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ABSTRACT 

Benign rolandic epilepsy of childhood (BREC) occurs in two 

forms. Children with the Typical form eventually fail to show 

symptoms, while those with the Atypical form continue to 

manifest symptoms into adult life. BREC is associated with 

characteristic interictal electroencephalographic spike 

waveforms. In order to develop a classification procedure 

that would distinguish between the two forms I analyzed 44 

sets of averaged spike waveforms. Each set, an average of 6 

to 20 spikes organized as 21 channels of 256 points, was 

available diagnosed Typical or Atypical on the basis of 

clinical and behavioural measures. From each set, using each 

of several criteria, I selected a single channel for the cor- 

relation dimension calculation. The correlation dimension is 

an estimate of the complexity of a multivariate dynamical 

system, based on measurements taken of a single variable. 

When the channel was selected on the basis of maximum spike 

amplitude, Atypical spike waveforms had a larger correlation 

dimension than Typical waveforms, suggesting that the neural 

generating system is more complex for Atypical than for 

Typical spikes. Correlation dimension thus appears to be a 

differential diagnostic measure for BREC. 

Key Words: time-series analysis, chaos, epilepsy, childhood. 
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Let cloud-shapes swarm 

Let chaos storm 

I wait for form 

... Robert Frost 
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1 INTRODUCTION 

1.1 BENIGN ROLANDIC EPILEPSY OF CHILDHOOD 

Childhood epilepsy may occur in the form of either 

generalized or focal epilepsy. Generalized epilepsy is 

characterized by diffuse seizures and an abnormal EEG pattern 

distributed over the entire surface of the brain. Focal, or 

partial, epilepsy is marked by localized seizures with EEG 

abnormalities that are similarly localized to an area of the 

surface of the brain. The partial form of childhood epilepsy 

is often found to be associated with focal seizures involving 
i 

the facial muscles, an EEG pattern localized over the rolandic 

fissure, and a benign prognosis. This form of epilepsy has 

been termed benign rolandic epilepsy of childhood (BREC) (eg. 

Gregory and Wong, 1984) . 
Evidence has been found for a genetic component to the 

etiology of BREC. Blom, Heijbel, and Bergfors (1972) studied 

40 children, and found that 18% had siblings or parents with 

seizures. Heijbel, Blom, and Rasmuson (1975) studied 19 

children with rolandic spikes, and no other neurological 

symptoms. They found that 47% had parents or siblings who had 

seizures in childhood. They conclude that the familial 

distribution pattern best supports a model of an autosomal 

dominant gene with age-dependent penetrance. 

The prevalence of BREC has been found to be about 7 times 

greater than the rate for petit-ma1 seizures, in Uppsala, 



Sweden (Blom et al., 1972). For about 15% of all children 

below age 15 with seizures, the syndrome appeared to be of the 

BREC type. Heijbel, Blom and Bergfors (1975) report that BREC 

accounts for 16% of childhood epilepsy, and is 4 times as 

prevalent as petit-ma1 seizures in the normal population. 

BREC has also been found to be more prevalent in males 

(OIDonohoe, 1985) . 
BREC is an idiopathic form of epilepsy, not associated 

with any known organic cause. It is defined by a cluster of 

symptoms which have been identified by several groups. Blom 

et al. (1972) suggested that BREC is marked by early onset, 
< 

between 5 and 10 years of age, a hereditary predisposition, 

brief usually nocturnal clonic seizures, interictal spike and 

wave EEG with a centro-temporal focus, seizures which are 

easily controlled with drug treatment, little evidence of 

neurological abnormalities, and remission of seizures and 

abnormal EEG1s after puberty. Beaussart (1972) studied 221 

cases, and added absence of focal lesions, and interictal EEG 

with frequent spike-waves localized over the rolandic area, 

unilateral in 70% of patients but possibly changing sides 

between recordings. 

Dreifuss (1983) describes the rolandic EEG spike-wave 

discharge associated with BREC as consisting of high amplitude 

bi-polar spikes followed by a single slow wave. This activity 

is localized 

Distribution 

and synchronous in the centro-temporal area. 

is unilateral in two-thirds of patients. In the 



remaining one-third, spikes are bilateral and asynchronous in 

amplitude and frequency of discharge. Discharges are frequent 

and occur in clusters. Discharge characteristics (for example 

amplitude) are uncorrelated with seizure characteristics. 

. BREC has been found to occur in two forms (Gregory and 

Wong, 1984; Wong, Gregory, and Farrell, 1985). Aicardi and 

~hevrie (1982) studied 32 children with symptoms consistent 

with a diagnosis of BREC. They found however that a subgroup 

of 7 children presented additional symptoms, including 

absences, atonal or myoclonic fits, and abnormal EEG. FO; 

these 7 patients, common features were early onset, but not 

before age 2, and at least 2 seizure types: partial motor 

seizures, absences similar clinically to petit-ma1 epilepsy, 

and brief atonic or myoclonic seizures. Sleep EEG was marked 

by an asymmetrical (higher on right side) 3 Hz spike and wave 

pattern during periods of frequent seizure activity. Aicardi 

and ~hevrie (1982) termed this syndrome Atypical BREC. 

Follow-up studies showed that 5 of these 7 children had 

remission of symptoms, while 2 showed an improving trend. 

The remainder group of 25 children showed no abnor- 

malities other than the anomalous EEG. Follow-up studies 

showed bhat all had complete remission of symptoms after age 

12. Aicardi s (1988) definition of this BREC syndrome 

includes absence of cognitive deficits, neurological findings 

and brain damage, onset after age 2, infrequent seizures of 

simple partial (facial) type, and good response to therapy, 



The existence of the   typical form of BREC is supported 

also by a study comparing 14 cases with the benign pattern and 

8 with the atypical pattern of development (Beydoun, Garofalo, 

and Drury, 1989). These authors suggest that these two groups 

cannot be differentiated on the basis of their EEG findings or 

initial clinical evaluations. 

Wong (1989) referred to these two forms of BREC as 

Typical and  typical, defining the Typical form by symptoms 

including early onset (4 to 12 years), nocturnal partial 

seizures usually involving the face, absence of neurological 

findings and brain lesions, and a centrotemporal EEG distribu- 

tion. The Atypical form is defined by presence of these same 

symptoms and including the presence of neurological findings 

and cognitive deficits. 

Wong (1989) found evidence for the existence of the two 

forms of BREC using single dipole source localization analysis 

of the EEG spike-wave waveform. For Atypical BREC, stable es- 

timates were obtained using the spike portion of the waveform, 

while corresponding source locations were relatively widely 

distributed. For Typical BREC, stable estimates were obtained 

using the wave portion of the waveform, while corresponding 

source locations were relatively less widely distributed, 

localized to the right or left centrotemporal areas. 

These findings might be interpreted as suggesting that 

for the Atypical case, the waveform was relatively phase- 

coherent over only the short interval of initial spike 



portion, and relatively phase-incoherent over the subsequent 

longer interval of the wave portion. The relative incoherence 

of the Atypical case might then be associated with a relative- 

ly complex network of generator sites, an inference which is 

also supported by the wider distribution of source locations. 

In contrast, the relative coherence of the Typical waveform 

suggests a correspondingly simpler network of generator sites, 

again a view supported by the relatively tighter clustering of 

generator sites for the Typical cases. Wong (1989) proposes 

such a model, with a common generator site for both the 

Typical and   typical cases. For the Atypical case however, 

additional generator sites become involved after the initial 

spike has occurred. Cheyne (1993, private communication) has 

suggested that the relative distribution of source locations 

may be influence by the fact that only a single dipole was 

used in the analysis. These results can thus not address the 

question of whether the generator systems consist of generator 

sites distributed in location or in time. 

Early diagnosis of BREC type would allow early inter- 

vention for  typical BREC, and for Typical BREC might prevent 

the emotional and behavioural disturbances resulting from the 

social attitudes which often accompany a diagnosis of epilepsy 

(Geladze, Toidze, and Lomashvili, 1983; Verity, 1988). 

It is the aim of this study to develop a continuous 

diagnostic variable that can be applied in the classification 

of BREC. This variable is the correlation dimension. The 



contribution to previous work in this area would be that this 

particular diagnostic variable can be easily calculated using 

a computer algorithm. 

1.2 THE CORRELATION DIMENSION 

The correlation dimension is a lower bound on the number 

of variables involved in the dynamical behaviour, or evolution 

over time, of a multivariate system. It has been shown that 

under suitable conditions, an estimate of the correlation 

dimension can be computed from a univariate time-series, when 

that time-series is an adequate sample taken from the mul- 

tivariate process (Takens, 1981; Farmer, Ott, and Yorke, 

1983). The requirements for a sampling to be considered 

adequate will be discussed in section 1.2.3. The actual 

calculation of the correlation dimension has been reduced to 

a relatively straight-forward algorithm (Grassberger and 

Procaccia, 1983 a, b) . For these reasons, the correlation 

dimension has been applied as a measure of system complexity, 

in a wide range of fields of endeavour. Relevant to the 

present work, correlation dimension analysis of EEG recordings 

has been used to explore brain system dynamics (eg. Rapp, 

Bashore, ~atinerie, Albano, Zimmerman, and Mees, 1989). 

1.2.1 APPLICATIONS TO EEG ANALYSIS 

Correlation dimension has been applied to EEG recordings 

made in a no-task condition (Pritchard and Duke, 1992), during 



a mental arithmetic task (Nan and Jinghua, 1988; Dvorak and 

Siska, 1986) , alpha rhythm production (Soong and Stuart, 1989; 
Basar, Basar-Eroglu, Roschke, and Schult, 1990), the sleep 

cycle (Babloyantz, Salazar, and Nicolis, 1985), an epileptic 

seizure event (Babloyantz and Destexhe, 1986), stages of anes- 

thesia in a medical operation (Watt and Hameroff, 1987), and 

during ethanol consumption (Palus, Dvorak, and David, 1992). 

Animal studies include a demonstration of chaotic dynamics in 

the EEG recorded from the olfactory bulb of a rabbit (Skarda 

and Freeman, 1987) , and from the limbic cortex of a rat during 
rest, locomotion, and kindled epileptic seizure (Pi jn, Van 

Neerven, Noest, and Lopes da Silva, 1991). 

Rapp et al., (1989) survey of the use of the correlation 

dimension in the analysis of EEG recordings by different 

groups, and present as the rationale for using the correlation 

dimension, that the correlation dimension, compared with other 

simple statistics, uses more of the information present in a 

time-series such as the EEG. The correlation dimension, they 

suggest, is therefore a more robust characterization of the 

behaviour of such a system. 

Basar et al. (1990) showed that alpha EEG has a deter- 

ministic, task-related component. Subjects were asked to 

attend to a missing stimulus in a train of regularly presented 

stimuli. It was found that alpha EEG produced in the 0.5 

seconds prior to the missing stimulus was phase coherent 

between separate missing stimulus events. These EEG segments 

7 



were correlated to the extent that the subjects were able to 

mentally track the missing stimulus. 

Gallez and Babloyantz (1991) compared several methods of 

analysis of EEG recorded during eyes closed, stage 4 sleep, 

and Creutzfeld-Jakob coma. These methods included Lyapunov 

exponents, Kolmogorov entropy, (measuring the rate at which 

new information is produced, or the mean time for which a 

signal can be predicted), and attractor dimensionality. 

It was found that similar values of dimensionality were 

computed by the correlation dimension, and by two estimates of 

dimensionality based on Lyapunov exponents, The authors note 

that typically there is a great deal of variance in the dimen- 

sionality values even using the same estimator with different 

data samples, and suggest that experimental situations should 

be arranged to provide a clear distinction between the types 

of tasks that are used, and thus between the associated neural 

activities. They emphasize that dimensionality estimates are 

most effective when used to distinguish between the effects of 

different types of task requirements, rather than when used as 

indicators of absolute complexity of neural dynamics. 

1.2.2 CORRELATION DIMENSION, CHAOS AND DETERMINISM 

It might be useful here to state some definitions, 

First, a dynamical system is any physical system one chooses 

to identify and demarcate. Examples are a pendulum, an 

ensemble of neurons, the solar system. Such a dynamical 

8 



system is characterized by a pattern of behaviour over time. 

This behaviour may be relatively simple, as in a pendulum at 

rest, or swinging freely. One form of behaviour of a 

dynamical system, termed chaotic, has been found to be par- 

ticularly complex. One example is a billiard table with 

several ball on it and in motion. The path of any one ball is 

determined by well-defined physical principles, and yet is not 

predictable for more than a short time following some given 

initial set of positions and velocities of the balls. 

Moreover, the ongoing behaviour of this system is sensitively 

dependent on these initial conditions. Small changes to the 

starting positions or velocities will after a short time cause 

the behaviour of the system to diverge from the behaviour of 

the undisturbed system. Such sensitivity to initial con- 

ditions is a defining characteristic of chaotic behaviour. 

~hatterjee and Yilmaz (1992) offer an accessible review 

of chaos, its background, relation to statistics, and areas of 

application. They discuss the relationship between different 

estimators of dimensionality, noting that at present these 

estimators are necessary but not sufficient conditions for a 

chaotic dynamical process to be considered deterministic. The 

authors suggest that sufficiency conditions for labelling a 

chaotic process as deterministic have yet to be discovered. 

An indicator that has been suggested as a necessary 

condition for a system to be considered chaotic is the 

Lyapunov exponent, a quantitative measure of sensitivity to 

9 



changes in initial conditions. Moon (1987) refers to Lyapunov 

exponents as being diagnostic of chaos. Jackson (1990) notes 

that there is wide agreement that a positive Lyapunov exponent 

must be present before a motion can be considered to have a 

chaotic dynamic. Farmer et al. (1983) provide a review of 

several different measures of attractor dimensionality, 

includingthe correlation dimension, and their relationship to 

Lyapunov exponents. 

Together, a fractional value of dimensionality, together 

with a positive Lyapunov exponent would be compelling evidence 

for the presence of chaos. In the present work, only a 

measure of dimensionality is considered.  his is insufficient 

to permit a dynamical system to be classified as chaotic, and 

indeed no such claim will be made. The correlation dimension 

is being used here only as an estimate of dynamical system 

complexity. 

~hatterjee and ~ilmaz (1992) note also that the discovery 

of chaos is evidence for the position that the question of 

whether an aperiodic process is deterministic or probabilistic 

may be undecidable. This question, they say, may join other 

such undecidable questions, such as the Heisenberg uncertainty 

principle and Godel1s incompleteness theorem. Godel1s theorem 

established that any system that is sufficiently complex, for 

example, arithmetic, can generate statements which then cannot 

be proved correct or incorrect from within that system. 

Ford (1987) points to Godel1s fundamental theorem as the 

10 



reason why chaotic dynamics are in principle unpredictable. 

Such dynamics, though resulting from possibly simple determin- 

istic rules, nevertheless contain more information than can be 

encompassed by the logical system that is being used to try 

and predict the dynamical system's behaviour. In essence, a 

part is trying to know the whole. 

Hobbs (1991) offers an argument that attempts to recon- 

cile what he considers to be the unnecessary debate between 

chaos and determinism. His thesis is in two parts. First, 

chaotic processes are pervasive. All that is required for a 

system to exhibit chaotic behaviour is that the system be 

energy dissipating, and that it contain a non-linearity. 

These characteristics are seldom absent from natural systems. 

Second, the exponential sensitivity to initial conditions that 

is a characteristic feature of chaotic systems may allow these 

systems to amplify quantum fluctuations to a level where these 

can have an influence on macroscopic phenomena. 

Thus, Hobbs says, quantum level indeterminism becomes 

indeterminism at the macroscopic level. Determinism may in 

fact be, rather than a reality, no more than an illusion 

resulting from the particular scale at which phenomena are 

commonly observed. Determinism, in the face of a chaotic uni- 

verse, in fact requires an infinite level of precision in 

knowing some initial state. Quantum uncertainty does not 

allow for such infinite precision. A butterfly's wings 

distant flapping may indeed have an influence on local 



weather, but we could never know what the local weather would 

have been otherwise. ~eterminism may be less a principled, 

and more a human, psychological requirement. 

1.2.3 CALCULATING CORRELATION DIMENSION 

The algorithm used for calculating correlation dimension 

was proposed by Grassberger and Procaccia (1983a, b). 

Calculation of correlation dimension begins by using the data 

points of the original time series to generate a group of 

points, more precisely a set of vectors, in an m-dimensional 

variable space, usually termed a phase-space. The motivation 

for this is a theoretical result proved by Takens (1981). A 

single observable variable y(t) is assumed to be an adequate 

sampling of a multivariate process defined by the vector X(t) . 
Typically, some components of X(t), that is, some of the 

variables of the multivariate process, may be difficult or 

impossible to observe. The stipulation of adequate sampling 
! - 

requires that the variables of the multivariate process be 

sufficiently strongly coupled tothe measured variable (Frank, 

Lookman, Nerenberg, Essex, Lemieux, and Blume, 1990) . If this 
.is the case, then Takensl (1981) result shows that multiple 

observations of a single variable y(t) related to the 

multivariate process, cam be considered as a single obser- 

vation of the multivariate vector X(t). In more detail, the 

multiple observations of y(t) are used to form a vector u(i) 

as follows: 



where .r is the lag parameter. These vectors u(i) are then 

treated as points in an m dimensional variable space, usually 

termed a phase space. Geometrically, the points corresponding 

to the vectors u(i) define an object, an attractor, in the 

phase space. The original time-series is said to be embedded 

in the phase-space. 

Takens' (1981) result shows that certain dynamical 

properties of the original multivariate process X(t) are 

preserved in the reconstruction. A particular property of 

interest that is preserved is the dimensionality of the 

original multivariate process. This dimensionality is 

reflected in the dimensionality of the attractor. A re- 

quirement is that embedding phase-space dimension m 2 2D + 1, 
where D is the dimensionality of the attractor. 

In the next step of the process, the dimensionality of 

the attractor is calculated. For this calculation, Grass- 

berger and Procaccia (1983a, b) invoked the notion of the 

correlations between points on the attractor. These cor- 

relations are a function of the distance r around any one 

point on the attractor, and are measured by the correlation 

integral, C(r) . The correlation integral is the proportion of 
the points on the attractor that are found within a distance 

r of a reference point on the attractor, averaged over all 

points on the attractor as reference points. The correlation 



integral is thus the average proportion of points on the 

attractor found within a volume of length r around all points 

on the attractor. 

Intuitively, at small values of r, that is, in a small 

volume of phase-space around any point on the attractor, there 

will be found on average a small fraction of the total points 

on the attractor. As the distance r increases, this average 

fraction will increase. At sufficiently large values of r, 

all points on the attractor will be found. 

Grassberger and Procaccia (1983a, b) pointed out that the 

C(r) and r are related by the equation 

. . . eqn 1 

where d is the correlation dimension. Thus, C(r) is a power 

function of r, in the limit of values of r that are small with 

respect to the size of the attractor. As an example, if d = 

2, then C(r) increases as the square of r; the average 

proportion of points on the attractor that are found in the 

vicinity of any reference point on the attractor increases as 

the square of the distance around the reference point. This 

behaviour is intuitively consistent with more usual notions of 

dimension: for a 2-dimensional surface, the area size of the 

surface increases as the square of length along the surface. 

In the case of an attractor, we cannot speak of size as 



such, because the attractor is composed of discontinuous 

points. We therefore rather measure an analogue of size, by 

computing the correlation integral, C(r). The discontinuous 

nature of the attractor also leads to the notion of fractional 

values of dimensionality, in contrast with the more usual 

integer values of dimension assigned to physical objects which 

are geometrically continuous. Typically, attractors that are 

reconstructed from time-series will have non-integral values 

of (correlation) dimension. Such objects are termed strange 

attractors. 

solving equation 1 for dl we obtain 

. . . eqn 2 

Correlation dimension can thus be calculated by finding 

the slope of the graph of In C(r) vs. In r. Typically, this 

graph has an ogive or S shape. In practice therefore, a 

regression line is calculated that best fits some intermediate 

portion of the graph. The slope of this regression line is 

then taken as the correlation dimension. 

The correlation integral is defined by the equation 

where N is the number of data points of the time series that 



are used for the calculation; r is the scale length; X(i) and 

X(j) are vectors defining points on the attractor. H is the 

Heaviside function defined by 

. . . eqn 4 

The ~eaviside function thus simply counts the number of 

pairs of points X(i) and X ( j )  that separated by a distance 

less than r. The distance measure indicated in the equation 

is the usual Euclidean distance between 2 points. The 

computation of this distance is time-consuming. Alternative 

distance measures have been proposed that are faster to 

compute, and are equivalent for the purposes of calculating 

the correlation integral (Moon, 1987). The particular method 

adopted in the CORDIM algorithm involves summing the absolute 

values of the differences between corresponding components of 

the two'vectors in question. This measure is termed the city- 

block measure: it is the distance between 2 points that one 

must travel following the constraints of streets organized 

around blocks. Using different measures of distance has the 

effect of changing the absolute range of the value of r in the 

graph of C(r) vs r. The slope of the graph is however 

unchanged. 



1.2.4 PARAMETERS 

The calculation of correlation dimension involves the 

selection of a number of parameters, whose selection can lead 

to ambiguities in the final result. These parameters have 

been studied extensively in the last several years. Some of 

these factors are discussed by Dvorak and ~ i s k a  (1986) in the 

context of EEG analysis. The following is a review of several 

of these parameters that have been shown to be particularly 

significant in the correlation dimension calculation. 

LAG : 

One major ambiguity in the calculation is the estimation 

of the value of the lag, used in forming the vectors which 

define the phase-space attractor. The original Takens 

formulation states that the value of lag used is not critical, 

for a time-series that is both sufficiently long, and noise- 

free. In the practical case of a limited number of poten- 

tially noisy data points, the value of lag that is chosen for 

reconstructing the attractor in phase space is critical. The 

value of correlation dimension calculated for an attractor is 

not independent of the value of lag chosen for the reconstruc- 

tion. Examining an attractor visually, in the case of 

unlimited noise-f ree data, adjacent orbits on the attractor 

would be discriminable regardless of the value of lag. 

In contrast, in the case of limited, noisy data, the 

extent to which such orbits are distinguishable is a function 
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of lag. At non-optimal values of lag, noise in the form of 

quantizing error and low-amplitude signals unrelated to the 

waveform of interest, will result in some orbits overlapping, 

and therefore being indistinguishable from, other orbits. The 

attractor will be compressed along certain axes in the phase- 

space. At an optimal value of lag, the attractor will be most 

homogeneously distributed in the phase-space; orbits on the 

attractor will be maximally mutually discriminable. This 

observation is the basis for the LAGFIND algorithm described 

in section 1.4. At this optimum value of lag, the components 

of the resulting vectors will be maximally independent. A set 

of maximally independent basis vectors will have been found 

for the embedding phase-space. 

Numerous approaches have been attempted to try to deal 

with the lag question. It has been suggested that independent 

components for the embedding phase-space are obtained when lag 

is chosen to be between 10% and 30% of the periodicity of 

interest in the time-series (Schaffer, Truty, and Fulmer, 

1988). 

Broomhead and King (1986) have proposed an alternative to 

the Grassberger-Procaccia algorithm for the estimation of 

dimension, using a singular value decomposition method. This 

method attempts to reduce the effect of noise in the original 

time-series on the calculation of correlation dimension, as 

well as circumventing the problem of choosing a value of lag. 

Their study demonstrated that this method provides an increase 



in the length of the scaling region in the plot of In C(r) vs 

In r, allowing more stable estimates of correlation dimension 

to be made. 

This method begins by using the method of lags to 

construct a sequence of n-dimensional vectors from the 

original time-series. The set of these vectors constitutes a 

matrix X, from which an n x n covariance matrix XTX, may be 

formed. This covariance matrixmay then be decomposed, giving 

a set of eigenvectors which form an orthonormal basis for an 

embedding space. By using only the m < n most significant 

eigenvectors to define the phase-space, an attractor is 

created which presumably contains less noise than if the 

attractor were constructed using all n vectors to define the 

phase-space. The dimensionality of the attractor is taken as 

being equal to the number of significant eigenvalues generated 

by the decomposition. According to Destexhe et al. (1988) 

however this method also suffers from the sensitivity to an 

adequate choice of the lag parameter as does the method of 

lags itself. It has been shown recently however that the 

number of significant eigenvalues is unrelated to the 

dimensionality of the attractor (Gibson, Farmer, Casdagli, and 

Eubank, 1992), but that the decomposition is nevertheless a 

useful procedure. 

Albano, Muench, and Schwartz (1988) combined the singular 

value decomposition method of Broomhead and King (1986) with 

the Grassberger-Procaccia algorithm. As before, singular 
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value decomposition of the matrix of vectors formed using the 

method of lags is used to define an appropriate subspace using 

only the most significant eigenvectors. The resulting 

attractor is then subjected to analysis using the Grassberger- 

Procaccia algorithm. This method gives a longer scaling 

region than does the Grassberger-Procaccia algorithm used 

alone, allowing more stable estimates to be made of the 

dimension value. The selection of an appropriate value of lag 

is still a potential problem with this method. 

A commonly used approach to the problem of finding a 

value of lag which will produce orthogonal coordinates for the 

embedding phase-space involves calculating the autocorrelation 

function for the time series, and then determining the first 

minimum of this function. The autocorrelation function is a 

measure of the linear dependence of two variables. A similar 

approach is the calculation of the mutual independence 

function and its first minimum (eg. Fraser and Swinney, 1986). 

Mutual information is a measure of the general dependence of 

two variables. Fraser and Swinney (1986) argue in favour of 

mutual information over autocorrelation, claiming that mutual 

information will allow phase-space coordinates to be found 

that are generally, and not just linearly, independent. 

More recent work however has shown that neither autocor- 

relation nor mutual information is invariably successful in 

determining an optimal value of lag (Martinerie, Albano, Mees, 

and Rapp, 1992). Interestingly, Martinerie et al. (1992) 
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found that the first minimum of the autocorrelation function 

was the most successful of several measures involving both the 

autocorrelation and the mutual information functions. The 

time-series used for their study were the Rossler and Lorenz 

3-dimensional systems of differential equations, as well as a 

3-torus, a non-linear oscillator driven at 3 incommensurate 

frequencies (see section 2.4). 

EMBEDDING DIMENSION: 

A second potential source of ambiguity in the calculation 

of the correlation dimension is the maximum value of embedding 

dimension, m. Schaf f er et al. (1988) suggest that m should be 

greater than 2n+l, where n is the dimensionality of the 

attractor. Without a-priori knowledge of the value of this 

dimensionality, m can be initially set at an arbitrarily high 

value (in practice, 10 to 15), and the asymptotic value of 

correlation dimension that results, an estimate of n, can then 

be used to select a more appropriate value for m. Pilot work 

with the BREC data files indicated an approximate value for n 

of approximately 2. This value is consistent with Babloyantz 

and DestexheSs (1986) finding of a correlation dimension of 2 

at an embedding dimension of 5, for a time-series recording 10 

seconds of a petit-ma1 seizure. 

With a limited number of data-points, it has been 

observed that an overly high value for embedding dimension may 

result in an unstable estimate of correlation dimension, as a 
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result of a scaling region that is too short to permit a 

reliable estimate of the slope to be determined (Mayer-Kress 

and Layne, 1987). According to Schaffer et a1.I~ (1988) 

guidelines, with an estimated correlation dimension value of 

2, embedding dimension should be set at 5. However, in order 

to maximize the length of the scaling region, and because only 

relative rather than absolute values of correlation dimension 

are considered, the value of embedding dimension used in the 

present study was set at 4 .  

NUMBER OF DATA POINTS: 

Ruelle (1989) argues for a minimum time-series length on 

the order of aDCI2, where a is proportional to the length of 

the scaling region: a is equal to the ratio of maximum to 

minimum In r values over which the graph of In C(r) vs. In r 

is approximately linear. Dc is an initial estimate of the 

correlation dimension of the time-series. Ruelle suggests a 

value of a = 10. For attractors of high dimensionality and 

with a requirement for a long scaling region, this criterion 

quickly leads to a need for an in practice unrealizable number 

of data points. In the present study, Dc was estimated on the 

basis of pilot studies to be on the order of 2. These values 

give the requirement of a minimum of lo', or about 10 data 

points. 

Ruellels (1989) suggestion has been criticized. Essex 

and Nerenberg (1991) claim that Ruellels bound applies to cor- 



relation dimension but not to the estimates made by computing 

the slope of the regression line to the intermediate segments 

of the In C(r) vs In r curve. Essex and Nerenberg (1990, 

1991) suggest using a more modest scaling region requirement 

(eg. a = 2), and a more comprehensive calculation taking into 

account both the statistical and the geometric problems 

involved. Their calculation yields a value approximately 20 

times larger than Ruelle's requirement, with a scaling region 

length of a = 2. This translates into a requirement for 200 

data points in the present study. The actual number of data- 

points used, 256, is of the same order as this requirement. 

Smith (1992) suggests that if accuracy requirements for the 

correlation dimension estimate are not too strict then modest 

sample sizes are not unreasonable. For a root-mean-square 

error of 1, and an estimated dimension of 5, Smith (1992) 

suggests a sample size of 30. For an RMS error of 0.1, sample 

size increases dramatically to about 5000. Thus one effect of 

a small sample size is a larger RMS error, that is a value of 

correlation dimension that is less stable with respect to 

sampling. 

DeCoster and Mitchell (1991) investigated the behaviour 

of the ~rassberger-Procaccia algorithm for several data sets 

generated by sets of equations. They found that in some cases 

as few as 100 data points were sufficient to allow saturation 

of correlation dimension to be detected, indicating the 

presence of deterministic dynamics. In other cases even 5000 
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data points were not sufficient to generate convergence. This 

latter result would normally indicate that the time-series in 

question represent a stochastic rather than a deterministic 

process. DeCoster and Mitchell (1991) conclude that the time- 

series length requirement is not well defined, and that 

analysis should be attempted even when the number of available 

data points is formally inadequate. 

Ramsey , Sayers, and Rothman (1990) however describe in 

thorough detail a study of the behaviour of correlation 

dimension when applied to small samples of economic data. 

They were unable to find signs of saturation of the dimension 

estimate and concluded that there was no evidence for the 

presence of a chaotic attractor in their small sample data. 

There is an inherent limitation on the maximum number of 

data points available when using EEG recordings. The state of 

the brain is probably most reasonably assumed to remain stable 

for periods of time probably not exceeding several seconds. 

Time-series recorded over intervals greater than several 

seconds therefore probably contain segments of differing 

statistical properties, in which case the time-series would 

not be statistically stationary (Frank et al., 1990). With 

the typical sampling rates of 100 to 300 samples per second, 

the number of data points available is on the order of several 

hundred. Sampling at greater rates will not alleviate this 

problem. At increasingly high sampling rates, adjacent data 

points are increasingly correlated. Essentially, no new 
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information is captured by sampling at greater than some 

optimal rate, determined- by the highest frequency of interest 

in the data. Such over-sampling can have an effect on 

correlation dimension. Grassberger (1986) looked at the 

effect of interpolation on correlation dimension, finding that 

correlation dimension decreases with increasing amounts of 

interpolation. 

The implications of these results for the present study 

is that although sample sizes of several hundred points may be 

analyzed using the Grassberger-Procaccia algorithm, the 

results cannot be used to infer the presence of a chaotic 

attractor, whether or not the slope values are seen to tend to 

a limiting value. 

VARIABLE TRANSFORMATION: 

When the phase-space reconstruction leads to a highly 

non-uniform attractor, it may be difficult to calculate 

correlation dimension. The slope of the graph of In C(r) vs 

In r can in this situation have more than one intermediate 

straight-line region, with different values of slope for each 

region. At the same time, the value of slope may not tend to 

the sought-after limiting value, the estimate of correlation 

dimension. 

In these circumstances, one approach has been to trans- 

form the dependent variable in the time-series. Lefranc, 

Hennequin, and Glorieux (1992) used the log function for this 



transformation. The result was a more uniform attractor 

geometry, longer scaling regions, and saturation of the slope 

value. This approach assumes that relevant information is 

contained at all amplitudes of the time-series, and hence in 

all parts of the attractor. The transformation makes this 

information more uniformly available to the correlation 

dimension calculation. 

1.3 ATTRACTOR GEOMETRY AND UNDERLYING DYNAMICS 

The geometry of an attractor is not sufficient to decide 

whether or not the associated dynamical system is chaotic. 

For example, deterministic, non-chaotic, attractors generated 

by systems of equation have been found, which nevertheless 

have a fractal dimension value, and which are therefore 

classed as strange (Grebogi, Ott, Pelikan, and Yorke, 1984; 

Ding, Grebogi, and Ott, 1989; Romeiras, Bondeson, Ott, 

Antonsen, and Grebogi, 1987). Typically, the generating 

systems of equations consist of non-linear oscillators driven 

at incommensurate frequencies (see sections 2.3 to 2.6). 

These results emphasize once more the point made earlier 

that inferences about the nature of the generating dynamical 

system cannot be made on the basis of correlation dimension 

calculations. Typically, in order to specify such a dynamical 

system as chaotic or non-chaotic requires a determination of 

the extent to which the system is sensitive to perturbations 

of initial conditions. This determination is usually made by 



calculating the Lyapunov exponent for the time-series. Frank 

et al. (1990) adopt this approach to the analysis of EEG 

recordings of epileptic seizure events, finding support for 

the notion that the underlying dynamics are deterministicaly 

chaotic. They conclude that the determination of chaos could 

not have been made without the calculation of Lyapunov 

exponents. 

In a complementary study, Osborne and Provenzale (1989) 

found a class of stochastic systems with finite values of cor- 

relation dimension. A purely stochastic system will not have 

a finite value of correlation dimension. ~imensionality will 

in principle be equal to the number of data-points. The 

particular class of systems used in this study were of the 

wcoloured noiseff variety: the time-series exhibited a power- 

law spectrum. Such noise is common in physical system, and is 

typically referred to as l/f noise: the power spectrum decays 

with increasing frequency as the inverse of frequency. 

.Intuitively, Osborne and Provenzalefs (1989) finding results 

.from the lfcouplinglf of the individual degrees of freedom 

associated with the individual data points, by the power-law 

function that defines the power spectrum. In the limit of a 

power-law function with a large exponent, high frequencies in 

the time-series are effectively filtered out, and a sinusoidal 

function of correspondingly low dimensionality remains. 

The implication of these results for the present study is 

that it would be unsafe to draw inferences from the behaviour 



of the correlation dimension about whether of not the underly- 

ing dynamics are or are not chaotic, and about the extent to 

which the time-series which were studied represent determin- 

istic dynamics or stochastic behaviour. 

Pritchard and Duke (1992) emphasize the point that the 

Grassberger-Procaccia algorithm is most realistically useful 

in a relative sense, in comparing systems for evidence of 

dissimilar complexity, rather than in attempting to determine 

the absolute complexity of a single system. They advocate the 

term "dimensional complexityw rather than correlation dimens- 

ion. 

1.4 ALGORITHMS 

A number of algorithms were developed specifically for 

carrying out the analysis for the present work. The source 

code for these algorithms was written in structured BASIC and 

compiled using ~uickBasic version 4.5, a BASIC language 

compiler. 

CoRDIM: ~alculation of correlation dimension was carried 

out by means of the CORDIM algorithm which implements the 

Grassberger-Procaccia algorithm, with somemodifications. The 

first modification is the use of the city-block distance 

measure between points on the attractor. The second modifica- 

tion involves taking an average over only a subset of points 

on the attractor when calculating the correlation integral, a 



strategy proposed by Moon, 1987. These modifications signifi- 

cantly speed up the running time of the algorithm. The 

algorithm is presented in section A1. 

LAGFIND: The LAGFIND algorithm is an attempt to automate 

the process of finding the optimum value of the lag parameter, 

for a univariate time-series. In contrast with other, 

analytic approaches to this problem, LAGFIND implements a 

geometric approach. 

The LAGFIND algorithm successively embedsthe time-series 

in a two dimensional phase space, with increasing values of 

lag, beginning with lag = 1. It then calculates at these 

successive values of lag, two sums of squares deviation of 

points on the attractor; one from each of two orthogonal axes 

in the phase space, rl and r2. Denoting the basis axes of the 

phase space by yl and y2, the orthogonal axes used for the sum 

of squares calculation are defined by the equations: 

axis rl: y2 = yl 

axis r2: y2 = -yl + 2y11 

. . . eqn 5 

. . . eqn 6 

where yll is the mean of the values of points on the attractor 

along the yl axis. 

At each value of lag, the two sums of squares that are 

calculated, ssl and ss2, are compared for magnitude. At low 

values of lag, ssl will be small and ss2 will be large, 



reflecting the compressed shape of the attractor along axis 1. 

As the value of lag is increased, the value of ssl will 

increase and the value of ss2 will decrease. When the ratio 

of ssl to ss2 increases to a criterion value (set at . 8  for 

the present work), the associated value of lag is selected as 

being the optimum value. At this value of lag, the attractor 

is approximately equally distributed along axes 1 and 2. The 

attractor is therefore approximately symmetrically distributed 

in the phase space. 

One obvious limitation of this algorithm is that only a 

single, 2-dimensional phase-space is used for the attractor 

reconstruction. It is conjectured that a value of lag which 

results in an optimally distributed attractor in this 2-space 

will result in an optimally distributed attractor in phase- 

spaces of higher dimensionality. An improvement on the 

present algorithm might be to embed the time-series in a 

phase-space of the nominal dimensionality expected for the 

associated attractor, rather than in a 2-dimensional space. 

Tests of the LAGFIND algorithm on time-series of known 

properties have indicated that the algorithm correctly finds 

the optimum value of lag in the following cases: 

- uniformly-distributed random noise: computed lag = 1 

- sine function: computed lag = one-quarter of the period of 

the sine wave 



The algorithm is displayed in section A2. 

REGRESS: The actual computation of correlation dimension 

involves calculating the slope of a regression line drawn 

through a series of points along the intermediate portion of 

the ogive-shaped graph of In C(r) vs. In r. This slope 

calculation is carried out by the REGRESS algorithm, shown in 

section A3. REGRESS also computes the error of regression for 

the computed value of slope.   his error of regression is used 

as an indication of goodness of fit of the regression line to 

the target points on the curve. 

The REGRESS algorithm is also designed to optionally 

select the region of the curve that will produce the minimum 

value of error of regression. That is, REGRESS can find the 

straightest portion of the curve over some preselected number 

of points, and will then calculate the slope of this optimum 

curve segment. Although functional, this option was not used 

in the analyses carried out in this project, because of the 

limitation in the number of available data points. This 

limited number of points was conjectured to be the cause of a 

highly non-uniform attractor. This non-uniformity resulted in 

there being in some cases several straight-line segments, of 

different slopes, within the intermediate portions of the 

curve. When this occurred, it was found that this REGRESS 

option was not sufficiently sophisticated to consistently 

select a curve segment which coincided with a segment judged 



most appropriate on the basis of visual pattern analysis. 

Work remains to be done on this portion of the algorithm, al- 

though a general impression from perusal of the literature is 

that most workers estimate slope by means of some heuris- 

tically based visual analysis. 

2 EXPERIMENT 1: Evaluation of the CORDIM Algorithm 

The CORDIM algorithm can be tested by analyzing time- 

series which correspond to generating systems with known 

characteristics. Tests using three types of time-series were 

performed. The first set used noise, both random and pseudo- 

random. The expectation was that correlation dimension would 

increase and be equal to the dimensionality of the phase-space 

that the time-series was embedded within. The second set of 

tests used time-series defined by equations involving 2 and 3 

variables. In this case the expectation was that the correla- 

tion dimension should be reach a limiting value equal to the 

number of variables in the equations used to generate the 

time-series. The third set of tests involved time-series 

which were designed to roughly approximate the spike waveform 

data, with two different equations: one using 2 variables to 

generate the simulation, and the other using 3 variables for 

the simulation. 

2.1 PSEUDO-RANDOM NOISE 

A time-series consisting of 1024 data-points of pseudo- 



random noise was generated using the RND function in Quick- 

Basic. This time-series is shown in Figure 1. This pseudo- 

random noise generator outputs a uniformly-distributed 

sequence of data-points. Correlation dimension was calculated 

for the time-series, using a lag of 1 for the phase-space 

reconstruction, shown in Figure 2, and an embedding dimension 

of from 1 to 5. The lag of 1 was chosen because adjacent 

points in the time-series are independent. The results are 

shown in Figure 3. There is no clear evidence that the 

correlation dimension is tending towards a limiting value. 

This result is consistent with the pseudo-random nature of the 

mechanism generating the time-series. 
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Figure 1 - Time-series generated using pseudo-random 
number generator function (BASIC RND function) ; length is 
1024 data points. 
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2.2 RANDOM NOISE 

A time-series consisting of 1024 data-points of random 

noise was generated using an electronic amplifier circuit with 

a 10 megohm source resistance. The time-series is shown in 

Figure 4.   he output of the amplifier consisted of a combina- 

tion of thermal noise generated by the source resistance, and 

amplifier input noise. The thermal noise component results 

from the discontinuous nature of electron flow through the 

source resistance, and is uniformly distributed. The ampli- 

fier input noise component is generated in the input stages of 

the amplifier by processes which are circuit dependent. This 

noise component has a ggl/fgg power spectrum: Power level in 

equal frequency bands, for example per 1 Hz, varies in inverse 

proportion to frequency. Thus large amplitude power compo- 

nents occur at low frequencies, and the amplitude of the power 

components decreases as frequency increases. This form of 

noise has an approximately normal distribution: For the l/f 

component, relativelymore frequent data-points have relative- 

ly smaller amplitudes. The output of the amplifier was 

digitized at 300 samples per second. The resulting time- 

series was analyzed in the same way as the pseudo-random data, 

using a lag of 1 for the phase-space reconstruction (Figure 

5). The results are shown in Figure 6. Again, and as 

expected, saturation is not evident. 

In principle, with an unlimited number of data-points 

being available, the calculated values of correlation dimen- 



sions should approach the value of embedding dimension. With 

the limited number of data points used in these analyses, the 

most that can be expected is that the value of correlation 

dimension will not tend to a limiting value as embedding 

dimension is increased. This result is consistent with other 

studies of correlation dimension. For example, Osborne and 

Provenzale (1989) studied the properties of random time-series 

with inverse power-law frequency spectra. Such frequency 

spectra are described by the function l/fa, where a is termed 

the scaling exponent. A time-series, such as the one studied 

in the present experiment, has an associated value of a=l, 

giving the l/f power spectrum. At larger values of a the 

power per unit bandwidth (within a 1 Hz band) decreases ever 

more rapidly with increasing frequency. Osborne and Proven- 

zale (1989) found that for a=l, corresponding to the situation 

in the present experiment, there was little evidence of the 

correlation dimension tending to a limiting value, for 

embedding dimensions 1 to 5. This is consistent with the 

result obtained in the present experiment. 

Interestingly, Osborne and Provenzale (1989) found that 

as the value of a increased, there was a tendency for the 

correlation dimension to reach a limiting value. At a=3 

correlation dimension saturated at a value of 1. The authors 

suggested that as a increases, the dynamics of the time-series 

are increasingly dominated by the effects of the power law 

function, which involves only a single variable, a. 



I 0.0E+00 . time 1 . 0E+03 
Figure 4 - Random time-series, comprised of thermal an( 
l/f noise components; 1024 data points. 



4.6 
E+82 

a 1  

-3.6 
E+82 

-3.6E+82 v1 4 .63+82 
Figure 5 - Phase-space attractor constructed by plotting 
random time-series against itself with a lag equal to 1. 



1 0 .0E+00 De 5.0E+00 
Figure 6 - Correlation dimension as a function of embed- 
ding dimensions 1 to 5, for random time-series of Figure 
4. No saturation is evident. 



2.3 THE 2 -TORUS 

A time-series of 1024 points was generated using the fol- 

lowing equation in two variables: 

y(t) = sin(2rat/n) + sin (2rbt/n) . . . eqn 7 

where a = 10, b = 1d2, and n is the length of the time- 

series. The resulting time-series is shown in Figure 7. The 

frequencies have been chosen to be incommensurate; that is, 

they are not expressible as a ratio of integers. When this 

time-series is used to construct an attractor in phase-space 

using the Takens-Packard method of reconstruction, the 

attractor has the shape of a 2-dimensional torus. Because the 

frequencies have been chosen to be incommensurate, the trajec- 

tory defined by the equation travels along the surface of this 

torus without ever exactly repeating a previous orbit. The 

phase-space attractor for this time-series was reconstructed 

using a value of lag of 18, and is shown in Figure 8. This 

value of lag was computed using the LAGFIND algorithm, 

described below. Correlation dimension was then calculated 

for this attractor, at embedding dimensions 1 to 5. The 

results are shown in Figure 9. As expected correlation dimen- 

sion appears to tend to a limiting value of roughly 2, cor- 

rectly approximating the number of variables used in constru- 

cting the original time-series. 
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Figure 9 - correlation dimension vs. embedding dimensions 
1 to 5 for 2-torus time-series. Saturation is clearly 

. evident. 
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2.4 THE 3-TORUS 

A time-series of 1024 points was generated using the fol- 

lowing equation in 3 variables: 

y(t) = sin (2rat/n) + sin (2rbt/n) + sin (2nct/n) .. .eqn 8 

where a = 10, b = 1d2, c = 1d3, and n is the length of the 

time-series. The resulting time-series is shown in Figure 10. 

As for the 2-torus, these 3 frequencies are chosen to be 

mutually incommensurate. This time-series results in an 

attractor in phase-space that has the shape of a 3-dimensional 

torus. A 2-dimensional projection is shown in Figure 11. 

Correlation dimension was calculated for this time-series 

using a lag of 18, computed by the LAGFIND algorithm. The 

results are shown in Figure 12. As expected, the value of 

correlation dimension tends towards a limiting value of ap- 

proximately 3, again consistent with the number of variables 

used in constructing the original time-series. 

In accordance with theoretical considerations, the value 

of correlation dimension for the 3-torus is greater than for 

the 2-torus. In both cases, the absolute value of correlation 

dimension is approximately equal to the number of variables in 

the original equations. 
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Figure 10 : - ~ime-series generated using equations 
defining the 3-torus, the summation of 3 sine-waves of 
incommensurate frequencies. 
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Figure 11 - Phase-space attractor constructed by plotting 
the three-torus time-series plotted itself using a lag 
equal to 5. 
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Figure 12 - correlation dimension vs. embedding dimen- 
sions 1 to 5 for the 3-torus time-series. 



2.5 SPIKE WAVEFORM SIMULATION USING 2 VARIABLES 

In order to simulate a spike waveform using only 2 

variables, a time-series of 256 points was generated using the 

following equation: 

y(t) = (sin (2~at/n)) . (-cos (2~bt/n) + 1) . . . eqn 9 

where a = 6, and b = 1. 

The resulting waveform (Figure 13) is intended to ap- 

proximate the BREC spike waveform using a trigonometric 

equation in 2 variables. No attempt was made to optimize the 

closeness of the approximation. Rather, the equation was 

designed to be both a simple mathematical model, while 

generating a time-series visually resembling the BREC spike. 

The phase-space attractor is shown in Figure 14. This 

attractor was analyzed for correlation dimension using a lag 

of 10, computed using LAGFIND, at embedding dimensions of 1 

through 5. The correlation integral was averaged over 32 

equally-spaced data points on thetime-series. The results of 

this analysis are shown in Figure 15. Correlation dimension 

reached a. value of 1.98 at an embedding dimension of 5, 

showing some evidence of tending towards a limiting value. 



I 0 .0E+00 tine 2.6E+02 
Figure 13 .- An approximation to the BREC spike waveform 
generated using 2 equations in 2 variables. 
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Figure 14 - Phase-space attractor generated by plotting 
the two variable spike waveform approximation against 
itself using a lag equal to 10. 
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Figure 15 - Correlation dimension vs. embedding dimen- 
sions 1 to 5 for the 2-variable spike approximation time- 
series. 



2.6 SPIKE WAVEFORM SIMULATION USING 3 VARIABLES 

A simulation of the spike waveform was constructed using 

an equation in 3 variables. A time-series of 256 points was 

generated using the following equation: 

y (t) = (sin (2natIn) ) (cos (2nbtIn) ) . (sin(2nctln) ) . . . eqn 10 

where a = 6, b = 1, and c = 0.5. 

The resulting waveform (Figure 16) is intended to ap- 

proximate the BREC spike waveform using a trigonometric 

equation in 3 variables. s gain, no attempt was made to 

optimize the closeness of the approximation. The equation was 

designed to be a simple mathematical model that could generate 

a time-series visually resembling the BREC spike. The phase- 

space attractor for this time-series is shown in Figure 17. 

correlation dimension was calculated for this attractor using 

a lag of 10, computed using the LAGFIND algorithm, at embed- 

ding dimensions of 1 through 5. As before, the correlation 

integral was averaged over 32 data-points. The results of the 

analysis are shown in Figure 18. Correlation dimension 

attained a value of 2.63 at an embedding dimension of 5, 

showing some signs of tending to a limiting value. 

Consistent with expectations based on theoretical con- 

siderations, and on the behaviour of correlation dimension 

using the 2-torus and 3-torus data, correlation dimension for 

the 3 variable simulation is greater than for the 2-variable 
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simulation. In both cases the absolute value of correlation 

dimension qualifies as being a lower bound on the number of 

variables in the generating system. 

2.7 SUMMARY 

In all cases, correlation dimension behaved in accordance 

with theoretical considerations. Two general results may be 

seen. Firstly, the value of correlation dimension was 

consistent with the view that this statistic is a lower bound 

on the number of variables involved in the system generating 

the time-series. Secondly, the value of correlation dimension 

correctly reflected the differential complexity of similar 

pairs of time-series that differed only in terms of the number 

of defining variables. 

It should be expected therefore that correlation dimen- 

sion will behave similarly when confronted with time-series 

constituting experimental rather than simulated data. In 

particular, values of correlation dimension calculated forthe 

BREC spike waveform time-series should reflect the complexity 

of the underlying neural generating systems. 
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Figure 16 - An approximation to the spike waveform 
generated using 3 equations in 3 variables. 
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Figure 17 - Phase-space attractor constructed by plotting 
the 3 variable spike approximation against itself using 
a lag equal to 10. 
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Figure 18 - Correlation dimension vs. embedding dimen- 
sions 1 to 5, for the 3-variable spike approximation. 



3 EXPERIMENT 2: Multi-dimensional Reconstruction 

It has been suggested that the Grassberger-~rocaccia al- 

gorithm for calculating correlation dimension is prone to an 

upward bias for attractors of low dimension embedding in high 

dimensional. spaces, and that this bias may be reduced by a 

modification to the algorithm (Dvorak, 1990) . This modif ica- 
tidn involves making use of the multiple channels available 

in, for example, a typical EEG recording. At any one time- 

point, data points from a set of channels become the compo- 

nents of the vector that is plotted in phase space to form the 

attractor. 

This approach has the advantage of making use of the 

spatially as well as temporally extended information available 

in a multi-channel EEG recording. A second advantage is the 

circumventing the problem of choosing an optimal lag paramet- 

er. An obvious disadvantage is that spatial resolution is 

sacrificed. 

3'.1 APPLICATION TO 2-TORUS DATA 

For the 2-torus case, vectors for the reconstruction were 

formed by taking successive sets of points from the 2 time- 

series formed by the following equations: 

. yl(t) = sin '(2natln) 

y2(t) = sin (2nbtIn) 

... eqn lla 

... eqn llb 



where a = 10, and b = 1d2. The time-series are displayed in 

Figure 19. In this way we form the following series of 

vectors : 

A total of 256 vectors were formed in this manner, and 

the resulting attractor (Figure 20) was analyzed for cor- 

relation dimension using the Grassberger-Procaccia algorithm. 

The results are shown in Figure 21. The correlation dimension 

showed clear evidence of saturation, reaching a value of 1.8 

at an embedding dimension of 3. This result is consistent 

with the number of variables involved in the generating system 

of equations, and used in the construction of the phase-space 

attractor. 



19 - The 2 torus time-series 
. reconstruction method. 

used for the 
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igure 20 - Two-torus attractor used with the multi- 
channel reconstruction method. 
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~igure 21 - correlation dimension vs. embedding dimen- 
sions 1 to 5 for multichannel reconstruction method using 
the 2-torus data. 
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3. APPLICATION TO 3-TORUS DATA 

For the 3-torus case, vectors for the reconstruction were 

formed by taking successive sets of points from the 3 time- 

series formed by the following equations: 

yl(t) = sin (2nat/n) 

y2(t) = sin (2nbtln) 

y3(t) = sin (2nct/n) 

where a = 10, b = 1d2, and c = 1d3. The time-series are 

shown in Figure 22, Thus, we obtain the series of vectors: 

A total of 256 vectors were formed in this manner, and 

the resulting attractor (Figure 23) was analyzed as above for 

the 2-torus case. The results are shown in Figure 24. The 

correlation dimension Ghowed evidence of saturating, reaching 

a value of 2.7 at an embedding dimension of 5. This result is 

consistent with the number of variables in the generating 

system of equations. 

The results indicate that the multi-channel reconstruc- 

tion method is able to accurately estimate the dimensionality 

of the related generating systems of equations. 
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Figure.22 - The 3 torus time-series used with the multi- 
channel reconstruction method. 
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Figure 23 - Phase-space attractor for the 3-torus time- 
series used with the multi-channel reconstruction. 
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Figure 24 - Correlation dimension vs. embedding dimen- 
sions 1 to 5, for the multi-channel reconstruction method 
using the 3-torus data. 



4 ANALYSIS OF BREC SPIKE WAVEFORMS 

4.1 INTRODUCTION 

With both the Typical and the Atypical BREC patterns, 

there are associated characteristic interictal EEG spike 

waveforms. Morphologically, these waveform consists of a 

single approximately sinusoidal main pulse or spike of 

relatively high amplitude, with a period of from 80 to 120 ms. 

Sample spike waveforms that have been clinically diagnosed as 

~ypical and  typical are shown in Figure 25 and 26 respecti- 

vely. This main pulse may be preceded and followed by lower 

amplitude oscillations. It has been demonstrated that a 

discrimination between the Typical and Atypical cases may be 

made on the basis of characteristics of these components of 

such EEG spikes (Bencivenga, 1987; Wong, Bencivenga, and 

Gregory, 1988) . 
The general approach adopted in the present work was sug- 

gested by the results of a study of BREC spike waveforms by 

Bencivenga (1987). The approach taken by Bencivenga (1987) 

involved a non-parametric classification strategy: A decision 

procedure or tree is constructed, with the nodes being 

decisions regarding a set of observable features of the EEG 

waveform in the vicinity of the spike. These features were 

selected on the basis of studies made by Gregory and Wong 

(1984), and observations of medical staff at the B.C. Child- 

ren's Hospital. Included are polarity reversals of the spike, 

number and spatial extent of spikes, synchronization of spikes 



across channels, presence of after-waves, spatial location and 

amplitude of spikes, and coordinates of the estimated focus. 

Of these variables, the last three, transverse location of the 

focus, and location and amplitude of the negative portion of 

the spike, were found to be sufficient to permit clas- 

sification with a misclassification rate of 20%. This result 

was interpreted as suggesting that the Typical and Atypical 

cases were associated with different underlying processes 

(Wong et. al. 1988). 

This strategy suggested the analysis used in the present 

study: calculating estimates of the correlation dimension for 

the time-series comprised of the spike waveform, along with 

preceding and following electrical activity. It was specu- 

lated that correlation dimension might capture a significant 

portion of the information associated with the variables 

studied by Bencivenga (1987), and thus would differ in 

magnitude for the Typical and the Atypical time-series. 

initial examination of the data suggested that Typical 

spikes appeared to be an in-phase continuation of preceding 

spontaneous activity to a greater extent than Atypical spikes. 

The spike thus would appear to be more closely related to the 

preceding activity, for the Typical wavef o m s  (Figure 25) than 

for the Atypical waveforms (Figure 26) . On the basis of this 
observation it could be 

the generation of the 

  typical waveforms than 

argued that the mechanism underlying 

waveforms is more complex for the 

for the Typical waveforms. 



The complexity of the hypothesized generating mechanism 

responsible for the spike waveforms can be estimated by the 

correlation dimension. More specifically, the correlation 

dimension is related to the minimum number of variables needed 

to describe the behaviour of the system; that is, the number 

of degrees of freedom at work within the system. If for 

example two systems were found to have unequal correlation 

dimensions, it would suggest that the two systems were 

comprised of mechanisms of unequal degrees of complexity. 

Wong et al.'s (1988) conclusion is that Typical and Atypical 

BREC involves different underlying mechanisms, and that the 

mechanisms associated with Atypical BREC might be more 

heterogenous relative to those associated with Typical BREC, 

resulting from an interaction between the spike event and 

existing neurological abnormalities. 

This statement suggests the hypothesis for the present 

study with respect to the BREC data, that there might be a 

corresponding difference in the correlation dimensions forthe 

two types of BREC, and that the correlation dimension for 

Atypical waveforms would be larger than the correlation 

dimension for Typical waveforms, reflecting the differential 

complexities of the underlying systems. 



I 0. 0E+00 tine 2.6E+02 
Figure 25 - Example of a Typical spike waveform; 256 data-points 
sampled at 200 points per second, for a time-span of 1.28 seconds - 
(patient no. 1, channel T4). 
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Figure 26 - Example of an Atypical spike waveform; 256 data-points 
sampled at 200 points per second, for a time-span of 1.28 seconds 
(patient no. 12, channel T3). 
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There is no clear evidence available as to the extent, 

spatial and temporal, of the brain areas involved in the 

generation of the spike waveform. Wong (1989) however has 

conjectured that Atypical spikes are generated by a more 

spatially extended system than Typical spikes. In this 

experiment, spike classification will be carried out using 3 

approaches in an attempt to bracket this uncertainty. First, 

spikes from a single channel common to all cases will be used. 

Second, spikes from a single channel corresponding to the 

maximum peak-to-peak spike amplitude for a particular case 

will be analyzed. Third, in an effort to utilize spatially 

extended information, a multi-channel reconstruction method 

will be used, with two different channel ensembles. 4 

4.2 EXPERIMENT 3.1: Single Common Channel 

4.2.1 METHOD 

The data consisted of 44 data sets of averaged interictal 

spike waveforms, The data sets were originally classified as 

Typical or Atypical, on the basis of presence or absence of 

neurological and behavioural problems (Wong, Gregory, and Far- 

rell, 1985). These data sets consisted of 29 that had been 

classified as Typical, and 15 that had been classified as 

Atypical. The data of each patient represented an average of 

between 6 and 20 individual spike episodes, measured at 21 

points on the scalp using the international 10-20 system. In 

the original recording of these interictal spikes, filter 



settings were 1 Hz high-pass and 70  Hz low-pass. Digitization 

rate was 200 samples per second, and the length of each record 

was 256 points. The time-interval was therefore 1.28 seconds. 

The CORDIM algorithm was used to calculate correlation 

dimensions for these time-series. The parameters used in the 

computation of correlation dimension are summarized as 

follows: 

Length of time-series:256 points 

Digitization: 200 samples per second 

Original Filter settings: 1 Hz high-pass; 7 0  Hz low-pass 

Averaging: each time-series is the average of 6 to 20 spike 

episodes 

Lag: computed using LAGFIND algorithm; values listed in Table 

1 

Embedding dimension: 4 

Number of data points used for computation: 32 points, 

equally spaced along the 256 point time-series. 

The choice of embedding dimension was made on the basis 

of pilot work with the same data files used in this analysis. 

As embedding dimension was increased, and with the relatively 

small number of points available in each time-series (256), it 

was found that the scaling region, that is, the straight-line 

portion of the ogive curve of In C ( r )  vs. In r, decreased in 

length. At embedding dimensions over 6 the length of this 
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scaling region was in some cases too short to permit an 

accurate estimate of slope to be made. At an embedding 

dimension of 4 the scaling region was suffic.iently long in all 

cases for accurate estimates of slope to be made. 

Examination of the 44 files revealed the following 

distribution of large amplitude spike activity: 

- In 24 files (55%) , the spike amplitudes were found to be 

greatest over the right temporal region at electrodes F8, C4, 

T4, P4, and T6, with the largest number of spikes located at 

electrode T4. 

- In 17 files (39%), the spike amplitudes were greatest over 
the left temporal region at electrodes T3, C3, P3, T5. 

- In 2 files (5%) the spike amplitudes were greatest in the 
occipital region at electrodes FP1 and FP2. 

- In 1 file (2%) the spike amplitudes were greatest over the 
frontal region at electrode F3. 

On the basis of this distribution of spike amplitudes, in 

this experiment a single common channel was analyzed, elect- 

rode T4. For all 44 cases, the time-series corresponding to 

electrode T4 was analyzed using the CORDIM algorithm. For 

each individual ti~e-series, the value of lag was computed 

using the LAGFIND algorithm. 

The first step of the analysis involved constructing a 

phase-space attractor for each time-series. A sample at- 
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tractor is shown in Figure 27. It should be noted that such 

representations of attractors are only 2  dimensional projec- 

tions of an object that is located in a hyperspace of dimen- 

sionality equal to the value of embedding dimension being 

used. A prominent feature of the geometry of this attractor 

is that it is highly non-uniform: the orbits are concentrated 

in a relatively small volume near the centre of gravity of the 

attractor. a his characteristic non-uniformity is shared by 

most of the attractors generated from the spike waveforms used 

in this study. There is an implication of this non-uniformity 

for the correlation dimension calculation. The scaling 

region, the straight-line portion of the graph of in C(r) vs. 

In r, may be shorter than would ideally be desired for an 

accurate estimate of the slope of this line to be determined. 

The more ideal time-series is one which results in an attrac- 

tor which visits most regions of the embedding phase-space 

with roughly equal frequency. The simulated spike waveforms 

used in Experiment 2  were in fact closer approximations to 

this ideal. 

4 . 2 . 2  RESULTS 

The results obtained in the analysis of the 44  BREC files 

is summarized in Table 1. Table 1 lists the patient number, 

diagnosed BREC type, value of lag computed with the LAGFIND 

algorithm, and the calculated value of correlation dimension. 





Patient TYPe ........................ 
1 1 
2 2 
3 1 
4 1 
5 1 
6 1 
7 1 
8 1 
9 1 
10 1 
11 2 
12 2 
13 2 
14 2 
15 2 
16 1 
17 2 
18 1 
19 1 
20 1 
21 1 
23 1 
24 1 
25 2 
26 1 
27 1 
28 1 
29 1 
30 1 
31 1 
33 2 
34 2 
35 1 
36 2 
38 1 
39 1 
42 2 
43 1 
44 2 
48 2 
50 1 
53 1 
54 1 
60 2 



Since the values of correlation dimension were found to 

be approximately normally distributed, a Student's t test was 

conducted on the correlation dimension values. A point- 

biserial correlation was also computed, correlating the 

assigned classification dichotomy with the correlation 

dimension continuum. The results of these calculations are 

shown in Table 2. 

TABLE 2 - Statistics: Exp. 3.1 - Common Channel T4 

Standard Error: 0.123 

point-biserial r = 0.0368 (P > 0.1) 

The difference between the Typical and Atypical groups on 

correlation dimension is not significant in terms of Student's 

t and point-biserial correlation. 

4.2.3 DISCUSSION 

The non-significant results are probably attributable to 

the use of the single common channel for all cases, regardless 

of the actual location of spike activity for a case. For 20 

of the 44 cases, there was little or no evidence of a spike 



waveform on channel T4. Analyzing channel T4 in such a case 

would amount to computing the dimensionality of whatever 

relatively low amplitude background activity was present. 

These low amplitude signals could be expected to have a lower 

signal-to-noise ratio. Here, noise can be operationalized as 

electrical activity unrelated to the target phenomenon, 

myoelectric signals, and spurious electrical activity induced 

into the subject and electrode lead wires from the environm- 

ent. The dimensionality of such a time-series could be 

expected to be not systematically different for the 2 groups. 

An implication of these findings is that the differences 

between Typical and Atypical cases in terms of the dynamical 

system generating the spike waveforms are not localized to the 

same area of the scalp, under electrode C4, for the 44 cases 

studied. 

An improvement over the present method might be to 

analyze a unique channel, the channel with the maximum amount 

of spike activity, for each case. using the maximum amplitude 

channel should ensure that in all cases the analyzed channel 

has a relatively high signal to noise ratio. This modifica- 

tion is implemented in ~xperiment 3.2. 

4.3 EXPERIMENT 3.2: Maximum Amplitude Channel 

4.3.1 METHOD 

For each of the same 44 files that were used in ex- 

periment 3.1, the channel with the largest peak-to-peak spike 

8 0  



amplitude was identified. The identification was carried out 

using algorithm SELECT1, shown in section A4. All other 

conditions were identical to those in experiment 3.1. 

4.. 3 .2 RESULTS 

The results obtained in the analysis of the 44 BREC files 

is summarized in Table 3, and the analysis of the statistical 

significance of these results is shown in Table 3. The 

difference between the Typical and  typical groups on cor- 

relation dimension is significant in terms of both the Stud- 

ent's t-test, and the point-biserial correlation. 

Figure 28 shows the 44 data files ranked on correlation 

dimension, and indicating the original diagnostic clas- 

sification. The 44 files appear to be roughly separable into 

two groups. The first group, with the lower values of 

correlation dimension, contains 20 files, of which 19 are 

Typical, and one is Atypical. The second group, with the 

higher values of correlation dimension, contains 24 files, of 

which 10 are Typical and 14 are  typical. This observation 

was tested using cluster analysis on the correlation dimension 

values and the diagnosed BREC types. 



TABLE 3 - Data Summary: Exp. 3.2 - Maximum Amplitude 
Channel ....................................................... ....................................................... 

Type 1 = typical; type 2 = atypical (prior diagnosis) 



Standard Error: 0,110 



Cases  

Typical 

Atypical 

y clinical diagnosis of BREC type. 
igure 28 - Cases are sorted by correlation dimension, and labelled 



CLUSTER ANALYSIS 

A hierarchical cluster analysis was carried out on the 

results of Experiment 3.2 using BMDP-2M. The options were no 

standardization, and centroid amalgamation rule. The results, 

shown in Table 5, indicate the presence of two main clusters. 

The first cluster has 19 Typical files and 1 Atypical File. 

This cluster corresponds to the 20 cases in the left portion 

of the graph in Figure 27. The second cluster has 10 Typical 

files and 14 Atypical files. This cluster corresponds to the 

24 files in the right portion of the graph in Figure 28. 

A K-means cluster analysis was carried out on the cor- 

relation dimensions using BMDP-KM. This analysis was per- 

formed using 2 and 3 initial clusters. The results using 2 

initial clusters are shown in Tables 6a, 6b, and 6c. Cluster 

1 has 10 Atypical and 6 Typical files while cluster 2 has 5 

Atypical and 23 ~ypical files. Typical files appear to be 

proportionately better grouped than Atypical files. The 

results for 3 initial clusters are shown in Tables 7a, 7b, and 

7c. Cluster 1 has 11 cases, 7 Atypical and 4 Typical, cluster 

2 has 16 cases, 7 Atypical, and 9 Typical, and cluster 3 has 

17 cases, 1 Atypical and 16 Typical. Cluster 1 thus contains 

predominantly Atypical cases, cluster 3 contains mainly 

Typical cases, while cluster 2 contains both cases in ap- 

proximately equal numbers. 
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TABLE 6b - Mean Squares; 2 Groups 
Source d f Mean Squares F-ratio ........................................ 
Between 2 4.357 95.275 
Within 41 0.046 

TABLE 6c - Classification by Cluster; 2 Groups 
Cluster 1 2 

Typical 
Atypical 

TABLE 7a - K-Means Cluster Analysis; 3 Groups .............................................. .............................................. 
Cluster Size Mean Std. Dev. .............................................. 
1 11 2.247 0.173 
2 16 1.789 0.119 
3 17 1.343 0.116 

TABLE 7b - Mean Squares; 3 Groups 
Source df Mean Squares F-ratio 

Between 2 
Within 41 



4.3.3 DISCUSSION 

Using the channel of maximum peak-to-peak spike ampli- 

tude, there is a significant difference between the Typical 

and Atypical groups. This finding suggests that the dif- 

ferences between ~ypical and Atypical cases in the dynamical 

systems underlying the spike waveforms are easily detected in 

the recordings of a single channel, This channel is one which 

represents the maximum peak-to-peak amplitude of the spike 

waveform. 

A possible explanation for the success of this channel 

selection criterion is that when the channel of maximum spike 

amplitude is used, the spike, and presumably the related 

surrounding electrical activity, are significantly larger in 

amplitude than other signals which may be present in the EEG 

record, and which are unrelated to the spike event. Such 

signals may be considered to be noise for the present purpose 

of analyzing the signal of interest, the spike phenomenon, 

The channel of maximum spike amplitude may then be considered 

to be the channel of maximum signal to noise ratio. By 

analyzing such a channel, it is the spike event, comprised of 

the spike and related surrounding activity, which is being 

preferentially analyzed. The contribution to this analysis of 

the noise components is effectively minimized. 

The results of this experiment support the hypothesis 

that the generating mechanisms responsible for Atypical 

waveforms are more complex than those responsible for the 



Typical waveforms, and that this differential complexity can 

be seen in the corresponding correlation dimension values. 

Cluster analysis supports the notion that there are two 

clusters in the data. The Atypical files are best separated, 

with 14 of the 15  typical files being located in one of the 

clusters. Typical files are less well separated, with 19 

Typical files in one cluster, and 10 Typical files in the 

other cluster. 

It- should be recalled that the original classification of 

these files as Typical and Atypical was made on the basis of 

clinical, neurological, and behavioural diagnostic criteria. 

The accuracy of these original classifications can only be 

verified by longtitudonal studies of the patients involved. 

One interpretation of the cluster analysis results involves 

making the assumption that the correlation dimension analysis 

is inherently a more accurate criterion for classifying the 

files than the original diagnostic measures. On this assumpt- 

ion, the Atypical files were originally more accurately 

classifiedthanthe Typical files. The one anomalous Atypical 

file, according to the cluster analysis, should then in fact 

be considered to be a Typical file. Similarly, the 10 

anomalous Typical files, according to the cluster analysis, 

should in the same way be considered to be Atypical files. To 

reiterate, however, only through the results of follow-up 

studies will it be possible to decide between the clinical and 

the correlation dimension based classifications. 



The results of the K-means cluster analysis using 2 

initial means show that Typical files are better grouped than 

Atypical files. Under the assumption that correlation 

dimension is a better predictor of BREC type than the clinical 

diagnostic measures, this finding would suggest that Typical 

files were originally better classified than Atypical files, 

Such a result however contradicts the results of the hier- 

archical cluster analysis. The contradiction may be the 

result of differences between the analytic procedure used by 

the two programs. No other explanation suggests itself. 

The results of the K-means cluster analysis using 3 

initial means similarly appear to show that Typical files are 

better grouped than Atypical files. The motivation for this 

particular analysis was to explore the possibility that there 

are 3 groups in the original data: one group correctly 

originally classified as Typical, one group correctly orig- 

inally classified as Atypical, and one group that was incor- 

rectly originally classified. The F-ratio for this analysis 

is higher than for the 2 initial group analysis. This would 

appear to suggest that the 44 files are more distinctly 

separable into these 3 groups, than into 2 groups. If this is 

the case, then it would appear to support the notion that 

there exists in the data a group of files that were originally 

incorrectly classified. 



4.4 EXPERIMENT 3.3 Maximum Peak/RMS Ratio Channel 

4.4.1 INTRODUCTION 

An extension of experiment 3.2 would be to attempt to 

determine whether the criterion used in that experiment is in 

fact optimal. Related but different criteria could be tested 

to determine if effective discrimination depends solely on 

maximum spike amplitude. An example of such a related 

criterion might be the ratio of peak to peak amplitude, to the 

root-mean-square (RMS) amplitude of the waveform. The RMS 

amplitude is equivalent to the standard deviation of a time- 

series. This criterion will be tested in the present experim- 

ent. 

A successful outcome, a significant between groups dif- 

ference, in the present experiment would support the hypo- 

thesis that the most significant criterion for discriminating 

between the two groups is the amplitude of the spike itself, 

relative to the amplitude of the surrounding activity. Since 

the surrounding electrical activity contribute the majority of 

the data points in the spike waveform time-series, a large 

ratio of spike peak value to overall RMS amplitude suggests 

that the waveform consists of both a large spike and a low 

level of surrounding electrical activity. 

An unsuccessful outcome of the present experiment would 

suggest that characteristics of the spike itself are not suf- 

ficient to discriminate between the Typical and Atypical 

groups. It would suggest that both the spike and the sur- 



rounding activity are important when attempting to discrimi- 

nate between these groups. 

4.4.2 METHOD 

For each of the same 44 files that were used in ex- 

periment 3.1, the channel with the largest ratio of peak-to- 

peak amplitude to RMS was identified. For each channel within 

a data set, two values were calculated, the peak-to-peak 

amplitude and the RMS amplitude (standard deviation). Using 

these values, the ratio of the peak-to-peak amplitude to the 

RMS amplitude was calculated. The channel within a data set 

with the largest ratio was selected as the target channel for 

the calculation of the correlation dimension. The identifica- 

tion of the target channel was carried out using algorithm 

SELECT2, shown in section A5. All other conditions were 

identical to those in experiment 3.1. 

4.4.3 RESULTS 

The results obtained in the analysis of the 44 BREC files 

is summarized in Table 8, and the analysis of the statistical 

significance of these results is shown in Table 9. The 

difference between the Typical and Atypical groups on cor- 

relation dimension is significant both in terms of the Stud- 

ent's t-test, and the point-biserial correlation. 





Standard Error: 0.093 

4 . 4 . 4  DISCUSSION 

Although the results of this experiment indicate that 

there is a significant difference between the Typical and 

Atypical groups, the level of significance is lower than in 

experiment 3.2. The criterion used in experiment 3.2 appears 

to be more effective in discriminating between the two groups. 

On the one hand, the criterion used in the present experiment, 

the ratio of peak to RMS, should discriminate to some extent 

between the Typical and Atypical groups. By this criterion, 

the analyzed channel should contain a significant amount of 

spike activity. On the other hand, the selected channel will 

at the same time have a small value of RMS amplitude. In 

effect, the selected channel will have relatively less 

electrical activity both before and after the spike. It is in 

fact this electrical activity which would appear to contribute 

the additional complexity which then permits an effective 

discrimination to be made between the Typical and Atypical 

groups. The criterion of maximum peak to RMS ratio suppresses 



the contribution of this electrical activity surrounding the 

spike. There appears to be support for the hypothesis that 

the ~ypical and Atypical groups can be best separated if both 

the characteristics of the spike and of the surrounding 

activity are analyzed. 

4.5 EXPERIMENT 3.4: Multichannel Reconstruction I 

4.5.1 INTRODUCTION 

This approach to the reconstruction of a phase-space 

attractor is an alternative to the method of lags used in 

experiments 3.1, 3.2 and 3.3. In the method of lags, vectors 

defining the attractor are each composed of multiple points 

taken from the original single time-series, with an interval 

between the points equal to the lag parameter. In the present 

method, vectors definingthe attractor each have as components 

multiples of points recorded simultaneously at several spatial 

locations. It has been conjectured (Eckmann and Ruelle, 1985) 

that this method will result in an adequate embedding of the 

multiple time-series in a phase-space. ~ynamical properties 

of the resulting attractor, such as fractal dimensionality, 

will thus reflect the dynamics of the system generating the 

time-series. 

Dvorak (1990) suggests that the multichannel reconst- 

ruction method avoids a source bias inherent in Taken's method 

of lags. Specifically, it is suggested that there is an 

upward bias in correlation dimension due to the finite resolu- 



tion with which experimental data is typically recorded. This 

finite resolution leads to a rounding error which is effec- 

tively a random noise component that is combined with the 

signal of interest. The dimensionality of this random noise 

component increases proportionately with embedding dimension, 

producing an upward bias in correlation dimension for the 

digitized recording. 

Destexhe, Sepulchre, and Babloyantz (1988) compared the 

multichannel reconstruction method, the method of lags, and 

the combination of singular value decomposition (SVD) and 

method of lags suggested by Broomhead and ~ i n g  (1986). 

Destexhe et al. (1988) used time-series associated with 

cardiac rhythms, Creutzfeld-Jakob disease, alpha waves, deep 

sleep, epileptic seizures, the Lorenz system of differential 

equations, and random noise. Destexhe et al. (1988) found 

that the method of lags, and Broomhead and King's (1986) 

combination method gave similar values for correlation 

dimension, with however the longer scaling region for the sin- 

gular value decomposition method. 

Palus et al. (1992) used the multichannel reconstruction 

technique with 16 EEG channels recording activity during the 

course of ethanol consumption in a human subject. Estimates 

of correlation dimension obtained agreed with a second 

variable which Palus et al. (1992) calculated, and which they 

termed linear complexity. Standard singular value decom- 

position of the data matrix yielded a set of significant 



eigenvalues, ai. Linear complexity was defined as -N / C log 

ail where N was defined only as a normalization constant, but 

presumably could be equal to the number of significant eigen- 

values used in the summation. Over the course of the experim- 

ent, changes in the value of linear complexity appeared to be 

similar to changes in the value of correlation dimension. 

While the multichannel reconstruction method avoids the 

problem of choosing an appropriate lag parameter, according to 

Destexhe et al. (1988) an equivalent problem appears, choosing 

an inter-site distance for the recording of the multiple 

channels. The underlying goal here is the same as that for 

choosing the proper lag: to generate a series of points for 

the components of a vector that are essentially independent. 

A factor that can be both an advantage and a -  disadvantage 

appears with the multichannel reconstruction method: An 

advantage is" that the multiple simultaneously recorded 

channels make use of more information that is in any case 

available in the typical multichannel EEG recording paradigm, 

than does the method of lags. This is an advantage when the 

system under investigation is spatially distributed, and a 

disadvantage when the target system is spatially localized. 

In this latter case, the computed value of correlation 

dimension will be less reflective of the dynamics of the 

target system. 

Nan and Jinghua (1988) suggest that when segments of dif - 
ferent dimensionality are analyzed together the value of cor- 



relation dimension for the composite will approach that of the 

lowest value for the segments. The present situation is not 

entirely of the type referred to by Nan and Jinghua (1988) but 

it might be conjectured that in general when segments of 

differing dimensionality are analyzed together in any conf- 

iguration, as contiguous segments, or as multiple channels in 

the multichannel reconstruction, the resulting value of 

correlation dimension may not accurately reflect the dynamics 

of any one segment in the ensemble. 

Destexhe et al. (1988) further found that if the value of 

correlation dimension is less than 4, the three algorithms 

that they studies yielded similar results. 

4.5.2 METHOD 

The ensemble of channels used were T3, C3, C z ,  C4, and 

T4, lying approximately over the area of the rolandic fissure. 

These channels were selected on the basis of the observation 

that out of the 44 files that were examined, all showed some 

spike activity over the central and temporal regions. 

Further, 42 files showed significant spike activity over these 

areas. Synchronous data points from these 5 channels were 

used to construct a set of 256, 5-dimensional vectors, in the 

following way. The first time-point from each source channel, 

for a total of 5 time-points, became the first 5 sequential 

time-points of the output file. This process was repeated for 

the second time-point from each channel, and so on, up to the 



last or 256th time-point of each source channel. The output 

file now consisted of 5 times 256 or 1280 time-points. The 5 

source channels were essentially multiplexed onto a single 

output file. 

Thus, each set of 5 sequential time-points in the output 

file defined a 5-component vector.  his set of 256 vectors 

thus defined an attractor in a 5-dimensional phase-space. The 

correlation dimension for this attractor was computed using 

the CORDIM algorithm. Embedding dimension was 5, dictated l5y 

the use of 5 channels and thus 5 components to each phase- 

space vector. The value of lag was set at 1, owing to the 

method used to amalgamate the 5 channels. 

4.5'. 3 RESULTS 

The results of the analysis are shown in Table 10, and 

the statistical calculations are shown in Table 11. The 

difference in correlation dimension between the Typical and 

  typical groups of files was found to be not significant in 

terms of both the t-test and the point-biserial correlation. 



TABLE 10 - Data Summary: E x p .  3.4 - Multichannel 
~econstruction 



4 . 5 . 4  DISCUSSION 

The non-significant result of this experiment are likely 

due to the particular set of channels chosen for the recons- 

truction. ~xamination of the data sets revealed that in all 

cases the focus of spike activity was clearly localized to one 

hemisphere or the other. In no case was there evidence of 

spike activity in both hemispheres in one file. Thus the 

particular ensemble of channels used in this analysis 

included, in the case of all files, channels with strong spike 

activity as well as channels with no spike activity. As Nan 

and Jinghua (1988) point out, analysis of data comprised of 

segments with evidence of dynamic activity and segments 
I 

without evidence of such activity may result in a correlation 

dimension value equal to the minimum dimensionality of the 

comprising segments. The d&ensionality of the dynamical 

system of interest is in a sense diluted by the presence of 

the unrelated time-segments. A follow-up to this experiment 

could make use of an ensemble of 4 or 5 channels centred on 

the central-temporal area of maximum spike amplitude, either 



in the left or in the right hemisphere, rather than over both 

hemispheres as was done in the present experiment 

4.6 EXPERIMENT 3.5 - Multichannel Reconstruction I1 
4.6.1 METHOD 

In this experiment, the multichannel reconstruction was 

carried out using a set of 5 channels from either the left or 

the right temporal area. The selection of left or right was 

made on the basis of which side had the spike activity of 

greatest peak-to-peak amplitude. 

For files with maximum activity over the left temporal 

area, the channels used were F3, T3, C3, T5, and P3. For 

files with maximum spike amplitude over the right temporal 

area, the channels were F4, C4, T4, T6, and P4. The proces- 

sing of these channels was carried out in identically the same 

manner as for the rolandic channels in Experiment 3.4. The 5 

source channels were transformed into a single output file, 

with each successive set of 5 data-points defining a 5- 

dimensional vector. Lag was set to 1 as in experiment 3.4. 

4.6.2 RESULTS 

The results of the analysis are shown in Table 12, and 

the statistical calculations are shown in Table 13. The 

difference in correlation dimension between the Typical and 

Atypical groups of files was found to be not significant. 



TABLE 12 - Data Summary: Exp. 3.5 - Multichannel 
Reconstruction 

Type 1 = typical; type 2 = atypical 
Side 1 = left temporal area; side 2 = right temporal area. 

Case TYPe Side Dc ......................................................... 
1 1 2 2.514 
2 2 1 1.125 
3 1 1 2.672 
4 1 2 1.816 
5 1 2 2.785 
6 1 2 2.398 
7 1 1 2.317 
8 1 1 2.439 
9 1 2 2.176 
10 1 2 1.277 
11 2 2 3.033 
12 2 1 2.64 
13 2 1 1.952 
14 2 1 1.907 
15 2 2 2.76 
16 1 1 3.04 
17 2 2 1.852 
18 1 2 2.503 
19 1 2 2.6 
20 1 2 2.524 
21 1 1 2.087 
23 1 1 2.392 
24 1 1 2.42 
25 2 1 2.654 
26 1 2 2.544 
27 1 1 2.73 
28 1 1 1.7 
29 1 1 1.298 
30 1 2 1.404 
31 1 2 1.719 
33 2 1 2.495 
34 2 2 2.751 
35 1 2 2.85 
36 2 1 2.589 
38 1 2 1.731 
39 1 2 1.645 
42 2 2 2.62 
43 1 2 2.924 
44 2 1 2.559 
48 2 2 2.247 
50 1 2 2.797 
53 1 1 1.678 
54 1 2 2.074 
60 2 2 2.475 



4.6.3 DISCUSSION 

In general terms the non-significant results are probably 

due once again to a selection of channels for the analysis 

that do not equally contribute signals related to the dynam- 

ical system underlying the spike waveforms. 

For the multichannel reconstruction method of analysis to 

succeed in the present application of differentiating between 

Typical and Atypical BREC generator systems, it is likely 

necessary that all channels used in the analysis be closely 

coupled throughout the time-evolution of the dynamical system 

of interest (Gershenfeld, 1988). Where this condition is not 

satisfied, and some channels are not closely involved in the 

spike generating mechanism, the correlation dimension value 

cannot accurately reflect the dynamics of a single target 

system. When the electrical activity recorded at the several 

channels reflects loosely-coupled or autonomous activity of 

several dynamical systems, correlation dimenshn will reflect 

the number of such dynamical systems in operation, rather than 

the level of complexity of any one of these systems. Gershen- 



feld (1988) points out that a significant goal of dimensional 

analysis is the discrimination between an n-dimensional system 

and n 1-dimensional systems. 

4.7 GENERAL DISCUSSION 

No significant difference between the Typical and 

Atypical groups was found when the same channel, C4, or the 

same set of channels, T3, C3, Cz, C4, T4, was used for all 

cases. To reiterate, an implication of these findings is that 

the differences between the 44 Typical and Atypical cases 

studied in this work are not localized to a region covered 

either by a single common channel, or strictly by a single 

common set of channels. No significant difference was found 

when the analysis utilized a group of channels which differed 

between cases in terms of laterality, according to the side of 

the scalp which contained the channel of maximum spike 

amplitude. These channels surrounded the channel of maximum 

spike amplitude. 

A possible implication of these findings is that the dif- 

ferences between Typical and Atypical systems within a single 

file are not distributed as widely as the area covered by the 

sets of channels used in the analysis. Alternatively, the 

selection criterion used to select channels might not be 

appropriate. Finding a better criterion for selecting such 

channels is a problem which remains to be explored. 

A significant difference was found in two cases. The 



most significant difference was found when, for each data set, 

a single channel corresponding to maximum spike amplitude was 

analyzed. A lesser, but still significant difference was 

found when the analyzed channel was selected on the basis of 

maximum ratio of peak-to-peak amplitude to RMS amplitude. 

This lesser difference suggests that both the spike and the 

electrical activity before and after the spike are together 

important in effectively discriminating between the Typical 

and Atypical groups. 

Correlation dimension analysis of a single channel in- 

herently gives information about the temporal distribution of 

the underlying dynamical systems. The analysis provides an 

estimate of the lower bound on the number of variables 

involved in the underlying dynamical system, over the time- 

course of the recorded time-series, Thus the results of 

experiments 3.2 and 3.3 appear to support the conclusion that 

Atypical cases are associated with dynamical systems of 

greater complexity, than Typical cases, involving a greater 

number of variables, over the time-course of the spike 

wavef o m .  

This conclusion is consistent with a model of Typical and 

Atypical BREC by Wong (1989) , proposed on the basis of results 
from dipole localization studies. According to Wongls (1989) 

model, both Typical and Atypical BREC involve a common neural 

generator site, while the Atypical BREC case involves addi- 

tional surrounding neural tissue that interacts with the 
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common generator locus. Such interaction, Wong (1989) 

suggests occurs mainly in the interval after the main spike. 

The correlation dimension is well suited to tracking such a 

difference in the time-evolution between the Typical and Atyp- 

ical cases, since it is sensitive to the changing pattern of 

activity throughout the 1.28 second epoch surrounding the 

spike maximum. Were this pattern of activity to reflect the 

operation of only a small number of variables, then cor- 

relation dimension would be correspondingly low. If the 

pattern of activity reflected the successive engagement of a 

greater number of variables, then correlation dimension would 

be correspondingly higher. 

In terms of spike topography, the differences between 

Typical and Atypical cases was apparently well represented by 

the channel of maximum amplitude, implying that these dif- 

ferences may be localized to an area represented by this chan- 

nel. This implication is supported by the non-significant 

difference found when a wider area surrounding the maximum 

amplitude channel was analyzed. 

It may be noted that correlation dimension analysis 

applied to a single EEG time-series inherently looks at a 

pattern of behaviour over time, at a single location. In 

contrast, dipole analysis looks at spatial distribution of EEG 

behaviour at a single point in time. These methods might 

therefore be used together to answer questions about both the 

spatial and temporal distribution of EEG sources. 



In the present analysis, only differences between the 

Typical and Atypical groups are obtained, rather than infor- 

mation about particular cases. It cannot be concluded 

therefore that the system generating a spike is spatially 

localized to an area represented by a single channel. It 

would seem to be a reasonable hypothesis however that the 

differences between the Typical and Atypical groups are 

spatially localized to an area which is of the approximate 

order of that represented by a single electrode. 

Taken together, the methods of analysis used in ex- 

periments 3.1 to 3.5 thus provide some information about the 

spatial as well as the temporal distribution of the dif- 

ferences between the Typical and Atypical groups. 

A variable which was not controlled for in this study was 

the number of records that were averaged to form the data 

files as analyzed. This averaging was done prior to the files 

becoming available to this study. Between 6 and 20 separate 

spike waveform recordings were averaged to generate the data 

files. Such differences in averaging have been shown to have 

an effect on the value of correlation dimension. Badii, 

Broggi, Derighetti, Ravani, Ciliberto, Politi, and Rubio 

(1988) found that correlation dimension increases with 

averaging. Intuitively, the averaging combines or more 

closely couples variables from the different time-series that 

enter into the average, thus increasing the dimensionality of 

the resulting averaged time-series. 
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Another variable which may be a source of ambiguity is 

the filter settings used for the original recordings of the 

spike waveforms. These settings were specified by the source 

of the data (B. C. Children's Hospital) as 1 Hz high-pass and 

70 Hz low-pass. However, examination of the spectrum of 

several files selected at random revealed that in all cases 

the upper frequency point (the frequency at which the power 

spectrum decreased to one-half of the mean power level at 

intermediate frequencies) did not exceed approximately 30 Hz. 

Further, this upper frequency point varied from file to file, 

from approximately 17 Hz to 30 Hz. This observation may be 

the result of the differential averaging of the data files, or 

it may reflect unequal filter settings used in the original 

recordings. This ambiguity cannot be resolved without certain 

knowledge about the actual filter settings that were used for 

the EEG recordings. 

For reliable estimates of correlation dimension, para- 

meters such as the number of averaged records, and all filter 

settings, should be kept constant across files which are to be 

compared. If the correlation dimension technique were to be 

used as a diagnostic criterion, it is strongly recommended 

that a protocol be established which includes a definition of 

the value of these parameters for all recordings. 

RECOMMENDED RECORDING PROTOCOL 
i 

The folZowing is a suggested protocol for EEG recordings 



for use with correlation dimension analysis: 

- filter settings of 1 Hz high-pass and 70 Hz low-pass. 
The actual value of the upper cutoff frequency is, within 

limits, perhaps less important than that this frequency be 

constant across files which will be subsequently compared on 

their value of correlation dimension. A value of 70 Hz is 

reasonable in that this is a commonly used value in EEG 

recording. 

- no averaging of the spike-waves. It is a conjecture 

based on intuition developed during the course of this study 

that averaging may minimize the effects of the different 

variables involved in generating the spike-wave waveform. If 

this were the case it might cause the correlation dimension 

values to converge artificially to some value not reflecting 

the contributions of all the system variables. It is recom- 

mended therefore that an epoch of the EEG recording be 

selected that is free of clearly identifiable artifacts such 

as movement and myeloelectric artifacts. 

- the selected EEG epoch should contain a number of 
consecutive spike-wave events. Such events are in fact known 

to commonly occur in such bursts (eg. Beaussart, 1972). It is 

therefore recommendedthatthe EEG epoch selected for analysis 

contain a number of closely-spaced spike-wave events. In 

analyzing a number of spike-wave events, rather than just a 

single event as in the present study, the correlation dimen- 

sion algorithm should yield a longer scaling region, that is, 



a longer straight-line segment of the graph of In C(r) vs. In 

r.   his longer scaling region will then make it possible to 

get a more reliable estimate of slope, the correlation 

dimension. 

- the time-interval of the selected EEG epoch should be 
set to 4 seconds. The approximate frequency of the spike-wave 

events is 3 Hz. The 4 second interval would contain on the 

order of 10 spike-wave events, if the train of spike-waves is 

selected to contain minimal intervening time-gaps. In 

principle the analytical technique would benefit from having 

an even larger number of spike-wave events. The difficulty 

with attempting to analyze longer epochs is the non-stationary 

characteristic of the EEG. Statistical features of the EEG 

ever-increasingly diverge as longer epochs are considered. 

Again, on the basis of experience gained in this work it is 

felt that a time-interval of 4 seconds might represent a not 

unreasonable trade-off between a sufficient quantity of data 

and non-stationarity. 

- the rate at which the EEG signal is sampled should be 
set at 200 samples per second, the rate used for the files 

used in the present work. A small value of sampling rate 

reduces the number of data points available to the analysis, 

while a large sampling rate incurs the penalty of increasing 

dependence between adjacent data points; essentially, as 

sampling rate is increased, adjacent data points contain 

little new information. A sampling rate of 200 samples per 



second is probably a not unreasonable compromise. For a 4 

second interval, this represents a total of 800 data points, 

which would seem to be a reasonable choice for the present 

comparative application of correlation dimension analysis. 

- a general consideration would be that EEG recordings be 
made within similar patient conditions. Since the BREC spike- 

wave episodes commonly occur during sleep, it is recommended 

that EEG recordings for this analysis be made during sleep 

only, and if possible during similar sleep stages. If spike- 

waves occur during slow-wave sleep, this would be the pre- 

ferred time for recording. In this way, it may be possible to 

minimize the influence of neural variables unrelated to the 

BREC spike-wave generation, and thus minimize their effect on 

correlation dimension. 

SUMMARY 

The results ofthe present correlation dimension analysis 

appear to agree with the clinically-based classification of 

BREC into the Typical and Atypical forms. Correlation 

dimension may thus be a useful diagnostic variable in clas- 

sifying BREC type. The advantage of using correlation 

dimension is that a computer algorithm exists to process the 

spike-wave waveforms. It is suggested that if a consistent 

recording protocol were to be adopted for recording the spike- 

wave events, an even more significant difference between the 

Typical and Atypical BREC types would be found. 



APPENDIX I - Algorithms 
Al: CORDIM - This algorithm calculates the correlation in- 
tegral, over the selected values of scale lehgth, and over the 
selected range of embedding dimensions. 

Parameters: 

Y 0 array holding original time-series 
length length of time-series 
lag value of lag 
s selected sample of points on attractor 
mmin minimum embedding dimension 
mmax maximum embedding dimension 
rmin minimum r value 
rmax maximum r value 
c ( 1  array holding values of correlation integral, C(r) 

CORDIM (yo, length, lag, s,' mmin, mmax, rmin, rmax, C()) 

Calculate value of LAG: 
CALL LAGFIND (y ( )  , lag, length) 
FOR m = mmin TO mmax 

Compute maximum usable length of time-series: 
Nmax = length - ((m - 1) * lag) 
Compute number of points averaged over: 
Navg = Nmax / s 

Compute all distances between points: 
CLEAR s ( )  
FOR i = 1 TO Navg 

FOR j = 1 TO Nmax 
FOR k = 0 TO (m-1) 

s(i, j) = s(i, j) + ly(i*s+k*lag) - y(j+k*lag) 1 
NEXT 

NEXT 
NEXT 

Compute C(r) for all scale lengths r: 
FOR r = rmin TO rmax 

sum = 0 
FOR i = 1 TO Navg 

FOR j = 1 TO Nmax 
IF s(i,j) c r THEN sum = sum + 1 

NEXT 
NEXT 
C (r) = sum / (Navg * Nmax) 

NEXT 
NEXT 



242: LAGFIND - This algorithm calculates the value of LAG. 
Parameters 

Y 0 the array storing the time-series 
length length of the time-series 
lag lag parameter. 

LAGFIND (y ( )  , lag, length) 
Initialize the value of lag: 
lag = 0 

DO 
Increment the value of lag: 
lag = lag + 1 
Calculate y1 = mean value of points along yl axis: 
sum = 0 
FOR i = 1 TO length 

sum = sum + y(i) 
NEXT 
y 1  = sum / length 

Calculate ssl = sum of squared deviations along axis rl: 
SS1 = 0 
FOR i = 1 TO length - lag 

ssl = SSl + (y(i + lag) - y(i))2 
NEXT 

Calculate ss2 = sum of squared deviations along axis r2: 
ss2 = 0 
FOR i = 1 TO length - lag 

S S ~  = SS2 + (y(i + lag) + y(i) - 2y1)2 
NEXT 

LOOP UNTIL SS1 / SS2 > .8  OR lag = 30 

A3: REGRESS - This algorithm calculates the slope of the 
regression line tangent to a selected segment of the graph of 
correlation integral vs. scaling length. 

Parameters: 

rmin 
rmax 
nreg 
nsteps 
YO 
dr 
auto 
slope 

minimum value of In r 
maximum value of In r 
no. of points for regression calculation 
total no. of data points 
array containing data points 
increment size for In r 
selects manual or automatic segment selection 
slope of computed regression line 



errmin standard error of regression for regression line 

REGRESS (rmin, rmax, nreg, nsteps, y ( ) , dr, auto, slope, 
errmin) 

Set minimum regression error level to arbitrary high value: 
errmin = 100 

Compute slope and regression error; repeat incrementing star- 
ting value rlo if optimum segment selection used (auto = 
true) : 
DO 

Initialize variables: 
j = 0: Sx = 0: Sy = 0: Sxx = 0: Syy = 0: Sxy = 0 

Compute end-points of regression line: 
rlo = rmin + dr 
rhi = rlo + dr * nreg 
Compute slope and regression error: 
FOR k = 1 TO nsteps 

x = ~ ( k ,  1) 
Y = ~ ( k f  2) 
I F  x >= rlo AND x <= rhi THEN 

j = j + l  
sy = sy + y 
Sx = Sx + x 
Sxy = Sxy + x * y 
SXX = SXX + x= 
SYY = SYY + Y2 

END IF 
NEXT 
COVxy = Sxy - (Sy * Sx) / j 
VARx = Sxx - (Sx * Sx) / j 
VARY = Syy - (Sy * Sy) / j 
rcoef = COVxy / VARx 
SSreg = rcoef * COVxy 
regerror = SQR((VARy - SSreg) / (j - 2)) 
Check if slope and error are within bounds: 
I F  regerror < errmin AND rcoef > . 4  THEN 

errmin = regerror 
slope = rcoef 

END I F  
LOOP UNTIL rhi = rmax OR NOT auto 

A4: SELECT1 - This algorithm finds the channel within a data 
file with the largest peak-to-peak amplitude. 

Parameters: 



Y 0 array holding EEG data set 
m no. of EEG channels, 21 
length length of each channel in data points, 256 
channel channel with maximum peak to peak amplitude 

SELECT1 (yo , m, length, channel 

Find the channel with the largest difference between minimum 
and maximum amplitude: 
ymax = 0 
FOR j = 1 TO m 

yhi = 1E-12: ylo = 1E+12 
FOR i = 0 TO length - 1 

IF y(i, j) > yhi THEN yhi = y(i, j) 
IF y(i, j) < ylo THEN ylo = y(i, j) 

NEXT 
yamp = yhi - ylo 
IF yamp > ymax THEN ymax = yamp: channel = j 

NEXT 

A5: SELECT2 - This algorithm finds the channel within a data 
file with the maximum peak/RMS ratio. 

Parameters: 

YO array holding EEG data set 
m no. of EEG channels, 21 
length length of each channel in data points, 256 
channel channel with maximum peak/RMS ratio 

SELECT2 (yo , m, length, channel) 
ratiomax = 0 
FOR j = 1 TO m 

yhi = 1E-12: ylo = 1E+12: sum = 0 
FOR i = 0 TO length - 1 

IF y(i, j) > yhi THEN yhi = y(i, j) 
IF y(i, j) < ylo THEN ylo = y(i, j) 
sum = sum + y(i, j) 

NEXT 
peak = yhi - ylo 
mean = sum / length 
ss = 0 
FOR i = 0 TO length - 1 

ss = ss + (y(i, j) - mean) A 2 
NEXT 
rms = SQR(ss / length) 
ratio = peak / rms 
IF ratio > ratiomax THEN channel = j 

NEXT 
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