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Abstract

The problem of finding a Hamilton decomposition of the complete 3-
uniform hypergraph K32 has been solved for n a prime [4], and for n = 2 (mod
3) and n = 4 (mod 6) [2]. We find here a Hamilton decomposition of K3 —1I,
n = 0(mod 3), and a Hamilton decomposition of K3, n =1(mod 6), and

thercby complete the solution of the problem.
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Chapter 1

Introduction

1.1 Definitions and Notation

Definition 1.1 The complete graph on n vertices will be denoted by K,
the graph on n vertices in which every two vertices are joined by A distinct
edges will be denoted by AK,,, and the graph on n vertices with no edges
will be denoted by K,. A 1-factor in a graph G is a spanning subgraph of
G in which every vertex has degree 1. We will denote the complete graph on

n vertices, less a 1-factor, by K, — 1.
Definition 1.2 A cycle of length k in a grapk ( is a sequence
(z1,72,Z3,. ., Tk-1,Tk)
of distinct vertices, together with the edges
{zi,zin}, 1 <1<k,
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where addition on the subscripts is modulo k. This cycle will be denoted by
Ck.

A Ci-factor in a graph G is a spanning subgraph of G in which every
vertex has degree 2 and is in a cycle of length £.

A Hamilton cycle of a graph GG on n vertices is a cycle of length n. If the
edges of G can be partitioned into Hamilton cycles, then G is said to have a

Hamilton decomposition.

Definition 1.3 A hypergraph H(V,£) is a set of vertices V = V(H) =
{1,2,...,n} and a set of hyperedges £ = E(H) = {E, Ea, ..., E,}, where
E:CVand [E|>0,1<i<m.

If |E;] = h, we call E; an h-edge. If |E;| = h, for all E; € £, then we
call H h-uniform. For convenience, we will often write the 3-edge {a, b, c}
as abe.

The complete h—uniform hypergraph on n vertices, denoted K*, is a hy-
pergraph on the n vertices of V, in which every h-subset of V determines a

h

hyperedge, or h-edge. It follows that K} has (2) hyperedges.

Definition 1.4 A 1-factor of the hypergraph H(V,£) is a spanning sub-

graph of H(V, &), in which each of the n vertices of H(V, £) has degree 1.
We will denote the complete 3—uniform hypergraph on n vertices, less a

I-factor, by K2 — I, and the complete 3—uniform hypergraph on n vertices,

plus a 1-factor, by K3 + I.
Definition 1.5 A cycle of length k of H is a sequence of the form

(III,E],JZ?Q,Eg,. ..,(Bk,Ek,(B]),

2




where {z,,2,,..., 24} are distinct vertices, and Ey, Es, ..., Ey are h-edges of
'H, satisfying

(i) ziyzi41 € E;, 1 <1<k,

(ii) E; # Ej for 1 # 3.

For convenience, cycles in 3-uniform hypergraphs will be written as

($1y1352, T2Y2X3, T3Y3Lay - - -y Tha1Yh—1Tk, zkykml)’

where z;y;7,4, is a 3-edge, {21,%2,..., 74} are distinct vertices, and all 3~
edges in the cycle are different.
This cycle is known as a Berge cycle, having been introduced by C. Berge

in his book Graphs and Hypergraphs [1).

Definition 1.6 Hamilton cycles and Hamilton decompositions of a hyper-
graph are defined as in the case of graphs: a Hamilton cycle in a hypergraph
H on n vertices is a cycle of length n; and a Hamilton decomposition of H is

a partition of the hyperedges of H into Hamilton cycles.

Definition 1.7 Let A and B be two graphs. We form the wreath product
of A and B, denoted AwrB, by replacing cach vertex in A by a copy of B,
and making two vertices in different copies of B adjacent if and only if the

corresponding two vertices in A were adjacent.

1.2 Intreduction

In this thesis we consider the problem of constructing Hamilton decompo-

sitions of the complete 3-uniform hypergraph K3. The problem has been

3



solved by Bermond [2] for n = 2(mod 3) and n = 4 (mod 6), and Bermond
et al. [4] have conjectured that both K3, n = 1(mod 6), and K3 — I,
n = 0(mod 3), have a Hamilton decomposition.

In Chapter 2 we discuss known results for decompositions of K, and K3
into cycles, as well as other types of decompositions of K*.

In Chapter 3 we outline Bermond’s constructions for Hamilton decompo-
sitions of 3, n = 2(mod 3) and n = 4 (mod 6), and then construct a Hamil-

ton decomposition of K — /, n = 0(mod 3), and a Hamilton decomposition

of K2, n =1 (inod 6).




Chapter 2

Survey of Results

The problem of decomposing the complete graph into cycles has been ex-
tensively studied since the late 1800’s when Walecki [17] proved that Ky,
and 2K,, are Hamilton decomposable. The question then was when are the
necessary conditions sufficient for the existence of a decomposition of a graph
into cycles of some length k. This question has been answered completely for
K, for many small values of k. C. Rodger [21] has published a survey paper
of decompositions into cycles of odd length. S. Marshall’s Masters thesis [18]
is another recent survey of work done decomposing graphs into cycles, and
the papers Cycle and circuit designs: odd case by Bermond and Sotteau [6]
and Balanced cycle and circuit designs: even case by Bermond, Huang and
Sotteau [5] together are a good survey of the results on decomposing the
graph K, into cycles of length less than n.

In comparison, there are few results on the decompositions of hypergraphs

into cycles. One of the reasons for this is that even the notion of a cycle in



a hypergraph is not an obvious one. The definition of a cycle, that of a
Berge cycle, given in Chapter 1 is the most common, but there are many
others (see [7] for examples), all of which are further restrictions on the
Berge cycle. Even using this simplest definition of a cycle, the problem of
finding a Hamilton decomposition of K* has not been solved. The only result
for general A is that the complete h-uniform hypergraph K has a Hamilton
decomposition if n is prime [4]. There are no other results than this for A

greater than three, but the following results are known for K3.

Lemma 2.1 [4] The complete h-uniform hypergraph K" has a Hamilton

decomposition if n is prime.

Lemma 2.2 [2] The complete 3-uniform hypergraph K3 has a Hamilton

decomposition if n = 2(mod 3).

Lemma 2.3 (2] The complete 3-uniform hypergraph K3 has a Hamilton

decomposttion if K2 has a Hamilton decomposition.

Lemmas 2.2 and 2.3 imply that if n = 4 (mod 6) then K2 has a Hamilton

decomposition.
For the remaining cases of n = 1(mod 6) and » = 0(mod 3) iz K2, Ber-

mond et al. [4] have made the following conjectures:

Conjecture 2.4 For n = 1 (mod 6), there exists a partition of the 3—edges

of K3 into Hamilton cycles.

Conjecture 2.5 For n = 0(mod 3), there exists a partition of the 3—edges

of K? into a 1-factor and Hamilton cycles.

6



These two conjectures will be proved in the next chapter, thereby com-
pleting the problem of decomposing K2 into (Berge) cycles of length n. 1If
the definition of a cycle in a hypergraph is restricted as follows, we have a

new problem and another conjecture.

Definition 2.6 A cycle is of type t if and only if the cardinality of the

intersection of any two consecutive hyperedges in the cycle is equal to t.

Bermond et al. [4] have made the following conjecture about decomposi-

tions of K3 into Hamilton cycles of type ¢, t € {1,2}:

Conjecture 2.7 For n = 1,2 (mod 3) there is a partition of the 3-edges of
K? into Hamilton cycles of type t, t € {1,2}. For n = 0(mod 3) there is a
partition of the edges of K2 into a 1-factor and Hamilton cycles of type t,

t e {1,2}.

Little work has been done to decompose hypergraphs into cycles of a
given length k; one reason for this may be that there is not a unique defi-
nition of a cycle in a hypergraph. However, other types of decompositions
of hypergraphs have been studied by such people as Z. Lonc [13, 14, 15, 16],
A.F. Mouyart and F. Sterboul [19, 20}, and E. Eliad-Badt [8].

Definition 2.8 Let K and H be two h-uniform hypergraphs. K is said to
admit an H-decomposition if the hyperedges of K can be partitioned into

subhypergraphs isomorphic to H.

The necessary condition for an H-decomposition of K, where H and K
are two given h—uniform hypergraphs, is usually that the number of h-edges

of H divides the number of h-edges of K.

7



Some results in this area are that necessary and sufficient conditions are
known for K3 to admit a K}~decomposition [9], and more generally, that
necessary and sufficient conditions have been established for the existence of
an H-decomposition of K2, if H is any 3-uniform hypergraph on 4 vertices
(3].

Eliad-Badt [8] and Lonc [14], [13] have considered decompositions of hy-
pergraphs into different analogues of stars. The simplest such subhypergraph

is known as a star.

Definition 2.9 The star S3is denoted by z : a; ...an. Its edges are za;a;,

#3767 €{2,3,...,m}.

A typical result in this area is that the hypergraph AK?2 admits an S3 -
decomposition whenever the necessary conditions are satisfied [3, 8]. Again
the necessary conditions are dependent on the number of 3-edges in AK?>

and S2 .



Chapter 3

Hamilton decompositions of K3

If the 3-edges of K2 can be partitioned into Hamilton cycles as defined in
Definition 1.6, then these Hamilton cycles form a Hamilton decomposition of
K3. Such a decomposition requires

1() (n—1)(n - 2)

n\3) " 6

Hamilton cycles, since each Hamilton cycle uses n 3-edges and there are
(g) 3-edges altogether. This condition in turn implies that we must have
n =1,2(mod 3) for a Hamilton decomposition of K3 to exist.

Bermond [2], using an idea of Brouwer, has constructed a Hamilton de-
composition for K2, n = 2(mod 3), and then, by showing that a Hamilton
decomposition for K3 can be constructed from a Hamilton decomposition
for K3, has also solved the problem for n = 4 (mod 6).

For the remaining cases, n = 1{mod 6) and n = 0(mod 3), Bermond ¢!

al. [4] put forward Conjectures 2.4 and 2.5, which we will prove in section 3.2.



3.1 n=2(mod 3) and n =4 (mod 6)

First of all, we give Bermond’s proofs for Hamilton decompositions of K32,

n = 2(mod 3) and n = 4 (mod 6).

3.1.1 n=2(mod 3)

We prove the following lemma by constructing a Hamilton decomposition
of K, for n odd, and of 2K, for n even. These will be used in Bermond’s

construction of a Hamilton decomposition of K2, n =2 (mod 3).

Lemma 3.1 Walecki [17] A Hamilton decomposition of K, exists if n is

odd, and a Hamillon decomposition of 2K, exists if n is even.

Proof.
First, suppose that n is odd. Then the graph in Figure 3.1 is one Hamilton

cycle of I,

n+3 n+1

2’2)'

Co = (00,ay,a9,...,a,1) = (00,1,2,n - 1,3,...,

A Hamilton decomposition of K, is given by the % Hamilton cycles:

Ci=(c0,a1+%4,a3+1,...,a,-1412), 0<1 <

where addition is modulo n — 1.
Next, suppose that n is even. The graph on n vertices in Figure 3.2 is
one Hamilton cycle of K,,

n+2
2

)-

Co = (00, by, by, - ., buy) = (00,1,2,n — 1%

10
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Figure 3.1: A Hamilton cycle in Ky, n odd.
A Hamilton decomposition of 2K, is given by the n — 1 Hamilton cycles:
C,‘ = (OO,bl +i,b2+i,...,bn_1+i), 0 S 1 S n——2,

where again addition is modulo n — 1.

]

In order to construct a Hamilton decomposition of K2, n = 2(mod 3),
Brouwer first constructed a ‘choice design of order n’. We give here a morc

general version of his definition.

Definition 3.2 A choice design of ordern on a given 3-uniform hypergraph

‘H on n vertices is a choice of one vertex from each 3-edge of H to represent

11



n/2

Figure 3.2: A Hamilton cycle in 2K, n even.

that vertex.

In Bermond’s proof and in the proofs in Section 3.2, we will construct

choice designs subject to certain specified conditions.

Theorem 3.3 (Bermond [2]) A choice design of ordern on K3 that satisfies
the following condition exists if n = 2(mod 3).
(i) Among the (n —2) 3-edges containing a given pair a and b, (n —2)/3

of them have neither a nor b chosen as their representative.

Proof.
We will use the notation ab* to be the set of all 3-edges containing a and

b that have neither a nor b as their representative.

12
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The sufficiency of n = 2(mod 3) is proven by induction. A choice design
of order 5 will be constructed, and then a method for constructing a clhioice
design of order k + 3 from a choice design of order k will be given.

A choice design of order 5 is:

123 124 125 134 135 145 234 235 245 345,

where the chosen vertex of each 3-edge is underlined. Note that, as needed,
among the three 3-edges containing any given pair a and b, exactly one has
neither a nor b chosen as its representative.

Now assume that we have a choice design of order n on the vertices
{1,2,...,n}. We want to construct a choice design of order n + 3 on the
vertices {1,2,...,n} U{a, 3,7}

(1) If {¢,5,k} C {1,2,...,n}, then choose the representative of ijk as in
the choice design of order n.

(2) If {¢,57} € {1,2,...,n}, then choose the representatives of ije, 50,

and 23+ as follows in Table 3.1.

hyperedges : ija 1jf ijy withi<j
representatives: 1 3 v ii+j5=0(mod 3)
J B v ifi+7=1(mod 3)
a ¢ 3 ifi+j=2(mod 3)

Table 3.1: Choosing representatives for 3-edges of K3 ; (1)

(3) If £ € {1,2,...,n}, then choose the representatives of i3, i3y, and
17 as follows in Table 3.2.

13



hyperedges : iafl tay i16%
representatives: 1 v v ifi=0(mod 3)
B a i ifi=1(mod3)
« i B ifi=2(mod3)

Table 3.2: Choosing representatives for 3-edges of K3, 5 (2)

(4) Choose v in afy.

To prove that this construction works, we must prove that |abx| = &
for all a,b € {1,2,...,n} U {e,B,v}. From now on, assume that 7,; €
{1,2,...,n}.

Let p = 232, We first show that |ijx| = p + 1.

There are p 3-edges 1jk, where ¢,j,k € {1,2,...,n}. Depending on the
value of 7+ j (mod 3), exactly one of ¢jq, 58, 2j7 will occur.

Now assume that z = 0 (mod 3). Let 1 = 3¢,1 < ¢ < p.

Among 3-edges of the form 7ja with j > 7, there are p + 1 — ¢ values of
j sothat i+ j =1 (mod 3). If j < 7, then there are ¢ — 1 values of j so that
t +j = 0{mod 3). The 3-edge iay contributes one more. Thus,

liax| =p+1—g+q—1+1=p+1, for i =0(mod 3).

Among 3-edges of the form ¢j8 with j > ¢, there are p — ¢ values of
J so that 1 4+ 7 = 0(mod 3). If j < 7, then there are ¢ values of j so that
t +j = 2(mod 3). The 3-edge ¢4y contributes one more. Thus,

|ifx|=p—-q+q+1=p+1, fori =0(mod 3).

14



Among 3-edges of the form 235y with j > i, there are p — ¢ + 1 values
of j so that ¢t + 7 = 2(mod 3). If j < ¢, then there are ¢ values of j so that
i+ 7 = 1(mod 3). Thus,

livy|=p—q+1+qg=p+1, for i = 0(mod 3).
When 7 = 1,2 (mod 3) the calculations are similar. Thus
liax| = |ifx] = [ivx| = p+ 1

forall i € {1,2,...,n}.
There are p values of 2 € {1,2,...,n} such that i = 0 (mod 3), so there

are p 3-edges afBi. The 3-edge afy contributes one more. Thus,
lafx| =p+1.

There are p + 1 values of : € {1,2,...,n} such that z = 2(mod 3), so

there are p+ 1 3-edges ayi. Thus,
layx| =p+1.

Finally, there are p+1 values of z € {1,2,...,n} such that : = 1 (mod 3),
so there are p+ 1 3-edges f~vi. Thus,

1Byl =p+1.

O

The proof of the following lemma shows how to construct a Hamilton
decomposition of K2, n = 2(mod 3), given a choice design of order n that

satisfies the condition of Theorem 3.3.

15



Lemma 3.4 (2] Given a choice design of order n that satisfies condition

(i) of Theorem 3.3., a Hamilton decomposition of K3 can be constructed.

Proof.

By Lemma 3.1, Hamilton decompositions of K,, n odd, and 2K,, n
even, exist. These are used together with the above choice design of order
n in the following construction of a Hamilton decomposition of K3. Since
n = 2 (mod 3), we can let n = 3m + 2.

First assume that n and hence m is odd. The graph K, has

1 3m+ 2 _3m+l
3m + 2 2 92

Hamilton cycles in a Hamilton decomposition, and the hypergraph K32 will

have

Im+2 3 2

Hamilton cycles in a Hamilton decomposition. Each Hamilton cycle of K,

1 (3m+‘2) _ m(3m+ 1)

will be used to construct m Hamilton cycles of K. Choose a Hamilton cycle
H in the Hamilton decomposition of K,. For every edge ab in H, |abx| = m.
Now choose an element of this set, say abec, and add ¢ to the edge ab to get
the 3-edge ach. Doing this for each edge of H creates a Hamilton cycle of
K3. Since there are m 3-edges in ab* for each edge ab € H, we can construct
a further m — 1 Hamilton cycles of K3 from H, giving m Hamilton cycles all
together. Thus if H = {{z1,22,...,%,)}, we build the following m Hamilton

cycles of K2:
o 7 b j .
(19322, T2Y3T3, - - -, Tno1Yn1Tns Ta¥p 1)y 1 S 7 S,

16



where

{zizipyl 1 <j <m}=zimiax

Constructing mn Hamilton cycles in this way {from each Hamilton cycle of
K, gives a Hamilton decomposition of K3.

Continuing with the above example, a Hamilton decomposition of K3 is
F=(,23,45)and G=(1, 3,5, 2, 4).

The first edge of the first cycle in this example is the edge (12). There
is one 3-edge in the above choice design that is in the set 12%, namely, 124,
5—2

since m = 23% = 1. Thus a 4 is inserted between the 1 and the 2 to give the

3-edge 142, Continuing in this way, we obtain
Fy = (142, 253, 314, 425, 531) and G; = (123, 345, 512, 234, 451),

which is a Hamilton decomposition of K3.
Now assume that n and hence m is even and choose a Hamilton cycle [’
in the Hamilton decomposition of 2K,. A Hamilton decomposition of the

graph 2K, has

2 3m + 2
3m +2 2

Hamilton cycles, and each of these will be used to construct % Hamilton

)=3m+1

cycles of K3. For each edge abin H’, divide the set abx into two parts (abx),
and (ab#),, so that
m
(abes] = [(abe)ol = 2

Letting H' = {(z1,Z2,-..,Zn)}, we use it to build the following % Hamil-

ton cycles of K3:

17



j j j j WP
(19172, T2Y3 T3, . - - Tn-1Yn—1%n, Tn¥pT1), 1 < J < 5

where {zzipyl 11 <j < 2} = (zizig1x)y, if H' is the first cycle that the
edge z;7;4; appears in, and {zizi1yl :1<j < 2} = (ziwipx)2 if H' is the
second cycle that the edge r;z;41 appears in.

Building each cycle of the Hamilton decomposition of 2K, into 2 Hamil-

ton cycles of K2 in this way yields a Hamilton decomposition of K3. O

3.1.2 n=4 (mod6)

The following theorem is also from Bermond’s paper [2]; the proof was ob-

tained with D. Sotteau.

Theorem 3.5 If there is a Hamilton decomposition of K3, then there is a

Hamilton decomposition of K3, .
To prove this theorem we need the following definition and two lemmas.

Definition 3.6 The complete symmetric directed graph on n vertices will

be denoted by K.

The following lemma follows directly from Lemma 3.1, by taking two

copies of each cycle and orienting them in opposite directions.

Lemma 3.7 The digraph K3,,,, can be decomposed into 2n directed Hamil-

ton cycles.

18



Lemma 3.8 (Tillson [24]) If 2n > 8, then K, can be decomposed into

2n — 1 directed Hamailton cycles.

Proof of Theorem 3.5.
Let the vertex set of K3, be X U X', where |X| = |X’| = n. First,
associate four Hamilton cycles of K3 with each Hamilton cycle of K32 in the

following way.
Case 1: n even.

Associate with the cycle

(931’!/1932, I2Y2x3,..., rnynl‘l)

the following:
'
(-lel-TZa I2Y2Z35- -+ 3 Tn-1Yn—1Tn, TnlYnTy,
' ' g ' N, P
T1Y1T05 ToY2T35 - - -3 T 1Yn—1Trs T ¥nl1),
and
T ' . /
($1y1$2, $2y2$37 $3'!/31174, ey mn—-lyn—lxn, l'nynl'p
’ / s
T1Y1T2,L2Y2T3, - - -y Ty _1Yn—-1Tn, mﬂ:yﬂxl)‘)

and the two cycles obtained by interchanging the vertices of X and X".
Case 2: n odd.

Associate with

(Z131 %2, T2Y2T3 . . ., TnYnTy)
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the following:

/ / / /
(561.1/1-7?2, T2Y2T3y .-+ 3 Tn-2Yn—-2Tn-1,Tn-1Yp_1T,, Ty Yndy

7 7 7 7 7 7 7 7
T1Y1T9, Tol2Tg - - - s Ty _oYn—225_15T5_1Yn_1Tn, -'Unynxl)a

AR N I AN 7 7 7 7 7 I I I
(1'1?/1332, ToloT3y- - s Ty 2Yn 20 15 Tno1¥Yn-1Tn> Tu¥nT1,
7 7 7 7 I 7
T1Y1T2,X2Y2T3y - - 3 Tn—2Yy_2Tn—-1,Tn-1Yp_1Tn, xnynl‘]),
7 7 7 I 7
($1y1$2, Tl2X3, .. -y Tn—2Yn-2T5 1, T(_1Yn-1Tn, TnlnTy,
7 7 7 7 7
TIY1T2, T2Y2 T3y - - -y Ty 9Yn—2Tn—1, Tn-1Yn-1Zp; L7 YnT1),
and
7 7 N I I 7
(Z1Y1T2, T2YaTay - - s Ty aYs—2Tn1y Tn-1Yn—1Zn, LnYp L1,
,’f' A 7 I I I I ! !
TiY T2 ToYaT3y - - s Tn—2Yn_2Tp_1,Tn_1Yn-1Ty, mnynml)'

These cycles contain every 3-edge not of the form z,z',y or «,z’,y’. We
use Lemmas 3.7 and 3.8 to decompose these remaining 3-edges. With the
directed Hamilton cycle z1, 22, .., z, of a decomposition of K7, we associate

the following Hamilton cycle of K3:

’ ’ ! ! 1t
(1'11'13:2, T2T9T3y-- -3 Tn2T, 2Tn_1,Tp-1T,_1Tn,TnT,Tq,

/ v ’ N ’ ’ roa
TIT1Tg, ToT2Ty, ..oy &y oTne2Ty 1, Ln_1Ln-1TLp, Ly Tn1)-

3.2 n=0(mod 3) and n = 1(mod 6)
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3.2.1 n=0(mod 3)

There cannot exist a Hamilton decomposition of K3 when n =0 (mod 3)
since the necessary condition for the existence of a Hamilton decomposition
(that (g)/n is an integer) is not satisfied. This is similar to the case of Kj,:

it is not possible to have a Hamilton decomposition of K5,, because

1271__271——1
m\2/) " 2

which is not an integer. However, if a 1-factor is removed from K,,, then

the resulting graph does have a Hamilton decomposition. In an analogous
way, we shall remove a 1-factor from K2, n = 0(mod 3), and then construct
a Hamilton decomposition of the remaining 3-edges. (See Section 1.1 for a
definition of a 1-factor in a hypergraph.) Since n = 0(mod 3), let n = 3s.
A 1-factor of K3 obviously exists; it will contain s 3-edges.

The hypergraph K> — I has ( (3’) — s) 3-edges. The necessary condition

3

for the existences of a Hamilton decomposition of K2 — I is that

3s

is an integer. Since

(3) =5 3s(s—1)
3s 2

the necessary condition is satisfied.
A Hamilton decomposition of K2 — I, n = 0(mod 3) is the ‘next best

thing’ to a Hamilton decomposition of K7 in the following sense.

Lemma 3.9 A 1-factor contains the fewest number of 3-edges that can be
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removed from K2, n = 0(mod 3), so that the resulting graph satisfies the

necessary condition for the existence of a Hamilton decomposition.

Proof.

Suppose we remove z 3-edges from K2. The resulting hypergraph has

(3’) — z 3-edges. The necessary condition for the existence of a Hamilton

s((5) -+

decomposition is that

is an integer.

Since
3s 2
3) "% 9s"~9s+2 «z
3s 6 3s’
and 222 is an integer, we need 2 — Z to be an integer
6 g ¥ 6 3s g :

Therefore, the possible solutions for z are
t=Fk-3s4s,ke 22°

When k = 0, z is a minimum. So the smallest possible number of 3—edges
that can be removed so that the resulting hypergraph satisfies the necessary

condition is z = s. A 1-factor has s 3—edges. O

Theorem 3.10 If n = 0(mod 3), then there is a Hamilton decomposition
of K3 1.

Without loss of generality, we consider a specific 1-factor, namely,

T = {123,456,...,(n — 2)(n — 1)n},

o
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and the hypergraph K2 — T constructed by removing the 1-factor T from
K3

We will use another choice design, similar to that used by Bermond [2]
for n = 2(mod 3), to find Hamilton decompositions of K3 — T

This time, however, instead of building up the Hamilton decomposition
of the hypergraph from Hamilton decompositions of K, and 2K,, we will
use Hamilton decompositions of K, —T* and 2(K, —T*), where T" is a

Cs-factor of K,, and
T ={(1,2,3),(4,5,6),...,(n ~ 2,n—1,n)}.

We do this because the number of Hamilton cycles in a Hamilton decompo-
sition of K3 — T is divisible by the number of Hamilton cycles in a Hamilton
decomposition of K, — T™ if n is odd, and by the number of Hamilton cycles
in a Hamilton decomposition of 2(K, — T*) if n is even. Hamilton decom-
positions of K, —T*, n odd, and 2(K, — T™), n even, will be constructed
later. Once we have the choice designs, the Hamilton cycles in the Hamilton
decompositions of K,, — 7™, n odd, and 2(K, — T*), n even, will be extended
to Hamilton cycles of K2 — 7.
The hypergraph K3, — T has

(0)-

3-edges, and so any Hamilton decomposition of it has

G((5)-) =5
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The graph K3, — T™* has

3s _9s(s—1)
(2) mET
3(s-1)

edges. If n = 3s is odd, a decomposition of the edges of K3, — T™ into =
Hamilton cycles will be given, and if n is even, a decomposition of the edges
of 2(K, — 1) into 3(s — 1) Hamilton cycles will be given.

Thus we want a choice design that will allow each Hamilton cycle of
K, — T* to be built up into s Hamilton cycles of K2 — T, for odd n, and
each Hamilton cycle of 2(K, — T™) to be extended to 3 Hamilton cycles of
K2 - T, for even n.

The following grouping of the elementsof V = V(K3 —~ T) = {1,2,...,3s}
in Figure 3.3 will be used in the definition and the construction of the choice
design. Group the elements of V into s groups, where the ** group G; is

Gi={3-23—-1,3},1<i<s.

1 4 7 3i-2 3s-2
2 5 8 e 3i-1 e 3s-1
3 6 9 3i 3s
Group
number 1 2 3 SR i R s

Figure 3.3: A 3 x s array of the elements of V.

We will write G(a) to indicate the group number containing a. Let (X) be
the set of all 3-edges from V, and (%) — T be the set of 3-edges of K3, — T.
Notice that T = {G;:1 <1 < s}.

We define two types of 3-edges in (‘;) —T': Type (1) 3~edges are 3-edges

abc in which a and b are in the same group, and c is in a different group;
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and Type (2) 3-edges are 3-edges abe in which a, b, and c are all in different

groups.

Lemma 3.11 There erists a choice design on the 3-edges of K3, — T, where
the vertices of V(K3, — T) are grouped into groups G; = {31 — 2,3t — 1, 3¢},
1<i<s,andT = {123,456,...,(n—2)(n—1)n}, that satisfies the following
two conditions.

(1) If abc € (g) —~ T and a and b are in the same group, then ¢ is not
chosen as the representative of this 3—edge.

(it) Given b and ¢ in different groups, the set bcx contains s elements.

Proof.
We first construct choice designs for odd and even 3s, and then prove

that they satisfy the two conditions above.

Case 1 3s odd:
Let 3s = 6t + 3, so that s = 2t + 1.

Choosing representatives for 3—edges of Type (1):

The partition of V in Figure 3.3 has s = 2t + 1 groups, where the ¢
group G; is
2041
Gi=1{31—-2,3 1,3}, 1<i<2+1,and V= |J G
i=1
Order the elements of a given 3-edge as abc so that a,b € G, with
b=a+1(mod 3), and c € Gj, ¢ # j.
If
j—1=(2l—-1)(mod 2t + 1),
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for 1 <1< t, choose a as the representative of the 3—edge. Otherwise choose

b.
Choosing the representative for 3—edges of Type (2):

Order the 3-edge as abc so that G(a) < G(b) < G(c). Then,

if a+b+c=0(mod 3), choose a,
if a+b+c=1(mod 3), choose b, and

if a+b+c=2(mod 3), choose c.

We must now prove that this is indeed a choice design as defined.

Condition (i) follows immediately by the choice of representatives for
Type (1) 3-edges.

The verification that condition (ii) holds is a little more involved. Let
b and ¢ be elements in different groups, G; and G}, respectively. There are
four 3~edges of Type (1) containing both b and ¢: bibe, babe, cicb, and cycb,
where {b,b;,b,} = G}, and {c, 1,2} = G;.

To determine the representatives of these four 3-edges, we consider (j —
i) mod(2t 4+ 1). Suppose that j —z= (2l —1)(mod 2t +1),1 <1< L.

If b is the representative for the 3-edge b bc, then b = b+ 1(mod 3),
implying that b = b, + 1{mod 3), and hence, that b, is the representative for
the 3—edge b,bc.

If b, is the representative for the 3-edge bibc, then b= b; + 1 (mod 3),
implying that b, = b+ 1 (mod 3), and hence, that b is the representative for
the 3—edge bybc.



In either case, b is the representative in one of the 3—edges bbc and b,be,
and the element not equal to b or ¢ is chosen in the other 3-edge.

A similar argument holds if j —7 =2 (mod 2t + 1), 1 <1 < t.

On repeating this argument for the 3-edges ¢;cb and c;cb, we can conclude
that if b and c are in different groups, then among the four 3~edges of Type (1)
that contain both b and ¢, exactly two of them are elements of the set bex.

Now suppose abc is a 3—edge of Type (2), with b and ¢ fixed. The question
is: ‘How many 3-edges abc of Type (2) are in the set bex?’

With b and ¢ fixed, the 3-edges abc of Type (2) are created by allowing
a to run through the three levels of each of the remaining (2t — 1) groups.

Thus, exactly once in each group, the value of
a+ b+ c(mod 3)

will force a to be chosen as the representative of the 3—edge. So there are
exactly (2t — 1) 3-edges of Type (2) in the set bex. Thus |bex| = (2t + 1),
satisfying condition (ii).

Case 2: 3s even:

Let 3s = 67, so that s = 2r.

Again we construct a choice design and then prove that it satisfies the

conditions of the definition.
Choosing representatives;

We again partition V, this time into 2r groups, where the :** group G; is

2r
Gi={3i—-2,3—1,3i},1<i< 2, and V= |J G

1=1
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Then every 3-edge from V except for the 3-edges within a group Gj is a
3-edge of K — T. Again there are 3—edges of Types (1) and (2).

Choosing the representatives for the 3—edges of Type (1):

Order the elements of a given 3-edge abc as in Case 1 so that a and b lie
in the same group G;, with b = ¢ + 1 (mod 3), and so that c lies in group Gj,
i#7.

If

a+b+c=1,2(mod 3), choose a,

and if
a+ b+ c=0(mod 3), choose b

as the representative of the 3-edge.
Choosing the representatives for the 3—edges of Type (2):
Choose the representatives for the 3-edges of Type (2) as in Case 1.

We now verify that we do indeed have the required choice design.

Condition (i) follows immediately, but condition (ii) again takes a little
more work. Let b and ¢ be elements in different groups, G; and Gj, respec-
tively. Let G; = {b, b1, b2} and G; = {¢, ¢1, ¢z}, where b; = b+ 1 (mod 3), and
by = b+ 2(mod 3} in G;, and ¢; = ¢+ 1(mod 3), and ¢ = ¢+ 2 (mod 3) in
G;j.

Then the four 3-edges of Type (1) which contain b and ¢, with their

elements in the ‘right’ order are:

bbyc, babe, ccib, and cocbh.

28



(a) If b= c(mod 3) then a4+ b+ c=1,2(mod 3), for a € {b;,by,¢1,c2}.
Thus, in each of the above four 3-edges, the representative would be the
first element. This implies that there are exactly two 3-edges of Type (1) in

bcx.

(b)If b=c—1(mod3), then b+ b + ¢ = 2(mod 3); choose b in bb,c.
If b=c—1(mod3), then by+ b+ c=0(mod 3); choose b in bybc.
If b=c—1(mod3), then c+ ¢ + b= 0(inod 3); choose ¢; in ceb.

If b=c—1(mod3), then ¢z + ¢+ b= 1(mod 3); choose c; in czcb.

Again bex has two elements of Type (1) in it.
(c) Similarly, if 5= ¢+ 1 (mod 3) there are exactly two elements of Type (1)
in bex.

If abc is of Type (2), an argument that is exactly the same as in Case 1
shows that bex has 2r — 2 elements of Type (2) in it.

Hence |bcx| = 2r, as needed. O

Before we can prove Theorem 3.10, we must first construct Hamilton
decompositions of K3, —T~, s odd, and 2(K3, — T*), s even. To do this,
we consider the graph C,wrK3, “C, wreath K3”, formed by replacing each
vertex in C, by a copy of K3, and then putting an edge between any two
vertices in adjacent copies of K3, and the graph K,wrKs, “K, wreath K3,
formed by replacing each vertex in K, by a copy of K3, and then putting an
edge between any two vertices in different copies of K3. Clearly, K,wrK; =

Kz — T
Lemma 3.12 A Hamilton decomposition of Kz, — T™ exists if s is odd,
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and a Hamillon decomposition of 2(Ks, —T*) ezxists if s is even.

Proof.
Case 1: s odd.

Assume s is odd. The graph K3, — T* has

edges, and hence, we want to partition it into

1 (9s(s—1)) _3(s—1)
3_3( 2 )' 2

4

Hamilton cycles. Since K3, — T* = K,wrK 3, we will use the graph K,wrK,

to prove the result.

s—1

By Lemma 3.1, the graph K, can be partitioned into %5~ Hamilton cycles.

If we take the wreath product of each of these Hamilton cycles with K3, we

will have a partition of K,wrK3 into 221 copies of C,wrK 3. Therefore, if we

can partition the 9s edges of each copy of C,wrK 3 into 9s/(3s) = 3 Hamilton
cycles, we will have constructed a Hamilton decomposition of K3, — T*.

Let V(C,w7'—1§;3) be exhibited in a 3 x s array of vertices,
V=WuWu...UuV, where V; = {3: —2,3: — 1,3:},1 <: < s,

and observe that every two adjacent columns of vertices, V; U V11,1 <1<
(s — 1) and V, U V4, induce a K3 3, as shown in Figure 3.4.

We will first find a Hamilton decomposition of CswrKs and then show
how to extend it to a Hamilton decomposition for all C,'LUTT{:;, when s is odd.

A Hamilton decomposition of CswrK3 is shown in Figure 3.5.

30



Va V3 . Vit Vi Vig1 = V3gp V351 Vig

Figure 3.4: A 3 x s array of edges and vertices of Cywrk,.

2@ %

Vi Va V5 Vi YV, Vi Va V3

First cycle Second cycle Third cycle
Figure 3.5: A Hamilton decomposition of CywrK s.

For odd s greater than 3, we exhibit in Figure 3.6 a decomposition of
G[Vai-1,Vai, Vaina], 2 < @ < 251, into three subgraphs, each isomorphic to
P3U P3U Ps, with the additional feature that in each subgraph, path j starts
in row j and ends in row j, j € {1,2,3}.

Take the union of the decompositions of G[Va;_y, Vi, Vain], 2 <1 < -"—%'—,
so as to make a decomposition of G[V3, V4, ..., V;] into three subgraphs, each
isomorphic to P,_oU P,_oU P,_5, and each with its j'* path still starting and
ending in row j, j € {1,2,3}. We want a decomposition of G[W;, Vz,..., V]
into three Hamilton cycles. To get the remaining edges of the decomposition,

take the Hamilton decomposition of CawrK3 and replace the j* vertex of
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o—o—o

o—eo—o

Voi-t Vai Vaist Voirt Vai Vo Va1V Vain
First subgraph Second subgraph Third subgraph

Figure 3.6: A decomposition of G[Vai_1, Vai, Vaiz1] into P3U Ps U Ps.

Vs in the r** cycle in Figure 3.5, by the j* path of the r** subgraph of the
decomposition we have just constructed on V3, V;, ..., V,, where j € {1,2,3}
and r € {1,2,3}.

Figure 3.7 shows a decomposition of CrwrI3 into 3 cycles.

===l

First cycle
Second cycle

Third cycle
Figure 3.7: Example: A Hamilton decomposition of CrwrK ;.
The Hamilton decomposition of K3, — T {or K,wrK3 ) is completed by
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taking this Hamilton decomposition on each copy of C,wrKs in the partition

of K,wrKs.
Case 2: n even.

Let n = 3s, so that s is even. We want a Hamilton decomposition of the
edges of 2(K3; — T™) = 2([\’,11)7‘7?3).
We will first of all do the case s = 2 in Figure 3.8.

Vi VY, Vi VY, Vi

First cycle Second cycle Third cycle

Figure 3.8: A Hamilton decomposition of 2( KpwrK3).

Now assume s > 4. The graph 2(K3, — T™) has
35(3s —1) — 65 =9s(s — 1)

edges, and we want to decompose these edges into 3(s — 1) Hamilton cycles.
By Lemma 3.1, 2K, can be partitioned into s — 1 Hamilton cycles. Thus,
2(K,wrK3) can be partitioned into s — 1 copies of C,wrK3. Again we parti-
tion each copy of C,wrK 5 into three Hamilton cycles, which gives a partition
of 2( K,wrK3) into 3(s — 1) Hamilton cycles.

Consider a 3 x s array of vertices as in Case 1, with the columns labelled

Vi to V.
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We again use Figure 3.6 to decompose the edges of G[Vyi_1, Vai, Vait1],
2 <1 < 3, into three subgraphs, each isomorphic to PsU P U P;. As in
Case 1, take the union of these *32 decompositions to form a decomposition of
G[Va, Vs, ..., V,], and note that path j starts and ends in row 3, j € {1,2,3}.

Form Hamilton cycles in G[W, V2, ..., V] by replacing the vertices of V;
by V,UV3U...UV, and ‘inserting’ paths as before. But this time be careful.
You have to ensure that the edges from V) to V, are different in all three

subgraphs on VUV, U...UV,. O

Proof of Theorem 3.10.
Let n = 3s. By Lemma 3.12, if n is odd, K, — T can be decomposed

into -35"2—‘1) Hamilton cycles. We build each of these cycles (z1,z2,...,2x)

into the following s Hamilton cycles of K2 — T':
(T19]T2, T2y T3, - - -y Tno1 Yo 180, Talimr), L < j < s,
where
{zizipyl 11 < j < 8} = miziax.

When n is even, for every pair of vertices a,b € V, we arbitrarily divide

abx into two equal pieces so that
abx = (abx); U (abx)s,

and

|(abx),| = |(abx)s| =

[SR Y

Again by Lemma 3.12, if n is even, 2(K, — T*) can be decomposed into

3(s — 1) Hamilton cycles. We build each of these cycles (z;,z3,...,7,) into
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the following £ Hamilton cycles of K7 — T

i, 7. J v oo .
(Z1y1T2, T2Y2 35 - - o, Tno1¥Yp_1Tn, Ta¥pT1), 1 <7 < 5,

[N R 7

where
; . _ S
{wizinyl 117 < 5} = (Tt
the first time the edge (z;zi41) occurs in one of the cycles, and
J . 8
{22yl 11 <7 < 5} = (2minax).,

the second time the edge (z;z;41) occurs in one of the cycles. O

Finding a Hamilton decomposition of K2 — I, n = 0 (mod 3), is known as

a packing problem; there is a similar notion of a covering problem.

Definition 3.13 Let H(V,€) be a hypergraph. Let Ey, E,, ..., E, CE. If
E:NE; =0,YV1<i<j<gq,then E,E,,...,E isan Ey, E,, ..., E; packing
into H. f E,UE,U---UE, =¢&, then E\, Ea,...,E; is a covering of H by
Ey, Es, ..., E,. If Ey,E,,. .., E, is both a packing and a covering of £, then

it is obviously a partition of £.

Corollary 3.14 The hypergraph K+ 1, n = 0(mod 3), can be covered with

Hamilton cycles.
Proof. Let S be the following 1-factor of K2, n = 0 (mod 3):
S = {234,567,...,(n —4)(n — 3)(n — 2),(n — 1)(n)1},

and recall that
T = {123,456,...,(n — 2)(n — 1)n}.
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Then the hypergraph K2+ S = K2 ~ T+ (S +T). We can write S+ T as
(123,234,456,567,...,(n —4)(n — 3)(n — 2),(n — 2)(n — D)n, (n — 1)(n)1),

which is a Hamilton cycle of K2.
By Theorem 3.10, there is a Hamilton decomposition of K2 — T. Thus,

there is a Hamilton decomposition of K2 + .5, and the result follows. O

3.2.2 n=1(mod 6)

When n = 1 (mod 6), the necessary condition for the existence of a Hamilton
decomposition of K32 (that %(g) is an integer) is satisfied. We shall give here
a general construction for a Hamilton decomposition of K32, n = 1 (mod 6),
from a Hamilton decomposition of K. Since Bermond et al. [4] have shown
that for n prime there exists a Hamilton decomposition of K32, the first un-
solved case when n = 1(mod 6) is n = 25, so we shall use n = 25 as an
example throughout the proof, and shall give the choice design for construct-
ing a Hamilton decomposition of K3, from a Hamilton decomposition of Kjs.

Consider the 3-edges of K3 as triangles of K,, where n = 6k + 1. Let
the vertices of K, be V = {1,2,...,n} and let calculation on the vertices be
modulo 7 on the residues 1,2,...,n. We associate each triangle {a,b,c} of

K, with the triples of differences (a, 8, ), so that
{£(a—~b),£(b~ c),x(c— a)} = {xe, £8, 17}
Definition 3.15 Each edge ¢j in the graph Kgiyy has a length I,
[ = min{(i — §) (mod n), (j — i) (mod n)},
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associated with it, where 1 <1 < [25}] = 3k.

For instance, in K7 the edge lengths are 1, 2, and 3. (The edge 12 has length
1, the edge 13 has length 2, and the edge 14 has length 3.)

Since 6k + 1 is odd, there will be 6k + 1 edges of the same length ! in
Koy, for each L € {1,2,...,3k}.

More that one triangle of K, is associated with each triple of differences,
so that equivalence classes of the triangles of K, can be constructed using

the following equivalence relation R :
{a,b,c}R{d,V,c'} & Fi € {1,...,n} such that {a',¥,c'} = {a+i, b+1,c+i},

where addition in modulo n.

For example, with n = 25, the triangles {5,10,15} and {18,23,3} are in
the same equivalence class, determined by the triple of differences (5, 5, 10).

From now on, use the following notation to denote addition in the triples
of differences:

17 =1+7, ifi+j7 <21, and
ixj=n—(t1+7), ifi+j> ’—13'—1-

Note that each triangle can have more than one triple of differences as-
sociated with it. It follows from an observation by Bermond, Germa and
Sotteau [3], that if n is odd, as in this case with n = 1 (mod 6), it is possible
to choose a, 3, and 4 in a triple of differences so that

n
)

0<aéﬂé’r=a*ﬂ<2

(3.1)

37



giving a unique triple of differences for each triangle. This is obviously true
if you consider that a, f#, and v are simply the lengths of the edges of the
triangles in the equivalence class associated with («, 3,7). Henceforth, we
will assume that all triples of differences are in this form.

The following lemmas provide a few facts about equivalence classes of

triangles when n = 1 (mod6).

Lemma 3.16 For n = 1(mod 6) there are n triangles in each equivalence

class.

Proof. By definition, {a,b,c} and {d',¥,c'} are in the same equivalence
class if and only if there exists 7 € {1,2,...,n} such that {a/,¥',c'} = {a +
t1,b+1,c+17}. There are exactly n possibilities for 7, and since n # 0 (mod3),
{a,b,c} ={a+1,b+i,c+i}ifand onlyif i =n. O

Lemma 3.17 In any triple of differences (a, B,7) in K,, n odd, that sat-
isfies equation 3.1 above, if two of o, B, and v are equal then (o, B3,7) is
the triple of differences of ezactly one equivalence class of triangles, and if
a, B, and v are all different, then (o, §,7) is the triple of differences of ex-
actly two equivalence classes. (If a = 8 = v in a triple of differences, then

n = 0(mod 3).)

Proof.
Case 1: Suppose a = 8 # 7.
Then any triangle in an equivalence class associated with this triple of

differences must have two edges of length «, and so we can write it as {a,a +
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a,a + 2a}, for some a € {1,2,...,n}. If there were a second equivalence
class associated with the triple of differences (o, a,~), then any triangle in
it would also have to have two edges of length a, and could be written as

{b,b+ a,b+ 2a}, for some b € {1,2,...,n}. Then obviously,
{a,a+ a,a+2a}R{b,b+ a,b+ 2a},
since
{a,a+ a,a+2a} ={b+(a—0b),b+ (a—b)+ c,b+ (a—b) + 2a},

and hence there is only one equivalence class associated with the triple of
differences (o, a, 7).
Case 2: Now suppose a # = 7.

Then, as in Case 1, any triangle in an equivalence class associated with
(a, B,7) must have exactly two edges of length 4. A proof similar to that of
Case 1 gives the result.

Case 3: Now suppose a # 3 # 7.

Then any triangle in an associated equivalence class of the triple of dif-

ferences (a, B,+) has exactly one edge of length a and exactly one of length

B. First, we shall show that the two triangles
{a,a+ a,a+ a+ B} and {a,a + B,a + a + B}

are in different equivalence classes.
Both triangles have a third edge of length o * 3, so they do both have the

associated triple of differences (o, 8, 7).
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Suppose {a,a + a,a + a + }R{a,a + B,a+ o + f}. Then there exists
it € {1,2,...,n} such that

{a,a+a,a+a+pB}={a+i,a+B+t,a+a+p+1i}.

We consider all possibilities (calculations are modulo n).
i)I[fa=a+1 then i =0 and eithera4+ a =a+ f+i = a+ f which
impliessa=f,ora+a=a+a+f+1:=a+ a+ f which implies g = 0.
ii)[fa=a+f+:then: =n—pB. But then eithera+a=a+7=a~fso
that a = =B and vy =0,ora+a+f =a+1:=a—f, and hence, a +24 =0,
in which case, y=a+fB=n—-p> 3, ory=n—(a+p)=p.

iii) Finally, if @« = a+ a+ B8+ 1, then it = n — a — . Then either
a+a=a+i=a—a—pf,implying2a+pf =0and y=n—a > 7, ory=aq,
orat+a=a+ f+1=a— a, so that 2a = 0, and hence a = 0, since n is
odd.

Thus there are at least two equivalence classes.

If there were a third such equivalence class, then any triangle in it would
also have to have an edge of length o and an edge of length 8. Thus it
would have to contain either the triangle {b,b+ a,b+ a + 8} or the triangle

{c,e+Bicta+p},1<bec<n O

Again using n = 25 as an example, the triangles of K,5 that are in the

equivalence class determined by the triple of differences (5,5, 10), are
{{1+4,6+4+14,114+:}:1<1i<25},
while the triangles of K5 that are in the equivalence classes determined by
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the triple of differences (5,6,11) are
{{1+¢,6+¢12+¢}:1<:<25}, and{{1+4,7+712+:}:1 <1 <25}

Corollary 3.18 Let n = 6k + 1. There are 3k? + k triples of differences in
K,.

Proof. For any a, 1 < a < 3k, there is exactly one triple of differences that
is either of the form (e, a, 8) or (3, @, a). All other triples of differences are

of the form (o, B,a* ), 1 <a<f<a*xfB < 3.

There are %(g) equivalence classes. By Lemma 3.17, there are 3k equiv-
alence classes each of which is associated with one triple of differences. The
rest of the equivalence classes can be paired so that each pair is associated
with one triple of differences. Therefore, in total, there are
1(n :
n (3) — 3k

5 +3k=3k*+k

triples of differences. O

Lemma 3.19 The length 1, 2k + 1 < 1 < 3k, in Keryr cannot be the first

element of a triple of differences.

Proof. Suppose we have the triple of differences (a = 7, 3,7), where 2k+1 <
i <3k Then2k <a< fandy=ax*xf =n-(a+ f) <2k, whichis a

contradiction since 4 must be greater than or equal to . O

We again want to construct a choice design on the 3-edges of K3,,,. We

do this by first choosing representatives for the triples of differences, and then
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by transfering this to a choice of representatives on the 3~edges. As before
with n = 2 (mod 3), we will use a Hamilton decomposition of Kgry, together

with the choice design on the 3-edges of K§,,, to construct a Hamilton

decomposition of K3, ,.

Let us first consider the number of Hamilton cycles in Hamilton decom-

positions of Kgxy1 and of K&, ,. There are

1 6k +1
=3k
(s )

Hamilton cycles in a Hamilton decomposition of Kgiy1, and

1 6k + 1
6k +1 3

) = k(6k — 1)

Hamilton cycles in a Hamilton decomposition of K§,. If we let one of the 3k
Hamilton cycles of Kgr41 correspond to k Hamilton cycles of K3, ,,, and the
remaining 3k — 1 Hamilton cycles of Kgryq each correspond to 2k Hamilton

cycles of K3, ., then we will have
1 xk+ (3k—1) x 2k = k(6k — 1)

Hamilton cycles of K§, ., altogether, as needed.
In a Hamilton decomposition of Kery;, we can always assume that one

of the Hamilton cycles is
H=(,2---,6k+1),

and choose it to be the Hamilton cycle that is extended to exactly £k Hamilton
cycles of K§.,,. Thus we want a choice design on the 3-edges of K3, , in

which |a(a+ 1)%| = k for all a € {1,2,...,6k+1}. Since H; contains all the

42



edges of length 1 in Kgry1, the other edges of lengths I, where 2 <1 < 3k,
will all occur in other Hamilton cycles of Kgry1. If the choice design has
|abx| = 2k for all a,b € {1,2,...,6k+1}, a # b,b+1,b— 1, then all of the
Hamilton cycles of Kgr41 except H; will be extended to exactly 2k Hamilton
cycles of K3, ., as needed.

We will construct this choice design of order 6k + 1 on K&, from a

‘representative design’ on the triples of differences of Kggy;.

Definition 3.20 A representative design on the triples of differences of Kgr4;
is a way of choosing elements from the triples of differences (a, 8,7) of Kek+1
so that the following are satisfied. Let C(6) be the set of all triples of differ-
ences for which 6 is a representative.

i) The triples of differences that correspond to two equivalence classes of
triangles in Kgr41 have two representatives.

ii) The triples of differences that correspond to one equivalence class of

triangles in K¢k have one representative.

iii) |C(1)| = k and |C(8)] = 2k, 2 < § < 3k.

Recall that if the three numbers in the triple of differences are distinct,
then there are two associated equivalence classes — thus we choose two rep-
resentatives for each of these triples of differences and associate one repre-
sentative with one equivalence class, and the other representative with the
other equivalence class. Also, if two of the numbers in a triple of differences
are the same, then there is only one associated equivalence class, and hence

we choose only one representative for this triple of differences.
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The following lemma states that a representative design on the triples
of differences of Kgiy1 exists. This is the major construction of this section,
and will be proved after we prove in Lemma 3.22 that a representative design
on the triples of differences of K¢r41 leads to the right choice design of order
6k 4 1, and in Theorem 3.23 that this choice design leads to a Hamilton

decomposition of K, ;.

Lemma 3.21 There is a representative design on the triples of differences of
Kegry1 in which the number 1 is chosen as a representative in exactly k triples
of differences, and each number 1, 2 < 1 < 3k, is chosen as a representative

in ezactly 2k triples of differences.

Lemma 3.22 There is a choice design on the 3—edges of K3, in which

la(a+ )x| =k, 1 <a<6k+1, and
labx| =2k, 1 <a,b<6k+1, a#bb+1,0—1.

Proof.

By Lemma 3.21 there is a representative design on the triples of differences
in Kgir41 in which the number 1 is chosen as a representative in exactly
k triples of differences, and each number 7, 2 < ¢ < 3k, is chosen as a
representative in exactly 2k triples of differences. We shall first transfer the
representative design on the triples of differences to a way of choosing one
representative from each of the triangles in Kegry1. Then, by noting that
each triangle in Kexy1 is a 3-edge in K§,,, we shall have the needed choice

design.
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Transfer the choice of representative(s) on a triple of differences (¢, 8,7)
to a choice of one representative for each triangle in its associated equivalence

class(es) in the following way:

Case 1: a # 3 # 7.

In triples of differences (¢, ,7) with two representatives, arbitrarily choose
one of the representatives, call it I, and one of the associated equivalence
classes. All of the triangles in this equivalence class will have exactly one
edge of length . Choose as the representative in each of these triangles the
vertex that is not an end-vertex of that edge.

For example, with 6k + 1 = 25, if the triple of differences is (1,2, 3),with

1 as one of its representatives, then the triangles and their representatives in

one of the corresponding equivalence classes would be
{{5,j+1,7+3}: 1<j<n}

since the vertex j + 3 is not an end-vertex of the edge of length 1.
Now do the same thing with the other equivalence class and the other

representative of the triple of differences. In our example we would get
{5, +2,+3}: 1<j<n},

since the other representative of the triple of differences was a 2.

Case 2: a=f#vyora#f=r.

In trip'ss of differences of the form (a, «, ), those with exactly one repre-

sentative with exactly one associated equivalence class of triangles in Kggy1,
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if A is chosen as the representative, then we choose the representatives of the
triangles in the associated equivalence class as in Case 1.

However, if a is chosen as the representative, then the situation is different
because the triangles in the associated equivalence class have two edges of
length . However, we simply pick one of these edges, choose the vertex
that is not in this edge as the representative of the triangle, and then be
consistent with this choice when choosing representatives for all the other
triangles in the equivalence class. More precisely, if we pick a to represent
the triangle {a,a + b,a + 2b}, then we pick a + ¢ to represent the triangle
{e+i,a+b+i,a+2b+1},1 <i<6k+1, and if we pick a + 2b to represent
the triangle {a,a + b, a +2b}, then we pick a + 2b+ ¢ to represent the triangle
{a+i,a+b+i,a+2b+1},1 <i<6k+1. For example, in Koj if the triple

of differences is of the form (1,1,2), do either

{1,2,3},{2,3,4},...,{25,1,2}
or {1,2,3},{2,3,4},...,{25,1,2}.

If the triple of differences is of the form (a,~,7), choose the representa-
tives of the triangles in the equivalence class as above, but now each triangle
has two edges of length v and one of length a.

Now let each triangle in Kgry1 be a 3-edge in K&,,. For each a €
{1,2,...,6k + 1}, there are k triangles of the form {a,a+1,¢}, a,a+1 #¢,
because |C(1)] = k. So |e(a + 1)x| = k, 1 < a < 6k + 1. Also, for each
a € {1,2,...,6k + 1}, there are 2k triangles of the form {a,b,c}, a # b # ¢,
a # b+ 1,b— 1, because the edge ab has length I, where 2 < I < 3k, and
[C(D)| =2k. So Jabx} =2k, 1 <a,b<6k+1,a#bb+1,b—1.0

46



Theorem 3.23 There is a Hamilton decomposition of K2, n = 1(mod 6).

Proof. By Lemma 3.22 there is a choice design on the 3-edges of K3 such

that
la(a+ 1) =%, 1 <a<6k+1, and

labx| =2k, 1 <a,b<6k+1, a#bbx1.
Take the Hamilton cycle H, = (1, 2, ..., 6k, 6k + 1) in a Hamilton de-
composition of Kgry1. Since H; contains all the edges of length 1 in K¢y,
we use the choice design to build it up into the following £ Hamilton cycles

of K& 1
(1y92,2933,...,6kyly (6k + 1), (6k + 1) 33y, 1), 1 < j <k,

where

{i(i+ 1)y} : 1 <j <k} =i(i+1)x

Then all other cycles (z),zs,...,z,) in the Hamilton decomposition of
Ker41 contain no edges of length 1, and hence, from the choice design, are

each built up into the following 2k cycles:
($1yi$2, $2y%$3) IERE} xﬁkyék16k+l ) $6k+lyék+1 IE]), 1 S ] S 2ka

where

{z,-:z:,'Hy,j | S] S 2k} = TiTiy1*.

In the proof of Lemma 3.21, we will begin the representative design on

the triples of differences by constructing sets F(a), 1 < a < 2k, where
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F(a) is the set of triples of differences with first entry a, together with the

representative(s) of those triples of differences. As before, an element of a
triple of differences will be underlined if it is one of the representatives. By
Lemma 3.19, F(a) = 0, 2k +1 < a < 3k. Since a triple of differences
has a least element, the sets F(1),---, F(2k) partition the set of triples of

differences in Ker41-

The following lemma gives the size of F(a),1 < a < 2k.
Lemma 3.24 Forl <a <2k, |F(a)] = |25%] —a+1.

Proof.
Let a triple of differences be denoted by («, 8,4), where a, §, and « satisfy

equation 3.1, that is,
n
0<a§ﬂ§7=a*ﬂ<§.

Given «, we want to count the number of possible 3. If 3 satisfies a <
B < 3k — «, then v = a + B, and trivially 8 < v < §. Therefore, all values
of B from a to |5] — « are possible.

If 8>3k —a+1,then y =n—(a+f),since a+ > 7. We also
need B < v, which gives § < n — (o + ), which in turn implies § < [25%].
Thercfore, all values of B from [Z] — a4 1 to |*5%] are possible.

So, given a, the possible # range between o and {#35*|. Thus

n—o

IF(a)I:l J—a+1.

~
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Recall that C(6) is the set of all triples of differences that contain é as a
representative. Let NC(8) be the set of all triples of differences that contain
4, but not as a representative.

We construct the sets F(1), F(2),---, F(2k) in that order. The order is
important because any given «, 1 < a < 2k, only occurs in F(1),---, F(a).
(Triples of differences are written with their least element first, and F(a)
contains only those triples of differences with first element a.) Now we are

ready to prove Lemma 3.21.

Proof of Lemma 3.21.

Constructing a choice design on the triples of differences of Kgiy:

For 1 < j < 2k, we construct F(j) and check that |F(7)| = [ﬁg-lj —7+1.
Then we check that |[C(1)] = k and |C(j)]| = 2k, 2 < j < 3k, as needed.

1) F(1):
We choose the representatives for the triples of diflerences in F'(1), so that k
of them will have 1 as a representative:
i) (1,1,2) € C(1).
ii) (1,2,2+1) € C(1), where 2 <1 < k.
i) (1,z,14+ 1) € NC(1), where k +1 <7 <3k —1.
iv) (1,3k,3k) € NC(1).
Then,

F(1)| =14+ (k~1)+2k—1)4+1=3k=EH)1| 141, and
IC)| =1+ (k—1) =k

Notice that each 7, 2 < 7 < k + 1, has been chosen exactly once as a
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representative in F(1), and each 7, £ + 2 < ¢ < 3k, has been chosen exactly

twice.

In sections 2)-4), we will check that the triples of differences satisfy 7 <

i<jxi<G,org=i<j*x1< 3,0orj<t=jx1 <%, whereit is not

immediately obvious.
2) F(j),2<j <k+1:

i) (j2rj ) € CG).

ii) (J,2,7 ) € C(j), where j +1 <2 < 2k, except when j = k + 1 and
¢ = 2k. In this case we choose (k +1,2k,3k) € C(k+ 1).
(Note that if j +7 < 3k, then j*¢ = j+17 > 4, and if j + ¢ > 3k, then
Jxi=n—(7+¢)>(6k+1)—(3k+1)>3k>1.)

iii) (j,1,7 * 1) € NC(j), where 2k + 1 < i < [#:51=1],
(In this case note that if j +7 < 3k, then j*i = j+1: > 4. If j +7 > 3k, then
j*i =n—(j+1), and since i < [£5=1], 2 < 6k—j. Thus n—(j+3) >i+1
and so j *7 > 1.)

iv) (j,1,1) € NC(j), where i = #2121 1if j is odd.

(Here observe that i = 6k+21"j > BkH;(kH) = 5—: >2k>j.)

Then, for 2 < j < k+1:

If yiseven, |[F(j)] = 1+ (2k—j)+ ([%—_1;]_" —Qk) ,

2
. 6k—7
= 1 —
I+
6k+1—3
= l + JJ——]+1and,
2
e , E—1—
if yisodd, |F(j)] = 1+(2k—j)+([6 21 J}—Qk)+1,



. 6k—1—7
= 92—
J+ 5
6k+1—3j ,
pee e
Also,
ICG)NFG) =1+2k -7, 2<j<k+1, see 2(i), 2(ii).
CHNFQ) ={(Lij+D} 2<i<k, 1Gi).
U{(L, 5,7+ 1)}, j=k+1, 1(iii).
CHNF@E) ={(E4t+7)}, 2<i<j,2<j<k+1. 2(ii).
Thus,

ICH =0 +2k—5)+1+(j—2) =2k for2<j<k+1

3) F(j), k+2<j <2%k-1:

i) (,4,4 * §) € C().

i) (§,2,7 *2) € C(y), where j +1 <2 <2k - 1.
(Observe that if j +1 < 3k, then 7 %7 =3 +17 > 1, and if  + ¢ > 3k, then
Jxi=n—(i+j)>26k+1)—(4k~-2)=2k+3 > 1)

iii) (§,4,7 * 1) € NC(j), where 2k < < [#51=21],
(Again, if j +¢ < 3k, then jxi > . If j +1 > 3k, then j*i =n — (2 4+ j),
and as 2t <6k —j,n— (¢ +7) > i+ 1, implying that j i > 1.)

iv) (j,1,1) € NC(j), where i = 2£=1 1if j is odd.

(Note that § = S4l=i > SEHI=061) _ 9f 1] > 5

Then, for k+2 <7 <2k~ 1:

If j is even, |F(5)] = l+(2k—l—j)+([§—k—-_§1———];] ~—2k+1)
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6k — j

2
— [MJ_]+1, and
2
if j is odd, |F(j)| = 1+(2k—1—j)+q§k———21;l]—2k+1)+1
. 6k—1—j
= 9 j4-—-7J
J+ 5
o |sk+1-j] .
-2
Further,
ICU)NFG) =1+ (91»—1—1)—“2/6*], see 3(i), 3(ii).
cu)nFQA) ={(1,j=1,7),(,45j+ 1} 1(i).
CUINFE) ={(G ,t*5)}, 2<i<y. 2(ii), 3(ii).
Thus,
ICUN=2k—7+2+j—-2=2k, fork+2<j <2k —1.
4) F(2k)

Then
|F(2k)| = 1 = [Qﬁiléllng-2k4-1 and
|IC(2k) N F(2k)| = 1, see 4(i)
CREyN F(1) = {(1,2k—1,2k),(1,2k,2k + 1)}, 1(iii)
C(2k)NF(i) = {(,2k,2k +1)},2<i <k, 2(i1)
CE)NFk+1)= 0, 2(ii)
C(2k)NF() = {(i,2k,ix2k)},k+2<i<2%—1 3(iii)




Thus,
IC2k)|=14+24+k—-140+k—2=2k.

We must check that we have assigned representatives to every one of
the triples of differences. For any j, 1 < j < 2k, the elements of F(j) are

certainly distinct by construction, and we have checked that

. 6k+1— .
F() = |5 =i +1

For any 7,7, 1 <1 # j < 2k, the elements of F (i) and F(j) are distinct.
Therefore, it is enough to prove that the total number of triples of differences
in F(1),F(2),..., F(2k) equals the number of triples of differences of Keiy1.

By Corollary 3.18, there are 3k% + k triples of differences in Kegy1.

M

Il
S I

sl = X (|25 i)

=1 J
—~2k(2k + 1 25 —1
= —%j—)+2k+2kx3k—§:[]——2—]

= 44+ k—(04+1 414242+ -+ (k=1 +(k=1)+k)

i=1

= 424 k—(k—Dk—k
= 3k%+k.

Thus, every triple of differences in Kgiy, has its representative(s), the
number 1 has been chosen as a representative in k triples of differences, and
the numbers 2,3, --- | 2k have each been chosen as representatives in 2k triples
of differences. We must check that the numbers 2k + 1,2k + 2,-- -, 3k have

also each been chosen to represent 2k triples of differences. By Lemma 3.16,
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there are é—kﬁ(ﬁk 3+ 1) equivalence classes. One representative is chosen for

each equivalence class. Therefore,

1 6k + 1
6k +1 3

) = k(6k — 1)

representatives are chosen.
We have shown in section 1) that 1 is chosen exactly k times, and in 2)-4)

that each 5, 2 < j < 2k is chosen exactly 2k times. This leaves
k(6k — 1) — k — 2k(2k — 1) = 2k?

equivalence classes for which we have not yet counted a representative. If we
show that for each j, 2k + 1 < j < 3k, that j is chosen at least 2k times,
then we must have that each j is chosen exactly 2k times and we are done.

By Lemma 3.19, since j > 2k, j is either in the second or third position in
a triple of differences. For 2k+1 < j < 3k, we list the triples of differences in
C(7) and check that |C(3)] > 2k. We consider C(2k + 1) in section 5), then
C(y) with 2k +2 < 5 <3k — 1, in section 6), and finally C'(3k) in section 7).
In all three cases, we first list the triples of differences with j in their second
position, and then the triples of differences with j in their third position.
The first position will always be 7, with 1 <1 < 2k. For each subset of C(7)
listed, a short justification that all triples of differences (e, 8,7) in it satisfy

equation 3.1 will be given if it is not immediately obvious.
5) C(2k + 1) contains the following triples of differences:

i) (1,2k 4+ 1,2k + 2). The choice of representative is from 1(iii).

i) (2,2k 4+ 1,2k + 1+ 1), where 2 <7 < k — 1. The choice of representa-

tives is from 2(iii).
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(Note that we have 1 < 2k +1 < 2k + 1+ ¢ < 3k as needed for these to be
triples of differences.)

iii) (7,2k + 1,4k — 1), where k < i < 2k—2. The choice of representatives
is from 2(iii) and 3(iii), since [$#=1=2] > [4H] = 2k + 1.

(Note that in this case t < 2k+1 <4k—i < 3kand 4k—i =n— (1 +2k+1),

as needed.)

iv) (2k — 1,2k + 1,2k + 1). The choice of representatives is from 3(iv).

v) (1,2k,2k 4 1). The choice of representatives is from 1(iii).

Thus [C(2k+1)|>14+k—-2+k—14+14+1=2k.
6) C(j), 2k +2 < j < 3k — 1, contains the following triples of differences:
i) (1,7,1 4 7). The choice of representatives is from 1(iii).
ii) (4,4,7 + ), where 2 <1 < 3k—j. The choice of representatives is from

2(ii1), since ¢ < 3k — j implies that ¢ < k —2 and j < I‘Gkgzq < I'sk-;-z] <

el

(Since t < k—2, we have 2 < i < j < i+4j < 3k, as needed. Note that when
J = 3k — 1, the bounds 2 <7 < 3k — 5 do not hold, but we will count this
triple zero times anyway, so this does not matter.)

iii) (4,7,m = (¢ 4+ j)), where 3k —j +1 < i < 6k ~ 2j. The choice of
representatives is from 2(iii) and 3(iii), since if ¢ is odd, 7 < 6k — 25 — 1, so
that j < [#5=1] and if i is even, i < 6k—2j, so that j < [$£=1] = [S=i=l],
Also 2 << 2k —4.

(Note that 2 <7 <2k—4 < j,andi < 6k—2; implies that j <n—(i+j) <
n—(3k—j3+1+4j)=3k)

iv) (n — 2j,7,7). The choice of representative is from 2(iv) and 3(iv),
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since 3 <n—25 <2k —3.
(Also 2 <n —2j < j, as needed for this to be a triple of differences.)

v) (1,7 = 1,7). The choice of representatives is from 1(iii).

vi) (2,j —¢,7), where 2 < ¢ < j—2k—1. The choices of representatives is

from 2(iii), since 2 <1 < j—2k—1<k—-2and 2k+1<j—i<3k—-1-:<

Sk=2-2 Gk o [€£=£=1]. (Again note that if j = 2k +2, then the bounds

2<1<j—2k—1 do not hold. Again, this does not matter since we count
this triple zero times.)

(Since 2¢ <25 —4k—2<j—k-3,1<j—i—k—3,andso,2<i<j—1<
J < 3k.)

vii) (¢,n — (¢ +j),j), where n — 2j +1 < ¢ < 4k — j. The choice of
representatives is from 2(ii1) and 3(iii), since n — (i + j) > 2k + 1. Also,
n—(t+j)<n—(n—2j+1)~7 <j—1implies that n < 2j +¢ — 1, which
implies that 2n —2(: +3) <n—21-25+2j+i~1 < 6k—i. Thus, if  is odd,
n—(i+7) < & <[220 and if i iseven, n— (i +j) < Shot < [8E=EEL]

(Since j <3k —1,n—-2j+1>4. Also,n—(i+j)>n—4k=2k+1>1

andn—(i+j)<n—(n-2+1+3)<j—1<j. Therefore, 2 < i<
n—(t+j)<j<3k.)

viii) (4k — 7 + 1,2k, j). The choice of representatives is from 3(iii), since
k+2<dk—j+1<2k~1.
(This is a triple of differences since k +2 <4k —j 4+ 1 < 2k < j < 3k.)

Thus, |C(5)] 2 14+(3k—j—1)+(3k—7)+1+1+(j —2k~2)+(4k+j—n)+1 = 2k.
7) C(3k) contains the following triples of differences:

1) (1,3k,3k). The choice of representatives is from 1(iv).
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i) (1,3k —1,3k). The choice of representative is from 1(iii).
i) (¢,3k — ¢,3k), where 2 < ¢ < k — 1. The choice of representatives is
from 2(iii), since 2k 4+ 1 < 3k — i < [SA22] < [&h=i=l],

(Note that since 7 < k—1 implies that 3k—2 > 2k+1, we have: < 3k—: < 3k)

iv) (k+1,2k,3k). The choice of representatives is from 2(ii).
v) (¢,3k+ 1 —1,3k), where 2 < ¢ < k. The choice of representatives
follows from 2(iii) and the fact that if i is odd, 2k+1 < 3k+1—i < [SE2=2] <

[$=1=11 and if ¢ is even, 2k+1 < 3k+1—¢ < [SHZ=2] < [0A=i] = [Shoi=l],

(Since ¢t < kimplies 3k +1 —1 > 2k +1, we havez < 3k +1 — 1 < 3k, as
needed.)

Thus, as needed, [C(3k)| > 2+ (k—2)+ 1+ (k—1) = 2k.
|

Table 3.3 gives a choice of representatives of the triples of differences of
K55 that will lead to a Hamilton decomposition of K3s. From these choices
of representatives of the triples of differences, we build a choice design on the
3-edges of KJ as in Lemma 3.22. We then take a Hamilton decomposition

of K55 of which one Hamilton cycle is
H,=(1,2,3,---, 23, 24, 25),

which exists by Lemma 3.1. This Hamilton cycle H contains all the edges
of length 1 from the graph of K3s. Then, using the choice design on the
3-edges of K3, build H into k = 4 Hamilton cycles of K3;, and all the other
Hamilton cycles of the Hamilton decomposition of K35 into 2k = 8 Hamilton

cycles of K.
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3.3 Summary

Theorems 3.10 and 3.23, together with Bermond’s results of Lemmas 2.2
and 2.3, complete the problem of constructing a Hamilton decomposition of

K3, when n =1,2(mod 3), and a Hamilton decomposition of K3 — I, when

n = 0(mod 3)
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Triples of ~ Choice(s) of  Triples of  Choice(s) of

differences representatives differences representatives

(1,1,2) 1 (3,7,10) 3 7
(1,2,3) 1 2 (3,8,11) 3 8
(1,3,4) 1 3 (3,9,12) 9 12
(1,4,5) 1 4 (3,10,12) 10 12
(1,5,6) 5 6 (3,11,11) 11
(1,6,7) 6 7 (4,4,8) 4
(1,7,8) 7 8 (4,5,9) 4 3
(1,8,9) § 9 (4,6,10) 4 6
(1,9,10) 9 10 (4,7,11) 4 7
(1,10,11) 10 11 (4,8,12) 4 8
(1,11,12) 11 12 (4,9,12) 9 12
(1,12,12) 12 (4,10,11) 10 11
(2,2,4) 2 (5,5,10) )
(2,3,5) 23 (5,6,11) 5 6
(2,4,6) 2 4 (5,7,12) 5 7
(2,5,7) 25 (5,8,12) 5 12
(2,6,8) 26 (5,9,11) 9 11
(2,7,9) 27 (5,10,10) 10
(2,8,10) 2 8 (6,6,12) 6
cont.
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cont.
Triples of  Choice(s) of  Triples of  Choice(s) of

differences representatives differenices representatives

(2,9,11) 9 11 (6,7,12) 6 7
(2,10,12) 10 12 (6,8,11) 8 11
(2,11,12) 11 12 (6,9,10) 9 10
(3,3,6) 3 (7,7,11) 7
(3,4,7) 3 4 (7,8,10) 8 10
(3,5,8) 35 (7,9,9) 9
(3,6,9) 3 6 (8,8,9) 8

Table 3.3: Representatives of triples of differences for K3
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