Bl SRR

Acquisitions and

Bibiiothéque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch des services bibliographiques

ASGSWS, LGRS

K1AONS K1AONY

NOTICE

The quality of this microform is
heavily dependent upon the
auality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. (C-30, and
subsequent amendments.

Canada

395, rue Welington

[o Ty N mwa Fig P AP
ARG (F A RSTR

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S’il manque des pages, veuillez
communiquer avec [université
qui a conféré le grade.

La qualité d'impression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont été
dactylographiées a l'aide d’un
ruban usé ou si l'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

A CONNECTIONIST APPROACHTO
ACQUIRING SEMANTIC KNOWLEDGE USING COMPETITIVE LEARNING

by
Kenward Chin
B.Sc., University of British Columbia, 1987

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE
in the Department
of

Computing Science

© Kenward Chin 1993
SIMON FRASER UNIVERSITY
Janvary 1993
All rights reserved. This work may not be

reproduced in whole or in part, by photocopy
or other means, without permission of the author.

I’*PI' National Library Bibliothéque nationale
of Canada cdu Canada
Acquisitions and irection des acquisitions et
Bibliographic Services Branch des services bibliographiques
QOttawa, Ontano COttawa {Ontano)
K1A 0N K1A0M4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains owneiship of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

Yowr e Volre réievence

Cur g Notre rélgrence

Lauteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliothéeque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa thése
de quelque maniére et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
thése a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protége sa
thése. Ni la thése ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-315-91188-3

Canada

Name:
Degree:
Title of Thesis:

Examining Committee:

Chatr:

APPROVAL

Kenward Chin
Master of Science

A Connectionist Approach to Acquiring Semantic
Knowledge Using Competitive Learning

Z L

R. Hadley
Senior Supervisor

F. Popowich

T. Perry

External Examiner
Department of Linguisiics
Simon Fraser University

Date Approved; Ua"’"wgl &Zé/ 19493

bi

PARTIAL COPYRIGHT LICENSE

| hereby grant to Simon Fraser Unlvers!ty the right to lend
my thesis, project or extended essay (the title of which is shown betow)
to users of the Simon Fraser University Llbrary, and to make partial or
single copies only for such users or In response tc a request from the
fibrary of any other university, or other educational lnsfi?uf!on, on
its own behalf or for one of Its users. | further agree that permission
for multiple copying of thls work for scholarly purposes may be granted
by me or the Dean of Graduate Studies. It is understood that copying
or publication of this work for financial galn shall not be alfowed

without my written permission.

Title of Thesis/Project/Extended Essay

A Connectionist Approach to Acquiring Semantic Knowledge using Competitive

Learning.

Author: _
{signatura)

Kenward Chin

{name)

March 25, 1993

(date)

Abstract

Recent work in the field of cognitive science has involved the use of connectionist
networks for learning semantics from simple English utterances. While significant results
have been obtained, many such networks embody architectures which have obvious

| deficiencies. One deficiency is the use of the back propagation learning algorithm. This
algorithm requires that continual feedback be provided during wraining. Though back
propagation is an effective technique, it has the drawback of not being a plausible
explanation of human language acquisition, since humans do not typically receive continual
corrective feedback while learning language. Another deficiency is the failure of some
systems to provide a link between the semantics discovered from input sentences and the
real-world objects referred to in the input sentences. Also, many systems require that the
knowledge acquired be represented according to a pre-determined representational scheme.

The work presented here is an attempt to provide a connectionist basis for correcting these
deficiencies. Firstly, the use of the competitive learning strategy frees the system from
requiring continual feedback and from requiring a pre-determined representational scheme.
Secondly, the system's task is specifically to learn the associations between the words in

input sentences and the real-world concepts to which they refer.

Acknowledgements

T would very much like to thank the people who made it possible for me to complete this
research. Firstly, thanks are extended to my Senior Supervisor, Dr. Bob Hadley, for his
patience and for his many helpful ideas and comments. I would also like to thank my
supervisors Drs. Fred Popowich and Nick Cercone, my teaching colleagues at Capilano
College for allowing me the time necessary to finish the thesis, and Joseph Tosey for his
constructive remarks. Lastly, I wish to thank my dear friend Rachel Stinchcombe for her

encouragement, support, and considered comments.

iv

TABLE OF CONTENTS

ST (0 T T g AL LCR IR ETIP PP OTE 1
APPTOVAI PAZE . «eeeeeiit ittt e i
ADSIACE . .o o e e et eeere e eatteeoeessaantaaesonsssseassresasranstesanssanassesaraesariiasantses 1ii
AcKnOWIEdZEmMENTS euininitiinieti ettt et et e iv
Table Of COMEEIIS...uuininieiiaaeiceiiiarieeccrerimansteenttensrsssrenssssnnenacnssasasnsess v
| BTIR B K10 [SOOI PPRP PP PN vii
LSt Of FAGUIES ..o ceeneeeneeniiieiae e e et ciaire e et et eaeaaa st e et n e viii
J RN 533 0075 110615 1o} ; PR RO PRSI PISPPPPPR 1
1.1 ConnectioniSt NEtWOTKScoimiirineireesiiiiiiiiiiiiiiiiieraeriaeerreaeanenes 1
1.2 The Research Problem: Words, Percepts, and Conceptscoeeennen.. 3
1.3 Overview Of the ThesiS....ccccooiciiimiiiiiiiriiiinre e cen e 5
2. LIterature SUIVEY.....ooioiiiiiiiiiii ittt s s s reee e e s rareaenens 7
2.1 Representation and Structure in Connectionist Models: Elman (1989).......... 7

2.2 Mechanisms of Sentence Processing: Assigning Roles to Constituents
of Sentences: Kawamoto and McCleland (1986)cocvvvvvnnennennn... 13

2.3 Learning and Applying Contextual Constraints in Sentence

Comprehension: St. John and McClelland (1990)coiell 17
3. Competitivé J DET: T 5 13T 1 V- SO O 24
3.1 Feature Discovery by Competitive Learning: Rumelhart and Zipser (1986)... 31
3.1.1 Wordsand Letterso.ovevniieiiiiiiiiiiiiiiiiii e 31
3.1.2 Horizontal and Vertical Lines........ccccoevieirrrrnniniriieniinnennennnn. 34
4. The Leamning Task.o i ri v e e e aaaees 37
4.1 TheNamreof the Inputoooiiiii i 38
5. The Network Architecture and Learning Algorithmoooiiiiiiii 40
5.1 The Representation ISSUEoovveiniiniiiniiiiiiie i 40
5.2 Representing Words, Percepts, and Conceptsccooeveeiiiiiiiiniinnnnnn... 43
5.3 Layers and CIuSters........cccoooiiiiiiniiiniiiieiiiinnniiciic s 45

5.4 TheInput Layer.......ccooiiiiiii e 47

5.5 The Hidden Layerand Output Layer ...t 51

5.6 Learning in the Hidden and Output Layersc.c.oooieiiiiiiiiiiiini . 52

6. Developing and Refining the Method. ... 56
6.1 The Leamning Ratioooooi i 56

6.2 Nature of the Input Patterns ... e 58

6.3 Leaky Learning.....c..ccooiiiiuiimimiiiieiiinenenieinciorenciiearnenensaesncnens 60

6.4 Choosing an Appropriate Number of Layers..........c.oooooiiiiiiiiin . 61

6.5 Threshold Values and Winner-Take-All... or Not?...............onl 62

6.6 Normalization of Weight VeCtOrs........coooviiiiiiiiniiiiiiiiciiinaes ... 63

6.7 Summary of Techniques Used.........c.cooimiiiiiiiiiiiiiinn 64

T RESUIES o ettt ettt ee ettt e s et ae e a e 66
LI B o) 111 o PPN 73
8.1 Implications of the Work....o..oiiiiiiii e, 73

8.2 Future EXIENSIONS...c.iiiiiiiiiiiiiniiinit it eae s s aree e 76

8.2.1 AnOrdering Layer.....ccoeoeiniiiiiiiniiiiniiiciiiiniiiiieiaeaaens ... 76

8.2.2 Interconnecting the Sentence UnitS.........ocooviiiiiiiiiiniiiiiinn, 79

8.2.3 Improving the Learning Algorithmcccooiiiinneinniannnnenn.. 79

8.2.4 Simultaneously Active Concept Units.............coieineiniiiinenn.n. 80

8.2.5 Increasing the Complexity of the Grammar..........cccooviniininnnnee 81

9. ConCluSION. ..ottt aas SN 84
Appendix A: Program Listing........cooocaiiiiiiiiiioiiiniiiiieiciicerenn e 85
125131110723 1210 11 S SO PN 128

LIST OF TABLES

7.1 Performance of concept units, 10000 training cycles

7.2 Performance of cross-connections after 1000 training cycles

7.3 Performance of cross-connections after 5000 training cycles

.........................

.........................

.........................

2.1
2.2
3.1
3.2
5.1
5.2
5.3
5.4
8.1

LIST OF FIGURES

Simple Recurrent Network Architecturecooooviiiiiiiii
Network Architecture from St. Joiin and McClelland (1990)coaiaeiin.. ..
Competitive Learming NEtWOIKooiiiiiiiiiiiii e
A Geometric Analogy of Competitive Learning........cccccooeeiiiviiiaiiiniiinn,
Sample Input Patternoooviiiiii
Sample Input Pattern with PErceptso.ooivviiiiiiiiiiii
Network Architectureocoiiiiiiiiiiiie e
Learning in the Input Layer........cccivis

Use of Ordering Unitsccconviniininiiiiiiiiiiiiiiiiii e e

1. Introduction

The notion of simulating human cognitive processes using a computer is one that stirs the
imagination. Visions of computers doing complex tasks which previously only humans
could accomplish are quite exciting. Traditional Artificial Intelligence approaches to
simulating cognitive processes have yielded interesting results. However, it is held by
some that in order to fully simulate the performance of the human brain, it is necessary in
some way 10 simulate the physiology of the human brain as well. Cognition seems to be
the result of the interaction of millions of relatively simple processing units in the human
brain. The use of neural networks, or more generally connectionist networks, as a tool for
studying cognition is therefore appealing in that the architecture of such systems is based

on the notion of using many interconnected simple processors.

Before discussing the specifics of the work presented here, it would be helpful to have

some background in this field of study. Firstly, what exactly is a connectionist network?

1.1 Connectionist Networks

The human cerebral cortex, where cognitive processes occur in the human brain, consists
éf masses of interconnected cells called neurons. Connectionist networks consist of much
émaﬂer numbers of neuron-like processing elements, called "nodes” or "units”, linked
together. Neurons appear to perform a very simple processing function, which is to accept
electrochemical "excitation” or "inhibition™ through links from other neurons and, based on
the sum of this input, to send excitatory or inhibitory output to yet other neurons. This

electrochemical transmission is numerically simulated in a connectionist network. Insuch a

network, excitation corresponds 10 a node receiving positive numerical input from
connected nodes and inhibition corresponds 10 a node receiving negative valucs. A node's
output is just a positive or negative value which is propagated to other connected units.
While the sheer number of cells and connections present in the brain seems to defy
computer simulation (the brain contains on the order of 109 neurons). intcresting results

can be obtained in systems using perhaps only hundreds of simulated neurons.

There are a great many variations on the implementation of connectionist networks.
Differences include the specific way in which nodes respond to input, the way in which
nodes are connected to each other (that 1s, the configuration of the network), the nature of
the links which connect the units, how the network is aliowed to evolve over time, and so

on. The following represents a very general picture of a connectionist network.

Associated with each node in a connectionist network is a threshold value. When the total
input, excitatory and inhibitory, to a node sums to ﬂﬁs threshold, the node becomes active.
The degree of activity of the node is in some models directly related to the magnitude of the
total input. The value representing the node’s activity is called its potential or activation,
and is typically represented by a real value between () and 1. Active cells then propagate
excitatory and/or inhibitory signals to other nodes in the network, in some modecls at a
strength related to the potential of the sending cell. Real neurons are limiied to sending
only excitatory or only inhibitory signals; simulated neurons need not be limited in this
way. In many systems, the neitwork connections are fixed; there is no provision for two
nodes which are unconnected in the network's initial configuration to become connected.
However, this is not 1o say that a network cannot change over time at all. In most

networks, the potential of a node is calculated according to the weighted sum of its inputs,

each link into a ncde having a weight associated with it. It is these weights which can be
aliered over the course of "training” a network, to enable the network to "learn” to respond
in different ways to different input. For instance, by allowing a link's weight to diminish
to 0, a node becomes unresponsive 10 signals received from the node at the other end of

that input line.

Networks are generally structured in groups of nodes, called layers. One set of nodes
serves as an input layer, analogous to sensory nerve cells which transmit sensory input to
other brain cells for processing. Depending on the application, these input nodes may
receive their activation values from some sort of electrical input device, or from some sort
of driver program which pre-processes input values into a form acceptable to the network.
For example, a visual recognition network might receive its input from a video camera, as
pixel values. As another example, a sentence parsing network might require a computer-
coded form of input, perhaps certain input nodes corresponding to the use of certain words
in the input sentences. A second set of nodes, a middle layer, receives its input from the
input layer. After activation values are determined within this layer, further signals are sent
to an output layer of nodes. The activation values of the output nodes can then be read off,
according to some interpretive scheme, as the result of the network's processing. This
three layer structure is quite common, but there are also systems which use only two layers

or more than three layers.

1.2 The Research Problem: Words, Percepts, and Concepts

One current ficld of research invoives the application of connectionist networks 10 the

problem of natural language understanding. For example, connectionist networks have

been used to investigate the role of syntactic and semantic constraints in sentence
comprehension, (St. John & McClelland (1990)), to examine how grammaiical siruciure
can be discovered by processing sample sentences, and to try to understand what

mechanisms might underlie the process of language acquisition (Elman (1989)).

This work focuses on the particular problem of discovering semantics. A child leaming
English will be presented with many English sentences over the course of leaming the
language, and these in many different real-world situations. Somehow, that child is able 1o
eventually develop a mapping between the words which he hears and the rcal-world
objects, actions, or abstract concepts to which those words refer. How is this done? Some
use must be made of the environment: when a sentence is spoken, the real-world referents
corresponding to words in the sentence are at that time within the child's perceptions. For
example, every time the child hears "Mommy" in a sentence, the child also perceives his
mother (o be nearby. It may be that the regular occurrence of 2 word in concert with a
certain "percept” leads to the word and percept becoming associated with each other.
Eventually the child comes to associate the word "Mommy" with his mother, and his
mother with the word "Mommy". The discovery of statistical regularities in input is just
one of the things that connectionist networks are very good at. One of the goals of this
research was (o construct a network that would leam 1o associate words with their related

percepts, merely from example sentences along with perceptual information.

A second goal was to have the network leamn to represent the word-percept association
explicitly. There is a sense in which the word "Mommy" and the perception of Mommy
together define a "Mommy concept”™. It would be uscful 1o have the network be able to

recognize that if either the word "Mommy” or the perception of Mommy are present as

input, the Mommy "concept” should be called forward. The concept explicitly represents
the association between word and percept. Thus, the network is concerned with

associating three types of objects: words, percepts, and concepts.

Of note in this work, however, is not just the task, but the approach taken to the task. A
network can be trained by comparing its responses to input with the desired predetermined
responses to that inpat, and by then using the difference {or "error") to alter the network's
parameters. One common algorithm for doing this is called back propagation (Rumelhart,
Hinton & Williams (1986)), so named because the difference between the actual output and
the desired output is propagated back through the network to induce a change in the
network's behaviour. However, it is not plausible that, in language acquisition, the correct
résponses will always be available for purposes of learning; the feedback given during the
course of language acquisition is nct of the constant nature required by strategies like back
propagation. We would therefore like to develop an approach to this problem that does not
require prior knowledge of the expected results (to be used as feedback) in order to obtain
the correct answers. The method chosen here is called competitive learning, and is
discussed more fully in Chapter 3. It is an example of an "unsupervised" learning method,

so called because no feedback 1s needed.
1.3 Overview of the Thesis

Perhaps it is surprising that complex processing of the type described can be done merely
by connecting simple individual processors. The power of the networks comes not from
the nodes as individuals, but from the large numbers of connections within a network and

the way in which the umits are connected. Connectionist processing is also called parallel

distributed processing (PDP), which captures the facts that processing is distributed among
many processors and that these processors work in concert. In Chapter 2 we consider
some past experimental results which demonstrate how PDP networks can accomplish
certain tasks related to the research problem. In Chapter 3 the specific mechanism of

competitive learning is considered and related experimental results are discussed.

Chapters 4, 5 and 6 are concerned with the details of the thesis work: the learning task, the
network architecture, and the learning algorithm used. Chapter 6 focuses on the problems
and issues which have arisen from choosing the competitive learning algorithm for the
thesis work. The performance of the system and the resuits of the research are discussed in
Chapter 7. A discussion of the implications of this work and possible future extensions to
it follows in Chapter 8. Lastly, we conclude with some summarizing comments in

Chapter 9.

2. Literature Survey

2.1 Representation and Structure in Connectionist Models: Elman (1989)

The first problem to be considered in this thesis was the use of connectionist networks to
discover parts of speech and grammatical structure. In Elman (1989), an approach to
having a network learn lexical categorization and grammatical structure is presented. Elman
asserts that his method demonstrates that networks can be trained to develop internaily
structured, systematic, and compositional representations. This is an important issue, as
some researchers (for example, see Fodor and Pylyshyn (1988)) claim that connectionist
networks cannot do this if present methods of representation are used. However, the main
topic of interest in the work is its relationship to discovering word categories and

grammatical structure. That is our focus here.

Firstly, the input patterns Elman employs are similar to the patterns used in this work.
Elman uses 29 words, both nouns and verbs, each of which is encoded as a 31-bit vector
containing a single on-bit. The training corpus of sentences consisted of two and three
word sentences which were grammatically and semantically sound. Training consisted of
presenting these sentences to the network one word at a time. The system was expected to
predict forthcoming text: as each word was presented to the network, it was expected to
guess at the next input word. The predicted output was compared to the actual next word,
and a measure of the error was used to alter the weights in the network according to the
back propagation learning method, after each input word. While this task seems odd,
E‘lman argues that it is not entirely unreasonable; there is evidence that human listeners

normally anticipate future input during the course of conversation.

(Elman’s appeal to such evidence to justify his choice of learning methodology and training
task is actually somewhat inappropnate here. One strong objection is simply that Elman's
task would require that neural connections be adjusted in the space of time between one
word being heard and the next. It is known that adjustment of these connections such as
would be required by the use of back propagation cannot take place nearly this quickly. In
general, back propagation is not a very plausible explanation of how learning occurs in the
human brain. Further reference to these issues can be found in Hadley (1992). Note also
that further work by Elman, for example, Elman (1992), also makes use of back

propagation.)

The architecture of Elman's system is quite a bit different from the competitive learning
architecture discussed in this thesis. Elman's network consisied of three layers of units as
discussed earlier, along with an additional fourth set of units called the "context layer”.
The context units are used to provide a way of making previous states of the network
available to the system. The activation values of the hidden layer units are copied to the
context units during each training cycle, and are used as part of the input to the hidden layer
during the next cycle. Thus, the next training cycle will get some information from the
current cycle. The hidden units are therefore able to produce output based not only on the
current input word, but also on the words which preceded it. Elman asserts that the hidden
units are thus developing representations which encode the temporal structure of the input.
This type of network is referred to as a simple recurrent network (SRN) (see for example,

(Jordan, 1986)). The training regime was comprised of 60,000 training cycles.

The success of the system was not measured by its ability to perfecily predict the next
word. Clearly this can cnly be done with some probability of certainty, at best. If the
network has learned the structures, its statistical output should approximately match the

probabilities of occurrence of further corresponding words in the set. Indeed, the network

does behave in this way.

It is illuminating to examine the activation patierns in the hidden layer as each word is
presented. For each word in the lexicon a mean activation vector is calculated; the word is
presented to the network in each of its possible coniexts, and all the resulting hidden layer
activation values are averaged to compute the mean activation vector. These vectors were
then subjected to hierarchical clustering analysis, which organizes veciors according to their
degree of similarity. This revealed that the network had divided the words into hierarchical
categories. For instance, the network discovered that verbs and nouns fell into two
separate major categories. Nouns were divided into animate and inanimate objects, which
were further subdivided. Verbs, likewise, were divided into finer categories. While this is
an interesting result, one should note that the network itself has no "knowledge"” of this
categorization. That is, one cannot simply determine what category a word belongs to by
presenting it to the network and observing the activation of the output units. The
categorization is induced by the network (as changes in the weight vectors), but can be
observed only by analysis of the mean activation vectors. The knowledge, as such, is

implicit in the distribution of the network's weights.

Further, the network is able to make some distinctions based on the usage of words. For
example, the word "boy" appears in the input set in both subject and object positions. The

activation vectors (not the mean vectors) which arise when "boy” is presented in the subject

OuputUnits CO O O O C)

HidéenUnis CQ O OO OO OO

Q0000000

Input Units Context Units

Figure 2.1: A Simple Recurrent Network, similar to the one employed by Elman.
Bold arrows indicate feed-forward connections between all units in the originating
layer to all units in the higher layer. At each training cycle the hidden unit
activations are copied with a one-to-one correspondence to the units in the context
layer. On the next cycle the context is combined with new input to form the input
to the hidden units. Thus, information from prior states is made availabie to the
network.

position tend to cluster together, separate from the vectors which arise when "boy” is

presented in the object position. Thus, there is a weak sense in which the system discovers

grammatical roles.

The second set of Elman's experiments had to do specifically with discovering grammatical

structure. In order to do this, stronger consideration was given to contextual effects.

Specifically, it became important to observe how the hidden layer activations changed over

time; that is, how the patterns changed with the presentation of each new word in the
sentence.

10

The task was the same, thai of predicting the next word in a sentence. The stimulus set
was constructed using 8 nouns, 12 verbs, the relative pronoun "who" and the sentence
terminator ".". A phrase structure grammar which allowed for relative clauses to be
included was used to generate the input set. Some features of the grammar were: subject
nouns had to agree with their verbs; verbs were of three types, either requiring a direct

object, optionally using a direct object, or precluding use of a direct object; recursion

through relative clauses was allowed.

The architecture was very much like that described above. Two additional layers were

| included, one between the input layer and the hidden units, and one between the hidden
layér and thé output layer. The training set was quite different, as the grammar used to
generate sentences was considerably more complex than that employed in the first set of
experiments. In order to obtain good results, the initial training was done with sentences
free of relative clauses: simple sentences. After this training was complete, another set of
sentences containing a small percentage of complex sentences was used. Two more phases
of training were done, each containing a higher mix of complex sentences than the previous
one. While the results obtained using this training regimen were good, it was found that
starting the training with a full range of complex sentences prevented the network from

learning the appropriate responses. The network was trained on 200,000 training cycles.

After training, it was found that the network could with a high degree of accuracy "predict”
(that 1s, supply appropriate activation values for output units) the probabilities of certain
words occurring in a given context. The network, in a sense, had learned the features of

the particular grammar used to generate the input sentences.

11

This network was analyzed using a different technique than that described in the first
experiment. In this case, it was important to observe how the state of the network changed
over time. For example. the exact hidden layer activation vector generated in response 1o a
particular sentence constituent varied, depending on the constituent’s context. This
distinction can be seen as a consequence of the zime at which the word appears. Clustering
analysis, as performed in the first experiment, does not take this factor into consideration.
In this second experiment, the technique of mapping the network’s trajectory, through state
space over time, was used. (Note: The state space of this network would in actuality be
70-dimensional, since there are 70 state variables in the network. Principal component
analysis was used to identify lower-dimensional hyperplanes through the state space, to
make the problem of graphing the state space trajectories simpler.) Trajectories from
sentences which were similar in structure were then compared, to see if the network had
learned to identify these similarities, and how these similarities appeared in the state space
portraits. It was apparent that certain principal components became associated with specific
features in the grammar; for example, one principal component appeared to be related o
number markings in the input sentences. Also, it was observed tha! the state space
trajectories of sentences having common grammatical structure were ihdeed similar. The

main conclusion drawn from this was that the network was able, in a sense, to develop an

underlying intemal representation of the grammar used.

As stated above, the original problem to be addressed in this thesis work was that of lexical
caiegorization and discovery of grammatical structure through the unsupervised leaming
strategy of competitive learning. Elman’s work shows that a SRN with back propagation

can accomplish both these tasks, developing intemnally structured representations along the

12

:way; as has already been said, however, back propagation is not a good candidate for
explaining how learning actually occurs in humans. Initial experiments with the
competitive learning algorithm failed to produce good results. The challenge was then to

sce what could be accomplished using competitive learning, or a modified version thereof.

2.2 Mechanisms of Sentence Processing: Assigning Roles to Constituents of Sentences:

Kawamoto and McClelland (1986)

This thesis work looks at a way of associating words with their real-world referents, giving
words a firm semantic "anchor”. By providing this, it is hoped that the task of sentence
comprehension will be made easier. The relationship of semantic information and sentence
comprehension is an issue which has been discusséd by many researchers. In Kawamoto
-and McClelland (1986), scmantics is used to assist a connectionist network in assigning

case roles to the words in a given input sentence.

In this work, words are represented as lists of semantic microfeatures. Each microfeature

is a multi-valued feature. For example, the noun microfeature "Volume", which describes

the size of an object, has "small”, "medium”, and "large” as its possible values. Each word

is represented as a bit vector containing one bit for each possible value of each

- microicature. If the microfeature applies to the word in question the bit is turned on,
otherwise the bit is tumed off. As an example, consider the features which define the noun
"Ball": "Human-no", "Softness-soft”, "Gender-neuter", "Volume-small”, "Form-
compact”, "Pointiness-rounded”, "Breakability-unbreakable”, "Object type-toy”. These

' Vféatm'e values are all mmed on in the bit vector for "ball." On the other hand, the features

which do not apply, such as "Human-yes”, "Gender-male", "Gender-female”, and so on,

13

have their bits turned off in the bit vector for "ball." Thus, the microfeaturs values

encapsulate the definition of "Ball".

Each sentence presented to the network consists of a verb and from one to three noun
phrases. There is aiways a subject noun phrase, and there may be an object noun phrase
(which may be accompanied by a sentence final "with" noun phrase; for example, "The boy

ate the chicken with the fork.").

The chief goal of the model was to show how word order constraints and semantic
constraints combine in the task of assigning case roles to the words in a sentence. Also,
the model was intended to generalize what it had learned to sentences not found in the
training corpus. There were also some other goals, such as having the model be able to
correctly assign case roles in sentences containing completely novel words (again

represented as lists of semantic microfeatures).

The general architecture of the network was relatively simple: the input layer consisted of
units used to represent words in a sentence (that is, the surface structure of the sentence),
and the output layer consisted of units used to represent the sentence's case structure (the
allowed case roles were Agent, Instrument, Modifier, and Patient). The training regimen
consisted of presenting the surface-struciure input, examining the output at the case-
structure level, and then adjusting the connection weights according to the perceptron
convergence method (Rosenblait (1962)). This does involve knowing the correct output

beforehand and thus this learning algorithm is not unsupervised.

14

The representations used in the network were more complex. The surface-structure input
did not consist solely of the bit vectors corresponding to the words in the input sentence.
fnsu:ad, a system using four sets of input units was used, one set for each of the four
possible case roles. Each set of input units was actually a two-dimensional grid,
reptesenting conjunctions of microfeatures; that is, units corresponding to "Human-yes,
Gender-maie”, "Human-yes, Gender-female”, and so on for each possible pairing of

" microfeatures. In similar fashion, the case-structure output consisted of four sets of units,
again corresponding to each of the four possible case roles. Each case role was viewed as

a relation between parts of the sentence. For example, "The boy broke the window" would

be represented abstractly as:

Broke Agent Boy

Broke Patient Window

Within each set of case-structure units, each unit stood for a conjunction of microfeatures;
this time, for microfeatures from the head of the relation conjoined with microfeatures from
the tail of the relation. For example, the first sentence above would activate units in the
"Agent" case-structure set of units. Specifically, those units which represented
microfeatures of "Broke” conjoined with microfeatures of "Boy” would be activated.
Similarly, micrefeatures for "Broke™ conjoined with those of "Window" would be activated

n the "Patient” set of units.

The results of testing the model were quite good. After S0 passes through the entire
'ifaining corpus, amounting to 7,600 training sentences, the model was able to generate

correct results for both familiar and novel sentences, on average turning on about 85% of

15

the bits that should be on for a given input pattern, and activating less than 1% of the bits

ey ¥

oheald £F Cre o rirrne mattaen Tha 51 o
IVRICL D

ORI OI1 10f a ZIVED paucin. 1nc |

3

howed continuing improvement in

s

performance, according to the number of training passes. Also, as expected, there was
slightly better performance for familiar sentences than for novel sentences, although the

difference was not that great.

The model was able to use both werd order and semantic constraints to assign case roles.

As an example, consider the seniences:

The hammer broke the vase.

The dog broke the vase.

In these sentences, "hammer” is Instrument, and "dog" is Agent. This can only be
determined by considering the semantics of these words. The system was able to correctly

assign these roles. As another example, consider:

The boy hit the girl.
The girl hit the boy.

Here, Agent and Patient are completely determined by word order. The cormrect roles arc
assigned, even though the semantic descriptions of the "boy” and "girl” differ only in the

"Gender” microfeature.

The system also was able 1o choose correct senses for verb usage, to provide reasonable

default values for roles when words were missing from the input sentences, and to resolve

16

the meanings of ambiguous words. Also, when presented with structurally ambiguous
sentences such as “The boy hit the woman with the hammer”, the model would partially
activate the roles corresponding 1o the possible role assignments, indicating this ambiguity.

Other interesting results were obtained as well.

While McCleliand and Kawamoto's network is able to perform a very interesting leamning
task, it sull assumes the existence of microfeatures which describe the definitions of nouns
and verbs. How might these definitions be leamed? A sysiem like that described in this
thesis would allow for words to become associated with the perceptions of their real-world
referents. If some additional mechanism was introduced tor analyzing this perceptual
information and creating microfeatural descriptions, we would then have a way of learning

microfeatural definitions for words.

2.3 Learning and Applying Contextual Constraints in Sentence Comprehension:

St. John and McClelland (1990)

In St. John and McCleliand (1990), a network is described which learns to "understand”
single clause English sentences. Sentence constituents are presented sequentially to the
network, which then leamns to assign thematic roles to constituents, to establish correct
referents for words which are vagee or ambiguous, and to infer thematic roles which do
not explicitly occur in an input sentence. While the resu’: , are impressive, there is again no
attempt to tie constituents to their real-world referents, in a way limiting the amount of
semantic information at the network's disposal. Also, the issue of how sentences can be
segmented into their constituents, or structural components, prior to being fed into the

network is not discussed. Leaming is accomplished here through back propagation, but

17

we note that competitive learning might be used to provide a solution to both of these

St. John & McClelland’s model supported the use of 58 different words: verbs. nouns,
prepositions, adverbs, and ambiguous words having verb, noun, or verb and noun
meanings. Each word was represented by a single unit. As mentioned, these words were
combined into phrases which were presented to the network. A phrase could be a noun
phrase, a prepositional phrase, or a verb (including an optional auxiliary verb), and was
represented by one unit for each word in the phrase. Also, there were units used to encode
the location, or surface role, of phrases in a sentence. A phrase could be pre-verbal,
verbal, first-post-verbal, or n-post-verbal. A senience constituent as processed by the

+ stwork thus consisted of the word units for the words in the phrase, along with a unit
representing the position of that phrase in the sentence. (Further tests by St. John &
McClelland showed that the use of surface role units was not actually necessary for correct

performance).

The central feature of this network is the method used for representing (in St. John and
McClelland's terminology) the event to which the sentence refers. The activation values in
a layer of units called the "sentence gesiait”, or SG, are modified as consecutive sentence
constituents are processed. When the sentence has been completely processed, the SG
contains the appropriate event representation and so has the function of being a kind of
output layer. However, the information in the event representation is not immediately
vistble, in that there is no one-to-one correspondence between individual SG units and the
roles or words which are present in the "real-world" event. In order to recover useful

information from the SG, the SG layer must be presented as input to another (sub)network,

18

along with a "probe” input pattern. (For convenience, we will call the network of which
the SG layer is the output layer "network A", and the second network "network B"). The
probe pattern represents either a thematic role or a word which may fill a role. The output
df network B will then be a pattern representing a role/filler pair, consisting of the probe
role or filler, and the filler or role which is associated with the probe as determined from the
event representation. An entire event can thus be decoded by probing the network B with

each half of each role/filler pair present in the original sentence.

As an example of how the model works, consider the sentence "The pitcher threw the ball.”
The event this sentence refers to would be represented as the set of role/filler pairs:
{agenvpitcher, action/threw, patient/ball}. (Actually, each filler here is an example of an
ambiguous word; in the actual model, there are separate fillers representing each meaning
of each ambiguous word). The individual senience constituents would be "the pitcher/pre-
verbal”, "threw/verbal", and "ball/first-post-verbal”. After all the constituents are presented
to the network (network A) and the SG has reached its final state, network B can then be
probed. If "agent” is used as the probe, the pattern for "agent/pitcher” is activated in the
output layer; if "action” is the probe, then "action/threw" is the output; if "ball" is the probe,

"patient/ball” is the output, and so on.

The architecture of the sysiem is an extended version of the simple recurrent network
discussed in Section 2.1. As the SG is being updated through the course of a sentence’s
processing, its activation values are copied to a set of context units in network A. Thus,

additional input constituents are presented in their context.

19

‘ Output } (Role or filler)

Hidden layer 2 J
Network B

A

/ oo
[Se ‘G tal/\

(Hidden layer 1) Network A

Current]
constituent . Context units

Figure 2.2: Architecture of the simple recurrent network employed by St. John and
McClelland. Note that the output from network A serves as part of the input to network B.

The learning algorithm employed in this system is back propagation. The SG is decoded
through the technique of probing discussed earlier, and the measure of error between the
actual result and the correct output is used to alter the network’s weights. In training the
network, random sentence/event pairs were generated according to a set of pre-defined

sentence frames, with some sentence frames more likely to be used than others. As each

20

constituent of a sentence was presented to the network, the network was probed with all the
rossible roles and fillers for the accompanying event, and the error measure was back-
propagated through the network. While this is a straightforward technique, it is unclear
that this represents a psychologically plausible explanation for the mechanism underlying
human sentence comprehension. However, the results obtained through this method

seemed to satisfy the goals set for the network.

The types of sentences given as input to the network were of four basic types, according to
what kind of constraints were strongest within the sentences: active syntactic, passive
syntactic, regular semantic, and irregular semantic. Correct performance (that is, correct

~ role and filler instantiation) for the most frequently occurring type of sentence was achieved
after about 100,000 trzumng instances, and for all 6f the sentence types after about 630,000
training instances. The network also learned to accomplish the specific processing tasks

mentioned earlier, such as the establishing of correct referents for vague and ambiguous

words.

In the course of learning, the model exhibited some human-like traits. For example, there
are cases in which a word's meaning can be swamped out by sufficiently strong contextual
conStraims. A good illustration of thiS effect can be seen in the question, "How many of
each kind of animal did Moses take on the Ark?" Human listeners typically answer "Two,"
even though they may know that Moses is not part of the Ark story. This effeci can be
observed in the network when sentences which follow a reguiar pattern, except for an
exceptional element, are presented as input. In this case, the exceptional element's effect

on the event representation is swamped by the effect of the surrounding context. This is a

21

natural by-product of the ability of connectionist networks to capture statistical regulariiies

in the body of training data.

It is aiso interesting to note that St. John & McClelland's network exhibited some of the
same sort of behaviour as did Elman’s network. Specifically, their network developed
internal representations of the input words that couid be observed through cluster analysis
of the weight vectors between the input and first hidden layers. For example, verbs having
to do with consuming food clustered together, whereas verbs taking animate direct objects
formed a separate cluster. As another example, nouns which occurred together in the same
context clustered together; thus, "ice cream” and "park” were related, and "jelly" and

"knife" were clustered.

Another interesting feature of this network was its ability to generalize the constraints and
relationships it had learned to novel sentences. Training corpora were developed which
contained certain syntactic and semantic regulaﬁﬁes. When novel sentences also subject to
these regularities were given to the network as input, the network was able to process them
with a high degree of reliability (97% for sentences involving syntactic constraints, 86%
for those involving semantic constraints). The semantic regularities in the input also
allowed the network to perform a prediction task, similar to the task implemented by
Elman. If certain concepts were left uninstantiated in a sentence, the network should have
activated the possible filling concepts to a degree proportional to the probabilities of each of
those concepts occurring. In fact, it is interesting to note that there are two competing
"forces" that determine how the prediction will be done: the general regularities relating to
general attributes that relate to a class of objects, and the specific regularities relating to

atributes which apply to particular objects. As training took place, the network was less

22

able to make general predictions, as it learned the specific relationships between objects and

the contexts in which they occurred. However, added training did improve the network's

ability to correctly process novel sentences.

St. John & McClelland also claim that their model successfully solves what has been called
the bootstrapping problem: the problem of learning both the syntax and semantics of
sentence constituents simultaneously. Naigles, Gleitman, & Gleitman (1987) state that
learning both syntax and semantics using only statistical information seems an impossible
task, due to the amount of information that must be stored. This was exactly the type of
information used by St. John & McClelland's model, although many simplifying
assumptions were also made regarding the nature of the input. The related semantic
pro‘blerh which was not addressed specifically in their work was that of discovering which
event a sentence refers to, in a world containing multiple events. St. John & McClelland
suggest that an approach similar to what they have already implemented would be suitable
for this purpose. However, consideration of the simplified nature of their learning task
might cause one to take issue with this claim (for example, see Hadley (1992)). Further
work in this area is found in St. John (1992), but the approach taken is essentially the same
as that taken in St. John & McClelland (1990). The work presented in this thesis presents

an alternative method for solving the semantic problem.

23

3. Competitive Learning

Competitive learning is the name of the unsupervised connectionist learning algorithm this
work is based on. There are many different variations on this scheme, but the one used in
this research is most closely related to the work described in Rumelhart and Zipser (1986).
The following description adheres fairly closely to their definition of a competitive learning

system.

The three essentials of the competitive learning algorithm, as stated by Rumelhart and

Zipser, are as follows:

e Start with a set of units, identical except for some set of parameters which
are randomly assigned to each unit. These parameters will cause each unit
to respond slightly differently to a given input pattern. This is implemented
by using weighted input lines to each unit, which start off with some
random distribution.

e Limit the maximum activation of each unit.

 Allow the units to compete in some way, so that each unit will respond to a

different subset of input patterns.

The architecture of a competitive learning system is not very complex. As in many other
connectionist networks, the units of the network are separated into several non-overlapping
layers. Each unit of each layer receives excitation from every unit in the layer beneath it.
In turn, each unit of each layer projects its output to every unit in the layer immediately

above it. The units of each individual layer are separated into clusters. These clusters of

24

units are inhibitory; that is, each unit in a cluster has inhibitory links to all other units in
that cluster. This is where the "competition” of competitive learning is found; the more
strongly a unit responds to its input, the more it inhibits the other units in its cluster. Thus,

the units within a cluster compete with each other to have the highest activation for any

given input.

The architecture described by Rumelhart and Zipser is more specific. In fact, their network
architecture was the starting point for the network used in this thesis research. Though
there are notable differences, examining their system's characteristics will provide insight

into the operation of the network used here:

= Not only are the clusters inhibitory, they are "winner-take-all." This means
that the unit receiving the largest activation, after competing with the other
units, will be set to its maximum value, while all other units in that cluster
have their activation set to their minimum values. The maximum value, for
convenience, is 1 and the minimum value 0.
% All elements in a cluster receive input from the same units in the layer
below.
= A unit learns if and only if it is the winner in its cluster. A modification to
this scheme, known as leaky learning, allows both winning and losing units
to learn. This modification is discussed more fully in sections 5.6 and 6.3.
» All input patterns consist of units which are either on (have their activations

set to 1) or off (have their activations set to ().

25

Layer 3
Output Units

Layer 2
Inhibitory
Clusters

Layer 1
Input Units

Figure 3.1: The architecture of a competitive learning network. Filled circles represent
active units, open circles represent inactive units. The arrows indicate feed-forward
connections from each unit in a lower layer to each unit in a higher layer. Notice that
exactly one unit is active in each cluster in the middle layer, and that the output layer here
consists of one cluster.

= Each unit has a fixed total amount of weight distributed among its input
lines. Commonly, 1 is used as the fixed amount for all nodes. A unit
learns by shifting some proportion (a "learning ratio") of weight from its

inactive input lines to its active input lines, which has the effect of

26

preserving the total amount of weight. More precisely, the leaming rule is

given by:

Aw; =0 if the unit j loses

=g(c;/n) - g(w,-j) if the unit j wins

where Aw; is the change of weight on the line connecting unit i below to
unitj above
g is the learning ratio
is'1 if unit i is active, and is O if unit i is inactive

n is the total number of active units in the input layer

Rumelhart and Zipser present a useful geometric analogy to describe how competitive

| learning systems work. Each stimulus pattern can be thought of as an N~dimensional
vector, where N is the number of units in the input layer. If each stimulus pattern has the
same number of active units, each vector describes some point on the surface of an N-
dimensional hypersphere. Thus, the similarity of patterns can be measured by the distance
between their corresponding points on the hypersphere. Now, consider a unit in the layer
above the input layer. It has N input lines (one for each unit in the input layer), and so each
unit in this higher layer can also be represented by an N-dimensional vector of its weights.
Appropriately scaled, these vectors also fall on the hypersphere’s surface. (In fact, this is
only approximately so. For the weight vectors to lie on the hypersphere, the vectors must
be of unit length; that is, the sum of the squares of the weights must be 1. In Rumelhart
and Zipser’s description, the requirement is that the sum of the weights be 1, which means

that the weight vectors are only approximately the same length). The

27

Stimulus patterns represented as vectors whose tips
lie on the surface of a hypersphere. Patterns which
are similar are closer to each other than to dissimilar

patterns.

Here, the circles represent the weight vectors of
three units. Whenever one of the stimulus patterns
is presented to the network, the unit whose weight
vector falls closest to the pattern's vector will win
the competition and become active. Here, the filled
circle and diamond represent the winning unit and
pattern for this cycle.

When a unit wins, it has its weight vector moved
closer 1o the vector of the stimulus which was
presented. The distance moved depends on the
network's learning ratio. Here, the bold line and

filled circle represent the new weight vector, which
has been nudged closer to the presented pattern's

vector.

Figure 3.2: A geometric analogy of competitive learning.

28

winning unit for any given input pattern, then, is just that unit whose weight vector lies
closest on the hypersphere to the input pattern’s vector. The leaming rule can thus be seen
as a process whereby the winning unit has its weight vector moved towards the input

pattern vector. The distance moved is related to the learning ratio.

There are several features of the competitive learning mechanism which Rumelhart and

' Zipser draw attention to. They are:

* Each cluster classifies the set of inputs into M groups, where M is the
number of units in the cluster. One could consider each cluster a detector of

- an M-ary valued feature. Every input pattern would be classified as having
one of the M possible values of this feature. Thus, for example, a cluster
with two units would be a binary feature detector. One unit responds when
a particular feature is present in the input, otherwise the other unit responds.

» If there is structure in the input patterns, the system will break up the
stimulus set along "structurally relevant” lines. However, the nature of that
structure cannot be predicted. This is partly due to the fact that no a priori
classification scheme is given to the network, and thus any structure in the
input is discovered by the system. So, even though the input may have an
obvious structure (for example, half the input patterns always leave a
particular input unit inactive, while the other half always activate that unit),
the system may not find that particular feature; it may find a different one.
However, this feature of competitive learning networks really forms part of
ihe appeal for using them for language comprehension tasks. The problem

of extracting the grammatical structure in a language from example

29

sentences seems ready-made for the structure-seeking quality of competitive
learning networks.

« The more highly structured the input, the more stable the classification. As
input is presented, the weight vectors for the different response units are
adjusted. If the input patterns do not fall into nice clusters, this adjustment
will cause different units to respond to the same stimulus at different times
during the learning process, as the units compete to respond to the stimulus.
in this sense, the sysiem will be unsiable, evolving continually as more
input is presented. If the inputs cluster nicely, the system should stabilize
quickly and not vary much as leaming proceeds.

* The particular classification discovered depends on the initial values of the
weights énd the sequence in which the input is presented. With differing
starting weights and a differing order of presentation of input patterns, the
same cluster may become a detector of completely different M-ary features.
However, Rumelhart and Zipser stress that different clusters will not
always necessarily discover different features in the input. That is, one
cluster of M units may become a detector of the same M-ary fcature as

another cluster or not, cepending on different factors.

This is the essence of the competitive learning paradigm. It is further illuminating 10
consider the results of some of Rumelhart and Zipser's experiments, as presented in
Rumelhart and Zipser (1986). Specifically, the use of training patterns in the leaming
procedure is quite noteworthy.

30

3.1 Feature Discovery by Competitive Learning: Rumelhart and Zipser (1986)

In this paper, Rumelhart and Zipser use competitive learning to look at some interesting
classification problems. The two experiments of interest here are concerned with using
competitive learning to train a network to categorize words and letters, and to learn the
distinction between horizontal and vertical lines. The techniques used here are relevant to

the thesis work, and so it is instructive to consider the results of their experiments here.

3.1.1 Words and Lertters

In their first set of experiments, pairs of letters were presented to the network. A two-
dimensional input array was used, taking the form of a 7 by 14 grid. For a given letter, the
units in the array were activated which corresponded to a CRT font pixel map of that letter.

Each letter could occupy a 7 by 5 portion of the array, with a horizontal space between the

letters.

The first experiment with this system used clusters consisting of two units. One would
expect that such a cluster would become a binary feature detector. Indeed, when the
network was trained on the input set AA, AB, BA, and BB the network would become a
position-specific letter detector. In some runs, one unit would respond to AA and AR (thus
being a detector of the letter A in the first position) and the other would respond to BA and

- BB (thus being a detector of B in the first position). In other runs, a unit wouid respond to
AA and BA (thus detecting A in the second position) and the other would respond 1o AB

and BB (a B in the second position detecior). Such a system can be employed to parse

31

English sentences. Having units for identifying words in various positions within a

sentence could provide useful information for some higher-level parsing system.

The second experiment with the word and letter network involved using clusters of size
four. Using the same input set as above, the system learned to differentiate between each
of the possible combinations, one unit responding to each two-letter "word." Thus, by

adjusting the number of units, the network was able to become a word detector.

Thirdly, the input set was changed so that there were two possible letters for the first
position and four possible letters for the second position. In a sense, this input set could be
said 10 have two levels of structure. When clusters of size two were used in the network,
they became sensitive to ihe letters which would appear in the first position. When clusters
of size four were used, they became detectors of the letters in the second position. This
was evidence that the level of structure discovered by the system was tied directly to the
number of units present in the clusters. Again, this seems directly applicable to the
problem of classifying sentences. For example, a sentence consisting of a noun phrase and
a verb phrase has two distinct levels of structure: the structure at the phrase level, and the

structure at the phrase constituent level.

Another experiment showed how the network could make classifications based on the

similarity of the input pattems. A cluster of size two was used with input consisting of the
letters A, B, E, and S. The letters were chosen such that the A and E characters were quite
similar to each other, and such that the B and S characters were quite similar. The network
Iearned this distinction as well, essentially showing that sub-features (the points in the grid
common in similar letters) of the letters could be recognized. This ability to classify inputs

32

which are structurally similar is a well-known and very useful trait of connectionist

networks.

Lastly, it was shown that a categorization opposite to that leamed in the previous
experiment could be discovered. By using correlated training input, the system learned to
classify A and B together, and E and S together. This involved training the system on the
stimulus set of words AA, BA, EB, and SB. AA and BA are grouped together because the
right-hand letter is the same for each word. Likewise, EB and SB are grouped together.
The dissimilarity of the left-hand letter is essentiaﬂy disregarded. After the training was
completed, when input consisting of only the left-hand letter was presented, one unit was
found to respond to A and B, and the other to E and S. Thus, though the training input of
the right-hand letter was removed, the system could still retain the associated classification
of the left-hand letters. This is a powerful mechanism in allowing features to be discovered

through competitive learning, and one which is exploited in the thesis work.

The competitive learning scheme's ability to automatically discover the structure present in
mput patterns makes it seem exceptionally useful for the problem of learning grammatical
structure. However, there are factors which make it unclear how best to adapt this scheme
to the language problem. One major issue 1s the choice of the right number and size of
clusters. There are many poss.ible levels of structure in English sentences, and a cluster is

not always guaranteed to find the "right” set of structural features.

33

3.1.2 Horizontal and Vertical Lines

A second set of experiments by Rumelhart and Zipser dealt with training a network to
differentiate between horizontal and vertical lines. This time, the input patterns were on a 6
by 6 grid. Thus, twelve possible line patterns were possible: 6 horizontal rows of 6 units
each, and 6 vertical columns of 6 units each. Note that each unit in the input grid is a
participant in one horizontal and one vertical line; thus, the classification problem cannot be
solved just by identifying a key unit in each patiem which indicates the pattern's

orientation.

Initially, it was hoped that two clusters would suffice. One cluster would be a binary
feature detector for "verticalness”, and the other would be a binary feature detector for
"horizontalness.” However, the system did not learn the proper classification. This was
because every line was comprised of 6 units, each of which participated in one line of the
opposite orientation. On the other hand, po unit in any given line was a participant in like-
oriented lines. Thus, for example, a horizontal line given as input would really have more
in common with a vertical line than a horizontal line. The result of this was that cach

cluster responded to three horizontal and three vertical lines.

To overcome this problem, the input grid was expanded to a 12 by 6 grid. The right half of
the grid would hold horizontal or vertical lines in any row or column, just as before. The
left half of the grid was used to hold a training pattern: a vertical line in the leftmost column
if a vertical line appeared in the right half of the grid, or a horizontal line in the topmost row
if a horizontal line was presented in the right half. The system then was able to make the

34

appropriate distinction, but it was obviously a result of the presence of the training input.

Removing the training input caused the system to fail again.

- The last adjustments were to change the number of units in each cluster to four from two,
and to add a third layer to the system. The change in the number of units enabled the
system to make the distinction between horizontal and vertical lines. However, this
distinction was four-valued: horizontal lines belonged to one of two sets of horizontal lines,
and vertical lines belonged to one of two sets of vertical lines. The distinction was reduced
to the required binary classification by adding the third layer of units, consisting of a two-
unit cluster. After this system was trained with the training input, the third layer was able
to capture the distinction between horizontal and vertical lines in any location on the input -

grid, even when the lines were unaccompanied by the training input.

The idea of using training ihput 1o help the network differentiate between patierns when
they are not necessarily structurally similar is quite powerful. Input patterns which encode
distributed representations (as opposed to localist representations) do not necessarily have
to share a great deal of structural overlap in order to be part of the same class of inputs.

For example, consider two classes of objects: a "blocky" class, and a "sparse” class. Let
us define blocky objects as input patterns consisting of a set of active units which are close
to each other in the input grid. Sparse objects we define as input patierns consisting of a
set of active units which are spread out over the input grid. Within a class, different
patterns might have no common input units at all. Thus, there is no way that a competitive
leaming network can devclep'!_he correct classification. However, using associated training

inputs for each class of patterns can make the classification possible, as discussed above.

35

The use of training patterns also makes the job of learning the classification faster and more
stable. As shown by the word detection experiments, training input can be used to cause a
network to learn an "unnatural” classification of inputs. This is because the regularity of
the training input overcomes the less frequent similarities which arise in the stimulus
patterns. However, if there are many similarities to be exploited in the input patterns, the
addition of training input will serve only to strengthen those similarities. The weights
within the network will thus be adjusted that much more quickly, and there will be less

room for the network to become unstable.

36

4. The Learning Task

This system's task is to learn to associate words, percepts, and concepts. A representation
of an entire English sentence is given as input, together with a representation of the real-
world objects or actions to which the words in the sentence correspond. The constituents
of the sentence are, of course, just "“words". The real-World object representations we will
call "percepts” (this terminology is used for object represeniations because they are analogs
Vtvo the pattems of neural activation arising from sensory perceptions of objects and actions
| in the real 'World). The perceptual input is unstructured, while word order forms the
structure for the sentential input. No feedback or prior knowledge is given to the network
“concerning which words are to become associated with which pércepts. Thus, unlike
systerhs surveyed in thié thesis, back propagation cannot be used. Instead, an
unsupervised learning mechanism is used to train the network to form associations between
words and their related percepts. After training, presentation of a word should recall the
assoeiated percept from the network; also, presenting a percept to the network should result

in the recall of the associated word. This part of the network would act as an associative

memory.

These associations between words and percepts wetlld actually become instantiated in the
network as strong excitatory connections between nodes representing percepts and nodes
representing words. However, also instanfiating these associations as units in the network
would lend more comprehensive power to the model because such units would become
active whenever an associated word (in any legitimate position in a sentence) or an
associated percept was presented as input. These nodes would thus represent the concept

with which both the word and percept were associated. Whenever a sentence and its

37

accompanying perceptual description are given as input, all the appropriate "concept units"
should then become active. This resulting pattern of activation over the concept units
would give a representation of the input sentence and the real-world situation to which the
sentence refers. Moreover, if the sentence is presented with incomplete perceptual
information, or if the perceptual information is presented with some words missing from
the sentence, the correct sentence representation should still be given as output at the

concept level.

The second aim of the system thus is to leamn to activate the appropriate concept units for
any given input. While this task could be accomplished in a straight-forward manner using
the back propagation learning algorithin, no a priori output representation is assumed for
the network other than that a unique concept unit should stand for each percept/word
association. Therefore, using any error-feedback learning mechanism is out of the
question. Competitive learning was chosen as the basis for the learning algorithm used
here because it is an unsupervised learning strategy that has proved useful in similarly

designed recognition tasks.

4.1 The Nature of the Input

This section contains a description of the nature of the input given to the system. A more

detailed description of the actual representations used in the system is given in Section 5.2.

For this work, a vocabulary of 15 words was used. Of these words, 6 were nouns, 5 were
transitive verbs, and 4 were intransitive verbs. The input set of test sentences was

generated entirely randomly. Sentences were constrained to be one of two types:

38

1: Noun 1 - Transitive Verb - Noun 2

2: Noun 1 - Intransitive Verb

There were thus (6 x 5 x 6) + (6 x 4) = 204 possible input sentences. While all input
sentences which were constructed according to the above rules were allowable, some real

grammatical and semantic considerations were put aside. Some specific examples are:

@ The real-world semantics of the words used in the simulation did not affect
which nouns could appear with which verbs. Thus, "Ball breaks boy" was

as acceptable as "Boy breaks ball.”
» Reflexive sentences were allowed, even if they had nonsensical meanings.

e Provisions were not made for handling inflected verbs or plural nouns, so

Subject-Object agreement was not an issue.

» As with many other authors, all articles were removed from input sentences.

This meani that all nouns were essentially treated as proper nouns.

In the literature, one may find that one or more of the above are taken into consideration
when generating input sentences. For example, Elman (1990), St. John & McClelland
(19192) and others specifically deal with the semantic "validity” of input sentences. Elman
(1989) requires verb-noun agreement in the input. However, the effects of these

constraints on the network’s ability to learn associations are not central to the task at hand.

39

5. The Network Architecture and Learning Algorithm

The network developed during the course of this research implements several variations on
the basic Rumelhart and Zipser-style competitive learning network. While their system was
effective for the learning tasks they experimented with, a like system was unable to perform

adequately when presented with the task at hand.
5.1 The Representation Issue

The issue of how to represent objects as input patterns is one which permeaies
connectionist research (see Smolensky (1988), Elman (1939), Feldman & Ballard (1982),
and many others). Admittedly, how this is done closely depends on the type of data
represented. For example, it is natural to represent visual information as pixels in a two-
dimensional input grid. Itis also nataral to represem audio information as frequency
distributions, with the input units corresponding to frequency ranges, and the activation of
those units corresponding to the volume of the sound within that range. However, what
sort of system is best suited to i'epresenting abstract objects such as words or semantic
information? There are two basic ways in which this can be done: by using a distributed

representation or a localist representation.

A localist representation is simplistic and, one could argue, not well-motivated from a
neurophysiological standpoint. In a localist representation, each input unit encodes a single
concept or object. An example is the use of a single unique unit for every word that may
occur as input to a word recognition system. Or, there might be specific units that

correspond to words placed in certain locations in a sentence; for example, one unit is used

40

fo represent the word "George” in the first position in a sentence, another unit for "George'
in the second position, 2 completely different unit for "Mary” in the first position, and so
on. In a localist scheme, any number of details can be collapsed into a single concept.
Units can stand for a concept as complex as "A brown dog standing by a tall oak tree”, or
for a concept as simpie as whether or not a certain switch is closed in a circuit. It is plainly

unlikely that words and concepts are represented in the human brain by having specific

- neurons "assigned” to every possible word and concept.

Distributed representations, on the other hand, represent cbjects by entire patterns of
activation. These patierns may or may not be hard-wired into the network beforehand. An
example of a distributed representation scheme is the one described in McClelland and
Kawamoto (1986). In their system words were represented as lists of semantic
microfeatures, the value of each feature in turn being represented by a single unit. Thus,
wérds were represented as patterns of activation over several units. This in fact is an
éxamp]e of a featural representation. In other distributed representation schemes, the
individual units of the patiern may have no meaning in and of themselves. The pattern as a
whole is what codes the object or concept in question. (Still, note that many PDP
researchers would argue that even distributed representations should be viewed as no more

than high-level absiractions of neural structure and function.)

Localist schemes have the appeal of being sinipler to understand, though not necessarily
easier 1o analyze, and of requiring smaller networks to implement. However, as stated
earlier, it is not plausible that such schemes are employed in the brain. If one hopes to
simulate human reasoning at the neural level using a connectionist network, localist

representation schemes seem unlikeiy tools. On the other hand, distributed representations

41

represent a more physiologically plausible solution. Unfortunately, networks which use
such representations are notoriously difficult to analyze and may require a great deal of

computational power to simulate.

One could argue that localist representations are valid because they are not in any way
intended to provide a description of representations at the neural level. Rather, these
representations might be viewed as abstractions of representational structures in the human
cerebral cortex, and the model of processing in the network as an abstraction of the actual
processing that goes on. Thus, for example, a single unit which encodes some complex
concept in a connectionist network might stand for a whole neural pattern of activation.
However, one could easily imagine that such a pattern, if appropriately connected, could be
made to activate a single unit that would therefore represent that pattern. With such
subnetworks connecting distributed patterns to single units, a network using a distributed
representation is effectively created. Assuming then that such subnetworks can be built,
and thus that localist networks can be manufactured from distributed networks, arguments
stating the superiority of distributed representations to localist representations are

(arguably) rendered moot.

In the current network architecture, localist representations of words, percepts, and
concepts are used. If one desired to use a distributed representation, an extension to the
current system could be created which would map distributed patterns to the single units
already used in this system. The use of localist representations reduces the size of the
network, which was highly desirable considering the computational resources available for

this work.

42

5.2 Representing Words, Percepts, and Concepts

The representations used in this work can best be described by examining their role in the
input layer and output layer of the network. Word and percept representations are used in

the network’s input layer, and concept representations are used only in the output layer.

The input layer of the current system consists of two parts: a single column of 15 units, and
a set of three columns of 15 units each (the input layer is actually implemented as a single 4

by 15 grid, but this distinction is not crucial to this discussion). The single column is used

Percept Sentence Columns
Column
1 2 3

Kisses [O O ® 0)
Hits O O O O
Ball O O O O
Mary O O O @
Cat O O O O
Joom \ O L O O)

Figure 5.1: Diagram of the input layer activations, for the sentence "John kisses Mary."
(Note that the network's actual input layer contains more rows, but they have been
omitted from the diagram for clarity). The word unit for "John" is activated in the
column of units representing the first position in the sentence, the word unit for "Kisses"
in the second, and the word unit for "Mary” in the third; all other word units remain
inactive. Note that this input corresponds to just the sentence "John kisses Mary" being
given as input to the network; ro accompanying perceptual input is given, and so no
percept units are active here.

43

for presenting the perceptual inpui to the network and the set of three columns is used tor
presenting the sentential input to the network. The three sentence columns respectively
correspond to the first, second, and third positions in an input sentence. Each row in the
percept and sentence columns corresponds 1o a particular word or percept. To present the
percept "John" (percept 0) to the network, we would activate the bottom unit in the percept
column. The term "activate” as used in this work means (o "set a unit's activation value to
1”; inactive units have activation values of (). Correspondingly, to present the word "John"
in the first position of a sentence we would activate the bottom unit in the first sentence
column. If "John" occumred in the third position, the bottom unit of the third sentence
column would be activated. An entire sentence would be represented as three active units,

one in each of the three right-hand columns.

Percept Sentence Columns
Column
1 2 3
Kisses { @ O e 0
Hits O O O O
Ball O O O O
Mary ® O O ®
Cat O O O O
Joom ' @ L O o,

Figure 5.2: Diagram of the input layer activations, for the sentence "John kisses Mary."
accompanied by the corresponding perceptual input. (Again, some rows in the input layer
are not shown, for clarity). Both the appropriate percept units and word units are active.
Percepts are not ordered, so onc column of units suffices for representing perceptual input.

44

Because there is no ordering of perceptual input, percepts are presented in only one
column. For each percept that is 10 be presented to the system as input, the corresponding
unit in the percept column is activated. Because input sentences are a maximum of three

words long, a maximum of three percept units may be active at any given time.

The output layer of the network consists of 15 units. Each unit, during the course of
training, becomes responsive to the presentation of a particular word or its corresponding
percept. For instance, training might resuit in Unit 4 becoming the output unit activated
whenever the percept unit for "John” is activated in the input layer. The training weould
also cause Unit 4 to become active when the word "John" is presented in a legal position in
a sentence column, or if "John" is activated both in the percept column and in the sentence
columns. This unit would represent the conjunction of the percept "John" and the word

- "John", defining the John concepr. Over the course of training, each of the 15 output units
should become a concepr unit, each unit becoming associated with a different concept.
Note that although the concept units are unordered in the present system, a suggestion for

extending the system to allow the units’ order to be represented is given in Section 8.2.1.

5.3 Layers and Clusters

The network presently consists of three layers, like many other networks described in
connectionist literature. As mentioned, the input layer is a two-dimensional grid
representing percepts and words, and the output layer is a set of units, one for each concept
the system is to acquire. The middie layer, or "hidden layer” as it is often called, consists
of 15 clusters of 15 units each. The number 15 admitiedly seems somewhat magical here,
but I will try to describe below why this choice is well-motivated.

45

(cooooo0o000000000) (EuET
A

]))) Hidden layer:
15 umq Sunit | [, .6 | 15unit 15 unit 1 51 Clusw?:i)f 15
cluster cluster cluster cluster units per cluster
S/

)

o

/ | \
| X ~) 1
4 N
O & _gfe] Input layer:
o) am e 4 columns of 15
- & O units each, divided
O < > N o O between two arrays
o []
O
* L 4
6 O ? é
O . Sentence columns:
O . o O | | Eachcolumn has 15
O ®) word units. Only one
\—/ C.) o) \—/ may be active per
column at any time.
Percept column: ®) ®
one group of 15 o
percept units, \ "/
a maximum of three _ S
which may be active
at any time

Figure 5.3: The entire network, showing connections between layers and cross-connections
in the input layer. The vertical arrows denote feed-forward connections between all the
units in the lower layer to all the units in the layer above. The horizontal arrows in the
input layer show the connections between each sentence column and the percept column.

In a way, this network can be viewed as a four-layer network, with the percept column and
the sentence columns forming iwo of the layers. In that case, the arrows marked by
asterisks show how these two layers connect to the hidden layer.

46

5.4 The Input Layer

The network's input layer is an extension of the input layer in the horizontal and vertical
line discriminator network described in Rumelhart and Zipser (1986). The training regime
specifies that whenever a word is presenied in the sentence part of the input array ducing
training, the corresponding percept is activated in the percept column. If the same v-ord
occurs twice in an input sentence, the corresponding percept is activated as if the word had
occurred only once. In this way, the percept pattern corresponds to the training input
described in Rumelhart and Zipser’'s experiment. The feature of note is that the percept
column and the sentence columns are completely connected to each other. One set of links
connects each percept unit to each sentence unit, and another set of links connects each
sentence unit to each percept unit. We will refer to these connections as "cross- |
connections.” In a sense, the input layer could be viewed as consisting of two "arrays",
the percept column forming one array, and the sentence columns another. This represents

an enhancement of Rumelhart and Zipser's model, and gives more general results than does

their model.

During the course of training, the network uses a cross between a Hebbian learning method
(Hebb (1949)) and a competitive learning method to develop associations between sentence
units and percept units. Consider the way in which a pércept unit learns to alter its input
weights. When an input sentence is presented, each active percept unit has its input
connéctions from active sentence units strengthened. This is the essence of the Hebb rule.
The connections are strengthened by taking a proportion of weight from inactive input
Lines, and distributing that weight equally among the active lines (the sum of the input

weights to a unit is then normalized to 1.0). This is just the weight adjustment method

47

used in competitive learning. The chief difference is that learning occurs simultaneously
for more than one unit at a time in each "cluster.” The same technique is used to change the

input weights to the sentence units from the percept units. Consider the following figure:

Percept Sentence Columns
Column
1 2 3
) ()
Kisses
[] /
[]
® e ><\\
Mary ——
[]
) "] |
[]
John VA AN,

Figure 5.4: Diagram of the input layer activations, for the sentence "John kisses Mary."
and the accompanying perceptual input. (All inactive units are omitted, for clarity).
The lines indicate the links whose weights will be strengthened.

In the above example, the percept units for "John", "kisses", and "Mary" will all have their
connections to sentence units adjusted; specifically, their connections to the active sentence
units will be strengthened, while their connections to inactive units will be weakened.
Likewise, the three sentence units will have their links to the percept units adjusted. This
learning rule is Hebbian in that links between active units are strengthened. In addition to
the Hebbian adjustment, links from active to inactive units are weakened. The rule differs
from the competitive learning scheme in that several units in the same cluster have their
weights adjusted simultaneously. In a irue competitive neiwork, the cluster would be

winner-take-all and only one unit would learn.

48

These input layer interconnections are what implement the desired associative memory.
Presentation of a word in a sentence column triggers the corresponding percept to be
recalled (activated strongly) in the percept column, provided that the word is presented in a
grammatically allowable position. In the implementation, this corresponds to the weighted
sum of a percept's input exceeding a set threshold (currently set at 0.1). Similarly,
presénting a percept triggers the corresponding word units in the sentence columns to
become active. In the implementation, this is done by allowing each sentence column to be
a cluster and allowing the unit whose activation most exceeds a threshold value (currently
0.2) 1o become active. In fact, excitation should occur not only between corresponding
word and percept units (for example, the word "John" and the percept "John"), but
between words and percepts which do not have the same referent (for example, the word
“John" and the percept "Mary"), although to a considerably lesser degree. This is because
the weights which are learned by the network come to show the statistical regularities with
which words and percepts co-occur in the stimulus set. Thus, while the word "John" will
always be presented with the percept "John", it will also be presented (with differing
degrees of probability) at times with the percepts "kisses"” and "Mary", because the word

~ "John" always is presented in some sentential context. Not only do the cross-connections
allow for concepts to recall their corresponding percepts from memory (and vice versa), but
they will also allow concepts to recall percepts with which they usually occur in the input
set (and vice versa). However, the magnitude of the resulting activations rarely exceeds the

- threshold values set for the network.

The advantages to using the cross-connection scheme are two-fold: firstly, this represents

a way of making the network training more robust. In the Rumelhart and Zipser scheme,

49

training input is removed after training the network; however, the method employed here
uses the associative memory to recall the training input even after training is complete. In
this way, presenting input patierns in the sentence columns alone will tend to activaie the
appropriate units in the percept column, essentially providing the training input that was not
given as input. Because there is only one column of units for percepts, and hence these
units are each activated more frequently than units in the three sentence columns, the
network’s hidden layer will shift a larger proportion of its collective weight 1o the percept
column. In a way, the network is more sensitive to this perceptual input than to the
sentence input. By allowing the sentence units to excite their corresponding percept units,

this focus of sensitivity can be exploited.

Secondly, this method has a certain intuitive appeal. It makes sense that the recognition of
certain words in a sentence being processed by a human listener tend to activate perceptual
"memories” of those words' referents. This phenomenon is represented, albeit in a highly
abstract form, by the associative nature of the percept and sentence columns. In like
fashion, the notion that groups of sensory inputs which together form a perceptual object
tend 1o recall the word (or words) which is (or are) associated with that object is mirrored
in the connections from the percept units to the sentencé units. Research with human
subjects has shown that syntax acquisition is facilitated when sentences are presented in
combination with semantic referents, for example, visual images (see for example, Moeser
& Bregman (1973), Paivio (1971)). The scheme used in this work hints at implementing

this relationship.

50

5.5 The Hidden Layer and Output Layer

The architecture of the hidden and output layers of this network remains essentially
unchanged from that suggested by Rumelhart and Zipser. However, it has been

customized somewhat to fit the task at hand.

The hidden layer implemented consists of a number of clusters, each consisting of the same
number of units. These units are completely connected to the input layer. As stated earlier,
the arity of the feature discovered in the input set by a cluster is determined by the number
of uhits in that cluster. The feature to be discovered in this case is the identity of the words
o presentcd in the input layer. Since 15 words are used in this experiment, each cluster in the
hidden layer was given 15 uvnits. (The choice of clustef size here 1s optimized to suit the
research task. It is perhaps more biologically plausible to assume that clusters in the hidden
layer would be of various sizes; thus some clusters might contain as few as 3 units, while
others might contain 20 or mdre_ In this case, some clusters would be able to categorize
the inpﬁts correctly, while others would fail. One possibility is that a large enough number
and variety of such clusters in the hidden layer would still allow the appropriate features to
be found. Another possibility is that allowing the size of clusters to increase over time, as
more rwords are introduced to the system, would provide a biologically plausiﬁle method
for achieving the "right” sizes for clusters.) These clusters are winner-take-all, so even if a
senience consisting of three words is presented as input, any given cluster will have only
one onit active. That one unit will correspond to one of the three words in the sentence;
which word is determined by the initial weights assigned to the units in the cluster, the
order in which the input patierns are presented, and the leamning paramelters used during

training. The winners of the different clusters in the hidden layer may or may not

51

correspond to the same word in the sentence, depending on how the weights are
distributed. If there is a sufficiently large number of clusters, each word in the sentence
should be captured by at least some of the winning units in the hidden layer. Thus, there is
no loss of information to the output layer, as to which words appear in the input. The
thesis research suggests that having a number of clusters equal to or greater than the
number of words possible is enough; the key is having a roughly equal number of clusters
capture each word. It would be ideal to have a very large number of clusters, but
computational considerations limit the number of clusters which can practically be used.
The output layer is a single cluster of 15 concept units, one for each possible word that can
appear, as mentioned earlier. This cluster is completely connected to the middle layer, and
is winner-take-all. This is sufficient during training, as each unit in the output layer should

have a chance to win and thus become associated with a particular concept (word and/or

percept).

5.6 Learning in the Hidden and Output Layers

In both the output and hidden layers, units belong to winner-take-all clusters, and the
learning procedure is the same for each unit. Therefore, the learning method employed for
the hidden and output layer units can be understood by examining just one representative

unit.

Ia this model, a unit's activation is merely the weighted sum of its inputs from the units in
the layer below. The weight values on the input lines are together considered a vector,
whose length is normalized to 1.0. Since both the hidden and output layers are completely

connected to their respective input layers, every unit receives input from every unit in the

52

layer immediately below. In every cluster, only one unit "wins"; that is, the unit with the
highest activation will have its activation set to 1 and all other units will have their activation
values set to 0. These values are either read off, in the case that the unit is in the output

layer, or are propagated to the layer above, in the case that the unit is in the hidden layer.

The competitive learning algorithm employs a scheme whereby only winning units learn.

* Thus, only the units which are active have their input lines' weights altered. A learning

| ratio (for more on this, see Section 6.1) is specified which indicates what proportion of its
weight each input line to the unit should "give up.” This quantity is divided up evenly
between, and added onto the weights of input lines which connect the winning unit to units
which were active in the layer below. Thus the winning unit becomes a bit more strongly

associated with those units from the lower layer which caused it to become active.

The learning algorithm has a flaw, however. An initial random distribution of weights may
result in a hidden or output unit having most of its weight on connections which are rarely
or never active. This is especially problematic for input patterns which are sparse,
consisting mostly of zero values. This may occur in the proposed model, as there are
nodes in the input layer which should never become active; for example, the grammar used
precludes verbs from being presented in the sentence-initial position. The result is that
such a hidden or output layer unit would never win a competition, would never learn, and
would in effect be practically removed from the cluster to which it belongs. If a cluster of
M units has a unit, or units, effectively removed, it is no longer able to become an M-ary

feature detector. This clearly presents a problem.

Two solutions are suggested in Rumelhart and Zipser (1986). One, which is not used in
this work, is to associate a threshold value with all units in winner-take-all clusters. If a
unit is winning "too much”, its threshold value is increased, making it more difficult for
this unit to win. If a unit is found to be not winning "enough”, its threshold value is
decreased, making it more likely that this unit will win some competition. However, one
problem is specifying under what conditions a threshold value should be changed - what is
"too much” or "enough"? Another problem is determining by how much a threshold valuc
should be increased or decreased, and on what, if any, other parameters this should
depend. A similar effect can be produced by using a more straightforward method, dubbed
"leaky learning” by Rumelhart and Zipser.

In leaky learning, which is used in this work, every unit in a cluster learns during cach
training trial. However, the losing units do not have their weights changed by as large a
proportion as do the winning units. In the model described here, the losing units' lcarning
ratio is compuied as one-tenth that of the winning units’ ratio (the primary ratio). To beter
envision this, let us appeal once more to the geometric hypersphere analogy mentioned
earlier. The sparse input situation corresponds to having certain regions of the
hypersphere's surface being devoid of stimulus bauems. Units which never win would
have weight vectors which lie in these regions. Now, learning can be viewed as the
process of moving the weight vector of a unit so as to make it lie cioser to the stimulus
vector to which the unit should respond. The weight vector of a winning unit is moved a
certain fraction of the way toward the stimulus vector, as determined by the learning ratio.
In leaky learning, the weight vectors of losing units are also moved towards the stimulus
vector, though by a much smaller proportion. However, this has the effect of moving the

weight vectors of losing units out of the unpopulated regions of the hypersphere, towards

54

the more populated regions. Eventually, these units will begin to respond to the input, re-

engaging in the competition with other units in the cluster.

55

6. Developing and Refining the Method

The learning algorithm and network architecture employed in this work evolved greatly
over the course of time, as difficulties with the original work were encountercd. The
competitive learning algorithm itself has several parameters which can be adjusted,
resulting in varied degrees of performance. In fact, some of the parameters work
synergistically, with the altering of one parameter affecting the way in which varying other
parameters affects overall performance. This section will discuss some of these issues,

especially as they pertain to this work.

6.1 The Learning Ratio

One factor that greatly affects the ability of a PDP system to learn is the learning parameter,
or learning ratio, which is used. This ratio determines the amount by which network
weights are changed after each learning input (recall the function for competitive learning
given in Chapter 3). In competitive learning, this ratio determines the amount by which
connections between winning units and active input units are strengthened, and the amount
by which connections between losing units and active input units are weakened. The ratio

is a proportion rather than an absolute figure.

The problem with selecting an appropriate ratio is that there are problems both with
choosing ratios which are too large and those which are too small. The actual range of
ratios which produce satisfactory resulis must be determined through trial and error. An
overly large ratio will cause instability in the network. Using this work as an example,

network training was interrupted at various times during one set of experiments, to see if

56

the network was converging on a stable classification. If an overly large ratio was used,
the system would sometimes move away from a state in which inpuis were correctly
classified towards another state, with incorrect classifications. Overly large ratios
correspond to units being overly sensitive to input. So, even though a unit may at one
point appear to be responding favorably, having most of its input weight on one set of
input units, a short, unfortunate sequence of stimuli may serve to shift this weight to a
completely different set of input units. This phenomenon, repeated in other units, results in
the network's output continuing to change as long as the training continues. If some
mechanism couid be implemented to monitor the network's state and to stop the network at
a stable point, this would not be a problem. This would not necessarily be a source of
external supervision, but could be seen as an internal mechanism for self-regulation.

(However, i10 such mechanism was used in the current model).

If a ratio is selected which is too small, the network takes longer to converge on an
appropriate solution. However, moving towards a stable solution in small increments
provides a hedge against the problem of instability; with decreased sensitivity, it would take
a much larger set of "unfortunate” inputs to move the system away from a stable state, and
this would therefore be less likely. It secems a good compromise to build in a declining
Iearning ratio. The learning ratio is initially high, to facilitate rapid movement towards a
stable classification. As training continues, the ratio is gradually decreased to prevent
instability. This is the scheme which is implemented in the work discussed here. Having

| an initial learning ratio of 0.5%, and stepping it down 0.1% after each 20% of the iterations

is completed, gives acceptable results.

57

6.2 Nature of the Input Patterns

Originally, it was felt that a distnbuted representation scheme should be used in this work,
as localist representations are less biologically plausible. Since a major motivation for
using competitive learning for this work was to get away from less plausible, supervised
learning strategies, it was also natural to want to use distributed representations. This
turnmed out to be quite proplematic. The following summarizes a phase of the rescarch that
was conducted before cross-connections were built into the input layer and with a larger

number of sentence columns.

In order to make the problem more realistic, the distributed representations that were
chosen had a relatively high degree of overlap, although there were units which were
unique to each pattern. It was hoped that the network would leamn to use these unique units
as the keys to determining the identity of the patterns. - An error-feedback leaming
algorithm, such as back propagation, would have worked weil in this case. Unfortunately,
the competitive leamning algorithm failed to find the distinctions. Durning testing, it was
found that the effect of the number of overlapping units tended to swamp out the effects of
the unique units. Thus, the differences were "washed out” and the network was unable to
classify the patierns properly. With this in mind, large patterns which had less overlap,
and finally those which had no overlap were employed instead. The network was still
unable to make the classifications, due 1o effects induced by other network parameters.
However, due to the size of the input patierns, diagnosing the network problems was
difficul. At this point, it was decided that there was not much difference in principle
between using a localisi representation, employing single unique units for each input

patiemn, and using the larger distributed patterns. By using the single unit patterns, analysis

58

of the network was more feasible. Also, the reduction in the size of the input patterns
resulted in a reduction of the time taken to run full network simulations. The difference in
the time taken to run simulations with patterns of ien units versus the time taken to run

simulations with paticrns of a single unit was more than an order of magnitude.

Other experiments were also conducted, in which the word patterns were large and non-
overlapping, and the percept was a single unii. Some success was obtained with this set-
up. At this point in the research, only one percept and one word were being presented to
the network during each raining trial. The network learned to make the correct
classifications, but was sensitive to the initial distribution of weights. The problem of

- overlapping units in the sentence columns swamping pattern-distinct units remained, but
when the network was trained to focus its "attention” on the percept columns, the problem
disappeared. This was achieved by setting the initial weights on lines connecting the
sentence units with hidden layer units to 0, distributing all the weight to hidden layer
connections to percept units. A similar “focussing” result was obfained by ensuring that
the total activation in the percept column was equal to the total activation in the sentence
columns. However, once the scale of the simulation was increased to include more

pattems, this strategy ceased to work as effectively.

It is interesting to consider what parallel this experimentation could have o the development
of human representational neural structures. The different methods tried in the thesis work
could be viewed as "mutations” of the network; the process of settling on a final sysiem
could be viewed as a kind of "natural selection”. Appealing to nature's ability to select
advantageous mutations lends some plausibility 1o the seemingly ad hoc process of

choosing a representational scheme in this work.

59

6.3 Leaky Leaming

As mentioned earlier, the leaky learning method was used in the final model. The original
input representation scheme was not sparse, and so it did not initially seem that leaky
learning should be necessary. However, as problems with the network necessitated a

change in the representation scheme, the issue of sparse input patiemns became important.

Leaky learning is useful when there are not enough input units to go around, so to speak.
A small number of units always wins, and the rest 6f the units never win. In straight
competitive learning, these losers never leam, and hence are never involved in the
competition between units. By allowing losers to learn at a reduced rate (in this work, onc-

tenih the rate of winning units), even losing units are eventually brought back into the fray.

Over the course of building the network, leaky learning was variously programmed into
and removed from the network. Sometimes, it would be employed for one layer in the
network, but not for others. The effect of using leaky learning was subtle, and it was
sometimes difficult to tell where leaky learning, as opposed to some other network
parametcr, was to be faulted for some problem. For example, consider a problem that has
already bezn mentioned: network stability. After many training instances are done, one
would hope that the network would settle on a slablé state, where the output units each
respond consistently to given input. However, one effect of leaky learning can be to make
a network less stable. Because even losing units are leaming, there is the possibility that a
losing ouiput unit can eventually take over the role a different output unit played. Thus, the
system moves through, albeit slowly, different "almost stable” states. However, as we

have already seen, the choice of a learning ratio for the network aiso has some bearing on

60

the stability of the network. Therefore, the choice of whether to use leaky learning is in

some way connected to the size of learning ratio desired.

In the network's final configuration, leaky learning was used between the input and hidden
layers, and between the hidden and output layers. No leaky learning was implemented in

the cross-connections. Losing units learned at 10% of the rate of winning units.

6.4 Choosing an Appropriate Number of Layers

In Chapters 2 and 3, networks consisting of other than three layers of units were

discussed. For instance, while a straightforward three layer (with one context layer) simple
recurrent network was used in Elmarn’s work, it was insufficient to do the processing
required in his second experiment. In fact, that experiment required the use of a five layer
network, plus a layer of context units. St. John & McClelland's network combined a three
layer SRN with a straightforward three layer network. Rumelhart and Zipser were able to

achieve their goals with a two layer network in some instances.

One experiment that was tried earlier in the thesis research was to add an extra layer to the
system. At this time, none of the cross-connections of the final network were in place, and
the system was not classifying its inputs properly. Admittedly, the decision to add another
layer really was just an experiment, but it seemed that additional layers allowed networks to
discover more complex patierns in the input data. In actuality, the addition of a fourth layer
did not serve any useful purpose at all, and did not alter the results obtained from the
system. Extra layers seem to be useful in encoding "deep” information, such as

relationships between multiple input patterns (as in the sentence gestalt of St. John &

61

McClelland (1990)). The type of classification being done by this network is relatively

"shallow," having to do with only one input pattern at a time.

6.5 Threshold Values and Winner-Take-All... or Not?

One difficulty with having the network learn many associations simultaneously had to do
with the winner-take-all strategy espoused in competitive learning. In the input layer, this
was especially problematic, as the winner-take-all strategy directly contradicts the goal of
allowing word units to recall associated percepts. If three unique words are presented in
the sentence columns, three associated percepts should be recalled. In order to allow for
this, the winner-take-all restriction was removed from the percept units. This formed the
basis for the competitive learning-Hebbian learning algorithm used in training the cross-

connected input layer.

The use of winner-take-all strategies in competitive learning does not require thresholded
units. After all, one rule of competitive learning is that every cluster always has a winner.
If this restriction is removed, some other factor must be used to determine whether learnin g
will take place for a particular unit. A convenient method for doing this is to allow all units
which exceéd some set threshold value to be considered winners, for the purposes of
learning. Their input weights are then aliered according to the conventional competitive
learning algorithm. The main difficulty with using thresholding was the determination of

appropriate threshold values.

62

6.6 Normalization of Weight Vectors

Another issue which affects the performance of the network is the method used to
normalize weight vectors following each training cycle. In Rumelhart and Zipser (1986), it
is suggested that it is sufficient to ensure that the sum of the input weights for any particular
unit is normalized. In fact, normalizing the sum is not really adequate for this network; the

technique of normalizing the length of the weight vectors must be used.

Recall that a unit responds to a given stimulus if the unit's weight vector is close,
geometrically speaking, to the vector of the stimulus pattern. When using "sum-
normalized"” vectors, it is possible that a certain weight vector will never be the one closest
to a stimulus vector. In these cases, other units become responsive to more than one input

pattern, although it is desired that there be a one-to-one mapping from the patterns to the

units.

The difference between normalizing the sum of a unit's weights and the length of the unit's
weight vector may seem subtle, but it has major implications for the performance of the
network. In early experiments where sum-normalized weights were used, a frequent
problem was that a single output unit would capture several input patterns, and up to half of
the output units were unresponsive to any input. It was thought that this was due to the use
of non-leaky learning; however, leaky learning failed to fix this problem. The solution in
this case was simply to apply length-normalization to the weight vectors, as opposed to

sum-normalization.

63

6.7 Summary of Techniques Used

Following is a summary of the various methods used in the final network configuration:

e Learning ratio. The initial learning ratio was set at 0.5%, and was
decreased by 0.1% after every 20% of the training iterations was completed,

to improve the stability of the network.

e Input patterns. The percept and word patterns are simply single units, as
opposed to being large multi-unit patterns. This allows the network to be

more easily analyzed, and also allows training to proceed more quickly.

e Leaky learning. Leaky learning is implemented only between the input and
hidden layers, and between the hidden and output layers. The leaky
learning ratio is 10% of the current learning ratio for winning units. This

combats the problems brought about by the use of sparse input patterns.

* Number of layers. Three layers (input, hidden, and output) are sufficient

for the task.

e Threshold values versus winner-take-all. The hidden layer clusters and
output cluster are winner-take-all. Units in the percept column are
thresholded (a threshold value of 0.1 is used), as are units in each sentence

column (a value of 0.2 is used).

64

« Method of normalizing weight vectors. Weight vectors between the input
and hidden layers and between the hidden and output layers are normalized
so that they are of unit length. For the percept and sentence units, the sum

of input weights is normalized to 1.0.

65

7. Results

Despite the many problems which cropped up during the course of experimenting with the
competitive leaming algorithm, good results were eventually obtained. The work is
evaluated from several standpoints:

« the correciness of the mapping developed between the output concept units
and the input uniis. Presentation of a percept, the associated word, or the
percept along with the associaied word should all result in the activation of a
unique concepr unit. Ideally, no concept unit should capture more than onc
concept.

* the number of training instances that must be used before adequate
performance is achieved.

« the system’s ability 10 correctly recall the percept associated with a word
presented in a legal position in a sentence. If the word is presented in an
illegal position, no useful percept should necessarily be recalled.

e the system’s ability to comrectly recall the appropriate words when presented
with a percept. For nouns, this should take the form of activating two word
units, since nouns may appear in two places in a sentence. For verbs, only
one word unit should be recalled, since verbs are limited to appearing in one

position only.

The system was trained using a learning ratio of (.5%, a threshold value of ().2 for percept
units, and a threshold value of 0.2 for sentence units. The performance of the system was

then examined after 10,000 tials.

66

Here is a listing of the results:

Tcken Outpub units Token Cutput units Token Output units
fur} ositions (D} Positions {w & p) Positiaons

i 2 3 {Percept) 1 2 3
Mouns:
John....7 6 7 John 7 John 7 7 7
Baby 14 & 14 Baby 14 Baby 14 14 14
Ball 3 2 3 Ball 3 Ball 3 3 3
cat 1 10 1 Cat 1 Cat 1 1 1
Girl 4 12 4 Girl 4 Girl 4 4 4
Mary 5 0 S Mary 5 Mary 5 5 5
Transitive verbs:
Kicks 6 10 & icks 10 Kicks 13 10 4
Kisses 13 12 2 Kisses 12 Kisses 12 12 12
Breaks 6 0 2 Breaks ©0 Breaks 0 0 0
Hugs 6 2 4] Hugs 2 Hugs 2 2 2
Gets 12 6 & Gets 6 Gets 13 6 6
Intransitive verbs:
Runs 13 11 13 Runs 11 Runs 117 11 11
Sleeps 6 4 13 Sleeps 4 Sleeps 4 4 4
wWalks 8 8 13 wWalks 8 Walks 8 8 8
Falls 4 s 5 Falls 5 Falls 14 5 14

Table 7.1: Response of the concept units to presentations of words and
percepts, after 10,000 training cycles. Bold type has been added to indicate
those values which especially show the system's performance.

The above table shows the results of presenting words, percepts, and word-percept
combinations to the network. The first four columns indicate the results of presenting each
of the 15 words of the lexicon to the network in each of the three sentence positions. Each
word is presented in isolation; no other word units or percept units are turned on for these
tests. The numbers in the columns indicate the particular concept unit that was activated
when the word was presented. For example, when the worg "John" was presented in
sentence position 1, concept unit 7 responded; when it was presented in position 2, concept
unit 6 responded; when it was presented in position 3, concept unit 7 responded. This
example demonstraies one of the resulis that was desired. In the course of training, we

would expect that a concept unit for a particular noun would become associated with the

67

occurrence of that noun in the sentence columns. Specifically, since our grammar only
allows nouns to occur in positions 1 and 3, we would expect the concept unit to associate
with the noun presented only in those positions. This is indeed so for all of the nouns
presented, as can be seen in the table by comparing the values for nouns under column "1"
with the values under column "3". The behaviour of the system is different for verbs, as is
to be expected. Since verbs only appear in position 2 in sentences, there is no association

between the concept units for verbs and the appearance of verbs in positions 1 and 3.

The values which are obtained for the presentation of nouns and verbs in ungrammatical
positions do not necessarily fit any pattern. However, this is not surprising. We would
expect even after training that there would be some residual weight on lines connecting
concept units to units representing words in illegal positions. This is because the initial
weights are assigned randomly, and weight is taken from inactive lines by removing some
fraction of their weight. There will therefore always be some positive amount of weight on
inactive lines, unless so much training is done that the precision of the computer can no
longer represent the value. The winner-take-all nature of the output layer will select a

winner, even though the amount of activation may be very small.

The second set of columns represents the results of presenting percepts to the network. If
the network was able to leam the appropriate concepts, there should be a unique concept
unit for each percept, and that concept unit should be the same as that activated when the
associated word was presented. »This second criterion was met by the network. However,
not all the percepts became associated with unique concepts. Specifically, "Mary" and
"Falls" both caused concept unit 5 to fire; "Girl” and "Sleeps” both caused concept unit 4 to

fire. While this is Iess than perfect performance, recali that the performance is dependent

68

on the hidden layer clusters finding the appropriate structure in the input. If for some
reason these clusters fail to do so, the concept units become unable to find the structure.
However, the randomness in determining the initial state of the network and the order of
training inputs influence the ability of clusters to perform this ciassification, and so perfect
performance is not always guaranteed. Note that back propagation is also not sufficient to
guarantee perfect performance, as evidenced in the performance results of the back

propagation networks discussed in Chapter 2.

Lastly, consider the rightmost set of columns in the table. These columns represent the
results of presenting a word in different sentence positions along with its associated

- percept. The expectation is that the result will be some mix of the percept results and the
~word results. In fact the output closely resembles the results obtained when the word alone
is presented, except that when words are presented in illegal positions there is a tendency
for the percept's preseﬁce to activate the correct concept. Thisis a desirable property of the
network, as it shows how the presence of semantic information (the percept) can affect the

outcome of presenting a word in an unfamiliar context.

The overall performance of the network after 10,000 training sentences were presented was
that the correct concépt units were activated 84% of the time. (The number of trials is
comparable to the numbers used in Rumelhart and Zipser (1986). Compare, however, the
figures of 60,000 in Elman (1989) and 100,000 in St. John & McClelland (1990)). By
comparison, after 5,000 training cycles, only 63% accuracy was obtained. Interestingly

enough, though, further training did not noticeably alter the system’s performance:

69

Number of Trials Percent Accuracy

5,000 63%
10,000 84%
20,000 79%
35,000 83%
50,000 79%

100,000 80%

This mainly manifested itself in the system as an inability to assign unique concept units for
each concept. In examining the system after each training session was over, at least two
concept units would always be found which had "doubled-up”, becoming associated with

two or three concepts. This could potentially be linked to the relatively small number of

clusters used in the hidden layer.

The remaining points of evaluation had to do with how well the system learned the
associations between percepts and words. When words were presented in legal sentence
positions, the corresponding percepts were to become active. When percepts were
presented, the units representing the associated words in legal positions were to become
active. The system also was to learn that percepts and words should never activate non-
corresponding units. Even after only 1000 iterations, the system was beginning to
demonstrate that it had learned the correct associations without forming any incorrect
associations (see Table 7.2, following). During this phase of testing, the threshold value
for percepts was decreased to 0.1 from 0.2. This change was determined by observing
directly that the word units in position 3 were connected to their corresponding percepts
with weights in the range of 0.10 to 0.25. This is a result of the composition of the input

set. The exact threshold needed varies as the number of nouns relative to the number of

verbs changes.

70

Evaluation of cross-conmections:

Check that each word activates appropriate percepts cnly:
Nouns: Presented in Presented in
position 1 position 3
cor rrect: & 4]
incorrect: & 0
Verbs: Presented in
position 2
correct: g
incorrect: 4

Check that each percept activates appropriate words only:

Nouns: Recall word in Recall word in
position 1 position 3
correct: 6 1

incorrect word units activated: 0§

Verbs: Recall word in
position 2

correct: 4

incorrect word umits activated: 0

Table 7.2: Evaluating the network's performance after 1000 training cycles.

" The upper half of the table reporis on the system's ability to allow words to
activate their cormesponding percept units. The lower half reports on its
ability to allow percepts to activate their corresponding words.

The above table shows that after 1000 training instances, the presentation of nouns in
position 3 failed to activate the correct percept, that only one noun percept was able to
activate a word unit in position 3, and that only four of the nine verbs were correctly
activated by verb percepts. This can be partially explained by the fact that the training
t)mgram only generates sentences involving a word in position 3 in half the training cycles.

On the other hand, every sentence contains a word in position 1. Thus, associations are

71

more rapidly built up between percepts and sentence-initial nouns than between pereepts
and sentence-final nouns. The problem with the verbs may arise from the fact that there arc
relatively few nouns present in the lexicon and verbs always appear together with nouns.
In effect, the nouns steal some of the weight that should be on the input lines of verbs.
Over time, this effect will be washed out by the regular co-occurrence of the verbs with
their corresponding percepts. In fact, after 500X iterations the associative memory worked

flawlessly. Additional iterations do not degrade the performance of the cross-conncctions.

Evaluation of cross-conmections:

Mourns: Presented in Presented in
position 1 positicn 2
correct: & 6
incorrect: g 0
Verbs: Presented in

position 2

correct:
incorrect:

[aap¥e}

Check that each percept activatses appropriate words only:

Nouns: RBecall word Recall word in
position 1 position 3
correct : & &
incorrect word wrniits activated: 0
Verbs: Recall word
position 2
correct: 9
intorrect word units activated: §

Table 7.3: The performance of the cross-connections after 5(XX) iraining cycles.

72

8. Discussion

8.1 Implications of the Work

One very important aspect of the work discussed here is that it suggests a general way in
which the mapping from sentence constituents to events and items in the real world can be
learned. This is something which is discussed, but not implemented, in St. John &
McClelland (1990;. In St. John & McClelland's work, statistical regularities of the
semantically constrained co-occurrences of words are exploited to produce a way in which
coherent and unambiguous event representations can be drawn from an input sentence.
However, these representations have no anchor in the real-world; the representations are
"event frames”, consisting of a set of slots representing thematic case roles in the event,
and the set of concepts that appropriately fill those roles. The foregoing work outlines a
method by which the words themselves can be associated with real-world perceptual input
and eventually with abstract concepts. Linking words with their real-world cognates in this
way would add to the abilities of the St. John & McClelland system. Perceptual
information combined with the network’s past experience with this information could be
used to further constrain the way in which input sentences are processed. Thus, additional
information is available for dealing with the problems of word sense disambiguation and

generaiing appropriate role/filler pairings.

Ancther important aspect of this work was the development of position-independent word
recogniiion units, namely, the concept units. In considering the task of parsing sentences,
it was thought that developing position-specific word detectors was essential. Since word

order s ofien a very strong constraint in sentence comprehension, it made sense that units

73

for detecting "'John' in position 1,” or "hits’ in position 3" should have been developed.
The information encoded m these units would then have been available to higher layers,
which presumably could then use this information to parse the original sentence.
However, the extremely localist nature of this representation scheme, and its biological
implausibility, makes it undesirable 1o implement. It also makes quite strong demands on
the architecture of the system, requiring not only the right number of clusters and units to
detect cach word, but to detect each word in each possible sentence position. Since this is
50, in order to extend the system to accept more words, a number of units related to the
number of new words mulriplied by the number of possible sentence positions would have
to be introcuced. The number of added connections, and hence weight values to be
leamed, would also be multiplied. This makes it difficult to imagine that such a systecm
would be flexible enough to easily adapt to arbitranily long sentences and the inclusion of

many new words; the increase in ihe scale of the problem grows explosively with the

number of new patterns to be recognized.

A more flexible scheme is to have position-independent word detectors, coupled with
ordering nodes of some kind. The concept units described in Chapier 4 fill the role of
position-independent word deteciors quite nicely. Their presence in the network allows for
extension of the system (to cope with more words) by the addition of units and clusters in
proportion to the number of new words needed, as opposed to some mulriple of this
number. {Of course, the system would also have to be trained on an expanded body of
training seniences). While the scale of the expansion would sull not be trivial, it would still
be considerably less than that induced by using position-specific detection units. {For more

on these ordering nodes, see Section 8.2.1).

74

Also, this system represents a generalization of the competitive leamning network
architecture proposed by Rumelhart and Zipser. Their sysiem was only able to learn to
recognize concepts when presenied to the sysiem one at a ime. For example, Rumelhart
and Zipser's horizontal/vertical line recognizer was trained using only a single line at a
time, in combination with its related training pattern. The training regime adopted for this
system consisted of presenting two or three patterns together, along with their related
training pattens. The ability of this network t0 learn concepts when two or three are

presented simultaneously, is a notable advancement over Rumethart and Zipser's original

model.

Additionally, the technique of using cross-connections to augment an input pattern further
improves upon Rumelhart and Zipser's oniginal network. If a percept or word is missing
from an input pattern when its corresponding word or percept is present, the cross-
connections provide a means of "patiern completion”; the unit corresponding to the
missing percept or word is activated. The completed patiern is more likely to be correctly
recognized by the network, and hence a degree of robusiness is obtained that is not enjoyed
without the use of cross-connections. In fact, the cross-connections also provide a means
of associating a word with percepis other than the percept corresponding tc that word,

providing contextual information.
Lastly, the analysis of the different factors influencing the performance of competitive

lcaming systems gives added insight into how competitive learning systems might be

successiully adapted for use in other problem domains.

75

8.2 Fawure Extensions

The system as it currently stands represents the results of a great deal of experimentation.
However, there are several interesting directions in which this work may be extended
relatively easily, and ways in which the system 1tself may be useful as part of a larger

system.

8.2.1 An Ordering Layer

One issue that is not explicitly dealt with by the system is that of sequential ordering of
input. Words are ordered in the input sentences inasmuch as they appear in separate
columns in the sentence grid. However, there is no explicit encoding of what constitutcs
the first word in a sentence, the second, and so on. One extension to the system would be
to add another layer of nodes, whose purpose would be to identify what position a given
word occupies in an input sentence. This layer of ordering nodes would be completely
connected, bi-directionally, to the concept units currently occupying the network’s top
layer. Enough ordering nodes would be needed 1o have one unit for cach possible position
in the input sentence. (Note that while sentences can in theory be of arbitrary length, in
practice a hundred or fewer units would probabiy suffice). The input would be changed
somewhat; instead of presenting an entire sentence to the network at once, cach sentence
constitucnt is presented in tum. As each word is presented, assuming that training is
complete and the concept umts have already leamed the correct associations, the ordering
node corresponding to the sentence position of the input word is activated. The connection
between that ordering node and the word's concept node is immediately sirengthened fully;

in essence, a "fast association” is formed beiween the ordering node and the concept node.

76

This could be done by using a learning ratio of 1 for the concept units during this phase of
the network’s operation. This process would be repeated for the remaining words in the
input sentence. The immediate association implements a short term memory: the

association is quickly leamed, and may be quickly dissolved so that a new sentence can be

processed in the same way.

With these associations between concept and position, one obtains an explicit encoding of
word/concept positioning. To retrieve the concept which is in a given position in a just-
processed input sentence, one would activate (or "probe”) the ordering unit for that given
position. The activation would immediately propagate to the concept unit which had just
been associated with that ordering unit, and thus the identity of the concept in the given
position could be retrieved. Using the above example as an illustration, if one probed the
network with ordering unit 2, the concept unit for “kisses” would become active. Thus,
we can directly obtain an ordered sequence of concepts representing an input sentence’s
meaning, by probing the network. None of the systems surveyed earlier make this
information explicitly available. Word order can be a very strong constraint in language
undersianding, and having this information available in this fashion could be very useful

for a higher-level language comprehension task.

717

Ordering units, bi-directionally

1 2 3
(3 connected to each unit in the output
\O O Oj layer. There is one ordering unit for

Cooooooooooooooo)

Lower layers of network

each possible sentence position.

Output layer
(Concept units)

1 2 3 1 2 3

(@ o 9] ((e_p o
~N /

@ o p
/
@...Q’;..o)

T Output layer

llMaryll

Figure 8.1: The use of ordering units in processing sentences. At the bottom is shown a

possible scenario involving the parsing of "John kisses Mary,” assuming that the concept

units have already been trained. As each word is presented, i is associated with an

ordering node which will indicate that word’s position in the senience. By activating cither

a conceplt node or an ordering node, the associated position or concept can be retricved.

78

8.2.2 Interconnecting the Sentence Units

Another interesting extension to the work would allow interconnections between units in
the sentence columns. The identity of a word 1n a sentence is in some instances highly
constrained, grammatically or semantically, by its context. By allowing associations to be
built up between units representing words in various relative positions in the sentence,
perhaps using a scheme similar to that used to connect word and percept units, we allow
these constraints 10 be captured by the network. Consider the former example once more,
"John kisses Mary.” If John and Mary are husband and wife, a semantic regularity in the
training corpus might be that John only kisses Mary. The interconnections between the
sentence columns should allow this regularity to be captured in the course of training. In
the case of the partial input, "John kisses...", then, the interconnections between word
units would tend to activate the word unit for "Mary” in the third position of the sentence.
Or. in the case of the partial input sentence "John ... bread”, grammatical and semantic
constraints would combine to supply a verb having to do with eating as the correct word
for the senience's second position. Using this addition to the architecture, we could

implement a prediction network similar to that explored in Elman (1990).

8.2.3 Improving the Learning Algorithm

The leamning algorithm could still be optimized in several ways: for example, a better choice
of threshold values for percepts and words, and a better scheme for choosing the learning
ratio and changing it throughout the course of leaming. One method for doing this would
be to program the network to change these parameters automatically during the course of

uamntng. By using guideimes such as "Zero the learning ratio when a stabie state is

79

reached”, the network can monitor itself and determine how best 10 procced. The usc of
units which vary their threshold values automatically could also be a candidate for an

optimization tool.

Another avenue for exploration is that of varying the number of clusters in the hidden layer.
As previously mentioned, a larger number of clusters in the hidden layer would result in a
higher probability of each word in the input layer being equally represented in the hidden
layer. This in turn would improve the ouiput layer's ability to capiure the information

being fed forward from the input layer.

8.2.4 Simultaneously Active Concept Units

The nature of the input to the system during testing differed from that used during training.
During training, sentences were presented together with their corresponding percepts, and a
single concept unit became active. Over many iterations, the concept units became
associated with the correct word and percept units. However, during testing, input
consisted of either a single percept, a single word, or a single word/percept pair. The

output was still a single concept unit.

While this method of testing illustrated the ability of the system to perform associations, it
was weak in that it required pre-segmenting of a test sentence into its constituents. Onc
inicresting test is 10 present entire sentences 1o the network after training is complete.
However, the winner-take-all nature of the output layer allows only one concept unit to
become active. A ye: more interesting test would be to allow multiple winners at the output

level, using a technique similar to that employed in the percept column and sentence

80

columns. Each output unit would have some associated threshold value (likely the same
for each unit). Then, instead of having only one winner at the output level, ¢li those

output units which exceeded the threshold would be winners.

A phase of testing was attempted where the winner-take-all restriction was removed from
the output layer, after the network had been trained with the restriction in place. It was
hoped that the concept units corresponding to the words and percepts presented in the input
would have larger activations than those of the other concept units. Experiments showed
that this tended to be true, but there were often one or two "rogue” concept units that were
not expected to win, but had activations larger than one or more of the expected winners.
This was not an expected result, but could be due to the fact that the network was
rccognizing'particular combinations of the input words and percepts. Adjustment of the

network parameters could possibly resolve this problem.

A further experiment would be to relax the winner-take-all restriction on the output layer
during training, to see if the correct concept associations are still learned. The system could
then be tested with and without the output layer restriction. In either case, it is also likely
that additional tning of the network parameters would be required in order for the

associations to be learned comrectly.
8.2.5 Increasing the Complexity of the Grammar

The grammar used in this research was useful for the purpose of displaying how a
competitive leamning network could learn associations between words, percepts, and

concepts. However, the grammar was simple in that only very short sentences were

81

allowed, and nouns and verbs were limited as 10 their placement in sentences. While this

simplification is not unique to this research, it is natural to ask how the work might be

There is no principled reason why larger sentences could not be processed by another
version of this network. The associations between words and percepts would still be built
up, as this only relies on the presentation of perceptual input with the sentence input. An
increase in the size of the sentence could, however, slow the rate of learning these
associations. There is also an indication that the learning of concepts is also not severcly
limited by the number of words and percepts presented. Rather, it is dependent on the
parameters chosen for the network, such as the size and number of clusters. If the network
parafneters can be matched to the task, the regularities of occurrences of words and their
percepts should still eventually result in the network's being able 1o develop the correct

associations.

Unfortunately, the length of sentences is not the only factor which coniribuics to a
grammar's increased complexity. Issues such as agreement, the use of relative clauses,
prepositions, verb argument structure and many others must also be considered. The
current system makes the simplifying assumption that all words which can be processed
will have discrete percepis to which they commrespond. With more complex grammars this
may not necessarily be so. Consider the use of the relative pronoun "which” in the

following example senence:

John gets the ball which Mary kicks.

82

In this example, "which” does not correlate to a sensory perception of a particular object or
action in the described event. Rather, it serves to indicate the presence of a modifier to the
direct object "the ball”. In order to deal with cases such as these, relationships between
percepts would need to be represented. These relationships could perhaps be processed
using a subnetwork which takes a structured representation of perceptual information as
input and produces a set of outputs indicating spatial, dynamic or other relationships
between percepts or groups of percepts in the input. This is a categorization task, and thus
there is the possibility that a competitive learning network could be used for this purpose.
However, there would be many difficulties to overcome, not the least of which would be

choosing an adequate method for representing the structure of the percepts.

83

9. Conclusion

Despite the many problems which cropped up during the course of experimenting with the
competitive learning algorithm, good results were eventually obtained. The initial rescarch
problem was much more ambitious, having to do with the very large problem of
discovering grammatical features from input sentences; however, it became clear that
wrestling with the many aspects of competitive learning as applied to the eventually chosen

research task was sufficiently challenging.

The version of competitive learning implemented in this work 1s able to learn 1o associale
words, percepts and concepts, with a good degree of accuracy. The success of the method
depended greatly on the choice of appropriate parameters for the architecture employed. At
the least, the work suggests a method for using unsupervised learning to supplement
sentence processing networks which use other learning algorithms. Taken by itself, the
work provides a potential basis for using unsupervised learning schemes in networks

which do more complex sentence processing.

84

Appendix A: Program Listing

85

FrhkhkkrhkEXREXTT X &

/
f/* cdgmain.c Jan. 12, 1833
/> Kenward Chin
j’f

/* This is the main driver program for the training of the network.
/* The learning and propagation algorithms are found here.
/‘i’

t[***it**********/

#inciude "prog.h”
#include <stdio.h>

static long statel[32] = { 3, 0x8a31%039,

0x328%ch24, OxS5bo63182, O0xS5dalif3i4z, 0x7449e560b,
Oxbeblidbbd, 0Oxab5c5318, 0x946554f4, 0x8c2e680f,
Oxeb3d799f, 0Oxblleelb7, 0(x2d4360b3%&, Oxda672e2a,
0x1588ca88, 0Oxe2369735d, 0x904£35f7, 0xd7158fds6,
Ox6facf051, 0x616e6b96, Oxac94efdc, Oxde3b81l=0,
Ox3f0asfhS, Oxfi63bcl2, 0x48f340fhb, 0x36413£953,
0xc622c2%8, 0OxfSadZ2ab8, 0xB8a88d77b, 0x£5ad9d0=,
0x8999220b, Ox27fb4d7b9 };:

static float PROP = #.005; /* default proportion for laarning */

mainl{argec, argv)

int argc;

char *argvil;
{

float atof(};

unsigned randseed;

int randn;
int num_trials, count, i, j, k, cnum, unit_num, flag;
flocat delta, ratic, LOSEPRECP;

filoat inarr { INPUTSIZE], unit [CLUSTNUM] [NUMUNITS],
perctowcrd[OBJFSIZE] [OBISIZE*SENTSIZE],
wordtoperc{[OBJSIZE*SENTSIZE] [OBJSIZE],
weight [CLUSTRIM] INUMUNITS] [INPUTSIZE], topunit {HNUMTOP],
topweight [CLUSTHRUM] [NUMUNITS] INUMTOP] ;

float getratici};

¥

char file namefl08};

FILE *fp;

if {argc == 2} { /* get prop from command line */
PROP = atoftargvill};

printf{*BEnter seed value: *}; scanf{*%u*, Zrandsesd);
randn = 128;

initstate(randsessd, statel, randn};

setstate(statel} ;

srandom{randssed) ;

printf(*Enter file name to writse weights to (- if nomej: ";;
scanf {"%s*, file mame};

86

initial wts. */

/* zero the potentials */
unit_num++)

for (cnum=0; cnum<CLUSTNUM; cnum++)}
unit_ num<NUMUNITS

for (unit_num=0

H
ti

while (count!=0} { /* main loop to enter patterns */

flag = COMPUTER;
getinput {(inarr, £lag);

/* do intralevel learning: this is plausible, as it
is analogous to the input units already having won at
an earlier Jevel. Because this is "psesudc-Hebbian®,
we can do the learning *before* the crosspropping. */

crosslearn{inarr, psrctoword, wordtoperc);

cresspropf{inarr, perctoword, wordtoperc);
/* do intralevel excitation */

crossnorm{parctoword, wordtoperc) ;
propagate (inarr, unit, weight};

for (i=0; i<CLUSTNUM; i++) /* learning loop */
for (unit_num=0; unit_num<NUMUNITS; unif_num++) {
f* leaky */ if (unitiidiurnit_numl > ACTIVE)
ratic = getratioc{num_trials, count);
else
ratio = getratic{num_trials, count)/10.0;

for (=0, k=0; J<INPUTSIZE; j++) /* how many active? */
if {inarr[j] > ACTIVE} k++;

for (j=0; 3F<INPUTSIZE; j++) {
delta = ratio * -{weight{i][unit_num]l{jl);
if (inmarrij] > ACTIVE)
delta += ratio * {(1.4/k);
weight{i] funit_num] {i] += delta;

}

normalize {weight}) ;
proptop{unit, topunit, topweight} ;

for (i=0; i<NUMTOP; i++) { /* leaky */ * learning loop 2 */

87

f* leaky */ if {(topunitiil > ACTIVE)
ratioc = getratic{num trials, count);

ic = getratic{num trials, count)/10.0;

for {cnum=0; crium<CLUSTNUM; cnum++)
for {(unit_num=0; unit_num<NUMUNITS; unit_num++)} {
delta = ratio * -{(topweight{cnum] [unit_num][i]);
if (uniticnum] [unit_num] > ACTIVE)
delta += ratio * (1.0/CLUSTNUM);
topweight {cnuml} funit _num]} [i] += delta;
)
}

nermtop {topweight) ;

count--;
}
if (strcmp(fils_name, *-*)} i= 0} {
fp = fopen(file_name, *w"};
/* write in->hidden weights */
for (cnum=0; cnum<CLUSTNUM; cnum++)
for (unit_num=0; unit_num<NUMUNITS; unit_num++)
for {i=0; 1i<INPUTSIZE; i++)
fprintf{fp, “%f ", weight[cnum][unit_num][i]};
/* write hidden->top weights */
for (cnum=0; cnum<CLUSTNUM; cnum++)
for (unit_num=0; unit_num<NUMUNITS; unit_num++)
for (i=0; i<NUMTOP; i++){
fprintf (fp, "%f ", topweight[cnum] [unit_num] [i]);}
/* write perctoword */
for (i=0; i<OBJSIZE; i++)
for {(j=0; j<(OBJISIZE*SENTSIZE); j++)
fprintf (fp, *%f ", perctoword[i]{jl);
/* write wordtoperc */
for (1=0; i<{OBJSIZE*SENTSIZE); 1i++)
for (j=0; j<OBJSIZE; j++)
fprintf (fp, "%f *, wordtoperclil[jl);
}
}
normalize {weight) /* rev. Nov. 21/92: normalize length, not sum */

float welight [CLUSTNUM] [NUMUNITS] [INPUTSIZE] ;
{

float tot_weight, length;

int cnum, unit_num, 1i;

double sqrtii;

for {cnum=0; cnum<CLUSTNUM; cnum++)} /* set up total weights */
for (unit_num=0; unit_num<NUMUNITS; unit_num++) {
for (i=0, tot_weight=0; i<INPUTSIZE; i++)
tot_weight += ({weight[cnum] [unit_num][i] *

88

not sum */

weight [cnuml {unit_num] [1] =
weight {cnum] [unit_num} [i] * length;
}
}
normtop (topweight) /* rev. Nov. 21/92: normalize length,
float topweight [CLUSTNUM] [NUMUNITS] [NUMTOP] ;
{
float tot_weight, length;
int cnum, unit_num, 1;
double sgrt i) ;
for (i=0; i<NUMTOP; i++) { /* set up total weights */
for (cnum=0, tot_weight=0; cnum<CLUSTNUM; cnum++)
for {(unit_num=0; unit_num<NUMUNITS; unit_num++)}
tot_weight += (topweight[cnum] [unit_num][i]
topweight {cnum] [unit_num] [1]};
length = 1/sgrti{tot_weight);
for (cnum=0; cnum<CLUSTNUM; cnum++)
for (unit_num=0; unit_num<NUMUNITS; unit_num++)
topweight [cnum] [unit_num] [i] =
topweight [cnum] [unit_num] [i] * length;
}
}

propagate (inarr, unit, weight)
float inarr {INPUTSIZE], unit [CLUSTNUM] [NUMUNITS],
weight [CLUSTNUM] [NUMUNITS] [INPUTSIZE] ;

{
int cnum, unit_num, i, big;
for (cnum=0; cnum<CLUSTNUM; cnum++) /* get Layer 2 values */
for (unit_num=0; unit_num<NUMUNITS; unit_num++)
for (i=0, unit[cnum] [unit_num]=0; i<INPUTSIZE; i++) {
unit [cnum] [unit_num] += (inarr([i] *
weight [cnum] [unit_num] [i]);
}
for (i=0; i<CLUSTNUM; i++) { /* find winners of clusters */
for (unit_num=1, big=0; unit_num<NUMUNITS; unit_num++)
if (unit[i][unit_num] > unit[i][big])
big = unit_num;
for (unit_num=0; unit_num<NUMUNITS; unit_numt+) /* set winner */
if {(unit_num==big)
unit[i] [unit_num] = MAXVALUE;
else
unit([i] [unit_num] = MINVALUE;
}
}

proptop(unit, topunit, topweight)
float unit [CLUSTNUM] [NUMUNITS], topunit [NUMTOP],
topweight [CLUSTNUM] [NUMUNITS] [NUMTOP] ;

89

foxr (i=0;

3
i
topunitfi}l =

for {cnum=0; cnum<CLUSTNUM; cnum++)
for {(unit_num=0; unit_num<NUMUONITS; unit_num++)
topunitf{ii] +=

{topweight [crum] [unit_num] [i] * unit[cnum] [unit_num]);

}

/* set winner */
for (i=1, big=%; i<NUMTOP; 1i++)
if (topunit([i] > topunit{bigl)
big = 1i;

for (i=0; i<NUMTOP; i++)
topunit[1] = MAXVALUE;
else
topunit[i] = MINVALUE;

}
crosslearn(inarr, perctoword, wordtoperc) /* last rev. Nov 13/92 */
float inarr [INPUTSIZE],
perctoword[OBJSIZE] [(OBJSIZE*SENTSIZE)],
wordtoperc| (OBJSIZE*SENTSIZE)] [OBJSIZE] ;
{

int perc, word, 1, onperc, onword;
float delta;

for (i=0, onperc=0; i<OBJSIZE; i++) /* how many on in
if (inarr[i] > ACTIVE) onperc++; /* percept side?

for (i=0BJSIZE, onword=0; i<INPUTSIZE; i++) /* how many on
if (inarr{i] > ACTIVE) onword++; /* word side ?

/* learning loop: links */
/* from percept to word */

*/
*/

/* If the unit on the "word" side is on, then links with
/* all active "percept" units are strengthened. This is

/* accomplished by, for a given word, borrowing weight
/* from links to inactive percept units. */

/* The amount is calculated by taking PROP of the weight
/* from each input line in to this word, divided by the

/* number of active percept units. */

/* NOTE: Since this is for perctoword, the percept side

/* of the input layer serves as the "input layer*, and

/* the word side serves as the "upper layer".

for (word=0OBJSIZE;: word<INPUTSIZE; word++)

90

*/

in */
*/

*/
*/
*/

*/
*/

*/
*/

if (inarr[word] > ACTIVE) { /* only active units learn */

4

: T
i
each uni* *gives up" */

delta = PROP * - {perctowordiperc] [word-OBJSIZE]};
if {(inarriperc] > ACTIVE)

delta += PROP * {1l.0/onperc);
perctowordperc] [word-OBJSIZE] += delta;

-

/* learning loop: links */
/* from word to percept */

/* If the unit on the "percept” side is on, then links */
/* with all active "word" units are strengthened. This */
/* 1is accomplishad by, for a given percept, borrowing */
/* weight from links to inactive word units. */

/* NOTE: Since this is for wordtoperc, the word side of */
/* the input layer serves as the "input layer", and the */
/* percept side serves as the *upper layer". */

for (perc=0; perc<OBJISIZE; perc++)
if (irarr[perc] > ACTIVE) { /* only active units learn */

for (word=0BJSIZE; word<INPUTSIZE; word++) {
/* each unit *gives up" */

delta = PROP * - {wordtoperc[word-OBJSIZE] [percl);
if (inarr[word] > ACTIVE)

delta += PROP * {1.0/cnword)};
wordtoperc [word-OBJSIZE] [perc] += delta;

}
}
}
crossnorm(perctoword, wordtoperc) /* alpha-test: Oct 28/92 */
float perctoword [OBJSIZE] [(OBJSIZE*SENTSIZE)],
wordtoperc[(OBJSIZE*SENTSIZE)] [OBJSIZE] ;
{
/* Note: Each unit gets a total possible weight of 1.0 */
int perc, word, i, Jj;
float tot_weight;
/* normalize percepts: */
/* sum up total weight... */

/* be careful - each unit */
/* has 1.0 on input lines, */
/* not output lines! */

for (perc=0; perc<OBJSIZE; perc++)} {

for (word=0, tot_weight=0; word<(OBJSIZE*SENTSIZE); word++)
tot_weight += wordtoperc[word] [perc];

91

Vid printf{"total weight for this percept: %fin", tot_weight); */
/* ...and normalize */
for (word=0; word«{OBJSIZE*SENTSIZE); word++)
wordtoperciword] {pesc] = wordtopercl{word] {perc] / tot_weight;
3
/* normalize words: */
/* sum up total weight... */
/* be careful here, too. * /
for (word=9; word<{OBJSIZE*SENTSIZE); word++) {
for (perc=0, tot_weight=0; perc<OBJSIZE; perc++)
tot_weight += perctowordiperc] {word];
/* printf ("total weight for this word: %f\n®, tot_weight); */
/* ...and normalize */
for (perc=0; perc<OBJSIZE; perc++)
perctowordfperc] {[word] = perctoword[perc][word] / tot_weight;
3
}
crossprop (inarr, perctoword, wordtoperc) /* alpha-test: Oct 28/92 */
/* last rev.: Nov. 16/82 */
/* last rev.: Jan. 11/93 */
float inarr [INPUTSIZE], perctoword[OBJSIZE] [(OBJSIZE*SENTSIZE)}],
wordtoperc [(OCBJSIZE*SENTSIZE)] [OBJSIZE];
{
/* dummyin is 1 element larger, for sorting purposes */
float dtotal, itotal, normfact, dummyin[INPUTSIZE+1];
int perctotal, wordtotal, maxtotal;
int i, j, k, flag, winner, wta[INPUTSIZE];
/* Technique COULD BE to only cause excitation on this level */
/* if one side or the other is empty of active units. However, */
/* it would be more general to apply mutual excitation without */
/* exception. The problem is how much excitation to apply... */
/* For now, just apply the potential of each unit * the weight, */
/* and directly add that to the potential on the other side. */
/* However, be careful to do this *simultaneously*®, using a */
/* dummy matrix, so that changes aren't cumulative. */
for (i=0; i<INPUTSIZE; i++)} dummyin[i] = inarr{i];

for {i=0, perctotal=0; i<OBJSIZE; i++)

if (inarr[i] > ACTIVE) perctotal++;

for {i=0BJSIZE, wordtotal=0; i<INPUTSIZE; i++)

if

if (inarr{i}] > ACTIVE) wordtotal++;

{wordtotal > perctotal)

maxtotal = wordtotal;

92

’

/* Excite from percept side */
/* to word side first. * /

/* Note: OBJSIZE must be subtracted from j since intraweight

/* starts the word side numbering from 0, while in inarr it */
/* starts at OBJSIZE. (Note: This applies here!} */
for (i=0; i<OBJSIZE; i++}

if (inarriil i= &}

for (Jj=0BJISIZE; j<INPUTSIZE; Jj++)
dummyinfil += inarr{i} * perctoword[i}[j-OBJSIZE];

/* now word -> percept */
for (j=OBJSIZE; j<INPUTSIZE; Jj++)
if (inarr([j] i= 0}
for (1=0; 1<OBJSIZE; i++)
dummviniil += inarr[j] * wordtoperc[j-0QOBJSIZE}{i];

/* Normalize percepts... */

/* ok, the approach is to allow as many percepts as are above a
threshold value to attain MAXVALUE. There is no knowledge of how
many words are on.

*/

for (i=0; 1i<COBJISIZE; 1++) /* threshecld */
if (dummyinfi] > PERCTHRESH)
inarr{i}] = MAXVALUE;
else
inarri{i] = MINVALUE;
/* ...and normalize words. */

/* The approach: go through each column and pick the winner, as
long as it beats the threshold.

*/
for (j=0, k=0OBJISIZE; Jj<SENTSIZE; j++) { /* for each coclumn */
for (i=k+1, winner=k; i< (OBJSIZE+k); i++) /* pick winner */
if (dummyinfi] > dummyin{winner])
winner = i;
for (i=k; i<(OBJSIZE+k); i++) /* assign values */
if {(i==winner) && {(dummyin{i] > SENTTHRESH))
inarr[i] = MAXVALUE;
else
inarr([i] = MINVALUE;
k += OBJSIZE;
}
for (i=0; i<INPUTSIZE; i++)} /* take care of strange cases */
if {inarr{il] > MAXVALUE)
inarr[i] = MAXVALUE;
}
float getratio(num trials, count) /* Cct 7/92 */

int aum trials, count;

93

/* This figures out the ratio to use. PROP is the specified ratio,
num _trials is the number of trials to be done this simulation,
countdown is the number of trials left. */

int ratio;
int scr;

/* Because integer division rounds down (and I can't remember
g

what the C function is to do rounding up), we have to do some
tricky match to figure things out. Here, (80, 100] is 100%,

(60, 80] is 80%, etc.

*/

ratio = (10 * (num_trials-count)) / num trials;

scr = 5 - (ratio/2); /* This is [1..5}. */

return (PROP*scr*.2j); /* Ok, so we return the specified learning

ratio times the %age of trials left
(represented in {1..5} * 20%. This should

work... =) */

94

/***************/

/* cgetinput.c Jan. 12, 1993

/% Kenward Chin

/-k

/* This contains the routines for getting input from the user and for

/* generating the training input patterns. Alsc, dosummary() is located

/* here, because it makes use of the tokens.h information to print out
/* the results.
/>

/***************/

#include "prog.h*
#include "tokens.h*

#define RANDPERCEPT -1 /* flags to add noise */
#define RANDWORD -1

getinput (inarr, flag)
float inarr [INPUTSIZE];

{
float rand () ;
int a, b, senttype, noun_num, verbnum, wordnum, index;
int wordloc, unitcount;
for (a=0; a<INPUTSIZE; a++) /* Zero inarr */
inarrfal] = 0;

if (flag == HUMAN) ({
printf ("How many units to activate? "); scanf("%d*, &unitcount);

for (a=0; a<unitcount; a++) {

printf (“Enter unit %d: (*, a);:
printf ("Percepts 0-%d, ", NUMOBJS-1};
printf ("Nouns %d4d-%d4d, ", NUMOBJS, NUMOBJS+NUMNOUNS-1);

printf (*Verbs %d4d-%d): ", NUMOBJS+NUMNOUNS, 2*{(NUMORBJS)-~-1);
scanf ("%d", &wordnum);
if (! (wordnum<NUMOBJS)) { /* ie. it's a word */
printf (*Put word %d in which position? (1-%d): *,
a, SENTSIZE);
scanf (*%d", &wordloc);
}
if (wordnum< (NUMOBJS)) /* ie. it's a percept */
set_percept (inarr, wordnum);
else /* it's a word */
set_word (irarr, wordnum- (NUMOBJS), wordloc};
}
}

if (flag == COMPUTER) {
senttype = (int) {rand{SENTTYPES)}; /* Choose a sentence type */

switch(senttype) {

case 1: * Noun - Verbt - Moun */
/* Get random noun. To find how it's stored in tokens.h,
we have to subtract 1 from it. (Nouns run from 0 to

95

NOMNOUMS-1. Put it in first location, along with a
percept. get random transitive verb (must add
NUMRIOUNS, en subtract 1. Store it and the percept.
Then, similarlv for the object noun.

>/

noun_num = {int) (rand(NUMNOUNS))-~-1l; /* subject */
set_word{inarr, nocun_num, 1)};
set_percept{inary, noun_num};

verbnum = {(int) (rand{NUMTVERBS)})-1; /* verb */
set_word{inarr, verbnum+NUMNOUNS, 2};
set_percept{inarr, verbnum+NUMNOUNS) ;

noun_num = {int) (rand{(NUMNOUNS))-1; /* object */
set_word{inarr, noun_num, 3j;

set_percept{inary, noun_num};

break;
case 2: /* Noun - Verbi */

/* Similar to above, but only use 2 word: a noun and an
intransitive wverb. I-verbs need to have NUMNOUNS and
NUMTVEREBS added, and subtract 1.

*/

noun_num = {int) {(rand(NUMNOUNS))-1l; /* subject */
set_word{inarr, ncun_num, 1};

PR 4

set_percept{inarr, noun_numj;

verbnum = {int) {(rand(NUMIVERBS})-1; /* wverb */
set_word{inarr, verbnum+NUMNOUNS+NUMTVERBS, 2);
set_percept (inarr, verbnum+NUMNOUNS+NUMTVERBS) ;
break;

}

for (a=0; a<NOISEPERC; a++) /* Add some noise */
set_percept (inarr, RANDPERCEPT) ;

}

/* if input is from */

/* a human, then */

/* show it. */
if (flag != COMPUTER}
show_input (inarr);

}

show_input (inarr)
float inarr { INPUTSIZE];

{
int a,b, index;
for (a=0; a<ROWSIZE; a++) {
for (b=0; b<{(OBJSIZE* (SENTSIZE+1)); b += ROWSIZE) {
index = (ROWSIZE-a-1)+b;
1f (inarr{index]<MAXVAILUE)
printf(®."};
else
printf("0=};
)]
printf{*\n"};
}
}

96

set_percept {inarr, percepinum)
float inarr [INPUTSIZE];

int perceptnum; /* analog for wordnum */
/* The strategy is: Pick a token, and copy it's representation
into the first location in the input layer. No transformation

has to be done - just copy it using an identity mapping from the
representation (‘object') (of size OBJSIZE) to the first OBJSIZE
units in the hidden layer.

* /

/* This function sets up a pattern on the "percept® side of inarr.
If wordnum is in [0..NUMOBJS], then we just put that pattern in. If it
isn't, we'll take it to mean “add a random percept to the training
part of inarr." WNote that a random percept will never duplicate
what is already in inarr {eg. you can't have percept #3, then add
percept #3 again).

*/

int check, a;

if (perceptn == RANDPERCEPT) {
check = -1;
while (check = 0) {
perceptnum = (int) (rand(NUMOBJS)) -1 ; /* Get random input */

/* Note: the "if" inside the "for" presumes that a percept
will be considered *already used” if all of that
percept's non-zero units are activated to the same
amount in inarr. NOTE that this presumes that- this
percept's pattern cannot be a subset of another
percept's pattern, otherwise the algorithm will fail.
As it stands, a percept is found to not already be
present if there is a non-zero unit in the pattern
which is zero in inarr.

*/

for (a=0; a<OBJSIZE; a++)
if ((object[perceptnum]fal == 1.0) &&
(object [perceptnum] [a] != inarrfal)) {
check = 0; /* See if percept */
a = OBJSIZE; /* exit loop */ /* has been used. */

}
for (a=0; a<OBJSIZE; a++) { /* Straight adding from */
inarr[a] += object[perceptnum][a]; /* a global array. */

if (inarr{al] > MAXVALUE)
inarrfa] = MAXVALUE; /* Check if doubly added */

}

set_word(inarr, wordnum, wordloc)
float inarr [INPUTSIZE];

97

*/

/'k

-,

}

'c do thi v the token's appearance in the sentence intoc the
poIrop tion in the sentence field. To do this, we just
*skip' an apprcpriate number of spaces in the field (each of

size OBJSIZE}) , therefore {(wordloc-1)*0OBJSIZE) units. We then do the
copying bit again, again simply using the identity mapping, except
from the ‘token®' array instead of the 'cbject' array definition.

Qw3
\IEe]
Q
o}

o
(3

<}

o 0
[

=
Qo
Q

This function sets up a pattern on the "word" side of inarr. :

If wordloc is in {0..SENTSIZE], then we just put that pattern in. If it
isn't, we'll take it to mesan *add a random word to the sentence

part of inarr, in a random location." Note that while duplicate words
are allowed, we will not allow a random word to overwrite a pattern
which has already been set up in the RHS of inarr. (eg. you can have
word #3 in positions 2 and 4, but you cannot have word #3 and word #4

in position 2} .

int check, a, b, limit;

if (wordloc == RANDWORD) ({

wordnum = {(int} {(rand({(NUMOBJS)); /* Get random word */
check = -1;
while (check 1= 0) {
wordloc = (int) (rand{SENTSIZE)); /* Get random location */

/* Note: To check that a location is ok teo put the pattern
in, it suffices to check that there are no non-zero
elements in that location.

*/
limit = (wordloc+1)*OBJSIZE;
for (a={wordloc*OBJSIZE), check=0; a<limit; a++)
if (inarrfal != 0} { /* ...then it's a duplicate, */
check = -1;
a = limit; /* so exit loop prematurely */
}
}

}

for (a=(wordloc*COBJSIZE), b=0; b<OBJSIZE; a++, b++)
inarr{a] += token[wordnum]{b]; /* Straight adding frem */
/* a global array. */

dosummary {inarr, unit, perctoword, wordtoperc, weight, topunit, topweight)

float inarr [INPUTSIZE], unit{CLUSTNUM] [NUMUNITS],
perctoword[OBJSIZE] [OBJSIZE*SENTSIZE],
wordtoperc[OBJSIZE*SENTSIZE] [OBJSIZE],
weight [CLUSTNUM] [NUMUNITS] [INPUTSIZE], topunit [NUMTOP],
topweight [CLUSTNUM] [WUMUNITS] [NUMTOP] ;

int a, row, wordnum, winner, scorel, score2, badscorel, badscorel;

98

/*

r[*

f*

printf(*\nTransitive verbs:\n
case {NUMNOUNS + NUMTVERRBS)

"} ; break;

printf(*\nIntransitive verbs:\n"); break;

default: ;
}

/* words only */

printf{"Here is a listing of the results:\n");
printf {*Token Cutput units \tToken Cutput units \t*};
printf{"Token Qgutput units\n*};
printf (" (w) Positions \t{p} Positions \t{w & p) Positions\
printf (* 3 2 3\t (Percept) \t 1 2 3\
for (wordnum=0; wordnum<NUMOBJS; wordnum++) {
switch (wordnum) { /* Print headings */
case (:
printf{"\nNouns:\n"); break;
case NUMNOUNS:

printf("%-84",
printf(*%-8s*®,

wordnum) ; *
lexicon {wordnum}) ;

for (row=l;
for (a=0;

row< {SENTSIZE+1}) ;
a<INPUTSIZE; a++

row++) {
) inarr[al=0;

/* initialize */

set_word{inarr, wordnum,

row) ;

crossprop (inarr, perctoword, wordtoperc);
propagate{inarr, unit, weight);
proptop(unit, topunit, topweight, &winner) ;

printf{*%-34d ®,winner);

}
printf (*\t*};

printf ("%-8d*, wordnum)}; */
printf(*%-8s*®,

for (a=0; a<INPUTSIZE; a++)
set_percept {inarr, wordnum);

/* percepts only */

lexicon{wordnum]) ;

inarr[al=0;

/* initialize */

crossprop{inarr,

perctoword,

wordtoperc) ;

propagate{inarr, unit, weight})

r

proptop{unit, topunit, topweight, &winner) ;

printf("%-3d *,winner);
printf{*\t\t®;;

/* words and percepts */

printf{"%-8d4d*, wordnum}; */
printf({"%$-38s*=,

({row=1;
for {a=0;

for row< {SENTSIZE+1};

a<INPUTSIZE; a++)

lexiconiwordnum]});

row++) {

inarr{al=0; lize

rt
ke
i

/* ini

set_percept{inarr, wordnumj;

set_word{inary, wordnum,

TOW) ;

crossprop{inarr, perctoword, wordtopsrc);

99

~

nu}
nui

’

.
|

1

ropagate{inarr, unit, weight);
proptop{unit, “opunit, topweight, &winner) ;
printf(*%-34 *,winnerj;

printf{*“\n"};

printf{®\n*};

By L

printf(*Evaluation of cross-connections:\n\n"j;

printf{"Check that each word activates appropriate percepts
only:vn\n");

scorel = 0; score?2 = §; badscorel = 0; badscore2 = 0;

for (wordnum=0; wordnum<NJMNOUNS; wordnum++) { /* do nouns */

for (a=0; a<INPUTSIZE; a++) inarr[a]=0; /* initialize */
set_word{inarr, wordnum, 1};
crossprop{inarr, perctoword, wordtoperc);
if (inarriwordnum}] > ACTIVE) scorel++;
for (a=0; a<NUMNOUNS; a++)}
if {((inarr{a] > ACTIVE)} && {a != wordnum}) badscorel++;

for (a=0; a<INPUTSIZE; a++} inarr[al=0; /* initialize */
set_word{inarr, wordnum, 3};

crossprop(inarr, perctowcrd, wordtoperc);

if (inarr{wordnum] > ACTIVE} scorel++;

for (a=0; a2<CBJSIZE; a++)

if {((inarrfal > ACTIVE) && {a != wordnum}) badscorel++;
}
printf ("Nouns: Presented in Presented in\n")
printf (" position 1 position 3\n\n")
printf(® correct: 2d %d\n", scorel,
printf(* incorrect: £d £d\n\n",

badscorel, badscorel};

scorel = 0; badscorel = 0;

for (wordnum=NUMNOUNS; wordnum<NUMOBJS; wordnum++)} {

for (a=0; a<INPUTSIZE; a++) 1lnarr[al=0; /* initialize */
set_word{inarr, wordnum, 2};

crossprop{inarr, perctoword, wordtoperc);

if (inarr{wordnum] > ACTIVE) scorel++;

for (a=0; a<OBJISIZE; a++)

if ({inarrfa] > ACTIVE)} && {a != wordnum)} badscorel++;
}
printf(*"Verbs: Presented in\n*);
printf(" position 2\n\n*);
printf(* correct: £44\n", scorel);
printf{* incorrect: %din\n\n", badscorel);

pr

only:\n\n

intf {*Check that each percept activates appropriate words
-).
H

100

1
2

scorel);

/* do verbs */

scorel = 0; score2 = 0; badscorel = 0;

for (wordnum=0; wordnum<NUMNOUNS; wordnum++) { /* do nouns */

for (a=0; a<INPUTSIZE; a++) inarr{al=0; /* initialize */

set_percept{inarr, wordnum};
crossprop({inarr, perctoword, wordtoperc);

if {inarriwordnum+ (OBJSIZE)] > ACTIVE) scorel++;
if (inarr{wordnum+ (3*0OBJISIZE}] > ACTIVE) scorel++;

for (a=0BJSIZE; a<INPUTSIZE; a++)}
[

if ((inarria] > ACTIVE) && (a != (wordnum+OBJSIZE))
&& {a !'= {(wordnum+ (3*CBJSIZE)))) badscorel++:
}
printf (“Nouns: Recall word Recall word in\n");
printf(* position 1 position 3\n\n*%};
printf(* coxrrect: %d %d\n\n", scorel,
scorel) ;

printf (" incorrect word units activated: %d\n\n*, badscorel);

scorel = §; badscorel = 0;

for (wordnum=NUMMOIINS; wordnum<NUMOBJS; wordnum++) { /* do verbs

for (a=0; a<INPUTSIZE; a++) inarrfal=0; /* initialize */
set_percept{inarr, wordnum};

crosspropf{inaryr, perctoword, wordtoperc);
if (inarr[wordnum+ (2*CBJSIZE)] > ACTIVE) scorel++;

for (a=0BJSIZE; a<INPUTSIZE; a++)
if ({inarrial > ACTIVE)}

&& {a != {wordnum+ {2*0OBJSIZE)}))) badscorel++;
}
princtf("Verbs: Recall word\nY);
printf(® positien 2\n\n");
printf(® correct: £4d\n\n", scorel);

printf(® incorrect word units activated: %din®, badscorel);

101

*/

/l*ft**f*********/

/* cinit_weights.c Jan. 12, 1993
/* Kenward Chin
i*

/* This contains the routine init_weights, which is responsible for
/* setting up the initial random state of the network, and also for
/* reading in weights from prior training runs.

/*

&k ok ok ok ok ko ok ok k ok
/ /

#include *"prog.h”
#include <stdio.h>

init_weights (perctoword, wordtoperc, weight, topweight)
float perctoword{OCBJSIZE] [(OBJSIZE*SENTSIZE)],
wordtoperc| {OBJSIZE*SENTSIZE)] {OBJSIZE],
weight {CLUSTNUM] [NUMUNITS] [INPUTSIZE],
topweight [CLUSTNUM] [NUMUNITS] [NUMTCP] ;

{
float rand{}, tot_weight, dummy, length;
int i,j,%k, cnum, unit_num;
char file name[1060];
FILE *fp;

double sgrt{};

printf(“Enter file name to read weights from (- if random): ");
scanf("%s*, file_namej;

fp = NULL;
if (strcmp{file name, °"-") != 0) fp = fopen(file_name, “r");
while ((fp == NULL) && (strcmp(file_name, “-") != 0)) {
printf(°"File not found. Try again.\n");
printf("Enter file name to read weights from (- if random): ");
scanf ("%s", file name);
if (strcmp{file_name, *-"} i= 0) fp = fopen(file_name, "r");
}
if {strcmp(file_name, =*-%) == 0} {
/* set up initial weights */
/* from input layer to */
/* first hidden layer... */

printf({*Setting up input to hidden layer weights...\n");
for (1=0; i<CLUSTNUM; i++)
for (j=0; Jj<NUMUNITS: j++) {
for (k=0, tot_weight=0; k<INPUTSIZE; k++) { /* OBJSIZE */
weight[i1[j1[k]l = (rand(0});
tot_weight += (weight[i][j][k] * weight{il[3j]{k]);
}
i* printf(*"total weight for input weights: %f\n®*,
tot_weight};*/
/* ...and normalize them */

length = 1/sgrt{tot_weight);
for {(k=0; k<INPUTSIZE; k++)

102

weight[i][3][k]

/
/ *

/*
/*

printf (*Setting up hidden

weight [1]1[]j] [k] * length;

set up initial weights */
from hidden layer to top */
level units... */

to top layer...\n");

for (k=0; k<NUMTOP; k++) {
for (i=0, tot_weight=0; i<CLUSTNUM; i++)
for (j=0; j<NUMUNITS; Jj++) {
topweight[i][j][k] = (rand(0));

tot_weight += (topweight[i][j][k] * topweight[i][]j][k]);

}
/* ...and normalize them */
length = 1/sgrt(tot_weight) ;
for (1i=0; i1<CLUSTNUM; i++)
for (j=0; J<NUMUNITS; Jj++)
topweight[i][j][k] = topweight[i][j][k] * length;
}
/* Set up "intra-weights®" between word side and */
/* percept side, within input layer. */

/* First, do weights entering percepts */

printf (*Setting up intraweights...\n");

for (i=0; i<OBJSIZE; i++) {

/* set random weight */

for (j=0, tot_weight=0; Jj<(OBJSIZE*SENTSIZE) ;
wordtoperc[j]l[i] = /*1.0;*/(rand(0));
tot_weight += wordtoperc[j][i];

}

{

J4+)

/* note: total weight will be normalized to sum to 1.0 */
for (j=0; j<(OBISIZE*SENTSIZE); j++)

wordtoperc[j][i] wordtoperc[j] [1i] / tot_weight;

}

/* Second, do weights entering words */

i< (OBJSIZE*SENTSIZE); i++) {
/* set random weight */

for (i=0;

for (j=0, tot_weight=0; j<OBJSIZE; j++) {
perctoword{j}[i] /*1.0;*/(rand(0)) ;
tot_weight += perctoword{jll[i};

}

/* note: total weight will be normalized to sum of 1.0 */

103

for (j=0; j<OBJSIZE; Jj++)

perctoword[j]l[1i] = perctoword[j][i] / tot_weight;

3
}
else | /* read weights from file */
printf ("Reading in->hidden...\n"};
for (i=0; i<CLUSTNUM; i++) /* set up in->hidden */
for (j=0; Jj<NUMUNITS; Jj++)
for (k=0; k<INPUTSIZE; k++) {
fscanf (fp, *%f", &dummy);
weight [1i][j] [k] = dummy;
3
printf ("Reading hidden->top...\n");
for (i=0; i<CLUSTNUM; i++) /* set up hidden->top */
for (j=0; Jj<NUMUNITS; j++)
for (k=0; k<NUMTOP; k++) {
fscanf (fp, "%f"*, &dummy);
topweight {i] [j][k] = dummy;
/* printf (*dummy is: %f\n*, topweight[i][3j]([k]);*/

}

pfintf(“Reading perc->word...\n");

for (i=0; i<OBJSIZE; i++) /* set up perctoword */
for (j=0; j<(OBJSIZE*SENTSIZE); j++) {

fscanf (fp, "%f", &dummy);

perctoword[i] [jJ] = dummy;
}
printf ("Reading word->perc...\n");

for (i=0; i< (OBJSIZE*SENTSIZE); i++)
for (j=0; j<OBJSIZE; j++) {

fscanf (fp, “"%f", &dummy):;

wordtoperc(i][j] = dummy;

}

104

/* set up wordtoperc */

/***************/

/* ctestmain.c Jan. 12, 1993
/* Kenward Chin
/*

/* This program is a clone of cdgmain.c, but it is used to drive the
/* testing cycle of the network. It 1s essentially identical to cdgmain.c,

/* but allows for probing of network parameters, etc. There are many
/* debugging printf's in the code.
/*

/***************/

/* See notes 1n cdgmain.c */

#include "prog.h"
#include <stdio.h>

static long statel[32] = { 3, 0x9a319039,
0x32d9c024, 0x%b663182, 0x5dalf342, 0x7449e56Db,
0xbebldbbl, 0Oxab5c5918, 0x946554fd, 0x8c2e680f,
O0xeb3d799f, Oxblleelb’, 0x2d436b86, Oxdaé72e2a,

' 0x1588ca88, 0xe369735d, O0x904f35f7, 0xd7158fds,

O0x6fa6f051, 0x616e6b96, Oxac9%4efdc, Oxde3b81e0,
0xdf0a6fb5, O0xfl03bc02, 0x48f340fb, 0x36413f93,
0xc622c298, O0xf5ad42ab8, 0x8a88d77b, Oxf5adodle,
0x8999220b, 0x27fb47b9 };

static float PROP = 0.005; /* default proportion for learning */

main(argc, argv)
int argc;
char *argvil;

float atof ();

int arg, winner;
unsigned randseed;

int randn;
int count, i, j, k, cnum, unit_num, flag;
int a, b, index; /* for the testmain difference! */

float delta;

float inarr [INPUTSIZE], unit [CLUSTNUM] [NUMUNITS],
perctoword[OBJSIZE] [OBJSIZE*SENTSIZE],
wordtoperc[OBJSIZE*SENTSIZE] [OBJSIZE],
weight [CLUSTNUM] [NUMUNITS] [INPUTSIZE], topunit [NUMTOP],
topweight [CLUSTNUM] [NUMUNITS] [NUMTOP] ;

char file_name[100];

FILE *fp;

initscr();

if (argc == 2) { /* get prop from command line */

PROP = atof(argv(l]);
}

printf ("Enter seed value: *}; scanf("%u", &randseed);
randn = 128;

105

initstate (randseed, statel, randn};
setstate(statel);
srandom({randseed) ;

init_weights (perctoword, wordtoperc,
weight, topweight); /* set initial wts. */

for (cnum=0; cnum<CLUSTNUM; cnum++) /* zero the potentials */
for (unit_num=0; unit_num<NUMUNITS; unit_num++)

’

unit{cnum] {unit_num] = 0;

/**/ for (i=0; 1<NUMTOP; i++) {
delta=0;
for (cnum=0; cnum<CLUSTNUM; cnum++)

2

for (unit_num=0; unit_num<NUMUNITS; unit_num++)
delta = delta+topweight[cnum] {unit_num] [i];
2}
printf("Look at a particular topweight? (0=Y, 1=N): ");
scanf ("%$d", &count);
while (count==0) {
printf(*Which top unit? *); scanf("%d", &i);
for (cnum=0; cnum<CLUSTNUM; cnum++) {

’

printf (*Cluster %d:\n", cnum);

for (unit_num=0; unit_num<NUMUNITS; unit_num++)
printf(*%$.2f ", topweight[cnum] [unit_num][i]);

printf("\n");

} -
printf ("Look at a particular topweight? (0=Y, 1=N): ");

scanf (*%$d4d", &count) ;
/**/ }

printf("Enter the number of repetitions:\n");
scanf ("%d", &count);

while (count!=0) { /* main loop to enter patterns */

flag = COMPUTER;
getinput (inarr, flag);

crossprop{inarr, perctoword, wordtoperc);
/* do intralevel excitation */
crosslearn(inarr, perctoword, wordtoperc);
/* do intralevel learning:
this is plausible, as it
is analogous to the input
units already having won at
an earlier level */

i* crossnorm{perctoword, wordtoperc); */

propagate(inarr, unit, weight);

for (i=0; i<CLUSTNUM; i++) /* learning loop */
for (unit_num=0; unit_num<NUMUNITS; unit_num++)

106

if (unit([iliu _num] > ACTIVE) { /* winner learns */
7

nit
for (j=0, k=0
if {(inarr{j] >= ACTIVE) k++;

<
AL

for (3j=0, arg=0; JF<INPUTSIZE; j++) {
delta = PROP * ~(weight[i] [unit_num][j]);
if {inarr[j] >= ACTIVE)

{arg++;
delta += PROP * (1.0/k);}
weight[i] [unit_num]} [j] += delta;
}
/*printf ("Number of updates: %d\n", arg):;*/
}
normalize{weight);
proptop{unit, topunit, topweight, &winner);
printf ("TU #%4 wins\n",winner) ;
for (i=0; i<NUMTOP; i++) /* learning loop 2 */
if (topunit[i] > ACTIVE) { /* winner learns */
for (cnum=0; cnum<CLUSTNUM; cnum++)}
for (unit_num=0; unit_num<NUMUNITS; unit_num++)
delta = PROP * - (topweight[cnum] {unit_num][i]};
if (unit{cnum] [unit_num] > ACTIVE)
delta += PROP * (1.0/CLUSTNUM) ;
topweight [cnum] [unit_num] [1] += delta;
}
}
normtop (topweight) ;
count--;
printf("%d to go...\n", count);
printf ("%d\n*, count);
}

printout (weight, topweight) ;
dosummary (inarr, unit, perctoword, wordtoperc,
weight, topunit, topweight);

printf("Enter 0 to continue, any other num to stop: ");
scanf ("%d"*, &count);
flag = HUMAN;
while (count==0) {
getinput (inarr, flag);
crossprop (inarr, perctoword, wordtoperc);
for (a=0; a<ROWSIZE; a++) {
for (b=0; b<{(OBJSIZE* (SENTSIZE+1)); b += ROWSIZE) {
index = (ROWSIZE-a-1)+b;
printf("%.7f ¥, inarr[index]*100)};
/* if (inarr[index]<ACTIVE)
printf(°.*);
else

107

J<INPUTSIZE; Jj++) /* how many active? */

printf(*0o"); */
}
printf (*\n"]j ;
}

propagate (inarr, unit, weight);

/*proptop(unit, topunit, topweight, &winner) ; */

/**/ funky (unit, topunit, topweight, &winner) ;
printf("Enter 0 to continue, any other num to stop: ");
scanf (*%d", &count);

}

printf ("Enter file name to write weights to (- if none): ");
scanf ("%s", file_name);
1

0) {

if (strcmp(file_name, “-*) !=
fp = fopen(file_name, "w"};
/* write in->hidden weights */

for (cnum=0; cnum<CLUSTNUM; cnum++)

’

for (unit_num=0; unit_num<NUMUNITS; unit_num++)

for (i=0; i<INPUTSIZE; i++)
fprintf (fp, "%f ", weight{cnum] [unit_num][il);

/* write hidden->top weights */

for (cnum=0; cnum<CLUSTNUM; cnum++)
for (unit_num=0; unit_num<NUMUNITS; unit_num++)

for (i=0; i<NUMTOP; i++) 7
fprintf (fp, "%f ", topweight[cnum] [unit_num][i]);

/* write perctoword */
for (i=0; i<OBJSIZE; i++)
for (j=0; j<(OBISIZE*SENTSIZE); J++)
fprintf(fp, "%f ", perctoword[i]([j]):

/* write wordtoperc */
for (1=0; i< (OBJSIZE*SENTSIZE); i++)
for (j=0; Jj<OBJISIZE; j++)
fprintf (fp, "%f ", wordtopercli]{jl);

}

normalize (weight)
Vfloat welght [CLUSTNUM] [NUMUNITS] [INPUTSIZE] ;

{
float tot_weight, length;
int cnum, unit_num, 1i;
for (cnum=0; cnum<CLUSTNUM; cnum++) /* set up total weights */

for (unit_num=0; unit_num<NUMUNITS; unit_num++) {
for (1=0, tot_weight=0; i<INPUTSIZE; i++)
/*old tot_weight += weight[cnum] [unit_num][i]; */
tot_weight += (weight[cnum] [unit_num] [i] *
weight [cnum] [unit_num] [i]) ;
length = 1/sgrt(tot_weight);
for (i=0; i<INPUTSIZE; i++)
- weight [cnum] [unit_num] [1] =

108

/*old weight [cnum] [unit_num] {i] / tot_weight;*/
weight [cnum] {unit_num}{i] * length;

}

normtop (topweight)
float topweight [CLUSTNUM] [NUMUNITS] [NUMTOP] ;

{
float tot_weight, length;
int cnum, unit_num, 1i;
for (i=0; i<NUMTOP; i++) { /* set up total weights */
for (cnum=0, tot_weight=0; cnum<CLUSTNUM; cnum++)
for (unit_num=0; unit_num<NUMUNITS; unit_num++)
/* old tot_weight += topweight{cnum] {unit_num]{il; */

tot_weight += (topweight[cnum] [unit_num][i] *
topweight [enum] [unit_num] {i]);

length = 1/sqgrt(tot_weight);

for (cnum=0; cnum<CLUSTNUM; cnum++)
for (unit_num=0; unit_num<NUMUNITS; unit_num++)

topweight [cnum] [unit_num] [i] =
/* old topweight [cnum] [unit_num] [i] / tot_weight; */

topweight [cnum] [unit_num] [i] * length;

}

propagate (inarr, unit, weight)
float inarr [INPUTSIZE], unit [CLUSTNUM] [NUMUNITS],
weight [CLUSTNUM] [NUMUNITS] [INPUTSIZE] ;

{
int cnum, unit_num, i, big;
for (cnum=0; cnum<CLUSTNUM; cnum++) { /* get Layer 2 values */
/* printf ("Cluster %d: \n*, cnum);*/
for (unit_num=0; unit_num<NUMUNITS; unit_num++)
for (i=0, unit{cnum] {unit_num]=0; i<INPUTSIZE; i++) {
/* printf (*%f*, unit[cnum] [unit_num}); */
unit{cnum] [unit_num] += (inarr{i] *
weight [cnum] {funit_num] [(1]);
}
/* printf("Unit %d: %£\n",unit_num, unit[cnum] [unit_num]};*/
}
}
for (i=0; i<CLUSTNUM; 1i++) { /* find winners of clusters */
for (unit_num=1, big=0; unit_num<NUMUNITS; unit_num++)
if (unit[i] [unit_num] > unit[i][big])
big = unit_num;
for (unit_num=0; unit_num<NUMUNITS; unit_num++) /* set winner */
if {(unit_num==big)
unit[i] [unit_num] = MAXVALUE;
else
unit[i] [unit_num] = MINVALUE;
}

109

/* who wins? */

/> for (i=0; 1<CLUSTNUM; i++)
for {(unit_num=9; unit_num<NUMUNITS; unit_num++)
printf{=Cluster #%d, Unit #%d, value = %f\n", i, unit_num,
unit[i] [unit_num]};
*/
}

proptop{unit, topunit, topweight, winner)
float unit [CLUSTNUM] [NUMUNITS], topunit [NUMTOP],
topweight [CLUSTNUM] [NUMUNITS] [NUMTOP] ;

int *winner;

o~

int big, cnum, unit_num, 1i;

for (i=0; i<NUMTOP; i++) {
topunit[i} = 0;

for (cnum=0; cnum<CLUSTNUM; cnum++)
for (unit_num=0; unit_num<NUMUNITS; unit_num++)

topunit[i] +=
- (topweight [cnuml [unit_num] [1] * unit[cnum] [unit_num]) ;
/*printf(”tu value is %.3f\n®", topunit[i]);*/
}
/*printf(*\n");*/

/* for (i=0; i<NUMTOP; i++}

printf ("Unit %4 in top layer has value: %f\n®, i, topunit[i]); */
for (i=1, big=0; i<NUMTOP; i++) /* set winner */
if (topunit{i] > topunit[bigl)
big = i;

/* (Commented out - preserve values for use in main program) */
for (i=0; i<NUMTOP; i++)
topunit[il
else
topunit[i]

MAXVALUE;

1t

MINVALUE;

ix printf("TU #%d wins\n®,big); */
winner = /-1*/big;

}

oldcrosslearn(inarr, perctoword, wordtoperc) /* last rev. Nov 2/92 */
float inarr [INPUTSIZE],
perctoword[OBJSIZE] [(OBJSIZE*SENTSIZE)],
wordtoperc| (OBISIZE*SENTSIZE)] [OBJISIZE];

int perc, word, i, onperc, onword;
float delta;

for (i=0, onperc=0; i<OBJSIZE; i++) /* how many on in */
if (inarr{i] > ACTIVE) onperc++; /* percept side? */

110

for (i=0OBJSIZE, onword=0; i<INPUTSIZE; i++) /* how many on in */

2

if (inarr{i] > ACTIVE) onword++; /* word side ? */

/* learning loop: links */
/* from percept to word */

/* 1f the unit on the "percept” side is on, then */
/* the link should be strengthened, else it should */
/* be diminished (for an active object unit). */

/* Each object unit which was on gets some strengthening. */
/* The amount 1s calculated by taking PROP of the weight */
/* from each word input line, divided by the number of */
/* active percept units. */

/* NOTE: Since this is for perctoword, the percept side */
/* of the input layer serves as the "input layer®, and */
/* the word side serves as the “upper layer". */

for (word=0OBJSIZE; word<INPUTSIZE; word++)
if (inarr[word] > ACTIVE) { /* only active units learn */

for (perc=0; perc<OBJSIZE; perc++) {

/*
printf (*Adjusting weights for Input Layer, Unit #%d\n",

pexc) ;
/* each unit "gives up® */

deita = PROP * - (perctoword|[perc] [word-OBJSIZE]);
if (inarr[perc] > ACTIVE)

delta += PRCP * (1l.0/onperc);
perctoword{perc] [word-OBJSIZE] += delta;

/* learning loop: links */
/* from word to percept */

/* if the unit on the "word" side is on, then ./

/* the 1link should be strengthened (for the active */

/* percept unit), else it should be diminished. */

/* Method is 1like above. */

/* NOTE: Since this is for wordtoperc, the word side of */
/* the input layer serves as the "input layer*®, and the */
/* percept side serves as the “upper layer*. */

for (perc=0; perc<OBGSIZE; perc++)

if (inarriperc] > ACTIVE} { /* only active units learn */

for (word=0BJSIZE; word<INPUTSIZE; word++) (
/*

111

printf {"Adjusting weights for Input Layer, Unit #%d\n*,

word} ;
*/
/* each unit "gives up® */
delta = PROP * -{wordtoperc|[word-OBJSIZE] [perc]);
if (perc==0} printf{"HEY! perc: %d, word: %d, percval: %.7f,
ACTIVE: %.7f\n°*,
perc, word, inarr[perc], ACTIVE);
if (inarr{word] > ACTIVE)
delta += PROP * (1.0/onword);
wordtoperc|[word-OBJSIZE] [perc] += delta;
}
}
}
crossnorm({perctoword, wordtoperc) /* alpha-test: Oct 28/92 */

float perctoword{OBJSIZE] [(OBJSIZE*SENTSIZE)],
wordtoperc| (OBIJSIZE*SENTSIZE)] [OBJSIZE];

/* Note: Each unit gets a total possible weight of 1.0 */

int perc, werd, i, Jj;

float tot_weight;
/* normalize percept inputs: */
/* sum up total weight... */

for (perc=0; perc<OBJSIZE; perc++) {
for (word=0, tot_weight=0; word<(OBJSIZE*SENTSIZE); word++)
tot_weight += wordtoperciwoxrd] [perc];

/* printf{"total weight for this percept: %f\n*, tot_weight); */
/* ...and normalize */
for (word=0; word<{(OBJSIZE*SENTSIZE); word++)
wordtoperc[word] [perc] = wordtoperc|[word] [perc] / tot_weight;
}
/* normalize word inputs: */
/* sum up total weight... */

for (word=¢; word<(OBJSIZE*SENTSIZE); word++) {
for (perc=0, tot_weight=0; perc<OBJSIZE; perc++)
tot_weight += perctowordiperc] {word];

i* printf(“total weight for this word: %f\n", tot_weight); */
/* ...and normalize */
for (perc=0; perc<OBJSIZE; perc++)
perctoword[perc] [word] = perctoword[perc] [word}] / tot_weight;
}
)
crossprop{inarr, perctoword, wordtoperc} /* alpha-test: Oct 28/92 */

/* last rev.: Jan. 11/93 */
float inarr [INPUTSIZE], perctoword{OBJSIZE] [(OBJSIZE*SENTSIZE)],

112

wordtoperc| (OBJSIZE*SENTSIZE)] {OBJSIZE];

L)

fleoat dtotal, itotal, normfact, dummyin{INPUTSIZE];

float perctotal, wordtotal;

int i, 3, k, winner;

/* Technigque COULD BE to only cause excitation on this level */
/* 1if one side or the other is empty of active units. However, */
/* it would be more general to apply mutual excitation without */
/* exception. The problem is how much excitation to apply... */
/* For now, just apply the potential of =ach unit * the weight, */
/* and directly add that toc the potential on the other side. */

/* (Note that this is a first pass at this probklem, and could
/* end up being owver-killish.) * /

/* In addition, let's add normalization. For both the percept */
/* and the word, get a sum of the total activation before any */

/* propagation takes place. Then, after propagation, divide to */
/* restore that total activation. */

/* IN FACT, MAKE THIS WINNER-TAKE ALL, SO THAT THE WINNING */
/* UNIT GETS AN ACTIVATION OF 1, ALL OTHERS = 0. * /

/* However, be careful to do this "simultaneously®, using a */
/* dummy matrix, so that changes aren't cumulative. */

for (i=0; i<INPUTSIZE; i++) dummyin{i] = inarr{i];
for (i=0, perctotal=0; 1<OBJSIZE; i++) perctotal += inarr(il];

for (i=0, wordtotal=0; 1<{OBJISIZE*SENTSIZE); 1++)
wordtotal += inarr[i+0OBJSIZE];

/* Excite from percept side */

/* to word side first. */
/* Note: OBJSIZE must be subtracted from j since intraweight */
/* starts the word side numbering from 0, while in inarr it */
/* starts at OBJSIZE. (Note: This applies here!) */

for (i=0; i<OBJSIZE; i++)
if (inarrfi] = 0)
‘ for (j=OBJSIZE; j<INPUTSIZE; j++)
dummyin{jl += inarr{il * perctoword[i][j-OBJSIZE};

/* now word -> percept */
for (j=OBJSIZE; 3J<INPUTSIZE; Jj++])
if (inarrfjl != 0}

for {(i=0; i<OBJSIZE; i++}
dummyinf{il += ipnarr{il * wordtoperc[i-OBJSIZE}{i};
/* Normalize percepts... */

/* Commented out, because this isn't the WTA way...

113

for (i=0, itotal=0, dtotal=0; i<OBJSIZE;
i ! i}, dtotal += durmmyin[il, i++};

[

normfact = dtotal / itotal;

for (i=0; 1i<OBJSIZE; i++)
dungnyin[i] = dummyin{i] / normfact;

End of commenting cut for WTA sake. */

/* this does wirnner-take-all */

/* for (i=1, winner=0; 1i<OBJSIZE; i++) {
if {dummyin{i] > dummyin[winner}])
winner = ij;

)
for (i=0; 1i<OBJSIZE; i++)
if (i==winner}
inarr[i] = MAXVALUE;
else
inarr[i} = MINVALUE; */

/* Jan 11 thresholding stuff */

for (i=0; 1<OBJSIZE; i++)
if (dummyin[i} > PERCTHRESH)
inarr[i} = MAXVALUE;
else
inarr[i] = MINVALUE;
/* ...and normali. e words. */

/* Commented out, because this isn't the WTA way...

for (j=OBJSIZE, itotal=0, dtotal=0; Jj<INPUTSIZE;
itotal += inarr[j]}, dtotal += dummyin[j], Jj++);

normfact = dtotal / itotal;

for (j=OBJSIZE; j<INPUTSIZE; Jj++)
dummyin[j] = dummyin[j] / normfact;

End of commenting out for WTA sake. */
/* this does winner-take-all */
i* for (i=0OBJSIZE+1, winner=O0BJSIZE; i<INPUTSIZE; i++) {

if (dummyin[i] > dummyin{winner])
winner = 1i;

}

for (i=OBJSIZE; i<INPUTSIZE; 1++)

if (i==winner}

inarr{i] = MAXVALUE;

else
inarrfil = MINVALUE; */

114

/* Jan 11 each sentence column, pick the winner (must be > THRESH)
and allow it to be MAXVAIUE */

for (j=0, k=CBJSIZE; J<SENTSIZE; j++} { /* for each column */
for {i=k+1, winner=k; i< (OBJSIZE+k);
if (dummyin{i} > dummyin[winner}])
winner = i;
for (1=k; 1i<{GBJISIZE+k); i++)
if {,i==winner)} && (dummyin[i] > SENTTHRESH))
inarr[i] = MAXVALUE;
else
inarr[i] = MINVALUE;
k += CBJSIZE;

s

i++) /* pick winner */

}

/* for (i=0; i<INPUTSIZE; i++)
if (inarr[i] <= MAXVALUE)
inarrf{i] = dummyin[i];
else
inarr[i] = MAXVALUE; */
}
float getratio(num_trials, count} /* Oct 7/92 */

int uum_trials, count;

/* This figures out the ratio fto use. PROP is the specified ratio,
num_trials is the number of trials to be done this simulation,
countdown is the number of trials left. */

{

int ratio;

int SCr;

/* Because integer divisicn rounds down (and I can't remember

what the C function is to do rounding up), we have to do some
tricky match to figure things out. Here, (80, 100] is 100%,
(60, 80] 1s 80%, etc.

*/

ratio = {1¢ * (num_trials-count)) / num_trials;

sct = 5 - (ratio/2):; /* This is [1..5]. */

return (PROP*scr*.2); /* Ok, so we return the specified learning

ratio times the %age of trials left
{represented in [1..5] * 20%. This should
werk... =) */
}
crosslearn{inarr, perctoword, wordtoperc) /* last rev. Nov 13/92 */
float inarr [INPUTSIZE],
perctoword[CBJISIZE] [{OBIJSIZE*SENTSTZE)],
wordtoperc[(OBISIZE*SENTSIZE)] [OBJSIZE];
{

int perc, word, i, onperc, onword;
float delta;

115

for |

if

for

/*
/*
/*
/*

/*
/*
/*

/*
/*
/*

i=0, onperc=0; i<OBJSIZE; i++) /* how many on in */
{(inarr[i] > ACTIVE) onperc++; /* percept side? */
(1=OBJSIZE, onword=0; i<INPUTSIZE; i++) /* how many on in */
if {inarr[i] > ACTIVE) onword++; /* word side ? */

/* learning loop: links */
/* from percept to word */

If the unit on the “word*

side is on, then links with */
all active "percept” units are strengthened. This is */
accomplished by, for a given word, borrowing weight */
from links to inactive percept units. */

The amount is calculated by taking PROP of the weight */

from each input line in to this word, divided by the */
number of active percept units. */

NOTE: Since this is for perctoword, the percept side */
of the imput layer serves as the "input layer", and */
the word side serves as the “upper layer®. */

for (word=OBJSIZE; word<INPUTSIZE; word++)

if {inarr[word] > ACTIVE) {

/* only active units learn */

for (perc=0; perc<OBJSIZE; perc++) {

printf {*Adjusting weights for Input Layer, Unit #%d\n",

/* each unit °"gives up® */

delta = PROP * - (perctoword|[perc] [word-OBJSIZE]);

if (inarriperc] > ACTIVE)
delta += PROP * (1.0/onperc);

perctoword{perc] [word-OBJSIZE] += delta;

/* learning loop: links */
/* from word to percept */

If the unit on the “"percept® side is on, then links */
with all active ®"word" units are strengthened. This */
is accomplished by, for a given percept, borrowing */
weight from links to inactive word units. */

NOTE: Since this is for wordtoperc, the word side of */
the input layer serves as the "input layer®, and the */
percept side serves as the “"upper layer®". */

for (perc=0; perc<OBJSIZE; perc++)

if (inarrtperc} > ACTIVE) {

116

J’*
i

only active units learn */

for (word=0OBJSIZE; word<INPUTSIZE; word++) {

/*
printf (*Adjusting weights for Input Layer, Unit #%d\n",
word) ;
*/

/* each unit *gives up" */
delta = PROP * - (wordtoperc|[word-OBJSIZE] [perc]);
if (inarr{word] > ACTIVE)

delta += PROP * (1.0/onword);
wordtoperc[word-OBJSIZE] [perc] -+= delta;
}
}
}

newcrossprop (inarr, perctoword, wordtoperc) /* alpha-test: Oct 28/92 */
/* last rev.: Nov. 16/92 */
float inarr[INPUTSIZE], perctoword[OBJSIZE] [(OBJSIZE*SENTSIZE)],
wordtoperc| (OBIJSIZE*SENTSIZE)] [OBJSIZE] ;

/* dummyin is 1 element larger, for sorting purposes */

float dtotal, itotal, normfact, dummyin{INPUTSIZE+1l];

int perctotal, wordtotal, maxtotal;
int i, j, k, flag, winner, wta[INPUTSIZE];
/* Technique COULD BE to only cause excitation on this level */

/* if one side or the other is empty of active units. However, */
/* it would be more general to apply mutual excitation without */

/* exception. The problem is how much excitation to apply... */

/* For now, just apply the potential of each unit * the weight, */

/* and directly add that to the potential on the other side. */

/* (Note that this is a first pass at this problem, and could */
/* end up being over-killish.) */

/* IN FACT, MAKE THIS WINNER-TAKE ALL, SO THAT THE WINNING */

/* UNIT GETS AN ACTIVATION OF 1, ALL OTHERS GET 0. */

/* However, be careful to do this "simultaneously®, using a */

/* dummy matrix, so that changes aren't cumulative. */

for (i=0; i<INPUTSIZE; i++) dummyin[i] = inarr[i]:

for (i=0, perctotal=0; i<OBJISIZE; i++)
if (inarr[i] > ACTIVE)} perctotal++;

for (i=CBJSIZE, wordtoctal=0; i<INPUTSIZE; i++)
if (inarr{il > ACTIVE) wordtotal++;

if (wordtotal > perctotal) /* to ensure correct # of active units */
maxtotal = wordtotal;

else
maxtotal = perctotal;

117

/* Excite from percept side */

/* to word side first. */
/* Note: OBJSIZE must be subtracted from j since intraweight */
/* starts the word side numbering from 0, while in inarr it */
/* starts at OBJSIZE. (Note: This applies here!) */

for (i=0; i<OBJSIZE; i++)
if (inarx[i] != 0)
for (j=0OBJSIZE; j<INPUTSIZE; J++)
dummyin[j] += inarr([i] * perctoword{i] [j-OBJSIZE];

/* now word -> percept */
for (j=OBJSIZE; Jj<INPUTSIZE; Jj++)
if (inarr[j] != 0)
for (i=0; 1<OBJSIZE; i++)
dummyin[i] += inarr(j] * wordtoperc[j-OBJSIZE] [i];

/* Normalize percepts... */
/* Commented out, because this isn't the WTA way...

for (i=0, itotal=0, dtotal=0; i<OBJSIZE;
itotal += inarr[i], dtotal += dummyin{i], i++);

normfact = dtotal , itotal;

for (i=0; i<OBJSIZE; i++)
dummyin[i] = dummyin[i] / normfact;

End of commenting out for WTA sake. */

/* this does winner-take-all */
/*
for (i=1, winnexr=0; i<OBJSIZE; i++) {
if (dummyin[i] > dummyin[winner])
winner = 1i;

)

for (1=0; 1<OBJSIZE; i++)
if (i==winner)
inarr{i] = MAXVALUE;
else
inarr([i] = MINVALUE;

*/

/* wta is an array containing the indexes of the largest percepts */
/* This does the winners-take-all stuff */

dummyin [INPUTSIZE] = -1.0;
for (i=0; i<INPUTSIZE; i++) wtali] = -1;

<maxtotal; i++) { /* find largest percepts */
winner=INPUTSIZE; j<OBJSIZE; j++) {
0

118

for (k=0; k<i; k++) /* use k to check wta */
if (wtalk] == j)
flag = -1;
if ((flag == 0) && (dummyin[j] > dummyin[winner]))
winner = j;
}
wta{i] = winner;

}
for (i=0; 1<OBJSIZE; i++) inarr[i] = 0.0;

for (j=0; j<maxtotal; j++)
for (i=0; 1<OBJSIZE; i++) /* threshold */
if ((i==wtal[j]) && (dummyin[i] > INPUTTHRESH))
inarr[i] += MAXVALUE;
else
inarr[i] += MINVALUE;
/* ...and normalize words. */

/* Commented out, because this isn't the WTA way...

for (j=OBJSIZE, itotal=0, dtotal=0; Jj<INPUTSIZE;
itotal += inarr([j], dtotal += dummyin[j], j++);

normfact = dtotal / itotal;

for (j=OBJSIZE; j<INPUTSIZE; j++)
dummyin[j] = dummyin[j] / normfact;

End of commenting out for WTA sake. */
/* this does winner-take-all */
/* for (i=0OBJSIZE+1l, winner=0OBJSIZE; i<INPUTSIZE; i++) (

if (dummyin[i] > dummyin[winner])
winner = 1i;

}

for (i1=0OBJSIZE; i<INPUTSIZE; i++)
if (i==winner)
inarr[i] = MAXVALUE;
else
inarr{i] = MINVALUE; */

/* wta is an array containing the indexes of the largest words */
/* This does the winners-take-all stuff */

dummy in [INPUTSIZE] = -1.0;

for (i=0; i<INPUTSIZE; i++) wtal[i] = -1;

for (i=0; i<maxtotal; i++) { /* find largest words */
for (j=OBJSIZE, winner=INPUTSIZE; j<INPUTSIZE; j++) {

flag = 0;
for (k=0; k<i; k++) /* use k to check wta */

119

if (wtalk] == j)

flag = -1;
if ((flag == 0) && (dummyin[j] > dummyin[winner]))
winner = Jj;
}
wta[i] = winner;
}
for (i=OBJSIZE; i<INPUTSIZE; i++) i1narr[i] = 0.0;

for (j=0; j<maxtotal; j++)
for (1i=0OBJSIZE; i<INPUTSIZE; 1i++) /* threshold */
if ((i==wta[j]) && (dummyin[i] > INPUTTHRESH))
inarr[i] += MAXVALUE;
else
inarr{i] += MINVALUE;

for (i=0; i<INPUTSIZE; i++) /* check for strange cases */
if (inarr[i] > MAXVALUE)
inarr[i] = MAXVALUE;

)

7 fany(uni;, topunit, topweight, winner)
float unit [CLUSTNUM] [NUMUNITS], topunit [NUMTOP],
topweight [CLUSTNUM] [NUMUNITS] [NUMTOP] ;

int *winner;
int big, cnum, unit_num, 1i;

for (i=0; i<NUMTOP; i++) {
topunit[i] = 0;

for (cnum=0; cnum<CLUSTNUM; cnum++)
for (unit_num=0; unit_num<NUMUNITS; unit_num++)
topunit[i] +=
(topweight [cnum] [unit_num][i] * unit[cnum] [unit_num]);
printf (*"tu value is %.3f\n", topunit(i]);
}
printf (*\n");

/* for (i=0; i<NUMTOP; i++)
printf (*Unit %d in top layer has value: %f\n*, i, topunit[il]);

for (i=1l, big=0; i<NUMTOP; 1i++) /* set winner */
if (topunit([i] > topunit[big])}
blg = i,‘
/* (Commented out. - preserve values for use in main program) */

for (i=0; i<NUMTOP; i++)
if (i == big)

topunit[i] = MAXVALUE;
else ,
topunit[i] = MINVALUE;
A printf (*TU #%d wins\n",big); */

120

*/

winner = /-1%*/big;

121

/i*************i/

/* printout.c Jan. 12, 1993
L Kenward Chin

/*

/* Early on, this was used for printing out the state of the

/* network after training was done. It turned out to be inadequate for

/* the job, but is still called by the main progam (the actual code has been
/* commented out).

/* '

/***************/

#include "prog.h*

printout (weight, topweight)
float weight [CLUSTNUM] [NUMUNITS] [INPUTSIZE],
topweight [CLUSTNUM] [NUMUNITS] [NUMTOP] ;

int cnum, unit_num, i, j, k;
-float percent, sort[CLUSTNUM] [NUMUNITS] [INPUTSIZE];

/* for (cnum=0; cnum<CLUSTNUM; cnum++)
for (unit_num=0; unit_num<NUMUNITS; unit_num++) {
for (i=0; 1<INPUTSIZE; 1i++)
sort [cnum] [unit_num] [i] = weight[cnum] [unit_num] [i];
dosort (sort, cnum,unit_num) ;

}

for (cnum=0; cnum<CLUSTNUM; cnum++) {
printf ("cluster %d\n", cnum);
for (unit_num=0; unit_num<NUMUNITS; unit_num++) {
printf(*unit %d4*, unit_num);
space ((CLUSTNUM*5) -2) ;
}
printf("\n"});

for (i=0; 1i<ROWSIZE; 1i++) {
for (3=0; Jj<NUMUNITS; j++)
for (k=(i*(2*ROWSIZE)); k < ((i+1)*(2*ROWSIZE}); k++) {
if (weight[cnum] [j][kK] > sort[cnum][j] [ROWSIZE])
printf("0");
else if (weightcnum][j][k] > sort[cnum][j][24])
printf{*.");
else
printf(* ®*);
}
printf(*® *);
) .
printf{("\n");
}
printf("\n");
) i
*/

/> printf(*\nTop weights:\n*");
for (unit_num=0; unit_num<NUMTOP; unit_num++) {
printf(*unit %d4d*, unit_num);
space ((NUMUNITS*5)+3) ;

122

}
printf(*\n*");

for (i=0; i1«CLUSTNUM; i++) {
for (k=0; k<NUMTOP; k++) {
for (j=0; Jj<NUMUNITS; j++)
printf(*%.3f *,topweight[1i][j][k]);
printf (" vy,

}
printf(*\n");
}
printf(*\n");
*/
}
space (numspace)
int numspace;
{
int i;
for (i=0; i<numspace; i++)
printf (" ");
}

dosort (sort, cnum,unit_num)
float sort [CLUSTNUM] [NUMUNITS] [INPUTSIZE] ;

int cnum, unit_num;
{
int i, j, loc;
float big, swap;
for (i=1; i<INPUTSIZE; i++) |
for (j=i, big=sort[cnum] [unit_num][i-1], loc=i-1; F<INPUTSIZE; j++)
if (sort[cnum] [unit_num][j] > big) {
big = sort[cnum] [unit_num][Jj];
loc = 3;
}
swap = sort[cnum] [unit_num] [1-1];
sort [cnum] [unit_num] [i-1] = sort[cnum] [unit_num] [loc];
sort [cnum] [unit_num] [loc] = swap;
}
}

123

/*****t*********/

/* prog.

/*
J*
/*
/*

h

/***************/

#include <curses.h>

#define
#define
#define

#idefine
#define
f#define

#define
#define
#define
#define
#define

f#idefine
#define
#define
#define
#define

#define

#define
#define

##idefine
#define
#define

#define

Jan. 12, 1993
l—\-:n

Kenward Chin

This contains #defines used throughout the program.

CLUSTNUM i5 /* # of layer 2 clusters */
NUMUNITS 15 /* # of units per cluster */
NUMTOP i5 /* # of layer 3 units */
NOISEPERC O /* # of spurious percepts */
NOISEWORD ¢ /* # of spurious words */
SENTTYPES 2 /* # of sentence types */
/* N-Vt-N, N-Vi */

ROWSTIZE 15 /* ROW/COLSIZE = length of */
COLSIZE 1 /* row/col in input array */
OBJSIZE OWSIZE*COLSIZE /* field size for patterns */
SENTSIZE 3 /* # of possible wd locations */
INPUTSIZE {(SENTSIZE+1l} * OBJSIZE /* size of entire array */
MINVALUE 0.0
MAXVALUE 1.0
ACTIVE 0.5)
INPUTTHRESH 5.0 /* garbage value, for now */
PERCTHRESH - 0.1/%*0.2%*/ /* threshold for winning in

percept column */
SENTTHRESH (.2 /* threshold for winning in

HIDDENTHRESH 0.5

TOPTHRESH 0.5

HUMAN 0

COMPUTER 1

HUMANTRAIN -9

MAXTINT OxXT7TEEFEFFff

124

sentence columns */

/* thresh for hidden layer */

/* thresh for top layer */

/* for cgetinput.c */

EEEE X E L & &5 £ & L 5 &
/ /

/* random.c Jan. 12, 1993

/* Kenward Chin

/*

/* This is just a small pseudo-random number generator. It is used

/* in concert with initializing values set up in the main program.
/*

/***************/

#include “prog.h”

float rand{max)
int max;

{
float val;

val = 1.0*{random())/ ((int)MAXINT) ;

if {(max == 0} /* return x in [0,1}] */
return{val};

else /* return x in [1,max] */
return{ {int} (val * max) +1);

125

/***************/

/* tokens.h Jan. 12, 1993

/* Kenward Chin

/*

/* This contains the static set-up for the representations of

/* words (tokens) and percepts (objects). Terminology has changed

/* over the course of the work, but the types have remained the same.
[I*

/***************/

#include "prog.h"

/*
To do the tokens properly, we must decide on a number of nouns and verbs
{both transitive and intransitive). For now, we will adopt a simplistic

set of constraints:

Sentences will consist of one of two types:
1. Noun-transitive verb-noun
2. Noun-intransitive verb.
The same noun may appear in both subject and object position.

*/

~ #define NUMNOUNS 6 /* John, Baby, Ball, Cat, Girl, Mary */
#define NUMTVERBS 5 /* Kicks, Kisses, Breaks, Hugs, Gets */
#define NUMIVERBS 4 /* Runs, Sleeps, Walks, Falls */
#define NUMOBJS NUMNOUNS + NUMTVERBS + NUMIVERBS
#define STRLEN 10 /* maximum string length */
/-

Note that while the vectors are given as horizontal, they are actually
implemented as vertical vectors. The appearance here is merely to
save space.

*/

static char lexicon[NUMOBJS][STRLEN] =
{ *John", "Baby"®, "Ball"; ’ /* Nouns */
*Cat”, “Girl®", °“Mary",
“Kicks", "Kisses", "Breaks®", "Hugs", "“Gets", /* Tverbs */
Runs, "Sleeps*, "Walks", "Falls® /* Iverbs */
};

static float object [NUMOBJS] [OBJSIZE] =
‘) ’ /* Nouns */

{ { 11 0: Or 01 01 01 O: 0: 0, O: 0, 0, O, 0, 0}1 /* John */
{ 0,1, 0,0, 0, 0,0 0,0 0,0 0,0, 0, 0}, /* Baby */
(0, 0, 1, 0, 0, 0,0, O, O, O, 0, O, O, O, 0}, /* Ball */
{ 0 0, 0, 1, 0, 0, O, O, O, O, O, O, O, O, 0}, /* cat */
{ 0, 0, 0,0, 1 0, O, 0, O, O, O, O, O, O, 0}, /* Girl */
{ o0 o9, 0,690,0, 1 0 0 0, O, O,, 0, O, O, 0}, /* Mary */

/* Tverbs */

{ o060, 0,.0,-0, 0, 2, 0, O, O, O, O,-0, 0, 0}, /* Kicks */
(o0, 0,0,0,0,0,°601,0, 0, 0, 0,0, 0, 0}, /* Kisses */
¢ o0, 0, 0, 6, 0, 0, O, O, 1, O, O, 0, O, O, 0}, /* Breaks */
{ 0,090,490, 0, 0%0290,0,1 0 0, 0, 0, 0}, /* Hugs */
{.o060,90,90,90,90, ¢ 0,0 0 1, 0,0, 0, 0}, /* Gets */

/* Iverbs */
{ o0, 0, 0, O, 6, 0, 0, O, O, O, 0, 1, 0, 0, 01, /* Runs */
(0,000 0,0 0 0,0, 0 0,0, 1, 0, 0}, /* Sleeps */
{ o0, 0, 0, 0, G, 0, O, O, O, O, 0, 0, 0, 1, 01, /* Walks */
{ 0, 0, 0, O, 0, 0, O, 0, O, O, O, O, 0, 0, 1) /* Falls */

};

/*
The "t*® preceding each description indicates that the activation vector
is in this case a ®"token®, ie. the pattern which will appear in the RHS
of the input array. For simplicity's sake, the token vectors are
identical to the corresponding object vectors {(this could be changed,
and the functionality would be preserved.

*/

static float token[NUMOBJS] [OBJSIZE] =
/* Nouns */

{ ¢ 1, o0, 0, 0, .0, 0, 0, O, O, O, O, O, O, O, 0}, /* tJohn */
{ 01, 6o0,60, 0, 0, 0, O, O, O, O, O, O, O, 0}, /* tBaby */
{ o0 0,11, 0, 0, 0, 0, 0, 0, 0, O, 0, 0, 0, 0}, /* tBall */
{ o0, o0, 0, 1, 0, 0, 0, 0, 0, 0, O, 0O, O, 0, 0}, /* tcat */
{ o0, 0, 0, O, 1, O, 0, O, G, 0, 0, 0, 0, O, 0}, /* tGirl */
{ o0, 0, 0, 0, 0, 1, 0, 0, O, O, O, O, 0, O, 0}, /* tMary */
/* Tverbs */
{ o0, 0, 0, 0, 0, 0, 1, 0, 0, 0, O, 0, 0, 0, 0}, /* tKicks */
{ o0, o0, 0, 0, 0, 0, 0, 1, 0, 0, O, 0, 0O, 0, 0}, /* tKisses */
{ Or 01 OI Ol Ol OI 01 01 11 Ol 01 01 0, 0, 0), /* tBreaks */
{ o0, 0, 0, 0, 0, O, O, O, 6, 1, O, O, O, 0, 0}, /* tHugs */
{ o0, 0, 0, 0, 0, 0, 0, O, O, O, 1, 0, O, 0, 0}, /* tGets */
/* Iverbs */
{ o0, 0, 0, 0, 0, 0, O, 0, 0, 0, O, 1, 0, 0, 0}, /* tRuns */
{ o0, 0, 0, 0, 0, 0, 0, O, O, 0, O, O, 1, 0, 0}, /* tSleeps */
{ 6, 0, 0, 0, 0, 0, O, 0, O, O, 0, O, O, 1, 0}, /* tWalks */
{ o0, 0, 0, 0, 0, 0, 0, 0, 0O, O, O, 0, 0, 0, 1} /* tFalls */
}i:

127

BIBLIOGRAPHY

Elman, J. L. (1989). Representation and structure in connectionist models. CRL
Technical Report 8903, Center for Research in Language, University of California,

San Diego, CA.
Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14, 179-212.

Feldman, J. A. & Ballard, D. H. (1982). Connectionist models and their properties,
Cognitive Science, 6, 205-254.

Fodor, J. A. & Pylyshyn, Z. W. (1988). Connectionism and cognitive architecture: A
critical analysis. In S. Pinker & J. Mehler (Eds.), Connections and Symbols.

Cambridge, MA: MIT Press.

Hadley, R. F. (1992). Compositionality and systematicity in connectionist language
learning. CSS-IS Technical Report 92-03, Centre For Systems Science, Simon
Fraser University, Burnaby, British Columbia, Canada.

Hebb, D. O. (1949). The organization of behaviour: A neuropsychological theory. New
York: Wiley.

Jordan, M. I. (1986). Serial order: A paraliel distributed processing approach. Institute
for Cognitive Science Report 8604, University of California, San Diego, CA.

McCleliand, J. L. & Kawamoto, A. H. (1986). Mechanisms of sentence processing:
Assigning roles to constituents of sentences. In D. E. Rumelhart, J. L.
McClelland, and the PDP Research Group (Eds.), Parallel distributed processing:
Explorations in the microstructure of cognition, Volume 1. Cambridge, MA: MIT

Press.

Moeser, S. D. & Bregman, A. S. (1973). Imagery and language acquisition, McGiil
University, Montreal, Quebec, Canada: Academic Press, Inc.

Naigles, L. G, Gleitman, H., & Gleitman, L. R. (1987). Syntactic bootstrapping in verb
acquisition: Evidence from comprehension. Technical Report, Department of
Psychology, University of Philadelphia, Pennsylvania.

Paivio, A. (1971). Imagery and language. In S. Segal (Ed.), Imagery: Current cognitive
approaches. New York: Academic Press.

Rosenblatt, F. (1962). Principles of neurodynamics: Perceptrons and the theory of brain
mechanisms. Washington: Spartan Books.

Rumelhart, D. E., Hinion, G. E. & Williams, R. J. (1986). Learning internal
representations by error propagation. In D. E. Rumelhart, J. L. McCleliand, and

the PDP Research Group (Eds.), Parallel distributed processing: Explorations in the
nucrosn'ucture of cognition, Volume 1. Cambndge MA: MIT Press.

128

Rumelhart, D. E. & Zipser, D. (1986). Feature discovery by competitive learning. In
D. E. Rumelhart, J. L. McClelland, and the PDP Research Group (Eds.), Parallel
distributed processing: Explorations in the microstructure of cognition, Volume 1.
Cambridge, MA: MIT Press.

Smolensky, P. (1988). On the proper treatment of connectionism. The Brain and
Behavioral Sciences, 11.

St. John, M. F. (1992). Learning language in the service of a task. Proceedings of the
14th Annual Conference of the Cognitive Science Society. 271-276, Bloomington,
Indiana.

St. John, M. F. & McClelland, J. L. (1990). Learning and applying contextual
constraints in sentence comprehension. Artificial Intelligence, 46, 217-257.

Weckerly, J. & Elman, J. L. (1992). A PDP approach to processing center-embedded

sentences. Proceedings of the 14th Annual Conference of the Cognitive Science
Society. 414-419, Bloomington, Indiana.

129

