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ABSTRACT 

We intend to develop a two-part knowledge base to support the design of a range 

of artifacts. A prototype knowledge base has been built which can support the de- 

sign of Stirling engine heat exchangers. The knowledge base is implemented with the 

Echidna constraint reasoning system, which incorporates constraint logic program- 

ming, truth maintenance and dependency-directed intelligent backtracking, all in an 

object-oriented framework. In developing this knowledge base, we face a trade-off 

between generality and efficiency. To solve this problem, we introduced a new form of 

knowledge representation which incorporates scaling information, a form not generally 

available in other knowledge-based systems. 

In this thesis, we show how the knowledge base is created and how some of the 

knowledge underlying the designer's sense of scale can be formally represented in a 

knowledge base. A design example is also included. 
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Chapter 1 

Introduction 

1.1 Design and Knowledge 

Design is the most essential and fundamental engineering activity. It results from 

an expression of need for a component, product or system and entails several steps in 

producing a solution to fill that need. These steps typically include a precise definition 

of design requirements; collection and analysis of pertinent information; synthesis 

of analyzed information into various configurations; and evaluation of the merits of 

alternative possible solutions; and the selection, maybe after several iterations, of a 

solution that will best satisfy all the constraints. 

Design can be generally categorized as either creative or routine. In the former 

class, design is open-ended : design goals are ill-specified, and there is no storehouse 

of effective decompositions, nor any design plans for subproblems. This kind of design 

is very difficult and is rarely done; it leads to a major invention or completely new 
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products. One example would be the Manhattan Project'. In the latter class, effective 

problem decompositions are known, detailed design plans for the component problems 

are known, and the criteria for success are clear and quantitative. For example, 

configuring a computer system from available components. Most designs fall into 

routine design category. 

In this thesis, I am not going to write about how we can come up with new inven- 

tions. Instead, I will restrict the discussion to routine engineering design. In particu- 

lar, I will illustrate the application of a new approach to represent design knowledge 

and, as an example, its application in the development of a knowledge-based sys- 

tem which can support the design of the Stirling engine heat exchangers (background 

knowledge of Stirling engine will be given in chapter 3). The complexity of this kind 

of design tasks is due not only to the variety of combinations of requirements, but also 

to the numerous components and subcomponents, each of which must be specified to 

satisfy the initial requirements, their immediate consequences, the consequences of 

other design decisions, as well as the constraints of various kinds that a component 

of this kind will have. 

Engineering design is a knowledge-based activity. In order to design a particular 

set of artifacts, a computer-aided design system should possess knowledge about that 

set. To give some ideas of the kind of knowledge we are dealing with, let's draw an 

example from the knowledge base of Stirling engine heat exchanger (further details 

lThe Manhattan Project was conducted in the United States from 1940-1945; it was initiated in 
consequence of a letter from Einstein and Leo Szilard to President Roosevelt in which they suggested 
it might be possible to make an atomic bomb (and that whoever was first to make such a bomb 
would probably win the war.) The project involved many of the leading physicists of the time - Hans 
Bethe, Lawrence Oppenheimer, Richard Feynman, Freeman Dyson, etc. No-one had made anything 
of the sort before, and until the first test in the New Mexico desert, no-one knew whether it was 
even possible. 
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of the knowledge base will be shown in chapter 4). Suppose the set of artifacts we 

are trying to design is the the set of heat exchangers, then we need to know their 

type (fluid-fluid or regenerative), their physical size (diameter, length, thickness of 

the wall), the kind of materials they are made of (aluminum, iron or steel), etc. The 

knowledge is hierarchical, for example, tubular heat exchangers, plain heat exchangers, 

and finned heat exchangers are all subclasses of fluid-fluid heat exchangers: they share 

some common properties, yet they keep their own ones. The example I gave may look 

simple, while the real world design is much much more complicated and the ever- 

increasing level of sophistication in design knowledge presents a great challenge for 

the designer. 

Many research and development efforts are underway to make knowledge base tech- 

nology suitable for engineering applications, [Ashley 921, [Papalambros 871, [Reichgelt 

911, [Rinderle 911, and [Ward 871, to name several examples . One difficult task is to 

decide in what form the knowledge should be represented. A good versus bad represen- 

tation can make an enormous difference to the success or failure of a knowledge-based 

system. It seems that there is an inevitable trade-off between the generality and the 

efficiency of knowledge representation. Brown and Chandrasekaran's AIR-CYL sys- 

tem is a notable example of a highly efficient and extremely specific knowledge base 

[Brown 891. Knowledge bases written in this way cannot be re-used to support design 

of a different class of artifacts. Since it is expensive to develop a knowledge base, there I 

I 

are very few applications for which the cost of developing an original knowledge base 

could be justfied. At the other extreme, we have the example of How Things Work 

project at Stanford University [Cutkosky 901. This knowledge base basically consists 

of the laws of physics and mechanics. Of course, knowledge bases written in terms of 

laws of physics and mechanics would be eminently reusable. But it is a daunting task 
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to design, say, a pair of scissors, from these laws. 

We have to balance generality and efficiency in order to find an appropriate level 

of knowledge representation. Then we have to face the question - What is the ap- 

propriate  level t o  represent  design knowledge ? It is safe to say that the appropriate 

level of knowledge representation depends on the specific design subject, or in other 

words, the adequacy of the representation depends on the task we are trying to per- 

form. However, we can also say that to be appropriate, the representation should be 

suitable for each stage of the design process; design requirements should always be 

expressible in terms of the representation; the same representation must be useful for 

all knowledge in the subject area and the representation should come naturally to 

humans. We mentioned that knowledge representation is hierarchical, the knowledge 

representation should be able to express the design specifications at  the highest level; ' 
also, the explication of any statement should be independent of any other explication 

and statements can always be explicated at the next level down. The lowest level of 

the language corresponds to detailed engineering drawing which a CAM system could 

translate into physical operations. 

Knowledge can be represented in different forms: expert systems, databases, algo- 

rithms etc. Expert Systems is the traditional way of design knowledge representation. 

We will give a brief review of expert systems technology next. 

1.2 Expert Systems 

Expert systems are computer programs to reason about some specific domains 

using specialized databases known as knowledge bases [Hayes-Roth 831. There are 
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two major components in an expert system : the knowledge base (knowledge of t he  

experts) and the inference engine. When given an input in the form of a query, the 

inference engine consults the knowledge base to produce an answer. Expert systems 

differ from conventional programs in that the former distinguish the knowledge base 

from the inference engine while the latter simply combine the knowledge with the 

control algorit hrn. 

Expert systems can be classified into two categories: Rule-based and Model-based 

expert systems. The first generation of expert systems were rule-based systems, rep- 

resenting knowledge only in the form of production rules: 

IF (antecedent (s) > 

THEN (consequent (s) > 

One notable example of rule-based expert system is R1 (a knowledge-based VAX 

configurating system) [Sell 19851, which was developed by John McDermott and his 

colleagues at the Carnegie-Mellon University at the request of Digital Equipment 

Corporation (DEC). R1 can translate customer's orders into complete and coherent 

configurations. R1 went into operation in January 1980. DEC calculated that by 

1984 they would have required 80 more staff without R1, and they were convienced 

that R1 did the job much better than people could do it. Other examples of rule- 

based expert systems include: MYCIN (blood diagnosis) [Buchanan 841, MACSYMA 

(symbolic mathematics) [Martin 711, PRIDE (paper handling system) [Mittal86], and 

PROSPECTOR (mineral exploration) [Duda 791. 

Though these systems can achieve expert level of performance, their domains are 

highly restricted and they depend too much on the production-rule representation. 
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When the number of rules become very large, the rule-based systems are very dif- 

ficult to organize, maintain and update. Moreover, they have no knowledge of the 

components of the domain, the way those components are connected or the way those 

components behave and interact. Therefore rule-based expert systems are subject to 

many limitations, they are recommended and successful only when the given problem 

domain is quite small, well-understood and when there is a general agreement among 

domain experts [Luger 891. 

By comparison, model-based expert systems have many advantages. Instead of 

using a collection of condition/action pairs obtained from a domain expert, model- 

based systems use a model to represent a behavioural theory about a certain class of 

artifact [Davis 841. The model has a structure resulting naturally from the structure of 

the artifact being modelled, and can take advantage of similarities between different 

components and assemblies. Changes to the artifact can be naturally included as 

changes to the model, therefore the maintenance of model-based expert systems is 

easier. Mostly important, the model can be used for more than one task. For example, 

in the Stirling engine heat exchanger knowledge base described in the later chapters, 

the knowledge base can support the creation of multiple instances of components, say, 

a heater, a regenerator, and a cooler, all from the same knowledge base. The model 

can be used in design as well as in analysis. 

1.3 Motivation 

The purpose of this research is to develop a model-based expert system for computer- 

aided design based on an object-oriented constraint logic programming language, 
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Echidna. Our research group is working on two different design domains: archi- 

tectural design and mechanical engineering design. My involvement is in the area of 

mechanical engineering design. The work described in this thesis is the development 

of a two-part knowledge base that will ultimately support design of a range of arti- 

facts. We made a distinction between facts and strategies; we also incorporate scaling 

information in our knowledge base. These features are not found in other current 

knowledge-based systems. I have been working on a prototype of such a knowledge 

base that supports Stirling engine heat exchanger design. We believe that Echidna 

allows us to take a new design approach which can permit our system to take over 

greater initiative and wider areas of expertise in the future. 

The rest of this thesis is organized as follows. In chapter 2, some background 

knowledge of the developing tool, Echidna, is given. Chapter 3 gives a brief introduc- 

tion to the design subject, the Stirling engine. Chapter 4 addresses our new approach 

to represent design knowledge and the application of Monotonicity Analysis in the 

development of the knowledge base. The method to test the knowledge base and a 

detailed design example is discussed in chapter 5 and chapter 6, respectively. Chapter 

7 summarizes the results and outlines some work for future research. Some sample files 

of the knowledge base and Echidna's output files of the design example are included 

in the appendices. 



Chapter 2 

Echidna 

Echidna is a new type of constraint logic programming (CLP) language for model- 

based expert systems applications. It is under ongoing development by William S. 

Havens and his colleagues of the Expert Systems Laboratory at Simon Fraser Univer- 

sity. The language improves upon the limitations of existing expert system languages 

by combining aspects of schema-based knowledge representations, constraint logic 

programming, and intelligent backtracking. This chapter provides a limited review 

of Echidna, more information regarding Echidna can be found in [Havens 901 and 

[Sidebottom 921. Two research areas related to our work - object-oriented pro- 

gramming and constraint logic programming are also discussed. The vast quantity 

of publications covering these topics prohibits a complete review, but this review is 

representative of current work and provides a firm foundation for further study. 
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Object-Oriented Programming 

Object-oriented programming is a paradigm in which a software system is de- 

composed into subsystems based on objects [Zeigler 901. Computation is done by 

objects exchanging messages among themselves. The paradigm enhances software 

maintainability, extensibility and reusability. 

In OOPS (Object-Oriented Programming Systems), an object is a conglomerate of 

data structures and associated operations, usually representing a real world counter- 

part. Objects are usually not defined individually, instead, a class definition provides 

a template for generating any number of instances, each one an identical copy of a 

basic prototype. Objects are usually given generic descriptions so that classes may 

be generated at will. Classes of objects form a hierarchy in which they are arranged 

according to their degree of generality. 

Echidna is object-oriented. It allows us to represent knowledge in a modular form, 

and we can test, add or remove the modules independently. Echidna also provides 

inheritance1 so it allows us to move from general to specific, that is, a schema may be 

defined as a subclass of a more general parent schema and inherits its properties and 

methods. In this way, it reduces the need for new code. Representations of knowledge 

shown to be effective in one area can therefore be generalized to other applications. 

In Echidna, each object has two types of information associated with it. First, 

there are attributes and their values. Second, there are small programs, called meth- 

ods, which can be used to perform certain calculations. As mentioned earlier, objects 

communicate with each other by sending messages. Syntactically, a message is the 
- 

'Echidna supports only single inheritance; a class has exactly one superclass. 
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name of a method followed by arguments, which is sent to a schema instance via 

an operator; a method is a predicate in the logic programming sense and is defined 

within a particular schema (except Global methods which are defined outside of any 

schema definition in the knowledge base). The message-passing paradigm enforces 

modularity, data hiding and well-defined interactions between objects. 

Here is an example from the Stirling engine heat exchanger knowledge base: 

Metal : density(MetalDensity). 

In this example, Metal is an object; density(Meta1Density) is a message in the object- 

oriented programming sense. The object named Metal receives the message density/12. 

Interpreting the message causes a clause from the method density11 in the object 

Metal to be chosen and called, which in turn, finds the appropriate value of density 

and unifies it with the variable named MetalDensity. 

2.2 Constraint Logic Programming 

We are dealing with constraint-satisfaction problems (CSP). They can be stated as 

follows: Suppose there is a given set of variables, a finite and discrete domain for each 

variable, and a set of constraints which are persistent data links between variables. 

The flow of information between variables is through the constraints. Each constraint 

is defined over the set or some subset of the variables and limits the combinations of 

2A logic term is often referred to by its functor which is the function and arity of a term f l n ,  
here density is the function and arity is 1, therefore this message can be referred to as densityll. 
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values those variables can take. Design is constraint oriented, constraints are contin- 

ually being added, deleted and modified throughout the design process [Mittal 901. 

If we can find one assignment of values to the variables which can satisfy all the 

constraints, the assignment is the solution or one of the solutions [Hentenryck 891. 

We have two rather different schemes for solving CSP: backtracking and constraint 

propagation [Kumar 921. Next I will discuss these two schemes. 

2.2.1 Backtracking 

The backtracking scheme is an improvement on the generate-and-test paradigm, 

which simply generates and tests each possible combination of the variables until the 

first combination that satisfies all the constraints is found. The number of combina- 

tions considered by this method is the size of the Cartesian product of all the variable 

domains. The backtracking paradigm instantiates variables sequentially. As soon 

as all the variables relevant to a constraint are instantiated, the validity of the con- 

straint is checked. If a partial instantiation violates any of the constraints, backtrack- 

ing is performed to the most recently instantiated variable that still has alternatives 

available. Whenever a partial instantiation violates a constraint, backtracking can 

eliminate a subspace from the Cartesian product of the variable domains. 

Although the standard backtracking (depth-first search chronological backtrack- 

ing) does prune significant portions of the search tree, it still takes exponential time 

in the number of variables in the worst case. Besides, it often suffers from thrashing, 

that is, the search in different parts of the space keeps failing for the same reasons. 
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To correct the inefficiency of chronological backtracking, Echidna uses dependency- 

directed backtracking [S tallman 771. When a failure occurs, chronological backtrack- 

ing simply undoes the most recent choice, regardless of whether that choice is the 

cause of the failure. Obviously, this is not good and often causes redundant work. In 

contrast, dependency-directed backtracking looks for the most recent choice 'involved' 

in the failure (the cause). Once the cause is found, it is tried for an alternative value. 

Let's look at  a simplified example. Suppose there is a query: 

? - ml(A, B), m2(C7 D, E), m3(A). 

Initially ml(A) succeeds in binding A to 10 and B to 20 and it takes a long time to 

bind C, D, E to 30, 40, 50 respectively. If later, m3(A) fails for some reason, stan- 

dard chronological backtracking will undo both m2(C7D,E) and ml(A,B). However, 

m2(C7D,E) has nothing to do with the failure in m3(A) since they share no common 

arguments, the real culprit is ml(A,B) for it assigned 10 to variable A in the first 

place. As it requires a large amount of work to succeed in binding C, D, and E to 

their present values, it is a waste to do it all over again. Intelligent backtracking 

can detect that m2(C,D7E) is independent of the failure m3(A), therefore keeps the 

binding results of m2(C7D,E) and backtracks directly to ml(A,B) to find a new value 

to A3. Then m3(A) will be tested with the new value of A from ml(A,B). Several 

iterations may be needed before all the variables can be ground. 

3Though B is independent of the failure m3(A), it has to be undone since ml(A,B) involves both 
A and B. 
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2.2.2 Constraint Propagation 

During constraint propagation, constraints are applied to restrict variable domains 

to  only those values that can participate in the solution to the problem, thus con- 

straint propagation significantly reduces the search space. By performing constraint 

propagation, the original CSP is essentially transformed into a simpler CSP. In the 

process of constraint propagation, certain failures are identified, and the search space 

is effectively reduced so that these failures are not encountered at  all in the search 

space of the transformed CSP. Constraint propagation is implemented using an arc 

consistency algorithm [Mackworth 771 adapted to k-ary relations over discrete do- 

mains. The constraint propagation scheme has the disadvantage of being expensive; 

experiments by many researchers with a variety of problems indicate that it is bet- 

ter to apply constraint propagation only in a limited form [Haralick 80; Dechter 89; 

Prosser 911. 

2.2.3 A Combination of Backtracking and Constraint Prop- 

agat ion 

A good way to solve CSP is to embed a constraint-propagation algorithm inside 

a backtracking algorithm. However, to avoid the thrashing problem of the standard 

backtracking, a truth maintenance system [Doyle 79; McDermott 911 is needed to 

support intelligent backtracking. The way it works is as follows: A variable is assigned 

some value, and a justification for this value is noted. Then similarly, a default value 

is assigned to some other variable and is justified. At this time, the system checks 

whether the current assignments violate any constraint. If they do, then a new node 
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is created that essentially denotes that the pair of values for the two variables in 

question is not allowed. This node is also used to justify another value assignment to 

one of the variables. This process continues until a consistent assignment is found for 

all the variables. 

Echidna has a built-in mechanism to control dependency-directed backtracking 

and constraint propagation [Sidebottom 911. It is quite powerful in solving CSPs, but 

it still has some problems which we will discuss next. 

2.3 Potential Problems With Echidna's Constraint 

Propagat ion Mechanism 

Echidna has two built-in tools to perform constraint propagation, namely, indo- 

main and split. Indomain will select a unique value for a single variable, while split 

takes a list of variables, halves the domain of each, selects one half of each domain, 

then enforces constraints; if no failures occur, split repeats the process until the vari- 

able domains have been halved a predetermined number of times. Split might be 

thought of as allowing breadth-first search. Ideally, the split command would divide 

the domains of its variables into intervals and a set of constraints would then be ap- 

plied which would eliminate all of those intervals in which the constraints failed to 

hold. 

In the process of testing our Stirling engine knowledge base, we discovered a prob- 

lem with the constraint propagation mechanism of Echidna and it further led us to 

the idea of adding scaling information to the knowledge. We think this is a new and 
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useful form of knowledge representation. I will first describe the problem we found, 

then in chapter 4, discuss our new form of knowledge representation. 

In Echidna, each variable has an initial domain, that is, it has an initial range 

of possible values. We can impose constraints on these variables and take advantage 

of the built-in constraint propagation mechanism; the range mentioned earlier will 

be restricted progressively until the variable has a single value. This is always true 

in theory, however, we found that how successful a constraint is in restricting the 

domain of a variable depends on the size of the domains of any other variables that 

may appear in the constraint. Consider the following example. 

schema try 

1 1000001 A. 

C1, 1000001 B. 

Cl, iolc. 

t r y  :- 

A =:= 2 

B =:= 3 , 

C = : = A + B ,  

print (C) . 

We would expect Echidna to come up with an answer C =:= 5. Instead, we 

will get C =:= [1.984375, 101. So variable C is not ground even after constraint 
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propagation. 

There is a way to solve this problem: we could set the 'precision4' from its default 

value precision(6) to a very high value, say, precision(24). This can give us C =:=5. 

In this very simple example, increasing precision may not be a bad idea, however, 

in most cases, increasing precision is quite costly and slows the computation process 

significantly. So generally this is not a good solution. 

We found that if we reduce the initial ranges of A and B and set them to the same 

order of that of C, then we can obtain the expected result. 

schema t r y  

t r y  :- 

print (C) . 

3 
4The Precision is a global variable internal to Echidna. It is an integer representing the degree to 

which a real interval variable is refined. The global precision can be increased from its initial value 
of 6 to a maximum value of 48, and the precision of individual variables can also be set to a multiple 
of the global precision. 
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This gives us C =:= [4.9375,5.148438]. Thus C is refined to very close to 5. 

We have encountered several other similar problems and we arrived at a conclusion 

that we should avoid using large domains for variables. However in real world design, 

many design variables do have large domains, for instance, the power output of a 

Stirling engine can be as small as 1 watt and as large as 1 megawatt, a range of six 

orders of magnitude. This may be a problem when we use Echidna to develop the 

knowledge base to support Stirling engine design. We have to find a way to avoid the 

problem. The solution we found is based on 'scaling'. This aspect will be addressed 

in chapter 4. 



Chapter 3 

A Knowledge Base For Stirling 

Engine Design 

3.1 A Brief Introduction To Stirling Engines 

This chapter gives an introduction to Stirling engines. For more details on the 

subject, the reader can refer to [Walker 801, [Ross 771, and [Jones 821. 
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3.1.1 What Is A Stirling engine? 

The history of the Stirling engine can be traced to 1819 when a Scottish inventor, 

Robert Stirling, built the original device. During the last century, Stirling engines 

competed with the steam engine, until they were both replaced by the internal com- 

bustion engine around the beginning of this century. 

A Stirling engine, like the gasoline, diesel, and jet engines with which we are more 

familiar, is a heat engine; that is, an engine that derives its power from heat. However, 

unlike those other engines, a Stirling engine obtains its heat from outside, rather than 

inside, the working cylinders. The Stirling engine is quite omnivorous with respect to 

fuel; literally, any source of heat, as long as its temperature is high enough, will power 

a Stirling engine. This last statement is true of any other externally heated engines, 

like the steam engines, but Stirling engines hold the promise of developing the most 

power for a given supply of heat (or fuel) of the practical alternatives presently known; 

besides, it can also use stored heat. In terms of pollutants, Stirling engines are among 

the cleanest heat engines available. Stirling engines can have the same high efficiency 

and part-load performance of diesel engines, can match the high specific output of 

gasoline engines and yet have the favorable low-speed torque characteristics of steam 

engines. These factors all account for the present interest in the Stirling engines. 

Stirling engines can be used as prime movers, heat pumps and pressure generators, 

and they are beginning to attract attention for their use in artificial heart, household 

refrigeration and solar-power applications A market niche is also emerging for the use 

of Stirling machines in the cooling of computer chips [O'Connor 921. 
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3.1.2 How Does It Work? 

A Stirling engine operates on a closed regenerative thermodynamic cycle1, with 

cyclic compression and expansion of the working fluid at different temperature levels. 

The Stirling engine operates with a fixed mass of working fluid rather than periodi- 

cally taking in working fluid and exhausting it to the atmosphere after heating and 

expansion. The flow of working fluid is controlled by volume changes, and there is a 

net conversion of heat to work or vice versa. 

The basic operation involves heating and cooling the working gas. The working 

gas is stored in the cylinder. In Stirling engines, as in other heat engines, the heater is 

an essential element. Heat is absorbed from the hot end and rejected at the cold end, 

and work is done equal to the difference between those two quantities of heat. The 

Stirling engine also contains two other heat exchangers, namely the regenerator and 

the cooler, which have no analogues in the internal combustion engine. A regenerator 

is a heat exchanger in which heat is transferred from the working fluid to a solid 

matrix and back again over the cycle. It consists of a capsule containing the matrix 

material, which may be stacked wire screens, a metal foam, or a packed bed of spheres. 

The regenerator removes the residual heat in the working fluid after its expansion and 

stores the heat for re-absorbtion later in the cycle. When the fluid is compressed, heat 

generated in this process will be removed from the cooler. A cooler is similar to a 

heater but its function is cooling rather than heating. 

There are many configurations of the Stirling engine. Three common configura- 

tions are shown below. For detailed descriptions, refer to [Walker 801 and [Jones 821. 

'The Stirling engine doesn't operate on Stirling cycle, rather, it approximates to the Otto cycle. 
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In our present knowledge base, we consider the design of the heater, cooler and regen- 

erator. We will extend our knowledge base to include the design of other components 

such as the displacer piston and power piston. 

H: heater 
R: regenerator 

C: cooler 

Figure 3.1 : Alpha Configuration 

- Piston 
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Displacer Piston 

Power Piston 

(2) Beta 

Figure 3.2: Beta Configuration 

Displacer Piston 

Power Piston 

(3) Gamma 

Figure 3.3: Gamma Configuration 
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Structure of The Knowledge Base 

We developed a two-part knowledge base to support the design of Stirling engine 

heat exchangers. The knowledge base represents two kinds of knowledge: facts con- 

cerning the properties of potential design components; and strategies for combining 

these components into an artifact that can meet given requirements. The former kinds 

correspond to descriptions of the behaviour of the components in terms of the laws 

of physics; the latter kinds correspond to methods for selecting and assembling these 

components. Facts are usually expressed as constraints, while strategies are expressed 

by the ordering of clauses. 

Here are some examples of facts: 

Area =:= 0.25 * pi * Diameter * Diameter, 

Density of hydrogen is 0.088 kg/m3. 

Facts are, of course, always true, but they provide no guidance by themselves. 

In contrast to rules which are always true, design strategies are heuristics which are 

usually valid. They are guiding principles which the designers use to make intelligent 

decisions based on previous experience. Examples of strategies : 

I f  t h e  heatflow i s  more than IOOOW, t h e  tubular  

heat  exchanger is  probably t h e  best t o  choose; 

I f  t h e  heatflow i s  between IOU and IOOOW, then 

f inned heat exchanger may be most su i t ab le ;  

If t h e  heatflow i s  l e s s  than IOU, p la in  f lu id -  

f l u i d  heat exchanger should be used. 
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Determine the size of the engine according to 

the power requirement. 

Use the heuristic "stroke==bore" to determine 

the cylinder and piston dimensions. 

The distinction we made is not found in traditional CAD systems: knowledge of 

the set of artifacts versus knowledge of the particular artifact being designed to meet 

the current design requirements. The former knowledge is unchanging, the latter is 

built up gradually over one or more design sessions. Why do we need to make the 

distinction? Firstly, it opens the possibility of using different strategies on the same 

set of facts; Secondly, it allows facts about components to be used for different design 

tasks and to be checked independently. 

Ideally, facts and strategies would be entirely independent, but in some cases, 

this division would be quite fuzzy when examined closely. For example, in a Stirling 

engine, the heater is usually connected to the expansion space of the engine. If we 

write this into the facts knowledge base, we have precluded using the heat exchanger 

model for designing other artifacts containing heat exchangers. If we are to make 

the division, we cannot make it on ideological grounds, rather, we must make it on 

pragmatic grounds. The deciding factor is, as we mentioned earlier, the tradeoff 

between generality and efficiency; the closer to uninterpreted physical laws we make 

the facts, the more general the applicability of the factual knowledge base, but the 

more difficult the task of synthesising a solution to any given problem. The rule 

we followed for deciding how to make the division is start specific, work towards the 

general; this way we are sure that the knowledge base will be good for at least one 
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thing. 

The knowledge bases we developed in this research are of two types: the first 

is called 'agent * *.kb7 are concerned with strategies for design, such as agentHX.kb 

and agentMat.kb; the second is concerned with facts about possible components of a 

design, such as reg.kb and material.kb. Sample files are included in Appendix A. The 

separation between agents and components is intended to increase the re-useability 

of the knowledge recorded in the knowledge bases. 

My work mainly focuses on the development of the factual knowledge base which 

consists of schemata representing potential components of a Stirling engine. We are 

using an object-oriented approach by which the engine is represented in terms of two 

orthogonal hierarchies, a classification hierarchy and a component hierarchy. In our 

example of the Stirling engine knowledge base, there is a description of a generic heat 

exchanger; a fluid-fluid heat exchanger can be defined as a subclass of the generic heat 

exchanger, and it inherits the properties and methods of that class ( It may also have 

particular properties and methods of its own). Consequently a tubular heat exchanger 

can then be defined as a subclass of the fluid-fluid heat exchanger, and inherits the 

properties and methods of that class. This hierarchy is illustrated in Figure 3.4. 

The component hierarchy describes the 'part of7 relationship between objects, for 

example, matrix and capsule are both components of the regenerator (Figure 3.5). 

Certain methods may make explicit use of this hierarchy; for example, the total mass 

of an assembly can be found by recursively finding and summing the masses of all its 

subassemblies. 
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S tiding engine heat exchanger 

Figure 3.4: Classification Hierarchy 

f \ 

Stirling engine 
i 

Figure 3.5: Component Hierarchy 
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There are a number of parameters associated with each object, for example, 

InnerDiameter, OuterDiameter and Length are all parameters of a tube. Parameters 

can be either numeric or symbolic. Besides those numeric parameters mentioned 

above, a tube also has a parameter 'material7 which may be any one of a library of 

material types represented in the knowledge base. An object is fully specified when all 

its parameters have been assigned values and all of its components, if any, have been 

fully specified. The values which parameters may take are restricted by constraints 

defined between objects, reflecting the relevant physical relationships. The component 

hierarchy is of more importance, as it is the key to extending the knowledge base into 

other areas of knowledge. 

3.3 How Is The Knowledge Base Used ? 

Before use, the knowledge base represents the generic engine, or the set of all possi- 

ble engines: none of its parameters has been assigned a value and no components have 

been selected. When the designer specifies a particular set of design requirements, 

the set of engines meeting these requirements shrinks as the constraints propagate, 

restricting the possible values of the parameters. The parameter values of each com- 

ponent are initially unknown, but will be gradually determined as the implications of 

the design requirements and the agent's heuristic decisions are propagated through 

the network of constraints. It may happen that the initial choice of components does 

not lead to any solution; in this case, Echidna uses dependency-directed backtracking 

to identify and change the choices responsible for the failure. In chapter 6 we will 

present a detailed example to describe the operation of the knowledge base. 



Chapter 4 

A Sense of Scale 

4.1 Why D o  We Need Scaling ? 

While testing and modifying the knowledge bases, we found that many variables 

in the constraints have very large initial domains. This made it hard for Echidna 

to ground some of the variables after constraint propagation, and, sometimes, there 

would be no solution. 

The problem could be ameliorated if we reduced the initial domain size of the 

variables. But one would immediately argue that by doing this we also have reduced 

the generality of the knowledge bases and we should not trade off efficiency against 

generality in this way. 

To solve this problem, we introduce the concept of scaling. 
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An experienced designer has a good sense of scale, and uses it routinely. For 

example, if we ask an experienced automobile engineer - Can you make an internal 

combustion engine that can deliver 500 HP and fit inside a soup can ? He or she 

would say no, and we would expect him or her to say this immediately. Yet it would 

be very difficult to point to any physical principle that makes this goal impossible. 

There might be no shorter way of proving it impossible than by examining a variety of 

attempts to reach the goal, and seeing that each one fails -- and each might fail for 

different reasons, one because of limitations in the strength of materials, one because 

of the limited reaction rates of any possible fuellair mixtures. As we lower the power 

requirement, we eventually come to an engine that could be built, but it is impossible 

to identify a sharp threshold between impossibility and possibility. 

For each schema in the knowledge base, we distinguish a number of different pos- 

sible scales, each corresponding to certain domains of the schema's variables. Before 

creating an instance of the schema at run time, the design agent looks at the required 

performance and decides which of the variable sizes is most likely to meet that level 

of performance, then restricts the variable domains appropriately. The use of scaling 

increases the efficiency of the design process in two ways: firstly, at the level of the 

design heuristics: failures will occur as soon as the knowledge base begins to consider 

an unsuitable design rather than occurring after a long series of choices and constraint 

propagation; secondly, at the level of constraint propagation, where as we mentioned 

earlier, constraint propagation is more powerful if the domain of the variables are 

reduced. 

Once the idea of scaling has been introduced, we recognize that a lot of engineering 

design knowledge can be represented in this way. As the scale of a design changes, we 
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will cross the threshold at which different design methods become appropriate. For 

example, if the design is to store small quantities of electrical energy, then a capacitor 

might be a suitable device, but if we want to store enough energy to start a car, we 

would look at battery storage. So we will make the choice of design methods depend 

on scale, as well as the initial variable domains. More discussions on the idea of scaling 

can be found in [Jones 931. 

Creating Scaled KB 

In order to incorporate scaling information in the knowledge base, we can, for 

instance, replace the component tubular heat exchanger with a family of components: 

very small tubular heat exchanger, small tubular heat exchanger, medium tubular heat 

exchanger, large tubular heat exchanger, and very large tubular heat exchanger. The 

members of a family basically share the same set of constraints, though sometimes 

some minor adjustments are needed as the scale changes - for example, the loss in 

engine efficiency due to heat transfer to the cylinder walls must be included when 

designing a very small engine, but is negligible when designing a very large engine. 

We need to provide a label to each member of a family showing the upper and 

lower bounds on the values of some of the schema variables. Then, when the design 

agent reads the labels, it can avoid choosing components for which the desired perfor- 

mance was out of range. This obviously increases the efficiency at the level of design 

heuristics, which we mentioned earlier. 

If we know there is a unique order in which variables will be ground, we can select 

bounds on those that will be ground first, and deduce bounds on the other variables 
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from these. We introduce two guidelines which help us to decide the order in which 

these variables will be ground. 

The first one is the distinction between design parameters and functional require- 

ments. The functional requirements are those properties of the artifact whose values 

are supplied to the designer as targets to be achieved, while design parameters are 

those properties whose values the designer may set to meet those targets [Suh 901. For 

example, we want to design a tubular heat exchanger which can handle 2000 watts 

of heat flow. We can set heat flow as the functional requirement. In order to meet 

this requirement, the designer can choose the value of the diameter of the heater, 

the internal and external diameter of the tube and the length of the tube. These 

are design parameters. After we make the distinction, we would want to set bounds 

on the design parameters first, and deduce bounds on the functional requirements. 

However, this distinction cannot be applied rigorously since we intend to make the 

knowledge base reusable for a variety of design problems: some problems may involve 

maximizing the power output, others may involve maximizing efficiency, etc. 

When the distinction mentioned above is not clear, we may make use of a related 

distinction from ob ject-oriented pr~gramrning~private versus public variables of an 

object. The idea is that some properties of the component are relevant to  the design 

of the rest of the artifact, while others are only important when we are designing that 

particular component. For example, in our Stirling engine heat exchanger knowledge 

base, we can set 'PressureDrop7 as a public variable because it is needed to calculate 

the efficiency of the engine as a whole; by contrast we can set 'Density' of material for 

the regenerator matrix as a private variable since it doesn't directly affect anything 

outside the regenerator. We choose to set bounds on the private variables first, and 
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deduce bounds on the public variables. 

It must be admitted that these two guidelines will in general be inadequate to 

determine a unique order in which to set bounds on the schema's variables. However 

this is not a fatal problem, for it only affects the efficiency of the knowledge base, not 

its correctness or completeness. 

Scaling appears to be quite straightforward: choose reasonable upper and lower 

bounds on some variables in a given schema, and deduce upper and lower bounds on 

the remaining variables. However, we need to be very careful in doing this so as to 

make the knowledge efficient. Consider the following example: 

Suppose this is part of a knowledge base for design. In the course of design, we may 

use 'indomain' to  choose a random value of X from its range. Whatever value we 

choose, the knowledge base will be consistent. But if instead we begin by choosing a 

value of Y, there is the possibility that we will choose a value between 20 and 25, in 

which case there will be a failure. Although Echidna can recover from the failure by 

backtracking, we have wasted time by making a choice which we could have avoided. 

So it is important that the ranges chosen for the variables be consistent with each 

other, given the constraints in the knowledge base. The principle we need to follow 

is - For any value chosen from the initial domain of a variable, there must be at least 

one value in the initial domains of each of the other schema variables such that the 

schema constraints can be satisfied [Mackworth 771. This principle tells us to restrict 
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the initial domains of variables, to eliminate inconsistent values. At the same time, 

we do not want to restrict the domains more strictly than this principle requires, or 

we will eliminate potentially valid solutions, making the knowledge base incomplete. 

In a complex schema, a given variable may appear in several constraints, and 

it may be difficult to tell which constraint actually determines the upper and lower 

bounds on its potential values. A systematic way is needed. That's our next topic - 

Monotonicity Analysis. 

4.3 Application of Monotonicity Analysis 

4.3.1 The Problem 

In a scaled knowledge base, every variable is assigned some domain. We discovered 

an interesting problem and we were able to solve it using the Monotonicity Analysis 

technique. 

In reg.kb (regenerator), there are five variables: R [Reynolds number], h [convec- 

tive heat transfer coefficient], Nu [Nusselt number], DH [ hydraulic diameter of the 

passage in the matrix], and G [mass flux]. They are related by three constraints: 

Nu = CRn 

h = NuK/DH 

R = G D ~ l p l  

lC, K and p are constants. 
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We have discovered that for the given set of constraints and the given initial 

bounds on R, h, Nu and DH (none of which we want to change), G should be set 

within a certain range and we want to find an explicit expression for this range. 

The expression should be in terms of the limits for the other variables involved: 

RHigh, RLow, hHigh, hLow, etc. The expression should ensure that, for any value in the 

range allowed for G, there will be values in the initial ranges of R, h, Nu, and DH 

consistent with this value. 

We can do this by using the axioms of interval arithmetic, however, the reader 

may easily verify that simply eliminating variables from this system of equations will 

give different bounds on G, depending on which variables are selected for elimination. 

This is not a particularly complicated problem. It would be much more confusing if 

there are many variables and constraints involved. Clearly, a systematic approach is 

required. Fortunately, such an approach exists, it is called Monotonicity Analysis. 

4.3.2 Basics About Monot onicity Analysis 

Monotonicity Analysis is an interactive partial optimization technique to reduce 

the dimensionality of the problem and detect flaws in the problem formulation. At this 

point, it is necessary to give the reader some background knowledge of Monotonicity 

Analysis by introducing some simple but important concepts and principles. For 

further details, please refer to [Papalambros 881. 
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Basic Concepts 

A discrete or continuous function f(x) is strictly globally monotonically increas- 

ing over a domain 0 if and only if f (XI)< f (xz) V XI, X Q  E fl : X ~ > X I .  The 

monotonicity of a function with respect to (w.r.t.) a variable is designated by 

a + or - superscript for the argument in the list of the function. For example, 

f (xr ,  x,) implies that the function is monotonically increasing w.r.t. XI and 

decreasing w.r. t. 22. 

A function having a minimum (maximum) will be called well bounded from 

below (above). 

A constraint is said to be unconditionally active or critical if elimination of it 

will lead to an unbounded or degenerate solution. For an inequality constraint, 

this means that it must be satisfied with strict equality. If a constraint is critical 

for more than one variable, we say it has multiple criticality. An active equality 

constraint can be changed to an active inequality constraint, the direction of 

which defines the directionality of the equality. 

A set of constraints is said to be conditionally active if elimination of all the set 

will lead to an unbounded or degenerate solution. 

Any variable that occurs in an active constraint is described as relevant; Any 

variable occurring in all constraints of a conditionally active set must be relevant. 
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Two Monotonicity Principles 

The First Monotonicity Principle (MP1) 

In a well-constrained objective function every increasing (decreasing) variable is 

bounded below (above) by at least one active constraint. 

The Second Monotonocity Principle (MP2) 

Every monotonic nonobjective variable2 in a well-bounded problem is either 

irrelevant and can be deleted from the problem together with all constraints in 

which it occurs, or 

relevant and bounded by two active constraints, one from above and one from 

below. 

Monotonicity Analysis Process 

We show in the next page a flow chart which describes the process of Monotonicity 

Analysis. First we need to put the problem statements into a standard qualitative form 

and build a model for the particular problem. Then we check out the monotonicities 

of the variables and put this information into a table called Monotonicity Tab2e. Next 

we applied monotonicity principles (MP1 and MP2) to check the problem model. If we 

find that the model is well bounded, we can proceed and apply classical optimization 

methods, such as Gradient descent, Newton's method, Simplex algorithm, etc. If at 

this stage, we have already found that the problem is not well bounded, we should go 

back to  check the problem statements because probably there is something wrong with 

21f there is a monotonic variable which occurs in the constraint(s) but not in the objective, it is 
called a nonobjective variable. 
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them, or the problem doesn't have a solution. By using Monotonicity Analysis, we 

can reduce the dimensionality of the problem and avoid wasting effort on a problem 

which doesn't have a solution. 

Input problem statement in 

Determine monotonicities 

construct Monotonicity Table 

I Apply MPl and MP2 to fmd ( f \ I relevance of variables and 1 -  Check the problem I 
I constraints, delete irrelevant 

variables and constraints I model I 

I F i d  potential subset cases and I I apply optimization techniques I 

Figure 4.1: Monotonicity Analysis Process 
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4.3.3 Application 

Let's go back to the problem of finding explicit limits of G. To find G [GM;,, GMaz], 

separate the problem into two parts. First, find G ~ i n ;  second, find GMaz. 

To find GMin, write the problem in a standard form: 

Objective: minimize G 

Subject to: (1) Nu = CRn 

(2) h = NuK/DH 

(3) R = GDH/P 

(4) h - hHigh 5 0 

(5) -h + h~ow I 0 

(6) R - R ~ i ~ h  5 0 

(7) -R + R L ~ ~  -< 0 

(8) NU - N ~ H i g h  5 O 

(9) -NU + N u L ~ ~  5 0 

(10) DH - DHH+ I 0 

(11) -DH + D H L ~ ~  -< 0 

;hHigh is the upper bound on h 

;hLow is the lower bound on h 

;RHigh is the upper bound on R 

;RLow is the lower bound on R 

;NuHighis the upper bound on Nu 

;NuLowis the lower bound on Nu 

;DHHighk the upper bound on DH 

;DHLow is the lower bound on DH 

We put the information into a form called the Monotonicity Table. 
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Objective: minimize G 

Table 4.1: Monotonicity Table 

This table shows the result of the first cycle of monotonicity analysis. G is called 

the objective variable since it appears in the objective we seek to minimize, so we can 

add an asterisk to cells that have G in them. This shows that G is a relevant variable. 

A " + " is added to the Direction + cell because G increases in the objective to  be 

minimized. We can also find that only constraint (3) bounds G, so constraint (3) 

must be critical and bounds G from " - " direction. This also shows that R and DH 

are also relevant although they do not appear in the objective function, so we can put 

asterisks under DH and R. The multiple criticality of constraint (3) indicates that it 

can be used to  eliminate a variable. Since the objective and the constraint (3) both 

have variable G, it can be eliminated. Two other equality constraints have a common 

Monotonic variable 
Relevance 
Direction + 
Direction - 

(1) N u  = CRn 
(2) h = Nul</DH 
(3) R = GDH//L  
(4) - h~igh 5 0 
(5) -h + h~ow I 0 
(6) R - R~igh  L 0 
(7 )  -R + RLow L 0 

_ (8) N u  - N u H ~ ~ ~  < O 
(9) -Nu + N u L ~ ~  I 0 
(lo)  DH - DHHigh 2 0 
(11) -DH + DHL,,~ L 0 

G 
* 
+ 
. . . 

*- 

Nu 

? 
? 

+ 
- 

h 

? 

+ 

DH 
* 

? 
*- 

+ 

R 
* 

? 

*+ 

+ 
- 
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variable Nu, so we can substitute constraint(1) into constraint(2). In the meantime, 

the G column and the Nu column can be deleted, together with constraint (8) and 

(9). Now the Monotonicity Table is simplified and looks like this: 

Objective: minimize pR/DH 

I Monotonic variable I h l ~ ~ l R l  

Table 4.2: Monotonicity Table 1 

Relevance 
Direction + 
Direction - 

The only equality constraint (2)' and the new objective have common variables 

R and DH, this indicates that we can further eliminate one variable. In this case 

DH should be eliminated together with constraint (10) and (11)~. At this point the 

monotonicity table looks much simpler: 

3We can eliminate R and get another lower bound on G which we can prove to be greater than 
the one we get by eliminating DH. 

* * 
+ 
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Objective: minimize phR'-n/CK 

Monotonic variable l h l R l  
I I 

Table 4.3: Monotonicity Table 2 

1 Relevance 
Direction + 
Direction - 

To find GMin, from the Monotonicity Table, we can see that constraint (5) and (7) 

bound h and R from below respectively, therefore, 

It is a similar task to find GMas. Following the same step, we get 

* 
+ 

Thus, we can put explicit bounds on the variable G, given the constraints it appears 

in and the limits on the other variables in the constraints. 

* 
+ 
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In this case, the technique of Monotonicity Analysis can lead us directly to the 

solution. It can be applied to more complicated problems where there are many more 

variables and reduce the complexity of the problem to some extent. 



Chapter 5 

Testing The Knowledge Base 

5.1 Testing For Correctness 

The combination of scaled initial domains and constraint propagation gives us a 

powerful tool for representing engineering design knowledge. However, it is highly 

probable that a random combination of constraints and initial domains gives no so- 

lution, therefore great care is needed to ensure that the domains and constraints are 

consistent. 

For each schema in the knowledge base, we write a 'testing schema' which can 

invoke the schema being tested, and can set the values of its variables via accessorsl. 

The first we need to do in testing a schema is to test that the set of constraints does 

have a solution. To do this, we can work out a trial case by hand calculation and then 

'An accessor is a kind of Echidna method, it provides access, for either retrieving or setting the 
instance variables. 
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feed these values to the testing schema. Next, we face the task of selecting consistent 

sets of values for the initial domains. The approach we used is the ' b o t t ~ m  up' 

method : one chooses a certain subset of schema variables as fundamental (functional 

or private variables as we mentioned in chapter 4); their values specify the structure of 

the device being designed and would go onto engineering drawings. We choose their 

domains, then from these we calculate the domains of other variables, which describe 

the performance of the device. 

It should be pointed out that the above approach may not always yield practical 

results. For example, the feasible domain for the tube diameter of a small tubular heat 

exchanger is [0.001, 0.011 metre, and the tube length is in the range [0.01, 11 metre, 

but it is ridiculous to design an heat exchanger with 0.001 metre diameter tubes 1 

metre long, as the pressure drop would be unacceptably high. So some modifications 

to the 'bottom up' methods are necessary. We can work out the possible domains 

of the variables and we may further restrict their domains to eliminate designs that 

would perform poorly. 

Obviously failures may occur in the course of testing the knowledge base. There 

are different kinds of failures. Sometimes Echidna will have to choose one of several 

alternatives. If it rejects an alternative, it will show 'unify failure7. Let's look at an 

example. In material.kb, we have a method 'SetProps(Species)'. 

setprops (Species)  : - 
s e t v i s c o s i t y  (Species ,Viscosity) , 
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Suppose we have chosen 'nitrogen' to be the Species. When Echidna evaluates 

'SetProps(Species)', we will see: 

Tracing Fai lure  : 

unify clause f a i l u r e  : 

setProps(nitrogen) :- setViscosity(Species,  Viscosity) 

a t  ./material.kb:39 . . .  
on clause 1 due t o  argument 1 

echidna 23) c 

Tracing Fai lure :  

unify clause f a i l u r e  : 

setProps(nitrogen) :- setViscosity(Species,  Viscosity) 

a t  ./material.kb:39 . . .  
on clause 2 due t o  argument 1 

The first 'unify' failure is due to ' on clause 1 due to argument l', since clause 1 

is setViscosity(hydrogen,0.00000896) and argument 1 here is hydrogen, and it fails to 

unify with nitrogen; similarly, argument 1 in clause 2 is helium and it cannot unify 

with nitrogen either. The unification will succeed when clause 3 is called because it 

has nitrogen as argument 1. 

So 'unify failure' is not necessarily anything to worry about, we can just tell 

Echidna to continue (by hitting 'c') and it will go on to choose other alternatives. 

However, if all alternatives have failed, Echidna will say 'meta failure2'. These are 
-- 

2Also called 'deep failure'. 
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serious failures since they indicate that probably one or some of the variables have 

wrong initial domains. One of my tasks as a knowledge engineer is to detect and fix 

these wrong initial domains. 

Sometimes an apparently reasonable knowledge base can contain contradictions. 

Here is an interesting example. The capsule is an important component of a regenera- 

tor. There are two kinds of capsules, namely, cylindrical capsule and annular capsule. 

The cylindrical capsule looks just like a tin can (Figure 5.l(a)); the annular capsule 

looks like a tin can with another can inside it, concentric with the first (Figure 5.l(b)). 

(a) Cylindrical Capsule (b) Annular Capsule 

Figure 5.1 : Cylindrical and annular capsule 

The cylindrical capsule is essentially a can that will be filled with some finely- 

divided material (the matrix) to absorb and re-emit heat. For the annular capsule, it 

is the space between the two cans that gets filled with the material. 
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In capsule.kb, the internal and external diameters of the cylindrical capsule are 

both scaled to have the same initial domains. This seems reasonable; the wall thickness 

separating them will only be a few millimeters. If I set the internal diameter to the 

upper limit of its domain, the external diameter is constrained to have the same value, 

since it must be greater than or equal to the internal diameter, but cannot exceed 

the upper limit of the domain. As a result, the wall thickness drops to zero, and this 

produces a propagate failure. The solution to this problem is to first set the domains 

of the internal diameter, then to set bounds on the thickness of the wall, and lastly 

to calculate the external diameter using 

ExternalDiameter =:= InternalDiameter + 2 * WallThickness. 

Thus we can avoid the above problem. 

When testing a big annular capsule, I encountered another problem. Since the 

void volume is the difference between the volume enclosed by the outer can and the 

volume occupied by the inner can, it can be very small even when the dimensions 

of the cans are very large. Specifically, its size depends on the difference between 

the OuterInternalDiameter (OID) and the InnerExternalDiameter (IED). The void 

volume calculated this way may drop below the minimum acceptable limit. It is 

unreasonable to have a tiny volume in a capsule we've declared to be big. 

We thought about several ways to deal with this problem. First, we could set the 

limits for the two diameters so that the difference between them would always be big 

enough. This is not a good solution, because then the upper bound of the IED would 

have to be smaller than the lower bound of the OID, which is too strong a constraint. 

A second alternative would be to leave the bounds as they are, but add an explicit 

constraint that OID > I E D  + c, where c is some suitable number big enough to 
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prevent the failure. If we did this, failure may occur in some cases where the above 

constraint is not satisfied. But this is acceptable because the failures indicate that 

we are asking the knowledge to do something unreasonable, for example, we ask for 

a big heat exchanger with a tiny volume. The knowledge base should fail when the 

requirements are unrealistic. 

A third alternative would be to do nothing. Then failure would occur and Echidna 

would backtrack and either change the value of OID or IED; or, if neither of these 

worked, to the decision that the capsule should be big. 

The second alternative is the best. It makes it clearer to the users what should 

fail and what shouldn't. 

5.2 Improvement of Efficiency 

Echidna, like Prolog, is a declarative language. As opposed to procedural lan- 

guages like FORTRAN and C, it is not always easy to  tell what order the statements 

will execute in. Echidna has an added level of complexity because of the persistent 

constraints. Part of the theory of declarative language says that we shouldn't worry 

about the order of execution; as long as the statements in the knowledge base define 

a problem which has a solution, the knowledge base will eventually find it. But if we 

are concerned with efficiency, we do have to consider the order of execution. As a rule 

of thumb, we should put the statement which is most likely to be chosen in the first 

place, followed by the statement which is the second most likely to be chosen, and so 

on and so forth. For example, in the testing program 'testHX.kb7, we have 
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order chooseFF. 

chooseFF(HeatFlow, functionType Function):- 

chooseFFAccordingToHeatFlow(HeatFlow, Function). 

chooseFF(HeatFlow, Function):- 

chooseFFOtherwise(HeatFlow, Function). 

Here we put 'chooseFFAccordingToHeatFlow(HeatFlow, Function).' before ' choos- 

eFFOtherwise(HeatFlow, Function).' since the former is more likely to be chosen. 

There are other principles we may follow to determine the order of the statements. 

For instance, when we use 'tubeChoose7 method to choose the number of tubes, we 

follow the simple principle of 'the fewer, the better', therefore we can order the clauses 

as : 

order tubechoose. 

tubeChoose(50). 

tubeChoose(60). 

tubeChoose(70) . 

In the course of testing the knowledge base, sometimes I found that Echidna took 

a long time to come up with a solution. Of course we have a scaled knowledge base. If 

we are at the threshhold, Echidna may need to have several iterations of backtracking 

until it finds the appropriate scale, but if we know that we are not at the threshhold, 

we expect Echidna to make the decision quickly. In these cases, if Echidna still 

spends a long time, we should investigate the problem and check whether we can put 

the statements in a better order to improve efficiency. Let's look at an example from 
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the Stirling engine heat exchanger knowledge base. The design objective is a heater 

and we want to send a message to it. First we tried: 

test1 :- 

Heater  : diameter  (Diameter) . 
chooseFF(HeatF1ow , h e a t i n g )  . 

If we put the statements like this, the initialization method in test 1 sends a message to 

the heater, setting the value of its diameter, then it calls a second method, 'chooseFF' 

to create the heater. The message about the diameter doesn't reach the heater until all 

of the method 'chooseFF' has executed. This takes quite a long time. Alternatively, 

we tried: 

t e s t 2 : -  

Heater  : diameter  ( ~ i a m e t e r )  , 

choose~F(HeatF1ow , h e a t i n g )  . 

If we rearrange the statements, the initialization method in test2 sends a message to 

the heater, then creates the heater itself. This time the message about the diameter 

reaches the heater as soon as it is created. 

We would expect that the message to the heater would be delivered as soon as the 

heater came into existence, we should avoid the delay in the first example and follow 

the way in the second example. We reported this to the Echidna system supporter; 

maybe in future versions, they can improve on this and make the system more efficient. 



Chapter 6 

A Detailed Design Example 

The present knowledge base can successfully create three kinds of heat exchangers, 

namely heater, cooler and regenerator. We will go through a detailed design example 

to trace Echidna's calculations and explain how choices were made. 

6.1 Design Requirements 

We have designed part of an engine and we expect Echidna to design the heat 

exchangers. The requirements are: 

1. In the heater, the mean temperature difference between cylinder and working 

gas: DeltaT < 150K; 

2. In the cooler, the mean temperature difference between cylinder and working 

gas: DeltaT < 100K; 
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3. Must supply thermal power that can keep the temperature difference between 

the entering and leaving fluid at 100K. 

4. The pressure drop should not be too big. 

The first three requirements are written in 'tex tHX.kb', the last requirement is not 

formally stated in the knowledge base, but the pressure drop is calculated and the 

knowledge engineer will reject the design with pressure drop that is too big. The 

design parameters are shown in Table 6.1. These values are assigned in 'testHX.kb' 

file as well. 

Heat exchanger diameter 0.5 m 
Piston Stroke 

Piston Clearance 
0.5 m 

0.001 m 
1 

Cylinder wall thickness 
Atmospheric pressure 

Mean cycle pressure (Pm) 
Cycle per second (CPS) 

Table 6.1: Design Parameters 

0.01 m 
100000 Pascal 
100000 Pascal 

1 
Source temperature 
Sink temperature 

Working gas 

The above parameters are supplied to Echidna when we load 'testHX.kb' file to 

the Echidna interface. We expect Echidna to calculate the amount of heat flow, the 

mass flow rate, the pressure drop, etc. Also we expect Echidna to determine the type 

of heat exchanger and the detailed dimensions of its subcomponents. 

900 I( 
300 I( 

nit roaen 
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6.2 Echidna's Decision 

In this section, we will go through some of the decision-making steps to show how 

Echidna gets the final design. 

The first method Echidna called is estimate(Ve, Size). We can determine the size 

of the heat exchanger by the value of its working volume Ve, which is calculated as: 

V e  =:= 3.1415 a 0.25 * Diameter * *2 * Stroke 

From Table 6.1, we can find the values of Diameter and Stroke, therefore we get 

Ve = 0.0981i'18i'rn3. 

There is a relationship between the physical size of a heat exchanger and the 

amount of thermal power it can handle. This relationship is quite complicated since 

there are many factors involved, such as the choice of geometry, the working gas, the 

pressure and so on. Still, we know that a heat exchanger the size of a coffee cup 

can't exchange a mega watt of heat, and we know it would be wasteful to use a heat 

exchanger the size of a house to exchange a few watts. In the course of developing 

our knowledge base, we simply follow the engineer's rule of thumb: 

est imatesize (Ve, verysmall) : - 
Ve > 1.0e-09, 

Ve < 0.000001. 

estimateSize(Ve, small) :- 

Ve > 5.0e-07, 

Ve <0.0001. 
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estimateSize(Ve, medium):- 

Ve > 5.0e-05, 

Ve < 0:001. 

est imateSize (Ve, big) : - 

Ve > 0.0005, 

Ve < 0.1. 

estimateSize(Ve, veryBig):- 

Ve > 0.05, 

Ve < 10. 

When we run the knowledge base, we get 

Tracing Failure: 

propagate failure : 

estimateSize(0.09817187, verysmall) :- . . .  Ve < 1e-06 

at ./testHX.kb:279 . . .  
echidna 26) c 

Tracing Failure: 

propagate failure : 

estimateSize(0.09817187, small) :- . . .  Ve < 0.0001 

at ./testHX.kb:283 . . . 
echidna 27> c 

Tracing Failure: 

propagate failure : 

estimateSize(0.09817187, medium) :- ... Ve < 0.001 

at ./testHX.kb:287 ... 
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We can see that Echidna first tried to unify Ve with the first argument in 

est imatesize (Ve , verysmall) : - 
Ve > 1 .Oe-09, 

Ve < 0.000001. 

and it failed. It should fail since Ve does not fit into this interval. So Echidna went 

back to check the next method and it failed for the same reason. It finally succeeded 

when it called: 

estimateSize(Ve, big) : - 
Ve > 0 .OOO5, 

Ve < 0.1. 

In this case 'Size' is big. We can then restrict our search to big heat exchanger 

domains. 

The second method Echidna called is estimatePower(HeatFlow, Power). We have 

a constraint: HeatFlow =:= HotMassFlowRate * Speci ficHeat * 100 From the 

inputs and previous calculations we can get the value of HotMassFlowRate and Speci- 

ficHeat : 

Gas:specificHeat ([500, 50001 SpecificHeat), 

Gasdensity ([0.05, 5.01 GasDensity), 

HotDensity =:= GasDensity * P m  * Ref erenceTemperature 

/(AtmosphericPressure * So~rceTern~erature) ,  

HotVolumetricFlow =:= Ve * CPS, 
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HotMassFlowRate =:= HotVolumetricFlow * HotDensity, 

Therefore, we get Heatflow = [3394.774, 3394.7971 and this unifies with 

est imatepower (HeatFlow , highpower) : - 
HeatFlow > 100.0, 

HeatFlow < 100000.0. 

Hence, we get power range is highpower and we can restrict the design search space 

accordingly. 

Next, we issue our first design goal: designseater. We have 

des ignsea te r :  - 
[O.  2 ,  2001 DeltaT < 150, 

chooseFF (HeatFlow , hea t ing)  . 

Echidna tries to unify 'chooseFF7 method with one from the following: 

chooseFF(HeatFlow, functionType Function):-  

chooseFFAccordingToHeatFlow(HeatFlow, Funct ion) .  

chooseFF(HeatFlow, Function):-  

chooseFFOtherwise(HeatFlow, Funct ion) .  

It will try chooseFFAccordingToHeatFlow first (Function is instantiated as heating). 

If i t  fails, it will backtrack to this point later and t ry  chooseFFOtherwisel. Now we 

'Usually the choice of heat exchanger is based on the heat flow, we put chooseFFOtherwise here 
in case chooseFFAccordingToHeatFlow doesn't have any solution. This is for the completeness of 
the knowledge base. 
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have: 

chooseFFAccordingToHeatFlow(HeatFlow, Function):- 

HeatFlow > 1000, 

creat eHX (tubularFF , Function) . 
chooseFFAccordingToHeatFlow(HeatFlow,Function):- 

HeatFlow < 1000, 

HeatFlow > 10, 

createHX (f innedFF , Function) . 

chooseFFAccordingToHeatFlow(HeatFlow, Function):- 

HeatFlow < 10, 

createHX(plainFF, Function) . 

We have Heatflow = [3394.774, 3394.7971, obviously createHX(tubularFF, Heating) 

is called. Since the heat flow is large, Echidna chooses a tubular heat exchanger, 

which has a large surface area. We further restrict the search space to tubular heat 

exchanger. 

createHX (tubularFF , heating) : - 
tubeChoose([50,150] NumberOfHotTubes), 

interval HotTubeFlow =:= HotVolumetricFlow/NumberOfHotTubes, 

TubeDesigner isa tubeDesigner(Pm,Pressure,Size,SourceTemperature, 

HotTubeFlow, tube HotTube) , 

MaterialChooser:choosePVMaterial(Diameter, WallThickness, Pm, 

SourceTemperature,solids HotMetal), 

Heater isa tubular(heating,Gas,HeatFlow,HotMetal,HotTube, 
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The first choice made here is the number of tubes. Echidna just searched the domain 

of 'NumberOfHotTubes', and selected the first number 50. Next it calculated Hot- 

TubeFlow from HotTubeFZow =:= HotVoZumetricFlow/NumberO f HotTubes. 

Then it called the TubeDesigner to create the tube and the Materialchooser to choose 

the tube material2. Next Echidna tried to create the tubular heater. The schema 

tubular is in 'heat.kb'. In heat.kb we have 

schema tubu1ar:fluidFluid 

tubular(Function,Gas,HeatFlow,Metal,Tube,MassFlowRate,N~berOfTubes, 

Pm, Power,Pressure,Size,T,VolumetricFlow):- 

s e t s i z e ,  

f lu idF lu id ,  

Geometry = tubularFF, 

Tube : internalDiameter (ReynoldsDiameter) , 

Tube : length (Length) , 

s e t c o n e l a t  ions (R,A,C,M,N) . 
3 

We can see that tubular is a subclass of 'AuidFluid', which in turn is a subclass of 

21n our knowledge base, MaterialChooser is a separate method, it is not part of the TubeDesigner. 
The purpose is to increase the reusability of the method. 



CHAPTER 6. A DETAILED DESIGN EXAMPLE 

'heatExchange'. So when Echidna tried to create a tubular heater, it would have 

called all the relevant methods in class 'fluidFluid' and 'heatExchange'. 

The reader might notice the message HotTube:choose. We use it to call the choose 

method in tube.kb. Before the 'choose' method is called, some variables, such a ,  

InternalDiameter and Wallthickness of the tube, still have large domains. For this 

reason, we don't know whether we really have a consistent design. After the method 

is called, Echidna uses 'indomain' to pin down these variables and check them. 

Echidna takes about 30 seconds to ~ o m e  up with the design of a heater. Following 

similar steps, Echidna can create a cooler and a regenerator. We can print out the 

results and check whether they are reasonable. If the designer is not satisfied with 

them, he or she can go back and change some design parameters. In our example, the 

results looks quite feasible. The Echidna output file is included in Appendix B. Here 

we summarize the results in tables. 
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I 

Heat Transfer Coefficient 1 12934 WIm2K I 

Heater Type 
Surface Area available for heat transfer 

Cross Area 
Mean Temperature Difference between gas and wall 

Friction Factor 

tubular 
0.0021m2 

6.79e - 05m2 
127.5 K 
0.0035 

Heat Flux 
Mass Flux 

1.65e+05 W/m2 K 
500 Ka lm2S  

I 

Heater Length 
Mass 

Mass Flow Rate 
Pressure Drop 

Nusselt Number 
Reynolds Number 
Reynolds Diameter 

Volume 
Number of Tubes 

Coefficient in f-Re correlation 
Coefficient in Nu-Re Correlation 

Exponent in f-Re correlation 
Exponent in Nu-Re Correlation 

4 I 

0.01 m 
0.25 Kg 

0.034 Kg/s 
27 Pascal 

65 1 
367497 

0.0013 m 
3.87e-07 m3 

50 
0.045 
0.022 
-0.2 
0.8 

V 

Size Range 
Temperature Range 

Table 6.2: Heater 

big 
hot 

L - 
Metal Species 
Metal Density 

Metal Conductivity 
Met a1 Specificheat 

Aluminum 
2700kg/m3 
110 W/mK 
330 Jl kc7 K 
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External Diameter 0.015 m I 
External Area 

External Cross Area 
Internal Diameter 

0.00048 m2 
0.00018 m2 
0.0013 m 

Internal Area 
Internal Cross Area 

Tube Length 
Tube Wall Thickness 

Void Volume 
External Volume 

4.11e-05 m2 
1.34e-06 m2 

0.01 m 
0.007 m 

7.75e-09 m3 
1.86e-06 m3 

Mass 
Metal Density 

Pressure Ranne 

Table 6.3: The parameters of a single tube in the heater 

0.005 K g  
2700 K g / m 3  

low 
Size Range 

Metal Species 
Metal Density 

Metal Conductivity 
Metal Specificheat 

big 
Aluminum 
2700kg/m3 

110 W / m K  
330 J /  kg K 
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I 
- - -  

Cross Area I 0.00033m2 

Cooler Type tubular 

I 

Heat Transfer Coefficient 1 7442 W I m 2 K  I 

Surface Area available for heat transfer I 0.0045m2 

Mean Temperature Difference between gas and wall 
Friction Factor 

99.7K 
0.0033 

I 

Volume I 1 -56e-06 m3 1 

Heat Flux 
Mass Flux 

Cooler Length 
Mass 

Mass Flow Rate 
Pressure Drop 

Nusselt Number 
Reynolds Number 
Reynolds Diameter 

742561 w / m 2 ~  
305 K g / m 2 S  

0.01 m 
0.25 K g  

0.102 K g / S  
6.55 Pascal 

833 
500000 

0.0029 m 

Number of Tubes 
Coefficient in f-Re correlation 

Coefficient in Nu-Re Correlation 

50 
0.045 
0.023 , 

I Pressure Range 

Ex~onent in f-Re correlation 
L 

Exponent in Nu-Re Correlation 
Power R a n ~ e  

low 

-0.2 - .- 

0.8 
high 

Size Range 
Temperature Range 

Metal Species 

Table 6.4: Cooler 

big 
room temperature 

Aluminum 
Metal Density 

Metal Conductivity 
Metal Specificheat 

2700kg/m3 
110 W / m K  
330 JIkqK 
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External Diameter 1 0.0156 m I 

Table 6.5: The parameters of a single tube in the cooler 

External Area 
External Cross Area 

Internal Diameter 
Internal Area 

Internal Cross Area 
Tube Length 

Tube Wall Thickness 
Void Volume 

External Volume 
Mass 

Metal Density 
Pressure Range 

Size Range 
Metal Species 
Metal Density 

Metal Conductivity 
Metal Specificheat 

0.00048 m2 
0.00019 m2  
0.0029 m 

9.14e-05 m2 
6.65e-06 m2 

0.01 m 
0.0063 m 

5.45e-08 m3 
1.91e-06 m3 

0.005 Kg 
2700 Kg /m3  

low 

big 
Aluminum 
2700kg/m3 

110 W / m K  
330 JJkgK  
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I J 

Mass Flow Rate 0.034 KaIS I 

Regenerator Type 
Surface Area available for heat transfer 

Cross Area 
Mean Temperature Difference between gas and wall 

Friction Factor 
Heat Transfer Coefficient 

Heat Flux 
Mass Flux 

Regenerator Length 
Mass 

regenerative 
7.067m2 
0.177m2 

5.6 
0.065 

85.3 W / m 2 K  
479 W / m 2  K 
0.19 KgIrn2s 

0.1 m 
9.61 K O  

Pressure Drop 
Nusselt Number 

" , -- 
0.23 Pascal 

32.8 
Reynolds Number 
Revnolds Diameter 

1079 
0.01 m, 

- .I 

Volume 
Number of Regenerators 

Coefficient in f-Re correlation 

0.0176 m3 
1 

20 
Coefficient in Nu-Re Correlation 

Exponent in f-Re correlation 
Exponent in Nu-Re Correlation 

1 
-0.8 
0.50 

Power Range 
Pressure Range 

Size Range 

Table 6.6: Regenerator 

high 
low 
big - 

Temperature Range 
Met a1 Species 
Metal Density 

Metal Conductivity 
Metal Specificheat 

- 
room temperature 

Aluminum 
2700kglm3 
110 W/mK 
330 J /  kg K 
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Table 6.7: Capsule 

Capsule Geometry 
External Diameter 

External Area 
External Cross Area 

Internal Diameter 
Internal Area 

Internal Cross Area 
Length 

Wall Thickness 
Void Volume 

External Volume 
Mass 

Metal Species 
Metal Density 

Metal Conductivity 
Metal Specificheat 

cylindrical 
0.51 m 

0.163 m2 
0.212 m2 

0.5 m 
0.157 m2 
0.196 m2 

0.1 m 
0.01m 

0.019 m3 
0.0212 m3 

4.32 Kg  
Aluminum 
2700kg/m3 

110 W / m K  
330 J / kgK  
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Matrix Type 
Porosity 
Density 

Specific Area 
Reynolds Diameter 
Reynolds Number 

Fibre Diameter 
Wire Diameter 
Sphere Radius 

1 Metal Conductivity i 110 W ; ~ K  

meshMatrix 
0.9 

270 K g / m 3  
360 m 2 / k g K  

0.01 m 
1079 

2e-05 m 
0.0011 m 
2e-05 m 

Metal Species 
Metal Density 

I Metal Specificheat 1 330 J / ~ ~ K  

Aluminum 
2700kcrlm3 

Table 6.8: Matrix 



Chapter 7 

Summary And Future Work 

7.1 Progress S o  Far 

The development of the knowledge base is laborious and takes up a great deal 

of time. The progress is relatively slow, partly because I am not very familiar with 

the technology of Stirling engine heat exchangers; partly because Echidna, the de- 

velopment tool, is still in an experimental stage. Based on the work done by my 

supervisor, Dr. John Jones, and other previous students, I have detected and elimi- 

nated the inconsistencies in the original prototype knowledge base to support Stirling 

engine heat exchanger design. My research work mainly focused on developing the 

factual knowledge base. In doing so, I had to test the knowledge base for many, if not 

all, combinations of possible inputs and if there are inconsistencies in the knowledge, 

as there are in most cases, I had to determine what causes these inconsistencies and 

correct them. The knowledge base has been extended and tested and we have used 
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it to design several different heat exchangers successfully. The knowledge base now 

comprises about six thousand lines of Echidna code and can be used as alpha-test 

software by interested third parties. 

Future Work 

Our knowledge-based system is still a long way from being exploited by commerce 

and industry. Rather, our hope is more to elucidate the theory of design than to 

produce a tool that can be used in industry, at least in the short term. 

Several issues have to be resolved in the future. Our development tool, Echidna, is 

still being developed. The Expert Systems Laboratory is improving the performance 

of Echidna. We have been working closely with the system developers to add desired 

features to Echidna. 

In order to make our knowledge base complete, more details are needed. For 

example, the present library of solid materials only has aluminum, iron and steel. We 

could expand it to include many other materials. Also we need to incorporate the 

manufacturing methods in our knowledge base. 

One of the contributions of this research is the idea of scaling. There are two di- 

rections in which we intend to develop this work. Firstly, the classification of devices 

on the basis of scale can be supplemented by classification schemes based on suitable 

dimensionless numbers. For example, a knowledge base describing turbomachinery 

might classify devices into their homologous series. Secondly, the use of fixed bound- 

aries between different size classes might be replaced by the use of fuzzy numbers, 
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reflecting the imprecision naturally present in such expressions as a large engine. 

The reader can see from the design results shown in chapter 6 that they are a large 

amount of data. The ideal design should look like the engineering model with two or 

three dimensional images to show the real object, and other design specification can 

be shown on the screen as context. This is not a trivial task as we don't know how 

to write rules to represent geometric design description. 

Another difficult task is geometric reasoning since we need to use explicit methods 

to represent the shape, size, and location (relative or absolute, same or different 

coordinate systems) of the objects, and we need to incorporate knowledge of spatial 

reasoning to check whether the components can fit into the whole system, whether 

they interfere. This is an interesting and under-studied area. 

We hope to develop an intelligent design system which can not only produce a 

design to meet given requirements, based on the expert's knowledge, but also produce 

some innovative designs which is beyond the expert's present knowledge. Again this 

is a difficult task. 

A more interactive user interface is desired. Right now we type all the input into a 

data file and load it to the Echidna interface. Ideally, we could have a menu to select 

these data. The interface should be able to show the inheritance hierarchy, the proof 

tree and the constraint network. 

As there will always be relevant knowledge that is not included in the knowledge 

base, there is no prospect of eliminating the human designer at any time. Some re- 

quirements cannot be stated formally in a knowledge base - for example, we want an 
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artifact to have a pleasing appearance. We should always remember that engineer- 

ing design is a Mixed-Initiative activity. Our aim is to develop intelligent computer 

systems that can cooperate with the human designers, alternatively taking and relin- 

quishing the initiative. There is a lot of work to do to perform the Mixed-Initiative 

design well. For example, if the human designer wants to elaborate a design which 

the system has just been working on, he or she must understand what the system has 

done, and why. He or she must also know which features of the design can be changed 

readily, and which are constrained by the design requirements. How do we enable the 

system to convey such information? 



Appendix A 

Sample Files 

As we mentioned in chapter 3, we have two kinds of knowledge bases: facts and 

strategies. Here we show one sample from each kind. reg.kb and agentMat.kb. We 

also include two testing programs, namely testHX.db and testHX.kb. 
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........................................................... 
* * Name : testHX . db ** 
........................................................... 

set pretty on 

set f ailbreak on 

catch unify clause off 

load declarations.kb 

load global. kb 

load material. kb 

load geometry. kb 

load tube .kb 

load fin-kb 

load matrix. kb 

load capsule.kb 

load agentMat.kb 

load heat .kb 

load reg.kb 

load testHX . kb 
precision(24) . 
heatTest H isa heatTest . 
H: design. 
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........................................................... 
* * Name : testHX . kb ** 
........................................................... 

schema heatTest 

< 
real 

capsule 

interval 

interval 

fluidFluid 

interval 

interval 

gases 

interval 

fluidFluid 

interval 

interval 

interval 

materialChooser 

Lo. 00001, 0.0011 

interval 

powerRange 

pressureRange 

real 

AtmosphericPressure. 

Capsule. 

ColdMassFlowRate. 

ColdVolumetricFlow. 

Cooler. 

CPS . 
Diameter. 

Gas. 

HeatFlow. 

Heater . 
HotMassFlowRat e . 
HotVolumetricFlow. 

Length. 

Materialchooser. 

Pistonclearance. 

Pm . 
Power. 

Pressure. 

ReferenceTemperature. 
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regenerator 

interval 

interval 

sizeRange 

interval 

temperatureRange 

interval 

interval 

Regenerator. 

SinkTemperature. 

SourceTemperature. 

Size. 

Stroke. 

Temperature. 

Ve . 
WallThickness. 

heatTest : - 
AtmosphericPressure is 100000, 

ReferenceTemperature is 273, 

Materialchooser isa materialchooser. 

design: - 
SourceTemperature =:= 900, 

SinkTemperature =:= 300, 

CPS =:= I, 

Pistonclearance =:= 0.001, 

Diameter =:= 0.5, 

Stroke =:= 0.5, 

Pm =:= 100000, 

WallThickness =:= 0.01, 

Gas isa gases, 

Gas : species (nitrogen), 
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Gas:specificHeat(~500,50000] SpecificHeat), 

Gas :density( [O. 05, 5.01 GasDensity) , 

interval HotDensity =:= GasDensity * Pm * ReferenceTemperature 
/(AtmosphericPressure * SourceTemperature), 

interval ColdDensity =:= GasDensity * Pm * ReferenceTemperature 
/(AtmosphericPressure * SinkTemperature), 

Ve =:= 3.1415*0.25* Diameter**2 * Stroke, 
HotVolumetricFlow =:= Ve * CPS, 
ColdVolumetricFlow =:= Ve * CPS, 
HotMassFlowRate =:= HotVolumetricFlow * HotDensity, 
ColdMassFlowRate = - =  . ColdVolumetricFlow * ColdDensity, 
HeatFlow -.- - . - HotMassFlowRate * SpecificHeat * 100, 
estimateSize(Ve, Size), 

est imatePower(HeatF1ow , Power) , 

est imatePressure (Pm, Pressure) , 

estimateTemperature(SourceTemperature, Temperature), 

designHeater , 

designcooler, 

designRegenerator. 

designHeater : - 
C0.2, 2001 DeltaT < 100, 

chooseFF (HeatFlow, heating) . 
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C0.2, 2001 DeltaT < 50, 

chooseFF (HeatFlow, cooling) . 

designRegenerat0r:- 

capsuleDesign CapsuleDesign isa capsuleDesign(Capsule, Pm, Pressure, 

Size, SourceTemperature,Temperature, WallThickness, Diameter, Length), 

matrixDesign MatrixDesign isa matrixDesign(Matrix,SourceTemperature), 

Regenerator isa regenerator(Gas,Capsule,HeatFlow,HotMassFlowRate, 

Matrix,NumRegenerators,Pm,Power,Pressure, 

Size,SinkTemperature,SourceTemperature,Ve), 

indomain (Nmegenerators) , 

CapsuleDesign:chooseValues(Capsule), 

MatrixDesign : chooseValues (Matrix) . 

order chooseFF . 

chooseFF(HeatFlow, functionType Function):- 

chooseFFAccordingToHeatFlow(HeatFlow, Function). 

chooseFF (HeatFlow, Function) : - 
chooseFFOtherwise(HeatFlow, Function). 

chooseFFAccordingToHeatFlow(HeatFlow, Function):- 

HeatFlow > 1000, %HeatFlow>1000 

createHX (tubularFF , Function) . 
chooseFFAccordingToHeatFlow(HeatFlow,Function):- 
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HeatFlow < 1000, 

HeatFlow > 10, %lO<=HeatFlow<=1000 

createHX (f innedF~, Function) . 
chooseFFAccordingToHeatFlow(HeatFlow, Function):- 

HeatFlow < 10, %HeatFlow<100 

createHX(plainFF, Function). 

chooseFFOtherwise(HeatFlow, Function):- 

HeatFlow < 1000, %not HeatFlow>500 

createHX (tubularFF , Function) . 
chooseFFOtherwise(HeatFlow, Function):- 

HeatFlow < 10, %not (100<=HeatFlow<=500) 

createHX(finnedFF, Function). 

chooseFFOtherwise(HeatFlow, Function):- 

HeatFlow > 10, %not HeatFlow<100 

creat eHX (plainFF , Function) . 

createHX (f innedF~, heating) : - 

f inChoose((50.. 150) NumberOfFins) , 

~aterial~hooser:choose~~~aterial(~iameter, WallThickness, Pm, 

SourceTemperature, solids HotMetal) , 

FinDesigner isa fin~esigner(Diameter, Stroke, 

SourceTemperature,fin HotFin), 

Heater : f in (Hot~in) , 

HotFin:choose, 
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Heater isa finned(heating,CPS,Diameter,Gas,HeatFlow,HotMetal, 

NumberOfFins,Pm, Power,Pressure,Size,Stroke,Temperature, 

SourceTemperature,HotVolumetricFlow), 

Heater: choose. 

createHX (f innedFF, cooling) : - 
finChoose((50..150> NumberOfFins), 

MaterialChooser:choosePVMaterial(Diameter, WallThickness, 

Pm,SinkTemperature,solids ColdMetal), 

FinDesigner isa finDesigner(Diameter, Stroke, SinkTemperature, 

fin ColdFin) , 

Cooler:fin(ColdFin), 

ColdFin:choose, 

Cooler isa finned(cooling,CPS,Diameter,Gas,HeatFlow,Col~etal, 

NumberOfFins,Pm,Power,Pressure,Size,Stroke, 

Temperature,SinkTemperature,ColdVolumetricFlow), 

Coo1er:choose. 

createHX (tubularFF , heating) : - 
tubechoose ( [SO, 1501 NumberOfHotTubes) , 

interval HotTubeFlow =:= HotVolumetricFlow/Number0fHotTubes, 

TubeDesigner isa tube~esigner(Pm,Pressure,Size,SourceTemperature, 

HotTubeFlow,tube HotTube), 

MaterialChooser:choosePVMaterial(Diameter, WallThickness, Pm, 

SourceTemperature ,solids ~ o t ~ e t a l )  , 
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Heater isa tubular(heating,Gas,HeatFlow,HotMetal,HotTube, 

HotMassFlowRate,NumberOfHotTubes,Pm,Power,Pressure, 

Size,SourceTemperature,HotVolumetricFlow), 

HotTube:choose. 

creat eHX (tubularFF , cooling) : - 

tubechoose ( [SO, 1501 NumberOf ColdTubes) , 

interval ColdTubeFlow =:= ColdVolumetricFlow/Number0fColdTubes, 

TubeDesigner isa tubeDesigner(Pm,Pressure,Size,SinkTemperature, 

ColdTubeFlow , tube ColdTube) , 

~aterial~hooser:choose~~~aterial(Diameter, WallThickness, Pm, 

SinkTemperature,solids ColdMetal), 

Cooler isa tubular(cooling,Gas,HeatFlow,ColdMetal,ColdTube, 

ColdMassFlowRate,NumberOfColdTubes,hn,Power, 

Pressure, Size, SinkTemperature, ~oldVolumetricFlow) , 

Co1dTube:choose. 

createHX (plainFF, heating) : - 

MaterialChooser:choosePVMaterial(Diameter, WallThickness, Pm, 

SourceTemperature,solids HotMetal), 

Heater isa plain(heating,CPS,Diameter,Gas,HeatFlow,HotMassFlowRate, 

HotMetal,PistonClearance, Pm,Power,Pressure,Size, 

Strok,SourceTemperature,HotVolumetricFlow), 

Heater : choose. 



APPENDIX A. SAMPLE FILES 

createHX (plainFF, cooling) : - 
MaterialChooser:choosePVMaterial(Diametery WallThickness, Pm, 

SinkTemperature,solids ColdMetal), 

Cooler isa plain(cooling,CPS,Diameter,Gas,HeatFlow,Col~assFlowRate, 

ColdMetal,PistonClearance,Pm,Power,Pressure, 

Size,Stroke,SinkTemperature,ColdVolumetricFlow), 

order tubechoose. % Follow the simple principle of 

tubechoose (50) . % 'the fewer the better' 

tubeChoose(60) . 
tubeChoose(70) . 
tubechoose (80) . 
tubeChoose(90) . 
tubechoose (100) . 

tubeChoose(ll0). 

tubeChoose(120). 

tubeChoose(l30). 

tubechoose (140) . 
tubeChoose(l50) . 

order finchoose. 

f inChoose(50) . 
f inChoose(60) . 

f in~hoose(70) . 
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estimatePower(HeatFlow, veryLow):- 

HeatFlow > 0, 

HeatFlow < 1 .O. 

estimatePower(HeatFlow, 1owPower):- 

HeatFlow > 0.1, 

HeatFlow < 100.0. 

est imat ePower (HeatFlow , medPower) : - 
HeatFlow > 10.0000, 

HeatFlow < 1000.0. 

estimatePower(HeatFlow, highpower):- 

HeatFlow > 100.0, 

HeatFlow < 100000.0. 

estimatePower(HeatFlow, veryHighPower):- 

HeatFlow > 100000.0. 

est imatePressure(Pm, low) : - 
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Pm < 1000000. 

estimatePressure(Pm, mediumPr) : - 
Pm > 1000000, 

Pm < 10000000. 

estimate~ressure(Pm, high) : - 
Pm > 10000000. 

estimate~ize (Ve , very~mall) : - 

Ve > I .Oe-09, 

Ve < 0.000001. 

estimatesize (Ve, small) : - 

Ve > 5.0e-07, 

Ve < 0.0001. 

estimatesize (Ve, medium) : - 

Ve > 5.0e-05, 

Ve < 0.001. 

est imate~ize(Ve, big) : - 

Ve > 0 .OOO5, 

Ve < 0.1. 

est imat eSize (Ve, veryBig) : - 
Ve > 0.05, 

Ve < 10. 

estimateTemperature(SourceTemperature, cryogenic):- 

SourceTemperature < 250. 
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estimateTemperature(SourceTemperature, roomTemperature):- 

SourceTemperature > 200, 

SourceTemperature < 400. 

estimate~em~erature(~ource~em~erature, hot):- 

SourceTemperature > 300, 

SourceTemperature < 1000. 

estimateTemperature (SourceTemperature, veryHot) : - 
SourceTemperature > 1000. 

3 

schema tubeDesigner 

< 
materialchooser Materialchooser. 

tubeDesigner(interva1 Pm,pressureRange Pressure,sizeRange 

Size, [20,2000] T, , ,tube Tube) : - 
Materialchooser isa materialchooser, 

Material~hooser:choosePVMaterial(interval InternalDiameter, 

WallThickness, Pm,T, solids TubeMetal), 

Tube isa tube(-, InternalDiameter, - ,TubeMetal,Pm, 

Pressure,Size,WallThickness). 

schema finDesigner 

< 
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materialchooser Materialchooser. 

sizeRange Size. 

fin~esigner(interva1 Diameter, interval FinLength, 

interval T, fin Fin) :- 

MaterialChooser isa materialchooser, 

~aterialChooser:chooseMaterial(T, solids FinMetal), 

choose~ize(Diameter, Size), 

Fin isa f in(Diameter, , ,FinLength,, , FinMetal, Size) . 

chooseSize(interva1 Diameter,verySmall):- 

Diameter < 0.01. 

chooseSize(interva1 Diameter,small):- 

Diameter < 0.05. 

chooseSize(interva1 Diameter,medium):- 

Diameter < 0.5. 

choosesize (interval Diameter, big) : - 

Diameter < 1.0. 

chooseSize(interva1 Diameter,veryBig):- 

Diameter < 5 .O. 

choosesize(-,-I. 

3 

schema capsuleDesign 
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materialchooser Materialchooser. 

s izeRange Size. 

pressureRange Pressure. 

temperatureRange Temperature. 

capsuleDesign(capsule Capsule,interval Pm, Pressure, Size, interval 

SourceTemperature, Temperature, WallThickness, Diameter, Length):- 

MaterialChooser isa materialchooser, 

MaterialChooser:choose~~~aterial(Diameter,Wallichess, Pm, 

SourceTemperature , solids Metal) , 

Capsule isa capsule(Diameter, ,, Length, Metal, Pm, Pressure, 

SourceTemperature, Temperature,Size, WallThickness). 

schema matrixDesign 

< 
materialChooser Materialchooser. 

matrix~esign(~atrix,~ource~emperature):- 

MaterialChooser isa materialchooser, 

Mat erialchooser : chooseMat erial (~ource~emperature , solids ~ e t  al) , 

Matrix isa matrix(Meta1 , -) . 
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chooseValues (matrix Matrix) : - 

indomain (matrixType Type) , 

Matrix: type (Type) , 

~atrix: setPorosity(Type, -) , 

Matrix:chooseValues. 
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........................................................... 
** Name : agentMat . kb ** 
........................................................... 

schema gaschooser 

< 
chooseGas(speedRange Speed, gasspecies Species):- 

chooseGasAccordingToSpeed(Speed, Species). 

chooseGas(Speed, Species):- 

chooseGasOtheruise(Speed, Species). 

chooseGasAccordingTo~peed(f ast , hydrogen) . 

chooseGasAccordingToSpeed(mediumSp, helium). 

chooseGasAccordingToSpeed(slow, nitrogen). 
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schema materialchooser 

< 
choosePVMaterial(interva1 Diameter, interval WallThickness, 

interval Pm, interval Temperature, solids Metal):- 

Metal isa solids, 

indomain(so1idSpecies Species), 

Metal:species(Species), 

Metal : setprops (Species) , 

Metal : stressLimit ( [100000000 , 1000000000] 3 StressLimit) , 

[100000000,1000000000]*3 HoopStress =:= StressLimit * 0.8, 
WallThickness > Pm * Diameter * 0.5 / HoopStress. 

chooseMateria1 (interval Temperature, solids Metal) : - 
indomain(so1idSpecies Species), 

Metal isa solids, 

Metal:species(Species), 

Metal:setProps(Species). 
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#define pi 3.1416926 

........................................................... 
* * Name : reg. kb ** 
........................................................... 

schema regenerat0r:heatExchange 

interval 

interval 

C1,41 

interval 

interval 

capsule 

matrix 

EnthalpyLoss. % Mean heat leak through regenerator (W) 

MatrixMass. 

NumRegenerators. 

TidalThermalMass. 

Ve . 

Capsule. 

Matrix. 

regenerator(Gas,Capsule,HeatFlow,MassFlowRate,Matrix,N~egenerators, 

Pm,Power,Pressure,~ize,~ink~emperature,~ource~emperature,Ve):- 

setsize, 

heat Exchange, 

Type = regeneratorHE, 

Capsule : geometry(capsu1eType Geometry) , 

Matrix:reynoldsDiameter(ReynoldsDiameter), 

Matrix : reynoldsNumber (R) , 

Matrix : getcorrelat ions (A ,C ,M,N) , 

calculateCrossArea, 
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calculateArea, 

calculateDiameter, 

calculat elength , 

calculat eMass , 

calculateT(SourceTemperature,SinkTemperature), 

calculateVolume, 

calculateEnthalpyLoss. 

calcu1ateCrossArea:- 

~atrix:porosity( [O. 5,O. 91 Porosity), 

Capsule : crossArea(interva1 CapsuleCross~rea) , 

CrossArea =:= NumRegenerators * Porosity * CapsuleCrossArea. 

calcu1ateArea:- 

Capsule:volume(interval CapsuleVolume), 

Matrix:specificArea([1Oa1OOO0O] SpecificArea), 

indomain(NumRegenerators), 

Area =:= NumRegenerators * CapsuleVolume * SpecificArea. 
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calculateEnthalpyLoss:- 

Gas : specif icHeat ([SOO, 5OOOOI Specif icHeat) , 

indomain (H) , 

~0.001,1000~ Lambda =:= H * Area / (Specific~eat * MassFlowRate), 
TidalThermalMass =:= Ve * SpecificHeat * Density, 
Matrix:material (solids MatrixMetal) , , 

MatrixMetal : specif icHeat ([loo, 10001 Matrixspecif icHeat) , 

Mat r ixThermalMas s = . - - MatrixMass * Mat rixspecif icHeat , 
LO. 00001, 11 ThermalMassRat io = : = TidalThermalMass/ MatrixThermalMass , 

[0.01,1] Effectiveness =:= Lambda/(Lambda + 2), 

[O -01, I] AdjustedEffectiveness = : = Effectiveness 

* (1 - (ThermalMassRatio*ThermalMassRatio)/ 9), 
LO. 001, I1 Ineffectiveness = : = 1 - AdjustedEf f ectiveness , 
EnthalpyLoss =:= HeatFlow * Ineffectiveness. 

calculat eMass : - 

Capsule :mass (interval CapsuleMass) , 

Capsule:volLimits(real VolumeLow, real VolumeHigh), 

interval CapsuleVolume in [VolumeLow, VolumeHigh] , 

Capsule:volume(CapsuleVolume), 

Matrix : density(interva1 MatrixDensity) , 
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MatrixMass = : = MatrixDensity * CapsuleVolume, 
Mass =:= CapsuleMass + MatrixMass. 

calculateVolume : - 
Volume =:= CrossArea * Length. 

setsize : - 
Gas:species(Species), 

Gas : setConductivity(~pecies, real Conduct ivity-r) , 

Gas:set~iscosity(Species, real viscosity-r), 

Matrix : type (matrixType MatrixType) , 

Matrix : setHeatCorrelat ions (MatrixType, real C-r , real N-r) , 

real HLow is 5, 

real HHigh is 10000, 

H in [HLow, HHigh] , 

ReLow is 10, 

ReHigh is 10000, 

R in [ReLow, ReHigh] , 

real GLOW = 0, 

real GHigh is Viscosity-r * HHigh * ReHigh 
/ReHigh**N,r / (C-r * Conductivity-r), 

G in [GLOW, GHigh] , 

real SpecificConductanceHigh is 500, 

real SpecificConductanceLow is 1, 

setPower(Power,real PowerLow,real PowerHigh), 
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real EnthalpyLossLow is PowerLow * 0.01, 
real EnthalpyLossHigh is PowerHigh * 0.1, 
Ent halpyLo s s in [EnthalpyLossLow, EnthalpyLossHighl, 

real MassLow is PowerLow /SpecificConductanceHigh, 

real MatrixMassLow is MassLow * 0.001, 
real MassHigh is ~owerHigh/SpecificConductanceLow, 

Mass in [MassLow, MassHigh] , 

MatrixMass in [MatrixMassLow , MassHigh] , 

real TidalThermalMassLow is PowerLow / 100000, 

real TidalThermalMassHigh is PowerHigh /lo, 

TidalThermalMass in [Tidal~hermalMassLow, TidalThermal~assHigh], 

real AreaLow is PowerLow /HHigh, 

real AreaHigh is PowerHigh/HLow, 

Area in [AreaLou, AreaHigh] , 

Frict ionLow is PowerLow * 0.00001, 
FrictionHigh is PowerHigh * 0.1, 
FrictionalPower in [FrictionLou, FrictionHigh] , 

HeatFlow in [PowerLow, PowerHigh] . 

setPower(veryLow, real PowerLow, real PowerHigh):- 

PowerLow is 0.01, 

PowerHigh is 1.00. 

setPower(lowPower, real PowerLow, real PowerHigh):- 

PowerLow is 0.1, 

PowerHigh is 100.00. 
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setPower(medPower, real PowerLow, real PowerHigh):- 

PowerLow is 10.0, 

PowerHigh is 1000.00. 

setPower(highPower, real PowerLow, real PowerHigh):- 

PowerLow is 100.0, 

PowerHigh is 100000.00. 

setPower(veryHighPower, real PowerLow, real PowerHigh):- 

PowerLow is 100000.0, 

PowerHigh is 1000000000.00. 
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Echidna's Output of The Example 

in Chapter 6 

wein dongli <17> echidna testHX.db 

Echidna Version 0.947 bet a 

Compiled: Wed Feb 24 15:56:31 PST 1993 

(c) Copyright Expert Systems Lab. 

Simon Fraser University, 1991, 1992 

All rights reserved 

(Expires: 25-Nov-93) 

loading data base file "testHX. db" . . . 
loading knowledge base file "declarations.kbW . . .  
loading knowledge base file "global. kb" . . . 
loading knowledge base file "material. kb" . . . 
loading knowledge base file "geometry. kb" . . . 
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load ing  knowledge base f i l e  "tube.kbU . . .  

load ing  knowledge base  f i l e  " f i n .  kb" . . . 
loading knowledge base  f i l e  "matrix.kbW . . .  
load ing  knowledge base f i l e  "capsule.  kb" . . . 

load ing  knowledge base  f i l e  "agentMat.kbW ... 
load ing  knowledge base  f i l e  "heat .  kb" . . . 
load ing  knowledge base f i l e  "reg .kb" . . . 

loading knowledge base  f i l e  " t e s t H X .  kb" . . 
query #O "prec i s ion  (24) . " i s sued  

done #O precis ion(24)  . 
query #1 "heatTest  H i s a  hea tTes t . "  i s sued  

done # I  H isa hea tTes t ,  

H : heatTest  . 
query #2 "H : design.  " i s sued  

echidna 23> s e t  f a i l b r e a k  off  

echidna 24> c 

done #2 H:design. 

echidna 25> p H 

heatTest  .0 = ( 

real AtmosphericPressure = 100000. 

capsule  Capsule = capsule .0 .  

i n t e r v a l  ColdMassFlowRate = L O .  1018435, O.lOl8435I . 

i n t e r v a l  ColdVolumetricFlow = 0.09817187. 

f l u i d F l u i d  Cooler = t ubu l a r . 1 .  

i n t e r v a l  CPS = 1. 
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interval Diameter = 0.5. 

gases Gas = gases.O. 

interval HeatFlow = C3394.774, 3394.7971 . 
fluidFluid Heater = tubular.O. 

interval HotMassFlowRate = LO. 03394783, O.O3394784] . 

interval HotVolumetricFlow = 0.09817187. 

interval Length = [O. 1, 0.1000001] . 

materialchooser Materialchooser = materialChooser.0. 

Pistonclearance = [O .OOO9999999, 0.0011 . 
interval Pm = 100000. 

powerRange Power = highpower. 

pressureRange Pressure = low. 

real ReferenceTemperature = 273. 

regenerator Regenerator = regenerator.0. 

interval SinkTemperature = 300. 

interval SourceTemperature = 900. 

sizeRange Size = big. 

interval Stroke = 0.5. 

temperatureRange Temperature = hot. 

interval Ve = 0.09817187. 

interval WallThickness = 0.01. 

3 

echidna 26> p tubular.0 

tubular.O = ( 

heType Type = fluidFluidHE. 
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A = [0 .O4569292, O.O4570484] . 
interval Area = [O.O02056285, 0.0020623971 . 
real AtmosphericPressure = 100000. 

C = [O .O2299988, 0.0233 . 

interval CrossArea = C6.788815e-05, 6.795683e-051. 

DeltaT = [l27.lOl4, 127.67363 . 
Density = [O. 3457992, 0.34582311 . 
F = C0.003521323, 0.0035229921 . 

Flux = C1646032, 16509381 . 
interval FrictionalPower = C2.591413, 2.6820123 . 

real FrictionHigh = 10000. 

real FrictionLou = 0.0009999999. 

G = C499 -5499, 5003 . 

gases Gas = gases.0. 

interval H = E12934.64, 12946.863. 

interval HeatFlow = C3394.774, 3394.7971 . 
interval Length = LO. 009999999, O.OlOOOOl2I . 
M = [-0.2000001, -0.21 . 
MI = [O .O3457069, 0.035762791 . 
interval Mass = C0.2403686, 0.25228951. 

interval MassFlowRate = LO. 03394783, 0.033947841 . 

solids Metal = solids.1. 

N = [O -8, 0.80000021 . 
Nu = C651.5148, 652.06323. 

interval Pm = 100000. 
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powerRange Power = highpower. 

i n t e r v a l  PressureDrop = 126.39731, 27.31 1631 . 
pressureRange Pressure  = low. 

i n t e r v a l  R = 1367497.6, 367869.81 . 

r e a l  ReHigh = 500000. 

r e a l  ReLow = 1000. 

r e a l  ReferenceTemperature = 273. 

ReynoldsDiameter = C0.001309487, 0.001309607]. 

sizeRange S i ze  = b i g .  

temperatureRange Temperature = ho t .  

T = C899. 9999, 9001 . 
i n t e r v a l  Volume = C3.877904e-07, 2.743187e-061. 

i n t e r v a l  VolumetricFlow = 0.09817187. 

f lu idFluidType Geometry = tubularFF. 

f unct  ionType Function = hea t i ng  . 

r e a l  HHigh = 100000. 

r e a l  HLow = 1000. 

Numberof Tubes = [SO, 50.000021 . 

t ube  Tube = tube.O. 

1 

echidna 27> p tube.O 

tube.O = ( 

i n t e r v a l  ExternalArea = C0.0004840977, 0.0004841041. 

i n t e r v a l  ExternalCrossArea = [0.0001864908, 0.00018649251. 

i n t e r v a l  ExternalDiameter = LO. 01540934, O.Ol5409391 . 
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i n t e r v a l  In ternalArea  = [4.114031e-05, 4.114307e-051. 

i n t e r v a l  InternalCrossArea = L1.346967e-06, 1.34708e-061. 

i n t e r v a l  InternalDiameter = C0.001309562, 0.0013095921. 

i n t e r v a l  Length = [0.009999999, 0.01000006]. 

i n t e r v a l  WallThickness = C0 . OO704987l, O.OOi'O4987lI . 
cy l i nde r  Void = cy l i nde r . 0 .  

i n t e r v a l  Voidvolume = C7.755808e-09, 3.11625e-081. 

i n t e r v a l  ExternalVolume = C1.86481e-06, 1.865034e-061. 

cy l i nde r  Wall = cy l i nde r . 1 .  

i n t e r v a l  WallVolurne = C1.851458e-06, 1.851854e-061. 

real DensityHigh = 20000. 

real DensityLow = 1000. 

i n t e r v a l  Mass = LO. 004999997, O.OO5OOO593] . 
s o l i d s  Metal = s o l i d s . 0 .  

i n t e r v a l  MetalDensity = C2699.998, 27OO.OOlI . 
i n t e r v a l  Pm = 100000. 

pressureRange Pressure  = low. 

sizeRange S i ze  = b i g .  

real VolumeLow = 7.853983e-09. 

r e a l  VolumeHigh = 0.1963495. 

3 

echidna 28> p gases  .0 

gases .  0 = ( 

m a t e r i a l s t a t e  S t a t e  = ( s o l i d ,  f l u i d ) .  

i n t e r v a l  Conductivi ty = 0.026. 
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i n t e r v a l  SpecificHeat  = 1000. 

i n t e r v a l  Density = 1.14. 

f lu idType Type = gas .  

Viscos i ty  = [1.779999e-06, 1.780011e-061. 

gasspec ies  Species  = ni t rogen .  

3 

echidna 29> p t u b u l a r . l  

t u b u l a r .  1 = ( 

heType Type = fluidFluidHE. 

A = [O .O4569292, 0.045704841 . 

i n t e r v a l  Area = [O .O0456569l, 0.004571703] . 
r e a l  AtmosphericPressure = 100000. 

C = [O .O2299988, 0.0231 . 
i n t e r v a l  CrossArea = [0.0003329978, 0.00033319261. 

DeltaT = C99.70232, 99.912131 . 
Density = C1.037377, 1.0374243. 

F = L O .  003311694, 0.0033130051 . 

Flux = [74256 1.8, 743545.31 . 
i n t e r v a l  Fr ic t ionalPower  = C0.6423409, 0.72459533. 

r e a l  Fr ic t ionHigh = 10000. 

r e a l  FrictionLow = 0.0009999999. 

G = C305.6594, 305.8361. 

gases  Gas = gases.O. 

i n t e r v a l  H = C7442.618, 7446.9371 . 
i n t e r v a l  HeatFlow = C3394.774, 3394.7963 . 
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i n t e r v a l  Length = LO.  009999999, 0.010000121 . 
M = C-0.2000001, -0.21 . 
M I  = [O . 01907349, 0.021457671 . 

i n t e r v a l  Mass = LO.  2403686, 0.25228951 . 
i n t e r v a l  MassFlowRate = [O .lOl8435, O.lOl8435] . 
s o l i d s  Metal = s o l i d s . 3 .  

N = C0.8, 0.8000002]. 

Nu = C833.lOO9, 833-5062] . 

i n t e r v a l  Pm = 100000. 

powerRange Power = highpower. 

i n t e r v a l  PressureDrop = C6.552734, 7.3740783 . 
pressureRange Pressure  = low. 

i n t e r v a l  R = C49Wll.3, 5000001 . 

real ReHigh = 500000. 

real ReLow = 1000. 

r e a l  ReferenceTemperature = 273. 

ReynoldsDiameter = [0.002910095, 0.0029103331. 

sizeRange S i z e  = b ig .  

temperatureRange Temperature = roomTemperature. 

T = [300, 300.0001]. 

i n t e r v a l  Volume = [I.  555625e-06, 5.071631e-061. 

i n t e r v a l  VolumetricFlow = 0.09817187. 

f lu idFluidType Geometry = tubularFF.  

f u n c t  ionType Funct ion = cool ing .  

real HHigh = 100000. 
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r e a l  HLow = 1000. 

NumberOfTubes = [SO, 50.000021 . 
t ube  Tube = t ube .  1. 

3 

echidna 30> p t u b e . l  

tube .  1 = ( 

i n t e r v a l  ExternalArea = C0.0004909599, 0.00049096631. 

i n t e r v a l  ExternalCrossArea = [0.0001918154, O.OOOl9l8l7l]. 

i n t e r v a l  ExternalDiameter = C0.01562777, 0.015627831. 

i n t e r v a l  In te rna lArea  = C9.142571e-05, 9.142877e-051. 

i n t e r v a l  InternalCrossArea = C6.65178e-06, 6.651962e-061. 

i n t e r v a l  In ternalDiameter  = [0.002910196, 0.0029102261. 

i n t e r v a l  Length = [0.009999999, 0.01000006]. 

i n t e r v a l  WallThickness = C0.00635877, 0.006358773. 

c y l i n d e r  Void = cy l i nde r . 2 .  

i n t e r v a l  Voidvolume = r5.456919e-08, 7.797588e-081. 

i n t e r v a l  ExternalVolume = [1.918056e-06, 1.91828e-061. 

c y l i n d e r  Wall = cy l i nde r . 3 .  

i n t e r v a l  WallVolume = [I.  851654e-06, I .  851854e-061 . 
real DensityHigh = 20000. 

real DensityLow = 1000. 

i n t e r v a l  Mass = [O ,004999997, 0.0050005931 . 
s o l i d s  Metal = s o l i d s . 2 .  

i n t e r v a l  MetalDensity = C2699.998, 27OO.OOlI . 

i n t e r v a l  Pm = 100000. 
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pressureRange Pressure = low. 

sizeRange Size = big. 

real VolumeLow = 7.853983e-09. 

real VolumeHigh = 0.1963495. 

3 

echidna 31> p regenerator.0 

regenerator.0 = ( 

heType Type = regeneratorHE. 

A = [19.99998, 20.000021. 

interval Area = C7.067176, 7.0695611 . 
real AtmosphericPressure = 100000. 

C = [O .9999998, 11 . 
interval CrossArea = C0.1767145, 0.17671461. 

DeltaT = c5.622372, 5.6319093 . 

Density = C1.196568, 1.1965921. 

interval Diameter = LO. 5199999, O.52OOOOlI . 
F = C0.06515193, 0.06515611. 

Flux = C479.2213, 480.41341 . 
interval FrictionalPower = C0.005763371, 0.010531741. 

real FrictionHigh = 10000. 

real FrictionLow = 0.0009999999. 

G = C0.1920885, 0.19214821. 

gases Gas = gases.O. 

interval H = C85.37003, 85.370631 . 
interval HeatFlow = C3394.774, 3394.7963 . 
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i n t e r v a l  Length = [O. 1, 0.1000001] . 
M = [-O.82OOOO2, -0.81999991 . 

M1 = [O .OO2384186, 0.0035762791 . 
i n t e r v a l  Mass = C9.617465, 9.6413071 . 
i n t e r v a l  MassFlowRate = [O -03394783, 0.033947841 . 
s o l i d s  Metal = s o l i d s . 4 .  

N = LO. 4999995, 0.50000051 . 
Nu = C32.83719, 32.849111. 

i n t e r v a l  Pm = 100000. 

powerRange Power = highpower. 

i n t e r v a l  PressureDrop = [O.2382814, 0.35868161 . 

pressureRange P re s su re  = low. 

i n t e r v a l  R = C1078.994, 1079.0731. 

r e a l  ReHigh = 10000. 

real ReLow = 10. 

r e a l  Ref erenceTemperature = 273. 

ReynoldsDiameter = [0.009999996, 0.01000012]. 

sizeRange S i z e  = b i g .  

temperatureRange Temperature = roomTemperature. 

T = [26O. 0922, 260.09231 . 

i n t e r v a l  Volume = [O -01767145, 0.017671471 . 

i n t e r v a l  VolumetricFlow = C0.02836487, 0,028376791. 

i n t e r v a l  EnthalpyLoss = C343.8331, 345.90351. 

i n t e r v a l  MatrixMass = l5.293042, 5.3049631 . 

NumRegenerators = [I, 11. 
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interval TidalThermalMass = [I 17.4686, ll7.4722]. 

interval Ve = 0.09817187. 

capsule Capsule = capsule.0. 

matrix Matrix = matrix.O. 

3 

echidna 32> p capsule.0 

capsule.0 = ( 

capsuleType Geometry = cylindrical. 

cylindricalCapsule CCapsule = cylindricalCapsule.0. 

annularcapsule ACapsule = unbound(8756512). 

interval Length = [O. 1, 0.1000001] . 
solids Metal = solids.5. 

pressureRange Pressure = low. 

sizeRange Size = big. 

temperatureRange Temperature = hot. 

3 

echidna 33> p matrix. 0 

matrix.0 = ( 

A = C19.99999, 201 . 
C = [O. 9999999, 11 . 
M = [-O.8200OOl, -0.821 . 
N = [O .4999998, 0.5000002] . 

Porosity = [O .8999999, 0.91 . 

Density = C269.9991, 27O.OOl41. 

matrixType Type = meshMatrix . 
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solids Metal = solids.6. 

Specif icArea = C359.9992, 36O.Oll21 . 
ReynoldsDiameter = LO. 009999995, 0.011 . 
R = C1078.994, lO79.073]. 

FibreDiameter = [2e-05, 0.0021 . 

SphereRadius = [2e-05, 0.0011 . 
WireDiameter = ~0.001111077, O.OOllllO77I. 

3 
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