
DISTRIBUTED SLIDING WINDOW
SCHEDULING IMPLEMENTED IN JAVA

FOR A JADE AGENT SYSTEM

by

Scott Logie

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

In the School
of

Engineering Science

O Scott Logie 2005

SIMON FRASER UNIVERSITY

Spring 2005

All rights reserved. This work may not be
reproduced in whole or in part, by photocopy

or other means, without permission of the author.

Distributed Sliding Window Scheduling Implemented in Java for a JADE Agent System

APPROVAL

EXAMINING COMMITTEE

Chair:

Scott Logie

Master of Applied Science

Distributed Sliding Window Scheduling
Implemented in Java for a JADE Agent System

- -- --

Dr. William A. Gruver
Academic Supervisor
Professor, School of Engineering Science

Dorian Sabaz
Technical Supervisor
Intelligent Robotics Corporation

Dilip Kotak
Committee Member
National Research Council

Dr. John Dill
Internal Examiner
Professor, School of Engineering Science

Date Approved: November 24,2004

SIMON FRASER UNIVERSITY

PARTIAL COPYRIGHT LICENCE

The author, whose copyright is declared on the title page of this work, has
granted to Simon Fraser University the right to lend this thesis, project or
extended essay to users of the Simon Fraser University Library, and to make
partial or single copies only for such users or in response to a request from the
library of any other university, or other educational institution, on its own behalf
or for one of its users.

The author has further granted permission to Simon Fraser University to keep or
make a digital copy for use in its circulating collection.

The author has further agreed that permission for multiple copying of this work
for scholarly purposes may be granted by either the author or the Dean of
Graduate Studies.

It is understood that copying or publication of this work for financial gain shall
not be allowed without the author's written permission.

Permission for public performance, or limited permission for private scholarly
use, of any multimedia materials forming part of this work, may have been
granted by the author. This information may be found on the separately
catalogued multimedia material and in the signed Partial Copyright Licence.

The original Partial Copyright Licence attesting to these terms, and signed by
this author, may be found in the original bound copy of this work, retained in the
Simon Fraser University Archive.

W. A. C. Bennett Library
Simon Fraser University

Bumaby, BC, Canada

Distributed Sliding Window Scheduling Implemented in Java for a JADE Agent System

ABSTRACT

This thesis describes a fully distributed approach to resource scheduling within a sliding

time frame, implemented for a system of agents across multiple JADE platforms. All

agents, with operations inside the current window, schedule tasks using recursive

propagation and a sorting algorithm. Operations outside the window are not scheduled

until either the sliding window has advanced to encompass them or until gaps have

opened between tasks inside the sliding window to accommodate them. The distributed

sliding window approach to scheduling addresses many of the problems afflicting both

centralized systems, including scalability, robustness, and responsiveness to dynamic

changes. It also provides full decentralization as compared with other distributed

approaches.

iii

Distributed Sliding Window Scheduling Implemented in Java for a JADE Agent System

ACKNOWLEDGEMENTS

This research has been made possible by the generous financial support of the Natural

Sciences and Engineering Research Council of Canada, the BC Advanced Systems

Institute, the Instrumentation, Systems, and Automation Society, and Simon Fraser

University.

I would like to thank Dr. William A. Gruver and Dorian Sabaz for their valuable input

and guidance throughout my research and development.

Most importantly, thanks to Joy for her unwavering support.

Distributed Sliding Window Scheduling Implemented in Java for a JADE Agent System

CONTENTS

. . Approval .. n
...

Abstract ... 111

Acknowledgements .. iv

Contents .. v
. . .. List of Figures v11

List of Tables .. ix

Glossary ... x

1 Introduction .. 1
.. 1.1 Basic Scheduling 1

1.2 Standard Approaches to Scheduling .. 3
.. 1.2.1 Weaknesses of Standard Approaches 6 . .

1.3 Distributed Systems ... 8
1.3.1 Tools for Distributed System Implementation .. 13

1.4 Thesis Objective ... 14
1.5 Thesis Outline ... 15

2 Algorithm Design and Architecture ... 17
2.1 Hino's Recursive Propagation .. 17

.. 2.1.1 Problem Constraints 17
2.1.2 Description of the Recursive Propagation Algorithm 19

... 2.2 Enhancements to Recursive Propagation 21
2.2.1 Coarse Task Sorting .. 22

... 2.2.2 Fine Task Sorting 24
2.3 Sliding Window Task Scheduling .. 27
2.4 System Architecture ... 31

2.4.1 Structure of Tasks and Task Lists .. 31
2.4.2 Structure of Messages and Message Lists ... 35
2.4.3 Detailed Description of the Sliding Window Scheduling Algorithm 40

3 Implementation ... 46
3.1 Introduction to JADE ... 46

3.1.1 Building Scheduling Agents on Top of JADE .. 48
3.2 Composite Scheduling Entity ... 50

3.2.1 Implementation of the JADE Interface Agent Class 50
3.2.2 Implementation of the Java Scheduling Agent Class 52
3.2.3 Communication Between Java and JADE Agents .. 56

Distributed Sliding Window Scheduling Implemented in Java for a JADE Agent System

... 4 Simulation Results 58
4.1 Resource Utilization ... 58
4.2 Task Selection Criteria ... 60

... 4.3 Hardware Impacts on System Performance 62
.. 4.4 Initial Sliding Window Test Results 64

4.4.1 Jade Test Results ... 65
... 4.4.2 Distributed Network Simulation Results 67

..................................... 4.5 Impacts of System Dimensions on System Performance 69
.. 4.6 Impacts of Window Width on System Performance 72

4.6.1 Determining an Ideal Window Width for Scheduling Systems 77

5 Conclusions ... 83
5.1 Future Work ... 83

5.1.1 Improvements to Performance ... 83
5.1.2 Improved Robustness ... 84

.. 5.1.3 Broadened Relevance 85
5.1.4 Complementary Research .. 86

5.2 Summary .. 89

6 References ... 90

Distributed Sliding Window Scheduling Implemented in Java for a JADE Agent System

LIST OF FIGURES

Figure 1 .
Figure 2 .
Figure 3 .

Figure 4 .
Figure 5 .
Figure 6 .
Figure 7 .
Figure 8 .
Figure 9 .

Figure 10 .
Figure 1 1 .
Figure 12 .
Figure 1 3 .

Figure 14 .
Figure 15 .
Figure 16 .
Figure 17 .
Figure 1 8 .

Figure 19 .
Figure 20 .

Figure 2 1 .

Figure 22 .
Figure 23 .
Figure 24 .
Figure 25 .
Figure 26 .

Figure 27 .

Illustrating the Significance of Machine Functions 3

... ClientlServer System Architecture 4

Distributed Systems Model ... 9

Critical Components in Distributed Systems .. 10

Blackboard Multi-Agent Systems ... 12

Recursive Propagation .. 12

Recursive Propagation Message Passing Technique 20

Coarse Sorting: Agent with Two Tasks .. 23

Coarse Sorting: Agent with Two Tasks (Improved) 23

Fine Sorting: Agent with Two Tasks .. 24

Fine Sorting: Agent with Two Tasks (After Fine Sort) 25

Sliding Window Example ... 30

Task Class Structure ... 32

Task State Diagram ... 34

Task List Class Structure ... 35

Agent Peer Relationships .. 37

Message Class Structure ... 38

Task States and Messages Flags ... 40

Agent Activity Diagram .. 44

Agent State Diagram ... 45

ACL Message Structure .. 47

Networked Scheduling Agents ... 49

Composite Scheduling Entity Class Diagram ... 54

Message Sequence Diagram ... 56

Schedules for a Simple Two-Agent System ... 59

Coarse Sorting Selection Criteria Performance .. 61

Iterations Required By JADE Simulations ... 65

vii

Distributed Sliding Window Scheduling Implemented in Java for a JADE Agent System

Figure 28 .
Figure 29 .
Figure 30 .

Figure 3 1 .
Figure 32 .
Figure 33 .
Figure 34 .
Figure 3 5 .

Figure 36 .

Figure 37 .

Figure 38 .

Figure 39 .
Figure 40 .

Figure 4 1 .

Messages Required By JADE Simulations ... 66

Iterations Required By Simulator Application ... 68

Messages Required By Simulator Application .. 68

Computing and Communication for Increasing Agents 70

Number of Iterations and Messages for Increasing Orders 71

Iterations Required For Ten-Agent System .. 73

Messages Required For Ten-Agent System .. 74

Comparison of Minima of Messages Curves .. 74

Utilization Achieved By Ten-Agent System .. 75

Message Requirements for Ten-Agent Thirty Job Systems 80

Message Requirements for Ten-Agent Thirty Job Systems 81

Linear Task Sequence for a Single Job ... 85

Non-Linear Task Sequence for a Single Job ... 85

Levels of Agent Software Implementation ... 87

viii

Distributed Sliding Window Scheduling Implemented in Java for a JADE Agent System

LIST OF TABLES

Table 1 .

Table 2 .
Table 3 .
Table 4 .

Table 5 .

Table 6 .

Table 7 .
Table 8 .

Table 9 .
Table 10 .

.. Message Types 36

... Class Structures of Scheduler Implementation 55

.......................... Utilization Calculations for Simple Two-Agent System 59

Coarse Sorting Performance Summary ... 61

Hardware Test Platform Description .. 62

Hardware Simulation Results ... 63

.. Hardware Simulation Results Analysis 64

Standard Deviation of Simulations ... 66

Infinite Window Scheduling Results .. 76

................................ Relative Contribution of Synchronization Messages 78

Distributed Sliding Window Scheduling Implemented in Java for a JADE Agent System

GLOSSARY

ACL

AID

API

CSE

FIPA

HTTP

IDEA

JADE

JXTA

LAN

SDK

SFU

VNET

Agent Communication Language

Agent Identifier

Application Program Interface

Composite Scheduling Entity

Foundation for Intelligent Physical Agents

HyperText Transfer Protocol

Intelligent and Distributed Enterprise Automation

Java Agent Development Framework

Sun Microsystems framework for peer-to-peer communication

Local Area Network

Java Standard Development Kit

Simon Fraser University

Virtual Network Project of the IDEA Laboratory

1 INTRODUCTION

Traditional techniques for scheduling resources suffer from three major disadvantages:

limited responsiveness to dynamic changes, large expense related to scalability, and poor

robustness. Many of the standard approaches do not respond well to a changing work

environment, become increasingly complex for systems of large dimension, and use

clientlserver architectures that may fail when components become unavailable. Instead,

distributed approaches to scheduling have emerged as a potential solution to these

problems. This thesis presents one such method.

The document will begin with an overview of scheduling and existing centralized

approaches. It will then describe the benefits that distributed system designs provide and

outline a new distributed algorithm for scheduling. In the results provided here and the

analysis that follows, this algorithm will be shown to greatly reduce communication and

computational requirements.

1.1 Basic Scheduling

According to Baker El], scheduling is "the allocation of resources over time to perform a

collection of tasks". Schedulers assign tasks to available resources, and then determine a

sequence and chronological placement of those tasks that satisfy the constraints. As a

result, a generic scheduling model can be used to represent many industries and

Introduction

applications, fiom manufacturing processes to the power distribution, fiom human

interactions in a workplace to the allocation of transport vehicles in a shipping fleet.

Regardless of the actual items being scheduled, common nomenclature has been

established to describe these problems. In scheduling problems, jobs (also called orders

orparts), each consisting of a series of operations (or tasks) that have an associated

precedence sequence, are assigned to a number of available resource entities and given

chronological placement. For simple scheduling problems, few system details need to be

specified apart fiom the machine function and finite processing time associated with each

task, which introduce constraints on the problem of resource allocation.

The machine function of a resource refers to a specific action that the device performs to

complete its task. Though many resources may be available to handle tasks, only some

may be equipped to perform the specific machine function associated with each. As a

result, the machine function parameter limits the number of available resources to which

the task may be assigned. Likewise, this parameter limits the number of resources to

which a task may be reassigned in the event that one of the other shop resources goes off-

line. Additionally, systems may be comprised of both single-function and multi-function

resources. Many algorithms have been developed to handle the allocation of tasks to

resources given the presence of both single-function and multi-function machines [2][3].

In the example of Figure 1, the available task can be assigned to either of resources Alpha

or Beta because both are equipped to handle drilling.

Introduction

Task: Part A, Operation 3 Resource: Alpha Resource: Delta
Machine Function: Drilling Machine Function: Fastening

FIGURE 1. ~LLUSTRATING THE SIGNIFICANCE OF MACHINE FUNCTIONS

Though task allocation is an important component to scheduling, the details of how tasks

are assigned to resources are not the focus of the work presented here. Instead, this thesis

focuses on task sequencing and task timing.

1.2 Standard Approaches to Scheduling

Inherently, the scheduling of resources is a distributed problem. Resources, capabilities,

and information about jobs, system components, and states are dispersed among the

many, often physically separate, elements of the system. Even so, most present-day

scheduling systems, whether manufacturing-based or otherwise, are designed using some

form of clienttserver architecture (Figure 2) with centralized algorithms that construct a

global model of the production domain before computing a scheduling solution.

Information regarding resources and tasks is collected by a central component, one of a

variety of algorithms applied, and the resulting solution redistributed to the rest of the

system. Three key requirements are demanded of a central server: large data storage

capabilities, significant processing capabilities, and reliable communication paths

between the server and peripheral system components.

Introduction

Many centralized approaches to scheduling have been studied that provide near optimal

solutions to the scheduling problem.

Linear programming approaches [4][5] introduce slack variables for each inequality

constraint and iteratively increase variables from zero as long as the effect on the

objective function is positive. The result is an exploration of the extreme points of the

surface bounded by linear constraints until an optimal objective value is found. As

problems become increasingly complex, linear programming becomes a less useful

approach and further constraint reasoning methods may be applied. These techniques

require search methods to find feasible solutions (usually non-optimal) to realistically

modeled constrained systems [6].

Introduction
- -- -

A further branch-and-bound method explores the enumeration tree of all possible

scheduling solutions, but reduces the scope of this exploration by eliminating the nodes

for which all descendant solutions must exceed some bound [7][8]. These methods incur

a high computational cost as the number of constraints and variables increases.

Additionally, all system constraint information, the number of variables, and the relative

weight of each variable on the objective fimction must be predetermined before the

algorithm can be applied.

Other research has employed genetic algorithms [9] [lo], which begin with an initial

population of possible solutions and then crossover, mutate, or replace these solutions in

an effort to preserve the best aspects of all possible solutions. The more iterations the

algorithm completes, the better these solutions are meant to converge on the optimum.

Simulated annealing algorithms are another approach [11][12], which always accept

solution changes that lead to improved results, but only accept detrimental changes

according to some probability function that decreases over time. Like many heuristic

methods, the computational requirements are reduced, but it can be difficult to measure

the proximity of the optimized solution to the optimum that exists for the problem. Also,

if the characteristics of the parent population change, the algorithm must be re-applied.

Further still, Lagrangian relaxation techniques can also be used to obtain near optimal

solutions to scheduling problems. System constraints are relaxed using Lagrange

multipliers, and the resulting problem is solved using dynamic programming or

Introduction

generalized gradient search methods. Iteratively, the multipliers are adjusted to find a

solution that minimizes the objective hnction while still satisfying all constraints [13].

To optimize schedules with respect to the number of resources, force-directed techniques

have emerged to minimize the number of resources required to perform all tasks [14].

For each operation and control step, a force value is calculated. The operations are then

placed according to least force to ensure that all tasks are uniformly distributed.

1.2.1 Weaknesses of Standard Approaches

A major failing of centralized algorithms is their dependence on the reliable performance

of a single component and the consistent operation of the communication links between

server and clients. Should the server crash for any reason or lose contact with its

peripheral components, the entire system would be crippled. Centralized communication

methods also have inherent reliability issues. If any single communication link between

server and client breaks, the affected system component becomes unreachable.

Apart from robustness issues, centralized systems also suffer from an increase in

algorithm complexity that accompanies any significant increase in system variables, often

making them impractical for large systems. Moreover, since centralized algorithms often

use "snapshot" logic, requiring all system variables (including the number of available

resources or the number of orders) to be known before a solution can be computed, any

change to these variables requires the data to be recollected and the algorithm to be re-

applied. As stated by John Layden [151 :

Introduction

The trouble is, for discrete manufacturing, what's optimal one minute is
obsolete the next when the snapshot changes - for example, the next order
arrives or the next change occurs in material supply or resource
availability.

These conditions make centralized problem solving approaches neither dynamic nor

scalable and costly to implement [16]. As a result, for large and ever-changing systems,

centralized approaches become impractical, since many real-world applications of

scheduling algorithms do not provide the static environments that these algorithms

require to be effective. Instead, variables are constantly changing: new orders arrive and

new parts are designed. Meanwhile resources fail, increase in numbers, or are upgraded

to include new functions. These environments demand solutions that are scalable to

handle changing numbers of orders and resources, yet dynamic enough to allow the

details of these elements to change.

Heuristic algorithms begin to address these issues, in that updated variables can be

incorporated into subsequent iterations of the algorithm. But a centralized heuristic

algorithm still suffers the same reliability limitations of other centralized algorithms and

the communication requirements are even greater, since clients are queried with each

iteration.

Introduction

1.3 Distributed Systems

Distributed systems begin to address these issues [2][3][16][17] [18][19]. In a vast

majority of industries, resources and data are distributed. Separate computers and servers

store and process data and the individuals who use these machines possess data and

"processing power" of their own. On production plant floors, different machines have

different capabilities, functions, and settings. In business dealings, customers know their

needs, suppliers know their capabilities, and communication channels exist between

parties to find common ground.

In contrast to the centralized approaches described above, distributed systems are those

comprised of agents, autonomous entities that possess the ability to plan and execute their

own actions (Figure 3). In some distributed systems, agents are motivated by self-serving

goals. In others, agents collaborate to fulfill group objectives. The goals of the system

have a significant impact on the design of agents and their interactions [16]. Regardless,

distributed systems rely on agents that base decisions on a limited view of their

environment and, through message-passing and negotiation, utilize the other agents at

their disposal to obtain the additional information they require.

Introduction

Message I

Agent-based systems address issues of robustness, since no single component becomes

critical to system operation. If a single component fails or becomes unreachable, the

other agents are still fully capable of coordinating with their remaining peers by relaying

messages through their neighbours, as in Figure 4.

In these systems, the emphasis is on distributing the processing and data storage

requirements more equitably among all agents at the expense of the communication

required. Although communication becomes increasingly important in distributed

systems, distributed communication architectures, such as peer-to-peer networking, make

no path critical to system operation. In the event of a broken communication link,

messages can be re-routed to reach their destinations. The result is a system that is more

scalable, robust, and responsive to dynamic changes than one based on centralization.

Introduction

Message I

Message
- - - - - - - - - - Receiver

As the popularity and usage of wireless technologies grows, the types of systems in

which component knowledge and resources are dispersed continues to increase. As a

result, distributed approaches to system design have become more relevant. But despite

the fact that resources in production, manufacturing, transportation, power, and other

industries are distributed, not all methods used to organize and manage them are

distributed.

For the purpose of this thesis, the term distributed will refer not only to the logistical

arrangement of resources and data, but also to the technique used to coordinate resources

and data. A completely distributed system would be distributed in all aspects of its

design: the storage of data and information, the communication mechanisms utilized, and

the processing performed to execute the algorithm.

Introduction

In the area of distributed scheduling, multi-agent solutions have been proposed [1][3][17]

that assign agents to each resource and, in some cases, to each order on the system. These

agents negotiate the schedule among themselves in an effort to optimize performance

criteria, often utilization of resources (the percentage of time that machines remain busy)

or makespan (the total production time of the system).

While many of these systems successfully decentralize the processing and data storage of

their respective algorithms, not all agent systems provide full distribution of

communication. Systems such as those proposed in [I], [3], and [17] use a shared

blackboard to handle inter-agent communication (Figure 5). The blackboard component

serves as a common location for partial solutions to be shared and for agents to exchange

information. The deficiency of these systems is that the blackboard agent itself becomes

a centralized component in an otherwise distributed system and constitutes a single

critical element to system operation. So, while providing great improvements through

parallel processing and distributed data storage, these systems are still hindered by one

shortcoming of centralized methods: reliance on a singular critical component.

Introduction

L
A

posts to1
reads from

r

Blackboard

posts to/
reads from

I Supervisor Agent I
A

posts to1
reads from

1

manages manages

I Resource Agents I (Order Agents I

In contrast, Hino, et al., developed the recursive propagation technique for scheduling

[18] [19], which provides little in terms of decision-making functionality (apart from

conflict resolution), but fully distributes the scheduling communication between agents.

Agents inform one another of changes to their schedules, propagate these changes to

other resources, and return the resulting impact to the initiator of the change (Figure 6).

Because Hino7s technique can be applied over a peer-to-peer network, it provides the

potential for complete decentralization.

Notification of Propagation of
change change - -
Propagation of Indication of
result result - -

Introduction

1.3.1 Tools for Distributed System Implementation

Significant research has been done in the area of multi-agent system design, and many

industrial players have begun to realize the potential in distributed approaches to their

endeavours. As a result, the Foundation for Intelligent Physical Agents (FIPA,

www.fipa.or& was established in 1996 to provide standards under which development in

this area can progress. Universities and industrial partners throughout the world

collaborate through FIPA to develop and maintain these standards in agent architectures,

communications, management, message transport, and applications,

Based on FIPA compliance, many development tools have been created to aid in the

design and implementation of multi-agent systems. Like many of these tools, the Java

Agent Development Framework (JADE), developed by Telecom Italia [20], provides

both a model for agent architectures and a structure for inter-agent communications. It

simplifies the design of multi-agent systems by providing the basic infrastructure on

which all multi-agent systems depend. Because it is based on the Java programming

language, it also provides improved interoperability between multiple platforms,

operating systems, and devices.

Evaluation by Vrba [2 11 showed that JADE provides faster message throughput, a more

stable environment, and superior memory usage to some of its rival systems, like FIPA-

0s. Because of these features, JADE was selected as the framework for initial

implementation.

Introduction

1.4 Thesis Objective

To address the problems of scalability, robustness, and responsiveness to dynamic

changes that accompany the standard approaches to scheduling, a completely distributed

approach to scheduling was desired; one that would not only distribute the processing

requirements of the algorithm, but also the communication infrastructure as well. While

the recursive propagation technique would address many of these concerns, further agent

intelligence would have to be incorporated to allow an optimized schedule (with

maximum resource utilization) to be achieved with satisfactory convergence.

This thesis will discuss the design and implementation of such a scheduling algorithm,

intended to optimize the utilization of resources in a distributed system, in which tasks

have been assigned to resources but their ordering has yet to be determined. Based on the

recursive propagation messaging technique and implemented for agent systems using

JADE, this system addresses the major shortcomings of its centralized and decentralized

predecessors discussed in Sections 1.2 and 1.3. Furthermore, this thesis will also provide

details of a sliding window approach to the same problems that modularizes the initial

algorithm proposed and provides significant benefits in terms of computing time and

communication bandwidth.

Introduction

1.5 Thesis Outline

In Chapter 1 of this document, I have provided some basic background of distributed

systems, scheduling, and some of the approaches to distributed scheduling introduced to

date. Chapter 2 will describe recursive propagation in more detail and outline the major

failings that Hino's method overcomes. It will also detail the sorting algorithm

introduced in this work as well as the alternative sliding window approach I have

developed and will provide a theoretical analysis of the new methods, explaining the

major advantages that they provide.

Chapter 3 is dedicated to the implementation of the sliding window scheduling technique

using JADE including the structure of a JADE interface agent and its Java scheduling

partner. Using UML diagrams, these interactions between these components will also be

described. Furthermore, Chapter 3 will provide a more thorough look at JADE,

identifying the advantages it brings to agent system design.

Chapter 4 provides detailed results of simulations using the proposed sorting algorithm

that indicate how the algorithms performance is impacted by changes to the parameters of

the system. The results section then illustrates the impact of the sliding window

scheduling algorithm on both computational demands and system messages required, and

analyses the effect of a changing window width on system performance. Furthermore,

the results compare the utilization obtained using the sliding window scheduling

technique, to full optimization using no window.

Introduction

Lastly, Chapter 5 provides recommendations for future research and development of this

system, as well as a summary of results.

2 ALGORITHM DESIGN AND ARCHITECTURE

In this chapter, I will outline Hino's recursive propagation approach to distributed

scheduling. Further, I will propose a new method for distributed scheduling that utilizes

the strengths of recursive propagation, but also enhances agent intelligence to allow them

to more quickly determine an optimal schedule.

2.1 Hino's Recursive Propagation

Hino, et al., developed the recursive propagation message passing technique to allow

distributed scheduling agents to communicate with one another, resolve scheduling

conflicts, and create feasible arrangements for tasks distributed among several resources

[18][19]. To achieve this, each resource responsible for a task was given knowledge of

the machine that performs the prior task of the same order and the machine that must

perform the subsequent task. This knowledge constitutes the limited view of the overall

system for each agent. In this section, I will outline the constraints on the scheduling

problems addressed by Hino and give a detailed description of his recursive propagation

method.

2.1.1 Problem Constraints

We denote each task as z :,:, where the subscript a refers to the resource that performs

task T and o to the numbered position of T in the sequence of tasks to be performed by a ,

Algorithm Design and Architecture

respectively. The superscripts p and o respectively refer to the job and the specific

numbered operation in the sequence of operations required to complete job p.

There are two primary constraints imposed on the scheduling problems addressed by

Hino. Firstly, all tasks are subject to a precedence constraint that defines the sequence of

tasks for each order. Parts are required to visit resources in a pre-determined sequence,

determined by the part type. The second constraint on these problems is a resource

constraint that prevents a single resource from performing two tasks at the same time, or

pre-empting one task with another.

Mathematically, these two constraints restrict the possible start times that can be assigned

to tasks. For each task z, a scheduling algorithm must determine start times tz;: such that

relative to the start times t and processing timesp, for all resources a and P, all jobs p

and 5, and all tasks o and c. The first of these equations illustrates the precedence

constraint on adjacent tasks for the same job. The second equation illustrates the

constraint that no two tasks may be performed concurrently by the same resource.

Algorithm Design and Architecture

2.1.2 Description of the Recursive Propagation Algorithm

Hino has published two recursive propagation algorithms [18][19]. In contrast to his first

algorithm, the newer version resolves all internal conflicts before sending a message to

the next agent, resulting in a large reduction in the number of messages.

To understand the recursive propagation technique, consider the schedule of tasks

depicted in Figure 7(a). This representation of tasks is to be viewed as the chronological

placement of operations where the time scale is horizontal and the rows of blocks

represent the individual schedules of different agents. The further right the tasks are

placed, the later in time they are scheduled to be performed.

Assume that agent al is required to delay task T'J' (b). All operations performed by al

will be adjusted before the first change message is sent (c). Next, a1 informs a2 of the

change to the first impacted task, that of order 1 (d). Agent a2 then corrects all of its

operations accordingly (e) and, since order 1 has no other operations, it sends a change

message to al regarding order 3.

Because task T~~~ has already been adjusted, the change message from a2 has no impact on

a1 and a result message is returned to a2 immediately. This result is passed back to al for

order I and the next sequential operation is processed. Since there was a delay to order 2

as a result of the change to order I, a change message is sent from a1 to a2 to adjust task

r212 (f). A result message is returned to al and, lastly, a, will inform a3 of the delay to

order 3 (g).

Algorithm Design and Architecture

The total number of messages required to return this schedule to feasibility using Hino's

2001 algorithm is six: three change messages and three result messages. Though the

1999 algorithm is sufficient to produce the same feasible schedule, it would have required

a total of ten messages to do so. If the problem is expanded to include dozens of agents

with hundreds of tasks, the savings become significant. Considering that there may be

hundreds of operations that depend on the positioning of these tasks, preventing one

redundant message could save hundreds or thousands of unnecessary propagations.

Algorithm Design and Architecture

2.2 Enhancements to Recursive Propagation

Using recursive propagation as a foundation for agent communication, an algorithm to

effectively improve resource utilization was developed.

Recursive propagation alone allows scheduling agents to resolve all precedence and

resource constraint violations. However, performing tasks in the order they arrive is

rarely the most efficient schedule achievable. Other orderings need to be examined, but

to exhaustively evaluate every ordering of tasks would be impractical. Ten tasks on a

single resource can have a total of lo! or approximately 3.6 million orderings.

Furthermore, the utilization of an agent given a particular sequence of its ten tasks will be

slightly different depending on the task sequence of the other agents at the instant the

ordering is evaluated. So an exhaustive examination of orderings must in fact match all

3.6 million permutations with all possible orderings of the other agents in the system as

well. The problem clearly explodes as systems become large.

Instead, we desired an iterative heuristic method that would approach an optimal solution

as quickly as possible. Agents will choose tasks in their list and reposition them,

determining from the result messages received whether the new arrangement is preferable

to the first.

Jeremiah, et al., [22] studied the impact of selecting tasks based on a variety of criteria

and then reassigning start times to improve the overall schedule. In his work, the

operation to be rescheduled was chosen based on (among other criteria):

Algorithm Design and Architecture

a Most subsequent tasks remaining to be processed for the order

Most processing time remaining for subsequent tasks of the same order

The ratio between the work remaining and the processing time of the current task

Unfortunately, none of these selection criteria are useful to a recursive propagation-based

system, since no agents possess the type of global system knowledge on which these

criteria depend.

However, based only on the limited information they do possess, agents are able to

construct active schedules, those in which no task can be shifted any earlier in the

schedule without delaying another. From this point, they can rearrange tasks to find the

active schedule that results in satisfactory utilization of resources. The algorithm

presented here distinguishes between two types of task sorting: sorting which fills in

scheduling gaps to create an active schedule and sorting which explores active schedules

to improve utilization.

2.2.1 Coarse Task Sorting

The initial feasible schedule produced by applying recursive propagation to tasks on a

first-come first-served basis frequently contains a large number of gaps, large periods of

idle time for each agent. Later tasks can be moved into these gaps to undoubtedly

improve utilization, provided that, in doing so, the candidate task will neither violate a

precedence constraint nor force other tasks to be delayed. The rearranging of tasks to fill

all gaps and create active agent schedules constitutes coarse sorting.

Algorithm Design and Architecture

To fill gaps, candidate tasks must either be the first of the order or follow a task whose

completion time is early enough that the task at the end of the gap will not be pushed

back by the duration of the candidate task itself. As an example, consider three tasks

belonging to the same agent (Figure 8).

end time for .r3,"'

FIGURE 8. COARSE SORTING: AGENT WITH TWO TASKS

For this agent, assume that .r2j is scheduled as early as allowable by the previous agent

for order 2, given the precedence constraint. The earliness of the end time of task .r33k-'

allows 23,k to be exchanged with r2j to fill the existing gap (Figure 9). Also, because the

duration of the T ~ , ~ is small enough, the new positioning of this task will not delay .r2j,

guaranteeing a positive impact on the makespan of the orders, regardless of the number

of subsequent tasks for orders l , 2 , or 3.

end time for . r 3 z k - '

FIGURE 9. COARSE SORTING: AGENT WITH TWO TASKS (IMPROVED)

Algorithm Design and Architecture

Many times, one such reordering will lead to several others. For instance, in our example

above, moving task 23,k may allow 239k+1 to be moved to fill a gap as well. Agents

associate new opportunities to fill gaps with the incoming change message that created

the opportunity. Thus, the result returned to the initiator is the cumulative result of the

time shifting of tasks and all gap filling that the change. When no gaps in the schedule

are large enough for later tasks, coarse sorting is complete.

2.2.2 Fine Task Sorting

Filling all scheduling gaps doesn't necessarily imply that the schedule has been achieved

the best possible utilization. There still may be tasks that, if scheduled before others,

would have an overall positive impact on the system. However, it is virtually impossible

for an agent to distinguish these tasks from the others in its queue based on the

information it possesses. Because there is no distinction between tasks that have many

subsequent operations and those with few, an agent must still be capable of reversing any

decision should the result message indicate a negative impact. This trial-and-error

approach to improving the schedule constitutesJine sorting.

As an example, consider three tasks belonging to the same agent, shown in Figure 10.

end time for T ~ ~ ~ - '

FIGURE 10. FINE SORTING: AGENT WITH TWO TASKS

Algorithm Design and Architecture

For this agent, the earliness of the end time of task 23,k-' allows 23,k to be scheduled

earlier, however its duration would delay task z2j (Figure 1 1). This may or may not be a

benefit to the overall schedule, despite the seeming benefit to this agent. If the total

processing time of the tasks waiting on z2j exceeds the processing time of the tasks

waiting on r3,k by an amount greater than the improvement provided by reordering tasks

z3,k and z2j, this exchange may negatively impact the overall system schedule.

end time for .c~,'-'

Just as in the case of coarse sorting, a fine sorting exchange of tasks may also create a

gap into which additional tasks can be moved. If so, these gaps will be filled with later

tasks (according to the criteria described earlier) and the results attached to the original

fine sorting exchange to provide a proper indication of the overall savings.

Neither coarse nor fine sorting exclusively reorders adjacent tasks in an agent's schedule.

During fine sorting, tasks are moved to the earliest spot in their list based on the end time

of the previous task, which may be several positions earlier. Beginning at the head of the

task list, each operation is evaluated to see if there is an earlier position they might better

occupy. When an operation is moved, evaluation continues for the next operation until

the end of the task list is reached.

Algorithm Design and Architecture

As alluded to earlier, it is possible for fine sorting to have a detrimental impact on an

agent's schedule. Despite the benefit of moving a single task several positions earlier, a

number of critical tasks in the middle may be delayed. When a fine sorting exchange

yields negative results, the agent attempts to reverse the negative exchange incrementally.

Because of the parallel nature of the scheduling process, it is impossible to guarantee that

reversing an exchange will return the system to a previous state. Many other agents may

have made new decisions in the time between a task exchange and its evaluation that

prevent any guarantee that the reversal of a negative exchange will benefit the system.

So rather than move the offending task many positions later, causing one large delay to

return the sequence to its original order, the agent responds by moving the task toward

the end of its list one spot at a time. As each exchange continues to produce

improvements to the agent's schedule, it will continue to bubble the task outward. Once

an exchange produces another negative result, it is placed in its last improved position

and the next task is fine sorted.

Because fine sorting is only beneficial once coarse sorting is concluded, all agents must

remain synchronized during the scheduling algorithm. First they achieve a feasible

schedule using recursive propagation and then apply coarse sorting to make the most

significant improvements before honing the result through fine sorting. Note that this

scheduling algorithm is not deterministic. Depending on the order in which messages are

processed by agents, different tasks will be eligible for coarse or fine sorting.

Algorithm Design and Architecture

2.3 Sliding Window Task Scheduling

Despite the benefits of this algorithm as a distributed scheduling approach, it has its own

disadvantages:

Message explosion. The number of messages required to create an initial feasible

schedule is significant. Even if all task conflicts have been resolved but one, the

change from the remaining conflict will still require a change and result message

for each subsequent task in the system, a costly requirement. Since the ordering

of tasks is undoubtedly going to change through the sorting process anyway, the

necessity of this initial schedule came into question.

Combinatorial complexity. The problem of determining the optimal ordering of

tasks, as mentioned early, is combinatorial in nature. Despite the savings of a

heuristic approach in this regard, further savings were desired.

Lack of responsiveness to dynamic changes. In spite of the algorithm's

scalability, the addition of a new resource or a new order still requires the

reapplication of the scheduling procedure to provide the optimal integration of the

new order. This meant that the current technique was not a truly dynamic

approach.

To combat each of these deficiencies, the sliding window method was designed [24][25].

The sliding window scheduling technique is based upon breaking a large problem into

Algorithm Design and Architecture

smaller more manageable sub-problems. By maximizing utilization for each of the sub-

problems, we will necessarily have maximized utilization for the original scheduling

problem.

Consider a problem in which agents have twelve tasks each to sort. Now consider that,

instead of attempting to sort the entire list of twelve, each agent focused on a window of

time in which only four of these tasks would fit. When the arrangement of the first four

tasks was satisfactory (utilization had been maximized), the window would be advanced

and the next four tasks examined. Messages are no longer propagated for tasks beyond

the end of the window, since the implications of these messages have no effect on the

current set of tasks.

This system addresses all three shortcomings of the original method:

Message explosion. By limiting the messages to the window of focus, the

message savings are two-fold. First, the messages of initial scheduling are

reduced, since conflicts beyond the current window are only addressed as the

window advances. Second, messages during sorting are also propagated only as

far as the current window, producing further savings in communication overhead.

Combinatorial complexity. In the problem described above, the number of

permutations for each agent to evaluate in an exhaustive full optimization would

Algorithm Design and Architecture
- - --

be 12! or approximately 479 million. By focusing on reduced windows, each of

the three sub-problems requires only 4! or 24 orderings to be examined, 72 total.

Responsiveness to dynamic changes. Because the tasks are only scheduled one

window at a time, tasks in completed windows can be processed while the

resource is continuing to determine the rest of its schedule. Meanwhile, if new

orders are added or new agents come on-line, their tasks can be incorporated into

the current window and future windows without impacting previously scheduled

tasks, allowing for scheduling on the fly. This makes the algorithm completely

adaptable to a changing work environment.

The sliding window approach limits the focus of the agents to tasks within a specified

time window beginning with time tl and extending to, but not including, time t2, denoted

[tl,t2). The resulting schedule is, at any instant, only feasible for tasks beginning before

t2. Consider, the detailed example of the sliding window technique using recursive

propagation illustrated in Figure 12.

Figure 12(a) illustrates the feasible schedule that three agents a], a2, and a3 would achieve

for the window [tl, t2) given an example task distribution. Messages for jobs 1 and 2

would be propagated fully to resolve all conflicts. But job 3 would not be scheduled in

the current window, since the start time of exceeds t2. The three tasks of job 3 will

be left in violation of their precedence constraints (r3' begins before r3$' has concluded)

until the window advances or until they are reordered.

Algorithm Design and Architecture

FIGURE 12. SLIDING WINDOW EXAMPLE

In Figure 12(b), agent a3 reorders its tasks so that .r3,' is performed before T ' , ~ . A message

will be sent to update T ~ , ~ and, since it now begins in the current window, task T ~ , ~ will be

updated as well. In (c), .r2,' is similarly reordered by agent a2 and its subsequent tasks

moved earlier as a result. At this point, the agents can attempt to fine sort additional

tasks. For example, agent a2 could exchange tasks T ' , ~ and .r3,2 as in (d).

Algorithm Design and Architecture

Once all task conflicts within the window have been resolved and sorting is complete, the

agents agree to advance the window by changing the values of t l and tz (e). The step size

of this advancement, r, can be varied between any value greater than zero and any value

no larger than the window size, A. A step smaller than A will potentially allow the fine

sorting of some tasks to be revisited, which may improve the schedule given the changing

configurations of neighboring agents. However, a step larger than A will likely leave

tasks unresolved between windows.

2.4 System Architecture

2.4.1 Structure of Tasks and Task Lists

The principal objects manipulated during sliding window scheduling are the tasks

assigned to each agent in the system. Each task is associated with a specific order, a part

that has to be built or a sequence of operations that must be performed. As well, each

task has a defined processing time. These two parameters are assumed to be fixed

properties. But there are several other components of the task class that change

throughout the scheduling process.

The structure of the Task class is shown below in Figure 13. The o r d e r field refers to a

unique integer identifying each job. Operations belonging to a sequence for the same job

will have the same order number. The d u r a t i o n field indicates the processing time for

the task. Both the order and duration fields of the task class are provided when the task is

created. The s t a r t time is updated constantly throughout the scheduling process.

Algorithm Design and Architecture

Task

order: lnteger
duration: lnteger
start: lnteger = 0
next: String
prev: String
minstart: lnteger = 0
state: lnteger

The n e x t and p r e v variables hold the names of the agents that perform the task

immediately before and immediately after the current operation for the current job. For

the first task of each job, the p r e v field will hold NULL; for the last task of each job, the

n e x t field will hold NULL. Messages for propagating changes will be sent to the

addresses contained in these fields.

This sorting algorithm relies heavily on the end times of previous tasks. Though each

agent could request this information from the previous resource for a given order, the

number of messages required would be extensive, since information would be requested

not only for each task exchanged but for each task considered for exchange. Instead,

information from the previous message received is kept with each associated task in a

field called the min S t a r t. This value indicates the earliest start time allowable by the

previous agent without violating precedence constraints.

Because messages are only propagated for tasks inside the window, some tasks beyond

the window could potentially exist with outdated m i nS t a r t information. When agents

Algorithm Design and Architecture

make sorting decisions based on outdated information, instabilities occur and the

potential exists for the scheduling algorithm to diverge. To eliminate this problem, each

task is assigned a st ate that indicates whether its minS t a r t information is up-to-date

and whether exchanges can be made for the current task. No task is reordered unless it

has been deemed SAFE (its information is current). Likewise, no agent considers its

window complete until all tasks within it are SAFE. The state field changes the recursive

propagation algorithm slightly, in that not only are changes in start times propagated, but

also changes in state value. Until this criterion was included, agents would occasionally

advance the window with unresolved tasks still inside.

There are five possible states for each task in an agent's task list as illustrated by Figure

8: UNSAFE, SAFE, TELLS, TELLP, and TELLU. The first and second are relatively

straightforward. Each task, apart from the first task for each order is assumed UNSAFE

(with outdated minS tart information) until it is updated by a change message from the

preceding agent. When a message indicates that it has the most recent information

available, the state becomes SAFE. Both UNSAFE and SAFE tasks require no further

propagation of information.

The remaining three state values indicate that information needs to be propagated to the

next agent for the current order. TELLS is used for tasks that are SAFE and need to

propagate change information to the next agent for the current job. This state exists for

tasks that are inside the current window.

Algorithm Design and Architecture

[task moved
out of window by

message from

3(Push to Propagate I<-
1 State = TELLP

[change
message sent]

State = TELLS

[task moved
out of window
and subsequent
tasks exist] -

messahe sent1 [task moved

previous agent within window
and subsequent [non-push and subsequent

tasks exist] message tasks exist]
received from

Outdated Task Information) previous 'gent] Updated Task Information

State = UNSAFE State = SAFE

A [push message received
[task start time and nosubsequent [push message

changed task exists] received and
by agent itself] [change subsequent

message task exists]
sent]

Unsafe State to Propagate * State = TELLU

When tasks are pushed out of the current window by another SAFE task, they will no

longer propagate any future changes to the agents that follow, despite possibly having up-

to-date information themselves. This condition is called apush. If the current task has

been pushed out of the window, but its information is current, its state will be TELLP,

and it will inform the next task that it should consider itself UNSAFE until it receives

new information. Any task that is told to become UNSAFE will change state to TELLU

if it has further tasks to inform. Throughout sliding window scheduling, task states will

continue to change between SAFE, UNSAFE, and all forms of the tell states as they are

moved in and out of the scheduling window. Section 2.4.2 illustrates an example.

Algorithm Design and Architecture
- - - -

Each agent possesses a list of the tasks that it is required to perform. Elements of this list

are continually reordered and the impacts of these actions monitored until the agent is

satisfied that it has best possible arrangement of tasks. Additionally, elements can be

added to this list on-the-fly as agents are scheduling. Because of the flexibility required,

a linked list is used to implement the task list of each agent. The primary functions of the

task list are push , pop, and moveBef o r e . The first two add and subtract tasks from

the list. The last is used during coarse and fine sorting to reorder the task nodes.

I TaskList

head: TaskNode
tail: TaskNode
length: Integer

2.4.2 Structure of Messages and Message Lists

Several types of messages are required for system operation. The most crucial are the

change and report messages implemented for recursive propagation of scheduling

changes, but other message types are required for synchronization (Table 1).

As mentioned earlier, all agents remain synchronized throughout scheduling. So,

whether using the window approach or not, the agents will simultaneously be resolving

precedence constraint violations to create a feasible initial schedule, followed by coarse

sorting, fine sorting, and the handling of all remaining messages before concluding.

Algorithm Design and Architecture

Between each of these phases of operation, there is an exchange of synchronization

messages required. In the case of the sliding window approach, the window will then be

advanced and the agents will proceed to create a feasible schedule for the next window of

tasks.

I Result (RES) 1 3 1 Cumulative result of changes I

Add (ADD)

Change (CHG)

1 Ready (RDY) 1 4 (Agent is satisfied with the current schedule I

1

2

The reasons for synchronization are several. First, without generating a feasible schedule

for at least a segment of the tasks, reordering of tasks can lead to instabilities. Second,

because of the large gains resulting from coarse sorting, agents who attempt to fine sort

tasks before their peers have completed coarse sorting may be making unnecessary effort.

Finally, all agents must schedule the same sized window and be synchronized in doing so

for the sliding window algorithm to be effective, since agents will not propagate

messages beyond their own window despite the fact that other agents may have other

windows of focus.

Add a new task to the agent's TaskList

Task needs to update its start time andlor minstart

Reply (RPY)

But, unlike multi-agent systems that use broadcast messages, the sliding window

scheduling algorithm still uses targeted message recipients for synchronization. Since

5 Ready agent has received ready messages from all peers

Algorithm Design and Architecture

agents are only aware of the agents who perform tasks immediately following and

immediately preceding their own, they do not necessarily have knowledge of all agents

on the system. In fact, in the case that an agent performs single-task orders, it may not be

aware of any other agents. All agents who perform adjacent tasks to those being

scheduled by an agent constitute the peers of that agent.

As in the case of a single agent isolated from the others, the possibility exists for multiple

subsystems of agents to schedule their jobs independently of one another, as shown in

Figure 16 (a), where lines between agents ai indicate a peer relationship. But with even a

single common agent (b), these systems will remain synchronized. For example, despite

the fact that agents a, and as in (b) are not peers based on their tasks, they will be kept in

synch due to their mutual dependence on peer q.

Each agent sends a ready message to its peers when it is satisfied with the current

scheduling window during each stage of scheduling. Because of the reciprocal nature of

the peer relationship, each agent will also receive a ready message from each of its peers.

Algorithm Design and Architecture

Despite synchronization messages, agents will still advance their windows independently,

once a ready message has been received from all peers and the agent itself is satisfied

with the current schedule. But the ready messages themselves do not ensure that all

agents stay synchronized, particularly in light of the fact that some peers could be

separated by several degrees. To combat this phenomenon, the reply message type was

created. Once all peers are ready and the agent is ready to move on, reply messages are

sent out to confirm that all peers are on the same page. In order to proceed to the next

phase of scheduling, an agent must have received not only a ready message from all its

peers, but also a reply message for each ready message it sent.

Below, Figure 17 outlines the message structure used by scheduling agents.

I Message

type: lnteger
id: String
order: lnteger
origin: Boolean
time: lnteger
flag: lnteger
sender: String
rcv: lnteger

Message t y p e values include change, result, and ready and reply. For change and result

messages, the i d field is used to distinguish the changes responsible for any given impact

on the schedule (since multiple concurrent changes may affect the same operation). The

o r d e r field indicates the order number that is currently being affected. Since no agent

Algorithm Design and Architecture

will perform two tasks for the same order, the order number will uniquely identify the

task in question. The origin field indicates whether the message was self-generated or

received from another agent and is used to set the task minS t a r t field. The time field

indicates the earliest start time of the indicated operation for change messages and the

overall delaylimprovement to the system for result messages.

The message flag is used to propagate state values to other agents. Typically, messages

are only passed on when they have forced a change to the current task. These messages

use a CLEAR flag and are handled according to the original recursive propagation

technique. To ensure that each new window is filled only with updated tasks, initial

feasible scheduling begins by propagating messages with FORCE flags for all SAFE

tasks within the window. The FORCE flag ensures that a message is propagated until the

end of the window is reached, regardless of its impact on the recipient. For UNSAFE

tasks and those pushed out of the current window, a PUSH message flag is used to force

the recipient back to an UNSAFE state.

As an example, consider a change to agent a, that delays z'" toward the end of the current

scheduling window (Figure 18). In (b), the task state will be set to TELLS to remind the

agent to inform a2 of the change. A change message with a CLEAR flag will be received

by a2 and task z'22 will be pushed out of the current window. As a result, any future

change to this task will only be propagated if it brings T ' , ~ back into the current window.

No further delays, regardless of how substantial, will be passed on to other agents. To

make sure that future agents are aware that they will no longer be updated, the task state

Algorithm Design and Architecture

is set to TELLP (c) and a change message is sent to a3 with a PUSH flag. If there are

subsequent tasks to notify, the state of will be set to TELLU and a further PUSH

message sent. Otherwise, the state will be set to UNSAFE and results will be returned.

The r cv and sender fields were added to the message structure for JADE

implementation and will be discussed in Chapter 3.

2.4.3 Detailed Description of the Sliding Window Scheduling Algorithm

As mentioned, the first step each agent takes in scheduling is to send a FORCE change

message for each SAFE process in the current window. There may be redundancies here,

in that already SAFE operations may receive messages confirming their original start

time, but the cost of a few extra messages is worth the risks they eliminate. The first

UNSAFE task and all tasks that follow are pushed beyond the current window. This

Algorithm Design and Architecture

operation frees up space in the current window for any of the SAFE tasks that the agent

may have placed later in its task sequence.

This precaution explains the reason task r3.2 in Figure 12 (a) did not immediately follow

task r2?'. Having never been updated, it would be recognized as UNSAFE and pushed to

the windows edge. Any SAFE tasks that are pushed out as a result of this step will most

likely be reordered back inside the window during the coarse or fine sorting phase.

Following this initial scheduling phase, ready messages are sent to each of the agent

peers and the agent enters a waiting state, still processing change messages from other

agents, but waiting until all ready and reply messages have arrived before proceeding to

the sorting state.

Once the agents are synchronized, the tasks are coarsely sorted for the current window

until all gaps in the schedule between t , and t 2 (the start and end times of the window).

Only SAFE tasks whose minS t a r t values allow them to be brought inside the window

to fill these gaps are selected and no gaps beyond the window are addressed. When no

gaps exist within the window that can be filled by SAFE tasks, the agent synchronizes

with its peers, awaiting messages in return before moving on.

When all ready and reply messages have been processed, fine sorting begins. Again,

only tasks within the window are selected to be exchanged. They are never moved earlier

than tl based on the assumption that tasks scheduled previously are already being

Algorithm Design and Architecture

processed by the current resource. Any gaps created in the current window by the fine

sorting of tasks are filled by later tasks using the coarse sorting approach. A pseudo code

representation of the sorting logic appears below.

if (state == COARSE) { coarsesort () ; }
else if (insidewindow (currentTas k)) {
if (! acceptLastChange ()) { undochange () ; }
else if ((state == SCHED) & & (issafe (currentTask))

{ notifyNext0; }
else if (state == FINE) { finesort () ; }

ttcurrentTas k;
} else {

sendMsg(Ready1;
}

When fine sorting changes are revealed to be detrimental, the offending task is bubbled

toward the end of the list, in an attempt to restore a favourable sequence. Agents will

synchronize when fine sorting has completed and wait for all ready and reply messages

before continuing. Once all peers have replied and the agent wishes to advance, the

remaining messages in the incoming message queue are handled, the agents again

synchronize, and then each advances its window.

Below is a pseudo code representation of the message-handling logic.

if (newMsgArrived) {
if (messageType == Ready) { handleReady0;)
else if (messageType == Reply) { handlelieply();)
else if (messageType == Change) {

if (!coarsesort()) { resolveConflicts(); }
if (change) { notifyNext () ; }
else { reportToLast();) }

else if (messageType == Result) {
if (!coarsesort()) {

if (moreToNotify) { notifyNext0; }
else { reportToLast(); }

1
1

} else { waitForMessage () ; }

Algorithm Design and Architecture

The handleReady and handleReply functions allow the agent to keep track of

peers from which it is still waiting for readiness confirmation. For each change or result

message, the agent will determine whether a new opportunity to coarsely sort tasks has

been created and verify that the state of the agent is either COARSE or F M before

filling any gaps. If no such opportunity exists or the agent state prevents it, the

re s o lvecon f 1 i c t s procedure follows the logical steps of Hino's recursive

propagation in adjusting the start times of tasks based on the incoming message. Once

changes have been made to tasks, the n o t i fyNext or r e p o r t ToLas t function is

called accordingly.

The corresponding agent activity diagram and agent state diagram are shown in Figures

19 and 20, respectively. Pseudo code of the state transitions are presented below

switch (state) {

case:

break;
case :

break;
case:

case :

case :

break;
case :

case :

break;
case :

SCHED
if (allTasksScheduled()) { state = WAITS; }

WAITS
if (allAgentsReady0) { state = COARSE; }

COARSE
if (scheduleActive()) { state = WAITC; } break;
WAITC
if (allAgentsReady0) { state = FINE; } break;
FINE
if (scheduleSatisfactory()) { state = WAITF; 1

WAITF
if (allAgentsReady0) { state = EMPTY; } break;
EMPTY
if (messageQueue.length==0) { state = WAITE; }

WAITE
if (allAgentsReady ()) {

advanceWindow(DELTA);
state = SCHED;

} break;

Algorithm Design and Architecture

9 Start Window

Schedule Advance Window f-

Process lncorning

[more tasks
to schedule] &

[all tasks
scheduled]

Process Further r[Me-ages 1
[not all agents

[all agents

Send Reply
Messages

Process Remaining ,+[+I
[not all agents 4 [all agents
replied] replied]

Coarse son]+
SAFE Tasks

JI
Process Incoming

Messages

I

Messages

Process Further r[Mesyages 1
[not all agents

[all agents
ready]

Process Remaining 1 Messages

[more tasks
in window]

[all tasks
sorted]

Messages

Process Further r[Mes.ages 1
[not all agents
ready]

[all agents
ready]

Messages

Process Remaining r[M e s y e s

Algorithm Design and Architecture

Initial Scheduling

State = SCHED
dolschedule all SAFE tasks

Advance Window

State = WAITE

exiffreceived ReadylReply

f Wait After Scheduling

+ State = WAITS State = COARSE
entrylall SAFE tasks placed
exiffreceived ReadylReply dolfill all scheduling gaps

State = WAlTC

exiffreceived ReadylReply

Wait After Fine Sorting

State = EMPTY State = WAlTF State = FINE

exiffno new messages left entryltasks in window sorted exiffpointer beyond window
dolhandle messages exiffreceived ReadylReply dolattempt to improve task

doladvance task pointer

In this chapter, the algorithm used to schedule sequenced tasks has been outlined. This

algorithm relies on recursive propagation to provide distributed communication while

simultaneously distributing the decision-making required among the agents in the system.

As we shall see in Chapter 4, not only does the sorting technique itself provide

improvements in performance when compared with Hino's exhaustive searches, the

sliding window approach provides hrther improvements. In the next chapter, we

examine the implementation of this system using Java and JADE and the design of

agents.

3 IMPLEMENTATION

In this chapter, I will identify more specifically the structure of agents in the proposed

scheduling system design and the implementation of these agents in Java for JADE

agents systems.

3.1 Introduction to JADE

The Java Agent Development Framework (JADE) is middleware designed to facilitate

the development of multi-agent peer-to-peer applications. Developed by Telecom Italia

Labs in Italy, the software has been shared as open source since February 2000. JADE is

designed using Java, providing interoperability between agents running on varied

operating systems, and can be used with any number of versions of Java for both fixed

and mobile devices. Because of this feature and its small footprint, JADE agents can run

everywhere from powerful workstations to mobile cellular phones.

JADE allows agents to cooperate and pass messages using FIPA-compliant message

structures and a simple set of API routines. In a JADE agent system, agents are able to

register themselves and the services that they can provide (i.e. machine functions, in the

context of our scheduling system) with a directory facilitator service, which then allows

all agents to look up peers according to the services they provide. The directory

facilitator also ensures that each agent is assigned a unique agent identifier (AID) that

allows it to be located and identified as a message recipient.

Implementation

The message protocol utilized by JADE is the agent communication language (ACL)

message structure (Figure 2 1).

I ACL Message
- - -

performative: Integer
sender: AID
receiver: AID[]
reply-to: AID[]
content: String
language: String
encoding: String
ontology: String
protocol: String
conversation-id: String
reply-with: String
in-reply-to: String
reply-by: Date

FIGURE 21. ACL MESSAGE STRUCTURE

Of the fields that constitute the ACL message type, several are of use to sliding window

scheduling agents:

sender: the agent from whom the message is being sent

receiver: the agent to whom the message is intended

content: the substance of the message

The ACL message structure provides the opportunity for complex communication

between agents, where agents negotiate with multiple peers using a variety of languages

and message encoding techniques, and indicating their intentions with the inherent

message performatives provided by ACL. However, the other fields, while applicable to

Implementation

other multi-agent system implementations, are not required by the scheduling agents,

primarily because of the message substructure we have already developed for

communication between agents.

For JADE versions prior to 3.2, JADE agents were purely single-threaded entities, though

multiple behaviours could be implemented to share the processing time on this single

thread for multi-tasking agents. JADE 3.2 introduced the

ThreadedBe h a v i o u r F a c t o r y , which permits true multi-threading. Using version

3.2, blocking socket commands in Java such as a c c e p t and r e a d can be used to

suspend a single behaviour without freezing the entire agent.

Each instantiation of the JADE run-time is called a container. While multiple containers

can exist on the same the platform, there can be only a single main container on which

the directory facilitator resides. Communication between agents on different platforms

requires additional message transfer protocols to be used, namely HTTP.

The system developed for this thesis was implemented using JADE version 3.2 and the

Java 2 SDK version 1.5.

3.1.1 Building Scheduling Agents on Top of JADE

Whether JADE is the optimal framework for developing distributed applications remains

to be seen. Research by Ng, et al., [27] and Chen, et. al, [28] have investigated the

communication and processing overhead that JADE systems inherit as compared to other

Implementation

available distributed environments. For the purpose of this thesis, JADE was chosen to

verify the successful implementation of the scheduling algorithm on distributed

resources.

Because JADE may not be the optimal environment for our agent system, the scheduling

agent class itself was not developed in JADE but rather in pure Java. A JADE entity

provides the communication and registration benefits of the JADE framework, but none

of the decision-making required by the sliding window algorithm. The interface between

these two elements is handled by sockets and a simple send command, which delivers a

String (a representation of the message structure of Figure 17, with delineators to separate

fields) and an address to which it is to be sent. These messages are then passed between

JADE agents across some form of network (wireline, wireless, peer-to-peer, or

otherwise), as shown in Figure 22.

Application

communicates
through

JADE Agent

Application Application

I communicates I communicates

JADE Agent JADE Agent

I
Network (LAN, Wireless, P2P, etc.)

Implementation

Provided that the interface between the Java scheduling agent class and the middleware

agent platform remained the same, this simple API allows the JADE infrastructure to be

replaced by a more suitable alternative platform, should JADE prove insufficient for

future generations of the scheduling system. With this implementation, and the

abstraction of the middleware from the scheduling agent itself, the scheduling agent

software has the potential to be ported to workstations running FIPA-OS, cell phones

running JADE, and PDA's using other multi-agent frameworks without redesign or even

recompilation.

3.2 Composite Scheduling Entity

As mentioned, for each scheduling agent implemented in pure Java, a JADE agent is

created to provide a presence on the JADE platform and handle communication with

other agents. Together these two paired classes constitute a composite scheduling entity

(CSE), both equally vital to the successfid scheduling of a single resource. Though both

written in Java, they will be distinguished hereafter as the Java scheduling agent (the

class written in pure Java) and the JADE interface agent (the class written using JADE

libraries).

3.2.1 Implementation of the JADE Interface Agent Class

The JADE interface agent class is designed as an agent with two behaviours: one that

handles incoming ACL messages and a second that takes information from its partner

Java scheduling agent and packages it in ACL messages destined for other agents on the

Implementation
-

system. Each JADE interface agent is instantiated with the port numbers it will use to

connect to its partner Java scheduling agent. It is also given a name, which is then shared

by both components of the CSE. On start up, the JADE interface agent registers itself

with the directory facilitator, opens a ServerSoc ke t that will await commands from

the Java scheduling agent, and sends via Socket a message to inform its partner of their

shared name before cycling through its two behaviours: JADETo JavaBehavi our and

JavaTo JADEBehavi our . These two behaviours operate concurrently on separate

threads.

The JADETo JavaBehav i o u r is designed to handle incoming messages from other

JADE interface agents on the platform. When a message arrives, it is automatically

placed into the incoming message queue of the JADE interface agent by the underlying

JADE framework. For each message found in this queue, the JADE interface agent sends

the content field of the received ACLMessage to the Java scheduling agent over their

dedicated Socket. Once this socket is opened, is sent across the socket. The

JADETo JavaBehaviour is then blocked, awaiting a new ACL message before it will

be executed again.

The JavaToJADEBehaviour works in an opposite fashion. Upon start up, a

Serversocket is created and the a c c e p t Java function is used to wait for a client

connection. The only client that will ever connect with the JADE interface agent in this

way is its partner Java scheduling agent. Once the socket is opened, it will be blocked by

a call to r e a d l i n e . The Java scheduling agent will eventually pass it two strings: the

Implementation

intended message recipient (the name of its scheduling agent peer) and the content of the

message (a String representation of the structured Message). Once the JADE interface

agent has received these two strings, it constructs a new ACL message, filling in the

receiver and content fields appropriately and uses the JADE s e n d command to deliver

the message using JADE. The behaviour then listens on the socket for a new client

connection (a new message to send).

The JADE interface agent class has no intelligence or logic built in to handle incoming

messages in a particular way. It simply passes messages to the Java scheduler for

processing.

3.2.2 Implementation of the Java Scheduling Agent Class

The Java scheduling agent is, as expected, the more complex component of the two

elements of the CSE, not only due to the decision-making it performs but also in its

handling of incoming messages from the JADE interface agent.

The Java scheduling agent also has two primary behaviours. These operate on separate

threads. The S chedu 1 i n g Behavi o u r perfoms all necessary hnctions associated

with the sliding window scheduling algorithm. It processes change, result, ready, and

reply messages as they are added to the myMsgs MessageList and sends messages to the

JADE interface agent (using sockets) when it needs to communicate with another CSE.

Incoming change messages are added to a MessageList called my S ched before changes

are propagated. Each change message in mySched must receive a corresponding result

Implementation

before it can be discarded. Also, using a t e l l l i s t , a h e a r l i s t , a r e p l y l i s t , and

a d e l a y L i s t , the agent records all peers from which it still expects ready or reply

messages and all peers to which it owes ready and reply messages in return.

On a second thread, a Messag ingBehav iou r communicates with the

J avaTo JADEBehaviour of the JADE interface agent. On start up, a Serversocket is

created that listens for connection from the JADE interface agent. When the JADE

interface agent connects, a r e a d L i n e call blocks the thread until a new ACL message

arrives. The content field is read as a single String that is then converted into a Message

and added to the internal message queue of the Java scheduling agent, where it is read

and processed by the S c h e d u l i n g B e h a v i o u r .

The M e s s a g i n g B e h a v i o u r also ensures that received messages are handled in

sequence. Since network delays can cause JADE messages to arrive out of order, there

can be problems in agent performance, particularly if messages changing task states are

mixed up. The sender and r c v fields of the Message structure are used to maintain the

sequence of incoming messages. If an unexpected r c v number is received from a

particular sender, the M e s s a g i n g B e h a v i o u r adds the early message to the

h o l d L i s t until the expected message arrives.

The class structure of a composite scheduling entity is shown in Figure 23.

Implementation

-

Java Scheduling Agent

insocket: Se~erSocket
outSocket. Socket

setup()

MessagingBehaviour C-----l

Agent

messageQueue

1 JadeAgent I

I insocket: Serversocket
outsocket: Socket

myMsgs: MessageList --I
sends Strings to

action() t
receives ACL sends ACL
messages messages

SchedulingBehaviour

taul: lnteger
tau2: lnteger
delta: lnteger
gamma: lnteger

sendMsg()
resolveConflicts()
processMessage()
coarsesort()
finesort()
undochange()

telllist: Agentlist mySched: MessageList

hearlist: AgentList

reply List: AgentList

The following table summarizes all the primitive class structures used to implement the

sliding window scheduling algorithm including all public properties and methods.

Implementation

Class Member Description
AnentList head (AgentNode) Pointer to the head of the linked list -

tail (~ g e h ~ o d e) . Pointer to the tail of the linked list
locked (Boolean) Protects thread-safe regions of code
length (Integer) Length of the linked list

AgentNode next (AgentNode) Pointer to the next node of a linked list
last (AgentNode) Pointer to the previous node of a linked list
myAgent (String) Name of the agent represented by the node

MessageList head (MessageNode) Pointer to the head of the linked list
tail (MessageNode) Pointer to the tail of the linked list
locked (Boolean) Protects thread-safe regions of code
length (Integer) Length of the linked list

MessageNode next (MessageNode) Pointer to the next node of a linked list
last (MessageNode) Pointer to the previous node of a linked list
myMessage (Message) Name of the agent represented by the node

Message type (Integer) Message type
id (String) Unique identifier for a chain of messages
job (Integer) Job for which the message is intended
origin (Boolean) Is the message internally generated?
time (Integer) New start time or result passed
flag (Integer) Clear, Force, or Push
rcv (Integer) Sequences incoming messages
sender (String) Name of the message sender

TaskList head (TaskNode) Pointer to the head of the linked list
tail (TaskNode) Pointer to the tail of the linked list
length (Integer) Length of the linked list

TaskNode next (TaskNode) Pointer to the next node of a linked list
last (TaskNode) Pointer to the previous node of a linked list
state Ilnteaer) Safe, Unsafe. Tells. TellU, TellP
my~ask (fask) ~ a m k of the agent ;epres&ted by the node

Task job (Integer) Job to which the task belongs
start (Integer) Start time of the task
duration (Integer) Processing time of the task
minStart (Integer) Earliest allowable start time by previous agent
next (String) The agent that processes the next task
prev (String) The agent that processes the previous task

Implementation

3.2.3 Communication Between Java and JADE Agents

The sequence diagram depicted in Figure 24 shows how a CSE, Joe, would send to and

receive a message from another CSE, Dan.

As shown in the diagram, the SchedulingBehaviour main thread of Joe's Java

scheduling agent would write twice across a socket to the JADE interface agent: once to

indicate the recipient of its message (the agent called "Dan") and a second time with the

String representation of the change, result, or other message type. "Dan" is placed in the

ACLMessage recipient field and the message string in the content field. This

ACLMessage is sent to the JADE interface agent named "Dan" using the HTTP message

transfer protocol.

Implementation

Agent Dan will receive the ACLMessage and parse out the content field. It then connects

as a client to the Java scheduling agent and passes this String across the open socket.

Dan's Mes s a g i n g B e h a v i o u r thread reads the incoming socket, converts the String to

a Message type, verifies its r c v number, and pushes it to the end of the internal message

queue. The main scheduling thread of Dan's Java scheduling agent will eventually pop

this message off the message queue, process it, and return a reply by connecting directly

to its JADE interface agent and writing "Joe" followed by the reply message String to the

opened port.

Again converted to an ACLMessage, information is passed to Joe's JADE interface

agent, then as a String to its Messeng ingBehav iou r , and finally as a message to its

main processing thread where it will be processed once popped off the internal message

queue.

In this chapter, I have examined the implementation of the sliding window scheduling

system using Java for JADE agent systems. Many of the details of the algorithm's

design, including the synchronization of agents, were handled with the implementation in

mind and an understanding of the additional considerations that implementation in JADE

requires (for example the latency of messages between agents). Because of its modular

design, the Java scheduling agent can be used in conjunction with an interface module for

any multi-agent platform (JADE, JXTA, JINI, FIPA-OS, etc.).

4 SIMULATION RESULTS

In this chapter, I will examine the simulation results of agent systems using the proposed

scheduling algorithm. The impact of hardware components will be investigated, as well

as the effects of system growth, both in terms of the number of available resources and

the number of requested jobs. Most importantly, I will present the results obtained when

the sliding window approach is utilized.

4.1 Resource Utilization

In scheduling problems, there are a number of performance measures that can be

examined and optimized. Some schedulers attempt to minimize lateness (how much time

elapses between the order's due date at its actual delivery) [29]. Others are concerned

with minimizing earliness (how much time elapses between the order's delivery time and

its actual due date, the opposite of lateness). Still others minimize both earliness and

lateness simultaneously, often using penalty functions [30] [3 1][32][33][34]. For some

complex systems where the resources themselves are variables in the equation, it is

important to determine the fewest resources required to deliver all orders on time.

In the problem examined here, the resources and the tasks delegated to them are assumed

to be fixed elements of the process and the performance measure that we look to

maximize is the utilization of our resources, defined as:

Simulation Results

Time resources are in use
Utilization = x 100%

Total time required to complete all orders

Consider the simple system of two agents shown below (Figure 25).

FIGURE 25. SCHEDULES FOR A SIMPLE TWO-AGENT SYSTEM

Assume tasks TI,' and T ~ , ~ each have a duration of 30 minutes, while tasks and T ~ , ~

each have a duration of 20 minutes. Both schedules are equally feasible (i.e. neither

violates the precedence or resource constraints). Yet the schedule depicted in b) clearly

completes all orders in less time. Comparing utilizations yields the following:

TABLE 3. UTILIZATION CALCULATIONS FOR SIMPLE TWO-AGENT SYSTEM

I a 1 100 minutes 1 200 minutes I 50% I
I b 1 100 minutes 1 120 minutes 1 83% I

An important observation to make regarding the preceding example is that 100%

utilization, while desirable, may not be achievable for all scheduling configurations.

Given the precedence and task durations in the problem above, there is no better way to

order our tasks than Schedule B, which only yields 83% utilization. The challenge with

Simulation Results

each scheduling problem examined here is to determine the ordering of tasks that gives

the best utilization and for each agent to do so with the limited knowledge it has of the

overall system.

4.2 Task Selection Criteria

As mentioned in Section 2.2.1, there are often multiple operations eligible to be moved

into scheduling gaps during the coarse sorting phase. When this situation arises, a

number of selection criteria can be used to choose a candidate task to fill the gap, based

on the limited information agents possess. Three criteria tested are:

First-come first-served, which shows preference based on order number

Furthest move, which moves the task whose start time will be most improved

Best fit, which selects the task whose duration is closest to the gap width

Each of these criteria can be evaluated based on information that the agent already

possesses.

To determine which of these criteria is best for our purposes, a random schedule of

twenty-five agents, each with twenty-five tasks, was tested twenty-five times using the

simulation application that will be discussed later in this chapter. The following scatter

plot (Figure 26) and table (Table 4) demonstrate the performance of these three criteria.

The vertical axis of the plot shows the schedule utilization and the horizontal axis shows

the total number of sorting iterations required.

Simulation Results

A First Order

a Furthest Task

x Best Fit

Iterations

Not surprisingly, the performance of all three sorting criteria in terms of utilization is

approximately equal, since the optimal arrangement of tasks is a function of the task

distribution and not of the heuristic method used to approach the optimum. However, the

furthest task selection criterion required noticeably fewer iterations to improve utilization

than the other two. Based on the number of iterations, the second of these selection

criteria (selecting the latest task capable of filling a scheduling gap) is used for the

remaining simulations presented here.

First Order

Furthest Task

Best Fit

5488

2902

3299

680

304

438

40.2%

40.5%

41.8%

5.1%

5.4%

4.4%

Simulation Results

4.3 Hardware Impacts on System Performance

The implemented system allows agents to negotiate an optimized schedule quickly and

effectively. While one may expect total execution time to be an appropriate measure of

how quickly the algorithm converges, different systems and networks of agents will yield

different execution times based on the speed of the processors involved and their

connections to the network.

To illustrate the impact of hardware choices on system performance, four agents running

on four separate workstations were given a varying number of tasks to schedule. For

each test case, the system was simulated ten times and no sliding window was utilized.

The same test cases were then simulated when one of the computers was replaced with a

slower machine. The resource configurations are described below in Table 5.

(1 I lntel P4 1.4 GHz 1 256K Advanced Transfer L2 1 400 MHz I 256 MB I
2

3

(5 1 lntel P4 2.4 GHz I 512KAdvanced Transfer L2 1 400 MHz I 512 MB (

I I I I

Test platform 1 consisted of computers 1 ,2 ,4 , and 5. Test platform 2 consisted of

computers 2, 3,4, and 5. Because the total simulation time is dependent on the number

of iterations required by the algorithm and the number of messages processed by each

Intel P4 1.5 GHz

Intel P2 350 MHz

4 Intel P4 2.4 GHz I 512K Advanced Transfer L2 1 400 MHz 1 512 MB

256K Advanced Transfer L2

512K L2

400 MHz

100 MHz

256 MB

256 MB

Simulation Results

agent, the averages of all three measurements are tabulated below in Table 6 for the two

platforms tested.

As Table 6 illustrates, the time required to simulate the system with the slower

workstation increased on the whole. This increase was nominally larger for larger

systems. However, since the algorithm is not deterministic and the time required to

simulate is dependent both on the number of iterations required by the algorithm and the

number of messages passed between agents, the relative increase of all metrics must be

analysed.

Table 7 shows the relative increase in time, iterations, and messages between Test

Platform 1 and Test Platform 2.

Simulation Results

These results clearly show that the increase in time required to simulate the ten runs of

Test Platform 2 exceeds both the increase in iterations and the increase in messages. We

can therefore conclude that the increase in time is not simply a result of the simulation

runs requiring a varied number of iterations and messages to complete, but must instead

be a result of the change in workstations used.

Because of the dependence of simulation time on hardware configuration, the number of

algorithm iterations (how many different ordering of tasks were evaluated by each

agent) and the number of messages processed will provide a clearer indication of system

performance. Therefore, the remaining figures and tables presented will focus on these

metrics.

4.4 Initial Sliding Window Test Results

To evaluate the sliding window algorithm, a system of five agents was configured to

schedule five, twenty-five, and fifty jobs with varying window widths. Each task was

assigned a random duration between one and twenty-five time units. The window width

Simulation Results

parameter, r, was initially assigned a value of twice the mean task processing time, and

doubled afier every ten simulations up to a width of thirty-two times the mean processing

time. Future references to window width in figures and tables will refer to the ratio of

width to the mean task processing time.

4.4.1 Jade Test Results

With a single agent running on each of five networked computers, the iterations and

messages required by the system to schedule all tasks were recorded. Figures 27 and 28

show the changes in iterations and messages required as a function of window width.

-A- Five Jobs

--e Tw enty Five Jobs
++ Fifty Jobs

Window WidthlMean Task Processing Time

FIGURE 27. ITERATIONS REQUIRED BY JADE SIMULATIONS

As expected, though a large number of iterations and messages are needed for large

window sizes, the algorithm shows a great savings in both iterations and messaging as the

Simulation Results

width decreases. This trend results from smaller windows allowing fewer task exchanges

than large ones and leading to fewer propagated messages. Table 8 below illustrates the

impact of the sliding window on the standard deviation of iterations, where the width

values denote the ratio of window width to mean task duration. With fewer eligible tasks

to exchange, smaller windows lead to more consistent decision-making among agents.

+ Five Jobs

-o- Tw enty-five Jobs

++ Rty Jobs

Window WidthlMean Task Processing Time

FIGURE 28. MESSAGES REQUIRED BY JADE SIMULATIONS

Simulation Results

By reducing the computational load, simpler and less expensive processors will handle

the scheduling of tasks for resources using a sliding window approach. Concurrently, the

sliding window technique can reduce the message handling requirements of our agents

and thereby limit the amount of message traffic that consumes our network. Not only can

more agents connect to a limited-capacity network, agents with slower connections to the

network will be less heavily burdened by incoming messages.

4.4.2 Distributed Network Simulation Results

Because of the limited number of workstations available in the IDEA lab for testing and

the desire to easily evaluate changes to the algorithm during development, a Windows

application was written in C++ to emulate the performance of a distributed network of

JADE agents running the sliding window scheduling algorithm. This application was

designed using Borland C++ Builder to provide a graphical user interface for display of

agent messages and the current system schedule in Gantt chart form. The simulator

executes each agent on its own dedicated thread and all messages passed between agents

are consistent with the messages used in the JADE implementation. As a result, it can be

used to simulate systems with many more agents and many more jobs than are currently

possible in the IDEA laboratory environment.

To verify that the simulator could be used to test the sliding window algorithm on larger

systems, the same simulations performed in Section 4.4.1 were again performed using the

Windows simulation application. The results of these simulations are superimposed on

Figures 29 and 30 in the figures below. The dashed lines represent the results of

Simulation Results

distributed JADE simulations presented earlier. The solid lines show the results of ten

simulation runs for each window width.

--t Five h b ~

+ Tw enty-five Jobs

++ Fifty Jobs

Window WidthlMean Task Processing Time

--t F N ~ h b S

+ Tw enty-FN~ Jobs

++ Fifty Jobs

0

0 8 16 24 32

Window WidthlMean Task Processing Time

Simulation Results
-- -

As can be seen, the simulator application closely replicates the results of the JADE

simulations. The discrepancy that exists for fifty jobs using the largest window tested is

due to the non-deterministic nature of the algorithm itself. For larger systems and larger

windows, many decision paths will lead to the same optimal solution schedule. For the

ten JADE simulations performed with the largest system, the standard deviations in

iterations and messages were roughly 80 and 1700, respectively. Given that the results of

the Windows simulations lie well within a single standard deviation, the simulator

application can be considered a sufficient modeller for testing the sliding window

algorithm on larger systems.

4.5 Impacts of System Dimensions on System Performance

As the size of systems increases, the computational and messaging loads increase

significantly despite the use of distributed methods to reduce these stresses. The two

most significant variables subject to change in the systems examined here are the number

of resources that coordinate together and the number of tasks that they attempt to

coordinate. Changes to each of these variables impact the scheduling algorithm and the

messaging requirements differently. In this section, we isolate these two factors to show

their contributions to the processing and message handling requirements of scheduling

agents.

Using the simulator application, tests were performed to give an indication of how the

number of resources in a distributed system affects the computational and communication

bandwidth requirements. Using the basic coarse and fine sorting scheduling technique

Simulation Results
- --

described earlier (without the sliding window approach), the average number of messages

and task sorting iterations were recorded for twenty-five random systems with increasing

numbers of resources. Each simulated system has ten jobs with each resource performing

one task for each job. So the total number of tasks in these simulations is growing

linearly with the number of resources, but the workload of each individual agent in the

system remains constant: ten random tasks. Increasing the number of resources in this

way is analogous to adding extra stages in the construction of each part. The figure

below presents the averages of the data collected.

+ Iterations

- c - Messages

Agents

FIGURE 31. COMPUT~NG AND COMMUNICATION FOR INCREASING AGENTS

As the figure indicates, the number of trial solutions evaluated per agent does not

significantly increase as the population of agents grows. Since each agent has the same

number of tasks to evaluate, they will have the same number of potential exchanges

Simulation Results

regardless of the number of peers on the system. The significant increase is in the

messages passed. With additional tasks for each job, each change requires additional

propagation to be made. Furthermore, more system agents lead to more peer

relationships and therefore additional synchronization messages for each resource.

Simulations were also performed to monitor the impact of job numbers to system

performance. In these systems, there were twenty-five agents that each performed a

single task for each order. The number of orders was allowed to vary between five and

fifty to give an indication of the additional computations and communication demanded

by the number of jobs.

& Iterations

- t - Messages

0 10 20 30 40 50

Jobs

FIGURE 32. NUMBER OF ITERAT~ONS AND MESSAGES FOR INCREASING ORDERS

As expected, since the number of jobs for each agent dictates the number of possible

orders to be tested, the number of iterations of the scheduling algorithm grows. For

Simulation Results

longer sequences of tasks, the number of messages required to propagate changes

increases. These increases are exponential.

Growing systems clearly require a large number of trial solutions on the part of each

agent and a large number of inter-agent messages to achieve an optimized schedule. For

systems of hundreds of agents and thousands of jobs, these results clearly show the need

for the sliding window alternative.

4.6 Impacts of Window Width on System Performance

Using the simulator application, curves similar to those presented in Section 4.4 were

produced for a larger ten-agent system. Again jobs were randomly distributed between

agents and each window width was tested ten times for each of the five configurations.

These curves are shown in Figures 33 and 34.

Simulation Results

5000 -
x

-c Ten Jobs
V)
e -m- Tw enty Jobs
0
" 3000 - E x +Thirty Jobs
a3 * - -x- Forty Jobs

r -+I+ Fifty Jobs

,
0 64 128 192 256

Window WidthlMean Task Processing Time

These curves indicate that the total number of iterations and messages required by the

algorithm begins to level off as the window size gets large. Beyond the value of r that

allows the optimized schedule to fit into a single window, there is little change in

performance. For relatively small window sizes, the number of iterations and messages

decreases substantially. However, a closer look at the data (Figure 35) reveals that for

small windows sizes, below eight times the mean task duration, the total messages

required grows. This effect is due to the large number of synchronizations required.

Simulation Results

+ Ten Jobs

+ Tw enty Jobs

+Thirty Jobs

++ Forty Jobs

+a+ Fifty Jobs

0 64 128 192 256

Window WidthlMean Task Processing Time

-Ten Jobs

-8- Twenty Jobs

+Thirty Jobs

++ Forty Jobs

+ Fifly Jobs

1 I I I I I I

0 4 8 12 16 20 24 28 32

Window WidthlMean Task Processing Time

Simulation Results

But the improvements in messaging and processing provided by sliding window usage is

only beneficial if it leads to schedules with satisfactory utilization. Figure 36 shows the

utilization attained in the simulations of the ten-agent system.

x

X

+ Ten Jobs

+ TW enty ~ o b s

-A- Thirty Jobs

++FortyJobs

--wt Fifty Jobs

0 64 128 192 256

Window WidthlMean Task Processing Time

The poorer utilization achieved using small window widths is expected. As the window

size becomes small - near or less than the maximum width of a single task - the coarse

sorting algorithm may no longer be able to select the best of several candidate tasks to fill

a particular gap, but instead may be forced to choose the only one eligible. Similarly,

small windows also limit the number of fine sorting possibilities. The overall result is a

scheduling process that has limited potential to make great improvements through sorting

and, therefore, will produce a schedule with poorer utilization. As the window size

Simulation Results

grows, the solution approaches infinite window scheduling, a scheduling of all tasks with

no limited window of focus, and utilization levels off.

The system was then simulated using full optimization (i.e. coarse and fine sorting with

no applied sliding window). The average performance of the system for each distribution

of tasks is shown in Table 9.

As the sliding window width grows, the iterations required by the algorithm and the

utilization factors achieved approach the numbers obtained through full optimization.

However there are significantly fewer messages needed by large windows. Because the

sliding window technique allows reordering with a partly infeasible schedule, it bypasses

the near many thousand extra messages that initial scheduling requires. With window

widths of eight times the mean task duration, this difference in operation translates into

message savings of up to 96%.

A promising observation is that the utilization of our system quickly reaches its final

value for all five curves depicted above, achieving the best possible optimization even

Simulation Results

using relatively small windows. This result is very encouraging: a great improvement in

both computational and messaging requirements with little degradation in resource

utilization.

4.6.1 Determining an Ideal Window Width for Scheduling Systems

Being able to predict the best choice for window width for a given system would be

beneficial. The first step in achieving this goal is to understand the reason for the

minimum in our message curves. Using the utilization data above, it is possible to

compute the impact of synchronization messages on the overall message passing of our

systems. Considering that the mean task processing time is p, an approximation of the

total processing time for N tasks per agent is Np. We could then approximate the total

makespan of our tasks as

where u(n) is the utilization of the system achieve using a window width ratio of n. The

number of windows of width n p required to complete sliding window scheduling would

be computed as

windows = = c e i l i n { ~)
n M 9 44

Simulation Results

The ceiling h c t i o n returns the next integer greater than the argument provided. Since

there are eight synchronization messages required between each peer for each window,

the total number of synchronization messages required is then

synchronization messages = 8 ceilin - .I 4.:-JI
where P is the total number of peer relationships between agents given the current task

distribution. Using equation (6) and the peer, message, and utilization data for our

simulations, the number of synchronization messages required by our systems was

calculated for each window width. The relatively contribution of synchronization

messages to the total messages processed by agents was also calculated and was then

tabulated in Table 10.

Simulation Results

For small window widths relative to the mean task length (n = 2,4), synchronization

messages account for the vast majority of messages processed by agents (up to 99%). As

the window width grows, their contribution becomes less and less. Eventually, for large

agent systems, they can account for less than one percent of the total number of messages

received. All other messages processed are change and result messages, used to schedule

and sort the tasks themselves.

The point at which the number of synchronization messages is roughly equal to the

number of scheduling messages aligns with the minima of Figure 35 for each of the five

curves provided. For the ten-agent systems with fewer tasks (N = 10,20), the minima

occur between 12 and 16 times the mean task duration. For systems with greater tasks

(N = 30,40, 50), they occur at roughly 8 times the mean task duration.

To calculate the ideal window width, we would need to be able to model the number of

messages required for scheduling and sorting as a function of the window width ratio.

Given that Nand P are properties we can measure before scheduling the system, based

purely on the distribution of tasks, we should ascertain whether utilization and total

messages follow some pattern for systems of a chosen dimension. Though a thorough

analysis of systems of varying dimension is beyond the scope of this work, determining

whether the analysis above holds, for just the sample systems presented or for any similar

systems of the same dimension, is an important step.

Simulation Results

A final simulation of the ten-agent system was performed. Each of the window widths

was simulated twenty-five times with a different set of thirty jobs distributed randomly

between the ten agents. Figures 37 and 38 below illustrate the range of results achieved

by random systems. The maximum and minimum messaging and utilization curves are

provided, in addition to the average performance of ten-agent thirty-job systems.

From these figures, it is clear that there is a vast range of system performances using the

sliding window algorithm. Some systems required 50% fewer messages than others

using the same window size. Utilizations varied by as much as 17%.

0 J
0 64 128 192 256

Window WidthlMean Task Length

- --I- -Average

+ Tested System

FIGURE 37. MESSAGE REQUIREMENTS FOR TEN-AGENT THIRTY JOB SYSTEMS

Simulation Results

- I- - Average

&Tested System

40% 4 ,
0 64 128 192 256

Window WidthlMean Task Length

FIGURE 38. MESSAGE REQUIREMENTS FOR TEN-AGENT THIRTY JOB SYSTEMS

There were consistently between 88 and 90 peer relationships between agents in these

random systems, although it is possible for full connectivity between all agents with as

few as eighteen peer relationships. The downside of these results is that the messages

and utilizations achieved do not appear to be predictable for systems of consistent

dimension. Without this information, calculating the optimal window size becomes

much more difficult. Yet, in spite of the variance in both messages and utilization,

systems of ten agents with thirty jobs each experience a messaging minimum at roughly

the same point. As a result, the potential still exists for an ideal window width to be

determined based purely on the system configuration.

Simulation Results

In this chapter, I have measured the performance of the sliding window scheduling

algorithm and shown that while it provides great benefits in terms of computational

requirements and communication bandwidth savings, these benefits do not come at the

expense of poorer resource utilization. As systems become large and new orders are

added, the significance of these benefits becomes greater still.

5 CONCLUSIONS

5.1 Future Work

With a project such as this one, there are many directions in which future effort may be

taken to improve the performance, robustness, and relevance of this work, and many

areas of research that would benefit from the research already performed to this point. In

this section, we will briefly acknowledge some of these potentials.

5.1.1 Improvements to Performance

One drawback to the sliding window approach to scheduling is that all information about

the length of the series of tasks beyond the window's end is discarded (i.e., a job with

only one task beyond the window is treated the same as a job with one hundred

subsequent tasks). Consequently, the result message is no longer an accurate reflection

of the impact of each change on the system. As scheduling concludes, the potential exists

for a long string of tasks to find itself at the end. This condition greatly reduces the

utilization of the overall system, since agents will be left idle while the single tasks of the

final job are performed. A feature that allows the agents to look ahead to subsequent

tasks could improve performance.

Meanwhile, as noted in Chapter 4, there appears to be an optimal window width

corresponding to systems of agents with a given task distribution and peer interaction.

Conclusions

Finding the relationship between peer relationships, task distributions, and the window

width that will best optimize the schedule is an important area for future research.

5.1.2 Improved Robustness

One of the major requirements of multi-agents systems is their ability to adapt to change.

Though the system presented here would be responsive to new orders, the one condition

to which it is not yet responsive is agent failure.

As mentioned, a major advantage to the recursive propagation technique of message

passing for scheduling is that it eliminates the need for a central blackboard and makes no

single agent more critical to system performance than any other. But the implementation

of the system to utilize this advantage has not yet been realized. When an agent fails,

suddenly the chain of tasks that constitutes a given order is broken. These lost tasks must

be reassigned to available resources to allow the system to continue scheduling.

Modification of the existing system to handle these events is certainly possible, though it

would require an additional fault-response behaviour of the agents. Tasks could contain

not just the names of the agents who perform adjacent operations, but also the details of

those operations so that, should an agent fail, the peers of the failed agents would be able

to reassign the unclaimed tasks to other resources. The JADE yellow page functionality

should play a vital role in this, allowing agents to seek out others on the system with the

necessary machine functions to complete the given task and assign it accordingly. By

receiving information from both the agent that followed and the agent that preceded the

Conclusions

now unclaimed task, the new resource will be able to reconstruct all task information and

assign it an appropriate start time so that scheduling can continue, virtually unaffected.

5.1.3 Broadened Relevance

As described in the opening chapter, the problem addressed in this thesis is that of a

linear progression of tasks as shown in Figure 39.

FIGURE 39. LINEAR TASK SEQUENCE FOR A SINGLE JOB

In fact, in scheduling resources (whether in manufacturing, human resources,

transportation, or a number of other industries), there is a more complicated dependence

of tasks for a single job. Potentially, a single resource may have to await the completion

of several agents before its task can begin and, likewise, may have a number of other

tasks dependent on a single task of its own (Figure 40).

u
FIGURE 40. NON-LINEAR TASK SEQUENCE FOR A SINGLE

Conclusions

These complex job configurations are currently unmanageable for the algorithm

presented here. But by modifying the structure of a task so that each contains a list of

dependent and subsequent agents and, additionally, a list of minStart values, the

algorithm would be able to make decisions based on the agents that constitute the critical

path for an order. Once this change has been implemented, the areas of application for

this distributed scheduling approach will become far-reaching and the potential for this

technique to address complex scheduling problems will greatly improve.

Furthermore, some real-world applications of scheduling require that idle time be built in

to the schedules of resources. These periods of rest prevent excessive stress on machines

and components. A future system that included rest periods would be valuable.

5.1.4 Complementary Research

As mentioned earlier, concurrent to this work on distributed scheduling, further

investigation into distributed networks and problem solving is being performed by other

students in the Intelligent and Distributed Enterprise Automation (IDEA) Laboratory at

Simon Fraser University. In fact, the IDEA laboratory is, through the work of its students

and research staff, working on all required levels of development for distributed wireless

solutions (Figure 41).

At the device level, Gary Wong and Peter Bai are constructing the physical hardware and

firmware to comply with 802.1 l x standards of wireless communication between devices.

Edward Chen is conducting an investigation of the JADE agent framework and its

Conclusions

effectiveness in multi-agent system implementation [28]. His research emphasizes the
d

steps required in developing wireless distributed agent systems using JADE and compare

the performance and overhead with other agent frameworks.

Scheduling Agent 1 Application Level
1 I

API Routines

Java Virtual Machine F Middleware Level

Firmware

Hardware
Device Level

Development of contract nets and distributed energy resources by another IDEA

Laboratory student Zafeer Alibhai [35], as well as the distributed scheduling software

detailed here, provide the application-level basis to properly demonstrate the usefulness

of a wireless system. Eman Elghoneimy and Ozge Uncu are applying multi-agent system

methodology to automate the operation of a rough mill in the manufacturing of wood

frame windows for a Canadian company.

Conclusions
- - --

Lastly, Colin Ng and Steven Chen are developing VNET, a distributed network

simulation platform to allow applications for wireless networks to be tested in a

laboratory setting [27]. VNET will allow logical links between physically connected

devices to have built-in intelligence and variance.

Despite being physically networked, distinct communication routes can be defined by

VNET network administrators that dictate the only existing message pathways. These

pathways through neighbouring nodes will model the communication infrastructure of

existing peer-to-peer and wireless networks. By allowing links between nodes to be

time-varying (periodically becoming unavailable and introducing occasional delays or

bad message packets), many anomalies of wireless networks can be simulated.

Together, these projects could allow physically separated devices to utilize the message-

passing protocol of JADE and other agent environments to demonstrate how a distributed

scheduling system implementation could be used in a wireless network environment.

Large networks of devices could be tested and real simulation data collected that would

accurately model the real-world network environment in question. Furthermore, the

VNET could thoroughly test the distributed sliding window scheduling algorithm and its

response to both agent and communication link failure.

Conclusions

5.2 Summary

This thesis has demonstrated an improved technique for distributed scheduling that

reduces the complexity of the traditional scheduling problem and correspondingly the

communication overhead of typical agent-based approaches, without a significant

degradation of resource utilization. The sliding window approach to scheduling

presented here is also a dynamic approach, allowing agents to add new orders on the fly

and handle the challenges of an ever-changing order list. In addition to providing the

benefits of distributed processing and computation, the use of recursive propagation to

update schedules also allows the communication itself to be decentralized, eliminating

dangers of failure that accompany blackboard-related systems.

Using JADE, the algorithm outlined here has been demonstrated for agents on physically

separated devices and, in future, can be used to test wireless networks of distributed

agents. Together with the other research performed by students of the Intelligent and

Distributed Enterprise Automation Laboratory at Simon Fraser University, composite

scheduling entities implemented in Java for JADE agent systems will be important tools

to illustrating the growing impact of decentralized problem solving approaches to many

commercial applications.

REFERENCES

K. Baker, Introduction to Sequencing and Scheduling, Durham, USA, 1974.

H. Iima, R. Kudo, N. Sannomiya, and Y. Kobayashi, "An autonomous
decentralized scheduling algorithm for a job shop process with a multi-function
machine in parallel," Proc. of the Third International Symposium on Autonomous
Decentralized Systems, Berlin, Germany, 1997.

H. Iima, T. Hara, N. Ichimi, and N. Sannomiya, "Autonomous decentralized
scheduling algorithm for a job shop scheduling problem with complicated
constraints," Proc. of the Fourth International Symposium on Autonomous
Decentralized Systems, Tokyo, Japan, 1999.

Y. Foo and T. Takefuji, "Integer linear programming neural networks for job-shop
scheduling," Proc. of the IEEE International Conference on Neural Networks, San
Diego, USA, 1988.

M. Ballicu, A. Giua, and C. Seatzu, "Job-shop scheduling models with set-up
times," Proc. of the IEEE International Conference on Systems, Man and
Cybernetics, Hammamet, Tunisia, 2002.

G. Hasle, R. C. Haut, B. S. Johansen, and T. S. Dlberg, "Well activity scheduling -
an application of constraint reasoning," Proc. of Practical Applications of
Constraint Technology,London, UK, 1997.

F. Hermann, K. Muller, and S. Engell, "FMS scheduling using branch-and-bound
with heuristics," Proc. of the 3lSfIEEE Conference on Decision and
Control, Tucson, USA, 1992.

S. Fujita, M. Masukawa, and S. Tagashira, "A fast branch-and-bound algorithm
with an improved lower bound for solving the multiprocessor scheduling problem,"
Proc. of the gh International Conference on Parallel and Distributed
Systems, Taiwan, 2002.

H. Chen, J. Ihlow, and C. Lehmann, "A genetic algorithm for flexible job shop
scheduling," Proc. of the 1999 Conference on Robotics and Automation, Detroit,
USA, 1999.

[lo] M. Watanabe, M. Furukawa, A. Mizoe, and T. Watanabe, "GA applications to
physical distribution scheduling problems," Proc. of the 261h Annual Conference of
the IEEE Industrial Electronics Society, Nagoya, Japan, 2000.

References

[l l] K. Krishna, K. Ganeshan, and D.J. Ram, "Distributed simulated annealing
algorithms for job shop scheduling ", IEEE Transactions on Systems, Man and
Cybernetics, Volume 25, Issue 7, 1995.

[12] Z-P. Lo and B. Bavarian, "Job scheduling on parallel machines using simulated
annealing," Proc. of the IEEE International Conference on Systems, Man, and
Cybernetics, Charlottesville, USA, 199 1.

[13] H. Chen and P. Luh, "An alternative framework to Lagrangian relaxation approach
for job shop scheduling," European Journal of Operational Research, 2003.

[14] R. Walker, "Introduction to the scheduling problem," IEEE Design and Test of
Computers, Washington, USA, 995.

[15] J. Layden "The evolution of scheduling logic," Plant, Canada's Industry
Newspaper, Toronto, Canada, 1999.

[16] D. Sabaz, W.A. Gruver, and M. H. Smith, "Distributed systems with agents and
holons," Proc. of the IEEE International Conference on Systems, Man, and
Cybernetics, The Hague, Netherlands, 2004.

[17] T. Vidal, B. Archimkde, and T. Coudert, "Distributed forward checking for
scheduling in flexible manufacturing cells," Proc. of the 81h IEEE International
Conference on Emerging Technologies and Factory Automation, Juan les Pins,
France, 200 1.

[18] R. Hino, nd M. Toshimichi, "Decentralized scheduling in agent manufacturing
system," Proc. of the Second International Workshop on Intelligent Manufacturing
Systems, Leuven, Belgium, 1999.

[19] R. Hino, K. Izuhara, and M. Toshimichi. "Message exchange method for
decentralized scheduling," Proc. of the 41h IEEE International Symposium on
Assembly and Task Planning, Fukuoka, Japan, 2001.

[20] F. Bellifemine, G. Caire, A. Poggi, G. Rimassa, "JADE - A white paper,"
EXP - In Search Of Innovation, Volume 3, Number 3, Telecom Italia Labs, Turin,
Italy, 2003.

[21] P. Vrba, "java-based agent platform evaluation," Proc. of the 1st International
Conference on Applications of Holonic and Multi-Agent Systems, Prague, Czech
Republic, 2003.

[22] R. Conway, W. L. Maxwell, and L. W. Miller, Theory of Scheduling, Mineola,
USA, 1967.

References

[23] B. Jeremiah, A. Lalchandani, and L. Schrage, "Heuristic rules toward optimal
scheduling," Research Report, Department of Industrial Engineering, Cornell
University, USA, 1964.

[24] S. Logie, D. Sabaz, and W.A. Gruver, "Combinatorial sliding window scheduling
for distributed systems," Proc. of the IEEE International Conference on Systems,
Man, and Cybernetics, Washington, USA, 2003.

[25] S. Logie, D. Sabaz, and W.A. Gruver, "Sliding window distributed combinatorial
scheduling using JADE," Proc. of the IEEE International Conference on Systems,
Man, and Cybernetics, The Hague, Netherlands, 2004.

[26] H. Gou, B. Huang, W. Liu, S. Ren, and Y. Li, "An agent-based approach for
workflow management," Proc. of the IEEE International Conference on Systems,
Man, and Cybernetics, Nashville, USA, 2000.

[27] C. Ng, D. Sabaz, and W.A. Gruver, "Distributed algorithm simulator for wireless
peer-to-peer networks," Proc. of the IEEE International Conference on Systems,
Man, and Cybernetics, The Hague, Netherlands, 2004.

[28] E. Chen, D. Sabaz, and W.A. Gruver, "JADE and wireless distributed
environments," Proc. of the IEEE International Conference on Systems, Man, and
Cybernetics, The Hague, Netherlands, 2004.

[29] D. Huang, Y. Zhu, Y. Zhao, and W. Wang, "A heuristic algorithm for minimizing
the range of lateness and make-span on non-identical multi-processors," Proc. of
the 3"' World Congress on Intelligent Control and Automation, Hefei, China, 2000.

[30] S. Tanaka, T. Sasaki, and M. Araki, "A branch-and-bound algorithm for the single-
machine weighted earliness-tardiness scheduling problem with job independent
weights," IEEE International Conference on Systems, Man and Cybernetics,
Washington, USA, 2003.

[3 11 Y. Genke, W. Zhiming, and C. Oguz, "A branch and bound approach for earliness
and tardiness penalty problem with distinct due dates," Proc. of the 41h World
Congress on Intelligent Control and Automation, Shanghai, China, 2002.

[32] W. Li and W. Mengguang, "A hybrid algorithm for earliness-tardiness scheduling
problem with sequence dependent setup time," Proc. of the 36'" IEEE Conference
on Decision and Control, San Diego, USA, 1997.

[33] H. Tarnaki, H. Murao, and S. Kitamura, "A heuristic-based hybrid solution for
parallel machine scheduling problems with earliness and tardiness penalties," Proc.
of the IEEE Conference on Emerging Technologies and Factory Automation,
Lisbon, Portugal, 2003.

References

[34] L.B.Valencia and G. Rabadi, "A multiagents approach for the job shop scheduling
problem with earliness and tardiness," Proc. of the IEEE InternationaI Conference
on Systems, Man and Cybernetics, Washington, USA, 2003.

[35] Z. Alibhai, R. Lum, W.A. Gruver, A. Huster, and D. Kotak, "Coordination of
distributed energy resources," NAFIPS 2004 Conference, Banff, Canada, 2004

