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Abstract 

The problem of finding a Hamilton decomposition of the complete 3- 

uniform hypergraph IC; has been solved for n a prime [4], and for n = 2 (nod  

3) and n z 4 (mod 6) [Z]. We find here a Hamilton decomposition of 1(,3 - I, 

n - 0 (mod 3), and a Hamilton decomposition of 1(,3, n - 1 (mod 6), and 

thereby complete the solution of the problem. 
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Chapter 1 

Introduction 

1.1 Definitions and Notation 

Definition 1.1 The complete graph on n vertices will be denoted by I<,, 

the graph on n vertices in which every two vertices are joined by h distinct 

edges will be denoted by XI{,,, and the graph on n vertices with no  edges 

will be denoted by r,. A 1-factor in a graph G is a spanning subgraph of 

G in which every vertex has degree 1. We will denote the complete graph on 

n vertices, less a 1-factor, by IC, - I .  

Definition 1.2 A cycle of length I; in a grapk G is a sequence 

of distinct vertices, together with the edges 

{xijxi+I}, 1 5 i 5 k7 



wliere addition on the subscripts is modulo k. This cycle will be denoted by 

Ck . 

A C. 'k- f~~tor  in a graph G is a spanning subgraph of G in which every 

vertex has degree 2 and is in a cycle of length k. 

A IiumiNon cyck of a graph G' on n vertices is a cycle of length n. If the 

edges of G can be partitioned into Hamilton cycles, then G is said to have a 

fiarnilton decomposition. 

Definition 1.3 A hypergraph %(V,E) is a set of vertices V = V(Z) = 

{1,2,. . . ,n)  and a set of hyperedges E = &(%) = {El, E2,. . . ,Em}, where 

E; V and lEil > 0, 15 i S m .  

If IEiI = h, we call E; an h-edge. If (Eil = h,  for alI E; E E ,  then we 

call 'H h-miform. For convenience, we will often write the 3-edge { a ,  b, c )  

as abc. 

The complete h-uniform h y p e y m p h  on n vertices, denoted K,", is a hy- 

pcrgraph on the n vertices of V, in which every h-subset of V determines a 

hyperedge, or h-cdge. It follows that i(,h has (i) hyperedges. 

Definition 1.4 A 1-factor of the hypergraph %(V, E) is a spanning sub- 

graph of 'H(V, &), in which each of the n vertices of X(V, &) has degree 1. 

We will denote the complete 3-uniform hypergraph on n vertices, less a 

1-factor, by I<: - I, and the complete 3-uniform hypergraph on n vertices, 

plus a 1-factor, by 11',3 + I .  

Definition 1.5 A cycle of length k of 'H is a sequence of the form 



where { X ~ , X ~ ~ .  - .  ,xk) are distinct vertices, and El, &, - - -, E k  are h-edges of 

X, satisfying 

(i) xi,xi+~ E Ei, 1 5 i 5 k, 

(ii) Ei # Ej for i # j. 

For convenience, cycles in 3-uniform hypergraphs will be writ ten as 

where x;y;x;+l is a 3-edge, (x l ,  q,. - . , xk) are distinct vertices, and all 3- 

edges in the cycle are different. 

This cycle is known as a Berge cycle, having been introduced by C. Berge 

in his book Graphs and @pergraphs [I]. 

Definition 1.6 Hamilton cycles and Hamilton dccomposi tions of a hypcr- 

graph are defined as in the case of graphs: a Hamilton cycle in a hypergraph 

'H on n vertices is a cycle of length n; and a Hamilton decomposition of 3.1 is 

a partition of the hyperedges of 'FI into I-Iamilton cycles. 

Definition 1.7 Let A and B be two graphs. We form the wreath product 

of A and B, denoted AwrB, by replacing each vertex in A by a copy of 13, 

and making two vertices in different copies of B adjacent if and only if the 

corresponding two vertices in A were adjacent. 

1.2 Intrcduction 

In this thesis we consider the problem of constructing Hamilton decompo- 

sitions of the complete 3-uniform hypergraph IC. The problem has been 



solved by Bermond 121 for n r 2 (mod 3) and n E 4 (mod 6), and Bermond 

el n l  [4] have conjectured that both IC, n = 1 (mod 6), and I(,3 - I, 

n r 0 (mod 3), have a Hamilton decomposition. 

In Chapter 2 we discuss known results for decompositions of K, and I{: 

i~rto cycles, as well as other types of decompositions of Kt .  

In Chapter 3 we outline Bermond3s constructions for Hamilton decompo- 

sitions of J{:, n r 2 (mod 3) and n 4 (mod G ) ,  and then construct a Hamil- 

ton dccomposi tion of Ii; - I, n =. 0 (mod 31, and a Hamilton decomposition 

of I{:, n r 1 (mod 6). 



Chapter 2 

Survey of Results 

The problem of decomposing the complete graph into cycles has been ex- 

tensively studied since the late lS00's when Walecki [17] proved that KZ,t+l 

and 216, are Hamilton decomposable. The question then was when are the 

necessary conditions sufficient for the existence of a decomposition of a graph 

into cycles of some length k. This question has been answered completely for 

Kn for many small values of k. C. Rodger [21] has published a survey paper 

of decompositions into cycles of odd length. S. Marshall's Masters thesis [18] 

is another recent survey of work done decomposing graphs into cyclcs, and 

the papers Cycle and circuit designs: odd case by Bermond and Sotteau [ C i ]  

and Balanced cycle and circuit designs: even case by Bermond, Iluarlg and 

Sotteau [5] together are a good survey of the results on decomposing the 

graph I<n into cycles of length less than n. 

In comparison, there are few results on the decompositions of hypergraphs 

into cycles. One of the reasons for this is that even the notion of a cycle in 



a hypergraph is not an obvious one. The definition of a cycle, that of a 

Berge cycle, given in Chapter 1 is the most common, but there are many 

othcrs (see [7] for examples), all of which are further restrictions on the 

Berge cycle. Even using this simplest definition of a cycle, the problem of 

finding a Hamilton decomposition of IC,h has not been solved. The only result 

for general 12 is that the complete h-uniform hypergraph K,h has a Hamilton 

decomposition if n is prime 141. There are no other results than this for h 

greater than three, but the following results are known for IC.  

Lemma 2.1 [4J The complete h-unif0r.m hypergraph I(,h has a Hamilton 

decomposition i f  n is prime. 

Lemma 2.2 [2] The complete 3-uniform hypergraph IC has a Hamilton 

decomposition i f  n e 2 (mod 3).  

Lemma 2.3 [2] The complete 3-uniform hypergraph I g  has a Hamilton 

decomposition if I<," has (I Hnmilton decomposition. 

Lemma 2.2 and 2.3 imply that if n 5 4 (mod 6 )  then has a Hamilton 

decomposition. 

For the remaining cases of n r 1 (mod 6) and n E 0 (mod 3) ir, IG,  Ber- 

mond et al. [4] have made the following conjectures: 

Conjecture 2.4 For n r 1 (mod G ) ,  there exists a partition of the 3-edges 

of I{: into Hamilton cycles. 

Conjecture 2.5 For n r 0 (mod 3), there exists a partition of the 3-edges 

of IC into a 1-factor and Hamilton cycles. 



These two conjectures will be proved in the next chapter, thereby corn- 

pleting the problem of decomposing K: into (Berge) cycles of length n. If 

the definition of a cycle in a hypergra.pl1 is restricted as follows, we have a 

new problem and another conjecture. 

Definition 2.6 A cycle is of type t if and only if the cardinality of the 

intersection of any two consecutive hyperedges in the cycle is equal to t .  

Bermond et al. [4] have made the following conjecture about decomposi- 

tions of I<: into Hamilton cycles of type t ,  t E {1,2): 

Coiljecture 2.7 For n G 1,2 (mod 3) there is a partition of the 3-edges of 

I<: into Hamilton cycles of type 1 ,  1 E {1,2). For 12 r 0 (mod 3) there is a 

partition of the edges of I1',3 into a 1-factor and Hamilton cycles of type t ,  

t E {1,2). 

Little work has been done to decompose hypergraphs into cycles of a 

given length k; one reason for this may be that there is not a unique defi- 

nition of a cycle in a hypergraph. However, other types of decompositions 

of hypergraphs have been studied by such people as Z. Lonc [13, 14, 15, 161, 

A.F. Mouyart a.nd F. Sterboul [19, 201, and E. Eliad-Badt [S]. 

Definition 2.8 Let I< and H be two h-uniform hypergraphs. If is said to 

admit an H-decomposition if the hyperedges of I< can be partitioned into 

subhypergraphs isomorphic to If. 

The necessary condition for an H-decomposition of I(, where If and If 

are two given h-uniform hypergraphs, is usually that the number of h-edges 

of H divides the number of h-edges of I(. 



Some results in this area are that ilecessary and sufficient conditions are 

known for to admit a I{:--decomposition [9], and more generally, that 

necessary and sufficient conditions have been established for the existence of 

an 11-decomposition of IC, if H is any 3-uniform hypergraph on 4 vertices 

Eliad-Badt [8] and Lonc [14], [13] have considered decompositions of hy- 

pergraphs into different analogues of stars. The simplest such subhypergraph 

is known as a star. 

Geiinition 2.9 The star S2is denoted by x : al . . .a,. Its edges are xaiaj, 

i #  j ,  i , j  E {2 ,3  ,..., m}.  

A typical result in this area is that the hypergraph AIC admits an S:- 

decomposition whenever the necessary conditions are satisfied [3, 81. Again 

the necessary conditions are dependent on the number of 3-edges in AK: 

and S:. 



Chapter 3 

Hamilton decompositions of KZ 

If the 3-edges of I{: can be partitioned into Hamilton cycles as defined in 

Definition 1.6, then these Hamilton cycles form a Hamilton decomposition of 

IG. Such a decomposition requires 

Hamilton cycles, since each Hamilton cycle uses n 3-edges and thcre are 

(l) 3-edges altogether. This condition in turn implies that we must have 

n r 1 , 2  (mod 3) for a Hamilton decornposition of I{: to exist. 

Bermond [2 ] ,  using an idea of Brouwer, has constructed a Hamilton de- 

composition for IC, n G 2 (mod 3)) and then, by showing that a Hamilton 

decomposition for I{& can be constructed from a Hamilton decomposition 

for I<:, has also solved the problem for n E 4 (mod 6). 

For the remaining cases, n r 1 (mod 6) and n 0 (mod 3)) Bermond el 

al. [4] put forward Conjectures 2.4 and 2.5, which we will prove in section 3.2. 



3.1 n 2 ( m o d  3) and n=4(mod 6) 

First of all, we give Bermond's proofs for Hamilton decompositions of IC, 
n 2 (mod 3) and n r 4 (mod 6). 

3.1.1 n z 2 (mod 3) 

We prove the following lemma by constructing a Hamilton decomposition 

of IC, for n odd, and of 2 K n  for n even. These will be used in Bermond's 

construction of a Hamilton decomposition of IC, n - 2 (mod 3). 

Lemma 3.1 V\lalecki [17] A Hamilton decomposition of I(, exists if n is 

odd, and a I-lnmilloiz decoinposition of 2I(, exists i f  n is even. 

Proof. 

First, suppose that n is odd. Then the graph in Figure 3.1 is one Hamilton 

cycle of I,, 

A Ha,milton decomposition of IC, is given by the 9 Hamilton cycles: 

where addition is modulo n - 1. 

Next, suppose tha.t n is even. The graph on n vertices in Figure 3.2 is 

one Hamilton cycle of I - ,  



Figure 3.1: A I-Iarnilton cycle i n  Kn, n odd. 

A Hamilton decomposition of 2 IC, is given by the n - 1 Hamilton cyclcs: 

where again addition is modulo n - 1 

In order to construct a Hamilton decomposition of It':, n E 2 (mod 3), 

Brouwer first constructed a 'choice design of order n'. We give here a more 

general version of his definition. 

Definition 3.2 A choice design of order n on a given 3-uniform hypergraph 

'H on n vertices is a choice of one vertex from each 3-edge of 'H to represent 



Figure 3.2: A Hamilton cycle in 2Ii,, n even. 

that vertex. 

In Bermond's proof and in the proofs in Section 3.2, we will construct 

choice designs subject to certain specified conditions. 

Theorem 3.3 (Bermond [2]) A choice design of order n on I{: that satisfies 

the following condition exists if n =_ 2 (mod 3) .  

( 2 )  Among the ( n  - 2 )  3-edges containing a given pair a and b, (n  - 2)/3 

of them have neither a nor b chosen as their representative. 

Proof. 

We will use the notation abl to be the set of all 3-edges containing a and 

b that have neither a nor b as their representative. 



The sufficiency of IZ - 2 (mod 3) is proven by induction. A choice design 

of order 5 will be constructed, and then a method for constructing a choice 

design of order k + 3 from a choice design of order k will be given. 

A choice design of order 5 is: 

where the chosen vertex of each 3-edge is underlined. Note that, as needed, 

among the three 3-edges containing any given pair a and h, exactly one ha... 

neither a nor b chosen as its representative. 

Now assume that we have a choice design of order 71 on the vertices 

{1,2,. . . ,n) .  We want to construct a choice design of order sz + 3 on the 

vertices {1,2,. . . , 7 2 1  u {a ,  ,B,y). 

(1) If (i, j, k) E {1,2, . . . ,121, then choose the representative of i j  k as  in 

the choice design of order n. 

(2) If {i, j) C {l,fZ,. . . , n ) ,  then choose the representatives of i j a ,  i j p ,  

and i j y  as follows in Table 3.1. 

hyperedges : ija ijp i j y  with i < j 

representatives : i j y if i + j - 0 (mod 3) 

j ,O i i f i + j ~ l ( m o d 3 )  

a i j i f i + j ~ 2 ( m o d 3 )  

Table 3.1: Choosing representatives for 3-edges of K:,, (1) 

(3) If i E {1,2,. . . ,n) ,  then choose the representatives of i q3 ,  ipy,  and 

i&i as follows in Table 3.2. 



hyperedges : iaP icry ipy 

representatives : i y y if i r 0 (mod 3) 

/3 Q i i f i r l ( m o d 3 )  

Q i ,8 i f i r 2 ( m o d 3 )  

Table 3.2: Choosing representatives for 3-edges of I{,, (2) 

(4) Choose y in spy. 
To prove that this construction works, we must prove that lab+l = 

for all a ,  b E {1,2,. . . , n )  u {a ,  p,  y ) .  From now on, assume that i, j E 

{1,2,. . . ,n}.  

n-2 Let 11 = F. We first show that lij+l = p + 1. 

There are y 3-edges ij&, where i, j, k E {1,2,. . . , n}. Depending on the 

value of i + j (mod 3), exactly one of ija, i jp ,  - ijr will occur. 

Now assume that i = 0 (mod 3). Let i = 3q, 1 5 q 5 p. 

Among 3-edges of the form i - ja with j > i, there are p + 1 - q values of 

j so that i + j r 1 (mod 3). If j < i ,  then there are q - 1 values of j so that 

i + j r 0 (mod 3). The 3-edge icry - contributes one more. Thus, 

l i a z l=  p + 1 - q + q - 1 + 1 = p + 1, for i = 0 (mod 3). 

Among 3-edges of the form i j p  - with j > i, there are p - q values of 

j so that i + j 0 (mod 3). If j < i, then there are q values of j so that 

i + j 2 (mod 3). The 3-edge i p y  - contributes one more. Thus, 



Among 3-edges of the form i j y  with j > i, there are p - q  + 1 values - 

of j so that i + j 2 (mod 3). If j < i, then there are q  values of j so that 

i + j r 1 (mod 3). Thus, 

lir.kl = p - q +  1 + q  = p +  1, for i r O(mod 3). 

When i r 1,2 (mod 3) the calculations are similar. Thus 

for all i E {1,2,.  . . ,n ) .  

There are p values of i E (1, 2, .  . . , 1 2 1  such that i r 0 (mod 3), so thcrc 

are p 3-edges &. The 3-edge spy - contributes one more. Thus, 

There are p + 1 values of i E {1,2,. . . , n )  such that i r 2 (mod 3), so 

there are p + 1 3-edges cry-. Thus, 

Finally, there are p + 1 values of i E {1,2, . . . , n) such that i SE 1 (mod 3), 

so there are p + 1 3-edges Pyi. Thus, 

The proof of the following lemma shows how to construct a Hamilton 

decomposition of I<:, n G 2 (mod 3), given a choice design of order n that 

satisfies the condition of Theorem 3.3. 



Lemma 3.4 [2] Given a choice design of order n that satisfies condition 

(iJ of Theorem 3.3., n Hamilton decomposition of I(,3 can be constructed. 

Proof. 

By L c ~ n m a  3.1, 1-lamilton decompositions of I(,, n odd, and 2Kn, n 

evcn, exist. These are used together with the above choice design of order 

n in the following construction of a Hamilton decomposition of 1(,3. Since 

n ZE 2 (mod 3), we can let n = 3m + 2. 

First assume that n and hence m is odd. The graph Kn has 

Hamilton cycles in  a Hanilton decomposition, and the hypergraph K: will 

have 

Hamilton cycles in a Hamilton decomposition. Each Hamilton cycle of I(, 

will be used to construct m I-Iamilton cycles of Ii',3. Choose a Hamilton cycle 

H in the tIa.milton decomposition of i;',. For every edge ab in H, labzI = nt. 

Now choose an elcment of this set, say abc, and add c to the edge ab to get 

the 3-edge ncb. Doing this for each edge of H creates a Hamilton cycle of 

K:. Since there are 711 3-edges in abz for each edge ab E H, we can construct 

a further t i t  - 1 Hamilton cycles of 1(,3 from H, giving m Hamilton cycles all 

together. Thus i f  H = ( fx , ,  x2,. . . , x,)), we build the following m Hamilton 

cycles of I<:: 



Constructing m Hamilton cycles in this way from each Hamilton cycle of 

I(, gives a Hamilton decomposition of I<:. 

Continuing with the above example, a Hamilton decomposition of le is 

The first edge of the first cycle in this example is the edge (12). There 

is one 3-edge in the above choice design that is in the set 125, namely, 124, 

since m = %$ = 1. Thus a 4 is inserted between the 1 and the 2 to give the 

3-edge 142. Continuing in this way, we obtain 

Fl = (142, 253, 314, 425, 531) and GI = (123, 345, 512, 234, 451), 

which is a Hamilton decomposition of Ic. 

Now assume that n and hence m is even and choose a Hamilton cycle IJ' 

in the Hamilton decomposition of 211,. A Hamilton decomposition of the 

graph 21(, has 

' (3m:2)=3m+l 
3 m + 2  

Hamilton cycles, and each of these will be used to construct 5 Hamilton 

cycles of 1(,3. For each edge ab in Hi,  divide the set abz into two parts (ab?), 

and (ab&, so that 

Letting H' = {(xl, z2,. . . , x,)), we use it to build the following Hamil- 

ton cycles of I{:: 



j j i j . m ( ~ 1 1 ~ x 2 ,  X ~ Y Z X ~ ~  * - - , Xn-lYn-lXn, xnynf I ) ,  1 < 3 I 5 1 

where { x ; x ; + ~ ~ :  : 1 5 j _< T) = ( X ~ X ; + ~ + ) ~ ,  if H' is the first cycle that the 

edge x;si+l appears in, and { ~ i x i + ~ d  : 1 < j 5 7 )  = ( x i x i + l t ) z  if H' is the 

second cycle that the edge z ; z i+ l  appears in. 

Building each cycle of the Hamilton decomposition of 21C;, into Hamil- 

ton cycles of IC in this way yields a Hamilton decomposition of 1(,3. 

3.1.2 n 4 (mod 6) 

The following theorem is also from Bermond's paper [2]; the proof was ob- 

tained with D. Satteau. 

Theorem 3.5 11 there is a Hamilton decomposition of K i ,  then there is a 

Hamilton decomposition of I G .  

To prove this theorem we need the following definition and two lemmas. 

Definition 3.6 The complete symmetric directed graph on n vertices will 

be denoted by K,'. 

The following lemma follows directly from Lemma 3.1, by taking two 

copies of each cycle and orienting them in opposite directions. 

Lemma 3.7 The digraph Kzn+l can be decomposed into 2n directed Hamil- 

ton cycles. 



Lemma 3.8 (Tillson 12.21) If 272 2 S, then can be decom.posed into 

2n - 1 directed Hamilton cgcles. 

Proof of Theorem 3.5. 

Let the vertex set of be X U XI1, where 1x1 = IXII = 11. First, 

associate four Hamilton cycles of Iik with each Hamilton cycle of IC in the 

folIowing way. 

Case 1: n even. 

Associate with the cycle 

the following: 

and 

and the two cycles obtained by interchanging the vertices of X and XI. 

Case 2: n odd. 

Associate with 



the following: 

I I 1 I I I I 
( ~ 1 ~ 1 x 2 ,  X 2 Y 2 X 3 ,  - 5,-2Yn-2xn-1, Xn-~Yn- lxn,  XnYnXl, 

I I I 
x l ~ ~ ~ ~ ,  x!&x3, - - - , x&n-2xnfl.1, x n - l y n - l ~ i j  X ; ~ ; X ; ) -  

These cycles contain every 3-edge not of the form x ,  X I ,  y or L,  X I ,  y l .  We 

use Lemmas 3.7 and 3.8 to decompose these remaining %edges. With the 

directed I-Iamilton cycle xl  , x2, . . . , x ,  of a decomposition of I - : ,  we associate 

the following Hamilton cycle of I<;: 

0 

3.2 n = 0 (mod 3)  and n - 1 (mod 6 )  

20 



There cannot exist a Hamilton decomposition of K: when n 0 (mod 3) 

since the necessary condition for the existence of a Hamilton decomposition 

(that (';)/n is an integer) is not satisfied. This is similar to  the case of K2.: 

it is not possible to  have a Hamilton decomposition of K2,,  because 

which is not an integer. However, if a 1-factor is removed from K2, ,  then 

the resulting graph does have a Hamilton decomposition. In an analogous 

way, we shall remove a 1-factor from I1',3, n E 0 (mod 3), and then construct 

a Hamilton decomposition of the remaining 3-edges. (See Section 1.1 for a 

definition of a 1-factor in a hypergraph.) Since n r 0 (mod 3), let n = 3s. 

A 1-factor of K,3 obviously exists; it will contain s 3-edges. 

The hypergraph I C  - I has ((333) - S) 3-edges. The necessary conditiou 

for the existences of a Hamilton decomposition of I(: - I is that 

is an integer. Since 

the necessary condition is satisfied. 

A Hamilton decomposition of I<: - I, n r 0 (mod 3) is the 'next best 

thing' to  a Hamilton decomposition of I(: in the following sense. 

Lemma 3.9 A 1-factor contains the fewest number of 3-edges that can be 



removed from K:, n 0 (mod 3), so that the resulting graph satisfies the 

necessary condition for the existence of a Hamilton decomposition. 

Proof. 

Suppose we remove x 3-edges from I<:. The resulting hypergraph has 

(T) - x 3-edges. The necessary condition for the existence of a Hamilton 

decomposi tjon is that 

is an integer. 

Since 
(3;) - x _ 9s2 - 9s + 2 x 

- -- 
3s 6 3s ' 

9a2-9s and 7 is an integer, we need f - 5 to be an integer. 

Therefore, the possible solutions for x are 

When k = 0, x is a minimum. So the smallest possible number of 3-edges 

that can be removed sci that the resulting hypergraph satisfies the necessary 

condition is a: = s. A 1-factor has s 3-edges. 0 

Theorem 3.10 If n n 0 (mod 3), then there is a Hamilton decomposition 

Without loss of generality, we consider a specific 1-factor, namely, 



and the hypergraph I(,3 - T constructed by removing the 1-factor T from 

I(,". 

We will use another choice design, similar to that used by Rermond [2] 

for n = 2 (mod 3), to find Hamilton decompositions of h',3 - T. 

This time, however, instead of building up the Hamilton decomposition 

of the hypergraph from Hamilton decompositions of I<,, and 2K,, we will 

use Hamilton decompositions of I(, - T* and 2( l i l ,  - T*), where T* is a 

(&factor of I(, and 

T* = {(1,2,3), (4,5,G),. . . , (11 - 2, n - 1, n)). 

We do this because the number of I-Iamilton cycles in a Hamilton decompo- 

sition of 11': - T is divisible by the number of Nanlilton cycles in a Hamilton 

decomposition of ICn - T* if n is odd, a.nd by the number of Hamilton cycles 

in a Hamilton decomposition of 2(Kn - T*) if n is even. Hamilton decam- 

positions of I i ,  - T*, n odd, and 2(Kn - T*), n even, will be constructcd 

later. Once we have the choice designs, the Hamilton cycles in the Hamilton 

decompositions of I{,, - T*, n odd, and 2(Kn - T*), n even, will he extcnded 

to Hamilton cycles of I(,3 - T. 

The hypergraph - T has 

3-edges, and so any Hamilton decomposition of it has 

Hamilton cycles. 



The graph I&, - T* has 

(3 - 3.5 = 
%(s - 1) 

2 

edges. If n = 3s is odd, a decomposition of the edges of - T* into 

Hamilton cycles will be given, and if n is even, a decomposition of the edges 

of 2(1(, - T*) into 3(s - 1) Hamilton cycles will be given. 

Thus we want a choice design that will allow each Hamilton cycle of 

IC, - T* to be built up into s Hamilton cycles of I(: - T, for odd n, and 

each Hamilton cycle of 2(Kn - T*) to be extended to Hamilton cycles of 

I-: - T ,  for even n. 

Thc following grouping of the elements of V = V(1C - T)  = {1,2,. . . ,3s) 

in Figure 3.3 will be used in the definition and the construction of the choice 

design. Group the elements of V into s groups, where the ith group G; is 

Group 
number 1 2 3 .... 

Figure 3.3: A 3 x s array of the elements of V. 

We will write G(n)  to indicate the group number containing a. Let (I) be 

the set of all 3-edges from V ,  and (r) - T be the set of 3-edges of I<:s - T. 

Notice that T = (G; : 1 < 1: < s). 

We define two types of 3-edges in @) - T: Type (1) 3-edges are 3-edges 

abc in which a and b are in the same group, and c is in a different group; 



and Type ( 2 )  3-edges are 3-edges abc in which a ,  b, and c are all in different 

groups. 

Lemma 3.91 There exists a choice design on the 3-edges o f K &  - T ,  where 

the vertices of V(I(33, - T )  are grouped i d o  groups G; = (3i - 2,3i - 1 ,3 i ) ,  

1 5 i 5 s ,  and T = (123,456,. . . , ( n -2 ) (n -  l ) n ) ,  that satisfies the following 

two conditions. 

(2) If abc E (:) - T and a and b are in the same group, then c is not 

chosen as the representative of this 3-edge. 

(ii) Given b and c in d ieren t  groups, the set bcz contains s elements. 

Proof. 

We first construct choice designs for odd and even 3s)  and then prove 

that they satisfy the two conditions above. 

Case 1 3s odd: 

Let 3s = 6t + 3, so that s = 22 + 1 

Choosing representatives for 3-edges of Type (1): 

The partition of V in Figure 3.3 has s = 2t + 1 groups, where the it" 

Order the elements of a given 3-edge as abc so that a ,  b E G;, with 

b r a +  l(mod 3),  and c E Gj, i # j. 
If 

j - i (21 - 1) (mod 2t + 1 ) )  



for 1 5 1 5 t , choose u as the representative of the 3-edge. Otherwise choose 

b. 

Choosing the representative for 3-edges of Type (2): 

Order the 3-edge as abc so that G(a) < G(b) < G(c). Then, 

if a + b + c z 0 (mod 3), choose a ,  

if a + b + c z 1 (mod 3), choose b, and 

if  a + b +  c - 2(mod 3), choose c. 

We must now prove thak this is indeed a choice design as defined. 

Condition (i) follows immediately by the choice of representatives for 

Type (1) 3-edges. 

The verification that condition (ii) holds is a little more involved. Let 

b and c be elements in different groups, G; and Gj, respectively. There are 

four 3-edges of Type (I) containing both b sad c: blbc, bzbc, clcb, and cZcb, 

where {b, bl, bz) = G;, and {c, cl, c2) = Gj. 

To determine the representa.tives of these four 3-edges, we consider ( j  - 

i )  mod(2t + I). Suppose that j - i E (21 - 1) (mod 2t + I), 1 5 I < t .  

If b is the representative for the 3-edge bl bc, then r b + 1 (mod 3), 

implying that b = b2 + 1 (mod 3), and hence, that b2 is the representative for 

the S-edge b2 bc. 

If bl is the representative for the 3-edge bl bc, then b ZE bl + 1 (mod 3), 

implying that b2 r b + 1 (mod 3), and hence, that b is the representative for 

the 3-edge b&c. 



In either case, b is the representative in one of the 3-edges blbc and babe, 

and the element not equal to b or c is chosen in the other 3-edge. 

A similar argument holds if j - i s 21 (mod 2t + l ) ,  1 < 1 < t .  

On repeating this argument for the 3-edges ctcb and c2cb, we can conclude 

that if b and c are in different groups, then among the four 3-edges of Type (1) 

that contain both b and c ,  exactly two of them are elements of the set bc?. 

Now suppose abc is a 3-edge of Type (2), with b and c fixed. The question 

is: 'How many 3-edges abc of Type (2) are in the set bc*?' 

With b and c fixed, the 3-edges abc of Type (2) are created by allowing 

a to run through the three levels of each of the remaining (2t - 1) groups. 

Thus, exactly once in each group, the value of 

a + b + c (mod 3) 

will force a to be chosen as the representative of the 3-edge. So therc arc 

exactly (2t - 1) 3-edges of Type (2) in the set bc*. Thus Ibc~l = (2t + I ) ,  

satisfying condition (ii) . 

Case 2: 3s even: 

Let 3s = 6r, so that s = 2r. 

Again we construct a choice design and then prove that it; satisfies the 

conditions of the definition. 

Choosing representatives; 

We again partition V, this time into 2r groups, where the i th  group G'; is 

2r 

Gi= {3i-2,3i-  1,3i}, 1 < i 5 2 r ,  and V =  UG~. 
i=l 



Then every 3-edge from V except for the 3-edges within a group G; is a 

3-edge of KZr - T.  Again there are 3-edges of Types (1) and (2). 

Choosing t h e  representatives for t h e  3-edges of Type (1): 

Order the elements of a given 3-edge abc as in Case 1 so that a and b lie 

in the same group G;, with b a + 1 (mod 3), and so that c lies in group Gi, 

i # j. 
If 

a + b + c r 1,2 (mod 3), choose a, 

and if 

a + b + c G 0 (mod 3), choose b 

as the representative of the 3-edge. 

Choosing t h e  representatives for t h e  3-edges of Type (2): 

Choose the representatives for the 3-edges of Type (2) as in Case 1. 

We now verify that we do indeed have the required choice design. 

Condition (i) follows immediately, but condition (ii) again takes a little 

more work. Let b and c be elements in different groups, G; and Gj, respec- 

tively. Let G; = {b ,  bl, b2}  and Gj  = { c ,  c l ,  c2) ,  where bl r b + 1 (mod 3), and 

b2 r b + 2 (mod 3j in G;, and c1 r c + 1 (mod 3), and c2 3 c + 2 (mod 3) in 

Gj. 

Then the four 3-edges of Type (I)  which contain b and c, with their 

elements in the 'right' order are: 

hblc, b2bc, cclb, and c2cb. 



(a) If b = c ( m o d 3 )  then a + b + c = l , % ( m o d 3 ) ,  for a E {bl,b2,c1,c2). 

Thus, in each of the above four 3-edges, the representative would be the 

first element. This implies that there are exactly two 3-edges of Type ( I )  iu 

bcz. 

(b) If b z c - 1 (mod 3), then b + bl + c 2 (mod 3); choose b in hblc. 

If b = c - 1 (mod 3), then b2 + b + c r 0 (mod 3); choose b in  b2bc. 

If b - c - 1 (mod 3), then c + cl + b 0 (mod 3); choose c, in ccl b. 

If b = c - 1 (mod 3), then C* + c + b E 1 (mod 3); choose cz in c2cb. 

Again bcz has two elements of Type (1) in it. 

(c) Similarly, if b - c + 1 (mod 3) there are exactly two elements of Type (1) 

in b e .  

If a bc is of Type (2), an argument that is exactly the same as in Casc 1 

shows that bcz has 27- - 2 elements of Type (2) in it. 

Hence I bczl = 2r, as needed. CI 

Before we can prove Theorem 3.10, we must first construct Hamilton 

decompositions of I<3s - T*, s odd, and 2(K3, - T*), s even. To do this, 

we consider the graph CswrK3, "C, wreath x3", formed by replacing each 

vertex in C, by a copy of x 3 ,  and then putting an edge between any two 

vertices in adjacent copies of K3, and the graph I(BwrK3, "K. wreath Ka" 
formed by replacing each vertex in I(, by a copy of K3, and then putting an 

edge between any two vertices in different copies of r3. Clearly, ~ , w r K 3  Z 

IGs - T*. 

Lemma 3.12 A Hamilton decomposition of I&, - T* exists i f  s is odd, 



and a Hamilton decomposition of Z(K3, - T*) exists if s is even. 

Proof. 

Case 1: s odd. 

Assume s is odd. The graph IC3, - T* has 

edges, and hence, we want to partition it into 

Hamilton cycles. Since 1(3, - T* E KswrK3, we will use the graph ILwrK3 

to prove the result. 

By Lemma 3.1, the graph h', can be partitioned into Hamilton cycles. 

If we take the wreath product of each of these Hamilton cycles with K3, we 

will have a partition of ICswrX3 into copies of CswrK3. Therefore, if we 

can pa.rtition the 9s edges of each copy of Csw5-K3 into 9s/(3s) = 3 Hamilton 

cycles, we will have constructecl a Hamilton decomposition of Ii3, - T*. 

Let V ( C s z ~ ~ - ~ 3 )  be exhibited in a 3 x s array of vertices, 

and observe that every two adjacent columns of vertices, T/: U V;+l, 1 5 i 5 

(s - 1) and V ,  U &, induce a Ii3,3, as shown in Figure 3.4. 

We will first find a Hamilton decomposition of C3wrK3 and then show 

how to extend it to a Hrtnlilton decomposition for all C , W T ~ ~ ,  when s is odd. 

A Hamilton decomposition of C3wrT3 is shown in Figure 3.5. 



Figure 3.4: A 3 x s array of edges and vertices of C,wrK3. 

v1 v2 v3 v1 v2 v3 v1 v2 v 3  
first cycle Second cycle Third cycle 

Figure 3.5: A Hamilton decomposition of C3wrr3.  

For odd s greater than 3 ,  we exhibit in Figure 3.6 a decomposition of 

G[V?i-1, Gi, 2 < i 5 y, into three subgraphs, each isornorpllic to 

P3 U P3 U P3, with the additional feature that in each subgraph, path j starts 

in row j and ends in row j ,  j E { 1 , 2 , 3 ) .  

Take the union of the decompositions of GIVzi-l, VZi, I&+!], 2 5 i < - q, 
so as to make a decomposition of GI&, &,. . . , K] into three subgrapbs, each 

isomorphic to PS-2 U Ps-2 U Ps-2, and each with its j th  path still starting and 

ending in row j, j E {1 ,2 ,3) .  We want a decomposition of G[%, &, . . - , V,] 

into three Hamilton cycles. To get the remaining edges of the decomposition, 

take the Hamilton decomposition of c3wrK3 and replace the j th vertex of 



'2i-1 '2i '2i+1 '2i-I '2i '2i+l '2i-1 v2i v2i+l 
Fist  subgraph Second subgraph Third subgraph 

Figure 3.6: A decomposition of GI[V2i-1, V2i7 into P3 U P3 U P3. 

in the rth cycle in Figure 3.5, by the j th path of the rth subgraph of the 

decomposition we have just constructed on &, Vq, . . . , V,, where j E (1,2,3) 

and r E {1,2,3). 

Figure 3.7 shows a decomposition of C7wrr3 into 3 cycles. 

First cycle 

Third cycle 

Figure 3.7: Example: A Hamilton decomposition of C7wrx3- 

The Hamilton decomposition of Itj - T* (or ~s~7-z~ ) is completed by 



taking this Hamilton decomposition on each copy of Cswr'TI?3 in the pa.rtition 

of Ks wrK3.  

Case 2: n even. 

Let n = 3s, so that s is even. We want a Hamilton decomposition of the 

edges of 2(& - T*) 2 ~ ( K ~ W ~ K ~ ) .  
We will first of all do the case s = 2 in Figure 3.5. 

v1 v2 v1 v2 v2 

First cycle Second cycle Third cycle 

Figure 3.8: A Hamilton decomposition of 2(I<2~orli'3). 

Now assume s 2 4. The graph 2(K3, - T*) has  

edges, and we want to decompose these edges into 3(s - 1) Hamil ton cycles. 

By Lemma 3.1, 2KS can be partitioned into s - 1 Hamilton cycles. T ~ I I S ,  

2(KswrT3) can be partitioned into s - 1 copies of ~ , w r X ~ .  Again we parti- 

tion each copy of CswrK3 into three Hamilton cycles, which gives a parti tion 

of 2(KSwrK3) into 3(s - I) Hamilton cycles. 

Consider a 3 x s array of vertices as in Case 1, with the columns labelled 

v1 t o  V*. 



We again use Figure 3.6 to decompose the edges of G[V2;-1, Ki7 Ki+1], 
2 5 i 5 $, into three subgraphs, each isomorphic to P3 U P3 U P3. AS in 

Case 1, take the union of these 9 decompositions to form a decomposition of 

G'[G, &, . . . , Val, and note that path j starts and ends in row j, j E {1,2,3). 

Form Hamil ton cycles in G[%, G, . . . , K] by replacing the vertices of 

by V2 U V3 U . . . U I/s and 'inserting' paths as before. But this time be careful. 

You have to ensure that the edges from & to 6 are different in all three 

subgraphs on U V2 U .  .. U V,. 0 

Proof  of Theorem 3.10. 

Let n = 3s. By Lemma 3.12, if n is odd, I(, - T* can be decomposed 

into Hamilton cycles. We build each of these cycles (x1,x2,. . . ,I.) 
into the following s Hamilton cycles of I(,3 - T: 

When n is even, for every pair of vertices a ,  b f V, we arbitrarily divide 

abz into two equal pieces so that 

and 

Again by Lemma 3.12, if a is even, 2(Kn - T*) can be decomposed into 

3(s - 1) Hamil ton cycles. We build each of these cycles (xl, 2 2 ,  . . . , x,) into 



the following Hamilton cycles of Ii,3 - T: 

where 

the first time the edge (X;X;+~) occurs in one of the cycles, and 

the second time the edge (X;X;+~)  occurs in one of the cycles. 

Finding a Hamilton decomposition of I<: - I, n 0 (mod 3), is known as 

a packing problem; there is a similar notion of a covering prohlem. 

Definition 3.13 Let X(V,  E) be a hypergraph. Let El, E2, . . . , Eq 5 E. If 

EinEj = 0, V 1 5 i < j 5 q, then El ,  E2,. . . , Eq is an El ,E2 , .  . . , E, packing 

into 7-1. If El U E2 U . . . U Eq = I, then El, E 2 , .  . . , Eq is a covering of 7-1 by 

El, E2,. . . , Eq. If El, E2 , .  . . , Eq is both a packing and a covering of I, then 

it is obviousIy a partition of E. 

Corollary 3.14 The  h2/l,ergrc~ph Ii': +I, n r 0 (mod 3), can be covered wi lh  

Hamilton cycles. 

Proof. Let S be the following 1-factor of K;, n = 0 (mod 3): 

and recall that 

T = (123,456,. . . , (n  - 2)(n - 1)n)- 



Then the hypergraph I(,3 + S = Ic - T + ( S  + T). We can write S + T as 

which is a Hamilton cycle of I C .  

By Theorem 3.10, there is a Hamilton decomposition of K: - T. Thus, 

there is a Hamilton decomposition of I(,3 + S, and the result follows. 0 

3.2.2 n = 1 (mod 6) 

When n 1 (mod 6), the necessary condition for the existence of a Hamilton 

decomposition of I<: (that ( y )  is an integer) is satisfied. We shall give here 

a general construction for a Hamilton decomposition of IC, n r I (mod 6), 

from a Ha.milton decomposition of I(,. Since Bermond et a!. [4] have shown 

that for n prime there exists a Hamilton decomposition of IC, the first un- 

solved case when n r 1 (mod 6) is n = 25, so we shall use n = 25 as an 

example throughout the proof, and shall give the choice design for construct- 

ing a Hamilton decomposition of I<& from a Hamilton decomposition of G5. 

Consider the 3-edges of IC,3 as triangles of I(,, where n = 6k + 1. Let 

the vertices of ICn be I/ = {1,2,  . . . , n )  and let calculation on the vertices be 

modulo n on the residues 1,2, . . . , n.. We associate each triangle { a ,  b, c )  of 

I<,, with the triples of differences (a, P ,  y), so that 

{&(a  - b),f ( b -  c ) ,  f ( c -  a)) = {fqf p , f y ) .  

Definition 3.15 Each edge i j  in the graph has a length I ,  

1 = inzn.{(i - j) (mod n.), (j - i) (mod n)),  



associated with it, where 1 _< I < Ly j  = 3k. 

For instance, in Ii7 the edge lengths are 1,2,  and 3. (The edge 12 has length 

1 ,  the edge 13 has length 2, and the edge 14 has length 3.) 

Since 6k + 1 is odd, there will be 6k + 1 edges of the same length 1 in 

I&k+l, for each Z E {1,2,. . . ,3k). 

More that one triangle of IiR is associated with each triple of differences, 

so that equivalence classes of the triangles of h:, can be constructed using 

the following equivalence relation R : 

{a, b, c)R{af, b', c') ++ 3i f (1,. . . , n)  such that (a', b', c') = {a+i ,  b+i, c+i), 

where addition in modulo n. 

For example, with n = 25, the triangles {5,10,15) and {18,23,3) are in 

the same equivalence class, determined by the triple of differences (5,5,10). 

From now on, use the following notation to denote addition in the triples 

of differences: 

Note that each triangle can have more than one triple of differences as- 

sociated with it. It follows from an observation by Bermond, Germa and 

Sotteau [3], that if n is odd, as in this case with n r 1 (mod 6), it is possible 

to choose a, p, and y in a triple of differences so that 



giving a unique triple of differences for each triangle. This is obviously true 

if you consider that a, /?, and 7 are simply the lengths of the edges of the 

triangles in the equivalence class associated with (a,@, 7). Henceforth, we 

will assume that all triples of differences are in this form. 

The following lemma provide a few facts about equivalence classes of 

triangles when n 1 (mod6). 

Lemma 3.16 f i r  n r 1 (mod  6) there are n triangles in each equivalence 

class. 

Proof. By definition, {a, b, c) and {a', b', c'} are in the same equivalence 

class if and only if there exists i f {1,2,. . . , n }  such that {a', b', c') = { a  + 
i ,  b + i, c + i ) .  There are exactly n possibilities for i ,  and since n f 0 (mod3), 

{ n , b , c } = { a + i , b + i , c + i } i f a n d o n l y i f i = n .  ti 

Lemma 3.17 In any triple of diflerences (a,p, y) i n  I(,, n odd, that sat- 

isfies equation 3.1 above, if two of a, /?, and y are equal then (a,P, y) is  

the triple of digerences o j  exactly one equivalence class of triangles, and if 

a, ,f?, and 7 are all different, then (a,  /?,r) is  the triple of diflerences of ex- 

actly two equivalence classes. (I f  a = @ = y i n  a triple of diflerences, then 

12 r O(m0d 3).) 

Proof. 

Case 1: Suppose a = ,8 # y. 

Then any triangle in an equivalence class associated with this triple of 

differences must have two edges of length a, and so we can write it as {Q, a + 



a, a + 201, for some a E {1,2, . . . , n). If there were a second equivalence 

class associated with the triple of differences (a,cu,y), then any triangle in 

it would also have to have two edges of length a, and could be written as 

{b, b + a, b + 2a), for some b E {1,2, . . . , n}. Then obviously, 

since 

and hence there is only one equivalence class associated with the triple of 

differences (a ,  a, 7). 

Case 2: Now suppose a # P = y. 

Then, as in Case 1, any triangle in an equivalence class associated with 

(a, p, y) must have exactly two edges of length y. A proof similar to that of 

Case 1 gives the result. 

Case 3: Now suppose a # P # y. 

Then any triangle in an associated equivalence class of the triple of dif- 

ferences (a, p, y) has exactly one edge of length CY and exactly one of length 

,f?. First, we shall show that the two triangles 

are in different equivalence classes. 

Both triangles have a third edge of length a*P, so they do both have the 

associated triple of differences (a ,  P, y ). 



Suppose {a, a + a, a + a + P)R{a, a + P, a + cr + P). Then there exists 

i E {1,2,. . . , n) such that 

We consider all possibilities (calculations are modulo n). 

i )  If a = a + i then i = 0 and either a + a = a + p + i = a + ,8 which 

implies a = p, or a + a = a + a + p + i = a + a + ,8 which implies ,B = 0. 

ii) I f n  = a + p + i  theni = n-p.  But theneithera+cr= a + i =  a -pso  

that a = -p and 7 = 0, or a + a + p  = a + i  = a - p ,  and hence, a + 2 P  = 0, 

in which case, y = a + P = n - P > :, or y = n - (a  + P) = P. 
iii) Finally, i f  a = a + a + ,8 + i, then i = n - a - P. Then either 

a + a  = a + i  = a-a- /? ,  irnplying2a+/? = 0 and y = n - a  > 2, or y =a,  

or a + a = a + /? + i = a - a ,  so that 2a = 0, and hence a = 0, since n is 

odd. 

Thus there are at least two equivalence classes. 

If there were a third such equivalence class, then any triangle in it would 

also have to have an edge of length a and an edge of length P. Thus it 

would have to contain either the triangle {b, b + a, b + a + P) or the triangle 

{ c , ~ + P , c + a + ~ ) ,  1 - < b,c < n. 

Again using sz = 25 as an example, the triangles of KZ5 that are in the 

equivalence class determined by the triple of differences (5,5, lo), are 

while the triangles of I<25 that are in the equivalence classes determined by 



the triple of differences (5 ,6 , l l )  are 

Corollary 3.18 Let n = 61; + 1. There are 3k2 + k triples o j  differences in 

Kn - 

Proof. For any a, 1 5 a 5 3k, there is exactly one triple of differences that 

is either of the form (a, a, +) or (+, a, a). All other triples of differences are 

of theform(a , , f? ,a*+) , l  < a < + < a * + < : .  

There are (:) equivalence classes. By Lemma 3.17, there are 3k cquiv- 

alence classes each of which is associated with one triple of differences. The 

rest of the equivalence classes can be paired so that each pair is associated 

with one triple of differences. Therefore, in total, there are 

triples of differences. 0 

Lemma 3.19 The length i, 2k + 1 5 i 5 3 k ,  in I(6k+l cannot be the first 

element of a triple of digerences. 

Proof. Suppose we have the triple of differences ( a  = i, P,  T ) ,  where 2k+  1 < 
i 5 3k. Then 2k < a 5 + and 7 = a * + = n - (a + +) < - 2 k ,  which is a 

contradiction since 7 must be greater than or equal to P .  0 

We again want to  construct a choice design on the 3-edges 0f1(:~+~. We 

do this by first choosing representatives for the triples of differences, and then 



by transfering this to a choice of representatives on the 3-edges. As before 

with n r 2 (mod 3), we will use a Hamilton decomposition of together 

with the choice design on the 3-edges of I{&+, to construct a Hamilton 

decomposition of I{&+,. 

Let us first consider the number of Hamilton cycles in Hamilton decom- 

positions of and of K&+, . There are 

Hamilton cycles in a Hamilton decomposition of KGk+,,  and 

Hamilton cycles in a Hamilton decomposition of I{&+,. If we let one of the 3k 

Hamilton cycles of correspond to L Hamilton cycles of and the 

remaining 31; - 1 Hamilton cycles of each correspond to 2k Hamilton 

cycles of Ii'&+, , then we will have 

Hamilton cycles of I{&+, altogether, as needed. 

In a Hamilton decomposition of we can always assume that one 

of the Hamilton cycles is 

and choose it to be the Hamilton cycle that is extended to exactly k Hamilton 

cycles of I<'&+,. Thus we want a choice design on the 3-edges of Gk+, in 

which In(a + 1)+1 = k for all a E {1,2,. . . ,6k + 1). Since HI contains all the 



edges of length 1 in the other edges of lengths I, where 2 5 1 < 3 k ,  

will all occur in other Hamilton cycles of IC6k+l. If the choice design has 

labzl = 2k for all a,  b E {1,2,. . . ,6k + 11, a # b, b + 1, b - 1, then all of the 

Hamilton cycles of I{6k+l except I-fi will be extended to exactly 2k Hamilton 

cycles of as needed. 

We will construct this choice design of order 6k + 1 on K&+, from a 

'representative design' on the triples of differences of I<6k+1. 

Definition 3.20 A representative design on the triples of differences of lr'ok+l 

is a way of choosing elements from the triples of differences (a ,  P,  7 )  of IGk+1 

so that the following are satisfied. Let C(6) be the set of all triples of differ- 

ences for which S is a representative. 

i) The triples of differences that correspond to two equivalence classes of 

triangles in I{6k+l have two representatives. 

ii) The triples of differences that correspond to one equivalence class of 

triangles in have one representative. 

iii) IC(1)I = k and IC(6)I = 2k, 2 5 6 5 3k. 

Recall that if the three numbers in the triple of differences are distinct, 

then there are two associated equivalence classes - thus we choose two rep- 

resentatives for each of these triples of differences and associate one rcpre- 

sentative with one equivalence class, and the other representative with the 

other equivalence class. Also, if two of the numbers in a triple of differences 

are the same, then there is only one associated equivalence class, and hence 

we choose only one representative for this triple of differences. 



The following lemma states that a representative design on the triples 

of differences of 1(6k+l exists. This is the major construction of this section, 

and will be proved after we prove in Lemma 3.22 that a representative design 

on the triples of differences of 1CGk+1 leads to the right choice design of order 

6k + 1, and in Theorem 3.23 that this choice design leads to a Hamilton 

decomposition of l<ik+l. 

Lemma 3.21 There is a representative design on the triples of difierences of 

Kfik+, in which the number 1 is chosen as a representative in exactly k triples 

of diflerences, and each number i ,  2 5 i 5 3k, is chosen as a representative 

in exactly 2k triples of differences. 

Lemma 3.22 There is a choice design on the 3-edges of in which 

Proof. 

By Lemma 3.21 there is a representative design on the triples of differences 

in in  which the number 1 is chosen as a representative in exactly 

k triples of differences, and each number i, 2 5 i 5 3k, is chosen as a 

representative in exactly 2k triples of differences. We shall &st transfer the 

representative design on the triples of differences to a way of choosing one 

representative from each of the triangles in IGk+1. Then, by noting that 

each triangle in I<6k+l is a 3-edge in I<&+,l we shall have the needed choice 

design. 



Transfer the choice of representative(s) on a triple of differences (a,  P, 7) 

to a choice of one representative for each triangle in its associated equivalence 

class(es) in the following way: 

Case 1: a # # y. 

In triples of differences (a, P,  y) with two representatives, arbitrarily choose 

one of the representatives, call it I ,  and one of the associated equivalence 

classes. All of the triangles in this equivalence class will have exactly one 

edge of length I. Choose as the representative in each of these triangles the 

vertex that is not an end-vertex of that edge. 

For example, with 6k + 1 = 25, if the triple of differences is (1,2,3),with 

1 as one of its representatives, then the triangles and their representatives in 

one of the corresponding equivalence classes would be 

since the vertex j + 3 is not an end-vertex of the edge of length 1. 

Now do the same thing with the other equivalence class and the other 

representative of the triple of differences. In our example we would get 

since the other representative of the triple of differences was a 2. 

Case 2: a = ,8 # 7 or a # ,8 = 7 .  

In tripks of differences of the form (a ,  cr, P ) ,  those with exactly one repre- 

sentative with exactly one associated equivalence class of triangles in K g k f l ,  



if f i  is chosen as the representative, then we choose the representatives of the 

triangles in the associated equivalence class as in Case 1. 

However, if a is chosen as the representative, then the situation is different 

because the triangles in the associated equivalence class have two edges of 

length a. However, we simply pick one of these edges, choose the vertex 

that is not in this edge as the representative of the triangle, and then be 

consistent with this choice when choosing representatives for all the other 

triar~gles in  the equivalence class. More precisely, if we pick a to represent 

the triangle {a, a + b, a + 2b), then we pick a + i to represent the triangle 

{a+i7a+b+i ,a+2b+i ) ,  1 s  i < 6 k + l ,  and ifwepicka+2b torepresent 

the triangle {a, a + b, a + 2b), then we pick a + 2b + i to represent the triangle 

( a + i , a +  b +  i ,u+2b+i) ,  1 5 i < 6E + 1. For example, in I{= if the triple 

of differences is of the form (I, 1,2), do either 

{1,2,3),(2,3,4) ,... ,{25,1,2) 

or {1,2,3),{2,3,4) ,..., {25,1,2). 

If the triple of differences is of the form (a, y, y), choose the representa- 

tives of the triangles in the equivalence class as above, but now each triangle 

has two edges of length -y and one of length a. 

Now let each triangle in be a 3-edge in I{&+,. For each a E 

(1,2,. . . ,6k + l}, there are k triangles of the form {a, a + l , ~ ) ,  a,a + 1 # c, 

because /C(1)1 = K. So ja(a + l)zf = E, 1 5 a 5 6k + 1. Also, for each 

a E {1,2,. . . ,611- + 11, there are 2X: triangles of the form (a, b , ~ ) ,  a # b # c, 

a # b + 1, b - 1, because the edge ab has length I, where 2 < I 5 3k, and 

lC(I)I=2k. Sofab+_f=2k, l L a , b < 6 k + l ,  a#b ,b+ l ,b -1 .  0 



Theorem 3.23 There is n Hamilton decomposition of I{:, n 1 (mod 6). 

Proof. By Lemma 3.22 there is a choice design on the 3-edges of Ii'; such 

that 

] a ( a +  1)rl = k ,  1 5  a < 6 k +  1, and 

labzl = 2k, 1 2 a, b  5 6 k  + 1 ,  a  # b, b f  1 .  

Take the Hamilton cycle HI = (1, 2, . . . , 6 k ,  6 k  + 1) in a Hamilton de- 

composition of I(sn+l-  Since HI contains all the edges of length 1 in 

we use the choice design to build it up into the following k  Hamilton cycles 

where 

{i(i + 1 ) z ~ ;  : 1 5 j 5 k} = i ( i  + 115. 

Then all other cycles (xl,  Q, . . . ,x,) in tlie Hamilton decomposition of 

I&+] contain no edges of length 1, and hence, from the choice design, are 

each built up into the following 2k cycles: 

IR the proof of Lemma 3.21, we will begin the representative design on 

the triples of differences by constructing sets F ( a ) ,  1 5 cr 5 2 k ,  whcrc 



F ( a )  is the set of triples of differences with first entry a, together with the 

representative(s) of those triples of differences. As before, an element of a 

triple of differences will be underlined if it is one of the representatives. By 

Lemma 3.19, F(a )  = 0, 2k + 1 5 a 5 3k. Since a triple of differences 

has a least element, the sets F(l), - . - ,  F(2k) partition the set of triples of 

differences in I&+l. 

The following lemma gives the size of F(a), 1 5 a 5 21;. 

Lemma 3.24 For 1 5 cu 5 2k,  IF(a)l = L y j  - a + 1. 

Proof. 

Let a triple of differences be denoted by (a ,  /I, y), where a, P, and 7 satisfy 

equation 3.1, that is, 

Given a, we want to count the number of possible P. If P satisfies a 5 

@ < 31; - a, then y = a + P, and trivially /? 5 y < :. Therefore, all values 

of /? from a to L;j - a are possible. 

If P > 3k - a + 1, then 7 = 72 - (a + P), since a + P > t .  We also 

need p 5 y, which gives /3 < n - ( a  + P ) ,  which in turn implies P _< [y]. 
Therefore, all values of /? from - a + 1 to IF] are possible. 

So, given a, the possible ,6 range between a and 1 7 1 .  Thus 

n - a  
I F ( ~ ) I  = IT] - a + 1. 



Recall that C(6) is the set of all triples of differences that contain 6 as a 

representative. Let NC(6) be the set of all triples of differences that contain 

6, but not as a representative. 

We construct the sets F(l), F(2), . - .  , F(2k) in that order. The order is 

important because any given a, 1 5 a 5 2k, only occurs in F ( l ) ,  - - , F(a). 

(Triples of differences are written with their least element first, and F ( a )  

contains only those triples of differences with first element a.) Now we are 

ready to prove Lemma 3.21. 

Proof  of L e m m a  3.21. 

Construct ing a choice design on t h e  triples of differences of I<6k+l: 

For 1 5 j < 26, we construct F(j) and check that IF(j)l = [%I - j + 1. 

Then we check that IC(1)I = k and IC(j)l = 2k, 2 < j < 3k, as needed. 

1) F(1): 

We choose the representatives for the triples of direrences in F(1),  so that k 

of them will have 1 as a representative: 

i) (1, 1,2) E C(1). 

ii) (I ,&; + 1) E C(l), where 2 5 i 5 k. 

iii) ( l , i ,  i + 1) f NC(l) ,  where k + 1 5 i 5 3k - 1. 

iv) ( I ,& 3k) E NC(1). 

Then, 

6k+l -1  IF(1)I = 1 + (k - 1) + (2k - 1) + 1 = 3k = [VJ - 1 + 1, and 

IC(l)l = 1 + (k - 1) = k. 

Notice that each i, 2 5 i 5 k + 1, has been chosen exactly once as a 



representative in F(1), and each i, k + 2 < i 5 3k, has been chosen exactly 

twice. 

In sections 2)-4), we will check that the triples of differences satisfy j < 
i < j * i < ~ , o r j = i < j * i < ~ , o r j < i = j * i < ~ , w h e r e i t i s n o t  

immediately obvious. 

i )  ( i , j , j  * j) W- 
i i )  ( j ,& - j * i) E C( j ) ,  where j + 1 5 2 5 2k, except when j = k + 1 and 

i = 2k. In this case we choose (k  + 1,2k, 3k) E C(k + 1). 

(Note that if j + i _< 3k, then j * i = j + i > i, and if j + i > 3k, then 

j * i = n - (j  + i )  > (6k + 1) - (3k + 1) 2 3k > i.) 
6k-I-. iii) ( j , i , j )  E NC(j),  where 21i + 1 < i 5 [+I. 

(In this case note that if j + i 5 3k, then j * i = j + i > i. If j + i > 3k, then 
6k I - '  j * i  = n- ( j+ i ) ,  and sincei 5 [+I, 2i 5 6k-j. Thusn-(j+i)  2 i+1 

and so j * i > i.) 

iv) ( j ,& i) E NC(j), where i = 6k+i-j, if j is odd. 

(I-Iere observe that i .= 
6 k + l - j  > 6k+l - (k+l )  

2 - 2 = > 2k > j.) 

Then, for 2 < j 5 k +  1: 

If j is even, jF(j)l = 1 + (2k- j)+ (1" ": - 2E) , 

6 k + l  - j  
= 1 1 - j t l  and, 



Also, 

I C ( j )  n F ( j ) l  = 1 + 2k - j ,  Z < j < k + l ,  see 2 ( i ) ,  2( i i ) .  

c ( j ) n F ( l )  = { ( l , j _ , j  + I ) } ,  2  < j  < k ,  1 ( i i ) .  

, + 1 )  j  = h + 1, 1 ( i i i ) .  

c ( j ) n F ( i )  = {(Y, ~ , i +  j ) ) ,  2 5 i < j ,  2 < j  < k +  1. 2(ii). 

T h u s ,  

= (1 4 - 2 b - j )  + 1  + ( j  - 2 )  = 2 k ,  for 2  5 j  5 k +  1. 

9 ( & j , j  * j )  E c ( j ) .  

i i )  ( j , i , j  - * i )  E C ( j ) ,  where j  + 1  5 i < 2k - 1. 

(Observe t ha t  i f  j  + i 5 3 k ,  t hen  j  * i = j + i > i ,  and if j  + i > Bk, then 

j * i = n - ( i + j )  > ( 6 k + 1 ) - ( 4 k - 2 ) = % + 3  > i . )  

iii) ( j , i , f i )  E N C ( j ) ,  where 2k < i < [-1. 
(Again ,  i f  j  + i 5 3b ,  t hen  j + i > i. If j  + i > 3 k ,  then j  * i  = n - ( i  + j ) ,  

and as  2i 5 6 k  - j ,  n - (i + j )  2 i + 1, implying t ha t  j  * i > i.) 
6 k + l -  iv) ( j , i , i )  E N C ( j ) ,  where i = -+, i f  j  is odd .  

6 k + l - j  > 6 k + l - ( 2 k - 1 )  ( N o t e  t ha t  i = - 2  = 2 k +  1 > j . )  

Then, for k  + 2 _< j  5 2k - 1: 

I f  j i s  even, ]F( j ) l  = 1  + (2k  - 1  - j )  + (I""-: +I - 2 X +  I) 



6 k - 1 - j  
if j is odd, IF(j)l = 1 + (2k - 1 - j) + 

Further, 

I C ( j ) l = 2 k - j + 2 + j - 2 = 2 k ,  for k + 2 5  j L 2 k - 1 .  

IC(2k) n F(2k)I = 1, see 4(i). 

C(2k) F(1) = ((1,fZk - 1, 2k), (1, 2k,2k + l)), 1 (iii). 

( 2 )  n ( 2 )  = {(i,3_fi, 2k + i ) ) ,  2 - < i 5 k, 2 (ii) . 
C(2k) n F ( k  + 1 )  = 0, 2(ii). 

C(2k) n F(i)  = {(i, 2k, i * 2k)}, k + 2 < - i 5 2k - 1. 3(iii). 



We must check that we have assigned representatives to every one of 

the triples of differences. For any j, 1 < j 5 2k, the elements of F ( j )  we 

certainly distinct by construction, and we have checked that 

For a.ny i, j ,  1 5 i # j 5 2k, the elements of F ( i )  and F(j) are distinct. 

Therefore, it is enough to prove that the total number of triples of differences 

in F(l), F(2),  . . . , F(2k) equals the number of triples of differences of I<6k+I. 

By Corollary 3.18, there are 3k2 4- k triples of differences in Ic6k+l. 

Thus, every triple of differences in I{6k+l h a s  its representative(s), the 

number 1 has been chosen as a representative in k triples of differences, and 

the numbers 2,3, - , 2k  have each been chosen as representatives in 2k triples 

of differences. We must check that the numbers 2k + 1 , 2 k  + 2 ,  . . . , 3 k  have 

also each been chosen to represent 2k triples of differences. By Lemma 3.16, 



there are & (6k:1) equivalence classes. One representative is chosen for 

each equivalence class. Therefore, 

rcpresentati ves are chosen. 

We have shown in section 1) that 1 is chosen exactly k times, and in 2)-4) 

that each j, 2 5 j 5 2k is chosen exactly 2k times. This leaves 

equivalence classes for which we have not yet counted a representative. If we 

show that for each j ,  21; + 1 _< j 5 3k, that j is chosen at  least 2k times, 

thcn we must have that each j is chosen exactly 2k times and we are done. 

By Lemma 3.19, since j > 2k, j is either in the second or third position in 

a triple of differences. For 2k + 1 5 j 5 3k, we list the triples of differences in 

C(j) and check that IC(j)l 2 2k. We consider C(2k + 1) in section 5 ) ,  then 

C ( j )  with 2k + 2 5 j 5 3k - 1, in section 6), and finally C(3L) in section 7). 

In all three cases, we first list the triples of differences with j in their second 

position, and then the triples of differences with j in their third position. 

The first position will always be i, with 1 5 i 5 2k. For each subset of C( j )  

listed, a short justification that all triples of differences (a,  P,  y) in it satisfy 

equation 3.1 will be given if it is not immediately obvious. 

5) C(2k + 1) contains the following triples of differences: 

i) (1,2k -- + 1,2k + 2). The choice of representative is from l(iii). 

ii) (i,2k $ 1,2b + 1 + i), where 2 < i 5 k - 1. The choice of representa- 

tives is from 2(iii). 



(Note that we have i < 21; + 1 < 2k + 1 + i < 3k as needed for these to be 

triples of differences.) 

iii) (i,2k + 1,4k - i), where k 5 i < 2k-2. The choice of representatives 

6 k - 1 - i  is from 2(iii) and 3(iii), since IT] >_ [F] = 2k + 1. 

(Notethat inthiscasei  < 2k+1 < 4 k - i  < 3 k a n d 4 k - i = n - ( i + 2 k + l ) ,  

as needed.) 

iv) (2k - 1,2k + 1,2k + 1). The choice of representatives is from 3(iv). 

v) (1,2k, 2k + 1). The choice of representatives is from l(iii). 

Thus IC(2b+ 1)1 2 1 + k - 2 + Ic - 1 + 1 + 1 = 2k. 

6) C(j), 2k + 2 5 j 5 3k - 1, contains the following triples of differences: 

i)  (1, -- j, 1 + j ) .  The choice of representatives is from l(iii). 

ii) (i,  -- j, i + j ) ,  where 2 5 i 5 3k - j. The choice of representatives is from 

6k-2i  2(iii), since i 5 3k - j implies that i 5 12 - 2 and j 5 5 1-1 < - 

f 9 1 .  
(Since i 5 k - 2, we have 2 L: i < j < i + j 5 3k, as needed. Note that when 

j = 3k - 1, the bounds 2 5 i 5 3k - j do not hold, but we will count this 

triple zero times anyway, so this does not matter.) 

iii) ( i , i , n  - (i + j)), where 3k - j + 1 5 i 5 Gk - 2j. The choice of 

representatives is from 2(iii) and 3(iii), since if i is odd, i 5 6k - 2 j  - 1, so 

6k- i  1 Ak-i-1 that j 5 1-1, and if i is even, i < 6k - 2j, so that j 5 [yl = 

Also 2 < i 5 2k -4.  

( N o t e t h a t 2 ~ i ~ 2 k - 4 < j , a n d i ~ 6 k - 2 j i m p l i e s t h a t j < n - ( i + j ) ~  

n - ( 3 k -  j +  1 + j) =3k.) 

iv) (n - 2j, - j, j ) .  The choice of representative is from 2(iv) and 3(iv), 



since 3 < n - 2 j  < 2k - 3. 

(Also 2 5 n - 2 j  < j ,  as  needed for this to be a triple of differences.) 

v) (I ,  j - 1, j). The choice of representatives is from l(iii). - 

vi) (i, j - i, j ) ,  where 2 < i < j - 2k - 1. The choices of representatives is -- 

from 2(iii), since 2 < i 5 j -2k -1  5 k-2 and 2k+1 5 j- i  5 3k-1-i  5 
6k-2-2; < G k - 4 4  6 k - i - 1  

2 - 7 < r - ? -  1. (Again note that if j = 2k + 2, then the bounds 

2 5 i 5 j - 2k - I do not hold. Again, this does not matter since we count 

this triple zero times.) 

(S ince2iL2j -4k-2  - < j - k - 3 , i  5 j - i - k - 3 , a n d s o , 2 L i  < j - i <  

j < 3k.) 

vii) (i,n - (i + j ) , i ) ,  where n - 2 j  + 1 5 i 5 4k - j. The choice of 

representatives is from 2(iii) and 3(iii), since n - (i + j )  2 2k + 1. Also, 

n - (i + j) < - n - (n - 2 j  + 1) - j 5 j - 1 implies that n 5 2 j  + i - 1, which 

implies that 272 - 2(2 + j) 5 n - 2i - 2 j  + 2 j  + i - 1 5 6k - i. Thus, if i is odd, 

Gk-i < Gk-i-1 n - ( i + j ) <  - IT], and if i is even, n -  ( i+ j) 5 5 I-]. 
( S i n c e j < 3 k - l , n - 2 j + l  - >4.  A l s o , n - ( i + j ) > n - 4 k = 2 L + l  > i  

and n - (i + j) 5 n - (12  - 2 j  + 1 + j) 5 j - 1 < j. Therefore, 2 5 i < 

n - ( i + j )  < j <3k.) 

viii) (41; - j + I,%, j). - The choice of representatives'is from 3(iii), since 

k + 2 < 4 k - j + 1 < 2 k - l .  

(This is a triple of differences since k + 2 < 4k - j + 1 < 2k < j < 3k.) 

Thus, IC(j)l > 1+(3k-j-1)+(3k-j)+l+l+(j-2k-2)+(4k+j-n)+1 = 2k. 

7) C(31i) contains the following triples of differences: 

i) (1, B, 3 b ) .  The choice of representatives is from 1 (iv). 



ii) (1,3k - 1,3k). The choice of representative is from 1 (iii). 

iii) (i, 3k - i, 3k), where 2 5 i 5 k - 1. The choice of representatives is 

from 2(iii), since 2k + 1 5 31; - i < - [y] 5 IF]. 
(Note that since i I k-1 implies that 3k-i > 2k+l, we have i < 3k-i < 3k) 

iv) (k + 1,2k,%). The choice of representatives is from 2(ii). 

v) ( i ,3k+ 1 -i,=), where 2 5 i 5 k. The choice of representatives 

follows from 2(iii) and the fact that if i is odd, 2k+l 5 3k+l-i < [-1 j 

6k-1- i  6 k - i - 1  [,l,andifiiseven,2k+l 5 3k+l - i  < - 1-1 < [yl = 

(Since i 5 k implies 31; + 1 - i 2 21; + I ,  we have i < 3k + 1 - i < 3k, as 

needed.) 

Thus, as needed, IC(3k)I 2 2 + (k  - 2) + 1 + (k - 1) = 212. 

0 

Table 3.3 gives a choice of representatives of the triples of differences of 

that will lead to a Hamilton decomposition of I(&. From these choices 

of representatives of the triples of differences, we build a choice design on the 

3-edges of Iiz5 as in Lemma 3.22. We then take a Hamilton decomposition 

of of which one Hamilton cycle is 

which exists by Lemma 3.1. This Hamilton cycle H contains all the edges 

of length 1 from the graph of Then, using the choice design on the 

3-edges of I<;5, build H into k = 4 Hamilton cycles of I{&, and all the other 

Hamilton cycles of the Hamilton decomposition of I<25 into 2k = 8 Hamilton 

cycles of K&. 



3.3 Summary 

Theorems 3.10 and 3.23, together with Bermond's results of Lemmas 2.2 

and 2.3, complete the problem of constructing a Hamilton decomposition of 

I<:, when n - 1,2 (mod 3), and a Hamilton decomposition of K: - I, when 

n E O(mod 3) 



Triples of Choice(s) of Triples of 

differences representatives differences 

Choice(s) of 

representatives 

3 7 

3 8 

9 12 

10 12 

11 

4 

4 5 

4 6 

4 7 

4 8 

9 12 

10 11 

5 

5 6 

5 7 

5 12 

9 11 

10 

6 

cont. 



cod. 

Triples of Choice(s) of 

represent at ives 

9 11 

10 12 

11 12 

3 

3 4 

3 5 

3 6 

Triples of 

differences 

(67 7,121 

@,87 11) 

(6,9710) 

( 7 3  77 11) 

(778,W 

(7,97 9) 

@,S, 9) 

Choice(s) of 

representatives 

6 7 

8 11 

9 10 

7 

8 10 

9 

8 

Table 3.3: Representatives of triples of differences for A'& 
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