
REPRESENTING ENGINEERING DESIGN
KNOWLEDGE IN AN OBJECT-ORIENTED

CONSTRAINT LOGIC PROGRAMMING
LANGUAGE

Dong Li

B .Eng . Tsinghua University, Beijing, China, 1990

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

O F T H E REQUIREMENTS FOR T H E DEGREE O F

MASTER OF APPLIED SCIENCE

in the School
of

Engineering Science

@ Dong Li 1993
SIMON FRASER UNIVERSITY

March 1993

All rights reserved. This work may not be
reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

APPROVAL

Name: Dong Li

Degree: Master of Applied Science

Title of thesis: Representing Engineering Design Knowledge In
An Object-Oriented Constraint Logic Program-
ming Language

Examining Committee: Dr. John C. Dill, Chairman

Date Approved:

Dr. John D. Jones, Senior Supervisor

-
Dr. Wgliam S. Havens, Werv i sor

Dr. William A. Gruver, Examiner

March 30, 1993

ABSTRACT

We intend to develop a two-part knowledge base to support the design of a range

of artifacts. A prototype knowledge base has been built which can support the de-

sign of Stirling engine heat exchangers. The knowledge base is implemented with the

Echidna constraint reasoning system, which incorporates constraint logic program-

ming, truth maintenance and dependency-directed intelligent backtracking, all in an

object-oriented framework. In developing this knowledge base, we face a trade-off

between generality and efficiency. To solve this problem, we introduced a new form of

knowledge representation which incorporates scaling information, a form not generally

available in other knowledge-based systems.

In this thesis, we show how the knowledge base is created and how some of the

knowledge underlying the designer's sense of scale can be formally represented in a

knowledge base. A design example is also included.

PARTIAL COPYRIGHT LICENSE

1 hereby grant to Simon Fraser University the right to lend my thesis, project or extended essay

(the title of which is shown below) to users of the Simon Fraser University Library, and to make

partial or single copies only for such users or in response to a request from the library of any

other university, or other educational institution, on its own behalf or for one of its users. I

further agree that permission for multiple copying of this work for scholarly purposes may be

granted be me or the Dean of Graduate Studies. It is understood that copying or publication of

this work for financial gain shall not be allowed without my written permission.

Title of Thesis/Project/Extended Essay

"Representing Engineering Design Knowledge In An Object-Oriented Constraint Logic

Programming Language"

Author:
(signature)

Dong LI
(name)

March 31, 1993
(date)

To My Family

ACKNOWLEDGMENTS

First and foremost, I would like to thank my senior supervisor, Dr. John Dewey

Jones, who has been a constant source of encouragement and inspiration to me. His

lectures first quickened my interest in this research. He has given me numerous

suggestions and comments during the course of the research and in the proofreading

of this thesis. I am very grateful for these things, and much more.

I wish to express my deep appreciation to other members of my thesis committee

- Dr. William A. Gruver, Dr. William S. Havens and Dr. John C. Dill, for their

time and effort in reading my thesis.

The assistance provided by the staff of Expert Systems Lab - Sue Sidebottom,

Miron Cuperman and Sumo Kindersley, is also appreciated. The School's Graduate

Secretary, Mrs. Brigitte Rabold, with her optimism and personality, made the daily

jaunt to the General Office interesting.

Finally, but by no means last, I owe my family more than I have a right to owe

anyone, and certainly more than words can say.

Contents

ABSTRACT iii

ACKNOWLEDGMENTS v

LIST OF FIGURES ix

LIST OF TABLES x

ABBREVIATIONS xi

1 Introduction 1

1.1 Design and Knowledge . 1

1.2 Expert Systems . 4

1.3 Motivation . 6

2 Echidna 8

2.1 Object-Oriented Programming . 9

2.2 Constraint Logic Programming . 10

2.2.1 Backtracking . 11

2.2.2 Constraint Propagation . 13

2.2.3 A Combination of Backtracking and Constraint Propagation . 13

2.3 Potential Problems With Echidna's Constraint Propagation Mechanism 14

3 A Knowledge Base For Stirling Engine Design 18

. 3.1 A Brief Introduction To Stirling Engines 18

. 3.1.1 What Is A Stirling engine? 19

. 3.1.2 How Does It Work? 20

. 3.2 Structure of The Knowledge Base 23

. 3.3 How Is The Knowledge Base Used ? 27

4 A Sense of Scale 28

. 4.1 Why Do We Need Scaling ? 28

. 4.2 Creating Scaled KB 30

. 4.3 Application of Monotonicity Analysis 33

. 4.3.1 The Problem 33

. 4.3.2 Basics About Monotonicity Analysis 34

. 4.3.3 Application 38

5 Testing The Knowledge Base 43

. 5.1 Testing For Correctness 43

. 5.2 Improvement of Efficiency 48

6 A Detailed Design Example 51

. 6.1 Design Requirements 51

. 6.2 Echidna's Decision 53

vii

7 Summary And Future Work 67

7.1 Progress So Far . 67

7.2 Future Work. 68

A Sample Files 71

B Echidna's Output of The Example in Chapter 6 95

References 108

List of Figures

3.1 Alpha Configuration . 21

3.2 Beta Configuration . 22

3.3 Gamma Configuration . 22

3.4 Classification Hierarchy . 26

3.5 Component Hierarchy . 26

4.1 Monotonicity Analysis Process . 37

5.1 Cylindrical and annular capsule . 46

List of Tables

4.1 Monotonicity Table . 39

4.2 Monotonicity Table 1 . 40

4.3 Monotonicity Table 2 . 41

Design Parameters . 52

. Heater 60

The parameters of a single tube in the heater 61

. Cooler 62

The parameters of a single tube in the cooler 63

. Regenerator 64

. Capsule 65

. Matrix 66

ABBREVIATIONS

CLP Constraint Logic Programming
CPS Cycle Per Second
CSP Constraint Satisfaction Problem
HP Horse Power
IED Inner ExternalDiameter
OID OuterInternalDiameter
OOPS Object-Oriented Programming System

Chapter 1

Introduction

1.1 Design and Knowledge

Design is the most essential and fundamental engineering activity. It results from

an expression of need for a component, product or system and entails several steps in

producing a solution to fill that need. These steps typically include a precise definition

of design requirements; collection and analysis of pertinent information; synthesis

of analyzed information into various configurations; and evaluation of the merits of

alternative possible solutions; and the selection, maybe after several iterations, of a

solution that will best satisfy all the constraints.

Design can be generally categorized as either creative or routine. In the former

class, design is open-ended : design goals are ill-specified, and there is no storehouse

of effective decompositions, nor any design plans for subproblems. This kind of design

is very difficult and is rarely done; it leads to a major invention or completely new

CHAPTER 1. INTRODUCTION 2

products. One example would be the Manhattan Project'. In the latter class, effective

problem decompositions are known, detailed design plans for the component problems

are known, and the criteria for success are clear and quantitative. For example,

configuring a computer system from available components. Most designs fall into

routine design category.

In this thesis, I am not going to write about how we can come up with new inven-

tions. Instead, I will restrict the discussion to routine engineering design. In particu-

lar, I will illustrate the application of a new approach to represent design knowledge

and, as an example, its application in the development of a knowledge-based sys-

tem which can support the design of the Stirling engine heat exchangers (background

knowledge of Stirling engine will be given in chapter 3). The complexity of this kind

of design tasks is due not only to the variety of combinations of requirements, but also

to the numerous components and subcomponents, each of which must be specified to

satisfy the initial requirements, their immediate consequences, the consequences of

other design decisions, as well as the constraints of various kinds that a component

of this kind will have.

Engineering design is a knowledge-based activity. In order to design a particular

set of artifacts, a computer-aided design system should possess knowledge about that

set. To give some ideas of the kind of knowledge we are dealing with, let's draw an

example from the knowledge base of Stirling engine heat exchanger (further details

lThe Manhattan Project was conducted in the United States from 1940-1945; it was initiated in
consequence of a letter from Einstein and Leo Szilard to President Roosevelt in which they suggested
it might be possible to make an atomic bomb (and that whoever was first to make such a bomb
would probably win the war.) The project involved many of the leading physicists of the time - Hans
Bethe, Lawrence Oppenheimer, Richard Feynman, Freeman Dyson, etc. No-one had made anything
of the sort before, and until the first test in the New Mexico desert, no-one knew whether it was
even possible.

CHAPTER 1. INTRODUCTION 3

of the knowledge base will be shown in chapter 4). Suppose the set of artifacts we

are trying to design is the the set of heat exchangers, then we need to know their

type (fluid-fluid or regenerative), their physical size (diameter, length, thickness of

the wall), the kind of materials they are made of (aluminum, iron or steel), etc. The

knowledge is hierarchical, for example, tubular heat exchangers, plain heat exchangers,

and finned heat exchangers are all subclasses of fluid-fluid heat exchangers: they share

some common properties, yet they keep their own ones. The example I gave may look

simple, while the real world design is much much more complicated and the ever-

increasing level of sophistication in design knowledge presents a great challenge for

the designer.

Many research and development efforts are underway to make knowledge base tech-

nology suitable for engineering applications, [Ashley 921, [Papalambros 871, [Reichgelt

911, [Rinderle 911, and [Ward 871, to name several examples . One difficult task is to

decide in what form the knowledge should be represented. A good versus bad represen-

tation can make an enormous difference to the success or failure of a knowledge-based

system. It seems that there is an inevitable trade-off between the generality and the

efficiency of knowledge representation. Brown and Chandrasekaran's AIR-CYL sys-

tem is a notable example of a highly efficient and extremely specific knowledge base

[Brown 891. Knowledge bases written in this way cannot be re-used to support design

of a different class of artifacts. Since it is expensive to develop a knowledge base, there I

I

are very few applications for which the cost of developing an original knowledge base

could be justfied. At the other extreme, we have the example of How Things Work

project at Stanford University [Cutkosky 901. This knowledge base basically consists

of the laws of physics and mechanics. Of course, knowledge bases written in terms of

laws of physics and mechanics would be eminently reusable. But it is a daunting task

CHAPTER 1. INTRODUCTION

to design, say, a pair of scissors, from these laws.

We have to balance generality and efficiency in order to find an appropriate level

of knowledge representation. Then we have to face the question - What is the ap-

propriate level t o represent design knowledge ? It is safe to say that the appropriate

level of knowledge representation depends on the specific design subject, or in other

words, the adequacy of the representation depends on the task we are trying to per-

form. However, we can also say that to be appropriate, the representation should be

suitable for each stage of the design process; design requirements should always be

expressible in terms of the representation; the same representation must be useful for

all knowledge in the subject area and the representation should come naturally to

humans. We mentioned that knowledge representation is hierarchical, the knowledge

representation should be able to express the design specifications at the highest level; '
also, the explication of any statement should be independent of any other explication

and statements can always be explicated at the next level down. The lowest level of

the language corresponds to detailed engineering drawing which a CAM system could

translate into physical operations.

Knowledge can be represented in different forms: expert systems, databases, algo-

rithms etc. Expert Systems is the traditional way of design knowledge representation.

We will give a brief review of expert systems technology next.

1.2 Expert Systems

Expert systems are computer programs to reason about some specific domains

using specialized databases known as knowledge bases [Hayes-Roth 831. There are

C H A P T E R 1. INTRODUCTION 5

two major components in an expert system : the knowledge base (knowledge of t he

experts) and the inference engine. When given an input in the form of a query, the

inference engine consults the knowledge base to produce an answer. Expert systems

differ from conventional programs in that the former distinguish the knowledge base

from the inference engine while the latter simply combine the knowledge with the

control algorit hrn.

Expert systems can be classified into two categories: Rule-based and Model-based

expert systems. The first generation of expert systems were rule-based systems, rep-

resenting knowledge only in the form of production rules:

IF (antecedent (s) >

THEN (consequent (s) >

One notable example of rule-based expert system is R1 (a knowledge-based VAX

configurating system) [Sell 19851, which was developed by John McDermott and his

colleagues at the Carnegie-Mellon University at the request of Digital Equipment

Corporation (DEC). R1 can translate customer's orders into complete and coherent

configurations. R1 went into operation in January 1980. DEC calculated that by

1984 they would have required 80 more staff without R1, and they were convienced

that R1 did the job much better than people could do it. Other examples of rule-

based expert systems include: MYCIN (blood diagnosis) [Buchanan 841, MACSYMA

(symbolic mathematics) [Martin 711, PRIDE (paper handling system) [Mittal86], and

PROSPECTOR (mineral exploration) [Duda 791.

Though these systems can achieve expert level of performance, their domains are

highly restricted and they depend too much on the production-rule representation.

CHAPTER 1. INTRODUCTION

When the number of rules become very large, the rule-based systems are very dif-

ficult to organize, maintain and update. Moreover, they have no knowledge of the

components of the domain, the way those components are connected or the way those

components behave and interact. Therefore rule-based expert systems are subject to

many limitations, they are recommended and successful only when the given problem

domain is quite small, well-understood and when there is a general agreement among

domain experts [Luger 891.

By comparison, model-based expert systems have many advantages. Instead of

using a collection of condition/action pairs obtained from a domain expert, model-

based systems use a model to represent a behavioural theory about a certain class of

artifact [Davis 841. The model has a structure resulting naturally from the structure of

the artifact being modelled, and can take advantage of similarities between different

components and assemblies. Changes to the artifact can be naturally included as

changes to the model, therefore the maintenance of model-based expert systems is

easier. Mostly important, the model can be used for more than one task. For example,

in the Stirling engine heat exchanger knowledge base described in the later chapters,

the knowledge base can support the creation of multiple instances of components, say,

a heater, a regenerator, and a cooler, all from the same knowledge base. The model

can be used in design as well as in analysis.

1.3 Motivation

The purpose of this research is to develop a model-based expert system for computer-

aided design based on an object-oriented constraint logic programming language,

CHAPTER 1. INTRODUCTION 7

Echidna. Our research group is working on two different design domains: archi-

tectural design and mechanical engineering design. My involvement is in the area of

mechanical engineering design. The work described in this thesis is the development

of a two-part knowledge base that will ultimately support design of a range of arti-

facts. We made a distinction between facts and strategies; we also incorporate scaling

information in our knowledge base. These features are not found in other current

knowledge-based systems. I have been working on a prototype of such a knowledge

base that supports Stirling engine heat exchanger design. We believe that Echidna

allows us to take a new design approach which can permit our system to take over

greater initiative and wider areas of expertise in the future.

The rest of this thesis is organized as follows. In chapter 2, some background

knowledge of the developing tool, Echidna, is given. Chapter 3 gives a brief introduc-

tion to the design subject, the Stirling engine. Chapter 4 addresses our new approach

to represent design knowledge and the application of Monotonicity Analysis in the

development of the knowledge base. The method to test the knowledge base and a

detailed design example is discussed in chapter 5 and chapter 6, respectively. Chapter

7 summarizes the results and outlines some work for future research. Some sample files

of the knowledge base and Echidna's output files of the design example are included

in the appendices.

Chapter 2

Echidna

Echidna is a new type of constraint logic programming (CLP) language for model-

based expert systems applications. It is under ongoing development by William S.

Havens and his colleagues of the Expert Systems Laboratory at Simon Fraser Univer-

sity. The language improves upon the limitations of existing expert system languages

by combining aspects of schema-based knowledge representations, constraint logic

programming, and intelligent backtracking. This chapter provides a limited review

of Echidna, more information regarding Echidna can be found in [Havens 901 and

[Sidebottom 921. Two research areas related to our work - object-oriented pro-

gramming and constraint logic programming are also discussed. The vast quantity

of publications covering these topics prohibits a complete review, but this review is

representative of current work and provides a firm foundation for further study.

CHAPTER 2. ECHIDNA

Object-Oriented Programming

Object-oriented programming is a paradigm in which a software system is de-

composed into subsystems based on objects [Zeigler 901. Computation is done by

objects exchanging messages among themselves. The paradigm enhances software

maintainability, extensibility and reusability.

In OOPS (Object-Oriented Programming Systems), an object is a conglomerate of

data structures and associated operations, usually representing a real world counter-

part. Objects are usually not defined individually, instead, a class definition provides

a template for generating any number of instances, each one an identical copy of a

basic prototype. Objects are usually given generic descriptions so that classes may

be generated at will. Classes of objects form a hierarchy in which they are arranged

according to their degree of generality.

Echidna is object-oriented. It allows us to represent knowledge in a modular form,

and we can test, add or remove the modules independently. Echidna also provides

inheritance1 so it allows us to move from general to specific, that is, a schema may be

defined as a subclass of a more general parent schema and inherits its properties and

methods. In this way, it reduces the need for new code. Representations of knowledge

shown to be effective in one area can therefore be generalized to other applications.

In Echidna, each object has two types of information associated with it. First,

there are attributes and their values. Second, there are small programs, called meth-

ods, which can be used to perform certain calculations. As mentioned earlier, objects

communicate with each other by sending messages. Syntactically, a message is the
-

'Echidna supports only single inheritance; a class has exactly one superclass.

CHAPTER 2. ECHIDNA 10

name of a method followed by arguments, which is sent to a schema instance via

an operator; a method is a predicate in the logic programming sense and is defined

within a particular schema (except Global methods which are defined outside of any

schema definition in the knowledge base). The message-passing paradigm enforces

modularity, data hiding and well-defined interactions between objects.

Here is an example from the Stirling engine heat exchanger knowledge base:

Metal : density(MetalDensity).

In this example, Metal is an object; density(Meta1Density) is a message in the object-

oriented programming sense. The object named Metal receives the message density/12.

Interpreting the message causes a clause from the method density11 in the object

Metal to be chosen and called, which in turn, finds the appropriate value of density

and unifies it with the variable named MetalDensity.

2.2 Constraint Logic Programming

We are dealing with constraint-satisfaction problems (CSP). They can be stated as

follows: Suppose there is a given set of variables, a finite and discrete domain for each

variable, and a set of constraints which are persistent data links between variables.

The flow of information between variables is through the constraints. Each constraint

is defined over the set or some subset of the variables and limits the combinations of

2A logic term is often referred to by its functor which is the function and arity of a term f l n ,
here density is the function and arity is 1, therefore this message can be referred to as densityll.

CHAPTER 2. ECHIDNA 11

values those variables can take. Design is constraint oriented, constraints are contin-

ually being added, deleted and modified throughout the design process [Mittal 901.

If we can find one assignment of values to the variables which can satisfy all the

constraints, the assignment is the solution or one of the solutions [Hentenryck 891.

We have two rather different schemes for solving CSP: backtracking and constraint

propagation [Kumar 921. Next I will discuss these two schemes.

2.2.1 Backtracking

The backtracking scheme is an improvement on the generate-and-test paradigm,

which simply generates and tests each possible combination of the variables until the

first combination that satisfies all the constraints is found. The number of combina-

tions considered by this method is the size of the Cartesian product of all the variable

domains. The backtracking paradigm instantiates variables sequentially. As soon

as all the variables relevant to a constraint are instantiated, the validity of the con-

straint is checked. If a partial instantiation violates any of the constraints, backtrack-

ing is performed to the most recently instantiated variable that still has alternatives

available. Whenever a partial instantiation violates a constraint, backtracking can

eliminate a subspace from the Cartesian product of the variable domains.

Although the standard backtracking (depth-first search chronological backtrack-

ing) does prune significant portions of the search tree, it still takes exponential time

in the number of variables in the worst case. Besides, it often suffers from thrashing,

that is, the search in different parts of the space keeps failing for the same reasons.

CHAPTER 2. ECHIDNA 12

To correct the inefficiency of chronological backtracking, Echidna uses dependency-

directed backtracking [S tallman 771. When a failure occurs, chronological backtrack-

ing simply undoes the most recent choice, regardless of whether that choice is the

cause of the failure. Obviously, this is not good and often causes redundant work. In

contrast, dependency-directed backtracking looks for the most recent choice 'involved'

in the failure (the cause). Once the cause is found, it is tried for an alternative value.

Let's look at a simplified example. Suppose there is a query:

? - ml(A, B), m2(C7 D, E), m3(A).

Initially ml(A) succeeds in binding A to 10 and B to 20 and it takes a long time to

bind C, D, E to 30, 40, 50 respectively. If later, m3(A) fails for some reason, stan-

dard chronological backtracking will undo both m2(C7D,E) and ml(A,B). However,

m2(C7D,E) has nothing to do with the failure in m3(A) since they share no common

arguments, the real culprit is ml(A,B) for it assigned 10 to variable A in the first

place. As it requires a large amount of work to succeed in binding C, D, and E to

their present values, it is a waste to do it all over again. Intelligent backtracking

can detect that m2(C,D7E) is independent of the failure m3(A), therefore keeps the

binding results of m2(C7D,E) and backtracks directly to ml(A,B) to find a new value

to A3. Then m3(A) will be tested with the new value of A from ml(A,B). Several

iterations may be needed before all the variables can be ground.

3Though B is independent of the failure m3(A), it has to be undone since ml(A,B) involves both
A and B.

CHAPTER 2. ECHIDNA

2.2.2 Constraint Propagation

During constraint propagation, constraints are applied to restrict variable domains

to only those values that can participate in the solution to the problem, thus con-

straint propagation significantly reduces the search space. By performing constraint

propagation, the original CSP is essentially transformed into a simpler CSP. In the

process of constraint propagation, certain failures are identified, and the search space

is effectively reduced so that these failures are not encountered at all in the search

space of the transformed CSP. Constraint propagation is implemented using an arc

consistency algorithm [Mackworth 771 adapted to k-ary relations over discrete do-

mains. The constraint propagation scheme has the disadvantage of being expensive;

experiments by many researchers with a variety of problems indicate that it is bet-

ter to apply constraint propagation only in a limited form [Haralick 80; Dechter 89;

Prosser 911.

2.2.3 A Combination of Backtracking and Constraint Prop-

agat ion

A good way to solve CSP is to embed a constraint-propagation algorithm inside

a backtracking algorithm. However, to avoid the thrashing problem of the standard

backtracking, a truth maintenance system [Doyle 79; McDermott 911 is needed to

support intelligent backtracking. The way it works is as follows: A variable is assigned

some value, and a justification for this value is noted. Then similarly, a default value

is assigned to some other variable and is justified. At this time, the system checks

whether the current assignments violate any constraint. If they do, then a new node

CHAPTER 2. ECHIDNA 14

is created that essentially denotes that the pair of values for the two variables in

question is not allowed. This node is also used to justify another value assignment to

one of the variables. This process continues until a consistent assignment is found for

all the variables.

Echidna has a built-in mechanism to control dependency-directed backtracking

and constraint propagation [Sidebottom 911. It is quite powerful in solving CSPs, but

it still has some problems which we will discuss next.

2.3 Potential Problems With Echidna's Constraint

Propagat ion Mechanism

Echidna has two built-in tools to perform constraint propagation, namely, indo-

main and split. Indomain will select a unique value for a single variable, while split

takes a list of variables, halves the domain of each, selects one half of each domain,

then enforces constraints; if no failures occur, split repeats the process until the vari-

able domains have been halved a predetermined number of times. Split might be

thought of as allowing breadth-first search. Ideally, the split command would divide

the domains of its variables into intervals and a set of constraints would then be ap-

plied which would eliminate all of those intervals in which the constraints failed to

hold.

In the process of testing our Stirling engine knowledge base, we discovered a prob-

lem with the constraint propagation mechanism of Echidna and it further led us to

the idea of adding scaling information to the knowledge. We think this is a new and

CHAPTER 2. ECHIDNA 15

useful form of knowledge representation. I will first describe the problem we found,

then in chapter 4, discuss our new form of knowledge representation.

In Echidna, each variable has an initial domain, that is, it has an initial range

of possible values. We can impose constraints on these variables and take advantage

of the built-in constraint propagation mechanism; the range mentioned earlier will

be restricted progressively until the variable has a single value. This is always true

in theory, however, we found that how successful a constraint is in restricting the

domain of a variable depends on the size of the domains of any other variables that

may appear in the constraint. Consider the following example.

schema try

1 1000001 A.

C1, 1000001 B.

Cl, iolc.

t r y :-

A =:= 2

B =:= 3 ,

C = : = A + B ,

print (C) .

We would expect Echidna to come up with an answer C =:= 5. Instead, we

will get C =:= [1.984375, 101. So variable C is not ground even after constraint

CHAPTER 2. ECHIDNA

propagation.

There is a way to solve this problem: we could set the 'precision4' from its default

value precision(6) to a very high value, say, precision(24). This can give us C =:=5.

In this very simple example, increasing precision may not be a bad idea, however,

in most cases, increasing precision is quite costly and slows the computation process

significantly. So generally this is not a good solution.

We found that if we reduce the initial ranges of A and B and set them to the same

order of that of C, then we can obtain the expected result.

schema t r y

t r y :-

print (C) .

3
4The Precision is a global variable internal to Echidna. It is an integer representing the degree to

which a real interval variable is refined. The global precision can be increased from its initial value
of 6 to a maximum value of 48, and the precision of individual variables can also be set to a multiple
of the global precision.

CHAPTER 2. ECHIDNA

This gives us C =:= [4.9375,5.148438]. Thus C is refined to very close to 5.

We have encountered several other similar problems and we arrived at a conclusion

that we should avoid using large domains for variables. However in real world design,

many design variables do have large domains, for instance, the power output of a

Stirling engine can be as small as 1 watt and as large as 1 megawatt, a range of six

orders of magnitude. This may be a problem when we use Echidna to develop the

knowledge base to support Stirling engine design. We have to find a way to avoid the

problem. The solution we found is based on 'scaling'. This aspect will be addressed

in chapter 4.

Chapter 3

A Knowledge Base For Stirling

Engine Design

3.1 A Brief Introduction To Stirling Engines

This chapter gives an introduction to Stirling engines. For more details on the

subject, the reader can refer to [Walker 801, [Ross 771, and [Jones 821.

CHAPTER 3. A KNOWLEDGE BASE FOR STIRLING ENGINE DESIGN 19

3.1.1 What Is A Stirling engine?

The history of the Stirling engine can be traced to 1819 when a Scottish inventor,

Robert Stirling, built the original device. During the last century, Stirling engines

competed with the steam engine, until they were both replaced by the internal com-

bustion engine around the beginning of this century.

A Stirling engine, like the gasoline, diesel, and jet engines with which we are more

familiar, is a heat engine; that is, an engine that derives its power from heat. However,

unlike those other engines, a Stirling engine obtains its heat from outside, rather than

inside, the working cylinders. The Stirling engine is quite omnivorous with respect to

fuel; literally, any source of heat, as long as its temperature is high enough, will power

a Stirling engine. This last statement is true of any other externally heated engines,

like the steam engines, but Stirling engines hold the promise of developing the most

power for a given supply of heat (or fuel) of the practical alternatives presently known;

besides, it can also use stored heat. In terms of pollutants, Stirling engines are among

the cleanest heat engines available. Stirling engines can have the same high efficiency

and part-load performance of diesel engines, can match the high specific output of

gasoline engines and yet have the favorable low-speed torque characteristics of steam

engines. These factors all account for the present interest in the Stirling engines.

Stirling engines can be used as prime movers, heat pumps and pressure generators,

and they are beginning to attract attention for their use in artificial heart, household

refrigeration and solar-power applications A market niche is also emerging for the use

of Stirling machines in the cooling of computer chips [O'Connor 921.

CHAPTER 3. A KNOWLEDGE BASE FOR STIRLING ENGINE DESIGN 20

3.1.2 How Does It Work?

A Stirling engine operates on a closed regenerative thermodynamic cycle1, with

cyclic compression and expansion of the working fluid at different temperature levels.

The Stirling engine operates with a fixed mass of working fluid rather than periodi-

cally taking in working fluid and exhausting it to the atmosphere after heating and

expansion. The flow of working fluid is controlled by volume changes, and there is a

net conversion of heat to work or vice versa.

The basic operation involves heating and cooling the working gas. The working

gas is stored in the cylinder. In Stirling engines, as in other heat engines, the heater is

an essential element. Heat is absorbed from the hot end and rejected at the cold end,

and work is done equal to the difference between those two quantities of heat. The

Stirling engine also contains two other heat exchangers, namely the regenerator and

the cooler, which have no analogues in the internal combustion engine. A regenerator

is a heat exchanger in which heat is transferred from the working fluid to a solid

matrix and back again over the cycle. It consists of a capsule containing the matrix

material, which may be stacked wire screens, a metal foam, or a packed bed of spheres.

The regenerator removes the residual heat in the working fluid after its expansion and

stores the heat for re-absorbtion later in the cycle. When the fluid is compressed, heat

generated in this process will be removed from the cooler. A cooler is similar to a

heater but its function is cooling rather than heating.

There are many configurations of the Stirling engine. Three common configura-

tions are shown below. For detailed descriptions, refer to [Walker 801 and [Jones 821.

'The Stirling engine doesn't operate on Stirling cycle, rather, it approximates to the Otto cycle.

CHAPTER 3. A KNOWLEDGE BASE FOR STIRLING ENGINE DESIGN 21

In our present knowledge base, we consider the design of the heater, cooler and regen-

erator. We will extend our knowledge base to include the design of other components

such as the displacer piston and power piston.

H: heater
R: regenerator

C: cooler

Figure 3.1 : Alpha Configuration

- Piston

CHAPTER 3. A KNOWLEDGE BASE FOR STIRLING ENGINE DESIGN 22

Displacer Piston

Power Piston

(2) Beta

Figure 3.2: Beta Configuration

Displacer Piston

Power Piston

(3) Gamma

Figure 3.3: Gamma Configuration

CHAPTER 3. A KNOWLEDGE BASE FOR STIRLING ENGINE DESIGN 23

Structure of The Knowledge Base

We developed a two-part knowledge base to support the design of Stirling engine

heat exchangers. The knowledge base represents two kinds of knowledge: facts con-

cerning the properties of potential design components; and strategies for combining

these components into an artifact that can meet given requirements. The former kinds

correspond to descriptions of the behaviour of the components in terms of the laws

of physics; the latter kinds correspond to methods for selecting and assembling these

components. Facts are usually expressed as constraints, while strategies are expressed

by the ordering of clauses.

Here are some examples of facts:

Area =:= 0.25 * pi * Diameter * Diameter,

Density of hydrogen is 0.088 kg/m3.

Facts are, of course, always true, but they provide no guidance by themselves.

In contrast to rules which are always true, design strategies are heuristics which are

usually valid. They are guiding principles which the designers use to make intelligent

decisions based on previous experience. Examples of strategies :

I f t h e heatflow i s more than IOOOW, t h e tubular

heat exchanger is probably t h e best t o choose;

I f t h e heatflow i s between IOU and IOOOW, then

f inned heat exchanger may be most su i t ab le ;

If t h e heatflow i s l e s s than IOU, p la in f lu id -

f l u i d heat exchanger should be used.

CHAPTER 3. A KNOWLEDGE BASE FOR STIRLING ENGINE DESIGN 24

Determine the size of the engine according to

the power requirement.

Use the heuristic "stroke==bore" to determine

the cylinder and piston dimensions.

The distinction we made is not found in traditional CAD systems: knowledge of

the set of artifacts versus knowledge of the particular artifact being designed to meet

the current design requirements. The former knowledge is unchanging, the latter is

built up gradually over one or more design sessions. Why do we need to make the

distinction? Firstly, it opens the possibility of using different strategies on the same

set of facts; Secondly, it allows facts about components to be used for different design

tasks and to be checked independently.

Ideally, facts and strategies would be entirely independent, but in some cases,

this division would be quite fuzzy when examined closely. For example, in a Stirling

engine, the heater is usually connected to the expansion space of the engine. If we

write this into the facts knowledge base, we have precluded using the heat exchanger

model for designing other artifacts containing heat exchangers. If we are to make

the division, we cannot make it on ideological grounds, rather, we must make it on

pragmatic grounds. The deciding factor is, as we mentioned earlier, the tradeoff

between generality and efficiency; the closer to uninterpreted physical laws we make

the facts, the more general the applicability of the factual knowledge base, but the

more difficult the task of synthesising a solution to any given problem. The rule

we followed for deciding how to make the division is start specific, work towards the

general; this way we are sure that the knowledge base will be good for at least one

CHAPTER 1. A KNOWLEDGE BASE FOR STIRLING ENGINE DESIGN 25

thing.

The knowledge bases we developed in this research are of two types: the first

is called 'agent * *.kb7 are concerned with strategies for design, such as agentHX.kb

and agentMat.kb; the second is concerned with facts about possible components of a

design, such as reg.kb and material.kb. Sample files are included in Appendix A. The

separation between agents and components is intended to increase the re-useability

of the knowledge recorded in the knowledge bases.

My work mainly focuses on the development of the factual knowledge base which

consists of schemata representing potential components of a Stirling engine. We are

using an object-oriented approach by which the engine is represented in terms of two

orthogonal hierarchies, a classification hierarchy and a component hierarchy. In our

example of the Stirling engine knowledge base, there is a description of a generic heat

exchanger; a fluid-fluid heat exchanger can be defined as a subclass of the generic heat

exchanger, and it inherits the properties and methods of that class (It may also have

particular properties and methods of its own). Consequently a tubular heat exchanger

can then be defined as a subclass of the fluid-fluid heat exchanger, and inherits the

properties and methods of that class. This hierarchy is illustrated in Figure 3.4.

The component hierarchy describes the 'part of7 relationship between objects, for

example, matrix and capsule are both components of the regenerator (Figure 3.5).

Certain methods may make explicit use of this hierarchy; for example, the total mass

of an assembly can be found by recursively finding and summing the masses of all its

subassemblies.

CHAPTER 3. A KNOWLEDGE BASE FOR STIRLING ENGINE DESIGN 26

S tiding engine heat exchanger

Figure 3.4: Classification Hierarchy

f \

Stirling engine
i

Figure 3.5: Component Hierarchy

CHAPTER 3. A KNOWLEDGE BASE FOR STIRLING ENGINE DESIGN 27

There are a number of parameters associated with each object, for example,

InnerDiameter, OuterDiameter and Length are all parameters of a tube. Parameters

can be either numeric or symbolic. Besides those numeric parameters mentioned

above, a tube also has a parameter 'material7 which may be any one of a library of

material types represented in the knowledge base. An object is fully specified when all

its parameters have been assigned values and all of its components, if any, have been

fully specified. The values which parameters may take are restricted by constraints

defined between objects, reflecting the relevant physical relationships. The component

hierarchy is of more importance, as it is the key to extending the knowledge base into

other areas of knowledge.

3.3 How Is The Knowledge Base Used ?

Before use, the knowledge base represents the generic engine, or the set of all possi-

ble engines: none of its parameters has been assigned a value and no components have

been selected. When the designer specifies a particular set of design requirements,

the set of engines meeting these requirements shrinks as the constraints propagate,

restricting the possible values of the parameters. The parameter values of each com-

ponent are initially unknown, but will be gradually determined as the implications of

the design requirements and the agent's heuristic decisions are propagated through

the network of constraints. It may happen that the initial choice of components does

not lead to any solution; in this case, Echidna uses dependency-directed backtracking

to identify and change the choices responsible for the failure. In chapter 6 we will

present a detailed example to describe the operation of the knowledge base.

Chapter 4

A Sense of Scale

4.1 Why D o We Need Scaling ?

While testing and modifying the knowledge bases, we found that many variables

in the constraints have very large initial domains. This made it hard for Echidna

to ground some of the variables after constraint propagation, and, sometimes, there

would be no solution.

The problem could be ameliorated if we reduced the initial domain size of the

variables. But one would immediately argue that by doing this we also have reduced

the generality of the knowledge bases and we should not trade off efficiency against

generality in this way.

To solve this problem, we introduce the concept of scaling.

CHAPTER 4. A SENSE OF SCALE

An experienced designer has a good sense of scale, and uses it routinely. For

example, if we ask an experienced automobile engineer - Can you make an internal

combustion engine that can deliver 500 HP and fit inside a soup can ? He or she

would say no, and we would expect him or her to say this immediately. Yet it would

be very difficult to point to any physical principle that makes this goal impossible.

There might be no shorter way of proving it impossible than by examining a variety of

attempts to reach the goal, and seeing that each one fails -- and each might fail for

different reasons, one because of limitations in the strength of materials, one because

of the limited reaction rates of any possible fuellair mixtures. As we lower the power

requirement, we eventually come to an engine that could be built, but it is impossible

to identify a sharp threshold between impossibility and possibility.

For each schema in the knowledge base, we distinguish a number of different pos-

sible scales, each corresponding to certain domains of the schema's variables. Before

creating an instance of the schema at run time, the design agent looks at the required

performance and decides which of the variable sizes is most likely to meet that level

of performance, then restricts the variable domains appropriately. The use of scaling

increases the efficiency of the design process in two ways: firstly, at the level of the

design heuristics: failures will occur as soon as the knowledge base begins to consider

an unsuitable design rather than occurring after a long series of choices and constraint

propagation; secondly, at the level of constraint propagation, where as we mentioned

earlier, constraint propagation is more powerful if the domain of the variables are

reduced.

Once the idea of scaling has been introduced, we recognize that a lot of engineering

design knowledge can be represented in this way. As the scale of a design changes, we

CHAPTER 4. A SENSE O F SCALE 30

will cross the threshold at which different design methods become appropriate. For

example, if the design is to store small quantities of electrical energy, then a capacitor

might be a suitable device, but if we want to store enough energy to start a car, we

would look at battery storage. So we will make the choice of design methods depend

on scale, as well as the initial variable domains. More discussions on the idea of scaling

can be found in [Jones 931.

Creating Scaled KB

In order to incorporate scaling information in the knowledge base, we can, for

instance, replace the component tubular heat exchanger with a family of components:

very small tubular heat exchanger, small tubular heat exchanger, medium tubular heat

exchanger, large tubular heat exchanger, and very large tubular heat exchanger. The

members of a family basically share the same set of constraints, though sometimes

some minor adjustments are needed as the scale changes - for example, the loss in

engine efficiency due to heat transfer to the cylinder walls must be included when

designing a very small engine, but is negligible when designing a very large engine.

We need to provide a label to each member of a family showing the upper and

lower bounds on the values of some of the schema variables. Then, when the design

agent reads the labels, it can avoid choosing components for which the desired perfor-

mance was out of range. This obviously increases the efficiency at the level of design

heuristics, which we mentioned earlier.

If we know there is a unique order in which variables will be ground, we can select

bounds on those that will be ground first, and deduce bounds on the other variables

CHAPTER 4. A SENSE O F SCALE 31

from these. We introduce two guidelines which help us to decide the order in which

these variables will be ground.

The first one is the distinction between design parameters and functional require-

ments. The functional requirements are those properties of the artifact whose values

are supplied to the designer as targets to be achieved, while design parameters are

those properties whose values the designer may set to meet those targets [Suh 901. For

example, we want to design a tubular heat exchanger which can handle 2000 watts

of heat flow. We can set heat flow as the functional requirement. In order to meet

this requirement, the designer can choose the value of the diameter of the heater,

the internal and external diameter of the tube and the length of the tube. These

are design parameters. After we make the distinction, we would want to set bounds

on the design parameters first, and deduce bounds on the functional requirements.

However, this distinction cannot be applied rigorously since we intend to make the

knowledge base reusable for a variety of design problems: some problems may involve

maximizing the power output, others may involve maximizing efficiency, etc.

When the distinction mentioned above is not clear, we may make use of a related

distinction from ob ject-oriented pr~gramrning~private versus public variables of an

object. The idea is that some properties of the component are relevant to the design

of the rest of the artifact, while others are only important when we are designing that

particular component. For example, in our Stirling engine heat exchanger knowledge

base, we can set 'PressureDrop7 as a public variable because it is needed to calculate

the efficiency of the engine as a whole; by contrast we can set 'Density' of material for

the regenerator matrix as a private variable since it doesn't directly affect anything

outside the regenerator. We choose to set bounds on the private variables first, and

CHAPTER 4. A SENSE OF SCALE

deduce bounds on the public variables.

It must be admitted that these two guidelines will in general be inadequate to

determine a unique order in which to set bounds on the schema's variables. However

this is not a fatal problem, for it only affects the efficiency of the knowledge base, not

its correctness or completeness.

Scaling appears to be quite straightforward: choose reasonable upper and lower

bounds on some variables in a given schema, and deduce upper and lower bounds on

the remaining variables. However, we need to be very careful in doing this so as to

make the knowledge efficient. Consider the following example:

Suppose this is part of a knowledge base for design. In the course of design, we may

use 'indomain' to choose a random value of X from its range. Whatever value we

choose, the knowledge base will be consistent. But if instead we begin by choosing a

value of Y, there is the possibility that we will choose a value between 20 and 25, in

which case there will be a failure. Although Echidna can recover from the failure by

backtracking, we have wasted time by making a choice which we could have avoided.

So it is important that the ranges chosen for the variables be consistent with each

other, given the constraints in the knowledge base. The principle we need to follow

is - For any value chosen from the initial domain of a variable, there must be at least

one value in the initial domains of each of the other schema variables such that the

schema constraints can be satisfied [Mackworth 771. This principle tells us to restrict

CHAPTER 4. A SENSE OF SCALE 33

the initial domains of variables, to eliminate inconsistent values. At the same time,

we do not want to restrict the domains more strictly than this principle requires, or

we will eliminate potentially valid solutions, making the knowledge base incomplete.

In a complex schema, a given variable may appear in several constraints, and

it may be difficult to tell which constraint actually determines the upper and lower

bounds on its potential values. A systematic way is needed. That's our next topic -

Monotonicity Analysis.

4.3 Application of Monotonicity Analysis

4.3.1 The Problem

In a scaled knowledge base, every variable is assigned some domain. We discovered

an interesting problem and we were able to solve it using the Monotonicity Analysis

technique.

In reg.kb (regenerator), there are five variables: R [Reynolds number], h [convec-

tive heat transfer coefficient], Nu [Nusselt number], DH [hydraulic diameter of the

passage in the matrix], and G [mass flux]. They are related by three constraints:

Nu = CRn

h = NuK/DH

R = G D ~ l p l

lC, K and p are constants.

CHAPTER 4. A SENSE OF SCALE

We have discovered that for the given set of constraints and the given initial

bounds on R, h, Nu and DH (none of which we want to change), G should be set

within a certain range and we want to find an explicit expression for this range.

The expression should be in terms of the limits for the other variables involved:

RHigh, RLow, hHigh, hLow, etc. The expression should ensure that, for any value in the

range allowed for G, there will be values in the initial ranges of R, h, Nu, and DH

consistent with this value.

We can do this by using the axioms of interval arithmetic, however, the reader

may easily verify that simply eliminating variables from this system of equations will

give different bounds on G, depending on which variables are selected for elimination.

This is not a particularly complicated problem. It would be much more confusing if

there are many variables and constraints involved. Clearly, a systematic approach is

required. Fortunately, such an approach exists, it is called Monotonicity Analysis.

4.3.2 Basics About Monot onicity Analysis

Monotonicity Analysis is an interactive partial optimization technique to reduce

the dimensionality of the problem and detect flaws in the problem formulation. At this

point, it is necessary to give the reader some background knowledge of Monotonicity

Analysis by introducing some simple but important concepts and principles. For

further details, please refer to [Papalambros 881.

CHAPTER 4. A SENSE O F SCALE

Basic Concepts

A discrete or continuous function f(x) is strictly globally monotonically increas-

ing over a domain 0 if and only if f (XI)< f (xz) V XI, X Q E fl : X ~ > X I . The

monotonicity of a function with respect to (w.r.t.) a variable is designated by

a + or - superscript for the argument in the list of the function. For example,

f (xr , x,) implies that the function is monotonically increasing w.r.t. XI and

decreasing w.r. t. 22.

A function having a minimum (maximum) will be called well bounded from

below (above).

A constraint is said to be unconditionally active or critical if elimination of it

will lead to an unbounded or degenerate solution. For an inequality constraint,

this means that it must be satisfied with strict equality. If a constraint is critical

for more than one variable, we say it has multiple criticality. An active equality

constraint can be changed to an active inequality constraint, the direction of

which defines the directionality of the equality.

A set of constraints is said to be conditionally active if elimination of all the set

will lead to an unbounded or degenerate solution.

Any variable that occurs in an active constraint is described as relevant; Any

variable occurring in all constraints of a conditionally active set must be relevant.

CHAPTER 4. A SENSE O F SCALE

Two Monotonicity Principles

The First Monotonicity Principle (MP1)

In a well-constrained objective function every increasing (decreasing) variable is

bounded below (above) by at least one active constraint.

The Second Monotonocity Principle (MP2)

Every monotonic nonobjective variable2 in a well-bounded problem is either

irrelevant and can be deleted from the problem together with all constraints in

which it occurs, or

relevant and bounded by two active constraints, one from above and one from

below.

Monotonicity Analysis Process

We show in the next page a flow chart which describes the process of Monotonicity

Analysis. First we need to put the problem statements into a standard qualitative form

and build a model for the particular problem. Then we check out the monotonicities

of the variables and put this information into a table called Monotonicity Tab2e. Next

we applied monotonicity principles (MP1 and MP2) to check the problem model. If we

find that the model is well bounded, we can proceed and apply classical optimization

methods, such as Gradient descent, Newton's method, Simplex algorithm, etc. If at

this stage, we have already found that the problem is not well bounded, we should go

back to check the problem statements because probably there is something wrong with

21f there is a monotonic variable which occurs in the constraint(s) but not in the objective, it is
called a nonobjective variable.

CHAPTER 4. A SENSE OF SCALE 37

them, or the problem doesn't have a solution. By using Monotonicity Analysis, we

can reduce the dimensionality of the problem and avoid wasting effort on a problem

which doesn't have a solution.

Input problem statement in

Determine monotonicities

construct Monotonicity Table

I Apply MPl and MP2 to fmd (f \ I relevance of variables and 1 - Check the problem I
I constraints, delete irrelevant

variables and constraints I model I

I F i d potential subset cases and I I apply optimization techniques I

Figure 4.1: Monotonicity Analysis Process

CHAPTER 4. A SENSE OF SCALE

4.3.3 Application

Let's go back to the problem of finding explicit limits of G. To find G [GM;,, GMaz],

separate the problem into two parts. First, find G ~ i n ; second, find GMaz.

To find GMin, write the problem in a standard form:

Objective: minimize G

Subject to: (1) Nu = CRn

(2) h = NuK/DH

(3) R = GDH/P

(4) h - hHigh 5 0

(5) -h + h~ow I 0

(6) R - R ~ i ~ h 5 0

(7) -R + R L ~ ~ -< 0

(8) NU - N ~ H i g h 5 O

(9) -NU + N u L ~ ~ 5 0

(10) DH - DHH+ I 0

(11) -DH + D H L ~ ~ -< 0

;hHigh is the upper bound on h

;hLow is the lower bound on h

;RHigh is the upper bound on R

;RLow is the lower bound on R

;NuHighis the upper bound on Nu

;NuLowis the lower bound on Nu

;DHHighk the upper bound on DH

;DHLow is the lower bound on DH

We put the information into a form called the Monotonicity Table.

CHAPTER 4. A SENSE O F SCALE

Objective: minimize G

Table 4.1: Monotonicity Table

This table shows the result of the first cycle of monotonicity analysis. G is called

the objective variable since it appears in the objective we seek to minimize, so we can

add an asterisk to cells that have G in them. This shows that G is a relevant variable.

A " + " is added to the Direction + cell because G increases in the objective to be

minimized. We can also find that only constraint (3) bounds G, so constraint (3)

must be critical and bounds G from " - " direction. This also shows that R and DH

are also relevant although they do not appear in the objective function, so we can put

asterisks under DH and R. The multiple criticality of constraint (3) indicates that it

can be used to eliminate a variable. Since the objective and the constraint (3) both

have variable G, it can be eliminated. Two other equality constraints have a common

Monotonic variable
Relevance
Direction +
Direction -

(1) N u = CRn
(2) h = Nul</DH
(3) R = GDH//L
(4) - h~igh 5 0
(5) -h + h~ow I 0
(6) R - R~igh L 0
(7) -R + RLow L 0

_ (8) N u - N u H ~ ~ ~ < O
(9) -Nu + N u L ~ ~ I 0
(lo) DH - DHHigh 2 0
(11) -DH + DHL,,~ L 0

G
*
+
. . .

*-

Nu

?
?

+
-

h

?

+

DH
*

?
*-

+

R
*

?

*+

+
-

CHAPTER 4. A SENSE O F SCALE 40

variable Nu, so we can substitute constraint(1) into constraint(2). In the meantime,

the G column and the Nu column can be deleted, together with constraint (8) and

(9). Now the Monotonicity Table is simplified and looks like this:

Objective: minimize pR/DH

I Monotonic variable I h l ~ ~ l R l

Table 4.2: Monotonicity Table 1

Relevance
Direction +
Direction -

The only equality constraint (2)' and the new objective have common variables

R and DH, this indicates that we can further eliminate one variable. In this case

DH should be eliminated together with constraint (10) and (11)~. At this point the

monotonicity table looks much simpler:

3We can eliminate R and get another lower bound on G which we can prove to be greater than
the one we get by eliminating DH.

* *
+

CHAPTER 4. A SENSE OF SCALE

Objective: minimize phR'-n/CK

Monotonic variable l h l R l
I I

Table 4.3: Monotonicity Table 2

1 Relevance
Direction +
Direction -

To find GMin, from the Monotonicity Table, we can see that constraint (5) and (7)

bound h and R from below respectively, therefore,

It is a similar task to find GMas. Following the same step, we get

*
+

Thus, we can put explicit bounds on the variable G, given the constraints it appears

in and the limits on the other variables in the constraints.

*
+

CHAPTER 4. A SENSE OF SCALE 42

In this case, the technique of Monotonicity Analysis can lead us directly to the

solution. It can be applied to more complicated problems where there are many more

variables and reduce the complexity of the problem to some extent.

Chapter 5

Testing The Knowledge Base

5.1 Testing For Correctness

The combination of scaled initial domains and constraint propagation gives us a

powerful tool for representing engineering design knowledge. However, it is highly

probable that a random combination of constraints and initial domains gives no so-

lution, therefore great care is needed to ensure that the domains and constraints are

consistent.

For each schema in the knowledge base, we write a 'testing schema' which can

invoke the schema being tested, and can set the values of its variables via accessorsl.

The first we need to do in testing a schema is to test that the set of constraints does

have a solution. To do this, we can work out a trial case by hand calculation and then

'An accessor is a kind of Echidna method, it provides access, for either retrieving or setting the
instance variables.

CHAPTER 5. TESTING THE KNOWLEDGE BASE 44

feed these values to the testing schema. Next, we face the task of selecting consistent

sets of values for the initial domains. The approach we used is the ' b o t t ~ m up'

method : one chooses a certain subset of schema variables as fundamental (functional

or private variables as we mentioned in chapter 4); their values specify the structure of

the device being designed and would go onto engineering drawings. We choose their

domains, then from these we calculate the domains of other variables, which describe

the performance of the device.

It should be pointed out that the above approach may not always yield practical

results. For example, the feasible domain for the tube diameter of a small tubular heat

exchanger is [0.001, 0.011 metre, and the tube length is in the range [0.01, 11 metre,

but it is ridiculous to design an heat exchanger with 0.001 metre diameter tubes 1

metre long, as the pressure drop would be unacceptably high. So some modifications

to the 'bottom up' methods are necessary. We can work out the possible domains

of the variables and we may further restrict their domains to eliminate designs that

would perform poorly.

Obviously failures may occur in the course of testing the knowledge base. There

are different kinds of failures. Sometimes Echidna will have to choose one of several

alternatives. If it rejects an alternative, it will show 'unify failure7. Let's look at an

example. In material.kb, we have a method 'SetProps(Species)'.

setprops (Species) : -
s e t v i s c o s i t y (Species ,Viscosity) ,

CHAPTER 5. TESTING THE KNOWLEDGE BASE

Suppose we have chosen 'nitrogen' to be the Species. When Echidna evaluates

'SetProps(Species)', we will see:

Tracing Fai lure :

unify clause f a i l u r e :

setProps(nitrogen) :- setViscosity(Species, Viscosity)

a t ./material.kb:39 . . .
on clause 1 due t o argument 1

echidna 23) c

Tracing Fai lure :

unify clause f a i l u r e :

setProps(nitrogen) :- setViscosity(Species, Viscosity)

a t ./material.kb:39 . . .
on clause 2 due t o argument 1

The first 'unify' failure is due to ' on clause 1 due to argument l', since clause 1

is setViscosity(hydrogen,0.00000896) and argument 1 here is hydrogen, and it fails to

unify with nitrogen; similarly, argument 1 in clause 2 is helium and it cannot unify

with nitrogen either. The unification will succeed when clause 3 is called because it

has nitrogen as argument 1.

So 'unify failure' is not necessarily anything to worry about, we can just tell

Echidna to continue (by hitting 'c') and it will go on to choose other alternatives.

However, if all alternatives have failed, Echidna will say 'meta failure2'. These are
--

2Also called 'deep failure'.

CHAPTER 5. TESTING THE KNOWLEDGE BASE 46

serious failures since they indicate that probably one or some of the variables have

wrong initial domains. One of my tasks as a knowledge engineer is to detect and fix

these wrong initial domains.

Sometimes an apparently reasonable knowledge base can contain contradictions.

Here is an interesting example. The capsule is an important component of a regenera-

tor. There are two kinds of capsules, namely, cylindrical capsule and annular capsule.

The cylindrical capsule looks just like a tin can (Figure 5.l(a)); the annular capsule

looks like a tin can with another can inside it, concentric with the first (Figure 5.l(b)).

(a) Cylindrical Capsule (b) Annular Capsule

Figure 5.1 : Cylindrical and annular capsule

The cylindrical capsule is essentially a can that will be filled with some finely-

divided material (the matrix) to absorb and re-emit heat. For the annular capsule, it

is the space between the two cans that gets filled with the material.

CHAPTER 5. TESTING THE KNOWLEDGE BASE 47

In capsule.kb, the internal and external diameters of the cylindrical capsule are

both scaled to have the same initial domains. This seems reasonable; the wall thickness

separating them will only be a few millimeters. If I set the internal diameter to the

upper limit of its domain, the external diameter is constrained to have the same value,

since it must be greater than or equal to the internal diameter, but cannot exceed

the upper limit of the domain. As a result, the wall thickness drops to zero, and this

produces a propagate failure. The solution to this problem is to first set the domains

of the internal diameter, then to set bounds on the thickness of the wall, and lastly

to calculate the external diameter using

ExternalDiameter =:= InternalDiameter + 2 * WallThickness.

Thus we can avoid the above problem.

When testing a big annular capsule, I encountered another problem. Since the

void volume is the difference between the volume enclosed by the outer can and the

volume occupied by the inner can, it can be very small even when the dimensions

of the cans are very large. Specifically, its size depends on the difference between

the OuterInternalDiameter (OID) and the InnerExternalDiameter (IED). The void

volume calculated this way may drop below the minimum acceptable limit. It is

unreasonable to have a tiny volume in a capsule we've declared to be big.

We thought about several ways to deal with this problem. First, we could set the

limits for the two diameters so that the difference between them would always be big

enough. This is not a good solution, because then the upper bound of the IED would

have to be smaller than the lower bound of the OID, which is too strong a constraint.

A second alternative would be to leave the bounds as they are, but add an explicit

constraint that OID > I E D + c, where c is some suitable number big enough to

CHAPTER 5. TESTING THE KNOWLEDGE BASE 48

prevent the failure. If we did this, failure may occur in some cases where the above

constraint is not satisfied. But this is acceptable because the failures indicate that

we are asking the knowledge to do something unreasonable, for example, we ask for

a big heat exchanger with a tiny volume. The knowledge base should fail when the

requirements are unrealistic.

A third alternative would be to do nothing. Then failure would occur and Echidna

would backtrack and either change the value of OID or IED; or, if neither of these

worked, to the decision that the capsule should be big.

The second alternative is the best. It makes it clearer to the users what should

fail and what shouldn't.

5.2 Improvement of Efficiency

Echidna, like Prolog, is a declarative language. As opposed to procedural lan-

guages like FORTRAN and C, it is not always easy to tell what order the statements

will execute in. Echidna has an added level of complexity because of the persistent

constraints. Part of the theory of declarative language says that we shouldn't worry

about the order of execution; as long as the statements in the knowledge base define

a problem which has a solution, the knowledge base will eventually find it. But if we

are concerned with efficiency, we do have to consider the order of execution. As a rule

of thumb, we should put the statement which is most likely to be chosen in the first

place, followed by the statement which is the second most likely to be chosen, and so

on and so forth. For example, in the testing program 'testHX.kb7, we have

CHAPTER 5. TESTING THE KNOWLEDGE BASE

order chooseFF.

chooseFF(HeatFlow, functionType Function):-

chooseFFAccordingToHeatFlow(HeatFlow, Function).

chooseFF(HeatFlow, Function):-

chooseFFOtherwise(HeatFlow, Function).

Here we put 'chooseFFAccordingToHeatFlow(HeatFlow, Function).' before ' choos-

eFFOtherwise(HeatFlow, Function).' since the former is more likely to be chosen.

There are other principles we may follow to determine the order of the statements.

For instance, when we use 'tubeChoose7 method to choose the number of tubes, we

follow the simple principle of 'the fewer, the better', therefore we can order the clauses

as :

order tubechoose.

tubeChoose(50).

tubeChoose(60).

tubeChoose(70) .

In the course of testing the knowledge base, sometimes I found that Echidna took

a long time to come up with a solution. Of course we have a scaled knowledge base. If

we are at the threshhold, Echidna may need to have several iterations of backtracking

until it finds the appropriate scale, but if we know that we are not at the threshhold,

we expect Echidna to make the decision quickly. In these cases, if Echidna still

spends a long time, we should investigate the problem and check whether we can put

the statements in a better order to improve efficiency. Let's look at an example from

CHAPTER 5. TESTING THE KNOWLEDGE BASE 50

the Stirling engine heat exchanger knowledge base. The design objective is a heater

and we want to send a message to it. First we tried:

test1 :-

Heater : diameter (Diameter) .
chooseFF(HeatF1ow , h e a t i n g) .

If we put the statements like this, the initialization method in test 1 sends a message to

the heater, setting the value of its diameter, then it calls a second method, 'chooseFF'

to create the heater. The message about the diameter doesn't reach the heater until all

of the method 'chooseFF' has executed. This takes quite a long time. Alternatively,

we tried:

t e s t 2 : -

Heater : diameter (~ i a m e t e r) ,

choose~F(HeatF1ow , h e a t i n g) .

If we rearrange the statements, the initialization method in test2 sends a message to

the heater, then creates the heater itself. This time the message about the diameter

reaches the heater as soon as it is created.

We would expect that the message to the heater would be delivered as soon as the

heater came into existence, we should avoid the delay in the first example and follow

the way in the second example. We reported this to the Echidna system supporter;

maybe in future versions, they can improve on this and make the system more efficient.

Chapter 6

A Detailed Design Example

The present knowledge base can successfully create three kinds of heat exchangers,

namely heater, cooler and regenerator. We will go through a detailed design example

to trace Echidna's calculations and explain how choices were made.

6.1 Design Requirements

We have designed part of an engine and we expect Echidna to design the heat

exchangers. The requirements are:

1. In the heater, the mean temperature difference between cylinder and working

gas: DeltaT < 150K;

2. In the cooler, the mean temperature difference between cylinder and working

gas: DeltaT < 100K;

CHAPTER 6. A DETAILED DESIGN EXAMPLE 52

3. Must supply thermal power that can keep the temperature difference between

the entering and leaving fluid at 100K.

4. The pressure drop should not be too big.

The first three requirements are written in 'tex tHX.kb', the last requirement is not

formally stated in the knowledge base, but the pressure drop is calculated and the

knowledge engineer will reject the design with pressure drop that is too big. The

design parameters are shown in Table 6.1. These values are assigned in 'testHX.kb'

file as well.

Heat exchanger diameter 0.5 m
Piston Stroke

Piston Clearance
0.5 m

0.001 m
1

Cylinder wall thickness
Atmospheric pressure

Mean cycle pressure (Pm)
Cycle per second (CPS)

Table 6.1: Design Parameters

0.01 m
100000 Pascal
100000 Pascal

1
Source temperature
Sink temperature

Working gas

The above parameters are supplied to Echidna when we load 'testHX.kb' file to

the Echidna interface. We expect Echidna to calculate the amount of heat flow, the

mass flow rate, the pressure drop, etc. Also we expect Echidna to determine the type

of heat exchanger and the detailed dimensions of its subcomponents.

900 I(
300 I(

nit roaen

CHAPTER 6. A DETAILED DESIGN EXAMPLE

6.2 Echidna's Decision

In this section, we will go through some of the decision-making steps to show how

Echidna gets the final design.

The first method Echidna called is estimate(Ve, Size). We can determine the size

of the heat exchanger by the value of its working volume Ve, which is calculated as:

V e =:= 3.1415 a 0.25 * Diameter * *2 * Stroke

From Table 6.1, we can find the values of Diameter and Stroke, therefore we get

Ve = 0.0981i'18i'rn3.

There is a relationship between the physical size of a heat exchanger and the

amount of thermal power it can handle. This relationship is quite complicated since

there are many factors involved, such as the choice of geometry, the working gas, the

pressure and so on. Still, we know that a heat exchanger the size of a coffee cup

can't exchange a mega watt of heat, and we know it would be wasteful to use a heat

exchanger the size of a house to exchange a few watts. In the course of developing

our knowledge base, we simply follow the engineer's rule of thumb:

est imatesize (Ve, verysmall) : -
Ve > 1.0e-09,

Ve < 0.000001.

estimateSize(Ve, small) :-

Ve > 5.0e-07,

Ve <0.0001.

CHAPTER 6. A DETAILED DESIGN EXAMPLE

estimateSize(Ve, medium):-

Ve > 5.0e-05,

Ve < 0:001.

est imateSize (Ve, big) : -

Ve > 0.0005,

Ve < 0.1.

estimateSize(Ve, veryBig):-

Ve > 0.05,

Ve < 10.

When we run the knowledge base, we get

Tracing Failure:

propagate failure :

estimateSize(0.09817187, verysmall) :- . . . Ve < 1e-06

at ./testHX.kb:279 . . .
echidna 26) c

Tracing Failure:

propagate failure :

estimateSize(0.09817187, small) :- . . . Ve < 0.0001

at ./testHX.kb:283 . . .
echidna 27> c

Tracing Failure:

propagate failure :

estimateSize(0.09817187, medium) :- ... Ve < 0.001

at ./testHX.kb:287 ...

CHAPTER 6. A DETAILED DESIGN EXAMPLE

We can see that Echidna first tried to unify Ve with the first argument in

est imatesize (Ve , verysmall) : -
Ve > 1 .Oe-09,

Ve < 0.000001.

and it failed. It should fail since Ve does not fit into this interval. So Echidna went

back to check the next method and it failed for the same reason. It finally succeeded

when it called:

estimateSize(Ve, big) : -
Ve > 0 .OOO5,

Ve < 0.1.

In this case 'Size' is big. We can then restrict our search to big heat exchanger

domains.

The second method Echidna called is estimatePower(HeatFlow, Power). We have

a constraint: HeatFlow =:= HotMassFlowRate * Speci ficHeat * 100 From the

inputs and previous calculations we can get the value of HotMassFlowRate and Speci-

ficHeat :

Gas:specificHeat ([500, 50001 SpecificHeat),

Gasdensity ([0.05, 5.01 GasDensity),

HotDensity =:= GasDensity * P m * Ref erenceTemperature

/(AtmosphericPressure * So~rceTern~erature) ,

HotVolumetricFlow =:= Ve * CPS,

CHAPTER 6. A DETAILED DESIGN EXAMPLE

HotMassFlowRate =:= HotVolumetricFlow * HotDensity,

Therefore, we get Heatflow = [3394.774, 3394.7971 and this unifies with

est imatepower (HeatFlow , highpower) : -
HeatFlow > 100.0,

HeatFlow < 100000.0.

Hence, we get power range is highpower and we can restrict the design search space

accordingly.

Next, we issue our first design goal: designseater. We have

des ignsea te r : -
[O. 2 , 2001 DeltaT < 150,

chooseFF (HeatFlow , hea t ing) .

Echidna tries to unify 'chooseFF7 method with one from the following:

chooseFF(HeatFlow, functionType Function):-

chooseFFAccordingToHeatFlow(HeatFlow, Funct ion) .

chooseFF(HeatFlow, Function):-

chooseFFOtherwise(HeatFlow, Funct ion) .

It will try chooseFFAccordingToHeatFlow first (Function is instantiated as heating).

If i t fails, it will backtrack to this point later and t ry chooseFFOtherwisel. Now we

'Usually the choice of heat exchanger is based on the heat flow, we put chooseFFOtherwise here
in case chooseFFAccordingToHeatFlow doesn't have any solution. This is for the completeness of
the knowledge base.

CHAPTER 6. A DETAILED DESIGN EXAMPLE

have:

chooseFFAccordingToHeatFlow(HeatFlow, Function):-

HeatFlow > 1000,

creat eHX (tubularFF , Function) .
chooseFFAccordingToHeatFlow(HeatFlow,Function):-

HeatFlow < 1000,

HeatFlow > 10,

createHX (f innedFF , Function) .

chooseFFAccordingToHeatFlow(HeatFlow, Function):-

HeatFlow < 10,

createHX(plainFF, Function) .

We have Heatflow = [3394.774, 3394.7971, obviously createHX(tubularFF, Heating)

is called. Since the heat flow is large, Echidna chooses a tubular heat exchanger,

which has a large surface area. We further restrict the search space to tubular heat

exchanger.

createHX (tubularFF , heating) : -
tubeChoose([50,150] NumberOfHotTubes),

interval HotTubeFlow =:= HotVolumetricFlow/NumberOfHotTubes,

TubeDesigner isa tubeDesigner(Pm,Pressure,Size,SourceTemperature,

HotTubeFlow, tube HotTube) ,

MaterialChooser:choosePVMaterial(Diameter, WallThickness, Pm,

SourceTemperature,solids HotMetal),

Heater isa tubular(heating,Gas,HeatFlow,HotMetal,HotTube,

CHAPTER 6. A DETAILED DESIGN EXAMPLE

The first choice made here is the number of tubes. Echidna just searched the domain

of 'NumberOfHotTubes', and selected the first number 50. Next it calculated Hot-

TubeFlow from HotTubeFZow =:= HotVoZumetricFlow/NumberO f HotTubes.

Then it called the TubeDesigner to create the tube and the Materialchooser to choose

the tube material2. Next Echidna tried to create the tubular heater. The schema

tubular is in 'heat.kb'. In heat.kb we have

schema tubu1ar:fluidFluid

tubular(Function,Gas,HeatFlow,Metal,Tube,MassFlowRate,N~berOfTubes,

Pm, Power,Pressure,Size,T,VolumetricFlow):-

s e t s i z e ,

f lu idF lu id ,

Geometry = tubularFF,

Tube : internalDiameter (ReynoldsDiameter) ,

Tube : length (Length) ,

s e t c o n e l a t ions (R,A,C,M,N) .
3

We can see that tubular is a subclass of 'AuidFluid', which in turn is a subclass of

21n our knowledge base, MaterialChooser is a separate method, it is not part of the TubeDesigner.
The purpose is to increase the reusability of the method.

CHAPTER 6. A DETAILED DESIGN EXAMPLE

'heatExchange'. So when Echidna tried to create a tubular heater, it would have

called all the relevant methods in class 'fluidFluid' and 'heatExchange'.

The reader might notice the message HotTube:choose. We use it to call the choose

method in tube.kb. Before the 'choose' method is called, some variables, such a ,

InternalDiameter and Wallthickness of the tube, still have large domains. For this

reason, we don't know whether we really have a consistent design. After the method

is called, Echidna uses 'indomain' to pin down these variables and check them.

Echidna takes about 30 seconds to ~ o m e up with the design of a heater. Following

similar steps, Echidna can create a cooler and a regenerator. We can print out the

results and check whether they are reasonable. If the designer is not satisfied with

them, he or she can go back and change some design parameters. In our example, the

results looks quite feasible. The Echidna output file is included in Appendix B. Here

we summarize the results in tables.

CHAPTER 6. A DETAILED DESIGN EXAMPLE

I

Heat Transfer Coefficient 1 12934 WIm2K I

Heater Type
Surface Area available for heat transfer

Cross Area
Mean Temperature Difference between gas and wall

Friction Factor

tubular
0.0021m2

6.79e - 05m2
127.5 K
0.0035

Heat Flux
Mass Flux

1.65e+05 W/m2 K
500 Ka lm2S

I

Heater Length
Mass

Mass Flow Rate
Pressure Drop

Nusselt Number
Reynolds Number
Reynolds Diameter

Volume
Number of Tubes

Coefficient in f-Re correlation
Coefficient in Nu-Re Correlation

Exponent in f-Re correlation
Exponent in Nu-Re Correlation

4 I

0.01 m
0.25 Kg

0.034 Kg/s
27 Pascal

65 1
367497

0.0013 m
3.87e-07 m3

50
0.045
0.022
-0.2
0.8

V

Size Range
Temperature Range

Table 6.2: Heater

big
hot

L -
Metal Species
Metal Density

Metal Conductivity
Met a1 Specificheat

Aluminum
2700kg/m3
110 W/mK
330 Jl kc7 K

CHAPTER 6. A DETAILED DESIGN EXAMPLE

External Diameter 0.015 m I
External Area

External Cross Area
Internal Diameter

0.00048 m2
0.00018 m2
0.0013 m

Internal Area
Internal Cross Area

Tube Length
Tube Wall Thickness

Void Volume
External Volume

4.11e-05 m2
1.34e-06 m2

0.01 m
0.007 m

7.75e-09 m3
1.86e-06 m3

Mass
Metal Density

Pressure Ranne

Table 6.3: The parameters of a single tube in the heater

0.005 K g
2700 K g / m 3

low
Size Range

Metal Species
Metal Density

Metal Conductivity
Metal Specificheat

big
Aluminum
2700kg/m3

110 W / m K
330 J / kg K

CHAPTER 6. A DETAILED DESIGN EXAMPLE

I
- - -

Cross Area I 0.00033m2

Cooler Type tubular

I

Heat Transfer Coefficient 1 7442 W I m 2 K I

Surface Area available for heat transfer I 0.0045m2

Mean Temperature Difference between gas and wall
Friction Factor

99.7K
0.0033

I

Volume I 1 -56e-06 m3 1

Heat Flux
Mass Flux

Cooler Length
Mass

Mass Flow Rate
Pressure Drop

Nusselt Number
Reynolds Number
Reynolds Diameter

742561 w / m 2 ~
305 K g / m 2 S

0.01 m
0.25 K g

0.102 K g / S
6.55 Pascal

833
500000

0.0029 m

Number of Tubes
Coefficient in f-Re correlation

Coefficient in Nu-Re Correlation

50
0.045
0.023 ,

I Pressure Range

Ex~onent in f-Re correlation
L

Exponent in Nu-Re Correlation
Power R a n ~ e

low

-0.2 - .-

0.8
high

Size Range
Temperature Range

Metal Species

Table 6.4: Cooler

big
room temperature

Aluminum
Metal Density

Metal Conductivity
Metal Specificheat

2700kg/m3
110 W / m K
330 JIkqK

CHAPTER 6. A DETAILED DESIGN EXAMPLE

External Diameter 1 0.0156 m I

Table 6.5: The parameters of a single tube in the cooler

External Area
External Cross Area

Internal Diameter
Internal Area

Internal Cross Area
Tube Length

Tube Wall Thickness
Void Volume

External Volume
Mass

Metal Density
Pressure Range

Size Range
Metal Species
Metal Density

Metal Conductivity
Metal Specificheat

0.00048 m2
0.00019 m2
0.0029 m

9.14e-05 m2
6.65e-06 m2

0.01 m
0.0063 m

5.45e-08 m3
1.91e-06 m3

0.005 Kg
2700 Kg /m3

low

big
Aluminum
2700kg/m3

110 W / m K
330 JJkgK

CHAPTER 6. A DETAILED DESIGN EXAMPLE

I J

Mass Flow Rate 0.034 KaIS I

Regenerator Type
Surface Area available for heat transfer

Cross Area
Mean Temperature Difference between gas and wall

Friction Factor
Heat Transfer Coefficient

Heat Flux
Mass Flux

Regenerator Length
Mass

regenerative
7.067m2
0.177m2

5.6
0.065

85.3 W / m 2 K
479 W / m 2 K
0.19 KgIrn2s

0.1 m
9.61 K O

Pressure Drop
Nusselt Number

" , --
0.23 Pascal

32.8
Reynolds Number
Revnolds Diameter

1079
0.01 m,

- .I

Volume
Number of Regenerators

Coefficient in f-Re correlation

0.0176 m3
1

20
Coefficient in Nu-Re Correlation

Exponent in f-Re correlation
Exponent in Nu-Re Correlation

1
-0.8
0.50

Power Range
Pressure Range

Size Range

Table 6.6: Regenerator

high
low
big -

Temperature Range
Met a1 Species
Metal Density

Metal Conductivity
Metal Specificheat

-
room temperature

Aluminum
2700kglm3
110 W/mK
330 J / kg K

CHAPTER 6. A DETAILED DESIGN EXAMPLE

Table 6.7: Capsule

Capsule Geometry
External Diameter

External Area
External Cross Area

Internal Diameter
Internal Area

Internal Cross Area
Length

Wall Thickness
Void Volume

External Volume
Mass

Metal Species
Metal Density

Metal Conductivity
Metal Specificheat

cylindrical
0.51 m

0.163 m2
0.212 m2

0.5 m
0.157 m2
0.196 m2

0.1 m
0.01m

0.019 m3
0.0212 m3

4.32 Kg
Aluminum
2700kg/m3

110 W / m K
330 J / kgK

CHAPTER 6. A DETAILED DESIGN EXAMPLE

Matrix Type
Porosity
Density

Specific Area
Reynolds Diameter
Reynolds Number

Fibre Diameter
Wire Diameter
Sphere Radius

1 Metal Conductivity i 110 W ; ~ K

meshMatrix
0.9

270 K g / m 3
360 m 2 / k g K

0.01 m
1079

2e-05 m
0.0011 m
2e-05 m

Metal Species
Metal Density

I Metal Specificheat 1 330 J / ~ ~ K

Aluminum
2700kcrlm3

Table 6.8: Matrix

Chapter 7

Summary And Future Work

7.1 Progress S o Far

The development of the knowledge base is laborious and takes up a great deal

of time. The progress is relatively slow, partly because I am not very familiar with

the technology of Stirling engine heat exchangers; partly because Echidna, the de-

velopment tool, is still in an experimental stage. Based on the work done by my

supervisor, Dr. John Jones, and other previous students, I have detected and elimi-

nated the inconsistencies in the original prototype knowledge base to support Stirling

engine heat exchanger design. My research work mainly focused on developing the

factual knowledge base. In doing so, I had to test the knowledge base for many, if not

all, combinations of possible inputs and if there are inconsistencies in the knowledge,

as there are in most cases, I had to determine what causes these inconsistencies and

correct them. The knowledge base has been extended and tested and we have used

CHAPTER 7. SUMMARY AND FUTURE WORK 68

it to design several different heat exchangers successfully. The knowledge base now

comprises about six thousand lines of Echidna code and can be used as alpha-test

software by interested third parties.

Future Work

Our knowledge-based system is still a long way from being exploited by commerce

and industry. Rather, our hope is more to elucidate the theory of design than to

produce a tool that can be used in industry, at least in the short term.

Several issues have to be resolved in the future. Our development tool, Echidna, is

still being developed. The Expert Systems Laboratory is improving the performance

of Echidna. We have been working closely with the system developers to add desired

features to Echidna.

In order to make our knowledge base complete, more details are needed. For

example, the present library of solid materials only has aluminum, iron and steel. We

could expand it to include many other materials. Also we need to incorporate the

manufacturing methods in our knowledge base.

One of the contributions of this research is the idea of scaling. There are two di-

rections in which we intend to develop this work. Firstly, the classification of devices

on the basis of scale can be supplemented by classification schemes based on suitable

dimensionless numbers. For example, a knowledge base describing turbomachinery

might classify devices into their homologous series. Secondly, the use of fixed bound-

aries between different size classes might be replaced by the use of fuzzy numbers,

C H A P T E R 7. SUMMARY AND FUTURE W O R K

reflecting the imprecision naturally present in such expressions as a large engine.

The reader can see from the design results shown in chapter 6 that they are a large

amount of data. The ideal design should look like the engineering model with two or

three dimensional images to show the real object, and other design specification can

be shown on the screen as context. This is not a trivial task as we don't know how

to write rules to represent geometric design description.

Another difficult task is geometric reasoning since we need to use explicit methods

to represent the shape, size, and location (relative or absolute, same or different

coordinate systems) of the objects, and we need to incorporate knowledge of spatial

reasoning to check whether the components can fit into the whole system, whether

they interfere. This is an interesting and under-studied area.

We hope to develop an intelligent design system which can not only produce a

design to meet given requirements, based on the expert's knowledge, but also produce

some innovative designs which is beyond the expert's present knowledge. Again this

is a difficult task.

A more interactive user interface is desired. Right now we type all the input into a

data file and load it to the Echidna interface. Ideally, we could have a menu to select

these data. The interface should be able to show the inheritance hierarchy, the proof

tree and the constraint network.

As there will always be relevant knowledge that is not included in the knowledge

base, there is no prospect of eliminating the human designer at any time. Some re-

quirements cannot be stated formally in a knowledge base - for example, we want an

CHAPTER 7. SUMMARY A N D FUTURE WORK 70

artifact to have a pleasing appearance. We should always remember that engineer-

ing design is a Mixed-Initiative activity. Our aim is to develop intelligent computer

systems that can cooperate with the human designers, alternatively taking and relin-

quishing the initiative. There is a lot of work to do to perform the Mixed-Initiative

design well. For example, if the human designer wants to elaborate a design which

the system has just been working on, he or she must understand what the system has

done, and why. He or she must also know which features of the design can be changed

readily, and which are constrained by the design requirements. How do we enable the

system to convey such information?

Appendix A

Sample Files

As we mentioned in chapter 3, we have two kinds of knowledge bases: facts and

strategies. Here we show one sample from each kind. reg.kb and agentMat.kb. We

also include two testing programs, namely testHX.db and testHX.kb.

APPENDIX A. SAMPLE FILES

...
* * Name : testHX . db **
...

set pretty on

set f ailbreak on

catch unify clause off

load declarations.kb

load global. kb

load material. kb

load geometry. kb

load tube .kb

load fin-kb

load matrix. kb

load capsule.kb

load agentMat.kb

load heat .kb

load reg.kb

load testHX . kb
precision(24) .
heatTest H isa heatTest .
H: design.

APPENDIX A. SAMPLE FILES

...
* * Name : testHX . kb **
...

schema heatTest

<
real

capsule

interval

interval

fluidFluid

interval

interval

gases

interval

fluidFluid

interval

interval

interval

materialChooser

Lo. 00001, 0.0011

interval

powerRange

pressureRange

real

AtmosphericPressure.

Capsule.

ColdMassFlowRate.

ColdVolumetricFlow.

Cooler.

CPS .
Diameter.

Gas.

HeatFlow.

Heater .
HotMassFlowRat e .
HotVolumetricFlow.

Length.

Materialchooser.

Pistonclearance.

Pm .
Power.

Pressure.

ReferenceTemperature.

APPENDIX A. SAMPLE FILES

regenerator

interval

interval

sizeRange

interval

temperatureRange

interval

interval

Regenerator.

SinkTemperature.

SourceTemperature.

Size.

Stroke.

Temperature.

Ve .
WallThickness.

heatTest : -
AtmosphericPressure is 100000,

ReferenceTemperature is 273,

Materialchooser isa materialchooser.

design: -
SourceTemperature =:= 900,

SinkTemperature =:= 300,

CPS =:= I,

Pistonclearance =:= 0.001,

Diameter =:= 0.5,

Stroke =:= 0.5,

Pm =:= 100000,

WallThickness =:= 0.01,

Gas isa gases,

Gas : species (nitrogen),

APPENDIX A. SAMPLE FILES

Gas:specificHeat(~500,50000] SpecificHeat),

Gas :density([O. 05, 5.01 GasDensity) ,

interval HotDensity =:= GasDensity * Pm * ReferenceTemperature
/(AtmosphericPressure * SourceTemperature),

interval ColdDensity =:= GasDensity * Pm * ReferenceTemperature
/(AtmosphericPressure * SinkTemperature),

Ve =:= 3.1415*0.25* Diameter**2 * Stroke,
HotVolumetricFlow =:= Ve * CPS,
ColdVolumetricFlow =:= Ve * CPS,
HotMassFlowRate =:= HotVolumetricFlow * HotDensity,
ColdMassFlowRate = - = . ColdVolumetricFlow * ColdDensity,
HeatFlow -.- - . - HotMassFlowRate * SpecificHeat * 100,
estimateSize(Ve, Size),

est imatePower(HeatF1ow , Power) ,

est imatePressure (Pm, Pressure) ,

estimateTemperature(SourceTemperature, Temperature),

designHeater ,

designcooler,

designRegenerator.

designHeater : -
C0.2, 2001 DeltaT < 100,

chooseFF (HeatFlow, heating) .

APPENDIX A. SAMPLE FILES

C0.2, 2001 DeltaT < 50,

chooseFF (HeatFlow, cooling) .

designRegenerat0r:-

capsuleDesign CapsuleDesign isa capsuleDesign(Capsule, Pm, Pressure,

Size, SourceTemperature,Temperature, WallThickness, Diameter, Length),

matrixDesign MatrixDesign isa matrixDesign(Matrix,SourceTemperature),

Regenerator isa regenerator(Gas,Capsule,HeatFlow,HotMassFlowRate,

Matrix,NumRegenerators,Pm,Power,Pressure,

Size,SinkTemperature,SourceTemperature,Ve),

indomain (Nmegenerators) ,

CapsuleDesign:chooseValues(Capsule),

MatrixDesign : chooseValues (Matrix) .

order chooseFF .

chooseFF(HeatFlow, functionType Function):-

chooseFFAccordingToHeatFlow(HeatFlow, Function).

chooseFF (HeatFlow, Function) : -
chooseFFOtherwise(HeatFlow, Function).

chooseFFAccordingToHeatFlow(HeatFlow, Function):-

HeatFlow > 1000, %HeatFlow>1000

createHX (tubularFF , Function) .
chooseFFAccordingToHeatFlow(HeatFlow,Function):-

APPENDIX A. SAMPLE FILES

HeatFlow < 1000,

HeatFlow > 10, %lO<=HeatFlow<=1000

createHX (f innedF~, Function) .
chooseFFAccordingToHeatFlow(HeatFlow, Function):-

HeatFlow < 10, %HeatFlow<100

createHX(plainFF, Function).

chooseFFOtherwise(HeatFlow, Function):-

HeatFlow < 1000, %not HeatFlow>500

createHX (tubularFF , Function) .
chooseFFOtherwise(HeatFlow, Function):-

HeatFlow < 10, %not (100<=HeatFlow<=500)

createHX(finnedFF, Function).

chooseFFOtherwise(HeatFlow, Function):-

HeatFlow > 10, %not HeatFlow<100

creat eHX (plainFF , Function) .

createHX (f innedF~, heating) : -

f inChoose((50.. 150) NumberOfFins) ,

~aterial~hooser:choose~~~aterial(~iameter, WallThickness, Pm,

SourceTemperature, solids HotMetal) ,

FinDesigner isa fin~esigner(Diameter, Stroke,

SourceTemperature,fin HotFin),

Heater : f in (Hot~in) ,

HotFin:choose,

APPENDIX A. SAMPLE FILES

Heater isa finned(heating,CPS,Diameter,Gas,HeatFlow,HotMetal,

NumberOfFins,Pm, Power,Pressure,Size,Stroke,Temperature,

SourceTemperature,HotVolumetricFlow),

Heater: choose.

createHX (f innedFF, cooling) : -
finChoose((50..150> NumberOfFins),

MaterialChooser:choosePVMaterial(Diameter, WallThickness,

Pm,SinkTemperature,solids ColdMetal),

FinDesigner isa finDesigner(Diameter, Stroke, SinkTemperature,

fin ColdFin) ,

Cooler:fin(ColdFin),

ColdFin:choose,

Cooler isa finned(cooling,CPS,Diameter,Gas,HeatFlow,Col~etal,

NumberOfFins,Pm,Power,Pressure,Size,Stroke,

Temperature,SinkTemperature,ColdVolumetricFlow),

Coo1er:choose.

createHX (tubularFF , heating) : -
tubechoose ([SO, 1501 NumberOfHotTubes) ,

interval HotTubeFlow =:= HotVolumetricFlow/Number0fHotTubes,

TubeDesigner isa tube~esigner(Pm,Pressure,Size,SourceTemperature,

HotTubeFlow,tube HotTube),

MaterialChooser:choosePVMaterial(Diameter, WallThickness, Pm,

SourceTemperature ,solids ~ o t ~ e t a l) ,

APPENDIX A. SAMPLE FILES

Heater isa tubular(heating,Gas,HeatFlow,HotMetal,HotTube,

HotMassFlowRate,NumberOfHotTubes,Pm,Power,Pressure,

Size,SourceTemperature,HotVolumetricFlow),

HotTube:choose.

creat eHX (tubularFF , cooling) : -

tubechoose ([SO, 1501 NumberOf ColdTubes) ,

interval ColdTubeFlow =:= ColdVolumetricFlow/Number0fColdTubes,

TubeDesigner isa tubeDesigner(Pm,Pressure,Size,SinkTemperature,

ColdTubeFlow , tube ColdTube) ,

~aterial~hooser:choose~~~aterial(Diameter, WallThickness, Pm,

SinkTemperature,solids ColdMetal),

Cooler isa tubular(cooling,Gas,HeatFlow,ColdMetal,ColdTube,

ColdMassFlowRate,NumberOfColdTubes,hn,Power,

Pressure, Size, SinkTemperature, ~oldVolumetricFlow) ,

Co1dTube:choose.

createHX (plainFF, heating) : -

MaterialChooser:choosePVMaterial(Diameter, WallThickness, Pm,

SourceTemperature,solids HotMetal),

Heater isa plain(heating,CPS,Diameter,Gas,HeatFlow,HotMassFlowRate,

HotMetal,PistonClearance, Pm,Power,Pressure,Size,

Strok,SourceTemperature,HotVolumetricFlow),

Heater : choose.

APPENDIX A. SAMPLE FILES

createHX (plainFF, cooling) : -
MaterialChooser:choosePVMaterial(Diametery WallThickness, Pm,

SinkTemperature,solids ColdMetal),

Cooler isa plain(cooling,CPS,Diameter,Gas,HeatFlow,Col~assFlowRate,

ColdMetal,PistonClearance,Pm,Power,Pressure,

Size,Stroke,SinkTemperature,ColdVolumetricFlow),

order tubechoose. % Follow the simple principle of

tubechoose (50) . % 'the fewer the better'

tubeChoose(60) .
tubeChoose(70) .
tubechoose (80) .
tubeChoose(90) .
tubechoose (100) .

tubeChoose(ll0).

tubeChoose(120).

tubeChoose(l30).

tubechoose (140) .
tubeChoose(l50) .

order finchoose.

f inChoose(50) .
f inChoose(60) .

f in~hoose(70) .

APPENDIX A. SAMPLE FILES

estimatePower(HeatFlow, veryLow):-

HeatFlow > 0,

HeatFlow < 1 .O.

estimatePower(HeatFlow, 1owPower):-

HeatFlow > 0.1,

HeatFlow < 100.0.

est imat ePower (HeatFlow , medPower) : -
HeatFlow > 10.0000,

HeatFlow < 1000.0.

estimatePower(HeatFlow, highpower):-

HeatFlow > 100.0,

HeatFlow < 100000.0.

estimatePower(HeatFlow, veryHighPower):-

HeatFlow > 100000.0.

est imatePressure(Pm, low) : -

APPENDIX A. SAMPLE FILES

Pm < 1000000.

estimatePressure(Pm, mediumPr) : -
Pm > 1000000,

Pm < 10000000.

estimate~ressure(Pm, high) : -
Pm > 10000000.

estimate~ize (Ve , very~mall) : -

Ve > I .Oe-09,

Ve < 0.000001.

estimatesize (Ve, small) : -

Ve > 5.0e-07,

Ve < 0.0001.

estimatesize (Ve, medium) : -

Ve > 5.0e-05,

Ve < 0.001.

est imate~ize(Ve, big) : -

Ve > 0 .OOO5,

Ve < 0.1.

est imat eSize (Ve, veryBig) : -
Ve > 0.05,

Ve < 10.

estimateTemperature(SourceTemperature, cryogenic):-

SourceTemperature < 250.

APPENDIX A. SAMPLE FILES

estimateTemperature(SourceTemperature, roomTemperature):-

SourceTemperature > 200,

SourceTemperature < 400.

estimate~em~erature(~ource~em~erature, hot):-

SourceTemperature > 300,

SourceTemperature < 1000.

estimateTemperature (SourceTemperature, veryHot) : -
SourceTemperature > 1000.

3

schema tubeDesigner

<
materialchooser Materialchooser.

tubeDesigner(interva1 Pm,pressureRange Pressure,sizeRange

Size, [20,2000] T, , ,tube Tube) : -
Materialchooser isa materialchooser,

Material~hooser:choosePVMaterial(interval InternalDiameter,

WallThickness, Pm,T, solids TubeMetal),

Tube isa tube(-, InternalDiameter, - ,TubeMetal,Pm,

Pressure,Size,WallThickness).

schema finDesigner

<

APPENDIX A. SAMPLE FILES

materialchooser Materialchooser.

sizeRange Size.

fin~esigner(interva1 Diameter, interval FinLength,

interval T, fin Fin) :-

MaterialChooser isa materialchooser,

~aterialChooser:chooseMaterial(T, solids FinMetal),

choose~ize(Diameter, Size),

Fin isa f in(Diameter, , ,FinLength,, , FinMetal, Size) .

chooseSize(interva1 Diameter,verySmall):-

Diameter < 0.01.

chooseSize(interva1 Diameter,small):-

Diameter < 0.05.

chooseSize(interva1 Diameter,medium):-

Diameter < 0.5.

choosesize (interval Diameter, big) : -

Diameter < 1.0.

chooseSize(interva1 Diameter,veryBig):-

Diameter < 5 .O.

choosesize(-,-I.

3

schema capsuleDesign

APPENDIX A. SAMPLE FILES

materialchooser Materialchooser.

s izeRange Size.

pressureRange Pressure.

temperatureRange Temperature.

capsuleDesign(capsule Capsule,interval Pm, Pressure, Size, interval

SourceTemperature, Temperature, WallThickness, Diameter, Length):-

MaterialChooser isa materialchooser,

MaterialChooser:choose~~~aterial(Diameter,Wallichess, Pm,

SourceTemperature , solids Metal) ,

Capsule isa capsule(Diameter, ,, Length, Metal, Pm, Pressure,

SourceTemperature, Temperature,Size, WallThickness).

schema matrixDesign

<
materialChooser Materialchooser.

matrix~esign(~atrix,~ource~emperature):-

MaterialChooser isa materialchooser,

Mat erialchooser : chooseMat erial (~ource~emperature , solids ~ e t al) ,

Matrix isa matrix(Meta1 , -) .

APPENDIX A. SAMPLE FILES

chooseValues (matrix Matrix) : -

indomain (matrixType Type) ,

Matrix: type (Type) ,

~atrix: setPorosity(Type, -) ,

Matrix:chooseValues.

APPENDIX A. SAMPLE FILES

...
** Name : agentMat . kb **
...

schema gaschooser

<
chooseGas(speedRange Speed, gasspecies Species):-

chooseGasAccordingToSpeed(Speed, Species).

chooseGas(Speed, Species):-

chooseGasOtheruise(Speed, Species).

chooseGasAccordingTo~peed(f ast , hydrogen) .

chooseGasAccordingToSpeed(mediumSp, helium).

chooseGasAccordingToSpeed(slow, nitrogen).

APPENDIX A. SAMPLE FILES

schema materialchooser

<
choosePVMaterial(interva1 Diameter, interval WallThickness,

interval Pm, interval Temperature, solids Metal):-

Metal isa solids,

indomain(so1idSpecies Species),

Metal:species(Species),

Metal : setprops (Species) ,

Metal : stressLimit ([100000000 , 1000000000] 3 StressLimit) ,

[100000000,1000000000]*3 HoopStress =:= StressLimit * 0.8,
WallThickness > Pm * Diameter * 0.5 / HoopStress.

chooseMateria1 (interval Temperature, solids Metal) : -
indomain(so1idSpecies Species),

Metal isa solids,

Metal:species(Species),

Metal:setProps(Species).

APPENDIX A. SAMPLE FILES

#define pi 3.1416926

...
* * Name : reg. kb **
...

schema regenerat0r:heatExchange

interval

interval

C1,41

interval

interval

capsule

matrix

EnthalpyLoss. % Mean heat leak through regenerator (W)

MatrixMass.

NumRegenerators.

TidalThermalMass.

Ve .

Capsule.

Matrix.

regenerator(Gas,Capsule,HeatFlow,MassFlowRate,Matrix,N~egenerators,

Pm,Power,Pressure,~ize,~ink~emperature,~ource~emperature,Ve):-

setsize,

heat Exchange,

Type = regeneratorHE,

Capsule : geometry(capsu1eType Geometry) ,

Matrix:reynoldsDiameter(ReynoldsDiameter),

Matrix : reynoldsNumber (R) ,

Matrix : getcorrelat ions (A ,C ,M,N) ,

calculateCrossArea,

APPENDIX A. SAMPLE FILES

calculateArea,

calculateDiameter,

calculat elength ,

calculat eMass ,

calculateT(SourceTemperature,SinkTemperature),

calculateVolume,

calculateEnthalpyLoss.

calcu1ateCrossArea:-

~atrix:porosity([O. 5,O. 91 Porosity),

Capsule : crossArea(interva1 CapsuleCross~rea) ,

CrossArea =:= NumRegenerators * Porosity * CapsuleCrossArea.

calcu1ateArea:-

Capsule:volume(interval CapsuleVolume),

Matrix:specificArea([1Oa1OOO0O] SpecificArea),

indomain(NumRegenerators),

Area =:= NumRegenerators * CapsuleVolume * SpecificArea.

APPENDIX A. SAMPLE FILES

calculateEnthalpyLoss:-

Gas : specif icHeat ([SOO, 5OOOOI Specif icHeat) ,

indomain (H) ,

~0.001,1000~ Lambda =:= H * Area / (Specific~eat * MassFlowRate),
TidalThermalMass =:= Ve * SpecificHeat * Density,
Matrix:material (solids MatrixMetal) , ,

MatrixMetal : specif icHeat ([loo, 10001 Matrixspecif icHeat) ,

Mat r ixThermalMas s = . - - MatrixMass * Mat rixspecif icHeat ,
LO. 00001, 11 ThermalMassRat io = : = TidalThermalMass/ MatrixThermalMass ,

[0.01,1] Effectiveness =:= Lambda/(Lambda + 2),

[O -01, I] AdjustedEffectiveness = : = Effectiveness

* (1 - (ThermalMassRatio*ThermalMassRatio)/ 9),
LO. 001, I1 Ineffectiveness = : = 1 - AdjustedEf f ectiveness ,
EnthalpyLoss =:= HeatFlow * Ineffectiveness.

calculat eMass : -

Capsule :mass (interval CapsuleMass) ,

Capsule:volLimits(real VolumeLow, real VolumeHigh),

interval CapsuleVolume in [VolumeLow, VolumeHigh] ,

Capsule:volume(CapsuleVolume),

Matrix : density(interva1 MatrixDensity) ,

APPENDIX A. SAMPLE FILES

MatrixMass = : = MatrixDensity * CapsuleVolume,
Mass =:= CapsuleMass + MatrixMass.

calculateVolume : -
Volume =:= CrossArea * Length.

setsize : -
Gas:species(Species),

Gas : setConductivity(~pecies, real Conduct ivity-r) ,

Gas:set~iscosity(Species, real viscosity-r),

Matrix : type (matrixType MatrixType) ,

Matrix : setHeatCorrelat ions (MatrixType, real C-r , real N-r) ,

real HLow is 5,

real HHigh is 10000,

H in [HLow, HHigh] ,

ReLow is 10,

ReHigh is 10000,

R in [ReLow, ReHigh] ,

real GLOW = 0,

real GHigh is Viscosity-r * HHigh * ReHigh
/ReHigh**N,r / (C-r * Conductivity-r),

G in [GLOW, GHigh] ,

real SpecificConductanceHigh is 500,

real SpecificConductanceLow is 1,

setPower(Power,real PowerLow,real PowerHigh),

APPENDIX A. SAMPLE FILES

real EnthalpyLossLow is PowerLow * 0.01,
real EnthalpyLossHigh is PowerHigh * 0.1,
Ent halpyLo s s in [EnthalpyLossLow, EnthalpyLossHighl,

real MassLow is PowerLow /SpecificConductanceHigh,

real MatrixMassLow is MassLow * 0.001,
real MassHigh is ~owerHigh/SpecificConductanceLow,

Mass in [MassLow, MassHigh] ,

MatrixMass in [MatrixMassLow , MassHigh] ,

real TidalThermalMassLow is PowerLow / 100000,

real TidalThermalMassHigh is PowerHigh /lo,

TidalThermalMass in [Tidal~hermalMassLow, TidalThermal~assHigh],

real AreaLow is PowerLow /HHigh,

real AreaHigh is PowerHigh/HLow,

Area in [AreaLou, AreaHigh] ,

Frict ionLow is PowerLow * 0.00001,
FrictionHigh is PowerHigh * 0.1,
FrictionalPower in [FrictionLou, FrictionHigh] ,

HeatFlow in [PowerLow, PowerHigh] .

setPower(veryLow, real PowerLow, real PowerHigh):-

PowerLow is 0.01,

PowerHigh is 1.00.

setPower(lowPower, real PowerLow, real PowerHigh):-

PowerLow is 0.1,

PowerHigh is 100.00.

APPENDIX A. SAMPLE FILES

setPower(medPower, real PowerLow, real PowerHigh):-

PowerLow is 10.0,

PowerHigh is 1000.00.

setPower(highPower, real PowerLow, real PowerHigh):-

PowerLow is 100.0,

PowerHigh is 100000.00.

setPower(veryHighPower, real PowerLow, real PowerHigh):-

PowerLow is 100000.0,

PowerHigh is 1000000000.00.

Appendix B

Echidna's Output of The Example

in Chapter 6

wein dongli <17> echidna testHX.db

Echidna Version 0.947 bet a

Compiled: Wed Feb 24 15:56:31 PST 1993

(c) Copyright Expert Systems Lab.

Simon Fraser University, 1991, 1992

All rights reserved

(Expires: 25-Nov-93)

loading data base file "testHX. db" . . .
loading knowledge base file "declarations.kbW . . .
loading knowledge base file "global. kb" . . .
loading knowledge base file "material. kb" . . .
loading knowledge base file "geometry. kb" . . .

APPENDIX B. ECHIDNA'S OUTPUT OF T H E EXAMPLE IN CHAPTER 6 96

load ing knowledge base f i l e "tube.kbU . . .

load ing knowledge base f i l e " f i n . kb" . . .
loading knowledge base f i l e "matrix.kbW . . .
load ing knowledge base f i l e "capsule. kb" . . .

load ing knowledge base f i l e "agentMat.kbW ...
load ing knowledge base f i l e "heat . kb" . . .
load ing knowledge base f i l e "reg .kb" . . .

loading knowledge base f i l e " t e s t H X . kb" . .
query #O "prec i s ion (24) . " i s sued

done #O precis ion(24) .
query #1 "heatTest H i s a hea tTes t . " i s sued

done # I H isa hea tTes t ,

H : heatTest .
query #2 "H : design. " i s sued

echidna 23> s e t f a i l b r e a k off

echidna 24> c

done #2 H:design.

echidna 25> p H

heatTest .0 = (

real AtmosphericPressure = 100000.

capsule Capsule = capsule .0 .

i n t e r v a l ColdMassFlowRate = L O . 1018435, O.lOl8435I .

i n t e r v a l ColdVolumetricFlow = 0.09817187.

f l u i d F l u i d Cooler = t ubu l a r . 1 .

i n t e r v a l CPS = 1.

APPENDIX B. ECHIDNA'S OUTPUT O F THE EXAMPLE IN CHAPTER 6 97

interval Diameter = 0.5.

gases Gas = gases.O.

interval HeatFlow = C3394.774, 3394.7971 .
fluidFluid Heater = tubular.O.

interval HotMassFlowRate = LO. 03394783, O.O3394784] .

interval HotVolumetricFlow = 0.09817187.

interval Length = [O. 1, 0.1000001] .

materialchooser Materialchooser = materialChooser.0.

Pistonclearance = [O .OOO9999999, 0.0011 .
interval Pm = 100000.

powerRange Power = highpower.

pressureRange Pressure = low.

real ReferenceTemperature = 273.

regenerator Regenerator = regenerator.0.

interval SinkTemperature = 300.

interval SourceTemperature = 900.

sizeRange Size = big.

interval Stroke = 0.5.

temperatureRange Temperature = hot.

interval Ve = 0.09817187.

interval WallThickness = 0.01.

3

echidna 26> p tubular.0

tubular.O = (

heType Type = fluidFluidHE.

APPENDIX B. ECHIDNA 'S OUTPUT OF THE EXAMPLE IN CHAPTER 6 98

A = [0 .O4569292, O.O4570484] .
interval Area = [O.O02056285, 0.0020623971 .
real AtmosphericPressure = 100000.

C = [O .O2299988, 0.0233 .

interval CrossArea = C6.788815e-05, 6.795683e-051.

DeltaT = [l27.lOl4, 127.67363 .
Density = [O. 3457992, 0.34582311 .
F = C0.003521323, 0.0035229921 .

Flux = C1646032, 16509381 .
interval FrictionalPower = C2.591413, 2.6820123 .

real FrictionHigh = 10000.

real FrictionLou = 0.0009999999.

G = C499 -5499, 5003 .

gases Gas = gases.0.

interval H = E12934.64, 12946.863.

interval HeatFlow = C3394.774, 3394.7971 .
interval Length = LO. 009999999, O.OlOOOOl2I .
M = [-0.2000001, -0.21 .
MI = [O .O3457069, 0.035762791 .
interval Mass = C0.2403686, 0.25228951.

interval MassFlowRate = LO. 03394783, 0.033947841 .

solids Metal = solids.1.

N = [O -8, 0.80000021 .
Nu = C651.5148, 652.06323.

interval Pm = 100000.

APPENDIX B. ECHIDNA'S OUTPUT OF T H E E X A M P L E IN C H A P T E R 6 99

powerRange Power = highpower.

i n t e r v a l PressureDrop = 126.39731, 27.31 1631 .
pressureRange Pressure = low.

i n t e r v a l R = 1367497.6, 367869.81 .

r e a l ReHigh = 500000.

r e a l ReLow = 1000.

r e a l ReferenceTemperature = 273.

ReynoldsDiameter = C0.001309487, 0.001309607].

sizeRange S i ze = b i g .

temperatureRange Temperature = ho t .

T = C899. 9999, 9001 .
i n t e r v a l Volume = C3.877904e-07, 2.743187e-061.

i n t e r v a l VolumetricFlow = 0.09817187.

f lu idFluidType Geometry = tubularFF.

f unct ionType Function = hea t i ng .

r e a l HHigh = 100000.

r e a l HLow = 1000.

Numberof Tubes = [SO, 50.000021 .

t ube Tube = tube.O.

1

echidna 27> p tube.O

tube.O = (

i n t e r v a l ExternalArea = C0.0004840977, 0.0004841041.

i n t e r v a l ExternalCrossArea = [0.0001864908, 0.00018649251.

i n t e r v a l ExternalDiameter = LO. 01540934, O.Ol5409391 .

APPENDIX B. ECHIDNA'S OUTPUT OF THE EXAMPLE IN CHAPTER 6 100

i n t e r v a l In ternalArea = [4.114031e-05, 4.114307e-051.

i n t e r v a l InternalCrossArea = L1.346967e-06, 1.34708e-061.

i n t e r v a l InternalDiameter = C0.001309562, 0.0013095921.

i n t e r v a l Length = [0.009999999, 0.01000006].

i n t e r v a l WallThickness = C0 . OO704987l, O.OOi'O4987lI .
cy l i nde r Void = cy l i nde r . 0 .

i n t e r v a l Voidvolume = C7.755808e-09, 3.11625e-081.

i n t e r v a l ExternalVolume = C1.86481e-06, 1.865034e-061.

cy l i nde r Wall = cy l i nde r . 1 .

i n t e r v a l WallVolurne = C1.851458e-06, 1.851854e-061.

real DensityHigh = 20000.

real DensityLow = 1000.

i n t e r v a l Mass = LO. 004999997, O.OO5OOO593] .
s o l i d s Metal = s o l i d s . 0 .

i n t e r v a l MetalDensity = C2699.998, 27OO.OOlI .
i n t e r v a l Pm = 100000.

pressureRange Pressure = low.

sizeRange S i ze = b i g .

real VolumeLow = 7.853983e-09.

r e a l VolumeHigh = 0.1963495.

3

echidna 28> p gases .0

gases . 0 = (

m a t e r i a l s t a t e S t a t e = (s o l i d , f l u i d) .

i n t e r v a l Conductivi ty = 0.026.

APPENDIX B. ECHIDNA'S OUTPUT OF THE EXAMPLE IN CHAPTER 6 101

i n t e r v a l SpecificHeat = 1000.

i n t e r v a l Density = 1.14.

f lu idType Type = gas .

Viscos i ty = [1.779999e-06, 1.780011e-061.

gasspec ies Species = ni t rogen .

3

echidna 29> p t u b u l a r . l

t u b u l a r . 1 = (

heType Type = fluidFluidHE.

A = [O .O4569292, 0.045704841 .

i n t e r v a l Area = [O .O0456569l, 0.004571703] .
r e a l AtmosphericPressure = 100000.

C = [O .O2299988, 0.0231 .
i n t e r v a l CrossArea = [0.0003329978, 0.00033319261.

DeltaT = C99.70232, 99.912131 .
Density = C1.037377, 1.0374243.

F = L O . 003311694, 0.0033130051 .

Flux = [74256 1.8, 743545.31 .
i n t e r v a l Fr ic t ionalPower = C0.6423409, 0.72459533.

r e a l Fr ic t ionHigh = 10000.

r e a l FrictionLow = 0.0009999999.

G = C305.6594, 305.8361.

gases Gas = gases.O.

i n t e r v a l H = C7442.618, 7446.9371 .
i n t e r v a l HeatFlow = C3394.774, 3394.7963 .

APPENDIX B. ECHIDNA'S 0 UTPUT OF THE EXAMPLE IN CHAPTER 6 102

i n t e r v a l Length = LO. 009999999, 0.010000121 .
M = C-0.2000001, -0.21 .
M I = [O . 01907349, 0.021457671 .

i n t e r v a l Mass = LO. 2403686, 0.25228951 .
i n t e r v a l MassFlowRate = [O .lOl8435, O.lOl8435] .
s o l i d s Metal = s o l i d s . 3 .

N = C0.8, 0.8000002].

Nu = C833.lOO9, 833-5062] .

i n t e r v a l Pm = 100000.

powerRange Power = highpower.

i n t e r v a l PressureDrop = C6.552734, 7.3740783 .
pressureRange Pressure = low.

i n t e r v a l R = C49Wll.3, 5000001 .

real ReHigh = 500000.

real ReLow = 1000.

r e a l ReferenceTemperature = 273.

ReynoldsDiameter = [0.002910095, 0.0029103331.

sizeRange S i z e = b ig .

temperatureRange Temperature = roomTemperature.

T = [300, 300.0001].

i n t e r v a l Volume = [I. 555625e-06, 5.071631e-061.

i n t e r v a l VolumetricFlow = 0.09817187.

f lu idFluidType Geometry = tubularFF.

f u n c t ionType Funct ion = cool ing .

real HHigh = 100000.

APPENDIX B. ECHIDNA 'S 0 UTPUT OF THE EXAMPLE IN CHAPTER 6 103

r e a l HLow = 1000.

NumberOfTubes = [SO, 50.000021 .
t ube Tube = t ube . 1.

3

echidna 30> p t u b e . l

tube . 1 = (

i n t e r v a l ExternalArea = C0.0004909599, 0.00049096631.

i n t e r v a l ExternalCrossArea = [0.0001918154, O.OOOl9l8l7l].

i n t e r v a l ExternalDiameter = C0.01562777, 0.015627831.

i n t e r v a l In te rna lArea = C9.142571e-05, 9.142877e-051.

i n t e r v a l InternalCrossArea = C6.65178e-06, 6.651962e-061.

i n t e r v a l In ternalDiameter = [0.002910196, 0.0029102261.

i n t e r v a l Length = [0.009999999, 0.01000006].

i n t e r v a l WallThickness = C0.00635877, 0.006358773.

c y l i n d e r Void = cy l i nde r . 2 .

i n t e r v a l Voidvolume = r5.456919e-08, 7.797588e-081.

i n t e r v a l ExternalVolume = [1.918056e-06, 1.91828e-061.

c y l i n d e r Wall = cy l i nde r . 3 .

i n t e r v a l WallVolume = [I. 851654e-06, I . 851854e-061 .
real DensityHigh = 20000.

real DensityLow = 1000.

i n t e r v a l Mass = [O ,004999997, 0.0050005931 .
s o l i d s Metal = s o l i d s . 2 .

i n t e r v a l MetalDensity = C2699.998, 27OO.OOlI .

i n t e r v a l Pm = 100000.

APPENDIX B. ECHIDNA'S OUTPUT OF THE EXAMPLE IN CHAPTER 6 104

pressureRange Pressure = low.

sizeRange Size = big.

real VolumeLow = 7.853983e-09.

real VolumeHigh = 0.1963495.

3

echidna 31> p regenerator.0

regenerator.0 = (

heType Type = regeneratorHE.

A = [19.99998, 20.000021.

interval Area = C7.067176, 7.0695611 .
real AtmosphericPressure = 100000.

C = [O .9999998, 11 .
interval CrossArea = C0.1767145, 0.17671461.

DeltaT = c5.622372, 5.6319093 .

Density = C1.196568, 1.1965921.

interval Diameter = LO. 5199999, O.52OOOOlI .
F = C0.06515193, 0.06515611.

Flux = C479.2213, 480.41341 .
interval FrictionalPower = C0.005763371, 0.010531741.

real FrictionHigh = 10000.

real FrictionLow = 0.0009999999.

G = C0.1920885, 0.19214821.

gases Gas = gases.O.

interval H = C85.37003, 85.370631 .
interval HeatFlow = C3394.774, 3394.7963 .

APPENDIX B. ECHIDNA'S OUTPUT OF THE EXAMPLE IN CHAPTER 6 105

i n t e r v a l Length = [O. 1, 0.1000001] .
M = [-O.82OOOO2, -0.81999991 .

M1 = [O .OO2384186, 0.0035762791 .
i n t e r v a l Mass = C9.617465, 9.6413071 .
i n t e r v a l MassFlowRate = [O -03394783, 0.033947841 .
s o l i d s Metal = s o l i d s . 4 .

N = LO. 4999995, 0.50000051 .
Nu = C32.83719, 32.849111.

i n t e r v a l Pm = 100000.

powerRange Power = highpower.

i n t e r v a l PressureDrop = [O.2382814, 0.35868161 .

pressureRange P re s su re = low.

i n t e r v a l R = C1078.994, 1079.0731.

r e a l ReHigh = 10000.

real ReLow = 10.

r e a l Ref erenceTemperature = 273.

ReynoldsDiameter = [0.009999996, 0.01000012].

sizeRange S i z e = b i g .

temperatureRange Temperature = roomTemperature.

T = [26O. 0922, 260.09231 .

i n t e r v a l Volume = [O -01767145, 0.017671471 .

i n t e r v a l VolumetricFlow = C0.02836487, 0,028376791.

i n t e r v a l EnthalpyLoss = C343.8331, 345.90351.

i n t e r v a l MatrixMass = l5.293042, 5.3049631 .

NumRegenerators = [I, 11.

APPENDIX B. ECHIDNA'S OUTPUT OF THE EXAMPLE IN CHAPTER 6 106

interval TidalThermalMass = [I 17.4686, ll7.4722].

interval Ve = 0.09817187.

capsule Capsule = capsule.0.

matrix Matrix = matrix.O.

3

echidna 32> p capsule.0

capsule.0 = (

capsuleType Geometry = cylindrical.

cylindricalCapsule CCapsule = cylindricalCapsule.0.

annularcapsule ACapsule = unbound(8756512).

interval Length = [O. 1, 0.1000001] .
solids Metal = solids.5.

pressureRange Pressure = low.

sizeRange Size = big.

temperatureRange Temperature = hot.

3

echidna 33> p matrix. 0

matrix.0 = (

A = C19.99999, 201 .
C = [O. 9999999, 11 .
M = [-O.8200OOl, -0.821 .
N = [O .4999998, 0.5000002] .

Porosity = [O .8999999, 0.91 .

Density = C269.9991, 27O.OOl41.

matrixType Type = meshMatrix .

APPENDIX B. ECHIDNA'S OUTPUT OF THE EXAMPLE IN CHAPTER 6 107

solids Metal = solids.6.

Specif icArea = C359.9992, 36O.Oll21 .
ReynoldsDiameter = LO. 009999995, 0.011 .
R = C1078.994, lO79.073].

FibreDiameter = [2e-05, 0.0021 .

SphereRadius = [2e-05, 0.0011 .
WireDiameter = ~0.001111077, O.OOllllO77I.

3

REFERENCES

[Agogino 871 A.M. Agogino and A.S. Almgren, Techniques For In tegra t ing
Quan t a t i ve Reasoning a n d Symbol ic Compu ta t i on I n Engineer ing Op-
t imizat ion. Engineering Optimization, 1987, Vol. 12, pp 117-135.

[Ashley 921 S. Ashley, Engineous Explores the Design Space. Mechanical Engi-
neering, February 1992, pp 49-52.

[Brown 891 D.C. Brown and B. Chandrasekaran, Design P r o b l e m Solving:
Knowledge S t ruc tu r e s a n d Control Strategies, Morgan Kauffmann, 1989.

[Buchanan 841 B.G. Buchanan and E.H. Shortliffe, Rule-Based E x p e r t Systems:
T h e M Y C I N Exper iments of t h e S tanford Heur is t ic P rog ramming
P r o j e c t , Addison-Weslsy, 1984.

[Cutkosky 901 M.R. Cutkosky and J.M. Tenenbaum, Research i n Computa t iona l
Design at Stanford. Research in Engineering Design 2(1), 1990, pp 53-59.

[Davis 841 R. Davis, Diagnostic Reasoning Based o n S t r u c t u r e a n d Be-
haviour . Artificial Intelligence, 24, 1984, pp 347-410.

[Dechter 891 R. Dechter and I. Meiri, 1989, Exper imenta l Evaluat ion of Prepro-
cessing Techniques in Constraint-Satisfaction Problems. In Preceeding
of the Eleventh International Joint Conference on Artificial Intelligence, Menlo
Park, California, 1989, pp 290-296-

[Doyle 791 J. Doyle, A T r u t h Maintenance System. Artificial Intelligence, 12,
1979, pp 127-272.

REFERENCES

[Haralick 801 R. Haralick and G. Elliot, Increasing Tree Search Efficiency for
Constraint-Satisfaction Problems. Artificial Intelligence 14(3), 1980, pp 263-
313.

[Havens 901 W.S. Havens, Echidna Constraint Reasoning System: Next-
Generation Exper t System Technology, Technical Report CSS-IS TR 90-09.
The Expert Systems Laboratory, Centre for Systems Science, Simon Fraser Uni-
versity, Burnaby, British Columbia, Canada.

[Hayes-Roth 831 I?. Hayes-Roth, D.A. Waterman and D.B. Lenat, Building Exper t
Systems, Addison- Wesley, 1983.

[Hentenr~ck 891 P.V. Hentenryck, Constraint Satisfaction in Logic Program-
ming, The MIT Press, Cambridge, MA, 1989.

[Jones 821 J.D. Jones, Thermodynamic Design of The Stirling Engine, Ph.D.
Thesis, The University of Reading, England, 1982.

[Jones 931 J.D. Jones and D. Li, A Sense of Scale, to appear in IEEE Pacific Rim
Conference on Communications, Computers and Signal Processing, May 1993.

[Kumar 921 V. Kumar, Algorithms for Constraint-Satisfaction Problems: A
Survey. A I Magazine, 5, 1992, pp 32-44.

[Luger 891 G.F. Luger and W.A. Stubblefield, Artificial Intelligence and T h e
Design of Exper t Systems, BenjarninJCummings, 1989.

[Mackworth 771 A.K. Mackworth, Consistency in Networks of Relations. Arti-
ficial Intelligence, 8, 1977, pp. 99-118.

[Martin 711 W.A. Martin and R.J. Fateman, T h e MACSYMA System. Proceed-
ings of the Second Symposium on Symbolic and Algebraic Manipulation, Los An-
geles, California, 1971, pp 59-75.

[McDermott 911 D. McDermott, A General Framework for Reason Mainte-
nance. Artificial Intelligence 50, 1991, pp 289-329.

REFERENCES 110

[Mittal 861 S. Mittal, C.L. Dym and M. Morjaria, PRIDE: A n Exper t System
For T h e Design of Pape r Handling Systems. Computer, July, 1986, pp
102-114.

[Mittal 901 S. Mittal and B. Falkenhainer, Dynamic Constraint-Satisfaction
Problems. In Proceedings of the Eighth National Conference on Artificial In-
telligence, Menlo Park, California, 1990, pp 25-32.

[07Connor 921 L. 07Connor, Stirling Machines. Mechanical Engineering, June
1992, pp. 75-79.

[Papalambros 871 P.Y. Papalambros, Knowledge-based Systems in Optimal De-
sign, NATO AS1 Series, Vol. F27, 1987.

[Papalambros 881 P.Y. Papalambros and D.J. Wilde, Principles of Optimal De-
sign, Cambridge University Press, Cambridge, 1988.

[Prosser 911 P. Prosser, Hybrid Algorithms for T h e Constraint-Satisfication
Problem, Research Report, AISL 46-91, Computer Science Dept., Univ. of
S trat hclyde.

[Reichgelt 911 H. Reichgel, Knowledge Representat ion : An A1 Perspective,
Ablex Publishing Corporation, 1991, pp 168-171.

[Rinderle 911 J.R. Rinderle and L. Balasubramaniam, Automated Bond Graph
Modeling and Simplication t o Support Design. Journal of Dynamic Sys-
tems Measurement and Control, EDRC 24-54-91.

[Ross 771 A. Ross, Stirling Cycle Engines, Solar Engines/Phoenix, 1977.

[Sell 851 P.S. Sell, Expert Systems - A Practical Introduction, MacMillan Pub-
lisher Ltd., 1985.

[Sidebottom 921 S. Sidebottom, W.S. Havens and S. Kindersley, Echidna Con-
s t raint Reasoning System (Version 1): Programming Manual, Expert
Systems Laboratory, Centre for Systems Science, Simon Fraser University, Burn-
aby, British Columbia, Canada, December 1992.

REFERENCES 11 1

[Stallman 771 R. Stallman and G.J. Sussrnan, Forward Reasoning and
Dependency-Directed Backtracking. Artificial Intelligence 3(5), 1977, pp
135-196.

[Suh 901 N.P. Suh, T h e Principles of Design, Oxford University Press, 1990.

[Sidebottom 911 G . Sidebottom and W.S. Havens, Hierarchical Arc Consistency
Applied t o Numeric Processing in Constraint Logic Programming,
Technical Report CSS-IS TR 91-06. The Expert Systems Laboratory, Centre for
Systems Science, Simon Fraser University, Burnaby, British Columbia, Canada.

[Walker 801 G. Walker, Stirling Engines, Oxford University Press, 1980.

[Ward 871 A. Ward and W. Seering, Representing Component Types for De-
sign, Design Automation Conference, Boston, MA, September, 1987.

[Zeigler 901 B.P. Zeigler, Object-Oriented Simulation W i t h Hierarchical
Structures , Academic Press Inc., 1990.

