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Abstract

The point of departure of this thesis is the following classical vertex-colouring problem:
Let n be a fixed integer. Given a graph G, does G admit an n-colouring (a mapping
f:V(G) — {1,2,...,n} such that f{g} # f(g') whenever gg' is an edge of G)?
A generalization of this problem which has attracted much attention recently is as
follows: Let H be a graph. An H-colouring of a graph G, or a homomorphism of G to
H, is a mapping f : V(G)} — V(H) such that uv € E(G) implies f(u)f(v) € E(H).
The H-colouring problem is: Given an input edge-coloured graph G, does there exist

ao H-colouring of G?

In this thesis we investigate the corresponding problem for a generalization of
graphs: an edge-coloured graph is a relational sysiem, G = (V(G), E1(G), Ez(G),
...+ Ex(G))}, where V(G) is a set of vertices and each E;{G) is a symmetric binary

relation on V(G). The elements of E;{G) are referred to as the edges of colour i.

We present some new constructions for studying the complexity of H-colouring for
edge-coloured graphs. For the majority of the thesis we use these tools to classify
the complexity of H-colouring where H is a member of some particular family of

edge-coloured graphs.

In the spirit of the previous work on H-colourings these complexity classifications
typically depend on the existence (or lack of existence) of some structure in H. We

i



present evidence suggesting that for edge-coloured graphs a structural characterization
that completely classifies which H-colouring problems are NP-complete and which
are polynomial is unlikely. This is similar to the case of directed graphs. Indeed,
we establish a polynomial equivalence between the complexity of H-colouring for
biparite two-edge-coloured graphs and bipartite digraphs. We show that the problem
is polynomial for paths and that there exists trees, cn as few as 12 vertices, for which
the problem is NP-complete. We study the problem for cycles and present an infinite
family of NP-complete cycles with two edge colours; moreover, any cycle smailer than
the minimal element of the family is polynomial. We study the problem for cliques
and completely classify the complexity for all cliques on three or fewer vertices with
two edge colours and for all digon-free cliques on four vertices with two edge colours.
We show that a clique with % edge colours is NP-complete if it has more than 2*
vertices and that there exists cliques with k edge colours and at most 2 vertices

which are polynomial.

We also establish an equivalence between H-colouring for edge-coloured graphs and
a new homomorphism problem - the Sabidussi Homomorphism Problem and thereby

we are able to classify the complexity for a large family of these problems.
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Chapter 1

Introduction

Graph colourings arise from a variety of applications including scheduling, combina-
torial games, frequency assignments and others, [17], [23]. These applications have
given rise to many generalizations of classical graph colourings. However, even the
simplest graph colouring problems turn out to be very difficult to solve. Indeed, to test
whether a given graph has a proper three-colouring is one of the basic NP-complete

problems.

Suppose G and H are graphs. A homomeorphism fromGto H, f: G — H,is a
mapping f : V(G} — V(H) such that if uv is an edge of G, then f(u)f(v) is an edge
of H. If G admits a2 homomorphism to H we say G is homomorphic to H and write
G — H. i G does not admit a homomorphism to H we write G /4 H. We say that
H is the “target”. An H-colouring of G is simply a homomorphism of G to H. In

——ak® B erank &7 admits
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study of these generalized graph colourings. In fact, given that a homomorphism is a
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very natural mathematical object, some might argue that H-colouring is the correct

way to examine these colouring problems.

The work in this thesis grew out of an attempt to translate colouring problems into
homomorphism problems. In order to achieve this translation, a generalization of clas-
sical graphs had to be considered. The generalization is that of edge-coloured graphs.
An edge-coloured graph is a relational system, G = (V(G), E1(G), E»(G), - . ., Ex(G)),
where V(G) is a set of vertices and each E;(G) is a symmetric binary relation on
V(G); the elements of E; are called the edges of colour :. The number of edge sets,
k, is called the multiplicity of G. Given two edge-coloured graphs G and H both of
multiplicity k, a homomorphism, f, from G to H is a mapping f : V(G) — V(H)
such that if uv € E;(G), then f(u)f(v) € E;(H) foreachi=1,...,k.

For example, consider the following problem ( “colouring with a condition at distance
two”) investigated by Griggs and Yeh [13]. Given a graph G, is there a function
f: V(G) = {1,2,...,n} such that for all edges uv, |f(u) — f(v)] > 2 and for all
pairs of vertices, {u, v}, at distance 2, |f(u) — f(v)] > 1. We can express this as a
homomorphism problem. Given G above, define G’ as:

¢ V(G') =V(G),

¢ E;(G') = E(G), and

o E3(G’) = {urju,v € V(G) and u and v are distance two apart in G }.
Define an edge-coloured graph H as:

e V(H)={1,2,...,n},

. Ey(H) = {uvlu,v € V(H); ju—v]| > 2},
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o Ex(H)={vvju,ve V(H);jlu—rv]>1}.

It is easy to see that a function f of the form above is just a homomorphism G’ — H.

The majority of this thesis concerns the following problem. Let H be an edge-

coloured graph. The H-colouring problem is the following:
H-COL
INSTANCE: An edge-coloured graph G.

QUESTION: Does there exist an H-colouring of G?

For the case of classical graphs, i.e., edge coloured-graphs of multiplicity one, the
complexity of H-COL has been completely determined by Hell and Neset#il [19]. They
proved that H-COL is NP-complete if H contains an odd cycle and is polynomial

otherwise.

Many authors have studied the above problem when H is a directed graph, but
as yet no complete classification of H-COL exists nor has a conjecture about such
a classification been presented. However, Bang-Jensen and Hell have a conjecture
concerning a partial classification. In order to describe the conjecture we need the
following definition. Suppose H is a digraph. A homomorphism r from H to a
subgraph H’ of H is a retraction if r is the identity map on H’. Bang-Jensen and
Hell {2] have conjectured the following.

Conjecture Suppose H is a digraph in which each vertex has in-degree at least
one, and out-degree at least one. If H does not admit a retraction to a directed cycle,
then H-COL is NP-complete. Otherwise H-COL is polynomial.
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This conjecture has been verified for many classes of digraphs in work by Bang-

Jensen, Hell, and MacGillivray, [1], [2], {3], [24], [25].

In this thesis we attempt to identify those edge-coloured graphs H for which H-COL
is NP-complete, and those for which the problem is polynomial. In the spirit of the
previous work on H-colourings these complexity classifications typically depend on
the existence (or non-existence) of some structure in H. However, we present evidence
suggesting that for edge-coloured graphs a structural characterization that completely
classifies which H-colouring problems are NP-complete and which are polynomial
is unlikely. This situation is similar to the case for directed graphs. Indeed, we
establish a polynomial equivalence between the complexity of H-COL for bipartite
edge-coloured graphs of multiplicity two, and bipartite digraphs.

In Chapter Two we present tools for studying H-COL. Some of these results are
generalizations of the tools used for graphs and digraphs. This is the case, in par-
ticular, for the indicator construction and the subindicator construction. Other tools
are new and their usefulness is truly only realized in the case of edge-coloured graphs;

this is the case of the dominating loop lemma.

In Chapter Three we describe a problem similar to H-colouring based on a question
asked by Sabidussi and Tardiff. Let H and Y be edge-coloured graphsand A: H = Y

a homomorphism. The Homomorphism Factoring Problem is the following:

HFP(H. h,Y)

INSTANCE: An edge-coloured graph
o

QUESTION: Does there exist a homomorphism f : G — H such that ko f = g7
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o

We show that when Y 1s a subgraph of H, and A is the composition of a retraction of
H to Y followed by an automorphism of Y, the problem HFP{H, k.Y’) is polynomial.
We also show that for all graphs Y, with the exception of a four graphs Y, there exists
a graph H and a homomorphism b : H — Y such that HFP{H,h,Y) is NP-complete.
We also show that HF P(H_h,Y') for graphs is equivalent to H-COL for edge-coloured
directed graphs.

In Chapter Four we demonstrate an equivalence between H-COL for bipartite edge-
coloured graphs of multiplicity two and H-COL for bipartite digraphs. Namely, let H
be a bipartite edge-coloured graph of multiplicity two. Then there exists a bipartite
digraph, D, such that H-COL and D-COL are polynomially equivalent. We have a
similar construction that begins with a bipartite digraph D. Namely, we can construct
an edge-coloured graph H such that H-COL and D-COL are polynomially equivalent.
We use these constructions to both obtain new results for edge-coloured graphs (us-

ing digraphs) and conversely to obtain new results for digraphs (using edge-coloured

graphs).

In Chapter Five we show that H-COL is polynomial when H is an edge-coloured
path. We also present edge-coloured trees for which H-COL is NP-complete. We
present an “obstruction” type theorem for edge-coloured paths. Namely, if G is an
edge-coloured graph and H is an edge-coloured path, then G /4 H if and only if there
exists a path P such that P —+ G and P /4 H.

In Chapter Six we study H-CQOL for cycles. A piece of an edge-coloured cycle is a
maximal monochromatic path. (Note for edge-coloured cycles with two edge-colours,

the number of pieces is always even.) We show that in this case the problem is
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polynomial if the cycle has two or four pieces. Let n > 6. Hn =0 (mod 4), then
there exists a cycle with two edge-colours and n pieces for which H-COL is polynomial.
Hn=2 (mod4), then there exists a cycle with two edge-colours and n pieces for
which H-COL is NP-complete. For cycles with two edge-colours, we show that the
problem is polynomial if all the pieces have the same parity. For the general case of &
edge-colours if all the pieces have odd length or if exactly one of the pieces has even
length, we show the problem is polynomial. However, even for two edge-colours, the
classification of the complexity of edge-coloured cycles remains an interesting open

problem.

In Chapter Seven we study edge-coloured cliques, possibly including loops. In
particular, we classify the complexity of H-colouring by an edge-coloured clique for
all cliques with fewer than three vertices. We also classify the complexity of H-COL
for cligues on three vertices with multiplicity two and all digon-free cliques on four
vertices with multiplicity two. We present two infinite families of cliques for which
the problem is polynomial. In fact, we show that for a clique H of multiplicity k,
H-COL is NP-complete if H has more than 2* vertices, and that for each n < 2%,

there exists a clique H with n vertices such that H-COL is polynomial.

Finally, in Chapter Eight we return to the case o graphs and digraphs. We study
two problems. The first is to classify those graphs that contain, as subgraphs, all of
their homomorphic images. We present a classification of such graphs. The second
problem involves digraphs. Given a digraph H and a digraph G, what is the smallest
power, k, of H such that G admits a homomorphism to H*? We study the complexity
of this problem and show it is polynomial if H is an oriented path but is NP-complete
even for directed cycles.
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-l

1.1 Definitions and Preliminaries

We assume the reader is familiar with the basic notions and definitions of graph
theory. We state below all definitions unique to this thesis as well as the common
definitions and notations used. When not mentioned below, we use the notation and

definitions of [5].

1.1.1 Basic Definitions

An edge-coloured graph is a relational system, G = (V(G), Ex(G), E2(G), .. ., E(G)),
where V(G) is the set of vertices and Ey{G, E2(G),. .., Ex(G) are svmmetric binary
relations on V(G); the elements of E; are called the edges of colour :. The number of
edge sets k is called the multiplicity of G. An edge-coloured directed graph (or edge-
coloured digraph) is just a relational system on a set of vertices V(') where each E; is
a binary relation (which is not required to be symmetric). In this thesis we will restrict
our attention to edge-coloured graphs. However, some results naturally generalize to
the more general case of edge-coloured digraphs. These results are stated with the
explicit use of the phrase edge-coloured digraph. Also, we reserve the use of the words
graph and digraph to the case of multiplicity one; that is, to their classical usage. If
we wish to explicitly state the number of edge colours ‘n an edge-coloured graph we
use the term k-edge-coloured grepk. In particular, the term two-edge-coloured graph
refers to an edge-coloured graph with £ = 2. In the following assume & and H are
edge-coloured graphs. Also suppose that red and blue are edge colours.

To maintain our analogy to undirected graphs, we shall identify pairs of opposite
edges, i.e., for any edge-colour 7 and pair uv € E;(G) with u # v, we identify uv and
vu. Thus we consider uv as one undirected edge. Since this is equivalent to viewing
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vy as a two-element subset, we sometimes write {u,v} for uv.

Suppose uv is 2 member of E;{G). We say uv is an edge of colour i. We also say u
is adjecent to v in i or u is joined to v 1n 1. The edge uv is said to be incident with
u and v and each of u and v is said to be incident with the edge uv. The vertex u
is said to be a neighbour of colour i of v or simply an ¢ neighbour of v. We let N;(v)
denote the set of ¢ neighbours of v. The vertices u and v are called the ends of the

edge uv.

A vertex incident with only blue edges is called a blue only vertex. A vertex incident

with edges of at least two different colours is called a mized vertex.

The underlying graph of G is the graph on vertex-set V(G) and edge-set E(G)
defined by: uv € E(G) if and only if uv € E;(G) for some i. In other words, E(G) =
Ey(GYU---U Ei(G). The use of E(G) is common throughout the thesis, and we do

not usually explicitly remind the reader that E(G) = Ez(G) U --- U E(G).

We say u is a neighbour of v in G i u is a neighbour of v in the underlying graph
of G. We denote the neighbours of v by N(v). A similar remark applies to terms like

“adjacent” and “joined to”.

If v and v are both blue neighbours and red neighbours, we say uv is a digon. We
will use the term red-blue-digon if we wish to explicitly state the edge colours.

Suppose uu is an edge of G. We call such an edge a loop. In the study of H-
COL for graphs and digraphs, the existence of loops makes the problem trivial. If
H contains a loop at v, then any graph G admits a homomorphism to H simply
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by mapping all the veriices of G to v. On the other hand, if G contains a loop
and admits a homomorphism to H, then H must contain a loop. For the case of
edge-coloured graphs, the existence of loops no longer necessarily makes the problem
trivial. Therefore, in general we allow loops, although for simplicity we often restrict
our attention to the loop-free case. In any section where we allow loops, we state this
explicitly at the beginning of the section. Having said that, we observe that a vertex
with a loop of every edge colour again makes the problem trivial for the same reason
as above. To avoid trivialities, we never allow the existence of a vertex with a loop of

every edge colour.

A path of length n in G, denoted F,, is a sequence of distinct vertices vovjvs...,0,
such that for each 2, 1 <z < n — 1, ;931 € E(G). In other words, a2 path in G is a
path in the underlying graph of G. A path is called a blue path or a path of colour blue
if each edge in the path is a blue edge. A walk of length n is a sequence of vertices

WoW Wy . .., W, Such that for each i, 1 <12 < n—1, waw;: € E(G).

Given vertices u and v in G, the distance between u and v, denoted d(u,v), is the
length of a shortest path from u to v. The distance in colour i, denoted d;(u,v), is
the length of a shortest path of colour z from u to v. If there is no path (respectively

no path of colour z) from u to v, then d{u,v) = oo (respectively d;(u,v) = oc).

A cycle of length n, C,, is a sequence of distinct vertices vov V3. .., v, such that
foreach 7,1 <i<n—1, viv;y € E(G) and v,—1vp € E(G).

A subgraph G’ of G, denoted G' C G, is an edge-coloured graph where V(G’) C
V(G) and E;(G") C E:(G) for each edge-colour i. A subgraph G’ of G is an induced
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subgraph if for each pair of vertices u and v in V(G’) we have uv € E;(G") if and only
if ur € Ei(G). We say G is induced by the set of vertices V(G’}. The spanning blue
subgraph of G is the graph (multiplicity one) (V(G), Enu.(G))-

We say G is connected if for each pair of vertices u and v in G, there exists a
path from u to v. We say G is connecied in blue if the spanning blue subgraph of
G is connected. A componeni of G is 2 maximal connected subgraph of G. A blue
component of G is a maximal connected subgraph in the blue spanning subgraph of
G.

A clique is an edge-coloured graph H such that for each pair of distinct vertices u
and v in H, uv € E{H). We say H is a blue clique if the blue spanning subgraph of
H is a clique. Note that a blue clique may have some extra edges of other colours. A
clique with n vertices is called an n-clique. In particular a two-clique has two vertices.
Note we reserve the use of the symbol K, for a clique with muitiplicity one.

A set of vertices S in G is an independent set if for each u and v in S, u and v are
oon-adjacent in the underlying graph of G. (Hence, a single vertex with a loop is not
an independent set.) We say G is bipartite if the vertices of G can be partitioned into
two independent sets Gy and G;. We denote this partition by (Gp,G;). We say G is
a complete bipartite edge-coloured graph if G is bipartite, with bipartition (G, G;),
and for each u € Gg and v € Gy, uv € E(G).

Let G and H be two disjoint edge-coloured graphs with the same multiplicity. The
union of G and H, denoted GU H, is the edge-coloured graph (also of multiplicity k)
with vertex-set V(GUH) = V(G)UV(H) and edge-sets E(GU H) = E,(GYUE;(H)
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for0<:<k.

Let S be a set of edge-colours. Let G be an edge-coloured graph with edge-colours
X € §. Let H be an edge-coloured graph with edge-colours Y C S. Thus, G has
multiplicity | X| and H has multiplicity [Y]. Let Z C S. The join of G and H with
respect to Z is the edge-coloured graph of multiplicity | X UY U Z| obtained by taking

a copy of G and a copy of H and adding the edge uv to E;(GU H) for each u € V(G),
eachv € V(H), and each 1 € Z.

As mentioned above, the primary focus of this thesis is edge-coloured graphs, but
there are times when we will use the term edge-coloured digraph. The edge uv in
a digraph is also called an arc. We refer to u as an in-neighbour of v and v as an
out-neighbour of u. An oriented graph is a digraph with no pair of vertices u and v
such that both uv and vu are arcs. A direcied path vovy .. ., v, is 2 path where each
YU, 0 <1< m—1,is an arc. An oriented path vov, ..., v, is a path in which for all
0 <z < n—1 either vv;yy or v;,v;. Given a digraph H, the k** power of H, denoted
HE is the digraph with vertex-set V{H) and edge-set uv € E(H*) if and only if there
is a directed path from u to v in H of length at most k.

1.1.2 Homomorphisms

We have already defined a homomorphism above. An isomorphism, f, from G to
H is a homomorphism from G to H such that f is one-to-one, onto, and ur € E;(G)
if and only if f{u)f{v) € E;{(H) for every edge-colour i. An eutomorphismof G is an
isomorphism of G to itself.
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Let H be a subgraph of G. A retraction, r : G — H, is a homomorphism that is
the identity map on H. We say that H is a retract of G. We say that G is a core
if there is no homomorphism from G to a proper subgraph of G. Let G be a finite
edge-coloured graph. It is easy to prove that G contains a subgraph H that is a core
and that there is a retraction r : G — H. Moreover, H is unique up to isomorphism.

We call H the core of G. This is proved for graphs in {19].

Suppose H’ is the core of H and r : H — H’ is 2 homomorphism of H to H'. We
have the inclusion mapping ¢ : H — H which is a homomorphism. Hence, G — H if
and only if G — H’. Thus when studying H-colouring we can restrict our attention

to the case when H is a core.

A final definition we require, the product of G and H, denoted G x H, is the edge-
coloured graph with vertex-set V(G) x V(H) where (g1, h1){g2,h2) € E:(G x H) if
and only if 19, € Ei(G) and kyh; € E;(H). Notethat Gx H +Gand GxH - H

via the projections ¢ and ¢g, where ¢g(g,h) = g and oy(g,h) = h.

1.1.3 Congruences

Consider the path of length three, P;5. The graph that results when the end points of
the path are identified is K3. In fact, the identification is, in some sense, a homomor-
phism from P; to K;. Many times we will want to talk about homomorphisms that
result from certain identifications of vertices. There is a problem in that the target
of this action is not defined until the identification is performed. However, a homo-
morphism can not be defined without stating the target. Therefore, we introduce a
subject closely related to homomorphisms that will allow us to more rigorously define
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such identifications. Furthermore, the definition of this identification will define the

target and implicitly define 2 homomorphism.

Let H be an edge-coloured graph. We define a congruence C on H as a partition of
the vertices into sets Sg, S1,...,Sn. The gquotient of C, say K, is the edge-coloured
graph on vertices {0,1,...,m} with edge sets E, = {ij| there is an edge of colour
t from some vertex in S; to some vertex in S; }. Observe that the quotient is the

edge-coloured graph obtained by contracting each S; to a single vertex. Also observe
that there is a natural homomorphism A : H — K defined by:

h(v)=1if and only if v € S;

In fact, we say the congruence C induces the homomorphism A. Conversely, suppose
that f : G — H is a homomorphism such that f is onto the vertices of H and such
that for all ¢ and all zy € E;(H) there exists u and v in G so that f(u) = z and
f(v} = y. Then we can define a congruence on G such that H is the quotient of the

congruence. Namely, if we label the vertices of H with 0,1,...,m, then:
Si=fMHi)for0<i<m,

is a congruence on G with quotient equal to H. We say H is a homomorphic image

of G. We also denote H as f(G).

We now return to the example above. Given the path P;, we wish to identify the
end-vertices of the path. Define the congruence C with the following three classes
Sa, S1,52. Let Sy contain the two end points of the path. Let S, and S; each contain
an interior vertex of P3. The quotient of the congruence is K;. The homomorphism
induced by the congruence is exactly the one we wished to define.
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1.1.4 Some Basic Results on Homomorphisms

Lemma 1.1.1 Let G be a connecled edge-coloured graph and f : G — H a homo-

morphism of G o some edge-coloured graph H. Then f(G) is connecled.

Proof. Let r and ¥ be two vertices in f(G). By definition of f(G), there exists
v and v in G such that f(u) = z and f{v) = y. Since G is connected, there exists
a path (u = po)py - - - (pn = v) such that p;p;y, € E(G) fori =0,1,...,n ~ 1. This
implies f(p;)f(pis1) € E(H) for 6 <i < n—1, since f is a homomorphism. Hence
(z = f(u) = f(pe}}f(p1}---(f{pa) = f(v) = y) is a walk in H containing a path from

ztoy. =

Lemma 1.1.2 Let G and H be edge-coloured graphs. Then G — G x H if and only
fG—H.

Proof. HG — G x H, then from G x H — H we have G — H by composition. On
the other hand, suppose there exists a homomorphism f: G — H. Let ¢: G - GxH
be the mapping defined by ¢{g) = (9, f(g)) for all g € V(G). Now if g1g; € Ei(G),
then (g1, f(g1)){92, f(92)) € Ei{G x H}; thus, ¢ is indeed a homomorphism of G to
GxHasm

By examining the mapping ¢, we obtain the following corollary.

Corollary 1.1.3 Suppose G and H are edge-coloured graphs. If G — H, then there
ezists ¢ one to one homomorphism é : G — G x H of the form é(g) = (g, f(g)) for
all g € V(G).

Proof. Using ¢ from the proof above, if ¢(g1) = &(g2), then (g1, f(s1)) =
(92, f(g2))- This implies g = 2. ®
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Usings lemmas 1.1.} and 1.1.2 we deduce the following.

Corollary 1.1.4 Suppose G and H are edge-coloured graphs. If G is connecied, then
G — H if and only if there is a one to one homomorphism from G to some connected

component of G x H of the form &{g) = (g, f(g)) for all g € V(G).

1.1.5 Complexity Theory

The following brief summary highlights the important details of complexity theory

we require in this thesis. See [12] for a detailed trecatment of the subject.

In the study of computational complexity attention is often restricted to decision
problems. We use the terminology and the notation of [12] and briefly outline the
main ideas below. A decision problem is a problem with only two possible solutions
~ YES and NO. A decision problem II consists of a set Dy of instances and a subset
Yn € Dp of YES-instances. We descnibe a decision problem by a description of
a generic-instance, D, for example, the edge-coloured graph G in H-COL, and a
question whose answer is YES if and only if D € Yy;. An algorithm solves a decision

problem by computing whether or not a given instance is a YES-instance.

The complezity of an algorithm is a function, f(n), from the size of the instance
to the number of computational steps required to solve the problem. Here n is some
reasonable measure of the size of the instance. See [12] for more detail. If there is
a polynomial p{n} such that a given algorithm has complexity O(p(n)), then we say
the algorithm is a polyromial time algorithm. We denote, by P, the set of decision
problems that are solvable in polynomial time.
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Let II; and II; be two decision problems. We say II; polynomially transforms or

reduces to II, if there exists a function, f, from Dy, to Dp, such that:
e f is computable in polynomial time, and
e for I € Dy,, I € Yy, if and only if f(I) € Y1,.
If 11, admits a polynomial transformation to II,, we write II,all,. Observe that if

Hz € P and II;o:IIz, then Hj € P.

We denote by NP the set of decision problems that are solvable in polynomial time
by a non-deterministic algorithm. See [12] for an explanation of non-determinism.

One of the great open problems in complexity theory is whether or not P=NP.

A decision problem, I, is NP-complete if:
e Il € NP.
e for all ¥ € NP, Xoll.

To show that a particular problem, II, is NP-complete, we need to show first that
II € NP. LIt is easy to see the H-COL is in NP. Second, we choose some known
NP-complete problem ¥ and show eoll. Since ¥ is NP-complete, we know that any
problem in NP polynomially transforms to ¥. Composing this transformation with
a, we see that any problem in NP polynomially transforms to II.

Suppose II and ¥ are two decision problems. A polynomial time Turing reduction

of II to T is a function f from Dy to the power set of Ds such that:

¢ f can be computed in polynor:ial time, and
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e for each I € Dy, I € Yy if and only if there is an I’ € f(I) such that I’ € Ys.

We write llar¥ and say II Turing reduces to X.

If ¥ isin P and HarX, then I1 € P. We say Il is NP-hard if there exists an
NP-complete problem X such that TarIl.

We conclude this section with an observation that allows us to assume for an H-
colouring problem, H is connected. We have already pointed out that we may assume

that H is a core.

Proposition 1.1.5 Let H be an edge-coloured graph which is a core and let H, be a
component of H. Then H,-COL ar H-COL.

Proof Let G be an instance of H;-COL. Since H is a core, H; does not admit a
homomorphism to any other component of H. Let hy,hs,...,h, be an enumeration
of the vertices of H; and let g be a vertex of G. Define G; to be the edge-coloured
graph obtained by taking a copy of H; and a copy of G and identifying g and h;. It
is easy to check that G — H, if and only if there exists an 1 so that G; — H. »

1.2 Previous Work

The H-colouring problem for graphs and digraphs has received much recent attention,
1191, {1}, [2], [3], [14], [15], [25], [24]- In this section we present a brief survey of some
of these results. The complexity of the H-colouring problem is completely determined
for graphs by the following result of Hell and Nesetfil [19]:

Theorem 1.2.1 Let H be a fized graph. If H contains an odd cycle, then H-COL is
NP-complete. Otherwise, H is bipartite and H-COL 1s polynomial.
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Since this completely classifies the problem for graphs, attention has since shifted

to digraphs.

In their 1981 paper, Maurer, Sudborough, and Welzl [27] classify the complexity of
H-COL for all three-vertex digraphs. This work was extended by Gutjahr [15] who
classified the complexity of H-COL for all four-vertex digraphs.

Several families of polynomial digraphs were also presented in [27]. In particular,
the authors show that H-COL is polynomial when H is

e a directed path,
e a directed cycle, and

¢ a transitive tournament.

We have already presented a conjecture by Bang-Jensen and Hell concerning the
complexity of H-COL for digraphs. This conjecture has been verified for many fami-
lies of digraphs. In their 1990 paper, Bang-Jensen and Hell [2] verify the conjecture for
digraphs consisting of two cycles and for complete bipartite digraphs. Bang-Jensen,
Hell, and MacGillivray [1] have verified the conjecture for semicomplete digraphs (su-
perdigraphs of tournaments). The conjecture has also been verified by MacGillivray

[24] for vertex-transitive and arc-iransitive graphs.

The concept of “hereditary hardness”, [4], has been studied by Bang-Jensen, Hell,
and MacGillivray. They present hereditarily hard digraphs in the sense that any
digraph H that contains a hereditarily hard digraph as a subgraph has the property
that H-COL is NP-complete. They use this concept to study the above conjecture of
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Bang-Jensen and Hell. Furthermore, they show the equivalence of this conjecture to

a simpler conjecture.

The classification of H-COL for graphs in [19] implies essentially the only H-
colouring problem for graphs that is polynomial is K,-COL. Recall we can restrict our
attention to the case when H is a core. The algorithm for this problem is trivial. For
oriented graphs we have polynomial algorithms that are no longer trivial or obvious.
Classifying the complexity of H-COL for oriented paths proved difficult. In their 1992
paper, Gutjahr, Welzl, and Woeginger [14] defined an X-graph to be a digraph for
which there is an enumeration v, v;,...,v, of the vertices such that if v;v; and v

are arcs, then so 1S Umm(i k}Vmm{j}- The main result of their paper is as follows.
Theorem 1.2.2 Let H be an X -graph. Then H-COL is polynomial.

It is easy to see that every oriented path is an X-graph. Hence, if H is an oriented
path, then H-COL is polynomial.

In the same paper, the authors present an oriented tree, T (with 287 vertices), such
that T-COL is NP-complete.

The classification of oriented cycles has also proved difficult. Define an balanced
oriented cycle to a be a cycle in which the number of forward arcs equals the number
of backward arcs. Define an unbalanced oriented cycle to be a cycle which is not
balanced. Gutjahr [15] and independently Zhu [30] have shown the following.

Theorem 1.2.3 Let H be an unbalanced oriented cycle. Then H-COL is polynomial.

Gutjahr, [15], bas also constructed a balanced oriented cycle for which H-COL is
NP-complete. These results suggest the complete classification of H-COL even for
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oriented trees and oriented cycles may prove difficult.

As mentioned above, the only polynomial H-colouring problem for graphs is K;-
COL. A classical result of graph theory is that a graph is bipartite if and only if it
contains no odd cycle. We can rephrase this in terms of homomorphisms as follows.
Let G be a graph. There exists an odd cycle C such that C — G if and only if
G 4 K,.

Similar “obstruction” type results for homomorphisms to directed paths and di-
rected cycles have been obtained by Haggkvist, Hell, Miller, Neumann-Lara [16).
These results have been extended to oriented paths by Hell and Zhu [20] as follows:

Theorem 1.2.4 Let G be an oriented graph and H an oriented path. Then there
exists a path W such that W — G and W 4 H if and only if G 4~ H.

An oriented cycle, C, is called nice if for any oriented graph G, there exists a cycle
C’ such that C' — G and C' 4 C if and only if G 4 C. Hell, Zhou, and Zhu have
shown that all unbalanced oriented cycles are nice and there are balanced oriented

cycles that are not nice.
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H-Colouring Tools

2.1 Indicator Constructions

Both the indicator construction and the subindicator construction have proved very
useful in the study of homomorphisms; see [19] and [25]. We extend these construc-
tions to edge-coloured graphs. These will be used in Chapters Three, Five, Six, Seven,
and Eight.

2.1.1 The Indicator Construction

Let |, I, ... I, be m fixed edge-coloured graphs. For each J,, 1 = 1,...,m, let
#: and j, be distinct vertices of I, such that there exists an automorphism, oy, of
I, with &,(i;) = j» and 04(j;}) = #,- The indicator construction (with respect to
(h,11,01), (J2,%2: 32)s - - -» (Y %%, J2)) transforms a given edge-coloured graph H into
the following edge-coloured graph H”. The edge-coloured graph H™ has the same
vertex set as H. The edge bh' € E,(H") if and only if there is a2 homomorphism, f :
I, — H, such that f(i,) = k and f(j:) = h’. We now show that H" is an edge-coloured

21
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graph, i.e. each relation E,(H") is symmetric. Suppose there is a homomorphism,
f : I, » H, such that f(i,) = h and f(j;) = &'. That is, kh’' € E;(H*). Recall there
exists an automorphism, o, of I, such that 0.(i;) = j; and 04(j;) = ;. Composing j
with o, we get the homomorphism fooy : I; — H with foo (i) = &' and foo(3:) = k.
Therefore, both kA’ and R’k are images of I;; hence, the edge is undirected.

We make an observation about the indicator construction for edge-coloured graphs
which is unique to edge-coloured graphs. The edge-coloured graph H* has has mul-
tiplicity m — one edge-colour for each indicator. However, multiplicity of H™ is in no
way related to the multiplicity of H. The edge-coloured graph H* can have fewer, the
same, or more edge-colours than H. Nevertheless, each indicator, I;, must have the

same multiplicity as H.

Lemma 2.1.1 Let H* be defined as above. Then H*-COL polynomially transforms
to H-COL.

Proof. Given an edge-coloured graph G, let *G be the edge-coloured graph ob-
tained by replacing each edge of colour 1, say uv, with the edge-coloured graph I,
identifying u with z; and v with j;. Note that G has the same multiplicity as H* (the
number of indicators) and *G has the same mulitiplicity as H (the common multiplic-
ity of all the indicators). It is straightforward from the definitions that *G — H if
and only if G — H*. This was done, in [19], for the case of graphs.m

See Figure 2.1 for an example of the indicator construction.

It is possible that z; and j; may map to the same vertex in H. This will produce a
loop of colour ¢ in H*. One must be careful to avoid constructing loops in the case of
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Figure 2.1: An example of the indicator construction

graphs or directed graphs, since a loop in H™ makes H*-COL trivial. This may not
be the case when working with edge-coloured graphs. It is possible to have loops in
H* and still H*-COL may not be trivial.

Consider the example in Figure 2.2. Let H be the edge-coloured graph with vertex
set {0,1,2}; blue edge-set {01,02,11,12}; and red edge-set {00,12}. Let I, be a
single blue edge with end-points #; and ;. Let I; be a path of length three consisting
of a red edge, a blue edge, and a red edge. Let i, and j, be the end-points of the
path. The result of the indicator construction with respect to ((I1,11,71), (I2,%2,72))
is the edge-coloured graph H* shown in Figure 2.2. Despite the fact that H* contains

loops, H*-COL is NP-complete. One can see this through a second application of the

indicator construction. Let I7 be a red-blue digon. That is; I is an edge-coloured
graph on two vertices, #] and j;, where i7j] is a red edge and a blue edge. The result
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of the indicator construction with respect to (I5,4},77), applied to H*, is H™*. The
edge-coloured graph H™ is simply a K; on one edge-colour. It is well known that

=.COL is NP-complete, see [12]. Notice, the second application of the indicator
construction is one where the result has fewer edge-colours than does the original

edge-coloured graph.

2.1.2 The Sub-indicator Construction

Let J be a fixed edge-coloured graph with specified vertices j, k;, k;,. .., k. The sub-
indicator construction, with respect to J, j, k;, ..., k,, transforms a given core H with
specified vertices b, ..., h;, to an induced subgraph H™ of H. The subgraph H™, on
vertex set V7, is defined as follows. Let W be the edge-coloured graph obtained by
taking disjoint copies of H and J and identifying vertices h; and k; (fori = 1,2,...,t).
A vertex, b, of H belongs to V™ if and only if there is a retraction of W to H mapping
7 to k. An example of the subindicator construction is given in Figure 2.3.

Lemma 2.1.2 Let i be e core. Then H™-COL polynomially transforms to H-COL.

Proof. Given an edge-coloured graph G we construct an edge-coloured graph G
by taking disjoint copies of G, H, and [V(G)| copies of J. 1dentify h; with k; in each
copy of J for 1 = 1,2,...,t. For each vertex g in V(G), identify g with j in the g*
copy of J. If there is a homomorphism of "G — H, then the copy of H in “G must
map onto H since H is a core. It is now easy to see that "G — H if and only if
G-oH . w
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Figure 2.3: An example of the subindicator construction
2.2 The Forcing Lemma

Many times in life the easiest decisions are the ones made for us. The same is true
when solving H-colouring problems. Consider an edge-coloured graph, H, where each
vertex is incident with at most one edge of each colour. Let G be a connected, edge-
coloured graph. As usual, we are interested in the existence or nonexistence of a
homomorphism f : G — H. Let g be a vertex in G and & be a vertex in H. In this
section we cbserve that if G admits a homomorphism, f, to H such that flg) =4,
then f is unique.

Lemma 2.2.1 Let H be an edge-coloured graph such that each vertez of H is incident
with at most one edge of each colowr. Given a connected, edge-coloured graph G,

g € V(G) and k € V(H), if there ezists a homomorphism f : G — H, such that
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flg) = h, then f is unique.

Proof. We prove the result by induction on the number of edges of G. Let H,
G, g, and h be as above. Suppose [E(G)] = 0. Then G consists of a single vertex
G and the homomorphism f(g) = A is unique. Therefore, suppose the lemma holds
for all G, with |[E(G)] < m. Let G be a connected, edge-coloured graph with m + 1
edges. Suppose there exist two homomorphisms f; : G — H and f; : G — H such
that fi(g) = f2(g) = h. We show f; = f;. Since G is connected, we know there exists
¢ € N(g). Suppose g¢’ € E;(G). Since G — H, there exists &' € N;(h); moreover,

by our assumptions on H, &’ is unique and hence fi(¢') = folg') = A’.

Consider the edge-coloured gzraph G\{g¢’}. i G\{g¢’} is connected, then by in-
duction f = f;. On the other hand, if G\{gg’} is disconnected, then it consists of
two components G; and G, such that g € G, and ¢’ € G,. Recall fi(g) = fa(g) = k.
By induction f; = f> on Gy. Similarly, fi(¢’) = f2(¢’) = &’ and hence f; = f; on G,.

Since V(G) = V(G JUV(G;:),webave i=foonG. &

We have the following immediate corollary. In the following we use the standard
notation Hom(G,H) = {f | f : G — H such that f is 2 homomorphism}.

Corollary 2.2.2 Let H be an edge-coloured graph such that each vertezx of H is in-
cident with at most one cdge of each colour. Suppose G is a connected edge-coloured
graph. Then |Hom(G, H)| < |[V(H)}.

Proof. Choose a fixed ¢ € V(G). For each h € V(H) there is at most one

F

F€ Hom(G,H) such that f{gj=h. =
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We now prove a result which will be used repeatedly throughout this thesis. Namely,
the set Hom(G, H) can be constructed in O(|E(G)]) time.

Lemma 2.2.3 (The Forcing Lemma) Let H be an edge-coloured graph such that
each vertez of H is incident with at most one edge of each colour and let G be a
connected edge-coloured graph. Then the elements of Hom(G, H) can be generated in

O(IE(G)]) time.

Proof. Let V(H) = {hy,hs,--., h,}. Let & be a connected edge-coloured graph.

Suppose S is a subset of V(G) and f is a homomorphism from the subgraph induced
by S to H. Let u be a vertex in V(G)\S. We say f is eziendable to u if there exists
h € V(H) such that by defining f(u) = h one obtains that f is a homomorphism
from the subgraph induced by S U {u} to H.

Since H has the property that each vertex is incident with at most one edge of each
colour, the following observation is true. Suppose S is a subset of V(G), u € V(G)\S,
and u is adjacent to a vertex v € S. Then, if f is extendable to u, this extension is
unique. Suppose u and v are joined by an edge of colour ¢. The set Ny(f(v)) contains

at most one element and this element, if it exists, must be the image of u under f.

We now describe the algorithm. Choose a vertex g € V(G). Repeat the following
steps for each h; € V(H).
o Set f(g) = h: and S = {g}.
o While V(G)\S is not empty:

~ Choose v m V(G)\S such that u is adjacent to some v € S.
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— If f can be extended to u, then extend f else STOP.

— Add uto S.

e Add f to Hom(G, H).

We now prove the algorithm correctly generates Hom(G, H). Suppose some func-
tion f is added to Hom(G, H) by the algorithm. This implies f was successfully
extended to all of V(G) which implies f is 2 hemomorphism from G to H. On
the other hand, suppose f : G — H is a homomorphism. There is an ¢ such that
f(g) = h;. On the #** iteration of the algorithm, f(g) = h;. The algorithm then
attempts to extend f to V(G). Since f is 2 homomorphism this extension is possible
and unique; hence, f is added to Hom(G, H).

Finally, we show the algorithm runs in O(}| E(G)|) time. The size of H is fixed, so we
only need to show that the time to extend one f is O(|E(G)|). If the homomorphism
f can be extended to u, then this image of u under f is unique. To test if f is a
homomorphism on SU{u}, we check that for each v in N(u)NiS such that uv € E;(G)
implies f(u)f(v) € E;(H). This requires O(deg(u)) time. Hence the entire algorithm
requires O(|E(G)|) time. =

A final point to consider is what happens when G is not connected? If one is solely
mterested in the question “Does G — H7?", then the Forcing Lemma can be used on
each component of G. The edge-coloured graph G is a YES instance of H-COL if and
only if each component is a YES instance of H-COL. However, if one is interested
in constructing Hom(G, H), then a disconnected edge-coloured graph G can cause
problems. Let G3,G,,..., G, be the components of G. From the above results
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we see there are at most n homomorphisms from G; to H where n = |[V(H). To
construct a homomorphism from G to H, we need to choose a homomorphism from
each component to H. Therefore, there could be as many as n™ homomorphisms
from G to H. Hence, one must be careful when using the Forcing Lemma to generate

Hom(G, H), since this set can have exponential size if G is disconnected.

The Forcing Lemma is a result that naturally extends to directed, edge-coloured
graphs. If the condition on H is changed to “Each vertex is incident with at most

one in-arc and at most one out-arc of each colour”, then the result still holds.

A final observation we make is the obvious interpretation of this result in the context
of multiplicity one. The only connected graphs with degree at most one are K; and
K. Digraphs that have indegree and outdegree at most one at each vertex are directed
paths and directed cycles. These graphs H yield pclynomial H-colouring problems,
as is well known [12].

2.3 Reduction to 2-Satisfiability

The use of propositional logic problems is quite common in complexity theory, es-
pecially for proving NP-completeness. In this section we describe a method for con-
structing polynomial time algorithms using 2-Satisfiability (2SAT). Formally we define
28AT as:

2-Satisfiability (2SAT)

INSTANCE: A set U of boolean variables, a collection C of clauses over

U such that each C € € has at most two literals.

QUESTION: Is there a satisfying truth assignment for C?
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In this definition a clause is a disjunction of variables and a satisfying truth as-
signment is assignment of true or false to each variable such that each clause is true,
This problem is solvable in polynomial time. See [12], [9], and [29]. We describe a
method for polynomially transforming H-COL to 2SAT.

Suppose we are given an edge-coloured graph H. We assign to each vertexin H a
bit string of length n, i.e., a string of n 1’s and 0’s. Given an instance of H-COL, say
G, we construct n boolean variables for each vertex in G. In addition, we construct
clauses on this set of variables in such a way that the clauses have a satisfying truth
assignment if and only if G — H. For example, let u be a vertex in G. We denote
the n variables corresponding to u as u,,%n—1,...,u;. A truth assignment on these
variables can be represented as a bit string of length n. That is, u; is true if and only
if position z of the bit string is a one. Since we have assigned each vertex in H a bit
string of length n, there is a natural correspondence between a truth assignment for

Uy, Un—1,- - -, %1 and an image for vertex u in H.

This is an idea whose simplicity can easily be shrouded by definitions and lemmas.
Let us consider an example. Let H be an edge-coloured graph on three vertices
{z,y,z} and two edge-colours. The blue edges are {zy,zz} and the red edges are
{zy,yz}. To each vertex in H, we assign a bit string of length two:

z — 10
y — 01
z — 00

Let G be an instance of H-COL. In particular, let G be the edge-coloured graph on
three vertices, {u, v, w}, with blue edge set {uv} and red edge set {vw}. We construct
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Figure 2.4: Example of 2SAT reduction

the corresponding instance of 2SAT. The set of variables is U = {u,,u,,v,;,v,, ws, w, }
and the set of clauses is C described below. The bit string 11 has not been used
in labeling H; therefore, in any truth assignment we need to avoid assigning (1,1)
to (u2,u1), (v2,v1), or (w2, w;). This can be accomplished by placing the clauses
(—u2V-yy), (-v2 v -1,), and (—w, V—w,)in C. Secondly, we construct a set of clauses

for each edge in G which will assure that the edge is preserved:

edge clauses
uv  (u2 Vo) A (-ua V —-ug)

vw (v Vw)A(~v Vo)

To see how these clauses were chosen, examine the red edges in H. The bit string
labels in H have the property that ab is a red edge in H if and only if the first bit
(reading right to left) of the label of a is different from the first bit of the label of
b. Hence, given a red edge g¢' € E,.4(G), a truth assignment of (g2,4:) and (93,9;)
corresponds to an edge preserving mapping of gg’ to H if and only if ¢1 # g;. The
clause for red edges above (namely for vw) is an exclusive or of v, and w;. That is,
it has a truth assignment if and only if v; # w;. This is precisely the condition we
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require for a homomorphism. The same argument can be applied to the blue edges

using the second bit of the labels.

The following truth assignment satisfies all the clauses in C:

(uzaul) = (130)
(v2,v1) = (0,0)

(w2, wn) = (0,1)

Since (u2,u,) = (1,0), we map vertex u € G to ¢ € H. Similarly, we map v to z and

w to y. It is easy to check that this is a homomorphism from G to H.

In the above example there are two steps in our reduction. First, we put the
clauses (—az V —a;) in C for all @ € V(G). This insures that the truth assignment
(e2,a1) = (1,1) is never used, since it does not satisfy (—a; V —a;). This must be
done since 11 is not a label in H. Secondly, we construct clauses for each edge, ab
in G, such that a truth assignment for (az,a1) and (b, ;) exists if and only if the
mapping induced by this truth assignment maps ab onto an edge of the same colour.
Therefore, the constructed instance of 2SAT contains: firstly, clauses that describe
the valid labels in H; and secondly, clauses that describe the valid mapping of edges
of each colour.

Formally, we call a set, S, of bit strings of length n 2SAT-describable if there is
an instance of 2SAT over the variables {s,,s,-1,...,51} such that £ : {s,,...,8,} —
{0,1} is a satisfying truth assignment if and only if #(s,)...t(s;) € S. Hence, the
first step in our reduction is to label the vertices of H with a 2SAT describable set.
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Since any truth assignment satisfies an empty set of clauses we have the following

observation.

Observation 2.3.1 Let S be the set of all 2° bit sirings of length n. Then S is
2SAT-describable.

There are exactly four bit strings of length two. In our example above, we used
three of the four to Iabel H. In fact, any three of the of the four bit strings form a
2S5 AT-describable set.

Lemma 2.3.2 Let 5 be any set of three bit strings of length two. Then S is 2SAT
describable.

Proof. There are four bit strings of length two and by assumption S consists of
three of them. Let zy be the one bit string of length two not in S. The instance
of 2SAT over U = {u,v} with the following single clause has a truth assignment if
and only if (u,v) # (z,y). Notice (u,v) satisfies ~(z A y) if and only if (u, v) satisfies

(—z V —y). Hence we have the following four cases:

Value of zy  Set of Clauses

00 € = {(uVv)}

01 ¢ = {(uVv -v)}
10 C={(uvo)}
1 C={uv-v)}

A truth assignment for (u,v) satisfies C if and only if (u,v) # (z,y). That is, if
and only if (u,v) is a memberof S. =
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The following theorem gives sufficient conditions to allow an H-COL problem to be
polynomially reduced to a 2SAT problem. Since 25AT is polynomial, such an H-COL
problem is polynomial. There are many polypomial H-COL problems that are not of
the form described below; hence, the conditions are not necessary for a polynomial
reduction to 2SAT. Note that every polynomial problem trivially polynomially reduces
to 25AT.

We now describe 2 class of graphs that can easily be reduced to 2SAT. Consider a
graph (one edge-colour} where the vertices are partitioned into two sets, X and Y.
We call the graph 25AT aemiable with respect to (X,Y'} if and only if the following

three conditions hold:

(i} either all edges between X and Y are present or no edges between X and Y are

present;
(i) either X induces a clique with loops or X induces an independent set;
(i1} either Y induces a clique with loops or Y induces an independent set.

Theorem 2.3.3 Let H be an edge-coloured graph with multiplicity k. Suppose the
vertices of H have been labelled with a 2SAT-describable set S using bit strings of
length k. For all t <k, let X, = {v € V(H) : the label of v has a 0 in position t }.
Let Y, = V(H\ X,. Suppose (V(H), E/{H)) is 2SAT amiable with respect to (X,,Y:).
Then H-COL can be polynomially iransformed to 2SAT.

Proof. Let G be an instance of H-COL. Consider any edge colour i. We describe
the clauses to be added to C for each uv € E(G). By assumption (V(G), E;(G)) is
2SAT amiable with respect to (X, Y:); therefore, one of the eight cases in Figure 2.5
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| Edges between | Graph induced Graph induced Add clause
X; and Y; by X; by Y; to C
1 None Independent Independent (~us) A ()
2 None Clique with loops Independent (—w:) A (-v;)
3 None Independent Clique with loops (u:) A (v)
4 None Clique with loops | Clique with loops | (u; V —v;) A (—u; V ;)
5 All Independent Independent (u: Vo) A (mu; V)
6 Al Clique with loops Independent (~u; V ;)
7 All Independent Clique with loops (ui V)
8 All Clique with loops | Clique with loops (u: V —u;)

Figure 2.5: Clauses for 25AT reduction

must hold. Add the appropriate clause from Figure 2.5 to C for each edge colour ¢
and for all edges uv € Ei(G).

We now confirm that these clauses are correct. Consider an arbitrary edge colour ¢
calling it blue. Let uv be a blue edge. If case one holds, then there are no blue edges
in H. The clause (—u;) A (u;) has no satisfying truth assignment. Therefore, uv maps
to H if and only if the clause is satisfied. If case 2 holds, then all blue edges in H
have both ends in X;. That is, uvv maps to H if and only if both u; = 0 and »; = 0.
The clause (—u;) A (—v;) is satisfied if and only if (u;,v;) = (0,0). If case 3 holds, then
all blue edges in H have both ends in Y;. That is, uv maps to H if and only if both
u; = 1 and v; = 1. The clause (v;) A (v;) is satisfied if and only if (u;,v;) = (1,1). If
case 4 holds, then all blue edges either have both ends in X; or both ends in Y;. The
clause (u; V -v;) A (—w; V v;) is satisfied if and only if u; = v;. That is, if and only if
(ui, v:) = (0,0) or (us,v:) = (1,1).

~ If case 5 holds, then all blue edges in H have exactly one end in X; and exactly one
end in Y;. The dause (w; V v;) A (-w; V —v;) is satisfied if and only if (u;,v;) = (1,0)
or (u;,v;) = (0,1). In other words, uv maps to H if and only if the clause is satisfied.
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If case 6 holds, then all blue edges in H have at least one edge in X;. The clause
(—u; V —v;) is satisfied if and only if at least one of {u;, v} is 0. If case 7 holds, then
all blue edges in H have at least one edge in Y;. The clause (u; V v;) is satisfied if and
only if at least one of {u;,v;} is true. Finally, in case 8, all possible blue edges in H
are present. Therefore, uv can map to any pair of vertices in H. The clause (u;V ~u;)

is satisfied by any truth assignment to (u;,v;).

With these clauses inserted into C for each edge colour and all appropriate variables,
the instance of 2SAT has a satisfying truth assignment if and only if G — H. ®

2.4 Divide and Conquer

In this section we describe two techniques for studying the complexity of H-COL
based on the complexity of H'-COL where H' is a subgraph of H. We also use a third
technique, the “bipartite decomposition lemma”, similar to these two, which requires

results from Chapter three. Hence, we present it at the end of Chapter three.

2.4.1 The Join Lemma

We begin by studying the case when H is the join of two smaller edge-coloured graphs.

Lemma 2.4.1 Let H; and H, be two edge-coloured graphs with multiplicity k such
that Hy — H,. Let H be the join of Hy and H, with respect to {1,2,...,k,k+1} and
H' be the join of H, and H; with respect to {1,2,...,k}. Then H'-COL polynomially
transforms to H-COL.

Proof. Let G be an instance of H-COL. Let colour k£ + 1 be blue. Construct
a graph X by taking two copies of G, say G* and G2, and joining corresponding
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vertices with blue edges so that a blue matching between G# and G2 results. Note
we can assume G itself has no blue edges, since H’ has no blue edges. A blue edge
in G implies G is trivially 2 NO instance of H-COL. We show X — H if and only if
G- H.

Suppose h : G — H’is a homomorphism. Let the two copies of H; in H’ be denoted
H{ and HB. Let S be the induced subgraph on the set of verticesin G that is mapped
to H{ by h. Similarly let 5 be the induced subgraph on the set of vertices in G that
is mapped to HZ by h. It is clear that V(S) and V(S) partition the vertices of G
into two sets. Moreover, S U S admits a homomorphism to H,. Since Hy — Ha, it is

also the case that SU S — H,. It is now easy to see that X — H.

On the other hand, suppose f : X — H is a homomorphism. As above we can
partition the vertices of X into two sets, those that map to H; and those that map
to H,. Let 54 be the induced subgraph of G# on the set of vertices of G4 that is
mapped to H; by f. Let 52 be the induced subgraph of G2 on ihe set of vertices of
GP? that is mapped to H, by f. Let 54 be the induced subgraph of G# on the set
of vertices of G that is mapped to H; by f. By the construction of the matching in
X, 54 is isomorphic to SB. Since SP admits a homomorphism to Hi, it is the case
that S4 admits a homomorphism to H;. It is now easy to construct a homomorphism
G-H.m

In the proof above, the edge-coloured graph constructed from the two copies of G,
contains a perfect matching in blue. We have the following immediate corollary.

Corollary 2.4.2 Let H and H' be as above. If H'-colouring is NP-complete, then
H-colouring is NP-complete even when the input is restricted to edge coloured graphs
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which contain a perfect matching in blue.

2.4.2 'The Dominating Loop Lemma

We now consider a method for reducing the target edge-coloured graph H by a single
vertex. In the following lemma we are interested in finding a vertex in H incident

with only one colour and adjacent to all vertices including itself.

Lemma 2.4.3 (Dominating Loop Lemma) Let H be an edge-coloured graph with
a vertez v such that v is incident with edges of only colouri. Further suppose that v is
adjacent (in colour i) to all vertices in H including itself. Let G be an edge-coloured
graph and let X be the set of all vertices in G incident with only colour i. Then
G — H if and only if G\X — H\{v}.

Proof. Suppose H satisfies the condition of the lemma and vertex v is blue only.
Firstly, suppose G — H. The vertices that map to v must be a subset of X since
v is blue only. Therefore G\X must map to H\{v}. On the other hand, suppose
f : G\X — H\{v}. Define a new homomorphism g where

, flu) HugX
9(u) =
v ifueX
Since v is adjacent in blue to all other vertices of H and X is adjacent only in blue

to G\ X, it is easy to verify that g is a homomorphism. »
Corollary 2.4.4 Let H and v be as above. Then H-COL a H\{v}-COL.

The above corollary says if H-COL is NP-complete, then H\{v}-COL is NP-
complete. f H\{v}-COL is polynomial, then H-COL is polynomial. We also present
a partial converse to Corollary 2.4.4.
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blue only

Figure 2.6: Example of H with a dominating loop.
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Cerollary 2.4.5 Let H be a two-edge-coloured graph that is a core. Suppose H con-
tains a vertex v that is incident only with edges of one colour. Further suppose that v
is adjacent (in that colour) to every vertez in H including itself. Then H-COL and

H\{v}-COL are polynomially equivalent.

Proof We know from Corollary 2.4.4 that H-COL o H\{v}-COL. We now prove
that H\{v}-COL a H-COL. Suppose without loss of generality the edges of H are
blue and red and the vertex v is incident with only blue edges. Since H is a core,
it can not have any vertices other than v that are incident with only blue edges.
That is, every vertex in H\{v} is incident with a red edge. Let G be an instance of
H\{v}-COL. For each vertex u € V(G) add a new vertex u’ and join u to u’ with a
red edge. Call this new graph G'. Since all vertices in H\{v} are incident with red
edges G — H\{v} if and only if G’ — H\{v}. Since all vertices in G’ are incident
with a red edge, G’ — H\{v} if and only if G’ — H. Therefore, G — H\{v} if and
only if G’ — H. The result follows. ®



Chapter 3

The Homomorphism Factoring

Problem

3.1 General Results

The results in this chapter comein two flavours. Some results hold for the most general
systems considered in this thesis — edge-coloured, directed graphs. Other results are
written in terms of graphs and digraphs (i.e. one edge-colour). This situation is
acceptable in the sense that the general results are those that show the existence of
polynomial time algorithms and the specific (graph) results prove NP-completeness
of certain problems. That is, we show certain problems are easy even in the most
general case; whereas, we show other problems are hard even in a restricted case.

For graphs, we know from [19] that to test for the existence of a homomorphism
to any fixed nounbipartite graph is NP-complete. An interesting question is to find

the complexity of H-colouring when the input is restricted to a particular et of
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graphs. For example, any graph that admits a homomorphism to Cs must also admit
a homomorphism to K3 since Cs — Kj3. Furedi, Griggs, and Kleitman [11] asked if
knowing G is 3-colourable makes testing Cs-colourability any easier. In [6] we prove
that it is not easier, even when a homomorphism to Kj; is provided. Specifically, we
consider in [6] the following restricted homomorphism problem RHP. We state the
problem here in the more general context of edge-coloured graphs, although in [6] we
only consider graphs. Thus let H and Y be fixed edge-coloured graphs.

Restricted Homomorphism Problem RHP(H,Y)
INSTANCE: An edge-coloured graph G and a homomorphismg: G — Y.

QUESTION: Does there exist 2 homomorphism f: G — H.

For the case of undirected, uncoloured graphs, we proved in [6] the following result:

Theorem 3.1.1 Let H be a loopless graph. If w(H) < k < x(H), then RHP(H, K}.)
i NP-complete. Otherwise, k < w(H) < x(H) and RHP(H, K;) is polynomial.

We now consider a problem, due to Sabidussi and Tardiff, which is closely related
to, and perhaps more natural than, the restricted homomorphism problem. We begin
by stating this problem in the context of edge-coloured digraphs since the first set of
results holds for this general case. We will later restrict our attention to graphs. Let
H and Y be two edge-coloured digraphs and 2 : H — Y a homomeorphism.

Homomorphism Factoring Problem HFP(H,1,Y)
INSTANCE: An edge-coloured digraph G and a homomorphismg: G - Y.

QUESTION: Does there exist a homomorphism f : G — H such that ho f = g7
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We begin by defining an indicator construction for use with the Homomorphism

- Factoring Problem. The indicator construction in Chapter Two is stated in terms of
m indicators, I1, I, . . ., I,. Consequently, the result of the indicator construction has
m edge-colours. Our discussion here is in terms of one indicator for simplicity and in
view of the fact that the indicator construction is used in the one edge-colour context
in this chapter. However, the HFP indicator construction and the following lemma

have a natural generalization to m indicators.

Let H and Y be two edge-coloured digraphs and let 2 : H — Y be a homomorphism.
Let I be an edge-coloured digraph with distinguished vertices z and j. Further suppose
t: I — Y is a homomorphism. The indicator construction, with respect to (1,z,5,1),
transforms H and Y into two new edge-coloured digraphs H# and Y#. The vertex-set
of H# is V(H). Given two vertices u and v in V(H), uv € E(H#) if and only if there
is a homomorphism r :  — H such that r(3) = u, 7(j) = v, and hor = . The
vertex-set of Y# is V(Y) and the edge-set is the single arc (¢(2),(7)).

Consider the example in Figure 3.1. The graph H is Cy and the graph Y is C5. The
numbers beside the vertices in H define the homomorphism A : H — Y. All vertices
with 0 beside them are mapped to the vertex labelled 0 in Y. Similarly, the graph I
is a P; and the homomorphism £ : ] — Y is also marked in the figure. The pair (u,?)
is an arc in H# if and only if J admits 2 homomorphism to H with i mapping to u of
colour 0 and j mapping to v of colour 0. The edge-coloured digraph Y# contains the
single arc from #(2) =0 to £(j) = 0.

Part of the description of HF P(H,h,Y) is the homomorphism k. It is important
to note the homomerphism, & : H — Y, is also a homomorphism from H# to Y*.
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Figure 3.1: An example of HFP indicator construction

Given an arc, (u,v), in H¥, there is homomorphism r : I — H such that r(i) = u and
r(j)=vand hor=¢t Nowt:I =Y, (i) = (hor)(i) = h(u) and t(j) = (hor)(j) =
k(v); therefore, (k(u), k(v)) is an arc in Y#. That is, & is a homomorphism from H#
to Y#. Hence, HFP(H#,h,Y#) is a well-defined problem.

Lemma 3.1.2 Suppose H and Y are edge-coloured digraphs and h : H - Y is a
homomorphism. Further suppose that I is an edge-coloured digraph with distinguished
vertices t and j and that t : I — Y is a homomorphism. Let H¥ and Y# be the
result of the indicator construction with respect to (I,1,7,t). Then HFP(H#* h,Y#)
polynomially irensforms to HF P(H,k,Y).

Proof. Let G, g be an instance of HF P(H#,h,Y#), where G is an edge-coloured,
digraph and g : G — Y# is a homomorphism. Let #G be the edge-coloured, directed
graph obtained by taking a copy of V(G) and for each arc uv € E(G) putting a copy
of I in #G with i identified with u and j identified with v. See Figure 3.2 for an
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Figure 3.2: The construction of #G from G.

example of #G. We define 2 homomorphism #¢: #G — Y as follows:
g(v) fveV(G),
*9(v) = .
tv) ifveV(\{i s}

It is easy to see that ¥g is a homomorphism. Finally, we show that G, g is a YES in-
stance of HF P(H#,h,Y#) if and only if ¥G, #¢ is a YES instance of HFP(H,%,Y).

Suppose G, g is 2 YES instance of HFP(H#,h,Y#), i.e., there exists f : G — H#
such that ko f = g. Define 2 mapping ¥ f from V( #¥G) to V(H) as follows:
o If u is a vertex of G, then set #f(u) = f(u).

s If u is not a vertex of G, then it must be a vertex in some copy of I. This copy
of I in #G corresponds to some arc (z,y) in G. Since (f(z), f(z)) is an arc in
H#, there is a homomorphism r : I — H such that hor = t. Set #f(u) = r(u).
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Now it is easy to check *f is a homomorphism and Ao #f = #g. The converse is

also easy to verify. &

We first observe that the HFP problems include H-COL.

Proposition 3.1.3 Let H be an edge-coloured digraph with multiplicity k. Let Y be
e digraph which contains a vertez, sey y, with loops of all colours 1,2,...,k. Let h
be the constant homomorphism h(v) = y, for allv € V(H). Then HFP(H,h,Y) is
polynomially equivalent to H-COL.

Proof. We begin with a polynomial transformation of H-COL to HFP(H,4,Y).
Let G be an instance of H-COL. We may assume without loss of generality that
G is an edge-coloured digraph that uses only edge-colours 1,2,...,k. Let g be the
homomorphism from G to Y defined by g(v) = y for all v € V(G). It is trivial to
check that there is an f : G — H such that ho f = g if and only if G — H. Therefore,
H-COL o« HFP(H,h,Y).

On the other hand, given an instance G,g of HF P(H,h,Y), we consider G as the
corresponding instance of H-COL. Then G — H if and only there exists f : G — H
such that ko f = g. Therefore, HFP(H,k,Y) a H-colouring. »

We are also able to use the HFP problem to construct polynomial algorithms for

certain H-colouring problems.

Theorem 3.1.4 Let H and Y be edge-coloured digraphs and h : H — Y a homomor-
phism such that HFP(H,R,Y) is polynomial. Suppose for ary edge-coloured directed
graph G the set of homomorphisms from G to Y, {g:9:G — Y}, can be construct
in polynomial time. Then H-COL is polynomial.



CHAPTER 3. THE HOMOMORPHISM FACTORING PROBLEM 48

Proof. We produce a Turing reduction of H-COL to HFP(H,h,Y). Let G
be an instance of H-COL. Construct the set of homomorphisms of G to Y, called
Hom(G,Y). Let the elements of Hom(G,Y) be g1,92,---,9m- There must be only
polynomially many of these homomorphism since the set can be éonstmcted in poly-
nomial time. We claim there exists an 7 (1 < ¢ < m) such that G, g; is a YES instance
of HFP(H,,Y) if and only if G is a YES instance of H-COL. On the one hand, the
existence of such an ¢ implies there exists f : G — H such that ho f = g;. Trivially,
G is a YES instance of H-COL. On the other hand, if G is a YES instance of H-COL,
then there exists f : G — H. The homomorphism ko f : G — Y must be g; for some
t. Hence, G, g; is 2 YES instance of HFP(H,h,Y). =

Given the above proposition and the fact that as yet no complete classification of
H-colouring for digraphs exists [2], it seems unlikely that we will be able to completely
classify the complexity of HFP(H,h,Y) for 2ll H, Y, and h : H — Y. Therefore, we
focus on particular restrictions of H, ¥ and k. We begin with a series of results when
restrictions on H, h, and Y, give rise to HF P(H,h,Y) problems that are polynomial.

The first case we examine 1s when & is a retraction.

Lemma 3.1.5 LetY be a subgraph of an edge-coloured digraph H andleth: H - Y
be a retraction. Then HF P(H,},Y) is polynomial.

Proof. Let G, g be an instance of HF P(H,}h,Y). The homomorphismg: G—=Y
is also a homomorphism of G to H since Y is a subgraph of H. Furthermore, hog =g
since h is the identity map on Y. Therefore, any instance G, g is a YES instance and

the problem is trivially solvable in polynomial time. 8

Corollary 3.1.6 Let Y be a subgraph of an edge-coloured digraph H and let h: H —
Y be a retraction of H to Y followed by an automorphism of Y. Then HF P(H,h,Y)
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is polynomial.

Proof. Let k = ook’ where k' is a retraction of H to ¥ and o is an automorphism
of Y. Given an instance G,g of HFP(H,h,Y), it is a YES instance if and only if
there exists f : G — H such that (coh’)o f = g. Since ¢ is an automorphism, it has
an inverse, which means the above condition is true if and only if Ko f = 671 0 g.
Since 0% o g is 2 homomorphism of G to Y, this last condition is true if and only if

G,o7 ' 0 g is a YES instance of HFP(H,}',Y).

Hence, G, g is a2 YES instance of HFP(H,h,Y) if and only if G,0" ' 0gis a YES
instance of HFP{H,k',Y). We have HFP(H,h,Y) a HFP(H,}.,Y). By Lemma
3.1.5, HFP(H,h,Y) is polynomial. =

Corollary 3.1.7 Let H and Y be edge-coloured digraphs such that Y is the core of H.
Then for any homomorphism h: H — Y, the problem HF P(H,h,Y) is polynomial.

Proof. Since Y is the core of H, any h : H — Y must be a retraction followed by

an automorphismof Y. »

The following corollary concerns homomorphically full edge-coloured graphs. These
are defined by the property that any homomorphic image is a retract. We discuss
homomorphically full graphs in Chapter Eight, see also [7]. Since HFP(H,L,Y) is
polynomial when £ is a retraction, the following corollary is immediate.

Corollary 3.1.8 Let H be a homomorphically full edge-coloured digraph, let Y be any
edge-coloured digraph and let h : H — Y be a homomorphism. Then HF P(H,h,Y)
is polynomial.
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We have seen above that placing restrictions on 2 or on Y can result in a HF'P
that is polynomial. In general, if no restrictions are placed on % or Y the problem is

hard. We examine this in the next section.

3.2 Undirected graphs

In this section we restrict our attention to graphs (multiplicity one). We may assume

for all HFP(H, h,Y) problems, that the graph Y is connected. We prove the following

main result.

Theorem 3.2.1 For each connected graph Y, Y & {P, P, P2, Ps}, there ezists a
graph H and @ homomorphism h: H — Y such that HFP(H, h,Y) is NP-complete.
For each graph Y € { Py, P, P,, P;} and for all graphs H and all homomorphisms
h:H —Y, the problem HFP(H,h,Y) is polynomial.

Proof. First suppose Y is a graph and is not one of {F,, P, P>, Ps}. Depending on
Y, we will choose a graph H and a homomorphism h : H — Y so that HF P(H,h,Y)

1s NP-complete.

Case 1: Suppose Y contains a cycle. Let C = ¢g¢;...¢,-1 be a cyclein Y.
Let H be the graph consisting of two cycles, of length 3n and 4n respectively, joined
at a single vertex. Label the vertices in these two cycles with vevyvs ... V3,7 and
UgU Uz . .. Ugy—1, WheTe vg = tug. Let h : H — Y be the homomorphism: defined by:

hw) |

¢ =c¢; where 1 = j mod n.
h(u;) j
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Let I be a path of length n on vertices pop,; ...p, with i = pp and j = p,. Define

t: I —-Y as follows:
tpi)) = cfor0<i<n,
t(p) = oo-

The result of the indicator construction with respect to (Z,%,5,t) is H¥, Y#. The
digraph H# consists of a directed three-cycle and a directed four-cycle joined at the
vertex vp (plus isolated vertices). In particular, the vertices of the three-cycle are
Vo, Un, U2 and the vertices of the four-cycle are vy = ug, Up, Uzn, U3,. It is important
to note that the choice of the homomorphism k, here and below, assures that H#
contains no other edges and in particular no loops. The digraph Y# has a single
arc, namely a loop on vertex c;. Also the map h(v) = ¢ for all v € V(H#) is a
homomorphism of H¥ to Y#. By Proposition 3.1.3, we have HF P(H#* b, Y#) is
polynomially equivalent to H¥-COL. In [2], it is shown that H-COL is NP-complete
when H comsists of two directed cycles joined at a single vertex (assuming H does
not retract to a single cycle). Hence by [2], H¥ — COL is NP-complete and therefore
HFP(H,h,Y) is NP-complete.

Case 2: Suppose that Y contains a vertex of degree at least three. Let y
be a vertex in Y with neighbours u,v,w. Let I be the path pypyps...ps with i = p
and 7 = ps. Let £ : I — Y be defined by:

t(po) =t(p2) = t(ps) = t(ps) =y
;) = u

#(ps)
¥ps)

i
@

]
S
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We now proceed as above. Let H be the graph consisting of two cycles of lengths
18 and 24 joined at a single vertex. Let the first cycle have vertex-set {cg, ¢, ., €17}
and the second have vertex-set {dy,d;, - .. ,d23}, where do = ¢o. Define h: H — Y by:

£

y i=0,2,4 (mod 6),
v =1 (mod6),
v t=3 (mod6),
w 1=5 (mod 6).

.

R(c:) = h(d:) = |

The result of the indicator construction with respect to (1,4,7,%) is H¥ and Y#.
The digraph H# consists of a directed three-cycle and a directed four-cycle joined
at a single vertex. The graph Y# has a loop on vertex y. The homomorphism
k : H¥ — Y# defined by kh(z) = y for all z € V(H#) satisfies the condition of
Proposition 3.1.3. Therefore, HF P(H#,,Y#) is equivalent to H¥-colouring. Again,
this is NP-complete. Hence, HF P(H, h,Y) is NP-complete.

Case 3 Suppose Y is a path of length at least four. Label the first five
vertices of Y with 0,1,2,3,4. Let I be a path on 13 vertices, pg,ps,...,p12 With
t = pg and j = p;;. Define a homomorphism ¢ : I — Y so that the vertices of I have
consecutively the images 0, 1,2, 1, 2, 3, 4, 3,2, 3, 2, 1, 0. As above, H is a graph
consisting of two cycles joined at a vertex. One cycle is constructed by taking three
copies of I and identifying j of the first copy with ¢ of the second, j of the second with
¢ of the third, and j of the third with z of the first. The second cycle consists of four

copies of I and is constructed similarly. Join the two cycles by identifying the vertex ¢
in the first copies of I in each of the cycles. The homomorphism & is correspondingly
constructed from the homomorphisms t of the individual copies of I. The result of

the indicator construction with respect to (I,1,j,t) is H¥, Y¥#, where H¥ and Y#
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A2

are as above. By Proposition 3.1.3, HF P(H,h,Y) is NP-complete.

If a connected Y does not contain a cycle or a vertex of degree at least three, it must
be a2 path. HY is not a path of length at least four, it must be one of { P, B, P, Ps}.
Therefore, the three cases above prove the first part of the theorem. The second half

of the theorem is proved below.

Hence, suppose that Y € {FP, P, P, P;}. Let H be a graph. Recall that we can
always assume H is connected. Y = Pyand h: H — Y is a homomorphism, then
h is a retraction and by Lemma 3.1.5 HFP(H,h,Y) is polynomial. If Y = P, and
h: H — Y is a homomorphism, then we can conclude 4 is a retraction followed by
an automorphism (and hence HF P(H,h,Y) is polynomial) unless k is not onto. If
this is the case, then h must map H onto Py and HFP(H, h, P}) is equivalent to
HFP(H,h,F,) and hence also polynomial. If Y = P, and k is a homomorphism
from H to Y, then again HFP(H,k,Y) is polynomial if h is onto, because k is a |
retraction followed by an automorphism; otherwise, k is not onto and HFP(H,h,Y)
is equivalent to HF P(H, k, P;) or HF P(H, k, P;) and hence also polynomial.

Finally suppose Y is P; and h is a homomorphism h : H — Y. Let the vertex-set of
Y be {0,1,2,3}. If h is not onto, then HFP(H, k,Y) is equivalent to one of the three
polynomial problems above. Hence, assume k isonto. Let P = (v =po)p1-..(pn = 1)
be a shortest path in H from a vertex v, such that h(v) = 0, to a vertex u, such that
h(u) = 3. Since P is a shortest path, no interior vertex of P is mapped to 0 or to 3.
The vertices in P have the consecutive images under A: 0,1,2,1,2,1,2,...,1,2,3. It
is easy to check that there is a retraction r from H to P such that hor = h. Given
an instance G, g of HFP(H,h,Y) we can construct a shortest path, say Q, between



CHAPTER 3. THE HOMOMORPHISM FACTORING PROBLEM 54

u and v where the u and v are taken over all pairs u and v such that g{u) = 0 and
g(v) = 3. This problem is the Shortest Pairs Problem and is polynomial [12]. Again
it is easy to see there is a retraction ¢ from G to @ such that got = g. Finally, G, ¢
is a YES instance of HFP(H h,Y) if and only if there exists f : Q — P such that
ko f = g. This is true if and only if the length of Q is greater than or equal to the
lengthof P. m

Theorem 3.2.1 deals with graphs. However, the algorithm stated in the final case
works for edge-coloured digraphs. This gives an immediate corollary.

Corollary 3.2.2 Let Y be an edge-coloured directed path of length 0, 1, 2, or 3. Then
Jor all edge-coloured digraphs H and all homomorphisms h : H — Y, the problem
HFP(H,h,Y) is polynomial.

Using the above corollary and Theorem 3.1.4 we have a new class of H-colouring

problems that are all polynomial.

Corollary 3.2.3 Let H be an edge-coloured digraph such that H admits a homo-
morphism to an edge-coloured directed path of length at most three. Then H-COL is
polynomial.

Proof. Let Y be an edge-coloured directed path of length k, where k < 3, and
let h : H — Y be a homomorphism. By the above corollary, HFP(H,4,Y) is
polynomial. It is easy to check that given any edge-coloured digraph G, there exist
at most k& homomorphisms from G to Y. Since Y is a fixed path, k is a constant
and therefore the number of homomorphisms of G to Y is bounded by the constant
polynomial k. Using Theorem 3.1.4, H-COL is polynomial. m
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3.3 HFP as Edge-Ccloured H-colouring

In this section we again consider the HFP problem for graphs, although there is
a natural generalization to edge-coloured graphs. Consider HFP(H,k,Y) and an
instance G, g of it. We now present a construction that transforms the graphs G, H
and the homomorphisms g, h into edge-coloured digraphs G., H., such that G,gis a
YES instance of HFP(H,h,Y) if and only if G. admits 2 homomorphism to H..

Suppose Y and H are graphs and k& : H — Y is a homomorphism. Let V(Y) =
{¥0,91,- - -, ¥} and let C be the set of all unordered pairs of elements of V(Y'); the
set C is the set of edge-colours of our new digraph. We construct the edge-coloured

digraph H, as follows:
e V(H,)=V(H);
¢ for each edge uv of H where h{u) = y; and h(v) = y; and i < j, the arc uv is

b 1 - b N _ S T
an edge of colour {y;,y;} in H..

Let G, H,and Y be graphs and let h: H - Y and g : G — Y be homomorphisms.
It is easy to check that G. admits a homomorphism to H, if and oanly there exists a
homomorphism f : G — H such that ko f = g. That is, if and only if G,g is a YES
instance of HFP{H, h,Y ). This gives the following proposition.

Proposition 3.3.1 Let H, Y, h, and H_ be defined as above. Then HFP(H,h,Y)
a H.-COL.

Two immediate corollaries to the proposition are given below.
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Corollary 3.3.2 Let H be a path, Y be a graph and h : H — Y a homomorphism.
Then HFP(H k.Y is polynomial.

Proof The edge-coloured digraph H. an oriented path. Testing for the existence of
a homomorphism to an oriented path is polynomial, [14}, i.e. H-COL is polynomial.

Corollary 3.3.3 Let ¥ and Y be graphs and h : H — Y a homomorphism. Fur-
ther suppose for all v € V(H), h is one-fo-one on the neighbourhood of u. Then
HFP(H,h,Y) is polynomial.

Proof Since h is one-to-one on the neighbourhood of each vertex of H, H, has
at most one arc of each colour incident with any given vertex. Therefore, by the
Forcing Lemma (Lemma 2.2.3), H.-COL is polynomial and hence HFP(H,h,Y) is
polynomial. m

3.4 The Two Homomorphism Problem

We now examine a problem similar to HFP. Again we restrict our attention to mul-
tiplicity one. In the spirit of the HFP we consider the problem when Y is fixed and
H = G is part of the instance. Formally,
Let Y be a fixed graph:
Two Homomorphism Problem THP(Y).
INSTANCE: A graph H and a two homomorphisms &; : H — Y and A3 -
H-Y.

QUESTION“ Does there exist a homomorp

. 7%4

hism f : H — H such that kyjof =
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In the proof of Theorem 3.2.1 the result of the indicator construction, H#, is always
a directed three-cycle joined at a vertex to a directed four-cycle. In H, these cycles
correspond to three copies of the indicator I and four copies of the indicator J. If
instead the graph H consisted of four copies of I and six copies of I, the result of
the indicator construction H#¥ would be a four-cycle joined at a vertex to a six-cycle.

Therefore, the “4-cycle-6-cycle™ version of the proof gives the following corollary.

Corollary 3.4.1 LetY is be a connected graph and suppose that Y € { Py, P;, Py, Ps}.
Then there ezists e bipartite graph H and a homomorphism h : H — Y such that
HFP(H h,Y) is NP-complete.

We now state our main result for the Two Homomorphism Problem.

Theorem 3.4.2 Let Y a connected graph and Y & {Po, Py, P;, P3}. Then THP(Y)

is NP-complete.

Proof. By Corollary 3.4.1, there exists a bipartite graph H and 2 homomorphism
k:H — Y such that HFP(H,h,Y) is NP-complete. We find a polynomial transfor-
mation of HFP(H h,Y) to THP(Y). Let G, g be an instance of HFP(H,L,Y).

The graph G must be bipartite 1n order to admit a homomorphism to H. Therefore,
if G is not bipartite, then G, g is a NO instance of HFP(H,h,Y). Thus, assume G

is bipartite. Also, to avoid the trivial case, assume G contains at least one edge.

Let yoyy be an edge of Y. We begin by examining two special cases. First, if g(G)
is Yo, then G, g is a YES instance of HFP(H,h,Y) if and only if H contains an
edge uv such that h{u) = yo and A{v) = y1 Second, if hA(H) is yoy1, then G, g is a YES
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instance of HFP(H,k,Y) if and only if g(G) is the edge yoy;. Therefore, assume

neither g(G) nor h(H) is yoy:-

Let H' be the union of G and H. Let f; be the homomorphism that maps H to
Yoy1 and is equal to g on G. Similarly, let f, be the homomorphism that maps G to
Yoy1 and is equal to A on H. The instance H', fi, f; is a YES instance of THP(Y) if
and only if G, g is a YES instance of HFP(H,h,Y).

Suppose G, g is a YES instance of HF P(H,h,Y). This implies thereis f : G — H
such that ko f = g. Let £ be the homomorphism H’ to H' defined by:

) = { fw) ifueV(G)
fi(v) fueV(H)

On the other hand, suppose H', fi, f, is 2 YES instance of THP(Y). Let f: H' —
H' be a homomorphism such that f, 0 f = f;. Consider f restricted to G. This is a
homomorphism from G to H’. Since we can assume G is connected and H’ consists
of the connected components G and H, either f(G) is a subgraph of G or f(G) is a
subgraph of H. Since f,(G) is cot yoyr and f5(G) is yoy:, it must be the case that
J{(G) is contained in H. By restricting f to G, fi to G and f, to H, we have ho f = g¢.
Therefore, G, g is a YES instance of HFP(H,h,Y). u

3.5 The Bipartite Decomposition Lemma

The pext technique allows us to take a given H-colouring problem and split it into
to two smaller problems H;-COL and H,-COL. The complexity of these problems
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determines the complexity of H-COL. Suppose H is an edge-coloured graph which
is a core and blue is an edge-colour of H. Further suppose that the blue spanning
subgraph is a complete bipartite graph with bipartition (A, B). Moreover, suppose
that for all u € A and v € B, uv is not an edge of any colour except blue. Let H; be
the induced subgraph of H with vertex-set A and H; be the induced subgraph of H

with vertex-set B. We have the following lemma.

Lemma 3.5.1 Let H, H;, and H, be as above. If H,-COL or H,-COL is NP-
complete, then H-COL is NP-complete. If both H,-COL and H,-COL are polynomial,
then H-COL is polynomial.

Proof. We prove the former statement first. Suppose H;-COL is NP-complete.
Let h; be a vertex in H;. Let J be a blue path of length two with j at one end
and k; at the other. The result of the subindicator construction on H with respect
to J,,k; is H;. By assumption this problem is NP-complete and hence H-COL is

NP-complete. A similar argument works when H,-COL is NP-compiete.

Now suppose both H;-COL and H,-COL are polynomial. Let C be the congruence
with two classes §; = V(H;) = A and S; = V(H2) = B. Let H’ be the quotient
of this congruence and let h be the homomorphism from H to H’ induced by the
congruence. It is easy to check that HFP(H h,H') is polynomial. Furthermore, H’
has the property that each vertex is incident with one blue edge and loops of several
colours, but is not incident with a blue loop. Therefore, H’ satisfies the hypothesis of
Lemma 2.2.3. Hence, by Theorem 3.1.4, H-COL is polynomial. &

In the first part of the proof, we did not use the fact that only blue edges pass
from H, to H,. That is, the sub-indicator construction works whenever the blue edges
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induce a complete bipartite graph regardless of the other edges between H, and H,.

Hence, we have the following corollary.

Corollary 3.5.2 Let H be an edge-coloured graph suck that the blue spanning sub-
graph is a complete bipartite graph with bipartition (A,B). Let Hy (resp. H,) be
the subgraph induced by A (resp. B). If Hy-COL or H,-COL is NP-complete, then
H-COL is NP-complete.



Chapter 4

Bipartite Two-Edge-Coloured
Graphs

4.1 Equivalence to Directed Graphs

The H-colouring problems for two-edge-coloured bipartite graphs and for bipartite
digraphs turn out to be closely related. In this section we show how to construct a
bipartite digraph from a given bipartite two-edge-coloured graph and vice versa so that
the corresponding H-colouring problems are polynomially equivalent. In this chapter
we make the assumption that all edge-coloured graphs and digraphs are connected.

Let H be a two-edge-coloured graph. Define the converse of H, written H%, to
be the edge-coloured graph on vertex V(H), where Ey(H) = E;(H?) and E;(H) =

) ng [HRX Thot za ER s n}h“&iﬁ formees H ho intarchaneaines 'ﬂﬂl arid hliva ad

2\ sz j- 108 I8, I HOE 3 oY IDRCICaangng T and o:ue eages. Let

D be a directed graph. Define the converse of D, written DR, to be the directed
graph on vertex-set V(D) where uv € E(D) if and only if vu € E(DR). The following

61



CHAPTER 4. BIPARTITE TWO-EDGE-COLOURED GRAPHS 62

proposition is straightforward and is presented without proof.

Proposition 4.1.1 Suppose G and H are two-edge-coloured graphs. Then G — H if
and only if GR — HE.

Similarly we can show for the following for digraphs.

roposition 4.1.2 Suppose C and D are digraphs. Then C — D if and only if
CE - DR

We now explain how to construct a bipartite digraph from a bipartite two-edge-
coloured graph. Let H be a bipartite edge-coloured graph and (Ho, Hy) a bipartition
of H. Define Dir{H, Hy, H;) to be the directed graph D as follows:

e Let V(D) = V(H),
e let uv € E(D) for all v € Hp, v € Hy, and uv € E;(H),
o let vu € E(D) for all u € Hy, v € Hy, and uv € E»(H).

Briefly, D is the digraph obtained by replacing each blue edge in H from Hy to H; by
a forward arc and each red edge in H from Hj to Hy by a backward arc. Note that
if (Hp, H,) is a bipartition of H, then (Hj, Hp) is also a bipartition of H. Moreover,
if (Ho, H,) is a bipartition of H, then it is also a bipartition of Dir(H, Hp, H,). The

following proposition is straightforward.

Proposition 4.1.3 Let H be a bipariite two-edge-coloured graph . Suppose that

ipartition of H and D = Dir(H, Hy, H;). Then DR = Dir(H, H,, H,).
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We also have a construction to construct a bipartite edge-coloured graph from a
bipartite digraph. Let D be a bipartite digraph D and (Dy, D)) a bipartition of D.
Define ECG(D, Dy, D) to be the edge-coloured graph H as follows:

e Let V(H) = V(D),
e let uv € E;(H) for all u € Do, v € Dy, and uv € E(D),
¢ let uv € E;(H) for all u € Dy, v € Ds, and vu € E(D).

Briefly, H is the edge-coloured graph obtained by replacing each arc from Dy to D, by
a blue edge and each arc from Dy to D, by a red edge. We now present the analogous

result to Proposition 4.1.3.

Proposition 4.1.4 Suppose D is a digraph. Suppose that (Dg, D) is a bipartition
of D and H = ECG(D, Dy, D). Then HR = ECG(D, Dy, Dy).

The above constructions preserve edge structure in some sense and hence preserve

homomorphisms. This is described in the following theorem.

Theorem 4.1.5 Let G and H be bipartite two-edge-coloured graphs with bipartitions
(Go,G1) and (Hy, Hy) respectively. Let C = Dir(G,Gg, G,) and D = Dir(D, Ho, H1).
Then G — H or GR — H if and only if C — D or CR — D.

Proof Suppose G — H or G® — H. Weshow C — D or C* — D. Assume there
is a homomorphism f : G — H. The case G®R — H is similar. Either f(Go) C Ho
and f(Gy) € H; or f(Go) € Hy and f(G,) € Ho.
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First, suppose the former case holds. To see that f : C — D is a homomorphism,
let uv € E(C). If u € Cp and v € C, then uv € Ey(G). Hence f(u)f(v) € E\(H).
This implies f(u)f(v) € E(D), since f(u) € Hp and f(v) € Hy,. On the other
hand, if u € C; and v € Cy, then uv € E,(G) which implies f(u)f(v) € Ez(H) and
F(w)f(v) € E(D). In both cases f(w)f(v) € E(D).

Second, suppose the latter case hoids. Then f : C — D® is a homomorphism. Let
uv € E(C). fu € Cg and v € Cy, then uv € E;(G). Hence f(u)f(v) € Ei(H).
We are now assuming f(u) € H, and f(v) € Ho. Hence, f(v)f(u) € E(D) and
f(u)f(v) € E(D?). On the other hand, if u € C; and v € C;, then uv € E,(G) which
implies f(u)f(v) € Ex(H). Therefore, f(v)f(u) € E(D) and f(u)f(v) € E(D?). In
both cases f(u)f(v) € E(D?).

Thus we can conclude C — D or C — D®. The proof that C — D or C — D?

implies G — H or G — H% is simiiar. m

The above theorem suggests that for H a bipartite two-edge-coloured graph and D
a bipartite digraph, H-COL and D-COL are polynomially equivalent. This is in fact
proved below. Since the edge-coloured graph H = ECG(Dir(H, Hy, H,), Ho, H,) and
the digraph D = Dir( ECG(D, Dy, D1}, Dy, D), the following theorem can be stated
in two versions. Namely, we can consider D to be comstructed from H or H to be
constructed from D. By the previous observation they are equivalent.

Theorem 4.1.6 Suppose H ts a bipartile two-edge-coloured graph. Suppose thai
{1‘1" H } is a vﬁﬁr“fﬁiﬁﬁ of H and D = E‘zf\g,ug,z.ll; Then H-COL ar D-COL
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Proof Let G be an instance of H-COL. Choose a specific vertex v of G. Let
ki, ha,..., h; be the vertices of H. Define G; as the edge-coloured graph obtained
from the disjoint union of G and H, when vertex v € V(G) and vertex h; € V(H) are
identified.

Claim 4.1.6.1 The edge-coloured graph G admits a homomorphism to H if and only

if for some i the edge-coloured graph G; admits a homomorphism to H.

Suppose ¢ : G; — H is a homomorphism. Since G is a subgraph of G;, the
existence of g implies the existence of f : G — H. On the other hand, suppose
f :G — H is a homomorphism and f(v) = h;. Define g as:

f(r) ifueV(G)
g(u) =
u ifueV(H)

The verification that ¢ is a homomorphism from G; to H is immediate. The claim

follows.

A second observation about the sequence G; is given in the following claim.
Claim 4.1.6.2 Suppese G; — HR. Then G; — H.

Suppose f : G; — H® is a homomorphism. Since H is a subgraph of G;, the
existence of f implies H — H®. By Proposition 4.1.1 it must be the case that there
exists a homomorphism h : HR — (HR)R. However, (HF)R is simply H. Therefore
ko f is a homomorphism from G; to H. This proves the claim.

An immediate consequence of this claim is that:

G; — H if and only if G; — H or G; — H®
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Combining this observation with the first claim we see that:
G — H if and only if there exists 7 such that G; — H or G; — H®

For each ¢ define C; = Dir(G;, A, B) where (A, B) is a bipartition of G;. Recall
that H is bipartite and any edge-coloured graph that maps to # must also be bipartite;
hence, G; is bipartite. Since C; — DF if and only if C? — D, the following is true:

C; — D or C? — D if and only if C; — D or C; — D®
Combining these observations with Theorem 4.1.5 we have:

G —- H & there exits z such that G; — H
& there exits 7 such that G; — H or G; — H®
& there exits i such that C; — D or C; — D®

&  there exits i such that C; - Dor CR = D

This final expression can be evaluated as it is 2k instances of D-COL. Hence
H-COL ar D-COL. The converse is proved is a similar way. »

4.2 Consequences

The following list of propositions follows from Theorem 4.1.6 and the literature on
H-COL for digraphs.

In {14] the authors show that H-COL is polynotaial for oriented paths; however,
there exists an oriented tree on 288 vertices such that H-COL is NP-complete. This
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implies that H-COL is polynomial for two-edge-coloured paths. It also implies the
existence of a two-edge-coloured tree for which H-COL is NP-hard. In this thesis
we present a two-edge-coloured tree on 98 vertices for which H-COL is NP-complete;
moreover, the tree is structurzally simple in that it contains a unique vertex of degree
greater than two. This provides an oriented tree, smaller and simpler, than the tree

in [14].

In [2] the authors show that for complete bipartite digraphs, the H-COL problem is
NP-hard if H contains two directed cycles and is polynomial otherwise. This implies

the following proposition.

Proposition 4.2.1 Let H be a two-edge-coloured complete bipartite graph. If H con-
tains two cycles whose edges alternate red and blue, then H-COL is NP-hard. Other-

wise, H-COL is polynomiel.

The final observations involve cycles. An even length oriented cycle can be trans-
formed into an even length two-edge-coloured cycle and vice versa. In [30] and [15] the
authors have independently shown for any oriented cycle, C, containing more forward
arcs than backward arcs, C-COL is polynomial. They also show there exists oriented
cycles for which C-COL is NP-complete; these cycles must have the same number of
forward arcs and backward arcs and therefore have even length. The implications for
edge-coloured graphs are the existence of polynomial algorithms for some two-edge-
coloured cycles and the existence of NP-hard two-edge-coloured bipartite cycles. This

is further discussed 1n Chapter Six.



Chapter 5

Path and Tree Colourings

5.1 Path Colourings

In this section we study the complexity of H-COL when H is a fixed, edge-coloured
path. We present a polynomial algorithm to solve this problem. Recall that G — H
if and only if G — G x H (Lemma 1.1.2). We shall give an algorithm to decide
whether or not G — G x H: the idea of our algorithm is similar to the algorithm for
the uncoloured case, see [14]. In this chapter we restrict our attention to loop-free
edge-coloured graphs; however, we put no restriction on the number of edge- golours.

For this entire section assume all edge-coloured graphs G and H are bipartite since
we ultimately wisk to solve H-COL where H is a path and G is an instance of the
problem. Note that if H is a path and G is not bipartite, we can answer NO to
H-COL, since any preimage of a path must be bipartite. We begin with a series of
lemnmas specific to bipartite edge-coloured graphs.



CHAPTER 5. PATH AND TREE COLOURINGS 69

Lemma 5.1.1 Let G and H be bipartite edge-coloured graphs and (g1, h1){(gz, h2) an
edge of G x H. Then {(gz, h1){g1, h2) is also an edge of G x H and these two edges lie

in different components of G x H.

Proof. Let (G, G>) (resp. (H;, H2)) be a partition of the vertices of G (resp. H)
into two independent sets.

Let (g1, 21)(g2, k2) € E{G x H) for some 7. Observe that ¢1¢; € E;{G) and hyk; €
E;(H); hence, by the definition of G x H, (g2, h1)(91, h2) is also an edge of G x H.
Furthermore, ¢; and g; must be in different parts of the partition of G and similarly
k; and h, must be different parts of the partition of H. All edges in G x H either
have one end in G x H; and the other end in G, x H, or have one end in G; x H,
and the other end in G, x H,. Therefore, (g1, h1)(gz2, h2) and (g1, h2)(g2, k1) are in

different components of G x H. =

Corollary 5.1.2 If G x H is not a single veriez, then it has al least two components.

Note it is possible to have more than two components in G x H even when G
and H are connected edge-coloured graphs as shown in Figure 5.1. This differs from
(classical) graphs. (See Proposition 1 {28].)

The algorithm in [14] solves the H-COL problem in polynomial time when H is an
oriented (uncoloured) path. We present a similar algorithm for the case when H is an
edge-coloured path. However, the algorithm in [14] requires that the target graph H
have the so-called X property. The edge-coloured graphs we study do not have the
X property. Instead we use our lemmas to show that “crossing” edges in G x H are

in different components. That is, each component of G x H has the X property. Our
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Figure 5.1: A product of two connected, edge-coloured graphs with five components.

result can alsc be derived using the notion of Ci-extension of the X property found
in [14].

We now assume H is an edge-coloured path. Let ny = [V(G} and ny = |V(H)|. For
the following we will assume the vertices of H have been labeled with {0,1,2,...,ns—
1} so that #{z + 1) € E(H) for 0 < i < n; — 2. For convenience we will arbitrarily

label V(G) withk {0,1,2,...,n, — 1}.

Lemma 5.1.3 Let (g, iy Y@z, h2) and {9y, h3)( g2, hs) be two distinct edges in the same
component of G x H, then (h; < ks and by < hy) or (hy > k3 and hy 2 by ).

Proof. We can assume without loss of generality that hy < h;. Since H is a path
and hyhg is an edge of H, h; = Ay + i- Suppose hy < h,. Again, since H is a path,
hy = ha+ 1. Hhy < by, then by < hy. U hy < ky, then hy < h;. In either case
the result holds. Now suppose by > hy, ie. hy = hy+ 1. W hy < hy or by > ha,
then the result is true. Hence, the only way for the lemma to fail is if A3 > h; and
hy < hy. This implies hy = h; and by = hp;. By Lemma 5.1.1 these edges are in



CHAPTER 5. PATH AND TREE COLOURINGS 71

VS W—

Figure 5.2: A component of G x H with crossing edges

different components contrary to our assumption. The resuit follows. =

Thus if we examine the depiction of G x H (with the natural ordering on G and
H), the edges between any two rows in some component of G x H have the property
that no two edges “cross”. Observe if H is a tree this may not be the case even with
only one colour, as demonstrated in Figure 5.2. Note only one component of G x H

is drawn. Here I is the tree while G is a single edge.

5.2 The Path Colouring Algorithm

In this section we assume agzin that H is an edge-coloured path. We describe a
polynomial time algorithm for H-COL. We may also assume that & is bipartite and
connected. If G is not conmpected we can apply the algorithm ¢o each component
of G; if G is not bipartite, then G / H. For two edge-colours we know H-COL is
polynomial by the construction in Chapter Four and the algorithm for oriented paths

(.0

in [14].
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Define a homomorphism f : G — G x H to be G-fized if it has the property that
for each g € G, f{g) = (g, k) for some h € H. We know from Corollary 1.1.4 that if
G — H, then there is a one to one homomorphism, ¢, from G into some component
W of G x H. Moreover, this homomorphism é can always be chosen to be G-fixed.
Let W be a component of G x H. We denote the set of hoxﬁomorphisms G — W by
Hom(G,W).

Label the vertices of H with {0,1,2,...]V(H)|—1}. Let W be a component of Gx H.
We now define a partial order on the G-fixed elements of Hom{G,W). Given a G-fixed
element fi € Hom{G, W), define f/ to be the homomorphism from G to H obtained
by composing f; with the projection map G x H — H. That is, fi(g) = (g, f*(9))
for all g € V(G). Let f; and f; be two G-fixed elements of Hom(G,W). Define <y
by f; <u f2 i fH(g) < fH(g) for all g € V(G). (Since H is a totally ordered set, this
ordering is well-defined.}

Lemma 5.2.1 Let H be a fized edge-coloured path and G a bipartite edge-coloured

graph. For each component W of G x H, if the set Hom{G,W} is not empty, then
Hom(G,W) contains ot least one G-fized homomorphism. Moreover, the set of G-
fized homomeorphisms in Hom{G, W) has ¢ minimum element with respect to <g.

Proof. Let W be a component of G x H and suppose that Hom{G, W) contains
at least one element. By composition with the homomorphism W —+ H, we conclude
G — H. By Corollary 1.1.3, there exists a G-fixed homomorphism é: G — W. If ¢ is
the only such element in Hom({G, W), then it is minimum. Suppose Hom(G, W) con-
taios at least two G-fixed elements, say f; and f,. Let f3(g) = (g, min{f¥(g). 77 (9)})
for all ¢ € V(G). This minimum is well-defined since V(H) is a totally ordered set.

Claim The mapping f3 : G — W is 2 homomorphism.
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Suppose g192 € Ei{G). The pair fia(g:)f3(g2) is (by definition of f3) the pair
(g1, min{ ff (¢1), F' (9:)}) (g2, min{ ff (2). £ (92)}).

Since f; and f; are bomomorphisms, f1(9:)fi(g2) and f2{9:1)f2(g:) are each edges in
W. By Lemma5.1.3, it must be the case that (f¥(g1) < f#(g1) and f¥(¢2) < f¥(42))
or (f(g:) 2 fF(a:) and ff(g2) > f}'(g:)). In the first case fa(q) = fi{gs) and
fs(92) = fi(gz). Tn the second case fa(g) = folgr) and fo(gz) = falgs). Hence,
Jalg1}fa{g2) is an edge in W. This establishes the claim.

We conclude that the set of G-fixed homomorphisms in Hom(G, W} must have a

minimmn element. B

Our aim is to describe an aigorithm that finds a minimum G-fixed homomorphism
from G into a connected component of G x H and thereby solves H-COL in view of
Corollary 1.1.4. We bave two basic structures. Firstly, f is a mapping from V(G)
to V(G x H), which is not necessarily a homomorphism. Secondly, C is a subset of
Ey(GYU Ex(GYU---U Ei(G). After choosing a component W of G »x H, we have the

following two invariants which are true throughout the algorithm.
(i} ¥ Hom(G,W) is not emnpty, then f <y f for all G-fixed f € Hom(G,W).

(i) For all @ € {1,2,...,E}, if g192 is an edge in E,{(G)\C, then fig,)f(g,) is an
edge of E,(W).

We are now ready to describe the Path Colouring Algorithm.
I Label the components of G x H with W), W,,... W..

2 Form=1towdo
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2.1 Set f{g,0) = (g,0) for all g € V(G) and C = Ey(G) U E3(G) U --- U Ex(G)
and velid map = true.
2.2 While (C # ¢} and valid map do

2.2.1 Choose an edge g¢192 € C of colour a.

2.2.2 Choose the minimum (7, 7} (coordinatewise) such that {g;,2){g:,7) €
E.{W,,) and f¥#(g,) <i and f¥(g;) < j. If no such (i, j) exists, then
valid_map = false.

2.2.3 Else (Update the Colouringj.

o ¥ f(:) = (91,7) and f(g2) = (g2,5), then continue.
o if flg:) # (91,7) and f(g2) = (92,7), then put all edges incident
with ¢y into C.
o If f(g:) = (g5,7) and f(g:) # (92.7), then put all edges incident
with g; into C.
e I fl;s) # (@1,7) a0d f(@:) # (92,7), then put all edges incident
with ¢; and ¢ into C.
2.2.4 Set f(g:) = (41,7) and f(g2) = (g2.)- Remove g9 from C.
2.2.5 End While

2.3 I valid map then answer YES and STOP; otherwise next m.
3 Apswer NO and STOP.
We need to show that the pair (7, ) in step 2.2.2 is well defined. Suppose (i, 7) and

(m,n) are pairs of vertices in H such that (g;,7)(g2,7) € E.(W) and {(g1,m)(g2,n) €
E,(W), then by Lemma 5.1.3, either (1,5} < (m,n} or {m,n) < (i,j}. Hence, a
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[« 4]

Theorem 5.2.2 The Path Colouring algorithm solves H-COL in O(|V(G)| +E(G)))
time when H is a fired path.

Proof. We prove both invariants are true throughout the algorithm by induction
on the number of edges checked. Observe this implies that if C= ¢, then f is the
mimmum G-fixed homomorphism in Hom{G, W) for some W. When zero edges have
been checked, both invariants are trivially true. Suppose both are true after n edges
have been checked. Further suppose that the (n + 1)* edge to be checked is ¢,9;.
If Hom(G, W) is empty, then invariant (i} it trivially true. If Hom(G,W) is not
empty, then let f be the minimum G-fixed element of Hom(G,W). We have by
induction, f#(g;) > (g1} and (g2} > f#(g). Also f(1)f(g2) € Eu(W) since
is a2 homomorphism. Therefore, at step 2.2.2 the pair (i, j) exists with f#(g,) > i and
f#(¢2) 2n j- The mapping f is updated such that f(g:) = {g:,1) and f(g2) = (92,7).
By induction, f(g)} <z f(g)forall g € V(G)\{41,:}. Therefore, invariant (i) remains

frue.

Notice we have just proved if Hom(G, W) is not empty, then the pair (1, ;) exists
at step 2.2.2. Therefore, the algorithm only chooses a new component in G x H (i.e.
Next m} if the current Hom(G, W) is empty. In order for the algorithm to reply NO,

Hom(G, W) must be empty for all components W.

If at step 2.3, a new component is chosen, then returning to step 1 makes both
invariants trivially true again. If the pair (i,j) exits in step 2.2.2, then f is updated.
By induction, invariant (ii) was true before f was updated. The only edge removed
from C, and hence the only edge that could make invaniant (ii} false, is g1g,. The choice

of (i,7) at step 2.2.2 guarantees that f{g;)f(g;) is an edge coloured a. Therefore,
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invariant (i} remains true. HIf C becomes empty upon removing g1z, then f is a

homomorphism and the algorithm has correctly identified a YES instance.

Let [V(H)| = p. There are [V(G)}p verticesin G x H. For each edge in G there are
at most 2(p— 1) corresponding edges in G x H. Therefore, G x H can be constructed
in O(|E(G)l + [V (G)]) time. ldentifying the components of G x H requires O(|E(G)|)
time. Step 1 requires O(|E(G)| + [V(G)}) time. An edge is added to C when the
colour of one of its ends is increased. This means an edge can be added to C at most
2p — 2 times. Therefore, an edge can be checked at most 2p — 1 times. Choosing
the minimum pair (7,7} in step 2.2.2 requires constant time. Therefore, we require
at most (2p — 1)| E{(G)]| iterations each of constant time. The total time required is

V(O] + IEG)). =

5.3 NP-complete trees

The authors of [14] have constructed NP-complete oriented trees. These trees are
Iarge (288 vertices) and complex. Define an edge-coloured tree to be an edge-coloured
graph whose underlying graph is a tree. Based on a reduction similar to the one in
[14], we construct edge-coloured NP-complete trees; however, the use of several edge-
colours allows us to construct smaller, simpler trees. In fact, the two trees presented
are generalized stars; & generulized staris a tree with a unique vertex of degree greater
than two. Clearly, H-COL is in NP. Therefore, we need only provide a polynomial
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Figure 5.3: The NP-complete generalized star #
ONE-IN-THREE 3SAT
INSTANCE: Set U of variables, collection C of clauses over I such that
each clause €' € C has {C] = 3.
QUESTION: Is there a truth assignment for & such that each clause in
C has exactly one true literal?

This problem remains NP-complete if no C € C contains a negated literal.

Let H be the tree in Figure 5.3. The edge-colours are given by the letters beside
each edge. For example, if the edge uv has abc beside it, then u is connected to v by
edges of colours e,5, and c. In other words, under any homomorphism the edges that

map to uv may have only the colours a,b,0r c.

Theorem 5.3.1 Let H be the tree in Figure 5.3. Then H-COL is NP-complele.
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Figure 5.4: The tree S.

Proof. Given an instance of ONE-IN-THREE 3SAT without negated variables,
we construct an edge-coloured graph G. Let S be the tree in Figure 5.4; let G
have vertices I, Iy, . . ., I, corresponding to the m literals in our instance of ONE-IN-
THREE 3SAT. For sach clause, C; € C with C; = l;, VI;, v I;,, we take a copy of S
and identify the vertices z;, 23, and z; with [, 1, and ;.

Note that any homomorphism f : § — H maps ¢; to X,Y or Z. Moreover,

¢ if flc;}= X, then f(z:) =T, f(z2) = F and f(z3) = F,

o if f(c;) = ¥, then f(z:) = F, f(z2) = T and f(z5) = F,

o if flc;}=Z,then f(z;) = F, f{z;) = F and f(z3)=T.

Finally, there are homomorphisms that realize each of the three cases above. The

verification of these statements is straightforward and is left to the reader.

We shall show that the edge-coloured graph G maps to H if and only if a truth as-
signment exists that assigns “true” to exactly one variable in each clause Cj. Suppose
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f: G — H. As observed above, each vertex ¢; gets mapped to X,Y or Z. Furiher,
once c; is mapped, the rest of the verticesin S have their images in H uniquely deter-
mined. For example, if f(¢;} = X, then f(z,) =T and f(z2) = f(z3) = F, interpret

this as assigning “true” to l; and “false™ to l;, and [;,.

On the other hand, given a truth assignment, map all true literals to T and all
false literals to F'. Using the observations above it can be verified that this can be

extended to a homomorphism f: G — H. =

The above example is nice in that H contains only 12 vertices. The NP-complete
directed tree found in [14] has 288 vertices. An example of a two-edge-colour NP-
complete tree exists on 98 vertices (see below). It seems that allowing coloured edges

lets us observe richer bebaviour in smaller examples.

Now we construct an NP-complete tree with two edge-colours. Let A be the tree
ia Figure 5.5. The labels on the edges here are not colours, but paths found in Figure
5.7. Each path consists of a blue path, followed by a red path, followed by a blue
path, followed by a path consisting of a single red edge. The number above each edge
in Figure 5.7 corresponds to the length of the path. For example, the path P is a
path composed of 3 blue edges, 5 red edges, 5 blue edges, and a single red edge. Each
path has an orientation from the white vertex on the left to the black vertex on the
right. Each label in Figures 5.5 and 5.6 corresponds to an oriented path from Figure
5.7, except for @ (not shown in Figure 5.7) which is a path of length six whose edges
alternate red and blue. That is, @’ is obtained from Q be adding a blue edge then a
red edge to the night end of Q.
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Figure 5.5: The NP-complete two-edge-colour tree H.

We now tackle the somewhat cumbersome task of describing homomorphisms be-

tween the paths. Consider the following easy proposition.

Proposition 5.3.2 Let W = wow; ... way; and V = vovy ... 92541 be two paths with
all edges blue. There exists @ homomorphism, f : W — V, such that f(uwg) = vo and

flwz) =vaj1 ifond only if 1> 3.

What does this mean in terms of our paths? Let W and V be two paths from
Figure 5.7 (neither of which is Q). Suppose there exists 2 homomorphism from W to
V mapping the white (resp. black) vertex of W to white (resp. black) vertex of V.
The initial sequence of blue edges in W must map onto the initial sequence of biue
edges in V with the ends in W mapping to the corresponding ends in V. Also, both
sequences have odd length. By Proposition 5.3.2, this can only occur if the sequence in
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W is at least as long as the sequence in V. Now the second monochromatic sequences
in W and in V are red. Each sequence has odd length and the ends of W must map to
the corresponding ends in V. Therefore, the first red sequence in W must be at least
as long as the first red sequence in V. In other words, W maps to V if and only if
each monochromatic sequence in W is at least as long as the corresponding sequence

mV.

For example, the path P} will map to the paths P, @3, Q3, and Q, but it will not
map to the paths P, P;, @, or R. The path ¢ will only map to an alternatling path
of length six, i.e. a copy of @'. If one checks the tree in Figure 5.5, the only such
paths are the three Q' paths incident with X, Y, and Z.

Theorem 5.3.3 Let H be the iree in Figure 5.5. Then H-COL is NP-complete.

Proof. The proof works in exactly the same way as for the previcus tree. Suppose
we are given an instance of ONE-IN-THREE 3SAT without negated .variables. We
construct a graph G using the tree S in Figure 5.6 for each clause. Because the path
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Figure 5.7: Super Edges

¢’ in each C; only maps to one of the paths labeled ¢’ in H, the clauses map to H

in the same way as described in Theorem 5.3.1 =

Since this chapter has been written, P. Hell, J. Nesetiil, and X. Zhu have discovered
new constructions of NP-complete trees. Their trees are much smaller than the trees

in [14] but still not as small as our example on 12 vertices.

5.4 Characterizing Homomorphisms to Paths

In [20] it is shown that for any oriented graph G and any oriented path P, there exists
a homomorphism G — P if and only if all paths homomorphic to G are homomorphic
to P. In this section we present a similar result for edge-coloured paths. Namely
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G — P if and only if all paths homomorphic to G are homomorphic to P and G
contains no odd cycles. Note the second condition (odd cycles) simply states that G

must be bipartite as no odd cycle is homomorphic to a path.

The result in [20] does not require odd cycles in the “obstruction set” since one
can show that if there is an odd cycle homomorphic to G, then the odd cycle must
have net length at least one; moreover, this implies there is a path W such that
W — G but W 4 P. Consider the path, W, consisting of k£ “wrappings” of this odd
cycle. The path W must have net length at least k. By making % sufficiently large,
W will have net length longer thaun |P|; hence, W 4 P. For example, suppose G
contains a three-cycle with two forward arcs and one backward arc. This cycle has
net-length two. The path 174 consisting of 10 copies of “two-forward-one-backward”
has net length 20 and maps to the three-cvclein G. If | P| is less than 20, then clearly
W 4 P.

In the case of edge-coloured paths we need the explicit condition that G contains
no odd cycles, i.e. the existence of an odd cycle in G does not imply the existence of
a path W such that W — G and W 4 P as it does in the oriented path case. Let G
be a blue three-clique and let P be a single blue edge. Any path that maps to G also
maps to P, yet G /4 P. In other words, paths alone do not suffice as the obstructions

for an edge-coloured path P.

Conversely, an apalogous result for undirected graphs (one edge-colour) is simply
that a graph is bipartite if and only if it contains no odd cycles. That is, the ob-
struction set for an undirected, one edge-colour path is simply the set of odd cycles

and one does not need to include paths in the obstruction set. It is easy to see that
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odd cycles alone do not suffice as the obstruction set for an edge-coloured path. In
other words, edge-coloured paths combine some aspects of both undirected paths and

oriented paths.

Theorem 5.4.1 Lei G be an edge-coloured graph and P an edge-coloured path. Then
G — P if and only if for all edge-coloured paths W, W — G implies W — P and GG

contains no odd cycles.

Proof. Suppose g : G — P is a homomorphism. Firstly & contains no odd cycles,
since a homomorphism from G to P implies there exists a homomorphism from the
underlying graph of G to the underlying graph of P. Moreover, the underlying graph of
P is bipartite which implies the underlying graph of G is bipartite since a nonbipartite

graph cannot be homomorphic to a bipartite graph.

Let W be a path such that f: W — G is a homomorphism. By composition with
g we have go f : W — P is a homomorphism. This proves the necessity of the

condition.

On the other hand, suppose G contains no odd cycles and for all paths W, W — G
implies W — P. We will prove that G — P. We shall in fact prove a stronger
statement. Let H be a two-clique, on vertices {0, 1}, containing an edge of each
colour occurring in either G or P. Then since both G and P are bipartite, there
exists homomorphisms ¢g : G — H and ¢p : P — H. We shall show that we can
choose ¢g and cp so that if for all paths W, W — G implies W — P, then there
exists a homomorphism g : G — P such that cp 0 ¢ = ¢g. This stronger statement

implies the sufficiency of Theorem 5.4.1.
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Lemma 5.4.2 Lef G, P, and H be as above. There ezist homomorphisms cg 1 G —
H and cp : P — H such thai qiven a path W, for all homomorphisms f - W — G

there exists a homomorphism f' - W — P such thatcgo f =cpo [,

Proof Assume that G is connected, {otherwise, treat each component of G sep-
arately). Let ¢g : G — H be a homomorphism. This homomorphism induces a

partition of G into two independent sets Gy and G;. Similarly, the homomorphism

cp : P — H induces a partition of P into independent sets F; and P;.

Suppose to the contrary that the lemma does not hold; that is, there do not exist
cc and cp with the composition property. Then without loss of generality there exists
a path W, starting at v and a homomorphism f; : W,, — G such that f;{v) € Gy so
that all homomorphisms f} : W, — P have the property that f{(v) € F, and there
exists a path W, starting at v and a homomorphism f; : W, — G so that f2(u) € Gy

and all homomorphisms f} : W,, — P have the property that fi{uj € P.

Let W, be a path from fa{u} to f;{v) in G. Notice, W, is a path in G and hence
W.. — G. Let W be the path formed by identifying v € W, and fi{v) € W, and
identifying u € W, and f(u)} € W,,. That is, identify corresponding ends of the
paths. Since W,,, W,, and W, admit homomorphisms f;, f2, and id (indentity) to G,
we have W — (. Moreover, by the assumptions in the statement of the lemma, this
implies there exists 2 homomorphism f* : W — P. The path W,, must have even
length since fi{v) € Go and f2(u) € Gg. However, f'(v) € P, and f'(u) € P, since
both W, and W, are subpaths of W and we are assuming that all homomorphisms
of W, (resp. W, ) map v (resp. uj to a vertex in P, (resp. P1). Hence, the image of

W 1 P is an odd length path. This is impossible. The result follows. =
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We now prove our strouger statement.

Theorem 5.4.3 Let G be a bipartite edge-coloured graph and P an edge-coloured
path and let ¢ and cp be the homomorphisms defined abore. Suppose for all paths
W, W — G implies W — P. Then there ezists a homomorphism g : G — P such

that cp o g = ¢g.

Proof We now deseribe the homomorphism g : G — P. Given a path W beginning
at a vertex v, denote this by 8W ) = v. In the following definitions we use the notation

f : G — H to indicate there exists 2 homomorphism f : G — H. Define:

So{W) = max{v& PIf': W — P,/ (b(W)) = v.cp(v) = 0}
(W) = max{z € Pif': W — P, [(B{W)) = v.cplv) = 1}

Note: Normally one defines the maximum of the empty set to be zero. However, for
our purposes we say ¢g is undefined H the maximum is taken over the empty set. In
the case ¢o{W) is undefined, all homomorphisms W — P map 6{W¥} to a vertex in
P;. A similar note applys to ¢,.

Dehne:

Ylv) = min{e{W)i:veGo, f: W — G, f(b{W))=v} forv € G;

Observe that each of i is well-defined since Lemma 5.4.2 implies the minimums

yo

above are taken over nonempty sets.

We now prove that v is the desired map. That is, ¥ is a homomorphism such that

cpo W = cg.



Claim 5.4.3.1 Let uv € E(G). Then o{u) # ¥lv).

Proof of Claim Let cg{v) = 1. The value of ¥{v) iz 2 minimum over a subset
of the vertices of P coloured 1. The value of ¥(u} is 2 minimum over 2 subset of the

vertices of P coloured §. These two sets are disjoint. m
Claim 5.4.3.2 The mapping ¥ is a homomorphism.

Proof of Claim. Let uv be an edge in G. Without loss of generality assume
uv is blue and cg{u} = 9. Let W, be a path such that v¥{u} = &s(W,}. Let B
be a single blue edge. The path B o W, is the path formed by identifving the end
of B with the beginning of W,. The path B o W, is a path that maps to G so that
f(B{BoW.,)) = v. Therefore, (B oW, ) is defined. Observe that any homomorphism
mapping BoW,, to P can not map its start to a value larger than go( W, )+1; otherwise,
this homomorphism restricted to W, would map (W, ) to a value larger than ¢o(W,,).
Also observe that (v} must be no larger than ¢,(B o W,} by definition of ¥». Hence,
we have:

Uiv)} < o1{Bo W) < oo(W,) + 1 =vlu)+1

“Yim o

Similarly,

Ulu) — 1 < ¥(v)

Recall ¥{u) # ¥(v). Therefore, either ¥{v} = ¢¥(u) + 1 or ¥{v} = ¢:(uj — 1. Assume
v{v) = ¢(u) + 1. (The other case is similar.)

Let h: BoW, — P be the homomorphism that defines ¢;(BoW, ). By restricting
h to W, we see that A{u) < G(W.,) = ¥{u). Also, h(v) must be larger than ¥(v)

since ¥ is a minimum. We have

h{v) > ¥(v) = ¢(u)+ 1 > ¢(n) > h(u)
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we see (v} = k{v) and ¥ {u) = A{u)}. Since k is a homomorphism, there must be a
blue edge between A{u) and hiv). Hence ¥{v)viu) is a blue edge in P. Thus, v isa
= Ll LA A A A

homomorphism. &

The observation required to complete the proof Theorem 5.4.3 s that if v € Gy,

%

-

then ¥{v) € Hence,cpov =cg. =

The existence of v completes the proof of the necessity of the condition in Theorem

3.4.1.

The proof above that - is a homomorphism can be extended to the case when &

and P have directed, coloured edges. Hence, the following stronger result is true:

Corollary 5.4.4 Let G be an edge-coloured, directed graph and P be an edge-coloured
path with directed edges. Then G — P if and only if G contains no odd cycles and
for all paths W, W — G imphes W — F.



Chapter 6
Cycles

In this chapter we study H-COL where H is a digon-free edge-coloured cycle. The
digon-free restriction is assumed for the remainder of this chapter. The emphasis is
on two edge-colours, although some results naturally generalize to more edge-colours.
An edge-coloured cycle can be viewed as being composed of monochromatic paths. A
maximal monochromatic path is called a piece. For example consider a cycle of length
eight with the first three edges red, the next edge blue, the next two edges red, and
the final two edges blue. This cycle has four pieces; two red and two blue. The red
pieces have length three and two. The blue pieces have length one and length two.

See Figure 6.1.

Let H be a two-edge-coloured cycle. We characterize the complexity of H-COL by
the number and the parity of the pieces in H. We show that H-COL is polynomial
if all the pieces of H have odd length. In fact, this result generalizes to £ > 2 edge-
colours. If H contains exactly one even length piece, then H-COL is polynomial. We
show that if H is a two-edge-coloured cycle with all pieces having even length, then

H-COL is polynomial. These results imply that any cycle consisting of two pieces is

polynomial.

89
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Figure 6.1: An edge-coloured cycle with four pieces.

Since we restrict our attention to two-edge-coloured cycles, the number of pieces
must be even. Using the results stated above plus an ad hoc algorithm we show for any
two-edge-coloured cycle, H, with four pieces, H-COL is polynomial. On the other
band, consider a two-edge-coloured cycle, H, where each red piece has odd length
and each blue piece has even length. We show that H-COL is NP-complete if H has
six pieces. In fact we show that for such a cycle H with k¥ > 4 pieces, H-COL is

polynomial if k=0 (mod 4) and H-COL is NP-complete if £ =2 (mod 4).

Before we present the results we make one final observation. Let G be an instance of
some C-colouring problem, where C is an edge-coloured cycle. Many of the algorithms
presented here begin by defining 2 mapping from the mixed vertices of G to C. In the
case that G does not contain any mixed vertices, if G admits a homomorphism to C,
then G must map to a single piece of C. Hence, if G contains only edges of colour 1,
then G — C if and only i G is bipartite and C contains at least one piece of colour

t. Therefore, in the following assume G has at least one mixed vertex.
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6.1 The Mixed Vertex Homomorphism Problem

Let H be an edge-coloured cycle and let G be an instance of H-COL. In many of the

algorithms below we use the following strategy:
o define a functicn, f, from the mixed vertices of G to the mixed vertices of H,
s extend this function to a2 homomorphism from G to H.

We begin by examining the complexity of extending f to a2 homomorphism. In fact,
we shall show that when H is an edge-coloured cycle, this “extension™ problem is
polynomial. To this end we define a problem that one might consider a partial HFP
problemn and then we examine this problem for the specific case that H is an edge-

coloured cycie. Formally:

Let H and Y be fixed edge-coloured graphs and let h : H — Y be a homomorphism.

Mixed Vertex Homomorphism Problem - MVHP(H,h,Y)

INSTANCE: An edge-coloured graph G and a2 homomorphismg: G —Y .
QUESTION: Does there exist a homomorphism f : G — H such that for all

mixed vertices v € V(G), ko f(v) = glv)?

Let H and Y be edge-coloured graphs and h : H — Y a homomorphism. We show
that G 1s a YES instance of H-COL if and only if there exists g : G — Y, such that
G, g is a YES instance of MVHP(H h,Y). Suppose G is a YES instance of H-COL,
then there exists f : G — H. Cleazly, G, ho f is a YES instance of MVHP(H,1,Y).
the other hand, suppose G,g is a YES instance of MVHP(H,h,Y), then there
exists an f : G — H which implies G is a YES instance of H-COL.
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Suppose C is an edge-coloured cyvcle with pieces Py, Py, Po. .. .. P;. Label the mixed
vertices of C with mg,m; ,....mi so that m; is the vertex common to pieces P,_,

and P.. Let mp be the mixed vertex common to pieces P; and F;.

We construct a new edge-coloured cycle, C’, with vertex-set {c}.¢}.....c.}. For
each piece, P;, in C add the following to C'. If F; has odd length and is of colour 1,
then add the edge i, ; to E,{C’}. i P; has even length and is of colour ¢, then add

a vertex c’+, to C”" and put a path of colour £ on the vertices cic}_,¢},, in .

For an example see Figure 6.2. The cycle C consists of four pieces. The piece F, is
blue and has length four. The piece P, is red and has length two, etc. The labels of
the pieces are outside the cycle. The labels of the mixed vertices are inside the cycle.
The cycle C’ consists cf four pieces as well; one piece for each piece in C. The piece

replacing P, is on vertices {}, ¢, 041 .6}, etc.

We claim there exists a homomorphism & : C — C’. Define h initially from the

mixed vertices of C to the mixed vertices of C’ as follows:
h{im;)=c. for 0<i<k

It is straightforward to check that k extends to a homomorphism from C to C'. We

are now ready to prove the following theorem.

Theorem 6.1.1 Let C be an edge-coloured cycle. Let C' and h be defined as above.

E . ALY )' f DY oYy o ) I |
tnen v ar(C,n, ("} 15 poiynomaat.

Proof. Let G,g be an instance of MV HP(C,h,C’). We begin by defining a

function, f, from the mixed vertices of G to the mixed vertices of C. For each mixed
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Figure 6.2: The construction of C’ from C.

93
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vertex v in (& define:

fley=m; ifandonlyif g{(v)=c.

It is easv to see that if there exists a homomorphism f : G — C such that ko flv) =
g{v) for all mixed vertices v in G, then f(v) = f(v) for all mixed vertices v in G. To

see this observe that the only mixed vertex in C that is mapped to ¢, by & is m,.

Suppose S; is the set of mixed vertices in G that is mapped tom, by ffor 0 <: < k.
Consider S; and S.;;. Suppose that piece P: is colour . Let d; be the minimum
distance in colour ¢ from a vertex in S; to a vertex in S;;. Defined; for0 <: < k-1.

Similarly, define d; using Sy and S;. Note that d; can be infinite.

Denote the length of piece P. by |Pl. We claim that f can be extended to a
homomorphism if and only if d; > |P;| for 0 <1 < k. The necessity of the condition
is obvious. Suppose u is a vertex, that is a not a mixed vertex, of G. Assume u is
incident with only edges of colour {. We explain how to extend f to u. Let P, be a
piece of colour ¢t. Suppose there are paths, @J; and Q», from u to a mixed vertex in
S; and to a mixed vertex in S;;; respectively, which contain no mixed vertices except
for the end of the paths. Then g must map u to one of {¢, 41 +Cy1}- Hence, any
path from u to a mixed vertex {which contains no mixed vertices except for the end
of the path} must terminate in either S; or S;4;. It must be the case that the sum of
the lengths of these two paths is at least |P;| (and the two paths must have the same
parity). If |} is less than or equal io | —‘Z—‘- i, then map u to a vertex in C distance

(1] from m;. Similarly if |Q,] is less than half the length of P, then map u to 2

vertex distance |Q.| from my,;. If both Q1] and |Q;| are greater than £}, then
map u to either fu_{, or f' depegdxng on the parity of |Q,]. =
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6.2 All Pieces Have The Same Parity

We now examine edge-coloured cycles where each piece has the same parity. We begin

by examining two-edge-coloured cycles with all pieces having even length.

Lemma 6.2.1 Let C be a two-edge-coloured cycle such that each piece has even

length. Then C-COL is polynomial.

Proof. Suppose the edge-colours of C are red and blue. We claim C retracts to
an edge-coloured path of length two. Let P be the path on {—1,0,1} where —10 is
red and 01 is blue. Firstly, observe that for a given vertex v € C all paths from v to
mixed vertices have the same parity, since every piece in C is even. Define f: C — P
as follows: f(v) = —1 if v is a red only vertex and there exists an odd length path
from v to a mixed vertex; f{v) = 1 if v is blue only and there exists an odd length
path from v to a mixed vertex; and f(v) = 0 otherwise. It is easy to see that fisa
homomorphism. Moreover, C contains a copy of P and f is the identity map on this
copy of P. Thus, C retracts to P. By the Forcing Lemma (Lemma 2.2.3) or by the
results on paths, P-COL is polynomial and hence C-COL is polynomial. m

Most of this chapter focuses on two-edge-coloured cycles; however, the following

lemma in fact holds for cycles with at least two edge-colours.

Lemma 6.2.2 Let C be an edge-coloured cycle, on at least two edge-colours, where
each piece has odd length. Then C-COL is polynomial.

Proof. Let C’ and % be defined as in Theorem 6.1.1. Let G be an instance of
C-COL. We can assume G is connected, otherwise we treat each component of GG

separately. Since each piece in C has odd length, each piece in C’ is a single edge.
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The cycle C’ satisfies the conditions of the Forcing Lemma {Lemma 2.2.3) and G is
connected; therefore, we can construct all homomorphisms of G to (” in polynomial
time. As observed above, G — C if and only if there exists a homomorphism g : ¢ —

C’ such that G, g is 2 YES instance of MV HP(C,h,C'). =

The above two lemmas give us the following theorem.

Theorem 6.2.3 Let C be a two-edge-coloured cycle. Suppose each piece has the same

parity. Then C-COL is polynomial.

6.3 One Even Piece

Through use of the MVHP we show in this section that for any two-edge-coloured

cycle, C, with exactly one even length piece, C-COL is polynomial.

Theorem 6.3.1 Let C be a two-edge-coloured cycle with exactly one even length piece.
Then C-COL is polynomial.

Proof. Let Py, P, . .., P; be the pieces of C such that P is the unique even length
piece. Using the convention above, m; and my are the mixed vertices at either end of

P;. Assume that the edge-colours are red and blue and that P is red.

Construct C’ and h as above. The edge-coloured cycle C” has the property that
every piece is a single edge with the exception of the red path of length two: cc|, %c’u
This implies that every vertex ¢, in C’, with the exception of ¢ s1s is incident with
one blue edge and one red edge. Hence, using ideas from the Forcing Lemma (Lemma
2.2.3), if vertex v € V(G)} is mapped to ¢ € V(C’), then the image of some set of

vertices in G, say X, is uniquely determined. This is discussed in more detail below.
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QOur strategy is as follows: Let G be an instance of C-COL. We construct a homo-
morphism ¢ : G — " so that G, g is a YES instance of MVHP{C, h,C"} or conclude

no such g exists and hence G is 2 NO instance of C-COL.

Our first observation concerns pairs of mixed vertices, in G, joined by an even length
red path. Let u and v be two such vertices. We observe if G admits a homomorphism
to C the following is true: If ¥ maps to any mixed vertex other than mq or my, then
v must map to the same mixed vertex. This follows from the fact that Py is the only
even length piece. Also, if » maps to mg or m; and the length of the shortest red
path from u to v is less that [F;l, then v 20d v map to the same vertex in C. Hence,
we begin by preprocessing G in the following way: Define an equivalence relation on
the mixed vertices of . Imitially, for a pair of mixed vertices u and v, we say u
and v are related if u and v are joined by a red path of length less than |P;]. The
equivalence relation is defined by taking the transitive closure of this initial relation.
Now, for each equivalence class X, identify all :nixed vertices belonging to X. This
preprocessing ensures that any homomorphism g : G — C’ has the property for any
mixed vertices u and v in G such that g{u) = ¢ and g{v} = ¢}, the distance from u

to v in red is at least [Fyf.

We now describe the construction of g. Let u be a mixed vertex in G. We set
glu) = ¢ and attempt to extend ¢ to a homomorphism from G to €' such that
G, ¢ 1s a YES instance of MVHP{C.k C”). I this is not possible, then we choose a
different mixed vertex in G, say w, and set g{w) = . If testing whether or not g
can be extended to a homomeorphism requires polynomial time, then attempting to
extend g ouce for each mixed vertex in V{G) requires polynomial time. Hence, we

can assume without loss of geperality that v is a mixed vertex in G and if G admits a
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hemomorphism, g, to C” such that G, g is a YES instance of MV HP(C, h,C"), then

g{u) = ¢5- In other words, the choice to map u to ¢, is correct.

As remarked above, g{u} = ¢ uniquely determines the image in C’ of some set
of vertices, X C V(G}. Specifically, once u is mapped to ¢, all vertices of an even
distance in colour blue from u must be mapped to ;. All vertices of an odd distance
in colour blue from u must be mapped 1o ¢f. That is, the image of these vertices is
uniquely determined. Now consider, for example, some vertex v that is mapped to
c; by g. Any vertex of an even distance in red from v must be mapped to ¢|. Any
vertex of an odd distance in red from v must be mapped to ¢;. Similarly, any vertex
of an even distance in blue from v must map to ¢ and any vertex of an odd distance
in blue from v must map to 5. Continuing we will determine the image (under g) of
some set of vertices in . Call this set X. Note that the reason this “Forcing-type”
argument does not uniquely determine the image of all vertices in G is that a vertex

that is an even distance in red from u can map either to ¢ or to ¢.

Let T be the set of red only vertices that are joined by a red path to a vertex
mapped to either ¢ or ;. Let the subgraph induced by X U T be denoted X’. The
map g can be extended to 2 homomorphism X’ — C’ if and only if all red paths from
mixed vertices mapped to ¢, to mixed vertices mapped to ¢}, have even length. If g can
not be extended to 2 homomorphism then G is not a YES instance of C-COL. Hence,
assume that it can be extended. Test if X’, g is a YES instance of MV HP(C,h,C").
i the answer is NO, then G is a NO instance of C-COL. Recall that we are assuming

the decision g{u) = < is correct and all other images are uniquely determined.
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Let S be the set of mixed vertices in X that are mapped to either ¢ or c;. Let v
be a mixed vertex of G\ X that is joined by a red path to a vertex in §, such that the
path has mixed vertices only at its ends. If no such vertex exists, then the set X is
all of V(G) and we conclude G is a2 YES instance of C-COL. Therefore, assume such

a v exists. The vertex v must map under g to either ¢ or .

Begin by setting g(v) = ¢;. As above this uniquely determines the image of some
set of vertices under g in C*. Add these vertices to the set X UT. As above let X’ be
the subgraph induced by X UT. Test if X', g is a YES instance of MV HP(C,k,C").

f the answer is NO, then perbaps the choice to map v to ¢ was wrong. Hence,
set g(v) = ¢; add the corresponding vertices to X U T, and test if X’,g is a YES
instance of MVHP(C,k,C’). I the answer is NO, then G must be a NO instance
of C-COL. At this point either we answer NO, or we have X’, g is a YES instance of
MVHP(C,h,C").

We repeat the above process, by choosing a new v, and either stop because G is a

NO instance of C-COL or there is no such v and G is 2 YES instance of C-COL.

To observe that this process is polynomial, note that once v is mapped to ¢ or ¢
and X', g is a YES instance of MV HP(C, h,(C") we never need to change the image
of v. Recall that our strategy is to extend the map g to a homomorphism of G to
C’. Suppose that v is mapped to ¢, and w is a mixed vertex joined by a red path
to a mixed vertex added to S as a result of mapping v to ¢j. Further suppose that
g can not be extended to a homomorphism if g(w) = ¢, nor can g be extended to a
homomorphism if g{w} = ¢;. At this point we can STOP and answer NO. It is not the

case that mapping v to ¢, will now allow g 10 be extended. One can see that mapping
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v to ¢, will cause the same set of mixed vertices to be added to § as mapping v to
¢;- Hence, w will still be joined by a red path to a mixed in S and at some point we

must attempt to extend g with g{w) = ¢ or g(w) ==

6.4 Even Blue and Odd Red Pieces

In the following we examine cycles where each blue piece has even length and each
red piece has odd length. We show that for a cycle, C, with k red pieces (and hence
k blue pieces), C-COL is polynomial if k is even and C-COL is NP-complete if k is
odd.

Theorem 6.4.1 Let k > 2 be an integer. Let C be a two-edge-coloured cycle with red
and blue edges. Suppose that each blue piece has even length and each red piece as odd
length and suppose C has k red pieces. If k is even, then C-COL is polynomial. If k
ts odd, then C-COL is NP-complete.

Proof. Suppose C has an even number of red pieces. To see that C retracts to
a path, let P, be a shortest red piece in C. Let P be the path formed by adding a
single blue edge to either end of P,. It is easy to verify that C retracts to P. Hence,

C-COL is polynomial by the results on paths.

Suppose C contains an odd number of red pieces. We shall use the indicator con-
struction to construct a graph, C~, (multiplicity one) containing no loops and an odd
cycle. Since odd cycles yield NP-complete colouring problems, by [19], C*-COL is
NP-complete. This implies C-COL is NP-complete.

Suppose the longest blue piece in C has length b and suppose the longest red piece
in C has length r. Let I be a path consisting of a blue path of length b — 1 followed
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by a red path of length r followed by a blue path of length 5— 1 and let 7 and j be the
end points of the path f. Note that each of the paths comprising I have odd length.

Let C~ be the result of the indicator construction with respect of (7,1, 7).

Observe that since I has odd length and only one red piece and k/geq2, any image
of I in C must be a path with 7 and 7 mapping to different vertices. Hence C* is

loop-free.

Let Py, P,, P; be three consecutive pieces in C, where P, and P; are blue and P, is
red. Let m; be the mixed vertex shared by P, and P;. Let m; be the mixed vertex
shared P; and P,. Let n; be the other mixed vertex in 7, i.e., the other end of P;.
Furthermore, let b; be the blue only vertex of P, adjacent to m, and let b, be the blue
only vertex of P, adjacent to m3. By the lengths of the paths in I, one can check that
there is a homomorphism of f to C such that ¢ maps to b; and 7 maps to b,. Hence
the edge b1b; is in C*. Since there are an odd number of red pieces in C, there are an
odd number of such edges. Moreover, these edges form an odd length cycle. Hence,
by [19] €*-COL is NP-complete. =

6.5 Two or Four Pieces.

In this section we examine those two—edgeucdloured cycles consisting of exactly two
pieces or exactly four pieces. We show that for all such cycles C, the complexity of

C-COL is polynomial.

Theorem 6.5.1 Let C be a iwo-edge-coloured cycle with two pieces. Then C-COL is

polynomial.



Proof Let C be a cycle with two pieces. In light of Theorem 6.2.3 if both pieces
have the same parity, then C-COL is polynomial. On the other hand, if one piece is

even and one piece is odd, then by Theorem 6.3.1, C-COL is polynomial. m

Let C be a cycle with four pieces on edge-colours red and blue. In many cases the

complexity of C-COL follows from previous results. These are summarized bolow:

Proposition 6.5.2 Suppose C is a two-edge-coloured cycle with four pieces of which

ezactly zero, one or four are even. Then C-COL is polynomial.

Proof If all pieces in C have the same parity, i.e. C has zero or four even length
pieces, then C-COL is polynomial by Theorem 6.2.3. If C has one even length piece
and three odd length pieces, then C-COL is polynomial by Theorem 6.3.1. »

We now consider cycles with four pieces of which two or three of the pieces have

even length.

Proposition 6.5.3 Let C be a two-edge-coloured cycle with four pieces of which two
have even length and are blue and two have odd length and are red. Then C-COL is
polynomial.

Proof This follows from Theorem 6.4.1. »

This leaves two possible configurations. One is a cycle with two of the four pieces
h Suf £ b | =~ T £E Iy 21 - T *a X 1 r .1 r * e
adjacent and of even length. The other is a cycle with three of the four pieces even
length. The following two theorems complete the classification of cycles with four

pleces.
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Theorem 6.5.4 Let C be a two-edge-coloured cycle with four pieces. Suppose C has
ezactly two even length pieces and they are adjacent (i.e. they share a vertez). Then

C-COL is polynomial.

Proof Let the pieces of C be Ry, R,, B, B;, where R; is an odd length, red
path; R; is an even length, red path; B; is an odd length, blue path; B, is an even
length, blue path; and a clockwise traversing of the cycle will traverse the pieces in

the order By, R;, B3, R;. Let v be the vertex common to R; and B;.

Since C has even length. it is bipartite. Partition C into two independent sets,
{Co, C1), with v € Cp. Using the ideas from Chapter 4, we construct a oriented
cycle D = Dir(C,Cy,Cr)- 1t is straightforward to check that the oriented path in
D corresponding to the piece By has ”%1] forward arcs and [l%ij backward arcs.
Hence the oriented path has net length one. The oriented path corresponding to R;
has I%E forward arcs and %ﬁ backward arcs; the path has net length zero. Similarly,
the paths in D corresponding to B, and R; have net length zero and one respectively.
Therefore, the cycle D has net length two and by [30] or {15] D-COL is polynomial.
Hence, C-COL is polynomial. m

Theorem 6.5.5 Suppose C is e two-edge-coloured cycle with four pieces By, B, R,
aend R, where

(i} B, is blue and of length 2b; + 1,
(ii} B is blue and of lengih 2b;,
(iit} R, is red and of length 2r;,

(iv} Rz is red and of length 2r;.
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Then C-COL is polynomial.

Proof Let G be an instance of U-COL. Let S be the set of vertices in & distance
one in red from a mixed vertex. We reduce C-COL to 25AT, where the variables
correspond to the vertices of S and the clauses correspond io paths between the
vertices of 5. We begin by making an observation that will simplify the description of
the 25AT instance. Suppose z and y are boolean variables. Then = = y if and only if
(zV -y} A(-z Vy)is true; z # y if and only if (zV y) A (=2 ¥ —y) is true. Therefore,
we will use the clause z = y, (resp. r # y} to refer to the clause {z V ~yj A (~x V ¥},

(resp. (z Vy) A {—z V —y}).

Label the mixed vertices of C with m;, mg, m3, my where m; and m, are the end-
points of By, m; and m; are the end points of /,. We assume without loss of generality

that ro > r;. There are three cases to copsider.

Case 1: r; > r; > 1. Let 51,52, 33,55 be the vertices, in C, distance one in red

from m;, mz, ms, m, respectively. Assign the following labels to sy, 52, 53, 54:

Vertex Label

EN 000
Sy 111
33 010
S5 110

This set is 2SAT-describable since the clause (u; V ~uyj A {~ua V uyj is satisfied by
a bit string of length three if and only if the string is one of the four labels above.
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For each vertex u € 5 construct three variables (ua, ug, u;}. These are the variables
of the 2SAT instance. We now describe which clauses to add to the set of clauses in
the 2SAT instance. For each u € § add the clause (u3 V —u;) A (—ug V uz) to the set
of clauses to insure u is mapped to one of {s1,52,53,54}- Also, if u,v € S are both
adjacent to some mixed vertex w € V(G), then u and v must have the image in C.
Hence add the clause (u; = v} A {u2 = v2) A (u3 = v3). We add the other clauses

based on the paths between vertices of S.

For u and v in .S joined by a path consisting of a single red edge, a blue path P,

and a single red edge, add the following clause to the set of clauses:

Parity of P Length of P Clause
odd IPj<2bh +1 (u1 = )
odd Pl >2b +1 (u1 # v1) A (uz # v3)
even IPl<2b; (uy=v1)A(uza =v2) A(us = v3)
even IP] > 2b, (u1 = v1) A (u2 = v2)

For all u and v in S joined by a red path @, add the following clause to the set of

clauses:
Parity of @ Length of @ Clause
odd Rl >1 (v1 = —u)
even Ql<2r; —2 (v1 = v1) A (uz2 = v2) A (uz = v3)
even 2 —-2<iQi<2r; -2 (u2 = v2) A (u3 = v3)

even Q> 2r; -2 (uz = v3)
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Claim 6.5.5.1 The resulting instance of 25AT is satisfiable if and only if G — C.

Proof of claim. Suppose G — C. Then each vertex in S maps to one
{51, 52, 53, 54}. For each u € S assign (us,us,u;) the label of the vertex s; to which u

is mapped. This assignment is a satisfying truth assignment.

On the other hand, suppose there exists a satisfying truth assignment. We construct
a function f from the mixed vertices of G to the mixed vertices of C such that f can
be extended to a homomorphism of G to C. Let v be a mixed vertexin G. Let u € S
be distance one in red from v. The set of variables (u3,uz,u;) has a truth assignment
corresponding to some s;. Set f(v) = m;. Using the ideas from the proof of Theorem
6.1.1 one can verify that f can be extended to a homomorphism f : G — C. This

establishes the claim.

Case 2: 1, > r; = 1. Let s,, 57, 53 be the mixed vertices distance one in red from
™m;, My, m3 respectively. Notice s; is also distance one from my. Assign the following

lIabels to sy, s, 53:

Vertez Label
S 00
So 11
S3 10

For each vertex u € S construct two variables (uz,u;). These are the variables of
the 2S5AT instance. We now describe which clauses to add to the set of clauses in the

2SAT instance. For each u € S add the clause (u; V -u;). This insures that (up,u;)
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is never assigned (0_1}; that is, {uz. u;} is assigned on the three labels above. Also, if
u,v € S are both adjacent to some mixed vertex w € V({(}, then v and v must have
the image in £'. Hence add the clause {u#; = v;) A (uz = v2). We add the other clauses

based on the paths between vertices of S.

For v and v in § joined by a path consisting of a single red edge, a blue path P,

and a single red edge, add the following clause to the set of clauses:

Parity of P Length of P Clause
odd Pl <2bh +1 (uy = —~uy}
odd 1Pl >2b +1 (uy 3 v)A{ug#va)
even  IPI<2h (w1 =u)Afu =1y
even [Pl 2 25, (uz = ;)

For all u and v in S joined by a red path Q, add the following clause to the set of

clauses:

Parity of Q@  Length of Q Clause
odd Q2 >1 {uy = -y )
even QI <2r2 —2 (uy =0} Aflus =15}
even Q> 2r; — 2 (v = vy)

The resulting instance of 2SAT is satisfiable if and only if G — C. Suppose f :
G — C. Then each vertex in 5 must map to one of {s;,52,53}. The corresponding

truth assignment is a satisfying truth assignment for the instance of 25AT.
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instance. We comstruct a function f from the mixed vertices of G to the mixed
vertices of ( so that f can be exiended to a homomorphism from G to C. Let v be a
mixed vertex in & distance one from u € §. The set of variables {u;,¢;) bas a truth
assignment corresponding to some s;. If it corresponds to s, then set f(v) = m,.
¥ it corresponds to sz, then set f{v) = m;. U it corresponds to s;, then there are
two cases to constder. Firstly, if v is connected by a blue path to a mixed vertex,
w, such that f(w} = m; then set f{v} = my. Otherwise, v is connected by a blue
path to mixed vertices, w’, such that f{w') = my or f{u') = m; or v is not joined
to any mixed vertices by a blue path. In this case set f{vj = ma.. Using the proof of

t

Theorem 6.1.1 one can verify that f can be extended to a homomorphism [ : G — C.

Case 3: r, = r; = I. Let s;,5: be the mixed vertices distance one in red from
my, My respectively. Notice s, is also distance one from mj; and s; is distance one

from m,. Assigo the following labels to 5y, 3,:

Vertex Label
53 1
S 0

For each vertex u € § construct one vanable u. These are the variables of the 2SAT
instance. We now describe which clauses to add to the set of clauses in the 2SAT

instance. If uw & S are joined o a commnon mixed vertex w € Iif [84 &, then u and

2 e Y JFVRER S e s .

v must map to the same vertex in C. In the two cases above we required a special

clause to ensure this happened. In this final case we do not require a special clause
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since u and v a joined by a red path and that case is handled below.

The clauses are based or the paths between vertices of S. For u and v in S joined
by a path consisting of a single red edge, a blue path P, and a :ingle red edge, add

the following clause to the set of clauses:

Parity of P Length of P Clause

odd Pl<2b+1 (u=-u)
odd [PI>2b+1 (u#v)
even IPl<2b, (u=v)
even IP| > 2b, (u =uj

For u and v i1s S joined § joined by a red path @ add the clause {u = v) to the set

of clauses.

The resulting instance of 2SAT is satisfiable if and only if G — C. Suppose f :
G — C. Then each vertex in § must map to one of {s;,s2}. The corresponding truth

assignment is a satisfying truth assignment for the instance of 2SAT.

On the other hand, suppose that the instance of 25AT has a satisfying truth assign-
ment. We construct a2 mapping f from the mixed vertices of G to the mixed vertices
of C and observe that this mapping can be extended to a homomorphism f : G — C.
Let v be a mixed vertex in G distance one in red from u € §. The are four cases to

I ~ REAR Nl b Nl RBFAT CRARE i WFAAL~ BAE A A K& WF

consider:

e I v is joined by an odd length blue path to another mixed vertex and u is
assigned 1, then set f{v) = m,.
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e If v is joined by an odd length blue path to another mixed vertex and u is

#

assigned 0, then set fiv} = m,.

e If v is joined only by even length blue paths to another mixed vertices or is

joined to no other mixed vertices and u is assigned 1, then set f{v) = ms.

¢ If v is joined only by even length blue paths to another mixed vertices or is

joined to no other mixed vertices and u is assigned 1. then set f{v) = m;,.

Again, it is straightforward to check, using the proof of Theorem 6.1.1, that f can

be extended to a homomorphism f: G — C.

This completes case 3 and the proof of the theorem. »



Chapter 7
Cliques

The results in this chapter concern the complexity of H-COL when H is a clique. We
begin by studying cliques witk four or less vertices. Notice, that H-COL is trivial
when H is a clique on zero or one vertices. The classification of two-cliques is in
Section 7.1. The classification of loop-free three-cliques is in Section 7.2. We also
provide, in Section 7.3, a classification of three-cliques with loops allowed but we
restrict attention to the case of two edge-colours. Finally, we give a classification of

two-edge-coloured four-cliques wish the restriction that the four-cliques are digon-free.

In Section 7.5 we study the problem for cliques larger than four-cliques. We present
two infinite families of cliques for which H-COL is polynomial for every member of
the family. The first family consists of two-edge-coloured cliques. The second family
comsists of digon-free, loop-free cliques. In fact, for such k-edge-coloured cliques, we
show that for every n < 2* there exists an n-clique for which H-COL is polynomial

and for every n > 2* any k-edge-coloured n-clique is NP-complete.

We now make an observation that reduces the number of cases that need to be
considered. Let H; and H, be edge-coloured graphs with multiplicity & both on the

111
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same vertex-set V. Further suppose there exists a permutation, =, on {1.2,3,...,k},
such that E;( H,) = E.¢){Hz). That is, H; can be obtained from H- by permuting the
edge-colours of H;. Then we can show that H;-COL and H.-COL are polypomially
equivalent. Denote this permutation H; = =(H;). To see H;-COL a H,;-COL, let G
be an instance of H;-COL. Then G — H, if and only if x(G) — H,. On the other
hand, to see H,-COL a Hy-COL, let G be an instance of H,-COL. Then =~}(G) — H,
if and only if G — H,. In particular, when classifying H-COL for edge-coloured cliques
of multiplicity two we can restrict our attention to cases where the number of blue

edges is greater than or equal to the number of red edges.

7.1 Two-cliques

All the two-clique colouring problems can be reduced to 2SAT. This reduction applies
fo any two-clique regardless of the number of edge-colours. Label the vertices of
the clique with {0,1}. This is a 2SAT-describable set by Observation 2.3.1. For
a particular edge-colour, there are eight possible edge-sets on the vertex-set {0,1}.
Namely, there are two choices (present or not) for each of the three edges, {00,01,11}.
For each of these possible edge-sets the obvious partition, {0,1} = {0} U {1}, satisfies
the conditions in Theorem 2.3.3 and each edge-set is 2SAT amiable. Hence we have

the following theorem.

Theorem 7.1.1 Let H be an edge-coloured cligue on two vertices. Then H-COL is
solvable in polynomial time.
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7.2 Loop-Free Three-Cliques.

In the study of graphs and of digraphs, the classification of the complexity of H-COL
is completely determined when H contains a spanning clique. See [19] and [1]. These
classifications are given in terms of the existence of certain subgraphs. In the case
of graphs, if H contains a subgraph which is a K3, then the problem is NP-complete
and if it does not contain such a subgraph it is polynomial. In the case of digraphs,
if H is a semicomplete digraph (at least one arc between any pair of vertices) and H
contains at least two directed cycles, then H-COL is NP-complete and if H contains
zero or one directed cycles, then H-COL is polynomial. It would be nice to have such
a subgraph characterization for edge-coloured cliques as well, but it seems unlikely
even for the three-clique problem. Consider the sequence of edge-coloured graphs in
Figure 7.1. Each edge-coloured graph is a subgraph of the following graph. However,
the complexity alternates between polynomial and NP-complete, demonstrating that

a subgraph characterization is impossible.

In this section we restrict our attention to loop-free three-cliques. For this re-
stricted class, we show that the complexity of H-COL is completely determined by

the existence or non-existence of certain subgraphs.

We now use 2SAT to show a particular class of three-cliques is polynomial. Let H
be an edge-coloured three-clique where the vertices of H have been labelled with the
bit-strings {00,01,11}. This is a 25AT-describable set by Lemma 2.3.2. Initially we
will restrict our attention to those three-cliques H that do not contain a monochro-

matic K3. (The existence of a monochromatic K3 immediately implies the problem
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Figure 7.1: An alternating sequence of K3’s

is NP-complete.) Given that the vertices are labelled, there are six possible edge-
configurations that a particular edge-colour can take. (Recall we are restricting our
attention to loop-free and monochromatic K-free configurations). The possibilities

are listed below and drawn in Figure 7.2

Name Edge set
Cy {{11,00}}
Cs {{11,01}}
Cs {{01,00}}

llowing lemma tells us that the only possibly ‘bad’ configuration for the
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Figure 7.2: Possible configuration for each edge-colour-class.
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Lemma 7.2.1 Suppose H is a loop-free, edge-coloured three-cligue containing no
monochromatic K5. If the vertices of H can be labelled with {00,01,11} such that
each edge-colour-class is one of the configurations C,,...,Cs above, then H-COL is

polynomial.

Proof We use a reduction to 2SAT to solve the problem. We have already observed
that the set of bit-strings used to label H is 2SAT-describable. Therefore, we only

need to give clauses for each configuration Cj,...,Cs. These clauses are given below.

Configuration Clause
G (vaVu) A(—vz2Vou) A (v Vul) A (b Vo)
C2 (va Vua) A (mv2 V u) A () A (u1)
Cs {(mux) A{(-v) A (v Vug) A{-o V —uy)
Cy (1 Vur) A(—oyp V)

C5 (‘U2 \"/ 112) A (—*02 \"/ ‘luz)
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Figure 7.3: The edge-coloured graph Hg.

The verification that these clauses are correct is straightforward. The result fol-

lows. =

It may seem possible that another labelling of H with different bit-strings could al-
low us to use 2SAT for Cs. However, the following lemma shows that configuration Cp
is indeed difficult. Let Hg be the edge-coloured graph with vertex-set {00,01,11} and
three edge-colours: blue, red, and green. Let the blue edge-set be {{01,11}, {11,00}},
the red edge-set be {{01,11}, {01,00}}, and the green edge-set be {{01,00}, {11,00}}.
A picture of Hy is in Figure 7.3. Blue edges are solid, red edges are dashed, and green
edges are dotted.

Lemma 7.2.2 Let H be a loop-free three-clique. Suppose there are three edge-colours
red, green, and blue such that the subgraph induced by these three colours is precisely
Hg. Then H-COL is NP-complete.

Proof. We use two applications of the indicator corstruction to show Hg-colouring
is NP-complete. Let I; be a path of length five, with edges {e;, €2, €e3,€4,€5}. The

ordering on the edges is the natural ordering. All edges are blue with the exception
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Figure 7.4: The edge-coloured graphs HZ and H;".

of e3 which is red. Vertices i; and 3; are the endpoints of the path. Similarly, let
I be a path of length five with the outer four edges red and the center edge green.
The end points of I, are 1; and j,. Finally, let I; be a single grezn edge with end
points 73 and j3. We consider blue to be colour one, red to be colour two, and
green to be colour three. The result of the indicator construction with respect to
(11,21, 1), (12, 12, 32}, (I3, 3, ja) is the edge-coloured graph H;. The vertices of H{ are
{00,01,11}. The blue edge-set is {{00,00}, {01,00},{01,11},{11,00},{01,01}}. The
red edge-set is {{01,00},{01,11}, {11,00},{00,00},{11,11}}. The green edge-set is
{{01,00}, {00,11}}. A picture of H; is in figure 7.4. Blue edges are solid, red edges
are dashed, and green edges are dotted.

We use the indicator construction on Hg. Let I; be the digon on vertices {7;,71}
with a blue and a red edge, i;5;. Let I, be the single green edge on vertices 13, 7,. The
result of the indicator construction with respect to (I1,13,71), (12,12,72) is the graph
Hg". The blue edges are {{01,11},{11,00}, {01,00},{00,00}} and the red edges are
{{01,00}, {11,00}}. A picture of HZ" is in Figure 7.4. The H3"-colouring problem
is NP-complete. The proof of this appears in the next section. This implies both
H*-COL and H-COL are NP-complete. =
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The previous two lemmas now allow use to classifv all loop-free three-clique colour-

ing problems.

Theorem 7.2.3 Lef H be a loop-free three-chque. If H contains a monochromatic
triangle or three edge-colours that induce a copy of Hg, then H-COL is NP-complete;

otherwise, H-COL is polynomial.

Proof. If H contains a monochromatic triangle or Hg, then restrict the input to

the edge-colours of this subgraph. In these cases H-COL is NP-complete.

Otherwise, label the vertices of H with the bit-strings {00,01,11} such that each
edge-colour induces one of the configurations C; to Cs. This is always possible pro-
vided H does not contain three colours that induce Hs. Use Lemma 7.2.1 to conclude

the problem is polynomial. m

7.3 Two-Edge-Coloured Three-Cliques

In this section we allow loops but restrict the multiplicity of H to two. Each H-
colouring problem (for H a two-edge-coloured three-clique} is classified as either NP-
complete or we present a polynomial time algorithm. We label the vertices of H with
{0,1,2}. Y we ignore loops, then there are essentially six two-edge-coloured cliques.
Since loops will be introduced later we can no longer exclude monochromatic triangles.
As mentioned above we need only consider the case where the number of blue edges
is greater than or equal to the number of red edges. The list below and Figure 7.5
describe these six cligues.
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Figure 7.5: All six loop-free, two-edge-coloured cliques on three vertices.

Name

T
T2
15
T
Ts
Ts

I

{01,12, 20}
{01,12,20}
{01,12,20}
{01,12,20}
{20,21}
{20,21}

Blue Edges Red Edges

{}
{01}
{20,21}
{01,12,20}
{01}
{20,01}
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We now consider the complexity of H-COL when H is one of the six edge-coloured

graphs above. We also consider all possible additions of loops and classify those

problems as well. To avoid trivialities, we will never have a red and a blue loop on

the same vertex because any two-edge-coloured graph will map to such a double loop.

That is, G is a YES instance if and only if G has only red and blue edges. Also, in

the following we will use the term 7:' to denote any two-edge-coloured clique on three
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vertices obtained from 7; by adding a (possibly empty) set of loops to the edge-set.

The indicator construction will be used several times. We first describe our set
of indicators. We use either single edges or paths of length three. In all cases, the
specified vertices are the end-points of the edge and path respectively. Recall that
the blue edges are E; and the red edges are E;. Hence the images of indicator I;
correspond to the blue edges in H™ and the images of the indicator I, correspond to

the red edges in H™.

Name Description

R Single red edge.

B Single blue edge.

D Two vertices joined by a red and a blue edge.
RRR Path of length three of all red edges.
BBB Paih of length three of all blue edges.
RBR Path of a red edge, blue edge, and red edge.
BRB Path of a blue edge, red edge, and blue edge.
RDR Path of a red edge, D from above, and red edge.
BDB Path of a blue edge, D from above, and blue edge.

7.3.1 The Complexity of 7;"-Colouring

We begin by showing T;'-colouring is NP-complete if 7} contains no blue loops; that
is, the graph induced by the blue edges is a K3. We reduce K3-COL to T{-COL.
Let G be an instance of K3-COL. Let G, be the two-edge-coloured graph on V(G)

with E(Gs) = E(G) and E»(Gs) = 6. We claim G — K; if and only if Gy — T}
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Iuce TH-COL to &

¥ . "
Informally we say we reduce T to K-

COL by restricti
coloured graphs with only blue edges.

On the other hand, if 7} has a blue loop we can use the Dominating Loop Lemma
{Lemma 2.4.3) to reduce the problem to a two vertex clique problem. These are all

polynomial by Theorem 7.1.1.

Observation 7.3.1 The problem T -COL is NP-complete if T;{" has no biue loops
and s polynomial otherwise.

7.3.2 The Complexity of 77 -Colouring

While many will argue that the T classification should come after the T} classi-
fication we require these results in the following subsections. Hence, the possibly
unaesthetic ordering must be endured.

Consider any 7, . Since we are assuming that no vertex of the 7 has both a red
loop and a blue loop, the result of the indicator construction with respect to (D,1,5)

is a T;. Since T;-COL is NP-complete, all T} -colouring problems are NP-complete.
Observation 7.3.2 Each problem T, -COL is NP-complete.

7.3.3 The Complexity of 75 -Colouring

Consider the following cases:

Case T7-1: No blue loop. We can restrict the input to blue edges only. This

problem is NP-complete since the blue edges induce Ty and T3-COL is NP-complete.

Case T;'-2: A blue loop on vertex 2. The problem reduces via the Dominating

Loop Lemma {(Lemma 2.4.3} to a two vertex clique problem and hence is polynomial.



We can now assumne that 75 has at least one blue loop on vertices {0.1} and either

a2 red loop or no loop on vertex 2.

Case T, -3: No loop on vertex 2. Blue loop on vertex 0 and/or 1. These

graphs retract to a two vertex clique and therefore are polynomial.

Case 77-4: Red loop on vertex 2. Blue loops on vertices 0 and 1. This
graph is polynomial but we have not found a generic tool to show this. Hence, we
present a special algorithm for this edge-coloured graph. Call this edge-coloured graph
TF-4. Let G be an instance of T;-4-COL. Consider the red components of GG. The
nonbipartite red components must ali map to the red loop at vertex 2. Hence there
can be no blue edges in a nonbipartite red component nor can there be any blue edges
joining two vertices each in two separate nonbipartite red components. We claim
this condition is necessary and sufficient for G to map to T3 -4. The necessity of the
condition has just been demonstrated. Suppose  satisfies the condition. Then we

map G to T; -4 as follows:
1. Map all vertices belonging to a red nonbipartite component to vertex 2.
2. Map each red bipartite component to {0,1}.
3. Map all remaining vertices to vertex 0.

The proof that this is a homomorphism is straightforward. Observe that there are

* ey - . = - - _ - r Fr 2= P * . ¥

fue edges in T, -4 between all pairs of vertices from 75 -4 with the single exception
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condition on G says the preimage of 2 {i.e. the vertices mapped in step 1} are blue

edge free.
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Case T/-5: Red loop on vertex 2. Blue loop on exactly one of vertices
0 and 1. Without loss of generality assume there is a blue loop on vertex 0 and no
blue loop on vertex 1. Let [; be the B indicator and I, be the RBR indicator. The
indicator construction with respect to ({Iy,%1,J1), (I2,12,j2)) results in a 7;". Hence,

T;}-5 colouring is NP-complete.

7.3.4 The Complexity of 75 -Colouring

Case T;7-1: No loops on vertices 0 or 1. If there is no blue loop on vertex 2,

then we can restrict the input to blue edges and conclude the problem is NP-complete.

If on the other hand, there is a blue loop on vertex 2, then we use Lemma 2.4.1.
Let H; be the edge-coloured graph induced by vertices 0 and 1. Let H, be the blue
loop on vertex 2. Notice H; — H, as required and T is the join of H; and H, with
respect to red and blue. Since H; join H, is a monochromatic K4 and K4-COL is

NP-complete, we conclude that 75 -1-COL is NP-complete.

Case T;F-2: Blue loop on at least one of {0,1}. No red loop on either
§0,1}. Consider the congruence with two classes Sy = {0,1} and S; = {2}. This

congruence induces a retraction to a two-clique. Hence, the problem is polynomial.

Case T7-3: Red loop on at least one of {0,1}. Assume without loss of
generality that there is a red loop on vertex 0. Vertex 1 may have a red loop, a blue
I;. The indicator

£
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problem is NP-complete.
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7.3.5 The Complexity of 7T; -Colouring

Case T -1: No blue loop. Let H, be the edge-coloured graph induced by {0,1}
and let H,; be the edge-coloured graph induced by {2}. Observe that both H,-COL
and H,-COL are polynomial. We now observe that 77-1 satisfies the conditions of
Lemma 3.5.1. Hence, all 7;"-1 problems are polvnomial.

Case 75 -2: Blue loop on vertex 2. Use the Dominating Loop Lemma {Lemma
2.4.3) to reduce the problem to a two-clique-colouring problem. Hence, all 7.7-2-COL

problems are polynomial.

Case T/-3: No loop on vertex 2. Exactly one blue loop on vertices {0,1}.
Either 0 or 1 red loops on vertices {0,1}. Without loss of generality assume
there is a blue loop on vertex 8. There are two possibilities for vertex 1. Either vertex
1 has no loop or vertex I has a red loop. Call the former case “subcase A™ and the
latter case “subcase B”. Both these problems reduce to 25AT. Label the verlices with

bit strings of length two as follows:

Vertezx  Label
0 00
1 10
2 01

This is 2§AT-describable by Lemima 2.3.2. Unfortunately, the edge-coloured graphs
T -3 are not 2SAT amiable. However, we can come up with a set of ad hoc clauses.

Civer an inetnnes £ of THE 2 ONT e oot ried mm
IVED & INSLance, Ur, O 15 - WL, WE GOOsSiruch an

[

nstance, S, of 25AT as follows
For each vertex v in G, there correspond two variables u; and u; in S. The clauses
of S are defined below.
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The clauses in subcase A are:
Edge Clause
Blue edge ur  {u; V -2} A (mua Vur ) A {—ug V -y

Red edge uv  (up Vg j A (mup V —ug) A {—-n) A (—uy)

The clauses in subcase B are:
Edge Clause
Blue edge uv  (uz Vv A (—u2 Vo) A {—up V -y )
Red edge uv {uz Vo) A () A (uy)

Suppose a satisfying truth assignment exists for S. Because the vertices have
been iabelled with a 2SAT-describable set, we can assume that each pair of variables,
(tiz,u;), has been assigned (0,0),{0,1}, or (1,0). Therefore, given an edge uv, the
variables (uz,u;,v2,v;) can take on nine possible values. Notice the blue edge-clause
in both subcases in the same. We call this the Blue Clause. The red edge clause in

subcase A (resp. subcase B} is called Red Clause A (resp. Red Clause B).

Value of (uy,u3,v2,vy)  Value of Blue Clause Red Clause A Red Clause B

(0,0,0,0) True False False
(0,0,0,1) True False False
(0,0.1,0} False True True
(0,1.0,0) True False False
(0,1,0,1) False False False
(0,1,1,0) True False False
{1,0,0,0) False True True
(1,0,0,1) True False False

(1.0,1,0) False False True
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It is pow easy to see, there is a satisfving truth assignment for S if and only if

there is 2 homomorphism of & 1o T3 -3.

Case TS -4: No loop on 2. Blue loop on both vertex 0 and on vertex 1.
Let I; be BRB and J; be B. The indicator construction with respect to ({111, 1),
(12,72, J2)) produces an edge-coloured graph T5'-3. Therefore, all problems T;-4-COL

are NP-complete.

Case TS -5: Blue loop on at least one of vertices {0,1}. Red luop on
vertex 2. Suppose withcout loss of generality there is a blue loop on vertex 0. Initially
assume there is no loop on vertex one. Use the indicator BR consisting of the edge-
coloured graph on the vertex-set {i,z,j} with iz a blue edge and zj a red edge. The
indicator construction described in Chapter One requires that all indicators have an
automorphism that maps ¢ to 7 and 7 to . This condition ensures that the result
of the indicator construction has undirected edges. If the automorphism condition is
rernoved, then the result of the indicator construction in general will have directed

edges. See [25] for more details.

The indicator construction with respect to (BR, 1,7} results in a semicomplete di-
graph with two directed cycles. The H-colouring problem for such a graph H is proved
to be NP-complete in [2]. If we add a loop of any colour to vertex 1, the result is an
increase of arcs in the result of the indicator construction. Nonetheless, the result is
still a semi-complete digraph with at least two directed cycles. Hence, all T-5-COL
problems are NP-complete.
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7.3.6 The Complexity of T -Colouring

Case TS -1: There are no loops. Label the vertices with bit-strings of length two

as follows:
Vertexr Label
0 00
1 10
2 11

This set is 2SAT-describable by Lemma 2.3.2. Also the labeling satisfies the
requirements of Theorem 2.3.3, proving the edge-coloured graph is 25AT amiable.

Therefore, this problem is polynomial.

Case T/ -2: Blue loop on vertex 2. No red ioop on vertex 1. In this case,
there is a retraction to the subgraph induced by vertices {0,2} obtained by mapping
vertex 1 to vertex 2. This reduces the problem to 2 two-clique-colouring problem

which is polynomial.

Case T;-3: Blue loop on vertex 2. Red loep on vertex 1. If there is also a
red loop on vertex 0, then the edge-coloured graph retracts to the subgraph induced
by {0,2}. The problem is polynomial. If there is not a red loop on vertex 0, then we
label the vertices with the following bit-strings of length 2:

Vertezx  Label
Y 01
1 00

2 10
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We again observe this a 25AT-describable set. Let G be an instance of H-COL.

We construct an instance of 2SAT from G as follows:

Edge Clause
Blue edge uv (uz V v2)

Red edge v {—uz V -u2) A (mue Vo) A (1 V —) A (g V =)

As above, one can verify this instance of 25AT is a YES instance if and only if

G— H.

Case T¢-4: Red loop on vertex 2 and vertex 0. No blue loop on vertex
1. This edge-coloured graph retracts to the subgraph induced by {0,2}. The problem

is polynomial.

Case T3 -5: Red loop on vertex 2. Not case Ty -4. If there is a blue loop on
either vertex 0 or vertex 1 or both, then let I; be RDR and I, be B. Observe that nei-
ther of these indicators produce a loop in H* that is not present in H. Hence, H* does
not contain a double loop (red and blue) on any vertex since H does not contain a dou-
ble loop. The result of t 2 indicator construction with respect to (Iy,1,71), (12,72, J2)
is an edge-coloured graph from case T3'-2. Thus, the problem is NP-complete.

Now assume there is not a blue loop on either vertex 0 nor vertex 1. That is,
there are no loops on 0 or 1 or a red loop on vertex 1 and no loop on vertex 0. Let
I; be RDR and let I, be B. The result of the indicator construction with respect to
(51,81, 1), (I2,12,J2) is an edge-coloured graph from case T3 -1. This is NP-complete.

Case T -6: No loop on vertex 2. Red loop on vertex 0. If there is not a

blue loop on vertex 1, then the edge-coloured graph retracts to the subgraph induced
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by {0,2} and the problem is polynomial. If there is a blue loop on vertex 1, then by

switching red edges for blue and vice versa we are in case Ty -3.

Case TJ-7: No loop on vertex 2. No red loop on vertex 0. If there is a red
loop on vertex 1 and no blue loop on 0, then we use the same reduction to 2SAT as

in case Ty -3, except we use the following clause for the blue edges:
(’LLQ \" 2}2) A ("uz V —"Uz)

Now we can assume there is no red loop on 0 or 1, but there is a blue loop on 0 and/or
1. In this case, switch blue edges for red edges and vice versa. This result is a T
with a red loop on 1 and/or 2. A red loop on vertex 2 is either case T -4 or case
T3 -5. If there is not a red loop on 2, but there is a red loop on vertex 1, then we are

in case Tg-6 or the first part of the present case.

This completes the classification of the T problems and thus also completes our

classification of two-edge-coloured three-cliques (with loops allowed).

7.4 Two-Edge-Coloured Four-Cliques

The amount of work required to classify all two-edge-coloured three-cliques suggests
that classifying all the four-cliques might require many more hours and hundreds more
pages. Instead of making a career out of the four-clique problem, we will concentrate
on the special case when the four-clique does not contain a digon, i.e. a pair of vertices

u and v joined in both blue and red.

Given a four-clique, let the vertices be {0,1,2,3}. We consider all two-edge-colour

four-cliques with the number of blue edges greater than or equal than the number
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1 2 1 21 2

0 30 30 3
B, B, B,

1 2 1 21 2

0 30 30 3
B4 BS Bﬁ

Figure 7.6: All digon-free two-edge-coloured four-cliques.

of red edges. As before, this covers all possible cases by symmetry. The following
tabie and figure contain descriptions of all digon-free two-edge-coloured four-cliques
without loops. The red edge-set is listed. The blue edge-set is the complement of ’
the red edge-set. As in the case for three-cliques, the symbol B refers to any edge-
coloured four-clique obtained by adding loops to the edge-coloured graph B;.

Name Red Edge-Set
B {13, 30,02}
B, {01,02,03}

By {10,23}
Ba {03,23}
Bs {03}

Bs {}
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7.4.1 'The classification of Bf-colouring

Theorem 7.4.1 All Bf -colouring problems are NP-complete.

Proof. Let RB be the edge-coloured graph on three vertices, {i,m, j}, where im
is red and mj is blue. The result of the indicator construction on B; with respect to
(RB,1,7) is a directed graph (multiplicity one). This directed graph Bj is loop-free
since B, is digon-free. Moreover, B; is a semicomplete digraph with two directed
cycles. A result in [2] states that H-COL is NP-complete when H is a semicomplete
digraph containing two or more cycles. Therefore, B;-COL is NP-complete.

Let Z be any edge-coloured four-clique obtained by adding loops to B;. The edge-
coloured graph Z~ will contain Bj as a subgraph. That is, Z is a semicomplete digraph
with at least two directed cycles. We must ensure that Z* does not contain any loops.
The existence of a loop in Z* implies the existence of a digon or a vertex with both
a blue and red loop on it in Z. We have assumed that neither of these situations

occurs. Therefore, all B} -colouring problems are NP-complete. »

7.4.2 The classification of Bj-colouring

Case BF-1: No blue loops on vertices 1, 2 or 3. If vertex 0 does not have a red
loop, then let J be the edge-coloured graph consisting of a single red edge with end
points k; and j. Label vertex 0 in the By with h;. The result of the subindicator
construction with respect to (J, 7, ky) is the subgraph induced by {1,2,3}. Thisis a

FEYE .3 . . L E x . T ox . WRTER 2
£3 WItHOuUt blu€ 100ps ana i1s I -compicte.

If vertex 0 does have a red loop, then use the Dominating Loop Lemma {Lemma
2.4.3) to remove vertex 0. Again, vertices {1,2,3, } induce a ;" without blue loops.
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The problem is NP-complete.

Case Bj-2: Vertices {1,2,3} contain at least one blue loop and at most
one red loop. Without loss of generality assume there is a blue loop on vertex 1 and
no red loop on vertex 2. Then the BJ retracts to the subgraph induced by {0, 1,3}

by mapping vertex 2 to vertex 1. This problem is in case 75 -3 and is polynomial.

Case Bj-3: Vertices {1,2,3} contain exactly one blue loop and two red
loops. Without loss of generality assume there is a blue loop on vertex 1 and a red
loop on each of vertices 2 and 3. H there is a red loop on vertex 0 as well, then use
the Dominating Loop Lemma (Lemnma 2.4.3) to reduce to problem to the subgraph
induced by {1,2,3}. This problem is a T-2 problem that is polynomial.

If there is a blue loop on vertex 0, then again let RB be the edge-coloured graph on
i, k,7 with ik red and kj blue. The result of the indicator construction with respect
to (RB,1,5) is a semicomplete digraph with at least two directed cycles. Therefore,

the problem is NP-complete.

H there is no loop on vertex 0, then let I; be the single blue edge B with end points

i3 and jJ;, and let I, be RRR, the red path of length three with end points ¢; and j».
Let Z" be the result of the indicator with respect to (B, i1, J2), (RRR,12,j2). The blue
edge-set of Z” is the same as the BF-3; {11,12,13,23}. The red edge-set is all possible
edges (and loops) with the exception of 11. We claim Z~-COL is NP-complete and
ence the original problem is NP-complete. To see Z-COL is NP-complete use the
single indicator I} consisting of a red-blue digon. The resuit is a loop free 7} which is

RS L & IRRATR

NP-complete.
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7.4.3 The classification of Bj-colouring

Case Bj-1: No blue loops. Using Lemma 3.5.1 the problem reduces into two

polynomial problems. Hence BF-1-COL is polynomial.

Case B -2: At least one blue loop. Let Z be the edge-coloured graph obtained
by adding exactly one blue loop to B;. Observe, Z is unique up to iscmorphism. Again
let RB be the edge-coloured path on three vertices consisting of a red edge followed
by a blue edge. The result of the indicator construction with respect to (RB,i,j) is
a a digraph whose core is a semicomplete digraph with at least two directed cycles.
As argued above, adding loops to Z will not change the complexity. Therefore, all

edge-coloured graphs in case Bj -2 are NP-complete.

7.4.4 The classification of B} -colouring

Case B-1: No blue loop on 0, 1, or 2. Let J be the edge-coloured graph
on vertices {k;1,,7} where ki is red and :j is blue. Label vertex 3 in B; with A;.
The result of applying the subindicator construction with respect to (J, 7, k1) is the
subgraph of By induced by {0,1,2}. Vertex 3 can not belong to this edge-coloured
graph since B; does not contain any digons. By assumption, there are no blue loops
on 0, 1, or 2. Therefore, the colouring problem for B;~ is NP-complete. Observe
adding loops to vertex 3 or adding red loops to vertices {0, 1,2} does not change the

complexity. This implies all B}-1-colouring problems are NP-complete.

Case Bf-2: Blue loop on 0, 1, or 2. If there is a blue loop on vertex 1, the
problem reduces via the Dominating Loop Lemma (Lemma 2.4.3) to a Ty -colouring

problem. Therefore, assume there is a blue loop on 0 or 2. By symmetry, we can
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assume that vertex 0 has a blue loop on it. If there is no red loop on vertex 2, then
the edge-coloured graph retracts to the subgraph induced by {0, 1,3} by identifying

vertices 0 and 2. This is a T3 -colouring problem.

Therefore, assume there is a blue loop on vertex 0 and a red loop on vertex 2.
If there is a blue loop on vertex 3, we use a subindicator to isolate vertices{0, 2, 3}.
Let J be the coloured path on {k;,7,7} with ki blue and i; red. Label vertex 1 in
Bf-2 with hy. The result of the subindicator construction with respect to (J, j, k;)
is the subgraph of Bf-2 induced by {0,2,3}. This is a 75 colouring problem that is

NP-complete.

Hence we may assume there is not a blue loop on vertex 1 nor on vertex 3. We are
still assuming there is a blue loop on 0 and a red loop on 2. Suppose either 1 or 3
has a red loop. Assume vertex 1 has a red loop, then using the indicator BB from
above, we construct a semicomplete digraph with two directed cycles. Again by (2]

this implies the problem is NP-complete.

Lastly assume vertex 1 has no loop. This leaves two cases. Either vertex 3 has a
red loop or vertex 3 has no loop. Both these problems are polynomial via a 2SAT
reduction. We begin by labeling the vertices of B;-2 with the following bit-strings.

Vertez Label
0 111
1 101

N
]
—
[
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This set is a 25AT-describable set. The clause (uz V uz) A {~u3a V u,;) has three
variables and is satisfied if and only if the three variables take on the values in one of

the four bit-strings above.

We now give the clauses needed to describe the edges. The verification that these
clauses are correct is straight forward. In the case that there is no loop on vertex 3,
we use the following clauses.

Edge Set Clause
Blue edges (uz3Vo3) Aluz Vo) A (u1 V —ug) A (Duzp V )
Red edges (uz) A {vz) A (—u3 V —u3) A (—uy V —us) A (—og V —ug)
In the case there is a red loop on vertex 3, we use the following clauses. Note the

two sets are identical except for the final disjunction on the red edges below.

Blue edges {usVos) A{ug Vo) A (1 V oo} A (Cua Vo)

Red edges (uz) A (v2) A (mua V —ug) A (—uy V ous) A (e V ~us) A (ug V)

7.4.5 The complexity of Bf -colouring

Case Bf-1 : No blue loops or blue loops on 1 or 2. If there are no blue loops on
Bs, the problem is NP-complete by restricting the input to edge-coloured graphs with
only blue edges. If there is a blue loop on vertex 1 or 2, we can reduce the problem

to a T3 -colouring problem using the Dominating Loop Lemma (Lemma 2.4.3).

Case Bf-2: Blue loop on 0 or 3. By symmetry we can assume there is a blue
loop on 0. H there is a red loop on 1 or 2, we use the indicator RB from above and
produce a semicomplete directed graph with two directed cycles. Hence the problem
is NP-complete. As before, adding more loops to this edge-coloured graph will not
change the complexity.
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Therefore, we can assurne there is not a red loop on 1 nor 2. Let I; be B, the single
blue edge on vertices 7; and j;. Let I> be BRB the path on vertices {i,.7.y. j2} with
edges 7,z and yj; blue and edge zy red. The result of the indicator construction with
respect to (I3,7),51),(f2,72,72) bas as a core a Ty edge-coloured graph on vertices
{0,1,2}. This is NP-complete. Therefore, all edge-coloured graphs in B -2 are NP-

complete.

7.4.6 'The complexity of Bf-colouring

Case Bj-1: There are zero or one blue loops. In the case there are no blue
loops we can restrict the input to blue only and conclude the problem is NP-complete.
Assume without loss of generality there is a blue loop on vertex 0. If any of {1,2,3}
do not have a red loop, say vertex 1, then the edge-coloured graph retracts to a T}t-
colouring by mapping vertex 1 to vertex 0. If all three {1,2,3} have red loops, then
let I; be a single blue edge on vertices #; and j; with a red loop on each vertex. The
result of the indicator construction with respect to (I1,%;, j;) is 2 monochromatic Kj.
This problem is NP-complete.

Case Bf-2: There are two or more blue loops. Suppose without loss of
generality that vertices 0 and 1 have blue loops. The B retracts to the subgraph
on {0,2,3} by mapping vertex 1 to vertex 0. This is a T} -colouring problem and is

polynomial.

This completes the classification of all digon-free two-edge-coloured four-cliques.
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7.5 Infinite families of polynomial problems

In this section we construct two infinite families of edge-coloured cliques for which

the H-colouring problem is polynomial.

The first family begins with a single blue loop. Call this graph H;. Given an integer
i > 2, H, is constructed by adding a blue dominating loop {a vertex v adjacent to all
other vertices in blue together with a blue loop on itself) to H;._; in the case that ¢ is
odd, and by adding a red dominating loop to H;_; in the case that 7 is even. This is

an infinite family of two-edge-coloured cliques. Call this family H.

Lemma 7.5.1 For all H; € H, H; is a core.

Proof. Suppose there exists an H; that is not a core. Label the vertices of H;
with {Ry, ka, ..., k;} where k; is the original blue loop in H; and k; is the dominating
loop added to H;_; to form H;. Since H; is not a core, tnere exists a retraction of
H; to a proper subgraph of itself. Suppose h; is mapped to hi. All vertices with
odd subscripts have blue loops and all vertices with even subscripts have red loops.
Therefore j and k have the same parity. That is, a blue loop can not map to a red
Ioop and vice versa. Hence, |j — k| > 2. Choose m between j and k such that m has
different parity from j and x. Suppose j is odd, m is even, and k < m < j. (All other
cases are analogous.) The edge k;h,, is red and the edge hpmh; is blue. When %; is
mapped to ki, a red-blue digon is formed. This is a contradiction to the fact that H;

contains no digons. ®
Theorem 7.5.2 For dall H; € H, H;-COL s polynomial.

Proof. Let H; be a member of H. Trivially, H;-COL is polynomial. If i > 1, then
7: has a dominating loop in red or blue. By the Dominating Loop Lemma (Lemma
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2.4.3), H.-COL polynomially transforms to H,_;-COL. By induction, we can conclude

H;-colouring is polynomial for all i. m

The second family constructed is a family of loop-free cliques but on many edge-
colours. Each edge-coloured graph also has only one edge between any pair of vertices.
{That is, the edge-coloured graphs are digon-free.} The construction of the family is

implicitly given in the proof of the next theorem.

Theorem 7.5.3 Let k be o posilive integer. For each n such that } < n < 2%, there
erists a loop-free edge-coloured clique, H, on n verlices with multiplicity af most k
such that H-COL is polynomial. For all n > 2* and for all loop-free edge-coloured
cligues, H, on n vertices with multiplicity k, the H-COL problem is NP-complete.

Proof. We prove the first part of the theorem by induction on k. If k = 1 then
n is either 1 or 2. A single vertex and a single blue edge are examples of polynomial
graphs with multiplicity at most one. Suppose the statement is true for all £ < &
Let £k =1+ 1. Choose n such that 1 < n < 2%, If n < 2!, by induction there is a
polynomial graph without loops on n vertices with k£ — 1 or fewer edge-colours. This
edge-coloured graph satisfies the theorem. Therefore, we can assume 2*~! < n < 2%,
In particular, since £ > 1, we bave n > 1. We can partition n into n = n; + n,
such that 1 < my,ny < 257 (For example n; = 257! and n; = n — 271 will work.)
By induction we can find two loop-free edge-coloured cliques on n, and n, vertices
respectively, such that each has multipliaty ¥ — 1 and each is polynomial. Call these
H, and H, respectively. Notice, we can choose the edge colours such that H, U H,
bas multiplicity £ — 1. Suppose blue is not an edge-colour in Hy or H,. Let H be the
edge-coloured clique obtained by constructing the join of H, and H, with respect to
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blue. That is, add every edge between H; and H, in blue. By Lemma 3.5.1 we have
that H-COL is polynomial. Also, H has k or fewer edge-colours.

To prove the second statement, let H be any loop-free n-clique with multiplicity
k where n > 2%, A result in [10] and {18] states that if the edges of an n-clique are
coloured with k colours and n > 2%, then there exists a monochromatic odd cycle.

Hence, H must contain a monochromatic odd cycle. Since H is loop-free, H-COL is

NP-complete. »



Chapter 8

Back to One Edge-Colour

The results in this chapter concern problems for graphs and digraphs (multiplicity
one}. These results are stated in this context simply because the orginal questions
asked were in this comtext or because it is unclear bow to or even not possible to

generalize the results to edge-coloured graphs.

8.1 Homomorphically Full Graphs

This section grew out of work on the Homomorphism Factoring Problem but is inter-
esting in its own right. In this section we characterize those graphs that contain, as
subgraphs, all of their homomorphic images. In fact, we give several characterizations
of these graphs and in particular we show these graphs are perfect. We restrict our

attention to loop-free graphs.

Recall that a homomorphism f : G — H which is both onto the vertices of H and
induces a mapping onto the edges of H defines 2 congruence. Conversely, a congruence
on G implicitly defines 2 homomorphism from G to the quotient of the congruence.

140
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Let G be a graph. Suppose A and B are two disjoint subsets of V(G). We say A
is adjacent to B is there exists u € A and there exists v € B such that uv is an edge
of (. We say a congruence Sg,5;,..., Si induces a retraction if for each 1 there is
s; € S; with the following property: “5; is adjacent to S; if and only if s;s; € E(G).”
That is, the subgraph induced by {s; : 0 < i < k} is the quotient of the congruence.
Furthermore, the homomorphism S; — s;, 0 < 7 < k, induced by the congruence
ity map on this subgraph. That is, the homomorphism induced by the

congruence is a retraction and the quotient is a retract of G.

We now provide the central definition for this section. Given a graph G, we say G
is homomerphically full if every congruence on V(G) induces a retraction. That is,
given any congruence, S5, S, ..., S on V{G), there exists s; € S; for each 7 such that
S; 1s adjacent to S; if and only if s;5; € E(G).

Lemma 8.1.1 Let H be a homomorphically full graph. Every induced subgraph, H’',
of H is iiself homomorphicelly full.

Proof. Let H' be an induced subgraph of H. Let 5,,5;,..., Si be a congruence
on H’. Extend this congruence to H be adding a class containing a single vertex for
each vertex in V(H)\V(H’). Let S,5:1,---, Sk, Si41,---» Sk be the classes in this
extended congruence. Since H is homomorphically full, there exists s; € S; for all
1 £ 1 < K such that S; adjacent to S; impliess;s; € E(H) forall1 <i <j < K. This
statement is still true i we restrict ¢ and 7 to the range 1 <z < j < k. Moreover, since
H’ is an induced subgraph for 1 <1 < 7 <k, s;s5; € E(H) if and only if s;5; € E(H').

Hence H’ is homomorphically full. =
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Recall that a retract of a graph H is necessarily an induced subgraph of H, but the
converse is not true. Consider the following example: Cs is an induced subgraph of
the 3-dimensional cube, 3, but there is no retraction of Q3 to Cs. Furthermore, it is
possible for a graph to be both a homomorphic image of H and an induced subgraph
of H, yet not a retract of H. For example, Cy is both a homomorphic image and an

induced subgraph of Q3 U P but it is not a retract of Q3 U Fs.

We show below that given a graph H such that every homomorphic image of H is
a subgraph of H, then H is homomorphically full. To simplify the proof of our main
theorem we begin with some preliminary results. We will then use these results to
characterize homomorphically full graphs. We begin with a definition to help simplify
the notation in the proofs. Let H be a graph with vertex-set {ug,uy,...,ux}. Let C
be the congruence defined by:

Se = {ﬂog fil}

S: = {uipa} for1<i<k-1

The quotient of C, say K, is the graph that results when uy and u; are identified.
Denote K by H,yu,-

Lemma 8.1.2 Let H be a graph such that every homomorphic image is H is a sub-
graph of H. Then H has al most one nontrivial connected component.

Proof Suppose not, and let C; and C; be distinct nontrivial connected compo-
nents in H so that [V(C;)| + [V(C,)| is maximum. Suppose u and v are vertices of H
such that u € V(C;) and v € V(C3). It follows that H,, has a conaected component
of size [V (Cy)| + [V(C2)| — 1, which is larger than any connected component of H. »
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In view of this lemma, a homomorphically full graph may be assumed to be con-
nected.

We make repeated use of the following argument. Let F be a fixed graph. Suppose
H is a graph with a pair of non-adjacent vertices, say u and v. Suppose there does
pot exist an induced copy of F in H that contains both u and v, and there do
not exist induced copies F; and F; of F in H such that v € V(F}),v € V(F,) and
F\{u} = F;\{v}. Then every induced copy of F in H is still present in H,,. Further,
if the identification of u and v creates a new induced copy of F, then H,, contains

more induced copies of F than does H, and therefore can not be a subgraph of H.

Lemma 8.1.3 Suppose H is a graph with the property that every homomorphic image
of H ts a subgraph of H. Then H has diameter at most two.

Proof Suppose not, and let z and y be vertices with d(z,y) = 3. Since z and y
have no common neighbours, there are no copies F; and F;, of K3 with z € V(Fy),y €
V(F,) and Fi\{z} = F;\{y}. Clearly there is no copy of K; in H containing both z
and y. Thus every copy of K3 in H is still present in H,,. Every path of length three
from z to y creates 2 new copy of K3 in H,,. Hence,H,, contains more copies of K3

than does H, and so it is not a subgraph, a contradiction. s

Given a graph H, we say two vertices u and v are neighbourhood comparable if either
N(u) 2 N(v) or N(v) 2 N(u).

Theorem 8.1.4 Suppose H is a graph such that every homomorphic image of H is
a subgraph of H. Then for all pairs u and v of non-adjacent vertices, u and v are
neighbourhood comparable.
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Proof. Suppose the statement is false, and define m to be the largest integer
such that there exist non-adjacent vertices a and & with neither N(a) C N(b) nor
N(b) € N(a) and an induced copy, say Z, of K,,_2 in N{a) N N(b). Since H has
diameter two, the integer m exists for all pairs ¢ and b and is at least three. Let u

and v be non-adjacent vertices for which m is maximum, and let z € N(u)\N(v) and

y € N(v)\N(u).

We show that N(z) D V(Z). Since zv ¢ E(H), there is no copy of K, in H
that contains both z and v. If there exist copies F} and F, of K., in H such that
z € V(F1),v € V(F2) and Fi\z = F,\v, then z and v belong to an induced copy of
K41 — e. By the choice of m, and since u € N(z), this implies N(z) D N(v) and, in
particular, N(z) D V(Z). On the other hand, if F; and F; do not exist, then every
copy of K, in H is still present in H,,. The set Z U {u, v} induces a copy of K, in
H.,. If this is a new copy, then H,, contains more copies of K,, than does H, and
therefore can not be a subgraph of H, contradicting our hypothesis. It follows that in
H the set ZU {u,v,z} contains a copy of K, and as both z and u are non-adjacent
to v, that N(z) D V(Z). Similarly, N(y) > V(2).

First suppose that zy € E(G). Now u and v are non-adjacent; therefore, they
do not belong to a common K,,4;. Nor are there copies F; containing u and F;
containing v of K.,y such that Fi\{u} = F,\{v}; otherwise, m is not maximum.
Hence, H,, contains more copies of K,,;; than does H, a contradiction. Therefore,

assume zy & E(G).

-

ote that each of the pairs {u,v}, {z,v}, {u,y} and {z,y} has the property that

the intersection of their neighbourhoods contains Z, they are non-adjacent, and in
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each pair, one vertex has a neighbour noi adjacent to the other.

By the definition of m, there is no induced copy of K43 — € in H that contains u
and v. This follows the fact that m is maximum over all such pairs. Suppose there do
not exist induced copies F; and F, of K4y —e in H such that u € V(F),v € V(F)
and Fi\{u} = F;\{v}. Then every induced copy of Ky4; — e in H is still present
in H,,. The graph H,, contains a copy of K,,41 — e induced by Z U {u,z,y}. I
this copy is new, then H,, contains more induced copies of K, +; — e than does H, a
contradiction. It follows that this is not a new copy, and so H must contain a copy of
K11 — e, induced by an (m + 1)-subset of the (m + 2)-set Z U {u,v,z,y}. However,
the removal of a single vertex from this (m + 2)-set leaves two pairs of non-adjacent
vertices and hence can not result in a K,,;; — e. The non-adjacent pairs of vertices

are {u,v}, {z,v},{u,y}, and {z,y}. Therefore the subgraphs F; and F, do exist.

Consider F1NF,. Without loss of generality we can assume that Z C F;NF,. Hence
there are two more vertices, say a@ and b, in Fy N F,. If 2 and b are non-adjacent, then
Z U {a} is a K,,_; in the common neighbourhood of u and v. This contradicts the
choice of m. Hence, assume without loss of generality that u and a are non-adjacent.

There are two cases to consider.

If {v,a} is the non-adjacent pair of vertices in F,, then Z U {b} is a K,,_; in the
common neighbourhood of u and v contrary to the choice of m. Therefore {v, b} is

the non-adjacent pair of vertices in 5. This implies va is an edge.

Since u and v are not adjacent, there is no copy of K,,4; in H that contains u

and v. By the definition of m, there are no copies G; and G of K,,4; in H such
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that v € V(Gi),v € V(G:) and G;\{u} = G,\{v}. Thus every copy of iy in
H is still present in H,,. Moreover H,, contains a new copy of K., induced by

{(V{(F1) U V(F2)), a contradiction. &
We now characterize homomorpkically full graphs.
Theorem 8.1.5 Suppose H is a graph. The following statements are equivalent:
(a} The graph H is homomorphically full.
(b) Every homomorphic image of H is e retract of H.
(¢} Every homomorphic image of H is an induced subgraph of H.
{d} Every homomorphic image of H is a subgraph of H.

‘e} For any two non-adjacent veriices u and v of H u and v are neighbourhood

comparable.
(f} H contains no induced 2K, or Ps.

Proof. (a) = (b) In a homomorphically full graph the quotient of any congruence

1s a retract.
{b} = (c) Every retract of H is an induced subgraph of H.
{c} = (d) Every induced subgraph is a subgraph.

(d} = (e} This is Theorem 8.1.4.
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(e} = (a) Suppose we are given a congruence on H. Define a quasi-order on the
vertices of S; by u > v if and only if N(u) O N(v) for all ¢. Since every pair of vertices
in S; are neighbourhood comparable, every pair of vertices in S; are comparable under
this order. Hence, there must be a maximal element under this order. Finally, any
maximal element in each part will suffice as s; € S;. Hence, H is homomorphically

full.

(e) & (f) Suppose all pairs of non-adjacent vertices are neighbourhood comparable.
Then H contains no induced 2K or P as both of these graphs contain a non-adjacent
pair of vertices that are not neighbourhood comparable. On the other hand, suppose
H contains no induced 2K, or P3. Let « and v be pair of non-adjacent vertices.
Suppose u has a neighbour z ¢ N(v) and v has a neighbour y ¢ N(u). Then subgraph

induced by {u,z,y,v} induces eithera 21, ora P;. m

Corollary 8.1.6 Every retract of a homomorphically full graph is itself homomor-
phically full.

Proof. A retract of a graph is necessarily an induced subgraph. =

Complement reducible graphs (or cographs) are studied in [8]. Corneil, Lerchs, and
Stewart-Burlingham show that cographs are perfect graphs and can be characterized
as the graphs that contain no induced P;. Hence, homomorphically full graphs are a
subset of the cographs.

Our final result on homomorphically full graphs is that they are perfect. Since they
are a subset of the cographs, this is immediate. However, we present a direct proof
below.
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Theorem 8.1.7 Every homomorphically full graph H is perfect.

Proof. Let H = (V,E) be a homomorphically full graph. By Lemma 8.1.1 it
suffices to prove that x(H) = w(H). By definition of the chromatic number, K,y is a
homomorphic image of H. Therefore, K, (g is a subgraph of H, giving w(H) > x(H).

8.2 The H*-Colouring Problem

For the remainder of this chapter we make a slight change in nomenclature. In
the digraph literature the word colour is used to refer to the vertices of H in an H-
colouring problem. This comes from the fact that H-colouring is a generalization of
classical vertex-colouring. We have avoided the use of this term in this thesis so as to
avoid confusion with edge-colours. However, for these final sections, the word colour

will refer to the vertices of the target.

8.2.1 Powers of Oriented Paths

The following definition is taken from [14]. The definition is the main tool used in
their algorithm.

Definition. Let H be a directed graph and let (v;,v2,...,v,;) be an enumeration
of its vertices. We say, a pair (v;,v;) dominates a pair (v, vi), or (vi,v;) 2 (v, v1), if
and only if i > k and j > I. We say the pairs (v;,v;) and (v, v;) are crossing, if and
only if either (1 > k and j7 < I) or (i < k and j > I). For pairs (v;,v;) and (vz,vi), the
PAIT (Vmmin(i k)> Umin(izy) 15 called the X-pair of (v;,v;) and (v, y)-

An enumeration of the vertices of H is called an X-enumeration, if for all pairs of
edges (v;,v;) and (vg,vr) in E(H), the X-pair of (v;,v;) and (vg,v;) is in E(H). The



CHAPTER 8. BACK TO ONE EDGE-COLOUR 149

digraph H has the X-property (is an X-digraph), if there exists an X-enumeration of

its vertices.

When H is a digraph that has the X-property, the algorithm presented in [14] solves
H-COL in linear time. Let H be a fixed oriented path. Since oriented paths have
the X-property, H-COL is polynomial. If we consider the complexity of colourings
with powers of H, we find that the problem remains polynomial since H* has the
X-property as demonstrated below. In general this is not true. That is, given a graph

with the X-property, powers of the digraph do not necessarily have the X-property.
Lemma 8.2.1 Let H be an oriented path. The digraph H* has the X -property.

Proof. Let the vertices of H be {0,1,2,...,p}, where for i € {0,1,2,...,p—1}
either (¢,i+1) € E(H) or (i+1,1) € E(H). Suppose (i, 7) and (m,n) are two crossing
arcs and without loss of generality further suppose i < m and j > n.

If i > », then we have m > i > n. Also, since mn € E(H*) there must be a
directed path of length at most k from m to n in H. The vertex 1 is between m and
n and therefore it lies on the path. Hence, in € E(H*). On the other hand, if ¢ < n,
then the directed path from i to j in H passes through n. In this case, there is a
directed path from i to n of length at most k. If i = n then we have a directed path
from m to t and a directed path from 2 to j withi < mand z = n < j. This is
impossible since the first path requires the arc (Z + 1)(z) and the second path requires
the arc (z)(z + 1). The path H is an oriented path and can only contain one of these
two arcs. Therefore the crossing pair’s X-pair is the arc in. =
Theorem 8.2.2 Let H be an oriented path. Then the H*-colouring problem is solv-
ébfe in linear time.

Proof. Use lemma 8.2.1 and the algorithm in [14].
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Figure 8.1: An oriented cycle that admits a homomorphism to P}

Unfortunately, while the algorithm in [14] is elegant it does not give us much insight
into which digraphs admit a homomorphism to H. This is also true when H is
an oriented path. This lack of a nice characterization perhaps indicates why the

complexity of colouring by oriented paths proved elusive for some time.

8.2.2 Powers of Directed Paths

If we consider the case when H is a directed path we are able to characterize the
digraphs that admit a homomorphism to H. In particular, a digraph, D, admits a
homomorphism to H if and only if all cycles in D are balanced and all paths in D
have net length less than [H|. See [16]. While it might be ambitious to try and
characterize all digraphs that admit a homomorphism to some power of an oriented
path, we can characterize all digraphs that admit a homomorphism to some power of
a directed path.

Define P, to be the directed path with vertex-set the integers and uv € E(P,) if

andonlyifv—u=1.

Theorem 8.2.3 Let D be a digraph. Then D — P% if and only for all cycles C — D
we have C — PX .
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Proof. The necessity of the condition is obvious. If C — D and D — HF¥, then

C — H-.

Let the colours of H*be {..., —2,~1,0,1,2,...}. Assume that all cycles that admit
a homomorphism to D also admit a homomorphism to H*. Let C be an oriented cycle.
Consider C as having its vertices on a circle. Each arc in C will be either oriented
clockwise or counterclockwise. The net length of C is simply the absolute value of the
pumber of clockwise oriented arcs in C minus the number of counterclockwise oriented
arcs in C. Of the two directions (clockwise and counterclockwise) call the arcs in one
direction forward arcs and arcs in the other direction dackward arcs. Choose these
designations in such a way that C has at least as many forward arcs as backward
arcs. We will denote the number of each in C as forward(C) and backward(C). For

example, the cycle in Figure 8.1 has five forward arcs and three backward arcs.
Claim 8.2.3.1 C — PE if and only if forward(C) — k - backward(C) < 0.

Proof of Claim 8.2.3.1. Suppose C — P* under a homomorphism f. Each
arc in C will have its ends mapped to colours in PE such that the colours differ by
at least one and by no more than k. Let the vertices of C be labeled ¢, ¢y,...,¢n
so that the forward arcs are labeled ¢;c;y; and the backward arcs are labeled ;43¢
Indices are taken modulo (m + 1}. Let a be the arc in C with end points ¢; and ¢;41.
Note, a may be oriented in either direction. Define len{a) := f(¢i41) — f(c;)- Since f
is a homomorphism it must be the case that 1 < |len(a)] < k& for each arc, q, in C.

. .
By our choice of the labels for C we also have len{a) > 0 when a is a forward arc and

g

len{a) < 0 when a is a backward arc. Let F be the set of forward arcs in C and B
the set of backward arcs in C. H we sum len on the forward and backward arcs we
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ﬂaf"‘
SCt-

> len(a) > forward(C}

aEF

> len{a} > —k-backward(C}
aelB

Y lenfay = 0

aeF B

The final summation is f{c;} — fle) + fle2) — fla) 4 --- + flem) — flem-1) +
flco) — f(em). Therefore, the final summation is zero. This implies forward(C) — k-

backward(C) < 0 and establishes the claim.

For an example, consider again the oriented cycle in Figure 8.1. The cycle has
five forward arcs and three backward arcs. The numbers beside the vertices are the

colours each is mapped to. In this case, we have a homomorphism to P}.

We now assume that all the cycles in D have this property. The strategy is to
define a mapping on the vertices of D to the vertices of PX and show this mapping is
a homomorphism. We begin by defining a function ¥ from the Cartesian product of
the oriented walks of D crossed with the vertices of P to the integers.

Let W = wgt; - . . w,, be an oriented walk in D. Assign to each pair wyw;y, in W
a weight of +1 or —k. Assign +1 to the pair if wyw,y; is an arc in D. Assign —k to
the pair if w;;,w; is an arc in D. Since P, does not contain any cycles of length two,
we can assume the same is true for D and hence this assignment is well defined. Call

el #b._ s

+his coat ol wrmrambt ol A9 e ol T ol
s aSSignea ww‘:‘i@u LR W;Wysy j- LCIHE L0 TURTCLION %7 as 1

En

&,

H.

m—1

P(W.c):=c+ Z w(w;w;s )
=1
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In fact, (W, c) is the minimum colour that could be assigned to w,, given wo has

been coloured c.

We are now ready to define the homomorphism from D to PX. We define [ :

V{D} — V(PE) as follows:
1. Arbitrarily map some vertex of D to 0. Call this vertex Z {for zero).

2. Let W be a walk from Z to u. Define {(u} := max (W, 0), where this maximum
is taken over all walks from Z to u.

We need to show this maximum is well defined. This is potentially a problem since

there are an infinite number of walks from Z to u.
Claim 8.2.3.2 There exisis a path T from Z to u such that (T,0) = l(u).

{Notice by proving this claim we will have proved [ is well defined since there are only

finitely many paths from Z to u.}

Proof of Claim 8.2.3.2. Let W = (Z = wg)wwz.- .. (1w = u) be a walk from
Z to u. Suppose W contains two vertices z and y such that z = w;, y = wiy,, and
z = w;4- The weights w{w,w;;,) and w{w;; wi;p) are +1 and —k if zy isan arcof D
and they are —k and +1 if yz is an arc of D. In either case, w{ww; 43 ) Fw(wip1wis2) <
0. Therefore, w{W,0; < ¢{W’,0} where W' = wow; ... wywiz3. .. wy,. Hence, when
maximizing ¥ we may restrict our attention to walks that do not contain a pair {z,y}

as above.

Suppose W contains a cycle, C. Let f = forward(C) and b = backward(C). Our
assumption on D says f — kb < 0. Also f > b by definition of f and b which implies
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<0 Hwelet C = coey...6_3¢9, We hav

and —kf + b are nonpositive. Therefore, if we let W” be the walk obtain by removing
C from W we bhave (W, 0) < £(W",0).

Hence, if we consider all walks from Z to 0, it must be the case that ¢ achieves its

maximum on some path T. This establishes the claim.

Finally, we show [ is a homomorphism. Let uv be an arc in D. Let W be a walk
from Z to u such that l{u) = (W, 0). The walk W’ obtained by adding v to the end
of W is a walk from Z to v. Also ¥(W’,0) = l(u) + 1. Therefore, I{v) > l(u) + 1.
On the other hand, consider a walk T from Z to v such that ¢(7T,0) = {(v). Let
T’ be the walk obtained by adding u to the end of T. This is a walk from Z to u
such ihat ¥(77,0) = Hv)} — k. In this case, {(u) > l{v) — k. Combining these we
get lu) + k > Kv) > u) + 1. Therefore, {{u)l(v) is an arc in P and hence lis a

homomorphism. =

An immediate corollary to this theorem is a follows:

Corollary 8.2.4 Let H be a digraph. Then the minimmum integer k for which H —
P~ equals the mazimum integer m for which m = [ forward(C)/backward(C)] taken

over all cycles C in H.

8.2.3 Powers of Directed Cycles

It is not surprising that the colouring problem for powers of directed paths are poly-
nomial since the colouring problem for directed paths is polynomial. Also P2~*-COL

is polynomial since P*? is a transitive tournament. See [1}. Conversely, C¥ is NP-
complete for £ > 1 by Theorem 5.2.4 in {25]. Perhaps what is surprising is that the
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problem of G — C¥ remains NP-complete even when a homomorphism to a higher
power of C,, is provided as part of the instance. Formally we consider the following
Restricted Homomorphism problem.

RHP(H,Y) (Restricted Homomorphism Problem)

INSTANCE: A directed graph G and a homomorphism G — Y.

QUESTION: Does there exist an H-colouring of G?
If we let Y = C! and H = C* we are asking i, given information about colouring G

with one power of {y, can we colour G with another power.

Theorem 8.2.5 The problem RHP(CE, C!) is polynomial if k=1 or k > 1. Other-
wise RHP(CE, C!} is NP-compl

Proof. If k = 1, then RHP(C%, C!) is polynomial since colouring by a directed
cycle is polynomial. If k > 1, then RHP(CE, C!) is polynomial since C. — C¥ and
G —CL

Therefore, suppose 1 < & < I < n—1. By the results in [26] we know RHP(H",Y™*)
a RHP(HY), where the indicator (J, z;,w) is constructed as follows: Let X be the
transitive tournament on k + 2 vertices. {(Note that X 4 CE, but X — CL. To see
shis, let the vertices of C, be {0,1,2,... n — 1} where ij € E(C,) if and only if
j—i=1modn. Since X is a core, X — C! if and only if X is a subgraph of C!.
The set of vertices {0,1,2,...,k+1} induces a subgraph isomorphic to X sincel > k.
There is no subgraph of C* isomorphic to X since the source in X has cutdegree k+1

gné all o trmwdsona 2w ﬁk = !*‘im E Y

#
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Let the vertices of X be labelled zg,24,. .., z441 where z;z; is an arc if and only if
t < j. Let J be the graph constructed by removing the arc zpz; from X and adding a
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Figure 8.2: The digraphs X and J

new vertex w together with the arc z5w. We now use the indicator (J, z;,w). We need
two observations. First, J — C¥ but in any such homomorphism z;, and w receive
different colours. If z; and w receive the same colour, then there is a homomorphism
from X to Ck contrary to our above discussion. To see J — C¥X, identify z; and z;.
Call this vertex z¢. This produces a transitive tournament on k 4+ 1 vertices with an
extra arc, zow, incident with the source. This digraph admits a homomorphism to
the transitive tournament on k + 1 vertices by identifying w with any out neighbour

of vertex z5. Recall that £ > 1 and therefore zq has at least one out-neighbour.

In C%, each vertex is the source of a transitive tournament on k+ 1 vertices. There-
fore, each vertex in C* can be the image of z, in the mapping of J — C*. Since w
can be mapped to any out neighbour of zg, we see that H* = H.

Identifying z; and w produces a *ransitive tournament on k + 2 vertices and this
is a subgraph of C. This means that J — C! in such a way that z, and w receive

P P, S 1wl s ™ n

the same colour. This lmpm AL Lo, has a loop. ,uF*?ﬁﬁTE, any dlﬁpﬂ trivial 3"

admits a homomorphism to C.". Hence, RHP(H".Y") is equivalent to H*-COL. In
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particular, RHP(C%, C} is NP-completefor 1 < k<l ®

8.2.4 Powers of Undirected Graphs

To complete this section we consider the H*-colouring problem for undirected graphs
H. In general H-colouring is NP-complete whenever H contains an odd cycle [19].
However, we can consider a restricted homomorphism problem as we did in the case

of directed cycles. We use the following definition and theorem from [26].

RHP(H,Y) (Restricted Homomorphism Problem)
INSTANCE: A grapk G and a homomorphism G — Y.
QUESTION: Doest there exist 2 homomorphism G -— H?

We also use the notation w(H) to denoted the size of the largest clique in H.

Theorem 8.2.6 (MacGillivray) If there is an (w(H) + 1)-critical subgraph of Y—
{a subgraph whose chromatic number is (W(H) + 1) but whose proper subgraphs all
have chromatic number smaller than {(w(H) + 1)) that is not contained in H, then
RHP(HY ) is NP-complete.

We use Theorem 8.2.6 to show that H*-colouring is NP-complete even when a
homomorphism to a larger power is provided as part of the instance, except when the

problem is clearly polynomial.

> ¥ _a¥ g

¥ EY < my P x_ = i E o LI A e
RHP(H' ,H"} is NP-complete if H # H"* and is polynomial otherwise.

Proof. We prove the latter statement first. If H' = H*, then the homomorphism,
G — HE, provided in the instance makes the answer YES.
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Claim 8.2.7.1 Let H be a connected graph and | and k, | < k, be two integers. Then
w(HY < w(H*) if and only if H* # HE.

Proof of Claim 8.2.7.1. The necessity of the condition is obvious. If H' = H*,
then w(H') = w(HF).

If H # HF, then by definition of H*, H' is a proper subgraph of H*. This
immediately gives us that H' is not a clique. Let X be a maximum clique in H'. Let
v be a vertex in X and u be a vertex not in X. Because H is connected, there must
be a path (v = po)pip2---(pt = u) in H connecting the two vertices. Let w be the

t vertex in this path not in X. The vertex w is distance one in H from some vertex
in X. Each pair of vertices in X are at most distance ! apart in H. Therefore, w is at
mest distance [ + 1 from each vertex in X. Hence, X U {w} is a clique in H*'. We

conclude

w(H') < w(H'*) < w(H*)

This establishes Claim 8.2.7.1

Since we have established that the problem is polynomial when H* = H!, we
consider the case when H' # H*. In light of Theorem 3.1 in [2] we can restrict our
attention to the case when H is a connected core when trying to show H*-colouring is
NP-complete. This allows us to use the above claim. The subgraph X U{w} described
above is an (w(H") + 1)-critical subgraph of H*. By Theorem 8.2.6, RHP(H*,H') is
NP-complete. =
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8.3 Homomorphisms to H*®

When considering powers of a directed graph we see that eventually successive powers
are equal. That is, let k£ be the greatest distance between any pair of points in H.

Then
Hk = Hk+1 =Hk+2 ..

For convenience we will call this digraph H*°. The digraph is transitively closed. Let

uv and vw be two arcs in H*>. This implies the arc uw is in H*.

Theorem 8.3.1 Let H be an acyclic digraph. Then the H* colouring problem is

polynomial.

Proof. We define a function on V(H*") that is a retraction to the largest transitive
iournament in H*. Let u be a vertex in H*. Define f(u) to be the size of the largest
transitive tournament of which u is the sink. Let uv be an arcin H™ and let X be a
transitive tournament with u as a sink. Then X U {v} is a transitive tournament with
v as a sink since H*™ is transitively closed. Hence f(u) < f{v). Also, the largest value
any vertex can be assigned is certainly less than or equal to the size of a maximum
transitive tournament in H>. H we label the vertices of some maximum transitive
tournament in H* with the values {0,1,2,...,1}, we see that f is a retraction to this
maximum transitive tournament. Hence, the core of H* is a transitive tournament.

The H-colouring problem: for transitive tournaments is polynomial, [1]. =

‘&@e ret‘im}e %he fsllmns Mn‘gieﬁ in g]-u; pext ek T et H hao a dignﬁh‘ The

graph undir{H } is the graph with vertex-set V(H) and edge set uv € E(undir(H)) if

i

and only if both uv and vu are arcs in H. In is straightforward to check that if H is
a digraph such that undir(H)}-COL is NP-complete, then H-COL is NP-complete.
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Theorem 8.3.2 Let H be a digraph containing a sitrong component of size at least

three. Then the H™ colouring problem is NP-complete.

Proof. Let C be a strong component in H of length at least three. Let u and v be
a pair of vertices in C'. Both uv and vu are arcs in H. So if we look at undirf{H>),

C is a clique of size at least three. Therefore, the problem is NP complete. »

Corollary 8.3.3 Let H be o digraph containing a directed cycle of size ai least three.

Then the H* colouring problem is NP-complete.

Theorem 8.3.4 Let H be a digraph conlaining two directed two-cycles Cy and C;
such that there is a directed path from a verter in C; lo a vertex in Cj. Then H>-
COL is NP-compleie.

Proof. We can order the strong components of H* so that given two strong
components Ty and T3 all the arcs between T} and T; are oriented towards T; if and
only if T is less that T; in this ordering. Choose C, (respectively C;) to be the first

{respectively second} two-cycle in this ordering. Let w be one of the vertices of (5.

Define S 1o be the digraph on vertices {0,1,2} such that {0,1} is a two-cycle and
{1,2) is an-arc. Let k; be 2. Let %, be a two vertex in C,. Let j be the vertex 0
in §. Then subindicator construction with respect to {5, h;1,j) on H> produces the
digraph consisting of C;, C; and all arcs from C, to C;. This homomorphism problem
is NP-complete by Theorem 3.6 from [2]. =

It remains to consider those graphs in the class where no pair of two-cycles is
joined by a directed path. We can construct infinitely many NP-complete examples
of digraphs in this class. Let G; and G be obtained from a transitive tournament on
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five vertices by adding the arcs (3,2} and (4, 3), respectively. Construct 7 from G,
and G, by identifying them at vertex 5 (the sink of eachj. Then I is a core. Let u
be vertex 1 of Gy in I, and v be vertex 1 of G; in I. Let G be a digraph for which
G-col is NP-complete. Let *G be the result of substituting {7, u,v) for each edge of
G. Then *G*™ =" G. The result of applying the indicator construction with respect
to (f,u,v)to *G i3 G, and G-col is NP-complete by hypothesis. Thus some digraphs

in this class are NP-complete, and some are polynomial.
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