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ABSTRACT

The first and second order Raman spectra of ZnSe,
ZnTe, and GaP have been investigated. An analysis of the spec-
tra has provided values for the phonon frequencies at the cri-
tical points X, L, and W in the Brillouin zone.. In carrying
out the analysis a theoretical model has been used and tﬁe val-
ues obtained for the critical point frequencies are consistent
with both the experimental results and the theoretical model.
‘The elastic cbnstants have been used as constraints in the
determination of the parameters used in the theoretical.model.
In addition, in the case of ZnSe only, Raman spectra were ob-
tained for various crystal orientations and polarizations of the
incident and scattered light. This enabled a comparison to be
made between the assignments for ZnSe and group theoretical
selection rules. In all cases the results were checked for
consistency using the Brout sum rule and regularities previously

observed in the phonon spectra of zincblende semiconductors.

The theoretical model has also been used to calculate
the phonon fregquencies throughout the Brillouin zone. The
density of states has been further calculated from these dis-
persion curves and the results have been compared with infor-

mation obtained from specific heat and neutron scattering meas-

urements.
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CHAPTER 1

INTRODUCTION

At the present time the only direct means of obtain-
ing the phonon dispersion curves throughout the Brillouin zone
(B.Z.) of any material is by the method of neutron scattering.
However this method is expensive both with respect to time and
equipment. Also this method 1s not applicable to many materials
because of unfavourable neutron-scattering cross-sections or
the unavailability of sufficiently large single crystals on
which to perform the experiment. This is particuiarly important
for some II-VI and III-V compounds as large single crystals are
as yet unavailable. To date only three zincblende materials
have been investigated by neutron scatter?ng. Waugh and Dolling
(1963) measured the phonon dispersion of GaAs. GaP was studied
by Yarnell et al. (1968) and ZnS by Feldkamp, Venkataraman and
King (1969). For ZnS, the experimenters had to work with rather
small crystals with a volume of about 1.5 cc and in fact the
GaP sample investigated was fabricated by gluing together orien-
ted single crystal platelets. For these reasons it is desire—
able to have an alternate means of obtaining phonon dispersion
curves. Several approaches have been used in the past and the
various experimental methods are described briefly in Chapter 2.

This work describes an attempt to deduce the phonon
dispersion curves for some zincblende semiconductors from a

study of the Raman spectra of these materials.

A study of the lattice vibrations of zincblende com-
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pounds is also inherently attractive because of their relatively
simple crystal structure. This makes an interpretation of the
Raman spectra easier than it would be for say wurtzite materials
and thus facilitates the comparison of experimental data with
the theoretical models which can be appliéd to the results. 1In
addition a large number of crystals, both semiconducting and in-

sulating, possess this crystal structure.

This work presents a study of the first and second
6rder Raman spectra of these materials: 7ZnTe, a p-type II-VL
semiconductor; ZnSe, an n-type II-VI semiconductor; and GaP an
n-type III-V semiconductor. In the past the lattice vibrations
and infra-red properties of these materials have been studied by
several workers using the techniques of infra-red absorption(a).
However, due to the advent of lasers and modern detection meth-
ods, Raman scattering now provides an alternate technique which
yields additional and complementary information to that obtained
from infra-red measurements. In particular the‘first-order
Raman effect gives the values of the phonon vibrational mode
frequencies at the B.Z. centre and the second-order Raman effect
should provide information on the values of the phonon frequen-

cles at other points of the Brillouin zone.

(a) 1I.R. studies of ZnTe: Nahory and Fan (1907), Narita et al.
(1967) and Riccius (1968); ZnSe, Riccius 1968§, Aven et
al. (1961) and Mitra (1963); GaP, Barker (1968), Kleinman
and Spitzer (1960) and Fray et al. (1969).
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The previous Raman experiments on the compounds in-
vestigated here have been qualitative in nature and 1little
guantitative information has been obtained. In particular the
Raman scattering experiments carried out on both ZnTe and ZnSe
(Taylor, 1967, Ushioda et al., 1967, Krauzman, 1967) were de-
voted to the first order spectrum and a detailed investigation
of the second order Raman spectrum was not carried out. The
second order spectra of ZnSe has been observed by Krauzman
(1969) and Nilsen (1969) but no serious attempt was made to

analyse their results and no definitive results were obtained.

The second order Raman spectrum of GaP has undergone
the most thorough investigation (Hobden and Russel, 1964 and
Russel, 1965). Hobden and Russel were the first experimenters
to use a laser as the source for a measurement of first and
second order Raman spectra of any crystal. These workers have
made assignments to the observed Raman featuresto be consistent
with a chosen set of frequencies at the critical points X, L
and W on the B.Z. boundary. The infra-red absorption spectrum
of GaP has also been observed (Kleinman and Spitzer, 1960) and
a similar analysis made. There is, however, considerable dis-
agreement between these results. The second order Raman spectr-
um of GaP is again studied in this work,partly to clear up the
above discrepancies but mainly to verify the method of analysis
presented here by comparing these results to the measured neut-

ron data for GaP.

In interpreting the features of a second order Raman

spectrum of a zincblende material,a theoretical model intro-
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duced by Banerjee and Varshni (1969) has been used in this work.
This model incorporates the short range force model of Smith
(1948) to second nearest neighbours and the long range Coulomb
force model of Kellerman (1940). This model is referred to as
the second neighbour ionic (S.N.I.) model. A set of freguenc-
ies 1s obtained for the zone boundary critical points X, L and
W. These frequencies are chosen to fit both the experimental
Raman spectrum and the theoretical model using the measured
elastic constants as a constraint on the model parameters. A

description of the theoretical model 1s given in Chapter 3.

In the case of ZnSe it has also been possible to in-
vestigate the Raman spectrum of ZnSe with regard to its polar-
ization characteristics. The polarization characteristics of
the observed Raman features can be compared with the polariz-
ations predicted from group theory. This method of analys-
ing the Raman spectra of zincblende materials has been previous-
1y applied to ZnS by Krauzman (1969) and Nilsen (1969a) and is

outlined in Chapter 4.

A set of S.N.I. model parameters has been obtained
from the analysis of the Raman spectra of ZnTe, ZnSe, GaP and

znS (Irwin, 1970) and the results are presented in Chapter 6.

The consistency of the frequency assignments is check-
ed in Chapter 7 using the Brout sum rule (Mitra, 1963) and re-
gularities previously observed in the phonon spectra of zinc-
blende semiconductors (Mitra, 1963; Keyes, 1962; and Marshall

and Mitra, 1964).



5

Using the S.N.I. model parameters obtained, the
phonon dispersion of ZnTe, ZnSe, ZnS and GaP has been calcu-
lated throughout the entire Brillouin zone with the aid of a
high speed electronic. computor. In addition, the frequency
‘distribution function and specific heats have been calculated
and a comparison has been made with the measured values of the
specific heat of these materials. For GaP and ZnS, where
neutron results are available, a direct comparison of the phon-
-on branches has been made. These results are presented in

Chapter 8.

Chapter 9 contains a summary of the results, conclu-

sions, and suggestions for further work.
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CHAPTER 2

EXPERIMENTAL METHODS

2.1 -Introduction

In the past several experimental methods have been
used to obtain information about the vibrational spectra of
sollds. The methods used differ greatly in their ease of ap-
plication, expense, and type and amount of information that
fhey provide. The basic principles involved in these experi-
ments and the chief advantages and disadvantages are briefly

reviewed in this chapter.

2.2 Thermodynamic Measurements

The early measurements of specific heat were of great
importance to the development of lattice dynamics. They showed
the 1nadequacy of the Einstein model, leading to the Debye and
Born-Karman models and later to the lattice models of Blackman

(1937), Kellerman (1940) and Smith (1948).

The specific heat, however, depends only on an in-
tegral over the frequency distribution, g(v), of the vibration-
al modes of a crystal and thus only provides information about
the average of phonon spectrum, and does not tell one about in-
dividual modes. Therefore, a detalled study of the phonon dis-

persion cannot be based on specific heat data.



2.3 Ultrasonic Measurements

The long wavelength acoustic vibrational modes of a
solid can be excited by ultrasonic techniques. Longitudinal or
transverse elastic waves are excited by a transducer at frequen-
cies up to about lOlOHz and the velocity of the disturbance 1is
determined by measuring the time taken by a pulse to cross a
sample crystal. The results provide the slope of the approp-
riate dispersion curves at long wavelengths and are usually ex-

pressed in terms of the elastic constants.

Unfortunately transducers are limited in operation to
frequencieS'ElOlO Hz and thus only the acoustic phonons with
small energies near the B.Z. centre can be investigated by this
method. Huntington (1958) has given a review of the experimen-
tal technique and of many results obtained by ultrasonic measure-

ments.

2.4 X-ray Scattering

X-ray wavelengths are typically about 1 Angstrom and
thus the momentum of an X-ray quantum is comparable to that of
phonons in crystals; however, X-ray energies (10 keV) are many
times greater than the phonon energies (10 meV) and the energy
change on scattering cannot be detected directly. The frequen-
cies of the phonons are obtained by measuring the scattered in-
tensity and comparing it with theoretical expressions for the
cross-section (Cochran, 1966). Corrections must be made for Com-
pton scattering and for the scattering by multi-phonon processes.
The experiment and analysis are difficult and become more so for

crystals with many atoms per unit cell.
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Some successful experiments have been performed how-
ever, for example, on aluminum (Walker, 1956), and on alkali
halides (Buyers and Smith, 1966; Iveronova et al., 1967) but to
date no such experiments have been carried out on zincblende

materials.

2.5 Neutron Scattering

A direct measurement of the phonon dispersion in cry-
stals is provided by neutron scattering. Thermal neutrons from
a reactor have wavelengths and energies about equal to the lat-
tice spacing and vibrational frequencies respectively and the
energy change and scattering angle can be measured to provide
the frequency and wavevector of the scattering phonon. This
makes neutron scattering the most powerful experimental method

for the study of phonon dispersion in crystals.

The phonon spectrumis determined by measuring the one-
phonon coherent scattering from single crystals. This i1s done by
allowing neutrons of a pérticular energy to be incident on the
specimen and observing the energy of those scattered through a
particular angle. One method of doing this is to use a triple-
axis crystal spectrometer which was largely developed at Chalk

River by Brockhouse (1961).

A schematic diagram of a triple axis crystal spectro-
meter is shown in Figure 1. The neutrons from a reactor are in-
cident on a single crystal monochromater (XI in Figure 1) and

reflected to give a beam of neutrons of particular energy inci-

dent on the specimen S. The neutrons scattered from specimen S,
4
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Figure 1. A schematic diagram of a triple-axis cryctal spectro-
meter (Brockhouse, 1961). :

are analysed with a second single crystal monochromater X2, and

detected by a suitable neutron detector and counter. The parts

marked M and C in Figure 1 are monitor counters and collimators,

respectively.

Another method of measuring neutron scattering from
crystals uses a time of flight technique. However, this
technique will not be discussed here.(l) Both these methods
have many drawbacks. The neutron beams are not intense and the
scattered neutrons provide only aBout 10 counts per minute.
Therefore a great deal of time and expensive equipment are

needed adjacent to a neutron source such as a reactor in order to

(1) A discussion of time of flight technique and the deter-
mination of phonon spectra by neutron scattering has been
given by Cowley (1969).
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carry out the expgriment. The energy resolution is notlas good
as can be obtained by optical teéhniques and large samples are
required (typically about 5OCﬁ{5. Some materials are not suit-
ablé for this method because.of high neutron absorption cross-
section or too large an incoherent scattering cross-section
(Cowley, 1969). For these reésons it is desirable to have alter-
native methods for obtainihg the phonon dispersion of crystal-

line solids.

2.6 Optical Measurements

Optical methods include the measurement of the absorption
and reflection of far infra-red radiation, Raman scattering and
Brillouin scattering of light by phonqﬁs. In most cases the
wavelength of the light used is more than 103 times greater than
the lattice spacing. Consequehtiy first order optical techniques
are limited to momentum transfers which are very small compared
to the momenta of most of the phonons. Brillouin scattering pro-
vides information about the acoustic phonongs near I§'= 0O whereas
the other methods in first order provide measurements of the

phonon energies in the optical branches near |§|= 0.

It would appéar that far infra-red absorption and Raman
scattering measure the same frequencies; this, however, is not |
usually the case. Raman scattering depends on the modulation of
the polarizability of the crystal by the phonons, whereas infra-
red absorption depends on the dipole momeﬁt. The symmetry of the
polafizability tensor and the dipole moment usually differ and

therefore different phonons contribute to the two processes.
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The two methods tend to be complimentary, for example, the first
order optic modes of alkali halides can be studied by infra-red
but not Raman techniques, while for diamond the situation is

reversed.

To obtain information on the vibrational frequencies
at other points in the B.Z. the second order infra-red and Raman
spectra of crystals must be examined. Conservation of momentum
requires that the wavevectors of the contributing phonons be ap-
proximately equal in magnitude and opposite in direction. The
presence of sharp features in the second order spectrum are as-
sumed to be due to critical points in the B.Z. and an interpre-
tation of observed spectra can be made accordingly. In addition
an analysis of the symmetry properties of the critical points
and the polarization properties of the observed Raman feature
allows, in principle, a good deal of information to be obtained
about the phonon dispersion of crystals. This latter point will

be discussed in more detail in Chapter 4.

Optical techniques are one of the most accurate me-
thods of obtaining information about phonon dispersion and one
of the most generally avallable. In addition there are essent-
ially no restrictions on crystal size, or type, other than that

the crystal transmit a portion of the exciting light.
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CHAPTER 3

THE LATTICE DYNAMICS OF ZINCBLENDE

3.1 Introduction

‘In recent years a great deal of effort has been ex-
pended by many workers in an effort to obtain a satiéfactory
theoretical model for the lattice vibrational spectra of com-
pounds which crystallize in thé zincblende structure. This work
has been stimulated in parf by the ever inéreasing availability
of relevant experimental data on these compounds; in addition,
many compounds crystallize iﬁ this structure and the results of

a theoretical calculation would have many applications.

3.2 Theoretical Models

The theorefical models which have been employed in an
attempt to explain the lattice.vibrational frequencies observed
in zincblende materials can be broadly classified in three cata-
gories: (a) conventional force constant models (Born-Kirmén,
1912, and Smith, 1948); (b) rigid ion models (Kellerman, 1940;
Born and Huang, 1954; Merten, 1958 and 1962); (c) dipole approx-
imation model (Tolpygo, 1961 and Mashkevich and Tolpygo, 1957)
and the largely equivalent shell model (Dick and Overhauser, 1958;
Cochran, 1959 and Cowley, 1962).

In the Born-Karmin theory of lattice dynamics the
motion of the nuclei is determined by an effective potential

which depends only on the nuclear coordinates. The electrons
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are regarded simply as a medium for exerting internuclear forces,
and the wave function of the electrons is taken to be the same
at any instant as if the nuclei continually occupied their in-
stantaneous positions(adiabatic approximation). This conven-
tional force constant model has been applied to the diamond-type
lattice of germanium to fit the measured disperion curves for
that material(Pope, 1965). It was found that in order to fit
the data, interactions out to at least fifth neighbours had to
be included and that the values deduced for most of the force
constants were not statisically significant. Although this
model has not been applied to zincblende materials 1t is felt
that such a fit would be of no more significance than for germ-

anium.

In the rigid ion model the ions are assumed to be
spherical and rigid meaning that they are not polarizable or
deformable, so that regards their Coulomb interaction the ions
are equivalent to point charges. The motion of the ions 1s de~
termined by long range Coulomb forces which extend throughout
the crystal. The application of the rigid ion model to zinc-
blend by Merten(1958) has been rather unsuccessful (since the
bonding in the zincblende structﬁre is only partially ionic)
and is not capable of-correlating the large range of available

experimental information (Kaplan and Sullivan, 1963).

The shell model is an extention of the Born-Karman
theory of lattice dynamics in which each atom is no longer rigid

but is regarded as a charged core consisting of the nucleus and
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inner electrons and an oppositely charged shell representing

the other electrons. The shell and core are coupled to one an-
other by an isotropic force constant, and each retains sphefical
symmetry although a dipoie moment may be generated by their
relative diSplacements. The shell model thus allows the atom the
property of polarizability in an electric field, and of "dis-
tortion polarizability" under the influence of short-range forces

acting through both cores and shells.

The shell model has been applied to several zincblende
materials by Kapiah and Sullivan (1963)’using eleven different
parameters. They found that it was iﬁposéible to get a unique
set of parameters to describe the experimental results and con-
cluded that the shell model was too flexible to be of great use
in zincblende compoﬁnds. Also the "simple" shell model, utiliz-
ing only three or four parameters, almost invariably failed to
give even an approximate phonon dispersion relgtion for zinc-
blende crystals (Veteliﬁo and Mitra, 1969). In cases where the
shell model has given good agreement with the neutron-scattering
data, e.g. GaAs (Waugh and Dolling, 1963) and GaP (Yar-
nell et al., 1968), the model has employed a large number of
parameters which do not have any more physical significance than

that of fitting constants to an interpolation formula.

If one wishes to calculate the phonon dispersion in

zincblende from restricted information it is necessary to have a
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lattice dynamic model limited to a few physicélly significant
parameters. The above models are not suitable for this purpose.
Recently, however, a combined force constant and rigid ion model
has- been introduced. This model has relatively few parameters
and these are physically significant. Hence the model lends it-
self to the purpose of this thesis. The model is calied the

S.N.I. model and is discussed in the remainder of this chapter.

3.3 The S.N.I. Model

The S.N.I. model was introduced by Baner jee aﬁd Varshni
(1969) and has been applied to both, III-V zincblende compounds
(Baner jee and Varshni, 1969) and II-VI zincblende compounds-
(Irwin and LaCombe, 1970a and 1970b). The binding in zincblende
semiconductors is known to be partially ionic andAit is therefore
reasonable that the S.N.I. model assign an‘effective charge ef
to the ions. The value of e; for diatomic crystals is defined in

terms of experimentally determined gquantities by the following

relation first derived by Szigeti (1949),

€g = e, + 4T N(e§)2 ot 2 2 (3.1)

u wt2 3

where N is the number of ion pairs per unit volume, p 1ig the re-
duced mass of an ion pair, wt/2ﬂ is the experimentally observed
transverse resonance absorption frequency, and ¢g and g, are the

static and optical dielectric constants respectively.

In the S.N.I. model the forces in the crystal are as-

sumed to arise from two contributions: (a) short range forces
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described by a conventional force constant model up to and in-
cluding second neighbours (Smith, 1948) and (b) a long range
force due to Coulomb interactions between the ionic charges
(Kellerman, 1940). Combining these two forces and taking into
account the symmetry of the crystal structure enables one to cal-

culate the elements of the dynamical matrix. This matrix can be

diagonalized to obtain the normal mode frequencies of the lattice.

The application of the S.N.I. model to the zincblende
lattice is described in detail in section 3.5. As a first step
it is necessary to review the structure and geometry of the zinc-

blende type lattice. This is done in the next section.

3.4 The Zincblende Structure

(a) The direct lattice. The III-V and II-VI compounds studied
here can be grown in the zincblende structure. This is a two com-
ponent diamond structure, or rather, two face-centred cubic lat-
tices with, for example, one lattice containing zinc atoms and
the other tellurium atoms. The cube side has a length 2a and

the two sublattices are displaced from each other along and equal
to one gquarter of the body diagonal (/3 a/2). This structure is
1llustrated in Figure 2. The unit cell is a rhombohedral paral-

lelepiped defined by the three basis vectors

31 = aﬁ + ak
_a'g = ai + ak

=al + a]J

ol

3

—

The volume of the unit cell is vy = |3, x &, **d,| = 2a2 '

a
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and contains one atom of each element.

Figure 2. The zincblehde lattice structure.

In Figure 2 the lattice structure of Zincblende has
been drawn so that lattice 1 contains the lighter atoms (black)
and lattice 2 contains the heavier atoms (white). The atoms

of lattice 1 are located by

£ A
¥ (1)= al (£+4) 2 + (L+8) 7 + (£ +4)R]
where £, , A, , A, are integers, or one can write correspondingly,

F (il alh,t. 0

where ZIQX = 2N (N is an integer). Lattice II can be generated

by displacing the first lattice through a displacement ?12 where
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Fo=- 2(74540)

T

The location of the atoms of lattice II are given by
— ﬂ — 1 A A
r(2)= r(1 - 2 ({+5+K)

cal Gt 80+ (lah-B54 (s -2 &)

We can also write this as
2
r(z = ﬂ-(/m,,/m,,mli)

wherez m, = 2N - 3/2. The second lattice is taken as dis-
placed in the negative direction so as to conform with the
description of other authors (Kellerman, 1940; Cochran, 1959;

Merten, 1959 and Banerjee and Varshni, 1969).

(b) The reciprocal lattice. The reciprocal lattice vectors

corresponding to the basis vectors of the direct lattice are

given by
b= aa (-+]+k)
b= za (-7 +R)
by 2= &+ -k)

The reciprocal lattice vectors corresponding to the lattice

points in the direct lattice are given by

b= i Lhawhah )2 #0h +h k)T +Chorh- k)R]
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= da(ha, by W)

where hx’ h_, hz are elther all odd or all even integers. Any

y
vector in reciprocal space can be expressed as
d=43Db + 9,5+ 9,0,

1 4 4 »
g—a[(q,+q,-vq,)1 + (a,+q,-9)J + (q +q,-q_,)k]

l—(qu)
2a x’2y’iz/

where d,-4,5Q, are the reduced recrocal lattice coordinates.

y
The first Brillouin zone for the E—Space of the zinc-
"blende lattice is illustrated in Figure 3. The boundaries are

given by the equations

yiqz=i~32—;t'-1=+l;q=+l;q=+l (3.3)

The symmetry points

a.t+ g

Figure 3. The first Brillouin zone of the zincblende reciprocal
lattice.
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marked in Figure 3 are expressed in terms of the reduced recip-

rocal lattice coordinates (qx, q qz) in Table I along with the

¥
group representation for each point and the number of such
points in the Brillouin zone. 1In Figure 3 @ is an arbitrary
point, 1 is a point in the plane defined‘by ™ALKs and the other
points are clear from the figure. Although they have been given

different designations in Figure 2, points U and K have the same

symmetry properties; g, hl, h

and hS are numbers with values
from O to 1. '

2

TABLE I

The Symmetry Points of the Reciprocal Lattice of Zincblende.

Symmetry Position Group Number of Points

Point (dy> Ay > a,) Representation in B.Z.
r (0,0,0) Ty 1

L (3,%,%) Cavy )

X (1,0,0) D, 4 3

W (1,%,0) S, 6
K=U (3/1,3/4,0) Cq 12

A (gﬁgfg)A Cav b

b (£,0,0) Cov 6

s, 3/4(e ,e,0) Cs 12

Z (1,6/2,0) C, 12

S (1,e/b,e /1) Cg 12

ﬂ (h1>h1>h3) Cs 12

Q (142 ,1,1-¢) C, 24

q (h, ,h, ,h,) C, L8
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3.5 Description of the S.N.I. Model

(2) Equations of motion of a crystalline lattice. Consider
small arbitrary displacements, a (K), of the ions from equili-
brium where K = 1, 2 labels the type of ion. The potential en-
ergy of the deformed lattice can be expanded in powers of

these displacements. The linear term of this expansion vanishes

in equilibrium and the second order term is

bt 9 3 S 3, (40) wlx) wle)

AK L

§> (,u') _ yé
where s\ éxi(i) Bxi(ﬁa
((,j= 1,2 3)

and Xi(t) are the rectangular components of ﬁ(i). In the har-
monic approximation higher order terms in the expansion of }
are neglected. §ijis the dynamical matrix representing the force

constants between the ions in the lattice.

The equation of motion of an ion of type Kk and mass m
is given by
’ :
LY 1 X"j '? _o :
My “'.'(rt) + Z Z éii (m h") “J(rf')” (3.4)
'K J

For an independent normal vibration of the lattice this equation
has plane wave solutions of the form

— . . .- —a 1
() v cwt 7 (k)
Ui — e

Vrnn €

—
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then the equation of motion can be written as
—q‘ ’
WUl =& 8 Cul g vilk)=0 s
kK -3

where

C.-(g): —— ¢ (1 )e_‘.;}() (3.6)
YK ) Amemee ta AR

are the elements of the dynamical matrix in reciprocal space.
The equation of motion (3.5) for a wavevector @ in the reci-
procal space of the lattice are a set of six homogeneous eq-
uations in the amplitudes Vi(K). The necessary and sufficient

condition that this set should have a non-trivial solution is

that
q _
l S
w g;,’ gmc' - C"J'(ltft’) O (3.7)
In the case of the S.N.I. model the dynamical ma-
trix, ny(KqK:), is made up of two parts, a shorE range part

sr g c a
C y(KqK') and a long range Coulomb part ny(K K:) such that

5 ([ g\ °© '9‘) (
= - 3.8)
Co () = vz [ Con( 8- G e

(v) Short range forces. From the symmetry of the lattice it
may be shown (Merten, 1958) that the force constant matrix for

the first neighbours is



—.a B B-1
B a 8
B B aJ

and for the second nearest neighbours, assuming central forces

(Smith, 1948, and Braunstein, Herman and Moore, 1958) |

— . —
A 0 0
0 My Uy
0 My Uy

where ¥ = 1, 2 labels the type of ion. In terms of these force

constants the short range parts of thé dynamical matrices are

given in Qy, qys 9z space by

sr B : _
Cxx(n n) =4 [a+XK{1 coanycognqz} + g {2 cosTq_ cosTq
-coanxcoanz}]
STe ) = 4{u.sinng sinngyd = °7C_ (. )
xy (e o) = Hluysinma,sinnay) = = Cpyle ¢
STe. ( d ") = -alex ﬁi)?(q-+q ;q ) + expni/2(q —d -q. )
xx‘w K’/ p x dy iz z X *y
+expni/2(qy—qx-qz) + expni/?(qx—qy—qz)]
sr - —plexpns ‘ -
Coylp ') = -Blexpmi/2(q,+a,+q,) + expm /2(q,-q,-q,)

"-expni/2(qy—qx—qz)—expni/?(qx-qy-qz)j

_ 8T q
= ey, (172)
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The remaining elementsbare obtained by a cyclic per-

mutation of the indices and by using the fact that

d

ny(z l) =C xy(l 2)

q q
where C*xy(l 5 xy(l 2)'

(c¢) Long range forces. The effective contribution of the long

) is the hermitian conjugate of C

range forces to the dynamical matrixes were obtained by Keller-
man (1940) for the NaCl lattice. Cochran (1959) has applied
this theorylto the diamond lattice and it has been extended to

zincblende by Banerjee and Varshni (1969).

From Cochran's paper (1959), the elements of the dy-
namical matrix of the long range forces due to Coulomb inter-

action of the ions in the lattice are given by

o . 2 PO
ccx (7}) - ZZeZ;—)non Z, 9" exp(ig.3 )
4 3 3xdy [T - T, |

and

c (q)= - Zzez{exp(ia I )} lim Z exp(iq L)
Xy e N 3x3y I - r f

where T, = *(7) and Ze is the effective charge of the ion.

If one takes into account the structure of the zinc-

blende lattice, the elements of the Coulomb dynamical matric

-

q .
m:d) are given by




o5
o 2¢

qd .
(v /2" )ny(K K1) ='(liﬂ/3)§xy for g = 0
and for g # 0 by
2 2,¢c a.
(Vp/27e") Cry (K €) = =Gy, (KK) + Hyy(2) +
3
(8/3/m) e, o

ey

and 2 2.¢ aq
(v, /27e%) Cy (K K1)

Gy (KE) -Hyy (m)
where Vg is the volume of tHe unit cell and

g (KK) = iz (nyeta, ) (ny+a )/ (4)° eXp[-(nz/uez)(H+a)2j

ny(KK') = uﬂﬁ (hx+qx)(hy+qy)/(ﬁ+a)2 exp[ihz/ﬂez)(ﬁfa)z
-(ni/?)(hx+hy+hz)]

Hy, (4) 2%[-f(z)6xy+g(z)zxzy/zzlcosn(a-i)

I

ny(m)' 2% [—f(m)Qxy+g(m)mxmy/@2]expiﬂ(a.ﬁ)

n

£(2) (ée/zefﬁ)eXp(-egze) + ¢(€£b@3

e(2) = 36(2) + (4ed/myexp(-£4°)

¢(ep) = 1;(2//n)jgﬂexp(—£2)dt
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where ¢ is an arbitrary parameter and X , m, g, h, are appro-
priate lattice and reciprocal lattice vectors.

-

¢
The calculated values for (2/x%) ny(KqKs) for the
critical points X, L and W of the zincblende structure are

listed in Table II. '

i

(¢c) Dynamical matrix and elastic constants for S.N.I. model.

The final dynamical matrix element is given by equation 3.8.

Coo () =m0 () = o) ]

The matrix 1s Hermitian and can be dlagonalized to obtain the

normal mode frequencies of the lattice at any point in the

B.Z.:

w8 S = Calie)| =0 o

In general this equation is a six by six complex
determinant whose solution is not simple; however, at the cri-
tical points T, X, L and W, the determinant factors and rela-
tively simple analytical solution are obtained. These sol-
utions are given below in terms of‘thé seven S.N.I. model par-

ameters a, B, Mps Mzs A;s Azs and x.
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TABLE _1II

The values of (2/X)chy(xqﬂ

critical points X, L and W.

) in units of 10® dynes/cm for the

(2/0°¢_ (,%)

(1) (1)
X L W
a B | (l,0,0) (%:%:%) (13%30)
11 4,330 3.615 -.790
22 2.160 3.615 1.568
33 2.160 3.615 -.790
12 . 000 .000 .000
13 .000 . 000 . 000
23 . 000 . 000 . 000
2/v )¢ q
(20 e (o72) (1) (1)
X L W
a B (l,0,0) (%:%:%) (1:%30)
11 . 000 000 .000
2 2 . 002 000 .000
33 .002 . 000 . 000
12 . 000 4. 9474l 9471 8.468
13 . 000 -4, 9474, 9h7i . 000
23 10.6171 -4, oh7+4. 9474 -8. 4681

(1) Merten, 1958.
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*
XX
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= _ 27y 1 1

(T) =[(4a T) (I-I-II + ITIE)]
_ 47 1 1

(M) =[(4a + =& (= + =]

1 2

_ 4 '

(X) = ﬁ; [ + 4ul + .54125%]
_ 4

(X) = ﬁ; [a + 4u, + .54125x]
v, v, [(u;-u,)? 2

(X) = ) t p) + IXI

4
a [ + le + 2“1-_ 0.27x 1]

1

2 o+ 22
m

+ 2u2 - 0.27y]
2

2

1
5 z
= (48 - 5.3085x)%/(mm,)

N =
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At L,
' 2

2 ~ (Ul+U2+2vl+2v2) (Ul-szzvl—zvz) (w+2x)2
w, (L) = t +
L 2 2

1
2 2
(U,+U0.,-V.-V.) (U, -U,=V.4V,)

2 _ 1 2 11 1 "2 "1 "2 _2
wT(L)-— 5 * 5 + (W-X)
Where

U=—e(a+)\ + 2u,)
1 ml 1 1
U, = =2 (a + A, + 2u,)
2 m 2 “r2
2
V. = =2 (u. + .4519y)
1 m 1 *
1
V. = —2 (u. + .4519%)
2 m, 2 *

1
2

W = -o/2(1 - i)/ (mym,)

1
7
(RY2 - 2.4735%) (1-i)/(mym,)

>
It

At W,

N+



Where

o
I
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)
-1
[ 5 2
_S% * Dy (G2t P C.D. - 282
———= % —— Zl—A)
i 11
C D C+D2 12
= 2 2 . 1 2) - (c,p, - 2a%)
g ¢ 5 CyD,.
_ A
3 (a+ A, + 3u. + 0.09874y)
m; 1 1 . X
2_ (a4 A, + 3u. + 0.09874y)
m 2 2 . X
2 (a4 2\, + 2u. - 0.1960y)
ml 1 1 ¢ X
2 (o + 20, + 2u. - 0.1960%)
m, 2 2 . X
1
2
(2/28 4.2336x)/(mlm2)
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One can aiso deduce the relation between the coupl-
ing parameters of the model and fhe elastic constants of a
crystalline material (Born and Huang, 1954). These calcu-
lations have been carried out by Blackman (1958) and the re-

sults, verified by Merten (1958) are given by
. 22,4
€y < 0.1255 ze“/2a” + (q+bpl+bp2)/?a

RPN —-1.324 22 poa + {25‘“’2("1”.7"2)*2(“1*“2)]/23'

cyy = —0.063 zgeg/éau + (1/23)1a+2(ul+u2)+2
(A+hy) J-A2/8

where A = 2.519 z2e®/2a%-B/a%

ha—hn22e2/6a3

5

o
w
it

2&3

In the evaluation of chy(KqK,) and the elastic constants the
actual charge Ze 1is considered as a parameter and 1s repre-
sented by x = Z°e®/a®. This gives a measure of the ionicity

of the crystal.

The S.N.I. model can be fitted to thé critical point
frequencies deduced from the observed Raman scattering data
using the equations for the normal mode frequencies at the
critical points]', X, L, W. The elastic constants are used as

a constraint -of the values of the model parameters obtained
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and therefore also constrain the assignments of the observed
Raman features. The application of the S.N.I. model to the
analysis of the Raman spectra of the zincblende materials

studied in this work is.found in Chapter 6.

In order to make the first tentative assignments to
the features of an observed Raman spectrum it is necessary to
know the processes contributing to these features. To this end
the theory of Raman scattering in zincblende materials is re-
viewed briefly in Chapter 4. Since it desirable to compare the
polarization characteristics of the observed Raman features
with the polarizations predicted from group theory, the relavent
group theory and method of analysis is also presented in the

following Chapter.
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CHAPTER 4

RAMAN SCATTERING IN ZINCBLENDE CRYSTALS

L.,1 The Raman Effect

The Raman effect can be viewed quantum mechanically
in the following way. Electromagnetic radiation of energy Ay s

~

wave vector Ei and polarization vector e; 1s incident on a
crystal 1interacts with the electrons in the crystal through its
polarizability, and a photon is absorbed, thereby exciting a
transition from an initial electronic ground state to a virtual

-

intermediate state. A second photon (haw , k , &) is emitted

S)
with an accompanying trancition from the virtual intermediate
state back to the initial electronic ground state. At the same
time there are accompanying changes in the vibrational states

of the lattice and one or more phonons (#0, q, ¢) are created or

destroyed (Burstein, 1964),.

The mechanics of the Raman scattering'process are il-
lustrated in Figures 4 and 5. 1In Figure 5, ne and n, designate
the electronic and vibrational energy levels respectively, while
ny is the quantum mechénical occupation number of the phonon

energy states of the crystal.

The requirement of conservation of energy and momentum

are expreésed for one phonon by

k;'=kgta (3.1)



Figure 4. Raman scattering geometry and corresponding wave-
vector diagram.

7 N A V4 V/4 —— o ——
Ny =f—~—~==-— NeNy —F
/ _ .“ )
e Ny TN T‘O"
NeNy nj+l ngn, < N;j
Q; n.n’ 2ani-|
J e''v J
w; = wg + Q,j wizws—ﬂj

Figure 5. The electronic and vibrational transitions which
occur in Stokes and anti-Stokes Raman scattering.
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and hw; = hwg t 0 (3.1)

where the + sign refers to the creation of a phonon and the -
sign to the annihilation of a phonon. Since
— - l
g =
Ki Kg«a
then |4l ~ o
This requires that the phonon created or destroyed in the Raman

process must have a wavevector corresponding to a point near the

Brillouin zone centre.

For two phonons

ki = kg = qx - qz

(3.2)

M3 = hug T a0, T oao

and again, since

=k «Ll
1 S a

then |$q,%q_[=~0

and the wavevector of the two phonons must be approximately equal

in magnitude and opposite in direction.

The electric field of the incident radiation interacts
directly with the electrons in the crystal and indirectly with
the lattice via the electrons. The incident radiation can be
characterized by Ei = éi Ei exp[i (Ki < r - uitﬂ. This field
when incident on the crystal inddces a dipole moment M proportion-

al to the polarizability tensor aij of the crystal.

M = Laig By (3-3)
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Scattered light is produced by re-radiation of energy by the
induced dipole moment ﬁ. The intensity depends on the state
of polarization of the incident and scattered radiation and. the

electronic polarizability tensor:

4 oo =

“ R , 2
I. (W es) = Wg | eg * da . €4 | E; (3.4)

S s?

: —e
where dgq represents the change in g associated with the cre-

==
ation or destruction of the phonons. This change, da can be

written in terms of the ionic displacements (Loudon, 1964):

ddw = 0(‘J \O( = é“«, Auk(q) + 80(0’ duk(q)aq‘(q) _'.(3 5)
du, (q) du,(q) Su/(q) .

where u,(a), ub (9) represents the displacement of the atoms
and the subscripts indicate the vibrational branch. The first
term on the right of equation (3.5) is responsible for first-
order (or one—phonon) scattering, the second is responsible for

second-order (or two-phonon) scattering, and so on.

The first-order polarizability coefficient At 5 s 18
aug(a) -

a third-rank tensor, the non-zero components of which are deter-
mined by the symmetry of the phonons. These Raman tensors have
been worked out for the symmetries of the vibrational modes
which occur in zincblende by Loudon (1964) and are found in
Table ITII. The tensor components are referred to the cubic cry-

stallographic axes 1, J and k of Figure 2. The normal vibrations

of the 21ncblende lattice which are Raman active are illustrated

in Figure 6a The normal mode vibrations with I} s symmetry

species are also infrared active and the direction of polariza-

tion of each mode is indicated in,brackets beside s in Figure 6,
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v
R
-~
N
S

7

Figure €a- Some normal modes of vibration for the tetra-

hedral molecule with Ty symmetry. The tetra-
hedral molecule has nlne internal degrees of
freedom and thus nine normal modes of vibration;
however, only the six which are shown here par-

ticipate in either first or second order Raman
processes (Loudon,1964) .
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TABLE TIII

The Raman tensors for zincblende.

Irreducible Raman- Tensor Irreducible Raman Tensor
Representation Representation
D © o} o}
Fl [ X X ) o a 0 1-\IS(X) X X ] ©
o O a o d o
b o o o]
rla [ X X} O b o 1-\le(y) [ X X ) © © o
o -2b d o
/3b o o o o
rla 'YX O"3b o 1"15(2) YY) d ©
o O o© O o0 ©

4,2 The Temperature Dependence of Raman Processes

The scattering intensity of Raman processes are temp-

/
erature dependent through the mean occupation number, n, of

the phonon states involved.

R(3,T) = 55— (3.6)
ek’ — 1
v

B4

where ; is the wave number = w ©Of the phonon state,

h is Planck's constant, c is the velocity of 1light, k is the
Boltzman constant and T is the temperature. The temperature
dependent factors for the various Raman processes are listed in

Table IV for both Stokes and anti-Stokes radiation.
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TABLE IV

The Temperature Dependence of Raman Processes.

Processes Frequency ° Stokes , Anti-Stokes
1st Order v n(v,T)+1 A(E,T)

- 2 -
Overtones 2%, (n(9, ,T)+1) (n(gi,T))g
Sums WA (n(3,,T)41)(n (3, ,TH+) (n(3,,T))(n(S,,T))

Differences DAV (ﬁ(ﬁl,T)+1)(ﬁ(52:T)) (ﬁ(sl;T))(ﬁ(§2:T)+l)

4.3 Selection Rules for the First Order Raman Effect

It has been seen in Section 4.1 that the phonons
created or destroyed in the first order Raman process have al-
most zero wavevector. These phonons are non-propagating and do
not see the translational properties of the lattice, thus, only
the point group of the unit cell rather than the space gfodp of
the crystal need be considered to derive the selection rules
for first order Raman activity. It is found that for the zinc-
blende structure at the zone centre, both the acoustic and optic
modes have symmetry species ™5 and are triply degenerate by
group theory (Nilsen, 1969b).

1

In addition to crystal symmetry considerations Poulet
(1955) has shown that in polar crystals there is a macroscopic
electric field associated with the longitudinal optical (LO)
mode giving it é higher energy than the transverse optical (TO)

mode. Thus the degeneracy of the optical branch is partly re-

¥ ]
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moved leaving a LO mode and a doubly-degenerate TO mode. The
LO and TO frequencies near the B.Z. centre obey a relation

established by Lyddane, Sachs and Teller (1941)

[V(LO)/V(TO)]2 = e/cq (3.7)

where €g is the static dielectric permittivity and e is the
dielectric permittivity at frequencies sufficiently high that

the ions cannot respond to the electric field of, the radiation.

The Ramanltensors for the v, vibrational modes. (see
Table III) are transformed so that the polarizability tensor
is expressed 1in terms of the coordinates qi,which is parallel
to the wavevector of the phonon, and qtl and nt which are mu-
tually perpendicular to the phonon wavevector. In this way the
tensors refer to purely longitudinal and transverse phonons.
The tensors are then transformed to the laboratory reference
frame. In order to obtain gquantities proportional to the Raman
intensity the elements of the resulting tensors are squared and
the results for the TO modes are added together. The scattering

intensity matrices for the two crystal orientations which result

are given by (Poulet, 1955) , ‘

o % o o ¥ |

. 2 i 1 4

eLo (loo) = Ei T 0 % ) eT ((oo) = E‘ : ° 2
o % o 1z o

where Ei refers to the electric field intensity of the incident

light, and
!

Y
3 6"(”0): E; | ¢
(o]

© N o
O Mk

N O -

-~ ~|~°

O..(10) = E

©C nbk O

[
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The single crystals inves£igated heré were prepared
having two particular orientations. These two crystal orienta-
tions are designated (100) and (110). The (100) crystal is cut
and polished with all 100 faces; whereas, the (110) crystal is
cut with four 110 faces and two 100 facés. In both cases the

crystals are in the shape of rectangular parallopipeds.

Figure 6b shows the c¢rystal orientation relative to
the scattering»geometry used in the Raman scattering experi-
‘ments. In all cases the incident light waé directed along the
laboratory Z axisband the scattered light detected along the

laboratory X axis.

(o ]a]] . 001

——so10 _n___,ﬁoa.-.
s =X S DX
100s”) K, o k,
17k | 27 k.
(100) CRYSTAL (o) crystaL

Figure 6b - The scattering geometry and single crystal orien-
tations used in the Raman scattering experiments.

-
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In order to designate the polarization and direction
of the incident and scattered lights.the following notation will
be used: the first and last letters in Z(YY)X indicate the di-
rection of propagation for the ingident and scattered light,
respectively; the first and last letters inside the pérenthesis
indicaté the polarization dfrectibns'of the incident and scat-
tered light, respectively. For example,lfor»a (lOO) crystal
“and polarizationé Z (X2 )X one would expect from the intensity
matrices above a very weak longitudinal opticél peak and a strong -
transverse optical phonon peak in tﬁe Ramén spectrum. For the
same experimental set up but using a (110) crystal one would
expect both very weak LO(r) and TO(r) lines where tﬁé symbol in
the bracket refers to that point of the.B.Z. with which the

phonon is associated.

4.4 Seléction Rules for the Second Order Raman Effect

The.secbnd order Raman efféct involves two phonons; \
because of this the conservation of momentum does not require
that the scattering process take place near the B.Z. centre. In-
‘deed, second order Raman scattering can originate erm every
point in the B.Z. However, the density of two phonon states:
tends to become greater for larger phonon wavevectors and thus
most second order Raman scattering take place near the B.Z.

boundary. Even though the scattering events may be assumed to
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occur near the B.Z. boundary an interpretation of the Raman
spectrum as such would be impossible if it were not for the ex-
istence of critical points in the B.Z. (Van Hove, 1953 and

Phillips, 1956).

Critical points for the zincblende recipfocal‘lattice
occur at X(1, 0, 0), L(%, £, 1) and W(1, %,0) on the B.Z. bound-
ary (Parmenter, 1955). These points locate regions of high

phonon density of states.

Scattering from phonons at these critical ppints is
be}ieved to be responsible for the sharp features in the second
order Raman spectra and many researchers have interpreted their
Raman spectra accordingly. It should be noted that m(0, 0, 0)
is also a criticai point due to the flattening of the dispersion
curves at the B.Z. qentre but r does not have the high density of

states associated with the zone boundary critical points.

The second order‘Raman selection.rules have been der-
ived for the zincblende crystal structure by Birman (1963).
The procedure used to obtain these selection rules is briefly
outlined in the Appendix. These selection rules are summar-
ized in Table V. In Table V, Column 2 gives the irreducible
representatiohs of the Raman acﬁive modes at each critical
point. Column 3 gives the polarization of these modes where
distinguishable by group theory. Column 4 lists the possible
two phonon processes possible at each critical point. Columns
5 and 6 express the infra-red and Raman activity, respect-

ively, in terms of the irreducible representations of the
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point group T, (Birman, 1963 and Krauzman, 1969). It can
be seen from the table that all two phonon processes are Raman

active. Also it should be noted that the 2IA(L) and 2LO(L)

two phonon processes are forbidden in infra-red absorption.

4.5 Polarizatibn Properties of the Second Order Raman Spectrum

In order to distinguish which symmetry species are
present in a Raman spectrum it is necessary to know the scat-
.tering intensity matrices for the irreduciblé representations
of the Raman active vibrations. The Raman tensors correspond-
ing to the three irreducible representations ™, P1é and ™5 Of
the polarizability tensor are given in Table III relative to the
cubic cell axis 3,3 and ﬁ. By transforming these métrices from
the crystal orientation under examination to the laboratory co-
ordinates X, Y and Z and squaring the element of the transformed
tensors one obtains the Raman scattering intensity matrices for

the irreducible representations (Nilsen, 1969bj):

5 L 0O 2’ 100

m (100) =a“ 010 r, (110) =a“ {010

! 001 001

4L 0o 5 (103

r, . (100)= b2 (0 4 0} - r _(110)=b“ [0 4 O
12 12

004 301

, (011 5110

r . (100)=d° (1 01 r . (110)= a° [1 01
15 . 15

. 110 011

The ™ matrices for each crystal orientation may

15

be obtained from the sum of Raman scattering intensities for

the LO and TO modes given in section 3.4.
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The intensity matrices predict which irreducible re-
presentations are present in a Raman spectrum. For example con-
sider a Z(XZ)X spectrum for a (110) crystal; only the T,, vi-
brational species are present in the spectra. Similarly a
Z(XY)X spectrum for a (110) crystal contains only I'ys species
in second order and the LO and TO modes in first order (refer-
ring to section 2.4). The.features in the Raman spectra which.
contain T'; species can be obtained indirectly from spectra con-
taining both T, and T;, species and comparison with a spectrum
containing only the T,, species. A knowledge of the poiariza—
bility representations present in each feature of the Raman
spectra should give some indication as to which critical
point contributes to each feature. This method of analysis
should, in principle, be of great assistance in meking assign-
ments to the various features observed in the second order

Raman spectrum.
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CHAPTER 5

EXPERIMENTAL

5.1 Apparatus

Raman scattering experiments have been carried out
by several experimenters for many years now. Industry has res-
ponded to this and the activity of related fields of physics to
produce equipment particﬁlarly suited to the needs of Raman
spectroscopists (monochrométors, lasers and photomultiplier

tubes ).

Figure 7 shows a schematic diagram of the experimental
apparatus used in this study. Experiments were carried out over
a four year period on different compounds and some changes in

equipment occurred. These variations are summarized in Table

VI.
TABLE VI

Summary of changes in experimental apparatus.

Compound Laser Electronics . PM Tube Temperature Varied
x ()

ZnTe 6328 PAR EMI Yes
9558

znse (1) 1880 PAR ITT Yes
(2) 5145 FW 130

ZnSe 4880 Photon Cooled No
5145 Counting FW 130

GaP 6328 Photon Cooled No
Counting FW 130

(1) Polycrystal. (2) Oriented single crystals.
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photocell —— chopper
| ' sample —
W
\/2 / f, ;
retardation .
plate polaroid —»
| depolarizer —
SPECTROMETER
photomultiplier —|
CHART

RECORDER ELECTRONICS

Figure 7. A schematic diagram of experimental set up.
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In general, however, the Raman spectra were excited
with either an argon ion laser operating at 48804 or 5145A at
powers between 20 and éOO milliwatts or a He-Ne laser operat-
ing at 6328A with an output power of about 50 milliwatts. A
90 degree scattering geometry was employed; that is the scat-
tered light was collected in a direction perpendicular to the
incident beam. The sample wés mounted on a goniometer and could

be carefully aligned in all orientations.

The spectra were analysed using a Spex double mono-
chromator (model 1400). The laser output was highly polarized
and its orientation was varied using a half-wave retardation
plate. A polaroid sheet was used to select the desired polariz-
ation component of the scattered light. A quartz wedge was used
to depolarize the light entering the monochromator ensuring a
monochromator response independent of the polarization of the

scattered light.

Two different detection systems were used: (a) the
incident light was chopped at 40 Hz and the Raman signal ana-
lysed with a lock-in amplifier (Princeton Applied Research, model
HR 8) or (b) the photomultipliér was cooled to dry ice - alcohol
temperature and the scattered photons were counted using a pre-
amplifier, pulse height analyser and ratemeter (Ortec). Two
different photomultiplier tubes were used, a EMI 9558 and & ITT
FW-130, both of S-20 response. The effective cathode size of
the ITT photomultiplier used was 0.1 inches in diameter. This

tube when cooled to dry ice - alcochol temperature had a dark

count of about 1 per second.
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The incident laser beam was focused onto the sample
using a 180 mm lens and the scattered light was collected by a
f/2, 55 mm focal length lehs. This lens was matched to the f

number of the entrance slit of the spectrometer.

The first order spectra were measured with a slit

width giving a resolution of about 1 cm™T and the second order

spectra with a slit width giving a resolution of aboﬁt 4 cm_l.
The spectral lines from a neon Geissler tube were superimposed

on the spectra for purposes of calibration.

The Raman spectra of ZnTe and ZnSe were measured at
temperatures between 4°K and 300°K. A helium-cooled variable
temperature dewar manufactured by Andonian Associates Inc.

served as the cryostat in these experiments.

5.2 Acquisition and Preparation of Samples

(a) ZnTe. Past experiments on ZnTe have been made difficult by

strong luminescence. For this reason several ZnTe crystals

were studied in this work. These came from three sources:
(i) One which came from Harshaw Chemical Company and
showed no luminescence.
(ii) A crystal received from P.C. Eastman and L. Bradfield
of the University of Waterloo. This crystal was grown in a
carbon crucible from the melt and showed no luminescence.
(iii) Crystals grown by the author from the vapour using

the technique of Piper and Polich (1961). Briefly a
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stoilchemetric mixture of Zn and Te was heated in an rf
furnace with a peak temperature of 1150°C to 1175°C.
Some of these‘crystals showed luminescence and some did

not.

It should be mentioned that luminescence in ZnTe
occurred in spite of the fact that the laser energy (1.955 eV)

is much less than the bandgap (~ 2.25 eV at room temperature).

The luminescence consisted of a brbad band centered
at about 1.88 eV. Previous workers (Hopfield, Thomas and Lynch,
1960) have identified such a band and have attributed it to
oxygen impurities substituted isoelectronically in the crystal.

Raman spectra were obtained from all of these crystals.

Two oriented single crystals of ZnTe were cut and
polished with faces (100), (010) and (00l1) for the crystal
designated (100) and with faces (110), (110) and (001) for the

crystal designated (110).

The orientation, or cut, of the crystals studied here
was carried out to within one degree accuracy. The crystals
were pplished flat to an optical finish using Logitech polish-
ing equipment. Because of the softness of the materials, tin

lapping plates were used.

(b) ZnSe. Two sets of experiments were carried out on ZnSe.
The first was performed on a large polycrystalline sample of

ZnSe obtained from Harshaw Chemical Company. It measured 4 mm
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x 8 mm x 8 mm in size. The second was performed on two single
crystals obtained from the original polycrystalline ZnSe. The
crystals for the second experiment were cut and polished with

sides (100), (010), (001) for the crystal designated (100) and
with sides (110), (I10), (OOl) for the crystal designated (110).

These two crystals measured about 2 mm x 2 mm x 4 mm in size.

Some luminescence was observed in the ZnSe material.
At room temperature the luminescence occurred as a broad band
around 6MOOA3 however, there was no visible luminescence in
the spectral region around 4880A and 51454 where the Raman
scattering experiments were carried out. When the sample temp-
erature was lowered to temperatures below 100°K the ZnSe cry-
stals luminesced quite strongly and the luminescence tended to
completely mask the second order spectrum. Kr and He-Ne laser
lines were used in an effort to avoid the luminescence problem
but these attempts were not very successful. Despite the lum-
inescence the major features of the Raman spectrum were studied
with regard to their relative intensity to determine whether

difference frequency modes were present.

(¢) GaP. The GaP material studied here was obtained from two
sources:
(i) single crystal platelets from Dr. Konrad Colbow of
this department originally obtained from Semi-Elements
Inc. and

(ii) single crystal platelets from Dr. Peter Barnes at
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Bell Telephone Laboratories, Murray Hill, New Jersey.
Although there was no difference in the two materials in their

Raman spectra, the results reported here were taken with a sin-

gle crystal from source (ii).

The single crystal material studied showed no lumines-
cence in the region of the spectrum observed. The crystal
size available at this time did not permit the cutting of
oriented single crystals for a study of the polarization pro-

perties of the Raman spectrum of GaP.
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CHAPTER 6

RESULTS

6.1 Introduction

In this chapter the Raman spectra of ZnTe, ZnSe and GaP
are presented. The resulting spectra are analysed using the
S.N.I. model. In section 6.4 the polarization properties of the
Raman spectrum of ZnSe are also presented. These results are
compared with the assignments made to the Raman features based
on the S.N.I. model. In section 6.5 the Raman spectrum of GaP
is analysed with the purpose of comparing the results with the
directly measured values of the lattice mode fféquencies ob-

talned from neutron scattering experiments.

6.2 Zinc Telluride

The Raman spectrumof ZnTe for a nonluminescent crystal
at room temperature is shown in Figure 8. The first order modes
have been labelled by the letters A and B and their frequencies
have been measured to be

A: v =208.3%0.5 em ™t

B: vV =177.5% 0.5 cm™t

The phonon frequencies were independent of the crystal used to
within experimental error and thus are not strongly influenced
by impurities. The impurity concentrations in the ZnTe crystals
used varied from 5 x 10*% to 5 x 10*7 cm"3. At these concentra-

tions plasma effects (Mooradian and Wright, 1966) are negligible

in ZnTe. The first order Raman spectruof ZnTe was also observed

¥
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as a function of crystal orientation (using (100) and (110)

single crysta155 and incident and scattered light polarizations.

The results for the first order modes were in good
agreement with the predictions of Poulet (1955) and the selec-

tion rules derived from Loudon's (1964) polarizability tensors.

The values obtained for the zone center frequencies
can be compared to the dielectric constant by using the Lyddane-
_Sachs-Teller (LST) relation of equation (4.7). Agreement was
obtained between the frequencies and the published dielectric
constant to about 3%. In TableVII are found the published di-
electric constants and the measured room temperature values
of the first order Raman frequencies and the percentagé agree-

. ment between the two for ZnTe, ZnSe and GaP.

TABLE VII

A comparison of the measured room temperature first order Raman

frequencies to the measured dielectric constants using the LST
relation.

Material GLO(Cm"l) gTo(thl)

€o € Agreement
ZnTe 208.3t.5 177.5t.5 10.4(2)  7.3(®) " o4
ZnSe 250. *1  203. *1  9.10(c) 5.90(d) 1%
Gap 402.8%1  366.6 1 10.18(e) 8.us(e) 14

.
k4
k4

?i% gahgyy anthaE (i967)é (b) Aten et al.§l962§
erlincour al. (1 S () M
o] mientse et a8 ]) o ernet 36
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The numbers in Figure 8 designate the observed fea-
tures in the second order spectrum and Table VIDZcontains a list
of.the frequencies corresponding to these features. Column four
of Tabkevit[gies the mode assignments made to these features.
Column three lists for comparison purposes the frequehcies of

the second-order features measured by Narita et al.(1967).

The assignments have been made on the following basis.

It will be noticed that a Raman peak has been observed at 364cem™ 1

which is missing from Narita's infrared spectrum. This peak has
been assigned to 2LO(X) since its particular overtone is forbid-
den in infrared absorption but allowed in ﬁaman scattering (see
Table V).

The featu:es below 160"l could be due to combinations
of transverse acoustic phonons (sums and overtones) or to dif-
ferences such as ILA(X)-TA(X). The differences are ruled out for
two reasons. Firstly, the intensity of features due to dif-
ferences decreases much more rapidly with temperature than the
intensity of sums and overtones (see Table IV). Secondly, dif-
ferences which combined a longitudinal mode and a transverse
mode should be depolarized (Birman, 1963). The intensity of all
the features below 100 cm™l were observed to decrease at the

same rate with decreasing temperature, and in addition were
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strongly polarized. On the basis of these observations the low-
energy features were assigned to overtones and sums of trans-
verse acoustic phonons. The S.N.I. model described in section
3.5, was employed in making the remainder of the assignments.
The seven parameters a, X, Bs My1s Mas Ay Ag Were determined in
the following manner. a and X were evaluated from the frequencies
at T, y from the value of LO(X) and p, using the elastic con-
stant C,,. The elastic constants C,, and C,, were then used to
estimate g and )\, + A,. The values of B, A; and A, were then
varied to obtain a good fit of the calculated zone boundary fre-
quencies to the experimental results. Agreement was obtained

with the elastic constants to better than 5%.

The values of the parameters used in applying the
S.N.I. model to ZnTe and to the other materials studied are
found in Table IX. The elastic constants calculated using these
parameters, the measured values of the elastic constants and
other relevant data are also found in Table IX. The normal mode
frequencies cadlculated from the S.N.I. model for ZnTe at the
critical points are found in column 3 of Table X. Columns 4,
5, and 6 of Table X gives the average zone boundary frequen-
cies estimated by Narita et al. (1é67), Nahory and Fan (1967) and
Nilsen (1969a), respectively. On éomparison one can see that a
ma jor discrepancy between this work and theirs is that their
values for the LA mode are 20 cm_l or more lower; however, it
was found that a value of less than 140 cm™t is inconsistent
with the S.N.I. model, leading to exhorbitant errors in the cal-

culated elastic constants. Nilsen (196%9a) has interpreted the
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TABLE IX

S.N.I. model parameters for materials studied.

Material ZnTe ZnSe zns(1) GaP
a (dynes/cm.) 22,836. 25,459, 28,596. 45,344,
B (dynes/cm.) 22,600, 25,200. 33,000. 26,500.
b, (dynes/cm.) 1,740. 4,750. 4,060. 3,200.
uz (dynes/cm.) 3,000. 0. 1,120. 3,500,
A, (dynes/cm.) -7,700. 2,200. 2,000, 4,000.
Az (dynes/cm.) 7,900. -2,200. -4,000. -16,500.
X 4,668 T,1hh, 10,178. 5,726.
m (10722 gms.) 1.085 1.085 0.5321 1.157
m, (10722 gms.) 2.118 1.310 1.085 1.243
a (R) 3.052 2.834 2.705 2.725
C,, Calculated 6.944 8.001 9.353 13.37
Measured 7.13(2) 8.10(2) 14.11
C,, Calculated 4,139 4. Lot 7.078 7.057
Measured y.07(2)  4.88(2) 6.187
C,4 Calculated 3.066 3.955 3.108 4,513
Measured 3.12(2) 4.41(2) : 7.043

(1) ZIrwin, (1970).
(2) Berlincourt et al., (1963).
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TABLE X

Critical point frequencies (in cm~1) for ZnTe.

Critical Mode S.N.I. Narita Nahory & Fan Nilsen
Point Model et al,
T Lo 208 206 210 205
TO 178 179 178 177
X 10 183 157 177 204
TO 174 175 177 204
IA 141 126 129 . 54
TA 52 73 56 54
L 10 169
TO 173
IA 154
TA L7
W W, 55
W, 103
Wa 146
W, 147
We 169

We 185
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210(T) mode as an overlap of the boundary optical overtones and
feature 2 of the Raman spectrum (see Figure 8) as an overlap of
the acoustic modes. These assignments disagree strongly from

those presented here.

The frequencies in Table X have been used to cal-
culate the proposed assignments‘and these figures are given
in column 5 of Table VIII. The difference between the observed
and calculated values is given in column 6 of Table VIII. It can
" be seen that the maximum difference is 6 cm—l which implies a
difference of about 3 cm‘l in the actual frequency. Thié cor-
responds to an uncertainty of less than 3% in the frequency

concerned.

6.3 Zinc Selenide (unoriented polycrystal)

The Raman"Spectrwnof an unoriented ZnSe sample at room
temperature is shown in Figurek 9. The two first order vibra-
tional modes are again labelled A and B and these frequencies
at room temperature have been measured to be |

A: V1o = 250.0%1.0 cmt

B: Vg = 203.0f1.0 cm™?

The values aré in good agreement with those obtained b&
Krauzman (1969) and Nilsen (1969a)but disagree somewhat with
. those reported by Taylor (1967) and Riccius (1968) (see Table
XIII).
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TABLE XT

A comparison of measured first order Raman frequencies of ZnSe.

Here Krauzman Nilsen Taylor Riccius
(1969) (1969a.) (1967) (1968)
Yrolem™)  250.0 251. 250. 25k . - 255.
Yro(em™t)  203.0 20k, 205. 205. 209.

Applying the LST relation to the first order mode frequencies
better than 1% agreement was obtained between the predicted and

observed ratios (see Table VII).

The features of the Raman spectrum of the unoriented
ZnSe polycrystal which have been attributed to second order pro-
cesses are designated numerically in Figure 9. Their frequen-
cies are listed in Table XIT with the corresponding mode assign-

ments.

Some assumptions have been made in the interpretation
of the secénd order Raman spectrum. The degree of ionicity of
the material studied can be calculated using the Szigeti rela-
tion (3.9). This equation can be solved for effective electr-
onic charge e and gives |e§| = .8 implying that the binding in
ZnSe is quite ionic. On this basis it has been assumed that the
L0 and TO branches do not cross and therefore vLO is greater than
VYpg at the zone boundary. This point will be discussed in

greater detail in Chapter 7.
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Certain features in the spectrum could be identified
rather quickly. For example the peaks at 501 and 407 em™ L were
assumed to be resonances of GLO(F) and Vpo(T) respectively.
The features around 450 cm~1 were attributed to LO overtones
from X and L and the féatures around 415 em™t to TO overtones
from X and L. The strong peaks around 150 cm‘l were tentatively
attributed to TA overtones. The other possibility is that they
could be due to differences between the optic and acoustic
modes. Theoretically, from Table II, it can be expected that

for a change in temperature from 300°K to 75°K, if these fea-

tures were sums or overtones their intensities would decrease

' by about a factor of 6, and if they were difference frequencies,

about a factor of 11 while the first order modes would decrease
only by a factor of 1.4. From observations of the spectrum at
75°K it was found that the relative intensity of the 139 em™ L
and 189 cm~l features did not differ significantly from the
other second order features of the spectrum. These two features

were therefore tentatively assigned to TA overtones at X and L.

To make a more quantitative interpretation of the
spectrum the S.N.I. model was applied to the data. The seven
parameters were determined in the following way. o and x were
determined from the zone centre frequencies Yy, and Ypy. ; and
Mz were determined from the frequencies Vyy(X) and VYpa(X). 1In
this case they were not known but, based on the above discussion,
an estimate of Vy5(X) was made and p; determined. The elastic
constant C,, was then used to get an estimate of Mz and this

should have given a reasonable value of %LA(X). Similarly B8,
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A, > and A, were estimated from the elastic constants C,, and
C4s and then used in the computation of Ypy(X) and %, (X). When
it was felt that a reasonable set of parameters had been ob-
tained the frequencies at L and W were calculated. These wére
then checked for a fit with the experimeﬁtal values and 1if
agreement was not obtained the parameters were varied and a new
set of values was calculated. The only constraints placed upon
the parameters was that they give reasonable agreement with the
elastic constants. Thus one is essentially éhoosing a set of
critical point frequencies which are consistent with both the
experimental results and the S.N.I. model. The measured elastic
constants used in this fit and %he set of parameters arrived at
for the case of ZnSe are found in Table IX. The resulting fre-
quencies at the critical points T, X, L and W are tébulated in
the third column of Table XIL These frequencies have been used
to determine the assignments given in column 3 of Table XII.
These listed frequencies are accounted for entirely by phonons
from X and L. However it should be noted that in several cases
the same peaks could be accounted for by combinations of phonons
from W. These have been left out of the table on the assumption
that the scattered intensity from W will be somewhat weaker
than that from L and X because of decreased symmetry and degen-

eracy (Johnson, 1965).

It should be mentioned that the differences in column
6 of Table XII are quite small indicating very good agreement
between the éséignments made on the basis of the experimental

results and those predicted from the S.N.I. model. In fact
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TABLE XIII ‘
Critical point frequencies for ZnSe in em™ L.
Critical Mode S.N.TI. Mitra Nilsen
Point ) Model (1963) (1969a)
T Lo 250 ‘
TO 203
X Lo o224 208 252
TO 215 212 252
IA 159 162 76
TA 95 87 76
L 7o) 234
TO 207
IA 160
TA 68
W W, 106
W, 116
Ws 143
W, 210
W 216

Ws 223
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this agreement must be considered to be fortuitous in that the
measured values are only accurate to + U4 em~l and one would not
expect much better than 5% agreement of the theoretical model
with the actual frequencies. TableXIII contains the average zone
boundary frequencies ob£ained by Mitra (i963) and those found by
Nilsen (1969). As is seen the agreement with the results is not
particularly good in either case but the values of Mitra give
the best comparison. Nilsen's results do not seem to be compat-

ible with the results presented here or the theoretical model.

6.4 Zinc Selenide (oriented single crystals)

The Raman spectra of oriented single crystals of
7nSe are shown in Figures 10 to 17. Each figuré includes the
crystal orientation, either (100) or (110) as defined earlier,
the polarization of the incident and scattered light intensi-
ties, and the symmetry species predicted from group theoretical
considerations. More detail was observed in these spectra
of ZnSe because (a) photon counting electronics were used giv-
ing a higher signal-to-noise ratio than obtained with a lock-in-
amplifier and (b) the contributing modes in the spectra were
separated out better by varying the polarization and orienta-
tion of the single crystal samples. The first order vibrational
"modes have again been designated as A and B in Figures 10 to 17,
and the other features of the spectra have been numbered to be
consistent both with the results of this section and with the
spectrum reported in section 6.2. The observed features have

been listed in Table XIV. The numbers which appear in these
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Figure 14 - The Raman spectrum of a ZnSe (110) crystal
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TABLE XIV
The observed freqencies (cm‘l),assignments and predicted polariza-
tion characteristics of Raman features in ZnSe.

>Ta Ts Tps S.N.I. Assignment Predicted Polarization
. : Characteristics
1 38 37 A Nis
2 50 50 47 TO-IA(L) T4y s
3 62 65 63 65 LO-IA(X),W,-W; T4 esThs
4 8 92 93 IA-TA(L) - T3+ s
5 106 108 107 © We-W, B
6 116 116 116 120 . TO-TA(X) T, 42T, g+0y 5.
7 140 138 139 13649 2TA(L),TO-TA(L) T4T 4,1 +2M,+ s
8 ~154 15k R - | ~
9 163 162 166 Lo-TA(L) " Neths'
10 186 186 190 2TA(X) © Ty48Ty g4y 6
B TO . TO(T) . '
11 220 222 - Wy Wy : N
12 228 230 228 IA+TA(L) - Ts+is
A 10 10(r) ‘
b 263 254 - TA+IA(X) - Ns
15 269 272 215 TO+TA(L) ’ T, 4T3 0420 5
16 279 277 280§ " _ ‘ ' |
17 288 286 286 oW, N, +0 s
18 298 29l 302 LO+TA(L) Tetlys
19 31 311 312 310 TO+TA(X) BRI P T-3 (S (A
20 326 326 318/20 2IA(X),2IA(L) I 4T 25Ty 4T s
21 338 340 338(?) 339 Wo+W, S " Tis
22 356 356 354 WyiW, Iis
23 363 367 TO+IA(L) , Taa+hys
24 370 367 3N 374 TO+IA(X) Tye
25 381 381 383 "LOHIA(X) ‘ Nis
26 © 394(7) 394 LO+IA(L) T 4hh s
27 ho3 ho3(7) o6 270(T) I 41,24 6
28 M1 K2 W2 414 2To(L) 4T 2
29 430 430 430 430 2To(X) T 42Ty o4 s -
30 446 6 448 448 2L0(X) T+ s
31 457 457 453 LO+TO(T) T340 24 s
32 U468/r2 466 472 468 210(L) N+

33 502 500 500 500 210(r) R N et




75
figures do not necessarily correspond to distinct peaks in
every spectrum; for example, numbers 22 to 25 designate detail
in one feature in Figures 12 to 17, but numbers 24 and 25 ap-

pear as separate peaks in Figures 10 and 11.

The critical point frequencies obtained earlier for
ZnSe (Tablé}qjl)have been used to make the assignments which
appear in column 5 of Table XIV. Column 7 lists the theore-
tical polarization characteristics of the assignments. It
should be noted that there have been no changes in the assign-

ments made to the Raman features reported in section 6.3.

The eight observed spectra have been divided into
three groups: the group containing both symmetry species I'; and
T2 (Figures 10 and 11), the group containing the symmetry spe-
cies Ty, (Figure 12) and the group containing the symmetry spe-
cies Iy s (Figures 13 to 17). It can be seen that apart from
the first order features, A and B, the spectra within a group
are very similar and that there are distinct differences between
the spectra of the three groups. Because of this the features
are listed in Table XIV in three columns under the heading of
each group of spectra. It must be noted that mere reference to
Table XIV is not sufficient to draw any conclusion concerning
the polarization characteristics of the various features; in
addition it is necessary to study the eight spectra of Figures
10 to 17 and to note the relative intensities which do not
appear in the table. Also the presence of a strong feature will

tend to mask a weak feature located close to it.
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With the greater sensitivity new features have been
observed. All but two of these new features have been assigned,
namely features 8 and 16. Features 15 and 16, although dif-
feréntiated in this treatment, may very well be the same peak

1

in that they are only 8 cm™~ apart and the accuracy with which

the measurements have been made in about 4 em™l. Features 21
and 22 are weak and appear in the hollow between a shoulder and
a larger peak. These features were assigned as sum frequencies

at the critical point W.

The Z(YY)X spectra for crystals (100) and (110), Fig-
ures 10 and 11 are identical except for the LO(T') contribution.
Here the (110)crystal spectrum has been shown using 4880A excitation
and the (100) crystal spectrumhas been shown using 5145& excit-
ation. The LO(T') and 2LO(I') lines were stronger relative to the
other features for the U4880A excitation. Although not shown
here the 3LO(T') and 4L0(T) features have also been observed us-
ing U4880A excitation. The occurance iof these strong peaks is
thought to arise from a resonant Raman effect (Loudon, 1964 and

Malm and Haering, 1971).

In comparing the observed and theoretically predicted
polarization characteristics of the Raman features, it can be
seen that there is good agreement in most cases, and apparent
disagreement in a few other cases. Consider for example feature
7. This feature has all three polarization characteristics and
is particularly strong in I; . This feature has been assigned as

2TA(L) which has the polarization properties TIj+I;,. However
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the presence of feature 7 in I, g spectra can be accounted for by

1

a superposition of the TO(L)-TA(L) mode with its Iy g content on
the 2TA(L) peak.

There are other examples of apparent disagreement. In
particular feature 25 does not appear distinctly in the fls spec-
trum and yet the assignment has only a I g prediction. The ab-
sence of a peak in a particular spectrum is not too significant
since one has no way of predicting the intensity. More signifi-
cant is the presence of a feature with unpredicted polarization
properties. This occurs for example for features 28land 30.

Here however it is believed.that since they appear weakly their
existence in the TI';g spectra could possibly be attributed to

effects in the crystal.

In general, with the exception of a few weak features,
the polarization properties of the Raman spectra agree well with
the chosen assignments. These results tend to reinforce the
work on the polycrystalline ZnSe and one must conclude that the
polarization data provide a useful aid in obtaining data from

second order Raman spectra. The disadvantages involved in the

procedure will be discussed more’ fully in section 7.4.

6.5 Gallium Phosphide

The Raman spectra of an unoriented single crystal of
GaP at room temperature is shown in Figure 18. The first order
Raman modes have been labelled by the letters A and B and their

frequencies were found to be



A: Yo = 402.8 £ 1 cm
B: VUpg = 366.6 + 1 em™1
These measurements are in réasonable agreement with other Raman
determinations of the fundamental mode frequencies and also with
the frequencies determined by far infra-red techniques. These

frequencies are listed in Table XV,

Applying the LST relation to the first order mode fre-
quencies, one obtains, using Barker's (1968)'values for e, and
cws better than 1% agreement between the predicted and observed

ratios (see Table VII).

TABLE XV

Experimental determinationsof 9Y10(T") and Ypo(T') for GaP in cm'l.

Mode Raman Infra-red
Here Russel Fray et al. Kleiman & Spitzer Barker
(1965) (1969) (1920) (1968)
Sro(r)  4o2.8 Lo2. 403.0 4oa.3 Lok,
Vpo(r)  366.6 366. 367.3 366.0 366.

The features of the Raman spectrum of GaP which have
been attributed to second order processes are numbered numeric-
ally in Figure 18 and are listed in Table XVI  with the mode

assignments which have been made to them.

In interpreting the spectrum the ionicity of the ma-
terial was considered first. The effective charge of the ions

in GaP were calculated using the Szigeti relation and was found

ot
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‘TABLE _XVI

The frequencies (in cm™l) and assignments of the Raman feature of GaP.

Feature Number Frequency Shift Assignment . Frequency Shift Cal- Error
from Figure 18 Here I.R.(&) culated for Table XIX
1 105 '
2 134 TO(L)-LA(L) 12 +12
3 166 Lo(L)-1A(L) 171 15
4 180 2T (L) 186 +6
5 211 2TA(X) 208 -3
6 258 (Lo(X)or TO(X))-TA(X) 262 +
7 265 TO(L)-TA(L) 267 +2
8 276
9 287 10(L)-TA(L) 292 +5
9a ~355 TA(X)+LA(X) 350 -5
10 428 L26 21A(X) 428 0
11 446 L6
12 452 TO+TA(L) 453 +1
13 u65 {Lo(X)or TO(X))+TA(X) k10 +5
14 48o - k7 1o(L)+TA(L) 478 - +2
15 hgs 493 2IA(L) 492 -3
16 504
17 537 538 We+W, 539 +2
559
575 To(L)+IA(L) 574 -1
18 606 604 (To(X)or LO(X))+LA(X) 612 +3
19 649
20 685 o
20a 702 707 To(L) 720 -13
21 720 722 2T0(X) 732 +H2!
22 738 738 2W,y, 2W, 618 o
23 754 754 Lo(L)+To(L) 745 -9
24 786 7684 2Lo(L) 770 -16
25 8ol 806 2L0(T) 806 +2

{(a) Kleinman and Spitzer.
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to be (|eg] = 0.6le). This means that the binding in GaP is
not very ionic. By considering the trends observed by Keyes
(1962) which will be discussed later in section 7, the optic
modes were expected to be approximately equal to each other
at the zone boundary, or they might perhaps even cross. As a
start the optic modes have been assumed to be equal at the
critical point X and have been tentatively assigned as features

21 in Figure 18.

Since the laser frequency was well below the band gap
of GaP strong 297o(T") resonance was not expected as was observed

in ZnTe and ZnSe. A relatively weak 2§LO(T) mode was observed
as feature 25. The features 20 to 24 were assigned to optic
mode overtones and sums from X and L. The features numbered

I and 5 were tentatively assigned to the overtones of TA(L)

and TA(X) respectively. The features between 400 and 500 em™t

were considered to be LA overtones and sums between the optic

and acoustic modes.

To make a more quantitative interpretation the S.N.I.
model has again been used to treat the data. The analysis
follows the same line indicated for the case of ZnSe discussed
in section 6.3. The measured elastic constants used in this
fit and the set of parameters arrived at for the case of GaP
have been listed in Table IX. The resulting frequencies at the
critical points in GaP are tabulated in column 3 of Table XVII.
These frequencies have been used to determine the assignments
given in column 3 of Table XVI. One can see from Table XVI

that the fit as a whole is fairly good. A couple of weak fea-

¥
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TABLE XVII

Critical point frequencies for GaP in cm~t.

Critical Mode S.N.I. Neutron? I.R.? I.R.2 Raman*
Point Model

T Lo 4o2.8 4os . lhoo
TO 366.6 366.5 366
X Lo 366 366 395 378 358
TO 366 353 366 361 393
IA 246 249 255 197 235
104 106 104 115 104
L Lo 385 373 378 360
TO 360 357 - 361 378
IA 214 212 197 236
TA 93 85 66 76
W W, 109
W, 178
W, 197
W, 361
W 368
Ws 369

(*) Yarnell et al, 1968. (2®) Dean, 1967. (®) Kleinman and
Spitzer, 1960. (*) Russel, 1965.
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tures, numbers 1 and 19, were not accounted for by the model.
Features é, 3, 6, 7 and 9 were aésigned as difference fre-
quencies. Also no assignment has been given for feature 20 on

the shoulder of feature 21.

The agreement of the calculated elastic constaﬁts
with those measured, C,,, C,, and C,, are 5%, 15% and 35%, res-
pectively. This agreement is not as close as obtained for 7nSe
or ZnTe; however, it should also be noted that GaP is less
" ionic than either ZnSe or ZnTe; also GaP is the only III-V

compound investigated here.

The critical point frequencies reported by other
authors for GaP are also listed in Table XVII. Russel (1965)
has assumed a strong crossing of the optical modes in the X
direction; this is inconsistent with the S.N.I. model.‘ Both
Kleinman and Spitzer (1960) and Russel (1965) assigned TA(L)
much lower than reported here. Dean (1967) and Kleinman and
Spitzer (1960) in their far infra-red studies of GaP assigned
LO(X) higher than TO(X) in contrast to the results presented
here. Also listed in Table XVII are the critical point frequen-
cies measured directly by neﬁtroﬁ scattering by Yarnellet al.
(1968). The assignments made uéing the S.N.I. model agree rea-.
sonably well with these values. The largest difference occurs
for the TA(L) mode where the discrepancy is about 9%. Otherwise

the agreement between the measurements is withiq he
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CHAPTER 7

DISCUSSION

7.1 Introduction

In this chapter the consistency of thé frequency as-
signments made to the Raman features observed for ZnTe, ZnSe
and GaP are checked against regularities that have been pre-
viously observed in the phonon spectra of zincblende semi-
conductors. The Brout sum rule is applied to these results as
a test of their consistency. Also the application of the S.N.I.
model to the analysis of the Raman spectrum of zincblende ma-
terials and the information obtainable from polarization studies

of the Raman spectrum will be discussed.

7.2 Regularities in Zone Boundary Phonon Spectra

The phonon spectra of several zincblende semicon-
ductors have been analyzed by Keyes (1962), Mitra (1963) and
Marshall and Mitra (1964). Most of these spectra were ob-
tained from infra-red absorption spectra and the frequencies
obtained represent some average of the zone boundary frequencies
from the various critical points. They have found certain re-
gularities in the various spectra and the assignments made here

can be checked by comparing them to these regularities.

Keyes (1962) and Mitra (1963) found a strong cor-
relation between the ratio (vLO/vTO)2 at the zone boundary and

the ionicity or effective charge ratio (eg/e) squared. The

qualitative origin of this correlation is illus+rated in Figure
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19 taken from Mitra (1963). Figure 19(a) is typical of silicon
in which eE/é:O: here the zone centre optic modes are degener-

ate and ;TO< ;LO throughout the remaindér of the Brillouin zone.

, : . | es/e large
e;/e=0 e;/e small e;/e intermediate \
s —
a |(a) (b) (c) (d)
L
prd
L
WAVEVECTOR '

Figure 19 - A qualitative illustration of the effect of ionicity
on the phonon dispersion of a diatomic lattice.

For eg/é small, the degeneracy at I' is partially removed but
the optic modes croés within the B.Z. as in Figure 19 (b). At
some intermediate ionicity, e;/e 2 0.7, the optic modes are de-
generate at the zone boundary and for large ionicity the optic
modes do not cross within the B.Z. This correlation has been
used in making tentative assignments of the optic modes in the
Raman spectra. Figure 20 1is a graph of the correlation for
several zincblende materials taken from a paper by Marshall and
Mitra (1964) in which asterisks have been placed corresponding
to the results obtained here. The ionicity of the compounds
studied were.calculated using equation (3.1) and the dielectric
constants of Table VIL One can see that the astérisks fit well
on this graph. Two other graphs have been taken from a paper by

Mitra (1963) and the corresponding asterisks added to them. . The
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The first of these (Figure 21) is a plot of Vpa VErsus Vg and
the second (Figure 22) is a plot of ;TA versus ;LO' It should
be mentioned that the reproductiors of these graphs do not con-
tain all the points given by Mitra (1963) and Marshall and
Mitra (1964) but only representative points since the data which
have been plotted represent averages of the values at the criti-
cal points X and L. It can be seen that the values obtained
here correlate well with the results obtained for other zinc-

blende compounds.

The effective charge calculated from Szigeti's for-
mula is compared to that obtained from the S.N.I. model for the
four materials studied here (Table XVII). It can be seen that
there is a close agreement between the two determinations of
effective charge, the largest difference being 9%. The agree-
ment is best for the most ionic material ZnS and poorest for

the least ionic materials.

TABLE XVITI

The ionicity of some zincblende compounds calculated from the
Szigeti equation and from the S.N.I. model.

Effective Charge Ratio ZnTe ZnSe zns GaP
eg /e .71 .80 .88 - .6l

7 .76 .83 91 57
Difference 7% U 3% 9%

7.3 The Sum Rule

A sum rule initially introduced by Brout (1959) for

. F
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Figure 21 - A plot of Via versus vrg for several zinc-
blende semiconductors (from Mitra, 1963).
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Figure 22 - A plot of Vg, Versus gLO for some zincblende
semiconductors (from Mitra, 1963).
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ionic dilatomic crystals with the NaCl structure has been ex-
tended by Rosenstock (1963%1965) and Rosenstock and Blanken
(1966) to include any n-atomic lattice of any structure. Rosen-

stock has stated the sum rule in the following form:
n

.Z:ué(Q) = constant + érskYK(Q) (7.1)

i=1

The sum on the left is taken over the n-phonon branches at

point @ in the Brillouin zone and the sum on the right is over
the k forces acting between atoms in the crystal. ¥K(@) thus
represents the q dependent contribution of the kth férce; Rosen-
stock has shown that the only forces contributing to the d de-
pendent part of the sum are nonelectrostatic and act on like
atoms. Thus first neighbour interactions and long range Coulomb
forces do not contribute to Y(a) and only second and more dis-

tant neighbour forces prevent the sum from being a constant.

In this work a second neighbour theoretical model has
been applied to the lattice vibrations of zincblende materials
and a set of frequencies has been obtained from this model which
agree quite closely with those necessary to describe the second-
order spectrum for each material studied. With this close
agreement one can expect good accérd between these results and
the predictions of Rosenstock fof the second neighbour force
contribution to the sums at the zone boundary. The sums at the
zone boundary will thus be somewhat higher than they are at
the center and although the difference is not quantitatively
predicted by Rosenstock's theory it is perhaps of interest to

calculate
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8@ = L uf (a) - 2wl (D) | (7.2)
L wi” () |

at the zone boundary. This has been done and the values‘ob—
tained along with the Brout sums at the critical point are
listed in Table XXI. For comparati&e purposes the neutron
work on GaP by Yarnell et al. (1968), and the work on GaAs by
Waugh and Dolling (1963) have been included in Table XIX . It
can be seen from the table that in all cases A(X)=A(W) and the
value of A(L) is about 3/4 that of A(X). The sums calculated
from the analysis of the Raman spectra are somewhat larger than
the sums calculated from the neutron data. Also it appears that
the more ionic compounds ZnSe and ZnS have 1arger'second neigh-
bour force contributions to the sums at the zone boundary than
the less lionic compounds ZnTe and GaP. This analysis of the
Raman spectra of zincblende compounds appears to give reasonable
values for the Brout sums at the zone boundaries and also adds
weight to previous observations (Waugh and Dolling, 1963 and
Rosenstock and Blanken, 1966) that second neighﬁour forces are
essential for an adequate treatment of the lattice dynamics of

zincblende materials.
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TABLE XIX

The Brout sums at the critical points.

Material Elwiz(a)(xlozvsec.;i)
iy X T W A(X)  a(L) a(W) Z

ZnTe 3.79 4.25 4,14 4,25 12 -09 A1 .76
7nSe 5.15 6.60 6.24 6.6 .28 .21 .28 .83
zns(2) 9.62 12.4 11.68 12.4 29 .21 .31 .91
GaP 15.3 17.2 16.73 17.0 12 .09 Jd1 .70
Gap(b) 15.3 16.6 16.16 .08 .05 .70
GaAg(c) 7.95 8.89 8.68 .12 .09 5T

(a) Irwin, 1970; (b) Yarnellet al.,1968; (c) Waugh and
Dolling, 1963.

7.4 Methods of Analysis and Discussion

In the past the Raman spectra of zincblende com-
pounds have been analysed by assigning the Raman features lar-
gely by guess-work. Researchers assumed that essentially all
the scattering took place at the B.Z. boundary and interpreted
their results in terms of a set of four average frequenciles at
the zone boundary. Obviously the results of such an exercilse
were not unique and often several possible sets of values were

given.

In this thesis a theoretical model, the S.N.I. model,
has been applied in making the assignments to the features ob-
served in the Raman spectra of ZnTe, ZnSe and GaP. There are
only seven parameters in this model and by using the measured
elastic constants as a constraint there is a limited range of

possible fits of the model to the observed Raman features. Byv
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varying the parameters of the model a "best fit" was obtained
and the assignments to the Raman féatures were made accordingly.
These assignments were checked and found consistent with re-
gularities in the phonon spectra observed by previous authors.
The assignments were also found consisteﬁt with the Brout sum

rule.

The S.N.I. model was found suitable for such an ap-
plication to the zincblende structure: (a) it takes into ac-
count an effective charge of the lons of the material (b) it
includes second neighbour interactions found necessary from an
application of the Brout sum rule (c¢) 1t involves only seven
physically significant parameters such that when constrained by
the lattice constants of a material it allows only a limited

range of possible solutions.

Another method used to analyse the Raman spectra of
zincblende materials is the study of the polarization properties
of oriented single crystalline samples. However if one attempts
to make assignments to the Raman features based upon the ob-
served polarization properties, one is immediately confronted
with difficulties: from Table V it can be seen that for the
critical points X and L there are twenty possible second order
modes for which there are only five distinguishable polarization
selection rules (Ty+4Ty 2, T+l gs i+l 24T gs T4 s and T ).
This lack of discernment together with the similarity’of the ob-
served polarization characteristics of the spectrum makes this

method of assigning the Raman features by itself rather dubious.
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For example, Nilsen (1969) and Krauzman (1969) have each ana-
lyzed the Raman spectrum of ZnS by this method. If one com-
pares their results oﬁe finds rather poor agreement in their
assignments. Nevertheless, the observation of oriented single
crystalline samples with particular incident and scattered light
polarization allows a better separation to be made of the con-

tributing processes in the Raman spectrum,

Thus to obtain definitive information from a second
order Raman spectrum it has been found necessary to use an ap-
propriate lattice dynamic model. 1In this way it is believed
that a reliable set of values can be obtained for the critical
point vibrational frequencies. Also, even though polarization
studies are not sufficient in themselves, they should be used

whenever possible to ald in the interpretation of the results.
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CHAPTER 8

PHONON DISPERSION

8.1 Introduction

!

In this chapter the S.N.I. model parameters obtained
above are used to éalculate the phonon dispersion (section 8.2),
the frequency distribution (section 8.3) and the specific heat
(section 8.4) for ZnTe, ZnSe, ZnS and GaP. Comparisons are

made with measured results where possible.

8.2 Phonon Dispersion Curves

The parameters of the S.N.I model derived from treat-
ing the second order spectrum have been used to calculate the
phonon dispersion throughout the B.Z. In doing this it is nec-
essary to consider only that region R in the B.Z. defined by

©<9q, < 9,59, =1 ; and 9x+qy+‘7e'53/2
The application of the symmetry properties of the zincblende
structure toR will generate the entire B.Z.

It is convenient to introduce the numbers pg,p,. p,

such that P.= 40aq_, Py= 4oqy y Pa= 409,

so that possible vectors in reciprocal space are gilven by

g
9 = f%' fg (Fl, Pya’%)
An even sampling of points in R is obtained by letting
P., Py, P; be integers, either all odd or all even to account

for the lattice geometry and such that

O< Pa S Py Px S 90, and Pe T Pyt Py X 60.
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There are 1685 sets of numbers of this type representing wave-
vectors evenly distributed throughbut the region IR possessing all
the symmetry properties of the reciprocal épace. Equation (3.7)
is solved for the vibrational mode frequencies at each of fhese
wavevectors. This has been done using a high speed computor and
a program obtained from Dr. V. P. Varshni of thé University of
Ottawa. The phonon dispersion of ZnTe; ZnSe, ZnS and GaP have
been calculated and plotted in Figures 23 to 26 respectively.
ZznS has been included because of its similarity to the other
zincblende compounds studied here. The S.N.I. model parameters
which were used for ZnS were obtained from Irwin (1970). 1In
Figures 23 to 26 not .only have the frequencies and wavevectors
been included between T° and the critical points X, L and W but
also the zone boundary values between the symmetry points X, L,
W and K. The abcissa axis is linear in wavevector magnitude
between the symmetry points. One can see that there is a strong
similarity in the phonon dispersion of the four materials as can

be expected from materials of the same structure.

The neutron scattering data for the acoustic lattice
vibrations in ZnS was measured by Feldkamp et al. (1969) and has
been included in the phonon dispersion curves of Figure 25.

Only partical agreement has been found between the calculated
results and those measured by neutron scattering. Unfortunately
Feldkamp et al.(1969) did not include any statement indlcating
the accuracy of these measurements; however, they did say that

3

they had only a small crystal of 1.44 cm” volume and that there
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was insufficient intensityvto measure the optical mode fre-
quencies. Because of this the acéuracy of their results must
be held suspect and cannot be considered as a test of the cal-

culated dispersion curves.

In figure 26 the neutron scattering data from measure-
ments on GaP by Yarnell et al.(1968) have been included. Error
bars have also been included to indicate the accuracy stated by
Yarnell et al. The agreement between calculated and measured
" dispersion curves 1s reasonably good although parts of the cal-
culated curves fall outside the stated experimental accuracy of
the neutron data. However, it is felt that the accuracy of this
scattering daﬁa must be held suspect too. Consider the strong
feature 24 in the GaP Raman spectrum of figufe 18. This is a
21,0 mode which has been assigned to the critical point L. This
feature implies a vibrational mode of 393+5 em™ L. The neutron
data is unable to account for a vibrational mode frequency this
large éther than at the zone centre. However the contribution
from the zone centre LO mode to the Raman specfra is clearly
feature 25. Also it should be noted that although the sample
of GaP studied had a volume of ~9 cm®, the sample was a compo-
site of 36 single crystal plateléts oriented and glued together.
For these reasons it is felt that the experimental error in the
neutron scattering data stated by the authors is perhaps too

small and could easily be twice as large,

8.3 The Frequency Distribution of the Vibrational Modes

In order to calculate the frequency distribution of

the vibrational modes of a material, the mode frequeﬁcies cal-



101

culated using equation (3.7) and the values of P, sP,sp, &bove
must be weighted according to the number of similar points in

the whole Brillouin zone. The frequency distribution, g(v), can
| be derived from the calculated frequencies by dividing the range
of values of v into éqﬁal intervals Av and counting the number
of frequencies in each interval. The frequenéy distribufion for
ZnTe, ZﬁSe, GaP and ZnS have been calculated and the results ap-
pear in Figures 27 to 30 respectively. One must bear in mind
that these frequency distribution functions are only approxima-
tions. Because of the discrete sampling of‘modes (for example,
there are only twenty wavevectors sampled between I and X), one
does not get a true picture of (a) the higher density of states
due to the volumetric effect of increasing wavevector, and (b)
the high density of state due to the flattening of the disper-
sion curves at or near the critical points. To illustrate this
the density of statés function for ZnS has been calculated using
only values of p, +p, +p, = 60 and 59, i.e. zone boundary and near
zone boundary frequencies. The results reflect the high dénsity
of states for large wa&evector and are illustrated in Figure 31.
Comparing Figures 30 and 31 one sees the major difference is the
zone center optical frequencies and the frequencies near K in-
side the zone edge. These regions should have a low density of
states compared to the zone boundary. In order to obtain a moré
accurate frequency distribution function it would be necessary
to divide the range of § into much finer points to do the cal-
culation. However, this rapidly becomes prohibitive in computer

time, and negates this approach.
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8.4 The Specific Heat

The specific heat can be calculated from the density
of states function g(v) of the lattice modes. (Electron con-
tribution to the specific heat is assumed negligible in the

high resistivity semiconductors studied here.)

The thermal energy of a crystal is given by
= jé n ; hc; d;
where 3 =

h:"
et —1
and fg dv = 6N

Here h is Planck's constanté, k is the Boltzman constant, T
is the temperature in °K, 6 is the number of modes per molecule

or unit cell and N is Avogradro's number.

The specific heat for constant volume follows by dif-
ferentiating the energy by temperature,
. kS -
C ~k )r) he € CJY‘
( h(;: 1)’-

and for purposes of numerical evaluation one can write
by

RT
= éNk Z, (I’;::TV) .en.:_f_J)z

2l meodes

where71 is the total number of modes evaluated. Because all
materials with the same number of modes per unit cell tend to
the same value of specific heat at high temperatures it is ad-
vantageous for comparative purposes to express the specific
heat Cy(T) in terms of the Debye temperature .o (T) of the ma-

terial. The specific heat of a material with two atoms per unit

cell is given in the Debye approximation by(Kittel, 1967)



C,=18Nk 1f dx
e (e -I\)’"

where X, = / = hﬁ;’

Thé frequency distribution of the vibrational modes is assumed
to depend on the square of Y up to a cut-off frequency ;o and is
zero above. The épecific heat for such a solid accor-ding to the
Debye approximation is illustrated in Figure 32. For each temp-
erature and material one can compare.the calculated specific

" heat to that predicted by the Debye theory and obtain the cor-
responding Debye temperature @ (T).

lz | ] L] 1 ] _'
10}
o
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o
~
=
2 1 ]
g ©
>
S 4} -
£
S ep l
o ' 1 i 1 5

Figure 32 - The heat capacity of a solid with two atoms per unit
cell, according to the Debye approximation.
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The specific heat of each of the materials studied
here have been calculated using the frequency distribution ob-
tained from the S.N.I. model and has been expreésed in terms
of Debye temperatures in the range froﬁ 10°K to 500°K. The
results are illustrafed by the solid lines in Figure 33. Very
little experimental data exists on the specific heat of these
materials. In fact no experimental determination of the
specific heat of GaP has been found. Experimental data for the

other materials were added point by point in Figure 33.

The room temperature values of ZnTe and ZnS ahd the
80°K measurement of ZnSe are in strong disagreement with the cal-
culated results. The data for ZnS taken from Gmelin (1956) fall
reasonably well along the theoretical éurve; but the room temp-
erature determination by Schleiger and Webb (1968) for the
same material falls 120K° belowAthe calculated results.
Gul'tyaev and Petrov (1959) report measured values of Cy for
ZnTe and ZnSe with the associated Debye temperatures at 80°K.
These values have been entered in Table XX with the results

. obtained here for comparative purposes.

TABLE XX

A comparison of the specific heats for ZnTe and ZnSe at 80°K.

Gul'tyaev and Petrov Here
Cv e Cv ) ‘o
(cal/gm-atom/°K)  (°K) (cal/mole/°K) (°K)
ZnTe 3.8 250 7.61 252

ZnSe 2,2 400 6.42 362
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33 - The calculated and measured specific

heats of ZnTe, ZnSe, ZnS and GaP.
A ZnS from Gmelin (1956g ¢ ZnS from
Schleiger and Webb (1968); ® ZnTe

‘from Gul'tyaev and Petrov (1959)§°

©'ZnTe from Kelemen et al. (1965
and BZnSe:from Gul'tyaev and Pet-

rov (1959).
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From Table XX it can be seen that the Debye temp-
eratures agree for ZnTe; however the values of specific heat
differ by a factor of two for the same measurement. This sug-
gests that the meaning.of the term "gm-atom" used by Gul'tyaev
and Petrov differs by a factor of two frém the meaning of "mole"
used here. However, in the case of ZnSe there is no agreement
either in the Debye temperature at 80°K or the specific heat
even with consideration of a different meaning for "gm-atom".
Similarly a large difference is observed betWeen the rodm temp-
erature determination of ® for ZnTe obtained by Kelemen et al.

(1965) and the calculated value obtained here.

The measurements of the specific heats of the materials
studied here are few. Until recently, of the material studied
here, only good crystalline samples of ZnS were available and
for ZnS there 1s some agreement between the measured and cal-
culated specific heats presented here. There has been poor
agreement for the other materials probably due.to a lack of
high purity samples. The calculation of specific heats should
not be sensitive to details in the phonon dispersion and it is
expected that the theoretical calculations of specific heat
should be accurate to about 10%. It is felt that the results
presented here are closer to the real values of specific heat
than those published measurements which disagree with these cal-

culations.
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CHAPTER 9

. CONCLUDING REMARKS

9.1 ‘Summary and Conclusions

4

A study of the Raman spectra of ZnTe, ZnSe, and GaP
has been presented in this work. The spectra have been inter-
preted in terms of combinations and overtones from the critical
points X, L, W, and I in the Brillouin zone. In addition the re-
sults have been analysed with the aid of the S;N.I. model which
has been found applicable to zincblende materials (Banerjee and
Varshni, 1969). For each material a set of critical point fre-
gquencies has been obtained that are consistent with both the

theoretical model and the observed spectrum.

In the case of ZnSe it has also been possible to in-
vestigate the polarization properties of the second order spec-
trum. For a given crystal orientation and polarization of the
incident and scattered light only certain combinations are al-
lowed from the various critical points. These have been predic-
ted from group theory by Krauzman, 1969 and Nilsen, 1969b, and
the observed spectra have been compared to these predictions.

It was concluded that the information obtained from poiarization
measurements was insufficient to be used alone in making mode as-
signments. However, the use of various polarizations and crystal
orientations did aid in separating out the different contribu-
tions, and tended to verify the assignments made from the poly-

crystalline ZnSe spectrum. .
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As a further check on the reliability of the values
obtained for the critical point frequencies the results were
compared to regularities previously observed in the zone bound-
ary frequencies of zincblende semiconductors (Mitra, 1963; Keyes,
1962 and Marshall and Mitra, 1964). In all cases good agreement
was obtained and a number of previous inconsistencies were resol-

ved.

The set of critical point frequencies in turn determin-
ed the parameters involved in the S.N.I. model and enabled a cal-
culation of the phonon dispersion throughout the Brillouin zone.
This calculation was carried out on an IBM 360 computer for four
materials: ZnTe, ZnSe, GaP, and ZnS. Only in the case of GaP
was 1t possible to make a detailed comparison with directly
measured dispersion curves (Yarnell et al., 1968). 1In this case
some discrepancies were found which exceeded the quoted error
assignments. It is felt however that the error limitation of
the GaP neutron results are somewhat optimistic in that the
measurements were performed on a crystal that was fabricated
from several small platelets. The only other zincblende semi-
conductor which has been investigated by neutron scattering in
detail is GaAs (Waugh and Dolliné, 1963). However the second
order Raman spectrum has yet to be measured because of the lack
of a suitable source and the weakness of the second order spec-

trum.

The frequency distribution of the vibrational modes

and the specific heat as a function of temperature have been
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calculated from the phonon dispersion curves for the four ma-
terials. A comparison was made with the limited amount of ex-
perimental information that is available (Gul'tyaev and Petrov,
1959; Kelemen et al., 1965; Schleiger and Webb, 1968 and Gmelin,
1956). However because of the lack of eiperimental specific
heat data for these compounds no definitive conclusions could be

drawn.

In conclusion it is felt that a method has been de
veloped whereby reliable values can be obtained for critical
point phonon frequencies in zincblende semiconductors. These
values then enable one to obtain reasonably accurate (5%) es-
timates for phonon frequencies throughout the Brillouin zone by
using an appropriate theoretical model. The results are of par-
ticular interest in the case of zincblende semiconductors where
in general suitable crystals are not available for neutron scat-

tering experiments.

9.2 Suggestions for Further Work

Obviously future experiments can be concerned with the
investigation of other materials of the same class, of which
there are many. However it is feit that more work should go in-
to the further validation and improvement of the method desc-
ribed in this thesis. In line with this one should consider ex-
periments on specific heat measurements. ILarge polycrystalline
samples suitable for such experiments are now available and the

results would be of general as well as particular interest.
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The most accurate neutron work has been done on GaAs
for which large single crystals are available. It would thus
be of interest to pérform scattering experiments on GaAs and
to compare the results with the neutron data. Such experi-
ments would provide a definitive test of the method and would
provide information on the relative amounts of scattering that
originates from critical points in the Brillouin zone. How-
ever, a source with about an 85OOA wavelength is required.
It will perhaps be necessary to perform the experiments at

fairly low temperatures using a GaAs laser as a source.

Finally it should be mentioned that the S.N.I. model
probably does not constitute the ideal theoretical model. It
is desirable to have a model with even fewer parameters which
would give an even more exact description of the dispersion
relations. Some work is being directed towards this end
(Vetelino and Mitra, 1969) and hopefully a simple, reliable

theoretical model will ultimately emerge.
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APPENDIX

In this appendix the method used to obtain the se-
lection rules for two phonon Raman processes is briefly out-

lined.

Consider the critical point X. The point group of
the space group is D,4 and the reducible representation of the
vibrational modes at this point is X, +X3+2Xs (Poulet, 1955 and

_ Parmenter, 1955) where X, , X; and Xg and irreducibie represen-
tations of the group D;4. Xs; is doubly degenerate and is as-
sociated with each of the optical and acoustical transverse
modes. Group theory is unable to make a more precise assign-
ment as to which of X, or X, is the opticél or acousticalvlbng-
itudinal so let X; designate the LA mode and Xz the LO mode at
X.

Similarly the point group at L is C,y and the reduc-
ible representation of the'vibrational modes at L is 2I, +2L,.
I, is a doubly degenerate irreducible representation and so is
assigned to each of the transverse modes and I, to each of the
longitudinal modes. At W the point group is S, and the reduc-
ible representation of the vibrational modes at W is W,+2 W +2W,

W, , where W, and W, are degenerate by time-reversal symmetry.

4

These modes can no longer be divided into purely 1ongitu@inél

or transverse polarized modes at the critical point W (Parmenter,

1955).
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The point group of the space group of each criticai
point in the B.Z. (see Figure 3) is listed in column 2 of Table
XXI. The character table for each of these point groups is found
in Table XXII. The symmétry species of the latfice vibrations for
~each symmetry point in the B.Z. have been derived by Pouiet
(1965) and the reducible representation of these lattice vi-
brations forleach of these critical points are listed in column
3 of Table XXI in terms of thg irreducible representations of the

appropriate point group of Table XXII.

TABLE XXI

The reducible representation of the point group at each critical
point of the B.Z.

Symmetry Point Group Reducible Representations of Sym-.

-Point _ metry Species at Each Critical
Point
T Td Ty s
X D, 4 : X, +%3+2Xs
L Cyy 2L, +2L,
W S, W, +2W, +2W,+ W,
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TABLE XXIT

The character tables of the point groups in zincblende.

r15

F

T\25

301_)

2C,

204

2C,

< Ed mom
- 0 0 <
= o= o= o=




119

The symmetry properties of the two phonon statés can
be derived from one phonon symmetry properties by reducing the
direct product repfesentation of the corresponding one phonon
states. For example, consider the 2LO(L) overtone. The LO(L)
mode has the Irreducible representation I,. The 2LO(L) state has
the repfesentation I,®L,. This representation is reducible in
terms of the T4 point group to m 4+ T™s so that the 2LO(L) phonon
mode will have the symmetry speciles Ty + Tyge For the zincblende
-crystal structure with its Ty point group symmetry, the polariz-

ability tensor transforms as v, + ™,

s tT,g+ In order tha? a

two phonon process be Raman active, there must exist an irreduc-
ible representation corresponding to the:hjeducible representa-
tions of the polarizability tensor in the reduction of the direct
product representation of the two phonon mode. Since the re-
presentation of the 2LO(L) phonon process is ™ Tig, it is
allowed. In fact Birman (1963) finds that all two phonon pro-

cesses are Raman active in the zincblende structure.

The selectioﬁ rules are summarized in Table V. The
reducible representation of the two phonon states at each cri-
tical point in the B.Z. have been derived and expressed in
terms of the irreducible representations of the point group Ty
(Birman, 1963 and Krauzman, 1969) and are listed in Column 6
of Table V. Similar_results are shown for the second order

infra-red absorption processes for the purpose of comparison.
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