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preseat evidence suggesting that for edge-coloured graphs a structurd characterization 

that cornpfetel>- clafsifies %-hi& H-culslouring problems are SP-compf ete and which 

w e  plynomid is ztdikely. This is similar to the case of directed graphs. fudeed, 

we establish a p~A~~0mia.l  equivalence between the comptexity of H-coiouring for 

biipa.de two-edge-cofotu~ed graphs and bipartite digraphs. W e  show that the problem 

is pulpomid for paths m d  that there exists trees, cn as few as 1'2 vertices, for which 

the problem is NP-complete. We study the problem for cycles and present an infinite 

f d y  of NP-complete cycles with two edge colours; moreover, any cycle srnailer than 

the minimal element of the family is polynomial. We study the problem for cliques 

a d  completely classify the complexity for all cliques on three or fewer vertices with 

two edge colours and for dI digon-free cliques on four vertices with two edge coburs. 

We show that a clique with Ii edge colours is NP-complete if it has more than zk 
vertices a d  that there exists cfiqtres with k edge mlours and at most 2k vertices 

which are polynomid- 

We also establish an equiMfence between H-wlouring for edge-doweb graphs aab 

a new homomorphism problem - the Sabidussi Homomorphism Problem and thereby 

we are able to cl&@ the complexity for a large family of these problems. 
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apter 1 

Introduc 



very natural mathematid object, some might argue that H-colouring is the correct 

way to exmine these cdolrring probkms. 



It is easy to see that a fimctian f of the farm above is just a homomorphism G' 4 He 

The majority af this thesis concerns the following problem. Let H be an edge- 

co~ouxd graph. The H-colouring problem is the following: 





In Chapter Four we demonstrate an equivalence between H-COL for bipartite edge- 

mlomed graphs of mdtiplidty two a d  H-COL for bipartite digraphs. Namely, k t  H 

be a bipartite edge-dmred gnxph of mrrftipficity tiwa Then there exists a bipartite 

digraph, D, such that H-COZ and D-COZ are plynomidly equivalent. We have a 

s b . 2 a r  eo&ru&ion that s with a. bipartite digraph If. Xamely, we can construct 

sin. sdge~1oufed p p h  M such that B-COL and D-COL are plynomially equivalent. 

We use these co&mdicms to bath obtain new results fur edge-coloured graphs (us- 

img digraphs) a d  conuersely to obtain new results fur digraphs (using edge-coloured 

&p@+ 

In Chapter Six we study H-COL for clpc1es. A piece of an edge-coloured cycle is a 

msudmd ic - (Note far edge-mIou~ed cycles with two edge-miours, 

the n m k  of pieces is always even.) UiPe show that in this case the problem is 









by mapping all the ver"~ices of G to 2;. On the other hand, if G contains a loop 

and a d m i t s  a homomo~phism to H ,  then H must contain a loop. For the case of 

edgedoured graphs, the existence of Imps no longer necessarily makes the problem 

trivial. Therefore, in general we allow Imps, although for simplicity we often restrict 

our attention to the loopfree case. In any section where we allow loops, we state this 

explicitly at the beghbg  of the s t ion ,  Having said that, we observe that a vertex 

with a loop of every edge colour again makes the problem trivial for the same reason 

as above, To avoid tri.ry.i&ties, we never allow the existence of a vertex with a loop of 

every edge colour. 

A path of length n in G, denoted P,, is a sequence of distinct vertices V ~ V ~ V Z . .  . , vn 
such that for each i ,  I 5 i 5 n - 1, vivi+l f E(G). In other words, a path in G is a 

path in the underlying graph of G. A path is d e d  a blue path or a path u -  cofoilr blue 

if each edge in the path is a blue edge. A zualx: of length n is a sequence of vertices 

w ~ ' I u ~ w ~ .  . . ,w, such that for each i: 1 5 i 5 n - 1: zu.rw;+x E E(G). 

Given vertices a mi€ v in G3 the distance between u and v ,  denoted d(tt,v), is the 

length of a shortest path from u lix, v. The distance in uplour is  denoted 4(u ,v ) ,  is 

the length of a shortest path of culoar i &urn et to u. If there is no path (respectively 

no path of coiour if ffom v to .us then dju, v) = oc (respectively &(a, U) = m). 







Let, If be a subgraph of 6. A retraction, r : G + H: is a homomorphism that is 

the idmtity map c3n U .  We say that H is a retract of G. ?Ve say that G is a core 

if there is no homomorphism from @ to a proper subgraph of G- Let G be a finite 

edge-doured graph, 1% Is easy tc prove that G contains a subgraph H that is a core 

and that there is a retraction r : G + a. Moreover, H is unique up to isomorphism. 

We call M the core of G. This is proved for graphs in [19]. 

Suppcse 23' is the a r e  of fi 2urd r : fi -r H' is a homomosphism of H to H'. We 

hawe the inclusion mapping i : B' -+ H which is a homomorphism. Hence, G -, H if 

and only if G -+ H'. Thus when studying H-colouring we can restrict our attention 

ta the case when M is a core, 

1.1 -3 Congruences 



such identifications. F%&henrrore, the definition of this identification will define the 

target and implicitly d&e a hunromorphisrn. 







Let El and I& be two decision pmbIems. We say El pufynomiatly touzmforns or 

redzeces to & if there exists a function, f, from &, to hz such that: 

We denote by NP the set of decision problems that are dvable in polynomial time 

by a non-deterministic dgo i th -  See 1121 for an explanation of non-determinism. 

One of the pet: o p  pmbIems in complexity theory is whether or not P=NP. 



If C is in P a d  EaTC, then fT E P. W e  say II is NP-hard if there exists an 

NP-complete prob1ern E sacb that CCQE,. 

W e  conduck this h i o n  with an observation that &ows us to assume fa ae H- 

mlouring problem, H is com&ed. W e  have already pointed out that we may assume 

that 2f is a core. 

8.2 Previous Work 



In their 1981 paper, Mamer, Sudhrough, and Welzl f2?] classify the complexity of 

H-COL for all three-vertex digraphs. This work was extended by Gutjahr 1151 who 

ddfied the complexity of H-COL for dl four-v&x digraphs. 

Several famifies of pofynomid digraphs were aIso presented in [27]. Ia particular, 

the authors show that H-COL is polynomial when H is 

a directed path, 

e a directed cycle, a d  

The a m q t  af "hd* k b n e d ,  fdf, has tzeen studied by Bang-Jensen, Hell, 

zurd MZkCGavray- They present hereditarily hard digraphs in the sense that m y  

&graph H %hat c13.n.kains a hereditarily hard digraph as a subgraph has the property 

thak E-COL is MP-axmplea6:- They use t k  concept to study the above conjecture of 



Bang-Jensen and HeB- Fixthennore, they show the equitdence of this conjecture to 

a simpler conjecture- 

The dassifiation of H-COL fur graphs in f19] impfief essentially the only H- 

cofo&g problem for graph %hat is poIynomia1 is K2-COL. M l  we can restrict our 

attention to the case when H is a core. The algorithm for this problem is trivial. For 

oriented graphs we have pEpomid algorithms that are no Ionger trivid or obvious. 

Classifying the compIerrity of H-COL fur oriented paths proved difficult. In their 1992 

paper, Gutj(ahr, Weld, and Woeginger 1141 defined an &graph to be a digraph for 

which there is an enumeration v ~ ,  vz, . . . , v, of the vertices such that if t+vj and ~ k v l  

are arcs, then so is v ~ ; ~ p l - ~ j , ~  The main result of their paper is as follows. 

Theorem 1.2.2 Ld H k an X-graph. Then H-COL is polynomial. 

It is easy to see that every oriented path is an X-graph. Hence, if H is an oriented 

fn the same paper, the authors present a~ oriented tree, T (with 287 vertices), such 

that T-COL is NP-complete 

The e1assific;btion of oriented cycles has also proved d i f i d t .  Define an ttcrlanced 

oriented cycIe fio a be a cycle in which the number of forward arcs equals the number 

of M w a d  arcs- D&e an udaneed  oriented cycfe fx, be a. cycle which is not 

Gdaeed- Gutjah and independently Zhu [30] have shown the foHowing. 



An srieated cy-clle, G, is d e d t  n k  f for m y  oiated graph G7 there exists a cycle 

Cf suchthat C1+t?andC'+Cif~donly i f G + C -  H d , n r n , ~ d Z h ~ l h a v f t  

shown that dl wb("REf ox=k~aed cydes are nice and there are batitseed oriented 

q d s  that- are not ake 
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grztph, i.e, each relz~ion EtfHs) is symmetric. Suppose there is a homomorphism, 

f : 1, -9- H, such h t  f (it) = h and f ( j g )  = h'. That is, hfi' f Et(H*). Recall there 

exists iahn automorphism, at, of Jt such that; at( i t )  = jt and a t ( j t )  = i t .  Composing y" 

with at wegzt the homomorphism f onf : It rt H with f oa( i t )  = h' and f o a ( j t )  = h. 

Therefore, both ItK arid It'h are images of I*; hence, the edge is undirected. 

We make an o'kmation about the indicator construction fur edge-coioured graphs 

which is unique ta edgew10ured graphs. The edge-coloured graph H* has has mul- 

tiplicity m - one edge-colour for d indicator. However, multiplicity of H* is in no 

way related to the multiplicity of iY- The edge-dowed graph Hf can. have fewer, the 

same, or more edgecolours than H .  Nevertheless, each indicator, It, must have the 

same multiplicity as H .  

Proof. Given a;n dgem10wed graph G, let *G be the edgecoIowed graph ob- 

tained by replacing 4 edge of mlow t ,  say uv, with the edge-coloured graph It, 

ideatifsing ti with & and v with jt. Mote that G has the same muftiplicity as H' (the 

number of indicators) and 'G has the same multiplicity as H (the common multiplic- 

ity of the tn&~iitors)- B is straightfornard from the dehitions that *G -.t H if 

and only if G -* H". This was done, in [19f, for the case of graphsr 

1% is possible that. ie and jt may map fa the same vertex in H. This will produce a 

Imp of cola- t in H*. One must be cardid to avoid constmcting loops in the case of 



Figure 2.1: An example of the indicator construction 

graphs or directed graphs, since a loop in B* makes Ha-COL trivial. This may not 

be the case when working with edge-coloufed graphs. It is possible to have loops in 

P' and still H*-COT, may not be triGd- 

Consider the example in Figure 2.2. Let H be the edgeco1owed graph with vertex 

set {0,1,23; blue edge-set- (01,02, f 1,123; and red edgeset (00,12). Let fl be a 

single blue edge with end-pints if and jl. Let & be a path of length three consisting 

of a red edge, a blue edge, and a red edge. Let i2 and j2 be the end-points of the 

path, The resuft of the indicafnr construction with respect to ((4, il, jz), (Iz,  i2* jz ) )  

is the edge-co1.oufed graph H* shown in Figure 2.2. Despite the fact that H* contains 

I-- i%*-COL & ~ ~ m P f e ~ e *  a- +L:- el., ,=I. 
X W p D ,  fix v r t G  mu. it-a e-~ugir  ii m ~ d  q p l i d h  ~f the 

iradiabr eo&m&9= Let 1; be a -d-blue Bigon- That is, 1; is an ddemIaued 

graph on teo vertices, .li; and j,", where irj," is a red edge and a blue edge. The result 













We now prove the dgozith comdg- generates Horn f G, $5). Suppose some fmc- 

tian f is added ta kF-(G3H) by the d g o ~ % b .  Tkis h p k  1 was s u c ~ ~ f d ~ y  

&ended to dl of VCG") which implies f is a hemomorphisrn &om G to fi. On 

the other hand, f : G 4 B' is a homomorphism. There is an i such that 

fbg) = Iti, On the i" ite&icm of the dgorithm, f @) = hi- The algorithm then 

attempts to extend f ta V(G"). Since f is a homomorphism this extension is possible 

and unique; hence, f is added to Hm(G,  H ) .  

LEh hid p i n t  ta consider is what hzy,pets; when G is not, connected? If one i s  d e l y  

ktaested in the q r r d o n  G -* H?, then the Forcing Lemma can be wed on 

each mmpa~fent d G- TIze edgecmId graph G is a YES insta;nce of H-COL if and 

g if cxmpenrt is a YES instaace of H-COL However, if one is interested 

ErZg Efana(GTm, then a d i s n ; c r n n d  edgecoiouted graph G c a ~ n  cause 

pd&ms- kt ex, GZr - - - Gm be the components of G. Esom, the abowe r d t s  



we see there are at most rs- homomorph5sms from G; to H where n = JV(H). To 

m m t ~ d  a homomorphism from G to H ,  we need to choose a homomorphism from 

each component to M. T%erefore, there could be as maay as nm homomorphisms 

h m  @ ta HI Hence, one mast be car& when using the F&ng Lemma to generate 

Hm(G,  H), since this set can have exponentid size if G is disconnected. 

The Forcing Lemma is a result that nai;us&y extends to directed, edgecoloured 

graphs. If the con&tion on H is changed to "Each vertex is incident with at most 

one in-arc and at mat  one outarc of each dour",  then the result still holds. 

A find observation we make is the obvious interpretation of this result in the context 

of multiplicity one. The ody co~ec ted  graphs with degree at most one axe Kl and 

Kz. Digraphs that have indegree and outdegree at most one at, each vertex axe directed 

p&b and directed cycles. These graphs kl yield polynomial N-mlozrring problems, 

as is well known [IS!]. 

2.3 Reduction to ZSatisfiability 

"fhe use of propositiod lagis prublems is quite common in complexity theory, es- 

p&aEy far proving ~ P - ~ p l t ~ e s s .  fn %his &ion we describe a methud for con- 

dmcting po1ynami;J t h e  dgoEithnrs using 2-Satistiab'ity (2SAT). Formally we define 

S A T  as: 
~ ~ t ~ a b ~ t y  (2SAJT) 

INSTANCE A set+ U af b I e a ; ~ ~ .  variables, a 10Uedion C of &use over 

U$u&tbeachCf CfLirsatm&m3~ter&. 

QUESTION: Ps there a satisfyirag tmth assignment for C? 



fn this definition a clause is a disjunction of variables and a satisfying truth as- 

signment is assignment of true or fdse to each variable such that each clause is true. 

This problem is sof~ble in p ~ i ~ ~ o m i a l  time. See 1121, [9], and f29j. We describe a 

method for po1ynormially t r d o e g  H-COL to 2SiZ.T. 

Suppose we are giva an edge-cu10ued graph W. MTe assign to  each vertex in H a 

bit string of iength n, i-e., a string of n 1's and 0's. Given an instance of hh-CQL, say 

G, we mnstmct n b f e m  variables fur each vertex in G. fn addition, we construct 

clauses on this set of variables in such a way that, the clauses have a satisfying truth 

assignment if and o& Z G -, H .  For exampie, let ti be a vertex in G. We denote 

the n variables corresp)o~fding to u as u,, u,-1,. . . , ul. A truth assignment on these 

variables can be represented as a bit string of length n. That is, u; is true if and oniy 

if position i of the bit string is a one- Since we have assigned each vertex in H a bit 

string of length n, these is a natural conespondence between a truth assignment for 

2 ~ p :  =%-I:. . - : u~ and an image fox vertex u in H. 



Figirre 2.4: Exibmpfe of 2SAT reduction 

the m~~esponding instace of S A T -  The set of -Jariabfes is U = (a,, u1, vz, vl,  to3, wl) 

and the set of dames is C desniW bdow. The bit string 11 has not been used 

in labeling tl; them&re, in any truth assignment we need to avoid assigning (1,l) 

t. [uz,ul), (v2,e)l)% or (nTZDL), This can be accomplished by placing the clauses 

(-wa V -.ul ), (-% v -q), and ( 7 ~  V -wl)in C. Secondly, we construct a set of clauses 



require for a homormurphism. The same argument can be applied to the blue edges 

using the second bit of the labels. 

lrhe following truth assignment satisfies all the clauses in C: 

Since (~2,261) = ( l ,O) ,  we map vertex f G to s E H .  Similarly, we map v to z and 

ru to y. It is easy to check that this is a homomorphism h m  G to H. 

In the above exitmp1e there ase two steps in our reduction- First, we put the 

dauses (-az V -ax) in C for ;all a E V(G). This insures that the truth assignment 

(a2,al) = (1,l) is never d, since it does not satisfy ( la2  V -a1). This must be 

done since 11 is not a label in H. Secondly, we construct clauses for each edge, ab 

in 6, such that a truth assignment for (a2, al)  and (&, b)  exists if and only if the 

mapping induced by tEs tmt6 assignment maps ab onto aa edge of the same colour. 

Therefore, the c o n s t a d  instance of 2SAT contains: firstly, dauses that describe 

the d d  la- in & and secondly, clause that describe the d i d  mapping of edges 

of each 60lom- 

Fama& we d a, .set, S, of bit strings of length n 2SAT-descn'bdle if there is 

m instance of 2SAT over the vaziabtes is,: s,li - . . :s:) such that t : (s,? -. . sl) + 

(0, I) is a satisfying tmh assignment if a d  only if f(s,). . . t(sl) f S. Hence, the 

&& step in our redudion is to label the vertices of H with a 2SAT describable set. 



knnnaa 2.3.2 Let k a q  set af three bit strings of lengiffr I w ,  IPlfren S is 8SiT 

Proof. There are fonr bit strings of length two and by a~lllllptian S consists of 

three of them. Let zy 'jSe the m e  9% =ring of iength two nut in SI The instaince 

of 2SBT over U = ( ~ ~ 0 )  with the iaUarPring single ciause: ht&s ic id assignment if 
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Figure 2.5: Clauses for 2SAT redudion 

must hold. Add the appropriate clause from Figure 2.5 to C for each edge colour i 

and ~ C E  dl edges wu E Ei(G)- 

W e  now c o n h  that these clauses are correct. Consider arn arbitrary edge d o u r  i 

calling it blue. kt 2sv be a blue edge. If case one holds, then there are no blue edges 

in H .  The dam (-1 A (ui) has no satisfying truth assignment. Therefore, uv maps 

to H if and only if the danse is satisfied. ff case 2 holds, then all blue edges in Pi 

hibvebthen&hX;- That&,uv maps toHi fmdody i fbo thu i  = O  mdvi  = 0.  

she cliause (9%) A (7~;) is satisfied if and only if (ui, vi) = (0,O). If case 3 holds, then 

dl blue edges in H have both ends in Y;. That is, uv maps to H if and only if both 

q = 1 a d  v; = f - The dimst? (u;) A fs) is satisfied if and only if (zti,vi) = (1,l). I f  

case 4 holds, then aH blue edges either have both ends in Xi or both ends in x. The 

dame (ZL; V 1%) h (9% V pi) is sistisfied if and only if ui = vi, That is, if and only if 

( 3 4 ,  @i) = (0,O) or (w, .o;) = (f,1). 



If case 6 holds, then dl blue edges in H have at least one edge in Xi. The clause 

(-ui V -wi) is satisfied If a d  only if at least one of (ui,  u;) is 0, If case 7 holds, then 

all blue edges in H have at least one edge in K. The &use (ui V v;) is satisfied if and 

only if at least one of fai, wi) is t m .  Finally, in case 8, aff v i b l e  blue edges in H 

are present. Therefore, ~ L W  MSL map to any pair of vertices in H .  The clause (u; V -ui) 

is satisfied by any trvih assignment to (u ; ,~ ; ) .  

With these clauses inserted into C for each edge ~ 0 1 0 ~  asd afl appropriate variables, 

the instame of 2SAT has a satisfying truth assignment if and only if G -+ H .  r 

2.4 Divide and Conquer 

In this section we describe two techniques for studying the complexity of H-COL 

based on the compIexity of Iff-COL where Hl' is a subgraph of H ,  We also use a third 

kdmiqre, the %ip&ik decomposition lemma", sirnilax to these two, wlnich requires 

r d t s  from Chaptef three. Hence, we present it at the end of Chapter three. 

2.4.3 The Join Lemma 

W e  begin by studying the case when H is the join of two smaUer edge-colowect graphs. 

Proof- Let G be an instance of Hf-COL. Let cofour k + f be blue. Construct 

a graph X by ta&ing f;wo copies of G, s y  GA and GB, and joining comespunding 









Pmof We know from 60roHaq 2.4-4 that H-COL ct IP\{z?'g-COL, CVe now prove 

that H\(u)-COL a H-C0.L Sappose without loss of geflseralit? the aims - of M are 

Mae  and red a d  the uatex a is incident with only blue edges, Since H is a care, 

it c m  not have WJ vertices other thm 2; that are incident with only blue edges, 

That is, every vertex in H\jaj is incident with a red edge kt C be an instance of 

H\(u)-COL- For vertex ut E V[Ej add a new vertex u' aind join u to u' with a 

red edge. Call this am graph GCL Since d1 vertices in H${uj aue incident with red 

edges G + H\{v] ig and only if GI -+ H\(v), Since dl vertices in G" are incident 

with a reb edge, Gf - X{{2;) if mb d y  if GC i H ,  T"lhaelwer G -, fr l / (v) if a id  

sdy if 6' + H- The: ~e4.h. idowst  r 



Chapter 3 

omorphism Factoring 

Proble 



Fix the case of x . m d i p d ,  mrmfomed graphs, we pmved in 163 the following result: 
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W e  begin by defining a indicator comtmction for lrse with the Homomorphism 

Fxtming Problem The indicator construction in Chapter Two is stated in terms of 

rn indicators, Iz, fi, . - . , I,. Consequently7 the result of the indicator construction has 

m edge-cofoms, Our diSCTISSion here is in tenns of one indicator for simplicity ilnd in 

view of the f& that; the indicator constmdion is used in the one edge-CO~OUT context 

in this chapter. However, the HFP indicator construction and the following lemma 

have a natural generalization to n in&&=. 

Let H and Y be two dgec01ouzed digraphs and let h : H + Y be a homomorphism. 

Let I be an edge-m10meif digraph with distinguished vertices i itnd j. Further suppose 

t : I -, Y is a homomorphism. The indicator construction, with respect to (I, i, j, t ) ,  

t~ad"rmg H and Y into two new edgecolowed digraphs Hf and Y#. The vertex-set 

of H* is V(H).  Given two vertices u and v in V ( H ) ,  uv E E ( @ )  if and only if there 

is a homomorphism r : I -i H such that r(i) = u, r ( j )  = v, and h o r = t .  The 

vertex-& of Y# is V(Y) and the edgeset is the single arc (t(i), t ( j ) ) .  

Clomider the examp1e in Figure 3-1. The graph H is C9 and the graph Y is C3. The 

n m k  beside the vertices in H define the homomorphism h : H -, Y, All vertices 

with 0 beside them are mapped tu the vertex labelled 0 in Y. S i ~ l y ,  the graph I 

is a P3 and the homomofphism t : I -P- Y is also marked in the figure. The pair (u, v) 

is an arc: in H# if and only if I admits a homomorphism to El with i mapping to u of 

adom O a d  j mapping to v of colour 0. The edge-c010ured digraph Y# contajns the 

~ e ~ c ~ c m  t( i)  = OfX) fG)= 0. 



Figure 3.1: An example of HFP indicator construction 

Given an arc, (u, a), in H*, there is homomorphism r : I + H such that r(i)  = u and 

rljj = v and hor = f. NOW t r f -t Y, t(i)  = (hor)(k) = h(u) and t ( j )  = (hor)(j)  = 

h(v); therefore, (h(u), 6 ( ~ ) )  is an arc in Y#. That is, 6 is a homomorphism from H# 

to Y f .  Hence, HFP(Hf, h, Y+) is a well-defined problem. 



Figme 3.2: The construction of #G from G. 

aampEe of %G- We d&e a homamorphism #g : *G --, Y as follows: 

H is easg to see that *g is a homcornorphism. Findy, we show that G, g is a YES in- 

stance of HFPfHI, h ,Yf )  if and only if #G, bg is a YES instance of IIFP(EI, h, Y). 
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How it is easy to check f f is a homomorphism and h o * f = #g. The converse is 

dso easy to verify. i 

W e  k t  observe that the HFP problems include H-COL. 

Proposition 3-1.3 Let H be an edge-coloured digraph ~raorEtaplicity k. Let Y be 

be fie eonstant homomrpfiism h(v) = y, for all v E V(.H). men HFP(H, h, Y )  is 

palpczmially equ-iwalent to H-COL 

Proof. We begin with a poipornid trdormation of H-COL to H F P ( f f ,  h, Y). 

Let G be an instance of H-COL. W e  may assume without loss of generality that 

G is an edge-coIowed digraph that uses only edge-colours 1,2,. . . , k. Let g be the 

homomorphism from G to Y defined by g(v) = y for all u E V(G). It is trivial to 

check that there is ib32 f : G --+ H such that ho f = g if a d  only if G -, H. Therefore, 

On the other h a d ,  given an instance G,g of HFP(H, 16, Y), we consider G as the 

mnesponding instance of H-COL. Then G -, H if and ody there exists f : G -+ H 

mch that A o f = g. Therefore, HFP(H, h, Y) a! H-dowing. m 

W e  axe dm a& to use the HFP problem to construct polynomial algorithms for 

certain H-m10uring problems- 



pofynanidly many of these homomorphism since the set can be constructed in poly- 

nomial time. We claim. there exists an i (1 < i 5 n) such that G,gi is a YES instance 

of BFP(fi ,  h, Y) if a d  ody if G is a YES instance of H-COL. On the one hand, the 

existence of mctt as i implies there f : G i H that h o J = 9;. Tk~idy,  

G is a YES instame of H-CQL, On the other hand, if G is a YES instace of H-COL, 

then there exists f : G -+ H .  The homomorphism h o f : G + Y must be gi far some 

i. Hewe, G,g; is ib YES imtaince of HFP(H7 h, Y). m 

Given the above propition and the fact that as yet no complete classification of 

H-cofouring for digraphs &s [2], it seem unlikely that we will be able to completely 

dassify the complerdtp of HFP(H, h, Y )  for aJl H,  Y, and h : H -, Y. Therefore, we 

focus on partidils r&ri&ms of Ef, Y a d  h. We begin with a series of r d t s  when 

restfictions on H, h, and Y, give rise to EfFP(H, h, Y) problems that are polynomid. 

The first case we e x h e  is when h is a retraction. 

Praof. kt G,g be an indace of HFPfH, h, Y)- The homomorphism g : G 4 Y 

is afso a homomorphism of G b H since Y is a subgraph of H. Furthennore, hog = g 

since h is the identity rnap on Y. Thefore, any instance G,g is a YES instance and 

the prubIem is trivially sofdfe h pofpomid time. n 





W e  have seen abve that placing restrictions on h or on Y can result in a HFP 

that is polynomial. In general, if no restrictions are placed on h or Y the problem is 

hard- 'ENe examine this h the next sectioa. 

3.2 Undirected graphs 

fn this section we restrict om attention to graphs (multiplicity one). We may assume 

for ZFP(H, h, Y) problems, that the graph Y is connected. We prove the following 

main result. 

Theorem 3.2.1 For each connected graph Y ,  Y 4 (Po, PI, P2, P!),  there mists a 

graph H and a h o m o m o ~ h h  h : H -+ Y such Ulat HFP(H, h, Y) is NP-complete. 

Fet each graph Y E (Po,Pr7f2,P3) and for all graphs H and alf homomorphisms 

h : H -+ Y ,  the pmblem HFP(H> h, Y )  is polynomial. 

Proaf. First suppose Y is a graph and is not one of (Po, PI, P2, P3)- Depending on 

Y, we will choose a graph H and a homomorphism h : H -, Y so that HFP(H, h, Y) 

is NP-,mete. 



kt I be a path of length n on vertices popl . . .pa with i = and j = f i .  Define 

t : I j Y as follows: 

The result of the indicator co~zstmction with respect to (I, i, j, t - )  is H#, Y# .  The 

digraph H# comists of a directed three-cycle and a directed four-cycle joined at the 

vertex vo (plus isolated vertices). In particulax, the vertices of the three-cycle are 

u0, u,, v2, and the vatices of the four-cycle axe vo = 210, u,, U Z ~ ~  213%. It is important 

to note that the choice of the homomorphism h, here and below, assures that H# 

contains no other edges and in particular no loops. The digraph Y# has a single 

arc, namely a loop on vertex Q. Also the map h(v) = Q for dl v E v(H#)  is a 

homomorphism of H# to Y*. By Proposition 3.1.3, we have HFP(HI,A,Y#)  is 

p01ynomially equivalent to H#-COL. h f23, it is shown that H-COL is NP-complete 

when IZ consists ~f ~ W G  dirded qc1t3 joiaed at a single vertex (assuming H does 

not retract to a single cycle). Hence by [2], I?# - COL is NP-complete a d  therefore 

HFP(H, h, Y) is NP-compIek. 

Case 2: Suppose that Y contains a vertex of degree at least three. Let y 

be a vertex in Y with neighburs u,v, w. Let I be the path poprp;!. . .ps with i = po 

and j = m .  Let;f;:I-tYbedefinedtry: 



We now proceed as above. kt H be the graph consisting of two cycfes of lengths 

18 and 24 joined at a shde vertex. Let the first cycle have vertex-set (Q, el, . . . , c17) 

and the second have vertex-& (4, dl,. - - , d23), where t& = Q. Define la : H -+ Y by: 

[ ur i = 5 (mod 6). 

The result of the indicator construction with respect to ( l , i ,  j, t )  is B* and Y#. 

The digraph H* consists of a directed tfuee-cyck and a directed four-cycle joined 

at a single vertex. The graph Y# has a loop on vertex y. The homomorphism 

K : H# -t Y* defined by K(z) = y for all z E V ( p )  satisfies the condition of 

Propasition 3.1.3. Therefore, HFP(Hg, it, Y#) is equivalent to If#-cofouring. Again, 

this is NP-complete. Hence, HFP(H, h, Y) is NP-mmpIete, 

amshwtd fnrm the ho~aorphisms t of -the individd copies af 1. The result of 

the kdi&r axla&"u&m with tu ( I , i ,  j,t) is P, Y#, where B# and Y# 



are as; above. By Propition 8-1-3, HEP(H, fs, Y) i s  KP-complete, 

Hence, sup- that Y E {Po, PI, P2$ P3)- h t  H be a graph. Reed that we can 

dways assume Il is com&sd. If V = Pol asd h : N -, Y is a hu~xzomorphism, then 

k is a, retraction ;red by Lemma 3-13 HFP(H? Ft, Y) is gofynrrmid. U Y = Pz and 

Eiaally suppose Y is P3 and A is ar homomorphism h : H -, Y. Let; the vertex-set of 

V be (18,1,2,3)- I f f &  is mt ah7 %bat HFP(H, f r ,  Y) is equivalent ts one of the three 

p1pomiaI. p m b h  &ve. Hence, assume h is onto. Lee P = (et = ppfpr - . . (p ,  = u) 

beasbrkst path. in Hdramatpextexzr, m& that h(u) =O, to avertex tt,su& that 

hga] = 3. Since: P is a &oxtest pact& t t ~  interior vertex d P is 60 0 or to 3, 

~ e v & i ~ i n P b v e ' s h e ~ t ; i v e i ~ e s w r d e r  h: 03f,2,f, 2,1,2,.,., L,2,3. It 



' ~ k  md v where the zd md G axe taken over all pairs u a d  w such that g(u) = O and 

g(v) = 3. This probIm is the Shortest Pairs Problem and is p1ynomial f13. Again 

it iseasyfmseef;fiaeisaretr&ion t f r o m  Eto&sucfitbatgot =g. FidIy, G,g 







by examining two spixSai cases. First, if gfG) 

, then G%g is a YES imibace sf HEP(H, A, Y) IP a d  ody if H contains an 

a d  h&s) = 1/2 SeGond, if hf N) is 2/ay~ then G, g is a YES 



instmce of HFP(H, fi,  Y) if and only if g(G) is the edge yoyl. Therefore, assume 

neither g(G) nor h(H) 3s * YOYI- 

Let H' be the union of @ a d  H .  Let f x  be the homomorphism that maps H to 

y ~ p ~  and is equal to g an @. S h h r I y ~  let f2 be the homomorphism that maps G to 

yo91 andi is equal to Jb on H- T.he instance Hi, fl, f2 is a YES instance of THP(Y) if 

a d  only if G,g is a EXS instance of HFP(H, h, Y). 

Suppose G,g is a YES instance of fPFPfH, h, Y). This Implies there is f : G -, H 

srrrH that h o f = g. Let t be the homomorphism liT' to Hi defined by: 

3-5 ite Decomposition Lemma 

ns take a given &-mlonring problem a13 split it into 

Hz-CBL a d  &COL. The cmq&Ga;S of these problems 



determines the compkrdty uf H-COL. Suppose H is an edge-coluured graph which 

is a core and blue is an edge(=olour of H .  Further suppose that the blue spanning 

subgraph is a complete bipartite graph with bipartition (A,  B).  Moreover, suppose 

that -Ear dl u E A and v E B, uv is not an edge of any colour except blue. Let HI be 

the induced subgraph of H with vertex-& A and H2 be the induced subgraph of H 

with vertex-set B- W e  have the foUoing lemma. 



430roihy 8 - 5 2  kt: If he an e d ~ ~ e - m l o ~ d  p p h  s a d  .&at the blzle spanning sub- 

graph & a mrrtplete bipwitiite graph with bipartition (A, B). Let HI (-. &) be 

the svBsf4pA @ A f~esl,- B)- If&-COL or EI,-COL is NP-complete, then 

H-COL is NP-compfde, 



Chapter 4 

Bipartite Two-Edge- Coloured 

Graphs 

4.1 Equidence to Directed Graphs 

Let H be a twO-edg5-Iot1fed graph. Define the mnwrse 48, written HR, to 

be %be edge -14  on vertex V(B) ,  where &(H) = &(p) and &(H) = 

&(H&)- is, ~a +- by &&sr&a@g blue edges, Let 

-&fine the m a m e  of D, w r i t h  p, to be the directed 

--set VfD) where uo E E(D) 3 and only if ou E ~(pf. Tbe foUowing 
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proposition. is straightfomazd and is presented without proof. 

Proposition 4.Z.Z Suppse G and .I3 are two-edge-colowed graphs. Then G + H if 

and o d y  if GR -+ HR. 

Similarly we can show for the foilowing for digraphs. 

Prepasiticn 4.1.2 Suppose C and D are digraphs. The% C -4 D ij and only if 

CR -+ .DR. 

N'e now explain how to construct a bipartite digraph from a bipartite two-edge- 

wfoured graph. Let 23 be a bipartite edge-cofowed graph and (&, HI) a bipartition 

of H. Define Dir(H, Ha, H I )  to be the directed graph D as follows: 

~----*AL- Np-xriwrt  -.La d * rn B' he o &ipz=tu"t &w+edp-mhmf q p h  , Stpgose ihai 

(Ha, II,) iP (I GpdsL'~, o ~ E  and D = Dir(H, Elo, a). T h n  .Dl? = Z%(B, Ii,, &). 



We idso have a mnstmdion to construct a bipartite edgecobured graph from a 

bipartite digraph. Let; D b.e a bipartite digraph D and (Do, Dl) a bipartition of II. 

Define ECG(D, Do, DI)  to be the edge-dowed graph fir as follows: 

Prqsosition 4.1.4 Silkppse D is a digraph.. Suppose that fDo,D1) is a b&artition 

of D and H = ECG(D,Do,Dx). Then = ECG(D,Dl,Do). 





Proof Let G be an insta;nce of If-COL. Choose a specific vertex v of G. Let 

hl,  h2,. . . , hk be the vef.Eims of I€. Define Gi as the edgec01oured graph obtained 

&om the disjoint union of G and H, when vertex v E V(G) and vertex hi E V ( H )  are 

identified. 

Suppose g : G; -E H irs a homomorphism.. Since G is a subgraph of Gi, the 

existence of g implies %he e x i s t a c e  of f : G -, H.  On the other hand, suppose 

f : G t. H is a laornomo~ph iand f (2~) = hi. Define g as: 



Combining this sbsemihtion with the first claim we see that: 

For each 2' deline Ci = D~T(G;,A, B) where (A, B) is a bipartition of Gi. Recd  

th& If is bipartite and any edge-miowed graph that maps to fj must also be bipastite; 

hence, G; is bipartite. Since C; -, if and onfy if C? -, D, the following is true: 

4.2 Consequences 

COE is p1pot;lid fia arietn.Ited paths; however, 

vertices sad that; H-COL is %P-60mp1&e. Thls 



En [2] the authors show that for complete bipartite digraphs, the W-COL problem is 

NP-hard if H contains two directed cycles iand is polynomial otherwise. This implies 

the following prop&tion- 

The final obsmatians invalve cycles- AD even length oriented cycle can be trans- 

formed into an even length tw0-8dge~0Eoured cycle and vice vefsa fn [303 and f 153 the 

a~thors have inde~perrdeabI.y sham foa m y  oriented cycle, C, cantai~ng more forward 

z p s a  thzm badmad arcs, C-COL is pg>mmia2. They alsr, shew there exists oriented 

cyc1es far wk& 6-COL is MP-cc~rnpfete; these cyctes rn& have tEte same n u m k  crf 

fom~rf arcs. a d  axes and e h a e f ~ ~  have even lm@h The implicaitions for 

~ g e ~ 1 o u 1 ~ e s f  &rqb are the e x k t e e  of poZynamid d g a & b  fox wme t w d g e -  

c010'1ppd qdes mi% 8h4f & a c e  orf NP-hard twuedge-colou~ed bipartite cycles. This 

mk m C-I;~ s~x, 



Path ee Colouri 



The dgorithnn in [24] d v e s  the 60L problem in gdyriomiaf time wbm H is an 

osientd ( u n m l d )  mh- We p r m t  a similar algorithm for the case when H is an 

b e  the slrr-dkd X The dgea10web ~~~ we aady d a  n d  have the 

.X property- h t e d  we aw l m s  ta show that - 



kll kZ- Sime H is a path 

h,, Again, sEne jIlf  is a path* 

h3 = kt + 1- H h3 5 hx cx & 2 h?, 



In t& sectim im assame 

omid time dgdt  

we can apply tbe dgor3thm ca a& component 

For two d g ~ & m  we know H-COX, is 

[Mjr 



b : G 4  W, Z4js  

Sup- Hw?Iz[G~ W )  con- 

s my R I& Let f3@) = bZ e(ff@1* liR(g)l) 

set. 







Imm checked, bath b v a r k ~ t s  me trivially true. Suppose bath are true after n edges 

Hiave hem chet:ked. F ~ ~ E z  tha* the, fn + 1)" edge t be checked is ~tm. 
'fif Hm(G,W] is mptgr, then, hs&mt fi) I t  triwidy tme, ff Bm(G,W) is  not 

-payT then fd tf" be the ~ n i m m  G-fixed dement of Xfrmr[E, Wf. W e  have by 

induction, f H ( &  2 fH(@) and fH(n) > .fH(g& Also / ( f i ) / (~ )  E E,(HF) since / 

is a bmon<~rp&sm, TBmefme, act step 2-22 the pair (i, jji exists with jHtgt) j i and 

fHb )  2 w  i- Tfrre ng f is 

By induction, &J) SH f@)  fol 9 E ib(G)\{fi. *)- Thndwe, invariaot (i) remains 

triie* 







CSAPTER 5. PATE AND TREE COL.0ufi$r9cTg$ 



Naar we eomtmet a NP-compIete tree with two edge-c~fctflfs, kt Ei 'be the tree 

in Figure 5.5. The: &b on the: edges hae  are not colaurs, but paths found in Figure 

5-7. Fa& paah co~sists sf a blue path, fdowed by a red path, fa,Uowed. by a blue 

path, foBowed by a path cm&ing of a single red edge. The n u m b  abave each edge 

b Figaxe 5-7 m~pesp~ds %a the lm@b of the ptb.  For exampfe, the path PI is a 

path compawd of 3 Mae edges, 5 red edges, 5 'Hue edges, a d  a single red edge, Each 

has aez arientatian ham the white vertex on the f& ta the black vertex on the 

right- Each Iabd in Figures 5-5 a;nd 5-6 ~~zresponds fa an trriend p&b from Figure 

S.T9 =-a far Q" (ma in Figure 5-23 which is a p&h of I-en@h six w h e  edges 

diemate recf a d  is, Q' is abtained h m  $ k adding a Mue ed 

red edge to the Pi&& a d  of Q. 







In i%O] it is shtrown tW f a  amy oriented graph G and my crr3enkd p&h P, there exists 

a h m x ~ p ~ ~ b i m  G 13 P i f a d  d p  if paths h ~ o ~ ~ ) q h i c :  b G are huxxmxnorphic 

to PI Pn ahis &ian we p-t s;ii& r d e  for dge-eo1otuad paths. Xiunely 



G 4 P if and ody if aff paths homomorphic to G axe lfiomomorphic to P and G 

mntaim no odd qcIes. Note the second condition (odd cycfes) simply states that C 

must be bipartite as no d d  q-c1e is homomorphic to a path. 

that a: gaph is b 

strndia~ & for , one dge-cok path is simply tbe set af 6dd cycle 

and ane daes BOO need ta i~cladhrt in the rj,li3gEntdtion set* 1% is easy tct see that 



Proof. Suppose g : G -- P is a homomorphism. Firstry G contains no Odd cycles, 

since a homomorpEm from G to P implies there exists a homamorphism from the 

anddying graph of@ ia the underlying graph of P.  34ureo.sser, the underlying graph of 

P is bipartite which implies the vnderl~mg graph of G is bipartite since a nanbipartite 

graph cannot be fromonsorphic to a bipartite graph. 



Let Wx, be a path &om to fx(zs) in G. Notice, HLT is a path in G and hence 

%%",, -* G. Let Mi' foe the pa,& formed by identifying %- E t f b d  f l f v )  E Wut and 

identifying 26 E W, sad f2(u) E WZPV, That is, identifq. corresponding ends of the 

paths, Since WE, W,, and admit homomorphisms fi fis and id (indmtitd to G, 

we have W -, G. N~reat-er~ by the asmptions in the statement of the lemma, this 

implies there exists a fromumorphism f : W -, P. The path Wil, must have even 

length since f ~ ( v )  E Go and f2fu) E Go- Howevert f (v )  E Po and f (a) f Pl since 

bath IFt, and bTF. are mbpata.hs of W and we are assuming that dl homomorphisms 

of %Vt' fresp. W,) map P (rep- ZL] to a vertex in Po (rev. PI)- Hence, the image of 

ML, in P is an odd h path, 'This is impassible. The result fdows. r 



We now prove )ha& + is the desired map That is, T$ is a. homoanorphism such that 

c=paW=fc- 







Chapter 

Cycles 

In this cfrapter we study H-COL where EiT is a digon-free edge-coloud cycle. The 

digon-free restriction is assumed for the remainder of this chapter- The emphasis is 

OD two edge-colours; Athaugh some results naturally generalize to more edge-colours. 

An edge-cdoured q c k  can -be ~ & w d  as king composed of monochramatic paths. A 

rnaximaJ monochromatic path is d e d  a piece. For example consider a cycle of length 

eight with the first t E ~ e  edges +dj the na"L edge bhie, the next two edges red, and 

%he final two edge blue, This cycle has fclur pieces; two red and two blue. The red 

pieces have length %Ere m d  niwo, The Hue pieces have length one an6 length two. 

See Figure 6.1.. 



Figure 6-1: An edge-coloured cycle with four pieces, 

Since we restrict our attention to twa-edge-coloured cy3es, the number of pieces 

must be even. Wsing the resdts stated above plus an ad hoc algorithm we show for any 

two-edge-coloured q-ck: H ,  with four pieces, H-COL is palpornid. On the other 

hand: consider a tvmebge-colomed cycfe: N, where each red pime Bas odd length 

a d  each blue piece has even length. %Ye show that H-COL is XP-complete if H has 

six pieces. In fact we show ahat for such a cycle H with k 2 4 pieces, N-COL is  

po19fnomia.l if kt r 0 (mod 4) and H-60L is EP-complete if k r 2 (mod 4). 



e h4ixed ex Homomorphism Problem 

L d B m d Y k  p p h s  and h r H -+ Y a homomorphism. We show 

that @ is  a YES firr*=c~ sf B-COL if md odp if there: exists g : G -P Y, such that 

G + g  is a YES inskmce d hPli'HP()iifa h,Y),  Sappax G is a YES instance sf H-COL, 

tkrm there exids 1 : Gr -+ H ,  C3eiapIi~~ fT, A o f is a YES instance of W H f  (IT3 h, Y). 

G,g is 2 YES instance of 2WJPfP(H, fa, Y), then there 

existsasJ:G-+ w&& implies G is t YES hdance of H-COL. 



Foi an example see Piwe 6.2. The qde  C consists of four piexis. The piece Po is 

blue and has length four- The piece PI is red and bas length two, etc. The labels of 

the pieces are outside the qclie. The Eaklis of the mixed vertices are inside the cycle. 

The cycle C' consists ei four pieces as well; one piece for each piece in C .  The piece 

replacing Po is on vertices dw t 2  <), e ~ c .  

Wrde daim there exists a S-romomorphism ir : C -, Cb. Define ia initidly from the 

mixed vertices of C to the mixed vertices of C h  foUows: 

h is straightforward to check %hat la. extends to a homomorphism kcpm C to Cf.. We 

are now ready to prove the foUoaing theorem. 

Prod. Let G,g be an instance of MVHP(C, h, C'). We begin by defining a 

function, f, from the mixed of G EO the mixed vertices of C.  For a h  mixed 



Fi,pxe 62:  "The cmstmction of Ck" from C. 





6.2 All Pieces Have The Same Parity 

We now examine edge-coioured cycles where each piece has the same parity. We begin 

by examining k13~o-edge-coloured cycles with all pieces having even length. 

Lemma 62.1. Let C be a two-edge-cobured cycle such that each piece has even 

length, Then C-COL is polynomial. 

Proof. Suppose  he edge-colours of C are red and blue, We claim C retracts to 

an edge-coloured pa& of length two, Let P be the path on (-1,0,1) where -10 is 

red and 01 is blue. Firstly: observe that for a given vertex zt E C all paths from v to 

mixed vertices have the same paxity> since every piece in C is even. Define f : C 4 P 

as follows: f(z;) = -1 if v is a red ody vzrtex and there exists an odd length path 

Gom v to a mixed vertex; f fa) = 1 if v is blue only and there exists an odd length 

path from .t. to a mixed vertex; and f (u) = 0 otherwise. It is easy to see that f is a 

homomorphism. Moreaver, C contains a copy of P and f is the identity map on this 

copy of P.  Thus, C retracts to P. By the Forcing Lemma (Lemma 2.2.3) or by the 

results on paths, P-@OL is polynomial and hence C-COL is polynomial. a 

Most of this chapter focuses on twuedge-coloured cycles; however, the following 

lemma in fact holds for cycles with at least two edgec01om. 

Lemma 6-23 Led C be an e d g e - w b u d  cycle, on a;t least two edge-colours, where 

each piece Am odd le~gtfr .  Then C-COL is polynomial. 

Proof, kt C' and iL be defined as in Theorem 6.1.1. Let G be an instance of 

C-COL. We c m  amme G is mmectd, otherwise we treat each component of G 

separately. Since each piece in C has odd length, each piece in C' is a single edge. 



6.3 One Even Piece 

Through use of the MVHP we show in this section that for any two-dge-colourcd 

cycle, C ,  with exactly one even length piece, C-COL is pl;.nornial. 

Theorem 6.3-1 LdC 6e a two-Edge-cafoured cycle with exactly one eoen length piece.. 

Then C-GOL is polpornid 

Construct C' and A as abve, The edge-coloured cycle C' has the property that 

every piece is a single edge with the exception of the red path of length two: 4<++4. 
This implies that ever). venex 4 in Cz with the exception of c',,;, is incident with 

one blue edge aind one red edge- Hence, using ideas frsm she Forcing Lemma f Lemma 

2-23), if vertex u E VQ is mapped to 4 E VICE), theu the image of =me set of 

vetices in G, say X ,  is &quefy d e t h d .  This is discusfed in more detail below. 







CHAPTER 6. CYCLES 

Begin by setting g(~) = 4. As above this uniquely dekzmines the image of some 

set of vertices undrr g in C'- Add these vertices to the set X t9T. As above kt X' be 

the subgraph induced by X U T. Test if Xi,  g is a YES instance of MVHP(C, h, C'). 

If the arrswer is KO, then ~ b a p  the choice to map -e. to 4 was wong. Hence, 

set g(e) = 4; add tk+ w ~ q o n d i n g  vertices to X il T, and test if Xf,g is a YES 

instance of MVHP(C2 h, Cf). If the answer is XU, then G must be a NO instance 

of C-COL. At this point either we answer NO: or we have X f z  g is a YES instance of 

MVHP(C, h, C')- 

To 01ssr=-.ie that tkk process IS pdpumiiffj note that once v is mapped to 4 or c$ 

a d  X',g is a YES h ~ ; a n c e  of 4iw'f.kETP(Cr fs ,  C)  we never need to change the image 

sf u. Recall thiht ow strategy is to extend the map g to a homomorphism of G to 

C'* Stoppose that u is mapped to 4 a d  t~-' is a &xed vertex joined by a red path 

to a mixed vertex added %a 3" as a r d t  of mapping u ta 4, Further suppose that 

9 can nak be exkmkd to a h~m~m~rl>hism if g(m) = 4 :,nor can g -be extended to a 

bmsmorpirisn ifx"g{w) = &. A& this paint we can STOP rtnd answer Hi)- It is isat the 

case that rnappkg w to t$ w 3  now allow g to be extended One can see that mapping 



Xn the foilowing we e x d m  cydes where each blue piece has even length and each 

red piece- has txfd fen@]%-, \%'k shm- that for a cycle, C ,  with R: red pieces (and hence 

k Mae pieces), C-COL is p13330mSxf;af if k is even and C-COL is NP-complete if k is 

add* 

Proor", Suppose C has an even nunt*ber of red pieces. "Fo see that C retracts to 

a path, let P, be a shortest red piece in @, Let P be the path fanned by adding a 

single Hue edge to either end of P,. Itis easy to verify that f: retrack to P. Hence, 

C-COL is polynomial by the results on paths, 



by a red path d length r f&owc=d by a blue path of length 6- 1 and let i and j be the 

cad p i n t s  of the path 1. Sate that each of the paths camprising I have odd length. 

Let 6" be the result of the indicator cons~mction with respect of ( I ,  i7 j ) ,  

Theorem 6-5-3 Let C EM D im-e&e-~~lo'~~d cycle with two pieces. Then C-COL is 

pipmid. 



Pruuf Let G be a cyck zirh twto pieces. In ligbt of Thawem 6.2.3 if both pieces 

have the same. parity? the= C-COL is po)ljmomial- On the other hand, if one piece is 

even a~ld me piece is odd, then by Themem 6.3-1, C-CQL is p01,lynomiaI. r 

Proposition 6 - 5 2  Swppse C is a fmo-e&e-colourect cycle m'lh four pieces of which 

ezactfy zero, one orfaztr are eaea. Then C-COL is polynomial, 

Proof If dl pieces in d" have the same parity* i.e. C has zero or four even length 

pieces, then C-COL is pioIymmfd bijr Theorem 62.3. If If Cbas one even length piece 

and three odd len@h pieces, then @-COL is polpomial by Thearm 6.3-1. r 

We now consider cycles with four pieces of which two or three of the pieces have 

even bngth. 

Proof ?"His follows &om Theorem 6 . U .  r 

%his leaves two possible mnfigmations. One is a cycle 16th two of the four pieces 
-rFa djacenLiL a d  of even iength.. m e  other is a cycle with three of the ibur pieces even 

!a@&, me foBo6iig two thisiirems miiipkk the tii:Iasi.fi,ation of q c ! e  with fonr 

pieces. 





(u3 "uf -ul 1 tt V a2 1 5% satisfied By 

if a d  ody if 9$ez string is one cd the four above. 



H"or u m d  v in S joi~ed by a path consisting of a single red edge, a blue path P, 

and a single red edge, add the foEcrFPing dam to the set of clauses: 

For a& 'tl and 't' in S joined Esgr a red pa& Q, add the fobvkg clause to the set of 

dauses: 



Proof of claim* Suppose G + C. Then each vertex in 3' maps to one 

(sl, s2? s3: s4). For each u E S assign (u3? 2~2, ul)  the label of the vertex s, to which tr 

is mapped. This assigmmznt is a satisfying truth assignment. 

On the other hand, suppose there exists a satisfying truth assignment. We construct 

a function f from the mixed vertices of G to the mixed vertices of C such that f can 

be extended to a homomorphism of G to C.  Let v be a mixed vertex in G. Let u E S 

be distance one in red &am v. Tne set of variables (213, U Z ,  ul j has a truth assignment 

corresponding to some 3;. Set fffv]= nz;, Gsing the ideas ftom the praof of Theorem 

6.1.1 one can verify that f can be extended to a homomorphism f : G -, C. This 

establishes the daim. 

Case 2: r2 > TI = 1. Let SX: SZ: sg be the mixed vertices distance one ia red from 

ml, mz., m3 respectively- Notice s2 is aIso distance one from m*. Assign the following 

IaMs to sl, s2, SS: 

For each veaex u E S constmct two varkbIes [us: uI). These are the variables of 

the 2SAT instance. We now desnibe which clauses to add to the set of clause in the 

B A T  instsnce. For each .tt E S add the clause (w v -tul 3-  This insures that (uz, ul ) 



f :  
G ' i  6. Tdrm in S mu& map ta one of (s3, s2, s3)- The mnefg:pn&ng 



FQF each v&ex ze, f 5'' co~hs7ama m e  ~ 1 ~ a b l e  u. These are the wiaMes of the 2SAT 

i~astaace- M6e a m  d d h  which clauses to add to the set of e f a m  in the 2SAT 

izs&am 2,p E _Ch =e j&& ke a =,m-m~n _rn-&g& yp..isr_ s;: E Ej(Q, theB 11 

w must map to the same vmex in C- I= the two cases ahve we: required a special 

banrse: ta ensure this 



since u znd w a joineti by rr red path and that. case is handled below. 

The cIarrses are based UB the paths between vertices of S. For u and in S joined 

by a path consisting of a single red edge, a blue path P, and a zingle red edge, add 

the following dause ta the set of clauses: 



This completes ease 3 tire prwf d the theorem. m 



ter 



Theorem F*I-E LC$ H aa edge-cubad clique on Lwu wriices- Then H-COL is 



LoopFree Three-Cliques. 

En the study af graphs znd of digraphs, the classification of the complexity of H-COL 

is eumpfetely determined when 2f m n t h  a spanning clique. See 1191 and [I]. These 

cfzssifications are given in tams of the existence of certain subgraphs. fn the case 

of graphs, if H contitins a sub& which is a K3, then the problem is NP-complete 

aad if it does not contYzJa such a subgraph it is polynomid. In the case of digraphs, 

if H is a semicomplete digraph (at feast one arc between any pair of vertices) and H 

contaihi~is at least two directed q-cis, then H-COL is NP-complete m d  if H contains 

zero or one directed qcIes, then If-COL is poIynomid. It would be nice to have such 

a subgraph chafacterizatioa for edge-cdoured cliques as well, but it seems unlikely 

even for the three-cfique profifem. Consider the sequence of edge-mlod graphs in 

Figure 7.1. Each edgecolonred graph is a subgraph of the following graph. However, 

the complexity ahenrates betweeft plynomid and NP-complete, demonstrating that 

a subgraph characterization is impsibfe, 

La this section we restfict our attention to loopfree three-cliques. For this re- 

stricted class, we show that the complexity of H-COL is completely determined by 

the existence or non-existence of certain subgraph, 

W e  n m  use 2SAT ta show a particular class of threecliques is pIpomiaI. Let H 

EkEC an edge-edoured the~?-cEpue where the vertices of H base been labelled with the 

bit-strImze (QBO,Ql, 11). This is a BAT-describable set by Lemana 2.3-2. Initially we 

dl resirkt Q-m zttatim %a LcfLase thee-f:Egnes H %hat do not contain a monochro- 

matic El",. (The existme of a monochromatic K3 immediately implies the problem 



Figwe 7.1: An alternating sequence of &'s 

is NP-complete.) Given that the vertices are labelled, there are six possible edge- 

canfigurations that a pzjx&dar edgecofour can take. (- we are restricting our 

attention to loopfree and monochromatic &-free configurations). The possibilities 

are fisted below a d  &am ia Figme 7.2. 



Figure 7.2 Pwsible confiC)cqlfation for each edge-colour-dass. 

Lemma 7.2.1 Suppose H is a loop-fme, edge-coloured three-clique containing no 

monochromatic K3- If the nedices of H can be labelled with (00,01,11) such that 

each edge-colour-class is one of the con,gurations Cl, . . . , C5 above, then H-COL zk 

p fpomial.  

Proof We use a redudion to 2SAT to solve the problem. We have already observed 

that the set of bit-strings used % label H is 2SAT-describable. Therefore, we only 

need to give cIarrses far each configuration GI, . . . , Cs. These dames are given below. 



Figure 7.3: The edge-mloured graph H6. 

The verification tbat these clauses are correct is straigbtfomard. The result fol- 

1.0~s.  r 

It may seem possible that another labelling of H with different bit-strings could a1- 

low us to use 2SAT for Cs- Bowever, tbe foHo~ag l e m a  shows that confipatian Cs 

is indeed difficult. Lez H6 be the edge-coloured graph with vertex-set (00,U 1,111 and 

three edge-wlom: blue, red? m d  green- Let the blue edge-& be ((02,11), { 1 1,00) ) , 
the red edge-set be ((01,11), (01, MI)}, and the green edgeset be ((01,00), (11,OO)). 

-4 pidure of H6 is in F"i,=e 7.3. Blue edges are solid, red edges are dashed, and green 

edges me dotted. 

Proof. W e  use appEcations ofthe indicator curstruction tcr show &-mlouring 

is NP-complete. Lee 1% be a paeh of length five, with edges (el: ez, es, e4, es). The 

ordering on the edges is the natural ordering, All edges are blue with the exception 







Figure 1.5: All six hopfree, two-edge-coloured cliques on three vertices. 



T'he indicator construdion aifl be used several times. W e  first describe our set 

of kdicators. W e  rrse either single edges or paths of length &me. fn dl cases, the 

specifed vertices are the end-points of the edge and path respectivel_v, k c d l  that 

the blue edges are EI and the red edges are E2. Hence the images of indicator II  

carrespond to the blue edges in H* and the images of the indicator I2 correspond to 

the red edges in H*. 

Dmcre'p tion 

Sir& red edge. 

Single blue edge 

TWO ser%ices joined by a red and a Hue edge, 

Path of length three of ail zed edges, 

Path of length three of dl blue edges- 

Path & a, red edge, Mae edge, =:! red edge. 

Path of a blue edge, red edge, and blue edge 

Path of a red edge, D from above, and red edge. 

Path of a blue edgef f) from above, and blue edge 
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Case c-2: A bEne f ~ o p  em vePtdax 2, "i"fte problem r d a w  via the Dominating 

L-B 





Case q-31 Red bap aa at feast one of (O:?), .&mme witbcmt !WS af 

g e ~ d l t y  that t h e  is a 

fWP, a= =a f-, m n n  i !  f E P -  x - - - L  - and 4 and mum XOT ~ 2 -  L ' B ~  mazcattlr 

cans$sar&iea wirh ts f (fa, il,j& (f& ttljt)f prduces a iT adnd i,hmdore the 



7-35 The Complexity of K-Cotowing 





The i~diat0-p catmts9,ia~ krh  ta (BE? i,Jj ~esdb in a se=.,jc~mpkte di- 

sapb mi& two &ec%ed qdes, The: H-cd~uring probfem for such a graph H is proved 

ta be NP-c~mp1ete irt! 121. we add a 05 any colourr ta wertex 1, the result is  an 

two dkected qcIs. .  Heath?, zsfi T.-dCOL 



This set is %AT-describable by Lemma 2.3.2, Also the labeling satisfies the 

rqeements  of Thearem 2-33, proving the edge-mloured graph is 2SAT amiable. 

Therefore, this pr06Iem is pol~pomiaf, 

Gase e-3: Blue frrop sn vertex 2. Red loop on vertex 1, If there is also a 



As above, one c a  verie t-his instace of 2S14T is a YES instance if a d  only if 

G j H .  

Case T*: Eeed loop on vertex 2 and vertex 0. No blue loop on vertex 

I. This edge-cdo~~~ed graph retracts to the subgraph induced by (0,2). The problem 

is poIpnomid. 

Case e - 5 :  Rect b s p  on vertex 2. Not case TZ-4. If there is a blue loop on 

either vertex 0 or vertex f or bath, then let I; be RDR and I2 be B. Observe that nei- 

ther of these indicators produce a loop in H* that is not present in U. Hence, H* does 

not matain a double Imp (red and blue) on m y  vertex since B does not contain a dou- 

bk fmp. The r d t  of t l 2  indicator cons~ruction with respect to (XI, il,jl), (Iz ,  i2, j2 )  

is ihn edge-mfowgd graph fioa case T$-2. Thus, the problem is NP-complete. 

Xuw assume there is not a blue Imp on either vertex O nor vertex 1. That is, 

there are no lops cm 6 or 1 or a red loop on vertex 1 a d  no laop oa vertex 0. Let 

& be a 0 . R  a d  l a  f2 be B, The r d e  of the indicator construction with respect to 

(Il E;, &,ja f (.I2, i2, j2) is ul edgeimlomed graph from case TZ-1. This is NP-complete. 

Case: =-& No loop rm vertex 2- Red loup on werkex Be Lf there is not a 

blue laup on V& 1, then the edgem1umed graph retracts to the subgraph induced 



by (0,2) and the problem is polynomial. E there is a blue loop on vertex 1: then by 

switching red edges for blue and vice versa we are in case g - 3 .  

Case TZ-7: N u  fuop an vertex 2. No red loop on vertex 0. If there is a red 

Imp on vertex I and no blue loop on 0, then we use the same reduction to 2SAT as 

in case TGf-3, except- we use the following clause for the blue edges: 

Now we can assume there is no red loop on 0 or 1, but there is a blue loop on 0 and/or 

1. In this case, switch bfue edges for red edges and vice versa. This result is a Tz 

with a red loop on 1 andfor 2. A red loop on vertex 2 is either case Tz-4 or case 

TGf-5, If there is not a red loop on 2, but there is a red loop on vertex 1, then we are 

in case Tz-6 or the h t  part of the present case. 

This completes the classification of the T: prubIems and thus also completes our 

dassification of two-edgeco10ured threecliques (with loops allowed). 

7.4 Two-Edge- Coloured Four- Cliques 

The amount of work required to cIassifir all two-edge-coloured three-cliques suggests 

that dassifying all the four-cliques might require many more hours and hundreds more 

pages. Instead of making a, career out of the four-clique problem, we will concentrate 

on the specid case when the four-clique d w  not contain a digon, i.e. a pair of vertices 

u w d  er joined iin b i h  b1ae a d  x e d .  

Given a four-clique, let t&e vertices be (&I, 2,3). We consider all two-edge-dour 

faur-cIiqrtes with the number of blue edges greater thm or e q d  than the a m b e r  



Figure 7-6: AH digon-fie two-edge-coloured four-cliques. 

of red edges. As this covers dl possible cases by symmetry The following 

tafiie and figure contain descriptions of all digon-free two-edge-mloured four-cliques 

without loups. The red edge-set is listed. The blue edge-set is the complement of 

the x e d  edge-set. As ia the case far ttpecfiques, the ~~~ Bf refers to any edge- 

wloured four-clique obtained by adding loops to the edge-coloured graph Bl. 

Name Red Edge-Set 

Bl (13,30,02) 

2 {01,@%03) 

& {lo, 23) 

& (03723) 

Bs (03) 

f36 3 
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Case B$-I: No blue loops* Using Lemma 3.5.1 &e problem reduces into two 

poiynornial problems. Ifence B$-1-COL is pofynomid. 

Case BZ-2: At least one blue loop. Let Z be the edge-coioured graph obtained 

by adding exactly one blueloop to B3. Observe, Z is unique up to ifc,morphism. Again 

kt RB be the edgem10u~e2t path on three vertices consisting of a red edge followed 

by a blue edge. The result of the indicator construction with respect to (RB, i, j )  is 

a a digraph whose a r e  is a semicomplete digraph with at feast two directed cycles. 

As xgued above, adding Imps to Z will not change the compfexity. Therefore, all 

edge-doured graphs in case @-2 are NP-complete. 

Case 23:-X: No blue loop on 0, 1, or 2. Let 3 be the edge-coloured graph 

on vertices (kl, i ,  j )  where hi is red and ij is blue. Label vertex 3 in B3 with hl.  

The result of applying the subindicator mnstruction with respect to (J, j, kl) is the 

sorbgraph of B4 i n d u d  by (0,1,2). Vertex 3 can not belong to this edge-coloured 

graph since B4 does 110% contain my digom. By assumption, there ase no blue loops 

on O, I, sr 2. Therefore3 the mItouring problem for B4- is NP-compIete. Observe 

adding Imps to vertex 3 or adding red fmps to vertices (O,f, 2) does not change the 

compkxity. This implies all B$-l-c0iouring problems are NP-complete. 

Case @-2: Blue loop on 0, 1, or 2, E there is a blue loop on vertex 1, the 

p m b b  reduces via ahe Dominatkg Loop Lemma (Lemma 2.4-3) to a c-mlouring 

pmblezn. "Il'herdze< amme there is a blue loop on 0 or 2. By symmetry, we can 



ammte that vertex 0 hits. a blue Imp on it-. If there is no red loop on vertex 2, then 

t'fie edge-mloured graph retracts to the subgraph induced by (0,1,3) by identifying 

vertices 0 and 2. This is z. c-mlouring problem. 

Therefore, a s m e  there is a blue loop on vertex O and a red loop on vertex 2. 

E there is a Ztlae Imp  cm vertex 3, we nse a subindicaim to isolate vertices(O,2,3). 

kt J be the w10*a.r& path oa (kxiFi, j) with kli Mue arid i j  red. Label vertex 1 in 

B,f-2 with hl. The r d t  of the subindicator construction with respect to ( J ,  j, kl) 

is the subgraph of Bz-2 i n d u d  by {O, 2,3). TBis is a colouring problem that is 

KP-complete.. 

Hence we may assume there is not a blue loop on vertex 1 nor on vertex 3. W e  are 

still assuming there is a blue loop on 0 and a red loop on 2. Suppase either 1 or 3 

has a red loop- Assume vertex f has a red imp, then using the indicator RB from 

Lastly assume vertex 1 has no loop- This leaves two cases. Either vertex 3 has a 

red lmp or vertex 3 has no loop. Both these problems are polynomial via a 2SAT 

redudion. W e  begin by labeling the vertices of 65-2 with the following bit-strings. 





Case Bz-T: Them are zero er 9f3e bhe fcmps* la the case there x e  ~ c r  blue 

fsops we cahn  rest;^& the isput b blue only a d  conclude the problem is K f  -complete. 

Assrune without foss of gaaafity there is a blue loop an vertex 0. If any of (1,2,3) 

da not. have ai red Ictog, sap vertex 1, then the edge-caI<.iured p p h  retracts to a. Tt- 

coloming by mapping vmex f tr yeaex 0.. I f  af f three (1,2,3) haye red !oops, then 

k t  2% be a sbglrt: 61ne edge ass verr%,ic-es ir iknd jz with ;a red[ Iraap ctzz each vertex- The 

result of the indicator w ~ m c t i u a  wit;& respect to (TIP ir jf ) is i5 mianmhrcrmatic K3. 

This prabIeao is KP-ronnpIete- 

Case s-2:  There ate two or more blue hops- Sup- w.itBout loss of 

gmeraliity that vertices 8 a d  1 have blue loops, The B$ retracts ta the subgraph 

on f 0,2,3) by mitppi~g uertex I to vertex 0. This is a T;-colouriag problem and is 

pdpomid. 



1.5 Infinite families of polynomial problems 



Proof. We prove t part of the thmrm by induction an k If k = 1 then 

n is either 1 or 2 A wrrd E sirrgfe blue edge are exzsnpb of pIynornial 

gaphs with mdtiplidty ax most me- Snppcwe the srtatemeni is true fur sif k f t .  

L& k = t + 1- Chase n sack tisat f 5 n < p. If n 5 "P"r, by inductiorr there is a 

pdyaoaaid graph w i ~ 9 ~ f f t  haps ont n v d i c e s  with ik - t or fewer dge-crttaurs, This 

edge-doured gapb d i & a  the thmxem- Therefore, we caru assume: p-' < rz 5 2'. 

h p a t l d a ~ ,  S P E S C ~  k > 1,  we have n > 1, We caa partitit~n n inka n = nl + nz 
s$- z s ~ e h  t h a  I 5 ral, nz  5 P-'.. (Fer exampfie f i r  = , a d  n2 = R - P-' work.] 

By in6adim we c m  &ee edge-c:rrtourd diques an ng a d  taz verkim 

ndtipEdty k - f a d  e z d  is 

JYs ~d H; 

bhc is nat aar edge-cdma in Hz ar B2, kt H be the 

by c o w d d h g  the job sf SJ; and Hz With mpxt to 







Pmd. Let dJI be an indud subgraph of H. Let S&Sx,. - . , Sk be a conpence 

cm H" Extend this 1co13vce to H be adding a class coneaining a single vertex for 

each in VQH)\'FP(Ht)- Let $, &, - - - , SL, Sk+lr - - - SX be the dassts in this 

extemhd co~gmexxce. %me H IS fri)milmorz,&dy f-dlJ there exists s; E S; for alf 

B ~r'~K~&tb;pfS~~d;ji9ce~rliet~S~h~fi~s;~~~EfH)f~d1 sCsj < _ K .  This 

is s$iH $me if we mzstsiet i and j to the range 2 < i .< j 5 k. Moreover3 since 

Henee gyE is Horn f d L m  



We show bebw that given a graph 8 such that every homomorphic image of H is 

a subgraph of If, t H a  A is homomorpfiicatly full. To simplify the prmf of our main 

theorem we begin with sane preliminary mdts. W e  will then use these results to 

characterize homomorphidp full graphs, We begin with a definition to help simplify 

the natation in the proofs.. kt II be a graph with vertex-& {w, ul,. . . , uk). k t  C 

be the mngmence d&ed by: 

Pmaf Su n&, and let Cx TLnd C2 be distinct nontrivial ticonnected wmpo- 

mki in H m that jvfCl)[ + jVjG)\ is maximum.. S u p p  u and v are vertices of H 

m& %hat zk E V(Cd and G V'lpeC2), It follows that H,, has a wmectsd component 

d size fV(Cx)I + eV(Cz)[ - I3 which Is larger than any connected c~mponlent of H .  8 



fn of this lemma, a homomorphicafly N1 graph may be assumed to be con- 

nected* 

We make r e p d  use of the following argument. Let F be a iixed graph. Suppose 

H is a grapfi with a pair of non-adjacent vertices, say u and v. Suppose there does 

n& exist an I n b u d  copy of P in H that contains both ec m d  u, and there do 

=at ex& i n d u d  mpis Fl and PZ of F in H such that u E VCFI), v f V(F2) and 

Fl\(u) = F2\ {ZI) - Then every induced copy of F in H is still present in Huv. Further, 

if the identificsbtion of u and v creates a new induced copy of P, then H,, contains 

mure induced copies of P than does H ,  and therefore ca;n not be a subgraph of H. 

Eernma 8.1.3 Swppose H is a p p h  m*th the property fiat every homomorphic image 

o f H  is a sztbg~apfb. of a. Then H has diameter at most two. 

Proof Suppczse not, and let x a d  y be vertices with d(x, y) = 3. Since x and y 

have no common neighhuzs, there are no copies Fl and Fz of K3 with x E V(Fl) ,  y E 

V(F2) and Fl\fsc) = I;"z\{y). Clearly there is no copy of K3 in H containing both z 

and gr. Thus every copy of K3 in H is still present in H,. Every path of length three 

b m  z to y crezttes a new wpy of K3 in H-. Hence,& cmtains more copies of Kg 

than does ff, a d  so it is not a subgraph, a contradiction. 



3 r a d  Suppose the statement is fdse, and define rn to be the iargest integer 

sach that there exist nun-adjacent vertices Q and b with neither N ( a )  E N ( b )  nor 

N(b) C Nta) and aa induced copyl say 2, of Km-2 in N ( a )  n N(b).  Since H has 

diameter two, the integer rn exists for d pairs a and b and is at least three. Let u 

and v be non-adjacent vertices for which on is maximum, arid let z f N(u)\M(v) and 

Y E WJ)\N(u)- 

We show that Nfs) 3 V(Z). Since sv # E(N), there is no copy of Km in H 

that mtains both x and v. If there exist copies F1 and F2 of K, in H such that 

z E V(Fl):v E VfF2) znd F'-\s = F'fv, then x and v b e h g  to an induced copy of 

- e. By the choice of m, and since u E N(s), this implies Nix) 3 N(v) and, in 

particular, N(x) I> V(Z). On the other hand, if Fl aad F2 do not exist, then every 

cupy of K, in H is still present in H& The set Z U (u, vf induces a copy of Km in 

H,. If this is a new copy, then Hf, contains more copies of EI, than does H, and 

therefore can not be a subgraph of H ,  contradicting our hypothesis. It follows that in 

H the set Z U (u, w, x) contains a copy of Km , and as both z and u are non-adjacent 

to v, that N(x)  3 V(Z) .  Similarly: N(y) 3 VfZ). 

First suppose that s y  E E(G). Now u and v are non-adjacent; therefore, they 

do not belong to a common If ,+=. Nor are there copies & containing u and F2 

containing u of KWI such that Fl\{er) = F2\(v); otherwise, m is not maximum. 

Henee, H.,, contains more copies of Km+I than does Ei, a contradiction, Therefore, 

itssame sy 4 E(G), 

Note that pa& of the pairs (q {z, v): {u) 9 )  a d  €5 r 7 2 4  * ) has the pr~pesty that 

the intersection of their neighbourhoods contains 2, they are non-adjacent, and in 



Consider F1nF2. Without loss of generality we can mume that 2 c Fl 17Fz. Hence 

there are two more vertices, say a a d  bs in Fl I-I F2. If a and ft are non-adjacent, then 

Z U (a) is a in the ufmmon aeighbouzhood of u a d  v.  This contradicts the 

choice of m. Hence, itSSUmie witbout lass of generality that zr and a are noa-adjacent- 

There see two cases to consider, 

Since u and v are not adjacent, there is no copy of In H that contains u 

asd v. By the dedhition of rn, there are no copies GI a d  Gz of Xm4t in H SU& 





(e) a (a) Suppose we are given a congruence on H. Define a quasi-order on the 

vertices of Si by st 2 v if and ody if rSv'(pr) 2 N(u)  for all t .  Since every pair of vertices 

in S; are nei&bourhood comparable, every pair of vertices in Si we comparable under 

this order. Hence, there must be a maximal element under this order. Findy, any 

maximd element in each part will suffice as si E S;. Hence, H is homomorphically 

faif. 

(e) u (f) Suppose dl pairs of non-adjacent vertices are neighbomhood comparable. 

Then H contains na indwed 2Kz or P3 as both of these graphs contain a oon-adjacent 

pGr of -vertim that are not o&&bik ' hd  mmpaabte. OII the other hand, suppose 

E f  m~ltrtins nu indued 2K2 or P3, Let u a d  v be pair of non-adjacent vertices. 

Sup- u has a neighbnr I # Nfv)  and v has a neighbow y N(u). Then subgraph 

induced By (u, x, y, v) induces either a 2iC2 or a P3. m 



Proof. Let Erf = (F",E) be a homomorphidy fulf graph. By Lemma 8.1.1 it 

suffices to prove that x(II) = w(H). By definition of the chromatic number, Kx(H) is a 

homomorphic image of H .  Therefcrre, is a subgraph of H ,  giving w ( H )  2 x ( H ) .  

I 

8.2 The ~ ~ - ~ o l o u r i n g  Problem 

For the remainder of this chapter we make a slight change in nomenclature. In 

the digraph literature the word coloerr is used to refer to the vertices of H in an H- 

mIouring problem- This mmes from the fact that H-colcburing is a generalization of 

classid vertex-co~ouring. We have avoided the use of this -term in this thesis so as to 

avoid confusion with edge-cok. However, for these find sections, the word coiozlr 

mill r& to the vertices of the target. 

8-2.1 Powers sf Oriented Paths 

rklte foUowing definition is taken from f143, The definition is the main tad used in 

their algorithm, 

DeGnftin. kt H be a directed graph and let (q, uz, . - . , v,) be m enumeration 

of its vertices. We sap, a paiir (wig;, ~ r j )  &miflats a pair (ak, pi), or fvi, vjf 5 vl), if 

m d  ~ n i y  if a  ̂ >_ k and j 2 1- W"e say the pairs (vi, vi) and (un, s) are erossist~~ if and 

ody ii' either (i > k and j < 9 or [i < k j > I ) .  For pairs (4fi,wjf md (mk,ur), the 
TY - 3 AX psi. (awiLf ,, D ~ ~ ~ ~ ~ )  is G S I ~  m e  &@ of ( ~ i ,  vj) and ( v ~ ,  vr) - 

An aamez&ion of the vertices of H is d e d  an X-entlmeralion, if for ail pairs of 

edges (w:, vi) a d  (BE, s) in E(A), the X-pair of (.lti, w j )  and (a, q) iii in B(H). The 



Lemma 8.2.1 Let H be an oriented path. The digraph I fk  has the X-property. 

Theorem 8-22 Led Il lie m miented pffr. 2%en the ~&-coburing f i lm 4s solet- 

Q& ia ininear t ine,  







We now m m e  that the q c f a  3n D have this property= The s t r a t a  is ta 

d&fine a mappiog on the vat ices of D to the vertices d P' ~ l t ;  and show this mapping is 

Eee = %@@WE -, -wm &mtd walk in D, Assign tu each pair zr~;-au,+~ in W 

a aaeigt; d -/-X OP 4. -+I ro the pair if u~;wz,+~ is i ~ 3  arc in D, Assign -k: to 



P m f  0f Ciainn 8.22%.2- W = (Z = Z I E Q ) R W ~ .  * .  fa?- = U )  b~ a w a k  from 

Z to w, Sap- c m t h  ~ F P O  ve;$iws z azid y m& that z -- wg, g = q+ln a d  

r = ur,+z. The w&&%s ~ ( l t r ; , ~ ~ , ~ ]  a d  U{'U:~$-~ 2 ~ ; - + ~ )  are 9 2  and -k if zy i s  an arc of D 

a;~;ad a k  Z E ~  -k id +I 39% i~ GSI =C d Dm fif either ~ ( ~ f - ~ : i + ~ ] + ~ ( t b i + ~ . e ~ i + 2 )  5 

= W ~ W Z  - - - ' P t : s ~ i , ' + ~  - - - tcm- Race9 when 

g $? we miby deca OW &tedkkm k, w& dQ not com&a z pae;f (2, y ) 

as b e e  









8.2.4 Powers of Undirected Graphs 

lo wmpkk this section we a s s i d e  the Hk-colonring problem for ucfirected graphs 

H. In general H-dowing is NP-complete whenever H contains an odd cycle [19]. 

Wowever, we can consider a r&;zicted homomorphism problem as we did in the case 

of directed qdm, We use the fullowing definition axid theorem from 1263. 

We dm use the notatian u ( H )  to denoted the size of the largest clique in H .  



Cfairn 8.2.1.1 Let H be a connected graph and I ~ n d  k, 1 < kJ be two a'ntegers. Then 

w(H'f < w(Hk)  if and only if H' # Hk. 

Proof of CIairn 8-2-7.1. The necessity of the condition is obvious. If H' = Hk, 

then wfa') = w(rr"). 

I f  H' # Hk3 then by definition of ffk, IfH' is a groper subgraph of Hk. This 

immediately gives us that H' is not a clique. Let X be a maximum clique in H'. Let 

v be a vertex in X and zs be a vertex not in X. Because H is connected, there must 

be a path (v = p c r 1 ~ p . i .  -. - ipt = prj in H connecting the two vertices. Let ut be the 

&st vertex in this path not in X .  The vertex w is distance one in H from some vertex 

in X .  Each pair of vertices in X are at most distance i apart in H. Therefore, w is at 

mcst distance Z + I from each vertex in X. Hence, X U ( w )  is a clique in HI+' .  We 

c0ncI.nde 

w(H') < w ( ~ ' + ' )  5 w ( ~ ~ )  



8.3 Homomorphisms to Em 

When considering powers of a directed graph we see that eventually successive powers 

are equal. That isz k t  K be the geatest distaace betwen m y  pair of pohts in H. 

Tbe-n 
= p+f - - @+2 = . . _ 

For convenience we will 4 this digraph H". The digraph is transitively cictsed. Let 

ztv and vw be two a c s  in H", This implies the arc uzo is In Hm. 

Proof. W e  d&e a h a i o n  on V(_1YW) that is a retraction to the largest transitive 

t-amillflent in Ha. Let zt be a vertex in HOGl Define f (a) to be the size of the largest 

trmsitive tournmat  of which 21 is the sink. Let utl be a iuc in Ho0 a d  let X be a 














