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Abstract

Real-world detection systems, such as radars, control resources that are limited in their
processing ability. This thesis introduces a new detection criterion designed to operate under
the lmitations imposed by such resource constraints. In contrast to the Neyman-Pearson
framework which constrains the false alarm rate, the rate-constraint criterion maximizes
the detection probability of the test subject to a constraint on the threshold crossing (hit}
rate. The resulting likelihood ratio test is practical since the hit rate is both controllable
and observable, unlike the false alarm rate which is only controllable.

“The single-stage rate-constraint criterion is extended to the multi-stage case where a
number of individual detectors are cascaded; each test is slower but more capable than
the previous. A new parameter, the SLOC function (the slope of the Receiver Operating
Characteristic curve when plotted on log-log axes), is derived and seen to be critical to the
performance of a detection system utilizing such a sequence of tests. Provided the SLOC
numbers for the individual tests are properly ordered, the overall system detection perfor-
mance under a wide range of criteria (Bayes, Neyman-Pearson, Maximum Information) is
maximized when the rate-constraint criterion is used for all stages but the last. The result-
ing sequence of tests is again practical to control since each threshold depends only on local
variables.

The properties of the SLOC function are investigated for a number of radar target,
clutter, and processing models. Included are new results for the noncoherent integration of
tone and Rayleigh fading targets in K-distributed clutter.

Techniques are presented for dealing with the variance of the hit rate. Analysis is given

or two tyne,
IO YWo iYp

of systems: one for actuators that require the same processing power to treat

&

false alarms and targets, and the second for actuators that treat false alarms and targets
differently. A test that chooses the targets to be investigated by ranking and choosing the

largest instead of using an explicit threshold is also investigated.
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Chapter 1

Introduction

1.1 Why More Detection Theory?

The application of statistical hypothesis testing techniques to radar has a long history.
Neyman and Pearson published their classic work in 1933 [1]'. The Bayesian or cost func-
tion approach to decision theory was promoted in the 1950’s by Good [2] and Savage [3].
Woodward’s “Probability and Information Theory with Applications to Radar”, published
in 1953, brought together much of the theory to be applied to the problem of radar detection
[4]. By 1960, Middleton [5] was able to objectively assess the applicability of decision theory
to the radar detection problem. He listed three problems that continue to plague practical

deployments, namely
1. the uncertainty in the choice of an optimality criterion,
2. the arbitrariness of cost assignments, and
3. the lack of a priori information.

The same detection criteria that Middleton considered in 1960 are still offered as solu-
tions to radar detection today, and they continue to have the same shortcomings. Let us
consider the latter two problems first.

Detection theory has its roots in statistical decision theory; this is appropriate since

detections are in fact decisions, with real consequences. In decision theory a cost function is

YThe list of references is found at the end of the thesis.



CHAPTER 1. INTRODUCTION 2

often specified to characterize the consequences of correct and incorrect decisions. However,
it is not possible to specify meaningful costs for the radar problem. Moreover, the Bayesian
techniques also require a priori information which is seldom available (for example the a
priori probability of a target being present in a given cell, and the distribution of the radar
return given the presence or absence of a target in the cell.)

The Mini-max approach eliminates the requirement for a priori information by finding
the detection rule that minimizes the maximum cost; however, meaningful cost functions
are again required. Information theory provides a less arbitrary cost function but both the
costs and solution are functions of the priors.

Due to the inapplicability of cost function approaches, Neyman-Pearson theory is most
widely applied to sensor systems. A design false alarm rate is chosen, and the resulting
detection probability is accepted. By adopting the Neyman-Pearson approach, the problem
of choosing an optimality criterion is replaced by the problem of choosing an acceptable
false alarm probability.

Despite its prominence, Neyman-Pearson theory has a number of problems in its appli-
cation to Radar systems. First, the underlying noise distribution must be known in order to
achieve the design false alarm rate. A control loop cannot be used because the false alarm
rate, while controllable, is not observable. Generally, it is assumed that the form of the
distribution is known to within a small number of parameters, which are then estimated
and used to derive the appropriate test. The resulting Constant False Alarm Rate (CFAR)
methods perform well in the environments they are designed for. Unfortunately, in non-
homogeneous clutter environments, the interference distribution is not known. Suboptimal
non-parametric approaches are then often employed.

The major deficiency of the Neyman-Pearson framework is that the false alarm rate is
only indirectly related to the goals of the detection system. Thus we have a trade-off: in
order to achieve a tractable theory that doesn’t presuppose unavailable information, the
solution is distanced from practical measures.

To appreciate the ramifications of neglecting the context of the test, consider the problem
of setting the appropriate design false alarm rate for a very simplistic system consisting of
a gun control radar and a gun designed to protect a ship. Assume the gun is capable of
firing one round per second and is assigned the task of destroying all incoming targets. We

would like to design a system that has the highest probability of intercepting the targets. A
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Neyman-Pearson strategy to accomplish this would set the radar threshold to yield a given
false alarm probability and shoot at any cell that crosses that threshold. This strategy
results in a firing rate that is acceptable provided no targets are present and the false alarm
rate is less than the maximum firing rate. As targets appear, the firing rate increases until,
if the number of targets is large enough, targets are missed because the gun is busy. This is
an overload condition that puts the ship in jeopardy. To reduce the potential for overload
the radar false alarm rate is lowered. But this reduces the radar’s ability to detect small
targeis even when the number of targets is small and there is no danger of an overload; so
again the ship is unnecessarily vulnerable.

As a second example, consider a Track-While-Scan (TWS) radar system. A TWS system
consists of two stages: a detection stage and a tracking computer that uses the results of
the detector to determine tracks for the targets. With the Neyman-Pearson approach, we
would set the first stage to allow a specific number of false alarms per radar sweep. As with
the gun control radar, if the first stage is not selective enough, the tracking computer will be
overloaded. If the first stage is too selective, the probability of detection for smaller targets
is smaller than necessary.

The solution for the TWS example is given by Trunk in [6]: *The (false alarm probabil-
ity) of the detector should be as high as possible without saturating the tracking computer.”
The computer is a resource that should be fully utilized, but not overloaded, by the data
out of the detection stage. Thus we have a resource-constrained detection system where the
resource is the processing rate of the tracking computer. Similarly, it is clear in the first ex-
ample that the degree of protection is determined by the firing rate of the gun and therefore
the gun should be fully utilized. The radar should simply direct the gun to the radar cells
most likely to contain targets, subject to the rate of the gun. This is a resource-constrained
detection system where the resource is the gun’s firing rate.

In either example, the threshold for the radar is easily set to keep the gun or tracker
busy but not overloaded. There need be no appeal to probability distributions to calculate
false alarm rates. If no targets are present the threshold drops to keep the gun firing or
the computer busy, albeit with faise alarms. But the radar is very sensitive to small targets
and therefore the system is optimally protected. As the number of radar cells crossing
the threshold increases, so does the threshold and therefore the cells most likely to contain

targets are passed to the gun or tracker.
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While it seems that the resource-constrained criterion is wasteful it does provide the
greater degree of protection. After all, is that not the reason for the system in the first
place? If the criterion is held in disfavour then there is a hidden resource that is actually
driving the design. If that is the case, this hidden resource should be brought into the open
and the control criterion built around it.

Whatever the case may be, real world detection systems are usually governed by a vari-
ation on the resource-constraint principle. Therefore it is beneficial to develop a detection
theory around this principle to guide future designs and to assess the performance of the
present ones.

The concept of matching the performance of a detection stage to the follow-on resources
dependent on the detector is relatively new [7], with perhaps the first example being the
integrated detection and tracking system of Kurniawan et al [8]. Despite the fact that the
philosophy has been expressed previously, this dissertation provides the general framework
and analysis required to justify the concepts that were hitherto heuristic in nature.

Before narrowing our scope to man-made detection systems, we present a brief overview
of general information-processing systems. The material is interesting because it provides a

broader context for the work of this thesis.

1.2 General Principles of Information Processing, and Their

Application to Detection Theory

Two relevant studies are Resnikoff’s examination of biological detection systems [9] and
Conant’s study of general information-processing theory [10]. Despite their very different
approaches and interests, the two studies both list the following principles?.

The first principle is the invariance of information-processing structures and measures
under appropriate group actions. This concept emphasizes the relativistic nature of mea-
surements with regard to information content. A simple example of information invariance
is the independence of information content on the zero point or units of measurement. In a
detection context, the principle points to the need for test statistics that are relevant to the
task at hand. To quote Conant: “Arrange for the sensors of the system to respond only to

those aspects of the environment which are potentially relevant.” In chapter two we present

?Here we use Resnikoff’s names for the concepts.



CHAPTER 1. INTRODUCTION 5

ways that detection systems determine the statistics to indicate relevance.

The second principle is the use of hierarchical structures in information-processing struc-
tures. The idea here is to use faster, lower resclution systems to cue slower, higher resolution
systems. For example, in the human vision system, the peripheral vision system has com-
paratively low resolution but can scan a large area rapidly. In contrast, the foveal system
has very high resolution but is incapable of quickly scanning the entire field of view. The pe-
ripheral system cues the foveal system to objects of interest. Hierarchical or cueing systems
are prevalent in natural and man-made detection systems. A few technical applications are
combined radar/lidar systems [11], medical diagnoses [12], and mine-hunting sonar systems
[13]. Chapter four of this thesis is devoted to the application of resource-constrained theory
to multiple-stage detection systems using cueing.

The third principle noted by Resnikoff is that information-processing systems tend to
eztremize the quantity of information relative to some processing cost constraint. Detection
systems tend to be resource limited in that their performance will increase with increased
processing resources [14]. “The resources are such things as processing effort, the various
forms of memory capacity and communications channels... (Resources) are always limited”)
{14]. The constraints imposed by the limited resources necessitate the need for the Selective
Omission of Information [9] or information blocking [10]. In detection systems consisting
of multiple stages, this means that earlier stages pass on only that information relevant to
subsequent stages. For example, in most cueing systems, the faster system passes on only
the addresses of those cells considered most likely to contain targets. The actual value for
the test statistic is not passed on, nor are the return values for any of the cells considered
unlikely to be target candidates. Of course the information in the test statistic could be
passed on, leading to increased performance at the cost of more resources [15].

In biological detection systems optimality is not the ultimate goal. The aim of this
thesis is not to prove or claim optimality of resource constrained systems for all radar
scenarios. While it is true that the principles derived herein are optimal over a general
range of situations typical of radar, the more important claim is that the techniques do
provide adequate performance. By adequate, we mean that a system operating under our
principles will achieve performance the same or very close to that which would be achievable
in theory, if the designer had perfect knowledge, over the meaningful range of operation for

the radar. For example, we do not concern ourselves with possible losses that arise with
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overall system false alarm probability rates lower than, say, 107% or so.

While the emphasis of this thesis is on the application of our new concepts to radar
systems, the concepts are valid for any detection system operating in an envircnment where
the presence of a target is relatively rare. For example, the theory could be applied to medical
diagnoses or to the problem of finding the best applicant for an employment opportunity.

We now turn our attention to a brief outline of the thesis.

1.3 Outline and Scope of Thesis

In chapter two we review classical detection theory and discuss the problems of applying
existing criteria to practical radar scenarios. The review gives an opportunity to introduce
the relevant concepts and notation required for the remainder of the thesis.

Rate constraint detection theory is introduced in chapter three. We prove that the
optimal form for a detection test operating under a rate constraint is a likelihood ratio
test with its threshold set to match the output hit-rate to the maximum processing rate
of the following processing stage. A thorough analysis of a single-stage system controlling
a resource constrained actuator is given, along with a comparison with a fixed-threshold
(Neyman-Pearson} based system. Graphical and analytical arguments are given 1o show the
superiority of the rate-constraint criterion. A simplified obstacle-avoidance sonar analysis
gives an example of rate-constraint theory’s applicability at the control and command level.

In chapter four, we proceed to multi-stage systems. A new parameter called the SLOC
function is derived®. The region of optimality for the rate-constrained principle is deter-
mined by the SLOC functions for the individual detector stages. The SLOC function gives a
relative measure of goodness for any two tests when the governing distributions are known.
Unlike most of the work involved in the fusion of multiple tests, our results do not require the
stages to perform synchronous tests on identically distributed returns. We use a dynamic
programming argument to show that, provided the SLOC’s for the two tests are appropri-
ately ordered, the function for the detection performance of a multiple stage cueing system
is a separable and monotonic function. Therefore, the problem is decomposable into a serieg
of single-stage sub-problems, each of which may be solved using the theory of chapters two

and three. We further show that the optimal operating strategy for any overall detection

3The SLOC (Slope of Log receiver Operating Charactenistic Curvej function is the slope of the curve
generated by plotting the detection probability as a function of the false alarm probabibily on a log-log scale.
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eriterion is to operate every stage but the last under the rate-constraint criterion, with
the last stage threshold chosen according to the overall criterion. The resulting detection
structure is robust, exhibiting graceful degradation when loss of a stage occurs.

In chapier five, the SLOC function is derived and examined for a number of radar
target and clutter models. SLOC curves are given for Marcum, Swerling, Rician and Two-
tone models in Gaussian noise, and for non-fluctuating and Rayleigh-fading targets in K-
distributed clutter. New results are given for the noncoherent integration of non-fluctnating
and Ravieigh-fading targets in a mixture of K-distributed and Gaussian noise using the new
technigue of [16]. The applicability of normalization or CFAR techniques in the resource-
constraint framework is also briefly discussed. Finally, a practical example is given, whereby
a large reduction in computational complexity is gained by using a stage performing non-
coherent integration to cue a stage employing coherent integration.

A test operating under a rate constraint is required to have a fixed output rate; however,
threshold tests will always have some variance in their output due to the stochastic nature
of the noise. Chapter six discusses some of the ways that the variance in the output rate can
be handled. The simplest technique is to introduce a queue between the detection stage and
the subsequent actuator {or detection stage). We give two analyses of such systems. The
first is for when targets and false alarmns are treated identically by the follow-on resource;
the second is for when targets require a different amount of resource than false alarms.
Another way of dealing with the stochastic nature of the output rate is to rank the returns,
and choose only the largest ones to pass on (the ratio of which cells are passed on to the
total number of cells tested being equal to the processing ratio between the stage and the
subsequent resource.} If a test always yields the same number of hits, regardless of the input,
does the test vield any information? Yes. if a time history can be given of the test output.
I a given cell is consistently the largest among its peers, it is more likely to be a target [17].
Chapter six includes a thorough analy grators or “M/N” detectors. The

.
Chag 3 ies a thorough analysis of b

of binary inte
chapter concludes with an involved example of a resource limited network of trackers, each
using an M/N rule for track initiation.

Conclusions are given in chapter seven.

Throughout the thesis the emphasis is on analysis and the interpretation of results.
In fact, no simulation results are presented. Graphical explanations are used, whenever

possible. to supplement the analysis and lend insight. Hundreds of pages of graphs could
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have been included; instead, we have tried to choose a representative sample to illuminate

the pertinent points.

1.4 Conclusions

Resource constraint theory recognizes the fact that detections are decisions - decisions that
have consequences for subsequent processing. The resulting criterion openly admits and ad-
dresses the ignorance that we must deal with when designing practical detection systems. By
bringing into the open the implicit constraints and assumptions behind detection systems,
the theory allows us to better understand, evaluate and ultimately design them. Optimal
or adequate performance is achievable by accounting for the abilities of the systems that
are dependent on the detection decisions. The theory is applicable at several system levels:
overall control (in the obstacle-avoidance scenario of chapter three), data processing (in
the tracking processor of chapter six), and signal processing /14 the noncoherent/coherent
processing system of chapter four.)

The rate-constraint is well-defined, since it is a function of the processing rates, which
are design parameters. Furthermore, the hit-rate is both controllable and observable. The
design of a system operating under resource-constraint principles requires no arbitrary cost
functions, or a priori statistics. Unlike non-parametric methods, a design value for the false
alarm rate is not required.

The criterion achieves optimal detection probability for a single-stage controlling a lim-
ited resource. The SLOC parameter is a useful design tool which naturally arises out of
multi-stage rate-constraint theory. It gives guidance on how best to combine a chain of tests
for optimal performance. There is no need for the tests to be synchronous, or identically
distributed. The resulting cueing model is prevalent in both natural and man-made designs.

It is interesting to note that in the latest editions two of the most respected books in
radar, the sections dealing with false alarm control actually use a hit-rate based argument
and do not mention the Neyman-Pearson lemma [6],[18]. There is clearly a need for a new
framework for detection theory that addresses the lack of a priori information common in
most radar scenarios.

One warning before commencing: some of the concepts of this thesis may appear, at

Jeast at first glance, to be self-evident or even trivial. Beware! There are a few surprises
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left in detection theory. To quote a recent paper studying counterexamples in distributed
detection: “The obvious conclusion is that these are treacherous waters, and something may

hold very often, without being true. It may even be supported by a plausible argument, but

remain false” [19].



Chapter 2

Classical Detection Theory

2.1 Introduction

In this chapter, classical detection theory is briefly reviewed, and some of the inherent
difficulties of using it for practical radar problems are discussed. The malterial is well
documented in many detection texts (for example [20], [21]); our goal here is to introduce
notation and to review concepts that are important later iz the thesis.

As noted in chapter 1, Middleton in 1960 listed three problems in the application of
statistical detection theory to practical sensor deployments: (1) the apparent arbitrariness
of the cost assignments; (2) the usual inadequacy of the a priori information; and (3) the
selection of the criterion of optimality itself [5]. In reviewing the classical theory we see
that the same problems enumerated in 1960 continue to plague practical detection systems

today.

2.1.1 Chapter Outline

In section 2.2 the fundamental concepts of binary hypothesis testing as applied to detection
theory are discussed. From a discussion of the Neyman-Pearson lemma, and Birdsall’s
insight, it is shown that optimal tests under a number of criteria have the same form: a
likelihood ratio test with a possibly different threshold. Various classical criteria and their
choices for the best threshold are discussed in section 2.3. However, it is also seen that the
a priori information required to determine the thresholds is not typically available in the

radar problem. Section 2.4 discusses some of the problems associated with the practical

10
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implementation of classical detection theory. A couple of classical radar detection problems
are investigated in section 2.5, and finally section 2.6 reviews the subject of the chapter.

The appendix to the chapter (section 2.7) presents a proof of the Neyman-Pearson lemma.

2.2 The model

We begin by assuming that there exist two mutually exclusive and exhaustive states of nature
that we wish to distinguish between. Associated with the two states are two hypotheses: Ho,
the null (or noise alone) hypothesis and Hi, the alternate (or target plus noise) hypothesis.
In order to distinguish between Ho and H;, we are given an observation z, of a random
variable X € I, or in general a vector of observations, T € 'V, where T'V is the Borel set (or
power set, depending on whether z is a continuous or discrete variable) containing values
for the random variable X. Usually 7 is reduced to a single number z called a test statistic.
If no detection performance is lost in reducing Z to z, then z is called a sufficient statistic;
however, non-sufficient statistics are often used in radar applications. Sufficient statistics
are further discussed in section 2.4.3; until then we suppress the vector notation for z.
Assume that X is a random variable drawn from a distribution parameterized by a set

O, where @ € A = AgU A, and
A;=4{0:H;} i=0,1 (2.1)

For the radar problem, usually Ao = {0} and we say the null hypothesis is simple. In
general, A; contains more than one point and we say the alternate hypothesis is composite.
For now we consider only simple hypotheses, returning to the problem of composite alternate
hypotheses in section 2.4.

Let the family of probability distribution functions generating X be denoted by Fj,(x),
and their associated densities (or mass functions) by fa,(z) = %gl where p(z) is the
measure of X (Lebesgue or counting depending on whether X is a continuous or discrete
random variable!). By defining the density functions in term of Radon-Nikodym derivatives
(and subsequent integrals by Lebesgue-Stieljes integrals), continuous and discrete random

variables can be treated with the same formulation [20].

'For the radar examples of this thesis, X will always be a continuous random variable, and the Lebesgue
integral may be interpreted as an ordinary Riemann integral. However, we use the general notation because
X may be a discrete random variable. For example, in lidar systems, X is often a photon count.
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2.2.1 Decision Functions

Given the observation = € I', the goal is to partition the observation space into two regions
I' = Tp U Ty where Iy is called the acceptance region and I'y the rejection region. If & € Iy,
the null hypothesis Hy is accepted, and if z € T'y, the null hypothesis Hg is rejected. A

decision function, é(z) : X — [0, 1] is defined as

1 ifzer |
fz)={ = " EEN (2.2)
0 ifze T

Equivalently, 6(z) is the probability of rejecting Hy given the observation «, i.c.
é(x) = P(rejecting Ho|X = z)

It may seem odd to express §(z) as a probability when it only takes on values of 0 or |;
however, a third value for é(z), say 0 < v < 1, is often assigned to the boundary of I'g and
T'7 if = is a discrete variable, in order to allow arbitrary values of false alarm probability.
Decision functions that have values of 4(z) that are not zero or one are called randomized
rules; we will use them in the Nevman-Pearson and Rate Constraint Lemmas. If X is
a continuous variable, the assignment of probability to any point of I', in particular the

boundary of I'y and TI'y, is superfluous since the point is of measure zero.

2.2.2 Errors

Given the decision function, é(z), there are two types of errors one can make. The first is
called a type I error, or false alarm; the probability of a false alarm for a test with a simple

null hypothesis is defined by
o= pf = E{4()|Ho} = [ fao(@)s(e) dus(2) = [ fuolz) du(z) (2.3)

where E{¢|Hp} is the expected value of {s} given Hy. The false alarm probability, pf = « is
also called the size of the test §(z). Note that (2.3) is valid for both discrete and continuous
z provided p(z) is the appropriate (i.e. counting or Lebesgue) measure. If Hy is composite,
pf is defined by
pf = sup E{6(z)} (2.4)
B€A,
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In this thesis we assume that Hg is simple since this is almost always the case for radar

detection problems.

The other type of error we can make is called a Type II error or a miss, with a probability

given by

B=1-pd (2.5)

where pd is the detection probability or power of the test, given by
pd = B{8(z)| M1} = [ fu (2)6(2) du(@) = [ s @) di(2) (26)
1

To simplify the notation for now, since we are dealing only with simple hypotheses, we

will suppress the A and write fi,(z) = fi(z).

2.2.3 Likelihood Ratio Tests: The Neyman-Pearson Lemma

There is a trade-off between the values of a and 3; we can make either arbitrarily close to
zero while raising the other to one (by setting I'o = I' or I'; = I'). The sum of the error

probabilities is given by
a+8= [[6(z)fo(e) + (1 - §2) (@) du(z) (2.7)

For each z, the integrand is a weighted average of fo(z) and fi(z), so therefore

min{ fo(z), fi()} < 6(z) folz) + (1 - §(z)) fi(z) < max{fo(=), fi(z)} (2.8)

Hence
a+8 [ min{fa(z), fi(2)) du(z) (2.9)
Two natural questions to ask are what is the optimal form of §(z) and how does changing
a affect 37 The Neyman-Pearson lemma [1] answers both by minimizing 3 for a fixed value
of a. Consider
Yo+ 82 [ min(Afo(2), () du() (2.10)
where X is a Lagrange multiplier. The equality holds (and therefore # is minimized, or
equivalently pd is maximized) when §(z) is a likelihood ratio test of the form
1 ifl{(z)>A
§z)=1 ~(z) ifl(z)=2A (2.11)
0 il{z)< A
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where I(z) = %ﬁ% > 0 is called the likelihood ratio and A > 0 is a threshold. As mentioned
above, 7(z) is a randomizing function [20] that may be ignored when the support of I' is
continuous since the probability that I(z) = A is zero.

In the appendix at the end of the chapter, the following lemma is proven. The proof
is based on that found in [20]; we include it for comparison with the proof of the Rate

Constraint lemma that is presented in chapter 3.

Lemma 1 (Neyman-Pearson) For a hypothesis test between Ho and Hy (both simplc)

we have the following.

1. Optimality: Let 6 be any decision rule satisfying pf(6) < a and let &' be any decision
rule of the form
1 if f{z) > A
§(z)=1% y(z) iff(z) = A (2.12)
0 if b(z) < A

where A > 0 and 0 < v(z) < 1 are such that pf(8') = a. Then pd(8') > pd(6).

2. FEzistence: For every a € (0, 1), there is a decision rule dnp of the formn of (2.12) with

¥(z) = 7o, a constant, for which
pf(bnp) = a.

3. Uniqueness: Let §" be any a—level decision rule for Hy versus Hy. Then 8" must be

of form (2.12) exzcept possibly on a set of measure zero under Hy and H,.

The Neyman-Pearson lemma says that the probability of detection for a simple hypoth-
esis test is maximized for any given probability of false alarm when a likelihood ratio test,
is used. A unique test of the form (2.12) can always be found that will yield any desired

value of pf.

2.2.4 Receiver Operating Characteristic Curves and Their Properties

Armed with the Neyman-Pearson lemma, we can re-write the probability of false alarm from
{2.3) as
Ty
pf=L Jol€) de (2.13)
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Figure 2.1: Receiver Operating Characteristic (ROC) Curve.

and the probability of detection (2.6) as

pd = /A * fo) e (2.14)

where f;(€) is the probability density function of the likelihooa ratio given H; is true. It is
not always convenient to calculate pf and pd through (2.13) and (2.14) since the density of
the likelihood ratio under the two hypotheses is not simple to determine. Fortunately, as
explained in section 2.4.2, the detection and false alarm probabilities can be often expressed
in terms of fo(z) and fi(z).

As presented in (2.13) and (2.14), pd is a function of pf through the parameter (thresh-
old) A. Figure 2.1 s a typical plot of pd versus pf, called a Receiver Operating Characteristic
(ROC) curve. There are a number of points to note regarding the ROC curve.

First, the curve must lie above the chance line pd = pf at all points. Consider what
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pd < pf implies; we could choose a new é’(z) = 1—§(z) which lies above the chance line and
therefore is optimal. But by the Neyman-Pearson criterion, é(z) is optimal; therefore the
ROC curve lies above the chance line. The situation pf = pd also makes no sense; in that
case the test gives no information since we could achieve the same performance by flipping
an unbiased coin.

Next consider the slope of the ROC curve.

dpd _ dpd ( Opf \7' _ H(}) _ r
apf Ou(zx) (Bp(a:)) - fo(N) = A (2.15)

Thus, the slope of the ROC curve at any point is the threshold, A, required to operate at that

point. This relationship is not surprising because in the Lagrange Multiplier formulation of
(2.10), X is the sensitivity coefficient and gives the effect on the objective function, pd, from
changing the constraini, pf [22].

As the threshold, A, is increased from 0 to oo, both pd and pf fall from 1 to 0, while
the slope %5—?— must also increase from 0 to co. This implies that the ROC curve must be
concave as shown in the figure. The ROC curve is of interest not only to radar detection

experts [20], but also to Psychophysicists [12],[23].

Birdsall’s North by Northwest Insight We have seen that the likelihood ratio test is
optimal under the Neyman-Pearson criterion. An insight credited to Birdsall by Scharf [24]
is that for any sensible detection criterion, the operating point must lie on the ROC curve,
and therefore must be a likelihood ratio test. To be sensible, a detection criterion should
emphasize high pd and low pf.

To understand Birdsall’s insight, consider point A in figure 2.1. From point A, we can
increase pd without increasing pf by moving up to point B; we can also decrease pf without
decreasing pd by moving to point C. Any point along the ROC curve between B and C will
have better performance (i.e. higher pd and lower pf) than point A.

Birdsall’s insight is a very useful tool; it tells us that any sensible detection criterion
must lead to a likelihood ratio test. Given the ROC curve for the detection scenario, we
know the optimal performance will be somewhere on the ROC curve. Different detection
criteria choose the exact optimal operating point by trading off increases in pf with those

in pd. We now consider a couple of different detection criteria.
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2.3 Cost Function Approaches

It is important to recognize that detection systems make decisions - decisions that will have
consequences. It is senseless to think of a detection system working in isolation - if no action
results from the decisions, then why does the system exist in the first place??

The cost function method of detection theory seeks to associate a cost structure with the
consequences of false alarms and misses, and then to find the decision rule that minimizes
the expected cost. Let A be the set of all possible actions associated with the partitioning
of I'. Then the cost function is C : Ax@ — [0,00]. In this thesis, the action set is always
binary, A = {0,1}, and for now we assume that both the null and alternate hypotheses are
simple, so that @ = {0,1}. Then C can be expressed as Cj; where'C;j is the cost incurred

by deciding that H; is true when in fact H; is.

2.3.1 Bayes

In the Bayesian framework, it is assumed that the designer is able to subjectively assign a
fixed cost to decisions. The Bayesian criterion seeks to minimize the expected cost; therefore
a priori probabilities of the occurrence of the two hypothesis occurring are required. Let
7; = P(O € Aj) = P(H;). (Note that mp + m; = 1.) Then the Bayes risk of the decision
~ rule, R(9), is given by
1 1
R(8) =) m; ) CiiPi(T3) (2.16)
j=0 i=0

where P;(I';} is the probability th + X € T; given that H; is true. If we assume that
fi(z) = fii((:) is the density of X and recognize that P;(I'g) = 1 — P;(I'1), we can write

R(6) = ETJCOJ + / [Z 75(Cj — COJ)fJ(“’)] du(z) (2.17)

=0 3=0

Since the first term in (2.17) is independent of §, R(§) is minimized by choosing

1
{ €T3 mi(C; - 'oj)fj(z>se} (218)

H

It is straightforward to show that (2.18) is equivalent to choosing [20]

={zeTl:{z)> A} (2.19)

To quote James 2:17, “Faith without deeds is useless”.
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Figure 2.2: Iso-Cost Curves on ROC axes for Bayesian Test with Cyy = Cyy = |, Cgy =
C11 =0, and w1 = 0.1. The numbers on the curves are the cost incurred by a test with the

pf and pd at that point.

where £(z) is the likelihood ratio and

To(Chro — Coo) ,
5= ) 2.20
T1(Co1 — C11) ( )

is the threshold.

As expected from Birdsall’s insight, the optimal Bayes test is a likelihood ratio test. If
the cost of a correct decision is zero (i.e. Cy = 0), and the cost of each type of error is equal
(i.e. Co1 = Cyo), the total a posteriori error is minimized (and the total probability of a
correct decision is maximized). Such a cost assignment is useful in communications systemns
and is employed in a Maximum A Posteriori (M.A.P.) receiver [25]. In the radar scenario,

however, the cost of a false alarm is expected to be much smaller than the cost of a miss,
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In figure 2.2, the contour lines of constant Bayes risk as given by (2.16) are plotted. As
expected, the contour lines are linear, with slope given by (2.20). For the figure, the M.A.P.
cost assignment was used, along with a value of my = 0.1; therefore the lines have slope =
10. Since g > 7y and Cyg = Coy, such a cost assignment emphasizes the cost of false alarms
more than misses. In order to graphically determine the optimal operating point for a given
Jo(z) and fi(z), the ROC curve as illustrated in figure 2.1 must be overlayed on figure 2.2;
the operating point lies where the ROC curve is tangent to one of the contour lines.

While Bayes rules are useful for making decisions when priors and cost functions can
be supplied, neither are available in a typical radar scenario. Information theory provides

a less subjective cost structure, while the mini-max formulation eliminates the requirement

for priors.

2.3.2 Maximum Information (or Minimum Equivocation)

One way to eliminate the subjectivity of Bayesian cost functions is to invoke Information

Theoretic concepts. The mutual information expressed in the decision from a binary test is
given by [5]

1 1 \
P;(T;) «
I:Zﬁ’iZPj(ri)log (——’— (2.21)
41, 1 &
=0 =0 Zk:ﬂ Pk(r!)

This is equivalent to a Bayesian cost function with

. P,(T) ‘
G =log (ZL_-U Pk(ri)) (2.22)

Now let

1
&= Pl)

k=0

be the a posteriori probability of H; being decided, then we can re-write (2.21) as

:
(-
-
Ny

(Fi){log(P5(Ti)) — log & (2.23)

In order to find the optimal threshold, we must express (2.23) as a function of A, which is

accomplished by taking the derivative of 7 with respect to pf = Pp(TI'1) and using (2.15),

WA 1 —pf 1- .
] = —mglog ( of ) + [7o + Ami]log & — Ay log ( dP ) — [7o + Ami]log &y (2.24)
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Figure 2.3: Constant mutual information contours on ROC axes for 7y = 0.1 The minnbers
on the lines are the value for the mutual information.

To maximize I, we set (2.24) = 0 and solve for A, yielding {26}

—mpllog(&/& ) — logl(1 = pfiipfi
myflogi{&s /&) — log((1 — pd}/pd}

1\ = {2.2:’)}

In figure 2.3 the contour lines of constant mutual information are plotted for 7 = 0.1,
The contours are curvilinear. and symmetric: I{pf,pd) = T{1 — p[. 1 — pd}j. However, since
he points above the ch fine pf = pd, the symmetry is of no
practical consequence.

Information theory has been extremely successful for its intended application, commu
mications systems. While attempts have been made 10 incorporate information theoretic
concepts into detection theory, the dependence of the threshold on the 7, values precludes

its use since the priors are almost always unknown in practical radar scenarios. Books from
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as early as 1953 [4] were attempting to utilize information theory in the radar context.
Attempts have also been made to describe clinical diagnostic tests in terms of the mutual
information function [27]. Despite the interest and attempts of many, it is still not clear
how the cost functions of {2.22] relate to any real-world performance parameters in a radar
system. Kanaya and Nakagawa [28] recently wrote an interesting paper investigating the
connection between the mutual information function and Bayesian decision making. Un-
fortunately the relationship is through an asymptotic detection performance figure which is
valid only as the number of samples goes to oc. Other information theoretic measures such
as the discrimination or divergence [29] have also been applied to detection theory; however,
they also give asymptotic relationships that are not relevant in radar where we don’t have

a large number of independent identically distributed looks at a given cell.

2.3.3 Mini-Max
The mini-max criterion seeks to find
min max R($ 2.26
in max R($) (2.26)
It can be shown [20] that the mini-max criterion also leads to a likelihood-ratio test;
however, the test is seldom if ever useful in radar contexts, because of the difficulty in
assigning meaningful cost functions. The criterion is pessimistic, and may lead to penalties

in- performance by basing the threshold on priors #; that seldom occur.

2.3.4 The Neyman-Pearson Approach to Detection

We have seen that the cost function approaches require more information than is typically
available in the radar problem. Given the problems of cost function approaches, the radar
community has traditionally adopted to use the Neyman-Pearson philosophy.

For radar, the consequences of a miss are typically much higher than those of a false
alarm. False alarms are nuisances that lead to waste of resources but misses are system
failures that can cause loss of life. The Neyman-Pearson criterion asks, “How many false
alarms can we afford to allow?”™ Then the appropriate threshold is chosen to allow that
number of false alarms. and the resulting detection probability is hoped to be acceptable.

The Neyman-Pearson framework makes sense, and systems supposedly working under
its philosophy have worked successfully for decades. In fact, Skolnik [30] wrote in 1962,
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“The Neyman-Pearson criterion is well suited for radar application and is often used in
practice, whether knowingly or not.” However, a closer look reveals that it is the hit-rate
(i.e. threshold-crossing rate), not the false alarm rate, that is actually the parameter of
interest. For example, in the latest edition of two influential books in radar [6], [18], the
sections discussing false alarm contro! actually discuss hit-rates.

Why is the hit-rate more useful? By definition, the false alarm rate is unobservable; if
we knew a threshold crossing was a false alarm, we wouldn’t call it a target in the first place.
Furthermore, the choice of a design false alarm rate is purely subjective. As explaized in
the gun-control and TWS examples of section 1.1, the optimal value depends on the radar
context - the number of targets etc. In chapter 3, we will introduce a new detection criterion
that is based on the hit-rate rather than the false alarm rate.

We have seen that an optimal test (in the sense of Neyman-Pearson, Bayes, Maximum
Information or Minimax) must be a likelihood ratio test. In general, a likelihood ratio
test may be difficult to synthesize. In the following section we examine some of the ways
that radar systems practically approximate likelihood ratio tests, and deal with composite

alternate hypotheses.

2.4 Practical Tests

2.4.1 Composite Alternate Hypotheses: Uniformly Most Powerful Tests

Thus far, we have assumed that both the null and alternate hypotheses are simple. We
now consider the most common scenario in radar detection problems: a simple null and
composite alternate hypothesis.

Recall that a composite alternate hypothesis means that under Hy, the ohservation X
has a density fo(z) where © € A; has more than one point. Perhaps it is obvious that the
simplest thing to do is to define a density for © and average over fg(z):

fiz) = Eeen, {folz)} = | [(0)fs(z)db (2.27)

o
f~4

The detection probability for a composite alternate hypothesis is then defined as

1-8(0) = Foen {8z} = [ [ 10)futz)dode (2.25)
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Similarly the likelihood ratio (sometimes called a generalized likelihood ratio [31]) is

expressed as

EEEA1 {fg(.’b")}
fo(z) (2-29)

We would like to design a single test in the spirit of the Neyman-Pearson lemma for
every pair (0 € Ap,0 € Aq). A test 6(z) for testing Ho versus H; is called Uniformly Most
Powerful (UMP) if, for all (8 € Ag,8 € Ay) it has power (detection probability) greater than
any other test with the same size (false alarm probability).

UMP tests are highly desirable, since they guarantee optimal performance over the

z) =

entire range of ©. In the following theorem, we will consider scalar random variables X
with density functions fy,(z) parameterized by scalar parameters. While this appears to be
restrictive, most radar detection problems do indeed reduce to the comparison of a single
scalar that has a density parameterized by a scalar parameter. The Karlin-Rubin theorem,
which we now consider, is extremely important for such problems, since it allows seemingly

complicated likelihood ratio tests to be made by simple threshold tests [24].

2.4.2 'Threshold Tests: The Karlin-Rubin Theorem

Assume that X is a scalar random variable whose density function is a function of the scalar
parameter 6. Further, assume that the likelihood ratio function
foo(2)
is a nondecreasing function of z for all (6, #;) where 6 < 8;. Then ¢(X) is a monotonically
increasing function of X (we say X has a monotone-likelihood ratio). A monotone-likelihood
ratio function means that H; is more likely as X increases.
Given a monotonic likelihood function, the likelihood ratio test of (2.12) is equivalent to

the threshold test

£

fz>t
fe=t (2.30)

0 fz<t

~d o

§(z) =

The proof is straightforward: Assume that Hy is simple, and let 6 be fixed (note that
this is not necessary for the proof, but we are considering only simple null hypotheses

anyway). Begin with a fixed 8y > 6. By the Neyman-Pearson lemma, the test of (2.12) is



CHAPTER 2. CLASSICAL DETECTION THEORY 24

optimal for the simple Hp : 8 = f versus the simple alternative Hy : § = 6. Since {(x) is
monotone, we can replace the likelihood ratio test of (2.12) with the threshold test of (2.30)
with
E{6(X|Ho)} = Po(X > t)+7P(X =1) = a

Since the test is independent of 8, it is uniformly most powerful among all tests with false
alarm probability < a. g3

The Karlin-Rubin Theorem is very powerful since it means that very simple tests can
be used and still be guaranteed to be UMP. Threshold tests are almost always used in radar
installations and it is important to know how the resulting performance compares with the
optimal.

The Karlin-Rubin Theorem also simplifies calculation of the detection and false alarm
probabilities. From (2.30), we see that the decision regions can now be expressed in terms

of z instead of £(z). Specifically
Ti1={zel:lz)>A}={zel:2>1}

and
lo={zel:lr)<A}={zel:z< 1}

Then the detection and false alarm probabilities can be expressed in terms of the densities

of X:
o0
pd = / filz) de (2.31)
t
and
had 5 3 e
pf:/ fo(z)dz (2.32)
t
Furthermore if X has a monotone likelihood ratio, (2.31) is still valid for composite
alternate hypothesis if fi(z) is defined as in (2.27).
The Karlin-Rubin Theorem allows considerable simplification when the observation has
a monotonic likelihood ratio function. The question to ask is what densities produce mono-
tonic likelihood ratios?

*The end of proofs is indicated by the g.
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One-Parameter Exponential Family Consider a random vector X drawn from a family

of distributions of the form
fo(Z) = C(0)h(Z) exp[Q(0)T (7)) (2.33)

(Such a family is called a one-parameter exponential family). If @ is a nondecreasing function
of 8, then X has a monotonic likelihood ratio function. A random sample X drawn from
this distribution will produce a scalar statistic, T'(Z) with a one-parameter distribution and
monotonic likelihood ratio function. T(X) is called a sufficient statistic for X, which by the
Karlin-Rubin theorem can be optimally tested by a simple threshold test.

It is easy to show that binomial, Poisson, one-parameter Normal (i.e. either the mean or
variance known), and one-parameter Gamma distributions all generate monotonic likelihood
ratio functions.

We have seen how composite hypothesis tests can be handled, and how monotonic like-
lihood ratio tests yield very simple forms for the UMP test. In the next section we discuss

the problem of forming the test statistic, T(Z) from a vector of observations.

2.4.3 Multiple Observations: Sufficient Statistics

In the previous section we saw how that a vector of observations, X, could be reduced
to a sufficient statistic T(X) when X is drawn from a distribution from a one-parameter
exponential family. In most radar installations, however, a simpler (non-optimal) function
and not T(T) is calculated and used as a test statistic.

For example, in section 2.5.1 we derive the likelihood ratio for a common radar target
model: a constant amplitude random phase target in Gaussian noise. It is shown that the

likelihood ratio function is

{(2) = exp [-14%] Io(42) (2.34)

where z is the amplitude of the return (target plus noise), A is the amplitude of the target
return alone and Io(z) is the zeroth-order modified Bessel function of the first type.

Now consider the problem of making a detection decision based on N returns. Assuming
that the returns are statistically independent, the overall likelihood ratio is the product of

the individual likelihood ratios:

N
{z)= Hexp [—-%Az] In(Az) (2.35)

=1
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where z; is the amplitude of the i** observation. Since A and N are known*, the likelihood

ratio test is equivalent to

1T, To(Az) > #f
6(z) =% ~(2) if I, Io(Az;) =t/ (2.36)
0 I, fo(Az) <

where t' = texp(3 NV A%) and t is the original threshold. The logarithm being a monotonic

function, we can re-write (2.36) as

1 XN Info(Az) > 1"
6(z)=< y(z) f SN, Inly(Az) =" (2.37)
0 if[IN,Info(Az) < t”

where t” =Int'.

Unfortunately, it is difficult to implement the In /y(e) function at radar processing speeds.
Therefore the function is approximated with either a square-law or a linear detector. Clearly
there is some loss incurred in using a sub-optimum combining scheme which doesn’t use a
sufficient statistic®. For linear and quadratic detectors, the loss is typically on the order of
a few dB or less for common radar targets in Gaussian noise [16].

For the purposes of this thesis where we are concerned with the practical consequences
of not knowing the distributions, only one point must be made regarding the use of non-
sufficient statistics. In the next section and in chapter 5, we will generate ROC curves for
a number of different radar scenarios. In all cases the calculations are for threshold tests
applied to the test statistic derived from a quadratic combining rule. Given the preceding
discussion, we are not guaranteed that threshold tests are justified since we are not forming
the likelihood ratio for our statistic.

However, it will turn out that the ROC curves for all tests considered in this thesis are
concave (such ROC curves are called proper [23]). It is easy to show that a concave ROC

curve implies a monotonic likelihood ratio test for the underlying distributions. Consider

*For this thesis, we assume that N is a given constant. Wald [22] has developed a theory called Sequential
Detection that requires a varizable number of returns. Unfortunately, in addition to cost Tunctions and priors,
Wald’s test requires that an acceptable value for both the detection probability and false alarm probability
be chosen. We will not consider Sequential Detection further.

*Note that even if the In Io(e) function could be evaluated at radar speeds, it would only be the form of
the optimal combination rule for a constant amplitude target in Gaussian noise, and not for any other target
and noise models.
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expanding the ROC curve in a Taylor series for the likelihood ratio function about a point

Upfo). We can write y
Upfo+ Apf) = Upfo) + @Apf (2.38)

but (2.15) shows that the slope of the ROC curve is equal to the likelihood ratio function

evaluated at that point:

_ opd (2.39)
opf
Therefore P
o+ Bpf) = Upo) + 5o 500 (2.40)
By definition of concavity —g%}i‘é < 0, hence
Upfo+ Apf) < Upfo) (2.41)

¢ is therefore a decreasing function of pf and pd, or equivalently an increasing function of
X. Thus a concave ROC curve is sufficient to guarantee a monotonic likelihood ratio function
(;uid to justify use of a threshold test, from the Karlin-Rubin theorem). This equivalence is
important for some examples in chapter five, where we are unable to calculate the densities
for some of the models, but are able to calculate the detection and false alarm probabilities.
(The seeming anomaly of being able to determine the integral of a function without being
able to calculate the function itself is a result of the calculation technique used.)

Of course, it is impossible to rigorously prove the concavity of a ROC curve by using
numerical techniques which can calculate only a limited number of points on the curve,
and to finite precision. However, such numerical techniques do generate some evidence to
support use of a threshold test.

Once the detector of a radar system is fixed, so are the densities of the return under the
two hypotheses - we may not know what they are, but provided they produce a concave ROC
curve the equivalence of a threshold test to an optimum likelihood ratio test is guaranteed.
Furthermore, if a scenario is envisioned where the test statistic does not generate a concave
ROC curve, there is not much that we, as a radar designer operating under ignorance, can
do. The point is that we are going to use a quadratic (or linear) detector, and a threshold
test; if the test statistic is not optimally tested by a threshold test, then none of the classical
detection criteria nor the criterion introduced in this thesis apply since we are not using a

likelihood ratio test.
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In the next section a couple of examples are offered to illustrate the ideas introduced

thus far.

2.5 Examples

In order to clarify some of the concepts introduced thus far, we now give two classical
examples. The first involves the detection of a constant amplitude random phase target in
Gaussian noise; such a target is known as a Marcum or Swerling 0 target [21]. The second

example involves a Rayleigh-fading target in Gaussian noise.

2.5.1 Nonfluctuating Target in Gaussian Noise

Consider the detection problem for a coherent radar. We assume that the two hypotheses

are described as

Hy: X =(X1,Xg)= (N1, Ng)

and

H{: X = (Nr+ Acos¥,Ng + Asin ¥)

where A is an unknown positive constant indicating the amplitude of the radar return due
to a target, ¥ is the phase of the target return, N and Ng are respectively, the in-phase
and quadrature components of the noise. (Both A and ¥ are random variables.)

The distributions of X under the two hypotheses are functions of the amplitude (0 or A)
and phase ¥ of the target return. Let the parameter space © be given by

0 = {0,,0;}

where @; = [0,00) and O, = [0,2%]. We assume that O, is uniformly distributed over

[0,27]). Then we can write
Ag = {0} X [0,27] and A1 =[0,20) X [0,27] (2.42)

If the noise components n; and ng are normally distributed with zero mean and unity

variance, then
fg('i'-) = % exp[—s('z", 9)] (2.43)
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where
s(%,0) = L[(z1 — 61 cos62)? + (zg — 01 sin 65)?] (2.44)

Then we can write the density under Hy as
folZ) = fo(Tl0 € Ao) = & exp [~ 1 (s} +2B)] (2.45)
If we let z = (/23 + 22 = |Z|, and ¢ = tan™!(zq/z1) we can re-write (2.45) as

fo(z,9) = % exp [——;-z:’] (2.46)

Integrating with respect to ¢ over [0,27] is trivial, and leaves the Rayleigh distribution for

fo(z) = zexp [—%zz] (2.47)

Note that fy(z) is independent of ©; Hy is simple.
The distribution of T under Hy is a function of ©. In order to remove this dependence,

we assume 6, is uniformly distributed over [0, 27] and integrate:
2T
£1@) = folalt € Ax) = 2 [ fo(elty = 4) o (2.48)
Expanding and simplifying,
- 2r
R 2 .
h(E) = 5o eXP (—%(A + 22)) 51;/0 exp[A(z cos 82 + z¢ sin ;] db, (2.49)

From the definition of z and ¢, 7 = zcos and zg = zsin ¢. Rewriting (2.49) in terms of

z and ¢, and remembering the trigonometric identity

cos ¢ cos By + sin @ sin 0, = cos(f; — )

el

hHhlz,9) = ;):; exp (-%(A2 + z2)) Iy(Az) (2.50)

where Io(z) is the zeroth-order modified Bessel function of the first kind and is given by the
integral of (2.49). Integrating (2.50) with respect to ¢ over (0,2x) is trivial, and yields a

Rician distribution for z:

fi(2) = zexp (~3(A% + 2)) Io(A2) (2.51)
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By combining (2.47) and (2.51), the likelihood ratio can be written as
{(z) = exp {—%Az] lo(Az2) (2.52)

Note that likelihood ratio is a function of a scalar, z = [Z|. Since [y(Az) is a monotonically
increasing function of z, so is #(z). Therefore, from the Karlin-Rubin theorem, we can
replace the likelihood ratio test by an equivalent threshold test. Since the rejection region is
the same for all values of #; = A, the threshold test is UMP even though /I is composite.

In order to evaluate the probabilities of detection and false alarm, we integrate the

density functions for z. The probability of false alarm is given by
pf = /t% fo(z)dz = exp [——;—tz] (2.53)
We can solve (2.53) for the threshold as a function of pf:
t=+v—2Inpf (2.54)

f1(z) must be integrated numerically to determine pd:
pd = / zexp {—%(.42 + zz)} Io(Az) = Q(A,t) (2.55)
¢

where Q(A,1) is called the Marcum Q function [33]. In chanter 5 we show how moment
generating functions can be used to calculate Q(A4,1).

In figure 2.4 the ROC curves for Marcum targets with SNR = 0,5 and 10 dB above the
(unit variance) noise are plotted. (The SNR is given by %A2.) As expected, all lines are
concave and above the chance line. As the SNR is increased to 10 dB, the curve gets closer
to the northwest (pf = 0,pd = 1) corner. For SNR = 10 dB, pd appears to remain very close
to 1 for all but lowest pf; this is due to the nature of the target. For a Marcum (constant)
target, pd is expected to stay large until the threshold exceeds the amplitude of the return;

then pd decreases very quickly. We will see different behaviour with the next example.

2.5.2 Rayleigh-Fading Target in Gaussian Noise

We now consider returns with non-constant amplitude. Note that nothing has changed under
Hy, hence f4(Z) can be expressed as fy(z) as previously. We will show that the likelihood
ratio is monotonic and therefore the likelihood test can be replaced with a threshold test;

hence (2.53) and (2.54) are still valid.
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Figure 2.4: ROC Curves for Marcum targets with SNR = 0,5 and 10dB.

In order to deal with A; containing more than one point (i.e. H; is composite), we

integrate f1(%) as before:

1@ = [ @@= [ 10 [ rense@ dbidey (2.56)

where f(61) and f(8,) are the density functions for the magnitude and phase of the return
and fo(Z) is the density function of T given that the return has magnitude 8; and phase
6, (again it is assumed that O, is uniformly distributed over [0,27]). From the previous

section, the likelihood function can be written
()= [ exp(=3D1o(61)fo, () d= (257)

Since Ip(z) is monotonically increasing, and fj,(2) is strictly non-negative, (2.57) shows
that the likelihood ratio function is a monotonic function of z = |Z|. Therefore as claimed

above, pf is the same as for a constant amplitude return.
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In order to proceed further, we require a probability density function for the amplitude
return. To simplify the notation, let ; = A be the amplitude of the return. Note that
is now a random variable and not a constant as in the previous section. The most common
assumption for a non-constant A assumes that the return is comprised by a large number
of specular returns. If this is the case, we can invoke the central limit theorem. The iu-
phase and quadrature components are then described by a Gaussian distribution, and A is

Rayleigh distributed:
a a® ) ng
fla) = ;"'XP 952 (2.58)

where o2 is the mode for a. We can also show that o2 is the single pulse signal-to-noise

ratio (SNR), which we denote by p:

o = 1E{A%} (2.59)
o0 g3 a? ,

_ 1 5 g
=3/ 2 m.p( ";'z') da (2.60)
= o? (2.61)

From (2.31) the detection probability is

2y 2
pd = / zexp(——z )/ —(% (—g—l——i:z—g——z)f——) Ip(az)dadz (2.62)

Now consider the substitution
a -
y=—V1+o?
o

Then the second integral in (2.62) can be re-written

yoz ) dy (2.63)

oG
Y 1,2
Ly (22
/g T3 o7 Pl 2”’”(\/?3:;2
1

1\, \ o
“1+02 p\2(1+o-2)}/ y“"p\”[”* o7 ) ( }‘1'! (2.64)

By comparing (2.64) with (2.50), we see that the integral within ( 2.64) 15 the integral of
a Rician density with z = y and A = oz/v/1 4 02, and is therefore equal to one. Thus
re-writing (2.62)

d oG 1 2,20.2 {
= e —— expl — d 2.65)
P /{ 1+0_2¢xp M+ 57 zexp( z}(;’ [2.65)



CHAPTER 2. CLASSICAL DETECTION THEORY 33

Detection Probability, pd

i i 1 5 3

0.0 e
0.0 0.2 0.4 0.6 0.8 1.0

False Alarm Probability, pf

Figure 2.5: ROC Curves for Rayleigh-fading targets with SNR = 0,5 and 10dB.

t2
~ exp (_——2 - 02)) (2.66)

which can be re-written as a function of pf by using (2.54):
1
pd = pfira? (2.67)

which is a very well known result [21].

The ROC curves for a Rayleigh-fading target with SNR = 0,5 and 10 dB are given
in figure 2.5. Again the curves are concave and above the chance line, with increased
performance for larger SNR. Comparing with figure 2.4, it is seen that the Rayleigh target
appears to fall off much quicker at larger pf than the Marcum target. This is because of
the effect mentioned previously; the Marcum target is composed of a single tone plus noise

and so pd remains high when the threshold is lower than the amplitude of the tone.



CHAPTER 2. CLASSICAL DETECTION THEORY 31

2.6 Conclusions

This chapter has given a brief introduction to classical detection theory, and its application
to radar detection theory. We have seen from the Neyman-Pearson lemma and Birdsall's
insight that a likelihood ratio test is always optimal for any sensible optimality criteria.
When the observations are governed by densities that produce monotonic likelihood ratic
functions, the Karlin-Rubin theorem shows that a threshold test is equivalent to the optimal
likelihood ratio test. In most radar scenarios, a suboptimal statistic and not the optimal
likelihood ratio is used. However, the threshold test applied to the suboptimal statistic is
equivalent to a likelihood ratio test for that test statistic provided that the resulting ROC
curve is concave.

Once the mechanics of producing ihe test statistic are set. the question is how to set
the threshold. Table 2.1 compares the various criteria discussed in chapter 2. Cost function
approaches such as Bayesian and Maximum Information tests require more a priori informa-
tion than is commonly available for most radar scenarios. The Neyman-Pearson philosophy
attempts to define an acceptable false alarm rate and then 1o accept the resulting detec.
tion performance. However, the false alarm rate is unobservable and cannot be controlled;
therefore the density of the return under Hg is required. Furthermore, there is no way Lo
object, .ely choose the appropriate design value for the false alarin probability.

In the next chapter we consider a new detection criterion that has, in fact, been employed

in many radar systems, but never analyzed in a formal framework.
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Table 2.1: Comparison of Detection Criteria

Optimality Criteria

Optimal Threshold, A

Implementation Considerations

Bayes

Ideal Observer (or
Maximum a Posterior)

Maximum Information

Neyman-Pearson

Rate Constraint (dis-
cussed in chapter 3)

o Cw~5w%
71{Cw—~C1y

o In(12EL (L))

= In(725;(2))

A is such that pf is
constant.

A is such that & =
constant.

Co1,C10,Co0 and Cy1 are subjective
and arbitrary. #p and w; must be
known.

See above

7p and 7y are unknown. pf and pd
require probability distributions under
Hg and H 1-

pf is unobservable unless sure target is
absent. Takes a long time to estimate
if smail or we need the distribution of
the test statistic under Hy to calculate

&1 is observable (doesn’t require dis-
tributions - although may use distri-
butions if available).
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2.7 Appendix: Proof of Neyman-Pearson Test

The form of proof is based on [20]. It is included to allow comparison with the proof of the

rate constraint criterion found at the end of chapter 3.

Proof of Optimality For & and 8’ defined as in equation (2.12), we always have
(8'(z) — $(z))(L(z) - A) 2 0 (2.68)

Multiplying by fo(z) and integrating, we have

[#0@) - 8Nt - Aal2)) () 2 0 (2.69)
and
/é"(z)fl(:c) d[t(z)—/ 8(z) filz)dp(z) > )\/ () folz)dp(z) — A / ) folx) dp(x)
r T r Jr
(2.70)
which yields
pd(8') — pd(8) > Mpf(6') — pf(8)] = Ala~ pf(8)] = 0 (2.71)
Therefore
pd(8') > pd(8)o (2.72)

Proof of Existence Let Ay be the smallest number such that
Py(f(z) > o) L

where by Pi(e) we mean P(e|H,), with 1 = 0, 1; that is the probability of (e} occurring given
that hypothesis ¢ is true.
Then if
Polé(z) > M) < o

let

e Py(#(z) > Ag)

- Polt(z) = o)
Then defining the Neyman-Pearson rule dxp 10 be of the form of (2.12) with A = Ay and

(2.73)

¥{z} = Yo, the false alarm probability of éxp is given by

pfléxp) = Poll(z) > A+ 1o Fs(flx) = ) = ag
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Proof of Uniqueness Let & be an a-level test of the form given in (2.12) and let §”
be any other a-level with the same pd. Since pd(§’') = pd(é”) equation (2.71) shows that
pf(8") = a, which in turn (from (2.71)) implies that pf(é’) = pf(6"). Therefore working
from (2.71) back to (2.68) we have

[#@) = " @)E(=) - X) dua) = 0 (2.74)

Since the integrand must be positive or zero, §”(z) must be of the same form as §’(z) except

possibly when €(z) = A. Therefore §” can differ from ¢’ only in the randomizing function

¥{z). o



Chapter 3

Rate-Constraint Detection

Criterion

3.1 Introduction

In chapter 2 various classical detection criteria were discussed and found 1o be inappropriate
for radar target detection where a priori information is missing. While the Neyman-Pearson
criterion is the one most often cited in radar detection literature, it is impractical or impos-
sible to design, or even to describe the performance of, a statistical detection system in the
Neyman-Pearson framework. There are two major problems in using the Neyman-Pearson
criterion in practical detection systems. First, the false alarm rate is unobservable; there-
fore the distribution of the returns under Hg must be fully specified since it is inpossible to
control an unobservable. Secondly and more importantly, assuming that we could achieve
any false alarm rate desired the question remains: What is the appropriate rate to choose?
While values such as 107° are typically given, there is no reason to pick this value over any
other.

For example, consider the the gun-control radar discussed in section 1.1. If the false
alarm rate is set too low, the ship is not optimally protected. If the false alarm rate is set
too high, the gun is easily overloaded and not able to handle all targets. Clearly the optimal
value for the false alarm rate is a function of the environment (number of targets) that the
radar is working in. The optimal strategy is to set the threshold such that the resource is
always fully utilized.
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Nearly all detection systems control resources that are constrained by some combina-
tion of limits in processing power, memory constraints, and communications channels [14].
This chapter investigates the best way to make full use of the resources. In his study on
information flow through general systems, Conant noted that for optimal performance we
should “match components to tasks so that each component is operated at capacity, ... work
it as hard as you can.” The importance of matching the hit-rate to the tracker resources
has also been noted in discussion of optimal ra,darrtracking systems [6]. It is important to

understand exactly how such a strategy performs.

3.1.1 Chapter Outline

This chapter examines the rate-constraint criterion, a new detection criterion that maximizes
the effective probability of detection given that the resource utilizing the detection decisions
can handle only a given number of threshold crossings per unit time. In section 3.2 the form
of the 'optimal test is derived - not surprisingly it is a likelihood ratio test. The threshold for
the test is such that the number of cells crossing the threshold is matched to the processing
rate of the follow-on resource. The rate-constraint test is formally compared with a Neyman-
Pearson test operating under a rate-constraint in section 3.2. In section 3.3 rate-constraint
theory is applied to the detect’on of Marcum and Rayleigh targets. The application of
rate-constraint theory to a systems-level control system for an obstacle avoidance sonar
is discussed in section 3.4. Conclusions are discussed in section 3.5. Finally, the chapter

appendix (section 3.6) includes a proof of the rate constraint lemma.

3.2 Single Stage plus Resource

A simple two-stage detection system is shown in figure 3.1. It consists of a first stage that
investigates the environment and makes decisions at a rate r,, the radar cell rate, and an
actuator acting on the detection decisions of the first stage. We assume that the actuator
services each cell that produces a threshold crossing in the first stage and ignores the rest.
We furthermore assume that the actuator is capable of handling only some fixed number,
rq, threshold crossings per unit time, and that the performance of the actuator is not a
function of the processing load presented to it by the first stage (provided there are less

than r, crossings per unit time.)
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Figure 3.1: A Detector Cueing a Rate-Constrained Actuator

The question is what test to use in the first stage so that the probability of a target being
serviced by the actuator is maximized. If the first stage were removed, the cells passed to

the actuator would be chosen randomly and the resulting probability of detection would be

pd =2 (3.1)

Tr

The purpose of the first stage is to match the radar rate to the actuator rate in such a

way that the probability of detection is a maximum, hopefully greater than (3.1).

First Stage Detection Criterion The goal of the first stage is to screen the radar cells
in such a way that detection performance is optimized. In other words, the first stage must
choose those cells most likely to contain targets to pass on to the actuator. Another way
to view the problem is that the actuator is a resource that must be utilized in the most
efficient fashion to detect targets in the radar space.

The model is quite general, and could describe a large number of detection problems. For
example, the first stage could be a scout for a hockey team, an obstacle avoidance sonar, or
a surveillance radar. Corresponding actuators could be a hockey coach conducting a number
of skill tests, a thruster, or a jet interceptor. The actuator could even be another detection
stage such as an automated tracking computer. In chapter 4 we will consider multi-stage
detection systems, where the actuator is a series of detection stages that operate more slowly
than the first stage, but give better detection performance.

The primary purpose of the first stage is to reduce the radar cell rate 7, to the actuator
cell rate r,. The output (hit or threshold crossing) rate r, of the first stage can be described

in terms of the probability of detection and false alarm of the first stage as

r, = [m1pd + mopflr; (3.2)
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Figure 3.2: Constraint Boundaries for Various Values of 7.

We require 7, < 7, or
' mipd + mopf < 7 (3.3)

where r = r,/r, is the normalized actuator input rate. We want the first stage to maximize
pd subject to constraint (3.3).

Before discussing the rate-constraint detection criterion, it is helpful to describe briefly
the constraint in terms of the standard ROC (receiver operating characteristic) diagram.
Figure 3.2 illustrates the linear constraint boundaries (equation (3.3) with equality) for
various values of 7;. For m; = 0 we have the vertical line intersecting the pf axis at pf = r
and for m; = 1, the horizontal line intersecting the pd axis at pd = 7. For 0 < m; < 1 the
boundaries are a series of straight lines all passing through the point pf = pd = r as shown.
Any test developed must have a rate that is less than or equal to r and therefore pd must be
less than or equal to the boundary value for a given pf and ;. For example, given values
of pf = pf* and m; = 7] we have pd < pd™. These constraint boundaries help to describe

an operating point for the test criterion.

Operation of a Neyman-Pearson Test Under a Rate-Constraint Our objective
here is to investigate the Neyman-Pearson criterion in light of the rate-constraint forced
on the test by the actuator and expressed in (3.3). We consider Neyman-Pearson tests for

two reasons. First, the Nevman-Pearson formulation is the one most often discussed in
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literature; therefore it provides the benchmark to compare our criterion with. Secondly,
the Neyman-Pearson test is representative of any test that applies a fixed threshold to a
likelihood ratio test. Therefore, our consideration of Neyman-Pearson tests will yield insight
into how Bayesian, Maximum Mutual Information and other tests will work.

Recall that a Neyman-Pearson test is a likelihood ratio test of the form of (2.12). If
ANP, the threshold for the Neyman-Pearson test, is set such that pf(Anp) = pfap then the

hit-rate for the test is given by

mipdnp + Topfnp = TNP (3.4)
As long as ryp < 7, (3.3) is satisfied. If m; and pd are such that ryp > 7 then the hit-rate
must be randomized to bring it down to r. This simply means that a fraction of the hits
are thrown away and not passed to the actuator. Denoting the fraction of hits not thrown
away as kK, we have
T T )
K= = (3.5)
e mpdyp + Topfnp
and the effective probabilities of detection and false alarm are

pdyp = kpdyp (3.6)
and
pixp = kpfnp (3.7)

Solving (3.7) for k and substituting it into (3.6) we have

pdeP

-pJ; (3.8
pinp NVF )

pdyp =

In summary, there are two expressions for the probability of detection under the Neyman-

Pearson criterion. Which one is valid depends upon the fraction .

{

pd, . { 'Pﬂ'NP K
NP — ¥ " )
\ Srerlap 7

> 1

1

(3.9)

A

where pfi;p is given by (3.7). Figure 3.3 illustrates these relationships on the ROC diagram.
As long as the target population, described by 7y, is such that x > 1, the Neyman-
Pearson test operates at point A. If the target population increases, however, pf and pd are

forced to drop to maintain the rate at 7. This drop is described by (5.7) for 6 < 1 and is
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Figure 3.3: A ROC diagram illustrating the performance of a Neyman-Pearson test modified
to operate under a Rate-Constraint

represented by the straight line from (pfxp,pdnp) to (0,0) on the ROC diagram. There-
fore if the actuator is overloaded (k < 1), random selection is necessary and performance
degrades until finally for m; = 1, pdyp = r.

To guard against entering the overload region a rate margin r,,, can be introduced. The

rate margin is defined as the difference between pfyp and r:

Tm =T — prP (310)

If r,; is positive the test will admit a certain target population x,, before going into overload.
If r,, is negative the test is in overload for all 7;.

The behavior of the Neyman-Pearson criterion described above is familiar to designers
of practical systems that work under a hit-rate constraint. We now discuss the optimum

rate-constraint test.

2.2.1 The Rate-Constraint Criterion

The rate-constraint criterion maximizes pd subject to the normalized hit-rate being less
than or equal to a comstant r. A rate-constrained detection rule is defined as a decision
rule having this property. The following lemma is proved in the appendix at the end of the

chapter.
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Lemma 2 (Rate-Constraint) For a hypothesis test between Hy and Hy we have the fol-
lowing:
1. Optimality: Let § be any decision rule satisfying mpd(6) + mopf(6) = r1 < r and let
&' be any decision rule of the form
1 if ¢(z) > A
§(z) =4 v(z) ifb(z)= A (3.11)
0 iff(z) <A
where A > 0 and 0 < y(z) < 1 are such that m1pd(8') + mopf(8') = r. Then pd(d') >
pd(9).

2. Ezistence: For every r € (0,1), there is a decision rule 6, of the form of (3.11) with

¥(z) = 70, a constant, for which
T1pd(8,) + wopf(8;) = 7.

3. Uniqueness: Let §" be any r rate-constrained decision rule for Hy versus Hy. Then 8"

must be of form (3.11) except possibly on a set of measure zero under Hy and 1.

Therefore a rate-constrained decision rule is a likelihood ratio test, as expected. In
fact if the a priori probability of a target being present, my, is zero, the rate-constrained
decision rule and the Neyman-Pearson decision rule are identical. However, for non-zero
target densities the tests are different with the rate-constrained decision rule yielding the
greater probability of detection.

This does not mean that the Neyman-Pearson test is not optimum for its stated con-
straint (pf < «) but rather that it is not optimum under the rate-constraint. In fact to
operate under the rate-constraint, the Neyman-Pearson test has to be randomized by the

factor & discussed earlier resulting in the following test.

([ 1 iflz)> Iwp
3 7(z) if &(z) = Ayp if mypdnp + mopfnp <7
| 0 if £(z) < Anp
6(z) =« (3.12)
(& if £(z) > Anp
$ ry(z) if €(z) = Anp if mypdnp + wopfnp > 7
L0 if é(z) < Anp
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Equation (3.12) describes a decision rule that satisfies the rate-constraint but it is not a
rate-constrained decision rule as defined in (3.11) and therefore necessarily has a probability
of detection less than the optimum.

The rate-constraint decision rule does not have some of the nice mathematical properties
of the Neyman-Pearson decision rule because the rule changes for different targets and target
concentrations; however, it does have one major advantage. Unlike the Neyman-Pearson
rule, the constraint variable for the rate-constraint rule is observable. The constraint variable
for the Neyman-Pearson rule is the probability of false alarm which is impossible to observe
unless one is sure that there are no targets present. On the other hand the hit-rate is
observable and therefore can be employed to control the detection process through a feedback
loop.

The performance of the rate-constrained rule is illustrated on a ROC diagram in figure
3.4. If we assume that a control mechanism is in place to adjust the hit rate then the system
operating point will move along the pd/pf curve until it intersects with the constraint line
that corresponds to the target density. The operating point will remain stationary until the
target density or the statistics change.

For example, consider operating point A of figure 3.4. If, say the signal-to-noise ratio
drops from g4 to pp while the target density remains constant, the operating point will
move along the rate-constraint line to B, with an accompanying decrease in pd and increase
in pf. Note that pdp is higher than would have been obtained (pdp) if the false alarm
were maintained at pfs. On the other hand, if the operating point were A and the target
population increased while the SNR remained constant at p4, the operating point would
move to C. At C both pd and pf are reduced from their values at A to compensate for
the higher density of targets so the following stage will not be overloaded. Conversely, if
the population concentration decreases, pd and pf increase thereby increasing the detection
sensitivity of the stage.

We define the detection contezt of a target as the set of all parameters which influence
the position of the operating point. In mixed target and variable clutter situations these
parameters may be difficult to identify but the operating point is still easily determined by
observing and controlling the hit-rate. In these complex sitnations it may not be easy to
translate the operating point into a performance number such as the probability of detection

but at least the system is controllable.
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Figure 3.4: ROC diagram showing two pd versus pf curves (p4 > gg) and linear constraint
boundaries

Comparison of Rate-Constraint and Neyman-Pearson Criteria Under a Rate-
Constraint As was discussed in the previous section the modified Neyman-Pearson test
(modified to perform under a rate-constraint) does not perform as well as the rate-constraint
test. Specifically,

pdrc > pdnp (3.13)

The equality holds when pfrc = pfnp for the given detection context which occurs say
at point A in figure 3.5. I m; decreases then the operating point for the RC test moves
up the pd/pf curve, say to the point where m; = wg. The detection probability pdy is
necessarily larger than pdyp from lemma 2. It is also evident from observing that at the
new operating point we have another Neyman-Pearson test with a larger pf than pf and
therefore pdg > pd4.

H the operating point is at A and 7y increases, then the rate-constraint operating point
will move to, say, point C consistent with the constraint curve corresponding o w¢. Now
this increase in 7y resuits is an overload condition for the Neyman-Pearson test and so the
operating point for this test must fall to point C’ as described earlier. The operating point
C’ is at the intersection of the straight line from (pfyp,pdnap) to (0,0) and the constraint
line for m; = m¢. We already know that pdg > pdcs because of lemma 2; furthermore, by



CHAPTER 3. RATE-CONSTRAINT DETECTION CRITERION 47

pd ﬂA T /
pd, |——A ¥
i
i
i
Cl [l
|
J“‘:C
T 1
I
|
|
i
1
i
pf, T pf

Figure 3.5: Comparison of modified Neyman-Pearson and rate-constrained tests.

observing the ROC curve we also see that it is true if
pdc , pinp (3.14)
pfc ~ pinp

for all possible points C' on the pd/pf curve. Since (3.14) is both a necessary and sufficient

condition for pd¢ > pdcr, we conclude that it must be true for all ROC curves developed
using the likelihood ratio. In fact, (3.14) is merely another way of stating the concavity of
the ROC curve.

One of the properties of the rate-constraint test is that it approaches the Neyman-
Pearson test as the detectability of the target goes to zero (for example, if the signal-to-noise
ratio of the target goes to zero). This property is implied by the rate-constraint which for
pd — 0 becomes wopf < r or pf < r/xg, which is the Neyman-Pearson criterion. Counsider
figure 3.6. For the large signal-to-noise ratio (curve A) there is a significant difference
between pdyp and pdpc. For curve B, however, which describes a low signal-to-noise
ratio curve, there is very little difference because the pd/pf curve for the rate-constraint
criterion approaches a straight line. Therefore the two tests are equivalent when the target
detectability is small.

In summary, we have described the behavior of a Neyman-Pearson and rate-constraint
test under a rate-constraint. The Neyman-Pearson test has to be modified to meet the

constraint and the resulting test is suboptimal. The rate-constraint test is optimum and
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Figure 3.6: Comparison of modified Neyman-Pearson and rate-constrained tests for high
(A) and low (B) SNR.

therefore has a greater probability of detection than the modified Neyman-Pearson test. One
of the main reasons for considering the rate-constraint test is the fact that most practical
systems employ some sort of hit-rate constraint to control the detection process. It is
comforting to know that such a strategy has a desirable result.

In the next two sections we investigate the optimality of rate-constraint tests. Section
3.3 compares the performance of a rate-constraint test with a fixed-threshold test (Neyman-
Pearson, for example) when detecting Marcum and Rayleigh-fading targets. Then in section

3.4 an example involving an obstacle avoidance sonar is given.

3.3 Examples

We now consider the problem of detecting the Marcum and Rayleigh-fading targets de-
scribed in section 2.5 with the resource limited system of figure 3.1. By comparing the
rate-constraint test with Neyman-Pearson tests, we can beiter understand the optimality of
the former.

In figure 3.7, the probability of detection as given by (3.9} is plotted as a function of the
threshold for pd given by (2.55) for a Marcum target, and (2.66 ) for a Rayleigh-fading target,

The probability of a target, #y = 10~% while the actuator processing rate is r, = 10™% and
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Figure 3.7: Detection Probability as a fanction of threshold for Marcum and Rayleigh
targets. Single Pulse SNR = 15 dB, r, = 107%, 7, = 1075,

the SNR is 15 dB in both cases. The optimal thresholds are easily seen on the graph. In
both cases, the optimal thresholds occur when the rate out of the first stage is 1075, If
the threshold is made lower then its optimal value, randomization occurs and the effective
detection probability falls off severely, eventually reaching that of (3.1} when the threshold
ts zero. H the threshold is raised from its optimal value, the detection probability falls off
because the test is more selective than it needs to be.

Figure 3.7 shows the sensitivity of a test, operating under a rate-constraint, to the
threshold. (learly overload is a condition to be avoided. Any test operating under a fixed
threshold (such as the Neyman-Pearson test) would likely have to set a threshold much
higher than the optimal in order to guarantee against overload under all operating contexts.

The deleterions effect of using a fixed threshold in a dynamic environment is more easily
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Figure 3.8: Detection probabilities for rate-constraint (curve RC) and various Neyman-
Pearson rules (curves 3-6). Rayleigh target with SNR = 15 dB, r, = 107", For Neyman-
Pearson rules the curve number is the negative exponent of false alarm probability (i.e.
curve 3 is pf = 1073).

seen from figure 3.8. The eflective detection probability is plotted for Neviman-Pearson riules
with pf = 1075 — 10~ and for the optimal rate constraint test with r, = 104, The target
considered is a Rayleigh-fading target with SNR = 15 dB.

The various Neyman-Pearson tests become optimal at different values of =y (where
their thresholds are the same as that for the optimal rate-constraint for that value of 7).
However, no single value of false alarm is best over the entire range of 7;. Note also that
the rate-constraint test has poor detection performance as 7y exceeds 7,2 this simply means
that the actuator isn’t fast enough 1o even handle the targets, let alone the false alarms.

In the next section, we will consider a more involved example of a system that can be

modeled by figure 3.1.
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3.4 Obstacle Avoidance Sonar Application

In section 3.2 we saw that the rate-constraint criterion maximized the detection probability
given a rate-constraint and, in addition, can be implemented in practical situations. In
this section we apply the rate-constraint detection criterion to the problem of obstacle
avoidance for an autonomous underwater vehicle (AUV). As expected, the rate-constraint
eriterion performs optimally. The example is presented for two reasons. First it illustrates
the rate-constraint in a slightly different context than the radar examples presented in the
rest of the thesis. Second it gives an example of rate-constraint theory applied at the mission
control level.

We assume that the vehicle must navigate through a field of obstacles with average
concentration 7y. In other words, 7 is the probability of a particular sonar cell containing
a target. We also assume that the sonar starts to collect information on a particular cell

{(i.e. starts building the test statistic) as soon as the cell comes within range of the sonar.

"When the cell is a certain distance away, called the decision distance, the sonar must decide

to avoid the cell or not.
If the vehicle encounters k cells on its way through the field then the probability of

mission success (i.e. probability of not bumping into an obstacle for k independent cells) is
p(success) = (m)* (3.15)

If a sonar with an obstacle detection probability of pd is added to the vehicle the prob-
ability of success increases because the only obstacles that will stop the mission are those
that are missed by the sonar. Since the probability of not detecting an obstacle is (1 — pd),

we have
plsuccess) = (1 — (1 — pd))¥ (3.16)

Therefore the effect of the sonar is to reduce the target concentration by a factor of (1 — pd),

subsequently increasing the mission success probability. In fact, as pd increases to one the

There is a price to be paid, however, for the higher mission success probability. Every
time an obstacle is detected by the somar, the vehicle must manoeuvre around it, thus
delaying its arrival at the assigned destination. We assume that the vehicle is capable of a

top speed of r, m/s and that it must travel at an average velocity of v, m/s (0 < v, < v,)
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in order to meet the mission requirement. Therefore there are two ways that the mission
can fail: impacting an obstacle or arriving late. The first is mitigated by a higher pd but
this aggravates the second. The second is mitigated by maintaining v, regardless of the
obstacles which, of course, increases the likelihood of hitting an obstacle. Hence we must
risk the vehicle to maintain v, and our task is to minimize this risk.

The detection performance of the sonar is related to the mission objective by first ob-
taining a relationship between the vehicle’s velocity and the threshold crossing rate of the
sonar. If the vehicle is traveling at the required average velocity, v,, then the sonar cell rate
(the rate new cells are presented to the sonar) is

Vs

AR

(3.17)

Tg =

where AR is the range extent of a cell. The average velocity of the vehicle may be expressed
in terms of the fraction of time the vehicle spends in manoeuvre mode and transit mode
assuming that it travels at v, when in transit mode. Therefore

AR
t,

Ve = (1~ f)+—f (3.18)

where f is the fraction of time in manoeuvre mode and 1, is the time it takes to manocuvre
around an object. In other words, the vehicle travels at a velocity of v, when it is transiting
and at an effective velocity of %—f— when it is manoeuvring around an object.

Let 7, be the average threshold crossing rate. Then the average time spent manoeuvring
out of a total time £ is r,#1,, and therefore f = r t,. But r, = rr, where r is the normalized
rate; therefore from (3.17), r, = r{%, and the fraction of time spent manoeuvring is
T8,1,

AR
Substituting (3.18) into (3.19) and solving for r we obtain
AR(v, —v,)

F= {1.24)
valv,t, — AR) i

f= (3.19)

2 % s gt

Therefore, given a sonar resolution cell size AR, a maximum velority v,, a manoenvre
time 1, and a mission specified average velocity v,, we can determine a required threshold
crossing rate. If this rate is exceeded the vehicle will spend too much time in manoeuvre
mode and will not meet the mission deadline. If the rate is less than r the vehicle will arrive

ahead of schedule but will be exposed to a greater than necessary risk of hitting an obstacle.
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Then we have a rate-constrained detection problem with constraint

Ta AR(v, — v,)
L 7o) C<rPr=— = .
mipd + mopf <71 re = na(ots —AR) (3.21)

From section 3.2, we know that the rate-constraint criterion will be optimal. To be
definite in our results and to provide an example, let us assume that we are detecting the

Rayleigh-fading target of section 2.5.2. Recall that from (2.67),
pd = pfT¥ (3.22)

where p is the signal-to-noise ratio. It should be noted that this model typically is used
to describe the test statistic that results from the a single sonar return, or from coherent
integration of a number of sonar returns over time. A more accurate model for the problem
is one that employs noncoherent integration from pulse-to-pulse as the cell of interest moves
closer to the vehicle (such a model is discussed in chapter 5.) This latter model, however,
does not have a neat closed-form expression for pd as a function of pf and therefore would
not be efficient for showing the trends we wish to show. Since the purpose of this section is
to illustrate principles rather than model particular signal statistics we have chosen to use
the mathematically simpler model here.

For the rate-constraint criterion, we have
r = mypdy. + wopd, 1 ° (3.23)

where pd, . is the detection probability resulting from the rate-constraint criterion. Therefore
to determine the maximum pd attainable, namely pd,. that satisfies the mission velocity
constraint we must solve the above transcendental equation.

In this section we again compare the performance of the rate-constraint test with that

of the Neyman-Pearson test. For the Neyman-Pearson criterion we have
-p = Fipdy dig 3.24
rnp = mipdxp + wopdyp (3.24)

where rxp is the threshold crossing rate. Remembering that the threshold X is chosen
to provide 2 specific false alarm probability pfyp, pdyp is fixed through equation (3.24).
Therefore as long as ryp < r we maintain pd at pdyp, but if the target concentration

increases so thai rxp > r, pdyp must be reduced by the factor x (as discussed in section
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3.2) to maintain our desired velocity v,. Hence for the Neyman-Pearson criterion we have

an effective probability of detection pdyp.yss as described by equation (3.9). Since we have

1+o
pdx PdNP rpdyp r .
L pfxr, = ; (3.25)
Pf: 4= pdyig (mipdnp + mopdyE) T+ Topdyp '
equation (3.25) becomes
pdnp ifryp<r 3 o
pdN’P,ﬁjf = - 'f (3.26)
Frtnopdy, NPT

By comparing equations (3.23) and (3.26) we are able to verify that pd,. > pdnp.sy.

First consider TNP < T3 then we have
/! d'P+7 'd] g<11 d + dl ¢ 3.27
1PAN 0Plyp & T1Plrc opt,. (' . )

for which we require pdxp.;r = pdynp < pd,..

Second, for rap > r we have
mpdnp + ﬁgpdj\j}f > mypdy. + mopd!Fe (3.28)

for which we require pdyp > pd,., but for this condition we have

T

PANPefs = —— (3.29)

and by rearranging equation (3.23) we have
pd,c = W (3.30)
which when compared with (3.29) shows that pdnp.rs < pdre. Hence pd,. > pdpp.ps for

both conditions as expected.

In figure 3.9, we illustrate the detection performance of the rate-constraint criterion as
a function of the target concentration for two signal-to-noise ratios and average velocities.
The maximum velocity was set at 3m/s, the sonar resolution at 10cm and the time required
to manoeuvre around an obstacle at 5s. For a required average velocity of 0.5m /s when
compared with 2.5ms, we have a relatively large margin between the maximuin velocity and
the average, and therefore more time can be spent in manoeuvring. Hence, the vehicle can

successfully navigate a denser target field as indicated by the breakpoint in the detection
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Figure 3.9: Detection performance of rate-constraint criterion under various SNR and av-
erage velocities. v, =3 m/s, AR = 10cm.

probability curve being farther to the right. The breakpoint is located where the target
concentration w; equals the threshold crossing rate r. For example, with v, =0.5m/s the
rate given by plugging v,, v, AR, and fp into (3.20) is r = 0.0333. Examination of figure
3.9 indicates that the breakpoint does indeed occur at =, = .0333.

For the lower signal-to-noise ratio the detection probability is lower, as expected. These
detection curves approach those of the higher signal-to-noise ratio as the concentration
increases and both curves tend to pd = r.

Figure 3.10 compares the high signal-to-noise ratio performance of the rate-constraint
criterion with that of the Neyman-Pearson criterion. Curves for three probabilities of false
alarm are shown. It is evident that none of these curves is higher than that for the rate

constraint criterion. Before the breakpoint the Neyman-Pearson curves will increase with
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Figure 3.10: High SNR comparison between rate-constraint and Neyman-Pearson criterion.
The filled symbols correspond to v, = 2.5m/s the hollow symbols to v, =0.5 m/s.

decreasing pf if ryp > 7 but otherwise will decrease as shown in the figure. After the
breakpoint, low pf’s allow the Neyman-Pearson performance to approach the rate-constraint
performance but never surpass it.

These figures illustrate the expected performance and optimality of the rate constraint
criterion over a wide range of target concentrations. Two points are of significance. The
first is that even though we don’t know the operating point in the sense of where it is on
the performance curve we can still set it simply by adjusting the threshold to obtain the
desired velocity, v,. Once the threshold is set we are assured of maximizing the probability
of mission success, even though we don’t know what the maximum value is.

The second point is that the resource-constraint philosophy gives us a method by which

we can relate our detection criterion to the goals of the organism or vehicle. This means
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that the statistical sensor can be integrated more intimately into the command and control

structure of the system.

3.5 Conclusions

In chapter 3 we have investigated a new detection criterion designed to achieve maximum
detection performance with a resource-constrained -ctuator. Since almost all actuators
following a detection test do in fact have finite resources, the model is quite general.

The resulting test is a likelihood ratio test (or an equivalent threshold test when the
Karlin Rubin theorem holds), with its threshold set such that the threshold crossing rate
matches the processing rate of the actuator. A test built around rate-constraint principles is
practical; the hit rate is observable and countrollable, and the processing rate of the actuator
is a known design parameter.

Note that a rate-constraint test emphasizes maximizing pd regardless of the consequences
of pf. It may be dangerous to operate an entire system under such a philosophy; for example
the gun-control example of section 1.1 could end up shooting down friendly aircraft if further
tests such as Identify Friend or Foe (IFF) are not used to identify the potential targets.
Typically more than one test is used in a detection system before a final decision is made. In
chapter 4 we show how the rate-constraint criterion extends naturally to systems consisting

of a sequence of tests.
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3.6 Appendix: Proof of Rate-Constraint Test Properties

In this appendix, we prove the claims made in Lemma 2 concerning the optimality, existence
and uniqueness of the rate-constraint criterion. The proof parallels that given in section 2.7

for the Neyman-Pearson test.

Proof of Optimality For é and &’ defined as in equation (3.11), we always have
(8'() - 8(2))(€(z) = A) > 0 (3.31)
Multiplying both sides by fo(z) and integrating over I', we have
[#(@) - @) () = Mafa) dpta) > 0 (3.32)

and

[ 8@ n@du@) - [ 8k dutz) > A [ 5 ola)du(z) = 3 [ da)fox) dts)

(3.33)
which yields
pd(6) — pd(8) > A[pf(6') — pf(8)] (3.34)
From the constraint we have 25
pf(sy = =P ﬂ;p () (3.35)
and s
T T ,
pf(sy = L2227 W”’ (4) (3.36)
Inserting (3.35) and (3.36) into (3.34), we have
. Alr — 1) 9 -
— > ——— 3.3
pd(8') - pd(8) > Z T (3.37)
but
Mr=r) 5 (5.3%)

7o + Amp

because r > 14, so we have the desired result,

pd(é'y — pd(4} > Og (3.39)
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Proof of Existence Let Ay be the smallest number such that
T{on(f(.’l)) > /\0) -+ 71’1P1(£(.’IJ) > /\0) S Ia
Then if
ﬂ'ng(f(.’t) > Ao) + 7T1P1(£(£L') > )\0) <r
let ,
o = T — WQPO(E(Q:) > /\0) — 71’1P1(€(:L‘) > /\0) (3 40)
07 T woPo(l(z) = do) + T Pi(€(z) = Ao)

Then defining the rate-constrained decision rule 6, to be of the form of (3.11) with A = Ag

and 7(z) = 70 we have the rate of é,, 7(6,) given by
T((ST) = 'IT()P()(E(CK) > Ao) + ﬂ"lpl(f((l?) > AO) +
’}‘O(WQPO(E(:L') = /‘\0) + m P](E(I) = )\0)) (341)
which, after substituting (3.40) for v, gives us the desired result,
r(é)=71 o (3.42)
Proof of Uniqueness Let & be a rate-constrained test of the form given in equation
(3.11) and let ” be any other rate-constrained test with the same pd. Since pd{§’) = pd(§")

equation (3.37) shows that r = r;, which in turn (from (3.35) and (3.36)) implies that
pf(&) = pf(é"). Therefore from (3.33) and then (3.31) we have

[#@) - @) (t(z) - 3 du(z) = 0 (3.43)

Since the integrand must be positive or zero, §”(z) must be of the same form as &(z) except

possibly when ((z) = A. Therefore §” can differ from &' only in the randomizing function

1z)- o



Chapter 4

Multi-Stage Detection Systems

4.1 Introduction

In most detection systems, a given cell must pass several tests before being declared a
target. For example, in Nathanson’s chapter on false alarm control for radar, seven stages
of processing and decision making are listed [18]. As a given cell passes through the various
stages (Pulse compression, Moving Target Indicator, CFAR, binary integration, clutter map,
digital track extraction and tracking), the likelihood of that cell containing a target becomes
larger. The later stages in the detection chain interrogate less cells, but require more
processing power to investigate those cells.

Considering the problem of medical diagnoses based on several tests, Metz writes:

Diagnostic tests are rarely used alone. Instead the results of several diagnostic
tests are usually combined with clinical background information to decide the
disease state of the patient or to decide that additional diagnostic tests should
be performed. In order to choose the best sequence of diagnostic tests, that
is, to optimize diagnostic strategy, one must recognize that (pd) and (pf) for
each diagnostic test usually can be changed together by changing the decision
threshold for the test... Full optimization of diagnostic strategy involves choosing
not only the best sequence of tests, but also the best operating point on the ROC

curve for each test [12].

In this chapter we investigate a system where faster, coarser sensors use their detection

60
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ability to cue the attention of slower, higher resolution sensors. Such models have been
described before. For example, Lacoss [34] described a system where acoustic sensors were
used to cue television cameras to track aircraft and Hovanessian [11] has suggested the
concept of using low resolution search radars to cue lidars. Schweizer et al, describing an

architecture for mine-hunting using autonomous underwater vehicles wrote:

When lower resolution systems are used as cuers for high resolution systems, col-
lections of large volumes of data may be significantly avoided, thus also reducing

field analysis time [13].

While these examples have been described, this thesis provides the general framework and
analysis to justify their use.

There is currently much interest in sensor fusion: the problem of optimally combining
information gathered by a number of sensors or tests. (For example, [35],[36].) A difficulty
with many papers discussing fusion is their implicit assumption that all of the sensors process
data at the same rate and resolution. For example, in the serial fusion system of [35], every
stage in the network processes every cell in the radar space. The disparity in cell production
rates between different types of sensors can make such systems impractical.

In an appropriately titled (Fusion or cornfusion: knowledge or nonsense?) review of

fusion technology, Rothman and Denton noted:

Another problem which is infrequently discussed in the theoretical literature, but
is commonly encountered in implementation, is the lack of synchronous updates
between sensors... in advanced systems and in virtually all distributed systems,

it is not possible to synchronize the sensing systems [37].

Cued systems provide the same robustness and graceful degradation features that many
fusion structures do. They don’t require the same level of co-ordination, and can be practi-
cally implemented. There are no requirements for the sensors to be identical, or to provide
statistics that are identically distributed.

This chapter presents the framework and analysis required to model and understand the
performance of a cued detection system. The rules that govern the choice of operating point

and the conditions of optimality will be explained.
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4.1.1 Chapter Outline

In section 4.2 a two-stage cueing system is shown to be identical in performance to a specific
type of fusion network. The optimal form of the local tests is a likelihood ratio test. The
conditions for optimal detection performance of the overall system are derived with no
resource constraints. A new parameter, the SLOC number is seen to be important in
determining the optimal operating points for the individual tests. The SLOC function is
the slope of the ROC curve when plotted on log-log axes.

In section 4.3 we introduce rate constraints into the second stage. Again the SLOC
number is central in determining the optimal operating strategy. We show that a comparison
of the SLOC functions for the two stages determines the region of operation where the rate
constraint criterion is optimal for the first stage.

In section 4.4 a dynamic programming argument is used to show that the results for the
two-stage system extend generally to systems with an arbitrary number of stages, provided
the SLOC functions for the stages are properly ordered. We further show that the overall
system detection performance is optimized, under any sensible detection criterion, when the
rate constraint is applied at every stage but the last.

Finally the chapter’s conclusions are given in section 4.5.

4.2 Unconstrained Two Stage Systems

We begin by examining the relationship between our model and that of a ‘conventional’
fusion model. In figure 4.1 we have a number of sensors independently interrogating the
environment. The sensors make individual decisions and report them to a central fusion
center which then makes the global decisions. Thomopoulos et al have shown that the
optimal local decision rules are likelihood ratio tests [36].

Consider the ‘And’ fusion rule, where a target is declared if and only if all of the in-
dividual tests report a threshold crossing. I any one of the tests fails to report a hit, the
fusion center doesn’t need to examine the rest of the local tests. Thus the system of figure
4.1 performs the same test as that of 4.2.

Each sensor of figure 4.2 passes on the addresses of those cells which have exceeded
the local threshold to be examined by subsequent sensors. Therefore the sensors later in

the chain need to examine far less data than those earlier in the chain. At first glance it
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Figure 4.2: Alternate form of ‘And’ fusion. A given sensor-LRT stage only examines those
cells that have exceeded the thresholds in all of the previous stages.

may apoear that the model of figure 4.2 requires too much co-ordination between sensors;
however, the system is actually quite robust. If any given sensor (except for the first)
becomes unserviceable, the overall system can be gracefully degraded by removing that
stage from the overall system and linking the two on either side. Of course the first stage is

crucial, since no other stages are capable of processing at the radar rate.

4.2.1 Optimal Solution For an Unconstrained Two Stage System

Consider a system without any constraints on the processing power of the second stage.
Since the optimal form for the individual tests is a likelihood ratio test, we can formulate

the Neyman-Pearson problem as

max H pdi(};) = pdr (4.1

i=1

subject to _
N

M rrx) =psr

i=1
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where pd;, pf; and A; are, respectively, the detection probability, the false alarm probability
and the threshold for sensor i, X is the vector of the Als, and pfr is the desired false alarm
probability out of the fusion sensor.

Why are we using the Neyman-Pearson formulation? From Birdsall's insight, any op-
timal test must lie on the ROC curve for the overall system. The system ROC curve is
generated by solving (4.1} for pfr varying from 0 to 1.

Consider the case ¥ = 2. To find the optimal X;, we use the Lagrange Multiplier

optimization technique with objective function
J = pdypdy — ((pfipfe — pSr) (4.2)

where ( is the Lagrange Multiplier, and we have suppressed the functional dependence of

the pd; and pf; on A;. Taking the partial derivatives of J and equating them to zero yields

aJ ,
v pd\pdz ~ (pfipf2 = 0 (4.3)
aJ
v pdipd; — Cpfipf; =0 (4.4)
and Py
3" =phrl—-plr= (1.5)
Solving (4.3) and (4.4) for (,
I '
ipdy _ pdipd, .
=1 - : (4.6
¢ phrf2  phrf; )
Multiplying by %%, we find that the condition for optimal pds becomes
wh _ pdypfs (4.7)

pfipd ~ pfipd;
where pd! = %% = fi{z;) is the probability density function of z; given the existence of

a target. Similarly pf! = fo{z;). Since A; = 7’%—:—}} is the threshold for the likelihood test

applied to test i, (4.7} can be re-written as

Ali’n = A, P2 pf2 (4,8)

pdi ~ pdy
Still another form is obtained by recognizing that £ %g;(ﬂ Then (4.8) can be

(r)
expressed as
Olnpd; Jlnpd,
olmpfi  Olnpfr

(4.9)
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Equations (4.7) through (4.9) have obvious generalizations for N > 2. The derivatives
of (4.9) are important for our purposes. Let
7 = —g—i—fﬁ% (4.10)
Equations (4.8) and (4.9} suggest two methods of calculating #; graphically. From (4.8),
7; at any given operating point on a ROC curve is the product of the threshold (i.e. the
slope of the ROC curve) and the secant line to the point. Equation (4.9) yields the preferred
method: plot pd versus pf on a log-log scale and the slope of the resulting curve is 7;. We call
such plots Log-ROC curves, and 7; the SLOC (i.e. the Slope of the Log receiver Operating
Characteristic curve]. Clearly, the SLOC number is an important relational parameter for
determining the optimal operating point of a test.
Condition (4.9) can be understood by examining the effect of changing pf; and pf; from
their optimal values by a small amount while maintaining the overall false alarm probability

at pfr.
To see the change in the overall detection probability, consider

ﬁin(pd’;pdz) = Alnpdl 4+ Ain pdz (4.11)
_ Jinpdy . J1n pd;
= mﬁpﬁdlnpfl + mnphdinpfg (4.12)

but dinpf; = —dIn pf; to maintain the false alarm probability at pfr. Then

Aln(pdpdz) = (m — ) dInpf (4.13)

Now consider what bappens if (4.9) is not true. Then the difference term in (4.13) is
non-zero, and by making dIn pf; the same sign as the difference, A In(pd;pd;) can be made
positive. But a positive Aln(pdpd;) would imply that the starting point was a non-optimal
solution; therefore (4.9) must hold at the optimal operating point.

We now consider a couple of examples to better understand the meaning of (4.9).

4.2.2 Examples for Unconstrained Two-Stage Systems

Let us begin with the Marcum target discussed in section 2.5.1. Plugging the results for
the likelihood ratio (2.52), and probabilities of false alarm (2.53) and detection (2.55) into
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Figure 4.3: SLOC curves for two Marcum targets. The upper curve has SNR = 5dB, the
lower 10dB.

(4.8) the resulting SLOC function is given by!

exp [agaﬂ] Io(AX)

Marcum A)= ; 14
Marcum(A) QAN (4.14)

where A is the threshold, Q(A, )} is the Marcum Q function defined in (2.55), and Io(z) is
the zeroth-order modified Bessel function of the first kind.

In figure 4.3 the SLOC functions are plotted for 2 marcum target with SNR = 5 dB (the
upper curve) and 10 dB (the lower curve) 2. The optimal operating points for the two tests
(A and A’) are given for an overall false alarm probability pfr = pfapfar = 1076, Since

the false alarm probability is plotted on a logarithmic scale, the distance along the axes (as

shown in the figure} must add to pfr.
It may seem surprising to see that the lower SNR test has an operating point other than

*We drop the subscripts on A and y for now, since we arc only considering a single stage bere.
?Note the two-stage system is detecting the same target; however the individual sensors or tests are
operating at different signal-to-noise ratios, possibly due to longer observation times allowed by different cell

processing rates.}
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Figure 4.4: Log-ROC curves for figure 4.3

pd = pf = 1. This means that - for the Marcum model at least - it is possible for a test with
a higher SNR to gain performance by using a lower SNR test to provide some selectivity.

Figure 4.4 illustrates the optimality on a log-ROC diagram. To understand figure 4.4,
begin with the curves marked “SNR = 5dB” and “SNR = 10dB”. Since Birdsall’s insight
also holds on log-ROC curves, it is no surprise that the curve for the 10dB test is always
above that for the 5dB test, except for the point O, where pf = pd = 1.

To generate the curve marked “Optimal Comb.”, the curve for the 10dB target is merely
slid down the 5dB curve; this moves point O to point A (the same point A as for figure 4.3),
and point A’ is translated to point P. The figure shows that for a false alarm probability
of 1076, the resulting detection probability (point P) is indeed larger than the detection
probability for the 10dB test alone. In fact, if the 5 dB test is operated anywhere between
poini U and A, the resuiting detection probability for pf = 10° will lie between point P
and the resulting pd for the 10dB test alone. Furthermore, if the operating point for the
5dB test is moved down, say to point B, the resulting combined detection probability will
also lie below point P for pf = 1075.
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Figure 4.5: SLOC functions for Marcum (solid lines) and Rayleigh (dashed lines) targets.
The number on the curves indicates the signal-to-noise ratio in dB.

We have just shown that for a Marcum target, a test with a large SNR could improve
performance by co-operating with a test with a lower SNR. This is not so for a Rayleigh
target. The easiest way to evaluate the SLOC for Rayleigh targets is to use (2.67) in (4.9).
Then, for a Rayleigh target with SNR = o

1

Masteish = T35 (4.15)

The Rayleigh SLOC function is a constant independent of the operating point and decreasing
with increased SNR. Therefore if two different SNR stages are cascaded together as in figure
3.1, condition (4.9) can never be met. The optimum solution is found by considering the
boundary conditions, whereby it is seen that the optimal detection probability is found by
setting the threshold of the lower SNR test to zero (effectively removing that test altogether).

The constant SLOC of the Rayleigh target appears to be the exception, rather than the
rule, as shown by the SLOC functions presented in chapter 5. However, it is interesting to
note that studies on semsor fusion cited in the literature often utilize Rayleigh targets (due

to the simple functional form of pd}; one questions the generality of some of the results in



CHAPTER 4. MULTL-STAGE DETECTION SYSTEMS 69

the light of the Rayleigh model’s behaviour described here.

In figure 4.5 SLOC functions are plotted for Rayleigh and Marcum targets for various
signal-to-noise ratios. Note that for a given pf and target model, the SLOC number is
a positive, decreasing function of the SNR. Furthermore, for the Rayleigh and Marcum
targets, the SLOC is a nonincreasing function of pf; however, this is not a universal trait
of SLOC curves. (Some exceptions are given in chapter 5.)

In this section there have been no constraints applied to the processing rate of either

test. We now turn our attention to the practical scenario where the second test is slower,

but more capable than the first.

4.3 Effect of Rate Constraints

In section 4.2 we saw that the optimal solution for an unconstrained two-stage system is
derived by finding the operating points that match the SLOC values. Of course, it would be
impossible to operate under such a criterion in practice since the SLOC values are strongly
dependent on the signal-to-noise ratios which are unknown.

We now consider the effect of introducing a rate constraint on the test with the higher
SNR. Such a model is extremely common; tests that take more time to operate tend to
- perform better.

Let us begin by examining the deleterious effects of setting the threshold too low, so
that randomization occurs, as discussed in section 3.2. Recall that randomization increases
the effective false alarm probability while decreasing the effective detection probability.
Therefore we expect the effective SLOC to be negative when randomization occurs. When

randomization occurs, the effective probabilities of detection and false alarm are related:

Typdess + Fopfess =T (4.16)

* I I Vg b pa
Pess = —r = mopfess] (417)
Then the effective SLOC in randomization is

_ dlnpdy
MRend = Gl Y (4.18)
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(dlnpdejf/dlnpfcff)dpddf (4.19)
dpd.;s dpfess ) dpfess )
_ Pless _To -

_ Pdeﬁ( :n) (4.20)
_ mopf y
- (4.21)

where the last equality results from comparing (3.7) and (3.9). The negative SLOC means
that a test should never operate in randomization; the test can produce both higher pd and
lower pf by increasing its threshold.

Now let us consider again (4.13), reprinted here for convenience:

Aln(pdipdy) = (m — m)dInpfy (4.22)

First, note that if test one is in randomization, 7; < 0, and therefore an increase in pfy will
indeed decrease the overall pd. We have shown that we never want to operate any stage
such that it forces randomization. In our subsequent discussion, we will use the SLOC as
defined in (4.10) and not worry about the effective SLOC since we never want to operate in
randomization.

Now, since the first test has a lower SNR, we expect that it will have the larger SLOC.
We say a two-stage system is uniformly properly ordered if

> V(pf1.pf2) (4.23)

For example, a system consisting of two stages each detecting a Rayleigh target is a properly
ordered sequence if the first test has a lower SNR than the second. (We consider a less strict
condition on ordering in section 4.3.1)

I a system is uniformly properly ordered, (4.23) in (4.22) shows that Aln(pd;pd;) is
an increasing function of dInpf,. Equivalently, pdr is a monotonically increasing function
of pd;. If there is no rate constraint, the optimal pdy for a given pfr is then found for a

nnf&}mj}t ltgggngrf\; ordered detection seanence b

TR TR ST SIS EL g AR ng Swnasiyy 3 ARADW WARS LATEANSERE

setting the first threshold to zero (so that

pdy =pfi = 1).
However, when the second stage is limited by resource constraints, the problem becomes
r = & é 4.24
pdr 3fggvpdl( 1)pd2(62) (4.24)

where D = {6;,8; : m1pdi(61) + %opfi(81) < 72,pf1(6:1)pf2(62) = pfr}
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That is, we want to find the maximum pdy for a given overall pfr, subject to the rate out
of the first stage not exceeding the input rate of the next stage. If the rate out of the first
stage is too high, randomization will bring it down to the maximum rate as described in
section 3.2.

Note that pf,(8,) is in fact a function of pfi(61) through the constraint on pfr. There-
fore once §; (and therefore pfi(6;) and pd;(61)) is set, so is pfa(8;) and therefore pda(§2).
Furthermore note that §; is constrained only by the processing rate cf the second stage and

not by 6, at all. Therefore, provided (4.23) holds, we can re-write (4.24) as
I3 d 9 6 A} 4.25
g}eagj;_p 1(61) 5?6%(2 pda(é2)] ( )
where Dy = {§; : m1pd1(61) + 7opf1(61) < T2}

piT
and D; = {62 :pfa(b2) = m}

The decoupling of (4.24) into two single-stage maximization problems in (4.25) may
appear familiar to those readers with knowledge of Dynamic Programming.

From chapter three, we already know how to find §;: it is merely a likelihood ratio test
with threshold set to match the output rate to the input rate of the second stage. From
chapter two, 6, must be the Neyman-Pearson test that gives the desired false alarm rate.

In summary, we have seen that for a uniformly properly ordered test, the overall detection
probability for a given false alarm probability is maximized by using a test operating under
rate-constraint principles in the first stage and then setting the second stage’s threshold to
choose the appropriate operating point on the overall ROC curve.

In fact, this argument can be extended to show that under any detection criterion (Bayes,
etc.} for the entire system, the first stage should operate under the rate constraint criterion
if the system is uniformly properly ordered. Consider the shape of the overall ROC curve.
We have argued that in order to lie on the overall ROC curve, the first stage is determined
by the rate constraint. If the operating point is at (pd;,pf1), then the ROC curve has a

second derivative

d*(pdipd;) _ pd, 3*pd;
= <0 4.26
aphirfz)*  phopf; ~ (4.26)
Thus the overall ROC curve is concave, and Birdsall’s insight holds. Therefore, a detection

system operating under any sensible criterion emphasizing high pd and low pf is optimized

by matching the rate out of the first stage to the processing rate of the second stage. The
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threshold for the second stage is then determined by the criterion for the overall system. This
somewhat surprising result is only strictly true for properly ordered detection sequences. In
the next section we will consider test sequences that are properly ordered only in a specific

region of operation.

4.3.1 Compression Factors: Locally Properly Ordered Sequences

In the above we considered only properly ordered sequences. In general, it will be impossible
to claim a sequence of tests are uniformly properly ordered (unless the second test is de-
tecting a Rayleigh-fading target in Gaussian noise, so that its SLOC is constant and smaller
than the minimum SLOC for the first stage.) Instead, we will have to be satisfied with
claiming that a sequence is properly ordered over a restricted range of operating conditions.
Then we say that the sequence is locally properly ordered.

For example, consider again figure 4.3. Say that the processing rate of the second stage
is such that the first test can operate at or to the left of point A. (That is, the false alarm
rate associated with the rate constraint is pf; = .14, and the SLOC is .205.) Then the
sequence will be locally properly ordered for any tests requiring the second stage to operate
with a SLOC less than .205, or equivalently for pf; > 7.2(10)75. Put another way, if the
rate constraint on the second stage limits the first stage to operate at point A or slower, the
rate-constraint criterion is guaranteed to be optimal for the first stage for overall false alarm
probability greater or equal to 1075, We call the smallest value of pf; for a given operating
point for the first test the compression factor for the sequence. From figure 4.3, we see that
a slower second stage would give a larger compression factor; larger in the sense that the
rate constraint is guaranteed optimal over a larger range of overall false alarm probabilities.
For example, if the second stage has a processing rate 1072 that of the first (assuming no
targets), then the compression factor for the second test is larger than 107, and the rate
constraint criterion is optimal for tests with pfr greater than at least 107%.

The SLOC curves also allow us to compare different tests with different statistics. From
figure 4.5, we see that 2 5 dB Rayleigh target yields a constant SLOC value of 0.24, and
that a 10 dB Marcum target for the second stage would yield additional compression of
10~° before the rate constraint is not optimal.

The SLOC curves provide insight into the merit of various tests. They do require known
and tractable statistics to be useful (like ROC curves.) However, if experimental ROC curves
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can be generated, then the ascociated SLOCS can be graphically determined. Even with
rough SLOC estimates, intelligent guesses of suitable compression factors for the tests can
be made. Furthermore, the individual test stages need not be identically distributed. For
example, if a microwave radar is cueing a lidar, it is possible that a given target might be
Rayleigh distributed when viewed by the radar, but appear as a Marcum target to the lidar.
By examining the SLOC curves, we are still able to understand how the two subsystems
will interact.

What if a test sequence is not properly ordered? Then from section 4.2, the optimal
detection would be found by matching the SLOC numbers of the two stages; however, that
is clearly not practical. There will be some loss in operating the first stage under the
rate-constraint criterion, but at least the criterion can be practically applied.

In the next section, we will extend the two-stage rate-constraint concepts to consider
multi-stage systems. By use of dynamic programming arguments, we show that the results of
this section hold for multi-stage systems. For any overall detection criterion and a properly

ordered system, the rate-constraint criterion is optimal for all stages but last.

4.4 Extension to More Stages

Often detection sequences consist of more than two stages. For example, radar systems often
use several processing and decision-making stages [18]. Similarly, clinical diagnosticians may
use several tests before declaring a positive or negative diagnoses [12].

In figure 4.6 the model for an N-stage detection system is given. In keeping with
Dynamic Programming models, each stage has an input state S, an output state Sk, a
decision function &g, and a return function r; [38]°.

Let the input state into stage k be

(%0, 71) k=1
Sk=4 4 _ . . , 4.27)
{ (o Ili5) pfomi IS} pdi) = (v6,75) 1<k< N (

< 7

where pf; = pf(5;) and pd; = pd(é;), and §; is a likelihood ratio test (which is determined
by choosing A;, or by the {; for the equivalent threshold test). Then the output state of

*Note that we have reversed the ordering of the indices for the stages from the traditional in Dynamic
Programming.
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stage k is given by
Sk = (xEpSfu(8x), 7pdi(6i)) (4.28)

The state functions are necessary to determine the appropriate rate-constraints at each
stage.

The return function out of stage k is given by
Te( Sk, 61) = di(0k) 4.29
%( S5k, 6k) Ta}i pdi(6x) ( )

where Dy, is the set of all decision rules meeting the rate constraint:

b 7Epfi(6r) + wEpdi(Bi) < 1<k<N
Dkz{ {0k = mopfe(b) + 7ipdil(be) < regn} 1<k < (4.30)

{6 ‘Eé?fk(‘sk) =pfr} k=N
Note that the definition of Di doesn’t preclude the use of tests that cause randomization
due to overload; it merely means that the effects of such randomization must be included in
the optimization. Since randomization always causes the SLOC to become negative (forcing
a southeast movement in the ROC curve} we know that randomization will never be present
in an optimal system.

The definition for Dy is for the Neyman-Pearson formulation. As with the two-stage
system of section 4.3, the final stage can operate under any criterion subject to Birdsall’s
Insight; the first ¥ — 1 thresholds will not change.

Thus we see that the return at each stage is a function of the input state (through the
constraint) and the decision function, ;. Note that each of the constraints can be expressed
in terms of local variables (i.e. variables for that stage only.) This locality suggests that

Iocal control in a practical system is feasible.

The goal is to find
N
= Sk, 6 4.31
g ﬁgg_;grk( %5 0x) (4.31)

Being a product of the r;, g is separable: [38]

E3

glpds(51.6:), pda(S2, 82}, - - ., pdn(Sn . 8x)] = @alpdi (51, 61), 9alpdal $2,82), . . ., pdA{ S, v )]
(4.32)

Now if the system is properly ordered (at least in the region of interest) for the various
tests, then g is a monotonically non-decreasing function of g;. Then maximizing pdr is

equivalent to maximizing pd;(S5;, 8;).
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Figure 4.6: A Multi-stage Detection System.

Given that g is separable and that g is a monotonically nondecreasing function of g, we
say that the problem is decomposable [39]. This means that it is possible to solve the N

stage problem one stage at a time. Let

hi(81) = &rr‘l‘z"u&cx[pd;(fﬁ, 61)pda(52,62) - - - pdn(Sn, 6N)] (4.33)

where Siy1 = Sp = bx(Sk,6x). Given the monotonicity of g on g;, we can write

hy(51) = max[pd;(5y, 61) ;max pd2(S2,62) - - -pdn(Sn, 6n)] (4.34)
&3 FZyeraV N
and
ha($2) = max [pdy(S2,8)---pdn(Sn, 6n)] (4.35)
Therefore,
n= I%?Xpdl(sl,él)hz(SZ) (4.36)

but S; = 5;(5;,4;) is a function of §; and &§;. Therefore
g1 = max Hy(51,41) (4.37)
&1

Equation (4.37) states what we expect: to maximize the overall detection probability,
we must first maximize pd; subject to its rale constraint. Clearly the argument is recursive,
and previded the sequence is properly ordered, the optimal threshold for each stage but the
last is determined by the raie-constraint at that local stage and not the overall detection
criterion. The argument on the concavity for the overall system given in section 4.3 again
holds, and therefore the rate-constraint thresholds for the first N —1 stages will be optimal
under any overall detection criterion. The threshold for the final stage must be chosen in

order to optimize under whatever criterion the entire system is working under.
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An interesting point to note is that the detection performance of any N-stage system will
always be improved, if another stage is added such that it makes a new properly ordered
(N 4 1)-stage system. We know this, for il the new stage didn’t improve the detection,
its threshold would be zero, effectively removing the stage. Therefore a given detection
sequence can be improved if intermediate stages are added, at the expense of increased

latency in iecision time due to the added stage.

4.5 Conclusions

In chapter four we have investigated a cueing structure whereby faster tests cue slower, but
better tests. The structure is equivalent to a Fusion system operating under an “AND”
rule, and provides the same graceful degradation as many fusion systems. However, there
is no requirement for the individual tests to provide synchronous outputs.

The SLOC number is an important relational parameter that provides the key to the
optimal detection strategy for a cued system. For unconstrained detection sequences, the
optimal operating point for the overall detection probability is found by matching the SLOC
number of the individual detection stages. A test with a lower SNR can improve the detec-
tion performance of a higher SNR test, except for the case of Rayleigh targets in Gaussian
noise (which have constant SLOC functions). The SLOC number allows comparison of
any two detectors, provided the Receiver Operating Characteristic (ROCj curves can be
determined, experimertally or analytically. The tests needn’t be identically distributed.

When a resource constrained detection sequence is properly ordered, so that each stage
is faster and has a larger SLOC funetion than the stage succeeding it, the optimal strategy
is to operate the earlier stage under the rate-constraint criterion. This strategy is optimal
for any overall detection criterion that is sensible in terms of Birdsall’s insight. A local
control structure is possible for a properly ordered cueing system; a given stage need not
worry about previous or downstream processors other than the succeeding one.

The SLOC func.ion provides important information for the understanding of how multi-
stage detection systems work. Chapter five is devoted to a study of the SLOC functions for

a number of practical radar scenarios.



Chapter 5

Applicability to the Radar

Problem

5.1 Introduction

In chapter four the SLOC parameter emerged as a central theme to the understanding of
how cascaded detection systems work. We showed that the rate-constraint criterion should
be applied at every given stage in a detection chain, provided that the SLOC function of that
stage is larger than that of subsequent stages. Thus to understand the role of rate-constraint
theory in radar systems, we must understand the SLOC functions for radar problems. In this
chapter the log-ROC and SLOC curves for several classical and nonclassical radar models
are presented. During the course of the discussion, we feel compelled 1o comment on some
of the apparent confusion regarding certain models.

There are a couple of points to note regarding the content of this chapter. First, it must
be stressed that that in practical deployments, the statistics required for the calculations
made in this chapter are usually unavailable. Furthermore, the models are just that, models;
they don’t even necessarily provide bounds on the behaviours that may be observed in real
radar systems. Thus our intent is to investigate the validity of the theory in terms of existing
radar models, and not to prove the optimality of rate-constraint in all circumstances.

Second, it will become apparent to the reader that, although the chapter does include
a2 mumber of graphs, the coverage is by no means exhaustive. The results presented are

intended to be representative, and to yield understanding into applying rate-constraint
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principles. Most of the graphs are relatively straightforward to generate. We leave it to the

interested reader to calculate any required.

5.1.1 Chapter Qutline

In section 5.2, the classical target models of Marcum and Swerling are briefly reviewed. The
Rician target model is shown to be a more valid representation for a target consisting of a
farge scatterer plus a large number of smaller scatterers than the Swerling I1I and IV models
normally used. It is also shown that the behaviour of the Rician model is intermediate to
that of the Marcum and Swerling 1/II models. Another target model, consisting of two
specular returns is considered. The moment generating function is used as the tool to
calculate the detection and false alarm probabilities in this chapter. Section 5.2.1 gives the
moment generating functions for the models discussed.

In section 5.2.2, the log-ROC and SLOC curves are given for the various target models,
based on a single return. The integration of muitiple returns to develop the test statistic is
discussed in section 5.2.3, and numerous curves are given.

In section 5.3, we consider an application of rate-constraint systems to a signal processing
problem. Specifically, we investigate a two-stage detection system where the first stage
performs noncoherent integration, and then cues only those cells likely to contain targets to
the second stage which then performs coherent integration.

The relatively new technique of [16] for calculating the detection probability for nonco-
herent integration is briefly reviewed in section 5.4 and then applied to investigate the effect
of K-Distributed clutter on log-ROC’s and SLOC’s. New results for noncoherent integration
of Marcum and Rayleigh targets in K-distributed clutter are given.

A brief discussion of the roles of normalization (Counstant False Alarm Rate) techniques
in the rate-constraint framework is given in section 5.5. The chapter’s conclusions are given

in section 5.6.

5.2 Target Models

The common radar target return models are a result of the pioneering work of Marcum [33]

and Swerling {40]. As with all models discussed in this section, Marcum’s and Swerling’s
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models assume that the interfering noise is Gaussian distributed!; we consider other types
of clutter in section 5.4. The detector {combination rule for multiple returns) is assumed to
use a square-law.

Yor some of the models in this chapter, no close-form solution exists. Others can be
expressed only in terms of functions that are not common; therefore we will not concern
ourselves with the explicit expressions. Instead, we give the Moment Generating Functions

for the various models in a pair of tables.

Marcum’s Model We saw Marcum’s model in section 2.5.1 [33]; it consists of a constant
amplitude random-phase return immersed in Gaussian noise. Marcum targets are sometimes
called Swerling 0 targets; they result from returns from very large, stable objects such as a

large sphere.

Swerling Models The Rayleigh target was discussed in section 2.5.2. When a series of
Rayleigh-fading returns are added noncoherently, the resulting models are called Swerling
I if the returns remain fully correlated from pulse-to-pulse, and Swerling I1 if they become
fully de-correlated between pulses [40].

The Rayleigh model is valid when a number of independently identically distributed
echoes contribute to the return. Then, by the Central Limit Theorem, the in-phasc and
quadrature components can be assumed to be Gaussian. While an infinite number of echoes
is theoretically required to invoke the Central Limit Theorem, in practice, 6 or more echoes
is sufficient [41]. The Rayleigh distribution for the amplitude (envelope) then results from
the guadratic combination of the iwo Gaussian components.

Swerling also introduced another model, an approximation to the combination of a con-
stant target plus a Rayleigh component, the so-called One-Dominant model. When a One-
Dominant target is noncoherently integrated, a Swerling III model results if the returns
are pulse-to-pulse correlated, and a Swerling IV if the returns are fully de-correlated. The
model is based on a Chi-Squared density function with four degrees of freedom {note that the

Rayleigh is also Chi-Squared, but with two degrees of freedom.) Swerling made no attempt

!More properly, the in-phase and quadrature returns are i.i.d. Gaussian distributed. In the literature,
such noise is often called “Rayleigh’ noise, since the envelope is Rayleigh distributed; however, it is often the
square of the envelope which is of interest. We will use the term Gaussian noise, since it is valid whether
a lnear-law or square-law combiner is used. We will, however, continue to call a target with Gaussian
amplitude a Rayleigh-fading target, regardless of the combining law nsed.
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to physically justify the One-Dominant model; he merely suggested that it might apply to
aircraft. Since 1957, the One-Dominant model has appeared often in the literature, yet

there it has no physical meaning. In 1967, Scholefield wrote regarding the One-Dominant

model:

Standard radar textbooks ... tend to be uninformative about the precise
application of (the One-Dominant Model), and experience shows that misunder-

standings arise [42].

The problem is that there are only two degrees of freedom in a radar return. The One-
Dominant model requires a receiver to “resolve the input signal into four orthogonal com-
ponents, which it clearly cannot do”[42].

Unfortunately, contemporary radar books continue to be as vague as the texts mentioned
by Scholefield in 1967. In fact, of several books written since 1987 that discuss Swerling’s
models [7],{6],[43], [44], only Nathanson [18] mentions the difficulties of the One-Dominant
model.

In this thesis, we present only limited results for the One-Dominant model. Our reason
for presenting any at all is that the One-Dominant model has become a yard-stick, albeit a

contrived one.

Rician Targets The proper model for a return resulting from a single dominant scatterer
and Gaussian noise is a Rician target?. The Rician model, unlike the One-Dominant, allows
us to vary the specular-to-diffuse ratio (SDR) in the return. As the SDR varies from —oo
to oo (dB), the Rician model goes from the Marcum to the Rayleigh model. Therefore,
the Rician model produces a family of intermediate distributions between the Marcum and

Rayleigh and includes both.

Two-Tone Targets We have seen models based on a single dominant echo, an infinite
number of independent and identically distributed (i.i.d.) echoes, and a mixture of the two.
A logical question to ask is whether an intermediate number of i.i.d. echoes provides an
intermediate result? The answer is not always. Jao and Elbaum have shown that a model

based on two equal-amplitude random-phase returns (glints) provides an extreme case (in

*The return from the target is Rician distributed only if a linear-law combiner is used; however the target
is still called a Rician target for a square-law.
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the sense of required SNR for a given detection performance) {41]. Thus, by considering
a target with two equal glints we can bracket the behaviour expected from radar models
composed of any number of glints in Gaussian noise. We do not consider more than two
glints, because as the number of glints increases. the target becomes closer to being Rayleigh

distributed (provided the glints have equal amplitude.)

5.2.1 Moment Generating Functions

Recall that the SLOC function as given by (4.10) and (4.8) is
t t
n= 2L~ hp/() (5.1)
pd  fo(t) pd(t)
In order to calculate the densities and probabilities of (5.1), we use moment generating

functions. Specifically, the density of the return under H, is
f(t) = L7HG(s)} (5.2)

where G1(s) is the Laplace transform or the moment generating function for the density
of the return given a target, and £~! is the inverse Laplace Transform. The detection

probability is found by integrating f;(¢), which is accomplished by dividing (7;(s) by s.
pd(t) = L™} {%(—52} (5.3)

(The expressions for fo(t) and pf(t) are similar.)

The momeont generating functions for the targets discussed above are given in table 5.1
and are derived from similar tables of characteristic functions in [45] and [16]. To evaluate
the inverse Laplace transforms in (5.2) and (5.3), we used the IMSL routine ‘DINLAP’,
which employs a numerical method described by [46].

In the table, M is the number of returns noncoherently combined (with square-law
combining), and g is the single-pulse SNR.

For the Rician model, the signal-to-noise ratio is given by
0= %(Lz + U?{ (54)

while the specular-to-diffuse ratio (SDR) is given by

la2

SDR = 2 (5.5)
o
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Table 5.1: Moment Generating Functions for Common Target Models

Swerling Case

Moment Generating Function
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where a is the amplitude of the specular (constant) return, o3 is the power in the diffuse
(Gaussian) component of the return, and the noise power is normalized to unity. In (/{(s)
for the Rician case. the variance of the Gaussian components in the signal, 0% = 1 4 o3 is
the sum of the powers in the noise and the diffuse return. Note that in table 5.1, (¢(s) for
the Rician model is valid for M = 1 only. The integration of multiple returns for Rician
targets is discussed in detail in section 5.2.3 and table 5.2.

The signal-to-noise ratio for the two-tone target is given by
0= }ai +a) (5.6

where a; and a, are the amplitudes of the two specular components (also called glints). It
is known that the two-tone target has its most extreme behaviour (in the sense of required

SNR)) when a; = a3 [41]. Therefore, in this thesis, we consider only equal strength glints.

5.2.2 ROCS and SLOCS for Single Returns

In figure 5.1 we have plotted the log-ROC and SLOC curves for a single return with p = 12
dB for Marcum, Swerling I and III, and Rician targets. For a single return Swerling I and
II are equivalent, corresponding to a Rayleigh-fading target. Similarly the Swerling 11T and
IV models are equivalent for a single return, corresponding to a Chi-squared distribution
with four degrees of freedom.

From figure 5.1 we can conclude that the log-ROC and SLOC curves for a single return
vary considerakbly for the various target models. As expected from (4.15), the Rayleigh target
(Swerling I/1I) has a constant SLOC. This means that any two stages operating nnder rate-
constraint principles will be guaranteed to have optimum performance for a Rayleigh target
if the second stage has a higher SNR than the first.

While the Rayleigh target has a flat SLOC, the Marcum target has the steepest. This
is due to the nature of the Marcum target. For high false alarm probability, the threshold
is set lower than the amplitude of the target tone and so the detection probability is high
and the SLOC is low. As the false alarm decreases, the threshold rises to the point where it
becomes comparable and then larger than the tone’s amplitude, resulting in a sharp decrease
in the detection probability and a large value for the SLOC.

The Swerling III/IV and Rician (SDR = 0 dB) targets give similar results, with log-

ROC’s and SLOC’s somewhat between the Marcum and Rayleigh cases. In one of the few
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Figure 5.1: Log-ROC and SLOC curves for Swerling Class and Rician Targets. Curves are
for a single return with p = 12 dB.
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papers discussing the Rician target, Scholefield showed that a Rician target and a Swerling
III target with the same SNR “agree reasonably well except at high and low signal-to-noise
ratios” [42]. Shapiro has also presented some results for the detection of Rician targets, in
the context of lidar [47].

In figure 5.2, we illustrate the family of log-ROC’s and SLOC’s for single-pulse returns
from Rician targets with the SDR as a parameter (Again p = 12 dB). As the SDR ranges
from —oco to oo we generate a family of curves ranging from the Rayleigh to the Marcum
target. Thus by considering the Marcum and Rayleigh models, we can generate the range
of behaviours expected from the family of Rician targets.

Returning again to figure 5.1, we see that, unlike the Rician, the two-tone model is
clearly not an intermediate between the Swerling I/II and Marcum models. Over all but the
highest values of pf, the SLOC for the two-tone is the smallest of the families considered.
Furthermore, the two-tone is our first example of a model that gives a non-monotonic SLOC;
further examples are given later in the chapter.

The density functions for the two-tone model do not converge well due to the expo-
nential increase of the modified Bessel function. (The extra s in the denominator makes
the pd calculation possible.) Therefore, the SLOC for the two-tone model was numerically
evaluated by fitting a cubic spline to the log-ROC data. The cubic spline was used since it
guarantees continuity of the SLOC at the data points [48].

5.2.3 Effect of Integration

Thus far we have considered only single pulses (M = 1). We now consider the effect of
integrating multiple pulses. Beginning with the Rayleigh target, we see that there are three
different scenarios for integration depending on the level of correlation between consecutive

pulses:

1. Coherent integration - this assumes pulse-to-pulse correlation and results in another

Rayleigh model with g increased by a factor of M.
2. Noncoherent integration with pulse-to-pulse correlation - this is a Swerling I model.

3. Noncoherent integration with pulse-to-pulse decorrelation - this is a Swerling [ model®.

30f course, we could add a fourth: coherent integration with the pulse-to-pulse decorrelation, but this
would yield a Rayleigh target with no change.
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Figure 5.2: Log-ROC and SLOC curves for Rician targets with Specular to Diffuse Ratio
(SDR) as a parameter. Curves are for a single return with g = 12 dB.
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Figure 5.3 shows tke log-ROC and SLOC curves for the three types of integration of 16
looks at a Rayleigh target with ¢ = 0 dB and 3 dB. For all integration techniques, the ROC
curve is higher and the SLOC curve lower for the 3 dB than for the 0 dB target. The next
thing to notice is that the Swerling II target actually achieves higher detection probability
than coherent integration for false alarm probabilities greater than 107¢. This well-known
effect results from the probability of small values for the single-look SNR that will remain
throughout the 16 returns for the coherent case, but will be averaged out by large returns
in the uncorrelated (Swerling II) case. Thus at first glance, it mezy appear that one would
always want to attempt to de-correlate the returns (for example by using frequency diversity
in the radar waveform); however, coherent integration offers other gains such as the ability
to use frequency discrimination (MTT or Pulse Doppler) techniques. Such methods depend
on the radar returns remaining correlated pulse-to-pulse for several returns, and provide
gains not evident in figure 5.3. Note that the Swerling I SLOC curve is at all points above
that for the coherent integration. This suggests that a system could use a stage utilizing
noncoherent integration to cue a stage utilizing coherent integration; we will return to this
idea in section 5.3.

In figure 5.4, we have plotted the log-ROC and SLOC curves for coherent and non-
coherent integration of 16 returns from a Marcum target with p = 0 dB and 3 dB. Note
again the 3 dB target has a higher pd and a lower SLOC curve than the 0 dB target. The
threshold effect for a tone target is evident for the coherent integration (which is now a tone
with amplitude multiplied by 16). Note that, by definition, the Marcum target will have
the same amplitude pulse-to-pulse and so there is only one type of noncoherent integration.
From the SLOC curve of figure 5.4, we can see that for a Marcum target (at least with
sufficiently high enough SNR), the SLOC for noncoherent integration will be greater than
the SLOC for coherent integration.

The log-ROC and SLOC curves for coherent and noncoherent integration of 16 returns
from a Two-Tone target with equal glints for ¢ = —3 dB and 0 dB is given in figure 5.5.
The SNR comparison is made between 0 and -3 dB because of convergence problems for 16
coherent integrations of a 3 dB target; as expected the higher SNR target has ihe larger pd
and smaller SLOC. Again the SLOC for the noncoherent integration is larger than that for

coherent integration when the false alarm probability is not greater than 10~%.
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Figure 5.3: Log-ROC and SLOC curves for integration of 16 returns from a Rayleigh fading
target with single-pulse SNR = 0 dB and 3 dB
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Rician Targets For Rician targets, there are 4 integration models possible, namely:

1. Coherent integration, with diffuse component pulse-to-pulse correlated. The results
will range from a single tone to a Rayleigh target (both with p increased by A1) as

the SDR goes from oo to —oo. See figure 5.6(a).

2. Coherent integration, with diffuse component decorrelated pulse-to-pulse. The results
will range from a single tone with o multiplied by M to a Rayleigh target with p

unchanged (i.e. no gain in SNR) as the SDR goes from oo to —co. See figure 5.6(h).

3. Noncoherent integration with diffuse component correlated from pulse-to-pulse. The
results will range from a Marcum model to a Swerling 1 model as the SDR goes from

oo to —oo. See figure 5.7(a).

4. Noncoherent integration with diffuse component decorrelated from pulse-to-pulse. The
results will range from a Marcum model to a Swerling II model as the SDR goes from

oo to —oo. See figure 5.7(b).

Note again the flexibility that the Rician model gives over the Swerling 111/1V; for the
latter we could define coherent integration only by increasing g by M - however there is
no physical significance. Also note that the performance curves for the Rician model are
bounded by those for the Marcum and Swerling I/11 models. Therefore, we need consider
only the Marcum and Swerling models. This justifies our use of only a single value for
o when considering Rician targets; we are still guaranteed that the pd curve will become
higher and the SLOC lower when p increases.

For all of the target models considered, the SLOC has been lower for increased SNR.
From a rate-constraint perspective, this is good news: slower systems are expected to have
higher SNR, and we want the slower systems to have higher SLOC functions.

Furthermore, all the models considered have at least some region where noncoherent
integration produces a larger SLOC than coherent integration. In the next section, we con-
sider a two-stage detection scheme where the first stage implements noncoherent integration,

and cues the second stage, which uses coherent integration.
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Figure 5.6: Log-ROC curves for coherent integration of Rician targets with diffuse com-
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returns with o = 0 dB.
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Table 5.2: Moment Generating Functions for Integrating Rician Targets

Integration Case | Moment Generating Function

—Ma?s
exp<2[1+s(1+Ma§)])

1+s(1+Ma’§)

1 G](S) =

—Ma2s
€Xp 2[1+s(1+a§)})

1+s(1+a§)

—Mazs
eXp 2[1+s(1+Ma§)]

(1+s)M—11 +s(1+Mcr§)}

2 G](S) =

3 Gl(S) =

2
exp(zuﬁ(ﬁjin)
. d
4 Gi(s) = [1+s(1+05)]M

5.3 Application: Combined Noncoherent Coherent System

We now present an example of the application of rate-constraint theory to signal processing.
Specifically, we will examine how the amount of processing required to derive Doppler in-
formation on targets can be decreased by orders of magnitude with only moderate increases
in required SNR to achieve equivalent detection performance.

Consider the detection system of figure 5.8. The first stage uses noncoherent integration
of M returns to determine the cells that are most likely to contain targets. The second stage
then coherently combines another M (independent) returns, and makes the final detection
decision. Such a system is very efficient in the number of Fast Fourier Transforms (FFT’s)
required.

One subtle point should be noted regarding the false alarm probability specification.
When coherent integration of M returns is used, the total number of chances for a false
alarm increases by a factor of M, since each return yields M frequency bins. Therefore, the
specification for overall false alarm probability may also have to be changed when comparing
the detection pei’fqrma.nce between a fully coherent and fully noncoherent system. For

- example, if the actuator following the coherent system treats each Doppler cell as individual
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Figure 5.8: Combined Noncoherent/Coherent System. Only those cells crossing the first
threshold are coherently integrated by the second stage.

(as in an automated tracking system), the designed false alarm probability must be divided
by M; however, if the actuator is, for example, a jet interceptor that must interrogate a given
range cell (regardless of the Doppler resolution of that cell), no such division is required.

To investigate such a combined detection system, we compare its detection performance
with a ‘conventional’ system using same number of pulses, coherently combining each burst
and noncoherently combining the two (using quadratic combination). The system of figure
5.8 utilizes two independent bursts, each containing a number of coherent pulses. The opti-
mal combination system would coherently integrate the pulses within each burst, and then
optimally combine the results from the two bursts; however, we will make our comparison
against a system using quadratic combining.

To compare between the combined and conventional systems, we calculate the required
SNR (assumed to be the same for each burst) to get pdy = 0.8 for pfr = 10~¢ when the
a priori probability of a target, 7y = 10~ In figure 5.9, the difference in required SNR
between the optimal and combined systems is plotted as a function of the rate out of the
noncoherent stage for the Rician family of targets. As expected, the curves are bracketed
by the Rayleigh (equivalent to SDR= —o0) and the Marcum (SDR = oc) curves. Note that
for the Rayleigh target, the processing loss is monotonically increasing in r; this is due to
the constant SLOC of the coherent stage, which means that the system is globally properly
ordered and will always get better performance as the second stage is able to process more
data. For the Marcum target, the processing loss is less than for the Rayleigh, but is not
monotonically decreasing for large values of r. The non-monotonicity results from the tests

not being properly ordered, so operating under the rate-constraint is not optimal. However,
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Figure 5.9: Processing loss for detection of Rician targets: pd = 0.8,pf = 1076, m; = 1074,
M =16

as shown by figure 5.9, the total loss is not going to be more than a couple of dB.

Note for 7 = 1, the curves converge to a value of &~ 2.45 dB. This value gives the gain
obtained by the noncoherent integration of the two bursts in the conventional system; for
7 = 1 the combined scheme just uses the results of the second burst. (The actual value of
2.45 dB is a function of the detection and false alarm probabilities used.)

In 'ﬁgurg 5.10, we consider the effect of changing the number of cells integrated per burst.
Since Rician is bounded by the two, we consider only Marcum and Rayleigh fading targets.
The losses become smaller as M decreases.

As figures 5.9 and 5.10 indicate, it is possible to buy considerable simplifications in
complexity with moderate prices in signal-to-noise ratic. For example, based on figure 5.9,
when detecting a Rician target based on 16 returns, the number of FFT’s required may
be reduced by a factor of 100 with processing losses of less than 5 dB. If the target has a
significant glint (i.e. SDR > 10 dB), the loss drops to less than 3 dB.
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of M: pd = 0.8,pf = 1076, 7, = 107*

Thus far, we have considered the SLOC characteristic of different target models in
Gaussian distributed noise. In the next section, we briefly investigate the effect of radar

clutter which has heavier tails than the Gaussian distribution.

5.4 Effect of (K-Distributed) Radar Clutter

We have considered only radar returns for models based on Gaussian noise. In this section
we investigate the log-ROC and SLOC properties of radar targets in non-Gaussian clutter.

The emphasis of this thesis is not on how to calculate probability integrals; however,
we will briefly outline a new technique developed by Bird in [16]. While a thorough under-
standing of the method is not required, we do present enough detail to provide a context

for the results to follow.
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5.4.1 The Method

The technique of [16] treats both linear and quadratic detectors; however we consider only
quadratic combining here. The two perform very similarly, with the linear providing the
practical advantage of having a smaller dynamic range, but requiriag a larger collapsing
loss. (The collapsing loss is the additional signal required to maintai1 the same detection
and false alarm probabilities when unwanted noise samples are integ-ated with the desired
signal (plus noise) samples [6].)

The method works for circular symmetric distributions. Since the phase of the noise
and target return is symmetric over [0, 27, the two-dimensional characteristic function of
the joint distribution of the in-phase and quadrature components simplifies to a function of

the single radial variable, z. Then we have the following transform pair
P(w) = /Ooo fz(2)Jo(wz)dz (5.7)
and
fa(2) =2 [ Swlwdo(aw)d (5.8)
where Jo(z) is the ordinary Bessel functior? of order zero, fz(z) is the density function of the
radial variable Z, and ®(w) is the coherent characteristic function of f(7,q). The method’s

appeal arises from the ease in which ®(w) may be determined for a number of interesting

target and noise scenarios.

For a square-law detector, the test statistic is ¢ = 22, so that (5.8) becomes

fo@ =1} [ @(whoaly/g)d (59)
Now, in order to calculate the distribution for the noncoherent integration of M inde-

pendent returns, we require the noncoherent moment generating function of g, given by

Go() = [ fala)exp(—sa)dg (510)
Substituting (5.9) into (5.10), and exchanging the order of integration,
o0 I'OO .

Go(s) = %/0 P(w)w [/0 Jo(+/qw) exp(—sq)dq} dw (5.11)

but the integral in the square brackets is the Laplace transform of Jo(y/qw) which is

exp(—w?/4s)/s so therefore

ot w w?
Gy(s) = %/0 @(w)—g exp (_74_3) dw (5.12)
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Then to calculate the detection probability,
1 ,
pd(t) = 1— £ {;Gq(s)M } (5.13)

where the s~! factor indicates the integration required to calculate the cumulative density
function, and the M exponent results from the noncoherent integration of M independent
samples. (Note the false alarm probability is similarly calculated with (/4(s) replaced by
the appropriate moment generating function under Hy.)

Note that the technique may be used to generate the previous results for Marcum,
Rayleigh and Rician targets (however, there is no appropriate model for a Swerling I11/1V
target in this formalism). Moreover, the technique can be used to create targets composed

of any mixture of tones and Gaussian noise.

5.4.2 K-Clutter

It has long been recognized that for some radar scenarios (for example, shallow grazing
angles) th2 noise and/or clutter is not well-fit by a Gaussian distribution [49],[50]. The
log-normal and Weibull distributions have been used, with varying degrees of success. The
Weibull distribution, while convenient, isn’t motivated by a physical justification.

First introduced in [50], the K-distribution has been shown to provide better fits to
experimental clutter data in [49]; in addition it generalizes to the Rayleigh and Weibull
distributions®.

The K-distribution is a compound model, consisting of a local mean level y which is fit

well by a Chi distribution:

2b2(u+1)y2l/+] N »
- —b%y?) 5.14
f(y) T+ 1) exp(—b°y”) (5.14)

and a ‘speckle’ component which is Rayleigh distributed with mean y:
o owz [ wz?) ,
flzly) = 22 P \ 1 ) (5.15)

Integrating to get f(z) yields

2b bz \vH! , ,
T)= T d K, (bz 5.16
1@ = [ ey = () Kotea) (5.16)
*Thus the Weibull distribution does have a physical interpretation: it results from a K-distribution with
v = —0.5. The Weibull model is used for its mathematical convenience however, and the K-distribution

produces the more general model.
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where K, is the v** order modified Bessel function of the third kind, v is a shape parameter
and we have normalized z (divided by 1/7) in order to have the same notation as [51]. b is
given by

b=2 :‘IE’/TZ% (5.17)
From the literature, sea clutter seems to be fit well by values of v in the region —0.75 <
v < —0.5 or so [51], while ground clutter may have values as low as v = —0.9 [49]. Note
that v = —0.5 yields a Weibull distribution, while v = co gives the Rayleigh distribution
(smaller values of v indicate more ‘spikiness’ in the distribution).

The coherent characteristic function for the K-distribution is given by [49]

2 v+1
B(w) = (1)23——&)2) (5.18)

If we include Gaussian components (from thermal noise and a Rayleigh target), and a

specular return of amplitude a, the resulting coherent characteristic function is

2 r+1 wio?
P(w) = (—ﬁ-—i—;z-) exp (— 5 ) Jo(aw) (5.19)

where under Hy, 0% = o2, the power in the thermal noise component, while under Hj,
the diffuse power in the target is included so that 02 = o2 + o2. In (5.19), a single glint
of amplitude a is included; any number of glints with any amplitude may be included by
replacing the Bessel function by a product of Bessel functions, each with its argument
weighted by the appropriate amplitude. However, we will consider only single glint, and
Rayleigh targets here.

From a study matching the K-distribution to experimentally measured clutter, it is noted
that the clutter to thermal (Rayleigh) noise can be on the order of 23 dB or so [49]. In
figure 5.11, we have plotted the log-ROC and SLOC curves for integration of 16 returns of
a Rayleigh target in K-distributed clutter with a single-pulse clutter-to-noise ratio (CNR)
of 23 dB and a signal-to-clutter ratio of 0 dB. The shape parameter for the K-distribution
was set at ¥ = —0.85, which corresponds to an experimentally determined value for land
clutter described in {49], and at » = —0.5, which corresponds to a Weibull distribution. Of
course, v is a function the radar parameters (frequency, polarization, depression angle, etc.)

as well as the area being investigated.
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Figure 5.11: Log-ROC and SLOC curves for integrations of 16 returns of a Rayleigh target
in a mixture of K-Distributed plus Gaussian noise (CNR = 23 dB, and SNR = 0 dB).
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For comparison, the ROC and SLOC curves for coherent integration of a Rayleigh target
and noncoherent integration of a Swerling II target (each with SNR = 0 dB and CNR = -c0
dB) are also given in figure 5.11. The effect of the heavy tails of the K-clutter is evident.
The clutter results in lower detection probabilities for pf < 1072 or so. To obtain a given
pf, the threshold must be raised significantly compared to the Gaussian noise case, resulting
in a much lower detection probability. The heavier tails result in smaller densities at lower
signal values, therefore pd is higher for high values of pf. Note that the same effects are
evident in comparing the two clutter cases: for the Weibull clutter (¥ = —0.5), the tail is
not as heavy as for v = —0.85 and so pd is lower at high pf and higher at low pf.

The SLOC functions of figure 5.11 were again evaluated by fitting a cubic spline to the
log-ROC data. Note that the SLOC is higher for noncoherent integration than for coherent
integration over some operating regions, so that the processing scheme of section 5.3 is still
viable.

Similar curves are plotted in figure 5.12 for non-fading (Marcum) targets with the same
SNR and CNR. The interesting curve is for the coherent integration of a target in clutter with
heavy tails (¥ = —0.85). Note how the log-ROC literally crashes for false alarm probabilities
smaller than 3(10)~3. The cause of the crash is that the threshold for pf = 3(10)73 just
exceeds the value of the signal component. Since the clutter has such a heavy tail, the
change in pf is not as extreme as the change in pd; hence the large slope. The large slope
is reflected in a peak in the SLOC as indicated in the figure. For the smaller Weibull tail
(with v = —0.5) the effect is less pronounced and occurs at a lower pf. The moral of figure
5.12 is clear: when dealing with a Marcum target, make sure the threshold is set higher
than the amplitude of the return or else detection performance will be extremely poor.

Note that provided we consider only false alarm probabilities greater than that which
would cause a crash, coherent integration again produces a smaller SLOC function than
noncoherent.

In our analysis of K-clutter, we have assumed that the clutter is identically and inde-
pendently distributed (i.i.d.) from cell-to-cell. In fact, we have implicitly assumed temporal
and spatial stationarity for the statistics in all that we have done thus far. To combat the
nonstationarity inherent in any radar problem, a number of normalization techniques called
Constant False Alarm Rate (CFAR) methods have been developed. In the next section

we will consider how such techniques may be incorporated into systems operating under
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Figure 5.12: Log-ROC and SLOC curves for integration of 16 returns of a Marcum target
in a mixture of K-Distributed plus Gaussian noise (CNR = 23 dB, and SNR = 0 dB).
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Figure 5.13: Cell Averaging Constant False Alarm Rate processor.

rate-constraint principles.

5.5 A Brief Note on Normalization Techniques

Thus far we have not considered the role of normalization (CFAR) techniques in Rate-
Constraint Theory. Normalization methods are used to combat the global nonstationarity
of interference (clutter or thermal noise). There are two different assumptions that can be
made to motivate CFAR techniques: spatial homogeneity or temporal stationarity. Cell
Averaging CFAR and Order Statistic CFAR work by detecting when a given cell is much
larger than it neighbouring cells. Clutter map CFAR detects when a given cell exceeds the
average of the previous returns for that individual cell.

Our coverage is intentionally brief; the intent is to show how normalization techniques
can be used to combat nonstationarity in systems operating under a rate constraint. For
further detail the interested reader is referred to an extremely readable review of CFAR by

Farina and Studer [52].

Cell Averaging CFAR The general algorithm for CA-CFAR processing is given in figure
5.13. The basic idea is to use the cells surrounding a given cell to estimate the background
noise level. The estimate is then multiplied by a constant, k to generate the threshold that
the return will be compared against. Note that the cells used to form the estimate may be

neighbours in Doppler, azimuth, range or a combination.
It is well known that the probabilities of detection and false alarm for a CA-CFAR



CHAPTER 5. APPLICABILITY TO THE RADAR PROBLEM 105

> —» Decision

Figure 5.14: Clutter Map Constant False Alarm Rate processor.

system operating on a Rayleigh target in Gaussian noise are, respectively, given by [53], [43]

pd = (1 + mfm)N (5.20)
and N
pf= (l + —f—,) (5.21)

where N is the number of cells used in the estimator, k is the multiplier used to determine

the threshold from the estimate, and g is the signal-to-noise ratio.

Clutter Map CFAR In figure 5.14, the processing scheme for clutter map CFAR is given.
A recursive averager is used to estimate the mean value of the return for the individual cell.
The estimate is again multiplied by a constant, k& and then used for the threshold.

Nitzberg has shown that when detecting a Rayleigh target in Gaussian noise with a
Clutter Map CFAR system such as in figure 5.14, the detection and false alarm probabilities
are given by [54]

l ,
P T+ FoW (1= W)™ (5.22
and
1
" | (5.23
P MM ol + kW (1 — W)™ 5.23)
where k is again the CFAR multiplier and
o= 1 (5.24)
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Figure 5.15: Log-ROC curve for Clutter Map and Cell Averaging CFAR systems detecting
a Rayleigh target in Gaussian noise (g = 12dB).

In figure 5.15, we have plotted the log-ROC curves for the two CFAR techniques, along
with the curve for a deterministic threshold. Since the effective number of cells used in the
estimate for the clutter map is [43]

2-W
w
and N = 16 for the CA-CFAR, it is not surprising that the two techniques give nearly

=15 for W = .125 (5.25)

identical performance for these parameters. Note that for large pf and pd, the log-ROC
(and therefore SLOC) curves for the CFAR are very close to that for the Rayleigh case.

Order Statistics Another way to estimate the mean background interference level is
to rank the returns, and multiply the m** largest by a constant. We introduce a similar
technique in chapter 6. The basic idea is this: in rate-constraint we want those cells most
likely to contain targets to be passed on to the next stage. Therefore, why not rank the

returns and pass on the largest, thereby eliminating the need for an explicit threshold?
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All of the CFAR techniques can be used in rate-constraint systems. While we don’t
require the constant false alarm rate, the normalization techniques ensure that large clutter
regions won’t mask small targets. The CFAR multiplier & can be controlled by a rate-

constraint system to generate the desired rate.

5.6 Conclusions

In this chapter, we have presented graphs illustrating the log-ROC and SLOC curves for

several radar models. For the models studied, a few general conclusions can be drawn:

1. The SLOC number tends to decrease with increased SNR; therefore a multi-stage
system consisting of fast, low SNR stages cueing slower, higher SNR stages will have

at least some operating region where the system is properly ordered.

2. The SLOC number tends to be higher for noncoherent integration than for coherent
integration for the same number of returns of a given target type. A system of the
type discussed in section 5.3 consisting of a stage utilizing noncoherent integration
cueing a stage performing coherent integration is therefore feasible. For the target
models considered, the loss incurred by operating under the rate constraint is small,

even when the stages are operating in a region that is not locally properly ordered.

3. A Rician target is a more accurate representation of a target consisting of one single
dominant and a number of smaller i.i.d. scatterers. The range of behaviours of a
Rician target may be bracketed by considering Swerling I/II targets (for which the
SDR = —oo dB) and Marcum targets (for which SDR = oo dB).

4. Radar clutter typically produces heavier tails than predicted by the Rayleigh distri-
bution. The heavier tails result in larger SLOC values at lower values of pf.

5. Normalization techniques cause slight losses, and therefore increase the SLOC slightly

when compared to ‘crisp’ thresholds.

Remember that in real radar deployments, the actual target type is not known - to us
or to our detection scheme. Nevertheless, the radar models do allow us to investigate rate

constraint theory in an established framework. It appears that rate-constraint systems are
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in fact optimal over large operating regions for many common models; more importantly,
rate-constraint tests can be practically implemented. The analysis also allows us to make
more intelligent design decisions regarding required processing rates for multi-stage systems.

We saw that CFAR techniques were invented to deal with global nonstationarity, by
assuming local stationarity. The nonstationarity suggests that a rate-constraint test will
not be able to produce a constant output, but will have some variance about the desired

value. In chapter 6 we investigate some of the consequences of such variances.



Chapter 6

Implementation Issues

6.1 Introduction

The basic strategy underlying resource-constraint detection is to utilize the available pro-
cessing resources to the fullest extent. In chapters three and four we showed that the output
rate from a detection stage should be matched to the maximum processing rate of the fol-
lowing stage. Like all of detection theory, our work thus far has been concerned only with
first-order statistics. However, the hit-rate is a random variable with variances that must
be accounted for. Another source of variance is due to the fact that the output rate, while
observable, must be estimated.

A rule of thumb when estimating a binomial probability & is to use at least %? cells
[55]. The & in question, the hit-rate, is often a small number for radar systems (say
& =~ 1072 — 107 [18]). Therefore a large number of cells are required to get a reasonable
estimate. Nonstationarity may be a problem when such long observation periods are nec-
essary. While the normalization techniques discussed in chapter five help, the output rate
will vary somewhat about the desired operating point.

When the output rate has a mean £ and a non-zero variance, there will be times when the
instantaneous rate is larger than & . Therefore, some of the hits will be lost to normalization
unless allowances are made for the overloads.

In this chapter, we present ways to deal with the variance in the output rate from a test
operating under a rate-constraint criterion. The first technique discussed is the introduction

of a queue between the detection stage and the subsequent actuator. We examine queuing
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structures to handle two different scenarios. The first is for a processor that treats all
hits the same. For example, a clutter map might be applied to all cells that contain hits;
the processing required for the map is the same whether the hit was caused by a terget
or a false alarm: The second situation is the more general; we consider actuators that
treat false alarms and targets differently. For example, a target will presumably tie up the
computing resources in a tracking computer longer than will a false alarm since the target
will be continually monitored during its presence in the radar field, while the false alarm
will require only a short number of radar looks to dispense with.

Many multi-stage detection systems can be characterized by a combination of a stage
operating under the first scenario followed by a stage operating under the second. For
example, a multi-stage detection system where all hits are processed by various forms of
CFAR (clutter Map, binary integration etc.) is explained in [18]. Further in the detection
chain, those cells that pass the CFAR processing are passed to a track initiator, which
requires more processing for targets than for false alarms. In such systems, the earlier
stages are characterized by smaller values for the target concentration and signal-to-noise
ratio.

Another method of dealing with the stochastic nature of the output rate is to eliminate
the variance altogether by ranking the returns and passing on only those cells most likely to
contain targets. The load on the resource limited actuator can be controlled by varying the
fraction of cells chosen during each processing interval. It might seem counter-productive
to use a ranking scheme since the test will always provide exactly the same numkber of hits.
Does such a test provide any information? The answer is yes, provided a time-history! is
available for the cells that produce hits. If a given cell is consistently ranked as the largest
in its neighbourhood, then it is more likely to contain a target. The idea of combining a
ranking scheme with a test that declares a target present if a cell is chosen M or more times
in N consecutive scans was first introduced in [17].

The structures in this chapter provide the ability to run systems at (or near) maximum

capacity even in the face of ignorance of the underlying statistics.

' A spatial ‘history’ may be more appropriate in sonar applications; a hit is more likely to be a target if
there are hits in adjacent cells.
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Figure 6.1: Queue for buffering output hits

6.1.1 Outline of Chapter

In section 6.2, we analyze the use of a simple queue between a detection stage and a bank
of actuators. We assume that all hits, whether they be targets or false alarms, require a
single service time. The trade-offs between the output rate of the test, the maximum queue
length, and the mean delay in the queue are examined.

The method of ranking the returns and processing the largest is presented in section 6.3.
We compare the results of ranking with a threshold test for detection of a Rayleigh target
in Gaussian Noise. The loss attributed to ranking is not large for the resource-constraints
considered.

The use of “M/N” Detectors is the subject of section 6.4. We include more detail than
is required for the purposes of the thesis in order to present some new results for the mean
and variance of the time required to confirm a target with a given confirmation rule.

In section 6.5, we extend the Markoff model introduced in section 6.2 to allow targets
and false alarms to be treated differently. The results from the analysis stress the need
for processors that are able to quickly dispense with false alarms. Section 6.6 then applies
the analysis of section 6.5 to a network of track-initiators, each utilizing a M/N strategy.

Finally, chapter conclusions are discussed in section 6.7.

6.2 Queues for Buffering

Consider figure 6.1 consisting of a queue with maximum length Ny feeding a bank of 5

servers (actuators). Let P; be the steady-state probability that there are exactly i cells in
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the system immediately after the beginning of a service cycle. It can be seen that P; is then
equal to the probability of i cells in the queue immediately before the queue feeds 5 cells
to the actuators?. Now let dg be the probability that there are no more than S cells in the
system at that time, that is

; (6.1)

o

s
ds=Y
1=0

Assume that the number of cells investigated per processing interval is C, of which, on

average, £; = mpd + mop[ are hits. Then following [56],

Py = dsBS (&)
P = dsBY(&)+ Psy1BS (&)
Py = dsBS(&)+ Psy1BS(€1) + Psy2BS (€1)

P = dsB (&) + Psy1BE 1 (61) + -+ -+ PsrBS (61) for k < Ng— S

Po = dsBY(&)+ PsniBE1(6) + -+ Prgo1Biyr_(ng-s)(&1)
+PngBi_(ng-5)(61) for Ng - S <k < Ng-1

Py, = 1=(Bo+ P+ -+ Prnyaa) (6.2)

B (p) = (C) (1 - p)°

where

1

denotes the binomial probability mass function expressing the probability of getting ¢ suc-
cesses out of C tries given that the probability of success for an individual trial is p. The
final equation in (6.2) normalizes the solution.
Solving the linear system of equations of (6.2) for the P; yields the steady-state distri-
bution for the queue population. The average load carried by the system is then
5-1 Ng
As= Y iPi+§) B for Ng > 5 (6.3)

=1 =S
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Figure 6.2: Probability of queue overload

The probability of a hit veing rejected by the queue is given by

offered load - carried load o
b= offered load (6.4)

but the offered load is given by &,C, so that

As

Py=1--=

316

Figure 6.2 shows the probability of queue blockage, P, as a function of the maximum
queue length. Curves are given for two values of 5 and normalized load

_ &

p - ‘S'
As expected, the probability of a queue overload is higher for larger offered loads. Decreasing

the number of actuators from 10 to 1 reduces the probability of queue overload because there

*Note that the analysis is equivalent for a single actuator that takes S cells and serves them before
updating the queue; however, in that case we must remember to divide the processor rate by S.
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are more cells examined per cycle for the lower value of S, and therefore a smaller variance
in the output rate. The results of figure 6.2 are for C' = 1000, but do not change appreciably
with C, provided C is large enough. The lack of dependence on C' is to be expected since
a binomial distribution may be approximated by a Poisson for large values of C3. In fact,
Chu’s curves, derived from the Poisson approximation are identical to those of figure 6.2
[56].

Figure 6.2 shows that in order to reduce the risk of a cell being blocked out by a full
queue, there are two options. Either the normalized load, p must be reduced or else the
maximum length of the queue must be increased.

The former solution, reducing p, introduces a trade-off between the probability of the
queue availability (= 1 — P,) and the detection probability. If p is decreased, the output
rate of the threshold test, £ and therefore the detection probability is also decreased. The
probability of queue overload is, however, reduced. The trade-off between pd and P, for a
particular scenario (Rayleigh target with ¢ = 20 dB in Gaussian noise, m; = 1073, N =
10,C = 1000 and 5 = 1) is shown in figure 6.3. Note the introduction of the gueue has
softened the effect of overloading the actuator when compared with the randomization shown
in figure 3.7, for example.

The overall detection probability, given by
pdov = pd(l - Pb)

achieves its maximum at a value of p that is a function of all of the detection parameters.
For example figure 6.4 includes plots for several systems detecting a 10 dB Rayleigh target
in Gaussian noise.

There are a number of general conclusions to be inferred from figure 6.4:

1. The exact value of p for the maximum overall detection probability is a function of
the radar scenario. For the cases considered here, the location of the maximum ranges

from p~ 08— 1.

2. Increasing C, the number of cells, from 100 to 1000 while maintaining the expected
number of targets, 711C, decreases the overall detection probability, pd,,. The decrease

results from the increased variance in the output rate, which increases the probability

3The Poisson approximation is independent of the number of cells.
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Figure 6.3: Trade-off Between Detection Probability and Queue Availability for 7, =
5(10)%,p = 10 dB, Ng = 10,C = 100, 5 = 1.

of a hit being blocked by a full queue. Note that the value of p for maximum overall
detection probability doesn’t change; in fact the entire shape of the curve appears to
be similar for the two values of C, with only a vertical shift caused by the increase in
Py.

3. Decreasing the number of places in the queue from 10 to 5 while maintaining all other
parameters causes pd,, to fall off at a lower value of p. This is because the queue
blocking probability becomes more significant at lower offered loads since the queue
is shorter. As a result, the maximum for the overall detection probability is found at

a lower value of p when Ng is decreased.

4. Increasing the number of servers from 1 to 5 produces the highest overall detection
probability. The slight decrease in queue availability (for example see figure 6.3) is

more than compensated for by the increase in pd due to the increased rate.
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Figure 6.4: Overall Detection Probability for p = 10 dB.

5. The largest change in shape for the overall detection probability results from doubling
the target concentration from m; = .005 to .01. The increase in m; causes a sharper
decrease-off in pd (as expected from the discussion in section 3.2.1). As a result, the
value of p for maximum pd,,, is increased and in fact is the largest for any of the curves

of figure 6.4.

It appears that the way to increase pd,, is to increase the length of the queue. However,
increased queue lengths lead to increased queuing delay. If a target remains in the queue
too long, it may have moved by time the actuator gets around to serving it.

The time-average of the queue length is given by

No
Lo =Y iP+1i40C (6.6)
=5
where the first term in (6.6) is the expected number of cells in the queue at the beginning of

the service interval, and the second term is the time-average of the number of hits occurring
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Figure 6.5: Mean delay for queue

during the service interval.
Then from Little’s equation, the mean delay in the queue is given by [57]

Lg

Wo = N

(6.7)

In figure 6.5, Wy is plotted as a function of Lg for two values of 5 and p. As expected,
the mean queue waiting time increases with Ng. The effect is more prominent for larger
values of p, when the queue is busier. For § = 10, the expected time in the queue is very
short when compared to that for § = 1. Recall, however, that if we are comparing two
systems with the same processing ability, the service times will be 10 times longer for the
S = 10 system than for the .§ = 1 system.

In this section, we have considered some of the aspects of queuing to smooth out the
variance in the hit-rate of a detection stage. We have assumed that all hits, whether they are
caused by targets or false alarms, require exactly one processor cycle to service. In section

6.5 we extend the analysis to account for random service times, not necessarily the same for
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both targets and false alarms. However, we now turn our attention to another technique of

providing a fixed-rate output.

6.3 Rate-Constrained Detection by Ranking

In this section, we consider the detection performance of a test that operates without a
threshold. Instead, the test picks the largest cells to pass onto the resource-constrained

actuator. We assume that during each service interval the radar interrogates C cells, and

passes on A for servicing.
In order to evaluate the performance of a system operating under a ranking system, we

require the distribution of the cells, given their position in the ranking.

If there are a total of Ny empty cells, the k* largest one has a density given by [58]
k No k-1 No—k
fo(z)=k L (Fo(z))" (1 — Fo(z)) ™" fo(<) (6.8)

where fo(z) and Fp(z) are the probability density and cumulative distribution functions for
the returns due to noise only. Similarly, the {** largest return out of a total of Ny cells?

containing targets has a density given by

N
file)=1 ( 11) (Fi(2)7'(1 = F(2)M fu(e) (6.9)
Now let
Pi(t) = P(atleast t of the N; targets are chosen) (6.10)
= P(I*" largest target > k* largest false alarm) (6.11)
oo To
= / £3(zo) fi(z1)dzydao (6.12)
Tog=—00 Ty=—00
where
‘ I=N;—t+1
and
k=No+t-A

~ *Note Ni+Ne=C.
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Then the probability of exactly ¢ targets being chosen is given by

pilt) = { R ;tﬁ()H D ?;zij (6.13)
The probability of detection, given that there are exactly Ny targets is then -
Mg
pdn, = Zﬁpt(l) : (6.14)

i=1
and to finally get the probability of detection, given an a priori target concentration, 7y, we

average over all values of N;:

C C )
By (m1)pdn, .
d= 3 MU 6.15
i N;=1 1- Bg(ﬂ’l) ( ))

The denominator in (6.15) is included because in order to calculate pd, we assume the
presence of at least one target.

We now become specific and consider the problem of detecting a Rayleigh target in
Gaussian noise. The density and distribution under the noise-only hypothesis is

2

fo(z) = ze™ % (6.16)
and
z2
Fo(z)=1—-e"7 (6.17)
Under the alternate hypothesis,
A z -..(L
— ite) 6.18
fi@) = e (6.18)
and ,
Fi(z)=1—e iFo (6.19)

where p is the signal-to-noise ratio. Of course, z > 0 for all of the above distributions and
densities.

In figure 6.6, we have plotted pd as a function of r = iév for Rayleigh targets in Gaussian
noise, along with the results from using a threshold. For each value of g (indicated on the
curves), there are two different curves drawn. The solid line is the log-ROC curve for a

threshold detector implementing a rate-constrained rule with mean output rate = 7. From
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Figure 6.6: Comparison of Detection curves for ranking scheme and threshold detection for
Rayleigh targets in Gaussian Noise. Target Concentration, 7, = 1074,

the Rate-Constraint lemma, we know that the threshold must give the highest achievable
pd for a given value of pf; hence ranking must result in performance loss. However, figure
6.6 shows that the loss is not very large, and decreases with increased o and increased r.
The increased loss in pd with decreases in r results from the fact that the threshold curves
fail to account for the need of a queue. If the queue blocking probability were included in
the threshold curve, the two curves would be closer.

The ranking technique gives a rate-constrained cutput, with zero variance. No latency is
introduced, since there is no queuning wait. However, it may seem that there is no significance
to the hits, since the test always produces the same number of them. One technique to gain
significance from the output of a rate-constrained test (if required) is to count the number

of times a given cell is picked in consecutive scans. We now consider M/N detectors.



CHAPTER 6. IMPLEMENTATION ISSUES 121

6.4 Coincidence Detectors

‘We have shown optimality of the rate-constraint criterion for detection systems with resource
limited actuators. Consider now a system operating under the rate-constraint but without
an actuator; the threshold crossings have no significance since there will always be the same
number of hits out of the first stage, regardless of the actual distribution of targets in the
detection field. While the hits denote the cells most likely to contain targets, further testing
of some form is required to establish their significance. Such post-processing is not required
under other detection strategies such as Neyman-Pearson; however, it often is included to
improve detection performance (e.g. [59]).

In order to gain significance from the threshold crossings, we seck further evidence or
support to confirm target existence. One form of support is coincidental crossings; if a cell
is consistently ranked highly we expect it to be a target. Note that this form of support is
temporal - we consider N consecutive scans and declare a target if a cell has M detectious.
However, we might also consider spatial support. For example, in an obstacle avoidance
sonar, we expect an object to extend to more than one cell, so we might examine the
cells adjacent to a potential target. In general, establishing any form of support requires
resources in the form of processing time and therefore inflicts a rate-constraint. Gerlach and
Andrews [60] recently have also discussed a similar trade-off between detector performance
and calculation complexity.

Note that the combination of a ranking test with a M/N detector was first introduced

in [17].

6.4.1 The M/N Detector

An M/N detector® is often used to initiate target tracks in a Track-While-Scan (TWS) radar
system [61]. We will return to track initiators in section 6.6.

The following description of the operation of M/N rules is included for two reasons.
First, before one can understand how M/N track initiators work under a rate-constraint
(in section 6.6), it is important to understand how M/N detectors work in isolation. The

second reason for the detail is to present a context for new results on the mean and standard

5The M/N detector has many names, including “Two-stage detector”, “Sliding Window Detector” and
“Binary Integrator”



"HAPTER 6. IMPLEMENTATION ISSUES 122

Figure 6.7: Markoff Chain For 2/3 Decision Rule

deviation of the time required to confirm a target. Previous approximate results given in
[62] and quoted in [52] are extended.

The dynamics of an individual M/N detector may be analyzed using conventional Markoff
chain techniques [61]. For example, consider the 2/3 rule as illustrated in figure 6.7. A target
is confirmed if it is detected on twe or more of three consecutive scans.

The equations governing the detectors are

P(0) (¢ 0 ¢ 0\ [ P(0)
P(1) _|ro000 P(1) (6.20)
P(2) 0 g 00 P(2) ’
PR ], \opp 1/]PB)],,
/ ] )
= A4 10 P (6.21)
\ b 1) PO,

where p and g are the probability of a hit or no hit from the detector stage (i.e. p and ¢
are either pd and (1 — pd) or else pf and (1 — pf) depending on whether the cell contains
a target or a false alarm.) We have partitioned the state transition matrix into a square
matrix A, row vector b, column vector of 0 and single entry 1 to simplify the analysis.

One of the parameters of interest for a detector is the mean delay or number of scans
required to confirm a target, given a specific single look detection probability. The problem
has been addressed by Castella in [62] for M/N rules, where N < 4. While Castella
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solved the system of equations governing the tracker by using a recursive algorithm, classical
Markoff chain methods provide a simpler, more accurate approach. We solve (6.21) for the

probability of the track being in a confirmed state (i.e. in state 3):

Per, = bP1+ Peg—y (6.22)

= bA* 'R+ Pop (6.23)
1

where we have set Pc; = P(3)g, and Py = | | since the tracker begins in state 0 with
0

probability 1. Then the probability of the track being confirmed in exactly k cycles is given
by

pey = Pep — Peg_q (6.24)
= bAF1R, (6.25)

Re-writing (6.23), the cumulative distribution function of (6.25) is given by

k
Pepy = Y bA"'R (6.26)
=1
k Pan—
= b (Z A’—l) P, (6.27)
=1
= b(I-A)I-A)'F, (6.28)

Note that this assumes that the target statistics remain stationary for at least k cycles,
which may be unrealistic for large k.

Figures 6.8 and 6.9 show the cumulative detection probability (CDP) as given by (6.28)
for M/N detectors with various parameters.

In figure 6.8, the CDP is plotted for a 3/5 rule for various p. As expected, the CDP is an
increasing function of p and k. If we are willing to wait long enough, (i.e. for k large enough),
high values of the CDP are attainable even with values of the single look hit probability, p
as low as 0.5. However, there are two problems with increasing k. First the CDP for false

alarms as well as targets will increase; second and more importantly, the target statistics
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Figure 6.8: Cumulative Probability of detection for 3/5 Rule

may not remain stationary long enough for large &. (For example, the target may perform
evasive maneuvers).

Figure 6.9 shows the effect of éhanging M with N = 5 and p = 0.5. As expected, the
easier tests (i.e. with lower Af) appear to perform better, although they also increase the
CDP for false alarms.

We can find the mean and standard deviation of the number of looks required to confirm

a target by taking moments of pc;. The moment generating function of pey is

Tpe(2) = E{zk} = chkzk =b ZAk_IzkE
k=1 k=1

=bz ) (zA)*Py = bz(I - z4)' Ry
k=0
Then the mean number of looks required is given by
E{k}= iz_g_) =b(I - A)~ %P, (6.29)
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Figure 6.9: Cumulative Probability of detection for M/5 Rule with single look detection
probability = 0.5

Now
dzI‘(l)

dz?
which can be solved for E{k?}, yielding

= E{k?} - E{k} = 26(1 - A)2AP,

E{k*} = b((I - A)3(I + A)F, (6.30)

The variance is then given by E{k?} — (E{k})%.

This new method of solution gives the same results as Castella’s; however its simplicity
allows initiation rules with N > 4 to be easily analyzed given the state transition matrix
governing the rule. We have developed a program to generate the state transition matrix
for an arbitrary M/N rule and are therefore able analyze any detection strategy. Table 6.1
gives the mean and standard deviation of the number of returns required to confirm a target
for various values of M, given specific values of p (p = pd or pf).

As expected, the average delay increases as M increases, and as p decreases. However,



CHAPTER 6. IMPLEMENTATION ISSUES

126

Table 6.1: Mean and Standard Deviation of number of looks required to confirm a target
for various rules.

M/N p=0.1 p=0.3 p=05 p=0.7 =09
1/N 10,9.49 3.33,2.79 2,141 1.43,0.78 | 1.11,0.35
2/2 110.0,108.6 14.44,13.11 6,4.69 3.47,2.18 | 2.35,0.83
2/3 62.63,60.87 9.87,8.31 4.67,3.16 | 3.00,1.46 | 2.23,0.55
3/3 1110.0,1107.8 51.48,49.28 | 14,11.92 | 6.38,4.32 | 3.72,1.46
2/4 46.90,44.84 8.41,6.66 4.292.63 | 2.90,1.24 | 2.22,0.51
3/4 425.0,422.1 25.76,23.24 | 8.77,6.42 | 4.84.2.48 | 3.38,0.79
4/4 1105.3,1104.2 | 174.94,171.81 | 30,27.09 | 10.55,7.75 | 5.24,2.27
2/5 39.08,36.75 7.72,5.81 4.13,2.36 | 2.87,1.16 | 2.22,0.50
3/5 243.3,239.9 18.39,15.59 | 7.27,4.66 | 4.46,1.85 | 3.34,0.64
4/5 3227.5,3223.7 68.98,65.51 | 15.78,12.62 | 7.17,4.05 | 4.56,1.13
5/5 | 110619,110860 | 586.5,582.4 | 62,58.22 | 16.50,12.94 | 6.94,3.24
2/6 34.42,31.84 7.34,5.28 4.062.21 | 2.86,1.13 | 2.22,0.50
3/6 166.4, 162.6 15.11,12.05 | 6.64,3.79 | 4.35,1.57 | 3.33,0.61
4/6 1502.4,1497.8 41.98,38.23 | 11.80,38.23 | 6.26,2.82 | 4.46,0.80
5/6 | 26010.8,26017.3 | 189.9,185.5 | 27.95.23.98 | 10.15,6.32 | 5.79,1.55
6/6 | > (10)5,>(10)® | 1958.2,1953.1 | 126,121.3 | 25.00,20.66 | 8.82.4.41
2/7 31.34,28.54 7.11,4.93 4.032.12 | 2.86,1.11 | 2.22,0.50
3/7 125.9,121.8 13.34,10.03 | 6.33,3.28 | 4.31,1.44 | 3.33,0.61
4/7 871.5,866.5 30.75,26.76, | 10.08,6.39 | 5.93,2.20 | 4.45,0.72
5/7 10202,10199 100.0,95.31 | 18.93,14.76 | 8.39,4.21 | 5.60,1.01
6/7 | 216521,217321 | '536.2,530.8 | 49.39,44.56 | 14.03,9.48 | 7.09,2.06
7/7 | > 7(10)%,> 7(10)® | 6530.7,6524.6 | 254,248.4 | 37.14,31.99 | 10.91,5.79
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as Castella also pointed out, the standard deviations are very large compared to the means,
especially when p is small. Therefore the distributions of the delay are quite broad, so that
the mean value must be considered as a general trend and not a precise design value. The

results again stress the dangers of basing design and analysis on first-order statistics alone.

6.5 A Network of Asynchronous Actuators

Consider again figure 6.1. As before, assume that the detector examines a radar field

containing C cells with an a priori target concentration of 7.

Those cells crossing the
threshold are passed to a network of N4 actuators, each of which may or may not finish
with the cell it is currently servicing. We assume that the entire network is updated once per
service cycle, and that each available actuator is loaded only at the end of discrete service
cycles. The network is assumed to have been operating long enough so that the steady-state
probabilities for the processes describing the individual actuators and the entire network
are valid. We also assume that the service times of the servers are accurately described by
binomial distributions.

We calculate the probability that a new target, coming into the equilibrium environment,
will be detected and find an available actuator. Note that we calculate the single look
detection probability (that is, the target gets only one chance to make it into the actuator
network to be confirmed. We can make the cumulative detection probability arbitrarily
close to 1 by increasing the number of looks allowed.)

Let po = P(hit|Hg) = mopf be the probability of a given cell being empty and causing a
hit, and p; = P(hit|H;) = 71 pd be the probability of a cell containing a target and causing
a hit. Now let peg and pe; be the probability of a server busy with, respectively, a false
alarm or a target finishing with the cell in question.

To analyze the network, we require two state variables, the number of actuators busy

with false alarms and the number of actuators busy with targets. Let
P(s = i,j)r = P(¢ actuators busy with false alarms and & actuators busy with targets at time k)
Then the equations of the Markov process describing the network are given by

P(s=1,j)k+1 = AijumP(s =1,m); (6.31)

SFor the examples in this section, we consider larger values of #; and g than in section 6.2, since it is
expected that the stages of this section will be found towards the end of a multi-stage detection chain.
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When the number of busy actuators is less than N4,

{ m

Ajam= 3. Bl (peo)Be "™ (po) 3 BT (per)By, ™ (p1)  (6.32)
co=max(0,[—1) . c1=max(0,m—j)
where
bo =11 + ¢co
and

bi=j-m+¢

The interesting things, as far as analysis is concerned, happen when i + j = N4, that
is, when there are at least as many, and generally more, threshold crossings as actuators.

Then

! m C—l-m C~l-m—~zg

Aijim = Y, > > Y. NLITTLTs (6.33)

co=max(0,I-1) cy=max(0,m—j) zo=max(0,bo) z1 =max{0,b; )

where
Ty = Bt (peo)

is the probability of ¢y actuators busy with false alarms emptying,
Tz = Bz} (pe1)
is the probability of ¢; actuators busy with targets emptying,
Ts = BS"™(py)
is the probability of z¢ new false alarms passing the threshold,

Ty = BS™% (py)

is the probability of z; new targets passing the threshold, and

ifzo+ 21200+ b

else
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is the probability of a given cell finding an available actuator givea that there are too many
new potential cells.

Thus we can calculate the transition matrix and therefore the steady-state distributions
of the Markoff process describing the network operation. Given that ¢ actuators are busy

with false alarms and 7 are busy with targets, the average carried load is given by

i j ‘
/\5 = ZP‘J (z th}lo(peo) -+ Z hlB‘;“ (pel)) (634)
i‘rj h0=1 h] =1
= Z P;;(ipeo + jper) (6.35)
£

Then as in (6.5), the probability of a cell not finding a server is given by

As
Po=1-— 6.36
"= T&C (6.36)
The overall detection probability, given by
pdoy = pd(1 — Fy) (6.37)

is plotted in figure 6.10 as a function of pey = pe; for various values of normalized output
rate, p. (We will consider the effect of different pegp and pe; shortly). Since the signal-to-
noise ratio, p has been increased to 20 dB, the limiting factor in (6.37) is (1 — F). In fact,
we have included only curves for pd,,, since the curves for 1 — P, appear to be identical.
The decrease in pd resulting from decreased p is overcome by the decrease in P,. This is an
important point: for large signal-to-noise ratios, the constraint on the resource becomes the
crucial factor in the overall detection performance. As expected, pd,, increases significantly
with pep and pe;, since the actuators process the hits (and become available) more quickly.

We have assumed that the mean time to process targets and false alarms is identical in
figure 6.10. To understand the effects of peg # pe;, consider figure 6.11. We have arbitrarily
set peg = 1 — pe; to illustrate the point. At p = 0.2, p; = po, and the decrease in pd,, is
symmetric in pep and pe;. As p increases, py > p;, so that overall detection probability is
affected more by decreases in peg than in pe;. It is probably typical that pg > p;. Therefore,
it is important to use processors that do not waste too much time with false alarms.

In the next section we apply the above analysis to a network of trackers, each using a
M/N rule for track initiation.
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Figure 6.10: Overall Detection Probability as function of pes = pe;, for my = .005,C =
100, 0 = 20 dB, N4 = 10. The numbers on the curves are the values for p, the normalized
output rate.

6.6 A Network of M/N Rules: A Track While Scan System

We now consider a simplified example consisting of a network of track initiators, each
implementing a M/N rule. A tracker requires processing beyond that of incrementing the
counter for the M/N processing - Kalman filtering, track association and other functions are
required (these will not be discussed here). For our purpose of illustrating points relevant
to the thesis, we consider only the dynamics of the M/N detectors. Equivalently we assume
stationary targets or perfect position prediction from the Kalman filtering,.

The first problem we must address is the definition of peg and pe; for a tracker. We
could assume that a target remains in the tracker for a given length of time (for example, the
transit time across the air-space under surveillance) and then is deleted. However, for our
purposes, we assume that the tracker is concerned only with the problem of track initiation.

Once a track is determined, the tracker (on the next scan) hands off the target to another
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Figure 6.11: Overall Detection Probability as function of peg = 1 — pey, for 7y = .005,C =
100, 0 = 20 dB, N4 = 10. The numbers on the curves are the values for p, the normalized
output rate.

actuator (which we do not consider in this analysis), and becomes available again to process
another potential track.

For example, consider the 2/3 decision rule of figure 6.7. In order to use it for our
purposes here, the line with probability 1 from state 2 to itself must be replaced with a line

from state 2 to state 0. The equations governing the trackers are then

{P(O) { g 0 g 1 P(0)

PA)| _|p o000 P(1) (6.38)
Pr2) | 0 ¢ 00 P(2)

P3) 1, 0pop 0} P3)J,,

The equilibrium distribution of the tracker states may be found from the steady-state
solution to (6.38), (i.e. as k — oo). Ve separately calculate the steady-state probabilities

for a tracker under the two hypotheses.
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The probability of a busy tracker becoming available (i.e. returning to state 0) can then

be calculated given the steady-state probabilities from

peg = Z P(in state s|Hp)P(transition to state 0| in state s,s # 0, Hyp) (6.39)
S#£0

where P(in state s|Hp) is given from the steady-state probabilities of (6.38) when no target
is present, and P(transition to state 0| in state s,s # 0, Ho) is given by the normalizing the
(0, 8)** entries of the transition matrix in (6.38) over s # 0. Note that pe; is defined in a
similar manner, but with a target assumed present.

Having found peg and pe; for an individual tracker, we are now ready to consider the
dynamics of a network of trackers.

The probability that a given cell will cross the threshold and will be confirmed in the
following N —1 cycles is given by’

P = & (N1 lrq o \N—1-I
A =P ) ’ p(1-p) (6.40)

I=M-1
The probability that a given cell will pass the first test and subsequently be rejected is given
by p — P.;. Finally, we are in a position to calculate the single look detection probability of
a target; it is the product of the single look confirmation probability as given by (6.40) and
the single look tracker availability given by (6.36):

pdm_, = cl(]- - .Pb) (641)

The overall detection probability is plotted in figure 6.12 for a 20 dB Rayleigh target in

Gaussian noise under various conditions. There are a number of things to note:

1. The less selective rule (2/5) is superior at lower p; however the values over which it
is superior are for values of pd,, which are too low to be useful. At higher p values,

more false alarms are let in, and the 2/5 rule takes longer to process them than the

3/5.

2. Decreasing w; while maintaining the expected number of targets, m;C constant pro-
vides better performance over all values of p. This is because decreasing x; increases

pd, as discussed in section 3.2.1.

Note that this is not quite the same as letting k£ = N in equation (6.25), which doesn’t assume a threshold
crossing in the first look.
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Figure 6.12: Overall Detection Probability for 20 dB Rayleigh targets in Gaussian Noise

3. Decreasing the number of trackers, N4 causes the peak in pd,, to be shifted to a larger
value of p. This is because pd is the factor causing the crash in pd,,. The value for ¢

for the crash in pd,, is the same, but the normalized rate p value, when normalized

by N4, is shifted outwards.

In general, we expect to have multiple chances to detect a target. The detection prob-
ability, given that we have L looks (the maximum valid value of L will be a function of
the target dynamics) is a complicated function of the time it takes the tracker to reach a
decision (which is a function of the tracker initiation and deletion rules) and the tracker
availability function.

The probability of a tracker emptying is a function of how long the tracking rule takes
to confirm a farget or to rule out a false alarm. The number of cycles required to make a

decision will depend on the decision made. For a detection, the decision delay is between
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M and N and is given by

M -p)M [ 1-2
= Zz 7 (M—z) (6.42)

=M

where as for the no detection case, the decision delay is between N — M + 1 and N and is

N — P \N=-M+1, [-(N-M-1) {—92
we f e (),

I=N-~-M+42 - Pc}- N - M

given by

Both of these delays must be less than the time over which the statistics of the environment
significantly change. Clearly ; will be a decreasing function of pd and 7y will be an increasing
function of pf. The exact values for the mean processing delays are, as we learned in section
6.4, only guidelines.

The effect of the track initiation rule is seen figure 6.12. For the 2/5 rule, between four
and five returns are required for a tracker to rule out a false alarm, assuming the first return
is a hit. However, the 3/5 rule requires only between three and five returns. Of course,
there is a trade-off involved; a 3/5 rule will take longer to detect targets, and may miss

small targets.

6.7 Conclusions

We have covered a lot of material in this chapter. Beginning with a simple queue, where
targets and false alarms are assumed to be treated identically by the actuator, we showed
that the value of p, the normalized output rate, corresponding to the maximum overall
detection probability is a function of target concentration, the maximum queue length, the
number of actuators and the number of cells scanned per actuator cycle. For low values
of w1, the overall detection probability finds it maximum somewhere p =~ 0.8 — 1, and is
a relatively flat function over that range. As the a priori probability of a target increases,
the effect of reducing the output rate from the detector stage becomes more significant, and
the resulting overall detection probability is not so flat around its maximum. Increasing
the maximum queue length increases the overall detection probability, but may increase the
mean queuing delay beyond limits set by the rate of change of the environment. Increasing

the number of servers also increases pd,,, but may be prohibitively expensive.
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One way of providing a guaranteed rate out of a test is to eliminate the threshold
altogether and rank the returns, picking the largest to be passed on to the actuator. Such
techniques introduce losses when compared to threshold tests, but the losses are not large
and decrease with increased signal-to-noise ratio.

If one wants to derive significance from a test that provides a constant rate, a M/N
detector may be used. New results for the mean and variance of the time required to
confirm a target were presented and underscore the danger of merely quoting means, since
the variances are very large for strict tests when the single-look detection probability is low.

Often targets and false alarms require different amounts of processing by the processor.
The Markoff model considered stresses the importance of designing systems that do not

waste excessive time dealing with false alarms.



Chapter 7
Conclusions

Given the relative maturity of detection theory, it is perhaps surprising that the resource-
constraint theory has not been promoted earlier. In contrast to existing detection theory,
which either pre—supp()ses more a priori information than is typically available in the radar
problem (as in cosi function approaches) or else distances the theory from practical mea-
sures altogether (as in the Neyman-Pearson approach), resource-constrained detection is
both pryactirca;lly motivated and practically implemented. It manages, in the presence of ig-
norance of the underlying statistics, to achieve adequate and quite often optimal detection
; perfoﬁnance. o ,

The theory arises from looking anew at the problemr of detection, and realizing that de-
tectors almost always are, in fact, attention-directing devices for resource limited actuators.
By returning to the most basic level of hypothesis testing, we have gained an understanding
of how detection systems that cue resource-constrained actuators should be operated.

The form of the optimal rate-constrained test is a likelihood ratio test, with its threshold
set to match the hit rate out of the detector to the processing rate of the subsequent actuator.
The resulting test is practical, since the hit-rate is both controllable and observable, unlike
the false alarm rate which is only controllable. No a priori information (other than the
processing rates of the system stages, which are 'design parameters) is required to set the
threshold, and there is no need to arbitrarily choose a design false alarm rate or cost function.

A new relational measure, the SLOC function, allows us to understand how various tests
should be cascaded together for optimal performance. There is no need for the individual

tests to be identically distributed, or synchronous. A dynamic programming argument

136
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showed that, provided the SLOC numbers of the individual tests are properly ordered, the
overall detection performance for a multi-stage system operating under any sensible criteria
is maximized when each stage but the last is operated under the rate-constraint. When the
tests are not properly ordered, the resulting detection probability will be less than could
be achieved in theory, with perfect knowledge of the radar context (distributions, target
concentration etc.); however, at least the test can still be implemented.

We have presented SLOC curves for a number of radar target models in Gaussian noise,
and for Rayleigh fading and constant targets in K-Clutter. The shapes of the curves vary
considerably for the different models, and for noncoherent and coherent integration. The
SLOC function is a decreasing function of the signal-to-noise ratio (SNR); therefore faster,
lower SNR tests which cue slower, higher SNR tests will always have at least some region of
operation where the rate-constraint is optimal. A new processing architecture consisting of
a noncoherent test cueing a coherent test has been shown to achieve significant reductions
in processing complexity, with only moderate costs in detection performance.

Resource-constraint theory, along with the rest of decision theory, is based on first order
statistics. We have presented techniques for dealing with the variance inherent in the output
rate of a test. Ranking the returns and picking the largest to be processed is a viable option,
introducing small detection losses relative to use of a threshold. Alternately, a queue may
be introduced between the detection stage and following processor. There is a trade-off
between the output rate of the test normalized to the maximum processing rate of the
actuator following the test, and the probability of a hit finding a place in the queue. The
length of the queue may be increased to decrease the probability of a full queue; however, the
mean queuing delay may then be excessively long given the stationarity limits on the target
and radar environment. A new analytical framework has been introduced for investigating
the detection performance of a system consisting of a number of actuators which require
different processing loads for false alarms than targets. The results underscore the need for
algorithms that are able to quickly dispense with false alarms.

Because of its dependence on the processing rate of the subsystems, resource-constraint
theory is a useful tool for both radar systems design and analysis. We have presented
examples of the theory’s application at three different system levels: at the command and
control level in the obstacle avoidance example of section 3.4, at the data processing level

in the track-while-scan example of section 6.6, and at the signal processing level in the
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noncoherent/coherent integration system of section 5.3. The rate-constraint criterion has

been used by radar designers previously, but without the analytical justification provided

by our work.

7.1 General Applications of the Theory

In this thesis we have emphasized the application of resource-constraint theory to radar
detection theory. However, the principles are applicable in a diversity of fields. Hierarchical
decision techniques are often used in large systems such as corporations, in medical diagnoses
and in the detection systems of natural organisms.

Armed with an understanding of what characteristics to look for in the decision sequence,
we can design them into the process. (i.e. What tests should be applied, and in which order?)

For example, consider a company setting out to hire a new employee for a popular
position in an age of rampant unemployment. The personnel department has finite resources
* to apply in its search. The first test should be able to screen many applicants, and at minimal
cost. For example, if the position is for a recent graduate, the Grade Point Average may
be used as a simple test statistic. The threshold is simply varied to permit the required
number of applicants to make the first cut. The next stage could be an aptitude test, with
the test results used as an indicator of suitability. The threshold applied to the test again
depends on the number of applicants that can be screened by the next stage. The final stage
might consist of an interview!, at which point the exact “test statistic” to apply becomes
subjective. Presumably the interviewer is the best judge of an applicants suitability.

Note how well the personnel department’s procedure fits the resource constraint model.
Each test provides more specific information regarding a candidate’s potential, but requires
more resources than the previous test.

Clearly resource-constrained detection provides more than just insight into how best to
operate a series of radar sub-systems; it provides a new paradigm for multi-stage detection
processes operating with limited processing resources. By looking afresh at the problem
through the lens of practical application, and not being satisfied with statistical approaches
that require more information than is available, we have developed a needed addition to

detection theory.

'Indeed a series of interviews could be used.
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