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Abstract

The focus of this thesis is to investigate certain graph theoretic proper-
ties of a class of graphs which arise from combinatorial design theory. The
block-intersection graph of a pairwise balanced design has as its vertices
the blocks of the design and has as its edges precisely those pairs of blocks
which have non-empty intersection. These graphs have a particular local
structure whicli is exploited in the proofs of the results. In Chapter 1 an
overview is given. Definitions, an example, and some motivational material
(a brief history, connections to other work) are included here. Cycles of
these graphs are investigated in Chapter 2. In particular, it is shown that
these graphs are hamiltonian. In Chapter 3 the connectivity of the block-
itersection graph is determined for balanced incomplete block designs and
for ‘large’ pairwise balanced designs. Chapter 4 contains the proofs of a
number of results which pertain to coloring the block-intersection graph.
More specifically, it is shown that the neighborhood of a vertex of the block-
intersection graph of ‘large’ balanced incomplete block designs can always

be colored in an optimal way.
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Chapter 1

Introduction

This thesis investigates a certain class of graphs which arise from combina-
torial design theory. We present in this chapter the background material for
the problems being studied. The first section gives the necessary definitions
as well as an example of a block-intersection graph. Some of the basic prop-
erties of the block-intersection graph are discussed in the following section.
A brief history is given in the third section of the three particular areas of
the block-intersection graph investigated in the subsequent chapters. The
contributions the thesis makes to these areas are stated in this section as
well. The final section presents a couple of results about matchings that

will be used in later the remaining chapters.

1.1 Definitions

In this section we give definitions of the less familiar combinatorial objects

and properties. For the basic graph theoretic terminology the reader is



refe: 'ed to [5]. We will start with designs, followed by hypergraphs and
then move to some non-standard graph theory definitions. Some definitions
will be given in the other chapters, however, they have been invented to

facilitate the reading of the proofs and so are not included here.

1.1.1 Block Designs

Let K be a finite set of positive integers, and let A and v be positive
integers such that v > max A’ (here max Iy’ 1s the maximum element in K
similarily for min K'). A patrwise balanced design, denoted PBD(v, K, \),
is a pair (V,B) where V is a finite set whose elements are called points, B
is a collection of subsets of V, called blocks, such that |V| = v, the blocks
have their cardinalities from I” and any pair of distinct points is contained
in exactly A blocks. If K = {k}, then (V,B) is called a balanced incomplete
block design and we denote it by BIBD(v,k,A). When k =3 and A = 1,
the pair (V,B) is called a Steiner triple system (denoted by STS(v)).

The replication number of a point in a design is the number of blocks
that contain the point in the desigi:. For a BIBD(v,k,)), a counting

argument shows that the replication of any point 1s

v—1
=2 (751)
' k—1

vr

and that the number of blocks is b = T

o



1.1.2 Hypergraphs

A hypergraph is an ordered pair (V, A}, where V is a finite nonempty set
whose elements are called vertices and A is a collection of nonempty subsets
of V whose members are called edges. We assume there are no isolated ver-
tices and hence V = UA = U{E : E € A}. By referring to the hypergraph
A we shall mean (UA, A).

Let v > 2. A hypergraph A is v-uniform if for all £ € A, |E| = v. Note
that a 2-uniform graph is an ordinary graph. A hypergraph A is linear if
forall E,F € A, E # F, we have |[EN F| < 1. Hence every PBD(v, K, 1)
is a linear hypergraph. A linear hypergraph is also called a nearly disjoint
collection of sets (such as in [17]).

Let A be a hypergraph. hypergraph H is a subgraph of A if H C A.
A vertex x of A is incident with an edge E of A (and vice versa) if z € E.
Two vertices (edges) of a hypergraph are adjacent if they are incident with
a common edge (vertex) of the hypergraph. The degree of a vertex = of
A 1s the number of edges of A incident with z and is denoted by d 4(z).
(If Aisa PBD(v, K, ), then the replication number of a point of A is its

degree.) Let a : U4 — A be defined by
a(r)={E:r € Ee A}.
Then the dual of A is the hypergraph (A, {a(z) : ¢ € UA}).

A strong r-coloring of a hypergraph is an assignment of r distinct colors

to its vertices so that no edge is incident with two vertices of the same color.



The strong chromatic number of A is the smallest iunteger r for which there
exists a strong r-coloring of A. The strong chromatic number of A is
denoted by v(A).

An r-edge coloring of a hypergraph i1s an assignment of r distinet colors
to its edges so that no two adjacent edges receive the same color. The
chromatic index of a hypergraph is the least r for which there exists an

r-edge coloring. The chromatic index of A is denoted by x'(.A).

1.1.3 Graphs

The length of a path or a cycle in a graph is the number of its edges. An
n-path (n-cycle) is a path (cycle) of length n. If P = vpejvieqvg - - ey, s
a path, then the reverse of P is v,¢,vn_1€n_1Vn-2- - v2€201€,09. Moreover,
P is said to start in vg and end in v,. If P, and P, are paths in a graph
G, and Pj ends in a vertex adjacent in G to the vertex that P, starts with,
then P, P, denotes the juxtaposition of P; and P, as alternating sequences
of vertices and edges so that the edge from the end of Py to the beginning
of P; is added giving a single path. A graph G is edge-pancyclic if for every
edge e of G and every integer n, 3 < n < |V(G)|, there is an n-cycle in G
using e.

Let G be a graph and H be subgraph of G. An H-factor F of G,
F = {H,,H,,...,H.}, is a collection of edge-disjoint subgraphs of G such
that H; * Hfor:=1,2,...,k,and G = H,UH,U---U Hi.

Let G be an n-regular graph with m vertices. Then G is strongly regular



if there are integers p, ¢ such that:

e if z and y are adjacent vertices in G, then there are exactly p vertices

adjacent to both z and y; and

e if z and y are non-adjacent vertices in G, then there are exactly ¢

vertices adjacent to both z and y.

We say that G has parameters (m,n,p,q).

There are many ways of defining graphs from designs. The interested
reader is referred to the survey found in [4]. The subject of this thesis is
the following graph: the block-intersection graph of a PBD(v, K, 1), (V,B),
denoted by B(B), has vertex-set B and has two vertices adjacent if and

only if their corresponding blocks have non-empty intersection.
Example 1.1 A (9,3,1)-design and its block-intersection graph.

Let V = {1,2,...,9} and B = {{1,2,3},{4,8,9}, {5,6,7}, {1,5,8},
{2,7,9}, {3,4,6}, {1,4,7}, {2,6,8}, {3,5,9}, {1,6,9}, {2,4,5}, {3,7,8}}.
This is an affine plane of order 3 where blocks are regarded as lines in the

plane. The block-intersection graph of B is drawn in Figure 1.1.

For balanced incomplete block designs, block-intersection graphs have
been used as effective isomorphism invariants to distinguish non-isomorphic
designs that have the same parameters (see [4,8]). More generally, we can

define the intersection graph of a linear hypergraph A as the graph whose

(1]



1,23

Figure 1.1: The block-intersection graph of a (9,3,1)-design.
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vertex-set is A and whose edge-set is precisely those pairs of edges of A

that have non-empty intersection.

1.2 Basic Properties of the Block-Intersection
Graph

To begin our investigation of the block-intersection graph we look at vari-
ous parameters of the graph as well as its basic local structure. As much
as possible throughout the thesis, lower case letters are used for positive
integers or for points of a design, capital letters are used for blocks of a
design (or equivalently vertices of the block-intersection graph) or sets of
points of the design, and script style letters denote designs or sets of blocks

of a design. The following notatiomn is also used throughout unless otherwise

stated:
e (V,B) denotes a PBD(v, K, 1);
e { =min and u = max I
e B* = {b),by,...,b} is an arbitrary but fixed block in B;

fort =1,2,...,k, B;istheset {Be€ B:BNB*={b}};

e B* is the neighborhood of B~ in G (B* = B, U B, U ---U Bi); and

e G is the block-intersection graph of B.

-1



Figure 1.2: The structure of a neighborhood in B(B).

Knowledge of the basic structure of the neighborhood of a vertex in the
block-intersection graph will be exploited throughout the thesis. The next

lemma describes this structure.

Lemma 1.2 In the graph G, for 1,7 € {1,2,...,k}, 1 #j, and B € B;, the
number of neighbors of B in B, is |B| —1 and the number of edges between

B; and B; 1s v — k. Furthermore,

v—k v—k
< < —

Proof: The basic structure of a neighborhood is illustrated in Figure 1.2.

Let B € B;. For each z € B\ {b;} there is a unique block B, of B;
containing {z,b;}. Moreover, if {z,y} C B\ {b:}, z # y, then B. # D,.



Thus the number of edges in G hetween B and B; is |B| — 1 and hence the
number of edges between B; and B; is
> (UBl-1).
Beb;
On the other hand, there are v — k pairs {z,b;}, z € V' \ B*, all of these
pairs are contained in blocks from B;, and every B € B; contains |B| — 1 of

the pairs. Thus
(1Bl -1)=v—k

BEB,’
and the first part of the lemma is proved. For all B € B;, £ < |B| < u and

SO

(E-1BJ < > (1B]-1) < (u—-1)|Bi].
Bel3;

The lemma is thus proved. |

Let B € B such that |B| = u, and let z € V'\ B (note that v > u). Since
there exists a unique block B, € B containing {z,y} foreachy € B, and z is
the only point in the intersection of any two of these blocks, v > u(£—1)+1.
Thus if £ > 3, then u < 1v. Since dg(B~) = YL, |Bi|, if £ > 3, Lemma 1.2

gives the following bounds on the minimum and maximum degree of G:

v—{ o ‘ v—u
e(u_l) < 8(G) < A(G) Su(f_l). (1.1)

Let B, and B, be distinct vertices of G and let z € B; and y € B, \ By
(note that the definition of pairwise balance design rules out the possibility

that we only have one vertex in G). Then there exists B3 € B such that



{z,y} € B3. Thus G has diameter at most 2. Moreover, let = € B, = # r.
Then there exists By € B such that {y,z} C By. Hence ByB3BD, is a
3-cycle in G and therefore G has girth 3.

By aresult of P. Seymour [17], the cardinality of the largest independent
set in G is at least Lf—‘ Since the blocks in an independent set are mutually
disjoint, the cardinality of the largest independent set in G is at most %
Statements about cycles, connectivity and coloring of G will be made in
the next section.

For the rest of this section we restrict our attention to the case when

B is a BIBD(v,k,1). Since ¢ = u here, cquation 1.1 requires that G is

k(r — 1)-regular when ¢ > 3 (when ¢ = v = 2, G is 2(v — 2)-regular).
v(v —1) _ v(v —1)(v--k)
m vertices and hence k1)

b = v, then B is called a symmetric BIBD(v,k,1). In this case, r = k and

Moreover, G has b = edges. If
every pair of blocks of B intersect in a point. Thus G = K,. For this reason,
we assume throughout the rest of the thesis that if B is a BIBD(v, k,1),
then B is not symmetric. Thus we have r > k by Fisher’s inequality (see
[3, page 18]). If r = k + 1, then B is a BIBD(k?,k,1) and is called an
affine plane of order k.

Let B, and B; be distinct vertices in G. If By and B, are adjaceut,
then let b € B, N By. The point b is in r — 2 other blocks of B and for cach
r € B\ {b} and each y € B,\ {b} there is a unique block containing {«,y}.

Thus if B, and B, are adjacent, then they have r — 2 + (k — 1)? common

10



neighbors. If By and B, are not adjacent, then there are k? blocks whick
intersect both of them (one for every pair {z,y} with z € B, and y € B,).
Thus B; and B; have k? common neighbors in this case. Therefore, G is a
strongly regular graph with parameters (b, k(r — 1),7 — 2 + (k — 1)%,k?).
If Bisan STS(v), then Seymour’s result mentioned above gives g(v—1)
as a lower bound for the cardinality of the largest independence set in G
(also called a partial parallel class in other contexts). C. Lindner and K.

Phelps [14] have improved this lower bound to (v —1) for all v > 9 except

for three cases which were settled by G. Lo Faro [15].

1.3 History and Results of the Thesis

The study of block designs goes primarily back to the middle of the nine-
teenth century with the work by Kirkman and Steiner, although Euler
studied Latin squares in the late eighteenth century. Much of the focus of
combinatorial design theory has been in proving the exisitence of different
types of designs. It is not the intention of the thesis to add anything to this
study. It is fair to say that nothing more than the basic definitions of the
various designs mentioned is used in the proofs of the results of the thesis.
It 1s the structure of the block-intersection graph that is of interest here.
We do state, however, a pinacle in the history of pairwise balanced de-
signs: Wilson [18] proved that a PBD(v, K, A) exists if you have ‘enough’

points and if you satisfy the necessary conditions. More specifically if

11



a(K) = ged{k —1:k € K} and () = ged{k(k — 1) : k € L'}, then

the statement is the following.

Theorem 1.3 (Wilson) There exists a least integer v(R,\) so that for
all integers v, v > v(K, ), satisfying Mv — 1) = 0 (mod a(l\)) and
Av(v—1)=0 (mod B(L)), there exists a PBD(v, I\, )).

We move now to the history of the areas studied in the thesis. The next

three sections will describe as well the advances made by the thesis.

1.3.1 Cycles

In March 1987 at a meeting of the American Mathematical Society, R. L.
Graham asked if the block-intersection graphs of Steiner Triple systems are
hamiltonian. P. Hordk and A. Rosa [13] were the first to show that if (V, B)
isa BIBD(v,k,1), k > 3, then B(B) is hamiltonian. B. Alspach, K. Hein-
rich and B. Mohar [2] subsequently proved that if (V,B) is a PBD(v, K, 1)
such that max K < 2min [\, then B(B) is hamiltonian. Even more re-
cently, B. Alspach and D. Hare [1] proved that if (V. B) is a BIBD(v, k1),
k > 3, then B(B) is edge-pancyclic and that the same is true for transversal
designs.

One of the main results of this thesis is that if (V,B) isa PBD(v,K,1)
with min K > 3, then B(B) is edge-pancyclic. The proof of this theorem
generalizes the proof in [1] for balanced incomplete block designs. Also in-

cluded is a proof that the line graph of the complete graph is edge-pancyclic.

12



1.3.2 Connectivity

The connectivity of the block-intersection graph is by far the least studied
of the three properties. The only reference to connectivity is in the proof
of the above mentioned result by Hordk and Rosa. They showed that the
block-intersection graph of a BIBD(v,k,1) was hamiltonian by showing
that the graph’s independence number is at most v/k and that the graph’s
vertex connectivity is at least v/k. For this graph, we show in the thesis that
its vertex connectivity is equal to its minimum degree, namely E-(I:——_-_—{f—)
Minimal vertex-cuts are also characterized and vertex-disjoint paths are
constructed. The vertex counectivity for the graph of a pairwise balanced
design is also investigated and it is shown that if the design has ‘enough’
points, then the block-intersection graph has vertex connectivity equal its
minimum degree. The edge connectivity for the block-intersection graph of
any pairwise balanced design is shown to be equal to the minimum degree

of the graph as well. Morcover, minimal edge-cuts are characterized and

edge-disjoint paths are found.

1.3.3 Coloring

Coloring the block-intersection graph of a pairwise balanced design is the
topic of the last chapter of the thesis. The color classes of a coloring of
the graph correspond to sets of pairwise disjoint blocks of the design. The

chromatic number of the block-intersection graph of a design, although far

13



from being characterized, has some very nice applications (see [8]).

One application is in the area of statistics. Balanced incomplete block
designs are used in the design of statistical experiments where each point
represents an item in the experiment and cach block represents a test in-
volving the items it contains. The entire design is an experiment where
every pair of items is in exactly one test together. If two tests have no
common items, then they can be performed simmltaneously. It is advanta-
geous to group tests together in a way that minimizes the total time for
the experiment. The minimum munber of groups possible is precisely the
chromatic number of the design’s block-intersection graph.

Since pairwise balznced desigus are linear hypergraphs, in certain con-
texts, the chromatic index of the design is used instead of the chromatic
number of the design’s block-intersection graph. The two parameters are
in fact equivalent.

Not a lot is known about the chroinatic number of the block-interseetion
graph of a pairwise balanced design. Let (V,B) be a PBD(v,K,1), G =
B(B), v = max K, and ¢ = min {'. By using Brook’s Theorem (sce [5]) and

an upper bound for the maximum degree A of the graph (which 1s achieved
u(v —u)
so far for this case was found by W. I. Chang and E. L. Lawler [6]. They

when ¢ = u), we have x(G) < A(G) <

The best upper bound

show that x(G) < [%v - 2] .

Much of the work for this general case has revolved around the infa-

14



mous Erdos-Faber-Loviasz Conjecture {9,10,11]. If the conjecture is proven,
then x(G) < v. In the first part of Chapter 4, the relationship between
this conjecture and the chromatic nmunber of the block-intersection graph
is explained. The section is mainly expository except for the proof of the
equivalence between the Erdas-Faber-Lovisz Conjecture and a new conjec-
ture.

More is known about coloring the block-intersection graph of a balanced
icomplete block design. Let (1.8) be o BIBD(v. k,1) and let G = B(B).
Since each point is in » blocks. at least - colors are needed to color G.
Those designs for which \(G') = r are called resolvable. Using this and the

upper bound given by Brook's Theorem we have

v—1 s v =k
S ;)SA(G):—(I:':TJ-

Again if the Erdos-Faber-Lovisz Conjecture is true, then x(G) < v. C. J.
Colbourn and M. J. Colbourn [7] have shown this to be true for the case
when B is a cyclic design (desigus generated by translations of a difference
family). N. Pippenger and J. Spencer [16] have recently proven an asymp-
totic result for Steiner triple systems. If G is the set of all Steiner triple

systems, then they prove that

I \(DB(B5))
11111—]__—__;_ =
I E}Ub!

where | U B| — oo following the filter of cofinite sets over G.
The last section of the thesis proves a result on coloring the neighbor-

hood of any vertex of the block-interseetion graph of a balanced incomplete
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block design. Other new results are obtained on K ¢ -factors of ¢-partite
graphs. These are used to color the neighborhood of a vertex with » col-

ors.

1.4 Other Needed Results

In this section we state a result without proof that will be used over and

over in the thesis. We also present a small lemma that will be needed later.

Theorem 1.4 (Hall’s Theorem, see [5]) Let H = (X,Y) be a bipartite
graph. Then H contains a matching that saturates cvery vertez in X if and

only if
lA'TH(S)l Z IS! fO'I' all S C_Z X.

Lemma 1.5 If H = (X,Y) is a bipartite graph with | X| = Y| = n and

6(H) > in, then H has a perfect matching.

Proof: Let SC X. If 0 < [S| < in,thenforallz € S, [S| < Jn < 4(H) <
du(z) < |Ny(S)|. If |S| > 3n, then every y € Y has a neighbor in S since
du(y) > jn and |[X| = n. Thus |S] < n = [Y]| = [Ny(S)|. Therefore by

Hall’s Theorem, H has a perfect matching. |
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Chapter 2

Cycles

In this chapter we focus our attenticn on the cycles of the block-intersection
graph of a pairwise balanced design. We start with the case when the design
only has blocks of cardinality two. We then present a result for the case
when the design has blocks of cardinality three or more. The chapter ends

with a discussion about the remaining case.

2.1 Blocks of Cardinality Two Only

The first theorem in this chapter is presented for two reasons. First, it
answers the edge-pancyclicity question for the specific case when we only
have blocks of cardinality two. Although it has not yet come to the author’s
attention as to whether this result was known previously, it would not be
suprising if it were. More importantly. though, is the second reason. The
proof of the first theorem provides an outline for the much longer proof

of the second theorem of this chapter. The proofs differ in how paths are
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joined to the neighborhood of a vertex. This process is a trivial matter in
the first proof, but a complex one in the seccond. The basic outlines are the
same. Although the statement of the next theorem is strictly in terms of
graphs we will use block designs in the proof. It is hoped that by presenting
the proof of the first theorem in this way the second proof will thus be more

readable.

Theorem 2.1 The line graph of the complete graph IV, L(I\,), 18 edge-

nancyclic.

Proof: If Bisa BIBD(v,2,1). then B can be viewed as K, where points
of B correspond to vertices of I\, and blocks of B correspond to edges of
K,. Thus B(B) = L(I,).

Let B*C*beanedge of G = B(B) andlet B~ = {b;, b} and C* = {by,¢}.
Define B; = {B € B: BN B~ = {I;}} for i = 1,2. Since each b; 1s in exactly
v — 2 blocks in B other than B~, |B;| = v — 2. Moreover, cach B € B; has
exactly one neighbor in B;, 7,5 € {1,2},7 # j.

Let p € {3,4,...,|V(G)|}. We nced to construct a p-cycle which uses
B*C*.

If 3 < p < v-—1, then choose p — 2 vertices other than C* from B,.
These vertices in any order along with one of the vertices B* and C* at
each end and the edge B~C* form a p-cycle.

If v <p<2v-—3, then form a (v — 1)-cycle @ in B, using B*C"* as just

described and let A be the vertex on Q adjacent to B* that is not C'*. Let
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Q' be the path defined by Q' = @\ {AB"} and let A" be the neighbor of
A in B;. Futhermore, let R be auy (p — v)-path using vertices of B, that
starts in A*. Then Q'R B~ is a p-cycle containing the edge B*C*.

We now deal with the final case: p > 2v—3. Let D = B\(B,UB,U{B*})
and let £, be a path of maximum length in G[D] (the subgraph of G induced
by the vertices of D). For j > 1, let £;4; be a path of maximum length in

G[D, 1] where
Dipa =D\ (V(LH)UV(L)U...UV(L))).

Moreover, let s be the first integer j such that Djy; = 0. For each
te{1,2,...,s}, wesay N1, Ny,..., N is a truncation of £4,£,,...,L; if for
i=1,2,...,t =1, N; = £; and N, is a subpath of £; having the same ini-
tial vertex. Choose a truncation so that [V (M) UV (M) U---UV (M) =
p—(2v -3).

For 3 =1,2,...,¢, choose a; € V from the first vertex (a block) of
Nj and ¢; € V from the last vertex of A so that ¢; # a; (note that
this is possible since any vertex of A; has two points). Since each £; is
a maximum length path in G[D;]. and Ny, N,,..., N, is a truncation, the
points ay, ¢1, as, €2, . . ., @y, ¢; ave distinet. Forj =1,2,...,t,let 4; € B, and
C; € B, be the blocks such that a; € A; and ¢; € C;. Since |4;]| = 2 = |C}]
and b; € A; and b, € C}, the blocks 4,,Cy, 4,,C4, ..., Ay, C; are distinct.

We now join the paths 4;AC; to a cycle which uses all the vertices of

B, UB; U {B*}. Form a (2v — 3)-cycle S in G[B; U By U {B*}] that uses
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B*C* as in the previous case. Since B, is a clique and the edges of the
path R (notation from the previous case) are not specified, we may choose
R so that the edges A,C), A2Cs,..., 4,C, be in §. Replacing each edge
A;C; with the path 4;N;C; transforms the cycle S into a p-cycle which
uses B*C™. |

2.2 Blocks of Differing Cardinalities

The proof of Theorem 2.1 serves as an outline for the proof of the next
theorem. In the previous proof, each vertex contained the same number of
points. This is not the case for the graph in question now.

In the rest of this chapter let (V,B) be a PBD(v,{,1) such that ¢ =
min K > 3. Moreover, let © = max A’ and choose B* € B so that B* =

{b1,bs,...,b,}. Fori=1,2,... u define
B; = {BE B:BNB" = {l),}}

Finally, let B* = By U B, U---U B, and let G = B(B). We have chosen
a vertex B* in G which contains the maximum number of points in the
design because this choice ensures that when we carefully choose paths in
the rest of the graph, these paths can be joined to the neighborhood B~ of
B* to create the desired cycle.

It will be seen in the proof of Theorem 2.3 that each case is divided
into first constructing ‘short’ cycles and then constructing ‘long’ cycles

that contain a particular edge. The following proposition is the core of the
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Figure 2.1: Proposition 2.2 guarantees the existence of a p-path in H.

proof of the theorem. It guarantees the existence of long paths which are

used in the proof to construct long cycles.

Proposition 2.2 Suppose (V,B) is ¢« PBD(v,K,1) such that £ > 3 and
suppose B* is any block of B such that |B*| = u. Let A* be any vertez of
By, letC CB\(B2UB3U...UB,) and let H = G[B\ (CUB,U{B*})]. For
each p, 1 <p <|V(H)| -1, there is a path in H of length p that starts in

A* and ends in a vertez of B*\ B,.

Proof: Figure 2.1 illustrates the statement of the proposition.
Let p€ {1,2,...,\V(H)| — 1} and n = |B~\ B;| — 1. If p < n, then the
desired path is straightforward to construct. Form a path of length n by

starting at A* and including the rest of the vertices of B, in any order (B, is
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a clique in H so this is possible). Next, choose a neighbor in B3 of the last
vertex in B, of the path constructed so far, and continue the path from the
neighbor using the rest of the vertices of B3 in any order. Note that since
£ > 3 and since H is an induced subgraph of G, Lemma 1.2 guarantees that
such a neighbor exists. Repeat this last step in By, then in Bs, and so on
until the path includes all the vertices of B*\ B;. The subpath of this path
that starts in A* of length p 1s the desired path.

Suppose therefore that p > n. We will use p — n vertices of H that are
not in B* \ B; with the n + 1 vertices of B*\ B,. To do this, a sequence
of paths in the rest of H having p — n vertices are joined to the vertices of
B*\ B;.

Let D =B\ (CUB*U{B"}). (D is the set of all vertices in H not in B*.)
Let £, be a path of maximum length in H[D] (the subgraph of H induced
by the vertices of D). For 5 > 1, let £,4, be a path of maximum length in
H[Dj4,], where

Djs1 = D\(V(L1)UV (L) U...UV (L;)).

Moreover, let s be the first integer j such that D,y = 0. Let M}, My, ..., N,
be a truncation of £4,L;, ..., L, such that [V (M)UV (M) U--- UV (M)| =
p—n.

For 7 =1,2,...,t, choose ¢; € V' \ A~ from the first vertex (a block) of
N; and ¢; € V \ A* from the last vertex of N so that ¢; # «; (note that

this is possible since any vertex of A/; has at least three points and at most
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one of them is in A*). Define Z to be the bipartite graph (X,Y) where
X = {a,c1,as,¢,...,a4,¢} (note that because of the maximality of the
L; paths, | X| =2t), Y = B*\ (B U{A"}),andforallz € X and B€Y,
zB € E(Z) if and only if z € B. Since dz(z) = u — 1 for all z € X, and

dz(B) <u—1forall B€Y, Z has a matching that saturates X. Let
{(11.41, Ci C'],(lQA;_), C'_)C’;_), ey (ltAt, CtCt}

be such a matching. Then for cach j € {1,2,...,t}, P; = A;N,C; is a path
in H that starts and ends in B* \ (B, U {A*}).

We need an orderly way to create the p-path using these paths. Let
M be the multigraph that has vertex-set {B2,Bs,...,B,} and edge-set
{e1,€2,...,e.} where ¢; = {B,, B,} (there may be loops if z = y), A; € By,
and C; € B,, for j =1,2,...,t. Let ¢ be the number of connected com-
ponents of M, and for : = 1,2,...,¢, let 20; be the number of odd degree
vertices of component z. Foreach:=1,2,...,¢, if 0; > 0, then decompose
the edge-set of component ¢ of M into o; edge-disjoint open trails, and if
o; = 0, then component ¢ has an Euler trail. Let 7 be the set of all of these
trails.

Note that E(M) = U7 E(T) and that if o; > 0 for some: € {1,2,...,q},
then the edge-disjoint trails of component 7 must begin and end in the 20;
vertices of odd degree. Thus if two trails 7,7, € 7 have a common end-
vertex in M, then T; = T5.

Eachtrail T € 7,T = B,,¢;, Bi,ej, - - - €5,_, B, , is easily transformed into
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apath Qrin H: Q7 = Q;Q,,---Q,,

Q9 where Q; is either P; or its reverse,

-1
for j = 1,2,...,t. The rest of the proof involves changing all of the Q¢ into
cycles and combining these cycles into a single path. Before we continue,
though, we need a definition.

We define a clique-edge to be an edge BC of G such that for some
i€{2,3,...,u}, B,C € V(B;). We say a path or cycle R in G is clique-
edge extendible avoiding A for some A C V(R)N B* if R satisfies: B €
(V(R)N B*)\ Aif and only if B is iucident with a clique-edge from E(R).
Note that a path or cycle R which is clique-edge extendible avoiding a set
A actually contains a clique-edge if and only if 4 # V(R) N B*. With
this definition, we have for cach T € 7 that Qr is clique-edge extendible
avoiding the set of its end-vertices (the end-vertices being precisely those
vertices on the paths whicl are not incident with clique-edges from the
paths).

We now perform extensions on the Q4 to turn them into cycles in H
which are clique-edge extendible avoiding a special sct of vertices. We
proceed step by step through the cliques Ba, Bs, ..., By, looking in step 7
for a path that has an end-vertex in B;. If such a path exists, then we
extend it to a cycle or to a longer path.

Let Ry = {(Qr, A7) : T € T} where Ay is the set of end-vertices of Qr,
for all T € 7. It will be shown that at ecach step 7, 1 < 7 < u, the newly

formed set R; of paths and cycles with their special sets of vertices will



have the following properties:

P1. if (@, A) € R;, then Q is a path or cycle in H which is clique-edge
extendible avoiding A, A~ ¢ A, and the paths and cycles are mutually

vertex disjoint;
P2. if (Q,A) € R; and Q is a cycle, then Q contains a clique-edge;

P3. if (Q,A) € R; and Q is a path, then Q has both its end-vertices in

(Bj41U B2V ---UB,) N A; and

P4. foreach i =2,3,...,u, [{(Q,A) € R, :B;NA+#0}| <1, and for all
(Q,A) € R;, |B: N A} < 2. Moreover, Q is a path with both its

end-vertices in B; if and only if |B; N A| = 2.

Property P4 may be the least understandable of the properties. It
ensures that for eachz = 2,3, ..., u there i1s at most one path or cycle having
a vertex in B; which is not incident with a clique-edge on the path or cycle,
and that a path has at most two such vertices in B; and it has two if and
only if these vertices are the end-vertices of the path. Morever, P4 implies
that every cycle has at most one vertex in B; which is not incident with 2
clique-edge of the cycle since any cycle has at most two such vertices by
P4 but cannot have two (only paths can have two by P4).

Properties P1-P4 are true for R;. Suppose that for some 3,1 < 3 < u,

Rj-1 satisfies P1-P4. We define R, using the following cases with the

[\V]
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intention that R; will also satisfy P1-P4. Since R;_; satisfies P4, we may

use the following three main cases.

Case 1. There does not exist an end-vertex S of a path € which is clique-

edge extendible avoiding A such that S € B;N A and (Q,A) € R,_,.

In this case we let R; = R;_,. By the induction hypothesis R;_,
satisfies P1-P4. Thus R; satisfies P1, P2, and P4. Since R;_,

satisfies P3 and we are in Case 1, R; satisfies P3.

Case 2. There exist end-vertices S, F € B;, § # F, of a path Q which is

clique-edge extendible avoiding A such that (Q,A) € R;_,.

In this case we replace a path avoiding a set with a cycle avoiding a
set. Without loss of generality, let @ startin S andendin F. Let Q' =
QS,let A'= A\ {S,F},andlet R; = (R;.1\ {(Q,A)})U{(Q,A)}.
Then the cycle Q' is clique-edge extendible avoiding A’ and A* ¢ A’
since A* ¢ A. Thus R; satisfies P1. Since SF € E(Q’) is a clique-
edge, R; satisfies P2. Any path (avoiding a set) in R; is alsoin R;_;
and R; has no path with an end-vertex in B; (there can only be one
since R;_; satisfies P4 and we have dealt with it here in Case 2),
and so R; satisfies P3. Since R;_, satisfies P4, S, F € A and hence
B; N A" = 0. Thus R; satisfies P4.

Case 3. There exists a path Q which is clique-edge extendible avoiding

A which starts in a vertex S € B, such that (Q,A) € R;_, and
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B;nA={S}.

Let Q end in a vertex F' € B,,, for some m € {2,3,...,u}. Since Rj_,
satisfies P3, m > j, and since F # S and B; N A = {S}, F ¢ B;.
Hence m > j > 2. Let N,,(S)={B € B,,: SN B # 0}.

We choose a vertex Q from N,,(.S) carefully. Let {Q1,Q2,...,Q-} =
V(@) N B,, so that the indices of the Q; correspond to their order on
the path @ (from S to F'). Note that ), = Fandsor > 1. If r > 1,
then since F' € B,, N A and Q is clique-edge extendible avoiding A
by P1, F is not incident with a clique-edge from @ implying that
Qr-1Q, & E(Q). Moreover, Q,Q2 € E(Q) since @; € A and hence is
incident with a clique-edge in B,,. The other end-vertex of this clique-

edge appears next on the path Q and so must be Q, (see Figure 2.2).

Since ¢ > 3, |N.,x(S)] > 2, and so we choose @ € N,.(S)\ {@:1}. We
will use the fact that @ # @, in Case 3(f).

We have several subcases depending on where the vertex @ is within

B,,..

Case 3(a). Forall (R,A) € R,_,, Q € V(R).
Let Q' = QQS5, let A’ = A\ {F}, and let R; = (R;_y \ {(Q,A)}) U
{(Q', A)}. Since Q is clique-edge extendible avoiding A and QF €
E(Q’)is a clique-edge, Q' is clique-edge extendible avoiding A’. Thus
R; satisfies P1 and P2. Since (Q,A) € R;, and Q' is a cycle, R;

V]
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Figure 2.2: Case 3 when r > 1.

satisfies P3. Finally, R; satisfies P4 because R ;_1 does and because
B.NA = 0.

Case 3(b). @ € V(R) for some cycle R avoiding a set A, such that
(R, Ay) € R;_,.
Since F' € B,, N A, and since R;_; satisfies P4, we conclude that
A1 N B,, = 0. Moreover, since R is clique-edge extendible avoiding
Ai, there exists U € B, such that QU € E(R). Let R’ be the path

that starts in U and ends in () such that R = R'U (see Figure 2.3).

The cycle Q' in this case is QR'S. If QU is the only clique-edge
incident with @, then let A’ be (A\ {F})U A, U{Q}. Otherwise, let
A’ be (A\ {F}) U Al' Finallya let R] = (Rj—l \ {(QaA)a(Rv Al)}) U
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Figure 2.3: Case 3(b).

{(Q',A")}. Note that A* # @Q since Q@ € B,, and m > 2 whereas
A* € B,.

Since Q is clique-edge extendible avoiding A, R is clique-edge ex-
tendible avoiding A,, and FU € E(Q’) is a clique-edge, Q' is clique-
edge extendible avoiding A’. Thus R; satisfies P1 and P2. Since
(@, A) € R;, and Q' is a cycle, R; satisfies P3. Finally, since
A'N B, C {Q}, R; satisfies P4.

Case 3(c). Q € V(R) for some path R avoiding a set A, such that
(R, A) € Ri-a.

In this case we replace the paths @ and R with a longer path Q. As
in Case 3(b), there exists U € B,, such that QU € E(R). Let W, be
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Figure 2.4: Case 3(c).

the path that ends in @ and W, be the path that starts in U such

that Wi W, = R (or the reversed path of R; sce Figure 2.4),

We form the longer path @’ = W, QW,. If QU is the only clique-edge
incident with Q in R, then let A’ = (A\ {F})UA;U{Q}. Otherwisc,
let A’ =(A\{F})UA,. Finally,let R; = (R;-1\{(2, A),(R, A,)})uU
{(Q', A)}. Note again that A* # Q (for the same reasons given in
Case 3(b)).

Since Q is clique-edge extendible avoiding A, R is clique-edge ex-
tendible avoiding A;, and FU € E(Q’) is a clique-edge, Q' is clique-
edge extendible avoiding A’. Thus R; satisfies P1 and P2. Siuce

(Q,A) € R;, and Q' is a path that has the same end-vertices as R
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Figure 2.5: Case 3(d).

neither of which are in B; (a condition of Case 3 is that B;NA = {S}),

R; satisfies P3. Finally, since A’ N B,, C {Q}, R, satisfies P4.

Case 3(d). Q@ = Q, for some ;7 € {2,3,...,7r — 3,r — 2}, and Q;Qj4+1 €
E(Q).
In this case we break up @ into two paths and use these paths to form
two cycles Q) and Q). Let Q@ = Wi W, so that W, starts in S and
ends in @;, and W starts in ;4 and ends in F (see Figure 2.5).
Let Q] = W)S and if Q; _1Q; € E(Q), then let 4] =(ANV(W))U
{@Q;}. Otherwise, let A] = (AN V(W,)). Moreover, let Q) =
WoQ 41, Ay = (ANVWR)\ {F}, and R; = (Rjo \ {(Q, A} U

{(Q7. AD.(Q%. AL)}. Note that Q; # A since Q; € B,,.
g
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Since Q is clique-edge extendible avoiding A, and @; € A} if and only
if Q;1Q; ¢ E(Q), Q) 1s clique-edge extendible avoiding Aj. Also,
since Q is clique-edge extendible avoiding A and FQ;;, € E(Q}) is a
clique-edge, Q} is clique-edge extendible avoiding A5. Since Q,1Q- €
E(Q)) 1s a clique-edge as well (note that j > 2), R, satisfies P1 and
P2. Since (Q,A) ¢ R;, and Q] and Q3 are cycles, R; satisfies P3.

Finally, since A} N B, € {Q;} and AN B,, = 0, R; satisfies P4.

Case 3(e). Q = Q, for some j € {2,3,...,r — 2,7 — 1}, and Q,Q,4+, ¢
E(Q).
In this case, form a longer cycle from Q. Note that since Q;Q;41 ¢
E(Q) and Q; ¢ A, Q;—1Q; € E(Q). Let Q@ = WiW, so that W,
starts in .S and ends in @;_;, and W, starts in (); and ends in F (sec

Figure 2.6).

We define Q' = W, FW,S where W is the reverse of W,. Moreover,
let A'=(A\{F})U{Q;}, and R; = (R,., \ {(L, A)}) U {(, A)}.
Again note that Q; # A*.

Since Q is clique-edge extendible avoiding A, and FQ,., € E(Q') is
a clique-edge and Q; € A’, @' is clique-edge extendible avoiding A’
Thus R; satisfies P1 and P2. Since (Q,A) ¢ R, and Q' 15 a cycle,
R; satisfies P3. Finally, since Q; replaces F in A’, R; satisfies P4.

Case 3(f). Q = Q,.
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Figure 2.6: Case 3(e).

Since Q # Q1,7 > 3. Let @ = QS, and let R; = (R;_1\ {(Q,A)}HU
{(Q', A)}. Since @:1Q; € E(Q') is a clique-edge, R; satisfies P1 and
P2. Since (@, A) € R;, and Q' is a cycle, R; satisfies P3. Moreover,

R; satisfies P4 since R;-; does.

Thus R; satisfies P1-P4 and hence by induction, R, satisfies P1-P4.
By P3,if (Q,A) € R,, then Q is a cycle.

We extend the cycles in R, even further. First, suppose for some
i € {2,3,...,u}, there exist (Q;,A1),(Q2,42) € Ry, @1 # Q2, such that
@, has a clique-edge U1V in B;, and Q, also has a clique-edge U;V; in B;.
We can then replace (@, .4;) and (Q2, A2) in R, with W1 WLV, A U Ap),

where @, = W, U1 V] and Q2 = WhU,V;. Let R4 be a set resulting from

33



performing this type of replacement as many times as possible on cach
B; (some cycles may be extended more than once). Then R4, satisfies

P1-P4, and the additional property:
P5. fort=2,3,...,u,

HQ:(Q,A) € R; for some A, Q has a clique-edge in B;}| < 1.

Second, if there exists a vertex B € B;, for some ¢ € {2,3,...,u}, such
that B is not on any cycle @ avoiding a sct A with (@, 4) € R.41, then
B may be included on a cycle that has a clique-edge in B; (if one exists).
Since R4 satisfies P35, there is at most one cycle Q avoiding a set A (with
(Q,A) € Ry41) that has a clique-edge UV in B;. If there is one, we extend
Q by replacing UV with UBV (the set A remains the same). Do this for
any such B in B* and let R,4» be the resulting set of pairs of modified
cycles and sets. Then R, satisfies P1-P5.

From now on, let

A; = U ANB;,
( Q,A)GRuH
for i = 2,3,...,u. Note that sincc R,y satisfies P4, [A4;] < 1. Moreover,

R.42 satsifies the additional property:

P6. for all 7 € {2,3,...,u}, if there exists a cycle Q avoiding a set A with
(@, A) € R,z such that Q has a clique-edge in B;, then every vertex

BEB,’\A,’ 1s in V(Q).
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We are now ready to form the p-path that starts in A*. Start by letting
U, = A*. Since R,,2 satisfies P1, U, € B, \ A;. If U, is on some cycle
Q avoiding a set A such that (Q,.A) € Ry42, then Uz € A and so there
exist a V, € By \ Az such that U,V, € E(Q) since Q is clique-extendible
avoiding A. We then let S; be the path defined by Q = S,U;. Note that
B, C A,UV(S;) by P6. If U, is not on some cycle, then let S; be the path
which starts in U and includes all the vertices of B2 \ A; in any order (note
that none of these vertices are on a cycle avoiding a set in R,4+2 by P6).
Let S; end in the vertex V5.

If B3 C A3 U V(S,), then let S3 = S, and V3 = V2. Otherwise, V(S2) N
(B3\A3) = 0 by P6, and so let Us be a neighbor of V, such that Us € B3\ As.
This is possible since V; has [V2]—1 > ¢—1 > 2 neighborsin B3 and |A3] < 1.
Using the above method we form a path that starts at Us, ends in some
vertex V3 € B3 \ Aj, and includes all of the vertices of B3 \ A3;. Adjoining
this path to the end of §; we form a path S3 which starts in U, and ends
in V3 and contains all of the vertices of (B, \ A3) U (B3 \ A3).

Suppose that for some j € {3,4,...,u ~ 1}, we have formed a path §;
which starts in U;, ends in a vertex V/;, and which contains all of the vertices
from (B2 \ A2)U (B3 \ A3)U---U(B;\ A;). If Bj41 C Aj41 UV(S;), then let
S;+1 = S and Vj4; = V. Otherwise, V(S;) N (Bj41 \ Aj+1) = 0 by P6, and
so let Uj;;y be a neighbor of V; such that U;41 € Bjs1 \ Aj41. We extend S;

to a path S;;, using the method of the last paragraph. Let S;4; end in a



vertex Vj;1.

In both cases, we have formed a path S;;; which starts in U,, ends
in a vertex Vj;; € B~ \ B;, and which contains all of the vertices from
(B2\ A2) U (B3 \ A3)U---U(Bj41 \ A;41). Now the path S, which we get
by induction actually contains all the vertices of B* \ B;. This is because
each cycle avoiding a set in R,4, has a clique-edge by P2 and hence will
be used to form some S;. Moreover, for all ¢ = 2,3,...,u, any element in
A; is in some cycle avoiding a set in R4, and thus in some Sj.

The p-path we want is just S,. |

The majority of the work for Theorem 2.3 is done in the last proposition.
All that remains is to form small cycles and to change the long paths into

cycles.

Theorem 2.3 If (V,B) ts «a PBD(v,K,1) with min X > 3, then the block-

intersection graph B(B) s edge-pancyclic.

Proof: Let CD € E(G) and let ¢ € {3,4,...,|V(G)|}. We will construct
a g-cycle in G which uses CD. Let B* € B be such that |B*| = u and let
b = |B,|. We have five cases depending on where C and D are in relation

to B*.

Case 1. B* € {C, D}.

Suppose without loss of generality that B* = C and that D € B,. If

g < b+1, then choose ¢ — 2 vertices from B, \ {D} and order them to
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form a path. Let the last vertex on the path be called A. The path
B*D along with the constructed path and the edge AB* is a g-cycle
that uses CD. If ¢ > b + 1, then form a (b + 1)-cycle Q using CD as
just described and let @’ be that path defined by @' = Q@ \ {AB*}.
Let A* be a neighbor of A in B,. If ¢ = b+ 2, then @Q'A*B* is a
g-cycle containing CD. If ¢ > b + 2, then by Proposition 2.2 there is
a (¢ —(b+2))-path R that starts in A", ends in B*\ B;, and uses only

vertices from B \ (B, U {B*}). The required g-cycle is Q"R B*.

Case 2. CNB*={2}=DNB" forsomez € V.

Without loss of generality, we may assume that z = b; so that C,D €
B,. B*CDB* is a 3-cycle using CD. For 4 < ¢ < b+ 1, choose any
g — 3 vertices from B, \ {C, D} and order them to form a path letting

the last vertex be called 4. Continue as in Case 1.

Case 3. CNB*={z}and DN B~ = {y} for some z,y € V, z # y.

Without loss of generality, we may assume that z = b; and y = b,
so that C € B, and D € B;. B*CDB* is a 3-cycle using CD. For
4 < g < b+ 2, choose any ¢ — 3 vertices from B; \ {C} and order
them to form a path Q. Then B*QCDB* is a g-cycle using CD.
For ¢ > b+ 2, let Q be a path with b — 1 vertices constructed as
just described. By Proposition 2.2 there is a (¢ — (b + 2))-path R

that starts in D, ends in B* \ B;, and uses only the vertices from



B\ (B; U {B*}. The required g-cycle is B*QCRB*.

Case 4. |[CNB*|+|DNB*| =1

Without loss of generality we may suppose that C N B* = {b;} and
that DN B* = { so that C € B, and D ¢ B*. Let B be a neighbor of
D in B, that isnot C. Then BCDB is a 3-cycle in G and B*CDBB*
is a 4-cycle in G. For ¢ € {5,6,...,b 4 2}, choose g — 4 vertices from
B, none of which is B or ', and order them to form a path. Let the
last vertex on this path be called A. The path B*C DB along with
the constructed path and the edge AB* is a g-cycle that uses CD. If
g > b+ 2, then form a (b + 2)-cycle Q as just described and let Q'
be the path defined by deleting the edge AB* from Q. Let A* be a
neighbor of A in B,. If ¢ = b + 3, then Q'A*B* is a ¢-cycle using
CD. If ¢ > b+ 3, then by Proposition 2.2 there is a (¢ — (b + 3))-
path R that starts in 4%, ends in B~ \ B), and uses only vertices from

B\ (B, U {B*,D}). The required g-cycle is Q"R B*.

Case 5. CNB*=0=DnB~.

Let c€e C\ D andd € D\ C. There is a block B € B such that
{¢,d} C B. BCDB is a 3-cycle containing CD. Let C, be a neighbor
of C in B; and let D, be a neighbor of D in B, such that D, # C; (D
has |D| neighbors in B, since DN B~ = §). D,C,CDD, is a 4-cycle in
G that uses CD and B*C,CDD,B" is a 5-cycle in G that uses CD.

38



Forq € {6,7,...,b+3}, choose ¢ — 5 vertices from B none of which is
C) or Dy, and order them to form a path. Let the last vertex on this
path be called A. The path B*C,C DD, along with the constructed
path and the edge AB* is a ¢-cycle that uses CD. If ¢ > b+ 3, then
form a (b+ 3)-cycle Q as just described and let Q' be the path defined
by deleting the edge AB™ from Q. Let A* be a neighbor of A in B,.
If g =064 3, then Q"A*B~ is a ¢-cycle using CD. If ¢ > b+ 4, then
by Proposition 2.2 there is a (¢ — (b 4+ 4))-path R that starts in A*,
ends in B*\ By, and uses only vertices from B\ (B, U {B*,C,D}). The

required g-cycle 1s Q"R B*.

In each case, a ¢-cycle is constructed which uses CD. Therefore, G is

edge-pancyclic. |

2.3 Conclusion

This chapter has shown that the block-intersection graph of any pairwise
balanced design with A = 1 and mimimum block cardinality at least 3 is
edge-pancyclic and, in particular, hamiltonian. If A > 1, then rharacter-
izing those designs whose graphs are hamiltonian is unsettled. However,
if the block-intersection graph of a PBD(v,k, ) is defined so that two
blocks are adjacent in the graph if and only if they intersect in precisely A
points, then the graph need not be hamiltonian as the following example

demonstrates.
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Example 2.4 A (6,3,2)-design (V,B) such that the block-intersection graph

B(B) ts non-hamiltonian.

Let V = {1,2,3,4,5,6} and B = {{1,2,3},{1,2,4},{1,3,5}, {1,4,6},
{1,5,6},{2,3,6},{2,4,5},{2,5,6}, {3,4,5},{3,4,6}}. Then B(B) is iso-
morphic to the Petersen graph.

Still open are the related questions when the design has blocks of car-
dinality 2. It seems very unlikely that the proof of Theorem 2.3 can be
generalized in this regard. The specific case when the design has only

blocks of cardinality 2 is settled in Theorem 2.1.
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Chapter 3

Connectivity

This chapter concerns itself with the connectivity of the block-intersection
graph. We start with balanced incomplete block designs and give a num-
ber of results which determine the graph’s vertex connectivity and also
exhibit internally vertex-disjoint paths between nonadjacent vertices. The
subsequent section proves some results for the more general case of pairwise
balanced designs. The theorems there are not as satisfactory as in the less

general case but they give a good start for further study.

3.1 Balanced Incomplete Block Designs

We begin with a theorem which not only determines the vertex connectivity
of the block-intersection graph of a balanced incomplete block design but

also characterizes all minimal vertex cuts.

Theorem 3.1 Let (V,B) be a BIBD(v,k,1) and let G = B(B). IfCis a

vertez cut separating vertices A* and B*, then § = §(G) < |C|. Further-
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more, we have equality if and only if C s the set of vertices adjacent to

either A* or B*.

Proof: For i = 1,2, let X; be the set of blocks in B\ {4, B*} which
intersect exactly ¢ blocks of {4, B*}. Lei C; be CN A, and let P be the
set of points in ¥V which are not in A= or B*. Note that X, CCN A7,

Let = be in P, let R,(x) be the set of blocks in B which contain =
and a point in A*, and let Ry(x) be the set of blocks in B which contain
z and a point in B*. Suppose there exists 4 in R.(z) \ Re(x) and B in
Ri(z) \ Rafz) such that C contains neither A nor B. But then A*ABB* is
an (A*, B*)-path in G —C. Hence, R (2)\Ry(2) € C or Ry(z)\ Ra(x) CC.
Also,

[Ra(@) \ Rufa)] = [Raulr)] ~ [Ru(x) N Ro(e)|
= k= |Ra(x) N Ry(z)|
= |Ry(x)| — |Ru(z) N Ry(z)|
= |Ru(x)\ Ralz)].

Therefore, at least half of the blocks in X} containing z are in C;.

The previous paragraph now implies

21 [(k-1) = 2 Z {(x,B):z € P,z € B}|

BeC,

= 23 |{(«,B):B€C,z € B}
rel’

> S |{(r.B):B € X,z € B
ref

42



= > H(z,B):z € P,z € B}|
Bex
= ||k -1).
Hence, [C] 2 [C1] + 1%l 2 14| + || = 1 (do(A") + da(B") > 6.

Now suppose § = |C|. Then we have equality in both equations of the
last paragraph. Hence, C = C; U X,. Thus, if C is a block in a vertex
cut C of size é§ which separates blocks A and B, then C intersects A or B.
Equality also implies that for every point z in P, exactly half the blocks
in A} containing z are in C. Thus, the set of blocks in C; containing z is
either R,(z) or Ry(z), for every point x in P.

Every point in A* isin r — (k+1) blocks in A;. Thus, if r = £+ 1, then
C = X, and hence C = Ng(A*) = Ng(B*). Therefore suppose r > k + 1.
Let p; and p; be distinct points in 4* and let p; be in a block D; which is
in &7, ¢ = 1,2. Suppose D; € C and D, ¢ C. Since D; is a block in a vertex
cut C of size § which separates blocks D, and B*, D; intersects D, or B*
as seen in the previous paragraph. Since D; and A* intersect and D, € X,
D, and B* do not intersect. Hence, D; and D; intersect in some point z.
But then z is in P and R,(z) has blocks in both C; and &) \ C;. Therefore,
we can conclude that the set of blocks in X; which are adjacent to A* is
either contained in C or disjoint from C. It now follows that C is Ng(A*)
or Ng(B*). [ |

Menger’s Theorem states that the minimal number of vertices seperating

two non-adjacent vertices is equal to the maximal number of internally
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vertex-disjoint paths between the two vertices. Therefore if C is a minimal
vertex cut in a graph G, z is a vertex in one component of G — C and
y is a vertex in another component of G — C, then the cardinality of C
is at least the minimal number of vertices seperating = and y, and hence
at least the maximal number of internally vertex-disjoint paths between
and y. Moreover, the cardinality of C is at most the minimum degree of
G. Although the vertex connectivity of G is determined in Theorem 3.1,
we prove this again in the following theorem using Menger’s Theorem by
constructing a set of internally vertex-disjoint paths of cardinality k(r — 1)
between any two non-adjacent vertices. The emphasis, however, is on the

lengths of these paths.

Theorem 3.2 Let (V,B) be « BIBD(v,k,1) and let G = B(B). Between

any two nonadjacent vertices A* and B~ there exists

o k% (A*, B*)-paths of length 2 and

o k(r —k —1) (A%, B*)-paths of length 3
all of which are internally vertez-disjoint.

Proof: Let A* = {a),qas,...,ar} and B~ = {b,bs,...,bx}. Fori = 1,2,...,
define the following sets:

Ai={AeB: AnA" ={a;},AN B" =B},
Bi={BecB:BnB" ={bh},BNA" =0},
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C,‘Z{CEB:C’ﬂA-:{a,'},CﬂB'#@}.

Define Z = (X,Y) to be the bipartite graph whose parts are X =
AlUAU---UA, andY = B{UB,U---UBj, and whose edges are E(Z) =
(AB: A€ X,BE€Y,ANB # 0). Note that |X| = |[Y| = k(r — k —1). We
will show that Z has a perfect matching.

Let SCX,S#0,andlet T = {x:2¢€ A\ A", A € S}. Moreover,
let N(S) = Ny(S) and let R,(«) aud Ry(z) be defined as in the proof of
Theorem 3.1. (Note that as in the previous theorem, [R.(z) \ Re(z)| =
[Rs(z) \ Ru(2)].) Then,

(k=1IS| = > _(l4l-1)

A€S

= Y Hr:xeA\A}
A€S
= (zr.4):4€S,z2€ A\ A}

= > {A€S:xe A}

reT
< Y H4eX:xe 4}
reT
= Y [Ru(x) \ Ri()|
reT
= Z le(J)\Ra(l)t
reT
k
— ZZ]{BGB{:IEB}]
reT 1=1
k
- Z ZH(I,B} :x € B e B'}|
reT i=1

= {(«.B):Be N(S),z € BNT}



I

> H.B):xe€BNT}

BEN{S)

< > W@,B):x€B\BY}

BEN(S)
= (k-=DIN(S)].
Therefore |S| < |N(S)|, and so Z has a perfect matching by Hall’s Theoren.
Call this matching M.
The desired § = k(r — 1) internally vertex-disjoint (A, B*)-paths are

the following:
e A*CB*,forall C e€(C;,1=1,2..... k, and
e A*ABB*,foral ABe M, A€ X, BeY.

Note that there are k? paths of length 2 since |C;| = k for 1 = 1,2,.. .k,

and k(r — k — 1) paths of length 3 siuce |M| = |X| =k(r — k- 1). [ |

3.2 Pairwise Balanced Designs

In this section, we investigate counectivity of the graphs associated with
pairwise balanced designs. The results are less definitive than in the last
section. Theorems similar to Theorems 3.1 and 3.2 for the more general casc
in this section are given determining the edge connectivity of these graphs.
The last theorem of this section determines the vertex connectivity of the
graphs whose associated design has a large number of points compared with

the cardinalities of its blocks.



Theorem 3.3 Let (V,B) be a PBD(v,K,1) and let G = B(B). If S i3 an
edge cut separating vertices A* and B*, then max {dg(A*),dc(B*)} < |S].
Furthermore, we have equality if and only if S s the set of edges incident

with either A™ or B~.

Proof: Let A* and B* be a partition of B such that A* € A*, B* € B*,
and § = [A*, B*]. For every point z in V|, let S, be the set of edges AB in
S such that AN B = {z}. (S is partitioned by {S, : z @ V, S, # 0}.)

Suppose z is in V. Let r, be the replication number of z (in this case
r; need not be the same for different z), let a, be the number of blocks in
A” which contain z, and let b, be the number of blocks in B* which contain
z. If a; > 1 and b; > 1, then [S;| = a;b; = a,(r; —a;) > 7. — 1.

If there exists a point x; which is only in blocks in .A* and there exists a
point 2 which is only in blocks in B*, then no block in B can contain both
r) and z,. Therefore, we may assume every point in a block in A~ is also
in a block in B*. Hence, |S;| > r. — 1, for every point z which is in some
block in A*. Therefore,

ISI = > IS:]

eV

2 18

re A

Z (r- — 1)

reA*

= dg(47).

I\

IV
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If we have equality, then S, is empty for every point  which is not in
A*. Hence, every point z which is in some block in A* is in A*. Therefore,
A* = {A~}, and so S is the set of edges incident with 4*. |

We continue now in a similar vein as the previous section, by con-
structing internally edge-disjoint paths to give an alternative proof to The-

orem 3.3. The paths in this case have lengths 2 and 4.

Theorem 3.4 Let (V,B) be « PBD(v,IV,1) and let G = B(B). Between
any two nonadjacent vertices A~ and B~ there exists min{dg(A*), dg(B*)}

(A*, B*)-paths of lengths 2 and 4 all of which are internally edge-disjoint.

Proof: Let A* = {a1,as,...,a,} and B~ = {b;,0,,...,b} be any two non-
adjacent vertices, and without loss of generality suppose dg(A*) < dg(DB*).

For:=1,2,...,s,and for j = 1,2,...,t, definc the following sets:
Al={AeB:AnA" = {a},ANDB" = B},
Bi={BeB:BnNDB = {b},BNnA" =0},

;i ={CeB:CNA = {a},CN D #£0}.

Since Y3, (Al +C) = dg( A7) < da(B*) = 5, B, + Y2, Ciy we have

i AL <5 B Therefore, let @ AJUAYU---UA, — B{UB,U- - -UB; be
an injection. Moreover, for 1 =1.2,...,s,and 7 =1,2,... ¢, let A;;, € Al
be such that b; € A;;. Finally. let § : AjU A U---A, = {1,2,...,t}
be defined by 8(B) = j if and only if »(B) € B.. Then the internally

edge-disjoint paths are:
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o A*A;;B~ for:=1,2,...,s,and j =1,2,...,¢,
o A*AA, gpyp(B)B* for all B € B}, fori =1,2,...,s. |

We now turn from edge connectivity to vertex connectivity. Although the
result given here is probably not the best possible it does for any fixed K
determine the vertex connectivity of the block-intersection graph for all but

a finite number of PBD(v, K, 1).

Theorem 3.5 Let (V,B) be « PBD(v,K,1) and let G = B(B). Define
u=max{k: k€ K}. Ifv> tu", then the vertez connectivity of G is equal

to its minimum degree.

Proof: If u = 2, then B is a BIBD(v,2,1) and the theorem follows from
Theorem 3.1. Therefore, assume u > 3. Suppose v > %u“ and suppose C is
a vertex cut such that |C| < 6(G) = é.

Let A;, A; and C form a partition of B such that for all A; € A;
and A; € A;, A1 N A; = 0. Moreover, let Vi be the set of points in V
which are in blocks in 4,. Without loss of generality, we may assume that
v = |V1] < Jv (otherwise, use V' \ V; and A,).

Choose A* € A, and let k = |A*|. Forall B € B, let ng = |[BN(V;\ A%)|.
Divide the blocks of the vertex cut C which intersect V; \ A* into three parts:
X={BeC:np=1,BNA"=0},Y={BeC:ng=1BnA* # 0},
and Z = {B € C: ng > 2}. Furthermore, let D = {(z,y) :z € 1\ 4%,y €

V\ V1}. For each pair (r,y) € D. there is a unique block B(;,) € B such
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that {z,y} C B(sy) and B, € YUY U Z.

D ={(z,y)€D: B, €T}

With these definitions, we have

For T € {X,), 2} define

Dyl < (u—1)X], (3.1)
Dyl £ (u—2)|Y, and (3.2)
IDz| < Z ng(u —ng)
BeZ
< > (”_')H>2(u. —ng)
BeZ N7
n
< 2(u—-12) Z’ (';
BeZ
< 2(u~2)(“‘;1")
= (u—2)(vy —k)(v,—k~1). (3.3)
Since [C| < dg(A”) = |[Ng(A™)[, we also have
X[ < [C\ Ne(A47)
= || - IC N Na(A™)]
< |Ng(A™)] = INs(A) N C|
= |Ng(A )\ C|. (3.4)

Using equations 3.1 to 3.4 pives

(= k)v~wn) = |D

= |Dy|+|Dyl+ D3]
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< (= DX+ (u=2)|V[+ (u = 2)(v2 — k)(vr — k= 1)
< (u=D[INa(A)\CI+ V] + (u = 2)(vy —k)(v1 =k —1)

< (u—1)((vs =R)k)+ (u—2)(v; —k)(v1 —k—1). (3.5)

Rearranging equation 3.5 gives

v—v < (u—=1)k+(u—2)(vy —k—-1)
= (u-2)vy+k—u+2

< (u—=2)v +2,

and therefore

v—2
v > . (3.6)
uw—1
Using 3.6 and the assumption that v, < %v, we have
v—2 v -2 .
(u — 1) [v - (u - 1)] < wlv=w)
= Y IBNW||Bn(V\W)]
BeC
1,
< —uflC|
4
1 .
< —u?l
4
< Zu?fu(v - u)
—Uu AR )
= 3 i
= -—-.“3("’4" u, (3.7)

Collecting the v terms in inequality 3.7 to the left-hand side gives
4(u — 2)v? — [8(u — 3) + (u — 1)*u®Jo + (v — 1)%u* — 16 < 0.
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Define f(v) to be the quadratic in v (u is fixed) of the left-hand side of the

last equation.

/(3 -

Vv

Moreover, if v >

f'(v)

Then since u > 3,

2, 1 - ;14 ,
?1)’“9 - 5“5 - glt‘ +u’ - —3—u" +9ut — 16
1 7 ; 1 4/ 11 4
g (u=3)(u+ 1)+ 2u'Bu - 8)(u —2) + zu' — 16
0.
su, then
5 o 10
> ‘gua - ?U' —u’ —8u+24
1 2 2\ 3
o BB (s) (w3 e
4 s
— 94
= 2711 +24
> 0.

Therefore for v > 1u*, f(v) > 0. a contradiction. Thus|C| > é and therefore

the vertex connectivity of G is equal to its minimum degree. |

We conjecture that the theorem holds even without the condition v >

1,4
sut.

(S]]
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Chapter 4

Coloring

This chapter investigates coloring the block-intersection graph of pairwise
balanced designs. Coloring problems are difficult in general and (as will be
demonstrated in the next section) it is no different here. The first part of
this chapter will establish the connection between this coloring problem and
the well-known Erdés-Faber-Lovasz Conjecture [9,10,11]. In the remaining
section, new results will be presented for the balance incomplete block

design case.

4.1 Erdos-Faber-Lovasz Conjecture

The Erdés-Faber-Lovasz Conjecture was first posed by the persons named
at a party they attended. It scemed to be an easy problem at first, but no
proof has yet been found. That it is a difficult problem is indicated by the
increasing bounty placed on its solution. Although it is not stated here in

its original form it is a simple niatter of translation of terminology to the
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form presented.

Conjecture 4.1 (Erdés-Faber-Lovasz) If A s a v-uniform linear hy-

pergraph with v edges, then y(A) < v.

A year later, P. Seymour [17] and N. Hindinan [12] independently showed

that Conjecture 4.1 is equivalent to the following conjecture.

Conjecture 4.2 If A is ¢ linear hypergraph with v vertices, then Y'(A) <

v.

Every PBD(v,,1) is a linear hypergraph. The converse 1s not true.
However, when it comes to colering, we will show that Conjecture 4.2 is

equivalent to the following conjecture.
Conjecture 4.3 If (V,B) is « PBD(v,K,1), then x(B(B)) < v.

The proof of the equivalence of Conjecture 4.1 and 4.2 essentially shows
that they are dual statements (in this case, dual means the dual of a hy-
pergraph). However, there are several subtleties. We include, therefore,
the proof of the equivalence in full detail in Section 4.1.2. In doing this, it
is hoped that the connection between the Erdos-Faber-Lovasz Conjecture
and Conjecture 4.3 becomes transparent. We proceed first, though, to a

discussion of the dual of a linear Liypergraph.



4.1.1 The Dual of a Linear Hypergraph

The dual of a hypergraph is defined on page 3. If a hypergraph is linear,
then it is clear that its dual is also. Let A be a linear hypergraph and let
A" be its dual. Define a: U4 — A" tobe a(z) = {A:z € A € A}. In the
proof that Conjecture 4.1 and 4.2 are equivalent it will be necessary that
« is one-to-one. This will not be the case if A has two adjacent vertices
z,y each of degree one. This idca motivates the following definition of a

property that some (but not all) linear liypergraphs satisfy.
D. Forall z,y € UA, = # y, there exists A € A such that |AN {z,y}| = 1.
With this definition we can characterize when « is one-to-one.
Lemma 4.4 The function « 1s one-to-one if and only if A satsifies D.
Proof: Suppose a is one-to-one and let z,y € UA, = # y. Since a(z) #
a(y), there exists A € a(z)\ a(y) or A € a(y)\ a(z). Then |[AN{z,y}| =1
and so A satisfies D.
Conversely, suppose A satisfies D and suppose for some z,y € UA,
a(zx) = a(y). Since A is lincar, a(z) = {A} = a(y) for some 4 € A.

Therefore {z,y} C A and hence = y by D. Thus « is one-to-one. |

4.1.2 The Proof of the Equivalence

Before giving the proof of the equivalence of Conjectures 4.1 and 4.2 we
need two lemmas. This section is an expanded version of the proof given

in [17].
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Lemma 4.5 Suppose that if A s a linear hypergraph with v edges satisfying

D and |A| < v for all A € A, then y(A) < v. Then Conjecture 4.1 is true.

Proof: Let A be a linear v-uniform hypergraph with v edges andlet A € A.
If A has no vertices of degree 1, then let A’ = 4. Otherwise, let A’ be any
subset of A such that A’ contains all the vertices of A of degree 2 or more
and only one vertex of A of degree 1. Define A' = {4’ : 4 € A}. Then
A’ is a linear hypergraph with v edges and |A'] < v for all A’ € A’ since
A is v-uniform. Moreover, A’ satisfics D since A’ is linear and since by
construction there is at 1nost one vertex of degree 1 incident with any cdge.
Therefore by the assumption of the lemia, y(A’) < v.

Let ¢ : UA" — {1,2,....¢} be a strong v-coloring of A’. Then ¢’ can
be easily extended to a strong c-coloring of A. For each 4 € A, color each
z € A\ A’ a different color fromn {1,2,... v} \ ¢/(A) (this is possible since

|A\ A’| <v). Therefore v(4) < v and Conjecture 4.1 is true. |

Lemma 4.6 If A is ¢ linear hypergraph with v edges satisfying D, then
[A] <wv forall A e A

Proof: Suppose there exists an A’ € A such that |A’| > v. Then there are
at most v—1edges A € A, A # A’ such that AN A’ # . Thus there exist
z,y € A’ suchthat z,y ¢ U{A € A: A # A'}. Hence A does not satisfy D,
a contradiction. Therefore the lenuna holds. |

We are now ready to prove the equivalence of Conjectures 4.1 and 4.2.

W]
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Theorem 4.7 Conjecture 4.1 13 equivalent to Conjecture 4.2.

Proof: By Lemima 4.5 and 4.6, Conjecture 4.1 is equivalent to the following

statement.
S. If A is a linear hypergraph with v edges satisfying D, then v(A) < v.

We will show that S is equivalent to Conjecture 4.2.

Suppose that Conjecture 4.2 is true and let A be a linear hypergraph
on v edges satisfying D. Let A" be the dual of A. Then A* is a linear
hypergraph with v vertices and hence let ¢* : A* — {1,2,...,v} be a v-
edge coloring of A*. Define ¢ : UA — {1,2,...,v} by ¢(z) = c*(a(z)).
Then ¢ is a strong v-coloring of A since if 2,y € A, z # y, for some
A € A, then a(z) # a(y) by Lenuna 4.4, and o(z) N a(y) # 0 implies
c(z) = c*(a(z)) # c*(a(y)) = c(y). Therefore, v(A) < v and S is true.

Conversely, suppose S is true and let A be a linear hypergraph with
v vertices. Let A" be the dual of A. Then A* has at most v edges and
if A,B € UA*, A # B, then there exists t € A\Borz € B\ A. In
either case, |a(z) N {A4,B}| = 1 and so A* satisfies D. Thus by S, let
¢ :UA" — {1,2,...,v} be a strong v-coloring of A*. Since UA* = A, and
since if A,B € A and AN DB # {0, then A and B are in some edge of A*
implies ¢*(A) # ¢*(B), ¢* 1s a v-edge coloring of A. Therefore, x'(A) < v

and Conjecture 4.2 is true. |

=1
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4.1.3 Pairwise Balanced Designs

We finish this section by proving the equivalence between the Erdos-Faber-

Lovasz Conjecture and Conjecture 4.3.
Theorem 4.8 Conjecture 4.2 is equivalent to Congecture 4.9.

Proof: A v-edge coloring of a hypergraph corresponds to a v-vertex col-
oring of its intersection graph and vice versa. Thus it is clear that Conjec-
ture 4.2 implies Conjecture 4.3.

Suppose Conjecture 4.3 is true. Let A be a linear hypergraph with v

vertices. Let
B=AU{{z,y}: {a,y} L Aforall A€ A,z,y € UA,z # y}

Then (UB,B) is a PBD(v,,1) where IV = {2} U {]A4| : 4 € A}. Hence
X'(B) < v and since A is a subgraph of B, x/(A) <v. Thus Conjecture 4.2

is true. [ |

4.2 Balanced Incomplete Block Designs

In this section we fix our attention on coloring the block-intersection griph
of balanced incomplete block designs. Specifically, a result is obtained
on the existence of optimal colorings of the neighborhoods of vertices in
these graphs. The next two sections may not seem like they have anything

to do with this problem, however, they in fact provide the core of the
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proof for the result. The results in themn are of interest in themselves and
answer some questions about the general structure of the complement of

such neighborhoods.

4.2.1 I;s-factors

In this section, I(3-factors of certain tripartite graphs will be investigated.
The first result is very specific and yet requires some effort to prove. It and
the subsequent theorem provide the base case for an induction proof of the

more general result found in the next section.

Proposition 4.9 Let G = (X.Y. Z) be a tripartite graph such that |X| =
IY]| = |Z] = 7 and such that every vertex has least § neighbors in each of

the other two parts. Then G has a Ks-factor.

Proof: Let G be defined as above. The induced bipartite graph (X,Y’) has
minimum degree at least 5 and hence has a perfect matching by Lemma 1.5.
Thuslet X = {z;,x,,....0:} and Y = {y;,v»,...,y7} be such that z;y; €
E(G) for:=1,2,...,7.

Define H = (Z,C) to be the bipartite graph whose parts are Z from
Gand C = {r;jy;-1€{1.2..... 7}}. aud whose edge-set is E(H) = {zc:
€ Z,ry=c€ C.{r.y.z}isa Kyin G}. We will try to find a perfect
matching in H. If there is a perfect matching in H, then it corresponds to
a Rj-factor of G. Otherwise, H has a particular structure which will be

used to find a A;-factor of G.



Forz=1,2,....,7, since r; aud y, have at least 5 neighbors each in Z
(in the graph G), and |Z]| = 7. x; and y; have at least 3 common neighbors
in Z. Thus for all ¢ € C. dy{c) > 3. Morcover, caci. z € Z has at least 5
neighbors in each of X and " (in the graph G). Let A, = {i : ;2 € E(G)}
and B, = {j : y;z € E(G)}. Then 4., B. C {1,2,...,7} and |4.|,|B.| > 5.
Thus |[A,NB,| = |A;|+|B.|—|4.UB.| > 3. Thusforall z € Z, dy(z) > 3.

Let S C Z, S # 0. Since dy(z) > 3 forall = € Z, if |S| < 3, then
[S| < 3 < INu(S)]. Since dyicy > 3 for all ¢ € C, if |S] > 5, then
IS| < 7= [Nu(S)I.

Therefore, if for all § C Z such that |S| = 4, we have |S] < [Ny(S)),
then by Hall’s Theorem. there exists a perfect matching Al = {z,¢y, 2264, . . .,
zz¢7}. Without loss of gencrality. label Z and C so that ¢, = z;y;. Then
Hzisyir, 2} 1 =1,2,....7} is a Ky-factor of G.

Otherwise, there exists S C Z such that |S] = 4 and |S| > [N u(S)].
Since |[Ny(S)| > 3, we have |N;(S)| = 3. Thus dyy(z) = 3 for all z € S.
Moreover, since Ng(C \ N;;(S)) = Z\ S and |Z\ S| = 3, dy(c) = 3 for all
c € C\ Ny(S). Therefore. H must have the structure of Figure 4.1 (there
may be some additional edges hetween Z 4 S and Ny (S) = N(S)).

Without loss of generality. let Ny (S} = {1y, w2y2, 2312} We will now
modify the matching between X aud Y 50 as to produce a K y-factor of G.

We have two cases.

G0



Figure 4.1: The structure of the graph H =(Z,C).

Case 1. There exist 7,5, 1 <i < 3,4 < <7,suchthat r,y; € E(G) and
r;yi € E(G).
Without loss of generality, we may assume 7 = 3 and 7 = 4. Since
z4 has at least 5 neighbors in Z (in the graph G), it has at least 2 in
S. Similarly, y4 has at least 2 neighbors in S. Let z3 be a neighbor
of ry in S and z; be a neighbor of y; in S such that z3 # z4. For the
remaining vertices of Z. label them so that S\ {23,254} = {z1,22}
and Z \ S = {zs5.26.3:}. Since Ny({z1}) = {z1y1, 2292, T3y3} =
Ny({z2}) {zi.y1.21} and {x.:, y.. =} both induce a K3 in G. Sim-
larly. {rs.ys.z5}. {wa-ye. 26} and {547, 27} all induce a K3 in G.

Moreover, r3 is adjacent 1o cach vertex of § in G because z3ys 1s
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adjacent to each vertex of S in H. Thus ry3zy € E(G). Similarly,
yaza € E(G), and hence {eg. g0 20} and {wg, ys, 33} each induce a Ky

in G. Therefore G has a Ivi-factor.

Case 2. There do not exist .5, 1 </ < 3, 4 < <7, such that ry, €

E(G) and z;y; € E(G).

For each : = 1,2,3. let 4, = {; : iy, € E(G),4 < 5 < 7} and
B; = {j: zjyi € E(G).41 < j < 7}. Then for cach i = 1,2,3,
[4:i] > 2, |B;] > 2 and by the asswmption of Case 2, 4, N B, = 0.

Thus, |A;| =2 = |B;] for all = 1.2.3. and hence Liym € E(G) for all
I,me {1,2,3}.

Since x4 has at least 5 ncighbors in Y (in the graph G), it has at least
one neighbor in {y,.y,.y,}. Without loss of generality, let aqy, €
E(G). Similarly, yy has at least one neighbor in {ry, 24,13} and by
the assumption of Case 2 we way let gy € E(G) without loss of

generality.

As in Case 1, let z3 be a neighbor of oy in S and 2, be a neighbor of
g 1 1 £

y4 in S so that z3 # z;. Label the remaining vertices of Z as in Case

1. Then {1‘1= Y1, 2 } {-l‘z- Y. 33}-. {-1‘3, Ya- ~”4}~ {1‘43 Y2, 33}, {Im Ys, Zs};

{r6,y6, 26} and {x-. y-. 27} is a Ny-factor of G. |

Proposition 4.9 gives the base case for an induction proof for the ex-

istence of Kj-factors in tripartite graphs with a certain structure. The
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following theorem makes this statcement clear.

Theorem 4.10 Lett > 7 gnd let G = (X, Y, Z) be a tripartite graph such

that | X| = |Y| = |Z| = t und such that every vertez has at least t — 2

neighbors in each of the other two purts. Then G has o K3-factor.

Proof: By Proposition 4.9, tlie theorem is true for t = 7. Suppose there-
fore, that the theorem is true for some ¢t > 7. Let G’ = (X',Y’,Z’) be a
tripartite graph such that |[X'| = [}] = |Z’| = t + 1 and such that every
vertex has at least ¢ — 1 ncighbors in eacl of the other two parts.

Choose z € X' and let y € Y be a neighbor of . Since r and y each
have t — 1 neighbors in Z’ and 2( = 1) > ¢ + 1, 2 and y have a common
neighbor z € Z’. Let G = (X.Y.Z) be the tripartite subgraph of G’ induced
by XUYUZ where X = X'\ {r}. Y =Y'\{y} and Z = Z’\ {z}. Then
[X] = Y| =|Z] =t and cvery vertex has at least ¢t — 2 neighbors in each
of the other two parts. Hence by induction, G has a Kj-factor, K. Then
K' = KU {{z,y,z}} is a K- factor for G". |

For t = 5, Theorem 4.10 is false as the counter-example given in Fig-
ure 4.2 shows (found by Robert D. Fleming). In the figure, the vertices
in set A are joined to all the vertices in Y and in Z. Similarly for the
vertices in B and C. This graph has no K3-factor since A’ and B’ require
4 neighbors in Z in a K s-factor, but they collectively only have 3 (namely

the verticesin C). Fort < 3. it 1s straightforward to construct such a graph



Figure 4.2: Connter-example for ¢ = 5.

that does not even contain a . Thus, the only unresolved case is ¢ = 6

(whose status has eluded the author).

4.2.2 I{,-factors

We now consider K -factors of a certain class of C-partite graphs for ¢ > 3.
Again, these results will be used later to color the neighborhood of a vertex

in the block-intersection graph of & BIBD(v. k, 1).

Theorem 4.11 For each ( > 2. there is a least integer M(€) such that if
t> M) and G = (X}, X,...... Nipr) os an ((+ 1)-partite graph such that

Xil=¢t:=1,2,...,€+ 1, and such that cvery vertex of G has at leastt —¢
s ’ Y

neighbors in each of the other parts, then G hus a Ky, -factor. Moreover,

M(¢+1) <202,
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Proof: The theorem is true for { = 2 by Theorem 4.10 in which case
6 < M(2) <7. Suppose ¢ > 2 and the statement is true for all integers ¢
satisfying 2 <1 < £.

Let t > max{M(€),2(*}. Then for any € subsets A;, Az,...,Ae of
{1,2,...,t} suchthat j4;] >t ~(fori=1,2,... ¢, wehave |[A;NA,N---N

A¢| > 3t. This is the case since

[Aind.0---nd] = |4UdU---U A,

I
M-
X

IA
T

giving [AiNA2N---NA| >t — (>t — 3t = 3t

Let G be an (€+ 1)-partite graph (X, Xy, ..., X¢4,) such that | X;] = ¢,
1=1,2,...,0+ 1, and such that every vertex of G has at least t—¢€ neighbors
in each of the other parts. Let GY = (X1, X,,...,X,) be the €-partite
subgraph of G induced by X, U X, U---UX,. Sincet > M({), G’ has a K,-
factor G = {G1,G,,...,G,}. Let H be the bipartite graph with bipartition
(Xe41,G) (where the elements of § are considered to be vertices of H) and if
r € Xepq and G; € G, then «G, € E(H) if and only if {z} U V(G;) induces
a Keyr in G. We will show that 8(H) > 3¢. Without loss of generality,
for j = 1,2,....¢, label the vertices of G xl.a?, .. 2%, so that T, € X;
for 1 = 1,2,...,€. Moreover. label the vertices of Xy, vi,v2,...,v.. Let
ke {1,2,...,t} and AF = {5 : rivg € E(G)} for 1 =1,2,...,£. Then for

eachi € {1,2,...,€}, |4¥] > ¢ — ( and 4% C {1,2,...,t}, and thus by the

(=]
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choice of t, dy(zx) = |Af N ASN--- N Af| > 3t

On the other hand, let G; € G and let B; = {k : vy} € E(G)} for
t=1,2,...,€ Then |B;| > t—¢and B; C {1,2,...,t}. Therefore dy(G;) =
|ByN BN ---N By > —,f_;t again by the choice of t.

Therefore 6( H} > 1t and hence H has a perfect matching. A perfect
matching of H corresponds to a K,-factor of G. The above argument is
valid for all t > max{M(¢),2¢*} and hence M(¢+ 1) exists and M({+1) <
max{M(£),2¢*}. Therefore M(¢) exists for all ¢ > 2.

The last statement of the theorem is seen to be true by noticing M (3) <

max{M(2),2 - 22} = 8 and by using induction. |
4.2.3 Coloring the Neighborhood of a Block

We finish this chapter with a coloring result of a local nature. If D is a
block of a BIBD(v, k, 1), then the closed neighborhood of B in the design’s
block-intersection graph contains cliques of size r. The next result states
that if the design has ‘enough’ points, then one can (suprisingly) color
the closed neighborhood of any vertex of the block-intersection graph in r
colors. It may be possible to use this result to get a better upper bound
on the chromatic number of the entire graph but nothing has yet been

obtained.

Corollary 4.12 For each k > 3, there exists a least integer N(k) such that
if (V,B) 1s a BIBD(v,k,1) and v > N(k), then the closed neighborhood
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of any vertez in G = B(B) has chromatic number r. Moreover, N(k) <

2k3 — 10k%? + 17k — 8 for all k > 4.

Proof: Let £ = k — 1. Then by Theorem 4.11, M(¢) exists. Define
n(k) = (M(€)+1)f+ 1. Let (V,B) be a BIBD(v,k, 1) such that v > n(k).
Then r(k — 1)+ 1 =v > n(k) implies r — 1 > M(¢) since { = k — 1.

Let B~ € B. Label the points of B*, by, by,..., b, and define B; =
{B € B:BnNB" = {b}} Then for each i =1,2,...,k, B(B;) = K,_,,
and for each j =1,2,...,k, j # ¢, each B € B; has k — 1 neighbors in
B;. Thus the complement of B(B, U B; U---U B,,) is a k-partite graph
(By, Ba,...,B:) such that each part has size r — 1 and such that each vertex
has exzactly (r—1)—(k ~1) = r — k neighbors in each of the other parts. By
Theorem 4.11, this graph has a K'-factor, {V},V,,...,V,_;}. In the criginal
graph G, each V; is an independent set. By letting the V; be the color classes
for a coloring of G and giving B* some other color we obtain an r-coloring
for the closed neighborhood of B*. Since each B({B*} U B;) = K,, the
chromatic number of the closed neighborhood of a block is r.

Thus N (k) exists and N(k) < n(k) for all £ > 3. Moreover, by Theo-
rem 4.11 M(€) < 2(€—1)?, for £ > 3, and hence N(k) < (2(k—2)?+ 1)(k —
1)+ 1 =2k - 10k% + 17k — 8 for all k > 4. [ |

For k =3, N(3) <17 and so for v > 19, v = 1,3 (mod 6), the closed

neighborhood of any block of an ST'S(v) is (v — 1)-chromatic.
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