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Abstract 

The problems of displacement of the surface of an elastic 

medium by a circular punch whose face is non-symmetrical and of 

the penny-shaped crack whose faces are subjected to arbitrary 

tractions are reduced to a system of integral equations for the 

components of displacement discontinuity. This reduction is accom- 

plished by the use of the Somigliana formula. For the punch problems 
I 

the Fourier components of stress and displacement discontinuity 

on the surface of the medium are found. The special case of con- 

stant unidirectional tangential displacement is examined. For the 

penny-crack problem expressions for the stresses on the plane 

of the crack beyond the crack tip are found. Stress in3ensity 

factors are derived and Barenblatt and BCS models for axisymmetric 

normal and shear cracks are constructed. 
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1. Int roduct ion  

An i n t e g r a l  equation method w i l l  be used t o  i n v e s t i g a t e  

two types of  problems involving an i s o t r o p i c  l i n e a r  e l a s t i c  

medium. The f i r s t  problem i s  t h a t  of a f r i c t i o n l e s s  c i r c u l a r  

punch o r  die(whose face  i s  o f  a r b i t r a r y  shape and whose rad ius  

is a )  which indents  t h e  su r face  of  a ha l f  space by a prescr ibed 

amount. The second problem considered is  t h a t  of a penny-shaped 

crack of r ad ius  c (imbedded i n  t h e  medium ) whose upper and lower 

su r faces  a r e  loaded by equal and opposi te  a r b i t r a r y  t r a c t i d n s .  

The axisymmetric case where t h e  punch i s  given a displacement 

normal t o  t h e  su r face  of t h e  h a l f  space has been previous ly  in-  

v e s t i g a t e d  by Green and Zerna [ I ]  and by o t h e r s  [2,3,4] . Keer 

[51 has  found a s o l u t i o n  f o r  t h e  case  of t h e  non axisymmetric 

normal punch problem by t h e  use o f  a p o t e n t i a l  method. 

The case  where the  crack i s  subjec ted  t o  axisymmetric normal 

t r a c t i o n s  has been d e a l t  wi th  by, among o t h e r s ,  Sneddon [6,71, 

and C o l l i n s  [8] .  Sneddon used transforms t o  reduce the  problem 

t o  a s e t  o f  dual  i n t e g r a l  equations while C o l l i n s  used t h e  

Papkovitch-Neuber p o t e n t i a l s .  Again, Keer [5] used a p o t e n t i a l  

method t o  so lve  t h e  non-axisymmetric normally loaded crack problem. 

Another method has been introduced [91, o r i g i n a l l y  t o  c a l -  

c u l a t e  t h e  d e n s i t i e s  of  a r r a y s  of  d i s l o c a t i o n s .  This method 

has been shown t o  be use fu l  i n  p l a i n - s t r a i n  boundary value prob- 

l e m s  (101 and has  a l s o  been used f o r  c e r t a i n  axisymmetric ha l f -  

space problems [ I l l .  This d i s l o c a t i o n  method has been extended 



r e c e n t l y  t o  dea l  with c e r t a i n  crack problems i n  which t h e  crack 

is  viewed a s  a l a y e r  of  d i s l o c a t i o n ,  and an i n t e g r a l  equation 

is  obtained f o r  t h e  displacement d i s c o n t i n u i t y  ac ross  t h e  l a y e r  

[12,13,141. This method w i l l  be appl ied  here  t o  both t h e  penny- 

crack and punch problems. 

I n  Sect ion  2 t h e  Somigliana formula i s  derived.  This formula 

g ives  an expression f o r  the  displacement f i e l d  i n  a l i n e a r  e l a s -  

t i c  ma te r i a l  i n  which an i n t e r n a l  su r face  is  subjec ted  t o  c e r t a i n  

displacement d i s c o n t i n u i t i e s .  I n  Sect ion  3 t h e  crack and punch 

problems a r e  formulated and t h e  governing i n t e g r a l  equations 

a r e  seen t o  p a r t i a l l y  decouple i n t o  normal and t a n g e n t i a l  ex- 

press ions .  With t h e  use of  a Four ier  decomposition t h e  i n t e g r a l  

equations a r e  f u r t h e r  s impl i f i ed  i n  Sect ion  4. Up t o  t h i s  

p o i n t  both  the  genera l  punch and crack problems may be t r e a t e d  

mathematically t h e  same except  f o r  a l i m i t  of in t eg ra t ion .  

I n  Sect ion  5 t h e  i n t e g r a l  equations f o r  both  t h e  normal 

and t a n g e n t i a l  punch problems a r e  shown t o  have the  same form 

and t h e  equations a r e  then solved. From t h i s  s o l u t i o n  expres- 

s i o n s  a r e  found i n  Sect ion  6 f o r  t h e  Four ie r  c o e f f i c i e n t s  of  

displacement d i s c o n t i n u i t i e s  and s t r e s s e s  on t h e  su r face  of  t h e  

half-space.  The s p e c i a l  case  of  a cons tant  un i -d i rec t iona l  

displacement over a region r < a ,  z = 0 is  examined i n  Sect ion  

7. Expressions f o r  t h e  displacement d i s c o n t i n u i t i e s  and s t r e s s e s  

on t h e  su r face  of  the  half-space a r e  found. 

I n  Sect ion  8 t h e  i n t e g r a l  equations f o r  both t h e  normal 

and t a n g e n t i a l  crack problems a r e  shown t o  a l s o  have the  same 

form and t h e  equations a r e  then solved.  From t h i s  s o l u t i o n  



the Fourier coefficients for the displacement discontinuities and 

stresses on the plane of the crack are found in Section 9. 

The Fourier series are then summed giving expressions for the 

displacement discontinuities and stresses on the plane of the 

crack. For the case of normal loading a stress intensity factor, 

K (8)  at the crack edge is found. 
E 

The results from Section 9 are used in Section 10 to construct 

a Barenblatt Model for the crack under normal axisymmetric 

loading. Also a BCS Model is constructed for the crack under 

an axisymmetric torsional load. Finally in Section 10 the 

problem of a penny-crack under unidirectional shear loading 

is examined. This final application is due to Lardner in [151. 



2. The Somigliana Formula 

The derivation of the Somigliana formula for the displacement 

field ui(r) in an infinite linear elastic material subjected to 

certain deformations begins with the determination of the displacement 

field in terms of a Green's tensor. 

Consider a finite body B consisting of linear elastic material 

for which the elastic modulus components are 
'i jk2 

. The body is 

in equilibrium under given body forces whose components are 
fir 

under given tractions 
ti 

acting on a part S1 of its boundary, 

and under given displacements " i over a part S2 of its boundary. 

Since B is in equilibrium and because of the boundary values the 

components of displacement ui(r) must satisfy 
I 

'i jkk"2, jk + f i = O  
in B 

- 
'i jkk"2, kn j - ti on S 1 

u = U  on S 
i i 2 

(2. la) 

(2. lb) 

(2.1~) 

Here n are the components of a unit vector normal to the surface 
j 

S1. 
The comma notation is used to denote partial differentiation 

with respect to the indicated component of r. Repeated indices - 

are summed over 1, 2, 3. 

To construct a Green's tensor for this boundary value problem 

let r' represent a point inside B. With r' as its center - - 

construct a sphere SE with radius . Let B = B - S E  . Finally 
E 

let the Green's tensor G. , , satisfy: 
17 



Apply the Gauss divergence theroem on 

for r in B - E 

for r on S - 1 

for r on S2 - 

for r on 8s - E 

Letting E -+ 0 using equations (2.1) and (2.2) together with 

the fact that ui(g) are continuous inside B. (2.3) becomes 

If the medium extends to infinity some restrictions on the 

displacements and the Green's tensor must be imposed. In addition 

to the requirement that G (r,rl) satisfy equations (2.2) we 
Rm - - 

must also require that (SRis a sphere of a large radius R) 



be bounded and must balance the unit force at - r'. It is sufficient 

if we suppose r r O / r  and GQmlk (rIr')0(/r) - - as ) r l + w .  
G ~ m  - - - 

The displacements ui(r) must satisfy equations (2.1) and in 

addit ion 

ui(z) + 0 aslrl+ 

ru .(r) + O  asIrl+rn. 
il I - 

Then with the addition of the above,restrictions on Gij(r,r') and 

ui(r) equation (2.4) is valid even if B extends to infinity. 
I 

Now suppose that the body B contains a crack occupying a 

surface whose two faces are labeled A and A , and that a + - 
deformation be caused in the body by the application of tractions 

only upon the surfaces A,. The tractions are required to be equal 

and opposite at corresponding points of A+ and A - . There then 

will be a displacement discontinuity Au.(r) across the crack. 
1 - 

This discontinuity has components 

+ - 
Au. (r) = ui - ui (2.5) 
1 - 

Since tractions and displacements on the external boundaries are 

assumed to be zero along with the body forces fi, equation (2.4) 

can be written as 



Denoting 
'i j 

(2) as the strees tensor, ti= 0 n and 
j 

With the help of (2.5) and (2.7) equation (2.6) may be 

simplified to 

Equation (2.8) is known as the Sgmigliana formula U 6 ] .  

The work to follow will be concerned with linear elastic isotropic 

material. In such a case 

where A and p are the ~ a m 6  constants. In addition the 

components of the Green's tensor for an infinite medium are given by [211. 

where 

respect 

= A/2 (X+v) and R = I - -  r-r1 1 .  Differentiation of R is with 

to the x 
i' 

Suppose now that the surface A is planar. For convenience 

we place a Cartesian coordinate system inside the body in such a 

way that the surface A lies within the x-y plane. The unit normal 



to A pointing from A+ to A is then in the negative z-direction. - 
Equation (2.8) then may be written 

The stress components are given by 

By the use of equations (2.11) and (2.12) the stresses can therefore 

be expressed in terms of the components of displacement discontinuity. 

It is appropriate at this stage to point out that on the plane 

z '  = 0 the component 0 (L') depends only upon AuZ while the 
Z  Z 1 

components 0 (r') and a (5') depend upon both Au and Au . 
XZ YZ X  Y 



3 .  Formulation of t h e  Punch and Crack Problems 

The remarks a t  t h e  end of Sect ion  2 i n d i c a t e  t h a t  f o r  t h e  

system under cons idera t ion  t h e  genera l  problem can be decomposed 

i n t o  two sub-problems: (1)  normal loading,  and (2) shear  o r  tan- 

g e n t i a l  loading on t h e  surface  A (zl=O) . 
The genera l  problems f o r  a f r i c t i o n l e s s  c i r c u l a r  punch of  

r ad ius  a (whose f a c e  i s  of a r b i t r a r y  shape) which d i sp laces  t h e  

su r face  on an e l a s t i c  half-space i s  decomposed a s  fol lows:  

Problem A: normal indenta t ion ,  where 

Au ( r ' )  spec i f i ed ,  cs ( r ' )  # 0 ,  
z - zz - 

ozz (TI = 01 

Au ( r ' )  = Au (r') = 0 
X - Y 

Problem B: t a n g e n t i a l  displacement, where 

Au ( r ' )  and Au ( r ' )  s p e c i f i e d ,  
X - Y -  

ox, (gl ) = o (2' ) = o I r m  l>a ,  z l = o  
YZ 

Au ( r ' )  = O  
Z :- 

ozz (5') = 0 

The genera l  problem of a penny-shaped crack of  r a d i u s  c 

subjec ted  t o  prescr ibed t r a c t i o n s  on t h e  crack su r face  is  de- 

composed a s  follows: 

Problem C: c rack under normal loading,  where 

OZZ 
( r ' )  s p e c i f i e d ,  A u Z ( r l )  # 0,  ITI I<cI  zl=O 

O X z ( r 1 )  = 0 ( r ' )  = 0 
YZ 

Au ( r ' )  = AU ( r ' )  = 0. 
X Y 

AuZ(r1) = 0 



Problem D: crack under shear loading, where 

(r ' ) and 0 (r' ) specified 
OXZ - YZ - 
A r , A r # 0 
X - Y -  

a (r') = O, Au (re) = O 
ZZ - Z 

l 
a .It+ c Au (r') = Au (r') = 0 

X Y - 

The information in all four of the above problems may be 

translated into integral equations involving the unknown components 

of displacement discontinuity, Aui(rl). In order to derive these 

integral equations expressions for certain stress components 

must be calculated. Using equations (2.11) and (2.12) together 

with (2.9) expressions for U (r' ) , Gyz (r' ) , and aZZ (5' ) may be 
XZ 

found . 
In problems B and D, Au (r ' ) = 0. Hence, 

z - 

And 

Substituting (3.1) into (3.2) gives 



4 '  
where we have used the  f a c t  t h a t  V R = 0 and t h a t  R = - 

,x R lx '  
I 

Note t h a t  t h e  i n d i c e s  m and p (= 1 , 2 , 3 )  have been used interchangably 

wi th  x ,y ,  and z .  

And 

S u b s t i t u t i n g  (3.5) i n t o  ( 3 . 6 )  g ives  



Since R = O = R  + 2R 
r m B B  

+ R , aa3 3  ,3333, (a,B =I121 
I PPW 

Lardner has shown [15] t h a t  f o r  t h e  penny crack problem 

equat ions  (3 .3) ,  (3 .4 ) ,  and (3.7) may be s impl i f i ed  f u r t h e r  by 

an  i n t e g r a t i o n  by p a r t s .  F i r s t ,  however, note  t h a t  s o  f a r  t h e  above 

equat ions  have been used t o  r ep resen t  components of  s t r e s s  f o r  

both t h e  punch and the  crack problems. The equations represent ing  

t h e  punch problems d i f f e r  from those rep resen t ing  t h e  crack prob- 

lems only i n  t h e  i n t e r p r e t a t i o n  of the  a r e a  of i n t e g r a t i o n ,  A. 

W e  n o t i c e  t h a t  i f  equations (3.3) , (3.5) , and (3.7) a r e  t o  be 

used t o  r ep resen t  t h e  crack problems, t h e  a r e a  A of  i n t e g r a t i o n  i s  

a d i s c  o f  r ad ius  c ,  s i n c e  t h e  components of  displacement d i s -  

c o n t i n u i t y ,  Au. (r) a r e  a l l  zero f o r  I r I >c.  I f  t h e  same 
1 - - 

equat ions  a r e  t o  be used t o  r ep resen t  t h e  punch problems, t h e  a rea  

A of i n t e g r a t i o n  is  t h e  whole x-y p lane .  I n  t h e  punch case  t h e  



From t h e  above remarks it i s  c l e a r  then  t h a t  i n  e i t h e r  type  

o f  problem A u . ( r )  vanishes  on t h e  boundary of  A.  Hence i n  an  
1 - 

i n t e g r a t i o n  by p a r t s  t h e  boundary terms w i l l  van ish .  We f i r s t  

i n t e g r a t e  (3.3) and (3.4) by p a r t s  t o  g ive  

I f  we d e f i n e  t h e  q u a n t i t i e s  

and perform t h e  d i f f e r e n t i a t i o n s  o c  R I  w e  o b t a i n  



It i s  convenient  a t  t h i s  p o i n t  t o  swi t ch  t o  c y l i n d r i c a l  p o l a r  

coo rd ina t e s .  Using t h e  usua l  t r ans fo rma t ions  and r e c a l l i n g  t h a t  

a a - (R)  = - - ( R ) ,  on t h e  p l a n e  z' = 0 ,  ax ax 

where 

Returning t o  equat ion  (3.7) i n t e g r a t e  by p a r t s  t o  o b t a i n  



Switching t o  polar  coordinates we have on the plane z '  = 0 ,  

where i n  terms of polar  var iables  on the  plane .z  = 0 ,  

W e  may now summarize these r e s u l t s  a s  they apply t o  the four 

s t a t ed  problems. 

Problem A: (normal punch) 

problem B: (shear punch) 



Problem C: (normal crack) 

Problem D: (shear crack) 

Upon using the specified boundary values in the four stated 

problems integral equations for the unknown displacement dis- 

continuity components can be found. In problems A and B (punch 

problems) the left hand sides of equations (3.11), (3.12), and 

(3.13) are known to be zero for rl>a. In problems C and D 

(Crack problems) the left hand sides of equations (3.14), (3.151, 

and (3.16) are all specified for r'<c. 



4. Reduction of the Integral Equations 

A further simplification of the integral equations is neces- 

sary before they can be solved. A reduction to one variable 

cay be carried out by expanding all the quantities in equations 

(3.11)-(3.16) in a Fourier series. Using a notation developed 

by Lardner [ 151 : 

1 a (r, 6) = - a, (r) + an (r) cosn6 + 5 (r) sinn6 
2 n 1 

Substitution of (4.l), (4.4), and (4.5) into (3.11) or 

(3.14) gives 



where t h e  l i m i t s  o f  t h e  r - i n t e g r a l  a r e  e i t h e r  0 t o  o r  0 t o  c  

depending upon whether t h e  problem i s  one of  t h e  punch o r  c rack  

The 0  i n t e g r a t i o n  may be  performed by r e c a l l i n g  (no sum he re )  

sinme cosn (9-8')  de  = 11sim8'6 
mn 

cosme s i n n  (8-0 ' ) dB = - r ~ i n n e ' 6 ~  1:" 
The r i g h t  hand s i d e  o f  (4.6) then  becomes 

n  + ;21n (r .r '  ) ( f z  ( r ) c o s n e l  + (r)  s i n 8  I ) ' ]  
n 

Comparing c o e f f i c i e n t s  o f  t h e  l e f t  hand s i d e  o f  (4.6) w i th  t h e  

r i g h t  hand s i d e  of (4.8) g i v e s  



19. 

a 1 2 
f I r r r d r  = - 7 Po ( r ' )  (4 .9 )  

1: r h2 z 
rdr  = -;pn(rl) 1 z a I : r r r l )  + (r)I  ( r I r l )  

f n  ( r ) ~ r  n r n n 

Not ice  t h a t  equa t ion  (4.11) may be  ob t a ined  from (4.10) by 

z Z Z Z 
r e p l a c i n g  f n  by gn and P by Qn. n 

S i m i l a r l y  s u b s t i t u t i n g  "(4.2) - (4.5) i n t o  (3.12) and (3.13) 

or (3.15) and (3.16) g i v e s  



20. 

After performing the 8 integrations and comparing coefficients 

in (4.12) and (4.13) we obtain 

Notice that equations (4.18) and (4.19) may be obtained from 

r 8 
(4.16) and (4.17) respectively by replacing . P by Pn, 

. n 
8 r 

Qn by - Q an by - Bnl and fin by Gn= 

Then to summarize, 

In Problems A or C use: 

In Problems B or D use: 



where f o r  t h e  punch o r  c r a c k  problems t h e  l i m i t  o f  i n t e g r a t i o n ,  t 

i s  r e p l a c e d  by o r  c r e s p e c t i v e l y .  

W e  c o u l d  se t  a b o u t  now t o  f i n d  t h e  s o l u t i o n s  o f  e a c h  o f  t h e  

i n t e g r a l  e q u a t i o n s  (4.20) - (4.22) . The fz (r) may b e  r e a d i l y  
n .  

found i n  e q u a t i o n  (4 .20) ,  b u t  t h e  s o l u t i o n s  o f  (4.21) and  

(4.22) would t a k e  much more work. However t h e  work c a n  b e  

minimized by t h e  f o l l o w i n g  r e s u l t .  Again Lardner  h a s  shown [151 

t h a t  f o r  t h e  c r a c k  problems e q u a t i o n s  (4 .20) - (4 .22)  c a n  b e  

r e a r r a n g e d  t o  have t h e  same form. The same is  t r u e  f o r  t h e  punch 

problems.  

1 
R e c a l l  t h a t  I n ( r , r l )  is  t h e  F o u r i e r  component o f  - hence 

R 

I f  we l e t  

Then 



and  

With . t h e  u s e  o f  e q u a t i o n  (4.24) t h e  l e f t  hand s i d e  o f  (4.20) 

becomes 

I n t e g r a t e  t h e  second term by p a r t s .  The boundary t e r m  v a n i s h e s  

i n  b o t h  t h e  punch and c r a c k  c a s e s  s i n c e  fz(r) + 0 a s  t + a 

z 
and  'f,(c) = 0 . With t h e  h e l p  o f  (4 .24)  e q u a t i o n  (4.20) 

may t h e n  b e  w r i t t e n  

n  I n 

1 z 
f z ( r )  I, ( r l r l )  r d r  = - P n ( r l ) .  J'jf:'(r) - ; (4.27) 

With t h e  u s e  o f  (4.26) t h e  l e f t  hand s i d e s  o f  (4.21) and (4 .22)  

become r e s p e c t i v e l y  



We a g a i n  i n t e g r a t e  

express ions .  Both 

by p a r t s  t h e  second 

terms have t h e  form 

J 

terms i n  each o f  t h e  above 

where we d e f i n e  

- 
y ( r )  = --+1 l:sn+ly (s) ds .  

r 

With t h e  above c a l c u l a t i o n s  equat ions  (4.21) and (4.22) can 

f i n a l l y  be w r i t t e n  

(4.31) 

where 

Not ice  t h a t  t h e  k e r n e l  o f  each i n t e g r a l  equat ion  (4 .27) ,  

(4.30) , and (4.31) i s  t h e  same, m.ItIelyI Ln (11 , r e  ) . The 

. - 



method o f  s o l u t i o n  o f  t h e  i n t e g r a l  equa t ions  w i l l  depend o n l y  

upon t h e  va lue  o f  t h e  upper l i m i t  o f  i n t e g r a t i o n .  Therefore 

on ly  one i n t e g r a l  equat ion  need be so lved  f o r  each  of  t h e  punch 

and c rack  gene ra l  problems. 



5. S o l u t i o n s  of t h e  I n t e g r a l  Equat ions:  punch problems 

The i n t e g r a l  equa t ions  f o r  t h e  punch problems a r e  

Problem A :  normal i n d e n t a t i o n  

Problem B: t a n g e n t i a l  displacement  

r '  8 
[ (n+ l )Bn( r )  - nGn(r) - rB .n ( r ) ] ~  n r = - - Q ( r v ) .  T n (5.3) 

Not ice  t h a t  t h e  r i g h t  hand s i d e  o f  equa t ions  (5.2) and (5.3) 

i nvo lve  on ly  one term s i n c e  A I t r ' ) and B I (t ,r  ' ) + 0 n n n n 

as t -+ 

I f  r '>  a ,  t hen  t h e  r i g h t  hand s i d e s  of  t h e  above equa t ions  

are known and t h e  i n t e g r a l  equa t ions  may be solved.  I n  t h e  above 

t h r e e  equa t ions  l e t  



If r< a the right hand sides of equations (5.4) - (5.6) 

are known since the displacements are given there. Upon integrat- 

ing these three equations we obtain for r< a: 

k where the @,(r) are defined as 

and the ck constants to be determined later. 
n 

With the above definitions equations 5 1 - 5 3  all 

have the same form, namely, 



where H(r) is the Heavyside step function. The kernel, 

Ln(rIr1) has an integral representation (see Appendix I, ~1.4) 

Upon using the integral representation of L (r,rl) we notice 
n 

that equation (5.4) is a Hankel transform over r' which may 

be inverted to give 

n+ld k - (9 (r)Jn+,(rE)dr = - - 1: d r n  '1,s: 2 1.1 Jn(r<1rdr. 

Integrating the left hand side by parts and recalling equation 

(5.10) gives 

rn+' [mi (r) + c;] J, (rr)dr +E (r) J~ (rE)dr = +J,S; (r) J~ (re) rdr 
0 a 

1 
Multiply both sides by f T~ ((St) , t > a and integrate over n+$ 

5 from 0 to . Using results (AII.l) and (AII.2) of 

Appendix 11: 

Now multiply both sides by 
tdt and integrate over t 

(p2-t2) 

from a to p. Using result (AII.3) of Appendix I1 : 



a 
3 2n+l 

k n+l 
2 r ( ~ ) ( p 2 - , a 2 ) 5  1 S n ( r ) r  d r .  

r (n+l)  0 .  

D i f f e r e n t i a t i n g  with r e spec t  t o  p g ives  

W e  r e q u i r e  the  Four ier  c o e f f i c i e n t s  of  displacement d i scon t inu i ty  

t o  be bounded a t  p = a .  I n  o rde r  t h a t  t h i s  be t r u e ,  we must 

have t h a t  

Then f i n a l l y ,  

The t i n t e g r a t i o n  i n  (5.15) may be performed t o  g ive  an 

k 
a l t e r n a t e  expression of 4 (p): n 





6. Resul ts  of Punch Problems 

It i s  now poss ib le  t o  c a l c u l a t e  t h e  Four ier  components 

of t h e  s t r e s s e s  on t h e  plane under t h e  punch. For r' < a 

a l l  expressions have t h e  same form, t h a t  of  equation (5.14): 

Af ter  i n t e g r a t i n g  by p a r t s  over r and using t h e  so lu t ion  (5.15) 

together  with t h e  d e f i n i t i o n  (5.10) w e  have 

Using r e s u l t  (AI.6) of Appendix I ,  



I n t e g r a t e  by p a r t s  over  r: 

The i n t e g r a t i o n  over 5 may be performed wi th  t h e  he lp  of 

(A11.4) i n  Appendix 11. 

A f i n a l  i n t e g r a t i o n  by p a r t s  g ives  

a 
k 2n+1 [mk n ( r )  + C ~ I  

S n ( r t )  = - - r 4 ;rt + l r d t  
IT d r  ' (6.1) 

( t 2 - r t 2 )  (t2-r ) 
r ' 

Hence equation (6.1) together  wi th  d e f i n i t i o n s  (5.7 ) - (5.9) 

and ( 5 . 1 1 - ( 5 . 1 3  give expressions f o r  t h e  Four ier  c o e f f i c i e n t s  

o f  t h e  s t r e s s  components. 

k 
Equation (6.1) s t i l l  conta ins  t h e  unknown cons tan t s ,  Cn. 

These cons tants  may be evaluated a f t e r  an examination of  t h e  

Four ie r  c o e f f i c i e n t s  f o r  displacement d i scon t inu i ty .  Problems 

A and B w i l l  now be  d iscussed separa te ly .  



Four ier  Components o f  Displacement 

Discont inui ty  (normal punch) 

Recall  t h a t  f o r  Problem A t h e  d e f i n i t i o n  of @z(r) was 

given by equation (5.4).  Upon i n t e g r a t i n g  t h a t  equation w e  have 

Also f o r  r < a ,  from equation (5.101, 

I n  o rde r  t h a t  @'(r) be  continuous a t  r = a t h e  cons tan t s  
n 

of i n t e g r a t i o n  of  equation (6.2) and ( 6 . 3 )  must be  the  same. 

Now s i n c e  

and from equation (5.15) , 

w e  have t h a t  t h e  C' must be i d e n t i c a l l y  zero.  
n 

From equation (6.2) and (5.15) , 



33.  

A similar expression for the Fourier sine component of displacement 

Z 
discontinuity, g (r') is found from equation (6.4) by replacing 

n 



Fourier Components of Displacement 

Discontinuity (shear punch) 

The determination of the Fourier coefficients of displacement 

disconuity for Problem B is not as'straightforward as that for 

Problem A. Equations (5.5) and (5.6) are coupled. We must 

therefore first find an expression relating the Fourier components 

- - 
of displacement to the a a and en. Then we must solve 

n' 'nl n' 

simultaneously the equations (5.5) and (5.6) and find an 

expression relating a and fin in terms of the solutions k 
n 0, 

Recall the definition of a(rt9) and $ (r,8) : 

Substituting the expansions (4.l), (4.2) and (4.3) into (6.5) 

and equating coefficients gives 

From the definition (4.29) 

Now the an(r) and fin(') may be discontinuous at r=a. To 



remind us of this we write (6.7) as 

and 

- n+l 
a - 

Bn(r) = - n+l B n (a) + n+l JIsn+l~n(s)ds, 
r r 

Then substituting (6.6) into (6.7a) gives 

If we define 

and 

then 

Adding (6.10) and (6.11) gives 

A n-1 
Z(r) = - +  h(r) - 2nr H(r), r 



where 

and 

Using (6.9) , equation (6.12) becomes 

In order to solve this equation for h(r), multiply by r and 

differentiate. Hence 

Integration gives 

Hence after integrating (6.15) by parts, (6.12) may be solved 

for ~ ( r ) :  

03 

H(r) = -rn 1 A 
z(s)% + - n 

r s 2nr 

Now for brevity define 



Then from (6.13) 

where 

and 

The i n t e g r a l  i n  (6.16) may then be wr i t t en :  

Equation (6.16) then can be wr i t t en  

00 

n A-B - H ( r )  = - - - r 
P ( s ) d s  - - r n+l n+l  

n-l I 
ds,  (6.19) 

2 r 2 r  2 r s 

Then s u b s t i t u t i n g  (6 . l9 )  i n t o  (6 . lo )  and (6.11) and solvilig 

r 
f o r  and 

8 
we have f o r  r > a 

n n 



and 

.. 

r 
The other two coefficients, 

gn 
and fe may be obtained from 

n 
r 0 8 (6.20) and (6.21) by replacing fr by gn. gn by -fn, 

n 

by 6,. and 8, by -B . Therefore through the first of n n 

(6.17) equations (6.20) and (6.21) give the Fourier coefficients 

for the displacement discontinuities in terms of a (r) and 
n 

en (r) . 
It remains now to find the 

an 
and 8 in terms of the 

n 

solutions (5.15) . Define the quantities F, (r) and Gn (r) 

withthehelpof (5.5) and (5.6): 

From definitions (6.17) equations (6.22) become 

n+l- 
(n+l)an+' (a) + (n+l) f (s)ds - na Bn (a) - 

n la 

r 

- g(s)ds - f (r) = - rFn(r), 



Add and subtract  t he  above two equations t o  give: 

where 

$ (r) = f (r) + g ( r )  

x (r) = f  (r) - g - 

The solut ions  of these two equations a r e  readily.found t o  be 

2nf ~ ( s )  
2n - 

X ( r )  = ~ ( r )  + (2n+l)r  2n+l ds  + ( 2 n + l ) L  n Fn (a) - Bn (a ) ] .  (6.25) 
s a 

a 

From equation (6.231, and the  f i r s t  of (6.17) : 



Hence through (6.26) and (6.26) t h e  an and Bn a r e  

given i n  terms of t h e  so lu t ions  (5.15), and the  Fourier  coef- 

f i c i e n t s  of  displacement d i s c o n t i n u i t i e s  given by (6.20) and 

(6.21) a r e  completely determined i n  terms of t h e  so lu t ions  (5.15). 

The constants  and 
0 

'n 
a r e  determined i n  the  following 

must vanish a t  way. The Fourier  c o e f f i c i e n t s  f i  and gn 

i n f i n i t y .  I n  equations (6.20) and (6.21) both t h e  f i r s t  

and t h i r d  terms do vanish a s  r tends t o  i n f i n i t y .  However the  

second term is not  i d e n t i c a l l y  zero a s  r tends t o  i n f i n i t y .  

This condi t ion  gives  one equation r e l a t i n g  
8 

c,' t o  Cn. 

Another equation r e l a t i n g  t h e  constants  t o  eachother i s  obtained 

by noting t h a t  the Four ier  c o e f f i e e n t s  should be continuous 

a t  r = a .  The l e f t  hand s i d e s  of (6.20) and (6.21) a r e  known 

r 
f o r  r = a . We there fo re  have a second equation r e l a t i n g  

Cn 
8 

t o  C . These two equations a r e  then solved simultaneously f o r  
n 

cr and 
0 

Cn. 
Hence the  Four ier  components of  s t r e s s  a r e  completely n 

determined by t h e  expression given a s  equation (6.1). This pro- 

cedure w i l l  be i l l u s t r a t e d  by an example i n  t h e  next  sec t ion .  



7. Unidi rec t ional  Shear Punch Problem 

A s  an app l i ca t ion  o f  t h e  r e s u l t s  found i n  Section 6 w e  consider 

a h a l f  space whose surface  i s  displaced by an amount C i n  t h e  

x-di rec t ion aver a region r a I n  terms of our  p resen t  nota t ion,  

AUx 
= C f o r  rs a and a = 0 f o r  r > a .  I n  p o l a r  coordinates 

XZ 

these  boundary condit ions become: 

Now f o r  r < a t h e  only non zero Four ier  c o e f f i c i e n t s  of 

displacement d i scon t inu i ty  a r e  

8 
f: = C and g = - C. 

1 (7.3) 

A l l  o t h e r  components of displacement a r e  zero. Hence from (6 ,6 ) ,  

(6.7), (6.23), (5.12),  and (5.13) : 



From equation (5.15) t h e  so lu t ion  becomes f o r  r > a ,  

where k = r , 8 .  

Performing t h e  i n t e g r a t i o n s  g ives  

and 

Then 

r 9 
a 3  (C1-C1) - ~ ( r )  = - F (r) + G1 (r) = - - 

1 IT r(r2-a 2 % .  1 

From equation (6.24 ) 



From equation (6.25) 

So from (6.23) 

3 r  

+ 1% - r f (r) = +($+XI = .rr { a:r':a21' (r2-a2)'  a(r2-a  2 1 35 1.3 

r .  
Then i n  order t h a t  fl -+ 0 as r -+ we must have t h a t  

Now 

Hence we must have t h a t  



Next we set r = a in either of (6.20) or (6.2 1) and 

use equation (7.4) : 

Hence 

Then 

Substituting (7.6) into (6.20) and (6.21) gives 

Then from equation (4.1) for r > a: 

av (r2-a2)']sine , 2 - l a  
*ue(r,e) = T ; c  {cos (9 - 2-V 

2 r: 



The Fourier components of s t ress  are calculated from 

6 .  Recall from (5.8) and (5.9) that  

0 r 0 
Sl (r) = - - Q (r) . 

A 1 

So for r < a 

Hence 



8. Solut ions  of t h e  I n t e g r a l  Equations: Crack Problems 

The i n t e g r a l  equations f o r  t h e  crack problems a r e  obtained 

from equations (4.30) and (4.31): 

Problem C: crack under normal loading 

Problem D: crack under shea r  loading 

r '  r 
{ ( n + ) & n ( r )  - nBn(r) - ra n (r)  r r r d r  = - IT P n ( r ' l  + A n I n ( c , r ' )  

I f  r '  < c then t h e  r i g h t  hand s i d e  of  equations (8.1)- 

(8.3) a r e  known and t h e  i n t e g r a l  equations may be solved. I n  

t h e  above t h r e e  equations l e t  



Then equations ( 8 1 ) - 8 . 3 )  a l l  have t h e  same form, namely: 

m 
om(r) I ,  ( r , r S ) r d r  = S ( r ' )  , r < c 

n n n 
0 

m 
where wn (r) is an unknown expression a n d  S: (r ' ) a known 

funct ion a p a r t  from a constant  i n  equations (8.2) and (8.3) .  

From equation (A1 . 4 ) 

Thus equation (8.10) takes  the form 

Now i f  w e  l e t  sm(r') be defined for t h e  moment f o r  a l l  r ' ,  
n 

then equation (8.11) is  a Hankel t ransform which may be inver ted  

t o  g ive  



48. 

Multiply both s i d e s  by J (6 t )cS and i n t e g r a t e  over 5 from 
n+4 

0 to . Here 0 < t < c. Using t h e  r e s u l t s  (AII.5)) 

(A11.1) t h e  i n t e g r a l s  over 5 may be performed t o  g ive  

%-n P ina l ly  by mult iplying by t (t2-p2)-' and i n t e g r a t i n g  dver 

t from p  to c we have 

C C 

t d t  U: (r) d r  
- - - J P  (t2-p2) +It rn ( r 2 - t 2  + 

On t h e  l e f t  hand s i d e  w e  change 

t h e  l i m i t s  t o  give 

t h a t  

t h e  order  of  i n t e g r a t i o n  and switch 

r c m 
t d t  

n  (8.12) 
r 

P  P  P  

After  d i f f e r e n t i a t i n g  equation (8.12) with respec t  t o  p  t h e  . 

s o l u t i o n  is  



9. Resul ts  of  Crack Problems 

W e  now use the  s o l u t i o n  (8.13) t o  c a l c u l a t e  the  stress 

and displacement d i scon t inu i ty  components f o r  the  normal and 

shear  crack problems. 

Normal Loading 

Recall  t h a t  f o r  the  normal loaded crack W: was defined 

by equation (8.4) . .Solving t h a t  equation f o r  f a  ( r )  involves a n 

s t ra ight forward  i n t e g r a t i o n  and g ives  

where we have used equation (8.7) and t h e  f a c t  t h a t  f: (c)  

= 0. An i d e n t i c a l  r e l a t i o n  r e l a t e s  the  o t h e r  Four ier  component, 

z 
n 

to pz : (Recall t h e  remarks following equation (4.11) ) 

z 
Since P: (r) and Qn ( r )  a r e  t h e  Four ier  components of 

t h e  stress a (r ,0 ,o)  , (see  equation (4.5) ) we have t h a t  
z z 



Then the Fourier components of displacement discontinuity are 

The displacement discontinuity is then found by using 

equation (9,.4) in the Fourier series (4 -1) : 

' rs n + 1 [--J cosn (0-0 ))do . 
n=l t 

After performing the sum the displacement discontinuity can 

finally be written 

In order to calculate the Fourier compoI?ent of stress ~:(r) 

we return to equation (8.1). For r' > c equation (8.1) 

Z 
together with (9.1) give the Fourier component P (r) : n 



Equation (9.6) may be w r i t t e n  

'Jn+l (re) Jn+l (r ' S )  dSdr 1 . 

Af te r  i n t e g r a t i n g  by p a r t s  over  r and in te rchanging  t h e  

o r d e r s  of  i n t e g r a t i o n  o f  r and t, t h e  i n t e g r a l  over  r may 

be  eva lua ted  us ing  t h e  r e s u l t  (AII.6) i n  Appendix 11. 

I n t e g r a t e  over  5 us ing  t h e  r e s u l t  ( A I I .  5) i n  Appendix I1 

and perform t h e  r' d i f f e r e n t i a t i o n :  

F i n a l l y  t h e  t i n t e g r a t i o n  may be  performed by us ing  r e s u l t  

( A 1  I. 7) t o  g i v e  

Z I n  view of  t h e  remark a f t e r  (4.11) an express ion  f o r  Q may 
n  

be  found by r e p l a c i n g  P' w i t h  Q' i n  equat ion  (9.7) .  
n  n  

Z S u b s t i t u t i n g  t h e  express ions  f o r  pZ and Qn i n t o  t h e  expansion 
n  



52 .  

(4.5) and using equation (9.3) t h e  normal s t r e s s  is given by 

a ( r ' , e f  , O )  = - (c2-s2) sds  
Z Z  

Thus a f t e r  evaluat ing t h e  sum, the  normal s t r e s s  on t h e  plane 

of t h e  crack is: 

This s t r e s s  component has t h e  f a m i l i a r  square r o o t  sing- 

u l a r i t y  a t  the  crack edge. A stress i n t e n s i t y  f a c t o r ,  K I ( B m )  

a t  p o s i t i o n  8 '  on t h e  crack edge may be defined such t h a t  

Then 

" (c2-s2)% ( s , e , O )  sdeds 
Z Z  

(9.10) 
KI(8') = - 

# 
l n2 (2c) c2+s2-~CSCOS (8-8' ) 

I f  t h e  t r a c t i o n  on the  crack i s  axi-symmetric, i e .  



then the stress intensity factor becomes the well known result 

Shear Loading 

The case of a crack under shear loading has been considered 

by Lardner [151 , where expressions for the Fourier coefficients 

of displacement discontinuity and stresses on the plane of the 

crack have been found. The following is a summary of his findings. 

From the definitions (8.5) , (8.6) , (8.8), and (8.9), 

together with the solution (8.13) we have 

where 

and 



To solve  equations (9.11) f o r  an(r)  and B n ( r ) .  w e  

d e f i n e  t h e  q u a n t i t i e s  

Then adding and s u b t r a c t i n g  t h e  two equations (9.11) we have 

where 

and Hn (c)  s a t i s f i e s  t h e  equation 

The cons tan t  H ( c )  may be w r i t t e n  wi th  t h e  he lp  of (9.12) n 

and (9.13): 



where 

The solutions of (9.15) are readily found to be 

Hence a (r) and Bn (r) are known (through equations n 

(9.14) and (9.18)) in terms of the prescribed data in the form 

of equations (9.6) and (9.7). , 

Next we calculate the Fourier coefficients. ft (r) and 
1 

0 
'n in terms of the known ol, (r) and r . Recall that 

Then substituting the expansions 4 1 )  . (4.2) , and (4.3) 

into (9.19) and comparing coefficients, we have: 

According to the definition (4.29). we have that 



where 

and  

Combining e q u a t i o n s  (9 .21) .  w i t h  the h e l p  o f  (9.22) 

g i v e s  

whose s o l u t i o n  is  g i v e n  by 

Hence from t h e  f i r s t  o f  (9.22) . H n ( r )  is  known as w e l l .  

8 
Then f r o m  (9.22) . fz ( r )  and  gn (r) c a n  be w r i t t e n  



0 r The Fourier coefficients, fn (r) and gn (r) may be 

obtained from equations (9.24) by replacing fi (r) with 

r 8 8 
gn(r) and gn(r) with f , a (r) with -p (r) 

n n 

and Bn,(r) with Gn(r). 

Next the stress components, 
"r z 

and "e may be cal- 

culated. Still summarizing Lardner's results, substitute (9.12) 

and (9.13) into equations (4.30) and (4.31) with 

r' > c. The integrals over r and t resemble those 

found in (9.6) and they may be treated in the same way. 

Hence 

C 

tdt 

The expression in the last bracket of (9.25) may be simplified 

to the expression 

where E is as defined just after equation (9.17). 
n 
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S ince  -nH (c) = c q c )  and from (9 .7 ) ,  a f t e r  eva lua t ing  

n 

t h e  t i n t e g r a l  i n  t h e  f irst  term, equat ion  (9.25) becomes 

The oth'er two F o u r i e r  conponents may be  found from (9.26) 

r 8 8 
by rep lac ing  P: ( r )  w i th  Qn (r) and Qn ( r )  w i th  -P n (r) . 

Now s i n c e  . 

equat ion  (9.26) wi th  expansion (4.5) g i v e s ,  a f t e r  summing: 





10. Some Applications of the Crack Result 

A few applications of the results found in section 9 are 

presented here. The first consideration will be two models of 

penny-shaped cracks under axisymmetric loading. 

The Barenblatt Model 

Consider a penny shaped crack whose surface is loaded by an 

axisymmetric normal traction, 0 r 0  As can be seen from ePation 
z z 

(9.9) the stress becomes unbounded at the crack tip r' = c. Hence 

the material around the edge of the crack would not behave according 

to the linear theory of elasticity. In the neighbourhood of the 

crack tip there would be some zone where the material could be 

assumed to behave in a non-linear elastic manner. Barenblatt has 

proposed a model P.71 (for a Griffith crack) in which there exists 

a zone of non-linear elastic behaviour extending a short distance 

from the crack tip. This zone is assumed to be coplanar with the 

crack itself. The Barenblatt model may easily be extended to the 

penny shaped crack. For this model the size of the non-linear region 

can be found as well as a non-linear integral equation for the 

displacement discontinuity in that region. 

For a penny shaped crack of radius c with a normal traction 

a (r,O) given, suppose the non-linear region is a ring in the z z 

z = 0 plane extending beyond the crack tip to a distance a. 

Assume that a - c is small compared to c. According to the model 

the stress is a non-linear function of the separation of the atomic 



layers which occurs in the edge region c < r < a. Denote dux (r) 

as this separation. Hence 

Further, according to the model the stress intensity factor at 

r = a reduces to zero. From (9.10a) therefore 

I' ozz:r,;);dr 
f IAuZ (r) I rdr +I" 2 2 3  = 0. (10.2) 

0 (a -r c (a -r ) 

Let d = a - c, and in the second integral let the variable 

s = a - r. Now both d and s are small compared with c or a. 

Hence the second integral becomes approximately 

f [nuz (a-s) Ids 

4 0 s 

If we denote the stress intensity factor 

then equation (10.2) becomes approximatley: 

d f [AuZ (a-s) Ids 

3 
0 S 

Now from equation (9.5) for an axisymmetric load the displacement 

discontinuity in the non-linear region c < r < a reduces to 



where 

< a then with (10.1) g(t) is given by 

Since t = c the first term of (10.4) is approximately equal 

.rr 'i to - T(2c) KI. In the second term again let the variable s = a - r. 

Then the second term becomes approximately 

f [Auz (a-s) 1 ds 

(t-a+s) 'i 
a-t 

d f [Auz (a-s) I ds 
(10.5) 

a-t 

Now in (10.3) let the variables p = a - r and t' = a - t. Then 

From (10.5) we have that 



Hence the equation (10.6) can be written 

\ 

After performing the t' integration we 

f [Auz (a-s) I dsdt ' 
AuZ (a-p) " - 2 (1-v) # (p-t') (s-t') 

have approximately 

Equation (10.7) thus provides a non-linear integral equation 

. 

for the displacement discontinuity AuZ(p) in the non-linear edge 

f [AuZ (a-s) Ids (10.7) 

region. For a given non-linear relation ffzz (r, 0) = f [AuZ (r) 1 , 

c < r < a and a given stress intensity factor KI equations 

(10.2a) and (10.7) determine the size d of the non-linear 

region and the displacement in that region. Thus the behavior in 

the non-linear edge region depends on the external loading ffzz(r,O) 

only through KI. Willis [18]found the same result when applying 

the Barenblatt model to a Griffith crack. So as long as the edge 

region is sufficiently small its size is the same for penny shaped 

and Griffith cracks. 



The BCS Model 

Another approximation that deals with the unbounded stresses 

at the crack tip is the BCS model. In this model we assume the 

existence of a zone of plastic behavior near the crack tip. The 

BCS model can be readily applied to the penny shaped crack under a 

shear load. In this case the plastic zone is an annulus lying in 

the plane of the crack occupying the region c < r < a. In this 

application consider a penny shaped crack with the axisymmetric 

boundary conditions oez r 0  given for 0 < r' < c and - - 
OeZ(r1,O) = ol,c < - r' < a (0 is the yield stress of the material). 1 

We may use the second of (9.17) to find an expression for 

0 r 0  However some calculation can be spared by returning to 
9z 

equation (9.16). For the axisymmetric case all we need is the 

0 r 
coefficient P r . Recall that P (r ' ) may be replaced by 

0 
9 

P (rl ) in (9.16) . With n = 0 the second term is zero since 

from (9.11) and (9.32) An and Bn are zero. Then from equations 

(9.16) and (9.5) we have 

The stress intensity factor for a crack of radius c becomes 

In applying (10.8) to the BCS model of the penny shaped crack, 



the stress intensity factor is to vanish at r' = a: 

Thus 

s 0 (s,O)ds [ 'eZ 01 2 - I c  2 2 %  
2 2 4  

= - -[a cos (;;I + c(a -c ) I .  2 
(10.9) 

0 (a -s ) 

Equation (10.9) then enables the width (a-c) of the plastic 

zone to be determined in terms of the applied load. 

If the plastic width (a-c) is small compared to c, then 

equation (10.9) together with (10.8) gives approximately 

This result for a small plastic zone agrees with the 

corresponding result obtained for a strip crack [121* 

Unidirectional Shear Tractions 

The final application of the results of ection 9 to be 

presented is the case of a unidirectional shear traction applied to 

the surface of a penny shaped crack. This application follows 

directly from the results by Lardner summarized in the second part 

of section 9. Again a summary of Lardner's work will be given 

here. 



Let  a penny shaped crack  o f  r a d i u s  c be  subjected t o  t h e  

t r a c t i o n  a (r ,  8,O) = k (r) , a (r, 8,O) = 0, r < c .  I n  p o l a r s  
ZX ZY 

t h e  boundary va lues  become 

The on ly  non ze ro  Four i e r  components of  s t r e s s  a r e  8 
P: and Q1. 

SO f o r  r < c ,  

For r 1  > c,  from (9.16) and (9.5) we have 

and then  

C 

3V cos  20'  
+ - 1-v - I (c2-p 

rs2 0 



11. Appendix I 

J u s t  a f t e r  equation (5.14) an i n t e g r a l  r ep resen ta t ion  

o f  t h e  ke rne l  L r r  i s  used. This r ep resen ta t ion  may be 

found a s  follows. 

Recall  from equation (4.23) t h a t  

- 1 cos n$d 
2r  s j o  [1 -?os r +'E2]+ . 

- 1 2  

This expression i s  an i n t e g r a l  r ep resen ta t ion  of  a hypergeometric 

funct ion .  I n  p a r t i c u l a r ,  

where B ( a r b )  i s  t h e  Beta funct ion .  

By t h e  transformation formulae f o r  
2F1 

w e  have [20] 

I n  t u r n  t h e  hypergeometric funct ion  i n  (AI.2) may be ex- 
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pressed a s  an i n t e g r a l  involving t h e  product of Bessel funct ions  

~ 9 1  

Since 

we have f i n a l l y  t h a t  

Now r e c a l l  from equation (4.24) t h a t  

hence w e  have t h e  important r e s u l t  t h a t  

I n  t h e  de r iva t ion  of equation (6.1) it was necessary t o  

combine t h e  two t e r m s :  



The f i r s t  term may be represented by t h e  i n t e g r a l  

I n  t h e  second term of equation (AI.5) t h e  i n t e g r a l  over p 

may be performed. Then (AI.5) can be w r i t t e n  

Now i n  t h e  second term = - rr . The i n t e g r a l  a r a 

lm may be in tegra ted  by p a r t s  and then d i f f e r e n t i a t e d  t o  give:  
r 

Combining terms w e  f i n a l l y  have 



The following a r e  some r e s u l t s  previous ly  r e f e r r e d  to .  

They a r e  placed i n  order  of use. 

t d t  n = - 
2 

r 

Jn+, ('5) J ~ + +  (S t )  S4d5 = 
2'tn+'H (r-t) 

n+l  r (+)r  (r2-t2)' 

t d t  - 2 Ij 
- (c2-s ) 

2 3 5  ' r '  > c 
2 4  2 2 1 1  (rt2-s2) (r12-c ) s ( r V 2 - t )  (t -S  

( A I I .  7 )  



Note that the integrals above involving the products of 

Bessel functions are just special cases of the Weber Schaftheitlin 

integral : 

Re (V+v-h+l) > 0, Reh > -1, O<cicB. 
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