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Abstract. 

The focws of this thesis is to investigate certain graph theoretic proper- 

tir-s of a class of graphs \shicL arise from combinatorial design theory. The 

Itlock-i~~tc.rscc.tion graph of a pairwise balanced design has as its vertices 

tlw Mocks of tllc (hasign ;irici has as its edges precisely those pairs of blocks 

wliicll llrtvr. nori-cm~pty ilitc~rsc~c'ticm. These graphs have a particular local 

strllrt~xrc~ which is ~ s p l o i t ( ~ 1  i:i t l w  proofs of the results. In Chapter 1 an 

ovc-rvicw is given. Defi~iitioxls, ill1 esarnple. and some motivational material 

(a 1,ric.f history, conrlc~.tior~s to otlicr work) are included here. Cycles of 

ttwse graphs are investigittctl in Chapter 2. In particular, it is shown that 

t h i w  graphs are harrli1toni;m. 111 C'llal>ter 3 the connectivity of the block- 

interscdon R S ~ L I ) ~  is d~tel-mili(d for balanced incomplete block designs and 

for 'large' pairwise I>al:trtct.tf designs. Chapter 4 contains the proofs of a 

n r i ~ x h ~ r  of restilts wllich pt3rtairl to coloring the block-intersection graph. 

hforc specifically, it is shown that the ~~eighborhood of a vertex of the block- 

intc~rsc~ctio~i graph of .large' balanced incomplete block designs can always 

I>c coiortd in an optinial \say. 
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Chapter 1 

Introduction 

This tl~esis investigates a ccr-tail1 class of graphs which arise from combina- 

torial design theory. We prescwt in this chapter the background material for 

the problems being studied. The first see tion gives t hc necessary definitions 

a s  well as an example of a block-i~ltersection graph. Some of the basic prop- 

erties of the block-intersection graph are discussed in the following section. 

A brief history is given in the third section of the three particular areas of 

the block-intersection graph investigated in the subsequent chapters. The 

contributions the thesis makes to these areas are stated in this section as 

well. The final section presents a couple of results about matchings that 

will be used in later the remaining chapters. 

1 .I Definitions 

In this section we give definitions of the less familiar combinatorid objects 

and properties. For the basic graph tlleoretic terminology the reader is 



refe: .ed to 151. We will start wit11 designs, followed by liypc3rgr;tphs ZUNI 

then Dove to some non-standard graph theory dcfini tions. Some dcfirii t ions 

will be given in the other chapters, however, they have been invc~itcd to 

facilitate the reading of the proofs and so are not included h8re. 

1.1.1 Block Designs 

Let K be a finite set of positive inregers, and let X and '1) be positivc 

integers such that v > max I< (here niax I< is the maxi~num clemcnt in I<; 

similarily for minh'). A pairwzse  balanced d e s i g n ,  denoted PBD(w, K ,  A), 

is a pair (V,D) where I/' is a finite set clenlents are called points, B 

is a collection of subsets of V ,  called  block^, such that IVI = v, the blocks 

have their cardinalities from Ir' and any pair of distinct points is contained 

in exactly X blocks. If I{ = (k), then (1' 13) is called a balanced incomplete 

block design and we denote it by BIBD(v, k ,  A). When E = 3 and X = 1, 

the pair (V,D) is called a Steiner  t r i p l e  system (denoted by STS(v) ) .  

The replication number of a point in a design is the number of t>lor:ks 

that contain the point in the design. For :1. BIBD(v,E, A), ;I co~intirig 

argument shows that the replication of any point is 

V r 
and that the number of blocks is b = -. 

I;: 



1.1.2 Hypergraphs 

A hypergraph is an ordered pair [V ,d j ,  where V is a finite nonempty set 

wtmst: elements are called vertices and A is a collection of nonempty subsets 

of V whose members are called edges. We assume there are no isolated ver- 

tices anti hcncc V = UA = u{E  : E E A). By referring to the hypergraph 

A we shall mean (uA; A). 

Let v 2 2. A hypergraph A is ~ ' - , L L ~ L Z $ I T ~ ~ L  if for all E E A, IEl = V. Note 

that a Zuniform graph is ill1 ordinary graph. A hypergraph A is linear if 

for all E,  F E A: E # F,  we have I E n FI 5 1. Hence every PBD(v ,  K,  1) 

is a linear hypergraph. A licear hypergraph is also called a nearly d i ~ j o i n t  

collection of sets (such as in [l'i]). 

Let A be a hypergraph. .< hypergraph 7-i is a subgraph of A if 3-1 A. 

A vcrtcx x of A is incident with an edge E of A (and vice versa) if x f E. 

Two vertices (edges) of a hypergraph are adjacent if they are incident with 

a common edge (vertex) of tile hypergraph. The degree of a vertex x of 

A is the number of edges of A incident with x and is denoted by dd(x). 

(If A is a PBD(v.  Ii, A),  then the replication number of a point of A is its 

dqgree.) Let cr : UA -, A be defined by 

a(x) = ( E :  .r E E E A). 

A strong r-coloring of a h_vpergraph is an assignment of r distinct colors 

t o  its vertices so that no edge is incident with two vertices of the same color. 



The strong chromatac nzrmber of A is the sriiallcst irittyp- r. for wliicll t h t w  

exists a strong r-coloring of A. The strong cllroinatic n~mlbt~r of A is 

denoted by ?(A). 

An r-edge coloring of a hypergraph is an assignnient of r disti11c.t r-olors 

to its edges so that no two adjacent edges receive tlic same color. Tlw 

chromatic index of a hypergraph is the least r for which there cxists a11 

r-edge coloring. The chroniatic intlcs cjf A is denotecl by .\'(A). 

1.1.3 Graphs 

The length of a path or a cycle ill a graph is tile n~inlber of its cdgcs. A n  

n-path (n -cyc l e )  is a path (cycle) of  lcligth 11 .  If P = voc1vlezv2. .  . c , , ~ ,  is 

a path, then the reverse of P is o,,e,,o,,- 1vn-2 . + . t)~,2e2vle~ V O .  Mort:ovt:s, 

P is said to start in uo and end ill v,,. If PI and P2 are paths i n  a graph 

G, and PI ends in a vertex adjactlnt in G to tlle vertex that P2 starts with, 

then PIP2 denotes the juxtaposition of PI and P2 as dter~mti~lg  ~ ( ~ q u e ~ i v ~ s  

of vertices and edges so that the edge from tlic erid of PI to the heginni~ig 

of P2 is added giving a single path. -4 graph G is edge-yu~~cycl ic  if for e v t ~ y  

edge e of G and every integer 11, 3 5 rL 5 IV(G)I, these is a 1 1  11-cycle in G 

using e.  

Let G be a graph and H lse subgraph of G. An H-factor  3 of G, 

3 = {HI, Hz, . . . , H k ) ,  is a collection of edge-disjoint wltigraph of G such 

that H i Z H f o r i = 1 , 2  ,...: k , a n d G =  H 1 ~ H 2 U - . - ~ H k .  

Let G be an n-regular graph with rrl vertices. Tlmi G is ~ t r o n y l y  regular 



if there are integers p, q such that: 

if x and y are adjacent vertices in G ,  then there are exactly p vertices 

adjacent to both x and y; and 

if x and y are non-adjacent vertices in G ,  then there are exactly q 

vertices adjacent to both 3: and y. 

We say that G has parameters (m, n,p7 q ) .  

There are many ways of defining graphs from designs. The interested 

reader is referred to the survey found in [4]. The subject of this thesis is 

the following graph: the block-inters ection graph of a P B D ( v ,  K, I ) ,  (V, B ) ,  

denoted by B(D), has vertex-set B and has two vertices adjacent if and 

only if their corresponding blocks have non-empty intersection. 

Example 1.1 A (9,3,l)-design and its block-intersection graph. 

Let V = {1 ,2  ,..., 9 )  and 13 = { (1 ,273)7{4 ,879} ,  {5 ,6 ,7) ,  {1 ,5 ,8) ,  

(2,7791, {3,4,G)7 (1,4971, {2,6,  81, {3 ,5 ,9) ,  (17 67 91, (2,4751, (3,7781). 

This is an afine plane of order 3 where blocks are regarded as lines in the 

plane. The block-intersect.ion graph of B is drawn in Figure 1.1. 

For balanced incomplete block designs, block-intersection graphs have 

been used as effective isomorphism invariants to distinguish non-isomorphic 

designs that have the same parameters (see [4,8]). More generally, we can 

define the intersection graph of a linear hypergraph A as the graph whose 





vertex-set is A and whose edge-set is precisely those pairs of edges of A 

that have non-empty intersection. 

1.2 Basic Properties of the Block-Int ersect ion 
Graph 

To begin our investigation of the block-intersection graph we look at vari- 

ous parameters of the graph as nrcll as its basic local structure. As much 

as possible throughout the thesis, lower case letters are used for positive 

integers or for points of a design, capital letters are used for blocks of a 

design (or equivalently vertices of the block-intersection graph) or sets of 

points of the design, and script style letters denote designs or sets of blocks 

of a design. The following notation is also used throughout unless otherwise 

stated: 

0 (V, a) denotes a PBD(v ,  I<, 1); 

l = min I< and u = max I<; 

0 I?* = {bl, b 2 , .  . . , b k )  is an arbitrary but fixed block in B; 

0 for i = 1,2, .  . . , k, 13; is the set {B E : B P3 B* = {b;)); 

0 B* is the neighborhood of B' in G (B* = U B2 U . . - U Bk); and 

e G is the block-intersection graph of B. 



Figure 1.2: The structure of a ~ieighborhood in B(0). 

Knowledge of the basic structure of the neighborhood of a vertex in tho 

block-intersection graph will be esploi ted tliroughout the thesis. The next 

lemma describes this structure. 

Lemma 1.2 In the graph G, for i, j E {1,2, .  . .,k), i # j ,  und B E t?;, the 

number of neighbors of B in 13, is 1131 - 1 and the r~urr~ber of edgeu between 

Bi and Bj is v - k. Furthermore, 

Proof: The basic structure of a neighk~orliood is illustrated in Figurc 1.2. 

Let B E Bi. For each a: E B \ { b ; )  there is a unique block B, of 23, 

containing { z , b j ) .  ?v40reover, if {Z,IJ} c L3 \ { b ; ) ,  x # y, then 13, f C,. 



Thus the nurnher of edges in G between f3 and B j  is fBI - 1 and hence the 

number of edges between B; and Bj is 

On the other hand, there are v - k pairs {x, b;), x E V \ B*, all of these 

pairs are contained in blocks from B;,  and every B f L?; contains I BI - 1 of 

the pairs. Thus 

(IBI - 1) = ZI - k 
13€Di 

and the first part of the lelnrxia is ~ ~ r o v e d .  For all B E B;, C < I BI 5 u and 

Let B E B such that IBI = I r ,  and let z E V \ B (note that v > u). Since 

there exists a unique block 13, E G containing {x, y) for each y E B, and x is 

the only point in the intersection of any two of these blocks, v 2 u(t-1)+1. 

Thus if C 2 3, then u 5 f v .  Since clc(B*) = rel IBiI, if l >  3, Lemma 1.2 

gives the following bounds on the minimum and maximum degree of G: 

Let B1 and B2 be distinct vertices of G and let z E B1 and y E B2 \ B1 

(note that the definition of pairn*is~ balance design rules out the possibility 

that. we only have one vertes in G).  Then there exists B3 E B such that 



{x, y) E: B3. Thus G has diametcr at rliost 2. hforeovcr, k t  : E B 1 ,  z # x .  

Then there exists Bq E G such that { y ,  z )  5 B4.  H t m ~  Bl B3B4Bl is a 

3-cycle in G and therefore G has girt 11 3. 

By a result of P. Seymour [l'i], the carcli~ra.lit,y of the largest indtyendc~it 

PI set in G is at least -. Since the blocks in an i~idcpcndent set are ~nutually 
v 

'l 
disjoint, the cardinality of the largest independent set in G is at niost - 

P ' 
Statements about cycles, connecti~it~y and coloring of G will bc ~natle in 

the next section. 

For the rest of this section wc rwtrict our attcution to tlw cast' wllell 

B is a BIBD(v, I;, 1). Sir~cc (' = ir lwre, ccpwtio~l 1.1 recluirc~s that G is 

k ( r  - 1)-regular when l > 3 (wht~n P = 11 = 2, G is 3(v - 2)-regular). 
V ( V  - 1) V ( V  - I) (V -- k) 

Moreover, G has b = vcrtic-c.s ant1 11cwce ctlges. If 
k(k - 1) 2 ( k  - 1)' 

b = v, then B is called a ~ y r ~ m e t 7 " l c  E I B D ( v ,  k, 1). In this cimc, r = k  R I I ~  

every pair of blocks of D intersect ill :L point. Tiills G' Kb. For this rcbason, 

we assume throughout the rest of the tllesis that if f? is a BIBE)(T),  A:, 1 ), 

then B is not symmetric. Thus wc h a ~ w  7. > Ir: by Fisher's ir~oquality (sew 

[3, page 181). If r = k + 1, tllen G is a BIBD(k<  k, 1) and is called ari 

afine plane of order A:. 

Let B1 and B2 he clistinct vertices in G'. If Bl and B2 arc i~ljit(:(:~~t, 

then let b E B1 n BZ. The point b is in 7. - 2 other blocks of L3 itrrtl for cath 

z E B1 \ {b) and each y E Bz \ { h )  tl-ltre is a ~l i l ique  hlock coritainirig (z, 9 ) .  

Thus if B1 and B2 are adjacent, tllw tlwy have r - 2 + ( k  - l)%corrirnor~ 



neighbors. If and B2 are riot adjacent, then there are k2 blocks which 

intersect both of them (one for every pair {z, y ) with x E B1 and y E B2). 

Thur B1 and B2 have k2 coIrirnorl neighbors in this case. Therefore, G is a 

strongly regular graph ~ i t h  parameters ( b ,  k ( r  - I), r - 2 + (k - 1) 2, k2). 
If L7 is an STS(v) ,  then Seylnour's result nientioned above gives i(v - 1) 

as a lower bound for the cardinality of the largest independence set in G 

(also called a partial parallel class in other contexts). C. Lindner and K. 

Phelps [14] have improved this lower hound to $(v - 1) for all v 2 9 except 

for three cases which were settled by G. Lo Faro [15]. 

1.3 History and Results of the Thesis 

The study of block designs goes pril~iar-ily back to the middle of the nine- 

teenth century with the work by Kirkman and Steiner, although Euler 

studied Latin squares in the late eighteenth century. Much of the focus of 

combinatorial design theory has been in proving the exisitence of different 

types of designs. It is not the intexitiori of the thesis to add anything to this 

study. It is fair to say that nothing Inore than the basic definitions of the 

various designs nientioned is used in the proofs of the results of the thesis. 

It is the structure of the block-intersection graph that is of interest here. 

We do state, however, a pinacle in the history of pairwise balanced de- 

signs: Wilson [IS] proved that a PBD(v .  I<, A )  exists if you have 'enough' 

points and if you satisfy t hc. necessary conclitions. More specific~lly if 



cr(fC) = gcd{k - 1 : k E I<) and d ( I < )  = g d { k ( k  - 1 )  : k E I<),  tlicw 

the statement is the following. 

Theorem 1.3 (Wilson) Thei-e exist.$ a, least integer v(E<,X) so tha t  f07. 

all integers v, v > v(K,X)? sutisfying X ( L ~  - 1 )  E 0 (niod f i ( I i ) )  artd 

Av(v - 1 )  0 (mod P(I<)), t h e m  exists  a PBD(z7, I<, A ) .  

We move now to the history of tlic. arcas st~~dic*(l ill tlw t,lic&. Thc i i c ~ t ,  

three sections will descrilx as ~ ( ~ 1 1  tllc a(1vallc.e~ riiatlt. by tlie thc3sis. 

1.3.1 Cycles 

In March 1987 at a meeting of the A~lu~ric.an Matli<w:atical Socicaty, R. L. 

Graham asked if the block-intcrsc~ctio~l grnl)lis of Stc~ilwr Triplt* systex~is ztrv 

hamiltonian. P. Hor6k and -4. Rosa [l3] w c w  tlie first to show that if (V, B) 

is a BIBD(v, I; ,  I), k 3 3, then B ( 6 )  is limdtoliixn. B.  Alspch, K. Hc4ri- 

rich and B. Mohar [2] suhseqwmtly proved that if (V ,  B) is a P D D ( v ,  I<, 1 ) 

such that max I{ 5 2min I<, tlien B ( 6 )  is l~iuiiiltoriiztn. Evcri morcb rv- 

cently, B. Alspach and D. Hare [I] proved t b t  if (V,  6 )  is a BIB.D(v, k, 1 ), 

k 2 3, then B(B) is edge-pancyclic mcl that thc same is true for tritr~s~t*rsd 

designs. 

One of the main results of this tlicsis is that if (I/; B)  i s  a PBD(v ,  I<, 1 )  

with min K >_ 3, then B(B)  is edge-pancyclic. Thc proof of this thctort:r~i 

generalizes the proof in [l] fur 1~alanc.cd i~lccmiplett. block dttsigns. Also in- 

cluded is a proof that the line graph of  the complete graph is edge-pancyclic. 



1.3.2 Connectivity 

The connectivity of the block-intersection graph is by far the least studied 

of the three properties. Tlle only reference to connectivity is in the proof 

of the above ~nentioned result by HorAk and Rosa. They showed that the 

block-intersection graph of a BIBD(v, I; ,  1 )  was hamiltonian by showing 

that the graph's independence n~imhcr is at most v/k and that the graph's 

vertex connectivity is at least v / k .  For this graph, we show in the thesis that 
k ( v  - k )  

its v~r tex  connectivity is equal to its minimum degree, namely 
k - 1  

Minimal vertex-cuts are also c11arac.terized and vertex-disjoint paths are 

constructed. The vertex coxmectivity for the graph of a pairwise balanced 

design is also investigatecl and it is shown that if the design has 'enough' 

points, then the block-intersectioxi graph has vertex connectivity equal its 

rninilmm degree. The edge connectivity for the block-intersection graph of 

any pairwise balanced design is shown to be equal to the minimum degree 

of the graph as well. h/lorcoves, ~nicimal edge-cuts are characterized and 

edge-disjoint paths are fonnd. 

1.3.3 Coloring 

Coloring the block-intersection graph of a pairwise balanced design is the 

t.opic of the last chapter of the thesis. The color classes of a coloring of 

the graph correspond to sets of pair\sise disjoint blocks of the design. The 

chromatic number of the block-intersection graph of a design, although far 



from being characterized. has sonic v c ~ y  uic-e applications (stv [s]). 
One application is in the area of statistics. Balancccl incornpl(*tc Mock 

designs are used in the design of statistical cspcrimcmts whcrc each point 

represents an item in the experimer~t a11t1 each block rcprcscnts 2% tost in- 

volving the items it contains. The entire design is nu experiment wlicrc 

every pair of items is in exactly one test together. If two tests have no 

common items, then they can he pctrfornic~l siliiultaneou~sly. It is itdv;uit~- 

geous to  group tests together in a \b7i\y that ~ui~~irnizc~s the total tiuw for 

the experiment. The rnininlur~i ~iulnl~c~r of  grotips possible is prcciscly t h h  

chromatic number of the desigli's I ~ l o c . l ~ - i ~ i t c ~ r s c ~ c t , i ~ ~ ~ ~  graph. 

Since pairwise bal-nced clesiglis arc liwar liypergraphs, in ccrtairi con- 

texts, the chromatic index of tlw clesig~i is uscd instead of  the chro~liiitic 

number of the design's block-in tc1rsc.c t iol1 gsnl)ll. Tllc two pari~~~i(:tcrs iLrin 

in fact equivalent. 

Not a lot is known about the chrolnt~tic r1lmd)c.r of the I,lack-intersc~ctioII 

graph of a pairwise balanced d(:sigr~. Lct (V, O )  l x  a PBD(v,  I<, I ) ,  G' = 

B(B), u = max I<, and P = rnin I<. By usil~g Brook's Thc1orem (sw [t;] ) m t l  

an upper bound for the mmimum degree A of tlw graph (which is i~c.2licvc~l 
U ( U  - 7 4  

when l = u), we have x(G)  5 A ( G )  5 . The best upper I,ountl 
I '-1 

so far for this ease was found by W. I. Cllang  HI^ E. L. Lawlcr [GI.  Ttwy 

show that x(G)  5 - 21. 

Much of the work for this ge~leral case 11;~s revolved arou~id t h  infa- 



mous Erclik-Faher-Lov;is C'ol~jwt 1li.t. [9.10.11]. If the conjecture is proven, 

then x ( G )  5 v .  In tllc first 1 , i ~ t  of' C1litl)tc.r 4, the relationship between 

this conjecture axid the c1irorii:itic. r ~ i u ~ l l t t ~  of the block-intersection graph 

is explained. The scctiol~ is l l l i ~ i l l l ~ .  ('~1)ository (xcept for the proof of the 

equivalcnce between thc Errli~s-I;';tl~c~i.-Lo\~~sz Conjecture and a new conjec- 

t ure. 

S i ~ m  each point is il l  I .  l)l0(.1ih. :tt I c s ; ~ b t  I .  c.olors are needed to color G. 

Those designs for wliic11 ( G  ) = 1 .  i l l . ( '  c.;tll(~l ~ e , s o l r v ~ b l e .  Using this and the 

Again if the Erdos-Fal~cr-Lov;i~z C'o~lj(.c-tiu.c. is true, then x(G) 5 v. C. J. 

Colhourn ancl M. J. Uoll)ot~r~i [7] 11;1\.(. s l ~ o w ~ i  this to be true for the case 

when B is a cyclic clcsign (tli.sigm g c \ ~ ~ t m t c d  I)? translations of a difference 

f'mily). N. Pippengcr m t l  J .  Sl)cm.c'r [lc] 11rlr.c recently proven an asymp- 

totic result for Steincr tripl(' systtwls. If <7 is the set of all Steiner triple 

systcms, then they pro\-t- t.11at 

hood of ariy vcrtcs of thc 1)loc.k-i~it tw(fc-tiou graph of a balanced incomplete 



block design. Other new results are obtained on I<!-factors of f-part4ite 

graphs. These are used t.o color the neighborhood of a vertex with t. col- 

ors. 

1.4 Other Needed Results 

In this section we state a result without proof that will he used over and 

over in the thesis. ?Ve also present a small lemma. that will be needed later. 

Theorem 1.4 (Hall's Theorem, see [ 5 ] )  Let H = (X, Y )  he a bipartilt: 

graph. Then H contains  a match ing  t h t  .?at.urutes every  v e r t e x  in X if and 

only if 

IA!ITI{(S)l 2 IS1 fo. d l  s 2 x. 

Lemma 1.5 If H = (X,Ir) is u bipartite w i t h  (XI = /YI = rL and 

6 ( H )  2 fn, then H has a perfec t  rrratching. 

ProoE Let S X. If 0 < IS( 2 $rr, then for all z. E S, IS1 5 $n 5 h ( H )  < 
d H ( z )  5 INH(S)I. If IS1 > i n ,  then every y t Y has a r n + j h r  in S sin(.(: 

d H ( y )  2 )n and 1x1 = n. Thus IS/ 5 r t  = IYI = IN,,(S)]. Tlawfon: I,y 

Hall's Theorem, H has a perfect matching. U 



Chapter 2 

Cycles 

In this chapter we focus our at tent icn on the cycles of the block-intersection 

graph of a pairwise halanced design. We st art with the case when the design 

only has blocks of cardinality two. We then present a result for the case 

when the design has blocks of carcliliali ty three or more. The chapter ends 

with a discussion about the x~~laining case. 

2.1 Blocks of Cardinality Two Only 

The first theorem in this chapter is presented for two reasons. First, it 

answers the edge-pancyclicit~ question for the specific case when we only 

hasc blocks of cardinality two. A t  hough i t  has not yet come to the author's 

attention as to whether this rcsult was known previously, it would not be 

suprisirig if it \vcre. More importantly. though, is the second reason. The 

proof of the first theorem p m d e s  an outline for the much longer proof 

of the second theorem of this chapter. The proofs differ in how paths are 



joined to the neighborhood of n Testes. This process is a trivial ~n;tttt%r in 

the first proof, but a comples one in the sVcond. The basic outlines rue tlicb 

same. Although the statenlelit of tlic ~ics t  tllwrcnl is strictly in terms of 

graphs we will use block designs in the  roof. It. is hoprd that by prc~scmting 

the proof of the first theorem in this way the scconcl proof will t h ~ s  bc niorc: 

readable. 

Theorem 2.1 The line graph of t he  courylete  p-aph I<,,, L(I<,,), i.4 e d p -  

~ u z c y c l i c .  

Proof: If B is a BIBD(u:  ?, I ) .  tlic*ri Li mi1 I)(' vicwcd as I<, wherc points 

of B correspond to vertices of I<,  and l~locks  of B correspond to edges of 

&. Thus B(B) r L(K,,). 

Let B'C* be an edge of G = B ( B )  ;m(l lct B' = { b l ,  b 2 )  and C* = { b l ,  c ) .  

Define B; = { B  E f? : B n B* = { b , ) )  for i = 1,2.  Since each b, is in exactly 

v - 2 blocks in Z? other than B', IG,l = ( 1  - 2. Moreover, each B E f?, has 

exactly one neighbor in B,, i .  j E { 1.21, i # j .  

Let p E {3,4, . . . , IJ7(G')I). lTTc net-d to construct a 1)-cycle which uscs 

B'C*. 

If 3 5 p 5 v - 1, then choose 11 - 2 vertices other than C* from B1.  

These vertices in any order along wit11 one of the vertices B* ant1 C* at 

each end and the edge B'C" form ;i 1)-cyclc. 

If v 5 p 5 2v - 3. then form a ( I '  - l)-(-ycle Q in B1 using B'C* zs just 

described and let A be the vertes OIL Q adjxcmt to I3" that is not Cv.  Lct 



Q' be the path defined by Q' = Q \ {i1B*} and let A* be the neighbor of 

A in B2. Futhermore, let R be any ( p  - v)-path using vertices of B2 that 

starts in A*. Then Q'RB* is a p-cycle containing the edge B*C*. 

We now deal with the final case: p > 2v - 3. Let V = B\(Bl UBz U { B * } )  

and Ict L1 be a path of maximum length in G[D] (the subgraph of G induced 

by the vertices of V). For Ji 2 1, let .Cj+l be a path of maximum length in 

G[D,+ ,] where 

Moreover, let s be the first intcgcr j such that D,+l = 0. For each 

t E {1,2,. . . , s), we say iLrl ,hf2,. . . ,JIG is a truncation of L1, L2 , .  . . , Lt if for 

i = 1 ,2 , .  . . , t - 1 ,  .A( = L, and /If t  is a subpath of Lt having the same ini- 

tial vertex. Choose a truncation so that /V (&) U V (A&) U U V (j \ f t ) l  = 

p -  (2v - 3). 

For j = 1,2, . . . , t ,  choose u ,  E T '  from the first vertex (a block) of 

JV, and c, E V from tlw last vertex of it', so that c, # a, (note that 

this is possible since any vertex of .,ti3 has two points). Since each L, is 

a nlaximum length path in C:[DJ], and nTl, &, . . . ,n/t is a truncation, the 

points U I ,  C I ,  a2, ~ 2 , .  . . , a t ,  ct art distinct. For j = 1 , 2 , .  . . , t ,  let A, E 232 and 

C, f B2 be the blocks such that ( I ,  E -4, and c, E C,. Since [A,[  = 2 = IC,l 

and bz E A, and b2 E C;. thc blocks -4,. C 1 .  -A2, C2,. . . , A t ,  Ct are distinct. 

We now join the paths ,-1:,4',C; to a cycle which uses all the vertices of 

B1 U Bz U (B') .  Form R (21' - 3)-cycle S in GIB1 U B2 U { B * ) ]  that uses 



B*C* as in the previous case. Siricc Liz is a clique and the edges of the 

path R (notation from the previous case) are not specified, we may choose. 

R so that the edges -AIC1, A2C2. . . . , -4: Ct be in S. Replacing each cdgtx 

AjCj with the path 4hljC;; transfc)rms tlie cycle S into a p-cycle which 

uses B*C*. U 

2.2 Blocks of Differing Cardinalities 

The proof of Theorem 2.1 serves as an outline for the proof of thc rwxt. 

theorem. In the previous proof. c ~ ~ c l i  vertex contained the same riurnlwr of 

points. This is not the case for tlw graph in question now. 

In the rest of this chapter let (V,  1;) bc a P B D ( v ,  I<, 1) such that k? = 

minK 2 3. Moreover, let 11 = mas I< aud clioose B* E 13 so that D* - 
{bl, bS, . . . , b,). For i = I,?,. . . , ( 1  clcfii~e 

Finally, let B* = l3, U B2 u - - - u UU tmd lct G = B(B). We have chosen 

a vertex B* in G which co~ltaiils tlie I ~ I ~ L X ~ I ~ I ~ ~ I ~ I  nuniber oi  points ill the 

design because this choice ensures that when we carefully choose paths iri 

the rest of the graph, these paths car1 I>(. joined to the neighfmrhood B' of 

B* to create the desired cycle. 

It will be seen in the proof of Tlleorem 2.3 that each case is divided 

into first constructing 'short' cycles and then constructing 'long' cyc1t:s 

that contain a particular edge. Tlle folltjming proposition is the core of the 



Figure 2.1: Proposition 2.2 guarantees the existence of a ppath in H .  

proof of the theorem. It guarantees the existence of long paths which are 

used in the proof to construct long cycles. 

Proposition 2.2 Suppose (tr, B) is a PBD(v ,  K ,  1 )  such that .e 2 3 and 

svppose P is any block of D svch that IB"J = u. Let A* be any vertex of 

B2, let C E l? \ (a2 u B3 u . . . u 6,) and  let H = G[B \ (C u Z?, u {B*))]. For 

each p, 1 5 p 5 IV(H)( - 1 ,  there is a path in H of length p that starts in 

-4' and ends in a vertex of F' \ til. 

Proof: Figure 2. P illustrates the st it tement of the proposition. 

Let p E ( l ,2, .  . . , !r'(H)J - 1) and n = JB* \ B1) - 1. If p 5 n, then the 

desired path is straightfor~v~d to construct. Form a path of length n by 

starting at A* and iccluding the rest of the vertices of B2 in any order (B2 is 



a clique in H so this is possible). Next, choose a neighbor in Li,  of the last, 

vertex in B2 of the path constructed so far, and continue the path from tlw 

neighbor using the rest of the vertices of B3 in m y  order. Note that since 

l 2 3 and since H is an induced subgraph of C, Lemma 1.2 gu~wantccs that 

such a neighbor exists. Repeat this last step in B4, then in B5, axid so on 

until the path includes all the vertices of B8 \ Bl. The subpath of this path 

that starts in ,4* of lengtli 1) is tlic tl(1silv.d path. 

Suppose therefore that p > r t .  Wc will use y - n vertices of H that are 

not in B* \ B1 with the s-c + 1 vt.rticcs of B' \ D l .  To do this, a sequcrlctB 

of paths in the rest of H ha.ving 1) - ,n vertices are joined to the verticc!~ of 

B* \ B1. 

Let D = B \(C U B'U {B*)). (Z? is the set of all vertices in H not in G*.) 

Let LI be a path of maximum lengtli in H [Dl (the subgraph of H induced 

by the vertices of D). For j 2 1, let Cj+l he a path of maximum length in 

HIDj+l], where 

Moreover, let s be the first integer j such that I D , + ,  = 8. Let n/l,N2,. . . ,n/l 

be a truncation of L1,L2,. . . , Lt sucli that IV (.MI) U V (&) u u V ( ~ ) 1  = 

p - n .  

For j = 1,2, . . . , t , choose u ,  E If \ -4' froin the first vertex (a hlock) of 

4 and cj  E V \ A* from the last vertex of /2/; so that c, # a, (note that 

this is possible since any vertex of A[, has at least three points and at most 



one of them is in A*). Define Z to be the bipartite graph ( X ,  Y )  where 

X = { a 1 ,  CI, a2, c2, . . . , at, c t )  (note that because of the maximality of the 

Cb paths, 1x1 = 2 t ) ,  Y = B* \ (GI U {A*)), and for all x E X and B E Y ,  

XB E E ( Z )  if and only if z E B. Since dz(x) = u - 1 for all x E X ,  and 

d z ( B )  5 u - 1 for all B E Y ,  2 has a matching that saturates X. Let 

be such a matching. Then for each j E {1 ,2 ,  . . . , t ) ,  Pj = Aj&Cj is a path 

in H that starts and ends in B* \ (BLil U {A*}). 

We need an orderly way to create the p-path using these paths. Let 

M be the multigraph that has vertex-set ( 0 2 ,  &, . . . , 8,)  and edge-set 

{ e l , e ~ , .  . . , e t )  where ej  = { B , , B , )  (there may be loops if x = y), Aj E B,, 

and Cj E B,, for j = 1,2,.  . . , t .  Let q be the number of connected com- 

ponents of M , and for i = 1,2,  . . . , q ,  let 2oi be the number of odd degree 

vertices of component i. For each ?: = 1,2,  . . . , q, if 05 > 0, then decompose 

the edge-set of component i of M into oi edge-disjoint open trails, and if 

o; = 0, then component i ha.s an Euler trail. Let 7 be the set of all of these 

trails. 

Note that E ( M )  = UTE7 E ( T )  and that if o, > 0 for some i E {1,2, .  . . , q } ,  

then the edge-disjoint trails of component i must begin and end in the 20; 

vertices of odd degree. Thus if two trails T I ,  T2 E 7 have a common end- 

vertex in M ,  then TI = T2. 

Each trail T E 7, T = Bi, e j ,  B;, ej, . - ejr-, B,, , is easily transformed into 



a path QT in H: QT = Q,, Q,, . + . QJ, -, wlicrc Q, is either FJ or its revers<., 

for j = 1,2,. . . , t .  The rest of the proof inwlws changing all of the Q 1. into 

cycles and combining these cycles into a single path. Before we continue, 

though, we need a definition. 

We define a c l ique-edge  to be au edge BC of G such that for sornt- 

i E {2,3, .  . . , u ) ,  B, C E V ( B i ) .  We say s path or cycle R in G is c l ique-  

edge  ex tendib le  a v o i d i n g  A for soriic. A c V(R)  n 6* if R satisfies: B E. 

(V(R) fl a*) \ A if and only if D is il~cidcnt with a clique-edge f ~ o m  E('R). 

Note that a path or cycle TL \i.liicli is clique-edge extendible avoiding a set, 

A actually contains a cliquc-edge if aucl only if A # V(R) n B*. With 

this definition, we have for c;~cli T E 7 that QT is clique-edge extendible 

avoiding the set of its end-vc~stic.c~s (tlw cwtl-vc~rticcs being precisely those 

vertices on the paths whicli arc uot iilc.icltnt witli clique-edges frorn thc 

paths). 

We now perform exterisioris o11 t l i ~  Q7. to turn them into cycles in H 

which are clique-edge extc~i<lil>lc avoiding a special sct of vcrticcs. Wc 

proceed step by step through the cliqucs B2, B 3 , .  . . , But looking in step j 

for a path that has an end-vertex in B,. If such a path exists, then wt: 

extend it to a cycle or to a longcr path. 

Let R1 = { ( Q T ,  AT) : T E 7) where AT is the set of end-vertices of QT, 

for all T E 7. It will be sho\vn that at each step j ,  1 < j 5 u, the newly 

formed set Rj of paths and cylcs with their special sets of vertices will 



have the following properties: 

PI. if (Q, A) E Rj, then & is a path or cycle in H which is clique-edge 

extendible avoiding A, A* 6 A, and the paths and cycles are mutually 

vertex disjoint; 

P2. if (Q, A) E Rj and Q is a cycle, then & contains a clique-edge; 

P3. if (& ,A)  E Rj and Q is a path, then Q has both its end-vertices in 

(Bj+* U Dj+z U . - - U a,) n A; and 

P4. for each i = 2 , 3 , . .  . , u ,  I { (Q,A)  E R j  : Bi fI A # 811 5 1, and for all 

(Q,d) 6 Rj,  113, n dl 5 2. Moreover, & is a path with both its 

end-vertices in U; if arid only if llii n A1 = 2. 

Property P4 may be the 1ea.st understandable of the properties. It 

ensures that for each i = 2,3,  . . . , 2 1  there is at most one path or cycle having 

a vertex in B; which is not incident with a clique-edge on the path or cycle, 

and that a path has at most two such vertices in Bi and it has two if and 

only if these vertices are the end-vertices of the path. Morever, P4 implies 

that every cycle has at most one vertex in B; which is not incident with 2 

clique-edge of the cycle since any cycle has at most two such vertices by 

P4 but cannot have two (only paths ca.n have two by P4j. 

Properties PI-P4 are true for 'R., . Suppose that for some j, 1 < j 5 u, 

Rj-, satisfies PI-P4. We define R j  using the following cases with the 



intention that Rj will also satisfy PI -P4. Since satisfies P4, we may 

use the following three main cases. 

Case 1. There does not exist an end-vertex S of a path Q which is clique- 

edge extendible avoiclirig A such that S E Bj n A and (Q,  A) E R,-1. 

In this case we let Rj = Rj-l.  By the induction hypothesis 92,- I 

satisfies PI-P4. Thus R, satisfies PI,  P2, and P4. Since R,-, 

satisfies P3 and we are in Case 1, RJ satisfies P3. 

Case 2. There exist end-verticcxs S, F E B,, S # F, of a path Q which is 

clique-edge extendible avoiding A such that (Q,A)  E R,-l. 

In this case we replace a path ~tvoicling a set with a cycle avoiding a 

set. Without loss of geilcrali ty. let Q st art iu S and end in F. Let Q' = 

QS, let A' = A \ {S, F ) ,  a d  let '72, = ( R , - 1  \ { ( Q ,  A)}) U {(Q', A')). 

Then the cycle Q' is cliylte-edgy c~xtcnclible avoiding A' and A" # A' 

since A* # A. Thus Tt, satisfics PI.  Since SF E E(Q1) is a clicluc- 

edge, 72, satisfies P2. Any pat11 (avoi~Liug a set) in R, is also in R,- 

and Rj has no path with an end-vertex in I3, (there can only be one 

since Rj-l satisfies P4 and WP have clcalt with it here in Case 2), 

and so Rj satisfies P3. Since RJ-] satisfies P4, S, F E A and hcxw 

Dj n A' = 0. Thus R, satisfic~s P4. 

Case 3. There exists a path Q wllich is clique-edge extendible avoiding 

A which starts in a vertcs S E I3, such that (&,A) E and 



Dj n A = {S) .  

Let Q end in a vertex F E B,, , for some rn E {2,3, .  . . , u). Since Rj-1 

satisfies P3, m 2 j ,  and since F # S and Dj f l  A = {S), F 4 B j .  

Hence rn > j 2 2. Let N,(S) = { B  E a m :  S n  B # 8). 

We choose a vertex Q from Nm (S) carefully. Let {Q1, Qz, . . . , Qr } = 

V(Q) n Z?, so that the indices of the Q, correspond to their order on 

the path Q (from S to F). Note that (2, = F and so T > 1. If r > 1, 

then since F E Bm n A and Q is clique-edge extendible avoiding A 

by PI, F is not incident wit11 c?, clique-edge from Q implying that 

Qr-1 Qr $! E(&). Moreover, Ql Qz E E(Q)  since Q1 # A and hence is 

incident with a clicjue-edge in a,, . The other end-vertex of this clique- 

edge appears next on the path c2 and so must be Q2 (see Figure 2.2). 

Since l? 2 3, IN,,(S)I 2 2, and so we choose Q E N m ( S )  \ (Q1). We 

will use the fact that Q # Q1 in Case 3(f). 

We have several subcases depending on where the vertex Q is within 

Case 3(a). For all (R, A)  E R,- 1,  Q # IT(R). 

Let Q' = QQS, let At = A \ {F). and let Rj = (Rj-l \ ((Q, A))) U 

{(Q', A')). Since Q is clique-edge extendible avoiding A and Q F  E 

E(Qt) is a clique-edge, Q' is clique-edge extendible avoiding A'. Thus 

Rj satisfies P1 and P2. Since (Q, A) 4 Rj, and &' is a cycle, Rj 



Figure 2.2: Case 3 when r > 1. 

satisfies P3. Finally, Rj satisfies P4 because R,-I does and because 

B, n d f  = 0. 

Case 3(b). Q E V(R) for somt~ cycle R avoiding a set dl such that 

(R, d l )  E Rj-1. 

Since F E 8, n A, a d  sir~ctr RP1 satisfies P4,  we conclude that 

dl n Bm = I. Moreovrr, siure 'R is clique-edge extendible avoidi~rg 

dl, there exists U E B,, such that QU E E(R) .  Let R' be the path 

that starts in U and ends ill Q such that R = R'U (see Figurc 2.3). 

The cycle Q' in this case is QR'S. If QU is the only clique-edge 

incident with Q, then let A' he (A \ { F ) )  U A1 LJ {Q). Otherwise, let 

d' be (A \ {F)) U A1 . Finally, let Rj = (Rj-I \ {(Q, A), (R, d l ) ) )  U 



Figure 2.3: Case 3(b). 

{ (Qt ,A')) .  Note that A* # Q since Q E 0, and rn > 2 whereas 

A* E B2. 

Since Q is clique-edge extendible avoiding A, R is clique-edge ex- 

tendible avoiding d l ,  and FU E E(Qt) is a clique-edge, Q' is clique- 

edge extendible avoiding A'. Thus Rj satisfies P1 and P2. Since 

( Q ,  A) $! Rj ,  and Q' is a cycle, l Z j  satisfies P3. Finally, since 

A' n13, & { Q ) ,  Rj  satisfies P4.  

Case 3(c) .  Q E V ( R )  for some path R avoiding a set dl such that 

(R,A1) E 

In this case we replace the paths Q and R with a longer path Q'. As 

in Case 3(b), there exists U E B, such that QU E E(R).  Let WI be 



Figure 2.4: Case 3(c). 

the path that ends in Q a.nd W2 he the path that, starts in U such 

that Wl W2 = R (or the reversed path of R; sec Figrrst: 2.4). 

We form the longer path Q' = Wl QWz. If QU is the only clique-t:tlgv 

incident with Q in R, then let A' = (A \ {F)) U AI U (Q) . OtJlcxwist*, 

let dl = ((A\{F})UA~. Finally, let Rj = (R,-, \ { (Q ,A) , (R ,A1 ) ) )u  

{(&',A')}. Note again that A* # Q (for the same reasons givc:rl in 

Case 3(b)). 

Since Q is clique-edge extendible avoiding A, R is cliqucwdgc: c-x- 

tendible avoiding dl, and FU E E(Qf) is a clique-edge, Q' is dic j i i t : -  

edge extendible avoiding A'. Thus Rj satisfies PI a11c1 P2. Sinw 

(Q, A) 4 Rj, and Q' is a path that has the same end-vertiws as 72 



Figure 2.5: Case 3(d). 

neither of which are in Bj  (a condition of Case 3 is that Bj n A = { S ) ) ,  

Rj satisfies P3. Finally, since A' n 8, C { Q ) ,  Rj satisfies P4.  

Case 3(d). Q = Qj for some j E {2,3,. . . : r - 3, r - 21, and Q jQj+l E 

E(Q).  

In this case we break up Q into two paths and use these paths to form 

two cycles Q', and Qi. Let & = W1W2 so that. W1 starts in S and 

m d s  in Q, , and W2 st arts in QJ+l and ends in F (see Figure 2.5). 

Let Q', = WtS and if Q,-lQ, ff I?(&), then let 4; = ( 4  n V(W1)) U 

{ QJ 1. herci-ise, let A; = (A fl V (  Wl 1). Bforeover, let Qi = 

W2QJ+,. A[, = ( A  n tr{tZ&)) '-, IF) ,  and Rj = (Rj-l \ {(&?A)}) U 

((Q;, A',). (Q2. A;)). Xote that Q, # A* since Qj E B,. 



Since Q is clique-edge extendible avoiding A. arid Q ,  E A', if iuitl only 

if Qj-lQ, 4 E(Q) ,  &', is clique-edge extendible avoitlirlg A',. Also, 

since Q is clique-edge extendible avoiding A and FQ,+ I E E(Q',) is ;I 

clique-edge, Qi is clique-edge extendible avoiding A',. Sincc QIQ2 E 

E(&',) is a clique-edge as well (note that j > 2), R, satisfies P1 a d  

P2. Since (Q, A) 4 R,, and Qi and Qi are cycles, 72, sittisficls P3. 

Finally, since A: i7 B, {Q,) and A; 0 B,, = 0, R, satisficxs P4. 

Case 3(e) .  Q = Qj for some j E {2,3,.. . , r  - 2,r - 11, and Q j 6 2 , + ,  6 

E(Q). 

In this case, form a longer cycle from Q. Note that sirlcc C),CJ, + l  @ 

E(Q) and Q, # A, Q,-lQ, E E(Q).  Let Q = WlW2 so tlii~t W1 

starts in S and ends in Q,-l, and W2 starts in Q, arid c~ltls in F (st-1% 

Figure 2.6). 

- 
We define &' = Wl FW2S where is the reverse of W2. Morcovor , 

let A' = (A \ ( F ) )  u (Qj), and Rj = (R,-I \ {(Q, A ) ) )  U {(  Q', A')) .  

Again note that Q # *4*. 

Since & is clique-edge extendible avoiding A, arid FQ,- E E( Q') is 

a cliq~e-edge and Qj E A', &' is clique-edge extendible avoiding A'. 

Thus Rj satisfies PI and P2. Since (Q, A) 4 R,, arid Q' is a cycle, 

R,- satisfies P3. Finally, since Q j  replaces F in A'; R, satisfies P4. 

Case 3(f). Q = Q,, 



Figure 2.6: Case 3(e). 

Since Q # Ql, r 2 3. Let Q' = QS, and let Rj = (Rj-l \ {(Q, A))) U 

{(Q', A)). Since Q1Q2 E E(Q1) is a clique-edge, R j  satisfies P1 and 

P2. Since (Q, A) $! Rj, and Q' is a cycle, Rj satisfies P3. Moreover, 

Rj satisfies P4 since Rj-1 does. 

Thus Rj satisfies PI-P4 and hence by induction, R, satisfies P1-P4. 

By P3, if (Q,A) E X, then Q is a cycle. 

We extend the cycles in R, even further. First, suppose for some 

i E {2,3, .... u), there exist (Ql, d l ) ,  (Q2, A2) E Ru, Q1 # Q2, such that 

Q1 has a clique-edge Ul& in B;, and Q2 also has a clique-edge U2V2 in B;. 

We can then replace ( &i, dl) and (Q2, A2) in R, with ( WI W2K, A1 U A2), 

where Ql = Wl Ul $5 and Q2 = W2U2V2. Let R,+l be a set resulting from 



performing this type of replacenlent as nmry times as possible on each 

L?; (some cycles may be estelded more than once). Then R,+, satisfies 

PI-P4, and the addit.iona1 property: 

P5. for i  = 2 , 3  ,..., u ,  

I ( &  : (&,A) E Rj for some A, Q has a clique-edge in L?;)  1 5 1. 

Second, if there exists a wrtcs B E B,,  for some i E {2,3,  . . . , u), such 

that B is not on any cycle Q avoitling a set A with (Q ,A)  E then 

B may be included on a cycle that lim a clique-edge in L?, (if one exists). 

Since R,+l satisfies P5, there is at  nlost one cycle & avoiding a set A (with 

(Q, A) E R,+*) that has a cliquc--ctlgc. Ul,' in U,. If there is one, wc extent1 

Q by replacing UV with T/ Bl,' ( tllc set A remains the scmle). Do this for 

any such B in B* and let 72,,+2 he tlie resulting set of pairs of modified 

cycles and sets. Then satisfies PI-P5. 

From now on, let 

for i = 2,3, .  . . , ZL. Note that since R7L+2 satisfies P4, Idi( < 1. Moreover, 

Ru+2 satsifies the additional propc~t y : 

P6. for all i f (2,3, .  . . , u ) ;  if thcrc exists a cycle & avoiding a set d with 

(Q, A) E Ru+2 such that Q has it, clique-edge in Bi, then every vertex 

B E &\A;  is in V(Q). 



We are now ready to form the p-path that starts in A*. Start by letting 

U2 = A*. Since Ru+2 satisfies PI, U2 E B2 \ -A2. If U2 is on some cycle 

Q avoiding a set A such that ((Q, A) E Ru+2, then U2 @ A and so there 

exist a V2 E B2 \ A2 such that U2V2 E E(Q)  since Q is clique-extendible 

avoiding A. We then let S2 he the path defined by & = S2U2. Note that 

B2 c d2 u V(S2)  by P 6 .  If U2 is not on some cycle, then let S2 be the path 

which starts in U2 and inclritles all the vertices of B2 \ A2 in any order (note 

that none of these vertices are on a cycle avoiding a set in R,+2 by P 6 ) .  

Let S2 end in the vertex V2. 

I f  B3 c A3 U V(S2),  then let S3 = S2 and 15 = V2. Otherwise, V(S2)  n 

(B3\d3) = 0 b y  P 6 ,  and so let U3 be a neighbor of V2 such that U3 E B3\A3. 

This is possible since V2 has IV21 - 1 2 C- 1 2 2 neighbors in B3 and lA31 5 1. 

Using the above method we form a path that starts at U3, ends in some 

vertex V3 E B3 \ -A3, and includes all of the vertices of B3 \ A3. Adjoining 

this path to the end of S2 we form a path S3 which starts in U2 and ends 

in V3 and contains all of the vertices of ( B 2  \ A2) U (B3 \ A3). 

Suppose that for some j E {3,4, . . . , ZL - I),  we have formed a path S j  

which starts in U2, ends in a vert,es I;;, and which contains all of the vertices 

from (B2 \ d2) U ( &  \ d3) U - .  U (Bj \ Aj ). If Bj+1 c Aj+1 U V (S j ) )  then let 

Sj+, = Sj and If>+, = 1;;. Otlrerwise, I.'(Sj) n (Bj+l \ Aj+l) = 0 by P 6 ,  and 

so let LJj+1 be a neighbor of 1;; such that I;:.+1 E Bj+1 \ Aj+1. We extend Sj 

to a path Sj+1 using the method of the last paragraph. Let Sj+l end in a 



vertex V,+l. 

In both cases, we have formed a path S,+l which starts in U z ,  ends 

in a vertex V,+I E 13' \ 81, and wliicll contai~is all of the vertices from 

(& \ A2) U (& \ AB) U - - .  U (8,+1 \ A,+1). Now the path S, which we get 

by induction actually contains all the vertices of B* \ Bl. This is because 

each cycle avoiding a set in Ru+2 has a clique-edge by P2 and hence will 

be used to form some S,. P\loreoves, for all i = 2 ,3 , .  . . , 11, any element in 

A; is in some cycle avoiding a set in 7?,,+2 and thus in some S,. 

The p-path we want is just S,,. I1 

The majority of the work for Tlicorem 2.3 is done in the last proposition. 

All that remains is to form small cycles arid to change the long paths into 

cycles. 

Theorem 2.3 If (V, B )  is a PBD(v ,  Ii, 1 )  with min I< > 3, t hen  the block- 

intersect ion graph B ( B )  is edge-yancgcl ic .  

Proof: Let CD E E(G) and let q E (3,4,  . . . , IV(G')I). We will construct 

a q-cycle in G which uses CD. Lee BL3* E B be such that IB'I = v and let 

b = ID1/. We have five cases depexlding on where C and D are in relation 

to B*. 

Case 1. B* E {C, D) 

Suppose without loss of gcnerillity that B' = C and that D E D l .  If 

q 5 b+ I, then choose q - 2 vertices fsarri 0,  \ {D) and order them to 



form a path. Let the last vertex on the path be called A. The path 

B'D along with the constructed path and the edge AB* is a q-cycle 

that uses C'D. If q > b + 1, then form a ( b  + 1)-cycle & using CD as 

just described and let Q' be that path defined by Q' = & \ (AB*). 

Let A* be a neighbor of A in B2.  If q = b + 2, then &'A* B* is a 

q-cycle containing CD. If y > b + 2, then by Proposition 2.2 there is 

a (q - ( b  + 2))-path R that starts in A', ends in B* \ Bl, and uses only 

vertices from B \ (B1 U { B* ) ). The required q-cycle is Q'RB*. 

Case 2. C n B* = (2) = D f l  B" for some z E V. 

Without loss of generality, we may assume that x = bl so that C, D E 

131. B*CDB* is a 3-cycle using CL). For 4 < q < b + 1, choose any 

q - 3 vertices from B1 \ {C, D )  and order them to form a path letting 

the last vertex be called A. Cont'inue a.s in Case 1. 

Case 3. C f l  B* = {x) and D n B' = {y)  for some x, y E V ,  x # y. 

Without loss of generality, we may assume that x = bl and y = b2 

so that C E B1 and D E U2. BtCDB* is a 3-cycle using CD. For 

4 < q 5 b + 2, choose any q - 3 vertices from B1 \ (C) and order 

them to form a path Q. Then Dx&CDB* is a q-cycle using CD. 

For q > b + 2, let Q bc a. path with b - 1 vertices constructed as 

just described. By Proposition 2.2 there is a (q - (b + 2))-path R 

that starts in D, ends in B* \ B1, and uses only the vertices from 



B \ (& U {B*) .  The requisecl q-qcle is B*QCRB*. 

Case 4. ICn B*I + ID fl B'I = 1. 

Without loss of generality we may suppose that C n B* = { b l )  and 

that D n B* = 0 so that C E Dl and D 6 B*. Let B be a neighbor of 

D in Dl that is not C. Thcn BCDB is a 3-cycle in G and BSCDBI3* 

is a 4-cycle in G. For q E (5 ,G .  . . . , b + 21, choose q - 4 vertices from 

Dl none of which is B or C, ant1 ~ ~ s d e r  tllem to form a path. Let tlw 

last vertex on this path bc called -4. The path B*CDB along with 

the constructed path and tllc edge -4 B' is a q-cycle that uses CD. If 

q > b + 2, then form a ( b  + 2)-cycle Q as just clescribed and let Q' 

be the path defined by deleting tlle edge AB* from Q. Let A* be a 

neighbor of A in a,. If q = b + 3, then &'A*B* is a q-cycle using 

CD. If q > b + 3, then 1,y Pscq,osition 2.2 there is a ( q  - ( b  + 3))- 

path R that starts in A*, ends in 23' \ 0, , and uses only vertices from 

23 \ (Dl U {B*, D)) .  The rcquisccl q-cycle is Q'RB*. 

Let c E C \ D and d E D \ C. There is a block 4 E 23 such that 

{c ,  d) C B. BC DB is a %cycle containing C D. Let C1 be a neighbor 

of C in B1 and let Dl be a neighbor of D in B1 such that Dl # C1 ( D  

has I Dl neighbors in 17 since D fl I3' = fl). Dl C1 CDDl is a 4-cycle in 

G that uses CD and B'CICDDl B' is a 5-cycle in G that uses C'D. 



For q E {6,7,. . . , b+3}, choose q - 5 vertices from Bl none of which is 

C1 or Dl, and order them to form a path. Let the last vertex on this 

path be called A. The path BZC1C'DD1 along with the constructed 

path and the edge ,4B* is a q-cycle that uses CD. If q > b + 3, then 

form a (b+ 3)-cycle & as just described and let Q' be the path defined 

by deleting the edge AB* from Q. Let A* be a neighbor of A in &. 

If q = b + 3, then Q'A'B" is a q-cycle using CD. If q > b + 4, then 

by Proposition 2.2 there is a ( q  - (b + 4))-path R that starts in A*, 

ends in 23' \ B1, and uses only vertices from B \ (B1 U {B*, C, D)). The 

required q-cycle is Q'RB*. 

In each case, a q-cycle is constructecl which uses CD. Therefore, G is 

edge-pancyclic. I 

2.3 Conclusion 

This chapter has shown that the block-intersection graph of any painvise 

balanced design with X = 1 and mimimum block cardinality at least 3 is 

edge-pancyclic and, in particular, hanliltonian. If X > 1, then ~ L r a c t e r -  

izing those designs whose graphs are haniltonian is unsettled. However, 

if the block-intersection graph of a PBD(u,  k, A) is defined so that two 

blocks are adjacent in the graph if and only if they intersect in precisely X 

points, then the graph need not be harniltonian as the following example 

derlons t rates. 



Example 2.4 A (G,3,2)-design (L: U) s w h  that  the block-intersectam graph 

B(B) i s  non-hamil tonian.  

Let V = {1,2,3,4,5,G) and l3 = {{1,2,3},{1,2,4),{1,3,5),{1,4,6), 

{1,5,G), {2,3, G), {2,4,5), {2,5,6), {3,4,5), {3,4,6)). Then B(U) is iso- 

morphic to the Petersen graph. 

Still open are the related questions vhcn the design has blocks of car- 

dinality 2. It seems very ~tnl i lwly t l i a t  tlw ploof of Thcorem 2.3 can bc 

generalized in this regard. Tlw slwcific case w l m l  the design has only 

blocks of cardinality 2 is settictl ill Tlwosenl 2.1. 



Chapter 3 

Connectivity 

This chapter concerns itself with the connectivity of the block-intersection 

graph. We start with balanced incomplete block designs and give a num- 

ber of results which determine the graph's vertex connectivity and also 

exhibit internally vertex-disjoint paths between nonadjacent vertices. The 

subsequent section proves some results for the more general case of pairwise 

balanced designs. The theorems t1ic1.t. are not as satisfactory as in the less 

general case but they give a good start for further study. 

3.1 Balanced Incomplete Block Designs 

We begin with a theorem which not only determines the vertex connectivity 

of the block-intersection graph of a balanced incomplete block design but 

also characterizes all minimal vertex cuts. 

Theorem 3.1 Let ( V , D )  be a BIBD(v,  k, 1)  and let G = B(B). If C is a 

vertex cut separating vertices -4" and B", then S = S(G) 5 ICI. Further- 



more, we have equality if and only if C i s  the ~ e t  of vcrticeu udjuce~d. to 

either A* or B*. 

Proof: For i = 1,2, let iY; be the set of blocks in S \ { -A* ,  B*)  which 

intersect exactly i bloclis of {-A*, B').  Let. C1 be C n ,XI and let P be t+hc 

set of points in V which are not in -4' or B*. Note that X2 C n x. 
Let x be in P, let R,(x) be the set of blocks in S which contain a 

and a point in A*, and let R t , ( : r )  bc t . 1 ~  set of blocks in B which contain 

z and a point in B*. Suppose thcrc exists -4 in R,(z) \ Rb(x) and B in  

Rb(x) \ Ra(x) such that C cont a i m  ncitl1i.r -4 nor L3. But then A* A B B* is 

an (A* ,  B*)-path in G - C. Hcrlce, R,,(.r) \ Rb(n.) C C or R6(x) \ R,(z) E C. 

Also, 

Therefore, at least half of the l>locl;s in ,Y1 containing x are in C1. 

The previous paragraph nou7 isnplics 



Hence, ICI 2 ICI~ + 1x21 2 f 1x11 + 1x21 = (&(A*) + do(B*)) > 6.  

Now suppose S = ICI. Then we have equality in both equations of the 

last paragraph. Hence, C = C1 U X2. Thus, if C is a block in a vertex 

cut C of size S which separates t>loclis A and B, then C intersects A or B. 

Equality also implies that for every point z in P, exactly half the blocks 

in Xl containing x are in C. Thus, the set of blocks in C1 containing x is 

either Ra(x)  or Rb(x), for every 1)oint L in P. 

Every point in A* is in r - ( k  + 1) blocks in XI. Thus, if r = k + 1, then 

C = ;Li and hence C = NG(A*) = i b ( B S ) .  Therefore suppose r > k + 1. 

Let pl and p2 be distinct points in -4' and let pi be in a block D, which is 

in X I ,  i = 1,2. Suppose Dl E C and D2 @ C. Since Dl is a block in a vertex 

cut C of size S which separates blocks D2 and B*, Dl intersects D2 or B* 

as  seen in the previous paragpph. Since Dl and A* intersect and Dl E XI, 

Dl and B* do not intersect. Hence, Dl and D2 intersect in some point x. 

But then x is in P and R a ( r )  has bloclis in both C1 and XI \ C1. Therefore, 

we c ~ m  conclude that the set of blocks in XI which are adjacent to A* is 

either contained in C or disjoint from C. It now follows that C is NG(A*) 

or NG(B*). I 

Menger's Theorem st a t.es that the mini~nal number of vertices seperating 

two non-adjacent vertices is cqual to the maximal number of internally 



vertex-disjoint paths between the two vertices. Therefore if C is a xninirnd 

vertex cut in a graph G, r is a vertcs in one conlponent of G - C and 

y is a vertex in another component of G - C ,  then the caciinality of C 

is at least the minimal number of vertices seperating a: ant1 y, and hencc 

at least the maximal number of internally vertex-disjoint paths between x 

and y. Moreover, the cardinality of C is at most the minimum degree of 

G. Although the vertex connectivity of G is determined in Theorem 3.1, 

we prove this again in t2he following thcosem using hknger's Theorem by 

constructing a set of internally vertex-tlisjoint paths of cardinality k(r - 1) 

between any two non-adjacent vertices. The emphasis, however, is on t l c  

lengths of these paths. 

Theorem 3.2 Let (V,B) be a B I B D ( v ,  k, 1) and let G = B(B).  Between 

any two nonadjacent vertices ,P and 13' there ezivts 

k2 (A*, B*)-paths of length 2 und 

0 k(r - Ic - 1)  (A', BX)-paths of length 9 

Proof: Let A* = (al, a*, . . . , u k )  and B- = (GI, b2,. . . , Lk). For i = 1,2,. . - , k, 

define the following sets: 



Define Z = ( X ,  Y) to be the bipartite graph whose parts are X = 

A ~ w A ; u - - . u A ;  andY = B ~ u B ~ u - - . u B ; ,  and whoseedgesareE(2) = 

{ A B : A E X , B E Y , A ~ B # ~ ~ ~ .  Xotethat ( X I = I Y I = k ( r - k - 1 ) .  We 

will show that Z has a pc~fect rnatcl~ing. 

Let S c X ,  S # 0, and lct T = (x : x E A \ A*, A E S). Moreover, 

let N ( S )  = N z ( S )  and let R,,(.r j a n t 1  R L ( : c )  be defined as in the proof of 

Theorern 3.1. (Note that as in tlw prctvious theorem, IR,(x) \ %(x)l = 

f R h )  \ Ra(z)l-) Tjle~~, 



Therefore !Sf 5 lN (S ) ( ,  and so Z has a perfcct xnatching by Hall's Thrvreiu. 

Call this matching M. 

The desired 6 = k(r - 1) intcrilnlly vcrtes-disjoint (Aq,B*)-paths artx 

the following: 

A'CB*, for all C' E C;, i = I ,?. .  . . . k,  and 

A* AB B" , for all AB E M ,  -4 E -Y, B E 'Y . 

Note that there are k2 paths of length 2 sincc IC,I = I; for i = 1,2,. . . , k ,  

and k(r  - L - 1) paths of length 3 si~rcc. ]ill[ = 1-Yf = k ( r  - k - 1). I 

3.2 Pairwise Balanced Designs 

In this section, we investigate co~mr~ctivity of the graphs associated with 

pairwise balanced designs. The rc:sultw are less definitive than in thc last 

section. Theorems similar to Tlleorcrns 3.1 ant1 3.2 for thc more gcrmal cmt: 

in this section are given deterrniniug tlw edge conrlectivity of thcse graphs. 

The last theorem of this section tleternliIws tire vertex connectivity of the 

graphs whose associated design has a Iarge number of points compared with 

the cardinalities of its blocks. 



Theorem 3.3 Let (V,B) be a PBD(v,  K ,  1 )  and let G = B(B) .  If S is an 

edge cut separating vertices A* and B*, then max {dc(Aa) ,  dc(B*))  5 ISI. 

Furthermore, we have equality 2f and only if S is the set of edges incident 

with either A* or B'. 

Proof: Let A* and B* he a partition of B such that A' E A*, B* E B', 

and S = [A*, B*]. For every point a: in V ,  let S, be the set of edges AB in 

S silch that A n B = (2). ( S  is partitioned by {S ,  : x V, S, # 0) .) 

Suppose x is in V .  Let r ,  be the replication number of x (in this case 

r, need not be the same for different x), let a, be the number of blocks in 

A* which contain z, and let b, he the number of blocks in B* which contain 

x. If a, > 1 and b, 2 1, then IS,I = a,b, = a,(r,  - a , )  2 r, - 1 .  

If there exists a point X I  which is only in blocks in A* and there exists a 

point x2 which is only in blocks in B', then no block in B can contain both 

r, and x2- Therefore, we may assume every point in a block in A' is also 

in a block in B*. Hence, IS,/ 2 r, - 1 ,  for every point s which is in some 

t~lock in A*. Therefore, 



If we have equality, then S, is empty for every point x which is not in 

A*. Hence, every point z diicli is in some block in A* is in A*. Thcrcfore, 

A* = {A*), and so S is the sct of cclges i~lcident with A*. I 

We continue now in a similar vein as the previous section, by con- 

structing internally edge-disjoint patlis to give all alternative proof to Tlic- 

orem 3.3. The paths in this case have lc~igtlis 2 and 4. 

Theorem 3.4 Let  (I,:B) be a PBD(v .  I<, 1) and let G = B(B). Between 

any  two nonadjacent vertices ,? mid B- t h e m  exists min{dG(.A*), dG(l?*)}  

(A*, B*)-paths  of lengths 2 m d  4 ( ~ 1 1  of . ( I I I ~ L  I L ~  internally edge-disjoint. 

Proof: Let A* = (al, a*. . . . , (1, ) m ( 1  B- = {bl , b2, . . . , bt ) be any two rim- 

adjacent vertices, and without loss of gcncrrality suppose clc(AV) < dG(B*). 

For i = 1,2,. . . , s, and for j = 1, '2.. . . , t, clcfiue the following sets: 

Since CLI(d: + C i )  = dc;{;I- j 5 dc; (  B- ) = z:, , Oi + Xf=, Cz, WB liiiv(* 

'&A: 5 E&,B:. Therefore, let 7 : A;uA;u--.uA: + B;UB;U.- -uB: hc 

an injection. Moreover, for i = 1.2,. . . , s ,  and j = 1 ,2 , .  . . , t ,  let A , ,  E A: 

be such that bj E Aij-  Finally. let 5) : A; U A', U - . -At  --+ (1,2,. . . , t )  

be defined by BIB) = j if and only if 2113) E a:. Then tlie irltwnally 

edge-disjoint paths are: 



0 A*AijBS for i = 1,2 , . . .  , s ,  mcl j = 1,2 ,..., t ,  

0 A*AAi,o(B)(p(B)B* for all B E B:, for i = 1,2, .  . . , s. 

Ne now turn from edge connectivity to vertex connectivity. Although the 

result given here is probably not thc best possible it does for any fixed K 

determine the vertex conncc tivi t y of the block-intersection graph for all but 

a finite number of PBD(v ,  I<, 1). 

Theorem 3.5 Let (V ,B)  be (L PBD(u, I<, 1) and let G = B(L7). Define 

u = max{L : k E Ii). If u > +a",  then the wertez connectivity of G is equal 

to its minimum degree. 

Proof: If u = 2, then B is a BIDD(v ,  2 , l )  and the theorem follows from 

Theorem 3.1. Therefore, assume 11. > 3. Suppose v 2 i u 4  and suppose C is 

a vertex cut such that ICI < b ( G )  = h. 

Let dl, A2 and C form a partition of B such that for all Al E dl 

and A2 E d2, A1 n A:! = fl. h?orcover, let '1/1 be the set of points in V 

which are in blocks in d l .  Without loss of generality, we may assume that 

vl = IGI 5 $v (otherwise, use 1,' \ 15 and A*). 

ChooseA* E dl andlet k = 1A'1. ForallB E f 3 , l e t n ~  = (Bn(&\A*)l. 

Divide the blocks of the vertex cut C which intersect 15 \A* into three parts: 

.Y = { B  E C : t zg  = 1,13n-4* = Id). y = { B  E C : n e  = 1 , B n  A* # @), 

and 2 = {B E C : ns 2 '3). Fwtl~crnlore, let D = {(x, y) : x E Vl \ A*, y E 

1.' \ h). For each pair (+, y )  E D. tlwre is a unique block B(,,u) E 23 such 



Using equations 3.1 to 3.4 giws 



Rearranging eyuation 3.5 gives 

and therefore 

Using 3.6 and the assumption t l ~ t  u ,  5 $v,  we have 

Collecting the v terms in i~lccluality 3.7 to the left-hand side gives 



Define f(v) to be the quadratic in 1. ( u  is fixed) of the left-hand sitlc of t . 1 ~  

last equation. Then since t r  2 3. 

Therefore for v 2 f u4,  f ( v )  > O. a r.o 



Chapter 4 

Coloring 

This chapter investigates coloring the hloc1;-intersection graph of pairwise 

balanced designs. Coloring prohlc~us are difficult in general and (as will be 

demonstrated in the next section) it is 11o different here. The f i s t  part of 

this chapter will establish the conrlect,ion between this coloring problem and 

the well-known Erdos-F'aher-Lovk Conjecture [9,10,11]. In the remaining 

section, new results will be prescntcd for the balance incomplete block 

design case. 

4.1 Erdos-Faber-LovBsz Conjecture 

The Erdos-Faber-Lovrisz Conjectusc was first posed by the persons named 

at a party they attended. It sccniccl to be an easy problem at first, but no 

proof has yet been found. That i t  is a difficult problem is indicated by the 

increasing bounty placed on its solutiorr. ,4lthough it is not stated here in 

its original form it is a simple nlattcr of translation of terminology to the 



form presented. 

Conjecture 4.1 (Erd6s-Faber-LovLisz) If A iu a u-uniform linear hy- 

pergraph w i t h  u edges,  t h e n  3(A) < c. 

A year later, P. Seymour [l7] and N. Hirltlman [I21 i~ldepe~ldently s h o w d  

that Conjecture 4.1 is equivalent to the following conjecture. 

Conjecture 4.2 If A is (L l ine (~7 '  h.;llpery'~'up!~ with v '~)erticeu, then ~ ' ( d )  < 
0. 

Every PBD(u, I{,  1) is a li~lear 11ypcrgraph. The converse is not true. 

However, when it comes to colcri~lg, we ~ 7 i l l  show that Conjecturc 4.2 is 

equivalent to the following conjecture. 

Conjecture 4.3 If (17,131 is (L PBD(t7, I\', 11, then x ( B ( B ) )  5 I ) .  

The proof of the equivalence of Conjecturc 4.1 and 4.2 essentially shows 

that they are dual statements (in this case, t l d  rnearis the dual of i h  hy- 

pergraph). However, there are sevc:ral suht1ctic.s. We incl~~tlc, t,flcwfor<:, 

the proof of the equivalence in full dctnil in Section 4.1.2. In doing this, i t  

is hoped that the connection bet \vccrl the E r c l i j s - F a - L C  Conjcct,usc 

aad Conjecture 4.3 becomes trarislmrent. We proceed first, though, to a 

discussion of the dual of a linear hypergraph. 



4.1.1 The Dual of a Linear Hypergraph 

The dual of a hypergraph is defined on page 3. If a hypergraph is linear, 

then it is clear that its dud  is also. Let A be a linear hypergraph and let 

A* be its dual. Define a : U A  --+ A' to be a(x) = (-4 : x E A E A). In the 

proof that Conjecture 4.1 and 4.2 are equivalent it will be necessary that 

a is one-to-one. This will not he the case if A has two adjacent vertices 

x ,  y each of degree one. Tliis idea lllotivates the following definition of a 

property that some (but not all) linear hypergraphs satisfy. 

D. For all x, y E uA, x # y, there existh A E A such that IAn {x, y)] = 1. 

With this definition we ca.11 c2iaracterize when cr is one-to-one. 

Lemma 4.4 The function cu is one-to-one if and only if A satsifies D. 

Proof: Suppose a is one-to-one and let .r, y E Ud, x # y. Since cr(x) # 

a(y ), there exists A E a(:r) \ f i (y )  or -4 E a(y)  \ ~ ( x ) .  Then IA fl {x, y}l = 1 

and so A satisfies D. 

Conversely, suppose A satisfies D and suppose for some x, y E UA, 

a(x)  = cr(y). Since A is linear, a(.z:) = {A) = a(y) for some A E A. 

Therefore {x, y ) C A and hence .I- = y by D. Thus a. is one-to-one. 1 

4.1.2 The Proof of the Equivalence 

Before giving the proof of the equivale~ice of Conjectures 4.1 and 4.2 we 

need t.wa lemmas. This section is an expanded version of the proof given 

in [l'i]. 



Lemma 4.5 S u p p o s e  that if A is ct linear hyyerpuph ,with 21 edge.* ~u t i .~ f : y i7~g  

D and JAl < u f o ~  a l l  A E A, then ? ( A )  < v. Then C o n j e c t w e  4.1 i.9 t r u e .  

Proof: Let A be a linear v-u~iifor~n hypcrgraplr with 2) edges and lct A E A. 

If A has no vertices of degree 1, tlic~i lct -4' = .-I. Otherwise, Ict. A' bc m y  

subset of A such that A' contai~~s all the v~rticcs of A of degree 2 or nlorc 

and only one vertex of -4 of dcgrec 1. Dcfir~c A' = {A' : A E A). Ttwn 

A' is a linear hypergraph with 17 c ~ l g c ~  and Irl'l < 7) for all A' E A' since 

A is v-uniform. Moreover, A' sntisficbs D since A' is linear and since by 

construction there is at most o~ic vcstcs of  tltyyee I i~lcidcnt with any cdge. 

Therefore by the assumption of tliti l(urna, y (A') < u.  

Let c' : uA' -, {1,2, . . . . 1 ' )  I)(. ;I stsong o-coloring of A'. Then c' can 

be easily extended to a s t r o ~ ~ g  I>-colosirig of A. For each A E A, color each 

x E A \ A' a different color frolr~ (1.2, . . . , 0 )  \ c1(A) (this is possilh since 

IA \ A'I 5 v). Therefore y(-4) 5 11 anti Conjecture 4.1 is true. M 

Lemma 4.6 If A is u lineur hyperpxph with .u edges suti.~f.lling D, t k m  

IAl 5 v for all A E A 

Proof: Suppose there exists an -4' E A such that l i l t /  > u. Tllen thc!rc arc 

at most v - P edges A E A, -4 # .A', si~cll tllat, A n A' # 0. Thw then: exist 

x, y E A' such that x, y @ U{=l f A : -4 # -4'). HCIICC' A does not satisfy D,  

a contradiction. Therefore the 1m11m 1ic)lcls. I 

We are now ready to prove the ecjuiua1eric.e of Conjectwes 4.1 and 4.2. 



Theorem 4.7 Conjectu~e 4.1 is equi~ualent t o  Conjecture 4.2. 

Proof: By Lcmrna 4.5 and 4.6, Co~ljecture 4.1 is equivalent to the following 

st atemen t . 

S. If A is a linear hypergraph with v edges satisfying ID, then y ( A )  5 

We will show that S is equiwleut to Conjecture 4.2. 

Suppose that Conjecture 4.2 is true and let A be a linear hypergraph 

on v edges satisfying D. Lct A' 1w the dual of A. Then A* is a linear 

hypergraph with v vertices ancl lleuce let c* : A* + {1,2,. . . ,v) be a v- 

edge coloring of A*. Define c : UA - {1,2, . . . , v) by c ( x )  = c * ( a ( x ) ) .  

Then c is a strong v-coloring of A since if s, y E A, x  # y, for some 

A E A,  then a ( r )  # a(y) by L~nllna 4.4, and a ( x )  f l  a ( y )  # 0 implies 

c ( z )  = c* (Q(x ) )  # c * ( a ( y ) )  = ~ ( y ) .  Therefore, ?(A) 5 v and S is true. 

Conversely, suppose S is true arid let A be a linear hypergraph with 

v vertices. Let A* be thc clud of A. Then A* has at most v edges and 

if A , B  C Ud*, A # B, then therc esists s E A \ B or x  E B \ A. In 

either case, ]ar(x) n {A, 1311 = 1 and so A* satisfies D. Thus by S, let 

C* : U d *  -+ {I, 2 , .  . . , i 1 )  hc a strong wmloring of A*. Since UA* = A, and 

since if ,4, B E d ancl -4 f~ B # (n, then -4 and B are in some edge of A* 

implies c*(A)  # c 8 ( B ) ,  c* 1s a rwdge coloring of A. Therefore, xf(A)  5 v 

and Conjecture 4.2 is true. I 



4.1.3 Pairwise Balanced Designs 

We finish this section by proving the equivalence between the Erdiis-Frtber- 

Lov6.s~ Conjecture and Colljecture 4.3. 

Theorem 4.8 Conjecture  4.2 is equz'valent t o  Conjecture 4.3. 

Proof: A v-edge coloring of a 11yl)~rgraph corresponds to a tt-vertex col- 

oring of its intersection graph arid vice vcrsn. Thus it is clear that Conjec- 

ture 4.2 implies Conjecture 4.3. 

Suppose Conjecture 4.3 is true. Ji't A he a h e a r  hypcrgrapb with v 

vertices. Let 

23 = A LJ {{x, y) : {x, y}  9 A for all A E A, .r, y E UA,X # y) 

Then (uB, B )  is a PBD(z1, I<, 1) whcre I< = (2) U { IAI : A E A). Hence 

~'(23) L: v and since A is a sul>grapli of 6, ~ ' ( d )  5 v. Thus Conjecture 4.2 

is true. I 

4.2 Balanced Incomplete Block Designs 

In this section we fix our attention on c.oloring the hlock-intcrscction gr..ptl 

of balanced incomplete block clesigris. Specifically, a result is ohtainerl 

on the existence of optimal colorings of the neighborhoods of vertices in 

these graphs. The next two sections may not seem like they have anythiug 

to do with this problem, however, they ill fact provide the core of tfic: 



prrmf for the result. The ~.esults in them are of interest in themselves and 

answer some questio~ls a h u t  tlw ge~leral structure of the complement of 

such neighborhoods. 

111 this section, K3-factors of certain triyarti te graphs will be investigated. 

The first result is very specific ant1 yct requires some effort to prove. It and 

the subsequent theo,renr prtxid<> t h  Imse case for an induction proof of the 

more general result found in tlw xicBst scc tion. 

Proposition 4.9 Let G' = (S 1'2) be u tripartite graph such that 1x1 = 

fYI = fZI = 7 and such t i ~ a t  cve7y . v e ~ l e z  has least 5 neighbors in each of 

the other two parts. Then G has a IC3-factor. 

Proof: Let G be defined as abo\-r*. The induced bipartite graph (X, Y) has 

minimum degree at least 5 a d  htwcc 11as a perfect matching by Lemma 1.5. 

Thus let -Y = (xl,-t2.. . . . .r;) am1 1- = (9,. y2, .  . . , y7) be such that x;y; E 

E(G) for z = 1,2?. . - 7- 

Define H = (2, C )  to l>c the hipartite graph whose parts are Z from 

G and G = (s,y, : 1 E (1.2.. . . - 7 ) ) .  m d  whose edge-set is E ( H )  = ( z c  : 

2 E Z, ry = c E C, {r. 3 . 2 )  is a I<.% ill G ) .  We will t q  to find a perfect 

matching in H .  If thcrc is a pt~f .c .c - t  mar cllixig in H, then it corresponds to 

a &-factor of G. Othcm-istx, H has a particular structure which will be 

ttwd to find a he3-factor of G.  



We have two cases. 



z C 

Figure 4.1: The stru<-turc~ of the graph H = (2, C) .  

Case 1. There exist i, j t  1 5 i 5 3. 4 5 j 5 7, such that ziyj E E(G)  and 

s,yi E E(G) .  

Without loss of gc:ner;ility, 11-t~ 111;~y assume i = 3 and j = 4. Since 

1 4  h'as at least 5 ~wiglllmr.; ~ I I  Z ( i r k  thc. graph G ) ,  it has at least 2 in 

S. Similarly, g4 h;ls at Icitst 2 nc.iglh)ors in S. Let z3 be a neighbor 

of x4 in S and :.I tzc. a irc+jil,ol- of  ! j ,  i ~ i  S such that z3 # 24. For the 

remaining verticcs of 2. I ; i t > ~ ~ l  t f i ~ i l i  SO that S \ (23, z4) = (zl,  z2) 

and Z \ S = ( z 5 .  -(;. - 7 ) .  Sin(-c- S I I ( { z l ) )  = ( x ~ y ~ , x 2 ~ 2 , x 3 y 3 )  = 

Nf,({t2)),  {x i .  y l ,  ) ZLIXI  {.rl,  y j .  z l }  110th induce a K3 in G. Sim- 

ilarly. { s ~ .  g5. z5) - ( . I . , ; .  1,,) ;111~1 { . I . ; .  g;. 2 ; )  all induce a & in G. 

Alortwver. r~ is adjncrwr t o  c w - b  wrtcs  of S in G because 23y3 is 
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Proof: By Proposition 4.9, tllc tl~corc~u is true for t = 7. Suppose there- 

fore, that the theorem is t rw for solii(> t > '7. Let G' = ( X ' ,  Y', 2') be a 

tripartite graph such tllat l,y'l = [I- ' /  = 12'1 = t + 1 and such that every 

vertex has at least t - 1 llc.iy,l~l>o~s i l l  c.irrll of the other two parts. 

Choose z E _rr" and lct 9 E I"  I)( .  a rlc~igllbor of x. Since x and y each 

have t - 1 ~leiglibors ill Z f  a ~ l ( l  " ( 1  - 1)  > f + 1: n. and y have a common 

neighbor z E 2'. Lvt C; = -J'. I  : Z ) I N =  t 11r. tsi1)artite subgraph of G' induced 

by S U Y IJ Z where -y = ,\I1\ { J ) .  I -  = I - '  \ {y )  and Z = 2' \ { z } .  Then 

1x1 = IYI = 121 = t a 1 ~ 1  C I - C ~  I-csrtcls Ilas at least t - 2 neighbors in each 

of the other two parts. Hcqlc*c~ I)>- i ~ d u c t i o ~ ~ .  G lias a K3-factor, K .  Then 

K' = K U { { r ,  y, z ) )  is a I<:,-f:ic.tor for G'. I 

For t = 5, Theorem 4.11) is fiilw 21s the counter-example given in Fig- 

me 4.2 shows (foulid by Rolwrt D. Flclniiig). In the figure, the vertices 

in .set A are joined to all tllc vortices ill '5- and in 2. Similarly for the 

vertices in B and C .  Tllis gI.aph ha,.; no I<3-factor sillce -4' and B' require 

4 neighbors in Z in a I<3-f:t~tos, Imt t lwy collectively only have 3 (namely 

t.hc vertices in C). For f < 5 .  i t  is str:-rigi~rft~r\v:~rcI to construct such a graph 



that does not even contail1 a I;,. T~IIIS,  t l l c .  0111y ur~scsolvc*tl citsc* is t - t; 
(whose status has cluclcd tlw ; \ I I ~  l l c x ) .  

Theorem 4.11 For each (' > 2. t l r c ~  i s  (1, 1,:i~st integcr M ( 0 )  J U C I L  that if 

t > A#([) and G = (,XI, 9,. . . . . - X i + ,  1 i.4 an ( t  + 1)-part i te  ~ T I L ~ I I L  .Y'~LCIL t I~at  

ILY;I = t ,  i = 1,2,. . . , B  + 1, ( 1 , ' r ~ d  s m k  f h ~ ~ f ,  (:.{J(:T~ 'uertez of G' has at lea.ut t -.I 

neighbors in each of the other p(~rt.'i, f h e ~  C; I L U S  (I I<!+, - f a c t o ~ .  M O T ~ O V ~ T ,  

I tqa + I) 5 2e2. 



Proof: The theorem is true for I' = 2 by Theorem 4.10 in which case 

G < M ( 2 )  _< 7. Suppose t > 2 and t lw stat(-rwnt is true for all integers i 

satisfying 2 5 i 5 t .  

Let t 2 max{h.l(€), 2C2}. Thc.11 for any .! subsets A1, A2,. . . , At of 

All > f t .  This is the case silrcc 

.2 > t - :t = +t. giving \Al  mr12 n - - -  f tAF(  2 t - l - 2 

Let G be an ( 4  + 1)-partitc graph (-TI, -Y2,. . . , -Xe+,) such that /Xil = t ,  

i = 1,2,. . . ,4 + 1, and such tliat c .v t~y  vertex of G has at least t- t  neighbors 

in each of the other jmrts. Ltlt G' = -Y2,. . . , X e )  be the .[-partite 

subgraph of G ir~duccd l q  SI u S1 LJ. - . u Sf. Since t 2 M(t), G' has a Kt- 

factor G = (GI,  Gz, . . . , Gr ). Lc*t H 1,e t iw bipartite graph with bipartition 

G )  (where the elemcut s of arc c-onsidcrecl to be vertices of H) and if 

x E and G; E G, thm .&, E E( H )  if ;mil only if (x)  u V(Gi) induces 

a Kt+, in G. We i l l  1 t i  ( ) > - f .  Without loss of generality, 

for j = 1,2,. . . . f .  lahrl t l w  rvrrict*~ of G,. .r: .  .r:, . . . ,r:, so that xi E X ,  

for i = 1,2, . . . , C. h.lorcovc~r. 1;11w1 t h c *  vcrt ices of vl  ,172, . . . , vt. Let 

- k € (1.2 ..-.. t ]  and --Ii - { j  : .r;vk E E ( G ) )  for i = 1,2 ,..., t. Then for 

each z E (1,2,. . . , C). [.-if1 2 t - f a i d  -4; E {I,;),. . . : t ) ,  and thus by the 



choice of t, d H ( z I )  = 1.4: n -45 n - - n A:] > i t .  

On the other hand, let G, E G and Ict  B, = {k  : vkxf E E ( G ) )  for 

i = 1,2 ,..., l. Then IB,I > t-Eand B, C { l , 2  ,... , t ) .  Tlit*rt~fort~cftr(C:,) = 

IB1 n Bz n - - n BtI > :t again by the choice of t .  

Therefore 6 ( H )  2 f t  and hence !7 has a perfrct niatcliing. A pt~-fwt, 

matching of H corresponds to a Kt-factor of G. Thc ;how arguuic\rit. is 

valid for all t > max{M(t),2E2) and hence M ( e +  1) (xist.; i i ~ l t l  ,iZl(t+ 1) 5 

max(M(l), 212). Therefore M(4)  exists for all l > 2. 

The last statement of the t,heorei-n is seen to bt. t r w  hy noticixlg ill (3 )  ( 

max(M(2),2 - 22) = 8 and by using induction. I 

4.2.3 Coloring the Neighborhood of a Block 

We firllsh this chapter with a coloring result of  a loci11 rlat,tir-c.. If B is ;L 

block of a BIBD(v, k,  I), then the closrd nrighhorhoott of  B ill the. closig~l's 

block-intersection graph contains cliques of size 7.. The ~ w x t  rcwd t s t i t t~~s 

that if the design has 'enough' points, then o~lc  (:an (suprisi~lgly) (.olor 

the closed neighborhood of any vertcx of the l~lock-i~ltc.rscnct~io~~ g r q h  ~ I I  r-  

colors. It may be possible to use this resrilt to get a lwt tm I I ~ I M T  1 m 1 1 1 ~ 1  

on the chromatic number of the entire graph but nothing hi~s  yiLt ! w w  

obtained. 

Corollary 4.12 For each k 2 r3, there e z i .~ t s  a least anteyer IV(k)  ~ u c h  t h i ~ t  

if (V, f3) is a BfBD(v,  E ,  1) and v >_ N ( k ) ,  then the clo.rcd ~ w i ~ h b o r h o o d  



of any vertex in G = B(B) has chromatic number r. Moreover, N(k) 5 

2k3 - 10k2 + 17k - 8 for all k > 4. 

Proof: Let e = k - 1. Then by Theorem 4.11, M ( l )  exists. Define 

71(k) = ( M ( l )  + l ) e+  1. Let (V, 8 )  be a BIBD(v, k, 1) such that v 2 n(k). 

The11 r(k - 1) + 1 = v 2 n ( k )  implies r - 1 2 M(t)  since t = k - 1. 

Let 13' E B. Label the points of B*, hl ,  b2,. . . , bk, and define 23, = 

{B E B : B n B *  = { b , ) )  Then for each i = 1 , 2  ,..., k, B(B,) zz 

i~nd for each j = 1,2, . . . , k, j # i, each B E 23, has k - 1 neighbors in 

B,. Thus the complement of B(B1 U B2 U - . . U 8,:) is a k-partite graph 

(a,, B2,. . . , 23,) such that each part has size r - 1 and such that each vertex 

has e;:.tctiy (r - 1) - [ I I -  - 1 ) = r - k neighbors in each of the other parts. By 

Thtwrcrn 4.11, this graph has a h-k-factnr: {Vl, V2,. . . , V,-l). In the criginal 

graph G, each I< is an independent set. By letting the I< be the color classes 

for a coloring of G and giving B* some other color we obtain an r-coloring 

for the closed neighborhood of B*. Since each B({B*) u 8;) % KT, the 

chromatic ntmber of the closed neighborhood of a block is r. 

Thus iV(k) exists and N ( E )  < n(k) for all k > 3. Moreover, by Theo- 

rcni 4.11 M ( < )  < 2(€- I)*, for € 2 3, and hence N(k) 5 (2(k - 2)2 + l ) ( k  - 

1)  + 1 = 2k3 - 10k2 + 17k - 8 for all K > - 4. I 

For k = 3, N(3) 5 17 and so for v > 19, v r 1 ,3  (mod 6), the closed 

nrighboriiood of any block of an STS(v) is f ( o  - 1)-chromatic. 
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