pn(t) for any t ,  because Zn depends on 6, Yn 

depends on r;, and 6 is independent of r; according to the independence lemma of section 

2.2.2. 

Moreover, Hn(t )  +p T, where T is the identity map on [0,1]. To see this, expand Hn(t)  

about @-'(t)  again, one has 

where q lies between @-l(t)  and 6@-'(t). Since ( 6 -  1)  +, 0, as v = n - p  oo, by Lemma 

2.3.2, Hn(t)  - t = oP( l ) .  

It becomes clear now that if Yn converges to some Gaussian process Y, one has a good 

chance of finding the weak limit of pn. The following theorem formalizes this idea. 

Theorem 2.3.2 (Random change of time) In linear regression model (2.3.1), let 

Yn ( t )  and pn(t) be given as in Definition 3. If Yn Y ,  where Y is a Gaussian process with 

zem mean and continuous covariance function p,(s, t ) ,  and if 1 < d = limn,, n / ( n  - p) < 

oo, then p,., + p, where p is also a Gaussian process with zero mean and covariance 
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where p2(s, t) is given in Theorem 2.3.1 as (d/2) J2(s)J2(t). 

Proof. Since H, + T and by assumption Y, + Y ,  one has2 by fact 3 of section 2.2.2 

and random change of time that Yn o H, + Y o T = Y. That pn is tight comes from the 

fact that both Yn o Hn and Z, are tight and Pn = Y, o H ,  + 2,. That Pn converges in 

finite distributions to a Gaussian process, say, P, is the consequence of Yn o H, + ~ . d .  Y and 

2, + ~ . d .  Z and Zn is independent of Pn. Together, one has Pn =+ p, p is independent of Z 

and P = Y + Z. Finally, for all s, t E [0, 11, 

by the independence of P and 2. The above equation can be rewritten into p(s,t) = 

pm(s7 t) - p2(s, t) as desired. 0 

Remark 1. If let yn(t) = Yn(t) + Zn(t), one also has =+ p, where P is the weak 

limit of Fn. So Theorem 2.3.2 has justified a partial random change of time, that is, change 

the time t in Yn only. 

Remark 2. Theorem 2.3.2 reduces the problem of finding the weak limit of pn into the 

problem of finding the weak limit of Yn. This reduction greatly simplifies the study of Pn. 
Remark 3. The restriction on the dimensionality of the regression parameter 0 is mild 

in Theorems 2.3.1 and 2.3.2. In particular, the case where p depends on n and increases to 

infinity with n is allowed as long as limn, n/(n - p) < oo. 

2Gaussian processes with continuous covariance functions have continuous paths with probability one. 
See Gikhman and Skorohod (1965). 
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2.4 Residual Empirical Process: Linear Regression With 

Fixed Number of Regression Parameters 

With Theorem 2.3.2 proven, the limiting distribution of Yn(t) is what is needed to complete 

the search for limiting distribution of pn(t). Recall that 

where e; = ~ ( ~ j - x f e ) ,  i  = 1,2,.  . . , n, is the least squares estimator of B in linear regression 

(2.3.2), namely, 

y; = xf B + a&;, E;'S are independent N (0, l) ,  (2.4.1) 

where xf is the i th row of the model matrix X = (xl , zz, . . . , x,), and x j  is the j th  column of 

X .  Assume in this section that the dimension of regression parameter 8 is p and p is fixed 

finite. Assume also that the true value of a is 1. 

Some comments are due before proceeding to present the theorems of this section. 

Among the authors who made contributions under the title of this section, Mukantseva 

(1977) studied in detail the case of straight line regressions and indicated extensions to 

multiple regressions; Pierce and Kopecky (1979) concentrated on showing that the limiting 

Gaussian process of the residual empirical process has the covariance structure that appears 

in the study of a location and scale problem; Loynes (1980) formulated the problem for 

independent, but not identically distributed random variables and obtained some general 

results; Koul (1984) allowed the error distribution in linear regression to be different from 

the normal and considered the weak convergence of weighted residual empirical processes; 

Shorack (1984) presented a unified approach to investigate empirical and rank processes with 

or without nuisance parameters. Although there are no totally new results in the theorems 

to be discussed below (except that Theorem 2.4.2 and part of Theorem 2.4.1 are not seen 

in the literature in the form given in this thesis), compared to the above cited sources, the 

approach taken here is more direct, the treatment of weak convergence problems is more 
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careful, and conditions of the theorems are somehow simpler. Of course, this is possible 

largely because the errors are supposed to  be normally distributed. 

2.4.1 The second decomposition of residual empirical process: 

yn(t) = Kn(t )  + YZn(t) + Y3n(t) 

Observe that 

V i e; < t 

-3 ?,; - x:e < W1(t) 

e yi - x p  5 w l ( t )  + ~ ; ( e  - 8) 

e U j  = Q ( E ; )  < @ (a-'(t) + xf(6 - 8)) , 

where u; are independent U(0,l)  random variables. It is then possible to  decompose Yn(t) 

into three parts as 

In this decomposition, Y3,(t) converges weakly to  a Brownian bridge as mentioned in chapter 

1, namely, a Gaussian process with zero mean and covariance function po(s, t) = min(s, t) - 

st. Notice that Y2n(t) is the result of randomly perturbing the time t by x:(e - 8), and Yln(t) 

is the result of randomly perturbing the empirical process n-'I2 Cy=l {I[u; < t] - t)  of a 

random sample from U(0 , l ) .  The plan of this section is to  show that (1) Y2,(t) converges 

weakly to  a Gaussian process, representing the effect of estimating 8; (2) Yln(t) = op(l). 
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2.4.2 Study of Y2,(t): Y2,(t) converges weakly to a Gaussian process 

Since Y2,(t) = n-'I2 x:=l { 9 ( 9 - ' ( t )  + xi(&- 8 ) )  - t ) ,  expanding 9 ( 9 - ' ( t )  + x:(e - 8) )  

about 9- ' ( t )  gives 

where lies between 9- ' ( t )  and 9- ' ( t )  f xf(e - 8),  

Theorem 2.4.1 (The effect of estimating 8, p is fixed ) In linear regression 

model (2.4.1), let H = (h i j )  = x(xtx)-'xt be the projection matrix, let mj  = Cy=l hi j ,  

j = 1,2 ,..., n. Then 

( I )  Y2,(t) = P2n(t) + o p ( l ) ,  where S n ( t )  = n-'I2 4(9- ' ( t ) )  EL1 mjEj, and 

(2) F2,(t) + P2(t),  provided b = lirn,,,(x;=, m! ) /n  exists finite, where p2 is a Gaus- 

sian process with zero mean and covariance function 

Proof. ( 1 )  Because xf(4 - 8)  = zf ( X t X ) - ' X ~ E  , i = 1,. . . , n ,  where E = ( c l ,  ~ 2 ,  . . . , E , ) ~  

is a random sample from N ( 0 ,  I ) ,  the following relationships are observed according to the 

definitions of hij and mj.  
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Moreover, let s u p Z E ~  lgS(x)1 = k < oo, then for any 6 > 0, 

2 
P {d , (n - '~~  #(Q) (x:(I - 8)) ,0) > 61 

+ 0, as n --+ oo. 

Therefore, Y2,(t) = p22,(t) t op(l). 

(2) First, p2,(t) is tight in C[O, 11 and D[O, 11. This follows readily by checking the two 

conditions (i) and (ii) listed in section 2.1.3. That (i) is true comes from the fact that 

Jl(0) = 0, where Jl(t)  = +(a-'(t)). Since for 6 > 0, 

then, V y > 0, V q > 0, 

as n-'I2 Xy=l mjEj N(0, n-' CEl m!). Under the assumption that n-' Ey=l m! -t b, 

where b < oo, there exists an 1 > 0 such that n-' Cy=l m! < l2 for all n 2 1. Furthermore, 

Jl(t)  is continuous on [O, l ] ,  therefore, is uniformly continuous on [0,1], so there is a 6 : 0 < 

6 < 1 such that  sup^,-+,^ IJl(s) - Jl(t)l < h, where h has the property that 
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For this choice of 6, 

for all n 2 1, proving the tightness of p2n(t). 

Second, F2,(t) +fSd. normal distributions. To show this, for any k finite and any {t;)f=, 

such that 0 5 tl 5 t2 5 . . . < tk 5 1, consider for n 2 1 

Define for j = 1,2,.  . . , n  

then {Wj)jn=l are independent normal vectors and Xn = n-'I2 Cjn=l Wj. Let I? = V(Wj), 

the covariance matrix of Wj, it is clear that rkl = mj2Jl(tm)Jl(tl), m, 1 = 1,2,.  . ., k. The 

characteristic function of Wj/& is 

therefore, the characteristic function of Xn is 

vx, (u) = E {exp(i < 21, Xn >)) 

= E {exp ( i  < U, (Wi + W2 + . . . + Wn)/& >)) 

= fly=1 E {exp(i < U, Wj/& >) 
1 t j  = fly=, exp {- u r u} 

= exp {- 1 ut (i xy=l rj) u} 

+ ~ X ~ { - ~ U ~ ~ U )  N Nk(O,r), 

as n + w, where rml = Jl(t,) Jl (tr)b, m, I = 1,2, . . . , k, proving that Fzn(t) +f.d. normal 

distributions. 
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Since p2, (t) is tight and converges in finite distributions to normal distributions, (t ) 

converges weakly to a Gaussian process, say, F2(t). The above calculations show that p2(t) 

has zero mean and covariance function 

Corollary 2.4.1 In Theorem 2.4.1, if the space spanned from the columns of model 

matrix X ,  denoted span(X), contains a constant column of 1's for all n 5 7x0, where no is 

a fixed positive integer, then F2,(t) converges weakly to a Gaussian process with zero mean 

and covariance function pl(s, t) = $(@-'(s))4(@-'(t)); for all n > no the orthogonal 

complement of span(X) contains a column of l's, then p2,(t) = op(l). 

Proof. If span(X) contains a column of l's, say I,, for n greater than some no > 0, 

then H 1, = I,, where H = X(XtX)-I X t  is the projection matrix. This implies that 

for j = 1,2 ,..., n, m j  = 1, therefore, b = 1; if 1, E span(x)', then mj  = 0, hence, 

&,&(t) = op(l). O 

2.4.3 Study of &(t): &,(t) = op(l) 

Recall that Yln(t) is given by 

Since a(@-'(t)) = t ,  if all xi(8 - 0) behave nicely, then Yln(t) = op(l) will be expected. It 

turns out that this is indeed the case. However, a rigorous proof of this result requires some 

restrictions on the model matrix X = (x;~),~,.  

Assumption A fi(e - B )  = 0,(1), where 0,(1) means bounded in probability. 

Assumption B There exists an M < oo such that for all n, n-l CF=l max l~ j< ,  Izijl 5 M. 

Assumption C There exists an MI < oo such that for all n 2 1 and i = 1,2,.  . . , n, 

n-1'2 max16j<p l ~ i j l  Ml-  
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Theorem 2.4.2 (Random per turba t ion  of empirical process, p is fixed) In 

linear regression model (2.4. I ) ,  if assumptions A, B, and C hold, then Yl,(t) = o,(l). 

The proof of Theorem 2.4.2 is pretty long, thus it is desirable to  establish a few important 

steps as lemmas. The idea of the proof was outlined in Loynes (1980) for more general case 

than normal theory linear regression, and Loynes (1980) was based on Rao and Sethuraman 

(1975). The proof to  be given here constitutes an application of the above two papers with 

some refinements. 

L e m m a  2.4.1 In linear regression (2.4. I ) ,  let Bi(t, (,8) = (@-'(t) + xf (( - 8)), i = 

1,2,.  . . , n. For 7 > 0 and L > 0, define Qn(t, 7, L) = n-'I2 Cy=l q;(t, 7 ,  L), where 

d t ,  7, L) = SUP IBi(t,(1,8) - Bi(t,&,e)l, 
1(1-(2 I<n- l I2~,  I < ~ - B I < ~ - ~ / ~  L, 1(2-01<n-l/~ L 

and 1 .  I denotes the maximum norm of RP. If Assumption B holds, then for any L > 0 fized, 

Qn(t,7,  L) -+ 0 uniformly in n and t, as 7 + 0. 

So Qn(t, 7, L) 5 supZER4(x) pM 7 -+ 0 uniformly in n and t as y -+ 0. 0 

L e m m a  2.4.2 Let R(u) = 4(u+a)/4(u),  whefe 4 is the density of the standard normal 

distribution, a is a real constant, u E R. Then R(u) is increasing if a < 0; R(u) is decreasing 

if a > 0. 
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Proof. Let ul, u2 E R, such that ul < 212, then 

Lemma 2.4.3 In linear regression (2.4.1), let a; = xI([ - 8), i = 1,2,.  . ., n. For X > 0 

and L > 0, define En(X, L) = supoltl l  n-lI2 Cr=l ri(X, L), where 

T;(x, L) = sup ~@(@-'(t + A/&) + a;) - @(@-'(t)  + a;)\. 
I ~ - B l < n - ~ f ~  L 

If Assumptions B and C hold, then for any fixed L > 0, &(A, L) -t 0 uniformly in n, as 

By Lemma 2.4.2, Gi(t) is increasing if a; < 0; Gi(t) is decreasing if a; > 0. 

If G;(t) is decreasing in t, t E [ O , 1 -  X / d ,  then Gi(t) < G;(O) = @(@-l(A/fi)  + a;). 

For [ and 8 such that )< - 81 I L / f i  and by Assumption C, 

Let Xo > 0 be such that @-'(Ao) = -LpMl. For X < Xo, @-l(X/f i )  + LpMl < 0. Thus 

for these arguments, 4(.) is increasing, therefore, for some 7 such that 171 < 1, 
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If G;(t) is increasing in t, t E [ O , 1  - XlJn7, then 

G;(t) 5 G;(l - A/&) = 1 - @(@-'(I - X / h )  + a;). 

It follows that for some 7 such that 171 < 1, 

Now, for X < Xo, 1 - A / +  > 1 - X > 1 - Xo, and @-l(1 -A/&) - LpMl > 0 by symmetry 

of +(.). So for these arguments, 4(.) is decreasing. Therefore, the above last inequality can 

be bounded by 

Proof of Theorem 2.4.2. The goal is to show that V C > 0, V 6 > 0, 3 no = no((',S) 

such that for all n 2 no 
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For the given 6 > 0, f i ( e  - 8) = OP(1) implies that there exists an L = L(6) > 0 such 

that for all n 2 1, 

P (19 - 81 > L/&} < 612, 

where 18 - 81 = maxi<;<, 18; - 8;l, p = dim(8) is fixed finite. Hence, for the given C > 0, - - 

It then remains to show that p2 = P{supo<t~l  IYln(t)l > (, 16 - 81 5 L/+} < 612, for n 

greater than some no. To this end, define 

where Bi(t, t, 8) = @(@-l(t) + xi(< - 0)). Then Yln(t) = Rn(t, e, 8) and 

sup sup tRn(t, t ,e)t>(}. 
o ~ l  Ic-el<L/J;E 

The following shows that the last term above is less than 612 for n greater than some 

no 2 1. In fact, detailed steps are given for 

the steps for 

Step 1: Discretization. Divide the cube C(8) centered at 8 (the true parameter value) 

and of side length 2L/& into {[2L/y] + 1)P  closed subcubes of side length 7/+, where y 
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is to be chosen later, [ X I  denotes the greatest integer less than or equal to x. Label these 

subcubes arbitrarily. 

Let the kth subcube be Ck. Define (tlk(t), (:k(t) to be the values of ( E Ck such that 

B;(t, (, 8) takes its maximum and minimum values, respectively, and define 

By Lemma 2.4.1, n-'I2 C7=l qi(t, 7 )  can be made small uniformly in n, in t and in k by 

choosing 7 to  be small. 

Next, divide [0, 11 into [ f i / X ]  + 1 subintervals of length X / f i  (except possibly the last 

subinterval) by points t, = s(X/fi), s = 0,1,2,. . . , [&/A], +/A. Let I, = [t,, t,+l]. 

Since B;(t, (, 8) is an increasing function of t, so is Bik(t) = B;(t, (:k(t), 8). Therefore, 

for any t E I,, 
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where q;(t, 7)  is defined in Lemma 2.4.1, and r;(X, t )  is defined in Lemma 2.4.3 as 

Thus, by Lemma 2.4.1 and Lemma 2.4.3, n-'I2 E?=, itacl - t. + B,k(t3+l) - Bik(t8)) can 

be made arbitrarily small, uniformly in n, in k and in s, by choosing y and X small. 

Together, it has been shown that 

where o(y, A) -+ 0 uniformly in n, k and s as y -, 0 and X -, 0. For the given (' > 0, choose 

y and X small such that o(y, A) < ('12. This finishes the discretization process. 

Step 2: Exponential Bound. In this step, both y and X are fixed at the values chosen 

at the end of last step. The idea of this step is to  represent the summation in (2.4.3) in 

terms of Bernoulli random variables and obtain a bound from this representation. To this 
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end, define, for fixed k and s ,  

Let T+ = { i  : sgn(iks) = +I), T- = { i  : sgn(iks) = -1). There is 

Therefore, 
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Note that 

b ' t > O  CiET+ (Xiks - ~ i k s )  > 

= a(n, k, s, t, C), for all t > 0, say, 

by Markov's inequality and independence of {Xiks-piks). Furthermore, because X,k8-p;ks is 

a centered Bernoulli random variable whose moment generating function is readily available, 

= 1, by Jenson's inequality. 

Hence, taking logarithm of a(n, k, s, t, C) and enlarging niET+ to nzl gives, for all E > 0, 

n-l log a(n, k, s, t, C) 

n 

- - { - t f i ~ / 4  + [-tpiks + log (1 + piks(et - I))]} 
i=l 
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By the definition of q;(t, 7), namely, 

However, the maximum norm distance It;lk(ts+l) - 81 may be larger than y/&. The 

worst possible case is when ttk(ts+l) is at one of the corners of C(8). For this case, the 

(Euclidean) distance from t:k(ts+l) to 8 is at  most 

Now, let L(7) = {[Jir/2] + 1){[2L/7] + I), and join tilk(ts+l) and 8 by a line. Put points 

along this line a (Euclidean) distance ~ / f i  apart. It is clear that at most L(7)7/f i  points 

are needed. With this observation, there is the inequality 

But 
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by Assumption B. Let K(y) = sup, $(x)pMy, it follows that 

From log(1 + x) I x, x 2 0, one has for t > 0 

Combining above results gives 

n-' log a(n, k, s, t, C) I -n-'/2{t('/4 + a(t + 1 - et)), t > 0, 

where a = L(y)K(y) + X > 1. 

For t 2 0, let h(t) = t(/4 + a(t + 1 - et). Then h(t) is continuous and h(0) = 0. Since 

dh(t)/dt > 0 if 0 < t < log{l + ('/(4a)), there is a to > 0 such that c = h(to) > 0 and with 

this positive constant c 

n-I log a(,, k, s, t, (') 5 -n-'I2 c, 

Similar arguments will lead to 

Together, it has been shown that for any s and any k, 
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Notice that 2e-Jii" is independent of k and s. This finishes the step of obtaining an expo- 

nential bound. 

Step 3: Yln(t) = op(l). Now consider all I, (i = 1,2, .  . . , [ f i / A ] , f i / A )  and all Ck 

(k  = 1,2, .  . . , ([2L/y] + 1)P) at the same time. By Bonferroni inequality, 

Because for the chosen y,  A ,  L and the fixed p, A(y, A, L,p, n) grows polynomidy, while 

e-fiC decays exponentially, as n + oo, therefore, there exists an no = no(?, A) (more 

precisely there exists an no = no(7, A, L(G),p) 2 1) such that for all n 2 no, (see remarks 

before Step I),  
I 

Thus, 

P SUP IKn(t)l > C =PI +p2 < 6/2+6/2  = 6, V n 2 no, { O<t<l 
proving Yln(t) = op(l). 

2.4.4 The main result 

Theorem 2.4.3 (Weak convergence of residual process: p is fixed) In linear 

regression (2.4.1), estimate regression parameter 0 and standard deviation a by the method 

of least squares. Let Zi = 9{(yi - zf9)lb) and define for t E [0, 11 
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Denote mj = Cyzl h i j ,  j = 1,2, .  . ., n. where H = ( h i j )  = X ( X t X ) - ' X t .  If p is fixed 

finite, 0 5 b = limn,, n-' Cy=l m! < oo, and Assumptions A, B, and C hold, then 

-112 (1) Fn(t)  = n-'I2 C : = l { I [ ~ i  5 t ]  - t }  + J l ( t ) n  C;=l mjEj 

+ ~ ~ ( t ) 2 - ' / ~ ( 2 v ) - ' / ~  ( v & ~  - v )  + o p ( l ) ,  and 

(2) pn( t )  converges weakly to a Gaussian process F ( t )  with zero mean and covariance 

function 

where J l ( t )  = #(a-'(t)), J 2 ( t )  = @-l( t )4 (9 - ' ( t ) ) ,  t E [ O , l ] ,  v = n - p, and u; are iid 

U ( 0 , l )  variables. 

Proof. The desired conclusion comes from applying Theorem 2.3.2, Theorem 2.3.1, 

Theorem 2.4.1 and Theorem 2.4.2. 

Corollary 2.4.2 (Asymptotic expansions of pn( t ) )  In linear regression (2.4.1), 

suppose that the conditions of Theorem 2.4.3 hold. If the model matrix X contains a column 

of 1 's, then the following asymptotic expansion holds, 

Proof. From ( 1 )  of Theorem 2.4.3, rewrite the last part of the expansion there as 

Let supoltll J2 ( t )  = k < oo, then for any 6 > 0, 
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This shows that the expansion in (2.4.8) holds. 0 

Remark 4. A drawback of requiring lirn,,, n-' C7=, m? to exist is that the condition 

is not given in terms of the model matrix X directly. It is however possible to do so. For 

example, in straight line regression through the origin, the model is 

y; = xi$ + a&;, E ;  are independent N(0,l). 

-1 If a = limn,, n Cr=l x; exists and if 0 < h = lirn,,, n-' Cr="=,: exists finite, then 

Crz1 {I[@{(~; - z;e)/b) < t ]  - t }  converges weakly to a Gaussian process with zero 

mean and covariance function 

To see this, note that m j  = { (EL1  X;)/(C:=~ x?}xj in this special case, and n-l C;"., m! = 

(n-' Cr=l ~ ; ) ~ / ( n - '  Cr.l x;) + a2/b, as n t oo. 

Remark 5. It is also possible to restrict general model matrices directly. For instance, 

in linear regression (2.4.1), suppose a = 1 is known and Assumptions B and C hold. Suppose 

further that 

2. lirn,,, n- '(xtX) = C, C is positive definite. 

Then n-'I2 C:=, - xfe) < t] - t )  converges weakly to  a Gaussian process with zero 

mean and covariance function 

where q ( t )  = Jl(t)B, B = (bl, b2, . . . , bp)t is a p by 1 vector. This is essentially the 

formulation used by Darling (1955), Durbin (1973a), Loynes (1980) and many other authors. 

Remark 6. When the model matrix X contains a column of 1's and when the conditions 

of Theorem 2.4.3 hold, the conclusion of Theorem 2.4.3 is identical to that when a random 

N(p, a2)  sample is drawn and both p and a need to  be estimated. 
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Remark 7. Although the existance of H = (hij) = X(XtX)-'Xt is required in several 

theorems of this section, it is possible to  replace (x tX)- '  by any kind of generalized inverse 

(XtX)-  to  reach the same conclusions. 

2.5 Analysis of Variance Models: The Number of Regres- 

sion Parameters is Changing With the Sample Size 

In deriving the results of the previous two sections, two boundedness conditions are imposed 

on the model matrix X .  However, these two conditions are naturally satisfied by analysis 

of variance models. In this section, advantage is taken of the simple structure of the model 

matrix X for analysis of Variance models, and a less well-known asymptotic covariance 

function structure is established for the empirical processes in these models. 

2.5.1 One-way layout 

In the case of one-way layout, Meester and Lockhart (1988) obtained the following weak 

convergence result. Consider the one-way layout model 

where yjj (i = 1 , 2 , .  . ., K )  denote the K observations under treatment j ( j  = 1,2, .  . . , Q), 
Q p is grand mean, rj denotes the effect due to  treatment j, Cj=l rj = 0, and ~ ; j  are iid 

N(0, u2). If (ordinary) residuals y;j - y.j are (completely) standardized, that is, 

K where j.j = K-I xz, yjj, E j  = K-I xi=, ~ ; j ,  wa = Jm, and d is the square root of 

the mean squares due to  error, then the empirical process 
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converges weakly, as Q -+ oo, to  a Gaussian process with zero mean and covariance function 

where g2(x ,  y ;  p )  is the bivariate cumulative distribution function for a normal distribution 

with zero mean vector, unit variances, and correlation coefficient p, and J2(t) is defined 

before as O-l (t)q5(@-'(t)). 

As pointed out by Meester and Lockhart (1988), when K also increases to infinity, there 

is the limit 

which is essentially the covariance structure studied in section 2.3 and section 2.4. Thus, 

paying close attention to  model matrix does lead to finer results. Meester and Lockhart 

(1988) also conjectured that the same result holds for three other designs (balanced two- 

way layout without interactions, balanced incomplete block and Latin squares). 

In the following subsection, it is to be shown that the empirical processes associated 

with a large class of analysis of variance models also converge weakly to  a Gaussian process 

with zero mean and covariance function of the same type as given in (2.5.4). 

2.5.2 Two-way layout 

The model for a balanced two-way layout (without replications, without interactions) is 

given by 

Y i j  = P + pi + 7 j  + OEij,  (2.5.5) 

where p is grand mean, 

p i  are row effects, subject to  xZ1 pi = 0, 



CHAPTER 2. RESIDUAL EMPIRICAL PROCESSES: LlNEAR REGRESS10 N 53 

Q rj are column effects, subject to Cj=, Tj = 0, 

~ ; j  are iid N (0, I), 

a is a positive constant. 

To simplify presentation, it is assumed that a = 1 is known whenever arguments do not 

involve a. This, according to an analogue of Theorem 2.3.2, does not weaken the conclusion 

to be drawn. 

Denote 

w, = 1 - -  

n = KQ, 

where w, and wb are the standard deviations of the residuals y;j - $;j for one-way and 

two-way layout, respectively. For one-way layout, the (ordinary) residuals are ~ ; j  - E.j; for 

two-way layout (2.5.5), the (ordinary) residuals are 

Now let 

then the empirical process for two-way layout (2.5.5) is defined for t E [ O , l ]  by 

G;(t) = ( K Q ) - ~ / ~  C{I[@(~:,) 5 t] - t ) .  
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Similarly, define 

G,(t) = (KQ)-'I2 E{l[@(e:;) 5 t] - t), 

K Q  
~ , ( t )  = ( K Q ) - ~ / ~ C  C{l[@(ei j )  t] - t). (2.5.9) 

k l  j=1 

Since wa - w, = 0(1/Q) as Q + oo, it follows from the change of time technique that GE(t) 

and G r ( t )  have the same weak limit, if such a limit exists. Therefore, it is equivalent to 

study G r ( t )  instead. 

Using the same technique used in section 2.4, the process G r ( t )  can be rewritten as 

Clearly, Gsn(t) is just the empirical process for one-way layout (2.5.1) when o = 1 is 

known, so as Q + oo, the weak limit of G3n(t) is already known. Because E;.. - C.. are 

estimates for the row effects pi only, G2n(t) = op(l) follows from Corollary 2.4.1. It is then 

plain to  see that if Gln(t) = op(l), the process Gi( t )  will have the same weak limit that 

G3n(t) has. 

Before proceeding to prove Gln(t) = op(l), an inequality about the moment generating 

function of a discrete random variable needs to be established. 

Lemma 2.5.1 For any positive integer n and for any random variable X taking values 

in {0,1,2,. . . , n) with probabilities p; = P { X  = i), i = 1,2,.  . . , n, there is always the 

relationship 

Pn ~ { e ' ~ }  5 Ifient + 1 - -, (2.5.10) 
n n 
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where t L 0 and p, = E ( X )  = Opo + lpl  + 2p2 + . . . + np, is the mean of X. 

Proof. For n = 1, p1 = Opo + lpl = pl, then 

hence assertion (2.5.10) holds for n = 1. 

For n = 2, p2 = pl + 2p2, thus 

Since pl{et[tet - 11 + $1 > 0, for t > 0, the assertion holds for n = 2. 

Now suppose the assertion holds for n = m, that is, 

Pl Pm S = ~ ~ + l - + . . . + m - ,  
s m  s m  S m  

then, with a slight abuse of the notation for pm , 
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On the other hand, 

hence the difference between the above expression and ~ { e ' ~ )  is less than or equal to 

for t 2 0, therefore, the assertion holds for n = m t 1. By the method of induction, the 

proof is completed. 0 

It is now ready to state the main result. 

Theorem 2.5.1 In the two-way layout (2.5.5), define, for i = 1,2, . . . , K and 

j = 1,2 ,..., Q ,  

e;j = {&ij - E;.. - Cj + F..)/(wb&), 

where wb = dl - 1 / K  - 1/Q + l / ( K Q ) ,  and & is the square root of the mean squares due 

to ermr, then as Q -, oo, the following empirical process 

converges weakly to a Gaussian process with zero mean and covariance function given in  

(2.5.4). 

Proof. Because the degrees of freedom for error is df = ( K  - 1)(Q - 1 )  and nldf = 

K Q l d f  + K / ( K  - I ) ,  as Q -, oo, the last term in (2.5.4) follows from an application of 

Theorem 2.3.1 and 2.3.2. As discussed before, it is then sufficient to show that G l n ( t )  = o,(l) 

is true, where Gln( t )  is defined after (2.5.9). 

Since the terms E;.. - E.. appearing in Gln( t )  concern only the row effects pi (i = 

1,2,. . ., K ,  and p; corresponds to 0; of section 2.4.3), where K is fixed finite, and since 
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w, = is a constant, all arguments from the beginning of section 2.4.3 to  equation 

(2.4.3) hold. In particular, equation (2.4.3) now becomes (n  = K Q )  

However it should be remarked that  the ujj here are U(0, l )  random variables but are not 

independent; only the groups of ujj indexed by j are independent. As in section 2.4.3, for 

the given (' > 0, choose 7 and X small such that  o(7, A) < (12. 

In order t o  obtain an appropriate exponential bound, the arguments in section 2.4.3 

need t o  be modified because of the lack of independence among the ujj. Specifically, for 

fixed k and s, define 

therefore, equation (2.4.4) becomes 
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Now by applying Lemma 2.5.1 to the x&,, which are independent with means p:k,, 

by Jenson's inequality, and by the fact that log(1 + x) 5 x when x 2 0, equation (2.4.5) 

becomes, for t > 0, 

n-I log a(n, k,  s ,  t, 6) 

Because the presence of constant K does not affect the arguments after equation (2.4.5), 

the proof for Gln(t) = o,(l) can be completed as in section 2.4.3. 

Corollary 2.5.1 If there are S replications for each combination of row level and column 

level in model (2.5.5), that is, 

where k = 1,2,. . . , S denotes replications, and define 

where 

and the bar over E indicates averages over the subscripts represented by dots, then the fol- 

lowing empirical process 

K Q S  

yn(t) = (KQS)-"~ C C C { ~ [ ~ ( e i j k )  5 t] - t)  
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converges weakly, as Q -t cm, to a Gaussian process with zero mean and covariance function 

given in (2.5.4) but with K there replaced by KS. 

Proof. The only important change caused by the presence of replications is the replace- 

ment of K by KS in (2.5.4); other changes are only notational. 0 

When interactions are present, namely, 

the corresponding residuals are & ; j k  - Z ; j . ,  where Z;j .  = S-' ~ z = ~  ~ ; j k  This has essentially 

the same structure as in one-way layout (2.5.1), and if define 

where wd = d m ,  then the corresponding empirical process 

K Q S  

converges weakly, as Q + oo, to a Gaussian process with zero mean and covariance function 

given in (2.5.4) but with K there replaced by S. 

It is worth pointing out that in the above development, it is the structure of the (ordi- 

nary) residuals that determines the forms of the weights w, to wd and eventually determines 

the weak limits of the associated empirical processes. Here are two more examples. 

Randomized Complete Block Design. This is a trivial example, as the residuals 

for this design are exactly the same as those given in (2.5.6) for model (2.5.5). 

Two-factor Nested Design. Let y ; j k  denote the kth observation when factor A is at 

level i and factor B is nested within factor A and is at level j. The model expression is 

where p is a constant, 

K p; are constants subject to &, p; = 0 ,  
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Q rj(;) are constants subject to Cj=l rj(;) = 0, i = 1,2, .  . ., K ,  

&k(i j )  are iid N (0, a2). 

The residuals for this design are ~ k ( ; j )  - E.(;j), which are essentially of the same form for 

residuals of model (2.5.17), therefore, the empirical process of model (2.5.19) has the same 

weak limit as that of model (2.5.17). 

2.5.3 Comments 

For analysis of variance models, it is advantageous to standardize the (ordinary) residuals 

completely (using both 6 and the diagonal elements of I - H = I-X(XtX)-*Xt.  This is so 

because only the a known case needs to be considered (see Theorems 2.3.1 and 2.3.2), and 

in this case the standardized residuals are (dependent) standard normal variables, which 

are easy to handle, and at the same time no complication arises when applying the change 

of time technique, since 1 - hi; is constant. 

Although a rigorous weak convergence result has not been established for the Latin 

square design and balanced incomplete block design, for all the models mentioned in this 

section, asymptotic critical points for EDF statistics W2, U2 and A2 are available in Meester 

and Lockhart (1988). 



Chapter 3 

Contiguous Alternatives 

Chapter 2 is centered at the study of residual empirical processes from fitting linear regres- 

sion mode1 (2.3.1), namely, 

In this study, the normality assumption of the error distribution plays a key role in deriv- 

ing asymptotic distributions of the residual empirical processes, when the method of least 

squares is used to estimate the unknown regression parameters 0 and a. However, either 

the normality assumption is not met in some applications of linear regression techniques, or 

for some theoretical studies, such as the study of powers of a test, the error is deliberately 

assumed to have a non-normal distribution. It is then necessary to know: What will happen 

to  the limit distributions of the residual empirical processes when the error in the above 

linear regression model takes on various non-normal distributions? This chapter is devoted 

to this question. 

The approach based on the idea of contiguity is to be taken below; see Rao (1987), 

Hall and Loynes (1977). Section 3.1 introduces the concept of contiguity and some related 

results; section 3.2 studies six contiguous (to i.i.d. normal) alternatives, including general 
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normal distributions, Student t distributions, X-distributions, Gamma distributions, Log- 

normal distributions, and Inverse Gaussian distributions; section 3.3 contains some remarks. 

The tools used in this chapter are well known; the conclusions in section 3.2 seem to be 

new. 

3.1 Contiguity and Some Related Results 

3.1.1 Contiguity 

For n = 1,2, .  . ., let (&,A,) be a sequence of measurable spaces, let {P,} and {Q,} be 

two sequences of probability measures on (On, A,). 

Definition 4 (Contiguity of Q, to P,) The sequence {Q,} is said to be contiguous 

to the sequence {P,), denoted by Q, << P,, if for any A, E A,, 

lim Pn(An) = 0 implies lim Q,(A,) = 0. 
n-+w n+w 

Recall that a measure p is said to be absolutely continuous to another measure v if 

for any A, v(A) = 0 implies p(A) = 0. Thus, contiguity is a kind of asymptotic absolute 

continuity. 

In this chapter, the underlying measurable space is fixed, namely, (0, A). However, to 

emphasize the dependence on sample size n, a subscript n appears in many quantities. For 

instance, the basic linear regression model is now written as 

In the following discussion, the probability measure P, is specified as the induced prob- 

ability measure of the joint density of n independent random variables Yln, YZn,. . . , Ynn, 

where Y;., has density g;, (with respect to Lebesgue measure, say). This is denoted by Pn: 

Y;., mindep gin. Similarly, one can write Q,: Y;., mindeP fin. Since it is the distribution of 

€in that one has interest in, in this chapter, it is agreed to write Pn: &in "indep gin and Qn: 

&in Nindep f in .  
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3.1.2 Le Cam's lemmas in perspective 

Definition 5 (Log-likelihood 

the likelihood ratio is defined by  

if gin(&;,) > 0 for all i, 

if some gin(&;,) = some = 0, 

if all fin(&;,) > 0, Some gin(&;,) = 0, 

and the log-likelihood ratio is defined b y  Ln = log&. 

Note that under P,, the probability of {An = m )  is zero. If asymptotic normality 

of L, = log An is established, which will be done for the cases to be considered, then 

Pn(An = 0) = o(1). Thus, without loss of generality, one can effectively write 

As is well known, the log-likelihood ratio has many (asymptotic) optimal properties. 

So, if one can build up a (strong) relationship between one's statistic at hand and the log- 

likelihood ratio, one may get some good properties about one's statistic. This intuitive idea 

is formalized in the following version of Le Cam's third lemma: (Hall and Loynes (1977)) 

Let Tn be a statistic defined on (R,A), taking values in a metric space S. Let M = 

S x [-m, +oo] be the image space of (Tn, L,) .  If 

(a) (T,, L,) converges weakly under P, to a probability measure P, and 

(b) Q, is contiguous to P,, 

then (Tn, L,) converges weakly to a probability measure Q under Qn and dQ(u, v) = 

exp(v)dP(u, v). 

Let X,(t) denote the residual empirical process of model (3.1.1) when 8 and a are 

estimated by the method of least squares. (To avoid ugly or repetitive notation, X,( t )  is 

used. See section 2.5 for detail.) Consider now T, = X,(t) and S = D[O, 11. In order to be 
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able to compute probabilities of the limiting distributions of X,(t) under both P, and Q,, 

only Gaussian processes (for X,(t)) and normal laws (for L,) are considered as candidates 

for limits. With such a restriction, conditions under which the above mentioned (a) and (b)  

are satisfied become simple. For justifying contiguity in (b), one has (Rao (1987), section 

1.11) 

Le  Cam's  F i r s t  Lemma:  If L, = logA, =+ N(-b2/2,a2) for some S > 0 under P,, 

then Q, << Pn. 

To deal with (a), consider tightness first. Note that X,(t) is tight on D[0,1] under 

Pn: E;, windeP N(0 , l )  and under conditions stated in Theorem 2.4.3; if L, = log A, + 
N(-62/2,62), then L, is also tight on [-oo,+oo]. As a result, (X,(t), L,) is tight on 

D[O, 11 X [WOO, +CO] under Pn: E;, windeP N(0 , l )  by Fact 4 of section 2.1. SO the problem 

of tightness of (X,(t), L,) is solved. 

In order to  satisfy (a), one needs to show further that (X,(t), L,) converges to normal 

laws in finite distributions. This requirement depends heavily on the forms of the alternatives 

Q,, and for this reason will be studied case by case in section 3.2. When this requirement is 

satisfied under P,, one can use Le Cam's third lemma (the usual version) and Cram&-Wold 

device to  find limiting distributions of X,(t) under Q,. See Rao ((1987), section 1.11). 

Le  Cam's  T h i r d  Lemma: For random variable Sn7 if under P, 

3.1.3 A lemma for computations 

In the course of looking for contiguous alternatives Q, to  Pn: E;, windep N ( 0 ,  I), several 

integrals appear frequently. The following lemma lists the results of these integrals so that 

the work of the next section will become relatively easier and clearer. 

Notations: 
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( a )  t E [0, 11, x = @-'(t) ,  J l ( t )  = d(@-'( t ) ) ,  J 4 t )  = @-'(t)  J l ( t ) ,  J3( t )  = @ - l ( t )  J 2 ( t ) ,  

( b )  I [ w j n  5 t ]  = I[&;, 5 X I ,  win U(07 1 ) )  = @-'(win), 

( c )  L ,  = en + oP(1) ,  here en is the leading part of L,, 

( d )  X n ( t )  = x n ( t ) + o P ( l ) ,  where x n ( t )  is the asymptotic expansion of X n ( t )  from Corollary 

2.4.2 of Theorem 2.4.3, namely, 

(e) Under P,, X,(t) + X ( t )  with zero mean and covariance function p(s, t )  given in equa- 

tion (2.4.7) with b = d = l ;  under Q,, X,(t) + x Q ( t )  with mean A ( t )  and covariance 

function pQ(s ,  t ) .  

Lemma 3.1.1 (Computation Lemma) Under Pn: &in " j n d e p  N ( 0 ,  I ) ,  

(1) Let Ik = E{E:,I[E~, < x] I P,}, k = 1,2, .  . ., then 
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Proof. Straightforward computations. 0 

3.2 Contiguous Alternatives 

According to the preparation of section 3.1, in order to show that the alternatives Q,: 

&in windep fin are contiguous to the standard P,: E;, windeP N(0, I), and in order to find 

the limiting distributions of (X,(t), L,) under Q,, one needs to 

(i) Show L, + N(-S2/2, S2) for some 6 > 0 under Pn; 

(ii) Prove (Xn(t), L,) + (X(t), L) under Pn; 

(iii) Find the mean and the covariance function of (X(t), L); 

(iv) Apply Le Cam's third lemma. 

Notice that one can equivalently work with expansions x n ( t )  and in, which will make 

many computations a lot easier. Notice further that under the present circumstance, once 

(i) is shown to hold, (ii) will follow immediately as ~ , ( t )  and in will both be sum of 

independent random variables, hence, convergence in finite distributions to normal laws is 

a natural consequence; tightness, on the other hand, is also inherited as discussed in section 
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3.1. Therefore, (ii) will be taken for granted in the following subsections. It is however 

important to remind the reader that conditions of Corollary 2.4.2 are assumed to hold for 

the remainder of this chapter. 

3.2.1 Not iid normal alternatives 

If a;, = I/+ + o(n), and lib:, = n/(+ - 1)2 + o(n), where o(n) may depend on i, 

one has 

Since E{E;~ - &:,,I Pn) = -1, V{E; ,  - E:~IP,) = 3, therefore, 

satisfying "p = -~5~/2". 

For any fixed t E [0, 11, under Pn, one has 

where B(t) = limn,, COV{(X,(~), k,)l P,). By the computation lemma of section 3.1, 

That is, X,(t) has the same weak limit X(t)  under Pn: &in N(0 , l )  and under Qn: 

€ i n  Njndep N (ain, b&), where a;, = 116  + o(n), and l /b& = n / ( f i  - 1)2 + o(n). 
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3.2.2 Contiguous Student's t alternatives 

Let Pn: &in N(O, I ) ,  let Q,: E,, w i n d e p  t n ( x ) ,  where t n ( x )  denotes the density of 

Student's t distribution with n degrees of freedom. Since t n ( x )  -+ 4 ( x )  uniformly in x as 

n + oo, where 4 ( x )  is the density of a N ( 0 , l )  random variable, direct computations show 

that the same conclusion as that of the previous subsection holds. 

3.2.3 Contiguous x alternatives 

Because X N X:  implies a - 6 + N ( 0 , l )  as v + oo, consider 

If v = 2n, r ( v / 2 )  = r ( n )  = ( n  - I)!. By Stirling's formula 

n! = ,annn+l/2,-n &, 

where 1/(12n + 1 )  < a, < 1/(12n) ,  one has 

n[log 6 - ( v  - 1)  log 2 - log T ( v / 2 )  + ( v  - 1 )  log I/% - v / 2 ]  

= n {[(2n - 1) /2]  logn - [(2n - 1 ) / 2 ]  log(n - 1 )  - 1 - a,-1) 

= n{[(2n-1)/2]log[l+l/(n-I)]-1-an-1) 

= [n(2n - 1 ) / ( 2 n  - 2)]  - n - nun-1 + o(1) 

-1/12. 
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Also with v = 2n, the log-likelihood ratio Ln can be written as 

But n-' X Z , ( E : ~ / ~  - &fn/32) --ip 118 - 3/32 = 1/32,  so 

where -151288 = -1112 + 1/32. Since E{&/12 - ~in/21Pn)  = 0 ,  V { ~ : ~ / 1 2  - &in/2/Pn) = 

151144, hence 

that is, "p = -b2/2" holds for v = 2n. 

Next, 

that is, under Q,: ~i~ - ~ ; ~ d ~ ~  a - 6, X n ( t )  =+ x Q ( t ) ,  where x Q ( t )  is a Gaussian 

process with mean A ( t )  = J l ( t ) / 1 2  - J3( t ) /12  and covariance function PQ(s ,  t )  = p(s,  t ) .  

3.2.4 Contiguous Gamma alternatives 

Suppose X has a Gamma distribution G a m m a ( a ,  P )  with density 

,Kff IT1 (a)xa-I exp(-$ID),  
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It follows that 

log -yf = -a log /3 - log T(a) + ( a  - 1) log(&;, + a p )  
Sin €1, 

- P-'(&in + a@) + log 6 + &g/2  

= l o g & - a l o g p + ( a -  l)log(ap)--a-logI'(a) 

- (~rp)-'&~n + 2-'[1 - ( a  - l ) / ( a2p2) ]~& + 3-'[(a - l)/(a3/?3)]~:n 

- 4-'[(a - ~ ) / ( Q ~ ~ P ~ ) ] E : ~  + op(&/(a4P4))- 

If a = n, p = l/Jii, then 

n{log 6 - a log ,4 + ( a  - 1) log(ap) - a - log I'(a)} 

Also, for a = n and ,B = I/&, 

n 

-4-' [(a - 1)/(a4p4)] E$., -+, -314, 
i=l 

where -113 = -1/12+ 112 - 314. Because E{.&/3 - &;,IPn) = 0, and V{E:~/~ - &;,IPn) = 

1519 - 613 + 1 = 213, it has been shown that 

and "/I = -fi2/2" is true. For covariance, one has 
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that is, under Q,: &in Gamma(n, l / f i )  - 6, Xn(t) + xQ(t ) ,  where x Q ( t )  is a 

Gaussian process with mean A(t) = Jl(t)/3 - J3(t)/3 and covariance function pQ(s, t) = 

P ( %  t ) .  

3.2.5 Contiguous Lognormal alternatives 

When X is distributed as Lognormal L(a,P)  with density 

E ( X )  = exp(a + p2/2), and V(X) = {exp(P2) - 1) exp(2a + P2). Let b = E(X) ,  then 

= x - b - [(y + b ) ~ ~ ] ~ ' e x ~ { - 2 - ' [ ( l o g ( ~  + b) - a ) / ~ ] ~ ) ,  -b < y. 

Consider now 

therefore, 

log gin Ein 
= -p2/8 - 2-'&in/b - (2P2)-'(1 - P2/2)&/b2 - (2P2)-I (P2/3 - 1)&/b3 

- (2P2)-'(11/12 - ,B2/4)&/b4 - ( 2 ~ ~ ) - ' 0 ~ ( & & / b ~ )  

- a - p2/2 - ~ ~ ~ / b  + 2-'&L/b2 - 3-'&/b3 + 4-'&fn/b4 - o ~ ( E : ~ / ~ ~ )  

- logP + &/2, 



CHAPTER 3. CONTIGUOUS ALTERNATIVES 

and 

If a = log n1I2, P = n-'I2, then b = J;j;exp{-1/(2n)) and 

n{-a - logP - 5P2/8) = n(1og n1I2 - log n1I2 - 5/(8n)) = -518, 

hence 
n 

where -314 = -518 - 33/24+5/4. Since E{E;~ /~ -  3~;,/21~,) = 0, V { E ; ~ / ~  -3&in/21pn) = 

4-'(15 - 18 + 9) = 312, one has 

meeting the requirement that "p = -62/2". Moreover, 

proving that under Q,: E;, windep ~ ( 1 0 ~  n1I2, n-'I2) - &exp{-1/(2n)), Xn(t) =+ x Q ( t ) ,  

where x Q ( t )  is a Gaussian process with mean A(t) = Jl(t)/2 - J3(t)/2 and covariance 

function pQ(s, t) = p(s, t). 
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3.2.6 Contiguous inverse Gaussian alternatives 

The standard inverse Gaussian distribution has density 

where 0 < a, -3/a < x. Note that as cw + 0,  h(x,  a )  + $ ( x ) ,  where $ ( x )  is the density of 

a standard normal random variable. Let 

Then 

Consider the case a = n-'I2, one has 

Since under Pn, n-' C r = , ( ~ ? ~ / 1 2  - &fn/18) +, -1112, V(&/6 - &;,/2) = 116, thus 

satisfying "p = -S2/2" again. As 

it has been proved that  under 9,: &in windep h(&in, n-'I2), Xn( t )  * x Q ( t ) ,  where x Q ( t )  is 

a Gaussian process with mean A(t)  = J l ( t ) / 6  - J3(t)/6 and covariance function pQ(s,  t )  = 

P(% t ) .  
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3.3 Comments 

It seems to  be magic that only for some clever choices of alternatives that X n ( t )  converges 

weakly. One may think that out of all possible alternatives under which X , ( t )  converges 

weakly, contiguous alternatives are just a (small) portion. However, the truth is: when 

alternatives are concerned, X,(t) converges weakly under alternatives Q n  implies that both 

Q, is contiguous t o  Pn and X,( t )  converges weakly under Pn. See Hall and Loynes (1977) 

for more details. 



Chapter 4 

EDF Statistics and Overall Test of 

Fit 

Any statistical model is based on some assumptions. The linear regression model (2.1.1) 

is, roughly speaking, based on six assumptions listed in section 2.1.1, namely, linearity (in 

parameter) and additivity (in errors), independence of the errors, homoscedasticity of the 

errors, normality of the errors, error-free covariates, and full-rank model matrix. To check 

the adequacy of these assumptions, many diagnostic statistics have been invented. See 

Belsley, Kuh and Welsch (1980), Cook and Weisberg (1982). 

This chapter considers using EDF statistics to check goodness-of-fit when fitting linear 

models. Section 4.1 introduces two families of EDF statistics. Section 4.2 lists some key 

facts about EDF statistics and explains how a tail probability is computed in this thesis. 

Section 4.3 studies the possibility of using EDF statistics to assess the overall fit of a linear 

model to a given data set. A point discussed seriously here is that in linear regression 

analysis, tests based on EDF statistics are not quite equivalent to tests of normality, as is 

usually thought to be so. Section 4.4 summarizes the chapter. 
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4.1 An Introduction to EDF Statistics 

Suppose XI,  Xz, . . . , Xn is a random sample from a continuous distribution F(x;  8), where 

8 E O c RP is either known or needs to be estimated. For a fixed 8, applying the prob- 

ability integral transformation to the X-sample gives a U-sample U1, U2,. . . , U,, where 

U; = F(X;; 8), i = 1,2,. . ., n. When 8 is the true parameter for the X-sample, U1, U2,. . . , Un 

will be an independent and identically distributed sample from the uniform U(0,l). 

Now let Fn(z) denote the empirical distribution function (EDF) of the X-sample, that 

is, 

where I [a  4 b] = 1 if a  < b, and I [a  5 b] = 0 if a  > b. Any statistic that measures the 

discrepancy between Fn and F will be called an EDF statistic. There are mainly 

two classes of EDF statistics. 

4.1.1 The supremum EDF statistics 

Let e be an estimator of 8, the supremum EDF statistics are based on the maximum differ- 

ence between Fn and F: the Kolmogorov-Smirnov statistics are 

D+ = sup Fn(x) - F(x; e), 
-oo<x<+oo 

D- = sup F(X; e) - F,(x), 
-oo<x<+oo 

and the Kuiper statistic, which is designed for data on a circle, is 

If 8 is completely specified as 80, then 80 is used to replace d in above expressions. 
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4.1.2 The integral EDF statistics 

The integral EDF statistics, also known as quadratic statistics, are based on the weighted 

and integrated squared discrepancies between Fn and F, namely, 

where $(x) 2 0 is a suitable weight function. As special cases, the Cnzme'r-von Mises 

statistic is obtained when $(x) = 1, 

+00 

W2 = n / { F ~ ( x )  - F(X; d ) ) 2 d ~ ( ~ ;  d), (4.1.5) 

and the Anderson-Darling statistic is obtained when $(x) = {F(x; 8)(1 - F(x; @))-I, 

A variation, which has been devised for data on a circle, is the Watson statistic given by 

Again, if B is completely specified as Bo, then Bo is used to replace d in above expressions. 

4.1.3 Computation formulas for EDF statistics 

For a given (observed) X-sample zl,x2,. . . , x,, let u; = F(x;; B), i = 1,2, .  . . , n. Without 

loss of generality, suppose x;'s and ui's have been arranged into ascending order. Then the 

above EDF statistics can be easily computed as (Stephens (1986)) 
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In the following discussion, D+, D-, and V are not included. For general properties and 

relative merits of the EDF statistics introduced here, see Stephens (1986). 

4.1.4 Stephens' procedure for testing normality 

To test H:: XI,  X2,.  . . , Xn is a random sample from N ( p ,  a2),  where p and a2 are both 

unkown, proceed as below: 

2 (a) Compute wi = (xi - 3)/s, where 2 = n-' CyZl xi and s = (n - I)-' C g l ( x i  - q 2 ,  

(b) Compute uj = @(wi), where @(w) is the cumulative distribution function of a standard 

normal random variable with zero mean and unit variance, 

(c) Calculate D, V, W2, U2 and A2 according to (4.1.10), and (4.1.12) to (4.1.14), 

(d) Modify D into D* = D ( f i  - 0.01 + 0.85/fi), W 2  into W* = W2(1 + 0.5/n), u2 into 

U* = U2(1+0.5/n), and A2 into A* = A2(1+0.75/n+2.25/n2), where n is the sample 

size, and reject HE at significance level a if the modified statistics exceed the upper 

tail significance points given in Table 4.7, D'Agostino and Stephens (1986), page 123. 

A portion of this table is given below as Table 4.1 for ease of reference. 

4.2 Some Key Facts About EDF Statistics 

Intuitively speaking, large values of EDF statistics indicate that the data at  hand do not 

come from the distribution used to calculate the EDF statistics. There is then one important 
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I I Significance Level a 

Modified Statistics 0.50 0.25 0.15 0.10 0.05 0.01 

Table 4.1: Upper tail significance points for EDF tests of normality when both mean p and 

variance a2 are estimated. The tests reject normality if the modified EDF statistics exceed 

the table entries. 

thing that is not discussed in the previous section, that is, how to compute tail probabilities 

of the EDF statistics. This section will list some key theoretical results about EDF statistics 

together with numerical methods for computing tail probabilities. Attention will be given 

only to  integral type EDF statistics. 

4.2.1 Orthogonal representation of stochastic processes 

Let {X,(t) : 0 < t < 1) be a sequence of generic stochastic process. Let {X(t) : 0 5 t 5 1) 

be the weak limit of X,(t) and denote the covariance function of X(t)  by k(s,t), that is, 

which is symmetric in s and t. If there are real number X and real function f( t )  such that 

then X is called an eigenvalue of k(s, t), and f (t) is called an eigenfunction of k(s, t) associated 

with A. 

Now let C2 = C2[0, 11 = {g : [O, 11 -+ R I S,' g2(t)dt < oo} and denote the usual inner 

product on L2 by < f ,g  >= J: f(t)g(t)dt. With this inner product, (C2, < a ,  * >) becomes 
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a Hilbert space. For notational convenience, it is agreed to write Z N (a, b) to mean that 

the random variable Z has mean a and variance b. 

The basic idea here is to represent X( t )  in terms of orthogonal components. This was 

essentially done in Kac and Siegert (1947): 

Given a non-null zero mean process {X(t)  : 0 5 t 5 1). If 

(1) The paths of X(t)  are a s .  in a subspace L of L2 and k(s, t )  is continuous, 

(3) The eigenvalues {X;)zl of k(s, t) satisfy X1 2 A2 2 . . . > 0, 

(4) The associated orthonormal eigenfunctions { f;(t))Zl form a complete set for the sub- 

space L, 

then 

1. k(s, t)  = CEl X;fi(s) f;(t), 0 5 s, t 5 1, where the convergence on the right side is 

both absolute and uniform, 

3. Zi =< X ,  f j  > (0, Xi) and are uncorrelated, 

4. X( t )  '2' Cgl fi(t)Z:, where 2: = Z ; / A  N (0 , l )  and are uncorrelated, 

4.2.2 X2 representation of integral EDF statistics 

For Gaussian processes satisfying the conditions (1) to  (4) listed above, the uncorrelated 

2:'s are actually independent and identically distributed N(0 , l )  random variables, leading 

to a X2 representation of T = Jt X2(t)dt, which is a generic integral EDF statistic. 
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In fact, more can be said about this x2 representation. Suppose that Y ( t )  is Gaussian 

and satisfies conditions ( 1 )  to (4) except that the mean of Y ( t )  is not zero. For s ,  t E [0, 11, 

let 

Since l ( s ,  t )  = k(s ,  t ) ,  the eigenvalues and eigenfunctions of k(s ,  t )  are the same as those of 

l ( s , t ) .  Let 

where a; =< A, f; >, i = 1,2,.  . .. Because X ( t )  has zero mean, from 

one has 

where xt6: are independent non-central X2 random variables on 1 degree of freedom and 

with non-centrality 6? = a 3 / ~ ; .  See Shorack and Wellner (1986). 
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4.2.3 Calculation of percentage points 

As in previous section, let 

be a generic integral EDF statistic. To find P{T > x), x 2 0, three (numerical) methods 

will be described here. Suppose the representation of T given in (4.2.2) holds. 

Smirnov's Method The characteristic function of T is known as 

Let 

00 

p,(t) = II (1 - 2iXjt)-'I2 exp 
j=1 

Then, cp,(t) = D(2it), and 

where 

See Schilling (1983) and the references therein. 

Pearson's Method Let K, denote the mth cumulant of T ,  let pm denote the mth 

central moment of T, and let p denote the mean of T. If representation (4.2.2) is true, one 

has (Anderson and Darling (1952)) 
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Equivalently, one has 

Pearson's method uses the first four moments to  build a density f (x) which can be used 

to  approximate PIT > x). To this end, define (Kendall and Stuard (1977)' Vol. 1, chapter 

6 > 

where A = 10p2p4 - 1 8 ~ ;  - 12~; .  Let A = (bq - 4b0b2)'I2, let k = bq/(4bob2). Then k > 1, 

which is the case in this thesis, implies that f(x) belongs to Pearson type VI curves. A 

computationally simple form for f (x) is obtained in terms of the Beta distribution as below. 

Define 

then, 

where B(p, q )  = up-'(1 - u)q-'du. 

Imhof's Method Assume again that representation (4.2.2) holds. Imhof (1961) found 

that 
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where 

sin(B(u)) 
lim 

1 1 "  
= --x + I x Aj(l + 6;). 

0 up(u) 2 
j=1 

It is remarked that there are many other methods of computing (tail) probabilities asso- 

ciated with linear (possibly infinite) combinations of x2 random variables. See Kotz, John- 

son and Boyd (1967) and Davies (1973). Of the three methods described here, Smirnov7s 

method is found inefficient for the EDF statistics studied in this thesis. For example, for 

the CramCr-von Mises statistic W2, the eigenvalues are no greater than l / ( j ~ ) ~ ,  j = 1,2, . . . 

(Sukhatme (1972)). Therefore, the intervals [1/(2A2k-1), 1/(2&)], k = 1, 2, . . ., become 

wider and wider. Pearson's method is found to work fairly well, in particular, it is very 

fast, provided an incomplete Beta routine is available. Imhof's method seems to be one of 

the most general methods used in the present context. When a good numerical routine for 

improper integrals is available (as for example, the routines in the IMSL Library), Imhof's 

method works efficiently and accurately. The following gives implementation details for 

Imhof's method applied to find probabilities under the null hypothesis, where only central 

x2 random variables are involved. The approach used here tries to correct the mean only, 

although it is not very difficult to correct both mean and variance. 

Let k(s,t), 0 5 s, t 5 1 be the covariance function for an integral EDF statistic T. 

Discretize the integral equation (see equation (4.2.1)) 

into 
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for a large integer m (m = 150 is used in this thesis) and solve for eigenvalues A; (i = 

1,. . ., m). The distribution of Ezl Aix; can be approximated by Cpl Xjx: + r x k t l ,  

where Xk+l is a chi-square random variable on 1 degree of freedom and is independent of 

the Xf ( i  = 1,. . . , m), and T is found by making 

true. For example, when testing normality using W2, where both mean and variance are 

estimated from the data, one has C,"=, A; = 0.0492385 and CZl A; = 0.0492413, so T = 

-2.8e-06. Equations (4.2.15) to (4.2.18) can then be used to approximate P{W2 > x). 

4.3 EDF Tests of Overall Fit for Linear Regression 

4.3.1 Overall test of fit 

Consider the linear regression model 

where 1, denotes an n by 1 column of l's, and In is the n by n identity matrix. The usual 

overall test of fit is the F-test of Ho: p = 0 vs HI: /3 # 0. When Ho is true, model (4.3.1) 

simply says that Y = (Yl, Y2,. . . , Yn)t is a random sample from N(a ,  u2), thus tests of 

normality with unknown mean and unknown variance based on EDF statistics (see section 

4.1.4) can be used to test Ho, too. But when Ho is rejected, the (usual) implication of the 

F-test is quite different from the (usual) implication by EDF statistics tests. 

For the F-test, when Ho is rejected, the usual implication or interpretation is, among 

other things, that it is worth including regressors other than the grand mean. One does not 

question the validity of assuming the errors to be i.i.d. N (0, u2). 

For EDF tests, when Ho is rejected, the usual implication or interpretation is, among 

other things, that one may not be able to assume that the errors are i.i.d. N(0, a2). Al- 

though this implication includes the case where the errors are independent normal with 
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equal variances but unequal means ( p  # 0), in general, one thinks about more general 

departures such as unequal variances, non-normality, or dependent errors. 

In fact, most regression diagnostic statistics focus on a specific problem area. When a 

problem is identified, the conclusion usually has local implication pointing towards either 

a violation of one basic assumption, or influential behaviour of a few points. In particular, 

EDF statistics are usually employed to test for normality of the errors. 

In this section, however, the use of EDF statistics for testing overall fit is explored. The 

phrase overall fit here means that all the key assumptions of normal theory linear regression 

are assessed in a comprehensive manner. There is nothing new in carrying out the usual EDF 

statistics tests-the same EDF statistics are used according to the same tables available, 

but the tests are no longer regarded solely as tests for normality. The reason for this change 

of point of view is simple: for the weak convergence results of chapter 2 to hold (which are 

the basis of all EDF tests in the context of normal theory linear regression), normality is 

one of the many assumptions, therefore, when EDF statistics tests reject Ho, the cause for 

the rejection could be any or several of the possibilities listed in section 2.2, Table 2.1. In 

fact, Theorem 2.4.3 allows a more general hypothesis to be tested by EDF tests. 

To test H:: the assumptions of the linear regression model (4.3.1) are all satisfied, 

proceed as below: 

(a) Obtain least squares estimates 6, p, and 3, 

(b) Compute u; = @{(Yi-6-~fp)/3) ,  where @(w) is the distribution function of a N(0 , l )  

random variable, 

( c )  Calculate D, V, W2, U2 and A2 according to (4.1.10), and (4.1.12) to (4.1.14), 

(d) Modify D into D* = D(JiE - 0.01 + 0.85/+), W2 into W*. = W2(1 + 0.5/n), U2 into 

U* = U2(1+0.5/n), and A2 into A* = A2(1+0.75/n+2.25/n2), where n is the sample 

size, and reject H: at significance level a if the modified statistics exceed the upper 
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tail significance points given in Table 4.7, D'Agostino and Stephens (1986), page 123. 

A portion of this table is given in Table 4.1 of section 4.1 for ease of reference. 

4.3.2 Examples 

One question not touched so far is: At what level should the EDF statistics tests be per- 

formed to test H:? Notice that each assumption for model (4.3.1) as listed in Table 2.1 is 

a part of H:, so to  test H: by performing one EDF statistics test, the significance level 

should be set large. Experience from doing EDF statistics tests suggests that a P-value 

of 0.25 or larger indicates that H: is reasonable. This is of course a rule of thumb and 

exceptions are not difficult to find, as will be shown later in this section. 

Before presenting numerical examples, some commonly used regression model selection 

criteria are listed here for notational reference. 

SS Residual Y -P)'(Y -P 
fi2 = 1 - - = l -  {Y-y)qu-vi~ 

2 - Y-P ' Y-P) 
s - ( i j p  , where p = dim(d), 

PRESS= Cr=l(yi - fii,-i)2, where Pi,-; is the least squares fitted value when the i"h 

observation yj is excluded from the estimation process, 

- p + -, where d2 is (ideally) an independent estimate of o2 and s2 is cp - 
0 

the residual mean square for the candidate model. 

Example 4.1. Sales Data1. The relationship between sales of asphalt roofing shingles 

sfor a particular year and factors that are known to influence sales is studied. Four factors 

under investigation are: promotional accounts (XI), number of active accounts (X2), number 

'The data are taken from Neter and Wasserman (1974), page 391. 
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District 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

Table 4.2: Sales data for Example 4.1. 

of competing brands (X3) and district potential for the sales districts (X4). Fifteen districts 

were included in this study and it is of interest to predict sales based on a regression equation. 

Table 4.2 contains the data. 

Myers (1986) studied three models with an emphasis on making good predictions. Some 

pertinent statistics are as below. A grand mean is included in each model. 

Model R2 s2 PRESS D W 2  U2 A2 

Model (xl,x2,x3) seems to be the best according to the criteria for regression model 

selection used here. This choice is well supported by examining the EDF statistics. All of 



CHAPTER 4. EDF STATISTICS AND OVERALL TEST OF FIT 

the EDF statistics give a P-value larger than 0.5. This is also seen from Figure 4.1. 

Example  4.2. Fitness Data2. One objective measure of aerobic fitness is the max- 

imum oxygen consumption in volume per unit body weight per unit time, denoted by Y. 

An experiment with 31 participants was carried out, and for each participant the following 

six factors were measured: X1 is age in years; X2 is weight in kilograms; X3 is time to run 

1; miles; X4 is resting pulse rate; X5 is pulse rate a t  the end of running; X6 is maximum 

pulse rate during running. The data are in Table 4.3. 

Myers (1986) used the data to illustrate the all possible regressions technique in model 

selection. With PRESS, Cr.l Je;,-;I, s, C p  and R2 as selection criteria, sixty-four models 

are fitted, of which eight models are maintained for further comparison because of their 

being simultaneously superior in terms of the chosen selection criteria. The eight models 

are listed below according to PRESS together with the related statistics. 

Model PRESS e s CP R2 D A2 

(a) : X I ,  22,23,25,26 181.633 

( b )  : Xl,X3,Xs,Xs 188.599 

(c) : 2 1 , X 2 , 2 3 , 2 4 , 2 5 , 2 6  192.788 

(d) : 2 1 , 2 3 , ~ 4 , 2 5 , ~ 6  202.402 

(e) : 21,23,25 205.125 

(f) : X I , X ~ , X ~ , X S  212.272 

(g) : 23,25,26 212.862 

( h )  : X2,X3,Xs,Xs 213.158 

It can be seen that model (a) is very competitive in terms of the model selection criteria. 

However, the EDF statistics certainly favour model (b). To see why this is the case, normal 

probability plots for models (a) t o  (h) are presented in Figure 4.2. It is clear from Figure 

4.2 that model (b) is the best among the eight models in terms of normality, and quite likely 

'The data are taken from SAS User's Guide: Statistics, 1982 Edition, page 106. 
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model (2) 

-1 0 1 

am**. at SWd mm3 

model (2) 

12 

model (3) 

model (3) 

Figure 4.1: Q-Q plots and plots of residuals against regressors for models (1) to (3) in 

Example 4.1. For model (i), the ordinary residuals are denoted by ri and ri/(residual 

standard error) is plotted against the regressors. ri/(residual standard error) is also used in 

the Q-Q plots. 
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individual 

1 

2 

3 

4 

5 

6 

7 

8 

9 

. 10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

2 7 

28 

29 

30 

31 

Table 4.3: Fitness data for Example 4.2. 
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model (b) model (c) 

Figure 4.2: Q-Q plots for models (a) to (h) in Example 4.2. For model (a), the ordinary 

residuals are denoted by ra, and ra/(residual standard error) is used in the Q-Q plot. A 

similar explanation applies to the rest of the models. 
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Church 

St. Albans 

Durham 

Blyth 

Binham 

Gloucester 

Norwich 

Leominster 

Southwell 

Chertsey 

Hereford 

Canterbury 

Lindesfarne 

Tintern 

Perimeter X 

3.48 

3.69 

1.43 

2.05 

3.05 

4.19 

2.43 

2.40 

2.72 

2.99 

4.78 

1.33 

1.67 

Area Y Church 

Byland 

Roche 

Carmel 

Bengeo 

Copford 

Kempley 

Birkin 

Hales 

Moccas 

Perterchurch 

Little Tey 

Melbourne 

Perimeter X Area Y 

Table 4.4: Church data for Example 4.3. 

in terms of other model assumptions. It should be noticed here that the EDF statistics also 

support models (d), (g) and (h). Nevertheless, model (d) has one more regressor (x4) than 

model (b) and still does worse than model (b), and models (g) and (h) both suffer from 

possibly asymmetrical error distributions. Plots of residuals against regressors (not shown 

here) also indicate that model (b) is the best. 

Example 4.3. Church ~ a t a ~  . Weisberg (1985) analyzed a data set of 25 post- 

Conquest Romanesque churches in Britain. Table 4.4 lists the perimeter in hundreds of 

meters (X) and area in hundreds of square meters for the 25 churches (Y). 

3The data are taken from Weisberg (1985). 
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Four models are fitted to the data with the following summary statistics. 

Model D w 2  U 2  A2 R2 

(a): y=a+px 0.4366 0.0232 0.2264 0.1896 0.9629 

( b )  : = a + px 0.8504 0.0986 0.955 0.6776 0.9676 

(c) : log y = a + ,f3 log x 0.8097 0.0807 0.0770 0.4641 0.9897 

(d) : ,/j = a + Pfi 0.4864 0.0277 0.0272 0.1865 0.9804 

At first glance, models (a) and (d) are very good fits in terms of EDF statistics tests, 

because all the EDF statistics give a P-value greater than 0.50. However, plots in Figure 

4.3 show that model (c) is superior to the other three models in terms of residual plot and 

R2. Notice that among the four models, only model (b) and model (c) are based on the 

correct units, and model (c) is certainly better than model (b). 

The lesson drawn from this example is that like all other criteria used in regression model 

building, EDF statistics tests alone cannot always point out the overall best model. The 

following hypothetical example illustrates this point further. 

Example 4.4 Anscombe's Data4. Anscombe (1973) created four sets of data to  

demonstrate the usefulness of plots in statistical analysis. Denoted by {Xi, Y, ) ,  i = 1,2,3,4, 

the data are in Table 4.5. 

Scatter plots of the data shown in Figure 4.4 clearly indicate that it is adequate to  fit 

a straight line model to  data set (I)  only, because data set (2) shows a curved relationship 

between X2 and Y2; data set (3) most likely has an outlier point; and data set (4) depends 

crucially on that point staying away from the rest of the data points. However, when fitted 

to  a straight line model y = a + px, the four data sets give almost the same estimates: 

6 = 3.0, 6 = 0.50, s = 1.237, and R2 = 0.667. 

4The data are taken from Anscombe (1973) . 
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model (a) model (a) model (a) 

. . 

model (c) model (c) model (c) 

I 

-2 .I 0 1 2 

P u n * . d S W . d l h d  

model (d) 

l4@1 

model (d) 

Figure 4.3: Scatter plots, Q-Q plots and plots of residuals against regressors for models 

(a) to (d) in Example 4.3. For model (a), the ordinary residuals are denoted by ra and 

ra/(residual standard error) is used in the plots. A similar explanation applies to the other 

models. 
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Figure 4.4: Scatter plots, Q-Q plots and plots of residuals against regressors for data sets 

(1) to (4) in Example 4.4. For data set (i), the ordinary residuals are denoted by ri and 

ri/(residual standard error) is used in the plots. 
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Table 4.5: Anscobe's data for Example 4.4. 

EDF statistics tests are applied to the four data sets. The results 

Data D W 2  U 2  A2 

are as below: 

set (1) 0.6136 0.0640 0.0639 0.3643 

set (2) 0.6591 0.0776 0.0739 0.5370 

set (3) 1.0180 0.1922 0.1716 1.1900 

set (4) 0.4410 0.0286 0.0286 0.2057 

It can be seen that based on the EDF statistics tests alone, one can ma ~ke  correct 

decisions for data sets (1) to  (3), but one will fail to  find any thing wrong with data set (4), 

and quite possibly will be attracted to the fit for data set (4). This is of course an awkward 

hypothetical situation for EDF (or other) technique to fail, but the lesson is that one needs 

t o  use plotting and other formal techniques together with EDF statistics technique to find 

a good model. See Figure 4.4. 
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4.4 Conclusions 

In summary, EDF statistics tests can provide evidence that other techniques cannot in 

regression model building. As overall tests of fit, EDF tests are fairly easy to  pass, so the 

tests should be performed at  a significance level of 0.25 or larger. When EDF statistics 

indicate something is wrong, the problem is usually serious. It seems also true that EDF 

tests rarely miss a promising model among a group of competitive models. 



Chapter 5 

EDF Tests for Box-Cox 

Transformat ions 

When some of the standard assumptions for linear regression models are in doubt, the Box- 

Cox transformation procedure is usually called in, among a group of procedures available, 

as a remedy in data analysis. In this procedure, the response variable is subjected to a 

suitable power transformation so that the standard normal-theory linear regression models 

can be fitted to the transformed values. 

In this chapter, some distribution theory is developed for inte'grd EDF statistics, includ- 

ing the Anderson-Darling statistic A2 and the Cram&-von Mises statistic W 2 ,  when these 

statistics are used to test for goodness-of-fit after applying the Box-Cox transformation pro- 

cedure to fit a linear model. Section 5.1 provides the necessary background for a rigorous 

treatment of the problem, including a correction to a defect of the usual Box-Cox model; 

section 5.2 discusses the issue of parameter estimation and describes the procedure of the 

EDF tests of fit (including a table for carrying out the tests for finite samples); section 5.3 

presents the theory behind the test procedure; section 5.4 uses red  data to illustrate the 

procedure described in section 5.2; section 5.5 draws conclusions and discusses some issues 
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about the Box-Cox transformation procedure; and section 5.6 contains the proof and some 

technical details for Theorem 5.3.1 and Theorem 5.3.2. 

5.1 Introduction 

Let Yl, . . . , Yn be positive independent random variables generating responses. For a real 

number A, define the modified Box-Cox transformation family by 

The Box-Cox transformation procedure attempts to find a suitable X and uses it to transform 

the original responses Y,  into K(X) according to (5.1.1) so that the following linear model 

is approximately applicable, 

Y (A) x X P  + a&, (5.1.2) 

where X = (xij) is a known n x p matrix of constants, = (PI,. . .,Pp)t are unknown 

regression parameters (a column vector), a is an unknown positive constant, E = ( E ~ ,  . . . , E,)~ 

are independent and identically distributed standard normal random variables, and Y(X) = 

(Yl(X), . . . , Yn(A))t; superscript t denotes transpose. 

Now let pi = xfP (i  = 1,. . . , n), where xf is the ith row of X .  If model (5.1.2) were true 

exactly, K(X) N N(pi, u2) would follow and this implies that the density of Y ,  would be, for 

X > 0, 

where 1[A] = 1 if A is true, and 1[A] = 0 if A is false. However, 



C H A P T E R  5. EDF T E S T S  FOR BOX-COX TRANSFORMATIONS 101 

where 6; = (p; + l/X)/a, 4(v) and @(v)  are the density and distribution function of a 

standard normal random variable, respectively. Since 6; < +m, @(6;) < 1, therefore (5.1.3) 

is not a proper density and in turn x(X) N N(p;, a2)  cannot be true. In this case the left 

tail of the normal distribution is cut off. If A < 0, the right tail will be cut off. 

For the purpose of subsequent analysis, a proper density and a proper distribution func- 

tion are needed, so model (5.1.2) is modified as below: Let Yl, . . . , Yn be positive independent 

random variables and suppose that there exist X E R, P E RP and a > 0 such that Y ,  has 

the density 

where p; = xfP, 6; = (pi + l/X)/a (i = 1,. . . , n). In this formula, y;(X) is y; transformed as 

in (5.1.1). 

There are two changes from model (5.1.2) to model (5.1.4). First, model (5.1.2) does not 

have proper densities while model (5.1.4) does. This is only a technical change. Secondly, 

model (5.1.2) cannot be the basis for estimating X by itself, while model (5.1.4) treats X 

as a genuine parameter with the same status as P and a. In other words, model (5.1.4) is 

taken to  model the Y;:. This point of view will be assumed in the remainder of this chapter. 

See section 5.4 for a discussion. 

Notice that in model (5.1.4) E(Y,) # p;, therefore model (5.1.4) is a non-linear model 

in P. 

5.2 Parameter Estimation and EDF Tests of Fit 

5.2.1 Parameter estimation 

The method of maximum likelihood is used to estimate A, P and v (= a2) simultaneously. 

Denote by L the log-likelihood function of a random sample Yl,. . . , Yn based on model 
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(5.1.4); then except for a constant, 

-(n/2) log v - (2v)-I {(y? - 1)/X - pi}2 

+(A - 1) EL'=, log Yi - C7=l log @(6i), if X > 0, 

-(n/2) log v - (2v)-l Cy=l {log y; - p j l 2  

- C L  1% ~ i ,  if X = 0, 

-(n/2) logv - (2v)-' Cy=l{(y? - 1)/X - piI2 

+(A - 1) Cy=, log y; - Er=, log @(-S;), if X < 0. 

Because x(X) defined by (5.1.1) is differentiable with respect to A ,  L is differentiable with 

respect to A, /I and v. Thus,'for X > 0 the likelihood equations are, for k = 1,2, .  . . , p ,  

Similarly, for X < 0 the likelihood equations are, for k = 1,2, . . . , p, 

At X = 0 the above partial derivatives reduce to the following, respectively, 
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It does not seem possible to find closed-form maximum likelihood estimators for P ,  v 

and X from the likelihood function directly, or from the likelihood equations. Therefore, 

iterative numerical methods are necessary. 

Now denote by lBc the log-likelihood function of model (5.1.2) discussed by Box and 

Cox (1964). Then, except for a constant, 

in terms of the original random variables. The Box-Cox transformation procedure proceeds 

to maximize lBc over p and v with X kept fixed; the result is a function of X alone that is 

given by 
n 

lsc(A) = -(n/2) log c ~ c ( X )  - (n/2) + (A - 1) C l o g  yi, (5.2.12) 
i=l 

where ncBc(X) = Y(X)t(I - X ( x t x ) - ' x t ) ~ ( X )  is the residual sum of squares from regress- 

ing Y(X) on X .  The final value 5 of X for subsequent analysis is determined by maximizing 

lBc(X) over A, and the estimates for /3 and v are given by 

Note that the residual sum of squares is usually divided by n - p to obtain an estimate of v, 

where p is the number of regression parameters. Examples given in section 5.4 will follow 

this convention. 

It can be seen by comparing (5.2.11) to  (5.2.1) that lBC x L if - Cr=l loga(6;) x 0 (or 

- C7=l log a(-&) x 0). This happens if (1) A is close to  zero, or (2) pi's (or -pi's) are large, 

or (3) v is small. In practical terms, for X > 0, let 6: = minl<i~n{&); if 6: > ~ - ' ( e - ~ / " )  
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for a positive constant c, then 

For instance, for c = 0.01 and n = 50, @-1(e-0.01/50) = 3.54, that is, if the minimum of 

6; has a magnitude 3.54, which is about three and a half standard deviations according to 

the standard normal distribution, then truncating the left tail cuts off less than 0.01 from 

the log-likelihood. Similarly, for X < 0, let 6, = mini<;<,{-6;); - - if 6; > @-'(e-c/n) for a 

positive constant c, then - Cr=l log a(-&) < c. Simple calculations of the above type can 

serve to assess transformation potentials. 

Very often in practice, the term - Cy=l log @(S;) (or - Cy=l log @(-6;)) is practically 

zero so that L and lBc will lead to practically the same parameter estimates for a given set 

of data. 

5.2.2 EDF tests of fit 

To test for goodness-of-fit when fitting model (5.1.4) to data, the integral type of EDF 

statistics can be employed. For the present case, let 0 = (X,Pt, v ) ~  and let 8 = (j\,bt, t ) t  

be the maximum likelihood estimate for 8. The cumulative distribution function for Yj in 

model (5.1.4) is given by 

where pi = a@, 6; = (pi + l /X) / f i ,  Gi(yi) = (yi(X) - pi)/&. Now for each i, let 

u; = F;(y;; e )  and let the empirical distribution function of the ui7s be 

The integral EDF statistics are based on the weighted and integrated discrepancies between 

Fn(t) and F(t)  t (0 5 t 5 I), as described in section 4.1.2. In particular, for a given data 



C H A P T E R  5. EDF T E S T S  FOR BOX-COX TRANSFORMATIONS 

set yl, . . . , y, (in ascending order), W2 and A2 can be computed according to 

See Durbin (1973), Stephens (1986) and section 4.1.3. 

To perform a goodness-of-fit test of HtC: model (5.1.4) fits the data, the following steps 

can be used: 

(a) Find i, p and D as outlined above, 

(b) Compute u; = 4(y;;  e )  according to (5.2.15) with the true parameters replaced by their 

estimates, or approximately, u; = @(b;(~;)), where b;(y;) = ( ~ i ( i )  - /&)Id, d = &, 

(c) Calculate W2 and A2 according to (5.2.17) and (5.2.18), respectively, 

(d) Modify W2 into W** = W2(1 + 2.5/n), modify A2 into A** = A2(1 + 4.2/n - 43/n2), 

where n is the sample size, and reject HFC at significance level a if the modified 

statistics exceed the upper a-percentiles given in Table 5.1. 

The entries in Table 5.1 are the upper percentiles of the asymptotic distributions of A2 

and W2, respectively, as n t oo, and for the case where A = 0. The modified statistics 

A** and W** shown in Table 1 are obtained through simulations for finite sample sizes and 

through smoothing of the simulated finite sample percentiles and the asymptotic percentiles. 

See Stephens (1974) and Linnet (1988). 

5.3 Theory of the Tests 

In order to obtain and use the asymptotic distributions of A2 and W2, a key step is to show 

that the (estimated) empirical process 

&(t) = Ji i (~,( t )  - t)  
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Modified 

( Statistics ( Upper percentiles 

Table 5.1: Upper percentiles of the asymptotic distributions of A2 and W2 for testing Box- 

Cox transformations when the true X value is zero. The statistics and w2 are modified 

into A** = A2(1 + 4.2/n - 43/n2) and W** = W2(1 + 2.5/n), respectively, where n is the 

sample size, and the modification is aimed at  taking care of finite sample situations. See 

Stephens (1974). 

converges weakly to a Gaussian process with zero mean and a manageable covariance func- 

tion. Some sufficient conditions for such a desired result are presented in the following 

theorem. 

Theorem 5.3.1 In model (5.1.4), suppose that 

(A) X = (1, U) is such that 1;U = 0, where 1, is an n x 1 vector of 1'5, 

(B) E = limn,, n'lxtP2 and b = limn,, n-I lkp4 exist for any /3 E 0, where f l  is an 

open convex subset of RP, p = Xp, pk is an n x 1 vector with its ith component equal 

to (zip)k, k = 2,4, 

(C) A = lim,,, n- lXtX exists and is positive definite, 

( D )  there are constants MI and Mz such that for any n and any i = 1,. . . , n, 
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( 1 )  when X = 0,  the mazimum likelihood estimate 9 is asymptotically normal, that is, 

f i ( 9  - 8) +d N(0 ,  I'), where 

with 

A = (4~ ) - ' ( 7v2  + 10vPtAP + b) ,  

where Dt = (1,0, .  . ., o ) ~  is a p x 1 vector with its first component equal to 1 and all 

the other components equal to 0; 

( 2 )  when X = 0 ,  the (estimated) empirical process en(t) = f i ( ~ ~ ( t )  - t )  converges weakly 

to a Gaussian process Y ( t )  with Zen, mean and covariance function 

where J l ( t )  = $(!I?-'(t)), J2( t )  = !I?-l(t)Jl(t)  are as before, and J$(t)  = [(@-1(t))2 - 

11 J l ( t ) ,  J ,  t E [O, 11. 

Remark. It is interesting to notice that the last three terms in equation (5.3.2) corre- 

spond to the first three (weighted) Hermite polynomials. 

Theorem 5.3.2 Under similar conditions to those of the above theorem, and for general 

A, u and p, 
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( 1 )  the (estimated) empirical process Pn(t)  = f i ( ~ ~ ( t )  - t )  converges weakly to a Gaussian 

process Y G ( t )  with zero mean and covariance function 

where TG is a ( p  + 2 )  x ( p  + 2 )  matrix and is supposed to be positive definite, and 

g ~ ( t )  is a ( p  + 2 )  x 1 column vector function o f t ,  where p = dim(,B), t E [O,l];  

( 2 )  the covariance function pG(s, t )  of (5.3.3) converges (pointwise) to the covariance func- 

tion p ( s , t )  of (5.3.2) as ( i )  X -r 0 ,  or (ii) u -* 0,  or (iii) ,B1 -, +m. 

The proof of Theorem 5.3.1 and part (2) of Theorem 5.3.2 is given in section 5.6; part 

( 1 )  of Theorem 5.3.2 is discussed in section 5.5; and the expressions for I'G(s, t )  and f D ~ ( t )  

are given in section 5.6. 

5.4 Examples 

Three examples are given below to illustrate the use of Table 5.1. They illustrate three 

typical situations where X is close to zero, positive, and negative. 

Example 5.1. Textile Data. Table 4 of Box and Cox (1964) is reproduced below as 

Table 5.2, which is the result of a single replicate of a 33 factorial experiment. The response 

y is the cycles to failures of worsted yarn, and the three explanatory variables assume three 

different levels each; see Box and Cox (1964) for details. 

Three main effect linear models are fitted to the data. The first model uses y directly 

and its goodness-of-fit is judged by the EDF tests of section 4.3.1. (Note: In this case, the 

modified EDF statistics are A* = A2(1 + 0 . 7 5 1 ~ ~  + 2.25/n2) and W* = W 2 ( 1  + 0.5/n),  and 

Table 4.1 is used.) The second model transforms y according to (5.1.1) and its goodness-of- 

fit is assessed using Table 5.1 provided in section 5.2. The third model uses a "nice" value 

to transform y and its goodness-of-fit is also judged by Table 5.1. Parameter estimates are 
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Factor levels Factor levels 

XI x2 x3 cycles to failures, y XI x2 x3 cycles to failures, y 

-1 -1  -1  674 0 0 1 438 

-1  -1  0 370 0 1 -1 442 

-1  -1  1 292 0 1 0 332 

-1 0 -1  338 0 1 1 220 

-1  0 0 266 1 -1  -1  3636 

-1 0 1 210 1 -1  0 3184 

-1  1 -1  170 1 -1  1 2000 

-1  1 0 118 1 0 -1 1568 

-1 1 1 9 0 1 0 0  1070 

0 -1  -1  1414 1 0 1 566 

0 -1 0 1198 1 1 -1 1140 

0 -1 1 634 1 1 0 884 

0 0 -1  1022 1 1 1 360 

0 0 0  620 

Table 5.2: Textile data reproduced from Table 4 of Box and Cox (1964), Example 5.1. 

[ Model Parameter Estimates Modified EDF (P-value) 

3 A* W* 

Y: 488.2 - 1.394 ( ~ 0 . 0 1 )  0.241 ( ~ 0 . 0 1 )  

y(X): 0.126 -0.059 0.3697 (>0.20) 0.0541 (>0.30) 

logy: 0.186 0 0.2719 (>0.50) 0.0353 (>0.50) 

I y(X): Minimum of -6; = 82.577 - c::, log a(-6;) = 0 

Table 5.3: EDF tests of goodness-of-fit for three main effect linear models, textile data, 

Example 5.1. 
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obtained by directly maximizing the log-likelihood function and by applying the Box-Cox 

transformation procedure separately; the results are practically the same. See Table 5.3. 

As can be seen from Table 5.3, the transformed models are better fits to the data. 

Example 5.2. Tree Data The data in Table 5.4 is taken from Minitab Student  Hand- 

book (Ryan, Joiner and Ryan (1976), page 278). The heights (xl ) ,  the diameters (x2) at 4.5 

ft above ground level and the volumes (y) were measured for a sample of 31 black cherry 

trees in the Allegheny National Forest, Pennsylvania. The data were collected to provide 

a basis for determining an easy way of estimating the volume of a tree based on its height 

and diameter. Again, three linear models are fitted to the data, using y, y(X) and y($), 

where 5 is chosen according to dimension consideration of volume vs length. Parameter 

estimates are obtained by directly maximizing the log-likelihood function and by applying 

the Box-Cox transformation procedure separately; the estimates are virtually the same; Ta- 

ble 5.5 contains the results. In this example, the need for transformation is suggested by 

dimension consideration and the Box-Cox estimate j\ = 0.307 agrees with this considera- 

tion. All the three models pass the EDF tests, especially, the untransformed model is the 

"best" in the sense of EDF tests. However, a close look at residual plots (Figure 5.1) shows 

that the transformed models are better than the untransformed one. It seems in this case 

that normality was sacrificed a little bit to obtain overall better fits in doing the Box-Cox 

transformation. 

Example 5.3. Biological Data. Table 1 of Box and Cox (1964) is reproduced as 

Table 5.6 below. The entries are the survival times (unit is 10 hours) of animals in a 3 x 4 

completely randomized factorial experiment. The factors are Poison with three levels and 

Treatment with four levels. - 

Three main effect models are fitted to the data as in the above two examples. Table 5.7 

clearly shows that a power transformation improves model fit a great deal. 
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Table 5.4: Tree data for Example 5.2. 

Model Parameter Estimates Modified EDF (P-value) 
- -- 

6 A A* W* 

1 y: 3.882 - 0.2548 (>0.50) 0.0366 (> 0.50) 

2 y(X): 0.227 0.307 0.3192 (>0.40) 0.0487 (>0.40) 

3 y($): 0.249 - 3 1 0.2983 (>0.40) 0.0440 (>0.40) 

y(X): Minimum of Si = 29.22 - ~ : z ~  log @(6i )  0 

Table 5.5: EDF tests of goodness-of-fit for three straight line models, tree data, Example 

5.2. 
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Model 1 

Model 2 

Model 1 

Model 2 

.l 

Model 3 

Model 1 

12 

Model 2 

Model 3 

Figure 5.1: Q-Q plots and plots of residuals against regressors for models 1 to 3, tree data, 

Example 5.2. ri denotes the standardized residuals for model i, i=l ,  2, 3. 
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Treatment 

Poison A B C D 

Table 5.6: Biological data reproduced from Table 1 of Box and Cox (1964), Example 5.3. 

-- - 

Model Parameter Estimates Modified EDF (P-value) 

6 A A* W* 

Y: 0.1582 - 1.0550 (<0.01) 0.1589 ( ~ 0 . 0 2 5 )  

y(X):  0.3916 -0.75 0.2110 (>0.50) 0.0296 (>0.50) 

( - 1 )  0.4931 -1.00 0.3056 (>0.40) 0.0407 (>0.50) 

y(X):  Minimum of -6; = 3.667 ' - c:!!, log @(-6;) = 0.0005 

Table 5.7: EDF tests of goodness-of-fit for three main effect linear models, biological data, 

Example 5.3. 
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5.5 Conclusions and Conjectures 

Linnet (1988) empirically studied the use of the Anderson-Darling statistic A2 and the 

Cram&-von Mises statistic W 2  to test for normality of the power transformed data in one- 

sample problems. Through simulation studies Linnet concluded empirically that the null 

distributions of A2 and W 2  do not depend on parameter values for the transformation 

parameter A, the mean p and the variance v .  A table was provided for A2 and W 2  for finite 

samples in which the asymptotic critical points were obtained by extrapolation. 

Since the Box-Cox transformation procedure is often used in analysis of variance and 

regression analysis, linear models have been examined in this chapter. Moreover, tests 

based on A2 and W 2  are regarded here as overall goodness-of-fit tests, instead of tests for 

normality only. This is reasonable because the theory leading to the applications of A2 

and W 2  assumes not only normality of error distribution but other standard linear model 

assumptions as well. 

In order to treat the theory of power transformations rigorously, it is necessary to com- 

plete model (5.1.2) into model (5.1.4). This completion changes little of the usual estimation 

process for application as discussed in section 5.2.1, and provides a quantitative guide for 

assessing transformation potentials as mentioned in section 5.2.1, too. However, theory for 

inference becomes more difficult for model (5.1.4) than for model (5.1.2). For example, some 

of the numerical examples in Bickel and Doksum (1981) are only approximately correct, be- 

cause (in the terminology of this chapter) the hi's are not large enough to ignore the term 

- Cr='=, log a(&) which should be in the log-likelihood function and should show up in a way 

in the asymptotic variance-covariance matrix. 

One analytically tractable case is when X = 0. In this case, Hinkley (1975) obtained 

the asymptotic variance-covariance matrix of fi(9 - 9 )  for the one-sample problem. There 

is a misprint in his derivation because the asymptotic covariance of @ and P should be 

2p(v + p2)/3, instead of 2p(v + p2). The asymptotic variance-covariance matrix for the 
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case of linear models is given in Theorem 5.3.1. For the case where X # 0, it does not seem 

possible to find an explicit expression for the Fisher information matrix, but the properties 

of the asymptotic variance-covariance matrix are explored numerically (see Theorem 5.3.2, 

too). One finding worth mentioning is the large increase of the variances for 6 and fi when 

X is estimated compared to  the corresponding variances when X is known. However, the 

point of view of this chapter is to model the Y ,  with model (5.1.4) as mentioned after 

the introduction of model (5.1.4). For more information concerning the variance inflation 

problem, see Bickel and Doksum (1981), Box and Cox (1982), and Hinkley and Runger 

(1984). It is conjectured that under mild conditions on the model matrix X, maximum 

likelihood estimates of the parameters in model (5.1.4) are asymptotically normal for general 

X values and have variance-covariance matrices with the usual Fisher structure. 

Following the above discussion, it can be seen that a rigorous treatment of a general 

distribution theory for A2 and W 2  needs much work to  build. As a first step, the X = 0 

case has been done rigorously here. In this case, X(O) = logY, is normally distributed, so 

,Ll and u are essentially location and scale parameters and it follows that the asymptotic 

distributions of A2 and W 2  do not depend on ,Ll and u. For the case where X # 0, part (1) 

of Theorem 5.3.2 outlines the covariance function pG(s, t) of the weak limit of the estimated 

empirical process of (5.3.1). The form of pG(s, t)  has been guessed along the lines of proving 

part (2) of Theorem 5.3.1 (see section 5.6). A rigorous proof of part (1) of Theorem 5.3.2 

is feasible, although many details are difficult to  supply. The relationship between pG(s, t )  

and p(s, t)  is studied in two ways. 

First, numerical computations are carried out. The results (not presented here) show 

that p(s, t )  of (5.3.2) and pG(s, t) of (5.3.3) give very close results when L of (5.2.1) can be 

well approximated by lBc of (5.2.11), a situation which occurs very often in application. 

Since the limiting distributions of A2 and W 2  depend on the eigenvalues of p ~ ( s , t )  (for 

X # 0) and p(s, t) (for X = 0), it should be interesting to compare the limiting distributions 

of W 2  for various parameter values numerically, based on p(s, t) and pc(s, t). For model 
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Upper Percentiles 

X = 0 

any p  

any a 

(6 = 00) 

0.50043 

0.39992 

0.30010 

0.20082 

0.14972 

0.09996 

0.05005 

0.01002 

Parameter Values 

X = 0.4 X = 0.6 X = -0.5 

p = 0.0 p = .5 p =  -13 

a = 0.8 a = 1.0 a = 1.0 

(6 = 3.125) (6 = 2.167) (-6 = 15) 

0.52790 0.52063 0.50028 

0.40027 0.41042 0.39990 

0.29880 0.30039 0.30018 

0.19849 0.19240 0.20098 

0.14720 0.13839 0.14989 

0.09757 0.08769 0.10001 

0.04828 0.04003 0.05017 

0.00943 0.00649 0.01006 

Table 5.8: A comparison of asymptotic significance levels for different A, p  and a values 

based on statistic W2 when testing goodness-of-fit of Box-Cox transformations. 

(5.1.4) with grand mean p = PI only, the results are given in Table 5.8. 

The entries in the last five columns in above table are the probabilities of observing 

values greater than the upper percentiles listed in the first column. The numbers inside 

the parentheses in the first column are from Table 5.1 and are supposed to be the correct 

asymptotic significance levels. 100 estimated eigenvalues are used in each case to compute 

the above asymptotic significance levels. The case with X = 0 is based on covariance function 

p(s, t) of (5.3.2). In this case, the asymptotic significance levels do not depend on p and a. 

The other four cases are based on pG(s, t) and numerical computations. See section 5.6. 

Secondly, the limit of pG(s, t )  for the general regression model (5.1.4) is obtained as 

X + 0, or a + 0, or + too .  The results of Theorem 5.3.2 say that p(s,t) is indeed 

the limit of pG(s, t) for small A,  or small a, or large PI values. These cases are common in 

application, and are indicated by large values of Si = (pi  + l/X)/a, as discussed before. 
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Together, it is fairly clear from Table 5.8 and Theorem 5.3.2 that the limiting distribution 

of W2 does depend on unknown parameter values (the same can be said about A2), but it is 

conjectured that the covariance function p(s, t )  of (5.3.2) is approximately valid for general 

A, o and mean values encountered in applications, when mode1 (5.1.4) is taken as the basic 

underlying model; that A2, W2 and any other statistics based on p(s, t) are practically 

parameter-free; and that Table 5.1 of this chapter is applicable for practical purposes. 

The upper percentage points in Table 5.1, which are different from those obtained by 

Linnet (1988), are computed here using the covariance function p(s, t)  of (5.3.2) and the 

method of Imhof (1961). A drawback of Linnet's method of generating random samples is 

that he simulated genuine normal samples first and then transformed the normal samples us- 

ing the inverse of (5.1.1). Some simulations are done in the present research using the inverse 

of (5.2.15) to generate random samples and using the Box-Cox transformation procedure to 

estimate parameters. This latter approach is closer to the way the Box-Cox transformation 

is usually applied. Fortunately, the simulation results using the above two approaches are 

close. The asymptotic points in Table 5.1 are calculated theoretically, whereas Linnet's are 

the results of extrapolation of finite sample simulations. However, the differences are very 

slight, so Linnet's modified forms W** and A** are used in Table 5.1, which are based on 

more extensive simulations. 

5.6 Proof of Theorem 5.3.1 and Theorem 5.3.2 

5.6.1 Proof of Theorem 5.3.1 

Proof of (1). Let p = ( p l , .  . . , pn)t = Xp. When X = 0, Wi = K(0) = log K N N(p;, v). 

Denote dY;(X)/dX by ~ ( x )  and d2x(X)/dX2 by %(A), then %(o) = ~ : / 2 ,  %(o) = ~ 3 1 3 .  

Straightforward calculations show that the inverse of the Fisher information matrix for 
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0 = (0, pt, u ) ~  is given by 

where 

n-'A, = (4v)-'(7v2 + 1 0 v p t ( n - ' X t x ) ~  + n-'1kp4), 

where D t  = (1,0,. . .,O)t is a p x 1 vector with its first component equal to  1 and all the 

other components equal to 0. Therefore, as n + co, n-lr, -+ I' as desired. 

Proof of (2). The proof is based on Loynes (1980). In the present case, the null 

hypothesis Hn(7) in Loynes (1980) specifies nothing and all the parameters 0 = ( A ,  Pt, u ) ~  

are to  be estimated. Since K(0) = log k;. N N (pi, v), without loss of generality, it is assumed 

that p = 0 and v = 1. Then the inverse of the asymptotic variance-covariance matrix for 

8 = (0, Ot, l ) t  is found to  be 

where G-' = (lim,,, n-'UtU)-l, X = (1, U). It is readily checked that assumptions 

A1 and A2 of Loynes (1980) are satisfied naturally by model (5.1.4). Under assumption 

(D), it can be checked that assumptions A4 and A5 of Loynes are also satisfied; the truth 

of assumptions A7 and A9(b) of Loynes can be checked by direct calculations. Therefore, 

by Theorem 1 of Loynes (1980), the estimated empirical process ~ , ( t )  of (5.3.1) converges 

weakly to  a Gaussian process Y(t). By Corollary 1 of Loynes (1980), the mean of Y ( t )  is 

zero and the covariance function of Y(t) is 
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where q ( t )  is found to be 

Direct computations then show that the expression given in (5 .3 .2 )  follows. 

5.6.2 Proof of Theorem 5.3.2 

Some Technical Details for (1). The (p + 2 )  x ( p  + 2 )  matrix rG and the ( p  + 2) x 1 

function q G ( t )  mentioned in Theorem 5.3.2 are given below. 

Let In be the Fisher information matrix for a random sample Yl, . . . , Y, from model 

(5 .1 .4) .  Then 
4 
1 

I'G = - lim I;', n n+oo 

and I, has the following components: 
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where diag(d;) denotes n x n diagonal matrices with d; as its (i, i)th element, 1, denotes an 

n x 1 column vector of l's, Jli is given by, for X > 0, 

where p; = zip, 6; = (p; + l /X) / f i ,  g(X) and %(A) are the first and second derivatives of 

K(X) with respect to A, respectively; for the case X < 0, the above integrals should be done 

for the range -oo to -6; and @(G;) should be replaced by a(-6;). 

Similarly, E{Y(x)) has components J2; given by, for A > 0, 

= (A2@(6i))-l 6(V)[(l+ Xpi + Xav) log(l+ Xp; + Xav) - Xp; - Xav] dv, - 6, 

and E{(Y(X) - X~) 'Y(X) )  has components J3 given by, for X > 0, 

In the case where X < 0, the above two integrals should be done for the range -oo to -6; 

and a(&;) should be replaced by a(-&;). 

For function !JG(t), there is 

1 n 

PG(t) = - lim C dn')(t) ,  n n-ca 
i=l 
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where ~ ( ~ ~ ) ( t )  is a ( p +  2 )  x 1 column vector function with the following components, where 

j = 1,.  . . , p corresponds to  the components associated with p: 

where w; = w;( t )  

-(~~~@~(6;))-'[4(~;)@(6;){(1+ Xp; + Aaw;) l og ( l +  Ap; 

+Xaw;) - Xp; - Xaw;} + 4(6i)@(w;) - 4(6;)], if X > 0, 

- ( ~ X ~ @ ~ ( - 6 ; ) ) - ' [ ~ ( ~ ~ ) @ ( - 6 ~ ) { ( 1 +  Xp; + XUV;) log ( l+  Xp; 

+Xuv,) - Xp; - Xuv;) - q5(-6;)@(vi)], if X < 0, 

= @-'(I + @(S;)(t - I)), V; = v; ( t )  = @-1(t@(-6i)), and t E [0, 11. 

Proof of (2). The X -+ 0 case is straightforward; the a -+ 0 case and the P1 -, +oo case 

can be handled using symbolic computing softwares such as Maple. Ready-to-run Maple 

files are available from the author. 0 



Chapter 6 

EDF Tests of Composite 

Hypotheses 

The problem of testing composite goodness-of-fit hypothesis H: : XI,. . . , X, is a random 

sample from a continuous distribution with cumulative distribution function F ( x ;  d ) ,  where 

d  E O C RP is unknown, is revisited in this chapter. Section 6.1 reviews the EDF test ap- 

proach to the above mentioned composite hypothesis H:. Through the idea of approximate 

normality and imaginary parameters, section 6.2 presents a new test procedure based on 

an approximate link between this general composite hypothesis and the problem of testing 

normality when both mean and variance are unknown. Heuristic justification of the new 

procedure is given in section 6.3, and a simulation study of the new procedure is provided 

in section 6.4. Section 6.5 applies the new procedure to  four real data sets, and Section 6.6 

ends the chapter with a few comments. 

6.1 Introduction 

Suppose X I , .  . . , X, is a random sample from a continuous distribution. It is often desirable 

to test or confirm that the random sample is from some particular distribution. Of most 
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practical interest is the composite hypothesis HF : X I , .  . . , X, come from a continuous 

distribution with cumulative distribution function F ( x ;  8), where 8 E O C RP is unknown. 

Many authors have addressed this problem and a huge literature under the title goodness- 

of-fit is now available. See D'Agostino and Stephens (1986) for both general principles and 

practical techniques. 

This chapter, however, will concentrate on the empirical distribution function (EDF) 

approach to  the above mentioned goodness-of-fit problem. Since 8 is an unspecified (col- 

umn) parameter vector and therefore needs to be estimated, complications arise in studying 

the weak convergence of the underlying empirical processes which are the basis of all EDF 

statistics, such as Kolmogorov-Smirnov's D, Cram&-von Mises' W2, Anderson-Darling's A2 

and Watson's U2. See section 4.1 for definitions of these statistics. Durbin (1973a) made 

serious investigations on the effect of estimating unknown parameters; Loynes (1980) gen- 

eralized Durbin's results to the independent but not identically distributed case; Stephens 

(1986), in a large part, worked out a great deal of details, provided very useful tables and 

studied the performances of a family of EDF statistics, including the above four. 

As far as weak convergence of the underlying empirical processes is concerned, Durbin 

and Loynes' results are very general, provided the usual requirements on Fisher's information 
1 

matrix are met and, in particular, the estimator 8 of 8 is efficient in the sense that n ~ ( 8  - 8) 

can be written as a sum of independent random variables with zero mean, plus an o,(l) term. 

When 8 consists of only location and scale parameters, the limiting Gaussian processes of the 

underlying empirical processes do not depend on 8. This nice feature is however no longer 

present when 8 involves a shape parameter, making tabulation of limiting distributions a 

heavy job. In this last case, few tables have been produced for EDF statistics. See Stephens 

(1986). 

Because there are so many interesting distributions being employed in application, for 

each one a table needs to be created. As EDF tests for the case with unknown parameters are 

mostly asymptotic tests, a great deal of effort have been made through extensive simulations 
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to handle the realistic finite sample size situations. This is manifested by the large number 

of tables in D'Agostino and Stephens (1986). It is not bad that tables are created for each 

and every single distribution, but it would be nice if one table could serve most interesting 

distributions in a practical manner, especially when such a table. has been created. 

6.2 A New Procedure for Testing Goodness-of-Fit 

The hypothesis is H:: random sample XI,. . . , X, come from a continuous distribution 

with cumulative distribution function F(x; B), where 8 E O C RP is unknown. For a 

fixed 8, applying the probability integral transformation to the X-sample gives a U-sample 

Ul,. . ., U,, where U; = F(X;; 8) ( i  = 1,2,. . .,n). When 8 is the true parameter for the 

X-sample, Ul, . . . , U, will be an independent and identically distributed sample from the 

uniform U(0,l). 

Now let F,(x) denote the empirical distribution function of the X-sample, that is, 

where l[a < b] = 1 if a < b, and l[a 5 b] = 0 if a > b.  Any statistic that measures the 

difference between Fn and F will be called an EDF statistic. See section 4.1 for definitions 

of supremum and integral EDF statistics. 

For the ease of reference and comparison, the computational formulas for D, W2, U2 

and A2 are reproduced here together with Stephens' procedure for testing normality. 

For a given X-sample 11,. . . , x,, let u; = F(x;; 8) (i = 1,2,. . . , n). Without loss of 

generality, suppose xi's and u;'s have been arranged into ascending order. Then 
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To test H P :  XI , .  . . , Xn is a random sample from N ( p ,  a2),  where p and a2 are both 

unknown, Stephens' procedure proceeds as below: 

(a) Compute w; = (xi - %)Is,, where 3 = n-' CrZl xi and s% = (n - I)-' CLl(x; - 2)2, 

(b) Compute u; = 9(w;), where 9(w) is the cdf of a N(0 , l )  random variable, 

(c) Calculate D,  W2,  U2 and according to  (6.2.1) to  (6.2.4), 

(d) Modify D into D* = ~ ( n t  - 0.01 + 0.85/nf), W2 into W* = W2(1 + 0.5/n), U2 into 

U* = U2(1 + 0.5/n), and A2 into A* = A2(1 + 0 . 7 5 1 ~ ~  + 2.25/n2), where n is the sample 

size, and reject H ~ N  at significance level a if the modified statistics exceed the upper tail 

significance points as given in Table 4.7, D'Agostino and Stephens (1986), page 123. See 

Table 4.1 in Chapter 4 for quick reference. 

To test H?: XI , .  . . , Xn is a random sample from a continuous distribution with cumu- 

lative distribution function F(x; B), where B E O c RP is unknown, proceed as below: 

(1) Estimate B efficiently by and compute v; = F(x;; 81, where the 3;'s are in ascending 

order, 

(2) Compute yj = 9-'(v;), 

(3) Compute Uj = 8{(yi - j)/s,), where = n-' Cr==l y; and si = (n - I)-' CrZl(y; - ij)2, 

(4) Calculate D, W2, U2 and A2 according to (6.2.1) to  (6.2.4), 

(5) Modify D into D* = ~ ( n ;  - 0.01 + 0.85/n;), W2 into W* = W2(1 + 0.5/n), U2 into 

U* = U2(1 + 0.5/n), and A2 into A* = A2(1 + 0 . 7 5 1 ~ ~  + 2.25/n2), where n is the sample 

size, and reject H: at  significance level a if the modified statistics exceed the upper tail 

significance points as given in Table 4.7, D'Agostino and Stephens (1986), page 123. Also 

see Table 4.1 in Chapter 4 for quick reference. 
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6.3 Heuristic Justification of the New Procedure 

The empirical process related to testing normality as stated in H: is constructed by letting, 

for i = 1,2,. . . , n ,  

d; = @(W;) = @{(Xi - X)/S,), 

where 8; = (n - I)-' Cy=l(X; - X ) 2  and defining, for 0 < t 5 1, 

n 

Xn(t) = n-f x { l [ d ;  5 t] - t). (6.3.1) 
i=l 

It is well known (Loynes, 1980) that Xn(t) converges weakly to a Gaussian process X(t)  

with zero mean and covariance function 

where s, t E [0, 11, Jl(t)  = 4(@-'(t)), J2(t) = 4(@-l(t))@-l(t), and 4 ( x )  is the density of a 

standard normal random variable. 

Let 8 = ( p ,  a) t  be the true parameter for the Xi's under H!. Let Zl, . . . , Z, denote 

independent and identically distributed standard normal random variables. Then, X, = 

uZ; + p in distribution and 

where sz = (n-l)-' C:=I(~i-2)2. In this version of the di7s, it is clear that the distribution 

of X(t) does not depend on the unknown parameter 8 = (p, u ) ~ .  

Now consider HZ. Suppose 8 is the true parameter for the Xi's under HF,  and suppose 

F(z;B) has continuous partial derivatives with respect to 8. For any estimator e of 8, 

expanding F(z;  i) about 8 gives 
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where Ul, . . . , U, are independent and identically distributed as uniform U(0, l ) ,  7; lies 

between 8 and 8, and the prime denotes partial derivative with respect to 0 (a row vector). 

According to step (2) of the new procedure, @-I(.) is applied to transform K's; this gives 

where 6; lies between V j  and U;, Jl(t) = +(@-'(t)) and Zi are iid N(0, l )  random variables. 

Let E; = F1(Xj; q;)(8 - B)/J1(6;) (i = 1,2, .  . . , n). It can be seen that the X's are the 

true normal random variables 2;'s contaminated by random quantities E;'s. In this sense, 

the X's have approximate normality. The new procedure is to  treat the x ' s  as if they 

were independent and identically distributed normal variables with unknown mean p and 

unknown variance a2. The parameters in this treatment are of course imaginary. However, 

the following heuristic arguments attempt to  justify, in an approximate sense, the use of 

normality and parameters in the way just described. 

For the Y ,  defined above, let si = (n  - I)-' Cy=, (Y; - Y ) 2 .  Then the weak limit of 

needs to  be found. However, Bn(t) can be rewritten into 
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and this can be further decomposed into 

Because 

sup I@(Z + s,@-'(t)) - tl = op(l), 
o < t g  

it follows that Bz,(t) + B4n(t) converges weakly to the Gaussian process with zero mean 

and covariance function (6.3.2), that is, the weak limit for testing normality of a random 

sample with unknown mean and variance is reached. 

From the identity F(F-'(2; 8); 8) = x, it follows that for 9 close to 9,  there is 

Also, 9 close to 8 implies Y rr: 2 and s, s s,. Therefore, for estimator 9 such that 

f i ( 9  - 8) = 0,(1), it follows, according to section 2.4.3, that Bln(t) = op(l). 

The last term left is B3,(t). In general, B3n(t) = op(l) does not hold, therefore, the weak 

limit of Bn(t) can not be the same as the weak limit for testing normality when both mean 

and variance are unknown. However, simulation results (shown in next section) indicate that 

ignoring the contribution from B3,(t) does not cause serious problems for some commonly 

used distributions. 
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6.4 A simulation study of the New Procedure 

Simulations have been carried out, using the new procedure, for the following distributions 

whose densities f (.) or distribution functions F ( . )  are given by: 

(1) Normal: @{(x - p)/a),  p E R, a > 0; 

(2) Exponential: f (x; a ,  P) = P-' expi-(x - a)/@), a E R, P > 0; 

(3) Extreme-value: F(x; a, P) = exp {- expi-(x - a)/P)),  a E R, /3 > 0; 

(4) Weibull: F(x; P, m) = 1 - expi-(z/P)"), P > 0, m > 0; 

(5) Gamma: f (x; p, m) = ,@mI'-l(m)xm-' expi-XI@), P > 0, m > 0; 

(6) Lognormal: F(x; p, a2) = @{(log(x) - p)/a) ,  p E R, a > 0; 

(7) Inverse Gaussian: f(x; p, A) = (X/(27r))f x-f exp[-{X(x - p)2}/{2p2x)], X > 0, p > 0. 

The method of maximum likelihood is used to  estimate the unknown parameters in all 

cases except in (1) where u2 is estimated by the unbiased version of the sample variance and 

in (2) where a is estimated by the minimum variance unbiased estimator (nX(l)-X)/(n-l). 

Three sample sizes are studied for each distribution: n = 10, n = 20, and n = 30. For 

each sample size and each distribution, 1000 random samples were simulated and the new 

procedure was applied to each random sample at significance level 0.05. The entries in Table 

6.1 are the proportions of rejections based on the simulated random samples. 

It can be seen from Table 6.1 that all the four EDF statistics behave well under the 

null hypothesis H:. The new procedure gives about the right significance level 5%, except 

for testing the exponential distribution, where the new procedure is a bit conservative. An 

interesting thing to notice here is that the new procedure works very well for sample size as 

small as ten. Notice also that under the null hypothesis HZ, the four EDF statistics behave 

equally well. On the whole, it is fair to say that the performance of the new procedure is 

acceptable under the null hypothesis H Z .  
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Distribution Sample Size D W2 u2 
Normal n=10 0.051 0.046 0.049 0.049 

Exponential I( n=10 1 0.050 0.041 0.041 0.049 

a = 2 ,  P = 3  n=20 0.046 0.038 0.044 0.034 

n=30 0.039 0.039 0.041 0.043 

Ext reme-value n=10 0.052 0.047 0.049 0.044 

n=30 0.047 0.045 0.040 0.041 

Weibull n=10 0.055 0.045 0.047 0.048 

p = 3, m = 2.5 n=20 0.052 0.052 0.053 0.053 

n=30 0.046 0.053 0.050 0.053 

Gamma n=10 0.047 0.043 0.049 0.043 

Lognormal n=10 0.048 0 . 6 8  0.b49 0.051 

p = 2, a = 3.5 n=20 0.042 0.048 0.049 0.049 

n=30 0.051 0.042 0.045 0.047 

Inverse Gaussian n=10 0.039 0.034 0.042 0.045 

p = 1.5, X = 2 n=20 0.049 0.054 0.051 0.054 

Table 6.1: Simulation study of testing goodness-of-fit for seven distributions using the new 

procedure when all parameters are unknown and estimated from the data. 1000 samples 

were simulated for each sample size and distribution combination, and three sample sizes 

10, 20 and 30 were considered. The entries are the proportions of rejections when the new 

procedure is applied at  significance level a = 5%. 



C H A P T E R  6. EDF T E S T S  OF COMPOSITE HYPOTHESES 

Simulated as 

Weibull 

p = 3, m = 2.5 

Gamma 

@ = 2 ,  m = 3  

Lognormal 

p = 2 ,  a = 3  

Inverse Gaussian 

p = 2 ,  X = 5  

Estimated as Sample Size D W2 u2 
Gamma n=20 0.101 0.113 0.104 0.125 

n=40 0.144 0.167 0.143 0.182 

Lognormal 1 1  n=20 1 0.221 0.267 0.240 0.299 

Inverse G n=20 0.263 0.323 0.230 0.361 

n=40 0.456 0.533 0.479 0.584 

Wei bull n=20 0.077 0.082 0.075 0.085 

Lognormal 1 1  n=20 1 0.084 0.101 0.097 0.102 

Inverse G n=20 0.149 0.165 0.155 0.176 

n=40 0.234 0.273 0.242 0.307 

Weibull n=20 0.194 0.233 0.192 0.257 

Gamma 1 1  n=20 1 0.089 0.088 0.084 0.091 
-- 

n=40 0.108 0.133 0.113 0.145 

Inverse G n=20 0.487 0.603 0.565 0.624 

n=40 0.820 0.905 0.874 0.926 

Weibull 11 n=20 1 0.162 0.221 0.198 0.254 

Gamma 11 n=20 10.105 0.121 0.120 0.121 

Lognormal n=20 0.040 0.042 0.041 0.042 

n=40 0.051 0.042 0.043 0.044 

Table 6.2: Simulated powers in testing goodness-of-fit using the new procedure for four 

distributions when all parameters are unknown and estimated from the data. 1000 samples 

were simulated for each combination of sample size and alternative. Two sample sizes 20 and 

40 were considered. The entries are the proportions of rejections when the new procedure 

is applied a t  significance level cr = 5%. 
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Before going into power studies, it is noted that Stephens (1986) has provided tables to 

test distributions (1) to (5) using EDF statistics. It is interesting to see that the asymp- 

totic points for extreme-value, Weibull and Gamma (with large shape parameter, say, > 8) 

distributions are very close to the asymptotic points for the normal distribution. 

Some power simulations are also carried out. Given that the EDF statistics behave well 

under the null hypothesis, the goal here is to see whether these same EDF statistics are 

sensitive enough to alternatives. To this end, it is decided to focus on Weibull, Gamma, 

Lognormal and Inverse Gaussian distributions. This choice is made on purpose, because 

it is known that with small samples it is difficult to distinguish these four distributions, 

therefore the EDF statistics are in this case under severe tests 

It can be seen from Table 6.2 that in all cases the power increases when the sample size 

changes from 20 to 40. This is expected. Also, in all cases the EDF statistics show some 

power in telling the differences among Weibull, Gamma, Lognormal and Inverse Gaussian 

distributions, except for one case where Inverse Gaussian random samples are treated as 

Lognormal random samples and the EDF statistics do not find anything wrong. But it is 

interesting to note that when Lognormal random samples are treated as Inverse Gaussian 

random samples, the EDF statistics give the strongest warnings in Table 6.2. This is, 

of course, an interesting case only-the result might depend, among other things, on the 

parameter values used here; see Figure 6.1 for an explanation. Notice that as expected 

the Anderson-Darling statistic A2 is the most powerful among the four EDF statistics. In 

general, the EDF statistics can tell differences between the Inverse Gaussian and the other 

three distributions best. 

Attempts have also been made to simulate three-parameter distributions. In this case, 

all the EDF statistics tend to be conservative. For example, when n = 30, the following 

three-parameter lognormal distribution with a = -1, p = 0.5 and a = 1.5 was simulated 

1000 times: 

F(x; a , p ,  a2) = 9[{log(x - a) - ~)/a]. 
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Log-normal fitted to lnverse Gaussian 

lnverse Gaussian fitted to Log-normal 

Figure 6.1: The solid lines are the densities of the simulated populations. The dashed lines 

are the densities from the fitted families of distributions, chosen in such a way that they have 

the same means and variances as those of the corresponding simulated populations. As can 

be seen, there is no density from the Inverse Gaussian family that can mimic the simulated 

lognormal density with p = 2 and a = 3, but there is a density from the log-normal family 

that can mimic the simulated Inverse Gaussian density with p = 2 and X = 5 very well. 

This explains the differences in power studies noticed in Table 6.2. 
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The new procedure was then applied to the simulated samples and the simulated 5% levels 

are 0.034 for D, 0.042 for W2, 0.021 for U2 and 0.024 for A2. Because a rather involved 

iterative search is necessary to find maximum likelihood estimators of the three parameters, 

the conservative behaviour of the EDF statistics needs to be investigated further. 

6.5 Examples 

Next, the new procedure is applied to four real data sets. Table 4.1 of Chapter 4 should be 

consulted for P-values. 

Example 6.1. Proschan, F. (1963) gave 15 intervals between failures of air conditioning 

equipment in aircraft. The data values are: 12,21,26,27,29,29,48,57,59,70,74,153,326,  

386, 502. To test Ho : XI,  X2,. . . , XI5 is a random sample from exponential distribution 

F(x; a, p)  = 1 - exp{-(x - a)/@), where a and ,L? are unknown, one obtains ti = 4.195, 

and ,b = 117.1. It follows that the modified EDF statistics are D* = 0.9774, W* = 0.1547, 

U* = 0.1389 and A* = 0.8991. The p-values are all less than 0.05, therefore the exponential 

assumption is not appealing. See Figure 6.2. 

Example 6.2. Gumbel, E. J. (1964)' studied the yearly maximum water discharges 

of the Ocmulgee River measured at a location called Macon. The data look like this: 4.8, 

7.3, 7.9, 8.5, 10.7, 14.2, 14.3, 16.9, 19.0, 19.1, 19.6, 21.0, 22.7, 24.0, 25.4, 28.3, 28.3, 28.8, 

31.0, 31.0, 32.6, 33.3, 33.9, 37.0, 40.0, 44.8, 47.1, 47.8, 50.2, 51.0, 57.6, 64.4, 65.3, 66.2, 

72.5, 73.4, 73.4, 98.6, 84.0. To test Ho : XI, XO, . . . , X40 is a random sample from extreme- 

value distribution F(x; a , P )  = exp[- expi-(x - a)/P)], where a and ,L? are unknown, the 

maximum likelihood estimates are found as tx = 26.7130 and ,b = 17.6061. The modified 

EDF statistics are D* = 0.5396, W* = 0.03795, U* = 0.03792 and A* = 0.3114. No statistic 

exceeds its corresponding 15% significance level, therefore, the extreme-value distribution 

assumption is reasonable. Also see Figure 6.2. 

'The data are taken from E. Castillo (1988). 



C H A P T E R  6. EDF TESTS  OF COMPOSITE HYPOTHESES 

Example 6.1 Exponential Model 

Example 6.2 Extreme-value Model 

Figure 6.2: Plots of empirical (dotted lines) and estimated (solid lines) distribution functions 

for Example 6.1 (Exponential model) and Example 6.2 (Extreme-value model). 
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Example 6.3. Dumonceaux, R. and C. E. Antle (1973) cited data of maximum flood 

levels in millions of cubic feet per second for Susquehanna River at Harrisburg, Pennsylvania, 

over 20 four-year periods from 1890 to 1969: 0.654, 0.613, 0.315, 0.449, 0.297, 0.402, 0.379, 

0.423,0.379,0.3235, 0.269,0.740, 0.418,0.412, 0.494,0.416,0.338, 0.392, 0.484,0.265. Four 

three-parameter models are considered in this example. They are 

Weibull Model: 

F(X; a, p, m) = 1 - exp [- { y )"I , 

where a < x, 0 < p, 0 < m; 

Gamma Model: 

where cr < x, 0 < p, 0 < m; 

Lognormal Model: 

F(X; a, p,  02) = m 
a 

where cr < x, p E R, 0 < a; 

Inverse Gaussian Model: 

1 
3 

2 - a - p  
f (x ;  a, P, a2) = - a* {A}' x -  exp [-A 2 { L }  x - a  { u }'I , 

where cr < x, 0 < p, 0 < a. 

Parameter estimates and modified EDF statistics are summarized in Table 6.3. It can 

be seen that the Gamma distribution gives the worst fit and the Lognormal distribution 

provides the best fit among the four competing models. The Inverse Gaussian distribution 

gives a fit that is very close to  that given by the Lognormal distribution. See Figures 6.3 

and 6.4. 

Example 6.4. Steen and Stickler (1976)~ reported the pollution data, measured in 

number of coliform per m, on 20 days over a five-week period at Cold Knap Beach, South 

2The data are taken from R. C. H. Cheng and N. A. K.  Amin (1981). 
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Example 6.3 Weibull Model 

Example 6.3 Gamma Model 

Figure 6.3: Plots of empirical (dotted lines) and estimated (solid lines) distribution functions 

for Example 6.3, Weibull and Gamma models. 
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Example 6.3 Lognormal Model 

Example 6.3 Inverse Gaussian Model 

Figure 6.4: Plots of empirical (dotted lines) and estimated (solid lines) distribution functions 

for Example 6.3, Lognormal and Inverse Gaussian models. 
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Wales. The data are: 200, 6091, 336, 327, 154, 109, 111, 282, 2120, 1082, 918, 718, 482, 

1345, 53600, 5900, 1918,900, 1045, 1454. 

I Weibull I 6 = .2611 p = .I727 61 = 1.2445 1 .7777 1 .0752 1 .0721 1 .4283 1 

Modified EDF Statistics 

D* I W* I U* I A* Distribution 

Table 6.3: Fits of Weibull, Gamma, Lognormal and Inverse Gaussian distributions to 

Susquehanna River flood levels data, Example 6.3. Parameter estimates and the modified 

EDF statistics are shown in the table. 

Parameter Estimates 

Gamma 

Lognormal 

IGaussian 

In this case, both the Weibull and the Gamma distributions can not be fitted to the 

data by the method of maximum likelihood, while the Lognormal and the Inverse Gaussian 

distributions can be fitted, giving results in Table 6.4. Note that the Inverse Gaussian 

Modified EDF Statistics 

Parameter Estimates 

6 = .2628 P = .I343 m = 1.1943 

& = .I850 fi  = -1.5608 b = .5073 

& = .I782 f i  = .2450 6 = .I268 

Table 6.4: Fits of Lognormal and Inverse Gaussian distributions to  Cold Knap Beach pol- 

lution data, Example 6.4. Parameter estimates and the modified EDF statistics are shown 

in the table. 

.8631 

.6505 

.6573 

Lognormal 

IGaussian 

distribution fits the data a lot better than the Lognormal distribution does and clearly 

shows its potential applicability in modeling long tailed distributions. See Figure 6.5. 

.0954 

.0490 

.0506 

& = 108.4746 f i  = 6.0849 b = 2.5150 

& = 44.33 f i  = 3910.27 6 = 13718.81 

.0876 

.0488 

.0505 

.7429 

.5138 

.5532 

.2833 

.2905 

.I337 

.0391 

.I211 

.0387 

.8026 

.2703 
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Example 6.4 Lognormal Model 

Example 6.4 Inverse Gaussian Model 

Figure 6.5: Plots of empirical (dotted lines) and estimated (solid lines) distribution functions 

for Example 6.4, Lognormal and Inverse Gaussian models. 
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6.6 Comments 

It has been demonstrated that the new procedure for testing composite goodness-of-fit 

hypotheses given in section 6.2 works fairly well. It is easy to apply and does not require 

extensive tables. This second feature is especially pleasant when the distributions to be 

tested contain shape parameters. It is expected that the new procedure can be adapted to 

the situations where only censored data are available. Another potential application is to 

check goodness-of-fit for continuous mixture models, where even the large sample likelihood 

ratio method is difficult to apply. 

A normality assumption is usually needed to  derive exact results. Afterwards, various 

approximations can be made. The idea of approximate normality used in this chapter 

points to  a general way of linking a problem about non-normal distributions to a problem 

essentially about normal distributions. 

The idea of imaginary parameters reflects the need to adjust for the transition from a 

non-normal problem to a normal problem. Although it is difficult to formulate a general 

statement, it seems that there is an approximate equivalence between estimating parameters 

of a non-normal continuous distribution F ( x ;  8 )  and estimating the mean and the variance of 

a normal distribution, as long as F(x;  8 )  is continuously differentiable with respect to  8. The 

simulation results shown in section 6.4 indicate that the new procedure works approximately 

when 6-consistent estimator 9 is available. 

It should be pointed out that the limited simulation results presented in this chapter 

serve only the purpose of demonstration. Larger simulation studies are needed, especially 

for distributions with three unknown parameters. 



Chapter 7 

Proposals 

7.1 Generalized Linear Models (GLIM) 

When the likelihood ratio statistic, or in GLIM terminology, the deviance statistic, is used 

to test for goodness-of-fit when fitting generalized linear regression models (GLIM), the 

test checks whether the difference in likelihood between two nested models is significant 

or not (except when testing for goodness-of-fit of the full model). This, however, depends 

on whether the model one is working with is fitted fairly well or not. So there is, at  

least in concept, a circularity in the way GLIM's are fitted routinely. This section studies 

the possibility of using the Anderson-Darling statistic and the Cramdr-von Mises statistic 

to test for goodness-of-fit when fitting GLIM's. The Anscombe and deviance residuals are 

reviewed and some distribution theory of the empirical processes defined using the Anscombe 

or deviance residuals is studied. The major goal is to build up a link between the EDF tests 

for normality of a random sample with unknown mean and/or unknown variance and the 

problem of testing for goodness-of-fit when fitting GLIM's so that the former can be used 

to carry out the latter approximately. 
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7.1.1 Introduction 

A standard linear regression model (SLIM) can be viewed as consisting of three components: 

1. The random component: observations Yl, . . . , Yn are independent normal random vari- 

ables with E(Y,) = p;, V(Y,) = a2; 

2. The systematic component: covariates x i , .  . . , xk (row vectors of known constants) 

produce linear predictors 7; = zfP,  where P E RP is unknown; 

3. The identity link between the systematic component and the random component: 

77i = pi. 

Generalized linear models (GLIM) are models which generalize component 1 and com- 

ponent 3 explicitly. Formally, a generalized linear model assumes that 

(a) The observations Yl, . . . , Yn are independent with means p; (i = 1, . . . , n) and Y;: is 

distributed according to  density 

where 8; and 4 are real parameters with 4 > 0; 

(b) For each i ( i  = 1,. . . , n), the known covariate xf = (xil, .  . . , zip) provides a linear 

predictor 7; = xf/3 of E(Y;:) = pi, where P = (PI, .  . . , ,8p)t E RP is unknown; 

(c) The ~ ' s  are related t o  the pi's ( i  = 1,. . . , n )  through a monotone differentiable function 

h(.), called the link function, by q; = h(pi). 

Clearly, if Yl, . . . , Yn are independent N(p;, a2) and h(x) = x, then such a GLIM is a 

SLIM, but a general GLIM can assume error distributions other than the normal distribution 

and can assume link functions other than the identity link. Notice that  a general GLIM 

assumes that  the variance of depends on xf ( a SLIM does not assume this dependence), 

but this dependence is only through the mean p; of Y;:. If a link function h(.) makes 8; = 
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true for i = 1, . . . , n, then such an h(.) is called the canonical link function. In this thesis, 

the inverse of h(.) is denoted by g(.). 

In the exponential error structure given by (7.1.1), the mean and the variance of Y ,  can 

be easily obtained as 

p; = E(Y,) = bl(B;), (7.1.2) 

0' = V(X) = b"(Bi)$. (7.1.3) 

The parameter $ is called the dispersion parameter. 

7.1.2 Definitions of residuals for GLIM 

For standard linear regression models, standardized residuals are defined naturally as e; = 

(yi - s$)/&, that is, Y j  = fii + 3ej, which mimics 9; = p; + 06; closely. When the same idea 

is applied to a GLIM, one gets the so-called Pearson residual 

where f i i  and s ~ ( K )  are estimates of the mean and standard 

In a SLIM, the exact distribution of e;'s is known and is 

deviation of x, respectively. 

related to the t-distribution. 

This is not true, however, for a general GLIM, except it has been known that the distribu- 

tion of r r ' s  can be highly skewed and/or highly non-normal. Anscombe (1961) suggested 

using transformed x ' s  to define residuals which are more like normal random variables in 

distribution. Suppose t(.) is a transformation, chosen in view of the distribution of Y,,  such 

that the distribution of t(Y,) is as normal as possible. Then the so-called Anscombe residual 

is defined as 

where E(~(Y,)) and SD(~(X)) are the estimated mean and standard deviation of t(I.;.), 

respectively. 
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There is yet another type of residuals; these residuals are based not on consideration 

of symmetry or normality, but are on the likelihood principle. When there are two models 

under consideration, let fi j l  and fii2 be the corresponding maximum likelihood estimators 

of p; under these two models, then the so-called deviance residual is defined as 

where I(p;, y;) = log fv , (~ i ,p ; ,4 )  is the log-likelihood function in terms of pi and 4 ( 4  is 

fixed constant), instead of in terms of 8; and 4. 

Following McCullagh and Nelder (1989), five distributions will be employed as error 

distributions. The definitions of these five distributions, together with the corresponding 

Anscombe and deviance residuals are given below. Some notation changes are made to 

facilitate the statement of some general results to be discussed later. The rule used here is 

that whenever p is used, it refers to the mean of a certain random variable, and X is used 

to denote the parameter that is expected to be large. 

1. Binomial B(X, p)/A, where A is the total number of trials, and p is the success proba- 

bility. Note that the proportion of successes is taken as the basic observation so that 

the mean is p; 

2. Poisson P(X), where X is the mean parameter; 

3. Gamma G(v, A), where v is a scale parameter, X is a shape parameter. The associated 

density takes the following form 

so that the mean is X/v and the variance is X/u2; 

4. Inverse Gaussian IG(p, A), where the density is 

S(Y; P, 4 = ( 2 n ) - 1 ' 2 ( ~ l ~ 3 ) 1 ' 2 e x ~ { - ~ ( ~  - P ) ~ / ( ~ Y P ~ ) ) ,  Y > 0, P > 0, > 0. 

The mean is p ,  the variance is P~ /A;  
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5. Normal N(p, a2). 

The Anscombe residuals are obtained by approximating the mean to the second order 

and approximating the variance to the first order in the Taylor expansions of E(~(Y,))  and 

SD(~(Y,)), respectively. In each particular case, the transformation t(.) is chosen in such a 

way that the third central moment of the transformed random variable t(Y,) is approximately 

zero. For the exponential family given by (7.1.1), t(.) is determined by the integral 

t(Y) = JY { b " ( P ) ~ - l / ~ d P ~  (7.1.7) 

where p is the mean parameter. See Barndorff-Nielsen (1978, p179). Thus, define t(u) = 

J," v-lI3(1 - v)-lI3dv for the binomial distribution and let g(.) denote the inverse of the 

link function h(.), the Anscombe residuals are then given by 

Binomial: 

Poisson: 

Gamma: 

IGaussian: 

Normal: 

AN - Yi - fii 
r, - - , Pi = g(z$), 62 = $. (7.1.12) 

B 

Note that the dispersion parameter 4 is assumed the same for all i ( i  = 1,. . ., n) in 

(7.1.8) to  (7.1.12), but this restriction can be relaxed. Note also that for Binomial and 
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Poisson distributions, there is essentially only one quantity to be estimated in order to 

construct Anscombe residuals, while for Gamma and Inverse Gaussian distributions, there 

are essentially two quantities to be estimated in order to construct Anscombe residuals. 

This difference will be noticed and used further in section 7.1.3. 

The deviance residuals used in McCullagh and Nelder (1989) are defined as 

Binomial: 

Gamma: 

Normal: 

rDN = sgn(yi - j.ii)lyi - bill/2, @; = zrp. (7.1.17) 

Notice that the deviance residuals defined above do not contain the parameter 4 or 

the parameter X explicitly, and for Gamma and Inverse Gaussian distributions, this implies 

that the deviance residuals are not properly scaled yet. Scaled deviance residuals will be 

introduced shortly. The relationship between each fii and ,6' can be obtained through the 

expression 9; = (bt)-' o h(s$). 

It was found in Pierce and Schafer (1986), McCullagh and Nelder (1989) that Anscombe 

residuals and deviance residuals are numerically very similar, despite their seemingly dif- 

ferent functional forms. Moreover, after deviance residuals are further adjusted to give the 
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so-called adjusted deviance residuals as given below, 

Binomial: 

Poisson: 

Gamma: 

IGaussian: 

Normal: 

D N  
T i . a ~ u s t e d  = r D N / 6  

both Anscombe residuals and adjusted deviance residuals are surprisingly good in terms of 

approximate normality when binomial, poisson and gamma distributions are taken as error 

distributions. The same conclusion can be drawn for the inverse Gaussian distribution. Note 

however that these findings are discussed when the various residuals are expressed in terms 

of true parameter(s), which will be called the theoretical Anscombe or (adjusted) deviance 

residuals in this thesis. 

At this point, it is perhaps appropriate to discuss briefly the background of introducing 

the various residuals. Facing the lack of exact theory once non-normal error distributions 

are allowed for, and driven by the beauty and simplicity of the theory of standard linear 

regression models, statisticians have been working very hard to develop techniques similar 

to those used for SLIM. In this big picture, residual analysis has been given a great deal 

of attention. As implied by its name, residual analysis naturally requires a closer look at 

individual residuals, and if one wants to  do for GLIM the same types of diagnostics that one 

can do for SLIM, one must find ways of creating residuals that behave like normal random 
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variables. The Anscombe residuals are directly aimed at this purpose, while the adjusted 

deviance residuals are found to be fairly suitable, too, as discussed in above paragraph. 

However, it is important to note that "behave like normal random variables" is a rather 

vague concept. For the Anscombe residuals defined in (7.1.8) to (7.1.11), it can be shown 

that for any real number T, if the residuals are expressed in terms of true parameter(s) (that 

is, the theoretical Anscombe residuals), then 

where @(.) is the cumulative distribution function of a standard normal random variable and 

"-" indicates Binomial, Poisson, Gamma, or Inverse Gaussian error distribution. A similar 

conclusion holds for the theoretic (adjusted) deviance residuals. Note that the error occurred 

in (7.1.23) for finite X is usually O(X-'I2). For adjusted theoretical deviance residuals, the 

error can be reduced to O(Xql). See McCullagh (1984), McCullagh and Nelder (1989). 

7.1.3 Residual empirical processes in GLIM 

The observation that the theoretical Anscombe or adjusted deviance residuals are close to 

normal random variables encourages the following half-rigorous and half-heuristic develop- 

ment. Let T; = r;(y;; 8;, A) be the ith theoretical Anscombe or adjusted deviance residual, 

let i; = i;(y;; a;, h;) be the ith (estimated) Anscombe or adjusted deviance residual. For 

t E [O , l ] ,  define residual empirical processes Yn,x(t) and Yn,~( t )  by 

n 

y n , ~  (t) = n-'I2 E{I[@(T;) 5 t] - t), (7.1.24) 
i=l 

n 

Yn,~(t)  = n-'I2 E{ I [Q(~ ; )  < t] - t). 
i=l 

Since T I , .  . . , T, are independent and as X + oo, T; +,j N(0, I), it is readily verified that 

for any fixed n and for any fixed s, t E [0, 11, 
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as X -+ oo. In fact, in light of McCullagh (1984), and McCullagh and Nelder (1989), the 

empirical process Yntx(t) based on the theoretical Anscombe residuals converges weakly to 

the Brownian bridge if -+ 0; the empirical process Yntx(t) based on the theoretical 

adjusted deviance residuals converges weakly to the Brownian bridge if ,/%/A -+ 0. 

In applications, however, it is more realistic to expect large n than to expect large A. 

Nevertheless, the above discussion encourages the following heuristic arguments: 

Because the theoretical Anscombe or adjusted deviance residuals become standard nor- 

mal random variables only when X + m, for finite A, it can only be expected that the 

theoretical Anscombe or adjusted deviance residuals have distributions which are fairly 

symmetric and nearly properly scaled. In other words, the process of constructing the the- 

oretical Anscombe or adjusted deviance residuals introduces, for each X value, a mean and 

a variance to  the residuals constructed, and this mean will go to zero and this variance will 

go to one as X goes to infinity. Viewed from this angle and recall the remarks made after 

introducing the various residuals, it is observed that 

1. Estimating p; or A; in the theoretical Anscombe residuals with Binomial and Poisson 

error structures is like estimating the mean for a random normal sample with known 

variance; 

2. Estimating v; and Xi, or pi and Xi in the theoretical Anscombe residuals with Gamma 

and Inverse Gaussian error structures is like estimating the mean and the variance for 

a random normal sample; 

3. Estimating parameters in adjusted deviance residuals carries a parallel pattern to the 

above, that is, for Binomial and Poisson error structures, it is like estimating the 

mean for a random normal sample with known variance, and for Gamma and Inverse 

Gaussian error structures, it is like estimating the mean and the variance for a random 

normal sample. 

As the effect of estimating the mean and/or variance in the normal sample situation 
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is well-understood, it is hoped that the estimated Anscombe residuals and the adjusted 

deviance residuals can be approximately treated in the way the residuals from a SLIM are 

treated. In particular, the residual empirical process Yn,j of (7.1.25) is expected to have a 

weak limit that can be approximated by the Gaussian process {Y(t) : t E [ O , l ] )  with zero 

mean and covariance function 

min(s, t)  - s t  - Jl (s) Jl (t), (7.1.26) 

or with zero mean and covariance function 

where s ,  t E [0, 11, Jl(t) = 4(9-'(t)), J2(t) = 4(@-'(t))@-'(t), that is, EDF tests for nor- 

mality of a random sample with unknown mean only, or with unknown mean and unknown 

variance can be used to perform (approximate) goodness-of-fit tests when fitting GLIM's. 

Simulation results (not shown here) support the above intuitive ideas. 

7.2 Transform-Both-Sides (TBS) Models 

Very often in regression analysis, a particular functional form connecting known covariates 

and unknown parameters is either suggested by previous work or demanded by theoretical 

considerations so that the deterministic part of the responses has a known form. However, 

the underlying error structure is often less well understood. In this case, the transform- 

both-sides (TBS) models are appropriate. This section proposes to generalize the usual 

TBS models studied in details by Carroll and Ruppert (1984, 1988), among others, into 

generalized transform-both-sides (GTBS) models, and to study the possibility of using EDF 

tests to assess goodness-of-fit when fitting TBS or GTBS models. Parameter estimation 

for the generalized TBS models is discussed and EDF tests based on the Cram&-von Mises 

statistic and the Anderson-Darling statistic are suggested. 
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7.2.1 Introduction 

Let Yl, . . . , Y, be independent random variables generating responses in an experiment. Let 

xi = (xil , .  . . ,zip) (i = 1,. . ., n) be known covariates associated with the x 's .  When the 

standard normal theory linear regression models do not seem to be appropriate to summarize 

the relationship between the q ' s  and the xi's, Box and Cox (1964) proposed to transform 

the X's through a monotone function indexed by a parameter A, say h(.,A), so that the 

transformed responses h ( x ,  A)'s can be fitted by a standard linear model, that is, 

where p = (PI,. . . , Pp)t E RP and a > 0 are unknown and the &j's are independent standard 

normal random variables. There are three goals aimed at  by the Box-Cox transformation 

approach: (1) a simple model which is linear in P, (2) the errors in the model have constant 

variances, and (3) the errors in the model are normally distributed. See Box and Cox (1964). 

Note that in model (7.2.1) the covariates are not transformed and they enter the model 

through creating linear combinations with the unknown parameter P. This is perhaps the 

simplest way that covariates enter a statistical model. In some applications, however, it 

is necessary and possible to specify the way that covariates and unknown parameters are 

connected. This is the case, for example, when previous work has suggested a particular 

model, or when theoretical considerations demand a specific combination. Denote this 

(known) specific combination (or functional form) by f (x;, P), Carroll and Ruppert (1984, 

1988), among others, introduced the so-called transform-both-sides (TBS) models as below: 

h(K, A) = h[f (xi, p ) ,  A] + mi. (7.2.2) 

There are two goals for the transform-both-sides (TBS) approach: (1) the errors in the model 

are homoscedastic, and (2) the errors in the model are normal. TBS models are appropriate 

when the functional form f(xi,P) is well understood but the underlying error structure is 

not quite so. Carroll and Ruppert (1988) provide a detailed account of the theory and 
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application of TBS models, except that the problem of checking for goodness-of-fit when 

fitting TBS models is not discussed explicitly. 

This section proposes to study the possibility of using tests based on empirical distribu- 

tion functions (EDF) to assess goodness-of-fit when TBS models are fitted. 

7.2.2 Generalized TBS models 

Suppose that random variables Yl, . . . , Y, are independent, and that K generates a known 

functional form f (xi, p) plus error, where xi = (xil, . . . , zip) is known and ,O = (PI, . . . , /3p)t 

E RP is unknown. Let h(-, A) be a monotone transformation indexed by an m-dimensional 

parameter A, let g(., +)be a monotone transformation indexed by a k-dimensional parameter 

+. The functional forms of h and g are known. Then, a generalized transform-both-sides 

(GTBS) model is defined by supposing that there are P E RP, a E R, X E A, $ E !4, where 

A c Rm and Q C R ~ ,  and a > 0 such that 

Clearly, if a = 0 and h = g, then a GTBS model becomes a TBS model. Note that if 

denote h(K, A) by 2; and denote g[f (xi, P), $1 by p;, then model (7.2.3) takes the form 

2; = a + pi + a&;. This form looks like a linear regression model with intercept and inspires 

the EDF tests to be given in next section. The reader should be warned that in general care 

must be taken in selection of g if $ and ,O are both to  be identifiable. 

Although much of the discussion in this section can be carried out using general h and 

g, it is useful and instructive to work with some specific transformations. In the following 

discussion, h(y, A) is taken as the modified power transformation given by 

Since h(y, A) = y(X) is the modified power transformation now, all the observed responses 

yi's must be positive. With this restriction, model (7.2.3) can not be correct exactly (see 
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section 5.1). The correct model in this case is given by 

in terms of the transformed variables, where +(-) and a(.) are the density and cumulative 

distribution function of a standard normal random variable, p; = g[f(x;,P), $1, and 6f 

equals ( a  + p; + l/X)/a, +m, or -(a + p; + l/X)/a, according to X > 0, = 0, or < 0, 

respectively. In terms of the original variables, the correct model is 

See Chapter 5 for more details. 

From model (7.2.6), the log-likelihood function in terms of the original variables y; is, 

apart from an additive constant, 

n 
2 1 = -(n/2) logo2 - (20 )- C{y(" - a - g[f(xi, P), $]I2 

i=l 
n n 

Note that the term C7=l log @(6f) is needed to make the statement in (7.2.7) correct exactly. 

However, this term is often very small compared to the rest of the log-likelihood function. 

More specifically, if (1) X is small, or (2) a + p; is large, or (3) a is small, then 6f will be 

large, so log @(6;*) will be close to zero. Therefore, in the following discussion, this term 

is omitted to simplify the presentation of various expressions. It is noted however that if 

by any means the term C;=l log @(6f) is found to be not negligible, then (7.2.7) must be 

treated as a whole. 

There are at least four methods to find parameter estimates based on (7.2.7) (ignoring 

log @(6f)): 

Method 1. Simultaneous estimation, using a Newton or quasi-Newton program. 
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Met hod 2. Box-Cox method. For a fixed A, maximizing L with respect to a ,  P ,  $ and a2 

is equivalent to minimizing 

to obtain &(A), p(X) and $(A), then setting 

This can be done with a nonlinear least squares program. An estimate for X is 

obtained by maximizing 

over X either graphically or through a grid search. 

Met hod 3. Pseudo-model method. For fixed a ,  P, $ and A, L is maximized over a2 by 

Then estimates 6, p, 4 and i are obtained by maximizing 

where y = (nL1 yi)lln is the geometric mean of yl, . . . , yn. This is equivalent to 

minimizing 

Let d; = 0, e; = {y;" -a - g [ f  (xi, /I), +]}/iqi = 1,. . . , n), the pseudo-model method 

consists of fitting d; to e;, where the "dependent" variable is d;, the "independent" 

variables are xi and y;, with parameters a,  0, $ and A. This can be done using a 

nonlinear least squares program. After 6, p, 4 and i are obtained, an estimate e2 for 

a2 is given by 

e2 = a2(6,p,  4, i). 

Method 4. M-estimation method. See Carroll and Ruppert (1988). 
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7.2.3 EDF tests of goodness-of-fit for GTBS models 

For model (7.2.3), define residuals T; and estimated residuals F, and i; by 

where p; = g[f (xi, p), $1, 8; = g[f(x;,P), $1 and Pi = g[f(xi,b)r $1. Note that in (7.2.9) 

X is supposed known. Both " : " and " : " indicate estimated quantities obtained, say, by 

the method of maximum likelihood. The corresponding empirical processes are defined for 

n 

k ( t )  = n-'I2 x { ~ [ @ ( i ~ )  5 t] - t). 
i=l 

If model (7.2.3) holds exactly, and if all parameters in model (7.2.3) are known, then it 

is well known that as n + oo, Yn converges weakly to  the Brownian bridge with zero mean 

and covariance function 

po(s, t)  = min(s, t)  - st. (7.2.14) 

Suppose now that X is known and the rest of the parameters in model (7.2.3), denoted by 

8 = (a, p, $, need to be estimated. Let Z; = h(Y;:, A), then the cumulative distribution 

function of Z; is given by 

This is an independent but not identically distributed case to which the results of Loynes 

(1980) can be applied to get 
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Conjecture 7.2.1 Under some smoothness conditions on f and g, the empirical pro- 

cess Fn of (7.2.12) converges weakly to a Gaussian process with zero mean and covariance 

function 
1 

i ( s ,  t) = PO@, t) - CP&, f )  - l ~ 2 ( s ,  t), (7.2.15) 

where po(s, t) = min(s, t) - st is given by (7.2.14), c is a constant, and 

p2@, t) = J2(4 J 2 W  

where Jl (t) = +(@-'(t)), J2(t) = 4(@-'(t))@-'(t), t E [0, 11. 

The additive structure of (7.2.15) is due to  the normality assumption and the asymptotic 

independence between (&,p, $)t and 82. The constant c will in general depend on unknown 

parameters B = ( a ,  p, +, u ~ ) ~ ,  on f and g, and on the xi's. In the cases where g(u, +) = I ,  

or g(u,+) = u and f(x;,P) = zip, c can be found to  be equal to 1. In these cases, one 

recovers the results that hold for normal theory linear regression models. However, since 

the collective effect of estimating a ,  ,f? and II, is to estimate a + pi, it is expected that the 

value of c will be close to  1, that is, it is hoped that for applications, pl(s, t) can be used as 

an approximation to  cpl(s, t) for large n and smooth f and g. 

Next, suppose that all parameters in model (7.2.3) need to  be estimated. As in section 

7.2.2, let h(y, A) be the modified power transformation defined by (7.2.4). Then model 

(7.2.3) takes the form given by (7.2.6) in terms of the directly observable variables x ' s .  

Note that in principle it is not possible to  assume exact normality in model (7.2.6) for the 

errors unless X = 0. But very often in applications, a + p; is large and/or o is small. For 

these interesting cases, assuming exact normality to modify model (7.2.6) will cause little 

trouble for a range of X values, say, -1 5 X 5 1, because @(ST) is close to  1. With this 

observation, there is 

Conjecture 7.2.2 If h(y, A) = y(X) as defined in (7.2.4) and under some smoothness 

conditions on f and g, the empirical process Pn of (7.2.13) converges weakly to a Gaussian 
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process which can be approximated by the Gaussian process {Y(t) : t E [ O , l ] )  with zero 

mean and covariance function 

where po(s,t) is given by (7.2.14), pl(s,t) is given by (7.2.16), p2(s,t) is given by (7.2.17) 

and 

~3(% t )  = J~*(s) J3*(t), 

where J i ( t )  = q5(@-1(t))[(@-1(t))2 - 11. 

The reason {Y (t) : t E [ O , l ] )  only approximates the weak limit of Pn(t) is that {Y (t) : 

t E [ O , l ] )  is the weak limit of Pn(t) for X = 0. See section 5.6 for more details. 

Based on Conjecture 7.2.2, EDF tests can be performed to check goodness-of-fit of 

fitting TBS or GTBS models when responses y;'s are transformed using the modified power 

transformation (7.2.4). 

7.3 Comments 

Asymptotic results obtained when sample size goes to infinity have been used as guides 

when the distributions of sensible statistics are not readily available for finite sample size. 

However, this approach does not meet all the needs raised in applications. In the context of 

GLIM, there are more choices than in the framework of SLIM for a data analyst to choose an 

error distribution and a link, but (when judged according to  the available GLIM packages) 

residual analysis and goodness-of-fit techniques available for SLIM's do not carry over to 

GLIM's completely. 

Since a unified and working (for small to moderate samples) asymptotic theory for GLIM 

is not available, and since techniques for SLIM's are widely known, defining residuals that 

behave like residuals from fitting SLIM's seems to be a promising way to start the process 

of model checking when fitting GLIM's. This approach asks for another type of asymptotics 
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in which certain parameter of the error distribution is expected to be large. This idea is 

tried in this chapter. 

Fitting nonlinear models is in general difficult. Any technique that can make the fitting 

and/or interpretation of nonlinear models easier should be worth trying. Since the theory 

of linear models with normal errors is best known, and since techniques for fitting such 

models are well developed, transforming nonlinear models in ways that will allow linear 

model techniques to be applied to  nonlinear models seems to  be a useful approach. 

One possibility is to reparametrize a nonlinear model into a linear model. However, this 

is not always possible, especially for nonlinear models with many parameters. In this case, 

if the model expectation function is suggested by previous study or is based on theoretical 

work, the TBS approach would be suitable, because the known relationship is reserved when 

monotone transformations are used. In addition, analysis in the transformed scale does not 

seem to depend strongly on estimating parameters of the transformation. See Carroll and 

Ruppert (1984). 

If the problem is to  build an empirical model which summarizes the data well, the GTBS 

approach would be more flexible than the Box-Cox approach and the TBS approach. 

Once leaving the theory of linear models with normal errors, things become hard to 

handle. This is certainly so for the EDF tests presented in this thesis. Nevertheless, in- 

tuitively speaking, nonlinear expectation functions do not present a very new problem for 

one to  construct EDF tests, because while nonlinearity presents most problems to obtain 

good estimates and standard errors for individual parameters, nonlinearity does not affect 

residuals as much. This is the rationale behind Conjecture 7.2.1 and Conjecture 7.2.2 of 

section 7.2. In general, EDF tests based on the ideas of section 7.1 and section 7.2 should 

be used as guiding tools, such as suggesting the types of encountered problems like heavy 

or light tail(s) in error distribution and misspecified model expectation function. 

The smoothness conditions needed to make Conjecture 7.2.1 and Conjecture 7.2.2 work 

are essentially the types of conditions that guarantee that the maximum likelihood estimates 



CHAPTER 7. PROPOSALS 160 

be fi-consistent , and that the Fisher information matrix exist and be positive definite. See 

Seber and Wild (1989, Chapter 12). 
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