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Abstract

The problems of displacement of the surface of an elastic
medium by a circular punch whose face is non-symmetrical and of
the penny-shaped crack whose faces are subjected to arbitrary
tractions are reduced to a system of integral equations for the
components of displacement discontinuity. This reduction is accom-

plished by the use of the Somigliana forﬁula. For the punch problems
the Fourier components of stress ané displacement discontinuity

on the surface of the medium are found. The special case of con-
stant unidirectional tangential displacement is examined. For the
penny-crack problem expressions for the stresses on the plane

of the crack beyond the crack tip are found. Stress intensity

factors are derived and Barenblatt and BCS models for axisymmetric

normal and shear cracks are constructed.
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l. Introduction

An integral equation method will be used to investigate
two types of problems involving an isotropic linear elastic
medium. The first problem is that of a frictionless circular
punch or die(whose face is of arbitrary shape and whose radius
is a) which indents the surface of a half space by a prescribed
amount. The second problem considered is that of a penny-shaped
crack of radius c¢ (imbedded in the medium ) whose upper and iower
surfaces are loaded by equal and opposite arbitréry tractions.

The axisymmetric case where the pupch is given a displacement
normal to the surface of the half space has been previously in-
vestigated by Green and Zerna [1] and by others [2,3,4). Keer
f{5] has found a solution for the case of the non axisymmetric
normal punch problem by the use of a potential method.

The case where the crack is subjected to axisymmetric normal
tractions has been dealt with by, among others, Sneddon [6,7],
and Collins [8]. Sneddon used transforms to reduce the problem
to a set of dual integral equations while Collins used the
Papkovitch~-Neuber potentials. Again, Keer [5] use& a potential
method to solve the non-axisymmetric normally loaded crack problem.

Another method has been introduced [9], originally to cal-
culate the densities of arrays of dislocations. This method
has been shown to be useful in plain-strain boundary value prob-
lems [10] and has also been used for certain axisymmetric half-

space problems [11]. This dislocation method has been extended



recently to deal with certain crack problems in which the crack
is viewed as a layer of dislocation, and an integral equation

is obtained for the displacement discontinuity across the layer
[12,13,14]). This method will be applied here to both the penny-
crack and punch problems.

In Section 2 the Somigliana formula is derived. This formula
gives an expression for the displacement field in a linear elas-
tic material in which an internal surface is subjected to certain
displacement discontinuities. In Section 3 the crack and punch
problems are formulated and the governing integral equations
are seen to partially decouple into normal and tangential ex-
pressions. With the use of a Fourier decomposition the integral
equations are further simplified in Section 4. Up to this
point both the general punch and crack problems may be treated
mathematically the same except for a limit of integration.

In Section 5 the integral equations for both the normal
and tangential punch problems are shown to have the same form
and the equations are then solved. From this solution expres-
sions are found in Section 6 for the Fourier coefficients of
displacement discontinuities and stresses on the surface of the
half-space. The special case of a constant uni-directional
displacement over a region r £ a, 2 = 0 1is examined in Section
7. Expressions for the displacement discontinuities and stresses
on the surface of the half-space are found.

In Section 8 the integral equations for both the normal
and tangential crack problems are shown to also have the same

form and the equations are then solved. From this solution



the Fourier coefficients for the displacement discontinuities and
stresses on the plane of the crack are found in Section 9.
The Fourier series are then summed giving expressions for the
displacement discontinuities and stresses on the plane of the
crack. For the case of normal loading a stress intensity factor,
KI(G) at the crack edge is found.

The results from Section 9 ére used in Section 10 to construct
a Barenblatt Model for the crack under normal axisymmetric
loading. Also a BCS Model is constructed for the crack under
an axisymmetric torsional load. Finally in Section 10 the
problem of a penny-crack under unidirectional shear loading

is examined. This final application is due to Lardner in [15].



2. The Somigliana Formula

The derivation of the Somigliana formula for the displacement
field ui(E) in an infinite linear elastic material subjected to
certain deformations begins with the determination of the displacement
field in terms of a Green's tensor.

Consider a finite body B consisting of linegr elastic material
for which the elastic modulus components are cijk%' The body is
in equilibrium under given body forces whose components are fi’

under given tractions ti acting on a part S of its boundary,

1

and under given displacements Ui over a part 52 of its boundary.

Since B is in equilibrium and because of the boundary values the

0

components of displacement ui(E) must satisfy

+ = i .
cijkﬂuﬂ,jk fi 0 in B (2.1a)
cijkﬂuﬂ,knj = ti on Sl (2.1b)

u, = U, on S (2.1c)
i i 2

Here nj are the components of a unit vector normal to the surface

S The comma notation is used to denote partial differentiation

1
with respect to the indicated component of r. Repeated indices
are summed over 1, 2, 3.

To construct a Green's tensor for this boundary value problem
let r' represent a point inside B. With r' as its center

construct a sphere Se with radius €. Let BE = B - Se. Finally

let the Green's tensor Gij(£,£f) satisfy:



'y = :
CiijGQm,jk(EJE-) 0 for r in B, (2.2a)
' =
Cijkl?Qm,k(EJE-)nj 0 for r on Sl (2.2b)
] —
Ggm(EJE.) =0 for r on 52 (2.2¢)
¢ —4
J €1 5k88am,  (E/E")n4dS Sim (2.24)
BSS
€2G (r,r') 0 as e >0 for r on 9S (2.2e)
m L r € .

Apply the Gauss divergence theroem on ui(g) and Gij(gjgf):

J [ui(_r_)Ggm,k(g,g') - Gim(£'£')u2,k(£)]njcijkﬂ,ds =
dB+3S
€
=J [ui(E-)sz,k(—r—’E') - Gim(z’z')ul,k(y],jcijkidv' (2.3)
B
£

Letting € =+ 0, wusing equations (2.1) and (2.2) together with

the fact that ui(E) are continuous inside B, (2.3) becomes

u (') = J G L x') g (r)av + J G (ErL')tods -

51

- I Ui(E)GQ,m,k(E-'—r—I)njcijkﬂ,ds' (2.4)
S

o

2

If the medium extends to infinity some restrictions on the
displacements and the Green's tensor must be imposed. In addition
to the requirement that Ggm(zlgf) satisfy equations (2.2) we

must also require that (SR is a sphere of a large radius R)



J C;5x2C0m, xk (Z/L")N4dS

asR

be bounded@ and must balance the unit force at Ef' It is sufficient

if we suppose G, (r,r')~0(l/r) and G, | (r,r")-0(1/r’) as |r|+ =.

n,k
The displacements ui(z)' must satisfy equations (2.1) and in

addition

u, (x) >0 as [r| > o

ru, ,{(x) > 0 as]|r|> =,
i,j = —

Then with the addition of the above,restrictions on Gij(zjgf) and
ui(gj equation (2.4) 1is valid even if B extends to infinity.
Now suppose that the body B contains a crack occupying a
surface whose two faces are labeled A+ and- A, and that a
deformation be caused in the body by the application of tractions
only upon the surfaces At' The tractions are required to be equal
and opposite at corresponding points of A+ and A_. There then
will be a displacement discontinuity Aui(gj across the crack.

This discontinuity has components

Au, (r) = ul(r) - ul(x). (2.5)
1 — 1 — 1 —

Since tractions and displacements on the external boundaries are
assumed to be zero along with the body forces fi’ equation (2.4)

can be written as



.

u (') = [ Gy (x,x")ty(x) - Ui(E)GRm’k(g,gf)Cijklnj]ds. (2.6)
A +A

Denoting 0,.(r) as the strees tensor, t, = 0,.n. and
ij = L 2373
g,.n. = -0, .n, (2.7)
L3751, 23731, -
+ .
With the help of (2.5) and (2.7) equation (2.6) may be
simplified to
"y = o '
um(g_) I Aui(E)GRm,k(EJE—)Cijklnjds' (2.8)
A

'

Equation (2.8) 1is known as the Sgmigliana formula [16].
The work to follow will be concerned with linear elastic isotropic

material. In such a case

Cijug = Mi30kp * W85 850 + 859050 (2.9)
where A and Y are the Lamé constants. In addition the

components of the Green's tensor for an infinite medium are given by [21].

1

R kk T Z(1ow) R, on) (2.10)

(x,x') = =— [§

where Vv = A/2(A+y) and R = szgfl. Differentiation of R 1is with
respect to the xi.
Suppose now that the surface A 1is planar. For convenience

we place a Cartesian coordinate system inside the body in such a

way that the surface A 1lies within the x~y plane. The unit normal



to A pointing from A+ to A is then in the negative z-direction.

Equation (2.8) then may be written

1 1
' = e - —
um(E-) 8T Cizkg J Aui(—r—)[(SZmR,ppk 2(1-v) R,ka]ds' (2.11)
A
The stress components are given by
' = ’
Oij (r') Cijkﬂ,uk,ﬂ,(E ). (2.12)

By the use of equations (2.11) and (2.12) the stresses can therefore
be expressed in terms of the componentsvof displacement discontinuity.
It is appropriate at this stage to point out that on the plane

z' = 0 the component Ozz(gf) degends only upon Auz while the

t a ' d a ' ol d both A a Au .
components xz(£-) an yz(E-) epend upon bo ux an uy



3. Formulation of the Punch and Crack Problems

The remarks at the end of Section 2 indicate that for the
system under consideration the general problem can be decomposed
into two sub-problems: (]) normal locading, and (2) shear or tan-
gential loading on the surface A (z'=0).

The general problems for a frictionless circular punch of
radius a (whose face is of arbitrary shape) which displaces the
surface on an elastic half-space is decomposed as follows:

Problem A: normal indentation, where

Auz(zf) specified, OZZ(E_) # 0, |£_|<a, z'=0
0,,(&") =0, |£_|>a, z'=0
Au (r') = Au (xr*') = 0O
X — y —
g (r') =0 (r') =0.
Xz — yz —

Problem B: tangential displacement, where

Au (r') and Au (r') specified,
X Y |£|l<a’ z'=0
] ]
g_(xr') and oyz(E-) # 0

Xz —
L] = ] - ] > |=
Oy (E') =0, (x') =0 . |z'|>a, z'=0
Au (x') =0
Z-
g (x*) =0
zz —

The general problem of a penny-shaped crack of radius c
subjected to prescribed tractions on the crack surface is de-

composed as follows:

Problem C: crack under normal loading, where

ozz(r') specified, Auz(r') # 0, |£_|<c, z'=0
' = O ' =
oxz(r ) yz(r ) 0
M (r') = Au (x') = 0.
X Y

Au (') =0 |£'| > ¢
z



Problem D: crack under shear loading, where

Oxz(_:.:_') and O Z(5') specified

y |£- |<c' 2'=0
Aa (r'), Au (') # O '
X = y —
g (') =0, Au (r*) =0
zz — z
1y — 'Yy = 0 4> ¢
bu, (x') = bu (x) |z
The information in all four of the above problems may be

translated into integral equations involving the unknown components
of displacement discontinuity, Aui (xr"). In order to derive these
integral equations expressions for certain stress components

must be calculated, Using equations (2.11) and (2.12) together

. . [] 1 '
with (2.9) expressions for ze (x'), Oyz (r'), and Ozz (r') may be

10.

found.
In problems B and D, Auz (x') = 0. Hence,
1 1
] = - ————
um(z- ) 8m J {Aux (z) l--GlmR,pp3 + 63mR,ppl 1-\)R,13m.‘| +
A
+ M )[R+ 6. R - 1 R as. (3.1)
y(—)[ 2m ,pp3 3m ,pp2 Ty ,23m]}
And
* 3
csz(l:- ) Ll[ x,2"' z,x']
(3.2)
L = -
Oyz £ u[uym' uz,y']’

Substituting (3.1) into (3.2) gives



11.

o= - Ho - 2
Oy (Z) 8T J { bu @) [R o2p * 170 Ro1133]
A
+ fu_ (o) [R -2 r .1} as. (3.3)
= pp12 T 1=V T,1233
o (r')——y— Au (r)[R ——2-R ]
z 8T X — ppl2 1-v ",1233
A
- M ()[R + R ]} as (3.4)
y = % ,ppll 1-v ,2233 ’
where we have used the fact that V4R = 0 and that R = =R

1 X 1 X

Note that the indices m and p (= 1,2,3) have been used interchangably
with x,y, and z.

In problems A and C, Aux(g') = Auy (x') = o0. Hence

u (z') = JAuZ (x) [\)R’ppm + 2(1—v)63mR - R’33m] ds. (3.5)

+PpP3
A

And

GzZ(f.‘) = 2(k+u){\)[ux x'(£') + uy y'(£')] + (l—v)uz,z,(r-)}.

’ ’

(3.6)

Substituting (3.5) into (3.6) gives



12,
o (') = - 2 AL () dva-2vR +
2z — 41 (1-v) z = ,pPp33
A

+ (1-2v) [(z—v)R,pp33 - R'3333]} as

oo A - -
= 4n(1-v)fAuz(£) (1-2v) [ZR,pp33 R 3333

A

] as.

Since R 0= + (a,B =1,2)

= R + 2R R
PPaq ;0088 ,0033 ,3333,

1y = —_H
Ozz(E-) B 4ﬂ(1—V)J

v A

bu_(r)R as. (3.7)

aaBB
Lardner has shown [15] that for the penny crack problem

equations (3.3), (3.4), and (3.7) may be simplified further by

an integration by parts. First, however, note that so far the above

equations have been used to represent components of stress for

both the punch and the crack problems. The equations representing

the punch problems differ from those representing the crack prob-

lems only in the interpretation of the area of integration, A.

We notice that if equations (3.3), (3.5), and (3.7) are to be

used to represent the crack problems, the area A of integration is

a disc of radius c, since the components of displacement dis-

continuity, Aui(E) are all zero for |£_|>c. If the same

equations are to be used to represent the punch problems, the area

A of integration is the whole x-y plane. 1In the punch case the

Aui(£)+0 as IEJ + o,



From the above remarks it is clear then that in either type
of problem Aui (£) vanishes on the boundary of A. Hence in an
integration by parts the boundary terms will vanish. We first

integrate (3.3) and (3.4) by parts to give

. u 2 ,
= e — + -
cIxz (£ ) 8n J {Aux,yR,pPZ 1-v ux,xR,l33

2
-Au R + ——Au R das
Y:x ,pP2 1=V Y,y ,133}

' = = ___u - + ———-[2 \
cIyz (") 8m J { A‘ux,yR,ppl 1~V ux,xR,233 +
) A ‘
+ Au R + LAu R das
Y.x ,pPl  1-Vy,y ,233 )

If we define the quantities

al(r)

Au (r) + Au (r)
XX — Y. Y —

b(r)

(1-v) [Aux'y(g) - Auy,x(_g_)],

and perform the differentiations on R, we obtain

b= —H 3L_z? 3 L
0 = T 0kl R s, ]} as

A

13.



It is convenient

14.

_ _-M 9l _ oz 3 1l
- ] ped k-2 - rwlil} e

A

at this point to switch to cylindrical polar

coordinates. Using the usual transformations and recalling that

d

5&.(R) = - %R(R)' on the plane z' = 0,
) 1 — _a_. _]_'_ lé l
in_lﬁ_l—_\))_orz(r ,0',0) = J {a(r,e) 3r'(R) + B(r,0) r,ae,(R)}rdrde
(3.8)
' g1 0) = 19 L, _ 3 A4
4ﬂ£l—v)oez(r ,0',0) = J {a(r,e) r'BG'(R) B(r,e)ar,(R)}rdrde,
A (3.9)
where

a(r,9)

B(r,0)

Returning to

1 -1
Aur r(r,6) + ;Aur(r,e) + ;Aue'e(r,e)

’
\

1 1
(l—v)[;Aur’e(r,e) - bug (x,0) - ;Aue(r,e)]

0,

equation (3.7) integrate by parts to obtain

| — _u
ozz(z-) B 4ﬂ(l-V)JAuz,a(£) R,aBB ds




15.

_ _-u 1 z2'? 3 L, z'?
= 4n(1-v)J { [ ] + Au (r)By[ , ]} das
R
A
Switching to polar coordinates we have on the plane z' = 0,
o__(£',8',0) = —E— Mz, e)— (—) + -1—Au Nes )2 &) lraras,
zz re 41 (1-v) z,r r? 90 'R
A ‘ (3.10)

where in terms of polar variables on the plane 'z = O,

1/2
R = [r.z +r? - 2rr'cos(6-6')]

We may now summarize these results as they apply to the four

stated problems.

Problem A: (normal punch)

27 Lo

Y = —H 3__ l
Gzz(r ,0',0) 4ﬂ(l-V)J° JO{AUZI (z, 9)a ( ) + rzéu (r 6)86( )}rdrde
(3.11)
Problem B: (shear punch)
2q
' gt ) = —b 3 L 19 1
Grz(r 81,0 = 4n(1—v)J° Io{a(r'e)ar'(R) + B(r'e)r'ae'(R)}rdrde
(3.12)

0,0 = —5 [ Moot )-8( 0)2 (1) drad
Ogp tr +Y s T 4T (1-v) o do xS0 g A T rer

(3.13)



l6.

Problem C: (normal crack)

2T c
o, (x',6',0) = 41?(11-\))J° Jo{AuZ' (005, &) + Ladu o (x,005 & )}rdrde
(3.14)
Problem D: (shear crack)
27 c
o_ (r',8',0) = m‘f—_v)Jo Jo{a(r,e)g CRE LRI (%)}rdrde
(3.15)
27 c
G, (x',0',0) = 4“‘111"’)Jo Jo{“‘r'e)’lli'%e"ili) - B(r, 003, (Il{)}rdrde
(3.16)

Upon using the specified boundary values in the four stated
problems integral equations for the unknown displacement dis-
continuity components can be found. In problems A and B (éunch
problems) the left hand sides of equations (3.11), (3.12), and
(3.13) are known to be zero for r'>a. In problems C and D
(Crack problems) the left hand sides of equations (3.14),'(3.15),

and (3.16) are all specified for r'<c.



4. Reduction of the Integral Eguations

A further simplification of the integral equations is neces-
sary before they can be solved. A reduction to one variabkle
may be carried out by expanding‘all the quantities in equations
(3.11)-(3.16) in a Fourier series.‘ Using a notation developed

by Lardner [15]:

Bu_(r,0) = 3£ () +n‘§1{f‘;(r)cosne + g’r‘:(r)sinne}

o(r,0) = —lz-ao(r) +n:zol{an(r)cosne + &n(r)si»nne}

B(r,8) = —;— By () +n°§1{3n(r)cosn6 + Bn(r)sinne}
S =L rxn b {In(r,r')cosn(e-—e')}

n=1

4T (1-V) _1lom T [.om - m .
___E———sz(r,e) =3 Po(r) +nzl{Pn(r)cosn6 + Qn(r)51nn6}

Substitution of (4.1), (4.4), and (4.5) into (3.11) or

(3.14) gives

l 2 ' T z L t z L) 3 t -_—
EPo(r) + nZl{Pn(r Jcosnf' + Qn(r )sinn® } =

oot 1 =z e =z
=-J J {[E-fo(r) + z (fn(r)cosne +

0’0 n=1

+ gs' (r)sinnb )] [—;— %rlo(r,r') + zl%rIn(r,r')cosn(G—G'):]
n=

17.

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)



18.

Lo 2]

+ 12[ Z(—nfz(r)sinne + ngz(r)cosnB )][ z—nI (r,r')sinn(e-e')]}rdrde,
r"tc1on n ne D

(4.6)

where the limits of the r-integral are either 0 to ® or 0 to c
depending upon whether the problem is one of the punch or crack
respectively.

The 6 integration may be performed by recalling (no sum here)

27
J cosmb cosn(6-6') 4o
0

TcosnB'§

297 .
J sinmb cosn(6-6') 46
0

Tsinnb'§
mn

2T ' : (4.7)

sinmb sinn(e-Q') 46
0

TcosnO'$

2
. ™

cosmb sinn(6-9') d6 =-msinnH'$

The right hand side of (4.6) then becomes

t [es]
m o 2z' 3 . z'. .9 . .
- Jo{; £y (r)E}Io(r,r ) + ﬂnZEfn (r)E}In(r,r )cosnb' +

+ gi|(r)%}1n(r,r')sinn6' +

2
+ gqln(r,r')(fi(r)cosne' + gs(r)sine')]}rdr. (4.8)

Comparing coefficients of the left hand side of (4.6) with the

right hand side of (4.8) gives



19.

t 2! 3 ' 1l =z
J £, (r)E}Io(r,r')rdr = - E'Po(r') (4.9)
0 .
rt 2
z' 3 _ , . ne _z \ _ 1z |
J {fn (r)SEIn‘r,r ) + ;an(r)ln(r,r )}rdr = %Pn(r ) (4.10)

0

[ @2 1 (e, + B2g% o)1 (eoe) Jrar = o
. 9n 3r n'T'F 29, \F)tylrer ) rar %Qn

(r") (4.11)

Notice that eguation (4.11) may be obtained from (4.10) by
, z z zZ z
replacing fn by = and Pn by Qn'
Similarly substituting (4.2)-(4.5) into (3.12) and (3.13)

or (3.15) and (3.16) gives

[eo]

%-Pi(r') +nZ£Pi(r')cosne' + Q;(r')sinne'] =

2 .
= J J {[%-ao(r) + Z(Gn(r)cosne + &n(r)sinne)] .

0 0 n=1

[18

S : T . 7k v
35},In(r,r ) +n215},1n(r,r Ycosn (6-6 )] + [Ego(r) +nZan(r)cosn6 +

+ Bn(r)sinne)][%3nzln1n(r,r')sinn(e—e')]}rdrdG, (4.12)

[eo]

l-Pe(r') + Z[P
0

6
2 n
n=1

(r')cosnb' + Qg(r')sinne'] =

am(t 1 ©

= I J {—[ E‘Bo(r) + z Bn(r)cosne + Bn(r)sinne]

0 ‘o n=1

[%'%}.Io(r,r') + E%r,ln(r,r')cosn(e-e')] + [%—a (r) + Z(Qn(r)cosnev+
n=j o] n=

+ &n(r)sinne)][%;z nIn(r,r')sinn(e—B')]}rdrde (4.13)
=1



20.

After performing the 0 integrations and comparing coefficients

in (4.12) and (4.13) we obtain

r 1
Po(r )

_=1]}—'

0

=R i

PS(r')

t 5
J ao(r)E},Io(r,r')rdr

L0
f I Bo(r)E},Io(r,r')rdr

t
1 . 3 , ,
E'Pi(r ) = Jo[ si,In(r,r o (r) + %,In(r,r )Bn(r)]rdr
1 6 toa
T Qn(r') = -Jo[ 5},In(r,r')8n(r) + %wIn(r,r')an(r)]rdr
1 6 t 3 n .1
s Pn(r') = Jo[- 5}|In(r,r )Bn(r) + ;3In(r,r )an(r)]rdr
1 (t 3 n
T Qi(r') = [ 5}'In(r'r')&n(r) - ;3In(r,r')8n(r)]rdr

0

Notice that equations (4.18) and (4.19) may be obtained from

(4.16) and (4.17) respectively by replacing .Pi

6 r ~
Qn by - Qn, an by - Bn' and Bn by an.

Then to summarize,
In Problems A or C use:
t 2
z', |0 . n®_z .
- + = da
Jo[ fn (r)arIn(r,r ) rzfn(r)In(r,r )]r r

In Problems B or D use:

0
by Pn'

P (r')

]
1
S|+

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)



t
[
0[‘g'r.In(r,r-)Bn(r) + %'In(rrr')an(r)]rdr - %{ g

t

(r*)

[

3|~

[ g}.ln(r,r')an(r) + %uIn(r,r')Bn(r)]rdr = Pi(r'),

0
where for the punch or crack problems the limit of integration,
is replaced by «® or ¢ respectively.

We could set about now to find the solutions of each of the
integral equations (4.20)-(4.22). The fz(r) may be readily
found in equation (4.20), but the solutions of (4.21) and
(4.22) would take much more work. However the work can be
minimized by the following result. Agéin Lardner has shown [15]
that for the crack problems equations (4.20)~(4.22) can be
rearranged to have the same form. The same is true for the punch
problems.

. . 1
Recall that In(r,r') is the Fourier component of R’ hence

I (r,x') = -l—J cosnddg ' ¢ =0-0"
n Ll R
0
If we let
I (r,x")
' _ nd n _ 9_ 1 _n '
L (r,x') =«r =L & == I (r,x') - ZI (r,r')
Then

a 1 = 1] _I_l_ 1
§}In(r,r ) Ln(r,r ) + - In(r,r ).

21.

(4.21)

(4.22)

t

(4.23)

(4.24)

(4.25)
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Also
2T
d 9 1 cosnd dé
[ ' 9 v = - = LOsIY = '
r 8r'In(r'r ) +r arIn(r,r ) - Jo R In(r,r ).
So
r'é- I (r,r') =-1rL {(r,r') - nI (r,r') - 1I (r,r")
dr'"n '’ n '’ n '/ S
and (4.26)
] .
| il L = - [} - 1
r arIn(r,r ) an(r,r ) (n+1)In(r,r ).
With the use of equation (4.24) the left hand side of (4.20)
becomes )

t ' .
In(r,r ) d

J {rfz'mL (r,r') 4+ n ——— = rnfz(r)]}dr.
o n n rn dr n

Integrate the second term by parts. The boundary term vanishes
in both the punch and crack cases since f:(r) +0as t > o,
and 'fi(c) = 0 . With the help of (4.24) equation (4.20)

may then be written

P (r'). (4.27)

E R
SN

t
z' n _z ' _
J {fn {(r) - T fn(r)}Ln(r,r ) rdr =
0
With the use of (4.26) the left hand sides of (4.21) and (4.22)
become respectively
t

%,j»{an(r,r')an(r) + In(r,r')[(n+l)an(r) - an(r)]}rdr,
0



23.
t

%.J {an(r,r')Bn(r) + In(r,r')[(n+l)Bn(r) - nan(r)]}rdr.
0

We again integrate by parts the second terms in each of the above

expressions. Both terms have the form

t
t
} In(r,r')Y(r)rdr = In(t,r')t§%t) - j Ln(r,r')?(r)rdr, (4.28)
0 0 ’
where we define
r
Y(x) = i;;lj sn+}y(s) ds. (4.29)
0

With the above calculations eqguations (4.21) and (4.22) can

finally be written

t

J [(n+l)& (r) - nB_(xr)
; n n

r'.r U .
— P.. +
p- P (x') AnIn(t,r )

ran(r)]Ln(r,r')rdr o

(4.30)

t

Jo[(n+l)§n(r) - n&n(r)

an(r)]Ln(r,r')rdr - %ng(r') + BnIn(t,r'),

(4.31)

where

w
]

t[(mna_(6) - n_(0)]
(4.32)

w
]

t[(n+1)§n(t) - n&n(t)]

Notice that the kernel of each integral equation (4.27),

(4.30), and (4.31) is the same, namely, Ln(r,r') « The
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method of solution of the integral equations will depend only
upon the value of the upper limit of integration. Therefore
only one integral equation need be solved for each of the punch

and crack general problems.



5. Solutions of the Integral Equations: punch problems

The integral equations for the punch problems are

Problem A: normal indentation

Jj[f:'(r) - %-f:(r)]Ln(r,f')rdr = - %-P:(r')
Problem B: tangential displacement
'O:I_-(n+1)&n(r) - nB_(r) - ran(r):‘an(r,f')rdr = ;rr-'p;(r-)
fn[(ml)én(r) - na_(r) - rB.n(r)‘]Ln(r,r')rdr = - %'Qg(r')

0

Notice that the right hand side of equations (5.2) and (5.3)
involve only one term since AnIn(t,r') and BnIn(t,r') + 0
as t > o,

If r'> a, then the right hand sides of the above equgtions
are known and the integral equations may be solved. In the above
three equations let
d _z n _z n d fn ]

arfa® " p 0 = gl

nd ,z
T artn ™)

" gi¢§(r) (n+l)an(r) - nén(r) - ran(r)

nd 0
artn @

n

(n+l)8n(r) - notn(r) - an(r)

25,

(5.1)

(5.2)

(5.3)

(5.4)

(5.5)

(5.6)
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1
Si(r) = - E-Pi(r) (5.7)
Si(r) = %—Pi(r) (5.8)
0
s () = - £ oY(r) (5.9)

If r< a the right hand sides of equations (5.4)-(5.6)
are known since the displacements are given there. Upon integrat-
ing these three equations we obtain for r< a:

¢§(r) = ¢ﬁ(r) + ci , _( k = r,0,z) (5.10)

where the ¢§(r) are defined as

" (r) = (5.11)
n n
r
a
r - = ' -n
¢n(r) = J[(n+l)an(s) - an(s) - san(s)]s ds (5.12)
c .
a
) = - -n
Qn(r) = J[(n+l)8n(s) - nan(s) - an(s)]s ds, (5.13)
r
and the Ci are constants to be determined later.
With the above definitions equations (5.1)-(5.3) all
have the same form, namely,
o
ntl & k . _ ok, o
J r drd)n(r)Ln(r,r ) dr = Sn(r JH{a-r'), (5.14)

0
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where H(r) is the Heavyside step function. The kernel,

Ln(r,r') has an integral representation (see Appendix I, AI.4)

©0

Ln(r,r') = —“2J Jn+l(r€)Jn(r'E)EdE .
0

Upon using the integral representation of Ln(r,r') we notice
that equation (5.4) is a Hankel transform over r' which may

be inverted to give

0 a
J n+tl d k (r&)dr = - l{ sﬁ(r)Jn(rE)rdr.

r E}¢n(r)Jn+l 2 0
0

Integrating the left hand side by parts and recalling equation

(5.10) gives

a ad a

n+lr.k k n+l k _ 1)k .
EJ r E@n(r) + Cn]Jn(rg)dr +£J r ¢n(r)Jn(r£)dr = ZJ Sn(r)Jn(rE)rdr
0 0
a
-3,
Multiply both sides by £ 2Jn+1(£t) ' t > a and integrate over
z

& from 0 to ® . Using results (AII.1l) and (AII.2) of

Appendix II:

a k k t ¢k(r)
2n+1[¢n(r) + Cn]d + [qu 2n+l —— 1’dr =
r —— r p- r (t2-r2)

" |

0 (fz-rz)

_3 2n+1
=27 I 2 ) J Sk(r)rn+ldr.
T(ntl) 7o °

Now multiply both sides by tdt L and integrate over t

(pz_tz)
from a to p. Using result (AII.3) of Appendix II :
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P a [¢% (x) + c¥] P
L%]&J 12: ]’dt}' 2n+1 - ]’n ar + [%]&J 2n+l¢k( )ar =
a (p°~t°) (t4-r*) a
a
_3 2n+l
2 * I~ )(p -a )% j Sk(r)rn+ldr.
r(n+1) o 7 |
Differentiating with respect to p gives
a
2n+1
[ ]]! 2n¢ (®) = (p2-a2) {3 Si(r)rnﬂdr -
2%r(n+1) °
k k
a [¢ (r) + C P a k
29%(  2n+1—2 n! 21% £ dt 2n+l[q) () +c ]
_[EJ r (az—rz)% drf + [;J 2 2 % 2. % dr.
0 a(t -rc) (p2-t2)

We require the Fourier coefficients of displacement discontinuity

to be bounded at p = a. In order that this be true, we must

have that
2n+1 a a k
=" K, . n+l 2% 2n+l[¢ () +c ]
— Sn(r)r dr = [EJ r " dr.

2°T (n+l) ‘o 0 (a?-r?)

Then finally,
P
o) = 2 o720 t dt 2n+1[¢ () + ¢ ar (5.15)
n'P! =P 2_,2y7 2.k ) )

(t°-r 0 (p2-t?)

The t integration in (5.15) may be performed to give an

k
alternate expression of ¢n(p):
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a
- y 2n+1
p 2n (p?__aZ) J r - -
) (a“~-r%)

[05(x) + &)
” dr {(5.15a)

k
¢ (p) =
n (pz__rz)

EREN]
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6. Results of Punch Problems

It is now possible to calculate the Fourier components
of the stresses on the plane under the punch. For r' < a
all expressions have the same form, that of equation (5.14):

€ 00

Sﬁ(r‘) = - 2 J J P g—rtb};(r)Jml(rE)Jn(r'E)EdrdE
0’ 0

© o0

= 2r'n-l %r,{r'l_nJ J rn+l g—r¢};(r)Jn+l(rE)Jn_l (r'E)drdE}
0" 0

After integrating by parts over r and using the solution (5.15)

together with the definition (5.10) we have

@® a
k -1 1- k k . 1
sir) = - 20" %r, r' nJoJ {[‘Pn(r) vrclo & gt [In(rE) +
, 0
. ®Pry (pE) atap
+;'Trnjj n — ’an_]}drdi .
a’a (p?-t?) 7 (t2-r)7p

Using result (AI.6) of Appendix I,

a
S (r') = 2[—12?-];’ -1 g—r,{r'l nJ [(I>k(r) +
0
o a
J__ (Et)
+ Ck]rzndr J J l(r'E)g—rJ -r-l'r_'l'gli—'— %E;idg}.
0 £ (e2-r?)



Integrate by parts over r:

[+ ]

k. o _ _ 21%_,n-1 é_ ,1-n . 3
s (r') = 2[n] r dr,{r Ian"l (r'€)E7ag -
a a
J__, (Et)
: J 2 [Pk + C];)]drj A ;!dt}
0 r t 1(t2-r2)

The integration over ¢ may be performed with the help of

(AII.4) in Appendix II.

a

1-2n
S];(r') = - %r|n—l %l{J _E.____ ;!dt .
d r| (tz__r|2)
t
d L 4 2n,.k k
. EEJ (t2-r?) a}[r (@n(r) + Cn)]dr}.

0

A final integration by parts gives

a t k k
s (') = - _4_ r|n"1 <_i_ J tl 2n (_i_J r2n+l[¢n(r) + cn] irdt
|
m dr') (g2opr2yt 4t (t2-r2)"

Hence equation (6.1) together with definitions (5.7)-(5.9)

and (5.11)-(5.13) give expressions for the Fourier coefficients

of the stress components.

Equation (6.1) still contains the unknown constants,

These constants may be evaluated after an examination of the

Fourier coefficients for displacement discontinuity. Problems

A and B will now be discussed separately.

31.

(6.1)
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Fourier Components of Displacement

Discontinuity (normal punch)

Recall that for Problem A the definition of ¢i(r) was

given by equation (5.4). Upon integrating that equation we have

fi(r)

¢i(r) = + C , r> a. (6.2) "

r

Also for r < a, from equation (5.10),
$Z(r) = 0% (x) + CZ. (6.3)
n n n

In order that ¢z(r) be continuous at r = a the constants
of integration of equation (6.2) and (6.3) must be the same.

Now since

fﬁ (r)

>0 as r > >,
n
r

and from eguation (5.15),
z .
¢n(r) +> 0 as r * o,

we have that the Cz must be identically zero.
n

From equation (6.2) and (5.15),

r' a n+l 2z
d
r,-nJ tdt r fn(r) *
)

(t2-r2y? 1, (r.z_tz)%

ff)(r‘) =

RN

, r'> a. (6.4)



A similar expression for the Fourier sine component of displacement
discontinuity, gi(r') is found from equation (6.4) by replacing

£2(r) by g.(r).

33.



Fourier Components of Displacement

Discontinuity (shear punch)

The determination of the Fourier coefficients of displacement
disconuity for Problem B is not as straightforward as that for
Problem A. Equations (5.5) and (5.6) are coupled. We must
therefore first find an expression relating the Fourier components
of displacement to the E;, E;, an, and Bn. Then we must solve
simultaneously the equations (5.5) and (5.6) and find an

expression relating an and Bn in terms of the solutions ¢§.

Recall the definition of a(r,0) and PB(r,9):

1 ,
a(r,8) = Aur,r + ;Aue,e
1 . 1 (6.5)
B(x,B) = (l--\))(;x&ur’e - Aue,r - ;AueL

Substituting the expansions (4.1), (4.2) and (4.3) into (6.5)

and equating coefficients gives

a (r) = £° +lﬂj:'r+9-ge
n n,r rn r °n
(6.6)
n_r 16
Bn(r) B -(l_v)(;fn + gn,r + ;gn)
From the definition (4.29)
r
- 1l n+l
an(r) = rn+l Io s an(s)ds
(6.7)
= 1 [f nnl
Bn(r) = T I s Bn(s)ds
r 0

Now the an(r) and Bn(r) may be discontinuous at r=a. To

34.



remind us of this we write (6.7) as

a r
- 1 n+1l 1 n+l
an(r) = T I s an(s)ds + L) J s an(s)ds
r 0 r
or
n+l r
- a - n+l
an(r) = 7 an(a)-+ vy J s an(s)ds
r r a
and
n+l r
= a = n+l
Bn(r) = T Bn(a) + 0T J s Bn(S)dS.
r r a

Then substituting (6.6) into (6.7a) gives

n+l
a

n+l
r

- r r n
[an(a) - fn(a)] + fn(r) + rn+l

an(r) =

If we define

h,_r 0
h(s) = s [fn(S) - gn(s)]
and
1 r
H(r) = —H-J h(s)ds,
r a
then
_ an+l _ . c n
a (r) = _n+l [an(a) - fn(a)] + £ (r) - = H(r),

B_(r) n+tl B _(a)
n - a
1-v rn+l 1-v

+ gg(a)] - gg(r) - E-H(r),

Adding (6.10) and (6.11l) gives

n

Z(r) = + h(r) - 2nr _lH(r),

R|»

(6.7a)

r
J sn[gg(s) - f:(s)]ds,
a

(6.8)

(6.9)

(6.10)

(6.11)

(6.12)

35,



where

_ B . (r)
z2(r) = ¢ [a_(r) + 7% ] (6.13)
and _
B _(a)
+1-
=a""a (a) + T+ g (a) - £ ()], (6.14)

Using (6.9), equation (6.12)' becomes

2n

r
Z(r) = + h(r) - e J h(s)ds.
a

|

In order to solve this equation for h(r), multiply by r and

differentiate. Hence

Integration gives

.S B _ds '
h(r) = -r Jr as [sz(s)]52n (6.15)

Hence after integrating (6.15) by parts, (6.12) may be solved

for H(r):
00
H(r) = -r“] 2(s)-385 4 A (6.16)
2n n
r s 2nr
Now for brevity define
n+l nt+l-~ n+l- r
r "a (r) = f(r), so r o ({r) =a "o (a) + J f(s)ds
n n n a
(6.17)

n+l= o
a Bn(a) + J g(s)ds
a

g(r), so rn+l§n(r)

1
It

rn+18n(r)



Then from (6.13)

where

and

The integral in

<]

2n
rs

Equation (6.16)

Then substituting

r

for fn and gi we have for r > a
r n+l 6 r 1 i
=2l + ]« —h e
2r 2r a
[+
n-1
- r

J Z(s) 4 _

r

B 1
= + ;-J P(s)ds,

r a

Z(r) =

n+lr-~
B=a [an(a) + Bn

1
1-v

P(s) = f(s) +

1
1-v

(6.16) may then be written:

then can be written

r

1
nrl T T avl J Fls)ds -
2r a ‘

(6.19) into (6.10) and

. 1 ds
> jr[f(s)~+‘I:U g(s)lg;-

(a)]

g(s).

QO
g-i—s-lds.
2n
s
QO
rn“1 P(s)
>n ds,
2 r s
(6.11) and solving

1
- E:G—g(s)]ds -

37.

(6.18)

(6.19)

(6.20)
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and
r
) _ a™1. o x 1 o1
gn(r) = n+l[gn(a)+fn(a)] + Tl [f(s) - -l-:-\-’-g(s)]ds +
2r 2r a
n-1 ®
1 d
= Jr[f(s) + = ae)]5 - (6.21)
S

The other two coefficients, g; and fi may be obtained from

. r r 0 6
(6.20) and (6.21) by replacing fn by 9. 9, by —fn,

an by &n' and Bn by -Bn. Therefore through the first of

(6.17) equations (6.20) and (6.21) give the Fourier coefficients

for the displacement discontinuities in terms of an(r) and

Bn(r).

It remains now to find the an and Bn in terms of the

]

solutions (5.15). Define the quantities Fn(r) and Gn(r)

with the help of (5.5) and (5.6):

d ,r - = -n Fn(r)

ot = [(n+l)an - nB - ran]r = - >
r > a (6.22)
G_(r)

d4 .6 = - -n n

3i¢n = [(n+l)Bn - no"n - an]r =- r2n

From definitions (6.17) equations (6.22) become

r

o (a) + (n+l)J f(s)ds - nan+l§ (a) -
n a n

(n+1)an+l

X

- nJ g(s)ds - £(r) = - an(r),
a
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r
(n+1)an+l Bn(a) + (n+l)J g(s)ds - nan+l &n(a) -
a
r
- nJ f(s)ds - g(x) = - an(r).
a

Add and subtract the above two equations to give:

1 r n+l - _
;Ja Y(s)ds - ¥(r) + 2—=[a (a) + B ()] = -F ()= G (r) = -¥ir)
(2n+1) r n+l _
== Jx(s>ds - x(r) + 2ot~ [3 (a) - B (@)] = - F (x) + G (x) & -x(x)
a
where
Yix) = £(xr) + g(x)
(6.23)
x(r) = £(r) - g(r) .
The solutions of these two equations are readily found to be
r
Plr) = ¥Y(r) + J \f-s(—s-lds + a"[&n(a> + Bn(a)] (6.24)
a
r
2n| X(s) r2® (- =
x(r) = X(r) + (2n+l)r SX-ds + (2n+1)— o (a) - B (a)]. (6.25)
QS a
From equation (6.23), and the first of (6.17):
rn+lun(r) = 4[Y(x) + x(0)]
(6.26)

M|Y(r) - x(x)].

P8 (r)
n
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Hence through (6.25) and (6.26) the o and Bn are

given in terms of the solutions (5.15), and the Fourier coef-

ficients of displacement discontinuities given by (6.20) and

(6.21) are completely determined in terms of the solutions (5.15).
The constants C; and Cg are determined in the following

way. The Fourier coefficients f; and gg must vanish at

infinity. 1In equations (6.20) and (6.21) both the first

and third terms do vanish as r tends to infinity. However the

second term is not identically zero as r tends to infinity.

This condition gives one equation relating C; to Ci.

Another equation relating the constants to eachother is obtained

by noting that the Fourier coefficients should be continuous

at r a. The left hand sides of (6.20) and (6.21) are known

for r a . We therefore have a second equation relating Ci

to Cg. These two equations are then solved simultaneously for

Cn and Cg. Hence the Fourier components of stress are completely
determined by the expression given as equation (6.1). This pro-

cedure will be illustrated by an example in the next section.



7. Unidirectional Shear Punch Problem

As an application of the results found in Section 6 we consider
a half space whose surface is displaced by an amount C in the
x-direction over a region r< a. In terms of our present notation,
Aux =C for rg a and Oxz =0 for r > a. In polar coordinates

these boundary conditions become:

= " = >
Orz Oez = 0 , > a (7
Aur = CcosB
r *xla (7
Aue = - Ccosf .

Now for r £ a the only non zero Fourier coefficients of
displacement discontinuity are
r 0
£, =C and g, = -C. | (7
All other components of displacemenf are zero. Hence from (6.6),

(6.7), (6.23), (5.12), and (5.13):

Hh
A
I

@
5
I
o

41.

.1)

.2)

.3)



From equation (5.15) the

2

k
¢1(p) =P

where k = r,0.

Performing the integratio

solution becomes for r > a,

P a 3k
-2J t dat J r’c)dr

2__2, % 2_ 2%’
(t°-r%) 7o (p"-t%)

ns gives

b}
k _ 2 k| . -1,a a(r?-a?)
¢1 (r) = -T;Cl{sm (-r-) - }
r
and
4 3 F. (r)
G =-fo .-
r3(r2—a2) r?
3 G, (r)
%ﬁi(r) =-%C]e_ 2 !!=——1.
r3(r2—a2) r?
Then r 0
3 (C+C.)
- ¥ir) = - F (r) - G (n) = -22 4 1;2
r(r2-a2)
0
(ct-c?)
4 a1
- X(x) = -F. (r) + G, (xr) = - = .
1 1 m r(rz az)%
From equation (6.24)
r

P (x)

4 3, r
n a (Cl

ar
2

STEN

(r°-

0 1 ds
< < }
1 r(rz—az)% a sz(sz-az)%

r 6
2)& (C1+Cl).

a
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From equation (6.

X(r) = %
-4
m
So from (6.23)
fr) = %(YP+x) =
;J(r) = Y (Y-x) =

Then in order that fr >0 as

Now

=

2

L

1 1
-EJ [£(s) - 1- v

r

25)

as(cr—ce){ —r 3r2J R }
1 (p2-a2) as"(sz-az)l’
r 6
(cl—cl ) { 2r3 _ a’r }
a (rz_az)% (rz_az)%
3. r
z cl ar _ r3 ]CG}
a(rz—az)% (rz_a2)5 a(rz-az)% 1

i.{[ ar -
m (rz—az)%

1

r

a

r

3
r3 ]Cr+ £ cl
2. % 1 2 Y| °

a(r?-a?) a(r?-a?)

r > ©® we must have that

g(s)]ds >0 as r > o,

J [£(s) - — g(s)]as =

1-v

o

r ©
(2?_a2) 3301-V) ]‘Cl'cl)}
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Next we set r = a in either of (6.20) or (6.21) and

use equation (7.4):

_ 2 r (2-V) ds
¢ = m Cla 1-v J 2 ok °
s{s“-a“)
a
Hence
r 8 _ (1~-v)
c; = ¢ Gy € -
Then
4 (1-v) Cas
f(s) = g(s)=- = -
: ™ (2-V) (Sz;az)ﬁ

Substituting (7.6) into (6.20) and (6.21) gives

. b
r _ 2 T -1 a. av (r?-a?)
fl(r) =5C {5 cos (r) + Sy ——;;—— }
| .
) _2c -l,a, T av (r?-a?) .
9,08 =3 {cos -3+ 2 }

Then from equation (4.1) for r > a:

%
_ 2 T -1 ,a av (rz-az)
Aur(r,e) = C {5 cos (;0 + 35 —;;——— }cose
2 - =1 .,a v av (rz-az)%
Aue(r,e) == c {COS (;0 -3 3y sinf .
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The Fourier components of stress are calculated from

(6.1). Recall from (5.8) and (5.9) that

r _r._r
s] (r) = T Pl(r)
6 __x B
Sl(r) = -7 Ql(r) .
So for r < a
a t 3.r
£Pr(r)=_i.‘ij —4at 4 f__cL.d_s__
T 1 T dr t(tz_rz)% dt (tz_sz)!!
4 2__ 2% 2 _
2
Hence
o (r,6,0) = - —H_ C (E-z—_-li);! + -a~zco -1(5—) cosb
zr "7 B T(2-V) 2 r~3 s .a
L 2
- n (@2-r?)*  a? -1z .
.6 (x,6,0) = TG) C{ = + r?'cos (a)}51n6 .
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8. Solutions of the Integral Equations: Crack Problems

The integral equations for the crack problems are obtained

from equations (4.30) and (4.31):
Problem C: crack under normal loading
c

J {fz'(r) - E-fz(r)}L (r,x'")rdr
0 n r n n

]
|
E R

P (r")

SN

Problem D: crack under shear loading

(o}

J {(n+l)& (r) - né (r) - ra (r)}L (r,r')rdr
6 n n n n

rl

(o}

0

\

If r' < c¢ then the right hand side of equations (8.1)-
(8.3) are known and the integral equations may be solved. In

the above three equations let

z
z z' n _z n d fn(r)
wn(r) = fn (r) - T fn(r) =r a‘r[ r—n- ]
w (r) = {n+l)a_(r) - nf_(r) - ra_(r)
n n n n

9 = -
wn(r) (n+1)8n(r) - nan(r) - an(r)

46.

(8.1)

——-Pr(r') + A I (c,r")
T n n' n

(8.2)

J {(n+l)§n(r) - nan(r) - an(r)}Ln(r,r')rdr =_§:-Qg(r') + BnIn(c,r')

(8.3)

(8.4)

(8.5)

(8.6)
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Z, Wy _ _ 1.z, ,
Sn(r ) = - Pn(r ) (8.7)
Si(r') = %l-Pi(r') +A I (c,r') (8.8)
6 ] i _Ii 6 ' ]
Sn(r ) = - . Qn(r ) + BnIn(c,r ) . (8.9)

Then equations (8.1)~(8.3) all have the same form, namely:

C

: J wm(r)L (r,r')rdr = Sm(r') , r' < ¢ (8.10)
n n n
0
where w:(r) is an unknown expression and S:(r') a known
function apart from a constant in equations (8.2) and (8.3).
From equation (AI.4)

(=]

Ln(r,r') = - ZJOJn+l(rE)Jn(r'E)EdE .

Thus equation (8.10) takes the form

Cc ®@

JOJOw:(r)Jn+l(rE)Jn(r'E)ErdEdr = - asﬂ(rf) . (8.11)

Now if we let S:(r') be defined for the moment for all r',
then equation (8.11) is a Hankel transform which may be inverted
to give

C [oe]

Jo Jh+l(r5)w:(r)rdr = - %Josﬁ(r)Jn(rE)rdr .
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Multiply both sides by Ttk (Et)El’ and integrate over § from
0 to ® . Here 0 < t<c. Using the results (AII.5),

(AII.1) the integrals over & may be performed to give

nth ¢ w:(r)dr 1 t Sz(r)rn+ldr
¢ Th, 2o T o s e
& rn(rz—tz) 2t (tz-rz)

Finally by multiplying by ta—n(tz-pz)-% and integrating over
t from p to ¢ we have that
c c n ’ c t m n+l
J tat J wn(r)dr - gJ at Sn(r)r dr
. (tz_pz)% . rn(rz_tz)’! t2n(t2_._p2)3: 0 (tz_rz)%

On the left hand side we change the order of integration and switch

the limits to give

c;wﬁ(r)dr r tdt - ¢ w:(r)dr
[ 2

. . (8.12)
(t2-p?) (r?-t?) ] o T

n - n
r
p

\

After differentiating equation (8.12) with respect to p the

solution is

, p<c . (8.13)



9. Results of Crack Problems

We now use the solution (8.13) to calculate the stress
and displacement discontinuity components for the normal and

shear crack problems.

Normal Loading

Recall that for the normal loaded crack wz was defined

by equation (8.4). Solving that equation for fz(r) involves a

straightforward integration and gives

where we have used equation (8.7) and the fact that fz(c)
= 0. An identical relation relates the other Fourier component,

g: to Qi : (Recall the remarks following equation (4.11))

c t

gz(r) - l'rnj dt J
n 72 N t2n(t2_r2)’5

+
Qi(s)sn 1ds

5 (tz_sz)% :

. Z .
Since Pz(r) and Qn(r) are the Fourier components of

the stress Gzz(r,G,O),(see equation (4.5)) we have that

N

27

P (r)
{ , } = 4d-v) J a (r,e,O){g‘.’i:g}de
0 (r) U o zz 1

S N3
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(9.1)

(9.2)

(9.3)
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Then the Fourier components of displacement discontinuity are
z c t 2q _n
{fn(r)} __4Q-v) rnJ dt J sds J f_?zz(s'e"o){cosne'}de,
: - . .
9o (x) mu (£2-r2) Wy (£2-s2) % 2D sinng”
(9.4)
The displacement discontinﬁity is then found by using
equation (9.4) in the Fourier series (4.1):
i (o] t ’ 27
bu_(r,6) = - 4‘1"’) J ‘:t - %J. '%IS_Z_IJ ozz(s,e-,O){s +
T U (t°-r®) (t°=-s%) Yo

o
+ ) [*2]"cosn (6-0" )}de- .
n=j t2
After performing the sum the displacement discontinuity can

finally be written

C t21'|'

Mu (£,6) = - 2(1-\))J dt IJ
z w2 (t2-r2) ¥,

(t*-r?2s%)c  (s,0',0)sdf'ds
ZZ

0 (tz-sz)%[t“+r252-2t2rscos(6-0')]

(9.5)

z
In order to calculate the Fourier component of stress Pn(r)
we return to equation (8.1). For «r' > c equation (8.1)

z
together with (9.1) give the Fourier component Pn(r):

c @ c t z n+1
P (s)s ds
e - o gl S B e o
o’ 0 £ (e2-r)y ¥y (£2-s?)

(9.6)



Equation (9.6) may be written

c ® c 3 n+l
Pz (r') = =2 4 {r'n+lj J rn+l a {J ______dt ¢ P___n (s)s _ds..
- +ldr’ 2
n g ® ldr ol dar N £ n(tz_rz)12 Jo .(tZ_sz)5

'.Jn+l(r£)Jn+

l(r'E)dEdr} .
After integrating by parts over r and interchanging the
orders of integratibn of r and t, the integral over r may

be evaluated using the result (AII.6) in Appendix II.

© (o]

J
2oy = (Bl 4 g ol vEy £ ntk "
Parh) = ) i dr‘{r J‘,Jn+l(r 2] dEJo S

Integrate over £ using the result (AII.5) in Appendix II

and perform the r' differentiation:

c t 2 n+l
,—nJ tdt J Pn(s)s ds
r —_t n__
]

2
Prz](r') = - E 3 5 .
0 (rl 2__t2) (t2_52)
Finally the t integration may be performed by using result
(AII.7) to give

b

+
P:(s)sn lds

2 € (c%s?
5

Pz(r') = - a
n Tr (r'z-cz) 0 (r'z—sz)

In view of the remark after (4.11) an expression for Q: may
be found by replacing P: with Q: in equation (9.7).

. . . 2 t4 . .
Substituting the expressions for Pn and Qn into the expansion

}.

(t2-s?)

(9.7)
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(gt)dtJt P:(s)sﬁ+lds

Y

}



(4.5) and using equation (9.3) the normal stress is given by

[o] 2T

o (r',e',0)=——i—— J (.cz___s_z_)_sﬁlij o (SGO){%+
zz 1T2(r.2_c2)12 12og2 ., 2% e
¥ [r$J“cosn<e-e-)}de .
n=1

Thus after evaluating the sum, the normal stress on the plane

of the crack is:

1 2T (o2.62)%  (s,6,0) sdbds
o (r',0',0) = - —m L 22 .
2z 72 (r'2-c?) 0’ 0 r'2+sz—2r'scos(6—6')

This stress component has the familiar square root sing-
ularity at the crack edge. A stress intensity factor, KI(G')

at position 8' on the crack edge may be defined such that

o (r',8',0) VK (6')(r'-c)_%' as r'+ c.
zZZ I

\

Then
C 2

KI(G') = - ~—————%J J
2 (2¢c) ¥ 0 c?+s%-2cscos (6-6")

1:0 (s,0,0)sdbds
zz

If the traction on the crack is axi-symmetric, ie.

o (r',6,0) =0 (r',0),
Y44 ZZ

52.

(9.9)

(9.10)
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then the stress intensity factor becomes the well known result

C
0 (s,0)sds .
2. J z2 — - (5.10a)
m(2c) - Yy (c?-s?)

Shear Loading

The case of a crack under shear loading has been considered
by Lardner [15] , where expressions for the Fourier coefficients
of displacement discontinuity and stresses on the plane of the
crack have been found. The following is a summary of his findings.

From the definitions (8.5), (8.6), (8.8), and (8.9),

together with the solution (8.13) we have

(n+)3_(x) - nB_() - ra_(r) = - r "[F_(x) - A M ()]

. (9.11)
(n+l)§n(r) - n&n(r) - an(r) = - r—n[Fn(r) - BnMn(r)]’ '
where
F_(r) c . t [p* (s)
n 1 2nd at n 23
=TS Y &) Tan,o a%) )6 T .y (8:12)
G_(r) 72 t(t2-r%) ¥y o (s) ] (£%-s?)
n r n
and n c t on
Mn(r) = %'Eh %}j 2n 2 EJ — 3 : (9.13)
c c £ (e2-r2) Yy (c2-t?)



To solve equations (9.11) for an(r) and Bn(r), we

define the quantities

Y(r)

rn+l[an(r) +B_(r)]

x(x) = 2™ o_(x) -B_(n)]

Then adding and subtracting the two equations (9.11) we have

r .
V() - %J Y(s)ds = ¥ (r)
0
R r
x(r) - ‘@%’J x(s)ds = x(r),
0 ! .
where
Y(r) = F (r) - G (r) + (2-v)nH (c)M (r)
n n n n
Xx(r) =F (r) + G (r)4nv(2n+t1)H (c)M (x),
n n n n

and Hn(c) satisfies the equation

(o]

n(2-v)c" ()1 + cl’“Jo — 1- - ds

c
M_(s)ds 'I [F_(s) - c_(s)]
The constant Hn(c) may be written with the help of (9.12)
and (9.13):

(o]

H (c) = - [2(2-V)nﬁann]_1J sn(cz-sz)5[P§(s) - Qg(s)]ds '
0
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(9.14)

(9.15)

(9.16)

(9.17)



where

(ST

The solutions of (9.15) are readily found to be

r
Y(r) = ¥(r) + ] ¥ (s)ds
0 s
c
_ _ hv(2n+l) 2n _ _ 2n| X(s)ds
X(r) = ;;II—- Hn(c)r X (x) (2n+l)r J 52n+1 .
r

Hence an(r) and Bn(r) are known (through equations
(9.14) and (9.18)) in terms of the préscribed data in the form
of equations (9.6) and (9.7).

Next we calculate the Fourier coefficients, f;(r) and

0
= in terms of the known an(r) and Bn(r). Recall that

a(r,0) = Au (r,0) + lﬂu (x,0) + lﬂu (r,9)
r,r r r r 0,6
Blr,0) = (1-v) [2Au_ _(x,0) - du, _(r,0) - LAu (x,0)]
! r r,0 ' 0,r "’ r 7' :

Then substituting the expansions (4.1), (4.2), and (4.3)

into (9.19) and comparing coefficients, we have:
r lr n?®
0Ln(r) N fn,r + ;fn *
n_r 6 16
] -— + .
Bn(r) 1 v)[;fn * gn,r ;gn]

According to the definition (4.29), we have that

55.

(9.18)

(9.19)

(9.20)
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o (r) = £ (r) - ZH_(r)
(9.21)
0 n
B (r) = (1-v) [gn(r) +TH (0]
where
r
H(r) =1r nJ h (s)ds ,
n n
0
and ‘ ' (9.22)
nr._r 0
hn(s) = s [fn(s) - gn(s)]
Combining equations (9.21), with the help of (9.22)
gives
r
h (r) - Eﬂj h (s)ds = r"[3_(r) + (1- 1B )] ,
n r ) n n n
whose solution is given by
c
h (r) = - r2n—1j 9-{s“+1[a (s) + (1~v)-lé (s)]}s-znds. (9.23)
n ds n n
r \
Hence from the first of (9.22), Hn(r) is known as well.
Then from (9.22), fi(r) and gg(r) can be written
c
B (s)
r -1 s,n r.n n s, n r.n
£(r) = ’Ej {an(s)[(;) + QY] - A5 [D" - & ]}sds
r
(9.24)

%m = Ao @ [®&" - & B“(S)[(in + 5" }sa
In't 2r) \Ma'® L s T L s Sas-
r
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The Fourier coefficients, fg(r) and gz(r) may be
obtained from equations (9.24) by replacing f;(r) with
r(r) and e(r) with —fe(r) a (r) with -B (x)
£ n n " “n n't

and Bn(r) with &n(r).

Next the stress components, orz and oGz may be cal-
culated. Still summarizing Lardner's results, substitute (9.12)
and (9.13) into equations (4.30) and (4.31) with

r' > c. The integrals over r and t resemble those

found in (9.6) and they may be treated in the same way.

Hence

r, , r
Fn ") 2 [ tat - 2 )

6 = ﬂr'n+l Jo (r,z_tz)% jo (tz_sz)% 5 ds -
Q (r') : 0 (s)

n n

o] t
- (c){ 1+nv }{E I (c.r') + —2 J tdt 3[ <24 }.
n =(1-v-nv) f{r''n e M (2o (c2_52)5

(9.25)

The expression in the last bracket of (9.25) may be simplified

to the expression

4an
—nn
qn+l o

(r 2)% ’

where En is as defined just after equation (9.17).
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Since —an(c) = c&n(c) and from (9.7), after evaluating

the t integral in the first term, equation (9.25) becomes

r r
P (xr') c P (s)
i ) = {J (CZ_SZ)%J ) Sn+2ds +
Y s2)

0, , (r'2-c?) (r'2- [ 8
Qn(r ) Qn(s)

(o]

1 nv+l n, 2 2.%r.r 0
+ —E:G{nv—1+v}Jo s (c*-s?) [Pn(s) - Qn(s)]ds} . (9.26)

The other two Fourier conponents may be found from (9.26)

. r . r 0 . )
by replacing Pn(r) with Qn(r) and Qn(r) with Pn(r).

Now since

Pi(r') 27
= g_il;__v)J o (r',e',O){C?S ne'}deg’
X il ] zk sin n0
Qn(r')

equation (9.26) with expansion (4.5) gives, after summing:

¢ 2m 2 2.%
c (r',0',0) = 2 %J (c_§§_) {0 z(s,B,O)Dl(r‘,s,e,e') -
Tz w2 (2-v) (r'2-c?) ¥ ¢/ r

- Oze(s,e,O)Ml(r',s,B,B')}sdeds,
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RTSLIPYPA ¥
-2 (c“-s5%)
o (r|lello) = JJ {G (slelo)D (r'lslele') +
z0 1[2 (2-V) (r,z_cz);: P z0 2
+ Uzr(slelo)Mz(r'lslele')}Sdeds ’ (9.27)

where

Vs +\)(sz-!-r'z)cos(e--e') - 2sr'

Dy (x"is,0,0") 2r' P

cos (6-0') -

2, .2 oy '
(1-v)cos (6-0') - _lg._ p{8+r'%)cos (6-6") - 2sr
2r P

D2(r',s,9,6')

2__2
Ml(r',s,e,e') [l + v'r—irﬁ ]sin(e—e')

r'?-g?
P

M,(r',s,0,0") = [1 -v - v Jsin(6-6")

P=rx'?24 g2 - 2sr'cos (6-0").
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10. Some Applications of the Crack Result

A few applications of the results found in section 9 are
presented here. The first consideration will be two models of

penny-shaped cracks under axisymmetric loading.

The Barenblatt Model

'

Consider a penny shaped crack whose surface is loaded by an
axisymmetric normal traction, Ozz(r,O). As can be seen from edUation
(9.9) the stress becomes unbounded at the crack tip r' = ¢. Hence
the material around the edge of the crack would not behave according
to the linear theory of elasticity. 1In the neighbourhood of the
crack tip there would be some zone where the material could be
assumed to behave in a non-linear elastic manner. Barenblatt has
proposed a model [L7] (for a Griffith crack) in which there exists
a zone of non-linear elastic behaviour extending a short distance
from the crack tip. This zone is assumed to be coplanar with the
crack itself. The Barenblatt model ﬁay easily be extended to the
penny shaped crack. For this model the size‘of the non-linear region
can be found as well as a non-linear integral equation for the
displacement discontinuity in that region.

For a penny shaped crack of radius ¢ with a normal traction
czz(r,o) given, suppose the non-linear region is a ring in the
z = 0 plane extending beyond the crack tip to a distance a.

Assume that a - ¢ 1is small compared to c¢. According to the model

the stress is a non-linear function of the separation of the atomic



6l.
layers which occurs in the edge region ¢ < r < a. Denote Au (r)
z
as this separation. Hence
Ozz(r,O) = f[Auz(r)] c <r < a. (10.1)

Further, according to the model the stress intensity factor at

r = a reduces to zero. From (9.10a) therefore

¢ o, (r,0)rdr a £[Au_(r)]rdr
4 = 0. (20.2)
0 o]

% 2 2%

(az-rz) (a”-r")

Let d =a - c, and in the second integral let the variable
s =a-r. Nowboth 4 and s are small compared with ¢ or a.

Hence the second integral becomes approximately

2" Id £[du_(a-s)]ds

2 .
0 s%

If we denote the stress intensity factor

2 2% 7
(c"-r

-2 c Ozz(r,O)rdr
7 | )

then equation (10.2) becomes approximatley:

d f{Au (a-s)lds
K = l.f z . . (10.2a)

0 s

Now from equation (9.5) for an axisymmetric load the displacement

discontinuity in the non-linear region c < r < a reduces to

_4(1-v) Ia g(t)dt (10.3)

™ 2%’

M (1)
z r (tz—r )
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where

g(t) = 55 .

It sozz(s,o)ds
0 (tz-—s )

If ¢ <t <a then with (10.1) g(t) is given by

o] t
rozz(r,o)dr rf[Auz(r)]dr

g(t) = —T t . (10.4)
. (t2—r2)% . (t2—r2)% :

Since t = ¢ the first term of (10.4) is approximately equal
to - gi2c)%KI. In the second term again let the variable s = a - r.

Then the second term becomes approximately

d
(2c)% [ f[Auz(a—s)]ds

2 act (t—a+s)li .
So
d f[Au (a-s)]ds
g(t) = 2(2e) %3 L (20.5)
(t-a+s)
a-t

Now in (10.3) 1let the variables p=a -r and t' =a - t. Then

(10.6)

_4(1-v) IP gla-t')dt’
k

mH(2¢) s

Auz(a-p) =
0 (p-t')

From (10.5) we have that

d f[M (a-s)lds
gla-t') = g-(zc)12 %—I z - K .

o (s_t,)& I
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Hence the equation (10.6) can be written

2(1-v) 11 prd f[Auz(a-s)]dsdt' P at "
bu (ap) = - =5 N Tow b
olt: (p-t') “(s-t') o (p-t")

After performing the t' integration we have approximately

d

LR
4(1- 1 -
bu_(a-p) = _(u_\_))_ p”KI -o=| o % £lAu_(a-s)lds| . (10.7)
0

Equation (10.7) thus provides a non-linear integral equation
for the displacement discontinuity Auz(p) in the non-linear edge
region. For a given non-linear relation Oéz(r,O) = f[Auz(r)],
¢ <r <a and a given stress intensity factor KI equations
(10.2a) and (10.7) determine the size d of the non-linear
region and the displacement in that region. Thus the behavior in
the non—}inear edge region depends on the external loading OZz(r,O)
only through KI. Willis {18]found the same result when applying
the Barenblatt model to a Griffith crack. So as long as the edge

region is sufficiently small its size is the same for penny shaped

and Griffith cracks.



The BCS Model

Another approximation that deals with the.unbounded stresses
at the crack tip is the BCS model. In this model we assume the
existence of a zone of plastic behavior near the crack tip. The
BCS model can be readily applied to the penny shaped crack under a
shear load. 1In this case the plastic zone is an annulus lying in
the plane of the crack occupying tﬁe region ¢ < r < a. 1In tﬁis
application consider a penny shaped crack with the axisymmetric
boundary conditions Oez(r',O) given for 0 < r' < c and

Oez(r',O) =0,c<r'<a (01 is the yield stress of the material).

1
We may use the second of (9.17) to find an expression for
Oez(r‘,O). However some calculation can be spared by returning to
equation (9.16). For the axisymmetric case all we need is the
coefficient Pg(r'). Recall that P;(r') may be replaced by

0

Po(r') in (9.16). With n = 0 the second term is zero since
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from (9.11) and (9.32) An and Bn are zero. Then from equations

(9.16) and (9.5) we have '

-2 [c Oez(s,O)sz(cz—sz)%ds

o, (x',0) = -
0z ﬂr'(r'z—cz)% o (r'2-g?2)

The stress intensity factor for a crack of radius c¢ becomes

(10.8)

c s20 (s,0)ds
K -2 6z
III ]

7 (1-v) ¢ (2¢) P

0

In applying (10.8) to the BCS model of the penny shaped crack,



the stress intensity factor is to vanish at r' = a:

¢ 520 (s,0)ds a 320 ds
0z + 1

— = 0,
0 (a2-52)12 (a2—sz)li
Thus
c 2
s 0, (s,0)ds o - ‘
[ bz = - 2L1a’cos 1(90 + c(az-cz)%]- (10.9)
2 2. % 2 a
0 (a"=-s")

Equation (10.9) then enables the width (a-c) of the plastic
zone to be determined in terms of the applied load.
If the plastic width (a-c) is small compared to ¢, then

equation (10.9) together with (10.8) gives approximately

ﬂgl~v2(2c)%K = (a2—cz)li
20 I1I
1l
orxr
{ﬂ(l-\))KIII }2 N (a—c)
201

This result for a small plastic zone agrees with the

\

corresponding result obtained for a strip crack [12].

Unidirectional Shear Tractions

The final application of the results of ection 9 to be
presented is the case of a unidirectional shear traction applied to
the surface of a penny shaped crack. This application follows
directly from the results by Lardner summarized in the second part
of section 9. Again a summary of Lardner's work will be given

here.
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Let a penny shaped crack of radius ¢ be subjected to the
traction ozx(r,e,O) = k(r), ozy(r,e,O) =0, r < c¢c. In polars

the boundary values become
ozr(r,e,O) = k(r)cos 0, oze(r,e,o) = =k(r)sin 6, r < c.

. r
The only non zero Fourier components of stress are Pl and Q?.

So for r < ¢,

r 4T (1-V)k(r)

Pl(r) = m
3] _ —4m(1-v)k{r)
Ql(r) = " .

For r' > ¢, from (9.16) and (9.5) we have

v o _ ~-2cos 0 (€ 2 2% [ p2 2(1+v)]
Ope (£:0":0) = —==—=——o5 | (=P k(p) 2 ¥ 2 dep
mr* (' "-c”) Jo lr' -p

o [ v [ p? . 20-2v]
2sin 6' 2 2 P 1-2v
o_,(r',8',0) = (c™-p”) k(p) + === pdp,
2 PR Lr,z_pz 2-v J
and then
€ 22k
0, (r'/8',0) = - — 2 %{J R e
m(r'?-c?) 0 r'?-p?
C
2 cos 26 J (cz—pz);’k(p)pdp} .

rl
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11. Appendix I

Just after equation (5.14) an integral representation
of the kernel Ln(r,r') is used. This representation may be
found as follows.

Recall from equation (4.23) that

27
1 cos n¢d¢, where ¢= 6-0'
m R )

In(r,r')
0

27

1 J cos ngdg
= 2

v .
r 0 [l - 2-1,—'cos + E-]%
r r.z

This expression is an integral representation of a hypergeometric

function. 1In particular,

2

2 r .n r
') = ——— (= +&;n+l;—— AI.
I (r,r') T 0B (5.m) (r.) 2Fl(%,n Yintl r|2). (A1.1)
where B(a,b) is the Beta function.
By the transformation formulae for 2Fl we have [20]
r? r?
F. (3,n+%;n+l;—) = _F. (n+},%;n+l;—)
271 . 271 V2
r r
- - L}
= 1+ 17270 p (vt netione ;-5 ) (an.2)

(r+r')2

In turn the hypergeometric function in (A1.2) may be ex-
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pressed as an integral involving the product of Bessel functions

(19} ..
, 'y 2n+l
2F1(n+%,n+%;2n+l; drr’ ) = (orr ) n F(n;iiié?)
(r+r')? (rx')
Since

_ I'(n)T (%)

we have finally that

0

In(r,r') = 2j°Jn(rE)Jn(r'E)dE .

Now recall from equation (4.24) that

I (r,xr")
vy = A3l
Ln(r,r )=x Br[ I 1.

hence we have the important result that

©0

Ln(r,r') = - 2j°Jn+l (rE)Jn(r'E)EdE

0

.

Jn (rE)Jn(r'E)dg .

(AI.3)

(A1.4)

In the derivation of equation (6.1) it was necessary to

combine the two terms:
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, * P tJ_(pE)dtdp
n n _
Jn(rE) + T j J '—j;——————1 n-1 =T (AI.5)
ala (p?-t2)*(t2-r?) % .

The first term may be represented by the integral

(Et)dt

® J
J (cE) = i ] nE%J nn15

r

(t2-r );2 .

In the second term of equation (AI.5) the integral over p

may be performed. Then (AX.5) can be written

® I, (Et)dt rw J_, (Et)at
_ 2.5 nl.% 1 4 n-%
v &%l = e | &)

¥ dr 3,2 _2
r (t2-x?) £°r a (t*-r®)
o0 (2]
Now in the second term fa = fr - f: . The integral

f: may be integrated by parts and then differentiated to give:
2% nf & Jn+%(£t)dt 3 Jn (Et)dat
T= s n-% 2k T8 e % 2 %
- (t2-r?) (t2-r?)
_id y (R4
% dr ; 2%

£°r (t2-r?)

Combining terms we finally have

(AX.6)

n-1 J I (EE)A .
¢ Y

(t2-r?)
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12. Appendix II

The following are some results previously referred to.

They are placed in order of use.

[+

s (r'2-t2)?(t%2-s?)

L n
y 2°r H(t-r)
J (x&)J_,, (Et)E“ag = (ATI.1)
jo n nt+k F(%)tn+%(t2—r2)%
® N T(22§;)rn
J (£8)J , Et)E "df = T—— (AII1.2)
, B n+X 2%t“+3r(n+1)~-
p
tdt T
- (AIT.3)
. (pz_tz)%(tz_rz)% 2
” . & %™ taer)
J ,(x*E)d (Et)E"aE = — (A1I.4)
0 n-1 n-% tn li(tz_r,z)!!
* L ntl
y 2°t" ‘H(r-t)
J_ . (xE)g , (Et)E“af = (AII.S5)
) n+l n+% F(%)rn+l(r2—t2)%
t n+l
r ~J (r&)dr _
"“ll"—j;_ (%0%5 %tn+%Jn+%(€t) (BII.6)
0 (t2-r2)
C
2 2.%
tdt (c”-s7) . r' > c (AII.7)
y Y (r'2-s?) (r'2-c?)
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Note that the integrals above involving the products of

Bessel functions are just special cases of the Weber Schaftheitlin

integral:
J (ot)d (Bt)t-x dat =
0 v H
0’\)1.. [\)+1J-X+1] . )
2 FL\)+1J;)\+1' \)—u-z-)\+1' vil; g_zl
2)\Bv-)\+11.. L—\)+1;+)\+1] T (v+1) B

Re (V+u-A+1) > 0, Rel > -1, O<a<B.
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