
National Library 
of Canada 

E:b!iolh&que natronaie 
du Canada 

Acqursttrons and Direction des ac~tiisrtrons el 
Btbliograp'ntc Services Bra~ci3 aes services btblroqrann~qcles 

The quality of this microform is La qualite de cette microforme 
heavily dependent upon the depend grandement de la qualit4 
quality of the original thesis de !a th&se soumise EPU 

submitted for microfifming. microfilmage. Nous awns tout 
Every effort has been made to fait pour assurer une qualite 
ensure the highest quality of superieure de reproduction. 
reprcductim possible. 

ff pages are missing, contact the S'il manque des pages, veuillez 
university which granted the communiquer avec I'universit6 
degree. qui a confere le grade. 

Some pages may have indistinct La qualite d9impression de 
print especially if the original certaines pages peut laisser a 
pages were typed with a poor dbsirer, surtout si les pages 
typewriter ribbon or if the originales ont ete 
university sent us an inferlor dactylographiees a I'aide d'un 
photocopy. ruban use ou si I'universitb nous 

a fait parvenir une photocopie de 
qualite inferieure. 

Repr~duction in full or in part of La reproduction, m h e  partielie, 
this microform is governed by de ceffe microforme est soumise 
the Canadian Copyright Act, a la Loi canadienne sur ie droit 
R.S.C. 1970, c. C-30, and d'auteur, SRC 1970, c. C-30, et 
subsequent amendments. ses amendements subsequents. 

adz 



EXPONENTIAL SUMS AND APPLICATIONS 

Ping Ding 

MSc., Institute of Mathematics, Chinese Academy of Sciences, 1982 

A THESIS SUBMITTED IN PARTIAL FULFILLMENT 

OF THE REQUIREMENTS FOR THE DEGREE OF 

f?OCT@R OF PHILOSOPHY 

in the D e p m e n t  

of 

Mathematics and Statistics 

O Ping Ding 1993 

SIMON FRASER UNIIERSITY 

Febmaq, 1993 

14ii righrs reserved. This work -may not be 

reproduced in whole or in part, by photocopy 

M other means, without the written permission of the author. 



National Library BbIioth&que nationale 
of Canada du Canada 

Acquisitions and Direction des acquisitions et 
Bibliographic Services Branch des services bibliographiques 

395 Weiiington Street 395, rue Vv'ei!ingtim 
maws. Ontario Dltawa (Oniaraoj 
KIA ON4 KtAON4 

The author has granted an 
irrevocable non-exdusive licence 
allowing the National Library of 
Canada to reproduce, loan, 
distribute or sell copies of 
his/her thesis by any means and 
in any form or format, making 
this thesis available to interested 
persons. 

f'auteur a accord6 une licence 
irrbocable et non exclusive 
permettarit & la Bibliotheque 
nationale du Canada de 
reproduire, prgter, distribuer ou 
vendre des copies de sa these 
de quelque maniere et sous 
quelque forme que ce soit pour 
mettre des exemplaires de cette 
these a la disposition des 
personnes interess6es. 

The author retains ownership of L'auteur conserve fa propriete du 
the copyright in his/her thesis. droit d'auteur qui protege sa 
Neither the thesis nor substantial these. Ni la t h k e  ni des extraits 
extracts f r ~ m  it may be printed or substantiels de celle-ci ne 
otherwise reproduced without doivent Btre imprimes ou 
his/her permission. autrement reproduits sans son 

autorisation. 

ISBN 0-315-91136-0 



APPROVAL 

Name: 

Degree: 

Title of thesis: 

Ping Ding 

Doctor of Philosophy , 

Exponential Sums and Applications 

Examining Committee: 

Chairman: Dr. S. I(. Thomason 

- 
Dr. A. R. Freedman 

Senior Supervisor 

Dr. A. B. Lachlan 

Dr. B. R. Alspach 

Dl;i: ' J. L. Berggren j 

Dr. H. Halberstam 

External Examiner 

Professor 

University of Illinois at  Urbana-Champaign 

Date Approved: March 11, 1993 



PARTIAL COPYfi lGl iT C fCf.NSI' 

I hereby grand. f o  S irnon Fi-asel-  iff^ i vcr-s i t y t 119 r i gl1 t lo l cftll 

my t h e s i s ,  p r o j e c t  o r  extended essay i t h c  t i t  lc o f  which i s  s l~own ~ C I G W )  

t o  users of t h o  Simon Frasor Univers i l-y L i  briir-y, a n d  'to rnakc par-.I i s  1 or- 

s ing  i e  copies on 1 y for such users o r  i n response -to a roqucsl- f r-om lit? 

l ibrary  of any o t h e r  un ive rs  

. i t s  own behalf o r  f o r  ono o f  

. f o r  m u l t i p l e  copying o f  t h i s  

by me or the Doan of Graduat 

t y ,  o r  o-t her- educat i ona I i ns.1 i t u  t i on, on 

i t s  uscrs .  I f u r f h c r  agroc 1.1~1. per-rn i s s  ion 

work for- t;cholor l y purposes may b u  gran.t~t.?cl 

It. i s undursl-ood -i t i a t  copy i iy e  S h d i e s .  

or pub1 lcat  ion of T h i s  work f o r  f i rl inc 

w i thou t  my w r i t t e n  permission. 

i s 1  g a i n  shsl I not bc a i lowed 

. . 
T i t  l e of Thes i s/Project/Extended Essay 

Author: - 
(signa tu re )  

i name ; 



ABSTRACT 

Let q be a positive integer and 
k f (x j=akx +... + a ] x + a g  ( k 2 3 )  

be a polynomial with integral coefficients such that (a1 , ... , ak , q) = 1. Write 
q 

x= 1 
We proved that 

ck ]-Ilk IS[q,f(xjjl < e  q , f o r k 2 3 ,  
whcre c = 1.74. This improves previous results that c = 2 (Qi M. G. and Ding P.) and c = 
1.85 !Lu M. G. j. 

Define I satisfying pL II (kak , ... , 2a2 , al),  where the symbol ll means that t is the 

highest power of p such that pi I (kak , ... , 2a2 , al). Let p1 , ... , p, be the different zeros 
modulo p of the congruence 

p- 'f '(x) 0 (mod p j, O < x < p ,  
and let m l  , ... , m, be their multiplicities. Set maxlli,, mi = M = M(f) and 

C mi = m = m(fi. 
i= 1 
Let 

r =  r k k  
log p ' 

we prove the following result: 
If n 2 2 or n = 1 and p I k, then 

I s (~" ,  f(x)) I 5 mp &f+ 1) U(M+ 1 j n[l - l/(M+ 1 j] 
P P 

This improves the previous results by using k (Chalk) and k1I2 (Ding) to substitute 

P = / ( ~ + I )  
T 

as p I k and -M 2 1. Actually, this result is the best possible as shown by an 
example at the end of this secrion. 

Let k, s, and q be positive integers. 
Let N(qj denote the number of solutions of the congruences 
s + ... + s_ = b 1 5 1' 
...-.. 

k k 
(mod q) 

(x1) + - . . + ( x S )  Ebk' 
~vhr r s  1 I xi 2 q. (s. . qj  = 1, 1 5 i I s .  

1 
7 

Let q = p" with p a prime. n a positive integer, k > 3, s > 2kW. Then when p 2 
W ( k  - 2)  [k - 1)- - . the congruence (*) is always solvabale. This largely reduces Hua's result p 

,k- 3k 7 > - k- to k-. approsimateIy. 

We denote by v,ipn. fix)) the a set o f f  modulo pn, that is, 



a previous result of Chalk. 

Let k 2 2 and q = g(k) - G(k), where g(k) and G(k) are same :is i n  W X I I ~ ~ ' ~  
problem. For each positive integer r 2 q let u, = g(k) + I- - q. Then for every E > O and all 

N 2 ~ ( r ,  E) .  we construct a finite set A of k-th powers such that IAI 5 ( r ( 2 4 ~ ) ~ i . l  )N I/\k. + r) 
and every nonnegative integer n 5 N is the sum of u,' elements of A. Some rel;wd rc,ziilt,\ 
are also obtained. These resulrs improve and generalize Nathar~son's :esu!ts. 

For e v e 7  E > 0, we construct a set A of squares with IAl c N l f i i E  for s~ifficieniiy 
large N and every integer n, o I: n I: X, is a sum of (k + 1) nonvartishing squares in  A for 
some positive integer ~ c ,  and for all k 2 4. 

The second result is that for each k 2 3 we construct a set A of squares such that 

1.41 < k(2+&)%lk and every integzr n, N& < n < N, is a sum of (k+3) d i s ~ i n c ~  elcmsnts of 
A, where E is a small positive number less than 0.0064. 
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h 1770 E. Waring asserted without prod in his Meditations Algebraicae that every 

natural number is a sum of at most nine positive integral cubes, also a sum of at most 19 

biquadrates, and so on. By this it is usually assumed that he believed that for every namal 

number k 2 2 there exists a number s such that every natural number is a sum of at most s 

kth powers of natural numbers, and that the least such s, say g(k), satisfies g(3) = 9, g(4) 

= 19. It was not until 1770 that g(2) = 4 was given, by Lagrange, who built on earlier 

work of Euler. During the next 139 years, special cases of the problem were solved for k = 

3'4, 5,6,7, 8, 10. It was in 1909 that Hilbert solved the problem in the afFumative for all 

k. His proof was extremely complicated in its detailed arguments, 

Many important advances in analytic number theory in the twentieth century have 

been achieved by either the sieve method or the Hardy-Littlewood circle method. These 

methods, originating in fundamental work of the second and third decade of this century, 

have now been developed into a delicate theory which has turned out to be a very powerful 

tool in the solution of problems fiom additive and multiplicative number theory. For these 

methods there are two excellent books respectively, one is Halberstam and Richert's <<Sieve 

methods>> [19], and other is Vaughan's <<The Hardy-Littlewood method>, [42]. 

Vinogradov made great technical improvements to Hardy-Littlewood's method in 

1930s and proved Goldbach's problem for odd numbers, that is, every sufficiently iarge 

odd number is a sum of three primes. His method requires estimating the exponential sums 

for primes. Some other problems in number theory also need to estimate various 

exponential sums. Therefore, Hua L. K. placed the estimation of complete exponential 

sums as the f~ndzmentd Ierr?rr?a i~ his ' m k  c<P,&litive the~r;. of prime numbers>> 1201. 

In Chapter 1 we give two estimations of complete exponential sums which improve 

previous results. In the f~rst section, we consider the complete trigonometric sums defined 

by 



where q is a positive integer and 
k f(x) = q x  -I- ... + alx + ao, 

al, ... , ak are integers such that (al, ... , ak, q) = 1. Hua [25] first established that 

S(q, f(xN << p 
1 - lk+& 

, 

where E is a small positive number and the symbol "<<" is Vinogi-adov's one, that is, 

means that there is a constant C which may depend on some variables such that 

lfl < Cg. 

Hua's result is important since the main order (1 - I lk )  is the best possible. In 1953, 

Necheav 1341 gave an explicit estimate 

zk and since then, by the efforts of a few mathematicians, the coefficient e here went down 

rapidly to e6.1k, by Chen J. R. [I 11 in 1977, and to by Lu M. G. [30] in 1985. Our 

main result in the first section is to establish 

1.74k 1 - 1.k 
WqY f(x))f 5 e q Y 

which is the best one up to now. One possible application of this result is to the estimations 

of g($) if further difficulties could be overcome, where g(x) is well-known in Waring's 

problem and $ is a polynomial with integral coefficients. The induction procedure in  the 

f i s t  section starts f m  2n + 1 instead of 2n + 2 and the difficulties are dealt with by 

individual cases. As Stechin [41f already established an asymptotic inequality 

ir Is obvious that one of &!: cmxes IS to obain go& estimates h r  refatlve!y small k, 

qualitatively say, at present hand, for 5 _< k 5 64. We deal with small k according to k E 

- i + l  
(2', 2 ] for 2 5 i < 5. If we write q = p", where p is a prime and n is a positive integer, 

then another crux is to get good estimates for small p. We shall give careful estimations for 



p = 2 and 3. We also sufficiently use the properties o f t .  for small prime p. One of the 
I 

principle difficuities in the second secrion is induction. To overcome the difficulty we 

introduce a parameter ? which allows us to apply induction on n according to n _< 22 or n > 

22. 

In Chapter 2 we consider some applications of exponential sums to corigruences. 

Let k, s , and q be positive integers. Lee Nfq) denote the number of solutions to the system 

of congruences 

X I  + ... + Xs = bl, 

where 1 5 xi 5 q, (xi, q) = 1, 1 5 i 5 s. In the fust section we shall prove that for q = p", 

where p is a prime and n a positive integer, if 

2 then the above system of congruences is always solvable for s 2 2k , where 

which reduces Hua's condition (cf. [26]) that 
n 

The precise upper bounds to 

I $ e2rif(xl/pnl where p is a prime and n is a positive integer, 

for k < p I (k - 1) 2W(k - 2, at hand are not good enough to enable us to reduce the 

conditions so that we can't directly apply our results in Chapter 1 The second section is a 

simple application of the second section in Chapter 1 which improves Chaik's result [9]. 

In Chapter 3 by ccnsidering the differences between g(k) and G@), where g(k) is 

as above and G(k) denotes the minimal value o f r  such that every sufficiently large integer 



is the sum eI'r kth powers. we first canstiiict a finite set wit5 reladvely small carrtlnality 

such that every positive integer n 5 N : s  th sum of cenain elements in this set for 

sufficiently large N. Three theorems art: proven here. These results improve Nathmson's. 

Unfortunately, we can't obtain an infinite version for this question at present. Our idca is 

to cut the interval f 1, hT] into finitely many pieces. We then start from the lowest interval 

and translate higher interval to lower one. The second part of Chapter 3 deals with the small 

sets for nunvanishing squares and distinct squares. The idea is similar to the first secrion 

but the difficulty for ctistincr squares is to show that if n is expressed as a sum of some 

elements in the constructed small set A then those elements must be distinct. 



CHAPTER 1. ESTIMATION OF EXPONENTIAL 
SUMS 

$1.1 Estimate of complete trigonometric sums. 

Let q be a positive integer and 

be a polynomial with integral coefficients such that (a1 , ... , ak , q) = 1. Write 
q 

S(q , fW) = C e 2lcif(x)/q , 
x=l 

(1.2) 

where i = 11-1. 

In 1940, Hua L. K. f25] first proved that 

Rq 9 f(x)) = Ofq fl  - l l k W ) ,  

and about 1947 improved this to 

Rq , fW) = O(q 1 - 1B) 
> 

where the constant implied by "0" depends only on k. This is an importaat result because 

the main order (1 - l/k) is the best possible. Aftelwards, some work done on this problem 

is as foflows: 

1953 Nechaev V. I. 1343 2k I-ljk 
f q , 

1959 Chen J. R. [f Of IS(q , f(x))! l e 
3k2*k I-l/k 

4 9 

3 7 " -  

1975 Nechaev V. L [357 1S(q , f(x))l 5 e qi-l'" 9 

I977 Chen J. R. [I 1 j 6 !k 1-?/k IS (q , @))I I e"' q 7 

1984 Lu M. G. 1301 3k I-lfk w q  , f(x)YS e q , 
2k I-lfk 1985 Ding P. & Qi U G. [13] IS(q , f(x))lS e q , 



We now prove the following 

Theorem 1.1, 
1.74k ,l-l/k fS(q,f(x))t l e  , fork23.  

2. BASIC LEAWAS. 

and 

iff 

Lemma 1.1. For positive integers k and real y, 

k01 - 1)k 
2 Y ( 2 S y < k -  I), 

l/k l/@ + Ij (k - 2) < y f 5 d k , 2 I y I k -  1) 

Prmf. We f ~ s t  prove (1.3)- 

k(Y-f )k l y  ( 2 5 y S k - I )  

The right hand side is decreasing for y 2 2 and there is at least 
hg(k - 1)  10; k 

k - 2  

We now establish (1.4). Obviously it suffices to prove 



For y 2 3.6, -kE?!- is decreasing, and so v + l  

as required. This leaves 2 < y -< 3.6, when 

logy lo 2 
y i - 1  L = 0.2310 ... . 

On the other hand, 
log(k - 2) 

k = 0.2197 ... at k = 5, 

and is < 0.229919 ... for k 2 7. Hence (1.6) follows, so that (1.5) and (1.4). This 

completes the proof. 

Now let f(x) be as in (1.1) with q equal to a power of a prime p. 

Define t to be that exponent satisfying pt II (kak , ... ,2a2, a1 ) , where pt II A 
t means pt I A but pt+' Y A. By (a1 , ... , ak , p) = 1, we deduce that p 5 k. Let pl , ... , pr 

be the different solutions modulo p of the congruence 

P - t f ' ( x ) = ~  (modp), O $ x < p ,  

and k t  m1 , ... , m, be their multiples, Put 

Define tj satisfying p3 II g;. (y) . As before, p$ 5 k. 
3 



Lemma 1.2. [31] Let p be a prime, and pj a simple root of ?-'f (x) - O (mod p). 

Then 

0 j = t + 2  mdtj=O whenp>2 

and 

Oj=t+ 1 m d t j = 1  whenp=2. 

Lemma 1.3. 1311 If t = 0, then 
m .+ 1) 

2f"(~j)  rn+lf( J (pi) 
g b ( ~ ) z ~ - c ~ ( ~ ~ ( ~ j ) + @ ~ )  21 + + @Y) J (rnj+1)! 1 (mod p) (1 + 10) 

If mj = 1 and t 2 1, then 

ii) when p = 3, 

and iii) when p = 2, 

k Lemma 1.4. [26] Let p be a prime and f(x) = akx + ... + alx + ag a polynomial 

with integral coefficients such that p Y (ak, ... , al). Let p be a root of the congruence 

f(x) I o (mod pt+'), 0 5 x < p , (1.14) 

and let a satisfy pG I I  ( f(px + p) - f(p) ), then 

1 I o 5 k .  (1.15) 

Lemma 1.5. [13] Let pj be a r a t  with multiplicity mj of the congruence 

f(x) S O  (mucipt+l~, o 5. < p ,  

and CJj satisfy pGj II ( f(px + pj) - fuj)  ), then 



and the number of solutions of the congruence 

does not exceed mj. 

Then 
s P n - l  for all n 2 1 

qAjLj.p" I 
= p0j -  IS(^" - Gj,gpj(Y))~ if n > CJj 

Lemma 1.7, Let f(x) be as in (1.1). When n 2 2t+2, we have 
r 

If p is an add prime and f(x) satisfies the above conditions with t 2 1, then when n = 2t+l, 

(1.20) holds. If p =2 and t 2 2, then (1.20) also holds for n = 2t+l. If p is an odd prime 

and t 2 2, then (1.20) still holds for n = 2t. 

Proof. We only give a proof for the case p is an odd prime, t 2 2, and n = 2t. For 

the other cases refer to [131. 

indeqenknrly ~ h u g f ?  

n-t-1, y =  1, ... ,p 7 z=0 ,  *.. ,pt+l - 1. 

When n = 21, 



since 
*'+I - 1 { p:l if pt+llf (y) C ep'f 1 (zf (Y)) = 

zTO otherwise 

(1.20) then follows. 

Let Hk(x) = akxk + ... + alx be a polynomial with rational coefficients. If there is 

an integer q such that e 2akfxx+s) = e2nak(x) foi all x, then we say that Hk(x) has period q. 

The smallest positive perid of Hk(x) is called its order. Let Bk(q) denote the class of 

polynomials with degree k and period q and Bg(q) denote the subclass of polynomials with 

de,m k and order q. 

Lemma 1.8. 1401 Put 

Then we have 

and 

Lemma 1.9. Let p = 2 . f(x) satisfy (1.1), and 2' I! f (x). If n = 2t +1 and t = 1, 



Proof. By substitution x = y + 22 (y = 1,2;  z = 0, 1 , 2 , 3 )  and notice that n = 3, t 

= 1, (1.24) follows from (1.22) immediately. 
2 3 

 IS(^", f(x))l = C epn(f(y)) Z e 2 ( z f y  + P f f ( y ) )  
Y=l i d  

2 -1/2 5 2(2 -2 ) = 2 3 - 1 ~  

Lemma 1.110. Let f(x), t, and rn be defined as before. If t = 0 and k 2 5, then, 

Proof, Lemmas 1.7 and 1.6 give that - 

and 

When mj = 1, it follows from Lemma 1.2 that Oj = t + 2 = 2 and tj = 0. Hence 

is , 31 = pls(p,gPj(y))l. '3 



Lemma 1.11. If p = 2 and mj = 2, then we have tj = 1. 

Proof. If p = 2, then 

If h > 4, then 2h-2 2 h. Thus the number of factor 2s of h does not exceed h - 2. This 

h p ' ~ . )  implies that when h 2 4, 2t+2 I 2 +. Further, when mj = 2, we obtain 2t+3 I 2f(pj), 

2t+3 11 2 ' ~ ( ~ , ) ,  and 2t+3 1 22f "(pj). This implies that 2 11 gb.(y). Consequently, t, = 1, as 
J 

required. 

Lemma 1.12. [11] If f(x) is defined as (1.1) and p > k is a prime, then for n 2 1, 

we have 

if p > (k- 1) 2k/(k-2) 

Lemma 1.13. [38, 391 Define as usual 

X(X) = C 1, and B(x) = C log p . 
p<x psx 

Then 

X(X) <+I logx + -=), logx i f x >  1; 



3. FUNDAMENTAL ESTIIMATIONS. 

Lemma 1.14. Let k 2 5 be an integer and 5 5 p 5 k be a prime. Then for n 2 1, 

we have 

where t@)  = [El 2 1. 

Proof. The second inequality of the lemma follows immediately from Lemma 4.3 

of [31]. Here we only give a proof of the fmt  inequality. 

First case: p 5 (k - I)W(~+~).  Note that t 5 t(p) since pt 5 k. Also, if p 2 km, then 

For n < 2t@), we obtain trivially that 

n/k n(1-lk) 2t@)/k n(1-l/k) ls(pn,f(x))l s p n = p  p < P  B 

r (k- 1)p 2t@)tk - 1 P n(l-l/k) 

For n 2 2t(p), we employ induction on n to show that 

f(x))l < mp 2t(p)/k- 1 n(1-lk) 
P (1.29) 

We first prove that (1.29) holds for n = 2t(p). If t = 0, then n 2 2t + 2; and if 1 I t < t(p), 

then n 2 2t + 2. By Lemmas 1.6 and 1.7 we have 
r 

IS(~",~(X))I s ISpj,pnI < = rp 2t@)/k - 1 n(1-l/k) 

j=1 
P 

n - t - 1  If t = t(p), then t 2 2. Set x = y + p z, where y and z run independantly through 
n -  t -  1. 

y = 1, ... , p , z = o  ,... , $ + I  - 1. 



Hence, for n = 2t@), (1 -29) follows from (1 -30) and (1 -3 1). 

Assume (1.29) holds for all integers in [2t(p), n - 11, where n > 2t(p). Define 

A 3 =  { j :  2 t j + l I n - G j  <2t(p)),  

and 

Since ( 1,2, ... , r) is the disjoint union of the A ~ s ,  we have 
4 
C C m j = m ,  
i=1 jcAi 

1). j E A 1 .  Since n > 2t(p) 2 2t + 2, it folIows from Lemmas 1.6 and 1.5 that 
n - 1 n/k - 1 n(1- 1 k )  p ~ p  - lpn(l - 1 k )  lS,.,pl I p  = p 

J P 

If mj = 1, then 

ISp-,pi I p + -  - 1  2t(p)/k-1 n(1-l/k) 
J P %' P 

lf mj 2 2, then by Lemma 1.1 we obtain 
@ - I  nfl-ilk) 5 mjp 2t@)/k - 1 n(1-l/k) 

'Spj@i < m~? p I' 

By (1.34) and (1.351, we obtain immediately 

2). j E A2. In this case we must have tj 2 1. It follows from Lemmas 1.6 and 1.5 that 
1 - 1  1 - 1  ( a - + 2 t j ) k - 1  n ( 1 - l K )  

q L j , p " l  S P  - P P Sp J P 



If mj = 1, then by Lemma 1.2, tj = 0, contradicting tj 2 1. Thus, mj 2 2. In view of Lemma 

i.i, we have 

whence 

3). j E A3. We fust consider the case n - Gj = 2tj + 1 and tj = 0. 

When mj = 1, by Lemma 1.2, Gj = t + 2. It then follows from Lemmas 1.3 and 1.8 that 
0.- 1 + la - (n/k)-(3/2) n(l- lk)  ,p(oj+l)/k- (3R) n(l-l/k) 

ISpj,pn I 5 p J - P  P P 

When mj 2 2, we obtain, by Lemmas 1.6, 1.5 and 1.1, 
n - 1 (nk) - 1 n(1-l/k) (o-+l)/k - 1 n(1-l/k) ISp.,pn l < p  = p 

J P = p  J P 

(m-+t+2)/k - 1 n(1-l/k) = p  J P m~a' P (t+l)/k - 1 n(1-lk) 

2t(p)k - 1 n(1-l/k) 
< mjP P (1.41) 

Assume either 2tj + 2 6 n - Gj S 2t@) and tj = 0 or 2tj + 1 < n - Gj 5 2t(p) and tj 2 1. It 

follows from Lemmas 1.6, 1.7, 1.5 and 1.4 that 
o--1 n - o .  0- - I 'Sp.,p I = p J IS@ J ,gPj(y))l p J mjp"-Oj-  1 

J 

By (1.40) - (1.42) we obtain 

3). j E Aq. By Lemmas 1.6 and 1.4, we have 

We show that the usage of the induction hypothesis is permitted. By (1.9), deg gh(y) 5 k, 

and if deg gp.(y) 5 k - 1, say deg gpj(y) = t and gpj(y) = btyt + ... + bl y + bg with 
J 



n-cs- k (bl ,..., b t , p ) = l , t h e n w e d e f i n e G p j j ( y ) = p  J Y  + b l y ' + . . . + b l y + b g . N o w  

n - cr. 
degGpj@) = k and (p 1, bl, ... , bb p) = 1. That is, Gy(y) satisfies all conditions of the 

induction hypothesis. Furthennore, by rhe induction hypothesis, 

- 9 ,gp.(y))l =  IS(^" - 3 ,G@))I 
J 

Thus, in view of the induction hypothesis, Lemmas 1.6 and 1.4, we have 
= z $J - n - G- E: ISp.,pnl 

3 J .gp,(~)Y 
je A4 j~ 4 

0- - I 
= z p J  - G~ ,Gp.(y))l 
~ € 4  .I 

< zp9-1,jP - 2to/lc - 1 (n - oj)(l - l/k) 
P 

j~ A4 
2t@)/k - 1 n(1 - l/k) 

5 C m j ~  P (1.44) 
j~ A4 

Therefore, (1.29) follows from (1,36), (1.38), (1.43), (1.44), and (1.32). Thus the lemma 

1n holds for p 5 k . 

Suppose now kIE < p 5 (k - 1) W(k+ I). Here t(p) = 1 and k t 8 since p 2 5. 

For n 5 2t(p) + 1, 
3/k - 1 n(1- llk) - 1 + l/k 2/k - 1 n( l  - l/k) IS(pn,f(x))l Spn s p p  P - F P P 

<(k- 1)p 2/k- l n(1- l/k) 
P 

For n 2 4, we apply induction to show that 

IS(pn,f(x))l 5mp 2/k - 1 n(1- l/k) 
P 

When n = 4 2 2r + 2 (since t 5 t(p)), Lemma 1.7 gives that 
r 

IS(P",~(X))I 5 ~SPj,pd. 
+l 

Case la Suppose t = 0, Tfius C F ~  = 2; and a - Cj = 2 = 2tj + 2. By Lemmas 1.6 and 1.7 we 



Case 1 b. Suppose now t = 1. By Lemma 1.2 again, Gj = 3 and n - Gj = 1. Hence 
2 IS,., p! = p !S(p,gp,(y))I. 

J 

Now f 1.1 1) gives that 

By this and Lemma 1.8, we obtain 
5/2 l/k - 1 ~ ( l  - l/k) IS,., pl < p 5 p 

J P 

Case 2. If mj L 2, then Lemma 1.1 gives that 
- 1  4%-!. n ( 1 - l k )  ( m . c 2 ) / k - 1  c(l-I/k) IS,., pI < p = p 

J P I p  J P 

5 mj P l/k - 1 n ( 1 -  l/k) 
P 

Assume the induction hypothesis (1 -45) holds for all integers in [4, n - 11, where n 

2 5. We consider the following cases. 

1). n 2 Gj. 

If mj = 1, then it follows from Lemma 1.2 that Oj = t + 2 < 3 which contradicts 

n 5 Gj. Hence mj 2 2 and it follows from Lemmas 1.6, 1.5 and 1.1 that 
1 1 - 1 (m- + t + l)/k - 1 n ( 1 -  l/k) lsq,pl 5pGSd- p S p  J P 

2). 1 5 n - Uj 5 2tj- Since 1 5 tj 5 t(p) and t(p) = 1, we have tj = 1. 

If mj = 1, then by Lemma 1.2, rj = 0 which contradicts tj = 1. Hence mj 2 2. As in 

Case 1, 

IS,., pi < p n/k - 1 1 - 1 (G- + 2 5 ) k  - 1 n(l - l k )  
P I p  J J P 

< (m-+ t +  1 +tj)/k- 1 n(1 - l/k) 
- P  J P 

Smj  P 2 k -  1 n(1-  l/k) 
P 

3). 2tj t 1 5 n - Gj 5 22t(p). Here we must have tj = 0. 

If mj = 1, then it follows from Lemma 1.2 that Gj = K + 2 and tj = 0 since 

t(p> = 1. 

(i). n - Oj = I. Thus n = Gj + 1 2 4, a contradiction. 

(5). n - Uj = 2 = 2tj + 2. Lemmas 1.7, 1.6, and 1.5 give that 



Suppose that mj 2 2. 

(i). n - Cj = 1. It follows from Lemmas 1.5 and 1.1 that 
n - l  (u i+l) /k-1  n(1-IB) 

ISPj, pi 5 p = p . P 

(ii). n - Gj = 2 = 2tj + 2. By Lemmas 1.7 and 1.4 we obtain 
n - 2 -  ( G ~  + 2)k - 2 n(l - Ilk) 

Is,.,pni S mj P - mj p - J P 

5 mj P 2/k - 1 n(1- I/k) 
P 

If mj = 1, then Lemma 1.2 gives that Gj = t + 2 and tj = 0. By Lemma 1.7 we have 
n - 2 -  (t+5)/k-2 n(1- 1/k) IS,. pl S mj P - P J' P 

Consider mj 2 2. When tj = 0, we obain, by Lemmas 1.6, 1.10, and 1.4, 
a - - 1  3 0 . - 1  2&-1 3(1-l/k) 

ISpj, PI = P J IS@ ,gPj(~))I 5 P J mj P P 

S m j  P 2 k -  1 n(1- l/k) 
P 

When tj = 1, for mj 5 k - 2, we deduce from Lemmas 1.7 and 1.5 that 

ISp. pi S mj P (aj +3)/k-2 n(1 - I/k) 
P 5 m j p  

(mj +t + 3)k - 2 n(l - l k )  
1' P 

where we have used t I t(p) = 1. 

For mi = k - 1, it follows f?om Lemmas 1.6 and 1.4 that .. 
n - 1 - (0- + 3)k - I $1 - l/k) I S q , ~ I  S p  - p 1 P 

5). n - Gj 5 2t@) + 2. In view of the induction hypothesis we obtain easily 



Hence the lemma holds fur p 5 (k - I) Id&+ 1) 

Lemma 1.15. Let 5 5 k 2 8, p = 3, and f(x) be defined as in (1.1) and satisfy 

(al, ... , kak, 3) = 1. Then for n 2 1 we have 

IS (?", f(x))l 5 (k - 1) 3 2/k - 1 3n(l - l/k) 

Proof. Here we note that t(3) = [$!$ = 1 and t = 0. 

For n 5 2t(3) = 2, we have trivially 

1~(3", f(x))l 1 3" 5 3 2 k  gn(l - 1k) 

<(k- 113 z h -  1 p ( 1 -  ~ / k f  

We now employ the induction method on n, n 2 2t(3) + 1 = 3, to show that 

1~(3", f(x))l 5 m 3 uk - 1 n(l - l/k) 3 (1.47) 

When n = 3, (1 -47) follows from Lemma 1.10 immediately. 

Assume (1.49) holds for dl integers in [3, n - 11, where n 2 4. We consider the 

following cases: 

1). n < 0,. If mj = 1, then by Lemma 1.2, Gj = t + 2 = 2, contradicting the condition 

n > 4. Thus mj 2 2. It follows from Lemmas 1.6, 1.5, and 1.1 that 
n - 1  0 . t - lgn( l - l /k)  ISp., ,nl < 3 _< 3 1' 

J 

2). 1 S n - Oj 5 2tj. Then 1 i tj < t(3) = 1. Thus tj = 1. If nlj = 1, then by Lemma 1.2, we 

must have tj = 0, a contradiction. Hence mj 2 2. In view of kinmas 1.5 and 1.1 we obtain 
n - 1 (cr- + 2rj),!k - 1 3n(l - 1/k) < 3(mj + 2)/k - 1 n(l - l/k) iSpi,pI 5 3  1 3  J 3 

J 

I/k - 1 y(l- l/k) < m i 3  

3). 2tj + 1 5 n - Gj 5 2t(3). Since t(3) =1, we have tj = 0. That is, 1 5 n - Gj 5 2. 

If mj = 1, then by lemma 1.2, Gj = t + 2 = 2, since t = 0. This implies that n - Gj = 

2 = 2tj + 2 as m 2 4. It thus foffows from Lemmas 1.6, 1.7, and 1.4 that 



If mj 2 2, then we have, by Lemmas 1.6, 1.5, and 1.1, 
n - I  ( s . + Z ) / k - l  n ( l - l t k f  ( m - + 3 ) b - 1 3 n ( l - I / k )  ISp., 3n1 1 3  1 3  J 

J 
3 s3 J 

4). n - Gj 2 2t(3) i 1. In view of the induction hypothesis and Lemma 1.4, we have 
a. - f -n - G- o. - I 2/k - I  (n - a-)Q - l/k) IS,., pl = 3 J IS@ 7gpj(y)  5 3 J mj3 

j 
3 J 

.2/k - 1 3n(l - l/k) 
5 mjs 

Therefore (1 -47) holds, and the lemma follows fYom Lemma 1 -7 after summing over j . 

Lemma 1.16. With rhe same conditions as Lemma 1.15 but replacing the 

condition (al, ... , kak, 3) = ! by 3 11 f fx), we have, for n 2 1, 

 IS(^", f(x))l 5 (k - 1) 3 2k - 1 3n<l - lk) 

Prouf. Here we have tf3) = 1 and t = 1. 

For n 12t(3) + 1 = 3, it is easily seen that 

 IS(^^, f(x))l < 3" _< 3 3/k - 1 2 3n(l - l/k) 3/lr 3"(' - Ikl )< (k - 1) 3 

We now apply the induction mehod to show that, for n 2 2t(3) +- 2 = 4, 

1s(3*, ffx) jr m 3 m- 1  - y ~  - w ( I  -48) 

When n = 4 = 2t i 2, the proof is similar to that of (1.45) in Lemma 1.14. Assume 

ROW (1.48) holds for all integers in [4, n - l j ,  where n 2 5. 

1 )  n S j If mj = 1, then by kmma 1.2, q = t + 2 = 3, but this is impossible. Thus mj 



2). 1 5 n - Oj 5 2tj- Here tj = 1 since t(3) = 1. If mj = 1, then by Lemma 1.2, tj = 0 which 

is a contradiction. Thus mj 2 2. It follows from Lemmas 1.6, 1.5 and 1.1 that 
n - I  ( 0 - + 2 ) / k - 1 3 n ( 1 - l / k )  ( m . + t + 3 - t $ / k - 1 3 n ( 1 - l / k )  ISCL., 3nI 5 3 1 3  f 1 3  J 

J 

2 mj3 2/k - 1 3n(l - lk) 

3). 2tj + 1 2 n - Oj < 2t(3). In this case we must have tj = 0, that is, 1 S n - Oj 5 2. 

If mj = 1, then Lemma 1.2 gives that oj = t + 2 = 3 and tj = 0. Hence n - ~j = 2 = 

2tj + 2. By Lemmas 1.6, 1.7, and 1.4, we obtain 

!Sp., 3 ~ J  I mj - 2 - l ( ~ j  + 2)h  - 2 p ( l -  1/k) 
J 

- J  

Suppose now mj 2 2. When n - Uj = I, it follows from Lemmas 1.6, 1.5, and 1.1 

that 
n -  1 - ( ~ - + l ) / k - 1  3n(l - lh~).,~(rn~+t+2)/k- 1 3n(l - l/k) ISp., 3nl 1 3  - 3 1 

J 

2 mj3 2/k - 1 p(l -  I/k) 

When n - Oj = 2 = 2tj + 2, it follows from Lemmas 1.6, 1.7, and 1.4 thzt 
o--1 2 n - 2 -  ( ~ . + 2 ) / k - 2 ~ n ( l - l k )  Isp-, = 3 J IS(? ,g .@))I S mj3 - mj 3 J 

J ?I 

5 mj3 2/k - 1 3n(l - 11%) 

4). n - Uj = 2t(3) + 1 = 3. If mj = 1, then Lemma 1.2 gives that Gj = t + 2 = 3 and 

tj = 0. Thus by Lemma 1.7 we have 
n - 2 -  (a -+2) /k-23n( l - l /k)  ISp.,pl I m j  3 - 3 J 

J 

Suppose mj 2 2. When tj = 0, it follows from Lemmas 1.6, 1.10, and 1.4 that 

When tj = 1, we deduce from Lemmas 1.6, 1.7, and 1.5 that, for mj 5 3, 
@- + ?)/k - 2 p(l- l/k) ISp., p l  5 mj 3 J (m- + 4)/k - 2 3~(1  - l/k) 

J 
S m j 3  J 

For mj 2 4, it follows from hmmas 1.6 and 1.4 that 



5). n - oj 2 2(3) + 2. It easily follows from the induction hypothesis that 

I . ,  I = 3Oj - is(3" - ?,gpj(y))l < 3 7  - ' mj3 2 k  - 1 (n - oj)(1 - l/k) 
J 

3 

I mj3 2/k - 1 3n(l - l/k) 

Hence (1.48) holds. This completes the proof. 

Lemma 1.17. Let 9 < k 5 26, p = 3, and f(x) be defined as (1.1). Then for n 2 

1, we have 

 IS(^", f(x))l < (k - 1) 3 l/k - 1 91(1 - l/k) 

l o g  Proof. Here we have t(3) = [log$ = 2. 

For n L 2t(3), 
4/k - 1 2 p ( l -  I,%)  IS(^", f(x))l S 3n 6 (k - 1) 3 

1 n(l - 1/k) ( k -  3 3 

For n 2 2t(3) + 1 = 5, we use the inductive method as before to show that 

f(x))i < m 3 I/k - 1 3n(l - l/k) (1.49) 

When n = 5 2 2t + 1,Lemma 1.7 gives 
r 

(1 S O )  

I fmj=  1, then by Lemma 1.2, o j = t  +2mdtj=O. 

Suppose t I 1, then Dj 3 3, and n - Oj 2 2 = 2tj + 2. We obtain, by Lemmas 1.6 

and 1.7, 
o - - 1  n - a -  IS,., pl = 3 J lS(3 J,g -6))l I mj 3 n-2 

J ?J 

=mj3 5/k - 2 9 1 ( l -  1/k) 

-1 nf l - I lk )  I m j 3  3 

If t = 2, then oj = 4, and n - ~j = 1. In view of Lemma 1.3, 



since y3 = y (mod3) by Fennat's theorem. By Lemmas 1.6 and 1.8 we have 
cr. - 1 IS,., ,131 = 3 1 lS(3, gpj(y))l 5 3 3.5 

J 
1 k  - 1 3n(l - l/k) 

5 3 

If mj 2 2, it then follows fiom Lemma 1.6 that 
n - 1  1 5/9 3-1 3 ~ ( 1  - 1b) IS,., ,nl 5 3 5 m- -3  

J J 2 

Assume now that (1.49) holds for all integers in [5, n - 11, where n 2 6 2 2t + 2, 

We consider the following cases. 

1). n 5 Gj. If mj = 1, then by Lemma 1.2, Gj = t + 2 i 4, which contradicts n S 0,. Hence 

mj 2 2. When mj = 2, it follows from Lemmas 1.6 and 1.5 that 
n - 1  ( m - + t + l ) / k - 1  3 ~ ( 1  - l/k) IS,., ,nl < 3 2 3 J 

J 

When mj 2 3, we deduce from Lemmas 1.6 arid 1.4 that 

ISp., 1 3" - 5 mj 3GP - 3nD(1 - Illr) 
J 

-1 n(1 - l/k) Smj3 3 

2). 1 2 n - Gj S 2tj. Here 1 2 tj 2 t(3) = 2. 

(i). tj = 1. In this case 1 S n - Gj 2 2. If mj = 1, then by Lemma 1.2, we have 

tj = 0, contradicting tj = 1. If mj = 2, it follows from Lemmas 1.6 and 1.5 that 
n - 1 (0- + 2)/k - 1 3n(l - l/k) IS,., ,nl < 3 5 3 J 

J 

When mj = 3, applying Lemmas 1.6 and 1.5 again we get 

lSp.,3~1 2 3 7/k - 1 3n(l - l/kl 
J 

-1 n(1 - l/k) Smj3 3 



When mj 2 4, by Lemmas 1.6 and 1.4 we obtain 
n - 1 2/k 3n(l - l/k) IS,., ,nl 1 3 1 3  

J 
-1 n(l - l/k) S m j 3  3 

(ii). tj = 2. Now 1 1 n - Gj 1 4 .  Similar to the proof of (i), we must have mj  r 2. 

For the cases 1 L n - Gj 5 3, the proof is similar to that of (i). Hence we consider the case n 

- Gj = 4. It follows from Lemmas 1.6 and 1.7 that 
n - 2 -  (0. + 4)fk - 2 n(l - l/k) ISp., 5 mj3 - mj3 J 3 

J 

If mj 5 4 ,  then we have, by (1.51) and Lemma 1.5, 
(ma+[+ 1 -t-+4)/k- 1 n(i - Ifk) IS,., ,nl _< 3 3 J 

J 
3 

If mj 2 5, it then follows fium Lemmas 1.0 and 1.4 that 
(0- + 411% - 1 3n/l - l/k) IS,., 3nl 5 3 J 

3 

3). 2tj + 1 I n  - Gj 2 2t(3). Here we have tj = 0 or 1. 

(i). tj = 0. Thus we have 1 I n - Oj d 4. 

Consider n - Oj = 1. 

When t = 0, for mj = 1 Lemma 1.3 gives that 

Thus, in view of Lemmas 1.6, 1.5, and 1.8, we have 
(o- + 4)/k - (3/2) y ( l  - 1k) IS,., ,nl 5 3 J 

J 

s 3  6 k  - (3E) 3n(l - l/k) 

5 3-' 3n(' - lkl 

If mj 2 2, then by Lemma 1.6, 1.5, and 1.1 we get 
n - 1 - wk- 1 n(1 - zr~j IS,., ,nl 5 3 - 3 

J 
3 



Suppose t 2 1. If mj = 1, then Lemma 1.2 gives that Cj = t t 2. By (1.121, we 

have 

It then follows from Lemmas 1.6, 1.5, and 1.8 that 
(m. + t + 2)/k - 3/2 3n(l - 1k)  ISq, p i  5 3 1 

5 3  5k - 312 3n(l - 1M 

I lk -  1 n(! - lfk) 
5 3 3 > 

by noting that t I t(3) = 2 and k 2 9. 

When mj = 2, then by Lemmas 1.6 and 1.5, 

When mj 2 3, then by Lemmas 1.6, 1.5, and 1.4, 
n - 1 - (cr- + 1)k - 1 n(1 - l/k) ISP.,,nl < 3  - 3  J 

J 
3 

If n - Gj 2 2, then the argument is straightforward. By Lemmas 1.6 and 1.4 we 

have 
n - 2 -  (o . i1) /k-23"(1- l /k)  ISc1-, 3nl 5 3 - 3 J 

3 

(ii). tj = 1. 3 5 n - ~j 5 4. I f m j  = 1, then Lemma 1.2 gives that tj = 0, 

leading to a contradiction. Hence mj 2 2. When mj 5 4, then by Lemmas 1.6, 1.7, and 1.5 

we have 
- 1 n-cr- IS,, pl  = 3 J IS(3 ~,g,+))l 

J 



And when mj 2 5, we have, by Lemmas 1.6 and 1.4, 

IS,., ,nl 1 3  ak - 1  y ( l -  I k )  
J 

4). n - Gj 2 Zt(3) + 1. It follows from the induction hypothesis, and Lemmas 1.6 and 1.4 

that 
o- - 1  l/k - 1 3(n - ojj(l  - l/k) IS,., pi < 3 J m j  3 J 

I mj 3 lk - 1 3n(l - 1k) 

This completes the proof. 

Lemma 1.18. Let k be an integer 2 27, p = 3, and f(x) satisfy (1.1). Then for n 

2 1, 

1 n(1 - I&)  IS(^", f(x))l 5 (k - 1) 3- 3 
logk Proof. Here t (3)  = [log3] 2 3. 

For n 2 2t(3) 2 6, we use the induction method to show that 

1 n(l - lk)  IS(^", f(x))l I m 3- 3 

When n = 2t(3), Lemma 1.7 gives that 



Ifmj = 1, then by Lemma 1.2, G j = t  +2and tj = O .  

(i). n - Gj 2 2 = 29 + 2. It follows from Lemmas 1.6 and 1.7 that 
n - 2 - 7t(3)/k - 2 3n(l - Ilk) ISp., ,nl 1 m j  3 - 3- 

J 

(ii). n - Gj = 1. Lemma 1.3 gives that 

It thus foliows from Lemmas 1.6 and 1.8 that 

ISp.,3nl 1 3  2t(3)/k - M 3n(1 - lk) 
J 

(iii). n < Oj. If mj = 1, then Lemma 1.2 gives that Gj = t + 2 2 2t(3) - 1 = n - 1,  

which contradicts the condition. Thus mj 2 2, and so 

ISp,, 3nl 5 3 Zt(3)k - 1 p( l  - l/k) 
J 

Assume (1.52) holds for all integers in [2t(3), n - I], where n 2 2t(3) + 1. 

1). n < 0,. If mj = 1, then in a manner similar to above we get a contradiction. So 

mj 2 2. When mj = 2, it foUows from Lemma 1.5 that 
1 n(1 - lh) I S .  " < f .  - 3 

J 

And when mi 2 3, by Lemmas 1.6 and 1.4, 

IS,., 3 n ~  < 3' - mj 3cP -' 3"(' - lk) 
J 

I n(1- l/k) I m j  3- 3 



2). 1 5 n - U j  5 2tj. Note that here tj 2 1. If mj = 1, then by Lemma 1.2, tj = 0. a 

contradiction. Thus mj 2 2. The proof is the same as that of 2) in Lemma 1.17. 

3). 2tj + 1 I n  - Oj 12t(3) - 1. 

(i). mj = 1. By Lemma 1.2, Gj = t + 2and tj = 0. When n - Gj = 1, Lemma 1.3 

gives that 

Hence, in view of Lemmas 1.6 and 1.8, 

IS,., ,nl 1 3  (t + 2)k  - 3/2 3n(t - l/k) 
J 

When n - Cj 2 2 = 2tj + 2, we have, by Lemmas 1.6 and 1.7, 

(ii). mj 2 2. The proof is similar to that of 2) in Lemma 1.17. 

4). n - Gj 2 2t(3). In view of the induction hypothesis and Lemma 1.4, 

ISpj, p"1 3G~ - mj 3 1,k - 1 3(n - cj)(1 - l/k) 

This completes the proof. 

Lemma 1.19. Let 5 5 k 5 7, p = 2, and f(x) be defined as (1.1). Then for n 2 1, 

 IS(^", f(x))l 5(k- 1)2 d(kYk - 1 p ( l -  l/k) 7 



i 
2.5 i f  k = 5 ;  

d(k) = 2 if  k = 6; 

1.5 i f k = 7 .  

Proof. Note here t(2) = 2. For n 5 2t(2), we have trivially 

4/k 2nU - l/k) IS@", f(x))i 1 2" 5 2 

1 n(1 - lk) I (k - 1) 2- 2 

When n 2 2t(2) + 1 = 5, we employ the induction method to prove that 

 IS(^^, f(x))l S rn 2 d@)/k - 1 pf 1 - I/k) (1.53) 

When n = 5, if t = 2, then n = 2t + 1, an6 if t I 1, then n 2 2t + 2. Therefore, by 

Lemma 1.7, 
r 

(i). mj = 1. It follows from Lemma 1.2 that CYj = t t 1 and tj = 1. 

I f t S  I , thenn-o j=5  - (t+ 1)23=2t j+  1. Weobtain, byLemma 1.9, 

Suppose now that the hypothesis holds for all integers in [2t(2) + 1, n - 11, where n 

2 3Q) -t- 2 = 6. We consider the foliowing cases. 



1). n < aj. If mj = 1, then by Lemma 1.2, Gj = t + 1 I 3, but it is impossible. Hence 

m -  > 2. f t  follows Lemmas 1.6 and 1.4 ~ I a t  ---3 - 

2). 1 S n - oj 5 2tj. I fmj  = 1, then by Lemma 1.2, Uj = t + 1 and tj = 1. Thus Uj 5 3 and n 

- Cj 2 3, which contradicts n - Gj l 2 t j  = 2. Hence mj 2 2. When mj = 2, Lemma 1.5 gives 

When mj = 3, Lemma 1.5 gives as well 

ISp. 2nl 1 2 8/k - 1 2n(l - Vk) <mj2 3k - 1 2 n(l - l/k) 
J7 

(7) 2 

For mj 2 4, we obtain, by Lemma 1.4, 
4/k 2n(1 - lfi) 5 mj 2 ISp., 2nl 1 2  4/k - 2 2n(l - l/k) 

J 

3). 2tj + 1 5 n - Gj L Zt(2). If mj = 1, then by Lemma 1.2, Uj = t + 1 and tj = 1. Thus 

3 (i). n - Gj = 3- We make the substitution y = x + 22 in the sum S(2 , gpj(y)), 

where x and z run independently through the values x = 1,2; z = 0, ... , 3 .  Then 
2 g;.(y) 1 

2 
l ~ ( 2 ~ ,  gpj(y))l = I E e23(gpj(y)) Z e2(-$- z+ -g " (Y)Z 1. 

y=l 2;=0 2 b 
In view of the d e f ~ t i o n  of g%@) we have 

g ' (Y) g " (Y) f (;-) f'(p ) L+L=--L+L~+W 2 
2 - ,t + 1 ,t (mod 2). 

Since 2' + Y f '(pj), the linear conpence  

has only one solution. Hence 
cr - -1  2 

IS,, = 2 J IS(2 , gpj(y))l 5 2 
n - 2  

J 



(ii). n - aj = 4 = 2tj + 2. It easily follows from Lemmas 1.7 and 1.0 that 
n - 2 7k - 2 2n(1 - l/k) IS,.,,nl < 2 i 2 

I 

(A). tj=O. Thus 1 5 n  -oj 54.  When m j = 2 ,  we have tj = 1 by Lemma 1.11. 

Thus mj 2 3. Lemma 1.4 @yes that 
n - 1  ( ~ ~ + 4 ) / k - 1 ~ n ( l - I / k )  ISp., 2nl 5 2 1 2  J 

3 

5 mj 2 4 k  - 1 2 n(1- lk) $1 2 

(B). tj = 0. Here we have 3 5 n - ~j 5 4. 

(i). n - Oj = 3. It follows from Lemmas 1.9 and 1.4 that 
0. - 1 Is,., pl = 2 1  IS(^" - Oj, gPj(y))l i 2 n - 312 

J 
(e + 3)k - 3/2 2n(l - lk) = 2  3 

s 2  3/k - 1/2 p ( 1 -  lk) 

5 mj 2 lk - 1 2n(1 - lk) 

(ii). n - Gj = 4. When mj = 2, Lemma 1.1 1 gives that tj = 1. By substitution y = x + 

zLz, where x = 1, ..., 4, z = 0, ... , 3, we have 

g+> 
2- - ( f  (pj) + 2f  ' ( p j ) ~  + 2 f ' 1 ' ( ~ ~ ) ~ ~ )  (mod 2) ,  

solutions of the congruence 

does not exceed one. Therefore, by Lemma 1.4, 
0 . - 1  4 ISp, 2x11 = 2 J IS(2 , gpj(y))I 5 2 n - 2  

J 



Proof for the case mj 2 3 is similar to that of (A). 

4). n 2 2t(2) + 1. By the induction hypothesis and Lemma 1.4 we obtain 
0. - 1 IS,., 2nl = 2 J  IS(^" - Oj, gp.(y))I 

J J 

dWk - 1 2(n - oj)(l - lk) 

< ,. 7d(k)/k - 1 2n(l - l/k) 
- J *- 

The lemma now follows. 

Lemma 1.20. Let 8 2 k 5 15, p = 2, and f(x) be defined as (1.1). Then for 

n 2  1, 

 IS(^", f(x))l 5 (k - 1) 2 3 k  - 1 2n(l - l/k) 

Proof. Note here t(2) = 3. For n 1 2t(2), 

 IS(^", f(x))l < 2" < 2 6 k  2n(1 - l/k) 

1 n(1 - lk) s (k - 1) 2- 2 

For n 2 2t(2) + 1, we will prove, again by the induction method, 

 IS(^", f(x))l I m 2 3/k - 1 2n(1 - l/k) (1 -56) 

When n = 2t(2) + 1 = 7, if t = 3, then n = 2t + 1, and if t < 2, then n 2 2t + 2. 

Hence we have, by Lemma 1.7, 
r 

(i). mj = 1. By Lemma 1.2, we have Oj = t + 1 and tj = 1. Since 0, < 4, n - 0, 2 3. 

It therefore follows from Lemmas 1.7 and 1.9 that 
- p i  - 1 isp., p! - + ! ~ ( 2 " - ~ . , g ~ ~ ( y ) ) ! S 2  n - 312 

J 

5 2  3k - 1 pf 1 - lk) 

(ii). mj 2 2. it is easily seen that 
n - 1  ISp. 2n1 1 2  I mj 2 7/k - 2 2n(1 - l/k) 

I' 



Assume ROW (1.50) holds for all integers in [2t(2) + 1, n - 11, where F, 2 

2t(2) + 2 = 8. We consider the following cases as before. 

1). n s oj. If mj = 1, then Lemma 1.2 gives that Gj = t + 1 I 4, contradicting n 2 8. Thus 

mj 2 2. By Lemma 1.4, 
1 $1 - l/k) IS,., p i  s 2OP - 2 

J 

- 1 n(l - 1/k) <mj2- 2 

2). 1 I n - Oj 12tj. If mj = 1, again Lemma 1.2 implies that n I 6, which contradicts 

n 2 8. If mj 2 2, the proof is similar to that of 2) in Lemma 1.19. 

3). 2tj + 1 I n  - Oj 5 2t(2). Here we must have tj < 2. 

If mj = 1, then by Lemma 1.2, Gj = t + 1 a d  tj = 1. Thus 3 S n - Gj I 6. When 

n - Oj = 3, it follows from Lemma 1.9 that 
0- - 1 IS,, = 2 J 1s(z3, g,+y))~ 5 2 (t + 4)/k - 312 2n(1 - l/k) 

J 

< 2  3/k - 1 2n(1 - l k )  

And when 2tj + 2 = 4 I n  - Oj 5 6, we have, by Lemma 1.7, 
0.-1 3 IS,., 2nl = 2 1 lS(2 , gpj(y))l 5 2 n - 2  

J 

1 2  21k - 1 2n(1 - l k )  

When mj = 2, by using a method similar to that of (B)(ii) in Lemma 1.19, we obtain 
n - 2 -  (5-+4)/k-Z2n(l  - l/k) IS,. p i  _< 2 - 2 J 

J' 
1 n(1 - l/k) 1 m j 2 -  2 

ff mj 2 3, then by Lemma 1.4, 
n -  1 (5- + 6)/k - 2 2 n(1- 1/k) IS,. 1 2  I mj 2 J 

J' (3) 2 

4). n - Bj 2 2t(2) + 1. By the induction hypothesis and Lemma 1.4 we have 
a - 1  n - a -  IS,,, = 2 j IS(2 J, g .(y))l S 2Oj - mj 2 3/k - 1 2(n - c,)(l - l/k) 

J ?I 

5 mj 2 3/k - 1 2n(1 - lk) 

This completes the proof. 



Lemma 1.21. Let k 2 16, p = 2, and f(x) be defrned as in  (1.1). Then for n 2 1, 

I n(1 - l/k)  IS(^", f(x))l < (k - I )  2- 2 

Proof. Here we have t(2) = Ilog2 I*] 2 4. When n S 2t(2), 

For n 2 2t(2) + I, we apply the induction method to show that 

1 n{l - 1/k)  IS(^", f(x))l I n  2- 2 (1 -58) 

have, by Lemma 1.7, 

 IS(^", f(x))l 5 IS,. ,nl . 
iZ1 

J' 

(A). mj = 1. Lemma 1.2 gives that Gj  = t + 1 and tj = 1. Since t(2) 2 t and 

t(2) 2 4, we have n - Gj = 2t(2) - t 2 t(2) 2 4 = 2t + 2. It then follows from Lemma 1.7 that 

(B). mj 2 2. We trivially have 

Assume now the induction hypothesis holds for all integers in 

[2t(2) + 1, n - I], where n 2 2t(2) + 2 2 10. We consider the following cases as before. 

2). 1 < n - Oi 5 Ztj. If mi = 1, then by Lemma I .2? tj = 1 and Gj = t + 1, Thus 1 5 n - 0,; L 

2. But n - Cj 2 2t(2) + 2 - t - 1 2 t(2) + 1 2 5, leading to a con~adiction. Hence mj 2 2. 

When 2 I mj 13, it foBows Mrn Lemma 1.5 that 



For mj 2 4, we have, by Lemma 1.4, 

3). 2tj + 1 5 n - Gj 5 2t(2). If mj = 1, then again by Lemma 1.2,3 5. n - Oj S 2t(2). When n 

- oj = 3, Lemma 1.9 gives that 

is,., 2nl = 2 9  -  IS(^?, gPj(y))l 5 2 n-312 
J 

1 n(1 - 1/k) 22- 2 

When 2tj + 2 = 4 < n - Oj 5 2t(2), it follows easily from Lemma 1.7 that 

IS,., p I  = 2"~ - ' IS@ -o~,  gpj(y))1 s 2" - 
J 

2 2- 1 p(' - '/k) 

The proof for the case mj 2 2 is similar to that of 2). 

4). n - Gj > 2t(2) + 1. By the induction hypothesis and Lemma 2.4, we get immediately 
a - - 1  n-o- IS,, 2n1 = 2 IS(2 J, gpj(y))l 

J 

52"j-'mj2 - 1 2(n - o,)(l - l/k) 

I mj 2- 1 2n(1 - l/k) 
? 

as required. 

Nzchaev and Topunov[3fjl proved that 

~ ( q ,  f(x))l s eCm q' - '&, 

where 



and 

c(4) 5 3.34 1 4  x 0.84, 

Hence we only consider k 2 5. In view of Lemmas 1.12, 1.14 - 1.2 1, and [26], we 

have 

say, where 

if 5 5 p I (k-1) k/@+ 1 ) 

r 3l" i f  p  = 3 and 9 5 k  < 26 

Bp(k) = 1 if  p = 3 and k > 27 > 

2d(k)lk i f p = 2 a n d 5 I k _ < 7  

23k i f p = 2 a n d 8 5 k 5 1 5  

1 i f p = 2 a n d k 2  16 



M e n  5 < k L: 30, by h e c t  computation for (1.61), we can obtain F(k) 5 1.74k. 

Sl~ppose now k 2 3 1. Since (cf, T. M. Apostol: Intrduction to Analytic Number 

Theory, Theorem 4.3) 

X(X) l o g  - 8(x) = logx 

we can write (1.61) as 

Xk 

For k 2 1000, it follows from (1.26) and (1.27) that I3(kj I 0. When 31 I k 5 

1 000, it is easily seen that I3&) 1 0, as z(x) logx - B(x) is increasing. 

When 3 1 5 k < 40, by (1 Z), 

lo (k - 1) % )2+i/0'-2) 
5 (1.001 102) ((k- ~)j '@-~) - 1). 

ia (2+i/(k-$1og2~- 1) 
)2+'/W) 

Since a d @ - 1 )  v(k-2t are decreasing for k 2 9 and 0 5 i 1 3, we have, 
k(k-2 1(2+i/(k-2))~ 

< 0.5164, 

Therefore, when 31 I k < 40, the b m e m  follows from (1.61) - (1.63) and I3fk) 5 0. 



Fork 2 41, in a same manner as the proof of (1.52), we obtain 

Iz(k) 51.1693- 

when 61 5 k 2 100, 

and fork 2 101, 

5 @-I) 
O.S+(i+X)/12 

Q-l)ID ( k - ~ ) ~ / ~  df 
+ c I + J + I )T 
'a @-I) 0.5+i/12 (k_1)2/5 2 log t 

Hence, when k 2 41, the theorem follows from (1.67) - (1.70) and I3(k) 5 0. This 

completes the proof. 



$1.2. An improvement to Chalk's estimation of exponential 

sums, 

1 - INTRODUCTION. 

Let q, p, k, f(x), and S(q, f(x)) be defined as in the previous section. Define t 

satisfying p' I I  (kak , ... , 2a2, al), where the symbol I1 means that t is the highest power of 

p such that pt I (kak , ... ,2% , a l )  k t  p1 , ... , p, be the different zeros modulo p of the 

congruence 

p- 'f '(x) = 0 (mod p), O _ < x < p ,  (1 -7 1) 

and let ml , ... , m, be their multiplicities. Set maxllilr mi = M = M(f) and 

Some results for S(q , f(x)) have been obtained. Interested readers may refer to Hua 

f 261, Lonxton and Vaughan 1291, or Ding and Qi [14]. 

Chalk [8] obtained an upper bound for s($, f(x)) in terns of M. 

Theorem A. (Chalk[8]) Suppose n 1 2. If r > 0, then 

I s@", f(x)) I < mkp Z/(M+1) P n[l - 1/@4+1)] 

and if r = 0, then 

s(p? f(x)) = 0 for all n 2 2(t+l) 

and otherwise I s (~" ,  f(x)) 1 6 pZt+l, where pt 5 k . 

The case r = 0 is trivial, and so we assume r > 0 which implies M 2 1. Ding [J  51 

improved Chalk's resuit for the factor k. 



Let 

Clearly, 

t 1 2 .  

Our purpose here is to improve Theorem B further for the factor k. 

Theorem 1.2. Suppose that n 2 2 or n = 1 and p 5 k. Then for r > 0 we have 

I s(~",  f(x)) I I mp zl(M+1) t/(M+l) n[l - l/(M+l)l 
I' P (1 -77) 

By (1.75), $ 5 k, and note that M 2 1. Thus, (1.77) is better than (1.74). 

Actually, this result is the best possible as shown by an example at the end of this section. 

Let Q~ satisfy p*j ll f(pj + px) - f(pj) and let 

gj (y) = p- 9 (fUj + px) - f(pj))- 

Define tj satisfying p$ I1 g; (y). 

Lemma 1.22 ![26]). With the above terminology, we have 

o - 5 r n . + t + 1 - t j .  J J 

Lemma 1.23 (A. Weil [46]). 

IS(* , f(x))l 2 (k - l ) ~ l / ~ .  

3. PROOF OF THEOREM 1.2. 

Let t' = maxim tj and 6 = max (t' , t). Then 

6 5%. 

We employ induction on n to show that 



2) n = 2t + 1. Let x = y + p n - ' -  '2, where y = 1, ... , pn - t -  1 Y 

z = 0, ... , pl +' - 1. If n 2 2, then we have t > 1. This implies that for rn 2 3, 

Thus 

By Lemma 1.23, 

Suppose now n = 1 and p I k. Then T 2 1. Therefore, 

as required. 

n - t - 1  3) n 2 2t + 2. By substituting x = y + p-- n - t - 1  
Z, JJ = 1, ... , p-- , z = 0, ... , 



say. 

Define sets Ai (i = 1,2, 3,4,5) by 

A, = {j: n < G, 1, 

A3 = {j: n - 0- = 2t- + 1 1, 
J 3 

A4 = {j: 2t. + 2 2 n - 9 5 tj + T}, 
J 

and 

A5 = (j: n - 0; > 1- + 7). 
J J 

Clearly, 
5 
Z Z mj = m .  

i=1 j ~ q  

We consider the following cases. 

(i) j E A 1 .  We have , by Lemma 1.22, 

n - 1 - n/(M+l) - 1 n[l - l/(M+l)] IS,] 'p - p  P  

cr- (M+l) - 1 n[l - I/(M+l)] s p  i P  

(mj + t + l)/(M+l) - 1 n[l - 1/(M+1)1 
'P P  

t/(M+l) n[l - 1/(M+1)1 
IP  P 

(ii) j E A2 Again by Lemma 1.22 we obtain 

n - 1 - n/(M+ 1) - 1 n[l - l/(M+ I)] I S , I ~ p  - p  P  

(CT- + %t.)/(M+I) - 1 n[l - 1/@4+1)] _<p J P  
( m - + t + i + t j ) / c ~ + i ) -  1 nii - i / C ~ + i j j  I p  3 P  
;t+.t>iwtl) nil - l/w++ijj 

'P P  

(iii) j E A3. It is easily seen that 

lSjl = p 9 - 1 ~ ~ ( p n - 3 , g j ( Y ) ) ~ .  



It then follows from this and Lemma 1.22 that 

Thus, in view of (1.78) a d  Lemma 1.22, we obtain 

IS-l I p  nl(M+1) - 3Y2 n[l - 1/(M+1)1 
J P 

(oj + 29 + l)/(M+I) - 3/2 nf l  - 1 /(M+l)] 
= P P 

fmj + t +  1 + tj + l)/(M+l) - 3/2 n[l - l/(M+I)I 
< P  P 

(t + z)/(M+l) n[l - l/fM+l)] 
S P  P 

(iv) j E Ad. If A4 is nonempty then I 2 t. + 2. It follows from Lemma 1.22 that 

n - 1  n/(M+l)-1 n[l-1/(M+1)] IS,l s p  = p  P 
(c- + &j + T)/(M+I) - 1 n[l - I/(M+1)] s p  J P 
(mj + t + 1 + r)/(M+l) - 1 n[l - l/(M+1)] 

-< P P 
(t + z)/(M+1) n[l - l/(M+l)] 

P 

Since n - a- > t. + .r, (1- + .r - (n - o-))/(M(gj) + 1) is negative. Therefore, by Lemma 1.22 
J .I 3 J 

and the facts that m(gj) < mj and M(gj) b M, 

(G- i tj i '~)/(h4+1) - 1 n[1 - 3/(M+l)] ISjl S m - p  l J P 



( m ; + t +  l+~)/ (M+l)-  1 n[i - 1/@4+1)] I m - p  J 

J P 
(t + o)/(M+t) nn[l - 1/(M+1)] 

*'J Y 

By (i) - (v), (1.80) and (1.81), we see that (1.79) holds for Case 3). The theorem 

now follows. 

4. Example, The following example shows that our theorem is essentially the 

best possible. 

Ler p = 2, n = 1 ,  and f(x) = x3 + x. By simple calculation, 
1 

It is easily seen that f '(x) = 3x2 + 1 so that t = 0. Since f '(0) - 1 + 0 (mod 2) and f (1) = 
lo 3 

4 -= 0 (mod 2), we have r = rn = M = 1. Now .r = [&I = 1. Hence, our Theorem 1.2 

gives that 

2 = I S(2, f(x)) 1 < 2 li(M+l) 21 - l/(M+l) - 2. - 



CHAPTER 2. CONGRUENCES 

92.1. The condition of congruent solvability 

Let k, s, and q be positive integers. 

Let N(q) denote the number of solutions of the congruences 

where 1 < xi < q, (xi , q) = 1, 1 < i I s. 

For q = pn, with p a prime and n a positive integer, Hua [26] proved that if 
2 

3 ~ W ( s - k ) = ~ ,  say, p > zS(2k ) (2.2) 
2 then congruence (2.1) is always solvable, where s > k + k. By a simple observation, we 

have 

k2 3k H > 2  k . 
2 Hence, H is quite large. The purpose here is to reduce H to k , approximately. 

Theorem 2.1. Let k 2 3, 

b(k) = (k - I )  w0( - 2) 

2 Then when s 2 2k , congruence (2.1) is always solvable for q = pn if 

p 2 b(k). 

For the p m f  we will need some lemmas aad the following notation. 



Let C denote a sum in which the variable x runs through a complerc. set of 
x (m) 

residues modulo m and C* denote a sum in which the v,uiable x runs through a 
x (m) 

reduced set of residues modulo m. 

Put 

2xim where M is the least common multiple of ml  , ... , mk , e(m) = e . We also put 

where 

such that (al, ... , ak, p) = 1. 

Define 

and 
00 

where eM(rn) = e 2rrim/M, and as usual, $(m) is the number of positive integers not 

exceeding m and prime to m. 

The symbols S(q , f(x)), r, m, p,, gp,(y), t, t- , and a. are defined as in Chapter 1. 
J J 

Furthermore, we def ie  

x=v (mod p) 



Lemma 2.1. Let d > 2 be an integer and let bi , i = 1, ... , d, be r e d  numbers such 

that bi 2 4 for all i. Then 

Proof. We use induction on d to show the lemma. For d = 2, we want to show 

that 
1 b, + b 2  S3b,b2. 

Let 

h(x 7 y) = xy - 2(x + y), x, y 2 4. 

Taking partial derivatives, we obtain 

and 

Hence, h(x , y) is always increasing in each variable x , y > 2. This implies that 

h(x , y) 2 h(4,4) = 0, where x, y 2 4, 

which shows that (2.1 1) holds, 

Let d 2 2 and assume that the lemma holds for d. Then by the induction 

hypothesis, 

Since 

the right side of (2.12) does not exceed 

as required. 



Lemma 2.2. If integers d 2 1, bi 2 1, i = 1, ... , d, then 
d 

C 2bi 2bi + --- + bd 

i=l 

Proof. The lemma follows from the simple observation that if a, b 2 1, then 

7 a + 2b 5 2 a+ b, and the use of mathematical inductioin. - 

Lemma 2.3. If n 2 2, then 

Proof. If n 2 2, then each integer x, 1 5 x 2 pn, (x, p) = 1, can be uniquely 

expressed as 

If n 5 oi , then it is easily seen that 

and when n > o., by (2.13) we have 
J 



This completes the proof. 

Lemma 2.4. 
r 

 IT(^", ~(x))I 5 C IT I . 
j=l 

9 

Proof. This follows directly from the definitions (2.7) and (2.10) as well as the 

f ~ s t  proof of Lemma 2.3. 

Lemma 2.6. If p 2 (k - 1) 2h/(k - 21, then 

- l/k (1 + p l -  1 fern= 1 
IT@", f(x))l 5 

pn(l - l/k) for n 2 2. 

Froof. For n = 1, by A. Weil's inequality (see Lemma 1-23), we have 

immediately 

IT@, f(x))l I IS(p, f(x))l + 1 

q k -  1)~'12+l 

= (k - 1) p'n + p- @ - 1) 

=(k- l ) p  -112 + l/k 1 - l/k p (1 + p- (k - 1)- '1 

~ ~ l - l ' ( l  + ~ - ~ ' ( k -  1)-l), 



a s p > & -  1) 2M-k - 2) 

Suppose now n 2 2. If n > cri , then by Lemmas 2.3 md 2.5, we have 

a- - 1 (n - aj)(l- 1k) 
5 P J  P  

n(1- lk) uj k - 1 
= P  P  

(2.14) 

If n 5 oi , then by Lemma 2.3 we obtain 

It follows from Lemma 2.4, (2.14) and (2.15) that for any n 2 2, we have 
r 

IT@", f(x))l 5 p  nf l  -l/k) Z p ~ j / k - l .  
j= 1 

Lemma 1.5 gives that 

where t is the highest power of p dividing f '(x). Since p z k and (al , ... , ak , p) = 1, we 

have t = 0. Therefore, 

o. 5m. -t 1, 
J J 

and so, by (2.16), 

k Suppose p 2 2 . Since m. + 1 - k 5 0, we have 
J 

By Lemma 2.2, the sum at the right-most side does not exceed 

Thus, 



Next assume r > 1, If p (m.+ J ')jk 5 4  for all j = 1, ... , r, then 

Z <4rp- '  ~ 4 ( k -  1)p-l. 

Recall p 2 (k - 1) 2w@ - 2), and so 

C < 4(k - 1) -&+a/@- 2) 1, 

for all k 2 2. Suppose some of the p (m- J + l )  lk 5 4 but some are not. n e n ,  we may assume 

5 1, 

since p 2 (k - 1) 2W& - 2) 

1f p(mJ + ')Ik > 4, for all j = 1, ... , r, then again by Lemma 2.1, 

C s p  (ml + .-. +m,+ l ) / k -  1 

(m+ 1 - k) /k  
= P  

The iemma foiiows from (2.1 8) - (2.23). 

Lemma 2.7.1261 
n 



2 Lemma 2.8. For s 2 2k and p > (k - 1) W@ - '), we have 

Proof. By Lemma 2.6, if p 2 (k - 1) 2W@ - 2), then 

1 +p- "(k - 1)- ) for n = 1 
IT(? , ... , 

P for n 2 2. 

Thus, by (2.8), for p 2 (k - 1) 2W'- 2), when n 2 2, 

and 

-1 s = $ - * ( I -  p-')(1- p )- ( ~ + p - ~ ' ( k - l ) - ~ ) ~ .  

Hence, recalling (2.9) and the fact s 5 2k2, 
00 

1 s 13  P I I -  I -  - - bk-r/L(l+p-lR(k- ~ ) - l g + &  "(k - sm )) 
n=2 

2' - slk) 
= ( 1 - p-4 (1 - f l)-s(pk-*(i + P- ln (k - i ) - l ~  + JJ 1 - pk-s/k 1 

1 s p  k - s/k 
= ( 1 -  f k ] ( l -  *- )- 

1 - $ - *  



as required. 

Proof of the theorem. Suppose p > b(k) and s 2 2k2. Define 

and 

Then 

W(k, p, s) = (k - sk) log p - s log (1 - p- ') + s log (1 + p- lR (k - 1)-I). (2.26) 

Now 
aW(k, p, s) 1 

= - t lO.gP- log(~  - p - l ) + l o g ( l  + p - l R  (k-  I)-') as 
1 - l/k 

= log -1 + p- " (k - I)-') 
P - 1  

We will show that p(l - p- (1 + p- (k - I)-')) > 1 which implies 

= R, say. (2.29) 



Since for x 2 3, 
2 1 9 2  2 2h (21x)10s* = 1 + ; log x + - (=) log x + ... , x = e  2! x 

we have 

Thus, 
R 2 ( k -  1) 2&- ')/fi-2)(7 2 - & -  1)- (2k - 2)/& - 2) 

(k 1) 1 

> 1, for k 2 4. 

If k = 3, it is easily seen that 

Thus, by (2.29), 

p(1 - p- (1 + p- '12 (k - 1)-')) > 1. 

Consequently, (2.28) holds. Therefore, by (2.27) and (2.28), 

aW(k7 p, s) 2 
c 0, for p > b(k), s 2 2k and k 4 3. as 

Hence, W(k, p, s) is decreasing for s 2 2k2. By (2.26), 

2 
W(k, p, s) 5 - k log p - 2k log (1 - p- ') + 2k2 log (1 + p- lR (k - I)-')) 

= Wl (k, p), say. (2.39) 

Since 

it follows that Wl(k, g) is decreasing with p for p 2 b(k). Thus, 
n 

2kL 
Wl(k, p) 5 - ,log (k - 1) - 2k2 log (1 - b(k)- ') + 



2k2 log (1 + b(k)' IR (k - l)-'). 

I f O < x <  1,then 
2 3 log (1 - x) = -x - x 12 - x /3 - ... . 

This implies that 

2 3 2 log(1 -x)  2 - x - x  /2 -x  ( l + x + x  +...) 

2 3 = - x - x /2 - x /(1 - x). 

By (2.31) and (2.32), 
-3 

= W2(k), say. (2.33) 

Here we have used the well-known fact that log (1 + x) 5 x, for x > 0. Since b(k) > 

(k - 112, it is easily seen that W2(k) < 0 for all k 2 3. Therefore, by (2.30) and (2.33), we 

have 

On recalling (2.24 ) and (2.25), we have 

By this and Lemma 2.8, we obtain 
2 dp>O,  forp>b(k)ands22k.  

By (2.9) and Lemma 2.7, we have 

It follows from the definition of N(m) that if there exists an no such thar = 0, then 

N@") = 0 for all n r no. Hence, by (2.35), dp = 0, contradicting (2.34). This implies that 

N ( ~ " )  > 0 for all n and p 2 b(k). 



52.2. On polynomial congruences modulo p" 

As usual, let p be a prime , 

be a polynomial with integr-d coefficients such that (ak , ...... , a1 , p) = 1 and write 

where the sum is taken over a complete set of residues modulo $' and 

ep"(t) = exp(2~it/p"). 

We denote by Va(f, pn) the a set off modulo pn, that is, 

Va(f, pn) = {x mod pn: f(x) 5 a (mod pn)) 

and put 

N = N(f, pn) = Card Va(f, P"). 

and so one can deduce that 

N(f, pn) < (2  + & ) k3 pn[l - (lk);. 

Defme t satisfying pt l l  (kak , ... ,2a2, al), where the symbol I I  means that t is the 

highest order v such that pV I (kak , ... , 2a2 , al). Let pl , ... , p, be the different zeros 

modulo p of the congruence 

~ - ~ f  '(XI = 0 (mod p), O < x l p ,  
r 

and let mi  , ... , m, be their multiplicities. Put max mi = M = M(f) and mi = m = m(Q. 
llilr i= 1 

by using his result on exponential sums (cf. Chalk Ell]). 
Let * = [Z 3. Note that 



which is clearly better than (2.41) as M 2 1. 

Note that there are at most pa - values for z such that z = pVu with p Y u. This implies 

By Theorem 1.2, we obtain 

since 



as M 2 1 and p 2 2. This  completes the proof. 



CHAPTER 3. SMALL SETS OF k-TH 
POWERS 

$3.1. Small sets of k-th powers 

1. INTRODUCTION. 

The famous Waxing problem states that for every k > 2 there exists a number r 2 

1 such that every natural number is the sum of at most r kth powers. Let g(k) be the 

smallest possible value for r. Analogous to g(k), let G(k) denote the minimal value of r 

such that every sufficiently large integer is the sum of r kth powers. Clearly G(k) 5 g(k). 

In 1770, Lagrange proved that g(2) = 4. Since every positive integer of the form 8t i 7 

cannot be written as the sum of three squares, G(2) cannot be 3, and so G(2) = g(2) = 4. 

In 1909, Wieferich [47] proved g(3) = 9. Landau [27] and Linnik [28] obtained G(3) 2 

8 and G(3) d 7 in 1909 and 1943 respectively. Though forty-nine years have passed 

without an improvement to G(3), it is never-the-less conjectured that G(3) = 4 (cf. [37], p. 

240). 

Choi, Erdos and Nathanson [12] showed that for every N > 1, there is a set A of 

squares such that IAl < (4bog2) N' '~ logN and every n < N is a sum of four squares in 

A, here and below we denote by IAI the cardinality of set A. Nathanson [33] proved the 

following more general result. 

Theorem A. Let k 2 2 and s = g(k) + 1. For any E > 0 and given N 2 N(E) there 

exists a f i n k  set A of k-th powers such that 

and each nonnegative integer n I N is the sum of s elements belonging to A. 



Our Theorem 3.1 is a generalization of Theorem A (Theorem A is the special case r 

Theorem 3.1. Let k 2 2 and for any positive integer r let u, = g(k) + r. Then for 

every E > 0 and given N 2 N(r, E), there exists a finite set A of k-th powers such that 

1Al I C(r,&)N l/fk+,) 

and every nonnegative integer n 5 N is t5e sum of u, k-th powers in A, where C(r,&) = 

r(l + E ) ~  + 1. 

Since in most cases G(k) < g(k), one could naturally think of sharpening Theorem 

3.1 in terms of G(k). Our Theorem 3.2 achieves this goal. 

Theorem 3.2. Let k 2 2 and q = g(k) - G(k). For each posiSve integer r I q let 

u,' = g(k) + r - q. Then for every E > 0 and given N 2 N(r, E), there exists a finite set A of 

k-th powers such that 

IAl I C'(r, E) N 1/0r + r) 

and every nonnegative integer n 5 N is the sum of u,' elements of A, where C'(r, E )  = 

r ( 2 + ~ ) ~ +  1. 

We list known values and estimations for some g(k) and G(k) in order to facilitate 

the comparison of Theorems 3.1 and 3.2 (cf. [37], Chapter 4,1443, [45], and [48]): 



To compare Theorems 3.1 and 3.2 let the r of Theorem 3.1 equal the r-q of 

Theorem 3.2. Fur example, if k=G let r=q+2247. Theorem 3.2 gives IAl 5 

( 6 ( 2 + ~ ) ~ + 1 ) ~ ' / ~ ~  and Theorem 3.1 gives IAl 5 ( 6 ( 1 + ~ ) ~ + 1 ) ~ ' ~  and in both cases all n 5 

fu' (for sufficiently large N) are the SUITIS of 74 elements of A. It appears that q is large for 

all k 2 3 (even small k). 

We give a corollary which is an application of Theorem 3.2 to cubes. 

COROLLARY. For every E > 0 and given N 2 N(E) , there exists a finite set A of 

cubes such thar 

I A ~  I ~~i~ + E 

and every nonnegative integer n 2 N is the sum of nine cubes in A. 

Next, Theorem 3.3 is for squares. 

Theorem 3.3. For every N > 2, there is a set A of squares such that 

and every nonnegative integer n 5 N is the sum of at most five squares in A. 

Since g(2) = 4, g(2) + 1 = 5. Taking k = 2 in Theorem A, the conclusion is that 

there exists a f i te  set of squares such that IAl4 ( 2 + ~ )  N" and every nonnegative integer 

n 5 N is the sum of 5 squares- Hence our Theorem 3.3 is better, for large N, &an the case 

k = 2 in Theorem A. Fur example, if N = 10l2, then Theorem A gives IAl < (2 + &)~1/3  = 

20,000 while Theorem 3.3 gives fAf < 7 ~ 1 h  = 7000. 



rk k/&+r)] is a It follows from the definition of g(k) that each integer n E [0, (1 +E) N 

sum of g(k), hence of u, = g(k) + r, elements of Ag c A. 

We need two Iemmas, 

Lemma 3.1. If N w + r ) < n ~ ( l  + E )  - IN@ + lY@ + r' , then there is an integer 
k k tI E A1 such that n - tl is a sum of g(k) elements of Ag . 



provided N is suffiicienfly large. So n - { is a sum of g(k) elements of A0 r A and 

consequently n is a sum of g(k) + 1 elements of A. This completes the proof of 

Lemma 3.1. 



I N  &+i)/Or+r) + 2k(l +E) (r-i)(k-l)/kN(k - 1)/0r0( + r)) + (k - 1)/& + r) 

k = ( 1 + 2  ( I + & )  (r - - 1  N -  (i + lllr)/(k + r)) N(k + i)/& + r) 

< (1  + E ) N  0r + ill& + r) 
7 

for suffkiently large N. This completes the proof of Lemma 3.2. 

We now prove Theorem 3.1. If N < n L (1 + E )  r - 1 $3 + lY(k + r) , then it 
k k follows fiom Lemma 3.1 that there exists an integer tl E A1 such that n - t l  is a sum of 

g(k), hence of g(k) + r , elements of A0 c A. 

Suppose N @ + 
+ r, < n 5 (1 + E )  r - i - 1  N & + i +  l)I(k+r), 1 s i 5 r - l .  By 

Lemma 3.2, there exists an integer t i + l  E A i + l  such that n - k 
ti+l" 

[ ~ , ( l + & ) ' - ~ ~ ' + ~ ) / ~ + ~ ) ] . ~ r i t e  m = n - t i + l  . If m E [ 0 , (1 + E)' N~/(~+')], then rn 

is sum of g(k) elements of Ag, and so n is a sum of g(k) + 1 elements of A. If m E (N k/lk + 

r, . (1 + E) ' - ') l7 then Lemma 3.1 yields that there is an integer t t  E A1 such 

that m - t: is a sum of g(k) elements of Ag , and so n is a sum of g(k) + 2 elements of A 

(Note that in ?his case r=2). If 

k for some j, 1 S j < i, then again by Lemma 3.1, there exists an integer t E A,+1 such 
J+ 1 

k that m- t .  E [o, (1 +E)'-' 
J+ 1 

PTOr+j)"+ ') 1. Repeatedly using this method, finally we 

get a sequence { a1 , a 2 ,  ... , a, ) of positive integers, where a1 > 012 > ... > a,, 1 5 
k v S i, such that t% E A% for all 1 5 w < v and 

k k  Therefore n - t - t - 
k 

Ql a2 
...... - t is a sum of g(k) elements of Ag , and so n is a sum of % 

g(k) + v, hence of g(k) + r for v 5 r, dements of A , as required. 



3. PROOF OF THEOREM 3.2. Let E > 0. Defme 

k & = { a  : 0 l a < ( 2 + ~ ) ~ ~  l/Or+r) I >  

1 + - I +  1 Isi.(2+E)r-iN Ai = { [ s  N + r, i = I, ..., r. 

Let A = A g u  A1 u ....... u A,. Then 

2 IAl 1 ( 1  + (2 + E) + (2 + E)  + ...... + (2 + E)') N I/@ + r) 

< (r (2 + E ) ~  + I)N I/@ + r) 

= C' (r, E) N I/@ + r) 
7  

for sufficiently large N. Now each integer n E [ Q , (2 + E) rk N isasumofg&) 

(of course of u,' ( 2 g(k))) elements of &J . Again we need two lemmas. We omit the 

proofs which are analogous to those of Lemmas 3.1 and 3.2. (Just let si+l here be one less 

than the si+l in Lemmas 3.1 and 3.2 (0 5 i I r-l).) 

Lemma 3.3. ~f N W @ + r ) < n < ( 2 + ~ )  ' IN@ + ')I@ +r) , then there is an integer 
k { E A1 such that n - t1 is a sum of G(k) elements of Ag . 

Lemma 3.4. Let N C-+ i)l(k+r) < 5 (2 + &) N where 1 I - 1  @ + i +  l)/(k+r) 

i S r - 1. Then there exists an integer ti+l E Ai+l such that n - ti:1 E 

[ N &+ i')/k+r) > (2 + E)N (k+ ')/(k+r)] , [ N Or+ i)l@+r) (2 + &)l- - 1 pJ 
7 . @+i)/(k+r)]. 

-W@ + r, < n (2 (2 + E ) ~  N We proceed to prove Theorem 3.2. If 1\( (k + 1YOr +r) 7 

k k .  then it follows from Lemma 3.3 that there exists an integer ti E hl such that n - t is a 

Suppose N @ + W@ + r, < n 5 (2 + E )  - 1  N @ + i +  l)/@+r), 1 5 i  sr-l. By 

Lemma 3.4, there exists an integer ti + E Ai+l  such that n - k 



I PJW@ + r)9(2 + E)' N W(k+r) I 9  then m is sum of G(k) elements of Ag, and so n 'c ,, a sum of 

G(k) + 1 elements of A. If m E (N + r, , (2 + E)' - IN' + I)'' + r, 1, then Lemma 3.3 
k k yields that there is an integer tl E A1 such that m - tl is a sum of G(k) elements of A0 , 

and so n is a sum of G(k) + 2 elements of A (Note that in this case r = 2). If rn E ( NOL + 

* , ( 2 + ~ ) ~  N (k*j+l)l(k+r)]forsomej,l 5 j < i , t h e n a g a i n b y ~ e m m a 3 . 4 ,  

there exists an integer t- E Aj + 1 such that m - t- E 
~ + 1  J + I  

[NG+j) / (k+d 7 ( 2+e) r - jN  @ +j)/' + 1- Repeatedly using this method, finally we get a 

sequence { a1 , a 2  , ...... , a, ) of positive integers, where a1 > a2 > ...... > av, 
k 

1 i v S i ,  suchthat 1 % ~  Aqyforalll S w S v a n d  

k k  
Therefore n - t - t - 

al a2 
...... - t is a sum of G(k) elements of Ag , and so n is a sum of av 

G(k) + v, hence of G(k) + r as v 5 r, elements of A . Since G(k) = g(k) - q , this 

completes the proof of Theorem 3.2. 

4. PROOF OF COROLLARY. Since g(3) = 9 and G(3) 5 7 by Linnik's theorem,we can 

take r = q 2 2 in Theorem 3.2. Then u; = 9 and the result follows for sufficiently large N. 

If G(3) = 4, then this corollary is immediately improved to 

IAl< NIB + E. 

5. PROOF OF 323EUREM 3.3. We srm ~ - t l l  a lemma f he simple proof of which 

may be found in r12]. 



2 2 Lemma 3.5. Let a 2  1 . b  m 2 a  and m f O(rnod4).'PSlenei-term-a s r m  

- (a - 1y is a sum of three squares. 

Now define A1 = ( b2 : 0 < b 5 3 N1I4 and b2 5 N 1. Let A2 consist of the 

squares of all numbers of the form [kllR N"~] - i , where 9 5 kl  5 N1I4 and i E {0,1), 

and let A3 consist of the squares of all numbers of the form ~ 2 ~ "  N3'] - j , where 2 5 k2 

5 N'" and j E { O , l  Then lA l l5  3 N1I4 + 1 , IA215 2 - 16, and lAgl5 2 N1I4 - 2. 

Let A = A 1 u A 2 u A 3 , t h e n  I A I < ~ N ~ / ~ .  

The set A1 contains all squares not exceeding rnin (N, 9 NIIL). This implies that if 

1/2 0 I n 5 min (N, 9 N ) then n is a sum of four squares in A1 c A . 

n 
Now suppose 9 N1I2 < n S N3I4 . Put k l=  [ ] , b = [kl ~ ~ ' ~ 1 .  Clearly 

N 

9 I kl I N1I4 and b2 < n. If either c = b or c = b - 1 then Lagrange's theorem yields that 

n - c2 is the sum of four squms. Note also c2 E A2 . Since k l  N~' s n < (kl+l)N1' and 

b s ~ ~ ~ ' N ~ ~ ~  < b +  1,itfollows that 

o < n - c2 < ( k l +  1) N" - (b - ll2 

- la 114 - 2)2 < (kl + I) NIR - (kl N 

<N1'+4kl in N1~4 

< 9 N1I2 * 

Thus n - c2 is the sum of four squares in Al. Hence if 0 < n 2 N3I4 and n $ 0  (mod 4), 

then n is a sum of five squares in A. 

n 1/2 318 Wenow considerthecase ~ ~ ~ ~ < n ~ N . ~ u t k 2 = [ ~ ] , a = [ k 2  N ] . I f c  

is either a or a-1, then 



2 2 If 0 5 n - c 5 9  N " ~ ,  then n - c is a sum of four squares in A1 . Suppose now 
3 

9 N " ~  < n - c2 5 N3I4 + 4 N"~.  Write m = n - c" where we may choose c so that rn 3 O 
m 

(mod 4). Put kg =[p] and b  = [kg l l 2N  'I4] . Thus 9 5 k3 5 Nil4 + 4, 

b2 5 k3N1I2 6 m . If d is either b or b - 1, then d is in A2 and 

2 O S m - d  < ( k 3 +  1 ) ~ " - ( b -  1 ) 2 < 9 ~ " .  
2  Thus, by Lemma 3.5, we may choose d suck that rn - d is a sum of three squares in A1. 

Hence n is the sum of five squares from A. This completes the proof. 



$3.2. SmaIl sets Fflr squares 

Lagrange proved his famous theorem in 1770 that every positive integer is a sum of 

four squares. Consequently, fork 2 4, every integer is a sum of k squares because one can 

2 2 2 2 2 always write n = xl + x2 + xg + x42 + 0 + ... + 0 . The more interesting problem is 

then to consider the representation of positive integers n by k nonvanishing squares. For k 

2 4, the problem has been solved by Dubouis 1161 in 191 1. The result is, for k 2 6, all 

positive integers are sums of k nonvanishing squares except for 1,2, ... , k - 1 and all k + 

b, where b E B = { l ,2,4, 5,7, 10, 13),and for k = 5, the same statement holds with b E 

B u l28). For k = 4, all positive integers are sums of four nonvanishing squares except 

for the finite set consisting of 1, 2, 3 and n = 4 + b, where b E B u {25, 371, and the 

three infmite sets 4am with m = 2, 6, 14. Fork = 3, Gogisvili [17] proved in 1970 that 

there exists a finite set T of positive integers with t elements, T 3 ( 1, 2,5, 10, 13,25, 37, 

58,85, 130), and such that every positive integer n which is neither of the form 4a (8m + 
7) nor of theform n = 4am with m E T is a sum of three nonvanishing squares. 

Let A be an increasing sequence of positive integers and define 

Choi, Erdss, md Nztf.,mson f12f proved that Lagrange's theorem holds for a 

sequence of squares satisfying !A1 < (4ilog2) N" logN and they conjectured that for 

every E > O and N 2 N(E) there exists a set A of squares such that 1Ai < X '''4)+E and every 

n 5 N is the sum of four squares in A. 



We f i s t  consider nonvanishing squares. For every E > 0, we construct a set A of 

squares with IAl< N ' ' ~  fm sufficiently large N and every integer n, w < n < N, is a sum 

of (k + 1) nonvanishing squares in A for some positive integer o and for all 

k 2 4. 

P, T. Bateman and G. B. Purdy [I] proved that every integer greater than 245 is the 

sum of five distinct squares. Naturally, we would think of small sets for distinct squares. 

In the third section, for each k 2 3 we construct a set A of squares such that IAl < 
& k ( 2 + ~ ) ~ ~ ' ~  and every integer n, N < n < N, is a sum of (k+3) distinct elements of A, 

where E is a small positive number less than 0.0064. 

2. NONVmISHING SQUARES. 

Lemma 3.6. (cf. 1181) Every positive integer n 2 42 is a sum of four 

nonvanishing squares except three infinite sets 4am with m = 2,6,14. 

For convenience, write L = (4%: m = 2,6,14f. 

Lemma 3.7. (cf. [16]) There is a positive integer o such that if n is a positive 

integer >w and n is not of the form 4a(8rn + 7) and n I 0 (mod4), then n is a sum of three 

nortvanishing squares. 

Lemma 3.8. (cf. 1183) For k 2 6, all positive integers are sums of k 

nonvmishing squares except for 1,2, ... , k-1 and afl k+b, where b r R = { I, 2,4,5,7, 

10,13), and for k = 5, the same statement holds with b E B u {28). 

2 2 Lemma 3.9. Let b 2 1, n - b 2 42, n f 0 (mod4). Then either n - b or n - 

@ - 1)' is a sum of four nonvanishing squares. 



Proof. By Lemma 3.6, if q 2 42 is not a sum of four nonvanishing squares then q 

must be of the form 4am with rn = 2,6,14 and a 2 1. Define 

b if b is even 
'={b- l  i f b i s o d d  ' 

2 then c is even and c2 E 0 (mod 4). Hence n - c f 0 (mod4) as n zk 0 (mod4). It then 

follows from Lemma 3.6 that n - cL is a sum of four nonvanishing squares. 

2 Lemma 3.10. Let b 2 1, n - b 2 o, n f 0 (mod4), where o is as chosen in 

Lemma 3.7. Then there is a positive integer c , where c is either b or b - 1, such that 

2 n - c is a sum of three nonvanishing squares. 

Prmf. If an integer q > o is not a sum of three nonvanishing squares, then either 

q = 0 (mod 4) or q = 3 (mod 4). Suppose b is even. If n = 1 or 2 (mod 4), then 

2 n - b2 - n (mod 4), and so n - b is a sum of three nonvanishing squares. If n r 3 
2 2 (mod 4), then n - (b-1) = n - 1 = 2 (mod 4). Thus n - (b-1) is a sum of three 

nonvanishing squares. If b is odd, then b-1 is even, and so we can obtain the same results. 

Theorem 3.4. There is a set A of squares with IAl < ( 4 / 1 0 ~ 4 ) ~ ~ ' ~ 1 0 ~ ~  for 

sufficiently large N and every integer n d L, 42 5 n I N, is a sum of four nonvanishing 

squares in A ,  

Proof. Let N be a large integer. Define 

~ ~ = { a * :  l S a S 2 N  1B I 



Let A2 = Ag u Al. Then lA2l 5 4N1I3. Note that Ag contains all positive squmes in 

[I, 4 ~ ~ ~ ~ 1 .  I f42  5 n < 4x2I3 and n 0 (mod 4), then it follows from Lemma 3.6 that n is 

a sum of four squares in &. 
n-42 112 1/3 

Suppose 4 ~ ~ ' ~  < n 5 N and n & 0 (mod 4). Put s = [- ] and t = [s N 1. 
N ~ / ~  

112 113- we Then l < s S ~ ~ ~ ~ , s ~ ~ ' ~ + 4 2 _ < n < ( s +  1 ) ~ ~ ' + 4 2 , a n d s ~ / ~ N " ~ - 1  < t S s  N 

obtain 

n - t2 5 SN" + 42 - sNU3 = 42, 

and 

in in -2)2 n - (t - 1)2< (s + l)?J2' + 42 - (s N 

In l/k- 4 = sPJ2I3 + N2/3 + 42 - sN2I3 + 4s N 

<N2' + 4 2  + 4 f l  

< 2 ~ ~ / ~ ,  

2 for sufficiently large N. Then, by Lemma 3.10, n - c is a sum of three squares in A0 , 

where cis either t or (t - 1). Clearly, c2 is nonzero and in A1. Hence, n is a sum of four 

squares in A2. 

b 2  2 L e t A = ( 4  a : a  E A 2 , b 2 O ] . I f 4 2 5 n < N a n d n d  L, t h e n n = @ m  withm & 

0 (mod 4) and m # 2,6,14. By the above argument, m is the sum of four squares in A2. 

Consequently, n is the sum of four squares in A. Note that the number of b is less than or 

equal to logNAog4. This implies that IAl5 (4/log4)N1~ogN as required. 

Theorem 3.5. Let E > 0 and k be an integer 2 4. There is a set A of squares with 
2k k l/k 

IAl Sw(1 + E ) N logN for sufficiently large N and every integer n, ok 6 n 5 N, n 4 



Let A' = A0 u A1 ... LJ Ak.1 . Then IA'I 5 2k(l + E ) k ~ l / k .  Note that A0 contains all 
2k- 2k-  positive squares in 11, (I + E ) i\J 1, 

Suppose (1 + E ) 2 k ~ 2 i k  < n 5 (1 + E ) and n j. 0 (mod 4). Put s l  = 

and tl = [s1112N 'Ik]. Then 1< s l  5 (1 + E ) k - l N  l/k , s l ~ ~ ~ ~  + a k  < n < 

and 
in ik -212 n - ( t - 1 ) 2  < ( s l + l ) ~ ~ ' + ~ - ( s  1 N  

112 1/k - 4 = S ~ N ~ ~ + N ~ ' + ~ - S ~ N ~ ' + ~ S  

< N ~ ' + ~ + ~ N  3/(2k) 

< (1 + e)?J2fl', 

2 for sufficiently large M. Then, by Lemma 3.10, n - c l  is a sum of three squares in A0 , 

where cl  is either tl or (tl - 1). Clearly, c l  is positive and in Al. Hence, n is a sum of four 

squares in A'. 
k-i i/k A s s u m e n o w ( l + ~ )  N < n S ( l + & )  k-i+lN(i+l)/k and n&O (mod 41, where 2< i 

n - o k  1Y2 
2 k-1. Put si-1 =[ and ti.1 = [ ~ i . l N ~ ' ~ ] .  It follows that 12 si-1 5 

for sufficiently large N. 
2 2k 2/k 2 Considerfirstk25,En-ti-I€ [ ~ k , ( 1  + E )  N ],then by Lemma3-3,n-  ti-1 

2 is a sum of k elements in Ag. If n - Q-1 E ((1 + E )2k~2/k ,  (1 + E )k-1~3pa], then by the 



' 2 above argument and Lemma 3.8, n - tirl - cl is a sum of (k - 1) elements of Ao, and so n is 
2 the sum of (k + 1) elements of A'. If n - ti-1 E 

((1 + & )k-aNa/k7 (1 + E )k-a+lN(a+l)k 1, where 22a-4, then we repeatedly use this 

2 2 2 2 method, finally there exist al, ... , a h  such that kt  , ... , kh E A' and n - tal - ... - tuh E 

2k 2/k 2 
[mk, (1 + E ) N 1. It follows from Lemma 3.8 that n - ta - ... - t2h is a sum of 

(k - h + 1) elements os Ao. Therefore, n is the sum of (k + 1) elements of A'. 

b b  Let A = (4 a: 4 a 5 N, a E A'), It is easily seen that b b llogN/log4 which implies 
2k b 

that IAl 5 el + e ) k ~ l f l r l o g ~ .  If ok 5 n 5 N, then we can write n = 4 m with m & 0 

(mod 4). By the above argument, m is a sum of (k + 1) elements of A'. Consequently, 11 is 

the sum of (k + 1) elements of A. 

For the case of k = 4, we can employ similar argument but using Lemma 3.9 for 

Lemma 3.8. This completes the proof. 

3. DISTINCT SQUARES. 

Lemma 3.11. ([I]) Every positive integer greater than 245 is the sum of five 

distinct squares of positive integers. 

Lemma 3.12. Let k 2 6. Every sufficiently large integer is the sum of k distinct 

squares of positive integers. 

Proof. Suppose we h o w  that every n > Ns is the sum of s distinct positive 

squares. Let a = [ d a  + 1, where n > 2((N, + 2)" + 112. Then 

and therefore 

that is, 



2 n 2 so hat n - a is expressible as the sum of s distinct, positive squares each less than 2 < a . 

Theorem 3.6. Let E be a small positive number less than 0.0064, k  be an integer 

k l/k 2 3, and N be a large integer. Then there is a set of squares such that IAl5 k ( 2 a ~ )  N  and 

every integer n, N' c n 5 N, is a sum of @+3) disfincf elements of A. 

Proof. Define 
2 k ,lk ), b= f a : O - < a < ( 2 + ~ j  N 

Let A = Ag u A1 u ... u Ak-1, then 

2 IAl<( (2+&)+(2+&)  +... - i ( 2 + ~ ) ~ ) N ' ~  

k lllc 5 k(2 a E) h' . 

It follows directly from Lemma 3.12 that each integer n, N' < n 5 (2 + E ) ~ ~ N ~ ~ ,  is a sum 

of ( k i 3 )  distict elements of Ag, 
k-i i/k Suppose (2 t E) N < n 5 (2 + E) k-i-lN(i+1)/k n . Put S j  = [x ] - 1 and ti = 

N 



Since N is suEciently large, 

[ N ~ ,  (2 + E)N*) c ((2 i- E) k-i+zN(i- l)/k , (2 + E)~-'+'N*] * 
2 ilk Let ni-1 = n-ti.  Then ~ i - 1  E [ N " ~ , ( ~ + E ) N  ). Put si-l=[ ni-I N{i- 1)k ]-I and t i - l =  



Continuing in this way, we obtain a sequence of positive integers ti-1, ti-2, ... , tl 

such that tl c t2 < ... < ti-1 and 
2 2 2 1/2 21k n- t i - t i .1  -...- t1 E [?4'/lr,(2+&) N I. 

Since k - i 2 2, k - i + 3 2 5. It then follows from Lemmas 3 . 1 1  and 3.12 that 

2 2 2 n - ti - ti-1 - ... - t l  is a sum of (k - i + 3) distinct elements of Ao. Therefore, if ti > 

ti-1, then n is the sum of (k+3) distinct elements of A, as t l  > (2 + E ) ~ ~ N * ~  and tj E A for 

all j = 1, ... , i. 

If k - i > 2, then it is easily seen that (2 + - 2)'12 - E > (2 + E ) " ~  for E < (0 .086)~~ and 

the assertion follows from (3.14) and (3.15). 

We now consider k - i = 1. This means (2 + E)N B-l)k < n 5 N. We consider the 

Thus we obtain as before that 

2 NOr-')' < n - tk-1 < (2 + E)N (k- lllk 



2 Let nk-2 = n - tk-2. Then nk-2 E [N (k-2)1k, ( 2 + ~ )  N (k-2)Ik.. . Putting sk-3 = 

1 - 1 and tk.3 = [ S ~ ~ N " - ~ ( ~ ~ ) ]  we then have 

and 
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