
ANALYSIS OF A FINITE-STATE GRAMMAR FOR PARSING 

AVIATION-SAFETY REPORTS 

Cesar Dragunsky 

BSc., Universidad Del Sur, 199 1 

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE 
REQUIREMENTS FOR THE DEGREE OF 

MASTER OF SCIENCE 

In the School 
0 f 

Computing Science 

O Cksar Dragunsky 2004 
SIMON FRASER UNIVERSITY 

June 2004 

All rights reserved. This work may not be 
Reproduced in whole or in part, by photocopy 

Or other means, without permission of the author. 







Abstract 

With the growth of the World Wide Web in the nineties, alongside the increase in storage 

and processing capabilities of computer hardware, the problem of information overload 

resulted in an increased interest in finite-state techniques for Natural Language Analysis as 

an alternative to fragile, slower algorithms that would attempt to find complete parses for 

sentences based on general theories of language. As it turns out, shallow parsing, a set of 

robust parsing techniques based on finite state machines, provide incomplete yet very useful 

parses for unconstrained running text. The technique, however, will never provide 100% 

accuracy and requires that grammars be geared to the needs of particular data samples. In 

this project, we take a corpus of aviation safety reports parsed by Cass, an existing partial 

parser, with a particular given grammar, and look for instances of linguistic constructs whose 

treatment by the parser could be improved by modifications to the grammar. A few such 

constructs are discussed, and the grammar is edited to reflect the desired improvements. 

A parser accuracy measure is implemented and evaluated before and after the grammar 

modifications. 



Acknowledgments 

I probably cannot list in a single page all the people that I should thank for this. 

First of all, my parents. 

Second, people like Verhica Dahl and Diana Cuikerman, whose help when I was just 

arrived in Canada was invaluable and probably a big factor in the eventual realization of 

this project. My great friend Rick Ouellet shuold not be left without mention either. 

I have to  include all of the fantastic people at the School of Computing Science a t  SFU, 

all of whom have always been helpful and their help has many times been crucial in the 

concretion of this h4.S~.  project. 

Finally, my supervisors, Fred Popowich And Oliver Schulte, whose seemingly infinite 

patience, faith, and guidance, were the most important factor in making this project a 

reality. Along with them I want to thank the remaining members of the committee, Paul 

McFetridge and Anoop Sarkar, for their time and interest. 



Contents 

Approval 

Abstract 

Acknowledgments 

Contents 

1 Introduction 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.1 Partial Parsing 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.2 Motivation for this Project 

. . . . . . . . . . . . . . . . . . . . . . . . . .  1.3 Improving Grammar Coverage 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.4 Measuring Parser Accuracy 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.5 Project Outline 

2 Parser Accuracy Measures 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.1 Aspects of Performance 

. . . . . . . . . . . . . . . . . .  2.2 Some Existing Parser Evaluation Techniques 

. . . . . . . . . . . . . . . . . . . . . .  2.3 Important Parser Evaluation Projects 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.3.1 Parseval 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.3.2 Sparkle 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.3.3 EAGLES 

. . . . . . . . . . . . . . . . . . .  2.4 Evaluating Cass in our Project: Discussion 

3 Partial Parsing and the Cass Partial Parser 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.1 Notational Conventions 



. . . . . . . . . . . . . . . . . .  3.1.1 Notational Convention for Grammars 31 

. . . . . . . . . . . . . . . . . . . . .  3.1.2 Notational Convention for Parses 31 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.2 Part-of-Speech Tagging 33 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.3 Cascading Finite Automata 33 

. . . . . . . . . . . . . . . . . . .  3.4 Characterizing the Structures Built by Cass 37 

. . . . . . . . . . .  3.5 Cass Input and Output Files, their Format and Contents 38 

3.5.1 Mapping Standard Tagsets to Grammar-specific ones with tagf i x e s  . 38 

. . . . . . . . . . . . . . . . . . . .  3.5.2 Compiling the Cass Grammar: reg 39 

. . . . . . . . . . . . . . . . . . . .  3.5.3 Cass at Work: Inputs and Outputs 41 

. . . . . . . .  3.5.4 Original Grammar Provided with the Scol Distribution 41 

4 The ASRS Database 43 

. . . . . . . . . . . . . . . . . . . . . . . .  4.1 Origin of the Database Information 43 

. . . . . . . . . . . . . . . . . . . . . . .  4.2 Nature of the Database informatiorl 44 

. . . . . . . . . . . . . . . . . . . . . . . . .  4.3 Use of the Database Information 45 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.4 Our Corpus 47 

5 Room for Improvement in the ASRS Database Corpus 49 

. . . . . . . . . . . . . . . . . . . . . . . . . .  5.1 Treatment of the Forward Slash 50 

. . . . . . . . . . . . . . . . . . . . .  5.2 More on Punctuation: the Single Quote 53 

. . . . . . . . . . . . . . . . . . . . . . . . . .  5.3 Further Punctuation Problems 54 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5.4 The Problem with 'away' 55 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5.5 The Problem with 'many' 56 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5.6 The Problem with 'when' 56 

6 Addressing the Problems 5 8 

. . . . . . . . . . . . . . . . . . . . .  6.1 Dealing with the Forward Slash Problem 58 

. . . . . . . . . . . . . . . . . . . . .  6.2 Dealing with the Single Quote Problem 61 

. . . . . . . . .  6.3 The Quotation Marks: a Problem too Complex to  Solve Here 62 

. . . . . . . . . . . . . . . . . . . . . . . . .  6.4 Solving the Problem with 'away' 65 

. . . . . . . . . . . . . . . . . . . . . . . . .  6.5 Solving the Problem with 'many' 68 

. . . . . . .  6.6 Solving the Problem with 'when' as a Subordinating Conjunction 72 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6.7 Untested Fixes 74 



6.7.1 Numeric Ranges, Wind Expressions and Dates Containing Only Num- 

bers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  74 

7 Evaluation: Experimental Results, Observations and Discussion 77 

8 Conclusion 8 4 

A Listing of the Test Corpus 87 

Bibliography 92 

vii 



Chapter 1 

Introduction 

Partial parsing techniques have proved useful in many real-world Natural Language Process- 

ing Applications that  deal with unwieldy amounts of unstructured running text. Fast and 

efficient, they can provide impressive accuracy figures if their grammars adequately reflect 

the linguistic structures prevalent in the data. 

A grammar that conveniently fits the data, however, is not trivial to implement. Coming 

up with it requires extensive analysis of a corpus, a representative sample of the data that  

the parser is expected to deal with. Grammar writing in this context is thus a very empirical 

task involving much trial and error. 

In this project, we take an existing grammar for Cass (see [3]), a partial parser that 

can be freely downloaded and used for academic purposes. We look through a corpus of 

text from aviation incident reports parsed with this grammar and find a number of linguistic 

constructs whose treatment is not satisfactory. We propose changes to the original grammar 

that  more adequately deal with such constructs. 

To substantiate the claim that the modified grammar more properly fits the data than 

its predecessor, we implement the Parseval accuracy metric (see [5], [7]). This evaluation 

method produces four numeric figures which quantify aspects of the performance of the 

grammar under evaluation. By arguing that these quantitative indicators clearly suggest an 

improvement of the modified grammar with respect to the original one, we conclude that  the 

changes implemented are indeed successful in yielding a grammar that more closely reflects 

the linguistic structures found in the input. 



CHAPTER 1. INTRODUCTION 

1.1 Partial Parsing 

The idea of partial parsing is not new. As far back as the sixties, Zellig Harris ([14]) 

was proposing a full-fledged theoretical framework to analyze sentence structure by succes- 

sive levels of finite-state machines. Another important historical precedent is the work of 

Kenneth Ward Church in his doctoral thesis ([g]). Here he focuses on the importance of 

finite-state techniques for natural language parsing as a means to achieve limited, albeit 

useful, structural analysis of running prose. The relative simplicity of finite-state-machines 

compared to the more expressive formalisms ernployed in obtaining more complete parses 

makes this method very appealing for real-world applications involving vast amounts of in- 

formation. Hence there is a tradeoff between competence and performance: if we sacrifice 

some completeness and depth of analysis (competence), we will reap much needed gains in 

speed and memory requirements of parsers (performance). 

With this in mind, an important line of research developed in the nineties, the beginning 

of the Internet era, powered by the need to make sense of large amount of unstructured data 

in what is known as the Information Overload problem. As is turns out, successful products 

were developed, one of them being the Cuss Partial Parser, developed by Steven Paul Abney 

([3]), which is available free of charge for academic research purposes in a package called 

Scol. 

Partial parsing relies on a succession of filters being applied to the input, with the 

output from each being fed into the input of the next. Each of these filters consists of a 

finite-state machine, which can be denoted by a regular grammar. Cass allows the user 

to write their own grammars, in a language quite close to the standard regular expression 

notation used in the popular Unix regular expression language regexp, a de facto standard 

in many computational applications and platforms, and probably by far the single most 

popular notation for regular expressions. 

Writing grammars for a partial parser should not be approached with the goal in mind 

of finding constituent labels of linguistic significance, but rather as a 'grammar program- 

ming' task. The focus is set on finding reliable delimiters of constituents so they can be 

isolated. The relations among constituents, such as attachment of prepositional phrases, 

are left unresolved. The resulting parse consists of shallow parse trees, where the main 

cor~stituents are identified, their internal structure analyzed to the degree allowed by the 

limited information that the parser makes use of (i.e., only part-of-speech tags, no semantic 



CHAPTER I .  INTRODUCTION 

information). 

These parses can be later used, for example, as a stepping stone for more involved 

analyses that do make use of a lexicon rich in semantic information. This would allow 

disambiguation of prepositional phrase attachment and structure of noun-noun sequences, 

among others. More interestingly, partial parsing taken as an first step in the analysis of 

prose opens the door to Natural Language Understanding tasks other than more complete 

parsing, such as Information Extraction. This is what makes partial parsing so appealing 

for applied Natural Language Processing. 

In this project, we make use of the Cass partial parser and try to improve the coverage of 

a grammar that comes with it. This grammar was developed by Abney himself by a process 

of trial and error on corpus data. This grammar is to be considered a broad-coverage 

grammar of the English language, which must be tailored to fit the linguistic constructs 

prevalent in the writing style and type of language used in the data that it is expected to 

deal with for the particular application if high accuracy is desired. 

1.2 Motivation for this Project 

The ASRS (Aviation Safety Report System) is a program funded by the Federal Aviation 

Administration of the United States of America (FAA) and run by the National Aeronautics 

and Space Administration (NASA) (see [4]). The program collects, processes and stores 

reports of aviation-related incidents (with some limitations; for example, incidents involving 

criminal activity are within the jurisdiction of the FBI or other enforcement agencies and 

will not be allowed into the ASRS report database). 

These reports are voluntarily submitted by aviation personnel who were involved in or 

witnessed an incident they consider worth reporting. The reports are confidential and any 

identifying information is removed from the text before input to the database. 

The idea of the program is to generate advisories and warnings aimed at improving 

security in aviation working environments within the United States. It does this by gathering 

and analyzing input from all ranks of aviation industry workers, like pilots, flight assistants, 

mechanics, flight controllers, and so on. 

This program presents an archetypical example of the problem of infornlation overload. 

Because there are such enormous volumes of running, unstructured English text involved, 

finding and processing relevant information becomes challenging. Thousands of people must 



CHAPTER 1.  INTRODUCTION 4 

be employed at  high cost to perform largely mechanical text analysis tasks. Important 

information about flaws in aviation procedures might be buried deep within these texts, 

and hard to find unless a human being reads the passages detailing the danger and realizes 

their importance. 

The tasks of the ASRS can be made much easier and less costly by computational 

technology whose first step is partial parsing of the texts involved. Removal of identifying 

elements in a report, for example, can be at least partially automated if proper names, 

places, times and the like can be identified by their structure. The reports can be searched 

much more effectively if relevant semantic concepts can be used rather than plain keywords. 

While partial parsing does not make use of any semantic information to compute its output, 

it does provide structures which semantically aware software can use to spot individual 

mentions of entities of conceptual significance, and infer relations between them concerning 

their roles in an incident. This would allow the report database to be searched for events, 

entities or relations among them, of more conceptual significance than a keyword search on 

unstructured text could provide. Statistics regarding the frequency of particular types of 

incidents, or the incidence of certain factors in them, would be possible to compute and lay 

out in visually appealing formats that would allow for at-a-glance interpretation. 

But all of these useful computational tasks rely on accurate identification of constituents, 

which is why we set off, in this project, to bridge the gap between the grammar provided 

with Cass and the data found in the ASRS database. 

1.3 Improving Grammar Coverage 

To narrow the gap between the structures conferred by the original grammar and those 

found in corpus data, we first need to identify constructions which are not given proper 

structures. In this project, this was carried out by direct inspection of the original corpus 

by hand. 

A few problems stood out right away: four easy-to-see problems with the handling of 

punctuation were found immediately, namely the handling of parentheses, quotation marks 

("), the single quote ( ' ) ,  and the forward slash (1). As it turns out, the first two turned out 

to be harder to deal with than expected, and were left unsolved. 

A few subtle sources of grammatical error were discovered later: in particular, the 

adjective m a n y  in phrases like 'many miles', post-head adverbial modifiers away  and apart 



CHAPTER 1. INTRODUCTION 5 

in phrases like '10 miles away' or '100 feet apart', and the subordinating conjunction when 

in phrases like 'when I landed'. 

The grammar was thoroughly inspected in search for the reasons for the mishandlings. 

The structure of the grammar needs to be well understood before any changes are considered, 

because there usually are non-obvious interactions between different parts of a grammar and 

between linguistic constructs in input text. 

1.4 Measuring Parser Accuracy 

If we hope to argue that our modifications of the existing grammar indeed constitute an 

improvement, we should provide some sort of quantitative argument to substantiate this 

claim. 

For this purpose, we implement and run the Parseval parser evaluation metric. Parseval 

was developed in the early nineties [7], [5] and became a de facto standard mainly due to a 

series of very successful annual contests where authors were invited to test the performance 

of their parsing systems on different data. The gauge for parser accuracy in these contests 

was Parseval, which gave it enormous popularity throughout the nineties. 

To compute this metric, a set of fifty sentences were picked from a corpus containing 

thousands of ASRS reports parsed by Cass with its original grammar. We call this our pre- 

edition corpus, in reference to  the fact that it consists of parses obtained with the grammar 

before any modifications were introduced. The sentences were chosen so that each of them 

contains a t  least one word associated with a problematic linguistic construct, and trying to 

select a roughly equal amount of sentences containing each of these words. 

These fifty sentences were also parsed by hand, carefully looking for 'correct' parses in 

every case - that is, parses that provided a decomposition of the sentences that  would be 

useful for the kinds of applications that  they are meant for. This hand-parsed set of fifty 

sentences is what we call our golden standard - our 'ultimate notion of correctness'. 

After the proposed modifications were performed on the grammar, we used it to parse 

the same set of sentences with Cass. This corpus will be called the post-edition corpus by 

virtue of the fact that it reflects the changes introduced by edition to  the grammar. 

The metric rates the pre- and post-edition corpora by comparing each with the golden 

standard. Four numeric figures are produced: precision, recall, zero crossing brackets and 

mean crossing brackets. All of these measures are based on the notion of a bracketing, 



CHAPTER 1. INTRODUCTION 6 

understood as a pair of integers (i, j )  stating that the grammar outputs a constituent in the 

sentence spanning position i through position j. Positions are counted at word boundaries. 

Position 0 is found immediately before the first word of the sentence, position 1 lies between 

the first and the second word, and so on until finally position n is after the last word of the 

sentence for an n-word sentence. 

For a sentence of one of the pre- or post-edit corpora, a bracketing is said to  be 'correct' 

if it is found in the golden standard. Constituent names are dropped, only the spans of 

the bracketings are considered. Precision for a sentence is defined as the number of correct 

bracketings found in the corpus over the total number of bracketings produced by the parse. 

Recall is defined as the number of correct bracketings over the total number of bracketings 

found in the parsed given to  the sentence in the golden standard. A crossing bracket is 

defined as a bracketing that partially overlaps a bracketing in the golden standard. With 

this notion in mind, zero crossing brackets is the number of sentences in the corpus that have 

no crossing brackets, and mean crossing brackets is the total number of crossing brackets 

found in the corpus divided by the total number of sentences in the corpus. 

These four numbers will allow us to argue whether our changes to the grammar are for 

the better or for the worse: an improved grammar should see the precision, recall and zero 

crossings go up, and the mean crossings go down, from its predecessor. 

1.5 Project Outline 

Chapter 2 of this project gives an overview of the field of parser evaluation. It discusses the 

motivation for research in this area, and classifies parser evaluation techniques according to 

a few different criteria. The criteria used by different authors are different, and in fact even 

partially overlapping. This chapter brings these together and bridges the gaps between clas- 

sifications by relating similar notions across them and pointing out the differences between 

dissimilar ones. I t  ends by discussing the Parseval metric in detail, and dealing, one by one, 

with the many objections that  experts have brought up against this measure technique over 

the past few years. As we argue, although very valid for the general case, these objections 

do not apply to  our project and we adopt Parseval as a gauge due to its simplicity of both 

implementation and interpretation. 

Chapter 3 discusses the most important concepts involved in partial parsing and how 

they apply in particular to our parser of choice, the Cass partial parser. It lays out some 



CHAPTER 1. INTRODUCTION 7 

useful notational conventions that are used throughout the text, and proceeds to define the 

notions of part-of-speech tagging and cascading finite automata, pivotal notions for this 

project. The implementations of these notions brought about in Cass are dealt with in 

detail, and finally the tools relevant to this project that come along with Cass in the Scol 

package are explained. 

Chapter 4 delves into the ASRS program, its purpose, the origin of the information 

contained in it, its processing, and its nature. It ends with a section explaining our corpus 

and what the information found in it looks like. 

Chapter 5 details, one by one, the problems we found with the original grammar in the 

corpus text. Chapter 6 goes into why we chose not to address some of the problems found, 

and how we chose to solve the rest of them. There is a final section on 'untested fixes', 

that is, modifications to the grammar that were perceived as beneficial for our purposes, 

but whose impact was not directly measured by picking sentences containing specifically 

those problems. They are, mostly, changes that complement the ones aimed at solving the 

problems identified above. 

Chapter 7 shows the results of the implemented measures. 

Chapter 8 wraps up the project by indicating what these numbers reflect about the 

success of our approach. 



Chapter 2 

Parser Accuracy Measures 

The need for parser evaluation techniques arises on various fronts: they are used for inon- 

itoring the progress of ongoing projects, for assessing the adequacy of parsers for specific 

applications, as a purely theoretical gauge of a parser's coverage of the target language, as 

a means of comparison between two or more parsers, techniques or grammars, and more. 

The undertaking of evaluating a parser's output, however, turns out to be riddled with 

difficulties. This is largely due to the inherent complexity of the task of natural language 

parsing, the great differences in parser output languages, and the diversity of the possible 

rationales for evaluation. Before speaking about particular methodologies, we will estab- 

lish a taxonomy of parser evaluation methodologies. Authors have come up with different 

classifications according to different criteria. In Section 2.1 we will bring all these classifi- 

cations together, determining a set of dimensions along which parser evaluation techniques 

can be classified. In Section 2.2 we will list and discuss a few of the most popular evaluation 

techniques and attempt to place each of them in one class along each of the dimensions 

introduced. I t  is important to  mention here that these dimensions or levels of classification 

are not necessarily orthogonal, since they are independently developed attempts a t  bestow- 

ing some order upon a set of sometimes very tenuously related techniques. Although all 

the methodologies described below somehow assess the quality of a parser's output, they 

were devised in different frameworks and with different goals in mind, and bringing them 

together is not always straightforward. 



CHAPTER 2. PARSER ACCURACY MEASURES 

2.1 Aspects of Performance 

Carroll, Briscoe et al. ([7]) contains a representative list of parser evaluation methods, but 

does not provide a particularly elaborate taxonomy of t he~n .  In the classification provided 

in this paper, all parser evaluation methods fall into one of two categories: corpus-based and 

n o n  corpus- based. 

Corpus-based methods can be further subdivided into annotated-corpus-based and unannotated- 

corpus-based. We will call this dimension of classification the technique's corpus requirement. 

In measures that require an annotated corpus, the evaluation is usually based on an implicit 

assumption that all annotations in such corpus are 'correct'. This corresponds to the notion 

of golden standard defined in Section 1.1. 

Other aspects of a metric, for example, are the ones discussed in Bangalore et al. [5]. In 

this paper, evaluation methodologies are separated into the following three categories: 

intrinsic, 

extrinsic. 

comparative 

Intrinsic evaluation measures a system's performance in the context of the framework 

in which it was developed. Intrinsic evaluation picks a set of measurable aspects of parser 

performance, as defined in terms of the formalisnls that define either the output language, 

or the computational process of parsing, or some other quantifiable notion related to the 

parser under evaluation. 

Extrinsic measures are defined here as those which judge how satisfactory the system is 

for a particular task. Thus, they consider the parsing system in the context of an embedding 

application and how well the parser suits its purpose within it. A good example might be 

how many valid hits a search engine produces. What constitutes a 'valid' hit lies completely 

outside the realm of the parser, and this measure does not concern itself with any of the 

linguistic considerations involved in the creation or maintenance of the parser as a helper 

application, only with the direct usability of the results it produces. 

In comparative measures, the focus is set on comparison. While intrinsic measures can 

be, and indeed are very effectively used in comparing, their comparative power is very 

restricted. They are, for example, widely used in comparing successive versions of a gram- 

mar [5]. Unfortunately, most of the commonly used intrinsic measures are only good for 



CHAPTER 2. PARSER ACCURACY MEASURES 

comparing parsing systems whose output languages are very close. 

To compare systems whose outputs are not that closely related, experts have devised 

metrics that would provide meaningful results even across computational representations of 

language structure. Bangalore et al. [5] and Carroll et al. [7], for example, provide their 

own proposals of evaluation frameworks which bridge the gaps between output representa- 

tion languages, thus allowing for metrics that naturally allow for intrinsic and comparative 

measures, as well as some degree of extrinsic evaluation. An extensive discussion of these 

highly involved proposals is beyond the scope of this project. 

The Human Language Technology Survey [ll] (HLT Survey for short) provides yet an- 

other set of classifications. While Bangalore et al. focus on what the measurement hinges 

on (i.e., something that lies within the system, outside the system, or in another system 

we wish to compare), the classification provided here considers the purpose for which the 

measurement is taken. 

The main division established here is also three-way. The three possible kinds of nletrics 

are: 
adequacy evaluation, 

0 diagnostic evaluation, and 

0 performance evaluation. 

Adequacy evaluation is akin to what was called extrinsic evaluation above. This pub- 

lication also defines a criterion based on whether the system under evaluation is part of a 

larger system, or a system of its own. 

In this context, intrinsic and extrinsic are defined as concepts similar to, but more 

general than, the ones found in [5]. 

'Intrinsic' is given here almost the same definition found in the cited paper by Bangalore 

et. al. If the subject of the evaluation is a subcon~ponent of the system, then intrinsic 

measures will evaluate it according to something internal to it, and extrinsic ones will do so 

in terms of its interactions with other modules of the system. 

But if the subject of the evaluation is the whole system rather than a subcon~ponent, 

then this matches exactly what we called an intrinsic measure on our previous definition. 

An extrinsic measure for a whole system would evaluate it in terms of something external 

to the parsing system, which, as mentioned above, the HLT Survey calls 'adequacy evalua- 

tion'. In this report we will use the terms 'adequacy evaluation' and 'extrinsic evaluation' 



CHAPTER 2. PARSER ACCURACY MEASURES 

parser evaluation 

I 

I curl hr corpus- orrlon-corpus-bused : 
: curt hr used wmpururively 

Figure 2.1: Classification of Parser Evaluation Techniques 

interchangeably to denote whole-system extrinsic evaluation. 

Performance evaluation "is a measurement of system performance in one or more specific 

areas". This definition is extremely general, since practically any metric could be argued 

to do this in one way or other, but it aims to capture a notion similar to that defined 

for intrinsic evaluation in 151, in which this category is defined as comprising those metrics 

which "evaluate the parser in the context of the framework in which it was developed". 

The HLT Survey further clarifies that these measures are used "to compare like with like, 

whether two alternative implementations of a technology, or successive generations of the 

same implementation". This implies a parallel with the aforementioned concept of intrinsic 

evaluation as defined in in [5]. 

Diagnostic evaluation, finally, is aimed at  pointing out specific shortcomings of a sys- 

tem, usually one under development. As explained in [ll], these metrics provide a profile 

of the system's performance "with respect to some taxonomization of the space of possible 

inputs". This clearly suggests test-suite-based methodologies, subclassified under the in- 

trinsic category in [5]. Clearly a metric that is based on a list of test inputs each of which 

is thought to  represent a particular grammatical construct (or set of constructs) which the 

parser is passible of failing upon encountering, is also likely to  be devised "in the context 

of the framework in which [the parser] was developed'' ((51). Hence it makes sense to think 

of diagnostic measures as defined by [ll] as a subset of intrinsic ones as defined by [5]. 

Figure 2.1 brings all t,hese concepts together. 

In the next section we will go through a list of some of the more documented and widely 

used parser performance metrics. While they can be used, a t  least to some degree, to assess 



CHAPTER 2. PARSER ACCURACY MEASURES 12 

the adequacy of a parser for its task within a certain application, none of these measures 

are adequacy measures proper. Since the spectrum of possible embedding applications for 

a parser is unbounded, there is no real point discussing extrinsic measures in the absence of 

a concrete embedding application description. 

It should also be kept in mind that these categories are not hard and fast: most tech- 

niques discussed can, for example, be used for intrinsic evaluation, which automatically 

makes them useful for comparison of systems with close enough output representations. 

Diagnosis and adequacy measures can be used for comparison too: the percentage of a 

test-suite that two different parsers cover, or the rate of successful retrieval provided by 

parsing systems embedded within the same application, can be used for comparison. And 

intrinsic measures can be used for diagnosis even if they are not based on an deliberately 

compiled test-suite, just like some facets of the system's internal working in some cases could 

be used to judge more or less directly upon its performance in an embedding application. 

Nonetheless, we will try to classify each technique as accurately as possible. 

2.2 Some Existing Parser Evaluation Techniques 

Both Carroll et al. [7] and Srinivas et al. [5] provide a survey of the most relevant existing 

parser evaluation techniques. Since the information they present is roughly the same, their 

summaries are combined here. The headings provided below are the names of the different 

techniques. 

Linguistic Constructions Covered 

An exhaustive list of the linguistic constructions covered by a parser, and a list of some not 

covered. The advantages of this measure are: 

0 no need for a corpus, 

0 easily obtained from a grammar, 

0 list of constructions not covered can be very useful in grammar development. 

Its disadvantages are: 



CHAPTER 2. PARSER ACCURACY MEASURES 13 

the distinction between core and peripheral aspects of a construction is not clearly 

defined, 

0 much of the complexity can be in the interactions between constructions~ 

hence, this measure alone does not provide a precise measure of data coverage. 

This is the archetypical diagnostic measure, as it provides a tally of the constructior~s 

that are covered at the present stage of project development. A list of constructions not 

covered provides a "to-do list" for the grammarian. Of course the percentage of constructions 

covered, for example, can be used as an intrinsic (and hence also as a comparative) measure, 

and in the appropriate context this might even provide some insight into how well a parser 

satisfies the requirements of an application. 

Coverage 

Percentage of sentences from a corpus for which at least one parse is given. The advantages 

of this method are: 

no corpus annotation required, 

0 easy to compute even for large corpora. 

Its disadvantages are: 

0 no guarantees on correctness of analyses. False positives may cause distortions in 

results, 

0 open to abuse. Grammars giving "flat" structures score high on this measure. A 

parser based on the grammar S + word* gives a perfect score. 

This method requires a corpus, albeit an unannotated one will suffice. I t  is an intrinsic 

measure. It lends itself weakly to comparison, just like any intrinsic measure. The list of 

sentences for which no parse was found can be used as a diagnosis tool, too. 

Parse BaseIAverage Parse Base 

The parse base is defined as the geometric mean of the number of analyses divided by the 

number of input tokens for the sentence. In symbols, for a corpus S = sl, sz , .  . . , s,, with 

ai being number of analyses for si, ti being the number of tokens for si, 



CHAPTER 2. PARSER ACCURACY I11EASURES 

This formula provides a measure of the ambiguity in the grammar for the particular 

corpus in use. 

Observe that, in general, the number of parses for a sentence grows exponentially on its 

number of tokens, hence this measure underestimates for long sentences and overestimates 

for short ones. This motivated the definition of a related measure, dubbed average parse 

base, defined as follows: 

Its advantages: 

easily computed 

0 succinct measure of the degree of ambiguity in a grammar 

Its disadvantages: 

0 being just a measure of ambiguity, 

0 ambiguities in data and grammar 

, a low-coverage, unambiguous grammar does well, 

interact, rendering this measure unable to provide 

a significant figure in comparing different grammars on different data 

This method requires an annotated corpus. It is intrinsic. 

For a stochastic parser, these probabilistic figures give a measure of the degree to which a 

parser captures regularities in the corpus. The basic form of this measure works for one 

parser and one data set, but in conjunction with more elaborate methods it can be used 

to compare different training regimes on the same test data or the effectiveness of different 

language models. It can also be generalized to provide a model-independent measure of the 

inherent complexity of a corpus. 

Its advantages are: 

0 has a clear interpretation in a probabilistic context, 

0 allows for the comparison of different language models on the same corpus. 



CHAPTER 2. PARSER ACCURACY MEASURES 

Its disadvantages are: 

only applicable to probabilistic models 

provides only a weak measure of the accuracy of derivations, rather than an indication 

of the ambiguity of the model or the predictability of the data. 

These two statistical methods depend on the existence of an annotated corpus, and can 

be considered intrinsic indicators of performance. 

Part of Speech Assignment Accuracy 

This can be measured as the ratio of correct tags per word, or by means of precision and 

recall. 

Its advantage: 

availability of vast amounts of very satisfactory corpora. 

Its disadvantage: 

nowadays most parsers take pretagged input, turning this measure into a gauge of the 

accuracy of the POS tagger rather than the parser itself. 

This measure needs an annotated (POS tagged) corpus, and can be used as a performance 

indicator. POS tagging is discussed in Section 3.2. 

Structural Consistency 

The percentage of sentences in an annotated corpus that are consistent with the analysis 

provided by the corpus. Consistency is defined in terms of crossing brackets, which will be 

defined below in Section 2.3.1. This is a rather weak measure which recognizes only some 

forms of constituency conflicts. 

Its advantage: 

it is stronger than full identity. 



CHAPTER 2. PARSER ACCURACY MEASURES 

Its disadvantage: 

0 makes minimal use of the (expensive to  produce) corpus annotations, 

it is open to  abuse in the same way as Coverage; that is, flat structures obtain high 

scores. 

This measure constitutes an example of relaxation of full identity as a comparison cri- 

terion between constituents with the aim of strengthening evaluation power. It is also a 

subset of the Parseval technique described below. 

This is an intrinsic technique which can also be used as a comparison tool, and needs 

an annotated corpus. 

Best-first/Ranked Consistency 

In a probabilistic grammar, the percentage of the highest-ranked analyses that match (by 

full identity) a manually obtained annotation in a corpus. This measure can be extended 

in such a way that the first n parses are compared, with higher-ranked ones scoring higher. 

Its advantages include: 

it provides a meaningful measure of how often a parser will deliver a correct parse, 

0 it measures the ambiguity of the grammar to some extent. 

Its disadvantage: 

0 dependent on a corpus annotated with notation fully compatible with parser output. 

This measure is annotated-corpus-based and intrinsic. 

Tree Similarity 

Several tree similarity measures have been defined, in an effort to  relax full identity as a 

criterion for comparison of parser input with corpus annotations. The idea is to  define a 

scale of how "close" the parse output by t,he grammar is to the golden standard. 

The advantages of these measures are: 

more fine-grained than full identity 

0 tolerant to  noise in corpus data 



CHAPTER 2. PARSER ACCURACY AIEASURES 

The main disadvantages of these measures are: 

0 what constitutes "closeness" is not clear, and ultimately is a matter of adequacy for 

a specific application, 

0 this family of metrics may sometimes turn out to measure a highly theoretical as- 

pect of the data structures built by the parser with little significance for a real-world 

application. 

This intrinsic performance measure demands an annotated corpus. 

The Parseval Scheme 

The GEIG (Grammar Evaluation Interest Group) or Parseval scheme is another relaxation 

of full identity which counts the number of matching bracketings between parser output 

and corpus annotation. Recall is defined as the ratio of this figure to the total number 

of bracketings in the corpus and precision is defined as the ratio to the total number of 

bracketings in the obtained parse. 

Another metric usually bundled together with these two as part of this scheme is 'Cross- 

ing Brackets', a count of the number of bracketings in the obtained parse that do not 

properly contain or are not properly contained by any bracketing in the golden standard. 

This measure has been extended to make use of some constituent mark-up information. A 

more detailed account of this measure can be found in Section 2.3.1. 

Its advantages: 

0 relatively simple corpus annotation required (for the variants using only bracketings), 

0 moderately fine-grained 

0 robust to corpus noise 



CHAPTER 2. PARSER ACCURACY MEASURES 

Its disadvantages are: 
may penalize misattachments more than once, 

0 some misattachments may go unpenalized, 

0 it is not clear how the productions in the parser grammar correspond to the pro- 

ductions implicit in the corpus data, rendering the validity of the method somewhat 

dubious, 

penalizes analyses with more structure than the corpus, even if they are correct, 

0 cannot be applied to parsers which do not provide constituency-based analyses 

This is an intrinsic performance method based on annotated corpora. 

Dependency Structure-based Scheme 

To overcome the limitations posed by GEIG scheme's problems with ~natchings, sketched 

above as disadvantages of the method, this scheme is based on dependency structure. Con- 

stituency analyses are automatically converted to sets of dependency relationships. 

This has the advantage that 
it makes use of dependency information that is not considered by many of the other 

metrics. 

It has the disadvantage that 
some linguistic information that could be useful in later processing is lost in the trans- 

formation. 

Another technique which exploits the idea of transforming constituent-based parses into 

sets of dependency relationships does so by flattening phrasal constituents into chunks which 

are later related by means of dependency relationships. 

These methods depend on the existence of an annotated corpus. They are intrinsic 

performance metrics. 

2.3 Important Parser Evaluation Projects 

Parser evaluation is, as we have seen, not a straightforward task. Hence, it is natural that 

experts will gather in groups to carry out projects that attempt to define standards for 



CHAPTER 2. PARSER ACCURACY MEASURES 19 

parser evaluation, in the hopes of evaluating real-world needs, finding methodologies that 

will address them, and setting said methodologies as standards among the potential infinity 

of possible choices so as to facilitate coinmunication among groups of experts, a necessary 

condition for significant development of any technological field. 

The first such project we will see here, Parseval, was developed in the early nineties and 

defined the very first de facto standard in parser evaluation [ l l ] .  Parseval is dealt with in 

Section 2.3.1. 

The second one, Sparkle (see [6]), discussed in Section 2.3.2 is a major project whose main 

goal is the production of generic broad-coverage shallow parsers alongside with a framework 

on whose standards the creation of such software for a diversity of European languages is 

facilitated. The development of tools capable of learning the grammatical particulars of 

several European languages in the form of parametrisable platforms that can be trained for 

each of the different languages. 

The third, EAGLES (see [13]), which we cursorily go over in Section 2.3.3, is entirely 

focussed on adequacy evaluation and thus not really within the scope of this project. It is 

included for completeness because of its relevance in the broad field of Natural Language 

Processing Systems Evaluation. 

2.3.1 Parseval 

Before 1991, when the Parseval metric for parser accuracy was developed, there was no 

objective and verifiable method for parser evaluation [ll]. Parseval uses three figures to  

assess the performance of a parser: crossing brackets, recall and precision. 

These three measures use bracketings as the basis for the comparisons that the measure 

comprises. Two bracketings are said to match if their spans, as well as their constituent 

names, are the same. Crossing brackets counts the number of constituents in the obtained 

parses that partially overlap constituents in the golden standard. That is, say we label each 

word boundary in a sentence, with label 0 naming the point in the sentence right before the 

first word, and label n denoting the point right after the nth word in an n-word sentence. 

Then if there is a constituent in the golden standard which spans labels i through j, with 

0 < i < j 5 n, there will be a crossing bracket if the obtained parse has a constituent 

spanning positions k through 1, where k < i < 1 < j or i < k < j < 1. In other words, there 

is no proper containment in either direction. 

Precision counts the number of bracketings produced by the parser that match the golden 



CHAPTER 2. PARSER ACCURACY MEASURES 20 

standard and divides this number by the total number of bracketings for the sentence in the 

obtained parse. The idea is to indicate how many of the bracketings produced are valid. 
Recall is obtained by dividing the number of parser-produced bracketings matching the 

corpus and divides it, this time, by the total number of bracketings in the corpus. The 

idea is to indicate the proportion of bracketings in the golden standard that were indeed 

produced by the parser. 

While this measure has great historical importance, there have been a number of objec- 

tions over the years. 

The Survey on the State of the Art in Human Language Technology [ll], for example, 

explains that most of the information provided by the corpus is not taken into account, 

and that the level of agreement on details of linguistic description among the experts who 

created Parseval, and those who used the method after them, leaves much to be desired. 

Bangalore et al. [5] describe the inconveniences in detail. For one thing, misattachments 

are penalized more than once. To illustrate this, they bring the following example: consider 

the sentence She bought an  incredibly expensive coat with gold buttons and fur lining at the 

store. The following three alternative parses are given: 

[She 

[bought 

[[an i n c r e d i b l y  expensive coat]  

[with [[gold bu t tons l  and [ f u r  l i n i n g ]  11 
1. 

I 
[ a t  [ the  s t o r e 1  1  

I 
I 

[She 

[bought 

[[an i n c r e d i b l y  expensive coat]  

2. [with [[gold but tons]  and [ [ f u r  l i n i n g ]  [ a t  [ t h e  s t o r e ]  11 11 

1 

I 

I 



CHAPTER 2. PARSER ACCURACY MEASURES 

[She 

[bought 

[an inc red ib ly  expensive coat]  

wi th  

[gold but tons]  
3. 

and 

[ fu r  l i n ing ]  

[a t  Cthe s to re1  I 

The first sentence is meant for the golden standard, and reflects the common-sense 

interpretation that at the store modifies the act of the purchase. Thus the chunk is attached 

at the level same level as chunks bought and an incredibly . . . and fur lining. The bracketings 

found in this sentence are: 

1. [She . . . s to r e ]  ( t he  whole sentence) 

2. [bought . . . s to r e ]  

3. [an inc red ib ly  expensive coat  wi th  gold bu t tons  and f u r  l i n ing ]  

4. [an i nc r ed ib ly  expensive coat1 

5. [with gold bu t tons  and f u r  l i n i n g l  

6. [gold bu t tons  and f u r  l i n i n g l  

7. [gold but tons]  

8. [ f u r  l i n i n g l  

9. [ a t  t h e  s t o r e ]  

10. Cthe s t o r e ]  

The second sentence attaches at the store to the chunk fur lining, thus reflecting an 

interpretation in which the place in the coat where the fur lining is located is the store. 

The bracketings found in this sentence are: 



CHAPTER 2. PARSER ACCURACY MEASURES 

1. [She . . . s tore]  

2. [bought . . . store1 

3. [an incredibly . . . a t  the  s to re ]  

4. [an incredibly expensive coat] 

5. [with gold buttons and f u r  l i n ing  a t  t h e  s tore1 

6. [gold buttons and f u r  l i n i n g  a t  t he  s to re ]  

7. [gold buttonsl 

8. [ fur  l i n i n g  a t  t he  s tore1 

9. [ fur  l in ing]  

10. [ a t  t he  s to re ]  

11. [ the s to re ]  

The last sentence is simply a much "flattened" version of the first: here, chunks bought, 

a n  incredibly expensive coat, with, gold buttons, and, fur lining and at the store are all 

siblings. The bracketings found in this sentence are: 

1. [She . . . store1 

2. [bought . . . s t r o r e l  

3. [an incredibly expensive coat] 

4. [gold buttonsl 

5. [ fur  l in ing]  

6. [a t  t he  s tore1 

7. [the s to re ]  

It is arguable whether any real misattachments are happening here. Instead, this parse 

could be said not to state much of the information regarding the structure of the phrase 

bought . . . a t  t he  s tore .  Rather than state wrong structural information, it states none 



CHAPTER 2. PARSER ACCURACY MEASURES 

a t  all. 

However, the former sentence is much richer in information than the latter, and many a 

computational linguist would argue that a "good" measure should rank it higher. 

What happens with Parseval's crossing brackets measure here is interesting: the sentence 

with the one wrong attachment, sentence number 2: has three crossing brackets: 

between [[gold buttons] and [fur lining]] and [ [fur lining] [at [the 

store1 I I 

0 between [with [[gold buttons] and [fur lining]]] and [[gold buttons] and 

[[fur liningl Cat [the store1111 

0 between [[an incredibly expensive coat] [with [[gold buttons] and [fur 

liningl I I] and C [an incredibly expensive coat] [with [ [gold buttons] 

and [[fur lining] [at [the store]]]]]] 

The total number of bracketiiigs for the first sentence is ten. Of the bracketings in the 

second sentence, the following six are correct (i.e., matched exactly by some bracketing in 

sentence 1): 1, 2, 4, 7, 9, and 10. Bracketings 3, 5, 6 and 8 are incorrect. This gives us  a 

recall of 6/10 = 0.6. The total nurnbcr of bracketings in the second sentence is eleven, so in 

this case precision is 7/11 = 0.64. 

Sentence 3, on the other hand, has no crossing brackets. Its total number of bracketings 

is 7, and all bracketings are correct. This makes for a prccision of 7/7 = 1 arid a recall of 

7/10 = 0.7. 

The coriclusion is clear: the less informative third parse, which 'risks less1 by asserting 

less about the sentence, does better in every single score of the measure. The second parse 

is harshly penalized because of only one misattachment. 

Another issue with this metric that they bring up in this paper is that additional struc- 

ture that the parser might confer will be penalized: any bracketings that appear on a parse 

on top of those found in the golden standard will have a negative impact on the precision, 

because they will never match a braclccting found in the corpus. 

The fact that Parseval had the format of an international competition, whose inetrics 

were devised largely with the goal of allowing comparison among parsers with very diverse 

representations of linguistic information, was a significant factor in turning it i ~ ~ t o  a de facto 

standard. In the last decade, however, the NLU community has been increasingly critical 



CHAPTER 2. PARSER ACCURACY MEASURES 24 

of Parseval, as discussed above, and recent efforts (like [7], [8]), have tried to address these 

very valid concerns. 

Carroll, Briscoe et al. [7] bring up similar objections to those in Bangalore et al. [5]. 

They mention that misattachinents can be penalized several times, and that incorrect ar- 

gument and adjunct identification can go unpunished in some cases. 

Most other objections brought up in the literature and mentioned above concern the 

unpredictability of how the structures found in the corpus interact with the ones produced 

by parsers. This, however, is a general scenario for an arbitrary corpus and an arbitrary 

parser. As we will see below, this is not the case in our project, and Parseval turns out to 

be a reasonably fair gauge for the goals of this project. 

2.3.2 Sparkle 

Developed in the context of the data processing needs of the European Union, a multi- 

language information society, Sparkle seeks to address the most compelling issues in Natural 

Language Processing so as to set the stage for fruitful development of NLP applications in 

the EU. 

According to the analysis of experts from several universities and private companies all 

over Eastern Europe who worked in this project, there were two most important needs to 

address: 

broad-coverage, shallow parsing techniques and tools, and 

0 lexical acquisition systems capable of learning aspects of knowledge from free text, in 

particular subcategorization, so as to build useful lexicons. 

A natural consequence of setting these goals was the added need of evaluation techniques 

to assess the degree of success of the project upon completion. 

For this reason, the Sparkle experts surveyed the existing parser evaluation techniques, 

which is reflected in Section 2.2 and they came up with their own scheme, which we briefly 

discuss below. 

Since Sparkle comprised four groups working in developing parsers for different languages 

and based on different techniques, it is clear that their annotation scheine must be language- 

neutral and that no single annotation scheine will be a fair gauge for all types of parser 

involved. Thus, their annotation scheme involves three levels: 



CHAPTER 2. PARSER ACCURACY MEASURES 25 

1. a chunk level scheme, in which sentences are broken up into chunks (see [I]), with each 

chunk having a grammatical category (e.g., nominal, verbal) and a head, 

2. a phrasal level scheme, which specifies phrasal categories (e.g. noun phrase, verb 

phrase), boundaries, and hierarchical structure, 

3. and a grammatical relation scheme, specifying dependency structure information. 

In actual evaluation, a t  first only the English parser was evaluated at both the chunk 

and the phrasal level. All parsers were evaluated a t  the chunk level. 

Sparkle's evaluation scheme features measures of recall and precision, and crossing brack- 

ets. For its recall and precision measures, Sparkle elaborates on the GEIG scheme presented 

above in Section 2.2, which computes recall and precision measures on an unlabeled bracket- 

based measure. Sparkle extends this notion to all of its levels of annotation by defining a 

match as exact identity of a chunk (brackets and label) a t  the chunk level, a constituent 

(brackets and label) a t  the phrasal level, or a relation at the grammatical level. 

For its crossing-brackets measure, defined only a t  the phrasal level, two figures are 

defined: mean crossings and zero crossings. Mean crossings indicates the average number 

of crossing brackets per sentence and zero crossings indicates the percentage of sentences in 

the corpus that had no crossing brackets with the corpus whatsoever. 

2.3.3 EAGLES 

Running between February 1993 and May 1996, the EAGLES project involved over a hun- 

dred academic institutions and private companies, and constituted a major joint effort by 

the European Commission to develop standards for Natural Language Processing systems. 

With the realization that any natural language system of practical use would entail a 

large project realized by teams comprising many individuals and hence requiring major 

cooperation, the idea that a serious effort towards the development of standards was the 

next step acquired enough momentum for the EAGLES project to become a reality. 

EAGLES had five work groups, each respectively devoted to: 



CHAPTER 2. PARSER ACCURACY MEASURES 

0 computational lexicons, 

0 text corpora, 

computational linguistic formalisms, 

spoken language resources, and 

assessment and evaluation. 

Each of the work groups has produced a series of recommendations in the form of reports, 

which can be freely downloaded from the EAGLES website or ftp server [13]. 

The last of the groups is the one whose work concerns us here. However, the EAGLES 

project's focus is on adequacy, or extrinsic, evaluation, see above. Thus the measures they 

propose, meant to assess how well a particular system fits a particular task, are not of very 

much use for us here. A discussion of the structure of the report, however, is appropriate. 

The group has divided the kinds of systems considered into three categories: 

writer's aids, 

translator's aids, and 

knowledge management systems. 

The report then consists of a main body and appendices on evaluating each of the above 

listed types of system. A few additional sections, more or less closely related to the main 

body, contain diverse information. The main body starts out by describing IS0 9126, an 

existing standard that was used as a starting point. Based on this, they attempt to build a 

parameterized testbed, namely a framework that will allow particular characteristics of each 

project to  be evaluated to  be provided as inputs to the framework. 

The aspects of projects parameterized by this formalization are: 

the type of product to be evaluated, 

0 the type(s) of user of the product, 

0 descriptions of characteristics of systems that might be of interest to particular classes 

of users. 

The output of the testbed will consist of a series of automated tests. h'Iany tests are, 

however, impossible to completely automate due to their nature or limitations in the present 



CHAPTER 2. PARSER ACCURACY MEASURES 27 

state of the art, and in these cases the framework will provide a series of instructions for a 

human tester on which test to conduct. 

2.4 Evaluating Cass in our Project: Discussion 

For the purposes of our project, which involves evaluation of the Cass partial parser, a 

measure based on crossing brackets, precision and recall, will be the most adequate. This 

is a consequence of several characteristics of our parser, data, and corpus annotations, as 

discussed below. 

Firstly, crossing brackets, precision and recall provide easy-to-compute, objective, readily 

comprehensible and somewhat direct measures of the accuracy of a parser. 

Secondly, the objections raised against these bracketing-based measures, while very valid 

and real concerns for the general case, are not applicable to this particular problem. In 

the succeeding paragraphs we will discuss the most relevant objections and refute their 

applicability to our project. 

The first problem we will discuss, which was mentioned in Section 2.3.1, concerns mis- 

attachments. While it is true that a parser that attaches a constituent wrongly might have 

its output unduly penalized, further observation of the very nature of Cass output reveals 

that, because the parser precisely does NOT attempt to make many guesses on dependency 

information, it rather leaves all adjuncts unattached, or rather, attached to a node of that 

parse tree as low as possible, thus "containing" ambiguity without making any risky guesses. 

Since the test corpus will be created ad hoc for this project, this particular characteristic 

of Cass output will be kept in mind, and no dependency information will be encoded into 

the corpus, only the kind of constituent information that  Cass provides. The measurements 

obtained from this work are meant to be used in applications where shallow parsing is the 

kind of information sought after, so we are not really interested in measuring accuracy of 

attachment information. 

So for example, if we had a sentence like 

I saw the m a n  on  the hill with the telescope. 

and we know that the correct interpretation attaches the prepositional phrase with the 

telescope to the hill (e.g., the hill with the telescope is an astronomic observatory of some 



CHAPTER 2. PARSER ACCURACY MEASURES 

sort), we would not use in our golden standard a parse like this: 

[#c [#cO I sawl 

[#nx t h e  man1 

[#pp on [#nx t h e  h i l l  [#pp with t h e  te lescope]  11 1 

but rather 

[#cO [#cO I sawl 

[#nx t h e  man] 

[#pp on t h e  h i l l 1  

[#pp with t h e  te lescopel  1 

That is, will deliberately ignore attachment information, even when it is known to  us, 

to  make the golden standard look like the analysis we would expect a partial parser to  come 

up with, rather than a complete analysis with all attachments resolved. 

Other objections claim that bracket notation does not allow for disconnected trees, since 

root attachment is the shallowest that can be represented. This would imply, the argument 

follows, that metrics based on bracket containment are inadequate for shallow parser out- 

puts. Once again, it is the fact that this is known in advance that makes this argument 

inapplicable to  our case. Since the corpus will be hand-coded by us, this fact will be kept 

in mind and as a result no incompatibilities will be found between the golden standard and 

parser output. In other words, neither the parser nor the golden standard really distinguish 

root attachment from non-attachment, so no "disagreements" could possibly arise. Addi- 

tionally, and once again, dependency structure is not the kind of information sought by the 

prospective applications of these measurements, and our corpus annotations will reflect this 

in their shallow structure. Hence no distortions of the measurement will be caused by this 

apparent flaw. 

Parseval has been used without constituent names in the past, but implementations of 

the measure have predominantly only considered two bracketings to match only both their 

spans and their constituent names did. For this project, however, we have chosen to  drop 

the constituents names. This allowed us to simplify enor~nously the implementation of the 

measure. We will argue that there is no subst,antial loss in the validity of the metric due to  

this decision. 

On the one hand, the idea of partial parsing is that of providing "islands of certainty" 

([3]), that is, to identify the boundaries of relevant linguistic constructs as accurately as 



CHAPTER 2. PARSER ACCURACY MEASURES 29 

possible. Towards this goal, finite-state grammars make use of many symbols which repre- 

sent reliable boundary delimiters, rather than meaningful linguistic information. The fact 

that symbols in a finite-state grammar do not necessarily have linguistic significance puts 

their usefulness as constituent identifiers in question. 

Related to the above is the fact that potential applications of this project are most 

likely going to be used for applications performing Information Extraction tasks. One good 

example of this would be finding all the explicit references to names of people involved in 

an incident to have them automatically replaced or removed prior to entry to the database. 

This tells us that there is likely to be a whole layer of applications running on the output of 

the parser, likely semantically aware applications which are much better equipped to choose 

linguistically meaningful constituent labels for the phrase boundaries identified by Cass. 

Another relevant point is that in this project we are comparing two minor variations 

of the same grammar. In this light, the grammatical symbols involved in both versions 

should not be expected to differ significantly. Adding constituent names would have made 

the implementation of the measure much more complicated and probably would not have 

had a visible impact in the final values. 

In conclusion, we will adopt a simplified version of the Parseval metric for this project, 

since it appears to be the simplest to implement and interpret, and the objections raised in 

the literature do not apply to our case. 



Chapter 3 

Partial Parsing and the Cass 

Partial Parser 

The Cass partial parser, written by Steven Paul Abney, is a fast, reliable partial parser suited 

for information retrieval and other applications where a complete analysis of the relations 

among constituents in a sentence is not as relevant as the identification of the constituents 

themselves. 

Cass works based on a cascade of finite-state machines. Hence there is no backtracking, 

which makes this parser much faster than those based on more traditional, non-deterministic 

(yet more complete) syntactic analysis techniques. 

This chapter starts by defining notational conventions that  will be used throughout this 

report in Section 3.1. I t  proceeds to defines the notion of POS tagging, basic to this project, 

in Section 3.2. 

3.1 Notational Convent ions 

Before we proceed to explain how Cass works, we need to define some notational conventions 

that will be used in this section and throughout the report. We also present some background 

information on part-of-speech (POS) tagging, a step in the parsing process usually carried 

out before parsing. This project assumes that all its input has already undergone this 

process. 



CHAPTER 3. PARTIAL PARSING AND THE CASS PARTIAL PARSER 

3.1.1 Not at ional Convention for Grammars 

For grammars, we list one production per row. Grammars are structured by levels, see 

Section 3.3. Every level is introduced by a semicolon followed by the name of the level, in 

a line of its own. The levels are listed from lower to higher: the filter corresponding to the 

first level from the top is applied first, then the remaining ones in the order in which they 

occur. All productions belong to the last level declared. 

Below is an example grammar that we will use in Section 3.3: 

chunk 

NP -> D? N+; 

VP -> V-tns I Aux V-ing; 

:PP 

PP -> P NP; 

: clause 

S -> PP* NP PP* VP PP*; 

The notation is pretty much the standard for regular expressions: X? matches 0 or 1 

occurrences of X, X+ matches 1 or more occurrences of X, X* matches 0 or more occurrences 

of X, the upright bar (I) denotes union, juxtaposition denotes concatenation. All rules end 

with a semicolon. The first two productions belong to the first level, :chunk. The third 

belongs to  the : pp level and the fourth one belongs to  the last level, : clause. 

3.1.2 Notational Convention for Parses 

The notation we will use for parses uses bracket containment to  denote ancestry in the parse 

tree. 1.e.) a constituent occurring immediately within another is its child in the parse tree. 

Grammatical categories are noted by an identifier starting with the symbol "#". Trees are 

shown only to the depth that is relevant to the discussion to avoid unnecessary cluttering. 

POS tags are also only shown when relevant. For the same reason, levels of the tree are 

marked up by listing them on separate rows and using visually appealing indentation. For 

example, the parse tree shown in Figure 3.1 would be noted in this report as shown in 

Figure 3.2. A tree for the same parse is shown abbreviated in Figure 3.3, with its text 



CHAPTER 3. PARTIAL PARSING AND THE CASS PARTIAL PARSER 

Figure 3.1: An Example Parse Tree 

Figure 3.2: Text Notation for Parse Tree in Figure 3.1 

counterpart shown in Figure 3.4. Notice how in the abbreviated tree the structure of the 

#cO is flattened out, and how all POS tags are lost, but for the tag for little. This type of 

abbreviation would be used in a context where the structure of the #cO is not relevant and 

the tag for the adjective is of interest for some reason 

Figure 3.3: Abbreviation of Par'se Tree from Figure 3.1 



CHAPTER 3. PARTIAL PARSING AND THE CASS PARTIAL PARSER 

C#c 
[#cO 

[#nx mary had1 1 
[#nx a l i t t l e / j  j lamb11 

Figure 3.4: Text Notation for Parse Tree in Figure 3.3 

3.2 Part-of-Speech Tagging 

Part-of-Speech, or POS, tagging is the process of labeling each word in a sentence with the 

one tag from a pre-established set or tagset that best describes its syntactic role given its 

local context. There are several standards that define these pre-established sets. Among 

the most popular are (from [15]) 

0 the Brown Corpus Tagset, 

0 the Penn Treebank Tagset, 

0 the C5 tagset used by the Lancaster UCREL project's CLA 

the related, larger C7 corpus (also frorn [19]). 

,WS tagger [19], and 

Table 3.1 taken from [15], shows the Penn Treebank Tagset, which is the one that the 

original grammar's tagfixes file assumes at  its input [3]. 

In this report, we will indicate tags by typing them in monospace font and preceding them 

with a forward slash. For example, / i n  refers to the tag for prepositions and conjunctions. 

All tags mentioned in this document refer to their meanings in Table 3.1. 

3.3 Cascading Finite Automata 

Cascading finite automata dates as far back as the sixties, when Zellig Harris [14] devised a 

technique based on successive passes of sentences through finite-state machines. In his work, 

he provides a full-fledged theoretical framework and extensively analyzes the properties and 

limitations of his approach as a theory of language. 

The Cass Partial Parser, introduced in Section 1.1, is the parser in use for this project 

and it is an implementation of finite-state cascades. The approach using cascading finite- 

state machines to parse a sentence passes it through a series of "filters", each comprising 



CHAPTER 3. PARTIAL PARSING AND THE CASS PARTIAL PARSER 34 

Tag Description Example 
CC Coordin. Conjunction and, but, or 
CD 
DT 
EX 
F W  
IN 
JJ 
J J R  
JJS 
LS 
MD 
NN 
NNS 
NNP 
NNPS 
PDT 
POS 
P P  
PP$ 
RB 
RBR 
RBS 
R P  

Cardinal number 
Determiner 
Existential 'there' 
Foreign Word 
Preposition/sub-conj 
Adjective 
Adj . , comparative 
Adj ., superlative 
List item marker 
Modal 
Noun, sing. or mass 
Noun, plural 
Proper noun, singular 
Proper noun, plural 
Predeterminer 
Possessive ending 
Personal Pronoun 
Possessive Pronoun 
Adverb 
Adverb, comparative 
Adverb, superlative 

one, two, three 
a, the 
there 
mea culpa 
o f ,  in ,  by 
yellow 
bigger 
wildest 
1, 2, One 
can, should 
llama 
llamas 
I B M  
Carolinas 
all, both 
's 
I ,  you, he 
your, one's 
quickly, never 
faster 
fastest 

Particle U P ,  o f f  

Tag Description Example 
SYM Symbol +,%, & 
T O  
UH 
VB 
VBD 
VBG 
VBN 
VBP 
VBZ 
WDT 
WP 
WP$ 
WRB 
$ 

# 
16 

,, 

( 
1 
1 

"to" 
Interjection 
Verb, base form 
Verb, past tense 
Verb, gerund 
Verb, past participle 
Verb, non-3sg pres 
Verb, 3sg pres 
Wh-determiner 
Wh-pronoun 
Possessive Wh- 
Wh-adverb 
Dollar Sign 
Pound Sign 
Left Quote 
Right Quote 
Left parenthesis 
Right parenthesis 
Comma 
Sentcnce-final punc 
Mid-sentence punc 

to 
ah, oops 
eat 
ate 
eating 
eaten 
eat 
eats 
which, that 
what, who 
whose 
how, where 
$ 

# 
' or " 
' or " 

11  (, ( 1  < 
I ,  1, 1, > 
, 
. ! ?  
. . - _  . , " '  

Table 3.1: the Penn Treebank part-of-speech tags (with punctuation) 

a finite-state automaton. The first filters identify small, nonrecursive structures or chunks, 

like NPs, VPs, APs, AdvPs and the like. Subsequent layers of finite-state machines confer 

structure in terms of the constituents output by previous levels. 

Any sequences not recognized by a finite-state automaton will not be rejected: rather, 

they will be punted1 to the output, that is, fed to the input of the next-level automaton 

in the position they appear in the original sentence without any further modifications or 

annotations. 

The idea behind this is that higher-level filters might find a pattern involving the unrec- 

ognized strings and the constituents found by the levels the sentence has passed through so 

far. Cass thus bulids on the idea of "islands of certainty": whenever you see a recognizable 

 h he term punt here comes from american football, where it means "to abandon the current attempt to 
score and kick the ball away" ([2]). 



CHAPTER 3. PARTIAL PARSING AND THE CASS PARTIAL PARSER 3 5 

pattern, identify it immediately, ignoring whatever cannot be dealt with. This way, the 

parser can give a "best effort" parse consisting of partial derivation trees even if it cannot 

find a structure for the whole sentence. 

To illustrate the above explained ideas, here is an example with three levels of automata, 

their corresponding grammars and how they incrementally come up with a parse tree for 

an example sentence (from [3]). The example grammar is the same we used in Section 3.1, 

shown here again for ease of reading: 

: chunk 

np -> d? n+;  

vp -> v-tns I aux v-ing; 

: c lause  

s -> P* np PP* vp pp*; 

Let us see how Cass would go about parsing the following sentence with this toy grammar: 

The woman in the lab coat thought you were sleeping 

The first step is part-of-speech tagging: Cass assumes its input is POS-tagged. There 

are a number of products which perform a satisfactorily accurate job of tagging words with 

their corresponding part of speech. Assuming a simple, 'toy' tagset in which /D is the tag 

for determiners, /N is the one nouns, /P  is for prepositions, /V-tns for transitive verbs, /Aux 

for auxiliaries, and /V-ing is for verbs in the present participle, the correct tagging for this 



CHAPTER 3. PARTIAL PARSING AND THE CASS PARTIAL PARSER 

sentence would be: 

t h e  

woman 

i n  

t h e  

l a b  

coat  

thouhgt 

YOU 

were 

s l e e p i n g  

D 

N 

P 

D 

N 

N 

V-tns 

N 

Aux 

V- ing  

By following the chunk-level grammar, we find the following structural annotation for 

the sentence: 

[#np t h e  woman1 

i n  

[#np t h e  l a b  coa t l  

[#vp thought I 

[#np youl 

[#vp were s leeping]  

Notice that  an ambiguity arises here: both the lab and the lab coat match the right side 

of the rule NP-> D? N+. 

In this case, the ambiguity is resolved by taking the longer phrase, namely the lab coat. 

This output from the first-level automaton will be fed to the second level of filters, which 

will render the following structure: 

[#np t h e  woman] 

[#pp i n  [#np t h e  l a b  coat] ]  

[#vp thought]  

C#np youl 

C#vp were s leeping]  



CHAPTER 3. PARTIAL PARSING AND THE CASS PARTIAL PARSER 37 

By virtue of the only rule in this level, the preposition and the succeeding NP are 

brought together in a PP. The next level transforms this to 

[#s [#nx t h e  woman] 

[#pp i n  [#np t h e  l ab  coat11 

[#vp thought I I 

[#s [#nx you1 

[#vp were sleeping] I 

This shows a fundamental characteristic of Cass output that will be discussed in the 

next section: the subordinate clause is not contained within its containing clause, but 

simply juxtaposed. 

3.4 Characterizing the Structures Built by Cass 

Because it is based on finite-state automata, Cass does not allow for true recursion. All 

the grammars shown in the above three-level example are regular; this is not a coincidence. 

Clearly, since each level is a finite-state machine, any grammar that denotes it must be 

regular. Therefore, true recursion is not allowed: the right sides of rules can contain only 

symbols from the left sides of lower levels, never from higher ones. To be completely strict, 

recursion is actually allowed, but only in the very limited form of tail recursion, like in 

regular grammars. Nested structures are thus replaced in Cass by sequential structures, as 

shown in the example, where a subordinate clause occurs by the side of its containing clause 

rather than within it. 

The same happens with other constructs, like noun-noun modifiers, where the internal 

structure of the ensuing N P  is not analyzed. The whole phrase is simply rendered as a list 

of nouns constituting a noun phrase. 

This characteristic of Cass output makes for what is called "containment of ambiguity": 

local ambiguities are kept local, without engaging the parser in a global analysis involving 

all possible local structures. slowing down the parsing process as happens in traditional 

CFG-based parsers (and by the way, in most cases not even really producing a realiable 

result, given the involved semantic and pragmatic considerations that usually enter into 

structural ambiguity resolution). 



CHAPTER 3. PARTIAL PARSING AND THE CASS PARTIAL PARSER 38 

Cass never rejects a sentence: in the worst case, a sentence to which no grammatical 

structure can be ascribed will look like a flat list of the words that it comprises with their 

corresponding POS tags. What usually happens is that parts of the sentence can be analyzed 

and others cannot. In this case, as mentioned above, the output of the algorithm will show 

"islands of certainty", that is, the substrings of the whole sentence that can be parsed will 

be parsed, with everything else simply "punted" at the top level in the output tree. 

3.5 Cass Input and Output Files, their Format and Contents 

Cass was distributed by Steven Paul Abney in a package called Scol. In this section we will 

discuss the particular utilities in Scol that are relevant to  this project, with their inputs, 

outputs and a brief description of their tasks. All the explanations found here were taken 

from 131. 

3.5.1 Mapping Standard Tagsets to Grammar-specific ones with tagf i x e s  

Because POS tags are inevitably embedded in any grammar, where they act as terminal 

symbols, tagsets are always grammar-dependent to some degree. This is why Scol provides 

a means to map tagsets to more grammar-specific ones if required. 

This mechanism is granted by a program, t ag f i xe s ,  which operates in one of two 

possible modes, each activated by either of the switches -c and -f , as described below. 

When given the -c switch on command-line invocation, tagf  i x e s  works in compile 

mode. I t  takes as input a . f x file and compiles it into a . f xc file. The input . f x file has 

the following format: every line of the file consists of three tab-separated fields specifying a 

single mapping. Thus, a line reading "x y z" means "on finding word y with tag z, change 

the tag to 2'. 

It is possible to use an asterisk (*) in the second or third fields to  mean any word or tag, 

respectively. So for example, the line 

nnP rocky * 

means "on Finding the word rocky, give it the tag nnp no matter how it is tagged to start 

with", and a line saying 

noun * nn 



CHAPTER 3. PARTIAL PARSING AND THE CASS PARTIAL PARSER 

. fx file . f xc file 

name * nnp 
verb * vb 

adj ~j 
prep * In 
verb  i s  * 

Figure 3.5: The tagf  ixes  File Complilation Process 

signifies "map all occurrences of the tag nn to noun, no matter the word". 

The output . f xc  file contains the same information as the . f x  file but is in a format 

that allows for more efficient use of it by tagf  i xe s  in its other mode of operation, discussed 

below. 

The whole process of grammar compilation is illustrated in Figure 3.5. 

When given the switch - f ,  tagf  i xe s  takes as inputs 

0 the name of a . fxc  file, 

0 the name of a file containing POS-tagged text (usually given the extension . t ag ) .  

100101011 
001010010 

110101011 

* 

This will return the text contained in the original . t a g  file, with the tags changed as 

per the rules listed in the . f x file. 

The file consists of two kinds of lines: markup lines and word lines. A markup line is 

a line containing no tabs; their actual contents are ignored by both tagf  i xe s  and Cass. 

They are interpreted by the latter as sentence delimiters. Word lines contain a word and its 

POS tag, in that order, separated by tabs. As mentioned above, spaces are allowed within 

both words and tags by the rule that considers tabs as the only valid field separator. This 

process is illustrated in Figure 3.6. 

In both the . f x  and the . t a g  files, whitespace other than tabs is significant and a 

string containing spaces is treated as a single string. The spaces are considered part of the 

identifier. 

3.5.2 Compiling the Cass Grammar: reg 

tagfixes -c 

One of the inputs to  Cass, as discussed in Section 3.5.3, is a grammar. The Cass grammar 

format is discussed in Section 3.3. 

+ 



CHAPTER 3. PARTIAL PAR,SING AND THE CASS PARTIAL PARSER 

angry I j 
wl th  In  
e r n i e  nnp 
today r b  

.tag file 
(original tagset) 

b e r t  name 
i s  verb  
angry ad j  
wi th  prep 
e r n i e  name 
today adv 

tagfixes -f 

/ 
.tag file 

D 

(grammar-specific 
tagsel) 

L 

7 
. f xc file 

Figure 3.6: The tagf  i x e s  Mapping Process 

For Cass to be able to use this grammar, it needs to have it compiled into a format that 

it can use at run-time, called the Finite State Cascade ( . f  s c )  format. The program r e g  

takes as input a grammar in a textfile (normally with extension . r eg ) ,  and compiles it into 

a . f s c  file. The . f s c  file name is then used as one of the input arguments upon invocation 

of Cass, as explained in Section 3.5.3. The process of grammar compilation is illustrated in 

Figure 3 .7 .  

: chunk 
NP->D? N+; 
VP->V-~~S~AUX V-ing 

: PP 
PP-> P NP; 

.reg file . f sc file 

Figure 3.7: The Grammar Compilation Process 



CHAPTER 3. PARTIAL PARSING AND THE CASS PARTIAL PARSER 

3.5.3 Cass at Work: Inputs and Outputs 

The program that contains the code of the Cass Partial Parser itself is in a file called cass.  

When invoked from the command line, cass takes the following arguments: 

the name of a Finite State Cascade file ( .  f  sc ) ,  

the name of a file containing tagged text ( . tag) .  

Cass's output consists of text describing the parse that Cass finds for the given . t a g  file 

using the grammar encoded in the given . f  s c  file. Any tagfixes desired must be done prior 

to use of Cass. 

Cass provides a choice of three output formats. The only one dicussed here is the forest 

format, which is Cass's default and the one we use for this project. The forest format 

consists of standard parse trees in a notation similar to that used in Section 3.4. 

Here is an example Unix-style command-line invocation of cass,  with tagifxes included: 

t ag f ixes  -f h l . f x c  t e x t l . t a g  I cass  -g h l . f s c  

The tagf i xe s  invocation takes a compiled mapping list in h l  . f xc (which should have 

been previously compiled by using the -c switch, see Section 3.5.1) and writes a copy of 

contents of t e x t l .  t a g  with the corresponding tag transformations applied into the standard 

output. The cass  process takes it from there and writes into the standard output the parse 

it obtains for it by using the grammar in h l .  f  sc .  The -g flag tells cass  to use this file as 

its grammar. This is illustrated in Figure 3.8 

3.5.4 Original Grammar Provided with the Scol Distribution 

Scol comes with a few example grammars and tagfixes files. Of those, the most complex 

ones, meant for full-scale broad-coverage parsing of english text, are the grammar e8 . r eg  

and the tagfixes file e8. f  x. These files were written by Steven Paul Abney himself [3] based 

on empirical observations of corpus data. 

Our project takes this grammar and tagfixes file as a starting point for improvement. 

All the sentences found in the ASRS sample corpus (see Section 4.4) are parsed using these. 

Our research suggests, irnplements and evaluates modifications of these files. Improvement 

is judged taking the Parseval (see Section 2.4) results for the aforementioned sample corpus 

as a baseline. 



CHAPTER 3. PARTIAL PARSING AND THE CASS PARTIAL PARSER 

. f sc file 

bert name 
is verb 
angry adj 
with prep 
ernie name 
today adv 

/ 
.tag file 
(grammar-speci fic 

tagset) 

[ S  [NP Bert 
[VP is angry] 
[PP with 

[NP Ernie] 1 
[AdvP today]] 

final result: parsed text 

Figure 3.8: The Cass Partial Parser's Inputs and Outputs 



Chapter 4 

The ASRS Database 

We will be applying the Cass partial parser, which was introduced in the previous chapter, 

to a selection of Aviation Safety Reports. Recall that the ASRS (Aviation Security Report 

System) is a voluntary, confidential aviation safety incident report system funded mostly by 

the FAA and run by NASA (see [4]). 

The first step of the report processing is the search for situations towards which unde- 

layed attention of competent authorities is required. When found, the ASRS issues "alerts" 

aimed at immediate correction of the offending situation. This is one of the outputs of the 

program. 

Other outputs of the program include topical research on specific safety issues concern- 

ing the aviation community, two periodical publications for distribution among aviation 

personnel, and operational support by means of interaction with other organizations. 

4.1 Origin of the Database Information 

Pilots, crew members, air traffic controllers, and other aviation personnel voluntarily report 

incidents that compromise aviation safety. Personnel are encouraged to report incidents 

that they witness or participate in by a confidentiality warranty and some minor penalty 

waivers. Accidents and incidents involving criminal activity are not contemplated by this 

warranty and should not be reported to  ASRS. 

These voluntary reports are examined by no less than two aviation experts. ASRS counts 

on its corps of experienced pilots and air traffic controllers for this task. 



C H A P T E R  4. T H E  ASRS DATABASE 

4.2 Nature of the Database information 

The one product of the ASRS program that concerns us in this project is the ASRS database. 

Each record of the database consists of two parts. The first part is a highly structured 

account of some aspects of the incident. It is in the form of a feature structure tree, 

with entries for time and place, for aircrafts, people, events, environment (i.e., weather 

conditions and the like), components (of planes, specially if something fails or is damaged 

in the incident), factors (facts or situations that  might have contributed to or caused the 

incident), and and entry called supplementary, for information that does not fit neatly in 

any of the previous categories, like problem areas (possible ones being human performance, 

environmental factors, company policies). There can be more than one entry for each of 

aircraft, person, and component type of entries, one for each such entity included in this part 

of the record. All others show exclusively a single entry in all records we have encountered. 

The second part of the record consists of plain running text and is a description of the 

incident in English prose. 

The origin of each database record is a form which consists of a first part, with checkboxes 

and blanks to  fill in.' This provides some of the structured information in the final database 

records. The second part of the form is simply a blank page where the reporter of the 

incident is supposed to  describe it. This, with some modifications introduced by ASRS's 

experts (mostly to  strip out any identifying details) is what constitutes the unstructured 

part of the report. 

Some of the information in the structured part clearly comes from the structured part of 

the submission forms. However, there are, in most reports, a number of entries that clearly 

come from somewhere else. The relation between these and the text is explained below. 

This information comes either from the analysis of the ASRS experts, or from subsequent 

contact with the reporter of the incident. 

The report text contains a number peculiarities specific to  reports of this type. These 

'Copies of the forms used to report incidents to ASRS can be downloaded from 
http://asrs.arc.nasa.gov/forms-nf.htm. 



CHAPTER 4. THE ASRS DATABASE 

include: 

0 field-specific lingo: words like encroach, taxi, thrust, are specific to the field of aviation 

or take special meanings within it. 

0 abbreviations: these documents are riddled with abbreviations. Some examples are 

MGMT for management, ACFT for aircraft, INFLT for inflight, RWY for runway. 

4.3 Use of the Database Information 

Analysis of a few reports selected at random from two collections available online from the 

ASRS website reveals some relevant issues about the relation between the structured and 

unstructured part of each record. 

The proportion in the amount of information between the two parts is largely unpre- 

dictable. Some lengthy reports have short structured headers, some short ones have long 

headers. 

For example, report ACN533918 has an unstructured part only five lines long. I t  ex- 

plains, very briefly, an incident derived from loss of cabin pressure. I t  states that an emer- 

gency is declared, following which a landing clearance is obtained immediately, and landing 

proceeds uneventfully and according to procedure. The only other thing mentioned is a 

notification that another plane is nearby, with which visual contact is never established. 

The structured part of this report, however, is over average in length. A component 

entry for the pressurization system is only implied by the report, which speaks about loss 

of pressure, never about the pressurization system. There are four person entries, however 

only two are mentioned: the reporter of the incident, only in first person, and the air 

traffic controller, in "LATER NOTIFIED BY C T R  THAT OUR ACFT WAS WITHIN 

20 SECONDS OF AN ACR AIRLINER (...)". CTR, meaning control, is the air traffic 

controller. The other two people are only implied by the use of plural rather than singular 

first person throughout the report. 

The fact that the plane is diverted to another airport is also mentioned in the structured 

part and not in the text. There is, however, a synopsis of the report below the report text 

which does mention the fact, but the original writeup by the reporter does not contain it. 

The landing is mentioned in the structured part and also only implied in the text: 



CHAPTER 4. THE ASRS DATABASE 

INITIATED EMER DSCNT INCLUDING TURN PER AIRCRAFT STAN- 

DARD PROCS. 

Other reports, on the other hand, have rather short structured headings in compari- 

son with the text in the unstructured part. Report ACN532693, for example, has a rather 

lengthy header as well, but an even longer text. This report describes a landing gear prob- 

lem derived from non-adherence to  company policies and published procedures. The writer 

of this report is clearly distressed by the incident, and goes into detail of everything that 

occurred leading to and during the incident. This includes an excerpt of a conversation 

that he had with the captain (he was first officer) about how they both had little experi- 

ence on that type of plane, his suggestion to report this to scheduling, and the captain's 

refusal. There is a Person entry for the captain, but it says nothing about his experience. 

The Supplementary entry states that the company and flight crew human performance are 

"Problem Areas", without further details. The report includes an interesting account of 

how the company fails to keep basic safety standards when the captain dismisses the first 

officer's idea to call scheduling and tell them that neither of them is experienced enough on 

this type of plane. 

There are certain entries in the header that come from the structured part of the form 

and are rarely mentioned in the text unless they directly concern the incident. Examples 

of such are plane make and model, ratings and experience of the reporter, plane mission 

(passengers, cargo, . . . ), operator and flight plan. 

Some of the information almost always occurs in the structured part but is repeated in 

the text more often. Examples are location information (airport, city; airborne, on runway, 

in garage, etc). Weather conditions will only be mentioned if relevant, specially if they are 

part of the problem. Good weather conditions are always in the headers but rarely ever in 

texts. 

Information first introduced in the text (i.e., not in the header) mostly comes in the 

form of a relation of what happened, usually rich in chronological, geometrical or human- 

interaction information (or a combination of these). The headers can only give a gross 

classification of the type of incident due to  their finite and highly structured nature. 

For example, report ACN538691 relates an airborne conflict (two planes coming unsafely 

close to each other, yet not close enough to classify it as a Near Mid-Air Collision (NMAC)). 

While the header does provide many facts about the incident, including that there was an 



C H A P T E R  4. T H E  A S R S  DATABASE 

airborne critical conflict, that evasive action was taken, that  the assigned course was even- 

tually retaken, as well as all the information that  all records have regarding the people 

involved, the weather conditions, the time and place, and information on the aircraft in- 

volved, there is a wealth of information in the text about the cl~ronological succession of 

facts, with details of the positions of each plane and their position relative to the runway 

at  the relevant moments. 

4.4 Our Corpus 

The corpus used for this research contains the unstructured parts of 5,831 ASRS reports. 

The sentences in this report are parsed by Cass according to the e8.reg grammar (see 

Section 3.5.4). Here is an example sentence from the corpus: 



CHAPTER 4. THE ASRS DATABASE 48 

The markup is quite straightforward: <phrase t a g = t  ag> indicates the opening bracket 

of a constituent of type tag. The closing bracket of a constituent is indicated by </phrase>. 

Individual words are enclosed between <word base= base tag= t ag> and </word>. The 

attributes base and tag refer to the word's base form, which we do not use in this project, 

and the word's part-of-speech tag, see Section 3.2, which is used by tagf ixes  and Cass. 

Indentation shows clearly the hierarchical containment of constituents. When we mention 

'the corpus' in subsequent sections of this document, we will be referring ourselves to this 

particular file. 



Chapter 5 

Room for Improvement in the 

ASRS Database Corpus 

By means of direct corpus inspection, a few weaknesses of the e8. reg grammar were found 

and will be discussed in this section. 

Some of the problems in parsing arise from errors in tagging. The POS tagger used, the 

Church Tagger [lo] is not 100% accurate. Being a process previous to  parsing and handed 

down to us as is, there is nothing we can really do about these errors in the context of the 

present project. The only thing that could be done to improve the accuracy measures in 

the modified grammar would be to allow for these errors in the corpus data in the golden 

standard by coding the errors into the standard. 

This would, however, render the measure somewhat undefined. What are we really 

measuring if our golden standard, supposed to reflect our ultimate notion of correctness, 

has errors deliberately coded into it? As we will see in the next section, when we discuss 

how the golden standard was put together, we do make some concessions of this kind, but 

only in cases where we can strongly argue that this constitutes a fair gauge for a partial 

parser, whose output structures are inherently limited (see Section 3.4). 

The following sections discuss, one by one, the different misparsings we found in the 

corpus and decided to address by means of grammar modification. 



CHAPTER 5. ROOM FOR IMPROVEMENT IN THE ASRS DATABASE CORPUS 50 

5.1 Treatment of the Forward Slash 

The first problem we will discuss is that of the forward slash ("/"). This particular character 

occurs very frequently in these reports, as it occurs in date expressions, a vital piece of 

information in incident reports. 

The sentence that we chose from the corpus to illustrate this is: 

4/88, I DEPARTED BOEING FIELD 

The phrase "4188" stands for April, 1998. The day was likely removed prior to processing 

in accordance with the ASRS policy of removing exact dates and other pieces of information 

that could be used to identify the people involved. The parsing provided by the corpus being: 

The phrase 'departed Boeing field' is wrongly parsed because 'departed' is mistagged as 

a past participle, but that is immaterial for the purposes of the present discussion. More 

interestingly, it can be observed that the slash was left unattached at  the top level of the 

parse tree. The ideal parsing for this type of expression considers the whole expression 

"4/88" as a single chunk. Since the original grammar comes with a category specifically for 

date expressions, it would be desirable to use it, yielding a parse like this: 



CHAPTER 5. ROOM FOR IMPROVEMENT IN THE ASRS DATABASE CORPUS 51 

Another kind of date expression that was found in the corpus looks like this: 

[#pp FOR [#nx 31 1 

/ 

[#nx SAT1 

/ 

[#nx 881 

Clearly this means "Saturday, March 1988". This phrase occurs completely broken up 

into its individual constituents, only its first one being attached to the prepositional phrase 

that they all should be contained in, grouped together as a single constituent. 

After the fixes that we perform in the grammar, this is what this phrase looks like: 

[#pp FOR 

[#date 3 / SAT / 8811 

The problem with this construction is satisfactorily addressed in this project, as detailed 

in Section 6.1. However, it cannot be claimed that all forward-slash-related errors were 

addressed. Although dates are likely to be a prevalent source of error in this corpus, because 

they do seem to occur very often in these reports, this symbol appears in a number of 

different situations that we did not attempt to correct due to restrictions of time and space. 

One such situation listed here for example's sake is seen in this phrase from the corpus, 

which ended up in the golden standard: 

THE CAPTAIN AGREED, EVEN THOUGH I STATED THAT I HAD NEVER 

TAKEN AN WDB WITH 2 L OR 2 R INOP W/O STICKING BOTH THE 

INBOARD AND OUTBOARD TANKS AS PER MY UNDERSTANDING AND 

TRNING IN THE MEL. 

The problem here is with the word "W/On . It is a shorthand for "without", but because 

it has the slash in the middle of it, the tagger splits it into three words, confusing the parser. 

This could be addressed by having "W/On as a lexical entry. This solution, however, 

would involve substantial modification of the grammar and its complicated implementation 

seemed overkill for a problem which in reality is not prevalent in the corpus. 



CHAPTER 5. ROOM FOR IMPROVEMENT IN THE ASRS DATABASE CORPUS 52 

The pertinent modification would have seen a new grammatical symbol #prep added to 

the grammar. The production defining it would have been placed at  the bottommost level, 

the :nx level, and it would have looked like this: 

prep -> w slash o 

The symbols w and o would be defined by means of respective tagfixes: 

w w nn 

o o nn 

This would have changed the tags of the occurrences of W and 0 around the slash, which the 

tagger classified as nouns, to w and o. This would have caused our production to 'wrap' the 

W/O in a constituent like this: 

Now we would have a new grammatical category, #prep, which is equivalent to the 

terminal / i n .  Unfortunately there is no other way to equate these in the grammar than by 

brute force: we would have to: 

1. define, at  all levels of the grammar in which at  least one production contains i n  as a 

terminal, an alias PREP = prep I i n ,  

2. look for all occurrences of i n  in right-hand sides of productions in the grammar and 

substitute them by PREP. 

Of course this leaves us with the problem that if 'W' or '0' were to occur somewhere in 

the corpus as legitimate nouns, we would have to implement a similar fix to indicate to the 

grammar that a noun could now come labeled /nn, /w or /o. 

This solution clearly is too cumbersome for the benefit it provides, specially if one takes 

into account how much it complicates the grammar maintenance task to have ad hoc symbols 

defined like that  for circumstantial reasons. In general, one should try to keep one's symbols 

as linguistically relevant as possible. 

Problems like this will not be addressed in this project. The golden standard features the 

correct parse with the whole expression taken as a single word and tagged as a preposition 



CHAPTER 5. ROOM FOR IMPROVEMENT IN THE ASRS DATABASE CORPUS 53 

( / in ) ,  but our revised grammar will not generate that  parse and no performance gain will 

be reflected in this particular utterance. 

5.2 More on Punctuation: the Single Quote 

The single quote 0) is frequently used in these reports to signify feet as a measure of 

altitude. Let us look a t  the following sentence, which also ended up in the golden standard: 

AFTER RECEIVING MY TRANSPONDER CODE, I LEVELLED O F F  AT 

1500'. 

And the analysis in the corpus is: 

AFTER 

[#vgp RECEIVING MY TRANSPONDER CODE] 

> 

[#nx I1 

[#nx LEVELLED] 

OFF 

[#pp AT [#nx 15001 1 
) 

This sentence is quite unsatisfactorily parsed due to an unfortunate convergence of 

mistaggings. Notice, for example, how Llevelled' occurs isolated in a noun phrase because it 

was labelled as a noun. 

What concerns us here, however, is that  the single quote appears completely unattached, 

when ideally it should be two levels deeper inside the prepositional phrase 'AT  1500', in par- 

ticular grouped together with the cardinal '1500' as a measure phrase, an existing category 

in the original grammar. 

The desired parse for the phrase "AT 1500' " would look something like this: 

[#pp AT 

[#mx 1500 '11 

This problem is successfully addressed in this project. Section 6.2 provides a detailed 

explanation of the solution devised. 



CHAPTER 5. ROOM FOR IMPROVEMENT IN THE ASRS DATABASE CORPUS 54 

5.3 Further Punctuation Problems 

A problem similar to the one found with the two previous symbols can be observed with 

quotation marks (")  and brackets ("(" and ")"). From the point of view of partial parsing, 

quotations marks, brackets, and any other pair of symbols that match at the ends of a 

construction they enclose can be considered homologous in which they will be given similar 

treatment. Therefore, this section will only discuss the case for quotation marks, and we 

will claim that any conclusions obtained will also be valid for the brackets case. 

Let us take a look at the following sentence: 

DO YOU HAVE T O  STATE IN LNDG CLRNC "DO NOT TURN OFF ON 

R W  28"?. 

The provided parse is: 

C#vp DO1 

[#c [#cO YOU HAVE1 

[#pp TO STATE] 

[#pp I N  HIS LNDG CLRNCII 
I I  

[#vp [#VX DO NOT TURN1 

OFF 

[#pp ON [#nx RWY 281 11 
I I  

The reported phrase "do not turn off on rwy 28" should appear at the same level as the 

#cO and the two #pp phrases, since it is an argument to the verb head "STATE". 

At first glance this problem seemed like an easy target for correction via grammar 

modification. Section 6.3, however, shows why this is not the case. This problem was left 

unsolved in the present project. 

Another, unrelated problem, concerns the use of quotation marks as a measure unit 

meaning "inches". This problem was also left unsolved, but it might be easily addressed in 

a way similar to the single quote as a symbol for "feet". Interactions with occurrences of 



CHAPTER 5. ROOM FOR II1IPROVEMENT IN THE ASRS DATABASE CORPUS 55 

quotation marks as reported speech delimiters are possible. Due to limitations of time and 

space, they were not looked into. 

5.4 The Problem with 'away' 

The following construction is misparsed in the corpus: 

[#vp [ [#VX WAS1 

MANY/rbl 1 

[#nx MILES] 

[AWAY] 

This analysis leaves much to be desired. There are two different sources of syntactic 

error in this phrase. One is the problem with post-head adverbial modifiers like 'away' here, 

which we discuss in this section. Another is the handling of 'many', which is discussed below 

in Section 5.5. 

The adverb 'away' is left out of the analysis altogether, leaving it completely unattached, 

a partial parser's last resort and an indication that t,his construction is not allowed for at 

all in this grammar. Ideally, this phrase should be parsed as follows: 

[#vp WAS 

[#ax [#mx MANY MILES] 

AWAY] I 

That is, the phrase as a whole is still a verb phrase, but 'many miles away' constitutes 

an adverbial phrase, in which 'many' plays the role of a quantifier for 'miles', and 'away' is 

attached at the end of the adverbial phrase as a post-head adverbial modifier. The phrase 

'many miles' is to be considered a measure phrase, a category found in the original grammar. 

A solution that provides an analysis similar to the one shown above is discussed in 

Section 6.4. 



CHAPTER 5. ROOM FOR IMPROVEMENT IN THE ASRS DATABASE CORPUS 56 

5.5 The Problem with 'many' 

As mentioned above, the parse 

[#vp [ [#vx WAS] MANY] 

[#nx MILES] I 
[AWAY] 

is highly unsatisfactory. Besides the problem with 'away' discussed above, another problem 

is that 'many' is being treated incorrectly. One problem is that 'many' is incorrectly tagged 

as an adverb. This is specially odd given that many can never really act as an adverb. This 

mistagging forces Cass o take it as an adverbial modifier to the verb was. The treatment 

that the grammar gives to many is equally hard to account for. The implemented solution, 

discussed in Section 6.5, takes advantage of the mistagging of many, which is observed in 

100% of its occurrences in the corpus, to solve the problem independently from the treatment 

of correctly tagged occurrences of the word. 

5.6 The Problem with 'when' 

The following sentence was found wrongly parsed in the corpus: 

[ [#pp WHEN/in I] 

[#vp LANDED] 

P 

[#pp TO MY SURPRISE] 

Y 

[#c [#cO THE POLICE WERE WAITING] 

[#pp FOR ME111 

Rather than a prepositional phrase followed by a dangling, unattached verb phrase, a 

more desirable parse for this sentence would treat the phrase 'when I landed' as a single 



CHAPTER 5. ROOM FOR IMPROVEMENT IN THE ASRS DATABASE CORPUS 57 

subordinate clause, like this: 

[ [#subc 

[#subcO WHEN I LANDED]] 

9 

[#pp TO MY SURPRISE] 

> 

[#c [#cO THE POLICE WERE WAITING] 

[#pp FOR ME1 I I 

Section 6.6 shows how this problem was addressed. 



Chapter 6 

Addressing the Problems 

In this chapter we will discuss the grammar to  be edited in detail and how we will modify it 

so that the performance, as measured by the Parseval metric we implemented and discussed 

in Section 7, will be boosted. 

6.1 Dealing with the Forward Slash Problem 

The proble~n with the forward slash ('I1), discussed in Section 5.1, is dealt with only for 

the case in which it appears as part of a date expression or surrounded by numbers, leaving 

other problems with the symbol unsolved. 

The fix that was implemented for the date case involves several additions to  the tagfixes 

file and to  the grammar. The tagfixes file was enhanced with a line that reads 

s l a s h  / SYm 

This defines a new tag for the forward slash when it appears tagged "/symV. This is the tag 

with which it occurs in the corpus every time. 

The other lines we added to  the tagfixes file define a new tag, /wday, for expressions like 



CHAPTER 6. ADDRESSING THE PROBLEAG 

"3/sat/88" shown in Section 5.1. They look like this: 

wday 

wda y 

wday 

wday 

wday 

wday 

wda y 

wday 

wday 

wday 

wday 

wday 

wday 

wday 

sun 

sunday 

mon 

monday 

t u e  

tuesday 

wed 

wednesday 

t hu 

thursday 

f r i  

f r iday  

s a t  

sa tu rday  

The new tags s l a s h  and /wday are used in two productions in the grammar. In the 

original version, dates are handled by a production that reads: 

d a t e  -> month cd (cma cd cma?)? 

This deals effectively with date expressions like "April 3" or "April 3, 1945". The tag month 

comes from the tagfixes file: 

month jan.  nnP 

month j anuary nnP 

month f e b .  nnP 

month f ebruary nnP 

month dec.  

month december 



CHAPTER 6. ADDRESSING THE PROBLEMS 60 

Other forms, which are prevalent in our corpus, are not handled well. The two forms of 

date expressions that we find in our golden standard are 

0 a succession of two or three numbers separated by slashes (as in "6/14" for June 14, 

4/88 for April 1988, or "6/14/76" for June 14, 1976), 

a weekday name succeeded by one or two numbers, all separated by slashes (as in 

"TUE/6/88" for Tuesday, June 1988). 

The former case is impossible to  distinguish from other expressions involving numbers, 

such as number ranges or wind expressions. Hence, it is dealt with outside of the production 

for dates. The aim is set at keeping numbers involved in the expression clustered together 

as a unit, even if the constituent label obtained is not completely specific. The solution is 

discussed below in Section 6.7. This moved us to modify the grammar to  handle these cases 

properly. The latter case listed above was handled successfully by adding one case to the 

production for dates: 

As for the former case, we added the following case to the production for dates in the 

grammar: 

d a t e  -> month cd (cma cd cma?)? 

I cd s l a s h  wday ( s l a s h  cd) 

The added line deals with expressions like the one in the following examples. In the pre- 

edition corpus, we find: 

[#pp FOR 

[#nx 31 

I 

/ 

[#nx SAT] 

/ 

[#nx 881 

In the post-edit corpus, this becomes: 

[#pp FOR [#date 3 / SAT / 8811 



CHAPTER 6. ADDRESSING THE PROBLEMS 61 

Expressions like "4188" for "April 1988" are dealt with separately. Their treatment is 

discussed below in Section 6.7 

6.2 Dealing with the Single Quote Problem 

The problem with the single quote ('), discussed in Section 5.2, is dealt with by a simple 

addition to the tagfixes file. 

The original grammar contains a production that satisfactorily deals with expressions 

involving measure units: 

## Measure Phrase Chunk 

mx -> (cdl cdx) h=(units 1 tunits) 

I (cdql 1 cdqlx)? dt-a h= (unit 1 tunit) 

This means that all that needs to be done for expressions like the ones exemplified in 

Section 5.2 to be parsed as desired is to include the single quote in the units category. 

To accomplish this, a single line is added to the tagfixes file. The portion of the file that 

deals with the relabelling of measure units consists of lines like these: 

units meters nns 

units millimeters nns 

units yards nns 

units feet nns 

Next to all these, a line will be added that reads: 

By virtue of the new tagfix and the existing grammar production, the following parse: 



CHAPTER 6. ADDRESSING THE PROBLEMS 

[#subc 

[#subcO THAT 

[#nx I ]  

[#nx WOULD BE] I 

[#nx DSNDING/nnl 

[#pp TO 

[#ng [#nx AN ALTI 

OF 

[#mx 5001 111 
J 

found in the pre-edition corpus was turned into 

[#subc 

[#subcO THAT 

[#nx I] 

[#nx WOULD BE1 1 

[#nx DSNDING/nn] 

[#pp TO 

[#ng [#nx AN ALT] 

0 F 

[#mx 500 '1 I I ]  

in the post-edition corpus. 

6.3 The Quotation Marks: a Problem too Complex to Solve 

Here 

The problem with the double quotation marks (""), discussed in Section 5.3, appears to 

be simple at first glance. However, as it turns out, addressing this problem with this kind 

of parser is way more problematic than it seemed in the first place. The difficulty lies in 

the fact that this parsing technique builds structures bottom-up rather than top-down. So, 

it is not possible to isolate an expression between quotes, and then break it up into its 

constituents: rather, one should allow for the possibility of finding the expression being 

built surrounded by quotes at  any point up the levels of the grammar. 



CHAPTER 6. ADDRESSING THE PROBLEMS 63 

Dealing with quoted text in general is far from being a trivial problem, as illustrated 

by [12]. And this paper discusses dealing with quoted text with Tree Adjoining Grammars, 

whose expressive power is ranked above that of Context Free Grammars in the Chomsky 

hierarchy. Regular Grammars, used by Cass, rank below CFGs. The use of powerful TAGS 

makes it easy to bestow hierarchical structure on constructions with matching pairs of 

quotation marks. Achieving this with cascaded regular grammars is, unfortunately, not 

that simple. In fact, the language of balanced parentheses, {(n)n)*, is not even a regular 

language, so the best we can hope for is recognize only formations of a number of nested 

brackets fixed a t  grammar creation tirne. But even dealing with a single pair of matching 

brackets or quotation marks proves extremely cumbersome, error-prone and unsatisfactory 

in terrns of achieved expressive power, as the following discussion demonstrates. 

To illustrate some of the complications of dealing with this we will take a look a t  some 

potential solutions to  the problem and see, for each of them, how they are either unsatis- 

factory or infeasible. 

The first solution we will consider is the simplest approach: we could define, at the 

bottom level of the grammar ( :  nx in e8.  reg;  we could also add a new level right underneath 

it), a symbol junk meant to  deal with quoted and bracketed strings: 

: nx 

ANYTHING = nn I nnp I nns I vb I . . .  ##the WHOLE t a g s e t  goes here  

junk -> quote ANYTHING* quote 

This is similar to the treatment given to  quoted text in [16]. The junk terminal is not 

to occur anywhere else in the grammar, so the quoted text will be in a single flat cluster, 

with the quotation marks in it. That is the only advantage of this method, which is largely 

unsatisfactory because structural information inside the quoted text is lost, something the 

grammar as it stands right now does quite well. Hence, there is really no gain from imple- 

menting this solution for this project. Yet another problem with this approach is that the 

implementation of the alias ANYTHING is brute-forced, inelegant, and error-prone. 

Another possibility that was investigated involved looking through the corpus for typi- 

cal sequences of grammatical constructs that would appear between brackets or quotation 

marks. The idea was also taken from [16], where it is stated that "JUNK was allowed to 



CHAPTER 6. ADDRESSING THE PROBLEMS 64 

occur wherever a sentence modifier, post-nominal modifier, or a pre-nominal adjective could 

occur". Since shallow parsing does not concern itself with this dependency information, the 

reasoning followed, the closest thing we could achieve here is to allow for the constituent 

types that normally make up phrases with such dependency labels to  be surrounded by 

quotes or brackets. 

As it turns out, noun phrases, adjectival phrases, and adverbial phrases are the con- 

stituent types most frequently filling those dependential roles in sentences. An inspection of 

the corpus was in turn, to verify, a t  least preliminarily, that the expressions found quoted or 

bracketed in the text actually corresponded to  the counterparts of these constituent types. 

The results were very disappointing. The following sentence is a good example of the 

kinds of expressions that can be found between quotation marks in the corpus: 

A SIMPLE "TAXI DOWN RWY 13,17 ITXN VIA HOTEL" WOULD ALERT 

THE PILOT . . . 

The sequence of grammar symbols assigned by the parser, even assuming proper tagging 

("TAXI" is labelled as a noun here, for example, when it should be a verb) would be 

something like #vp #pp cma #nx #pp. This sequence does not seem to match the right side 

of any existing grammar production, or have any kind of linguistic significance. 

Another interesting point to make towards the infeasibility of this solution: even for a 

toy sentence like "She said 'I love you"' this approach would involve adding a whole new 

level to  the grammar. This brings about a number of potential problems derived from the 

fact that it is a major, error-prone modification. 

The idea would be to  add a whole new level in between the clause (top) level and the 

one right underneath it, the : cO level. This new level would have a production with a 

new symbol, called #c l ,  on the left side, representing a quoted clause. Its right hand side 

would be just like the right hand side of the #c (clause) production one level above it,  but 

surrounded by quotes. 

c l  -> quote h=cO o=NOM? ADV* quote 

On meeting a perfectly formed clause surrounded by quotes, the parser will label it c l  

and structure it as a single chunk. If a clause is there, but not surrounded by quotes, it will 

be ignored a t  this level. 



CHAPTER 6. ADDRESSING THE P R O B L E M  

The next level will now look something like this: 

NOM = ng I m e s s  I . . .  I cl 

c -> h=cO o=NOM? ADV* 

. . .  and so on... 

So now, a perfectly formed clause that might have gone unmatched in the previous level 

will be labelled and structured as a #c just like before. But a quoted clause, which will have 

been labeled #cl in the previous level, will now be liable of the same treatment as a noun 

phrase. The idea is for the quote to be able to appear as, for example, the direct object of 

a sentence. Hence the above example will now be parsed like this: 

[#c [#cO she said] 

[#cl  " [#cO i love you I " I 1  

In this parse, the quoted text appears as the object of the verb "say7', a satisfactory 

analysis. 

However, this fix is only good for a matching pair of quotation marks appearing around 

a perfectly formed clause. Hence it is likely that the potential drawbacks of this solution, 

like potential interference with other aspects of the grammar that work well without the 

modification, might outweigh its benefits. In particular the golden standard has not a single 

sentence with these characteristics. Hence, the net gain from implementing this solution 

here would be zero in the best case for our project. 

Yet another problem is that quotation marks also appear on their own, with no matching 

counterpart, as a unit measure meaning "inches". 

6.4 Solving the Problem with 'away' 

To correct this flaw, we first need to come up with a desired parse in terms of the categories 

and symbols used in e8. reg. It is clear that the construction 'many miles away' should be 

treated like an adverbial phrase by the parser. 

Several levels of the e8. reg grammar have a macro that stands for adverbial phrases, 

dubbed ADV. Its definition varies across levels of the grammar. At the top three levels, cl, 



CHAPTER 6. ADDRESSING THE PROBLEMS 

cO, and rc, the definition is 

ADV = rb I cdql I then 1 well 
I pp I pp-comp I rx I ax 

I rbr I more I rbs I ql I such 

I in I tadvx I today I date; 

The only other level in which and ADV macro is defined, five levels below rc, is the :nx 

level, and its definition there, 

ADVHD = rb I cdql I then I well; 
ADV = ADVHD 1 rbr I more I rbs I ql; 

is just a subset of the definitions in levels above it. Hence, we will inspect the categories 

in the definitions at the top three levels and claim that any relevant conclusions will also 

apply to  the definition at the : nx level below. 

The categories listed under ADV in the top three levels can all be easily concluded to be 

able to fill the role of an adverbial construction in a sentence. Of particular interest are the 

categories rx and tadvx, at the :mx and :nx levels respectively, which are meant to  parse 

adverbial phrases, as is apparent from their definitions: 

: mx 

tadvx -> ( cdx? h=(nnslunitsltunits) 

I (cdqllcdqlx)? dt-a h=(nnlunitltunit) 

) 

ago 

: nx 

rx -> ADV+ ADV 

I by then 

I MX ago 

, 

And the definition for the MX macro occurring in the rx production is 

MX = mx I units I t u n i t s ;  



CHAPTER 6. ADDRESSING THE PROBLEMS 

where mx, at the :mx level, is 

mx -> (cd 1 cdx) h=(units 1 tunits) 

I (cdqllcdqlx)? dt-a h=(unitltunit) 

9 

In conclusion, the only differences between these two productions, in terms of the kinds 

of constructions that they will parse and the structures that they will bestow upon them, 

are the contexts in which they will be used (the two productions occur in different places 

around the grammar), and the fact that the tadvx production allows for any nouns, not 

only units of measure, to be used. This allows for phrases like "We should have got off the 

train many stations ago". But other than that, they both yield very similar parses and will 

be treated alike for the purposes of the present discussion. 

The definition for rx is at the :nx level, down below in the grammar where the ADV 

macro takes its shorter from, see above. The one for tadvx is a t  the :mx level, the bottom- 

most level of the grammar. Both these productions yield parses whose structures remarkably 

resemble that of the construction we are trying to parse. 

There is another fact that prevents this grammar from giving a correct parse for this 

construction. The phrase "3 miles" will be satisfactorily parsed as a unit of measure by the 

mx production which occurs in MX above. The phrase "many miles" however, will not, but 

this is due to a separate problem with the treatment of "many", which is discussed below. 

The symbol 'ago' actually stands for a number of different words in the tagfixes file e 8 . f ~ )  

as show here: 

ago ago * 
ago later * 
ago earlier * 
ago sooner * 

So the adverbs ago, later, earlier, and sooner are all treated alike. One objection that 

might be raised against this treatment is that, unlike with the rest of the adverbs in the 

category, 'ago' cannot be used with prepositional phrases or in comparative constructions 

with 'than': 

That happened 3 hours ago. 



CHAPTER 6. ADDRESSING THE PROBLEMS 

*That happened 3 hours ago from now. 

*That happened 3 hours ago than this. 

This is a very valid objection, but of no significance for a partial parser, which tries to 

confer structure to every chunk it can find in the sentence. Hence the incorrect sentences 

will be given a parse, which will treat the 'from now' or the 'than this' as an unattached 

prepositional phrase, the same treatment that would be given to a correct phrase. 

These three adverbs can be treated similarly in the context of the present project, 

however. This is due to their ability to appear in constructions with post-head adverbial 

modification, such as: 

The boys stood 3 feet apart. 

The boys left 3 hours ago. 

The plane was 3 miles away. 

In the light of the above described evidence, a fix for this problem would be as simple 

as mapping the tag for the adverb 'away' into 'ago' in the tagfixes file. The modification 

would see this line included in the file: 

A similar line was introduced for 'apart'. 

In the Section 6.5 we show an example from the corpus, containing the expression 'many 

miles away' that motivated the discussion in the present section, and how the new grammar 

does indeed successfully handle the construction. 

6.5 Solving the Problem with 'many' 

Section 5.5 discusses the problem with the treatment of the adjective many. In this section 

we propose a solution to that problem. 

In our example phrase 'many miles away', 'many' is being mistagged as an adverb. 

This results in e8.reg treating it like an adverbial modifier of the verb 'be' in 'was many'. 

The noun 'miles' is left out of this bracketing, thus not reflecting that 'many' is actually 

modifying 'miles'. 



CHAPTER 6. ADDRESSING THE PROBLEMS 69 

While e8.  r eg  and e8.  f  x  do include productions and tagfixes to deal with 'many', they 

would not deal with the phrase 'many miles away' appropriately even if 'many' were properly 

tagged. To see this, let us investigate the contents of the original grammar and tagfixes file 

once more. 

The tagfixes file contains the following lines: 

t h a t  d t  

t h i s  d t  

t he se  d t  

those  d t  

few d t  

s eve ra l  d t  

much d t  

many d t  

many j j  

l as t  j j 

next j j 

It is arguable whether 'many' should be tagged as a determiner or as an adjective in our 

example phrase. But it does not really matter, because both taggings of the word are 

tagfixed to /d tp  here by e8 .  fx .  

The places in the grammar where / d tp  occurs are three: 

: mx 

timex -> d t p  h = t u n i t ;  



CHAPTER 6. ADDRESSING THE PROBLEMS 

a t  level : mx. Then a t  level : nx we have 

: nx 

DET = d t  I d t p  I p rps  I ( cdql  I cdqlx)?  (dt -a  I d t -q  I dtp-q) ;  

nx -> such? DET? NUM? (ADJ I PTC)* (ADJ 1 N)* h=COMMON cd? 

I DET? NUM? (ADJ I PTC)* h=PROPER 

I DET h = ( j j r  I j js  I such) 

1 cdql?  h=dtp-q 

I h = ( p r p  I cd I d t p  I qq I ex # prp=Personal Pronoun 

I name I person I d o l l  I c i - s t  I r b r  I r b s  

) 

and finally, at  level : m e s s  we find 

: m e s s  

DET = d t  I d t p  I prps  cdql?  (dt-q I dtp-q) ;  

NOM = nx 1 mx I cdx I place I person I name I c i - s t  1 d o l l  I d a t e ;  

nmess -> DET ax* h=NOM?; 

None of these productions matches the pattern ' /dtp /nn / rb '  and creates the struc- 

ture' 

[#rx [#mx MANY MILES] 

AWAY 

I 

So the grammar as it stands would not parse this particular phrase correctly even with 

proper POS tagging. It is clear that the handling of determiner/pronouns (hence the tag 

d tp )  by this grammar precludes correct analysis of this particular phrase. However, a 

' ~ o t i c e  that the labels chosen in this intended parse could be replaced by others and we would still 
consider the analysis correct: for example, we label 'MANY MILES' as an #mx because this is a category 
that this grammar defines for expressions involving units of measure, but #nx, the label for a noun phrase, 
would still be appropriate, if less specific. 



CHAPTER 6. ADDRESSING THE PROBLEMS 7 1 

circumstantial fact, related to  the corpus data, may allow us to  come up with a "quick fix" 

that works around this problem, with the added advantage that it avoids a reclassification, 

a drastic measure that might make the parser give incorrect parses for sentences which the 

grammar as it stands analyzes correctly. 

The observation is that ALL occurrences of 'many' in the corpus are tagged as adverbs 

rather than adjectives. We could thus take advantage of the fact that neither of the tagfixes 

for 'many', 

d t p  many d t  

d t p  many j j 

which convert its tag to  d tp ,  expect an adverb. Thus the addition of the line 

c d many r b  

to e8.fx would consistently convert the tag to  a cardinal, producing a correct analysis in 

every case. 

This also has the added advantage that it does not modify the existing handling of 

'many', for which, as mentioned above, there might be a rationale that is simply unknown 

to  us. This consideration is specially important if the fact is weighed in that Cass gram- 

mars, as conceived by Abney, are to  be looked at  more as a "programming language" for 

grammars than as a traditional grammar with linguistically motivated productions. Hence, 

linguistically correct classification of utterances is of secondary importance to  conferment 

of useful structure, which Abney's original grammar e8.reg likely does satisfactorily for a 

number of frequently occurring constructions that do not come up in the present discussion. 

The following example taken from the pre-edition corpus shows a construction involving 

both 'many' and 'away': 

[#vp [#VX WAS1 

MANY] 

[#nx MILES] 

AWAY 

In the post-edition corpus, this becomes: 



CHAPTER 6. ADDRESSING THE PROBLEAIS 

[#vp [#vx WAS1 

[#rx [#mx MANY MILES] 

AWAY] 1 

which is exactly the desired parse. 

6.6 Solving the Problem with 'when' as a Subordinating Con- 

junct ion 

The problem here is that 'when' is being treated as a preposition. This problem is due 

to  the fact that the Penn Treebank tagset does not distinguish subordinating conjunctions 

from prepositions. This is because in the Penn Treebank the information to  make that 

distinction is coded into the parse trees. Both parts of speech are labelled /in; however, 

prepositions precede a noun phrase or a prepositional phrase, conjunctions precede clauses. 

This forces the grammar in treat the phrase 'when I' as if it had a structure similar to that 

of the phrase 'with me'. 

The grammar handles this problem by means of a collection of simple tagsets that pick 

particular words that come tagged /in and change the tag to /comp. The tag /comp is then 

used in the grammar as a start token of the productions that deal with subordinate clauses. 

These are the lines in the tagfixes file that perform said tag change: 

comp that 

comp if 

comp while 

comp whether 

comp though 

comp although 

comp once 

p-comp before 

p-comp after 

p-comp until 

p-comp since 



CHAPTER 6. ADDRESSING THE PROBLEMS 73 

There are two kinds of subordinating conjunctions, comp and p-comp. The difference 

between them is that subordinate clauses starting with p-comp may have no subject, as 

in 'after leaving high school ', while ones starting with a comp must have a subject in this 

grammar. 

This shows that most subordinating conjunctions are being expected with the tag / i n ,  

but their tags are being changed to /comp prior to parsing. The original grammar contains 

productions that satisfactorily deal with subordinate conjunctions: 

: co 

subcO -> i n?  (s=pp-comp I (comp I because I wrb) s=NOM) SUBJ-TAIL h=vx; 

: c l  

subc -> h=subcO o=NOM? ADV*; 

as we can see, a subordinate clause may  start with a preposition (as in 'the m a n  with 

whom we talked last night wears a hat ' ) ,  which can be followed by one of before, after, until 

or since (under the tagfix p-comp), or by because, or by a wh-adverb, namely one of what, 

who and whom when used as complementizers. This can be followed by NOM, which is a local 

alias the grammar uses to engulf noun phrases in all their possible forms. The remainder of 

the productions is immaterial for the purposes of the present discussion. 

The idea is that when could have a line in the tagfixes file that transforms it into a comp. 

This is arguably linguistically sound, since i f ,  while and when all classify as subordinating 

conjunctions when they precede a clause. But most importantly, it is a modification that 

will achieve the desired effect of treating phrases like the one in the example as a single 

subordinate clause rather than a prepositional phrase followed by an unrelated verb phrase. 

One objection that could be raised against this change is that 'when' can occur with 

functions other than a subordinating conjunction. The other senses of the word, however, 

are very rare, and chances that it might occur with a function other than a conjunction are 

comparable to the chances of if occurring as a noun (meaning a condition or stipulation). 

Finite-state grammars only seek to find useful structure in as many cases as possible, rather 

than find a perfect parse every time. With all this in mind, when clearly should have a line 

in the tagfixes file to give it the same treatment as any other subordinating conjunction. 

This fix is indeed successful in recognizing subordinate clauses that were being mishan- 

dled so far. For an example from the corpus, take this parsed phrase from the pre-edition 



CHAPTER 6. ADDRESSING THE PROBLEMS 

corpus: 

[#pp WHEN [#nx I11 

[#c-inv [#vx REACHED] 

[#nx THE WATER] ] 

The above described addition to the tagfixes file changes the parse of this very same phrase 

to 

[#subc 

[#subcO WHEN 

[#nx I1 

[#vx REACHED] I 
[#nx THE WATER] ] 

which is the analysis we wanted to obtain. 

6.7 Untested Fixes 

6.7.1 Numeric Ranges, Wind Expressions and Dates Containing Only 

Numbers 

As we saw in Section 6.1, the forward slash is not properly handled by the original grammar. 

In that section we discussed it in the context of dates. There are, however, a few other 

contexts in which the symbol occurs which are not parsed satisfactorily by e8. reg. 

Here is one example: 

[#phrase 

[#c [#cO ATC GAVE] US] 

[#ng [#nx A BLOCK ALT] 

OF 

[#nx FL 2901 1 

/ 

[#nx 3101 1 



CHAPTER 6. ADDRESSING T H E  PROBLEMS 75 

This parse breaks up what clearly is meant as a number range (290 to 310 feet). A more 

desirable parse would look like this: 

[#phrase 

[#c [#cO ATC GAVE] US] 

[#ng [#nx A BLOCK ALT] 

OF 

[#nx FL 290 / 31011 

I 

This analysis the whole range expression into the same #nx constituent. 

Another number-range expression which occurs in the corpus consists of two numbers 

separated by hyphens (-). To allow for proper processing of these hyphens in the grammar, 

a new tag was added by means of an  addition to  the tagfixes file. The new line in the 

tagfixes file reads 

dash - 

The tag : is the one defined in the UPenn Treebank Tagset for sentence-internal punctua- 

tion, see Table 3.1. 

Expressions of numeric ranges consisting of numbers separated by a slash clearly cannot 

be told apart from dates. Since this distinction cannot be made without some information 

from the context, we decided to define an  alias at  the :mx level of the grammar that  reads 

CDR = cd s l a s h  cd I cd dash cd I cd; 

which would yield the 'flat' parse shown above, i.e., the numbers and the slash would not 

be put one level down the parse tree in a constituent of their own. 

This way, the desired groupings are kept, even though the name of the constituent 

they will end up in may not be very specific as to  the kind of expression found inside it. 

The distinction can be carried out by a later processing stage that  makes use of semantic 

and contextual information. So now, a date expression like "4188" for April 1988, which 



CHAPTER 6. ADDRESSING THE PROBLEMS 

currently would be parsed (assuming proper tagging) as 

[#phrase 

[#nx 41 / L#nx 881 , 
[#c [#cO 

[#nx I ]  

[#vx DEPARTED] ] 

[#nx BOEING FIELD] I ]  

will be parsed as 

[#phrase 

[#nx 4 / 881, 

[#c  [#cO 

[#nx I1 

[#vx DEPARTED] I 
[#nx BOEING FIELD] ] 1 

Notice that the date expression is labelled #nx rather than the more specific #date. 

This modification addresses the problem satisfactorily, and the degree to which it does 

so is discussed in Section 7. 



Chapter 7 

Evaluation and Discussion 

The results obtained from running our own implementation of the Parseval metric quite 

clearly spell an improvement. Table 7.1 shows the overall figures obtained: 

Mean Recall 
Zero Crossings 
Mean Crossinns 

Mean Precision 

Table 7.1: Final Evaluation Results 

The per-sentence results for the pre-edition corpus are shown in Table 7.2. Table 7.3 shows 

the same results for the post-edition corpus. 

A few facts about this data are worth highlighting here. First, from Table 7.1, it is clear 

that there was an overall improvement in parser performance from grammar modification. 

All four figures we have computed moved in a direction of improvement. Average precision 

and recall rose, mean crossing brackets decreased, and the number of sentences with no 

crossing brackets with respect to the golden standard went up by three. 

A comparison of Tables 7.2 and 7.3 offers a few more interesting facts providing informa- 

tion about the relative performance of the parser on individual sentences. In eleven of the 

fifty sentences there was a decrease, rather than an increase, in one or more of the figures. 

In the following paragraphs we will look at one of the sentences whose numbers worsened, 

look into possible reasons why this happened, and propose solutions. 

Pre-Edition Corpus 

0.713312 

Post-Edition Corpus 

0.771012 



CHAPTER 7. EVALUATION AND DISCUSSION 

Precision 

O.4OOOOO 
0.750000 
0.550000 
0.692308 
0.708333 
0.923077 
0.761905 
0.500000 
0.640000 
0.625000 
O.5OOOOO 
0.714286 
0.692308 
O.7OOOOO 
0.666667 
0.615385 
0.571429 
0.571429 
O.6OOOOO 
O.9OOOOO 
0.800000 
0.875000 
0.708333 
0.692308 
1 .oooooo 

Recall 

0.571429 
0.800000 
0.526316 
0.692308 
0.695652 
0.923077 
O.75OOOO 
0.470588 
0.625000 
0.571429 
0.521739 
0.714286 
0.733333 
0.777778 
0.666667 
0.615385 
O.7OOOOO 
0.666667 
0.529412 
0.923077 
O.8OOOOO 
0.875000 
0.681818 
0.636364 
1.000000 

Crossings 1 1  Sent# Precision Recall 

0.818182 
0.684211 
0.750000 
0.800000 
0.687500 
0.928571 
0.782609 
0.736842 
0.896552 
0.769231 
1 .oooooo 
0.400000 
0.761905 
0.695652 
1 .oooooo 
0.700000 
0.809524 
1 .oooooo 
0.600000 
0.500000 
1 .oooooo 
0.904762 
0.733333 
0.578947 
0.523810 

Crossings 
1 
4 
5 
2 
6 
0 
2 
7 
3 
1 
0 
3 
3 
2 
0 
3 
1 
0 
3 
8 
0 
1 
5 
3 
6 

Table 7.2: Per-sentence Pre-edition Corpus Results 



CHAPTER 7. EVALUATION AND DISCUSSION 

Precision 

0.750000 
1 .oooooo 
0.850000 
0.846154 
0.680000 
1 .oooooo 
1 .oooooo 
0.500000 
O.72OOOO 
0.857143 
0.583333 
0.733333 
0.666667 
0.777778 
0.750000 
0.769231 
0.571429 
0.571429 
0.764706 
0.888889 
0.800000 
1 .oooooo 
0.869565 
0.615385 
0.875000 

Recall 

0.857143 
1 .oooooo 
0.842105 
0.846154 
0.652174 
1 .oooooo 
1 .oooooo 
0.470588 
0.708333 
0.857143 
0.565217 
0.785714 
0.733333 
0.777778 
O.75OOOO 
0.769231 
O.7OOOOO 
0.666667 
0.764706 
0.923077 
0.800000 
1 .oooooo 
0.863636 
0.545455 
0.900000 

Crossings 

1 
0 
1 
1 
5 
0 
0 

11 
8 
3 
9 
6 
4 
0 
1 
2 
3 
1 
2 
0 
0 
0 
1 
1 
1 

Precision Recall Crossings 

0 
3 
0 
0 
6 
0 
1 
6 
1 
1 
1 
7 
2 
7 
1 
0 
1 
1 
1 
2 
1 
0 
8 

11 
5 

Table 7.3: Per-sentence Post-edition Corpus Results 



CHAPTER 7. EVALUATION AND DISCUSSION 

The first sentence we will discuss is sentence 5. Its surface form is 

"AFTER THE PASS BY ALKIA, I DID NOT GO OVER LAND UNTIL I 

CLBED TO APPROX 1200-1300' PRIOR T O  ENTERING THE TFC PAT- 

TERN AT BOEING FIELD." 

Its parse in the golden standard is 

[#phrase 

C#pp- comp 

AFTER 

[#nx THE PASS1 I 
[#pp BY [#nx A L K I A I I  

9 

[#c 

[#cO 

[#nx I1 

[#vx D I D  NOT GO] 1 

[#pp OVER LAND1 I 
[#subc 

[#subcO UNTIL 

[#nx I] 

[#VX CLBEDI I I 

C#pp TO 

[#mx APPROX 1200-1300 

PRIOR TO/in 

[%P 
[#vgx ENTERING] 

[#nx THE TFC PATTERN] 1 

[#pp AT [#nx BOEING FIELD]] I 

Notice that we chose to take the whole expression "PRIOR TO" as a single preposition. 

Because it precedes a gerund verb phrase, we decided to leave it dangling at  root level, 

thus reflecting the fact that e8 .  r e g  does not allow for this kind of structure. Ideally, the 

preposition would be inside a prepositional phrase chunk with the phrase "ENTERING 



CHAPTER 7. EVALUATION AND DISCUSSION 81 

THE TFC PATTERN". It was decided to code the golden standard this way so as to  set a 

reasonable standard of correctness for a partial parser. The possibility of a fix that allowed 

this kind of gerund prepositional phrase was looked into, but abandoned because it was 

found to clash too much with the rest of the grammar. 

The parse that this phrase had in the pre-edition corpus was: 

[#pp-comp 

AFTER 

[#nx THE PASS] 1 
[#pp BY [#nx ALKIAI I 
9 

[#c 

[#cO 

[#nx I] 

[#vx DID NOT GO] 1 
[#pp OVER LAND] I 

[#pp-comp UNTIL 

[#nx Ill 

[#nx CLBED/nn] 

[#pp TO [#nx APPROX/nn 12001 1 

[#ax PRIOR] 

TO 

[WP 
[#vgx ENTERING] 

[#nx THE TFC PATTERN] I 
[#pp AT [#nx BOEING FIELD] I I 

This parse shows a few problems: "CLBED" and "APPROX" are both mistagged as nouns, 

instead of /vbd and / r b  respectively. The hyphen is not allowed for a t  all, as number ranges 

are not considered by this grammar, thus leaving it completely unattached. This isolates the 



CHAPTER 7. EVALUATION AND DISCUSSION 82 

second number of the range, the "1300". Finally, "PRIOR TO" has its two words tagged 

separately, so the prepositional phrase is not recognized. 

Let us now look at  the post-edition version of the sentence: 

[#pp-comp 

AFTER 

[#nx THE PASS] I 

[#pp BY 

[#nx A L K I A I  I 

2 

[#c 

[#cO 

[#nx I ]  

[#vx D I D  NOT G O 1 1  

[#pp OVER LAND] 

[#pp-comp UNTIL I] 1 
[#nx CLBED/nnl 

C#pp TO 

[#cdx APPROX 12001 1 

[#ax 

[#mx 1300 ' I 1  

T 0 

[#vgp [#vgx ENTERING] 

[#nx THE TFC PATTERN] 

[#PP AT [#nx BOEING FIELDIIII 

Here we can see that what happened with this sentence is unfortunate: because the 

tagfix that we did for "APPROX" worked so well, the two words "APPROX 1200" was 

surrounded by brackets and this put it one level down in the tree. This situation was not 

contemplated when we wrote the solution for number ranges, so now the hyphen is left 

dangling. The feet expression works fine, but it is not attached to the rest of as we would 

have wanted. 



CHAPTER 7. EVALUATION AND DISCUSSION 83 

In conclusion, it was an unforeseen interaction of linguistic constructs that contributed 

to deteriorate, rather than improve, the score for this sentence. 

As we can see, the overall results are satisfactory and future would should focus on fixing 

the minor flaws that there are. This would take some meticulous tracing of the grammar 

productions how exactly they match the problematic constructs. This methodical task can 

be carried out by anyone with expertise in applied formal grammars. 



Chapter 8 

Conclusion 

In this project, we improved an existing grammar for a freely distributed partial parser and 

geared it to the needs of a particular set of data. This data came from the ASRS database, a 

program that gathers and analyzes aviation safety reports which consists of some structured 

data in the form "fill-in-the-blank" slots and checkboxes, and some running English prose. 

We first investigated a corpus comprising the unstructured parts of 5,831 reports, looking 

for constructions which were not given parses that would be useful for subsequent, more 

semantically informed processing. This task was carried out by manually inspecting the 

corpus and looking out for things that simply looked misparsed. By analyzing each of the 

thus picked sentences more rigorously, and in parallel looking the existing grammar for the 

reasons why the parses found were undesirable, a few of these candidate sentences were 

taken as examples of linguistic constructs that were not satisfactorily being dealt with by 

the extant grammar. 

Once such linguistic constructs were clearly identified, the possibility was studied of edit- 

ing the grammar so that structures were conferred to them from which relevant information 

could be extracted by subsequent processing. For some of these constructs, we found that 

it was not possible, or a t  least not feasible, to  improve the analysis given by the grammar. 

These constructs, concretely the double quotes surrounding reported speech and the 

parentheses, were concluded to  lie outside the realm of the expressive power afforded by 

finite-state grammars. It was also concluded that a limited extent of satisfactory analysis 

would in theory be possible. This hypothesis was explored and concluded to result in very 

limited gain in exchange for large amounts of time-consuming, error-prone work whose 

ultimate impact on overall grammar performance was very hard to predict. I t  was hence 



CHAPTER 8. CONCLUSION 85 

concluded that the implementation of a fix for these two linguistic features was unworthwhile. 

The remaining constructs identified for potential fixing were addressed in turn. For each 

of them, we proposed and discussed a solution and described the details of its implementa- 

tion. Some of these solutions were more involved than others, some requiring the addition 

of a single line to  one file, some requiring changes in the workings of minor parts of the 

grammar and modifications to  both the tagfixes and the grammar files. 

A set of fifty sentences was picked from the corpus. Each sentence contained at least one 

word or symbol whose occurrence could inequivocally be assumed to indicate the presence of 

a problematic grammatical feature identified as explained above. Care was taken to provide 

a more or less equal number of sentences containing each of these words. 

A golden standard was compiled by hand. This was done by taking a copy of the file 

containing the fifty selected sentences, and parsing them by hand to model our idea of a 

desirable, useful parse for each sentence. 

The changes proposed for the grammar were implemented. The tagfixes and grammar 

files were compiled using the utilities specific to each purpose. A file containing unparsed 

versions of all the fifty selected sentences was created and the new file was parsed with the 

new grammar. 

This set the stage for the beginning of the testing step per se. The Parseval metric was 

implemented and run on the three files: the golden standard, the fifty sentences as extracted 

from the original file (pre-edition corpus) and the same fifty sentences parsed by Cass with 

our new grammar (the post-edition corpus). The metric compared each of the pre- and 

post-edition corpora to the gold standard and thus came up with the numeric figures for 

precision, recall, mean and zero crossing brackets that we decided to use as an indicator of 

how satisfactory our modifications were. 

Parseval was picked over a number of other known parser evaluation techniques by 

reviewing existing literature on parser evaluation and weighing the relative advantages and 

disadvantages of each scheme. After discussing each of the most popular parser evaluation 

metrics, Parseval clearly stood out because of its adequacy for the purposes of our project, 

and because of its simplicity of implementation and interpretation. 

The numbers obtained in this step spoke quite clearly: mean precision went from ap- 

proximately 0.71 to  approxin~ately 0.77. With mean recall, something similar happened: the 

pre-edition corpus displayed a precision measure of roughly 0.73, which saw itself boosted 

to almost 0.79 in the post-edition corpus. As for the crossing brackets, the mean number 



CHAPTER 8. CONCLUSION 86 

of them per sentence came down to 2.54 in the post-edition parses from 3.46 in pre-edition 

ones. And the number of sentences with no crossing brackets went up by five: 8 before 

grammar modification, 13 afterwards. 

The numbers are very encouraging, but there are still a number of problems. While the 

overall figures clearly spell an improvement, a significant number (eleven) of sentences saw 

their numbers go in the opposite direction of what we desired. Future work would focus on 

finding the causes of such unwanted behaviour. Also, the linguistic constructions spotted 

as problematic are but a few examples among many others which are not being treated as 

desired. For an improved fit of the grammar to the data, work should be done on finding 

more constructions not properly reflected in the grammar, assessing their prevalence in the 

data, and introducing changes to allow for them. A major redesign of the grammar might 

also be worth considering, rather than minor adjustments of the existing one, as was done 

for this project. 



Appendix A 

Listing of the Test Corpus 

This is a list of the fifty sentences which were parsed by hand in the golden standard, 

with the original grammar in the pre-edition corpus and with the modified grammar in the 

post-edition corpus. 

1. 4/88, I DEPARTED BOEING FIELD. 

2. AFTER RECEIVING MY TRANSPONDER CODE, I LEVELED OFF AT 1500'. 

3. I INFORMED ATC THAT I WOULD BE DSNDING T O  AL ALT OF  500' WHEN 

I REACHED THE WATER. 

4. I OBSERVERD IN MY ALTIMETER AN ALT OF  APPROX 500' JUST N OF  

DAWAMISH HEAD. 

5. AFTER THE PASS BY ALKIA, I DID NOT GO OVER LAND UNTIL I CLBED T O  

APPROX 1200-1300' PRIOR T O  ENTERING THE TFC PATTERN AT BOEING 

FIELD. 

6. WHEN I LANDED, T O  MY SURPRISE, THE POLICE WERE WAITING FOR ME. 

7. THE RPT  MADE BY THE POLICE OFFICER SAID THAT I WAS AT AN ALT 

OF 35-50', WHICH IS FALSE. 

8. WHEN THE ACFT WAS FUELED THE FUELER STATED THE FUELING PANEL 

GAUGES OPERATED NORMALLY AND ALL GAUGES READ ACCURATELY. 



APPENDIX A .  LISTING OF THE TEST CORPUS 88 

9. I THEN LOOKED UP AND ASCERTAINED THAT I HAD PARTIALLY ENCROACHED 

UPON THE ACTIVE RWY AND OBSERVEd ACR Y WITH LIGHTS ON APPROX 

3000' DOWN RWY 1 ON TKOF ROLL. 

10. WE WERE NEAR V 1 WHEN X ENTERED OUR RWY 

11. ROTATION WAS AT VR AND WE WERE AIRBORNE ABOUT 200' AS WE 

PASSED X, WHO WAS JUST CLRING OUR RWY. 

12. THE WDB X WAS 300' HIGH AND CLBING AT ABOUT 1500 FPM. 

13. WHEN THE THRUST LEVER WAS ADVANCED, THE QUANTITY INCREASED 

T O  1.7 GALS AND STAYED FOR QUITE A LONG TIME. 

14. ATC GAVE US A BLOCK ALT O F  FL 290/310. 

15. ACFT AT THE GATE WAS FACING 070 DEGS WITH ATIS WINDS 220117 G 30 

(TAILWIND). 

16. #2 ENG START WAS ABORTED WHEN IT  APPEARED OF A POSSIBILITY OF 

A HOT START. 

17. ALL PAX EVACUATED LEFT SIDE OF AIRPLANE (AWAY FROM THE FIRE). 

18. WIND WAS 9018 KTS. 

19. I WOULD ESTIMATE THAT HE WAS 350-400' LEFT OF CENTERLINE WHEN 

I FIRST SAW HIM. 

20. OR, WHEN CLRED T O  BACKTAXI 17" WOULD SUFFICE 

21. THIS SHOULD NOT HAVE HAPPENED (THEY ENDED UP SIDE BY SIDE 1 112 

MI FINAL). 

22. WHEN SMT Y BROKE OUT HE PROBABLY SAW APPCH LIGHTS OFF HIS 

LEFT AND WENT FOR THE RWY. 

23. W AND E LCL ALSO HAVE RADAR IN THE TWR, BUT TOOK NO ACTION 

TO PULL EITHER ACFT OFF THE APCH WHEN SEP DECREASED. 



APPENDIX A. LISTING O F  THE TEST CORPUS 89 

24. THE ACFT INVOLVED WERE A CONSIDERABLE DISTANCE AWAY FROM 

EACH OTHER WITH INCREASING SEPARATION. 

25. THE SMA DEPARTED AND TURNED SLIGHLY AWAY FROM US. 

26. HUMAN FACTORS: I WAS PICKING UP MY BEST MAN FOR MY WEDDING 

FOR 3/SAT/88. 

27. NORMALLY DON'T FLY INTO TWR AIRPORTS (LAST TIME WAS 7/87), BUT 

HAD A LOT OF THINGS ON MY MIND AND THINGS T O  DO. 

28. HE WAS NOT AWARE THAT THE CTL FAC (MCC) FOR DEP CTLR WAS MANY 

MILES AWAY AND WAS CONFUSED WHEN HE COULD NOT CONTACT DEP 

CTL. 

29. I DON'T RECALL EXACTLY THE HORIZ DISTANCE, BUT I BELIEVE I T  WAS 

2 112 - 3 MI. 

30. I PREFER T O  VIEW THIS INCIDENT AS AN ABORTED TKOF/CLBOUT AND 

A PRECAUTIONARY RETURN FOR LNDG WITH A STEADY GREEN LIGHT 

LNDG CLRNC. 

31. HE ALSO ADDED THAT WE STILL HAD 20 MILE T O  GO BECAUSE OF MANY 

ARRIVALS. 

32. ALTHOUGH WE WERE DIVERGING COURSES, THE OTHER ACFT APPEARED 

T O  BE 2-3 MI AWAY AND WE WERE T O  BE CLBING THROUGH HIS ALT. 

33. I KNEW OF TWO POWERLINES XING THE RIVER, BUT BOTH OF THEM 

WERE FAR AWAY FROM ME. 

34. WE TALKED ABOUT THE HEARBACK PROB IN ATC, AND HE SAID THAT 

HE HEARS MANY PLTS AND CTLRS WHO DO NOT SEEM T O  USE PROPER 

RADIO PROC AND PHRASEOLOGIES. 

35. SUPPLEMENTAL INFORMATION IN ACN 84901: IN MY OPINION, THE CTLR 

WAS HANDLING TOO MANY ACFT AT ONCE. 

36. I T  IS USED ON OLDER ACFT 



APPENDIX A. LISTING OF THE TEST CORPUS 90 

37. THE ACFT PASSED APPROX 2 112 MI APART WITH 600' ALT SEP 

38. DCA CTLR SAW ACR Y MODE C LEVEL AT 9000'' SO GAVE TURN T O  RPTR, 

ACR X, WHEN THE ACFT WERE STILL ABOUT 8 MI APART. 

39. OFTEN TIME IN LAX, COMMUTER ACFT WERE EXPECTED T O  TAKE TOO 

MANY CHANCES REGARDING WAKE TURB IN ORDER T O  ALLOW APCH 

T O  FIT MORE ACFT IN FOR ARR. 

40. THE EXPERIENCE SHOULD HELP ME EXPLAIN T O  MANY OTHER PLTS 

THE CORRECT PROC, BUT THESE CHARTS REALLY NEED A COLOR EM- 

PHASIS OR CHANGE. 

41. THERE WERE MANY OTHER ACFT ON FREQ, INCLUDING AN ACR FLT 

XBC. 

42. W E  DID NOT SEE ANY TFC T O  OUR LEFT, BUT WE DID SEE AN ACFT AT 

2 O'CLOCK, AT LEAST 2000' HIGH AND AT LEAST 5 MI AWAY, HDG SBND. 

43. IT  WAS TOO FAR AWAY T O  IDENT THE TYPE. 

44. DURING THIS WHOLE PERIOD OF TIME, THERE WERE MANY INSTANCES 

OF THE FREQ BEING BLOCKED BY SEVERAL ACFT TRANSMITTING AT 

THE SAME TIME. 

45. WE WERE AT APPROX THE SAME ALT AND ABOUT 300' APART. 

46. IFR FLT PLAN BETWEEN OPF AND TMB (18 NM APART, BOTH FIELDS 

WERE IFR) ON RADAR VECTORS (210 DEGS). 

47. A VFR CLB WAS GIVEN T O  THE ACR BECAUSE THE CTLR THOUGHT THE 

2 ACFT WERE STILL VERY FAR APART AND WOULD NEVER BE A FACTOR 

FOR EACH OTHER. 

48. AT THE CLOSEST POINT, THE ACFT WERE ONE MILE APART, SLOWLY 

DECREASING, AND SEPARATED BY 100' ALTITUDE. 

49. SINCE THE 2 ARPTS ARE ONLY 10 MI APART, I T  WOULD BE BARELY 15 

FLYING MILES TOTAL, ALLOWING FOR A 4-5 MI FINAL. 



APPENDIX A. LISTING OF THE TEST CORPUS 91 

50. AT INITIAL CALL UP, SMT X WAS TURNED 20 DEGS LEFT BY THE TRNEE 

(SMT X AND ACR Z WERE APPROX 45 MI APART). 



Bibliography 

[I] Steven P. Abney. Parsing by chunks. In Steven Abney Robert Berwick and Carol 
Tenny, editors, Principle-based Parsing, pages 257-278. Kluwer Academic Publishers, 
1992. 

[2] Steven P. Abney. Part-of-speech tagging and partial parsing. In Steve Young and Gerrit 
Bloothooft, editors, Corpus-Based Methods in Language and Speech Processing. Kluwer 
Academic Publishers, 1996. 

[3] Steven P. Abney. The scol manual. h t t p  : / /www . i m s  . u n i - s t u t t g a r t  . de / " l i gh t /  
i n t roc l s s97 / s co l  .ps ,  1997. 

[4] Aviation safety reporting system. http://asrs.arc.nasa.gov/. 

[5] Srinivas Bangalore, Anoop Sarkar, Christy Doran, and Beth-Ann Hockey. Grammar 
and parser evaluation in the xtag project. In Workshop o n  Evaluation of Parsing 
Systems,  1998. 

[6] John Carroll, Ted Briscoe, Nicoletta Calzolari, Stefano Federici, Simonetta Mon- 
temagni, Vito Pirrelli, Greg Grefenstette, Antonio Sanfilippo, Glenn Carroll, and 
Mats Rooth. Shallow parsing and knowledge extraction for language engineering. 
http://www.ilc.cnr.it/sparkle/wpl-prefinal/wpl-prefinal.html, 1996. 

[7] John Carroll, Ted Briscoe, and Antonio Sanfilippo. Parser evaluation: a survey and a 
new proposal. In Proceedings of the 1st International Conference o n  Language Resources 
and Evaluation, pages 447-454, 1998. 

[8] John Carroll, Annette Frank, Dekang Lin, Detlef Prescher, and Hans Uszkor- 
eit. Beyond parseval: Towards improved evaluation measures for parsing systems. 
http://let.dfki.uni-sb.de/BeyondPARSEVAL/, 2002. 

[9] Kenneth W. Church. O n  Memory  Limitations in Natural Language Processing. Indiana 
University Linguistics Club, 1980. 

[lo] Kenneth W. Church. A stochastic parts program and noun phrase parser for unre- 
stricted text. In Proceedings of the Second Conference o n  Applied Natural Language 
Processing, pages 136-143. Association for Computational Linguistics, 1988. 



BIBLIOGRAPHY 93 

[ll] Ronald A. Cole, Joseph Mariani, Hans Uszkoreit, Annie Zaenen, and Vic- 
tor Zue. Survey of the state of the art in human language technology. 
http://cslu.cse.ogi.edu/HLTsurvey/HLTsurvey.html, 1996. 

1121 Christine Doran. Punctuation in quoted speech. In Proceedings of SIGPARSE 1996: 
Punctuation in  Computational Linguistics, pages 9-18, 1996. 

[13] Eagles: Expert advisory group on language engineering standards. 
http://www.ilc.cnr.it/EAGLES96/home.html. 

[14] Zellig Harris. String Analysis of Sentence Structure. Mouton, The Hague, 1962. 

[15] Daniel Jurafsky and James H. Martin. Speech and Language Processing. Prentice Hall, 
2000. 

[16] Catherine Macleod Ralph Grishman and John Sterling. Evaluating parsing strategies 
using standardized parse files. In Proceedings of the Third ACL Conference on Applied 
Natural Language Processing, pages 156-161, 1992. 

1171 Geoffrey Sampson and Anna Babarczy. Limits to annotation precision. In Proceedings 
of the 4th International Workshop on Linguistically Interpreted Corpora (LINC-03), 
pages 61-89, 2003. 

[18] Beatrice Santorini. Part-of-speech tagging guidelines for the penn treebank project (3rd 
revision, 2nd printing). Technical Report, Department of Computer and Information 
Science, University of Pennsylvania, 1990. 

[19] University centre for computer corpus research on language. 
http://www .comp.lancs.ac.uk/computing/research/ucrel/. 




