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ABSTRACT

Let g be a positive integer and
flx) = akxk +...+ax+ap (k=3)
be a polynomial with integral coefficients such that (aj , ... , ax , qQ) = 1. Write
q
S(q. fix) = 2, 2T

x=1
We proved that

IS(q, f(x))l < equH/k , fork=3,
where ¢ = 1.74. This improves previous results that ¢ = 2 (Qi M. G. and Ding P.) and ¢ =
1.85 (Lu M. G.).

Define 1 satisfying p'll (kay , ..., 2a, , a;), where the symbol Il means that t is the
2

highest power of p such that p'| (kay , ..., 2ay,ay). Letyy, ..., U, be the different zeros
modulo p of the congruence

p Y'(x)=0 (mod p), 0<x<p,
and letmy , ..., m; be their multiplicities. Set max; ;. m; = M = M(f) and

T
Z m; =m = m(f).

=1

Let
log
.
= [-—pﬂlog ;J

we prove the following result:
Ifn=22orn=1andp <k, then \
| S(pn, £(x)) 1 < mp‘c/(M+l) p[/(M+1) pn[l - 1/(M+1)] .
This improves the previous results by using k (Chalk) and k172 (Ding) to substitute

pt’l(MH) as pI <k and M = 1. Actually, this result is the best possible as shown by an
example at the end of this section.

Letk, s, and q be positive integers.
Let N(q) denote the number of solutions of the congruences

xl + ...+ xsEbl’

x5+ o+ (x) = by,
whereISxiSQ.(xi.q‘)zl,lSiSs.

(mod q) (*)

Let g = p" with p a prime, n a positive integer, k = 3, s > 2k%. Then when p=
2kik - 2 - .
(k- 1)‘1"(}‘ D the congruence (*) is always solvabale. This largely reduces Hua's result p

> 2Kk o k°. approximately.
We denote by Va(pn, f(x)) the a set of f modulo p”, that is,
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Va(p®, £(x)) = {x mod p™ f(x) =a (mod p™)}
and put
N '=N(p". f(x)) = Card Va(p", f(x)).

We prove that N(p™, £(x)) < (2 + 32 ) m p¥ M+ pVMeD) onll =AM Thig improves
a previous result of Chalk.

fet k=22 and q = g(k) - G(k), where g(k) and G(k) are same as in Waring's
problem. For each posirive integerr = q let u; = g(k) +r-q. Then forevery € >0 and all
N = N(1, £), we construct a finite set A of k-th powers such that 1Al < (r(2+g)+)NV& + 1)
and every nonnegative integer n < N is the sum of u; elements of A. Some related resulrs
are also obtained. These results improve and generalize Nathanson's results.

. 1/k e
For every € > 0, we construct a set A of squares with IAl <N e gor sutficiently
large N and every integer n, ® < n < N, is a sum of (k + 1) nonvanishing squares in A for
some positive integer w and for all k =2 4.

The second result 1s that for each k 2 3 we construct a set A of squares such that

Al < k(2+8)kN1/k and every integer n, Nf<ng« N, 1s a sum of (k+3) distinct elements of
A, where € is a small positive number less than 0.0064.
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INTRODUCTION

In 1770 E. Waring asserted without procf in his Meditations Algebraicae that every
natural number is a sum of at most nine positive integral cubes, also a sum of at most 19
biquadrates, and so on. By this it is usually assumed that he believed that for every natural
number k = 2 there exists a number s such that every natural number is a sum of at most s
kth powers of natural numbers, and that the least such s, say g(k), satisfies g(3) = 9, g(4)
= 19. It was not until 1770 that g(2) = 4 was given, by Lagrange, who built on earlier
work of Euler. During the next 139 years, special cases of the problem were solved for k =
3,4,5,6,7,8, 10. It was in 1909 that Hilbert solved the problem in the affirmative for all
k. His proof was extremely complicated in its detailed arguments.

Many important advances in analytic number theory in the twentieth century have
been achieved by either the sieve method or the Hardy-Littlewood circle method. These
methods, originating in fundamental work of the second and third decade of this century,
have now been developed into a delicate theory which has turned out to be a very powerful
tool in the solution of problems from additive and multiplicative number theory. For these
methods there are two excellent books respectively, one is Halberstam and Richert’s «Sieve
methods» [19], and other is Vaughan’s «The Hardy-Littlewood method» [42].

Vinogradov made great technical improvements to Hardy-Littlewood’s method in
1930s and proved Goldbach’s problem for odd numbers, that is, every sufficiently large
odd number is a sum of three primes. His method requires estimating the exponential sums
for primes. Some other problems in number theory also need to estimate various
exponential sums. Therefore, Hua L. K. placed the estimation of complete exponential
sums as the fundamental lemma in his book «Additive theory of prime numberss» [26].

In Chapter 1 we give two estimations of complete exponential sums which improve

previous results. In the first section, we consider the complete trigonometric sums defined

by

-



q T T e\ 7
S(q, fx) = 3 ez:uf(x)/q,

x=1
wiiere q is a positive integer and
. ,
f(x) = X"+ . Fax+a,,

ap, ..., a are integers such that (al, s B q) = 1. Hua [25] first established that

P
S(g, f(x)) << ' " E*E,
where € is a small positive number and the symbol "<<" is Vinogradov's one, that is,
f<<g
means that there 1s a constant C which may depend on some variables such that
fl <Cg.
Hua’s result is important since the main order (1 - 1/k) is the best possible. In 1953,
Necheav [34] gave an explicit estimate
IS(q, fx))I < &2 q'
and since then, by the efforts of a few mathematicians, the coefficient ezk here went down
rapidly to e%1¥, by Chen J. R. [11] in 1977, and to ¢3%%, by Lu M. G. [30] in 1985. Our
main result in the first section is to establish
IS(q, fe) < et " gl - VK
which is the best one up to now. One possible application of this result is to the estimations
of g(¢) if further difficulties could be overcome, where g(x) is well-known in Warin g’s
problem and ¢ is a polynomial with integral coefficients. The induction procedure in the

first section starts from 2n + 1 instead of 2n + 2 and the difficulties are dealt with by

individual cases. As Stechin [41] already established an asymptotic inequality
q .
| ) M| < ok + Okflogk) q1 } l/k, for k — oo,

x=1
it is obvious that one of the cruxes is to obtain good estimates for relatively small k,
qualitatively say, at present hand, for 5 < k < 64. We deal with small k according tok €
(2i, 2i* 1] for2<i<5 Ifwewrteq= pn, where p 1s a prime and n is a positive integer,

then another crux is to get good estimates for small p. We shall give careful estimations for

2



p = 2 and 3. We also sufficiently use the properties of f for small prime p. One of the

principle difficulties in the second section is induction. To overcome the difficulty we

introduce a parameter T which allows us to apply induction on n according ton <2t orn >

27.

In Chapter 2 we consider some applications of exponential sums to congruences.
Letk, s, and q be positive integers. Let N(g) denote the number of solutions to the system
of congruences

Xp+ o F X = bl’

...... (mod q)

(xl)k + ...+ (xs)k =b,,
where 1 £x; <q, (x;, 9) =1, 1 <1i<s. In the first section we shall prove that for q = p",
where p is a prime and n a positive integer, if

p 2 b(k),
then the above system of congruences is always solvable for s > 2k2, where

b(k) ~ k2,
which reduces Hua's condition (cf. [26]) that

p> 2k2 Kk

The precise upper bounds to
n

P omif(ayp”
l Je P, where p is a prime and n is a positive integer,
x=1

fork<p<(k- 1)2k/(k "2 at hand are not good enough to enable us to reduce the
conditions so that we can’t directly apply our results in Chapter 1 The second section is a

simple application of the second section in Chapter 1 which improves Chalk’s result [9].

In Chapter 3 by censidering the differences between g(k) and G(k), where g(k) is

as above and G(k) denotes the minimal value of r such that every sufficiently large integer



is the sum of r kth powers, we first construct a finite set with relatively small cardinality
such that every positive integer n < N °s th sum of certain elements in this set for
sufficiently large N. Three theorems are proven here. Those results improve Nathanson’s.
Unfortunately, we can’t obtain an infinite version for this question at present. Qur idea is
to cut the interval [1, N] into finitely many pieces. We then start from the lowest interval
and translate higher interval to lower one. The second part of Chapter 3 deals with the small
sets for nonvanishing squares and distinct squares. The idea is similar to the first section
but the difficulty for distinct squares is to show that if n is expressed as a sum of some

elements in the constructed small set A then those elements must be distinct.



CHAPTER 1. ESTIMATION OF EXPONENTIAL
SUMS

§1.1 Estimate of complete trigonometric sums.

1. INTRODUCTION.

Let q be a positive integer and
f(x) = agx" + ... +ajx +ag  (k=3) (1.1)
be a polynomial with integral coefficients such that (a; , ..., ak , qQ) = 1. Write
5(q., fx) = ; M (1.2)
x=1
where i = V-1.

In 1940, Hua L. K. [25] first proved that

S(q, fx) = 0@ "R,
and about 1947 improved this to

S(q, ) =0@' 1,
where the constant implied by "O" depends only on k. This is an important result because
the main order (1 - 1/k) is the best possible. Afterwards, some work done on this problem

is as follows:

1953 Nechaev V. L [34] 18(q, fo)l < 2 gl V& |
1959 Chen J. R. [10] IS@g, feo) < ST Ik
1975 Nechaev V. L. [35] IS(q, f{x)I < eSkz’l} ogk ql'l’n .
1977 Chen J. R. [11] IS(q, fo) <& gtk |
1984 Lu M. G. {30] IS(q , fx)) <X gtk |

1985 DingP. & QIM.G.[13]  IS(q, fx) <e?¥ gk |



1985 Lu M. G. [31] IS(q , f(x))l < e 8K g1k

where each inequality holds for fixed k > 3 and all f, and in 19

established that
IS(q . f(x))l < e<HOWogk) 11k gy s o

We now prove the following
Theorem 1.1.

IS(q , fx)) <el7k Ik

, fork=3.

2. BASICLEMMAS.

Lemma 1.1. For positive integers k and real y,

KO -Dkcy 2<y<k-1),
and
k-2 O+ (5<k2<y<k-1)
Proof. We first prove (1.3).
k(y'l)/kSy (2<y<k-1
iff
1 hy-1
K < W0 - D)
that is,
log1_<< logy
k “y- T

The right hand side is decreasing for y > 2 and there is at least
logk - 1) logk
k-2 T k

ifk=>3.
We now establish (1.4). Obviously it suffices to prove
k-2¥DEcy frk>5and2<y<k-1,

that is,

77, Stechi

)
]

(1.3)

(1.4)

(1.5)



(k - 2)1/k < yl/(:/ +1

\
=

log(k - 2) _ logy
k Sy + I (1.6)
logy
Fory = 3.6, v+ 1
logy . log(k - 1) S log(k - 2)
y + 17 k k

-1s decreasing, and so

as required. This leaves 2 <y £3.6, when

Jogy ,log2 _ 5310,

y+1~ 3

On the other hand,
lo (i “2) _ 0.2197... atk=5,
l_o3gg atk =6,

and is £0.229919... for k = 7. Hence (1.6) follows, so that (1.5) and (1.4). This

completes the proof.

Now let f(x) be as in (1.1) with q equal to a power of a prime p.

Define t to be that exponent satisfying pt I (kag,...,2az,a; ), where pt A
means pti A but pt+1 JA.By(j,..,ag,p) =1, we deduce that pt <k Letpi,..,lr
be the different solutions modulo p of the congruence

p f'(x)=0 (modp), 0<x<p, (1.7)
and let my , ... , m; be their multiples. Put

mj + ...+ mp =m. (1.8)
Clearlyr<m<k- 1.
Let oj satisfy p% Il ( f(py + ) - f(i1;) ) , and set
gy () =PI (£py + 1)) - £4y)) . (1.9)

Define t; satisfying pill gi; (¥) - As before, pi<k

7



Lemma 1.2. [31] Let p be a prime, and Y a simple root of p'f(x) = 0 (mod D).

Then

Cj=t+2 andtj=0 whenp>2

and

cj=t+1 andtj=1 whenp=2.

Lemma 1.3. [31] If t =0, then

2f7 (1) m-+1f(m +1)(ll )

gL =P j(pyf(uj)+(py)—-——’-+ -+ py)"] ——(—Ih——;f)—,l—)(modp) (1.10)
If mj=1and t2 1, then
1) whenp 25,

24 =" (pyF(w) + (py* ) (mod p, | (1.11)
11) when p =3,
-G (5

guj(y)EBC’J(3yf(uj)+(3y)2 §‘,” + By) Y ( ))( od 3), (1.12)

and iii) when p = 2,
2 (u;)
gu(y) 2% 2y) (mod 2). (1.13)

Lemma 1.4, [26] Let p be a prime and f(x) = akxk + ... + a1x + ag a polynomial
with integral coefficients such that p ¥ (ay, ... , a1). Let 1L be a root of the congruence

f(x)=0 (mod p™*l), 0<x<p, (1.14)
and let G satisfy p I (f(px + W) - f(u) ), then

1<oc<k (1.15)

Lemma 1.5, [13] Let ; be a root with multiplicity m; of the congruence
fx)=0 (modp™h), 0<x<p,
and o; satisfy p% Il (£(px + ;) - f(11;) ), then



2<0jsmj+t+ L (1.16)

Let guj(y‘) satisfy (1.9) and p'J' il ggj(y), then
6j+tj$mj+t+1, (1.17)

and the number of solutions of the congruence

gi(y) =0 (mod pith 0<y<p)

does not exceed m;j.

Lemma 1.6. [26] Set
n

p
Sppn= I epn(fG0), (1.18)
x=1
x=|j (modp)
where eq(f(x)) = eZmf(®)/q,
Then
<p"! foralln =1
1Sy, pn | (1.19)
P2 poi- Uit %.guy)  if n > o

Lemma 1.7. Let f(x) be as in (1.1). When n 2 2t+2, we have

T
IS < 3 1Sy, prl - (1.20)
=1

If p is an odd prime and f(x) satisfies the above conditions with t 2 1, then when n = 2t+1,
(1.20) holds. If p =2 and t = 2, then (1.20) also holds for n = 2t+1. If p is an odd prime
and t 2 2, then (1.20) still holds for n = 2t.

Proof. We only give a proof for the case p is an odd prime, t > 2, and n = 2t. For

the other cases refer to [13].

We make substitution x =y + zp" " in S(p", f(x)), where y and z run
independently throngh

y= 1, ..., pn-t~l; z=0,.., Pt+l -1
When n = 2,



pn

S(p", £(x)) 2 epn(f(x))
x=1

i

pn-t~1 pt+1_1 1
= ¥ epn(f(y)) T epm@"Vlaf(y) + 5pP N2y + L)
y=i =0 “
pn-t-l pH"l_l
= 2 epn(f(y)) X ep+1(zf'(y)),
y=1 z=0
since
g 1 if el
_Ip if pt*+if(y)
,EO ept+1(zf(y)) = { 0 otherwise

(1.20) then follows.

Let Hy(x) = akxk + ... + o1x be a polynomial with rational coefficients. If there is
an integer q such that e2™Hk(x+@) = 2mHKX) for a1] x| then we say that Hy(x) has period q.

The smallest positive period of Hg(x) is called its order. Let Bx(q) denote the class of
polynomials with degree k and period q and Bf(q) denote the subclass of polynomials with

degree k and order q.

Lemma 1.8. [40] Put

Mi(g)= Max }% él e?MHK()| (1.21)
H(x)eBf(@)

Then we have

Ma(@ <q 12, (1.22)
and

M3(q) <q 1142, (1.23)

Lemma 1.9. Letp =2, f(x) satisfy (1.1), and 21 fx). Ifn=2t+l and t =1,
then

IS, fx) < 2™1/2, (1.24)

10



Proof. By substitution x =y +2z(y=1,2;z=0,1, 2, 3) and notice thatn =

=1, (1.24) follows from (1 22) unmedxatcly

IS(", fx)) = Z eyn(f(y)) Z 62(Z*Ly—)+—22f' )
y=1
<20%27 V) = 2312
= 2ﬂ~1/2.

3,t

Lemma 1.10. Let f(x), t, and m be defined as before. If t = 0 and k = 5, then,

for all odd prime p <k,
IS(p3, fco)l £ mp(z/k) ) 1p3(l - 1K),

Proof. Lemmas 1.7 and 1.6 give that

lS(p JE) < Z!Su 3
j=1

and
< p? if 652 3

ISy;.p3! _
j { =p%i~ IIS(p?"GJ,guj(y))l if 65 < 3.

When m; = 1, it follows from Lemma 1.2 that 6; =t +2 =2 and t; = 0. Hence

By (1.11),

gp](y) p” (pyf (uj)+(py) ( ) ) (mod p).

Thus, by Lemma 1.8,

IS, p3l < p372 = pB/K) - (231 -1/k) L /) - 1,3(1 - 1/k)

When m; 2 2,
ISy p31 < p? = @R - 1301 1K) ¢y B/K) - 1515301 - 1K)

<m jkl/ltz-lp(Z/k) - 1p3(1 -1/K) < mjp(2/k) - 1p3(1 - 1/k)
T
This completes the proof since ¥, mj = m
1

11



Lemma 1.11. If p =2 and mj = 2, then we have tj = 1.

Proof. If p = 2, then

£ £ (4
F2y + 1) - K1) = 29 () + ) "o 4+ 2y )

If h > 4, then 212 > 1. Thus the number of factor 2s of h does not exceed h - 2. This

g,
implies that when h > 4, 242} 2h___}$_liﬁ. Further, when m; = 2, we obtain 243 2 (uy),

213 ) 22f"(uj), and 253 | 22F"(uj). This implies that 2 I gﬁj(y). Consequently, tj = 1, as

required.

Lemma 1.12. [11] If f(x) is defined as (1.1) and p > k is a prime, then forn > 1,

we have

( 1 if p > (k-1)2K/ k-2

- l 2 1 - 2 2k k—2
n -n(1-1/k) _ m¢»‘”“*> ﬁ&4)<ps&4)/()
IS, fx)I p < " e 2
p if (k-1) <p<(k-1)

k/(k-2)

L -1)pR! ifk <p < (k-1)

Lemma 1.13. [38, 39] Define as usual
nx)= 21, and O(x)= Y logp .

p<x p<x
Then
0(x) < 1.001102x, ifx>0; (1.25)
B(x) - xl < 8.6853x/log’x, ifx > I; (1.26)
(x) < 10’;((1 + li)gsx ),  ifx> 1 (1.27)
T(x) < 1.2551&;, if x > 1. (1.28)

12



3. FUNDAMENTAL ESTIMATIONS.

Lemma 1.14. Letk =5 be an integer and 5 < p <k be a prime. Then forn>1,

we have
(k_l)p(2t(p)/k)—1pn(1-1/k) ifp < (k_l)k/(k+1 )
IS(p", f(x))l < { )
(k_l)p(S/k)-lpn(l-l/k) if (k-1 D p<k
logk

where t(p) = [ng] > 1.

Proof. The second inequality of the lemma follows immediately from Lemma 4.3

of [31]. Here we only give a proof of the first inequality.
First case: p < (k - )K/k+1), Note that t < t(p) since pt < k. Also, if p < k2, then

t(p) = 2.

For n < 2t(p), we obtain trivially that

IS (pn, fx) < pn _ pn/kpn(l-l/k) < p2l(p)/kpn(1-l/1()

< (k- 1 )pzl(P)/k - lpn(l'l/k).

For n 2 2t(p), we employ induction on n to show that

IS(P", f(x))| < mp2®Vk-1,00-1k) (1.29)
We first prove that (1.29) holds for n = 2t(p). ft =0, then n 2 2t + 2; and if 1 <t < t(p),

then n 2 2t + 2. By Lemmas 1.6 and 1.7 we have

T
ISE" NI < 3 1Sy, po <rp"! = pp2t@Vk - 1,n(1-1/k)

=1

< mp?t®Yk - 15n1-1k) (1.30)

Ift=t(p),thent=2. Setx=y+p"~ t- ]z, where y and z run independantly through

y=l,...,p"'l'l;z=0,...,pt+l-1.

pn pn—t-l pH'l-l
ISE™LE) =1 zepn(fx) t=1 ¥ epnif(y)) I epi+1(zf(y)) |
x=1 y=1 z=0
r pn—t-l
<Y Ip*l 3 ep(f(y)!
=1 y=
y =H. (modp)



T pn
=2 I X eyl
i=1 =1

¥ =it; (modp)

-1 2t(p)/k - Ipn(1~1/k). (1.31)

Srpn <mp

Hence, for n = 2t(p), (1.29) follows from (1.30) and (1.31).

Assume (1.29) holds for all integers in [2t(p), n - 1], where n > 2t(p). Define

Ar={j: n<gqj},
Az={j: 1=n-0j524},
Az={j: 25+ 1<n-0j <£2t(p) },
and
Ag={j: n-oj 22(p) +1 }.
Since {1, 2, ..., r} is the disjoint union of the A;s, we have

4
> Y mj=m.
=1 je A
1). je Aj. Since n > 2t(p) = 2t + 2, it follows from Lemmas 1.6 and 1.5 that
ISy pul <p"” 1 k- 15001 - 1K) ¢ ok - 1on(l - 1)

< p(mj +1+1- tj)/k - lpn(l - 1/k)‘
If mj=1, then
’Suj,pnl < p(t+ 2)/k - lpn(l - 1/k) < p2[(p)/k - lpn(l’llk)_

If mj 2 2, then by Lemma 1.1 we obtain

'Suj,pn’ < mjpt/k - Ipn(l - 1K) o mjp2t(p)/k - lpn(l-l/k).

By (1.34) and (1.35), we obtain immediately

v ﬁiﬁz;(p)/k - lpn(l-lfk)_
€A

(1.32)

(1.33)

(1.34)

(1.35)

2). j € A2.In this case we must have t; > 1. It follows from Lemmas 1.6 and 1.5 that

ISpgpul <p” 1=t Ip - V0 < plojH A a1

< p(mj +t¥1+ lj)/k - lpn(l - l/k).

14

(1.37)



If mj = 1, then by Lemma 1.2, tj =0, contradicting tj 2 1. Thus, mj 2 2. In view of Lemma

1.1, we have

‘Suj,p“! Smjp(“’ /K - lpn(l - 1K) mjp2t(p)/k - lpn(l'l/k),

whence
3 ISy pul € 3, myp @Yk - 1pn1-1A), (1.38)

€A, €A,
3). j € A3. We first consider the case n - 6j=2tj+ 1 and tj = 0.

By Lemma 1.6,

IS, pn ! = P “ligp2* !

B =PI IS (P.g (Y- (1.39)

When mj = 1, by Lemma 1.2, ¢j =t + 2. It then follows from Lemmas 1.3 and 1.8 that

‘Su pnl <p°i -1+1/2 _ (n/k)-(3/2) pn(l-l/k) = p©@j+D/k - 3/2) ;n(1-1/k)

_ p(t+3)/k -(3/2) pn(l-l/k) < p?.t(p)/k -1 pn(l-llk) . (1.40)

When mj 2 2, we obtain, by Lemmas 1.6, 1.5 and 1.1,

'Suj,p" | < pn -1_ p(n/k) -1 pn(l-l/k) _ p(O'j-i-l)/k -1 pn(l-l/k)
p(m HH+2)k - 1 n(l 1/k) < m_p(t+1)/k 1 n(l 1/%)
< mjpzt(p)/k- 1 pn(l-l/k). (1.41)

Assume either 2tj+2<n-oj<2t(p) and tj=0or2tj+1<n-ocj<2t(p)and ; = 1. It
follows from Lemmas 1.6, 1.7, 1.5 and 1.4 that

‘Suj,p" | =p%i~ IIS(p" "5 ,gu.(y))i <p%i~ ! m;j p" % 1
(n/k) -2 n(l l/k)<m p(01+2l(p))/k 2 n(l 1/k)

=mjp" = mjp
< mjp21(p)/k 1 pn(l-l/k) . (1.42)
By (1.40) - (1.42) we obtain
Syl < 3 myp @k I, (1.43)
JEA3 €Ay

3). j€ A4. By Lemmas 1.6 and 1.4, we have

T Sppnl = T p% SO g ).
jeAy €A, !

We show that the usage of the induction hypothesis is permitted. By (1.9), deg gpj(y) <k,
and 1f deg guj(y) <k -1, say deg guj(y) =t and guj(y) = byt + ... + b1y + bg with

15



(b1, ..., bt, p) = 1, then we define Guj(y) =p" CiyKk+ byl + ... + b1y + by . Now

degGuj(y) =k and (pn -9, bi, ..., b, p) = 1. That is, Guj(y) satisfies all conditions of the

induction hypothesis. Furthermore, by the induction hypothesis,
ISG™ ™ %, gu (N = 156" %Gy )l

< my pPOVK 1 @ 001 - 1)

Thus, in view of the induction hypothesis, Lemmas 1.6 and 1.4, we have
T ISu pal = 3% lS(™ % g, ()
= 3 p% hsp" % Gy
je A4 N

o:-1
< ¥Ypd mjp
_]EA4

< ):,mjp
jEA4

2t(p)/k - 1 p(n - o)1 - 1/k)

2p)k - 1 0(1- 1) (1.44)

Therefore, (1.29) follows from (1.36), (1.38), (1.43), (1.44), and (1.32). Thus the lemma

holds for p < k2.
Suppose now K7 < p<(k- I)k/(k)r D Here t(p)=1and k> 8 sincep = 5.

Forn <2t(p) + 1,

3/k-1pn(l-l/k)= 1+l/kp2/k—lpn(l - 1/k)

ISE™fx) <p"<pp
<k-1) p2/k- 1 pn(l - 1/k)

P

For n 2 4, we apply induction to show that

ISP ) <m pd¥ 1 pl- 1K) (1.45)
Whenn=422t+2 (since t <t(p)), Lemma 1.7 gives that
T
ISP X)) <3 ISy pnl. (1.46)
IS

=t+2Z2andt;=0.

Case 1. f m; =1, then by Lemma 1.2, g; i

Case 1a. Suppose t = 0. Thus 5= 2, and n - 6j =2 = 2tj + 2. By Lemmas 1.6 and 1.7 we

have
fSuj,pnl =P !S(p"',gpj(y))i <mj p’=p"?
< pl/k -1 pn(l - 1K)

16



Case 1b. Suppose now t = 1. By Lemma 1.2 again, 6j=3 and n - gj = 1. Hence
!‘QpL pnl = p !S(p,guj(y))!.

Now (1.11) gives that

guj(y) p (pyf‘(uj)+(py) ))(rnod D)

By this and Lemma 1.8, we obtain

’Suy pol Sp/ pl/k ! n(l - 1)

Case 2. If mj > 2, then Lemma 1.1 gives that
T S i R e A

<m; plk-1 pn(l - 1/k)

Assume the induction hypothesis (1.45) holds for all integers in [4, n - 1], where n
2 5. We consider the following cases.
I).n <oj

If mj = 1, then it follows from Lemma 1.2 that 6j=t + 2 < 3 which contradicts

n < gj. Hence mj 2 2 and it follows from Lemmas 1.6, 1.5 and 1.1 that

3 -l 1-1 . 1 _1 1_1
'Sl-lj, ol < p<5J/k pn( /K) Sp(mj+t+ Yk pn( JK)

< m; pI/k- 1 pn(l - l/k).
2).1<n-0j<2t Since 1 <tj<t(p) and t(p) = 1, we have tj = 1.

If mj = 1, then by Lemma 1.2, tj = 0 which contradicts tj = 1. Hence mj 2 2. As in

Case 1,
‘Suj, ol < pn/k -1 pn(l - 1) o p(cj + 2Dk - 1 pn(l - 1/K)
p(m +t+1 +tJ)/k 1 n(l - 1/k)
<m; p2/k 1 pn(l 1/k)
3). 24+ 1 <n - 6j < 2t(p). Here we must have tj = 0.

If mj = 1, then it follows from Lemma 1.2 that oj=1t+ 2 and t; = O since

tp) = 1.
().n-0j=1.Thusn= Cj + 1 <4, a contradiction.

(). n-0j=2=2tj+ 2. Lemmas 1.7, 1.6, and 1.5 give that

17



. .- 1 2 -2
ISy, pol =P IS(P” g (y)) < my p
< p(crj +2)k -2 pn(l - 1/k)

< pZ/k -1 pn(l - 1/1().

Suppose that mj = 2.

(1). n - oj = 1. I follows from Lemmas 1.5 and 1.1 that
lSuj,pnl < pn -1_ p(Gj +1)/k-1 pn(l - 1/k)
< p(mj Fr+2)k-1 pn(] - 1/k)

<m; p2/k -1 -1/

(ii).n-0j=2=2tj+ 2. By Lemmas 1.7 and 1.4 we obtain

-2 2 2 n(1-1
{Sllj, pnl < myj P o= m; p(cl *+ 2k - n( )

<m; p2/k =1 1 - 1)

4). n-0j=2t(p) +1=3.
If mj =1, then Lemma 1.2 gives that 6j =t + 2 and tj = 0. By Lemma 1.7 we have
‘Suj, pnl < mj Pt 22 p(t+ 5)k -2 pn(1 - 1/k)
<p lpt-10
Consider m;j 2 2. When tj = 0, we obain, by Lemmas 1.6, 1.10, and 1.4,
ISuj, pol =pi~! ‘S(p3’guj(Y))' <p%i° 1 m; pz,rk_ 1 p3(1 1K)

<m; p2k -1 on(1 - 1K)
When tj = 1, for mj <k - 2, we deduce from Lemmas 1.7 and 1.5 that
ISy, pnl < mj p(0j+ 3k -2 n(1- 1K) m; p(™j *1+ Ik -2 (1 - 1)

Ck+2)!k-2pn(l -1/k )zmjpﬂk-lpn(l— l/k)’

Smjp
where we have used t < t(p) = 1.
Formj=k-1, it follows from Lemmas 1.6 and 1.4 that
?Suj,p"' <ptlo p(c:J +3)k-1 n(l 1/k)
<m p3/k -1y pn(l - 1/k)
<my p2/1:- 1 pn(l -1V (recall p(1<+1)/1r< <k-1)

5). n - Gj2 2t(p) + 2. In view of the induction hypothesis we obtain easily
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Sy prl =% IS gy ()i <p% T mypn T plt P

2fk -1 1-1
Smjp/k pn( k)

Hence the lemma holds for p < (k - l)k/(k 1

Lemma 1.15. Let 5 <k <8, p =3, and f(x) be defined as in (1.1) and satisfy
(ai, ... , kay, 3) = 1. Then forn > 1 we have

ISG, f(x))l < (k - 1) 37K~ 1 gt - 1)

Proof. Here we note that t(3) = [i%%] =landt=0.

For n <£2t(3) = 2, we have trivially

IS3™, f))l < 3" < 32Kk 371 - 1K)

< (k - 1) 3¥k- 130 - 1k)

We now employ the induction method on n, n 2 2t(3) + 1 = 3, to show that

ISG3™, fe))l < m 3¥K- 1300 - 1K) (1.47)

When n = 3, (1.47) follows from Lemma 1.10 immediately.

Assume (1.47) holds for all integers in [3, n - 1], where n > 4. We consider the
following cases:
1). n<0j If mj =1, then by Lemma 1.2, 0j =t + 2 = 2, contradicting the condition

n > 4. Thus mj 2 2. It follows from Lemmas 1.6, 1.5, and 1.1 that
IS, gnl 3771 < 3%k Tan- 1)
<mj 3'1 3"(1 - 1/K) )
2). 1€n-0j<2tj Then 1 <tj<t(3) = 1. Thus tj= 1. If mj = 1, then by Lemma 1.2, we
must have tj = 0, a contradiction. Hence mj 2 2. In view of Lemmas 1.5 and 1.1 we obtain
1Sy, g0l <37 1 ¢ 305+ 26)/k -1 3n(1 - 1/k) ¢ 4(m; +2)/k - 1 30(1 - 1K)
<my 31fk-1 501 - 1K)
3). 2tj+1 <n - 65 £2t(3). Since 1(3) =1, we have tj =0. Thatis, 1 <n- 0j < 2.

If mj =1, then by lemma 1.2, 6j = t+ 2 = 2, since t = 0. This implies that n - 6j =

2= 2tj + 2 as m 2 4. It thus follows from Lemmas 1.6, 1.7, and 1.4 that
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A1

G;-1 -0; -2
ISy, 30l =377 ISG™ Vg () < my 37
— 3(0j+ 2k - 2 5n(1 - 1K)

If m; 2 2, then we have, by Lemmas 1.6, 1.5, and 1.1,

’Suj, 3nf <3P 1 < 3(Gj + 2k -1 3n(l - Yk) < 3(mj +3k-1 3n(1 - 1/K)

< my3?fk -1 300 - 1),

4). n-0j221(3) + 1. In view of the induction hypothesis and Lemma 1.4, we have
ISy, 30l = 3%~ 1ig(3"- Gj,guj(y))i <305 I a2k -1 300-01 - 1K)

< my3¥k -1 31 - 1)

Therefore (1.47) holds, and the lemma follows from Lemma 1.7 after summing over j.

Lemma 1.16. With the same conditions as Lemma 1.15 but replacing the
condition (ay, ... , kak, 3) = 1 by 3l f(x), we have, forn > 1,

ISG™, £ < (k - 1) 37K -1 gl -1K)

Proof. Here we have t(3)=1andt=1.

For n <2t(3) + 1 =3, it is easily seen that
ISGB™, feopl <37 < 33K 3 -0 ¢ e gy 33K 1330011

< (k- 1) 371300 -VK)

We now apply the induction method to show that, forn > 2t(3) + 2 =4,

IS@™, foo) <m 3%~ 1 30 -1k (1.48)

When n =4 =2t + 2, the proof is similar to that of (1.45) in Lemma 1.14. Assume
now (1.48) holds for all integersin {4, n - 1], wheren 2 5.
).n<ocj. fmj=1, then by Lemma 1.2, 0j=1+ 2 = 3, but this is impossible. Thus m;
> 2. It therefore follows from Lemmas 1.6, 1.5, and 1.1 that

IS, nt <371 <3 13n- M o 3(mj+ 2)/k - 1 30(1 - 1/k)

< m; 31/k— i 3n(1 - l/k).
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2). 1<n-0j<2t. Here tj=1 since t(3) = 1. If mj = 1, then by Lemma 1.2, tj = 0 which

is a contradiction. Thus m; 2 2. It follows from Lemmas 1.6, 1.5 and 1.1 that
ISy, gnl <3771 <300+ D1 gn(l - V)  g(mj+1+3 -1k -1 gn(1 - 170
y -

< n_11_32/1: -1 3n(l - I/k).

3). 2tj+ 1 <n- 6; <2t(3). In this case we must have tj =0, thatis, 1 <n - 0j< 2.

If mj = 1, then Lemma 1.2 gives that6j=t+2=3andtj:O.chcen-O'j=2=

2tj + 2. By Lemmas 1.6, 1.7, and 1.4, we obtain
IS, 3ol < mj 312 = 300 Dk-2300 -1

< 32/1( -1 3n(l - I/k).

Suppose now mj = 2. When n - 6j = 1, it follows from Lemmas 1.6, 1.5, and 1.1

’Suj, 3nl <3- 1_ 3(Gj + 1k -1 3n(1 - 1/k) < 3(mj +t+2)/k-1 311(1 - 1/k)

< mj32/k -1 3n(1 - llk).

When n - 6j =2 = 2t; + 2, it follows from Lemmas 1.6, 1.7, and 1.4 that
1Sy, nl =31 1S3 g () < m3" "% = my 3005+ k-2 300110
< ;32K - 1 3(1- 1)
4). n-oj=2t(3) + 1 =3. If mj = 1, then Lemma 1.2 gives that oj=t+2=3and

t; = 0. Thus by Lemma 1.7 we have

ISp; gl <my 3772 =300 -2 300 -1

< 3ok - 10 -1

Suppose m;j > 2. When tj =0, it follows from Lemmas 1.6, 1.10, and 1.4 that
.- 1 . ) )
32/k -1 30(1 - 1K)

<m;

=
When t; = 1, we deduce from Lemmas 1.6, 1.7, and 1.5 that, for m; < 3,
;Suj, anl <mj 3(°j +3)k-2 3n(1 - 1/k) <m; 3(mj +4)k-2 3n(1 - /%)

For mj 2 4, it follows from Lemmas 1.6 and 1.4 that
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ol <3771 =300 k-1 gnll - 1 ¢ 33k - 1 gnCl - 1)

< m; n2/k ,,n(l - I/k).

5). n-0j22t(3) +2. It easily follows from the induction hypothesis that

< my3¥k - 130 - 1K),

Hence (1.48) holds. This completes the proof.

Lemma 1.17. Let 9 <k <26, p = 3, and f(x) be defined as (1.1). Then for n =

1, we have
1S3, fx)) < (k - 1) 31K 130 - 1K)
Proof. Here we have t(3) = [ll%é% =2.
For n < 2t(3),
ISG®, ) <3% < (k- 1)3¥%-1 %3“(1 -1/
<(k-1)313-10),

Forn =2 2t(3) + 1 =5, we use the inductive method as before to show that

ISG™, f(x))l <m 3Vk-13n-1k) (1.49)
Whenn=522t+ 1, Lemma 1.7 gives
T
ISGPE)I < 3 1Sy, 30l - (1.50)
F1

If mj =1, then by Lemma 1.2, gj=t+2and tj= 0.

Suppose t < 1, then 6j <3, and n - Gj = 2 = 2tj + 2. We obtain, by Lemmas 1.6
and 1.7,

ISp; g0l =3%"" 1SG" gy ) <m;3"
5k-2 3n(l - 1/k)

-2

=mj3
<m;37! 3001,
Ift =2, then 6j=4, and n - Gj = 1. In view of Lemma 1.3,
£ £
g, ® =34 OByt + Gy ++ oy )
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fluy) 1"y 17"y 2
s Ay 2 =
< +2———*—L32 y+2—-?—)53—y (mod 3),

since y3 =y (mod3) by Fermat's theorem. By Lemmas 1.6 and 1.8 we have
g; -1 3.5
;Suj, anl =371 " IS(3, guj(y))l <3

< 31/k- 1 3n(1 - l/k)’

I m; 22, it then follows from Lemma 1.6 that

’Suj, gl < 3" e mj%:35/9 3-1 3n(1 - 1)

<mj 3-1 3n(l - l/k).
Assume now that (1.49) holds for all integers in [5, n - 1], where n = 6 > 2t + 2.
We consider the following cases. |
1). n<oj. If mj =1, then by Lemma 1.2, 6j =t + 2 < 4, which contradicts n < ¢j. Hence
m; 2 2. When mj = 2, it follows from Lemmas 1.6 and 1.5 that

ISy, 0l < a0 -1 g(mj+t+1)k-14n(1 - 1K)

<m;371 30 -1

When m; 2 3, we deduce from Lemmas 1.6 and 1.4 that
ISy, 3ol <377 < my 372 30010
< mj 371 3"(1 i} l/k).
2).1<n-0j<2tj Here 1 <t; <t(3) =2.
(1). tj=1. In thiscase 1<n - Cj < 2. If m;j = 1, then by Lemma 1.2, we have

tj = 0, contradicting tj = 1. If m; = 2, it follows from Lemmas 1.6 and 1.5 that
ISuj, anl < 3" - 1 < 3(°j +2)k-1 3n(1 -1/%)

_<_3(mj+t+ 1 -tj+2)/k- 1 3n(l - 1/k)
< m; 2-1 36/1( -1 3n(1 - 1/k)

< my3VK- 13001 - 1K),

When mj = 3, applying Lemmas 1.6 and 1.5 again we get
ISy, 3ol <37 130010

<m;37 300 - 1K),
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When mj 2 4, by Lemmas 1.6 and 1.4 we obtain
IS, gnl <3771 <3N0
<m;37! 301K
(). t; =2. Now 1 < n - ¢j < 4. Similar to the proof of (i), we must have mj 2 2.
For the cases 1 <n - 0j < 3, the proof is similar to that of (i). Hence we consider the case n
- 0j = 4. It follows from Lemmas 1.6 and 1.7 that
ISy, ol < my3" % = m3yr D201 (1.51)

If m; < 4, then we have, by (1.51) and Lemma 1.5,
IS ol <3(mj+t+1-tj+4)/k-l3n(1-l/k)
K;p 370 =

< mj 371 300 - 1)

If mj 235, it then follows from Lemmas 1.6 and 1.4 that
uj1 3 -

< 34/1( 3n(l - 1/k) < m; 5-1 34/k 3n(l - 1/k)
<m;371 31 -1,
3)- 2tj+1<n-0j<2t(3). Here we have tj=0or 1.
(). tj =0. Thus we have 1 <n - gj<4.
Consider n - oj = 1.
When t =0, for mj = 1 Lemma 1.3 gives that
8.0 =3 Gy + Gy L) (mod 3.

Thus, in view of Lemmas 1.6, 1.5, and 1.8, we have

ISy, ol <3+ k- GR) gnct -1/
o

< 36k - (3/2) 5n(1 - 1K)

< 371301~ 1%k)

If mj 2 2, then by Lemma 1.6, 1.5, and 1.1 we get

3(n -Cj+ O'j)/k- 1 3n(l - 1/k)

< 3(mj+ 2k - 1 30(1 - 1K)
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< mj31/k -1 311(1 - I/k)'
Suppose t 2 1. If mj = 1, then Lemma 1.2 gives that 6j =t + 2. By (1.12), we
have

2 2

U2 (36 + Sy + ST ) y?) (mod 3).

It then follows from Lemmas 1.6, 1.5, and 1.8 that
IS al < 3(mj +t+2)k -32 311(1 - 1/%)
uj, 3 =

< 35/k - 3/2 3n(1 - 1/k)
< 3l/k -1 3n{1 - l/k),
by noting thatt<t(3) =2 andk 2 9.

When mj = 2, then by Lemmas 1.6 and 1.5,
1Sy, .nl <3"1 =30+ D/k-1,00-1/k)
P-j, 3m =

< 3(mj +1+2)k-1 3n(l - 1/k)
< 36/1(- 1 3n(l -~ 1/%)

<m3Vk 13001 1)

When m;j > 3, then by Lemmas 1.6, 1.5, and 1.4,
1Sy, .nl <301 =3+ /k-14n(-1K
W 37 =

< 31k gn(1 - 1K)
<my3VK-1300- 1)
If n - 0j 2 2, then the argument is straightforward. By Lemmas 1.6 and 1.4 we

have
ISy, 3ol <3772 = 305+ D230 -1

< 3l/k -1 3n(l - l/k),
as required.
(). y=1.Thus3<n-ocj<4. If mj = 1, then Lemma 1.2 gives that t; = 0,
leading to a contradiction. Hence mj 2 2. When mj < 4, then by Lemmas 1.6, 1.7, and 1.5

we have

ISy, g0l = 3% -1153"" Gj,guj(y))l
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Smj?)n-z

£mj 31/1( -1 3r1(1 - l/k).

And when mj 2 5, we have, by Lemmas 1.6 and 1.4,

Sy 3ol <3V 13- 1R

<3005+ k-1 30(1 - 1K)
<my 34k - 1 (_g_)—l 3n(1 - 1K)

< m;3Vk - 13001 - 180

4). n- gj 2 2t(3) + 1. It follows from the induction hypothesis, and Lemmas 1.6 and 1.4

that

c:-1

lsp,j, 3!11 < 3% 1k -1 3(“ - O'j)(l - 1/k)

m;j3
< my 3k 19000 V)

This completes the proof.

Lemma 1.18. Let k be an integer 2 27, p = 3, and f(x) satisfy (1.1). Then for n

v
=

IS3™, fx) < (k-1)3 13d-10
_ Jlogk

Proof. Here t(3) = log3] 2 3.

When n £2t(3) - 1,

1S(3™, f(x))l < 3" < 3k 301 - 1K)
< 3(2[(3) - Dk 3n(1 - 1/k)

< (XK 31k g1 - 1K)

<(k-1)3 130 -1K)
For n = 2t(3) 2 6, we use the induction method to show that
ISG3, fe) <m 371310, (1.52)
When n = 2t(3), Lemma 1.7 gives that



T
NERRCHNEDS lSu 3nl .
i=1
If mj =1, then by Lemma 1.2, j=t+2and t;=0.
(1). n - 0j2 2 =2tj + 2. It follows from Lemmas 1.6 and 1.7 that
AN -2 A2t3)k - 2 on(l - 1/K)
lSuj, qol <m;3 =3 3
<3 1gnd-10

(i1). n - ¢j = 1. Lemma 1.3 gives that
fﬂl
') (uQ) 1f ;u 'y 2 (mod 3).

B = €T+ 2

It thus follows from Lemmas 1.6 and 1.8 that
‘Sllj, gl < 3243)/k - 3/2 3n(1 - 1/k)

<3 13n-10
(iii). n € 0j. f mj = 1, then Lemma 1.2 gives that 0j=t+2 <2t(3)-1=n-1,

which contradicts the condition. Thus m; 2 2, and so

ISI-lj, 3n! < 32t(3)/k -1 3n(1 - 1/k)

< m; 3 1 3n(l - llk)_
Assume (1.52) holds for all integers in [2t(3), n - 1], where n = 2t(3) + 1.
). n<oj. If m;j = 1, then in a2 manner similar to above we get a contradiction. So

mj 2 2. When m; = 2, it follows from Lemma 1.5 that
ISy, gl <3%7% 130110
< 3(mj +t+1)k-1 3n(1 - 1/k)
- 3((+ 3)k-1 3n(1 - 1/k)
< k1/k 33/1( -1 3n(1 - 1/k)
<m;3 1301~ I/k);
And when m; 2 3, by Lemmas 1.6 and 1.4,
ISp; g0l <377 T < m; 3972300 10

<m;3 13- 1A
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2). 1<n-0; <2t Note that here t; 2 1. If m; = 1, then by Lemma 1.2, 5=0 a
contradiction. Thus m; 2 2. The proof is the same as that of 2) in Lemma 1.17.
3). 24j+1<n-0;<2((3) - 1.

(). mj = 1. By Lemma 1.2, oj=t+ 2 and tj = 0. Whenn - 6 = 1, Lemma 1.3

gives that

8,9 = 3IByf () + Gy %

fup 187G, 18°0) 2
g (N = ( e +5 3l )y +5 o (mod 3), fort> 1.

( ))( od 3), fort=0;

Hence, in view of Lemmas 1.6 and 1.8,
< 3(t +2)k-32 311(1 - 1/k)

lSuj, 30l
<2k 3172 5- 1 g0(1 - 1/k)
<3 1=,
When n - 6j 2 2 = 2tj + 2, we have, by Lemmas 1.6 and 1.7,
IS, gnl 3% 23001
< 300+ 21(3) - Yk -2 3n(1 - 1/K)
<13k 31k 3-2 (1 - 1K)
<3 1 311(1 - l/k)‘
(ii). m; = 2. The proof is similar to that of 2) in Lemma 1.17.

4). n-06;22¢3).In view of the induction hypothesis and Lemma 1.4,
1Sy, gnl 3% 1m;3tk-130-0p -1k
o

<mj31k- 13001 1K)

This completes the proof.

Lemma 1.19. Let5 <k <7,p =2, and f(x) be defined as (1.1). Then forn 2 1,
IS@", £G0) < (k - 1) 2800k - 1 o0l - 1K),

where
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2.5  if k = 5;
dk)=9 2 ifk=6;

1.5 ifk=7.
Proof. Note here t(2) = 2. For n < 2t(2), we have trivially
IS, f(x))l < 2% < 2%k o0l - 1K)

<(k-1)2 1on- 1K)

When n 2 2t(2) + 1 = 5, we employ the induction method to prove that
ISQ2", f(x)) < m 200k~ 1o001-1) (1.53)
Whenn=35,ift=2, thenn =2t + 1, and if t < 1, then n = 2t + 2. Therefore, by

Lemma 1.7,

r
IS, f(x) < ISy, onl . (1.54)
g
(1). mj= 1. It follows from Lemma 1.2 that 6j =t + 1 and =1
Ift< 1,thenn-0j=5-(t+ 1) 23 =2tj+ 1. We obtain, by Lemma 1.9,
.- -G 3.5
IS, ol =27 1182 %, g i <2
< 740k - 1 (1 - 1/k)

Ift=2, thenn-cj=2,andso
o.-1 2
lSuj, onl =277 7 1S(2%, guj(y))l.

Since

- (4
g0 =27Cyrqy) + 29" 5 2) (mod 22,

we deduce from Lemma 1.8 that
ISy, ol < 233 < oAk - 1 Hn(1 - 1/k)

(i1). mj = 2. We have as usual
IS, ol <2* <my2YK 20010
<mj 271 o - 1)

Suppose now that the hypothesis holds for all integers in [2t(2) + 1, n - 1], where n

2 2t(2) + 2 = 6. We consider the following cases.
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D). n<oj. If mj=1, then by Lemma 1.2, 6j =t + 1 < 3, but it is impossible. Hence

m; 2 2. It follows Lemmas 1.6 and 1.4 that
’Suj, 2"5 <on- 1 < 2crj/k -1 2n(l - 1/k) < 2n(1 - 1/%)

<mj27t 201K,
2).1<n-05<2t If mj=1, then by Lemma 1.2, 6j =t + 1 and tj=1. Thus o< 3 and n

- 6j 2 3, which contradicts n - 6j < 2tj = 2. Hence m; 2 2. When mj = 2, Lemma 1.5 gives
IS, ool < Z(mj +t+1 +t]-)/k -1 50(1 - 1/k)

< m; 240K - 1 5001 - 19,

When mj =3, Lemma 1.5 gives as well

‘S“j, ol < 28/ - 1 5n(1- 1K) m; 53k -1 (%) (1 - 1/K)

< my 21k~ 19901 - 1K),

For mj > 4, we obtain, by Lemma 1.4,

1Sy pnl <244 20V < ;%K= 2 01 -1

<mj; 27t on( - 1),
3). 2tj+ 1 <n-0j < 2t(2). If mj = 1, then by Lemma 1.2, oj=t+1andt = 1. Thus
3Sn—0‘jS4.

(1). n-0j=3. We make the substitution y = x + 2z in the sum S(23, guj(y)),

where x and z run 1ndcpcndcnt1y through the values x =1,2;z=0, ..., 3. Then
gy ()
IS(2°, g,y =1 z 238 T e2(H 21 SEODL

In view of the definition of gpj(y) we have

gy g fq) ') (},1)
ué + u12 Eztﬁjl-'- 21J y+— " (mod2). (1.55)
Since 2t*+1 ¥ £'(1L;), the linear congruence
£ (l:j) + f'[(li})l + fw) _ - Ki) =0 (mod 2)
2 2 2

has only one solution. Hence
Sy, ool =2 Lis@?, gu NI 2" 2
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< 2l/k -1 2n(l - l/k).
(ii). n - 0j =4 = 2tj + 2. It easily follows from Lemmas 1.7 and 1.6 that
IS al <2n-2<27/k-22n(1-1/k)
Hj, 2y = =

< 240/ - 1 5n(1 - 1K)

Suppose now mj = 2.
(A). tj=0. Thus 1 <n - 0j < 4. When mj = 2, we have tj = 1 by Lemma 1.11.
Thus mj 2 3. Lemma 1.4 gives that

ISy, ool <27 1 ¢ o+ 4)k-15n(1 - 1/K)

<m; Ak - 1 (%) on(1 - 1/4)

<m zd(k)/k -1 2n(l - l/k).

(B). tj=0. Here we have 3 <n- gj<4.
(). n-oj=3. It follows from Lemmas 1.9 and 1.4 that
| -G: -

IS, o0l =2%7 1 182" 9, gu oY) <2" 372

_ Z(Gj + 3)k-3/2 2n(l - 1/k)

< 23/k -1/2 2"(1 - 1/k)

< m 2l/k -1 2n(l - l/k).
(i)). n - 0j =4. When m; = 2, Lemma 1.11 gives that tj = 1. By substitution y = x +

222, where x =1, ..,4,z=0, ..., 3, we have
4 3

4 v . gx)
ISQ", g —IXEI €24(gp;(x)) on e2(—5—2) L.

By

GO
=2 R @ 20 wx + 207D (mod 2),

and 2'% 20 £, 221 20wy, and 2% 2 1 26"(j), we know that the number of

solutions of the congruence

8y (%)
*~J2———-ZEO (mod2), 1<z<2

does not exceed one. Therefore, by Lemma 1.4,
.- 4 -
ISy, o0l =2%7 118", gy <22
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= 50+ 4)/k-2 5n(1 - 1K)
<m;2 1 o0 - 14
Proof for the case m; 2 3 is similar to that of (A).

4). n 2 2t(2) + 1. By the induction hypothesis and I.emma 1.4 we obtain
o -1 n- o;
o;-1__ 4d&)/k-1,m-0)(1-1/k)
<27 "mj2 2 )

Smj 2d(k)/k -1 2“(1 - l/k)'

The lemma now follows.

Lemma 1.20. Let 8 <k < 15, p = 2, and f(x) be defined as (1.1). Then for
n=1,

ISQ2", f)) < (k - 1) 23K -1 01 - 1K)

Proof. Note here t(2) = 3. For n < 2t(2),

1S2", fe))l < 2" < 28K o0l - 1K)

<(k-1)2 10010

For n 2 2t(2) + 1, we will prove, again by the induction method,

ISQ™, fx))l <m 2%k~ 1on0- 1) (1.56)

Whenn=2t(2) +1=7,if t=3,then n =2t + 1, and if t < 2, then n = 2t + 2.
Hence we have, by Lemma 1.7,

182", fx)) < é 1Sy, onl . (1.57)

Fo
(1). mj = 1. By Lemma 1.2, we have 6j =t + 1 and tj=1. Since 6j<4,n-gj2 3.

It therefore follows from Lemmas 1.7 and 1.9 that
c; -1 D-0: n-372
!Si"‘j’ onl =271 TIS(27 7Y, guj(y))! <2

< 23/1( -1 2n(1 - l/k).

(ii). mj = 2. it is easily seen that
n-1_ __ ~7/k-2~n(1 - 1K)
'Suj, onl <2 <mj2 2
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<mj2 om0,
Assume now (1.56) holds for all integers in [2t(2) + 1, n - 1], where n >

2t(2) + 2 = 8. We consider the following cases as before.

1). n<oj. If mj =1, then Lemma 1.2 gives that 6j =t + 1 < 4, contradicting n > 8. Thus

m; 2 2. By Lemma 1.4,
< 907k -1 5001 - 1K)

<m;2 12010

,Suj’ 2]’11

2). 1<n-06j<2¢ If mj = 1, again Lemma 1.2 implies that n < 6, which contradicts
n 2 8. If mj 2 2, the proof is similar to that of 2) in Lemma 1.19.
3).2tj+1<n- Gj < 2t(2). Here we must have <2

If mj = 1, then by Lemma 1.2, cj=t+1landtj=1. Thus3<n - oj < 6. When

n - oj = 3, it follows from Lemma 1.9 that
lSuj, onl = 20i-1 lS(23’ gllj(y))l <+ 4k-3/2 (1 - 1K)

< 23/1( -1 2n(l - l/k).

And when 2tj + 2 =4 <n - 0j £ 6, we have, by Lemma 1.7,
ISp; 0l = 2911823, gu ) < n-2
< 92k -1 yn(1 - 1)

When mj = 2, by using a method similar to that of (B)(ii) in Lemma 1.19, we obtain
1Sy, ol < o0 -2 _ (05 + 4k -2 5n(1 - 1/k)

<mj2 1 n0- 1)

If mj > 3, then by Lemma 1.4,
ISp;, o0l = 2" < m; 205+ OK-2 (§') (1 - 1/k)

< my 221 gn1- 1),

4). n - 0j 2 2t(2) + 1. By the induction hypothesis and Lemma 1.4 we have
1Sy onl =27 1182" %%, g () < 2%y 261 o0 - 0PU -1

< m; 23/k -1 211(1 - I/k)-

This completes the proof.
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Lemma 1.21. Letk > 16, p = 2, and f(x) be defined as in (1.1). Then for n > 1,

ISQ", fo)) < (k- 1)2 120010,

Proof. Here we have t(2) = [ll%g] > 4. When n <2t(2),

ISP, f(x))l < 2" < 224Dk pp(1 - 1K)

<(k-1)2 1n1-10)

For n 2 2t(2) + 1, we apply the induction method to show that

ISQ", f(x)l <m 2 2110, (1.58)

Whenn=2t(2)+1,ift <3, thenn =22t + 2, and if t > 4, then n = 2t + 1. Thus we
have, by Lemma 1.7,

IS@", f) < § 1Sy, oml . (1.59)

Fd

(A). mj = 1. Lemma 1.2 gives that 6j=t+ 1 and t; = 1. Since t(2) 2t and
(2} 2 4, we have n - 6j = 2t(2) - t 2 1(2) = 4 = 2t + 2. It then follows from Lemma 1.7 that

IS, ool =2%" Lis@M -9, gy (NI <2" 2

< tontt-1l),

(B). mj 2 2. We trivially have
!S}lj, 2nl <o~ 1_ 2(2[(2) +1/k-1 2’n(l - 1/k)
<mj2 12 -0,

Assume now the induction hypothesis holds for all integers in
[2t(2) + 1, n - 1], where n 2 2t(2) + 2 2 10. We consider the following cases as before.
1).n<6j. lf mj=1, then by Lemma 1.2, gj =t + 1 andtj=1.Butn22t2)+2>t+1=
Gj, a contradiction.Thus mj > 2. By Lemma 1.4,

IS, ol <2 <my27 1270,
2).1<n-0;<2tj. fmj=1,thenby Lemma 1.2, tj=1andoj=t+ 1. Thus 1 <n-g;<

2. Butn-6j22t2) +2-t-121(2) + 1235, leading to a contradiction. Hence mj 2 2.

When 2 < m; < 3, it follows from Lemma 1.5 that



ISy onf <277 I p(my+t+1+1)k-1,n(1 - 1K)

< 2{2t(2) +4)k-1 29(1 - 1/k)
< 2n(l -1/K)

<mj2 12" -1

For mj = 4, we have, by Lemma 1.4,
< 2(O'j + th)/k -1 2n(l - 1/k)

<m; 2/ - 2 5n(1 - 1K)
-1 (1 - 1K)

1Suj’ 211!

<m;j2
3). 2tj+ 1 <n-0j <2¢(2). If mj =1, then again by Lemma 1.2, 3 <n - 0j < 2t(2). When n
- 6j =3, Lemma 1.9 gives that
S a0l =2%7 1187, gy <2
g2 1on(-1)
When 2t; + 2 =4 < n - 0j < 2t(2), it fcllows easily from Lemma 1.7 that
Sy o0l =2 lis@"-9j, gy <27 2
<271 - 1k
The proof for the case m;j > 2 is similar to that of 2).
4). n - 0j = 2t(2) + 1. By the induction hypothesis and Lemma 1.4, we get immediately
ISy, o0l =27 118", gy ()

<25 Im;2 120 -0 -1/

<m;2 1M -1R)

Nechaev and Topunov[36] proved that
IS(q, f))  <e® gl - VK,

where
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c(3) £2.835 =3 x 0.945,

and
c(4) £3.34 <4 x 0.84.
Hence we only consider k 2 5. In view of Lemmas 1.12, 1.14 - 1.21, and [26], we
have
IS(q, ) < k-DByp ' M -Dp
p<(-1)%/k+1) - DR+ Dpey
3k-1 1/k
: I &k-1Dp P
keps(k-1)HK2) (k-l)“/(k‘g<ps&-1>2
. I (k_l)p-1/2+1/kq1-1/k
(-1 p(k-1y2K/2)
- eF(k) ql -1k (1.60)
say, where

([ Ok r s <p < (k-1)HEHD

3% jfp=3and5<k<38

3% ifp=3and9<k<26
Byk) =9 1 if p=3andkz227 :

WK rp=2and5 <k <7

2% ifp=2and8<k<15

q 1 ifp=2andk 216

and in each product, plq.
Let xg = (k- D¥® 2 and yie = k - D¥®* D Then

3
F(k) = log(k - 1) 700 - 8(xi0 + 3 log Bp(k) +  (B0xi) - 8(y10)
P<yy

+ 3 8k - D) - 8(x9) + loglk - 1) (D) - ((k - 1))
11 2 2
- G- 100D - 8((k - 1Y)). (1.61)
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When 5 <k < 30, by direct computation for (1.61), we can obtain F(k) < 1.74k.
Suppose now k = 31. Since (cf. T. M. Apostol: Introduction to Analytic Number

Theory, Theorem 4.3)

X

e()

7(x) logx - 9(x) = logx > dt , (1.62)
tlog™t
2
we can write (1.61) as
" X
Fo _logk-1) (6®) .  log(k-1) 6®_ .
k k t log2t k t log2t
2 (k-1)2
+ .1;1—2» (1) logk - 36(yy) - 4logk)
= I1(k) + I2(k) + I5(k), say. (1.62)

For k = 1000, it follows from (1.26) and (1.27) that I3(k) £ 0. When 31 <k <
1000, it is easily seen that I3(k) <0, as m(x) logx - 8(x) is increasing.

When 31 < k <40, by (1.25),
%
dt
iog2t

k) < (1.001102) log(i‘ )

k1)
3 2+i/(k-2) )
< (1.001102) 08k -1 5 (e]) (1D 1y,
K i k-2 21og’ k- 1)

1\ 2+i/(k-2) .
Since L)) : 5 and (k - 1)'/0('2) are decreasing fork > 9 and 0 <1< 3, we have,
k(k-2)(2+/(k-2))
for k = 31,
Ir(k) < 1.2109. (1.63)

When 31 <k <40,

< % (n(48) log4$ - 6(48))

<0.5164.
Therefore, when 31 < k < 40, the theorem follows from (1.61) - (1.63) and Iz3(k) <0.
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For k > 41, in a same manner as the proof of (1.62), we obtain
Ink) < 1.1693. (1.67)

When 41 <k €60,
Lk < 231% (n(68) 1og68 - 6(68)) < 0.5302, (1.68)

when 61 <k <100,
k) < -65-—195 (7(108.8) 1log108.8 - 6(108.8)) < 0.5338, (1.69)

and for k 2 101,
K/(k-2) (kn])l+l/(k-2)
- (k-1
hoo < oottop ek GDTL T

(k-1)1+1/(k_2) k-1)

0.5+(i+1)/12 2/5

&-1) &' @
+3 |+ I+ ) —"
< 0.5680. (1.70)
Hence, when k = 41, the theorem follows from (1.67) - (1.70) and Iz(k) < 0. This

completes the proof.
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§1.2. An improvement to Chalk's estimation of exponential

sums.
1. INTRODUCTION.

Let q, p, k, f(x), and S(q, f(x)) be defined as in the previous section. Define t
satisfying p' i (kay , ..., 2a,, a,), where the symbol Il means that t is the highest power of

p such that p'| (kay , ..., 225, a;). Let iy, ..., u_ be the different zeros modulo p of the

congruence

p Y¥'x)=0 (mod p), 0<x<p, (1.71)
and let m, , ..., m_be their multiplicities. Set max, o M; = M = M(f) and

; m; =m = m(f). (1.72)

i=1

Some results for S(q , f(x)) have been obtained. Interested readers may refer to Hua
[26], Lonxton and Vaughan [29], or Ding and Qi [14].

Chalk [8] obtained ar upper bound for S(p”, f(x)) in terms of M.

Theorem A. (Chalk[8]) Suppose n = 2. Ifr > 0, then

| SE", f(x)) | < mkp¥M*+D ol - VM+D)] (1.73)
and if r =0, then

Sp", fx)) =0 for all n=2(t+1)

and otherwise | S(p”, f(x)) | < p>**!, where pt < k.

The case r = 0 is trivial, and so we assume r > 0 which implies M > 1. Ding [15]
improved Chalk’s resuit for the factor k.

Theorem B. (Ding [15]) Forr> 0 we have

I S(p", £(x)) | < mk!/2 pY(M#+D) poll - /M1 (1.74)
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_Jdogk
T’[log p]. (1.75)
Clearly,
t<t. (1.76)

Our purpose here is to improve Theorem B further for the factor k.

Theorem 1.2. Suppose thatn 22 or n = 1 and p < k. Then forr > 0 we have

| S(pn, f(x)) | € mp‘r/(M+1) pt/(M+1) pn[l - 1/(M+1)] ) .77

By (1.75), p‘c < k, and note that M > 1. Thus, (1.77) is better than (1.74).

Actually, this result is the best possible as shown by an example at the end of this section.

2. FUNDAMENTAL LEMMAS.

Let o; satisfy pSill f; + px) - £ and let
g =p T (f;+ po) - £1y)-
Define t; satisfying plill gi(y)-

Lemma 1.22 ([26]). With the above terminology, we have

< . ~t.
GJ—mJ""Hl tJ.

Lemma 1.23 (A. Weil [46]).
IS(p , fO)I < (k - Dpl/2.

3. PROOF OF THEOREM 1.2.

Let t' = max; ., g and & = max (t', t). Then

d<t. (1.78)

We employ induction on n to show that
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lS(p", fx))] < mp’c/(MH) pt/(M+l) pn[l - I/M+1)] ) (1.79)

1) n<2t. We have trivially

IS@", fx)) 1 s p" = p D pnll - UMD
< pZI/(MH) pn[l - 1/(M+1)]

Sp‘c/(MH) pt/(M+1) pn[l - 1/(M+1)] ‘

2) n==2t+1.Letx=y+pn't'1

z, where y = 1, ... , p
2=0,..,p"* - 1. If n > 2, then we have t > 1. This implies that for m = 3,

mn-t-1)=mt>22t+1=n.

Thus
pn -t-1 pt+l_1
£y) 1,
SELE) = T e aly) 3 ey Laritm) D).
y=1 P =0 P
By Lemma 1.23,
ph - b -1 £ .
SE% o)l <pt 3 13 ey Tarstm A
y=1 z=0 P
Spt+ 1/2pn-t-1
_.n-172

_ pIl/(M+1) -12 pn[l - 1/M+1)]
_ p(2t+ 1)/M+1) - 12 pnL - VM 1)
< p'c/(MH) pt/(M+1) pn[l - 1/(M+1)] ]

Suppose now n = 1 and p < k. Then 1 2 1. Therefore,
IS(", fx))l < p = pl/M+1) pl - 1/M+1)
< pV(M#1) pl - 1/(M+1),

as required.
3) n =2t + 2. By substituting x = y +pn'['lz, y=1, .. ,pn’t'l,z-:O, .
t+l 1, we have
] pn -t-1 pt +1_ 1
ISP Gl =1 T eaf(y) I e 1(zf'(y)!
yo1 P 0 P
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and

N

r P
< ¥l )3 epn(f(y)) i
=1 y=1
y=H;(mod p)
T
= X 151, say. (1.80)
1

Define sets A, i=1,2,3,4,5) by
A= {: n<g; 1,
A3={j: n'cj=2tj+1},

Ay={j: 2tj+2Sn-GjStj+‘r},

A5={j: n—cj>tj+‘c}.

Clearly,

5
y ¥ m; =m. (1.81)

=1 jeA;
We consider the following cases.
(i) je A,. We have , by Lemma 1.22,
1551 < - 1_ pn/(M+1) -1 pn[l - 1/(M+1)]

< p0'J~/(M+l) -1 pn[l - 1/(M+1)]
< p(mj +t+ 1)/M+1) - 1 pn[l - 1/(M+1)]
< pt/(M+1) pn[l - 1/(M+1)] )

(ii) je A,. Again by Lemma 1.22 we obtain

IS;1 = P 1= p“/(M‘”) -1 pﬂll - YM=+1)]

< p(cj + 26)/(M+1) - 1 pn[l - 1/M+1)]

< p(mj +i+1+ tj)/(M+i) -1 pn[i - 1/(M+1)]

< p(t + 7)Y/ (M+1) pn{l - 1/(M+1)]

(iii) j € As.Itis easily seen that

11 =p% 1sE" % g ! (1.82)
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Lety=u+piv,wherel<u<pi,0<vs p‘:i“-l.Then
2t +1

SE" %, gy =SETT, gi(y)
DIJ p[_] 1"1 q(u) 5
=3 p2:+1(gj(u)) > e ( V+2 gjve).
=1 v=)

It then follows from this and Lemma 1.22 that

pJ Pl
ISE" G g 1P I3 e (gp(J) +2 gV

=1

< p2[j +1/2

n-Gj— 12

_ M) - - 12 jall - 1M1

Thus, in view of (1.78) and Lemma 1.22, we obtain

I SJ | < pﬂ/(M+l) -32 pn[l - 1/(M+1)]

_ p(oj + 2tj + 1)/(M+1) - 3/2 Pn[l - 1/(M+1)]
< p(mj +t+1+ tj + 1)/(M+1) - 3/2 pn{l - 1/(M+1)]
.<_p([+ /(M+1) pn[l - 1/(M+1)] ’

(iv) je A,. If Ajis nonempty then T2 G+ 2. It follows from Lemma 1.22 that

Is;1 <p" I pn/(M+1) - 1 il - 1/(M+1))

< p(o‘j + [j +1)/M+1) - 1 p1'1[1 - 1/ M+1)]
< p(mj +t+ 1+ 0/(M+1) - 1 pn[l - I/(M+1)]
< p(t + T)/(M+1) pn[l - 1/(M+1)]
log k.
(v) je As. Let kj be the degree of g and let ‘cj = [_lo*gg—ial] . Since kJ <k, we

have 7.< 1. By the induction hypothesis and (1.78), we have

J
IS;1 <p%i~ m(g)p(t +T)Mg)) +1) 0 - 05) [1 - VM(gy+1)]

Sj - i (i +T)/[M(gj) +1) m )[1 - 1/(M+1)]

spt “m(g)p)

Since n - O; >4 +1, (\tj +1—-(n- Gj))/(M(gj) + 1) is negative. Therefore, by Lemma 1.22
and the facts that m(gj) < m; and M(gj) <M,

! §;1 <my p(cj +4+ 1)/(M+1) - 1 pn[l - 1/(M+1))
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< m, p(m_; +t+ 1+ 1)/(M+1) - 1 1Dn[l - 1/(M+1))

<m.
._I'.'lJ

By (1) - (v), (1.80) and (1.81), we see that (1.79) holds for Case 3). The theorem

n(t + 7)Y/ (M+1) Al - 1/(M+1)]
r r .

now follows.

4. Example. The following example shows that our theorem is essentially the

best possible.
Let p=2,n=1,and f(x) = X3+ x. By simple calculation,

1
S2,fX))= T ey +x) =2. (1.83)
x=0

It is easily seen that f'(x) = 3x2 + 1 so that t = 0. Since f'0)=1# 0 (mod 2) and (1) =

4=0(mod 2), wehaver=m=M=1. Now 1T = [Il—ggl%] = 1. Hence, our Theorem 1.2
gives that

2=18@2, f(x)) | <2VMHD1- VD -5



CHAPTER 2. CONGRUENCES
§2.1. The condition of congruent solvability

Letk, s, and q be positive integers.
Let N(q) denote the number of solutions of the congruences

X +...+xS=b1,

1
(mod q) 2.1

(xl)k+ e (x )ks b, ,
S
where 1_<_xi.<_q, (xi,q)= 1,1<i<s.
Forq= pn, with p a prime and n a positive integer, Hua [26] proved that if
2
p> 2N g qay, 2.2)
then congruence (2.1) is always solvable, where s > K+ k. By a simple observation, we

have
2
H>2¥ 13k, (2.3)

Hence, H is quite large. The purpose here is to reduce H to k2, approximately.

Theorem 2.1, Letk >3,
b(k) = (k - 1)2&-2) (2.4)

Then when s > 2k2, congruence (2.1) is always solvable for q = pn if
p = b(k). 2.5)

For the proof we will need some lemmas and the following notation.
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Let 3 denote a sum in which the variable x runs through a complete set of
x (m)
residues modulo m and 3} * denote a sum in which the variable x runs through a
x (m)

reduced set of residues modulo m.

Put
a a a a
TEE, ., by= yrekxX+ 4Ly, (2.6)
(Tnk M s ™ my |
where M is the least common multiple of my,..,m, e(m) = eznim. We also put
a a .
T(m, f(x)) = TCE, ..., L) = prOm @7
x (M)

where

f(x) = akxk +..tax+a, € Z[x]
such that (al, s By, p) =1

Define

M M
1 a a S
AM= 3 .. 3 (TG - 50)) oS- cb)  (28)
6=l c¢=1 o6M)
(ck, ,cl,M)=1

and

9, = YApPYH, A=l (2.9)

n=0
2rtim/M

where e, (m) =e , and as usual, ¢ (m) is the number of positive integers not

exceeding m and prime to m.

The symbols S(q , f(x)), r, m, Ky gu_(y), t and o; are defined as in Chapter 1.
J

Furthermore, we define

n
P

T = Y epn(f(x)) , TO =0. (2.10)
=1
x=v )({mod p)
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Lemma2.1. Letd2>2beanintegerandletb,,i=1, ..., d, be real numbers such

that bi =4 for alli. Then

d -1

$ b, <27 )Hlbi.
1=

i=1

Proof. We use induction on d to show the lemma. For d = 2, we want to show

that

b, +b, S%blb2 . (2.11)
Let

h(x,y)=xy-2x +y), X, y=24.
Taking gartial derivatives, we obtain

—ll%(;’-ﬂ =y-2>0,

and
———-—X-ahgy’ )=x-2>0.

Hence, h(x , y) is always increasing in each variable x , y > 2. This implies that
h(x,y)=h(4,4) =0, wherex,y >4,
which shows that (2.11) holds.

Let d = 2 and assume that the lemma holds for d. Then by the induction

hypothesis,
d+1 d @-1n d
Ebi= Zbi +bd+1s2 iI='[1bi+bd+1. (2.12)
i=1 i=1
Since
@-1ns g
2 1=H1 b, > Zbi >4,
1=1

the right side of (2.12) does not exceed
d+1

d
271 ((2'(d’l)iI=Ilbi)bd+1)=2'diI='[1 b, ,

as required.
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Lemma 2.2. Ifintegersd 2> 1, bi >1,i=1,..,d, then
d
zzbi < 2bi +...+bd.

i=1
Proof. The lemma follows from the simple observation that if a, b > 1, then

22,1 9P < 22%P .04 the use of mathematical inductioin.

Lemma 2.3. If n > 2, then

IT, |

_<_pn’1 ifnS(Sj
J

=p% lisp" % g LD ifn>o;
]

Proof. If n 2 2, then each integer x, 1 < x <p", (x, p) = 1, can be uniquely

expressed as

x=y+pn'lz, ISySpn'l,(y,p)=1,0S2<p.
vaiuj,j=1,...,r,then '
n n-1
p p p-1 0o1
T, = 2. e afx) = Y ealfy) X ealp zf'(y)
x=1 P y=1 P z=0 P
x=v (mod p) y=v (mod p)
n-1
p-1
= > e X e (zf'(y)
y=1 p =0 P
y=v (mod p)
=0.
Hence,
n
P
T, = 2 e n(f(x))
uj x=1 p
x=p (mod p)
n-1
= X ealf(y+py)- (2.13)
y=1 P
Fn< crj , then it is easily seen that
<nl-1
lTu.l <p 5,

J
and when n > Gj , by (2.13) we have
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n-1

— - O3 _ \

T, | = le n(fu) y‘§1 e n-o0" 7 (G +py) - £ W)
n-g;

p J

_ ].o;i-1
=T 5 o, 0

=p% lIs@e" % g, ).
J

This completes the proof.

Lemma 2.4.

T
™, fx) < Y IT 1 .
Z Hy
j=1
Proof. This follows directly from the definitions (2.7) and (2.10) as well as the

first proof of Lemma 2.3.

Lemma 2.5.[11] Ifn=1andp> (k - D®"? then
ISE™, fx) < p™t -0

Lemma 2.6. If p > (k- DX®"D ipen

IT@E", fE)) <{ Pl'llk(1+P' Zk-1YH forn=1
, Pn(1 -1k forn > 2.

Proof. For n = 1, by A. Weil's inequality (see Lemma 1.23), we have

immediately
IT, fx)  <IS(p, fx))l + 1
<k-1)pY2+1

=k-DpPa+p 2 x-1h
=Ge-Dp PVl Ve p 2 g 17
<spl a4 p 2 -1y Y,
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asp> (k- HHE-2D

Suppose nown=>2.If n > S;» then by Lemmas 2.3 and 2.5, we have
Gi-1 n- Gj
= p"J ]
lTujl P IS(p \ guj(y)l

< pcj -1 p(n - oj)1-1/k)

_ Pn(l - 1/k) pO’j/k—l .
(2.14)

Ifn< O'j , then by Lemma 2.3 we obtain

< n-1
ITlljl <p

1-1 -1
_ A1)

pn(l - 1/k) pcj/k— 1 ] 2.15)

7aN

It follows from Lemma 2.4, (2.14) and (2.15) that for any n = 2, we have

T
ITE", fx) < p" -0 3 poik-1 (2.16)
=1

Lemma 1.5 gives that

O. <m.+t+1,
J J

where t is the highest power of p dividing f'(x). Since p >k and (a,, ..., 3, ,p) =1, we

have t = 0. Therefore,

cj Smj +1, 2.17)
and so, by (2.16),
Tr
ITE™ o)) < ptd -0 3 @+ D/k-1_n1-1K s oy (2.18)
i1

Suppose p = 2X _ Since m, + 1-k £0, we have

r r r
3= Ep(mj+l-k)/k.§Zij+l-k=21-kZij.
J=1 =1 j=t

By Lemma 2.2, the sum at the right-most side does not exceed

2m1+...+mr=2m .

Thus,

ES 21-k+m<1

—_ 3

(2.19)
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asm+1<k.

A

uppose nowp<2k.lfr= 1, then

v = p(ml +1~k)/ks 1
Next assumer > 1. F p™i* D/X <4 forallj=1, .., 1, then

Y <4rpl<ak-1pl. (2.20)
Recalip=> (k- 1) 2K/l - 2), and so

Y <d4k-1) K- .21)
for all k = 2. Suppose some of the p(mj *D/X < 4 but some are not. Then, we may assume

pMj+ Dk gy v, v,and p™it DX S 4 5ov41, ., 1. Using Lemma 2.1,

3
v J ™ 4y

I
L o<@ve 3 p™r/pT

J=v+l
<(4v+ p(m‘,+1 +..+mp+ 1)/k) p-l
<@k-1)+p™/®pl
< (-1 +p* D/ p
= @4k-1)p 1&gy plk
<@k-1) 1-(1-1/k)(2k)/(k-2) +1) p-l/k
= (k- 1) " HE-2D gy ik
<1 (2.22)

—_ 9

sincep2(k-1) 2K/ -2)
Ep™i+ /%54 forallj=1, ..., 1, then again by Lemma 2.1,
> Sp(ml +..+me+1)/k-1

=p(m+1—k)/k
<1. (2.23)

The lemma follows from (2.18) - (2.23).

Lemma 2.7. [26]

n .
T AQPYH =p™ ¢ 5™ Np" .
1=0



Lemma 2.8. For s > 2k° andp=>(k-1) 2K/(k - 2), we have

k- sk
13, - 11 szf—_;.—1)5a +p 2 -1yl

Proof. By Lemma 2.6, if p> (k- 1) 2/®-2 then

1-1 -1 -1
IT(%,...,EI—)IS{ p 1+ p P k-1 forn=1
pn pn Pn(1 - 1k forn=>2.

Thus, by (2.8), forp = (k - 1) X*-2) whenn>2,
n n
p p
A <p™ () 3 L3
¢(P ) ak=1 a1=1
(ak 3 =ew ,al'p pn) = 1

n(1-1/%) g )
- " - p® - DKy

' - 1/p)
=p"&- - pHa-plys,
and

P p
A@ < d+p Px-yY () s v

() a=1 a;=1

— (ak y aee ,al, p) =1
= Gy @-va+p P &-1y

=p - pHa-pyta+p k-0
Hence, recalling (2.9) and the fact s > 2k>,

13- 11 <(1- Y A-p S (K K 4p -1y T prk )

n=2

2(k - s/k)
=(1-p - p Y Fa+p P k-1 f-?—.-sz)

k -s/k
= (1-p'Ha- p“)‘sf—k—,—;,k—
-P

(@ +p 2 x-1H (1 - pF 95 4 pE-5K)
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k-s/k
< P (1 +p -y - pt s phosh

(1 ;(P /k)
-5,
=2 —@+p -1,
I-p )
as required.
Proof of the theorem. Suppose p > b(k) and s 2 2k2. Define
k - s/k -1/2 -1is
1-p ")
and
Wk, p, s) =log w(k, p, s). (2.25)
Then

Wik, p,s) =(k-sk)logp- slog(1-p H+slog1+p 2 x-10Y). (2.26)

Now
év'!%(*"&“s‘)' = -%clogp-log(l-p'l)+10g(1+P'1"2 (-1
S
1-1/k -12 -1
- log® ¢ ;131 k-1 ) (2.27)

We will show that p(1 - p ¥ (1 +p 2 (k - 1)) > 1 which implies

1-1/k -1 -1
pd R -1y, (2.28)

Clearly, p(1 - p" ¥ (1 +p 2 (k - 1)1)) is increasing with p. Thus, if p > b(k), then
p(1-p A +p P k-1
> k- DX D -1 D+ - 1y HED e 1y
= (k- 1)2(k-1)/(k-2)((k_1)2/(k-2)_1_(k_1)-(2k-2)/(k-2))
> (- 120 DIR-D g1y 20D g gy @k-2)ik-2);

= R, say. (2.29)
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Since for x = 3,
IN2
x2% = e@logx _ g % log x + 217 (;) log2x + ...,

Thus,
2 - - 2, 2 - - -
R 2k-1) (k- DAk )(——(l i k-1) (Zk - 2)/(k 2))

2( 2 1
2 (- 1)* (g7 '(k_l)z)

1
=k-1) Q- 77

>1, fork = 4.
If k = 3, it is easily seen that
R =2*(3-2%>1.
Thus, by (2.29),
p-p 1 +p P - > 1.
Consequently, (2.28) holds. Therefore, by (2.27) and (2.28),

oW(k, p, s) <

S 0, forp>b(k),s=2k>andk > 3.
S

Hence, W(k, p, s) is decreasing for s 2 2k%. By (2.26),
Wk, p,s) <-klogp- 2k%log(1-p H+2k%log (1+p 2 (k- 1)’V

=Wi, p), say. (2.30)
Since
oW1k, p)  k 2k K 0
3 =P 2 - 12 1, 372 <
p p-p (I+p “(k-1))p (k-1

it follows that W (k, p) is decreasing with p for p = b(k). Thus,
2
W1 p) < - 25 log (k- 1) - 2k log (1- by )+

54



2k% log (1 + b(k)” Y2 (k- 1)), 2.31)
If0<x <1, then
log(1-x) = -x- x2/2 - x3/3 -
This implies that
2 3 2
log(l-x) 2 -x-x72-x(1+x+x"+..)
= -x-x2-x/1 - %). (2.32)
By (2.31) and (2.32),

2k 2¢ 1 1 1
Wik, p) € - £ log (k- 1)+ 2K (b(k)+2b

+ +
®*  b)AOK) - 1>)

2k?
b(k) 2 (k - 1)

= Wa(k), say. (2.33)
Here we have used the well-known fact that log (1 + x) < x, for x > 0. Since b(k) >

k - 1)2, it is easily seen that W5 (k) < O for all k 2 3. Therefore, by (2.30) and (2.33), we

have
Wk, p,s) <0.

On recalling (2.24 ) and (2.25), we have
pk-SIk (1+p 172 (k - 1)-l)s< .
a-pH° '
By this and Lemma 2.8, we obtain
9,>0,  forp=b(kands> 2%2. (2.34)

By (2.9) and Lemma 2.7, we have
T nk .-s. n n
dp= lim p™ ¢ "(p") N(p". (2.35)

It follows from the definition of N(m) that if there exists an ng such that N(p"o) =0, then
N(p™ = 0 for all n > ng. Hence, by (2.35), ap = (), contradicting (2.34). This implies that

N(p"™) > 0 for all n and p > b(k).
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§2.2. On polynomial congruences modulo p®

As usual, let p be a prime,

f(x) = agxX + ... + a;x + 3 (2.36)
be a polynomial with integral coefficients such that (ax, ...... ,a1,p) =1 and write
SE™fx)= 3 en(fx), (2.37)
x mod p"

where the sum is taken over a complete set of residues modulo p" and
Cpn(t) = exp(2mit/p").

We denote by Va(f, p) the a set of f modulo p®, that is,

Va(f, p» = {x mod p™ f(x) = a (mod p")} (2.38)
and put

N =N(f, p™) = Card V,(f, p"). (2.39)

L. K. Hua [26] proved that

IS@®, f(x) < k3 phll- /] (2.40)
and so one can deduce that

N, p) < (2 +2 ) K3 pnll - (W]

Define t satisfying pt Il (kag , ..., 2a2, a1), where the symbol Il means that tis the
highest order v such that p"I (kay, ..., 2ap , a1). Let {1 , ... , Ur be the different zeros

modulo p of the congruence
pf'(x)=0 (mod p), 0<x<p,

r
and letmj , ... , m; be their multiplicities. Put max mj=M =M(f) and ¥ m, =m = m(f).
1<i<r i=1
Recently Chalk [9] obtained that

N, £(x)) < (2 + V2 ) m k pY®M+D pnll - (I/M+1))] | (2.41)

P

by using his result on exponential sums (cf. Chalk [§]).

Let 1= i—g—g—% . Note that
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p-<plogk/logp = (2.42)
We proceed to prove

Theorem 2.2.
N(P™, f()) < (2 + V2 ) m p¥M+D pUMsD) pall - (/M D), (2.43)

By (2.42),
pt/(M+ 1) < gVM+ 1) ’

which is clearly better than (2.41) asM 2 1.
Proof. We have

p% p*1
NELIx) =p* 3 T e q(z(fy)-a)
y=1 z=0 P
p*1 p”
=p® T eqglza) Te a(Zf(Y))
z=0 P y=1
Thus
p%1 p”
NE™ ) <p @ 3 |3 e oyl +1
z=1 y=1 P
p*1
=p & ¥ ISE% ()l + 1.
z=1

Note that there are at most p* ~ ¥ values for z such that z = p'u with p / u. This implies

that
pa 1 o1
3 ISEY, Ayl < 2 p' p*VIS(P* Y, fO).

z=1

By Theorem 1.2, we obtain
o
M+ 1) 3 p(a- vY(1-1/ M+ 1)
v—O
<mp pt/(M+ 1) ( ——v(l -1/M+ l))) p(!(1 -1/M+ 1))
WO
<@+ \5 ym p1/(M+1) pl./(M+l) pn(l - (1/(M+1))),

NE" f(x)) <mp'p

since
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o oo
> p—v(l»I/(M+lj)< 5 p—v/2

v=0 v=0
_ 1
1- p—1/2

<2+42,

as M =1 and p = 2. This completes the proof.
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CHAPTER 3. SMALL SETS OF k-TH
POWERS

§3.1. Small sets of k-th powers
1. INTRODUCTION.

The famous Waring problem states that for every k =2 there exists a number r >
1 such that every natural number is the sum of at most r kth powers. Let g(k) be the
smallest possible value for r. Analogous to g(k), let G(k) denote the minimal value of r
such that every sufficiently large integer is the sum of r kth powers. Clearly G(k) < g(k).
In 1770, Lagrange proved that g(2) = 4. Since every positive integer of the form 8t + 7
cannot be written as the sum of three squares, G(2) cannot be 3, and so G(2) = g(2) = 4.
In 1909, Wieferich [47] proved g(3) = 9. Landau [27] and Linnik [28] obtained G(3) <
8 and G(3) <7 in 1909 and 1943 respectively. Though forty-nine years have passed
without an improvement to G(3), it is never-the-less conjectured that G(3) = 4 (cf. [37], p.

240).

Choi, Erd6s and Nathanson [12] showed that for every N > 1, there is a set A of
squares such that Al < (4/log2) N 13 logN and every n <N is a sum of four squares in
A, here and below we denote by |Al the cardinality of set A. Nathanson [33] proved the

following more general result.

Theorem A. Letk >2 and s = g(k) + 1. For any € > 0 and given N > N(g) there

exists a finite set A of k-th powers such that

Al < (2 + g)NV/+D

and each nonnegative integer n < N is the sum of s elements belonging to A.
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Our Theorem 3.1 is a generalization of Theorem A (Theorem A is the special case r

Theorem 3.1. Letk =2 and for any positive integer r let uy = g(k) + r. Then for
every € >0 and given N = N(1, £), there exists a finite set A of k-th powers such that
Al < Cr,e)N VD
and every nonnegative integer n < N is the sum of u; k-th powers in A, where C(r,€) =

(1 +e) + 1.

Since in most cases G(k) < g(k), one could naturally think of sharpening Theorem

3.1 in terms of G(k). Our Theorem 3.2 achieves this goal.

Theorem 3.2. Let k 2 2 and q = g(k) - G(k). For each posiiive integer r 2 q let

uy = g(k) + r- q. Then for every € >0 and given N 2 N(r, £), there exists a finite set A of

k-th powers such that

1Al < C(r, &) NYE+D

and every nonnegative integer n < N is the sum of u;' elements of A, where C'(r, €) =

rQ+e)+1.

We list known values and estimations for some g(k) and G(k) in order to facilitate

the comparison of Theorems 3.1 and 3.2 (cf. [37], Chapter 4, {44], [45], and [48]):

g(4)=19,G(4)=16; g(5) =37, 6 <G(5) < 18; g(6) = 73,9 < G(6) £ 27,
143 < g(7) <3806, 8 < G(7) < 36; 279 < g(8) < 36119, 32 < G(8) < 47;
£(9) = 548, 13 < G(9) <55; g(10) = 1079, 12 < G(10) < 63.



To compare Theorems 3.1 and 3.2 let the r of Theorem 3.1 equal the r-q of

Theorem 3.2. For example, if k=6 let r=q+1247. Theorem 3.2 gives IAl <
(6(2+£)%+1)N153 and Theorem 3.1 gives 1Al < (6(1+€)°+1)NY7 and in both cases all n <

N (for sufficiently large N) are the sums of 74 elements of A. It appears that q is large for

all k 2 3 (even small k).
We give a corollary which is an application of Theorem 3.2 to cubes.

COROLLARY. Forevery £ >0 and given N 2 N(g), there exists a finite set A of
cubes such that

IAl< NP +E

and every nonnegative integer n <N is the sum of nine cubes in A.

Next, Theorem 3.3 is for squares.

Theorem 3.3. For every N > 2, there is a set A of squares such that

IAl <7 N4

and every nonnegative integer n <N is the sum of at most five squares in A.

Since g(2) =4, g(2) + 1 =5. Taking k =2 in Theorem A, the conclusion is that
there exists a finite set of squares such that Al < (2+€) N ang every nonnegative integer
n < N 1s the sum of 5 squares. Hence our Theorem 3.3 is better, for large N, than the case

k =2 in Theorem A. For example, if N = 1012, then Theorem A gives Al < (2 + e)N13 =

20,000 while Theorem 3.3 gives IAl < 7N14 = 7000.
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Unfortunately our methods do not readily lead to infinite basic sets A of kth powers

with IAN{1,2, ... ,N} < cN® for all N where o < 1/k.

2. PROOF OF THEOREM 3.1.

Let £€>0 andrand N be positive integers. Define
Ag={a": 0<a<(l+g NV/K+D

k4

Ap={[s"FNVEEFD R cg <@g INVEED

y

Ag={[s/NEF DG+ k. g <14+ 2NUK+D

Ap={ s NEHT- DG .y oo VD

Let A=AgU A1 UAU ... UA;. Then

AISA+A+8) + (1 +8)% 4 + (1 + 8 NYE+D < 0 ) NI/K+D).

It follows from the definition of g(k) that each integer n e [0, (1 +&)® N¥®*j i 5
sum of g(k), hence of uy = g(k) + 1, elements of Ag C A.

We need two lemmas.

Lemma 3.1. If NY®&¥D o n <1 4o ING+D&+D 1o there is an integer

tllc € Aisuchthat n- tllc is a sum of g(k) elements of Ag .

Proof. Suppose Nk/(k + 1) <n<(l+g)f 1 N(k + D/ +1) . Define s =
[\Ik/(rllc_;_r)]and t1=[s"* NY&+D ] Theri s <1+ I NV/K*D,
h 4\ A
n- tlli > 51 Nk/(k+r)_sl Nk/(k+r)___0,
and
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n- ff <(sp+ ) NVEFD_ (gl NU+D gk

k-1 . )
kf k/(k k -
=(sp + 1) NME#D g NWk+1) .21 (j)(-l)k Jsl{kNJ/(lHr)
J:

< (1 + 25 (1 + )&~ Dk g -kl + D)y (ke +1)
<(1+g) N&k+D

provided N 1is sufficiently large. So n - tllc is a sum of g(k) elements of Ag c A and

consequently n is a sum of g(k) + 1 elements of A. This completes the proof of

Lemma 3.1.

Lemma 3.2. Let NK+/K+D o gyr-i-lgk+i+Dk+n o0

k

€ Ajs1 such that n -t . e

1 <1 <r - L.Then there exists an integer tX i+ 1

1+1
[0, (1 +g)NE VODy (g (1 4 gy -0 NK+DMk+D)
Proof. Suppose Nk + D/k + 1) <n<{+ef” i-1 N& +i+ DAk + r)’ where

. . n
1 €1 € r - 1. Define Si+1 =[N(k+i)/(k+r)] and tjy; =

k+i)/(k+r)<n

[ stk NG+ Dk + D) 3 ey £ € Airl, sig1 N <

1+1

(sie1 + 1) N&+ Dk +1) _and Sllﬁ nik+ Dk +))_ o tie] < le-c{l; Nk + Dk +1) ¢

l’l-tk

1 > Si+] N(k+ D/k +1) - Si+] N(k +)/(k +1) =0

and
n- ti-l:l <(ie1+ 1) N(k +D/(k+1) -( Sl/k N(k +1)/(k(k + 1)) _ 1)k

i+l

=(sis1 + 1) N(k+i)/(k+r) - Sivl N(k+i)/(k+ 1)

1+1

k-1 . . .
- 2 (k) (_l)k’JsJ/k Nl(k"’l)/(k(k"’r)
=1

< NE+Dk+1) | -k (Si+1)(k - D k- Dfk + 1)
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< N&+D/Ek+1) Sk (1+ E)(r-i)(k-l)/kN(k - D/ +1) + k- 1D/Kk+1)
=(1+25(1 + e V&DA -G+ 10/k+ Dy NG+ Dk +1)
<(1 +¢g) N(k'*'i)/(k'*'r)’

for sufficiently large N. This completes the proof of Lemma 3.2.

We now prove Theorem 3.1. If NKE+D n<(l+¢) TN+ DAk +1) , then it

follows from Lemma 3.1 that there exists an integer tll( € Aj such that n - tl; 1s a sum of

g(k), hence of g(k) + r, elements of Ag c A.

Suppose NE*VE+D o 4gyr- - INK+I+ DUk 1 iy By

k

€ Aj4+1 such that n - 1€

Lemma 3.2, there exists an integer til-il

[0,(1+&) IN*TVED ) write m=n-X I me [0, +e) NY®] then m

is sum of g(k) elements of Ag, and so n is a sum of g(k) + 1 elements of A. If m e (Nk/(k +
n 1+ NG+ Dk +1) ], then Lemma 3.1 yields that there is an integer tlf € Aj such

that m - tllc is a sum of g(k) elements of Ag, and so n is a sum of g(k) + 2 elements of A

(Note that in this case r=2). If
me (N(k+J)/(k+r) , (1 +£)l'-j—l N(k+j+ 1)/(k+r)]

for some j, 1 <j <1, then again by Lemma 3.1, there exists an integer tji(l € Aj+1 such
that m - tji(l e [0,+¢) - N+ Dk +1) 1. Repeatedly using this method, finally we

get a sequence { a1, 07, ..., 0y } of positive integers, where o} > 0y > ... >y, 1 <

v <1, such that t(fwe Aawforall 1<w<vand

1 - LI, o
n-tk-t“ - s -to‘t‘ve[O,(1+e)‘N"“”)].

k k k . .
Therefore n - toll - ta2 - e - tav is a sum of g(k) elements of Ay, and so n is a sum of

g(k) + v, hence of g(k) + r for v <r, elements of A , as required.



3. PROOF OF THEOREM 3.2. Let &> 0. Define
Ag={a": 0<a< @+ N/&K+D

Aj = ([sMNEFT DK Oy cg g INVEAD 3 5oy 1

Let A=AgU A1 U ....... U Ar. Then
AIS(1+Q+€) + Q2+ + ... +(2+8)r)N1/(k+r)
<@ @+ + PNVE+D

=C @, g) N/&+D

for sufficiently large N. Now each integer ne [0, (2 + e)rk N¥/&+D ] is a sum of g(k)
(of course of uy' ( = g(k))) elements of Ag . Again we need two lemmas. We omit the
proofs which are analogous to those of Lemmas 3.1 and 3.2. (Just let s;4+1 here be one less

than the sj;+1 in Lemmas 3.1 and 3.2 (0 <i<r-1).)

Lemma 3.3. If N¥K*D o n <24+ " INK+DKHD pen there is an integer
tll( € Ajsuch that n - tll( is a sum of G(k) elements of Ag.

Lemma 3.4. Let NCFV&+D ooy gy -i-INK+i+D/k+n o1 <
1<r- 1. Then there exists an integer ti;+] € Aj4] such that n - ti_lfl €

[ N(k+ /(k+1) L2+ E)N(k+ i)/(k"'r)] cl N(k+ 1)/(k+1) L2+ E)r -1 N(k +D/(k+71) 1.

We proceed to prove Theorem 3.2. If NME+D o< 2+¢) -1 N+ DAk +r),

then it follows from Lemma 3.3 that there exists an integer tl.f € Aj such that n - tlic is a

sum of G(k) elements of Ag and so nis a sum of G(k) + 1 elements of A.

Suppose NE+V&+D g ygr-i-Ink+i+ k4 4 o5 By

Lemma 3.4, there exists an integer tilil € Aj+1 such that n - t-fle

1
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[NK+DE+D 5 ey INK+HDK+Dy write m=n- tX . If me

1+1
[ Nk + ’),(z +g) NK/&+T) ], then m is sum of G(k) elements of Ag, and 5o n is a sum of
G(k) + 1 elements of A. If me (NY&*D (24 g " INK+ DE+D 1 e 1 emma 3.3

yields that there is an integer tlfe A1 such that m - tllc 1s a sum of G(k) elements of Ag,

and son is a sum of G(k) + 2 elements of A (Note thatin thiscaser=2).If me (N (k+

DAk +1) , (2+e)r'j' InK+i+ 1)/(k’”)] for some j,1 <j <1, then again by Lemma 3.4,

. k
€ Aj+1 such that m - t ., €

there exists an integer X ;

7+ 1
[ N& + /G +1) ,2+e)f I+ D+ ]. Repeatedly using this method, finally we get a

sequence { a1,02, ...... , 0y } of positive integers, where ] > a > ... > Oy,

. k

<v< <w<
1 £v <i, such that tawe Aawforalll <w<vand
k k k/(k + 1) 1 \gk/(k + 1)
n-t, -t - ... -t, €[N ,2+¢) N .
o la, o€ [ @+¢) ]
k k k . .

Therefore n- tOll - t'_.x2 - e - t"v is a sum of G(k) elements of Ag, and so n is a sum of

G(k) + v, hence of G(k) + r as v £, elements of A . Since G(k) = g(k) - q, this

completes the proof of Theorem 3.2.

4. PROOF OF COROLLARY. Since g(3) =9 and G(3) <7 by Linnik's theorem,we can
take r = q = 2 in Theorem 3.2. Then u; =9 and the result follows for sufficiently large N.
If G(3) = 4, then this corollary is immediately improved to

IAl < N1B+e

5. PROOF OF THEOREM 3.3. We start with a lemma the simple proof of which
may be found in [12].



Lemma 3.5. Let a>1.Let m>a> and m 20 (mod 4). Then either m - a’ orm

-(a- 1)2 is a sum of three squares.

Now define Aj={b%: 0<b<3NY* and b® <N }.Let Ay consist of the
squares of all numbers of the form [k11/‘2 N1/4] -1, where 9 <k; < N1/4 andie {0,1},
and let A3 consist of the squares of all numbers of the form [ko > N3] - i, where 2 <k,

<N andje {0,1}. Then IAI<3 N 11, 1a50<2 N _ 16, and 1A51 <2 N4 .2,

Let A=AjUAyUAs, then 1Al <7 N4

The set Aj contains all squares not exceeding min (N, 9 N2 ). This implies that if

0 <n<min (N,9N1/2) then n is a sum of four squares in A1 CA.

Now suppose 9 N2 <n < N** put k= [N“sz] ,b = k12 N4, Clearly

9 <k; <N and b <n.Ifeitherc =borc=b- 1 then Lagrange’s theorem yields that
n-c” is the sum of four squares. Note also e A» . Since kj N2 <n< (k1+1)N1/2 and
b <k N <b +1, it follows that
0 <n-c?<@q + HNZ_(b-1)?
< (ky+ 1) N2 _ 112 NV4 292
<N 4 4142 N4
<9 Nl/2 .

Thus n - ¢2 is the sum of four squares in Aj. Hence if 0<n < N4 and n # 0 (mod 4),

then n is a sum of five squares in A.

We now consider the case N3/4<nSN.Putk2=[N—I;/Z] ,a=[k21/2N3/8] I c

1s either a or a-1, then
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0<n-c?<(ky+ DN @- 12 <N 14N,

1/2

If 0<n-c><9N , then n - ¢ is a sum of four squares in Ay . Suppose now

9 N1/2 <n- C2 SN3/4 + 4N1/2. Write m =n - czwhcre we may choose ¢ so thatm # 0
(mod 4). Put k3 = [;5175] and b = [k3'/>2N'4] . Thus 9 < k3 < N/ + 4,

b2 <ksNY?<m .Ifdiseitherborb- 1, thendis in Ay and
0<m-d’< @+ )N b-1)2<9N”,
Thus, by Lemma 3.5, we may choose d such that m - d? is a sum of three squares in Aj.

Hence n is the sum of five squares from A. This completes the proof.
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§3.2. Small sets for squares

1. INTRODUCTION.

Lagrange proved his famous theorem in 1770 that every positive integer is a sum of
four squares. Consequently, for k 2 4, every integer is a sum of k squares because one can
always write n = x12 + x22 + x32 + x42 +0% + ... + 0°. The more interesting problem is
then to consider the representation of positive integers n by k nonvanishing squares. For k
= 4, the problem has been solved by Dubouis [16] in 1911. The result is, for k = 6, all
positive integers are sums of k nonvanishing squares except for 1, 2, ... , k- 1 and all k +
b, wherebe B={1,2,4,5,7, 10, 13},and for k = 5, the same statement holds with b €
B v {28}. For k = 4, all positive integers are sums of four nonvanishing squares except
for the finite set consisting of 1, 2, 3 and n =4 + b, where b € B U {25, 37}, and the
three infinite sets 4°m with m = 2, 6, 14. Fork = 3, Gogisvili [17] proved in 1970 that
there exists a finite set T of positive integers with t elements, TD> { 1, 2, 5, 10, 13, 25, 37,
58, 85, 130}, and such that every positive integer n which is neither of the form 42 (8m +

7) nor of theform n = 4°m withm € T is a sum of three nonvanishing squares.

Let A be an increasing sequence of positive integers and define

Ax)= Y 1
a<x
acA

Choi, Erdés, and Nathanson [12] proved that Lagrange's theorem holds for a

AIE

sequence of squares satisfying 1Al < (4/log2) N 13 logN and they conjectured that for

[(1/4)+e

every £ > 0 and N = N(g) there exists a set A of squares such that |Al <} and every

n <N is the sum of four squares in A.
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We first consider nonvanishing squares. For every € > 0, we construct a set A of
squares with IAl < NVRHE gor sufficiently large N and every integern, ® <n <N, is a sum
of (k + 1) nonvanishing squares in A for some positive integer ® and for all
k>4

P. T. Bateman and G. B. Purdy [1] proved that every integer greater than 245 is the
sum of five distinct squares. Naturally, we would think of small sets for distinct squares.
In the third section, for each k > 3 we construct a set A of squares such that Al <

k(2+e)kN1/k and every integer n, Nf <n €N, is a sum of (k+3) distinct elements of A,

where € is a small positive number less than 0.0064.

2. NONVANISHING SQUARES.

Lemma 3.6. (cf. [18]) Every positive integer n = 42 is a sum of four

nonvanishing squares except three infinite sets 4°m with m = 2, 6, 14.
For convenience, write £= {4am: m=2,6,14}.

Lemma 3.7. (cf. [16]) There is a positive integer ® such that if n is a positive
integer > and n is not of the form 4%(8m + 7) and n # 0 (mod4), then n is a sum of three

nonvanishing squares.

Lemma 3.8. (cf. [18]) For k = 6, all positive integers are sums of k
nonvanishing squares except for 1, 2, ..., k-1 and all k+b, where be B = {1, 2,4, 5,7,

10, 13}, and for k = 5, the same statement holds with be B U {28}.

Lemma 3.9. Letb> 1, n-b%>42, n# 0 (mod4). Then either n - b2 or n -

(b- 1)2 is a sum of four nonvanishing squares.
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Proof. By Lemma 3.6, if g = 42 is not a sum of four nonvanishing squares then q
must be of the form 4°m with m =2, 6, 14 and a > 1. Define

B b if b is even
c‘{ b-1 ifbisodd °’

then c is even and 02 = 0 (mod 4). Hence n - c2 # 0 (mod4) as n # 0 (mod4). It then

follows from Lemma 3.6 that n - ¢ is a sum of four nonvanishing squares.

Lemma 3.10. Letb>1,n- b2 >, n# 0 (mod4), where @ is as chosen in
Lemma 3.7. Then there is a positive integer ¢ , where ¢ is either b or b - 1, such that

2. -y
n - ¢” is a sum of three nonvanishing squares.

Proof. If an integer q > ® is not a sum of three nonvanishing squares, then either
g =0 (mod 4) or ¢ =3 (mod 4). Suppose b is even. If n =1 or 2 (mod 4), then
n-b’=n (mod 4), and so n - b2 is a sum of three nonvanishing squares. If n = 3
(mod 4), then n - (b-1)>=n-1= 2 (mod 4). Thus n - (b-1) is a sum of three

nonvanishing squares. If b is odd, then b-1 is even, and so we can obtain the same results.

Theorem 3.4. There is a set A of squares with IAl < (4/log4)N Y 3logN for
sufficiently large N and every integern¢ £,42 < n <N, is a sum of four nonvanishing
squares in A .

Proof. Let N be a large integer. Define

Ag= {a2: 1<a<2N' }
and

Ar={s"2N")2 .5 1<s<NY3 je (0, 1))
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Let Ap = Ag U Aj. Then lAsl < 4NV 3, Note that Ag contains all positive squares in
[1, 4N*3). 1£ 42 < n < 4N23 and n £ 0 (mod 4), then it follows from Lemma 3.6 that n is

a sum of four squares in Ag.

-42
Suppose AN <n<Nandn #0 (mod 4). Puts = 91\1—27—3-] andt = [SI/ZNIE].

Then 1< s < N3 sN?2 + 42 <n < (s + )N?P + 42, and sV2NY3 1 <1 < 512N13. we
obtain
n- t2 > sN2/3 +42 - sN2/3 =42,
and
n-(t- %< s + DN?3 + 42 - (s1PN13 2)2
=N+ NP 4 42 - NP 4 4s1PNYR 4
<N?B + 42 + 4N
< 2N,
for sufficiently large N. Then, by Lemma 3.10, n - c? is a sum of three squares in Ag ,
where cis either t or (t- 1). Clearly, cZ is nonzero and in Aj. Hence, n is a sum of four
squares in Aj.
Let A= {4%% a%e Ay, b20).1f42<n<Nandn¢ £, thenn = 4°m with m #
0 (mod 4) and m # 2, 6, 14. By the above argument, m is the sum of four squares in Aj.
Consequently, n is the sum of four squares in A. Note that the number of b is less than or

equal to logN/log4. This implies that [Al < (4/1og4)N'2logN as required.

Theorem 3.5. Let € >0 and k be an integer > 4. There is a set A of squares with
1Al Sl—ozg%(l + € )kNI/klogN for sufficiently large N and every integer n, Wx < n <N, n ¢

L, is a sum of (k + 1) nonzero squares in A, where @ = max (k + 29, 42).
Proof. Let N be a large integer. Define
Ag= {a2: 1<a<( +e)kNUk },
= (AN o o< e INYK jeo, 1), i=1, .., k- 1.

-

>

72



Let A'= AgU A ... U Ag.; . Then 1A < 2k(1 + & )XN¥. Note that Ag contains all

2kN2/k] '

<n<(l+e)k 3/kandn$0(mod4). Put s; =
l/k 2/k

positive squares in [1, (1 + &)

Suppose (1 + e) ky2/k

, SIN + O £n<

[55 ] and 11 = [s"N¥]. Then 1< s1 < (1 +¢)F
N

(s1 + DN"* + oy, and !NV -1 < 17 < sYENX We obtain
n- t% > slNz/k + @ - 51N2/k = W,
and
n-(t-1)% < (sp+ DNY* 4 @ - s/ENVE 2)2
= slN?'/k + N?'/k + @ - slNz/k +4 sl/lle/k -4
<Nk 4 oy + 4N3/(2k)
<1 +e)N,
for sufficiently large N. Then, by Lemma 3.10, n - c% is a sum of three squares in Ag,
where ¢ is either t] or (tj - 1). Clearly, ¢ is positive and in A1. Hence, n is a sum of four
squares in A’ _
SINVEC b < (1 + & YOFINGEDE 4nd 120 (mod 4), where 2< i

Assume now (1 +€)

-
< k-1. Put sj =[n—I\—IT/k1£] and tj.1 [s Nl/k] It follows that 1< sj.; <

1/21'Nl/k

(1+¢ )k ”1 lk y Sj- 1N’/k + @k < n < (8j- 1+1)N/k + Wk, and s -1 <tjo £

S }{“Nllk. Thus
n- ti?l > si_lNi/k + W - SHN'i/k = Wk

and
n-(ti1- D% < (sia+ DN + o - (s ANVE 22
= s N NYE 4 oy - s NVK 4 45 1N 4
< (1 + )N,
for sufficiently large N.

Consider firstk>5.Ifn- tigl € [og, (1 +¢€) szk] then by Lemma 3.3, n - tl?

is a sum of k elements in Ag. If n - t,-1 € (1+¢) Nzlk (1 +£) 3’,k] then by the
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2 . .
above argument and Lemma 3.8, n - t;-] - c% is a sum of (k - 1) elements of Ag, and so n is
the sum of (k + 1) elements of A". If n - t{:zi €

(1 +¢ )k-aNa/k, (1+¢ )k°a+1N(a+1)/k], where 2<a<i, then we repeatedly use this

method, finally there exist &, ... , & such that ta21 s oo s ta2h € A'and n - to%1 S t({h €
[0k, (1 +€ )2kN2/k]. It follows from Lemma 3.8 that n - tg‘l - e - to%h is a sum of

(k - h + 1) elements os Ag. Therefore, n is the sum of (k + 1) elements of A'.

Let A= {4ba: 4% < N, ae A'}. Itis easily seen that b < logN/log4 which implies
that Al Skz)g%(l + € )kNl/klogN. If ox €£n €N, then we can write n = 4bm withm £ 0
(mod 4). By the above argument, m is a sum of (k + 1) elements of A'. Consequently, n is
the sum of (k + 1) elements of A.

For the case of k = 4, we can employ similar argument but using Lemma 3.9 for

Lemma 3.8. This completes the proof.
3. DISTINCT SQUARES.

Lemma 3.11. ([1]) Every positive integer greater than 245 is the sum of five

distinct squares of positive integers.

Lemma 3.12. Let k = 6. Every sufficiently large integer is the sum of k distinct

squares of positive integers.

Proof. Suppose we know that every n > N, is the sum of s distinct positive

squares. Let a = [Vo/2] + 1, where n > 2((N, + 2)"/* + 1), Then

Vo2 <a<Vn/2 + 1,

and therefore

n 2
5<a,

that is,

%>n-a2>n-(x/n72+1)2=(w/n72-1)2-2>Ns,
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. - . e i - n
so that n - a° is expressible as the sum of s distinct, positive squares each less than 5 < a°.

Theorem 3.6. Let € be a small positive number less than 0.0064, k be an integer
>3, and N be a large integer. Then there is a set of squares such that IAl < 1((2+£)kN1/k and
every integer n, Nf<n<N , is a sum of (k+3) distinct elements of A.

Proof. Define

Ap={ a%: OSaS(2+fs)kl’\"1/k }
and

Ai= ([SANTDEO2 . o<+ INK Y 12, L kel
letA=AgUA] U ... UAk], then

AIS(Q+8)+Q+8)°+...+ 2 +e)f )N

<k +e)"N

It follows directly from Lemma 3.12 that each integer n, N°<n < (2 + E)Zszlk , 15 a sum

of (k+3) distict elements of Ag.

Suppose (2 + s)k'iNi/k <n<2+ e)k'i’l

N(i+l)fk- Put sj = [E\I%—E] -land g =

[s'2NY@); Then
C+eft 2<c <@+ INT g, (3.1)

(si + DN <1 < (s; + 2)NYK,

SINVCR) |1 oy < SJNYER) (3.2)
Thus, we have
n- 2 (s; + DN - Nk = N
and
n- t:," < (s; + Z)Nifk - (s}{"' 2 1)2
= NV 4 aNVK NV 4 9512891020 _ 4

<2+ Nk



Since N is sufficiently large,

N (2 + e)NYK) = (2 + )X HINGDE (g 4 gykeitIniy

Let ni; = n-ti. Then nipe [NY%,2+e)NY%). Put siq=[ Nx(lii:ll)/k J-1 and tj.1=
NGE0)
Clearly,
NE 2<sips@+eNo, (3.3)
(si-1 + 1)N(i'1)/k <njq < (si1 + Z)N(i'l)/k,
and
S}_lllN(i-l)/(?.k) Sl<tyg < Sil./IZN(iJ)/(Zk). a4
Thus
nip-tia 2 (i + DNEDE o NOEDE (-1
and

nig-4a < (siq + QNGO (GUAGDAZR) 442
1N(i-l)/k +oNG-DX Si-]N(i'l)/k + 95 } /lzN(i-l)/(Zk) .

=S;j.
<2+ e)N{i’l)/k,
Letnji2=mnj; - ti.21. Then
njp € [N(i'l)/k,(2+z-:)N (i'l)/k) c (2 + E)k-i+3N(i-2)/k, Q2+ E)k-i+2N(i—1)/k]_

Put si2={ E?;%‘/k‘] - 1 and t.5 = [sYaNG-2/C0)] By the same way as above, we get
N« 25+ eN T, (3.5)
s%_%N(i—z)/(Zk) “1<tp< Sil_/zzN(i'2)/(2k) , (3.6)

and

NEDE < s - 1% < @+ gNIDK,

It follows from (3.10) - (3.13) that

1 > SylzN(i—l)/(Zk) 1> (Nl/k ) Z)I/QN(i_l)/(zk) q

and
o <sIANCY® ¢ (2 4 N 1)I2NEDIEY £ (5 4 gl 2NE1IED),

But
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and s0 t;.1 > ;0.

Continuing in this way, we obtain a sequence of positive integers tj.1, tji-2, ... , t]

such that t] <ty < ... <tj.1 and

n-tf-t4 - . - e (NVK 2+ 62N,
Since k -1 22,k -1+ 32 5. It then follows from Lemmas 3.11 and 3.12 that
n - tzi - tigl - - t21 is a sum of (k - i + 3) distinct elements of Ag. Therefore, if t; >
ti-1, then n is the sum of (k+3) distinct elements of A, as t] > (2 + 8)1/2 N2/k and tj € A for
allj=1,..,1.

We now prove that t; > t;.1. By (3.8) - (3.11) we have

4> sIENVED 1 s (2 4+ gk - 2) 2NV g >

(@ +e) - 212 - )NV, (3.7)

and

ti1 < sPENGVE0 < (5 4 gNVE - )I2NGDIZK) (5 4 o) V2N (3 gy
If k - i > 2, then it is easily seen that 2 + )" - 2)/2 - &> (2 + £) % for £ < (0.086), and
the assertion follows from (3.14) and (3.15).

We now consider k - i = 1. This means (2 + )N (k-1)fk < n £ N. We consider the

following two cases.

Case 1. SN® DK - o N Putsp g =1 ‘EI-]T)/"E] -1 and tq = [sAN® DA Then
N

4<s <NVE_1, (3.9)
stANKDER g ) < lANGKDAZK) (3.10)

and

(sk.1 + DNEVE < p 11 yNEDE

Thus we obtain as before that
NEDE < p 02 < 2 + g)NEDE
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Letting ng-1 =n - 1, then n.t € NS DK 24g)N& D& pyp g oDl 4

NE2K
tk2 = [sﬁ{%N(k 2 Qk)]. We then have
NA 2<csic+e)NYE- T, (3.11)
ANy oy 5 < JINEDIEK) (3.12)
and
(52 + DNEDX < < (550 + 2)NEDE
Thus

NEDK <y -4 <@ +gNEDE,
It feliows from (3.16) - (3.19) that
fe1 > Sll({%N(k-l)/@k) 213> oN&DA2) S @- E)N(k—l)/(2k)’
and
tip < sEANKDZD < (o 4 NK | ) 2N (5 4 )12 DA2K),

Clearly, tx-] > tx-2 as required.
Case 2. (2 + e)N(k'l)/k <n < sN&EDE We put here sk = ——(—Er_l,;—)—/-k—] -landtgo =
N2

[si{%N(k'z)/(Zk)]. Then

2+eN*_2<g <58, (3.13)
SIANEDID) 1 oy o o JANEDI) (3.14)
and
(-2 + DNEDK < < (55 + 2)NEDE
This implies that

N2k tkgz <(2+¢N &2/

it

Let nx.2o =n - tkz.z. Then nx o € [N(k'z)/k,(2+£)N(k'2)/k) . Putting sz

1 1 - NPT
211 and ty3 = [ssANE@O) v then have

NEIK
N 2<g3<@+eNPK T, (3.15)
stAN®IER) 1 gy 5 < HANKIED) (3.16)

and
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(53 + DNEIE <o < (spz + NG

=
=
w2

NIk ng. - tk?3 <2+ E)N(k'3)/k.

By (3.20) - (3.23) we obtain
> sSiANKDAZO 15 (2 4 g)NVK - 9)12NKDI2K) _

5 120D/

and
s SSUINODIE < (3 4 NV 1y 12N EIIE _ 12 2EH)

Hence tx_2 > t_3 . This completes the proof.
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