
fhe quality of this microform is
heavily dependent upon the
auality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest qrraiity of
reproduction possible.

if pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reprcrdttetion in fuif or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c- C-30, and
subsequent amendments.

La qualit6 de cette microforme
dCpend grandement de la qualit8
de fa t h h e soumise au
microfilmage, Nous avons tout
fait pour assurer une qualite
superieure de reproduction.

S'ii manque des pages, veuillez
communiquer avec I'universite
qui a confer6 le grade.

La qualite d'impression de
certaines pages peut hisser a
dbsirer, surtout si les pages
originales ont et6
dactylographibs a I'aide d'un
ruban us6 ou si I'universite nous
a fait parvenir une photocopie de
qualit6 inferiaure.

La reproduction, mBme pariielle,
de cette microforme est soumise
a la Loi canadienne sur te droit
d'auteur, SRC 1970, c. €46, et
ses amendements subs6quents.

by

Kenward Chin

B.Sc., University of British Columbia, 1987

THESIS 8UBliBTTED IN PARTIAL FULFILLMENT OF

TM=, REQtIREMEm FOR THE DEGREE OF

MaSTER OF SCIENCE

in the Department

Computing Science

0 Kenward Chin 1993

SIMON FRASER UNNERSTY

J a n r a q 1993

AiS, rights reserved. This work znay not be
reprdaced in whnle or ~II pm, by photocopy

or 0 t h means, without permission of the author.

The author has granted an
5rrev~~abBe non-exclusiw f icence
allowing the Nationat Library of
Canada to reproduce, ban,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available fa interested
persons.

L'auteur a accorde une licence
irr4vocable et non exclusive
permettant 3 la Bibliotheque
nationale du Canada de
reproduire, prater, distribuer oc
vendre des copies de sa these
da quelque maniere et sous
quelque forme que ce suit pour
mettre des exempfaires de cette
thhe a la disposition des
personnes intbressees.

The author retains ownership of L'auteur conserve la propriete du
the copyright in his/her thesis. droit d'auteur qui protege sa
Neither the thesis nor substantial thhe . Mi la t hhe ni des extraits
extracts from it may be printed or substantieis de celle-ci ne
otherwise reproduced without doivent &re imprimes ou
hislher permission. atrtrernect reproduits sans son

autorisation.

ISBN 0-315-91188-3

APPROVAL

Name:

&gee:

Tide of Thesis:

Kenward Chin

A Connecrionist Approach to Acquiring Semantic
Knuwfedge Using Competitive Laming

Examining Comrnirree:

Chair: 2. ti

R. H d e y
Senior Supervisor

F. Popowich

T. Perry
External Ex;itniner
Department of Linguisclics
Simon Fraser University

Date Approved: 993

PART f AL COPYRIGHT C ICENSE

I hereby grant to S f m n Ftasat Unlverslty the right to lend

my thesis, project or extended essay (the t i t l e of which i s shown betow)

to users of the Simon Fraser University Library, and to make partial or

single copies only for such users or i n response i~ a request from the

t ibrary of any ether university, or other educational insiiiutlon, on

i t s w n bt ta f f or for o m of fTs users, ! further agree $hat permission

for m f t f p l e copying of t h l s work for scholarly purposes m y be grant.ed

by me or the Dean of Graduaie Studies. ft i s understcod that copying

or pubflcatfon of this work for ffnanclaf gain shalt not be altowed

without my written permission.

T f t t e of Thesis/Projeci/Exiended Essay

A Connectionist Approaeb to Acquiring Senant ic Knowledge using Competitive

networks for learning semantics from simple English utterances. While significant results

have been obtained, m i y such ~ ; = t w (~ k s embody architectures which have obvious

deficiencies. One deMency is the use of& back propagation learning algorithm This

corrective feedback wide learning language. Another deficiency is tEK faifme of some

systems to provide a link bemeen h e semantics discovered from input sentences and the

red-wdd objects referred to in the input sentences. Also, many systems q u i r e that the

The work presented here is an attempt u, prcwide a connectionist basis for camcting these

def~ciencies. Firstly, the use of the competitive learning strategy frees the system from

I would very mcb like to thank the people who made it possible for me to complete this

research. Firstly, thshnks are extenbed to my Senior Supervisor, Dr. Bob Hadley, for his

College fur allowing me tfre time necessary to finish the thesis, and Joseph Tosey for his

consrmctive remarks. lastly, f wish to thank my dear friend Rachel Stinchcornbe for her

.. Title Page i
.. .. Approval Page. u
...

Abstract ... iu

... Acknowledgements iv

Table of Contents v

.. List of Tables vii

... List of Figures viii

1 . Introduction .. 1
.. 1.1 Connecdonist Network 1

1.2 The R e m h Proi, 1em. Words, Percepts, and Concepts 3
1.3 Overview of the Thesis .. 5

2 . Literature Survey .. 7

.......... 2.1 Representation and S t r u m in Connectionist Modek EM (1989) 7

2.2 Mechanisms of Sentence F'loeessing: Assigning Roles to Constituents
of Sentences: Kawraf~~~~o ruIci McCielland (1986) 13

2.3 L e e g and Applying & ~ t e ~ ~ d k t E l h t ~ h Sentence
Comprehension: St . John and McClelland (1990) 17

. * 3 . Compet~tive Learning .. 24

3.1 Feature Discovery by Competitive Learning: Rumelhart and Zpser (1986) ... 3 1
... 3.1.1 Words and Letters 31

3.1.2 Horizontal and Vertical Lines ... 34

4. TheLearning Task ... 37

4.1 TfieNarureofthefnput .. 38

5 . The Network Architecture and teaming Algorithm 40

5.1 The Represenmuon &sue .. 40
5.2 Representing Words. Percepts. and Concepts 43

5.3 Layers and Clusters ... 45

47 ... 5.4 The Input Layer

... 5.5 The Hidden Layer and Output Layer 51
.. 5.6 Leaning in the Hidden and Ourput Layers 52

6 . Developing and Refining the Method .. 56
... 6.1 The Learning Ratio 56

... 6.2 Nature of the Input Patterns 58
.. 6.3 Leaky Learning.. 60

...................................... 6.4 Choosing an Appropriate Number of Layers 61

............................... 6.5 Threshold Values and Winner.Take.All... or Not? 62
.. 0.6 Normdimtion of Weight Vectors. 63

.. 6.7 Summary of Techniques Used 64

.. 7 . Results 66

.. 8 . Discussion -73
. . 8.1 Implications of the Work ,. ... 73

... 8.2 Future Extensions 76

8.2.1 AnCMeringLayer ... 76
.. 8.2.2 Intemnnecting the Sentence Units 79

8.2.3 Improving the Leaming Algorithm .. 75,
..................................... 8 .2.4 Simuftanausiy Active Concept Units 80

8.2.5 Increasing the Complexity of the Grammar 81

9. Conclusion .. 84
* * Appendix A: Program Lxsang ... 85

Bibliography .. 128

.................................. 7.1 Performance of concept units. 1OOOO training cycles 67

......................... 7.2 Paf-ce of ~f~ss-~onnections after 1000 training cycles 71

......................... 7.3 Perf~~~nance of cross-comeetions after 5000 training cycles 72

LIST OF FIGURES

Simple Recurrent Network Architecture

Network Architewe fiom St . John and McClelland (1

Competitive Leaning Network.

... A Geometric Analogy of Competitive Learning 28

... Sample Input Pattern 43

.. Sample Input Pattern with Percepts 44

.. Network Architecture 46

Learning in the Input Layer .. 48

... Use of Ordering Uniis

I. f ntroduction

Thc noGon of simulating human cognitive processes using a cornpurer is one that stirs the

imagination. Visions of computers doing complex tasks which previously only humans

could accomplish are quite exciting. Traditional Artificial Iatelligence approaches to

simulating cognitive processes have yielded interesting results. Eowever, it is held by

some &at in order to hfut simulate the performance of the human brain, it is n v in

.some way to simulate *&e physiology of the human brain as well. Cognition seems to be

the result of the inreraction of millions of relatively simple processing units in the human

brain. The use of n e u d networks, or more generally connectionist networks, as a tool for

studying cognition is therefore appealing in that the architecture of such systems is based

on the notion of using many interconnected simple processors.

Before discussing the specifics of the work presented here, it would be helpful to have

some background in this field of smdy- Firstly, what exactly is a connectionist network?

1.1 Connectionist Networks

The human cerebral cortex, where cognitive processes occur in the human brain, consists

of masses of interconnected cells called neurons. Connectionist networks consist of much

smaller numbers of neuron-like processing elements, called "nodes" or "units", linked

gogether. Neurons appear to perform a very simple processing function, which is to accept

e1ectrochemical "excit&ion" or "inhibition" through links from other neurons and, based on

the sum of this input, to send excitatory or inhibitory output to yet other neurons. Tfiis

clectrochemicat &ammission is numericdly simulated in a com~tionist network In such a

network. exitador; comspnds Eo a node recsiving positive ntimttdzal input from

cannr=cted nodes and khibition cornsponds to a node receiving nqativc vdilucs- A IN&':

output is just a positive or negative value which is propagated to other connt'ctcd units,

While the sheer number of cells and connections present in the brain .=ms to M y

computer simulation Crht: hrain contains on the order of lo9 neurons), interesting xsul~s

can be obtained in systems using perhaps only hundreds of simulated neurons.

There are a great many variations m be implementation of connectionist networks.

Differences include the specific way in which nodes ~ s p o n d to input, the way in which

nodes are connected to each other (that is, tbe configuration of the network), the nature of

the Links which connect the units, how the network is diowed to evolve over time, and so

on. The following represen& a very general picture of a connectionist network.

Associated with each node in a connectionist network is a threshold value. When the total

input, excitatory and inhibitory, to a node sums to this threshold, Ihc node becomcs aclivc.

The degree of activity ofthe node is in some models directly related to the magnitude of the

total input. The vdue representing the node's activity is called its potential or uctivutirm,

md is typically represented by a real vaiue between 0 and 1. Active cells then pmpagatc

excitatory andm inhibitory si@ to o&er nodes in the network, in some modcls at a

each link into a nsde hafikg a weight associated with it. It is these weights which can be

dtcd over the course of "'training'k network, to enable the network to "learn" to respond

in different ways ta differax. input. For instance, by allowing a link's weight to diminish

to O, a node becomes unresponsive to signals received from rhe node at the other end of

&at input line.

Networks are genedy structured in groups of nodes, called layers. One set of nodes

fervcs as an input layer, analogous to sensory nerve cells which transmit sensory input to

other brain cells for processing. Depending on the application, these input nodes may

their activation values from some sort of elec%ric;td inpu~ &vicet or from some sort

af driver program which p-ws input vdues into a form acceptable to the network.

For cxampie, a visual nxognition network might receive its input from a video camera, as

pixel values. As another example, a xn:ntence parsing network might q u i r e a computer-

coded form of inpui, perfiaps fxrrajn input nodes corresponding to the use of certain words

in &e input sentences. A second set o f n d , a middle layer, receives its input from the

input layer. After activation values are & m i n e d within this layer. fimher signals are sent

to an output layer of nodes. The activation values of the output nodes can &en be read off,

according to sosome inwrpretive scheme* as ihe result of the nerwork's processing. This

three Iayer stntcturrc is quite common, but there are also systems which use only two layers

or mm &an &m Iitym.

'ken used to invesriga~ &e role of syntactic and semantic constraints in sentence

ccrr?prehensim, (St 5oh & MdleBmO (!9W)), 10 examine h v i grainmadeat smcture

can k discovered by processkg sample sentences, and to try to undersmd what

mechanisms might urtddie the process of language acquisition (Elman (1989)).

This work focuses on the particular problem of discovering semantics. A child learning

English will tre presented with mmany English sentences over the coum of learning the

language, and these: ifI many dift'erent d - w o r l d situations. Somehow, &at child is ahlc to

eventually develop a mapping between the words which he hears and the real-world

objects, actions, or abstract concepts 10 which those words refer. HOW is this done? Somc

w e must be made of the a t k o m e n t : when a sentence is spoken, the real-world rcfcrents

corresponding to words in the senence are at that time within the child's perceptions. For

exampk, every cime tfre chilid hears "Mommy" in a sentence, the child also perceives his

m o t h to be nearby, It may be that &e regular occunencc of a word in concert with a

certain '"percept" kads to the word and percept becoming associated with each othcr.

EvmtuaIly the child comes to associate the word "Mommy" with his mother, md his

mother with h e word "Mommy", The discovery of statistid regularities in input is just

one of the ttrings that conndonist n e w o h are very good at. One of the goals of thi,;

EXEEC~ was m c o m e t a iiexw;& tfiat would ieam to assoc-iate words with their reiatcd

PES, merely fhm example sentexes along with perceptual information.

input, the Mommy "concept" should be called forward. The concept explicitly represents

the association between word and percept. Thus, the network is concerned with

associating three types of objects: words, percepts, and concepts.

Of note in this work however, is not just the task, but the approach taken to the task. A

network can be trained by comparing its responses to input with the desired predetermined

responses to that input, and by -then using the difference (or "error") to alter the network's

parameters. One common a igoAh for doing this is called back propagation (Rumelhart,

Hinton & Williams (1986)), so named because the difference between the actual output and

the desired output is propagated back through the network to induce a change in the

network's behaviour- However, it is not plausible that, in language acquisition, the correct

responses will always be available for purposes of learning; the feedback given during the

course of language acquisition is nct of the constant nature required by strategies like back

propagation. We would therefore fike to develop an approach to this problem that does not

q u i r e prior knowledge of the expected results (to be used as feedback) in order to obtain

the correct answers. The method chosen here is called competitive learning, and is

discussed moE f a y in Chapter 3. It is an example of an "unsupervised learning method,

so c JIed because no fixdback is needed.

1.3 Overview of tEK Thesis

Perhaps it is surprising that comp1ex processing of the type described can be done merely

by comating simple individual p'ocessofs. The power of the networks comes not from

n a d s as individuals, but from the large numbers of connections within a network and

w y in which the Emits are cunnec:te& Connectionist processing is also called parallel

distributed processing (PDP), which captures the facts that processing is distributed among

many processors and that these processors work in concert. In Chapter 2 we considcr

some past experimental results which demonstrate how PDP networks can accomplish

certain tasks relzted to the research problem. In Chapter 3 the specific mechanism of

competitive leaning is considered md related experimental results air discussed.

Chapters 4,5 and 6 are concerned with the details of the thesis work: the learning task, thc

network architecture, and the learning algorithm used. Chapter 6 focuses on the problems

and issues which have arisen from choosing the competitive leaming algorithm for thc

thesis work. The perforsnance of the system and the resuks of the research are discussed in

Chapter 7. A discussion of the implications of this work and possible future extensions to

it follows in Chapter 8- Lastly, we conclude with some summarizing comments in

Chapter 9.

2, Literature Survey

2.1 Representation and Structure in Connectionist Models: Elrnan (1989)

The first problem to be considered in this thesis was the use of connectionist networks to

discover parts of speech and grammatical structure. In Elman (1989), an approach to

having a network learn lexical categorization and grammatical structure is presented. Elman

asserts that his method demonstrates that networks can be trained to develop internally

structured, systematic, and compositional representations. This is an important issue, as

some researchers (for example, see Fodor and Pylyshyn (1988)) claim that connectionist

networks cannot do this if present methods of representation are used. However, the main

topic of interest in the work is its relationship to discovering word categories and

grammatical structure. That is our focus here.

Firstly9 the input patterns Elman employs are similar to the patterns used in this work.

Elman uses 29 words, both nouns and verbs, each of which is encoded as a 31-bit vector

cantaining a single on-bit. The training corpus of sentences consisted of two and three

word sentences which were grammatically and semantically sound. Training consisted of

presenting these sentences to the network one word at a time. Tfie system was expected to

predict forthcoming text: as each word was presented to the network, it was expected to

guess at the next input word. The predicted output was compared to the actual next word,

and a measure of the error was used to alter the weights in the network according to the

back propagation learning method, after each input word. White this task seems odd,

Ehan argues that it is no% entk1y unreasonable; there is evidence that human listeners

normally anticipate future input during the course of conversation.

(Eian 's appeal to such evidence to justify his choice of learning methodology and training

task is actually somewhat inappropriate here. One strong objection is simply that Elman's

task would require that neural connections be adjusted in the space of time betwucn onc

word being heard and the next. It is known that adjustment of these connections such as

would be required by the use of back propagation cannot take place nearly this quickly. In

general, back propagation is not a very plausible explanation of how learning occurs in the

human brain. Further zefereilce to these issues can be found in Hadiey (192). Note also

that further work by Elman, for example, Elman (1992), also makes use of back

propagation.)

The architecture of Elman's system is quite a bit different from the competitive learning

architecture discussed in &is thesis. Ehan ' s network consisted of three layers of units as

discussed earlier, along with an additional fourth set of units called the "context layer".

The context units are used to provide a way of making previous s tam of the network

available to the system. The activation values of the hidden layer units are copied to the

context units during each training cycle, and are used as part of the input to the hidden layer

drtring the next cycle. Thus, the next training cycle will get some information from the

cunent cycle. The hidden units are therefore able to produce output based not only on the

current input word, but also on the words which preceded it. Elman asserts that the hidden

units are thus developing representations which encode the temporal structure of the input.

This type of network is referred to as a simple recurrent network (SRN) (.see for example,

(Jordan, 1986)). The training regime was comprised of 60,000 training cycles.

n e success of the system was nor measured by its ability to pttrfmdy predict the next

network has learned he simetum, its statisticd output should approximately mat& the

probabilities of occurrence of further corresponding words in the set, Indeed, the network

does behave in this way,

It is ItUuminating to examine the activation pattern in the hidden layer as each word is

presented. For each word in the lexicon a mean activation vector is calculated; the word is

presented to the network in each of its possible contexts, and all ihe ~sul t ing hidden layer

activation values are averaged to compute the mean activation vector. These vectors were

then subjected to hierarchical clustering analysis, which organizes vectors according to their

degree of similarity. This revealed that the network had divided the words into hierarchical

categories. For instance, the network discovered that verbs nouns fell into two

separate major categories. Nouns were divided into animate and inanimate objects, which

were further subdivided. Verbs, likewise, were divided into finer categories. While this is

an interesting result, one should note that the network itself has no "knowledge" of this

categorization. That is, one cannot simply determine what category a woyd belongs to by

presenting it to the network and observing the activation of the output units. The

categorization is induced by the network (as changes in the weight vectors), but can be

observed only by analysis of the mean activation vectors. The knowledge, as such, is

implicit in the distribution of the network's weights.

Further, the network i .~ 2ble to make some distinctions based on the usage of words. For

example, the word "by" appem in the Input set in borh subject and object positions. The

activation vectors (not &e mean vectors) which arise when "boy" is presented in the subject

Output Units

hput Units Context tinits

Figure 2.1: A Simple Recurrent Network, similar to the one employed by Elman.

Bold anows indicate feed-forward connections between all units in the originating

hy2r to al l units in EIX higher layer* At each training cycle the hidden unit

activations are copied with a one-to-one correspondence to the units in the context

layer. On the next cycle the context is combined with new input to form the input

to h e hidden mits. Thus, infomation from prior states is made availabie to the

network.

position tend to duster together, separate from the vectors which arise when "boy" is

presented in rhe object position- Thus, there is a weak sense in which the system discovers

gammatical roles.

The second set of Elman's experiments had to do specifically with discovering grammatical

structure. In order to do this, stronger consideration was given to contextual effects.

Spe~:~cat ly , it became important to observe how the hidden layer activations changed over

rime; rhar is, 'now &e patferns changed with the presentation of each new word in the

sentence.

10

Tie task was tiit: same, that of predicting the next word in a sentence. The stimulus set

was constructed using 8 nouns, 12 verbs, the relative pronoun "who" and the sentence

terminator ".". A phrase structure grammar which allowed for relative clauses to be

included was used to generate the input set. Some features of the grammar were: subject

nouns bad to agree with their verbs; verbs were of three types, either requiring a direct

object, optionally using a direct object, or precluding use of a direct object; recursion

th~ough relative clauses was allowed.

The architecture was very much like that described above. Two additional layers were

included, one between the input layer and the hidden units, and one between the hidden

layer and the output layer. The training set was quite different, as the grammar used to

generate sentences was considerably more complex than that employed in the first set of

experiments. In order to obtain good results, the initial training was done with sentences

free of relative clauses: simple sentences. After this training was complete, another set of

sentences containing a small percentage of complex sentences was used. Two more phases

of training were done, each containing a higher mix of complex sentences than the previous

one. While the results obtained using this training regimen were good, it was found that

starting the training with a full range of complex sentences prevented the network from

learning the appropriate responses. The network was trained on 200,000 trainirlg cycles.

After t r w g , it was found that the network could with a high degree of zccuracy "predict"

(that is, supply appropriate activation values for output units) the probabilities of certain

words occurring in a given context. The network, in a sense, had learned the features of

the particular grammar used to generate the input sentences.

over time. For example, rhe exact hidden layer activation vector generated in response to a

particdm sentence constinrent varied, depending on the constitwnt's context. This

distinction can be seen as a t-omqtrence of the time at which the word appears. Clustering

70-dimensional, since &ere are 70 state variables in the netwok Principal component

analysis was used to idmrify lower-dimemlronaf hyperplanes through the stare space, ta

make the problem of graphing the state space trajectories simpler.) Trajmtorics from

sentences which were similar in strucnt~ were then compared, w see if tht: network had

learned to identify &se simifarifies, and how these similarities a p m d in the state space

portraits. It was apparent that certain principal components became associated with specific

features in the grammar; for example, one principal component appeared ta be dated to

n u m k markings in the input sentences. Atso, it was observed that tfte state spa%

trajectories of sentences having common grammatical sstrcture were indeed similar, The

main conclusion drawn from this was that the network was able, in a ,sense, to develop m

underlying i n t e d representation of the grammar used.

As stated above, the origi~al problem to be addressed in this thesis work was that of lexical

categorizarion and discovery of grammatid structure through &e unsupervised learning

strategy of competitive learning, E W s w o k shows that a SlW with back propagation

way; as has already been said, however, back propagation is not a good candidate for

explaining how fearning actually occurs in humans- Initial experiments with the

competitive jearning atgorithm failed to pmduce good results. The challenge was then to

scc: what codd be accomplished using competitive learning, or a modified version thereof.

2.2 Mechanisms of Sentence F r w s i n g : Assigning Roles to Constituents of Sentences:

This thesis work looks at a way of associating words with their real-world referents, giving

words a i-m semantic "'anchor'" By providing this, it is hoped that the task of sentence

compxhension wiIl k made easier. The ~1ationsKp of semantic information and sentence

comprehension is an issue which has been discussed by many researchers. In Kawarnoto

a d McClelfimd (1986), semantics is used to assist a connectionist network in assigning

case roles to the words in a given input sentence.

In &is work, words are represented as lists of semantic microfeatures. Each microfeature

is a multi-valued f e a m , For example, the noun microfeature "Volume", which describes

the size of an object, has "small", "medium", and "large" as i~ possible values. Each word

is rqnsenteb as a bit vector containing one bit for each possible value of each

microfkature. If the microfeatwe applies to the word in question the bit is turned on,

o&ertwise: the bit is i s e d off, As afl example, consider the features which define the noun

"Ball": "Human-no", "Softness-soft", "Gender-neuter", "Vofume-small", "Form-

compactw, "Paintinesf--", "Breakawty-wbre&bf eta, "Object rype-toy ". These

feature values are afI tamed on in the bit vector for "ball." Un the other hand the features

which da not zppIy, such as "Hllfnan-yes", "Gender-male", "Gender-female", and so on,

have their bits turned off in the bit vector for "ball." Thus, the microfeatu~ values

encapsulate the definition of "Ball".

Each sentence presented to the network consists of a verb and from one to three noun

phrases. There is always a subject noun phrase, and there. may be an object noun phrase

(which may be accompanied by a sentence final "with" noun phrase; for example, "The bay

ate the chicken with the fork.").

?"he chief goal of the model was to show how word order constraints and semantic

constraints combine in the task of assigning case roles to the words in a .sentence. Also,

the model was intended to generalize what it had learned to sentences not found in t k

training corpus. There were also some other goals, such as having the model be able to

correctly assign case roles in sentences containing completely novel words (again

represented as lists of semantic microfeatures).

The general architecture of the network was ~latively simple: the input layer consisted of

units used to represent words in a sentence (that is, the surface structure of the sentime),

and the output layer consisted of units used to represent the sentence's case structure (the

allowed case roles were Agent, htnunent, Modifier, and Patient). The training regimen

comisted of presenting &e surface-stnrciure input, examining the output at the em-

s rn tu re 1eve1, and then adjusting the connection weights according to the pcrceptron

convergence method (Rosenbkm (1962)). ?Xis does involve knowing the c o m t output

beforehand and thus this kming algorithm is not unsupervise&

The representations used in the network were more complex. The surface-structure input

did not consist solely of the bit vectors corresponding to the words in the input sentence.

Instead, a system using four sets of input units was used, one set for each of the four

possible case roles. Each set of input units was actually a two-dimensional grid,

representing conjttnctior& of microfea~res; that k, units corresponding to "Human-yes,

Gender-male", "Human-yes, Gender-female", and so on for each possible pairing of

rnicrofeatures. In similar fashion, the ccase-structure output consisted of four sets of units,

again eomsponding to each of the four possible case roles. Each case role was viewed as

a relation between parts of rite sentence, For example, "The boy broke the window" would

be represented abstrxdy as:

Broke Agent Boy

Broke Patient SIThdow

Within each set of case-s-m units, each unit stood for a conjunction of microfeatures;

this time, for microfeatures fmm the head of Ihe relation conjoined with microfeatures from

the tail of the reIation. For example, the first sentence above would activate units in the

"Agent" casestructure set of units. Specii7cally, those units which repicsenzed

microfeatures of "Brokem conjoined with microfeatures of "Boym would be activated.

SimiMy, rnicmfearure~ for "BrokeD conjoiwd with those of "Window* would be activated

in the= "Patient" set of units,

The m d e l was able to ax b t h wad order md semantic constrains to assign rolcs.

As an example, consider k sentences:

The hammer brak the vase.

The dog broke &fte vase

In these sentences, *hammerm is Instnrment, and "dog" is Agent. This can only be

determined by considering the seman&s of these words. The system was able to correctly

assign these roles. As another example, consider:

HemZ Agent and Patient are compfetly & m i n e d by word order. The c o m t roles arc

assigned, even though the semantic descriptions of the "boy" and "girl" differ only in the

"Gender" miaofeam-

rirc meanings of ambiguous words- Also, when presented with suuczurally ambiguous

sentences such as boy hit ifte woman with the hammer'" the mode1 would partially

activate the roIes c o q n b g to possible role assignmen&, indicating this ambiguity.

Other intcresring d t s =err; abrained a(; wdf.

While McCfelland m d Kawamotok nework is able to perform a very interesting learning

mk, it stiff assma ti.& exiswme of m-icmfeaturt:~ which describe tfie definitions of nouns

and verbs, E m migti''~ -&SE lethi-~or- be feirrred? A s y s ~ r n like &at ~ ~ k d in this

thesis would allow for words to become associated with the perceptions of their red-world

referents. If some additional mechanism was introduced for analyzing this perceptual

information and creating mimfeatural descriptions, we would h e n have a way of leaming

microfeatural definitions for words.

2.3 Learning and Applying Contextual Corn&& in Sentence Comprehension:

St. John and McCldhd (1990)

In St- J o b and h/f&lekmd (19f#)), a network is described which learns to "understand"

slngle clause English sentences. Sentence constituents are presented sequentially to the

network which then l a m s to assign h a t i c roles to constituents, to establish correct

nlferen% for words which a~ vague or ambipous, and to irrkr thematic roles which do

not explicitly war in an hput SI=nmce. While the resuI , are impressive, there is again no

attempt to tie c u m t i m ~ to their real-world refmnts, in a way limiting the amount of

semank information at the network's disposal- Also, the issue of how sentences can be

sr3gmi:ntEfd into their constituents, or s ~ u d components, prior to king fed into the

ne~worfr is not discus&_ k a m b g is accomplished here through back propagation, but

we now comp&tivr: B d n g mi&i be used to provide a solution to both of the.%

nr~hbmc r' -----""-

St- John & McClelfand's madel supported the use of 58 diffeent words: verbs. nouns,

prepositions, adverbs, and ambiguous words having verb, noun, or verb and noun

meanings. Each word was represented by a single unit. As mentioned, thest= words wcrc

combined into phrases which were presented to the network. A phrase could br= a noun

phrase, a prepositional phase, or a verb (including an optional auxiliary verb), and was

represented by one unit for each word in the phrase. Also, there werc units uscd to encode

the location, or surface: role, of phrases in a sentence. A phrase could be pre-verbal,

verbal, first-post-verbal, or n-post-verbal. A sentence constituent as proccsscd by thc

- -.,work thus consisted of the word units for the words in the phrase, along with a unit

representing the position of that phrase in the sentence. (Further tests by St. John &

McClelland showed that the use of suf ice role units was not actually necessary for correct

performance).

The central feature of this network is the method used for representing (in St. John and

McCleIIand's taminology) the event to which the sentence refers. The activation values in

a hyer of units called the "'senewe gedi' , or SG, are modified as consecutive sentence

constituents are processed. When the sentence has been completely processed, the SG

c o n t a b the appropriate event representation and so has the function of being a kind of

output layer. However, the information in the event representation is not immediately

visible, in that there is no me-to-one correspondence between individual SG units and the

m k or =ads w k h are p-nt irt "real-world" event. In order to mover useful

infomarion front &e SG, the SG layer must be presented as input to anolher (sub)network,

dung with a " p W input pa-- (For convenience, we will call the network of which

the SG layer is the output layer "nefwork A , and the second network "network B"). The

probe pattern represents e i k r a krnatic role or a word which may fill a role. The output

of network B will then be a pattent representing a ruldfder pair, consisting of ttre probe

role or filler, and the filler or role which is associated with the probe as determined from the

event representation, An entire event can &us be decoded by probing the network B with

each half of each roIeffBer pair present in &e original sentence.

As an example of how the model works, consider the sentence "The pitcher threw the ball."

The event this sentence refers to would be represented as the set of roldfrller pairs:

f agmrfpitck, a c t i d h ~ w ~ pahdbd).. (Actually, each f&er here is an example of an

ambiguous word; in &e acmd madel, then are separate fdlers representing each meaning

of each ambiguous word). The individual sentence constituents would be "the pitchdpre-

verfid", "threwIvertF;ttm, md "bflfmt-pst-verbaltt* After all the constituents are presented

to thr: network (network A) and be SC has reached its final state, network B can &en be

probed.]if "agent" if used as the probe, the pattern for "agent/pitcheril is activated in the

output layer; if "action" is &e probe, then "actionlthrew" is the output; if "ball" is the probe,

"patientlball" is the output, and so on-

Network B

Figure 2.2: Architecture ofthe simple recurrent network employed by St. John and
MECfefIan& Note &at the oulput from network A serves as part of the input to network B.

The Ieitrning algorithm employed in this system is back propagation. The SG is decoded

through the ~ h n i q u e of probing discussed earlier, and the measure of error between the

actuaf result mci the camxt wput is used to alter the network% weights. In training the

sentnce frames, with sonre sentencs frames more likely to be used than others. As each

constituent of a sentence was presented to the network, the network was probed with all the

,rossible roles and fders for the accompanying event, and the error measure was back-

propagated through the network. While this is a straightforward technique, it is unclear

that this represents a psychologically plausible explanation for the mechanism underlying

human sentence comprehension. However, the results obtained through this method

seemed to satisfy the goals set for the network.

The types of sentences given as input to the network were of four basic types, according to

what kind of constraints were strongest within the sentences: active syntactic, passive

syntactic, regular semantic, and irregular semantic. Correct performance (that is, correct

role and filler instantiation) for the most frequently occurring type of sentence was achieved

after about 100,000 training instances, and for all of the sentence types after about 630,000

training instances. The network also learned to accomplish the specific processing tasks

mentioned earlier, such as the establishing of correct referents for vague and ambiguous

words.

In the course of learning, the model exhibited some human-like traits. For example, there

are cases in which a word's meaning can be swamped out by sufficiently strong contextual

constraints. A good illustration of this effect can be seen in the question, "How many of

each End of animal did Moses take on the Ark?'Human listeners typically answer "Two,"

even tftough they may know that Moses is not part of the Ark story, This effeci can be

observed in rhe network when sentences which follow a regular pattern, except for an

exceptional element, a~ presented as input. fn this case, the exceptional element's effect

on the event represenfaion is swamped by the effect of the surrounding context. This is a

natural by-product of the ability of connectionist networks to capture statistical rqulariiies

in the body of ira51~g data

It is also interesting to note that St. John & McClelland's network exhibited some of the

same sort of behaviour as did Elman's network. Specifically, their network developed

internal representations of the input words that could be observed through cluster analysis

of the weight vectors between the input and first hidden layers. For example, verbs having

to do with consuming food clustered together, whereas verbs talcing animate direct objects

formed a separate cluster. As another example, nouns which occurred together in the same

context clustered together; thus, "ice cream" and "park" were related, and "jelly" and

"knife" were clustered.

Another interesting feature of this network was its ability to generaliie the cmstraints and

relationships it had learned to novel sentences. Training corpora were developed which

contained certain syntactic and semantic regularities. When novel sentences also subject to

these regularities were given to the network as input, the network was able to process them

with a high degree of reliability (97% for sentences involving syntactic constraints, 86%

for those involving semantic constraints). The semantic regularities in the input also

allowed the network to perfom a prediction task, similar to fie task implemented by

Elman. If certain concepts were left uninstantiated in a sentence, the network should have

activated the possible filling concepts to a degree proportional to the probabilities of each of

those concepts occuning. In fact, it is interesting to note that there are two competing

"forces" that determine how the prediction will be done: the general regularities relating to

generat amibutes that date to a c h of objects, and the specific regularities relating to

amibutes which apply to particular objects. As training took place, the network was less

able to make general predictions, as it learned the specific relationships between objects and

r he congxts in ~lhich they wcnrred. However, added trtaining did improve the network's

ability to correctly procas novel sentences.

St. John & McClelland also cIaim that their model successfully solves what has been called

the bootstrapping problem: the problem of learning both the syntax and semantics of

sentence constituents simultaneously. Naigles, Gleitman, & Gleitman (1987) state that

learning both syntax and semantics using only statistical information seems an impossible

task, due to the amount of information that must be stored. This was exactly the type of

information used by St. John & McClelland's model, although many simplifying

assumptions were also made regarding the nature of the input. The related semantic

problem which was not addressed specifically in their work was that of discovering which

event a sentence refers to, in a world containing multiple events. St. John & McClelland

suggest that an approach similar to what they have already implemented would be suitable

for this purpose. However, consideration of the simplified nature of their learning task

might cause one to take issue with this claim (for example, see Hadley (1992)). Further

work in this area is found in St. John (1992), but the approach taken is essentially the same

as that taken in St. John & McClelland (1990). The work presented in this thesis presents

an alternative method for solving the semantic problem.

3. Competitive Learning

Competitive learning is the same of the unsupervised connectionist learning algorithm this

work is based on. There are many different variations on this scheme, but the one used in

this research is most closely related to the work described in Rumelhart and Zipser (I 986).

The following description adheres fairly closely to their definition of a competitive learning

system.

The three essentials of the competitive learning algorithm, as stated by Rumelhart and

Zipser, are as follows:

Start with a set of units, identical except for some set of parameters which

are randomly assigned to each unit. These parameters will cause each unit

to respond slightly differently to a given input pattern. This is implemented

by using weighted input lines to each unit, which start off with some

random distribution.

Limit the maximum activation of each unit.

Allow the units to compete in some way, so that each unit will respond to a

different subset of input patterns.

The architecture of a competitive learning system is not very complex. As in many other

connectionist networks, the units of the network are separated into several non-overlapping

layers. Each unit of each layer receives excitation from every unit in h e layer beneath it.

In nun, each unit of each layer projects its output to every unit in the layer immediately

above it. The units of each individual layer are separated into clusters. These clusters of

units are inhibitory; that is, each unit in a cluster has inhibitory links to all other units in

that clwter. This is where the "competition" of competitive learning is found; the more

strongly a unit responds to its input, the more it inhibits the other units in its cluster. Thus,

the units within a cluster compete with each other to have the highest activation for any

given input.

The architecture described by Rumelhart and Zipser is more specific. In fact, their network

architecture was the starting point for the network used in this thesis research. Though

there are notable differences, examining their system's characteristics will provide insight

into the operation of the network used here:

Not only are the clusters inhibitory, they are "winner-take-all." This means

that the unit receiving the largest activation, after competing with the other

units, will be set to its maximum value, while all other units in that cluster

have their activation set to their minimum values. The maximum value, for

convenience, is 1 and the minimum value 0.

All elements in a cluster receive input from the same units in the layer

below.

A unit learns if and only if it is the winner in its cluster. A modification to

this scheme, known as leaky learning, allows both winning and losing units

to learn. This modification is discussed more fully in sections 5.6 and 6.3.

All input patterns consist of units which are either on (have their activations

set to 1) or off &me their activations set to 0).

Figure 3.1: The architeawe of a competitive learning nebork. Filled circles represent

active units, open circles represent inactive units. Tht: mows indicate fecd-forward
connections from each unit ir! a lower layer to each unit in a higher layer. Notice that

exactly one unit is active in each cluster in the middle lap- , and &at the output layer here
consists of one cluster.

* Each unit has a fixed total amount of weight distributed among its input

lines. Cosnrnody, I is used as tfre fxed amount for all nodes. A unit

learns by shifting some proportion (a "learning ratio") of weight from its

inactive input lines to its active input lines, which has the effect of

if the unit j loses

if the unit j wins

where Awv is &e change of weigh? on the line connecting unit i Mow to

d t j h v e

is the fearnine ratio

is 1 if unit i is ache, and is 0 if unit i is inactive

is tfir: &tat number of active units in the input hyer

Stimulus patterns represented as ve~tors wh0.w tips

lie on h e surface of a hype~phere. Patterns whic k

are similar are closer to each orher than to Jissimitw

pamrns.

Here, the circles represent the weight vectors of

three units. Whenever one of the stimulus patterns

is presented to the netwoik, the unit whosc weight

vector falls closest to the pattern's vector will win

the competition and become active. Here, the filled
circle and diamond represent the winning unit and

pattern for his cycle.

When a unit wins, it has its weight vector moved

closer to the vector of the stimulus which was

presented. The distance moved depends on the

network's learning ratio, Here, the bold line and

fdled circle represent the new weight vector, which

has been nudged closer to the presented pattern's

vector.

Fi,w 3.2: A gmmetrk d o g y of competitive leanring.

winning unit for my given input pattern, &en, is just that unit whose weight vector lies

closest on the h y p s p f t e ~ to be input pattern's vector, The learning rule can thus be seen

as a process whereby the winning unit has its weight vector moved towards the input

pattern vector. The distance moved is related to the learning ratio.

There are several famres of the competitive learning mechanism which Rumelhart and

Zipser draw attention to. Tfrey we:

* Each cluster cIassifies fie set of inputs into M groups, where M is the

number of units in the cluster. One could consider each clwm a detector of

an M-ary vdtted feature- Every input patimi would be classified as having

one of the M possible values of this feature. Thus, for example, a cluster

with two units would be 2 binary feature detector. One unit responds when

a particular feature is present_ in the input, otherwise tfie other unit responds,

= If there is structure in the input pattern, the system will break up the

stimulus set along "srrucmdy relevant" lines. However, the nature of &at

srructure cannst be predicted. This is partty due to the fact that no a priori

classification scheme is given to the network, and thus any structure in the

input is discovered by the system. So, even though the input may have an

obvious simcatrp, (for exmple, half the input patterns always leave a

particular input unit inactive, while the other half always activate &at unit),

the system may not find h t particular feature; it may find a different one.

of extracting h e grammatical sstrucaur: in a language from example

sentences seems mdy-made for the s t r u c t ~ - ~ k i ~ ~ g quality of competitive

learning networks.

Tfie moir fEi@y simcrured rfre input, ihe more stable tire classification, As

input is presented, &e weight vectors for the different respfise units aft'

adjusted, If the input pattern do not fall into nice c tus~rs , this adjustment

will cause Bif tk~nt units to respond to the same siimuIus at d i f f e ~ n t times

during the learning process, as :he units compete to nZSpOnb to the stirnutus.

h &is sense, SSK: q s t e : ~ will tw urnable, evolving cortrimdly as mare

input is presen&d If tlre inputs cluster nicely, the system shuuld stahilix

The particular c b i k a t i o n dixovcrd depends on the initid vdws of the

weights and thi: sequence in which the input is presented, With dif'fcring

starring wei@& a d a differing order of presentation of input patterns, the

same cluster may become a detertor of compfctcly d i f k ~ n t W a r y f'catws.

However7 Rumelhart and Zipser s m s that different clusters will not

always neceSSaffEly liixover biferent featum in the input That is, one

cluster of M units may k o m e a detector of the same M-ary feature as

3, I Feature Discovery by Competitive Learning: Rumelhart and Zipser (1986)

In &is paper, RmdM mb Zipser use competitive learning to look at some interesting

classification problems. The two experiments of interest here are concerned with using

competitive learning to train a network to categorize words and letters, and to l e m the

distixtion between horizontal md vertical lincs. The techniques used here are relevant to

tfre hsis work, a d so it is immctive to consider the results of their experiments here,

In their first set of experiments, pairs of letters were presented to the network. A two-

dimensional input array was used, taking the form of a 7 by 14 grid. For a given letter, the

units in the array were activated which corresponded to a CRT font pixel map of that letter.

Each letter could mupy a 7 by 5 portion of the m y , with a horizonfd space btweefi the

fetters.

The first experiment with this system used clusters consisting of two units. One would

expect that such a cluster wotdd become a binary feature detecmr- Indeed, when the

netwof2c was mined on the input set AA, AB, BA, and BB the nem-ork would h o m e a

position-specific letter detector. In some runs, one unit would respond to AA ;;ad AE (thus

king a &tector of the letter A in the first position) and the other would respond to RA and

BB (thus being a detector of B in the first psifion). In other nurs, a unit would respond to

M and BA (&us detecting A in h e second position) and the other would lespond m AB

English sentences. Having units for identifying words in various positions within a

sentence could provide useful information for some higher-level parsing system,

The second experiment with the word and letter network involved using clusters of size

four- Using the same input set as above, the system learned to differentiate between each

of the possible combinations, one unit responding to each two-letter "word." Thus, by

adjusting the number of unis, the network was able to become a word detector.

Thirdly, the input set was changed so that there were two possible letters for the tlrst

position and four possible letters for the second position. 'In a sense, this input set c ~ u l d be

said to have two levek of structufe. When clusters of size two were used in the network,

they became sensitive to the letters which would appear in the first position. When clustcrs

of size four were used, they k a m e detectors of the letters in the second position. This

was evidence that the level of stnxtsre discovered by the system was tied directly to the

number of units present in the clusters- Again, rhis seems directly applicable to the

problem of classifying sentences. For example, a sentence consisting of a noun phrase and

a verb phrase has two distinct Ievds of stmcttlre: the structure at the phase level, and the

smture at the phrase constimnt level,

Another experiment showed Irow the network could make classifications bastxi on the

similarity of the input patrerns- A clusm of size two was uswl. with input consisting of the

I m a s A, B, E, and S, Tfre ktre%s we^ chcnsen such that the A and E characters were quite

similar ta each other- and such tizag Pfie B and S chmcters were quite similar. The network

karn& ttris cfistinction as well, essentially showing h t sub-featws (the points in the grid

c8mXnon in similar fetrexs) ofthe Ierters c d d be recognized. This ability to dasfify inputs

which are structurally similar is a well-known and very useful trait of connectionist

networks.

Lastly, it was shown that a categorization opposite to that learned in the previous

experiment could be discovered. By using correlated training input, the system learned to

classify A and B togehr , and E and S together. This involved training the system on the

stimultrs set of words AA, BA, EB, and SB. AA and BA axe grouped together because the

rigk-bdnd Iemr is the same for each word. Likewise, EB and SE are grouped together.

The dissimilarity of the left-hand fetter is essentially disregarded. After the training was

completed, when input consisting of only the left-hand letter was presented, one unit was

found to respond to A and 3, and the other to E and S. Thus, though the training input of

the right-hand letter was removed, the system could still retain the associated classification

of the left-hand letters. This is a powerful mechanism in allowing features to be discovered

dxough competitive learning, and one which is exploited in the thesis work.

The competitive leanring scheme's ability to automatically discover the structure present in

input patterns makes it seem exceptionally useful for the problem of learning grammatical

structure. However, &ere are factors which make it unclear how best to adapt this scheme

to the language problem. One major issue is the choice of the right number and size of

cfusters. There ae many possible levels of structure in English sentences, and a cluster is

not always guaranteed to frnd the "right" set of structural features.

A second set of experiments by Rumelhart and Zipser dealt with training a network to

differentiate between horizontal and vertical lines. This time, the input patterns were on a 6

by 6 grid. Thus, twelve possible line patterns were possible: 6 horizontal rows of 5 units

each, and 6 vertical columns of 6 units each. Note that each unit in the input grid is a

participant in one horizontal and one vertical h e ; thus, the classitication problem cannot be

solved just by identifying a key unit in each pattern which indicates the pattern's

orientation.

Inidally, it was hoped that two clusters would suffice. One cluster would be a binary

feature dewtor for "veaicalness", and the other would be a binary featue detector for

"horizontalness." However, the system did not learn the proper classitication. This was

because every line was comprised of 6 units, each of which participated in one line of the

opposite orientation. On the other hand, no unit in any given line was a participant in likc-

oriented lines. Thus, for example, a horizontal line given as input would really have more

in common with a vertical h e than a horizontal line. The result of this was that each

c l t~~ te r responded to dme horizontal and three vertical lines.

To overcome this problem, the input grid was expanded to a 12 by 6 grid. The right half of

the grid would hold horizontal or vertical lines in any row or column, just as before, The

left half of the grid was used to hold a mining pattern: a vertical line in the leftmost column

if a vertical line appeared in the right half of the grid, or a horizontal line in the topmost row

if a horizontal line was presented in the right half. The system then was able to make the

appropriate distinction, but it was obviously a result of the presence of the training input.

Removing the training input caused the system to fail again.

The last adjustments were to change the number of units in each cluster to four from two,

rtnd m add a third layer to the system- TFIre change in the number of units enabled the

system to make the distinction between horizontal and vertical lines. However, this

dishction was four-vdued: horizontal lines belonged to one of two sets of horizontal lines,

and vertical lines belonged tu one of two sets of vertical lines- The distinction was reduced

to the required binary classiiication by adding the third layer of units, consisting of a two-

w i t cluster. Afte=r &is sys&m was trained with tfie training input, &e third layer was able

to capture the distinction between hrtrimnraf and vertical fines in any location on the input

grid, even when the lines were unaccompanied by the training input.

The idea of using Yaining input to help the network differentiate between pattern when

tfrey ar% not necessarily stntcnnally similar is quite powerfd. bput pattern which encode

distributed representations (as opposed to localist representations) do not necessarily have

to &art= a gmt deal of structural over@ in order to be part of tlre same class of inputs.

For example, consider two clasm of objects: a "blocky" dass, and a "sparse" class. Let

us &fine bloeky objects as input patterns consisting of a set of active units which are close

ta each orher in the inpt, grid. Sparse &jects we define as input pattern consisting of a

set of ztcitiw units which are spread out over the input grid. Within a c h , diffeznt

patterns might have nu common input units at dl. Thus, there is no way that a competitive

I m i n g ~ l e t w d caq kvebp s k mmct, cMafion. However, using assoc&M W i n g

The use of training patterns also makes the job of learning the classification faster and more

stable. As shown by the word detection experiments, training input can be used to cause a

network to learn an "unnatural" classification of inputs. This is because the regularity of

the training input overcomes the less frequent similarities which arise in the stimulus

pattern. However, if there are many similarities to be exploited in the input patterns, the

addition of training input will serve only to strengthen those similarities. The weights

within the network will thus be adjusted that much more quickly, and there will be less

room for the network to become unstable.

4. The Learning Task

This system's task is to learn to associate words, percepts, and concepts. A representation

of an entire English sentence is given as Q u t , together with a representation of the real-

world objects or actions to which the words ir, the sentence correspond. The constituents

of the sentence are, of course, just "words". The real-world object representations we will

call "percepts" (this terminology is used for object represefiations because they are analogs

to the patterns of neural activation arising from sensory perceptions of objects and actions

in the real world). The perceptual input is mstructured, while word order forrns the

structure for the sentential input. No feedback or prior knowledge is given to the network

concerning which words are to becow usociated with which percepts. Thus, unlike

systems surveyed in this thesis, back propagation cannot be used. Instead, an

unsupervised learning mechanism is used to train the network to form associations between

words and their related percepts. After training, presentation of a word should recall the

associated percept from the network; also, presenting a percept to the network should result

in the recall of the associated word. This part of the network would act as an associative

memory.

These associations between words and percepts would actually become instantiated in the

network as strong excitatory connections between nodes representing percepts and nodes

=presenting words. However, also inskulfia~ng these associations as units in the network

would lend more comprefiensive power to the model because such units would become

active whenever an associated word (in any legitimate position in a sentence) or an

associaed percept was presented as input. These nodes would thus represent the concept

with which both the word and percept were associated. Whenever a sentence and its

accompanying perceptud description are given as input, all the appropriate "concept units"

should then become active. This resulting pattern of activation over the concept units

would give a representation of the input sentence and the real-world situation to which the

sentence refers. Moreover, if the sentence is presented with incomplete perceptual

information, or if the perceptual information is presented with some words missing from

the sentence, the correct sentence representation should still be given as output at the

concept level.

The second aim of the system thus is to learn ta activate the appropriate concept units for

any given input. While this task could be accomplished in a straight-forward manner using

the back propagation learning algorithm, no a priori output representation is assumed tbr

the network other than that a unique concept unit should stand for each percept/word

association. Therefore, using any error-feedback learning mechanism is out of the

question. Competitive learning was chosen as the Sasis for the learning algorithm used

here because it is an unsupervised learning strategy that has proved useful in similarly

designed recognition tasks.

4.1 The Nature of the Input

This section contains a description of the nature of the input given to the system. A more

detailed description of the actual representations used in the system is given in Section 5.2.

For this work, a vocabulary of 15 words was used. Of these words, 6 were nouns, 5 were

transitive verbs, and 4 were intransitive verbs. The input set of test sentences was

generated entirely randomly. Sentences were constrained to be one of two types:

1: Noun 1 - Transitive Verb - Noun 2

2: Noun 1 - Intransitive Verb

There w z e thus (6 x 5 x 6) + (6 x 4) = 204 possible input sentences. While all i n p t

sentences which were constructed according to the above rules were allowable, some real

grammatical and semantic considerations were put aside. Some specific examples are:

The real-world semantics of the words used in the simulation did not affect

which nouns could appear with which verbs. Thus, "Baa breaks boy" was

as acceptable as "Boy breaks ball."

Reflexive sentences were allowed, even if they had nonsensical meanings.

Provisions were not made for handling inflected verbs or plural nouns, so

Subject-Object agreement was not an issue.

As with many other authors, all articles were removed from input sentences.

This mean; that all nom were essentially treated as proper nouns.

In the literature, one may find that one or more of the above are taken into consideration

when generating input sentences. For example, Elman (1990), St John & McClelland

f 1992) and others sp&f:aHy dad with the semantic "validity" of input sentences. Elman

f 1989) requires verb-noun agreement in the input. However, the effects of these

constraints on the network's abiity to learn associations are not central to the task at hand.

5. The Network Architecture and Learning Algorithm

The network developed during the course of this research implements several variations on

the basic Rumelhart and Zpser-style competitive leaning network. While their system was

effective for the learning tasks they experimented with, a like sysiem was unable tu perform

adequately when ;>resented with the task at hand.

5.1 The Representation Issue

The issue of how to represent objects as input patterns is one which permeates

connectionist research (see Smdensky (1988), Elman (1989), Fefdman & BaHard (l982),

and many others). Admittedly, how this is done closely depends on the type of data

represented. For example, it is natural &I represent visual information as pixels in a two-

dimensional input grid- It is also n a t d to represent audio infmation as frqucnc y

distributions, with the input units conesponding to frequency ranges, and the activation of

those units corresponding to &e volume of the sound within that range. However, what

sort of system is best suited to representing abstract objects such as words or .wmantic

information? There are two basic ways in which this can be done: by using a dsrributed

representation or a bcalifi representation

A loealist representation is simpbtic and, one could argue, not well-motivated from a

newophysioIogical standpoint- In a locdist representation, each input unit encodes a single

concept or object An example is h e use of a single unique unit for every word hat may

occur as input to a word mopition system. Or, there might be specific units that

correspond $0 words pIaced in certain lacarions in a sentence., fur example, one unit is w d

to r epsen t rhe word "Gar gem in the fust position in a sentence, mother unit for "George"

on. a lwdist scheme, any n m k r of kraifs can be collapsed inlo a single concept.

Units can stand for a concept as complex as "A brown dog standing by a tall oak me", or

for a concept as simp& as wherher or not a certain switch is closed in a .eircuk It is plainly

unlikely that words and concepts are represented in the human brain by having specific

E3ktribut.e.d representations, on the other hand, represent ~bjects by e n t k patterns of

activation. These patcm may or may not be hard-wired into the network beforehand. An

Kawmoto (1 986). In their system words were represented as lists of semantic

rnkmfeatzffes, the value of each featme in turn being represented by a single unit. Thus,

wtwdf were nepresenbd asp- of activation over several mi&. This in fact is an

example of a feuatrul representation. In other distributed representation schemes, the

individual units of the parrern may have no meaning in and of themselves. The pattern as a

whole is wwh a t &e object or concept in question. (Still, note that many PDP

resemfrers would a p e tZrat e m distributed representations should be viewed as no more

LQcaIisP schemes have the appeal of being simpler to understand, though nor necessarily

easier to d y z e , and of requiring smaller networks to implement. However, as stated

represent a more physiologicalfy plausible solution. Unfortunate1 y, networks which u g

such representations are notoriously difficult to analyze and may require a great deal of

computational power to simulate.

One could argue that localist representations are valid because they are not in any way

intended to provide a description of representations at the neural level. Rather, these

representations might be viewed as abstractions of representational structures in the human

cerebral cortex, and the model of processing in the network as an abstraction of the actual

processing that goes on. Thus, for example, a single unit which encodes some complcx

concept in a connectkmist network might stand for a whole neural pattern of activation.

However, one could easily imagine that such a pattern, if appropriately connected, could bc

made to activate a single unit that would therefore represent that pattern. With such

subnetworks connecting distributed patterns to single units, a network using a distributed

representation is effmtively created. Assuming then that such subnetwoh can bc built,

and thus that localist networks can be manufactured from distributed networks, arguments

stating the superiority of distributed representations to localist representations are

(arguably) rendered moot

fn the current network architecture, locdist representations of words, percepts, and

concepts are use& If one desired to use a distributed representation, an extension to the

current system could be created which wodd map distributed patterns to the single units

already used in this sysern. The use of localist representations reduces the size of the

network, which was highly deskable consihring the compuationis! re-sources available for

WQ&.

5.2 Representing Words, Percepts, and Concepts

The representations used in this; work can best be described by examining their role in the

input layer and output layer of the network Word and percept representations are used in

the network's input layer, and concept representations are used only in the output layer.

The input layer of the current system consists of two parts: a single cofumn of 15 units, and

a set of three columns of 15 units each (the input layer is actually implemented as a single 4

by 15 grid, but this distinction is not crucial to this discussion). The single column is used

Percept
Column

Kisses

Hits

Bali

Mary
Cat

John

Sentence Columns

Figure 5.1: Diagram of the input layer activations, for the sentence "John kisses Mary."
[Note that the network's actual input layer contains more rows, but they have been

omitted from &e diagram for clarity). The word unit for "John" is activated in the

column of units representing the first position in the sentence, the word unit for "Kisses"

in the second, and the word unit for "May" in &f: third; ail other word units remain

inactive. Mote h a t this input corresponds to just the sentence "fohn kisses Mary" being

@vm as input to the nemurfr; cu accompanying perceptual input is given, and so no

pexept units are active here,

for presenting the perceptual input to the network and the set of r h m columns is uscd thr

pixsating the sententid input to the network The three sentence columns rsspertively

cornspond to the first, second, and third positions in an input .scnwncc. Each row in the

percept and sentence columns cornsponds to a particular word or percept. To p m m t thc

percept RIfoftEf" (percept Of to the network, we would activrtti: the Dottom unit in thc pmcpt

column. The term "'activatia" as used in this work means to "'set a unit% activation vduc" to

1 "; inactive units have activation values of 0- Comspondingly, b pre.sent thc word "3 ohn"

in the position ofa sent@nce we would activate the hottom unit in &c f i t sentcnw

coIumn, E "John" ocmrrcd in Ihe third position, the bottom unit of the third .wntencc

cdumn would be activafed, An entire sentence would k represented as t h n ~ activc units,

one in each of the three right-hand columns.

P m p t
Column

figure 5.2: Ekgciim of b e input layer activations, for the senwme "John kisses Mary."

accompanied by the c o v n & n g p43n:epd input- (Again, some rows in &e input Iaycr

are not shown, f o ~ clarity), Both the appropriate percept units and word uni~s are activc.

Becaws there is no ordcring of perceptual input, percepts are presented in only one

column. For each percept that is to be presented to the system as input, the corresponding

mid in the percept column is activated. Because input sentences are a maximum of three

words long, a maximum of three percept units may be active at any given time.

The output layer of tEte network consists of 15 units. Each unit, durlng the course of

training, h o m e s responsive do the presentation of a particular word or its corresponding

percept. For instance, training might resuit in Unit 4 becoming the output unit activated

wknever the percept unit fa: "John*' is activad in the input layer. The mining w d d

also cause Unit 4 rn h o m e active when the word "Johnn is presented in a legal position in

a sentence column, or if "fohn" is activated both in the percept column and in the sentence

columns. This unit wuuld represent the ccmjunction of the percept "John" and the word

"fohn", defining the fohn concept, Over he course of training, each of &e 15 output units

should become a cmceprzc~it~ each u& becoming associami witti a different concept

NO* that atthou& the coxepc units m unordered in the present system, a suggestion for

emending the system to &low the unitskrder to be represented is given in Section 8.2.1,

cluster cluster

Output t aycr:
15 units

Hiddm laycr:
15 dusters, of 15
units per clustcr

I n p i layer:
4 columns of 15
units each, divided
between two m i y s

Sentence columns:
Each column has 15
word units. Only onc
may be active per
column at any lime.

5.4 The Input Layer

The network's input layer is an extension of the input layer in the horizontal and vertical

line discriminator network described in Rumelhart and Zipser (1986). The training regime

specifies that whenever a word is presented in the sentence part of the input array dwiny

training, the corresponding percept is activated in the percept column. If the same .v -urJ

occurs twice in an input sentence, the corresponding percept is activated as if the word had

occurred only once, in ~ way, the percept pattern corresponds to the training input

described in Rumelhart and Zipser's experiment. The feature of note is that the percept

column and the sentence columns are completely connected to each other. One set of links

connects each percept unit to each sentence unit, and another set of links connects each

.sentence unit to each percept unit. We will refer to these connections as "cross-

connections." In a sense, the input layer could be viewed as consisting of two "arrays",

the percept column forming one may, and the sentence columns another. This represents

an enhancement of Rumelhart and Zipser's model, and gives more general results than does

their model.

During the course of training, the network uses a cross between a Hebbian learning method

Webb (1949)) and a competitive l m i n g method to develop associations between sentence

units and percept units. Consider the way in which a percept unit learns to alter its input

weights. When an input sentence is presented, each active percept unit has its input

connections from acfive sentence units stfengthened. This is the essence of the Hebb rule.

The connections are strengthened by taking a proportion of weight from inactive input

%ins. and &snihting h i weight e q d y among the active lines (the sum of the input

weights to a unit is &en normalized to 1.0). This is just the weight adjustment method

used in competitive learning. The chief difference is that ltnmkg occurs sinmltaneotcsly

for more than one unit at a time in each "cluster." The same technique is used to change thc

input weights to the sentence units from the percept units. Consider the following figure:

Percept
Column

Sentence Columns

1 2 3

Kisses
0

0

Mary
0

8

0

John

Figure 5.4: Diagram of the input layer activations, for the sentence "John kisses Mary."

and the accompanying perceptual input. (All inactive units are omitted, for clarity).

The lines indicate the links whose weights will be strengthened.

In the above example, the percept units for "John", "kisses", and "Mary" will all have their

connections to sentence units adjusted; specifically, their connections to the active sentence

units will be strengthened, while their connections to inactive units will be weakened.

Likewise, the three sentence units will have their links to the percept units adjusted. This

learning rule is Hebbian in that links betweer? active units are strengthened. in addition to

the Hebbian adjustment, links from active to inactive units are weakened. The rule differs

from the competitive leafning scheme in that several units in the same cluster have their

weights adjusted simdtaneously. In a 'true competitive network, the cluster would be

"w+aer-&e-dl and wily me unit would learn,

These input layer interconnections are what implement the desired associative memory.

Presentation of a word in a sentence column triggers the corresponding percept to be

recalled (activated strongly) in the percept column, provided that the word is presented in a

grammdicdly allowable position. In the implementation, this corresponds to the weighted

sum of a percept's input exceeding a set threshold (currently set at 0.1). Similarly,

presenting a percept triggers the corresponding word units in the sentence columns to

become active. In the implementation, this is done by allowing each sentence column to be

a cluster and allowing the unit whose activation most exceeds a threshold value (currently

0.2) to become active. In ffacb excitation should occur not only between corresponding

word and percept units (for example, the word "John" and the percept "John"), but

between words and percepts which do not have the same referent (for example, the word

"John" and the percept "Mary"), although to a considerably lesser degree. This is because

the weights which are Iearned by the network come to show the statistical regularities with

which words and percepts co-occur in the stimulus set. Thus, wMe the word "John" will

always be presented with the percept "John", it will also be presented (with differing

degrees of probability) at times with the percepts "kisses" and "Mary", because the word

"John" always is presented in some sententid context. Not only do the cross-connections

allow for concepts to recall their corresponding percepts from memory (and vice versa), but

they will &so allow concepts to recall percepts with which they usually occur in the input

set (and vice versa). However, the magnitude of the resulting activations rarely exceeds the

dwshold values set for the network

The advantages to using the cross-connection scheme are two-fold: fustly* this represents

a way of making the network training more robust. In the Rumelhart and Zipser scheme,

training input is removed after training the network; however, the method employed here

uses the associative memory to recall the training input even after training is complete. In

this way, presenting input patterns in the sentence columns alone will tend to activate thc

appropriate units in the percept column, essentially providing &e training input that was not

given as input Because there is only one column of units for percepts. and hence thcsc

units are each activakd more frequently than units in the three sentence columns, the

network's hidden layer will shift a larger proportion of its collective weight to the percept

column. In a way, the network is more sensitive to this perceptual input than to the

sentence input. By allowing the sentence units to excite their corresponding perccpt units,

this focus of sensitivity can be exploited.

Secondly, this method has a certain intuitive appeal. It makes sense that the recogni tion of

c d n words in a sentence being processed by a human listener tend to activate perceptual

"memories" of those words' referents. This phenomenon is represented, albeit in a highly

abstract form, by the aSSOciative nature of the percept and sentence columns. In like

fashion, the notion that groups of sensory inputs which together form a perceptual object

tend to recall the word (or words) which is (or are) associated with that object is mirrored

in the connectiom from the percept units to the sentence units. Research with human

subjects has shown that syntax acquisition is facilitated when sentences are p~.wnted in

combination with semantic referents, for example, visual inages (see for cxample, Moeser

& Bregman (1973), Paivio (1971)). The scheme used in this work hints at implementing

&is relationship.

5.5 The Hidden Layer and Output Layer

The architecture of the hidden and output layers of this network remains essentially

unchanged from that suggested by Rumelhart and Zipser. However, it has been

customized somewhat to fit the task at hand.

The hidden layer implemented consists of a number of clusters, each consisting of the same

number of units. These units are completely connected to the input layer. As stated earlier,

the arity of the feature discovered in the input set by a cluster is determined by the number

of units in that cluster. The feature to be discovered in this case is the identity of the words

presented in the input layer. Since 15 words are used in this experiment, each cluster in the

hidden layer was given 15 units. (The choice of cluster size here is optimized to suit the

research task It is perhaps more b io lo@c~y plausible to assume that dusters in the hidden

layer would be of various sizes; &us some clusters might contain as few as 3 units, while

others might contain 20 or more. fn this case, some clusters would be able to categorize

the inputs correctly, while others would fail. One possibility is that a large enough number

and variety of such dusters in the hidden layer would still allow the appropriate features to

be found. ho the r possibility is that allowing the size of clusters to incfease over time, as

more words are introduced to &e s y s ~ i n , would provide a biologically plausible method

for achieving the "right" sizes for clusters-) These clusters are winner-take-a, so even if a

snmxe consisting of h words is presented as input, any given clusm will have only

one nnit active. Thar om mrir will c-pond to one of the three words in the sentence;

a& in whicft the input pattens are picsentat, and the learning parameters used during

bt.;iining The winmm of the diffaent clusteis in the hidden layer may or may not

correspond to the same word in the sentence, depending on how the weights are

distributed. If there is a sufficiently large number of clusters, each word in the sentence

should be captured by at least some of the winning units in the hidden layer. Thus, there is

no loss of information tu the output layer, as to which words appear in the input. The

thesis research suggests that having a number of clusters equal to or greater than thc

number of words possible is enough; the key is having a roughly equal number of clusters

capture each word. h would be ideal to have a very large number of clusters, but

computational considerations Limit the number of clusters which can practically be used.

The output layer is a single cluster of 15 concept units, one for each possible word that can

appear, as mentioned earlier. This cluster is completely connected to the middle layer, and

is winner-take-afl. This is sufficient during training, as each unit in the output fayer should

have a chance to win and thus become associated with a particular concept (word andor

percept).

5.6 Learning in the Hidden and Output Layers

In both the output and hidden layers, units belong to winner-take-all clusters, and the

fearning procedure is the same for each unit. Therefore, the leami~g method employed for

the hidden and output layer units can be understood by examining just one rep~sentativc

camecen=d to their respeGdive input layers;, every unit receives input from every unit in the

layer immediately below. In every cluster, only one unit "wins"; that is, the unit with the

highest activation will have its activation set to 1 and all other units will have their activation

vdues set to 0. These. values are either read off, in the case that the unit is in the output

layer, or are propagated to the layer above, in the case that the unit is in the hidden layer.

The competitive learning algorithm employs a scheme whereby only winning units learn.

Thus, only the units which are active have their input lines' weights altered. A learning

ratio (for more on this, see Section 6.1) is specified which indicates what proportion of its

weight each input line to the unit should "give up." This quantity is divided up evenly

between, and added onto the weights of input lines which connect the winning unit to units

which were active in the layer below. Thus the winning unit becomes a bit more strongly

associated with those units from the lower layer which caused it to become active.

The learning algorithm has a flaw, however. An initial random distribution of weights may

result in a hidden or ouput unit having most of i~ weight on connecfions which are rarely

or never active. This is especially problematic for input patterns which are sparse,

consisting mostly of zero values- This may occur in the proposed model, as there are

nodes in the input layer which should never become active; for example, the grammar used

p ~ ~ u d e s verbs from king presented in the sentence-initial position. The result is that

such a hidden or output layer mi€ would never win a competirioa, would never l m , and

would in e f b t be practically removed from the cluster to which it belongs. If a cluster of

Two solutions are suggested in Rumelhart and Zipser (1986). One, which is not used in

this work, is to associate a threshold value with all units in winner-tidce-all clusters. If a

unit is winning "too much", its threshold d u e is inc~ased, making it more difficult for

this unit to win. If a unit is found to be not winning "enough", its threshold value is

decreased, making it more b l y that this unit will win some competition. However, one

problem is specifying under what conditions a threshold value should be changed - what is

"too much or "enoughm? Another problem is determining by how much a threshold value

should be increased or decreased, and on what, if any, other parameters this should

depend, A similar e E a t can be produced by using a more suaightforward method, dubbed

"leafry learning" by Rumelhart and Zipser.

In leaky learning, which is used in tltis work, every unit in a cluster learns during cach

training trial, However* the losing units do not have their weights changed by as tsargc a

proportion as do the winning units. h the model described here, tfte lasing units' Icarning

ratio is computed as one-tenth that of tfie winning units' ratio (the primary ratio). To hctter

envision this, let as appeal once more to the geometric hypersphere analogy mentioned

earlier- The sparse inpug situation corresponds to having certain regions of the

hypersphere's surface being devoid of stimulus patterns. Units which never win would

have weight vectors which lie in these regions- Now, learning can be viewed a. the

pmess of moving &e weigbt wecmr of a. unit so as to rn&e it lie doscr to the stimulus

vector to which the unit should respond The weight vector of a winning unit is moved a

certain fixtion ofthe way toward the stimulus vector, as determined by the learning ratio.

&I leaky leafniR~, - the weight vectors of losing units are also moved rowwds the stimuiw

vector- though by a ma& smaller proportion- However, this has the effect of moving the

weight vectors of Iosirrg units out of the mp0pUlate.d regions of the hypersphere, towards

the more populated regions. Eventdy, these units will begin to respond to the input, re-

engaging in the competition with other units in the cluster.

6. Developing and Refining the Method

The learning algorithm and network architecture employed in this work evolved greatly

over the course of time, as difficulties with the original work were encountered. The

competitive learning algorithm itself has several parameters which can be adjusted,

resulting in varied degrees of performance. In fact, some of the parameters work

synergistically, with the altering of one parameter affecting the way in which varying other

parameters affects overall performance. This section will discuss some of these issues,

especially as they pertain to this work.

6.1 The Learning Ratio

One factor that greatly affects the ability of a PDP system to lean is the learning parameter,

or learning ratio, which is used. This ratio determines the amount by which network

weights are changed after each learning input (recall the function for competitive learning

given in Chapter 3). In competitive learning, this ratio determines the amount by which

connections between winning units and active input units are strengthened, and the amount

by which connections between losing units and active input units are weakened. The ratio

is a proportion rather than an absolute figure.

The problem with selecting an appropriate ratio is that there are problems both with

choosing ratios which are too large and those which are too small. The actual range of

ratios which produce satisfactory results must be determined through trial and error. An

overly large ratio will cause instzibility in the network. Using this work as an example,

network training was intempted at various times during one set of experiments, to ,see if

the network was converging on a stable classification. If an overly large ratio was used,

the system would sometimes move away from a state in which inpurs were correctly

classified towards anorher state, with incorrect classifications. Overly large ratios

com=spnd to units king overly sensitive to input. So, even though a unit may at one

point appear to be responding favorably, having most of its input weight on one set of

input units, a short, unfortunate sequence of stimuli may serve to shift this weight to a

completely different s t of input units. This phenomenon, qeated in other units, results in

t k mwork's ouqm cmtinulng to change as long as the training continues. If fom"

mechanism could be implemented to monitor the network's state and to stop the network at

a stable point, this would not be a problem. This would not necessarily be a source of

external supervision, but could be seen as an internal mechanism for self-regulation.

(However, no such mechanism was used in the current model).

ff a ratio is selected which is too small, the network takes longer to converge on an

appropriate solution. However, moving towards a stable solution in small increments

provides a hedge against the problem of instab'rlity; with decreased sensitivity, it would take

a much larger set of "unfortunate" inputs to move the system away from a stabfe state, and

this would therefore be less Likely. It seems a good compromise to build in a declining

learning ratio. The laming ratio is initially high, to facilitate rapid movement towards a

st;tble ~Iassificatio~. As training continues, the ratio is gradually decreased to prevent

inst;tbility- This is &e scheme which is implemented in the work discussed kre . Having

an initid learning ratio of Q.5%, and stepping it down 0.1% after each 20% of the iterations

is completed, gives acclr;3:pt&fe results.

6.2 Nature of the Input Patems

Originally, it was felt that a disrributed repranration scheme should t#: used in this work,

as lcrcalist representations less biologically plausible. Since a major motivation for

using competitive feamhg for &is work was to get away fiom less plausible, supervised

learning strategies, it p ~ a s a h narural to want to use distributed rcprexntatians. This

turned out to be quire problematic- The fallowing summarizes a p k of the rcwarch that

was canduct& before c~oss-connections were built into the input layer and wirfi a largcr

number of sentence columns.

In order to make the p b l m mu= realistic, the distribukd mpmntatictns that wert:

chosen had a reIatively hi& degree of overlap, although there wen: units which were

unique to each patterrt It was hoped that the network would learn to use the% unique units

as the keys to determining the identity of b e patterns. An error-fcxdback learning

algorithm, such as back propagation, would have worked weif in this casc. Unfctrtunatcly,

the competitive 1-g algorithm failed to find the distinctions. During sting, it was

found that the efkt ofthe number of ovsfiapping units ended to swamp out thc cffwts of

the tmique units. 3?1us, the differences were "washed out" and the nc~work was unable to

of k network was more feasible. Also, the zduction in the size of the input patterns

resdgd in a reduction af h e time taken t run full network simula~ons. The difference in

Orhcr experiments we= also conducted, in which the word pamm were lasge and nun-

up. At this point in rhe research, only one percept and one word were king presented to

thLI rdtwoik during each mining trial. The network learned to make the correct

cEwsifications, but was sensitive ro the initial distribution of weights, The problem of

overlapping units in ttrz sen- columns swampkg pattern-distinct units remained, but

when tfit: network tbtas mined ut fwm its "attention" on the percept columns, the problem

As mentioned earlier, the fern learning method was used in the fmd model. The original

input presentation scheme was not s p a , and so it did not initidly seem that leaky

learning should be mcessary. However, as problems with the network necessitated a

change in the representation .scheme, the issue of sparse input patterns became imponant,

Leaky learning is usefui when there are nor enough input unirs go go around, so to speak.

A small number of mi^ always wins, and r3Ee rest of the units never win, In straight

competitive learning, th.lzsce losers never h, and hence are never involved in the

competition between units, By allowing losers to learn at a reduced raw (in this work, onc-

tenth the rate of winning unirs), even losing units are eventually brought back into the fray.

Over the course of bdding the network, leahy laming was variously pmgrammcd into

and removed from the network, Sometima, it would be employed for one layer in the

nemork, but not for otbem The effect of wing leaky learning was subde, and it was

somerimes difficult to tell when leaky learning, as opposed t some other nctwork

parame~, was to be f a d e d for some problem- For example, consider a problem that has

idready k n mentioned: network stability- Afwr many training imtancesi an: done, one

w d d hope that thie netwopk wodd settle on a stable state, where the output units each

~ n d consistently to given input However, one effect of leaky learning can be to make

a netwcKfr less stab1e- Emituse even lasing units are learning, there is the possibility that a

losing o ~ p t anit can watdty fake aver &e rote a different output unit played. Thus, the

system moves &mu&, albeit slowfy, diffenznt "almost stablew states. However, as we

have already seen, rbif: ehsh fa ~~g ratio for the network aIso has some bearing on

the stability of the network Therefore, the choice of whether to use leaky learning is in

some way connected to the size of iearning ratio desired.

In the network's final configuration, leaky learning was used between the input and hidden

layers, and between the hidden and output layers. No leaky learning was implemented in

the cross-connections. tosing units learned at 10% of the rate of winning units.

6.4 Choosing an Appropria~ Number of Layers

In Chapters 2 and 3, networks consisting of other than three layers of units were

discussed. For instance, while a straightforward three layer (with one context layer) simple

recurrent network was used in Elman's work, it was insufficient to do the processing

required in his second experiment. fn fact, that experiment required the use of a five layer

network, plus a layer of context units. St- John & McClelland's network combined a three

layer SRN with a straiphtfomard three layer network. Rumelhart and Zipser were able to

achieve their goals with a two layer network in some instances.

h e experiment that was tried earlier in the thesis research was to add an extra layer to the

system, At this time, none of the cross-co~~~ections of the fmal network were in place, and

system was not classifying its inputs properly. Admittedly, the decision to add another

layer redly was just an experiment, but i t seemed that additional layers allowed networks to

discover more complex pattern in h e input data. In actuality, the addition of a fourth layer

did not serve my useful purpose at afl, and did not alter the results obtained from the

system- Exm layers seein to be useful in encdmg "deep" information, such as

re0ationships k m m multiple input pattenrs (as in the sentence gestalt of St. John &

McClelland (1990)). The type of classiikation being done by this network is relatively

"shallow," having to do with only one input pattern at a time.

6.5 Threshold Values and Winner-Take- All... or Not?

One difficulty with having the network learn many associations simultaneously had to do

with the winner-take-dl strategy espoused in competitive learning. In the input layer, this

was especially problematic, as the winner-take-all strategy directly contradicts the goal of

allowing word units to recall associated percepts. If three unique words are presented in

the sentence columns, three associated percepts should be recalled. In order to aUow for

this, the winner-take-all restriction was removed from the percept units, This formed the

basis for the competitive learning-Hebbian learning algorithm used in training the cross-

connected input layer.

The use of winner-&-all strategies in competitive learning does not require thresholded

units. After all, one rule of competitive learning is that every cluster always has a winner.

If this r 6 c t i o n is removed, some other factor must be used to determine whether learning

will take place for a particular unit A convenient method for doing &is is to allow all units

which exceed some set threshold vdue to be considered winners, for the purposes of

teaming. Their input weights are then altered according to the conventional competitive

learning algorithm. The main diffculty with using thresholding was the determination of

appropriate threshold vdrres.

6.6 Normalization of Weight Vectors

Another issue which affects the performance of the network is the method used to

normalize weight vectors following each training cycle. In Rumelhart and Zipser (1986), it

is suggested that it is suGcient to ensure that the sum of the input weights for any particular

unit is normalized. In fact, normalizing the surn is not really adequate for this network; the

technique of normalizing the length of the weight vectors must be used.

Recall that a unit responds to a given s?imulus if the unit's weight vector is close,

geometrically speaking, to the vector of the stimulus pattern. When using "surn-

normalized" vectors, it is possible that a certain weight vector will never be the one closest

to a stimulus vector. In these cases, other units become responsive to more than one input

pattern, although it is desired that there be a one-to-one mapping from the patterns to the

units.

The difference between normalizing the sum of a unit's weights and the length of the unit's

weight vector may seem subtle, but it has major implications for the performance of the

network. In early experiments where sum-normalized weights were used, a frequent

problem was that a single output unit would capture several input patterns, and up to half of

the output units were ullfesponsive to any input. It was thought that this was due to the use

of non-leaky learning; however, leaky learning failed to fix this problem. The solution in

this case was simply to apply length-normalization to the weight vectors, as ~pposed to

sen-nonndizarion.

6.7 Summary of Techniques Used

Following is a summary of the various methuds used in the final network configuration:

Learning ratio. The initial learning ratio was set at 0.58, and was

decreased by 0.1% after every 20% of the training iterations was completed.

to improve the stability of the network.

Input patterns. The percept and word patterns are simply single units, as

opposed to being large multi-unit patterns. This allows the network to be

more easily analyze& and also allows training to proceed rnoE quickly.

Leaky learning. Leaky learning is implemented only between the input and

hidden layers, and between the hidden and output layers. The leaky

learning ratio is 10% of the current learning ratio for winning units. This

combats the problems brought about by the use of sparse input patterns.

* Number of layers- Three layers (input, hidden, and output) are sufficient

for the task.

Threshold values versus winner-take-all. The hidden layer clusters and

output cluster are wirrner-take-all. Units in the percept column are

kesholded (a kmhofd value of 0-1 is used), as are units in a c h sentence

column (a value of 0.2 is used),

* Method of normaking wight vectors. Weight vectors between the input

a d hidden fayes and between the hidden and ourput layers are normalized

so hat &ey are of unit length. For rire percept arid sentem unirs, the sum

of input weights is normalized to 1.0.

Despire the many problems cropped up during the course of experimenting with &c

competitive Ieming dgorithm, good results were eventually obtained, The work is

evduated from several standpoinfs:

the comtness of the mapping developed between the output conccpt units

and the input tmbs. Resena~on of a percept, the ttssocintsd word, or tfte

percept dmsg w3& zithe word should J I result in -&e acrivaiiirrt of rt

miqw concepf tunit. I W y , no concept unit should capture more than onc

concept.

the number of mining W e s that must be w d before adqua&

perfonnmce is achieved.

the system's ability M m c d y recall tiie percept associated with a word

presented in a leg$ position in a sentewe. If the word is pmenkd in an

illegal psitian, no useful percept should necessarily be mall&.

the system% ability to corrrx~ly recall the appropriate words when pre.wntcd

with a percept- For noun?;, &is should take the form of activating two word

units, since nouns may appear in two places in a sentence, For verbs, on ty

one word unit &odd be n=called, since verbs are Iimiwd to a p w n g in one

Transitive verbs :
K i c k s 5 10 6 Kicks I0
Kisses 13 12 2 Kisses 12
Breaks 6 O 2 Breaks 0
H u g s 6 2 0 Hugs 2
Gets 12 6 Q Gets 6

Intransitive verbs :
Runs 13 11 13 Runs 1 I
Sleeps 6 4 13 Sfeeps 4
Nalks 8 8 13 Walks 8
Falls 4 5 5 Falls 5

Token Output units
(W & p f Positions

1 2 3

John 7 7 7
Baby 14 14 14
Ball 3 3 3
Cat 1 1 1
Girl 4 4 4
Mary 5 5 5

Kicks 13 10 4
Kisses 12 12 12
Breaks 0 0 0
Hugs 2 2 2
Gets 13 6 6

Runs 11 11 11
Sleeps 4 4 4
Walks 8 8 8
Falls 14 5 14

Table 7.1: Response of the concept units to presentations of words and

percepts, after f 0,000 mining cycles. Bold type has k e n added to indicate

those values which especialfy show the system's performance.

Thi= a b v e table shows &e results of presenting words, percepts, and word-percept

combinations to the network The i-%st four columns indicate the results of presenting each

of the 15 words of the, lexicon to tfre network in each of the three sentence positions. Each

word is presented in isolation; no other word units or percept units are turned on for these

ti:sts. Tfw. numbers in & mIumns ind ica~ the particular concept unit that was activated

w k n the word was presented, For example, when the word "John" was presented in

sentence p i t ion 1, concept, unit 7 responded; when it was pmented in position 2, concept

unit 6 responded; w"kn it was presented in position 3, concept unit 7 responded. ?This

occurrence of that noun in he sentence columns. Specitically, since our grammar only

zdlows nouns to occur in positions 1 and 3, we would expect the concept unit to acrcociat3:

with the noun presented only in those positions. This is indeed so for all of the nouns

presented, as can be seen in the table by comparing the values for nouns under column " 1 "

with the values uader column "3". The behaviour of the system is different for verbs, as is

to be expected. Since verbs only appear in position 2 in sentences, there is no wsociation

between the concept units for verbs and the appearance of verbs in positions 1 and 3.

The values which are obtained for the presentation of nouns and verbs in ungrammatical

positions do not necessarily fit any pattern. However, this is not surprising. We would

expect even after training tbat there would be some residual weight on tines connecting

concept units to uni& represenring words in illegal positions. This is because the initial

weights are assigned randomly, and weight is taken from inactive lines by removing some

fraction of their weight. There will therefore always be some positive amount of weight on

inactive lines, unless so much training is done that the precision of the computcr can no

longer represent the value. The winner-take-all nature of the output layer will select a

winner, even though the amount of activation may be very small.

The second set of columns represents the results of presenting percepts to the network. If

the network was able KO learn the appropriate concepts, there should be a unique concept

unit for each percept, and &at concept unit should be the same as that activated when the

associated word was presented. This second criterion was met by the network. However,

not all the pacepts became associated with unique concepts. Specifically, "Mary" and

" F a " both caused concept unit 5 to fire; "Girl" and "Sleeps" bit& caused concept unit 4 to

h. W-niie this is less &an perfect performance, recall &at &c performance is dependent

on the hidden layer clusters funding the appropriate structure in the input. If for some

reason these clusters fail to do so, the concept units become unable to find the structure.

However, the randomness in determining the initial state of the network and the order of

training inputs influence the ability of clusters to perform this ciassification, and so perfect

performance is not dways guaranteed. Note that back propagation is also not sufficient to

guarantee perfect performance, as evidenced in the performance results of the back

propagation networks discussed in Chapter 2.

Lastly, consider the rightmost set of columns in the table. These columns represent the

results of presenting a word in different sentence positions along with its associated

percept. The expectation is that the result will be some mix of the percept results md the

word results. In fact the output closely resembles the results obtained when the word alone

is presented, except that when words are presented in illegal positions there is a tendency

for the percept's presence to activate the correct concept. This is a desirable property of the

network, as it shows how the presence of semantic information (the percept) can affect the

outcome of presenting a word in an unfamiliar context.

The overall performance of the network after 10,000 training sentences were presented was

that the correct concept units were activated 84% of the time. (The number of trials is

comparable to the numbers used in Rumelhart and Zipser (1986). Compare, however, the

figures of 60,000 in Elman (1989) and 100,000 in St. John & McClelfand (1990)). By

comparison, after 5,000 training cycles, only 63% accuracy was obtained. Interestingly

enough, d~ough, f = e r mining did not ~foticeably &is- b e system's perfomarice:

Number of Trials Percent Accuracy

5,000 63%

10,000 84%

20,000 79%

35,000 83%

50,000 79%

100,000 80%

This mainly manifested itself in t%e system as an inability to assign unique concepi units for

each concept. In examining the system after each training session was over, at least two

concept units would always be found which had "doubled-up", becoming associated with

two or three concepts. This could potentially be linked to the relatively small number of

clusters used in the hidden layer.

The remaining points of evaluation had to do with how well the system learned the

associations between percepts and words. When words were presented in legal sentencc

positions, the corresponding percepts were to become active. When percepts were

presented, the units representing the associated words in legal positions were to bccomc

active. The system also was to learn that percepts and words should never activate non-

corresponding units. Even after only 1000 iterations, the system was beginning to

demonstrate that it had l amed the correct associations without forming any incorrect

associations (see Table 7.2, following). During this phase of testing, the threshold value

for percepts was decreased to 0.1 from 0.2. This change was determined by ob.wwing

k d y that the word units in position 3 were connected to their corresponding pcrucpts

with weights in the range olr'O.10 to 0.25. This is a result of the composition of the input

set The exact h h o l d maled varies as tk number of nouns relative to the number of

v d s changes.

~resunte3 in Presented
p 3 ~ i ~ i a f i I position 3

correct : 6
incorrect: 0

correct : 9
incorrect: 0

Check that each -percept activates appropriate words only:

Moms :

correct :

ixorrect word

verbs :

correct :

incorrect w o r d

RecakE word iz Recall ward in
position 1 posi t im 3

Table 7.2: Evaluating &e network's performance after 1000 training cycles.

The upper half of the table repuns on the system's ability to allow words to

activate their cctmspnding percept units. The lower half reports on its
ability to dour percepts to activate their corresponding words.

The abve table shows that af'r 1000 uaining instances, the presentation of nouns in

position 3 failed to activate &e correct percept, that only one noun percept was able to

activate a word unit in psition 3, and that only tbur of the nine verbs were comcfly

a~,ziva;tcd by verb pmxpas. This can be partially explained by the fact hat the training

program only generates sentences invo1ving a word in position 3 in half lfie training cycles.

On &e orher hand, every sentence contains a word in position I. Thus, associations are

more rapidly built up heween percepts and sentence-initid nouns than k t w t m ~#'rcqts

and se~tence-fmd nouns. The problem witfj the verbs may arise from the fact that then: an:

relarively few nouns present in the lexicon and verbs always appear together with nouns,

In effect, the nouns steal some of the weight that should be on rhr: input lines of wrbs,

Over h e , this e k s will II. washed nut by the regular co-wcumncr: of thc wrhs with

tfteir corresponding percepts. Tn fact, aftcr 5Wi3 iterations thc associabivu memory workcd

GawIessly. Additional itemions do not degrade the pwformancc of the cross-connections.

correct : 6 6
incorrect : 0 0

8. Discussion

8- 1 fmplicatiom of the Work

Ot#: very i r n p m t aspect of the work discussed here is that it suggests a general way in

which rtrc mapping from senren;ce constituents to events and items in the real world can be

famed. 73is is some&ing which is; discussed, but nof implemented, in St, John &

M S 1 e h d (1W&, Tn St, fohn & McClelfand's work. statistical ~,datities of the

semantically consmined eel-occuffexes of words are exploited to produce a way in which

coherent and unambigursm event repwntauons can ?x drawn from an input sentence.

Howiturn, these ~ p r e ~ n a t i o m have nu anchor in the red-world the qxesentations are

"evcnt fmmcs", consisting of a set of slots ~ p w n t i n g thematic case roles in the event,

and the set of concepas ha t aapprpfiately fill those roles. The f o ~ g o i n g w o k outlines a

method by which the words kmselves can be associated with red-world perceptual input

and eventually with abstract concrpts. Linking words with t k i r d - w o r l d cognates in this

way would add to the abilities af the St. fohn & McClelland system. Perceprual

inkmation combined with the network% past experience with this informarion could be

used f~ f d e r constrain the way in which input senmces arr: processed. Tfiw, additional

Zni'omatisn is avda& bbr &ding w.i& &e pmb1sms of w a d sense d-bigwtion and

generating appropriate mWfilkr pairings*

for de&cting '"'fobdin psitian 1," or "'hits' in position 3" should haw been developed.

The infinfopmation encoded irr rficse units would then haw been available to higher layers,

which pmumabIy could then use this information to parse the original sentence.

However, the extremely IacaIist name of this representation scheme, and its biological

irnptattsibility, makes it mdesirable to implemenk It also makes quite strong demands on

the architecture of the system, requiring not only the right number of clu.;tcrs and units to

detect each word, but ro detect each word in each possible sentence pusition. Since this is

so, in order to extend &e system to accept more words, a number of uniu related to the

number of new words mrrltiplied by the number of possible sentence positions would h a w

to k i n t r o l x d The number af added connections, and hence wight V ~ U L ' S to k

learned, would alsa. be multiplied. This makes it difficult to imagine that such a syskm

would be flexible enough to easily adapt to arbitrarily long sentences and thc inclusion of

many new words; the increase hi * d - ~ scale of the problem grows explosively with thc

number of new pattern tl, be ~ ~ o g n i z e &

A h , &is system represents a gemrafimtion of the competitive learning network

architecture proposed by Rumelhart and Zipser. Their system was only able to learn to

recogniz concepts when presented to the syslem one at a time. For example, Rumelhart

and Zip.sefs horizonraY\cedcal line recognizer was trained using only a single line at a

time, in crtmbinagion with iiu relakd &ng pa~tem. The training regime adoped for this

system consisted of presenting two or three p a m s together, along with their related

mining patterns. me ability of this network to learn concepts when two or &pet: are

pmenwd sfmultaneousfy, is a notable advancement over Rumelhart and Zipser's original

model.

AddiriondIy, rhe techiqw d G n g =ass-connections to augment an input panern further

improves upon Rumelhim and Zipser's original network. If a percept or word is missing

h m an input pattern w h its corresponding word or percept is present, the cross-

connections provick a m a n s of "pattern campfetion"; &e unit cornpunding to the

missing percept or word is acduated- The completed pattern is more likely to be comtiy

recognized by the network, and k n c e a degree of robustness is obtained that is not enjoyed

withiout the use of ms-corn2Ctions- In facfi the cross-connections dso provide a means

of assof,-iadng a word wi& prceplis &r t b the percept cornspanding u; that word,

gmviding contextual informatian_

Laming systems gives added insight into bow competitive learning systems might be '

~ c t ~ f ~ ~ & adapted for me a&sr' pio;Zi:em Eom*s.

The system as it cumnay smds represents ike results of a great deal of exprirncntation.

However, there are several inmesting directions in which this work may he cxtendcd

~I&a-eIy easily, and ways in which the system itself may be useful as part of a larger

system.

8-2-1 An Ordering faver

One issue that is not explicitly d d t with by the system is h a t of sctqwntid ordcring of

input Words are ordered in the input sentences inasmuch as they appear in seprratt:

columns in the sentence grid. However, &ere is no explicit encoding ttf what constitutes

the first word in a sentence, tk second, and so on. One extmsion to the system would hc

to add another layer of nodes, whose purpose would be to identify wha~ position a given

w a d occupies in an input sentace- TAis layer of ordering nodes would be carnplcstcly

connected, bi-&mticm&y, rr, the concept units currently occupying the netwok's tap

layer, Enough ordering nods:% would be needed to have one unit for tach po~siblc prsi~ion

in tk input sentence, (Note rfiar. while sentences can in theory k of arbiwary Icngh, in

practice a hundred or fewer units would probably suffice). input would be ohmgcd

samewhat; instead of presenhg an entire sente=nce to the netwtKk at once, w h sentence

constittmt is presented in tw, Bls each word is presented, assuming that mining is

camnp1et.e and tfre coftcept units have already learned h e comm assc~ations, the ordering

n& csrrespnding ra rhe senmce pasihs of the input word is acl'ti'~rat&, lfte connection

menehatardening md the word% concept node is immdialciy s m n g h n c d fully;

in esxmef a *fast a s x i a t i d is formed between the ordering no& and the concept nude,

This could be done by using a learning ratio of 1 for the concept units during this phase of

the network's operation. This process would be repeated for the remaining words in the

input sentence. The immediate association implements a short term memory: the

association is quickly learned, and may be quickly dissolved so that a new sentence can be

processed in the m e way.

With thew associations between concept and position, one obtains an explicit encoding of

wordiconcept positioning. To retrieve the concept which is in a given position in a just-

processed input sentence, one would activate (or "probe") the ordering unit for that given

position. The activation would immediately propagate to the concept unit .rtrhich had just

k e n ;issatiated with that ordering unit, and thus the identity of the concept in the given

pirim codd be retrieved, Using the above example as an illustration, if one probed the

nctwark with ordering unit 2, tlre concept unit for "kisses" wodd k o m e active, Thus,

we can directfy obrain an ordered sepeme of concepts representing an input sentence's

meaning. by probing the network- None of tfre systems surveyed earfier make this

i d m a t i o n explicitly available. Word order can be a very smng constraint in language

understanding, a d having this idomation available in this fashion could be very useful

1 2 3 Ordering units, bidi~otionally
connected to each unit in the output

+ T O) each layer possible There is sentence one ordering psi tion. unit for

Ano&er interesting extension to the work would allow intercomections between units in

the sentence columns. The identity of a word in a sentence is in some instances highly

constrained, grammatically or sernanricafly, by its context. By allowing associations to be

built up &tween units representing words in various relative positions in the senmce,

p h p s using a scheme similar to that used to connect word and percept units, we allow

these cummints to be c a p m d by the network, Consider the former example once more,

"John kisses Mary." If John and Mary an= husband and wife, a semantic regularity in the

mining corpus might k that John only kisses Mary, The interconnections between the

sentence columns .&ouid atlow &is repiariry to be captured in &e course of training. Fn

the case of the partial input, "fob kisses...", then, the interconnections between word

units would tend to activate the word unit for "'Mary" in the third position of the sentence.

Or. in the case of the partid input sentence "3 ohn ,.. bread", gammaticat and semantic

constraints would combine to supply a verb having to do with eating as the correct word

for the .sentence's s a n d posiriun- Using, this addition to the archimturrl;, we could

imnplment a prediction ndwork M a r to zhait. explored in Elman (19PO).

reached", the network can monitor itself and determine how best to prwecd. ThL. u x of

units which vary their fh-eshuld values automatically could also k a candidate for an

optimization tool

Another avenue for exploration is that of varying the number of cImtcrs in thc hidden Ittycr.

As previously mentioned, a larger number of clusters in the hidden faycr would result in a

higher probability of each wmd in the input layer king equally rep~.si:nted in the hiddcn

iaye~ This in wcidd i ~ ~ p v e *h ouiput layer's abiliiy io capture he infoma6on

king fed t b m d fmm the input layer-

While this rn&d of &g iltustfitld ttte ability of he system ta pcdbnn a~wiations, it

was weak in W it q u i r d pre-spmGng of a test sentence into its constituents. Clnc

inmesing. is to piamt entire senmces to the network after mining is ccmpfctc.

Howem, k ~ - ~ - a U natlne of k output layer dfows mly one concept unit to

kcme active, A more inwesting would be t allow multiple wiram at the output

kwI, Ebsing a t d m i q ~ ~ e similar ta that employed in the perapt column and .stmt@nce

columns. Each output unit would have some associated threshold value (likely the same

for each unit). Then, instead of having only one winner at the output level, dl those

output units which exceeded tk zt.lreshold wodd be winners.

A phase of testing was attempted where the winner-take-all restriction was removed from

the output layer, @er the network had been trained with the restriction in place. It was

hoped that the concepr mi& coffapo~fding to the words and percepts presented in the input

tiioiifd have Iwgr ~ t h i a t i ~ ~ ~ &ose of h e other concepr units. Experiments showed

that this tended to k me, but there were offen one or two "rogue" concept units that were

not expected to win, but had activations larger than one or more of the expected winners.

This was not an expecwd mdt, but could be due to the fact that the networIr was

recognizing particular combinations of the input words and percepts. Adjustment of the

network parameters could possibly resolve this problem.

A further experiment wodd be to =lax the winner-fake-all restriction on the output layer

during mining, to ser: if the correct concept assaciations are still learned, The system could

then be tested with and without the outptrt layer restriction. In either case, it is atso likely

h t additional t d g of iiize nerwofk parameters would be required in order for tfie

"Ke grammar used in this resewh was useful for the purpose of displaying how a

r~rnpetitive kambg l~'t~~orZr mdd learn associations between words, percepts, and

clancepts However9 grammar was simple in that only very short sentences were

There is no principled reason why larger sentences could not be processed by anoihcr

version of this network The associations between words and percepts would still be built

up, as &is only relies on he presentation of perceptual input with thc sentence input. An

increase in the size of the sentence could, however, slow the rate of learning these

associations. There is afso an indication thal the learning of concepts is also not scvercly

limited by the number of words and percepts presenkd. Raiher, it is dependent on thc:

parameters chosen for tSre network, such as the size and number of clusters. If thc network

parameters can be matched to the task, the regularities of occurrences of words and thcir

percepts should still eventually result in the network's being Ale to develop thir c o m t

asaciations.

In this example, 'kvhich" does not correlate to a sensory perception of a particular object or

action in the described evenr. Rather, it serves to indicate the presence of a modifier to the

d k t object "the MI". In order to ded with cases such as these, relationships between

percepts would need to be represented. These relationships could perhaps be processed

using a subneworfr which takes a smcbtrred reprefentation of perceptual information as

input and producer; a set of outputs indicating spatial, dynamic or other relationships

between percepts or groups of percepts in the input- This is a ca%egorization task, and thus

there is the possibility that a competitive leanring network could be used for this purpose.

However, there w d d be many Ntculties to overcome, not the least of which would be

choosing an adequate mehad for representing the stntcture of the pe~epts,

9. Conclusion

Despite the many problems which cropped up during the course of expcrirnenting with the

competitive learning algorithm, good results were eventually obtained. The initial research

problem was much more ambitious, having to do with the very large probfcm of

discovering grammatid features from input sentences; however, it k a m e clear that

wrestling wirh rhe many ifspecis of compriirve learning as applied to tttc et'entudly chu,sen

;.esemh jrifsf; was s.;ftciendy chdenghg.

Tfre version of compe&ive learning implemented in this work is afite to Ieam to associate

words, percepts and concepts, ~ith a g d degm of accuracy, fhc suc-ccss of the method

depended greatly on &e choice of appropriate parameters for the architecture cmploycd. At

the least, the wo& sqgem a m e W for using unsupervised leaning to supplement

sen~nce processing networks which me o t k learning algorithms. Tdan by itself, thc

work provides a potential basis fbr uskg unsupervised learning schemes in networks

which do more complex sentence processing.

Appendix A: Program Listing

/*t*t*+++r****r*i

bi cdgma2n.c Jan. 12, is93
/ * Kenward Chin
/ *
/* This is the main driver progr&x for ;he training of the network.
/* Tfie learning and prcpagat2on a1gori:knts art found here.
i*
J**+*i**********/

main (argc, argv)
int argc ;
char *arg;z 5 ;

f
float atof 6 1 ;

xhile (counti=O) { / * main loop to enter patterns * /

flag = COMPUTER;
getinput(innrr, f h g] ;

/ * do ~ntralevel learning: this is plausible, as it
is analzg-=us to c k input units already having won at
an earlier level. Because this is "pstudo-Hsbbian",
we can do the learning *bsfore* the crosspropping. * /

crosslearn [inarr, perctm-~ord, xordtoperc f ;

crossprop(inarr, perctoword, wordtoperc);
/ * da intralevel excitation * /

crossnorm fperctotzctrd, wordtoperc) ;

propagate(inarr, nnit, weight);

for (i=O; itCLUSTEXR4; it+) / * learning loop *!
for (unit-nnm=O ; unitl~rt<i.i;~WNITS ; uni t-num++) (

/* leak- */ if (unit lil iuzit-nmf > ACTIVE)
ratio = getratio(mm-trials, count);

else
ratic = getratio!num_trials, count)/l0,0;

for fj=9, k = O ; j<INPUTSIZE; j++j / * how many active? '!
if { inarr f j] > XTI'JEj k++ ;

no~maiize (weighti ;
proptop (unit, topunit, topwsight f ;

for ii=O; i4mOP; i++! { / * leaky * / / * learning loop 2 * /

for (cnuart=Q ; cnmwf L'JSmIUM; cn*m~+t)
for (unit-num=O; unit-rium<hWMUNITS; unit-nun++) {

delta = ratio * - (topweight [cnum] [unit-num] [i]) ;
if {unit Ecnuxx] [unit-num] > ACTIVE)

delta += ratio * (I.O/CLUSTNUM);
topweight f cnr;~] [unit-nmj [i] += delta;

b
1

if (strcmp(file-name, " - ") != 0) {
fp = fopen(file-=me, " ~ " 1 ;

I* write in->hidden weights */
for (cnum=O; cnum<CLUSTNUPI; cnum++)

for (unit-wm=O ; unit-nuq<NIJMUNITS ; uni t-nun++)
for ti=@; i<INPUTSIZE; i++)

fprintf {fp, "%f " , weight [cnum] [unit-num] [i]) ;

/ * write hidden->top weights */
for (cnum=O; cnum<CLUSTNUf.I; cnum++)

for (unit-num=O; unit-num<NUMUNITS; unit-nun++)
for (i=O; i ~ ~ ~ O P ; i++ 1 (

fprintf f fp, "%f ", topweight [cnum] [unit-num] [i]) ;)

/ * write perctoword * /
for (i=O; itOBJS1ZE; it+)

for (j=O; jcfOEJSIZE*SENTSIZE); j++)
fprintf (fp, "%f ", perctoword[i] [j]);

/ * write wordtoperc * /
for (i=O; i<{OBJSIZE*SENTSIZE); i++)

for (j=O; jcOBJSIZE; j++)
fprintf (fp, "%f ", kiordtoperc[il [jl);

normalize{stieight) / * rev. Nov. 21/92: normalize length, not sum */
•’ loat weight [CLtfS'r"NUM] [NtfMUNITS] { INPUTSIZE] ;

i
float tot-weight, length;
Fnt cnum, unit-num, i;
double sqrt (j ;

for {cnm-=O; CILUEKCLUSTNUM; cnum+t! / * set up total weights */
for (unit-num=O; unit-numtNCTMUNITS; unit-numt+) {

for (i d , tot-pzeightd; i<INPUTSIZE; i++)
tot-weight += (weight [cnum] [unit-num] [i] *

noratop(topweight) / * rev. Mov. 2 1 / 9 2 : normalize length, not sum *,!
f lcat tcpweight [CLUSTWJM] [W&KTNiTSj [NOMTOP] ;

C
f ioat tot-weight , length;
int c m . , unit-num, i;
double sqrt {) ;

for (i=O; i ~ ~ ~ O P ; it+) f f* set up total weights * /
for (cnum=O, tot-weight =0 ; cnum<CLUSTNUM; mum++ j

for (unit-num=O; unitpum<NUMUNITS; unitmum++)
tot-weight += (topweight [cnum] [unit-nun] [i] *

topweight [cnw] [unit-num] [i]) ;
length = I/sqrt [tot-xa~eight) ;
for (cnum=O; cnum<CLUSTNUM; cnum++)

for (unit-nm=O; unit-num<NUMUNITS; unitpum++]
topweight [cnun] {unit-num] [i] =

topi~sight jcnum] [unit_num] [i] * length;

propagate (inarr, unit, weight)
float inarr [INPUTSIZE], unit [CLUSTNOM] [NUMUPIITS],

weight [CLUSTE;TciM] [bJuMUNITS] [INPUTSIZE] ;
C

int cnum, unit-num, i, big;

for (cnum=O; cnun<CLUSTNtTM; cnum++) / * get Layer 2 values * /
for (unit-num=O; unit-num<NUMUNITS; unit-nun++)

for (i=O, unit[cnum][unit-num]=O; i<INPUTSIZE; i++) {
unit [cnum] [unit-num] += (inarr [i] *

weight [cnum] [unit-num] [i J) ;

1

for (i=O; i<CLUSTNUM; i++! f / * find winners of clusters * /
for (unit-num=l, big=O; unit-num4UMUNITS; unit-num++)

if (unit [i] [unit-num] > unit [i] [big])
big = unit-nun;

for (unit-num=O; unit-num<PJUMUNITS; unit-num++) / * set winner * /
if (unit-num==big)

unit[i] [unit-num] = MAXVALUE;
else

unit [i] [unit-num] = MINVALUE ;
1

1

proptop (unit, topunit, topweight)
float unit [CLUSTNUM] L ITS] , topunit [NUMTOP] ,

topweight [CLUSTNUM] [NUMUNITS] [NUMTOP] ;

for (cnum=O ; C~~~<CLUSTNZTM; cnum++)
for (unit-n~z=O; unit_num<1=ITS; unit-nm++)

topunit f i] +=
i topweight [cn;xil[unit-num] [i] * unit [cnum] [unit-num]) ;

1

/ * set winner * /
for ti=l, big=0; i<NUMT.3P; i++!

if {topunit [i] 3 topunit [big] 1
big = i;

for (i=O; i<NUMTOP; i++)
if (i == big)

topunit jil = MXCJALtUE;
else

topunit[i] = MIBJJaUE;
1

cross learn (inarr, perctoword, wordtoperc) / * last rev. Nov 13/92 */
float inarr[INPUTSIZE],

~erctoword[OBJSIZE][(OEJSIZE*SENTSIZE)],
wordtoperc[(OBJSIZE*SENTSIZE)] [OBJSIZE];

int perc, ~iord, i, onperc, onword;
float delta;

for (i=O, onperc=O; itObJSIZE; i++) / * how many on in */
if (inarr [i] > ACTIVE) onperc++; / * percept side? */

for (i=OBJSIZE, onword=O; i<INPUTSIZE; i++) / * how many on in * /
if (inarr[i] > ACTIVE) onword++; / * word side ? * /

/ * learning loop: links * /
/ * from percept to word * /

/ * If the unit on the "word" side is on, then links with * /
/ * all active "percept" units are strengthened. This is */
/ * accomplished by, for a given word, borrowing weight * /
/ * from links to inactive percept units. */

/ * The amount is calculated by taking PROP of the weight * /
/ * from each input line in to this word, divided by the */
/ * number of active percept units. * /

i* NOTE: Since this is for perctoword, the percept side * /
i* of the input layer serves as the "input layer", and * /
i * the word side serves as the "upper layer". * /

for (word=OBJSIZE; word<INPUTSIZE; word++)

if (inarr [word] > ACTIVX 1 { / * only active units learn *:

delta = PROP * - (perctoword[percj [word-OBJSIZE]);
if (inarr iperc] > ACTIVE)

delta += PROP * {i.Olonpsrc);
perctoword[perz] [word-OEZSIZE] += dslta;

1
1

/ * learning loop: links */
:'* from rmrd to percept * /

/* If the unit on the "percept" side is on, thsn links * /
/ * with all active "word" units are strengthened. This * /
/ * is accomplished by, for a given percept, borrowing * /
/ * weight from links to inactive hrord units. * /

/ * NOTE: Since this is for wordtoperc, the word side of * /
/ * the input layer serves as the "input layer", and the * /
/ * percept side serves as the "upper layer". * I

for !perc=O; perccOBJSIZE; pert++)

if (irarr[perc] > ACTIVE) (/ * only active units learn * /

for fword=OBJSIZE; word<INPUTSIZE; word++)
/ * each unit "gives up" * /

delta = PROP * -fwordtoperc[word-OBJSIZE] [perc]);
i f (inarr [word] > ACTIVE)

delta += PROP * !l.O/onword);
wordtoperc [word-OBJSIZE] [perc] += delta;

1
1

1

crossnorm(perctoword, wordtoperc) / * alpha-test: Oct 28/92 * /
float perctoword[OBJSIZE][(OBJSIZE*SENTSIZE)],

wordtoperc[(OBJSIZE*S~SIZE~][OBJSIZEl;
C

/ * Note: Each unit gets a total possible weight of 1.0 * /

int perc, word, i, j;
float tot-weight;

/ * normalize percepts: * /
/ * sum up total weight ... * /
/ * be careful - each unit */
I* has 1.0 on input lines, * /
/ * not output lines! * /

for (perc=O; perctOBJSIZE; pert++) {
for (word=O, tot2deight=0; word<(OBJSIZE*SENTSIZE); word++)

tot-weight += wordtoperc[wordlfpercl;

tot-weight 1 ; * /

/ * normalize words:
/* SIX% up total weight ...
/ * bs careful here, toe.

/ tot-weight ;

for (p~ord=B; word<(OBJSIZE*SENTSIZE); word++) {
for (perc=O, tot-weight=0; perc<OBJSIZE; perc++f

tot-weight += percto~ordiperc] bord] ;

printft'total weight for this word: %•’\nu, tot-weight); * /

/ * -..and normalize *i
for fperc=0; perc<OBJSIZE; pert++)

p~rctoword[p~rc]fword] = perctoword[perc][word] / tot-weight;
i

1

crossproptinarr, perctoword, wordtoperc) / * alpha-test: Oct 28/92 * /
/ * last rev.: Nov. 16/92 * /
/ * last rev.: Jan. 11/93 */

float inarr[INPUTSIZE], psrctoword[OBJSIZE] [fClBJSIZE*SENTSIZE)],
wordtoperc j (CIBJSIZE*SEfSTSIZE)] [OBJSIZE] ;

f
/ * dummyin is 1 element larger, for sorting purposes */

f Zoat dtotal, itotal, normfact, dummyin[INPUTSIZE+l] ;
int perctotal, wxdtotal, rnaxtotal;
int i, j, k, flag, winner, w;ta[INPUTSIZE] ;

/* Techniqrle COULD BE to only cause excitation on this level * /
/ * if one side or the other is empty of active units. However, * /
/ * it would be more general to apply mrrtual excitation without * /
/ * exception. The problem is how much excitation to apply ... * /
i * For now, just apply the potsntial of each unit * the weight, * /
/ * and directly add that to the potential on the other side. * /

i * However, be careful to do this "simultaneously", using a * /
/ * dummy matrix, so that changes aren't crtmulative. * /

for fi=O; itINPUTSIZE; i++j dumnyin[il = inarr[iJ;

for ii=O, perctotal=O; i<OBJSIZE; i++)
if (inarrlil > ACTIVE] perctotal++;

for fi=OBJSIZE, wordtotal=O; itINPUTSIZE; i++)
if (inarrfij > ACTIVE] wordtotal++;

if (wordtotal > perctotal)
maxtotal = wordtotal;

/ * Excice from psrcspt sids * /
/ * to word side first. * i

f * Note: OBJSIZE must be subtractsd from j since intraweight * /
/ * starts the word sids numbering from 0, while? in inarr it *!
i* starts at OBJSIZE. {Note: This applies here!) * r

/ * now word -> percept * /
for (j=OBJSIZE; j t INPUTSI2.E; j++j

if (inarr[jl != 0)
for (i=O; i<OBJSIZE; it+)

dmyinfi] i= inarr[j] * wordtoperc[j-OBJSIZE][i];

* f / * Nomalize percepts. . . ,
i* ok, the approach is to allot.: as many percepts as are above a

thrsshold value to attain W J J A L U E . There is no knowledge of how
many words are on.

*i
for (id; i43BJSIZE; i++) / * threshold * /

if (dunmyin[i] > PERCTHRESH)
inarr [i 1 = w-XVALUE;

else
inarr [51 = MINVALUE;

/ * ... and normalize words. * /

f * ?"hs approach: go through each column and pick the winner, as
long as it beats the threshold.

*
for (j = O , k=OSJSIZE; jcSENTSIZE; j++) { / * for each column * /

for (i=k+l, winner=k; i<fOBJSIZE+k); i++) / * pick winner * /
if (&~mmyin 1 i) > dummy in f winner])
winner = i;

for (i=k; i<(OBJSIZE+k); i++) / * assign values * /
if ((i==winner) &G (dummy in [i] > SEbJTTHRESH))

inarr [i] = MKCJALUE ;
else

inarr [i] = HINVALTUE ;
k += OBJSIZE;

1

float getratio(num_trials, count] /* Cct 7/92 */
ink sum-trials, c o w t ;

/ * This figures out the ratio to use. PROP is the specified ratio,
n~m~~trials is the number of trials to be done this simulation,
countdowri is the number of trials left. * /

int ratio ;
int scr;

/ * Because integer division rounds down (and I can't remember
what the C function is to do rounding u?), xe have to do some
tricky match to figure things out. Here, (80, 1001 is 100%,
(60 , 8 0 1 is 80%, etc.

* /

ratio = (10 * (n-trials-count)) / num-trials;

scr = 5 - (ratio/2); / * This is [I.. 53 . * /

return(PROP*scrf.2); / * Ok, so we return the specified learning
ratio times the %age of trials left
(represented in [1..5] * 20%. This should
work.. . : -) * /

/ * egetinput.~ Jan. 12, 1993
/ * Kenward Chin
/ *
/ * This contains the routines for getting input from the ussr and for
/ * generating the training input patterns. Also, dosumn~ary() is locatsd
/ * here, because it makes use of the tokens-h information to print out
/ * the results.
/ *
/*************** /

f def ine R?NDPERCEPT -1
#define RANDWORD - 1

/ * flags to add noise * /

getinput(inarr, flag]
float inarr[INPUTSIZE];

float rand () ;
int a, b, senttype, noun-num, verbnum, wordnum, index ;
int wordloc, unitcount ;

for (a=O; a<INPUTSIZE; a++)
inarr [a] = 0;

/ * Zero inarr * /

if (flag == HUMP241 {
printf("How many units to activate? ") ; scanf("%d", Gunitcount);

for (a=O; a<unitcount; a++) {
printf("Enter unit %d: (" , a);
printf("Percepts 0-%d, ", NUMOBJS-1);
printf("Nouns %d-%d, ", NGWOBJS, NUMOBJS+NUMNOUNS-1);
print f ("Verbs %d-%d) : " , NUMOBJS+NUMNOUNS, 2* {NUMOBJS) -1) ;
scanf("%dn, Gwordnum);
if (! (wordnum<NUMOBJS)) { / * ie. it's a word * /

printf("Put word %d in which position? (1-%d): ",
a, SENTSIZEj;

scanf ("%dU , Lwordloc) ;
1
if (wordnurn<(MTMOBJS)) I* ie. it's a percept * /

setjerceptfinarr, wordnum);
else / * it's a word * /

set-word (i~arr, wordnun- (NUXOBJS) , wordloc j ;
1

1

if (flag == COMPUTER) {
senttype = (int) frand!SENTnPESjf; / * Choose a sentence type * /

switch (senttype) (
case 1: / * FJoun - Verbt - Fkmn * /

/ * Get random noun. To find how it's stored in tokens-h,
we havs to subtract 1 from it. (Nouns run frcm 0 to

$T(&5XOCrt;IS-l. P i t it in first location, along with a
percept. Then, get random transitive verb (must add
MR&~IGUHS, then subtract 1. Store it and the percept.
-% .men, s k f i i l a r l y for the object noun.

* /
noun-a<;n = (inti (randi?%'MNGUNS))-1; j* subject * /

set-word (inarr, nesn-sum, 2) ;
set-percept(inarr, noun-nmj;

verbnum = {kt) frand(NUMTVERBS))-1; / * verb * /
set-word {inarr, vsrbn.m+NUMNOUNS, 2) ;
setJercegt (inarr, verbnum+hWJOTUNS) ;

nounnn1w'fi = {int) (rand(lWMT7GUNS))-1; / * object * /
set-word f ifiarr, nuunfinari, 3 1 ;
set-percept (inarr , noun-nu%! ;

break;
case 2: / * Noun - Verbi */

/ * Similar to above, but only use 2 word: a noun and an
intransitive verb. I-verbs need to have NUMNOUNS and
WUMTJEXES added, and subtract 1.

* /
noun-num = (int) (rand(NUMt4GUNS) f-1; / * subject * /

set-wordlinarr, noun-nim, 1) ;
set9ercept [inarr, noun-nuiii) ;

verbnum = tint) jrand(NUM1VERBS))-1; / * verb */
set-wordfinarr, vsrbnun;+NUMNOUNS+NUMTVERBS, 2j;
set-percept (inarr, verbnum+NcTMNOLTNS+NUMTVER2S) ;
break;

1

for (a=O ; atP31)ISEPERC ; a++ j j* Add some noise * /
setgerceptfinarr, RANDPERCEPT);

1
/ * if input is from * /
/ * a human, then * /
/ * show it. * /

if (flag != COMPUTER)
show-input (inarr 1 ;

1

show-inputlinarr!
float inarr i INPUTSIZE] ;

C
int a,b. index;

for (a=O; a<ROWSIZE; a++) {
for (b=O; k(OSJSIZEf(SENTSIZE+ff); b += ROWSIZE) {

index = (ROpTSIZE-a-l > tb;
ii (inarr f index J &9XVALUE]

print•’("-"1;
elss

printfC'O') r
.i
printf('\nm);

I
1

setsercept f inarr, perceptnl~?~)
float inarr [LPJPETSIZE] ;
int perceptnun; / * analog for wordnum * /

/* The strategy is: Pick a token, and copy it's representation
into the first location in the input layer. No transformation
has to be done - just copy it using an identity mapping from the
representation ('object') (of size OBJSIZE) to the first OBJSIZE
units in the hidden layar.

* /

/ * This function sets up a pattern on the "percept" side of inarr.
If wordnum is in fO.,NUMOBJS], then we just put that pattern in. If it
isn't, we'll take it to mean "add a random percept to the training
part of inarr." Xote that a random percept will nevsr duplicate
what is already in inarr (eg. you can't hzve percept #3, then add
pzrcept # 3 again).

* /

E
int check, a;

if (perceptnum == RXTDPERCEPT) {
check = -1;
while (check != Of {

perceptnum = (int) (rand(NUM0BJS)) -1 ; /* Get random input * /

/ * Note: the "if" inside the "for" presumes that a percept
will be considered "already used" if all of that
percept's non-zero units are activated to the same
amount in inarr. NOTE that this presumes that this
percept's pattern cannot be a subset of another
percept's pattern, otherwise the algorithm will fail.
As it stands, a percept is found to not already be
present if there is a non-zero unit in the pattern
which is zero in inarr.

* /

for (a=O; a<OBJSIZE; a++)
if ((object [perceptnum] [a] == 1.0) &&

(object [perceptnum] [a] ! = inarr [a])) {
check = 0; / * See if percept */
a = OBJSIZE; / * exit loop * / / * has been used. * /

1
1

1

for (a=O; a<OBJSIZE; a++) { / * Straight adding from * /
inarr [a] += object [perceptnurnl [a] ; / * a global array. * /
if (inarr f a] > MAXVALUE)

inarr [a] = '=v'ALUE; / * Check if doubly added * /
3

1

set-wordfinarr, wordnum, wordloc)
float inarr [IMPUTSIZE J ;

,/* do this, r r ? ~ copy ths token's appearance in the sentence into the
appropricte location in the sentence field. To do this, we just
'skip' an apprcpriate number of spaces in the field (each of
size OBJSPZEj , therefore :(~~ordloc-l)*0BJSIZE) units. We then do the
copying bit again, again simply using the identity mapping, except
from the 'token* array instead of the 'object' array definition.

* /

/ * This function secs up a pattern on the "word" side of inarr.
If wordlac is in [O..SENTSIZE], then we just put that pattern in. If it
isn't, we'll ta&e it to mean "add a random word to the sentence
part of inarr, in a random location." Note that while duplicate words
are allowed, we will not allow a random word to overwrite a pattern
which has already been set up in the RHS of inarr. (eg. you can have
b~ord i t3 in positions 2 and 4, but you cannot have word i t3 and word k4
in position 2) .

*,

{
int check, a, b, limit;

if (wordloc == mJD:iK)RD) {
wordnum = (int) (rand [NUMOBJS)) ; / * Get random word */
check = -f;
while (check ! = 0; E

wordloc = jint) (randtSENTSIZE)); / * Get random location * /

/ * Note: To check that a location is ok to put the pattern
in, it suffices to check that there are no non-zero
elements in that location.

* /

limit = {wordloctlf *GBJSIZE;
for (a= {word1 oc*OBJSIZE) , check=O ; aclirnit ; a++)

if (inarrEa1 != 0) E / * ... then it's a duplicate, * /
check = -1;
a = limit; / * so exit loop prematurely * /

1
1

3

for fa=(wordloc*GBJSIZEi, b=O; b<OBJSIZE; a++, b++)
inarr la3 += token [wordam] [b] ; i* Straight adding from * /

/ * a global array. * /
1

dosummaqfinarr, unit, psrc~oword, wordtoperc, weight, topunit, topweight)
float inarr IISfPUTSIZEI, unit [CLUSTNUM] INUF.IUNITS I ,

psrctoword[OBJSIZEl [OBJSIZE*SENTSIZE],
wordtopercfOBJSIZE*SENTSIZEJ[OBJSIZE],
wei yht 1 CLl;sTtEBfj ff~"mfP4f TS 1 [IKTJJTS I Z , t opuni t f k W O P l,
topweight [CLUSTRTUM] [i.xJMuNI.TS] [NUMTOP] ;

I
int a, rok, wordnum, winner, scorel, score2, badscorel, badscore2;

srintf["Here is 3 listlag uf the rssults:\n");
prir,t f i T ~ ' ~ ~ ~ mtput units urn-'- ;L+GW.~~ - Output units jt"];
printfiUTo%en Octput units\nu!;
printf (" (w) Positions it {p) Positions \ t i w h p) Positions\nW!;
print•’ (" 1 2 3 \ t (Percept) it 1 2 3\nU);

for t wordnun= 0 ; ~.i~rdfirn<NftIMOBSS ; r.;crrdnum+ +) {
switch {wor&mm) { I* Print headings * >

case 0:
printf{"\ra;iouns:in"); brsak;

case IRE3J9r332S :
print•’("hcTraxsitive verbs:lnu); break;

case {?R-mOLrWS + mMTr,TRBS!:
printffn\nIrrtransitive verbs:\nW); break;

default: ;
3

/ * words only * I
printf ("%-8du, worliD,um) ; */
printf ("%-8sm, lsxicon jwordxm]) ;

for (row=:; TOP;< (SBJTSIZE+1) ; row++) {
for (a=O; a<INPUTSIZE; a++) inarr[a]=O; I* initialize * /
set-ward f inarr , wordnum, row j ;
crossprop(inarr, perctoword, wordtopercj;
propagate(inarr, unit, weight);
proptop (unit, topunit, topweight, &winner) ;
print•’("%-3d ",winner!;

3

printf ("it") ;
/ * percepts only * /

print•’("%-8du, wordnumi; * /
printf ("%-8su, lexicsn[wordnum]) ;

for (a=O; a<INPUTSIZE; a++) inarr[a]=0; / * initialize * /
setjercept (inarr, wordnum) ;
crossprop f inarr, parctob~ord, wordtoperc 1 ;
propagatetinarr, wit, weight);
proptop f unit, topunit, top3?2ight, &winner 1 ;
print f (" %-3d * , winner 5 ;

printf{'it\tn>;

/ * words and psrcepts */

printf("Check that each word activates appropriate percepts
only:ininU);

scorel = 0; scars2 = Q; badscorel = 0; badscore2 = 0;

for (wordnm=3; w~rdnum<NJMNOUNS; wordnum++) { / * do nouns * /
for faze; atfPJPUTSIZE; a++) inarr[a]=O; /* initialize * /
set-word(inarr, wordnum, 1);
crossprop<inarr, perctoword, wordtoperc);
if f inarr [x~rchm] > ACTIVE) scorel++ ;
for (a=O; ~ ~ A Y ~ O ~ U P J S ; a++)

if ((inarrla] > ACTIVE) && (a != wordnum)) badscorel++;

for (a=O; atfZGVEIZE; a++) inarr[aJ=O; / * initialize * I
set-word finarr, %ordnum, 3 f ;
crossprop[inarr, perctoword, wordtopercf;
if (inarr [worclnurttj > ACTIVE) score2++;
for (a=O; s<OBJSIZE; a++)

if ffinarrfa] > ACTIVE] &G (a != wordnumj f badscorel++;
3

printf("Nouns: ?resented in Presented in\nn);
prirtf (" positior, 1 position 3\n\n");
printf(" correct: %d %d\n" , scorel, score2) ;
printf(" incorrect: %d %d\n\.n5,

badscorel, badscors2);

scorel = 0; badscorel = 0;

for (wordnum=NUMND~S; wordnrrm<NUMOBJS; wordnum++f (/ * do verbs * /
for (a=O; atIMPUTSfZE; a++] inarr[a]=O; j* initialize */
set-wordfinarr, wordnum, 2);
crossprop(inarr, perctoword, wordtoperc);
if (inarr [wardnure1 > ACTfvEj scorel++;
for fa=@; a<OBJSIZE; a++)

if (finarr[a] > &CTiVE) && (a != wordnumi f badscorel++;
1

printffsVerbs: Presented in\nV);
printf f ' positian 2tn\n");
printft' correct: %dinm, scorel);
prlntf(' incorrect: %a~ntn\n", badscoref) ;

printft'fheck i b r ; each percept act5.c-ates appropriate words
onPy:tn\~'J;

scorel = 0; score2 = 0; badscorsl = 0;

for fwordnum=O; xordnrrm<NC2B?OUXS; wcrdnumr+) { I * do nouns * /
for f a = O ; a<INP"J'I"SIZE; a++! inarr[a]=0; if initializs * I
setsercspt f inarr, wordnmf ;
crossprop (inarr, perctoword, wordtopsrc) ;

printf("Nouns: Recall word Recall word in\nW);
print f (" position 1 position 3\n\ne);
print•’(" correct: %d %d\n\nU, scorel,

score2 j ;
printf(" incorrect word units activated: %d\n\nU, badscorel);

scorel = O; badscore1 = 0;

for ~wor~~.m=f.Q~1Ob?jS; wordnm<NUMOBJS; wordnun?++j { / * do verbs * /
for fa=F; atIHEWI"JIZE; a++) inarr[a]=O; / * initialize * /
set_percept (izarr, wor&mm) ;
crossprop[inarr, perctoword, wordtoperc);

if (inarr [-iipordn=+ 4 2*CBJSIZE) 3 > ACTIVE) scorel++ ;

printf("Vsrbs: Recall mrd\n");
prititf ! * p c s i t i o n 2\n?nUf;
printfin corract: Sdinln", scorel);
print•’(" ificorreci xord units activated: %dinu, badscorel);

E

/***************/
/ * cinit-weights-c Jan. 12, 1993
/ * Kenward Chin
/"

f * This contains the routine init-weights, which is responsible for
/ * setfing up the initial random state of the network, and also for
/ * reading in weights from prior training runs.
f *
/***************/

ini t-weight s (percto-+~or?, wordtoperc, weight, topweight)
float perctowordfOWSIZE] [{OBJSIZE*SENTSIZE)J,

wordtoperc~~OBJSfZE*SENTSIZE~]~OBJSIZE],
weight[CLUSTNvM] ~~ITS][INPUTSIZE],
topweight [CLUSTPKJH] [NUMUNITS] [NUMTOP] ;

{
float rand f) , tot-xeight, dummy, length;
int i, j, k, cnum, unit-num;
char f ilenams [lCo] ;
FILE *fp;
double sqrt (: ;

printffUEnter file name to read weights from (- if random): ") ;
scanf("%sU, filename];

while ((fp == WGLLf LEc (strcmpffile-name, " - ") != 0)) {
printf("File not found. Try again.\nU);
printf("Enter file name to read weights from f - if random): ") ;
~canf(~%s", filename];
if jstrcmpffile-name, " - " f != 0) fp = fopenffile-name, "r");

I

if fstrcmp(fi1e-name, ' - "1 == 0) {
f f set up initial weights * /
/ * from input layer to */
/ * first hidden layer ... */

printff"Setting up input to hidden layer weights ... \nn);
for (id; icCLUSThrWI4; i++f

for (j d ; jdKMUE?TNITS; j+i) {
for (k=O, tot-wsight=0; k<INPUTSIZE; k++) { / * OBJSIZE * /

weighkfi] f j] [kj = (rand(0)) ;
tot-wsight += (weight [i] [j 3 [kl * weight [i] [j 1 [kj) ;

3
/ * printf("total weight for input weights: %f\n",

tot-wslght);*/

/ * .,.and normalize them */
length = l/sqrt0tot_weight);

fcr Ik4; kcIMPUTSIZE; k++)

weight[i] [j l [kl = weight[il [jl [kl * length;

/ * set up initial weights " /
/ * from hidden layer to top * /
/ * level units . . . * /

printf("Setting up hidden to top layer . . . \ n");

for (k=O; k<NUMTOP; k++) {
for (i=O, tot-weight=O; i<CLUSTNUM; i++)

for (j=O; j<NlfMUNITS; j++) {
topweight [i] [j 1 [k] = (rand(0)) ;

tot-weight += (topweight [il [j 1 [kl * topweight [i] [j] [k]) ;
1

/ * ... and normalize them * /
length = l/sqrt(tot-weight);
for (i=O; i<CLUSTNUM; it+)

for (j=O; jtWUMUFJITS; j++)
topweight [il [j 1 [kl = topweight [il [j 1 [k] * length;

3

/ * Set up "intra-weights" between word side and * /
/ * percept side, within input layer. * /

/ * First, do weights entering percepts * /

printf("Setting up intraweights ... \nn);

for (i=O; i<OBJSIZE; i++) {
/ * set random weight * /

for (j=O, tot-weight=O; j< (OBJSIZE*SENTSIZE) ; j++) {
wordtoperc[j] [i] = /*l.O;*/(rand(O));
tot-weight c= wordtoperc[j] [i];

3

/ * note: total weight will be normalized to sum to 1.0 * /

for (j=O; j<(OBJSIZE*SENTSIZEi; j++)
wordtoperc [j] [i] = wordtoperc [j] [i] / tot-weight ;
3

/* Second, do weights entering words * /

for (i=O; i<(OBJSIZE*SENTSIZEj; i++) {
/ * set random weight * /

for (j=O, tot-weight=O; j<OBJSIZE; j++) {
perctoword[j]fif = /*l.O;*/!rand(O)f;
tot-xeigtrt += perctowordfj] [i];

1

/ * note: total weight will be normalized to sum of 1.0 * /

for (j=O; j<OBJSIZE; j++)
perctoword[j] [i] = perctoword[j 1 [il / tot-weight ;

1
1

else (/ * read weights from file * /

printf("Reading in->hidden ... \nn);
for (i=O; i<CLUSTNUM; i++) / * set up in->hidden * /

for (j=O; j<NZTMUNITS; j++)
for (k=O; k<INPUTSIZE; k++) {

fscanf (fp, "%f ", &dummy) ;
weight [i] [j] [k] = dummy;

1

printf("Reading hidden->top . . . \nn);
for (i=O; itCLUSTNUM; i++) / * set up hidden->top */

for (j=O; jtNUMUNITS; j++)
for (k=O; k<hWTOP; k++) {

fscanf (fp, "%fW , &dummy) ;
topweight[i] [j] [kj = dummy;

/ * printf ("dummy is: %f \nu, topweight [i] [j] [k]) ; * /
1

printf("Reading perc->word . . . \nn);
for (i=O; i<OBJSIZE; i++) / * set up perctoword * /

for (j=O; j< (OBJSIZE*SENTSIZE) ; j++) {
fscanf (fp, "%f " , &dummy) ;
perctoword [i] [j] = dummy;

3

printf("Reading word->pert ... \nn);
for (i=O; i<(OBJSIZE*SENTSIZE); i++) / * set up wordtoperc * /

for (j=O; j<OBJSIZE; j++) {
fscanf (fp, "%fW , &dummy) ;
wordtoperc[il [jl = dummy;

3
1

1

/***************/
/ * ctestmain-c Jan. 12, 1993
/ * Kenward Chin
/ *
/ * This program is a clone of cdgmain-c, but it is used to drive the
/ * testing cycle of the network. It is essentially identical to cdgmain-c,
/ * but allows for probing of network parameters, etc. There are many
/ * debugging printf's in the code.

/ * See notes in cd9main.c * /

static long state11321 = {
Ox32d9c024,
OxbebldbbO ,
Oxeb3d799f,
Ox1588ca88,
Ox6fa6f051,
OxdfOa6fb5,
0~~622~298,
Ox8999220b,

static float PROP = 0.005;

3 ,
Ox9b663182,
Oxab5c5918,
OxblleeOb7,
Oxe369735d,
Ox616e6b96,
Oxf lO3bcO2,
Oxf5a42ab8,
Ox27fb47b9

/ * default proportion for learning * /

main (argc, argv)
int argc ;
char *argv i] ;

C
float atof();

int arg, winner;
unsigned randseed;
int randn ;
int count, i, j, k, cnum, unit-num, flag;
int a, b, index; / * for the testmain difference! * /
float delta;
float inarr[INPUTSIZE], unitfCLUSTNUM][NUMUNITS],

perctoword[OBJSIZE] [OBJSIZE*SENTSIZE],
wordtoperc[OBJSIZE*SENTSIZE] [OBJSIZE],
weight[CLUSTNUM] [NUMUNITS] [INPUTSIZE, topunit[NUMTOP],
topweight [CLUSTNUM] [PJUMUNITS] [NUMTOP] ;

char f ile-name [loo] ;
FILE * f ~ ;

initscr () ;

if (argc == 2) { / * get prop from command line *,'
PROP = atof (argv[l]) ;

3

printf("Enter seed value: ") ; scanf("%uU, &randseed);
randn = 128;

initstatefrandseed, statel, randn);
setstate (statel) ;
srandom (randseed) ;

init-weights(perctoword, wordtoperc,
weight, topideight) ; / * set initial wts. * /

for (cnum=O; cnum<CLUSTNUM; cnum++) / * zero the potentials * /
for (unit-nm=O; unit-num<NUMUNITS; unitgum++)

unit [cnum] [unit_n~m] = 0 ;

/ * * / for (i=O; itNLJMTOP; i++) {
delta=O;
for (cnum=O ; cnum<CLUSTNUM; cnum++)

for (unit-num=O; unit-num<NUMUNITS; unit-nun++)
delta = delta+topweight [cnum] [unit-nun] [i] ;

3

printf("Look at a particular topweight? (O=Y, l=N) : ") ;
scanf("%dU, &count);
while (count==O) {

printf ("Which top unit? ") ; scanf ("%dl', &i) ;
for (cnum=O; cnum<CLUSTNliM; cnum++) (

printf("C1uster %d:\nW, cnum);
for (unit-num=O; unitgum<lWMUNITS; unit-nun++)

printf (" % -2f " , topweight [cnuml [unit-nun] [i]) ;
printf (" \nu) ;

1
printf("Look at a particular topweight? (O=Y, l=N) : ") ;
scanf("%dU, &count);

/**/ 1

printf("Enter the number of repetitions:\nU);
scanf("%dM, &count);

while (count!=O) { / * main loop to enter patterns * /

flag = COMPUTER;
getinput (inarr, flag) ;

crossprop(inarr, perctoword, wordtoperc);
/ * do intralevel excitation * /

crosslearn(inarr, perctoword, wordtoperc);
/ * do intralevel learning:

this is plausible, as it
is analogous to the input
units already having won at
an earlier level * /

/ * ~ r ~ ~ ~ n ~ r m (p e r ~ t ~ ~ ~ r d , wordtoperc); */

propagate(inarr, unit, weight);

for (i=O; icCLUSTNUM; i++) / * learning loop * /
for (unit-num=O; unit-num<NUMUNITS; unit-nun++)

if {unit f ij :unit-nm] > ACTIVE) { i* winner learns * /
for (j=O, k=O; jtINPUTSIZE; j++) / * how many active? * /

if (inarr j] >= ACTIVE) k++;

for fj=O, arg=O; j<INPUTSIZE; j++) {
delta = PROP * - (weight [il [unit-num] [j 31 ;
if (inarrfj] >= ACTIVE)

(arg++ ;
delta += PROP * fl.O/k);)

weight [i] [unit-nu j] += delta;
1

/*printf("Number of updates: %d'\nU, arg);*/
1

normalize(weight);
proptop(unit,topunit,topweight, &winner;;
print f ("Ti f %d wins \nu, winner) ;

for (i=O; i<NUMTOP; i++) / * learning loop 2 * /

if (topunit[i] > ACTIVE) { / * winner learns * /

for fcnum=O; cnum<CLTJSTNUM; cnum++)
for (unit-num=O; unit-num<NUMUNITS; unitgum++) {

delta = PROP * - (topweight [cnuml [unit-nun] [i]) ;
if (unit [cnum] [unit-num] > ACTIVE)

delta += PROP * {l.O/CLUSTNUM);
topweight[cnum] [unit-num] [i] += delta;

I
1

normtop (topweight) ;

count -- ;
printf("%d to go ... \nu, count);
printf ("%d\nnl countj;

printout(weight,topweight);
dosummary(inarr, unit, perctoword, wordtoperc,

weight, topunit, topweight);

printf("Enter O to continue, any other num to stop: ") ;
scanf (%dl1, Icount) ;
flag = HUMAN;
while (count==O) 1

get input (inarr , flag) ;
crossprop(inarr, perctoword, wordtoperc);
for (a=O; a<ROWSIZE; a++) {

for (b=O; b<(OBJSIZE*(SENTSIZE+l)j; b += ROWSIZEj {
index = (ROWSIZE-a-l)+b;

printf{"%.?'f ", inarr[index]*lOO);
/ * if (inarr [index] <ACTIVE)

print•’(".");
else

printf("OW); * /
1
printf (" \ n u 1 ;

1
propagate (inarr, unit, weight) ;

/*proptop(unit,topunit,topweight,&winner);*/
/ * * / funky(unit,topunit,topweight,&winner);

printf("Enter 0 to continue, any other num to stop: ") ;
scanf("%dU, &count);

1

printfiMEnter file name to write weights to (- if none): ") ;
scanf("%sU, filename);

if (strcmp (f ile-name, " - ") ! = 0) {
fp = fopen(fi1e-name, " w ") ;

/ * write in->hidden weights * /
for (cnum=O; cnumtCLUSTNUM; cnum++)

for (unit-num=O; unit-num<NUMUNITS; unit-nun++)
for (i=O; i<INPUTSIZE; i++)

fprintf (fp, "%f " , wsight [cnum] [unit-num] [ij) ;

/ * write hidden->top weights * /
for (cn.~~-n=O; cnum<CLUSTNUM; cnum++)

for (unit-num=O; unit-num<NUMUNITS; unitgum++)
for (i=O; icNUMTBP; i++)

fprintf (fp, "%f ", topweight [cnum] [unit-num] [i]) ;

/ * write perctoword * /
for (i=O; i<OBJSIZE; i++)

for (j=O; j<(OBJSIZE*SENTSIZE); j++)
fprintf (fp, "%f ", perctoword[il [j I) ;

/ * write wordtoperc * /
for (i=O; i<(OBJSIZE*SENTSIZE); i++)
for (j=O; jtOBJSIZE; j++)

fprintf (fp, "%f ", wordtoperc[i] [j]) ;

normalize(weight)
float weight [CLUSTNUM] [NUMUNITS] [INPUTSIZE] ;

1.
float tot-weight, length;
int cnum, unit-num, i;

for (cnum=O; cnumcCLUSTNUM; cnum++) / * set up total weights * /
for (unit-num=O; unit-numcNUMUNITS; unitgum++) {

for (i=O, tot-weight=O; i<INPUTSIZE; i++)
i *old tot-weight += weight[cnum] [unit-num] [i]; * /

tot-weight += (weight [cnum] [unit_numl [i] *
weight [cnumf [unit-numl[i]) ;

length = l/sqrt(tot-weight) ;
for (i=O; icINPUTSIZE; i++)

weight[cnum] [unit-nun] [i] =

/*old weight [cnun] [unit-numj[i] / tot-weight ; */
weight [cnum] [unit-.nun] [i] * length;

1
1

normtop(topweight)
float topweight [CLUSTNUM] [NUMUNITS] [NUMTOP] ;

I
float tot-weight, length;
int cnum, unit-num, i;

for (i=O; itXUMTOP; i++) { / * set up total weights * /

/ * old

/ * old

1
1

-

for (cnun;=O, tot-weight=0; cnum<CLUSTNUM; cnum++)
for (unit-num=O; unit-nuxtdtUMuNITS; unit-numi+)

tot-weight += topweight[cnum] [unit-num] fi]; * /

tot-weight += (topweight [cnum] [unit-num] [i] *
topweight[cnuml [unit-num] [i]) ;

length = l/sqrt(tot-weight) ;
for (cnum=O; cnumtCLUSTNUM; cnum++)

for (unit-num=O; unit-num<NUMUNITS; unit-numi+)
topweight [cnum] [unit-num] [i] =

topweight[cnunrl [unit-numl [i] / tot-weight; * /
topweight[cnum] [unit-num] [if * length;

propagate(inarr, unit, weight)
float inarr [INPUTSIZE] , unit [CLUS'T'NUM] [NUMUNITS] ,

weight[CLUSTNUM][NUMJNITS][INPUTSIZE];
E

int cnum, unit-num, i, big;

for (cnum=O; cnumtCLUSTNUM; cnumi-+) { / * get Layer 2 values * /
/ * printf("C1uster %d: \n", cnum);*/

for (unit-num=O; unit-numtNUMUXITS; unit-num++) (
for f i=O, unit [cnum] Eunit-numl =O; i<INPUTSIZE; i++) {

/ * printf("%fU, unit[cnum] [unit-num]); * /
unit [cnum] [unit-nu] += (inarr [i] *

weight[cnum][unit-numHi]);
1

/ * printf("Unit %d: %f\nm,unit-num, unit[cnm][unitgum]];*/
1

1

for (i=O; itCLUSTNUPII; i++f { / * find winners of clusters * /
for (unit-num=l, big=O; unit-numtNUMUNITS; unitgum++)

if (unit [i] [unit-num] > unit [i] [big])
big = unit-nun;

for (unit-n=m.=O; u n i t - n m ~ ~ ~ I T S ; ~nit-n1~++) / * set winner * /
if (unit-num==big)

unit [i] [unit-numl = MAXTJALUE;
else

unit [i] [unit-n-a] = M I W ~ U E ;

/ * il~ho wins? * /
/ * for {i=O; i<CLUST?KT4; i++)

for (unit-nu%=O; unit-nurn<NUMNITS; unit-nun++)
printff"Cluster #%d, Unit #%d, value = %f\nU, 5, unitgum,

unit f i] funit-num! i ;
* /

proptopfunit, topunit, topweight, winner)
float unit fCLLrSmW] [NUMUNITS], topunit [NUMTOP] ,

top%Jeight [CLtTSTNUM] [lWBKJNITS] [NUMTOP] ;
int *winner;

I
int big, cnum, unit-m, i;

for (i=O; i<hrUPSTOP; i++) f
topunit[i] = 0;

for (cnum=O; cnumtCLUSTNUM; cnum++j
for (unit-num=O; unit-num<NUMUNITS; unit-num++)

topunit [il +=
(topweightfcnum] [unit_numl [i] * unit[cnum]runit_num]);

/*printf(*tu value is %.3f\nE, topunit[i]);*/
3

/*printf(*\n"f;*/

/ * for (i=O; i4WHTOP; i++)
printf("Uait %d in top layer has value: %f\nn, i, topunit[i]); * /

for (i=l, big=0; i ~ ~ O P ; i++)
if (topunitEi] > topunit[bigff

big = i;

/ * set winner * /

I* (Commented out - preserve values for use in main program) * /
for (i=O; i t m P ; i++)

if (i == big)
topunit[i] = MAXVALUE;

else
topunitti1 = MINV-4LUE;

oldcrossfsarnfinarr, psrctoword, wordtoperc) / * last rev. Nov 2/92 * /
float inarrtlNPUTSIZE1,

int perc, word, 2 , onperc, onword;
f laat delta;

for f i=O, onpercd; i<OBJSIZE; i++f I* how m y on in *I
if f inarr 1 if > ACTIVE) onperc++ ; /* percept side? */

for (i=OBJSIZE, onword=O; i<INPUTSIZE; i++) / * how many on in * /
if (inarr [i] > ACTIVE) onword++ ; / * word side ? * /

i* learning loop: links */
/ * from percept to word * /

if the unit on the "percept" side is on, then * /
the link should be strengthened, else it should * /
be diminished (for an active object unit). * /

Each object unit which was on gets some strengthening. * /
The amount is calculated by taking PROP of the weight * /
from each word input line, divided by the number of * /
active percept units. */

NOTE: Since this is for perctoword, the percept side * /
of the input layer serves as the "input layer", and * /
the word side serves as the "upper layer". * /

for (word=OBJSIZE; word<INPUTSIZE; word++)

if (inarr [word] > ACTIVE) { / * only active units learn * /

for (perc=O; perc<OBJSIZE; pert++) {

printf("Adjusting weights for Input Layer, Unit #%d\nl',

/ * each unit "gives up" * /

deita = PROP * -fperctowora[perc] [word-CBJSIZE]) ;
if (inarr [perc] > ACTIVE)

delta += PROP * fl.O/onperc);
perctoword[perc] [word-OBJSIZE] += delta;

1
1

/ * learning loop: links */
/ * from word to percept */

/ * if the unit on the "word" side is on, then /
/ * the link should be strengthened (for the active * /
/ * percept unit), else it should be diminished. * i
/* Method is like above. * /

/ * NOTE: Since this is for wordtoperc, the word side of * /
I* the input lziy?r serves as the "input layerR, and the * /
/ * percept side serves as the "upper layer". * /

if (inarrfperc] > A C T f - I (/ * only active units learn '+/

for (word=OEJSIZE ; word< INPUTSIZE ; word++) {

printf{"licijusting weights for Input Layer, Unit #%d\nw,

/ * each unit "gives up" * /

delta = PROP * -(wordtoperc[word-OBJSIZE] fperc]);
if !perc==O] printf("HEY! perc: %d, word: %d, percval: %.7f,

ACTIVE: %.7f\nU,
perc, word, inarr [perc] , ACTIVE) ;
if (inarrfword] > ACTIVE)

delta += PROP * (1-Ofonword);
wordtoperc f word-OBJSIZE] [perc] += delta;

1
1

1

crossnorm(perctoword, wordtoperc) / * alpha-test: Oct 28/92 * /
float percto~word[OBJSIZE] [(OBJSIZE*SENTSIZE)],

wordtoperc[(OBJSIZE*SENTSIZE)][OBJSIZE];
I

/ * Note: Each unit gets a total possible weight of 1.0 * /

int perc, mrd, i, j;
float tot-weight;

/ * normalize percept inputs: * /
/ * sw, up total weight ... * /

for (perc=O; perc<OBJSIZE; pert++) {
for (word=O, tot-weight=O; word<(OBJSIZE*SENTSIZE); word++)

tot-weight += wordtoperc[wordl [perel;

printf("tota1 weight for this percept: %•’',nu, tot-weight); * /

/ * ... and normalize */
for fword=O; word<(OBJSIZE*SENTSIZE); word++)

wordtoperc[word][psrc] = wordtoperc[wordl[perc] / tot-weight;
3

/ * normalize word inputs: */
/ * sum up total weight ... */

for (trord=3 ; word< (OBJSIZEfSENTSIZE] ; word++) {
for (perc=O, tot-weight=O; perccOBJSIZE; perc++j

tot-weight += perctoword[p.zrc] f w d] ;

printffmtotal weight for this word: %f\nD, tot-weight); */

/ * ... and normalize * /
for (perc=O; psrc<OBJSIZE; percii)

perctowordfperc] [word1 = perctoword[perc] [word] / tot-=eight;
1

1

erossproptinarr, perctoword, wordtoperc) / * alpha-test: Oct 28/92 */
/* last rev.: Jan. 11/93 */

float inarrCIMPU"PSIZE1, perctoword[OBJSIZE][~OBJSIZEfSENTSIZE)],

wordtopercE (OBJSIZE*SENTSIZEf]fOBJSIZE];
f

float dtutal , itorlal , no-mfact , dl;nr.yir? f ibIPVTSIZE] ;
float perctotal, wordtotal;
int i, j, k, winner;

/ * Technique COr3ED BE to only cause sxcitation on this level * /
/ * if one side or the other is empty of active units. However, * /
/" it would bs more general to apply mutual excitation without * /
/' exception. The problem is how much excitation to apply . . . * /
/ * For now, just apply the potential of each unit * the weight, * /
/ * and directly add that to tht potential on the other side. * / 1

/ * (Note that this is a first pass at this problem, and could * t

/ * end up being G-ier-killish.) * /

/ * In addition, let's add normalization. For both the percept * /
/ * and the word, get a sum of the total activation before any * /
/ * propagation takes place. Then, after propagation, divide to * /
/ * restore that total activation. * i

/ * IN FACT, KLKE TiIIS WIENER-TAKE ALL, SO TK4T THE WINNlNG * /
/ * 'JNIT GETS At? ACTIVATION OF 1, ALL OTHERS = 0. * /

/ * However, be careful to do this "simultaneously*, using a * /
/ * dummy matrix, sc that changes aren't cumulative. * /

for (i=O; itlNPUTSIZE; i++f dmunyin[i] = inarr iij ;

for (i=O, perctotal=@; i<OBJSIZE; i++f perctotal += inarr[i];

for (i=O, wordtotaf=O; i<(OBJSIZE*SENTSIZE); i++)
wordtotaf += inarr[i+OBJSIZEj;

/ * Excite from percept side * /
/* to word side first. * /

/ * Note: OBJSIZE must be subtracted from j since intraweight * /
b* starts the word side numbering from 0, while in inarr it * /
/ * starts at OBJSIZE. {Note: This applies here!] * /

/* f omented out, because this isn ' t the 4iTk way. . .

for (i=O, itotal=Q, dtotal=O; i<OBJSIZE;
itatah= inarr[i], dtotal += dumyin[i], it+);

normfact = dtctai d itotal;

for (i=O; i<053SZZE; i++j
dummyin[i] = dummyinIi1 / normfact;

End of commenting a t for WTA sake. * /

f * this does winner-take-all * /

/ * for (i=l, winner=O; i<OBJSIZE; it+) {
if {dumnrjin [if > d m - i n [winner])

winner = i;
1

for (i=O; i<OBJSIZE; i++f
if (i==winner]

inarrfi) = MAXVALUE;
else

inarr [i] = MINViiLUE; * /

/ * Jan 11 thresholding stuff */

for (i=O; i<OBJSIZE; i++)
if (dummyin[i! > PERCTHRESH)

inarr [if = MAXVALUE;
else

inarr [i I = MI Ntf_riLUE;
/ * ... and norma1i.-e words. */

If Commented out, because this isn't the 'WTA way ...

for (j=OBJSIZE, itotal=O, dtotal=O; j<INPUTSIZE;
itotal += inarrlj], dtotal += dummyin[jl, j++);

normfact = dtotal / itotal;

for (j=OBJSfZE; jtINPUTSIZE; j++f
dmyin[j] = dummyinljl ! normfact;

End of commenting out for kTA sake. * /

f * this does winner-take-all */

i * for (I=OBJSIZEtl, winner=OBJSLZE; i<INPUTSIZE; ii+) {

if (dumntyin[il > dummyinfwinner])
winner = i;

1

for (i=OBJSIZE; itMPUTSIZE; i++)
if (i==winner]

inarr f i 3 = MAXVALUE ;
else

inarrlif = &%INVALUE; */

i* ja 11: go through each sentace colaw-, pick ths wlnner (must be > THRESH)
and allow it to be Y&r?&UE * i

far (j=O, k=OBJSiZE; j<SENTSIZE; j++) (/ * for each column * /
for (i=k+l, wZ3nsr=k; i<(OBJSIZE+k); i++) j* pick winner * /

if (dmyinfij > dmyin[winnsr])
winner = i;
for fi=k; i<!OBJSIZE+k!; i++!

if (,i==winner) && fdummyin[i] > SENTTHRESH))
inarrti] = MAX-d-ALbE;
else

inarrli] = MfPJTFPLbZ;
k += GBJSIZE;

3

/' for (i=O; i<lNPUTSIZE; i+t)
if (inarrEi] <= mALUE)

inarr[ij = dunonyin[i];
else

inarr [i] = MXJAiUE; */
3

float getratio (nun-trials, count f I* Oct 7/92 * /
int iium_trials, couz-it ;

/ * This figures out the ratio to use. PROP is the specified ratio,
n-trials is the number of trials to be done this sirrulation,
countdown is the number of trials left. * /

C
int ratio ;
int scr :

/* Because integer divisicn rounds down (and I can't remember
what the C function is to do rounding up), we have to do some
tricky match to figure things out. Here, (80, 1001 is loo%,
(60, 801 is 80%, etc.

*/

ratio = (1C * [nmn-trials-countj) / num-trials;

scr = 5 - (ratio/2); / * This is 11.. 51 . * /

return[PROP*scr*.2f; / * Ok, so we return the specified learning
ratio times the %age of trials left
(repressnted in [1..5] + 20%. This should
wcrk ... :-f * /

1

crossiearnfinsrr, perctoword, wordtoperc) / * last rzv. N o v 13/92 * /
float inarr[INPUTSISE],

perctowordfOBJSfZE] f(OBJSIZE*SENTSTZE)],
xordtoperc[(OBJSIZE*SENTSIZE)] [OBJSIZE];

C
int perc, word, i, onperc, onword;
float delta;

for (i=O, onperc=0; I<OBJSIZE; i+i) / * how many on in * /
if [inarr[i] > ACTWE) onperc++; / * percept side? */

for (i=OBJSIZE, onword=O; i<INPUTSIZE; i++) / * how many on in */
if {inarr [i] > ACTIVE) onword++; / * word side ? * /

/* learning loop: links */
/ * from percept to word * /

/ * If the unit on the "word" side is on, then links with */
/ * all active "percept" units are strengthened. This is */
/ * accomplished by, for a given word, borrowing weight * /
/ * from links to inactive percept units. */

/ * The amount is calculated by taking PROP of the weight * /
/ * from each input line in to this word, divided by the * /
/ * number of active percept units. */

/ * NOTE: Since this is for perctoword, the percept side * /
/ * of the input layer serves as the "input layer", and * /
/ * the word side serves as the "upper layer". * /

for (word=OBJSIZE; word<INPUTSIZE; word++)

if (inarr [word] > ACTIVE) / * only active units learn * /

for (perc=O; perc<OBJSIZE; pert++) {
I *

printffUAdjusting weights for Input Layer, Unit #%d\nn,
perc j ;
"/

/ * each unit "gives upn */

delta = PROP * - (perctoword[percl [word-OBJSIZEl) ;
if f inarr [perc] > ACTIVE)

delta += PROP * (1-Olonperc);
perctoword[perc][word-OBJSIZE] += delta;

1
1

/ * learning loop: links */
if from word to percept */

/ * If the unit on the "perceptn side is on, then links * /
i* with all activs 'word" units are strengthened. This */
/ * is accomplished by, for a given percept, borrowing */
i* weight from links to inactive word units. */

i* NOTE: Since this is for wordtoperc, the word side of */
L* the input layer serves as the "input layer*, and the */
/* percept sids serves as the 'upper layerE. * /

for (psrc=O; perc<OBJSIZE; pert++)

if (inarr[perc] > ACTIVE) { / * only active units learn */

for fword=OBJSIZE; wordtINPUTSIZE; word++) {

printffuAdjusting weights for Input Layer, Unit #%d\nU,
word) ;

/
/ * each unit "gl-es up" * /

delta = PROP * -(wordtoperc[word-OBJSIZE][perc]);
if (inarrfword] > ACTIVE)

delta += PROP * fl.O/onword);
wordtoperc[word-OBJSIZE] [perc] += delta;

1
3

1

newcrossprop(inarr, perctoword, wordtoperc) / * alpha-test: Oct 28/92 * /
/* last rev.: Nov. 16/92 * /

float inarrfIMPUTSIZE], perctoword[OBJSIZEl [(OBJSIZE*SENTSIZE)],
wordtoperc~(OBJSIZE*SENTSIZE) I [OBJSIZE];

/ * dummyin is 1 element larger, for sorting purposes * /

float dtotal, itotal, normfact, dummyin[INPUTSIZE+l];
int perctotal, wordtotal, maxtotal;
int i, j, k, flag, winner, wta[INPUTSIZE];

/ * Technique COULD BE to only cause excitation on this level * /
/ * if one side or the other is empty of active units. However, * /
/ * it would be more general to apply mutual excitation without * /
/ * exception. The problem is how much excitation to apply . . . * /
/ * For now, just apply the potential of each unit * the weight, * /
/ * and directly add that to the potential on the other side. * /

/* (Note that this is a first pass at this problem, and could
/ * end up being over-killish.) * /

/ * IN FACT, MAKE THIS WINNER-TAKE ALL, SO THAT THE WINNING * /
/ * UNIT GETS AN ACTIVATION OF 1, ALL OTHERS GET 0. * /

/* However, be careful to do this "simultaneously", using a * /
/* dummy matrix, so that changes aren't cumulative. * /

for (i=O; i<INPUTSIZE; i++) dummyin[i] = inarr[i] ;

for (id, perctotal=O; icOBJSIZE; i++)
if (inarrfi] > ACTIVE) perctotal++;

for (i=GBJSIZE, wordtotal=O; idNPUTSIZE; i++)
if (inarrlif > ACTrVEf wordtotal++;

if (wordtotal > perctotal) f * to ensure correct # of active units * /
maxtotal = wordtotal;

else
maxtotal = perctotal;

/ * Excite from percept side * /
/ * to word side first. * /

/ * Note: OBJSIZE must be subtracted from j since intraweight * /
/ * starts the word side numbering from 0, while in inarr it * /
/ * starts at OBJSIZE. (fiote: This applies here!) * /

for (i=O; i<OBJSIZE; i++f
if (inarr ti] ! = 0)

for (j=OBJSIZE; j<INPUTSIZE; j++)
dummyin [j] += inarr [i] * perctoword [il [j -0BJSIZEl;

/ * now word -> percept */
for (j=OBJSIZE; j<INPUTSIZE; j++f

if (inarr[jl != 0)
for (i=O; i<OBJSIZE; i++)

dmyin[i] += inarr[j] * wordtoperc[j-OBJSIZE] [i] ;

/ * Normalize percepts ... * /

/ * Commented out, because this isn't the WTA way ...

for (i=O, itotal=O, dtotal=O; i<OBJSIZE;
itotal += inarr[i], dtotal += dummyin[i], i++);

normfact = dtotal ,' itotal;

for (i=O; itOBJSIZE; i++)
dummyinlil = dummyin[i] / normfact;

End of commenting out for WTA sake. * /

/ * this does winner-take-all * /
/ *

for (i=l, winner=O; i<OBJSIZE; i++) {
if (dummyin [i] > dummyin [winner])

winner = i;
3

for (i=O; itOl3JSIZE; i++)
if f i==winner)

inarr[i] = MAXVALUE;
else

inarr[i] = MINVALUE;
* /

;* wta is an array containing the indexes of the largest percepts * /
I* This does the winners-take-all stuff */

for (i=0; itIlWF9CSIZE; it+) wtaCi] = -1;

for (i=O; i-total; it+) (/* find largest percepts * /
for (j=O, winner=INPLTTSIZE; j<OBJSIZE; j++) {

flag = 0;

for (k=O; k<i; k++) / * use k to check wta */
if (wta[k] == j)

flag = -1;
if ((flag == 0) && (dwmyin[jl z dummyin[winner]))
winner = j;

I
wta[i] = winner;

I

for (i=O; kOBJSIZE; i++) inarr[i] = 0.0;

for (j=O; junaxtotal; j++)
for (i=O; i<OBJSIZE; i++) / * threshold * /

if ((i==wta[j]) && (dummyin[il > INPUTTHRESH))
inarr [i] += MAXVALUE ;

else
inarr [i] += MINVALUE ;

/ * . . . and normalize words. * /

/ * Commented out, because this isn't the WTA way . . .

for (j=OBJSIZE, itotal=O, dtotal=O; j<INPUTSIZE;
itotal += inarr[j], dtotal += dummyin[jl, j++);

normfact = dtotal / itotal;

for (j=OBJSIZE; j<INPUTSIZE; j++)
dmyin[j] = dummyin[j] / normfact;

End of commenting out for WTA sake. * /

/ * this does winner-take-all * /

/ * for (i=OBJSIZE+l, winner=OBJSIZE; i<INPUTSIZE; i++) {

if (dummyin [i] > dummyin [winner])
winner = i;

I

for ii=OBJSIZE; i<INPUTSIZE; i++)
if (i==winner)

inarrfi] = MAXVALUE;
else

inarr [i] = MINVALUE ; * /

wta is an array containing the indexes of the largest words * /
This does the winners-take-all stuff * /

for (i=O; i<INPUTSIZE; i++) wta[i] = -1;

for (i=O; icmaxtotal; i++) (/ * find largest words * /
for (j=OBJSIZE, winner=INPUTSIZE; j<INPUTSTZE; j++) {

flag = 0;
for (k=O; k<i; k++) / * use k to check wta * /

if (wta[kl == j)
flag = -1;

if ((flag == 0) && (dummyin[jl > dummyin[winner]))
winner = j;

1
wta[i] = winner;

1

for (i=OBJSIZE; icINPUTSIZE; i++) inarr[i] = 0.0;

for (j=O; j<maxtotal; j++)
for (i=OBJSIZE; i<INPUTSIZE; i++) / * threshold * /

if ((i==wta[j]) && (dummyin[i] > INPUTTHRESH))
inarr [i] += MAXVALUE;

else
inarr [i] += MINVZGUE;

for (i=O; idNPUTSIZE; i++) / * check for strange cases * /
if (inarr[i] > MAXVALUE)

inarr [i] = MAXVALUE;

funky (unit, topunit, topweight, winner)
float unit [CLUSTNUM] [NUMUNITS] , topunit [NUMTOP] ,

topweight [CLUSTNUM] [NUMUNITS] [NUMTOP] ;
int *winner;

{
int big, cnum, unit-num, i;

for (i=O; i<NUMTOP; i++) {
topunit[il = 0;

for (cnum=O; cnumcCLUSTNUM; cnum++)
for (unit-num=O; unit-num<NUMUNITS; unit-nun++)

topunit [il +=
(topweight [cnum] [unit_numl [il * unit [cnum] [unit-num]) ;

printf("tu value is %.3f\n", topunit[i]);
1

printf("\nU);

/ * for (i=O; i<NUMTOP; i++)
printf("Unit %d in top layer has value: %f\nm, i, topunit[i]); * /

for (i=l, big=O; itNUMTOP; i++)
if (topunit [i] > topunit [big])

big = i;

/ * set winner * /

/ * (Commented out - preserve values for use in main program) */
for (i=O; i<NUMTOP; i++)

i f (i == big)
topunitli] = MAXVALUE;

else
t opuni t [i 1 = MINVALUE ;

/ * ************** /
/ * printout .c Jan. 12, 1993
/ * Kenward Chin
/ *
/ * Early on, this was used for printing out the state of the
/ * network after training was done. It turned out to be inadequate for
/ * the job, but is still called by the main progam (the actual code has been
/ * commented out).
/ *
/***************/
#include "prog.hm

printout(weight,topweight)
float weight[CLUSTNUM] [NUMUNITS] [INPUTSIZE],

topweight [CLUSTNuM] [NUMUNITS I [NCTMTOP] ;
{

int cnum, unit-num, i, j, k;
float percent, sort[CLUSTNUMI[NUMUNITSI[INPUTSIZE];

/ * for (cnum=O; cnun<CLUSTNUM; cnum++)
for (unit-num=O; unit-num<NU-MUNITS; unit-nun++) {

for (i=O; i<INPUTSIZE; i++)
scrt [cnum] [unit-num] [i] = weight [cnum] [unit-nu] [i] ;

dosort (sort, cnum, unit-nun) ;
1

for (cnum=O ; cnum<CLUSTNJM; cnum++ 1 {
printf("c1uster %d\nH, cnum);
for (unit-num=O; unit-num<NUMUNITS; unit-nun++) {

printf("unit %dm, unit-num);
space((CLUSTNUM*S)-2);

1
printf("\nn);

for (i=O; i<ROWSIZE; i++) {
for (j=O; j<NUMUNITS; j++) {

for (k= (i* (2*ROWSIZE)) ; k < ((i+l) * (2"ROWSIZE)) ; k++) {
if (weight [cnuml [j I [kl > sort [cnunl [j I [ROWSIZEI

printf ("0") ;
else if (weight [cnum] [j] [k] > sort [cnum] [j] [24])

printf (" . ") ;
else

print•’(" ") ;
1

printf (" " 1 ;
1
printf ("\nu ;

1
printf("\nU);

* printf("\nTopweights:\n");
for (unit-num=O; unit-num<NUMTOP; unit-nun++) {

printf("unit %dm, unit-nun);
space ((NUMUNITS*5) +3) ;

for (i=O; icCLUSTNUM; i++) {
for (k=O; ktNUMTOP; k++)

for (j=O; j<NUMUNITS; j++)
printf ("%.3f ", topweight [i] [j] [k]) ;

printf (" " 1 ;
I
printf ("\nu) ;

I
printf ("\nu) ;

* /
I

space (numspace)
int numspace ;

{
int i ;

for (i=O; itnumspace; i++)
printf (" ") ;

1

dosort (sort, cnum, unit-num)
float sort [CLUSTNUM] [NUMUNITS] [INPUTSIZE] ;
int cnum, unit-num;

{
int i, j, loc;
float big, swap;

for (i=l; icINPUTSIZE; i++) {
for (j=i, big=sort[cnum] [unit-num][i-11, loc=i-1; j<INPUTSIZE; j++)

if (sort[cnum] [unit-num] [j] > big) {
big = sort [cnum] [unit-numl [j I ;
loc = j;

3
swap = sort [cnum] [unit-num] [i-11 ;
sort [cnum] [unit-num] [i-11 = sort [cnum] [unit-num] [lo4 ;
sort [cnum] [unit-num] [loc] = swap ;

1

Jan. 12, 1993
Kenward Chin

/ * This contains #defines used throughout the program.
/ *
/f************+*/

#define NOISEPERC 0
#define NOISEWORD O
#define SENTTYPES 2

/ * # of layer 2 clusters */
/ * # of units per cluster */
/ * # of layer 3 units * /

/ * # of spurious percepts */
/ * # of spurious words */
/ * # of sentence types */
j* N-Vt-N, N-Vi * /

#define ROWSIZE 15 / * ROW/COLSIZE = length of * /
#define COLSIZE 1 / * row/col in input array * /
#define OBJSIZE RONSfZS*COLSfZE / * field size for patterns */
&define SENTSIZE 3 / * # of possible wd locations * /
#define INPUTSIZE ~SEXTSIZE-L~~ * OBJSIZE / * size of entire array * /

#define MINVALUE 0.0
#define MAXVALUE 1.0
#define ACTIVE 0.5
#define INPUTTHRESH 5.0 /* garbage value, for now */
#define PERCTHRESH O.1/*0.2*/ / * threshold for winning in

percept column */
tidefine SENTTHRESH 0.2 / * threshold for winning in

sentence columns */
#define HIDDENTHRESH 0.5 / * thresh for hidden layer * /
#define TOPTHRESH 0.5 i* thresh for top layer */

kdefine HUMAN 0
#define COMPUTER I
#define HUMANTRAIN -9

!* for cgetinput-c */

/ f * * i * i i f * * * i * * * /

/ * random-c Jan. 12, 1993
/ * Renward Chin
/ *
/* This is just a small pseudo-random number generator. It is used
/ * in concert with initializing values set up in the main program.
./ *
/***************/

float rand (max)
int max ;

i
float val;

val = l.O*(random())/((int)MAXINT);
if (max == O f / * return x in [0,1] * /

return (vall ;
else / * return x in [l,max] * /

return: tint) (val * max) +I);
1

/**************ti
/* tokens-h Jan. 12, 1 9 9 3
/ * Kenward Chin
/ *
/* This contains the static set-up for the representations of
/ * words (tokens) and percepts (objects). Terminology has changed
/ * over the course of the work, but the types have remained the same.
/ *
/*************** /

Xinclude "prog . his

/ *
To do the tokens properly, we must decide on a number of nouns and verbs
(both transitive and intransitive). For now, we will adopt a simplistic
set of constraints:

Sentences will consist of one of two types:
1. Noun-transitive verb-noun
2 . Noun-intransitive verb.

The same noun may appear in both subject and object position.
* /
#define NUMNOUNS 6 / * John, Baby, Ball, Cat, Girl, Mary * /
#define NtTMTVERBS 5 / * Kicks, Kisses, Breaks, Hugs, Gets * /
#define NUMIVERBS 4 / * Runs, Sleeps, Walks, Falls * /

#define NUMOBJS NUMNOUNS + NUMTVERBS + NUMIVERBS
#define STRLEN 1 0 / * maximum string length */

/ *
Note that while the vectors are given as horizontal, they are actually
implemented as vertical vectors. The appearance here is merely to
save space.

* /

static char lexicon[NUMOBJSl [STRLEN] =
{ "John", "Baby", "Ball", / * Nouns */

"Cat", "Girl " , "Pary " ,
"Kicks", "Kisses", "Breaks", "Hugs", "Gets", / * Tverbs * /
"Runs", "Sleepsu, "Walksu, "Falls" / * Iverbs */

3 ;

static float object [NUMOBJS] [OBJSIZE] =
/ * Nouns */

1, 0 , 0 , 0, 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 1 , / * John */
0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , O ? , / * Baby */
0 , 0 , 1, 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 1 , / * Ball */
0 , 0 , 0 , 1, 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 1 , / * Cat */
0 , 0 , 0 , 0 , 1, 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 1 , /*Girl*/
0 , 0 , 0 , 0 , 0 , 1, 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 1 , / * Mary */

/ * Tverbs *,'
0 , 0 , 0 , 0 , 0 , 0, 1, 0 , 0, 0 , 0 , 0 , 0, 0 , 0 1 , / * Kicks */
0 , 0 , 0 , 0, 0 , 0 , 0 , 1, 0 , 0 , 0 , 0 , 0 , 0 , 0 1 , / * Kisses */
0, 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1, 0 , 0 , 0 , 0 , 0 , 0 3 , / * Breaks * /
0 , 0 1 0 , 0 , 0 . 0 , 0 , 0 , 0 , 1, 0 , 0 , 0 , 0 , 0 1 , / * Hugs * /
0 , 0 , 0 , 0, 0 , 0 , G , 0 , 0 , 0 , 1, 0 , 0 , 0 , 0 1 , / * Gets */

/ * Iverbs * /
{ ~ ~ ~ , ~ , ~ , ~ ~ ~ , ~ , ~ , ~ , ~ , 0 , 1 , 0 , 0 , 0] , / * Runs */
C ~ , 0 , 0 , 0 , ~ , ~ , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0] , i* Sl3sps */
{ ~ 1 ~ , ~ , ~ , ~ , ~ , ~ , ~ , ~ , 0 , 0 , 0 , 0 , 1 , 0] , / * Walks * /
{ o , ~ , ~ , ~ , ~ , ~ , ~ , ~ , ~ , ~ , o , O , @ , O , l] I * Falls * i

1 ;

/ *
The "t" preceding each description indicates that the activation vector
is in this case a *tokenm, ie. the pattern which will appear in the RHS
of the input array. For simplicity's sake, the token vectors are
identical to the corresponding object vectors (this could be changed,
and the functionality would be preserved.

* /

static float token [NU&iOBJS] [OBJSIZE] =
/ * Nouns * /

{ I 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0) , /*tijohn*/
C 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 01, / * tBaby * /
{ o , o , 1 , o , o , ~ , o , o , o , o , o , O , o , O , O l , /*tBall*/
{ ~ , ~ , ~ , 1 , ~ , ~ , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 } , /*teat*/
{ 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , G , C i , O , 0 , 0 , 0 , 0 1 , /*tGirlt/
{ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 01, / * tMary * /

/ * Tverbs * /
{ 0 , 0 , 0 , 0 , ~ , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0) , /*tKicks*/
{ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 01, / * tKisses * /
C 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 01, /*tBreaks*/
C O , o , o , O , O , O , O , O , O , I , O , O , O , O , O 1 , /*tHugsf/
{ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0) , /*tGets*/

/ * Iverbs * /
{ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0) , /*tRuns*/
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, O), / * tSleeps * I
{ 0, 0, 0, 0, 0, O , O , O , 0, 0, 0, 0, 0, 1, 01, /*tWalks*/
{ 0, 0, O , O , O , O , 0, 0, 0, O , O , 0, 0, 0, 1) /*tFalls*/

Elmm, J. L. (1989). Representation and structure in connectionist models. CRL
Technical Report 8903, Center for Research in Language, University of California,
San Diego, CA.

Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14, 179-212.

Feldman, f. A. & Ballard, D. H, (1982). Co~ectionist models and their properties,
Cognitive Science, 6, 205-254.

Fodor, J. A, & Pylyshyn, 2. W. (1988). Connectionism and cognitive architecture: A
critical analysis. In S. Pinker & J. Mehler (Eds.), Connections and Symbols.
Cambridge, MA: MIT Press.

Hadley, R. F. (1992). Comp~sitionality and systematicity in connectionist language
learning. CSS-IS Techical Report 92-03, Centre For Systems Science, Simon
Fraser University, Burnaby, British Columbia, Canada.

Hebb, D. 0. (1949). The organization of behaviour: A neuropsychological theory. New
York: Wiley.

Jordan, M. I. (1986). Serial order: A parallel distributed processing approach. Institute
for Cognitive Science Report 8604, University of California, San Diego, CA.

McClelland, J. L. & Kawamoto, A. •’3. (1986). Mechanisms of sentence processing:
Assigning roles to constituents of sentences. In D. E. Rumelhart, J. L.
McClelland, and the PDP Research Group (Eds.), Parallel distributedprocessing..
QEoratir,zs in the microskucture of cognition, Volume I . Cambridge, MA: MIT
Press.

Moeser, S. D. & Bregmm, A. S. (1973). Imagery and language acquisition, McGill
University, Montreal, Quebec, Canada: Academic Press, Inc.

Naigles, L. G., Gleitmm, H., & Gleitman, L. R. (1987). Syntactic bootstrapping in verb
acquisition: Evidence from comprehension. Technical Report, Department of
Psychology, University of Philadelphia, Pennsylvania,

Paivio, A. (1971)- Imagery and language. In S. Segal (Ed.), I m g e ~ : Current cognitive
approaches. New Yo&: Academic Press.

Rosenblatt, F- (1962). Principles of neurodynamics: Perceptrons and the theory of brain
mechanisms. Wafhirrgton: Spartan Books.

R u m e l h a D. E., Hinton, G- E. & Williams, R. J. (1986). t e e g internal
reprtxn&tions by emor propagation. In D. E. Rurnehrt, J. t. McClcIiand, and
the PDP Research Group (E&s.), Parallel distributedproc~ssing: Explorations in the
microsmcme ofcognition, Volwne I. Cambridge, MA: MI'T Press.

Rumelhart, D. E. & Zipser, D. (1986). Feature discovery by competitive learning. In
D. E. Rumelhart, 1 L. McClelland, and the PDP Research Group (Eds.), Pardlel
clistributedprocessing.. Explorm'o~ts in the microstr~achire of cognition, Volume I .
Cm-ibr'idge, P-?A 1viIT' Press,

Smolensky, P. (1988). On the proper treatment of connectionism. ??ze Brain and
Behuvioral Sciences, 11.

St. John, M. F. (1992). Learning language in the service of a task. Proceedings of the
14th Annunl Conference of the Cognitive Science Society. 271-276, Bloomington,
Indiana.

St. John, M. F. & McClelland, J. L. (1990). Learning and applying contextual
constraints in sentence comprehension. Artificial Intelligence, 46, 2 17-257.

Weckerly, J, & Elman, 3. L. (1992). A PDP approach to processing center-embedded
sentences. Proceedings of the 14th Annual Conference of the Cognitive Science
Society. 414-419, Bloomington, Indiana.

