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Abstract 

K~ajr-world detectiast systems, si~ch zrs radars, control resources that are Emited in their 

prrxrrssing ability. This thesis introduces a mew detection criterion designed to operate under 

the limitations impwed by swh TC?SOU~CC constraints. In contrast to the Xeyman-Pearson 

frarncwork which constrainz: the fake alarm rate, the rate-constraint crriietion maximizes 

t h e  cl~tcrtioa probability of the test subject to a constraint on the threshold crossing (hit) 

raltr*, 'rhc resulting Eketihood ratio test is practical since the hit rate is both controllable 

and observable, unlike the fdse darm rate which is only controilable. 

The single-stage rate-constraint criterion is extended to  the multi-stage case where a 

number of individual detectow are cascaded; each test is slower but more capable than 

the previous. A new paramelier, the SLOC function (the s l a p  of the Receiver Operating 

Characteristic curve when plotted 0x1 I~g-log axes),  is derived and seen to  be critical to the 

performance of a detection system utilizing such a sequence af tests. Provided the SLOC 

natmbers for the individual tests are properly ordered, the overall system detection perfor- 

mance under a wide range af criteria (Bays, Weyman-Pearson, Maxirnw Information) is 

rnaxhized when the rate-constraint trieerion is used for all stages but the last, The result- 

ing sequence of tests is again practical to  control since each threshold depends only on local 

variables. 

The properties of the SLOC function are investigated for a number of radar target, 

clatter, and processing models. Included are new results for the noncoherent integration of 

tone a d  RayIeigh fading targets in K-distributed clutter. 

Techrtiqrtes are presented fur deahg  with the variance of the hit rate. Amdysis is given 

far two types ~f systems: w e  for actnakm +,Ha$ require the same processkig pw\ver to treat 

fdse atarms and targets, and the second for actuators that treat false alarms and targets 

cIifkreutly A test that chrroses the targets to be investigated by ranking and choosing the 

largest instead of using an explicit tbresbdd is also investigated. 
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Chapter 1 

Introduction 

1 .I Why More Detection Theory? 

The application of statistical hypothesis testing techniques to radar has a long history. 

Neyman and Pearson published their classic work in 1933 [I]'. The Bayesian or cost func- 

tion approach to decision theory was promoted in the 1950's by Good 121 and Savage [3]. 

Woodward's "Probability and Information Theory with Applications to Radar", published 

in 1953, brought together much of the theory to be applied to the problem of radar detection 

[4]. By 1960, Middleton [5] was able to objectively assess the applicability of decision theory 

to the radar detection problem. He listed three problems that continue to plague practical 

deployments, namely 

1. the uncertainty in the choice of an optimality criterion, 

2. the arbitrariness of cost assignments, and 

3. the lack of a priori information. 

The same detection criteria that Middleton considered in 1960 are still offered as solu- 

tions to radar detection today, and they continue to have the same shortcomings. Let us 

consider the latter two problems first. 

Detection theory has its roots in statisticai decision theory; this is appropriate since 

detections are in fact decisions, with real consequences. In decision theory a cost function is 

'The list of references is found at the end of the thesis. 

1 
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often specified to characterize the consequences of correct and incorrcct decisions. f fowrwx,  

it is not possible to specif>- meaningful costs for the radar problem. Moreover, t hc Bayesii~n 

techniques also require a priori information which is seldom available (for esamplc the it 

priori probability of a target being present in a given cell, and the dist ributiott of the raciar 

return given the presence or absence of a target in the cell.) 

The Mini-max approach eliminates the requirement for a priori information by firding 

the detection rule that minimizes the maximum cost; however, meaningful cost ftt nciions 

are again required. Information theory provides a less arbitrary cost fi~nction but both thc 

costs and solution are functions of the priors. 

Due to the inapplicability of cost function approaches, Neymxt-Pcarson theory i s  most 

widely applied to sensor systems. A design false alarm rate is chosen, and tlw rtsultilrg 

detection probability is accepted. By adopting the Neyman-Pearson approach, the probkm 

of choosing an optimality criterion is replaced by the problem of choosing aa acccj~tat~lc 

false alarm probability. 

Despite its prominence, Neyman-Peatson theory has a number of problems in  its appli- 

cation to  Radar systems, First, the underlying noise distribution must be known i r r  ardor to 

achieve the design false alarm rate. A control loop cannot be used because the hlsc alarm 

rate, while controllable, is not observable. Generally, it is assumed that the form of thc~ 

distribution is known to  within a small number of parameters, which are then estirrlatcxl 

and used to derive the appropriate test. The resulting Constant False Alarm Rate f CFAR) 

methods perform well in the environments they are designed for. tin fort11 natcly, in n on - 
homogeneous clutter environments, the interference distribution is not known. Suboptimal 

non-parametric approaches are then often employed. 

The major deficiency of the Neyman-Pearson framework is that the false alarnt rate is 

only indirectly related to  the goals of the detection system. Thus we have a trade-ofE in 

order to  achieve a tractable theory that doesn't presuppose unavailable information, the 

solution is distanced from practical measures. 

To appreciate the ramifications of neglecting the context of the test, consider the yroblcrrt 

of setting the appropriate deign false a l am rate for a very simplistic system consisting of 

a g m  centre! radar a d  a ,gm EesiPed to protect a ship. Assume the gun is capbfe of 

firing one round per second and is assigned the task of destroying all incoming targets. Wc 

would like to design a system that has the highest probability of intercepting the targets. A 



Tt'eyman-Pearson strategy fo zccomplish this wouid set the radar threshold to yield a given 

falase darm probability and shoot at  any cell that crosses that threshold. This strategy 

resulks in a firing rate that is acceptable provided no targets are present and the false alarm 

rate is less than the maximum firing rate. As targets appear, the firing rate increases until, 

if the number of targets is large enough, targets are missed because the gun is busy. This is 

an overload condition that puts the ship in jeopardy. To reduce the potential for overload 

the radar fdse alarm rate is lowered, But this reduces the radar" ability to detect small 

targets even when the nnrnber of targets is small and there is no danger of an overload; so 

again the ship is unnecessarily vulnerable. 

As a second example, consider a Track-While-Scan (TWS) radar system. A TWS system 

consists of two stages: a detection stage and a tracking computer that uses the results of 

the detector to determine tracks for the targets. With the Neyman-Pearson approach, we 

would set the first stage to  allow a specific number of false alarms per radar sweep. As with 

the gun control radar, if the first stage is not selective enough, the tracking computer will be 

overbaded. If the first stage is too selective, the probability of detection for smaller targets 

is smaller than necessary- 

The solution for the T?VS example is given by Trunk in [6]: "The (fake alarm probabil- 

ity) of the detector should be as high as possible without saturating the tracking computer." 

The computer is a resource that should be f d y  utilized, but not overloaded, by the data 

out. of the detection stage. Thus we have a resource-constrained detection system where the 

resource is the processing rate of the tracking computer. Similarly, it is clear in the first ex- 

ample that the degree of protection is determined by the firing rate of the gun and therefore 

the gun should be fully utilized. The radar should simply direct the gun to  the radar cells 

most likely to contain targets, subject t o  the rate of the gun. This is a resource-constrained 

detection system where the resource is the gun's firing rate. 

In either exampfe, the threshold for the radar is easily set to keep the gun or tracker 

bnsy but not overloaded. There need be no appeal to probability distributions to  calculate 

false alarm rates. If no targets are present the threshold drops to keep the gun firing or 

ahe crrmpuwr busy? dbeit with fdsc d a m s ,  But the radar is very sensitive to  smali targets 

and therefore the system is optimally protected- As the number of radar cells crossing 

the threshold increases, so does the threshold and therefore the cells most likely to contain 

targets are passed to the gun or tracker, 
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?Vhile it seems that the resource-constrained criterion is wasteful it does provide thi. 

greater degree of protection. After all, is that not the reason for the system in the first 

place? If the criterion is held in disfavour then there is a hidden resource that is act~tally 

driving the design. If that is the case, this hidden resource should be brought into the open 

and the control criterion built around it. 

Whatever the case may be, real world detection systems are usually governcd by a. vnri- 

ation on the resource-constraint principle. Therefore it is beneficial to develop a. detection 

theory around this principle to guide future designs and to assess the performaace of t tic 

present ones. 

The concept of matching the performance of a detection stage to the follow-on rrxsourc.cs 

dependent on the detector is relatively new 171, with perhaps the first example twir~g the 

integrated detection and tracking system of Kurniawan et a1 [8]. Despite the fact that tlic 

philosophy has been expressed previously, this dissertation provides the general framework 

and analysis required to  justify the concepts that were hitherto heuristic in nature. 

Before narrowing our scope to man-made detection systems, we present a brief overvic?w 

of gtneral information-processing systems. The material is interesting because it provides a 

broader context for the work of this thesis. 

1.2 General Principles of Information Processing, and Their 

Application to Detection Theory 

Two relevant studies are Resnikoff's examination of biological detection systenis [!I] and 

Conant's study of general information-processing theory [lo]. Despite their very different 

approaches and interests, the two studies both list the following principles2 

The first principle is the invariance of information-processing struclvres and measures 

under appropriate group actions. Thls concept emphasizes the relativistic nature of mea- 

surements with regard to information content. A simple example of inforrnation invariance 

is the independence of information content on the zero point or units of measurement. In a 

detection context, the principle points to the need for test statistics that are relevant to the 

task at h a d .  To q w t e  Co-tlaat: "Arrange for the sensors of the system to respofid orily to 

those aspects of the environment which are potentially relevant." In chapter two we present 

%ere we use Resnikotf's names for the concepts. 



ways that detection systems determine the statistics to  indicate relevance. 

The second principle is the use of hierarchical structures in information-processing struc- 

tures. The idea here is t o  use faster, lower resolution systems t o  cue slower, higher resolution 

sybtems. For example, in the human vision system, the peripheral vision system has com- 

j~arativegy low resolution but can scan a large area rapidly. In contrast, the foveal system 

has very high resolution but is incapable of quickly scanning the entire field of view. The pe- 

ripheral system cues the foveal system to  objects of interest. Hierarchical or cueing systems 

are prevalent in naturd and man-made detection systems. A few technical applications are 

combined radarllidar systems [Ill, medical diagnoses [12], and mine-hunting sonar systems 

f13J. Chapter four of this thesis is devoted to  the application of resource-constrained theory 

to  muitiple-stage detection systems using cueing. 

The third principle noted by Resnikoff is that information-processing systems tend to 

eztremize the quantity of infomation relative to some processing cost constmint. Detection 

systems tend to be resource limited in that their performance will increase with increased 

processing resources [143. GThe resources are such things as processing effort, the various 

forms of memory capacity and communications channels ... (Resources) are always limited") 

[14]. The constraints imposed by the limited resources necessitate the need for the Selective 

Omission of Information [9] or information blocking 1101. LR detection systems consisting 

of multiple stages, this means that earlier stages pass on only that information relevant to  

subsequent stages. For example, in most cueing systems, the faster system passes on only 

the addresses of those cells considered most likely to  contain targets. The  actual value for 

the test statistic is not passed on, nor are the return values for any of the cells cansidered 

unlikely to  be target candidates. Of course the information in the test statistic could be 

passed on, leading t o  increased performance at the cost of more resources [15]. 

In biological detection systems op+irnality is not the ultimate god.  The aim of this 

thesis is not t o  prove or claim optimality of resource constrained systems for all radar 

scenarios. While it  is true that the principles derived herein are optimal over a general 

range of situations typical of radar, the more important claim is that the techniques do 

provide adequate perform;tnce. By adequate, we mean that a system operating under our 

principles wiB achiew perfomace the same or very dose to -that which wrjdd be x:hievable 

in theoryf if the designer had perfect knowledge, oueer the meuni~tgfd mage o j  opemtion for 

the mdar. For example, we do not coacern ourselves with possible losses that arise with 



overall system false alarm grftbabi'iiky ratm l o w r  than, say, 10-" or so. 

While the emphasis of rhis thesis is on rhc application of o u r  ncut conccprs t o  r a d a r  

systems. the concepts are d i d  for any detection system operating i r i  an t*n~ircr~trttnt \shtrc\ 

the presence of a target is refatidy rarc. Far example, the t trtory ciltttrl hc applitrt to rttt*rlirirl 

diagnoses or to the prohiern of finding the besf applicant far an umytliqrrtrnt opptrrttrnity. 

We now turn OUT affe~rbifirt t o  a brief outline of tfte thesis. 

1 3  Outline and Scope of Thesis 

"Tk fsbpe of hxg ~ C ~ W T  Operating Charafteristic Curve) iunctirin ih &be d6ryrr of thc c a w :  
ge~erated by pbttiag the &a& prabW8 s a k n d h  d the f& dam prr~t&%~y cja a bg-log ~ d e .  



c-rit~+rrlru is trt c ip~ratr .   wry s t a y  bat the !*a under the rate-constraint criterion, with 

tfw fast s t a p  thr~. ihf;d rhwirn a r c d i n g  to t h e  overall criterion. The resulting detection 

s-trm-arrrp is  rrrfmst, f*rihriltiitimrg graceful d~gradation ivhcn loss of a stage occurs. 

liis r b a p t ~ r  fii-P.. K & P  SLCPC hcrtioii is de~ived arid examined far a number of radar 

targ8.f. arid chitter P I I D ~ P ~ ,  Sl,f)C CIIT\-PS are given far %arcixnr, Stwrling. Riciarr and Two- 

t o m  rnnifofs irs Chms&m n s i s ~ .  a d  for non-fluetrtating and Rqleig11-fadirig targets in li- 

tfistsif~utrd cf tt ttw. Sew sestdts are given far the nortcoherent irtttgration of non-flwta~ating 

;t;rrdi fa';xyfr*igtl-facIin~ gargets in a mixture of K-distributed and Gaussian noise usirrg the lrew 

todirrtiqw of [16]. Tlw app!icatriIit_v of norn~alization or CE"4R techniques in the resource- 

riiwaraiak f r a r n ~ w ~ r k  is aim It&@- discn~sed, Finally, a practical example Is given, whereby 

a tarp rmf rrction in cc>~rtp~~katiorrta compfexit~ is gained by using a stage performing non- 

rdifwrerr t irttcgralion ba euc* rr stag? mpfg ing  coherent integration . 
A test operating nnder a rate constraint i s  required to haw a fixed output rate; howevcr, 

bhrrddd  tests wil! aEwaj-s h a w  same ~ a r h c e  in their output due ta  the stochastic nature 

nfrlm~ rsois~. Chapter six discuss- some of the ways that rhe variance in the output rate can 

b~ l ~ i ~ ~ t l ! ~ ! .  The sintg!est technique is to i ~ f r ~ i h c e  a queue between the detection stage arid 

thfr stilrs~q~rent acttlator [or detec-tiorr stage). We give two analyses of sach systenrs. The 

first is for when targets attd false alarms are treated identically by the follow-on resource; 

tlrr srm~id is for ltrherr, largess requir~ a different amount of resource than false alarms. 

Rnrjtitw way of deafing with the stochastic nature of the output rate is to rank the returns, 

, a d  choose only the faagest ones KO pass on (the ratio of cells are passed on to the 

Bsffai i;trrnbt=r of cells tcstd being 3aaf to the processing ratio between the stage and the 

sbrhs~eyrr~i~t rw~ttrce-) ff a t a t  a J w a ~ s  yielcTs the same number of hits, regardless of the input, 

docs B J W  Besf yield ar$ iafonation3 1-es, if a time history can be given sf the test output. 

fCa givcn cclf is rar&terrtlp the fargesb among its peers, it is more likely to be a target [IT]. 

f "hapfr"~ six n d t d e  ;~r. t_bme.~.u*h mJ." -I*--- ~f f.Jisar~ .3-&egragors er "sf fx" &t,ect,=rf. The 

chapt~r mnclrrdm with an involved example af a resource limited nettvork of trackers, each 

using ;lo M[S d e  far track initiation. 

Condrrsions are given in chraptm seven. 

Tkrotrghont the &=is the emphasis is on analysis and the interpretation of results. 

In h a  no sirrrulaaio~ resdbs are presented. Graphical explanations are used, wheneyer 

paskble. to st~pl~leha~ent: Ehe analyiis and fend insight. Hundreds of pages of graphs could 



have been included; instead. we have tried t o  choose a representative ssampfe to i1iominxt.c 

the pertinent points. 

1.4 Conclusions 

Resource constraint theory recognizes the fact that detections are decisioxrs - decisions thitt 

have consequences for s n b q u e n t  pr~cessing, The  resulting criterion openly admits and ad- 

dresses the ignorance that we must deal with when designilg practical detection systcms. 'ily 

bringing into the ope% the implicit constraints and assumptions behind dctcction systt!~tls, 

the theory allows us fa better understand, evaluate and ultimately design them, Op ti~ltnl 

or adequate performance is achievable by accounting for the abiIi ties of the sys tt.111~ I hat 

are  dependent on the  detection decisions- Tfre theory is applicabfe a t  several system lcvcls: 

overdl control (in the  abstacle-avoidance scenario of chapter three), da t a  processing (in 

the tracking processor of chapter six], and signal processing :1,k the noncot~ererrt/coI~i~rt~~~t 

processing system of chapter four.) 

T h e  rate-constraint is well-defined, since it is a function af the processing rates, whic?r 

are design parameters. Furthermore, the hit-rate is both controllable and ohserv;tbIc. 7'fw 

desiga of a system operating under resourceconstraint principles requires no arbitrary cost 

firrrctions, or  a priori statistics. Unlike non-parametric ~nethods, a design value for tho false 

alarm rate  is not required. 

The  criterion achieves optimal detection probability for a single-stage contrulJirrg a Jirn- 

ited resource. The SLOC parameter is a useful design tool which naturally ariscs out o f  

mdti-stage rate-constraint theor_v. I t  gives guidance on how h s t  t o  combine a chain of tests 

for optimal performance. There is no need for the tests t o  be synchronous, or  identically 

distributed, The  resulting cueing model is prevalent in hot t natural and man-rrr a& dcsigrr s. 

It is  interesting to note ghat in the latest editions two of the most respected books i n  

radar, the  sections dealing with fdse alarm control actually use a hit-rate had argurnertt 

and d s  not mention the Sewan-Pearson k m m a  f6],[18]. There is clearly a need for a new 

kamework for detection theory that addresses the lack of a priori inforn~ation conrrnort in 

mast radar scenarios. 

One warning before commencing: some of the concepts of this thesis may appear, a t  

 lea^ at first. glance, to be self-evident or  even trivial. Beware! There a r e  a few surprises 
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left in detection theory- To quote a recent paper studying counterexamples in distributed 

detection: "The obvious conclusion is that these are treacherous waters, and something may 

hold very often, without being true, It may even be supported by a plausible argument, but 

remain false" [19]. 



Chapter 2 

Classical Detection Theory 

2.1 Introduction 

In this chapter, classical detection theory is briefly reviewed, artd s o ~ r ~  of t,he irrhtwf, 

difficulties of using it for practical radar problems are discussed. Ttw ~lrizlcrial is wcll 

documented in many detection texts (for example 1201, [21]); our goal here is to i~rt,rotltti.t. 

notation and to  review concepts that are important later iz, the tf~rsis. 

As noted in chapter 1, Middleton in 1960 listed three proble~ns in tltc applic.;~tion of 

statistical detection theory t o  practical sensor deployments: j 1) the apparm t ;wbi tri~rirwss 

of the cost assignments; (2) the usual inadequacy of the a priori inforrrration; and (3) t,Iw 

selection of the criterion of optimality itself 151. In reviewing the classical t,hwry wc  S P ( ~  

that the same problems enumerated in 1960 continue to plague prac-t,ical ctc%tccticm syst,crrts 

today. 

2.1.1 Chapter Outline 

In section 2.2 the fundamental concepts of binary hypothesis testirtg as app1ir:d to clrstr!ctio~l 

theory are discussed. From a discussion of the Neyman-Pearsort temrna, arid Hjrdsall's 

&sight, it is S ~ O W I I  that optimal tests under a number of criteria have the same frmn: a 

likelihood ratio test with a possibly different threshold. Various classical criteria arid thcir 

choices for the best threshdd are discussed in section 2.3. However, it is also sem that ttra 

a priori information required to  determine the thresholds is not typically availahlo in the 

radar problem. Section 2.4 discusses some of the problems associated with tfir* practical 
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implementation of classical detection theory. A couple of classical radar detection problems 

are investigated in section 2 3 ,  and finally section 2.6 reviews the subject of the chapter. 

The appendix to  the chapter (section 2.7) presents a proof of the Neyman-Pearson lemma. 

2.2 The model 

We begin by assuming that there exist two mutually exclusive and exhaustive states of nature 

that we wish to distinguish between. Associated with the two states are two hypotheses: Ho, 

the null (or noise alone) hypothesis and lZ1, the alternate (or target plus noise) hypothesis. 

In order to distinguish between Ho and HI, we are given an observation x, of a random 

variable X E I?, or in general a vector of observations, Z E rN, where rN is the Bore1 set (or 

power set, depending on whether x is a continuous or discrete variable) containing values 

for the random variabie x. Usually 3 is reduced to  a single number s called a test statistic. 

ff no detection performance is lost in reducing Z to x, then x is called a suflcient statistic; 

however, non-snfficient statistics are often used in radar applications. Sufficient statistics 

are further discussed in section 2.4.3; until then we suppress the vector notation for x. 

Assume that X is a random variable drawn from a distribution parameterized by a set 

8, where@ E A = A ~ U A ~  and 

For the radar problem, u s u d y  A. = (0) and we say the null hypothesis is simple. In 

general, A1 contains more than one point and we say the alternate hypothesis is composite. 

For now we consider only simple hypotheses, returning to  the problem of composite alternate 

hypotheses in section 2.4. 

Let the fanlily of probability distribution functions generating X be denoted by FA, (x), 

dFA.'x) where p(z) is the and their associated densities (or mass functions) by fni(s) = dib) 
measure of X (Lebesgue or counting depending cn whether X is a continuous or discrete 

random variable'). By defining the density functions in term of Radon-Nikodym derivatives 

(and subsequent integrals by Lebesgue-Stieljes integrals), continuous and discrete random 

variables can 'be treated with the same formulation 1201. 

'For the radar exampies of this thesis, S will always be a continuous random variable, and the Lebesgue 
integral may be interpreted as an ordinaxy Riemann integral. However, me use the general notation because 
S may be a discrete random variable. For example, in lidar systems, X is often a photoil count. 
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2.2.1 Decision Functions 

Given the observation x E l7, the goal is to  partition tire observation space into two rcgiot~s 

r = ro U where To is called the acceptance region ant1 the rej~ction scgior~. I f  .I. E i',,, 

the n d  hypothesis & is accepted, and if x E TI, the null hypothesis !lo is rc*jjtv-tod. A 

decision function, G(z) : X -+ [O, If is defined as 

Equivalently, S(x) is the probability of rejecting Ho given the observatiori :c, i.c. 

It may seem odd t o  express 5(x) as a probability when it only takes on v d ~ ~ c s  of 0 or I ;  

however, a third vdue for S(z), say O < -{ < 1, is often assigned to the bot~rrdary uf rc, ;i l l t l  

rl if x is a discrete variable, in order to allow arbitrary values of falsc: s l a r r ~ ~  prolmlility. 

Decision functions that have values of S(x) that are not zero or one are callotl ~.clndornizrd 

rules; we will use them in the Nevman-Pearson and Rate Constraint I~mm;t.'j. I f  A' is 

a continuous variable, the assignment of probability to any point of I', i l l  pastir.uI;~i. the* 

boundary of ro and fl, is superfluous since the point is of measurc zcro. 

2.2.2 Errors 

Given the decision function, S~X), there are two types of errors one can make. The first is 

c d e d  a type I error, or false alarm the probability of a false alarm for a t ~ s t  with a sir~~jlh: 

null hypothesis is defined by 

where E(*IHo} is the expected value of (+) given Ho. The false alarm prohaltility, p j = a is 

d s o  called the size of the test SCx). Note that (2.3) is valid for both discrete and corrtinuo~rs 

z provided p(x) is the appropriate (i-e. cou~lting or Lebesgue) measure. if Ho is cr~rrrposile, 

pf is defined by 
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In this thesis we a s u m e  that Ho is simple since this is almost always the case for radar 

detection problems, 

The other type of error we can make is called a Type 11 error or a miss, with a probability 

gi yen by 

j3= 1 - p d  (2.5) 

where pd is the detection probability or power of the test, given by 

To simpiify the notation for now, since we are dealing only with simple hypotheses, we 

wiU suppress the A and write fn,fz) = f;(z). 

2.2.3 Likelihood Ratio Tests: The Neyman-Pearson Lemma 

There is a trade-off between the values of cr and P; we can make either arbitrarily close to  

zero while raising the other t o  o m  [by setting ro = I' or rl = I'). The sum of the error 

probabilities is given by 

For each x, the integrand is a weighted average of fo(z) and fl (x), so therefore 

Two natural questions to ask are what is the optimal form of b(x) and how does changing 

a affect P? The Keyman-Pearson lemma [ lj  answers both by minimizing j3 for a fixed value 

of a. Consider 

-.L m* =nere X is  a Lagrange mnltip'lier. rne equality holds (and therefore is minimized, or 

equivalently pd is mzinGzed) when 6(2) is a likelihood ratio test of the form 



where l ( z )  = $$$ 2 0 is called the likelihood ratio and X 2 0 is a tliresl~olcl. A s  s~r~atin~icvl 

abovef - i (x)  is a randomizing function 1201 that may he ignored wlien t.lic support of 1' is 

continuous since the probability that bjr) = X is zero. 

In the appendix at the end of the chapter, the followi~~g I~utr~ia is p r o v t ~ i .  'I'ht. proof' 

is based on that found in i-203; we include it for comparison with t h c  proof of t h r  I1i~tc 

Constraint lemma, that is presented in chapter 3. 

Lemma 1 (Neyrnan-Pearson) For a hypothesis test betwcen Ilo (ind f l I  (both siiilpl() 

we have the following. 

I .  Optimality: Let d be any decision ntk satisfying y f (6 )  < n (md k t  6' 6~ C ~ I J  ( i w i ~ i o ~ ~  

rule of the form 

1 i fC(x)  > X 

S'(x)  = ~ ( x )  i f  E(z) = X (2.12) 

o i j q x )  < A 

where X > 0 and 0 5 r f x )  f 1 are .5uch that pf (6') = a. Tlmt pd(iir) > p(L(h). 

2. Existence: For every u E (0: 1): there is a decision rule b P I p  of the j o ~ w  of (:?. I.?) ~i~itlh 

~ ( x )  = -fit a constant, for which 

3. CPlziqueness: k t  6" k any a - l e d  decision rule for Ito cer.s~is •’Il. 7'l~rn 6" I I L U S ~  IN.  

of form (2.f2) ezcept possibly cm a set of measure zero ~ ~ ( l e r  HO c m d  ill.  

The Neyman-Pearson lemma says t h a t  the probability of detection for i i  siinplc? Iryp0t11- 

esis test is maximized for any given probability of faIse alarm when a likelihood ratio test, 

is used. A unique test of the form (2.12) can always he fourid that will yidd arry clcsirctl 

vdae of p f. 

22.4 Receiver Operating Characteristic Curves and Their Properties 

kmed with the Neyman-Pearson lemma, we can rewrite the probability of false alar~n frorrt 
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Figure 2.1 : Receiver Operating Characteristic (ROC) Curve. 

and the probability of detection (2.6) a s  

where fi(E) is the probability density function of the likelihood ratio given Bi is true. It is 

not always convenient to  calculate pf and pd through (2.13) and (2.14) since the density of 

the likelihood ratio mcief the two hypotheses is not simple to  detemGoe. Fortunately, as 

explained in section 2.4.2, the detection and false alarm probabilities can be often expressed 

in terms of fo(z) and fi (x). 

As presented in (2.13) and (2.14), pd is a function of p f through the parameter (thresh- 

old) A. Figure 2.1 is a typical plot of pd versus p f, called a Receiver Operating Characteristic 

(ROC) curve. There are a number of points to  note regarding the ROC curve. 

First;. the curve must lie above the chance line pd = pf at all points. Consider what 
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pd < pf implies; we could choose a new Cit(s) = 1 -6(x) which lies above the chance linc and 

therefore is optimal. But by the Neyman-Pearson criterion, S(z) is optimal; therefore the 

ROC curve lies above the chance line. The situation pf = pd also makes no sense; in  that 

case the test gives no information since we could achieve the same performance by flipping 

an unbiased coin. 

Next consider the slope of the ROC curve. 

Thus, the slope of the ROC curve at  any point is the threshold, A, required to operate at that 

point. This relationship is not surprising because in the Lagrange Multiplier forrnulatio~r of 

(2.10), A is the sensitivity coefficient and gives the effect on the objective furiction, pcl, from 

changing the constraini, p f [22]. 

As the threshold, A, is increased from 0 to oo, both pd and pf fall from 1 to 0, wide 

the slope $$ must also increase from 0 to m. This implies that the ROC curve must be 

concave as shown in the figure. The ROC curve is of interest not only to radar detectiot~ 

experts [20], but also to Psychophysicists [12],[23]. 

Birdsall's North by Northwest Insight We have seen that the likelihood ratio test is 

optimal under the Neyman-Pearson criterion. An insight credited to Birdsall by Scltarf [24] 

is that for any sensible detecfion criterion, the operating point must lie on the ROC curve, 

and therefore must be a likelihood ratio test. To be sensible, a detection criterion should 

emphasize high pd and low p f. 

To understand Birdsall's insight, consider point A in figure 2.1. From point A,  we can 

increase pd without increasing pf by moving up to point B; we can also decrease p j  without 

decreasing pd by moving to point C. Any point along the ROC curve between 13 arid C will 

have better performance (i.e. higher pd and lower pf) than point A. 
Birdsall's insight is a very useful tool; it tells us that any sensible detection criterion 

must lead to a likeiiood ratio test. Given the ROC curve for the detection scenario, we 

know the optimal performance will be somewhere on the ROC curve. Different detection 

criteria choose the exact optimal operating point by trading off increases in p f with those 

in pd. We now consider a couple of different detection criteria. 



2.3 Cost Function Approaches 

it. i s  important t o  recogritze that detection systems make decisions - decisions that will have 

consequences. It is senseless to  think of a detection system working in isolation - if no action 

results from the decisioas, then why does the system exist in the first place2? 

The cost function method of detection theory seeks to associate a cost structure with the 

consequences of fdse alarms and misses, and then to find the decision rule that minimizes 

the expected cost. Let A be the set of aU possible actions associated with the partitioning 

of T. Then the cost function is C : Ax@ - [O,oo]. In this thesis, the action set is always 

binary, A = (0, I ) ,  and for now we assume that both the null and alternate hypotheses are 

shp le ,  so that 8 = (0: I f .  Then C can be expressed as Cij where Cij is the cost incurred 

by deciding that H; is true when in fact Hj is. 

2.3.1 Bayes 

In the Bayesian framework, it is assumed that the designer is able t o  subjectively assign a 

fixed cost to  decisions, The Bayesian criterion seeks to minimize the expected cost; therefore 

a priori probabilities of the occurrence of the two hypothesis occurring are required. Let 

xj  = P ( 8  E Aj) = P(Hj). (Note that xo + 71-1 = 1.) Then the Bzyes risk of the decision 

rule, R(S), is given by 

where Pj(T;) is the probability t b  t X E Fi given that Aj is true. If we assume that 
dF (z) . Jj(z) = &, 1s the density of X and recognize that Pj(ro)  = 1 - Pj(rl), we can write 

Since the first term in (2.17) is independent of 6, Rf6)  is minimized by choosing 

It is straightforward to show that (2.18) is equivalent t o  choosing 1201 

r, = (;z E r : B(X) 2 A} 

'To quote James 217, 'Faith without deeds is uselessn. 
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Figure 2.2: Iso-Cost Curves on ROC axes for Bayesian Test with Ckl = Cllu = 1 ,  Coo = 
fir = 0, and nl = 0.1. The numbers on the curves are the rust incr~rretl by a t,c3sl, wiLh t , l r c ~  
pf and pd at  that point. 

where f(x) is the likelihood ratio and 

is the threshold. 

As expected from Birdsall" insight, the optimal B a y s  test is a lik~lihooil ratio tJra.r;t .  I S  

the cost of a correct, decision is zero {i.e. ,,';; = 01, and ttie cejt ~f each type of error is q ~ ~ a l  

(i-e. Cox = Clo), the total a posteriori error is minimized farid the total probability of a 

correct decision is maximized), Such a cost assignment is useful in cun~rrtartications sy~;tr:tr~fi 

and is employed in a Maximum A Posteriori (M.A.P.) receiver ('Lii]. In thc: radar scr:riario, 

bowever, the cost of a fake alarm is expected to he rnuch smaller than t hc! cost of a miss. 
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Irt figure 2.2: the contotir lines of constant B a y s  risk as given by (2.16) are plotted. As 

expected9 the corttour lines are linear, with slope given by (2.20). For the figure, the 51.A.P. 

cost assignment was used, along with a value of TI = 0.1; therefore the lines have slope = 

10. Since > T I  and Cro = such a cost assignment emphasizes the cost of false alarms 

r r t r m  tfrarl misses. In order to graphically determine the optimal operating point for a given 

Jj(z) and fi(z); ttw KOCI curw as illustrated in figure 2.1 must he overlayed on figure 2.2; 

the operating point lies where the ROC curve is tangent to  one of the contour lines. 

While Bayes rules are useful for making decisions when priors and cost functions can 

he supplied, neither are avaiiable in a, typical radar scenario. Information theory provides 

a less sabjective ros t structure- while the mini-max formulation eliminates the requirement 

for priors. 

2.3.2 Maximum Information (or Minimum Equivocation) 

Onq way to eliminate the subjectivity of Bayesian cost functions is to  invoke hformation 

Theoretic concepts. The mutual istforrnation expressed in the decision from a binary test is 

given by [sf 

This is equivalent to  a Bayesian cost function with 

Now let 
1 

bc the a posteriori probability of Hi being decided, then we can re-write (2.21) as 

In orcler to find the optimal threshold, we must express (2.23) as a function of A: which is 

acromplished by taking the derivative o f 1  with respect t o  p f  = Pa(fl) and using (2.15j, 

a1 --  1 - p d  
&f 

- -rolog (y ) + [zo i, Axl] log& - Axl log (gd) - [iiO + hl] log& (2.24) 
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as mrly as 19.53 [#I] tt-err- at;tempting to  utilize information theory in the radar context. 

Attempts haw aim l i e n  rnaclrs to describe clinical diagnostic tests in terms of the mutual 

il~forrrratiort firnrtion iZTj, Despite the interest and attempts of many, it is still not clear 

how the  cost firrtctions of ["t,22~ relate to  any red-world performance parameters in a radar 

systr*rrr, Katraya arrd Sakagawa f283 recently wrote an interesting paper investigating the 

ror4n~r.tSuri !~twwu $!.re mufitid information function and Bayesian derision making. Un- 

fartrrrtatety thr* rczfatiarrship is through an  asymptotic detection performance figure xvhich is 

v;tliti only as thc. rmnrber s f  samples goes to CL. Other infarmatian theoretic measures such 

as the disrri~rtinatiorrn or tliuergmce [29] have also been applied to  detection theory; however, 

t h q  also giw as~mptst ic  r4atioaships that are not relevant in radar where we don't have 

a f.ar;fi;cr stwnrbc~ of indepersdcrrrt idertt;icaflg distributed looks a t  a given cdl. 

2.3.3 Mini-Max 

I t  can he shown f20f that  the mini-ma-u criterion also leads to  a likelihood-ratio test; 

hnwcver. the test is seIdor~ if ever useful in radar contexts, because of the difficulty in 

a$sigrting ~neaningftil cost functions. The criterion is pessimistic, and may lead to penalties 

in p~rformance by baskg the threshold on priors i.r; that seldom occur. 

2.3.4 The Neyman-Pearson Approach to Detection 

15% traw swn tirat t h e  cost frmct ion approaches require more information than is typically 

awaEfaSrl~ in the radar grubfern. Given the. problems of cost function approaches, the radar 

comrttntrity bas. traditionally adopted to  lrse  the Keyman-Pearson philosophy. 

Err radar, the cortsquensa of a miss are typically much higher than those of a false 

alarm- Fd.w a i a r r s  are nrrisarrces that lead to  waste of resources but misses are system 

hiiarw ttkair can cause ~ Q S S  of Efe. The Weyman-Fearson criterion asks: %ow many fdse 

alanns can we afford to rtUawTW Then the appropriate threshdd is chosen t o  allow that 

nttnrbr of fake dams, and the resulting detection probability is hoped t o  be acceptable. 

The Neyman-Pearson frrwnemxli makes sense, and systems supposedly working under 

i ts ghifcmpb- haw worked mtcaddy  for decades. In fact, Skofnik 1301 wrote in 1962, 



"The Keyman-Pearson criterion is 14 suited for radar applicat ioa aiirl is oft t w  11srvf it1 

practice. whether knox~ingfy or not." Rowver. a closc~ look revmls t itat it is tllr / t i /-nltc 

[ix. threshold-crossing raie), not the false alarm rate. that is act tralty t l1t1 p;~rnlitc*tt~r of' 

interest. For example. in the latest edition of two influeritial hooks in r;~(lar [(i], {IS], t I I P  

sections discussing false alarm contrcs! actually discuss hit-rates. 

?Vhy is the hit-rate more useful? Bx definition, the false darlrr ratr is uerrl~sr*rvaldt*; if 

we knew a threshold massing was a false alarm, we wouldn't rail it ;L targrt ia t tic* first plnsc. 

Furthermore, the choice of a design false alarm  rat^ is pur~ly  s~~bjcctivc. A s  cxplaii;i.rl ill 

the gun-control and TWS examples of section 1 -1. the o p t i i ~ ~ d  V&IC ( i~pcnds on tlw rada r  

context - the number of targets ptc. In chapter 3, U.P will introdrice a n w  i f d ~ c t i o ~ i  critr~iim 

that is based on the kit-rate rather than the false alarm rati.. 

We have seen that an opaimd test f in  the sense of N~yittaa-IJ~arsorr, I$;tycs, M a s i ~ n ~ ~  111 

Infom~ation or Minimax) must he a likelihood ratio test, In giwxal, a likrlilrc~crcl rabio 

test may be difficdt to synthesize. In the following sectiun we cxatnin~ SOIIIP of tlw W ; L ~ S  

that  radar systems practically approximate EkeIihood ratio tests, attcl &*;ti t v i t l~  c.orriposit.c* 

alternate hypotheses, 

2.4 Practical Tests 

2.4.1 Composite Alternate Hypotheses: Uniformly Most Powerfd Tests 

Thus far, we have assumed that both the rrull and alternate 11ypothc:s~s ;rrrn si~tjplc*. L%* 

now consider the most common scenario in radar detection probl~rns: a sir~iplr* null ; L I I ~  

composite alternate hypcrt he&. 

R e d  that a composite alternate hypothesis mmns that rmdrr I l l ,  thr! oltsrwatioa X 

Bas  a density fe[x) where El E Al has mom tharr one point. Perhaps it is ch4 i f )us  that thr* 

simplest thing to do is t o  define a density for 43 and average over fe fx  f :  



W A  PTER 2. CtA.S"S1CAL DETECTION THEORY 

Similarly the tikerjhood rat.io (sometimes called a generalized likelil~ood ratio [31]) is 

59% wonld like to design a sirtgle test in the spirit of the Neyman-Pearson lemma for 

every pair (fl f Ao,B E t i l ) .  A test 6 ( x )  for testing Ho versus HI is called Unijormly Most 

Pw*erjul (UMY) if7 for all (6 E Ao, 8 E A r )  it has power (detection probability) greater than 

m y  other test with the same size (false alarm probability). 

U M P  tests are highly desirable, since they guarantee optimal performance over the 

entire range of O ,  In the following theorem, we will consider scalar random variables X 

with density functions f8,(s) parameterized by scalar parameters. While thjs appears to be 

restrictive, most radar detection problems do indeed reduce to  the comparison of a single 

scalar that has a density parameterized by a scalar parameter. The Karlin-Rubin theorem, 

which we now consider, is extremely important for such problems, since it allows seemingly 

co~npficated likelihood ratio tests t o  be made by simple threshold tests f2.41. 

2.4.2 Threshold Tests: The Karlin-Rubin Theorem 

tZssume that X is a scalar random variable whose density function is a function of the scalar 

parameter 8. Further, assume that the likelihood ratio function 

fe, I 4  qz) = - 
fe0 (4 

is a rrondecreasing function of I: for all (go, where Bo < B1. Then l ( X )  is a monotonically 

increasing function of X f we sag. X has a monotone-1ikeZiFdood rafio). A monotone-likelihood 

ratio function means that HI is more likely as X increases. 

Given a monotonic likelihood function, the likelihood ratio test of (2.12) is equivalent to 

the threshold test 

1 i f z > t  

7 i f z = t  (2-30) 

0 i f z < t  

The proof is straightf-ard: Assume that Ho is simple, and let Bo be fixed (note that 

this is not necessary for the proof, but we are considering only simple null hypotheses 

anyway). Begin with a fixed 8-1 > &. By the Neyman-Pearson lemma, the test of (2.12) is 
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optimal for the simple Ho : 8 = Bo versus the sirnple altcrnativ~ N 1  : B = 0,. S ~ C P  f(,t') i s  

monotone, we can replace the likelihood ratio test of (2.12) with the tlircstwlil tcst of (2.30) 

with 

E(S(XIHo)) = Po(X > t )  + -yPo(S = 2 )  = a 

Since the test is independent of 4, it is uniformly most powerful among all tests with hlsv 

alarm probability 5 a. a3 

The Karlin-Rubin Theorem is very powerful since it means that very simple tests cat1 

be used and still be guaranteed to  be UMP. Threshold tests are aln~ost always usccl in s:~dar 

installations and it  is important to  know how the resulting performance cornparcs with tlw 

optim J. 

The Karlin-Rubin Theorem also simplifies calculation of the detection ar~tl falsc alii.rr~i 

probabilities. From f2.30), we see that the decision regions can now he exj>ressctl in tcmis 

of x instead of C(x). Specifically 

Then the detection and false alarm probabilities can be expressed in t e r m  of t h ~  dcr~sitiw 

and 

Furthermore if X has a monotone likelihood ratio, (2.31) is still valid for cor~ryositc. 

alternate hypothesis if fi(z) is defined as  in (2.27). 
m f  Ine Iiar'rin-Itn'oin Theorem aiiows considerable simpiiiicaiion when the observation has 

a monotonic likelihood ratio function, The question to ask is what densj ties producc: mono- 

tonic likelihood ratios? 

3The end of prooh is indicated by the 0.  
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One-Parameter Exponential Family Consider a random vector drawn from a family 

of distributions of the form 

(Such a family is called a one-parameter exponential family). If Q is a nondecreasing function 

of 8, then ;i7 has a monotonic likelihood ratio function. A random sample X drawn from 

this distribution will produce a scalar statistic, T(T)  with a one-parameter distribution and 

monotonic likelihood ratio function. T(Z) is called a suficient statistic for X, which by the 

Ka~lirr-Rubin theorem can be optimally tested by a simple threshold test. 

It is easy to show that binomial, Poisson, one-parameter Normal (i.e. either the mean or 

variance known), and one-parameter Gamma distributions all generate monotonic likelihood 

ratio functions. 

We have seen how composite hypothesis tests can be handled, and how monotonic like- 

lihood ratio tests yield very simple forms for the UMP test. In the next section we discuss 

the problem of forming the test statistic, T(Ej from a vector of observations. 

2.4.3 Multiple Observations: Sufficient Statistics 

In the previous section we saw how that a vector of observations, x, could be reduced 

to  a sufficient statistic T ( X )  when is drawn from a distribution from a one-parameter 

exponential family. In most radar installations, however, a simpler (non-optimal) function 

and not T(z )  is calculated and used as a test statistic. 

For example, in section 2.5.1 we derive the likelihood ratio for a common radar target 

model: a constant amplitude random phase target in Gaussian noise. It  is shown that the 

likefihood ratio function is 

t(z) = exp [-f A ~ ]  Io(Az) (2.34) 

where z is the amplitude of the return [target pius noisej, A is the amplitude of the target 

return alone and &fz) is the zeroth-order modified Bessel function of the first type. 

Now consider the problem of making a detection decision based on N returns. Assuming 

that the returns are statistically independent, the overall likelihood ratio is the product of 

the individual likelihood ratios: 
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where z; is the amplitude of the ith observation. Since -4 and A' are known.', tlir likclihcwl 

ratio test is equivalent to  

where t' = t exp($iVA2) and t is the original threshold. The logarithm bring a ~~ionotorric 

function, we can re-write (2.36) as 

where t" = In t'. 

Unfortunately, it is difficult to implement the In  lo(*) function at radar yroccssing spcwis. 

Therefore the function is approximated with either a square-law or a linear detcctnr. (:lcarly 

there is some loss incurred in using a sub-optimum combining scheme which docsr~'t, usch i L  

sufficient statistic5. For linear and quadratic detectors, the loss is typictzlly o r 1  the ortlw ol' 

a few dB or less for common radar targets in Gaussian noise [lfj]. 

For the purposes of this thesis where we are concerned with the practical conscqi~c~riccs 

of not knowing the distributions, only one point must be made regarding thr 11se of rlori- 

sufficient statistics. In the next section and in chapter 5, we will generate H . O C  curws for 

a number of different radar scenarios. In all cases the calculations are for tfireslrold tcst,s 

applied to the test statistic derived from a quadratic combining rule. Given t h e  prct.ctlir~g 

discussion, we are not guaranteed that threshold tests are justified since wc  arc riot forrr~irig 

the likelihood ratio for our statistic. 

However, it will turn out that the ROC' curves for all tests considered in this thesis arc1 

concave ROC mrves are called p r e p =  [23]). !t is easy to show that, a cmcave ItCX: 
curve implies a monotonic likelihood ratio test for the underlying djstribu tions. Consider 

4For this thesis, we assume that dV is a given constant. Wald [22] has developed a theory callcd Sequcr~tial 
Detection that requires a variable number of returns. Unfortunately, in addition to cost functiorrx and priors, 
Wald's test requires that an acceptable value for both the detection probability and fake alarm probability 
be chosen. We will not consider Sequential Detection further. 

'Note that even if the Inlafe) function could be evaluated at radar speeds, it would only be the form of 
the optimal combiiafion rule ior a canstant amplitude target in Gaussian noise, and riot for aoy other target 
and noise models. 
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expanding the ROC curve in a Taylor series for the likelihood ratio function about a point 

C(p fa). We can write 
dC 

flpfo + Apf) = f(pfo) + -Apf (2.38) 
8pf 

but (2.15) shows that the slope of the ROC curve is equal to the likelihood ratio function 

evaluated at  that point: 

Therefore 

az d By definition of concavity & 5 0, hence 

l is therefore a decreasing function of p f and pd, or equivalently an increasing function of 

X . Thus a concave ROC curve is sufficient to  guarantee a monotonic likelihood ratio function 

(and to justify use of a threshold test, from the Karlin-Rubin theorem). This equivalence is 

important for some examples in chapter five, where we are unable to calculate the densities 

for some of the models, but are able to calculate the detection and false alarm probabilities. 

(The seeming anomaly of being able to determine the integral of a function without being 

able to  calculate the function itself is a result of the calculation technique used.) 

Of course, it is impossible to rigorously prove the concavity of a ROC curve by using 

numerical techniques which can calculate only a limited number of points on the curve, 

and to finite precision. However, such numerical techniques do generate some evidence to 

support use of a threshold test. 

Once the detector of a radar s ~ s t e m  is fked: so are the densities of the return under the 

two hypotheses - we may not know what they are, but provided they produce a concave ROC 

curve the equivalence of a threshold test t o  an optimum likelihood ratio test is guaranteed. 

Furthermore, if a scenario is envisioned where the test statistic does not generate a concave 

ROC can-e, there is net iamnch that we, as" a radar designer operating mder  ignorance, can 

do. The point is that we are going to use a quadratic (or linear) detector, and a threshold 

test; if the test statistic is not optimally tested by a threshold test, then none of the classical 

detection criteria nor the criterion introduced in this thesis apply since we are not using a 

tikefihood ratio test. 



In the next section a couple of examples are offered to illustrate the icleas int,roclucctl 

thus far, 

h order to clarify some of the concepts introduced thus far, we now give* tit.0 rlassir.;tl 

examples. The first involves the detection of a constant anlpfitude randon1 phase targcbl, ~ I I  

Gaussian noise; such a target is known as a Marcum or Swerling 0 target ['Ll]. Thr sero~id 

example involves a Rayleigh-fading target in Gaussian noise. 

2-5.1 NonAuctuating Target in Gaussian Noise 

Consider the detection problem for a coherent radar. We assunie that the two hyptrt,Ircsc~s 

are described as 

Ho : X = ( X I ,  XQ) = ( N I ,  NQ)  

where A is an unknown positive constant indicating the amplitude of tho radar return cllrtr 

to a target, 9 is the phase of the target return, Nr and NQ are respectively, thc ill-pltasci 

and quadrature components of the noise. [Both A and @ are randonl variables.) 

The distributions of 51; under the two hypotheses are functions of the amphide (0 or A )  

and phase 9 of the target return. Let the parameter space O be given hy 

where 0 1  = [O,cc) and e2 = [0,2sr]. We assume that e2 is uniformly distributed over 

[O, 2a]. Then we can write 

A, = (0) X [O, 2x1 and A1 = [O? cxij X [0,27rJ (2.42) 

If the noise components a1 and TLQ are normally distributed with zero mean a n d  ~lnity 

variance, then 

fe(3 = & ex~[-s(% @)I (2.43) 
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where 

sjZ, 6) = $[(XI - 81 cos 02 , )~  + (2Q - 61 sin o ~ ) ~ ]  

'Then we can write the density under Ho as 

If we let z = z: + x b  = 1 ~ 1 ,  and y = tan-'(xQ/xr) we can re-write (2.45) as J-- 
fo(z, 9) = - exp --z " [ : ' I  (2.46) 27r 

Integrating with respect to 9 over [ 0 , 2 ~ ]  is trivial, and leaves the Rayleigh distribution for 

7 - w .  

fo(zj = zexp [-fz2] (2.47) 

Note that fo(z) is independent of O;  Ho is simple. 

The distribution of 3 under H1 is a function of 0. In order to  remove this dependence, 

we assume O2 is uniformly &st*ributed over [O;  2n] and integrate: 

Espanding and simplifying, 

Z 2a 
jl (z) = - exp (-:(A' + z2)) & 1 exp[A(sI cos 62 + XQ sin 821 dB2 

271. 
(2.49) 

0 

From the definition of s and 9, XI = z cos q and XQ = z sin v. Rewriting (2.49) in terms of 

a and 9, and remembering the trigonometric identity 

cos y cos 192 i- sin 9 sin B2 = cos(02 - y )  

we get 
T 
i. h ( z ,  y )  = - exp (-4 ( A ~  + z2)) Io(Az) 

2~ 

where lo(z) i s  the  zeroth-order modified Bessel function of the first kind and is given by the 

integral of (2.49). Integrating (2.50) with respect to  11 over (0,2n) is trivial, and yields a 

Rician distribution for 2: 

fl(z) = zexp (-f (A* + z2)) l o ( ~ z f  (2.51) 



CHAPTER2 CLASSICAL DETEC.TZOX THEORY 

By combining (2.47') and (2.51), the likelihood rani0 can be writtell i ls  

Note that likelihood ratio is a function of a scalar, z = 1x1- Since Ili(tlz) is ;I I I I ~ J ~ ~ I J ~ ( s I ~ ~ c ; L I I ~  

increasing function of 2, SO is [ ( z ) .  Therefore, froin the Karlin-Hnt>in t t ~ ~ ~ o s c ~ ~ i ,  wc c . i ~ ~ r  

replace the likelihood ratio test by an equivalent threshold test. Since thc rcjcxtion rcgiol~ is 

the same for all values of el = A, the threshold test is U M P  even though 11, is colijpositc~. 

In order to evaluate the probabilities of detection and fdse alarm, wc. i r i f  (yrabc 1 . 1 1 ~  

density functions for z. The probability of false alarm is given by 

pf = ls fo(z) d r  = exp [-f t2] 

We can solve (2.53) for the threshold as a function of p f: 

f1 (2) must be integrated numerically to determine pd: 

03 

pd = / rexp [ - ~ ( A z  + i"] I,,(Az) = Q ( A , L )  
t 

where Q ( A ,  t) is called the Marcum Q function [33]. In chartter 5 wc show how 111o111or11, 

generating functions can be used to  calculate Q ( A ,  t). 

In figure 2.4 the ROC: curves for Marcum targets with SNR = O,5 and 10 dl3 ahovc t h  

(unit variance) noise are plotted. (The SNR is given by ; A ~ . )  AS exj)et:ted, all lirws arck 

concave and above the chance line. As the SNR is increased to 10 df3, thc curvt: gcbts closcr 

to the northwest (pf = 0,pd = 1 )  corner. For SNR = 10 dB, pd appcars to rtirr~airr vrlry (.loso 

t o  1 for all but lowest pf; this is due to  the nature of the target. For a Marcu~n (cor~stanl) 

target, pd is expected t o  stay large until the threshold exceeds the arrrplitutl~ o f  thc ret,urrr; 

then pd decreases very quickly. We will see different behavinur with the nrxt r:xatn plc. 

2.5.2 Rayfeigh-Fading 'Farget in Gaussian Noise 

T/fTenow consider returns with non-constant amplitude. Note that nothing tias changrd rtrrder 

Ha, hence fo(z) can be expressed as fo(z) as previously. We will show that the fikdittoc~tl 

ratio is monotonic and therefore the likelihood test can be replaced with a tfrresfit~ld test; 

hence (2.53) and (2.54) are still valid. 
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False Alarm Probability, pf 

Figure 2.4: ROC Curves for Marcum targets with SNR = 0,s and 10dB. 

1x1 order to deal with A1 containing more than one point (i.e. HI is composite), we 

integrate fi (T) as before: 

where f (O1)  and f ( B 2 )  are the density functions for the magnitude and phase of the return 

arid fe@) is the density function cf Z given that the return has magnitude O1 and phase 

& (again it is assumed that it2 is uniformly distributed over [0,2a]). From the previous 

section, the likelihood function can be wetten 

Since lo(z) is monotonicaUy increasing, and f8, ( 2 )  is strictly non-negative, (2.57) shows 

that the likelihood ratio fugction is a monotonic function of t = Iz I .  Therefore as claimed 

above, p f is the same as for a constant amplitude return. 
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In order to proceed further, we require a probability tlcnsity fonctiui~ for t I W  all\l,li1,otIt. 

return. To simplify the notation, let = -4 be the arnplituclc of tltr return. Notv that .  .#I 

is now a random variable and not a constant as in the prcvious scrtion. Thc. most  c'oinrrloil 

assumption for a non-constant A assumes that the return is contprist~l by iL litrgf' I I I I I I I ~ ) ( T  

of specular returns. If this is the case: we can invok~  t l ~ c  rentr;tl limit t 11corr1u. '1'11~ i l l -  

phase and quadrature components are then described by a. Gaussian distribution, itnrl fl  is 

Rayleigh distributed: 

where a2 is the mode for u. We can also show that a q s  tlw siriglc pnlso sig~~iil-t~o-~~oisc~ 

ratio (SNR); which we denote by Q: 

From (2.31) the detection probability is 

Now consider the substitution 

TJ = Edi-T.7 
CZ 

Then the second integral in (2.62) can he re-written 

By comparing (2.64) with (2.50), we see that the integral within (Z.fj4) is the intr:gr;~l of 

a Rician density 

re-writing (2.62) 



Figure 2.5: ROC Curves for Rayleigh-fading targets with SNR = O,5 and IOdB. 

t 2  
= exp (- ) 

2(1+ a2)  

which can be re-written as a function of pf by using (2.54): 

which is a very vice11 known result [2 I]. 

Tile ROC curves for a itaxieigh-fading target with SNR = 0,5 and 10 dB are given 

in figure 2.5. Again the curses are concave and above the chance Line, with increased 

performance for larger SMR. Comparing with figure 2.4, it is seen that the Raylei@ target 

appears to fall off much quicker at  larger pf than the Marcurn target. This is because of 

the effect mention4 previously; the Marcum target is composed of a single tone plus noise 

arrd so pd remains high when the threshold is lower than the amplitude of the tone. 



2.6 Conclusions 



Ideal Observer (or 
Maximum a Posterior) 

Rate Constraint fdis- 
eosstd in chapter 3) 

Table 2.1: Comparison of Detection Criteria 

A is such that pf is 
constant, 

X is such that t1 = 
const a d .  

Im~lementatiun Considerations 

Col, Clo, Cw and Cll are subjective 
and arbitrary, TO and must be 
known. 

See above 

Q and slrl are unknown. pj and pd 
rewire probability distributions under 
& and HI. 

p j is unobservable unless sure target is 
absent. Takes a long time to estimate 
if smail or we n d  the distribution of 
the test statistic under Bo to calculate 

G is observable (doesn't require dis- 
tributions - although may use distri- 
butions if available), 



2.7 Appendix: Proof of Neyman-Pearson Test 

The form of proof is based an 01. ft is irtcluded to allow toinparisoil with thr p n r d  r d  I I W  

rate constraint critemion found at the end of chapter 3. 

Mdtiplying by jo(s) and integrating, we have 

and 

Proof of Existence Let Xa be the smallest nurnber such that. 



Proof of Uniqueness Let 5' be an a-level test of the form given in (2.12) and let 6" 

he ;r;r~y other a-level with the same pd. Since pd(6') = pd(S") equation (2.71) shows that 

p f f  6") = a, which in turn {from (2.71)) implies that p f ( S f )  = p f (6"). Therefore working 

from (2.7 1 ) back to f 2-68) we have 

Since the in tegrarrd must be positive or zero, b U ( s )  must be of the same form as Sf(z) except 

possibly when f ( x )  = A. Therefore 6" cart differ from 5' only in the randomizing function 

yb). 0 



Chapter 3 

Rate-Constraint Detection 

Criterion 

3.1 Introduction 

In chapter 2 various classical detection criteria were discussed and found to hc: i~lappropriatc 

for radar target detection where a prior; information is missing. While the Ncyrrtan-I'r;tiso~~ 

criterion is the one most often cited in radar detection literature, it is impractird o r  impos- 

sible to  design, or even to  describe the performance of, a statistical cietectiorr systcm i r i  t h  

Meyman-Pearson framework. There are two major problems in using the Xtsyinitrr- Ptwsm 

criterion in practical detection systems. First, the false d a m )  rate is unobservahlc; thew- 

fare the distribution of the returns under Ho must be fully specified sinre it is irnpossjth trr 

control an unobservable. Secondly and more importantly, assumirrg that we c c ~ l c l  achicvc 

ariy fdse alarm rate desired the question remains: tVfiat is the appropriate ratc to cttor~so? 

While vahes such as lo-' are typically given, there is no  reason to pick this V~IIJCJ over ally 

other, 

For example, consider the the gun-control radar discussed in section 1.1. If tLc! falsr: 

dam rate is set too low, the ship is not optimaiiy protected. If the Mse daroi ratc is sot, 

too high, the gun is easily overloaded and not able to handle all targets. Clearly the optimal 

drre for the fdse alarm rate is a function of the enviror~rnent (rmmber of targets) that the 

radar is working in. The optimal strategy is to set the threshold such that the rrssourt;e is 

&ways f d y  ntilized. 
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Nearly all detection systems control resources that are constrained by some combina- 

tion of limits in processing power, memory constraints, and communications channels [14]. 

This chapter investigates the best way to  make full use of the resources. In his study on 

information flow through general systems, Conant noted that for optimal performance we 

should "match components to tasks so that each component is operated a t  capacity, ... work 

it as hard as you can." The importance of matching the hit-rate to the tracker resources 

has also been noted in discussion of optimal radar tracking systems [6] .  It is important to 

ur~derstand exactly how such a strategy performs. 

3.1.1 Chapter Outline 

This chapter examines the rate-constraint criterion, a new detection criterion that maximizes 

the effective probability of detection given that the resource utilizing the detection decisions 

can handle only a given number of threshold crossings per unit time. In section 3.2 the form 

of the optimal test is derived - not surprisingly it is a likelihood ratio test. The threshold for 

the test is such that the number of cells crossing the threshold is matched to  the processing 

rate of the follow-on resource. The rate-constraint test is formally compared with a Neyman- 

Pearson test operating under a rate-constraint in section 3.2. In section 3.3 rate-constraint 

theory is applied t o  the detet+:on of Marcum and Rayleigh targets. The application of 

rateconstraint theory t o  a systems-level control system for an obstacle avoidance sonar 

is discussed in section 3.4. Conclusions are discussed in section 3.5. Finally, the chapter 

appendix (section 3.6) includes a proof of the rate constraint lemma. 

3.2 Single Stage plus Resource 

d simple two-stage detection system is shown in figure 3.1. It consists of a first stage that 

investigates the environment and makes decisions a t  a rate r,, the radar cell rate, and an 

actuator acting on the detection decisions of the first stage. We assume that the actuator 

services each celi ihax produces a t*hfes'hoid crossing in the h s t  stage and ignores the rest. 

5% furthermore assume that the actuator is capable of handling only some fixed number, 

r,, threshold crossings per unit time, and that the performance of the actuator is not a 

function of the processing load presented t o  it by the first stage (provided there are less 

than I; crossings per unit time.) 
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~ ~ I U ] ~ ~  Stage 1 

Threshold 

Figure 3.1: A Detector Cueing a Rate-Cons trained Actaator 

The question is what test to use in the first stage so that the probability of a target heing 

serviced by the actuator is maximized. If the first stage were removed, the cells passed to 

the actuator would be chosen randomly and the resulting probability of detectio~i would l)c 

The purpose of the first stage is to match the radar rate to the actuator rate i u  such ;L 

way that the probability of detection is a maximum, hopefdy greater titan (3. I ) .  

First Stage Detection Criterion The goal of the first stage is to screen the radar cells 

in such a way that detection performance is optimized. in other words, the first stage njr~st 

choose those cells most likely to contain targets to pass on to the actuator. Anoi,hw way 

to view the problem is that the actuator is a resource that must be utiljzed in tire most, 

efficient fashion to detect targets in the radar space. 

The model is quite general, and could describe a large number of detection probletns. For 

example, the first stage could be a scout for a hockey team, an obstacle avoidance sonar, or 

a surveillance radar. Corresponding actuators could be a hockey coach conducting a nurnbcyr 

of skill tests, a thruster, or a jet interceptor, The actuator could even be another detection 

stage snch as an automated tracking computer. In chapter 4 we will consider multi-stage 

detection systems, where the actuator is a series of detection stages that operatc niore slowly 

t k a ~  the first stage, but give better detection performance. 
WL- ,,: y++mary pliqose of Zhe first stage is to d i r c e  the radar 4 1  rate T,  to the act:~atcir 

cell rate T,. The output (hit or threshold crossing) rate T, of the first stage can be described 

in terms of the probability of detection and false alarm of the first stage as 
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Figure 3.2: Constraint Boundaries for Various Values of nl. 

We require r, < r, or 

a l p d +  TOPJ f r 

where T = T, /T,  is the normalized actuator input rate. We want the first stage to maximize 

pd subject to constraint (3.3). 

Before discussing the rate-constraint detection criterion, it is helpful to describe briefly 

the constraint in terms of the standard ROC (receiver operatiug characteristic) diagram. 

Figure 3.2 illustrates the linear constraint boundaries (equation (3.3) with equality) for 

various values of TI. For TI = 0 we have the vertical line intersecting the p f axis at p f = r 

and for TI = 1, the horizontal line intersecting the pd axis at  pd = T .  For 0 < wl < 1 the 

boundaries are a series of straight lines all passing through the point p f = pd = T as shown. 

Any test developed must have a rate that is less than or equal to T and therefore pd must be 

less than or equal to the boundary value for a given pf aild nl. For example, given values 

of pj = p f" and = n: we have pd 5 pd'. These constraint boundaries help to describe 

an operating point, for the test criterion. 

Operation of a Neyman-Pearson Test Under a Rate-Constraint Our objective 

here is to investigate the Neyman-Pearson criterion in light of the rate-constraint forced 

on the test by the actuator and expressed in (3.3). We consider Neyman-Pearson tests for 

two reasons. First, the Nepan-Pearson formxilation is the one most often discussed in 
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literature; therefore it provides the benchmark to compare our criterion wit 11, Secou tlly, 

the Neyman-Pearson test is representative of any test that applies a, fiseil thrcslioltl to a 

likelihood ratio test. Therefore, our consideration of Neyman-Pearson tcsts will yicld ir~sight, 

into how Bayesian, Maximum Mutual Information and other tests will work. 

Recall that a Neyman-Pearson test is a likelihood ratio test of titp for111 of (2.12). I S  

+ A N f  the threshold for the Neyman-Pearson test, is set such that p f ( A j y r  j = pfiV tlwn 1.hc 

hit-rate for the test is given by 

As long as T j v p  5 T ,  (3.3) is satisfied. If 71.1 and pd are such that T , V ~  > T thcrr tllc hit.-r;r.tc 

must be randomized t o  bring it down to  r. This simply means that a fractiorl of' tlic hits 

are thrown away and not passed to the actuator. Denoting the fracf,ion of hits not, I,llrowtr 

away as K ,  we have 
T - T 

65- - 
T N P  ~ I P ~ N P  + T O P ~ N P  

and the effective probabilities of detection and false alarm are 

Solving (3.7) for K and substituting it into (3.6) we have 

fn summars there are cpxpressium for the probabiti ty of detcstmn under t lw Nry rlr ;%)I- 

Pearson criterion. Which one is valid depends upon t he fraction ~ t .  

where pfkP is given by (3.7). Fi,o;ure 3.3 illustrates ths.;c? ~~lzztionshijts c~o the ROC diagram. 

As I o ~ g  as the target poparlation, described 1,3. nl, is st~ch that, K 2 1 ,  the Keyrrran- 

Peason test operates at pain& A. If the target population increases, howaver, p f and pd are 

forced to drop to  maintah the rate at T.  This drop is described hy (.t.7) for v, < I and is 
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Figure 3.3: A ROC diagram illustrating the performance of a Beyman-Pearson test modified 
to operate under a Rate-Constraint 

represented by the straight line from (pfNp,pdNp) to (0,O) on the ROC: diagram. There- 

fore if the actuator is overloaded ( K  < I), random selection is necessary and performance 

degrades until finally for irl = 1, = T .  

To guard against entering the overload region a rate maro& r ,  can be introduced. The 

rate rmrgin is defined its the difference between p f N p  and T:  

If r,, is positive the test will admit a certain target population .li, before going into overload. 

If T,, is negative the test is in overload for all x l .  

The behavior of the Neyman-Pearson criterion described above is familiar to designers 

of practical systems that work under a hit-rate constraint. We now discuss the optimum 

rateconstraint test. 

The rateconstraint criterion ma~vimizes pd subject to the normalized hit-rate being less 

than or equal to a constant T ,  A rate-constrained detection rule is defined as a decision 

rule having this propr;rEy. The following lemma is proved in the appendix at the end of the 

chapter- 
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Lemma 2 (Rate-Constraint) For a hypothesis test betwecn FIo ard 11, wt- h a w  tht .  fol- 

lowing: 

1, Optimality: Let S be any decision rule satisfying r I p d ( S )  + r O p  f (6) = q < 1- a ~ ~ d  I c !  

S' be any decision rube of the jornz 

2. Existence: For every r E (0, I), there is a decision rule ST o j  the f o r m  oj  (3.1 I )  u d h  

y (x) = yo, a constant, for which 

3. Uniqueness: Let 5" be any r rate-constrained decision rule ,for fro versus [ I I ,  l'hcrb 6" 

must be of form (3.1f) except possibly on a set of measure zero under Ho a~ad Ill. 

Therefore a rate-constrained decision rule is a likelihood ratio test, as exycc1,c~rl. In 

fact if the a priori probability of a target being present, nl ,  is zero, the ratc-constrai)~cd 

decision rule and the Neyman-Pearson decision rule are identical, ffowever, for non-zrv 

target densities the tests are different with the rate-constrained decision rule yit4tlir1g t 1 1 ~  

greater probabity of detection. 

This does not mean that the Heyman-Pearson test is not optimum for its st,atctl con- 

straint (pf 5 a) but rather that it is not optimum under the rate-constrair~t. Irr fact to 

operate under the rate-constraint, the Keyman-Pearson test h ~ s  to he raadnrniz~tl by I l w  

factor E discussed earlier resulting in the following test. 
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Equation (3.12) describes a decision rule that satisfies the rate-constraint but it is not a 

rate-constrained decision rule as defined in (3.1 1) and therefore necessarily has a probability 

of detection less than the optimum- 

The rate-constraint decision rule does not have some of the nice mathematical properties 

of the Neyman-Pearson decision rule because the rule changes for different targets and target 

co~icentrations; however, it does have one major advantage. Unlike the Neyman-Pearson 

rule, the constraint variable for the rate-constraint rule is observable. The constraint variable 

for the Neyman-Pearson rule is the probability of false alarm which is impossible to observe 

unless one is sure that there are no targets present. On the other hand the hit-rate is 

observable and therefore can be employed to control the detection process through a feedback 

loop. 

The performance of the rate-constrained rule is illustrated on a ROC diagram in figure 

3.4, If we assume that a control mechanism is in place to adjust the hit rate then the system 

operating point will move along the p d / p f  curve until it intersects with the constraint line 

that corresponds to the target density. The operating point will remain stationary until the 

target density or the statistics change. 

For example, consider operating point A of figure 3.4. If, say the signal-to-noise ratio 

drops from to QB while the target density remains constant, the operating point will 

move along the rate-constraint line to 3, with an accompanying decrease in pd and increase 

in pf. Note that pd3 is higher than wodd have been obtained (pdB,j if the false alarm 

were maintained a t  pf-4. On the other hand, if the operating point were A and the target 

population increased while the SWR remained constant at  QA, the operating point would 

move to C. A t  C both pd and pf are reduced from their values at A to compensate for 

the higher density of targets so the following stage will not be overloaded. Conversely, if 

the population concentration decreases, pd and p f  increase thereby increasing the detection 

sensitivity of the stage. 

We define the deteclion cuntezt of a target as the set of all paranreters which influence 

the position of the operating point- h d x e d  target and ~ariable dxtter situations these 

parameters may be difficult to  identify but the operathg point is still easily determined by 

observing and controiting the hit-rate. Ln these complex sitnations it may not be easy to 

translate the operating point into a performance number such as the probability of detection 

but at  l e s t  the sxstem is controllable. 



Figure 3.4: ROC diagram showing two pd versus p f curves ( p A  > pl3) ar~d 1incvt.r coitst,rit.ir~r, 
boundaries 

Comparison of Rate-Constraint and  Neyman-Pearson Criteria Under a Rate- 

Constraint As was discussed in the previous section the modified Ney111it11-1'~;~rson I , C S ~ ,  

(modified to perform under a rate-constraint) does not perform as well as tlrc rate-ro~ts t mir~ 1, 

test. Specifically, 

P ~ R C  2 pdivr (3.1 .3) 

The equality holds when pfRc = pfNp for the given detection corrtt-xt which occ-iirs G L ~  

at point A in figure 3.5. ff ?rl decreases then the operating point for tlte R,(: tost Irjovcs 

up the pdlpf curve, say to the point where nl = aB. The d~tccticjn j~rohability pdB is 

necessarily larger than pdNp from lemma 2. ft is also evident From observirrg that, at ~ I I P  

new operating point we have another Keyman-Pearson test with a larger yf than y fA arid 

therefore pdB > pdA. 

U the operating point is at A and ?rz increases: then tbe rate-constraint operating jioirrt, 

will move to, say: point C consistent with the constraint curve co~respondir~cc, tr) nc. Now 

this increase in ?rx resdtis is an overload condition for the Beyman-Pearsun test and so t l r r ,  

operating point far this test must fall to point C' as described earlier. Tftc opwating poirrt 

C' is at  the intersection of the straight line from ( p  jNr, pdKr.) to [Ot 0) m d  the r:oasi,rairrt, 

fine for a1 = KC- We a f a d y  know that pdc > p d p  because of lernma 2; fnrtt~r:rrrrorr:, hy 



Figure 3.5: Comparison of modified Neyman-Pearson and rate-constrained tests. 

observing the ROC curve we also see that it is true if 

for all possible points C on the p d / p  f curve. Since (3.14) is both a necessary and sufficient 

condition for pdc 2 p d p ,  we conclude that it must be true for all ROC curves developed 

using the likelihood ratio. In fact, (3.14) is merely another way of stating the concavity of 

the ROC curve. 

One of the properties of the rate-constraint test is that it approaches the Neyman- 

Pearson test a s  the detectability of the target goes to zero (for example, if the signal-to-noise 

ratio of the target;, goes to zero). This property is implied by thc rate-constraint which for 

pcf - 0 becomes mp f 5 r or p f _< P / Q ,  which is the Neymzhn-P earson criterion. Consider 

figure 3.6. For the large signal-to-noise ratio (curve A) there is a significant difference 

between pdivP and pdRc- For curve Bt however, which d e s d e s  a low signal-to-noise 

ratio curve, there is very little difference hecause the pd,!pf n w ~ e  for the rat-e-comtraint 

criterion approaches a straight h e .  Therefore the two tests are equivalent when the target 

detectability is small. 

111 ssunmary, we have described the behavior of a Neyman-Pearson and rate-constraint 

test- under a rateconstraint. The Nqman-Pearson test has to be modified to meet the 

constraint and the r d t i n g  test is suboptimal, The rate-constraint test is optimum and 



Figure 3.6: Comparison of modified Neyman-Pearson anti rate-cor~strairil.tf tibsts for high 
(A) and low (B) SNR. 

therefore has a greater probability of detection than the modified Xr~~rnaa-I'r;~rso~r test. 0 n ~  

of the main reasons for considering the rate-constraint test is the fact that, 111ost prsr.tic;cl 

systems employ some sort of hit-rate constraint to  control Ihrt detectiarr jjrctwss. I t .  i s  

comforting t o  know tha t  such a strategy has a desirable resalt. 

In the next two sections we investigate the opti~nality of rate-conskraint t,tXst,?;. S w f h  

3.3 compares the pedormance of a rate-constraint test with a fixed-tlirt.slrold tr*st, (Sty titm- 

Pearson, for example) when detecting Marcurn and Rayleiah-Iading: targets. "1'11~11 ia sivt ios 

3.4 a n  example involving an obstacle avoidance sonar is givm. 

3.3 Examples 







3.4 Obstacle Avoidance Sonar Application 

fn section 3.2 we saw ahat  he rate-constraint criterion maximized the detection probability 

given a mte-constraint and, in addition, can be implemented in practical situations. In 

tlids section we applv ihe rat,@-ccmstraint. detection criterion to the problem of obstacle 

avoidarm for an airionornous underwater vehicle (AGV). As expected, the rate-constraint 

criterion pcrfr~rms optimaffx. The example is presented for two reasons. First it iuustrates 

the rate-constraint In a slightly different context than the radar examples presented in the 

rmt of the thesis. Second it gives an example of rate-constraint theory applied at the mission 

€@z$hal !eve!. 

We assume &frat the t-&icle must navigate through a field of obstacles with average 

cnncmtratiorr TI. fn ather words, ?;I is the probability of a particular sonar cell containing 

ir target. We alsa assume that the sonar starts to collect information on a particular cell 

(i-e. starts building t"n ttes-lt statistic) as soon as the cell comes within range of the sonar. 

Wren the cell is a certailiin distance away. cded  the decision distance, the sortar must decide 

to avoid the cell ar  not. 

If the vetiicfe enconrrters k cells on its way through the field then the probability of 

mission succr?ss ji-e, probability of' not bumping into an obstacle for k independent cells) is 

If a s n a r  with an ohstade detection probability of pd is added to  the ~e:ehicfe the prob- 

ability of wtccsss increases because the ody obstacles that wig stop the mission are those 

l t h t  are missed b,v the ,w~ar. Si~rce the probabifity of nor detecting an obstacle is (1 - pd) ,  

WC f ~ t ~ ~ t - ?  

dsucccssj = f 1 - xr (1  - pd))k (3.16) 



in order t o  meet the mission requirement. Therefore tkere arc two w a j ~  that tlrr ~nissioa 

can fail: impacting an olisPade or arriving late. The first is mitigated by ,z ltiglier pi 1,111 

this aggravates the second. The second is mitigated by maintaining I:, rcgardhs of thr 

obstacles which, of course, increases the likelihood of hitting an obstacle. Ilcncc w r  tnust, 

risk the vehicle t o  mainrain us and our task is to mirlimize this risk, 

The  detection performance of the sonar is related t o  the niissiorr objcctivcl by first oh- 

taining a relationship between the whicle's velocity aid the t hresholcf crossixtg ratc of t l i t .  

sonar. If the vehicle is t r a d i n g  at the required werage velocity, zr,, thttn the sonar rc4I rat(* 

(the rate  new cells are presented to the sonar] is 

where QR is the range extent o f a  celt, The average velocity of the vehirlc* tn;$y IF c*sltrc*.u;sc~tl 

in terns of the fraction of time the vehicle spends in niarnoeuvre nrodc anti tr;msi t trtr~clr 

assuming tha t  i t  travds at a* when in transit mode. Therefore 

where f is the fraction of time in manoeuvre mode and t ,  is the time it takcs ti> m;inotwvri* 

amand an  object, In other wordst the vehicle trawls at a velocity of zp0 w i l ~ t t  it is tr;rtrsithg 

and at an effective velocity of when it is manoeuvring around an o h j ~ r t .  

Let T, be the average threshold crossing rate. Ther~ t h ~  awrage fimo sp~rnt ~~t;mwuvririg 

o ~ t  o f a  total time t is .p,ibe7 and therefore j = rat,. Hut r,  = rr, 4 i c r e  r is t i r ~  rror~italimrl 

rate; &erefore from f3.11), T, = +a7 and the fraction of t i rw s p n t  ~narifmlvrjng is 

W m  
I n m d ~ ~ e ,  given a %mar f-hiksn d &m d ff, ii m&miim F ~ h i f y  me, ;t mLfrilpfi vrrr 

"time 8, and a mission specified average uefodty ~t , ,  we C ~ U  determinc5 a r q  oirfd thrmtrold 

cmsshg rate. If this rate is exceeded the velrricle will s p e d  too r r : d t  tirw* in rrtarrrtrruvrr* 

mode and wiII not, meet the mission deadline If the rate is less than r the vr:hide will arrive 

ahead afstsh-dde baa w3.I be r j ~ ~  to a greater than necessary risk of hitting an ~htacli?. 
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Then we have a rate-constrained detection problem with constraint 

From section 3.2, we know that the rate-constraint criterion will be optimal. To be 

definite in our results and to provide an example, let us assume that we are detecting the 

Rayleigh-fading target of section 2.5.2. Recall that from (2.67f, 

where is the signai-to-noise ratio. It should he noted that this model typically is used 

to describe the test statistic that results from the a single sonar return, or from coherent 

irrtegration of a number of sonar returns over time. -4 more accurate model for the problem 

is one that eniplol-s nuncoherent integration from pulse-to-pulse as the cell of interest moves 

closer to  the vehicle fsnch a model is discussed in chapter 5.) This latter model, however, 

does not have a neat closecf-form expression for pd as a function of pf and therefore would 

not he efficient far showing the trends we wish to show. Since the purpose of this section is 

t a  illustrate principles rather than model particular signal statistics we have chosen to use 

t h e  mat hernatically simpler model here. 

For the rate-constraint criterion, we have 

whew pd,, is the detection probability rcrnlting from the rate-constraint criterion. Therefore 

to deternhe the nmvimum pd attainable, namely pd,, that, satisfies the mission velocity 

constraint we must sohe the above transcendental equation. 

In this sectinn we again cumpare the performance of the rate-constraint test with that 

of the Nry~nan-Pearson test, Far the Xeyman-Pearson criterion we have 

whcte rdvp is the ahrekdd crossing rate. Remembering that the threshold A is chosen 

to provide z specific faEYe d a m  probability pfxp.  pd,vp is fixed through equation (3.24). 

Tfter~fore as long as PEP < r we rnairttak pd at pd,vp, but if the target concentration 

imaeass SO thai r,yp F r, $BxP musk be reduced by the factor K f as c2ismssed in section 



3.2) t o  maintain our desired velocity v,. Hence for the Neymau-Izear.son criterion wtx t,i~vc\ 

an effective probability of detection pdArp,,jf as described by equation (3.9). Sirice wc I~avct 

equation (3.25) becomes 

if T N ~  5 r 
P ~ K P & ~  j = { yrIpd$p (3.26) 

if T N P  > T 

By comparing equations (3.23) and (3.26) we are able t o  verify that  pd,, 2 P ~ ~ I J , ~ J J .  

First consider T N ~  5 r: then we have 

for which we require p d ~ ~ * , ~ ~  = prEn;p < pck,,. 

Second, for TNP > r we haw 

for which we require pdNP > p&,, but for this condition we t i a m  

and by reananging equation (3.23) we haw 

which when compared with (3.29) shows that pdNPVef < pi&,. tlerrce 74, > ydN,:,.jj f o r  

both conditions as expected. 

fin figme 3.9, we i lkstrate the detection performance of t h e  rate-constroirtt i:ritr:rion :is 

a Patnction of the target cancentratian for two signal- ta-noise ratios 3 r d  average vdoci ties. 

The maximam udacity was set at 8mfs, the sonar resaiu tim at I Ocrn and t h e  time rcquirrxl 

tto manmuwe around an  rubstack at 5s. For a required atrerage velocity of M r n  / s whrr 

crrmpa~ed with 2,5ms, arce have a relatively large margirl between the rnaximtr~rr~ whci ty  arrd 

the: werage, and! libexdare more time can he spent in rnanoeuvririg. fiertce, the vehicle can 

s;slceessfdy navigate a denser target fidd as indicated by the breakpoint in t h e  detection 
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Obstaek Concentration 

Figure 3.9: Detection performance of rate-constraint criterion nnder various SNR and av- 
erage velocities. .tt, =3 m/s, AR = I O a .  

probability curve being farther to the right. The breakpoint is located where the target 

concentration XI eqnals the threshold crossing rate r .  For example, with v, =0.5m/s the 

rate given by plugging pa, .rro, AR, and fa i n t ~  (3.20) is r = 0.0333. Examination of figure 

3.9 indicates that the breakpoint does indeed occur at .srl = ,0333. 

For the lower signal-ta-noise ratio the detection probability is lower, as expected. These 

detectIan curves a p g m d  %hme of the higher signal-to-aok ratio as %Be concentratttion 

kcreass a d  b&h fEtryez bad t ~ r  pd = B. 

Figure 3.10 compares the hZgh signat-ta-noise ratio performance of the rateconstraint 

chiaerion ~ i a h  that of the Rejman-Pearson criterion. Curves for three probabilities of false 

dam are sbown. It is eoidmt- that, none sf these Ctlfves is higher than that for the rate 

ceastraint criterion. Before the breakpoint the Xeyman-Peasan cnms ivin increase with 
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Obstacle Concentration 

Figure 3.10: High SNR comparison between rate-constraint and Mepan-Pearsort critctriort. 
The EBed symbols cornspond to v, = 2 . h  f s  the hollow symbols to v, =O.5 m/s. 

decreasing pf if r ~ p  > + but otherwise will decrease as shown in the figure, After the 

breakpoint,, low p f ?S atlow the Heyman-Pearson performance to approach the ratc-constrain t 

performance but never surpass it. 

These figures iflustrate the expected performance and optimaljty of the rate constraitlt 

miterion over a wide range of target concentrations. Two points are of siguificance. The 

first is that even tb~4gE we d m %  h o w  the operating point in the sense of where it is r m  

age perfamame cn-we we can still set If. simply by djusting the tbrsho!d as obtair! t hr: 

desired ve1o&ty, .ar,. Oace the threshold is set we are assured of rnaxirnjzing the ~mhafiil i  ty 

sf mission success, even though we don't know what tbe rn;nxirnmm value is. 

The seeend paint I that the rmu~ce-constraint philosophy gives us a method by wfijch 

we can relate o m  detection criterian to the goals of the organism or vebide. This means 



that the statistical sensor can he integrated more intimately into the command and control 

structure of the system, 

3.5 Conclusions 

In chapter 3 we have investigated a new detection criterion designed to  achieve maximum 

detection performance with a resource-constrained -ctuator. Since almost all actuators 

following a detection test do in fact have finite resources, the model is quite general. 

Tile resulting test, is a GEreEhood ratio test (or an equivalent threshold test when the 

Karlin Rubin theorem holds), with its threshold set such that the threshold crossing rate 

matches the processing rate of the actuator. A test built around rate-constraint principles is 

practical; the hit rate is observable and controllable, and the processing rate of the actuator 

is a krrown design parameter- 

Note that a rate-constraint test emphasizes maximizing pd regardless of the consequences 

of pf. It may be dangerous to operate an entire system under such a philosophy; for example 

the gain-control example of section 1.1 could end up shooting down friendly aircraft if further 

tests s~lch as Identify Friend or Foe (IFF) are not used t o  identify the potential targets. 

TypicaUy more than one test is used in a detection system before a final decision is made. In 

chapter 4 we show bow the rate-constraint, criterion extends naturally to  systems consisting 

of a sequence of tests, 



3.6 Appendix: Proof of Rate-Constraint Test Properties 

fn this apperdii, we prove the claims made in Lemma 2 concerning the optiniality, csistcww 

and uniqueness of the rate-constraint criterion. The proof parallels that givcw i ~ t  swtiolt 2.7 

for the Neyman-Pearson test. 

Froof of Optimdiiy For S and 6' defined as in equation (3.1 I ) ,  we always have 

Multiplying both sides by fo(x) and integrating over I', we have 

(:$.:+2) 

and 

From the constraint we have 

Inserting (3.35) and (3.36) into (3.34); we have 

but 

because r 2 TI, so we have the desired result: 
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Proof of Existence Let ho be the smallest number such that 

let 

Then defining the rate-constrained decision rule 6, to  be of the form of (3.11) with X = Xo 

and ~ ( x )  = we have the rate of 6,: ~(6 , )  given by 

TO(%PO(&(X) = Ao) + TI Pi(e(2) = XO)) 

which, after substituting (3.40) for gives us the desired result, 

Proof of Uniqueness Let Sf be a rate-constrained test of the form given in equation 

(3.11) and let 6" be any other rate-constrained test with the same pd. Since pdj6') = pd(S1') 

equation (3.37) shows that T = r,, which in turn (from (3.35) and (3.36)) implies that 

p f (6') = p f (6"). Therefore from 13-33] and then (3.31) we have 

Sincc the  integrand must be positive or zero, S U ( z )  must be of the same form as Ef(s) except 

possibly when E(z) = A. Therefore 6" can differ from Sf o~ily in the randoaizirlg function 

~ ( 4 -  a 



Chapter - 4 

Multi-Stage Detection Systems 

4 J  Introduction 

In most detection systems, a given cell must pass several tests before being declared s 

target. For example, in Nathanson's chapter on false alarm control for radar, seven stages 

of processing and decision making are listed [I$]. As a given cell passes through the various 

stages (Pulse compression, Moving Target Indicator, CFAR, binary integration, clutter map, 

'( om es digital track extraction and tracking), the likelihood of that cell containing a target bc : 

larger. The later stages in the detection chain interrogate less cells, but rcquirc rnortr 

processing power to  investigate those cells. 

Considering the problem of medical diagnoses based on several tests, Metz writes: 

Diagnostic tests are rarely used alone. Instead the results of several diagnostic 

tests are usually combined with dinicd background information to decide the 

disease state of the patient or to  decide that additional diagnostic tests should 

be performed. In order to choose the best sequence of diagnostic tests, that 

is, to cqtirnke &qpos-Stir. strategy7 one must recognize that [pd)  a d  [p f) for 

each diagnostic test rrsnally can be changed together by changing the decision 

threshoId for the test.,. F d  optimization of diagnostic strategy involves choosing 

not only the best sequence oftests, but also the best operating point on the ROC 
curve for each test [I 21- 

In this chapter we investigate a system where farjter, coarser srimrs use their detection 
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ability to cue the attention of slower, higher resolution sensors. Such models have been 

described before. For example, Lacoss [34] described a system where acoustic sensors were 

used to cue television cameras to track aircraft and Hovanessian [Ill has suggested the 

concept of using low resolution search radars to cue lidars. Schweizer et al, describing an 

architecture for mine-hunting using autonomous underwater vehicles wrote: 

When lower resolution systems are used a s  cuers for high resolution systems, col- 

lections of large volumes of data may be significantly avoided, thus also reduiing 

field analysis time [13]. 

While these examples have been described, this thesis provides the general framework and 

analysis to justify their use. 

There is currently much interest in sensor fusion: the problem of optimally combining 

information gathered by a number of sensors or tests. (For example, [35!,[36].) A difficulty 

with many papers discussing fusion is their implicit assumption that all of the sensors process 

data at  the same rate and resolution. For example, in the serial fusion system of [35], every 

stage in the network processes every cell in the radar space. The disparity in cell production 

rates between different types of sensors can make such systems impractical. 

In an appropriately titled (Fusion or confusion: knowledge or nonsense?) review of 

fusion technology, Rothman and Denton noted: 

Another problem which is infrequently discussed in the theoretid literature, but 

is commonly encountered in implementation, is the lack of synchronous updates 

between sensors... in advanced systems and in virtually all distributed systems, 

it is not possible to synchronize the sensing systems [37]. 

Cued systems provide the same robustness and graceful degradation features that many 

fusion structures do, They don't teqnire the same level of cuordination, and can be practi- 

cally impIernented. There are no requirements for $he sensors to  be identipd, or to provide 

statistics that are identicdy distributed- 

This chapter presenas the frames-ork arrd analysis requited to model and understand the 

performance of a cued detection system. The rules that govern the choice of operating point 

and the conditions of optirudity will be explained, 



4.1.1 Chapter Outline 

In section 4.2 a two-stage cueing system is shown to be identical in pcrfornrancc to a specific 

type of fusion network. The optimal form of the local tests is a fikcliflood ratio twt. 'i'hc 

conditions fm optimal detection performance of the overall system are derivcd with no 

resource constraints. A new parameter, the SLOC number is seen to be important in 

determining the optimal operating points for the individual tests. The SLOC fu~~ction is  

the slope of the ROC curve when plotted on log-log axes. 

In section 4.3 we introduce rate constraints into the second stage. Again tttc SLO(: 

~ m b e z  is central iin determini~g the optimal operatifig strategy5" We show that a cctrnparisor~ 

of the SLOC functions for the two stages determines the region of operation where the rate 

constraint criterion is optimal for the first stage. 

In section 4.4 a dynamic programming argument is used to show that the results for thc 

twestage system extend general& to  systems with an arbitrary nu~nfier of stages, j)rovitlctl 

the SLOC functions for the stages are properly ordered. MFe further sirow titat the ovcritll 

system detection performance is optimized, under any sensible detection mi terion, wlwr thc 

rate constraint is applied a t  every stage but the last. 

Finally the chapter's conclusions are given in section 4.5. 

4.2 Unconstrained Two Stage Systems 

We be& by examining the relationship between our modef and that of a 'cr~rivcntion;tl' 

fusion modd. h figare 4.1 we haw a number of sensors inbcpelrdrlatiy irtterrrtgatirrg thc! 

environment. The sensors make individual decisions and report them to a central fusir~tr 

center which then makes the global decisions, Thomopodos izt J have showri that the 

optimal local daisicm d e s  are fikefihood ratio tests [JGj, 

Ca~sider the ' A d '  fusion rule? where aa target is declared if arid only if ail of the in- 

diuidrrd tests report a thrwiha!d crossing. If any one of the tests fa& k@ repart a hit, the 

&&QB ~ p ~ t g r  rl,mrr't I?d g~ examine the f s t ,  of the !w+-! rstg, ThuE c v c t r q  v,J Y --- tJf fiwiirr* 
"h"'"' 

4.1 performs the same test as ahat of 42. 

Each sensor of figare 4 2  passes an the addresses of those cells which have exceeded 

the Iocd threshold to be examined by subsequent se~lsrjrs. Therefore the sensors, later in 

the chain need to examine far less data than those earlier in tftf. chain. At first gla~ice it 



Figure 4-1: Sensor fi~siort using 'And' rule arid Likelihood Ratio Tests (LRT) 

Eig i~~e  4 2 :  AItcrrtate form of %nd7 fatiion.. A given sensor-lftlf stage only examines those 
~df:) that have exceeded the tfiresfrolds in all of the previous stages. 

may ap-sear that the modd of figure 4 2  requires too much cu-ordination between sensors; 

however, the system is actually quite robust. If any given sensor (except for the first) 

becomes unserviceabfe, the overall system can be gracefully degraded by removing that 

stage f m  the overafi system and Enking the two on either side. Of course the first stage is 

cruciaf, since no other stages are capable of processing at the radar rate. 

43.1 Optimal Solution For an Unconstrained Two Stage System 

Consider a system witbunt any constrakts on the processing power of the second stage. 

Since the optimal form for the Individual a ~ t s  is a EkeLlhmd ratio test, we can formulate 





Equations (4.7) aftrough 14-9) have obvious generalizations far N > 2. The derivatives 

of f4.9) are important for our prposes. Eet 

Eqsr~&iarrs (4.8) a d  fd-$1 serggest twa methods of cdculating qi graphicdy. From (4.8), 

7 ~ ;  at m y  given operating p i n t  on a ROC curve is the product. of the threshold fi.e. the 

dope of the ROC CU~W) and the secant line to the point. Equation (4.9) yields the preferred 

method: plot y$ versus pf on a ]tog-1% $cafe and the sfope of the resulting curve is rl;. 1% call 

such plots Lng-RBCcumes, and q, the SI20Cfi.e. the Slope of the Zty: receiver Operating 

Characteristie curvef. Clearly* %he SLOC number is an important relational parameter for 

determining tihe optimal aperating point of a a&. 
Condition (4.9) c a ~  be tmderstmd by examining the effect of changing pjl and pfi from 

their agtimal values by a s m d  mount  while maintaining the overdl fdse d a m  probability 

at ph. 
7% we the change in the overall detection prubabilit;); consider 

Nsw consider what happens it f4.9) is not true. Then the difference term in (4-13) is 

non-zero, and by making dln pfi the same sign as the differeace, A In(p~4pt-t~) can be made 

pitEve, Bat a psitiw A h($rpdz) w d d  imply that the startiag point was a non-optimal 

m1utk-m; therefore (4.9) mu%% frdd at the optimal operating pjrrt-, 

W e  now consider a couph of exampks to  better understand the meaning of (4.9). 

Let us bq$n with the ~ t l a~cnm target discussed in section 2.5L Plugging the results for 

the Ekdihood ratio (2,52), and probabilities of falsdt alarm (2.531 and detection (2.55) into 



Figure 4-3: SLOC curves far two Marcurn targets. The upper curve has SNIt = 5clff, tttt! 

laarer IWR. 

f4.$) the resulting SLOC function is given by1 

where A is the thrrrshdd, Q(A,X) is the Marcum Q function defined in (2.55), nrtd fofz) is 

h figare 4.3 the SLOC functians are plotted for a marcum target with SNlt = 3 dl3 (tfrc 

ngper curve) and 10 dB (the lower cumel) 2. The optimal operating pdnts for the two tests 

%he id= d a m  p-roba,K&ty is plotted OD a hgirrthmic srh, tkrt distance dong the axes (as 

It may seem mrpPising lia see libat the lower SNR test has an operating p i n t  other than 

'W d m p  the sobscripts rsa A 4 q for sow, since we are only considering a single stage here. 
%ate the bm-stage s p h  f detecting d e  same target; however the individual z~sensorg ctr tesb arc 

q ~ x a f i ~ g  cf ike~t  sigad-w nat#wr, pss iMy  due to longer observation t i m e  ahwed by different cell 
p m ~ ~ & g  m b . j  
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Figare 4.4: %-ROC curves for figure 4.3 

pd = pf = I. This means that - for the Marcum model at last - it is possible for a test with 

zr higher SNR to gain performame by using a lower SNR test t o  provide m e  selectivity. 

Figwe 4.4 illustrates the optimality on a log-ROC diagram. To understand figure 4.4, 

begin with the curves marked "SMR = -MBm and "SNR = 16dB". Since Birdsall's insight 

dm holds on log-ROC ~ N S ,  it is na surprise that the carve for the 1UdB test is; always 

above that for the 5dB test, except for the p i n t  0, where pf = pi = 1. 

3% generate the  curve marked "Optimal the curve for the 1MB target is merely 

slid dawn the 5dB cme; this m o w  pint 0 to  point A (the m e  point A as for figare 4.3), 

and paint A? is trwfarted to p i n t  P. The figure shows that for a faIse darm probability 

of I@-", the resulting d e t ~ t i o a  prabattiity (going f) I indeed larger than the detection 

probabity for the IWB test alone. h fact, if the 5 dB test is operated anywhere between 

psinr 6 and A, the resoiikng Beteciion pro'aabiiity for pj = lo4 wili lie 4between p i n t  P 

and the resalting pd for the 1MB test alone. Furthermore, if the operating point; for the 

M B  test is m o d  down, say ta _point B, the resulting comb'md detection probability will 
Ee beIow poimra P for pJ = la-". 



Figare 4.5: SLOC fiutctirrm for 3farcrum [solid lines) and byleigft (dadred lines) targets. 
The number on the mmes indicates the signal-to-noise ratio in dB. 

We have just shown that lor a Mareum target, a test with a large SMR could Ernprove 

pedmma;nce by cca-operating with a test with a lower SNR. This is not m far a Rayliigft 

target. The easiest way to evaluate the SLOC for hyleigh targets Is to use (2.671 irt (4.9). 

T h n ,  far a Rayleigh target 6 t h  SKR = e 
1 

~Ra&i$lh = - (4. I 5 )  
I + @  

The Bihyleigh SLOG innctian is a constant independent of the operating p i n t  and decriasirrg 

with increased SNR- Therdore if two different SNR stages are cascaded together as in figrrrcr 

3.1, candiiltion (49) carr never be met, The optimum solution is found by considering the 

-b?oasdailrjp cancSitions, ssrhembj it is seen that the optimal detection probability is found by 

setting the thrabdd of1fm;e l ~ w e r  SWR test to zero [effectively removing thak .test altogether). 

The mnstma SLOC afthie Raylei& rtarg& appears to be the exception, rather than the 

de, as shown by the SEOC fnntstions presented in chapter 5- However, it is intersting to 

mte ah& stadia orr sm%ar BBllsian cited in the literature often utilize hyjeigh targets f due 
to tlte simplie functional farm of pd); one gnestions the generality of some of the results in 



the fight of the byl&& model% khaviour described here. 

In figare 4.5 SLOC fixactions are plotlted for Rayleigh and Marcnm targets for mrious 

sign&-tendsr! rat&, Note &at for a given pf and target model, the SLOC number is 

a pit iwe, decreasing function of the SKR. Furthermore, for the Rayleigh and Matcum 

targeb, the SLOC is a. noti~crea5i~g frtnetjm of pf; however, this is not a universal trait 

of SLOC curves. (Some exceptions are given In chapter 5.) 

h this section there have k n  xi0 constraints applied to the processing rate of either 

tmt, Vfde now rum o m  at;t;eaf%n to the prac t id  scenario where the second tat: is slower, 

bat, more capable than the first. 

Em section 4.2 we saw tbag the optimal sofnthn for an unconst~ained tw~stage system is 

derived by finding the operating points that match the SLOC valnes, Of coum, it  would be 

impwible to operate nnder sack a criterion in practice tiince ffte SEOC d u e s  are strongly 

dependent. on the signal-to-noise catias which are unknown. 

W e  now consider the effect of introducing a rate constraint on the test with the higher 

SNR Such s model is extremely common; tests that take more time to operate tend to 

pepform better. 

Lea us begin by emmining the d d e t e ~ m s  effects of setting the threshold -205 low, so 

that mdamisation mcnrs, as d i s c a d  lo setion 3.2. M that randomization increases 

Bk effective false alarm pmbab%Q while deereasing the eRective detection probability. 

Therefore we expect Lhe &dive SLOG ts be negative when randomization occurs. When 

~andcrmization occnm, the effective probabilities of detection and false dam are related: 





That is, we want 6 5  find the maximum pdr for a given overall pfT, subject to the rate out 

of the first stage not exceeding the input rate of the next stage. If the rate out of the first 

stage is too high, randomization will bring it down to  the maximum rate as described in 

section 3.2. 

Note that pj2f&)  3s in fact a function of pfi(&) through the constraint on pfT. There- 

isr:: once 6% (zxd tkerdore pjj(&) 2 ~ 0  p4(tiI)) is set, so is pfa(E2f sad therefore pdz(&). 

Furthermore note that is cunstrained only by the processing rate cf the second stage and 

nut by 62 a t  all. Therefore, provided (4.23) holds, we can rewrite (4.24) as 

The deeotrpling of (1.24) into two single-stage maximization problems in (4.25) may 

appear familiar to those readers with knowledge of Dynamic Programming. 

From chapter three, we already know haw to find 51: it is merely a Ekefihood ratio test 

with threshold set f-o match $he output rate fa the input rate of the second stage. From 

chapter two, 52 must, be the Neyman-Bearson test that gives the desired false alarm rate, 

In summary, we have seen that for a uniformly properly ordered test, the overdl detection 

probability for a given false dam prababity is maximized by using a test operating under 

rate-constraint principfes in the first stage and then setting the second stage" threshold to 

crhoost3 the appropriate operating paint on the overall ROC cute .  

In fad,  this argument can be extended to show that under any detection criterion (Bayes, 

&c-] far the entire system, the first stage shoufd operate under the rate constraint criterion 

if the system is unifarmfy properly ordered. Consider the shape of the over4  ROC curve. 

title haw argued that in odder to lie on the overail ROC curwe, the first stage is determined 

=by tke rate cansi;rrdai~t, U the operating paint is at [~*~,pf~j, then the ROC m e  has a 

Thus #he owzrll. ROC ~tlpp.-e is concave, and Birdsall's insight holds. Therefore, a detection 

system operating a d e r  my sensible criterion emphasizing high pd and low pf is optimized 

by matching the omt of lik first stage to the processing rate of the stmad stage. The 



threshold for the second stage is then determined by the criterion for the overall sy s ten1 . This 

somewhat surprising result is only strictly true for properly ordered detection sequences. In 

the next section we wig consider test sequences that are properly ordered only in  a specific 

region of operation. 

4.3.1. Compression Factors: Locally Properly Ordered Sequences 

In the above we considered ody  properly ordered sequences. 'In general, it will be impossiblc 

to  ddrm a sequence of t a t s  are uniformly properly ordered (unless the second test is de- 

tecting a Rayleigh-fading target in Gaussian noise, so that its SLOC is canstaut and smdlcr 

than the minimum SLOC for the first stage.) Instead, we will have to he satisfied with 

daiming that a sequence is properly ordered over a restricted range of operating cot~ditions. 

Then we say that the sequence is locally properly ordered. 

For example, consider again figure 4.3. Say that the processing rate of the second stage 

is such that the first test; can operate a t  or to the left of point A. (That is, the false alarrn 

rate associated with the rate constraint is pfi x .14, and the SLOC is ,205.) ?'hen the 

segnence will be I o d y  praperIy ordered for any tests requiring the second stage to operate 

with a. SLOC less bhm -205, or eqnivzfently for pf:! > 7.2(10)-'. Put, another way, if thc* 

rate constraint on the second stage limits the first stage to operate at point A or slower, tht: 

rate-constraint criterion is g n a r a n t d  to  be optimal for the first stage for averdl fafsi: alarnr 

probabdity greater or equal to 10-". We call the srndest value of p fi for a given uperatit~g 

p i n t  for the first test %he egmpssion fcscioi- for the sequence. From figure 4.3, we see tha t  

a dawer second stage wonld give a larger compression factor; larger in the sense that ttie 

rate constraint is gnmteed  optimal over a larger range of overail fake alarm probabilities. 

Far example, if the second stage has a processing rate 1 W 2  that of the first (ass~ming rro 

targets), then the ~:omprasion factor for the second test is larger than 1W7, a d  ttici ratc 

constraint criterion Is optimal for tests with pfT greater than at least I@-". 

The SLOC arms a h  dlow us to ampare different tests with diffrirmt statistics From 

figme 4-5, we bw &ha$ a -5 AR Btayfeigh b-rget yields x a n ~ t - a ~ ~ t  SLOC d m  sf 0-24, and 

that a 10 dS Marcant target for the second stage would yldd additional wrfiprarsion of 

I@-" before the rirlie wnlzltxaint is not optimd. 

T"he SWf: mmes provide insight into the merit of various tests- They do require known 

a-nd tractable statistics to be useful (like ROC clrrva.) However, if experimental ROC curves 



can be generated, then the asmciated SLOCS can be graphically determined. Even with 

rough SLOC estimates, intelligent guesses of suitable compression factors for the tests can 

be made. Furthermore, the individual test stages need not be identically distributed. For 

example, if a microwaw radar is cueing a lidar, it is possible that a given target might be 

w e i g h  distributed when viewed by the radar, but appear as a Marcum target to  the lidar. 

By examining the SLOC curves, we are still able to understand how the two subsystems 

will interact. 

What if a test sequence is not properly ordered? Then from section 4.2, the optimal 

detection would be found by matching the SLOC numbers of the two stages; however, that 

is clearly not practical. There will be some loss in operating the first stage under the 

rate-constraint criterion, but at. least the criterion can be practically applied. 

In the next sectio~,  we wl?i extend the two-stage rate-constraint concepts to  consider 

multi-stage systems. By use of dynamic programming arguments, we show that the results of 

this section hold for rnuItEstage systems. For any overall detection criterion and a properly 

ordered system, the rateconstraint criterion is optimal for all stages but last. 

4.4 Extension to More Stages 

Often detection sequences consist of more than two stages. For example, radar systems often 

use several processing and decision-making stages f181. Similarf~~ clinical diagnosticians may 

use several a-ts before declaring a positive or negative diagnoses [12]. 

In figure 4.6 the model for an AT-stage detection systt;em is given. In keeping with 

Dynamic Programming naodds, each stage has an input stde Sk, an output staze 6 k ,  a 

decision fnnction f i k t  and a redarn function 7k f38f3. 

ftcd the input state into stage k be 

by &owing A;, or by the 6; for  fie equivalent threshold test). Then the oatput state of 

'EFak that we Lare r e v 4  t k  ordexing of ifre indices for the stages from the traditional in Dynamic 
Programmiag. 





CHAPTER 4. MULTI-STAGE DETECTION SYSTEMS 

Figure 4.6: A Multi-stage Detection System. 

Given that g is separatle and that y is a monotonically nondecreasing function of $1, we 

say that the prubfern is daompusabIe [39]. This means that it  is possible to solve the N 

stage problem one stage at a time. Let 

where Sk+1 = Sk = bk(Sk3 Bk). Given the monotonicity of g on gl , we can write 

and 

but S2 = bl (Sl , dl) is a function of SI and dl. Therefore 

Equation (4.37) states we expect: to maximize the overd detection probability, 

w;e must; first maximize fi3 subject to its rate constraint. Cfearly the argument is recursive, 

ad. pm'ded the sqxenc-.E i s  pmprly orderedP the optimal threshold for each stage but the 

Iask is detcfniined b~ the ratht-co~strainli at tirat l a d  stage and no% the o V e d  detection 

criterion. The aremeat cm the concavity for the overaB system given in section 4.3 again 

halds, and therefore the rate-canstraint thresholds for the first 8 - 1  stages will be optimal 

under any averall detection criterion. The threshold for the final stage must be chosen in 

arder to optimize gnda wb-hatever critefion the entire system is working mtier. 



An interesting point t o  note is that the detection performance of any N-stage systmn will 

always be improved, if another stage is added such that it itlakes a new prop~riy orrliwci 

(N+l)-stage system. We know this, for if the new stage didn't improve the dct~ctiori, 

its threshold ~ ~ o ~ l f d  be zero, effectively removing the stage. Therefore a givcn tletcction 

sequence can be improved if intermediate stages are added, at the expense of i~~crcascd 

latency in riecision time due t o  the added stage. 

4.5 Conclusions 

In chapter four we have investigated a cueing structure whereby f';istr*r tests cue dowcr, h t  

better tests. The stracture is equivalent to  a Fusion system operating under arr "AND" 

rule, and provides the same g a c e f d  degradation as many fusion systems. ffowcver, there* 

is no requirement for the individual tests to  provide syncf~ronous outputs. 

The SLOC number is an important relational parameter that provides tht: kcy to t,lir 

optimal detection strategy for a cued system. For unconstrained detection stSqucircts, tfrc 

optimal operating point for the overall detection probability is found il_v matching the SI,OC 

number of the individual detection stages. A test with a Iower SNR can improve the dctoc- 

tion performance of a higher SNR test, except for the case of R~zyleiglr targets i ~ r  f;;tussi;r~~ 

noise (which have constant SLOC functions). The SLOC number aUows cornparisoa o f  

any two detectors, provided the Receiver Operating Characteristic (ItQCj curves ran f)r 

determined, experime~tally ur analytiea1:y. The tests needn't be idcritically cf is t rh  tetf . 
When a resource constrained detection seqtience is y roperly orcf wed, so that rractr :;tagc 

is faster and has a larger SLOC ftrrrction than the stage succeeding it, the ujtti.trr;il s t r a k g y  

is to operate the earlier stage under the rate-constraint criterion. This strategy is sptirwtl 

for my overall detection criterion that is sensible in terms of Birdsall% irsigitt. A local 

control structure is possible for a properly ordercd cueing system; a givcrt stage nmd not 

worry about previorrs or downstream ~ r o c s s o r s  other than t h e  succeeding w e .  

The SLOC funsion pravides important inforrrration for the urrderstandirig of how multi- 

stage detection systems work Chapter five is devoted t o  a study of tire StOC frtmctjons for 

a number of practicd radar scenarios. 



A,pplicability to the Radar 

Problem 

5.1 Introduction 

fn chapter four the SLOC parameter emerged as a central tl~ernc* tc~ the r~~t~Ir*rst~;~rrtli~rg o f  

how cascaded detet-tion systems work. ?%re showed that the rate-cortstrairit critt*rinu shcr~rltl 

be applied at every given stage in a detection chain, provided that tftc SLOC firrrrtictit id tlrir,f, 

stage is larger than that of subsequent stages. Thus to understand tftcb role o f  rat(.-co~tsl,r;~ii~t, 

theory in radar systemst we mast understand the SLOC functions for radar jtrc~tilcrrts. 111 this 

chapter the log-ROC and SLOC curves for several dassical and nonclassical radar JI I  odds 

we  presented. During the course of the discussion, wc fed co~ripellecl to ror~trncr~t, olt sol~rc~ 

of the apparent confusion regarding certain models. 

There are a couple of paints to note regarding the content of this d ~ a j ~ t ~ r .  f;irst, it rn  st, 

be stressed that that in practical deployments, the statistics required for t t ip  calw Jaf,ions 

made in this chapter are rrsdly unavailable. Furthermore, the rriorlels arc* jt~st that, nio(lr!ls; 

they don't even necessarily provide bounds on the behaviours that may t ~ c  ohscrvcd in rrd 

radar systems. Thns oar inter& is to investigate the validity uf the tkrmry in tcrrr~s of r*xistir~g 

radar models, and not t o  prove the optirndity oi rage-csnstrbint in  atl circuxrrstancr*s. 

Second, it will become apparent ta the  reader thattt, although the chaptrtr flws inr:llrtJr~ 

a a m b e r  of graphs, the coverage is by rro means exhaustive. The resuits prc?serrtwl arc: 

intended to be reprmnta$ive, and to yield understanding into applying rat<:-cr~rrstritirtf,hf, 



p~ir~cipffl:i. Most of the graphs are relatively straightforward to generate. We leave it to  the 

irr t c ~ s t e d  reader ti) cafcuIate any required. 

5.1,f Chapter Outline 

In secttort 5.2, the cfassicaf target models of Marcurn and Swerling are briefly reviewed. The 

Riciarr target mod4 is shown to  be a more valid representation for a target consisting of a 

large scatterer plus a large number of smaller scatterers than the Swerling III and IV models 

nornralfy used. It is also shown that the behaviour of the Rician madel is intermediate to 

tfiat. of the Marcum and Swrllng 1/11 models. Another target model, consisting s f  two 

specnfar returns is considered, The moment, generating functioa is used as the tool to 

calcttlate the detection and false akmn probabilities in this chapter. Section 5.2.1 gives the 

moment generating functions for the models discussed. 

In section 5.2.2, the log-ROC and SLOC curves are given for the various target models, 

based on a single retnrn. The integration of multiple returns t o  develop the test statistic is 

discrtssed in section 5-23,  and numerous curves are given. 

Irr section 5.3, we consider .r application of rate-constraint systems t o  a signal processing 

problem. Specificall_u, we investigate a two-st~ge detection system where the first stage 

performs noncoherent integration, and then cues only those cells likely t o  contain targets to 

the second stage which then performs coherent integration. 

The relatively new technique of [16] for calculating the detection probability for nonco- 

herent integration is briefly reviewed in section 5.4 and then applied to investigate the effect 

of K-Distributed clutter on log-ROC3 and SLOC7s. New resdts for noncoherent integration 

of Marcrum and Rayleigh targets in K-distributed clutter are given. 

A brief discussiccn of the roles of normalization (Constant Fdse ,&rm Rate) techniques 

in the rate-constraint framework is given in section 5.5. The chapter's conclusions are given 

in sectlm 5,& 

5.2 Target Models 

The common radar target return models are a result of the pioneering work of Marcum 1331 

and Swerling [401. As with all models discussed in this section, Marr-um7s and Swerling7s 



modeIs assume that the interfering noise is Gaussian distriba~tr-ti' ; wc consiclrr trt lwr  Igptbs 

of clutter in section 5.4. The detector (combination rule for rt~rtftiplr~ rcturns) is irhsu~ltcvl to 

plse a syuare-law. 

E;kr some of the models irt this chapter. no close-form srtintion exists, Otfwrs cat1 bt* 

expressed only in terms s f  functions that are not com~non: therefitrc. wrl will ad ,  c-o~rcim~ 

ourselves with the explicit expressions. Instead, we give thc Lloment Chtcr;~ting FutrrLitw 

for the various models in a pair of tables. 

Marcum's Model We saw M w c u ~ n " ~  rnodel in section 2.5.1 [X'ij; it consists t5f a rimst;t,nt 

amplitude random-phase retlrrn immersed in Gaussian noise. Marctsni targcmts arc3 sotwtitrrcs 

called Swerling 0 targets; they result from returns from very large, stahlr ohjwts s ~ ~ c l ~  as s 

large sphere. 

Swerling Models The byleigh target was discrissed in sectio~~ 2 - 5 2  CW~cit a scrics of 

Rayleigh-fading returns are added noncoherently, the resulting 111odc.1~ arr callccl Swcrling 

I if the returns remain fully correlated from pulse-to-pulse, artd Swcrlirg I I  i f  t h y  i ) o r o ~ ~ ~ c ~  

fully de-correlated between pulses [4O]. 

The Kayleigh model is valid when a number of inrlependcntly itlentirally clisi2ril)~~tr!rl 

echoes contribute to  the return. Then, by the Central Limit Theorem, tJrt? in-phast: ; ~ t i i l  

quadrature components can be assumed to be Gaussian. While an infinite rtrmbcr o f  oc.hor~s 

is theoretically required to invoke the Central Limit Theorem, in practice, fi or rwrc r * c ! ~ o c b s  

is sufficient [41]. The Rayleigh distribution for the amplitude f envclopr f then rr*solt,s fro111 

the quadratic combination of the iwo Gaussian components. 

Swerling also introdlrced another model, an approximation to the combination of a c:on- 

stant target plus a Rayleigh component, the so-called One-Dominant rrrodel. Whcn a Orif - 
Dominant target is noncoherently integrated, a Swerling III model results if the returns 

are pulse-to-puke cftmeIated, and a SwerEng iV if the returns are fi;lly de-correlated, The 

mod4 is baed on a Chi-Squared dmsity function with fear degrees of freedom (wte  that 1h - -u 
hyleigh is also Chi-Squared, but with two degrees of freedom.) Swerling rrtadc r ~ o  attempt, 

'More properly, the in-phase and quadrature returns are i.i.d. Gaussian distributed. I n  the literature, 
snch noise is often called 'R;iy1eigby noise, since the envelope is Payleigh distributed; however, it is often the 
sqnase of the envelope which is of interest. Bge d w e  the term Gaussian noise, since it is vdid wbether 
a Iinear-Iaw or ware-law combiner is used. We wiH, however, continue to call a target with Gautjfiian 
amplitude a RayIeigh-fading target, regardless of the combining law used. 



6 0  physically justify %fie One-Ilominant model; he merely suggested that it might apply to 

aircraft,. %rice 1937, the One-Dominant model has appeared often in the literature, yet 

there it tias no pliyskatr meaning. In 1967, Scholefield wrote regarding the One-Dominant 

rncrrdd: 

Standard radar textbooks ... tend to be uninformative about the precise 

application of (Elre One-Dominant Model), and experience shows that misunder- 

starrdinp arise [42) 

l'he protl~~n is that there are only two degrees of freedom in a radar return. The One- 

fkmiaiarrt model r~ynires a receiver to "resolve the input signal into four o: thogonal com- 

ponents, which it clearly cannot do3f42j. 

Unfortunately, cor~temporary radar books continue to be as vague as the texts mentioned 

by Scfrotefield in 1967. In fact, of seseral books written since 1981 that discuss Swerling's 

models [7],[6],f4,73, @4]], only Katharrson [ I t ? ]  mentions the difficulties of the One-Dominant 

rrtodd. 

Ln this thesis, we present only limited results for the One-Dominant model. Our reason 

f ~ r  presenting any a t  aU is that the OneD~EIinant model has become a yard-stick, albeit a 

eon trived one. 

Rician Targets The proper model for a return resulting from a single dominant scatterer 

a d  Gaussian noise is a Rician target2. The Rician model, unlike the One-Dominant, allows 

us to vary the specdar-to-diffuse ratio (SDR) in the return. As the SDR varies from -oo 

to tx (dB), the Rician modd goes from the Marcum to  the ftayleigh model. Therefore, 

the Rician model produces a family ~f intermediate distributions between the Marcum and 

Rayleigh and indudes both. 

Two-Tone Targets We have seen models b a e d  on a single dominant echo: an infinite 

number of independent and identicdy distributed ( i id.)  echoes, and a mixture of the two. 

A logical question to ask is =Itether an intermediate number of i.i.d. echoes provides an 

intem~ediate result? The am%-er is not dways. Jao and Elbaum have shown that a model 

based on two equal-amplitude random-phase returns (glints) pzovides an extreme case (in 

'The return from the target 3s Rician distribnted only if a linear-law combiner is d; however the target 
is siiif cded a Rician target for a sqnareIaw. 



the sense of required S I R  far a given detertiori pcrforntanrr ) [-i 1 f. Tht~s, by ctmsitlwing 

a target with two eq~ral glints we can bracket the behaviour cxprrtctl fro111 r;td;tr ttto&+, 

composed of any nurnber of glints in Gaussian noise. fVc do riot c-ortsiilcr nlttri* tftitn two 

glints, because as the numfi~r of glints increases. the target Berorrtes closrr to lwi~ig 1~;~ylr~iglt 

distributed (provided the glints have equd aampiitude.) 

5,Z.f Moment Generating Functions 

Recall that the SLOC function as given by (4.10) and (4 -8) is 

In order to calculate the densities and probabilities of (5.11, wc use ~ ~ ~ o n l o n t  gcrwr;rtirrg 

functions. Specifi~aDy~ the density of the return under 11, is 

where Gl(s) is the Laplace transform or the moment generating fi~rrc.fiort for tlw clrwsif.y 

of the return given a target, and L-' is the inverse Laplace 'i7ransforrr1. Ttrc dc*t,wt.io~i 

probability is found by integrating fi ft-), which is accompljshed by dividing GI ( s )  by s .  

(The expressions for f&) and qzf(t) are similar.) 

The rnom2nt generating functions for the targets discilssed above are giv~rr i it  t;~blc 5.1 

and are derived from similar tables of characteristic fu~~ctions in [45] and [If;]. To av;ti~i;tt,c 

the inverse Laplace transforms in (5.2) and (5.31, we used the IMSI, routirtc. 'I)ih'lAP', 

which employs a numerical method described by f461. 

In the table, M is the number of returns noncoherently cornbincd (with squarp-law 

combining), and _o is the single-pulse SSR. 

For the Rician modd, the signal-to-noise ratio is giveu by 

while the specdar-to-diffuse ratio (SDR) is given by 
* L, 

a' 
SDR = - 

4 



Table 5-1: Moment Generating Functions for Common Target Models 

It' 

Single Pdse Rician 

Two-Tone Target 
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where a is the amplitude of the specular (constant) return. aj is the  power i l l  tlw tlilfustb 

(Gaussian) component of the return, and the noise power is normalizrtl to unity. In (';,(.s) 

for the Rician case. the variance of the Gaussian componcnts in  the signal, 0" 1 + 0: is 

the sEm of the powers in the noise and the diffuse return. Note that in tahlr 5.1, {il(s) for 

the Rician model is valid for iM = 1 only. The integration of niultiplc returns for Ri~ian 

targets is discussed in detail in section 5 - 2 3  and table 5.2. 

The signal-to-noise ratio for the two-tone target is given by 

where a1 and a2 are the amplitudes of the two specular cou~po~~en t s  (also rallcd glir~ts). It 

is known that the two-tone target has its most extreme hehaviour (in the sct~sc of rcqrrired 

SNR)) when a1 = a2 [41J. Therefore, in this thesis, we consider only equal strcrrgth gli~lks. 

5.2.2 ROCS and SLOCS for Single Returns 

In figure 5.1 we have plotted the log-ROC and SLOC curves for a single rctu rrl with Q = 12 

dB for Marcum, Swerling I and 111, and Rician targets. For a singlc return Swcrling I ;LJI(I 

I1 are equivalent, corresponding to  a RaySeigh-fading target. Similarly the Swerling 1 I I an tl 

lV models are equivalent for a single return, corresponding to a Chi-squared rlistril>~~tior~ 

with four degrees of freedom. 

From figure 5.1 we can conclude that the log-ROC and SLOC curves for a singlt: return 

vary considerably for the various target models. As expected from (4.15), thc ftaylrtigh targrbt, 

(Swerling 1/11] has a constant SLOC. This means that any two stages operating anrlcr rstc- 

constraint principles will be guaranteed to  have optimum performance for a Itaylcigh targsf, 

if the second stage has a higher SWR than the first. 

While the Rayleigh target has a flat SLOC, the Marcum target has the strepchst. 'J'his 

is due t o  the nature of the Marcum target. For high false alarm probability, the threshold 

is set lower than the amplitnde of the target tone and so the detection probability is high 

axid the SLOC is low. As the fake darm decreases, the threshold rises t o  the point where it 

becomes comparable and then larger than the tone's amplitude, resulting in a sharp dr:crea.se 

in the detection probability and a large value for the SLOC. 

The Swerhg III/IV and Rician (SDR = 0 dB) targets give similar resultsf with log- 

ROC'S and SLOC's somewhat between the Marmm and Rayleigh cases. In one of the ft?w 
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- - - Marcuna 
Swerfing Ilif 

- - Swerling IlWIV 
- Rician (SDR=OdB) 

Two-Tone 

Figure 5.1: Log-ROC and SLOC: curves for Swerling Class and Rician Targets. Curves are 
for a single return with ~p = 12 dB. 
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papers discussing the Rician target, Scholefield showed that a Riciari target and a Swcrli~lg 

I11 target with the same SNR "agree reasonably well except at high at~tl low signal-to-noist. 

ratios" [42]. Shapiro has also presented some results for the detection of Ririarr targclts, in 

the context of lidar [47]. 

In figure 5.2, we illustrate the family of log-ROC'S and SLOC's fur single-pulscl rc~turns 

from Rician targets with the SDR as a parametar (Again p = lit dB).  As thcx Sill{ riir1gc.s 

from -m to m we generate a family of curves ranging from the Ray1eigl1 to the Mila scrr ui 

target. Thus by considering the Marcum and Rayleigh models, we can gencrzte thr rallgc. 

of behaviours expected from the family of Rician targets. 

Returning again to  figure 5.1, we see that, unlike the Rician, the two-tm~e iuotlcl is 

clearly not an intermediate between the Swerling 1/11 and Marcum models. Over all 1)u t t Ilc 

highest values of p f ,  the SLOC for the two-tone is the smallest of the familics cor~sitl~scd. 

Furthermore, the two-tone is our first example of a model that gives a non-rt~onotonic SI,O(:; 

further examples are given later in the chapter. 

The density functions for the two-tone model do not converge well due to t l i ~  c3xpo- 

nential increase of the modified Bessel function. (The extra .s in the dcnorninator tn;zkcs 

the pd calculation possible.) Therefore, the SLOC for the two- tone modcl was n u  tt1~ri~il1l.y 

evaluated by fitting a cubic spline to the log-ROC data. The cubic spline was I I S ~ Y I  sirrw it 

guarantees continuity of the SLOC at  the data points [48]. 

5.2.3 Effect of Integration 

Thus far we have considered only single pulses ( M  = 1). We now consider the rtffcx:t of' 

integrating multiple pulses. Beginning with the Rayleigh target, we see that thcrc are thrcc 

different scenarios for integration depending on the level of correlation between conseci~ tivc 

pulses: 

1. Coherent integration - this assumes pulse-to-pulse correlation and r e d  ts iri mo t  hcr 

Rayleigh model with Q increased by a factor of M. 

2. Noncoherent integration with pulse-to-pulse correlation - this is a Swerling I ~notlel. 

3. Noncoherent integration with pulse-to-pulse decorrelation - this is a Swerling iI 11mld3. 

3 0 f  course, we could add a fourth: coherent integration with the pulse-to-puke dccorreIation, bl~t  this 
would yield a Rayleigh target with no change. 



C f l A P T E R  5. APPLICABILITY T O  THE RADAR PROBLEM 

Marcurn 
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Figare 5.2: Log-ROC and SLOC curves for Rician targets with Specular to Diffuse Ratio 
(SDR) as a parameter- Curves are for a single return with Q = 12 dB. 
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Figure 5.3 shows tfie log-ROC and SLOC clirves for the threc typcs of intcgratio~l of l(i 

looks at a Rayleigh target with g = 0 dB and 3 dB. For all integration tedtniqucls, ttic 110(' 

curve is higher and the SLOC curve lower for the 3 dB than for the 0 dEf target. 'I'lte twst 

thing to notice is that the Swerling I1 target actually achieves higher clet,ec.t,iou probability 

than coherent integration for false alarm probabilities greater than lo-? r'fhis wc4-known 

effect results from the probabiiity of small values for the single-look S N R  that will rcnlaitl 

throughout the 16 returns for the coherent case, but will be averaged out by Inrgc returns 

in the uncorrelated (Swerling 11) case. Thus at  first glance, it xmy appear that o t~c  wortltl 

always want to attempt to de-correlate the returns (for example by using frequer~cy diversity 

in the radar waveform); however, coherent integration offers other gains such as the abilit,y 

to use frequency discrimination (MTI or Pulse Doppler) techniques. Surh ~nethotls dqwutl 

on the radar returns remaining correlated pulse-to-pulse for several returns, and providr 

gains not evident in figure 5.3. Note that the Swerling I SLOC curve is at all poiuts i~hovt~ 

that for the coherent integration. This suggests that a system could use a stige utilizing 

noncoherent integration to cue a stage utilizing coherent integration; we will red urn to this 

idea in section 5.3. 

In figure 5.4, we have plotted the log-ROC and SLOC curves for cohcrcnt and  troll- 

coherent integration of 16 returns from a Marcum target with g = 0 d N and 3 d B. Not,(. 

again the 3 dB target has a higher pd and a lower SLOC curve than the 0 dU targct. 'Shc 

threshold effect for a tone target is evident for the coherent integration (which is now a tonc 

with amplitude multiplied by 16). Note that, by definition, the Marcurti targel will haw 

the same amplitude pulse-to-pulse and so there is only one type of noncoherent irrtegration. 

From the SLOC curve of figure 5.4, we can see that for a Marcum target (at least with 

sufficiently high enough SNR), the SLOC for noncoherent integration will be greater than 

the SLOC for coherent integration. 

The log-ROC and SLOC curves for coherent and noncoherent integration of 16 rrtt,l~rns 

from a Two-Tone target with equal glints for = -3 dB and 0 dB is giver1 in figure 5.5. 

The SNR comparison is made between 0 a d  -3 d B  because of convergence problcrns for lti 

coherent integrations of a 3 dB target; as  expected the higher SNR, target ha s  ;he larger pd 

and smaller SLOC. Again the SLOC for the noncoherent integration is larger than that for 

coherent integration when the false alarm probability is not greater than 16-'. 
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Figure 5.3: Lag-ROC and SLOC curves for integration of 16 returns from a Rayleigh fading 
target with single-pulse SNR = 0 dB and 3 dB 
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Figure 5.4: Log-ROC and SLOC curves for integration of 16 returns from a constant, (Mar- 
cam) target with siagk-pz&e SNR = O dB and 3 dB 
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Figure 5.5: Log-ROC and SLOC curves for integration of 16 returns from a Two-Tone 
targets with equal glints with single-pulse SWR = -3 dB and 0 dB. 
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Rician Targets For Rician targets, there are 4 integration nloclels possible, rlanwly: 

1. Coherent integration, with diffuse component pulse-to-pulse correlated. The n~sult,s 

will range from a single tone to a Rayleigh taxget (both with p increasctl by 111 ) as  

the SDR goes from oo t o  -oo. See figure 5.6(a). 

2. Coherent integration, with diffuse component decorrelated pulse-to-pulst.. Tllc rttsults 

will range from a single tone with g multiplied by 12.f to a Raylcigh targct wit11 

unchanged (i.e. no gain in SBR) as the SDR goes from oo to -00. Sec figure. 5.6(1)). 

3. Noncoherent integration with diffuse component correlated front j~ulse-to-pt~lsca. The 

results will range from a Marcum model to a Swerling I model as the SDIL gocs  fro^ 

oo to -m. See figure 5.7(a). 

4. Moncoherent integration with diffuse component decorrelated from pulse-to-pulse. 'J'hc 

results will range from a Marcum model to  a Swerling I1 model as the SDR, goes frrorn 

oo to -oo. See figure 5.7(b). 

Note again the flexibility that the Rician model gives over the Swerlirtg III/IV; for the 

latter we could define coherent integration only by increasing Q hy &I - however then is 

no physical significance. Also note that the performance curves for the ILician 111od(?l arc 

bounded by those for the Marcum and Swerling 1/11 models. Therefore, we r~eed considcr 

only the Marcum and Swerling models. This justifies our use of only a single value for 

o when considering Rician targets; we are still guaranteed that the pd curve will becor~lc - 
higher and the SLOC lower when L, increases. 

For all of the target models considered, the SLOC has been lower for incre;tsr!tl S N  I t ,  
From a rate-constrdmt perspecthe, this is good news: slower systerrts are expected to h a v ~  

higher SNR, and we want the slower systems to  have higher SLOC functions. 

Furthermore, all the models considered have a t  least some region where noncolrerent 

htegration produces a larger SLOC than coherent integration. In the next sectiori, we con- 

s i k  a two-stage bekction scheme wirere tire first stage implements noncoherent integration, 

and cues the second stage, which uses coherent integration. 
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Figure 5.6: Log-ROC curves for coherent integration of Rician targets with diffuse com- 
ponent (a) fully correlated and (b) fully decorrelated pulse-to-pulse. Curves are for a 16 
returns with g = O dB. 
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SDR= 1 OdB 
SDR = 5dB 
SDR = OdB 

Figure 5.7: Log-ROC curves for noncoherent integration of Rician targets with diffuse corn- 
ponent (a) fully correlated and (b) fully decorrelated pulse-to-pulse. Curves are for a 16 
returns with Q = 0 dB- Note the change of scale fot the detection probabiljty in (k), 
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Table 5.2: Moment Generating Functions for Integrating Rician Targets 

I Integration Case I Moment Generating Function 1 

5.3 Application: Combined Noncoherent Coherent System 

We now present an example of the application of rate-constraint theory to  signal processing. 

Specifically, we will examine how the amount of processing required to  derive Doppler in- 

formation on targets can be decreased by orders of magnitude with only moderate increases 

in required SNR to  achieve equivalent detection performance. 

Consider the detection system of figure 5.8. The first stage uses noncoherent integration 

of &3 returns to determine the cells that are most likely to  contain targets. The second stage 

then coherently combines another M (independent) returns, and makes the final detection 

decision. Such a system is very efficient in the number of Fast Fourier Transforms (FFT's) 

required. 

One subtle point should be noted regarding the false alarm probability specification. 

When coherent i~tegratioc of Id returns is used, the total number of chances for a false 

alarm increases by a factor of M, since each return yields M frequency bins. Therefore, the 

specification for overall false alarm probability may also have to be changed when comparing 

the detection performance between a fully coherent and fully noncoherent system. For 

example, if the actuator following the coherent system treats each Doppler cell as individual 
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Figure 5.8: Combined Noncoherent/Coherent System. Only those cells crossing the first 
threshold are coherently integrated by the second stage. 

(as in an automated tracking system), the designed false alarm probability must be dividccl 

by M ;  however, if the actuator is, for example, a jet interceptor that must interrogate a. givcn 

range cell (regardless of the Doppler resolution of that cell), no such division is required. 

To investigate such a combined detection system, we compare its detection perforem co 

with a 'conventional' system using same number of pulses, coherently combining each burst 

and noncoherently combining the two (using quadratic combination). The system of fignrc 

5.8 utilizes two independent bursts, each containing a number of coherent pulses. T h e  opti- 

mal combination system would coherently integrate the pulses within each burst, and than 

optimally combine the results from the two bursts; however, we will make our comparisol~ 

against a system using quadratic combining. 

To compare between the combined and conventional systems, we calculate the required 

SNR (assumed to  be the same for each burst) to get pdT = 0.8 for p fT = loe6 when the 

a priori probability of a target, nl = In figure 5.9, the difference in required SNH. 

between the optimal and combined systems is plotted as a function of the rate out of the 

noncoherent stage for the Rician family of targets. As expected, the curves are bracketed 

by the Rayleigh (equivalent to  SDR= -m) and the Marcum (SDR = m) curves. Note that 

for the Itayleigb target, the processing loss is xionotoniciilly increasing in T ;  this is due to 

the constant SLOC of the coherent stage, which means that the system is globally properly 

'$9 more ordered and will always get better performance as the second stage is able to proct.. 

data. For the Marcum target, the processing loss is less than for the Rayleigh, but is not 

monotonically decreasing for large values of T .  The non-monotonicity results from the tests 

not being properly ordered, so operating under the rate-constraint is not optimal. However, 
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Figure 5.9: Processing loss for detection of Rician targets: pd = 0.8,pf = nl = 
M =  16 

1 

as shown by figure 5.9, the total loss is not going to be more than a couple of dB. 

Note for r = 1, the curves converge to a value of FZ 2.45 dB. This value gives the gain 

obtained by the noncoherent integration of the two bursts in the conventional system; for 

T = 1 the combined scheme just uses the results of the second burst. (The actual value of 

2.45 dB is a function of thz detection and false alarm probabilities used.) 

In figure 5.10, we consider the effect of changing the number of cells integrated per burst. 

Since Rician is bounded by the two, we consider only Marcum and Rayleigh fading targets. 

The losses become smaller as A4 decreases. 

As figures 5.9 and 3.10 indicate, it is possible to buy considerable simplifications in 

complexity with moderate prices in signal-to-noise ratio. For example, based on figure 5.9, 

when detecting a Rician target based on 16 returns, the number of FFT7s required may 

be reduced by a factor of 100 with processing losses of less than 5 dB. If the target has a 

significant glint (i-e. SDR 5 10 dB), the loss drops to less than 3 dB. 

SDR = 5dB 1 ; SDR=lO, 1 Marcum 

0 I I I I 

10.4 I 0-3 10-2 1 0-1 1 00 

Rate Out of Noncoherent Stage 
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Figure 5.10: Processing loss for detection of Rayleigh and Marcuni targets for various vnlucs 
of M: pd = 0.8,pf = nl = 

Thus far, we have considered the SLOC characteristic of different target ~notlels i n  

Gaussian distributed coke. In the next section, we briefly investigate the effect of radar 

clutter which has heavier tails than the Gaussian distribution. 

5.4 Effect of (K-Distributed) Radar Clutter 

We have considered only radar returns for models based on Gaussian noise. In this section 

we investigate the log-ROC and SLOC properties of radar targets in non-Gaussian cl rt t tcr. 

The emphasis of this thesis is not on how to  calculate probability integrals; however, 

we will briefly outline a new technique developed by Bird in [16]. While a thoroug'ir under- 

standing of the method is not required, we do present enough detail to provide a C O T I ~ C X ~  

for the results t o  follow. 
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5.4.1 The Method 

The technique of [16] treats both linear and quadratic detectors; however we consider only 

quadratic combining here. The two perform very similarly, with the linear providing the 

practical advantage of having a smaller dynamic range, but requiri-~g a larger collapsing 

loss. (The collapsing loss is the additional signal required to maintah the same detection 

and false alarm probabilities when unwanted noise samples are integ-ated with the desired 

signal (plus noise) samples [ti].) 

The method works for circular symmetric distributions. Since the phase of the noise 

and target return is symmetric over [0,2n], the two-dimensional characteristic function of 

the joint distribution of the in-phase and quadrature components simplifies to a function of 

the single radial variable, t. Then we have the following transform pair 

where Jo(x) is the ordinary Bessel function of order zero, fz(t) is the density function of the 

radial variable 2, and @(w) is the coherent characteristic function of f ( i ,  q). The method's 

appeal arises from the ease in which @(w) may be determined for a number of interesting 

target and noise scenarios. 

For a square-law detector, the test statistic is q = z2, SO that (5.8) becomes 

Now, in order to calculate the distribution for the noncoherent integration of M inde- 

pendent returns, we require the noncoherent moment generating function of q, given by 

Substituting (5.9) into (5.10), and exchanging the order of integration, 

but the integral in the square brackets is the Laplace transform of Jo(fiw) which is 

exp(-u2/4s)/s so therefore 
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Then to  calculate the detection probability, 

where the s-' factor indicates the integration required to calculate the cun~~la t ive  tlrxnsity 

function, and the A4 exponent results from the noncoherent integration of 111 i~icltytntlcnt 

samples. (Note the false alarm probability is similarly calculated with C:,(s) rcplacccl by 

the appropriate moment generating function under Ho.) 

Note that the technique may be used to generate the previous rcsults for Marturr~, 

Rayleigh and Rician targets (however, there is no appropriate model for a Swerling III/LV 

target in this formalism). Moreover, the technique can be used to create targets c.ot~poscd 

of any mixture of tones and Gaussian noise. 

It  has long been recognized that for some radar scenarios (for example, shallow grazing 

angles) th? noise and/or clutter is not well-fit by a Gaussian distribl~tion [49],[50]. 'L'ho 

log-normal and Weibull distributions have been used, with varying degrees of succcss. Ttw 

Weibull distribution, while convenient, isn't motivated by a physical justification. 

First introduced in [50], the K-distribution has been shown to providc ijettcr fits to 

experimental clutter data in [49]; in addition it generalizes to the Rayleigh an ti W(1i bul l  

distributions4. 

The K-distribution is a 

well by a Chi distribution: 

compound model, consisting of a local mcarl level r/ which is lit 

and a 'speckle7 component which is Rayleigh distributed with mean y: 

Integrating t o  get f (x) yields 

4Thus the Weibd distribution does have a physical interpretation: it results from a K-distribution with 
Y = -0.5. The Weibd model is nsed for its mathematicd convenience however, artd the K-distribution 
produces the more general model. 
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where Ku is the v" order modified Bessel function of the third kind, v is a shape pammeter 

arid we have normalized x (divided by fi) in order to  have the same notation as [51]. b is 

given by 

From the literature, sea clutter seems to be fit well by values of v in the region -0.75 < 
11 < -0.5 or so [-ill, while ground clutter may have values as low as v = -0.9 [49]. Note 

that v = -0.5 yields a Weibull distribution, while v = co gives the Rayleigh distribution 

(smaller values of t. indicate more 'spikiness' in the distribution). 

The coherent characteristic function for the K-distribution is given by [49] 

If we include Gaussian components (from thermal noise and a Rayleigh target), and a 

specular return of amplitude a, the resulting coherent; characteristic function is 

where under Hop c2 = a:, the power in the thermal noise component, while under HI, 

the diffuse power in the target is included so that a2 = a: + a;. In (5.19)~ a single glint 

of amplitude a is included; any number of glints with any amplitude may be included by 

replacing the Bessel function by a product of Bessel functions, each with its argument 

weighted by the appropriate amplitude. However, we wilI consider only single glint, and 

Rayleigh targets here. 

From a study matching the K-distribution to  experimentally measured clutter, it is noted 

that the clutter to  thermal (Rayleigh) noise can be on the order of 23 dB or so [49]. In 

figure 5.11, we have plotted the log-ROC and SLOC curves for integration of 16 returns of 

a Rayleigh target in K-distributed dutter with a single-pulse clutter-to-noise ratio (CNR) 

of 223 dl3 a d  a s@d-to-ehtter ratio of 0 dB. The shape parameter for the K-distribution 

was set at v = -0.851 which corresponds to an experimentally determined value for land 

clutter described in [49], and at v = -0.5, which corresponds to a Weibull distribution. Of 

course, v is a function the radar parameters (frequency, polarization, depression angle, etc.) 

as ~ 1 1  as the area being investigated. 
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Figure 5.1 1: Log-ROC and SLOC curves for integrations of 16 returns of a Rayleigh target 
in a mixture of K-Distributed plus Gaussian noise (CNR = 23 dB, and SNR, = 0 dB).  

104 I 0-3 1 0-2 10-1 1 00 

False Alarm Probability 



CWA YTEI?, Fj. A YPLICABILITY TO THE RADAR PROBLEM 

For comparison, the ROC and SLOC curves for coherent integration of a Rayleigh target 

and noncoherent integration of a Swerling I1 target (each with SNR = 0 dB and CNR = -m 

dB) are also given in figure 5.11. The effect of the heavy tails of the K-clutter is evident. 

The clutter results in lower detection probabilities for pf < or so. To obtain a given 

p f, the threshold must be raised significantly compared to the Gaussian noise case, resulting 

in a much lower detection probability. The heavier tails result in smaller densities at lower 

signal values, therefore pd is higher for high values of p f. Note that the same effects are 

evident in comparing the two clutter cases: for the Weibull clutter (v = -0.5), the tail is 

not as heavy as for v = -0.85 and so pd is lower at high p f and higher a t  low p f .  

The SLOC functions of figure 5.11 were again evaluated by fitting a cubic spline to the 

log-R,OC data. Note that the SLOC is higher for noncoherent integration than for coherent 

integration over some operating regions, so that the processing scheme of section 5.3 is still 

viable. 

Si~nilar curves are plotted in figure 5.12 for non-fading (Marcum) targets with the same 

SNR and CNR. The interesting curve is for the coherent integration of a target in clutter with 

heavy tails ( v  = -0.85). Note how the log-ROC literally crashes for false alarm probabilities 

smaller than 3(10)-~. The cause of the crash is that the threshold for pf = 3(10) -~  just 

exceeds the value of the signal component. Since the clutter has such a heavy tail, the 

change in p f is not as extreme as the change in pd; hence the large slope. The large slope 

is reflected in a peak in the SLOC as indicated in the figure. For the smaller Weibull tail 

(with Y = -0.5) the effect is less pronounced and occurs at a lower p f .  The moral of figure 

5.12 is clear: when dealing with a Marcum target, make sure the threshold is set higher 

than the amplitude of the return or else detection performance will be extremely poor. 

Note that provided we consider only false alarm probabilities greater than that which 

would cause a crash, coherent integration again produces a smaller SLOC function than 

noncoherent . 
In our analysis of K-clutter, we have assumed that the clutter is identically and inde- 

pendently distributed (i.i.d.) from cell-to-cell. In fact, we have implicitly assumed temporal 

and spatial stationarity for the statistics in all that we have done thus far. To combat the 

nonstationarity inherent in any radar problem, a number of normalization techniques called 

Constant False Alarni Rate (CFAR) methods have been developed. In the next section 

we will consider how such techniques may be incorporated into systems operating under 
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Figure -5.12: Log-ROC and SLOC curves for integatiori of 16 returas of o Marcum target 
in a mixture of K-Distributed plus Gaussian noise ( C M t  = 23 dB, arid S S K  = 0 dB), 
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Figure 5.13: Cell Averaging Constant False Alarm Rate processor. 

rate-constrain t principles. 

5.5 A Brief Note on Normalization Techniques 

Thus far we have not considered the role of normalization (CFAR) techniques in Rate- 

Constraint Theory. Normalization methods are used to combat the global nonstationarity 

of interference (clutter or t h e m d  noise). There are two different assumptions that can be 

made to motivate CFAR techniques: spatial homogeneity or temporal stationarity. Cell 

Averaging CFAR and Order Statistic CFAR work by detecting when a given cell is much 

larger than it neighbouring cells. Clutter map CFAR detects when a given cell exceeds the 

average of the previous returns for that individual cell. 

Our coverage is intentionidly brief; the intent is to show how normalization techniques 

can be used to combat nonstationarity in systems operating under a rate constraint. For 

further detail the interested reader is referred to an extremely readable review of CFAR by 

Farina and Studer 1527. 

Cell Averaging CFAR The general algorithm for CA-CFAR processing is given in figure 

5.13. The basic idea is to use the cells smounding a given cell to estimate the background 

noise level. The estimate is then multiplied by a constant, k t o  generate the threshold that 

the return will be compared against. Note that the cells used to form the estimate may be 

ncighbours in Doppler, azimuth, range or a combination. 

It is well linown that the probabilities of detection and false da rm for a CA-CF,4R 
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Figure 5.14: Clutter Map Constant False Alarm Rate processor. 

system operating on a Rayleigh target in Gaussian noise are, respectively, givcn by [53] ,  [itill 

and 

where N is the number of cells used in the estimator,.lc is the ~nultiplier used to rlctcrrrlir~c~ 

the threshold from the estimate, and e is the signal-to-noise ratio. 

'I vfbrl. Clutter Map CFAR In figure 5.14, the processing scheme for clutter map CFAII. is  h' 

A recursive averager is used t o  estimate the mean value of the return for the i~ldiviclual cc?ll.  

The estimate is again multiplied by a constant, k and then used for the thrcsholrl. 

Nitzberg has shown that when detecting a Rayleigh target in Gaussian noise wi th  a 

Clutter Map CFAR system such as in figure 5.14, the detection and false alarm probabilities 

are given by [54] 
1 

pd = lim 
I 

M-W ff':=,ii + kDW(l - Wjmj 

and 

pf = lim 
1 

M-rn n,M=,[l+ kW(1- W)mJ 

where k is again the CFAR multiplier and 
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Figure 5.15: Log-ROC curve for Clutter Map and Cell Averaging CFAR systems detecting 
a Rayleigh target in Gaussian noise ( e  = 12dB)- 

In figure 5.15, we have plotted the log-ROC curves for the two CFAR techniques, along 

with the curve for a deterministic threshold. Since the effective number of cells used in the 

estimate for the clutter map is [43] 

2 -  W -- 
W 

- 15 for W = .I25 

and N = 16 for the CA-CFAR, it is not surprising that the two techniques give nearly 

identical performance for these parameters. Note that for large p f and pd, the log-ROC 

(and therefore SLOC) curves for the CFAR are very dose to that for the Rayleigb case. 

Order Statistics Another way to estimate the mean background interference level is 

to rank the returns, and multiply the mth largest by a constant. We introduce a similar 

technique in chapter 6. The basic idea is this: in rate-constraint we want those cells most 

likely to contain targets to be passed on to the next stage. Therefore, why not rank the 

returns and pass on the 1 argest, thereby eliminating the need for an explicit threshold? 
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All of the CFAR techniques can be used in rate-constraint systcnls. While we don't, 

require the constant false alarm rate, the normalization techniques ensure that large clt~ttcr 

regions won't mask small targets. The CFAR multiplier k can be controllcd by a rat(>- 

constraint system to  generate the desired rate. 

5.6 Conclusions 

In this chapter, we have presented graphs illustrating the log-ROC and SLOC curves for 

several radar models. For the models studied, a few general conclusions can be drawn: 

1. The SLOC number tends to decrease with increased SNR; therefore a multi-st,agc 

system consisting of fast, low SNR stages cueing slower, higher SNR stages will have 

a t  least some operating region where the system is properly orclered. 

2. The SLOC number tends to  be higher for noncoherent integration tllari for coherciit 

integration for the same number of returns of a given target type. A systern of' tho 

type discussed in section 5.3 consisting of a stage utilizing noncoherent integration 

cueing a stage performing coherent integration is therefore feasible. For tho target 

models considered, the loss incurred by operating under the rate constraint is srna11, 

even when the stages are operating in a region that is not locally properly ordareci. 

3. A Rician target is a more accurate representation of a target consisting of one single 

dominant and a number of smaller i.i.d. scatterers. The range of hehaviours of n 

Rician target may be bracketed by considering Swerling 1/11 targets (for which the 

SDR = -m dB) and Marcum targets (for which SDR = oo dB). 

4. Radar clutter typically produces heavier tails than predicted by the Rayleigh distri- 

bution. The heavier tails result in larger SLOC values a t  lower values of pf. 

5. Normalization techniques cause slight losses, and therefore increase the SLOC slightly 

when compared t o  'crisp7 thresholds. 

Remember that in real radar deployments, the actual target type is not known - to us 

or t o  our detection scheme. Nevertheless, the radar models do allow us to investigate rats 

constraint theory in an established framework. It appears that rate-constraint ~yrjtems are 
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in fact optimal over large operating regions for many common models; more importantly, 

rate-constraint tests can be practically implemented. The analysis also allows us to make 

more intelligent design decisions regarding required processing rates for multi-stage systems. 

We saw that CFAR techniques were invented to  deal with global nonstationarity, by 

assuming local stationarity. The nonstationarity suggests that a rate-constraint test will 

not be able to produce a constant output, but will have some variance about the desired 

value. In chapter 6 we investigate some of the consequences of such variances. 



Chapter 6 

Implement at ion Issues 

6.1 Introduction 

The basic strategy underlying resource-constraint detection is to utilize the available pro- 

cessing resources to the fullest extent. In chapters three and four we showed that the 011 t p u  tr 

rate from a detection stage should be matched to the maximum processing rate of thc f d -  

lowing stage. Like all of detection theory, our work thus far has been concerned only wit 11 

first-order statistics. However, the hit-rate is a random variable with variances that ~tilrst 

be accounted for. Another source of variance is due to the fact that the output rate, while 

observable, must be estimated. 

A rule of thumb when estimating a binomial probability h is to use at least atlls 

[55] .  The in question, the hit-rate, is often a small nu~nber for radar systetris (say 

- [18]). Therefore a large number of cells are required to get a reasonilblc 

estimate. Nonstationarity may be a problem when such long observation periods are ncc- 

essary. While the normalization techniques discussed in chapter five help, the output rate 

will vary somewhat about the desired operating point. 

When the output rate has a mean J1 and a non-zero variance, there will he times when the 

hsta~taneous  rate is larger than c1. Therefore, some of the hits wiU be lost to rtorrnal~zation 

unless allowances are made for the overloads. 

In this chapter, we present ways to deal with the variance in the output rate from a test; 

operating under a rate-constraint criterion. The first technique discussed is the introduction 

of a queue between the detection stage and the subsequent actuator. We examine queuing 
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structures to handle two different scenarios. The first is for a processor that treats all 

hits the same. For example, a clutter map might be applied to all cells that contain hits; 

the processing required for the map is the same whether the hit was caused by a tzrget 

or a false alarm' The second situation is the more general; we consider actuators that 

treat false alarms and targets differently. For example, a target will presumably tie up the 

computing resources in a tracking computer longer than will a false alarm since the target 

will be continually monitored during its presence in the radar field, while the false alarm 

will require only a short number of radar looks to dispense with. 

Many multi-stage detection systems can be characterized by a combination of a stage 

operating under the first scenario followed by a stage operating under the second. For 

example, a multi-stage detection system where all hits are processed by various forms of 

CFAR (clutter Map, binary integration etc.) is explained in [IS]. Further in the detection 

chain, those cells that pass the CFAR processing are passed to a track initiator, which 

requires more processing for targets than for false alarms. In such systems, the earlier 

stages are characterized by smaller values for the target concentration and signal-to-noise 

ratio. 

Another method of dealing with the stochastic nature of the output rate is to eliminate 

the variance altogether by ranking the returns and passing on only those cells most likely to 

contain targets. The load on the resource limited actuator can be controlled by varying the 

fraction of cells chosen during each processing interval. It might seem counter-productive 

to use a ranking scheme since the test will always provide exactly the same number of hits. 

Does such a test provide any information? The answer is yes, provided a time-history1 is 

available for the cells that produce hits. If a given cell is consistently ranked as the largest 

in its neighbourhood, then it is more likely to contain a target. The idea of combining a 

ranking scheme with a test that declares a target present if a cell is chosen M or more times 

in N consecutive scans was first introduced in [IT]. 

The structures in this chapter provide the ability to run systems at  (or near) maximum 

czqacity even in the face of ignorance of the underlying statistics. 

'A spatial 'history' may be more appropriate in sonar applications; a hit is more likely to be a target if 
there axe hits in adjacent cells. 
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Figure 6.1: Queue for buffering output hits 

6.1.1 Outline of Chapter 

In section 6.2, we analyze the use of a simple queue between a detection stage and a hank 

of actuators. We assume that all hits, whether they be targets or false alarms, rec~ilis~ ;L 

single service time. The trade-offs between the output rate of the test, the ~imxinluni cli~c~rc 

length, and the mean delay in the queue are examined. 

The method of ranking the returns and processing the largest is presented in scrtion 6.3. 

We compare the results of ranking with a threshold test for detection of a Rayleigh targ~t,  

in Gaussian Noise.  he loss attributed to  ranking is not large for the resource-cnnstraint,~ 

considered. 

The use of "M/N" Detectors is the subject of section 6.4. We include rnorc detail tliarr 

is required for the purposes of the thesis in order to present some new results for thc rttcar~ 

and variance of the time required to confirm a target with a given confirtnation r~ilo. 

In section 6.5, we extend the Marboff model introduced in section 6.2 to allow targets 

and false alarms t o  be treated differently. The results from the analysis stress the r m t l  

for processors that are able to  quickly dispense with false alarms. Section 6.6 t h ~ n  qq)lies 

the analysis of section 6.5 to  a network of track-initiators, each utilizing a M/N strategy. 

Finally, chapter condusions are discussed in section 6.7. 

6.2 Queues for Buffering 

Consider figure 6.1 consisting of a queue with maximum length NQ feeding a hank of 5' 

servers (actuators). Let pi be the steady-state probability that there are exactly i cells in 
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the system immediately after the beginning of a service cycle. It can be seen that a is then 

equal to the probability of i cells in the queue immediately before the queue feeds ,S' cells 

to the actuators2. Now let ds be the probability that there are no more than S cells in the 

system a t  that time, that is 
S 

Assume that the number of cells investigated per processing interval is C, of which, on 

average, J1 = r l p d  + xop f are hits. Then following 1561, 

where 

= ( ) p i ( l  - p)c-' 

denotes the binomial probability mass function expressing the probability of getting i suc- 

cesses out of C tries  give^? that the probability of success for an iodividua3 trial is p. The 

final equation in (6.2) normdizes the solution. 

Solving the linear system of equations of (6.2) for the Pi yields the steady-state distri- 

bution for the queue population. The average load carried by the system is then 
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Figure 6.2: Probability of queue overload 

The probability of a hit being rejected by the queue is given by 

offered load - carried load 
Pb = 

offered load 

but the offered load is given by I1C, so that 

Figure 6.2 shows the probability of queue blockage, Pb as a function of the rrt;txirn~~lrt 

queue length. Curves are given for two values of '5' and normdized load 

As expected, the probability of a queue overload is higher for larger offered loads. Ilecreasing 

the number of actuators from 10 to 1 reduces the probability of queue overload hscansr: there 

2Note that the analysis is equivalent for a single actuator that takes S cells aod serves titera bdorc 
updating the queue; however, in that case we must remember to divide the processor rate by '5. 
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are more cells examined per cycle for the lower value of S, and therefore a smaller variance 

in the output rate. The results of figure 6.2 are for C = 1000, but do not change appreciably 

with C, provided C is large enough. The lack of dependence on C is to  be expected since 

a binomial distribution may be approximated by a Poisson for large values of C3. In fact, 

Chu7s curves, derived from the Poisson approximation are identical to those of figure 6.2 

[56].  

Figure 6.2 shows that in order to reduce the risk of a cell being blocked out by a full 

queue, there are two options. Either the normalized load, p must be reduced or else the 

maximum length of the queue must be increased. 

The former solution, reducing p, introduces a trade-off between the probability of the 

queue availability (= 1 - Pb) and the detection probability. If p is decreased, the output 

rate of the threshold test, t1 and therefore the detection probability is also decreased. The 

probability of queue overload is, however, reduced. The trade-off between pd and Pb for a 

particular scenario (Rayleigh target with Q = 20 dB in Gaussian noise, = NQ = 
10,C = 1000 and S = 1) is shown in figure 6.3. Note the introduction of the queue has 

softened the effect of overloading the actuator when compared with the randomization shown 

in figure 3.7, for example. 

The overall detection probability, given by 

achieves its nlaxinlu~n a t  a value of p that is a function of all of the detection parameters. 

For example figure 6.4 includes plots for severd systems detecting a 10 dB Rayleigh target 

in Gaussian noise. 

There are a number of general conclusions to be inferred from figure 6.4: 

1. The exact value of p for the maximum overall detection probability is a function of 

the radar scenario. For the cases considered here, the location of the maximum ranges 

from p zs 0.8 - 1. 

2. Increasing C, the number of cells, from 100 t o  1000 while maintaining the expected 

number of targets, s I C ,  decreases the overall detection probability, pd,,. The decrease 

results from the increased variance in the output rate, which increases the probability 

'The Poisson approximation is independent of the number of cells. 
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Figure 6.3: Trade-off Between Detection Probability and Queue Availability for .;rl = 
5(10)-~, e = 10 dB, NQ = 10, C = 100, S = 1. 
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of a hit being blocked by a full queue. Note that the value of p for n~axirmirri i~vc?r;l,ll 

0.2 Overall Detection Probability, pdov 
Detection Probability,pd 

0.1 - Queue Availability, 1 -Pb 

detection probability doesn't change; in fact the entire shape of the c u r v e  appears to 

be similar for the two values of C, with only a vertical shift caused hy the incrc!asc i l l  

Pb - 

3. Decreasing the number of places in the queue from 10 to 5 whije ~nair~tairting all otlrcr  

parameters causes pd,, to fall off a t  a lower value of p. This is bec;tilsf: t,hc y~rcuc? 

blocking probability becomes more significant a t  lower offered loads since thr! c j i t c w  

is shorter. As a result, the maximum for the overall detection prol>ahility is fo~rrld at, 

a lower value of p when NQ is decreased. 

4. Increasing the number of servers from 1 to 5 produces the highest ovcrall  detection 

probability. The slight decrease in queue availability (for exarriple see figure 6.3) is 

more than compensated for by the increase in pd due to the increased rate. 
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Figure 6.4: Overall Detection Probability for e = 10 dB. 

5. The largest change in shape for the overall detection probability results from doubling 

the target concentration from nl = .005 to .01. The increase in causes a sharper 

decrease-off in pd (as expected from the discussion in section 3.2.1). As a result, the 

value of p for maximum pd,, is increased and in fact is the largest for any of the curves 

of figure 6.4. 

It appears that the way to  increase pd,, is to increase the length of the queue. However, 

increased queue lengths lead to  increased queuing delay. If a target remains in the queue 

too long, it may have moved by time the actuator gets around to serving it. 

The time-average of the queue length is given by 

where the first term in (6.6) is the expected number of cells in the queue a t  the beginning of 

the service interval, and the second term is the time-average of the number of hits occurring 
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Figure 6.5: Mean delay for queue 

during the service interval. 

Then from Little's equation, the mean delay in the queue is givtm by [57] 

In figure 6.5, WQ is plotted as a function of LQ for two valucs of .S aid p. As c * x p r 4 d ,  

the mean queue waiting time increases with NQ.  The effect is more ~rrorrtirlcnt for largcr 

d u e s  of p, when the queue is busier. For S = 10, the expected time in the y u e w  is vrry 

short when compared to that for S = 1. Recall, however, that if we arc coirtparing two 

systems with the same processing ability, the service times will he 10 tiircs lforrger for the 

S = 10 system t h a  for the 5' = 1, system. 

In this section, we have considered some of the aspects of queuing to srnooth 0111 t h r *  

variance in the hit-rate of a detection stage. We have assumed that; ail hits, viheth~r t h y  are  

caused by targets or fake alarms, require exactly one processor cycle to service._. lrt  sectirrr~ 

6.5 we extend the analysis to account for random service times, not necessarily t h e  same for 



both targets and false d a m s .  However, we now turn our attention to another technique of 

providing a fixed-rate output. 

6.3 Rate-Constrained Detection by Ranking 

In this section, we consider the detection performance of a test that operates without a 

threshold. Instead, the test picks the largest cells to pass onto the resource-constrained 

actuator. We assume that during each service interval the radar interrogates C cells, and 

passes on A for servicing. 

In order to evaluate the performance of a system operating under a ranking system, we 

require the distribution of the cells, given their position in the ranking. 

If there are a total of No empty cells, the kth largest one has a density given by [58] 

where fo(x) and Fo(z) are the probability density and cumulative distribution functions for 

the returns due to noise only. Similarly, the lth largest return out of a total of Nl cells4 

containing targets has a density given by 

NOW let 

&(t)  = P(at least t of the Nl targets are chosen) (6.10) 

= p(lth largest target > kth largest fake alarm) (6.11) 

where 

and 
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Then the probability of exactly t targets being chosen is given by 

The probability of detection, given that there are exactly 1V1 targets is then - 

and to finally get the probability of detection, given an a priori target concentration, T I ,  we 

average over all values of Nl : 

The denominator in (6.15) is included because in order to calculate pd, we assume the 

presence of at least one target. 

We now become specific and consider the problem of detecting a Rayleigh target i n  

Gaussian noise. The density and distribution under the noise-only hypothesis is 

and 

Under the alternate hypothesis, 

and 

where e is the signal-to-noise ratio. Of course, x 2 0 for all of the above distributions and 

densities. 

In figure 6.6, we have plotted pd as  a function of T = & for Rayleigh targets in Ga~rssian 

noise, along with the results from using a threshold. For each value of Q (indicated on the 

curves), there are two different curves drawn. The solid line is the log-ROC curve for a 

threshold detector implementing a rate-constrained rule with mean output rate = T .  From 
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Figure 6.6: Comparison of Detection curves for ranking scheme and threshold detection for 
Rayleigh targets in Gaussian Noise. Target Concentration, TI = 

the Rate-Constraint lemma, we know that the threshold must give the highest achievable 

pd for a given value of p f ;  hence ranking must result in performance loss. However, figure 

6.6 shows that the loss is not very large, and decreases with increased e and increased r .  

The increased loss in pd with decreases in T results from the fact that the threshold curves 

fail to account for the need of a queue. If the queue blocking probability were included in 

the threshold curve, the two curves would be closer. 

The ranking technique gives a rate-constrained output, with zero variance. No latency is 

introduced, since there is no queuing wait. However, it may seem that there is no significance 

to  the hits: since the test always produces the same number of them. One technique to gain 

significance from the output of a rate-constrained test (if required) is to  count the number 

of times a given cell is picked in consecutive scans. We new consider M/N detectors. 
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6.4 Coincidence Detectors 

We have shown optimality of the rate-constraint criterion for detection systcnts with rcwurc'c~ 

limited actuators. Consider now a system operating under the rate-const raint but witliot~t 

an actuator; the threshold crossings have no significance since there will always bc t t l ~  s;mrc. 

number of hits out of the first stage, regardless of the actual distribution of tnrget,s i n  tlir 

detection field. While the hits denote the cells most likely to contain targets, ftrrtttclr t,c.stillg 

of some form is required to  establish their significance. Such post-procpssing is not requirrtl 

under other detection strategies such as Neyman-Pearson; however, it often is inclndctl to 

improve detection performance (e.g. [59]). 

In order to gain significance from the threshold crossings, we seek further evitlcntc or 

support to confirm target existence. One form of support is coincidental crossings; i f  ii, ccll 

is consistently ranked highly we expect it to be a target. Note that this form of support, is 

temporal - we consider N consecutive scans and declare a target if a cell has M detccl,iclt~s. 

However, we might also consider spatial support. For example, in an obsta,cle avoiditnt~ 

sonar, we expect an object to extend to  more than one cell, so we might exarr~ine ttrc 

cells adjacent to  a potential target. In general, establishing any form of snpport ~ccluircls 

resources in the form of processing time and therefore inflicts a rate-constraint. Gcrlacl~ a.ntl 

Andrews [60] recently have also discussed a similar trade-off between detector p~rforlr~;~nce 

and calculation complexity. 

Note that the combination of a ranking test with a M / N  detector was first intrutlucod 

in [I?]. 

6.4.1 The M/N Detector 

An M/N detector5 is often used to  initiate target tracks in a Track-While-Scan (TWS) rada,r 

system 1611. We will return to  track initiators in section 6.6. 

The following description of the operation of M/N rules is inciutied for two rcasons. 

First, before one can understand how M/N track initiators work uritler a rate-constraintJ 

(io section 6.6), it is important to understand how M/N detectors work in isolation. TIN 

second reason for the detail is t o  present a context for new results on the mean and st,antlard 

'The M/N detector has many names, including "Two-stage detectorn, "Sliding Window Detector" anti 
"Binary Integratorn 
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Figure 6.7: Markoff Chain For 2/3 Decision Rule 

deviation of the time required to confirm a target. Previous approximate results given in 

[62] and quoted in [52] are extended. 

The dynamics of an individual M/N detector mxy be analyzed using conventional Markoff 

chain techniques 1611. For example, consider the 213 rule as illustrated in figure 6.7. A target 

is confirmed if it is detected on two or more of three consecutive scans. 

The equations governing the detectors are 

where p and q are the probability of a hit or no hit from the 

k-1 

detector stage (i.e. p and q 

are either pd and (1 - pd)  or else p f and (1 - p f )  depending on whether the cell contains 

a target or a false alarm.) We have partitioned the state transition matrix into a square 

matrix A, row vector b, column vector of 0 and single entry 1 to simplify the analysis. 

One of the parameters of interest for a detector is the mean delay or number of scans 

required to confirm a target, given a specific single look detection probability. The problem 

has been addressed by Castella in 1621 for M / N  rules, where N _< 4. While Castella 
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solved the system of equations governing the tracker by using a rec~~rsivc :~lgoritllrn, classir.al 

Markoff chain methods provide a simpler, more accurate approach We solve (6.21) for the 

probability of the track being in a confirmed state (i.e. in state 3): 

probability 1. Then the probability of the track being confirmed in exactly k cyclcs is given 

Re-writing (6.23), the cumulative distribution function of (6.25) is given by 

Pjote that this assumes that the target statistics remain stationary for at least k cycles, 

which may be unrealistic for large k. 

Figures 6.8 and 6.9 show the cumulative detection probability (CDP) as given by (6.28) 

for M / N  detectors with various parameters. 

In figure 6.8, the CDP is plotted fcr a 3/5 rule for various p. As expected, the C>I)P is an 

increasing function of p and k. If we are willing to wait long enough, (i.e. for k: large euough), 

high values of the CDP are attainable even with values of the single look hit j~~obability, p 

as low as 0.5. However, there are two problems with increasing k. First the CD? fc~r  h lse  

alarms as well as targets will increase; second and more importantly, the target statistics 



CHAPTER 6. IMPLEMENTATION ISSUES 

3 4 5 6 7 8 9 10 11 12 13 14 15 
Number of Looks 

Figure 6.8: Cumulative Probability of detection for 315 Rule 

may not remain stationary long enough for large I c .  (For example, the target may perform 

evasive maneuvers). 

Figure 6.9 shows the effect of changing A4 with N = 5 and p = 0.5. As expected, the 

easier tests (i-e. with lower M )  appear to perform better, although they also increase the 

CDP for false alarms. 

We can find the mean and standard deviation of the number of looks required to confirm 

a target by taking moments of pck. The moment generating function of per, is 

k=O 

Then the mean number of looks required is given by 
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Figure 6.9: Cumulative Probability of detection for M/5 Rule with single look detection 
probability = 0.5 

Now 
-- d2r(1) - .E{k2) - E{k) = 2b(I - A)-~A% 

dz2 
which can be solved for E{k2), yielding 

The variance is then given by E{k2) - (E{k))2. 

This new method of solution gives the same results as Castella's; however its simplicity 

allows initiation rules with N > 4 to  be easily analyzed given the state transition matrix 

gov2iIiing the rule. We have developed a program to generate t'ire state transition matrix 

for an arbitrary M / N  rule and are therefore able analyze any detection strategy. 'fable 6,1 

gives the mean and standard deviation of the number of returns required to confirm a target 

for various values of M ,  given specific values of p ( p  = pd or p f). 

As expected, the average delay increases as M increases, and as p decreases. However, 
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Table 6.1: Mean and Standard Deviation of number of looks required to confirm a target 
for various rules. 
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as Castella also pointed out, the standard deviations are very large compared to the means, 

especially when p is small. Therefore the distributions of the delay are quite broad, so that 

the mean value must be considered as a general trend and not a precise design value. The 

results again stress the dangers of basing design and analysis on first-order statistics alone. 

6.5 A Network of Asynchronous Actuators 

Consider again figure 6.1. As before, assume that the detector examines a radar field 

containing C cells with an a priori target concentration of nI6. Those cells crossing the 

threshold are passed to a network of NA actuators, each of which may or may not finish 

with the cell it is currently servicing. We assume that the entire network is updated once per 

service cycle, and that each available actuator is loaded only at  the end of discrete service 

cycles. The network is assumed to have been operating long enough so that the steady-state 

probabilities for the processes describing the individual actuators and the entire nctwsrk 

are valid. We also assume that the service times of the servers are accurately described by 

binomial distributions. 

We calculate the probability that a new target, coming into the equilibrium environment, 

will be detected and find an available actuator. Note that we calculate the single look 

detection probability (that is, the target gets only one chance to make it into the actuator 

network to  be confirmed. We can make the cumulative detection probability arbilrarily 

close t o  1 by increasing the number of looks allowed.) 

Let po = P(hitlHo) = nop f be the probability of a given cell being empty and causing a 

hit, and pl  = P(hitlHl) = nlpd be the probability of a cell containing a target and causing 

a hit. Now let peo and pel be the probability of a server busy with, respectively, a false 

alarm or a target finishing with the cell in question. 

To analyze the network, we require two state variables, the number of actuators tsu~y 

with false alarms and the number of actuators busy with targets. Let 

P(s = 2, j )k  = f (2 actuators busy with false alarms and L actuators BUSY with targets at time C) 

Then the equations of the Markov process describing the network are given by 

'For the examples in this section, we consider larger values of TI and Q than in section 6.2, since it 'w 
expected that the stages of this section will be found towards the end of a multi-stage detection chain. 
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Wben the number of busy actuators is less than NA, 

where 

b o = i - l + c o  

and 

bl = j - m + c ,  

The interesting things, as far as analysis is concerned, happen when i  + j = NA, that 

is, when there are at least as many, and generally more, threshold crossings as actuators. 

Then 

where 

is the probability of co actuators busy with false alarms emptying, 

is the probability of cl actuators busy with targets emptying, 

is the probability of xo new false alarms passing the threshold, 

is the probability of XI new targets passing the threshold, and 

I 1 else 
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is the probability of a given cell finding an available actuator givu that there a4re too nmny 

new potential cells. 

Thus we can calculate the transition matrix and therefore the steady-state distributions 

of the Markoff process describing the network operation. Given that i a.ctuators are busy 

with false alarms and j are busy with targets, the average carried load is given by 

Then as in (6.5), the probability of a cell not finding 

The overall detection probability, given by 

a server is given by 

is plotted in figure 6.10 as a function of peo = pel for various values of normalized output 

rate, p. (We will consider the effect of different peo and pel shortly). Since the signal-to- 

noise ratio, e has been increased to 20 dB, the limiting factor in (6.37) is (1 - Pb). In fact, 

we have included only curves for pd,,, since the curves for 1 - Pb appear to be identical. 

The decrease in pd resulting from decreased p is overcome by the decrease in Pb. This is an 

important point: for large signal-to-noise ratios, the constraint on the resource becomes the 

crucial factor in the overall detection performance. As expected, pd,, increases significantly 

with peo and pel, since the actuators process the hits (and become available) more quickly. 

We have assumed that the mean time to process targets and false alarms is identical in 

figure 6.10. To understand the effects of peo # pel, consider figure 6.11. We have arbitrarily 

set peo = 1 - pel to  illustrate the point. At p = 0.2, pl z pol and the decrease in pdOu is 

symmetric in peo and pel. As p increases, yo > yl, so that overall detection probabiliiy is 

affected more by decreases in peo than in pel. It is probably typical that po > p i .  Therefore, 

it is important to use processors that do not waste too much time with false alarms. 

In the next section we apply the above analysis to a network of trackers, each using a 

M/N rule for track initiation. 
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Figure 6.10: Overall Detection Probability as function of peo = pel, for nl = .005, C = 
100, e = 20 dB, NA = 10. The numbers on the curves are the values for p, the normalized 
output rate. 

6.6 A Network of M/N Rules: A Track While Scan System 

We now consider a simplified example consisting of a network of track initiators, each 

implementing a M/N rule. A tracker requires processing beyond that of incrementing the 

counter for the M/N processing - Kalman filtering, track association and other functions are 

required (these will not be discussed here). For our purpose of illustrating points relevant 

to the thesis, we consider only the dynamics of the M/N detectors. Equivalently we assume 

stationary targets or perfect position prediction from the Kalman filtering. 

The first problem we must address is the definition of peo and pel for a tracker. We 

could assume that a target remains in the tracker for a given length of time (for example, the 

transit time across the air-space under surveillance) and then is deleted. However, for our 

purposes, we assume that the tracker is concerned only with the problem of track initiation. 

Once a track is determined, the tracker (on the next scan) hands off the target to another 
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Probability of Server Emptying, pao = 1 - pel 

Figure 6.11: Overall Detection Probability as function of peo = 1 - I>el, for nl = ,005, C' = 
100, e = 20 dB, N A  = 10. The numbers on the curves are the values for p, the normalized 
output rate. 

actuator (which wc do not consider in this ana:ysis), and becomes available again to process 

another potential track. 

For example, consider the 213 decision rule of figure 6.7. In order to usc jt for our 

purposes here, the line with probability 1 from state 2 to itself must he replaced with a line 

from state 2 to state 0. The equations governing the trackers are then 

The equilibrium distribution of the tracker states may he found from the steady-state 

solution to (6.38), (i.e. as k -+ m). iiJe separately calculate the steady-state probabilities 

for a tracker under the two hypotheses. 
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The probability of a busy tracker becoming available (i.e. returning to state 0) can then 

be calculated given the steady-state probabilities from 

peo = P(in state s(Ho)P(transition to state 01 in state s, s # 0, Ho) (6.39) 
3740 

where P(in state sfHo) is given from the steady-state probabilities of (6.38) when no target 

is present, and P(transition to state 01 in state s, s # 0, Ho) is given by the normalizing the 

(0, sJth entries of the transition matrix in (6.38) over s # 0. Note that pel is defined in a 

similar manner, but with a target assumed present. 

Eiaving found peo and pel for an individual tracker, we are now ready to consider the 

dynamics of a network of trackers. 

The probability that a given cell will cross the threshold and will be confirmed in the 

following N - 1 cycles is given by7 

The probability that a given cell will pass the first test and subsequently be rejected is given 

by p - PcI. Finally, we are in a position to calculate the single look detection probability of 

a target; it is the product of the single look confirmation probability as given by (6.40) and 

the single look tracker availability given by (6.36): 

The overall detection probability is plotted in figure 6.12 for a 20 dB Rayleigh target in 

Gaussian noise under various conditions. There are a number of things to note: 

1. The less selective rule (2/5) is superior at lower p; however the values over which it 

is superior are for values of pd, which are too low to be useful. At higher p values, 

more false alarms are let in, and the 215 rule takes longer to process them than the 

315. 

2. Decreasing rl while maintaining the expected number of targets, xlC constant pro- 

vides better performance over all d u e s  of p. This is because decreasing xl increases 

pd, as dismssed in seetion 3.2.1. 
P Note that this is not quite the same as letting k = N in equation (6.251, which doesn't assnme a threshold 

crossing in the first bk. 
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Figure 6.12: Overall Detection Probability for 25 dB Rayleigh targets in Gaussian Noise 

3. Decreasing the number of trackers, NA causes the peak in pd,, to be shifted to a larger 

value of p. This is because pd is the factor causing the crash in pd,,. The value for 

for the crash in pd, is the same, but the normalized rate p value, when normalized 

by NA, is shifted outwards. 

In general, we expect to  have multiple chances to detect a target. The detection prob- 

ability, given that we have L looks (the maximum valid value of L will be a function of 

the target dynamics) is a complicated function of the time it takes the tracker to reach a 

decision (which is a function of the tracker initiation and deletion rules) and the tracker 

awdability function. 

The probability of a tracker emptying is a, function of how long the tracking rule takes 

t o  confirm a target or t o  rule out a false alarm. The number of cycles required to make a 

decision will depend on the decision made. For a detection, the decision delay is between 
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M and N and is given by 

where as for the no detection case, the decision delay is between N - M + 1 and N and is 

given by 
N-M+l  1'"-"-1) ( " ) 

To = P (6.43) 
k N - M + 2  P - pc1 N - A4 

Both of these delays must be less than the time over which the statistics of the environment 

significantly change. Clearly TI will be a decreasing function of pd and will be an increasing 

function of p f .  The exact values for the mean processing delays are, as we learned in section 

6.4, only guidelines. 

The effect of the track initiation rule is seen figure 6.12. For the 2 / 5  rule, between four 

and five returns are required for a tracker to rule out a false alarm, assuming the first return 

is a hit. However, the 3/5 rule requires only between three and five returns. Of course, 

there is a trade-off involved; a 315 rule will take longer to detect targets, and may miss 

small targets. 

6.7 Conclusions 

We have covered a lot of material in this chapter. Beginning with a simple queue, where 

targets and false alarms are assumed to be treated identically by the actuator, we showed 

that the value of p, the normalized output rate, corresponding to the maximum overall 

detection probability is a function of target concentration, the maximum queue length, the 

number of actuators and the number of cells scanned per actuator cycle. For low values 

of TI, the overall detection probability finds it maximum somewhere p x 0.8 -+ 1, and is 

a relatidy fiat funciion over that range. As the a priori probability or" a target increases, 

the effect of reducing the output rate from the detector stage becomes more significant, and 

the resulting overall detection probability is not so flat around its maximum. Increasing 

the maximum queue length increases the overall detection probability, but may increase the 

mean queuing delay beyond Emits set by the rate of change of the environment. Increasing 

the number of servers also increases pd,, but may be prohibitively expensive. 
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One way of providing a guaranteed rate out of a test is to eliminate the threshold 

altogether and rank the returns, picking the largest to be passed on to the actuator. Such 

techniques introduce losses when compared to threshold tests, but the losses are not large 

and decrease with increased signal-to-noise ratio. 

If one wants t o  derive significance from a test that provides a constant rate, a M / N  

detector may be used. New results for the mean and variance of the time required to 

confirm a target were presented and underscore the danger of merely quoting means, since 

the variances are very large for strict tests when the single-look detection probability is low. 

Often targets and false alarms require different amounts of processing by the processor. 

The Markoff model considered stresses the importance of designing systems that do not 

waste excessive time dealing with false alarms. 
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Conclusions 

Given the relative maturity of detection theory, it is perhaps surprising that the resource- 

constraint theory has not been promoted earlier. In contrast to existing detection theory, 

which either pre-supposes more a priori information than is typically available in the radar 

problem (as in cost function approaches) or else distances the theory from practical mea- 

sures altogether (as in the Neyman-Pearson approach), resource-constrained detection is 

both practically motivated and practically implemented. It manages, in the presence of ig- 

norance of the underlying statistics, to achieve adequate and quite often optimal detection 

performance. 

The theory arises from looking anew at the problem of detection, and realizing that de- 

tectors almost always are, in fact, attention-directing devices for resource limited actuators. 

By returning to the most basic level of hypothesis testing, we have gained an understanding 

of how detection systems that cue resource-constrained actuators should be operated. 

The form of the optimal rate-constrained test is a likelihood ratio test, with its threshold 

set to match the hit rate out of the detector to the processing rate of the subsequent actuator. 

The resulting test is practical, since the hit-rate is both controllable and observable, unlike 

the false alarm rate which is only controllable. No a priori information (other than the 

proceusiig rates of the system stages, which ape design parameters) is required to set the 

threshold, and there is no need to arbitrarily choose a design false alarm rate or cost function. 

A new relational measure, the SLOC function, allows us to understand how various tests 

should be cascaded together for optimal performance. There is no need for the individual 

tests to be identically distributed, or synclironous. A dynamic programming argument 
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showed that, provided the SLOC numbers of the individual tests are properly ordered, the 

overall detection performance for a multi-stage system operating under any sensible criteria 

is maximized when each stage but the last is operated under the rate-constraint. When t,lw 

tests are not properly ordered, the resulting detection probability will be less than could 

be achieved in theory, with perfect knowledge of the radar context (distributions, tiwgct 

concentration etc.); however, at least the test can still be implemented. 

We have presented SLOC curves for a number of radar target models in Gaussian noise, 

and for Rayleigh fading and constant targets in K-Clutter. The shapes of the curves vary 

considerably for the different models, and for noncoherent and coherent integration . The 

SLOC function is a decreasing function of the signal-to-noise ratio (SNR); t hereforc faster, 

lower SNR tests which cue slower, higher SNR tests will always have at  least some region of 

operation where the rate-constraint is optimal. A new processing architecture consistirlg of 

a noncoherent test cueing a coherent test has been shown to achieve significant reductioils 

in processing complexity, with only moderate costs in detection performance. 

Resource-constraint theory, along with the rest of decision theory, is based on first orclcr 

statistics. We have presented techniques for dealing with the variance inherent ~ I I  tllc output 

rate of a test. Ranking the returns and picking the largest to be processed is a viable option, 

introducing small detection losses relative to use of a threshold. Alternately, a queue may 

be introduced between the detection stage and following processor. There is a trade-off' 

between the output rate of the test normalized to the maximum processing rate of the 

actuator following the test, and the probability of a hit finding a place in the queue. The 

length of the queue may be increased to decrease the probability of a full queue; however, tho 

mean queuing delay may then be excessively long given the stationarity limits on thc target 

and radar environment. A new analytical framework has been introduced for investigating 

the detection performance of a system consisting of a number of actuators which require 

different processing loads for false alarms than targets. The results underscore the need for 

algorithms that are able to  quickly dispense with false alarms. 

Because of its dependence on the processing rate of the silbsystems, ressurce-coristraint 

theory is a useful tool for both radar systems design and analysis. We have presented 

examples of the theory's application at three different system levels: at  the command and 

control level in the obstacle avoidance example of section 3.4, at  the data processing level 

in the track-while-scan example of section 6.6, and a t  the signal processing level in the 



noncoherent/coherent integration system of section 5.3. The rate-constraint criterion has 

been used by radar designers previously, but without the analytical justification provided 

by our work. 

7.1 General Applications of the Theory 

In this thesis we have emphasized the application of resource-constraint theory to radar 

detection theory. However, the principles are applicable in a diversity of fields. Hierarchical 

decision techniques are often used in large systems such as corporations, in medical diagnoses 

and in the detection systems of natural organisms. 

Armed with an understanding of what characteristics to look for in the decision sequence, 

we can design them into the process. (i.e. What tests should be applied, and in which order?) 

For example, consider a company setting out to hire a new employee for a popular 

position in an age of rampant unemployment. The personnel department has finite resources 

to apply in its search. The first test should be able to screen many applicants, and at minimal 

cost. For example, if the position is for a recent graduate, the Grade Point Average may 

be used as a simple test statistic. The threshold is simply varied to permit the required 

number of applicants to make the first cut. The next stage could be an aptitude test, with 

the test results used as an indicator of suitability. The threshold applied to the test again 

depends on the number of applicants that can be screened by the next stage. The final stage 

might consist of an interview1, at  which point the exact "test statistic" to  apply becomes 

subjective. Presumably the interviewer is the best judge of an applicants suitability. 

Note how well the personnel department's procedure fits the resource constraint model. 

Each test provides more specific information regarding a candidate's potential, but requires 

more resources than the previous test. 

Clearly resource-constrained detection provides more than just insight into how best to 

operate a series of radar sub-systems; it provides a new paradigm for multi-stage detection 

processes operating with limited processing resources. By looking afresh at  the problem 

through the lens of practical application, and not being satisfied with statistical approaches 

that require more information than is available, we have developed a needed addition to 

detection theory. 

'Indeed a series of interviews could be wed. 
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