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ABSTRACT 

Building classification models based on databases is an exciting area in data 

mining research. In many classification tasks, only a small set of labelled training data 

are given. These data are not sufficient for a good classification. We need to sample and 

label more data as training data for better performance. However, labelling data is time- 

consuming and costly. The challenge is to effectively select the most representative data 

for labelling. 

While most active leaming methods for this problem follow the incremental query 

learning paradigm in which the classifier is retained upon each newly labelled query, we 

present a distance-based method which samples the top-k representative data 

simultaneously and can be applied to any distance-based classifiers. Redundancy 

reduction makes classifier retraining unnecessary and makes it find more balanced 

examples with regard to class distribution in database. Experiment results from two data 

sets and two classifiers demonstrate the advantages of our method. 
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CHAPTER 1 

INTRODUCTION 

We are deluged by data - scientific data, medical data, demographic data, 

financial data, and marketing data. As our capabilities of both generating and collecting 

data are rapidly increased, the volume and complexity of data are unprecedented. These 

data are rich with hidden information that can be used for making intelligent decisions. 

Classification can be used to extract models describing important data classes or to 

predict categorical labels and future data trends. For example, a classification model can 

be built to categorize protein sequences as either Outer Membrane Protein or non Outer 

Membrane Protein. 

To construct a precise classification model, a set of high quality training data are 

the prerequisite. Usually classification tasks are given a small set of labelled training 

data at the very beginning. This data is not enough to construct an acceptable 

classification model for a database. More data need to be sampled, labelled and added 

into training data set to achieve a precise classification. Thus, effectively and efficiently 

sampling a number of most representative data is an important and interesting research 

problem. 



1.1 Background Information and Motivation 
Data classification [ I ]  is a two-step process (Figure 1.1). In the first step, a model 

is built describing a predetermined set of data classes or concepts. The model is 

constructed by analyzing database tuples described by attributes. Each tuple is assumed 

to belong to a predefined class, as determined by one of the attributes, called the class 

label attribute. In the context of classification, data tuples are also referred as samples, 

examples, or objects. The data tuples that are analyzed to build the model collectively 

form the training data set. The individual tuples making up the training data set are 

referred to as training samples and are usually randomly selected from the sample 

population (data bases). If the class label of each training sample is provided, this step is 

also known as supervised learning (i.e. the learning of the model is "supervised" in that 

it is told to which class each training sample belongs). It contrasts with unsupervised 

learning, in which the class label of each training sample is not known. 

In many supervised learning tasks, the given training samples are not sufficient 

for learning the classification model. Sometimes these training samples are biased so 

that the classification performance is poor. In order to achieve a good classification 

model, more data need to be sampled and labelled. 

However, labelling data may be complex, time-consuming and costly since it 

requires substantial domain expertise. For instance, to label a DNA or protein data needs 

a complex sequence analysis and may cost an experienced biologist several days. At the 

same time, the explosive growth of data makes it impossible to label all the data. For 



example, the number of entries in the data bank of protein sequences SWISSPROT [2] 

has grown by over 30 times since its first establishment in 1986. 

Figure 1.1 The data classification process: (a) Learning: Training data are analysed by a 
classification algorithm and the classifier model is built. (b) Classification: Test data are 
used to estimate the performance of the classifier and the classifier can be applied to 
classify unseen data. 

Training ::/ Classification 
Algorithms 

T a 
Classifier &.:iiJ 

nseen data t 
I Class Label I 

One way to save the cost of labelling data is to select a limited number (k) of data 

for labelling. At the same time, we hope these data can improve the classification 

performance most. It will be beneficial to sample the top-k representative data from the 



large database based on the initial set of training samples. In this way, k is specified by 

users and the classifier aims to reach high performance using the same n~lmber of 

examples selected and labelled. 

The traditional approach to this problem is to randomly sample data from the 

database according to the data probability distribution. However, random sampling will 

not always be effective. For example, if only 1 in 1000 data is positive class, and only 

500 data can be labelled, then a random sample will usually contain 500 negative class 

examples and no positive class ones. This will not help a classifier to distinguish positive 

from negative examples. In real world, the positive class and negative class are often not 

balanced with negative class as the majority. Random sampling has another shortcoming 

that the average amount of novel information obtained per sample will decrease as more 

data are sampled. The reason is that with growing size of the training data set, the 

classifier's knowledge about large regions of the input space becomes more and more 

confident so that additional samples from these regions are basically redundant so far as 

they do not contribute too much to improve the classification performance. 

Some active learning methods try to solve this problem. In an active learning 

setting, a learner has access to a pool of unlabeled data and trains a classifier based on 

current observed labelled data. Then based on the current state of the classifier(s) one 

selects some of the most informative or representative data so that knowing labels of 

the selected data can greatly improve the classification accuracy of the classifier(s). In 

order to select the most representative data, typical active learning methods employ 

the idea of "uncertainty sampling", in which the unlabeled data whose class labels 



are most uncertain based on the current classifier(s) are presented to experts for 

labelling. 

Query by Committee [3] [4] is one of the earliest algorithms of active learning. It 

uses a prior distribution over hypotheses. The method samples a set of classifiers from 

this distribution and selects an example with the maximal disagreement among the 

committee of these classifiers. For a linear classifier, e.g. a linear support vector machine 

(SVM) [ l l ]  [16], the most uncertain data is the one closest to the classification 

hyper-plane. Tong & Koller's SVM active learning [5] proposed a similar idea of 

uncertainty sampling using SVM and applies it to text classification. But both of them 

are restricted to the incremental query learning paradigm in which the classifier is 

retrained upon each newly labelled query. This paradigm is quite impractical in real 

world, since human experts can only label one datum at a time and have to wait for next 

one until the classifier is retrained. This leads to an extremely long time for training and 

improving a classifier. 

Xr [7] introduced a method which is able to select more than one example at a 

time. This algorithm takes the distribution of unlabeled data into account when selecting 

the unlabeled data close to the current SVM hyperplane. However, it has no an explicit 

quality criterion combining these two together and can only be applied to Support Vector 

Machine (SVM) classifier. 

Two previous studies [8] [9] on uncertainty sampling proposed a quite general 

algorithm, which can be used with any type of classifier that both predicts a class and 

provides an uncertainty measurement. So it can select multiple examples at a time, but it 

may introduce redundancy in these examples. It means some chosen examples are very 



similar. This redundancy will decrease the effectiveness and waste domain expert's time 

in labelling similar data. 

Hasenjager and Ritter [ lo]  proposed an algorithm with local models. It is based 

on the idea of selecting examples on the current decision boundary. It constructs 

Voronoi diagram [ lo]  and divide the input space into regions based on labelled data. The 

intersecting points of region borderlines are chosen for labelling. However, the 

application of the approach is limited to low dimensions in the range of 1 to 8, because 

the complexity of Voronoi diagram calculation grows exponentially with the 

dimensionality. 

To address the challenges and limits in above methods, this thesis proposes a 

method to sample top-k representative data. 

1.2 Contribution 
In this thesis, we study the problem of effectively and efficiently selecting top-k 

representative data from databases, which will be labelled and added into training data set 

to improve the classification performance. In particular, we make the following 

contributions. 

(1). We introduce a novel distance-based method including a concept to define 

the representativeness of data object. In this method, we try to avoid 

choosing very similar data. Thus the selected data contains more 

infom~ation and improves the classifier quality as much as possible. 

(2). No classifiers and retraining of classifiers are needed during the selecting 

period. The top-k representative data can be selected at a time. So the 



domain experts or users can analyze and label these data in a batch mode 

leading to a much faster training and improvement of the classifier. 

(3). This method and concept is not restricted to one particular classifier, but can 

be used in any distance-based classifier such as nearest neighbour classifier 

and Support Vector Machine (SVM). 

The experiments demonstrate the above advantages. 

1.3 Thesis Organization 
The remainder of the thesis is organized as follows: 

In Chapter 2, we present an overview of related work systematically. 

In Chapter3, we first define the problem and terminologies, and then present 

our algorithm and optimizations, at last summarize the whole method. 

In Chapter 4, we explain our data set, evaluation n~ethodologies, and 

experiment design. 

In Chapter 5, we show the experiment results and analyze the results in 

details. 

The thesis concludes in Chapter 6. Some future works are presented. 



CHAPTER 2 

RELATED WORK 

The topic of representative sampling for classification has received significant 

attention in both data mining and machine learning communities. A lot of researches 

have been conducted. In this Chapter, we review several previous studies that are related 

to our work technically. 

2.1 Query by Committee 
Query by Committee was first introduced by Seung, Opper and Sompolinsky in 

[3]. We refer it as the QBC algorithm. 

QBC devise a paradigm of incremental query learning, in which the training data 

set is built up one example at a time. An incremental learning procedure consists of two 

components: a training algorithm and a query algorithm. Given a set of P labelled 

examples, the trairzing algorithm builds a model satisfying the training set. The p e g ,  

algorithm is then used to select example P+1, whose expected information gain is high. 

Then the training algorithm is run again on the newly incremented training set, and so on. 

We denote by X an arbitrary unlabelled sample space over which a distribution D 

is defined. The target concept is a mapping c: X + {+I ,  -1). We assume that the 



learning procedure has access to two functions: Sample and Label. A call to Sample 

returns an unlabelled example XEX, randomly chosen based on the (unknown) 

distribution D. A call to Label with input x, returns the label of x according to the target 

concept c(x). If we simply make P calls to the two oracles, a training data set of pairs c, 
= (x,, c(x,)) are constructed, t = 1,. . ., P. The training set determines the version space 

HP = {h: h(xt) = c(xt), t = 1, . . ., P ) ,  

which is the set of all hypotheses consistent with the training set. The learner is assumed 

to know the distribution Pr(h) over the version space [12] (the subset of the hypothesis 

space that correctly classifies the labelled examples). The training algorithm is the Gibbs 

algorithm [14], in which the hypothesis h is drawn at random from this distribution. This 

will enable us to use techniques from statistical mechanics [15]. After training 2k models 

on the same training data set, a committee is constructed with 2k members, where k is a 

user defined parameter. Then ideally the query algorithm selects a data object that is 

classified as positive by half of the committee, and negative by the other half. Practically 

it chooses the one maximizing disagreement among the committee. 

The version space is a representation of the information contained in the set of 

labelled examples observed by the learner. A natural measure of the progress of the 

learning process is the rate at which the size of the version space decreases. Any input 

xpi-l divides the version space H, into two parts, 

The expected information gain is given by 



where V* are the volumes of H* and Vp is the volume of the version space Hp. After 

Label answers the query, the class label of xp+l is known with certainty. Before the 

answer arrives, the label of xp+l is uncertain: according to the Bayesian, it is + I  with the 

v + v -  
probability ---, and -1 with the probability ---. The entropy of this distribution is 

vP VP 

precisely the information value of the query, and is the expression of the above formula. 

The expected information gain is maximized by xp+l such that V+ = V-, i.e. by the query 

that divides the version space in half. In this optimal case, I = 1 bit exactly. 

Unfortunately, for most learning models, the geometry of the version space is 

complex, and one can not practically calculate the volumes V* for any given example, 

much less find an example for which V+ = V-. Training algorithms typically yield 

individual hypotheses in the version space, not global information about the version 

space. However, a committee of hypotheses can be used to obtain global information. 

Train a committee of 2k hypotheses using the Gibbs algorithm. Find an example that is 

classified as a positive example by k members of the committee, and classified as 

negative by the other k. Query the Label about this example. Train the committee again 

using the enlarged training data set, and repeat. As k -+ cc this algorithm approaches the 

bisection algorithm. 

The Fraud and Seung [4] proved that the QBC algorithm is an efficient algorithm 

for. the perceptron concept class with distributions that are close to uniform. It also shows 

that the information gain approaches a finite value and the prediction error decreases 



exponentially fast with the number of queries for some natural learning problems. This is 

in marked contrast to the case of learning with random inputs, in which the information 

gain approaches zero as the number of examples increases. In the random input case, the 

prediction error decreases relatively slowly. 

The limits or shortages of QBC algorithm are as follows: 

It can only select one example at a time. This is inefficient, if Label 

function is time consuming or costly so that query in a batch will be more 

efficient. 

It assumes that the data is noise free, and a perfect deterministic classifier 

exists. Both of the assumptions are problematic in real world. 

2.2 An Algorithm for Uncertainty Sampling 
An algorithm [8] for sequential sampling during machine learning of statistical 

classifiers was developed by Lewis and Gale. This method is called uncertainty 

sampling, which is an iterative process of manual labelling of examples, classifier built 

from those examples, and use of the classifier to select new examples whose class 

membership is unclear. 

Figure 2.1 presents an algorithm for uncertainty sampling from a set of unlabelled 

examples using a single classifier. In each iteration it can select one or b examples for 

labelling. This algorithm can be used with any type of classifier that both predicts a class 

and provides a measurement of how certain that prediction is. For instance, probabilistic, 

nearest neighbour, and neural classifiers, along with many others, satisfy this criterion or 

can be easily modified to do so. 



Figure 2.1 An algorithm for uncertainty sampling with a single classifier 

1. Create an initial classifier 

2. While teacher is willing to label examples 

(a) Apply the current classifier to each unlabeled example 

(b) Find the b examples for which the classifier is least certain of 
class membership 

(c) Have the teacher label the b examples selected in (b) 

(d) Train a new classifier on all labelled examples 

Uncertainty sampling [8] employs a similar strategy of training on misclassified 

instances which was first introduced in [17] [18]. The difference is in that when data is 

not labelled we must use the classifier itself to guess which examples are high likely to be 

misclassified. 

However, this uncertainty sampling algorithm may select some very similar 

examples or examples whose corresponding are similar and even same. This 

will greatly decrease the effectiveness. 

2.3 Support Vector Machine Active Learning 
Support vector machines [ l  11 have met with significant success in numerous real- 

world learning tasks. However, they are generally applied using a randomly selected 

training set labelled in advance. Instead of using a randomly selected training set, a pool- 

based active learning algorithm with support vector machine was introduced by Simon 

Tong and Daphne Koller [5]. 

' We are careful to distinguish an example e from the corresponding pattern w, since different examples 
may have the same feature vector. 



2.3.1 Support Vector Machine (SVM) 

Support vector machines have strong theoretical foundations and excellent 

successes. They have been applied to tasks such as handwriting recognition, object 

recognition, and text classification. In this subsection, we briefly review 

binary classification settings. 

Figure 2.2 A simple linear support vector machine 

SVMs in the 

We are given a training set {XI, . . . ,x,,}, where training data x, is a vector in some 

space X R ~ .  We are also given their labels { yl,  . . . , y,,} where y, E (-1, 1 ). Basically 

SVMs are finding hyperplanes that separate the training data by a maximal margin (see 

Figure 2.2). All instances lying on one side of the hyperplane are labelled as -1, and all 

instances lying on the other side are labelled as 1. The training instances that are closest 

to the hyperplane are called support vectors. However, sometimes the training data can 

not be linearly separated by a hyperplane. To address this problem, SVMs allow one to 

project the original training data in space X to a higher dimensional feature space F via a 

Mercer kernel fimction K. In other words, we consider the set of classifiers of the form: 



When K satisfies Mercer's condition [16], we can write: K(u, v) = $(u) $(v) where $: 

X+F and "en denotes an inner product. We can then rewrite f as: 

11 

f (x) = wl. $(x), where w = 1 a i e (x i )  , and w s W 
i = l  

Thus, by using kernel function the training data are transferred into a different feature 

space F. In addition, the parameter space W is simply equal to F. 

Given labelled training data and a kernel function K, there exists a set of 

hyperplane that separate the data in the induced feature space F. We call this set of 

consistent hypotheses the version space. In other words, hypotheses f is in version space 

if for every training data x, with label y, we have that f(xi) > 0 if y, = 1 and f(x,) < 0 if y, = 

-1. Then the version space, V is defined as: 

Because of the duality between the feature space F and parameter space W, we 

have: points in F correspond to hyperplanes in W and vice versa. Then we can show that 

the set of consistent hypotheses are the points (w) in W, which are restricted to lie on one 

side of a hyperplane in W. Notice that the version space is a connected region on the 

surface of a hypersphere in parameter space W. Since SVMs find the hyperplane that 

maximize the margin in the feature space F, it can be achieved by: 

maximize,,, mini { y,(w +(x,)) } 

subject to: I I w I I  = 1 and yi(w *$(xi)) > 0, i = 1, ... , n 



It is shown in Figure 2.3. 

Figure 2.3 (a) version space duality. The surface of the hypersphere represents unit weight vectors. 
Each of the two hyperplanes corresponds to a labelled training instance. Each 
hyperplane restricts the area on the hypersphere in which consistent hypotheses can lie. 
Here, the version space is the surface segment of the hypersphere closest to the camera. 
(b) A SVM classifier in a version space. The dark embedded sphere is the largest radius 
sphere whose center lies in the version space and whose surface does not intersect with 
the hyperplanes. The center of the embedded sphere corresponds to the SVM, its radius 
is proportional to margin of the SVM in F, and the training points corresponding to the 
hyperplanes that it touches are  the support vectors. 

2.3.2 Active Learning with SVM 

Before we can proceed to introduce the algorithms, we need two definitions: 

Area(V) is the surface that the version space V occupies on the 

hypersphere llwii = 1. 

0 Let V, denote the version space after i queries have been made. Now, 

given the (i+l )"' query x,+l, define: 



So P'- and I.:' denote the resulting version spaces when the next query 

xi+, is labelled as -1 and 1 respectively. 

Basically it tries to reduce the version space as fast as possible. One good way is 

to choose a query that halves the version space. However it is not practical to explicitly 

compute the sizes of the new version space V- and v'. There are three ways of 

approximating this procedure. 

Simple Margin. Recall from previous subskction, given some data {x ,,. . . ,x,, } 

and their labels { yl ,. . .,y,, } , the SVM unit vector w, based on this training set is 

the center of the largest hypersphere that can fit inside the current version 

space V,. The center of the sphere is often approximately in the center of the 

version space. Now, we can test each of unlabeled instances x to see how 

close their corresponding hyperplanes in W come to the centrally placed w,. 

This is simply the distance between the feature vector $(x) and the hyperplane 

w, in F - which is easily computed by I w, . $(x) I. The smaller the distance 

is, the more it bisects the version space. It results in the natural rule: learn an 

SVM on the existing labelled data and choose as the next instance to query the 

instance that is closest to the hyperplane in F. 

MaxMin Margin. Since we want an equal split of the version space, we wish 

Area(Y) and ~ r e n ( f )  to be similar. Now consider min(Area(Y), ~ r e a ( ~ ~ ) ) .  

It will be small if ~ r e a ( ~ ) a n d  ~ r e n ( p )  are very different. Since the radius m 

of the hypersphere can be used to indicate the size of the version space. Thus 



we will take min(m-, m') as an approximation and we will choose x for which 

this value is largest. Hence the algorithm is as follows: for each unlabeled 

instance x compute the margins m- and m+ of the SVMs obtained when it is 

labelled as -1 and +1 respectively; then choose to query the unlabelled 

instance for which the quantity min(m-, m+) is greatest. 

Ratio Margin. This method is similar to MaxMin Margin method. Instead of 

m m' 
using min(m-, mi), it take min(;,-)as the criteria to choose the next 

m m 

instance. 

The experiments show that the performance of three methods is similar. But 

because it can only select one example at a time, it has the same inefficient drawback as 

QBC algorithm. Especially for the MaxMin Margin and Ratio Margin methods, they 

require retrain the SVM twice for each selection. 

Representative Sampling Using SVM 
To address the problem of selecting more than one unlabeled examples, Xu [7] 

devised a representative sampling algorithm using SVM. This algorithm takes the 

distribution of the input domain X into account. It follows the heuristic that the learner 

should select the important informative vectors x, whose labels are yet unknown and 

quite uncertain according to the current SVM. The pseudo code of this algorithm is given 

as follows: 



Figure 2.4 Representative sampling algorithm using SVMs 

1. Train a linear SVM model based on all the labelled instances 
gathered so far. 

2. Let U be the set of the unlabeled instances that lie in the margin of 
newly trained SVM. 

3. Cluster U into k groups by k-means clustering and identify the k 
medoid instances. 

4. Present the k selected documents to human experts for labelling. 

5. Return to the first step and repeat until some stopping criterion is 
satisfied 

Figure 2.5 Representative sampling with SVM vs. SVM active learning 

Points selected bv 

Points selected by 
uncertainty sampling for 
SVM active leaming 

This algorithm differs from the SVM active leaming algorithm (subsection 2.3) in 

that it analyzes the distribution of the unlabeled instances within the margin where the 

classification is with low confidence; in comparison, SVM active learning only simply 



picks up the unlabeled data closest to the current SVM hyperplane. An example is shown 

in Figure 2.5. 

Xu also proposed how to define the value of data for active learning. Two 

important issues should be considered: 

First, data points are relevant which define the class boundary best, i.e. data 

points are close to the separating hyperplane. 

Second. the distribution of unlabeled data. 

Thus the representative sampling guides the learner to concentrate on the most important 

umertain data instead of the most uncertain data. 

The weakness of this algorithm is the lack of generality, since it can only be used 

in SVMs. In addition, it does not have an explicit quality criterion combining the above 

two important issues. 

2.5 Active Learning with Local Models 
Hasenjager and Ritter [lo] proposed a novel active learning algorithm with local 

learning model. In this algorithm, vector quantization [13] is used, i.e. each labelled 

training instance is considered as a reference vector. Given N labelled training instances, 

the input space U of unlabeled instances is divided into N regions. Each of these regions 

is represented by a reference vector r,, 1 li I N .  The set of R = (r,, i = I ,  . . . , N} of 

reference vectors is called codebook. The classification follows the rule: each unlabeled 

data in a region has the same class membership of the reference vector for that region. 



The goal of this algorithm is to construct a suitable codebook incrementally. Next 

reference vector or example is selected based on the knowledge that the learner has 

learned so far. Thus it also employs the active learning strategy. 

The nearest-neighbour rule is used to divide input space U into regions. Each 

unlabeled instance in U is assigned to its nearest reference vector in the codebook. Then 

these regions are called Voronoipolylzedra defined as follows: 

Voronoipolyhedra V(r& = {x E X: d(r,, x) Sl(r,, x); Yi#j } , where d is the 

Euclidean distance. 

The set of points that are assigned to more than one region forms borderlines which 

construct the Voronoi diagram of the codebook. Figure 2.6 presents an example in the 

two dimension space. 

Figure 2.6 Voronoi diagram of a set of 12 reference vectors 

Figure 2.6 (b) shows a point of intersection of three - or, in a d-dimension space 

- (d+1) faces of adjacent regions. These points are called Vorotzoi vertices v;. Each of 



them have an equivalent distance from at least (d+l) reference vectors, it is the centre of 

a circle C(vi) passing through those reference vectors. 

The author proposed to make use of these geometrical properties in the following 

way: the classification of the Voronoi vertices is ambiguous, since they are at the same 

distance from a maximum number of reference vectors. This makes them promising 

candidates for the next query about the correct class membership. 

To select one candidate from Voronoi vertices, three ways are proposed: 

A. The next example is selected randomly from the set of Voronoi vertices. In 

this case, it assumes that the property of being a Voronoi vertex is a 

sufficient condition for the selection. All Voronoi vertices are chosen with 

the same probability. 

B. The Voronoi vertex vi which is the centre of the largest circle C(v,) is 

selected as the next example to query. 

C. Only the subset of Voronoi vertices whose nearest neighbours among the 

codebook reference vectors belongs to different classes are considered. 

These Voronoi vertices lie on the current classification boundary as defined 

by the nearest neighbour rule. Among these, the one which is the centre of 

the largest circle is selected. Such a query utilizes not only the geometry 

information but also the information that has been accumulated about the 

associated classifications. 

This algorithm can easily be generalized to high dimension space. However, the 

Voronoi diagram needs to be calculated explicitly and the complexity of this calculation 



grows exponentially with the dimension, so it  limits the application of the approach to 

dimensions in the range of 1 to 8. Since many learning tasks, such as text classification, 

have very high dimensionality, it is not a very practical method. 



CHAPTER 3 

SAMPLING TOP-K 
REPRESENTATIVE DATA 

This chapter provides an in-depth discussion of our approach for sampling top-k 

representative data. In Section 3.1, a precise problem definition is given. A new 

Representativeness concept is defined and its d e s i q  is discussed in detail. Section 3.2 

presents the algorithm systematically. Section 3.3 discusses the optimization of the 

algorithm. Section 3.4 summarizes the whole method. 

3.1 Definitions and Terminologies 
In this subsection, we will define all terminologies and concepts that will be used, 

and define the problem of sampling top-k representative data. In this thesis, we will only 

focus on binary classification tasks. In this case, there are only two classes in the given 

database, positive class and negative class. We also assume that the domain experts are 

only able to label a limited number of data objects. Thus, it is impossible to find the 

optimal solution by identifying and labelling all subsets of size k, retraining the classifier 

and selecting the one which improves the classification perfomlance most. Then the 

problem is defined as follows. 



Problem Definition Let D be the entire database, which contains only two 

classes, positive class (PC) and negative class (NC). But only a small set of data objects 

are labelled as training data denoted by L = {L1 LJ L2) c D, where L1 c PC and L2 c NC. 

The remaining n data objects are unlabelled and denoted by U D. Our goal is to find 

the answer set ANS c U based on L, where IANSI=k, such that the performance of the 

classifier(s) can be improved as much as possible after the elements of ANS are labelled 

and the classifier(s) are rebuilt on the extended training data {LuANS) .  The k data 

objects in ANS are the top-k representative data for classification. 

In above problem definition, the size of answer set, k is a user specified 

parameter. The bigger it is, the more work domain experts need. But if it is too small, 

then the increase of the performance of classifier(s) may not be satisfying. The 

performance of the classifier(s) can be evaluated by any of the standard methods [29] 

such as accuracy, precision, recall or F-measure. We will discuss the evaluation 

methodologies in Section 4.4. 

Since many classification methods are distance-based, we are motivated to 

propose a distance-based approach. We will introduce two distance function here, one 

for the distance between two data objects, and the other one for the distance from one 

data object to a set of data objects. 

Definition 1 Given two data objects X and Y E D. Then F(X, Y) is defined as 

the distance between X and Y. 

Definition 2 Given a data object 0 E D and a set of objects S = {Q,.  Q2,.. . Qm),  

where S c  D, the distance between 0 and S is defined as follows: 



From the above definitions, the distance between a data object and a set of data 

objects is defined as the distance from the object to the closest object in the set. Figure 

3.1 shows the definition. 

Figure 3.1 Distance Function 

0 

Like other active learning methods discussed in Chapter 2, we also employ the 

idea of "uncertainty sanlpling". We introduce a novel idea to measure the uncertainty of 

data's classification. The selected data should be those data that are most difficult or 

uncertain to classify in the current classifier and thus can significantly improve the 

classifier performance after labeling as training data. The basic idea is simple but 

elegant: When an unlabelled data has a similar distance to both sets of positive training 

data (LI)  and negative training data (L?), it will be very likely to be misclassified. In 

another words, the more similar the two distances from the unlabelled object to LI  and 

L2, the more uncertain the object's classification. So we are going to find the data which 

can maximize the similarity of the two distances. If this data is sampled and labelled, the 

data close to it will be easy to classify. 



Figure 3.2 shows an example of this basic idea. In this figure, an unlabelled 

object P has similar distances to both positive and negative training samples. The dashed 

line is the decision boundary of the current classifier, which misclassifies P as positive 

object. But P actually belongs to negative class. After labelling P and adding it into the 

training data set, the classifier is rebuilt and the decision boundary is changed to the solid 

line. Now P is correctly classified as negative data object. 

Figure 3.2 An example of the basic idea 

I 

Hence, we suggest that the most uncertain unlabelled data is the data which has 

the most similar distances to both positive training samples L1 and negative training 

samples L2. To measure the similarity of distances, we use a concept, DistSimilavity, 

which is defined as follows. 

Definition 3 Given U, L1 and LZ, the DistSimilarity (with regarding to L I  and 

Lz) of any unlabelled data object 0 E U is: 

min (Dist(0, L, ), Dist(0, L, )) 
DistSimilarity (0) = 

nlax {Dist(O,L, ), Dist(0, L 2 ) }  



In above formula ( I ) ,  the top and bottom are respectively the minimal distance 

and maximal distance. It is intuitively describes the representativeness of any data within 

the range of [0, I]. The greater the DistSimilavity is, the more uncertain the classification 

for the data. 

If we use formula ( I )  as the only criterion to measure the uncertainty, the answer 

set ANS may contain a lot of data that are very close to each other since they have similar 

and large DistSimilavitj* (0). We call them as redundancy. Figure 3.3 show an example 

of this scenario. In this example, all the objects in the ANS rectangle will be returned as 

the answer set. But if P can be selected as one of the answers, it will give more help for 

training the classifier. 

Figure 3.3 An Redundancy Example 

ANS 

In order to reduce the redundancy in the answer set, we also need consider the 

distance between the answer set elements. Thus we will select a data object which not 

only has a high DistSimilavity value but also is far to the current answer set. Then a 

novel concept, vepvesentntiveness is defined as follows. 



Definition 4 Given U, L I ,  L2 and ANS, The representativeness (with regard 

to L1, L2 and ANS which is the current answer set) of any unlabelled object 0 E U is: 

Rep(0,ANS) = DistSimilaritv(0) * Dist(0, ANS) (21, 

Fonnula (2) consists of two parts. The first part on the left of "*" represents the 

similarity between Dist(0,Cl) and Dist(O,C2), and its range is in [0,1]. The larger it is, 

the more similar two distances are. The second part on the right of "*" represents the 

distance between the unlabeled object 0 to the current answer set of selected data. In 

order to make sure that it doesn't dominate the Rep(O,ANS), it is required in the range of 

[0,1]. Some distance function has this property, such as Cosine Similarity. The larger it 

is, the farther it is to the current answer set. 

Given the definition of representativeness, our task is to select k data objects, for 

each of which the Rep value is the highest with regard to L1, L2, and the current ANS at 

the moment of choosing it. By this way, we aim to sample the top-k representative data. 

An example is shown in Figure 3.4. 

Figure 3.4 Top-k representative data vs. Uncertainty Samples with SVM 

4 points selected by 
uncertainty 

4 points selected by 
our method using 



Algorithm 
Our method is to iteratively select top-k representative data in k rounds. In each 

round, the representativeness of each unlabeled data object is computed and the one with 

the maximal representativeness value is selected and added into answer set. It stops as 

soon as k data objects are selected. Since our algorithm is based on the problem 

definition and representntiveness defined on Section 3.1, we call it as Rep-Sampling 

algorithm. The pseudo code of the basic version is given in Figure 3.5. 

Figure 3.5 The basic Version of Rep-Sampling Algorithm 

Input: L1, L2, k, U 

Output: Answer set ANS 

Methods: 

1. Initialize ANS = 0. 

2. while (IANSI < k) do 

3. For each 0 E U - ANS 

3.1 Compute Dist(0, L1), and Dist(0, L2) . 

3.2 Compute Dist(0, ANS). 

3.3 Compute Rep(0,ANS). 

4. Find the object P whose Rep(P,ANS) is maximal. 

5. ANS = ANS u {P). 

6. end while 

7. Return ANS. 

The input of the algorithm are: positive training data set L , ,  negative training data 

set L2, the number of representative data that users want to select, and the unlabelled data 

set U. The output will be the answer set, ANS, which includes k data selected by the 



algorithm. The methods start with initializing the ANS to empty in Line 1 .  Then it 

repeats Line 3 to line 5 until all k representative data are selected from U. So it runs k 

rounds, each of which selects one data. In each round, for each unlabelled data 0 in U 

and not in ANS, it calculates the distance from the object to L1 and L2 in Line 3.1, the 

distance from the object 0 to current answer set ANS in Line 3.2, and finally get the 

representativeness value Rep(0,ANS) in Line 3.3. Then it adds the object with the 

maximal Rep() value into answer set ANS in Line 4, 5. Thus after k rounds, it finds all 

the k objects and return ANS. 

The algorithm is straightforward. However, if we implement it naively, the above 

algorithm would be very inefficient. Now let us take a look at the run time complexity of 

the algorithm. Let lLll + IL2/ = m, then to calculate Dist(0, L1), Dist(0, L2) and Dist ( 0 ,  

ANS) in each round, it needs nxm pair-wise distance computation according to 

Definition 2, where n is the size of U. Thus totally its complexity is O(kxnxm). Now 

let's compare it with optimal solution. The optimal solution determines all subsets of 

size k of U, labels them and selects the one that increases the performance of 

classification most. Its run time complexity is O(nk), which is much bigger than the 

complexity of our greedy algorithm and makes the optimal solution infeasible. 

However, the unlabelled data set may be very large, and the complexity of our 

approach can also be too large to be acceptable. So we need find some efficient ways to 

optimize the initial version of our algorithm in Figure 3.5. Next subsection will discuss 

some optimization methods in details. 



3.3 Optimization 
The major factor of complexity is the computations for pair-wise distances. We 

will try to reduce the number of these distance computations. We have two optimization 

methods for this aim. 

The first method is to conlpute Dist(0, L1) and Dist(0, L2) only once for each 

unlabelled object 0 .  Since in Rep-Sampling algorithm, it does not update LI and L?, it is 

unnecessary to compute the pair-wise distances in every round. If we can calculate these 

distances only in the first round and store them in a hashing table or in hard disk, then the 

subsequent (k- 1) rounds can use them directly. 

The second method is to reduce the pair-wise distance computation when 

calculating Dist(0, ANS). Even though the answer set is updated after each round, but 

only one new member are added. According to Definition 2, we will take the minimal 

pair-wise distance as the distance between the object to the set. So if we can keep the 

Dist(0, ANS) and the new member N added into ANS after each round, then in the next 

round we only need compute F(0, N) and take minimal one between F(0, N) and 

previous Dist'(0, ANS) as the new value of Dist(0, ANS). 

With the above two optimizations, each round only computes one pair-wise 

distance, F(0, P), where P is the new member added to ANS in previous round. Thus 

the complexity is now O((k+m)xn), which is reduced. 

The pseudo code of Rep-Sampling algorithm with the optimizations is given in 

Figure 3.6. This optimized algorithm employs three data structures: 

Storage-1 to keep Dist(0, LI)  and Dist(0, L2), 



Storage-2 to keep previous Dist(0, ANS), 

Newmember to keep the most representative data selected in previous 

round. 

Figure 3.6 The Optimized Version of Rep-Sampling Algorithm 

Input: L1, L2, k, U 

Output: Answer set ANS 

Methods: 

1 . Initialize ANS = 0. 

2. For each 0 EU 

2.1 Compute Dist(0, L,), and Dist(0, L2). 

2.2 Storage-I (0)  = < Dist(0, L1), Dist(0, L2) >. 

2.3 Storage-2(0) = 1, New-member = null. 

3. while (\ANSI < k) do 

4. For each OE U - ANS 

4.1 < Dist(0, LI), Dist(0, L2) > = Storage-I (0). 

4.2 the previous Distl(O, ANS) = Storage-2(0). 

4.3 Compute F(0, New-member). 

4.4 Dist(0, ANS) = min {F(O, New-member), Dist'(0, ANS)). 

4.5 Storage-2(0) = Dist(0, ANS). 

4.6 Compute Rep(0,ANS). 

5. Find the object P whose Rep(P,ANS) is maximal. 

6. New - member = P. 

7. ANS = ANS u {P). 

8. end while 

9. Return ANS. 



CHAPTER 4 

EXPERIMENT DESIGN AND 
IMPLEMENTATION 

To evaluate the effectiveness of our algorithm, we need conduct extensive 

experiments. According to the discussion of the related work in Chapter 2, [7] is similar 

to our approach, but [7] is applicable only for SVM. The general algorithm [8] for 

uncertainty sampling is also similar to our approach, since it can also both select more 

than one data object to query and be applied to some distance based classifiers as long as 

they associate some uncertainty with their predictions. Thus, we will compare our 

algorithm with this uncertainty sampling algorithm [8] and traditional random sampling. 

In this Chapter, we present experiment design and implementation issues. 

4.1 Data Sets 
To critically evaluate the effectiveness, two data sets from different areas are used 

to perform the experiments. 

4.1.1 Protein Sequences 

We obtain a dataset of protein sequences from our partners at the department of 

Molecular Biology and Biochen~istry at Simon Fraser University. It is available online at 



http://www.psort.org/dataset. The dataset was created by extracting all Gram-negative 

proteins from the SWISSPROT database [22]. 

This data set contains protein sequences of variable lengths. Protein sequences 

are constructed by hundreds, sometimes thousands of amino acids, over an alphabet of 20 

amino acids. Each amino acid is represented by a letter: alanine (A), cysteine (C), 

aspartic acid (D), glutamic acid (E), phenylalanine (F), glycine (G), histidine (H), 

iosleucine (I), lysine (K), leucine (L), methionine (M), asparagines (N), proline (P), 

glutamine (Q), arginine (R), seine (S), threonine (T), valine (V), tryptophan (W) and 

tyrosine (Y). The longest sequence in our dataset consists of 3705 amino acid residues 

and the shortest sequence has a length of only 50. Two classes are present in this dataset: 

Outer Membrance Protein (OMP) 

non Outer Membrane Protein (non-OMP) 

The distribution of these two classes is not balanced, with 27% being "OMP" and 73% 

being "non-OMP". The details are shown in Table 4.1. 

Table 4.1 Protein Sequences Dataset 

Number of I Percentage of ( Minimum Maximu ' Average I 

sequen+[ Each - -- Class --+ 
I OMP 427 27.4% , 91 3705 ' 571.1 ' 

' Total I 1559 1 
-- -- A A- L 1  . 

342.9 , 
-1 

Since the biologist is interested in OMP prediction, we take OMP as positive class and 

non-OMP as negative class in our experiments. 



4.1.2 Classic Text Document 

Text classification has an important role to play, especially with the recent 

explosion of readily available text data. We use the Classic3 database [21] as one data 

set, which contains 1400 CRANFIELD documents from aeronautical system papers, 

1033 MEDLINE documents from medical journals and 1460 CICI documents from 

information retrieval papers. All the documents are already labelled. 

Based on this text documents database, we take MED as positive class and the 

other two kinds are negative class. Thus the distribution of these two classes is similar to 

the class distribution in our protein sequences dataset, with 27% being positive and 73% 

being negative. The details are shown in Table 4.2. 

Table 4.2 Text Document Data 

~ 

1033 
- ~ -  - 

- . . . --A - 73% 

1 Total 
! 

1 Data Number of 
1 Documents 

4.2 Classifiers 

Percentage of 
Each Class 

To compare our algorithm with zincertain[y sampling nlgoritlznz [8] and ratrdom 

sampling, we choose two classifiers for our experiments: SVM classifier and KNN 

classifier [6]. These two classifiers are quite well known and have been used extensively 

and successfully. 



Both of them are distance based classifiers, which satisfy our algorithm's 

requirement. KNN is obviously distance based. In SVM, the similarity between objects 

can be measured by dot products (i.e. angles and lengths) [23] in a high-dimensional 

feature space. Thus SVM can also be considered as distance based. 

These two classifiers can both classify an unlabeled data and provide a 

measurement of the classification uncertainty, which satisfies the requirement of 

uncertainty sampling algorithm [8]. 

In KNN, we use the distance weighted k-Nearest-Neighbour rule [24] to measure 

the classification certainty. For an unlabeled data 0 ,  we find its k nearest neighbours in 

the initial labelled training data and order them in the ascending distances, d l ,  . . ., dk (dl< 

. . .< dk). A weight wi is assigned to the ith nearest neighbour and it is defined as: 

where sign(i) is positive if ith nearest neighbour is positive 

example, otherwise is negative. 

Then the classification certainty of an instance 0 is defined in formula (4). The smaller 

the KNN-certainty(0) is, the more uncertain is the classification for object 0. 

For SVM, we use the existing software called SVM""" [25]. The classification 

result of this software contains a value of the decision function for each test example. 

The value of the decision function is actually the distance between the test example to the 



decision hyperplane in SVM. The smaller the value is, the closer the test example to the 

decision hyperplane, and the more uncertain the example's classification. This idea was 

proposed in [28]. Tong [5] uses the same idea for uncertainty measurement in SVM. In 

our experiment, we also employ the idea and use the absolute value of the decision 

function as the certainty of the classification for the corresponding object. 

4.3 Pre-processing and Distance Function 
To apply KNN and SVM classifiers, all the raw data need to be transformed into a 

vector space representation with a same dimensionality, i.e. each data is represented by a 

vector. Figure 4.1 presents the algorithm for this transformation. 

Figure 4.1 Data Transformation Algorithm 

1. Based on all unlabeled data in U, find frequent patterns2 with Apriori 
algorithm, where the minimum support is 1 % or 2?h3. 

2. Take each frequent pattern as one dimension and form a vector 
space. 

3. Transform every raw data object into a Boolean feature vector by 
taking 1 for each dimension if the data object contains the 
corresponding frequent pattern, otherwise 0. 

For example, suppose there are 10 frequent patterns in the protein sequences data 

set and a feature vector for a sequence is [1,1,0,0,1,0,0,1,0,0], where 1 means the 

Frequent patterns are frequent term sets for text data and frequent subsequences for proteins data. 
' [27] uses these minimum support value to find the frequent sub-sequences for prediction of OM proteins 
on the same data set. 



sequence contains the corresponding frequent pattern, 0 means the sequence doesn't 

contain the corresponding frequent pattern. Note that for protein sequence data set the 

frequent pattern is actually the frequent substring, for text document data set (Classic3) 

the frequent pattern is the frequent keywords after removing stems and stop words. To 

find the frequent pattern, we use a public domain implementation of the basic Apriori 

algorithm [26]. 

After constructing the feature vector for each data, we can compute the distance 

- & 

between two data X and Y represented by feature vector x and j 1  using e.g. the Euclidean 

Distance or Cosine Similarity in vector space model: 

Euclidean Distance: F(X, Y) = I x - 1; 1 = (I. - y ,  )' - - ii:l 

Cosine Similarity: 

SVM uses the dot product of two data objects to measure the distance, which is 

actually a similar calculation with the cosine similarity. In addition, the 

representativeness definition in formula (2) requires Dist (0, ANS) to be in the range of 

[O, 11 so that it won't dominate the representativeness. The cosine similarity has this 

property. So in our experiments, we use the cosine similarity in formula (6) as the 

distance function. 



4.4 Evaluation Methodologies 
Here we introduce the evaluation measure that we will be using in Experiment 

Studies. The performance of a classifier is usually measured by classification accuracy, 

precision and recall. They are defined based on a confusion matrix as shown in Table 

4.3. 

Table 4.3 Confusion Matrix in Classification 

Actual positive 

Classified as 

Positive (true positive) T 
Actual negative 

Classified as 

Negative 

(false positive) - 
FN 

(false negative) 

TN I 

(true negative) 

Overall Accuracy = 
TP + TN 

T P + F P + F N + T N  

Precision for positive class prediction = 
TP 

TP+ FP 

Recall for positive class prediction = 
TP 

TP + FN 

An often used measure in the information retrieval and data mininz communities 

is the F-measure." According to Yang and Liu [19], this measure was first introduced by 



C. J. van Rijsbergen [20]. They state that the F-measure combines recall (r) and precision 

(p) with an equal weight in the following form: 

It is understood that accuracy, precision and recall tend to be dominated by the 

classifier's performance on the majority class. Sometimes it is not reasonable. In 

addition, it is desirable to have a single measurement to evaluate the effectiveness of a 

classifier. Hence, we will take F-measure as the evaluation measurement of classifier(s). 

Because our method need not retrain classifier(s) and can select multiple 

unlabeled data at a time, it is obvious that our method is more efficient. In addition, our 

assumption is that labelling data is very time consuming and costly, in contrast the 

efficiency of selecting unlabeled data is not a critical problem, but the effectiveness is 

very important. Thus we will mainly focus on the evaluation of effectiveness in different 

methods. 



CHAPTER 5 

EXPERIMENT STUDIES 

We compare our method with random sampling and general uncertaintj. sampling 

algorithm [8] based on two data sets and two classifiers. Table 5.1 shows the 

combinations of data set and classifier for our experiments. The evaluation criteria is the 

average F-measure over 10 initial training sets (10*L) randomly drawn from the 

unlabeled data set U. To avoid bias in random sampling algorithm, we will do the 

random sampling 5 times for each of 10 initial training set, and take the average as the F- 

measure for this training set. 

Table 5.1 Experiments Combinations 

a 
KNN (k=5) 1 SVM 

I 

Protein data KNN & Protein SVM & Protein P 
Classic3 KNN & Classic SVM & Classic 



Based on the same initial training set whose size is 10, we perform experiments to 

find answer sets whose sizes are respectively: 10, 30, 50 and 70. In the subsequent 

subsections, we present the experiment results and our analysis. 

5.1 Experiment Results with KNN Classifier 

Figure 5.1 Experiment results with KNN (k=5) 

10 
20 training48ata size 60 80 

(b) KNN & protein data 
80 I-- - 

-- 

10 20 40 60 80 
Training data size 



Figure 5.1 shows the experiment results using KNN with K = 5 on two different 

data sets. The experiments show that the classifier performance increases generally with 

sampling size under all methods. 

However, our method outperforms uncertainty sampling and random sampling on 

both datasets with KNN classifier. The superiority of our method is particularly notable 

with the increase of the sample size. 

5.2 Experiments Results with SVM Classifier 
Figure 3 shows the experiment results using SVM classifier on two different data 

sets. 

Figure 5.2 Experiment results with SVM 

(a) SVM & Classic3 



(b) SVM & protein data 
80 - -. ---- - -- 

) 1 +-Random sampling 1 
-- - 

20 training4d)ata size 
60 

Our method significantly outperforms both random sampling and uncertainty 

sampling methods for protein data in Figure 5.2 (b). For Classic3, Figure 5.2 (a) shows 

that uncertainty sampling outperforms our method a little bit when sampling small 

number, but our method outperforms uncertainty sampling when sampling more 

examples and achieves much better classification eventually. 

5.3 Analysis 
From the above experiment results, it is obvious that our method outperforms 

random sampling significantly. When sampling a small number of examples such as 10, 

they may have similar performance. But while sampling more examples, the superiority 

becomes more obvious. The reason is that with more random samples added, they may 

provides similar information and redundancy may occur, thus they can not contribute 

significantly to the classifier's performance. However, our method keeps sampling the 

representative examples and considering the redundancy in the sampled examples. 



We also notice that the performance of random sampling varies significantly 

among different random samples. For example, the F-measure varies from 4% to 43% 

for a same initial labelled data set L. Hence, the random sampling method may not be 

reliable and the average F-measure over different examples selected by random sampling 

methods can't guarantee the performance in real world. 

Our method also outperforms uncertainty sampling method, even though 

uncertainty sampling is a little bit better than our method when sampling a small number 

(10) of examples on Classic3 using SVM. It can also be explained by the redundancy in 

answer set. When sampling a small number of examples, it is less likely to have 

redundancy. But as the number of sampled examples increases, uncertainty sampling 

algorithm may select very similar examples because it greedily favours those examples 

with highest uncertainty. Our algorithm won't have this problem by considering 

redundancy. 

Through the experiments, we have another important observation that can also 

explain why our method is better than uncertainty sampling and random sampling. This 

observation is: 

Our method returns a more balanced (with regarding to the distribution of positive 

and negative class) answer set than uncertainty sample and random sampling, and the 

ratio of two classes (positive and negative) in our method is becoming closer to 1 with the 

increase of sampling data size. 

Figure 5.3 presents the ratio of positive and negative classes in the answer set 

with different methods. In random sampling, the distribution of answer set is close to the 

distribution of the data set. In uncertainty sampling, the sampled answer set is quite 



unbalanced in terms of class distribution, even worse than random sampling in most 

cases, and the ratio of the two classes does not increase. This can also explain why 

random sampling performs better than uncertainty sampling in our experiments. It also 

demonstrates that uncertainty sampling algorithm does not work well in data sets with an 

unbalanced class distribution. 

In our algorithm, the answer set will become close to balanced as number of 

sampled data increases, even thought the input data sets are unbalanced. In real 

applications, the unbalanced data set is the common situation, thus our algorithm is a 

practical method. 

Figure 5.3 The ratio of positive class and negative class in the sampling answer set. 
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Even though the answer set returned by our algorithm may contain some noisy 

data, but through sampling more representative and balanced examples and reducing 

redundancy, it is impossible that the answer set is dominated by noisy data. Thus, our 

algorithm can also work well on data set with noise, while uncertainty sampling is noisy 

sensitive since its answer set may include a lot of noisy data. 

All the experiments based on two data sets and two classifiers shows consistent 

results, so it is time to conclude. 



CHAPTER 6 

CONCLUSION AND FUTURE WORK 
In this chapter, we first summarize the thesis, and then discuss some interesting 

future directions. 

6.1 Summary of the Thesis 
In order to reduce human efforts, there has been increasing interest in applying 

pool-based active learning for classification. Most previous studies adopt the incremental 

learning paradigm in which the classifier is retained upon each newly labelled query, thus 

it is still not very efficient and involves lots of domain experts' work. Most of them also 

employ an idea of "uncertainty san~pling", in which the uncertain data whose class 

labels are unclear based on current classifier(s) are selected. However, this greedy 

idea may result in redundancy in the answer set, especially when the unlabeled data pool 

is unbalanced. 

In this thesis, we propose a distance-based method to sample the top-k 

representative data in a batch, which is applicable to any distance-based classification 

algorithm, such as SVM, KNN and Nai've Bayesian. The data objects selected can 

effectively improve the performance of weak classifiers, whose accuracy is above 50%. 

The following are the contributions of our approach. 



We propose a novel concept to define representativeness of each data, which 

is used as the criteria to select the instances for labelling. 

To find the most representative data, we avoid choosing very similar data to 

reduce the redundancy in the answer set. Thus the selected data contains more 

information. 

The selected top-k representative data is more balanced (with regarding to 

class distribution) than random sampling and uncertainty sampling algorithms. 

No classifiers and retrain are needed during the selecting period. The top-k 

representative data can be selected at a time. So the domain experts or users 

can analyze and label these data in a batch mode. 

This method is more general and practical in the real world. Our algorithm 

can be more tolerant to noisy data input and still works well for unbalanced 

input data sets. Any distance-based classifier, such as SVM and KNN, can be 

used in our algorithm. 

The experiments based on two data sets and two classifiers demonstrate the 

effectiveness of this algorithm. 

6.2 Future Work 
With the success of this method, it is interesting to re-examine and explore many 

related problems, extensions and applications. Some of them are listed here. 

Sampling e;urrnlples that can minimize the ,future error. This is another 

way to solve this problem. Our method actually employs the idea of 



"uncertainty sampling", but we use a different criteria to measure the 

uncertainty and also consider the redundancy during the sampling period. 

So sampling examples that minimize the future error is different approach 

and worth some research to compare with our algorithm. 

Sampling top-k representative data from a large truijling data set. It 

assumes that a very large labelled training data set is given, but we want to 

select those most representative data for training classifiers. This is an 

interesting issue in the opposite direction. 
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