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ABSTRACT 

This thesis describes a fully distributed approach to resource scheduling within a sliding 

time frame, implemented for a system of agents across multiple JADE platforms. All 

agents, with operations inside the current window, schedule tasks using recursive 

propagation and a sorting algorithm. Operations outside the window are not scheduled 

until either the sliding window has advanced to encompass them or until gaps have 

opened between tasks inside the sliding window to accommodate them. The distributed 

sliding window approach to scheduling addresses many of the problems afflicting both 

centralized systems, including scalability, robustness, and responsiveness to dynamic 

changes. It also provides full decentralization as compared with other distributed 

approaches. 

iii 
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1 INTRODUCTION 

Traditional techniques for scheduling resources suffer from three major disadvantages: 

limited responsiveness to dynamic changes, large expense related to scalability, and poor 

robustness. Many of the standard approaches do not respond well to a changing work 

environment, become increasingly complex for systems of large dimension, and use 

clientlserver architectures that may fail when components become unavailable. Instead, 

distributed approaches to scheduling have emerged as a potential solution to these 

problems. This thesis presents one such method. 

The document will begin with an overview of scheduling and existing centralized 

approaches. It will then describe the benefits that distributed system designs provide and 

outline a new distributed algorithm for scheduling. In the results provided here and the 

analysis that follows, this algorithm will be shown to greatly reduce communication and 

computational requirements. 

1.1 Basic Scheduling 

According to Baker El], scheduling is "the allocation of resources over time to perform a 

collection of tasks". Schedulers assign tasks to available resources, and then determine a 

sequence and chronological placement of those tasks that satisfy the constraints. As a 

result, a generic scheduling model can be used to represent many industries and 
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applications, fiom manufacturing processes to the power distribution, fiom human 

interactions in a workplace to the allocation of transport vehicles in a shipping fleet. 

Regardless of the actual items being scheduled, common nomenclature has been 

established to describe these problems. In scheduling problems, jobs (also called orders 

orparts), each consisting of a series of operations (or tasks) that have an associated 

precedence sequence, are assigned to a number of available resource entities and given 

chronological placement. For simple scheduling problems, few system details need to be 

specified apart fiom the machine function and finite processing time associated with each 

task, which introduce constraints on the problem of resource allocation. 

The machine function of a resource refers to a specific action that the device performs to 

complete its task. Though many resources may be available to handle tasks, only some 

may be equipped to perform the specific machine function associated with each. As a 

result, the machine function parameter limits the number of available resources to which 

the task may be assigned. Likewise, this parameter limits the number of resources to 

which a task may be reassigned in the event that one of the other shop resources goes off- 

line. Additionally, systems may be comprised of both single-function and multi-function 

resources. Many algorithms have been developed to handle the allocation of tasks to 

resources given the presence of both single-function and multi-function machines [2][3]. 

In the example of Figure 1, the available task can be assigned to either of resources Alpha 

or Beta because both are equipped to handle drilling. 
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Task: Part A, Operation 3 Resource: Alpha Resource: Delta 
Machine Function: Drilling Machine Function: Fastening 

FIGURE 1. ~LLUSTRATING THE SIGNIFICANCE OF MACHINE FUNCTIONS 

Though task allocation is an important component to scheduling, the details of how tasks 

are assigned to resources are not the focus of the work presented here. Instead, this thesis 

focuses on task sequencing and task timing. 

1.2 Standard Approaches to Scheduling 

Inherently, the scheduling of resources is a distributed problem. Resources, capabilities, 

and information about jobs, system components, and states are dispersed among the 

many, often physically separate, elements of the system. Even so, most present-day 

scheduling systems, whether manufacturing-based or otherwise, are designed using some 

form of clienttserver architecture (Figure 2) with centralized algorithms that construct a 

global model of the production domain before computing a scheduling solution. 

Information regarding resources and tasks is collected by a central component, one of a 

variety of algorithms applied, and the resulting solution redistributed to the rest of the 

system. Three key requirements are demanded of a central server: large data storage 

capabilities, significant processing capabilities, and reliable communication paths 

between the server and peripheral system components. 
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Many centralized approaches to scheduling have been studied that provide near optimal 

solutions to the scheduling problem. 

Linear programming approaches [4][5] introduce slack variables for each inequality 

constraint and iteratively increase variables from zero as long as the effect on the 

objective function is positive. The result is an exploration of the extreme points of the 

surface bounded by linear constraints until an optimal objective value is found. As 

problems become increasingly complex, linear programming becomes a less useful 

approach and further constraint reasoning methods may be applied. These techniques 

require search methods to find feasible solutions (usually non-optimal) to realistically 

modeled constrained systems [6]. 
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A further branch-and-bound method explores the enumeration tree of all possible 

scheduling solutions, but reduces the scope of this exploration by eliminating the nodes 

for which all descendant solutions must exceed some bound [7][8]. These methods incur 

a high computational cost as the number of constraints and variables increases. 

Additionally, all system constraint information, the number of variables, and the relative 

weight of each variable on the objective fimction must be predetermined before the 

algorithm can be applied. 

Other research has employed genetic algorithms [9] [lo], which begin with an initial 

population of possible solutions and then crossover, mutate, or replace these solutions in 

an effort to preserve the best aspects of all possible solutions. The more iterations the 

algorithm completes, the better these solutions are meant to converge on the optimum. 

Simulated annealing algorithms are another approach [11][12], which always accept 

solution changes that lead to improved results, but only accept detrimental changes 

according to some probability function that decreases over time. Like many heuristic 

methods, the computational requirements are reduced, but it can be difficult to measure 

the proximity of the optimized solution to the optimum that exists for the problem. Also, 

if the characteristics of the parent population change, the algorithm must be re-applied. 

Further still, Lagrangian relaxation techniques can also be used to obtain near optimal 

solutions to scheduling problems. System constraints are relaxed using Lagrange 

multipliers, and the resulting problem is solved using dynamic programming or 
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generalized gradient search methods. Iteratively, the multipliers are adjusted to find a 

solution that minimizes the objective hnction while still satisfying all constraints [13]. 

To optimize schedules with respect to the number of resources, force-directed techniques 

have emerged to minimize the number of resources required to perform all tasks [14]. 

For each operation and control step, a force value is calculated. The operations are then 

placed according to least force to ensure that all tasks are uniformly distributed. 

1.2.1 Weaknesses of Standard Approaches 

A major failing of centralized algorithms is their dependence on the reliable performance 

of a single component and the consistent operation of the communication links between 

server and clients. Should the server crash for any reason or lose contact with its 

peripheral components, the entire system would be crippled. Centralized communication 

methods also have inherent reliability issues. If any single communication link between 

server and client breaks, the affected system component becomes unreachable. 

Apart from robustness issues, centralized systems also suffer from an increase in 

algorithm complexity that accompanies any significant increase in system variables, often 

making them impractical for large systems. Moreover, since centralized algorithms often 

use "snapshot" logic, requiring all system variables (including the number of available 

resources or the number of orders) to be known before a solution can be computed, any 

change to these variables requires the data to be recollected and the algorithm to be re- 

applied. As stated by John Layden [ 151 : 



Introduction 

The trouble is, for discrete manufacturing, what's optimal one minute is 
obsolete the next when the snapshot changes - for example, the next order 
arrives or the next change occurs in material supply or resource 
availability. 

These conditions make centralized problem solving approaches neither dynamic nor 

scalable and costly to implement [16]. As a result, for large and ever-changing systems, 

centralized approaches become impractical, since many real-world applications of 

scheduling algorithms do not provide the static environments that these algorithms 

require to be effective. Instead, variables are constantly changing: new orders arrive and 

new parts are designed. Meanwhile resources fail, increase in numbers, or are upgraded 

to include new functions. These environments demand solutions that are scalable to 

handle changing numbers of orders and resources, yet dynamic enough to allow the 

details of these elements to change. 

Heuristic algorithms begin to address these issues, in that updated variables can be 

incorporated into subsequent iterations of the algorithm. But a centralized heuristic 

algorithm still suffers the same reliability limitations of other centralized algorithms and 

the communication requirements are even greater, since clients are queried with each 

iteration. 
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1.3 Distributed Systems 

Distributed systems begin to address these issues [2][3][16][17] [18][19]. In a vast 

majority of industries, resources and data are distributed. Separate computers and servers 

store and process data and the individuals who use these machines possess data and 

"processing power" of their own. On production plant floors, different machines have 

different capabilities, functions, and settings. In business dealings, customers know their 

needs, suppliers know their capabilities, and communication channels exist between 

parties to find common ground. 

In contrast to the centralized approaches described above, distributed systems are those 

comprised of agents, autonomous entities that possess the ability to plan and execute their 

own actions (Figure 3). In some distributed systems, agents are motivated by self-serving 

goals. In others, agents collaborate to fulfill group objectives. The goals of the system 

have a significant impact on the design of agents and their interactions [16]. Regardless, 

distributed systems rely on agents that base decisions on a limited view of their 

environment and, through message-passing and negotiation, utilize the other agents at 

their disposal to obtain the additional information they require. 
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Message I 

Agent-based systems address issues of robustness, since no single component becomes 

critical to system operation. If a single component fails or becomes unreachable, the 

other agents are still fully capable of coordinating with their remaining peers by relaying 

messages through their neighbours, as in Figure 4. 

In these systems, the emphasis is on distributing the processing and data storage 

requirements more equitably among all agents at the expense of the communication 

required. Although communication becomes increasingly important in distributed 

systems, distributed communication architectures, such as peer-to-peer networking, make 

no path critical to system operation. In the event of a broken communication link, 

messages can be re-routed to reach their destinations. The result is a system that is more 

scalable, robust, and responsive to dynamic changes than one based on centralization. 
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Message I 

Message 
- - - - - - - - - -  Receiver 

As the popularity and usage of wireless technologies grows, the types of systems in 

which component knowledge and resources are dispersed continues to increase. As a 

result, distributed approaches to system design have become more relevant. But despite 

the fact that resources in production, manufacturing, transportation, power, and other 

industries are distributed, not all methods used to organize and manage them are 

distributed. 

For the purpose of this thesis, the term distributed will refer not only to the logistical 

arrangement of resources and data, but also to the technique used to coordinate resources 

and data. A completely distributed system would be distributed in all aspects of its 

design: the storage of data and information, the communication mechanisms utilized, and 

the processing performed to execute the algorithm. 
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In the area of distributed scheduling, multi-agent solutions have been proposed [1][3][17] 

that assign agents to each resource and, in some cases, to each order on the system. These 

agents negotiate the schedule among themselves in an effort to optimize performance 

criteria, often utilization of resources (the percentage of time that machines remain busy) 

or makespan (the total production time of the system). 

While many of these systems successfully decentralize the processing and data storage of 

their respective algorithms, not all agent systems provide full distribution of 

communication. Systems such as those proposed in [I], [3], and [17] use a shared 

blackboard to handle inter-agent communication (Figure 5). The blackboard component 

serves as a common location for partial solutions to be shared and for agents to exchange 

information. The deficiency of these systems is that the blackboard agent itself becomes 

a centralized component in an otherwise distributed system and constitutes a single 

critical element to system operation. So, while providing great improvements through 

parallel processing and distributed data storage, these systems are still hindered by one 

shortcoming of centralized methods: reliance on a singular critical component. 
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In contrast, Hino, et al., developed the recursive propagation technique for scheduling 

[18] [19], which provides little in terms of decision-making functionality (apart from 

conflict resolution), but fully distributes the scheduling communication between agents. 

Agents inform one another of changes to their schedules, propagate these changes to 

other resources, and return the resulting impact to the initiator of the change (Figure 6). 

Because Hino7s technique can be applied over a peer-to-peer network, it provides the 

potential for complete decentralization. 

Notification of Propagation of 
change change - - 
Propagation of Indication of 
result result - - 
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1.3.1 Tools for Distributed System Implementation 

Significant research has been done in the area of multi-agent system design, and many 

industrial players have begun to realize the potential in distributed approaches to their 

endeavours. As a result, the Foundation for Intelligent Physical Agents (FIPA, 

www.fipa.or& was established in 1996 to provide standards under which development in 

this area can progress. Universities and industrial partners throughout the world 

collaborate through FIPA to develop and maintain these standards in agent architectures, 

communications, management, message transport, and applications, 

Based on FIPA compliance, many development tools have been created to aid in the 

design and implementation of multi-agent systems. Like many of these tools, the Java 

Agent Development Framework (JADE), developed by Telecom Italia [20], provides 

both a model for agent architectures and a structure for inter-agent communications. It 

simplifies the design of multi-agent systems by providing the basic infrastructure on 

which all multi-agent systems depend. Because it is based on the Java programming 

language, it also provides improved interoperability between multiple platforms, 

operating systems, and devices. 

Evaluation by Vrba [2 11 showed that JADE provides faster message throughput, a more 

stable environment, and superior memory usage to some of its rival systems, like FIPA- 

0s. Because of these features, JADE was selected as the framework for initial 

implementation. 
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1.4 Thesis Objective 

To address the problems of scalability, robustness, and responsiveness to dynamic 

changes that accompany the standard approaches to scheduling, a completely distributed 

approach to scheduling was desired; one that would not only distribute the processing 

requirements of the algorithm, but also the communication infrastructure as well. While 

the recursive propagation technique would address many of these concerns, further agent 

intelligence would have to be incorporated to allow an optimized schedule (with 

maximum resource utilization) to be achieved with satisfactory convergence. 

This thesis will discuss the design and implementation of such a scheduling algorithm, 

intended to optimize the utilization of resources in a distributed system, in which tasks 

have been assigned to resources but their ordering has yet to be determined. Based on the 

recursive propagation messaging technique and implemented for agent systems using 

JADE, this system addresses the major shortcomings of its centralized and decentralized 

predecessors discussed in Sections 1.2 and 1.3. Furthermore, this thesis will also provide 

details of a sliding window approach to the same problems that modularizes the initial 

algorithm proposed and provides significant benefits in terms of computing time and 

communication bandwidth. 
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1.5 Thesis Outline 

In Chapter 1 of this document, I have provided some basic background of distributed 

systems, scheduling, and some of the approaches to distributed scheduling introduced to 

date. Chapter 2 will describe recursive propagation in more detail and outline the major 

failings that Hino's method overcomes. It will also detail the sorting algorithm 

introduced in this work as well as the alternative sliding window approach I have 

developed and will provide a theoretical analysis of the new methods, explaining the 

major advantages that they provide. 

Chapter 3 is dedicated to the implementation of the sliding window scheduling technique 

using JADE including the structure of a JADE interface agent and its Java scheduling 

partner. Using UML diagrams, these interactions between these components will also be 

described. Furthermore, Chapter 3 will provide a more thorough look at JADE, 

identifying the advantages it brings to agent system design. 

Chapter 4 provides detailed results of simulations using the proposed sorting algorithm 

that indicate how the algorithms performance is impacted by changes to the parameters of 

the system. The results section then illustrates the impact of the sliding window 

scheduling algorithm on both computational demands and system messages required, and 

analyses the effect of a changing window width on system performance. Furthermore, 

the results compare the utilization obtained using the sliding window scheduling 

technique, to full optimization using no window. 
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Lastly, Chapter 5 provides recommendations for future research and development of this 

system, as well as a summary of results. 



2 ALGORITHM DESIGN AND ARCHITECTURE 

In this chapter, I will outline Hino's recursive propagation approach to distributed 

scheduling. Further, I will propose a new method for distributed scheduling that utilizes 

the strengths of recursive propagation, but also enhances agent intelligence to allow them 

to more quickly determine an optimal schedule. 

2.1 Hino's Recursive Propagation 

Hino, et al., developed the recursive propagation message passing technique to allow 

distributed scheduling agents to communicate with one another, resolve scheduling 

conflicts, and create feasible arrangements for tasks distributed among several resources 

[18][19]. To achieve this, each resource responsible for a task was given knowledge of 

the machine that performs the prior task of the same order and the machine that must 

perform the subsequent task. This knowledge constitutes the limited view of the overall 

system for each agent. In this section, I will outline the constraints on the scheduling 

problems addressed by Hino and give a detailed description of his recursive propagation 

method. 

2.1.1 Problem Constraints 

We denote each task as z :,:, where the subscript a refers to the resource that performs 

task T and o to the numbered position of T in the sequence of tasks to be performed by a ,  
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respectively. The superscripts p and o respectively refer to the job and the specific 

numbered operation in the sequence of operations required to complete job p. 

There are two primary constraints imposed on the scheduling problems addressed by 

Hino. Firstly, all tasks are subject to a precedence constraint that defines the sequence of 

tasks for each order. Parts are required to visit resources in a pre-determined sequence, 

determined by the part type. The second constraint on these problems is a resource 

constraint that prevents a single resource from performing two tasks at the same time, or 

pre-empting one task with another. 

Mathematically, these two constraints restrict the possible start times that can be assigned 

to tasks. For each task z, a scheduling algorithm must determine start times tz;: such that 

relative to the start times t and processing timesp, for all resources a and P, all jobs p 

and 5, and all tasks o and c. The first of these equations illustrates the precedence 

constraint on adjacent tasks for the same job. The second equation illustrates the 

constraint that no two tasks may be performed concurrently by the same resource. 
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2.1.2 Description of the Recursive Propagation Algorithm 

Hino has published two recursive propagation algorithms [18][19]. In contrast to his first 

algorithm, the newer version resolves all internal conflicts before sending a message to 

the next agent, resulting in a large reduction in the number of messages. 

To understand the recursive propagation technique, consider the schedule of tasks 

depicted in Figure 7(a). This representation of tasks is to be viewed as the chronological 

placement of operations where the time scale is horizontal and the rows of blocks 

represent the individual schedules of different agents. The further right the tasks are 

placed, the later in time they are scheduled to be performed. 

Assume that agent al is required to delay task T'J' (b). All operations performed by al 

will be adjusted before the first change message is sent (c). Next, a1 informs a2 of the 

change to the first impacted task, that of order 1 (d). Agent a2 then corrects all of its 

operations accordingly (e) and, since order 1 has no other operations, it sends a change 

message to al regarding order 3. 

Because task T~~~ has already been adjusted, the change message from a2 has no impact on 

a1 and a result message is returned to a2 immediately. This result is passed back to al for 

order I and the next sequential operation is processed. Since there was a delay to order 2 

as a result of the change to order I,  a change message is sent from a1 to a2 to adjust task 

r212 (f). A result message is returned to al and, lastly, a, will inform a3 of the delay to 

order 3 (g). 
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The total number of messages required to return this schedule to feasibility using Hino's 

2001 algorithm is six: three change messages and three result messages. Though the 

1999 algorithm is sufficient to produce the same feasible schedule, it would have required 

a total of ten messages to do so. If the problem is expanded to include dozens of agents 

with hundreds of tasks, the savings become significant. Considering that there may be 

hundreds of operations that depend on the positioning of these tasks, preventing one 

redundant message could save hundreds or thousands of unnecessary propagations. 
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2.2 Enhancements to Recursive Propagation 

Using recursive propagation as a foundation for agent communication, an algorithm to 

effectively improve resource utilization was developed. 

Recursive propagation alone allows scheduling agents to resolve all precedence and 

resource constraint violations. However, performing tasks in the order they arrive is 

rarely the most efficient schedule achievable. Other orderings need to be examined, but 

to exhaustively evaluate every ordering of tasks would be impractical. Ten tasks on a 

single resource can have a total of lo! or approximately 3.6 million orderings. 

Furthermore, the utilization of an agent given a particular sequence of its ten tasks will be 

slightly different depending on the task sequence of the other agents at the instant the 

ordering is evaluated. So an exhaustive examination of orderings must in fact match all 

3.6 million permutations with all possible orderings of the other agents in the system as 

well. The problem clearly explodes as systems become large. 

Instead, we desired an iterative heuristic method that would approach an optimal solution 

as quickly as possible. Agents will choose tasks in their list and reposition them, 

determining from the result messages received whether the new arrangement is preferable 

to the first. 

Jeremiah, et al., [22] studied the impact of selecting tasks based on a variety of criteria 

and then reassigning start times to improve the overall schedule. In his work, the 

operation to be rescheduled was chosen based on (among other criteria): 
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a Most subsequent tasks remaining to be processed for the order 

Most processing time remaining for subsequent tasks of the same order 

The ratio between the work remaining and the processing time of the current task 

Unfortunately, none of these selection criteria are useful to a recursive propagation-based 

system, since no agents possess the type of global system knowledge on which these 

criteria depend. 

However, based only on the limited information they do possess, agents are able to 

construct active schedules, those in which no task can be shifted any earlier in the 

schedule without delaying another. From this point, they can rearrange tasks to find the 

active schedule that results in satisfactory utilization of resources. The algorithm 

presented here distinguishes between two types of task sorting: sorting which fills in 

scheduling gaps to create an active schedule and sorting which explores active schedules 

to improve utilization. 

2.2.1 Coarse Task Sorting 

The initial feasible schedule produced by applying recursive propagation to tasks on a 

first-come first-served basis frequently contains a large number of gaps, large periods of 

idle time for each agent. Later tasks can be moved into these gaps to undoubtedly 

improve utilization, provided that, in doing so, the candidate task will neither violate a 

precedence constraint nor force other tasks to be delayed. The rearranging of tasks to fill 

all gaps and create active agent schedules constitutes coarse sorting. 
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To fill gaps, candidate tasks must either be the first of the order or follow a task whose 

completion time is early enough that the task at the end of the gap will not be pushed 

back by the duration of the candidate task itself. As an example, consider three tasks 

belonging to the same agent (Figure 8). 

end time for .r3,"' 

FIGURE 8. COARSE SORTING: AGENT WITH TWO TASKS 

For this agent, assume that .r2j is scheduled as early as allowable by the previous agent 

for order 2, given the precedence constraint. The earliness of the end time of task .r33k-' 

allows 23,k to be exchanged with r2j to fill the existing gap (Figure 9). Also, because the 

duration of the T ~ , ~  is small enough, the new positioning of this task will not delay .r2j, 

guaranteeing a positive impact on the makespan of the orders, regardless of the number 

of subsequent tasks for orders l , 2 ,  or 3.  

end time for . r 3 z k - '  

FIGURE 9. COARSE SORTING: AGENT WITH TWO TASKS (IMPROVED) 
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Many times, one such reordering will lead to several others. For instance, in our example 

above, moving task 23,k may allow 239k+1 to be moved to fill a gap as well. Agents 

associate new opportunities to fill gaps with the incoming change message that created 

the opportunity. Thus, the result returned to the initiator is the cumulative result of the 

time shifting of tasks and all gap filling that the change. When no gaps in the schedule 

are large enough for later tasks, coarse sorting is complete. 

2.2.2 Fine Task Sorting 

Filling all scheduling gaps doesn't necessarily imply that the schedule has been achieved 

the best possible utilization. There still may be tasks that, if scheduled before others, 

would have an overall positive impact on the system. However, it is virtually impossible 

for an agent to distinguish these tasks from the others in its queue based on the 

information it possesses. Because there is no distinction between tasks that have many 

subsequent operations and those with few, an agent must still be capable of reversing any 

decision should the result message indicate a negative impact. This trial-and-error 

approach to improving the schedule constitutesJine sorting. 

As an example, consider three tasks belonging to the same agent, shown in Figure 10. 

end time for T ~ ~ ~ - '  

FIGURE 10. FINE SORTING: AGENT WITH TWO TASKS 
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For this agent, the earliness of the end time of task 23,k-' allows 23,k to be scheduled 

earlier, however its duration would delay task z2j (Figure 1 1). This may or may not be a 

benefit to the overall schedule, despite the seeming benefit to this agent. If the total 

processing time of the tasks waiting on z2j exceeds the processing time of the tasks 

waiting on r3,k by an amount greater than the improvement provided by reordering tasks 

z3,k and z2j, this exchange may negatively impact the overall system schedule. 

end time for .c~,'-' 

Just as in the case of coarse sorting, a fine sorting exchange of tasks may also create a 

gap into which additional tasks can be moved. If so, these gaps will be filled with later 

tasks (according to the criteria described earlier) and the results attached to the original 

fine sorting exchange to provide a proper indication of the overall savings. 

Neither coarse nor fine sorting exclusively reorders adjacent tasks in an agent's schedule. 

During fine sorting, tasks are moved to the earliest spot in their list based on the end time 

of the previous task, which may be several positions earlier. Beginning at the head of the 

task list, each operation is evaluated to see if there is an earlier position they might better 

occupy. When an operation is moved, evaluation continues for the next operation until 

the end of the task list is reached. 
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As alluded to earlier, it is possible for fine sorting to have a detrimental impact on an 

agent's schedule. Despite the benefit of moving a single task several positions earlier, a 

number of critical tasks in the middle may be delayed. When a fine sorting exchange 

yields negative results, the agent attempts to reverse the negative exchange incrementally. 

Because of the parallel nature of the scheduling process, it is impossible to guarantee that 

reversing an exchange will return the system to a previous state. Many other agents may 

have made new decisions in the time between a task exchange and its evaluation that 

prevent any guarantee that the reversal of a negative exchange will benefit the system. 

So rather than move the offending task many positions later, causing one large delay to 

return the sequence to its original order, the agent responds by moving the task toward 

the end of its list one spot at a time. As each exchange continues to produce 

improvements to the agent's schedule, it will continue to bubble the task outward. Once 

an exchange produces another negative result, it is placed in its last improved position 

and the next task is fine sorted. 

Because fine sorting is only beneficial once coarse sorting is concluded, all agents must 

remain synchronized during the scheduling algorithm. First they achieve a feasible 

schedule using recursive propagation and then apply coarse sorting to make the most 

significant improvements before honing the result through fine sorting. Note that this 

scheduling algorithm is not deterministic. Depending on the order in which messages are 

processed by agents, different tasks will be eligible for coarse or fine sorting. 
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2.3 Sliding Window Task Scheduling 

Despite the benefits of this algorithm as a distributed scheduling approach, it has its own 

disadvantages: 

Message explosion. The number of messages required to create an initial feasible 

schedule is significant. Even if all task conflicts have been resolved but one, the 

change from the remaining conflict will still require a change and result message 

for each subsequent task in the system, a costly requirement. Since the ordering 

of tasks is undoubtedly going to change through the sorting process anyway, the 

necessity of this initial schedule came into question. 

Combinatorial complexity. The problem of determining the optimal ordering of 

tasks, as mentioned early, is combinatorial in nature. Despite the savings of a 

heuristic approach in this regard, further savings were desired. 

Lack of responsiveness to dynamic changes. In spite of the algorithm's 

scalability, the addition of a new resource or a new order still requires the 

reapplication of the scheduling procedure to provide the optimal integration of the 

new order. This meant that the current technique was not a truly dynamic 

approach. 

To combat each of these deficiencies, the sliding window method was designed [24][25]. 

The sliding window scheduling technique is based upon breaking a large problem into 
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smaller more manageable sub-problems. By maximizing utilization for each of the sub- 

problems, we will necessarily have maximized utilization for the original scheduling 

problem. 

Consider a problem in which agents have twelve tasks each to sort. Now consider that, 

instead of attempting to sort the entire list of twelve, each agent focused on a window of 

time in which only four of these tasks would fit. When the arrangement of the first four 

tasks was satisfactory (utilization had been maximized), the window would be advanced 

and the next four tasks examined. Messages are no longer propagated for tasks beyond 

the end of the window, since the implications of these messages have no effect on the 

current set of tasks. 

This system addresses all three shortcomings of the original method: 

Message explosion. By limiting the messages to the window of focus, the 

message savings are two-fold. First, the messages of initial scheduling are 

reduced, since conflicts beyond the current window are only addressed as the 

window advances. Second, messages during sorting are also propagated only as 

far as the current window, producing further savings in communication overhead. 

Combinatorial complexity. In the problem described above, the number of 

permutations for each agent to evaluate in an exhaustive full optimization would 



Algorithm Design and Architecture 
- - -- 

be 12! or approximately 479 million. By focusing on reduced windows, each of 

the three sub-problems requires only 4! or 24 orderings to be examined, 72 total. 

Responsiveness to dynamic changes. Because the tasks are only scheduled one 

window at a time, tasks in completed windows can be processed while the 

resource is continuing to determine the rest of its schedule. Meanwhile, if new 

orders are added or new agents come on-line, their tasks can be incorporated into 

the current window and future windows without impacting previously scheduled 

tasks, allowing for scheduling on the fly. This makes the algorithm completely 

adaptable to a changing work environment. 

The sliding window approach limits the focus of the agents to tasks within a specified 

time window beginning with time tl and extending to, but not including, time t2, denoted 

[tl,t2). The resulting schedule is, at any instant, only feasible for tasks beginning before 

t2. Consider, the detailed example of the sliding window technique using recursive 

propagation illustrated in Figure 12. 

Figure 12(a) illustrates the feasible schedule that three agents a], a2, and a3 would achieve 

for the window [tl, t2) given an example task distribution. Messages for jobs 1 and 2 

would be propagated fully to resolve all conflicts. But job 3 would not be scheduled in 

the current window, since the start time of exceeds t2. The three tasks of job 3 will 

be left in violation of their precedence constraints (r3' begins before r3$' has concluded) 

until the window advances or until they are reordered. 
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FIGURE 12. SLIDING WINDOW EXAMPLE 

In Figure 12(b), agent a3 reorders its tasks so that .r3,' is performed before T ' , ~ .  A message 

will be sent to update T ~ , ~  and, since it now begins in the current window, task T ~ , ~  will be 

updated as well. In (c), .r2,' is similarly reordered by agent a2 and its subsequent tasks 

moved earlier as a result. At this point, the agents can attempt to fine sort additional 

tasks. For example, agent a2 could exchange tasks T ' , ~  and .r3,2 as in (d). 
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Once all task conflicts within the window have been resolved and sorting is complete, the 

agents agree to advance the window by changing the values of t l  and tz (e). The step size 

of this advancement, r, can be varied between any value greater than zero and any value 

no larger than the window size, A. A step smaller than A will potentially allow the fine 

sorting of some tasks to be revisited, which may improve the schedule given the changing 

configurations of neighboring agents. However, a step larger than A will likely leave 

tasks unresolved between windows. 

2.4 System Architecture 

2.4.1 Structure of Tasks and Task Lists 

The principal objects manipulated during sliding window scheduling are the tasks 

assigned to each agent in the system. Each task is associated with a specific order, a part 

that has to be built or a sequence of operations that must be performed. As well, each 

task has a defined processing time. These two parameters are assumed to be fixed 

properties. But there are several other components of the task class that change 

throughout the scheduling process. 

The structure of the Task class is shown below in Figure 13. The o r d e r  field refers to a 

unique integer identifying each job. Operations belonging to a sequence for the same job 

will have the same order number. The d u r a t i o n  field indicates the processing time for 

the task. Both the order and duration fields of the task class are provided when the task is 

created. The s t a r t  time is updated constantly throughout the scheduling process. 
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Task 

order: lnteger 
duration: lnteger 
start: lnteger = 0 
next: String 
prev: String 
minstart: lnteger = 0 
state: lnteger 

The n e x t  and p r e v  variables hold the names of the agents that perform the task 

immediately before and immediately after the current operation for the current job. For 

the first task of each job, the p r e v  field will hold NULL; for the last task of each job, the 

n e x t  field will hold NULL. Messages for propagating changes will be sent to the 

addresses contained in these fields. 

This sorting algorithm relies heavily on the end times of previous tasks. Though each 

agent could request this information from the previous resource for a given order, the 

number of messages required would be extensive, since information would be requested 

not only for each task exchanged but for each task considered for exchange. Instead, 

information from the previous message received is kept with each associated task in a 

field called the min S t a r t. This value indicates the earliest start time allowable by the 

previous agent without violating precedence constraints. 

Because messages are only propagated for tasks inside the window, some tasks beyond 

the window could potentially exist with outdated m i  nS t a r t information. When agents 
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make sorting decisions based on outdated information, instabilities occur and the 

potential exists for the scheduling algorithm to diverge. To eliminate this problem, each 

task is assigned a st ate that indicates whether its minS t a r t information is up-to-date 

and whether exchanges can be made for the current task. No task is reordered unless it 

has been deemed SAFE (its information is current). Likewise, no agent considers its 

window complete until all tasks within it are SAFE. The state field changes the recursive 

propagation algorithm slightly, in that not only are changes in start times propagated, but 

also changes in state value. Until this criterion was included, agents would occasionally 

advance the window with unresolved tasks still inside. 

There are five possible states for each task in an agent's task list as illustrated by Figure 

8: UNSAFE, SAFE, TELLS, TELLP, and TELLU. The first and second are relatively 

straightforward. Each task, apart from the first task for each order is assumed UNSAFE 

(with outdated minS tart information) until it is updated by a change message from the 

preceding agent. When a message indicates that it has the most recent information 

available, the state becomes SAFE. Both UNSAFE and SAFE tasks require no further 

propagation of information. 

The remaining three state values indicate that information needs to be propagated to the 

next agent for the current order. TELLS is used for tasks that are SAFE and need to 

propagate change information to the next agent for the current job. This state exists for 

tasks that are inside the current window. 
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Unsafe State to Propagate * State = TELLU 

When tasks are pushed out of the current window by another SAFE task, they will no 

longer propagate any future changes to the agents that follow, despite possibly having up- 

to-date information themselves. This condition is called apush. If the current task has 

been pushed out of the window, but its information is current, its state will be TELLP, 

and it will inform the next task that it should consider itself UNSAFE until it receives 

new information. Any task that is told to become UNSAFE will change state to TELLU 

if it has further tasks to inform. Throughout sliding window scheduling, task states will 

continue to change between SAFE, UNSAFE, and all forms of the tell states as they are 

moved in and out of the scheduling window. Section 2.4.2 illustrates an example. 
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Each agent possesses a list of the tasks that it is required to perform. Elements of this list 

are continually reordered and the impacts of these actions monitored until the agent is 

satisfied that it has best possible arrangement of tasks. Additionally, elements can be 

added to this list on-the-fly as agents are scheduling. Because of the flexibility required, 

a linked list is used to implement the task list of each agent. The primary functions of the 

task list are push ,  pop,  and moveBef o r e .  The first two add and subtract tasks from 

the list. The last is used during coarse and fine sorting to reorder the task nodes. 

I TaskList 

head: TaskNode 
tail: TaskNode 
length: Integer 

2.4.2 Structure of Messages and Message Lists 

Several types of messages are required for system operation. The most crucial are the 

change and report messages implemented for recursive propagation of scheduling 

changes, but other message types are required for synchronization (Table 1). 

As mentioned earlier, all agents remain synchronized throughout scheduling. So, 

whether using the window approach or not, the agents will simultaneously be resolving 

precedence constraint violations to create a feasible initial schedule, followed by coarse 

sorting, fine sorting, and the handling of all remaining messages before concluding. 
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Between each of these phases of operation, there is an exchange of synchronization 

messages required. In the case of the sliding window approach, the window will then be 

advanced and the agents will proceed to create a feasible schedule for the next window of 

tasks. 

I Result (RES) 1 3 1 Cumulative result of changes I 

Add (ADD) 

Change (CHG) 

1 Ready (RDY) 1 4 ( Agent is satisfied with the current schedule I 

1 

2 

The reasons for synchronization are several. First, without generating a feasible schedule 

for at least a segment of the tasks, reordering of tasks can lead to instabilities. Second, 

because of the large gains resulting from coarse sorting, agents who attempt to fine sort 

tasks before their peers have completed coarse sorting may be making unnecessary effort. 

Finally, all agents must schedule the same sized window and be synchronized in doing so 

for the sliding window algorithm to be effective, since agents will not propagate 

messages beyond their own window despite the fact that other agents may have other 

windows of focus. 

Add a new task to the agent's TaskList 

Task needs to update its start time andlor minstart 

Reply (RPY) 

But, unlike multi-agent systems that use broadcast messages, the sliding window 

scheduling algorithm still uses targeted message recipients for synchronization. Since 

5 Ready agent has received ready messages from all peers 
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agents are only aware of the agents who perform tasks immediately following and 

immediately preceding their own, they do not necessarily have knowledge of all agents 

on the system. In fact, in the case that an agent performs single-task orders, it may not be 

aware of any other agents. All agents who perform adjacent tasks to those being 

scheduled by an agent constitute the peers of that agent. 

As in the case of a single agent isolated from the others, the possibility exists for multiple 

subsystems of agents to schedule their jobs independently of one another, as shown in 

Figure 16 (a), where lines between agents ai indicate a peer relationship. But with even a 

single common agent (b), these systems will remain synchronized. For example, despite 

the fact that agents a, and as in (b) are not peers based on their tasks, they will be kept in 

synch due to their mutual dependence on peer q. 

Each agent sends a ready message to its peers when it is satisfied with the current 

scheduling window during each stage of scheduling. Because of the reciprocal nature of 

the peer relationship, each agent will also receive a ready message from each of its peers. 
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Despite synchronization messages, agents will still advance their windows independently, 

once a ready message has been received from all peers and the agent itself is satisfied 

with the current schedule. But the ready messages themselves do not ensure that all 

agents stay synchronized, particularly in light of the fact that some peers could be 

separated by several degrees. To combat this phenomenon, the reply message type was 

created. Once all peers are ready and the agent is ready to move on, reply messages are 

sent out to confirm that all peers are on the same page. In order to proceed to the next 

phase of scheduling, an agent must have received not only a ready message from all its 

peers, but also a reply message for each ready message it sent. 

Below, Figure 17 outlines the message structure used by scheduling agents. 

I Message 

type: lnteger 
id: String 
order: lnteger 
origin: Boolean 
time: lnteger 
flag: lnteger 
sender: String 
rcv: lnteger 

Message t y p e  values include change, result, and ready and reply. For change and result 

messages, the i d  field is used to distinguish the changes responsible for any given impact 

on the schedule (since multiple concurrent changes may affect the same operation). The 

o r d e r  field indicates the order number that is currently being affected. Since no agent 



Algorithm Design and Architecture 

will perform two tasks for the same order, the order number will uniquely identify the 

task in question. The origin field indicates whether the message was self-generated or 

received from another agent and is used to set the task minS t a r t field. The time field 

indicates the earliest start time of the indicated operation for change messages and the 

overall delaylimprovement to the system for result messages. 

The message flag is used to propagate state values to other agents. Typically, messages 

are only passed on when they have forced a change to the current task. These messages 

use a CLEAR flag and are handled according to the original recursive propagation 

technique. To ensure that each new window is filled only with updated tasks, initial 

feasible scheduling begins by propagating messages with FORCE flags for all SAFE 

tasks within the window. The FORCE flag ensures that a message is propagated until the 

end of the window is reached, regardless of its impact on the recipient. For UNSAFE 

tasks and those pushed out of the current window, a PUSH message flag is used to force 

the recipient back to an UNSAFE state. 

As an example, consider a change to agent a, that delays z'" toward the end of the current 

scheduling window (Figure 18). In (b), the task state will be set to TELLS to remind the 

agent to inform a2 of the change. A change message with a CLEAR flag will be received 

by a2 and task z'22 will be pushed out of the current window. As a result, any future 

change to this task will only be propagated if it brings T ' , ~  back into the current window. 

No further delays, regardless of how substantial, will be passed on to other agents. To 

make sure that future agents are aware that they will no longer be updated, the task state 
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is set to TELLP (c) and a change message is sent to a3 with a PUSH flag. If there are 

subsequent tasks to notify, the state of will be set to TELLU and a further PUSH 

message sent. Otherwise, the state will be set to UNSAFE and results will be returned. 

The r cv and sender fields were added to the message structure for JADE 

implementation and will be discussed in Chapter 3.  

2.4.3 Detailed Description of the Sliding Window Scheduling Algorithm 

As mentioned, the first step each agent takes in scheduling is to send a FORCE change 

message for each SAFE process in the current window. There may be redundancies here, 

in that already SAFE operations may receive messages confirming their original start 

time, but the cost of a few extra messages is worth the risks they eliminate. The first 

UNSAFE task and all tasks that follow are pushed beyond the current window. This 
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operation frees up space in the current window for any of the SAFE tasks that the agent 

may have placed later in its task sequence. 

This precaution explains the reason task r3.2 in Figure 12 (a) did not immediately follow 

task r2?'. Having never been updated, it would be recognized as UNSAFE and pushed to 

the windows edge. Any SAFE tasks that are pushed out as a result of this step will most 

likely be reordered back inside the window during the coarse or fine sorting phase. 

Following this initial scheduling phase, ready messages are sent to each of the agent 

peers and the agent enters a waiting state, still processing change messages from other 

agents, but waiting until all ready and reply messages have arrived before proceeding to 

the sorting state. 

Once the agents are synchronized, the tasks are coarsely sorted for the current window 

until all gaps in the schedule between t ,  and t 2  (the start and end times of the window). 

Only SAFE tasks whose minS t a r t  values allow them to be brought inside the window 

to fill these gaps are selected and no gaps beyond the window are addressed. When no 

gaps exist within the window that can be filled by SAFE tasks, the agent synchronizes 

with its peers, awaiting messages in return before moving on. 

When all ready and reply messages have been processed, fine sorting begins. Again, 

only tasks within the window are selected to be exchanged. They are never moved earlier 

than tl based on the assumption that tasks scheduled previously are already being 
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processed by the current resource. Any gaps created in the current window by the fine 

sorting of tasks are filled by later tasks using the coarse sorting approach. A pseudo code 

representation of the sorting logic appears below. 

if (state == COARSE) { coarsesort ( )  ; } 
else if (insidewindow (currentTas k) ) { 
if ( ! acceptLastChange ( ) ) { undochange ( ) ; } 
else if ( (state == SCHED) & &  (issafe (currentTask) ) 

{ notifyNext0; } 
else if (state == FINE) { finesort ( )  ; } 

ttcurrentTas k; 
} else { 

sendMsg(Ready1; 
} 

When fine sorting changes are revealed to be detrimental, the offending task is bubbled 

toward the end of the list, in an attempt to restore a favourable sequence. Agents will 

synchronize when fine sorting has completed and wait for all ready and reply messages 

before continuing. Once all peers have replied and the agent wishes to advance, the 

remaining messages in the incoming message queue are handled, the agents again 

synchronize, and then each advances its window. 

Below is a pseudo code representation of the message-handling logic. 

if (newMsgArrived) { 
if (messageType == Ready) { handleReady0; ) 
else if (messageType == Reply) { handlelieply(); ) 
else if (messageType == Change) { 

if (!coarsesort()) { resolveConflicts(); } 
if (change) { notifyNext ( )  ; } 
else { reportToLast(); ) } 

else if (messageType == Result) { 
if (!coarsesort()) { 

if (moreToNotify) { notifyNext0; } 
else { reportToLast(); } 

1 
1 

} else { waitForMessage ( )  ; } 
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The handleReady and handleReply  functions allow the agent to keep track of 

peers from which it is still waiting for readiness confirmation. For each change or result 

message, the agent will determine whether a new opportunity to coarsely sort tasks has 

been created and verify that the state of the agent is either COARSE or F M  before 

filling any gaps. If no such opportunity exists or the agent state prevents it, the 

re s o lvecon  f 1 i c t s procedure follows the logical steps of Hino's recursive 

propagation in adjusting the start times of tasks based on the incoming message. Once 

changes have been made to tasks, the n o t  i fyNext or r e p o r t  ToLas t function is 

called accordingly. 

The corresponding agent activity diagram and agent state diagram are shown in Figures 

19 and 20, respectively. Pseudo code of the state transitions are presented below 

switch (state) { 

case: 

break; 
case : 

break; 
case: 

case : 

case : 

break; 
case : 

case : 

break; 
case : 

SCHED 
if (allTasksScheduled()) { state = WAITS; } 

WAITS 
if (allAgentsReady0) { state = COARSE; } 

COARSE 
if (scheduleActive()) { state = WAITC; } break; 
WAITC 
if (allAgentsReady0) { state = FINE; } break; 
FINE 
if (scheduleSatisfactory()) { state = WAITF; 1 

WAITF 
if (allAgentsReady0) { state = EMPTY; } break; 
EMPTY 
if (messageQueue.length==0) { state = WAITE; } 

WAITE 
if (allAgentsReady ( )  ) { 

advanceWindow(DELTA); 
state = SCHED; 

} break; 
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Initial Scheduling 

State = SCHED 
dolschedule all SAFE tasks 

Advance Window 

State = WAITE 

exiffreceived ReadylReply 

f Wait After Scheduling 

+ State = WAITS State = COARSE 
entrylall SAFE tasks placed 
exiffreceived ReadylReply dolfill all scheduling gaps 

State = WAlTC 

exiffreceived ReadylReply 

Wait After Fine Sorting 

State = EMPTY State = WAlTF State = FINE 

exiffno new messages left entryltasks in window sorted exiffpointer beyond window 
dolhandle messages exiffreceived ReadylReply dolattempt to improve task 

doladvance task pointer 

In this chapter, the algorithm used to schedule sequenced tasks has been outlined. This 

algorithm relies on recursive propagation to provide distributed communication while 

simultaneously distributing the decision-making required among the agents in the system. 

As we shall see in Chapter 4, not only does the sorting technique itself provide 

improvements in performance when compared with Hino's exhaustive searches, the 

sliding window approach provides hrther improvements. In the next chapter, we 

examine the implementation of this system using Java and JADE and the design of 

agents. 



3 IMPLEMENTATION 

In this chapter, I will identify more specifically the structure of agents in the proposed 

scheduling system design and the implementation of these agents in Java for JADE 

agents systems. 

3.1 Introduction to JADE 

The Java Agent Development Framework (JADE) is middleware designed to facilitate 

the development of multi-agent peer-to-peer applications. Developed by Telecom Italia 

Labs in Italy, the software has been shared as open source since February 2000. JADE is 

designed using Java, providing interoperability between agents running on varied 

operating systems, and can be used with any number of versions of Java for both fixed 

and mobile devices. Because of this feature and its small footprint, JADE agents can run 

everywhere from powerful workstations to mobile cellular phones. 

JADE allows agents to cooperate and pass messages using FIPA-compliant message 

structures and a simple set of API routines. In a JADE agent system, agents are able to 

register themselves and the services that they can provide (i.e. machine functions, in the 

context of our scheduling system) with a directory facilitator service, which then allows 

all agents to look up peers according to the services they provide. The directory 

facilitator also ensures that each agent is assigned a unique agent identifier (AID) that 

allows it to be located and identified as a message recipient. 
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The message protocol utilized by JADE is the agent communication language (ACL) 

message structure (Figure 2 1). 

I ACL Message 
- - - 

performative: Integer 
sender: AID 
receiver: AID[] 
reply-to: AID[ ] 
content: String 
language: String 
encoding: String 
ontology: String 
protocol: String 
conversation-id: String 
reply-with: String 
in-reply-to: String 
reply-by: Date 

FIGURE 21. ACL MESSAGE STRUCTURE 

Of the fields that constitute the ACL message type, several are of use to sliding window 

scheduling agents: 

sender: the agent from whom the message is being sent 

receiver: the agent to whom the message is intended 

content: the substance of the message 

The ACL message structure provides the opportunity for complex communication 

between agents, where agents negotiate with multiple peers using a variety of languages 

and message encoding techniques, and indicating their intentions with the inherent 

message performatives provided by ACL. However, the other fields, while applicable to 
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other multi-agent system implementations, are not required by the scheduling agents, 

primarily because of the message substructure we have already developed for 

communication between agents. 

For JADE versions prior to 3.2, JADE agents were purely single-threaded entities, though 

multiple behaviours could be implemented to share the processing time on this single 

thread for multi-tasking agents. JADE 3.2 introduced the 

ThreadedBe h a v i o u r  F a c t  o r y ,  which permits true multi-threading. Using version 

3.2, blocking socket commands in Java such as a c c e p t  and r e a d  can be used to 

suspend a single behaviour without freezing the entire agent. 

Each instantiation of the JADE run-time is called a container. While multiple containers 

can exist on the same the platform, there can be only a single main container on which 

the directory facilitator resides. Communication between agents on different platforms 

requires additional message transfer protocols to be used, namely HTTP. 

The system developed for this thesis was implemented using JADE version 3.2 and the 

Java 2 SDK version 1.5. 

3.1.1 Building Scheduling Agents on Top of JADE 

Whether JADE is the optimal framework for developing distributed applications remains 

to be seen. Research by Ng, et al., [27] and Chen, et. al, [28] have investigated the 

communication and processing overhead that JADE systems inherit as compared to other 
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available distributed environments. For the purpose of this thesis, JADE was chosen to 

verify the successful implementation of the scheduling algorithm on distributed 

resources. 

Because JADE may not be the optimal environment for our agent system, the scheduling 

agent class itself was not developed in JADE but rather in pure Java. A JADE entity 

provides the communication and registration benefits of the JADE framework, but none 

of the decision-making required by the sliding window algorithm. The interface between 

these two elements is handled by sockets and a simple send command, which delivers a 

String (a representation of the message structure of Figure 17, with delineators to separate 

fields) and an address to which it is to be sent. These messages are then passed between 

JADE agents across some form of network (wireline, wireless, peer-to-peer, or 

otherwise), as shown in Figure 22. 

Application 

communicates 
through 

JADE Agent 

Application Application 

I communicates I communicates 

JADE Agent JADE Agent 

I 
Network (LAN, Wireless, P2P, etc.) 
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Provided that the interface between the Java scheduling agent class and the middleware 

agent platform remained the same, this simple API allows the JADE infrastructure to be 

replaced by a more suitable alternative platform, should JADE prove insufficient for 

future generations of the scheduling system. With this implementation, and the 

abstraction of the middleware from the scheduling agent itself, the scheduling agent 

software has the potential to be ported to workstations running FIPA-OS, cell phones 

running JADE, and PDA's using other multi-agent frameworks without redesign or even 

recompilation. 

3.2 Composite Scheduling Entity 

As mentioned, for each scheduling agent implemented in pure Java, a JADE agent is 

created to provide a presence on the JADE platform and handle communication with 

other agents. Together these two paired classes constitute a composite scheduling entity 

(CSE), both equally vital to the successfid scheduling of a single resource. Though both 

written in Java, they will be distinguished hereafter as the Java scheduling agent (the 

class written in pure Java) and the JADE interface agent (the class written using JADE 

libraries). 

3.2.1 Implementation of the JADE Interface Agent Class 

The JADE interface agent class is designed as an agent with two behaviours: one that 

handles incoming ACL messages and a second that takes information from its partner 

Java scheduling agent and packages it in ACL messages destined for other agents on the 
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system. Each JADE interface agent is instantiated with the port numbers it will use to 

connect to its partner Java scheduling agent. It is also given a name, which is then shared 

by both components of the CSE. On start up, the JADE interface agent registers itself 

with the directory facilitator, opens a ServerSoc ke t  that will await commands from 

the Java scheduling agent, and sends via Socket a message to inform its partner of their 

shared name before cycling through its two behaviours: JADETo JavaBehavi  our  and 

JavaTo JADEBehavi our .  These two behaviours operate concurrently on separate 

threads. 

The JADETo JavaBehav i o u r  is designed to handle incoming messages from other 

JADE interface agents on the platform. When a message arrives, it is automatically 

placed into the incoming message queue of the JADE interface agent by the underlying 

JADE framework. For each message found in this queue, the JADE interface agent sends 

the content field of the received ACLMessage to the Java scheduling agent over their 

dedicated Socket. Once this socket is opened, is sent across the socket. The 

JADETo JavaBehaviour is then blocked, awaiting a new ACL message before it will 

be executed again. 

The JavaToJADEBehaviour works in an opposite fashion. Upon start up, a 

Serversocket is created and the a c c e p t  Java function is used to wait for a client 

connection. The only client that will ever connect with the JADE interface agent in this 

way is its partner Java scheduling agent. Once the socket is opened, it will be blocked by 

a call to r e a d l i n e .  The Java scheduling agent will eventually pass it two strings: the 
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intended message recipient (the name of its scheduling agent peer) and the content of the 

message (a String representation of the structured Message). Once the JADE interface 

agent has received these two strings, it constructs a new ACL message, filling in the 

receiver and content fields appropriately and uses the JADE s e n d  command to deliver 

the message using JADE. The behaviour then listens on the socket for a new client 

connection (a new message to send). 

The JADE interface agent class has no intelligence or logic built in to handle incoming 

messages in a particular way. It simply passes messages to the Java scheduler for 

processing. 

3.2.2 Implementation of the Java Scheduling Agent Class 

The Java scheduling agent is, as expected, the more complex component of the two 

elements of the CSE, not only due to the decision-making it performs but also in its 

handling of incoming messages from the JADE interface agent. 

The Java scheduling agent also has two primary behaviours. These operate on separate 

threads. The S chedu 1 i n g  Behavi  o u r  perfoms all necessary hnctions associated 

with the sliding window scheduling algorithm. It processes change, result, ready, and 

reply messages as they are added to the myMsgs MessageList and sends messages to the 

JADE interface agent (using sockets) when it needs to communicate with another CSE. 

Incoming change messages are added to a MessageList called my S ched before changes 

are propagated. Each change message in mySched must receive a corresponding result 
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before it can be discarded. Also, using a t e l l l i s t ,  a h e a r l i s t ,  a r e p l y l i s t ,  and 

a d e  l a  y L i  s t ,  the agent records all peers from which it still expects ready or reply 

messages and all peers to which it owes ready and reply messages in return. 

On a second thread, a Messag ingBehav iou r  communicates with the 

J avaTo  JADEBehaviour of the JADE interface agent. On start up, a Serversocket is 

created that listens for connection from the JADE interface agent. When the JADE 

interface agent connects, a r e a d L i n e  call blocks the thread until a new ACL message 

arrives. The content field is read as a single String that is then converted into a Message 

and added to the internal message queue of the Java scheduling agent, where it is read 

and processed by the S c h e d u l i n g B e h a v i o u r .  

The M e  s s a g i n g B e h a v i o u r  also ensures that received messages are handled in 

sequence. Since network delays can cause JADE messages to arrive out of order, there 

can be problems in agent performance, particularly if messages changing task states are 

mixed up. The sender and r c v  fields of the Message structure are used to maintain the 

sequence of incoming messages. If an unexpected r c v  number is received from a 

particular sender, the M e  s s a g i n g B e h a v i o u r  adds the early message to the 

h o l d L i  s t until the expected message arrives. 

The class structure of a composite scheduling entity is shown in Figure 23. 
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Java Scheduling Agent 

insocket: Se~erSocket 
outSocket. Socket 

setup() 

MessagingBehaviour C-----l 

Agent 

messageQueue 

1 JadeAgent I 

I insocket: Serversocket 
outsocket: Socket 

myMsgs: MessageList --I 
sends Strings to 

action() t 
receives ACL sends ACL 
messages messages 

SchedulingBehaviour 

taul: lnteger 
tau2: lnteger 
delta: lnteger 
gamma: lnteger 

sendMsg() 
resolveConflicts() 
processMessage() 
coarsesort() 
finesort() 
undochange() 

telllist: Agentlist mySched: MessageList 

hearlist: AgentList 

reply List: AgentList 

The following table summarizes all the primitive class structures used to implement the 

sliding window scheduling algorithm including all public properties and methods. 
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Class Member Description 
AnentList head (AgentNode) Pointer to the head of the linked list - 

tail ( ~ g e h ~ o d e )  . Pointer to the tail of the linked list 
locked (Boolean) Protects thread-safe regions of code 
length (Integer) Length of the linked list 

AgentNode next (AgentNode) Pointer to the next node of a linked list 
last (AgentNode) Pointer to the previous node of a linked list 
myAgent (String) Name of the agent represented by the node 

MessageList head (MessageNode) Pointer to the head of the linked list 
tail (MessageNode) Pointer to the tail of the linked list 
locked (Boolean) Protects thread-safe regions of code 
length (Integer) Length of the linked list 

MessageNode next (MessageNode) Pointer to the next node of a linked list 
last (MessageNode) Pointer to the previous node of a linked list 
myMessage (Message) Name of the agent represented by the node 

Message type (Integer) Message type 
id (String) Unique identifier for a chain of messages 
job (Integer) Job for which the message is intended 
origin (Boolean) Is the message internally generated? 
time (Integer) New start time or result passed 
flag (Integer) Clear, Force, or Push 
rcv (Integer) Sequences incoming messages 
sender (String) Name of the message sender 

TaskList head (TaskNode) Pointer to the head of the linked list 
tail (TaskNode) Pointer to the tail of the linked list 
length (Integer) Length of the linked list 

TaskNode next (TaskNode) Pointer to the next node of a linked list 
last (TaskNode) Pointer to the previous node of a linked list 
state Ilnteaer) Safe, Unsafe. Tells. TellU, TellP 
my~ask (fask) ~ a m k  of the agent ;epres&ted by the node 

Task job (Integer) Job to which the task belongs 
start (Integer) Start time of the task 
duration (Integer) Processing time of the task 
minStart (Integer) Earliest allowable start time by previous agent 
next (String) The agent that processes the next task 
prev (String) The agent that processes the previous task 
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3.2.3 Communication Between Java and JADE Agents 

The sequence diagram depicted in Figure 24 shows how a CSE, Joe, would send to and 

receive a message from another CSE, Dan. 

As shown in the diagram, the SchedulingBehaviour main thread of Joe's Java 

scheduling agent would write twice across a socket to the JADE interface agent: once to 

indicate the recipient of its message (the agent called "Dan") and a second time with the 

String representation of the change, result, or other message type. "Dan" is placed in the 

ACLMessage recipient field and the message string in the content field. This 

ACLMessage is sent to the JADE interface agent named "Dan" using the HTTP message 

transfer protocol. 
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Agent Dan will receive the ACLMessage and parse out the content field. It then connects 

as a client to the Java scheduling agent and passes this String across the open socket. 

Dan's Mes s a g i n g B e h a v i o u r  thread reads the incoming socket, converts the String to 

a Message type, verifies its r c v  number, and pushes it to the end of the internal message 

queue. The main scheduling thread of Dan's Java scheduling agent will eventually pop 

this message off the message queue, process it, and return a reply by connecting directly 

to its JADE interface agent and writing "Joe" followed by the reply message String to the 

opened port. 

Again converted to an ACLMessage, information is passed to Joe's JADE interface 

agent, then as a String to its Messeng ingBehav iou r ,  and finally as a message to its 

main processing thread where it will be processed once popped off the internal message 

queue. 

In this chapter, I have examined the implementation of the sliding window scheduling 

system using Java for JADE agent systems. Many of the details of the algorithm's 

design, including the synchronization of agents, were handled with the implementation in 

mind and an understanding of the additional considerations that implementation in JADE 

requires (for example the latency of messages between agents). Because of its modular 

design, the Java scheduling agent can be used in conjunction with an interface module for 

any multi-agent platform (JADE, JXTA, JINI, FIPA-OS, etc.). 



4 SIMULATION RESULTS 

In this chapter, I will examine the simulation results of agent systems using the proposed 

scheduling algorithm. The impact of hardware components will be investigated, as well 

as the effects of system growth, both in terms of the number of available resources and 

the number of requested jobs. Most importantly, I will present the results obtained when 

the sliding window approach is utilized. 

4.1 Resource Utilization 

In scheduling problems, there are a number of performance measures that can be 

examined and optimized. Some schedulers attempt to minimize lateness (how much time 

elapses between the order's due date at its actual delivery) [29]. Others are concerned 

with minimizing earliness (how much time elapses between the order's delivery time and 

its actual due date, the opposite of lateness). Still others minimize both earliness and 

lateness simultaneously, often using penalty functions [30] [3 1][32][33][34]. For some 

complex systems where the resources themselves are variables in the equation, it is 

important to determine the fewest resources required to deliver all orders on time. 

In the problem examined here, the resources and the tasks delegated to them are assumed 

to be fixed elements of the process and the performance measure that we look to 

maximize is the utilization of our resources, defined as: 
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Time resources are in use 
Utilization = x 100% 

Total time required to complete all orders 

Consider the simple system of two agents shown below (Figure 25). 

FIGURE 25. SCHEDULES FOR A SIMPLE TWO-AGENT SYSTEM 

Assume tasks TI,' and T ~ , ~  each have a duration of 30 minutes, while tasks and T ~ , ~  

each have a duration of 20 minutes. Both schedules are equally feasible (i.e. neither 

violates the precedence or resource constraints). Yet the schedule depicted in b) clearly 

completes all orders in less time. Comparing utilizations yields the following: 

TABLE 3. UTILIZATION CALCULATIONS FOR SIMPLE TWO-AGENT SYSTEM 

I a 1 100 minutes 1 200 minutes I 50% I 
I b 1 100 minutes 1 120 minutes 1 83% I 

An important observation to make regarding the preceding example is that 100% 

utilization, while desirable, may not be achievable for all scheduling configurations. 

Given the precedence and task durations in the problem above, there is no better way to 

order our tasks than Schedule B, which only yields 83% utilization. The challenge with 
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each scheduling problem examined here is to determine the ordering of tasks that gives 

the best utilization and for each agent to do so with the limited knowledge it has of the 

overall system. 

4.2 Task Selection Criteria 

As mentioned in Section 2.2.1, there are often multiple operations eligible to be moved 

into scheduling gaps during the coarse sorting phase. When this situation arises, a 

number of selection criteria can be used to choose a candidate task to fill the gap, based 

on the limited information agents possess. Three criteria tested are: 

First-come first-served, which shows preference based on order number 

Furthest move, which moves the task whose start time will be most improved 

Best fit, which selects the task whose duration is closest to the gap width 

Each of these criteria can be evaluated based on information that the agent already 

possesses. 

To determine which of these criteria is best for our purposes, a random schedule of 

twenty-five agents, each with twenty-five tasks, was tested twenty-five times using the 

simulation application that will be discussed later in this chapter. The following scatter 

plot (Figure 26) and table (Table 4) demonstrate the performance of these three criteria. 

The vertical axis of the plot shows the schedule utilization and the horizontal axis shows 

the total number of sorting iterations required. 
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A First Order 

a Furthest Task 

x Best Fit 

Iterations 

Not surprisingly, the performance of all three sorting criteria in terms of utilization is 

approximately equal, since the optimal arrangement of tasks is a function of the task 

distribution and not of the heuristic method used to approach the optimum. However, the 

furthest task selection criterion required noticeably fewer iterations to improve utilization 

than the other two. Based on the number of iterations, the second of these selection 

criteria (selecting the latest task capable of filling a scheduling gap) is used for the 

remaining simulations presented here. 

First Order 

Furthest Task 

Best Fit 

5488 

2902 

3299 

680 

304 

438 

40.2% 

40.5% 

41.8% 

5.1% 

5.4% 

4.4% 
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4.3 Hardware Impacts on System Performance 

The implemented system allows agents to negotiate an optimized schedule quickly and 

effectively. While one may expect total execution time to be an appropriate measure of 

how quickly the algorithm converges, different systems and networks of agents will yield 

different execution times based on the speed of the processors involved and their 

connections to the network. 

To illustrate the impact of hardware choices on system performance, four agents running 

on four separate workstations were given a varying number of tasks to schedule. For 

each test case, the system was simulated ten times and no sliding window was utilized. 

The same test cases were then simulated when one of the computers was replaced with a 

slower machine. The resource configurations are described below in Table 5. 

( 1 I lntel P4 1.4 GHz 1 256K Advanced Transfer L2 1 400 MHz I 256 MB I 
2 

3 

( 5 1 lntel P4 2.4 GHz I 512KAdvanced Transfer L2 1 400 MHz I 512 MB ( 

I I I I 

Test platform 1 consisted of computers 1 ,2 ,4 ,  and 5. Test platform 2 consisted of 

computers 2, 3,4, and 5. Because the total simulation time is dependent on the number 

of iterations required by the algorithm and the number of messages processed by each 

Intel P4 1.5 GHz 

Intel P2 350 MHz 

4 Intel P4 2.4 GHz I 512K Advanced Transfer L2 1 400 MHz 1 512 MB 

256K Advanced Transfer L2 

512K L2 

400 MHz 

100 MHz 

256 MB 

256 MB 
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agent, the averages of all three measurements are tabulated below in Table 6 for the two 

platforms tested. 

As Table 6 illustrates, the time required to simulate the system with the slower 

workstation increased on the whole. This increase was nominally larger for larger 

systems. However, since the algorithm is not deterministic and the time required to 

simulate is dependent both on the number of iterations required by the algorithm and the 

number of messages passed between agents, the relative increase of all metrics must be 

analysed. 

Table 7 shows the relative increase in time, iterations, and messages between Test 

Platform 1 and Test Platform 2. 
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These results clearly show that the increase in time required to simulate the ten runs of 

Test Platform 2 exceeds both the increase in iterations and the increase in messages. We 

can therefore conclude that the increase in time is not simply a result of the simulation 

runs requiring a varied number of iterations and messages to complete, but must instead 

be a result of the change in workstations used. 

Because of the dependence of simulation time on hardware configuration, the number of 

algorithm iterations (how many different ordering of tasks were evaluated by each 

agent) and the number of messages processed will provide a clearer indication of system 

performance. Therefore, the remaining figures and tables presented will focus on these 

metrics. 

4.4 Initial Sliding Window Test Results 

To evaluate the sliding window algorithm, a system of five agents was configured to 

schedule five, twenty-five, and fifty jobs with varying window widths. Each task was 

assigned a random duration between one and twenty-five time units. The window width 
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parameter, r, was initially assigned a value of twice the mean task processing time, and 

doubled afier every ten simulations up to a width of thirty-two times the mean processing 

time. Future references to window width in figures and tables will refer to the ratio of 

width to the mean task processing time. 

4.4.1 Jade Test Results 

With a single agent running on each of five networked computers, the iterations and 

messages required by the system to schedule all tasks were recorded. Figures 27 and 28 

show the changes in iterations and messages required as a function of window width. 

-A- Five Jobs 

--e Tw enty Five Jobs 
++ Fifty Jobs 

Window WidthlMean Task Processing Time 

FIGURE 27. ITERATIONS REQUIRED BY JADE SIMULATIONS 

As expected, though a large number of iterations and messages are needed for large 

window sizes, the algorithm shows a great savings in both iterations and messaging as the 
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width decreases. This trend results from smaller windows allowing fewer task exchanges 

than large ones and leading to fewer propagated messages. Table 8 below illustrates the 

impact of the sliding window on the standard deviation of iterations, where the width 

values denote the ratio of window width to mean task duration. With fewer eligible tasks 

to exchange, smaller windows lead to more consistent decision-making among agents. 

+ Five Jobs 

-o- Tw enty-five Jobs 

++ Rty  Jobs 

Window WidthlMean Task Processing Time 

FIGURE 28. MESSAGES REQUIRED BY JADE SIMULATIONS 
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By reducing the computational load, simpler and less expensive processors will handle 

the scheduling of tasks for resources using a sliding window approach. Concurrently, the 

sliding window technique can reduce the message handling requirements of our agents 

and thereby limit the amount of message traffic that consumes our network. Not only can 

more agents connect to a limited-capacity network, agents with slower connections to the 

network will be less heavily burdened by incoming messages. 

4.4.2 Distributed Network Simulation Results 

Because of the limited number of workstations available in the IDEA lab for testing and 

the desire to easily evaluate changes to the algorithm during development, a Windows 

application was written in C++ to emulate the performance of a distributed network of 

JADE agents running the sliding window scheduling algorithm. This application was 

designed using Borland C++ Builder to provide a graphical user interface for display of 

agent messages and the current system schedule in Gantt chart form. The simulator 

executes each agent on its own dedicated thread and all messages passed between agents 

are consistent with the messages used in the JADE implementation. As a result, it can be 

used to simulate systems with many more agents and many more jobs than are currently 

possible in the IDEA laboratory environment. 

To verify that the simulator could be used to test the sliding window algorithm on larger 

systems, the same simulations performed in Section 4.4.1 were again performed using the 

Windows simulation application. The results of these simulations are superimposed on 

Figures 29 and 30 in the figures below. The dashed lines represent the results of 
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distributed JADE simulations presented earlier. The solid lines show the results of ten 

simulation runs for each window width. 

--t Five h b ~  

+ Tw enty-five Jobs 

++ Fifty Jobs 

Window WidthlMean Task Processing Time 

--t F N ~  h b S  

+ Tw enty-FN~ Jobs 

++ Fifty Jobs 

0 

0 8 16 24 32 

Window WidthlMean Task Processing Time 
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As can be seen, the simulator application closely replicates the results of the JADE 

simulations. The discrepancy that exists for fifty jobs using the largest window tested is 

due to the non-deterministic nature of the algorithm itself. For larger systems and larger 

windows, many decision paths will lead to the same optimal solution schedule. For the 

ten JADE simulations performed with the largest system, the standard deviations in 

iterations and messages were roughly 80 and 1700, respectively. Given that the results of 

the Windows simulations lie well within a single standard deviation, the simulator 

application can be considered a sufficient modeller for testing the sliding window 

algorithm on larger systems. 

4.5 Impacts of System Dimensions on System Performance 

As the size of systems increases, the computational and messaging loads increase 

significantly despite the use of distributed methods to reduce these stresses. The two 

most significant variables subject to change in the systems examined here are the number 

of resources that coordinate together and the number of tasks that they attempt to 

coordinate. Changes to each of these variables impact the scheduling algorithm and the 

messaging requirements differently. In this section, we isolate these two factors to show 

their contributions to the processing and message handling requirements of scheduling 

agents. 

Using the simulator application, tests were performed to give an indication of how the 

number of resources in a distributed system affects the computational and communication 

bandwidth requirements. Using the basic coarse and fine sorting scheduling technique 
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described earlier (without the sliding window approach), the average number of messages 

and task sorting iterations were recorded for twenty-five random systems with increasing 

numbers of resources. Each simulated system has ten jobs with each resource performing 

one task for each job. So the total number of tasks in these simulations is growing 

linearly with the number of resources, but the workload of each individual agent in the 

system remains constant: ten random tasks. Increasing the number of resources in this 

way is analogous to adding extra stages in the construction of each part. The figure 

below presents the averages of the data collected. 

+ Iterations 

- c - Messages 

Agents 

FIGURE 31. COMPUT~NG AND COMMUNICATION FOR INCREASING AGENTS 

As the figure indicates, the number of trial solutions evaluated per agent does not 

significantly increase as the population of agents grows. Since each agent has the same 

number of tasks to evaluate, they will have the same number of potential exchanges 
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regardless of the number of peers on the system. The significant increase is in the 

messages passed. With additional tasks for each job, each change requires additional 

propagation to be made. Furthermore, more system agents lead to more peer 

relationships and therefore additional synchronization messages for each resource. 

Simulations were also performed to monitor the impact of job numbers to system 

performance. In these systems, there were twenty-five agents that each performed a 

single task for each order. The number of orders was allowed to vary between five and 

fifty to give an indication of the additional computations and communication demanded 

by the number of jobs. 

& Iterations 

- t - Messages 

0 10 20 30 40 50 

Jobs 

FIGURE 32. NUMBER OF ITERAT~ONS AND MESSAGES FOR INCREASING ORDERS 

As expected, since the number of jobs for each agent dictates the number of possible 

orders to be tested, the number of iterations of the scheduling algorithm grows. For 
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longer sequences of tasks, the number of messages required to propagate changes 

increases. These increases are exponential. 

Growing systems clearly require a large number of trial solutions on the part of each 

agent and a large number of inter-agent messages to achieve an optimized schedule. For 

systems of hundreds of agents and thousands of jobs, these results clearly show the need 

for the sliding window alternative. 

4.6 Impacts of Window Width on System Performance 

Using the simulator application, curves similar to those presented in Section 4.4 were 

produced for a larger ten-agent system. Again jobs were randomly distributed between 

agents and each window width was tested ten times for each of the five configurations. 

These curves are shown in Figures 33 and 34. 
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These curves indicate that the total number of iterations and messages required by the 

algorithm begins to level off as the window size gets large. Beyond the value of r that 

allows the optimized schedule to fit into a single window, there is little change in 

performance. For relatively small window sizes, the number of iterations and messages 

decreases substantially. However, a closer look at the data (Figure 35) reveals that for 

small windows sizes, below eight times the mean task duration, the total messages 

required grows. This effect is due to the large number of synchronizations required. 
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But the improvements in messaging and processing provided by sliding window usage is 

only beneficial if it leads to schedules with satisfactory utilization. Figure 36 shows the 

utilization attained in the simulations of the ten-agent system. 
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The poorer utilization achieved using small window widths is expected. As the window 

size becomes small - near or less than the maximum width of a single task - the coarse 

sorting algorithm may no longer be able to select the best of several candidate tasks to fill 

a particular gap, but instead may be forced to choose the only one eligible. Similarly, 

small windows also limit the number of fine sorting possibilities. The overall result is a 

scheduling process that has limited potential to make great improvements through sorting 

and, therefore, will produce a schedule with poorer utilization. As the window size 
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grows, the solution approaches infinite window scheduling, a scheduling of all tasks with 

no limited window of focus, and utilization levels off. 

The system was then simulated using full optimization (i.e. coarse and fine sorting with 

no applied sliding window). The average performance of the system for each distribution 

of tasks is shown in Table 9. 

As the sliding window width grows, the iterations required by the algorithm and the 

utilization factors achieved approach the numbers obtained through full optimization. 

However there are significantly fewer messages needed by large windows. Because the 

sliding window technique allows reordering with a partly infeasible schedule, it bypasses 

the near many thousand extra messages that initial scheduling requires. With window 

widths of eight times the mean task duration, this difference in operation translates into 

message savings of up to 96%. 

A promising observation is that the utilization of our system quickly reaches its final 

value for all five curves depicted above, achieving the best possible optimization even 



Simulation Results 

using relatively small windows. This result is very encouraging: a great improvement in 

both computational and messaging requirements with little degradation in resource 

utilization. 

4.6.1 Determining an Ideal Window Width for Scheduling Systems 

Being able to predict the best choice for window width for a given system would be 

beneficial. The first step in achieving this goal is to understand the reason for the 

minimum in our message curves. Using the utilization data above, it is possible to 

compute the impact of synchronization messages on the overall message passing of our 

systems. Considering that the mean task processing time is p,  an approximation of the 

total processing time for N tasks per agent is Np. We could then approximate the total 

makespan of our tasks as 

where u(n) is the utilization of the system achieve using a window width ratio of n. The 

number of windows of width n p  required to complete sliding window scheduling would 

be computed as 

windows = = c e i l i n { ~ )  
n M 9  44 
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The ceiling h c t i o n  returns the next integer greater than the argument provided. Since 

there are eight synchronization messages required between each peer for each window, 

the total number of synchronization messages required is then 

synchronization messages = 8 ceilin - .I 4.:-JI 
where P is the total number of peer relationships between agents given the current task 

distribution. Using equation (6) and the peer, message, and utilization data for our 

simulations, the number of synchronization messages required by our systems was 

calculated for each window width. The relatively contribution of synchronization 

messages to the total messages processed by agents was also calculated and was then 

tabulated in Table 10. 
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For small window widths relative to the mean task length (n = 2,4), synchronization 

messages account for the vast majority of messages processed by agents (up to 99%). As 

the window width grows, their contribution becomes less and less. Eventually, for large 

agent systems, they can account for less than one percent of the total number of messages 

received. All other messages processed are change and result messages, used to schedule 

and sort the tasks themselves. 

The point at which the number of synchronization messages is roughly equal to the 

number of scheduling messages aligns with the minima of Figure 35 for each of the five 

curves provided. For the ten-agent systems with fewer tasks (N = 10,20), the minima 

occur between 12 and 16 times the mean task duration. For systems with greater tasks 

(N = 30,40, 50), they occur at roughly 8 times the mean task duration. 

To calculate the ideal window width, we would need to be able to model the number of 

messages required for scheduling and sorting as a function of the window width ratio. 

Given that Nand P are properties we can measure before scheduling the system, based 

purely on the distribution of tasks, we should ascertain whether utilization and total 

messages follow some pattern for systems of a chosen dimension. Though a thorough 

analysis of systems of varying dimension is beyond the scope of this work, determining 

whether the analysis above holds, for just the sample systems presented or for any similar 

systems of the same dimension, is an important step. 
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A final simulation of the ten-agent system was performed. Each of the window widths 

was simulated twenty-five times with a different set of thirty jobs distributed randomly 

between the ten agents. Figures 37 and 38 below illustrate the range of results achieved 

by random systems. The maximum and minimum messaging and utilization curves are 

provided, in addition to the average performance of ten-agent thirty-job systems. 

From these figures, it is clear that there is a vast range of system performances using the 

sliding window algorithm. Some systems required 50% fewer messages than others 

using the same window size. Utilizations varied by as much as 17%. 

0 J 
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- --I- -Average 
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FIGURE 37. MESSAGE REQUIREMENTS FOR TEN-AGENT THIRTY JOB SYSTEMS 
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FIGURE 38. MESSAGE REQUIREMENTS FOR TEN-AGENT THIRTY JOB SYSTEMS 

There were consistently between 88 and 90 peer relationships between agents in these 

random systems, although it is possible for full connectivity between all agents with as 

few as eighteen peer relationships. The downside of these results is that the messages 

and utilizations achieved do not appear to be predictable for systems of consistent 

dimension. Without this information, calculating the optimal window size becomes 

much more difficult. Yet, in spite of the variance in both messages and utilization, 

systems of ten agents with thirty jobs each experience a messaging minimum at roughly 

the same point. As a result, the potential still exists for an ideal window width to be 

determined based purely on the system configuration. 
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In this chapter, I have measured the performance of the sliding window scheduling 

algorithm and shown that while it provides great benefits in terms of computational 

requirements and communication bandwidth savings, these benefits do not come at the 

expense of poorer resource utilization. As systems become large and new orders are 

added, the significance of these benefits becomes greater still. 



5 CONCLUSIONS 

5.1 Future Work 

With a project such as this one, there are many directions in which future effort may be 

taken to improve the performance, robustness, and relevance of this work, and many 

areas of research that would benefit from the research already performed to this point. In 

this section, we will briefly acknowledge some of these potentials. 

5.1.1 Improvements to Performance 

One drawback to the sliding window approach to scheduling is that all information about 

the length of the series of tasks beyond the window's end is discarded (i.e., a job with 

only one task beyond the window is treated the same as a job with one hundred 

subsequent tasks). Consequently, the result message is no longer an accurate reflection 

of the impact of each change on the system. As scheduling concludes, the potential exists 

for a long string of tasks to find itself at the end. This condition greatly reduces the 

utilization of the overall system, since agents will be left idle while the single tasks of the 

final job are performed. A feature that allows the agents to look ahead to subsequent 

tasks could improve performance. 

Meanwhile, as noted in Chapter 4, there appears to be an optimal window width 

corresponding to systems of agents with a given task distribution and peer interaction. 
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Finding the relationship between peer relationships, task distributions, and the window 

width that will best optimize the schedule is an important area for future research. 

5.1.2 Improved Robustness 

One of the major requirements of multi-agents systems is their ability to adapt to change. 

Though the system presented here would be responsive to new orders, the one condition 

to which it is not yet responsive is agent failure. 

As mentioned, a major advantage to the recursive propagation technique of message 

passing for scheduling is that it eliminates the need for a central blackboard and makes no 

single agent more critical to system performance than any other. But the implementation 

of the system to utilize this advantage has not yet been realized. When an agent fails, 

suddenly the chain of tasks that constitutes a given order is broken. These lost tasks must 

be reassigned to available resources to allow the system to continue scheduling. 

Modification of the existing system to handle these events is certainly possible, though it 

would require an additional fault-response behaviour of the agents. Tasks could contain 

not just the names of the agents who perform adjacent operations, but also the details of 

those operations so that, should an agent fail, the peers of the failed agents would be able 

to reassign the unclaimed tasks to other resources. The JADE yellow page functionality 

should play a vital role in this, allowing agents to seek out others on the system with the 

necessary machine functions to complete the given task and assign it accordingly. By 

receiving information from both the agent that followed and the agent that preceded the 
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now unclaimed task, the new resource will be able to reconstruct all task information and 

assign it an appropriate start time so that scheduling can continue, virtually unaffected. 

5.1.3 Broadened Relevance 

As described in the opening chapter, the problem addressed in this thesis is that of a 

linear progression of tasks as shown in Figure 39. 

FIGURE 39. LINEAR TASK SEQUENCE FOR A SINGLE JOB 

In fact, in scheduling resources (whether in manufacturing, human resources, 

transportation, or a number of other industries), there is a more complicated dependence 

of tasks for a single job. Potentially, a single resource may have to await the completion 

of several agents before its task can begin and, likewise, may have a number of other 

tasks dependent on a single task of its own (Figure 40). 

u 
FIGURE 40. NON-LINEAR TASK SEQUENCE FOR A SINGLE 
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These complex job configurations are currently unmanageable for the algorithm 

presented here. But by modifying the structure of a task so that each contains a list of 

dependent and subsequent agents and, additionally, a list of minStart values, the 

algorithm would be able to make decisions based on the agents that constitute the critical 

path for an order. Once this change has been implemented, the areas of application for 

this distributed scheduling approach will become far-reaching and the potential for this 

technique to address complex scheduling problems will greatly improve. 

Furthermore, some real-world applications of scheduling require that idle time be built in 

to the schedules of resources. These periods of rest prevent excessive stress on machines 

and components. A future system that included rest periods would be valuable. 

5.1.4 Complementary Research 

As mentioned earlier, concurrent to this work on distributed scheduling, further 

investigation into distributed networks and problem solving is being performed by other 

students in the Intelligent and Distributed Enterprise Automation (IDEA) Laboratory at 

Simon Fraser University. In fact, the IDEA laboratory is, through the work of its students 

and research staff, working on all required levels of development for distributed wireless 

solutions (Figure 41). 

At the device level, Gary Wong and Peter Bai are constructing the physical hardware and 

firmware to comply with 802.1 l x  standards of wireless communication between devices. 

Edward Chen is conducting an investigation of the JADE agent framework and its 
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effectiveness in multi-agent system implementation [28]. His research emphasizes the 
d 

steps required in developing wireless distributed agent systems using JADE and compare 

the performance and overhead with other agent frameworks. 

Scheduling Agent 1 Application Level 
1 I 

API Routines 

Java Virtual Machine F Middleware Level 

Firmware 

Hardware 
Device Level 

Development of contract nets and distributed energy resources by another IDEA 

Laboratory student Zafeer Alibhai [35], as well as the distributed scheduling software 

detailed here, provide the application-level basis to properly demonstrate the usefulness 

of a wireless system. Eman Elghoneimy and Ozge Uncu are applying multi-agent system 

methodology to automate the operation of a rough mill in the manufacturing of wood 

frame windows for a Canadian company. 



Conclusions 
- - -- 

Lastly, Colin Ng and Steven Chen are developing VNET, a distributed network 

simulation platform to allow applications for wireless networks to be tested in a 

laboratory setting [27]. VNET will allow logical links between physically connected 

devices to have built-in intelligence and variance. 

Despite being physically networked, distinct communication routes can be defined by 

VNET network administrators that dictate the only existing message pathways. These 

pathways through neighbouring nodes will model the communication infrastructure of 

existing peer-to-peer and wireless networks. By allowing links between nodes to be 

time-varying (periodically becoming unavailable and introducing occasional delays or 

bad message packets), many anomalies of wireless networks can be simulated. 

Together, these projects could allow physically separated devices to utilize the message- 

passing protocol of JADE and other agent environments to demonstrate how a distributed 

scheduling system implementation could be used in a wireless network environment. 

Large networks of devices could be tested and real simulation data collected that would 

accurately model the real-world network environment in question. Furthermore, the 

VNET could thoroughly test the distributed sliding window scheduling algorithm and its 

response to both agent and communication link failure. 
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5.2 Summary 

This thesis has demonstrated an improved technique for distributed scheduling that 

reduces the complexity of the traditional scheduling problem and correspondingly the 

communication overhead of typical agent-based approaches, without a significant 

degradation of resource utilization. The sliding window approach to scheduling 

presented here is also a dynamic approach, allowing agents to add new orders on the fly 

and handle the challenges of an ever-changing order list. In addition to providing the 

benefits of distributed processing and computation, the use of recursive propagation to 

update schedules also allows the communication itself to be decentralized, eliminating 

dangers of failure that accompany blackboard-related systems. 

Using JADE, the algorithm outlined here has been demonstrated for agents on physically 

separated devices and, in future, can be used to test wireless networks of distributed 

agents. Together with the other research performed by students of the Intelligent and 

Distributed Enterprise Automation Laboratory at Simon Fraser University, composite 

scheduling entities implemented in Java for JADE agent systems will be important tools 

to illustrating the growing impact of decentralized problem solving approaches to many 

commercial applications. 
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