NOTICE

The quality of this microform is heavily dependent upon the quality of the original thesis submitted for microfilming. Every effort has been made to ensure the highest quality of reproduction possible.

If pages are missing, contact the university which granted the degree.

Some pages may have indistinct print especially if the original pages were typed with a poor typewriter ribbon or if the university sent us an inferior photocopy.

AVIS

La qualité de cette microforme dépend grandement de la qualité de la thèse soumise au microillmage. Nous avons tout fait pour assurer une qualité supérieure de reproduction.

S'il manque des pages, veuillez communiquer avec l'université qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser à désirer, surtout si les pages originales ont été dactylographiées à l'aide d'un ruban usé ou si l'université nous a fait parvenir une photocopie de qualité inférieure.

La reproduction, même partielle, de cette microforme est soumise à la Loi canadienne sur le droit d'auteur, SRC 1970, c. C-30, et ses amendements subséquents.

VERTEX COLOURINGS OF EDGE-COLOURED GRAPHS

by
Richard Brewster
B.Sc. University of Victoria 1987
M.Sc. University of Victoria 1988
A thesis submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
in the Department
of
Mathematics and Statistics
© Richard Brewster 1993
SIMON FRASER UNIVERSITY

April 1993

All rights reserved. This work may not be reproduced in whole or in part, by photocopy or other means, without the permission of the author.

The author has granted an irrevocable non-exclusive licence allowing the National Library of Canada to reproduce, loan, distribute or sell copies of his/her thesis by any means and in any form or format, making this thesis available to interested persons.

L'auteur a accordé une licence irrévocable et non exclusive permettant à la Bibliothèque nationale du Canada de reproduire, prêter, distribuer ou vendre des copies de sa thèse de quelque manière et sous quelque forme que ce soit pour mettre des exemplaires de cette thèse à la disposition des personnes intéressées.

The author retains ownership of the copyright in his/her thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without his/her permission.

L'auteur conserve la propriété du droit d'auteur qui protège sa thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

APPROVAL

Name:	Richard Brewster
Degree:	Doctor of Philosophy
Title of thesis:	Vertex Colourings of Edge-Coloured Graphs
Examining Committee: Dr. S. K. Thomason	
	Chair

Dr. P. Hell
Professor of Mathematics and Statistics
Senior Supervisor

Dr. B. Alspach
Professor of Mathematics and Statistics

Dr. K. Heinrich
Professor of Mathematics and Statistics

Dr. X. Zhu
Interal External Examiner
Visiting Professor of Computing Science

Dr. G. Sabidussi
Professor of Mathematics
Univeristy of Montreal
External Examiner
Date Approved:
Apri1 16. 1993

PARTIAL COPYRIGUT lICENSE

I hereby grant to Simon Fraser University the right to lend my thesis, project or extended essay (the title of which is shown below) to users of the Simon Fraser University Library, and to make partial or single copies only for such users or in response to a request from the library of any other university, or other educational institution, on its own behalf or for one of its users. 1 further agree that perinission for multiple copying of this work for scholarly purposes may bo granted by me or the Dan of Graduate Studies. It is understood that copying or publication of this work for financial gain shall not be allowed without my written permission.

Title of Thesis/Project/Extended Essay
Venter Colowings of Edge-Coloued Graphs
\qquad
\qquad

Author:
(signature)
Richard Brewster
(name)

Abstract

The point of departure of this thesis is the following classical vertex-colouring problem: Let n be a fixed integer. Given a graph G, does G admit an n-colouring (a mapping $f: V(G) \rightarrow\{1,2, \ldots, n\}$ such that $f(g) \neq f\left(g^{\prime}\right)$ whenever $g g^{\prime}$ is an edge of $\left.G\right)$? A generalization of this problem which has attracted much attention recently is as follows: Let H be a graph. An H-colouring of a graph G, or a homomorphism of G to H, is a mapping $f: V(G) \rightarrow V(H)$ such that $u v \in E(G)$ implies $f(u) f(v) \in E(H)$. The H-colouring problem is: Given an input edge-coloured graph G, does there exist an H-colouring of G ?

In this thesis we investigate the corresponding problem for a generalization of graphs: an edge-coloured graph is a relational sysiem, $G=\left(V(G), E_{1}(G), E_{2}(G)\right.$, $\ldots, E_{k}(G)$), where $V(G)$ is a set of vertices and each $E_{i}(G)$ is a symmetric binary relation on $V(G)$. The elements of $E_{i}(G)$ are referred to as the edges of colour i.

We present some new constructions for studying the complexity of \boldsymbol{H}-colouring for edge-coloured graphs. For the majority of the thesis we use these tools to classify the complexity of \boldsymbol{H}-colouring where H is a member of some particular family of edge-coloured graphs.

In the spirit of the previous work on \boldsymbol{H}-colourings these complexity classifications typically depend on the existence (or lack of existence) of some structure in H. We
present evidence suggesting that for edge-coloured graphs a structural characterization that completely classifies which H-colouring problems are NP-complete and which are polynomial is unlikely. This is similar to the case of directed graphs. Indeed, we establish a polynomial equivalence between the complexity of H-colouring for biparite two-edge-coloured graphs and bipartite digraphs. We show that the problem is polynomial for paths and that there exists trees, on as few as 12 vertices, for which the problem is NP-complete. We study the problem for cycles and present an infinite family of NP-complete cycles with two edge colours; moreover, any cycle smailer than the minimal element of the family is polynomial. We study the problem for cliques and completely classify the complexity for all cliques on three or fewer vertices with two edge colours and for all digon-free cliques on four vertices with two edge colours. We show that a clique with k edge colours is NP-complete if it has more than 2^{k} vertices and that there exists cliques with k edge colours and at most 2^{k} vertices which are polynomial.

We also establish an equivalence between H-colouring for edge-coloured graphs and a new homomorphism problem - the Sabidussi Homomorphism Problem and thereby we are able to classify the complexity for a large family of these problems.

Acknowledgements

The anthor wishes to thank Pavol Hell for all his support during the writing of this thesis: academic and finacial. The author is also indebted to Gary MacGillivary for his many helpful suggestions and the "Regina Workshops". The construction used in Chapter Four was suggested by Joergen Bang-Jensen during the author's visit to Odense Univeristy. The author wishes to thank Dr. Bang-Jensen for the finacial support during the visit and for the helpful suggestions.

Thanks is also owed to the many others. Especially my parents, my fellow graduate students (including Susan "time for coffee" Marshall), the SFU Tri-Club, the Math Department at Capilano College, and Julia.

Contents

Abstract iii
Acknowledgements v
1 Introduction 1
1.1 Definitions and Preliminaries 7
1.1.1 Basic Definitions 7
1.1.2 Homomorphisms 11
1.1.3 Congruences 12
1.1.4 Some Basic Results on Homomorphisms 14
1.1.5 Complexity Theory 15
1.2 Previous Work 17
2 H -Colouring Tools 21
2.1 Indicator Constructions 21
2.1.1 The Indicator Construction 21
2.1.2 The Sub-indicator Construction 25
2.2 The Forcing Lemma 26
2.3 Reduction to 2-Satisfiability 30
2.4 Divide and Conquer 37
2.4.1 The Join Lemma 37
2.4.2 The Dominating Loop Lemma 39
3 The Homomorphism Factoring Problem 42
3.1 General Results 42
3.2 Undirected graphs 50
3.3 HFP as Edge-Coloured H-colouring 55
3.4 The Two Homomorphism Problem 56
3.5 The Bipartite Decomposition Lemma 58
4 Bipartite Two-Edge-Coloured Graphs 61
4.1 Equivalence to Directed Graphs 61
4.2 Consequences 66
5 Path and Tree Colourings 68
5.1 Path Colourings 68
5.2 The Path Colouring Algorithm 71
5.3 NP-complete trees 76
5.4 Characterizing Homomorphisms to Paths 82
6 Cycles 89
6.1 The Mixed Vertex Homomorphism Problem 91
6.2 All Pieces Have The Same Parity 95
6.3 One Even Piece 96
6.4 Even Blue and Odd Red Pieces 100
6.5 Two or Four Pieces. 101
7 Cliques 111
7.1 Two-cliques 112
7.2 Loop-Free Three-Cliques. 113
7.3 Two-Edge-Coloured Three-Cliques 118
7.3.1 The Complexity of T_{1}^{+}-Colouring 120
7.3.2 The Complexity of $T_{4}{ }^{*}$-Colouring 121
7.3.3 The Complexity of T_{2}^{+}-Colouring 121
7.3.4 The Complexity of T_{3}^{+}-Colouring 123
7.3.5 The Complexity of T_{5}^{+}-Colouring 124
7.3.6 The Complexity of T_{6}^{+}-Colouring 127
7.4 Two-Edge-Coloured Four-Cliques 129
7.4.1 The classification of B_{1}^{+}-colouring 131
7.4.2 The classification of B_{2}^{+}-colouring 131
7.4.3 The classification of B_{3}^{+}-colouring 133
7.4.4 The classification of B_{4}^{+}-colouring 133
7.4.5 The complexity of B_{5}^{+}-colouring 135
7.4.6 The complexity of B_{6}^{+}-colouring 136
7.5 Infinite families of polynomial problems 137
8 Back to One Edge-Colour 140
8.1 Homomorphically Full Graphs 140
8.2 The H^{k}-Colouring Problem 148
8.2.1 Powers of Oriented Paths 148
8.2.2 Powers of Directed Paths 150
8.2.3 Powers of Directed Cycles 154
8.2.4 Powers of Undirected Graphs 157
8.3 Homomorphisms to H^{∞} 159
Bibliography 162

List of Figures

2.1 An example of the indicator construction 23
2.2 A hard H^{*}-COL problem with loops 24
2.3 An example of the subindicator construction 26
2.4 Example of 2 SAT reduction 32
2.5 Clauses for 2SAT reduction 36
2.6 Example of H with a dominating loop. 40
3.1 An example of HFP indicator construction 45
3.2 The construction of ${ }^{\#} G$ from G. 46
5.1 A product of two connected, edge-coloured graphs with five components. 70
5.2 A component of $G \times H$ with crossing edges 71
5.3 The NP-complete generalized star H 77
5.4 The tree S. 78
5.5 The NP-compiete two-edge-colour tree H. 80
5.6 Clauses for the Two-edge-coloured Tree 31
5.7 Super Edges 82
6.1 An edge-coloured cycle with four pieces. 90
6.2 The construction of C^{\prime} from C. 93
7.1 An alternating sequence of K_{3} 's 114
7.2 Possible configuration for each edge-colour-class. 115
7.3 The edge-coloured graph H_{5} 116
7.4 The edge-coloured graphs H_{6}^{*} and $H_{6}^{* *}$. 117
7.5 All six loop-free, two-edge-coloured cliques on three vertices. 119
7.6 All digon-free two-edge-coloured four-cliques. 130
8.1 An oriented cycle that admits a homomorphism to P_{3}^{2} 150
8.2 The digraphs X and J 156

Chapter 1

Introduction

Graph colourings arise from a variety of applications including scheduling, combinatorial games, frequency assignments and others, [17], [23]. These applications have given rise to many generalizations of classical graph colourings. However, even the simplest graph colouring problems turn out to be very difficult to solve. Indeed, to test whether a given graph has a proper three-colouring is one of the basic NP-complete problems.

Suppose G and H are graphs. A homomorphism from G to $H, f: G \rightarrow H$, is a mapping $f: V(G) \rightarrow V(H)$ such that if $u v$ is an edge of G, then $f(u) f(v)$ is an edge of H. If G admits a homomorphism to H we say G is homomorphic to H and write $G \rightarrow H$. If G does not admit a bomomorphism to H we write $G \nrightarrow H$. We say that H is the "target". An H-colouring of G is simply a homomorphism of G to H. In particular, a graph G admits a homomorphism to K_{π} if aud only if G has a proper n colouring. The study of graph homomorphisms has proven extremely powerful in the study of these generalized graph colourings. In fact, given that a homomorphism is a
very natural mathematical object, some might argue that H-colouring is the correct way to examine these colouring problems.

The work in this thesis grew out of an attempt to translate colouring problems into homomorphism problems. In order to achieve this translation, a generalization of classical graphs had to be considered. The generalization is that of edge-coloured graphs. An edge-coloured graph is a relational system, $G=\left(V(G), E_{1}(G), E_{2}(G), \ldots, E_{k}(G)\right)$, where $V(G)$ is a set of vertices and each $E_{i}(G)$ is a symmetric binary relation on $V(G)$; the elements of E_{i} are called the edges of colour i. The number of edge sets, k, is called the multiplicity of G. Given two edge-coloured graphs G and H both of multiplicity k, a homomorphism, f, from G to H is a mapping $f: V(G) \rightarrow V(H)$ such that if $u v \in E_{i}(G)$, then $f(u) f(v) \in E_{i}(H)$ for each $i=1, \ldots, k$.

For example, consider the following problem ("colouring with a condition at distance two ") investigated by Griggs and Yeh [13]. Given a graph G, is there a function $f: V(G) \rightarrow\{1,2, \ldots, n\}$ such that for all edges $u v,|f(u)-f(v)| \geq 2$ and for all pairs of vertices, $\{u, v\}$, at distance $2,|f(u)-f(v)| \geq 1$. We can express this as a homomorphism problem. Given G above, define G^{\prime} as:

- $V\left(G^{\prime}\right)=V(G)$,
- $E_{1}\left(G^{\prime}\right)=E(G)$, and
- $E_{2}\left(G^{\prime}\right)=\{u v \mid u, v \in V(G)$ and u and v are distance two apart in $G\}$.

Define an edge-coloured graph H as:

- $V(H)=\{1,2, \ldots, n\}$,
- $E_{1}(H)=\{u v|u, v \in V(H) ;|u-v| \geq 2\}$,

$$
\text { - } E_{2}(H)=\{u v|u, v \in V(H) ;|u-v| \geq 1\} .
$$

It is easy to see that a function f of the form above is just a homomorphism $G^{\prime} \rightarrow H$.

The majority of this thesis concerns the following problem. Let H be an edgecoloured graph. The H-colouring problem is the following:

H-COL

INSTANCE: An edge-coloured graph G.
QUESTION: Does there exist an H-colouring of G ?

For the case of classical graphs, i.e., edge coloured-graphs of multiplicity one, the complexity of H-COL has been completely determined by Hell and Nesetril [19]. They proved that H-COL is NP-complete if H contains an odd cycle and is polynomial otherwise.

Many authors have studied the above problem when H is a directed graph, but as yet no complete classification of \boldsymbol{H}-COL exists nor has a conjecture about such a classification been presented. However, Bang-Jensen and Hell have a conjecture concerning a partial classification. In order to describe the conjecture we need the following definition. Suppose H is a digraph. A homomorphism r from H to a subgraph H^{\prime} of H is a retraction if r is the identity map on H^{\prime}. Bang-Jensen and Hell [2] have conjectured the following.

Conjecture Suppose H is a digraph in which each vertex has in-degree at least one, and out-degree at least one. If \boldsymbol{H} does not admit a retraction to a directed cycle, then \boldsymbol{H}-COL is NP-complete. Otherwise \boldsymbol{H}-COL is polynomial.

This conjecture has been verified for many classes of digraphs in work by BangJensen, Hell, and MacGillivray, [1], [2], [3], [24], [25].

In this thesis we attempt to identify those edge-coloured graphs H for which H-COL is NP-complete, and those for which the problem is polynomial. In the spirit of the previous work on H-colourings these complexity classifications typically depend on the existence (or non-existence) of some structure in H. However, we present evidence suggesting that for edge-coloared graphs a structural characterization that completely classifies which H-colouring problems are NP-complete and which are polynomial is unlikely. This situation is similar to the case for directed graphs. Indeed, we establish a polynomial equivalence between the complexity of H-COL for bipartite edge-coloured graphs of multiplicity two, and bipartite digraphs.

In Chapter Two we present tools for studying H-COL. Some of these results are generalizations of the tools used for graphs and digraphs. This is the case, in particular, for the indicator construction and the subindicator construction. Other tools are new and their usefulness is truly only realized in the case of edge-coloured graphs; this is the case of the dominating loop lemma.

In Chapter Three we describe a problem similar to H-colouring based on a question asked by Sabidussi and Tardiff. Let H and Y be edge-coloured graphs and $h: H \rightarrow Y$ a homomorphism. The Homomorphism Factoring Problem is the following: $\boldsymbol{H F P}(\boldsymbol{H}, \boldsymbol{h}, \boldsymbol{Y})$

INSTANCE: An edge-coloured graph G and a homomorphism $g: G \rightarrow Y$.
QUESTION: Does there exist a homomorphism $f: G \rightarrow H$ such that $h \circ f=g$?

We show that when Y is a subgraph of H, and h is the composition of a retraction of H to Y followed by an automorphism of Y, the problem $H F P(H, h, Y)$ is polynomial. We also show that for all graphs Y, with the exception of a four graphs Y, there exists a graph H and a homomorphism $h: H \rightarrow Y$ such that $H F P(H, h, Y)$ is NP-complete. We also show that $H F P(H, h, Y)$ for graphs is equivalent to H-COL for edge-coloured directed graphs.

In Chapter Four we demonstrate an equivalence between H-COL for bipartite edgecoloured graphs of multiplicity two and H-COL for bipartite digraphs. Namely, let H be a bipartite edge-coloured graph of multiplicity two. Then there exists a bipartite digraph, D, such that H-COL and D-COL are polynomially equivalent. We have a similar construction that begins with a bipartite digraph D. Namely, we can construct an edge-coloured graph H such that H-COL and D-COL are polynomially equivalent. We use these constructions to both obtain new results for edge-coloured graphs (using digraphs) and conversely to obtain new results for digraphs (using edge-coloured graphs).

In Chapter Five we show that H-COL is polynomial when H is an edge-coloured path. We also present edge-coloured trees for which H-COL is NP-complete. We present an "obstruction" type theorem for edge-coloured paths. Namely, if G is an edge-coloured graph and H is an edge-coloured path, then $G \nrightarrow H$ if and only if there exists a path P such that $P \rightarrow G$ and $P \nrightarrow H$.

In Chapter Six we study \boldsymbol{H}-COL for cycles. A piece of an edge-coloured cycle is a maximal monochromatic path. (Note for edge-coloured cycles with two edge-colours, the number of pieces is always even.) We show that in this case the problem is
polynomial if the cycle has two or four pieces. Let $n \geq 6$. If $n \equiv 0(\bmod 4)$, then there exists a cycle with two edge-colours and n pieces for which H-COL is polynomial. If $n \equiv 2(\bmod 4)$, then there exists a cycle with two edge-colours and n pieces for which H-COL is NP-complete. For cycles with two edge-colours, we show that the problem is polynomial if all the pieces have the same parity. For the general case of k edge-colours if all the pieces have odd length or if exactly one of the pieces has even length, we show the problem is polynomial. However, even for two edge-colours, the classification of the complexity of edge-coloured cycles remains an interesting open problem.

In Chapter Seven we study edge-coloured cliques, possibly including loops. In particular, we classify the complexity of H-colouring by an edge-coloured clique for all cliques with fewer than three vertices. We also classify the complexity of H-COL for cliques on three vertices with multiplicity two and all digon-free cliques on four vertices with multiplicity two. We present two infinite families of cliques for which the problem is polynomial. In fact, we show that for a clique H of multiplicity k, H-COL is NP-complete if H has more than 2^{k} vertices, and that for each $n \leq 2^{k}$, there exists a clique H with n vertices such that H-COL is polynomial.

Finally, in Chapter Eight we return to the case oin graphs and digraphs. We study two problems. The first is to classify those graphs that contain, as subgraphs, all of their homomorphic images. We present a classification of such graphs. The second problem involves digraphs. Given a digraph H and a digraph G, what is the smallest power, k, of H such that G admits a homomorphism to H^{k} ? We study the complexity of this problem and show it is polynomial if H is an oriented path but is NP-complete even for directed cycles.

1.1 Definitions and Preliminaries

We assume the reader is familiar with the basic notions and definitions of graph theory. We state below all definitions unique to this thesis as well as the common definitions and notations used. When not mentioned below, we use the notation and definitions of [5].

1.1.1 Basic Definitions

An edge-coloured graph is a relational system, $G=\left(V(G), E_{1}(G), E_{2}(G), \ldots, E_{k}(G)\right)$, where $V(G)$ is the set of vertices and $E_{1}(G), E_{2}(G), \ldots, E_{k}(G)$ are svmmetric binary relations on $V(G)$; the elements of E_{i} are called the edges of colour . The number of edge sets k is called the multiplicity of G. An edge-coloured directed graph (or edgecoloured digraph) is just a relational system on a set of vertices $V(G)$ where each E_{i} is a binary relation (which is not required to be symmetric). In this thesis we will restrict our attention to edge-coloured graphs. However, some results naturally generalize to the more general case of edge-coloured digraphs. These results are stated with the explicit use of the phrase edge-coloured digraph. Also, we reserve the use of the words graph and digraph to the case of multiplicity one; that is, to their classical usage. If we wish to explicitly state the number of edge colours in an edge-coloured graph we use the term k-edge-coloured graph. In particular, the term two edge-coloured graph refers to an edge-coloured graph with $k=2$. In the following assume G and H are edge coloured graphs. Also suppose that red and blue are edge colours.

To maintain our analogy to undirected graphs, we shall identify pairs of opposite edges, i.e., for any edge colour i and pair $u v \in E_{i}(G)$ with $u \neq v$, we identify $u v$ and vu. Thus we consider uw as one undirected edge. Since this is equivalent to viewing
$u v$ as a two element subset, we sometimes write $\{u, v\}$ for $u v$.

Suppose $u v$ is a member of $E_{i}(G)$. We say $u v$ is an edge of colour i. We also say u is adjacent to v in i or u is joined to v in i. The edge $u v$ is said to be incident with u and v and each of u and v is said to be incident with the edge $u v$. The vertex u is said to be a neighbour of colour i of v or simply an i neighbour of v. We let $N_{i}(v)$ denote the set of i neighbours of v. The vertices u and v are called the ends of the edge uv.

A vertex incident with only blue edges is called a blue only vertex. A vertex incident with edges of at least two different colours is called a mixed vertex.

The underlying graph of G is the graph on vertex-set $V(G)$ and edge-set $E(G)$ defined by: $u v \in E(G)$ if and only if $u v \in E_{i}(G)$ for some i. In other words, $E(G)=$ $E_{1}(G) \cup \cdots \cup E_{k}(G)$. The use of $E(G)$ is common throughout the thesis, and we do not usually explicitly remind the reader that $E(G)=E_{1}(G) \cup \cdots \cup E_{k}(G)$.

We say u is a neighbour of v in G if u is a neighbour of v in the underlying graph of G. We denote the neighbours of v by $N(v)$. A similar remark applies to terms like "adjacent" and "joined to".

If u and v are both blue neighbours and red neighbours, we say $u v$ is a digon. We will use the term red-blue-digon if we wish to explicitly state the edge colours.

Suppose uu is an edge of G. We call such an edge a loop. In the study of H COL for graphs and digraphs, the existence of loops makes the problem trivial. If H contains a loop at v_{z}, then any graph G admits a homomorphism to H simply
by mapping all the vertices of G to v. On the other hand, if G contains a loop and admits a homomorphism to H, then H must contain a loop. For the case of edge-coloured graphs, the existence of loops no longer necessarily makes the problem trivial. Therefore, in general we allow loops, although for simplicity we often restrict our attention to the loop-free case. In any section where we allow loops, we state this explicitly at the beginning of the section. Having said that, we observe that a vertex with a loop of every edge colour again makes the problem trivial for the same reason as above. To avoid trivialities, we never allow the existence of a vertex with a loop of every edge colour.

A path of length n in G, denoted P_{n}, is a sequence of distinct vertices $v_{0} v_{1} v_{2} \ldots, v_{n}$ such that for each $i, 1 \leq i \leq n-1, v_{i} v_{i+1} \in E(G)$. In other words, a path in G is a path in the underlying graph of G. A path is called a blue path or a path of colour blue if each edge in the path is a blue edge. A walk of length n is a sequence of vertices $w_{0} w_{1} w_{2} \ldots, w_{n}$ such that for each $i, 1 \leq i \leq n-1, w_{i} w_{i+1} \in E(G)$.

Given vertices u and v in G, the distance between u and v, denoted $d(u, v)$, is the length of a shortest path from u to v. The distance in colour i, denoted $d_{i}(u, v)$, is the length of a shortest path of colour i from u to v. If there is no path (respectively no path of colour i) from u to v, then $d(u, v)=\infty$ (respectively $d_{i}(u, v)=\infty$).

A cycle of length n, C_{n}, is a sequence of distinct vertices $v_{0} v_{1} v_{2} \ldots, v_{n-1}$ such that for each $i, 1 \leq i \leq n-1, v_{i} v_{i+1} \in E(G)$ and $v_{n-1} v_{0} \in E(G)$.

A subgraph G^{\prime} of G, denoted $G^{\prime} \subseteq G$, is an edge-coloured graph where $V\left(G^{\prime}\right) \subseteq$ $V(G)$ and $E_{i}\left(G^{\prime}\right) \subseteq E_{i}(G)$ for each edge-colour i. A subgraph G^{\prime} of G is an induced
subgraph if for each pair of vertices u and v in $V\left(G^{\prime}\right)$ we have $u v \in E_{i}\left(G^{\prime}\right)$ if and only if $u v \in E_{i}(G)$. We say G^{*} is induced by the set of vertices $V\left(G^{\prime}\right)$. The spanning blue subgraph of G is the graph (multiplicity one) (V(G), Ebee (G)).

We say G is connected if for each pair of vertices u and v in G, there exists a path from u to v. We say G is connected in blue if the spanning blue subgraph of G is connected. A componeni of G is a maximal connected subgraph of G. A blue component of G is a maximal connected subgraph in the blue spanning subgraph of G.

A clique is an edge-coloured graph H such that for each pair of distinct vertices u and v in $H, u v \in E(H)$. We say H is a blue clique if the blue spanning subgraph of H is a clique. Note that a blue clique may have some extra edges of other colours. A clique with n vertices is called an n-clique. In particular a two-clique has two vertices. Note we reserve the use of the symbol K_{m} for a clique with muitiplicity one.

A set of vertices S in G is an independent set if for each u and v in S, u and v are non-adjacent in the underlying graph of G. (Hence, a single vertex with a loop is not an independent set.) We say G is bipartite if the vertices of G can be partitioned into two independent sets G_{0} and G_{1}. We denote this partition by (G_{0}, G_{1}). We say G is a complete bipartite edge coloured graph if G is bipartite, with bipartition (G_{0}, G_{1}), and for each $u \in G_{0}$ and $v \in G_{1}, u v \in E(G)$.

Let G and H be two disjoint edge-coloured graphs with the same multiplicity. The union of G and H, denoted $G \cup H$, is the edge-coloured graph (also of multiplicity k) with vertex-set $V(G \cup H)=V(G) \cup V(H)$ and edge-sets $E_{i}(G \cup H)=E_{i}(G) \cup E_{i}(H)$
for $0 \leq i \leq k$.

Let S be a set of edge-colours. Let G be an edge-coloured graph with edge-colours $X \subseteq S$. Let H be an edge-coloured graph with edge-colours $Y \subseteq S$. Thus, G has multiplicity $|X|$ and H has multiplicity $\lceil Y \mid$. Let $Z \subseteq S$. The join of G and H with respect to Z is the edge-coloured graph of multiplicity $|X \cup Y \cup Z|$ obtained by taking a copy of G and a copy of H and adding the edge $u v$ to $E_{i}(G \cup H)$ for each $u \in V(G)$, each $v \in V(H)$, and each $i \in Z$.

As mentioned above, the primary focus of this thesis is edge-coloured graphs, but there are times when we will use the term edge-coloured digraph. The edge $u v$ in a digraph is also called an arc. We refer to u as an in-neighbour of v and v as an out-neighbour of u. An oriented graph is a digraph with no pair of vertices u and v such that both $u v$ and ou are arcs. A directed path $v_{0} v_{1} \ldots, v_{n}$ is a path where each $v_{i} v_{i+1}, 0 \leq i \leq n-1$, is an arc. An oriented path $v_{0} v_{1} \ldots, v_{n}$ is a path in which for all $0 \leq i \leq n-1$ either $v_{i} v_{i+1}$ or $v_{i+1} v_{i}$. Given a digraph H, the $k^{t h}$ power of H, denoted H^{k}, is the digraph with vertex-set $V(H)$ and edge-set $u v \in E\left(H^{k}\right)$ if and only if there is a directed path from u to v in H of length at most k.

1.1.2 Homomorphisms

We have already defined a homomorphism above. An isomorphism, f, from G to H is a homomorphism from G to H such that f is one-to-one, onto, and $u v \in E_{i}(G)$每 and only if $f(u) f(v) \in E_{i}(H)$ for every edge-colour i. An atomorphism of G is an isomorphism of G to itself.

Let H be a subgraph of G. A retraction, $r: G \rightarrow H$, is a homomorphism that is the identity map on H. We say that H is a retract of G. We say that G is a core if there is no homomorphism from G to a proper subgraph of G. Let G be a finite edge-coloured graph. It is easy to prove that G contains a subgraph H that is a core and that there is a retraction $r: G \rightarrow H$. Moreover, H is unique up to isomorphism. We call H the core of G. This is proved for graphs in [19].

Suppose H^{\prime} is the core of H and $r: H \rightarrow H^{\prime}$ is a homomorphism of H to H^{\prime}. We have the inclusion mapping $i: H^{\prime} \rightarrow H$ which is a homomorphism. Hence, $G \rightarrow H$ if and only if $G \rightarrow H^{\prime}$. Thus when studying H-colouring we can restrict our attention to the case when H is a core.

A final definition we require, the product of G and H, denoted $G \times H$, is the edgecoloured graph with vertex-set $V(G) \times V(H)$ where $\left(g_{1}, h_{1}\right)\left(g_{2}, h_{2}\right) \in E_{i}(G \times H)$ if and only if $g_{1} g_{2} \in E_{i}(G)$ and $h_{1} h_{2} \in E_{i}(H)$. Note that $G \times H \rightarrow G$ and $G \times H \rightarrow H$ via the projections ϕ_{G} and ϕ_{H}, where $\phi_{G}(g, h)=g$ and $\phi_{H}(g, h)=h$.

1.1.3 Congruences

Consider the path of length three, P_{3}. The graph that results when the end points of the path are identified is K_{3}. In fact, the identification is, in some sense, a homomorphism from P_{3} to K_{3}. Many times we will want to talk about homomorphisms that result from certain identifications of vertices. There is a problem in that the target of this action is not defined until the identification is performed. However, a homomorphism can not be defined without stating the target. Therefore, we introduce a subject closely related to homomorphisms that will allow us to more rigorously define
such identifications. Furthermore, the definition of this identification will define the target and implicitly define a homomorphism.

Let H be an edge-coloured graph. We define a congruence C on H as a partition of the vertices into sets $S_{0}, S_{1}, \ldots, S_{m}$. The quotient of C, say K, is the edge-coloured graph on vertices $\{0,1, \ldots, m\}$ with edge sets $E_{t}=\{i j \mid$ there is an edge of colour t from some vertex in S_{i} to some vertex in $\left.S_{j}\right\}$. Observe that the quotient is the edge-coloured graph obtained by contracting each S_{i} to a single vertex. Also observe that there is a natural homomorphism $h: H \rightarrow K$ defined by:

$$
h(v)=i \text { if and only if } v \in S_{i}
$$

In fact, we say the congruence C induces the homomorphism h. Conversely, suppose that $f: G \rightarrow H$ is a homomorphism such that f is onto the vertices of H and such that for all t and all $x y \in E_{t}(H)$ there exists u and v in G so that $f(u)=x$ and $f(v)=y$. Then we can define a congruence on G such that H is the quotient of the congruence. Namely, if we label the vertices of H with $0,1, \ldots, m$, then:

$$
S_{i}=f^{-1}(i) \text { for } 0 \leq i \leq m_{n}
$$

is a congruence on G with quotient equal to H. We say H is a homomorphic image of G. We also denote H as $f(G)$.

We now return to the example above. Given the path P_{3}, we wish to identify the end-vertices of the path. Define the congruence C with the following three classes S_{0}, S_{1}, S_{2}. Let S_{0} contain the two end points of the path. Let S_{1} and S_{2} each contain an interior vertex of P_{3}. The quotient of the congruence is K_{3}. The homomorphism induced by the congruence is exactly the one we wished to define.

1.1.4 Some Basic Results on Homomorphisms

Lemma 1.1.1 Let G be a connected edge-coloured graph and $f: G \rightarrow H$ a homomorphism of G to some edge-coloured graph H. Then $f(G)$ is connected.

Proof. Let x and y be two vertices in $f(G)$. By definition of $f(G)$, there exists u and v in G such that $f(u)=x$ and $f(v)=y$. Since G is connected, there exists a path $\left(u=p_{0}\right) p_{1} \ldots\left(p_{n}=v\right)$ such that $p_{i} p_{i+1} \in E(G)$ for $i=0,1, \ldots, n-1$. This implies $f\left(p_{i}\right) f\left(p_{i+1}\right) \in E(H)$ for $0 \leq i \leq n-1$, since f is a homomorphism. Hence $\left(x=f(u)=f\left(p_{0}\right)\right) f\left(p_{1}\right) \ldots\left(f\left(p_{n}\right)=f(v)=y\right)$ is a walk in H containing a path from x to y.

Lemma 1.1.2 Let G and H be edge-coloured graphs. Then $G \rightarrow G \times H$ if and only if $G \rightarrow H$.

Proof. If $G \rightarrow G \times H$, then from $G \times H \rightarrow H$ we have $G \rightarrow H$ by composition. On the other hand, suppose there exists a homomorphism $f: G \rightarrow H$. Let $\phi: G \rightarrow G \times H$ be the mapping defined by $\phi(g)=(g, f(g))$ for all $g \in V(G)$. Now if $g_{1} g_{2} \in E_{i}(G)$, then $\left(g_{1}, f\left(g_{1}\right)\right)\left(g_{2}, f\left(g_{2}\right)\right) \in E_{i}(G \times H)$; thus, ϕ is indeed a homomorphism of G to $G \times H=$

By examining the mapping ϕ, we obtain the following corollary.

Corollary 1.1.3 Suppose G and H are edge-coloured graphs. If $G \rightarrow H$, then there exists a one to one homomorphism $\phi: G \rightarrow G \times H$ of the form $\phi(g)=(g, f(g))$ for $a l l g(G)$.

Proof. Using ϕ from the proof above, if $\phi\left(g_{1}\right)=\phi\left(g_{2}\right)$, then $\left(g_{1}, f\left(g_{1}\right)\right)=$ $\left(g_{2}, f\left(g_{2}\right)\right)$. This implies $g_{1}=g_{2}$.

Usings lemmas 1.1.1 and 1.1.2 we deduce the following.

Corollary 1.1.4 Suppose G and H are edge-coloured graphs. If G is connected, then $G \rightarrow H$ if and only if there is a one to one homomorphism from G to some connected component of $G \times H$ of the form $\phi(g)=(g, f(g))$ for all $g \in V(G)$.

1.1.5 Complexity Theory

The following brief summary highlights the important details of complexity theory we require in this thesis. See [12] for a detailed treatment of the subject.

In the study of computational complexity attention is often restricted to decision problems. We use the terminology and the notation of [12] and briefly outline the main ideas below. A decision problem is a problem with only two possible solutions - YES and NO. A decision problem II consists of a set D_{π} of instances and a subset $Y_{\mathrm{K}} \subseteq D_{\mathrm{n}}$ of YES-instances. We describe a decision problem by a description of a generic-instance, D, for example, the edge-coloured graph G in H-COL, and a question whose answer is YES if and only if $D \in Y_{\mathrm{I}}$. An algorithm solves a decision problem by computing whether or not a given instance is a YES-instance.

The complexity of an algorithm is a function, $f(n)$, from the size of the instance to the number of computational steps required to solve the problem. Here n is some reasmable measure of the size of the instance. See [12] for more detail. If there is a polynomial $p(n)$ such that a given algorithm has complexity $O(p(n))$, then we say the algorithm is a polynomial time algorithm. We denote, by \mathbf{P}, the set of decision problems that are solvable in polynomial time.

Let Π_{1} and Π_{2} be two decision problems. We say Π_{1} polynomially transforms or reduces to Π_{2} if there exists a function, f, from $D_{\Pi_{1}}$ to $D_{\Pi_{2}}$ such that:

- f is computable in polynomial time, and
- for $I \in D_{\Pi_{\mathfrak{1}}}, I \in Y_{\Pi_{1}}$ if and only if $f(I) \in Y_{\Pi_{2}}$.

If Π_{1} admits a polynomial transformation to Π_{2}, we write $\Pi_{1} \alpha \Pi_{2}$. Observe that if $\Pi_{2} \in \mathbf{P}$ and $\Pi_{1} \alpha \Pi_{2}$, then $\Pi_{1} \in \mathbf{P}$.

We denote by NP the set of decision problems that are solvable in polynomial time by a non-deterministic algorithm. See [12] for an explanation of non-determinism. One of the great open problems in complexity theory is whether or not $\mathbf{P}=\mathrm{NP}$.

A decision problem, I , is NP-complete if:

- $\boldsymbol{\Pi} \in \mathbf{N P}$.
- for all $\Sigma \in \mathbf{N P}, \Sigma \alpha \Pi$.

To show that a particular problem, II, is NP-complete, we need to show first that $\Pi \in$ NP. It is easy to see the H-COL is in NP. Second, we choose some known NP-complete problem Σ and show $\Sigma \alpha \Pi$. Since Σ is NP-complete, we know that any problem in NP polynomially transforms to Σ. Composing this transformation with α, we see that any problem in NP polynomially transforms to II.

Suppose $\bar{\Pi}$ and Σ are two decision problems. A polynomial time Turing reduction of I to Σ is a function f from D_{Π} to the power set of D_{Σ} such that:

- f can be computed in polynomial time, and
- for each $I \in D_{\Pi}, I \in Y_{\Pi}$ if and only if there is an $I^{\prime} \in f(I)$ such that $I^{\prime} \in Y_{\Sigma}$. We write $\Pi \alpha_{T} \Sigma$ and say Π Turing reduces to Σ.

If Σ is in \mathbf{P} and $\Pi \alpha_{T} \Sigma$, then $\Pi \in \mathbf{P}$. We say Π is NP-hard if there exists an NP-complete problem Σ such that $\Sigma \alpha_{T} \Pi$.

We conclude this section with an observation that allows us to assume for an H colouring problem, H is connected. We have already pointed out that we may assume that H is a core.

Proposition 1.1.5 Let H be an edge-coloured graph which is a core and let H_{1} be a component of H. Then $H_{1}-C O L \alpha_{T} H-C O L$.

Proof Let G be an instance of H_{1}-COL. Since H is a core, H_{1} does not admit a homomorphism to any other component of H. Let $h_{1}, h_{2}, \ldots, h_{n}$ be an enumeration of the vertices of H_{1} and let g be a vertex of G. Define G_{i} to be the edge-coloured graph obtained by taking a copy of H_{1} and a copy of G and identifying g and h_{i}. It is easy to check that $G \rightarrow H_{1}$ if and only if there exists an i so that $G_{i} \rightarrow H$.

1.2 Previous Work

The \boldsymbol{H}-colouring problem for graphs and digraphs has received much recent attention, [19], [1], [2], [3], [14], [15], [25], [24]. In this section we present a brief survey of some of these results. The complexity of the H-colouring problem is completely determined for graphs by the following result of Hell and Nesetriil [19]:

Theorem 1.2.1 Let H be a fixed graph. If H contains an odd cycle, then $H-C O L$ is NP-complete. Otherwise, H is bipartite and $H-C O L$ is polynomial.

Since this completely classifies the problem for graphs, attention has since shifted to digraphs.

In their 1981 paper, Maurer, Sudborough, and Welzl [27] classify the complexity of H-COL for all three-vertex digraphs. This work was extended by Gutjahr [15] who classified the complexity of H-COL for all four-vertex digraphs.

Several families of polynomial digraphs were also presented in [27]. In particular, the authors show that H-COL is polynomial when H is

- a directed path,
- a directed cycle, and - a transitive tournament.

We have already presented a conjecture by Bang-Jensen and Hell concerning the complexity of \boldsymbol{H}-COL for digraphs. This conjecture has been verified for many families of digraphs. In their 1990 paper, Bang-Jensen and Hell [2] verify the conjecture for digraphs consisting of two cycles and for complete bipartite digraphs. Bang-Jensen, Hell, and MacGillivray [1] have verified the conjecture for semicomplete digraphs (superdigraphs of tournaments). The conjecture has also been verified by MacGillivray [24] for vertex-transitive and arc-transitive graphs.

The concept of "hereditary hardness", [4], has been studied by Bang-Jensen, Hell, and MacGillivray. They present hereditarily hard digraphs in the sense that any digraph \boldsymbol{H} that contains a hereditarily hard digraph as a subgraph has the property that H -COL is NP-complete. They use this concept to study the above conjecture of

Bang-Jensen and Hell. Furthermore, they show the equivalence of this conjecture to a simpler conjecture.

The classification of H-COL for graphs in [19] implies essentially the only H colouring problem for graphs that is polynomial is K_{2}-COL. Recall we can restrict our attention to the case when H is a core. The algorithm for this problem is trivial. For oriented graphs we have polynomial algorithms that are no longer trivial or obvious. Classifying the complexity of H-COL for oriented paths proved difficult. In their 1992 paper, Gutjahr, Welzl, and Woeginger [14] defined an \underline{X}-graph to be a digraph for which there is an enumeration $v_{1}, v_{2}, \ldots, v_{n}$ of the vertices such that if $v_{i} v_{j}$ and $v_{k} v_{l}$ are arcs, then so is $v_{\text {mim }\{i, k\}} v_{\min \{j, \eta\}}$. The main result of their paper is as follows.

Theorem 1.2.2 Let H be an \underline{X}-graph. Then H-COL is polynomial.
It is easy to see that every oriented path is an X-graph. Hence, if H is an oriented path, then H-COL is polynomial.

In the same paper, the authors present an oriented tree, T (with 287 vertices), such that T-COL is NP-complete.

The classification of oriented cycles has also proved difficult. Define an balanced oriented cycle to a be a cycle in which the number of forward arcs equals the number of backward arcs. Define an unbalanced oriented cycle to be a cycle which is not balanced. Gutjabr [15] and independently Zhu [30] have shown the following.

Theorem 1.2.3 Let H be an unbalanced oriented cycle. Then H-COL is polynomial. Gutjabr, [15], has also constructed a balanced oriented cycle for which H-COL is NP-complete. These results suggest the complete classification of H-COL even for
oriented trees and oriented cycles may prove difficult.

As mentioned above, the only polynomial H-colouring problem for graphs is $K_{2^{-}}$ COL. A classical result of graph theory is that a graph is bipartite if and only if it contains no odd cycle. We can rephrase this in terms of homomorphisms as follows. Let G be a graph. There exists an odd cycle C such that $C \rightarrow G$ if and only if $G \nrightarrow K_{2}$.

Similar "obstruction" type results for homomorphisms to directed paths and directed cycles have been obtained by Häggkvist, Hell, Miller, Neumann-Lara [16]. These results have been extended to oriented paths by Hell and Zhu [20] as follows:

Theorem 1.2.4 Let G be an oriented graph and H an oriented path. Then there exists a path W such that $W \rightarrow G$ and $W \nrightarrow H$ if and only if $G \nrightarrow H$.

An oriented cycle, C, is called nice if for any oriented graph G, there exists a cycle C^{\prime} such that $C^{\prime} \rightarrow G$ and $C^{\prime} \nrightarrow C$ if and only if $G \nrightarrow C$. Hell, Zhou, and Zhu have shown that all unbalanced oriented cycles are nice and there are balanced oriented cycles that are not nice.

Chapter 2

H-Colouring Tools

2.1 Indicator Constructions

Both the indicator construction and the subindicator construction have proved very useful in the study of homornorphisms; see [19] and [25]. We extend these constructions to edge-coloured graphs. These will be used in Chapters Three, Five, Six, Seven, and Eight.

2.1.1 The Indicator Construction

Let $I_{1} I_{2}, \ldots I_{m}$ be m fixed edge-coloured graphs. For each $I_{t}, t=1, \ldots, m$, let i_{t} and j_{t} be distinct vertices of I_{t} such that there exists an automorphism, σ_{t}, of I_{t} with $\sigma_{t}\left(i_{t}\right)=j_{t}$ and $\sigma_{t}\left(j_{t}\right)=i_{t}$. The indicator construction (with respect to $\left.\left(I_{1}, i_{1}, j_{1}\right),\left(I_{2}, i_{2,} j_{2}\right), \ldots,\left(I_{k}, i_{\bar{k}}, j_{k}\right)\right)$ transforms a given edge-coloured graph H into the following edge-coloured graph H^{*}. The edge-coloured graph H^{*} has the same vertex set as H. The edge $b h^{\prime} \in E_{t}\left(H^{\prime \prime}\right)$ if and only if there is a homomorphism, f : $I_{t} \rightarrow H$, such that $f\left(i_{t}\right)=h_{\text {and }} f\left(j_{i}\right)=h^{\prime}$. We now show that H^{*} is an edge-coloured
graph, i.e. each relation $E_{t}\left(H^{*}\right)$ is symmetric. Suppose there is a homomorphism, $f: I_{t} \rightarrow H$, such that $f\left(i_{t}\right)=h$ and $f\left(j_{t}\right)=h^{\prime}$. That is, $\hbar h^{\prime} \in E_{t}\left(H^{*}\right)$. Recall there exists an automorphism, σ_{t}, of I_{t} such that $\sigma_{t}\left(i_{t}\right)=j_{t}$ and $\sigma_{t}\left(j_{t}\right)=i_{t}$. Composing \dot{f} with σ_{t} we get the homomorphism $f \circ \sigma_{t}: I_{t} \rightarrow H$ with $f \circ \sigma\left(i_{t}\right)=h^{\prime}$ and $f \circ \sigma\left(j_{t}\right)=h$. Therefore, both $h h^{\prime}$ and $h^{\prime} h$ are images of I_{t}; hence, the edge is undirected.

We make an observation about the indicator construction for edge-coloured graphs which is unique to edge-coloured graphs. The edge-coloured graph H^{*} has has multiplicity m - one edge-colour for each indicator. However, multiplicity of H^{*} is in no way related to the multiplicity of H. The edge-coloured graph H^{*} can have fewer, the same, or more edge-colours than H. Nevertheless, each indicator, I_{t}, must have the same multiplicity as H.

Lemma 2.1.1 Let H^{*} be defined as above. Then H^{*}-COL polynomially transforms to $\mathrm{H}-\mathrm{COL}$.

Proof. Given an edge-coloured graph G, let * G be the edge-coloured graph obtained by replacing each edge of colour t, say $u v$, with the edge-coloured graph I_{t}, identifying u with i_{t} and v with j_{t}. Note that G has the same multiplicity as H^{*} (the number of indicators) and * G has the same multiplicity as H (the common multiplicity of all the indicators). It is straightforward from the definitions that ${ }^{*} G \rightarrow H$ if and only if $G \rightarrow H^{*}$. This was done, in [19], for the case of graphs.m

See Figure 2.1 for an example of the indicator construction.

It is possible that i_{t} and \boldsymbol{j}_{t} may map to the same vertex in H. This will produce a loop of colour t in H^{*}. One must be careful to avoid constructing loops in the case of

Figure 2.1: An example of the indicator construction
graphs or directed graphs, since a loop in H^{*} makes H^{*}-COL trivial. This may not be the case when working with edge-coloured graphs. It is possible to have loops in H^{*} and still H^{*}-COL may not be trivial.

Consider the example in Figure 2.2. Let H be the edge-coloured graph with vertex set $\{0,1,2\}$; blue edge-set $\{01,02,11,12\}$; and red edge-set $\{00,12\}$. Let I_{1} be a single blue edge with end-points i_{1} and j_{1}. Let I_{2} be a path of length three consisting of a red edge, a blue edge, and a red edge. Let i_{2} and j_{2} be the end-points of the path. The result of the indicator construction with respect to $\left(\left(I_{1}, i_{1}, j_{1}\right),\left(I_{2}, i_{2}, j_{2}\right)\right)$ is the edge-coloured graph H^{*} shown in Figure 2.2. Despite the fact that H^{*} contains loops, \boldsymbol{H}^{*}-COL is NP-complete. One can see this through a second application of the indicator construction. Let I_{1}^{*} be a red-blue digon. That is, I_{1}^{*} is an edge-coloured graph on two vertices, i_{1}^{*} and j_{1}^{*}, where $i_{1}^{*} j_{1}^{*}$ is a red edge and a blue edge. The result

Figure 2.2: A hard H^{*}-COL problem with loops
of the indicator construction with respect to $\left(I_{1}^{*}, i_{1}^{*}, j_{1}^{*}\right)$, applied to H^{*}, is H^{-*}. The edge-coloured graph $H^{* *}$ is simply a K_{3} on one edge-colour. It is well known that $H^{* *}$-COL is NP-complete, see [12]. Notice, the second application of the indicator construction is one where the result has fewer edge-colours than does the original edge-coloured graph.

2.1.2 The Sub-indicator Construction

Let J be a fixed edge coloured graph with specified vertices $j, k_{1}, k_{2}, \ldots, k_{1}$. The subindicator construction, with respect to $J, j, k_{1}, \ldots, k_{t}$, transforms a given core H with specified vertices h_{1}, \ldots, h_{t}, to an induced subgraph H^{-}of H. The subgraph H^{-}, on vertex set V^{\sim}, is defined as follows. Let W be the edge-coloured graph obtained by taking disjoint copies of H and J and identifying vertices h_{i} and k_{i} (for $i=1,2, \ldots, t$). A vertex, h, of H belongs to V^{*} if and only if there is a retraction of W to H mapping j to h. An example of the subindicator construction is given in Figure 2.3.

Proof. Given an edge-coloured graph G we construct an edge-coloured graph ${ }^{-} G$ by taking disjoint copies of G, H, and $|V(G)|$ copies of J. Identify h_{i} with k_{i} in each copy of J for $i=1,2, \ldots, t$. For each vertex g in $V(G)$, identify g with j in the $g^{\text {ith }}$ copy of J. If there is a homomorphism of ${ }^{-} G \rightarrow H$, then the copy of H in ${ }^{-} G$ must map onto H since H is a core. It is now easy to see that ${ }^{-} G \rightarrow H$ if and only if $\boldsymbol{G} \rightarrow \boldsymbol{H}^{-}$.

Figure 2.3: An example of the subindicator construction

2.2 The Forcing Lemma

Many times in life the easiest decisions are the ones made for us. The same is true when solving H-colouring problems. Consider an edge-coloured graph, H, where each vertex is incident with at most one edge of each colour. Let G be a connected, edgecoloured graph. As usual, we are interested in the existence or nonexistence of a homomorphism $f: G \rightarrow H$. Let g be a vertex in G and h be a vertex in H. In this section we observe that if G admits a homomorphism, f, to H such that $f(g)=h$, then f is unique.

Lemma 2.2.1 Let H be an edge-coloured graph such that each vertex of H is incident with at most one edge of each colour. Given a connected, edge-coloured graph G, $g \in V(G)$ and $h \in V(H)$, if there exists a homomorphism $f: G \rightarrow H$, such that
$f(g)=h$, then f is unique.

Proof. We prove the result by induction on the number of edges of G. Let H, G, g, and h be as above. Suppose $\|E(G)\|=0$. Then G consists of a single vertex G and the homomorphism $f(g)=h$ is unique. Therefore, suppose the lemma holds for all G, with $|E(G)| \leq m$. Let G be a connected, edge-coloured graph with $m+1$ edges. Suppose there exist two homomorphisms $f_{1}: G \rightarrow H$ and $f_{2}: G \rightarrow H$ such that $f_{1}(g)=f_{2}(g)=h$. We show $f_{1}=f_{2}$. Since G is connected, we know there exists $g^{\prime} \in N(g)$. Suppose $g g^{\prime} \in E_{j}(G)$. Since $G \rightarrow H$, there exists $h^{\prime} \in N_{j}(h)$; moreover, by our assumptions on $H_{,} h^{\prime}$ is unique and hence $f_{1}\left(g^{\prime}\right)=f_{2}\left(g^{\prime}\right)=h^{\prime}$.

Consider the edge-coloured graph $G \backslash\left\{g g^{\prime}\right\}$. If $G \backslash\left\{g g^{\prime}\right\}$ is connected, then by induction $f_{1}=f_{2}$. On the other hand, if $G \backslash\left\{g g^{\prime}\right\}$ is disconnected, then it consists of two components G_{1} and G_{2}, such that $g \in G_{1}$ and $g^{\prime} \in G_{2}$. Recall $f_{1}(g)=f_{2}(g)=h$. By induction $f_{1}=f_{2}$ on G_{1}. Similarly, $f_{1}\left(g^{\prime}\right)=f_{2}\left(g^{\prime}\right)=h^{\prime}$ and hence $f_{1}=f_{2}$ on G_{2}. Since $V(G)=V\left(G_{1}\right) \cup V\left(G_{2}\right)$, we have $f_{1}=f_{2}$ on G.

We have the following immediate corollary. In the following we use the standard notation $H o m(G, H)=\{f \mid f: G \rightarrow H$ such that f is a bomomorphism $\}$.

Corollary 2.2.2 Let H be an edge-coloured graph such that each vertex of H is incident with at most one edge of each colour. Suppose G is a connected edge-coloured graph. Then $|H o m(G, H)| \leq|V(H)|$.

Proof. Choose a fixed $g \in \bar{V}(G)$. For each $\bar{h} \in \bar{V}(\bar{H})$ there is at most one $f \in H o m(G, H)$ such that $f(g)=h$.

We now prove a result which will be used repeatedly throughout this thesis. Namely, the set $\operatorname{Hom}(G, H)$ can be constructed in $O(|E(G)|)$ time.

Lemma 2.2.3 (The Forcing Lemma) Let H be an edge-coloured graph such that each vertex of H is incident with at most one edge of each colour and let G be a connected edge-coloured graph. Then the elements of $H o m(G, H)$ can be generated in $O(|E(G)|)$ time.

Proof. Let $V(H)=\left\{h_{1}, h_{2}, \ldots, h_{n}\right\}$. Let G be a connected edge-coloured graph.

Suppose S is a subset of $V(G)$ and f is a homomorphism from the subgraph induced by S to H. Let u be a vertex in $V(G) \backslash S$. We say f is extendable to u if there exists $h \in V(H)$ such that by defining $f(u)=h$ one obtains that f is a homomorphism from the subgraph induced by $S \cup\{u\}$ to H.

Since H has the property that each vertex is incident with at most one edge of each colour, the following observation is true. Suppose S is a subset of $V(G), u \in V(G) \backslash S$, and u is adjacent to a vertex $v \in S$. Then, if f is extendable to u, this extension is unique. Suppose u and v are joined by an edge of colour t. The set $N_{t}(f(v))$ contains at most one element and this element, if it exists, must be the image of u under f.

We now describe the algorithm. Choose a vertex $g \in V(G)$. Repeat the following steps for each $h_{i} \in V(H)$.

- Set $f(g)=h_{i}$ and $S=\{g\}$.
- While $V(G) \backslash S$ is not empty:
- Choose u in $V(G) \backslash S$ such that u is adjacent to some $v \in S$.
- If f can be extended to u, then extend f else STOP.
- Add u to S.
- Add f to $\operatorname{Hom}(G, H)$.

We now prove the algorithm correctly generates $\operatorname{Hom}(G, H)$. Suppose some function f is added to $\operatorname{Hom}(G, H)$ by the algorithm. This implies f was successfully extended to all of $V(G)$ which implies f is a hemomorphism from G to H. On the other hand, suppose $f: G \rightarrow H$ is a homomorphism. There is an i such that $f(g)=h_{i}$. On the $i^{\boldsymbol{t h}^{\text {h }}}$ iteration of the algorithm, $f(g)=h_{i}$. The algorithm then attempts to extend f to $V(G)$. Since f is a homomorphism this extension is possible and unique; hence, f is added to $\operatorname{Hom}(G, H)$.

Finally, we show the algorithm runs in $O(|E(G)|)$ time. The size of H is fixed, so we only need to show that the time to extend one f is $O(|E(G)|)$. If the homomorphism f can be extended to u, then this image of u under f is unique. To test if f is a homomorphism on $S \cup\{u\}$, we check that for each v in $N(u) \cap_{S} S$ such that $u v \in E_{j}(G)$ implies $f(u) f(v) \in E_{j}(H)$. This requires $O(\operatorname{deg}(u))$ time. Hence the entire algorithm requires $O(|E(G)|)$ time.

A final point to consider is what happens when G is not connected? If one is solely interested in the question "Does $G \rightarrow H$?", then the Forcing Lemma can be used on each component of G. The edge-coloured graph G is a YES instance of H-COL if and only if each component is a YES instance of H-COL. However, if one is interested in constructing $\operatorname{Hom}(G, H)$, then a disconnected edge-coloured graph G can cause problems. Let $G_{1}, G_{2}, \ldots, G_{m i}$ be the components of G. From the above results
we see there are at most n homomorphisms from G_{i} to H where $n=\mid V(H)$. To construct a homomorphism from G to H, we need to choose a homomorphism from each component to H. Therefore, there could be as many as n^{m} homomorphisms from G to H. Hence, one must be careful when using the Forcing Lemma to generate $\operatorname{Hom}(G, H)$, since this set can have exponential size if G is disconnected.

The Forcing Lemma is a result that naturally extends to directed, edge-coloured graphs. If the condition on H is changed to "Each vertex is incident with at most one in-arc and at most one out-arc of each colour", then the result still holds.

A final observation we make is the obvious interpretation of this result in the context of multiplicity one. The only connected graphs with degree at most one are K_{1} and K_{2}. Digraphs that have indegree and outdegree at most one at each vertex are directed paths and directed cycles. These graphs H yield pclynomial H-colouring problems, as is well known [12].

2.3 Reduction to 2-Satisfiability

The use of propositional logic problems is quite common in complexity theory, especially for proving NP-completeness. In this section we describe a method for constructing polynomial time algorithras using 2-Satisfiability (2SAT). Formally we define 2SAT as:

2-Satisfiability (2SAT)

INSTANCE: A set \mathcal{U} of boolean variables, a collection \mathcal{C} of clauses over \mathcal{U} such that each $C \in \mathcal{C}$ has at most two literals.

QUESTION: Is there a satisfying truth assignment for \mathcal{C} ?

In this definition a clause is a disjunction of variables and a satisfying truth assignment is assignment of true or false to each variable such that each clause is true. This problem is solvable in polynomial time. See [12], [9], and [29]. We describe a method for polynomially transforming $H-\mathrm{COL}$ to 2SAT.

Suppose we are given an edge-coloured graph H. We assign to each vertex in H a bit string of length n, i.e., a string of $n 1$'s and 0 's. Given an instance of H-COL, say G, we construct n boolean variables for each vertex in G. In addition, we construct clauses on this set of variables in such a way that the clauses have a satisfying truth assignment if and only if $G \rightarrow H$. For example, let u be a vertex in G. We denote the n variables corresponding to u as $u_{n}, u_{n-1}, \ldots, u_{1}$. A truth assignment on these variables can be represented as a bit string of length n. That is, u_{i} is true if and only if position i of the bit string is a one. Since we have assigned each vertex in H a bit string of length n, there is a natural correspondence between a truth assignment for $u_{n}, u_{n-1}, \ldots, u_{1}$ and an image for vertex u in H.

This is an idea whose simplicity can easily be shrouded by definitions and lemmas. Let us consider an example. Let H be an edge-coloured graph on three vertices $\{x, y, z\}$ and two edge-colours. The blue edges are $\{x y, x z\}$ and the red edges are $\{x y, y z\}$. To each vertex in H, we assign a bit string of length two:

$$
\begin{aligned}
& x \rightarrow 10 \\
& y \rightarrow 01 \\
& z \rightarrow 00
\end{aligned}
$$

Let G be an instance of \boldsymbol{H}-COL. In particular, let \boldsymbol{G} be the edge-coloured graph on three vertices, $\{u, v, w\}$, with blue edge set $\{u v\}$ and red edge set $\{v w\}$. We construct

Figure 2.4: Example of 2SAT reduction
the corresponding instance of 2SAT. The set of variables is $\mathcal{U}=\left\{u_{2}, u_{1}, v_{2}, v_{1}, w_{2}, w_{1}\right\}$ and the set of clauses is \mathcal{C} described below. The bit string 11 has not been used in labeling H; therefore, in any truth assignment we need to avoid assigning (1,1) to (u_{2}, u_{1}), $\left(v_{2}, v_{1}\right)$, or (w_{2}, w_{1}). This can be accomplished by placing the clauses $\left(\neg u_{2} \vee \neg u_{1}\right),\left(\neg v_{2} \vee \neg v_{1}\right)$, and $\left(\neg w_{2} \vee \neg w_{1}\right)$ in \mathcal{C}. Secondly, we construct a set of clauses for each edge in G which will assure that the edge is preserved:

$$
\begin{array}{cc}
\text { edge } & \text { clauses } \\
u v & \left(u_{2} \vee v_{2}\right) \wedge\left(\neg u_{2} \vee \neg v_{2}\right) \\
v w & \left(v_{1} \vee w_{1}\right) \wedge\left(\neg v_{1} \vee \neg w_{1}\right)
\end{array}
$$

To see how these clauses were chosen, examine the red edges in H. The bit string labels in H have the property that $a b$ is a red edge in H if and only if the first bit (reading right to left) of the label of a is different from the first bit of the label of b. Hence, given a red edge $g g^{\prime} \in E_{\text {red }}(G)$, a truth assignment of $\left(g_{2}, g_{1}\right)$ and $\left(g_{2}^{\prime}, g_{1}^{\prime}\right)$ corresponds to an edge preserving mapping of $g g^{\prime}$ to H if and only if $g_{1} \neq g_{1}^{\prime}$. The clause for red edges above (namely for $v w$) is an exclusive or of v_{1} and w_{1}. That is, it has a truth assignment if and only if $v_{1} \neq w_{1}$. This is precisely the condition we
require for a homomorphism. The same argument can be applied to the blue edges using the second bit of the labels.

The following truth assignment satisfies all the clauses in \mathcal{C} :

$$
\begin{aligned}
\left(u_{2}, u_{1}\right) & =(1,0) \\
\left(v_{2}, v_{1}\right) & =(0,0) \\
\left(w_{2}, w_{1}\right) & =(0,1)
\end{aligned}
$$

Since $\left(u_{2}, u_{1}\right)=(1,0)$, we map vertex $u \in G$ to $x \in H$. Similarly, we map v to z and w to y. It is easy to check that this is a homomorphism from G to H.

In the above example there are two steps in our reduction. First, we put the clauses ($\neg a_{2} \vee \neg a_{1}$) in \mathcal{C} for all $a \in V(G)$. This insures that the truth assignment $\left(a_{2}, a_{1}\right)=(1,1)$ is never used, since it does not satisfy $\left(\neg a_{2} \vee \neg a_{1}\right)$. This must be done since 11 is not a label in H. Secondly, we construct clauses for each edge, $a b$ in G, such that a truth assignment for $\left(a_{2}, a_{1}\right)$ and $\left(b_{2}, b_{1}\right)$ exists if and only if the mapping induced by this truth assignment maps $a b$ onto an edge of the same colour. Therefore, the constructed instance of 2SAT contains: firstly, clauses that describe the valid labels in H; and secondly, clauses that describe the valid mapping of edges of each colour.

Formally, we call a set, S, of bit strings of length n 2SAT-describable if there is an instance of 2SAT over the variables $\left\{s_{n}, s_{n-1}, \ldots, s_{1}\right\}$ such that $t:\left\{s_{n}, \ldots, s_{1}\right\} \rightarrow$ $\{0,1\}$ is a satisfying trath assignment if and only if $t\left(s_{n}\right) \ldots t\left(s_{1}\right) \in S$. Hence, the first step in our reduction is to label the vertices of H with a 2SAT describable set.

Since any truth assignment satisfies an empty set of clauses we have the following observation.

Observation 2.3.1 Let S be the set of all 2^{n} bit strings of length n. Then S is 2SAT-describable.

There are exactly four bit strings of length two. In our example above, we used three of the four to label H. In fact, any three of the of the four bit strings form a 2SAT-describable set.

Lemma 2.3.2 Let S be any set of three bit strings of length two. Then S is 2SAT describable.

Proof. There are four bit strings of length two and by assumption S consists of three of them. Let $x y$ be the one bit string of length two not in S. The instance of 2SAT over $\mathcal{U}=\{u, v\}$ with the following single clause has a truth assignment if and only if $(u, v) \neq(x, y)$. Notice (u, v) satisfies $\neg(x \wedge y)$ if and only if (u, v) satisfies $(\neg x \vee \neg y)$. Hence we have the following four cases:

$$
\begin{array}{cc}
\text { Value of } x y & \text { Set of Clauses } \\
00 & \mathcal{C}=\{(u \vee v)\} \\
01 & \mathcal{C}=\{(u \vee \neg v)\} \\
10 & \mathcal{C}=\{(\neg u \vee v)\} \\
11 & \mathcal{C}=\{(\neg u \vee \neg v)\}
\end{array}
$$

A truth assignment for (u, v) satisfies \mathcal{C} if and only if $(u, v) \neq(x, y)$. That is, if and only if (u, v) is a member of S.

The following theorem gives sufficient conditions to allow an H-COL problem to be polynomially reduced to a 2SAT problem. Since 2SAT is polynomial, such an H-COL problem is polynomial. There are many polynomial H-COL problems that are not of the form described below; hence, the conditions are not necessary for a polynomial reduction to 2 SAT. Note that every polynomial problem trivially polynomially reduces to 2SAT.

We now describe a class of graphs that can easily be reduced to 2SAT. Consider a graph (one edge-colour) where the vertices are partitioned into two sets, X and Y. We call the graph 2SAT amiable with respect to (X, Y) if and only if the following three conditions hold:
(i) either all edges between X and Y are present or no edges between X and Y are present;
(ii) either X induces a clique with loops or X induces an independent set;
(iii) either Y induces a clique with loops or Y induces an independent set.

Theorem 2.3.3 Let H be an edge-coloured graph with multiplicity k. Suppose the vertices of H have beent labelled with a 2SAT-describable set S using bit strings of length k. For all $t \leq E$, let $X_{t}=\{v \in V(H)$: the label of v has a 0 in position $t\}$. Let $Y_{t}=V(H) \backslash X_{t}$. Suppose $\left(V(H), E_{t}(H)\right)$ is $2 S A T$ amiable with respect to $\left(X_{t}, Y_{t}\right)$. Then H-COL can be polynomially transformed to 2SAT.

Proof. Let G be an instance of H-COL. Consider any edge colour i. We describe the clanses to be added to \mathcal{C} for each $u v \in E_{i}(G)$. By assumption $\left(V(G), E_{i}(G)\right)$ is 2SAT arniable with respect to ($\boldsymbol{X}_{i}, \boldsymbol{Y}_{i}$); therefore, one of the eight cases in Figure 2.5

	Edges between	Graph induced	Graph induced	Add clause
	X_{i} and Y_{i}	by X_{i}	by Y_{i}	to C
1	None	Independent	Independent	$\left(\neg u_{i}\right) \wedge\left(u_{i}\right)$
2	None	Clique with loops	Independent	$\left(\neg u_{i}\right) \wedge\left(\neg v_{i}\right)$
3	None	Independent	Clique with loops	$\left(u_{i}\right) \wedge\left(v_{i}\right)$
4	None	Clique with loops	Clique with loops	$\left(u_{i} \vee \neg v_{i}\right) \wedge\left(\neg u_{i} \vee v_{i}\right)$
5	All	Independent	Independent	$\left(u_{i} \vee v_{i}\right) \wedge\left(\neg u_{i} \vee \neg v_{i}\right)$
6	All	Clique with loops	Independent	$\left(\neg u_{i} \vee \neg v_{i}\right)$
7	All	Independent	Clique with loops	$\left(u_{i} \vee v_{i}\right)$
8	All	Clique with loops	Clique with loops	$\left(u_{i} \vee \neg u_{i}\right)$

Figure 2.5: Clauses for 2SAT reduction
must hold. Add the appropriate clause from Figure 2.5 to \mathcal{C} for each edge colour i and for all edges $u v \in E_{i}(G)$.

We now confirm that these clauses are correct. Consider an arbitrary edge colour i calling it blue. Let $u v$ be a blue edge. If case one holds, then there are no blue edges in H. The clause $\left(\neg u_{i}\right) \wedge\left(u_{i}\right)$ has no satisfying truth assignment. Therefore, $u v$ maps to H if and only if the clause is satisfied. If case 2 holds, then all blue edges in H have both ends in X_{i}. That is, $u v$ maps to H if and only if both $u_{i}=0$ and $v_{i}=0$. The clause $\left(\neg u_{i}\right) \wedge\left(\neg v_{i}\right)$ is satisfied if and only if $\left(u_{i}, v_{i}\right)=(0,0)$. If case 3 holds, then all blue edges in H have both ends in Y_{i}. That is, $u v$ maps to H if and only if both $u_{i}=1$ and $v_{i}=1$. The clause $\left(u_{i}\right) \wedge\left(v_{i}\right)$ is satisfied if and only if $\left(u_{i}, v_{i}\right)=(1,1)$. If case 4 holds, then all blue edges either have both ends in X_{i} or both ends in Y_{i}. The clause $\left(u_{i} \vee \neg v_{i}\right) \wedge\left(\neg u_{i} \vee v_{i}\right)$ is satisfied if and only if $u_{i}=v_{i}$. That is, if and only if $\left(u_{i}, v_{i}\right)=(0,0)$ or $\left(u_{i}, v_{i}\right)=(1,1)$.

If case 5 holds, then all blue edges in H have exactly one end in X_{i} and exactly one end in Y_{i}. The clause $\left(u_{i} \vee v_{i}\right) \wedge\left(\neg u_{i} \vee \neg v_{i}\right)$ is satisfied if and only if $\left(u_{i}, v_{i}\right)=(1,0)$ or $\left(u_{i}, v_{i}\right)=(0,1)$. In other words, $u v$ maps to H if and only if the clause is satisfied.

If case $\mathbf{6}$ holds, then all blue edges in H have at least one edge in X_{i}. The clause $\left(\neg u_{i} \vee \neg v_{i}\right)$ is satisfied if and only if at least one of $\left\{u_{i}, v_{i}\right\}$ is 0 . If case 7 holds, then all blue edges in H have at least one edge in Y_{i}. The clause ($u_{i} \vee v_{i}$) is satisfied if and only if at least one of $\left\{u_{i}, v_{i}\right\}$ is true. Finally, in case 8, all possible blue edges in H are present. Therefore, $u v$ can map to any pair of vertices in H. The clause ($u_{i} \vee \neg u_{i}$) is satisfied by any truth assignment to $\left(u_{i}, v_{i}\right)$.

With these clauses inserted into \mathcal{C} for each edge colour and all appropriate variables, the instance of 2SAT has a satisfying truth assignment if and only if $G \rightarrow H$.

2.4 Divide and Conquer

In this section we describe two techniques for studying the complexity of H-COL based on the complexity of H^{\prime}-COL where H^{\prime} is a subgraph of H. We also use a third technique, the "bipartite decomposition lemma", similar to these two, which requires results from Chapter three. Hence, we present it at the end of Chapter three.

2.4.1 The Join Lemma

We begin by studying the case when H is the join of two smaller edge-coloured graphs.
Lemma 2.4.1 Let H_{1} and H_{2} be two edge-coloured graphs with multiplicity k such that $H_{1} \rightarrow H_{2}$. Let H be the join of H_{1} and H_{2} with respect to $\{1,2, \ldots, k, k+1\}$ and H^{\prime} be the join of H_{1} and H_{1} with respect to $\{1,2, \ldots, k\}$. Then H^{\prime}-COL polynomially transforms to $\mathrm{H}-\mathrm{COL}$.

Proof. Let G be an instance of H^{\prime}-COL. Let colour $k+1$ be blue. Construct a graph X by taking two copies of G, say G^{A} and G^{B}, and joining corresponding
vertices with blue edges so that a blue matching between G^{A} and G^{B} results. Note we can assume G itself has no blue edges, since H^{\prime} has no blue edges. A blue edge in G implies G is trivially a NO instance of H^{\prime}-COL. We show $X \rightarrow H$ if and only if $G \rightarrow H^{\prime}$.

Suppose $h: G \rightarrow H^{\prime}$ is a homomorphism. Let the two copies of H_{1} in H^{\prime} be denoted H_{1}^{A} and H_{1}^{B}. Let S be the induced subgraph on the set of vertices in G that is mapped to H_{1}^{A} by h. Similarly let \bar{S} be the induced subgraph on the set of vertices in G that is mapped to H_{1}^{B} by h. It is clear that $V(S)$ and $V(\bar{S})$ partition the vertices of G into two sets. Moreover, $S \cup \bar{S}$ admits a homomorphism to H_{1}. Since $H_{1} \rightarrow H_{2}$, it is also the case that $S \cup \bar{S} \rightarrow H_{2}$. It is now easy to see that $X \rightarrow H$.

On the other hand, suppose $f: X \rightarrow H$ is a homomorphism. As above we can partition the vertices of X into two sets, those that map to H_{1} and those that map to H_{2}. Let S^{A} be the induced subgraph of G^{A} on the set of vertices of G^{A} that is mapped to H_{1} by f. Let $\overline{S^{E}}$ be the induced subgraph of G^{B} on the set of vertices of G^{B} that is mapped to H_{1} by f. Let $\overline{S^{A}}$ be the induced subgraph of G^{A} on the set of vertices of G^{A} that is mapped to H_{2} by f. By the construction of the matching in $X, \overline{S^{A}}$ is isomorphic to $\overline{S^{B}}$. Since $\overline{S^{B}}$ admits a homomorphism to H_{1}, it is the case that $\overline{S^{4}}$ admits a homomorphism to H_{1}. It is now easy to construct a homomorphism $\boldsymbol{G} \rightarrow \boldsymbol{H}^{\prime}$.

In the proof above, the edge-coloured graph constructed from the two copies of G, contains a perfect matching in blue. We have the following immediate corollary.

Corollary 2.4.2 Let H and H^{\prime} be as above. If H^{\prime}-colouring is NP-complete, then H-colouring is NP-complete even when the input is restricted to edge coloured graphs
which contain a perfect matching in blue.

2.4.2 The Dominating Loop Lemma

We now consider a method for reducing the target edge-coloured graph H by a single vertex. In the following lemma we are interested in finding a vertex in H incident with only one colour and adjacent to all vertices including itself.

Lemma 2.4.3 (Dominating Loop Lemma) Let H be an edge-coloured graph with a vertex v such that v is incident with edges of only colour i. Further suppose that v is adjacent (in colour i) to all vertices in H including itself. Let G be an edge-coloured graph and let X be the set of all vertices in G incident with only colour i. Then $G \rightarrow H$ if and only if $G \backslash X \rightarrow H \backslash\{v\}$.

Proof. Suppose H satisfies the condition of the lemma and vertex v is blue only. Firstly, suppose $G \rightarrow H$. The vertices that map to v must be a subset of X since v is blue only. Therefore $G \backslash X$ must map to $H \backslash\{v\}$. On the other hand, suppose $f: G \backslash X \rightarrow H \backslash\{v\}$. Define a new homomorphism g where

$$
g(u)=\left\{\begin{array}{cl}
f(u) & \text { if } u \notin X \\
v & \text { if } u \in X
\end{array}\right.
$$

Since v is adjacent in blue to all other vertices of H and X is adjacent only in blue to $G \backslash X$, it is easy to verify that g is a homomorphism.

Corollary 2.4.4 Let H and v be as above. Then $H-C O L ~ a ~ H \backslash\{v\}-C O L$.

The above corollary says if H-COL is NP-complete, then $H \backslash\{v\}-\mathrm{COL}$ is NPcomplete. If $H \backslash\{v\}-C O L$ is polynomial, then H-COL is polynomial. We also present a partial converse to Corollary 2.4.4.

Figure 2.6: Example of H with a dominating loop.

Corollary 2.4.5 Let H be a two-edge-coloured graph that is a core. Suppose H contains a vertex v that is incident only with edges of one colour. Further suppose that v is adjacent (in that colour) to every vertex in H including itself. Then $H-C O L$ and $H \backslash\{v\}-C O L$ are polynomially equivalent.

Proof We know from Corollary 2.4.4 that H-COL $\alpha H \backslash\{v\}$-COL. We now prove that $H \backslash\{v\}$-COL αH-COL. Suppose without loss of generality the edges of H are blue and red and the vertex v is incident with only blue edges. Since H is a core, it can not have any vertices other than v that are incident with only blue edges. That is, every vertex in $H \backslash\{v\}$ is incident with a red edge. Let G be an instance of $H \backslash\{v\}$-COL. For each vertex $u \in V(G)$ add a new vertex u^{\prime} and join u to u^{\prime} with a red edge. Call this new graph G^{\prime}. Since all vertices in $H \backslash\{v\}$ are incident with red edges $G \rightarrow H \backslash\{v\}$ if and only if $G^{*} \rightarrow H \backslash\{v\}$. Since all vertices in G^{v} are incident with a red edge, $G^{\prime}-H \backslash\{v\}$ if and only if $G^{\prime} \rightarrow H$. Therefore, $G \rightarrow H \backslash\{v\}$ if and only if $G^{\prime} \rightarrow \boldsymbol{H}$. The result follows.

Chapter 3

The Homomorphism Factoring Problem

3.1 General Results

The results in this chapter come in two flavours. Some results hold for the most general systems considered in this thesis - edge-coloured, directed graphs. Other results are written in terms of graphs and digraphs (i.e. one edge-colour). This situation is acceptable in the sense that the general results are those that show the existence of polynomial time algorithms and the specific (graph) results prove NP-completeness of certain problems. That is, we show certain problems are easy even in the most general case; whereas, we show other problems are hard even in a restricted case.

For graphs, we know from [19] that to test for the existence of a homomorphism to any fixed nonbipartite graph is NP-complete. An interesting question is to find the complexity of E-colouring when the input is restricted to a particular set of
graphs. For example, any graph that admits a homomorphism to C_{5} must also admit a homomorphism to K_{3} since $C_{5} \rightarrow K_{3}$. Furedi, Griggs, and Kleitman [11] asked if knowing G is 3 -colourable makes testing C_{5}-colourability any easier. In [6] we prove that it is not easier, even when a homomorphism to K_{3} is provided. Specifically, we consider in [6] the following restricted homomorphism problem RHP. We state the problem here in the more general context of edge-coloured graphs, although in [6] we only consider graphs. Thus let H and Y be fixed edge-coloured graphs.

Restricted Homomorphism Problem RHP(H,Y)
INSTANCE: An edge-coloured graph G and a homomorphism $g: G \rightarrow Y$.
QUESTION: Does there exist a homomorphism $f: G \rightarrow H$.

For the case of undirected, uncoloured graphs, we proved in [6] the following result:
Theorem 3.1.1 Let H be a loopless graph. If $\omega(H)<k \leq \chi(H)$, then $R H P\left(H, K_{k}\right)$ is NP-complete. Otherwise, $k \leq \omega(H) \leq \chi(H)$ and $R H P\left(H, K_{k}\right)$ is polynomial.

We now consider a problem, due to Sabidussi and Tardiff, which is closely related to, and perhaps more natural than, the restricted homomorphism problem. We begin by stating this problem in the context of edge-coloured digraphs since the first set of results holds for this general case. We will later restrict our attention to graphs. Let H and Y be two edge-coloured digraphs and $h: H \rightarrow Y$ a homomorphism.

Homomorphism Factoring Problem HFP(H,h,Y)

INSTANCE: An edge-coloured digraph G and a homomorphism $g: G \rightarrow Y$.

QUESTION: Does there exist a homomorphism $f: G \rightarrow H$ such that $h \circ f=g$?

We begin by defining an indicator construction for use with the Homomorphism Factoring Problem. The indicator construction in Chapter Two is stated in terms of m indicators, $I_{1}, I_{2}, \ldots, I_{m}$. Consequently, the result of the indicator construction has m edge-colours. Our discussion here is in terms of one indicator for simplicity and in view of the fact that the indicator construction is used in the one edge-colour context in this chapter. However, the HFP indicator construction and the following lemma have a natural generalization to m indicators.

Let H and Y be two edge-coloured digraphs and let $h: H \rightarrow Y$ be a homomorphism. Let I be an edge-coloured digraph with distinguished vertices i and j. Further suppose $t: I \rightarrow Y$ is a homomorphism. The indicator construction, with respect to (I, i, j, t), transforms H and Y into two new edge-coloured digraphs $H^{\#}$ and $Y^{\#}$. The vertex-set of $H^{\#}$ is $V(H)$. Given two vertices u and v in $V(H), u v \in E\left(H^{\#}\right)$ if and only if there is a homomorphism $r: I \rightarrow H$ such that $r(i)=u, r(j)=v$, and $h \circ r=t$. The vertex-set of $Y^{\#}$ is $V(Y)$ and the edge-set is the single arc $(t(i), t(j))$.

Consider the example in Figure 3.1. The graph H is C_{9} and the graph Y is C_{3}. The numbers beside the vertices in H define the homomorphism $h: H \rightarrow Y$. All vertices with 0 beside them are mapped to the vertex labelled 0 in Y. Similarly, the graph I is a P_{3} and the homomorphism $t: I \rightarrow Y$ is also marked in the figure. The pair (u, v) is an arc in $H^{\#}$ if and only if I admits a homomorphism to H with i mapping to u of colour 0 and j mapping to v of colour 0 . The edge-coloured digraph $Y^{\#}$ contains the single arc from $t(i)=0$ to $t(j)=0$.

Part of the description of $\operatorname{HFP}(H, h, Y)$ is the homomorphism h. It is important to note the homomorphism, $h: H \rightarrow Y$, is also a homomorphism from $H^{\#}$ to $Y^{\#}$.

Figure 3.1: An example of HFP indicator construction
Given an arc, (u, v), in $H^{\#}$, there is homomorphism $r: I \rightarrow H$ such that $r(i)=u$ and $r(j)=v$ and $h \circ r=t$. Now $t: I \rightarrow Y, t(i)=(h \circ r)(i)=h(u)$ and $t(j)=(h \circ r)(j)=$ $h(v)$; therefore, $(h(u), h(v))$ is an arc in $Y^{\#}$. That is, h is a homomorphism from $H^{\#}$ to $Y^{\#}$. Hence, $\operatorname{HFP}\left(H^{\#}, h, Y^{\#}\right)$ is a well-defined problem.

Lemma 3.1.2 Suppose H and Y are edge-coloured digraphs and $h: H \rightarrow Y$ is a homomorphism. Further suppose that I is an edge-coloured digraph with distinguished vertices i and j and that $t: I \rightarrow Y$ is a homomorphism. Let $H^{\#}$ and $Y^{\#}$ be the result of the indicator construction with respect to (I, i, j, t). Then $\operatorname{HFP}\left(H^{\#}, h, Y^{*}\right)$ polynomially transforms to $H F P(H, h, Y)$.

Proof. Let G, g be an instance of $\operatorname{HFP}\left(H^{\#}, h, Y^{\#}\right)$, where G is an edge-coloured, digraph and $g: G \rightarrow Y^{\#}$ is a homomorphism. Let $\#^{\#} G$ be the edge-coloured, directed graph obtained by taking a copy of $V(G)$ and for each arc $u v \in E(G)$ putting a copy of I in ${ }^{\#} G$ with i identified with u and j identified with v. See Figure 3.2 for an

Figure 3.2: The construction of $\# G$ from G.
example of \# G. We define a homomorphism ${ }^{\#} g:{ }^{\#} G \rightarrow Y$ as follows:

$$
\text { \# } g(v)=\left\{\begin{array}{lc}
g(v) & \text { if } v \in V(G), \\
t(v) & \text { if } v \in V(I) \backslash\{i, j\}
\end{array}\right.
$$

It is easy to see that ${ }^{\prime \prime} g$ is a homomorphism. Finally, we show that G, g is a YES instance of $H F P\left(H^{\#}, h, Y^{\#}\right)$ if and only if ${ }^{\#} G,{ }^{\#} g$ is a YES instance of $H F P(H, h, Y)$.

Suppose G, g is a YES instance of $\operatorname{HFP}\left(H^{\#}, h, Y^{\#}\right)$, i.e., there exists $f: G \rightarrow H^{\#}$ such that $h \circ f=g$. Define a mapping ${ }^{\#} f$ from $V\left({ }^{\#} G\right)$ to $V(H)$ as follows:

- If u is a vertex of G, then set ${ }^{\#} f(u)=f(u)$.
- If u is not a vertex of G, then it must be a vertex in some copy of I. This copy of I in \# G corresponds to some arc (x, y) in G. Since $(f(x), f(y))$ is an arc in $H^{\#}$, there is a homomorphism $r: I \rightarrow H$ such that hor $=t$. Set ${ }^{\#} f(u)=r(u)$.

Now it is easy to check ${ }^{\#} f$ is a homomorphism and $h \circ{ }^{\#} f=\#^{\#} g$. The converse is also easy to verify.

We first observe that the HFP problems include H-COL.
Proposition 3.1.3 Let H be an edge-coloured digraph with multiplicity k. Let Y be a digraph which contains a vertex, say y, with loops of all colours $1,2, \ldots, k$. Let h be the constant homomorphism $h(v)=y$, for all $v \in V(H)$. Then $H F P(H, h, Y)$ is polynomially equivalent to $\mathrm{H}-\mathrm{COL}$.

Proof. We begin with a polynomial transformation of \boldsymbol{H}-COL to $\operatorname{HFP}(H, h, Y)$. Let G be an instance of H-COL. We may assume without loss of generality that G is an edge-coloured digraph that uses only edge-colours $1,2, \ldots, k$. Let g be the homomorphism from G to Y defined by $g(v)=y$ for all $v \in V(G)$. It is trivial to check that there is an $f: G \rightarrow H$ such that $h \circ f=g$ if and only if $G \rightarrow H$. Therefore, $H-\mathrm{COL} \alpha H F P(H, h, Y)$.

On the other hand, given an instance G, g of $H F P(H, h, Y)$, we consider G as the corresponding instance of H-COL. Then $G \rightarrow H$ if and only there exists $f: G \rightarrow H$ such that $h \circ f=g$. Therefore, $\operatorname{HFP}(H, h, Y) \propto H$-colouring.

We are also able to use the HFP problem to construct polynomial algorithms for certain H -colouring problems.

Theorem 3.1.4 Let H and Y be edge-coloured digraphs and $h: H \rightarrow Y$ a homomorphism such that $\operatorname{HFP}(H, h, Y)$ is polynomial. Suppose for any edge-coloured directed graph G the set of homomorphisms from G to $Y,\{g: g: G \rightarrow Y\}$, can be construct in polynomial time. Then $\mathrm{H}-\mathrm{COL}$ is polynomial.

Proof. We produce a Turing reduction of H-COL to $H F P(H, h, Y)$. Let G be an instance of H-COL. Construct the set of homomorphisms of G to Y, called $\operatorname{Hom}(G, Y)$. Let the elements of $\operatorname{Hom}(G, Y)$ be $g_{1}, g_{2}, \ldots, g_{m}$. There must be only polynomially many of these homomorphism since the set can be constructed in polynomial time. We claim there exists an $i(1 \leq i \leq m)$ such that G, g_{i} is a YES instance of $H F P(H, h, Y)$ if and only if G is a YES instance of H-COL. On the one hand, the existence of such an i implies there exists $f: G \rightarrow H$ such that $h \circ f=g_{i}$. Trivially, G is a YES instance of H-COL. On the other hand, if G is a YES instance of H-COL, then there exists $f: G \rightarrow H$. The homomorphism $h \circ f: G \rightarrow Y$ must be g_{i} for some i. Hence, G, g_{i} is a YES instance of $\operatorname{HFP}(H, h, Y)$.

Given the above proposition and the fact that as yet no complete classification of \boldsymbol{H}-colouring for digraphs exists [2], it seems unlikely that we will be able to completely classify the complexity of $\operatorname{HFP}(H, h, Y)$ for all H, Y, and $h: H \rightarrow Y$. Therefore, we focus on particular restrictions of H, Y and h. We begin with a series of results when restrictions on H, h, and Y, give rise to $\operatorname{HFP}(H, h, Y)$ problems that are polynomial. The first case we examine is when h is a retraction.

Lemma 3.1.5 Let Y be a subgraph of an edge-coloured digraph H and let $h: H \rightarrow Y$ be a retraction. Then $\operatorname{HFP}(H, h, Y)$ is polynomial.

Proof. Let G, g be an instance of $\operatorname{HFP}(H, h, Y)$. The homomorphism $g: G \rightarrow Y$ is also a homomorphism of G to H since Y is a subgraph of H. Furthermore, $h \circ g=g$ since h is the identity map on Y. Therefore, any instance G, g is a YES instance and the problem is trivially solvable in polynomial time.

Corollary 3.1.6 Let Y be a subgraph of an edge-coloured digraph H and let $h: H \rightarrow$ Y be a retraction of H to Y followed by an automorphism of Y. Then $H F P(H, h, Y)$
is polynomial.

Proof. Let $h=\sigma \circ h^{\prime}$ where h^{\prime} is a retraction of H to Y and σ is an automorphism of Y. Given an instance G, g of $\operatorname{HFP}(H, h, Y)$, it is a YES instance if and only if there exists $f: G \rightarrow H$ such that $\left(\sigma \circ h^{\prime}\right) \circ f=g$. Since σ is an automorphism, it bas an inverse, which means the above condition is true if and only if $h^{\prime} \circ f=\sigma^{-1} \circ g$. Since $\sigma^{-1} \circ g$ is a homomorphism of G to Y, this last condition is true if and only if $G, \sigma^{-1} \circ g$ is a YES instance of $\operatorname{HFP}\left(H, h^{\prime}, Y\right)$.

Hence, G, g is a YES instance of $\operatorname{HFP}(H, h, Y)$ if and only if $G, \sigma^{-1} \circ g$ is a YES instance of $H F P\left(H, h^{\prime}, Y\right)$. We have $H F P(H, h, Y) \propto H F P\left(H, h^{\prime}, Y\right)$. By Lemma 3.1.5, $\operatorname{HFP}(H, h, Y)$ is polynomial.

Corollary 3.1.7 Let H and Y be edge-coloured digraphs such that Y is the core of H. Then for any homomorphism $h: H \rightarrow Y$, the problem $H F P(H, h, Y)$ is polynomial.

Proof. Since Y is the core of H, any $h: H \rightarrow Y$ must be a retraction followed by an automorphism of Y.

The following corollary concerns homomorphically full edge-coloured graphs. These are defined by the property that any homomorphic image is a retract. We discuss homomorphically full graphs in Chapter Eight, see also [7]. Since HFP $H, h, Y)$ is polynomial when h is a retraction, the following corollary is immediate.

Corollary 3.1.8 Let H be a homomorphically full edge-coloured digraph, let Y be any edge-coloured digraph and let $h: H \rightarrow Y$ be a homomorphism. Then $H F P(H, h, Y)$ is polynomial.

We have seen above that placing restrictions on h or on Y can result in a $H F P$ that is polynomial. In general, if no restrictions are placed on h or Y the problem is hard. We examine this in the next section.

3.2 Undirected graphs

In this section we restrict our attention to graphs (multiplicity one). We may assume for all $H F P(H, h, Y)$ problems, that the graph Y is connected. We prove the following main result.

Theorem 3.2.1 For each connected graph $Y, Y \notin\left\{P_{0}, P_{1}, P_{2}, P_{3}\right\}$, there exists a graph H and a homomorphism $h: H \rightarrow Y$ such that $H F P(H, h, Y)$ is NP-complete. For each graph $Y \in\left\{P_{0}, P_{1}, P_{2}, P_{3}\right\}$ and for all graphs H and all homomorphisms $h: H \rightarrow Y$, the problem $\operatorname{HFP}(H, h, Y)$ is polynomial.

Proof. First suppose Y is a graph and is not one of $\left\{P_{0}, P_{1}, P_{2}, P_{3}\right\}$. Depending on Y, we will choose a graph H and a homomorphism $h: H \rightarrow Y$ so that $H F P(H, h, Y)$ is NP-complete.

Case 1: Suppose Y contains a cycle. Let $C=c_{0} c_{1} \ldots c_{n-1}$ be a cycle in Y. Let H be the graph consisting of two cycles, of length $3 n$ and $4 n$ respectively, joined at a single vertex. Label the vertices in these two cycles with $v_{0} v_{1} v_{2} \ldots v_{3 n-1}$ and $u_{9} u_{1} u_{2} \ldots u_{4 n-1}$, where $v_{0}=u_{0}$. Let $h: H \rightarrow Y$ be the homomorpaisnc defined by:

$$
\left.\begin{array}{l}
h\left(v_{i}\right) \\
h\left(u_{i}\right)
\end{array}\right\}=c_{j} \text { where } i \equiv j \bmod n .
$$

Let I be a path of length n on vertices $p_{0} p_{1} \ldots p_{n}$ with $i=p_{0}$ and $j=p_{n}$. Define $t: I \rightarrow Y$ as follows:

$$
\begin{aligned}
& t\left(p_{i}\right)=c_{i} \text { for } 0 \leq i<n \\
& t\left(p_{n}\right)=c_{0}
\end{aligned}
$$

The result of the indicator construction with respect to (I, i, j, t) is $H^{\#}, Y^{\#}$. The digraph $H^{\#}$ consists of a directed three-cycle and a directed four-cycle joined at the vertex v_{0} (plus isolated vertices). In particular, the vertices of the three-cycle are $v_{0}, v_{n}, v_{2 n}$ and the vertices of the four-cycle are $v_{0}=u_{0}, u_{n}, u_{2 n}, u_{3 n}$. It is important to note that the choice of the homomorphism h, here and below, assures that $H^{\#}$ contains no other edges and in particular no loops. The digraph $Y^{\#}$ has a single arc, namely a loop on vertex c_{0}. Also the map $h(v)=c_{0}$ for all $v \in V\left(H^{\#}\right)$ is a homomorphism of $H^{\#}$ to $Y^{\#}$. By Proposition 3.1.3, we have $H F P\left(H^{\#}, h, Y^{\#}\right)$ is polynomially equivalent to $H^{\#}$-COL. In [2], it is shown that H-COL is NP-complete when H consists of two directed cycles joined at a single vertex (assuming H does not retract to a single cycle). Hence by [2], $H^{\#}-C O L$ is NP-complete and therefore $H F P(H, h, Y)$ is NP-complete.

Case 2: Suppose that Y contains a vertex of degree at least three. Let y be a vertex in Y with neighbours u, v, w. Let I be the path $p_{0} p_{1} p_{2} \ldots p_{6}$ with $i=p_{0}$ and $j=p_{6}$. Let $t: I \rightarrow Y$ be defined by:

$$
\begin{gathered}
t\left(p_{0}\right)=t\left(p_{2}\right)=t\left(p_{4}\right)=t\left(p_{6}\right)=y \\
t\left(p_{1}\right)=u \\
t\left(p_{3}\right)=v \\
t\left(p_{5}\right)=w
\end{gathered}
$$

We now proceed as above. Let H be the graph consisting of two cycles of lengths 18 and 24 joined at a single vertex. Let the first cycle have vertex-set $\left\{c_{0}, c_{1}, \ldots, c_{17}\right\}$ and the second have vertex-set $\left\{d_{0}, d_{1}, \ldots, d_{23}\right\}$, where $d_{0}=c_{0}$. Define $h: H \rightarrow Y$ by:

$$
h\left(c_{i}\right)=h\left(d_{i}\right)=\left\{\begin{array}{lll}
y & i \equiv 0,2,4 \quad(\bmod 6), \\
u & i \equiv 1 \quad(\bmod 6), \\
v & i \equiv 3 \quad(\bmod 6), \\
w & i \equiv 5 \quad(\bmod 6) .
\end{array}\right.
$$

The result of the indicator construction with respect to (I, i, j, t) is $H^{\#}$ and $Y^{\#}$. The digraph $H^{\#}$ consists of a directed three-cycle and a directed four-cycle joined at a single vertex. The graph $Y^{\#}$ has a loop on vertex y. The homomorphism $h: H^{\#} \rightarrow Y^{\#}$ defined by $h(z)=y$ for all $z \in V\left(H^{\#}\right)$ satisfies the condition of Proposition 3.1.3. Therefore, $H F P\left(H^{\#}, \dot{n}, Y^{\#}\right)$ is equivalent to $H^{\#}$-colouring. Again, this is NP-complete. Hence, $\operatorname{HFP}(H, h, Y)$ is NP-complete.

Case 3: Suppose Y is a path of length at least four. Label the first five vertices of Y with $0,1,2,3,4$. Let I be a path on 13 vertices, $p_{0}, p_{1}, \ldots, p_{12}$ with $i=p_{0}$ and $j=p_{12}$. Define a homomorphism $t: I \rightarrow Y$ so that the vertices of I have consecutively the images $0,1,2,1,2,3,4,3,2,3,2,1,0$. As above, H is a graph consisting of two cycles joined at a vertex. One cycle is constructed by taking three copies of I and identifying j of the first copy with i of the second, j of the second with i of the third, and j of the third with i of the first. The second cycle consists of four copies of I and is constructed similarly. Join the two cycles by identifying the vertex i in the first copies of I in each of the cycles. The homomorphism h is correspondingly constructed from the homomorphisms i of the individual copies of I. The result of the indicator construction with respect to (I, i, j, t) is $H^{\#}, Y^{\#}$, where $H^{\#}$ and $Y^{\#}$
are as above. By Proposition 3.1.3, $H F P(H, h, Y)$ is NP-complete.

If a connected Y does not contain a cycle or a vertex of degree at least three, it must be a path. If Y is not a path of length at least four, it must be one of $\left\{P_{0}, P_{1}, P_{2}, P_{3}\right\}$. Therefore, the three cases above prove the first part of the theorem. The second half of the theorem is proved below.

Hence, suppose that $Y \in\left\{P_{0}, P_{1}, P_{2}, P_{3}\right\}$. Let H be a graph. Recall that we can always assume H is connected. If $Y=P_{0}$ and $h: H \rightarrow Y$ is a homomorphism, then h is a retraction and by Lemma 3.1.5 $H F P(H, h, Y)$ is polynomial. If $Y=P_{1}$ and $h: H \rightarrow Y$ is a homomorphism, then we can conclude h is a retraction followed by an automorphism (and hence $\operatorname{HFP}(H, h, Y)$ is polynomial) unless h is not onto. If this is the case, then h must map H onto P_{0} and $H F P\left(H, h, P_{1}\right)$ is equivalent to $H F P\left(H, h, P_{0}\right)$ and hence also polynomial. If $Y=P_{2}$ and h is a homomorphism from H to Y, then again $\operatorname{HFP}(H, h, Y)$ is polynomial if h is onto, because h is a retraction followed by an automorphism; otherwise, h is not onto and $H F P(H, h, Y)$ is equivalent to $\operatorname{HFP}\left(H, h, P_{0}\right)$ or $H F P\left(H, h, P_{1}\right)$ and hence also polynomial.

Finally suppose Y is P_{3} and h is a homomorphism $h: H \rightarrow Y$. Let the vertex-set of Y be $\{0,1,2,3\}$. If h is not onto, then $H F P(H, h, Y)$ is equivalent to one of the three polynomial problems above. Hence, assume h is onto. Let $P=\left(v=p_{0}\right) p_{1} \ldots\left(p_{n}=u\right)$ be a shortest path in H from a vertex v, such that $h(v)=0$, to a vertex u, such that $h(u)=3$. Since P is a shortest path, no interior vertex of P is mapped to 0 or to 3 . The vertices in P have the consecutive images under $h: 0,1,2,1,2,1,2, \ldots, 1,2,3$. It is easy to check that there is a retraction r from H to P such that h or $=h$. Given an instance $G_{y} g$ of $\boldsymbol{H F P}(H, h, Y)$ we can construct a shortest path, say Q, between
u and v where the u and v are taken over all pairs u and v such that $g(u)=0$ and $g(v)=3$. This problem is the Shortest Pairs Problem and is polynomial [12]. Again it is easy to see there is a retraction t from G to Q such that g o $t=g$. Finally, G, g is a YES instance of $\operatorname{HFP}(H, h, Y)$ if and only if there exists $f: Q \rightarrow P$ such that $h \circ f=g$. This is true if and only if the length of Q is greater than or equal to the length of P.

Theorem 3.2.1 deals with graphs. However, the algorithm stated in the final case works for edge-coloured digraphs. This gives an immediate corollary.

Corollary 3.2.2 Let Y be an edge-coloured directed path of lengih 0, 1, 2, or 3. Then for all edge-coloured digraphs H and all homomorphisms $h: H \rightarrow Y$, the problem $\operatorname{HFP}(H, h, Y)$ is polynomial.

Using the above corollary and Theorem 3.1.4 we have a new class of H-colouring problems that are all polynomial.

Corollary 3.2.3 Let H be an edge-coloured digraph such that H admits a homomorphism to an edge-coloured directed path of length at most three. Then $H-C O L$ is polynomial.

Proof. Let Y be an edge-coloured directed path of length k, where $k \leq 3$, and let $h: H \rightarrow Y$ be a homomorphism. By the above corollary, $H F P(H, h, Y)$ is polynomial. It is easy to check that given any edge-coloured digraph G, there exist at most k homomorphisms from G to Y. Since Y is a fixed path, k is a constant and therefore the number of homomorphisms of G to Y is bounded by the constant polynomial k. Using Theorem 3.1.4, H-COL is polynomial.

3.3 HFP as Edge-Coloured H-colouring

In this section we again consider the HFP problem for graphs, although there is a natural generalization to edge-coloured graphs. Consider $H F P(H, h, Y)$ and an instance G, g of it. We now present a construction that transforms the graphs G, H and the homomorphisms g, h into edge-coloured digraphs G_{c}, H_{ε}, such that G, g is a YES instance of $H F P(H, h, Y)$ if and only if G_{c} admits a homomorphism to H_{c}.

Suppose Y and H are graphs and $h: H \rightarrow Y$ is a homomorphism. Let $V(Y)=$ $\left\{y_{0}, y_{1}, \ldots, y_{k}\right\}$ and let C be the set of all unordered pairs of elements of $V(Y)$; the set C is the set of edge-colours of our new digraph. We construct the edge-coloured digraph H_{c} as follows:

- $V\left(H_{c}\right)=V(H)$;
- for each edge $u v$ of H where $h(u)=y_{i}$ and $h(v)=y_{j}$ and $i<j$, the arc $u v$ is an edge of colour $\left\{y_{i}, y_{j}\right\}$ in H_{c}.

Let G, H, and Y be graphs and let $h: H \rightarrow Y$ and $g: G \rightarrow Y$ be homomorphisms. It is easy to check that G_{c} admits a homomorphism to H_{c} if and only there exists a homomorphism $f: G \rightarrow H$ such that $h \circ f=g$. That is, if and only if G, g is a YES instance of $H F P(H, h, Y)$. This gives the following proposition.

Proposition 3.3.1 Let $H_{*} Y, h$, and H_{c} be defined as above. Then $H F P(H, h, Y)$ a H_{c} - COL .

Two immediate corollaries to the proposition are given below.

Corollary 3.3.2 Let H be a path, Y be a graph and $h: H \rightarrow Y$ a homomorphism. Then $H P P(H, h, Y)$ is polynomial.

Proof The edge-coloured digraph H_{c} an oriented path. Testing for the existence of a homomorphism to an oriented path is polynomial, [14], i.e. H_{c} - COL is polynomial.

Corollary 3.3.3 Let H and Y be graphs and $h: H \rightarrow Y$ a homomorphism. Further suppose for all $w \in V(H)$, h is one-to-one on the neighbourtood of u. Then HFP(H,h,Y) is polynomial.

Proof Since h is onetoone on the neighbourhood of each vertex of H, H_{c} has at most one arc of each colour incident with any given vertex. Therefore, by the Forcing Lemma (Lemma 2.2.3), $H_{z}-\mathrm{COL}$ is polynomial and hence $H F P(H, h, Y)$ is polynomial.

3.4 The Two Homomorphism Problem

We now examine a problem similar to HFP. Again we restrict our attention to mulsiplicity one. In the spirit of the HFP we consider the problem when Y is fixed and $H=G$ is part of the instance. Formally,

Let Y be a fixed graph:
Two Homomorphism Problem THP(Y).
INSTANCE: A graph H and a two homomorphisms $h_{1}: H \rightarrow Y$ and $h_{2}:$ $H \rightarrow Y$.

QUESTION: Does there exist a homomorphism $f: H \rightarrow H$ such that $h_{1} \circ f=$ H_{2} ?

In the proof of Theorem 3.2.1 the result of the indicator construction, H^{\ddagger}, is always a directed three-cycle joined at a vertex to a directed four-cycle. In H, these cycles correspond to three copies of the indicator I and four copies of the indicator I. If instead the graph H consisted of four copies of I and six copies of I, the result of the indicator construction $H^{\#}$ would be a four-cycle joined at a vertex to a six-cycle. Therefore, the " 4 -cycle-6-cycle" version of the proof gives the following corollary.

Corollary 3.4.1 Let Y is be a connected graph and suppose that $Y \notin\left\{P_{0}, P_{1}, P_{2}, P_{3}\right\}$. Then there exists a bipartite graph H and a homomorphism $h: H \rightarrow Y$ such that $H F P(H, h, Y)$ is NP-complete.

We now state our main result for the Two Homomorphism Problem.

Theorem 3.4.2 Let Y a connected graph and $Y \notin\left\{P_{0}, P_{1}, P_{2}, P_{3}\right\}$. Then $T H P(Y)$ is NP-complete.

Proof. By Corollary 3.4.1, there exists a bipartite graph H and a homomorphism $h: H \rightarrow Y$ such that $H F P(H, h, Y)$ is NP-complete. We find a polynomial transformation of $H F P(H, h, Y)$ to $T H P(Y)$. Let G, g be an instance of $H F P(H, h, Y)$.

The graph G must be bipartite in order to admit a homomorphism to H. Therefore, if G is not bipartite, then G, g is a NO instance of $H F P(H, h, Y)$. Thus, assume G is bipartite. Also, to avoid the trivial case, assume G contains at least one edge.

Let Hoyn be an edge of Y. We begin by examining two special cases. First, if $g(G)$ is goy, then G, g is a YES instance of $H F P(H, h, Y)$ if and only if H contains an edge $u v$ such that $h(u)=5_{0}$ and $h(v)=y_{1}$ Second, if $h(H)$ is $y_{0} y_{1}$, then G, g is a YES
instance of $\operatorname{HFP}(H, h, Y)$ if and only if $g(G)$ is the edge $y_{0} y_{1}$. Therefore, assume neither $g(G)$ nor $h(H)$ is $y_{0} y_{1}$.

Let H^{\prime} be the union of G and H. Let f_{1} be the homomorphism that maps H to $y_{0} y_{1}$ and is equal to g on G. Similarly, let f_{2} be the homomorphism that maps G to $y_{0} y_{1}$ and is equal to h on H. The instance H^{\prime}, f_{1}, f_{2} is a YES instance of $T H P(Y)$ if and only if G, g is a YES instance of $\bar{H} F P(H, h, Y)$.

Suppose G, g is a YES instance of $H F P(H, h, Y)$. This implies there is $f: G \rightarrow H$ such that $h \circ f=g$. Let t be the homomorphism H^{\prime} to H^{\prime} defined by:

$$
t(u)= \begin{cases}f(u) & \text { if } u \in V(G) \\ f_{1}(u) & \text { if } u \in V(H)\end{cases}
$$

It is easy to check that $f_{2} \circ t=f_{1}$.

On the other hand, suppose H^{\prime}, f_{1}, f_{2} is a YES instance of $T H P(Y)$. Let $f: H^{\prime} \rightarrow$ H^{\prime} be a homomorphism such that $f_{2} \circ f=f_{1}$. Consider f restricted to G. This is a homomorphism from G to H^{\prime}. Since we can assume G is connected and H^{\prime} consists of the connected components G and H, either $f(G)$ is a subgraph of G or $f(G)$ is a subgraph of H. Since $f_{1}(G)$ is not $y_{0} y_{1}$ and $f_{2}(G)$ is $y_{0} y_{1}$, it must be the case that $f(G)$ is contained in H. By restricting f to G, f_{1} to G and f_{2} to H, we have $h \circ f=g$. Therefore, G, g is a YES instance of $H F P(H, h, Y)$.

3.5 The Bipartite Decomposition Lemma

The next technique allows us to take a given H-colouring problem and split it into to two smaller problems $\mathrm{H}_{1}-\mathrm{COL}$ and $\mathrm{H}_{2} \mathrm{COL}$. The complexity of these problems
determines the complexity of H-COL. Suppose H is an edge-coloured graph which is a core and blue is an edge-colour of H. Further suppose that the blue spanning subgraph is a complete bipartite graph with bipartition (A, B). Moreover, suppose that for all $u \in A$ and $v \in B, u v$ is not an edge of any colour except blue. Let H_{1} be the induced subgraph of H with vertex-set A and H_{2} be the induced subgraph of H with vertex-set B. We have the following lemma.

Lemma 3.5.1 Let H, H_{1}, and H_{2} be as above. If $H_{1}-C O L$ or $H_{2}-C O L$ is $N P$ complete, then $\mathrm{H}-\mathrm{COL}$ is NP -complete. If both $\mathrm{H}_{1}-\mathrm{COL}$ and H_{2}-COL are polynomial, then H -COL is polynomial.

Proof. We prove the former statement first. Suppose H_{1}-COL is NP-complete. Let h_{1} be a vertex in H_{1}. Let J be a blue path of length two with j at one end and k_{1} at the other. The result of the subindicator construction on H with respect to J, j, k_{1} is H_{1}. By assumption this problem is NP-complete and hence H-COL is NP-complete. A similar argument works when H_{2}-COL is NP-complete.

Now suppose both H_{1}-COL and H_{2}-COL are polynomial. Let C be the congruence with two classes $S_{1}=V\left(H_{1}\right)=A$ and $S_{2}=V\left(H_{2}\right)=B$. Let H^{\prime} be the quotient of this congruence and let h be the homomorphism from H to H^{\prime} induced by the congruence. It is easy to check that $\operatorname{HFP}\left(H, h, H^{\prime}\right)$ is polynomial. Furthermore, H^{\prime} has the property that each vertex is incident with one blue edge and loops of several colours, but is not incident with a blue loop. Therefore, H^{\prime} satisfies the hypothesis of Lemma 2.2.3. Hence, by Theorem 3.1.4, H - COL is polynomial.

In the first part of the proof, we did not use the fact that only blue edges pass from H_{1} to H_{2}. That is, the sub-indicator construction works whenever the blue edges
induce a complete bipartite graph regardless of the other edges between H_{1} and H_{2}. Hence, we have the following corollary.

Corollary 3.5.2 Let H be an edge-coloured graph such that the blue spanning subgraph is a complete bipartite graph with bipartition (A, B). Let H_{1} (resp. H_{2}) be the subgraph induced by A (resp. B). If $H_{1}-C O L$ or $H_{2}-C O L$ is $N P$-complete, then H-COL is NP-complete.

Chapter 4

Bipartite Two-Edge-Coloured Graphs

4.1 Equivalence to Directed Graphs

The H-colouring problems for two-edge-coloured bipartite graphs and for bipartite digraphs turn out to be closely related. In this section we show how to construct a bipartite digraph from a given bipartite two-edge-coloured graph and vice versa so that the corresponding H-colouring problems are polynomially equivalent. In this chapter we make the assumption that all edge-coloured graphs and digraphs are connected.

Let H be a two-edge-coloured graph. Define the converse of H, written H^{R}, to be the edge-coloured graph on vertex $V(H)$, where $E_{1}(H)=E_{2}\left(H^{R}\right)$ and $E_{2}(H)=$ $E_{1}\left(H^{R}\right)$. That is, H^{R} is obtained from H by interchanging red and blue edges. Let D be a directed graph. Define the converse of D, written D^{R}, to be the directed graph on vertex-set $V(D)$ where $u v \in E(D)$ if and only if $v u \in E\left(D^{R}\right)$. The following
proposition is straightforward and is presented without proof.

Proposition 4.1.1 Suppose G and H are two-edge-coloured graphs. Then $G \rightarrow H$ if and only if $G^{R} \rightarrow H^{R}$.

Similarly we can show for the following for digraphs.

Proposition 4.1.2 Suppose C and D are digraphs. Then $C \rightarrow D$ if and only if $C^{R} \rightarrow D^{R}$.

We now explain how to construct a bipartite digraph from a bipartite two-edgecoloured graph. Let H be a bipartite edge-coloured graph and (H_{0}, H_{1}) a bipartition of H. Define $\operatorname{Dir}\left(H, H_{0}, H_{1}\right)$ to be the directed graph D as follows:

- Let $V(D)=V(H)$,
- let $u v \in E(D)$ for all $u \in H_{0}, v \in H_{1}$, and $u v \in E_{1}(H)$,
- let $v u \in E(D)$ for all $u \in H_{0}, v \in H_{1}$, and $u v \in E_{2}(H)$.

Briefly, D is the digraph obtained by replacing each blue edge in H from H_{0} to H_{1} by a forward arc and each red edge in H from H_{0} to H_{1} by a backward arc. Note that if $\left(H_{0}, H_{1}\right)$ is a bipartition of H, then $\left(H_{1}, H_{0}\right)$ is also a bipartition of H. Moreover, if $\left(H_{0}, H_{1}\right)$ is a bipartition of H, then it is also a bipartition of $\operatorname{Dir}\left(H, H_{0}, H_{1}\right)$. The following proposition is straightforward.

Proposition 4.1.3 Let H be a bipartutut two-edge-coloured graph. Suppose that $\left(H_{0}, H_{1}\right)$ is a bipartition of H and $D=\operatorname{Dir}\left(H, H_{0}, H_{1}\right)$.Then $D^{R}=\operatorname{Dir}\left(H, H_{1}, H_{0}\right)$.

We also have a construction to construct a bipartite edge-coloured graph from a bipartite digraph. Let D be a bipartite digraph D and (D_{0}, D_{1}) a bipartition of D. Define $\operatorname{ECG}\left(D, D_{0}, D_{1}\right)$ to be the edge-coloured graph H as follows:

- Let $V(H)=V(D)$,
- let $u v \in E_{1}(H)$ for all $u \in D_{0}, v \in D_{1}$, and $u v \in E(D)$,
- let $u v \in E_{2}(H)$ for all $u \in D_{0}, v \in D_{1}$, and $v u \in E(D)$.

Briefly, H is the edge-coloured graph obtained by replacing each arc from D_{0} to D_{1} by a blue edge and each arc from D_{1} to D_{0} by a red edge. We now present the analogous result to Proposition 4.1.3.

Proposition 4.1.4 Suppose D is a digraph. Suppose that $\left(D_{0}, D_{1}\right)$ is a bipartition of D and $H=\operatorname{ECG}\left(D, D_{\mathbf{0}}, D_{1}\right)$. Then $H^{R}=\operatorname{ECG}\left(D, D_{1}, D_{0}\right)$.

The above constructions preserve edge structure in some sense and hence preserve homomorphisms. This is described in the following theorem.

Theorem 4.1.5 Let G and H be bipartite two-edge-coloured graphs with bipartitions $\left(G_{0}, G_{1}\right)$ and $\left(H_{0}, H_{1}\right)$ respectively. Let $C=\operatorname{Dir}\left(G, G_{0}, G_{1}\right)$ and $D=\operatorname{Dir}\left(D, H_{0}, H_{1}\right)$. Then $G \rightarrow H$ or $G^{R} \rightarrow H$ if and only if $C \rightarrow D$ or $C^{R} \rightarrow D$.

Proof Suppose $G \rightarrow H$ or $G^{R} \rightarrow H$. We show $C \rightarrow D$ or $C^{R} \rightarrow D$. Assume there is a homomorphism $f: G \rightarrow H$. The case $G^{R} \rightarrow H$ is similar. Either $f\left(G_{0}\right) \subseteq H_{0}$ and $f\left(G_{1}\right) \subseteq H_{1}$ or $f\left(G_{0}\right) \subseteq H_{1}$ and $f\left(G_{1}\right) \subseteq H_{0}$.

First, suppose the former case holds. To see that $f: C \rightarrow D$ is a homomorphism, let $u v \in E(C)$. If $u \in C_{0}$ and $v \in C_{1}$, then $u v \in E_{1}(G)$. Hence $f(u) f(v) \in E_{1}(H)$. This implies $f(u) f(v) \in E(D)$, since $f(u) \in H_{0}$ and $f(v) \in H_{1}$. On the other hand, if $u \in C_{1}$ and $v \in C_{0}$, then $u v \in E_{2}(G)$ which implies $f(u) f(v) \in E_{2}(H)$ and $f(u) f(v) \in E(D)$. In both cases $f(u) f(v) \in E(D)$.

Second, suppose the latter case hoids. Then $f: C \rightarrow D^{R}$ is a homomorphism. Let $u v \in E(C)$. If $u \in C_{0}$ and $v \in C_{1}$, then $u v \in E_{1}(G)$. Hence $f(u) f(v) \in E_{1}(H)$. We are now assuming $f(u) \in H_{1}$ and $f(v) \in H_{0}$. Hence, $f(v) f(u) \in E(D)$ and $f(u) f(v) \in E\left(D^{R}\right)$. On the other hand, if $u \in C_{1}$ and $v \in C_{0}$, then $u v \in E_{2}(G)$ which implies $f(u) f(v) \in E_{2}(H)$. Therefore, $f(v) f(u) \in E(D)$ and $f(u) f(v) \in E\left(D^{R}\right)$. In both cases $f(u) f(v) \in E\left(D^{R}\right)$.

Thus we can conclude $C \rightarrow D$ or $C \rightarrow D^{R}$. The proof that $C \rightarrow D$ or $C \rightarrow D^{R}$ implies $G \rightarrow H$ or $G \rightarrow H^{R}$ is similar.

The above theorem suggests that for H a bipartite two-edge-coloured graph and D a bipartite digraph, H-COL and D-COL are polynomially equivalent. This is in fact proved below. Since the edge-coloured graph $H=E C G\left(\operatorname{Dir}\left(H, H_{0}, H_{1}\right), H_{0}, H_{1}\right)$ and the digraph $D=\operatorname{Dir}\left(\operatorname{ECG}\left(D, D_{0}, D_{1}\right), D_{0}, D_{1}\right)$, the following theorem can be stated in two versions. Namely, we can consider D to be constructed from H or H to be constructed from D. By the previous observation they are equivalent.

Theorem 4.1.6 Suppose \vec{H} is a bipartite two-edge-coloured graph. Suppose that $\left(H_{0}, H_{1}\right)$ is a bipartition of H and $D=\operatorname{Dit}\left(H, H_{0}, H_{1}\right)$. Then $H-C O L \alpha_{T} D-C O L$ and D-COL $\alpha_{T} \mathrm{H}-\mathrm{COL}$.

Proof Let G be an instance of H-COL. Choose a specific vertex v of G. Let $h_{1}, h_{2}, \ldots, h_{k}$ be the vertices of H. Define G_{i} as the edge-coloured graph obtained from the disjoint union of G and H, when vertex $v \in V(G)$ and vertex $h_{i} \in V(H)$ are identified.

Claim 4.1.6.1 The edge-coloured graph G admits a homomorphism to H if and only if for some i the edge-coloured graph G_{i} admits a homomorphism to H.

Suppose $g: G_{i} \rightarrow H$ is a homomorphism. Since G is a subgraph of G_{i}, the existence of g implies the existence of $f: G \rightarrow H$. On the other hand, suppose $f: G \rightarrow H$ is a homomorphism and $f(v)=h_{i}$. Define g as:

$$
g(u)=\left\{\begin{array}{cl}
f(u) & \text { if } u \in V(G) \\
u & \text { if } u \in V(H)
\end{array}\right.
$$

The verification that g is a homomorphism from G_{i} to H is immediate. The claim follows.

A second observation about the sequence G_{i} is given in the following claim.
Claim 4.1.6.2 Suppose $G_{i} \rightarrow H^{R}$. Then $G_{i} \rightarrow H$.

Suppose $f: G_{i} \rightarrow H^{R}$ is a homomorphism. Since H is a subgraph of G_{i}, the existence of f implies $H \rightarrow H^{R}$. By Proposition 4.1.1 it must be the case that there exists a homomorphism $h: H^{R} \rightarrow\left(H^{R}\right)^{R}$. However, $\left(H^{R}\right)^{R}$ is simply H. Therefore $\hbar \circ f$ is a homomorphism from G_{i} to H. This proves the claim.

An immediate consequence of this claim is that:

$$
G_{i} \rightarrow H \text { if and only if } G_{i} \rightarrow H \text { or } G_{i} \rightarrow H^{R}
$$

Combining this observation with the first claim we see that:

$$
G \rightarrow H \text { if and only if there exists } i \text { such that } G_{i} \rightarrow H \text { or } G_{i} \rightarrow H^{R}
$$

For each i define $C_{i}=\operatorname{Dir}\left(G_{i}, A, B\right)$ where (A, B) is a bipartition of G_{i}. Recall that H is bipartite and any edge-coloured graph that maps to H must also be bipartite; hence, G_{i} is bipartite. Since $C_{i} \rightarrow D^{R}$ if and only if $C_{i}^{R} \rightarrow D$, the following is true:

$$
C_{i} \rightarrow D \text { or } C_{i}^{R} \rightarrow D \text { if and only if } C_{i} \rightarrow D \text { or } C_{i} \rightarrow D^{R}
$$

Combining these observations with Theorem 4.1.5 we have:

$$
\begin{aligned}
G \rightarrow H & \Leftrightarrow \text { there exits } i \text { such that } G_{i} \rightarrow H \\
& \Leftrightarrow \text { there exits } i \text { such that } G_{i} \rightarrow H \text { or } G_{i} \rightarrow H^{R} \\
& \Leftrightarrow \text { there exits } i \text { such that } C_{i} \rightarrow D \text { or } C_{i} \rightarrow D^{R} \\
& \Leftrightarrow \text { there exits } i \text { such that } C_{i} \rightarrow D \text { or } C_{i}^{R} \rightarrow D
\end{aligned}
$$

This final expression can be evaluated as it is $2 k$ instances of D-COL. Hence H-COL $\alpha_{T} D$-COL. The converse is proved is a similar way.

4.2 Consequences

The following list of propositions follows from Theorem 4.1.6 and the literature on H-COL for digraphs.

In [14] the authors show that H-COL is polynonial for oriented paths; however, there exists an oriented tree on 288 vertices such that H-COL is NP-complete. This
implies that H-COL is polynomial for two-edge-coloured paths. It also implies the existence of a two-edge-coloured tree for which H-COL is NP-hard. In this thesis we present a two-edge-coloured tree on 98 vertices for which H-COL is NP-complete; moreover, the tree is structurally simple in that it contains a unique vertex of degree greater than two. This provides an oriented tree, smaller and simpler, than the tree in [14].

In [2] the authors show that for complete bipartite digraphs, the H-COL problem is NP-hard if H contains two directed cycles and is polynomial otherwise. This implies the following proposition.

Proposition 4.2.1 Let H be a two-edge-coloured complete bipartite graph. If H contains two cycles whose edges alternate red and blue, then H-COL is NP-hard. Otherwise, $\mathrm{H}-\mathrm{COL}$ is polynomial.

The final observations involve cycles. An even length oriented cycle can be transformed into an even length two-edge-coloured cycle and vice versa. In [30] and [15] the authors have independently shown for any oriented cycle, C, containing more forward arcs than backward arcs, C-COL is polynomial. They also show there exists oriented cycles for which C-COL is NP-complete; these cycles must have the same number of forward arcs and backward arcs and therefore have even length. The implications for edge-coloured graphs are the existence of polynomial algorithms for some two-edgecoloured cycles and the existence of NP-hard two-edge-coloured bipartite cycles. This is further discussed in Chapter Six.

Chapter 5

Path and Tree Colourings

5.1 Path Colourings

In this section we study the complexity of H-COL when H is a fixed, edge-coloured path. We present a polynomial algorithm to solve this problem. Recall that $G \rightarrow H$ if and only if $G \rightarrow G \times H$ (Lemma 1.1.2). We shall give an algorithm to decide whether or not $G \rightarrow G \times H$; the idea of our algorithm is similar to the algorithm for the uncoloured case, see [14]. In this chapter we restrict our attention to loop-free edge-coloured graphs; however, we put no restriction on the number of edge-colours.

For this entire section assume all edge-coloured graphs G and H are bipartite since we ultimately wisk to solve H-COL where H is a path and G is an instance of the problem. Note that if H is a path and G is not bipartite, we can answer NO to H-COL, since any preimage of a path must be bipartite. We begin with a series of lemmas specific to bipartite edge-coloured graphs.

Lemma 5.1.1 Let G and H be bipartite edge-coloured graphs and $\left(g_{1}, h_{1}\right)\left(g_{2}, h_{2}\right)$ an edge of $G \times H$. Then $\left(g_{2}, h_{1}\right)\left(g_{1}, h_{2}\right)$ is also an edge of $G \times H$ and these two edges lie in different components of $G \times H$.

Proof. Let $\left(G_{1}, G_{2}\right)$ (resp. $\left(H_{1}, H_{2}\right)$) be a partition of the vertices of G (resp. H) into two independent sets.

Let $\left(g_{1}, h_{1}\right)\left(g_{2}, h_{2}\right) \in E_{i}(G \times H)$ for some i. Observe that $g_{1} g_{2} \in E_{i}(G)$ and $h_{1} h_{2} \in$ $E_{i}(H)$; hence, by the definition of $G \times H,\left(g_{2}, h_{1}\right)\left(g_{1}, h_{2}\right)$ is also an edge of $G \times H$. Furthermore, g_{1} and g_{2} must be in different parts of the partition of G and similarly h_{1} and h_{2} must be different parts of the partition of H. All edges in $G \times H$ either have one end in $G_{1} \times H_{i}$ and the other end in $G_{2} \times H_{2}$ or have one end in $G_{1} \times H_{2}$ and the other end in $G_{2} \times H_{1}$. Therefore, $\left(g_{1}, h_{1}\right)\left(g_{2}, h_{2}\right)$ and $\left(g_{1}, h_{2}\right)\left(g_{2}, h_{1}\right)$ are in different components of $G \times H$.

Corollary 5.1.2 If $G \times H$ is not a single vertex, then it has at least two components.

Note it is possible to have more than two components in $G \times H$ even when G and H are connected edge-coloured graphs as shown in Figure 5.1. This differs from (classical) graphs. (See Proposition 1 [28].)

The algorithm in [14] solves the H-COL problem in polynomial time when H is an oriented (uncoloured) path. We present a similar algorithm for the case when H is an edge-coloured path. However, the algorithm in [14] requires that the target graph H have the so-called X property. The edge-coloured graphs we study do not have the \underline{X} property. Instead we use our lemmas to show that "crossing" edges in $G \times H$ are in different components. That is, each component of $G \times H$ has the \underline{X} property. Our

Figure 5.1: A prodict of two connected, edge-coloured graphs with five components.
result can also be derived using the notion of C_{k}-extension of the X property found in [14].

We now assume H is an edge-coloured path. Let $n_{g}=|V(G)|$ and $n_{h}=|V(H)|$. For the following we will assume the vertices of H have been labeled with $\left\{0,1,2, \ldots, n_{h}-\right.$ 1) so that $i(i+1) \in E(H)$ for $0 \leq i \leq n_{n}-2$. For convenience we will arbitrarily label $V(G)$ with $\left\{0,1,2, \ldots, n_{s}-1\right\}$.

Lemma 5.1.3 Let $\left(g_{1}, h_{1}\right)\left(g_{2}, h_{2}\right)$ and $\left(g_{1}, h_{3}\right)\left(g_{2}, h_{4}\right)$ be fro distinct edges in the same component of $G \times H$, then $\left(h_{1} \leq h_{3}\right.$ and $\left.h_{2} \leq h_{4}\right)$ or $\left(h_{1} \geq h_{3}\right.$ and $\left.h_{2} \geq h_{4}\right)$.

Proof. We can assume wittont loss of generality that $h_{1} \leq h_{7}$. Since H is a path and $h_{1} h_{2}$ is an edge of $H, h_{2}=h_{1}+1$. Suppose $h_{3} \leq h_{4}$. Again, since H is a path, $h_{4}=h_{3}+1$. $\mathrm{H} h_{1} \leq h_{a_{2}}$, then $h_{2} \leq h_{4-}$ if $h_{3} \leq h_{1}$, then $h_{n} \leq h_{2}$. In either case the result holds. Now suppose $h_{3} \geq h_{4}$, i.e. $h_{3}=h_{4}+1$ If $h_{3} \leq h_{1}$ or $h_{4} \geq h_{2}$, then the result is true. Hence ${ }_{\text {t }}$ the only way for the lemma to fail is if $h_{3}>h_{1}$ and $h_{4}<h_{2}$. This implies $h_{4}=h_{1}$ and $h_{3}=h_{2}$. By Lemma 5.1 .1 these edges are in

Figure 5.2: A component of $G \times H$ with crossing edges
different components contrary to our assumption. The resuit follows.

Thus if we examine the depiction of $G \times H$ (with the natural ordering on G and $H)$, the edges between any two rows in some component of $G \times H$ have the property that no two edges "cross". Observe if H is a tree this may not be the case even with only one colour, as demonstrated in Figure 5.2. Note only one component of $G \times H$ is drawn. Here \tilde{F} is the tree while G is a single edge.

5.2 The Path Colouring Algorithm

In this section we assume again that H is an edgecoloured path. We describe a polynomial time algorithm for \boldsymbol{H}-COL. We may also assume that G is bipartite and connected. If G is not connected we can apply the algorithm en cach component of G; if G is not bipartite, then $G \neq H$. For two edge-colours we know H-COL is polynomial by the construction in Chapter Four and the algorithm for oriented paths in [14].

Define a homomorphism $f: G \rightarrow G \times H$ to be G-fixed if it has the property that for each $g \in G, f(g)=(g, h)$ for some $h \in H$. We know from Corollary 1.1.4 that if $G \rightarrow H$, then there is a one to one homomorphism, ϕ, from G into some component W of $G \times H$. Moreover, this homomorphism ϕ can always be chosen to be G-fixed. Let W be a component of $G \times H$. We denote the set of homomorphisms $G \rightarrow W$ by Hom(G, W).

Label the vertices of H with $\{0,1,2, \ldots|V(H)|-1\}$. Let W be a component of $G \times H$. We now define a partial order on the G-fixed elements of $H o m(G, W)$. Given a G-fixed element $f_{1} \in H o m(G, W)$, define f_{1}^{f} to be the homomorphism from G to H obtained by composing f_{1} with the projection map $G \times H \rightarrow H$. That is, $f_{1}(g)=\left(g, f_{1}^{H}(g)\right)$ for all $g \in V(G)$. Let f_{1} and f_{2} be two G-fixed elements of $\operatorname{Hom}(G, W)$. Define \leq_{H} by $f_{1} \leq_{H} f_{2}$ if $f_{1}^{H}(g) \leq f_{2}^{H}(g)$ for all $g \in V(G)$. (Since H is a totally ordered set, this ordering is well-defined.)

Lemma 5.2.1 Let H be a fixed edge-coloured path and G a bipartite edge-coloured groph. For each component W of $G \times H_{z}$ if the set $H o m(G, W)$ is not empty, then Hom (G, W) contains at least one G-fized homomorphism. Moreover, the set of G fixed homomorphisms in Homn (G, W) has a minimum element with respect to \leq_{H}.

Proof. Let W be a component of $G \times H$ and suppose that $H o m(G, W)$ contains at least one element. By composition with the homomorphism $W \rightarrow H$, we conclude $G \rightarrow H$. By Corollary 1.1.3, there exists a G-fixed homomorphism $\phi: G \rightarrow W$. If ϕ is the only such element in $H o n(G, W)$, then it is minimum. Suppose $H o m(G, W)$ contains at least two G-fixed elements, say f_{1} and f_{2}. Let $f_{3}(g)=\left(g, \min \left\{f_{1}^{H}(g), f_{2}^{H}(g)\right\}\right)$ for all $g \in V(G)$. This minimum is well-defined since $V(H)$ is a totally ordered set.

Claim The mapping $f_{3}: G \rightarrow W$ is a homomorphism.

Suppose $g_{1} g_{2} \in E_{i}(G)$. The pair $f_{3}\left(g_{1}\right) f_{3}\left(g_{2}\right)$ is (by definition of f_{3}) the pair $\left(g_{1}, \min \left\{f_{1}^{H}\left(g_{1}\right), f_{2}^{H}\left(g_{1}\right)\right]\right)\left(g_{2}, \min \left\{f_{1}^{H}\left(g_{2}\right), f_{2}^{H}\left(g_{2}\right)\right\}\right)$.

Since f_{1} and f_{2} are homomorphisms, $f_{1}\left(g_{1}\right) f_{1}\left(g_{2}\right)$ and $f_{2}\left(g_{1}\right) f_{2}\left(g_{2}\right)$ are each edges in W. By Lemma 5.1.3, 旗 must be the case that $\left(f_{1}^{H}\left(g_{1}\right) \leq f_{2}^{H}\left(g_{1}\right)\right.$ and $\left.f_{1}^{H}\left(g_{2}\right) \leq f_{2}^{H}\left(g_{2}\right)\right)$ or $\left(f_{1}^{H}\left(g_{1}\right) \geq f_{2}^{H}\left(g_{1}\right)\right.$ and $\left.f_{1}^{H}\left(g_{2}\right) \geq f_{2}^{H}\left(g_{2}\right)\right)$. In the first case $f_{3}\left(g_{1}\right)=f_{1}\left(g_{1}\right)$ and $f_{3}\left(g_{2}\right)=f_{1}\left(g_{2}\right)$. In the second case $f_{3}\left(g_{1}\right)=f_{2}\left(g_{1}\right)$ and $f_{3}\left(g_{2}\right)=f_{2}\left(g_{2}\right)$. Hence, $f_{3}\left(g_{1}\right) f_{3}\left(g_{2}\right)$ is an edge in W. This establishes the claim.

We conclude that the set of G-fixed homomorphisms in $\operatorname{Hom}(G, W)$ must have a minimum element.

Our aim is to describe an algorithm that finds a minimum G-fixed homomorphism from G into a connected component of $G \times H$ and thereby solves $H \cdot C O L$ in view of Corollary 1.1.4. We have two basic structures. Firstly, \bar{f} is a mapping from $V(G)$ to $V(G \times H)$, which is not necessarily a homomorphism. Secondly, C is a subset of $E_{1}(G) \cup E_{2}(G) \cup \cdots \cup E_{k}(G)$. After chocsing a component W of $G * H$, we have the following two invariants which are true throughout the algorithm.
(i) If $H o m(G, W)$ is not empty, then $f \leq_{H} f$ for all G-fixed $f \in H o m(G, W)$.
(ii) For all $\alpha \in\{1,2, \ldots, k\}$, if $g_{1} g_{2}$ is an edge in $E_{s}(G) \backslash \mathcal{C}$, then $\tilde{f}\left(g_{1}\right) \tilde{f}\left(g_{2}\right)$ is an edge of $E_{a}(W)$.

We are now ready to describe the Pabh Colouring Algorithm.

1 Label the components of $G \times H$ with $W_{1}, W_{2, \ldots,} W_{w}$

2 For $m=1$ tow do
2.1 Set $\tilde{f}(g, 0)=(g, 0)$ for all $g \in V(G)$ and $\mathcal{C}=E_{1}(G) \cup E_{2}(G) \cup \cdots \cup E_{k}(G)$ and nalid_map $=$ true.
2.2 While $(\mathcal{C} \neq 0$) and ralidmap do
2.2.1 Choose an edge $g_{1} g_{2} \in \mathcal{C}$ of colour α.
2.2.2 Choose the minimum (i, j) (coordinatewise) such that $\left(g_{i}, i\right)\left(g_{2}, j\right) \in$ $E_{c}\left(W_{m}\right)$ and $\tilde{f}^{H}\left(g_{1}\right) \leq i$ and $\tilde{f}^{H}\left(g_{2}\right) \leq j$. If no such (i, j) exists, then valid_map $=$ false.
2.2.3 Else (Update the Colouring).

- If $f\left(g_{1}\right)=\left(g_{1}, i\right)$ and $\tilde{f}\left(g_{2}\right)=\left(g_{2}, j\right)$, then continue.
- If $\tilde{f}\left(g_{1}\right) \neq\left(g_{1}, i\right)$ and $\tilde{f}\left(g_{2}\right)=\left(g_{2}, j\right)$, then put all edges incident with g_{11} into \mathcal{C}.
- If $\tilde{f}\left(g_{1}\right)=\left(g_{1}, i\right)$ and $\tilde{f}\left(g_{2}\right) \neq\left(g_{2}, j\right)$, then put all edges incident with g_{2} into \mathcal{C}.
- If $\tilde{f}\left(g_{1}\right) \neq\left(g_{1}, i\right)$ and $\tilde{f}\left(g_{2}\right) \neq\left(g_{2}, j\right)$, then put all edges incident with g_{1} and g_{2} into \mathcal{C}.
2.2.4 Set $\tilde{f}\left(g_{1}\right)=\left(g_{1}, i\right)$ and $\tilde{f}\left(g_{2}\right)=\left(g_{2}, j\right)$. Remove $g_{1} g_{2}$ from \mathcal{C}.

2.2.5 End While

2.3 If valid map then answer YES and STOP; otherwise next m.

3 Answer NO and STOP.

We need to show that the pair (i, j) in step 2.2 .2 is well defined. Suppose (i, j) and (m, n) are pairs of vertices in H such that $\left(g_{1}, i\right)\left(g_{2}, j\right) \in E_{x}(W)$ and $\left(g_{1}, m\right)\left(g_{2}, n\right) \in$ $E_{0}(W)$, then by Lemma 5.1.3, either $(i, j) \leq(m, n)$ or $(m, n) \leq(i, j)$. Hence, a minimum does exist.

Theorem 5.2.2 The Path Colouring algorithm solves H-COL in $O(|V(G)|+|E(G)|)$ time when H is a fixed path.

Proof. We prove both invariants are true throughout the algorithm by induction on the number of edges checked. Observe this implies that if $\mathcal{C}=\phi$, then \bar{f} is the minimum G-fixed homomorphism in $\operatorname{Hom}(G, W)$ for some W. When zero edges have been checked, both invariants are trivially true. Suppose both are true after n edges have been checked. Further suppose that the $(n+1)^{\text {th }}$ edge to be checked is $g_{1} g_{2}$. If $H o m(G, W)$ is empty, then invariant (i) it trivially true. If $\operatorname{Hom}(G, W)$ is not empty, then let f be the minimum G-fixed element of $\operatorname{Hom}(G, W)$. We have by induction, $f^{H}\left(g_{1}\right) \geq \tilde{f}^{H}\left(g_{1}\right)$ and $f^{H}\left(g_{2}\right) \geq \tilde{f}^{H}\left(g_{2}\right)$. Also $f\left(g_{1}\right) f\left(g_{2}\right) \in E_{\alpha}(W)$ since f is a homomorphism. Therefore, at step 2.2 .2 the pair (i, j) exists with $f^{H}\left(g_{1}\right) \geq i$ and $f^{H}\left(g_{2}\right) \geq_{H} j$. The mapping \tilde{f} is updated such that $\tilde{f}\left(g_{1}\right)=\left(g_{1}, i\right)$ and $\tilde{f}\left(g_{2}\right)=\left(g_{2}, j\right)$. By induction, $\tilde{f}(g) \leq_{H} f(g)$ for all $g \in V(G) \backslash\left\{g_{1}, g_{2}\right\}$. Therefore, invariant (i) remains true.

Notice we have just proved if $\operatorname{Hom}(G, W)$ is not empty, then the pair (i, j) exists at step 2.2.2. Therefore, the algorithm only chooses a new component in $G \times H$ (i.e. Next m) if the current $\operatorname{Hom}(G, W)$ is empty. In order for the algorithm to reply NO, Hom (G, W) must be empty for all components W.

If at step 2.3, a new component is chosen, then returning to step 1 makes both invariants trivially true again. If the pair (i, j) exits in step 2.2 .2 , then \tilde{f} is updated. By induction, invariant (iii) was true before \tilde{f} was updated. The only edge removed from $C_{\text {, }}$ and hence the only edge that could make invariant (iii) false, is $g_{1} g_{2}$. The choice of (i, j) at step 2.2 .2 guarantees that $\tilde{f}\left(g_{1}\right) \tilde{f}\left(g_{2}\right)$ is an edge coloured α. Therefore,
invariant (ii) remains true. If \mathcal{C} becomes empty upon removing $g_{1} g_{2}$, then \tilde{f} is a homomorphism and the algorithm has correctly identified a YES instance.

Let $|V(H)|=p$. There are $|V(G)| p$ vertices in $G \times H$. For each edge in G there are at most $2(p-1)$ corresponding edges in $G \times H$. Therefore, $G \times H$ can be constructed in $O(|E(G)|+|V(G)|)$ time. Identifying the components of $G \times H$ requires $O(|E(G)|)$ time. Step 1 requires $O(\| E(G)|+| V(G)]$ time. An edge is added to \mathcal{C} when the colour of one of its ends is increased. This means an edge can be added to \mathcal{C} at most $2 p-2$ times. Therefore, an edge can be checked at most $2 p-1$ times. Choosing the minimum pair (i, j) in step 2.2 .2 requires constant time. Therefore, we require at most $(2 p-1)|E(G)|$ iterations each of constant time. The total time required is $O(|V(G)|+|E(G)|)$.

5.3 NP-complete trees

The authors of [14] have constructed NP-complete oriented trees. These trees are large (288 vertices) and complex. Define an edge-coloured tree to be an edge-coloured graph whose underlying graph is a tree. Based on a reduction similar to the one in [14], we construct edge-coloured NP-complete trees; however, the use of several edgecolours allows us to construct smaller, simpler trees. In fact, the two trees presented are generalized stars; a generalized star is a tree with a unique vertex of degree greater than two. Clearly, \boldsymbol{H}-COL is in NP. Therefore, we need only provide a polynomial reduction from an NP-complete problem. We use ONE-NN-THREE 3SAT. (See [12] for details on the complexity.) Formally, ONE IN-THREE 3SAT is defined below.

Figure 5.3: The NP-complete generalized star H

ONE-IN-THREE 3SAT

INSTANCE: Set U of variables, collection \mathcal{C} of clauses over U such that each clause $C \in \mathcal{C}$ has $C D=3$.

QUESTION: Is there a truth assignment for \mathcal{U} such that each clause in C has exactly one true literal?

This problem remains NP-complete if no $C \in \mathcal{C}$ contains a negated literal.

Let H be the tree in Figure 5.3. The edge-colours are given by the letters beside each edge. For example, if the edge $u v$ has $a b c$ beside it, then u is connected to v by edges of colours a, b, and c. In other words, under any homomorphism the edges that map to me may have only the colours a, b, or c.

Theorem 5.3.1 Let H be the tree in Figure 5.3. Then H-COL is NP-complete.

Figure 5.4: The tree S.
Proof. Given an instance of ONE-IN-THREE 3SAT without negated variables, we construct an edge-coloured graph G. Let S be the tree in Figure 5.4; let G have vertices $l_{1}, l_{2}, \ldots, l_{m}$, corresponding to the m literals in our instance of ONE-INTHREE 3SAT. For each clause, $C_{j} \in \mathcal{C}$ with $C_{j}=l_{j_{1}} \vee l_{j_{2}} \vee I_{j}$, we take a copy of S and identify the vertices x_{1}, x_{2}, and x_{3} with $l_{j_{1}}, l_{h_{n}}$, and $l_{j_{n}}$.

Note that any homomorphism $f: S \rightarrow H$ maps c_{j} to X, Y or Z. Moreover,

- if $f\left(c_{j}\right)=X$, then $f\left(x_{1}\right)=T, f\left(x_{2}\right)=F$ and $f\left(x_{3}\right)=F$,
- if $f\left(c_{j}\right)=Y$, then $f\left(x_{1}\right)=F, f\left(x_{2}\right)=T$ and $f\left(x_{3}\right)=F$,
- if $f\left(c_{j}\right)=Z$, then $f\left(x_{1}\right)=F, f\left(x_{2}\right)=F$ and $f\left(x_{3}\right)=T$.

Finally, there are homomorphisms that realize each of the three cases above. The verification of these statements is straightiforward and is left to the reader.

We shall show that the edge coloured graph G maps to H if and only if a truth assigoment exists that assigns "true" to exactly one variable in each clause C_{j}. Suppose
$f: G \rightarrow H$. As observed above, each vertex c_{j} gets mapped to X, Y or Z. Further, once c_{j} is mapped, the rest of the vertices in S have their images in H uniquely determined. For example, if $f\left(c_{j}\right)=X$, then $f\left(x_{1}\right)=T$ and $f\left(x_{2}\right)=f\left(x_{3}\right)=F$, interpret this as assiguing "true" to $l_{j_{1}}$ and "false" to $l_{j_{2}}$ and $l_{j_{3}}$.

On the other hand, given a truth assignment, map all true literals to T and all false literals to F. Using the observations above it can be verified that this can be extended to a homomorphism $f: G \rightarrow H$.

The above example is nice in that H contains only 12 vertices. The NP-complete directed tree found in [14] has 288 vertices. An example of a two-edge-colour NP. complete tree exists on 98 vertices (see below). It seems that allowing coloured edges lets us observe richer behaviour in smaller examples.

Now we construct an NP-complete tree with two edge-colours. Let H be the tree in Figure 5.5. The labels on the edges here are not colours, but paths found in Figure 5.7. Each path consists of a blue path, followed by a red path, followed by a blue path, followed by a path consisting of a single red edge. The number above each edge in Figure 5.7 corresponds to the length of the path. For example, the path P_{1} is a path composed of 3 blue edges, 5 red edges, 5 blue edges, and a single red edge. Each path has an orientation from the white vertex on the left to the black vertex on the right. Each label in Figures 5.5 and 5.6 corresponds to an oriented path from Figure 5.7, except for Q^{\prime} (not shown in Figure 5.7) which is a path of length six whose edges alternate red and blue. That is, Q^{\prime} is obtained from Q be adding a blue edge then a red edge to the right end of Q.

Figure 5.5: The NP-complete two-edge-colour tree H.
We now tackle the somewhat cumbersome task of describing homomorphisms between the paths. Consider the following easy proposition.

Proposition 5.3.2 Let $W=w_{0} w_{1} \ldots w_{2 i+1}$ and $V=v_{0} v_{1} \ldots v_{2 j+1}$ be two paths with all edges blue. There exists a homomorphism, $f: W \rightarrow V$, such that $f\left(w_{0}\right)=v_{0}$ and $f\left(w_{2 i+1}\right)=v_{2 j+1}$ if and only if $i \geq j$.

What does this mean in terms of our paths? Let W and V be two paths from Figure 5.7 (neither of which is Q^{\prime}). Suppose there exists a homomorphism from W to V mapping the white (resp. black) vertex of \bar{W} to white (resp. black) vertex of V. The imitial sequence of blue edges in W must map onto the initial sequence of blue edges in V with the ends in W mapping to the corresponding ends in V. Also, both sequences have odd length. By Proposition 5.3.2, this can only occur if the sequence in

Figure 5.6: Clauses for the Two-edge-coloured Tree
W is at least as long as the sequence in V. Now the second monochromatic sequences in W and in V are red. Each sequence has odd length and the ends of W must map to the corresponding ends in V. Therefore, the first red sequence in W must be at least as long as the first red sequence in V. In other words, W maps to V if and only if each monochromatic sequence in W is at least as long as the corresponding sequence in V.

For example, the path P_{1} will map to the paths P, Q_{2}, Q_{3}, and Q, but it will not map to the paths P_{2}, P_{3}, Q_{1}, or R. The path Q^{\prime} will only map to an alitrnating path of length six, i.e. a copy of Q^{\prime}. If one checks the tree in Figure 5.5, the only such paths are the three Q^{\prime} paths incident with X, Y, and Z.

Theorem 5.3.3 Let H be the tree in Figure 5.5. Then H-COL is NP-complete.

Proof. The proof works in exactly the same way as for the previous tree. Suppose we are given an instance of ONE-IN-THREE 3SAT without negated variables. We construct a graph G using the tree S in Figure 5.6 for each clause. Because the path

Figure 5.7: Super Edges
Q^{\prime} in each C_{j} only maps to one of the paths labeled Q^{\prime} in H, the clauses map to H in the same way as described in Theorem 5.3.1

Since this chapter has been written, P. Hell, J. Nesetril, and X. Zhu have discovered new constructions of NP-complete trees. Their trees are much smaller than the trees in [14] but still not as small as our example on 12 vertices.

5.4 Characterizing Homomorphisms to Paths

In [20] it is shown that for any oriented graph G and any oriented path P, there exists a homomorphism $G \rightarrow P$ if and only if all paths homomorphic to G are homomorphic to P. In this section we present a similar result for edge-coloured paths. Namely
$G \rightarrow P$ if and only if all paths homomorphic to G are homomorphic to P and G contains no odd cycles. Note the second condition (odd cycles) simply states that G must be bipartite as no odd cycle is homomorphic to a path.

The result in [20] does not require odd cycles in the "obstruction set" since one can show that if there is an odd cycle homomorphic to G, then the odd cycle must have net length at least one; moreover, this implies there is a path W such that $W \rightarrow G$ but $W \nrightarrow P$. Consider the path, W, consisting of k "wrappings" of this odd cycle. The path W must have net length at least k. By making k sufficiently large, W will have net length longer than $|P| ;$ hence, $W \nrightarrow P$. For example, suppose G contains a three-cycle with two forward arcs and one backward arc. This cycle has net-length two. The path W consisting of 10 copies of "two-forward-one-backward" has net length 20 and maps to the three cycle in G. If $|P|$ is less than 20 , then clearly $W \notin P$.

In the case of edge-coloured paths we need the explicit condition that G contains no odd cycles, i.e. the existence of an odd cycle in G does not imply the existence of a path W such that $W \rightarrow G$ and $W \nrightarrow P$ as it does in the oriented path case. Let G be a blue three-clique and let P be a single blue edge. Any path that maps to G also maps to P, yet $G \nrightarrow P$. In other words, paths alone do not suffice as the obstructions for an edge-coloured path P.

Conversely, an analogous result for undirected graphs (one edge-colour) is simply that a graph is bipartite if and only if it contains no odd cycles. That is, the obstruction set for an undirected, one edge-colour path is simply the set of odd cycles and one does not need to include paths in the obstruction set. It is easy to see that
odd cycles alone do not suffice as the obstruction set for an edge-coloured path. In other words, edge-coloured paths combine some aspects of both undirected paths and oriented paths.

Theorem 5.4.1 Let G be an edge-coloured graph and P an edge-coloured path. Then $G \rightarrow P$ if and only if for all edge-coloured paths $W, W \rightarrow G$ implies $W \rightarrow P$ and G contains no odd cycles.

Proof. Suppose $g: G \rightarrow P$ is a homomorphism. Firstly G contains no odd cycles. since a homomorphism from G to P implies there exists a homomorphism from the underlying graph of G to the underlying graph of P. Moreover, the underlying graph of P is bipartite which implies the underlying graph of G is bipartite since a nonbipartite graph cannot be homomorphic to a bipartite graph.

Let W be a path such that $f: W \rightarrow G$ is a homomorphism. By composition with g we have $g \circ f: W \rightarrow P$ is a homomorphism. This proves the necessity of the condition.

On the other hand, suppose G contains no odd cycles and for all paths $W, W \rightarrow G$ implies $W \rightarrow P$. We will prove that $G \rightarrow P$. We shall in fact prove a stronger statement. Let H be a two-clique, on vertices $\{0,1\}$, containing an edge of each colour occurring in either G or P. Then since both G and P are bipartite, there exists homomorphisms $c_{G}: G \rightarrow H$ and $c_{P}: P \rightarrow H$. We shall show that we can choose c_{G} and c_{P} so that if for all paths $W, W \rightarrow G$ implies $W \rightarrow P$, then there exists a homomorphism $g: G \rightarrow P$ such that $c_{P} \circ g=c_{G}$. This stronger statement implies the sufficiency of Theorem 5.4.1.

Lemma 5.4.2 Let G, P, and H be as above. There exist bomomorphisms $c_{G}: G \rightarrow$ H and $c_{P}: P \rightarrow H$ such that given a path W, for all homomorphisms $f: W \rightarrow G$ there exists a homomorphism $f^{\prime}: W \rightarrow P$ such that $c_{G} \circ f=c_{P} \circ f^{\prime}$.

Proof Assume that G is connected, (otherwise, treat each component of G separately). Let $c_{G}: G \rightarrow H$ be a homomorphism. This homomorphism induces a partition of G into two independent sets G_{0} and G_{1}. Similarly, the homomorphism $c_{P}: P \rightarrow H$ induces a partition of P into independent sets P_{0} and P_{1}.

Suppose to the contrany that the lemma does not hold; that is, there do not exist c_{G} and c_{P} with the composition property. Then without loss of generality there exists a path W_{v} starting at v and a homomorphism $f_{1}: W_{v} \rightarrow G$ such that $f_{1}(v) \in G_{0}$ so that all homomorphisms $f_{1}^{\prime}: W_{v} \rightarrow P$ have the property that $f_{1}^{\prime}(v) \in P_{0}$ and there exists a path W_{u} starting at u and a homomorphism $f_{2}: W_{u} \rightarrow G$ so that $f_{2}(u) \in G_{0}$ and all homomorphisms $f_{2}^{\prime}: W_{u} \rightarrow P$ have the property that $f_{2}^{\prime}(u) \in P_{1}$.

Let $W_{u v}$ be a path from $f_{2}(u)$ to $f_{1}(v)$ in G. Notice, $W_{u v}$ is a path in G and hence $W_{u v} \rightarrow G$. Let W be the path formed by identifying $v \in W_{v}$ and $f_{1}(v) \in W_{u v}$ and identifying $u \in W_{u}$ and $f_{2}(u) \in W_{u v}$. That is, identify corresponding ends of the paths. Since W_{v}, W_{u}, and $W_{u s}$ admit homomorphisms f_{1}, f_{2}, and id (indentity) to G, we have $W \rightarrow G$. Moreover, by the assumptions in the statement of the lemma, this implies there exists a homomorphism $f^{\prime}: W \rightarrow P$. The path $W_{u v}$ must have even length since $f_{1}(v) \in G_{0}$ and $f_{2}(u) \in G_{0}$. However, $f^{\prime}(v) \in P_{0}$ and $f^{\prime}(u) \in P_{1}$ since both W_{v} and W_{u} are subpaths of W and we are assuming that all homomorphisms of W_{v} (resp. W_{u}) map v (resp. u) to a vertex in P_{0} (resp. P_{1}). Hence, the image of $W_{\text {ux }}$ in P is an odd length path. This is impossible. The result follows.

We now prove our stronger staternemt.

Theorem 5.4.3 Let G a bipartite edge-coloured graph and P an edge-coloured path and let c_{G} and ce be the homomorphisms defined abore. Suppose for all paths $W, W \rightarrow G$ implies $W \rightarrow P$. Then there exists a homomorphism $g: G \rightarrow P$ such that $c_{P} \circ g=c_{G}$.

Proof We now describe the homomorphism $g: G \rightarrow P$. Given a path W beginning at a vertex v, denote this by $b(W)=v$. In the following definitions we use the notation $f: G \rightarrow H$ to indicate there exists a homomorphism $f: G \rightarrow H$. Define:

$$
\begin{aligned}
& \phi_{0}(W)=\max \left\{v \in P\left[f^{\prime}: W \rightarrow P, f^{\prime}(b(W))=v, c_{P}(v)=0\right\}\right. \\
& \phi_{1}(W)=\max \left\{v \in P\left[f^{\prime}: W \rightarrow P, f^{\prime}(b(W))=v, c_{P}(v)=1\right\}\right.
\end{aligned}
$$

Note: Normally one defines the maximum of the empty set to be zero. However, for our purposes we say ϕ_{0} is undefined if the maximum is taken over the empty set. In the case $\phi_{0}(W)$ is undefined, all homomorphisms $W \rightarrow P$ map $\bar{b}(W)$ to a vertex in P_{1}. A similar note applys to ϕ_{1}.

Define:

$$
\psi(v)=\min \left\{\phi_{i}(W): v \in G_{0}, f: W \rightarrow G, f(b(W))=v\right\} \text { for } v \in G_{i}
$$

Observe that each of ψ is well-defined since Lemma 5.4 .2 implies the minimums above are taken over nonempty sets.

We now prove that ψ is the desired map. That is, ψ is a homomorphism such that $c_{P} \circ W=c_{G}$.

Claim 5.4.3.1 Let $u v \in E(G)$. Then $\psi(\eta) \neq \psi(v)$.

Proof of Claim Let $c_{G}(v)=1$. The value of $\psi(v)$ is a minimum over a subset of the vertices of P coloured 1 . The value of $\psi(u)$ is a minimum over a subset of the vertices of P coloured 0 . These two sets are disjoint.

Claim 5.4.3.2 The mapping ψ is a homomorphism.

Proof of Claim. Let we be an edge in G. Without loss of generality assume $u v$ is blue and $c_{G}(u)=0$. Let W_{u} be a path such that $v(u)=\phi_{0}\left(W_{s}\right)$. Let B be a single blue edge. The patt $B o W_{x}$ is the path formed by identifying the end of B with the beginning of W_{v}. The path $B \circ W_{u}$ is a path that maps to G so that $f\left(b\left(B \circ W_{u}\right)\right)=v$. Therefore, $\phi_{1}\left(B \circ W_{v}\right)$ is defined. Observe that any homomorphism mapping $B \circ W_{u}$ to P can not map its start to a value larger than $\phi_{0}\left(W_{u}\right)+1$; otherwise, this homomorphism restricted to W_{u} would map $b\left(W_{u}\right)$ to a value larger than $\phi_{0}\left(W_{u}\right)$. Also observe that $\psi(v)$ must be no larger than $\rho_{1}\left(B \circ W_{s}\right)$ by definition of ψ. Hence, we have:

$$
\psi(v) \leq \phi_{1}\left(B \circ W_{v}\right) \leq \phi_{0}\left(W_{u}\right)+1=\psi(u)+1
$$

Similarly,

$$
\psi(u)-1 \leq \psi(v)
$$

Recall $\psi(u) \neq \psi(v)$. Therefore, either $\psi(v)=\psi(u)+1$ or $\psi(v)=\psi(u)-1$. Assume $\psi(v)=\psi(u)+1$. (The other case is similar.)

Let $h: B \circ W_{u} \rightarrow P$ be the homomorphism that defines $\phi_{1}\left(B \circ W_{u}\right)$. By restricting h to W_{u} we see that $h(u) \leq \phi_{0}\left(W_{u}\right)=\psi(u)$. Also, $h(v)$ must be larger than $\psi(v)$ since y is a minimum. We have

$$
h(v) \geq u(v)=\psi(u)+1>\psi(u) \geq h(u)
$$

Alse note, $\|h(u)-h(v)\|=1$. Therefore, $h(u)=h(v)-1$. By the above inequalities we see $\psi(v)=h(v)$ and $v(u)=h(u)$. Since h is a homomorphism, there must be a blue edge between $b(u)$ and $h(v)$. Hexce $v(v) v(u)$ is a blue edge in P. Thus. ψ is a homomorphism.

The observation required to complete the proof Theorem $\mathbf{5 . 4 . 3}$ is that if $v \in G_{0}$, then $\psi(v) \in P_{0}$. Heace, c_{p} ov $=c_{G}$.

The existence of y completes the proof of the necessity of the condition in Theorem 5.4.1.

The proof above that is a homomorphism can be extended to the case when G and P have directed, coloured edges. Hence, the following stronger result is true:

Corollary 5.4.4 Let G be an edge-coloured, directed graph and P be an edge-coloured path with directed edges. Then $G \rightarrow P$ if and only if G contains no odd cycles and for all paths $W, W \rightarrow G$ implies $W \rightarrow P$.

Chapter 6

Cycles

In this chapter we study H-COL where H is a digon-free edge-coloured cycle. The digon-free restriction is assumed for the remainder of this chapter. The emphasis is on two edge-colours, although some results naturally generalize to more edge-colours. An edge-coloured cycle can be viewed as being composed of monochromatic paths. A maximal monochromatic path is called a piece. For example consider a cycle of length eight with the first three edges red, the next edge blue, the next two edges red, and the final two edges blue. This cycle has four pieces; two red and two blue. The red pieces have length three and two. The blue pieces have length one and length two. See Figure 6.1.

Let H be a two-edge-coloured cycle. We characterize the complexity of H-COL by the number and the parity of the pieces in H. We show that H-COL is polynomial if all the pieces of H have odd length. In fact, this result generalizes to $k \geq 2$ edgecolours. If H contains exactly one even length piece, then H-COL is polynomial. We show that if H is a two-edge-coloured cycle with all pieces having even length, then H-COL is polynomial. These results imply that any cycle consisting of two pieces is polynomial.

Figure 6.1: An edge-coloured cycle with four pieces.

Since we restrict our attention to two-edge-coloured cycles, the number of pieces must be even. Using the results stated above plus an ad hoc algorithm we show for any two-edge-coloured cycle, H, with four pieces, H-COL is polynomial. On the other hand, consider a two-edge-coloured cycle, H, where each red piece has odd length and each blue piece has even length. We show that H-COL is NP-complete if H has six pieces. In fact we show that for such a cycle H with $k \geq 4$ pieces, H-COL is polynomial if $k \equiv 0(\bmod 4)$ and $H-\mathrm{COL}$ is NP-complete if $k \equiv 2(\bmod 4)$.

Before we present the results we make one final observation. Let G be an instance of some C-colouring problem, where C is an edge-coloured cycle. Many of the algorithms presented here begin by defining a mapping from the mixed vertices of G to C. In the case that G does not contain any mixed vertices, if G admits a homomorphism to C, then G must map to a single piece of G. Hence, if G contains only edges of colour i, then $G \rightarrow C$ if and only if G is bipartite and C contains at least one piece of colour i. Therefore, in the following assume G has at least one mixed vertex.

6.1 The Mixed Vertex Homomorphism Problem

Let H bet an edge coloured cycle and let G be an instance of H-COL. In many or the algorithms below we use the following strategy:

- defne a functicn, f, from the mixed vertices of G to the mixed verices of H,
- extend this function to a homomorphism from G to H.

We begin by examining the complexity of extending f to a homomorphism. In fact, we shall show that wen h is an edge-coloured cycle, this "extension" problem is polynomial. To this end we define a problem that one might consider a partial HFP problem and then we examine this problem for the specific case that H is an edgecoloured cycie. Formally:

Let H and Y be fixed edge-coloured graphs and let $h: H \rightarrow Y$ be a homomorphism.

Mixed Vertex Homomorphism Problem - MVHP(H,h,Y)

INSTANCE: An edge-coloured graph G and a homomorphism $g: G \rightarrow Y$.
QUESTION: Does there exist a homomorphism $f: G \rightarrow H$ such that for all mixed vertices $v \in V(G), h \circ f(v)=g(v)$?

Let H and Y be edge-coloured graphs and $h: H \rightarrow Y$ a homomorphism. We show that G is a YES instance of H-COL if and only if there exists $g: G \rightarrow Y$, such that G, g is a YES instance of $M V H P(H, h, Y)$. Suppose G is a YES instance of H-COL, then there exists $f: G \rightarrow H$. Clearly, G, h of is a YES instance of $M V H P(H, h, Y)$. On the other hand, suppose G, g is a YES instance of $M V H P(H, h, Y)$, then there exists an $f: G \rightarrow H$ which implies G is a YES instance of H-COL.

Suppose C is an edge-coloured cycle with pieces $P_{0}, P_{1}, P_{2}, \ldots, P_{k}$. Label the mixed vertices of C with $m_{0,}, m_{1}, \ldots, m_{k}$ so that m_{i} is the vertex common to pieces P_{i-1} and P_{i}. Let m_{0} be the mixed vertex common to pieces P_{k} and P_{0}.

We construct a new edge-coloured cycle, C^{\prime}, with vertex-set $\left\{c_{0}^{\prime}, c_{1}^{\prime}, \ldots, c_{k}^{\prime}\right\}$. For each piece, P_{i}, in C add the following to C^{\prime}. If P_{i} has odd length and is of colour t, then add the edge $c_{i}^{\prime} c_{i+1}^{\prime}$ to $E_{t}\left(C^{\prime}\right)$. If P_{i} has even length and is of colour t, then add a vertex $c_{i+\frac{1}{2}}^{\prime}$ to C^{\prime} and put a path of colour t on the vertices $c_{i}^{\prime} c_{i+\frac{3}{2}}^{\prime} c_{i+\frac{1}{\prime}}^{\prime}$ in C^{\prime}.

For an example see Figure 6.2. The cycle C consists of four pieces. The piece P_{0} is blue and has length four. The piece P_{1} is red and has length two, etc. The labels of the pieces are outside the cycle. The labels of the mixed vertices are inside the cycle. The cycle C^{\prime} consists of four pieces as well; one piece for each piece in C. The piece replacing P_{0} is on vertices $\left\{c_{0}^{\prime}, c_{0+\frac{1}{2}}^{\prime}, c_{1}^{\prime}\right\}$, etc.

We claim there exists a homomorphism $h: C \rightarrow C^{\prime}$. Define h initially from the mixed vertices of C to the mixed vertices of C^{\prime} as follows:

$$
h\left(m_{i}\right)=c_{i}^{\prime} \quad \text { for } \quad 0 \leq i \leq k
$$

It is straightforward to check that h extends to a homomorphism from C to $C^{\prime \prime}$. We are now ready to prove the following theorem.

Theorem 6.1.1 Let C be an edge-coloured cycle. Let C^{\prime} and h be defined as above. Then MVHP $\left(C, h, C^{\prime}\right)$ is polynomial.

Proof. Let G, g be an instance of $\operatorname{MVHP}\left(C, h, C^{\prime}\right)$. We begin by defining a function, f, from the mixed vertices of G to the mixed vertices of C. For each mixed

Figure 6.2: The construction of C^{\prime} from C.
vertex \neq in G define:

$$
f(v)=m_{;} \text {if and only if } g(v)=c_{i}^{\prime} .
$$

It is easy to see that if there exists a homomorphism $\tilde{f}: G \rightarrow C$ such that $h \circ f(v)=$ $g(v)$ for all mixed vertices v in G, then $f(v)=f(v)$ for all mixed vertices v in G. To see this observe that the only mixed vertex in C that is mapped to c_{i}^{\prime} by h is m_{i}.

Suppose S_{i} is the set of mixed vertices in G that is mapped to m_{r} by f for $0 \leq i \leq k$. Consider S_{i} and S_{i+1}. Suppose that piece P_{i} is colour t. Let d_{i} be the minimum distance in colour t from a vertex in S_{i} to a vertex in S_{i+1}. Define d_{i} for $0 \leq i \leq k-1$. Similarly, define d_{k} using S_{0} and S_{k}. Note that d_{i} can be infinite.

Denote the length of piece P_{i} by $\| P_{i} \mid$. We claim that f can be extended to a homomorphism if and only if $d_{i} \geq\left|P_{i}\right|$ for $0 \leq i \leq k$. The necessity of the condition is obvious. Suppose u is a vertex, that is a not a mixed vertex, of G. Assume u is incident with only edges of colour t. We explain how to extend f to u. Let P_{i} be a piece of colour t. Suppose there are paths, Q_{1} and Q_{2}, from u to a mixed vertex in S_{i} and to a mixed vertex in S_{i+1} respectively, which contain no mixed vertices except for the end of the paths. Then g must map u to one of $\left\{c_{i}^{c}, c_{i+\frac{1}{2}}^{\prime}, c_{i+1}^{\prime}\right\}$. Hence, any path from u to a mixed vertex (which contains no mixed vertices except for the end of the path) must terminate in either S_{i} or S_{i+1}. It must be the case that the sum of the lengths of these two patiss is at least $\left|P_{i}\right|$ (and the two paths must have the same parity). If $\left|Q_{1}\right|$ is less than or equal to $\left\lfloor\frac{\left|P_{i}\right|}{2}\right\rfloor$, then map u to a vertex in C distance $\left|Q_{1}\right|$ from m_{i}. Similarly if $\left\|Q_{2}\right\|$ is less than half the length of P_{i}, then map u to a vertex distance $\left|Q_{2}\right|$ from m_{i+1}. If both $\left|Q_{1}\right|$ and $\left|Q_{2}\right|$ are greater than $\left\lfloor\frac{\left|P_{1}\right|}{2}\right\rfloor$, then $\operatorname{map} u$ to either $\left[\frac{\left|P_{0}\right|}{2}\right]$ or $\left.\llbracket \frac{\left|P_{1}\right|}{2} \right\rvert\,$ depending on the parity of $\left|Q_{1}\right|$.

6.2 All Pieces Have The Same Parity

We now examine edge-coloured cycles where each piece has the same parity. We begin by examining two-edge-coloured cycles with all pieces having even length.

Lemma 6.2.1 Let C be a two-edge-coloured cycle such that each piece has even length. Then $C-C O L$ is polynomial.

Proof. Suppose the edge-colours of C are red and blue. We claim C retracts to an edge-coloured path of length two. Let P be the path on $\{-1,0,1\}$ where -10 is red and 01 is blue. Firstly, observe that for a given vertex $v \in C$ all paths from v to mixed vertices have the same parity, since every piece in C is even. Define $f: C \rightarrow P$ as follows: $f(v)=-1$ if v is a red only vertex and there exists an odd length path from v to a mixed vertex; $f(v)=1$ if v is blue only and there exists an odd length path from v to a mixed vertex; and $f(v)=0$ otherwise. It is easy to see that f is a homomorphism. Moreover, C contains a copy of P and f is the identity map on this copy of P. Thus, C retracts to P. By the Forcing Lemma (Lemma 2.2.3) or by the results on paths, P-COL is polynomial and hence C - COL is polynomial.

Most of this chapter focuses on two-edge-coloured cycles; however, the following lemma in fact holds for cycles with at least two edge-colours.

Lemma 6.2.2 Let C be an edge-coloured cycle, on at least two edge-colours, where each piece has odd length. Then $C-C O L$ is polynomial.

Proof. Let C^{\prime} and h be defined as in Theorem 6.1.1. Let G be an instance of C-COL. We can assume G is connected, otherwise we treat each component of G separately. Since each piece in C has odd length, each piece in C^{\prime} is a single edge.

The cycle C^{\prime} satisfies the conditions of the Forcing Lemma (Lemma 2.2.3) and G is connected; therefore, we can construct all homomorphisms of G to C^{\prime} in polynomial time. As observed above, $G \rightarrow C$ if and only if there exists a homomorphism $g: G \rightarrow$ C^{\prime} such that $G_{7} g$ is a YES instance of MVHP(C,h,C').

The above two lemmas give us the following theorem.

Theorem 6.2.3 Let C be a two-edge-coloured cycle. Suppose each piece has the same parity. Then C-COL is polynomial.

6.3 One Even Piece

Through use of the MVHP we show in this section that for any two-edge-coloured cycle, C, with exactly one even length piece, C - COL is polynomial.

Theorem 6.3.1 Let C be a two-edge-coloured cycie with exactly one even length piece. Then C-COL is polynomial.

Proof. Let $P_{0}, P_{1}, \ldots, P_{k}$ be the pieces of C such that P_{k} is the unique even length piece. Using the convention above, m_{k} and m_{0} are the mixed vertices at either end of P_{k}. Assume that the edge-colours are red and blue and that P_{k} is red.

Construct C^{\prime} and h as above. The edge-coloured cycle $C^{\prime \prime}$ has the property that every piece is a single edge with the exception of the red path of length two: $c_{k}^{\prime} c_{k+\frac{1}{2}}^{\prime} c_{0}^{\prime}$. This implies that every vertex c_{i}^{\prime} in C^{\prime}, with the exception of $c_{k+\frac{1}{2}}^{\prime}$, is incident with one blue edge and one red edge. Hence, using ideas from the Forcing Lemma (Lemma 2.2.3), if vertex $v \in V(G)$ is mapped to $c_{i} \in V\left(C^{\prime}\right)$, then the image of some set of vertices in G, say X, is uniquely determined. This is discussed in more detail below.

Our strategy is as follows: Let G be an instance of C-COL. We construct a homomorphism $g: G \rightarrow \epsilon^{*}$ se that G, g is a YES instance of $M Y H P\left(C, h, C^{*}\right)$ or conclude no such g exists and hence G is a NO instance of C-COL.

Our first observation concerns pairs of mixed vertices, in G, joined by an even length red patik. Let u and v be two such vertices. We observe if G admits a homomorphism to C the following is true. If u maps to any mixed vertex other than m_{0} or m_{k}, then v must map to the same nixed vertex. This follows from the fact that P_{k} is the only even length piece. Also, if w maps to m_{g} or m_{k} and the length of the shortest red path from u to v is less that $\| P P_{t}$, then u and v map to the same vertex in C. Hence, we begin by preprocessing G in the following way: Define an equivalence relation on the mixed vertices of G. Initially, for a pair of mixed vertices u and v, we say u and v are related if u and v are joined by a red path of length less than $\left\|P_{k}\right\|$. The equivalence relation is defined by taking the transitive closure of this initial relation. Now, for each equivalence class \bar{X}, identify all nixed vertices belonging to \bar{X}. This preprocessing ensures that any homomorphism $g: G \rightarrow C^{\prime}$ bas the property for any mixed vertices u and v in G such that $g(u)=C_{0}^{\prime}$ and $g(v)=c_{\text {f }}$ the distance from u to v in red is at least $\left\|P_{k}\right\|$.

We now describe the construction of g. Let u be a mixed vertex in G. We set $g(u)=c_{0}^{\prime}$ and attempt to extend g to a homomorphism from G to C^{\prime} such that G, g is a YES instance of MVHP(C,h,C). If this is not possible, then we choose a different mixed vertex in G, say w, and set $g(w)=c_{0}$. If testing whether or not g can be extended to a homomorphism requires polynomial time, then attempting to extend g once for each mixed wertex in $V(G)$ requires polynomial time. Hence, we can assume without loss of generality that w is a mixed vertex in G and if G admits a
hemomorphism, g, to C^{f} such that G, g is a YES instance of $M V H P\left(C, h, C^{\prime}\right)$, then $g(u)=c_{0}$. In other words, the choice to map u to c_{0} is correct.

As remarked above, $g(u)=c_{0}^{\prime}$ uniquely determines the image in C^{\prime} of some set of vertices, $X \subseteq V(G)$. Specifically, once u is mapped to c_{0}. all vertices of an even distance in colour blue from u must be mapped to c_{0}. All vertices of an odd distance in colour blue from u must be mapped to c_{1}. That is, the image of these vertices is uniquely determined. Now consider, for example, some vertex v that is mapped to c_{1}^{\prime} by g. Any vertex of an even distance in red from v must be mapped to c_{1}^{\prime}. Any vertex of an odd distance in red from v must be mapped to C_{2}. Similarly, any vertex of an even distance in blue from v must map to c_{1}^{\prime} and any vertex of an odd distance in blue from v must map to c_{0}. Continuing we will determine the image (under g) of some set of vertices in G. Call this set X. Note that the reason this "Forcing-type" argument does not uniquely determine the image of all vertices in G is that a vertex that is an even distance in red from u can map either to c_{0} or to c_{k}^{\prime}.

Let T be the set of red only vertices that are joined by a red path to a vertex mapped to either c_{0} or c_{k}^{\prime}. Let the subgraph induced by $X \cup T$ be denoted X^{\prime}. The map g can be extended to a homomorphism $X^{\prime} \rightarrow C^{\prime}$ if and only if all red paths from mixed vertices mapped to ϵ_{0}^{\prime} to mixed vertices mapped to c_{k}^{\prime} have even length. If g can not be extended to a homomorphism then G is not a YES instance of C-COL. Hence, assume that it can be extended. Test if X^{\prime}, g is a YES instance of $M V H P\left(C, h, C^{\prime}\right)$. If the answer is NO, then G is a NO instance of C-COL. Recall that we are assuming the decision $g(u)=\epsilon_{0}$ is correct and all other images are uniquely determined.

Let S be the set of mixed vertices in \bar{X} that are mapped to either c_{0}^{\prime} or c_{k}^{\prime}. Let v be a mixed vertex of $G \backslash X$ that is joined by a red path to a vertex in S, such that the path has mixed vertices only at its ends. If no such vertex exists, then the set X is all of $V(G)$ and we conclude G is a YES instance of C-COL. Therefore, assume such a v exists. The vertex v must map uuder g to either c_{0}^{\prime} or c_{k}^{\prime}.

Begin by setting $g(v)=c_{0}^{\prime}$. As above this uniquely determines the image of some set of vertices under g in C^{\prime}. Add these vertices to the set $X \cup T$. As above let X^{\prime} be the subgraph induced by $X \cup T$. Test if X^{\prime}, g is a YES instance of $M V H P\left(C, h, C^{\prime}\right)$. If the answer is NO, then perbaps the choice to map v to c_{0} was wrong. Hence, set $g(v)=c_{k}^{\prime} ;$ add the corresponding vertices to $X \cup T$, and test if X^{\prime}, g is a YES instance of $\operatorname{MVHP}\left(C, h, C^{\prime}\right)$. If the answer is NO, then G must be a NO instance of C-COL. At this point either we answer NO, or we have X^{\prime}, g is a YES instance of $\operatorname{MVHP}\left(C, h, C^{\prime}\right)$.

We repeat the above process, by choosing a new v, and either stop because G is a NO instance of C-COL or there is no such v and G is a YES instance of C-COL.

To observe that this process is polynomial, note that once v is mapped to δ_{0}^{\prime} or c_{k}^{\prime} and X^{\prime}, g is a YES instance of $M V H P\left(C, h, C^{\prime}\right)$ we never need to change the image of v. Recall that our strategy is to extend the map g to a homomorphism of G to C^{\prime}. Suppose that v is mapped to c_{0}^{\prime} and w is a mixed vertex joined by a red path to a mixed vertex added to S as a result of mapping v to c_{0}. Further suppose that g can not be extended to a homomorphism if $g(w)=c_{0}$ nor can g be extended to a homomorphism if $g(w)=c_{k}^{\prime}$. At this point we can STOP and answer NO. It is not the case that mapping v to c_{k}^{\prime} will now allow g to be extended. One can see that mapping
v to c_{k}^{k} will cause the same set of mixed vertices to be added to S as mapping v to c_{0}^{\prime}. Hence, w will still be joined by a red path to a mixed in S and at some point we must attempt to extend g with $g(w)=c_{0}$ or $g(w)=c_{k}$.

6.4 Even Blue and Odd Red Pieces

In the following we examine cycles where each blue piece has even length and each red piece has odd length. We show that for a cycle, C, with k red pieces (and hence k blue pieces), C-COL is polynomial if k is even and C-COL is NP-complete if k is odd.

Theorem 6.4.1 Let $k \geq 2$ be an integer. Let C be a two-edge-coloured cycle with red and blue edges. Suppose that each blue piece has even length and each red piece as odd length and suppose C has k red pieces. If k is even, then $C-C O L$ is polynomial. If k is odd, then C-COL is NP-complete.

Proof. Suppose C has an even number of red pieces. To see that C retracts to a path, let P_{τ} be a shortest red piece in C. Let P be the path formed by adding a single blue edge to either end of P_{r}. It is easy to verify that C retracts to P. Hence, C-COL is polynomial by the results on paths.

Suppose C contains an odd number of red pieces. We shall use the indicator construction to construct a graph, C^{*}, (multiplicity one) containing no loops and an odd cycle. Since odd cycles yield NP-complete colouring problems, by [19], C^{*}-COL is NP-complete. This implies C-COL is NP-complete.

Suppose the longest blue piece in C has length b and suppose the longest red piece in C has length r. Let I be a path consisting of a blue path of length $b-1$ followed
by a red path of length r followed by a blue path of length $b-1$ and let i and j be the end points of the path I. Note that each of the paths comprising I have odd length. Let C^{*} be the result of the indicator construction with respect of (I, i, j).

Observe that since I has odd length and only one red piece and $k / g e q 2$, any image of I in C must be a path with i and j mapping to different vertices. Hence C^{*} is loop-free.

Let P_{0}, P_{1}, P_{2} be three consecutive pieces in C, where P_{0} and P_{2} are blue and P_{1} is red. Let m_{1} be the mixed vertex shared by P_{0} and P_{1}. Let m_{2} be the mixed vertex shared P_{1} and P_{2}. Let m_{3} be the other mixed vertex in P_{2}, i.e., the other end of P_{2}. Furthermore, let b_{1} be the blue only vertex of P_{0} adjacent to m_{1} and let b_{2} be the blue only vertex of P_{2} adjacent to m_{3}. By the lengths of the paths in I, one can check that there is a homomorphism of I to C such that i maps to b_{1} and j maps to b_{2}. Hence the edge $b_{1} b_{2}$ is in C^{*}. Since there are an odd number of red pieces in C, there are an odd number of such edges. Moreover, these edges form an odd length cycle. Hence, by [19] C^{*}-COL is NP-complete.

6.5 Two or Four Pieces.

In this section we examine those two-edge-coloured cycles consisting of exactly two pieces or exactly four pieces. We show that for all such cycles C, the complexity of C-COL is polynomial.

Theorem 6.5.1 Let C be a iwo-edge-coloured cycle with two pieces. Then C-COL is polynomial.

Proof Let C be a cycle with two pieces. In light of Theorem 6.2.3 if both pieces have the same parity, then C-COL is polynomial. On the other hand, if one piece is even and one piece is odd, then by Theorem 6.3.1, C-COL is polynomial.

Let C be a cycle with four pieces on edge-colours red and blue. In many cases the complexity of C-COL follows from previous results. These are summarized blow:

Proposition 6.5.2 Suppose C is a two-edge-coloured cycle with four pieces of which exactly zero, one or four are even. Then C-COL is polynomial.

Proof If all pieces in C have the same parity, i.e. C has zero or four even length pieces, then C-COL is polynomial by Theorem 6.2.3. If C has one even length piece and three odd length pieces, then C-COL is polynomial by Theorem 6.3.1.

We now consider cycles with four pieces of which two or three of the pieces have even length.

Proposition 6.5.3 Let C be a two-edge-coloured cycle with four pieces of which two have even length and are blue and two have odd length and are red. Then C-COL is polynomial.

Proof This follows from Theorem 6.4.1.

This leaves two possible configurations. One is a cycle with two of the four pieces adjacent and of even length. The other is a cycle with three of the four pieces even length. The following two theorems complete the classification of cycles with four pieces.

Theorem 6.5.4 Let C be a two-cdge-coloured cycle with four pieces. Suppose C has exactly two even length pieces and they are adjacent (i.e. they share a vertex). Then C-COL is polynomial.

Proof Let the pieces of C be $R_{1}, R_{2}, B_{1}, B_{2}$, where R_{1} is an odd length, red path; R_{2} is an even length, red path; B_{1} is an odd length, blue path; B_{2} is an even length, blue path; and a clockwise traversing of the cycle will traverse the pieces in the order $B_{1}, R_{2}, B_{2}, R_{1}$. Let v be the vertex common to R_{1} and B_{1}.

Since C has even length, it is bipartite. Partition C into two independent sets, $\left(C_{0}, C_{1}\right)$, with $v \in C_{0}$. Using the ideas from Chapter 4 ; we construct a oriented cycle $D=\operatorname{Dir}\left(C, C_{0}, C_{1}\right)$. It is straightforward to check that the oriented path in D corresponding to the piece B_{1} has $\left\lceil\frac{\left|B_{1}\right|}{2}\right\rceil$ forward arcs and $\left[\frac{\left|B_{1}\right|}{2}\right\rfloor$ backward arcs. Hence the oriented path has net length one. The oriented path corresponding to R_{2} has $\frac{\left|R_{2}\right|}{2}$ forward arcs and $\frac{\left|F_{2}\right|}{2}$ backward arcs; the path has net length zero. Similarly, the paths in D corresponding to B_{2} and R_{1} have net length zero and one respectively. Therefore, the cycle D has net length two and by [30] or [15] D-COL is polynomial. Hence, C-COL is polynomial.

Theorem 6.5.5 Suppose C is a two-edge-coloured cycle with four pieces B_{1}, B_{2}, R_{1}, and R_{2} where
(i) B_{1} is blue and of length $2 b_{1}+1$,
(ii) B_{2} is blue and of lengith $2 b_{2}$,
(iii) R_{1} is red and of length $2 r_{1}$,
(iv) R_{2} is red and of length $2 r_{2}$.

Then C-COL is polynomial.

Proof Let G be an instance of C-COL. Let S be the set of vertices in G distance one in red from a mixed vertex. We reduce C-COL to $2 S A T$, where the variables correspond to the vertices of S and the clauses correspond to paths between the vertices of S. We begin by making an observation that will simplify the description of the 2SAT instance. Suppose x and y are boolean variables. Then $x=y$ if and only if $(x \vee-y) \wedge(\neg x \vee y)$ is true; $x \neq y$ if and only if $(x \vee y) \wedge(-x \vee \neg y)$ is true. Therefore, we will use the clause $x=y$, (resp. $x \neq y$) to refer to the clause $(x \vee \neg y) \wedge(\neg x \vee y)$, $(\operatorname{resp} .(x \vee y) \wedge(\neg x \vee \neg y))$.

Label the mixed vertices of C with $m_{1}, m_{2}, m_{3}, m_{4}$ where m_{1} and m_{2} are the endpoints of B_{1}, m_{1} and m_{3} are the end points of R_{2}. We assume without loss of generality that $r_{2} \geq r_{1}$. There are inree cases to consider.

Case 1: $r_{2} \geq r_{1}>1$. Let $s_{1}, s_{2}, s_{3}, s_{3}$ be the vertices, in C, distance one in red from $m_{1}, m_{2}, m_{3}, m_{4}$ respectively. Assign the following labels to $s_{1}, s_{3}, s_{3}, s_{4}$:

Vertex	Label
s_{1}	000
s_{2}	111
s_{3}	010
s_{4}	110

This set is 2SAT-describable since the clause $\left(u_{3} \vee \neg u_{1}\right) \wedge\left(\neg u_{3} \vee u_{2}\right)$ is satisfied by a bit string of length three if and only if the string is one of the four labels above.

For each vertex $u \in S$ construct three variables (u_{3}, u_{2}, u_{1}). These are the variables of the 2SAT instance. We now describe which clauses to add to the set of clauses in the 2SAT instance. For each $u \in S$ add the clause $\left(u_{3} \vee \neg u_{1}\right) \wedge\left(\neg u_{3} \vee u_{2}\right)$ to the set of clauses to insure u is mapped to one of $\left\{s_{1}, s_{2}, s_{3}, s_{4}\right\}$. Also, if $u, v \in S$ are both adjacent to some mixed vertex $w \in V(G)$, then u and v must have the image in C. Hence add the clause $\left(u_{1}=v_{1}\right) \wedge\left(u_{2}=v_{2}\right) \wedge\left(u_{3}=v_{3}\right)$. We add the other clauses based on the paths between vertices of S.

For u and v in S joined by a path consisting of a single red edge, a blue path P, and a single red edge, add the following clause to the set of clauses:

$$
\begin{array}{ccc}
\text { Parity of } P & \text { Length of } P & \text { Clause } \\
\text { odd } & |P|<2 b_{1}+1 & \left(u_{1}=\neg u_{1}\right) \\
\text { odd } & |P| \geq 2 b_{1}+1 & \left(u_{1} \neq v_{1}\right) \wedge\left(u_{3} \neq v_{3}\right) \\
\text { even } & |P|<2 b_{2} & \left(u_{1}=v_{1}\right) \wedge\left(u_{2}=v_{2}\right) \wedge\left(u_{3}=v_{3}\right) \\
\text { even } & |P| \geq 2 b_{2} & \left(u_{1}=v_{1}\right) \wedge\left(u_{2}=v_{2}\right)
\end{array}
$$

For all u and v in S joined by a red path Q, add the following clause to the set of clauses:

Parity of $Q \quad$ Length of Q
odd
even

$$
|Q| \geq 1
$$

$$
|Q|<2 r_{1}-2
$$

$$
\left(u_{1}=v_{1}\right) \wedge\left(u_{2}=v_{2}\right) \wedge\left(u_{3}=v_{3}\right)
$$

even

$$
\left(u_{2}=v_{2}\right) \wedge\left(u_{3}=v_{3}\right)
$$

even

$$
2 r_{1}-2 \leq|Q|<2 r_{2}-2
$$

$$
|Q| \geq 2 r_{2}-2
$$

$$
\left(u_{3}=v_{3}\right)
$$

Claim 6.5.5.1 The resulting instance of $2 S A T$ is satisfiable if and only if $G \rightarrow C$.

Proof of claim. Suppose $G \rightarrow C$. Then each vertex in S maps to one $\left\{s_{1}, s_{2}, s_{3}, s_{4}\right\}$. For each $u \in S$ assign (u_{3}, u_{2}, u_{1}) the label of the vertex s_{i} to which u is mapped. This assignment is a satisfying truth assignment.

On the other hand, suppose there exists a satisfying truth assignment. We construct a function f from the mixed vertices of G to the mixed vertices of C such that f can be extended to a homomorphism of G to C. Let v be a mixed vertex in G. Let $u \in S$ be distance one in red from v. The set of variables $\left(u_{3}, u_{2}, u_{1}\right)$ has a truth assignment corresponding to some s_{i}. Set $f(v)=m_{i}$. Using the ideas from the proof of Theorem 6.1.1 one can verify that f can be extended to a homomorphism $f: G \rightarrow C$. This establishes the claim.

Case 2: $r_{2}>r_{1}=1$. Let s_{1}, s_{2}, s_{3} be the mixed vertices distance one in red from m_{1}, m_{2}, m_{3} respectively. Notice s_{2} is also distance one from m_{4}. Assign the following labels to s_{1}, s_{2}, s_{3} :

Vertex	Label
s_{1}	00
s_{2}	11
s_{3}	10

For each vertex $u \in S$ construct two variables $\left(u_{2}, u_{1}\right)$. These are the variables of the 2SAT instance. We now describe which clauses to add to the set of clauses in the 2SAT instance. For each $u \in S$ add the clause $\left(u_{2} \vee-u_{1}\right)$. This insures that (u_{2}, u_{1})
is never assigned $(0,1)$, that is, $\left(u_{2}, u_{1}\right)$ is assigned on the three labels above. Also, if $u, v \in S$ are both adjacent to some mixed vertex $w \in V(G)$, then u and v must have the image in C. Hence add the clause $\left(u_{1}=v_{1}\right) \wedge\left(u_{2}=v_{2}\right)$. We add the other clauses based on the paths between vertices of S.

For u and v in S joined by a path consisting of a single red edge, a blue path P, and a single red edge, add the following clause to the set of clauses:

Parity of P	Length of P	Clause	
odd	$\|P\|<2 b_{1}+1$	$\left(u_{1}=\neg u_{1}\right)$	
odd	$\|P\| \geq 2 b_{1}+1$	$\left(u_{1} \neq v_{1}\right) \wedge\left(u_{2} \neq v_{2}\right)$	
even	$\mid P \\|<2 b_{2}$	$\left(u_{1}=v_{1}\right) \wedge\left(u_{2}=v_{2}\right)$	
even	$\|P\| \geq 2 b_{2}$	$\left(u_{2}=v_{2}\right)$	

For all u and v in S joined by a red path Q, add the following clause to the set of clauses:

$$
\begin{array}{ccc}
\text { Parity of } Q & \text { Length of } Q & \text { Clause } \\
\text { odd } & \|Q\| \geq 1 & \left(u_{1}=-u_{1}\right) \\
\text { even } & \| Q<2 r_{2}-2 & \left(u_{1}=v_{1}\right) \wedge\left(u_{2}=v_{2}\right) \\
\text { even } & \| Q \geq 2 r_{2}-2 & \left(u_{1}=v_{1}\right)
\end{array}
$$

The resulting instance of 2SAT is satisfiable if and only if $G \rightarrow C$. Suppose f : $G \rightarrow C$. Then each vertex in S mast map to one of $\left\{s_{1}, s_{2}, s_{3}\right\}$. The corresponding truth assigament is a satisfying truth assignment for the instance of 2SAT.

On the other hand, suppose there exists a satisfying truth assigument of the 2SAT instance. We construct a function from the mixed vertices of G to the mixed vertices of C so that f can be extended to a homomorphism from G to C. Let v be a mixed vertex in G distance one from $u \in S$. The set of variables $\left(u_{2}, u_{1}\right)$ has a truth assignment corresponding to some s_{i}. If it corresponds to s_{1}, then set $f(v)=m_{1}$. If it corresponds to s_{3}, then set $f(v)=m_{3}$. If it corresponds to s_{2}, then there are two cases to consider. Firstly, if v is connected by a blue path to a mixed vertex, w, such that $f(w)=m_{3}$ then set $f(v)=m_{4}$. Otherwise, v is connected by a blue path to mixed vertices, $w^{\prime \prime}$, such that $f\left(w^{\prime}\right)=m_{2}$ or $f\left(w^{*}\right)=m_{1}$ or v is not joined to any mixed vertices by a blue path. In this case set $f(v)=m_{2}$. Using the proof of Theorem 6.1.1 one can verify that f can be extended to a homomorphism $f: G \rightarrow C$.

Case 3: $r_{2}=r_{1}=1$. Let s_{1}, s_{2} be the mixed vertices distance one in red from m_{1}, m_{2} respectively. Notice s_{1} is also distance one from m_{3} and s_{2} is distance one from m_{4}. Assign the following labels to s_{1}, s_{2} :

Veriex Label	
s_{1}	1
s_{2}	0

For each vertex $u \in S$ construct one variable u. These are the variables of the 2SAT instance. We now describe which clauses to add to the set of clauses in the 2SAT instance. If $w, w \in S$ are joined to a common mixed vertex $w \in V(G)$, then u and v must map to the same vertex in C. In the two cases above we required a special clause to ensure this happened. In this final case we do not require a special clause
since u and v a joined by a red path and that case is handled below.

The clauses are based on the paths between vertices of S. For u and v in S joined by a path consisting of a single red edge, a blue path P, and a single red edge, add the following clause to the set of clauses:

Parity of P	Length of P	Clause
odd	$\|P\|<2 b_{1}+1$	$(u=\neg u)$
odd	$\|P\| \geq 2 b_{1}+1$	$(u \neq v)$
even	$\|P\|<2 b_{2}$	$(u=v)$
even	$\|P\| \geq 2 b_{2}$	$(u=u)$

For u and v is S joined S joined by a red path Q add the clause $(u=v)$ to the set of clauses.

The resulting instance of 2SAT is satisfiable if and only if $G \rightarrow C$. Suppose $f:$ $G \rightarrow C$. Then each vertex in S must map to one of $\left\{s_{1}, s_{2}\right\}$. The corresponding truth assignment is a satisfying truth assignment for the instance of 2SAT.

On the other hand, suppose that the instance of 2SAT has a satisfying truth assignment. We construct a mapping f from the mixed vertices of G to the mixed vertices of C and observe that this mapping can be extended to a homomorphism $f: G \rightarrow C$. Let v be a mixed vertex in G distance one in red from $u \in S$. The are four cases to consider:

- If v is joined by an odd length blue path to another mixed vertex and u is assigned 1 , then set $f(v)=m_{1}$.
- If v is joined by an odd length blue path to another mixed vertex and u is assigned 0 , then set $f(v)=m_{2}$.
- If v is joined only by even length blue paths to another mixed vertices or is joined to no other mixed vertices and u is assigned 1 , then set $f(v)=m_{3}$.
- If v is joined only by even length blue paths to anoiher mixed vertices or is joined to no other mixed vertices and u is assigned 1 , then set $f(v)=m_{1}$.

Again, it is straightforward to check, using the proof of Theorem 6.1.1, that f can be extended to a homomorphism $f: G \rightarrow C$.

This completes case 3 and the proof of the theorem.

Chapter 7

Cliques

The results in this chapter concern the complexity of $\mathrm{H}-\mathrm{COL}$ when H is a clique. We begin by studying cliques with four or less vertices. Notice, that H-COL is trivial when H is a clique on zero or one vertices. The classification of two-cliques is in Section 7.1. The classification of loop-free three-cliques is in Section 7.2. We also provide, in Section 7.3, a classification of three-cliques with loops allowed but we restrict attention to the case of two edge-colours. Finally, we give a classification of two-edge-coloured four-cliques with the restriction that the four-cliques are digon-free.

In Section 7.5 we study the problem for cliques larger than four-cliques. We present two infinite families of cliques for which H-COL is polynomial for every member of the family. The first family consists of two-edge-coloured cliques. The second family consists of digon-free, loop-free cliques. In fact, for such k-edge-coloured cliques, we show that for every $n \leq 2^{k}$ there exists an n-clique for which H-COL is polynomial and for every $n>2^{k}$ any k-edge coloured n-clique is NP-complete.

We now make an observation that reduces the number of cases that need to be considered. Let H_{1} and H_{2} be edge-coloured graphs with multiplicity k both on the
same vertex-set V. Further suppose there exists a permutation, π, on $\{1,2,3, \ldots, k\}$, such that $E_{i}\left(H_{1}\right)=E_{\pi(t)}\left(H_{2}\right)$. That is, H_{1} can be obtained from H_{2} by permuting the edge-colours of H_{2}. Then we can show that $H_{1}-\mathrm{COL}$ and H_{2} - COL are polynomially equivalent. Denote this permutation $H_{1}=\pi\left(H_{2}\right)$. To see H_{1}-COL $\propto H_{2}$-COL, let G be an instance of H_{1}-COL. Then $G \rightarrow H_{1}$ if and only if $\pi(G) \rightarrow H_{2}$. On the other hand, to see H_{2} - $\mathrm{COL} \alpha H_{1}$-COL, let G be an instance of H_{2}-COL. Then $\pi^{-1}(G) \rightarrow H_{1}$ if and only if $G \rightarrow H_{2}$. In particular, when classifying H -COL for edge-coloured cliques of multiplicity two we can restrict our attention to cases where the number of blue edges is greater than or equal to the number of red edges.

7.1 Two-cliques

All the two-clique colouring problems can be reduced to 2SAT. This reduction applies to any two-clique regardless of the number of edge-colours. Label the vertices of the clique with $\{0,1\}$. This is a 2 SAT-describable set by Observation 2.3.1. For a particular edge-colour, there are eight possible edge-sets on the vertex-set $\{0,1\}$. Namely, there are two choices (present or not) for each of the three edges, $\{00,01,11\}$. For each of these possible edge-sets the obvious partition, $\{0,1\}=\{0\} \cup\{1\}$, satisfies the conditions in Theorem 2.3.3 and each edge-set is 2SAT amiable. Hence we have the following theorem.

Theorem 7.1.1 Let H be an edge-coloured clique on two vertices. Then $H-C O L$ is solvable in polynomial time.

7.2 Loop-Free Three-Cliques.

In the study of graphs and of digraphs, the classification of the complexity of H-COL is completely determined when H contains a spanning clique. See [19] and [1]. These classifications are given in terms of the existence of certain subgraphs. In the case of graphs, if H contains a subgraph which is a K_{3}, then the problem is NP-complete and if it does not contain such a subgraph it is polynomial. In the case of digraphs, if H is a semicomplete digraph (at least one arc between any pair of vertices) and H contains at least two directed cycles, then H-COL is NP-complete and if H contains zero or one directed cycles, then H-COL is polynomial. It would be nice to have such a subgraph characterization for edge-coloured cliques as well, but it seems unlikely even for the three-clique problem. Consider the sequence of edge-coloured graphs in Figure 7.1. Each edge-coloured graph is a subgraph of the following graph. However, the complexity alternates between polynomial and NP-complete, demonstrating that a subgraph characterization is impossible.

In this section we restrict our attention to loop-free three-cliques. For this restricted class, we show that the complexity of H-COL is completely determined by the existence or non-existence of certain subgraphs.

We now use 2SAT to show a particular class of three-ciiques is polynomial. Let H be an edge-coloured three-clique where the vertices of H have been labelled with the bit-strings $\{00,01,11\}$. This is a 2SAT-describable set by Lemma 2.3.2. Initially we will restrict our attention to those three-cliques H that do not contain a monochromatic K_{3}. (The existence of a monochromatic K_{3} immediately implies the problem

Figure 7.1: An alternating sequence of K_{3} 's
is NP-complete.) Given that the vertices are labelled, there are six possible edgeconfigurations that a particular edge-colour can take. (Recall we are restricting our attention to loop-free and monochromatic K_{3}-free configurations). The possibilities are listed below and drawi in Figure 7.2.

Name	Edge set
C_{1}	$\{\{11,00\}\}$
C_{2}	$\{\{11,01\}\}$
C_{3}	$\{\{01,00\}\}$
C_{4}	$\{\{01,00\},\{00,11\}\}$
C_{5}	$\{\{01,11\},\{00,11\}\}$
C_{6}	$\{\{11,01\},\{01,00\}\}$

The following lemma tells us that the only possibly 'bad' configuration for the edges is C_{6}.

Figure 7.2: Possible configuration for each edge-colour-class.

Lemma 7.2.1 Suppose H is a loop-free, edge-coloured three-clique containing no monochromatic K_{3}. If the vertices of H can be labelled with $\{00,01,11\}$ such that each edge-colour-class is one of the configurations C_{1}, \ldots, C_{5} above, then $H-C O L$ is polynomial.

Proof We use a reduction to 2SAT to solve the problem. We have already observed that the set of bit-strings used to label H is 2SAT-describable. Therefore, we only need to give clauses for each configuration C_{1}, \ldots, C_{5}. These clauses are given below.

$$
\begin{array}{cc}
\text { Configuration } & \text { Clause } \\
C_{1} & \left(v_{2} \vee u_{2}\right) \wedge\left(\neg v_{2} \vee \neg u_{2}\right) \wedge\left(v_{1} \vee u_{1}\right) \wedge\left(\neg v_{1} \vee \neg u_{1}\right) \\
C_{2} & \left(v_{2} \vee u_{2}\right) \wedge\left(\neg v_{2} \vee \neg u_{2}\right) \wedge\left(v_{1}\right) \wedge\left(u_{1}\right) \\
C_{3} & \left(\neg u_{2}\right) \wedge\left(\neg v_{2}\right) \wedge\left(v_{1} \vee u_{1}\right) \wedge\left(\neg v_{1} \vee \neg u_{1}\right) \\
C_{4} & \left(v_{1} \vee u_{1}\right) \wedge\left(\neg v_{1} \vee \neg u_{1}\right) \\
C_{5} & \left(v_{2} \vee u_{2}\right) \wedge\left(\neg v_{2} \vee \neg u_{2}\right)
\end{array}
$$

Figure 7.3: The edge-coloured graph H_{6}.

The verification that these clauses are correct is straightforward. The result follows.

It may seem possible that another labelling of H with different bit-strings could allow us to use 2SAT for C_{6}. However, the following lemma shows that configuration C_{6} is indeed difficult. Let H_{6} be the edge-coloured graph with vertex-set $\{00,01,11\}$ and three edge-colours: blue, red, and green. Let the blue edge-set be $\{\{01,11\},\{11,00\}\}$, the red edge-set be $\{\{01,11\},\{01,00\}\}$, and the green edge-set be $\{\{01,00\},\{11,00\}\}$. A picture of H_{6} is in Figure 7.3. Blue edges are solid, red edges are dashed, and green edges are dotted.

Lemma 7.2.2 Let H be a loop-free three-clique. Suppose there are three edge-colours red, green, and blue such that the subgraph induced by these three colours is precisely H_{6}. Then H-COL is NP-complete.

Proof. We use two applications of the indicator corstruction to show H_{6}-colouring is NP-complete. Let I_{1} be a path of length five, with edges $\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right\}$. The ordering on the edges is the natural ordering. All edges are blue with the exception

Figure 7.4: The edge-coloured graphs H_{6}^{*} and H_{6}^{-*}.
of e_{3} which is red. Vertices i_{1} and j_{1} are the endpoints of the path. Similarly, let I_{2} be a path of length five with the outer four edges red and the center edge green. The end points of I_{2} are i_{2} and j_{2}. Finally, let I_{3} be a single grenn edge with end points i_{3} and j_{3}. We consider blue to be colour one, red to be colour two, and green to be colour three. The result of the indicator construction with respect to $\left(I_{1}, i_{1}, j_{1}\right),\left(I_{2}, i_{2}+j_{2}\right),\left(I_{3}, i_{3}, j_{3}\right)$ is the edge-coloured graph H_{6}^{*}. The vertices of H_{6}^{*} are $\{00,01,11\}$. The blue edge-set is $\{\{00,00\},\{01,00\},\{01,11\},\{11,00\},\{01,01\}\}$. The red edge-set is $\{\{01,00\},\{01,11\},\{11,00\},\{00,00\},\{11,11\}\}$. The green edge-set is $\{\{01,00\},\{00,11\}\}$. A picture of H_{6}^{*} is in figure 7.4. Blue edges are solid, red edges are dashed, and green edges are dotted.

We use the indicator construction on H_{6}^{*}. Let I_{1} be the digon on vertices $\left\{i_{1}, j_{1}\right\}$ with a blue and a red edge, $i_{1} j_{1}$. Let i_{2} be the single green edge on vertices i_{2}, j_{2}. The result of the indicator construction with respect to $\left(I_{1}, i_{1}, j_{1}\right),\left(I_{2}, i_{2}, j_{2}\right)$ is the graph $H_{6}^{* *}$. The blue edges are $\{\{01,11\},\{11,00\},\{01,00\},\{00,00\}\}$ and the red edges are $\{\{01,00\},\{11,00\}\}$. A picture of H_{6}^{-*} is in Figure 7.4. The H_{6}^{*-}-colouring problem is NP-complete. The proof of this appears in the next section. This implies both H^{*}-COL and H-COL are NP-complete.

The previous two lemmas now allow use to classify all loop-free three-clique colouring problems.

Theorem 7.2.3 Let H be a loop-free three-clique. If H contains a monochromatic triangle or three edge-colours that induce a copy of H_{6}, then H -COL is NP -complete; otherwise, H -COL is polynomial.

Proof. If H contains a monochromatic triangle or H_{5}, then restrict the input to the edge-colours of this subgraph. In these cases H-COL is NP-complete.

Otherwise, label the wertices of H with the bit-strings $\{00,01,11\}$ such that each edge-colour induces one of the configurations C_{1} to C_{5}. This is always possible provided H does not contain three colours that induce H_{6}. Use Lemma 7.2.1 to conclude the problem is polynomial.

7.3 Two-Edge-Coloured Three-Cliques

In this section we allow loops but restrict the multiplicity of H to two. Each H colouring problem (for H a two-edge-coloured three-clique) is classified as either NPcomplete or we present a polynomial time algorithm. We label the vertices of H with $\{0,1,2\}$. If we ignore loops, then there are essentially six two-edge-coloured cliques. Since loops will be introduced later we can no longer exclude monochromatic triangles. As mentioned above we need only consider the case where the number of blue edges is greater than or equal to the number of red edges. The list below and Figure 7.5 describe these six cliques.

Figure 7.5: All six loop-free, two-edge-coloured cliques on three vertices.

Name	Blue Edges	Red Edges
T_{1}	$\{01,12,20\}$	$\}$
T_{2}	$\{01,12,20\}$	$\{01\}$
T_{3}	$\{01,12,20\}$	$\{20,21\}$
T_{4}	$\{01,12,20\}$	$\{01,12,20\}$
T_{5}	$\{20,21\}$	$\{01\}$
T_{6}	$\{20,21\}$	$\{20,01\}$

We now consider the complexity of H-COL when H is one of the six edge-coloured graphs above. We also consider all possible additions of loops and classify those problems as well. To avoid trivialities, we will never have a red and a blue loop on the same vertex because any two-edge-coloured graph will map to such a double loop. That is, G is a YES instance if and only if G has only red and blue edges. Also, in the following we will use the term T_{i}^{+}to denote any two-edge-coloured clique on three
vertices obtained from T_{i} by adding a (possibly empty) set of loops to the edge-set.

The indicator constraction will be used several times. We first describe our set of indicators. We use either single edges or paths of length three. In all cases, the specified vertices are the end-points of the edge and path respectively. Recall that the blue edges are E_{1} and the red edges are E_{2}. Hence the images of indicator I_{1} correspond to the blue edges in H^{*} and the images of the indicator I_{2} correspond to the red edges in H^{*}.

Name Description
$R \quad$ Single red edge.
$B \quad$ Single blue edge.
D Two vertices joined by a red and a blue edge.
$R R R \quad$ Path of length three of all red edges.
BBB Path of length three of all blue edges.
$R B R$ Path of a red edge, blue edge, and red edge.
$B R B$ Path of a blue edge, red edge, and blue edge.
$R D R \quad$ Path of a red edge, D from above, and red edge.
$B D B$ Path of a blue edge, D from above, and blue edge.

7.3.1 The Complexity of T_{1}^{+}-Colouring

We begin by showing T_{1}^{+}-colouring is NP-complete if T_{1}^{+}contains no blue loops; that is, the graph induced by the blue edges is a K_{3}. We reduce $K_{3}-\mathrm{COL}$ to T_{1}^{+}- COL . Let G be an instance of K_{3} - COL. Let G_{b} be the two-edge-coloured graph on $V(G)$ with $E_{1}\left(G_{b}\right)=E(G)$ and $E_{2}\left(G_{b}\right)=\phi$. We claim $G \rightarrow K_{3}$ if and only if $G_{b} \rightarrow T_{1}^{+}$.

Informally we say we reduce T_{1}^{+}- COL to K_{3} - COL by restricting the input to edgecoloured graphs with only blue edges.

On the other hand, if T_{1}^{+}has a blue loop we can use the Dominating Loop Lemma (Lemma 2.4.3) to reduce the problem to a two vertex clique problem. These are all polynomial by Theorem 7.1.1.

Observation 7.3.1 The problem $T_{1}^{+}-\mathrm{COL}$ is NP-complete if T_{1}^{+}has no blue loops and is polynomial otherwise.

7.3.2 The Complexity of T_{4}^{+}-Colouring

While many will argue that the T_{2}^{+}classification should come after the T_{1}^{+}classification we require these results in the following subsections. Hence, the possibly unaesthetic ordering must be endured.

Consider any T_{4}^{+}. Since we are assuming that no vertex of the T_{4}^{+}has both a red loop and a blue loop, the result of the indicator construction with respect to (D, i, j) is a T_{1}. Since T_{1} COL is NP-complete, all T_{4}^{+}-colouring problems are NP-complete.

Observation 7.3.2 Each problem T_{4}^{\star} - COL is NP -complete.

7.3.3 The Cumplexity of T_{2}^{+}-Colouring

Consider the following cases:

Case $T_{2}^{+}-1$: No blue loop. We can restrict the input to blue edges only. This problem is NP-complete since the blue edges induce T_{1} and T_{1}-COL is NP-complete.

Case $T_{2}^{+}-2$: A blue loop on vertex 2. The problem reduces via the Dominating Loop Lemma (Lemma 2.4.3) to a two vertex clique problem and hence is polynomial.

We can now assume that T_{2}^{+}has at least one blue loop on vertices $\{0,1\}$ and either a red loop or no loop on vertex 2 .

Case $T_{2}^{+}-3$: No loop on vertex 2. Blue loop on vertex 0 and/or 1 . These graphs retract to a two vertex clique and therefore are polynomial.

Case $T_{2}^{+}-\frac{4}{4}$: Red loop on vertex 2. Blue loops on vertices 0 and 1. This graph is polynomial but we have not found a generic tool to show this. Hence, we present a special algorithm for this edge-coloured graph. Call this edge-coloured graph $T_{2}^{+}-4$. Let G be an instance of $T_{2}^{+}-4$ COL. Consider the red components of G. The nonbipartite red components must all map to the red loop at vertex 2. Hence there can be no blue edges in a nonbipartite red component nor can there be any blue edges joining two vertices each in two separate nonbipartite red components. We claim this condition is necessary and sufficient for G to map to T_{2}^{+}-4. The necessity of the condition has just been demonstrated. Suppose G satisfies the condition. Then we $\operatorname{map} G$ to $T_{2}^{+}-4$ as follows:

1. Map all vertices belonging to a red nonbipartite component to vertex 2 .
2. Map each red bipartite component to $\{0,1\}$.
3. Map all remaining vertices to vertex 0 .

The proof that this is a homomorphism is straightforward. Observe that there are blue edges in $T_{2}^{+}-4$ between all pairs of vertices from $T_{2}^{+}-4$ with the single exception that vertex 2 does not lave a blue edge to itself (i.e. a blue loop). However, the condition on G says the preimage of 2 (i.e. the vertices mapped in step 1) are blue edge free.

Case T_{2}^{+-5} : Red loop on vertex 2. Blue loop on exactly one of vertices 0 and 1. Without loss of generality assume there is a blue loop on vertex 0 and no blue loop on vertex 1 . Let I_{1} be the B indicator and I_{2} be the $R B R$ indicator. The indicator construction with respect to $\left(\left(I_{1}, i_{1}, j_{1}\right),\left(I_{2}, i_{2}, j_{2}\right)\right)$ results in a T_{4}^{+}. Hence, $T_{2}^{+}-5$ colouring is NP-complete.

7.3.4 The Complexity of \boldsymbol{T}_{3}^{+}-Colouring

Case $T_{3}^{+}-1$: No loops on vertices $\mathbf{0}$ or 1. If there is no blue loop on vertex 2 , then we can restrict the input to blue edges and conclude the problem is NP-complete.

If on the other hand, there is a blue loop on vertex 2, then we use Lemma 2.4.1. Let H_{1} be the edge-coloured graph induced by vertices 0 and 1 . Let H_{2} be the blue loop on vertex 2. Notice $H_{1} \rightarrow H_{2}$ as required and T_{3}^{+}is the join of H_{1} and H_{2} with respect to red and blue. Since H_{1} join H_{1} is a monochromatic K_{4} and K_{4}-COL is NP-complete, we conclude that $T_{3}^{\dagger}-1-\mathrm{COL}$ is NP-complete.

Case $T_{3}^{+}-2$: Blue loop on at least one of $\{0,1\}$. No red loop on either $\{0,1\}$. Consider the congruence with two classes $S_{0}=\{0,1\}$ and $S_{1}=\{2\}$. This congruence induces a retraction to a two-clique. Hence, the problem is polynomial.

Case $T_{3}^{+}-3$: Red loop on at least one of $\{0,1\}$. Assume without loss of generality that there is a red loop on vertex 0 . Vertex 1 may have a red loop, a blue loop, or no loop. Use the indicator B for and I_{1} and $R D R$ for I_{2}. The indicator construction with respect to $\left(\left(I_{1}, i_{1}, j_{1}\right),\left(I_{2}, i_{2}, j_{2}\right)\right)$ produces a T_{4}^{+}and therefore the problem is NP-complete.

7.3.5 The Complexity of T_{3}^{+}-Colouring

Case T_{5}^{+-1} : No blue loop. Let H_{1} be the edge-coloured graph induced by $\{0,1\}$ and let H_{2} be the edge-coloured graph induced by $\{2\}$. Observe that both H_{1}. COL and $H_{2}-\mathrm{COL}$ are polynomial. We now observe that $T_{5}^{*}-1$ satisfies the conditions of Lemma 3.5.1. Hence, all $T_{3}^{+}-1$ problems are polynomial.

Case $T_{5}^{+}-2$: Blue loop on vertex 2. Use the Dominating Loop Lemma (Lemma 2.4.3) to reduce the problem to a two-clique-colouring problem. Hence, all T_{5}^{+}-2-COL problems are polynomial.

Case $T_{5}^{+}-3$: No loop on vertex 2. Exactly one blue loop on vertices $\{0,1\}$. Either 0 or 1 red loops on vertices $\{0,1\}$. Without loss of generality assume there is a blue loop on vertex 0 . There are two possibilities for vertex 1 . Either vertex 1 has no loop or vertex 1 has a red loop. Call the former case subcase $A^{\prime \prime}$ and the latter case "subcase B^{\prime}. Both these problems reduce to 2SAT. Label the vertices with bit strings of length two as follows:

Vertex	Label
0	00
1	10
2	01

This is 2SAT-describable by Lemma 2.3.2. Unfortunately, the edge-coloured graphs $T_{5}^{+}-3$ are not $2 S A T$ amiable. However, we can come up with a set of ad hoc clauses. Given an instance, G, of $T_{5}^{+}-3 \mathrm{COL}$, we construct an instance, S, of 2 SAT as follows. For each vertex u in G_{t} there correspond wo variables u_{1} and u_{2} in S. The clauses of S are defined below.

The clauses in subcase A are:

$$
\begin{array}{cc}
\text { Edge } & \text { Clause } \\
\text { Blue edge uv } & \left(u_{1} \vee \neg v_{2}\right) \wedge\left(\neg u_{2} \vee v_{1}\right) \wedge\left(\neg u_{1} \vee \neg v_{1}\right) \\
\text { Red edge } u v & \left(u_{2} \vee v_{2}\right) \wedge\left(\neg u_{2} \vee \neg v_{2}\right) \wedge\left(\neg v_{1}\right) \wedge\left(\neg u_{1}\right)
\end{array}
$$

The clauses in subcase B are:

$$
\begin{array}{cc}
\text { Edge } & \text { Clause } \\
\text { Blue edge } u v & \left(u_{1} \vee \neg v_{2}\right) \wedge\left(\neg u_{2} \vee v_{1}\right) \wedge\left(\neg u_{1} \vee \neg v_{1}\right) \\
\text { Red edge } u v & \left(u_{2} \vee v_{2}\right) \wedge\left(\neg v_{1}\right) \wedge\left(\neg u_{1}\right)
\end{array}
$$

Suppose a satisfying truth assignment exists for S. Because the vertices have been labelled with a 2 SAT-describable set, we can assume that each pair of variables, (ψ_{2}, u_{1}), has been assigued $(0,0),(0,1)$, or $(1,0)$. Therefore, given an edge $u v$, the variables ($u_{2}, u_{1}, v_{2}, v_{1}$) can take on nine possible values. Notice the blue edge-clause in both subcases in the same. We call this the Blue Clause. The red edge clause in subcase A (resp. subcase B) is called Red Clause A (resp. Red Clause B).

Value of $\left(u_{2}, u_{1}, v_{2}, v_{1}\right)$	Value of Blue Clause	Red Clause A	Red Clause B
$(0,0,0,0)$	True	False	False
$(0,0,0,1)$	True	False	False
$(0,0,1,0)$	False	True	True
$(0,1,0,0)$	True	False	False
$(0,1,0,1)$	False	False	False
$(0,1,1,0)$	True	False	False
$(1,0,0,0)$	False	True	True
$(1,0,0,1)$	True	False	False
$(1,0,1,0)$	False	False	True

It is now easy to see, there is a satisfying truth assignment for S if and only if there is a homomorphism of G to T_{5}^{+}-3.

Case $T_{5}^{+}-4$: No loop on 2. Blue loop on both vertex 0 and on vertex 1. Let I_{1} be $B R B$ and I_{2} be B. The indicator construction with respect to $\left(\left(I_{1}, i_{1}, j_{1}\right)\right.$, ($\left.I_{2}, i_{2}, j_{2}\right)$) produces an edge-coloured graph $T_{3}^{+}-3$. Therefore, all problems $T_{5}^{+}-4$-COL are NP-complete.

Case $T_{5}^{\ddagger}-5$: Blue loop on at least one of vertices $\{0,1\}$. Red luop on vertex 2. Suppose wishcut loss of generality there is a blue loop on vertex 0 . Initially assume there is no loop on vertex one. Use the indicator $B R$ consisting of the edgecoloured graph on the vertex-set $\{i, x, j\}$ with ix a blue edge and $x j$ a red edge. The indicator construction described in Chapter One requires that all indicators have an automorphism that maps i to j and j to i. This condition ensures that the result of the indicator construction has undirected edges. If the automorphism condition is removed, then the result of the indicator construction in general will have directed edges. See [25] for more details.

The indicator construction with respect to ($B R, i, j$) results in a semicomplete digraph with two directed cycles. The H-colouring problem for such a graph H is proved to be NP-complete in [2]. If we add a loop of any colour to vertex 1 , the result is an increase of arcs in the result of the indicator construction. Nonetheless, the result is still a semi-complete digraph with at least two directed cycles. Hence, all $T_{5}^{+}-5$ - COL problems are NP-complete.

7.3.6 The Complexity of T_{6}^{+}-Colouring

Case $T_{6}^{+}-1$: There are no loops. Label the vertices with bit-strings of length two as follows:

Vertex	Label
0	00
1	10
2	11

This set is 2SAT-describable by Lemma 2.3.2. Also the labeling satisfies the requirements of Theorem 2.3 .3 , proving the edge-coloured graph is $2 S A T$ amiable. Therefore, this problem is polynomial.

Case $T_{6}^{+}-2$: Blue loop on vertex 2. No red loop on vertex 1. In this case, there is a retraction to the subgraph induced by vertices $\{0,2\}$ obtained by mapping vertex 1 to vertex 2. This reduces the problem to a two-clique-colouring problem which is polynomial.

Case T_{6}^{+}-3: Blue loop on vertex 2. Red loop on vertex 1. If there is also a red loop on vertex 0 , then the edge-coloured graph retracts to the subgraph induced by $\{0,2\}$. The problem is polynomial. If there is not a red loop on vertex 0 , then we label the vertices with the following bit-strings of length 2 :

Vertex	Label
0	01
1	00
2	10

We again observe this a 2SAT-describable set. Let G be an instance of H-COL. We construct an instance of 2SAT from G as follows:

Edge
Blue edge $u v$
Red edge $u v \quad\left(\neg u_{2} \vee \neg v_{2}\right) \wedge\left(\neg u_{2} \vee v_{1}\right) \wedge\left(u_{1} \vee \neg v_{2}\right) \wedge\left(\neg u_{1} \vee \neg v_{1}\right)$
As above, one can verify this instance of 2SAT is a YES instance if and only if $G \rightarrow H$.

Case $T_{6}^{+}-4$: Red loop on vertex 2 and vertex 0 . No blue loop on vertex 1. This edge-coloured graph retracts to the subgraph induced by $\{0,2\}$. The problem is polynomial.

Case $T_{6}^{+}-5$: Red loop on vertex 2. Not case T_{6}^{+}-4. If there is a blue loop on either vertex 0 or vertex 1 or both, then let I_{1} be $R D R$ and I_{2} be B. Observe that neither of these indicators produce a loop in H^{*} that is not present in H. Hence, H^{*} does not contain a double loop (red and blue) on any vertex since H does not contain a double loop. The result of ti.e indicator construction with respect to $\left(I_{1}, i_{1}, j_{1}\right),\left(I_{2}, i_{2}, j_{2}\right)$ is an edge-coloured graph from case $T_{3}^{+}-2$. Thus, the problem is NP-complete.

Now assume there is not a blue loop on either vertex 0 nor vertex 1 . That is, there are no loops on 0 or 1 or a red loop on vertex 1 and no loop on vertex 0 . Let I_{1} be $R D R$ and let I_{2} be B. The result of the indicator construction with respect to $\left(I_{1}, i_{1}, j_{1}\right),\left(I_{2}, i_{2}, j_{2}\right)$ is an edge-coloured graph from case $\boldsymbol{T}_{3}^{+}-1$. This is NP-complete.

Case T_{6}^{+}-6: No loop on vertex 2. Red loop on vertex 0 . If there is not a blue loop on vertex 1 , then the edge-coloured graph retracts to the subgraph induced
by $\{0,2\}$ and the problem is polynomial. If there is a blue loop on vertex 1 , then by switching red edges for blue and vice versa we are in case $T_{6}^{+}-3$.

Case $T_{6}^{+}-7$: No loop on vertex 2. No red loop on vertex 0 . If there is a red loop on vertex 1 and no blue loop on 0 , then we use the same reduction to 2 SAT as in case $T_{6}^{+}-3$, except we use the following clause for the blue edges:

$$
\left(u_{2} \vee v_{2}\right) \wedge\left(\neg u_{2} \vee \neg v_{2}\right)
$$

Now we can assume there is no red loop on 0 or 1 , but there is a blue loop on 0 and/or 1. In this case, switch blue edges for red edges and vice versa. This result is a T_{6}^{+} with a red loop on 1 and/or 2 . A red loop on vertex 2 is either case $T_{6}^{+}-4$ or case $T_{6}^{+}-5$. If there is not a red loop on 2 , but there is a red loop on vertex 1 , then we are in case $T_{6}^{+}-6$ or the first part of the present case.

This completes the classification of the T_{6}^{+}problems and thus also completes our classification of two-edge-coloured three-cliques (with loops allowed).

7.4 Two-Edge-Coloured Four-Cliques

The amount of work required to classify all two-edge-coloured three-cliques suggests that classifying all the four-cliques might require many more hours and hundreds more pages. Instead of making a career out of the four-clique problem, we will concentrate on the special case when the four-clique does not contain a digon, i.e. a pair of vertices u and v joined in both blue and red.

Given a four-clique, let the vertices be $\{0,1,2,3\}$. We consider all two-edge-colour four-cliques with the number of blue edges greater than or equal than the number

Figure 7.6: All digon-free two-edge-coloured four-cliques.
of red edges. As before, this covers all possible cases by symmetry. The following tabie and figure contain descriptions of all digon-free two-edge-coloured four-cliques without loops. The red edge-set is listed. The blue edge-set is the complement of the red edge-set. As in the case for three-cliques, the symbol B_{1}^{+}refers to any edgecoloured four-clique obtained by adding loops to the edge-coloured graph B_{1}.

Name	Red Edge-Set
B_{1}	$\{13,30,02\}$
B_{2}	$\{01,02,03\}$
B_{3}	$\{10,23\}$
B_{4}	$\{03,23\}$
B_{5}	$\{03\}$
B_{6}	$\}$

7.4.1 The classification of B_{1}^{+}-colouring

Theorem 7.4.1 All B_{1}^{\dagger}-colouring problems are $N P$-complete.

Proof. Let $R B$ be the edge-coloured graph on three vertices, $\{i, m, j\}$, where $i m$ is red and $m j$ is blue. The result of the indicator construction on B_{1} with respect to $(R B, i, j)$ is a directed graph (multiplicity one). This directed graph B_{1}^{*} is loop-free since B_{1} is digon-free. Moreover, B_{1}^{-}is a semicomplete digraph with two directed cycles. A result in [2] states that H-COL is NP-complete when H is a semicomplete digraph containing two or more cycles. Therefore, B_{1} - COL is NP-complete.

Let Z be any edge-coloured four-clique obtained by adding loops to B_{1}. The edgecoloured graph Z^{*} will contain B_{1}^{*} as a subgraph. That is, Z is a semicomplete digraph with at least two directed cycles. We must ensure that Z^{*} does not contain any loops. The existence of a loop in Z^{*} implies the existence of a digon or a vertex with both a blue and red loop on it in Z. We have assumed that neither of these situations occurs. Therefore, all B_{1}^{+}-colouring problems are NP-complete.

7.4.2 The classification of B_{2}^{+}-colouring

Case $B_{2}^{+}-1$: No blue loops on vertices 1, 2 or 3. If vertex 0 does not have a red loop, then let J be the edge-coloured graph consisting of a single red edge with end points k_{1} and j. Label vertex 0 in the B_{2}^{+}with h_{1}. The result of the subindicator construction with respect to $\left(J, j, k_{1}\right)$ is the subgraph induced by $\{1,2,3\}$. This is a T_{1}^{+}without blue loops and is NP-complete.

If vertex 0 does have a red loop, then use the Dominating Loop Lemma (Lemma 2.4.3) to remove vertex 0 . Again, vertices $\{1,2,3$,$\} induce a T_{1}^{+}$without blue loops.

The problem is NP-complete.

Case $B_{\mathbf{2}}^{+}-2$: Vertices $\{1,2,3\}$ contain at least one blue loop and at most one red loop. Without loss of generality assume there is a blue loop on vertex 1 and no red loop on vertex 2. Then the B_{2}^{+}retracts to the subgraph induced by $\{0,1,3\}$ by mapping vertex 2 to vertex 1 . This problem is in case $T_{5}^{*}-3$ and is polynomial.

Case $B_{2}^{+}-3$: Vertices $\{1,2,3\}$ contain exactly one blue loop and two red loops. Without loss of generality assume there is a blue loop on vertex 1 and a red loop on each of vertices 2 and 3 . If there is a red loop on vertex 0 as well, then use the Dominating Loop Lemma (Lemma 2.4.3) to reduce to problem to the subgraph induced by $\{1,2,3\}$. This problem is a $T_{5}^{+}-2$ problem that is polynomial.

If there is a blue loop on vertex 0 , then again let $R B$ be the edge-coloured graph on i, k, j with $i k$ red and $k j$ blue. The result of the indicator construction with respect to ($R B_{,}, i, j$) is a sernicomplete digraph with at least two directed cycles. Therefore, the proolem is NP-complete.

If there is no loop on vertex 0 , then let I_{1} be the single blue edge B with end points i_{1} and j_{1}, and let I_{2} be RRR, the red path of length three with end points i_{2} and j_{2}. Let Z^{*} be the result of the indicator with respect to $\left(B, i_{1}, j_{2}\right),\left(R R R, i_{2}, j_{2}\right)$. The blue edgeset of Z^{*} is the same as the $B_{2}^{+}-3 ;\{11,12,13,23\}$. The red edgeset is all possible edges (and loops) with the exception of 11 . We claim Z^{*}-COL is NP-complete and hence the original problem is NP-complete. To see Z^{*}-COL is NP-complete use the single indicator D consisting of a red-blue digon. The resuit is a loop free T_{1} which is NP-complete.

7.4.3 The classification of B_{3}^{+}-colouring

Case $B_{3}^{+}-1$: No blue loops. Using Lemma 3.5.1 the problem reduces into two polynomial problems. Hence $B_{2}^{+}-1-\mathrm{COL}$ is polynomial.

Case $B_{3}^{+}-2$: At least one blue loop. Let Z be the edge-coloured graph obtained by adding exactly one blue loop to B_{3}. Observe, Z is unique up to iscmorphism. Again let $R B$ be the edge-coloured path on three vertices consisting of a red edge followed by a blue edge. The result of the indicator construction with respect to $(R B, i, j)$ is a a digraph whose core is a semicomplete digraph with at least two directed cycles. As argued above, adding loops to Z will not change the complexity. Therefore, all edge-coloured graphs in case $B_{2}^{+}-2$ are NP-complete.

7.4.4 The classification of B_{4}^{+}-colouring

Case $B_{4}^{+}-1$: No blue loop on 0, 1, or 2. Let J be the edge-coloured graph on vertices $\left\{k_{1}, i, j\right\}$ where $k_{1} i$ is red and $i j$ is blue. Label vertex 3 in B_{3} with h_{1}. The result of applying the subindicator construction with respect to $\left(J, j, k_{1}\right)$ is the subgraph of B_{4} induced by $\{0,1,2\}$. Vertex 3 can not belong to this edge-coloured graph since B_{4} does not contain any digons. By assumption, there are no blue loops on 0,1 , or 2 . Therefore, the colouring problem for $B_{4}{ }^{\sim}$ is NP-complete. Observe adding loops to vertex 3 or adding red loops to vertices $\{0,1,2\}$ does not change the comp.exity. This implies all $B_{4}^{+}-1$-colouring problems are NP-complete.

Case $B_{4}^{+}-2$: Blue loop on 0,1 , or 2. If there is a blue loop on vertex 1 , the problem reduces via the Dominating Loop Lemma (Lemma 2.4.3) to a T_{5}^{+}-colouring problem. Therefore, assume there is a blue loop on 0 or 2 . By symmetry, we can
assume that vertex 0 has a blue loop on it. If there is no red loop on vertex 2 , then the edge-coloured graph retracts to the subgraph induced by $\{0,1,3\}$ by identifying vertices 0 and 2 . This is a T_{5}^{+}-colouring problem.

Therefore, assume there is a blue loop on vertex 0 and a red loop on vertex 2 . If there is a blue loop on vertex 3 , we use a subindicator to isolate vertices $\{0,2,3\}$. Let J be the coloured path on $\left\{k_{i}, i, j\right\}$ with $k_{1} i$ blue and $i j$ red. Label vertex 1 in $B_{d}^{+}-2$ with h_{1}. The result of the subindicator construction with respect to $\left(J, j, k_{1}\right)$ is the subgraph of $B_{4}^{+}-2$ induced by $\{0,2,3\}$. This is a T_{5}^{+}colouring problem that is NP-complete.

Hence we may assume there is not a blue loop on vertex 1 nor on vertex 3 . We are still assuming there is a blue loop on 0 and a red loop on 2. Suppose either 1 or 3 has a red loop. Assume vertex 1 has a red loop, then using the indicator $R B$ from above, we construct a semicomplete digraph with two directed cycles. Again by [2] this implies the problem is NP-complete.

Lastly assume vertex 1 has no loop. This leaves two cases. Either vertex 3 has a red loop or vertex 3 has no loop. Both these problems are polynomial via a 2SAT reduction. We begin by labeling the vertices of $B_{3}-2$ with the following bit-strings.

2011
3010

This set is a 2SAT-describable set. The clause $\left(u_{3} \vee u_{2}\right) \wedge\left(\neg u_{3} \vee u_{1}\right)$ has three variables and is satisfied if and only if the three variables take on the values in one of the four bit-strings above.

We now give the clauses needed to describe the edges. The verification that these clauses are correct is straight forward. In the case that there is no loop on vertex 3, we use the following clauses.

Edge Set

Clause

Blue edges $\quad\left(u_{3} \vee v_{3}\right) \wedge\left(u_{2} \vee v_{2}\right) \wedge\left(u_{1} \vee \neg v_{2}\right) \wedge\left(\neg u_{2} \vee v_{1}\right)$
Red edges $\left(u_{2}\right) \wedge\left(v_{2}\right) \wedge\left(\neg u_{3} \vee \neg v_{3}\right) \wedge\left(\neg u_{1} \vee \neg v_{3}\right) \wedge\left(\neg v_{1} \vee \neg u_{3}\right)$
In the case there is a red loop on vertex 3 , we use the following clauses. Note the two sets are identical except for the final disjunction on the red edges below.

Blue edges $\left(u_{3} \vee v_{3}\right) \wedge\left(u_{2} \vee v_{2}\right) \wedge\left(u_{1} \vee \neg v_{2}\right) \wedge\left(\neg u_{2} \vee v_{1}\right)$
Red edges $\left(u_{2}\right) \wedge\left(v_{2}\right) \wedge\left(\neg u_{3} \vee \neg v_{3}\right) \wedge\left(\neg u_{1} \vee \neg v_{3}\right) \wedge\left(\neg v_{1} \vee \neg u_{3}\right) \wedge\left(u_{1} \vee v_{1}\right)$

7.4.5 The complexity of B_{5}^{+}-colouring

Case $B_{5}^{+}-1$: No blue loops or blue loops on 1 or 2. If chere are no blue loops on B_{5}, the problem is NP-complete by restricting the input to edge-coloured graphs with only blue edges. If there is a blue loop on vertex 1 or 2 , we can reduce the problem to a T_{5}^{+}-colouring problem using the Dominating Loop Lemma (Lemma 2.4.3).

Case $B_{5}^{+}-2$: Blue loop on 0 or 3. By symmetry we can assume there is a blue loop on 0 . If there is a red loop on 1 or 2 , we use the indicator $R B$ from above and produce a semicomplete directed graph with two directed cycles. Hence the problem is NP-complete. As before, adding more loops to this edge-coloured graph will not change the complexity.

Therefore, we can assume there is not a red loop on 1 nor 2 . Let I_{1} be B, the single blue edge on vertices i_{1} and j_{1}. Let I_{2} be $B R B$ the path on vertices $\left\{i_{2}, x, y, j_{2}\right\}$ with edges $i_{2} x$ and $y j_{2}$ blue and edge $x y$ red. The result of the indicator construction with respect to $\left(I_{1}, i_{1}, j_{1}\right),\left(I_{2}, i_{2}, j_{2}\right)$ has as a core a T_{4}^{4} edge-coloured graph on vertices $\{0,1,2\}$. This is NP-complete. Therefore, all edge-coloured graphs in $B_{5}^{+}-2$ are NPcomplete.

7.4.6 The complexity of B_{6}^{+}-colouring

Case $B_{6}^{+}-1$: There are zero or one blue loops. In the case there are no blue loops we can restrict the input to blue only and conclude the problem is NP-complete. Assume without loss of generality there is a blue loop on vertex 0 . If any of $\{1,2,3\}$ do not have a red loop, say vertex 1 , then the edge-coloured graph retracts to a T_{1}^{+}. colouring by mapping vertex 1 to vertex 0 . If all three $\{1,2,3\}$ have red loops, then let I_{1} be a single blue edge on vertices i_{1} and j_{1} with a red loop on each vertex. The result of the indicator construction with respect to (I_{1}, i_{1}, j_{1}) is a monochromatic K_{3}. This problem is NP-complete.

Case $B_{6}^{+}-2$: There are two or more blue loops. Suppose without loss of generality that vertices 0 and 1 have blue loops. The B_{6}^{+}retracts to the subgraph on $\{0,2,3\}$ by mapping vertex 1 to vertex 0 . This is a T_{1}^{+}-colouring problem and is polynomial.

This completes the classification of all digon-free two-edge-coloured four-cliques.

7.5 Infinite families of polynomial problems

In this section we construct two infinite families of edge-coloured cliques for which the H-colouring problem is polynomial.

The first family begins with a single blue loop. Call this graph H_{1}. Given an integer $i \geq 2, H_{i}$ is constructed by adding a blue dominating loop (a vertex v adjacent to all other vertices in blue together with a blue loop on itself) to H_{i-1} in the case that i is odd, and by adding a red dominating loop to H_{i-1} in the case that i is even. This is an infinite family of two-edge-coloured cliques. Call this family \mathcal{H}.

Lemma 7.5.1 For all $H_{i} \in \mathcal{H}, H_{i}$ is a core.
Proof. Suppose there exists an H_{i} that is not a core. Label the vertices of H_{i} with $\left\{h_{1}, h_{2}, \ldots, h_{i}\right\}$ where h_{1} is the original blue loop in H_{1} and h_{j} is the dominating loop added to H_{j-1} to form H_{j}. Since H_{i} is not a core, there exists a retraction of H_{i} to a proper subgraph of itself. Suppose h_{j} is mapped to h_{k}. All vertices with odd subscripts have blue loops and all vertices with even subscripts have red loops. Therefore j and k have the same parity. That is, a blue loop can not map to a red loop and vice versa. Hence, $|j-k| \geq 2$. Choose m between j and k such that m has different parity from j and k. Suppose j is odd, m is even, and $k<m<j$. (All other cases are analogous.) The edge $h_{j} h_{m}$ is red and the edge $h_{m} h_{k}$ is blue. When h_{j} is mapped to h_{k}, a red-blue digon is formed. This is a contradiction to the fact that H_{i} contains no digons.

Theorem 7.5.2 For all $H_{i} \in \mathcal{H}, H_{i}-C O L$ is polynomial.
Proof. Let H_{i} be a member of \mathcal{H}. Trivially, H_{1}-COL is polynomial. If $i>1$, then H_{i} has a dominating loop in red or blue. By the Dominating Loop Lemma (Lemma
2.4.3), H_{i}-COL polynomially transforms to H_{i-1}-COL. By induction, we can conclude H_{i}-colouring is polynomial for all i.

The second family constructed is a family of loop-free cliques but on many edgecolours. Each edge-coloured graph also has only one edge between any pair of vertices. (That is, the edge-coloured graphs are digon-free.) The construction of the family is implicitly given in the proof of the next theorem.

Theorem 7.5.3 Let k be a positive infeger. For each n such that $1 \leq n \leq 2^{k}$, there exists a loop-free edge-coloured clique, H, on n vertices with multiplicity at most k such that H-COL is polynomial. For all $n>2^{k}$ and for all loop-free edge-coloured cliques, H, on n vertices with multiplicity k, the $H-C O L$ problem is $N P$-complete.

Proof. We prove the first part of the theorem by induction on k. If $k=1$ then n is either 1 or 2. A single vertex and a single blue edge are examples of polynomial graphs with multiplicity at most one. Suppose the statement is true for all $k \leq t$. Let $k=t+1$. Choose n such that $1 \leq n \leq 2^{k}$. If $n \leq 2^{k-1}$, by induction there is a polynomial graph without loops on n vertices with $k-1$ or fewer edge-colours. This edge-coloured graph satisfies the theorem. Therefore, we can assume $2^{k-1}<n \leq 2^{k}$. In particular, since $k>1$, we have $n>1$. We can partition n into $n=n_{1}+n_{2}$ such that $1 \leq n_{1}, n_{2} \leq 2^{k-1}$. (For example $n_{1}=2^{k-1}$ and $n_{2}=n-2^{k-1}$ will work.) By induction we can find two loop-free edge-coloured cliques on n_{1} and n_{2} vertices respectively, such that each bas multiplicity $k-1$ and each is polynomial. Call these H_{1} and H_{2} respectively. Notice, we can choose the edge colours such that $H_{1} \cup H_{2}$ has multiplicity $k-1$. Suppose blue is not an edge-colour in H_{1} or H_{2}. Let H be the edge-coloured clique obtained by constructing the join of H_{1} and H_{2} with respect to
blue. That is, add every edge between H_{1} and H_{2} in blue. By Lemma 3.5.1 we have that H-COL is polynomial. Also H has k or fewer edge-colours.

To prove the second statement, let H be any loop-free n-clique with multiplicity k where $n>2^{k}$. A result in [10] and [18] states that if the edges of an n-clique are coloured with k colours and $n>2^{k}$, then there exists a monochromatic odd cycle. Hence, \boldsymbol{H} must contain a monochromatic odd cycle. Since H is loop-free, \boldsymbol{H}-COL is NP-complete.

Chapter 8

Back to One Edge-Colour

The results in this chapter concern problems for graphs and digraphs (multiplicity one). These results are stated in this context simply because the orginal questions asked were in this context or because it is unclear how to or even not possible to generalize the results to edge-coloured graphs.

8.1 Homomorphically Full Graphs

This section grew out of work on the Homomorphism Factoring Problem but is interesting in its own right. In this section we characterize those graphs that contain, as subgraphs, all of their homomorphic images. In fact, we give several characterizations of these graphs and in particular we show these graphs are perfect. We restrict our attention to loop-free graphs.

Recall that a homomorphism $f: G \rightarrow H$ which is both onto the vertices of H and induces a mapping onto the edges of H defines a congruence. Conversely, a congruence on G implicitly defines a homomorphism from G to the quotient of the congruence.

Let G be a graph. Suppose A and B are two disjoint subsets of $V(G)$. We say A is adjacent to B is there exists $u \in A$ and there exists $v \in B$ such that $u v$ is an edge of r_{F}^{*}. We say a congruence $S_{0}, S_{1}, \ldots, S_{k}$ induces a retraction if for each i there is $s_{i} \in S_{i}$ with the following property: ${ }^{*} S_{i}$ is adjacent to S_{j} if and only if $s_{i} s_{j} \in E(G)$." That is, the subgraph induced by $\left\{s_{i}: 0 \leq i \leq k\right\}$ is the quotient of the congruence. Furthermore, the homomorphism $S_{i} \rightarrow s_{i,} 0 \leq i \leq k$, induced by the congruence is the identity map on this subgraph. That is, the homomorphism induced by the congruence is a retraction and the quotient is a retract of G.

We now provide the central definition for this section. Given a graph G, we say G is homomorphically full if every congruence on $V(G)$ induces a retraction. That is, given any congruence, $S_{0}, S_{1}, \ldots, S_{k}$ on $V(G)$, there exists $s_{i} \in S_{i}$ for each i such that S_{i} is adjacent to S_{j} if and only if $s_{i} s_{j} \in E(G)$.

Lemma 8.1.1 Let H be a homomorphically full graph. Every induced subgraph, H^{\prime}, of H is itself homomorphically full.

Proof. Let H^{\prime} be an induced subgraph of H. Let $S_{0}, S_{1}, \ldots, S_{k}$ be a congruence on H^{\prime}. Extend this congruence to H be adding a class containing a single vertex for each vertex in $V(H) \cup V\left(H^{\prime}\right)$. Let $S_{0}, S_{1}, \ldots, S_{k}, S_{k+1}, \ldots, S_{K}$ be the classes in this extended congruence. Since H is homomorphically full, there exists $s_{i} \in S_{i}$ for all $1 \leq i \leq K$ such that S_{i} adjacent to S_{j} implies $s_{i} s_{j} \in E(H)$ for all $1 \leq i \leq j \leq K$. This statement is still true if we restrict i and j to the range $1 \leq i \leq j \leq k$. Moreover, since H^{\prime} is an induced subgraph for $1 \leq i \leq j \leq k_{7} s_{i} s_{j} \in E(H)$ if and only if $s_{i} s_{j} \in E\left(H^{\prime}\right)$. Hence H^{\prime} is homomorphically full.

Recall that a retract of a graph H is necessarily an induced subgraph of H, but the converse is not true. Consider the following example: C_{6} is an induced subgraph of the 3-dimensional cube, Q_{3}, but there is no retraction of Q_{3} to C_{6}. Furthermore, it is possible for a graph to be both a homomorphic image of H and an induced subgraph of H, yet not a retract of H. For example, C_{6} is both a homomorphic image and an induced subgraph of $Q_{3} \cup P_{6}$ but it is not a retract of $Q_{3} \cup P_{5}$.

We show below that given a graph H such that every homomorphic image of H is a subgraph of H, then H is homomorphically full. To simplify the proof of our main theorem we begin with some preliminary results. We will then use these results to characterize homomorphically full graphs. We begin with a definition to help simplify the notation in the proofs. Let H be a graph with vertex-set $\left\{u_{0}, u_{1}, \ldots, u_{k}\right\}$. Let C be the congruence defined by:

$$
\begin{aligned}
& S_{0}=\left\{u_{0}, u_{1}\right\} \\
& S_{i}=\left\{u_{i+1}\right\} \quad \text { for } 1 \leq i \leq k-1
\end{aligned}
$$

The quotient of C, say K, is the graph that results when u_{0} and u_{1} are identified. Denote K by $H_{u_{0} u_{i}}$.

Lemma 8.1.2 Let H be a graph such that every homomorphic image is H is a subgraph of H. Then H has at most one nontrivial connected component.

Proof Suppose not, and let C_{1} and C_{2} be distinct nontrivial connected components in H so that $\left|V\left(C_{1}\right)\right|+\left|V\left(C_{2}\right)\right|$ is maximum. Suppose u and v are vertices of H such that $u \in V\left(C_{1}\right)$ and $v \in V\left(C_{2}\right)$. It follows that $H_{v v}$ has a conaected component of size $\left|V\left(C_{1}\right)\right|+\left|V\left(C_{2}\right)\right|-1$, which is larger than any connected component of H.

In view of this lemma, a homomorphically full graph may be assumed to be connected.

We make repeated use of the following argument. Let F be a fixed graph. Suppose H is a graph with a pair of non-adjacent vertices, say u and v. Suppose there does not exist an induced copy of F in H that contains both u and v, and there do not exist induced copies F_{1} and F_{2} of F in H such that $u \in V\left(F_{1}\right), v \in V\left(F_{2}\right)$ and $F_{1} \backslash\{u\}=F_{2} \backslash\{v\}$. Then every induced copy of F in H is still present in $H_{u v}$. Further, if the identification of u and v creates a new induced copy of F, then $H_{u v}$ contains more induced copies of F than does H, and therefore can not be a subgraph of H.

Lemma 8.1.3 Suppose H is a graph with the property that every homomorphic image of H is a subgraph of H. Then H has diameter at most two.

Proof Suppose not, and let x and y be vertices with $d(x, y)=3$. Since x and y have no common neighbours, there are no copies F_{1} and F_{2} of K_{3} with $x \in V\left(F_{1}\right), y \in$ $V\left(F_{2}\right)$ and $F_{1} \backslash\{x\}=F_{2} \backslash\{y\}$. Clearly there is no copy of K_{3} in H containing both x and y. Thus every copy of K_{3} in H is still present in $H_{x y}$. Every path of length three from x to y creates a new copy of K_{3} in $H_{x y}$. Hence, $H_{x y}$ contains more copies of K_{3} than does H, and so it is not a subgraph, a contradiction.

Given a graph H, we say two vertices u and v are neighbourhood comparable if either $N(u) \supseteq N(v)$ or $N(v) \supseteq N(u)$.

Theorem 8.1.4 Suppose H is a graph such that every homomorphic image of H is a subgraph of H. Then for all pairs u and v of non-adjacent vertices, u and v are neighbourhood comparable.

Proof. Suppose the statement is false, and define m to be the largest integer such that there exist non-adjacent vertices a and b with neither $N(a) \subseteq N(b)$ nor $N(b) \subseteq N(a)$ and an induced copy, say Z, of K_{m-2} in $N(a) \cap N(b)$. Since H has diameter two, the integer m exists for all pairs a and b and is at least three. Let u and v be non-adjacent vertices for which m is maximum, and let $x \in N(u) \backslash N(v)$ and $y \in N(v) \backslash N(u)$.

We show that $N(x) \supset V(Z)$. Since $x v \notin E(H)$, there is no copy of K_{m} in H that contains both x and v. If there exist copies F_{1} and F_{2} of K_{m} in H such that $x \in V\left(F_{1}\right), v \in V\left(F_{2}\right)$ and $F_{1} \backslash x=F_{2} \backslash v$, then x and v belong to an induced copy of $K_{m+1}-e$. By the choice of m, and since $u \in N(x)$, this implies $N(x) \supset N(v)$ and, in particular, $N(x) \supset V(Z)$. On the other hand, if F_{1} and F_{2} do not exist, then every copy of K_{m} in H is still present in $H_{x v}$. The set $Z \cup\{u, v\}$ induces a copy of K_{m} in $H_{x v}$. If this is a new copy, then $H_{x v}$ contains more copies of K_{m} than does H, and therefore can not be a subgraph of H, contradicting our hypothesis. It follows that in H the set $Z \cup\{u, v, x\}$ contains a copy of K_{m}, and as both x and u are non-adjacent to v, that $N(x) \supset V(Z)$. Similarly, $N(y) \supset V(Z)$.

First suppose that $x y \in E(G)$. Now u and v are non-adjacent; therefore, they do not belong to a common K_{m+1}. Nor are there copies F_{1} containing u and F_{2} containing v of K_{m+1} such that $F_{1} \backslash\{u\}=F_{2} \backslash\{v\}$; otherwise, m is not maximum. Hence, $H_{v v}$ contains more copies of K_{m+1} than does H, a contradiction. Therefore, assume $x y \notin E(G)$.

Note that each of the pairs $\{u, v\},\{x, v\},\{u, y\}$ and $\{x, y\}$ bas the property that the intersection of their neighbourhoods contains Z, they are non-adjacent, and in
each pair, one vertex has a neighbour not adjacent to the other.

By the definition of m, there is no induced copy of $K_{m+1}-e$ in H that contains u and v. This follows the fact that m is maximum over all such pairs. Suppose there do not exist induced copies F_{1} and F_{2} of $K_{m+1}-e$ in H such that $u \in V\left(F_{1}\right), v \in V\left(F_{2}\right)$ and $F_{1} \backslash\{u\}=F_{2} \backslash\{v\}$. Then every induced copy of $K_{m+1}-e$ in H is still present in $H_{u v}$. The graph $H_{v v}$ contains a copy of $K_{m+1}-e$ induced by $Z \cup\{u, x, y\}$. If this copy is new, then $H_{v v}$ contains more induced copies of $K_{m+1}-e$ than does H, a contradiction. It follows that this is not a new copy, and so H must contain a copy of $K_{m+1}-e$, induced by an $(m+1)$-subset of the $(m+2)$-set $Z \cup\{u, v, x, y\}$. However, the removal of a single vertex from this ($m+2$)-set leaves two pairs of non-adjacent vertices and hence can not result in a $K_{m+1}-e$. The non-adjacent pairs of vertices are $\{u, v\},\{x, v\},\{u, y\}$, and $\{x, y\}$. Therefore the subgraphs F_{1} and F_{2} do exist.

Consider $F_{1} \cap F_{2}$. Without loss of generality we can assume that $Z \subset F_{1} \cap F_{2}$. Hence there are two more vertices, say a and b_{2} in $F_{1} \cap F_{2}$. If a and b are non-adjacent, then $Z \cup\{a\}$ is a K_{m-1} in the common neighbourhood of u and v. This contradicts the choice of m. Hence, assume without loss of generality that u and a are non-adjacent. There are two cases to consider.

If $\{v, a\}$ is the non-adjacent pair of vertices in F_{2}, then $Z \cup\{b\}$ is a K_{m-1} in the common neighbourhood of u and v contrary to the choice of m. Therefore $\{v, b\}$ is the non-adjacent pair of vertices in $F_{\mathbf{2}}$. This implies $v a$ is an edge.

Since u and v are not adjacent, there is no copy of K_{m+1} in H that contains u and v. By the definition of m, there are no copies G_{1} and G_{2} of K_{m+1} in H such
that $u \in V\left(G_{1}\right), v \in V\left(G_{2}\right)$ and $G_{1} \backslash\{u\}=G_{2} \backslash\{v\}$. Thus every copy of K_{m+1} in H is still present in $H_{u v p}$. Moreover $H_{w z}$ contains a new copy of K_{m+1} induced by $\left(V\left(F_{1}\right) \cup V\left(F_{2}\right)\right)$, a contradiction.

We now characterize homomorphically full graphs.

Theorem 8.1.5 Suppose H is a graph. The following statements are equivalent:
(a) The graph H is homomorphically full.
(b) Every homomorphic image of H is a retract of H.
(c) Every homomorphic image of H is an induced subgraph of H.
(d) Every homomorphic image of H is a subgraph of H.
(e) For any two non-adjacent verices u and v of $H u$ and v are neighbourhood comparable.
(f) H contains no induced $2 K_{2}$ or P_{3}.

Proof. (a) \Rightarrow (b) In a homomorphically full graph the quotient of any congruence is a retract.
(b) \Rightarrow (c) Every retract of H is an induced subgraph of H.
(c) \Rightarrow (d) Every induced subgraph is a subgraph.
(d) \Rightarrow (e) This is Theorem 8.1.4.
(e) \Rightarrow (a) Suppose we are given a congruence on H. Define a quasi-order on the vertices of S_{i} by $u \geq v$ if and only if $N(u) \supseteq N(v)$ for all t. Since every pair of vertices in S_{i} are neighbourhood comparable, every pair of vertices in S_{i} are comparable under this order. Hence, there must be a maximal element under this order. Finally, any maximal element in each part will suffice as $s_{i} \in S_{i}$. Hence, H is homomorphically full.
(e) \Leftrightarrow (f) Suppose all pairs of non-adjacent vertices are neighbourhood comparable. Then H contains no induced $2 K_{2}$ or P_{3} as both of these graphs contain a non-adjacent pair of vertices that are not neighbourhood comparable. On the other hand, suppose H contains no induced $2 K_{2}$ or P_{3}. Let u and v be pair of non-adjacent vertices. Suppose u has a neighbour $x \notin N(v)$ and v has a neighbour $y \notin N(u)$. Then subgraph induced by $\{u, x, y, v\}$ induces either a $2 I_{2}^{\prime}$ or a P_{3}.

Corollary 8.1.6 Every retract of a homomorphically full graph is itself homomorphically full.

Proof. A retract of a graph is necessarily an induced subgraph.

Complement reducible graphs (or cographs) are studied in [8]. Corneil, Lerchs, and Stewart-Burlingham show that cographs are perfect graphs and can be characterized as the graphs that contain no induced P_{3}. Hence, homomorphically full graphs are a subset of the cographs.

Our final result on homomorphically full graphs is that they are perfect. Since they are a subset of the cographs, this is immediate. However, we present a direct proof below.

Theorem 8.1.7 Every homomorphically full graph H is perfect.
Proof. Let $H=(V, E)$ be a homomorphically full graph. By Lemma 8.1.1 it suffices to prove that $\chi(H)=\omega(H)$. By definition of the chromatic number, $K_{\chi(H)}$ is a homomorphic image of H. Therefore, $K_{\chi(H)}$ is a subgraph of H, giving $\omega(H) \geq \chi(H)$.

8.2 The H^{k}-Colouring Problem

For the remainder of this chapter we make a slight change in nomenclature. In the digraph literature the word colour is used to refer to the vertices of H in an H colouring problem. This comes from the fact that H-colouring is a generalization of classical vertex-colouring. We have avoided the use of this term in this thesis so as to avoid confusion with edge-colours. However, for these final sections, the word colour will refer to the vertices of the target.

8.2.1 Powers of Oriented Paths

The following definition is taken from [14]. The definition is the main tool used in their algorithm.

Definition. Let H be a directed graph and let $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ be an enumeration of its vertices. We say, a pair $\left(v_{i}, v_{j}\right)$ dominates a pair $\left(v_{k}, v_{l}\right)$, or $\left(v_{i}, v_{j}\right) \geq\left(v_{k}, v_{l}\right)$, if and only if $i \geq k$ and $j \geq l$. We say the pairs $\left(v_{i}, v_{j}\right)$ and (v_{k}, v_{l}) are crossing, if and only if either ($i>k$ and $j<l$) or $(i<k$ and $j>l)$. For pairs $\left(v_{i}, v_{j}\right)$ and $\left(v_{k}, v_{l}\right)$, the pair $\left(v_{\min (i, k)}, v_{\min (j, \eta)}\right)$ is called the \underline{X}-pair of $\left(v_{i}, v_{j}\right)$ and $\left(v_{k}, v_{i}\right)$.

An enumeration of the vertices of \boldsymbol{H} is called an \underline{X}-enumeration, if for all pairs of edges $\left(v_{i}, v_{j}\right)$ and $\left(v_{\xi_{k}}, v_{i}\right)$ in $E(H)$, the \underline{X}-pair of $\left(v_{i}, v_{j}\right)$ and $\left(v_{k}, v_{l}\right)$ is in $E(H)$. The
digraph H has the \underline{X}-property (is an \underline{X}-digraph), if there exists an \underline{X}-enumeration of its vertices.

When H is a digraph that has the \underline{X}-property, the algorithm presented in [14] solves H -COL in linear time. Let H be a fixed oriented path. Since oriented paths have the \underline{X}-property, H -COL is polynomial. If we consider the complexity of colourings with powers of H, we find that the problem remains polynomial since H^{k} has the \underline{X}-property as demonstrated below. In general this is not true. That is, given a graph with the \underline{X}-property, powers of the digraph do not necessarily have the \underline{X}-property.

Lemma 8.2.1 Let H be an oriented path. The digraph H^{k} has the \underline{X}-property.
Proof. Let the vertices of H be $\{0,1,2, \ldots, p\}$, where for $i \in\{0,1,2, \ldots, p-1\}$ either $(i, i+1) \in E(H)$ or $(i+1, i) \in E(H)$. Suppose ($i, j)$ and (m, n) are two crossing arcs and without loss of generality further suppose $i<m$ and $j>n$.

If $i>n$, then we have $m>i>n$. Also, since $m n \in E\left(H^{k}\right)$ there must be a directed path of length at most k from m to n in H. The vertex i is between m and n and therefore it lies on the path. Hence, in $\in E\left(H^{k}\right)$. On the other hand, if $i<n$, then the directed path from i to j in H passes through n. In this case, there is a directed path from i to n of length at most k. If $i=n$ then we have a directed path from m to i and a directed path from i to j with $i<m$ and $i=n<j$. This is impossible since the first path requires the arc $(i+1)(i)$ and the second path requires the arc $(i)(i+1)$. The path H is an oriented path and can only contain one of these two arcs. Therefore the crossing pair's \underline{X}-pair is the arc in.

Theorem 8.2.2 Let H be an oriented path. Then the H^{k}-colouring problem is solvable in linear time.

Proof. Use lemma 8.2.1 and the algorithm in [14].

Figure 8.1: An oriented cycle that admits a homomorphism to P_{3}^{2}
Unfortunately, while the algorithm in [14] is elegant it does not give us much insight into which digraphs admit a homomorphism to H. This is also true when H is an oriented path. This lack of a nice characterization perhaps indicates why the complexity of colouring by oriented paths proved elusive for some time.

8.2.2 Powers of Directed Paths

If we consider the case when H is a directed path we are able to characterize the digraphs that admit a homomorphism to H. In particular, a digraph, D, admits a homomorphism to H if and only if all cycles in D are balanced and all paths in D have net length less than $\llbracket H \mid$. See [16]. While it might be ambitious to try and characterize all digraphs that admit a homomorphism to some power of an oriented path, we can characterize all digraphs that admit a homomorphism to some power of a directed path.

Define P_{∞} to be the directed path with vertex-set the integers and $u v \in E\left(P_{\infty}\right)$ if and only if $v-u=1$.

Theorem 8.2.3 Lek D be a digraph. Then $D \rightarrow P_{\infty}^{k}$ if and only for all cycles $C \rightarrow D$ we have $C \rightarrow P_{\infty}^{k}$.

Proof. The necessity of the condition is obvious. If $C \rightarrow D$ and $D \rightarrow H^{k}$, then $C \rightarrow H^{k}$.

Let the colours of H^{k} be $\{\ldots,-2,-1,0,1,2, \ldots\}$. Assume that all cycles that admit a homomorphism to D also admit a homomorphism to H^{k}. Let C be ar oriented cycle. Consider C as having its vertices on a circle. Each arc in C will be either oriented clockwise or counterclockwise. The net length of C is simply the absolute value of the number of clockwise oriented arcs in C minus the number of counterclockwise oriented arcs in C. Of the two directions (clockwise and counterclockwise) call the arcs in one direction forward arcs and arcs in the other direction backward arcs. Choose these designations in such a way that C has at least as many forward arcs as backward arcs. We will denote the number of each in C as forward(C) and backward(C). For example, the cycle in Figure 8.1 has five forward arcs and three backward arcs.

Claim 8.2.3.1 $C \rightarrow P_{\infty}^{k}$ if and only if forward $(C)-k \cdot \operatorname{backward}(C) \leq 0$.

Proof of Claim 8.2.3.1. Suppose $C \rightarrow P_{\infty}^{k}$ under a homomorphism f. Each arc in C will have its ends mapped to colours in P_{∞}^{k} such that the colours differ by at least one and by no more than k. Let the vertices of C be labeled $c_{0}, c_{1}, \ldots, c_{m}$ so that the forward arcs are labeled $c_{i} c_{i+1}$ and the backward arcs are labeled $c_{i+1} c_{i}$. Indices are taken modulo ($m+1$). Let a be the arc in C with end points c_{i} and c_{i+1}. Note, a may be oriented in either direction. Define len $(a):=f\left(c_{i+1}\right)-f\left(c_{i}\right)$. Since f is a homomorphism it must be the case that $1 \leq|l e n(a)| \leq k$ for each arc, a, in C. By our choice of the labels for C we also have len $(a)>0$ when a is a forward arc and $l e n(a)<0$ when a is a backward arc. Let \mathcal{F} be the set of forward arcs in C and B be the set of backward arcs in C. If we sum len on the forward and backward arcs we
get:

$$
\begin{aligned}
\sum_{a \in \mathcal{F}} \operatorname{len}(a) & \geq \text { forward }(C) \\
\sum_{a \in \mathcal{B}} \operatorname{len}(a) & \geq-k \cdot b a c k w a r d(C) \\
\sum_{a \in \mathcal{F}} \operatorname{len}(a) & =0
\end{aligned}
$$

The final summation is $f\left(c_{1}\right)-f\left(c_{0}\right)+f\left(c_{2}\right)-f\left(c_{1}\right)+\cdots+f\left(c_{m}\right)-f\left(c_{m-1}\right)+$ $f\left(c_{0}\right)-f\left(c_{m}\right)$. Therefore, the final summation is zero. This implies forward $(C)-k$. backward $(C) \leq 0$ and establishes the claim.

For an example, consider again the oriented cycle in Figure 8.1. The cycle has five forward arcs and three backward arcs. The numbers beside the vertices are the colours each is mapped to. In this case, we have a homomorphism to P_{3}^{2}.

We now assume that all the cycles in D have this property. The strategy is to define a mapping on the vertices of D to the vertices of P_{∞}^{k} and show this mapping is a homomorphism. We begin by defining a function ψ from the Cartesian product of the oriented walks of D crossed with the vertices of P_{∞} to the integers.

Let $W=w_{0} w_{1} \ldots w_{m}$ be an oriented walk in D. Assign to each pair $w_{i} w_{i+1}$ in W a weight of +1 or $-k$. Assign +1 to the pair if $w_{i} w_{i+1}$ is an arc in D. Assign $-k$ to the pair if $w_{i+1} w_{i}$ is an arc in D. Since P_{∞} does not contain any cycles of length two, we can assume the same is true for D and hence this assignment is well defined. Call this assigned weight $\omega\left(\begin{array}{c}w_{i} \omega_{i+1}\end{array}\right)$. Define the function ${ }^{\psi}$ as follows. Let c be aily colour of H.

$$
\psi\left(W_{i} c\right):=c+\sum_{i=1}^{m-1} \omega\left(w_{i} w_{i+1}\right)
$$

In fact, $\psi(W, c)$ is the minimum colour that could be assigned to w_{m} given w_{0} has been coloured c.

We are now ready to define the homomorphism from D to P_{∞}^{k}. We define l : $V(D) \rightarrow V\left(P_{\infty}^{k}\right)$ as follows:

1. Arbitrarily map some vertex of D to 0 . Call this vertex Z (for zero).
2. Let W be a walk from Z to u. Define $l(u):=\max \psi(W, 0)$, where this maximum is taken over all walks from Z to u.

We need to show this maximum is well defined. This is potentially a problem since there are an infinite number of walks from Z to u.

Claim 8.2.3.2 There exists a path T from Z to u such that $\psi(T, 0)=l(u)$.
(Notice by proving this claim we will have proved l is well defined since there are only finitely many paths from 2 to u.)

Proof of Claim 8.2.3.2. Let $W=\left(Z=w_{0}\right) w_{1} v_{2} \ldots\left(w_{m}=u\right)$ be a walk from Z to u. Suppose W contains two vertices x and y such that $x=w_{i}, y=w_{i+1}$, and $x=w_{i+2}$. The weights $\omega\left(w_{i} w_{i+1}\right)$ and $\omega\left(w_{i+1} w_{i+2}\right)$ are +1 and $-k$ if $x y$ is an arc of D and they are $-k$ and +1 if $y x$ is an arc of D. In either case, $\omega\left(w_{i} w_{i+1}\right)+\omega\left(w_{i+1} w_{i+2}\right) \leq$ 0 . Therefore, $\psi(W, 0) \leq \psi\left(W^{\prime}, 0\right)$ where $W^{\prime}=w_{0} w_{1} \ldots w_{i} w_{i+3} \ldots w_{m}$. Hence, when maximizing ψ we may restrict our attention to walks that do not contain a pair $\{x, y\}$ as above.

Suppose W contains a cycle, C. Let $f=f o r w a r d(C)$ and $b=b a c k w a r d(C)$. Our assumption on D says $f-k b \leq 0$. Also $f \geq b$ by definition of f and b which implies
$-\frac{k}{k} f+b \leq 0$. If we let $C=c_{0} c_{1} \ldots c_{r-1} c_{0}$, we have $\psi(C, j) \leq j$ by the fact that $f-k b$ and $-k f+b$ are nonpositive. Therefore, if we let $W^{\prime \prime}$ be the walk obtain by removing C from W we have $\psi(\boldsymbol{W}, \mathbf{0}) \leq \psi\left(\boldsymbol{W}^{\prime \prime}, \mathbf{0}\right)$.

Hence, if we consider all walks from Z to 0 , it must be the case that ψ achieves its maximum on some path T. This establishes the claim.

Finally, we show l is a homomorphism. Let $u v$ be an arc in D. Let W be a walk from Z to u such that $l(u)=\psi(W, 0)$. The walk W^{\prime} obtained by adding v to the end of W is a walk from Z to v. Also $v\left(W^{\prime}, 0\right)=l(u)+1$. Therefore, $l(v) \geq l(u)+1$. On the other hand, consider a walk T from Z to v such that $\psi(T, 0)=l(v)$. Let $T^{\prime \prime}$ be the walk obtained by adding u to the end of T. This is a walk from Z to u such ihat $\psi\left(T^{\prime}, 0\right)=I(v)-k$. In this case, $l(u) \geq l(v)-k$. Combining these we get $l(u)+k \geq l(v) \geq l(u)+1$. Therefore, $l(u) l(v)$ is an arc in P_{∞}^{k} and hence l is a homomorphism.

An immediate corollary to this theorem is a follows:
Corollary 8.2.4 Let H be a digraph. Then the minimum integer k for which $H \rightarrow$ P_{∞}^{k} equals the maximum integer m for which $m=[$ forward $(C) /$ backward $(C)]$ taken over all cycles C in H.

8.2.3 Powers of Directed Cycles

It is not surprising that the colouring problem for powers of directed paths are polynomial since the colouring problem for directed paths is polynomial. Also P_{n}^{n-1} - COL is polynomial since P_{n}^{n-1} is a transitive tournament. See [1]. Conversely, C_{n}^{k} is NPcomplete for $k>1$ by Theorem 5.2 .4 in [25]. Perhaps what is surprising is that the
problem of $G \rightarrow C_{n}^{k}$ remains NP-complete even when a homomorphism to a higher power of C_{n} is provided as part of the instance. Formally we consider the following Restricted Homomorphism problem.

RHP(H,Y) (Restricted Homomorphism Problem)
INSTANCE: A directed graph G and a homomorphism $G \rightarrow Y$.
QUESTION: Does there exist an H -colouring of G ?
If we let $Y=C_{n}^{f}$ and $H=C_{n}^{k}$ we are asking if, given information about colouring G with one power of C_{m}, can we colour G with another power.

Theorem 8.2.5 The problem $R H P\left(C_{n}^{k}, C_{n}^{l}\right)$ is polynomial if $k=1$ or $k \geq 1$. Otherwise $R H P\left(C_{n}^{k}, C_{n}^{t}\right)$ is NP-complete.

Proof. If $k=1$, then $\operatorname{RHP}\left(C_{n}^{k}, C_{n}^{l}\right)$ is polynomial since colouring by a directed cycle is polynomial. If $k \geq l$, then $\operatorname{RHP}\left(C_{n}^{k}, C_{n}^{l}\right)$ is polynomial since $C_{n}^{l} \rightarrow C_{n}^{k}$ and $G \rightarrow C_{\pi}^{I}$.

Therefore, suppose $1<k<l \leq n-1$. By the results in [26] we know $\operatorname{RHP}\left(H^{*}, Y^{*}\right)$ $\alpha \operatorname{RHP}(H, Y)$, where the indicator $\left(J, x_{1}, v\right)$ is constructed as follows: Let X be the transitive tournament on $k+2$ vertices. (Note that $X \nrightarrow C_{n}^{k}$, but $X \rightarrow C_{n}^{l}$. To see this, let the vertices of C_{n} be $\{0,1,2, \ldots, n-1\}$ where $i j \in E\left(C_{n}\right)$ if and only if $j-i \equiv 1 \bmod n$. Since X is a core, $X \rightarrow C_{n}^{l}$ if and only if X is a subgraph of C_{n}^{l}. The set of vertices $\{0,1,2, \ldots,+1\}$ induces a subgraph isomorphic to X since $l>k$. There is no subgraph of C_{n}^{k} isomorphic to X since the source in X has outdegree $k+1$ and all the vertices in C_{n}^{k} have outdegree k.)

Let the vertices of X be labelled $x_{0}, x_{1}, \ldots, x_{k+1}$ where $x_{i} x_{j}$ is an arc if and only if $i<j$. Let J be the graph constructed by removing the arc $x_{0} x_{1}$ from X and adding a

Figure 8.2: The digraphs X and J
new vertex w together with the arc $x_{0} w$. We now use the indicator $\left(J, x_{1}, w\right)$. We need two observations. First, $J \rightarrow C_{n}^{k}$ but in any such homomorphism x_{1} and w receive different colours. If x_{1} and w receive the same colour, then there is a homomorphism from X to C_{n}^{k} contrary to our above discussion. To see $J \rightarrow C_{n}^{k}$, identify x_{0} and x_{1}. Call this vertex x_{0}. This produces a transitive tournament on $k+1$ vertices with an extra arc, $x_{0} w$, incident with the source. This digraph admits a homomorphism to the transitive tournament on $k+1$ vertices by identifying w with any out neighbour of vertex x_{0}. Recall that $k>1$ and therefore x_{0} has at least one out-neighbour.

In C_{π}^{k}, each vertex is the source of a transitive tournament on $k+1$ vertices. Therefore, each vertex in C_{n}^{k} can be the image of x_{0} in the mapping of $J \rightarrow C_{n}^{k}$. Since w can be mapped to any out neighbour of x_{0}, we see that $H^{*}=H$.

Identifying x_{1} and w produces a *ransitive tournament on $k+2$ vertices and this is a subgraph of C_{n}^{t}. This means that $J \rightarrow C_{n}^{t}$ in such a way that x_{1} and w receive the same colour. This inoplies that $C_{m}^{I^{*}}$ has a loop. Therefore, any digraph trivially admits a homomorphism to $C_{n^{*}}^{i^{*}}$. Hence, $\operatorname{RHP}\left(H^{*}, Y^{*}\right)$ is equivalent to H^{*} COL. In
particular, $\operatorname{RHP}\left(C_{n}^{k}, C_{n}^{t}\right)$ is NP-complete for $1<k<l$.

8.2.4 Powers of Undirected Graphs

To complete this section we consider the H^{k}-colouring problem for undirected graphs H. In general H-colouring is NP-complete whenever H contains an odd cycle [19]. However, we can consider a restricted homomorphism problem as we did in the case of directed cycles. We use the following definition and theorem from [26].

RHP (H, Y) (Restricted Homomorphism Problem)
INSTANCE: A graph G and a homomorphism $G \rightarrow Y$.
QUESTION: Doest there exist a homomorphism $G \rightarrow H$?
We also use the notation $\omega(H)$ to denoted the size of the largest clique in H.

Theorem 8.2.6 (MacGillivray) If there is an $(\omega(H)+1)$-critical subgraph of Y (a subgraph whose chromatic number is $(\omega)+1)$ but whose proper subgraphs all have chromatic number smaller than $(\omega(H)+1)$) that is not contained in H, then $R H P\left(H_{r} Y\right)$ is NP-complete.

We use Theorem 8.2.6 to show that H^{k}-colouring is NP-complete even when a homomorphism to a larger power is provided as part of the instance, except when the problem is clearly polynomial.

Theorem 8.2.7 Let H be a graph and l and $k, l<k$, be two integers. Then RHP $\left(H^{l}, H^{k}\right)$ is $N P$-complete if $H^{l} \neq H^{k}$ and is polynomial otherwise.

Proof. We prove the latter statement first. If $H^{l}=H^{k}$, then the homomorphism, $G \rightarrow \boldsymbol{H}^{k}$, provided in the instance makes the answer YES.

Claim 8.2.7.1 Let H be a connected graph and l and $k, l<k$, be two integers. Then $\omega\left(H^{l}\right)<\omega\left(H^{k}\right)$ if and only if $H^{i} \neq H^{k}$.

Proof of Claim 8.2.7.1. The necessity of the condition is obvious. If $H^{l}=H^{k}$, then $\omega\left(H^{l}\right)=\omega\left(H^{k}\right)$.

If $H^{l} \neq H^{k}$, then by definition of H^{k}, H^{l} is a proper subgraph of H^{k}. This immediately gives us that H^{l} is not a clique. Let X be a maximum clique in H^{l}. Let v be a vertex in X and u be a vertex not in X. Because H is connected, there must be a path $\left(v=p_{0}\right) p_{1} p_{2} \ldots\left(p_{t}=u\right)$ in H connecting the two vertices. Let w be the first vertex in this path not in X. The vertex w is distance one in H from some vertex in X. Each pair of vertices in X are at most distance l apart in H. Therefore, w is at mest distance $l+1$ from each vertex in X. Hence, $X \cup\{w\}$ is a clique in H^{l+1}. We conclude

$$
\omega\left(H^{l}\right)<\omega\left(H^{l+1}\right) \leq \omega\left(H^{k}\right)
$$

This establishes Claim 8.2.7.1

Since we have established that the problem is polynomial when $H^{k}=H^{t}$, we consider the case when $H^{l} \neq H^{k}$. In light of Theorem 3.1 in [2] we can restrict our attention to the case when H is a connected core when trying to show H^{k}-colouring is NP-complete. This allows us to use the above claim. The subgraph $X \cup\{w\}$ described above is an $\left(\omega\left(H^{l}\right)+1\right)$-critical subgraph of H^{k}. By Theorem 8.2.6, $\operatorname{RHP}\left(H^{k}, H^{l}\right)$ is NP-complete.

8.3 Homomorphisms to H^{∞}

When considering powers of a directed graph we see that eventually successive powers are equal. That is, let k be the greatest distance between any pair of points in H. Then

$$
H^{k}=H^{k+1}=H^{k+2}=\cdots
$$

For convenience we will call this digraph H^{∞}. The digraph is transitively closed. Let $u v$ and $v w$ be two arcs in H^{∞}. This implies the arc $u w$ is in H^{∞}.

Theorem 8.3.1 Let H be an acyclic digraph. Then the H^{∞} colouring problem is polynomial.

Proof. We define a function on $V\left(H^{\infty}\right)$ that is a retraction to the largest transitive tournament in H^{∞}. Let u be a vertex in H^{∞}. Define $f(u)$ to be the size of the largest transitive tournament of which u is the sink. Let $u v$ be an arc in H^{∞} and let X be a transitive tournament with u as a sink. Then $X \cup\{v\}$ is a transitive tournament with v as a sink since H^{∞} is transitively closed. Hence $f(u)<f(v)$. Also, the largest value any vertex can be assigned is certainly less than or equal to the size of a maximum transitive tournament in H^{∞}. If we label the vertices of some maximum transitive tournament in H^{∞} with the values $\{0,1,2, \ldots, t\}$, we see that f is a retraction to this maximum transitive tournament. Hence, the core of H^{∞} is a transitive tournament. The H-colouring problem for transitive tournaments is polynomial, [1].

We require the following definition in the next proof. Let H be a digraph. The graph undir (H) is the graph with vertex-set $V(H)$ and edge set $u v \in E(u n d i r(H))$ if and only if both $u v$ and $w u$ are arcs in H. In is straightforward to check that if H is a digraph such that undir (H)-COL is NP-complete, then H-COL is NP-complete.

Theorem 8.3.2 Lek H be a digraph containing a strong component of size at least three. Then the H^{∞} colouring problem is $N P$-complete.

Proof. Let C be a strong component in H of length at least three. Let u and v be a pair of vertices in C. Both $u v$ and $v u$ are arcs in H^{∞}. So if we look at undir $\left(H^{\infty}\right)$, C is a clique of size at least three. Therefore, the problem is NP complete.

Corollary 8.3.3 Let H be a digraph containing a directed cycle of size ai least three. Then the H^{∞} colouring problem is NP-complete.

Theorem 8.3.4 Let H be a digraph containing two directed two-cycles C_{1} and C_{2} such that there is a directed path from a vertex in C_{1} to a vertex in C_{2}. Then H^{∞} COL is NP-complete.

Proof. We can order the strong components of H^{∞} so that given two strong components T_{1} and T_{2} all the arcs between T_{1} and T_{2} are oriented towards T_{2} if and only if T_{1} is less that T_{2} in this ordering. Choose C_{1} (respectively C_{2}) to be the first (respectively second) two-cycle in this ordering. Let w be one of the vertices of C_{2}.

Define S to be the digraph on vertices $\{0,1,2\}$ such that $\{0,1\}$ is a two-cycle and $(1,2)$ is an arc. Let k_{1} be 2 . Let h_{1} be a two vertex in C_{1}. Let j be the vertex 0 in S. Then subindicator construction with respect to $\left(S, h_{1}, j\right)$ on H^{∞} produces the digraph consisting of C_{1}, C_{2} and all arcs from C_{1} to C_{2}. This homomorphism problem is NP-complete by Theorem 3.6 from [2].

It remains to consider those graphs in the class where no pair of two-cycles is joined by a directed path. We can construct infinitely many NP-complete examples of digraphs in this class. Let G_{1} and G_{2} be obtained from a transitive tournament on
five vertices by adding the arcs (3,2) and (4,3), respectively. Construct I from G_{1} and G_{2} by identifying them at vertex 5 (the sink of each). Then I is a core. Let u be vertex 1 of G_{1} in I, and v be vertex 1 of G_{2} in I. Let G be a digraph for which G col is NP-complete. Let " G be the result of substituting (I, u, v) for each edge of G. Then ${ }^{*} G^{\infty}={ }^{*} G$. The result of applying the indicator construction with respect to $(1, u, v)$ to ${ }^{*} G$ is G, and G-col is NP-complete by hypothesis. Thus some digraphs in this class are NP-complete, and some are polynomial.

Bibliography

[1] J. Bang-Jensen, P. Hell, and G. MacGillivray, The complexity oi colouring by semicomplete digraphs. SIAM Journal on Discrete Mathematics. 1(1988) pp 281298.
[2] J. Bang-Jensen and P. Hell, The effect of two cycles on the complexity of colourings by direct graphs. Discrete Applied Mathematics. 26(1990) pp 1-23.
[3] J. Bang-Jensen, P. Hell, and G. MacGillivray, On the complexity of colouring by superdigraphs of bipartite graphs, Discrete Mathematics., to appear.
[4] J. Bang-Jensen, P. Hell, and G. MacGillivray, Hereditarily hard colouring problems, submitted to Journal of Computing Systems Science.
[5] J. A. Bondy and U. S. R. Murty, "Graph Theory with Applications." Elsevier Press, New York, 1976.
[6] R. C. Brewster and G. MacGillivray, A note on restricted H-colourings. Information Processing Letters 40(1991) pp 149-151.
[7] R. C. Brewster and G. MacGillivray, Homornorphically full graphs, in preparation.
[8] D. G. Corneil, H. Lerchs, and L. Stewart Burlingham, Complement reducible graphs. Discrete Applied Mathematics 3(1981) pp 163-174
[9] S. Even, A. Itai, and A. Shamir, On the complexity of timetable and multicommodity flow problems. SIAM Journal on Computing 5(1976) pp 691-703.

110 P. Erdös and R. L. Graham, On partition theorems for finite graphs, Infinite and finite sets (Colloq-, Keszthely, 1973), edited by A. Hajnal, R. Rado, and V. T. Sós, Colloq. Math. Soc. J. Bolyai, 10, North-Holland Publishing Co., Amsǐerdam, 1975, 515-527.
[11] Z. Furedi, J. R. Griggs, and D. J. Kleitman, Pair labelings with given distance, SIAM Journal on Discrete Mathematics 2(1989), 491-499.
[12] M. R. Garey and D. S. Johnson. "Computers and Intractability", Freeman, N.Y. 1979
[13] J. R. Griggs and R. K. Yeh, Labelling graphs with a condition at distance two. SIAM Journal on Discrete Mathematics (1991), to appear.
[14] W. Gutjahr, E. Welzl, and G. Woeginger, Polynomial graph-colorings. University of Berlin Technical report B-88-06.
[15] W. Gutjahr, Graph Colorings, Ph. D. Thesis, Freie Universitāt Berlin, 1991.
[16] R. Häggkvist, P. Hell, D. J. Miller, and V. Neumann-Lara, On multiplicative graphs and the product conjecture, Combinatorica 8(1988), 71-81.

117] W. K. Hale, Frequency assignment: theory and applications. Proceedings of the IEEE 68(1980), 1497 -1514.
[18] F. Harary, D. Hsu, and Z. Miller, The biparticity of a graph, Journal of Graph Theory 1(1977), 131-133.
[19] P. Hell and J. Nesetril, On the complexity of H-colouring. Journal of Combinatorial Theory, Series B. $48(1990)$ pp 92-110.
[20] P. Hell and X. Zhu, Homomorphisms to oriented paths. In preparation.
[21] P. Hell, H. Zhou, and X. Zhu, Homomorphisms to oriented cycles, Combinatorica, to appear.
[22] P. Hell, X. Zhu, The existence of homomorphisms to oriented cycles, submitted to SIAM Journal on Discrete Math.
[23] F. T. Lenighton, A graph colouring algorithm for large scheduling problems, J. Res. Nat. B. Standards 84(1979), 489-496.
[24] G. MacGillivay, On the complexity of colourings by vertex-transitive and arctransitive digraphs. SIAM Journal on Discrete Mrthematics 4(1991), 397-408.
[25] G. MacGillivray, Generalized colourings. Ph. D. Thesis. Simon Fraser University, 1989.
[26] G. MacGillivray, Notes on restricted H-colourings. Personal Communication.
$[27]$ H. A. Maurer, J. H. Sudborough, and E. Welzl, On the complexity of the general coloing problem. Information and Control 51(1981), 123-145.
[28] D. J. Miller, The categorical products of graphs. Cancdian Jownal of Mathematics. 20(1968), PP 1511-1521.
[29] T. J. Schaefer, The complexity of satisfiability problems. Proc. 10th Ann. ACM Symp. on Theory of Computing, Association for Computing Machinery, New York, pp 216-226.
[30] X. Zhu, A polynomial algorithm for homomorphisms to oriented cycles. Manuscript, 1991.

