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Abstract 

A visibility relation can be viewed as a graph: the uncountable graph of a visibility 

relationship between points in a polygon P is called the point visibility graph (PVG) 

of P. In this thesis we explore the use of perfect graphs to characterize tractable 

subproblems of visibility problems. Our main result is a characterization of which 

polygons are guaranteed to  have weakly triangulated PVGs, under a generalized no- 

tion of visibility called 0-visibility. 

Let 0 denote a set of line orientations. Rawlins and Wood call a set P of points 

0-convex if the intersection of P with any line whose orientation belongs to  0 is 

either empty or connected; they call a set of points 0-concave if it is not 0-convex. 

Two points are said to be 0-visible if there is an 0-convex path between them. A 

polygon is 0-starshaped if there a point from which the entire polygon is 0-visible. 

Let 0' be the set of orientations of minimal 0-concave portions of the boundary of 

P. Our characterization of which polygons have weakly-triangulated PVGs is based 

on restricting the cardinality and span of 0'. This characterization allows us to exhibit 

a class of polygons admitting an O(ns) algorithm for 0-convex cover. We also show 

that for any finite cardinality 0 ,  0-convex cover and 0-star  cover are in NP, and 

have polynomial time algorithms for any fixed covering number. Our results imply 

previous results for the special case of 0 = { 0,90 ) of Culberson and Reckhow, and 

Motwani, Raghunathan, and Saran. 

Two points are said to be link-2 visible if there is a third point that they both see. 

We consider the relationship between link-2 0-convexity and 0-starshapedness, and 

exhibit a class of polygon/orientation set pairs for which link-2 0-convexity implies 
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Chapter 1 

Introduction 

1 1 Definitions 

This chapter contains some required definitions, a review of the some of the relevant 

previous work on visibility, polygon covering, and perfect graphs, and an overview of 

the organization of this thesis. We start with some standard geometric and graph 

theoretic definitions. 

In this thesis all geometric objects under consideration are sets of points in the 

Euclidean plane. A polygonal curve denotes an ordered set of points ( vl, vz . . . v, ) 

called vertices and a set of line segments { -,2)2V3. . .2),_12),) called edges. A polyg- 

onal curve is called closed if it has at least 3 vertices and its first and last vertices 

are identical. A polygonal curve S is called simple if no point in the plane belongs to 

more than two edges of S, and the only points that belong to two edges are vertices of 

S.  We use the term path to denote a simple polygonal curve. We define the in ter ior  

of a path or line segment to mean the path or segment exclusive of its endpoints. 

A simple closed polygonal curve divides the plane into three regions: the bounded 

interior, the unbounded exterior, and the curve itself. We use the term s imple  polygon 

to denote a simple closed polygonal curve along with the interior of the curve. The 

polygonal curve bounding a simple polygon P is called the boundary of P. Unless 

otherwise specified, we take "polygon" to mean "simple polygon"; furthermore, we 

use "polygon" to refer interchangeably to the representation of a polygon P as a 
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Figure 1.1: A proper crossing S3 of two curves Sl and S2. 

polygonal curve and to the point set consisting of the union of the boundary of P and 

the interior of P. A polygon is called orthogonal if it has only vertical and horizontal 

edges. 

A maximal line segment in a polygon P that does not intersect the exterior of P 

is called a chord of P. The shortest path between two points a: and y in a polygon 

P that does not intersect the exterior of the polygon is called the geodesic between x 

and y. 

The neighbourhood of any point on the interior of a curve has two well defined 

sides. We use this notion of side to distinguish two kinds of local curve intersection. 

Let int(S) denote the interior of a curve S. A tangency of two curves S1 and Sz 

denotes a curve S3 int (Sl) n int (S2) such that as we traverse S1 from one endpoint 

to the other, S2 is on the same side of Sl in the neighbourhood of the first endpoint 

encountered as in the neighbourhood of the second endpoint of S3. If S3 is a tangency 

for Sl and S2, we say that S1 is tangent to S2 at S3. A proper crossing of two curves 

S1 and S2 denotes a curve S3 & J Sl n JS2 such that as we traverse Sl from one 

endpoint to another, S2 is one side of Sl in the neighbourhood of the first endpoint of 

S3 encountered, and on the other side of Sl in the neighbourhood the second endpoint 

of S3 encountered (see Figure 1.1). 

A closed polygonal curve S is called weakly simple if any pair of distinct points in S 
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Figure 1.2: A polygon with a narrow neck. 

divides S into two polygonal curves that have no proper crossings and the total angle 

traversed when S is traversed from any point on S is equal to 360 degrees. Like simple 

polygons, weakly simple polygonal curves have a well defined interior and exterior. A 

weakly simple polygon is defined to be a weakly simple closed polygonal curve, along 

with the interior of the curve. If a weakly simple polygon P is not simple then some 

pair of points on the boundary must divide the boundary of P into two polygonal 

curves that have at least one tangency; these intersections may be considered the 

limiting case of polygons with narrow "necks" (see Figure 1.2). 

In this thesis we shall in particular be interested in the weakly simple subpolygons 

defined by a chord of a simple polygon. These half polygons consist of a single base 
-- - 

edge F,  a set of (possibly zero length) segments ( lro, llrl ,  . . . lkr ) collinear with 7f 
and a set of non-intersecting simple polygonal chains (PI . . .PI, ) where P; joins I; to 

r ; - ~  (see Figure 1.3). If a half polygon Q contains only one polygonal chain Pi, then 

Q is called a hat polygon (see Figure 1.4). The zero width regions of Q between & 
and the base edge and between and the base edge are called the brim segments of 

Q . 
The notion of orientation will play a crucial role in this thesis. We will be inter- 

ested in the orientation of lines, line-segments, and structures within a polygon. The 

orientation of a line denotes the smallest angle that the line makes with the positive 

x-axis. Since lines are undirected, we assume that all line orientations are in the range 
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Figure 1.3: A half polygon. 

Figure 1.4: Some example hat polygons. 
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[0•‹, 180"). All other objects will have orientations in the range [0•‹, 360"). We assume 

that normal conventions of modulo arithmetic on orientations; that is we take the 

range [a0, bO] to mean the range [(a mod 360)", (b mod 360)"]. If a > b, then we take 

[a, b] to mean [0•‹, 360") \ [b ,  a]. Analogous rules apply to ranges open on one or both 

ends. Given a set of orientations O', we define the span of 0' to be the smallest angle 

o such that 

(36) 0' C [O, 6 + a]. 
We now define some necessary graph theoretic terms. See [8] for any omitted graph 

theoretic definitions. A directed graph (digraph) G is defined to be a pair (V, A) where 

1. V is a set called the vertices of G, and 

2. A is a subset of V x V called the arcs of G. 

If (x, y) is an arc of of a digraph G, we write x 4 y or just x + y where the digraph 

G is understood from context. 

A subgraph of a digraph G denotes a pair (V', A') such that V' C V and A' C A. 

If H = (V', A') is a subgraph of G and for any pair of vertices x and y of H ,  

then H is called an induced subgraph of G. 

An ordered set of arcs S = ( (vO, vl), (vl, v2), . . . ( ~ k - ~ ,  vk) ) is called a path (k -~a th )  

from vo to vk. If v0 = vk then S is called a cycle (k-cycle). If every vertex occurs in 

at most two arcs, then S is called simple. If 

(i + 1 $ j mod k) + v; f t  vj 

then S is called a chordless k-cycle. A digraph that contains no cycles is called an 

directed acyclic graph (DAG). A DAG G = (V, A)  that contains IVI - 1 edges and a 

vertex r such that there exists a path from r to every other vertex in G is called a 

tree; r is called the root of G. 

A digraph G = (V, A) is called a undirected graph (graph) if 
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Given an undirected graph G, if (v, v') and (v', v) are arcs of G, we say that { v, v' ) 

is an edge of G, and denote the edge as vv' or v'v interchangeably. If vv' is an edge of 
G G we say that v and v' are neighbours in G and write v v' or just v v' where the 

graph G is understood. The set of vertices of a graph G will be denoted V(G) and 

the set of edges will be denoted E(G). An undirected graph G is equivalently defined 

by the pair (V, E )  where V = V(G) and E = E(G). Unless otherwise specified, all 

graphs in this thesis are undirected. 

The square of a graph G = (V, E )  is a graph G' = (V, El) where 

Given a graph G = (V, E), we say that vertices vo and vl are equivalent and 
N 

write vo - vl if vo and vl have the same neighbours in G. The maximal equivalence 

classes of the relation "2" are called the vertex equivalence classes of G. Two vertex 

equivalence classes Vo and & are said to be adjacent if 

A graph H is called the quotient graph of a graph G if each vertex of H corresponds 

to a vertex equivalence class of G and there is an edge between two vertices vo and vl 

of H if and only if the corresponding vertex equivalence classes are adjacent. If each 

vertex of H is labeled with the cardinality of the corresponding vertex equivalence 

class, H is called the labeled quotient graph of G. 

Let G be a graph. Let w(G), the clique number of G, denote the size of the largest 

complete subgraph of G. Let x(G), the chromatic number of G, denote the minimum 

number of colours needed to colour G. Let a(G), the independence number of G, 

denote the size of the largest independent set of G. Let k(G), the clique cover number 

of G, denote the minimum number of cliques needed to cover G. 
G A graph G is called reflexive if for any vertex v of G, v N v. Let G be a reflexive 

graph. Let H be the quotient graph of G. Let G be the graph theoretic complement 

of G. We shall make use of the following facts: 
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In this thesis we are concerned with both finite and infinite graphs. For notational 

convenience, let No denote the cardinality of the integers and N1 the cardinality of 

the reals (in this thesis we do not assume the continuum hypothesis). A graph will 

be called finite if IV(G) U E(G)I is finite, countable if IV(G) U E(G)I = No and 

uncountable if the cardinality of IV(G) U E(G)I > N1. For a treatment of infinite 

graphs, see [14, 33, 341. Unless otherwise specified, graphs in this thesis are finite. 

1.2 Perfect Graphs 

Many graphs theoretic problems are "universal" in the sense that many problems can 

be reduced to them. For example, Roberts [39] gives the following problems that can 

be reduced to finding the chromatic number of a graph: meeting scheduling, register 

allocation in compilers, television and radio frequency assignments, and garbage truck 

routing. Unfortunately these same universal graph theoretic problems are often NP- 

Hard on general graphs. The most common solution is to show that the graphs 

that arise from a particular problem belong to some "nice" subclass for which the 

graph theoretic problem is tractable. Examples of such classes of graphs include 

trees, bipartite graphs, triangulated graphs, tree decomposable graphs, planar graphs, 

interval graphs, circular arc graphs, and maximal outerplanar graphs. A class of 

graphs that contains many of these classes is the class of perfect graphs. Let GA 

denote the subgraph of G induced by the vertex set A. A graph G is called X-perfect 

if 

(VA 2 v(G))  ~ ( G A )  = ~ ( G A ) .  

A graph G is called a-perfect if 



CHAPTER 1.  INTRODUCTION 8 

A graph is called perfect if it is both a-perfect and X-perfect. The notions of a -  

perfection and x-perfection were introduced by Berge [5, 61, who conjectured that a 

graph was a-perfect if and only if it was X-perfect. Lov6sz proved the following: 

Theorem 1.1 (Lov6sz[28]) For a finite undirected graph G = (V, E), the following 

statements are equivalent: 

( r l )  G is X-perfect, 

(r2) G is a-perfect, 

(r3) (VAG V )  w ( G A ) ~ ( G A )  2 IAl. 

For uncountable graphs, the equivalence of a-perfection and X-perfection does not 

hold. Furthermore, classes of uncountable graphs that are generalizations of classes of 

finite perfect graphs to the uncountable case are not necessarily a-perfect o r  X-perfect 

PI - 
Grotschel, Lov6sz and Schrijver [21] provided a polynomial algorithm based on the 

ellipsoid method for the problems of maximum clique, chromatic number, independent 

set, and clique cover on perfect graphs. Furthermore, many efficient and practical 

polynomial algorithms are known for subclasses of perfect graphs [7, 201. 

A hole is a chordless cycle in a graph of size greater than 3. An antihole is a 

hole in the complement graph, or the graph theoretic complement of a hole. A graph 

is called triangulated if it contains no hole of size greater than 3. A graph is called 

weakly triangulated if it contains no hole or antihole of size greater than 4. Hayward 

[24] has shown that finite weakly triangulated graphs are perfect. Since a 5-antihole is 

a 5-hole and any antihole of size greater than 5 contains a 4-hole, triangulated graphs 

are weakly triangulated. Raghunathan [36] found an algorithm that finds a maximum 

clique and a minimum colouring of a weakly triangulated graph G = (V, E) in 0 ( e v 2 )  

time where e = IEI and v = IVI. 



CHAPTER 1. INTRODUCTION 

Visibility 

Visibility is a central notion in computational geometry. Informally, visibility prob- 

lems are concerned with whether or not pairs of geometric objects within a set of ob- 

stacles can "see" one and other. Recent research has considered generalized visibility 

or "reachability" problems, where the notion of straight line visibility is generalized to 

reachability by some sort of constrained path. In this section we review the traditional 

notion of visibility, and some of the generalizations of visibility that researchers have 

investigated. In particular we describe the notion of restricted orientation visibility 

that this thesis investigates. 

Two points x and y in a polygon P are said to be visible if the line segment 

between them does not intersect the exterior of P. A set of points P is said to be 

convex if every pair of points in P is visible. A set of points P is said to be starshaped 

if P contains some point k from which all of P is visible. A set H of points in P is 

called a hidden set if no pair of points in H is visible. 

Several authors have considered alternative notions of visibility, that is relation- 

ships between points in a polygon that preserve some of the essential features of 

visibility. Munro, Overmars, and Wood [32] investigated region visibility in point 

sets where two points are considered visible if there is a region having some property 

(e.g. a square) containing only those two points. Shermer and Toussaint consider 

[46] geodesic visibility where two points x and y are considered geodesically visible 

with respect to a a subpolygon Q of a polygon P if the geodesic (in P) between them 

is contained in Q. Schuirer, Rawlins, and Wood [40] consider visibility in abstract 

convexity spaces. 

Orthogonal polygons are commonly studied in computational geometry both be- 

cause many problems intractable or open on general polygons become tractable on 

orthogonal polygons, and because they arise in many important applications (e.g., in 

VLSI and image processing). Keil [26], Culberson and Reckhow[l3], and Motwani, 

Raghunathan, and Saran [30, 311 investigated the notion of orthogonal visibility in 

orthogonal polygons. In many applications not only the boundary but also internal 

paths (e.g. wires in a chip) are constrained to be chains of orthogonal line segments; 
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I 

Figure 1.5: An orthogonally convex polygon 

in this case it becomes natural to say that two points x and y are orthogonally visible 

if there is a path between them that is monotone with respect to both axes (see Figure 

1.5), since no shorter path is realizable under the constrained geometry. A polygon 

P is called orthogonally convex if every pair of points in P is orthogonally visible (see 

Figure 1.5); this is equivalent to requiring that the intersection of P with any horizon- 

tal or vertical line be empty or connected. A polygon P is called an orthogonal star 

if there exists some set of points Ii' in P such that every point in P is orthogonally 

visible from each point in Ii'. 
Recent VLSI designs, motivated by the need for increased device density, allow line 

segments to have additional orientations [9, 291. Widmayer et al. [49] and Souvaine 

and Bjorling-Sachs [47] find efficient algorithms for several polygon union and inter- 

section problems where the edges of the input polygons are restricted to  have some 

bounded number of orientations. Rawlins and Wood [37, 381 generalized orthogonal 

convexity to the notion of restricted orientation convexity, or 0-convexity. Let O 

denote a fixed, but unspecified set of line orientations. A line is called an 0-line if 

it has an orientation in 0 .  A set P of points is called 0-convex if the intersection of 

P with any 0-line is either empty or connected (see Figure 1.6). A set P of points 

is called 0-concave if it is not 0-convex. A finite 0-convex path is called a stair- 

case. Restricted orientation convexity is a generalization of both orthogonal convexity 

(0 = { 0•‹, 90" )) and the standard notion of convexity ( 0  = [0•‹, 180") ). 
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Figure 1.6: A polygon that is 0-convex for 0 = {0• ‹ ,  45", 90•‹, 135' ) 

We may assume without loss of generality that any set 0 of orientations contains 

a pair of orthogonal orientations. Following Rawlins [37], for any line orientation 0 

we define an orthogonalizing transformation To follows: 

sin 0 
T o = [  - cos6 0 1 .  1 

The transformation Te maps horizontal lines to horizontal lines and lines with ori- 

entation 6 to vertical lines. Let To($) denote the orientation in the transformed 

space of line with orientation q5 in the untransformed space. Let as denote the 

set { Te(q5) I q5 E 0 ). Since an orthogonalizing transformation is afine (see [17]), 
collinearity and the order of points along a line is preserved in the transformed space. 

Observation 1.1 A set of points P is 0-convex if and only if Te(P) is 6e-convez 

for any 6. 

We may assume without loss of generality that some orientation $ in any set 

0 of orientations is 0". By Observation 1.1, we may assume that any other single 

orientation in 0 is orthogonal to 4. 
For paths, the following alternative characterization of 0-convexity will prove 

useful: 
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Observation 1.2 A path S is 0-convex if and only if there is no 0-line tangent to 

the interior of S .  

Given two points x and y in a polygon, we say that x is 0-visible to y (x sees 

y)  and write x ~ y  if there is a staircase between x and y that does not intersect the 

exterior of the polygon. The following lemma establishes the standard relationship 

between visibility and convexity: 

Lemma 1.3 (Rawlins and Wood [38]) If a point set P is connected, then P is 

0-convex i f  and only if for any pair of points p and q in P I  p sees q.  

In this thesis we are concerned with 0-visibility inside polygons. Our main results 

are for finite 0, but we investigate within as general a framework as possible, and 

some of our results provide insight into the combinatorial structure of 0-visibility for 

infinite 0, including traditional straight line visibility. Our definition of 0-visibility is 

slightly at variance with that given in [37, 381 since we require paths to be polygonal 

and Rawlins and Wood do not. Within a polygon, however, the two definitions are 

equivalent. 

A set of points I< contained in a polygon P is called the 0-kernel of P if every 

point in P is 0-visible from each point in I<. A polygon is called 0-starshaped if 

it contains a non-empty 0-kernel. The smallest 0-convex polygon Q that contains 

a polygon P is called the 0-hull of P.  Rawlins [37] provides efficient algorithms 

for computing the 0-kernel and the 0-hull of a polygon when 0 consists of a finite 

number of closed ranges. 

Research on visibility has to a great extent taken a combinatorial approach- the 

general technique has been to reduce these geometric problems to problems on graphs 

and then apply algorithmic results from graph theory. In addition to providing insight 

into the computational complexity of visibility problems, this approach separates the 

combinatorial aspects of a problem from the geometric aspects. This is desirable, 

because geometric algorithms are prone to representational difficulty and numerical 

instability. 

Shermer [43] introduced the notion of a point visibility graph as a unifying com- 

binatorial framework for visibility problems. The point visibility graph (PVG) of a 
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polygon P denotes the uncountable graph G = (V, E) whose vertices are the points 

of P and whose edges are exactly those pairs (x, y )  for which x is visible to y  in 

P. Many visibility problems can be viewed as combinatorial problems on the PVG 

but the infinite size of these graphs prevents a straightforward application of graph 

theoretic algorithms. The combinatorial approach to visibility problems in the lit- 

erature can be viewed as embodying two methods for dealing with the continuous 

nature of PVGs. The first method is to consider particular finite subgraphs of the 

PVG, most commonly those induced by the vertices of the polygon [16, 191. Although 

results on specific problems have been obtained with this method, in general the finite 

substructures involved fail to capture many important visibility properties. The sec- 

ond method is to find classes of polygons, and appropriate definitions of visibility, for 

which there is a finite combinatorial representation for the entire PVG [13, 30,43,45]. 

Herein we are concerned with this second method. 

1.4 Polygon Covering 

Polygon covering is a class of problem closely associated with visibility problems. For 

any property II  of a set of points, the II-covering problem is defined as follows: 

Instance: A polygon P and an integer k. 

Question: Does there exist a family & of subsets of P such that 

1. Each element of & has property I I ,  

2. P = UQEQ Q, and 

3. IQl 5 k. 

If k is the smallest integer for which the answer to the n-covering problem for a 

polygon P is yes, then we say that k is the II-covering number of P. Covering 

problems are well studied in computational geometry, particularly those defined by 

the visibility properties convexity and ~tarsha~edness.  Many versions of the problem 

are known to be NP-Hard (for a treatment of the theory of NP-Completeness, see 
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[18]). Star cover (i.e where ll = "starshapedness") was shown to be NP-Hard by Lee 

and Lin [27] and Aggarwal [I]. Convex cover was shown to be NP-Hard by Culberson 

and Reckhow [12] and independently by Shermer [41]. Culberson and Reckhow further 

showed that even the restricted case of covering orthogonal polygons with rectangles 

is NP-Hard. Aupperle et al. [2] show that covering orthogonal polygons with squares 

is NP-complete if the polygons to be covered may contain holes. In most cases, 

the obvious technique of guessing the sets of a minimal cover fails to establish that 

~olygon covering problems are in NP, because it is not known if the locations of the 

vertices of the covering subpolygons are representable in a polynomial number of bits 

C35l- 
Since convex cover is special case of 0-convex cover and star cover is a special 

case of 0-star cover, we know that both of 0-convex cover and 0-star cover are 

NP-Hard. In this thesis we investigate the application of graph theoretic techniques 

to characterize tractable subproblems of 0-convex cover and 0-s t  arshaped cover. 

Because we are considering a whole spectrum of different kinds of visibility, it does 

not suffice to consider restricted classes of polygons, since the visibility properties of 

a polygon change with type of visibility under consideration. We therefore introduce 

the notion of a visibility instance, defined to be a pair (P, 0) where P is a polygon 

and 0 is a set of orientations. The PVG of a visibility instance (P, 0 )  denotes the 

0-visibility PVG (0-PVG) of P .  

Culberson and Reckhow [13] introduced the term dent to denote an edge of an 

orthogonal polygon with two reflex endpoints. Previous authors [13, 301 showed that 

orthogonal polygons with at most three dent orientations have weakly triangulated 

orthogonal visibility PVGs, and used this to give polynomial algorithms for covering 

orthogonal polygons having at most 3 dent orientations with orthogonally convex 

polygons. Culberson and Reckhow also give a polynomial algorithm for a subset of 

orthogonal polygons with all four possible dent orientations. Motwani et al. [31] have 

shown that the graph theoretic square of any orthogonal visibility PVG is weakly 

triangulated, and used this result to give a polynomial algorithm for orthogonal star 

cover. This thesis considers to what extent these results generalize to 0-visibility 

for more general sets of orientations 0. We give a natural extension of Culberson 
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and Reckhow's notion of dent to more general sets of orientations and show that to 

guarantee a weakly triangulated 0-PVG, not only must a visibility instance have a 

maximum of 3 dent orientations, but if it does have 3 dent orientations, the span 

of these orientations must be at  least 180'. We also consider under what conditions 

0-star  cover can be reduced to clique cover on the graph theoretic square of the PVG. 

The rest of this thesis is organized as follows. In Chapter 2 we generalize the 

PVG discretization techniques of Culberson and Reckhow to more general sets of 

orientations and show how to compute the labeled quotient graph of the PVG of 

P when 101 is finite. We also show that the existence of this finite combinatorial 

representation of the 0 -PVG (for finite 0 )  implies that 0-convex cover and 0-star  

cover are in NP, and provide simple brute force algorithms for these problems that 

are polynomial for any fixed covering number. In Chapter 3 we characterize when the 

PVG of a visibility instance is necessarily weakly triangulated. We give a polynomial 

algorithm for 0-convex cover on visibility instances that meet these conditions. In 

Chapter 4 we consider other types of structure present in PVGs. In Chapter 5 we 

investigate the relationship between clique cover on the square of the PVG and star 

cover. In Chapter 6 we present some conclusions and directions for future work. 



Chapter 2 

Cell Visibility Graphs 

2.1 Dent Decompositions 

Point visibility graphs provide a unifying combinatorial framework for visibility prob- 

lems, but without a finite combinatorial representation for the point visibility graphs 

in question, such a framework is of little computational interest. Shermer [44] defined 

a pure visibility problem to be one solvable by solving a graph theoretic problem on 

the point visibility graph and mapping the solution back into a geometric object. 

Problems satisfying this definition include convex cover, star cover, and hidden set. 

In this chapter we show that for finite cardinality 0, there exists a polynomial size 

combinatorial representation for the 0-PVG of any polygon. We can solve pure vis- 

ibility problems by computing this representation and then applying combinatorial 

algorithms. Our general approach will be to consider the decomposition of a poly- 

gon into visibility equivalence classes called dent  cells and to consider the visibility 

graph of these cells (the cell visibility graph).  We then show how to compute the cell 

visibility graph and consider some straightforward applications of the resulting data 

structure. We start by introducing a decomposition of the polygon called the dent  

decomposition and show that its cells are visibility equivalence classes. 

An oriented chord is defined to be a pair S = (y,9) where y is a chord of P, and 9 

is one of the two orientations perpendicular to y. Each line of orientation 4 can give 

rise to two chord orientations, 4 + 90" and 4 - 90•‹, hence chord orientations are in 
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Figure 2.1: The partition of a polygon induced by a pair of oriented chords 

the range [0•‹, 360'). If S = (y,O) is an oriented chord, y(S) denotes y and O(S), called 

the orientation of 6, denotes 0. When there is no ambiguity, we sometimes use S to  

mean y(6). We call an oriented chord S = (y,O) an 0-chord if the orientation of y 

(which is distinct from 0, orientation of S) belongs to 0. 

Let R be a weakly simple polygonal region of P, and let 6 = (y, 0) be an oriented 

chord such that a segment of y is an edge of R. We say that S faces into (respectively 

faces out of) R if some ray from y with orientation 0 (respectively 0 + 180') is in R 

in the neighbourhood of y. Each oriented chord divides the polygon into two weakly 

simple subpolygons; A(S) denotes the one that S faces into and B(S) denotes the one 

that S faces out of (see Figure 2.1). By convention S is included in A(S) but not in 

B(S). If x E A(&) then we say that x is 0-above S; conversely, if x E B(S), we say 

that x is 0-below 6. Where there is no ambiguity, we take "above" to  mean 0-above 

and "below" to mean 0-below. 

If a path S from x to y goes from 0-below an oriented chord S to 0-above it, 
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then we say that S crosses 6 upward. Analogously, if a path S goes from 0-above S 

to 0-below it, we say that S crosses 6 downward. Since y(6) is 0-above 6, a curve 

S that is tangent to y(6) and 0-below S in the neighbourhood of y(6) crosses S both 

upwards and downwards. 

Lemma 2.1 If a path S crosses an 0-chord 6 upward, and crosses an 0-chord 6' of 

the same orientation downward, then S is not 0-convex. 

Proof. Let 8 be the orientation of the two oriented chords. Let L be the farthest 

line in the direction 8 that is parallel to 6 and intersects S.  The path S crosses 

some chord of orientation 8 0-below L downward, and some chord of orientation 8 

0-below L upward, SO in particular S crosses upward and downward a line L' parallel 

to L, arbitrarily close to L in direction 180 + 8. Since it intersects an 0-line in a 

disconnected set, S is not 0-convex. 

A vertex v of a polygon P is called reflex if the angle formed by the two edges 

meeting at v, inside the polygon, is greater than 180". An edge of a polygon is called 

reflex if both of its endpoints are reflex. Let T be a reflex vertex or edge such that 

1. There exists some 0-chord 6 = (y,8) such that y is tangent to T,  

2. Any ray from T in the direction 8 is inside P in the neighbourhood of T. 

In this situation we call the ordered pair D = ( ~ ~ 0 )  a dent, and call S the dent chord 

of D, written 6 . A given reflex vertex may be part of more than one dent, but a 

given reflex edge may be part of at most one. If an edge or vertex T participates in 

some dent, we say that there is a dent at T. Given a dent D = (T, O), T(D) denotes 

T and 8(D) denotes 8. We sometimes use the term dent and the notation D to refer 

to T(D). We use the orientation of D to mean the orientation of 6 ,  A(D) to denote 

~ ( d ) ,  and B(D) to denote ~ ( 6 ) .  Given a set of dents D, D E 2) is called a mazimal 

element of D if 

($Dl E 2)) B(D) c B(D1). 

We may further subdivide B(D). The dent chord d can be thought of as two 

disjoint collinear line segments from T(D) to the polygon boundary. We define Bl (D)  
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Figure 2.2: A dent, and the three subpolygons induced by it. 

Figure 2.3: The zero width region between two coincident dent chords with the same 
orient ation 

(respectively B,(D)) to be the weakly simple subpolygon induced by D containing 

the polygon edge clockwise (respectively counterclockwise) from r ( D )  (see Figure 2.2). 

We call Br(D) and B,(D) the two sides of B(D).  For any point p E B(D), we use 

B,(D) to denote the side of B(D) containing p and B,-(D) denote the other side of 

B(D).  
In the degenerate case, two or more dent chords may be coincident (i.e. have 

the same endpoints). We assume that the dents in the boundary of the polygon are 

ranked in some arbitrary but fixed way. 

Suppose two coincident dent chords 6 0  and 61 have the same orientation. With- 

out loss of generality suppose Dl is the higher ranked of the two dents. In this 
+ 

case we assume that Do stops at r(D1) and consider there to be a zero width 
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Figure 2.4: The zero width region between two opposite facing coincident dent chords 

region between & and dl that is 0-above Do but 0-below Dl (see Figure 2.3). 

Suppose two coincident dent chords do and dl have orientations that differ by 

exactly 180". In this case we consider there to be a zero width region between 

do and dl  that is 0-above both Do and Dl (see Figure 2.4). 

We define a relation "4" (read "below") between oriented chords and points in a 

polygon as follows: 
p 4 S if p E B(6) 

S 4 p if p E A(S) 

We shall take a + b (read "above") to be equivalent notation for b 4 a. We use 

p 4 D to meanp 4 6. 
Let V be the set of all dents in the polygon boundary. We say that points p and 

p are dent  equivalent and write p P p' if for any D E V 

We call the maximal equivalence classes of the relation ''G" dent  cells. For uni- 

formity of terminology, we consider a degenerate cells between coincident dent chords 
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Figure 2.5: A dent cell I(. 

closed boundary of K 

open boundary of K 
polygon boundary 

to be bounded by a polygon with two or more zero length edges, so that every pair 

of neighbouring dent cells meets at a well defined edge. If an edge of a dent cell 

boundary is a segment of a dent chord that faces out of the cell, we consider the cell 

to be open along that edge (see Figure 2.5). If an edge of a dent cell is a segment of a 

dent chord that faces into the cell, or a segment of a polygon edge, then we consider 

the cell to be closed along that edge (see Figure 2.5). 

We call the decomposition of the polygon into dent cells the dent decomposition 

of the polygon. 

A separating dent for two points x and y is a dent D such that x E Bl(D) and 

y E B,(D) or vice versa. A dent D is called a supporting dent for a curve S if S is 

tangent to ~(0). 

Lemma 2.2 If x does not see y then the geodesic from x to y is supported by some 

separating dent for x and y. 

Proof. Suppose x does not see y. Consider a geodesic S from x to y. No path from 

x to y inside P is 0-convex, so from Observation 1.2, there must be some point t on S 

where an 0-line L is tangent to the curve. Suppose S is not supported by a portion of 

the polygon boundary at t ;  then we can find an 0-line L' parallel to L intersecting S 

twice in the neighbourhood of t interior to P. Let x' and y' be the intersection points 

of S and L' (see Figure 2.7). We can create a shorter path from x to y by replacing 

the subpath of S between L and L' with the segment z'y'; but this contradicts our 
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Figure 2.6: A dent decomposition of a polygon; O = { 0•‹, 45", go0, 135" ). 

Figure 2.7: If a tangent point of a path is not supported by the polygon boundary, 
we can find a shorter path. 
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Figure 2.8: x is above the supporting dent. 

Figure 2.9: x is below the supporting dent on the same side as y. 

assumption that S is a geodesic, so S must be supported by the polygon boundary 

at t .  It follows that the 0-line L is also tangent to the polygon boundary at t ;  hence 

D = (t, 0) is a dent for some 0. Since r (D)  is tangent to S, D is a supporting dent 

for S .  

We now argue that D must be a separating dent for x and y. We first argue that 

both x and y must be 0-below D. Let Bx(D) be the side of B(D) intersected last 

before x as S is traversed from y to x. Since d is tangent to S at D, S is in Bx(D) in 
-, 

the neighbourhood of D. Suppose x + D; then S must exit Bx(D) by crossing D at 

some point p such that the segment from p to D (where S entered Bx(D)) does not 

intersect the boundary of P (see Figure 2.8). Since joining the entry and exit points 

by a line segment would produce a shorter path, this is a contradiction, and x 4 D. 

By a symmetric argument, y 4 D. 

We have established that both x and y are 0-below D. Suppose x and y are on 
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the same side of D. Since S is in B3(D) in the neighbourhood of D, S must go from 

B,(D) to A(D) by crossing i) at a point p such that the segment from p to D does 

not intersect the boundary of P. We can again create a shorter path by joining the 

entry and exit points with a line segment, this time cutting off the portion of S in 

A(D) and the portion of S in Bz(D); but S is a geodesic so this is contradiction. It 

follows that y E Bz(D), and D is a separating dent for x and y .  

Lemma 2.3 Two points x and y in a polygon P are 0-visible if and only i f  there is 

no separating dent for x and y .  

Proof. We prove the contrapositives. 

(I f)  Suppose x does not see y .  Let S be the geodesic from x to y. From Lemma 2.2 
there must be some supporting dent D for S that separates x from y. 

(Only I f)  Suppose there exists a separating dent D for x and y .  Any path in P 

from x to y must cross d both upward and downward; from Lemma 2.1, there is no 

0-convex path from x to y .  From the definition of 0-visibility, x does not see y. 

Corollary 2.4 Two points x and y are 0-visible if and only if  the geodesic between 

them is 0-convex. 

Pro0 f .  

(If) Suppose the geodesic from x to y is 0-convex. The point x sees the point y from 

the definition of 0-visibility. 

(Only If) Suppose x sees y but the geodesic S between them is not 0-convex. By 

Observation 1.2 there is some 0-line tangent to S. From the proof of Lemma 2.2 it 

follows that there is a separating dent for x and y .  By Lemma 2.3 x does not see y. 

This is a contradiction, so S must be 0-convex. 

Corollary 2.5 If a point x sees points y and z ,  x must be above any separating dent 

for y and z .  
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We have now arrived at a generalization of Tietze's convexity theorem to 0-convex 

sets. A similar characterization appears as Theorem 5.7 in [38]. 

Corollary 2.6 A polygon P is 0-convex if and only if there are no dents in the 

boundary of P.  

Lemma 2.7 Dent cells are 0-convex. 

Proof. Let Ii' be a dent cell. We argue that there cannot be a dent in the boundary 

of I(. Let v be a vertex in the boundary of Ii'. Let e and e' be the two edges of the 

boundary of Ii' adjacent to v. 

1. Suppose e and e' are both segments of dent chords; then v cannot be reflex. 

Since v is not reflex, there cannot be a dent at v or at either edge containing v. 

2. Suppose e is a segment of a dent chord 6 = (y,d) and e' is a segment of the 

polygon boundary. Again v cannot be reflex, since y is a chord of P.  Since v is 

not reflex, there cannot be a dent at v or at either edge containing v. 

3. Suppose e and e' are both segments of the polygon boundary. There cannot be 

a dent at v or at either edge containing v since there would have to be some 

dent chord tangent to v (or tangent to the edge containing v), but there are no 

dent chords in the interior of a dent cell. 

Since there are no dents in the boundary, from Corollary 2.6 Ii' is 0-convex. w 

Lemma 2.8 Two points in a polygon are in the same dent cell if and only i f  they see 

the same set of points. 

Proof. We prove the contrapositives. 

(If) Suppose x and y are in the same dent cell but do not see the same set of points. 

From Lemma 2.7 x sees y. Let z be a "distinguishing point" visible to one of these 

two points, but not the other. Without loss of generality, suppose y sees z and x does 

not see z. Let D be some separating dent for x and z. The point y sees both x and 
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Figure 2.10: p E B,(D1) 

z ,  so from Corollary 2.5, y must be 0-above D. Since x  4 D  4 y ,  the points x  and y 

cannot be in the same dent cell. 

(Only If) Let x  and y be two points in a polygon not in the same dent cell. We show 

that there is some some distinguishing point for x  and y. 

Suppose x  does not see y ;  then trivially either x or y is a distinguishing point. 

Suppose x  sees y .  From the fact x and y are in different dent cells, along with 

the assumption that x  sees y ,  there must be some dent D  such either x  4 D  4 y or 

y -4 D  4 x. Let 

V = { D ;  I ( x  4 D; -i y ) V ( y  4 D; 4 ~ ) ) .  

Without loss of generality, we assume that 

D  maximizes, over V, the area of the side of B ( D )  containing neither x  nor y, 

That x E B l ( D )  and y E A ( D ) ,  and that 

The orientation of D  is 90". 

Let e be the polygon edge of the boundary of B,(D) incident on D. Let p be a point 

of el arbitrarily close to r ( D ) .  We now argue that p must be a distinguishing point for 

x  and y. By Lemma 2.3 x does not see p. Suppose y  does not see p; by Lemma 2.3, 

we know that there exists some dent Dt such that y  E B ( D t )  and p E Bg(Dt ) .  Since 

p is arbitrarily close to r ( D ) ,  & cannot intersect e between p and r ( D ) ;  furthermore 

r ( D t )  cannot be between p and r ( D ) .  Since y is above d and d does not intersect 
+ 

the interior of el r ( D t )  must also be above D. We now consider two cases. 
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Figure 2.11: p E Bl(D1) 

1. Suppose that p E B,(D1) (see Figure 2.10). In order for p to be 0-below 61, 
T(D) must also be in B,(D1). It follows that B,(D) C Bg(D1), hence x and y 

are on opposite sides of Dl. This contradicts our assumption that x sees y. 

2. Suppose p E Bl(D1) (see Figure 2.11). In order for p to be 0-below dl, 61 must 

intersect b at or to the left of r (D).  

(a) Suppose z is below 81 .  Since y and i(D1) are both above d, x does not 

see y; this is a contradiction. 
-. -. -. 

(b) Suppose x is above Dl; then Dl meets D at some non-zero angle, so 

B*(D) C Bg(D1); but this contradicts our assumption that D maximizes 

over all Di E V the area of the side of B(D;) containing neither x nor y.  

Since the assumption that y does not see p leads to a contradiction, and we know 

that x does not see p, p is a distinguishing point for x and y. 

We have shown that all of the points in a given dent cell see the same subset of 

the polygon. We use these equivalence classes to define the labeled quotient graph of 

the PVG. Given two dent cells KO and K1, we say that I(o sees I(1 if the points in 

KO see the points in K1. We define the cell visibil i ty graph (CVG) of a polygon as 

follows: the vertices of a CVG are the cells of the dent decomposition, labeled with 

cardinalities of those cells, and there is an edge between two vertices if and only if 

the corresponding dent cells see one another. If the cardinality of 0 is finite, then the 

CVG is a finite combinatorial representation of the point visibility graph. Each vertex 
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of a polygon can participate in at most 101 dents. If a polygon P has n vertices, the 

dent decomposition of P is an arrangement of at most l0ln + n line segments, so we 

have the following observation: 

Observation 2.9 Let P be a polygon with n vertices. The cell visibility graph of P 

contains 0((101n)2) vertices. 

Calculating the CVG 

In this section we give a worst case optimal algorithm for calculating the cell visibility 

graph when 101 is finite. To simplify analysis, we assume that 101 is a fixed constant. 

We describe the algorithm from the bottom up, starting with the subproblems of 

computing the dent decomposition of a polygon and computing the subpolygon visible 

from a point p, called the 0-visibility polygon of p. Throughout this section, n denotes 

the number of vertices in the polygon whose CVG is being computed. All of the 

algorithms in this section presume that the polygon has been triangulated. Chazelle 

[lo] has shown that a polygon can be triangulated in linear time. 

We first give an algorithm to compute the dent decomposition. Given a dent chord 
-, 

D = (y, 0), if y' is a maximal segment of y that intersects r ( D )  only at its endpoints, 

we call the pair a = (y', 0) a half dent chord of 6. Let a = (y, 0) be a half dent chord. 

We call 0 the orientation of a. Analogously to oriented chords, we call the region of 

the polygon that a faces into A(a) and the region that a faces out of B(a).  Let a be a 

half chord of 6. Let B, (D) (respectively Be (D)) denote the side of D identical with 

(respectively distinct from) B(a) .  There are exactly two half dent chords contained 

in any dent chord; if a is a half dent chord contained in 6, we call the other half 

dent chord contained in d the twin of a .  The dent decomposition will be represented 

using standard subdivision representation. Each edge in the data structure for the 

dent decomposition will be augmented by a pointer to the half chord that contains 

it. A ray shooting query is defined as follows: given a point p E P and a direction 

r ,  find the the first intersection of a ray from p in direction r with boundary of the 

polygon. Guibas et al. [22] have shown how to preprocess a polygon in O(n) time 



CHAPTER 2. CELL VISIBILITY GRAPHS 29 

to allow O(1og n) time ray shooting queries. We allow any number of dent chords to 

intersect at a point, but perturb coincident dent chords so as to compute the dent 

cells defined to be between them. We assume the existence sequence of an infinite 

sequence ( €0, €1, €2,.  . . ) such that 6; is arbitrarily small but non-zero, and E; >> &;+I. 

Algorithm 1 :  ComputeDentDecomposition(P:polygon) 
1. Find the set 2) of 0-dents in the boundary of P by checking each reflex vertex 

or edge. 
2. Preprocess P for ray shooting. 
3 .  k t 0  
4. For each D E 2) 
5 .  For each (A, 4) E { (LEFT, 8(D) + 90•‹), (RIGHT, O(D) - 90') ) 
6. Let v be the 4-most vertex of r (D) .  
7. Let q the first intersection of a ray from v with orientation 4. 
8. If q is a vertex of P then 
9. Perturb r (D)  and q by ~k in direction O(D) + 180". 
10. k t k + 1  
1 1 .  End if 
12. Set the X half dent chord of D to (q, 8(D)) 
13. End For 
14. End For 
15. Compute the arrangement of the half dent chords of 2) 

End ComputeDent Decomposi t ion 

Finding the dents can be done in linear time by walking around the boundary of 

the polygon. Each ray shooting query takes O(1og n) and there are O(n) dents, so a 

total of O(n log n) time is spent in step 7. Let i denote the number of intersection 

points of dent chords in the dent decomposition. We can build the arrangement of 

half dent chords in O(n log n + i log n) time using a modification of the algorithm of 

Bentley and Ottmann [4] described in [3]. Let k denote the number of cells in the dent 

decomposition. A dent decomposition is a connected planar graph, so from Euler's 

formula, k 2 2i - 4 (for a proof of Euler's formula see [8]). It follows that the total 

time to calculate the dent decomposition is in O(n log n + k log n). 

We next consider the problem of calculating the 0-visibility polygon of an arbi- 

trary point in a polygon. For any point p E P ,  the shortest path tree of p is the union 

of the geodesics from p to each vertex of P .  Guibas et al. [22] have shown how to  
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Figure 2.12: Finding the shadow chords adjacent to a given vertex. 

compute the shortest path tree of a point in a triangulated polygon in linear time. We 

use SPT(p) to denote the shortest path tree of a point p. We are actually interested 

in the geodesics between p and every cell in the dent decomposition, but since this 

would take O ( k )  space to store and we want to use it in an O(n)  algorithm , we make 

the following observation. 

Observation 2.10 If S is the geodesic from p to q,  then all but the last edge of S 

(i.e. the edge of S containing q )  are edges of SPT(p). 

Let the parent edge of a vertex v in an embedded tree denote the edge between 

the parent of v and v. Let e = (p, c)  be an edge of an embedded tree where p is the 

parent of c. The parent edge of e is the parent edge of p. The forward extension of e 

denotes the maximal line segment collinear with e that does not intersect the exterior 

of P and that intersects e only at c. A half dent chord y is called a shadow chord for 

a point p if B(y) is not 0-visible from p. 

Observation 2.11 Let a be a half dent chord of 6. The half dent chord a is a 

shadow chord for p if and only i f  p E B@(D). 

Each half chord a in the dent decomposition is associated with a flag ShadowFlag[a] 

that marks whether or not a is currently considered a shadow chord. We assume in 
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the next algorithm that the dent decomposition of the polygon has been computed in 

a preprocessing step. 

Algorithm 2: MarkShadowChords(p:point ) 
1. Compute SPT(p) 
2. For each vertex v of P 
3. Let e* be the parent edge of v in SPT(p). Let e, = (v, v') be the forward 

extension of e. Let el be the edge of P adjacent to v that forms an acute 
angle with e, (see Figure 2.12). 

4. Let H be the set of half dent chords in the angle between el and e,. 
5 .  If H # 0 then 
6. Let a = (m, 4) be the half dent chord in H that minimizes the 

angle Lv'vq. 
7. ShadowFlag[a] t 1 
8. End if. 
9. End for. 

End Markshadowchords 

Recall that the shortest path tree of p can be computed in linear time. Since there 

is a constant number of dent chords incident on each dent we can find the shadow 

chords incident on a given vertex (if any) in O(1) time. It follows that that Algorithm 

2 terminates in O(n) time after preprocessing. 

Lemma 2.12 Let C, be the set of half dent chords marked as shadow chords by 

Algorithm 2 given a point p as a parameter. A point q is 0-visible from p if  and only 

there is a path from p to q that does not intersect B(a )  for any a E C,. 

Proof. 

(I f)  Suppose that p sees q. Further suppose that every path from p to q intersects 

B(a )  for some a E C,. Let S be a geodesic from p to q. Let o = (y, 9) be an element 

of C, such that S intersects B(a).  Let d be the dent chord containing a .  Since o is 

marked as a shadow chord by Algorithm 2, there must exist some vertex T of p such 

that there exists a parent edge e* of v in SPT(p) (i.e. S is not a line segment) and 

a forms an acute angle with the forward extension of e* (see Figure 2.12). Since S 

intersects B(a) ,  S must be in B,(D) in the neighbourhood of a (see Figure 2.13). It 
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Figure 2.13: If S intersects B(a), then S is not 0-convex. 

follows that S crosses 6 both upwards and downwards, hence by Lemma 2.1 is not 

0-convex. By Corollary 2.4, x does not see y. This is a contradiction, so there must 

be some path from x to y that does not intersect B(a)  for any a E C,. 

(Only If) Suppose p does not see q. Let S be a geodesic from p to q. By Lemma 2.2 

there must be some dent D = (r,O) that separates p from q and supports S. Since 

r contains a vertex of P, there must be some edge of SPT(p) incident on r. Let e* 

be the parent edge of r in SPT(p). Since D is a supporting dent of S, d must be 

tangent to S at r .  Let el be the edge of S after r on a traversal from p to q. Let e,  

be the forward extension of e* (see Figure 2.14). Since S is tangent to d at r, there 

must be a half chord a of 6 between el and e,. It follows that either a was marked as 

a shadow chord or some half chord incident on r and between o and e, was marked 

as a shadow chord. Since q is in B,-(D), it follows that q is in B(a). 

We could retrieve the explicit O(n)  sized representation of the visibility polygon 

in O(n) time by starting at a vertex of P and walking around the boundary, taking 

short cuts across any shadow chords encountered. Since we are interested not in the 

visibility polygon per se  but rather in the cells of the dent decomposition (i.e. ver- 

tices of the CVG) visible from a given cell, we instead present a modified depth first 

search subroutine that finds all of the cells reachable by a path from a given cell that 
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S 

Figure 2.14: If p + q, then q is below some shadow chord of p. 

does not intersect B(a)  for any a marked as a shadow chord in the dent decomposi- 

tion. We assume that each cell K in the dent decomposition has an associated flag 

ReachedFlag[Ii'], initially cleared, that marks whether or not a cell has been reached 

by the following subroutine. We call an edge of a dent cell that is not an edge of P 

an i n t e r i o r  edge. 

Subroutine : ReachableFrom(1i': cell) 
1. R t 0  
2. For each interior edge e of Ii' 
3. Let a be the half dent chord containing e. 
4. If lShadowFlag[a] then 
5. Let I(, be the cell that shares e with Ii'. 
6. If iReachedFlag[I(,] then 
7. ReachedFlag[Ii',] t 1 
8. R t R U ReachableFrom(I(,) 
9. End If 
10. End If 
11. End For 
12. Return R 

End ReachableFrom 

The time taken by Subroutine ReachableFrom is proportional to the total number 

of edges of the cells returned. Since the dual graph of the dent decomposition is a 
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Figure 2.15: Crossing a shadow chord downwards. 

planar graph, the number of edges is linear in the number of cells returned. It follows 

that the total time taken is in O(I R() .  By Lemma 2.12, if the half dent chords in 

the dent decomposition have been marked by Algorithm 2 with some pk E I( as a 

parameter, then the set of cells returned by ReachableFrom(Ii') is precisely the set of 

cells 0-visible from I(. 

We now present the algorithm to compute the cell visibility graph, another modi- 

fied depth first search. The algorithm is similar to the Hershberger's optimal algorithm 

for computing the vertex visibility graph of a polygon [25] .  It first calculates the 0- 

visibility polygon from a single cell, then incrementally modifies it in constant time to 

become the 0-visibility polygon of a neighbouring cell. Every cell is visible to itself, 

so we do not compute or store these edges of the CVG. Algorithm 3 also assumes that 

the dent decomposition has been computed as a preprocessing step. We associate 

with each cell I< of the dent decomposition a flag EnumFlag[Ii'] that marks whether 

or not K has been visited by the top level depth first search. 
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Algorithm 3: FindCVG(P, 0)  
1. V t 0 ; E t g  
2. For each half dent chord a 

ShadowFlag[a] = 0 
3. For each cell K in the dent decomposition 

EnumFlag[Ii'] = 0; ReachedFlag[Ii'] = 0. 
4. Choose some cell K as a starting cell. 
5. let vk be a point in Ii'. 
6. MarkShadowChords(vk, P ) .  
7. NextVertex(K) 
8. Output (V, E). 

End FindCVG 

Subroutine : NextVertex(1i': cell) 
1. V t V u { I i ' }  
2. V ,  t ReachableFrom(1i') 
3. For each I(, E V, 
4. ReachedFlag[I(,] t 0 
5. E +  Eu{{Ii',I(,)} 
6. End For 
7. For each interior edge e of I< 
8. Let Ii', be the cell sharing e with Ii' 
9. If ~EnumFlag[I(,] then 
10. Let a0 be the half dent chord containing e. 
11. Let a1 be the twin half dent chord of 00. 

12. t t ShadowFlag[al] 
13. If Ii' 4 a, 4 Ii', then 

ShadowFlag [al] t 0 
else 

ShadowFlag[al] t 1 (see Figure 2.15). 
End If 

14. EnumFlag[I(,] t 1 
15. Next Vertex(Ii',) 
16. ShadowFlag[al] t t 
17. End If 
18. End For 

End Nextvertex 
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Lemma 2.13 At any invocation of NextVertex(K) in Algorithm 3, the half dent 

chords of the dent decomposition marked as shadow chords are exactly the shadow 

chords for I<. 

Pro0 f. 

(Basis) By Lemma 2.12, at the first invocation the correct half dent chords are 

marked as shadow chords. 

(Induction) : Suppose that the correct half dent chords were marked for the parent 

invocation of the current one. Let the cell explored by the parent invocation be 

I .  Let the cell being explored by the current invocation of NextVertex be I(,. 

Since I(, and I(, share an edge e of the dent decomposition, there must be exactly 

one distinguishing dent D for I(, and I(,. Furthermore, the edge must e must be 

contained in 6. Let CT, be some shadow chord for I(,. 

Suppose CT, 6; then step 13 correctly determines whether or not up is also a 

shadow chord for I(,. 

Suppose CT, 9 6. Let 6, be dent chord containing 0,. The dent D, is not the 

distinguishing dent for I(, and Kc and I<, is O-below D,, so it follows that I(, is also 

below D,. Since 11, and Ii', share an edge, Ii', C B8(D). By Observation 2.11 a, is 

also a shadow dent for I(,. w 

The correctness of Algorithm 3 follows from Lemma 2.12, Lemma 2.13, and the 

fact that after a given neighbour of a cell is visited, step 16 restores the shadow chords 

to again be correct for the current cell. 

We now consider the time complexity of Algorithm 3. Recall that k denotes the 

number of cells in the dent decomposition of P.  Preprocessing time is dominated by 

the O(n log n + k log n) time it takes to build the dent decomposition. NextVertex is 

a modified depth first search on a planar graph (the dual graph of the dent decom- 

position is searched implicitly), so the time taken in NextVertex exclusive of steps 2 

through 6 is in O(k). Let j denote the number of edges in the CVG. Since each cell 

returned by ReachableFrom yields an edge of the CVG and each edge is yielded only 

twice, it follows that a total of O( j )  time is spent in steps 2 through 6 of NextVertex. 

Since the time for initialization in Algorithm 3 is in O(n), it follows that total time 
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complexity of Algorithm 3 is in 

O ( j  + klogn + nlogn). 

We know the following about the relationship between j, k and n: 

1 5 k 5 cln2 

0 5 j 5 c2k2 

A CVG can have R(n2) vertices and fl(n4) edges (see Chapter 4), so Algorithm 3 

is worst case optimal. If j E O(k1ogn) then the time complexity of Algorithm 3 is 

dominated by the time to compute the dent decomposition. The algorithm of Bentley 

and Ottmann used to calculate the dent decomposition is not optimal. There is an 

optimal algorithm for intersecting line segments due to Chazelle and Edelsbrunner 

[ll], but this algorithm requires that the line segments be in general position, a 

condition that dent decompositions do not satisfy. On the other hand, it should be 

possible to take advantage of the fact that the line segments whose arrangement we 

are computing are all chords of a polygon and have a bounded number of orientations. 

Fixed Cover Numbers 

In this section we consider some straightforward applications of the CVG. In particular 

we show that if 0 is finite, 0-convex cover and 0-star cover are both solvable in 

polynomial time if the number of covering polygons is fixed. We consider first the 

problem of 0-convex cover. 

We call an 0-convex subpolygon Q of a polygon P maximal if there there is no 

0-convex Q' such that Q c Q' C P. A polygon P can be covered with k maximal 

0-convex subpolygons if and only if it can be covered with k 0-convex subpolygons. 

It follows that the complexity of the problem of maximal 0-convex cover provides an 

upper bound on the complexity of 0-convex cover. 

A vertex or edge T of a polygon P is said to be an 0-extremity if there exists some 

0-line L tangent to T and L is not in the interior of P in the neighbourhood of T (see 

Figure 2.16). We consider 0-extremities to be oriented in the direction of a ray from 

T perpendicular to ,C out of the the polygon. 
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/ 

Figu i: The { 0•‹, 45", 90•‹, 135" }-extremities of 

Lemma 2.14 An 0-convex polygon P has exactly 2101 0-extremities. 

Proof. A polygon must have at least one 0-extremity of each possible orientation. 

Each orientation in 0 can have two 0-extremity orientations perpendicular to it. 

Suppose an 0-convex polygon has two distinct 0-extremities T and T' of the same 

orientation 8. Let S and St be oriented chords of P of orientation 6 arbitrarily close 

(inside P) to T and TI  respectively. S and 6') along with the polygon boundary, 

enclose two distinct subpolygons. Any path from T to T' must cross S upwards and 

6' downwards. Hence from Lemma 2.1 T does not see TI,  but this contradicts our 

assumption that P is 0-convex. w 

Each 0-extremity of a maximal 0-convex subpolygon Q of a polygon P must fall 

on an edge of P .  We call these edges of P the bounding edges of Q. 

Lemma 2.15 A maximal 0-convex subpolygon of a polygon P is uniquely specified 

by its bounding edges. 
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Figure 2.17: Illustration of the proof of Lemma 2.15 

Proof. Let Q and Q' be maximal 0-convex subpolygons of P with the same 

bounding edges. Let p' be some point in Q' but not in Q. Since p' is not in Q ,  there 

must be some point p E Q such that p does not see p'. By Lemma 2.3, there must 

be some separating dent D for p and p'. Since there is a point of Q in B,(D) (the 

point p), there must also be some 0-extremity r of Q with orientation O(D) + 180' 

as D in B,(D). Similarly, there must be some 0-extremity r' of Q' with orientation 

O(D) + 180' in B,-(D). The 0-extremity r must fall on some bounding edge e. The 

0-extremity r' must fall on some bounding edge e' (see Figure 2.17). No edge of P 

can be in both B,(D) and B,-(D), so e # el. This contradicts our assumption that Q 

and Q' have the same bounding edges; it follows that there cannot be a point p' in 

Q' \ Q. 

Lemma 2.16 Let n be the number of vertices in a polygon P .  There are at most 

n2Iol maximal cliques in the CVG of P. 

Proof. Let G be the CVG of a polygon P.  Each maximal clique in G corresponds 
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to a maximal 0-convex subpolygon of P. From Lemma 2.15 and Lemma 2.14, each 

maximal 0-convex polygon is uniquely specified by choosing 2101 bounding edges. 

There are at most n choices for each bounding edge. w 

We now show that computing 0-convex cover is polynomial for any fixed covering 

number. Let n be the number of vertices in a polygon P. Let k be the number of 

0-convex subsets to be used to cover P. 

From Lemma 2.16 there are 

distinct subsets of k maximal cliques in the CVG. Since from Observation 2.9 each 

of the cliques has 0((101n)2) vertices and 0((IOln)4) edges, and since we can check 

whether a set of subgraphs covers a graph in linear time in the total size of the 

subgraphs and graph to be covered, it follows that each of the subsets of k cliques can 

be checked in time 

o ( k ( 1 0 1 4 ~ ) ) .  

Given the CVG of P ,  we can answer the question "Can P be covered by k or fewer 

0-convex subpolygons?" in time 

We now consider the problem of 0-star  cover. Let n again be the number of 

vertices in a polygon P, and let k be the number of maximal stars to be used to  

cover P. Since each vertex of a graph defines some some maximal star, and there 

are 0((101n)2) vertices in the CVG, there are 0((101n)2) maximal 0-stars in P. It 

follows that there are 0(( )01n)2k)  subsets of k maximal stars in the the CVG. Since 

each maximal star has size 0((IOln)4), each set of k maximal stars can be checked 

in time 0(k(101n)4). Given the CVG of P, we can answer the question "Can P be 

covered by k or fewer 0-starshaped subpolygons?" in time 
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This is a better bound than (2.1) since the time is not exponential in the number of 

orientations. 

Neither of the algorithms presented in this section is polynomial for unbounded k, 

but they are in contrast with the case of non-finite 0, where it is not known whether 

or not convex cover is solvable in polynomial time for k = 4 or whether or not star 

cover is solvable in polynomial time for k = 2 (see [44] for a summary of results). In 

the next chapter we exhibit a class of visibility instances for which 0-convex cover is 

solvable in time polynomial in the input size and independent of k. 



Chapter 3 

Weakly Triangulated PVGs 

Many problems that are NP-Hard on general graphs become tractable on suitable 

classes of graphs. Perhaps the most well-known such class is the class of perfect 

graphs. 

In this chapter we show that if the set of dent orientations is restricted sufficiently, 

the resulting PVGs are weakly triangulated. Since CVGs are induced subgraphs 

of PVGs and the property of being weakly triangulated is a hereditary property of 

graphs, this will show that the corresponding CVGs are perfect. This will provide a 

duality between O-hidden set and 0-convex cover on a restricted class of visibility 

instances, and a polynomial algorithm for both problems. 

Culberson and Reckhow [13] have shown that orthogonal visibility CVGs of orthog- 

onal polygons with up to 2 dent orientations are comparability graphs and Motwani, 

Raghunathan, and Saran [30] extended this work to show that orthogonal visibility 

CVGs of orthogonal polygons with up to 3 dent orientations are weakly triangulated. 

Following the terminology of [13, 301, let a class k visibility instance be one with at  

most k dent orientations. Our set of class 3 visibility instances includes the class 3 

polygons of the previous authors as a special case. We show that not all class 3 vis- 

ibility instances have weakly triangulated PVGs, but that class 3 visibility instances 

whose dent orientations span 180" have weakly triangulated point visibility graphs. 

This is more general than the previous results in two ways: 

1. It places no restrictions on the orientation of polygon edges, emphasizing the 
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importance of dents in the visibility structure of a polygon. 

2. The three dent orientations have any value, as long as their span is at least 180'. 

If two dents D and Dl have the same orientation, we write D )I Dl; conversely if 

they have different orientations we write D 1 Dl. Note that this is stronger than the 

usual usage of the symbol " I I " :  if the orientations of D and Dl differ by exactly 180" 

then d is parallel to 61 but D X Dl. 

Lemma 3.1 Let Do and Dl be two dents. If there exist two points x and y such that 

x seesy,  x 4 Do + y ,  andy  I' Dl 4 x ,  then Do HD1. 

Proof. Suppose Do 11 Dl;  call this orientation 8. Consider a path from x to y. This 

path must go from below do to above it, crossing a dent chord of direction 8 upward, 

and from above dl to below it, crossing a dent chord of direction 8 downward . From 

Lemma 2.1, this path is not 0-convex, hence x + y .  w 

Suppose that D is a dent, and a,  b, and c are sets of points such that a C B ( D ) ,  

b C Bii(D),  and c C A ( D ) .  We denote this situation by 

Let V be a collection of not necessarily distinct dents. The incompatibility graph 

G of V is a graph where the vertices of G are the elements of V, and { Di, Dj  } is 

an edge of G only if D; is constrained not to be the same orientation as Dj.  The 

chromatic number of an incompatibility graph is a lower bound on the the minimum 

number of distinct dent orientations present in V, and therefore on the minimum 

number of distinct dents in V. 

Theorem 3.1 A polygon whose PVG contains an antihole of size k, k > 4, must 

have at least [k/21 dent directions. 

Proof. Let the vertices of a k-antihole C be labeled cyclically vo.. . vk-1. In the 

following, we take all vertex indices modulo k. Furthermore, where a < b we take the 
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ordered set ( vb . . . v, ) to mean ( vo . . . vk-1) \ ( v,+l . . . vb-1). Let li - j( denote the 

"modular difference" between i and j, that is the smallest j' such that, 

(i + j' G j mod k) V ( j  + j' G i mod k). 

Two vertices v; and vj are 0-visible if and only if li - jl # 1. Given two vertices, v; 

and v ; + ~ ,  let pi denote the set of vertices that see both v; and v;+l. Let P; denote the 

set of vertices adjacent to either v; or v;+l in the complement graph. It follows that: 

We know that there must be a separating dent D; for each pair (v;, v;+~). Since ,8; 

is the set of all vertices that see both v; and v;+l, from Corollary 2.5 every vertex in 

,B; must be 0-above this dent; i.e.: 

We now consider the pairwise compatibility of the separating dents { D; I 0 5 i < k ). 
Let i and j be vertex indices such that li - jJ > 1. 

0 Suppose vj 4 D;. It follows that 

Since there are at least 5 vertices in the antihole, v; E /3j (see Figure 3.1), hence 

v; + Dj. Furthermore, j + 1 = i + 3, so vj+l E Pi, and hence vj+l + D;. We 
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Figure 3.1: If ( i  - jl = 2, then v; E P j -  
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know from (3.1) that vj+l 4 Dj and v; 4 D;, so have the following relationships: 

It follows from Lemma 3.1 that D; fl Dj. 

Otherwise v j  + D;. From (3.1), 

Suppose that v ;+~  4 Dj; it follows from our assumption that li - j 1 > 1 that 

But this contradicts our assumption that li - jl > 1, so v;+l + Dj, hence 

It follows from (3.2), (3.3) and Lemma 3.1 that D; 1 Dj. 

We have established the following implication: 

From (3.4), we can see that the incompatibility graph of the set of dents generating 

a k-antihole contains a (not necessarily induced) k-anticycle; i.e. there exist k nodes 

in the complement graph with at most a cycle connecting them (see Figure 3.2). It 

follows that the complement graph (a k-cycle) requires at least [k/2] cliques to cover 

it; hence the chromatic number of a graph containing a k-anticycle is no less than 

I-kl21- 

An embedding of a graph G in a polygon P such that two vertices are adjacent in 

G if and only if the corresponding embedded vertices are 0-visible is called an instan- 

tiation of G. An instantiation is called planar if the interiors of edge instantiations 
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Figure 3.2: Dents incompatible with D;-l ,  D;, and D;+l in a PVG k-antihole; only 
vertex indices are shown. 
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Figure 3.3: Illustration of proof of the crossing lemma. 

do not intersect. In the following discussion, if x is a vertex or edge of G we write 

x to mean the point or staircase in the instantiation of G corresponding to x. The 

following is a generalization of a lemma contained in [30]: 

Lemma 3.2 (The Crossing Lemma) Let C be a hole, ICI > 4. In any instantia- 

tion of C, there exists a pair of non-adjacent edges that cross. 

Proof. Suppose there were a planar instantiation of C. A planar instantiation of a 

chordless cycle bounds a simple polygon. Let Q be the simple polygon bounded by a 

planar instantiation of C. Since the boundary of Q between vertices of C consists of 

staircases, dents in the boundary of Q can only occur at vertices of C. 

Consider two non-adjacent vertices of C, x and y. Let the non-empty chain of C 

clockwise from x to y be C,,. Let the non-empty chain of C clockwise from y to x 

be C,,. Since C is chordless, x + y. Let S be a geodesic between x and y. Recall 

from the proof of Lemma 2.3 that a geodesic between two non-visible points must be 

supported by a dent in the polygon boundary. Let z be some vertex or edge of C 
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that is a supporting dent for S .  Without loss of generality, assume z E C,,. Let w 

be some vertex in C,,. Suppose w sees z; then the lemma holds. Otherwise, let S' 

be a geodesic between w and z, and let w' be the closest ( along S' ) supporting dent 

of St to z ( see Figure 3.3). All of C,, is on the same side of S as z, hence w' must 

be the instantiation of some vertex in C,,. There is no dent on the subpath of St 

between w' and z ,  hence w' must be 0-visible from z, but this is a contradiction of 

the chordlessness of C .  It follows that there cannot be a planar instantiation of C.  

From Lemma 2.1, we have the following observation: 

Observation 3.3 Let x and y be the two endpoints of an 0-convex path through a 

third point q .  Let D  be a dent. Then: 

Let a pushed chord of a dent D through a point p + D denote an oriented chord 

through p with the same orientation as 8. 

Lemma 3.4 Let x and y be points and D  a dent such that y 4 D 4 x and x is 

0-visible from some point on ~ ( 0 ) ;  y is 0-below the pushed chord of D  through x. 

Proof. Let S be an 0-convex path from some point on T ( D )  to x. Since S is O- 

convex, in particular it is monotone with respect to the orientation of D (recall that 

the orientation of D is perpendicular to the tangent 0-line). It follows that if 6  and 

St are pushed chords of D,  and 6' is farther along S from y to x, then B ( 6 )  c B(6'). 

Lemma 3.5 Let Do be a separating dent for x and y. Let Dl be a separating dent 

for x and z .  If Do 11 Dl and y z then Do = Dl .  

Proof. Suppose Do # Dl There are two cases. 

1. Suppose B ( D o )  C A(D1)  and B ( D 1 )  & A(Do).  Any path from y to z must cross 

upward and 61 downward, hence from Lemma 2.1 cannot be 0-convex and 

this is a contradiction. 
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Figure 3.4: Vertex layout of a k-cycle, k > 5 in a class 3 visibility instance. 

2. Suppose that B(Do) C B(D1) or B(D1) C B(Do), without loss of general- 

ity B(D0) c B(D1). Dl is a separating dent for y and z,  and this is also a 

contradiction. 

Lemma 3.6 If the PVG of a a polygon P contains a k-hole, k 2 5,  then there are at 

least three distinct dent orientations in P.  

Proof. 

Let C be a k-hole, k > 5, in the PVG of a class 3 visibility instance P. From 

the crossing lemma there are two non-adjacent edge staircases that cross in any in- 

stantiation of C. Let vov3 and vlv2 be two edges whose instantiations cross; let q be 

the point where the two edges cross; q is visible from vo, vl, vz, and v3. Without loss 

of generality let the cyclic order of vo, vl, v2, v3 around C ,  possibly with intervening 
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I Label I Vertex relations 1 

Table 3.1: Dents implied by a k-hole in a PVG. 

vertices, be ( vo, vl, v2, v3 ). There must be at least one more vertex w in C, without 

loss of generality between v2 and v3 (see Figure 3.4). From Corollary 2.5 and 3.3, and 

the chordlessness of C, the dents shown in Table 3.1 must exist. From Lemma 3.1, 

the orientations of these three dents are pairwise incompatible, so the polygon must 

contain dents of at least three distinct orientations. 

Observation 3.7 Let S be an 0-convex path from x to y through a third point q .  Let 

6 be a pushed chord through q whose orientation is perpendicular to some orientation 

in  0. The points x and y must be on opposite sides of 6 .  

Lemma 3.8 If the P V G  of a class 3 visibility instance (P,  0) contains a k-hole, 

k 2 5 ,  then the span of the three dent orientations is strictly less than 180". 

Proof. Let C be a k-hole, k 2 5 in the PVG of a polygon P. Let vov3 and vlv2 

be two edges whose instantiations cross; let q be the point where the two edges cross. 

Without loss of generality let the order of vo, vl, 0 2 ,  v3 around C, possibly with 

intervening vertices, be ( vo, vl , v2,v3 ) . There must be at least one more vertex in C, 

without loss of generality between v2 and v3. Let the chain of vertices from v2 to v3 

be labeled ( wl . . . wk-4 ). From the proof of Lemma 3.6, the separating dents in Table 

3.1 must exist and have distinct orientations. 

Without loss of generality, suppose C is a minimum counterexample to the lemma; 

that is, suppose that k is the smallest integer greater than or equal to 5 for which a 
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I \ 

Figure 3.5: Pushed chords of Do, Dl,  and D2. 

k-hole is generated by a class 3 visibility instance with dent orientation span greater 

than or equal to 180". 

Suppose vo + vl; then the following separating dent would exist: 

From Lemma 3.1, D, cannot be the same orientation as any one of Do, Dl, and D2; 

but this is a contradiction, so vo u1. 

Without loss of generality, suppose that the orientation of D2 is 90". By Obser- 

vation 1.1, we may assume the orientation of Do is either 0" or 180". By symmetry, 

suppose it is 0". Since the span of dent orientations is at  least 180•‹, the orientation 

of Dl must be 180" + 4 where 0" < 4 5 90". Since the case of 4 = 90 is equivalent by 
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Table 3.2: Equivalence classes for the relation "+" and the chords So, S1, and S2. 

( relation to ( 
vertex So S1 S2 I*l 

Table 3.3: Relations between vertices of a 5-hole and pushed chords. 

relabeling to the case of 4 = 0, we may assume that 0" 5 4 < 90". Let 6; be a pushed 

chord through q for dent D; (see Figure 3.5). Every point in a polygon is either above 

or below a given oriented chord, but not both, so any set of all possible equivalence 

classes for "4" with respect to a given set of oriented chords forms a partition of the 

polygon. We label the equivalence classes with respect to { So, S1, S2 ) as in Table 3.2. 

Both KG and KT are empty so the set of weakly simple subpolygons { KO. .  . rc5 ) 
partitions P (See Figure 3.6). 

If p 4 6, we say that the relationship between p and S is "B", otherwise we 

say it is "A". From Lemma 3.4, the "B" relations in Table 3.3 must hold. From 
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Figure 3.6: The partition of P induced by pushed chords So, S1, and S2. 

Observation 3.7, 

hence the "A" relationships in Table 3.3 must hold. It follows that 

Let w' denote the vertex after wl in a cyclic traversal of C that reaches the vertices 

{ V O ,  v1, v2, v3 ) in the order ( VO,  vl,v2, v3 ) . 
We first establish the following: 
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Figure 3.7: Dent layout of a k-hole when wl N q and wl is on the top side of D3. 

To see that (3.6) must hold, we consider two possible cases. 

1. Suppose k = 5; then w' = v3 and v3 sees q. 

2. Suppose k > 5. Let wj be the first of the tuple ( wl, . . . wk-4, v3 ) that sees q. If 

neither wl nor w2 sees q then C' = ( q, 0 2 ,  wl, 202, . . . wj ) forms a hole of size kt, 
5 5 k' < k, generated by the same set of dent orientations, and this contradicts 

our assumption that C was the minimal counterexample. 

We now consider the two possible cases of (3.6): 

(Suppose wl N q) From the chordlessness of C and Observation 3.3 we know that 

the following dents must exist: 
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Recall that each of Do, Dl, and D2 has a unique orientation. The dent D3 is incom- 

patible with Do and D2, SO it must have the same orientation as Dl; similarly D4 is 

incompatible with Dl and D2, hence must have the same orientation as Do. 

The pushed chords of dents with the same orientation through the same point 

must be identical, so 63 = S1 and S4 = So. From Lemma 3.4, (3.7), and (3.8), wl must 

be below both So and S1. Since ~4 is the only K; below both So and S1, 

Since there is a point in ~4 and both dent chord edges of ~4 are open, q5 > 0 (see 

Figure 3.6). 

From Lemma 3.5, Corollary 2.5, and Observation 3.3 the following dent must exist: 

-. 
1. Suppose 6: does not intersect 4 ;  then B(D:) must be entirely 0-above or 

entirely 0-below and on a single side of D3. We know that w1 E B(Dg) n B(D3), 

so B(Dg) must be 0-below D3 on the same side as wl. This means that D3 is 

a separating dent for vo and vl, but this is a contradiction. 

-. -. 
2. Suppose D: intersects D3. We define the top (bottom) side of a dent to be the 

side whose boundary chord (i.e. half of d from r (D)  to the polygon boundary) 

projects highest (lowest) onto the y-axis. From (3.5) we know v2 4 S2 4 VO. It 

follows that vo is in the top side of Dg and v2 is in the bottom side of Dg. Since 

wl is on the same side of Dl  as v2, w1 is on the bottom side of Dl. It follows 

that d3 must intersect 5: below r(DG) since otherwise wl would be 0-above 

D3. Consider the possible positions of wl. 

(a) Suppose wl is on the bottom side of D3. From (3.9), wl + 62, and from 

(3.5) v3 4 S2. Since S2 is horizontal, it follows that vs must either be on 

the bottom side of D3 or 0-above it. Since some point on the bottom 

side of D3 (wl) is in the bottom side of Dg and 0" < q5 < 90•‹, 4 must 

be entirely contained in the bottom side of D:. It follows that both the 
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Figure 3.8: Incompatibility graph of the dents inducing a k-hole if wl + q. 

bottom side of D3 and A(D3) are contained in the bottom side of D:, hence 

v g  is contained in the bottom side of DG. Since vo is in the top side of DG, 

DG is a separating dent for vo and 03 but this is a contradiction because 

V o  - v3. 
(b) Otherwise wl is on the top side of D3 (see Figure 3.7). Since the angle 6 

between & and 6; is strictly between 0 and 90 degrees, vo is below D3 on 

the same side as wl. It follows that D3 is a separating dent for vo and vl 

but this is a contradiction because vo N v1. 

We have shown that wl cannot see q. We now consider the other possible case of 

(3.6). 

(Otherwise wl + q A w' N q) Consider a separating dent D, for wl and q. The 

points v2 and w' see both wl and q, so from Corollary 2.5 must be 0-above D,. From 

Observation 3.3, vl must be 0-below and on the same side of D, as q. 

From the chordlessness of C ,  there must be some separating dent D, for w' and vl (see 

Figure 3.4). From Corollary 2.5 q must be 0-above D,; it follows from Observation 3.3 
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that v2 must also be 0-above D,. 

Consider the incompatibility graph of Do, Dl, D2, D, and D,; as illustrated in Figure 

3.8, this graph contains a clique of size 4, so no three colouring is possible, and this 

also is a contradiction. 

We call visibility instances with less than 3 dent orientations, or 3 dent orientations 

of span at least 180" class 3a visibility instances. We call visibility instances with three 

dent directions with span less than 180" class 3b visibility instances. We call a set of 

orientations a class 3a (3b) set of orientations if it has cardinality 3 and span at least 

(less than) 180". 

A 5-cycle is not perfect, hence any graph containing a 5-cycle as an induced sub- 

graph is not perfect. The following lemma shows that Lemma 3.8 is as strong as 

possible. 

Lemma 3.9 For any class 3b set of orientations, there exists a polygon with dent 

orientations only in that set and a 5-hole in its PVG. 

Proof. Suppose we have a set of three dent orientations { do, dl, d2 ) contained in a 

half-plane. Without loss of generality suppose that do < dl < d2 and that do = 0" + 4 
and d2 = 360 - q5 for some 0 < q!~ < 90. By appropriate horizontal scaling of Figure 

3.9 we can create a polygon with same PVG, but with the two non vertical dent 

orientations of Figure 3.9 being do and 82. Furthermore, since O1 is between O0 and d2 

we can tilt the bottom reflex edge so that the the third dent orientation of our figure 

is dl, also without changing the PVG. w 

Corollary 3.10 Let O be a set of orientations. If (01 2 4, then there exists a polygon 

with dent orientations only in that set and a 5-hole in its PVG. 

Proof. Let O be a set of orientations, 101 > 4. 

1. Suppose 101 = 4. 
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Figure 3.9: A polygon with 3 dent orientations ( 0  = {0•‹,45",900, 135" )) and a 
chordless 5-cycle in its PVG. 

(a) If the orientations in O form two antipodal pairs, then we can apply Ob- 

servation 1.1 and the construction for class 4 orthogonal polygons from 

POI. 

(b) Otherwise, consider a line through the origin, along some orientation 4 E O 

such that q5 + 180' 6 0. Two of the orientations in O must be on one side 

of this line, and one of the orientations on the other. The two orientations 

on one side of the line, along with 4, form a class 3b set of orientations, 

and we can apply the construction of Lemma 3.9. 

2. Otherwise (01 2 5. Consider a line through the origin that is not along any 

orientation in 0. By the pigeonhole principle, one of the half planes induced by 

this line must contain a class 3b set of orientations so we can again apply the 

construction of Lemma 3.9. 

Lemma 3.11 A polygon with only three dent directions cannot have a 6-antihole in 

its PVG. 
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Proof. Consider a six antihole in the PVG of a class 3 visibility instance. As in 

the proof of Theorem 3.1 let the separating dent for vertices v; and v;+l be D;. From 

the proof of Theorem 3.1, we know that the dent incompatibility graph itself contains 

a six anticycle. Since we assume that the six antihole is generated by a visibility 

instance with only three dent orientations, it follows that the dent incompatibility 

graph must be 3-colourable. The only way to three colour this graph is to assign 

the same colour to successive pairs of vertices along the anticycle. Without loss of 

generality, assume that Do is assigned the same colour (i.e. is the same orientation 

as) Dl, D2 is assigned the same colour as D3, and so on. It follows that the separating 

dents for the the 6-antihole are divided into equivalence classes as follows 

Orientation 

01 

02 

03 

Dents 

From Lemma 3.5 we can deduce the existence of the following three dents: 

Applying Observation 1.1 and symmetry, we may assume that the orientation of Di 

is 90" and the orientation of Di  is 180". 

Since vo is 0-below Di on the the same side as v2 and 0-above DL, ~ ( 0 ; )  must 

be above DL. Similarly since v4 is 0-below D& on the same side as v2 and 0-above 

Di,  ~ ( 0 4 )  must be 0-above Di. 
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Figure 3.10: Dent layout for a 6 antihole with 3 dent orientations. 

Let 6' be a line segment from the rightmost point of di to the bottommost point 

of 8; (see Figure 3.10). Any point on the opposite side of 6' from vz must be 0-below 

D; since 6: separates { vo, va } from vz, B(6.) c B(D:). It follows that VI and v3 are 

O-below Dk but this contradicts the definition of Dk. H 

We have now found enough forbidden subgraphs for class 3a visibility instances to 

prove the main result of the thesis: 

Theorem 3.2 If (P ,  0)  is a class 3a visibility instance then the 0-PVG of P is a 

weakly triangulated graph. 

Proof. Let G be the PVG of a class 3a visibility instance. From Lemma 3.8, G 

has no 5-antihole, or k-hole for k > 5. From Lemma 3.11, G has no 6-antihole. From 

Theorem 3.1, G has no k-antihole, k > 6. 

Theorem 3.2 provides both an interesting structural duality about class 3a visi- 

bility instances and an algorithmic result. Motwani et al. [30] noted that since the 

CVGs of class 3 orthogonal polygons orthogonal polygons are perfect, the maximum 
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hidden set in a class 3 orthogonal polygon is the same size as the minimum convex 

cover. This result generalizes to the following: 

Corollary 3.12 The maximum 0-hidden set of a class 3a visibility instance is the 

same size as the minimum 0-convex cover. 

Proof. Let (P ,  0)  be a class 3a visibility instance. By Theorem 3.2, the 0 -PVG 

G, of P is weakly triangulated. Let G, be the 0 -CVG of P.  Since G, is an induced 

subgraph of G,, Gc is also weakly triangulated. Finite weakly triangulated graphs are 

perfect, so a(G,) = k(G,). From the fact that G, is the quotient graph of G, and the 

fact that PVGs are reflexive, it follows that 

Raghunathan [36] has given an algorithm that finds a maximum clique and a 

minimum colouring of a weakly triangulated graph G = (V, E )  in 0(ev2) time where 

e = [El and v = IVI. 

Corollary 3.13 Let (P, 0)  be a class 3a visibility instance with P having n vertices. 

0-convex cover and 0-hidden set can be computed on P O(ns) time. 

Proof, We can compute the 0-CVG of P in 0 (n4 )  time using Algorithm 3. The 

complement of a weakly triangulated graph is also weakly triangulated, so we can use 

Raghunathan's algorithm on the graph theoretic complement of the CVG to find a 

maximum independent set and a minimum clique cover of the CVG. If a polygon P 

has n edges, then the CVG of P has 0 ( n 2 )  vertices and 0 (n4 )  edges. It follows that 

in 0(n8) time we can find a maximum independent set and minimum clique cover 

in the CVG. We can map an independent set in the CVG back into a hidden set in 

O(n) time by simply choosing one point from each cell. We can merge the sets of cells 

corresponding to cliques in the CVG into 0-convex polygons in time proportional 
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to the number of cells by marking each cell of the dent dent decomposition as to 

which 0-convex polygon is belongs to, and then doing a depth first walk of the 

dent decomposition from a cell in each clique to find the boundary of the covering 

subpolygons. w 



Chapter 4 

Source Cells 

From Corollary 3.10, we know that only a relatively small class of visibility instances 

have weakly triangulated PVGs. In this chapter, we examine other kinds of structure 

present in PVGs, in particular structure in the subgraph of the CVG induced by the 

"source cells" of the dent decomposition, that is the cells of the dent decomposition 

that are not 0-above any dent. First we show that this subgraph, called the source 

visibility graph, can be used to give a lower bound on the size of the largest inde- 

pendent set in an 0-PVG. Second, we generalize a result of Culberson and Reckhow 

that shows that to cover the CVG with cliques, it suffices to cover the source visibility 

graph with maximal cliques. Finally, we consider the question of whether or not the 

use of source visibility graphs can be used to enlarge the class of visibility instances 

for which 0-convex cover is tractable, or to improve the bounds already known. 

Following Culberson and Reckhow [13], we define the cell DAG of a dent decom- 

position as follows: the nodes of the cell DAG are the cells of the dent decomposition, 

and there is an arc from Ii; to I& if they share a common edge and Ii; is 0-below 

the dent chord between them (see Figure 4.1). If there is an arc from Ii'; to I& in 

the cell DAG, we write I(1 + Ii;. A source vertex is a vertex in the cell DAG with 

in degree 0. We refer to the cell of the dent decomposition corresponding to a source 

vertex as a source cell. 
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Figure 4.1: A cell DAG 

Lemma 4.1 If the boundary of a simple polygon P contains d dents of the same 

orientation then P contains a hidden set of size at least d + 1. 

Proof. Let V be a subset of dents with orientation 4 in the boundary of a polygon 

P. Let A be the dent decomposition induced by V.  Let K be the set of source cells 

of A. We first show by induction on the size of V that 

(Basis) Suppose 1271 = 0; then K has exactly one element, the cell corresponding to 

the whole polygon. 

(Induction) Suppose that (4.1) holds for ID1 < n. Suppose IVJ = n. Let D* be a 

maximal element of V.  Let 

V = { D ;  E V ~ T ( D ; )  E B / ( D * ) )  

VT = { D i  E 'D ( ~ ( 0 ; )  E BT(D*) ) .  

Since D* is maximal, and every element of V has the same orientation: 
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Consider Bl(D*) and BT(D*) as weakly simple polygons. By the inductive hypothesis 

there are IDl 1 + 1 source cells in Bl(D*) and IDTI + 1 source cells in BT(D*). When 

we add another dent chord that does not intersect the interior of any of the dent cells 

in B(D*), all of the source cells in B(D*) are also source cells in the new polygon. 

Since there are no source cells in A(D*) there are 

source cells in A. 

Let KO and K1 be two elements of K. Since KO and K1 are source cells in a dent 

decomposition with only one dent chord orientation, each one must have exactly one 

edge that is not a segment of a polygon edge. It follows that any path from KO to K1 

must cross a chord of orientation q5 both upwards and downwards, hence from Lemma 

2.1 cannot be 0-convex. It follows that we can find a hidden set of size ID( + 1 by 

taking one point from each element of K. 

Theorem 4.1 Let G = (V, E)'  be an 0-CVG of a polygon P for somefinite cardinality 

0. Let p be the number of edges in P .  

Proof. Edelsbrunner [15] has shown that an arrangement of n lines in the plane has 

regions. Inverting, we get that if an arrangement of n lines has k regions, 

Since we know that n 2 1 and k > 1, we know that 

positive. 

the discriminant is real and 
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Now suppose we have an arrangement of p polygon edges and d dent chords having 

k' cells. Since extending each line segment to a line does not decrease the number of 

cells in the arrangement, 

There are at most 2101 dent orientations, so by the pigeonhole principle, there must 

dents having the same orientation. By Lemma 4.1, a(G) 2 d' + 1. 

Theorem 4.2 (Shermer [42]) Let G = (V, E) be an PVG of a polygon P. Let p be 

the number of edges in P .  

a(G) I P - 2 

The source visibility graph (SVG) of a polygon P is an undirected graph of the 

visibility relation between source cells of the dent decomposition of P. Culberson 

and Reckhow [13] show that clique cover of the the orthogonal visibility SVG of an 

orthogonal polygon P is polynomial time equivalent to clique cover of the orthogonal 

visibility PVG of P. We show that this result holds for general 0, although the SVG 

is only necessarily finite for finite 0. 

Since there is a (possibly zero width) region between any two dent chords, exactly 

one dent "4" relationship must change in crossing a dent chord between neighbouring 

cells of the dent decomposition. We define the distinguishing dent for two neighbour- 

ing dent cells I<a and Kb, as the dent whose relationship (under the relation "4') to 

is different from its relationship to Kb. 

The following lemma is a generalization of Lemma 2.6 in [13]. 

Lemma 4.2 If -t IG then every maximal 0-convex subpolygon that includes Kl 

also covers 16. 
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Figure 4.2: Illustration of the proof of Lemma 4.2 

Proof. Let and K 2  be dent cells such that K 1  + K 2 .  Let Q be a maximal 

0-convex subpolygon that contains Ii;. Suppose that K 2  Q; since Q is maximal, 

Q U K2 must be 0-concave. It follows that there must exist points x and y such that 

From Lemma 2.3, there exists some separating dent D such that 

From (4.4), (4.5), and Lemma 2.8, 

There are two possible cases: 

1. Suppose Ir'l 4 D (see Figure 4.2). Since y Ii;, I t1 B,(D). But this, along 

with (4.6) contradicts the assumption that Irll and share an edge. 

2 .  Otherwise, I(1 + D. From (4.6) D is the distinguishing dent for I t1  and I&. 

Since -+ K 2  it follows that Ii'l is below D and Ii'2 is above D. This contra- 

dicts (4.6). 
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Theorem 4.3 If C is a set of maximal 0-convex polygons that includes every source 

cell of some polygon P,  then C covers P .  

Proof. Since every node in the cell DAG is either a source vertex, or reachable by 

a directed path from a source vertex, this theorem follows by inductively applying 

Lemma 4.2. 

We have shown that clique cover of the 0-SVG of a polygon P is polynomial time 

equivalent to clique cover of the 0-PVG of P. The polynomial algorithms for class 

3 orthogonal polygons presented by Culberson and Reckhow and Motwani et al. are 

both based on showing that the SVGs of class 3 orthogonal visibility instances are 

perfect. Since SVGs are induced subgraphs of PVGs, our previous results imply that 

the SVGs of class 3a visibility instances are perfect. Thus our results for SVGs are as 

strong as those for CVGs. 

We now consider the question of whether the notion of source visibility graphs can 

be used to provide a polynomial algorithm for 0-convex cover for some non-trivial 

class of visibility instances beyond those in class 3a, or to improve the upper bounds 

in Chapter 2 and Chapter 3. Our conclusions are for the most part negative. 

Each vertex in an independent set of a graph G must be in separate element of 

a clique cover of G, so Theorem 4.1 provides a lower bound on the 0-convex cover 

number of polygon that can be computed in 0 ( n 4 )  time if (01 is finite. 

Since both the construction of [30] and the construction of Lemma 3.9 give induced 

5-cycles in the source visibility graph, we have the following corollary of Lemma 3.9. 

Corollary 4.3 Let O be a set of orientations. If 101 > 4, then there exists a polygon 

with dent orientations only in that set and a 5-hole in its SVG. 

Thus the use of SVGs does not provide a larger class of polygons for which clique 

cover algorithms for perfect graphs can be applied. 

Culberson and Reckhow [13] argue that for orthogonal visibility class 3 polygons, 

the SVG will have O(n)  edges and 0 ( n 2 )  vertices while the cell visibility graph may 

have R(n2)  vertices and R(n2)  edges. They further note that orthogonal visibility 

class 4 polygons may have R(n2) vertices and R(n4) edges in the source visibility 
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Figure 4.3: The SVGs of orthogonal visibility instances may contain Sl(n2) vertices 
and R(n4)  edges. 

Figure 4.4: The SVGs of class 3 visibility instances may contain Sl(n2) vertices and 
R(n4)  edges. 
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graph (see Figure 4.3). Given three dent orientations whose span is greater than 180" 

we can generalize the grid construction of Figure 4.3 to form a triangular grid of R(n2) 

source regions with R(n4) visibility edges between them (see Figure 4.4). 



Chapter 5 

Link 2 PVGs and Star Cover 

A point x is called link-k 0-visible (or just link-k visible) from a point y if there is 

some path between x and y (not intersecting the exterior of the polygon) consisting 

of at  most k staircases joined at  their endpoints. A set of points P is called link- 

k 0-convex (or just link-k convex) if every pair of points in P is link-k 0-visible. 

Motwani et al. [31] prove that for orthogonal visibility, star cover reduces to  link-2 

convex cover. Motwani et al. further show that the link-2 orthogonal point visibility 

graph (the square of the orthogonal point visibility graph) is weakly triangulated. In 

this chapter we show that for 101 > 2, neither of these results holds. We exhibit 

a class of visibility instances for which the equivalence of starshapedness and link-2 

convexity does hold. This class of visibility instances does not contain all orthogonal 

visibility instances, but does have an interesting Helly like characterization. 

An equivalent definition of link-2 convexity is that a set of points P is link-2 

convex if any pair of points x and y in P both see some third point z in P. To 

see that any starshaped polygon is link-2 0-convex, we note that any two points in 

a starshaped polygon see some point in the kernel. A link-2 convex polygon is not 

necessarily starshaped because every pair of points does not necessarily see the same 

point z .  Motwani et. a1 showed that for 0 = { 0•‹, 90" ) any link-2 0-convex polygon 

is 0-starshaped. By Observation 1.1, for 101 = 2, any link-2 convex polygon is 0- 

starshaped. Figure 5.1 shows a polygon that is link-2 0-convex for any 0 but is not 

0-starshaped for the set of three orientations shown. It follows that for 101 > 2, 



CHAPTER 5. LIhK 2 PVGS AND STAR COVER 73 

Figure 5.1: A class 3 visibility instance that is link-:! 0-convex, but not 0-starshaped. 

link-2 0-convexity is not necessarily equivalent to 0-starshapedness. 

We say that a set of dents V covers a polygon P (or V is a covering set for P )  if 

P = UDED B(D).  If (271 = 2, we say that V is a covering pair for P. We say that a 

dent D covers a point p if p 4 D. 

Lemma 5.1 A polygon P is 0-starshaped if and only if it contains no covering set 

of dents. 

Pro0 f. 

(If) Let R be a region 0-above every dent in P. Suppose a point x in R did not see 

some other point y in P ;  then there must be a separating dent D for x and y. The 

point x cannot be below D, so this is a contradiction and R must be a kernel for P. 

(Only If) Suppose P contains a covering set of dents. It follows that every point in 

P is below some dent. Let x be an arbitrary point in P. The point x must be below 

some dent; let D be such a dent. The point x cannot see any point in Bz(D), so x 

cannot be in a kernel for P. w 
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Figure 5.2: Illustration of the proof of Lemma 5.3 

We define a dent in an open path analogously to a dent in the boundary of a 

polygon. A vertex of a polygonal path S is called interior if it is not one of the two 

endpoints of S. An edge is called interior if both endpoints are interior. Let S be a 

polygonal path. Let T be an interior vertex or edge of S. If there exists some 0-chord 

S = (y,O) such that y is tangent to T, then we call the ordered pair D = (r ,8)  a dent 

in S. 

Observation 5.2 If a path S has k dents, S is not link-k convex. 

Lemma 5.3 If P is link-2 convex, then it contains no covering pair of dents. 

Proof. We prove the contrapositive. Let Do and Dl be a covering pair of dents for 

P. Any point in P must be below one of Do or Dl.  It follows that A(Do)  c B ( D 1 )  

and A(D1)  c B(Do) .  Furthermore, for any dent Dt no connected subset of P can 

intersect both Bl(Dt )  and B,(Dt) without also intersecting A(Dt) .  Since A(Do)  does 
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Figure 5.3: A dent D such that A ( D )  is a hat polygon 

not intersect A ( D l ) ,  A(Do)  must be entirely contained on one side of B ( D 1 )  and 

A(D1)  must be entirely contained on one side of B(Do) .  Let p be a point 0-below 

Do on the opposite side from A(D1) .  Let q be a point 0-below Dl on the opposite 

side from A(D0) (see Figure 5.2. Let S be a path from p to q. The point q is in 
+ 

B,-(Do) so S must cross Do upwards at some point uo and downward at some point 

do. It follows that there must be some dent to on S between uo and do such that 

7 ( t0 )  E A(DO).  Similarly p E Bg(D1)  SO there must be some dent tl E A(D1)  on S. 

Since A(Do)  n A(D1)  = 0, to # tl. Since S has two distinct dents, it cannot be link-2 

convex. Since p is not link-2 visible from q, P is not link-2 convex. 

Let D be a set of dents. 0 ( D )  denotes the set { 9(Di)  I Di E D ) and the span of 

D denotes the span of O(D) .  

Lemma 5.4 Let D be the set of dents in the boundary of a simple polygon P.  If the 

span of 2) is at most 180' then for any dent D E 'D, If (O(D) + 180') # 0 ( D )  then 

A ( D )  is a hat polygon. 

Proof. Let D be the set of orientations in the boundary of P. Suppose the 

orientations in 0 ( D )  are contained in a closed half plane, without loss of generality 

the upper one one induced by a horizontal line. Let D be an element of D such that 

( 9 (D)  + 180') $ O(D) .  It follows that 0' < 9 (D)  < 180'. Suppose A ( D )  were not a 

hat polygon; since d is a chord of P ,  A ( D )  is weakly simple. Since P is simple there 
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I bo bl r 

Figure 5.4: The chord yo intersects the chord yl. 

must be some point in A ( D )  where the boundary of P is tangent to 6. This would 

imply the existence of a downward facing dent in V, but this is a contradiction. It 

follows that A ( D )  is a hat polygon (see Figure 5.3). 

Lemma 5.5 Let P be a hat polygon. Let e = ( I ,  r )  be an edge of P where r is after 1 in 

the counterclockwise traversal of the boundary of P .  Let yo = (bo, to) and 7 1  = (b l ,  t l )  
be two chords of P such that 

1. The points bo and bl are contained in the interior of e, and 

2. Either 

(a) yo intersects yl, or 

(b) The extensions of yo and yl to lines intersect in the half plane defined by 

e not containing yo and yl. 

If Ltobor < .ktlblr, then to is encountered before tl on a counterclockwise walk of the 

boundary of P from r .  
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Figure 5.5: The extensions of yo and 71 to lines intersect below e. 

Proof. Without loss of generality, suppose e is horizontal and a ray upward from e 

is inside P in the neighbourhood of e. Let $0 ($1) denote the magnitude of the angle 

Ltobor (Ltlblr). 

If bo or bl is in a brim segment of P, then yo cannot cross yl so it must be the 

case that bo is to the right of bl on e. Let el ( e , )  denote the edge of P before (after) 

e on the counterclockwise traversal of the boundary of P .  Suppose bo is in a brim 

segment of P; then since bo = to and bl = t l ,  tl must either be before to on the 

clockwise traversal of el or on another edge. In either case to is reached before tl on a 

counterclockwise walk of the boundary of P from r .  The case of bl in the brim of P. 

Otherwise if P is simple (i.e. has no brim segments) or neither bo or bl is in the 

brim of P ,  it suffices to consider the simple polygon P' consisting of the closure of 

the interior of P .  The chord y1 divides P' into two weakly simple polygons: Pl on the 

left and P, on the right. We show that to must be in P,. There are two cases: 



CHAPTER 5. LINK 2 PVGS AND STAR COVER 

1. Suppose yo intersects yl (see Figure 5.4). Let q be the intersection point. Since 

both yo and yl are chords of P and intersect the interior of e, 0" < &, < dl < 
180•‹, the line segment (q, to] must be entirely contained in P,. 

2. Otherwise the extensions of yo and yl to lines intersect in the half plane below 

e (see Figure 5.5). Let q again be the intersection point. Since the orientation 

of a ray from q through to is smaller than that of a ray from q through t l ,  bl 

must be to the left of bo. It follows that the the line segment [boy to] is entirely 

contained in P, . 

Since to is between r and tl on a walk (clockwise or counterclockwise) of the 

boundary of P, from r ,  to must be between r and tl on a counterclockwise walk of 

the boundary of P from r. 

Given two oriented chords So = (yo, $0) and S1 = (yl, we say that So crosses 

S1 and write So w S1 if the intersection of the chords yo and yl is a proper crossing. 
-# 4 

We use Do w Dl as equivalent notation for Do w Dl. Let I(D) (respectively r (D))  

denote the endpoint of d incident on &(D) (respectively B,(D)). 

Lemma 5.6 Let Do and Dl be dents such that { 8(Do), 8(D1) ) 2 [0•‹, 180•‹] and Do w 

Dl .  

Proof. We first prove the forward direction of the implications. 

1. Suppose 8(Do) = 0"; any dent which crosses Do must have orientation distinct 

from, hence greater than 0". 

2. Suppose O(D1) = 180"; any dent which crosses Do must have orientation distinct 

from, hence less than 180'. 

3. Otherwise 0" < $(Do) < 180•‹, so l(Do) is to the left of r(Do). Let q be the 
+ 

intersection point of Do and d l .  
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(a) Suppose l(Do) 4 Dl. Let S be an oriented chord through q and l(Do) with 
-, 

the same orientation as Do. In order to rotate S about q so that l(Do) 

is 0-below 6, we must rotate in a clockwise direction, i.e. decrease the 

orientation of S. 

(b) Suppose r(Do) 4 Dl.  Let S be an oriented chord through q and r(Do) with 

the same orientation as DO. In order to rotate 6 about q so that r(Do) is 

0-below 6, we must rotate in a counterclockwise direction, i.e. increase 

the orientation of 6. 

We now show the the reverse directions of the implications hold. Observe that 

& and 61 are both line segments, so if 5 0  w 51 then exactly one endpoint of Do 

is on either side of 61. Suppose d(Do) < d(D1) and l(Do) + Dl. Since exactly one 

endpoint of do is 0-above Dl ,  r(Do) 4 Do. From the forward direction of the lemma, 

d(Do) > d(D1), but this a contradiction, so l(Do) 4 Dl. Similarly, if 6(Do) > $(Dl) 

then r(Do) must be be 0-below Dl 

Lemma 5.7 Let V be the set of dents in the boundary of a polygon P with the span 

of V at most 180". If V contains no covering pair, then V contains no covering set 

of dents. 

Proof. Let V be the set of dents in the boundary of a polygon P. Suppose that the 

span of V is at most 180" and 27 contains no covering pair. Without loss of generality, 

suppose the orientations of dents in V are contained in the (closed) upper half plane 

induced by a horizontal line. Let ZY be the set of maximal elements of V. If there is 

a covering set of dents in V then there is a covering set in 2Y. Suppose there were a 

covering set of dents in V'. 

We first show the following. 

Let Do and Dl be two elements of ZY. Since Do and Dl are both maximal, it follows 

that 
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Figure 5.6: Dents covering the endpoints of a maximal dent chord. 

Since { Do, Dl ) is not a covering pair, 

It follows that Do w Dl. 
Suppose the orientation of some D E D' were 0" or 180'; it follows the associated 

dent chord d would be vertical. Let p be the highest of { l ( D ) , r ( D ) ) .  Let D, be 

a dent that covers p. From (5.1), D w D,. But this would imply that D had an 

orientation between 180" and 360•‹, which is a contradiction. Thus if there exists such 

a D,, there is no covering set for D. We can now assume that 

Let D* be some element of 0. A dent D is called a right dent if 0 < B(D) < O(D*), 

and a left dent if O(D*) < O(D) 5 180. From (5.1) and Lemma 5.6 we know that 

l (D*)  must be covered be a right dent and r (D*)  must be covered by a left dent. Let 
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,B be the path along the polygon boundary from l (D*)  to r (D*)  0-above D*. Let Dl 

be the left dent in V' whose chord intersects P closest to l (D*) .  Let D, be the right 

dent in 1Y whose chord intersects ,4 closest to r (D*)  (see Figure 5.6). 

From (5.1) Dl and D, must both cross D*. It follows from Lemma 5.6 that 

From Lemma 5.4, A(D*)  is a hat polygon. It follows from Lemma 5.5 that r ( D l )  must 

be closer to r (D*)  on p than l(D,) is. Let D, be some dent that covers r (Dl ) .  From 

(5.1) 6, must intersect a. Since D, covers r ( D l )  and O(Dc) is contained in the upper 

half-plane, it follows from Lemma 5.6 that B(D1) < 8(Dc).  Since Dl is a left dent, and 

it follows that D, is a left dent. Since D, w Dl and 8(Dl)  < O(Dc) it follows from 

Lemma 5.5 that 6, intersects ,B closer to l (D*)  than f i  does. This contradicts our 

definition of Dl,  so there is no covering set of dents in 27, hence no covering set of 

dents in 2). 

We can restate the previous lemma in a manner analogous to Helly's theorem for 

planar convex sets. 

Corollary 5.8 Let 2) be the set of dents in the boundary of a polygon P with the span 

of V at most 180". Let A be the set { A ( D )  I D E 2) ). If every pair of elements of A 

has a point in common, then nQEA Q # 0. 

Theorem 5.1 Let 2) be the set of dents in the boundary of a polygon P with the span 

of 2) at most 180". If P is link-2 0-convex then P is 0-starshaped. 

Proof. Let P be a polygon whose dent orientations are contained in a half plane. 

Further suppose that P is link-2 0-convex. From Lemma 5.3, P contains no covering 

pair of dents. From Lemma 5.7, P contains no covering set of dents. From Lemma 5.1, 

P is 0-starshaped. 
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Figure 5.7: A polygon with an induced five cycle in the link-:! point visibility graph. 
0 = { 0•‹, 36", 72", lO8", 144" ). 
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Motwani et al. [31] show that the link-2 orthogonal cell visibility graph is weakly 

triangulated. They use this fact, along with the fact that if a polygon is link-2 

{ 0•‹, 90' )-convex, then it is { 0•‹, 90' )-starshaped, to give a polynomial time algorithm 

for { 0•‹, 90" )-star cover. We have argued above that while the reduction from star 

cover to  link-2 convex cover does not hold in general for 101 2 3, it does hold if the 

span of the dents in a visibility instance is at most 180". The question of whether link- 

2 convex cover is tractable for these visibility instances remains open. We do know 

that not all link-2 0-PVGs are perfect; Figure 5.7 shows a polygon with a chordless 

5 cycle in the link-2 PVG. 



Chapter 6 

Conclusions 

This thesis follows [13, 301 in using the notion of dent orientation to characterize which 

visibility instances have weakly triangulated PVGs. We show however, that for more 

general kinds of visibility, the number of dent orientations is not sufficient for this 

characterization. We introduce the notion of the span of a set of dent orientations 

and show that to guarantee a weakly triangulated PVG, not only must a polygon 

have a maximum of 3 dent orientations, but if it does have 3 dent orientations, the 

span of these orientations must be at least 180". 

From Corollary 3.10 we know that any class of visibility instances with more than 

3 dent directions does not have perfect 0-PVGs. On the other hand, as investigated 

in Chapter 4, there is considerable structure in an arbitrary PVG. 

Question 1 Does there exist some nontrivial class of visibility instances distinct from 

the set of 3a visibility instances for which clique cover of the 0-PVGs is tractable? 

In Chapter 5 we investigate when 0-star cover is reducible to link-2 0-convex 

cover. We show that if the span of the orientations of dents in the boundary of P is 

at most 180" then this reduction holds. Unlike the results of Chapter 3, this is not 

a generalization of previous results. Let P2 be defined to be the class of visibility 

instances (P, 0 )  such that (01 = 2. Motwani et al. [31], along with Observation 1.1, 

show that for (P, 0) E P 2 ,  

1. P is 0-starshaped if and only if P is link-2 0-convex, and 
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2. The link-2 0-PVG of P is weakly triangulated. 

This leads us to ask the following two questions: 

Question 2 Is there a class P, of visibility instances such that 

I .  Pz c P,, and 

2. V(P, 0 )  E P, P is 0-starshaped if and only if P is link-2 0-convex? 

Question 3 Let D be the set of dents in the boundary of a polygon P .  If the span of 

V is at most 180•‹, is the link-2 PVG of P necessarily perfect? 

For finite cardinality 0, the distinction between perfect PVGs and perfect CVGs 

is practically unimportant. Rawlins and Wood show that several visibility problems 

are solvable not only for finite cardinality 0 but for 0 consisting of a finite set of 

closed ranges; in this case the CVG would not necessarily be finite. In Chapter 3 

we argued that the PVGs of class 3a polygons are weakly triangulated. Since the 

statement "All triangulated graphs of cardinality N1 are perfect" is known to be 

independent of ZFC (Zermelo-Fraenkel set theory with the axiom of choice) 1481, the 

perfection of uncountable weakly triangulated graphs is unlikely to be provable in 

general. However, it is also known that triangulated graphs that contain no infinite 

independent set and those that contain no infinite clique are perfect [23, 481. S' ince no 

restricted-orientation PVG contains an infinite independent set, we ask the following: 

Question 4 If G is an uncountable weakly triangulated graph and G has no infinite 

independent set, is G necessarily perfect? 
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